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Monsieur Jǐŕı Maryška. Je suis très reconnaissant à Madame Hilhorst d’avoir été une direc-
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METHODES NUMERIQUES POUR DES EQUATIONS

ELLIPTIQUES ET PARABOLIQUES NON LINEAIRES

Application à des problèmes d’écoulement en milieux poreux et fracturés

Résumé

Les travaux de cette thèse portent sur des méthodes numériques pour la discrétisation
d’équations aux dérivées partielles elliptiques et paraboliques de convection–réaction–diffusion
non linéaires. Nous analysons ces méthodes et nous les appliquons à la simulation effective de
l’écoulement et du transport de contaminants en milieux poreux et fracturés.

Au chapitre 1, nous proposons un schéma permettant une discrétisation efficace, robuste,
conservative et stable des équations de convection–réaction–diffusion non linéaires parabo-
liques dégénérées sur des maillages non structurés en dimensions deux ou trois d’espace. Nous
discrétisons le terme de diffusion, qui contient en général un tenseur de diffusion inhomogène
et anisotrope, par la méthode des éléments finis non conformes ou mixtes-hybrides et les autres
termes par la méthode des volumes finis. La partie essentielle du chapitre est ensuite consacrée
à montrer l’existence et l’unicité d’une solution discrète et sa convergence vers une solution
faible du problème continu. La méthode de démonstration permet en particulier d’éviter des
hypothèses restrictives sur le maillage souvent présentes dans la littérature. Nous proposons fi-
nalement une variante de ce schéma pour des maillages qui ne se raccordent pas, couplant cette
fois la méthode des volumes finis avec celle des éléments finis conformes, et nous l’appliquons
à la simulation du transport de contaminants en milieux poreux.

Au chapitre 2, nous présentons une démonstration constructive des inégalités de Poincaré–
Friedrichs discrètes pour une classe d’approximations non conformes de l’espace de SobolevH1,
indiquons les valeurs optimales des constantes dans ces inégalités et montrons l’inégalité de
Friedrichs discrète pour des domaines bornés dans une direction uniquement. Ces résultats
sont importants dans l’analyse de méthodes numériques non conformes, comme les méthodes
d’éléments finis non conformes ou de Galerkin discontinu.

Au chapitre 3, nous montrons que la méthode des éléments finis mixtes de Raviart–Thomas
de plus bas degré pour des problèmes elliptiques en dimension deux ou trois d’espace est
équivalente à un schéma de volumes finis à plusieurs points. Après avoir étudié ce schéma,
nous l’appliquons à la discrétisation d’équations de convection–réaction–diffusion paraboliques
non linéaires. Cette approche permet de réduire le temps de calcul de la méthode des éléments
finis mixtes, tout en conservant sa très grande précision, ce qui est confirmé par les tests
numériques.

Enfin, au chapitre 4, nous proposons une version de la méthode des éléments finis mixtes de
Raviart–Thomas de plus bas degré pour la résolution de problèmes elliptiques sur un système
de polygones bidimensionnels placés dans l’espace tridimensionnel, démontrons qu’elle est bien
posée et étudions sa relation avec la méthode des éléments finis non conformes. Ces résultats
sont finalement appliqués à la simulation de l’écoulement de l’eau souterraine dans un système
de polygones représentant un réseau de fractures perturbant un massif rocheux.

Mots clés : Méthodes volumes finis – Méthodes éléments finis – Méthodes éléments finis
mixtes – Maillages non structurés – Inégalités de Poincaré–Friedrichs discrètes – Existence et
unicité – Convergence – Simulations numériques – Equation de convection–réaction–diffusion
parabolique dégénérée – Ecoulement et transport de contaminants en milieux poreux et frac-
turés
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NUMERICAL METHODS FOR NONLINEAR

ELLIPTIC AND PARABOLIC EQUATIONS

Application to flow problems in porous and fractured media

Abstract

This thesis deals with numerical methods for the discretization of nonlinear elliptic and
parabolic convection–reaction–diffusion partial differential equations. We analyze these meth-
ods and apply them to the effective simulation of flow and contaminant transport in porous
and fractured media.

In Chapter 1 we propose a scheme allowing for efficient, robust, conservative, and stable
discretizations of nonlinear degenerate parabolic convection–reaction–diffusion equations on
unstructured grids in two or three space dimensions. We discretize the diffusion term, which
generally involves an inhomogeneous and anisotropic diffusion tensor, by means of the non-
conforming or mixed-hybrid finite element method and the other terms by means of the finite
volume method. The essential part of this chapter is then devoted to showing the existence
and uniqueness of a discrete solution and its convergence to a weak solution of the continuous
problem. The proofs permit in particular to avoid restrictive hypotheses on the mesh often
used in the literature. We finally propose a version of this scheme for nonmatching grids, com-
bining this time the finite volume method with the piecewise linear conforming finite element
method. We then apply this version to contaminant transport simulations in porous media.

In Chapter 2 we present a direct proof of the discrete Poincaré–Friedrichs inequalities for
a class of nonconforming approximations of the Sobolev space H1, indicate optimal values of
the constants in these inequalities, and extend the discrete Friedrichs inequality onto domains
only bounded in one direction. The results are important in the analysis of nonconforming
numerical methods, such as nonconforming finite element or discontinuous Galerkin methods.

In Chapter 3 we show that the lowest-order Raviart–Thomas mixed finite element method
for elliptic problems on simplicial meshes in two or three space dimensions is equivalent to
a particular multi-point finite volume scheme. We study this scheme and apply it to the
discretization of nonlinear parabolic convection–reaction–diffusion equations. This approach
allows significant reduction of the computational time of the mixed finite element method
without any loss of its high precision, which is confirmed by numerical experiments.

Finally, in Chapter 4 we propose a version of the lowest-order Raviart–Thomas mixed finite
element method for the approximation of elliptic problems on a system of two-dimensional
polygons placed in three-dimensional space, prove that it is well-posed, and study its relation
to the nonconforming finite element method. These results are finally applied to the simulation
of underground water flow through a system of polygons representing a network of fractures
that perturbs a rock massif.

Key words: Finite volume method – Finite element method – Mixed finite element method
– Unstructured grids – Discrete Poincaré–Friedrichs inequalities – Existence and uniqueness
– Convergence – Numerical simulations – Degenerate parabolic convection–reaction–diffusion
equation – Flow and contaminant transport in porous and fractured media
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Introduction

Les équations aux dérivées partielles décrivent un grand nombre de phénomènes dans notre
environnement. Dans la plupart des cas, il n’est pas possible d’en trouver des solutions ana-
lytiques. C’est dans le but de pouvoir calculer des solutions approchées que les méthodes
numériques ont été développées. Aujourd’hui, l’impact de ces méthodes est d’autant plus es-
sentiel que la puissance des ordinateurs ne cesse d’augmenter.

La méthode des éléments finis a été développée par des ingénieurs vers 1950 puis étudiée
par des mathématiciens. On peut citer en particulier les ouvrages de Strang et Fix, Zienkie-
wicz et Ciarlet. La méthode des volumes finis, également développée par des ingénieurs, a été
analysée d’un point de vue mathématique beaucoup plus tard, en particulier par Eymard, Gal-
louët et Herbin. Les idées essentielles de ces deux méthodes sont apparemment très différentes
puisque la méthode des éléments finis est basée sur la minimisation d’une énergie tandis que,
dans celle des volumes finis, on approche les flux à l’aide d’une formule intégrale. Pourtant,
la discrétisation d’une équation elliptique du deuxième ordre à l’aide de ces méthodes peut
conduire à des problèmes discrets très proches et parfois identiques. En particulier, contraire-
ment à ce qui a été longtemps affirmé, on peut montrer, en réinterprétant les résultats, que la
méthode des éléments finis conserve localement la masse tout comme la méthode des volumes
finis. Tandis qu’elles sont très voisines pour la discrétisation d’un terme diffusif du deuxième
ordre, ces méthodes ont un comportement différent pour celle d’un terme convectif du premier
ordre, d’un terme réactif ou pour la discrétisation de la dérivée en temps. C’est ce qui motive
l’introduction de schémas combinant les méthodes de volumes finis et d’éléments finis.

La méthode des éléments finis mixtes de Raviart et Thomas permet des calculs plus précis.
Elle est basée sur l’approximation simultanée de la fonction scalaire inconnue et de son flux.
Elle conduit néanmoins à des systèmes linéaires de type point-selle, si bien que la résolution
numérique en est très onéreuse. C’est à la fois pour diminuer le temps de calcul et pour en
rendre l’implémentation plus aisée que ses relations avec la méthode des éléments finis non
conformes d’une part et avec les méthodes de volumes finis et de différences finies d’autre part
ont été étudiées. Il y a eu de plus des retombées supplémentaires sous la forme de résultats
nouveaux dans l’analyse mathématique de la méthode des éléments finis mixtes.

Dans cette thèse, nous étudions tout d’abord des schémas combinant des méthodes de
volumes finis et d’éléments finis pour la discrétisation de problèmes de convection–réaction–
diffusion paraboliques non linéaires avec un tenseur de diffusion inhomogène et anisotrope sur
des maillages très généraux. Nous montrons ensuite que la méthode des éléments finis mixtes de
Raviart–Thomas de plus bas degré est équivalente à une méthode de type volumes finis. Nous
appliquons finalement ces méthodes à la résolution de problèmes intervenant en environnement,
en particulier à la simulation de l’écoulement et du transport de contaminants en milieux
poreux et fracturés. Nous présentons aussi des constantes optimales pour des inégalités de
Poincaré–Friedrichs discrètes, nécessaires à l’analyse de ces schémas. Les quatre chapitres de
cette thèse et l’appendice 1.9 peuvent être lus indépendamment.
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Chapitre 1 : Schémas combinant les méthodes de volumes finis
et d’éléments finis pour des problèmes de convection–réaction–

diffusion paraboliques dégénérés

Nous proposons et étudions dans ce chapitre deux schémas qui combinent des méthodes
de volumes finis et d’éléments finis et qui permettent une discrétisation efficace des équations
paraboliques dégénérées sur des maillages très généraux.

Nous considérons l’équation de convection–réaction–diffusion

∂β(c)
∂t

−∇ · (S∇c) + ∇ · (cv) + F (c) = q , (1)

qui décrit le transport réactif avec adsorption équilibre en milieu poreux, cf. [19, 81]. Ici,
c = c(x,t) est la concentration d’un contaminant, v = v(x,t) est un champ de vitesses externe,
S = S(x,v,t) est le tenseur de dispersion–diffusion, la fonction β décrit l’évolution en temps
et l’adsorption équilibre, la fonction F est liée aux réactions chimiques et q = q(x,t) est un
terme source. On obtient un problème complet après avoir ajouté une condition aux limites et
une condition initiale appropriée. L’approximation numérique de ce problème est compliquée
parce que la dérivée de la fonction β n’est pas bornée, c’est-à-dire que l’équation (1) est
parabolique dégénérée, que le terme de convection domine celui de diffusion et que le tenseur
S est inhomogène et anisotrope (il n’est pas constant et a la forme d’une matrice pleine).

La méthode des éléments finis pour des équations paraboliques dégénérées a été étudiée
par exemple dans [20, 94, 109]. Elle permet une approximation très aisée des termes de diffu-
sion dans le cas de tenseurs de diffusion anisotropes et ne nécessite aucune condition sur les
maillages. Rappelons qu’elle est localement conservative, contrairement à ce qui a été long-
temps affirmé, cf. [68], [61, Section III.12] ou [75]. En revanche, on sait qu’elle produit des
oscillations numériques non justifiées quand le problème est dominé par la convection. La
méthode des volumes finis (centrée par maille) pour des équations paraboliques dégénérées
a été étudiée dans [62, 63]. Elle est très efficace, peu coûteuse et permet d’éviter les oscilla-
tions numériques quand le problème est dominé par la convection, si l’on discrétise le terme de
convection à l’aide d’un schéma amont. En revanche, il y a des restrictions sur le maillage pour
la discrétisation du terme de diffusion et on ne sait pas l’étendre simplement au cas où le ten-
seur de diffusion est anisotrope. Pour éviter les inconvénients de ces deux méthodes classiques,
des schémas combinant des méthodes de volumes finis et d’éléments finis ont été proposés,
cf. [10, 48, 67, 90]. Cependant, ces méthodes n’ont été proposées que pour des équations uni-
formément paraboliques sans terme de réaction et n’ont été étudiées qu’avec des hypothèses
assez restrictives sur le maillage.

Un schéma combinant les méthodes des volumes finis et des éléments finis
non conformes ou mixtes-hybrides

Nous supposons dans cette partie que le maillage est non structuré et composé de triangles
en dimension deux d’espace et de tétraèdres en dimension trois d’espace. Pour discrétiser
l’équation (1), nous nous sommes inspirés de la méthode proposée dans [10] pour des équations
de la mécanique des fluides.

Nous discrétisons le terme de diffusion à l’aide de la méthode des éléments finis non
conformes sur le maillage donné et les autres termes à l’aide de la méthode des volumes
finis sur un maillage de volumes de contrôle, construits autour des faces du maillage initial.
Nous proposons également de remplacer les éléments finis non conformes par des éléments finis
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mixtes-hybrides, où les seules inconnues sont les multiplicateurs de Lagrange, cf. [15]. Pour
discrétiser le terme de convection, nous proposons un flux numérique tenant compte du nombre
de Péclet local, de façon à ajuster la quantité de décentrage amont selon la proportion locale
de la convection et de la diffusion. Ainsi, on n’ajoute au schéma que le minimum de diffusion
numérique nécessaire à assurer sa stabilité. Pour la discrétisation temporelle, nous utilisons
une méthode de différences finies complètement implicite.

Nous montrons d’abord qu’il existe une solution discrète unique. Nous prouvons ensuite
que cette solution vérifie le principe de maximum discret s’il n’y a pas d’angles obtus dans
le maillage et si le tenseur de diffusion est scalaire et que le schéma conserve localement la
masse. Nous démontrons ensuite des estimations a priori et des estimations sur les différences
de translatées en espace et en temps, ce qui implique une propriété de compacité relative
par le théorème de Fréchet–Kolmogorov. On démontre ainsi la convergence forte dans L2

d’une sous-suite de solutions approchées vers une solution faible du problème continu. Pour
les démonstrations, nous utilisons des méthodes présentées dans [61] que nous étendons au cas
de transmissibilités déduites du schéma d’éléments finis et qui peuvent être négatives (auquel
cas le principe de maximum discret n’est pas valide) et au cas de maillages de triangles ou de
tétraèdres généraux. Cette méthode de démonstration donne aussi la possibilité de généraliser
les hypothèses qui ont été nécessaires dans [10]. En particulier, nous n’imposons aucune condi-
tion sur les angles maximaux du maillage et nous permettons également son raffinement local.
Nous résolvons finalement les systèmes non linéaires pour les inconnues discrètes correspon-
dant à la fonction β(c). On peut ainsi éviter toute régularisation parabolique (cf. [20]) ou
perturbation des conditions initiales et des conditions aux limites (cf. [99]), rendant l’équation
uniformément parabolique. De plus, les systèmes linéaires ainsi obtenus sont diagonaux pour
la partie des inconnues correspondant aux zones où c = 0. Le schéma proposé permet une
discrétisation efficace, robuste, conservative et stable de l’équation (1), ce qui est confirmé par
les essais numériques présentés à la fin du chapitre.

Cette partie fait l’objet d’un article écrit en collaboration avec R. Eymard et D. Hilhorst,
soumis pour publication dans Numerische Mathematik. Une version abrégée de cet article a
été publiée dans des actes (avec comité de lecture) du congrès ENUMATH 2003.

Un schéma combinant les méthodes des volumes finis et des éléments finis
pour la simulation du transport de contaminants sur des maillages qui ne se
raccordent pas

Nous considérons dans cette partie l’équation (1) sous la forme où elle intervient en hy-
drologie, cf. [25, 123]. Nous supposons que le maillage est non structuré, composé de volumes
de contrôle polygonaux qui ne sont pas nécessairement convexes et qui ne se raccordent pas.
Nous étendons à ce type de maillages les schémas proposés dans [67, 114].

Nous construisons un maillage qui se raccorde, composé de triangles en dimension deux
d’espace et de tétraèdres en dimension trois d’espace, et dont les sommets sont associés aux
volumes de contrôle du maillage donné. Nous reprenons ensuite les idées du schéma précédent,
en nous appuyant cette fois sur la méthode des éléments finis conformes. Nous généralisons
le flux numérique tenant compte du nombre de Péclet local, montrons que le schéma reste
localement conservatif et qu’il vérifie le principe de maximum discret sous certaines conditions
sur le maillage et sur le tenseur de diffusion. On pourrait démontrer sa convergence comme on
l’avait fait pour le premier schéma. Ce schéma est plus simple que la plupart des autres schémas
présentés dans la littérature pour des maillages qui ne se raccordent pas, tout en étant très
efficace. En particulier, on évite d’introduire des équations ou des inconnues supplémentaires
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ou d’interpoler sur les frontières entre les mailles qui ne se raccordent pas, cf. [3, 11, 26, 55, 66].
En effet, le schéma proposé pourrait être considéré comme une version consistante du schéma
proposé dans [36]. Nous présentons finalement des résultats de simulation pour un problème
modèle ainsi que pour un problème réel fourni par la société HydroExpert de Paris. Le schéma
proposé est implémenté dans le logiciel TALISMAN [104] de cette société, qui utilise des
maillages rectangulaires raffinés localement, et donc ne se raccordant pas.

Cette partie fait l’objet d’un article écrit en collaboration avec R. Eymard et D. Hilhorst,
qui sera prochainement soumis pour publication dans Transport in Porous Media.

Chapitre 2 : Inégalités de Poincaré–Friedrichs discrètes

Nous étudions dans ce chapitre des versions discrètes des inégalités de Poincaré–Friedrichs.
Ces inégalités sont importantes dans l’analyse des méthodes numériques non conformes.

L’inégalité de Friedrichs∫
Ω
g2(x) dx ≤ cF

∫
Ω
|∇g(x)|2 dx ∀g ∈ H1

0 (Ω) (2)

et l’inégalité de Poincaré∫
Ω
g2(x) dx ≤ cP

∫
Ω
|∇g(x)|2 dx + c̃P

(∫
Ω
g(x) dx

)2
∀g ∈ H1(Ω) (3)

(cf. [91]) sont essentielles dans la théorie des équations aux dérivées partielles. On suppose ici
que Ω ⊂ Rd, d = 2,3, est un ouvert borné connexe de frontière polygonale.

Soit {Th}h une famille de triangulations de Ω, composée de triangles en dimension deux
et de tétraèdres en dimension trois. Soit W (Th) l’ensemble des fonctions de H1(K) pour tout
K ∈ Th, telles que les moyennes de leurs traces sur les faces intérieures cöıncident. Finalement,
soit W0(Th) ⊂ W (Th) l’ensemble des fonctions telles que les moyennes des traces sur les faces
extérieures sont nulles. Ces espaces sont des approximations non conformes des espaces continus
dans le sens où W0(Th) �⊂ H1

0 (Ω) et W (Th) �⊂ H1(Ω). Nous étudions des versions discrètes des
inégalités (2) et (3) données par∫

Ω
g2(x) dx ≤ CF

∑
K∈Th

∫
K
|∇g(x)|2 dx ∀g ∈W0(Th) ,∀h > 0 , (4)

∫
Ω
g2(x) dx ≤ CP

∑
K∈Th

∫
K
|∇g(x)|2 dx + C̃P

(∫
Ω
g(x) dx

)2
∀g ∈W (Th) ,∀h > 0 . (5)

Les inégalités (4) et (5) ont été étudiées dans [28, 51, 84, 116]. Il a été démontré dans [28, 84]
que les constantes CF et CP dépendent seulement de Ω et de la régularité des maillages. Nous
établissons les dépendances de CF et CP en ces paramètres et nous présentons un exemple
montrant que ces dépendances sont optimales. Enfin, la dépendance de CF de Ω nous per-
met d’étendre l’inégalité de Friedrichs discrète au cas de domaines bornés dans une direction
uniquement. Notre démonstration de (4) et de (5) est constructive et porte sur l’extension de
la démonstration des inégalités de Poincaré–Friedrichs discrètes connues pour des fonctions
constantes par morceaux dans le cadre de la méthode des volumes finis, cf. [61]. Ces résultats
sont importants dans l’analyse de méthodes numériques non conformes, comme les méthodes
d’éléments finis non conformes ou de Galerkin discontinu.

Ce chapitre fait l’objet d’un article écrit seul, soumis pour publication dans Numerical
Functional Analysis and Optimization.
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Chapitre 3 : Equivalence entre les méthodes des éléments finis
mixtes de plus bas degré et des volumes finis à plusieurs points

Nous démontrons dans ce chapitre l’équivalence entre la méthode des éléments finis mixtes
et un schéma de volumes finis à plusieurs points pour des équations elliptiques et l’appliquons
à la discrétisation d’équations paraboliques non linéaires. Le but est de réduire le temps de
calcul de la méthode des éléments finis mixtes, tout en conservant sa très grande précision.

Nous considérons d’abord le problème elliptique

u = −S∇p dans Ω , (6a)
∇ · u = q dans Ω , (6b)

p = pD sur ΓD , u · n = uN sur ΓN , (6c)

où Ω ⊂ Rd, d = 2,3, est un ouvert borné connexe de frontière polygonale, S est un tenseur
symétrique borné et uniformément défini positif, pD ∈ H

1
2 (∂Ω), uN ∈ H− 1

2 (ΓN ) et q ∈ L2(Ω).
Soit Th un maillage de Ω composé de triangles en dimension deux d’espace et de tétraèdres en
dimension trois d’espace. Dans la méthode des éléments finis mixtes de Raviart–Thomas [105],
(cf. Nédélec [92] en dimension trois d’espace) de plus bas degré pour le problème (6a)–(6c), on
cherche simultanément les inconnues scalaires P associées aux éléments du maillage et les flux
U à travers les faces du maillage. Le système linéaire associé est de type point-selle et peut
être écrit sous la forme (

A Bt

B 0

)(
U
P

)
=

(
F
G

)
. (7)

En suivant les idées données dans [69] et en introduisant les multiplicateurs de Lagrange
associés aux faces, on peut réduire le nombre d’inconnues au nombre des faces et obtenir
des matrices symétriques définies positives, cf. [15]. Si S est diagonal, on peut éliminer les
flux U et obtenir un problème pour les seules inconnues scalaires P en utilisant l’intégration
numérique approchée, cf. [8, 18, 110]. Ces idées peuvent être étendues au cas d’un tenseur
S général, cf. [12]. En dimension deux d’espace, la méthode de Raviart–Thomas de plus bas
degré peut être reformulée à l’aide d’une nouvelle inconnue associée aux éléments du maillage,
cf. [37, 121, 122]. A notre connaissance, ceci est la seule approche exacte connue pour réduire
le nombre d’inconnues au nombre d’éléments.

Nous mettons au point une nouvelle méthode pour réduire le système (7) à un système
pour les seules inconnues scalaires P . Nous montrons que, sous la condition que certaines
matrices locales associées aux sommets soient inversibles, il est possible d’exprimer le flux
à travers une face à l’aide des inconnues scalaires, des sources et des conditions sur le bord
associées aux éléments qui ont un sommet commun avec cette face. Rappelons qu’exprimer
le flux à travers une face à l’aide des inconnues scalaires associées aux éléments voisins de
cette face est le principe des méthodes des volumes finis à plusieurs points, cf. [1, 44, 65]. La
méthode de Raviart–Thomas de plus bas degré est donc dans ce cas équivalente à une méthode
de type volumes finis à plusieurs points, et ceci sans aucune intégration numérique. Nous
discutons ensuite les modifications à faire quand les matrices locales ne sont pas inversibles.
L’élimination proposée conduit à des systèmes linéaires avec une matrice creuse mais en général
non symétrique. Nous prouvons que cette matrice est définie positive sous une condition sur
le maillage et sur le tenseur S, permettant des éléments assez déformés si S est constant
par morceaux et scalaire. Cette condition implique en particulier que les matrices locales
mentionnées ci-dessus sont inversibles. Enfin, l’élimination proposée s’applique de la même
manière pour la discrétisation des équations de convection–réaction–diffusion paraboliques
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non linéaires par les méthodes des éléments finis mixtes et des éléments finis mixtes avec un
décentrage amont (cf. [14] et [46, 47, 77]).

L’idée essentielle est la suivante : étant donné un problème du deuxième ordre, faire d’abord
une décomposition en des inconnues scalaires et vectorielles qui garantit que la condition inf–
sup est satisfaite, puis éliminer les inconnues vectorielles ajoutées. Ceci permet d’obtenir la
précision de la méthode des éléments finis mixtes au prix de la méthode des volumes finis, ce
qui est confirmé par les essais numériques. En particulier, pour des problèmes paraboliques non
linéaires, on peut réduire d’un facteur de 2 à 4 le temps de calcul de la méthode des éléments
finis mixtes. Cette approche peut être très facilement implémentée dans des codes existants.
Enfin, il s’avère que les idées présentées s’appliquent aussi à des schémas d’ordre élevé.

Ce chapitre fait l’objet d’un article écrit seul, qui sera prochainement soumis pour publi-
cation dans M2AN. Mathematical Modelling and Numerical Analysis. Une version abrégée de
cet article a été publiée dans Comptes Rendus de l’Académie des Sciences, Ser. I.

Chapitre 4 : Les méthodes des éléments finis mixtes et non

conformes sur un réseau de fractures

Dans ce chapitre, nous proposons la méthode des éléments finis mixtes pour des problèmes
elliptiques sur un réseau de polygones, démontrons qu’elle est bien posée et étudions sa relation
avec la méthode des éléments finis non conformes. Nous l’appliquons finalement à la simulation
de l’écoulement dans un réseau de fractures perturbant un massif rocheux.

Nous supposons donné un système

S :=
⋃
�∈L

α� ,

où α� est un polygone bidimensionnel placé dans l’espace tridimensionnel, connecté à travers
ses arêtes avec d’autres polygones du réseau. La propriété importante est qu’il peut y avoir
des arêtes partagées par un nombre de polygones supérieur ou égal à trois, ce qui n’est pas
possible dans une décomposition polygonale d’un domaine bidimensionnel. Nous considérons
le problème elliptique posé sur S de trouver p et u tels que

u = −K(∇p+ ∇z) dans α� , � ∈ L , (8a)
∇ · u = q dans α� , � ∈ L , (8b)

p = pD sur ΓD , u · n = uN sur ΓN , (8c)

où toutes les variables ainsi que la différentiation sont exprimées dans des coordonnées locales
bidimensionnelles de α�. Soit f l’arête partagée par des polygones dont l’ensemble d’indices
est If . On ferme le système (8a)–(8c) en imposant

p|αi = p|αj sur f ∀i,j ∈ If ,∑
i∈If

u|αi · nf,αi
= 0 sur f

pour toute arête f intérieure, où nf,αi
est le vecteur normal unitaire extérieur à l’arête f pour

le polygone αi. Cette relation exprime la continuité de p et une continuité appropriée du flux
normal de u à travers f . Ce problème elliptique décrit l’écoulement de l’eau souterraine dans
un réseau de fractures perturbant un massif rocheux, cf. [5].
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Nous proposons la méthode des éléments finis mixtes pour le problème considéré. Après
avoir défini des espaces fonctionnels qui assurent les continuités appropriées sur les arêtes
intérieures, nous démontrons l’existence et l’unicité d’une solution mixte faible sur un réseau
de polygones. Nous considérons ensuite une discrétisation de ce réseau à l’aide de triangles et
définissons les espaces discrets, en nous appuyant sur les éléments finis mixtes de plus bas degré
de Raviart–Thomas [105]. Les fonctions de base vectorielles doivent assurer le bilan de la masse
pour les arêtes intérieures. Nous montrons ensuite que cette méthode est bien posée, c’est-à-
dire qu’il existe une solution discrète unique. Les estimations d’erreur sont une conséquence
de la théorie générale, cf. [33, 108]. Nous étudions finalement la relation de l’hybridisation
de la méthode des éléments finis mixtes avec la méthode des éléments finis non conformes.
Nous étendons les résultats connus dans cette direction (cf. [15, 38]) pour des tenseurs de
conductivité hydraulique K non constants, pour des conditions aux limites de Neumann et de
Dirichlet inhomogènes et pour des réseaux de polygones. Cette relation permet en particulier
une implémentation efficace de la méthode des éléments finis mixtes de plus bas degré de
Raviart–Thomas sur des réseaux de polygones. Nous présentons un test numérique pour lequel
la solution analytique est connue, confirmant ainsi les résultats théoriques. Nous montrons
finalement l’application de la méthode développée à la simulation de l’écoulement de l’eau
souterraine dans un massif rocheux à l’Ouest de la Bohême, qui devrait devenir un site de
stockage de déchets radioactifs dangereux.

Ce chapitre fait l’objet d’un article écrit en collaboration avec J. Maryška et O. Severýn,
soumis pour publication dans Applied Numerical Mathematics. Une version abrégée de cet ar-
ticle a été publiée dans Contemporary Mathematics (Current Trends in Scientific Computing).
L’application de ces résultats à des simulations dans des cas réels fait l’objet d’un article écrit
avec les mêmes auteurs, publié dans Computational Geosciences.





Chapitre 1

Combined finite volume–finite
element schemes for degenerate
parabolic convection–reaction–
diffusion problems

We propose and analyze in this chapter a numerical scheme for nonlinear degenerate parabolic
convection–reaction–diffusion equations in two or three space dimensions. We discretize the
diffusion term, which generally involves an inhomogeneous and anisotropic diffusion tensor,
over an unstructured simplicial mesh of the space domain by means of the piecewise linear
nonconforming (Crouzeix–Raviart) finite element method, or using the stiffness matrix of the
hybridization of the lowest-order Raviart–Thomas mixed finite element method. The other
terms are discretized by means of a cell-centered finite volume scheme on a dual mesh, where
the dual volumes are constructed around the sides of the original mesh. Checking the local
Péclet number, we set up the exact necessary amount of upstream weighting to avoid spurious
oscillations in the convection-dominated case. This technique also ensures the validity of the
discrete maximum principle under some conditions on the mesh and the diffusion tensor. We
prove the convergence of the scheme, only supposing the shape regularity condition for the
original mesh. We use a priori estimates and the Kolmogorov relative compactness theorem for
this purpose. The proposed scheme is robust, only 5-point (7-point in space dimension three),
locally conservative, efficient, and stable, which is confirmed by a numerical experiment. We
finally propose a version of this scheme for nonmatching grids, combining this time the finite
volume method with the piecewise linear conforming finite element method. We then apply
this version to contaminant transport simulation in porous media.
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1.1 Introduction

Degenerate parabolic equations arise in many contexts, such as flow in porous media or free
boundary problems. This chapter is motivated by the modeling of contaminant transport in
porous media with equilibrium adsorption reaction, see [19, 25], which typically involves a
convection–reaction–diffusion equation of the form

∂β(c)
∂t

−∇ · (S∇c) + µ∇ · (cv) + F (c) = q , (1.1)

where c is the unknown concentration of the contaminant, the function β(·) represents time
evolution and equilibrium adsorption reaction and is supposed to be continuous and increasing
with the growth bounded from below by a positive constant, S is the diffusion–dispersion
tensor, v is the velocity field in the convection term (given for instance by the Darcy law),
the function F (·) represents the changes due to chemical reactions, q stands for the sources,
and finally, µ is a scalar parameter. Equation (1.1) is degenerate parabolic since β′ may be
unbounded, generally dominated by the convection term, and involves inhomogeneous and
anisotropic (nonconstant full-matrix) diffusion–dispersion tensor.

A large variety of methods have been proposed for the discretization of degenerate parabolic
equations. The conforming piecewise linear finite element method has been studied e.g. in [20,
39, 53, 93, 109], the cell-centered finite volume method in [22, 62, 63], the vertex-centered finite
volume method in [6, 96], the finite difference method e.g. in [82], the mixed finite element
method in [14, 46, 47], characteristic or Eulerian–Lagrangian methods e.g. in [40, 81], and
relaxation schemes have been proposed e.g. in [78]. We shall follow in this chapter the finite
element/finite volume approach.

The finite element method allows for an easy discretization of the diffusion term with a
full tensor and does not impose any restrictions on the meshes. However, it is well-known that
numerical instabilities may arise in the convection-dominated case. Recall that this method is
locally conservative, contrary to what has been claimed for a long time, cf. [68, 76, 112], [61,
Section III.12], or a detailed analysis given in [75]. The cell-centered finite volume method
with an upwind discretization of the convection term ensures the stability and is extremely
robust and computationally inexpensive. However, the mesh for the discretization of the
diffusion term has to fulfill the following orthogonality property: the line segment relying
the emplacement of the unknowns in two neighboring volumes has to be orthogonal to the
side (edge in space dimension two and face in space dimension three) between these volumes,
cf. [61]. Also, there is no straightforward way to apply this finite volume method to problems
with full diffusion tensors. Various “multi-point” schemes where the approximation of the flux
through an edge involves several scalar unknowns have been proposed, cf. e.g. [1, 7, 44, 58, 65].
However, such schemes require using more points than the classical 4 points for triangular
meshes and 5 points for quadrangular meshes in space dimension two, making the schemes less
robust and more susceptible to numerical instabilities. Their extension to three-dimensional
unstructured meshes is also not straightforward (with the exception of the scheme proposed
in [58]).

A quite intuitive idea is hence to combine a finite element discretization of the diffusion
term with a finite volume discretization of the other terms of (1.1), trying to use the “best
of both worlds”. Schemes combining conforming piecewise linear finite elements on triangles
for the diffusion term with S = Id and finite volumes on dual volumes associated with the
vertices, proposed and studied in [48, 67, 90] for fluid mechanics equations, are indeed quite
efficient. Our motivation is to extend these ideas to degenerate parabolic problems, to the
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combination of the mixed-hybrid finite element and finite volume methods, to inhomogeneous
and anisotropic diffusion–dispersion tensors, to space dimension three, and finally to meshes
only satisfying the shape regularity condition. We shall also extend such schemes to the case
of nonmatching grids in Appendix 1.9.

Let us now introduce the combined scheme that we analyze in this chapter. We consider a
triangulation of the space domain consisting of simplices (triangles in space dimension two and
tetrahedra in space dimension three). We next construct a dual mesh where the dual volumes
are associated with the sides (edges or faces). To construct a dual volume, one connects the
barycentres of two neighboring simplices through the vertices of their common side. We finally
place the unknowns in the barycentres of the sides. For the discretization of the diffusion
term of (1.1), we consider the piecewise linear nonconforming (Crouzeix–Raviart, cf. [45])
finite element method or the mixed-hybrid finite element method where the only unknowns
are the Lagrange multipliers, cf. [15, 33, 108]. We recall that the elements of the obtained
stiffness matrices naturally express the coefficients for the discrete diffusive fluxes between
the unknowns. We obtain the combined scheme by performing a finite volume discretization
of (1.1) over the dual mesh and by replacing the finite volume stiffness matrix corresponding
to the diffusion term by one of the above finite element stiffness matrices. The combination of
finite volumes with nonconforming finite elements was originally proposed and analyzed in [10]
as a semi-implicit discretization of a convection–diffusion equation with a nonlinear convection
term in space dimension two. As far as we know, the combination of the finite volume method
with the mixed-hybrid method is new. However, the two finite element stiffness matrices are
very close. For a piecewise constant diffusion tensor, they completely coincide (see [15, 38]),
and for a general diffusion tensor, the stiffness matrix of the mixed-hybrid method is the
stiffness matrix of the nonconforming method with a piecewise constant diffusion tensor, given
as the elementwise harmonic average of the original one (see Lemma 1.8.1 in Appendix 1.8).

We propose the combined scheme for the equation (1.1) in combination with the backward
Euler finite difference time stepping. We can mention its following advantages. The scheme
is stable since we avoid spurious oscillations in the convection-dominated case by checking the
local Péclet number and by adding exactly the necessary amount of upstream weighting. It
inherits the diffusion properties of nonconforming/mixed-hybrid finite elements, enabling in
particular the use of general meshes and the discretization of anisotropic diffusion tensors.
It possesses a discrete maximum principle in the case where all transmissibilities are non-
negative. This happens for instance when the diffusion tensor reduces to a scalar function
and when the angles between the outward normal vectors of sides of each simplex in the
triangulation are greater or equal to π/2. The scheme is next locally conservative. It is only
5-point in space dimension two and 7-point in space dimension three. It finally permits to
efficiently discretize degenerate parabolic problems: when we search for the discrete unknowns
corresponding to β(c), the resulting system of nonlinear algebraic equations can be solved by
the Newton method without any parabolic regularization (cf. [20]) or perturbation of initial and
boundary conditions (cf. [98, 99]), which make the equation uniformly parabolic. Moreover,
the resulting matrices are diagonal for the part of the unknowns corresponding to the region
where the approximate solution is zero.

Our numerical scheme permits to construct approximate solutions that are piecewise con-
stant on the dual mesh or piecewise linear on the primal simplicial mesh and continuous in
the barycentres of the sides of the simplices. We prove the convergence of both these approx-
imations to a weak solution of the continuous problem in this chapter. The methods of proof
are based upon the Kolmogorov relative compactness theorem and the finite volume tools
from [61]. We extend these tools onto schemes with negative transmissibilities, for cases where
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the discrete maximum principle is not satisfied, and for (dual) meshes not necessarily satisfying
the orthogonality property. We only need the shape regularity (minimal angle) assumption for
the primal triangulation, we require neither the inverse assumption (bounded ratio between
the diameters of elements in the primal mesh), nor any maximal angle condition, as it was
the case in [10]. We only suppose that β is continuous with the growth bounded from below
in the case where the discrete maximum principle is satisfied. In the general case we require
in addition β to be bounded on some interval and Lipschitz-continuous outside this interval.
There is no restriction on the maximal time step in the case where F is nondecreasing. If F
does not posses this property, we impose an appropriate maximal time step condition. For the
sake of simplicity, we only consider the case of a homogeneous Dirichlet boundary condition.
Extensions to other types of boundary conditions and to the case where the equation (1.1)
involves a nonlinear convection term are possible, using the techniques from [61] and [62].

The rest of the chapter is organized as follows. In Section 1.2 we state the assumptions on
the data and present a weak formulation of the continuous problem. In Section 1.3 we define
the approximation spaces and introduce the combined finite volume–nonconforming/mixed-
hybrid finite element scheme. In Section 1.4 we present some properties of this scheme and
prove that it possesses a unique solution, which satisfies a discrete maximum principle under
the hypotheses stated above. In Section 1.5 we derive a priori estimates and estimates on
differences of time and space translates for the approximate solutions. Finally, in Section 1.6,
using the Kolmogorov relative compactness theorem, we prove the convergence of a subse-
quence of the sequence of approximate solutions to a weak solution of the continuous problem.
We present the results of a numerical experiment in Section 1.7 and we give some techni-
cal lemmas in Appendix 1.8. Finally, in Appendix 1.9, we propose a version of this scheme
for nonmatching grids, combining this time the finite volume method with the piecewise lin-
ear conforming finite element method. We then apply this version to contaminant transport
simulation in porous media.

1.2 The nonlinear degenerate parabolic problem

We consider the equation (1.1) in a polygonal domain (open, bounded, and connected set)
Ω ⊂ Rd, d = 2, 3, with boundary ∂Ω on the time interval (0, T ), 0 < T < ∞, and denote
QT := Ω × (0, T ). We impose the initial condition by

c(·, 0) = c0 in Ω (1.2)

and the homogeneous Dirichlet boundary condition by

c = 0 on ∂Ω × (0, T ) . (1.3)

Let us consider a domain S ⊂ Rd. We use the standard notation Lp(S) and Lp(S) =
[Lp(S)]d for the Lebesgue spaces on S, (·, ·)0,S stands for the L2(S) or L2(S) inner product,
and ‖ · ‖0,S for the associated norm. We use dx as the integration symbol for the Lebesgue
measure on S, dγ(x) for the Lebesgue measure on a hyperplane of S, and dt for the Lebesgue
measure on (0, T ). We denote by |S| the d-dimensional Lebesgue measure of S, by |σ| the
(d − 1)-dimensional Lebesgue measure of σ, a part of a hyperplane in Rd, and by |s| the
length of a segment s. The diameter of S is the supremum of the lengths of all the line
segments s such that s ⊂ S. Next, H1(S) and H1

0 (S) are the Sobolev spaces of functions with
square-integrable weak derivatives and H(div, S) is the space of vector functions with square-
integrable weak divergences, H(div, S) = {v ∈ L2(S);∇ · v ∈ L2(S)}. In the subsequent
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text we will denote by CA, cA a constant basically dependent on a quantity A but always
independent of the discretization parameters h and 	t whose definition we shall give later.
We make the following assumption on the data:

Assumption (A) (Data)

(A1) β ∈ C(R), β(0) = 0 is a strictly increasing function such that

|β(a) − β(b)| ≥ cβ|a− b| , cβ > 0

for all a, b ∈ R

or

(A2) in addition to (A1), there exists P ∈ R, P > 0, such that |β(x)| ≤ Cβ in [−P,P ], Cβ > 0,
and β is Lipschitz-continuous with a constant Lβ on (−∞,−P ] and [P,+∞);

(A3) Sij ∈ L∞(QT ), |Sij | ≤ CS/d a.e. in QT , 1 ≤ i, j ≤ d, CS > 0, S is a symmetric and
uniformly positive definite tensor for almost all t ∈ (0, T ) with a constant cS > 0, i.e.

S(x, t)η · η ≥ cS η · η ∀η ∈ R
d , for a.e. (x, t) ∈ QT ;

(A4) v ∈ L2(0, T ;H(div,Ω)) ∩ L∞(QT ) satisfies ∇ · v = qS ≥ 0 a.e. in QT , |v · n| ≤ Cv,
Cv > 0, a.e. on l × (0, T ) for each hyperplane l ⊂ Ω with the normal vector n;

(A5) µ ≥ 1;

(A6) F (0) = 0, F is a nondecreasing, Lipschitz-continuous function with a constant LF
or

(A7) F (0) = 0, F is a Lipschitz-continuous function with a constant LF and xF (x) ≥ 0 for
x < 0 and x > M , M > 0;

(A8) q ∈ L2(QT ), where q = qScS with cS ∈ L∞(QT ), 0 ≤ cS ≤M a.e. in QT ;

(A9) c0 ∈ L∞(Ω), 0 ≤ c0 ≤M a.e. in Ω.

Remark 1.2.1. (Hypotheses on β) In contaminant transport problems one typically has
β(c) = c+ cα, α ∈ (0, 1). Assumption (A1) generalizes this type of functions; we in particular
do not limit the number of points where β′ explodes. As we shall see, we will be able to prove the
convergence of the combined scheme with this assumption only for the case where the discrete
maximum principle holds. In the general case we add Assumption (A2), which is however still
satisfied by all realistic functions β.

We now give the definition of a weak solution of (1.1)–(1.3), following essentially [83].

Definition 1.2.2. (Weak solution) We say that a function c is a weak solution of the
problem (1.1)–(1.3) if

(i) c ∈ L2(0, T ;H1
0 (Ω)) ,

(ii) β(c) ∈ L∞(0, T ;L2(Ω)) ,
(iii) c satisfies the integral equality

−
∫ T

0

∫
Ω
β(c)ϕt dxdt−

∫
Ω
β(c0)ϕ(·, 0) dx +

∫ T

0

∫
Ω

S∇c · ∇ϕdxdt−

−µ
∫ T

0

∫
Ω
cv · ∇ϕdxdt+

∫ T

0

∫
Ω
F (c)ϕdxdt =

∫ T

0

∫
Ω
qϕdxdt

for all ϕ ∈ L2(0, T ;H1
0 (Ω)) with ϕt ∈ L∞(QT ), ϕ(·, T ) = 0 .
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Remark 1.2.3. (Existence of a weak solution) The existence of at least one weak solution
is proved in Theorem 1.6.4 below.

Remark 1.2.4. (Uniqueness of a weak solution) For a slightly more restrictive hypothesis
on the data than that given in Assumption (A), the uniqueness of a weak solution given by
Definition 1.2.2 is guaranteed by [83]. Namely, no time-dependency of the diffusion–dispersion
tensor S is still required in [83].

1.3 Combined finite volume–nonconforming/mixed-hybrid fi-
nite element scheme

We will describe the space and time discretizations, define the approximation spaces, and
introduce the combined finite volume–finite element scheme in this section.

1.3.1 Space and time discretizations

In order to discretize the problem (1.1)–(1.3), we perform a triangulation Th of the domain Ω,
consisting of closed simplices such that Ω =

⋃
K∈Th

K and such that if K,L ∈ Th, K �= L, then
K ∩L is either an empty set or a common face, edge, or vertex of K and L. We denote by Eh
the set of all sides, by E int

h the set of all interior sides, by Eext
h the set of all exterior sides, and

by EK the set of all the sides of an element K ∈ Th. We define h := maxK∈Th
diam(K) and

make the following shape regularity assumption on the family of triangulations {Th}h:

Assumption (B) (Shape regularity of the space mesh)

There exists a positive constant κT such that

min
K∈Th

|K|
diam(K)d

≥ κT ∀h > 0 .

Assumption (B) is equivalent to the more common requirement of the existence of a con-
stant θT > 0 such that

max
K∈Th

diam(K)
ρK

≤ θT ∀h > 0 , (1.4)

where ρK is the diameter of the largest ball inscribed in the simplex K.
We also use a dual partition Dh of Ω such that Ω =

⋃
D∈Dh

D. There is one dual element
D associated with each side σD ∈ Eh. We construct it by connecting the barycentres of every
K ∈ Th that contains σD through the vertices of σD. For σD ∈ Eext

h , the contour of D is
completed by the side σD itself. We refer to Fig. 1.1 for the two-dimensional case. We denote
by QD the barycentre of the side σD. As for the primal mesh, we set Fh, F int

h , Fext
h , and FD

for the dual mesh sides. We denote by Dint
h the set of all interior and by Dext

h the set of all
boundary dual volumes. We finally denote by N (D) the set of all adjacent volumes to the
volume D,

N (D) :=
{
E ∈ Dh;∃σ ∈ F int

h such that σ = ∂D ∩ ∂E
}

and remark that

|K ∩D| =
|K|
d+ 1

, (1.5)
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Figure 1.1: TrianglesK,L ∈ Th and dual volumesD,E ∈ Dh associated with edges σD, σE ∈ Eh

for each K ∈ Th andD ∈ Dh such that σD ∈ EK . For E ∈ N (D), we also set dD,E := |QE−QD|,
σD,E := ∂D ∩ ∂E, and KD,E the element of Th such that σD,E ⊂ KD,E.

We suppose the partition of the time interval (0, T ) such that 0 = t0 < . . . < tn <
. . . < tN = T and define 	tn := tn − tn−1 and 	t := max1≤n≤N 	tn. In the case where
Assumption (A6) is satisfied we do not impose any restriction on the time step. When only
Assumption (A7) is satisfied, we suppose in addition:

Assumption (C) (Maximum time step for decreasing F )

The following maximum time step condition is satisfied:

	t < cβ
LF

.

We define the following finite-dimensional spaces:

Xh :=
{
ϕh ∈ L2(Ω); ϕh|K is linear ∀K ∈ Th,
ϕh is continuous at the points QD,D ∈ Dint

h

}
,

X0
h :=

{
ϕh ∈ Xh; ϕh(QD) = 0 ∀D ∈ Dext

h

}
.

The basis of Xh is spanned by the shape functions ϕD, D ∈ Dh, such that ϕD(QE) = δDE ,
E ∈ Dh, δ being the Kronecker delta. We recall that the approximations in these spaces are
nonconforming since Xh �⊂ H1(Ω). We equip Xh with the seminorm

‖ch‖2
Xh

:=
∑
K∈Th

∫
K
|∇ch|2 dx ,

which becomes a norm on X0
h. We have the following lemma:

Lemma 1.3.1. For all ch =
∑
D∈Dh

cDϕD ∈ Xh, one has

∑
σD,E∈F int

h

diam(KD,E)d−2(cE − cD)2 ≤ d+ 1
2dκT

‖ch‖2
Xh
, (1.6)

∑
σD,E∈F int

h

|σD,E|
dD,E

(cE − cD)2 ≤ d+ 1
2(d− 1)κT

‖ch‖2
Xh
. (1.7)
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Proof:

Obviously,

dD,E ≤ diam(KD,E)
d

, |σD,E| ≤
diam(KD,E)d−1

d− 1
. (1.8)

Thus ∑
σD,E∈F int

h

diam(KD,E)d−2(cE − cD)2 ≤
∑

σD,E∈F int
h

diam(KD,E)d−2
∣∣∣∇ch|KD,E

∣∣∣2d2
D,E

≤ d+ 1
2d

∑
K∈Th

diam(K)d
∣∣∣∇ch|K ∣∣∣2 ≤ d+ 1

2dκT

∑
K∈Th

∣∣∣∇ch|K∣∣∣2|K| =
d+ 1
2dκT

‖ch‖2
Xh

,

using the fact that the gradient of ch is piecewise constant on Th, (1.8), the fact that each

simplex K ∈ Th contains exactly
(
d+ 1

2

)
=

(d+ 1)d
2

dual sides, and Assumption (B). This

proves (1.6). Similarly,

∑
σD,E∈F int

h

|σD,E|
dD,E

(cE − cD)2 ≤
∑

σD,E∈F int
h

∣∣∣∇ch|KD,E

∣∣∣2dD,E |σD,E| ≤
d+ 1

2(d− 1)κT
‖ch‖2

Xh
. �

1.3.2 The combined scheme

We are now ready to present the combined scheme.

Definition 1.3.2. (Combined scheme) The fully implicit combined finite volume–noncon-
forming/mixed-hybrid finite element scheme for the problem (1.1)–(1.3) reads: find the values
cnD, D ∈ Dh, n ∈ {0, 1, . . . , N}, such that

c0D =
1
|D|

∫
D
c0(x) dx D ∈ Dint

h , (1.9a)

cnD = 0 D ∈ Dext
h , n ∈ {0, 1, . . . , N} , (1.9b)

β(cnD) − β(cn−1
D )

	tn
|D| −

∑
E∈Dint

h

S
n
D,E c

n
E + µ

∑
E∈N (D)

vnD,E cnD,E + F (cnD)|D| = qnD|D|

D ∈ Dint
h , n ∈ {1, 2, . . . , N} . (1.9c)

In (1.9a)–(1.9c) we have denoted

vnD,E :=
1

	tn

∫ tn

tn−1

∫
σD,E

v(x, t) · nD,E dγ(x) dt D ∈ Dint
h , E ∈ N (D) , n ∈ {1, 2, . . . , N} ,

with nD,E the unit normal vector of the side σD,E ∈ FD, outward to D, and

qnD :=
1

	tn|D|

∫ tn

tn−1

∫
D
q(x, t) dxdt D ∈ Dh , n ∈ {1, 2, . . . , N} .

We refer to the matrix Sn of the elements SnD,E, D,E ∈ Dint
h , at each discrete time tn, n ∈

{1, 2, . . . , N}, as to the diffusion matrix. This matrix, the stiffness matrix of the nonconforming
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or mixed-hybrid finite element method, is defined below. Finally, we define cnD,E for D ∈
Dint
h , E ∈ N (D), and n ∈ {1, 2, . . . , N} as follows:

cnD,E :=
{
cnD + αnD,E(cnE − cnD) if vnD,E ≥ 0
cnE + αnD,E(cnD − cnE) if vnD,E < 0

. (1.10)

Here αnD,E is the coefficient of the amount of upstream weighting which is defined by

αnD,E :=
max

{
min

{
SnD,E,

1
2µ|vnD,E |

}
, 0
}

µ|vnD,E|
, vnD,E �= 0 . (1.11)

We set αnD,E := 0 if vnD,E=0. We remark that cnD,E = ĉnD,E + sign(vnD,E)αnD,E(cnE − cnD), where

ĉnD,E stands for full upstream weighting.

Remark 1.3.3. (Numerical flux) We can easily see from (1.11) that 0 ≤ αnD,E ≤ 1/2,
i.e. the numerical flux defined by (1.10) ranges from the centered scheme to the full upstream
weighting. The amount of upstream weighting is set with respect to the local proportion of
convection and diffusion.

Remark 1.3.4. (Necessity to construct the dual mesh) If we know the values of the
fluxes vnD,E, sources qnD, and initial conditions c0D, we have no need to physically construct the
dual mesh. Indeed, thanks to (1.5), expressing |D| is immediate.

We now turn to the definition of the diffusion matrix. To this purpose, we first set

S̃n(x) :=
1

	tn

∫ tn

tn−1

S(x, t) dt x ∈ Ω , n ∈ {1, 2, . . . , N} .

Diffusion matrix from the nonconforming method

The diffusion matrix Sn given by the stiffness matrix Pn of the nonconforming method writes
in the form

S
n
D,E := P

n
D,E = −

∑
K∈Th

(Sn∇ϕE ,∇ϕD)0,K D,E ∈ Dh , n ∈ {1, 2, . . . , N} , (1.12)

where
Sn(x) = S̃n(x) n ∈ {1, 2, . . . , N} , x ∈ Ω . (1.13)

In fact, the members of SnD,E forD ∈ Dext
h or E ∈ Dext

h do not occur in the scheme (1.9a)–(1.9c).
It will however show convenient to define these values.

Diffusion matrix from the mixed-hybrid method

Using the analytic form of the stiffness matrix Mn of the mixed-hybrid method given in
Lemma 1.8.1 in Appendix 1.8, we can define the diffusion matrix Sn by

S
n
D,E := M

n
D,E = −

∑
K∈Th

(Sn∇ϕE ,∇ϕD)0,K D,E ∈ Dh , n ∈ {1, 2, . . . , N} , (1.14)

where

Sn(y) =
( 1
|K|

∫
K

[S̃n(x)]−1 dx
)−1

y ∈ K , K ∈ Th , n ∈ {1, 2, . . . , N} . (1.15)
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Remark 1.3.5. (Stiffness matrices of nonconforming and mixed-hybrid methods)
We remark that the stiffness matrix of the mixed-hybrid method (1.14) is the stiffness matrix
of the nonconforming method (1.12) with a piecewise constant diffusion tensor, given as the
inverse of the elementwise average of the inverse of the original one. In particular for an
elementwise constant diffusion tensor, the stiffness matrices coincide, whereas for a general
diffusion tensor, (1.12) uses its arithmetic and (1.14) its harmonic average.

Remark 1.3.6. (Comparison with a pure finite volume scheme) Let us consider Th
consisting of equilateral simplices and S = Id. Then the segments [QD, QE ] are orthogonal
to the dual sides σD,E and one has PnD,E = Mn

D,E = |σD,E |
dD,E

, E ∈ N (D). Thus, in view of
Corollary 1.4.2 below, the pure cell-centered finite volume scheme completely coincides in this
case with the combined one. One may regard in this sense the combined scheme as an extension
of the pure finite volume scheme to general triangulations and full-matrix diffusion tensors,
which does not extend the original 5-point (7-point in space dimension three) stencil.

Remark 1.3.7. (Comparison of a combined finite volume–finite element scheme
with pure finite volume schemes) We recall here that for triangular meshes, the dis-
cretization of a Laplacian by the piecewise linear conforming finite element method coincides
with that by the vertex-centered finite volume method [6, 96], which is also named the box
scheme [17, 71], the finite volume element scheme [35, 56], or control volume finite element
scheme [68, 114], see [17, Lemma 3]. Finally, for Delaunay triangulations (the sums of two
opposite angles to all edges are less or equal to π), constructing the control volumes with the
aid of orthogonal bisectors, these discretizations are equivalent to that by the cell-centered finite
volume method, see [61, Section III.12], cf. also [76, 112]. Hence, when S = Id and for a
Delaunay triangular mesh with the above construction of control volumes, the combined finite
volume–finite element scheme [67, 90], the vertex-centered finite volume scheme [6, 96], and
the cell-centered finite volume scheme [61, 62] for the discretization of (1.1) coincide.

In the sequel we shall consider apart the following special case:

Assumption (D) (Diffusion matrix)

All transmissibilities are non-negative, i.e.

S
n
D,E ≥ 0 ∀D ∈ Dint

h , E ∈ N (D) ∀n ∈ {1, 2, . . . , N} .

Since
∇ϕD|K =

|σD|
|K| nσD

K ∈ Th , σD ∈ EK (1.16)

with nσD
the unit normal vector of the side σD, outward to K, one can immediately see that

Assumption (D) is satisfied e.g. when the diffusion tensor reduces to a scalar function and
when the magnitude of the angles between nσD

, σD ∈ EK , for all K ∈ Th is greater or equal
to π/2.

1.4 Existence, uniqueness, and discrete properties

In this section we first present some technical lemmas. We then show the conservativity of
the scheme, the coercivity of the bilinear diffusion form corresponding to the diffusion term,
and an a priori estimate for an extended scheme, which we shall need later in the proof of
the existence of the solution of the discrete problem. Finally, we prove the uniqueness of this
solution and the discrete maximum principle when Assumption (D) is satisfied.
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1.4.1 Discrete properties of the scheme

Lemma 1.4.1. For all D ∈ Dh and n ∈ {1, 2, . . . , N}, S
n
D,D = −

∑
E∈N (D)

S
n
D,E.

Proof:

We will show the assertion for d = 2; the case d = 3 is similar. We present the proof for
the nonconforming method, which in view of Remark 1.3.5 implies the same result for the
mixed-hybrid method. Let us consider a fixed dual volume D ∈ Dh. The edge σD associated
with D is shared by at most two triangles, which we denote by K and L. The sum over
K ∈ Th in (1.12) for SnD,D reduces just to these triangles, considering the definition of the basis
function ϕD. We denote the dual volumes associated with the two other edges of L by E1 and
E2. Similarly, the sum over K ∈ Th in (1.12) for SnD,E1

and SnD,E2
reduces to L. Thus it is

sufficient to prove that

−(Sn∇ϕD,∇ϕD)0,L = (Sn∇ϕE1,∇ϕD)0,L + (Sn∇ϕE2 ,∇ϕD)0,L ,

since the eventual contribution of the element K is similar. However, this is immediate, since

−ϕD|L = (ϕE1 + ϕE2)|L − 1 . �

Corollary 1.4.2. Using the fact that SnD,E �= 0 only if E ∈ N (D) or if E = D and
Lemma 1.4.1, one has∑

E∈Dh

S
n
D,E c

n
E =

∑
E∈N (D)

S
n
D,Ec

n
E + S

n
D,Dc

n
D =

∑
E∈N (D)

S
n
D,E(cnE − cnD) .

Theorem 1.4.3. (Conservativity of the scheme) The scheme (1.9a)–(1.9c) is conservative
with respect to the dual mesh Dh.

Proof:

Let us take two fixed neighboring dual volumes E and D, D ∈ Dint
h . Using Corollary 1.4.2

and (1.9b), we can express the discrete diffusive flux from D to E as −SnD,E(cnE − cnD). The
discrete diffusive flux from E to D is −SnE,D(cnD − cnE), i.e. we have their equality up to the
sign, considering that SnD,E = SnE,D for all n ∈ {1, 2, . . . , N}, which follows from (1.12) or
(1.14) using the symmetry of the tensor S.

For the discrete convective flux fromD to E, we have µvnD,E[cnD+αnD,E(cnE−cnD)], supposing
vnD,E ≥ 0. For the discrete convective flux from E to D, we have µvnE,D[cnD +αnE,D(cnE − cnD)],
i.e. again the equality up to the sign, considering that vnD,E = −vnE,D and that αnD,E = αnE,D,
which follows from SnD,E = SnE,D. For vnD,E < 0, the proof is similar. Hence the combined
finite volume–finite element scheme is conservative as the pure finite volume is, cf. [61]. �

Lemma 1.4.4. For all D ∈ Dint
h and n ∈ {1, 2, . . . , N},∑

E∈N (D)

vnD,E ĉnD,E =
∑

E∈N (D)

(vnD,E)−(cnE − cnD) + (qS)nDc
n
D|D| ,

where (vnD,E)− := min{vnD,E, 0} and

(qS)nD :=
1

	tn|D|

∫ tn

tn−1

∫
D
qS(x, t) dxdt ∀D ∈ Dh , ∀n ∈ {1, 2, . . . , N} .
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Proof:

Considering that vnD,E = (vnD,E)+ + (vnD,E)−, where (vnD,E)+ := max{vnD,E , 0}, we have∑
E∈N (D)

vnD,E ĉnD,E =
∑

E∈N (D)

(vnD,E)+cnD +
∑

E∈N (D)

(vnD,E)−cnE

=
∑

E∈N (D)

vnD,E c
n
D +

∑
E∈N (D)

(vnD,E)−(cnE − cnD)

= cnD
1

	tn

∫ tn

tn−1

∑
E∈N (D)

∫
σD,E

v(x, t) · nD,E dγ(x) dt

+
∑

E∈N (D)

(vnD,E)−(cnE − cnD) = cnD
1

	tn

∫ tn

tn−1

∫
D
∇ · v(x, t) dxdt

+
∑

E∈N (D)

(vnD,E)−(cnE − cnD) = cnD(qS)nD|D|

+
∑

E∈N (D)

(vnD,E)−(cnE − cnD) ,

using Assumption (A4). �

Lemma 1.4.5. For all ch =
∑
D∈Dh

cDϕD ∈ Xh and n ∈ {1, 2, . . . , N},

−
∑
D∈Dh

cD
∑
E∈Dh

S
n
D,EcE ≥ cS‖ch‖2

Xh
.

Proof:

We have
−
∑
D∈Dh

cD
∑
E∈Dh

S
n
D,EcE =

∑
K∈Th

(Sn∇ch,∇ch)0,K ≥ cS‖ch‖2
Xh
,

using (1.12) or (1.14) and Assumption (A3) and the subsequent uniform positive definiteness
of the diffusion tensors (1.13) and (1.15). �

Lemma 1.4.6. For all ch =
∑
D∈Dh

cDϕD ∈ Xh and n ∈ {1, 2, . . . , N},

∣∣∣− ∑
D∈Dh

cD
∑
E∈Dh

S
n
D,EcE

∣∣∣ ≤ CS‖ch‖2
Xh
. (1.17)

Moreover, for all D ∈ Dh, E ∈ N (D), and n ∈ {1, 2, . . . , N},

|SnD,E| ≤
CS

κT

diam(KD,E)d−2

(d− 1)2
. (1.18)

Proof:

We have ∣∣∣− ∑
D∈Dh

cD
∑
E∈Dh

S
n
D,EcE

∣∣∣ =
∣∣∣ ∑
K∈Th

(Sn∇ch,∇ch)0,K
∣∣∣ ≤ CS‖ch‖2

Xh
,
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using (1.12) or (1.14), Assumption (A3), and (1.13) or (1.15). Considering (1.12) or (1.14),
where the sum reduces just to KD,E ∈ Th for E ∈ N (D), the equality (1.16), |σD|, |σE | ≤
diam(KD,E)d−1/(d− 1), and Assumption (B), we have

|SnD,E| ≤ CS

∣∣∣∇ϕE|KD,E

∣∣∣∣∣∣∇ϕD|KD,E

∣∣∣|KD,E | = CS
|σE |

|KD,E|
|σD|

|KD,E |
|KD,E|

≤ CS
diam(KD,E)2d−2

(d− 1)2|KD,E|
≤ CS

κT

diam(KD,E)d−2

(d− 1)2
. �

Lemma 1.4.7. For all values cD, D ∈ Dh, such that cD = 0 for all D ∈ Dext
h and n ∈

{1, 2, . . . , N}, ∑
D∈Dint

h

cD
∑

E∈N (D)

vnD,E cD,E ≥ 0 .

Proof:

We can write ∑
D∈Dint

h

cD
∑

E∈N (D)

vnD,E cD,E

=
∑

σD,E∈F int
h ,vn

D,E≥0

vnD,E
(
cD(cD − cE) − αnD,E(cE − cD)2

)
=

1
2

∑
σD,E∈F int

h ,vn
D,E≥0

vnD,E(c2D − c2E) +
∑

σD,E∈F int
h

|vnD,E|(cE − cD)2
(1

2
− αnD,E

)
≥ 1

2

∑
D∈Dint

h

c2D
∑

E∈N (D)

vnD,E =
1
2

∑
D∈Dint

h

c2D(qS)nD|D| ≥ 0 ,

where we have used the fact that cD = 0 for all D ∈ Dext
h , the relation 2(a − b)a = (a− b)2 +

a2− b2, and rewritten the summation over interior dual sides with fixed denotation of the dual
volumes sharing given side σD,E such that vnD,E ≥ 0. In the last two estimates we have used,
respectively, the fact that 0 ≤ αnD,E ≤ 1/2, which follows from (1.11), and Assumption (A4). �

Theorem 1.4.8. (A priori estimate for an extended scheme) Let us define an extended
scheme by

c0D =
1
|D|

∫
D
c0(x) dx D ∈ Dint

h , (1.19a)

cnD = 0 D ∈ Dext
h , n ∈ {0, 1, . . . , N} , (1.19b)

u
β(cnD) − β(cn−1

D )
	tn

|D| −
∑

E∈Dint
h

S
n
D,E c

n
E + uµ

∑
E∈N (D)

vnD,E cnD,E + uF (cnD)|D|

= u qnD|D| D ∈ Dint
h , n ∈ {1, 2, . . . , N} (1.19c)

with u ∈ [0, 1]. Let δ > 0 be arbitrary. Then∑
D∈Dh

(cnD)2|D| < Ces ∀n ∈ {1, 2, . . . , N}
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with

Ces :=
4
cβ
Mβ(M)|Ω| + 4T

c2β
‖q‖2

0,QT
+

4
cβ
LFM

2T |Ω| + δ .

Proof:

We multiply (1.19c) by 	tncnD, sum over all D ∈ Dint
h and n ∈ {1, 2, . . . , k}, and use the fact

that u ≥ 0 and Lemmas 1.4.5 and 1.4.7. Further, for cnD < 0 or cnD > M , F (cnD)cnD ≥ 0 follows
from Assumption (A6) or (A7). When 0 ≤ cnD ≤ M , −F (cnD)cnD ≤ |F (cnD)||cnD| ≤ LFM

2,
which altogether yields

u

k∑
n=1

∑
D∈Dint

h

[β(cnD) − β(cn−1
D )]cnD|D| + cS

k∑
n=1

	tn‖cnh‖2
Xh

(1.20)

≤ u

k∑
n=1

	tn
∑

D∈Dint
h

cnDq
n
D |D| + uLFM

2
k∑

n=1

∑
D∈Dint

h

	tn|D|

with cnh =
∑
D∈Dh

cnDϕD. Let us now introduce a function B,

B(s) := β(s)s −
∫ s

0
β(τ) dτ s ∈ R .

One then can derive

B(cnD) −B(cn−1
D ) = [β(cnD) − β(cn−1

D )]cnD −
∫ cnD

cn−1
D

[β(τ) − β(cn−1
D )] dτ .

Using that β is nondecreasing, one can easily show that∫ cnD

cn−1
D

[β(τ) − β(cn−1
D )] dτ ≥ 0 .

In view of the two last expressions, one has

k∑
n=1

∑
D∈Dint

h

[B(cnD) −B(cn−1
D )]|D| ≤

k∑
n=1

∑
D∈Dint

h

[β(cnD) − β(cn−1
D )]cnD|D| ,

which yields

∑
D∈Dint

h

B(ckD)|D| −
∑

D∈Dint
h

B(c0D)|D| ≤
k∑

n=1

∑
D∈Dint

h

[β(cnD) − β(cn−1
D )]cnD|D| .

Using the growth condition on β from Assumption (A1), one can derive B(s) ≥ s2cβ/2 for all
s ∈ R, see Lemma 1.8.2 in Appendix 1.8. Thus, using in addition Assumption (A9)

cβ
2

∑
D∈Dint

h

(ckD)2|D| −Mβ(M)|Ω| ≤
k∑

n=1

∑
D∈Dint

h

[β(cnD) − β(cn−1
D )]cnD |D| .
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We notice that
N∑
n=1

∑
D∈Dh

	tn|D|(qnD)2 ≤ ‖q‖2
0,QT

(1.21)

by the Cauchy–Schwarz inequality. Hence extending the summation over all n ∈ {1, 2, . . . , N}
and D ∈ Dh in the first term of the right-hand side of (1.20) and using the Cauchy–Schwarz
and Young inequality, we have

k∑
n=1

	tn
∑

D∈Dint
h

cnDq
n
D |D| ≤

( N∑
n=1

	tn
∑
D∈Dh

(cnD)2|D|
) 1

2 ‖q‖0,QT

≤ ε

2

N∑
n=1

	tn
∑
D∈Dh

(cnD)2|D| + 1
2ε

‖q‖2
0,QT

.

Hence, substituting these estimates into (1.20), we obtain

u
cβ
2

max
n∈{1,2,...,N}

∑
D∈Dh

(cnD)2|D| + cS

k∑
n=1

	tn‖cnh‖2
Xh

≤ uMβ(M)|Ω| (1.22)

+u
ε

2
T max
n∈{1,2,...,N}

∑
D∈Dh

(cnD)2|D| + u
1
2ε

‖q‖2
0,QT

+ uLFM
2T |Ω| ,

considering also (1.19b) and the fact that k was arbitrarily chosen. We now choose ε = cβ/(2T ).
When u �= 0, this already yields the assertion of the lemma. When u = 0, it follows from (1.22)
that cnD = 0 for all D ∈ Dh and all n ∈ {1, 2, . . . , N}, since in view of (1.19b), ‖ · ‖Xh

is a norm
on Xh. Thus the assertion of the lemma is trivially satisfied in this case. �

1.4.2 Existence, uniqueness, and the discrete maximum principle

Theorem 1.4.9. (Existence of the solution of the discrete problem) The prob-
lem (1.9a)–(1.9c) has at least one solution.

Proof:

The nonlinear system of equations given by (1.9b)–(1.9c) on each discrete time level tn, n ∈
{1, 2, . . . , N}, can be written as

P(Cn) − S
nCn + C

nCn + R(Cn) = P(Cn−1) +Qn , (1.23)

where Cn ∈ R|Dint
h | (|Dint

h | is the cardinality of the set Dint
h ) is the vector of discrete unknowns

cnD, D ∈ Dint
h , Sn, the diffusion matrix, and Cn, the discretization of the convective term,

are linear mappings from R|Dint
h | to R|Dint

h |, P and R are, due to the continuity of β and
F following from Assumption (A1), (A6), respectively, continuous mappings from R|Dint

h | to
R|Dint

h |, Qn ∈ R|Dint
h | is a constant vector, and Cn−1 ∈ R|Dint

h | is the vector of discrete values
cn−1
D on the previous time step. The vector C0 is given by (1.9a). By Lemma 1.4.5 and (1.9b),
−Sn is a positive definite and consequently invertible matrix. Thus also Sn is an invertible
matrix. Hence, (1.23) is equivalent to

Cn = G(Cn) := [Sn]−1[P(Cn) + C
nCn + R(Cn) − P(Cn−1) −Qn] . (1.24)
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Let H(u,Cn) = uG(Cn) for u ∈ [0, 1] and Cn ∈ R|Dint
h |. H is a continuous mapping from

[0, 1] × R|Dint
h | to R|Dint

h |. If we now consider the norm |Cn| =
∑

D∈Dint
h

(cnD)2|D| on R|Dint
h |, we

have from Theorem 1.4.8 that

|Cn| < Ces for all (u,Cn) ∈ [0, 1] × R
|Dint

h | such that Cn = H(u,Cn).

Therefore Cn = H(u,Cn) has no solution lying on the boundary of the ball BCes := {Cn ∈
R|Dint

h |, |Cn| < Ces} for u ∈ [0, 1]. We thus can define for u ∈ [0, 1] the (Brouwer) topolog-
ical degree of the application Id − H(u, ·) with respect to the ball BCes and right-hand side
0, denoted by d(Id − H(u, ·), BCes , 0). Then, the homotopy invariance of the degree ([49],
Theorem 3.1 (d3)) leads to

d(Id −H(u, ·), BCes , 0) = d(Id−H(0, ·), BCes , 0)

for all u ∈ [0, 1]. Since H(0, Cn) is a zero vector for all Cn ∈ R|Dint
h |, one has

d(Id − H(0, ·), BCes , 0) = d(Id,BCes , 0) = 1, and thus there exists Cn ∈ R|Dint
h | such that

Cn −H(1, Cn) = 0, i.e. Cn is the solution to (1.24). This proves the existence of a solution
to (1.9b)–(1.9c) at each discrete time level tn, n ∈ {1, 2, . . . , N}. �

Theorem 1.4.10. (Uniqueness of the solution of the discrete problem) The solution
of the problem (1.9a)–(1.9c) is unique.

Proof:

We will prove the assertion by contradiction. Let us thus suppose that there exists n ∈
{1, 2, . . . , N} such that cn−1

D = c̃n−1
D for all D ∈ Dint

h but cnD �= c̃nD for some D ∈ Dint
h . After

subtracting the equation (1.9c) for cnD and c̃nD and denoting snD := cnD − c̃nD, we have

β(cnD) − β(c̃nD)
	tn

|D| −
∑

E∈Dint
h

S
n
D,E s

n
E + µ

∑
E∈N (D)

vnD,E snD,E

+F (cnD) |D| − F (c̃nD) |D| = 0 D ∈ Dint
h .

We now multiply the above equality by snD and sum the result over D ∈ Dint
h . This yields,

using Lemmas 1.4.5 and 1.4.7,∑
D∈Dint

h

[β(cnD) − β(c̃nD)](cnD − c̃nD)
|D|
	tn

+
∑

D∈Dint
h

[F (cnD) − F (c̃nD)](cnD − c̃nD) |D| ≤ 0 .

When Assumption (A6) is satisfied, this is already a contradiction, since from Assump-
tion (A1), β is strictly increasing and F is nondecreasing in this case.

When only Assumption (A7) is satisfied, we have |− [F (cnD)−F (c̃nD)](cnD− c̃nD)| ≤ LF (cnD−
c̃nD)2. In view of Assumption (A1), [β(cnD) − β(c̃nD)](cnD − c̃nD) ≥ cβ(cnD − c̃nD)2. Since∑

D∈Dint
h

(cnD − c̃nD)2|D| �= 0 ,

cβ/LF ≤ 	tn, which is a contradiction with Assumption (C) supposed in this case. �
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Theorem 1.4.11. (Discrete maximum principle) Under Assumption (D), the solution of
the problem (1.9a)–(1.9c) satisfies

0 ≤ cnD ≤M

for all D ∈ Dh, n ∈ {1, 2, . . . , N}.

Proof:

Setting TnD,E := SnD,E −µ|vnD,E|αnD,E, E ∈ N (D), and using Corollary 1.4.2 and Lemma 1.4.4,
we can rewrite (1.9c) as

β(cnD) − β(cn−1
D )

	tn
|D| −

∑
E∈N (D)

T
n
D,E(cnE − cnD) + µ

∑
E∈N (D)

(vnD,E)−(cnE − cnD)

+µ(qS)nDc
n
D|D| + F (cnD) |D| = qnD |D| D ∈ Dint

h , n ∈ {1, 2, . . . , N} . (1.25)

In view of Assumption (D) and (1.11), one has TnD,E ≥ 0 for all D ∈ Dint
h , E ∈ N (D), and

n ∈ {1, 2, . . . , N}. We now make use of an induction argument. We remark that 0 ≤ cnD ≤M
is satisfied for n = 0 by Assumption (A9) and (1.9a) and (1.9b). Let us suppose that 0 ≤
cn−1
D ≤M for all D ∈ Dint

h and for a fixed (n−1) ∈ {0, 1, . . . , N −1}. Since |Dh| is finite, there
exist D0,D1 ∈ Dh such that cnD0

≤ cnD ≤ cnD1
for all D ∈ Dh. Using a contradiction argument

we prove below that cnD0
≥ 0 and cnD1

≤M . Suppose that cnD0
< 0. We remark that D0 ∈ Dint

h

because of (1.9b). Then, since TnD0,E
≥ 0 and −(vnD0,E

)− ≥ 0, we have∑
E∈N (D0)

T
n
D0,E(cnE − cnD0

) + µ
∑

E∈N (D0)

−(vnD0,E)−(cnE − cnD0
) ≥ 0 .

This yields, using (1.25)

β(cnD0
) − β(cn−1

D0
)

	tn
|D0| + µ(qS)nD0

cnD0
|D0| + F (cnD0

) |D0| − qnD0
|D0| ≥ 0 .

Now cnD0
< 0 implies µ(qS)nD0

cnD0
≤ 0 and F (cnD0

) ≤ 0 using, respectively, Assumption (A4)
and (A5) and (A6) or (A7). Also −qnD0

≤ 0, using Assumption (A8). Thus β(cnD0
) ≥ β(cn−1

D0
),

which is a contradiction, since β is strictly increasing from Assumption (A1).
Let us now suppose cnD1

> M . Again D1 ∈ Dint
h , because of (1.9b). Similarly as in the

previous case, one comes to

β(cnD1
) − β(cn−1

D1
)

	tn
|D1| + µ(qS)nD1

cnD1
|D1| + F (cnD1

) |D1| − qnD1
|D1| ≤ 0 .

We can estimate
−qnD1

|D1| ≥ −M(qS)nD1
|D1| ≥ −µM(qS)nD1

|D1|
using, respectively, Assumption (A8), (A4), and (A5). It follows from (A6) or (A7) that
F (cnD1

) ≥ 0. This implies β(cnD1
) ≤ β(cn−1

D1
), which is again a contradiction, using Assump-

tion (A1). �

1.5 A priori estimates

In this section we give a priori estimates and estimates on differences of time and space
translates of the approximate solutions that we shall define.
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1.5.1 A priori estimates

We now give a priori estimates satisfied by the solution values cnD, D ∈ Dh, n ∈ {0, 1, . . . , N}.

Theorem 1.5.1. (A priori estimates) The solution of the combined scheme (1.9a)–(1.9c)
satisfies

cβ max
n∈{1,2,...,N}

∑
D∈Dh

(cnD)2|D| ≤ Cae , (1.26)

max
n∈{1,2,...,N}

∑
D∈Dh

[β(cnD)]2|D| ≤ Caeβ , (1.27)

cS

N∑
n=1

	tn‖cnh‖2
Xh

≤ Cae (1.28)

with cnh =
∑
D∈Dh

cnDϕD,

Cae := 4Mβ(M)|Ω| + 4T
cβ

‖q‖2
0,QT

+ 4LFM2T |Ω| ,

Caeβ := [β(M)]2|Ω|

when Assumption (D) is satisfied and only Assumption (A1) holds and

Caeβ := (2C2
β + 4L2

βP
2)|Ω| +

4L2
β

cβ
Cae

when Assumption (D) is not satisfied but Assumption (A2) holds.

Proof:

The estimates (1.26) and (1.28) follow immediately from (1.22) for ε = cβ/(2T ), since for u = 1
the extended scheme (1.19a)–(1.19c) completely coincides with the scheme (1.9a)–(1.9c). To
see the boundedness of the term on the left-hand side of (1.27) under Assumption (D) is
immediate, using the discrete maximum principle stated by Theorem 1.4.11. In this case
Assumption (A1) suffices. In the general case one has to use Assumption (A2) to show
[β(s)]2 ≤ 2C2

β + 4L2
βP

2 + 4L2
βs

2, see Lemma 1.8.3 in Appendix 1.8. Hence,∑
D∈Dh

[β(cnD)]2|D| ≤ (2C2
β + 4L2

βP
2)|Ω| + 4L2

β

∑
D∈Dh

(cnD)2|D| ∀n ∈ {1, 2, . . . , N} . �

Remark 1.5.2. (Discrete Friedrichs inequality) In the proof of Theorem 1.5.1, as well
as throughout the whole chapter, we do not make use of the discrete Friedrichs inequality

‖ch‖0,Ω ≤ CP ‖ch‖Xh
∀ch ∈ X0

h , CP > 0 .

This is possible due to the growth condition imposed on β in Assumption (A1). However, to
prove the convergence of the scheme for an elliptic–parabolic problem or in the stationary case,
when Assumption (D) is not satisfied and therefore the discrete maximum principle stated by
Theorem 1.4.11 is not valid, the discrete Friedrichs inequality would be necessary. We then
refer to [84], [28], or Chapter 2 of this thesis for the proof of this inequality.
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Using the values cnD, D ∈ Dh, n ∈ {0, 1, . . . , N}, we now define two approximate solutions.

Definition 1.5.3. (Approximate solutions) Let the values cnD, D ∈ Dh, n ∈ {0, 1, . . . , N},
be the solutions to (1.9a)–(1.9c). As the approximate solutions of the problem (1.1)–(1.3) by
means of the combined finite volume–nonconforming/mixed-hybrid finite element scheme, we
understand:

(i) A function ch,�t such that

ch,�t(x, 0) = c0h(x) for x ∈ Ω ,
ch,�t(x, t) = cnh(x) for x ∈ Ω , t ∈ (tn−1, tn] n ∈ {1, . . . , N} , (1.29)

where cnh =
∑
D∈Dh

cnDϕD;

(ii) A function c̃h,�t such that

c̃h,�t(x, 0) = c0D for x ∈ D◦ , D ∈ Dh ,

c̃h,�t(x, t) = cnD for x ∈ D◦ , D ∈ Dh , t ∈ (tn−1, tn] n ∈ {1, . . . , N} . (1.30)

The function ch,�t is piecewise linear and continuous in the barycentres of the interior
sides in space and piecewise constant in time; we will call it a nonconforming finite element
solution. The function c̃h,�t is given by the values of ch,�t in side barycentres and is piecewise
constant on the dual volumes in space and piecewise constant in time; we will call it a finite
volume solution. The following important relation between ch,�t and c̃h,�t is valid:

Lemma 1.5.4. There holds

‖ch,�t − c̃h,�t‖0,QT
−→ 0 as h→ 0 .

Proof:

We have

‖ch,�t − c̃h,�t‖2
0,QT

=
N∑
n=1

	tn
∑
K∈Th

∑
σD∈EK

∫
K∩D

|ch,�t(x, tn) − c̃h,�t(x, tn)|2 dx

=
N∑
n=1

	tn
∑
K∈Th

∑
σD∈EK

∫
K∩D

|ch,�t(x, tn) − ch,�t(QD, tn)|2 dx

=
N∑
n=1

	tn
∑
K∈Th

∑
σD∈EK

∫
K∩D

|∇ch,�t(x, tn) · (x −QD)|2 dx

≤
N∑
n=1

	tn
∑
K∈Th

∑
σD∈EK

∣∣∣∇cnh|K∣∣∣2[diam(D)]2|K ∩D|

≤ h2
N∑
n=1

	tn
∑
K∈Th

∣∣∣∇cnh|K∣∣∣2|K| ≤ h2
N∑
n=1

	tn‖cnh‖2
Xh

≤ h2Cae

cS
,

where we have used the definitions of ch,�t and c̃h,�t and the a priori estimate (1.28). �

Remark 1.5.5. (Interpretation of the values cnD) We remark that the approximate solu-
tions ch,�t, c̃h,�t are only an interpretation of the values cnD, D ∈ Dh, n ∈ {0, 1, . . . , N}. In
particular, we may work with c̃h,�t as in the finite volume method and then use Lemma 1.5.4
to extend the convergence results also to ch,�t.



38 Chapitre 1. Combined FV–FE schemes for degenerate parabolic problems

1.5.2 Estimates on differences of time and space translates

Estimates on differences of time and space translates have been used in [63, 64] to prove the
relative compactness property of the sequence of approximate solutions. We give below the
time translate estimate for c̃h,�t given by (1.30). We extend the techniques from [63, 64] to
the case of negative transmissibilities (which in particular implies that the discrete maximum
principle is not satisfied) and to a nonconstant time step.

Lemma 1.5.6. (Time translate estimate) There exists a constant Ctt > 0 such that∫ T−τ

0

∫
Ω

(
c̃h,�t(x, t+ τ) − c̃h,�t(x, t)

)2
dxdt ≤ Ctt(τ + 	t)

for all τ ∈ (0, T ).

Proof:

We set

TT :=
∫ T−τ

0

∫
Ω

(
c̃h,�t(x, t+ τ) − c̃h,�t(x, t)

)2
dxdt .

Using the definition of c̃h,�t given by (1.30), we can rewrite TT as

TT =
∫ T−τ

0

∑
D∈Dh

|D|
(
c
n1(t)
D − c

n2(t)
D

)2
dt ,

where

n1(t) ∈ {1, 2, . . . , N} is such that tn1−1 < t+ τ ≤ tn1 ,

n2(t) ∈ {1, 2, . . . , N} is such that tn2−1 < t ≤ tn2 .

We now use (1.9b) and the growth condition imposed on β in Assumption (A1) and estimate

TT ≤ 1
cβ

∫ T−τ

0

∑
D∈Dint

h

|D|
(
c
n1(t)
D − c

n2(t)
D

)(
β
(
c
n1(t)
D

)
− β

(
c
n2(t)
D

))
dt

=
1
cβ

∫ T−τ

0

∑
D∈Dint

h

|D|
(
c
n1(t)
D − c

n2(t)
D

) N∑
n=1

χ(n, t)
(
β(cnD) − β(cn−1

D )
)

dt ,

where the function χ(n, t) is defined as

χ(n, t) :=
{

1 if t ≤ tn−1 < t+ τ
0 otherwise

.

In view of the definition (1.9a)–(1.9c) of the combined scheme and of Corollary 1.4.2, we have

TT ≤ 1
cβ

N∑
n=1

	tn
∫ T−τ

0
χ(n, t)

∑
D∈Dint

h

(
c
n1(t)
D − c

n2(t)
D

)( ∑
E∈N (D)

S
n
D,E(cnE − cnD)

−µ
∑

E∈N (D)

vnD,E cnD,E − F (cnD) |D| + qnD |D|
)

dt . (1.31)

We now estimate each term separately.
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Diffusion term

We set

TD :=
N∑
n=1

	tn
∫ T−τ

0
χ(n, t)

∑
D∈Dh

(
c
n1(t)
D − c

n2(t)
D

) ∑
E∈N (D)

S
n
D,E(cnE − cnD) dt ,

where we have changed the summation over D ∈ Dint
h into the summation over D ∈ Dh

using (1.9b). This enables us to rewrite TD as a summation over interior dual sides, since each
σD,E ∈ F int

h is in the original sum just twice. This gives

TD =
N∑
n=1

	tn
∫ T−τ

0
χ(n, t)

∑
σD,E∈F int

h

S
n
D,E

[
(cnE − cnD)

(
c
n1(t)
D − c

n1(t)
E

)
+(cnE − cnD)

(
c
n2(t)
E − c

n2(t)
D

)]
dt .

Using the inequality cab ≤ |c|a2/2 + |c|b2/2 and the estimate (1.18) on |SnD,E|, we can write

TD ≤ TD1 + TD2 + TD3

with

TD1 :=
CS

κT

1
(d− 1)2

N∑
n=1

	tn
∫ T−τ

0
χ(n, t)

∑
σD,E∈F int

h

diam(KD,E)d−2(cnE − cnD)2 dt ,

TD2 :=
CS

2κT
1

(d− 1)2

N∑
n=1

	tn
∫ T−τ

0
χ(n, t)

∑
σD,E∈F int

h

diam(KD,E)d−2
(
c
n1(t)
E − c

n1(t)
D

)2
dt ,

TD3 :=
CS

2κT
1

(d− 1)2

N∑
n=1

	tn
∫ T−τ

0
χ(n, t)

∑
σD,E∈F int

h

diam(KD,E)d−2
(
c
n2(t)
E − c

n2(t)
D

)2
dt .

We now notice that ∫ T−τ

0
χ(n, t) dt ≤ τ , (1.32)

since the function χ(n, t), for fixed n, is nonzero and equal to one just on the interval (tn−1 −
τ, tn−1] of length τ . Using this and the a priori estimate (1.28), we have

T ∗
X1

:=
N∑
n=1

	tn‖cnh‖2
Xh

∫ T−τ

0
χ(n, t) dt ≤ τ

Cae

cS
. (1.33)

We now introduce a term T ∗
X3

,

T ∗
X3

:=
N∑
n=1

	tn
∫ T−τ

0
χ(n, t) ‖cn2(t)

h ‖2
Xh

dt

and have, using the definition of n2(t)

T ∗
X3

=
N∑
n=1

	tn
N∑
m=1

∫ tm

tm−1

χ(n, t)‖cn2(t)
h ‖2

Xh
dt =

N∑
m=1

‖cmh ‖2
Xh

N∑
n=1

	tn
∫ tm

tm−1

χ(n, t) dt . (1.34)
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Let us now consider the case where the time step is constant, i.e. 	tn = 	t for all n ∈
{1, 2, . . . , N}. We then have, using a simple change of variables and the fact that tm−1−tn−1 =
tm − tn,

N∑
n=1

	tn
∫ tm

tm−1

χ(n, t) dt =
N∑
n=1

	t
∫ tm−tn−1

tm−1−tn−1

χ(n, s+ tn−1) ds

= 	t
N∑
n=1

∫ tm−tn−1

tm−tn
1−τ<s≤0 ds ≤ τ	t ,

where the function 1a<x≤b is equal to 1 on the interval (a, b] and zero otherwise, which we
substitute back into (1.34) and use the a priori estimate (1.28) to obtain

T ∗
X3

≤ τ
Cae

cS
.

Next we consider a nonconstant time step. We have

N∑
n=1

	tnχ(n, t) ≤ τ + 	t ,

considering that χ(n, t), for fixed t, is nonzero and equal to one just when t ≤ tn−1 < t + τ ,
i.e. an interval of length τ , and that with each such n, we add 	tn. Using this, we have

T ∗
X3

≤ (τ + 	t)
N∑
m=1

‖cmh ‖2
Xh

	tm ≤ (τ + 	t)Cae

cS
.

We next introduce a term T ∗
X2

,

T ∗
X2

:=
N∑
n=1

	tn
∫ T−τ

0
χ(n, t) ‖cn1(t)

h ‖2
Xh

dt .

Similarly as in the previous case, using the definition of n1(t), we have

T ∗
X2

≤
N∑
n=1

	tn
N∑
m=1

∫ tm−τ

tm−1−τ
χ(n, t)‖cn1(t)

h ‖2
Xh

dt

=
N∑
m=1

‖cmh ‖2
Xh

N∑
n=1

	tn
∫ tm−τ

tm−1−τ
χ(n, t) dt ,

which yields the same estimate for T ∗
X2

as for T ∗
X3

. We finally introduce

T ∗
L1

:=
N∑
n=1

	tn
∑
D∈Dh

(cnD)2|D|
∫ T−τ

0
χ(n, t) dt ≤ τT

Cae

cβ
, (1.35)

which we have estimated using (1.32) and the a priori estimate (1.26), and

T ∗
Li

:=
N∑
n=1

	tn
∫ T−τ

0
χ(n, t)

∑
D∈Dh

(
c
ni−1(t)
D

)2
|D|dt i ∈ {2, 3} .
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We shall need T ∗
Li

, i ∈ {1, 2, 3}, for the estimates of the other terms of TT below. Using the a
priori estimate (1.26) and the same techniques as for T ∗

Xi
, i = 2, 3, we altogether come to

T ∗
Xi

≤ τ
Cae

cS
, T ∗

Li
≤ τT

Cae

cβ
i ∈ {2, 3} (1.36)

for a constant time step and

T ∗
Xi

≤ (τ + 	t)Cae

cS
, T ∗

Li
≤ (τ + 	t)T Cae

cβ
i ∈ {2, 3} (1.37)

for a generally nonconstant time step. Now using (1.6) for TD1 , TD2 , and TD3 , we have

TD ≤ CS

κ2
T

d+ 1
2d(d− 1)2

(
T ∗
X1

+
1
2
T ∗
X2

+
1
2
T ∗
X3

)
. (1.38)

Convection term

We will write the convection term as TC1 + TC2 , with

TC1 := −µ
N∑
n=1

	tn
∫ T−τ

0
χ(n, t)

∑
D∈Dh

(
c
n1(t)
D − c

n2(t)
D

) ∑
E∈N (D)

vnD,E ĉnD,E dt

and

TC2 := −µ
N∑
n=1

	tn
∫ T−τ

0
χ(n, t)

∑
D∈Dh

(
c
n1(t)
D − c

n2(t)
D

) ∑
E∈N (D)

|vnD,E | αnD,E(cnE − cnD) dt ,

using the splitting into full upstream weighting and coefficient-centered weighting.
We again rewrite TC1 as the summation over the interior dual sides; we however adjust the

denotation of the dual volumes sharing a given side σD,E such that vnD,E ≥ 0. Then, using the
definition of the upstream weighting, we have

TC1 = µ
N∑
n=1

	tn
∫ T−τ

0
χ(n, t)

∑
σD,E∈F int

h ,vn
D,E≥0

−vnD,Ec
n
D

(
c
n1(t)
D − c

n1(t)
E + c

n2(t)
E − c

n2(t)
D

)
dt .

Using ±ab ≤ εa2/2 + b2/(2ε), ε > 0, where we put ε = dD,E , we come to

TC1 ≤ TC3 + TC4 + TC5

with

TC3 := µ

N∑
n=1

	tn
∫ T−τ

0
χ(n, t)

∑
σD,E∈F int

h ,vn
D,E≥0

|vnD,E|dD,E(cnD)2 dt ,

TC4 :=
µ

2

N∑
n=1

	tn
∫ T−τ

0
χ(n, t)

∑
σD,E∈F int

h

|vnD,E|
dD,E

(
c
n1(t)
E − c

n1(t)
D

)2
dt ,

TC5 :=
µ

2

N∑
n=1

	tn
∫ T−τ

0
χ(n, t)

∑
σD,E∈F int

h

|vnD,E|
dD,E

(
c
n2(t)
E − c

n2(t)
D

)2
dt .
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We have ∑
σD,E∈F int

h ,vn
D,E≥0

|vnD,E|dD,E(cnD)2 ≤ Cv

∑
σD,E∈F int

h ,vn
D,E≥0

|KD,E |
κT d(d− 1)

(cnD)2

≤ Cv

κT

d+ 1
d− 1

∑
D∈Dh

( |KD|
d+ 1

+
|LD|
d+ 1

)
(cnD)2 =

Cv

κT

d+ 1
d− 1

∑
D∈Dh

(cnD)2|D| ,

where we have used Assumption (A4), which implies |vnD,E | ≤ Cv|σD,E|, (1.8), Assump-
tion (B), (1.9b), the fact that each dual volume D ∈ Dint

h has d dual sides inside a simplex
KD and d dual sides inside a simplex LD and that cnD can appear as an upwind value only at
these sides, and (1.5). Thus, we have

TC3 ≤ µ
Cv

κT

d+ 1
d− 1

T ∗
L1
.

Using |vnD,E | ≤ Cv|σD,E | and (1.7), we have

TCi ≤ µ
Cv

κT

d+ 1
4(d− 1)

T ∗
Xi−2

i ∈ {4, 5} ,

which altogether leads to

TC1 ≤ µ
Cv

κT

(d+ 1
d− 1

T ∗
L1

+
d+ 1

4(d− 1)
(T ∗
X2

+ T ∗
X3

)
)
. (1.39)

We now consider TC2 . We can easily notice that it is almost same as the diffusion term TD,
except for −µ and the term SnD,E, which is replaced by |vnD,E| αnD,E . Using |vnD,E | ≤ Cv|σD,E |,
αnD,E ≤ 1/2, and the estimates (1.6) and (1.8), we easily come to

TC2 ≤ µ
Cv

κT
h

d+ 1
4d(d − 1)

(
T ∗
X1

+
1
2
T ∗
X2

+
1
2
T ∗
X3

)
. (1.40)

Reaction term

We denote

TR := −
N∑
n=1

	tn
∫ T−τ

0
χ(n, t)

∑
D∈Dh

(
c
n1(t)
D − c

n2(t)
D

)
F (cnD)|D|dt .

We estimate

−F (cnD)(cn1
D − cn2

D ) ≤ (cn1
D − cn2

D )2

2
+

(F (cnD))2

2
≤ (cn1

D )2 + (cn2
D )2 +

L2
F (cnD)2

2
,

using the inequalities ab ≤ a2/2+b2/2, (a−b)2/2 ≤ a2 +b2, the Lipschitz continuity of F with
the constant LF , and the fact that F (0) = 0, following either from Assumption (A6) or (A7).
This implies

TR ≤
(L2

F

2
T ∗
L1

+ T ∗
L2

+ T ∗
L3

)
. (1.41)
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Sources term

We denote

TS :=
N∑
n=1

	tn
∫ T−τ

0
χ(n, t)

∑
D∈Dh

(
c
n1(t)
D − c

n2(t)
D

)
qnD|D|dt .

Using the same estimate as for the reaction term, (1.32), and (1.21), we come to

TS ≤ 1
2
τ‖q‖2

0,QT
+ T ∗

L2
+ T ∗

L3
. (1.42)

The assertion of the lemma follows by introducing (1.38), (1.39), (1.40), (1.41), and (1.42)
into (1.31), while using the estimates (1.33), (1.35), and (1.37). �

Remark 1.5.7. (Time translate estimate under Assumption (D)) If Assumption (D)
is valid, the transmissibilities SnD,E are non-negative as in the finite volume method. Hence
TD ≤ TD1 + TD2 + TD3 with

TD1 =
N∑
n=1

	tn
∫ T−τ

0
χ(n, t)

∑
σD,E∈F int

h

S
n
D,E(cnE − cnD)2 dt

and similarly for TD2 and TD3 . Thus using∑
σD,E∈F int

h

S
n
D,E(cnE − cnD)2 = −

∑
D∈Dh

cD
∑
E∈Dh

S
n
D,EcE

and (1.17), TD ≤ CS(T ∗
X1

+ T ∗
X2
/2 + T ∗

X3
/2) in this case instead of (1.38).

Remark 1.5.8. (Time translate estimate for a constant time step) For a constant
time step, we have indeed an O(τ) estimate, using (1.36) instead of (1.37).

We now give the space translate estimate for c̃h,�t given by (1.30). Lemma 1.5.9 extends
the space translate estimate from [63, 64] to the case of (dual) meshes not necessarily satisfying
the orthogonality property.

Lemma 1.5.9. (Space translate estimate) Let us define c̃h,�t(x, t) by zero outside of Ω.
Then there exists a constant Cst > 0 such that∫ T

0

∫
Ω

(
c̃h,�t(x + ξ, t) − c̃h,�t(x, t)

)2
dxdt ≤ Cst|ξ|(|ξ| + h)

for all ξ ∈ Rd.

Proof:

We define a function χσ(x) for each σ ∈ F int
h by

χσ(x) :=
{

1 if σ ∩ [x,x + ξ] �= ∅
0 if σ ∩ [x,x + ξ] = ∅ .

A simple geometrical consideration leads to

|c̃h,�t(x + ξ, t) − c̃h,�t(x, t)| ≤
∑

σD,E∈F int
h

|cnE − cnD|χσD,E
(x)
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for a.e. x ∈ Ω and for t ∈ (tn−1, tn], considering that c̃h,�t is piecewise constant on Dh, the
Dirichlet boundary condition (1.9b), and the fact that c̃h,�t(x, t) is defined by zero outside of
Ω. The above inequality is in particular not valid for x ∈ Ω such that the segment [x,x + ξ]
intersects some vertex of the dual mesh. The Cauchy–Schwarz inequality yields(

c̃h,�t(x + ξ, t) − c̃h,�t(x, t)
)2

(1.43)

≤
∑

σD,E∈F int
h

χσD,E
(x)diam(KD,E)

∑
σD,E∈F int

h

(cnE − cnD)2

diam(KD,E)
χσD,E

(x)

for a.e. x ∈ Ω and for t ∈ (tn−1, tn].
The proof of Lemma 2.3.4 from Chapter 2 of this thesis gives∑

σD,E∈F int
h

χσD,E
(x)diam(KD,E) ≤ 4(d − 1)Pθ2P

T (|ξ| + h) , (1.44)

where P = 2d−1π/φT . Here, the constant φT > 0 is such that

min
K∈Th

φK ≥ φT ∀h > 0 , (1.45)

where φK is the smallest angle of the simplex K (plain angle in radians if d = 2 and spheric
angle in steradians if d = 3). Notice that Assumption (B) is equivalent to (1.45). We finally
integrate (1.43) over QT . This gives∫ T

0

∫
Ω

(
c̃h,�t(x + ξ, t) − c̃h,�t(x, t)

)2
dxdt

≤ 4
(d − 1)
d

Pθ2P
T (|ξ| + h)

N∑
n=1

	tn
∑

σD,E∈F int
h

(cnE − cnD)2

dD,E

∫
Ω
χσD,E

(x) dx ,

using (1.44) and (1.8). Finally, the value
∫
Ω χσD,E

(x) dx is the measure of the set of points of
Ω which are located inside a cylinder whose basis is σD,E and generator vector is −ξ. Thus∫

Ω
χσD,E

(x) dx ≤ |σD,E| |ξ| .

Using (1.7) and the a priori estimate (1.28), this yields the assertion of the lemma with

Cst := 2
(d + 1)
dκT

Pθ2P
T
Cae

cS
. �

Remark 1.5.10. (Constant in the space translate estimate) The constant Cst in the
space translate estimate has the form Cst = C(d, κT )Cae/cS. We recall that for the finite vol-
ume mesh satisfying the orthogonality property, this constant equals to Cae/cS, cf. [63, 64].
Hence supposing general unstructured meshes only satisfying the shape regularity Assump-
tion (B) leads to the multiplication by a factor dependent on d and κT . It can be shown
(see Chapter 2) that this factor is of the form C(d)/κ2

T for {Th}h satisfying the inverse as-
sumption (local refinement not allowed).

1.6 Convergence

Using the a priori estimates of the previous section and the Kolmogorov relative compactness
theorem, we show in this section a strong L2(QT ) convergence of the approximate solutions
to a function u which we prove to be a weak solution of the continuous problem.
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1.6.1 Strong convergence in L2(QT )

Theorem 1.6.1. (Strong convergence in L2(QT )) There exist subsequences of c̃h,�t and
ch,�t which converge strongly in L2(QT ) to some function u ∈ L2(0, T ;H1

0 (Ω)).

Proof:

Let us consider the sequence c̃h,�t. The a priori estimate (1.26) and Lemmas 1.5.6 and 1.5.9
imply that c̃h,�t satisfies the assumptions of Lemma 1.8.4 in Appendix 1.8. Thus c̃h,�t verifies
the assumptions of the Kolmogorov theorem ([29, Theorem IV.25 ], [61, Theorem 3.9]) and
consequently is relatively compact in L2(QT ). This implies the existence of a subsequence of
c̃h,�t which converges strongly to some function u in L2(QT ). Moreover, due to the space
translate estimate of Lemma 1.5.9, [61, Theorem 3.10] gives that u ∈ L2(0, T ;H1

0 (Ω)). Finally,
considering Lemma 1.5.4, ch,�t converges to the same u. �

Remark 1.6.2. (Relative compactness for a constant time step) In view of Re-
mark 1.5.8, the a priori estimate (1.26) and Lemmas 1.5.6 and 1.5.9 directly imply that c̃h,�t
verifies the assumptions of the Kolmogorov theorem for a constant time step. Hence, in this
case Lemma 1.8.4 is not necessary.

1.6.2 Convergence to a weak solution

We have shown in Theorem 1.6.1 that subsequences of c̃h,�t and ch,�t, which we still denote
by c̃h,�t and ch,�t, converge strongly in L2(QT ) to some function u ∈ L2(0, T ;H1

0 (Ω)). We
now show that u is a weak solution of the continuous problem. For this purpose, we introduce

Ψ :=
{
ψ ∈ C2,1(Ω × [0, T ]), ψ = 0 on ∂Ω × [0, T ], ψ(·, T ) = 0

}
. (1.46)

We then take an arbitrary ψ ∈ Ψ, multiply (1.9c) by 	tn ψ(QD, tn−1), and sum the result over
D ∈ Dint

h and n = 1, . . . , N . This gives

TT + TD + TC + TR = TS (1.47)

with

TT :=
N∑
n=1

∑
D∈Dh

(
β(cnD) − β(cn−1

D )
)
ψ(QD, tn−1)|D| ,

TD :=
N∑
n=1

	tn
∑
D∈Dh

∑
E∈Dh

cnE
∑
K∈Th

(Sn∇ϕE,∇ϕD)0,K ψ(QD, tn−1) ,

TC := µ

N∑
n=1

	tn
∑
D∈Dh

∑
E∈N (D)

vnD,E cnD,E ψ(QD, tn−1) ,

TR :=
N∑
n=1

	tn
∑
D∈Dh

F (cnD)ψ(QD, tn−1)|D| ,

TS :=
N∑
n=1

	tn
∑
D∈Dh

qnD ψ(QD, tn−1)|D| ,

using ψ(QD, tn−1) = 0 for all D ∈ Dext
h and n = 1, . . . , N . We now show that each of the

above terms converges to its continuous version as h and 	t tend to zero.
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Time evolution term

We use the discrete integration by parts formula and the fact that ψ(QD, tN ) = 0 for all
D ∈ Dh to obtain

TT = −
N∑
n=1

∑
D∈Dh

β(cnD)
(
ψ(QD, tn) − ψ(QD, tn−1)

)
|D| −

∑
D∈Dh

β(c0D)ψ(QD, 0)|D| . (1.48)

We would now like to show that∑
D∈Dh

β(c0D)ψ(QD, 0)|D| −→
∫

Ω
β(c0(x))ψ(x, 0) dx as h→ 0 . (1.49)

For this purpose, we introduce

TT1 :=
∑
D∈Dh

∫
D

(
β(c0D)ψ(QD, 0) − β(c0(x))ψ(x, 0)

)
dx .

We add and subtract β(c0D)ψ(x, 0) to each term and have

TT1 =
∑
D∈Dh

∫
D
β(c0D)

(
ψ(QD, 0) − ψ(x, 0)

)
dx +

∑
D∈Dh

∫
D

(
β(c0D) − β(c0(x))

)
ψ(x, 0) dx .

Using the definition of c0D given by (1.9a) for D ∈ Dint
h and by (1.9b) for D ∈ Dext

h , the fact
that β is increasing by Assumption (A1), and Assumption (A9), we have that |β(c0D)| ≤ β(M)
for all D ∈ Dh. Due to the boundedness of |ψ| by C1,ψ, we come to

|TT1 | ≤ β(M)
∑
D∈Dh

∫
D
|ψ(QD, 0) − ψ(x, 0)|dx + C1,ψ

∑
D∈Dh

∫
D
|β(c0D) − β(c0(x))|dx . (1.50)

Since ψ ∈ C2,1(Ω × [0, T ]), we have

|ψ(QD, 0) − ψ(x, 0)| ≤ C2,ψ|QD − x| ≤ C2,ψh

for all x ∈ D, and thus the first term of (1.50) tends to 0 as h → 0. We now consider the
second term of (1.50). We have, for boundary dual volumes,∑

D∈Dext
h

∫
D
|c0D − c0(x)|dx ≤M

∑
D∈Dext

h

|D| ≤M |∂Ω|h ,

using (1.9b) and Assumption (A9). Considering in addition the definition of c̃h,�t by (1.30)
and (1.9a) for interior dual volumes, c̃h,�t(x, 0) converges to c0(x) in Ω in the L1 sense as h→ 0.
Hence at least a subsequence of c̃h,�t(x, 0), which we still denote by c̃h,�t(x, 0), converges to
c0(x) pointwise a.e. in Ω. Thus also β(c̃h,�t(x, 0)) → β(c0(x)) a.e. in Ω, using the continuity of
β. Further, using that β is increasing from Assumption (A1), we have |β(c̃h,�t(x, 0))| ≤ β(M).
Hence the Lebesgue dominated convergence theorem implies∑

D∈Dh

∫
D
|β(c0D) − β(c0(x))|dx =

∫
Ω
|β(c̃h,�t(x, 0)) − β(c0(x))|dx −→ 0 as h→ 0 ,

which can be by repetition extended onto whole c̃h,�t(x, 0). Thus TT1 → 0 as h → 0 and
consequently (1.49) is fulfilled.
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Now we intend to prove that

N∑
n=1

∑
D∈Dh

β(cnD)
(
ψ(QD, tn) − ψ(QD, tn−1)

)
|D| −→

∫ T

0

∫
Ω
β(u(x, t))ψt(x, t) dxdt (1.51)

as h,	t→ 0. We set

TT2 :=
N∑
n=1

∑
D∈Dh

[
β(cnD)

(
ψ(QD, tn) − ψ(QD, tn−1)

)
|D| −

∫ tn

tn−1

∫
D
β(u(x, t))ψt(x, t) dxdt

]
.

We add and subtract
∫ tn

tn−1

∫
D
β(cnD)ψt(x, t) dxdt in each term of TT2 to obtain

TT2 =
N∑
n=1

∑
D∈Dh

β(cnD)
∫ tn

tn−1

∫
D

(∂ψ
∂t

(QD, t) −
∂ψ

∂t
(x, t)

)
dxdt (1.52)

+
∫ T

0

∫
Ω

(
β(c̃h,�t(x, t)) − β(u(x, t))

)
ψt(x, t) dxdt .

We have, for all x ∈ D, for all D ∈ Dh, and all h > 0,∣∣∣∂ψ
∂t

(QD, t) −
∂ψ

∂t
(x, t)

∣∣∣≤ f(h) ,

where the function f satisfies f(h) > 0 and f(h) → 0 as h → 0. This follows by the fact
that ∂ψ/∂t ∈ C(Ω) from (1.46) and hence is uniformly continuous on Ω. Thus the first term
of (1.52) is bounded by

f(h)
N∑
n=1

∑
D∈Dh

|β(cnD)|	tn|D| ≤ f(h)T
1
2 |Ω| 12

( N∑
n=1

∑
D∈Dh

(β(cnD))2	tn|D|
) 1

2

≤ f(h)T |Ω| 12C
1
2
aeβ ,

using the Cauchy–Schwarz inequality and the a priori estimate (1.27). Further, |ψt(x, t)| ≤
C4,ψ, and thus we can estimate TT2 by

|TT2 | ≤ f(h)T |Ω| 12C
1
2
aeβ + C4,ψ

∫ T

0

∫
Ω
|β(c̃h,�t(x, t)) − β(u(x, t))|dxdt . (1.53)

We now use that c̃h,�t → u strongly in L2(QT ) as h,	t → 0, due to Theorem 1.6.1. There
exists at least a subsequence of c̃h,�t, which we still denote c̃h,�t, such that c̃h,�t(x, t) →
u(x, t) a.e. in QT . Thus, using the continuity of β(·), β(c̃h,�t(x, t)) → β(u(x, t)) a.e. in
QT . Now under Assumption (D), which implies the discrete maximum principle stated by
Theorem 1.4.11, and using that β is increasing, |β(c̃h,�t(x, t))| ≤ β(M), and thus we can use
the Lebesgue dominated convergence theorem to conclude the convergence of the second term
of (1.53) and thus of (1.53) to 0 as h,	t→ 0. In this case Assumption (A1) suffices.

In the general case we use Assumption (A2). We decompose the function β as β1 + β2,

β1(x) := β(x) on [−P,P ] , β1(x) := 0 on (−∞,−P ) ∪ (P,+∞) ,
β2(x) := 0 on [−P,P ] , β2(x) := β(x) on (−∞,−P ) ∪ (P,+∞) .
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We further introduce a function y linearly connecting the points [−P, β(−P )] and [P, β(P )]
and zero otherwise,

y(x) :=
β(P ) − β(−P )

2P
x+

β(P ) + β(−P )
2

on [−P,P ] , y(x) := 0 on (−∞,−P )∪ (P,+∞) .

We finally define β̃1 := β1 − y and β̃2 := β2 + y and remark that β = β̃1 + β̃2. Clearly, β̃1 is
continuous on R and satisfies |β̃1(x)| ≤ 2Cβ on R and β̃2 is Lipschitz-continuous on R with
max{Lβ, [β(P ) − β(−P )]/(2P )}. We now estimate∫ T

0

∫
Ω
|β(c̃h,�t(x, t)) − β(u(x, t))|dxdt ≤

∫ T

0

∫
Ω
|β̃1(c̃h,�t(x, t)) − β̃1(u(x, t))|dxdt

+
∫ T

0

∫
Ω
|β̃2(c̃h,�t(x, t)) − β̃2(u(x, t))|dxdt .

The first term of the above expression converges to zero using the Lebesgue dominated con-
vergence theorem as in the previous case. For the second term, it suffices to use the Lipschitz
continuity of β̃2 and the strong convergence of c̃h,�t to u in L2(QT ). Thus (1.51) is satisfied.
Combining (1.49) and (1.51), we have

TT −→ −
∫ T

0

∫
Ω
β(u(x, t))ψt(x, t) dxdt−

∫
Ω
β(c0(x))ψ(x, 0) dx (1.54)

as h,	t → 0.

Diffusion term

We rewrite TD as

TD =
N∑
n=1

	tn
∑
K∈Th

∫
K

Sn∇cnh(x) · ∇
( ∑
D∈Dh

ψ(QD, tn−1)ϕD(x)
)

dx ,

using the definition of cnh ∈ Xh, and define

S�t(x, t) := Sn(x) for x ∈ Ω , t ∈ (tn−1, tn] n ∈ {1, . . . , N} , (1.55)

where Sn is given by (1.13) for the nonconforming method and by (1.15) for the mixed-hybrid
method. We will show the validity of two passages to the limit. We begin by showing that

N∑
n=1

	tn
∑
K∈Th

∫
K

Sn∇cnh(x) · ∇
( ∑
D∈Dh

ψ(QD, tn−1)ϕD(x)
)

dx (1.56)

−
N∑
n=1

	tn
∑
K∈Th

∫
K

Sn∇cnh(x) · ∇ψ(x, tn−1) dx −→ 0 as h→ 0 .

We set
Iψ(·, tn−1) :=

∑
D∈Dh

ψ(QD, tn−1)ϕD

and

TD1 :=
N∑
n=1

	tn
∑
K∈Th

∫
K

Sn∇cnh(x) · ∇
(
Iψ(x, tn−1) − ψ(x, tn−1)

)
dx .
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We then estimate

|TD1 | ≤ CS

N∑
n=1

	tn‖cnh‖Xh
‖Iψ(·, tn−1) − ψ(·, tn−1)‖Xh

,

using the Cauchy–Schwarz inequality. Next we use the interpolation estimate

‖Iψ(·, tn−1) − ψ(·, tn−1)‖Xh
=

( ∑
K∈Th

∫
K

∣∣∣∇(Iψ(·, tn−1) − ψ(·, tn−1)
)∣∣∣2 dx

) 1
2

≤ CIθT h
( ∑
K∈Th

|ψ(·, tn−1)|22,K
) 1

2 ≤ CIθT C5,ψh ,

where θT is given by the consequence (1.4) of Assumption (B), CI does not depend on h (nor
on 	t), and | · |2,K denotes the H2 seminorm, see for instance [41, Theorem 15.3]. Finally, the
Cauchy–Schwarz inequality yields

|TD1 | ≤ CSCIθT C5,ψh
( N∑
n=1

	tn‖cnh‖2
Xh

) 1
2
( N∑
n=1

	tn
) 1

2 = CSCIθT C5,ψT
1
2

(Cae

cS

) 1
2
h ,

using the a priori estimate (1.28). Hence (1.56) is fulfilled.
We next show that

N∑
n=1

	tn
∑
K∈Th

∫
K

Sn∇cnh(x) · ∇ψ(x, tn−1) dx −→
∫ T

0

∫
Ω

S∇u(x, t) · ∇ψ(x, t) dxdt (1.57)

as h,	t → 0. We see that both cnh(x) and ψ(x, tn−1) are constant in time, so that we can
easily introduce an integral with respect to time into the first term of (1.57). We further add

and subtract
N∑
n=1

∫ tn

tn−1

∫
Ω

Sn∇cnh(x)∇ψ(x, t) dxdt and introduce

TD2 :=
N∑
n=1

∫ tn

tn−1

∑
K∈Th

∫
K

Sn∇cnh(x) ·
(
∇ψ(x, tn−1) −∇ψ(x, t)

)
dxdt ,

TD3 :=
∫ T

0

∑
K∈Th

∫
K

S�t∇ch,�t(x, t) · ∇ψ(x, t) dxdt−
∫ T

0

∫
Ω

S∇u(x, t) · ∇ψ(x, t) dxdt ,

where ch,�t is given by (1.29). Clearly, (1.57) is valid when TD2 and TD3 tend to zero as
h,	t → 0. We first estimate TD2 . We have, for t ∈ (tn−1, tn],

|∇ψ(x, tn−1) −∇ψ(x, t)| ≤ g(	t) ,

where g satisfies g(	t) > 0 and g(	t) → 0 as 	t→ 0. Thus

|TD2 | ≤ CSg(	t)
N∑
n=1

	tn
∑
K∈Th

∣∣∣∇cnh|K ∣∣∣|K| ≤ CSg(	t)
(Cae

cS

) 1
2
T

1
2 |Ω| 12 ,

using the Cauchy–Schwarz inequality and the a priori estimate (1.28).
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We now turn to TD3 . We will show later that

T ′
D3

:=
∫ T

0

∑
K∈Th

∫
K

(
∇ch,�t(x, t) −∇u(x, t)

)
·w(x, t) dxdt −→ 0 (1.58)

as h,	t → 0 for all w ∈ [C∞(QT )]d. Using the density of the set [C∞(QT )]d in [L2(QT )]d, we
will conclude a weak convergence of ∇ch,�t (piecewise constant function is space and time) to
∇u. Next, (S�t)i,j , 1 ≤ i, j ≤ d, converge strongly in L1(QT ) to Si,j by its definition (1.55).
Using the boundedness of S�t and S given by Assumption (A3), we have also strong L2(QT )
convergence. Hence it suffices to apply Lemma 1.8.5 from Appendix 1.8 to conclude that
TD3 → 0 as h,	t → 0, provided that (1.58) is satisfied.

To show (1.58), we first rewrite T ′
D3

as

T ′
D3

=
N∑
n=1

∫ tn

tn−1

∑
K∈Th

∫
K
∇cnh(x) · w(x, t) dxdt+

∫ T

0

∫
Ω
u(x, t)∇ · w(x, t) dxdt ,

where we have used the Green theorem for u (recall that u ∈ L2(0, T ;H1
0 (Ω)) by Theorem 1.6.1)

and w. We easily notice that we cannot use the Green theorem for cnh on Ω, since cnh /∈ H1(Ω).
We are thus forced to apply it on each K ∈ Th.

We rewrite the first term of T ′
D3

as

N∑
n=1

∫ tn

tn−1

∑
K∈Th

∫
K
−cnh(x)∇ ·w(x, t) dxdt+

N∑
n=1

∫ tn

tn−1

∑
K∈Th

∫
∂K

cnh(x)w(x, t) · ndγ(x) dt .

We next consider the term

T ′′
D3

:=
N∑
n=1

∫ tn

tn−1

∑
K∈Th

∫
∂K

cnhw · ndγ(x) dt . (1.59)

Reordering the summation by sides, we come to

T ′′
D3

=
N∑
n=1

∫ tn

tn−1

( ∑
σK,L∈E int

h

∫
σK,L

(cnh|K − cnh|L)w · nK,L dγ(x)

+
∑

σK∈Eext
h

∫
σK

cnh|Kw · nK dγ(x)
)

dt ,

where we have used w · nK,L = −w · nL,K following from w ∈ [C∞(QT )]d. The functions
cnh|K − cnh|L or cnh|K restricted to a side σK,L ∈ E int

h or σK ∈ Eext
h , respectively, are first-order

polynomials, vanishing in the barycentre QD of this side. For σK,L ∈ E int
h , this follows from the

continuity requirement given in the definition of Xh and for σK ∈ Eext
h from the zero Dirichlet

boundary condition imposed by (1.9b). Hence∫
σK,L

(
cnh|K(x) − cnh|L(x)

)
dγ(x) = 0 ,

∫
σK

cnh|K(x) dγ(x) = 0 (1.60)

for all σK,L ∈ E int
h and σK ∈ Eext

h , since the quadrature formula using the value in the barycentre
of a segment (d = 2) or a triangle (d = 3) is precise for linear functions. We further estimate∣∣∣cnh|K(x)

∣∣∣ =
∣∣∣cnh|K(x) − cnh|K(QD)

∣∣∣ ≤ ∣∣∣∇cnh|K∣∣∣ |x−QD| ≤
∣∣∣∇cnh|K ∣∣∣diam(σK)

4 − d
,
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with x ∈ σK ∈ Eext
h , where we have used |x − QD| ≤ diam(σK)/2 for d = 2 but only

|x −QD| ≤ diam(σK) for d = 3. Similarly,∣∣∣cnh|K(x) − cnh|L(x)
∣∣∣ ≤ ∣∣∣∇cnh|K∣∣∣diam(σK,L)

4 − d
+
∣∣∣∇cnh|L∣∣∣diam(σK,L)

4 − d
x ∈ σK,L ∈ E int

h .

We have from the smoothness of w

w · nσD
(x) = w · nσD

(QD) + f(ξ)|QD − x| x ∈ σD ∈ Eh , ξ ∈ [QD,x]

with |f(ξ)| ≤ Cw. Thus∫
σK

cnh|K(x)f(x)|QD − x|dγ(x) ≤ Cw

(diam(σK)
4 − d

)2∣∣∣∇cnh|K ∣∣∣|σK |
for an exterior side σK and similarly∫
σK,L

(
cnh|K(x)− cnh|L(x)

)
f(ξ)|QD −x|dγ(x) ≤ Cw

(diam(σK,L)
4 − d

)2(∣∣∣∇cnh|K ∣∣∣+ ∣∣∣∇cnh|L∣∣∣)|σK,L|
for an interior side σK,L. Using these estimates, we immediately come to

|T ′′
D3

| ≤ Cw
h

(4 − d)2
d+ 1
d− 1

N∑
n=1

∫ tn

tn−1

∑
K∈Th

∣∣∣∇cnh|K∣∣∣diam(K)d dt

≤ Cw

κT

h

(4 − d)2
d+ 1
d− 1

N∑
n=1

	tn
∑
K∈Th

∣∣∣∇cnh|K ∣∣∣|K| ≤ Cw

κT

h

(4 − d)2
d+ 1
d− 1

(Cae

cS

) 1
2
T

1
2 |Ω| 12 ,

using the fact that each ∇cnh|K is in the summation over all sides just (d + 1)-times, |σD| ≤
diam(K)d−1/(d − 1) and diam(σD) ≤ diam(K) ≤ h for all σD ∈ EK , Assumption (B), the
Cauchy–Schwarz inequality, and the a priori estimate (1.28). Thus T ′′

D3
→ 0 as h→ 0.

To conclude that T ′
D3

→ 0 as h,	t → 0, it remains to show that

−
N∑
n=1

∫ tn

tn−1

∑
K∈Th

∫
K
cnh(x)∇ · w(x, t) dxdt+

∫ T

0

∫
Ω
u(x, t)∇ · w(x, t) dxdt −→ 0 .

This is however immediate, since we can rewrite it as∫ T

0

∫
Ω
(u(x, t) − ch,�t(x, t))∇ ·w(x, t) dxdt −→ 0 ,

which is a consequence of the strong L2(QT ) convergence of ch,�t to u. Thus T ′
D3

→ 0 and
consequently TD3 → 0 as h,	t → 0.

Using (1.56) and (1.57), we see that

TD −→
∫ T

0

∫
Ω

S∇u(x, t) · ∇ψ(x, t) dxdt as h,	t → 0 . (1.61)

Remark 1.6.3. (Nonconforming approximation) The fact that T ′′
D3

given by (1.59) is
not immediately equal to zero is the consequence of the nonconforming-type approximation.
However, since the approximation is continuous in the barycentres of interior sides and equal
to zero in the barycentres of exterior sides, (1.60) is fulfilled and consequently T ′′

D3
is of order

h, which suffices for the convergence.



52 Chapitre 1. Combined FV–FE schemes for degenerate parabolic problems

Convection term

We begin by denoting

vn(x) :=
1

	tn

∫ tn

tn−1

v(x, t) dt n ∈ {1, 2, . . . , N} , x ∈ Ω . (1.62)

We now show the validity of two passages to the limit. First, we intend to show that

µ
N∑
n=1

	tn
∑
D∈Dh

∑
E∈N (D)

vnD,E cnD,E ψ(QD, tn−1) + µ
N∑
n=1

	tn
∑
D∈Dh

cnD
∑

E∈N (D)

(1.63)

∫
σD,E

vn(x) · nD,E ψ(x, tn−1) dγ(x) − µ
N∑
n=1

	tn
∑
D∈Dh

cnD

∫
D
∇ · vn(x)ψ(x, tn−1) dx −→ 0

as h → 0. We add and subtract the terms cnDψ(QD, tn−1)vnD,E and cnD,E
∫
σD,E

vn(x) ·
nD,E ψ(x, tn−1) dγ(x) to each term of the left-hand side of (1.63). We denote

TC1 := µ

N∑
n=1

	tn
∑
D∈Dh

∑
E∈N (D)

(cnD,E − cnD)
(
ψ(QD, tn−1)vnD,E

−
∫
σD,E

vn(x) · nD,E ψ(x, tn−1) dγ(x)
)
,

TC2 := µ

N∑
n=1

	tn
∑
D∈Dh

∑
E∈N (D)

cnD,E

∫
σD,E

vn(x) · nD,E ψ(x, tn−1) dγ(x) ,

TC3 := µ

N∑
n=1

	tn
∑
D∈Dh

cnDψ(QD, tn−1)
∑

E∈N (D)

vnD,E ,

TC4 := µ

N∑
n=1

	tn
∑
D∈Dh

cnD

∫
D
∇ · vn(x)ψ(x, tn−1) dx .

One can easily verify that (1.63) is satisfied when TC1 → 0, TC2 → 0, and (TC3 − TC4) → 0 as
h→ 0.

We begin with TC2 . We denote

vnψ;D,E :=
∫
σD,E

vn(x) · nD,E ψ(x, tn−1) dγ(x) .

Since the summation in TC2 is over all D ∈ Dh and all its neighbors, each interior dual side
is in the summation just twice. We consider one fixed interior dual side σD,E, where we have
denoted D and E such that vnD,E ≥ 0, and have(

cnD + αnD,E(cnE − cnD)
)
vnψ;D,E +

(
cnD + αnD,E(cnE − cnD)

)
vnψ;E,D = 0 ,

considering the definition of the local Péclet upstream weighting (1.10) and vnψ;D,E = −vnψ;E,D.
Thus TC2 = 0.

Next we consider TC3 and TC4 . We immediately have that∑
E∈N (D)

vnD,E =
∫
D
∇ · vn(x) dx ∀D ∈ Dint

h ,
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using the definition of vnD,E. We further estimate

|TC3 − TC4 | =
∣∣∣µ N∑

n=1

	tn
∑

D∈Dint
h

cnD

∫
D
∇ · vn(x)

(
ψ(QD, tn−1) − ψ(x, tn−1)

)
dx
∣∣∣

≤ C2,ψhµ

N∑
n=1

∑
D∈Dh

|cnD|
∫ tn

tn−1

∫
D
qS(x, t) dxdt (1.64)

≤ C2,ψhµ
( N∑
n=1

∑
D∈Dh

	tn|D|(cnD)2
) 1

2

(
N∑
n=1

∑
D∈Dh

(∫ tn
tn−1

∫
D qS(x, t) dxdt

)2

	tn|D|

) 1
2

≤ C2,ψhµ
(Cae

cβ
T
) 1

2 ‖qS‖0,QT
,

considering the boundary condition cnD = 0 for all D ∈ Dext
h ,

|ψ(QD, tn−1) − ψ(x, tn−1)| ≤ C2,ψh (1.65)

for all x ∈ D,∫
D
|∇ · vn(x)|dx =

1
	tn

∫
D

∫ tn

tn−1

∇ · v(x, t) dt dx =
1

	tn

∫
D

∫ tn

tn−1

qS(x, t) dt dx ,

which follows from Assumption (A4), the Cauchy–Schwarz inequality, and the a priori esti-
mate (1.26). Thus (TC3 − TC4) → 0 as h→ 0.

We finally turn to TC1 . We first define

TC5 :=
N∑
n=1

	tn
∑
D∈Dh

∑
E∈N (D)

diam(KD,E)d−2(cnD,E − cnD)2 .

We have
(cnD,E − cnD)2 =

(
αnD,E(cnE − cnD)

)2
≤ 1

4
(cnE − cnD)2

when vnD,E ≥ 0, considering the definition of the local Péclet upstream weighting (1.10) and
Remark 1.3.3, which gives 0 ≤ αnD,E ≤ 1/2. Similarly, when vnD,E < 0, we come to

(cnD,E − cnD)2 =
(
(cnE − cnD)(1 − αnD,E)

)2
≤ (cnE − cnD)2 .

We have

TC5 ≤ 2
N∑
n=1

	tn
∑

σD,E∈F int
h

diam(KD,E)d−2(cnE − cnD)2

≤ d+ 1
dκT

N∑
n=1

	tn‖cnh‖2
Xh

≤ d+ 1
dκT

Cae

cS
,

noticing that each interior dual side is in the original summation just twice, using the esti-
mate (1.6) and the a priori estimate (1.28). We next define

TC6 :=
N∑
n=1

	tn
∑
D∈Dh

∑
E∈N (D)

1
diam(KD,E)d−2(∫

σD,E

vn(x) · nD,E
(
ψ(QD, tn−1) − ψ(x, tn−1)

)
dγ(x)

)2
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and estimate

|TC6 | ≤ C2
2,ψh

2C2
v

N∑
n=1

	tn
∑
D∈Dh

∑
E∈N (D)

1
diam(KD,E)d−2

|σD,E |2

≤ C2
2,ψh

2C2
v

(d+ 1)d
(d− 1)2

N∑
n=1

	tn
∑
K∈Th

diam(K)d ≤ C2
2,ψh

2C
2
v

κT

(d+ 1)d
(d− 1)2

|Ω|T ,

using (1.65), |vnD,E | ≤ Cv|σD,E | following from Assumption (A4), (1.8), noticing that each
interior dual side is in the original summation just twice and that each K ∈ Th contains

exactly
(
d+ 1

2

)
=

(d+ 1)d
2

dual sides, and finally Assumption (B). We now notice that

T 2
C1

≤ µ2TC5TC6 ,

using the Cauchy–Schwarz inequality, and hence TC1 → 0 as h→ 0. Thus (1.63) is satisfied.
Using the Green theorem and considering cnD = 0 for all D ∈ Dext

h , we easily come to

µ
N∑
n=1

	tn
∑
D∈Dh

cnD
∑

E∈N (D)

∫
σD,E

vn(x) · nD,E ψ(x, tn−1) dγ(x)	tn (1.66)

= µ
N∑
n=1

∑
D∈Dh

cnD

∫
D

vn(x)∇ψ(x, tn−1) dx + µ
N∑
n=1

	tn
∑
D∈Dh

cnD

∫
D
∇ · vn(x)ψ(x, tn−1) dx .

We will now demonstrate that

µ

N∑
n=1

	tn
∑
D∈Dh

cnD

∫
D

vn(x) · ∇ψ(x, tn−1) dx (1.67)

−→ µ

∫ T

0

∫
Ω
u(x, t)v(x, t) · ∇ψ(x, t) dxdt as h,	t → 0 .

We introduce

TC7 := µ

N∑
n=1

∫ tn

tn−1

∫
Ω
c̃h,�t(x, t)vn(x) ·

(
∇ψ(x, tn−1) −∇ψ(x, t)

)
dxdt ,

TC8 := µ
N∑
n=1

∫ tn

tn−1

∫
Ω

(
c̃h,�t(x, t) − u(x, t)

)
vn(x) · ∇ψ(x, t) dxdt ,

TC9 := µ

N∑
n=1

∫ tn

tn−1

∫
Ω
u(x, t)

(
vn(x) − v(x, t)

)
· ∇ψ(x, t) dxdt .

We have
|∇ψ(x, tn−1) −∇ψ(x, t)| ≤ g(	t)

for t ∈ (tn−1, tn] and thus

|TC7 | ≤ g(	t)µ
N∑
n=1

∑
D∈Dh

|cnD|
∫
D

∫ tn

tn−1

|v(x, t)|dxdt ≤ g(	t)µ
(Cae

cβ
T
) 1

2‖v‖0,QT
,
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using the same estimate as in (1.64). Thus TC7 → 0 as 	t → 0. It is immediate that
TC8 → 0 as h,	t → 0, using the strong (and consequently weak) convergence of c̃h,�t to u.
By Assumption (A4) and (1.62) v and vn are bounded, and hence the piecewise constant
in time approximation given by vn converges strongly in L2(QT ) to v as 	t → 0. Since
|∇ψ| ≤ C2,ψ and u ∈ L2(QT ), it suffices to use the Cauchy–Schwarz inequality to conclude
that TC9 → 0 as 	t → 0. Thus (1.67) is fulfilled. Finally, using (1.63), (1.66), and (1.67), we
see that

TC −→ −µ
∫ T

0

∫
Ω
u(x, t)v(x, t) · ∇ψ(x, t) dxdt as h,	t → 0 . (1.68)

Reaction term

We would now like to show that

TR −→
∫ T

0

∫
Ω
F (u(x, t))ψ(x, t) dxdt as h,	t→ 0 . (1.69)

For this purpose, we introduce

TR1 :=
N∑
n=1

∑
D∈Dh

F (cnD)
∫ tn

tn−1

∫
D

(
ψ(QD, tn−1) − ψ(x, t)

)
dxdt ,

TR2 :=
N∑
n=1

∑
D∈Dh

∫ tn

tn−1

∫
D

(
F (cnD) − F (u(x, t))

)
ψ(x, t) dxdt .

We have
|ψ(QD, tn−1) − ψ(x, t)| ≤ C3,ψ(h+ 	t) (1.70)

for all x ∈ D and t ∈ (tn−1, tn], and thus

|TR1 | ≤ C3,ψLF (h+ 	t)
N∑
n=1

∑
D∈Dh

	tn|D||cnD| ≤ C3,ψLF (h+ 	t)
(Cae

cβ
T
) 1

2 |Ω| 12T 1
2 ,

using the Lipschitz continuity of F , following either from Assumption (A6) or (A7), the
Cauchy–Schwarz inequality, and the a priori estimate (1.26). Hence, TR1 → 0 as h,	t → 0.
We have

|TR2 | ≤ C1,ψLF

∫ T

0

∫
Ω
|c̃h,�t(x, t) − u(x, t)|dxdt ,

which tends to 0 because of the strong L2(QT ) convergence of c̃h,�t to u. Thus, (1.69) is
fulfilled.

Sources term

We finally show that

TS −→
∫ T

0

∫
Ω
q(x, t)ψ(x, t) dxdt as h,	t → 0 . (1.71)
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We set

TS1 :=
N∑
n=1

∑
D∈Dh

qnD

∫ tn

tn−1

∫
D

(
ψ(QD, tn−1) − ψ(x, t)

)
dxdt ,

TS2 :=
N∑
n=1

∑
D∈Dh

∫ tn

tn−1

∫
D

(
qnD − q(x, t)

)
ψ(x, t) dxdt .

We have

|TS1 | ≤ C3,ψ(h+ 	t)
N∑
n=1

∑
D∈Dh

∫ tn

tn−1

∫
D
|q(x, t)|dxdt ≤ C3,ψ(h+ 	t)‖q‖0,QT

|Ω| 12T 1
2 ,

using (1.70) and the Cauchy–Schwarz inequality. Finally,

|TS2 | ≤ C1,ψ

N∑
n=1

∑
D∈Dh

∫ tn

tn−1

∫
D
|qnD − q(x, t)|dxdt ,

which tends to 0 as h,	t → 0 because of the L1 convergence of the piecewise constant
approximation qnD to q. Thus (1.71) is satisfied.

We are now ready to give the final theorem of this chapter:

Theorem 1.6.4. (Convergence to a weak solution) There exist subsequences of c̃h,�t
and ch,�t, the approximate solutions of the problem (1.1)–(1.3) by means of the combined
finite volume–nonconforming/mixed-hybrid finite element scheme (1.9a)–(1.9c) given by Defi-
nition 1.5.3, which converge strongly in L2(QT ) to a weak solution of the problem (1.1)–(1.3)
given by Definition 1.2.2. If the weak solution is unique, then the whole sequences c̃h,�t, ch,�t
converge to the weak solution.

Proof:

We have from Theorem 1.6.1 that subsequences of c̃h,�t and ch,�t converge strongly in L2(QT )
to some function u ∈ L2(0, T ;H1

0 (Ω)). The function u satisfies

−
∫ T

0

∫
Ω
β(u(x, t))ψt(x, t) dxdt−

∫
Ω
β(c0(x))ψ(x, 0) dx

+
∫ T

0

∫
Ω

S(x, t)∇u(x, t) · ∇ψ(x, t) dxdt− µ

∫ T

0

∫
Ω
u(x, t)v(x, t) · ∇ψ(x, t) dxdt

+
∫ T

0

∫
Ω
F (u(x, t))ψ(x, t) dxdt =

∫ T

0

∫
Ω
q(x, t)ψ(x, t) dxdt

for all test functions ψ ∈ Ψ, given by (1.46). This follows from (1.54), (1.61), (1.68), (1.69),
(1.71), and (1.47). In addition, β(u) ∈ L∞(0, T ;L2(Ω)), which follows from (1.27). Thus
u is a weak solution of the problem (1.1)–(1.3), because of the density of the set Ψ in the
set {ϕ; ϕ ∈ L2(0, T ;H1

0 (Ω)), ϕt ∈ L∞(QT ), ϕ(·, T ) = 0}. If the weak solution given by
Definition 1.2.2 is unique, then by contradiction the convergence statement is valid for the
whole sequences c̃h,�t and ch,�t. �
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Ω

Th

Dh

Figure 1.2: Initial space mesh Th (solid) and its dual mesh Dh (dashed)

1.7 Numerical experiment

We present the results of a numerical experiment in this section. The computations were done
in double precision on a notebook with Intel Pentium 4-M 1.8 GHz processor and MS Windows
XP operating system. Machine precision was in power of 10−16.

We test a model degenerate parabolic convection–diffusion problem with a known traveling
wave solution (cf. [81]). In particular, we consider the equation (1.1) for Ω = (0, 1) × (0, 1)
and T = 1 with

β(c) = c
1
2 for c ≥ 0 ,

S = δ

(
1 0
0 1

)
,

v = (v, 0) ,
µ = 1 , F (c) = 0 , q = 0 .

Here, δ > 0 and v > 0 are parameters. We fix v to 0.8 and let δ vary: for large values of
δ, diffusion dominates over convection and conversely for small values of δ. The initial and
Dirichlet boundary conditions are given by the exact solution

c(x, y, t) =
(
1 − e

v
2δ

(x−vt−p)
)2

for x ≤ vt+ p , c(x, y, t) = 0 for x ≥ vt+ p .

The shift p defines the position of the front of the wave at t = 0 and is set to 0.2. Note that
the problem is degenerate parabolic since β′(0) = +∞ and the solution takes the value of 0.

We perform the simulations on an unstructured triangular mesh of the space domain; the
initial mesh is given in Figure 1.2. The initial time step is T/2. We refine the space mesh by
dividing each triangle regularly into four subtriangles. Each time the space mesh is refined,
the time step is divided by two. We define the Péclet number by Pe := h v/δ. The initial
conditions are the values of the exact solution for t = 0 at the midpoints of triangle edges.
The boundary conditions are given similarly. The simulated problem is only one-dimensional.
We use this fact to test the performance of the numerical scheme that we propose for strongly
irregular two-dimensional meshes. The case where the triangular mesh contains angles greater
than π/2 is similar to the case where the diffusion tensor is anisotropic: in both cases the
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Figure 1.3: Approximate solution at t = 0.25, δ = 0.01, r = 3

discrete maximum principle is not necessarily satisfied (recall that this principle holds under
Assumption (D), cf. Theorem 1.4.11). Hence we need to define the function β(c) for c < 0.
To fulfill Assumptions (A1) and (A2), we set β(c) := −β(−c) for c < 0.

At each discrete time level, we have to solve the nonlinear system of algebraic equations
given by (1.9a)–(1.9c). Since β′(0) = +∞ and since the solution takes the value of 0, we cannot
directly apply the Newton method for this purpose. The traditional finite element technique
to overcome this difficulty consists in regularization (approximation of β by functions with
bounded slope), cf. [20]. Another method, applicable however only when the discrete maximum
principle holds, consists in perturbing the initial and boundary conditions so that all the
values that the scheme works with were strictly positive (the problem is no more degenerate
parabolic), see [98, 99]. We use here a method which has been used in the field of the finite
volume method (cf. [61]): we introduce new unknowns unD = β(cnD) and rewrite the system of
equations (1.9a)–(1.9c) for these new unknowns. We believe that this approach is advantageous
for the following reasons: (i) There is no need to regularize the problem or to perturb the data
(now [β−1]′(0) = 0); (ii) One can directly apply the Newton method to linearize the problem;
(iii) The resulting matrices are diagonal for the part of the unknowns corresponding to the
region where the concentration is zero. Indeed, on the step k of the linearization at time tn, we
approximate cn,kE = β−1(un,kE ) ≈ β−1(un,k−1

E ) + (β−1)′(un,k−1
E )(un,kE − un,k−1

E ), which vanishes
in view of β−1(0) = (β−1)′(0) = 0. Let {un,kD }D∈Dint

h
be the solution vector on the step k. The

linearization is terminated whenever( ∑
D∈Dint

h

(un,kD − un,k−1
D )2

) 1
2
/( ∑

D∈Dint
h

(un,kD )2
) 1

2 ≤ 1e-10 .

The bi-conjugate gradients stabilized method (Bi-CGStab) [103, 117], preconditioned by the
LU incomplete factorization with drop tolerance 1e-3, cf. [111], is used for the solution of the
associated linear systems. The iterations were stopped whenever the relative residual decreased
below 1e-10.
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Ref. T. st. Unkn. Peδ=0.05 tδ=0.05 Peδ=0.01 tδ=0.01 Peδ=0.0001 tδ=0.0001

1 4 88 4.56 0:01 22.80 0:01 2280.0 0:01
3 16 1504 1.14 0:16 5.70 0:15 570.0 0:11
5 64 24448 0.29 19:11 1.43 17:49 142.5 9:51

Table 1.1: Number of refinements, number of time steps, number of unknowns, Péclet number,
and computational times in min:sec for δ = 0.05, 0.01, and 0.0001, respectively

We consider three values of δ: 0.05, 0.01, and 0.0001. The number of refinements is
r = 1, 3, and 5 (r = 0 corresponds to the initial mesh). We refer to Table 1.1 for the number
of unknowns, Péclet numbers, and computational times. For the finest meshes, there were up
to 15 Newton steps necessary in the first iteration. This number then decreased to approx.
7 per time step. We can see the approximate solution for δ = 0.01 and r = 3 at t = 0.25 in
Figure 1.3. We give the profiles of approximate solutions in y = 0.5 for the different values of
δ and r in Figures 1.4 and 1.5. The profile in y = 0.5 is defined by all the calculated values
cD such that QD (the midpoint of the edge σD associated with the dual volume D) satisfies
|QD − l0.5| ≤ 0.25 for r = 1, |QD − l0.5| ≤ 0.08 for r = 3, and |QD − l0.5| ≤ 0.02 for r = 5,
where l0.5 is the line y = 0.5.

We finally give some comments on the results. First, the scheme works easily for the
given irregular mesh, which would not be possible with the standard finite volume method,
cf. [61]. This irregularity (angles greater than π/2) on the other hand causes the violation
of the discrete maximum principle. However, this violation is only noticeable for the coarsest
meshes (r = 0, 1, in power of 1e-3) and disappears with the refinement of the meshes. The
scheme naturally works with negative values due to the appropriate definition of β(c) for c < 0.
We remark that the negative values of the approximation that are visible in Figure 1.3 have no
relation to the discrete maximum principle; they are only a consequence of a piecewise linear
interpretation of the (positive) values cnD. The influence of unsuitable shapes of the elements
is also visible in Figures 1.4 and 1.5—notice the local fluctuations in the profiles for r = 1 and
3. This influence is however only because of the finite volume part of the scheme, which can
be easily verified by considering a pure hyperbolic problem. Next, the local Péclet upstream
weighting reduces the numerical diffusion of full upstream weighting to the amount exactly
necessary to ensure the stability of the scheme. In particular, the coefficients αnD,E given
by (1.11) automatically increase with r. Moreover, the different values of these parameters
for different dual sides of the mesh reflect the local ratio of the diffusion and convection fluxes
(recall that e.g. for a dual side parallel with v, the flux of v through this side is zero). This
numerical flux would be still more efficient for a problem where the ratio of v and δ is not
uniform over Ω. Finally, precise approximation of realistic convection-dominated problems on
fixed grids with the proposed scheme may still be expensive in terms of the computational
cost. A local refinement strategy as that proposed in [95, 96] would then be necessary.

1.8 Appendix A: Technical lemmas

We give here some technical lemmas that were needed in this chapter.

Lemma 1.8.1. Let us consider the elliptic problem

−∇ · (S∇p) = q in Ω , (1.72a)
p = 0 on ∂Ω , (1.72b)
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Figure 1.4: Solution profiles for y = 0.5 and δ = 0.01, at t = 0.5 (left) and at t = 0.75 (right)
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Figure 1.5: Solution profiles for y = 0.5 at t = 0.5, δ = 0.05 (left) and δ = 0.0001 (right)

where q ∈ L2(Ω). Then the stiffness matrix for the Lagrange multipliers of the hybridization of
the lowest-order Raviart–Thomas mixed finite element method on the simplicial mesh Th has
the form

MD,E = −
∑
K∈Th

(SK∇ϕE ,∇ϕD)0,K D,E ∈ Dint
h , (1.73)

where

SK =
( 1
|K|

∫
K

S−1 dx
)−1

∀K ∈ Th . (1.74)

Proof:

The hybridization of the lowest-order Raviart–Thomas mixed finite element method for the
problem (1.72a)–(1.72b) reads (cf. [33, Section V.1.2]): find uh ∈ Vh, ph ∈ Φh, and λh ∈ Λh
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such that∑
K∈Th

{
(S−1uh,vh)0,K − (∇ · vh, ph)0,K + 〈vh · n, λh〉∂K

}
= 0 ∀vh ∈ Vh , (1.75a)

−
∑
K∈Th

(∇ · uh, φh)0,K = −(q, φh)0,Ω ∀φh ∈ Φh , (1.75b)

∑
K∈Th

〈uh · n, µh〉∂K = 0 ∀µh ∈ Λh . (1.75c)

Here, Vh is the space of elementwise linear vector functions such that uh ∈ Vh satisfies
uh|K = (aK + dKx, bK + dKy) if d = 2 and uh|K = (aK + dKx, bK + dKy, cK + dKz) if d = 3
for all K ∈ Th, Φh is the space of elementwise constant scalar functions, and Λh is the space
of sidewise constant scalar Lagrange multipliers. For all D ∈ Dh, we denote λh|σD

by λD and
require λD = 0 for all D ∈ Dext

h . We now extend the ideas of [38], where the tensor S is
supposed piecewise constant on Th.

Let us set λ̃h :=
∑
D∈Dh

λDϕD. Using (1.16), we have

∑
σD∈EK

λD|σD|nσD
= |K|

∑
σD∈EK

λD∇ϕD|K = |K|∇λ̃h|K .

Then denoting the unit coordinate vectors as ei and taking, respectively, vh = ei in K,
1 ≤ i ≤ d, vh = 0 otherwise as the test functions in (1.75a), we come to∫

K
S−1uh dx + |K|∇λ̃h|K = 0 ∀K ∈ Th .

Next we notice that the stiffness matrix does not depend on q and hence we can pose q = 0.
Considering φh = 1 on K and zero otherwise in (1.75b), this yields dK = 0 for all K ∈
Th. Hence uh|K = −SK∇λ̃h|K with SK given by (1.74). It now suffices to substitute this
into (1.75c) to obtain a system for the Lagrange multipliers λD, D ∈ Dint

h , with the matrix
given by (1.73). �

Lemma 1.8.2. Let us consider the function B(s), s ∈ R, B(s) = β(s)s −
∫ s
0 β(τ) dτ , with β

satisfying Assumption (A1). Then B(s) ≥ s2cβ/2 for all s ∈ R.

Proof:

Let us first consider a given s ≥ 0. We then have for each h > 0

B(s+ h) −B(s)
h

=
β(s+ h) − β(s)

h
s+ β(s + h) − 1

h

∫ s+h

s
β(τ) dτ .

This gives, using that β(s + h) − β(s) ≥ cβh, which follows from Assumption (A1), and the
continuity of β

lim inf
h→0+

B(s+ h) −B(s)
h

≥ cβs .

Hence, using the fact that B(0) = 0 and that s2cβ/2 = 0 for s = 0, we have B(s) ≥ s2cβ/2 for
all s ≥ 0. The proof for s < 0 proceeds similarly. �

Lemma 1.8.3. Let β satisfy Assumption (A2). Then [β(s)]2 ≤ 2C2
β + 4L2

βP
2 + 4L2

βs
2 for all

s ∈ R.
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Proof:

If s ∈ [−P,P ], the assertion of the lemma is trivially satisfied, since by Assumption (A2),
|β(s)| ≤ Cβ. If s > P , then using the Lipschitz continuity of β on [P,+∞), one has

β(s) = β(P ) + β(s) − β(P ) ≤ β(P ) + Lβ(s− P )

and similarly for s < −P . Thus, using the inequality (a± b)2 ≤ 2(a2 + b2) and |β(±P )| ≤ Cβ,
one has, for |s| > P ,

[β(s)]2 ≤ 2C2
β + 4L2

βP
2 + 4L2

βs
2 . �

Lemma 1.8.4. Let Ω ⊂ Rp, p > 1, be an open bounded set, {an, n ∈ N} a sequence of
functions from L2(Ω), defined by zero on Rp \ Ω, hn a sequence of non-negative real values
with limn→∞ hn = 0, and C > 0. Let the functions an satisfy∫

Ω

(
an(x + η) − an(x)

)2
dx ≤ C|η| + hn ∀η ∈ R

p , ∀n ∈ N . (1.76)

Then

∀ε > 0 ∃ζ > 0 ∀η ∈ R
p, |η| < ζ ∀n ∈ N

∫
Ω

(
an(x + η) − an(x)

)2
dx ≤ ε . (1.77)

Proof:

Let us consider a fixed ε > 0. Let n0 be such that ∀n > n0, |hn| < ε/2. The continuity in
mean of the functions a1, . . . , an0 implies∫

Rp

(
ai(x + η) − ai(x)

)2
dx −→ 0 as |η| → 0 ∀i ∈ {1, . . . , n0} ,

or, more precisely,

∀i ∈ {1, . . . , n0} ∀ε∗ > 0 ∃ζ∗i > 0 ∀η∗ ∈ R
p, |η∗| < ζ∗i∫

Rp

(
ai(x + η∗) − ai(x)

)2
dx ≤ ε∗ . (1.78)

We set ε∗ = ε in (1.78) and define ζ∗ := mini=1,...,n0 ζ
∗
i . Since n0 < ∞, ζ∗ > 0. It is finally

enough to choose
ζ = min

{
ζ∗,

ε

2C

}
.

Indeed, for n < n0, estimate (1.77) is valid due to (1.78). For n > n0, (1.76) and the fact that
|hn| < ε/2 yields the assertion of the lemma. �

Lemma 1.8.5. Let Ω ⊂ Rp, p ≥ 1, be an open bounded set and let d ≥ 1. Let the vector-valued
functions un ∈ [L2(Ω)]d such that

∫
Ω un · un dx ≤ U2, U > 0, converge weakly in [L2(Ω)]d to

some function u ∈ [L2(Ω)]d. Let the matrix-valued functions Mn, Mn
i,j ∈ L2(Ω), 1 ≤ i, j ≤ d,

converge elementwise strongly in L2(Ω) to some function M. Then∫
Ω

Mnun · ψ dx →
∫

Ω
Mu · ψ dx

for all ψ ∈ [C(Ω)]d.
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Proof:

We have∫
Ω
(Mnun −Mu) · ψ dx =

d∑
i=1

d∑
j=1

∫
Ω
(Mn

i,ju
n
j − Mi,juj)ψi dx

=
d∑
i=1

d∑
j=1

(∫
Ω
(Mn

i,j −Mi,j)unj ψi dx +
∫

Ω
(unj − uj)Mi,jψi dx

)
.

The first term is bounded by

Cψ

d∑
i=1

d∑
j=1

(∫
Ω
(Mn

i,j −Mi,j)2 dx
) 1

2
(∫

Ω
(unj )

2 dx
)1

2 ≤ CψU

d∑
i=1

d∑
j=1

(∫
Ω
(Mn

i,j − Mi,j)2 dx
) 1

2
,

using the fact that |ψi| ≤ Cψ, 1 ≤ i ≤ d, Cψ > 0, and the Cauchy–Schwarz inequality, and
thus converges to zero using the strong convergence of Mn

i,j to Mi,j, 1 ≤ i, j ≤ d. The second
term converges to zero by the definition of the weak convergence of un to u. �

1.9 Appendix B: A combined finite volume–finite element

scheme for contaminant transport simulation on non-
matching grids

We present in this appendix a variant of the scheme from the first part of the chapter for
nonmatching grids and apply it to contaminant transport simulation in porous media.

1.9.1 Introduction

We consider in this appendix the equation (1.1) in its precise form describing the reactive
miscible displacement of one contaminant in porous media. We suppose that a domain Ω ⊂ Rd,
d = 2, 3, is discretized into a nonoverlapping nonmatching grid possibly containing nonconvex
elements, as that given in Figure 1.6 below by the dashed line.

The discretization methods for nonmatching grids represent a very active area of research.
They are usually proposed in the context of domain decomposition methods, cf. [102]. The
mortar method was developed for elliptic problems discretized by the finite element or spectral
methods in [26]. This approach has been later extended to mixed finite element methods [11,
120], finite volume element methods [55], and cell-centered finite volume methods [3, 66]. A
nonconsistent but simple, stable, and efficient (see the comparative tests in [66]) cell-centered
finite volume scheme for nonoverlapping nonmatching grids has been proposed in [36].

We apply here the ideas of combined finite volume–finite element schemes (cf. [67, 114]) and
in particular a variant of the scheme proposed and studied in the first part of this chapter to the
discretization of (1.1) on the given grids. We are motivated by the following consideration: the
mesh can be nonmatching and can contain nonconvex control volumes for a pure cell-centered
finite volume discretization of the equation (1.1) without the diffusion term, cf. [61, Chapter
VI]. The mesh is required to match along hyperplanes of Rd and to consist of convex control
volumes only when the diffusion term is present, cf. [61, Chapter III]. We however notice that
given a set of points, we can always construct a simplicial mesh (consisting of triangles if d = 2
and of tetrahedra if d = 3) with vertices given by this set of points. Hence an intuitive idea
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is as follows: given a nonmatching mesh with possibly nonconvex elements and with a set of
points associated with these elements, construct a simplicial mesh having this set of points
as vertices. Then consider a finite element discretization of the diffusion term of (1.1) on the
simplicial mesh and a finite volume discretization of the other terms of (1.1) on the original
mesh.

We believe that the proposed approach to the discretization of the equation (1.1) on non-
matching grids is in some sense the simplest, yet (at least in our opinion) very efficient. In
particular, we do not introduce any supplementary equations or unknowns on the boundary
between the regions with nonmatching grids, nor do we use any interpolation of the discrete
solutions on this boundary. There is no need for this for the finite volume part and the finite
element part uses a conforming mesh. The proposed scheme is similar to that from [36]. The
essential difference is that we replace the finite volume diffusion fluxes by the finite element
ones. This is very important in the present case, since the diffusion fluxes through the inter-
faces between the subdomains with nonmatching grids of the scheme proposed in [36] are not
consistent, whereas our discrete diffusion fluxes are consistent. Next, the scheme is stable since
we avoid spurious oscillations in the convection-dominated case by checking the local Péclet
number and by adding exactly the necessary amount of upstream weighting and it possesses a
discrete maximum principle under some conditions on the simplicial mesh and on the tensor
S. The scheme can finally be easily implemented in any finite volume code, in order to permit
a (nonmatching) local refinement of the mesh and an easy discretization of inhomogeneous
and anisotropic tensors, a highly desirable feature in contaminant transport modeling. This
was in fact our original motivation.

This appendix is organized as follows. We describe in Section 1.9.2 the problem of reac-
tive transport with equilibrium adsorption in porous media. We propose in Section 1.9.3 a
combined finite volume–finite element scheme with the backward Euler finite difference time
stepping for the discretization of this problem. We prove in Section 1.9.4 the local conserva-
tivity of the scheme and the discrete maximum principle under appropriate conditions on the
simplicial mesh and on the tensor S. Its convergence could be proved using the techniques
from the first part of this chapter. Finally, in Section 1.9.5 we demonstrate the performances
of the proposed scheme on some model as well as real problems and in Section 1.9.6 we give
some concluding remarks.

1.9.2 The contaminant transport problem

Let (0, T ) be a time interval, 0 < T < +∞. We consider a reactive miscible displacement with
equilibrium adsorption of one contaminant in Ω, described by

∂(θc)
∂t

+ ρb
∂w(c)
∂t

−∇ · (S∇c) + ∇ · (cv)

+λ (θc+ ρbw(c)) − qoutc = qincs in Ω × (0, T ) , (1.79a)
c(·, 0) = c0 in Ω , (1.79b)

c = g on ∂Ω × (0, T ) . (1.79c)

The problem (1.79a)–(1.79c) falls into the frame of the problem (1.1)–(1.3) studied in the first
part of this chapter, with an additional sink term and an inhomogeneous Dirichlet boundary
condition. Neumann or Robin boundary conditions can also be considered. In (1.79a)–(1.79c)
c = c(x, t) is the unknown concentration of the dissolved contaminant ([ML−d]), θ = θ(x, t)
is the water content ([-]) (we shall hereafter denote by θs the saturated water content and
by θr the residual water content), ρb = ρb(x) is the bulk density of the porous medium
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([ML−d]), and w : R → R is the equilibrium adsorption function. We suppose that adsorption
is sufficiently fast in comparison with the speed of the displacement of the contaminant so that
the concentration of the dissolved contaminant c and the concentration ratio of the immobilized
contaminant w(c) ([-]) are in equilibrium. In particular, we shall consider, for c ≥ 0, w(c) =
µ1c

µ2 , where µ1 and µ2 are positive constants, in the case of the Freundlich isotherm and
w(c) = ν1ν2c/(1 + ν2c), where ν1 and ν2 are positive constants, in the case of the Langmuir
isotherm. We suppose that the velocity field v = v(x, t) ([LT−1]) is given by the Darcy law

v = −K(p)∇(p+ z) , (1.80)

where K = K(x, p) is the hydraulic conductivity tensor ([LT−1]), z = z(x) is the elevation,
the upward vertical coordinate ([L]), and p = p(x, t), the pressure head ([L]), is the solution
of the Richards problem, which describes two-phase water–air flow in the subsurface,

∂θ(p)
∂t

−∇ · K(p)∇(p+ z) = qout + qin in Ω × (0, T ) , (1.81a)

p(·, 0) = p0 in Ω , (1.81b)
p = pD on ΓD × (0, T ) , (1.81c)

−K(p)∇(p+ z) · n = uN on ΓN × (0, T ) . (1.81d)

Here ΓD ∪ ΓN = ∂Ω, ΓD ∩ ΓN = ∅, |ΓD| �= 0. The dependence of θ and K on p is given for
example by the van Genuchten law, see [118]. We suppose that the diffusion–dispersion tensor
S = S(x,v) ([L2T−1]) is given by

Sii = αT |v| + (αL − αT )
v2
i

|v| + σ i = 1, . . . , d ,

Sij = Sji = (αL − αT )
vivj
|v| i, j = 1, . . . , d ,

where vi are the components of the velocity vector v and |v| is its length, αL = αL(x) is
the longitudinal dispersivity ([L]), αT = αT (x) is the transverse dispersivity ([L]), and finally
σ = σ(x) is the molecular diffusion coefficient ([L2T−1]). We consider first-order irreversible
reactions such as radioactive decay, hydrolysis, and some forms of biodegradation, where λ is
the reaction rate constant ([T−1]). Finally, qin = qin(x, t), qin ≥ 0, denotes the sources per unit
volume ([T−1]). In the case of a source, we have to specify the concentration of the entering
dissolved contaminant cs. In contrast, the concentration of the leaving dissolved contaminant
due to the sinks per unit volume qout = qout(x, t) ([T−1]), qout ≤ 0, is given by the unknown
concentration c. We refer to [19, 25, 79, 123] for more details.

1.9.3 Combined finite volume–finite element scheme

We define in this section the space and time discretizations and introduce the combined finite
volume–finite element scheme.

Space and time discretizations

We suppose a generally nonconstant time step for the time discretization. We split up the
time interval (0, T ) such that 0 = t0 < . . . < tn < . . . < tN = T and define 	tn := tn − tn−1,
n ∈ {1, 2, . . . , N}. We next describe the space discretization.

As a primal grid of Ω, we understand a partition Dh of Ω into closed polygons such that
Ω =

⋃
D∈Dh

D and such that the intersection of interiors of two different polygons is empty. We
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Dh

Figure 1.6: Primal nonmatching grid Dh (dashed) and dual triangular grid Th (solid)

in particular admit nonmatching grids, i.e. the case where there exist two different polygons
D,E ∈ Dh such that their intersection is not an empty set but it is not a common vertex,
edge, or side (edge if d = 2, face if d = 3) of D and E. An example of an admissible primal
grid is given in Figure 1.6 by the dashed line. We suppose that there exists a family of points
Ph such that there is one point VD in the interior of D associated with each D ∈ Dh.

A dual grid of Ω is a partition Th of Ω into closed simplices which satisfies the following
properties: (i) The set of points Ph is contained in the set of vertices of Th, denoted by Vh; (ii)
The vertices from Vh \Ph lie on the boundary of Ω; (iii) Th is conforming, i.e. the intersection
of two different simplices is either an empty set or their common vertex, edge, or face; (iv)
Ω =

⋃
K∈Th

K. This definition is not unique: we have a choice in connecting the different
points VD ∈ Ph and also a choice in the definition of the vertices on the boundary. The general
intention is to find a triangulation such that the transmissibilities SnD,E defined below by (1.83)
were non-negative, since this implies the discrete maximum principle, cf. Theorem 1.9.4 and
Remarks 1.9.5 and 1.9.6 below. An example of a dual grid to a primal nonmatching grid is
given in Figure 1.6 by the solid line.

In order to simplify the notation in the next sections, we define still a fictitious boundary
grid Dext

h . We associate a fictitious control volume D with each vertex V ∈ Vh lying on the
boundary ∂Ω. We define D in such way that D ∩ Ω = ∅, D ∩ Ω ⊂ ∂Ω, and V ∈ D ∩ Ω.
We finally require that the boundaries of D, D ∈ Dext

h , halve the segments of ∂Ω between
the boundary vertices, so that ∪D∈Dext

h
{D ∩ Ω} = ∂Ω. An example of D ∈ Dext

h is given in
Figure 1.6 by the dotted line. We shall use the notation VD for the vertex associated with
D ∈ Dext

h , as for the vertices from Ph and control volumes from Dh.
We next denote by N (D) the set of all neighbors of a control volume D ∈ Dh, i.e. the

set of E ∈ Dh ∪ Dext
h such that D ∩ E has a positive (d − 1)-dimensional measure. In partic-

ular, using the above definition of the set Dext
h , we can easily write the integral over ∂D as∑

E∈N (D)

∫
∂D∩∂E dγ(x). Similarly, for a vertex VD ∈ Ph, we denote by M(VD) the set of all

vertices VE ∈ Vh such that there exists an edge between VD and VE .

The combined scheme

The combined scheme is obtained by the discretization of the diffusion term of (1.79a) by
means of the piecewise linear conforming finite element method on Th, the discretization of
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the other terms of (1.79a) by means of the cell-centered finite volume method on Dh, and using
a finite difference time stepping.

Definition 1.9.1. (Combined scheme) The fully implicit combined finite volume–finite
element scheme for the problem (1.79a)–(1.79c) reads: find the values cnD, D ∈ Dh, n ∈
{0, 1, . . . , N}, such that

c0D =
1
|D|

∫
D
c0(x) dx D ∈ Dh , (1.82a)

cnD = g(VD, tn) D ∈ Dext
h , n ∈ {1, 2, . . . , N} , (1.82b)

θnDc
n
D − θn−1

D cn−1
D

	tn
|D| + (ρb)D

w(cnD) − w(cn−1
D )

	tn
|D| −

∑
VE∈M(VD)

S
n
D,E(cnE − cnD)

+
∑

E∈N (D)

vnD,E cnD,E + λ[θnDc
n
D + (ρb)Dw(cnD)]|D| − (qout)nDc

n
D|D| = (qincs)nD|D|

D ∈ Dh , n ∈ {1, 2, . . . , N} . (1.82c)

In the above definition we have used

θnD :=
1
|D|

∫
D
θ(x, tn) D ∈ Dh , n ∈ {0, 1, . . . , N} ,

(ρb)D :=
1
|D|

∫
D
ρb(x) D ∈ Dh ,

(qout)nD :=
1

	tn|D|

∫ tn

tn−1

∫
D
qout(x, t) dxdt D ∈ Dh , n ∈ {1, 2, . . . , N} ,

(qincs)nD :=
1

	tn|D|

∫ tn

tn−1

∫
D
qin(x, t)cs(x, t) dxdt D ∈ Dh , n ∈ {1, 2, . . . , N}

and we have denoted the flux of v between D ∈ Dh and E ∈ N (D) for n ∈ {1, 2, . . . , N} by

vnD,E :=
1

	tn

∫ tn

tn−1

∫
∂D∩∂E

v(x, t) · nD,E dγ(x) dt ,

where nD,E is the unit normal vector of the side ∂D ∩ ∂E between D and E, outward to
D. For the notational convenience, we define vnD,E by 0 if E �∈ N (D). We suppose that the
functions g and θ are sufficiently smooth in order to define cnD, D ∈ Dext

h , and θnD. In analogy
with the first part of this chapter, we first define

S̃n(x) :=
1

	tn

∫ tn

tn−1

S(x, t) dt x ∈ Ω , n ∈ {1, 2, . . . , N} .

The transmissibility between VD and VE , D ∈ Dh, E ∈ Dh ∪ Dext
h , is then given by

S
n
D,E := −

∫
Ω

Sn∇ϕE · ∇ϕD dx n ∈ {1, 2, . . . , N} , (1.83)

where we have again two choices of the definition of Sn. We can either use directly Sn = S̃n,
or define a piecewise constant tensor

Sn(y) =
( 1
|K|

∫
K

[S̃n(x)]−1 dx
)−1

y ∈ K , K ∈ Th , n ∈ {1, 2, . . . , N} .
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These two choices correspond, respectively, to the arithmetic or harmonic average of the
diffusion–dispersion tensor.

Finally, again in analogy with the first part of this chapter, we define the value cnD,E for
D ∈ Dh , E ∈ N (D), and n ∈ {1, 2, . . . , N} as follows:

cnD,E :=
{
cnD + αnD,E(cnE − cnD) if vnD,E ≥ 0
cnE + αnD,E(cnD − cnE) if vnD,E < 0

.

Here αnD,E is the coefficient of the amount of upstream weighting which is defined by

αnD,E :=
max

{
min

{
SnD,E,

1
2 |vnD,E |

}
, 0
}

|vnD,E |
, vnD,E �= 0 . (1.84)

We set αnD,E := 0 if vnD,E=0. We remark that in the scheme studied in the first part of this
chapter, there can be nonzero convective and diffusive fluxes between D and E only if D and E
neighbors. This is however not the case with the scheme (1.82a)–(1.82c): there can be nonzero
convective flux between D and E only if D and E neighbors, but there can be nonzero diffusive
flux between D and E even if D and E are not neighbors (because the transmissibility between
D and E is given by the grid Th). However, as we shall see in Theorem 1.9.4, the local Péclet
upstream weighting still guarantees, adding minimal numerical diffusion, the stability of the
scheme.

1.9.4 Discrete properties of the scheme

We show in this section two essential properties of the scheme proposed in this appendix. The
ideas follow those introduced in [61] for finite volume schemes and extended onto combined
finite volume–finite element schemes in the first part of this chapter.

Theorem 1.9.2. (Conservativity of the scheme) The scheme (1.82a)–(1.82c) is conser-
vative with respect to the primal mesh Dh.

Proof:

Let us take two fixed dual volumes E ∈ Dh and D ∈ Dh. The discrete diffusive flux from
D to E is given by −SnD,E(cnE − cnD). The discrete diffusive flux from E to D is given by
−SnE,D(cnD − cnE), i.e. we have their equality up to the sign, considering that SnD,E = SnE,D for
all n ∈ {1, 2, . . . , N}, which follows from (1.83) using the symmetry of the tensor S.

For the discrete convective flux from D to E, we have vnD,E[cnD+αnD,E(cnE−cnD)], supposing
vnD,E ≥ 0. For the discrete convective flux from E to D, we have vnE,D[cnD + αnE,D(cnE − cnD)],
i.e. again the equality up to the sign, considering that vnD,E = −vnE,D and that αnD,E = αnE,D,
which follows from SnD,E = SnE,D. For vnD,E < 0, the proof is similar. Hence the combined
finite volume–finite element scheme is conservative as the pure finite volume is, cf. [61]. �

It follows from (1.80) and (1.81a) that ∇ · v = qout + qin − ∂θ/∂t. This property implies
the following lemma:

Lemma 1.9.3. For all D ∈ Dh and n ∈ {1, 2, . . . , N},∑
E∈N (D)

vnD,E ĉnD,E =
∑

E∈N (D)

(vnD,E)−(cnE − cnD) + (qin)nDc
n
D|D|

+(qout)nDc
n
D|D| −

(θnD − θn−1
D

	tn

)
cnD|D| ,

where (vnD,E)− := min{vnD,E , 0} and where the definition of (qin)nD is as that of (qout)nD.
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Proof:

Considering that vnD,E = (vnD,E)+ + (vnD,E)−, where (vnD,E)+ := max{vnD,E , 0}, and the defi-
nition of the upstream weighting, we have∑

E∈N (D)

vnD,E ĉnD,E =
∑

E∈N (D)

(vnD,E)+cnD +
∑

E∈N (D)

(vnD,E)−cnE

=
∑

E∈N (D)

vnD,E c
n
D +

∑
E∈N (D)

(vnD,E)−(cnE − cnD)

= cnD
1

	tn

∫ tn

tn−1

∫
D
∇ · v(x, t) dxdt +

∑
E∈N (D)

(vnD,E)−(cnE − cnD)

= cnD(qin)nD|D| + cnD(qout)nD|D| +
∑

E∈N (D)

(vnD,E)−(cnE − cnD)

−
(θnD − θn−1

D

	tn

)
cnD|D| . �

We now give an important theorem, guaranteeing that under certain conditions on Th and
S, we obtain physically correct results.

Theorem 1.9.4. (Discrete maximum principle) Let SnD,E ≥ 0 for all D ∈ Dh, VE ∈
M(VD), and all n ∈ {1, 2, . . . , N}. Let the initial, sources, and Dirichlet boundary concentra-
tions satisfy 0 ≤ c0 ≤M , 0 ≤ cs ≤M , and 0 ≤ g ≤M , respectively. Let finally the adsorption
function w be nondecreasing and such that w(0) = 0 and let λ ≥ 0. Then the solution of the
problem (1.82a)–(1.82c) satisfies

0 ≤ cnD ≤M

for all D ∈ Dh, n ∈ {1, 2, . . . , N}.

Proof:

Setting TnD,E := SnD,E − |vnD,E |αnD,E, D ∈ Dh, E ∈ L(D), where E ∈ L(D) if E ∈ N (D) or if
VE ∈ M(VD), and using Lemma 1.9.3, we can rewrite the scheme (1.82a)–(1.82c) as

θn−1
D cnD − θn−1

D cn−1
D

	tn
|D| + (ρb)D

w(cnD) −w(cn−1
D )

	tn
|D| −

∑
E∈L(D)

T
n
D,E(cnE − cnD)

+
∑

E∈N (D)

(vnD,E)−(cnE − cnD) + λ[θnDc
n
D + (ρb)Dw(cnD)]|D| = (qincs)nD|D| − cnD(qin)nD|D|

D ∈ Dh , n ∈ {1, 2, . . . , N} .

In view of the definition of TnD,E and of (1.84), one has TnD,E ≥ 0 for all D ∈ Dh, E ∈ L(D), and
n ∈ {1, 2, . . . , N}. We now make use of an induction argument. We remark that 0 ≤ cnD ≤M
is satisfied for n = 0, using the assumption on c0. Let us suppose that 0 ≤ cn−1

D ≤ M for all
D ∈ Dh for a fixed (n − 1) ∈ {0, 1, . . . , N − 1}. Since the set Dh ∪ Dext

h is finite, there exist
D0,D1 ∈ Dh ∪ Dext

h such that cnD0
≤ cnD ≤ cnD1

for all D ∈ Dh ∪ Dext
h . Using a contradiction

argument we prove below that cnD0
≥ 0 and cnD1

≤M . Suppose that cnD0
< 0. We remark that

D0 ∈ Dh, using the assumption on the Dirichlet boundary condition g. Then, since TnD0,E
≥ 0

and −(vnD0,E
)− ≥ 0, we have∑

E∈L(D0)

T
n
D0,E(cnE − cnD0

) +
∑

E∈N (D0)

−(vnD0,E)−(cnE − cnD0
) ≥ 0 .
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This yields

θn−1
D0

cnD0
− θn−1

D0
cn−1
D0

	tn
|D0| + (ρb)D0

w(cnD0
) − w(cn−1

D0
)

	tn
|D0|

+λ[θnD0
cnD0

+ (ρb)D0w(cnD0
)]|D0| − (qincs)nD0

|D0| + cnD0
(qin)nD0

|D0| ≥ 0 .

Now cnD0
< 0 implies cnD0

(qin)nD0
≤ 0 and one also has −(qincs)nD0

≤ 0. Using the fact that
θ ≥ θs > 0 and that w is nondecreasing and satisfies w(0) = 0, θnD0

cnD0
+ (ρb)D0w(cnD0

) ≤ 0
follows. Finally, w(cnD0

)−w(cn−1
D0

) ≤ 0, using that w is nondecreasing. Thus cnD0
≥ cn−1

D0
, which

is a contradiction.
Let us now suppose that cnD1

> M . In view of the Dirichlet boundary condition, D1 again
necessarily lies in Dh. Similarly as in the previous case, one comes to

θn−1
D1

cnD1
− θn−1

D1
cn−1
D1

	tn
|D1| + (ρb)D1

w(cnD1
) − w(cn−1

D1
)

	tn
|D1|

+λ[θnD1
cnD1

+ (ρb)D1w(cnD1
)]|D1| − (qincs)nD1

|D1| + cnD1
(qin)nD1

|D1| ≤ 0 .

We can estimate
−(qincs)nD1

≥ −M(qin)nD1
≥ −cnD1

(qin)nD1
.

Simply θnD1
cnD1

+(ρb)D1w(cnD1
) ≥ 0 and w(cnD1

)−w(cn−1
D1

) ≥ 0. This implies cnD1
≤ cn−1

D1
, which

is again a contradiction. �

Remark 1.9.5. (Discrete maximum principle) We see that the discrete maximum princi-
ple holds as soon as the transmissibilities SnD,E defined by (1.83) are non-negative. This is e.g.
the case, in two space dimensions, when S reduces to a constant scalar function and when Th is
Delaunay, that is the circumcircle of each triangle does not contain any vertex in its interior,
and under the additional condition that no circumcenters of boundary triangles lie outside the
domain, cf. [80, 100]. Remark that given a set of points, we can always construct a Delaunay
triangulation. In three space dimensions, however, a Delaunay tetrahedral mesh in general
does not guarantee the non-negativity of the finite element transmissibilities, cf. [86, 100]. We
refer to Remark 1.9.7 for the modification of the proposed scheme, which guarantees the dis-
crete maximum principle in both two and three space dimensions under the condition that S
is a constant scalar function.

Remark 1.9.6. (Dual Delaunay triangulation for a locally refined square grid) Let
us consider a locally refined square grid, where a square is refined into 9 subsquares and where
the difference of levels of refinement of two neighboring squares is at most one, such as that
given in Figure 1.7 by the dashed line. Then an example of a dual Delaunay triangulation is
given in Figure 1.7 by the solid line.

Remark 1.9.7. (A two-grid finite volume scheme verifying the discrete maximum
principle for S constant and scalar) When S is a constant scalar function, we can replace
the discretization of the diffusion term by the finite element method on a dual simplicial grid
by a finite volume discretization on a Voronöı grid given by the points from Vh. Recall that
in two space dimensions, this would lead to the same scheme for the Voronöı mesh dual to
a Delaunay triangulation, cf. [61, Section III.12.2]. The interest in it is that in three space
dimensions, the finite volume discretization of a Laplacian on a Voronöı grid still leads to
positive transmissibilities; compare this with Remark 1.9.5.
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Th

Dh

Figure 1.7: Primal locally refined square grid Dh (dashed) and dual triangular grid Th (solid)

1.9.5 Numerical simulations

We present here the results of two numerical experiments in space dimension two.

Model problem with a known analytical solution

The purpose of this problem is to test the proposed scheme on nonmatching grids. Let us
consider a linear model problem of the type (1.79a)–(1.79c) with constant coefficients given by

θ = 1 , w = 0 ,

S = δ

(
1 0
0 1

)
, v = (v1, v2) ,

λ = 0 , qout = 0 , qin = 0 .

The initial and boundary conditions are given by the exact solution

c(x, y, t) =
1

200νt+ 1
e−50

(x−x0−v1t)2+(y−y0−v2t)2

200νt+1

representing a Gaussian peak starting at the point (x0, y0), being transported by the convective
field v, and diffusing. Let us in particular consider

Ω = (0, 3) × (0, 3) , T = 2 ,
v1 = 0.8 , v2 = 0.4 , x0 = 0.5 , y0 = 1.35 .

We consider the discretization of the domain Ω into N2 squares with N = 10, 20, 40, and 80.
We shall call these grids in the following as unrefined grids. We next consider local refinements
and uniform refinements of these grids, where one square is refined into 9 subsquares. We never
refine twice along a given edge. An example of a locally refined grid and the appropriate dual
triangular grid is given in Figure 1.7. In view of Remark 1.9.6, the scheme (1.82a)–(1.82c) for
the considered problem satisfies the discrete maximum principle. We divide the time interval
(0, T ) into 1.6N time steps and consider two values of the parameter δ: for δ = 0.1, the
problem is diffusion-dominated, and for δ = 0.001, the problem is convection-dominated.
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Figure 1.8: Errors of the approximate solutions on unrefined 20× 20 (left) and locally refined
(right) grids for δ = 0.1 at t = 3/8, cut of the domain

N T. st. Unkn. ‖ch − c‖0,h,Ω Unkn. ‖ch − c‖0,h,Ω Unkn. ‖ch − c‖0,h,Ω

10 16 100 0.01277 316 0.00547 900 0.00491
20 32 400 0.00354 1264 0.00301 3600 0.00270
40 64 1600 0.00173 5056 0.00158 14400 0.00143
80 128 6400 0.00086 20224 0.00080 57600 0.00074

Table 1.2: N, number of time steps, number of unknowns, and discrete L2(Ω) errors for δ = 0.1
at t = 2 for unrefined, locally refined, and uniformly refined square grids, respectively

N T. st. Unkn. ‖ch − c‖0,h,Ω Unkn. ‖ch − c‖0,h,Ω Unkn. ‖ch − c‖0,h,Ω

10 16 100 0.1419 316 0.1347 900 0.1347
20 32 400 0.1364 1264 0.1222 3600 0.1222
40 64 1600 0.1249 5056 0.1032 14400 0.1031
80 128 6400 0.1064 20224 0.0777 57600 0.0777

Table 1.3: N, number of time steps, number of unknowns, and discrete L2(Ω) errors for
δ = 0.001 at t = 2 for unrefined, locally refined, and uniformly refined square grids, respectively

We first perform a simple test. We consider δ = 0.1, the time step of length 1/16, a
20× 20 grid of Ω, and its local refinement in a part of the subdomain where c is nonzero. The
pointwise errors in centers of the cells at t = 3/8 are given in Figure 1.8. We can see that we
have decreased the error in the refined part, whereas in the unrefined part, the error almost
does not change. In particular, we do not produce any error around the interface between the
refined and unrefined subdomains.

We next consider the whole time interval (0, 2). During this interval, the peak of the exact
solution moves from the point (0.5, 1.35) to the point (2.1, 2.15). We consider the unrefined,
locally refined, and uniformly refined grids; the locally refined subdomain can be seen in
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Figure 1.9: Exact solution (left) and approximate solution on a locally refined grid (right) for
δ = 0.1 at t = 2

Figure 1.9. We give the discrete L2(Ω) errors at time t = 2 for δ = 0.1 in Table 1.2 and for
δ = 0.001 in Table 1.3. The discrete norm ‖ch − c‖0,h,Ω is the L2(Ω) norm of the difference
of the piecewise constant solution on the square grid and the exact solution, evaluated with
a quadrature formula. We can see an expected linear convergence in the diffusion-dominated
case. The error is significantly decreased by refining the grid locally around the region where
c is nonzero. An example of the solution on a locally refined grid at t = 2 for δ = 0.1 is given
in Figure 1.9, together with the exact solution on the same grid refined uniformly. In the
convection-dominated case, however, the error of the approximate solution is significant. The
one-level local refinement is not sufficient in this case.

Real problem

We simulate in this section a real flow–transport problem provided by the HydroExpert com-
pany, Paris. We use for this purpose the software program TALISMAN of this company,
cf. [104]. The combined scheme on a grid represented in Figure 1.7 is implemented in this
code.

The domain Ω ∈ R3 is an aquifer with bottom coordinate zb = zb(x, y), top coordinate
zt = zt(x, y), and aperture e = zt − zb = e(x, y), see Figure 1.10. We consider the Dupuit
approximation of the Richards equation in Ω, consisting in integrating the Richards equation
over the aquifer aperture e under the assumption that the flow is only horizontal, cf. [23]. We
consider in addition the effect of water compressibility and a nonlinear discharge function. Let
us denote by Ω′ the horizontal plane of Ω, cf. Figure 1.10, and by Γ′

D and Γ′
N the Dirichlet

and Neumann boundaries of Ω′, respectively. The flow problem then reads

∂θ̃(h)
∂t

−∇ · K̃(h)∇h +Qd(h) = q̃out + q̃in in Ω′ × (0, T ) , (1.85a)

h(·, 0) = h0 in Ω′ , (1.85b)
h = hD on Γ′

D × (0, T ) , (1.85c)
−K̃(h)∇h · n = 0 on Γ′

N × (0, T ) , (1.85d)
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Figure 1.10: Considered domain Ω ∈ R3 with its horizontal plane Ω′ ∈ R2

where
∂θ̃(h)
∂h

=
{

El if h ≤ zt
Ese if h ≥ zt

and

K̃(h) =
{

Ks(h− zb) if h ≤ zt
Kse if h ≥ zt

and finally

Qd(h) =
{

0 if h ≤ zt
Kd(h− zt) if h ≥ zt

.

The problem (1.85a)–(1.85d) is two-dimensional, all the variables and in particular the un-
known piezometric head h ([L]), h = p + z, are only functions of the horizontal coordinates
x, y, and the gradient and divergence operators are also only two-dimensional. The storativity
El ([-]) is related to the water content θ by El = θs − θr. The specific storativity Es ([L−1])
is given by the water compressibility and is usually very small in comparison with El/e. The
tensor Ks ([LT−1]) expresses the hydraulic conductivity in the saturated state. The discharge
Qd ([LT−1]) depends on the hydraulic conductance Kd ([T−1]). In analogy with the Darcy
law, we define

ṽ := −K̃(h)∇h . (1.86)

Notice that ṽ is a two-dimensional vector in Ω′ with the units of [L2T−1]. The flux of ṽ through
a segment b ∈ Ω′,

∫
b v(x, t) · nb dγ(x) ([L3T−1]), approximates the flux of groundwater over

a vertical face in Ω, whose intersection with the horizontal plane Ω′ is the segment b.
We make similar approximations in the contaminant transport problem (1.79a)–(1.79c).

We namely suppose that the concentration c does not vary with z and that the diffusion and
convection are only two-dimensional in the horizontal plane Ω′ of Ω. By formally integrat-
ing the three-dimensional convection–reaction–diffusion equation in Ω over e and adding the
discharge, we replace the functions θ, qin, and qout defined in Ω by the functions θ̃, q̃in, and
q̃out − Qd(h) defined in Ω′. We finally use ṽ instead of v in the convection term and in the
definition of the diffusion–dispersion tensor S and consider the gradient and divergence opera-
tors only in Ω′. Notice that we have to replace the molecular diffusion coefficient σ by σ̃ = σe.
Hence the final transport problem is, as the flow problem, two-dimensional in the plane Ω′,
with the three-dimensional units (namely, the concentration is measured in [ML−3]).
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With the assumptions of the previous paragraph, the transport scheme is constructed
as follows. We consider a (nonmatching locally refined) square grid Dh of Ω′ and its dual
triangular grid Th, as that in Figure 1.7. We associate with each D ∈ Dh an aperture eD,
given for instance as the mean of e over D. We seek the values cnD, D ∈ Dh, n ∈ {1, 2, . . . , N},
such that

θ̃nDc
n
D − θ̃n−1

D cn−1
D

	tn
|D| + (ρb)D

w(cnD) − w(cn−1
D )

	tn
|D|eD −

∑
VE∈M(VD)

S̃
n
D,E(cnE − cnD)

+
∑

E∈N (D)

ṽnD,E cnD,E + λ[θ̃nDc
n
D + (ρb)Dw(cnD)eD]|D| − [q̃out −Qd(h)]nDc

n
D|D| = (q̃incs)nD|D|

D ∈ Dh , n ∈ {1, 2, . . . , N}

with appropriately prescribed initial and boundary conditions. Here θ̃nD, D ∈ Dh, n ∈
{0, 1, . . . , N}, are the approximations of θ̃ from (1.85a), given by a flow numerical scheme.
In a similar manner, ṽnD,E are the approximations of the flux of ṽ given by (1.86) through
the interface between the control volumes D ∈ Dh, E ∈ N (D) at time tn. Note that
from (1.85a) and using a locally conservative flow numerical scheme (such as a finite vol-
ume one), ṽnD,E = −ṽnE,D. We define (ρb)D e.g. as the mean of the bulk density ρb over the
cube D × eD. The transmissibilities S̃nD,E are defined by (1.83), while employing ṽ and σ̃ in
the definition of the diffusion–dispersion tensor S instead of v and σ. Note finally that again
for non-negative transmissibilities, the scheme verifies the discrete maximum principle, which
is in particular the consequence of ∇ · ṽ = q̃out + q̃in − Qd(h) − ∂θ̃/∂t following from (1.85a)
and (1.86).

The parameters of the given aquifer are visualized in Figure 1.11. Its horizontal plane
Ω′ fits into a rectangle 1500 × 2400 meters. Its aperture e is smaller than 9 meters and the
above sea level of its top ranges between 137 and 146 meters. There is a small valley in the
western part of the region, going in the northsouthern direction. The given aquifer consists
predominantly of sands with saturated hydraulic conductivity Ks in orders of 10−3 m s−1, but
there is an important clay barrier with Ks as low as 10−6 m s−1 along the eastern boundary
and in the southeastern part of the aquifer. There is no discharge in the entire aquifer except
of the valley, where the hydraulic conductance Kd equals to 0.01 s−1. We suppose that the
storativity El and the specific storativity Es are constant throughout the aquifer and equal
respectively to 0.1 and 10−4 m−1 and that the saturated water content θs (porosity) equals
to 0.3. The aquifer is receiving a constant effective recharge of 11 cm per year and there are
88 point sources of 10−9 m3s−1 distributed in the domain. Dirichlet boundary conditions are
prescribed (fixed piezometric head imposed on the boundary of Ω′). The initial piezometric
head is given also in Figure 1.11. The horizontal plane Ω′ of the aquifer is divided into 8759
identical squares of 15 × 15 meters and the simulation period of one year is divided into 10
equidistant time steps.

The task is, given the hydrodynamical parameters specified in the previous paragraph,
to simulate the propagation of a contaminant entering the aquifer at a concentration of 10
kg m−3 through a new source of a constant yield of 10−3 m3s−1. This source is located in the
southeastern part of the domain near the clay barrier. We suppose that the bulk density ρb
of the porous medium is constant throughout the aquifer and equals to 1600 kg m−3. Also
the longitudinal and transverse dispersivities αL and αT , as well as the molecular diffusion
coefficient σ, are supposed constant and equal to, respectively, 10 m, 1 m, and 10−9 m2s−1. We
consider the Langmuir adsorption isotherm with in particular ν1 = 10−8 and ν2 = 105 m3kg−1.
Finally, first-order irreversible hydrolysis is supposed to take place so that the reaction rate
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constant λ equals to 10−7 s−1. The polluted region will be sufficiently far away from the
boundary, so that Robin boundary conditions for the transport problem are prescribed (zero
total concentration flux through the boundary of Ω′).

First the flow problem was solved. We give in Figure 1.12 the flow field near the pollution
source at the end of the simulated period. The absolute majority of the groundwater flows
around the clay barrier because of its low conductivity. Then, using the water content and
Darcy velocity values on each simulated period, the transport problem was dealt with. This
problem is not convection-dominated; its complexity lies rather in the high ratio of the longitu-
dinal and transverse dispersivities and in the complex flow field. Since the molecular diffusion
coefficient is very small, the concentration should mainly follow the flow field and can in fact
only enter the clay barrier due to the dispersion. The simulations were first performed on an
unrefined grid and then, to justify the results, the mesh was refined. It again turned out that
the refinement of the most exposed parts is sufficient. We give in particular in Figure 1.13 an
example of a still very coarse grid that nevertheless already yields an accurate result. Although
the combined scheme in the given case theoretically does not guarantee the discrete maximum
principle, there were virtually no negative concentrations.

1.9.6 Concluding remarks

The code TALISMAN was originally a finite volume code working with regular cartesian
grids. There was an interest in enabling a local refinement in this code, while subdividing
the computational cells independently (as in Figure 1.7). The first attempt was to maintain
the pure cell-centered finite volume scheme on square cells, while neglecting the orthogonality
condition (i.e. to use the same scheme as that proposed in [36]). This violating of consistency
while refining the grid however showed to produce an error rather than to decrease it. Another
problem was how to discretize the inhomogeneous and anisotropic diffusion–dispersion tensor,
especially on locally refined grids.

It was the implementation of the combined finite volume–finite element scheme in this
code that overcame all the above difficulties. By constructing the dual triangular grid as in
Figure 1.7, the combined scheme completely falls into the theoretical frame of Sections 1.9.3
and 1.9.4. The numerical experiments in Section 1.9.5 confirm that with this scheme, the
local refinement does not produce any errors but substantially improves the results, and this
without any considerable increase of the number of unknowns. In addition, inhomogeneous
and anisotropic diffusion–dispersion tensors are easily incorporated. These results may serve
as an example of the efficiency of the ideas proposed in this appendix.

A local refinement of the computational grid fixed throughout the calculation cannot of
course lead to satisfactory results namely in the convection-dominated case, as it was illustrated
in Section 1.9.5. We intend to use in the future an adaptive local mesh refinement. The idea
is to refine the mesh automatically in the regions where the precision is not sufficient and to
derefine it again as the precision gets sufficient. The derivation of a posteriori error estimates
and development of a local refinement indicator such as that proposed in [95, 96] is a challenging
task for a future work.
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Figure 1.11: Simulated aquifer properties
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Figure 1.12: Flow field at the end of the simulated period

Figure 1.13: Concentration at the end of the simulated period, locally refined mesh



Chapitre 2

Discrete Poincaré–Friedrichs
inequalities

We present in this chapter a direct proof of the discrete Poincaré–Friedrichs inequalities for a
class of nonconforming approximations of the Sobolev space H1(Ω), indicate optimal values of
the constants in these inequalities, and extend the discrete Friedrichs inequality onto domains
only bounded in one direction. We consider a polygonal domain Ω in two or three space
dimensions and its shape-regular simplicial triangulation. The nonconforming approximations
of H1(Ω) consist of functions from H1 on each element such that the mean values of their
traces on interelement boundaries coincide. The key idea is to extend the proof of the discrete
Poincaré–Friedrichs inequalities for piecewise constant functions used in the finite volume
method. The results have applications in the analysis of nonconforming numerical methods,
such as nonconforming finite element or discontinuous Galerkin methods.
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2.1 Introduction

The Friedrichs (also called Poincaré) inequality∫
Ω
g2(x) dx ≤ cF

∫
Ω
|∇g(x)|2 dx ∀g ∈ H1

0 (Ω) (2.1)

and the Poincaré (also called mean Poincaré) inequality∫
Ω
g2(x) dx ≤ cP

∫
Ω
|∇g(x)|2 dx + c̃P

(∫
Ω
g(x) dx

)2
∀g ∈ H1(Ω) (2.2)

(cf. [91]) play an important role in the theory of partial differential equations. We consider
here a bounded polygonal domain (open and connected set) Ω ⊂ Rd, d = 2, 3, H1(Ω) is the
Sobolev space of L2(Ω) functions with square-integrable generalized derivatives, and H1

0 (Ω) is
the subspace of H1(Ω) of functions with zero trace on the boundary ∂Ω of Ω. We refer for
instance to [4] for details on the spaces H1(Ω), H1

0 (Ω).
Let {Th}h be a family of simplicial triangulations of Ω (consisting of triangles in space

dimension two and of tetrahedra in space dimension three). Let the spaces W (Th) be formed
by functions locally in H1(K) on each K ∈ Th such that the mean values of their traces
on interior sides (edges if d = 2, faces if d = 3) coincide. Finally, let W0(Th) ⊂ W (Th) be
such that the mean values of the traces on exterior sides of functions from W0(Th) are equal
to zero (precise definitions are given in the next section). These spaces are nonconforming
approximations of the continuous ones, i.e. W0(Th) �⊂ H1

0 (Ω) and W (Th) �⊂ H1(Ω). We
investigate in this chapter analogies of (2.1) and (2.2) in the forms∫

Ω
g2(x) dx ≤ CF

∑
K∈Th

∫
K
|∇g(x)|2 dx ∀g ∈W0(Th) , ∀h > 0 , (2.3)

∫
Ω
g2(x) dx ≤ CP

∑
K∈Th

∫
K
|∇g(x)|2 dx + C̃P

(∫
Ω
g(x) dx

)2
∀g ∈W (Th) , ∀h > 0 . (2.4)

The validity of (2.3) for W0(Th) consisting of piecewise linear functions (used e.g. in
the Crouzeix–Raviart finite element method) has been established in [116, Proposition 4.13]
provided that Ω is convex and in [51] for a generally nonconvex Ω but with triangulations that
are not locally refined. These results have been later extended in [84] onto Th only satisfying the
shape regularity (minimal angle) assumption and onto spaces that include W0(Th). Another
proof of this last result is presented in [28]. This paper also shows how to extend the discrete
Friedrichs and Poincaré inequalities to general polygonal (nonmatching) partitions of Ω and
to functions that do not satisfy the equality of the means of traces on interior sides, provided
that (2.3), (2.4) are satisfied.

It was shown in [84] and in [28] that the constants CF , CP only depend on the domain Ω
and on the shape regularity of the meshes. We establish in this chapter the exact dependence
of CF , CP on these parameters. We show that in space dimension two CF only depends on
the area of Ω and that in space dimension two or three CF only depends on the square of the
infimum of the diameters of Ω in one direction. For convex domains, CP only depends on the
square of the diameter of Ω and on the ratio between the area of the circumscribed ball and the
area of Ω. For nonconvex domains, our results involve a more complicated dependence of CP
on Ω. The above-mentioned dependencies are optimal in the sense that they coincide with the
dependencies of cF , cP on Ω in the continuous case. The dependence of CF on Ω also allows for
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the extension of the discrete Friedrichs inequality to domains only bounded in one direction.
We finally show that CF depends, in space dimension two and provided that it is expressed
using the area of Ω, on the square of a parameter describing the shape regularity of the meshes
given in the next section. This dependence still holds true for CF in space dimension two or
three and expressed using the square of the infimum of the diameters of Ω in one direction and
also for CP , provided that the mesh is not locally refined. We present an example showing that
this dependence is optimal. For locally refined meshes, our results involve a more complicated
dependence on the shape regularity parameter. The established constants are necessary in
the analysis of nonconforming numerical methods, such as nonconforming finite element or
discontinuous Galerkin methods.

Our proof of the discrete Friedrichs and Poincaré inequalities on the spaces W0(Th), W (Th)
respectively is more direct than those presented in [84] and in [28]; in particular, all the neces-
sary intermediate results are proved here. In [84] the author uses a Clément-type interpolation
operator (cf. [43]) mapping the space W0(Th) to H1

0 (Ω). In [28] the key idea is to construct
nonconforming P1 interpolants of functions from W (Th) and to connect the nonconforming P1

finite elements and conforming P2 finite elements (in space dimension two) or conforming P3

finite elements (in space dimension three). In both cases one finally makes use of the continu-
ous inequalities (2.1), (2.2). Our main idea is to construct a piecewise constant interpolant and
to extend the discrete Poincaré–Friedrichs inequalities for piecewise constant functions known
from finite volume methods, see [59, 61]. In particular, we do not make use of the continuous
inequalities; since H1

0 (Ω) ⊂W0(Th) and H1(Ω) ⊂W (Th), we rather prove them.
The rest of the chapter is organized as follows. In Section 2.2 we describe the assumptions

on Th, define a dual mesh Dh where the dual elements are associated with the sides of Th,
define the function spaces used in the sequel, and introduce the interpolation operator. In
Section 2.3 we give the discrete Friedrichs inequality for piecewise constant functions on Dh.
In Section 2.4 we prove some interpolation estimates on functions from H1(K), where K is
a simplex in two or three space dimensions. In Section 2.5 we prove the discrete Friedrichs
inequality for functions from W0(Th), using their interpolation by piecewise constant functions
on Dh. In Section 2.6 we show how this proof simplifies for Crouzeix–Raviart finite elements
in two space dimensions. Finally, Section 2.7 is devoted to the proof of the discrete Poincaré
inequality for piecewise constant functions on Dh and Section 2.8 to the extension of this result
to functions from W (Th).

2.2 Notation and assumptions

Throughout this chapter, we shall mean by “segment” a segment of a straight line. Let us
consider a domain K ⊂ Rd, d = 2, 3. We denote by ‖ · ‖0,K the norm on L2(K), ‖g‖2

0,K =∫
K g

2(x) dx, by |K| is the d-dimensional Lebesgue measure of K, by |σ| the (d−1)-dimensional
Lebesgue measure of σ, a part of a hyperplane in Rd, and by |s| the length of a segment s.
Let b be a vector. We shall mean by the diameter of K in the direction of b, denoted by
diamb(K), the supremum of the lengths of segments s with the direction vector b such that
s ⊂ K. The diameter of K is the supremum of the lengths of all the segments s such that
s ⊂ K.

Triangulation

We suppose that Th for all h > 0 consists of closed simplices such that Ω =
⋃
K∈Th

K and
such that if K,L ∈ Th, K �= L, then K ∩ L is either an empty set or a common face, edge, or



82 Chapitre 2. Discrete Poincaré–Friedrichs inequalities

vertex of K and L. The parameter h is defined by h := maxK∈Th
diam(K). We denote by Eh

the set of all sides, by E int
h the set of all interior sides, by Eext

h the set of all exterior sides, and
by EK the set of all the sides of an element K ∈ Th. We make the following shape regularity
assumption on {Th}h:

Assumption (A) (Shape regularity assumption)

There exists a constant κT > 0 such that

min
K∈Th

|K|
diam(K)d

≥ κT ∀h > 0 .

Assumption (A) is equivalent to the existence of a constant θT > 0 such that

max
K∈Th

diam(K)
ρK

≤ θT ∀h > 0 , (2.5)

where ρK is the diameter of the largest ball inscribed in the simplex K. Finally, Assump-
tion (A) is equivalent to the existence of a constant φT > 0 such that

min
K∈Th

φK ≥ φT ∀h > 0 . (2.6)

Here φK is the smallest angle of the simplex K (plain angle in radians if d = 2 and spheric
angle in steradians if d = 3).

In the sequel we shall consider apart triangulations that may not be locally refined, i.e.
the case where the following assumption holds:

Assumption (B) (Inverse assumption)

There exists a constant ζT > 0 such that

max
K∈Th

h

diam(K)
≤ ζT ∀h > 0 .

Assumptions (A) and (B) imply

min
K∈Th

|K|
hd

≥ κ̃T ∀h > 0 , (2.7)

where κ̃T := κT /ζdT .

Dual mesh

In the sequel we will use a dual mesh Dh to Th such that Ω =
⋃
D∈Dh

D. There is one dual
element D associated with each side σD ∈ Eh. We construct it by connecting the barycentres
of every K ∈ Th that contains σD through the vertices of σD. For σD ∈ Eext

h , the contour of
D is completed by the side σD itself. We refer to Fig. 2.1 for the two-dimensional case. We
denote by Dint

h the set of all interior and by Dext
h the set of all boundary dual elements. As for

the primal mesh, we set Fh, F int
h , Fext

h , and FD for the dual mesh sides. We denote by QD the
barycentre of a side σD and for two adjacent elements D,E ∈ Dh, we set σD,E := ∂D ∩ ∂E,
dD,E := |QE −QD|, and KD,E the element of Th such that σD,E ⊂ KD,E. We remark that

|K ∩D| =
|K|
d+ 1

(2.8)
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Figure 2.1: Triangles K,L ∈ Th and dual elements D,E ∈ Dh with edges σD, σE ∈ Eh

for each K ∈ Th and D ∈ Dh such that σD ∈ EK . Let us now consider σD,E ∈ F int
h ,

σD,E = ∂D ∩ ∂E in the two-dimensional case. Let KD,E ∩ D be in the clockwise direction
from KD,E ∩E. We then define vD,E as the height of the triangle |KD,E ∩D| with respect to
its base σD,E and have (see Fig. 2.1)

|KD,E ∩D| =
|σD,E |vD,E

2
. (2.9)

Function spaces

We define the space W (Th) by

W (Th) :=
{
g ∈ L2(Ω) ; g|K ∈ H1(K) ∀K ∈ Th ,∫
σK,L

g|K(x) dγ(x) =
∫
σK,L

g|L(x) dγ(x) (2.10)

∀σK,L ∈ E int
h , σK,L = ∂K ∩ ∂L

}
.

We keep the same notation for the function g and its trace and denote dγ(x) the integration
symbol for the Lebesgue measure on a hyperplane of Ω. The space W0(Th) is defined by

W0(Th) :=
{
g ∈W (Th) ;

∫
σ
g(x) dγ(x) = 0 ∀σ ∈ Eext

h

}
. (2.11)

We finally define

|g|1,T :=
( ∑
K∈Th

∫
K
|∇g(x)|2 dx

) 1
2
,

which is a seminorm on W (Th) and a norm on W0(Th). The spaces X(Th) ⊂ W (Th) and
X0(Th) ⊂ W0(Th) are defined by piecewise linear functions on Th. Note that the functions
from X(Th) are continuous in barycentres of interior sides and that the functions from X0(Th)
are moreover equal to zero in barycentres of exterior sides.

The space Y (Dh) is the space of piecewise constant functions on Dh,

Y (Dh) :=
{
c ∈ L2(Ω) ; c|D is constant ∀D ∈ Dh

}
,

and Y0(Dh) is its subspace of functions equal to zero on all D ∈ Dext
h ,

Y0(Dh) :=
{
c ∈ Y (Dh) ; c|D = 0 ∀D ∈ Dext

h

}
.
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For c ∈ Y (Dh) given by the values cD on D ∈ Dh, we define

|c|1,T ,∗ :=
( ∑
σD,E∈F int

h

|σD,E|
vD,E

(cE − cD)2
) 1

2
,

|c|1,T ,† :=
( ∑
σD,E∈F int

h

|σD,E|
diam(KD,E)

(cE − cD)2
) 1

2
,

|c|1,T ,‡ :=
( ∑
σD,E∈F int

h

|σD,E|
dD,E

(cE − cD)2
) 1

2 ;

| · |1,T ,∗, | · |1,T ,†, and | · |1,T ,† are seminorms on Y (Dh) and norms on Y0(Dh).

Interpolation operator

The interpolation operator I associates to a function g ∈W (Th) a function I(g) ∈ Y (Dh) such
that

I(g)|D = gD :=
1

|σD|

∫
σD

g|K(x) dγ(x) ∀D ∈ Dh ,

where K ∈ Th is such that σD ∈ EK . Note that by (2.10), if σD ∈ EK and σD ∈ EL, K �= L,
the choice between K and L does not matter. We recall that σD ∈ Eh is the side associated
with the dual element D ∈ Dh. Note that for g ∈W0(Th), I(g) ∈ Y0(Dh).

2.3 Discrete Friedrichs inequality for piecewise constant func-
tions

In finite volume methods (cf. [61]) one can prove the discrete Friedrichs inequality for piecewise
constant functions for meshes that satisfy the following orthogonality property: there exists
a point associated with each element of the mesh such that the straight line connecting these
points for two neighboring elements is orthogonal to the common side of these two elements.
The proofs in [59, 61] rely on this property of the meshes. We present in this section analogies
of Lemma 9.5 and consequent Remark 9.13 and of Lemma 9.1 of [61] for the mesh Dh, where
the orthogonality property is not necessarily satisfied.

Theorem 2.3.1. (Discrete Friedrichs inequality for piecewise constant functions in
two space dimensions) Let d = 2. Then for all c ∈ Y0(Dh),

‖c‖2
0,Ω ≤ |Ω|

2
|c|21,T ,∗ .

Proof:

Let b1 = (1, 0) and b2 = (0, 1) be two fixed unit vectors in the axis directions. For all x ∈ Ω, let
B1

x and B2
x be the straight lines going through x and defined by the vectors b1, b2 respectively.

Let the functions χ(i)
σ (x), i = 1, 2, for each σ ∈ F int

h be defined by

χ(i)
σ (x) :=

{
1 if σ ∩ Bix �= ∅
0 if σ ∩ Bix = ∅ .

Let finally D ∈ Dint
h be fixed. Then for a.e. x ∈ D, Bix, i = 1, 2, do not contain any vertex

of the dual mesh and Bix ∩ σ, i = 1, 2, contain at most one point of all σ ∈ Fh. This implies
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that for a.e. x ∈ D, Bix, i = 1, 2, always have to intersect the interior of some E ∈ Dext
h before

“leaving” or after “entering” Ω (we recall that Ω may be nonconvex). Using this, the fact that
cE = 0 for all E ∈ Dext

h , and the triangle inequality, we have

2|cD| ≤
∑

σF,G∈F int
h

|cG − cF |χ(i)
σF,G

(x) for a.e. x ∈ D , i = 1, 2 .

This gives

|cD|2 ≤ 1
4

∑
σF,G∈F int

h

|cG − cF |χ(1)
σF,G

(x)
∑

σF,G∈F int
h

|cG − cF |χ(2)
σF,G

(x) for a.e. x ∈ D ,

which is obviously valid also for D ∈ Dext
h , considering that cD = 0 on D ∈ Dext

h . Integrating
the above inequality over D and summing over D ∈ Dh yields∑

D∈Dh

c2D|D| ≤ 1
4

∫
Ω

( ∑
σD,E∈F int

h

|cE − cD|χ(1)
σD,E

(x)
∑

σD,E∈F int
h

|cE − cD|χ(2)
σD,E

(x)
)

dx .

Let α = inf{x1; (x1, x2) ∈ Ω} and β = sup{x1; (x1, x2) ∈ Ω}. For each x1 ∈ (α, β), we denote
by J(x1) the set of x2 such that x = (x1, x2) ∈ Ω. We now notice that χ(1)

σ (x) only depends
on x2 and that χ(2)

σ (x) only depends on x1. Thus∫ β

α

∫
J(x1)

( ∑
σD,E∈F int

h

|cE − cD|χ(1)
σD,E

(x2)
∑

σD,E∈F int
h

|cE − cD|χ(2)
σD,E

(x1)
)

dx2 dx1

=
∫ β

α

∑
σD,E∈F int

h

|cE − cD|χ(2)
σD,E

(x1)
∑

σD,E∈F int
h

|cE − cD|
∫
J(x1)

χ(1)
σD,E

(x2) dx2 dx1

≤
∑

σD,E∈F int
h

|cE − cD||σD,E |
∫ β

α

∑
σD,E∈F int

h

|cE − cD|χ(2)
σD,E

(x1) dx1 ,

where we have used
∫
J(x1)

χ
(1)
σD,E(x2) dx2 ≤ |σD,E|. Using analogously

∫ β
α χ

(2)
σD,E(x1) dx1 ≤

|σD,E|, we come to ∑
D∈Dh

c2D|D| ≤ 1
4

( ∑
σD,E∈F int

h

|σD,E||cE − cD|
)2
.

Finally, using the Cauchy–Schwarz inequality, we have∑
D∈Dh

c2D|D| ≤ 1
4

∑
σD,E∈F int

h

|σD,E|vD,E
∑

σD,E∈F int
h

|σD,E|
vD,E

(cE − cD)2 .

The equality
∑

σD,E∈F int
h

|σD,E|vD,E = 2|Ω|, which follows from (2.9), concludes the proof. �

Remark 2.3.2. (Discrete Friedrichs inequality for piecewise constant functions on
equilateral simplices) Let b ∈ Rd be a fixed vector and let Th consist of equilateral simplices.
Then for all c ∈ Y0(Dh),

‖c‖2
0,Ω ≤ [diamb(Ω) + 2h]2|c|21,T ,‡ .

This follows from [61, Lemma 9.1] (cf. alternatively [59, Lemma 1]), since the dual mesh Dh

satisfies in this case the orthogonality property.
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Lemma 2.3.3. Let Assumption (B) be satisfied and let b ⊂ Ω be a segment that does not
contain any vertex of the dual mesh Dh. Then

A :=
∑

σD,E∈F int
h , σD,E∩b�=∅

diam(KD,E) ≤ Cd,T diamb(Ω) ,

where

Cd,T =
2d(d− 1)

κ̃T
(1 + 2θT ) . (2.12)

Proof:

The number of nonzero terms of A is equal to the number of interior dual sides intersected
by b. In view of the fact that b does not contain any vertex of the dual mesh, this number
is bounded by 2(d − 1)-times the number of simplices K ∈ Th whose interior is intersected
by b. All intersected simplices have to be entirely in the rectangle/rectangular parallelepiped
constructed around b, with the distance between b and its boundary equal to h. Considering
the consequence (2.7) of Assumptions (A) and (B), we can estimate the number of intersected
elements by

(2h)d−1(|b| + 2h)
κ̃T hd

.

Using in addition diam(KD,E) ≤ h and |b| ≤ diamb(Ω), we have

A ≤ 2d(d− 1)
κ̃T

(diamb(Ω) + 2h) .

Noticing that
h ≤ θT diamb(Ω) (2.13)

by the consequence (2.5) of Assumption (A) concludes the proof. �

Lemma 2.3.4. Let b ⊂ Ω be a segment that does not contain any vertex of the dual mesh Dh.
Then

A :=
∑

σD,E∈F int
h , σD,E∩b�=∅

diam(KD,E) ≤ Cd,T diamb(Ω) , (2.14)

where

Cd,T = 4N(d− 1)θ2N
T , N =

2d−1π

φT
. (2.15)

Proof:

The number of nonzero terms of A is equal to the number of interior dual sides intersected by
b. In view of the fact that b does not contain any vertex of the dual mesh, this number is
bounded by 2(d− 1)-times the number of simplices K ∈ Th whose interior is intersected by b.
We consider two different cases.

If the segment b intersects at most N simplices, where N is given by (2.15), we estimate

diam(K) ≤ θT ρK ≤ θT diamb(Ω) ∀K ∈ Th ,

which follows from the consequence (2.5) of Assumption (A), to see that

A ≤ 2(d− 1)NθT diamb(Ω) .

This in view of N ≥ 1 and θT > 1 implies (2.14) with Cd,T given by (2.15).
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We next consider the case where the segment b intersects at least N + 1 simplices. We
divide it into a system of nonoverlapping segments {bk}Mk=1 such that b = ∪Mk=1bk. We further
require that each bk intersects at least N and at most 2N simplices and that no simplex has
an intersection with a positive 1-dimensional Lebesgue measure with two different segments.
We then have

A ≤ 2(d− 1)
M∑
k=1

∑
K∈Th;K◦∩bk �=∅

diam(K) .

Next it follows from the consequence (2.5) of Assumption (A) that ρK ≤ θT ρL if K,L ∈ Th
are neighboring elements. Recall that ρK is the diameter of the largest ball inscribed in the
simplex K. Thus we come to

max
K∈Th;K◦∩bk �=∅

ρK

min
K∈Th;K◦∩bk �=∅

ρL
≤ θ2N−1

T ∀k = 1, . . . ,M .

We further claim that

min
K∈Th;K◦∩bk �=∅

ρK ≤ |bk| ∀k = 1, . . . ,M ,

i.e. if we take N simplices intersected by a straight line, where N is given by (2.15), then the
length of the intersection is at least equal to the smallest diameter of the inscribed balls of the
simplices. We show this by contradiction. Let us suppose that N simplices are intersected by
a segment l and that the length of the intersection is smaller or equal to the smallest diameter
of the inscribed balls of the simplices. By contradiction, the centers of all the inscribed balls
lie outside of the segment l. Now with each simplex intersected by l, we add an angle greater
or equal to φT by the consequence (2.6) of Assumption (A). Since we have N simplices,
their angles fill the whole circle (2π, d = 2) or sphere (4π, d = 3), which already yields the
contradiction.

Using the last two estimates, the fact that each bk intersects at most 2N simplices, and
once more the consequence (2.5) of Assumption (A), we have

A ≤ 2(d− 1)
M∑
k=1

2Nθ2N
T |bk| ≤ 4N(d− 1)θ2N

T |b| ≤ 4N(d− 1)θ2N
T diamb(Ω) .

This proves (2.14) with Cd,T given by (2.15) for the second case and consequently the whole
lemma. �

Theorem 2.3.5. (Discrete Friedrichs inequality for piecewise constant functions)
Let b ∈ Rd be a fixed vector. Then for all c ∈ Y0(Dh),

‖c‖2
0,Ω ≤ Cd,T [diamb(Ω)]2|c|21,T ,† ,

where Cd,T is given by (2.12) when Assumption (B) is satisfied and by (2.15) in the general
case.

Proof:

For all x ∈ Ω, we denote by Bx the straight semi-line defined by the origin x and the vector b.
Let y(x) ∈ ∂Ω∩Bx be the point where Bx intersects ∂Ω for the first time. Then [x,y(x)] ⊂ Ω.
We finally define a function χσ(x) for each σ ∈ F int

h by

χσ(x) :=
{

1 if σ ∩ [x,y(x)] �= ∅
0 if σ ∩ [x,y(x)] = ∅ . (2.16)
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Let D ∈ Dint
h be fixed. Then for a.e. x ∈ D, Bx does not contain any vertex of the dual mesh

and Bx ∩ σ contains at most one point of all σ ∈ Fh. This implies that for a.e. x ∈ D, Bx

always has to intersect the interior of some E ∈ Dext
h before “leaving” Ω. Using this, the fact

that cE = 0 for all E ∈ Dext
h , and the triangle inequality, we have

|cD| ≤
∑

σF,G∈F int
h

|cG − cF |χσF,G
(x) for a.e. x ∈ D .

The Cauchy–Schwarz inequality yields

|cD|2 ≤
∑

σF,G∈F int
h

χσF,G
(x) diam(KF,G)

∑
σF,G∈F int

h

(cG − cF )2

diam(KF,G)
χσF,G

(x) for a.e. x ∈ D ,

(2.17)
which is obviously valid also for D ∈ Dext

h , considering that cD = 0 on D ∈ Dext
h . Inte-

grating the above inequality over D, summing over D ∈ Dh, and using Lemma 2.3.3 when
Assumption (B) is satisfied and Lemma 2.3.4 in the general case yields∑

D∈Dh

|cD|2|D| ≤ Cd,T diamb(Ω)
∑

σD,E∈F int
h

(cE − cD)2

diam(KD,E)

∫
Ω
χσD,E

(x) dx .

Now the value
∫
Ω χσD,E

(x) dx is the measure of the set of points of Ω located inside a cylinder
whose basis is σD,E and generator vector is −b. Thus∫

Ω
χσD,E

(x) dx ≤ |σD,E|diamb(Ω) ,

which leads to the assertion of the lemma. �

2.4 Interpolation estimates on functions from H1(K)

Lemma 2.4.1. Let K be a simplex, σ its side, and g ∈ H1(K). We set

gK :=
1
|K|

∫
K
g(x) dx , (2.18)

gσ :=
1
|σ|

∫
σ
g(x) dγ(x) . (2.19)

Then

(gK − gσ)2 ≤ cd
diam(K)2

|K|

∫
K
|∇g(x)|2 dx , (2.20)∫

K
[g(x) − gσ ]2 dx ≤ cd diam(K)2

∫
K
|∇g(x)|2 dx , (2.21)

where
cd = 6 for d = 2 , cd = 9 for d = 3 . (2.22)

Proof:

The inequality (2.20) is proved as a part of [61, Lemma 9.4] or [59, Lemma 2] for d = 2. In
these references a general convex polygonal element K is considered; the fact that cd = 6
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follows by considering a triangular element. The inequality (2.21) also follows from these
proofs, using the Cauchy–Schwarz inequality. We now give the proof for the three-dimensional
case, following the ideas of the proof for d = 2.

Let us consider a tetrahedron K and its face σ. Let us denote the space coordinates by
x1, x2, x3. We assume, without loss of generality, that σ ⊂ {0} × R × R+, that one vertex of
σ lies in the origin, that the longest edge of σ lies on x+

2 , and that K ⊂ R+ × R × R. Let
a = (α, β, γ) be the vertex that does not lie on σ. For all x1 ∈ [0, α], we set J(x1) = {x2 ∈ R

such that (x1, x2, x3) ∈ K for some x3 ∈ R}. For all x2 ∈ J(x1) with x1 ∈ [0, α] given, we
set J(x1, x2) = {x3 ∈ R such that (x1, x2, x3) ∈ K}. For a.e. x = (x1, x2, x3) ∈ K and
a.e. y = (0, y2, y3) ∈ σ, we set z(x,y) = ta + (1 − t)y with t = x1

α . Since K is convex,
z(x,y) ∈ K and we have z(x,y) = (x1, z2(x1, y2), z3(x1, y3)) with z2(x1, y2) = x1

α β+(1− x1
α )y2

and z3(x1, y3) = x1
α γ + (1 − x1

α )y3.
Using the Cauchy–Schwarz inequality, we have∫

K
[g(x) − gσ]2 dx =

∫
K

[ 1
|σ|

∫
σ
g(x) dγ(y) − 1

|σ|

∫
σ
g(y) dγ(y)

± 1
|σ|

∫
σ
g(z(x,y)) dγ(y)

]2
dx ≤ 2

|σ|2
∫
K

[∫
σ

(
g(x) − g(z(x,y))

)
dγ(y)

]2
dx

+
2

|σ|2
∫
K

[∫
σ

(
g(z(x,y)) − g(y)

)
dγ(y)

]2
dx ≤ 2

|σ| (A+B) ,

where

A :=
∫
K

∫
σ

(
g(x) − g(z(x,y))

)2
dγ(y) dx ,

B :=
∫
K

∫
σ

(
g(z(x,y)) − g(y)

)2
dγ(y) dx .

Similarly,

(gK − gσ)2 ≤ 2
|K||σ| (A+B) .

We denote by Dig the partial derivative of g with respect to xi, i ∈ {1, 2, 3}, and estimate A
and B separately. For this purpose, we suppose that g ∈ C1(K) and use the density of C1(K)
in H1(K) to extend the estimates to g ∈ H1(K).

We first estimate A. We have

A =
∫ α

0

∫
J(x1)

∫
J(x1,x2)

∫
J(0)

∫
J(0,y2)

(
g(x1, x2, x3)

−g(x1, z2(x1, y2), z3(x1, y3))
)2

dy3 dy2 dx3 dx2 dx1 .

Let us suppose that x3 ≥ z3. This implies that [x1, x2, z3(x1, y3)] ∈ K, since the cross-section
of K and the plane x1 = const is a triangle whose bottom edge is horizontal and the longest
of its three edges. We deduce the inequality(

g(x1, x2, x3) − g(x1, z2(x1, y2), z3(x1, y3))
)2

=
(
g(x1, x2, x3) − g(x1, x2, z3(x1, y3))

+g(x1, x2, z3(x1, y3)) − g(x1, z2(x1, y2), z3(x1, y3))
)2

=
(∫ x3

z3(x1,y3)
D3g(x1, x2, s) ds

+
∫ x2

z2(x1,y2)
D2g(x1, s, z3(x1, y3)) ds

)2
≤ 2diam(K)

∫
J(x1,x2)

[D3g(x1, x2, s)]2 ds

+2diam(K)
(
1 − x1

α

) ∫ x2

z2(x1,y2)
[D2g(x1, s, z3(x1, y3))]2 ds ,
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where we have used the Newton integration formula and the Cauchy–Schwarz inequality. Defin-
ing Dig, i ∈ {1, 2, 3}, by 0 outside of K and considering also x3 < z3, we come to

A ≤ 2diam(K)(A1 +A2 +A3 +A4)

with

A1 :=
∫ α

0

∫
J(x1)

∫
J(x1,x2)

∫
J(0)

∫
J(0,y2)

∫
J(x1,x2)

[D3g(x1, x2, s)]2 ds dy3 dy2 dx3 dx2 dx1 ,

A2 :=
∫ α

0

∫
J(x1)

∫
J(x1,x2)

∫
J(0)

∫
J(0,y2)

(
1 − x1

α

)
∫ x2

z2(x1,y2)
[D2g(x1, s, z3(x1, y3))]2 ds dy3 dy2 dx3 dx2 dx1 ,

A3 :=
∫ α

0

∫
J(x1)

∫
J(x1,x2)

∫
J(0)

∫
J(0,y2)

∫ x2

z2(x1,y2)
[D2g(x1, s, x3)]2 ds dy3 dy2 dx3 dx2 dx1 ,

A4 :=
∫ α

0

∫
J(x1)

∫
J(x1,x2)

∫
J(0)

∫
J(0,y2)

(
1 − x1

α

)
∫ x3

z3(x1,y3)
[D3g(x1, z2(x1, y2), s)]2 ds dy3 dy2 dx3 dx2 dx1 .

We easily see that

A1 ≤ diam(K)|σ|
∫
K

[D3g(x)]2 dx .

Next, we estimate A2. Using the Fubini theorem and the change of variables z3 = z3(x1, y3),
we have ∫

J(0,y2)

(
1 − x1

α

) ∫ x2

z2(x1,y2)
[D2g(x1, s, z3(x1, y3))]2 ds dy3

=
∫ x2

z2(x1,y2)

∫
J(x1,z2(x1,y2))

[D2g(x1, s, z3)]2 dz3 ds

≤
∫
J(x1)

∫
J(x1,s)

[D2g(x1, s, z3)]2 dz3 ds ,

where the estimate follows by extending the integration region. Hence

A2 ≤ diam(K)|σ|
∫
K

[D2g(x)]2 dx .

Using the Fubini theorem, we similarly estimate A3 and A4,

A3 ≤ diam(K)|σ|
∫
K

[D2g(x)]2 dx ,

A4 ≤ diam(K)|σ|
∫
K

[D3g(x)]2 dx ,

which finally yields

A ≤ 4diam(K)2|σ|
∫
K
|∇g(x)|2 dx . (2.23)
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We now turn to the study of B. We write it as

B =
∫ α

0

∫
J(x1)

∫
J(x1,x2)

∫
J(0)

∫
J(0,y2)

(
g(x1, z2(x1, y2), z3(x1, y3)) −

−g(0, y2, y3)
)2

dy3 dy2 dx3 dx2 dx1 .

Using the Newton integration formula and the Cauchy–Schwarz and Hölder inequalities, we
have (

g(x1, z2(x1, y2), z3(x1, y3)) − g(0, y2, y3)
)2

=
(∫ x1

0

[
D1g(s, z2(s, y2), z3(s, y3))

+D2g(s, z2(s, y2), z3(s, y3))
β − y2

α
+D3g(s, z2(s, y2), z3(s, y3))

γ − y3

α

]
ds
)2

≤ α
(
1 +

(β − y2

α

)2
+
(γ − y3

α

)2) ∫ x1

0

3∑
i=1

[Dig(s, z2(s, y2), z3(s, y3))]2 ds .

Hence

B ≤ α
(
1 +

(β − y2

α

)2
+
(γ − y3

α

)2) 3∑
i=1

Bi

with

Bi =
∫ α

0

∫
J(x1)

∫
J(x1,x2)

∫
J(0)

∫
J(0,y2)

∫ x1

0
[Dig(s, z2(s, y2), z3(s, y3))]2 ds dy3 dy2 dx3 dx2 dx1 ,

i ∈ {1, 2, 3}. Using the Fubini theorem, we have

Bi =
∫
J(0)

∫
J(0,y2)

∫ α

0
[Dig(s, z2(s, y2), z3(s, y3))]2

∫ α

s

∫
J(x1)

∫
J(x1,x2)

dx3 dx2 dx1 ds dy3 dy2 .

Hence
Bi ≤

|σ|
2α

∫ α

0

∫
J(0)

∫
J(0,y2)

[Dig(s, z2(s, y2), z3(s, y3))]2(α− s)2 dy3 dy2 ds ,

where we have used the estimate∫
J(x1)

∫
J(x1,x2)

dx3 dx2 ≤ |σ|
(
1 − x1

α

)
on the area of the cross-section of K and the plane x1 = const. Now using the change of
variables z3 = z3(s, y3) and z2 = z2(s, y2) gives∫

J(0)

∫
J(0,y2)

[Dig(s, z2(s, y2), z3(s, y3))]2(α− s)2 dy3 dy2

= α2

∫
J(s)

∫
J(s,z2)

[Dig(s, z2, z3)]2 dz3 dz2

and thus
Bi ≤

|σ|α
2

∫
K

[Dig(x)]2 dx ,

which finally yields, noticing that α2 + (β − y2)2 + (γ − y3)2 = |a − y|2 ≤ diam(K)2,

B ≤ |σ|
2

diam(K)2
∫
K
|∇g(x)|2 dx . (2.24)

Now combining (2.23) and (2.24) leads to the assertion of the lemma for d = 3. �
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2.5 Discrete Friedrichs inequality

We prove in this section the discrete Friedrichs inequality, using the results of the previous
sections. We first give several auxiliary lemmas.

Lemma 2.5.1. Let d = 2. Then

|I(g)|21,T ,∗ ≤
Cd
κ2
T
|g|21,T ∀g ∈W (Th) ,

where Cd is given by (2.26) below.

Proof:

Let K ∈ Th and σD, σE ∈ EK . We define gK by (2.18) and deduce from the inequality
(a− b)2 ≤ 2a2 + 2b2 and from (2.20) that

(gE − gD)2 ≤ 2(gE − gK)2 + 2(gD − gK)2 ≤ 4cd
diam(K)2

|K|

∫
K
|∇g(x)|2 dx . (2.25)

Using this, the definition of | · |1,T ,∗, |σD,E| ≤ 2/3 diam(K), (2.9) and (2.8), the fact that each
K ∈ Th contains exactly three dual edges, and Assumption (A), we have

|I(g)|21,T ,∗ =
∑

σD,E∈F int
h

|σD,E|
vD,E

(gE − gD)2

≤ 4cd
∑
K∈Th

∑
σD,E∈F int

h , σD,E⊂K

|σD,E|2
vD,E|σD,E|

diam(K)2

|K|

∫
K
|∇g(x)|2 dx

≤ 8cd
∑
K∈Th

[diam(K)2

|K|
]2 ∫

K
|∇g(x)|2 dx ≤ 8cd

κ2
T

∑
K∈Th

∫
K
|∇g(x)|2 dx . �

Lemma 2.5.2. There holds

|I(g)|21,T ,† ≤
Cd
κT

|g|21,T ∀g ∈W (Th) ,

where
Cd = 8cd for d = 2 , Cd =

27
4
cd for d = 3 , (2.26)

and cd is given by (2.22).

Proof:

Using the definition of | · |1,T ,†, (2.25), |σD,E| ≤ C∗
ddiam(KD,E)d−1 with C∗

d = 2/3 if d = 2 and

C∗
d = 9/32 if d = 3, the fact that each K ∈ Th contains

(
d+ 1

2

)
=

(d+ 1)d
2

dual sides, and

Assumption (A), we have

|I(g)|21,T ,† =
∑

σD,E∈F int
h

|σD,E|
diam(KD,E)

(gE − gD)2

≤ 4cd
∑
K∈Th

∑
σD,E∈F int

h , σD,E⊂K

|σD,E |diam(K)
|K|

∫
K
|∇g(x)|2 dx

≤ 2cd(d+ 1)dC∗
d

∑
K∈Th

diam(K)d

|K|

∫
K
|∇g(x)|2 dx ≤ Cd

κT

∑
K∈Th

∫
K
|∇g(x)|2 dx . �
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Lemma 2.5.3. (Interpolation estimate) There holds

‖g − I(g)‖2
0,Ω ≤ cdh

2|g|21,T ∀g ∈W (Th) .

Proof:

We have

‖g − I(g)‖2
0,Ω =

∑
K∈Th

∑
σD∈EK

∫
K∩D

[g(x) − gD]2 dx

≤ cd
∑
K∈Th

∑
σD∈EK

[diam(K ∩D)]2
∫
K∩D

|∇g(x)|2 dx

≤ cdh
2
∑
K∈Th

∫
K
|∇g(x)|2 dx ,

using the estimate (2.21) for the simplex K ∩D and diam(K ∩D) ≤ h. �

We state below the first of the two main results of this chapter.

Theorem 2.5.4. (Discrete Friedrichs inequality) There holds

‖g‖2
0,Ω ≤ CF |g|21,T ∀g ∈W0(Th) , ∀h > 0

with

CF =
Cd
κ2
T
|Ω| + 2cdh2 for d = 2 , CF = 2Cd

Cd,T
κT

[
inf

b∈Rd
{diamb(Ω)}

]2
+ 2cdh2 for d = 2, 3 ,

where Cd,T is given by (2.12) when Assumption (B) is satisfied and by (2.15) in the general
case, cd is given by (2.22), and Cd is given by (2.26).

Proof:

One has
‖g‖2

0,Ω ≤ 2‖g − I(g)‖2
0,Ω + 2‖I(g)‖2

0,Ω .

The error ‖g − I(g)‖2
0,Ω of the approximation follows from Lemma 2.5.3. Note that I(g) ∈

Y0(Dh) and hence the discrete Friedrichs inequality for piecewise constant functions given by
Theorem 2.3.1 together with Lemma 2.5.1 yield

‖I(g)‖2
0,Ω ≤ Cd

2κ2
T
|Ω||g|21,T

for the case where d = 2. Similarly, using the discrete Friedrichs inequality for piecewise
constant functions given by Theorem 2.3.5 together with Lemma 2.5.2, one has

‖I(g)‖2
0,Ω ≤ Cd

Cd,T
κT

[diamb(Ω)]2|g|21,T

for an arbitrary vector b ∈ Rd for the case where d = 2, 3. �

Remark 2.5.5. (Dependence of CF on Ω) We have h2 ≤ |Ω|/κT by Assumption (A)
and h ≤ θT diamb(Ω) by the consequence (2.5) of Assumption (A). Hence the constant in the
discrete Friedrichs inequality only depends on the area of Ω if d = 2 and on the square of the
infimum of the diameters of Ω in one direction if d = 2, 3. This dependence is optimal: [91,
Theorem 1.1] gives the same dependence for the Friedrichs inequality and H1

0 (Ω) ⊂W0(Th).
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Remark 2.5.6. (Dependence of CF on the shape regularity parameter) One can see
that CF depends on 1/κ2

T if d = 2 and when it is expressed using |Ω|. We are able to establish
the same result also when CF is expressed using infb∈Rd diamb(Ω), but only when the meshes
are not locally refined (when Assumption (B) is satisfied). Indeed, CF in this case depends
on Cd,T /κT and the constant Cd,T given by (2.12) is of the form [2d(d − 1)ζdT (2C + 1)]/κT ;
this follows by replacing the inequality (2.13) by h ≤ Cdiamb(Ω) for some suitable constant
C. Example 2.6.3 below shows that this dependence is optimal. However, in the case where
the meshes are only shape-regular, we were only able to establish (2.15).

Remark 2.5.7. (Discrete Friedrichs inequality for domains only bounded in one
direction) We see that the constant CF only depends on the infimum of the diameters of Ω
in one direction. Thus the discrete Friedrichs inequality may be extended onto domains only
bounded in one direction, as it is the case for the Friedrichs inequality (cf. [91, Remark 1.1]).

Remark 2.5.8. (Discrete Friedrichs inequality for functions only fixed to zero on
a particular part of the boundary) Let Γ ⊂ ∂Ω (given by a set of boundary sides) be such
that there exists a vector b ∈ Rd such that the first intersection of Bx and ∂Ω lies in Γ for all
x ∈ Ω, where Bx is a straight semi-line defined by the origin x and the vector b. We notice
that the discrete Friedrichs inequality can be immediately extended onto functions only fixed to
zero on Γ. This follows easily from the proof of Theorem 2.3.5 (the zero condition is only used
on boundary sides lying in Γ). The dependence of CF on the shape regularity parameter is
thus given by Cd,T /κT , cf. Remark 2.5.6. The constant CF in this case depends on the square
of the infimum of diamb(Ω) over suitable vectors b (compare with the general case treated in
the next remark).

Remark 2.5.9. (Discrete Friedrichs inequality for functions only fixed to zero on
a general part of the boundary) The discrete Friedrichs inequality can also be extended
onto functions only fixed to zero on an arbitrary set of boundary sides, see Lemma 2.7.2 and
Remark 2.7.3 below. Then, for convex domains, CF depends on the square of the diameter of
Ω; for nonconvex domains, the dependence of CF on Ω is more complicated. The dependence
of CF on the shape regularity parameter again reveals given by Cd,T /κT .

2.6 Discrete Friedrichs inequality for Crouzeix–Raviart finite
elements

We show in this section how the proofs from the previous sections simplify for the case of
Crouzeix–Raviart finite elements in two space dimensions. Let us consider the space X(Th)
introduced in Section 2.2. The basis of this space is spanned by the shape functions ϕD,
D ∈ Dh, such that ϕD(QE) = δDE , E ∈ Dh, δ being the Kronecker delta.

Lemma 2.6.1. Let d = 2. Then for all c ∈ X(Th),

‖c‖0,Ω = ‖I(c)‖0,Ω .

Proof:

Let us write c =
∑
D∈Dh

cDϕD. Using that the quadrature formula
∫
K
ψ dx ≈ 1

3
|K|

∑
σD∈EK

ψ(QD)

is exact for quadratic functions on triangles and (2.8), we have∫
Ω
c2(x) dx =

∑
K∈Th

∫
K
c2(x) dx =

∑
K∈Th

1
3
|K|

∑
σD∈EK

c2(QD) =
∑
D∈Dh

c2D|D| . �
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Dh Th
Ω

v
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b

• • • •
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• • • • • • • •

0 0 0 0

0 0 0

-1 1 -1 1 -1 1 -1 1

Figure 2.2: Domain Ω, triangulation Th, dual mesh Dh, and values of a function c ∈ X(Th) for
the optimality example

Lemma 2.6.2. (Discrete Friedrichs inequality for Crouzeix–Raviart finite elements
in two space dimensions) Let d = 2. Then

‖c‖2
0,Ω ≤ CF |c|21,T ∀c ∈ X0(Th) , ∀h > 0 ,

where
CF =

1
4κ2

T
|Ω| or CF =

Cd,T
2κT

[
inf

b∈Rd
{diamb(Ω)}

]2
.

Proof:

Let c ∈ X0(Th), c =
∑
D∈Dh

cDϕD. Note that by the definition of X0(Th), cD = 0 for all

D ∈ Dext
h . Using respectively Lemma 2.6.1 and Theorem 2.3.1 or Theorem 2.3.5, we get

‖c‖2
0,Ω ≤ |Ω|

2
|I(c)|21,T ,∗ , ‖c‖2

0,Ω ≤ Cd,T [diamb(Ω)]2|I(c)|21,T ,†

for an arbitrary vector b ∈ R2. Finally, we deduce that

|I(c)|21,T ,∗ =
∑

σD,E∈F int
h

|σD,E |2
vD,E|σD,E|

(
∇c|KD,E

· (QE −QD)
)2

≤ 2
3

∑
σD,E∈F int

h

diam(KD,E)2

|KD,E |

∣∣∣∇c|KD,E

∣∣∣2d2
D,E

≤ 1
2κ2

T

∑
K∈Th

∣∣∣∇c|K∣∣∣2|K| =
1

2κ2
T
|c|21,T ,

using (2.9) and (2.8), |σD,E| ≤ 2/3 diam(KD,E), the fact that the gradient of c is elementwise
constant and that each K ∈ Th contains exactly three dual edges, dD,E ≤ diam(KD,E)/2, and
Assumption (A). Similarly, |I(c)|21,T ,† ≤ 1/(2κT ) |c|21,T . �

Example 2.6.3. (Optimality of the dependence of CF on the shape regularity pa-
rameter) Let us consider a domain Ω, its triangulation Th, a vector b, and a function
c ∈ X(Th) given by the values 0, 1,−1 as depicted in Figure 2.2. Using Lemma 2.6.1, we
immediately have

‖c‖2
0,Ω =

∑
K∈Th

1
3
|K|(0 + 1 + 1) =

2
3
|Ω| .

On each K ∈ Th, |∇c|K | = 4/h, hence |c|21,T = 16/h2 |Ω|. Using Remark 2.5.8, the discrete
Friedrichs inequality given by Lemma 2.6.2 holds true. The term occurring on its right hand
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side, independent of the shape regularity parameter, is 1/2[diamb(Ω)]2|c|21,T = 8v2/h2 |Ω|. This
term can be arbitrarily smaller than ‖c‖2

0,Ω, letting h → +∞ or v → 0. Next, κT = v/(2h).
Note that Th satisfies Assumption (B) and hence Cd,T ≈ 1/κT . In fact, by a simple estimation
of the term A from Lemma 2.3.3, one has Cd,T = 1/κT in this case and thus Cd,T /κT =
1/κ2

T = 4h2/v2. One immediately sees that the multiplication by this term is necessary.

Corollary 2.6.4. (Discrete Friedrichs inequality for Crouzeix–Raviart finite ele-
ments on equilateral triangles) Let d = 2 and let Th consist of equilateral triangles. Then

‖c‖2
0,Ω ≤ CF |c|21,T ∀c ∈ X0(Th) , ∀h > 0 ,

where
CF =

|Ω|
2

or CF =
[

inf
b∈Rd

{diamb(Ω)} + 2h
]2
.

Proof:

Let c be as in the previous lemma. For equilateral triangles, one has dD,E = vD,E and
thus the norms | · |1,T ,∗ and | · |1,T ,‡ coincide. By (2.9) and (2.8), |σD,E|vD,E = 2/3 |K|,
cos2(α) + cos2(α+ π/3) + cos2(α+ 2π/3) = 3/2, so that∑

K∈Th

∑
σD,E∈F int

h , σD,E⊂K

|σD,E |
dD,E

∣∣∣∇c|K ∣∣∣2d2
D,E cos2(∇c|K , QE −QD) =

∑
K∈Th

∣∣∣∇c|K∣∣∣2|K| .

Now using respectively Lemma 2.6.1 and Theorem 2.3.1 or Remark 2.3.2 yields the assertion. �

Remark 2.6.5. (CF for Crouzeix–Raviart finite elements on equilateral triangles)
Let d = 2. Then the constant in the Friedrichs inequality may be expressed as cF = |Ω|/2 or
cF = [infb∈Rd{diamb(Ω)}]2, cf. [91, Theorem 1.1]. Corollary 2.6.4 shows that for Crouzeix–
Raviart finite elements and equilateral triangles, we are able to achieve the same result (up to
h) also for the constant CF from the discrete Friedrichs inequality. We however remark that
there exist sharper estimates in the continuous case, see e.g. [107].

2.7 Discrete Poincaré inequality for piecewise constant func-
tions

As in the case of the discrete Friedrichs inequality, we start with the discrete Poincaré inequality
for piecewise constant functions. [61, Lemma 10.2] states the discrete Poincaré inequality for
piecewise constant functions on meshes satisfying the orthogonality property. We present in
this section an analogy of this lemma for the mesh Dh, where the orthogonality property is
not necessarily satisfied.

Lemma 2.7.1. Let ω be an open convex subset of Ω, ω �= 0, and let

mω(c) :=
1
|ω|

∫
ω
c(x) dx .

Then for all c ∈ Y (Dh),

‖c−mω(c)‖2
0,ω ≤ |BΩ|

|ω| Cd,T [diam(Ω)]2|c|21,T ,† ,

where BΩ is the ball of Rd with center 0 and radius diam(Ω) and Cd,T is given by (2.12) when
Assumption (B) is satisfied and by (2.15) in the general case.
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The proof of this lemma follows the proof of the first step of [61, Lemma 10.2], using
the techniques introduced in Section 2.3 for meshes where the orthogonality property is not
satisfied.

Lemma 2.7.2. Let ω be a polygonal open convex subset of Ω and let I ⊂ ∂ω with |I| > 0. Let
E ∈ Dh be such that I ∩E is not an empty set and not just a point (such dual element always
exists). Then for all c ∈ Y (Dh) with cE = 0,

‖c‖2
0,ω ≤ Cd,T [diam(Ω)]2|c|21,T ,† ,

where Cd,T is given by (2.12) when Assumption (B) is satisfied and by (2.15) in the general
case.

Proof:

The proof is similar to that of Theorem 2.3.5. There exist a set of vectors bi and of nonempty
nonoverlapping subsets ωi of ω, i = 1, . . . ,M (M may be equal to +∞) with the following
properties: (i) bi is such that Cbi

∩ ω �= ∅, where Cbi
is the cylinder whose basis is I ∩ E and

generator vector is −bi; (ii) ωi = Cbi
∩ω \ ∪i−1

j=1ωj; (iii) ∪Mi=1ωi = ω. Note that the fact that ω
is convex is important. For all x ∈ ωi, we set Bix as the straight semi-line defined by the origin
x and the vector bi. Let y(x) = I ∩E∩Bix. Let the function χσ(x) be given by (2.16) for each
σ ∈ F int

h . Let D ∈ Dh, D ∩ ωi �= ∅, be fixed. We then have (2.17) for a.e. x ∈ D ∩ ωi, as in
Theorem 2.3.5. Integrating (2.17) over D∩ωi, summing over all D ∈ Dh such that D∩ωi �= ∅,
and using Lemma 2.3.3 when Assumption (B) is satisfied and Lemma 2.3.4 in the general case
yields ∑

D∈Dh

|cD|2|D ∩ ωi| ≤ Cd,T diam(Ω)
∑

σD,E∈F int
h

(cE − cD)2

diam(KD,E)

∫
ωi

χσD,E
(x) dx .

Using the inequality ∫
ωi

χσD,E
(x) dx ≤ |σD,E ∩ ωi|diam(ω) ,

diam(ω) ≤ diam(Ω), and summing over all i concludes the proof. �

Remark 2.7.3. Let Ω be convex. Then taking ω = Ω in Lemma 2.7.2, we have an extension
of Theorem 2.3.5 onto functions from Y (Dh) that vanish on only one boundary dual element.

Remark 2.7.4. Lemma 2.7.2 is an alternative to the second step of the proof of [61,
Lemma 10.2].

Theorem 2.7.5. (Discrete Poincaré inequality for piecewise constant functions) Let

mΩ(c) :=
1
|Ω|

∫
Ω
c(x) dx .

Then for all c ∈ Y (Dh),

‖c−mΩ(c)‖2
0,Ω ≤ CΩCd,T [diam(Ω)]2|c|21,T ,† ,

where
CΩ =

|BΩ|
|Ω| (2.27)
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when Ω is convex and

CΩ = 2
n∑
i=1

|BΩ|
|Ωi|

+ 16(n − 1)2
|Ω|

|Ωi|min

( |BΩ|
|Ωi|min

+ 1
)

(2.28)

when Ω is not convex but there exists a finite number of disjoint open convex polygonal sets Ωi

such that Ω = ∪ni=1Ωi. Here, |Ωi|min = mini=1,...,n{|Ωi|}, BΩ is the ball of Rd with center 0 and
radius diam(Ω), and Cd,T is given by (2.12) when Assumption (B) is satisfied and by (2.15)
in the general case.

Proof:

When Ω is convex, the assertion of this theorem coincides with that of Lemma 2.7.1 for ω = Ω.
When Ω is not convex, we have Lemmas 2.7.1 and 2.7.2 for each Ωi. Then the third step of
the proof of [61, Lemma 10.2] yields the assertion of the theorem. �

Remark 2.7.6. One has

‖c‖2
0,Ω ≤ 2‖c −mΩ(c)‖2

0,Ω + 2‖mΩ(c)‖2
0,Ω .

Hence Theorem 2.7.5 implies the discrete Poincaré inequality for piecewise constant functions
in the more common form

‖c‖2
0,Ω ≤ 2CΩCd,T [diam(Ω)]2|c|21,T ,† +

2
|Ω|
(∫

Ω
c(x) dx

)2
∀c ∈ Y (Dh) , ∀h > 0 .

2.8 Discrete Poincaré inequality

We state below the second of the two main results of this chapter.

Theorem 2.8.1. (Discrete Poincaré inequality) There holds

‖g‖2
0,Ω ≤ CP |g|21,T +

4
|Ω|
(∫

Ω
g(x) dx

)2
∀g ∈W (Th) , ∀h > 0

with
CP = 4CdCΩ

Cd,T
κT

[diam(Ω)]2 + 8cdh2 ,

where CΩ is given by (2.27) when Ω is convex and by (2.28) otherwise, Cd,T is given by (2.12)
when Assumption (B) is satisfied and by (2.15) in the general case, cd is given by (2.22), and
Cd is given by (2.26).

Proof:

One has

‖g‖2
0,Ω ≤ 4‖g − I(g)‖2

0,Ω + 4‖I(g) −mΩ[I(g)]‖2
0,Ω + 4‖mΩ[I(g)] −mΩ(g)‖2

0,Ω + 4‖mΩ(g)‖2
0,Ω ,

where mΩ(f) = 1/|Ω|
∫
Ω f(x) dx. The discrete Poincaré inequality for piecewise constant

functions given by Theorem 2.7.5 and Lemma 2.5.2 imply

‖I(g) −mΩ[I(g)]‖2
0,Ω ≤ CdCΩ

Cd,T
κT

[diam(Ω)]2|g|21,T .

We have
‖mΩ[I(g)] −mΩ(g)‖2

0,Ω ≤ ‖g − I(g)‖2
0,Ω

by the Cauchy–Schwarz inequality. Finally, the error ‖g−I(g)‖2
0,Ω of the approximation follows

from Lemma 2.5.3. �
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Remark 2.8.2. (Dependence of CP on Ω) Let Ω be a cube. We then have h ≤ diam(Ω)
and CΩ ≤ π

√
3/2 and hence the constant in the discrete Poincaré inequality in this case only

depends on the square of the diameter of Ω. This dependence is optimal: [91, Theorem 1.3]
gives the same dependence for the Poincaré inequality and H1(Ω) ⊂W (Th).

Remark 2.8.3. (Dependence of CP on the shape regularity parameter) Our results
indicate that the dependence of CP on the shape regularity parameter is given by Cd,T /κT , cf.
Remark 2.5.6.





Chapitre 3

Equivalence between lowest-order
mixed finite element and
multi-point finite volume methods

We consider in this chapter the lowest-order Raviart–Thomas mixed finite element method
for elliptic diffusion problems on simplicial meshes in two or three space dimensions. This
method produces saddle-point problems for scalar and flux unknowns. We show how to easily
eliminate the flux unknowns, which implies equivalence between this method and a particular
multi-point finite volume scheme, without any approximate numerical integration. The matrix
of the final linear system is sparse, positive definite for a large class of problems, but in
general nonsymmetric. We next show that these ideas also apply to mixed and upwind-mixed
finite element discretizations of nonlinear parabolic convection–reaction–diffusion problems.
We present a set of numerical experiments confirming important computational savings while
using the equivalent finite volume form of the lowest-order mixed finite element method and
compare it to a finite volume and combined finite volume–finite element schemes.
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3.1 Introduction

Let us consider the elliptic problem

u = −S∇p in Ω , (3.1a)
∇ · u = q in Ω , (3.1b)

p = pD on ΓD , u · n = uN on ΓN , (3.1c)

where Ω ⊂ Rd, d = 2, 3, is a polygonal domain (open, bounded, and connected set), S is a
bounded, symmetric (this is however not necessary), and uniformly positive definite tensor,
pD ∈ H 1

2 (ΓD), uN ∈ H− 1
2 (ΓN ), q ∈ L2(Ω), ΓD ∩ΓN = ∅, ΓD ∪ΓN = ∂Ω, and |ΓD| �= 0, where

|ΓD| is the measure of the set ΓD.
Let Th be a simplicial triangulation of Ω (consisting of triangles if d = 2 and of tetrahedra

if d = 3) such that each boundary side (edge if d = 2, face if d = 3) lies entirely either
in ΓD or in ΓN . Let us denote by Eh the set of all non-Neumann sides of Th. Let finally
ũ ∈ H(div,Ω) be such that ũ · n = uN on ΓN in the appropriate sense. The approximation
of the problem (3.1a)–(3.1c) by means of the mixed finite element method consists in finding
uh = u0,h + ũ, u0,h ∈ V(Eh), and ph ∈ Φ(Th) such that (see [33, 108])

(S−1u0,h,vh)Ω − (∇ · vh, ph)Ω = −〈vh · n, pD〉∂Ω

−(S−1ũ,vh)Ω ∀vh ∈ V(Eh) , (3.2a)
−(∇ · u0,h, φh)Ω = −(q, φh)Ω + (∇ · ũ, φh)Ω ∀φh ∈ Φ(Th) , (3.2b)

where (uh,vh)Ω =
∫
Ω uh · vh dx, 〈vh · n, ϕ〉∂Ω =

∫
∂Ω vh · nϕdγ(x), and V(Eh) and Φ(Th) are

suitable finite-dimensional spaces defined on Th. The associated matrix problem is saddle-point
and can be written in the form(

A Bt

B 0

)(
U
P

)
=

(
F
G

)
. (3.3)

In the lowest-order Raviart–Thomas method [105] and its three-dimensional Nédélec vari-
ant [92] the scalar unknowns P are associated with the elements of Th and U are the fluxes
through the sides of Eh. Using the hybridization technique steaming from the ideas of [69],
one can decrease the number of unknowns to the Lagrange multipliers associated with non-
Dirichlet sides and obtain a symmetric and positive definite matrix, cf. [15, 33]. In fact, the
hybridization is very close to the piecewise linear nonconforming finite element method, cf. [38]
or Lemma 1.8.1 or a more detailed study in Section 4.6 of this thesis. The fluxes can then
be recovered using the technique first proposed in [88]. Especially in three space dimensions,
there are much less elements than sides, and hence the long-standing interest in reducing the
unknowns to only the scalar unknowns P . This is indeed possible, using approximate numeri-
cal integration, see [110] for rectangles and S diagonal and [8, 18] for rectangles and triangles
and S diagonal and for a limited class of tetrahedra and S = Id. Using the expanded mixed
finite element method, these techniques can be extended also onto full-matrix diffusion tensors
S for rectangular parallelepipeds [13] and for “smooth” coefficients and meshes consisting of
triangles, quadrilaterals, and hexahedra [12]. To our knowledge, the only technique for reduc-
ing the number of unknowns to the number of elements without any numerical integration is
proposed and studied in [37, 121, 122]. In two space dimensions, it works on unstructured
triangular meshes, but in three space dimensions, it only works on a limited class of structured
tetrahedral meshes. One associates here to each element a new unknown.
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We present in Section 3.2 of this chapter a new method which permits to exactly and
efficiently reduce the system (3.3) to a system for the (original) scalar unknowns P only.
We show that, under a condition of the invertibility of some local matrices associated with
vertices and only depending on the mesh and on the diffusion tensor, one can express the flux
through a given side using the scalar unknowns, sources, and possibly boundary conditions
associated with the elements sharing one of the vertices of this side. Recall that expressing the
flux through a given side using the scalar unknowns in neighboring elements is the principle of
multi-point finite volume schemes, cf. [1, 7, 44, 58, 65]. Hence the lowest-order Raviart–Thomas
mixed finite element method is in the given case equivalent to a particular multi-point finite
volume scheme, and this without any numerical integration. We call this scheme a condensed
mixed finite element scheme. We then discuss the modifications of the proposed scheme if the
local matrices are not invertible, consisting namely in considering different sets of elements for
the expression of the flux through a given side.

The condensation of the lowest-order Raviart–Thomas method leads to linear systems with
sparse but in general nonsymmetric matrices, as we show in Section 3.3. The system matrix is
positive definite under a condition on the mesh and on the tensor S, which can be reduced to
a shape criterion allowing for fairly general elements if S is piecewise constant and scalar. For
example, one can deform a square (0, 1) × (0, 1), discretized by regular right-angled triangles,
until the triangle elements contain angles greater than 130 degrees, see Example 3.3.8 below.
The fulfillment of this condition in particular implies the invertibility of the local matrices from
the previous paragraph. Finally, in Section 3.4, we apply the proposed condensation to mixed
(cf. [14, 52]) and upwind-mixed (cf. [46, 47, 77]) finite element discretizations of nonlinear
parabolic convection–reaction–diffusion problems.

The essential idea of what we propose can be formulated as follows: given a second-order
problem, first decompose it into scalar and flux unknowns and guarantee the fulfillment of the
inf–sup (Babuška [16]–Brezzi [30]) condition. Then eliminate the added fluxes. One can in
this way obtain the precision of the mixed finite element method for the price of the finite
volume one. This is confirmed by numerical experiments carried out in Section 3.5. Especially
for nonlinear parabolic convection–reaction–diffusion problems, one can reduce the CPU time
of standard mixed solution approaches by a factor of 2 to 4. We refer to a more detailed
discussion in Section 3.5.4. Finally, the proposed condensation can be easily implemented in
a new self-standing code or in existing mixed finite element codes. Extension to higher-order
schemes is an ongoing work.

3.2 The equivalence

We first define the spaces V(Eh) and Φ(Th) in this section. We then establish the equiva-
lence between the lowest-order mixed finite element and a particular multi-point finite volume
method.

Let us consider simplices K,L ∈ Th sharing an interior side σ. Let VK be the vertex of
K opposite to σ and VL the vertex of L opposite to σ. Then the RTN (Raviart–Thomas–
Nédélec) basis function vσ ∈ V(Eh) associated with the side σ can be written in the form
vσ(x) = 1

d|K|(x − VK), x ∈ K, vσ(x) = 1
d|L|(VL − x), x ∈ L, vσ(x) = 0 otherwise. We refer

to Figure 3.1 for a schematic visualization of a RTN basis function in two space dimensions.
We fix the orientation of vσ, i.e. the order of K and L. For a Dirichlet boundary side σ, the
support of vσ only consists of K ∈ Th such that σ ∈ EK , where EK stands for the sides of the
element K. A basis function φK ∈ Φ(Th) associated with an element K ∈ Th is equal to 1 on
K and to 0 otherwise.
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σ
vσ

Figure 3.1: RTN basis function vσ associated with the edge σ

Let us denote by Vh the set of all vertices and consider V ∈ Vh. We call the set of all
elements of Th sharing this vertex a cluster associated with V and denote it by CV . Let us
denote by ECV

the set of all non-Neumann sides of CV , by FCV
the set of all non-Neumann sides

sharing V , and by GCV
the set of other non-Neumann sides of CV . Let finally Cel

V denote the
set of elements from the cluster that contain exactly one side from GCV

. We denote by δK the
side from EK ∩ GCV

for K ∈ Cel
V . We have ECV

= FCV
∪ GCV

, FCV
∩ GCV

= ∅, and |Cel
V | = |GCV

|,
where we denote by |A| the cardinality of a set A. An example of a cluster CV lying in the
interior of the domain Ω is given in Figure 3.2. In this case, FCV

are simply the sides sharing
V , GCV

the other sides of CV , and Cel
V = CV . The situation is more delicate near the boundary,

especially if there are Neumann boundary conditions, cf. Figure 3.3 below. This is also the
reason for the quite complex notation introduced. The basic principle of the condensation will
however be clear from Figure 3.2. Finally, we are not interested in the particular and trivial
cases where FCV

= ∅ or GCV
= ∅.

Our aim is to express u0,h with the aid of ph, or, equivalently, the fluxes U with the aid
of the scalar unknowns P . For this purpose, we consider the equations (3.2a) for the basis
functions vγ , γ ∈ FCV

. We remark that the support of all vγ , γ ∈ FCV
, is included in CV and

that u0,h|CV
=
∑

σ∈ECV
Uσvσ. This yields, using also that ph|K = PK ,∑

σ∈ECV

Uσ(vσ,S−1vγ)CV
−
∑
K∈CV

PK(∇ · vγ , 1)K = −〈vγ · n, pD〉∂Ω −

−(S−1ũ,vγ)CV
∀γ ∈ FCV

, (3.4)

i.e. |FCV
| equations for the |ECV

| unknown fluxes Uσ, σ ∈ ECV
, where we consider the scalar

unknowns PK , K ∈ CV , as parameters. Note that in practice, pD|σ ≈ 〈pD, 1〉σ/|σ|, σ ⊂ ΓD,
and ũ ≈

∑
σ⊂ΓN

〈uN , 1〉σvσ, so that the above system is completely discrete. The remaining
|GCV

| equations are given by (3.2b) for all φK , K ∈ Cel
V ,

−
∑

σ∈EK ,σ �⊂ΓN

Uσ(∇ · vσ, 1)K = −(q, 1)K + (∇ · ũ, 1)K ∀K ∈ Cel
V . (3.5)

The matrix problem associated with the set of equations (3.4)–(3.5) can be written in the form(
A1,V A2,V

B1,V B2,V

)(
UF
V

UG
V

)
=

(
FV − BtV PV

GV

)
, (3.6)

where UF
V = {Uσ}σ∈FCV

, UG
V = {Uσ}σ∈GCV

, and PV = {PK}K∈CV
.
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δK4

δK5

δK1

δK2

δK3
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i=1

Cel
V = {Ki}5

i=1

FCV
= {γi}5

i=1

GCV
= {δKi

}5
i=1

Figure 3.2: Example of a cluster CV in the interior of Ω

We now notice that the matrix B2,V is square, diagonal, and its entries are equal to ±1
(this follows from the fact that each K ∈ Cel

V contains exactly one side from GCV
and using

that (∇ · vσ, 1)K = ±1 for σ ∈ EK). Hence we can eliminate the UG
V unknowns and come to

MV U
F
V = FV − B

t
V PV − A2,V B

−1
2,VGV (3.7)

for each vertex V ∈ Vh. Let us call the matrix

MV := A1,V − A2,V B
−1
2,V B1,V (3.8)

a local condensation matrix associated with the vertex V . We now summarize the results in
the following theorem:

Theorem 3.2.1. (Equivalence between MFEM and a particular multi-point FVM)
Let the matrices MV given by (3.8) be invertible for all V ∈ Vh. Then the lowest-order
Raviart–Thomas mixed finite element method on simplicial meshes is equivalent to a multi-
point finite volume scheme, where the flux through each side can be expressed using the scalar
unknowns, sources, and possibly boundary conditions associated with the elements sharing one
of the vertices of this side.

Remark 3.2.2. (Comparison with a classical multi-point FVM) In “classical” multi-
point finite volume schemes, cf. [1, 7, 44, 58, 65], one attempts to express the flux through
a given side only using the scalar unknowns associated with the neighboring elements. There
are two essential differences between these classical multi-point finite volume schemes and a
particular multi-point finite volume scheme—the mixed finite element method. First, in the
mixed finite element method, not only the scalar unknowns, but also the sources and possi-
bly boundary conditions associated with the neighboring elements are used to express the flux
through a given side. Second, to obtain this expression, one has to solve a local linear problem.
In this last feature, the condensed mixed finite element scheme is similar to the “multipoint
flux-approximation” scheme proposed and tested in [1, 2].

Let V ∈ Vh. Let us define a mapping ΨV : R
|FCV

| → R|Eh|, extending a vector UF
V =

{Uσ}σ∈FCV
of values associated with the sides from FCV

to a vector of values associated with
all non-Neumann sides Eh by

[ΨV (UF
V )]σ :=

{
Uσ if σ ∈ FCV

0 if σ �∈ FCV

.
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Since there is no possibility of confusion, we keep the same notation also for a mapping
R
|FCV

|×|FCV
| → R|Eh|×|Eh|, extending a local matrix MV to a full-size one by zeros by

[ΨV (MV )]σ,γ :=
{

(MV )σ,γ if σ ∈ FCV
and γ ∈ FCV

0 if σ �∈ FCV
or γ �∈ FCV

.

We finally in the same fashion define a mapping ΘV : R
|FCV

|×|Cel
V | → R|Eh|×|Th|, filling a full-size

representation of a matrix JV by zeros on the rows associated with the sides that are not from
FCV

and on the columns associated with the elements that are not from Cel
V ,

[ΘV (JV )]σ,K :=
{

(JV )σ,K if σ ∈ FCV
and K ∈ Cel

V

0 if σ �∈ FCV
or K �∈ Cel

V

.

Let the local condensation matrices MV be invertible for all V ∈ Vh. Let us define JV by
JV := M

−1
V A2,V B

−1
2,V . We then can rewrite (3.7) as

ΨV (UF
V ) = ΨV (M−1

V )(F − B
tP ) − ΘV (JV )G . (3.9)

We now notice that ∑
V ∈Vh

1
d
ΨV (UF

V ) = U , (3.10)

which expresses that if we go through all V ∈ Vh and observe the sides in the sets FCV
, each

σ ∈ Eh appears just d-times (each side has d vertices). Hence we can sum (3.9) over all vertices
and divide it by d to find that

U = Ã
−1(F − B

tP ) − JG , (3.11)

where
Ã
−1 :=

1
d

∑
V ∈Vh

ΨV (M−1
V ) , J :=

1
d

∑
V ∈Vh

ΘV (JV ) . (3.12)

Finally, inserting this expression into the second equation of (3.3), we obtain a system for only
the scalar unknowns

−BÃ
−1

B
tP = G− BÃ

−1F + BJG . (3.13)

We now give two remarks.

Remark 3.2.3. (Comparison with the direct elimination of the fluxes) From (3.3),
U = A−1(F − BtP ). There are two essential differences in comparison with (3.11). First, the
matrix Ã−1 is sparse, whereas A−1 tends to be full. Second, Ã−1 is obtained for the price of
the inverse of |Vh| local matrices, whereas obtaining A−1 is in general very expensive.

Remark 3.2.4. (Implementation into existing mixed finite element codes) The local
problems (3.6) correspond to the rows of (3.3) associated with the sides from FCV

and elements
from Cel

V . Hence obtaining the final problem (3.13) from (3.3) is immediate.

It appears that in some particular cases, the matrix MV is not invertible, cf. Example 3.3.10
below. We give sufficient conditions on the mesh Th and on the diffusion tensor S ensuring
that MV are invertible for all V ∈ Vh below as byproducts of Lemmas 3.3.6 and 3.3.9. Finally,
we discuss in Section 3.3.3 the approaches how to modify the proposed technique in order to
overcome this difficulty.
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3.3 Properties of the condensed mixed finite element scheme

We study in this section the properties of the system matrix of the condensed mixed finite
element scheme important from the computational point of view, namely its sparsity pattern,
symmetry, and positive definiteness. It shows that all these properties are closely related to
the properties of the local condensation matrices, which we shall study hereafter. We finally
discuss variants and extensions of the proposed technique and open questions.

3.3.1 Properties of the system matrix

Theorem 3.3.1. (Stencil of the system matrix) Let MV be invertible for all V ∈ Vh.
Then on a row of the final system matrix BÃ−1Bt corresponding to an element K ∈ Th, the
only possible nonzero entries are on columns corresponding to L ∈ Th such that K and L share
a common vertex.

Proof:

The assertion of this theorem follows from the fact that by (3.7), the flux through a side σ is
expressed only using the scalar unknowns of the elements K ∈ Th such that K and σ share a
common vertex. �

Theorem 3.3.2. (Positive definiteness of the system matrix) Let MV be positive definite
for all V ∈ Vh. Then the final system matrix BÃ−1Bt is also positive definite.

Proof:

Since B has a full row rank, BÃ−1Bt is positive definite as soon as Ã−1 is positive definite, i.e.
when

Xt
Ã
−1X > 0 for all X ∈ R

|Th| , X �= 0 .

Let V ∈ Vh. We define a mapping ΠV : R|Eh| → R
|FCV

|, restricting a vector of values associated
with all non-Neumann sides to a vector of values associated with the sides from FCV

. Let
X ∈ R|Eh|, X �= 0. Then

Xt
Ã
−1X =

1
d

∑
V ∈Vh

XtΨV (M−1
V )X =

1
d

∑
V ∈Vh

[ΠV (X)]tM−1
V ΠV (X) > 0 ,

using the positive definiteness of the local condensation matrices MV and consequently of M
−1
V

for all V ∈ Vh and the fact that in the above sum, all the terms are non-negative and at least
d of them are positive. �

Theorem 3.3.3. (Symmetry of the system matrix) Let MV be invertible and symmetric
for all V ∈ Vh. Then the final system matrix BÃ−1Bt is also symmetric.

Proof:

If MV and consequently M
−1
V are symmetric for all V ∈ Vh, their extensions ΨV (M−1

V ) are
symmetric as well. Hence Ã−1, a sum of symmetric matrices by (3.12), is symmetric. Finally,
if Ã−1 is symmetric, BÃ−1Bt is symmetric as well. �
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α

β

vβ

vδK

pβ

V

K

δK

vγ = pγ

vβ = pβpσ
γ

L δL

vσ

vγ

σ
pγ

vδM

M

δM

CV = {K, L, M}
Cel

V = {K, M}
FCV = {β, γ, σ}
GCV = {δK, δM}
ΓN ⊃ α, δL

ΓD ⊃ σ

V(FCV ) = span{vβ,vγ,vσ}
V(div, ECV ) = span{pβ,pγ,pσ}

Figure 3.3: Example of a boundary cluster CV and schematic representation of the basis
functions of the spaces V(FCV

) and V(div, ECV
)

3.3.2 Properties of the local condensation matrices

The local condensation matrix MV (3.8) for V ∈ Vh steams from the equations (3.4)–(3.5). It
does not depend on the right-hand side, and hence it is connected with the following problem:
find u ∈ V(ECV

) such that

(u,S−1v)CV
= 0 ∀v ∈ V(FCV

) , (3.14a)
(∇ · u, φK)K = 0 ∀K ∈ Cel

V . (3.14b)

Here, V(ECV
) is the space spanned by the RTN basis functions vσ associated with the non-

Neumann sides ECV
of the cluster CV and V(FCV

) is its restriction with the basis functions vσ
associated with the sides from FCV

. The problem (3.14a)–(3.14b) is further equivalent to the
following Petrov–Galerkin problem: find u ∈ V(div, ECV

) such that

(u,S−1v)CV
= 0 ∀v ∈ V(FCV

) ,

where V(div, ECV
) is the subspace of V(ECV

) of the functions whose divergence is equal to 0 on
all elements K ∈ Cel

V . The space V(div, ECV
) is spanned by basis functions pσ associated with

the sides from FCV
, which have the same support as the RTN basis functions vσ and whose

fluxes through the associated sides equal to those of vσ (this namely fixes their orientation).
In particular, for K ∈ Cel

V and σ ∈ EK ∩ FCV
, pσ|K = vσ − (∇·vσ,1)K

(∇·vδK
,1)K

vδK . Note that this is

a constant function given by 1
d|K|qσ|K , where qσ|K is the vector of the edge of K that is not

included in the sides σ and δK . For K ∈ CV \ Cel
V , pσ|K = vσ|K . We refer to Figure 3.3 for a

schematic visualization for d = 2.

Lemma 3.3.4. (Form of the local condensation matrices) The local condensation matrix
MV for V ∈ Vh is given by

(MV )γ,σ = (pσ,S−1vγ)CV
,

where pσ and vσ, σ ∈ FCV
, are the basis functions of the spaces V(div, ECV

) and V(FCV
),

respectively, defined above.
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Proof:

We can rewrite (3.14a)–(3.14b) as∑
σ∈ECV

Uσ(vσ ,S−1vγ)CV
= 0 ∀γ ∈ FCV

, (3.15a)

∑
σ∈EK ,σ �⊂ΓN

Uσ(∇ · vσ, 1)K = 0 ∀K ∈ Cel
V , (3.15b)

where u =
∑
σ∈ECV

Uσvσ. Expressing UδK from (3.15b) gives

UδK =

−
∑

σ∈EK∩FCV

Uσ(∇ · vσ, 1)K

(∇ · vδK , 1)K
.

Inserting this into (3.15a), we have∑
σ∈ECV

Uσ(vσ,S−1vγ)CV
=

∑
K∈supp(vγ)

{ ∑
σ∈EK∩FCV

Uσ(vσ ,S−1vγ)K + UδK (vδK ,S
−1vγ)K

}
=

∑
K∈supp(vγ)

∑
σ∈EK∩FCV

Uσ

(
vσ −

(∇ · vσ, 1)K
(∇ · vδK , 1)K

vδK ,S
−1vγ

)
K
,

where we have defined for simplification vδK = 0 if K ∈ CV \ Cel
V (i.e. if EK ∩GCV

= ∅). Hence,
using the definition of the basis functions of the spaces V(div, ECV

) and V(FCV
), the assertion

of the lemma follows. �

Remark 3.3.5. (Implementation) Let S be piecewise constant and let ΓN = ∅. Then

(MV )γ,σ =
∑

K∈CV ;σ,γ∈EK

(pσ,S−1vγ)K =
∑

K∈CV ;σ,γ∈EK

(∇ · vγ , 1)K
d2|K|2 (S−1qσ,x − Vγ,K)K

=
∑

K∈CV ;σ,γ∈EK

1
d2|K|S|

−1
K qσ|K · wγ |K ,

where σ, γ ∈ FCV
and wγ |K := (∇ · vγ , 1)K(xK − Vγ,K) with xK the barycentre of K and

Vγ,K the vertex of K opposite to the side γ, cf. Figure 3.4. We have used the facts that
{K ∈ CV ; σ, γ ∈ EK} = supp(pσ)∩supp(vγ) and that xK = (x, 1)K/|K|. Hence, to implement
the condensed mixed finite element scheme when in addition q = 0, everything we need are the
edge and vertex–barycentre vectors in each simplex and the measure of each simplex.

We now give two lemmas that guarantee the positive definiteness of the local condensation
matrices, the assumption of Theorem 3.3.2. Since positive definiteness implies invertibility,
the local condensation matrices are under the following conditions namely invertible, which
guarantees the feasibility of the condensation in the proposed form. The given conditions
are sufficient but not necessary to ensure the positive definiteness—they can be used as a
simple elementwise or sidewise criterion, in order to avoid the direct checking of the positive
definiteness of the local condensation matrices.
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qσ

γ

qγ

σ

wσ

wγ

xK
K

Figure 3.4: Triangle K for the simplified elementwise positive definiteness criterion

Lemma 3.3.6. (Positive definiteness of the local condensation matrices—elemen-
twise criterion) Let the matrices EV,K ∈ R

|EK∩FCV
|×|EK∩FCV

| given by

(EV,K)γ,σ := (pσ ,S−1vγ)K ,

where pσ and vσ, σ ∈ EK∩FCV
, are the basis functions of the spaces V(div, ECV

) and V(FCV
),

respectively, be positive definite for all K ∈ Th and for all vertices V of K. Then the local
condensation matrices MV are positive definite for all V ∈ Vh.

Proof:

Let V ∈ Vh and let X ∈ R
|FCV

|, X �= 0. We then have, with p =
∑

σ∈FCV

Xσpσ, v =
∑

σ∈FCV

Xσvσ,

Xt
MVX = (p,S−1v)CV

=
∑
K∈Cel

V

(p,S−1v)K +
∑

K∈CV \Cel
V

(p,S−1v)K

=
∑
K∈Cel

V

[ΠV,K(X)]tEV,KΠV,K(X) +
∑

K∈CV \Cel
V

(v,S−1v)K > 0 ,

where the mapping ΠV,K : R
|FCV

| → R
|EK∩FCV

| restricts a vector of values associated with the
sides from FCV

to a vector of values associated with the sides from EK ∩ FCV
, and using that

the two last terms are non-negative and at least one of them is positive. �

Remark 3.3.7. (Simplified elementwise positive definiteness criterion in two space
dimensions) Let d = 2 and let S be piecewise constant. Let qσ,qγ ,wσ,wγ be the constant
edge and vertex–barycentre vectors of a triangle K as in Figure 3.4. Then a simplified criterion
for the positive definiteness of the local condensation matrices is∣∣∣S|−1

K qσ ·wγ + S|−1
K qγ ·wσ

∣∣∣2 < 4(S|−1
K qσ · wσ)(S|−1

K qγ · wγ)

for all K ∈ Th and for all denotation σ, γ of two edges of K. Notice that qσ · wγ = 0 for
an equilateral triangle and that this quantity grows in the absolute value while deforming the
triangle. On the contrary, qσ ·wσ decreases with the angle between qσ and wσ and it is positive
only if this angle is less than π/2. This criterion is a consequence of Remark 3.3.5 and of
Lemma 3.3.6 with a tighten up criterion for triangles with Neumann edges.
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Figure 3.5: Theoretical (left) and experimental (right) limit mesh for the positive definiteness
of the system matrix for a deformed square and S = Id

Example 3.3.8. (Positive definiteness for a triangulation of a deformed square) Let
S = Id, let Ω be a square (0, 1) × (0, 1), and let Th be its triangulation by regular right-angled
triangles. Let us deform the domain and the mesh by shifting horizontally the upper edge of
the square. Remark 3.3.7 gives that the local condensation matrices (and consequently the
system matrix) are positive definite up to the mesh given in Figure 3.5 on the left-hand side.
The experimental limit mesh is still a bit less restrictive and is given in Figure 3.5 on the
right-hand side.

Lemma 3.3.9. (Positive definiteness of the local condensation matrices—sidewise
criterion) Let S be piecewise constant and let ΓN = ∅. Let for all γ ∈ Eh and for all vertices
V of γ, ∑

K∈supp(vγ )

1
d2|K|S|

−1
K qγ |K · wγ |K >

∑
K∈supp(vγ)

1
d2|K|

∑
σ∈EK∩FCV

, σ �=γ∣∣∣1
2
S|−1
K (qσ |K · wγ |K + qγ |K ·wσ|K)

∣∣∣ ,
where the constant edge and vertex–barycentre vectors qσ|K , wσ|K , respectively, are derived
from the basis functions of the spaces V(div, ECV

) and V(FCV
) pσ and vσ as in Remark 3.3.5.

Then the local condensation matrices MV are positive definite for all V ∈ Vh.

Proof:

The assumption of the lemma ensures that the matrices 1
2 (MV + Mt

V ) for all V ∈ Vh have
positive diagonal entries and are strictly diagonally dominant and hence they are positive
definite. To conclude, it suffices to note that the matrix MV is positive definite if and only if
its symmetric part 1

2(MV + Mt
V ) is positive definite. �

Example 3.3.10. (Singular local condensation matrix) We give in Figure 3.6 an example
of a mesh where the local condensation matrix MV is singular for S = Id. All the triangles
sharing the vertex V have exactly one edge σ such that qσ · wσ = 0 with the notation of
Figure 3.4. Hence, in particular, the assumptions of Lemma 3.3.6 are not verified. This
singularity is not local—it suffices to modify the coordinates of one point to make MV invertible.

We now state under which conditions the assumption of Theorem 3.3.3 is satisfied.

Lemma 3.3.11. (Symmetry of the local condensation matrices) Let Th consist of
equilateral simplices and let S be a piecewise constant scalar function. Then MV are symmetric
for all V ∈ Vh.
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V 

Figure 3.6: A mesh where the local condensation matrix MV is singular

Proof:

We have
(MV )γ,σ =

(
vσ −

(∇ · vσ, 1)K
(∇ · vδK , 1)K

vδK ,S
−1vγ

)
K
,

where K ∈ supp(pσ) ∩ supp(vγ), σ, γ ∈ FCV
, σ �= γ. If K ∈ CV \ Cel

V and thus vδK = 0 by
the definition, (MV )γ,σ clearly equals to (MV )σ,γ for a general S by its symmetry. If K ∈ Cel

V ,
(MV )γ,σ = (MV )σ,γ as soon as(

S−1vδK ,vγ(∇ · vγ , 1)K
)
K

=
(
S−1vδK ,vσ(∇ · vσ, 1)K

)
K
,

which is the case of an equilateral simplex and S a piecewise constant scalar function. �

Remark 3.3.12. (Equilateral simplices and a piecewise constant scalar diffusion
tensor) Let Th consist of equilateral simplices, let S be a piecewise constant scalar function,
and let ΓN = ∅. Then it follows from Remark 3.3.5 that (MV )γ,σ = 0 if σ �= γ (since the vectors
qσ|K and wγ |K are orthogonal), and hence the local condensation matrices are diagonal. Thus
to express the flux though an interior side γ in this case, we only need the scalar unknowns
associated with the two elements that share this side. As a consequence, the final system
matrix has only a 4-point stencil in two space dimensions and a 5-point stencil in three space
dimensions and is moreover symmetric and positive definite. A simple computation gives that
this matrix is equivalent to that of the standard finite volume scheme [61] when S = Id. Note
however that the right-hand side is generally different in a presence of a source term!

3.3.3 Variants, extensions, and open problems

The essential idea of the proposed elimination, briefly said, consists in considering such sets
of elements that it is possible to eliminate the fluxes through the exterior sides of these sets
by the divergence equations on the exterior elements. The clusters defined by all elements
sharing a given vertex represent just the most basic possibility. We now precise on this point.

Let C be a set of elements of Th and let GC be the set of sides of C between an element
K ∈ C and L �∈ C. Let each K ∈ C contain at most one σ ∈ GC and let us denote the subset of
C of elements containing a σ ∈ GC by Cel. Clearly, |Cel| = |GC |, and we denote by δK the side
of K ∈ Cel such that δK ∈ GC . Finally, let EC stand for all non-Neumann sides of C and FC for
EC \GC . A particular example is the cluster CV associated with a vertex V . We have the spaces
V(FCV

) and V(div, ECV
) as in Section 3.3.2 and the following generalization of Lemma 3.3.6:
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Lemma 3.3.13. (Positive definiteness of local condensation matrices on general
clusters) Let the matrices EC,K ∈ R|EK∩FC |×|EK∩FC | given by

(EC,K)γ,σ := (pσ,S−1vγ)K ,

where pσ and vσ, σ ∈ EK ∩ FC , are the basis functions of the spaces V(div, EC) and V(FC),
respectively, be positive definite for all K ∈ Cel. Then the local condensation matrix MC
associated with the cluster C, (MC)γ,σ = (pσ,S−1vγ)C, is positive definite.

Proof:

Let X ∈ R|FC|, X �= 0. We then have, with p =
∑
σ∈FC

Xσpσ, v =
∑
σ∈FC

Xσvσ,

Xt
MCX = (p,S−1v)C =

∑
K∈Cel

(p,S−1v)K +
∑

K∈C\Cel

(p,S−1v)K

=
∑
K∈Cel

[ΠC,K(X)]tEC,KΠC,K(X) +
∑

K∈C\Cel

(v,S−1v)K > 0 ,

where the mapping ΠC,K : R|FC | → R|EK∩FC | restricts a vector of values associated with the
sides from FC to a vector of values associated with the sides from EK ∩FC , and using that the
two last terms are non-negative and at least one of them is positive. �

The above lemma shows that the positive definiteness of local condensation matrices only
depends on the elements from Cel. Hence, in particular, shall the local condensation matrix
associated with a cluster of a vertex V be singular, we can resort to a wider cluster. This
namely functions in the case of Example 3.3.10. Finally, to expose the problem in its full
complexity, it appears that it is not necessary to consider the divergence equations on the
elements of C sharing a side with an element L �∈ C. Let again C be a set of elements of Th
and let GC be the set of sides of C between an element K ∈ C and L �∈ C. Let EC stand for all
non-Neumann sides of C and FC for EC \ GC . We notice that on the rows of the submatrix A

of (3.3) associated with the sides from FC and on the rows of the submatrix B associated with
the elements from C, the only nonzero entries are on the columns associated with the sides
from EC . Hence, to carry out the condensation, it is sufficient if the submatrix consisting of the
above rows has a rank equal to |EC |. The main open problem, which resembles the existence
of “singular triangles” in [37, 121], is whether there always has to exist a system of clusters
covering Th with the above property. Next, in the case of clusters associated with vertices, we
have the simple expression (3.10) for the fluxes through all non-Neumann sides. For general
clusters, however, we have to associate a weight αiσ to each side σ ∈ Eh and i-th out of b clusters
C where σ belongs to FC , such that

∑b
i=1 α

i
σ = 1, in order to have

∑b
i=1 α

i
σU

i
σ = Uσ, where U iσ

is the expression of the flux through σ from the i-th cluster. Another interesting open problem
is whether one could influence the stencil, symmetry, and positive definiteness of the system
matrix by a suitable choice of these weights. For the moment, we have only focused on the
basic case. Throughout all the tests presented in Section 3.5, which involve general meshes and
inhomogeneous and anisotropic (nonconstant full-matrix) diffusion tensors, we have used the
local condensation matrices associated with vertices. These were always invertible, although
not always positive definite.

In the lowest-order Raviart–Thomas mixed finite element method on rectangular meshes or
in the lowest-order Brezzi–Douglas–Marini mixed finite element method [31, 32] on simplicial
meshes, it is either not possible to create subsets C of Th such that each element of C shares at
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most one side with an element L �∈ C, or the number of degrees of freedom of vector unknowns
per side is greater than the number of degrees of freedom of scalar unknowns per element.
Hence the basic form of the condensation with clusters around vertices does not apply. On
the other hand, for both Raviart–Thomas and Brezzi–Douglas–Marini mixed finite elements
of second order on simplicial meshes, the two above properties are satisfied. The extension
of the basic condensation to this case, which may lead to an interesting relation between
these second-order mixed finite element methods and the discontinuous Galerkin method, is
an ongoing work.

3.4 Application to nonlinear parabolic problems

We show in this section that the above ideas easily apply also to the discretization of nonlinear
parabolic convection–reaction–diffusion problems. We consider in particular the problem

∂β(p)
∂t

+ ∇ · u + F (p) = q in Ω × (0, T ) , (3.16a)

u = −S∇p+ ψ(p)w in Ω × (0, T ) , (3.16b)
p(·, 0) = p0 in Ω , (3.16c)

p = pD on ΓD × (0, T ) , (3.16d)
u · n = uN on ΓN × (0, T ) , (3.16e)

where β, ψ, and F are nonlinear functions, S is again a bounded, symmetric, and uniformly
positive definite tensor, w is a velocity field, and q represents a source term.

Let again ũ be such that ũ · n = uN on ΓN in the appropriate sense. We split up the
time interval (0, T ) such that 0 = t0 < . . . < tn < . . . < tN = T and define 	tn := tn − tn−1,
n ∈ {1, 2, . . . , N}, and p0

h|K by (p0, 1)K/|K| for all K ∈ Th. The fully implicit lowest-order
Raviart–Thomas mixed finite element approximation of the problem (3.16a)–(3.16e), cf. [14],
consists in finding on each time level tn, n ∈ {1, 2, . . . , N}, the functions unh = un0,h + ũn,
un0,h ∈ V(Eh), and pnh ∈ Φ(Th) such that

(S−nun0,h,vh)Ω − (∇ · vh, pnh)Ω − (ψ(pnh)w
n,S−nvh)Ω = −〈vh · n, pnD〉∂Ω

−(S−nũn,vh)Ω ∀vh ∈ V(Eh) , (3.17a)(β(pnh) − β(pn−1
h )

	tn
, φh

)
Ω

+ (∇ · un0,h, φh)Ω + (F (pnh), φh)Ω = (q, φh)Ω

−(∇ · ũn, φh)Ω ∀φh ∈ Φ(Th) , (3.17b)

where

S−n :=
1

	tn

∫ tn

tn−1

S−1(·, t) dt , wn :=
1

	tn

∫ tn

tn−1

w(·, t) dt ,

pnD :=
1

	tn

∫ tn

tn−1

pD(·, t) dt , ũn :=
1

	tn

∫ tn

tn−1

ũ(·, t) dt n ∈ {1, 2, . . . , N} .

Note that if β = F = ψ = 0, the matrix form of the problem (3.17a)–(3.17b) is given by (3.3),
where the second equation is multiplied by −1. Such system matrix is not symmetric, but is
positive definite, which is a favorable starting form for (3.17a)–(3.17b).

Everything we have to say about the application of the proposed condensation to the
system (3.17a)–(3.17b) is that the terms where the unknown discrete velocity function un0,h
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appears are exactly the same as in the linear elliptic diffusion case, see (3.2a)–(3.2b). Hence
one can eliminate un0,h on each discrete time level as in Section 3.2. This time, the flux
unknowns are nonlinear functions of the scalar unknowns, convection velocity field, sources,
and boundary conditions. The system (3.17a)–(3.17b), linearized by e.g. the Newton method,
can be written in the matrix form as(

A C

B D

)(
U
P

)
=

(
F
G

)
. (3.18)

Let V ∈ Vh be a vertex and CV the associated cluster and let us consider the linearized
equations (3.17a) for the basis functions vγ , γ ∈ FCV

, and the linearized equations (3.17b) for
all φK , K ∈ Cel

V . This gives(
A1,V A2,V

B1,V B2,V

)(
UF
V

UG
V

)
=

(
FV − CV P1,V

GV − DV P2,V

)
. (3.19)

In fact, in the present case, P1,V = P2,V = {PK}K∈CV
. We shall need the form (3.19) below

for the upwind-mixed method. The matrix B2,V is still diagonal, and hence we easily have

MV U
F
V = FV − CV P1,V − A2,V B

−1
2,V (GV − DV P2,V ) , (3.20)

where the local condensation matrix associated with the vertex V , MV = A1,V −A2,V B
−1
2,V B1,V ,

is the same as in the linear elliptic diffusion case. Hence its invertibility and the feasibility of
the condensation in this form is determined by the rules studied in Section 3.3. Shall MV be
invertible for all V ∈ Vh, we have

U = Ã
−1(F − CP ) − J(G − DP ) ,

using (3.10). Here Ã−1 and J are given by (3.12). It now suffices to insert this expression for
U into the second equation of (3.18) to obtain the final system for the scalar unknowns P only,

(−BÃ
−1

C + BJD + D)P = G− BÃ
−1F + BJG . (3.21)

This transcription enables in particular a straightforward implementation of the proposed
condensation in any mixed finite element code.

Remark 3.4.1. (Assemblage of Ã−1 and J) We note that the matrices Ã−1 and J only
depend on the matrices A,B of (3.18). Hence, if these matrices do not change (i.e. when the
diffusion tensor S is constant with respect to time), the assemblage of Ã−1 and J can be done
only once before the start of the calculation. On each time and linearization step, one then
needs only C, D, F , and G from (3.18) to assemble the final linear system (3.21).

We now finally turn to the upwind-mixed lowest-order Raviart–Thomas method, cf. [46,
47, 77]. For this purpose, we first rewrite (3.16a)–(3.16b) as

∂β(p)
∂t

+ ∇ · r + ∇ · (ψ(p)w) + F (p) = q in Ω × (0, T ) ,

r = −S∇p in Ω × (0, T ) .

Whereas the initial and Dirichlet boundary conditions (3.16c) and (3.16d) stay the same, we
rewrite the Robin boundary condition (3.16e) as a Neumann one,

r · n = vN on ΓN × (0, T ) .
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Let again r̃ be such that r̃ · n = vN on ΓN in the appropriate sense and define r̃n :=
1

�tn
∫ tn
tn−1

r̃(·, t) dt, n ∈ {1, 2, . . . , N}. The fully implicit upwind-mixed finite element method
then reads: on each time level tn, n ∈ {1, 2, . . . , N}, find the functions rnh = rn0,h + r̃n,
rn0,h ∈ V(Eh), and pnh ∈ Φ(Th) such that

(S−nrn0,h,vh)Ω − (∇ · vh, pnh)Ω = −〈vh · n, pnD〉∂Ω

−(S−nr̃n,vh)Ω ∀vh ∈ V(Eh) , (3.23a)(β(PnK) − β(Pn−1
K )

	tn
, φK

)
K

+ (∇ · rn0,h, φK)K +
∑
σ∈EK

ψ(p̂nσ)w
n
K,σ + (F (PnK), φK)K

= (q, φK)K − (∇ · r̃n, φK)K ∀K ∈ Th , (3.23b)

where wn
K,σ = 〈wn · n, 1〉σ and p̂nσ is the upwind value defined by

p̂nσ :=
{
PnK if wn

K,σ ≥ 0
PnL if wn

K,σ < 0

if σ is an interior side between the elements K and L,

p̂nσ :=
{

PnK if wn
K,σ ≥ 0

〈pnD, 1〉σ/|σ| if wn
K,σ < 0

if σ is a Dirichlet boundary side, and p̂nσ := PnK if σ is a Neumann boundary side. The
linearization of the system (3.23a)–(3.23b) has again the form (3.18), with this time C = −Bt.
The condensation applies again directly and in particular the final system has the form (3.21).
The only difference is that because of the upstream weighting, P1,V �= P2,V in (3.19). In the
expression for the fluxes through the FCV

sides, all the scalar unknowns associated with the
elements sharing a side with an element from the cluster CV may appear. Hence also the
stencil of the final matrix is in this case wider: on a row of the final matrix corresponding to
an element K ∈ Th, the only possible nonzero entries are on columns corresponding to L ∈ Th
such that L shares a common side with an element M ∈ Th such that M and K share a
common vertex. Finally, a similar observation to Remark 3.4.1 holds also in this case. Shall A

and B be constant, we only need to upload D, F , and G on each time and linearization step,
as in the finite volume method.

3.5 Numerical experiments

We give the results of several numerical experiments in two space dimensions in this section.
We first compare the computational cost of the proposed condensation of the lowest-order
mixed finite element method with standard mixed solution approaches for elliptic and parabolic
problems. We then present a comparison of precision and efficiency between the condensed
mixed finite element, finite volume, and combined finite volume–finite element methods for a
nonlinear parabolic problem. We use the basic local condensation matrices associated with
vertices; these are not always positive definite, but are always invertible.

We perform the simulations on unstructured triangular meshes, given as regular refinements
(each triangle is refined into four triangles by joining its edges midpoints) of some mesh from
Figure 3.7. In the mesh A, the minimal and maximal angles are equal to 29.1 and 82.7 degrees,
in the mesh B to 29.1 and 84.8 degrees, in the mesh C to 15.3 and 135 degrees, and in the
mesh D to 15.3 and 142 degrees, respectively. We denote the number of refinements by r (r = 0
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Figure 3.7: Initial meshes A (top left), B (top right), C (bottom left), and D (bottom right)

corresponds to the initial mesh). For a parabolic problem on a time interval (0, T ), the initial
time step is equal to T/2 and is divided by two each time the space mesh is refined. Since the
discrete maximum principle is not necessarily satisfied by the considered numerical schemes,
we prolong each function β(p) only defined for positive values also for negative values by
β(−p) = −β(p). In the tables with results, we shall use the abbreviation SPD for a symmetric
positive definite matrix, NPD for a nonsymmetric but positive definite matrix (recall that a
real matrix M ∈ RM×M is positive definite if XtMX > 0 for all X ∈ RM , X �= 0), and NID
for a nonsymmetric indefinite matrix. We further use st. for the stencil, i.e. for the maximum
number of nonzero entries on each matrix row, and cond. for the 2-norm condition number
(defined for a matrix M by ‖M‖2‖M−1‖2, or equivalently by the ratio of its largest and smallest
singular value).

We employ two iterative methods for the solution of systems of linear equations with sparse
matrices. If the matrix is symmetric and positive definite, we use the conjugate gradients (CG)
method [73, 103]. For nonsymmetric matrices, we employ the bi-conjugate gradients stabilized
(Bi-CGStab, in tables abbreviated as Bi-CGS) method [103, 117]. In all considered cases,
the nonsymmetric matrices are negative-stable (all their eigenvalues have positive real parts,
which is in particular the case when the system matrix is positive definite), which is an essential
requirement for a reasonably fast convergence of the Bi-CGStab method. To accelerate the
convergence of these methods, we use incomplete Cholesky (IC) or incomplete LU (ILU)
factorizations with a specified drop tolerance, cf. [111]. We denote the preconditioned methods
by PCG and PBi-CGStab (PBi-CGS), respectively. In order to stop the iterative process, we
monitor the relative residual ‖Y − MX̃‖2/‖Y ‖2, where X̃ is the approximate solution to the
system MX = Y . We focus on iterative solvers since they permit an efficient solution of
nonlinear problems, combined with the Newton method and a suitable preconditioning.

All the computations were done in a C++ code in double precision on a notebook with Intel
Pentium 4-M 1.8 GHz processor and MS Windows XP operating system. Machine precision
was in power of 10−16. All the matrix operations were done with the help of MATLAB 6.1.
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Ref. Unkn. Matr. St. Cond. Bi-CGS Iter. CG Iter.
3 1024 NPD 14 721 0.20 76.5
4 4096 NPD 14 2882 1.43 147.5
5 16384 NPD 14 11523 12.55 295.5
6 65536 NPD 14 46093 117.58 555.5

3 1504 SPD 5 1397 0.31 118.0 0.22 157
4 6080 SPD 5 5616 2.43 230.5 1.75 316
5 24448 SPD 5 22499 23.40 449.5 16.87 623
6 98048 SPD 5 89995 227.04 864.0 162.09 1226

Table 3.1: Comparison of the computational cost of the condensed and hybridized mixed finite
element methods, problem (3.24), mesh A

M
H

F
E

C
M

F
E

3.5.1 Condensed mixed finite element method for elliptic problems

For Ω = (0, 1) × (0, 1), we consider the problem

−	p = −2exey (3.24)

with a Dirichlet boundary condition given by the exact solution p(x, y) = exey and the initial
mesh A from Figure 3.7. We compare the computational cost of the condensation of the mixed
finite element method proposed in this chapter and of the hybridization of the mixed finite
element method onto the Lagrange multipliers associated with the edges.

We compare the number of unknowns (number of triangles for the condensed and number
of edges for the hybridized mixed finite element method), symmetry, positive definiteness,
stencil, and the condition number of the system matrices in Table 3.1. Recall that the system
matrix of the mixed-hybrid method is in the given case equivalent to that of the nonconforming
finite element method, cf. [38], Lemma 1.8.1, or a more detailed study in Section 4.6 of this
thesis. We further give the CPU time in seconds and the number of iterations necessary to
decrease the relative residual below 1e-10. We have used a zero start vector.

One needs about 1.35-times less CPU time for the condensed version than for the hybridized
version of the mixed finite element method. If the system matrix may become nonsymmetric
(convection–diffusion problems, nonsymmetric diffusion tensors), then e.g. the Bi-CGStab
method will be necessary also for the mixed-hybrid method. One may expect more important
computational savings in this case, as it is indicated by the use of this method in the present
case (up to 2-times less the CPU time). Essential computational savings are however confirmed
in the next section for (nonlinear) parabolic problems, where also a detailed study of the
influence of the coefficients of the equation at hand, of the shapes of the elements of the mesh,
and of the preconditioning is performed.

3.5.2 Condensed mixed finite element method for nonlinear parabolic prob-
lems

We compare in this section the condensed and standard mixed finite element methods for
several nonlinear parabolic (convection–)reaction–diffusion problems, which may involve dis-
continuous coefficients and inhomogeneous and anisotropic diffusion tensors.
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Unkn. Matr. St. Cond. Bi-CGS Iter. CPU ILU PBi-CGS Iter.
128 NPD 14 37 0.02 29.5 0.02 0.01 0.01 2.0
512 NPD 14 109 0.06 50.0 0.02 0.01 0.01 2.5

2048 NPD 14 298 0.37 80.5 0.10 0.06 0.04 3.0
8192 NPD 14 747 2.45 122.5 0.68 0.38 0.30 5.0

32768 NPD 14 1753 14.24 175.0 4.75 2.95 1.80 7.0

CG IC PCG
204 SPD 5 290 0.05 110 0.02 0.01 0.01 5
792 SPD 5 764 0.14 206 0.04 0.02 0.02 7

3120 SPD 5 1770 0.95 333 0.18 0.08 0.10 11
12384 SPD 5 3820 5.36 508 1.21 0.58 0.63 14
49344 SPD 5 7974 34.45 743 8.17 3.83 4.34 18

Table 3.2: Comparison of the computational cost of the condensed and standard mixed finite
element methods, first time and linearization step, problem (3.25), tensor (3.26), mesh B

M
F
E

C
M

F
E

A reaction–diffusion problem

For Ω = (0, 2) × (0, 1) and a time interval (0, 1), we consider the nonlinear reaction–diffusion
problem

∂(p + pα)
∂t

−∇ · (S∇p) + 3p+ αpα = 0 (3.25)

with α = 0.5 and either

S =
(

1 0
0 1

)
in Ω (3.26)

or

S =
(

1 0
0 1

)
for x < 1 , S =

(
2 −1

−1 2

)
for x > 1 . (3.27)

Initial and Dirichlet boundary conditions are given by the exact solution p(x, y, t) =
exeye−t/e3. Notice that the flux of the solution given by −S∇p has a continuous normal
trace across the discontinuity line x = 1 for the diffusion tensor (3.27). The derivative of the
function pα, α = 0.5, blows up in 0 but the problem is not really degenerate parabolic, since
the exact solution does not take the value of 0. We perform the simulations starting from the
meshes B and C from Figure 3.7. We consider the condensation of the mixed finite element
method (3.21) and the mixed finite element method (3.17a)–(3.17b). We notice that the sys-
tem of equations of the mixed method has on each time and linearization step the form (3.18),
where D is a diagonal matrix. Hence a standard solution approach is to inverse D, then solve
for U the system (A−CD−1B)U = F −CD−1G, and finally recover P from P = D−1(G−BU).
In fact, in the present case, C = Bt, and thus the final system matrix is symmetric. It is noted
in [74] that this approach is not suitable when the term occurring in the time derivative and
the reaction term are too small in comparison with the other terms, which is however not the
present case. On the contrary, according to [74], such solution approach is more reliable than
the hybridization of the mixed finite element method for general diffusion tensors.

We compare the properties of the system matrices on the first time and Newton lineariza-
tion steps in Table 3.2, considering the tensor (3.26) and the initial mesh B. We further give
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Unkn. Matr. St. Cond. Bi-CGS Iter. CPU ILU PBi-CGS Iter.
128 NPD 14 61 0.02 31.0 0.02 0.01 0.01 2.0
512 NPD 14 225 0.07 62.0 0.02 0.01 0.01 2.5

2048 NPD 14 676 0.49 119.0 0.12 0.07 0.05 3.5
8192 NPD 14 1814 3.76 212.0 0.75 0.39 0.36 6.0

32768 NPD 14 4603 26.62 335.5 5.31 3.02 2.29 8.0

CG IC PCG
204 SPD 5 1358 0.07 170 0.02 0.01 0.01 6
792 SPD 5 4314 0.36 409 0.04 0.02 0.02 10

3120 SPD 5 11506 2.23 836 0.28 0.12 0.16 16
12384 SPD 5 28188 15.93 1456 1.61 0.68 0.93 20
49344 SPD 5 65024 108.51 2279 11.75 5.76 5.99 27

Table 3.3: Comparison of the computational cost of the condensed and standard mixed finite
element methods, first time and linearization step, problem (3.25), tensor (3.27), mesh C

M
F
E

C
M

F
E

the CPU time in seconds and the number of iterations necessary to decrease the relative resid-
ual below 1e-8 by the Bi-CGStab and CG methods, respectively, without any preconditioning.
We then use the incomplete LU and Cholesky factorizations, respectively, as preconditioners.
The drop tolerance is chosen in such way that the sum of CPU times for the preconditioning
and the solution of the preconditioned system was minimal. We give in Table 3.2 the separate
times as well as their sum (CPU) and the number of iterations of the preconditioned method.
We have always used a zero start vector. We report finally in Table 3.3 the same values for
the case of the tensor (3.27) and the initial mesh C.

The CPU time of the condensed mixed finite element method is about 2-times shorter
than the CPU time of the standard approach in the case of the tensor (3.26) and the initial
mesh B. When full-matrix and discontinuous diffusion tensor (3.27) and a less regular mesh C
are used, then the CPU time of the condensed version is more than 4-times shorter when
no preconditioning is used and more than 2-times shorter with preconditioning. Note the
important increase of the condition number of the system matrix of the standard mixed finite
element method for the tensor (3.27).

A convection–reaction–diffusion problem

For Ω = (0, 2)×(0, 1) and a time interval (0, 1), we consider the nonlinear convection–reaction–
diffusion problem

∂(p+ pα)
∂t

−∇ · (S∇p) + ∇ · (pw) + αpα = 0 (3.28)

with α = 0.5 and either

S =
(

1 0
0 1

)
in Ω , w = (3, 0) in Ω (3.29)

or

S =
(

1 0
0 1

)
for x < 1 , S =

(
8 −7

−7 20

)
for x > 1 ,

w = (3, 0) for x < 1 , w = (3, 12) for x > 1 . (3.30)
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Unkn. Matr. St. Cond. Bi-CGS Iter. CPU ILU PBi-CGS Iter.
128 NPD 14 39 0.02 27.0 0.02 0.01 0.01 2.0
512 NPD 14 116 0.07 56.5 0.02 0.01 0.01 2.5

2048 NPD 14 311 0.38 82.5 0.11 0.06 0.05 3.5
8192 NPD 14 768 2.65 139.0 0.75 0.41 0.34 5.5

32768 NPD 14 1782 17.14 191.5 4.85 2.95 1.90 7.0

204 NPD 5 405 0.06 95.5 0.02 0.01 0.01 2.0
792 NPD 5 917 0.22 153.0 0.07 0.03 0.04 3.0

3120 NPD 5 1949 1.36 282.0 0.34 0.14 0.20 4.0
12384 NPD 5 4016 8.47 406.5 2.57 0.94 1.63 5.0
49344 NPD 5 8181 51.18 553.0 17.63 6.94 10.69 6.0

Table 3.4: Comparison of the computational cost of the condensed and standard mixed finite
element methods, first time and linearization step, problem (3.28), coefficients (3.29), mesh B

M
F
E

C
M

F
E

Initial and Dirichlet boundary conditions are again given by the exact solution p(x, y, t) =
exeye−t/e3. Notice that in the case of the coefficients given by (3.30), the velocity field w as
well as the flux of the solution given by −S∇p+ (pw) have a continuous normal trace across
the discontinuity line x = 1. We perform the simulations on refinements of the meshes B, C,
and D from Figure 3.7. The problem is not convection-dominated, and hence we can use the
mixed finite element method (3.17a)–(3.17b). Notice that the associated linear system on each
time and linearization step has again the form (3.18) with D a diagonal matrix. Hence the
same solution approach as in the previous section can be used. In this case however C �= Bt,
and thus the final system for U is nonsymmetric.

We compare the properties of the linear systems on the first time and Newton linearization
steps for different combinations of coefficients and meshes in Tables 3.4, 3.5, and 3.6. The
settings are the same as in the previous section, except for the fact that we have to use the
Bi-CGStab method and the LU incomplete factorization also for the standard mixed approach
in view of the nonsymmetry of its system matrices.

One can observe that the increase of the condition number of the system matrix of the
condensed mixed finite element method with less regular coefficients and meshes in much less
important than that of the standard mixed finite element method. Hence the CPU time of the
unpreconditioned Bi-CGStab method for the condensed version is about 3-times shorter for the
coefficients (3.29) and mesh B, but about 10-times shorter for the coefficients (3.30) and meshes
C and D. Using the preconditioning by the LU incomplete factorization considerably smears
the difference. The CPU time of the condensed version is then about 3.5-times shorter for the
coefficients (3.29) and mesh B and 4-times shorter for the coefficients (3.30) and mesh C. The
system matrix of the condensed mixed finite element method looses the positive definiteness
property while changing from the mesh C to the mesh D when the coefficients (3.30) are
considered. It appears that this transition is connected with a remarkable 50% increase in the
CPU time in the case where the preconditioning is used. The system matrix of the standard
mixed finite element method stays positive definite and the increase in the CPU time while
changing from mesh C to mesh D with the coefficients (3.30) is about 10%. Hence the CPU
time of the condensed version is about 3-times shorter for the coefficients (3.30) and mesh D,
while using the preconditioning.
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Unkn. Matr. St. Cond. Bi-CGS Iter. CPU ILU PBi-CGS Iter.
128 NPD 14 470 0.04 70.0 0.02 0.01 0.01 2.0
512 NPD 14 1665 0.21 149.5 0.03 0.01 0.02 2.5

2048 NPD 14 4824 1.47 322.5 0.12 0.07 0.05 3.5
8192 NPD 14 12523 8.66 474.5 0.88 0.56 0.32 5.0

32768 NPD 14 31368 61.53 787.5 7.47 5.46 2.01 5.5

204 NPD 5 13849 0.23 412.5 0.02 0.01 0.01 2.0
792 NPD 5 39935 1.38 1105.5 0.04 0.02 0.02 2.5

3120 NPD 5 103342 12.12 2419.5 0.41 0.18 0.23 3.0
12384 NPD 5 250923 103.42 5390.5 3.06 1.32 1.74 3.5
49344 NPD 5 586375 617.26 7145.5 29.88 14.96 14.92 4.0

Table 3.5: Comparison of the computational cost of the condensed and standard mixed finite
element methods, first time and linearization step, problem (3.28), coefficients (3.30), mesh C

M
F
E

C
M

F
E

Unkn. Matr. St. Cond. Bi-CGS Iter. CPU ILU PBi-CGS Iter.
128 NID 14 613 0.03 74.0 0.02 0.01 0.01 2.0
512 NID 14 2232 0.26 185.5 0.03 0.01 0.02 2.5

2048 NID 14 6512 1.57 326.5 0.19 0.09 0.10 3.5
8192 NID 14 16755 9.41 521.5 1.37 0.61 0.76 4.0

32768 NID 14 41716 73.20 903.5 11.89 5.36 6.53 5.5

204 NPD 5 17156 0.25 441.5 0.02 0.01 0.01 2.0
792 NPD 5 49995 1.32 1063.5 0.05 0.02 0.03 2.5

3120 NPD 5 131073 13.62 2691.5 0.47 0.20 0.27 3.0
12384 NPD 5 319842 87.93 4222.5 3.36 1.62 1.74 3.5
49344 NPD 5 750271 686.64 7248.0 32.68 15.77 16.91 4.5

Table 3.6: Comparison of the computational cost of the condensed and standard mixed finite
element methods, first time and linearization step, problem (3.28), coefficients (3.30), mesh D

M
F
E

C
M

F
E
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Unkn. Matr. St. Cond. Bi-CGS Iter. CPU Per. ILU PBi-CGS Iter.
128 NPD 19 42 0.02 25.5 0.02 0.01 0.01 2.0
512 NPD 19 120 0.09 57.0 0.02 0.01 0.01 2.5

2048 NPD 19 318 0.46 88.0 0.11 0.06 0.05 3.0
8192 NPD 19 777 2.99 138.5 0.68 0.36 0.32 5.0

32768 NPD 19 1792 18.86 210.5 4.89 2.87 2.02 7.5

332 NPD 7 17 0.18 235.5 0.03 0.01 0.01 0.01 2.0
1304 NPD 7 29 1.17 549.5 0.09 0.01 0.03 0.05 2.5
5168 NPD 7 67 13.01 1540.5 0.48 0.03 0.15 0.30 3.5

20576 NPD 7 168 124.06 3561.5 2.83 0.32 0.98 1.53 4.0
82112 NPD 7 393 3233.05 16763.5 15.70 1.35 4.92 9.43 6.0

Table 3.7: Comparison of the computational cost of the condensed and standard upwind-mixed
finite element methods, first time and linearization step, problem (3.28), coefficients (3.29),
mesh B

U
-M

F
E

C
U

-M
F
E

A convection–reaction–diffusion problem and the upwind-mixed method

We consider here once more the problem (3.28) with coefficients (3.29) and mesh B. This time,
we employ the upwind-mixed finite element method (3.23a)–(3.23b) and the corresponding
condensed version.

We compare the properties of the linear systems on the first time and Newton linearization
steps in Table 3.7. Although there is an increase in the stencil of the condensed upwind-mixed
finite element method, the system matrix condition number and CPU times are very much
like for the condensed mixed finite element method, cf. Table 3.4. The system for the upwind-
mixed finite element method on each time and linearization step has again the form (3.18).
The matrix D is however in this case not diagonal, and hence we cannot easily eliminate the
scalar unknowns P . We thus consider the whole matrix for the unknowns U and P . This
matrix is very well conditioned, nonsymmetric, positive definite, and negative-stable, but the
direct application of the Bi-CGStab method does not lead to satisfactory results, cf. Table 3.7.
Also the direct LU incomplete factorization is almost impossible, since the LU factors tend
to considerably increase the fill-in. A suitable solution approach however seems to be to first
perform the column minimum degree permutation [70]. The matrix with permuted columns
then has sparser LU incomplete factors, which can in turn be successfully used as precondi-
tioners. We report in Table 3.7 the CPU times necessary for finding the column minimum
degree permutation, LU incomplete factorization of the matrix with permuted columns, and
for the solution of the preconditioned systems by the Bi-CGStab method, as well as the sum
of these times (CPU). In the present case, the condensation reduces the CPU time by a factor
better than 3.

3.5.3 Comparison of the condensed mixed finite element, finite volume, and
combined finite volume–finite element methods

We compare in this section the precision and efficiency of the discretization schemes studied
in this thesis for a nonlinear convection–reaction–diffusion problem.
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Method Unkn. Matr. St. Cond.
FV 8192 NPD 4 1704
CMFE 8192 NPD 14 768
FV–FE 4001 NPD 8 281
FV–NCFE 12192 NPD 5 1501

Table 3.8: Characteristics of the system matrices on the first time and linearization steps,
problem (3.28), coefficients (3.29), Dirichlet boundary conditions, mesh B, r = 4

Method Unkn. Matr. St. Cond.
CMFE 8192 NID 14 19589
FV–FE 4032 NPD 8 12965
FV–NCFE 12224 NPD 5 59029

Table 3.9: Characteristics of the system matrices on the first time and linearization steps,
problem (3.28), coefficients (3.30), Dirichlet–Robin boundary conditions, mesh D, r = 4

The first considered scheme is the condensed mixed finite element (CMFE) scheme studied
in this chapter. The second scheme is the combined finite volume–nonconforming finite element
(FV–NCFE) scheme studied in Chapter 1. Since we will only consider piecewise constant
diffusion tensors, this scheme coincides with the combined finite volume–mixed-hybrid finite
element one, see Remark 1.3.5. The third scheme is the combined finite volume–finite element
(FV–FE) scheme studied in Appendix 1.9 of Chapter 1. In fact, in contrast to Appendix 1.9, we
shall start here from the triangular mesh and then construct the dual mesh by joining triangle
barycentres with edge midpoints, as originally proposed in [67, 90]. Finally, for triangulations
with acute angles and for scalar diffusion tensors, we will also consider the cell-centered finite
volume (FV) scheme, cf. [61, 72]. Recall that in the FV and CMFE schemes, the degrees of
freedom are associated with triangles, in the FV–FE scheme with vertices, and in the FV–
NCFE scheme with edges.

We consider the problem (3.28) with various coefficients, meshes, and boundary conditions.
For the FV, FV–FE, and FV–NCFE schemes, we use the local Péclet upstream weighting
defined by (1.10), (1.11). Since the problem is not convection-dominated, we employ the
CMFE scheme starting from the mixed finite element method (3.17a)–(3.17b). The system
matrices properties on the first time and Newton linearization steps for the different methods
and 4-times refined original meshes are listed in Tables 3.8 and 3.9. Initial conditions for
the CMFE and FV methods are given by the mean values of the known exact solution over
the triangles at time t = 0. For the FV–FE and FV–NCFE methods, we consider instead
the point values of the exact solution at vertices and edge midpoints, respectively, at t = 0.
The boundary conditions for the FV–FE method are given by the point values of the exact
solution at the vertices lying on the boundary. For the other methods, we consider the point
values in the boundary edges midpoints. A quintic (7-point) numerical integration formulae
on triangles is used to evaluate the initial conditions for CMFE and FV methods, as well for
error computation. It has no influence on the considered order of precision of the results.

Tables 3.10 and 3.11 give discrete relative and projection relative errors for all the com-
pared schemes and up to five refinements of the original space-time grid, considering coef-
ficients (3.29), mesh B, and Dirichlet boundary conditions. The discrete L∞(0, T ;L2(Ω))
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Method \r 0 1 2 3 4 5
FV 0.15130 0.07538 0.03768 0.01884 0.00942 0.00471
PFV 0.02914 0.01159 0.00551 0.00276 0.00140 0.00070
CMFE 0.14519 0.07221 0.03607 0.01804 0.00902 0.00451
PCMFE 0.03480 0.01249 0.00558 0.00276 0.00139 0.00069
FV–FE 0.04892 0.01665 0.00693 0.00314 0.00149 0.00073
FV–NCFE 0.02642 0.01146 0.00554 0.00278 0.00140 0.00070

Table 3.10: Discrete L∞(0, T ;L2(Ω)) relative errors, problem (3.28), coefficients (3.29), mesh B

Method \r 0 1 2 3 4 5
FV 0.04957 0.02428 0.01215 0.00608 0.00304 0.00152
CMFE 0.02542 0.01099 0.00539 0.00273 0.00138 0.00070
FV–FE 0.13859 0.04922 0.01771 0.00655 0.00252 0.00102
FV–NCFE 0.03595 0.01495 0.00658 0.00306 0.00147 0.00072

Table 3.11: Discrete L∞(0, T ;L2(Ω)) projection relative errors, problem (3.28), coeffi-
cients (3.29), mesh B

relative error is defined by

max
n∈{1,2,...,N}

‖pnh(·) − p(·, tn)‖0,Ω

‖p(·, tn)‖0,Ω
,

where pnh is the approximate solution at time tn. For the FV–FE and FV–NCFE schemes,
we consider piecewise linear approximations, whereas for the FV and CMFE schemes, only a
piecewise constant solution is originally at disposal. Hence we use the following postprocess-
ing technique to construct also piecewise linear approximations. In both the FV and CMFE
schemes, one can easily evaluate the discrete diffusive fluxes {Udif

K,σ}σ∈EK
through the edges of

each triangle. In the FV scheme, Udif
K,σ = (PK −PL)|σ|/dK,L, where K and L are the triangles

sharing an interior edge σ and dK,L is the distance between xK and xL, the circumscribed cir-
cles centers (intersections of the edge orthogonal bisectors) of K and L. This follows naturally
from the definition of the scheme, cf. [61, 72]. In the considered CMFE scheme, the established
unknowns Uσ, σ ∈ Eh, represent full (the sum of convective and diffusive) fluxes through the
triangle edges (in the orientation of the RTN basis functions). To obtain only diffusive fluxes,
we thus subtract the convective ones, which we approximate by U conv

K,σ ≈ (PK + PL)wσ/2,
where again K and L are the triangles sharing the edge σ and wσ = 〈w · n, 1〉σ , n being
the unit normal vector of the edge σ, outward to K. Under the same principles, there are
slight modifications on the boundary. Then the three fluxes on each triangle define a linear
vector function, the diffusive flux, udif

h |K :=
∑

σ∈EK
Udif
K,σvσ, where vσ is the RTN basis func-

tion associated with the side σ, oriented outward from K. Note that for the elliptic diffusion
problem (3.1a)–(3.1c), this would be the solution uh, approximation of −S∇p, for the mixed
finite element method. Similar approximation holds in the finite volume method, see [60]. We
evaluate the function udif

h in triangle barycentres, so as to make it a constant vector on each
K. Now disposing by the approximation of the gradient and by one value per triangle, it is
straightforward to reconstruct a linear approximation: we fix it in xK by the known value PK
for the finite volume method and by its mean value PK over K for the mixed finite element
method. Note that this approximation is elementwise linear but generally completely discon-
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Figure 3.8: Efficiency comparison, problem (3.28), coefficients (3.29), mesh B

tinuous and that the price for its obtaining is negligible, since we do it locally. We denote by
PFV and PCMFE the FV and CMFE schemes with these postprocessed solutions.

We define a discrete L∞(0, T ;L2(Ω)) projection relative error by

max
n∈{1,2,...,N}

‖p̃nh(·) − p̃(·, tn)‖0,Ω

‖p(·, tn)‖0,Ω
,

where p̃nh is the piecewise constant approximate solution at time tn. For the FV–FE and FV–
NCFE schemes, we consider the solutions piecewise constant on the dual volumes, whereas for
the FV and CMFE scheme, we use the original elementwise constant results. The function
p̃ is given by the mean values of the exact solution p on the dual volumes for the combined
schemes and on the triangles for the FV and CMFE schemes. We finally give “efficiency
comparisons” in Figure 3.8. We plot the approximation errors against the CPU times of the
whole calculations. We have used the inexact Newton method, where on each linearization
step, a limited number (three to four) of Bi-CGStab iterations, started from the previous
linearization values, was performed. The LU incomplete factorization for preconditioning was
done at the beginning of each linearization cycle. The drop tolerance was chosen in order to
decrease the relative residual on the first linearization step after the limit number of iterations
to about 1e-5 (the stopping criterion was 1e-8). The Newton linearization was initiated by the
previous time step (initial) values and terminated whenever( M∑

i=1

(
Xn,k
i −Xn,k−1

i

)2) 1
2
/( M∑

i=1

(
Xn,k
i

)2) 1
2 ≤ 1e-8 ,

where Xn,k is the vector of approximation values on time and linearization steps n and k,
respectively. Three or four linearization steps on each time level were necessary.

As the FV–FE and FV–NCFE schemes produce piecewise linear approximations, their
discrete L∞(0, T ;L2(Ω)) relative errors are smaller than those of the FV and CMFE schemes
that we obtain while employing the original elementwise solutions. Using instead the postpro-
cessed values however completely eliminates this difference and on the finest mesh, all schemes
give comparable results. This implies the highest efficiency for the FV–FE scheme because
its lowest computational cost (for r = 5 and 64 time steps, the CPU times of the whole
calculations were 202 seconds for the FV–FE scheme, 308 seconds for the FV scheme, 604 sec-
onds for the CMFE scheme, and 804 seconds for the FV–NCFE scheme). The lowest discrete
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Method \r 0 1 2 3 4 5
CMFE 0.14313 0.07135 0.03564 0.01782 0.00891 0.00446
PCMFE 0.02608 0.00761 0.00259 0.00110 0.00053 0.00026
FV–FE 0.03961 0.01345 0.00537 0.00238 0.00111 0.00054
FV–NCFE 0.01990 0.00680 0.00293 0.00143 0.00072 0.00036

Table 3.12: Discrete L∞(0, T ;L2(Ω)) relative errors, problem (3.28), coefficients (3.30), mesh D

Method \r 0 1 2 3 4 5
CMFE 0.00821 0.00389 0.00199 0.00102 0.00052 0.00027
FV–FE 0.13895 0.04848 0.01713 0.00619 0.00230 0.00089
FV–NCFE 0.03122 0.01210 0.00475 0.00197 0.00087 0.00040

Table 3.13: Discrete L∞(0, T ;L2(Ω)) projection relative errors, problem (3.28), coeffi-
cients (3.30), mesh D

L∞(0, T ;L2(Ω)) projection relative error is produced by the mixed finite element method and
the highest by the finite volume method. The differences are important enough to persist to
the efficiency graph. The experimental order of convergence for fine meshes is O(h,	t), a
little bit better for coarser meshes.

Tables 3.12 and 3.13 give the discrete relative and projection relative errors for the co-
efficients (3.30), mesh D, and Robin boundary conditions on x = 0 and Dirichlet boundary
conditions otherwise. In the present case, the FV–FE scheme gives worse results than the
FV–NCFE scheme, which is in turn outperformed by the elementwise linear postprocessed
solution of the CMFE scheme. In a similar manner, the projection error of the mixed finite
element method is very low, in spite of the discontinuous coefficients and inhomogeneous and
anisotropic diffusion tensor. It can be seen from Table 3.9 that the conditioning of the system
matrices is in this case considerably increased. However, this increase in conditioning is much
more important for the FV–FE and FV–NCFE schemes than for the CMFE scheme. We have
purposely chosen the mesh D, where the system matrix of the CMFE scheme fails to be positive
definite. The results from Section 3.5.2 indicate that this may considerably increase the CPU
time of the CMFE scheme in comparison with the mesh C, where the CMFE system matrix
would be positive definite. Nevertheless, the CMFE scheme shows to be superior in this case
also in terms of efficiency, followed by the two other schemes, cf. Figure 3.9. These differences
are more important for the L∞(0, T ;L2(Ω)) projection error. For the sake of completeness,
we indicate that for r = 5 and 64 time steps, the CPU times were 242 seconds for the FV–FE
scheme, 1017 seconds for the CMFE scheme, and 1153 seconds for the FV–NCFE scheme.

To conclude, we mention that we have only considered the discretization of not convection-
dominated problems on fixed grids. When the problem at hand approaches the hyperbolic case,
the presented schemes reduce to a finite volume scheme stabilized by an upstream weighting.
They then only differ by the definition of the control volumes. A comparative study of the
influence of the definition of the control volumes is given in [97]. It follows from this study that
the most efficient choice is represented by triangular control volumes, then by control volumes
associated with vertices, and finally by control volumes associated with edges. Finally, for a
precise and efficient solution of convection-dominated problems, either local mesh refinement
or the use of higher-order schemes would be necessary.
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Figure 3.9: Efficiency comparison, problem (3.28), coefficients (3.30), mesh D

3.5.4 Conclusions

We have studied in this section the computational cost of the proposed condensation of the
mixed finite element method for elliptic and (nonlinear) parabolic problems.

For elliptic diffusion problems in two space dimensions, the standard hybridization leads
to systems for the number of edges unknowns with symmetric positive definite matrices with
a 5-point stencil. In the proposed condensation, the number of unknowns is reduced to the
number of elements (which is approximately 2/3 of the number of edges), but the system
matrices are in general nonsymmetric, have a wider (about 13-point) stencil, and are positive
definite only under a condition on the mesh and the diffusion tensor. This condition however
allows for quite deformed triangles in the case of a piecewise constant scalar diffusion tensor.
The CPU time speed-up for the test case was about 1.35. The finite volume reformulation of
the mixed finite element method proposed and studied in [37, 121, 122] leads to symmetric
matrices with the number of elements unknowns and a 4-point stencil. The matrices are
positive definite for Delaunay triangulations and constant scalar diffusion tensors but indefinite
otherwise. Hence the computational savings of the reformulation will be very probably more
important than those of the condensation for Delaunay triangulations and constant scalar
diffusion tensors. The situation should be much more favorable for the condensation when
the mesh is not Delaunay or when the diffusion tensor is inhomogeneous and anisotropic. In
three space dimensions, the finite volume reformulation is in general not possible, see [121]. In
contrast, the condensation applies directly as in two space dimensions. Moreover, the number
of unknowns is in this case only about 1/2 of that of the hybridization. Hence one can expect
even more important computational savings than in the two-dimensional case.

We believe that the main importance of the proposed condensation lies in its application
to mixed finite element discretizations of (nonlinear) parabolic convection–reaction–diffusion
problems. The resulting matrices are still sparse, positive definite for a large class of meshes
and diffusion tensors, nonsymmetric, and seem to be very well conditioned. Moreover, if the
diffusion tensor is constant with respect to time, one can assemble and invert the local conden-
sation matrices only once before the start of the calculation and then only work with the scalar
unknowns as in the finite volume method, which still reduces the computational complexity.
In two space dimensions, the number of unknowns is equal to approximately 2/3 of that of
standard solution approaches in the mixed finite element method and to approximately 2/5 of
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that of the upwind-mixed method. The CPU times necessary for the solution of the associated
linear systems in the presented test cases were reduced by a factor 2 for parabolic reaction–
diffusion problems. When convection is present, nonsymmetric matrices arise naturally also
in the mixed and upwind-mixed schemes. The speed-up was in this case comprised between
3 and 4. The finite volume reformulation of the mixed finite element method is possible for
parabolic reaction–diffusion problems, but leads in general to indefinite nonsymmetric systems
with a limited gain in the terms of the computational cost, cf. [37, 122]. Hence the condensa-
tion seems to be much more attractive in this case. This is still emphasized by the fact that it
can be very easily implemented into existing mixed finite element codes. Finally, the speed-up
should be even more important in three space dimensions, where the number of unknowns
of the condensation is about 1/2 of that of the mixed and 1/3 of that of the upwind-mixed
schemes.

We have finally compared the condensed mixed finite element scheme with a finite vol-
ume and combined finite volume–finite element ones for nonlinear parabolic equations. For
problems with discontinuous coefficients and inhomogeneous and anisotropic diffusion tensors,
the mixed finite element method clearly gives better results. This, taking into account the
gain in the CPU time due to the proposed condensation, makes it both more precise and
efficient than the combined schemes. Also, for such problems, the combined finite volume–
nonconforming/mixed-hybrid finite element scheme seems to be superior to the combined finite
volume–finite element one, one of the possible reasons being that the latter scheme employs
the arithmetic average of the heterogeneities. When no essential heterogeneities and disconti-
nuities are present, the combined finite volume–finite element scheme may be the most efficient
due to its low computational cost. Finally, when the diffusion operator is only a Laplacian and
for Delaunay meshes, the finite volume method represents another cheap and efficient solution
technique.





Chapitre 4

Mixed and nonconforming finite
element methods on a fracture
network

We investigate in this chapter the lowest-order Raviart–Thomas mixed finite element method
for second-order elliptic problems posed over a system of intersecting two-dimensional polygons
placed in three-dimensional Euclidean space. The domain is characteristic by the presence of
intersection lines shared by three or more polygons. We first construct continuous and discrete
function spaces ensuring the continuity of scalar functions and an appropriate continuity of the
normal trace of vector functions across such intersection lines. We then propose a variant of
the lowest-order Raviart–Thomas mixed finite element method for the given problem with the
domain discretized into a triangular mesh and prove its well-posedness. We finally investigate
the relation of the hybridization of the considered mixed finite element method to the piecewise
linear nonconforming finite element method. We extend the results known in this direction
onto networks of polygons, general diffusion tensors, and general boundary conditions. This
enables us in particular to efficiently implement the mixed finite element method. We verify
the theoretical results on a model problem with a known analytical solution and show the
application of the proposed method to the simulation of underground water flow through a
system of polygons representing a network of fractures that perturbs a rock massif.
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4.1 Introduction

The motivation of this chapter is the need to simulate water flow through underground rock
massifs. Such massifs are proposed as e.g. nuclear waste repositories and they are always
disrupted by a system of geological faults, fractures. One of the possible modeling approaches
is to approximate the fractures by a network of planar polygonal disks and to consider two-
dimensional Darcy flow through such network, see e.g. [5, 24, 119]. This problem is mathe-
matically a second-order elliptic problem posed over a system of intersecting two-dimensional
polygons placed in three-dimensional Euclidean space. An example of such system is given in
Figure 4.1. The system in this figure is already discretized into a triangular mesh (the colors
represent various values of hydraulic conductivity associated with the elements). We can easily
notice an essential property of a domain created by a system of polygons that is impossible in
classical planar domains: there exist interelement edges in the triangulation which belong to
three or more triangular elements.

We propose and investigate in this chapter a variant of the lowest-order Raviart–Thomas
mixed finite element method [105] (cf. also [33, 108]) for systems of polygons. It turns out that
the essential step is the definition of appropriate continuous and discrete function spaces: we
have to ensure the continuity of the scalar primary unknown (pressure) across the intersection
lines between polygons and an appropriate continuity of the normal trace of the flux of the
primary unknown (the hydraulic conductivity tensor times the negative of the gradient of the
pressure, i.e. the Darcy velocity) across these intersection lines. The well-posedness of the weak
mixed formulation is then implied by the well-posedness of the weak primal formulation, which
is easy to show. To demonstrate the existence and uniqueness of the mixed approximation, we
define a global interpolation operator on the discrete velocity space and prove the commuting
diagram property, which implies the discrete inf–sup (Babuška [16]–Brezzi [30]) condition.

We next investigate the relation of the hybridization of the lowest-order Raviart–Thomas
mixed finite element method to the piecewise linear nonconforming finite element method.
It is known that the matrices of these two methods coincide for an elliptic problem with an
elementwise constant diffusion tensor and a homogeneous Dirichlet boundary condition, see [15]
or a detailed study given in [38]. We extend these results onto systems of polygons, nonconstant
diffusion tensors, and inhomogeneous mixed Dirichlet/Neumann boundary conditions. The
implementation of the considered mixed finite element method via the nonconforming method
is on the one hand very efficient and on the other hand, since a polygonal domain is a trivial
instance of a system of polygons, is naturally valid also for standard planar domains. Such
implementation in particular avoids the inverting of local matrices (cf. [33, Section V.1.2]),
usually used when the relation with the nonconforming method is not known. Recall that
inverting of local matrices is a potential source of significant numerical errors, cf. [74].

The outline of this chapter is as follows. In Section 4.2 we formulate the second-order
elliptic problem on a system of polygons and in Section 4.3 we define continuous and discrete
function spaces on such system. We state the weak primal formulation and the nonconforming
finite element approximation in Section 4.4. Section 4.5 is devoted to the lowest-order Raviart–
Thomas mixed finite element method: we state and show the existence and uniqueness of the
weak mixed solution and of the mixed approximation, introduce the hybridization of the mixed
approximation, and give error estimates. Finally, in Section 4.6 we investigate the relation
between mixed and nonconforming methods and in the first part of Section 4.7 we present the
results of a numerical experiment on a model problem with a known analytical solution. We
refer to the second part of Section 4.7 for the description of the application of the proposed
method to the simulation of fracture flow and for a comparison with other methods.
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Figure 4.1: Example of a simple system of polygons (discretized into a triangular mesh)

4.2 Second-order elliptic problem on a system of polygons

We define the system of polygons S and the second-order elliptic problem on this system in
this section. We set

S :=
{ ⋃
�∈L

α� \ ∂S
}
, (4.1)

where α� is an open two-dimensional polygon placed in three-dimensional space and L is the
index set of polygons. We suppose that the closures α� of polygons are all connected into the
system; the connection is only possible through an edge, not through a point. For the purpose
of the mathematical description, we require that αi ∩ αj = ∅ if i �= j and that αi ∩ αj, i �= j,
is either an edge or a point or an empty set. In order to fulfill this property it is enough to
divide each polygon from a general system of polygons as that of Figure 4.1 into subpolygons
along each intersection line that it contains. Finally, ∂S is the set of those boundary points
of α�, � ∈ L, which do not create the connection with other polygons. We suppose that there
is a two-dimensional orthogonal coordinate system given in each polygon. The system of the
model problem from Section 4.7 viewed in Figure 4.3 below may serve as an example. In this
case S consists of three rectangles, denoted as four polygons α1–α4, and ∂S consists of twelve
edges Γ1–Γ12.

We seek p (a scalar function in each α�) and u (a two-dimensional vector in each α�) which
are the solutions of the problem

u = −K(∇p+ ∇z) in α� , � ∈ L , (4.2a)
∇ · u = q in α� , � ∈ L , (4.2b)

p = pD on ΓD , u · n = uN on ΓN , (4.2c)

where all the variables are expressed in local coordinates of the appropriate α� and also the
differentiation is always done with respect to these local coordinates. In the context of ground-
water flow the variable p denotes the pressure head, p = p̃/�g, where p̃ is the fluid pressure, g is
the gravitational acceleration constant and � is the fluid density, u is the flow velocity, q repre-
sents stationary sources or sinks, z is the elevation, i.e. the upward vertical three-dimensional
coordinate, and K is the tensor of hydraulic conductivity. The equation (4.2a) is then the
Darcy law, (4.2b) is the mass balance equation, and (4.2c) prescribes Dirichlet and Neumann
boundary conditions. We suppose that ΓD ∩ΓN = ∅, ΓD ∪ΓN = ∂S, and that the measure of
ΓD is nonzero. Note that n in (4.2c) is the unit outward normal vector of the appropriate α�.
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Let f be an edge such that there exist polygons αi and αj, i �= j, such that f = αi ∩ αj .
We denote the set of such edges by E int and the set of all i ∈ L such that f ⊂ ∂αi by If . The
system (4.2a)–(4.2c) is completed by requiring

p|αi = p|αj on f ∀f ∈ E int , ∀i, j ∈ If , (4.3a)∑
i∈If

u|αi · nf,αi
= 0 on f ∀f ∈ E int , (4.3b)

where nf,αi
is the unit outward normal vector of the edge f with respect to the polygon αi.

The equations (4.3a)–(4.3b) express the continuity of p across the interpolygon boundaries
and the mass balance of u across these boundaries (what is the outflow from one polygon has
to be the inflow into the neighboring ones). We finally suppose that the second rank tensor K
is symmetric and uniformly positive definite in each α�, i.e.

K(x)η · η ≥ cKη · η , cK > 0 (4.4)

for any η ∈ R2 and almost all x ∈ α�, for all � ∈ L.

4.3 Function spaces for nonconforming and mixed finite ele-

ments

We give in this section the definitions of function spaces used in the sequel. We will use
the spaces H1(α�) and H(div, α�) on separate polygons with certain matching conditions on
the interpolygon boundaries in order to define the spaces H1(S) and H(div,S) on the whole
system S. We introduce also the discrete counterparts of these spaces.

4.3.1 Continuous function spaces

We use the product of the spaces Lp, 1 ≤ p ≤ ∞, on separate polygons in order to define the
spaces Lp(S) and Lp(S) on the system S,

Lp(S) :=
∏
�∈L

Lp(α�) , Lp(S) := Lp(S) × Lp(S) . (4.5)

For each polygon α�, we denote by H1(α�) the Sobolev space of scalar functions with
square-integrable weak derivatives, H1(α�) = {ϕ ∈ L2(α�) ; ∇ϕ ∈ L2(α�)}. We define H1(S)
as the space of functions whose restrictions to each α� are from H1(α�) and that coincide on
the interpolygon boundaries in the sense of traces,

H1(S) :=
{
v ∈ L2(S) ; v|α�

∈ H1(α�) ∀� ∈ L , (4.6)

(v|αi)|f = (v|αj )|f ∀f ∈ E int , ∀i, j ∈ If
}
.

We then have the space H1
D(S) of the functions from H1(S) vanishing on ΓD and the spaces

H
1
2 (∂S), H− 1

2 (∂S), H
1
2 (ΓD), and H− 1

2 (ΓN ) as in the standard planar case.
For each polygon α�, we denote by H(div, α�) the space of vector functions with square-

integrable weak divergences, H(div, α�) = {v ∈ L2(α�) ; ∇ · v ∈ L2(α�)}. We define H(div,S)
as the space of functions whose restrictions to each α� are from H(div, α�) and whose sum of
normal traces over all polygons sharing a given edge f ∈ E int is zero in the appropriate sense,

H(div,S) :=
{

v ∈ L2(S) ; v|α�
∈ H(div, α�) ∀� ∈ L ,

∑
i∈If

〈v|αi · n∂αi
, ϕi〉∂αi

= 0

∀ϕi ∈ H1
∂αi\f (αi) , ϕi|f = ϕj |f ∀i, j ∈ If , ∀f ∈ E int

}
. (4.7)
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Finally, we denote

H0,N (div,S) :=
{
v ∈ H(div,S) ; 〈v · n, ϕ〉∂S = 0 ∀ϕ ∈ H1

D(S)
}

as the space of functions from H(div,S) such that their normal trace on ΓN is equal to zero
in the appropriate sense.

We use (·, ·)0,α�
to denote the L2 scalar product, ‖ · ‖0,α�

to denote the associated L2 norm,
‖ · ‖1,α�

to denote the H1(α�) norm, and ‖ · ‖H(div,α�) to denote the H(div, α�) norm given
by ‖v‖2

H(div,α�)
= ‖v‖2

0,α�
+ ‖∇ · v‖2

0,α�
. The bracket 〈v · n, ϕ〉∂S denotes the duality pairing

between H− 1
2 (∂S) and H

1
2 (∂S) and may be written formally as

∫
∂S v · nϕdγ(x). The norms

on the spaces defined by (4.5), (4.6), and (4.7) are given by

‖ · ‖2
·,S :=

∑
�∈L

‖ · ‖2
·,α�

. (4.8)

Remark 4.3.1. (Continuity across the interpolygon boundaries) The definitions (4.6)
and (4.7) express weakly the conditions (4.3a) and (4.3b). Let Ω ⊂ R2 be a polygonal domain
and let S be its polygonal partition. Then the definitions (4.6) and (4.7) coincide with the
standard characterizations of the spaces H1(Ω) and H(div,Ω) (cf. [33, Propositions III.1.1
and III.1.2] or [108, Theorem 1.3]).

Throughout this chapter, we shall suppose that Kij ∈ L∞(S), q ∈ L2(S), pD ∈ H
1
2 (ΓD),

and uN ∈ H− 1
2 (ΓN ).

4.3.2 Discrete function spaces

Let us suppose a triangulation Th of the system S such that the boundary edges lie entirely
either in ΓD or in ΓN . We set

M0
−1(Th) :=

{
φ ∈ L2(S) ; φ|e is constant ∀e ∈ Th

}
.

We denote the set of all edges of Th by Eh, the set of all edges of Th except those from ΓD by
Eh,D, and the set of all interior edges of Th by E int

h . We set

M0
−1(Eh,D) := {µ : Eh → R ; µ|f is constant ∀f ∈ Eh ,

µ|f = 0 ∀f ⊂ ΓD } .

For the nonconforming approximation, we set

X1
0 (Eh) :=

{
ϕ ∈ L2(S); ϕ|e is linear ∀e ∈ Th , ϕ is continuous in Qf , f ∈ E int

h

}
,

where Qf is the midpoint of the edge f . The basis of X1
0 (Eh) is spanned by shape functions ϕf ,

f ∈ Eh, such that ϕf (Qg) = δfg, g ∈ Eh, δ being the Kronecker delta. A simple computation
gives

∇ϕf |e =
|f |
|e|nf e ∈ Th , f ⊂ ∂e , (4.9)

where |e| is the area of the element e, |f | is the length of the edge f , and nf is the unit normal
vector of the edge f , outward to e. We finally set

X1
0 (Eh,D) :=

{
ϕ ∈ X1

0 (Eh); ϕ(Qf ) = 0 ∀f ⊂ ΓD
}
.
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For a given triangular element e ∈ Th, we define RT0(e) as the space of linear vector
functions with the basis vei , i = 1, 2, 3,

vei (x) :=
1

2|e|

(
x− xi
y − yi

)
if x = (x, y)t ∈ e , vei (x) :=

(
0
0

)
if x �∈ e , (4.10)

where (xi, yi)t are the coordinates of the i-th vertex of e. Note that vei · nf is constant over
each edge f ⊂ ∂e. The Raviart–Thomas space RT0

−1(Th) of elementwise linear vector functions
without any continuity requirement is defined by

RT0
−1(Th) :=

{
v ∈ L2(S) ; v|e ∈ RT0(e) ∀e ∈ Th

}
. (4.11)

We set the space RT0
0(Th) of functions ensuring the normal trace continuity as

RT0
0(Th) :=

{
v ∈ RT0

−1(Th) ;
∑

e∈Th ;f⊂∂e
v|e · nf,e = 0 on f ∀f ∈ E int

h

}
(4.12)

= RT0
−1(Th) ∩H(div,S) .

To characterize the discrete functions with zero normal trace on ΓN , we finally set

RT0
0,N (Th) :=

{
v ∈ RT0

0(Th) ; v · n = 0 on ΓN
}

= RT0
−1(Th) ∩H0,N (div,S) .

4.4 Nonconforming finite element method

We introduce in this section a weak primal solution of the problem (4.2a)–(4.3b). We next
define its piecewise linear nonconforming finite element approximation.

4.4.1 Weak primal solution

Let p̃ ∈ H1(S) be such that p̃ = pD on ΓD in the sense of traces. We then define:

Definition 4.4.1. (Weak primal solution) As the weak primal solution of the problem
(4.2a)–(4.3b), we understand a function p = p0 + p̃, p0 ∈ H1

D(S), satisfying

(K∇p0,∇ϕ)0,S = (q, ϕ)0,S − 〈uN , ϕ〉∂S − (K∇z,∇ϕ)0,S
−(K∇p̃,∇ϕ)0,S ∀ϕ ∈ H1

D(S) . (4.13)

Existence and uniqueness of the weak primal solution follow from (4.4) and from the
definition of the norms on S given by (4.8) using the Lax–Milgram lemma.

4.4.2 Nonconforming finite element approximation

We define:

Definition 4.4.2. (Nonconforming finite element approximation) As the piecewise
linear nonconforming finite element approximation of the problem (4.13), we understand a
function ph = p0,h + p̃, p0,h ∈ X1

0 (Eh,D), satisfying∑
e∈Th

(K∇p0,h,∇ϕh)0,e =
∑
e∈Th

{(q, ϕh)0,e − 〈uN , ϕh〉∂e∩∂S − (K∇z,∇ϕh)0,e

− (K∇p̃,∇ϕh)0,e} ∀ϕh ∈ X1
0 (Eh,D) . (4.14)

Existence and uniqueness of the nonconforming approximation follow by the same argu-
ments as above.
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4.5 Raviart–Thomas mixed finite element method

We first define in this section a weak mixed solution of the problem (4.2a)–(4.3b) and show
its existence and uniqueness. We then study its lowest-order Raviart–Thomas mixed finite
element approximation. We finally introduce its hybridization.

4.5.1 Weak mixed solution

Let ũ ∈ H(div,S) be such that ũ · n = uN on ΓN in the appropriate sense. We then define:

Definition 4.5.1. (Weak mixed solution) As the weak mixed solution of the problem
(4.2a)–(4.3b), we understand functions u = u0 + ũ, u0 ∈ H0,N (div,S), and p ∈ L2(S) such
that

(K−1u0,v)0,S − (∇ · v, p)0,S = −〈v · n, pD〉∂S + (∇ · v, z)0,S (4.15a)
−〈v · n, z〉∂S − (K−1ũ,v)0,S ∀v ∈ H0,N(div,S) ,

−(∇ · u0, φ)0,S = −(q, φ)0,S + (∇ · ũ, φ)0,S ∀φ ∈ L2(S) . (4.15b)

Theorem 4.5.2. (Existence and uniqueness of the weak mixed solution) The prob-
lem (4.15a)–(4.15b) has a unique solution.

Proof:

The coercivity of the bilinear form (K−1u,v)0,S , u,v ∈ H0,N (div,S), on the space W =
{v ∈ H0,N (div,S) ; (∇ · v, φ)0,S = 0 ∀φ ∈ L2(S)} is the consequence of the uniform positive
definiteness of the tensor K on each α� given by (4.4). We next show that for all q ∈ L2(S)
there exists v ∈ H0,N (div,S) such that (∇ · v, φ)0,S = (q, φ)0,S for all φ ∈ L2(S). This will
guarantee that the divergence operator from H0,N(div,S) to L2(S) is surjective (and hence
the inf–sup condition). To show this, consider for given q ∈ L2(S) the problem of finding
p ∈ H1

D(S) such that
(∇p,∇ϕ)0,S = (q, ϕ)0,S ∀ϕ ∈ H1

D(S) . (4.16)

The existence and uniqueness of such p follow by the well-posedness of the weak primal for-
mulation given in Section 4.4.1. We shall pose v = −∇p. To justify such choice, we have to
show that ∇p ∈ H0,N (div,S) and that −∇ · ∇p = q in the appropriate sense. The second
assertion is a simple consequence of (4.16), considering ϕ ∈ H1

0 (α�), � ∈ L, as test functions
in (4.16). We now proceed to show the first assertion. Let us consider an edge f ∈ E int. We
take ϕ ∈ H1

D(S) such that ϕ only has as a support the polygons sharing the edge f and such
that ϕ is zero on ∂αi \ f for all i ∈ If in the sense of traces. The second assertion gives
∇p|α�

∈ H(div, α�), � ∈ L, and −
∑

i∈If (∇ · ∇p, ϕ)0,αi = (q, ϕ)0,S . Hence, using the Green
theorem on each polygon in (4.16) with the considered ϕ as the test function,

0 =
∑
i∈If

(∇p,∇ϕ)0,αi − (q, ϕ)0,S =
∑
i∈If

〈∇p|αi · n∂αi
, ϕ〉∂αi

−
∑
i∈If

(∇ · ∇p, ϕ)0,αi − (q, ϕ)0,S =
∑
i∈If

〈∇p|αi · n∂αi
, ϕ〉∂αi

,

which by the fact that ϕ ∈ H1(S) implies that ∇p ∈ H(div,S), cf. the definition (4.7).
Finally, ∇p ∈ H0,N (div,S) follows by the above technique applied to (4.16). The existence and
uniqueness of the weak mixed solution follow by [33, Theorem II.1.1] or [108, Theorem 10.1]. �
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4.5.2 Properties of the discrete velocity space

We begin with the space RT0(e) for a given e ∈ Th. Its basis is given by (4.10). The dual
basis to this basis is given by the functionals N e

j , j = 1, 2, 3, where

N e
j (u) =

∫
fe

j

u · n∂e dγ(x) u ∈ RT0(e) .

Each N e
j expresses the flux of u through one edge f ej of e. The local interpolation operator is

then given by

πe(u) =
3∑
i=1

N e
i (u)vei u ∈ (H1(e))2 . (4.17)

We now turn to the problem of finding the basis and the dual basis of RT0
0(Th). Let us

consider u ∈ RT0
0(Th). We set Nh = {N1, N2, . . . , N|INh

|}, where for each boundary edge f
such that f ⊂ ∂e, we define one functional Nf by

Nf (u) :=
∫
f
u|e · n∂e dγ(x) ,

and for each interior edge f shared by the elements e1, e2, . . . , e|If |, we define |If |−1 functionals
by

Nf,j(u) :=
1
|If |

∫
f
u|e1 · n∂e1 dγ(x) − 1

|If |

∫
f
u|ej+1 · n∂ej+1

dγ(x) , j = 1, . . . , |If | − 1 .

We use the same denotation If for the index set of polygons sharing a given edge f ∈ E int

in the continuous case and for the index set of elements sharing a given edge f ∈ E int
h in the

discrete case. We have the following lemma:

Lemma 4.5.3. (Basis of the dual space to RT0
0(Th)) Nh is a basis of the dual space to

RT0
0(Th).

Proof:

To prove the lemma it suffices to show that for all u ∈ RT0
0(Th), from Nj(u) = 0 ∀ j =

1, . . . , |INh
|, it follows that u = 0. Let us suppose that Nj(u) = 0 ∀ j = 1, . . . , |INh

|. From
the definition of the functionals Nf on boundary edges, we have

∫
f u|e · n∂e dγ(x) = 0 for

all boundary edges f . Using the definition of the functionals Nf,j on interior edges, we have∫
f u|e1 · n∂e1 dγ(x) =

∫
f u|ej · n∂ej

dγ(x) for all j = 2, . . . , |If |. Considering the equality∑
i∈If

∫
f u|ei ·n∂ei

dγ(x) = 0 characterizing the continuity of the normal trace of the functions
from RT0

0(Th), cf. the definition (4.12), we come to
∫
f u|e · n∂e dγ(x) = 0 for all f ∈ Eh and

all e, f ⊂ ∂e. Since RT0
0(Th) ⊂ RT0

−1(Th), u = 0 follows. �
We set Vh = {v1,v2, . . . ,v|INh

|}, the basis of RT0
0(Th), in the following way: we define one

basis function vf by vf := vef for each boundary edge f . Here vef is the local basis function
associated with the element e and its edge f . For each interior edge f shared by the elements
e1, e2, . . . , e|If |, we define |If | − 1 basis functions by

vf,i :=
|If |∑

k=1, k �=i+1

vek
f − (|If | − 1)vei+1

f , i = 1, . . . , |If | − 1 .
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Figure 4.2: Velocity basis function for three elements sharing the same edge

Note that by the definition (4.12) of RT0
0(Th), there is one condition imposed on each interior

edge, so that the number of basis functions of RT0
−1(Th) is decreased by one on each interior

edge to obtain the appropriate continuity of the normal trace. When |If | = 2, we have the
classical basis function. An example of one of the two basis functions for three elements with
the same edge is given in Figure 4.2. We have the following lemma:

Lemma 4.5.4. (Duality) Vh is the dual basis to Nh.

Proof:

We have to show that Nj(vi) = δij , i, j = 1, . . . , |INh
|. We have from the definition of the

basis functions of RT0(e) that Nf (vf ) = 1 for all boundary edges f , and simply Nf (v) = 0
for all v ∈ Vh, v �= vf . Concerning the interior edges, we easily come to Nf,j(vg) = 0 for
all j = 1, . . . , |If | − 1, f an interior edge, g a boundary edge, and to Nf,j(vg,i) = 0 for all
j = 1, . . . , |If | − 1, i = 1, . . . , |Ig| − 1, f an interior edge, g another interior edge. We have

Nf,j(vf,i) =
1
|If |

∫
f
ve1f · n∂e1 dγ(x) − 1

|If |

∫
f
vej+1

f · n∂ej+1
dγ(x) =

1
|If |

− 1
|If |

= 0

for i �= j and

Nf,i(vf,i) =
1
|If |

∫
f
ve1f · n∂e1 dγ(x) − 1

|If |

∫
f
−(|If | − 1)vei+1

f · n∂ei+1
dγ(x)

=
1
|If |

+
1
|If |

(|If | − 1) = 1

for i = 1, . . . , |If | − 1, f an interior edge. Thus the proof is completed. �

We are now ready to define the global interpolation operator. We introduce first a space
smoother than H(div,S),

H(grad,S) :=
{
v ∈ L2(S) ; v|α�

∈ (H1(α�))2 ∀� ∈ L ,∑
i∈If

v|αi · nf,αi
= 0 on f ∀f ∈ E int

}
. (4.18)
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We then define the global interpolation operator πh by

πh(u) :=
|INh

|∑
i=1

Ni(u)vi u ∈ H(grad,S) . (4.19)

We have the following relation between πe and πh:

Lemma 4.5.5. (Equality between local and global interpolation operators) The local
and global interpolation operators defined by (4.17) and (4.19), respectively, equal on each
element, i.e.

πh(u)|e = πe(u|e) ∀e ∈ Th, ∀u ∈ H(grad,S) .

Proof:

As the basis functions vi, i = 1, . . . , |INh
|, of RT0

0(Th) are combined from the local basis
functions vej on each element, we only have to verify that the coefficients of vej are the same.
For boundary edges, the coefficients for both local and global interpolation operators are
equally given by

∫
f u|e ·n∂e dγ(x). For an interior edge f , we have for the global interpolation

operator

{|If |−1∑
i=1

Nf,i(u)vf,i
}∣∣∣
ej

=
{|If |−1∑

i=1

( 1
|If |

∫
f
u|e1 · n∂e1 dγ(x)

− 1
|If |

∫
f
u|ei+1 · n∂ei+1

dγ(x)
)( |If |∑

k=1, k �=i+1

vek
f − (|If | − 1)vei+1

f

)}∣∣∣
ej

=
|If |−1∑

i=1, i�=j−1

( 1
|If |

∫
f
u|e1 · n∂e1 dγ(x) − 1

|If |

∫
f
u|ei+1 · n∂ei+1

dγ(x)
)
vej

f

−(1 − δj1)
( 1
|If |

∫
f
u|e1 · n∂e1 dγ(x) − 1

|If |

∫
f
u|ej · n∂ej

dγ(x)
)
(|If | − 1)vej

f

using the definition of Nf,i and vf,i, i = 1, . . . , |If | − 1, j = 1, . . . , |If |. Considering now only
the coefficients of vej

f , we come to

|If |−1∑
i=1

1
|If |

∫
f
u|e1 · n∂e1 dγ(x) −

|If |−1∑
i=1

1
|If |

∫
f
u|ei+1 · n∂ei+1

dγ(x)

=
(
(|If | − 1)

1
|If |

+
1

|If |
) ∫

f
u|e1 · n∂e1 dγ(x) =

∫
f
u|e1 · n∂e1 dγ(x)

for j = 1, using the normal trace continuity of u, which is expressed by
∑|If |

i=1

∫
f u|ei ·

n∂ei
dγ(x) = 0. Similarly,

(|If | − 2)
1

|If |

∫
f
u|e1 · n∂e1 dγ(x) +

1
|If |

∫
f
u|e1 · n∂e1 dγ(x)

+
1
|If |

∫
f
u|ej · n∂ej

dγ(x) − (|If | − 1)
1
|If |

∫
f
u|e1 · n∂e1 dγ(x)

+(|If | − 1)
1

|If |

∫
f
u|ej · n∂ej

dγ(x) =
∫
f
u|ej · n∂ej

dγ(x)

for j ≥ 2, and thus the proof is completed. �
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We conclude this section by the following theorem:

Theorem 4.5.6. (Commuting diagram property) The commuting diagram property
holds, i.e.

H(grad,S) div−→ L2(S)⏐⏐�πh ⏐⏐�Ph
RT0

0(Th)
div−→ M0

−1(Th)

,

where πh is the global interpolation operator defined by (4.19) and Ph is the L2(S)-orthogonal
projection onto M0

−1(Th).

Proof:

The proof is immediate using the previous lemma and the validity of the commuting dia-
gram property for the local interpolation operator, see e.g. [33, Proposition III.3.7] or [103,
Section 3.4.2]. �

4.5.3 Mixed finite element approximation

We are ready to define the mixed approximation:

Definition 4.5.7. (Mixed finite element approximation) As the lowest-order Raviart–
Thomas mixed finite element approximation of the problem (4.15a)–(4.15b), we understand
functions uh = u0,h + ũ, u0,h ∈ RT0

0,N (Th), and ph ∈M0
−1(Th) satisfying

(K−1u0,h,vh)0,S − (∇ · vh, ph)0,S = −〈vh · n, pD〉∂S + (∇ · vh, z)0,S (4.20a)
−〈vh · n, z〉∂S − (K−1ũ,vh)0,S ∀vh ∈ RT0

0,N (Th) ,

−(∇ · u0,h, φh)0,S = −(q, φh)0,S + (∇ · ũ, φh)0,S ∀φh ∈M0
−1(Th) . (4.20b)

The commuting diagram property expressed by Theorem 4.5.6 implies the discrete inf–sup
condition, which in turn ensures that the problem (4.20a)–(4.20b) has a unique solution.

4.5.4 Hybridization of the mixed approximation

We will now introduce the hybridization of the mixed approximation:

Definition 4.5.8. (Hybridization of the mixed approximation) As the hybridization of
the lowest-order Raviart–Thomas mixed finite element approximation of the problem (4.15a)–
(4.15b), we understand functions uh = u0,h + ũ, u0,h ∈ RT0

−1(Th), ph ∈ M0
−1(Th), and

λh ∈M0
−1(Eh,D) satisfying∑

e∈Th

{
(K−1u0,h,vh)0,e − (∇ · vh, ph)0,e + 〈vh · n, λh〉∂e

}
=
∑
e∈Th

{
−〈vh · n, pD〉∂e∩ΓD

+ (∇ · vh, z)0,e − 〈vh · n, z〉∂e − (K−1ũ,vh)0,e
}

(4.21a)

∀vh ∈ RT0
−1(Th) ,

−
∑
e∈Th

(∇ · u0,h, φh)0,e = −
∑
e∈Th

{(q, φh)0,e − (∇ · ũ, φh)0,e}

∀φh ∈M0
−1(Th) , (4.21b)



142 Chapitre 4. Mixed and nonconforming FEMs on a fracture network

∑
e∈Th

〈u0,h · n, µh〉∂e = 0 ∀µh ∈M0
−1(Eh,D) . (4.21c)

It is immediate that if vh ∈ RT0
−1(Th), then vh ∈ RT0

0,N (Th) if and only if∑
e∈Th

〈vh · n, λh〉∂e = 0 ∀λh ∈M0
−1(Eh,D) .

This ensures that the triple u0,h, ph, λh exists and is unique and that u0,h and ph are at the
same time the unique solutions of (4.20a)–(4.20b). We summarize the previous developments
in the following theorem:

Theorem 4.5.9. (Existence and uniqueness of the mixed-hybrid approximation)
The problem (4.21a)–(4.21c) has a unique solution.

4.5.5 Error estimates

We now give two error estimates, following from the classical interpolation theory. If the
solution (u, p) of (4.15a)–(4.15b) is smooth enough and if (uh, ph, λh) is the solution of (4.21a)–
(4.21c), we have

‖u− uh‖H(div,S) + ‖p − ph‖0,S ≤ Ch(‖p‖1,S + ‖u‖1,S + ‖q‖1,S) ,

where the constant C does not depend on h (see [33, Proposition IV.1.2]).
Using the piecewise linear but nonconforming approximation λ̃h ∈ X1

0 (Eh) given by the
values of the Lagrange multiplier λh at the midpoints of the edges, we have (see [33, Theo-
rem V.3.1])

‖p− λ̃h‖0,S ≤ Ch2(‖p‖1,S + ‖u‖1,S + ‖q‖1,S) .

4.6 Relation between mixed and nonconforming methods

We study in this section the relation between the hybridization of the lowest-order Raviart–
Thomas mixed finite element method and the nonconforming method. We extend the results
of [38] onto systems of polygons, general diffusion tensors, and general boundary conditions.
This also enables us to efficiently implement the mixed finite element method in the considered
case.

4.6.1 Algebraic condensation of the mixed-hybrid approximation

Let us denote, for all e ∈ Th,

u0,h|e =
(
ae + cex
be + cey

)
, ph|e = pe

and similarly, for all f ∈ Eh,
λh|f = λf .

We now follow the ideas of [38]. Let e ∈ Th be fixed. Consider in (4.21b) a test function φh
equal to 1 on e and zero otherwise. This gives ce = qe/2 − ũe/2 with

qe :=

∫
e q dx
|e| , ũe :=

∫
e∇ · ũdx

|e| . (4.22)
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Next consider in (4.21a) two test functions, vh = (1, 0)t, vh = (0, 1)t on e and zero otherwise,
whose divergence is apparently zero. This gives∫

e
K−1u0,h dx +

∫
∂e
λh ndγ(x) = re

with
re := −

∫
∂e∩ΓD

pD ndγ(x) −
∫
∂e
z ndγ(x) −

∫
e
K−1ũdx .

Let λ̃h ∈ X1
0 (Eh,D) be given by

λ̃h :=
∑
f∈Eh

λfϕf .

Then using (4.9), we have∫
∂e
λh ndγ(x) =

∑
f⊂∂e

λf |f |nf = |e|
∑
f∈∂e

λf∇ϕf |e = |e|∇λ̃h|e .

Next, ∫
e
K−1u0,h dx =

∫
e
K−1 dx

(
ae
be

)
+ ce

∫
e
K−1

(
x
y

)
dx .

Let us denote
Ke :=

( 1
|e|

∫
e
K−1 dx

)−1
e ∈ Th . (4.23)

Then the above equations give(
ae
be

)
+ ce

Ke

|e|

∫
e
K−1

(
x
y

)
dx + Ke∇λ̃h|e = Ke

re
|e|

and consequently

u0,h|e = −Ke∇λ̃h|e +
[
qe
2

− ũe
2

] [(
x
y

)
(4.24)

− Ke

|e|

∫
e
K−1

(
x
y

)
dx
]

+ Ke
re
|e| .

We finally substitute (4.24) into (4.21c). This gives the following system of linear equations
with the only unknowns the Lagrange multipliers λh:∑

e∈Th

(Ke∇λ̃h,∇µ̃h)0,e =
∑
e∈Th

〈{[
qe
2

− ũe
2

] [(
x
y

)
(4.25)

−Ke

|e|

∫
e
K−1

(
x
y

)
dx
]

+ Ke
re
|e|

}
· n, µh

〉
∂e

∀µh ∈M0
−1(Eh,D) ,

where µ̃h ∈ X1
0 (Eh,D) is given by

µ̃h :=
∑
f∈Eh

µfϕf .

The left-hand side of (4.25) follows by

〈Ke∇λ̃h|e · n, µh〉∂e = 〈Ke∇λ̃h|e · n, µ̃h〉∂e = (Ke∇λ̃h,∇µ̃h)0,e ∀e ∈ Th .
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Here, we have used the fact that Ke∇λ̃h|e · nµh is constant over each edge and hence its
integral over this edge equals to that of Ke∇λ̃h|e · n µ̃h, which is a linear function with the
same value at the edge midpoint by the definition of µ̃h, and finally the Green theorem in e
(notice that Ke∇λ̃h|e is a constant vector in e and hence its divergence is zero).

The system given by (4.25), in the sequel called (algebraically) condensed mixed-hybrid
method, enables a very efficient implementation of the scheme (4.21a)–(4.21c). In particular,
its system matrix is symmetric and positive definite and the number of unknowns equals to the
number of interior and Neumann boundary edges; remark that this number does not increase
with the number of triangles sharing the given edge. Moreover, this matrix is assembled
directly and one thus can avoid the inverting of local matrices, which is necessary in the
traditional static condensation approach (cf. [33, Section V.1.2]). It is pointed out in [74] that
the inverting of local matrices is a potential source of significant numerical errors. Finally,
note that the velocity u0,h ∈ RT0

0,N (Th) is easily obtained from the knowledge of λ̃h by (4.24).
It is easily seen that the system (4.25) is very close to that given by the nonconforming finite
element approximation (4.14). We give detailed comments on the relation between these two
systems in the next section.

4.6.2 Comparison of condensed mixed-hybrid and nonconforming methods

We consider in this section the detailed relation between the condensed mixed-hybrid finite
element method given by (4.25) and the nonconforming finite element method given by (4.14).
We consider the matrices of the problems and the different parts of the right-hand sides
separately.

System matrix

It is easily seen from (4.25), (4.14), and (4.23) that the system matrix of the condensed mixed-
hybrid method is the system matrix of the nonconforming method with a piecewise constant
diffusion tensor, given as the inverse of the elementwise average of the inverse of the original
one. In particular, for elementwise constant diffusion tensors, these matrices coincide, as it was
already shown in [38]. Simply, the mixed-hybrid method employs the harmonic average of the
hydraulic conductivity tensor, whereas the nonconforming method uses instead the arithmetic
average.

Sources term

Using the simple trick of replacing µh by µ̃h and the Green theorem in each e ∈ Th as at the
end of Section 4.6.1, we have for the sources term of the condensed mixed-hybrid method the
expression

∑
e∈Th

(qe, µ̃h)0,e +
∑
e∈Th

qe
2

((
xe
ye

)
− Ke

|e|

∫
e
K−1

(
x
y

)
dx,∇µ̃h

)
0,e

,

where (xe, ye)t are the coordinates of the barycentre of the triangle e. In particular, if K is
elementwise constant, the second term of the above expression vanishes. Hence the essen-
tial difference with the source term of the nonconforming method is the employment of the
elementwise average of q given by (4.22) rather than taking q directly.
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Dirichlet boundary condition term

Let pD be smooth enough and let us consider the usual approximation p̃ ≈
∑

f⊂ΓD
pD(Qf )ϕf .

Then the Dirichlet boundary condition term in the nonconforming method becomes

−
∑
e∈Th

(K∇p̃,∇µ̃h)0,e ≈ −
∑
e∈Th

(
K

∑
f⊂∂e∩ΓD

pD(Qf )
|f |
|e|nf ,∇µ̃h

)
0,e

,

where µ̃h ∈ X1
0 (Eh,D) and where we have employed the relation (4.9). This is obviously

equivalent, up to replacing K by Ke, to the expression for this term from the condensed
mixed-hybrid method

−
∑
e∈Th

(
Ke

|e|

∫
∂e∩ΓD

pD ndγ(x) ,∇µ̃h
)

0,e

≈ −
∑
e∈Th

(
Ke

|e|
∑

f⊂∂e∩ΓD

pD(Qf )|f |nf ,∇µ̃h
)

0,e

.

Neumann boundary condition term

Let us for simplicity consider just one edge f where the Neumann boundary condition is
prescribed, i.e. ΓN = f . Then the Neumann boundary condition term in the nonconforming
method, with the usual approximation supposing that uN is smooth enough and for the test
function ϕf , is

−
∫
f
uNϕf dγ(x) ≈ −

∫
f
uN (Qf )ϕf dγ(x) = −uN (Qf )|f | .

Recall that this term equals to zero for all other test functions ϕg, g ∈ Eh,D, g �= f .
Using the same techniques as in the above paragraphs, we can express the Neumann

boundary condition term in the condensed mixed-hybrid method as

−
∑
e∈Th

(ũe, µ̃h)0,e −
∑
e∈Th

ũe
2

((
xe
ye

)
− Ke

|e|

∫
e
K−1

(
x
y

)
dx,∇µ̃h

)
0,e

−
∑
e∈Th

〈{
Ke

|e|

∫
e
K−1ũdx

}
· n, µh

〉
∂e

.

Let K be elementwise constant; then the second term of the above expression vanishes and
its third term simplifies. Let e ∈ Th be such that f ⊂ ∂e and let us finally consider the
usual approximation ũ ≈ uN (Qf )|f |vef , where vef ∈ RT0(e) is the local velocity basis function
associated with the element e and its edge f . Then this term is a priori nonzero only for e
and for the three test functions ϕg, g ⊂ ∂e, and has the form

−uN (Qf )|f |
|e|

(∫
e
∇ · vef dx, ϕg

)
0,e

− uN (Qf )|f |
|e|

〈{∫
e
vef dx

}
· n, ϕg

〉
∂e
.

A simple computation gives ∫
e
∇ · vef dx = 1 ,

∫
e
vef dx =

1
2
w ,

where w = (xe, ye)t−(xf , yf )t with (xf , yf )t being the coordinates of the vertex of e opposite to
f . This finally gives for the Neumann boundary condition term in the condensed mixed-hybrid
method, using simple geometrical properties of a triangle,

−uN (Qf )|f |
3

− uN (Qf )|f ||g|
2|e| w · ng = −uN (Qf )|f |δf,g ,

which coincides with the expression from the nonconforming method.
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Figure 4.3: System S for the model problems

Gravity term

Using that the gradient of z is piecewise constant, a development similar to that for the Dirich-
let boundary condition gives that the expressions for the gravity term from the nonconforming
and condensed mixed-hybrid methods differ just by the employment of K, Ke, respectively.

4.7 Numerical simulations

We present in this section the results of a numerical experiment on a model problem with a
known analytical solution. We then describe the application of the proposed method to the
simulation of fracture flow and compare it with other methods.

4.7.1 Model problem with a known analytical solution

We consider two simple model problems in this section. The first model problem corresponds to
the system S created by four rectangles as viewed in Figure 4.3. We verify on this problem the
theoretical error estimates for the situation where the central edge is shared by four polygons.
The second model problem is a simplification of the previous one, with just the rectangles
α1 and α2 creating the system; there is no multiply shared edge in this case. Both model
problems have the same known analytical solution in α1 and α2. We consider the second
model problem in order to investigate the changes of the approximation error implied by the
presence of a multiply shared edge. All the computations presented in this section were done in
double precision on a personal computer with machine precision being in power of 10−16. The
resulting systems of linear equations were solved by the preconditioned conjugate gradients
method, cf. [73, 103, 111].
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The first model problem is given by:

S = α1 ∪ α2 ∪ α3 ∪ α4 \ ∂S ,

u = −(∇p+ ∇z) in αi , i = 1, 2, 3, 4 ,
∇ · u = 0 in αi , i = 1, 2, 3, 4 ,

p = 0 on Γ1 , p = 0 on Γ2 ,

u · n = 0 on Γ3 , u · n = 0 on Γ4 ,

p = sin
(πx1

2X

)
sinh

(π(A+B)
2X

)
+ S A on Γ5 , p = S y1 on Γ6 ,

p = 0 on Γ7 , p = 0 on Γ8 ,

u · n = 0 on Γ9 , u · n = 0 on Γ10 ,

p = sin
(πx4

2X

)
sinh

(π(B +B)
2X

)
on Γ11 , p = 0 on Γ12 ,

where A = |Γ4| =
√

5/4, X = |Γ2| = 1, B = |Γ3| = |Γ9| = |Γ10| =
√

13/4, and S =
∂z/∂y2 − ∂z/∂y1. The geometry of this model problem is viewed in Figure 4.3. The exact
solution can be found as

p|α1 = sin
(πx1

2X

)
sinh

(π(y1 +B)
2X

)
+ S y1 ,

u|α1 =
(
− π

2X
cos
(πx1

2X

)
sinh

(π(y1 +B)
2X

)
,

− π

2X
sin
(πx1

2X

)
cosh

(π(y1 +B)
2X

)
− S − ∂z

∂y1

)
,

p|α2 = sin
(πx2

2X

)
sinh

(πy2

2X

)
,

u|α2 =
(
− π

2X
cos
(πx2

2X

)
sinh

(πy2

2X

)
,− π

2X
sin
(πx2

2X

)
cosh

(πy2

2X

)
− ∂z

∂y2

)
,

p|α3 = sin
(πx3

2X

)
sinh

(πy3

2X

)
,

u|α3 =
(
− π

2X
cos
(πx3

2X

)
sinh

(πy3

2X

)
,− π

2X
sin
(πx3

2X

)
cosh

(πy3
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Note that the gradients of z in α1 and α2 are different. Hence the occurrence of the term
S, which ensures the continuity of the normal trace of the velocity field. Table 4.1 gives
the approximation errors in the first rectangle α1. The system S is discretized into 4 × 2N2

regular triangular elements, h ≈ 1/N . There is the expected O(h) convergence of uh, O(h)
convergence of the elementwise constant ph, and O(h2) convergence of the piecewise linear but
discontinuous λ̃h.
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N Triangles ‖p− ph‖0,S ‖p− λ̃h‖0,S ‖u− uh‖H(div,S)

2 8×4 0.4445 0.1481 1.2247
4 32×4 0.2212 0.0389 0.6263
8 128×4 0.1102 0.0098 0.3150

16 512×4 0.0550 0.0025 0.1577
32 2048×4 0.0275 6.18·10−4 0.0789
64 8192×4 0.0138 1.54·10−4 0.0394

128 32768×4 0.0069 3.87·10−5 0.0197
256 131072×4 0.0034 9.73·10−6 0.0099

Table 4.1: Approximation errors in α1, the first model problem

N Triangles ‖p− ph‖0,S ‖p− λ̃h‖0,S ‖u− uh‖H(div,S)

2 8×2 0.4481 0.1496 1.2236
4 32×2 0.2212 0.0393 0.6262
8 128×2 0.1102 0.0099 0.3150

16 512×2 0.0550 0.0025 0.1577
32 2048×2 0.0275 6.24·10−4 0.0789
64 8192×2 0.0138 1.56·10−4 0.0394

128 32768×2 0.0069 3.90·10−5 0.0197
256 131072×2 0.0034 9.76·10−6 0.0099

Table 4.2: Approximation errors in α1, the second model problem

The second model problem is given by

S = α1 ∪ α2 \ ∂S ,

u = −(∇p+ ∇z) in αi , i = 1, 2 ,
∇ · u = 0 in αi , i = 1, 2 .

The boundary conditions on Γ1–Γ6 are given as in the previous case. Also the exact solution
in α1 and α2 stays unchanged. Table 4.2 gives the approximation errors in the first rectangle
α1 for this model problem. As the exact solution in α1 coincides with that of the first model
problem, we can compare these results with that of Table 4.1. The difference in approximation
error is very small even for rough triangulations and disappears for increasing N . Hence
a confirmation of the conclusions outlined by the theory: the presence of multiply shared
interpolygon boundaries does not influence the approximation properties of the lowest-order
Raviart–Thomas mixed finite element method.

4.7.2 Real problem

We give an example of fracture flow around the explorational drill hole Ptp-3 in the granitoid
massif of Pot̊učky, Western Bohemia in this section. There exists a large variety of approaches
to modeling the flow through a network of polygonal disks representing the rock fractures.
In [34, 50, 87] the networks of polygonal disks are replaced by networks of one-dimensional
pipes. This allows for fast calculations with large networks, but the precision is compromised.
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The models proposed in [9, 21, 54, 85, 113] discretize the polygonal networks into triangular
or quadrilateral meshes. Because of a very complex geometry, the number of mesh elements
is often sizably increased. Finite difference, finite volume, finite element, or boundary element
methods are used for the discretization. We refer e.g. to [27] for a more detailed survey.

Our intention was twofold. First, we have constructed a very accurate mesh of the fracture
network, which had at the same time as few elements as possible. Second, we have used the
mixed finite element method studied in this chapter for the discretization of the fracture flow
problem. We have approximated the original three-dimensional fractures by planar polygonal
disks whose frequency, size, orientation, assigned aperture, wall roughness, and filling were
statistically described from field measurements (core-log evaluation, acoustic camera scanning,
. . . ), given in [89]. We have next computed the intersections of the polygons. In order to
simplify the system of intersections in each polygon, these were slightly moved and stretched
in the polygon planes. This allows a significant decrease of the number of triangular elements
necessary to discretize each polygon and an improvement of their shapes. The triangular mesh
has to respect the system of intersections in each polygon, but the interpolygon geometrical
correspondence vanishes. This was replaced with an element edges correspondence, sufficient
for the mixed finite element method. Briefly, the corresponding edges do not necessarily match
geometrically—only what is the outflow from one triangular element through a given edge has
to be the inflow into the neighboring ones through the edges that are associated with the given
one. Finally, based on the assigned aperture, fracture wall roughness, and filling, the hydraulic
permeability of each element was set. The classical parallel plate model was thus avoided.

The optimized triangulation of the fracture network and the model allowing for variable
permeability inside the fractures together with the mixed finite element method ensuring the
mass balance in each element even for meshes with no real geometrical correspondence have
proved a good correspondence between observed phenomena and the numerical approximation.
The model gave an accurate velocity field within fracture planes and thus in the whole simu-
lated network. Namely, the channeling effect was successfully simulated both in fracture planes
and in the entire network. This effect is given by the fact that the natural three-dimensional
fractures have varying apertures and consequently the flow is not evenly distributed within the
fracture planes. An example of the distribution of the piezometric head in a fracture network
is given in Figure 4.4. These results are summarized in a paper written in collaboration with
J. Maryška and O. Severýn which has been published in Computational Geosciences.
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Figure 4.4: Distribution of the piezometric head in a fracture network
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[8] Agouzal A., Baranger J., Mâıtre J.-F., Oudin F., Connection between finite
volume and mixed finite element methods for a diffusion problem with nonconstant
coefficients. Application to a convection diffusion problem, East-West J. Numer. Math. 3
(1995), 237–254.

[9] Andersson J., Dverstorp B., Conditional simulations of fluid flow in three-dimens-
ional networks of discrete fractures, Water Resour. Res. 23 (1987), 1876–1886.
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[59] Eymard R., Gallouët T., Herbin R., Convergence of finite volume schemes for
semilinear convection diffusion equations, Numer. Math. 82 (1999), 91–116.
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