METHODES NUMERIQUES POUR DES EQUATIONS ELLIPTIQUES ET PARABOLIQUES NON LINEAIRES

Application à des problèmes d'écoulement en milieux poreux et fracturés

Martin VOHRALÍK

Thèse présentée pour obtenir le grade de

Docteur en sciences de l'Université Paris XI Orsay en mathématiques

&

Docteur de l'Université Technique Tchèque à Prague en modélisation mathématique

Outline

Motivation

Chapter 1, part A: A combined finite volume–nonconforming/mixedhybrid finite element scheme for degenerate parabolic problems

Chapter 1, part B: A combined finite volume–finite element scheme for contaminant transport simulation on nonmatching grids

Chapter 2: Discrete Poincaré–Friedrichs inequalities

Chapter 3: Equivalence between lowest-order mixed finite element and multi-point finite volume methods

Chapter 4: Mixed and nonconforming finite element methods on a fracture network

Perspectives and future work

General motivation

- development and analysis of efficient numerical methods
- simulation of flow and contaminant transport in porous and fractured media (e.g. depollution or GdR MoMaS problems)

General motivation

- development and analysis of efficient numerical methods
- simulation of flow and contaminant transport in porous and fractured media (e.g. depollution or GdR MoMaS problems)

Underground water flow

$$\mathbf{u} = -\mathbf{K}(\nabla p + \nabla z)$$

$$\nabla \cdot \mathbf{u} = q$$

- p pressure head
- u Darcy velocity

- **K** hydraulic conductivity tensor
- z elevation
- q sources and sinks

General motivation

- development and analysis of efficient numerical methods
- simulation of flow and contaminant transport in porous and fractured media (e.g. depollution or GdR MoMaS problems)

Underground water flow

$$\mathbf{u} = -\mathbf{K}(\nabla p + \nabla z)$$

$$\nabla \cdot \mathbf{u} = q$$

- p pressure head
- u Darcy velocity

- ${\bf K}~$ hydraulic conductivity tensor
- z elevation
- q sources and sinks

Difficulties

- high contrasts of parameters
- complex domains

General motivation

- development and analysis of efficient numerical methods
- simulation of flow and contaminant transport in porous and fractured media (e.g. depollution or GdR MoMaS problems)

Contaminant transport

$$\frac{\partial\beta(c)}{\partial t} - \nabla\cdot(\mathbf{S}\nabla c) + \nabla\cdot(c\mathbf{v}) + F(c) = q \qquad (1)$$

- c unknown concentration of a contaminant
- β time evolution and equilibrium adsorption
- t time
- **S** diffusion–dispersion tensor
- v velocity field
- *F* chemical reactions
- q sources and sinks

Outline

Motivation

Chapter 1, part A: A combined finite volume—nonconforming/mixedhybrid finite element scheme for degenerate parabolic problems

Chapter 1, part B: A combined finite volume–finite element scheme for contaminant transport simulation on nonmatching grids

Chapter 2: Discrete Poincaré–Friedrichs inequalities

Chapter 3: Equivalence between lowest-order mixed finite element and multi-point finite volume methods

Chapter 4: Mixed and nonconforming finite element methods on a fracture network

Perspectives and future work

Nonlinear convection-reaction-diffusion equation

Equation

$$\frac{\partial\beta(c)}{\partial t} - \nabla\cdot(\mathbf{S}\nabla c) + \nabla\cdot(c\mathbf{v}) + F(c) = q \qquad (1)$$

- c unknown concentration of a contaminant
- β time evolution and equilibrium adsorption
- t time
- **S** diffusion–dispersion tensor
- v velocity field
- F chemical reactions
- q sources and sinks

Nonlinear convection-reaction-diffusion equation

Equation

$$\frac{\partial\beta(c)}{\partial t} - \nabla\cdot(\mathbf{S}\nabla c) + \nabla\cdot(c\mathbf{v}) + F(c) = q \qquad (1)$$

1.5

1

0.5

0

- *c* unknown concentration of a contaminant
- β time evolution and equilibrium adsorption.

t time

- **S** diffusion–dispersion tensor
- v velocity field
- F chemical reactions
- q sources and sinks

Difficulties

- nonlinear, degenerate parabolic problem
- convection dominates over diffusion
- inhomogeneous and anisotropic (nonconstant full-matrix) tensor ${f S}$
- general unstructured meshes (local refinement possible)

0.5

 $\beta(c) = c + c^p, p \in (0, 1)$

 $|\beta(a) - \beta(b)| \ge c_\beta |a| - b|$

 $\beta'(0) = +\infty$

FEMs and FVMs for degenerate parabolic problems

Finite elements for degenerate parabolic problems

- Barrett & Knabner (1997); $\frac{\partial\beta(c)}{\partial t} \triangle c = q$, a priori error estimates
- Nochetto, Schmidt, & Verdi (1999); $\frac{\partial\beta(c)}{\partial t} \triangle c = q$, a posteriori error estimates
- Chen & Ewing (2001); $\frac{\partial c}{\partial t} \bigtriangleup \varphi(c) + \nabla \cdot (\theta(c)\mathbf{v}) = 0$, a priori error estimates

FEMs and FVMs for degenerate parabolic problems

Finite elements for degenerate parabolic problems

- Barrett & Knabner (1997); $\frac{\partial\beta(c)}{\partial t} \triangle c = q$, a priori error estimates
- Nochetto, Schmidt, & Verdi (1999); $\frac{\partial\beta(c)}{\partial t} \triangle c = q$, a posteriori error estimates
- Chen & Ewing (2001); $\frac{\partial c}{\partial t} \bigtriangleup \varphi(c) + \nabla \cdot (\theta(c)\mathbf{v}) = 0$, a priori error estimates

Cell-centered finite volumes for degenerate parabolic problems

- Eymard, Gallouët, Hilhorst, & Naït Slimane (1998); $\frac{\partial\beta(c)}{\partial t} - \triangle c = q$, convergence
- Eymard, Gallouët, Herbin, & Michel (2002); $\frac{\partial c}{\partial t} - \bigtriangleup \varphi(c) + \nabla \cdot (\theta(c)\mathbf{v}) = 0$, convergence

Finite elements for convection-diffusion problems

- \oplus no restrictions on the mesh, discretization of full diffusion tensors
- \ominus oscillations in the velocity dominated case

Finite elements for convection-diffusion problems

- \oplus no restrictions on the mesh, discretization of full diffusion tensors
- \ominus oscillations in the velocity dominated case

Finite volumes for convection-diffusion problems

 \ominus restrictions on the mesh, how to discretize full diffusion tensors?

Finite elements for convection-diffusion problems

- ⊕ no restrictions on the mesh, discretization of full diffusion tensors
- \ominus oscillations in the velocity dominated case

Finite volumes for convection-diffusion problems

- \ominus restrictions on the mesh, how to discretize full diffusion tensors?
- upwind techniques: no oscillations in the velocity dominated case

Finite elements for convection-diffusion problems

- ⊕ no restrictions on the mesh, discretization of full diffusion tensors
- \ominus oscillations in the velocity dominated case

Finite volumes for convection-diffusion problems

- ⊖ restrictions on the mesh, how to discretize full diffusion tensors?
- upwind techniques: no oscillations in the velocity dominated case

Solution: combined schemes

Combined finite volume–finite element schemes

Combined FV–FE method

Feistauer, Felcman, Medvid'ová-Lukáčová, & Warnecke (1997, 1999); $\frac{\partial c}{\partial t} - \triangle c + \nabla \cdot (\theta(c)\mathbf{v}) = 0$, convergence, error estimates

Combined finite volume–finite element schemes

Combined FV–FE method

Feistauer, Felcman, Medvid'ová-Lukáčová, & Warnecke (1997, 1999); $\frac{\partial c}{\partial t} - \triangle c + \nabla \cdot (\theta(c)\mathbf{v}) = 0$, convergence, error estimates

Combined FV-nonconforming FE method

Angot, Dolejší, Feistauer, Felcman, & Kliková (1998, 2000); $\frac{\partial c}{\partial t} - \triangle c + \nabla \cdot (\theta(c)\mathbf{v}) = 0$, convergence, error estimates

Combined finite volume-finite element schemes

Combined FV–FE method

Feistauer, Felcman, Medvid'ová-Lukáčová, & Warnecke (1997, 1999); $\frac{\partial c}{\partial t} - \triangle c + \nabla \cdot (\theta(c)\mathbf{v}) = 0$, convergence, error estimates

Combined FV-nonconforming FE method

Angot, Dolejší, Feistauer, Felcman, & Kliková (1998, 2000); $\frac{\partial c}{\partial t} - \triangle c + \nabla \cdot (\theta(c)\mathbf{v}) = 0$, convergence, error estimates

Our aims

- extend these ideas to degenerate parabolic problems
- include inhomogeneous and anisotropic diffusion tensors
- consider general meshes (namely: local refinement possible, no maximal angle condition, no orthogonality condition)
- consider also space dimension three
- combine the finite volume with the mixed-hybrid method

Continuous problem

Problem

Equation (1) in a polygonal domain $\Omega \subset \mathbb{R}^d$, d = 2, 3, on a time interval (0, T), with initial and boundary conditions

$$c(\mathbf{x},0) = c_0(\mathbf{x}) \qquad \mathbf{x} \in \Omega \tag{2}$$

$$c(\mathbf{x},t) = 0 \qquad \mathbf{x} \in \partial\Omega, \ t \in (0,T) \qquad (3)$$

Continuous problem

Problem

Equation (1) in a polygonal domain $\Omega \subset \mathbb{R}^d$, d = 2, 3, on a time interval (0, T), with initial and boundary conditions

$$c(\mathbf{x},0) = c_0(\mathbf{x}) \qquad \mathbf{x} \in \Omega \tag{2}$$

$$c(\mathbf{x},t) = 0 \qquad \mathbf{x} \in \partial\Omega, \ t \in (0,T) \qquad (3)$$

Weak solution

Function *c* is a weak solution of the problem (1) - (3) if (F. Otto)

$$c \in L^{2}(0,T; H_{0}^{1}(\Omega)), \ \beta(c) \in L^{\infty}(0,T; L^{2}(\Omega)),$$

$$-\int_{0}^{T} \int_{\Omega} \beta(c)\varphi_{t} \,\mathrm{d}\mathbf{x} \,\mathrm{d}t - \int_{\Omega} \beta(c_{0})\varphi(\cdot,0) \,\mathrm{d}\mathbf{x} + \int_{0}^{T} \int_{\Omega} \mathbf{S}\nabla c \cdot \nabla\varphi \,\mathrm{d}\mathbf{x} \,\mathrm{d}t -$$

$$-\int_{0}^{T} \int_{\Omega} c\mathbf{v} \cdot \nabla\varphi \,\mathrm{d}\mathbf{x} \,\mathrm{d}t + \int_{0}^{T} \int_{\Omega} F(c)\varphi \,\mathrm{d}\mathbf{x} \,\mathrm{d}t = \int_{0}^{T} \int_{\Omega} q\varphi \,\mathrm{d}\mathbf{x} \,\mathrm{d}t$$
for all $\varphi \in L^{2}(0,T; H_{0}^{1}(\Omega))$ with $\varphi_{t} \in L^{\infty}(Q_{T}), \ \varphi(\cdot,T) = 0$.

Flux through a side $\sigma_{D,E}$:

$$\mathbf{v}_{D,E}^{n} := \frac{1}{\triangle t_{n}} \int_{t_{n-1}}^{t_{n}} \int_{\sigma_{D,E}} \mathbf{v}(\mathbf{x},t) \cdot \mathbf{n}_{D,E} \,\mathrm{d}\gamma(\mathbf{x}) \,\mathrm{d}t$$

Local Péclet upstream weighting

Local Péclet upstream weighting

Local Péclet upstream weighting:

$$\begin{array}{rcl} \text{if} \quad \mathbf{v}_{D,E}^{n} \geq 0 & \overline{c_{D,E}^{n}} & \coloneqq & (1 - \alpha_{D,E}^{n})c_{D}^{n} & + & \alpha_{D,E}^{n}c_{E}^{n} \\ \text{if} \quad \mathbf{v}_{D,E}^{n} < 0 & \overline{c_{D,E}^{n}} & \coloneqq & (1 - \alpha_{D,E}^{n})c_{E}^{n} & + & \alpha_{D,E}^{n}c_{D}^{n} \end{array}, \\ \alpha_{D,E}^{n} \coloneqq & \frac{\max\left\{\min\left\{\mathbb{S}_{D,E}^{n}, \frac{1}{2}|\mathbf{v}_{D,E}^{n}|\right\}, 0\right\}}{|\mathbf{v}_{D,E}^{n}|} & , \quad \mathbf{v}_{D,E}^{n} \neq 0 \end{array}$$

Discrete properties of the scheme

Existence of the discrete solution

Brouwer topological degree

Discrete properties of the scheme

Existence of the discrete solution

Brouwer topological degree

Uniqueness of the discrete solution

 \blacksquare β is non decreasing
Discrete properties of the scheme

Existence of the discrete solution

Brouwer topological degree

Uniqueness of the discrete solution

- \blacksquare β is non decreasing
- Local conservativity
 - FE/FV conservative combined scheme conservative

Discrete properties of the scheme

Existence of the discrete solution Brouwer topological degree Uniqueness of the discrete solution β is non decreasing Local conservativity \blacksquare FE/FV conservative \rightarrow combined scheme conservative **Discrete maximum principle** • under assumption $\mathbb{S}_{D,E}^n \ge 0$ for all $D \in \mathcal{D}_h^{\text{int}}$, $E \in \mathcal{N}(D)$, $0 \le c_D^n \le M$ satisfied e.g. when S is scalar and when all angles between n_{σ_D} , $\sigma_D \in \mathcal{E}_K$ for all $K \in \mathcal{T}_h$ are greater or equal to $\pi/2$

A priori estimates

A priori estimates

$$\begin{split} L^{\infty}(0,T;L^{2}(\Omega)) & c_{\beta} \max_{n \in \{1,2,...,N\}} \sum_{D \in \mathcal{D}_{h}} (c_{D}^{n})^{2} |D| & \leq C_{ae} \\ & \max_{n \in \{1,2,...,N\}} \sum_{D \in \mathcal{D}_{h}} [\beta(c_{D}^{n})]^{2} |D| & \leq C_{ae} \\ & c_{\mathbf{S}} \sum_{n=1}^{N} \triangle t_{n} \|c_{h}^{n}\|_{X_{h}}^{2} & \leq C_{ae} \end{split}$$

A priori estimates

A priori estimates

$$\begin{split} L^{\infty}(0,T;L^{2}(\Omega)) & c_{\beta} \max_{n \in \{1,2,...,N\}} \sum_{D \in \mathcal{D}_{h}} (c_{D}^{n})^{2} |D| &\leq C_{\mathrm{ae}} \\ & \max_{n \in \{1,2,...,N\}} \sum_{D \in \mathcal{D}_{h}} [\beta(c_{D}^{n})]^{2} |D| &\leq C_{\mathrm{ae}} \\ L^{2}(0,T;H^{1}_{0}(\Omega)) & c_{\mathbf{S}} \sum_{n=1}^{N} \Delta t_{n} \|c_{h}^{n}\|_{X_{h}}^{2} &\leq C_{\mathrm{ae}} \end{split}$$

A priori estimates

A priori estimates

$$\begin{split} L^{\infty}(0,T;L^{2}(\Omega)) & c_{\beta} \max_{n \in \{1,2,...,N\}} \sum_{D \in \mathcal{D}_{h}} (c_{D}^{n})^{2} |D| &\leq C_{\mathrm{ae}} \\ & \max_{n \in \{1,2,...,N\}} \sum_{D \in \mathcal{D}_{h}} [\beta(c_{D}^{n})]^{2} |D| &\leq C_{\mathrm{ae}} \\ L^{2}(0,T;H^{1}_{0}(\Omega)) & c_{\mathbf{S}} \sum_{n=1}^{N} \Delta t_{n} \|c_{h}^{n}\|_{X_{h}}^{2} &\leq C_{\mathrm{ae}} \end{split}$$

Approximate solutions piecewise constant in time, $c_{h, \triangle t}$ piecewise linear on \mathcal{T}_h , $\tilde{c}_{h, \triangle t}$ piecewise constant on \mathcal{D}_h :

$$\|c_{h,\Delta t} - \tilde{c}_{h,\Delta t}\|_{0,Q_T} \longrightarrow 0 \quad as \quad h \to 0$$

< > - +

Lemma (Time translate estimate) There exists a constant $C_{tt} > 0$, such that for all $\tau \in (0,T)$,

$$\int_0^{T-\tau} \int_\Omega \left(\tilde{c}_{h,\Delta t}(\mathbf{x},t+\tau) - \tilde{c}_{h,\Delta t}(\mathbf{x},t) \right)^2 \mathrm{d}\mathbf{x} \, \mathrm{d}t \le C_{\mathrm{tt}}(\tau+\Delta t) \,.$$

Lemma (Time translate estimate) There exists a constant $C_{tt} > 0$, such that for all $\tau \in (0, T)$,

$$\int_0^{T-\tau} \int_\Omega \left(\tilde{c}_{h,\Delta t}(\mathbf{x},t+\tau) - \tilde{c}_{h,\Delta t}(\mathbf{x},t) \right)^2 \mathrm{d}\mathbf{x} \, \mathrm{d}t \le C_{\mathrm{tt}}(\tau+\Delta t) \,.$$

Lemma (Space translate estimate) There exists a constant $C_{st} > 0$, such that for all $\boldsymbol{\xi} \in \mathbb{R}^d$, with $\tilde{c}_{h, \Delta t}(\mathbf{x}, t) := 0$ for $\mathbf{x} \notin \Omega$,

$$\int_0^T \int_\Omega \left(\tilde{c}_{h,\triangle t}(\mathbf{x} + \boldsymbol{\xi}, t) - \tilde{c}_{h,\triangle t}(\mathbf{x}, t) \right)^2 \mathrm{d}\mathbf{x} \, \mathrm{d}t \le C_{\mathrm{st}} |\boldsymbol{\xi}| (|\boldsymbol{\xi}| + 2h) \, .$$

Lemma (Time translate estimate) There exists a constant $C_{tt} > 0$, such that for all $\tau \in (0, T)$,

$$\int_0^{T-\tau} \int_\Omega \left(\tilde{c}_{h,\Delta t}(\mathbf{x},t+\tau) - \tilde{c}_{h,\Delta t}(\mathbf{x},t) \right)^2 \mathrm{d}\mathbf{x} \, \mathrm{d}t \le C_{\mathrm{tt}}(\tau+\Delta t) \,.$$

Lemma (Space translate estimate) There exists a constant $C_{st} > 0$, such that for all $\boldsymbol{\xi} \in \mathbb{R}^d$, with $\tilde{c}_{h, \Delta t}(\mathbf{x}, t) := 0$ for $\mathbf{x} \notin \Omega$,

$$\int_0^T \int_\Omega \left(\tilde{c}_{h,\triangle t}(\mathbf{x} + \boldsymbol{\xi}, t) - \tilde{c}_{h,\triangle t}(\mathbf{x}, t) \right)^2 \mathrm{d}\mathbf{x} \, \mathrm{d}t \le C_{\mathrm{st}} |\boldsymbol{\xi}| (|\boldsymbol{\xi}| + 2h) \, .$$

Proofs: use of the discrete schemes and the a priori estimates.

< > - +

Theorem (Strong convergence in $L^2(Q_T)$) Subsequences of $\tilde{c}_{h,\Delta t}$ and $c_{h,\Delta t}$ converge strongly in $L^2(Q_T)$ to some function $c \in L^2(0,T; H^1_0(\Omega)).$

- Kolmogorov compactness theorem: a priori estimates and time and space translate estimates imply $\tilde{c}_{h,\Delta t}$, $c_{h,\Delta t} \stackrel{L^2(Q_T)}{\rightarrow} c$
- space translate estimate: $c \in L^2(0,T; H^1_0(\Omega))$

Theorem (Strong convergence in $L^2(Q_T)$) Subsequences of $\tilde{c}_{h,\Delta t}$ and $c_{h,\Delta t}$ converge strongly in $L^2(Q_T)$ to some function $c \in L^2(0,T; H^1_0(\Omega)).$

- Kolmogorov compactness theorem: a priori estimates and time and space translate estimates imply $\tilde{c}_{h,\Delta t}$, $c_{h,\Delta t} \stackrel{L^2(Q_T)}{\rightarrow} c$
- space translate estimate: $c \in L^2(0,T; H^1_0(\Omega))$

Theorem (Convergence to a weak solution) The function c is a weak solution of the continuous problem.

strong convergence: passage to the limit in nonlinearities

For $\Omega = (0,1) \times (0,1)$ and T = 1, we consider:

$$\frac{\partial(c^{1/2})}{\partial t} - \nabla \cdot (\delta \nabla c) + \nabla \cdot (cv, 0) = 0$$

For $\Omega = (0, 1) \times (0, 1)$ and T = 1, we consider:

$$\frac{\partial(c^{1/2})}{\partial t} - \nabla \cdot (\delta \nabla c) + \nabla \cdot (cv, 0) = 0$$

Initial and Dirichlet boundary conditions given by the solution (traveling wave)

$$\begin{aligned} c(x,y,t) &= \left(1 - e^{\frac{v}{2\delta}(x - vt - 0.2)}\right)^2 \text{ for } x \le vt + 0.2, \\ c(x,y,t) &= 0 \text{ for } x \ge vt + 0.2 \end{aligned}$$

For $\Omega = (0,1) \times (0,1)$ and T = 1, we consider:

$$\frac{\partial(c^{1/2})}{\partial t} - \nabla \cdot (\delta \nabla c) + \nabla \cdot (cv, 0) = 0$$

Initial and Dirichlet boundary conditions given by the solution (traveling wave)

$$c(x, y, t) = \left(1 - e^{\frac{v}{2\delta}(x - vt - 0.2)}\right)^2 \text{ for } x \le vt + 0.2,$$

$$c(x, y, t) = 0 \text{ for } x \ge vt + 0.2$$

Implementation: search for discrete unknowns corresponding to $\beta(c)$

- permits to avoid parabolic regularization
- resulting matrices are diagonal for the part where c = 0

Solution for $\delta = 0.01$ at t = 0.5 (left) and at t = 0.75 (right)

Outline

Motivation

Chapter 1, part A: A combined finite volume–nonconforming/mixedhybrid finite element scheme for degenerate parabolic problems

Chapter 1, part B: A combined finite volume–finite element scheme for contaminant transport simulation on nonmatching grids

Chapter 2: Discrete Poincaré–Friedrichs inequalities

Chapter 3: Equivalence between lowest-order mixed finite element and multi-point finite volume methods

Chapter 4: Mixed and nonconforming finite element methods on a fracture network

Perspectives and future work

Nonmatching grid and dual triangular grid

Nonmatching grid and dual triangular grid

Combined FV–FE scheme

finite elements on T_h , finite volumes on D_h

Nonmatching grid and dual triangular grid

Combined FV–FE scheme

finite elements on T_h , finite volumes on D_h

Local conservativity

FE/FV conservative — combined scheme conservative

Nonmatching grid and dual triangular grid

Combined FV–FE scheme

finite elements on T_h , finite volumes on D_h

Local conservativity

FE/FV conservative — combined scheme conservative

Discrete maximum principle

• under assumption $\mathbb{S}_{D,E}^n \ge 0$

TALISMAN

- finite volume code of the society HydroExpert, Paris
- developed in cooperation with the group of D. Hilhorst, Orsay
- multi-layer approach

TALISMAN

- finite volume code of the society HydroExpert, Paris
- developed in cooperation with the group of D. Hilhorst, Orsay
- multi-layer approach

Model problem with known solution

Contaminant transport simulation

Piezometric head

< > - +

Contaminant transport simulation

					20	*		3	ij.	Ĭ.	1	(1	Ľ.	Ŭ.	j.	3	50
					R)	×		2 9	60	Ŀ.	Ĩ	j.	Ľ.	10	3.	(1	10
14	20		÷	34	12	R		а	E.	1	-t	1	Ð	15	a	्व	r
92	33	50	8		()	1		3	5	1	1	1	L)	t.	,	,	r,
		÷	-			1		a.	Ŭ.	Т.	1	ġ.	ŀ.	r	9	9	\$
- 24	- a))	ı	×	3	-	1	1		6 0	1	T	1	ĩ	1	x	2	×
0		,	7	1	1	/	ĩ	$\boldsymbol{\lambda}$		Ŷ	ł	1	t	1		x	×
а	1 52	ĸ	ı	1	1	1		1	7		1	1	t	×.	2	1	1
61	F.	Ŧ	1	4	l			4	1		Î	1	t	1	X	1	*
	L.	ı	1	ł	4	1	Y	4	*		1	1	1	1	1	×	X
i.	£.	ł	1	ł	ţ		¥ \	× ×	×	-	>	1	/		٢	1	4
a	ĸ	t:	4	4	t	7		1	1	 	-	1	ţ	ł	+	+	14
CL.	٢	1	t	I	X	X	\sim	7	~	1		٢	+	1	1	1	11
1	٢	£	3	ł	1	X	A	Ň	~	1	1	1	+	1	1	1	4
r	Ŷ.	١	X	Å	Ň	X	X	1	7	~	+	1	7	4	~	1	1
۰.	¥:	A	A		Ň	A	X	X	×	- 20	~	1	-	7	~	~	*
x	¥:	x	x	ł	X	X	X	X	×	×	×	×	~		\sim	~	*

Darcy velocity

Contaminant transport simulation

Conclusions and future work

Conclusions

- combined schemes integrate the advantages of the finite volume and finite element methods
 - enable robust, efficient, conservative, and stable discretization

Conclusions and future work

Conclusions

- combined schemes integrate the advantages of the finite volume and finite element methods
 - enable robust, efficient, conservative, and stable discretization
- given convergence proof
 - almost no regularity of data required
 - no maximal angle condition, local refinement possible
 - extensions of the "finite volume techniques" for negative transmissibilities and general meshes

Conclusions and future work

Conclusions

- combined schemes integrate the advantages of the finite volume and finite element methods
 - enable robust, efficient, conservative, and stable discretization
- given convergence proof
 - almost no regularity of data required
 - no maximal angle condition, local refinement possible
 - extensions of the "finite volume techniques" for negative transmissibilities and general meshes

Future work

- error estimates
- complete flow transport model

Outline

Motivation

Chapter 1, part A: A combined finite volume–nonconforming/mixedhybrid finite element scheme for degenerate parabolic problems

Chapter 1, part B: A combined finite volume—finite element scheme for contaminant transport simulation on nonmatching grids

Chapter 2: Discrete Poincaré–Friedrichs inequalities

Chapter 3: Equivalence between lowest-order mixed finite element and multi-point finite volume methods

Chapter 4: Mixed and nonconforming finite element methods on a fracture network

Perspectives and future work
Friedrichs (Poincaré) inequality

$$\int_{\Omega} g^{2}(\mathbf{x}) \, \mathrm{d}\mathbf{x} \leq c_{F} \int_{\Omega} |\nabla g(\mathbf{x})|^{2} \, \mathrm{d}\mathbf{x} \qquad \forall g \in H_{0}^{1}(\Omega)$$

Discrete Poincaré–Friedrichs inequalities

Friedrichs (Poincaré) inequality

$$\int_{\Omega} g^{2}(\mathbf{x}) \, \mathrm{d}\mathbf{x} \leq c_{F} \int_{\Omega} |\nabla g(\mathbf{x})|^{2} \, \mathrm{d}\mathbf{x} \qquad \forall g \in H_{0}^{1}(\Omega)$$

Nonconforming approximation of $H_0^1(\Omega)$

$$W_0(\mathcal{T}_h) := \left\{ g \in \prod_{K \in \mathcal{T}_h} H^1(K); \int_{\sigma} g(\mathbf{x}) \, \mathrm{d}\gamma(\mathbf{x}) = 0 \qquad \forall \sigma \in \mathcal{E}_h^{\mathrm{ext}} \right.$$
$$\int_{\sigma_{K,L}} g|_K(\mathbf{x}) \, \mathrm{d}\gamma(\mathbf{x}) = \int_{\sigma_{K,L}} g|_L(\mathbf{x}) \, \mathrm{d}\gamma(\mathbf{x}) \qquad \forall \sigma_{K,L} \in \mathcal{E}_h^{\mathrm{int}} \right\}$$

Friedrichs (Poincaré) inequality

$$\int_{\Omega} g^{2}(\mathbf{x}) \, \mathrm{d}\mathbf{x} \leq c_{F} \int_{\Omega} |\nabla g(\mathbf{x})|^{2} \, \mathrm{d}\mathbf{x} \qquad \forall g \in H_{0}^{1}(\Omega)$$

Nonconforming approximation of $H^1_0(\Omega)$

$$W_0(\mathcal{T}_h) := \left\{ g \in \prod_{K \in \mathcal{T}_h} H^1(K) \, ; \, \int_{\sigma} g(\mathbf{x}) \, \mathrm{d}\gamma(\mathbf{x}) = 0 \qquad \forall \sigma \in \mathcal{E}_h^{\mathrm{ext}} \right.$$
$$\int_{\sigma_{K,L}} g|_K(\mathbf{x}) \, \mathrm{d}\gamma(\mathbf{x}) = \int_{\sigma_{K,L}} g|_L(\mathbf{x}) \, \mathrm{d}\gamma(\mathbf{x}) \qquad \forall \sigma_{K,L} \in \mathcal{E}_h^{\mathrm{int}} \left. \right\}$$

Discrete Friedrichs inequality

$$\int_{\Omega} g^{2}(\mathbf{x}) \, \mathrm{d}\mathbf{x} \leq C_{F} \sum_{K \in \mathcal{T}_{h}} \int_{K} |\nabla g(\mathbf{x})|^{2} \, \mathrm{d}\mathbf{x} \qquad \forall g \in W_{0}(\mathcal{T}_{h}), \, \forall h > 0$$

$$< > - -$$

Known results and opened problems

Literature overview

- Temam (1979); piecewise linear functions, inverse assumption, convex bounded domains
- Dolejší, Feistauer, & Felcman (1999); piecewise linear functions, inverse assumption, nonconvex bounded domains
- Knobloch (2001); general spaces, no inverse assumption, nonconvex bounded domains
- Brenner (2003); extensions to nonmatching grids and fully discontinuous functions

Known results and opened problems

Literature overview

- Temam (1979); piecewise linear functions, inverse assumption, convex bounded domains
- Dolejší, Feistauer, & Felcman (1999); piecewise linear functions, inverse assumption, nonconvex bounded domains
- Knobloch (2001); general spaces, no inverse assumption, nonconvex bounded domains
- Brenner (2003); extensions to nonmatching grids and fully discontinuous functions

Problems opened up to now

- **value of the constant** C_F **?**
- domains only bounded in one direction ?

Known results and opened problems

Literature overview

- Temam (1979); piecewise linear functions, inverse assumption, convex bounded domains
- Dolejší, Feistauer, & Felcman (1999); piecewise linear functions, inverse assumption, nonconvex bounded domains
- Knobloch (2001); general spaces, no inverse assumption, nonconvex bounded domains
- Brenner (2003); extensions to nonmatching grids and fully discontinuous functions
- Eymard, Gallouët, & Herbin (1999); piecewise constant functions

Problems opened up to now

- value of the constant C_F ?
- domains only bounded in one direction ?

Interpolation operator $W_0(\mathcal{T}_h) \to Y_0(\mathcal{D}_h)$

$$I(g)|_{D} := \frac{1}{|\sigma_{D}|} \int_{\sigma_{D}} g(\mathbf{x}) \, \mathrm{d}\gamma(\mathbf{x}) \qquad \forall D \in \mathcal{D}_{h}$$

Interpolation operator $W_0(\mathcal{T}_h) \to Y_0(\mathcal{D}_h)$

$$I(g)|_{D} := \frac{1}{|\sigma_{D}|} \int_{\sigma_{D}} g(\mathbf{x}) \, \mathrm{d}\gamma(\mathbf{x}) \qquad \forall D \in \mathcal{D}_{h}$$

Pw linear nonconforming function

Its pw constant approximation

< > - +

Interpolation operator $W_0(\mathcal{T}_h) \to Y_0(\mathcal{D}_h)$

$$I(g)|_{D} := \frac{1}{|\sigma_{D}|} \int_{\sigma_{D}} g(\mathbf{x}) \, \mathrm{d}\gamma(\mathbf{x}) \qquad \forall D \in \mathcal{D}_{h}$$

Theorem (Discrete Friedrichs inequality for piecewise constant functions) *It holds that*

$$|g||_{0,\Omega}^2 \le c(d,\kappa_{\mathcal{T}},\Omega)|g|_{1,\mathcal{T},\mathrm{disc}}^2 \qquad \forall g \in Y_0(\mathcal{D}_h) \,.$$

Interpolation operator $W_0(\mathcal{T}_h) \to Y_0(\mathcal{D}_h)$

$$I(g)|_{D} := \frac{1}{|\sigma_{D}|} \int_{\sigma_{D}} g(\mathbf{x}) \, \mathrm{d}\gamma(\mathbf{x}) \qquad \forall D \in \mathcal{D}_{h}$$

Theorem (Discrete Friedrichs inequality for piecewise constant functions) *It holds that*

$$\|g\|_{0,\Omega}^2 \le c(d,\kappa_{\mathcal{T}},\Omega)|g|_{1,\mathcal{T},\mathrm{disc}}^2 \qquad \forall g \in Y_0(\mathcal{D}_h).$$

Theorem It holds that

 $|I(g)|_{1,\mathcal{T},\mathrm{disc}}^2 \leq c(d,\kappa_{\mathcal{T}},\Omega)|g|_{1,\mathcal{T}}^2 \qquad \forall g \in W_0(\mathcal{T}_h) \,.$

Constant in the discrete Friedrichs inequality

Theorem (Discrete Friedrichs inequality) It holds that

 $\int_{\Omega} g^2(\mathbf{x}) \, \mathrm{d}\mathbf{x} \le C_F \sum_{K \in \mathcal{T}_h} \int_K |\nabla g(\mathbf{x})|^2 \, \mathrm{d}\mathbf{x} \qquad \forall g \in W_0(\mathcal{T}_h), \, \forall h > 0 \, .$

Constant in the discrete Friedrichs inequality

Theorem (Discrete Friedrichs inequality) It holds that

 $\int_{\Omega} g^{2}(\mathbf{x}) \, \mathrm{d}\mathbf{x} \leq C_{F} \sum_{K \in \mathcal{T}_{h}} \int_{K} |\nabla g(\mathbf{x})|^{2} \, \mathrm{d}\mathbf{x} \qquad \forall g \in W_{0}(\mathcal{T}_{h}), \, \forall h > 0.$

Constant C_F for d = 2

$$C_F = \frac{c(d)}{\kappa_T^2} |\Omega|, \text{ where } \kappa_T \text{ is given by } \min_{K \in \mathcal{T}_h} \frac{|K|}{\operatorname{diam}(K)^d} \ge \kappa_T \quad \forall h > 0$$

Constant in the discrete Friedrichs inequality

Theorem (Discrete Friedrichs inequality) It holds that

 $\int_{\Omega} g^{2}(\mathbf{x}) \, \mathrm{d}\mathbf{x} \leq C_{F} \sum_{K \in \mathcal{T}_{h}} \int_{K} |\nabla g(\mathbf{x})|^{2} \, \mathrm{d}\mathbf{x} \qquad \forall g \in W_{0}(\mathcal{T}_{h}), \, \forall h > 0.$

Constant C_F for d=2 $C_F = \frac{c(d)}{\kappa_T^2} |\Omega|$, where κ_T is given by $\min_{K \in \mathcal{T}_h} \frac{|K|}{\operatorname{diam}(K)^d} \ge \kappa_T \quad \forall h > 0$ Constant C_F for d = 2, 3 $C_F = C(d, \kappa_T) [\inf_{\mathbf{b}} \{ \operatorname{diam}_{\mathbf{b}}(\Omega) \}]^2$, where **b** is a unit vector • $\{\mathcal{T}_h\}_h$ satisfying the inverse assumption: $C(d, \kappa_T) \approx 1/\kappa_T^2 \zeta_T^d$ $\max_{K \in \mathcal{T}_h} \frac{h}{\operatorname{diam}(K)} \le \zeta_{\mathcal{T}} \quad \forall h > 0$ $= \{\mathcal{T}_h\}_h$ only shape-regular: more complicated dependence on $\kappa_{\mathcal{T}}$

Extensions, discrete Poincaré inequality, conclusions

Extensions

- can be extended to functions only fixed to zero on a part of the boundary
- can be extended to domains only bounded in one direction
- simplified form for Crouzeix–Raviart finite elements in two space dimensions
- optimality of C_F shown via examples

Extensions, discrete Poincaré inequality, conclusions

Extensions

- can be extended to functions only fixed to zero on a part of the boundary
- can be extended to domains only bounded in one direction
- simplified form for Crouzeix–Raviart finite elements in two space dimensions
- optimality of C_F shown via examples

Theorem (Discrete Poincaré inequality) For all $g \in W(\mathcal{T}_h)$ and h > 0,

 $\int_{\Omega} g^{2}(\mathbf{x}) \, \mathrm{d}\mathbf{x} \leq c(d, \kappa_{\mathcal{T}}, \Omega) \sum_{K \in \mathcal{T}_{h}} \int_{K} |\nabla g(\mathbf{x})|^{2} \, \mathrm{d}\mathbf{x} + \frac{4}{|\Omega|} \left(\int_{\Omega} g(\mathbf{x}) \, \mathrm{d}\mathbf{x} \right)^{2}.$

Extensions, discrete Poincaré inequality, conclusions

Extensions

- can be extended to functions only fixed to zero on a part of the boundary
- can be extended to domains only bounded in one direction
- simplified form for Crouzeix–Raviart finite elements in two space dimensions
- optimality of C_F shown via examples

Theorem (Discrete Poincaré inequality) For all $g \in W(\mathcal{T}_h)$ and h > 0,

 $\int_{\Omega} g^{2}(\mathbf{x}) \, \mathrm{d}\mathbf{x} \leq c(d, \kappa_{\mathcal{T}}, \Omega) \sum_{K \in \mathcal{T}_{h}} \int_{K} |\nabla g(\mathbf{x})|^{2} \, \mathrm{d}\mathbf{x} + \frac{4}{|\Omega|} \left(\int_{\Omega} g(\mathbf{x}) \, \mathrm{d}\mathbf{x} \right)^{2}.$

Importance

 analysis of nonconforming methods (nonconforming FEs, discontinuous Galerkin methods)

Outline

Motivation

Chapter 1, part A: A combined finite volume–nonconforming/mixedhybrid finite element scheme for degenerate parabolic problems

Chapter 1, part B: A combined finite volume–finite element scheme for contaminant transport simulation on nonmatching grids

Chapter 2: Discrete Poincaré–Friedrichs inequalities

Chapter 3: Equivalence between lowest-order mixed finite element and multi-point finite volume methods

Chapter 4: Mixed and nonconforming finite element methods on a fracture network

Perspectives and future work

Second-order elliptic problem:

$$-\nabla \cdot \mathbf{S} \nabla p = q \quad \text{in } \Omega,$$
$$p = p_D \quad \text{on } \partial \Omega$$

Second-order elliptic problem:

$$\begin{aligned} -\nabla \cdot \mathbf{S} \nabla p &= q & \text{in } \Omega, & \mathbf{u} &= -\mathbf{S} \nabla p & \text{in } \Omega, \\ p &= p_D & \text{on } \partial \Omega & \longrightarrow \nabla \cdot \mathbf{u} &= q & \text{in } \Omega, \\ p &= p_D & \text{on } \partial \Omega & \longrightarrow \nabla \cdot \mathbf{u} &= q & \text{on } \partial \Omega \end{aligned}$$

Second-order elliptic problem:

$$\begin{aligned} -\nabla \cdot \mathbf{S} \nabla p &= q & \text{in } \Omega, & \mathbf{u} &= -\mathbf{S} \nabla p & \text{in } \Omega, \\ p &= p_D & \text{on } \partial \Omega & \longrightarrow & \nabla \cdot \mathbf{u} &= q & \text{in } \Omega, \\ p &= p_D & \text{on } \partial \Omega & & p &= p_D & \text{on } \partial \Omega \end{aligned}$$

Mixed approximation: find $\mathbf{u}_h \in \mathbf{V}_h$ and $p_h \in \Phi_h$ such that

$$(\mathbf{S}^{-1}\mathbf{u}_h, \mathbf{v}_h)_{\Omega} - (\nabla \cdot \mathbf{v}_h, p_h)_{\Omega} = -\langle \mathbf{v}_h \cdot \mathbf{n}, p_D \rangle_{\partial\Omega} \qquad \forall \mathbf{v}_h \in \mathbf{V}_h , - (\nabla \cdot \mathbf{u}_h, \phi_h)_{\Omega} = -(q, \phi_h)_{\Omega} \qquad \forall \phi_h \in \Phi_h$$

Second-order elliptic problem:

$$\begin{aligned} -\nabla \cdot \mathbf{S} \nabla p &= q & \text{in } \Omega, & \mathbf{u} &= -\mathbf{S} \nabla p & \text{in } \Omega, \\ p &= p_D & \text{on } \partial \Omega & \longrightarrow \nabla \cdot \mathbf{u} &= q & \text{in } \Omega, \\ p &= p_D & \text{on } \partial \Omega & \longrightarrow \nabla \cdot \mathbf{u} &= q & \text{on } \partial \Omega \end{aligned}$$

Mixed approximation: find $\mathbf{u}_h \in \mathbf{V}_h$ and $p_h \in \Phi_h$ such that

$$(\mathbf{S}^{-1}\mathbf{u}_{h},\mathbf{v}_{h})_{\Omega} - (\nabla \cdot \mathbf{v}_{h},p_{h})_{\Omega} = -\langle \mathbf{v}_{h} \cdot \mathbf{n},p_{D} \rangle_{\partial\Omega} \qquad \forall \mathbf{v}_{h} \in \mathbf{V}_{h} ,$$
$$-(\nabla \cdot \mathbf{u}_{h},\phi_{h})_{\Omega} = -(q,\phi_{h})_{\Omega} \qquad \forall \phi_{h} \in \Phi_{h}$$
$$\mathbf{v}_{\mathbf{v}_{\sigma}}$$
$$\mathbf{v}_{\mathbf{v}_{\sigma}}$$
Velocity basis function \mathbf{v}_{σ}

Second-order elliptic problem:

$$\begin{aligned} -\nabla \cdot \mathbf{S} \nabla p &= q & \text{in } \Omega, & \mathbf{u} &= -\mathbf{S} \nabla p & \text{in } \Omega, \\ p &= p_D & \text{on } \partial \Omega & \longrightarrow & \nabla \cdot \mathbf{u} &= q & \text{in } \Omega, \\ p &= p_D & \text{on } \partial \Omega & \longrightarrow & \nabla \cdot \mathbf{u} &= q & \text{on } \partial \Omega. \end{aligned}$$

Mixed approximation: find $\mathbf{u}_h \in \mathbf{V}_h$ and $p_h \in \Phi_h$ such that

$$\begin{aligned} (\mathbf{S}^{-1}\mathbf{u}_h, \mathbf{v}_h)_{\Omega} - (\nabla \cdot \mathbf{v}_h, p_h)_{\Omega} &= -\langle \mathbf{v}_h \cdot \mathbf{n}, p_D \rangle_{\partial \Omega} & \forall \mathbf{v}_h \in \mathbf{V}_h, \\ -(\nabla \cdot \mathbf{u}_h, \phi_h)_{\Omega} &= -(q, \phi_h)_{\Omega} & \forall \phi_h \in \Phi_h \end{aligned}$$

Associated matrix problem:

$$\left(\begin{array}{cc} \mathbb{A} & \mathbb{B}^t \\ \mathbb{B} & 0 \end{array}\right) \left(\begin{array}{c} U \\ P \end{array}\right) = \left(\begin{array}{c} F \\ G \end{array}\right)$$

Implementation and equivalences: known results

Equivalence with the nonconforming finite element method

- Lagrange multipliers, mixed-hybrid FEM $\longrightarrow M\Lambda = J$
 - Arnold & Brezzi (1985)
 - Chen (1996)

Implementation and equivalences: known results

Equivalence with the nonconforming finite element method

- Lagrange multipliers, mixed-hybrid FEM $\longrightarrow M\Lambda = J$
 - Arnold & Brezzi (1985)
 - Chen (1996)

Equivalence with the finite volume method

- using numerical integration $\rightsquigarrow SP = H$
 - Russell & Wheeler (1983); rectangles, S diag.
 - Agouzal, Baranger, Maitre, & Oudin (1995); triangles & rectangles, S diag.
 - Arbogast, Wheeler, & Yotov (1997); rectangles, S full

Implementation and equivalences: known results

Equivalence with the nonconforming finite element method

- Lagrange multipliers, mixed-hybrid FEM $\longrightarrow M\Lambda = J$
 - Arnold & Brezzi (1985)
 - Chen (1996)

Equivalence with the finite volume method

- using numerical integration $\rightsquigarrow SP = H$
 - Russell & Wheeler (1983); rectangles, S diag.
 - Agouzal, Baranger, Maitre, & Oudin (1995); triangles & rectangles, S diag.
 - Arbogast, Wheeler, & Yotov (1997); rectangles, S full
- exact $\longrightarrow \tilde{\mathbb{S}}\tilde{P} = \tilde{H}$

Younès, Mose, Ackerer, & Chavent (1999); triangles

Expressing fluxes through edges using scalar unknowns

Aim:

$$\begin{pmatrix} \mathbb{A} & \mathbb{B}^t \\ \mathbb{B} & 0 \end{pmatrix} \begin{pmatrix} U \\ P \end{pmatrix} = \begin{pmatrix} F \\ G \end{pmatrix} \longrightarrow \mathbb{S}P = H$$

Expressing fluxes through edges using scalar unknowns

Expressing fluxes through edges using scalar unknowns

4-point finite volume scheme (orthogonality condition, S scalar):

$$-\int_{\partial K} \nabla p \cdot \mathbf{n}_{K} = -\sum_{L \in \mathcal{N}(K)} \int_{\sigma_{K,L}} \nabla p \cdot \mathbf{n}_{K} \approx -\sum_{L \in \mathcal{N}(K)} \frac{p_{L} - p_{K}}{d_{K,L}} |\sigma_{K,L}|$$

4-point finite volume scheme (orthogonality condition, S scalar):

$$-\int_{\partial K} \nabla p \cdot \mathbf{n}_{K} = -\sum_{L \in \mathcal{N}(K)} \int_{\sigma_{K,L}} \nabla p \cdot \mathbf{n}_{K} \approx -\sum_{L \in \mathcal{N}(K)} \underbrace{p_{L} - p_{K}}_{d_{K,L}} |\sigma_{K,L}|$$

Equivalence between RT MFEM and multi-point FVM

Theorem (Equivalence between RT MFEM and multi-point FVM)

Let the matrices \mathbb{M}_V be invertible for all $V \in \mathcal{V}_h$. Then the lowest-order Raviart–Thomas mixed finite element method is equivalent to a particular multi-point finite volume scheme.

Equivalence between RT MFEM and multi-point FVM

Theorem (Equivalence between RT MFEM and multi-point FVM) Let the matrices \mathbb{M}_V be invertible for all $V \in \mathcal{V}_h$. Then the lowest-order Raviart–Thomas mixed finite element method is equivalent to a particular multi-point finite volume scheme.

Remark (Comparison with a classical multi-point FVM)

- not only the scalar unknowns, but also the *sources* and possibly *boundary conditions* associated with the neighboring elements are used to express the flux of $\mathbf{u} = -\mathbf{S}\nabla p$ through a given side
- one has to solve a local linear problem

Properties of the global system matrix \mathbb{S}

Theorem (Stencil) Let \mathbb{M}_V be invertible for all $V \in \mathcal{V}_h$. Then $\mathbb{S}_{K,L}$ is possibly nonzero only if K and L share a common vertex.

The flux through a side σ is expressed only using the scalar unknowns of the elements sharing a common vertex with σ .

Properties of the global system matrix \mathbb{S}

Theorem (Stencil) Let \mathbb{M}_V be invertible for all $V \in \mathcal{V}_h$. Then $\mathbb{S}_{K,L}$ is possibly nonzero only if K and L share a common vertex.

The flux through a side σ is expressed only using the scalar unknowns of the elements sharing a common vertex with σ .

Theorem (Positive definiteness) Let \mathbb{M}_V be positive definite for all $V \in \mathcal{V}_h$. Then \mathbb{S} is also positive definite.

criterion for the positive definiteness of \mathbb{M}_V : geometry of each triangle, tensor S
Properties of the global system matrix $\ensuremath{\mathbb{S}}$

Example (Positive definiteness for a deformed square)

Properties of the global system matrix $\ensuremath{\mathbb{S}}$

Example (Positive definiteness for a deformed square)

Properties of the global system matrix S

Theorem (Stencil) Let \mathbb{M}_V be invertible for all $V \in \mathcal{V}_h$. Then $\mathbb{S}_{K,L}$ is possibly nonzero only if K and L share a common vertex.

The flux through a side σ is expressed only using the scalar unknowns of the elements sharing a common vertex with σ .

Theorem (Positive definiteness) Let \mathbb{M}_V be positive definite for all $V \in \mathcal{V}_h$. Then \mathbb{S} is also positive definite.

criterion for the positive definiteness of \mathbb{M}_V : geometry of each triangle, tensor S

Theorem (Symmetry) Let \mathbb{M}_V be invertible and symmetric for all $V \in \mathcal{V}_h$. Then \mathbb{S} is also symmetric.

satisfied if T_h consists of equilateral simplices and if S is pw constant and scalar

For $\Omega = (0, 1) \times (0, 1)$, we consider:

$$-\triangle p = q$$
,

$$q = -2e^x e^y \,.$$

For $\Omega = (0, 1) \times (0, 1)$, we consider:

$$-\bigtriangleup p = q$$
,

$$q = -2e^x e^y \,.$$

Dirichlet BC given by the solution

 $p(x,y) = e^x e^y \,.$

_							
	Ref.	Unkn.	Cond.	Bi-CGS	Iter.		
	4	4096	2882	1.43	147.5		
	5	16384	11523	12.55	295.5		
	6	65536	46093	117.58	555.5		
	Ref.	Unkn.	Cond.	Bi-CGS	Iter.	CG	Iter.
	4	6080	5616	2.43	230.5	1.75	316
	5	24448	22499	23.40	449.5	16.87	623
	6	98048	89995	227.04	864.0	162.09	1226
	Ref.	Unkn.	Cond.	Bi-CGS	Iter.	CG	Iter.
	4	4096	5268	1.44	211.5	1.03	297
	5	16384	21089	12.96	431.5	8.30	586
	6	65536	84356	139.73	893.5	92.23	1151

Condensation

Hybridization

Finite volumes

Application to nonlinear parabolic problems

Nonlinear parabolic convection-reaction-diffusion problem

$$\begin{split} &\frac{\partial p}{\partial t} + \nabla \cdot \mathbf{u} + F(p) = q \quad \text{in} \quad \Omega \,, \\ &\mathbf{u} = -\mathbf{S} \nabla \varphi(p) + \psi(p) \mathbf{w} \quad \text{in} \quad \Omega \,, \end{split}$$

 $p = p_0$ in Ω for t = 0, $p = p_D$ on $\partial \Omega \times (0, T)$.

Application to nonlinear parabolic problems

Nonlinear parabolic convection-reaction-diffusion problem

$$\begin{split} &\frac{\partial p}{\partial t} + \nabla \cdot \mathbf{u} + F(p) = q \quad \text{in} \quad \Omega \,, \\ &\mathbf{u} = -\mathbf{S} \nabla \varphi(p) + \psi(p) \mathbf{w} \quad \text{in} \quad \Omega \,, \end{split}$$

 $p = p_0$ in Ω for t = 0, $p = p_D$ on $\partial \Omega \times (0, T)$.

Mixed approximation: define p_h^0 by p_0 ; on each discrete time t_n find $\mathbf{u}_h^n \in \mathbf{V}_h$ and $p_h^n \in \Phi_h$ such that

$$(\mathbf{S}^{-1}\mathbf{u}_{h}^{n}, \mathbf{v}_{h})_{\Omega} - (\nabla \cdot \mathbf{v}_{h}, \varphi(p_{h}^{n}))_{\Omega} - (\psi(p_{h}^{n})\mathbf{w}, \mathbf{S}^{-1}\mathbf{v}_{h})_{\Omega}$$
$$= -\langle \mathbf{v}_{h} \cdot \mathbf{n}, \varphi(p_{D}) \rangle_{\partial\Omega} \qquad \forall \mathbf{v}_{h} \in \mathbf{V}_{h},$$
$$(\frac{p_{h}^{n} - p_{h}^{n-1}}{\Delta t_{n}}, \phi_{h})_{\Omega} + (\nabla \cdot \mathbf{u}_{h}^{n}, \phi_{h})_{\Omega} + (F(p_{h}^{n}), \phi_{h})_{\Omega}$$
$$= (q, \phi_{h})_{\Omega} \qquad \forall \phi_{h} \in \Phi_{h}.$$

Application to nonlinear parabolic problems

Nonlinear parabolic convection-reaction-diffusion problem

$$\begin{split} &\frac{\partial p}{\partial t} + \nabla \cdot \mathbf{u} + F(p) = q \quad \text{in} \quad \Omega \,, \\ &\mathbf{u} = -\mathbf{S} \nabla \varphi(p) + \psi(p) \mathbf{w} \quad \text{in} \quad \Omega \,, \end{split}$$

 $p = p_0$ in Ω for t = 0, $p = p_D$ on $\partial \Omega \times (0, T)$.

Mixed approximation: define p_h^0 by p_0 ; on each discrete time t_n find $\mathbf{u}_h^n \in \mathbf{V}_h$ and $p_h^n \in \Phi_h$ such that

$$(\mathbf{S}^{-1}\mathbf{u}_{h}^{n}, \mathbf{v}_{h})_{\Omega} - (\nabla \cdot \mathbf{v}_{h}, \varphi(p_{h}^{n}))_{\Omega} - (\psi(p_{h}^{n})\mathbf{w}, \mathbf{S}^{-1}\mathbf{v}_{h})_{\Omega}$$
$$= -\langle \mathbf{v}_{h} \cdot \mathbf{n}, \varphi(p_{D}) \rangle_{\partial\Omega} \quad \forall \mathbf{v}_{h} \in \mathbf{V}_{h},$$
$$(\frac{p_{h}^{n} - p_{h}^{n-1}}{\Delta t_{n}}, \phi_{h})_{\Omega} + (\nabla \cdot \mathbf{u}_{h}^{n}, \phi_{h})_{\Omega} + (F(p_{h}^{n}), \phi_{h})_{\Omega}$$
$$= (q, \phi_{h})_{\Omega} \quad \forall \phi_{h} \in \Phi_{h}.$$

Assemblage and inversion of local condensation matrices only once; linearization and time steps—only scalar unknowns as in the FVM.

< > - +

For $\Omega = (0,2) \times (0,1)$ and T = 1, we consider:

$$\frac{\partial(p+p^{\frac{1}{2}})}{\partial t} - \nabla \cdot (\mathbf{S}\nabla p) + \nabla \cdot (p\mathbf{w}) + \frac{p^{\frac{1}{2}}}{2} = 0.$$

For $\Omega = (0, 2) \times (0, 1)$ and T = 1, we consider:

$$\frac{\partial(p+p^{\frac{1}{2}})}{\partial t} - \nabla \cdot (\mathbf{S}\nabla p) + \nabla \cdot (p\mathbf{w}) + \frac{p^{\frac{1}{2}}}{2} = 0.$$

Case A:

$$\mathbf{S} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \text{ in } \Omega \,, \quad \mathbf{w} = (3,0) \text{ in } \Omega \,.$$

Case B:

$$\mathbf{S} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ for } x < 1, \quad \mathbf{S} = \begin{pmatrix} 8 & -7 \\ -7 & 20 \end{pmatrix} \text{ for } x > 1,$$
$$\mathbf{w} = (3,0) \text{ for } x < 1, \quad \mathbf{w} = (3,12) \text{ for } x > 1.$$

For $\Omega = (0,2) \times (0,1)$ and T = 1, we consider:

$$\frac{\partial(p+p^{\frac{1}{2}})}{\partial t} - \nabla \cdot (\mathbf{S}\nabla p) + \nabla \cdot (p\mathbf{w}) + \frac{p^{\frac{1}{2}}}{2} = 0.$$

Case A:

$$\mathbf{S} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) \text{ in } \Omega \,, \quad \mathbf{w} = (3,0) \text{ in } \Omega \,.$$

Case B:

$$\mathbf{S} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ for } x < 1, \quad \mathbf{S} = \begin{pmatrix} 8 & -7 \\ -7 & 20 \end{pmatrix} \text{ for } x > 1,$$
$$\mathbf{w} = (3, 0) \text{ for } x < 1, \quad \mathbf{w} = (3, 12) \text{ for } x > 1.$$

Initial and Dirichlet BC given by the solution

$$p(x, y, t) = \frac{1}{e^3} e^x e^y e^{-t}.$$

Condensation									
Unkn.	St.	Cond.	Bi-CGS	Iter.	CPU	ILU	PBi-CGS	Iter.	
128	14	39	0.02	27.0	0.02	0.01	0.01	2.0	
512	14	116	0.07	56.5	0.02	0.01	0.01	2.5	
2048	14	311	0.38	82.5	0.11	0.06	0.05	3.5	
8192	14	768	2.65	139.0	0.75	0.41	0.34	5.5	
32768	14	1782	17.14	191.5	4.85	2.95	1.90	7.0	
Standard MFE									
Unkn.	St.	Cond.	Bi-CGS	Iter.	CPU	ILU	PBi-CGS	lter.	
204	5	405	0.06	95.5	0.02	0.01	0.01	2.0	
792	5	917	0.22	153.0	0.07	0.03	0.04	3.0	
3120	5	1949	1.36	282.0	0.34	0.14	0.20	4.0	
12384	5	4016	8.47	406.5	2.57	0.94	1.63	5.0	
49344	5	8181	51.18	553.0	17.63	6.94	10.69	6.0	

C+									
S I.	Cond.	Bi-CGS	Iter.	CPU	ILU	PBi-CGS	lter.		
14	470	0.04	70.0	0.02	0.01	0.01	2.0		
14	1665	0.21	149.5	0.03	0.01	0.02	2.5		
14	4824	1.47	322.5	0.12	0.07	0.05	3.5		
14	12523	8.66	474.5	0.88	0.56	0.32	5.0		
14	31368	61.53	787.5	7.47	5.46	2.01	5.5		
Standard MFE									
St.	Cond.	Bi-CGS	Iter.	CPU	ILU	PBi-CGS	lter.		
5	13849	0.23	412.5	0.02	0.01	0.01	2.0		
5	39935	1.38	1105.5	0.04	0.02	0.02	2.5		
5	131073	12.12	2419.5	0.41	0.18	0.23	3.0		
5	250923	103.42	5390.5	3.06	1.32	1.74	3.5		
5	586375	617.26	7145.5	29.88	14.96	14.92	4.0		
-	14 14 14 14 14 5 5 5 5 5 5 5 5	1447014166514482414125231431368513849539935513107352509235586375	144700.041416650.211448241.4714125238.66143136861.535138490.235138490.235399351.38513107312.125250923103.425586375617.26	144700.0470.01416650.21149.51448241.47322.514125238.66474.5143136861.53787.5St.Cond.Bi-CGSIter.5138490.23412.55399351.381105.5513107312.122419.55250923103.425390.55586375617.267145.5	144700.0470.00.021416650.21149.50.031448241.47322.50.1214125238.66474.50.88143136861.53787.57.47Standard MFESt.Cond.Bi-CGSIter.CPU5138490.23412.50.025399351.381105.50.04513107312.122419.50.415250923103.425390.53.065586375617.267145.529.88	14 470 0.04 70.0 0.02 0.01 14 1665 0.21 149.5 0.03 0.01 14 4824 1.47 322.5 0.12 0.07 14 12523 8.66 474.5 0.88 0.56 14 12523 8.66 474.5 0.88 0.56 14 31368 61.53 787.5 7.47 5.46 Standard MFE St. Cond. Bi-CGS Iter. CPU ILU 5 13849 0.23 412.5 0.02 0.01 5 39935 1.38 1105.5 0.04 0.02 5 131073 12.12 2419.5 0.41 0.18 5 250923 103.42 5390.5 3.06 1.32 5 586375 617.26 7145.5 29.88 14.96	14 470 0.04 70.0 0.02 0.01 0.01 14 1665 0.21 149.5 0.03 0.01 0.02 14 4824 1.47 322.5 0.12 0.07 0.05 14 12523 8.66 474.5 0.88 0.56 0.32 14 31368 61.53 787.5 7.47 5.46 2.01 Standard MFE St. Cond. Bi-CGS Iter. CPU ILU PBi-CGS 5 13849 0.23 412.5 0.02 0.01 0.01 5 39935 1.38 1105.5 0.04 0.02 0.02 5 131073 12.12 2419.5 0.41 0.18 0.23 5 250923 103.42 5390.5 3.06 1.32 1.74 5 586375 617.26 7145.5 29.88 14.96 14.92		

Main idea

first decompose the problem into scalar and flux unknowns and guarantee the accomplishment of the inf-sup condition

Main idea

- first decompose the problem into scalar and flux unknowns and guarantee the accomplishment of the inf-sup condition
- then eliminate the added fluxes

Main idea

- first decompose the problem into scalar and flux unknowns and guarantee the accomplishment of the inf-sup condition
- then eliminate the added fluxes
- mixed finite element precision for the finite volume price

Main idea

- first decompose the problem into scalar and flux unknowns and guarantee the accomplishment of the inf-sup condition
- then eliminate the added fluxes
- mixed finite element precision for the finite volume price

Properties

- reduction of the number of unknowns by 1/3 (1/2 in 3D)
- resulting matrices: very well conditioned, positive definite for not distorted meshes
- substantial savings of CPU time for nonlinear parabolic problems

Main idea

- first decompose the problem into scalar and flux unknowns and guarantee the accomplishment of the inf-sup condition
- then eliminate the added fluxes
- mixed finite element precision for the finite volume price

Properties

- reduction of the number of unknowns by 1/3 (1/2 in 3D)
- resulting matrices: very well conditioned, positive definite for not distorted meshes
- substantial savings of CPU time for nonlinear parabolic problems

Future work

- analysis of the singularities
 - extensions to higher-order schemes

Outline

Motivation

Chapter 1, part A: A combined finite volume–nonconforming/mixedhybrid finite element scheme for degenerate parabolic problems

Chapter 1, part B: A combined finite volume–finite element scheme for contaminant transport simulation on nonmatching grids

Chapter 2: Discrete Poincaré–Friedrichs inequalities

Chapter 3: Equivalence between lowest-order mixed finite element and multi-point finite volume methods

Chapter 4: Mixed and nonconforming finite element methods on a fracture network

Perspectives and future work

Fracture network

$$\mathcal{S} := \bigcup_{\ell \in L} \alpha_{\ell}$$

Fracture network

$$\mathcal{S} := \bigcup_{\ell \in L} \alpha_{\ell}$$

Governing equations

$$\mathbf{u} = -\mathbf{K}(\nabla p + \nabla z) \quad \text{in } \alpha_{\ell} \,, \, \ell \in L \,,$$

$$\nabla \cdot \mathbf{u} = q \quad \text{in } \alpha_{\ell} \,, \, \ell \in L \,,$$

$$p = p_D$$
 on Γ_D , $\mathbf{u} \cdot \mathbf{n} = u_N$ on Γ_N

- p pressure head
- u Darcy velocity

- ${\bf K}~$ hydraulic conductivity tensor
- z elevation
- q sources and sinks

Fracture network

$$\mathcal{S} := \bigcup_{\ell \in L} \alpha_{\ell}$$

Governing equations

$$\mathbf{u} = -\mathbf{K}(\nabla p + \nabla z) \quad \text{in } \alpha_{\ell} \,, \, \ell \in L \,,$$

$$\nabla \cdot \mathbf{u} = q \quad \text{in } \alpha_{\ell} \,, \, \ell \in L \,,$$

$$p = p_D$$
 on Γ_D , $\mathbf{u} \cdot \mathbf{n} = u_N$ on Γ_N

- p pressure head
- u Darcy velocity

- ${\bf K}~$ hydraulic conductivity tensor
- z elevation
- q sources and sinks

Continuity

$$p|_{\overline{\alpha_i}} = p|_{\overline{\alpha_j}} \text{ on } f \quad \forall f \in \mathcal{E}^{\text{int}}, \forall i, j \in I_f,$$
$$\sum_{i \in I_f} \mathbf{u}|_{\overline{\alpha_i}} \cdot \mathbf{n}_{f,\alpha_i} = 0 \text{ on } f \quad \forall f \in \mathcal{E}^{\text{int}}$$

Literature overview

- Baca, Arnett, & King (1984); finite elements
- Koudina, Gonzalez Garcia, Thovert, & Adler (1998); vertex-centered finite volumes
- Reichenberger, Jakobs, Bastian, & Helmig (2004); multi-dimensional vertex-centered finite volumes

Our aims

definition of mixed finite element methods on fracture networks

Literature overview

- Baca, Arnett, & King (1984); finite elements
- Koudina, Gonzalez Garcia, Thovert, & Adler (1998); vertex-centered finite volumes
- Reichenberger, Jakobs, Bastian, Helmig (2004); multi-dimensional vertex-centered finite volumes
- Arnold & Brezzi (1985)
- Chen (1996)

Our aims

- definition of mixed finite element methods on fracture networks
- relation between the lowest-order mixed and nonconforming finite element methods (theoretical aspects and implementation)

Function spaces

Continuous function spaces

$$L^{p}(\mathcal{S}) := \prod_{\ell \in L} L^{p}(\alpha_{\ell}), \quad \mathbf{L}^{p}(\mathcal{S}) := L^{p}(\mathcal{S}) \times L^{p}(\mathcal{S})$$

$$H^{1}(\mathcal{S}) := \left\{ v \in L^{2}(\mathcal{S}); v|_{\alpha_{\ell}} \in H^{1}(\alpha_{\ell}), (v|_{\alpha_{i}})|_{f} = (v|_{\alpha_{j}})|_{f} \quad \forall f \in \mathcal{E}^{\text{int}}, \forall i, j \in I_{f} \right\}$$

$$\mathbf{H}(\text{div}, \mathcal{S}) := \left\{ \mathbf{v} \in \mathbf{L}^{2}(\mathcal{S}); \mathbf{v}|_{\alpha_{\ell}} \in \mathbf{H}(\text{div}, \alpha_{\ell}), \sum_{i \in I_{f}} \langle \mathbf{v}|_{\alpha_{i}} \cdot \mathbf{n}_{\partial \alpha_{i}}, \varphi_{i} \rangle_{\partial \alpha_{i}} = 0$$

$$\forall \varphi_{i} \in H^{1}_{\partial \alpha_{i} \setminus f}(\alpha_{i}), \varphi_{i}|_{f} = \varphi_{j}|_{f} \forall i, j \in I_{f}, \forall f \in \mathcal{E}^{\text{int}} \right\}$$

Function spaces

Continuous function spaces

$$L^{p}(\mathcal{S}) := \prod_{\ell \in L} L^{p}(\alpha_{\ell}), \quad \mathbf{L}^{p}(\mathcal{S}) := L^{p}(\mathcal{S}) \times L^{p}(\mathcal{S})$$

$$H^{1}(\mathcal{S}) := \left\{ v \in L^{2}(\mathcal{S}); v|_{\alpha_{\ell}} \in H^{1}(\alpha_{\ell}) , \\ (v|_{\alpha_{i}})|_{f} = (v|_{\alpha_{j}})|_{f} \quad \forall f \in \mathcal{E}^{\text{int}}, \forall i, j \in I_{f} \right\}$$

$$f(\operatorname{div}, \mathcal{S}) := \left\{ \mathbf{v} \in \mathbf{L}^{2}(\mathcal{S}); \mathbf{v}|_{\alpha_{\ell}} \in \mathbf{H}(\operatorname{div}, \alpha_{\ell}), \sum_{i \in I_{f}} \langle \mathbf{v}|_{\alpha_{i}} \cdot \mathbf{n}_{\partial\alpha_{i}}, \varphi_{i} \rangle_{\partial\alpha_{i}} = 0 \right\}$$

$$\forall \varphi_i \in H^1_{\partial \alpha_i \setminus f}(\alpha_i), \, \varphi_i|_f = \varphi_j|_f \, \forall i, j \in I_f, \, \forall f \in \mathcal{E}^{\text{int}}$$

Discrete function spaces

 $M_{-1}^{0}(\mathcal{T}_{h})$ constant by elements $M_{-1}^{0}(\mathcal{E}_{h,D})$ constant by edges, zero on Γ_{D} $X_{0}^{1}(\mathcal{E}_{h,D})$ linear by elements, continuous in edge centers, zero on Γ_{D} $\mathbf{RT}_{-1}^{0}(\mathcal{T}_{h})$ Raviart–Thomas space, no continuity requirement $\mathbf{RT}_{0,N}^{0}(\mathcal{T}_{h})$ RT space, normal trace continuity, no flux through Γ_{N}

Η
Weak mixed solution

Weak mixed solution: functions $\mathbf{u} = \mathbf{u}_0 + \tilde{\mathbf{u}}$, $\mathbf{u}_0 \in \mathbf{H}_{0,N}(\operatorname{div}, S)$, and $p \in L^2(S)$ such that

$$\begin{aligned} (\mathbf{K}^{-1}\mathbf{u}_0,\mathbf{v})_{0,\mathcal{S}} - (\nabla\cdot\mathbf{v},p)_{0,\mathcal{S}} &= -\langle\mathbf{v}\cdot\mathbf{n},p_D\rangle_{\partial\mathcal{S}} + (\nabla\cdot\mathbf{v},z)_{0,\mathcal{S}} \\ -\langle\mathbf{v}\cdot\mathbf{n},z\rangle_{\partial\mathcal{S}} - (\mathbf{K}^{-1}\tilde{\mathbf{u}},\mathbf{v})_{0,\mathcal{S}} & \forall\,\mathbf{v}\in\mathbf{H}_{0,N}(\operatorname{div},\mathcal{S})\,, \end{aligned}$$

$$-(\nabla \cdot \mathbf{u}_0, \phi)_{0,\mathcal{S}} = -(q, \phi)_{0,\mathcal{S}} + (\nabla \cdot \tilde{\mathbf{u}}, \phi)_{0,\mathcal{S}} \qquad \forall \phi \in L^2(\mathcal{S})$$

Weak mixed solution: functions $\mathbf{u} = \mathbf{u}_0 + \tilde{\mathbf{u}}$, $\mathbf{u}_0 \in \mathbf{H}_{0,N}(\operatorname{div}, S)$, and $p \in L^2(S)$ such that

$$\langle \mathbf{K}^{-1}\mathbf{u}_{0}, \mathbf{v}
angle_{0,\mathcal{S}} - (\nabla \cdot \mathbf{v}, p)_{0,\mathcal{S}} = -\langle \mathbf{v} \cdot \mathbf{n}, p_{D}
angle_{\partial \mathcal{S}} + (\nabla \cdot \mathbf{v}, z)_{0,\mathcal{S}} - \langle \mathbf{v} \cdot \mathbf{n}, z
angle_{\partial \mathcal{S}} - (\mathbf{K}^{-1}\tilde{\mathbf{u}}, \mathbf{v})_{0,\mathcal{S}} \quad \forall \mathbf{v} \in \mathbf{H}_{0,N}(\operatorname{div}, \mathcal{S}),$$

$$-(\nabla \cdot \mathbf{u}_0, \phi)_{0,\mathcal{S}} = -(q, \phi)_{0,\mathcal{S}} + (\nabla \cdot \tilde{\mathbf{u}}, \phi)_{0,\mathcal{S}} \qquad \forall \phi \in L^2(\mathcal{S})$$

Theorem (Existence and uniqueness of the weak mixed solution) *There exists a unique weak mixed solution.*

- key ingredient: definition of the function spaces
- the fulfillment of the essential inf-sup condition follows from the existence and uniqueness of the primal weak solution

Basis of the dual space to $\mathbf{RT}_0^0(\mathcal{T}_h)$

• There are $|I_f| - 1$ functionals for each interior edge f.

Basis of the dual space to $\mathbf{RT}_0^0(\mathcal{T}_h)$

• There are $|I_f| - 1$ functionals for each interior edge f.

Duality

• There are $|I_f| - 1$ dual basis functions for each interior edge f.

Basis of the dual space to $\mathbf{RT}_0^0(\mathcal{T}_h)$

• There are $|I_f| - 1$ functionals for each interior edge f.

Duality

• There are $|I_f| - 1$ dual basis functions for each interior edge f.

Velocity basis function for $|I_f| = 3$

Basis of the dual space to $\mathbf{RT}_0^0(\mathcal{T}_h)$

• There are $|I_f| - 1$ functionals for each interior edge f.

Duality

• There are $|I_f| - 1$ dual basis functions for each interior edge f.

Theorem (Commuting diagram property)

 $\begin{array}{cccc}
 \mathbf{H}(\operatorname{grad}, \mathcal{S}) & \xrightarrow{\operatorname{div}} & L^2(\mathcal{S}) \\
 & \downarrow \pi_h & & \downarrow P_h & \Rightarrow \\
 \mathbf{RT}_0^0(\mathcal{T}_h) & \xrightarrow{\operatorname{div}} & M_{-1}^0(\mathcal{T}_h) \\
 \end{array}$

Existence and uniqueness of the mixed approximation

Basis of the dual space to $\mathbf{RT}_0^0(\mathcal{T}_h)$

• There are $|I_f| - 1$ functionals for each interior edge f.

Duality

- There are $|I_f| - 1$ dual basis functions for each interior edge f.

Theorem (Commuting diagram property)

 $\mathbf{H}(\operatorname{grad}, \mathcal{S}) \xrightarrow{\operatorname{div}} L^2(\mathcal{S})$ $\mathbf{RT}_0^0(\mathcal{T}_h) \xrightarrow{\operatorname{div}} M^0_{-1}(\mathcal{T}_h)$

Algebraic reduction of the mixed-hybrid method

K pw constant: system matrix, Dirichlet and Neumann BC, and gravity term completely coincide with the nonconforming method source term: mixed-hybrid method employs average

Numerical experiment

System for a model problem with known solution

Numerical experiment

Ν	Triangles	$\ p-p_h\ _{0,\mathcal{S}}$	$\ p - \tilde{\lambda}_h\ _{0,\mathcal{S}}$	$\ \mathbf{u} - \mathbf{u}_h\ _{\mathbf{H}(\mathrm{div},\mathcal{S})}$
2	8×4	0.4445	0.1481	1.2247
4	32×4	0.2212	0.0389	0.6263
8	128×4	0.1102	0.0098	0.3150
16	512×4	0.0550	0.0025	0.1577
32	2048×4	0.0275	$6.18 \cdot 10^{-4}$	0.0789
64	8192×4	0.0138	1.54 $\cdot 10^{-4}$	0.0394
128	32768×4	0.0069	$3.87 \cdot 10^{-5}$	0.0197
256	131072×4	0.0034	$9.73 \cdot 10^{-6}$	0.0099
Approximation errors				

Fracture flow simulation

Simulation of a nuclear waste repository

< > - +

Conclusions and future work

Conclusions

- definition of the mixed finite element method on fracture networks
- relation to the nonconforming method (efficient implementation)

Conclusions and future work

Conclusions

- definition of the mixed finite element method on fracture networks
- relation to the nonconforming method (efficient implementation)

Future work

contaminant transport simulation in fracture networks

Outline

Motivation

Chapter 1, part A: A combined finite volume–nonconforming/mixedhybrid finite element scheme for degenerate parabolic problems

Chapter 1, part B: A combined finite volume–finite element scheme for contaminant transport simulation on nonmatching grids

Chapter 2: Discrete Poincaré–Friedrichs inequalities

Chapter 3: Equivalence between lowest-order mixed finite element and multi-point finite volume methods

Chapter 4: Mixed and nonconforming finite element methods on a fracture network

Perspectives and future work

Perspectives and future work

- error estimates for the combined finite volume—finite element schemes
- rigorous study of the combined schemes for nonmatching grids
- analysis of the singularities in the condensation of the mixed finite element method
- extension of the condensation to higher-order schemes
- contaminant transport simulation on fracture networks