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ETUDE QUANTITATIVE DES ENSEMBLES SEMI-PFAFFIENS

Résumé

Dans la présente these, on établit des bornes supérieures sur les nombres de Betti des
ensembles définis a ’aide de fonctions pfaffiennes, en fonction de la complexité pfaffienne
(ou format) de ces ensembles.

Les fonctions pfaffiennes ont été définies par Khovanskii, comme solutions au comporte-
ment quasi-polynomial de certains systemes polynomiaux d’équations différentielles. Les
ensembles semi-pfaffiens satisfont une condition de signe booléene sur des fonctions pfaffi-
ennes, et les ensembles sous-pfaffiens sont projections de semi-pfaffiens. Wilkie a démontré
que les fonctions pfaffiennes engendrent une structure o-minimale, et Gabrielov a montré
que cette structure pouvait étre efficacement décrite par des ensembles pfaffiens limites.

A Taide de la théorie de Morse, de déformations, de recurrences sur le niveau combi-
natoire et de suites spectrales, on donne dans cette these des bornes effectives pour toutes
les catégories d’ensembles pré-citées.

QUANTITATIVE STUDY OF SEMI-PFAFFIAN SETS
Abstract

In the present thesis, we establish upper-bounds on the Betti numbers of sets defined
using Pfaffian functions, in terms of the natural Pfaffian complexity (or format) of those
sets.

Pfaffian functions were introduced by Khovanskii, as solutions of certain polynomial dif-
ferential systems that have polynomial-like behaviour over the real domain. Semi-Pfaffian
sets are sets that satisfy a quantifier-free sign condition on such functions, and sub-Pfaffian
sets are linear projection of semi-Pfaffian sets. Wilkie showed that Pfaffian functions gen-
erate an o-minimal structure, and Gabrielov showed that this structure could be effectively
described by Pfaffian limit sets.

Using Morse theory, deformations, recursion on combinatorial levels and a spectral
sequence associated to continuous surjections, we give in this thesis effective estimates for
sets belonging to all of the above classes.
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Index of notations

N ... the natural numbers. N ={0,1,2,---}

R ... the field of real numbers

o a Pfaffian chain f = (f1,..., f/)

oo the length of f

Q o the degree of f

U oo a domain where f is defined

0 A the degree of U, a measure of its topological complexity

G oo a Pfaffian function in the chain f; ¢(x) = Q(z, f1(x), ..., fi(x))
degpq ..o the degree of ¢ in the chain f

P a finite collection of Pfaffian functions

B o a bound on deg; q for ¢ € P

x| oo the Euclidean norm of x

A the closure of A for the Euclidean topology

0A ... ... the frontier of A, A = A\ A

C(f) oo, the graph of f: I'(f) = {(z,y) |y = f(z)}

ALl abbreviates I\g, VA € (0, \) . ..

Hy(X) ......... the ¢-th singular homology group of X, with coefficients in Z
bi(X) .o the i-th Betti number of X, b;(X) = rank H;(X)

b(X) ool the sum of the Betti numbers of X

D G the fiber of X at A : X\ ={z | (z,\) € X}
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Introduction

Je n’ai jamais été assez loin pour bien sentir l’application de [’algebre la
géométrie. Je n’aimais point cette maniere d’opérer sans voir ce qu’on fait;
et il me semblait que résoudre un probleme de géométrie par les équations,
c’était jouer un air en tournant une manivelle.

J.-J. ROUSSEAU (Les Confessions, Livre VI)

Origine des fonctions pfaffiennes

Les fonctions pfaffiennes ont été définies par Khovanskii [Khil [Kh2, [Kh3] a la fin des
années soixante-dix. Ce sont des fonctions analytiques réelles aux propriétés de finitude
similaires aux polynémes. Si f = (f1,..., fr) sont des fonctions analytiques definies sur
un domaine Y C R"™, on dit qu’elles forment une chaine pfaffienne sur I/ s’il existe des
polynomes a coefficients réels P, ; tels que le systeme différentiel triangulaire suivant soit
vérifié pour tout x € U.

dfi(z) = Z P, i(x, fi(x),..., fi(x))dx;; pour tout 1 < i < /.
j=1

(Le systeme est bien triangulaire, puisque pour tout i, df; ne dépend que des fonctions
fi,ooo fid)

Plus généralement, une fonction pfaffienne est une fonction analytique réelle ¢ qui
peut s’écrire sous la forme q(x) = Q(z, fi(z),..., fo(x)), ou @ est un polynéme et (f1,. .., fo)
une chaine pfaffienne quelconque. Ces fonctions forment une classe importante qui com-
prend, en particulier, toutes les fonctions liouvilliennes et toutes les fonctions élémentaires
ne comprenant que des sinus et cosinus définis sur des intervalles bornés. Une notion plus
générale de fonction pfaffienne, en utilisant des chaines de variétés intégrales de 1-formes a
coefficients polynomiaux, est proposée dans [Kh3]. Ce cadre plus général donne localement
les mémes fonctions, aussi nous nous permettrons de conserver la premiere définition, qui
est plus adaptée a notre travail, sans restreindre la portée de nos résultats.

Le résultat principal de la théorie des fonctions pfaffiennes est le suivant : tout systeme
de n équations pfaffiennes en n variables ¢;(z) = --- = ¢,(z) = 0 n’a qu’'un nombre fini

13



14 INTRODUCTION

de solutions réelles non dégénérées, c’est-a-dire des solutions ot le déterminant jacobien
|0g;/Ox | ne s’annule pas. De plus, ce nombre de solutions peut étre borné par une fonction
explicite des parametres entiers (degré, nombres de variables...) du systéeme. Ce résultat
est connu sous le nom de theoreme de Khovanskii, et c¢’est lui qui donne aux fonctions
pfaffiennes leur comportement quasi-polynomial. Dans le cas particulier ou ¢y, ..., g, sont
des polynomes dont le degré est au plus d, I'inégalité de Bézout affirme que le nombre
de solutions non-dégénérées du systeme est borné par d”, et le principe du théoreme est
de se réduire a cette situation en remplacant les fonctions de la chaine pfaffienne par des
variables et en utilisant le théoréme de Rolle pour produire les équations manquantes.

Le fait que le systeme différentiel que satisfait la chaine pfaffienne est triangulaire est
crucial pour que le théoreme de Khovanskii soit vérifié. Si on retire cette restriction (on
obtient alors une chaine de fonctions noetheriennes), on ne peut plus espérer avoir
de finitude globaleﬁ, comme on peut le constater avec I'exemple suivant : fi(z) = cosz,
fa(z) = sinx. La chaine (f1, f2) est noetherienne sur R, puisqu’elle vérifie f| = —fs et
f5 = fi1, mais I'équation fi(z) = 0 a une infinité de solutions non-dégénérées sur R.

L’étude des fonctions pfaffiennes par Khovanskii était motivée par des questions liées a
la deuxieme partie du seizieme probleme de Hilbert. Ce probleme considere un champ
de vecteur polynomial dans le plan donné par

dy _ P(z,y)
dr  Q(z,y)

La question originelle de Hilbert était de savoir combien de cycles limites (solutions peri-
odiques isolées) une telle équation peut avoir, et ou ils se trouvent, en fonction des degrés
de P et (). Ce probleme ainsi formulé reste ouvert, et son étude a donné naissance a de
nombreuses questions annexes, dont certaines faisant intervenir les fonctions pfaffiennes.
En particulier, elles ont joué un role clef dans la solution du probleme de Hilbert-
Arnold local pour les polycycles élémentaires. Ilyashenko et Yakovenko [[Y] ont montré
que le nombre de cycles limites générés par un polycycle élémentaire dans une famille de
champs de vecteurs plans, lisse, générique et a k parametres était fini, et Kaloshin [Kall
a établi une borne supérieure explicite en fonction de k. Pour plus de détails sur ’histoire
du seizieme probléme et de ses variantes, voir [I.

Une autre application importante des fonctions pfaffiennes est la théorie des fewno-
mials (oligonomes), ou polynomes creux. On rappelle que pour un polynéme univarié
plx) = > ax™ (ol m; est croissante et a; # 0 pour tout i), la regle des signes de
Descartes affirme que le nombre de racines réelles strictement positives de p(x) (comptées
avec multiplicité) est borné par le nombre de changements de signes de la suite a;,
c’est-a-dire le nombre d’indices ¢ tels que a;a;1; < 0. En particulier, on peut en déduire
que le nombre de zéro réels de p(z) est borné par 2r — 1, et donc est indépendant du degré
m,. de p.

!Bien que la finitude soit toujours préservée localement, voir [GKHh]
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Les fonctions pfaffiennes permettent de généraliser ce type de bornes au cas de polynomes
a plusieurs variables, et donnent une borne explicite qui est exponentielle en 72 et polyno-
miale en le nombre de variables. Des résultats analogues existent pour des polynomes a
faible complexité additive, la complexité additive d’un polynome étant, informellement,
le nombre minimum d’additions nécessaires pour évaluer ce polynéme. Ainsi, le polynome
f(x) = (1 + 2P + 27)" a une complexité additive de 2 quelles que soient les valeurs des
parametres p, q, .

Topologie modérée des ensembles pfaffiens

Ce comportement quasi-polynomial des fonctions pfaffiennes entraine que les propriétés des
ensembles pfaffiens, les ensembles définis a partir de ces fonctions, sont géométriquement
simples, évitant les exemples les plus pathologiques de la topologie. Par exemple, ces en-
sembles ont une notion de dimension bien définie, qui est un entier, et leurs caractéristiques
géométriques et topologiques tendent a étre finies. De la méme facon que 'inégalité de
Bézout permet d’établir des bornes explicites pour la complexité des ensembles semi-
algébriques, on peut utiliser le théoreme de Khovanskii pour transformer ces résultats
de finitude en résultats quantitatifs.

Objet de la dissertation. — L’objet de cette these est d’appliquer la remarque
précédente au cas des nombres de Betti des ensembles pfaffiens.

Un tel projet nécéssite plus que simplement retranscrire les résultats déja connus pour
les semi-algébriques dans ce nouveau cadre. En effet; les ensembles pfaffiens ont des de-
scriptions plus variées que les semi—algébriqueﬂ, et chaque forme apparait naturellement
dans certains contextes et requiert un traitement different. Une description détaillée de
ces différentes formes se trouve dans la section suivante.

Le cadre unifiant ces différents types d’ensembles pfaffiens est la théorie des structures
o-minimales, qui permet de manipuler ces ensembles d’une maniere plus uniforme et nous
évitera d’avoir a résoudre certaines questions difficiles.

O-minimalité et fonctions pfaffiennes

Pour définir la structure o-minimale associée aux fonctions pfaffiennes et son intérét pour
nous, faisons un détour par les semi-algébriques.

Les sous-ensembles semi-algébriques de R" sont, par définition, les ensembles de I’algebre
booléenne SA,, générée par les ensembles de la forme {g > 0} pour tout polyndome réel ¢

2Ici, le fait que p soit un polynéme n’est pas crucial : ces résultats s’appliquent aussi aux séries de
Laurent, ou au cas ou les exposants sont des réels positifs.
3Les semi-algébriques peuvent toujours étre définies sans quantificateurs, pas les ensembles pfaffiens.
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a n variables. En particulier, SA,, est stable par intersections finies, unions finies et
complémentaire. Quand on considere ces familles pour différentes dimensions n, deux
propriétés supplémentaires viennent s’ajouter. Une stabilité par produit cartésien qui
est assez évidente: on a clairement SA,, x SA, C SA,,.,; on a aussi un résultat moins
trivial, le théoréeme de Tarski-Seidenberg, qui dit que ces familles sont stables par pro-
jection linéaire : si 7 est la projection canonique 7 : R™*" — R" et si A € SA,4n, ON

am(A) e SA,.

Les propriétés ci-dessus font que la famille des semi-algébriques est une structure. En
pratique, cela signifie qu’en partant de données semi-algébriques et en faisant des opérations
géométriques classiques, on s’attend a ne définir que des ensembles semi—algébriquesﬂ

De la méme fagon, on définit les sous-ensembles semi-pfaffiens de R" comme étant
les éléments de ’algebre booléenne engendrée par les ensembles de la forme {g > 0}, ou ¢
est une fonction pfaffienne en n variables. Les ensembles semi-pfaffiens ne sont pas stables
par projection, contrairement aux semi-algébriques, comme le montre un contre-exemple
classique de Osgood [Osg]. La projection d’'un semi-pfaffien est appelée ensemble sous-
pfaffien. Si X C R" est sous-pfaffien, on ne sait pas non plus, en général, si R\ X est
aussi sous—pfaﬂienﬁ

En général, une structure est dite o-minimale si tous les ensembles appartenant a cette
structure ont un nombre fini de composantes connexes, et donc la structure des ensembles
semi-algébriques est un exemple de structure o-minimale. La notion d’o-minimalité a été
proposée en logique mathématique, plus précisément en théorie des modeles [D1, [D4] [KPS|
PS|. Les ensembles appartenant a des structures o-minimales sont connus comme ayant
une topologie modérée fl : les hypotheses de stabilité sous les opérations de structure
et la finitude du nombre de composante connexes de tous ces ensembles suffit pour que
toute structure o-minimale admette une décomposition analogue a la décomposition
algébrique cylindrique des ensembles semi—algébriquesﬂ Il s’ensuit que les propriétés
géométriques et topologiques de toutes ces structures sont tres similaires. En particulier,
notons que pour tout ensemble élément d’une structure o-minimale quelconque, la somme
de ses nombres de Betti est toujours finie.

Puisque les opérations booléennes, les projections et les produits cartésiens apparais-
sent naturellement en géométrie, il est logique pour nous de s’intéresser a la structure
pfaffienne : la plus petite collection d’ensembles contenant tous les semi-pfaffiens et stable
par les opérations de structure. Et puisque les fonctions pfaffiennes ont un comportement
tres modéré, il était naturel d’espérer que cette structure soit o-minimale. Ce fait a été
prouvé par Wilkie [W2], en se basant sur des idées de Charbonnel [Ch]. Ces résultats ont

1A comparer avec le fait que si on part de données algébriques, par exemple V' C R™ ’ensemble des zéros
communs d’un idéal de polynomes, les ensembles que 'on peut définir, comme par exemple I’ensemble des
points non-singuliers V* C V est toujours semi-algébrique, mais pas en général algébrique.

58i c’était le cas, les ensembles sous-pfaffiens formeraient une structure, voir la Remarque

6L expression a été proposée par Grothendieck dans [Gra], et reprise dans les travaux sur 'o-minimalité.

"Ce résultat est le fondement de la théorie des structures o-minimales, voir [C2} [D4]



INTRODUCTION 17

été généralisés dans [KM| [LR2, [Sp|. L'une des difficultés est de construire cette structure
pfaffienne d’une maniere plus explicite que la définition donnée plus haut. N’ayant pas de
théoreme du complément pour les ensembles sous-pfaffiens, Wilkie a utilisé la notion de
cloture a P’infini pour obtenir une telle construction.

Ainsi, le probleme posé au départ est raisonnable : la somme des nombres de Betti
est finie pour tout ensemble de la structure pfaffienne, et on peut espérer en tirer des
informations quantitatives. De plus, des arguments de topologie modérée vont beaucoup
aider dans la manipulation de ces ensembles. Reste une difficulté : la construction de
Wilkie n’est pas idéale pour y greffer des mesures de complexité. Les ensembles limites
développés par Gabrielov [G6| offrent une construction alternative de la structure pfaffienne
dans laquelle la notion de complexité est naturelle. La construction, expliquée en détails
dans le Chapitre 1, est grosso-modo la suivante : si X est une famille semi-pfaffienne
A un parameétre A > 0, on pose X la limite de Hausdorff des ensembles X, quand A
tend vers zéro. Un couple semi-pfaffien est la donnée de deux telles familles, satisfaisant
certaines conditions supplémentaires. Quand ces conditions sont satisfaites, on définit la
cloture relative du couple (X,Y) par (X,Y), = X\Y. Gabrielov prouve dans [G6] que
tout ensemble de la structure pfaffienne peut s’exprimer comme un ensemble limite : une
réunion finie de clotures relatives. Les ensembles semi-pfaffiens ayant une notion naturelle
de complexité, les ensembles limites en ont une aussi.

Différents types d’ensembles définissables

Un ensemble appartenant a une struture donnée est dit définissable dans cette structure,
et dans la présente these, définissable sera utilisé presque exclusivement pour la structure
pfaffienne. Du point de vue de la complexité, il est nécéssaire de distinguer dans la structure
pfaffienne les ensembles suivants.

e Une variété pfaffienne V est un ensemble défini par une condition de la forme
q1(z) =+--=¢q-(r) =0. On écrira aussi V = Z(q1, ..., q).

Un ensemble semi-pfaffien est donné par une condition de signe booléenne portant
sur des fonctions pfaffiennes.

Un ensemble sous-pfaffien est la projection linéaire d’un ensemble semi-pfaffien.

La cléture relative d'un couple semi-pfaffien (X,Y) est I'ensemble (X,Y), = X\Y.
e Un ensemble pfaffien limite est la réunion finie de clotures relatives.

Pour chacun de ces types d’ensembles, on peut associer une notion de complexité,
que nous appelerons format. C’est une suite d’entiers mesurant a la fois la complexité
combinatoire (nombre de fonctions pfaffiennes utilisées) et algébrique (degrés, longueur de
la chaine, nombre de variables) de la description de I’ensemble, et toutes les bornes seront
exprimées en fonction de ce format.



18 INTRODUCTION

Un traitement détaillé de toutes les notions évoquées jusqu’ici se trouve dans le Chapitre 1.
Ce traitement comprend les bases de la théorie de Khovanskii, bien str, mais aussi des
résultats essentiels sur les structures o-minimales et sur le role qu’elles jouent dans le
présent travail.

Présentation des résultats

Comme cela a déja été mentionné, nous voulons établir des bornes supérieures pour la
somme des nombres de Betti de chaque type d’ensemble définissable dans la structure
pfaffienne. Pour ce faire, la remarque fondamentale est la suivante : si V = Z(qq,...,q,)
est une variété pfaffienne lisse et compacte, le théoreme de Khovanskii nous permet de
borner la somme de ses nombres de Betti en fonction des degrés des équations définissant
V. En effet, cette somme est bornée par le nombre de points critiques de n’importe quelle
fonction de Morse sur V, et ces points critiques sont solutions d’un systeme pfaffien, faisant
intervenir les dérivées partielles des fonctions ¢;. Le bon comportement des ensembles
pfaffiens permet de généraliser ce résultat a n’importe quelle variété pfaffienne.

Cette borne pour les variétés sera notée V(- ) , et tous les résultats de cette these
peuvent s’exprimer en fonction de cette quantité V. Pour réduire les problemes plus com-
pliqués a des questions de variétés, nous utiliserons des techniques de topologie algébrique,
des déformations et arguments de position générale, et ’o-minimalité de la structure pfaffi-
enne.

Topologie des ensembles semi-pfaffiens (Chapitre 2)

Le Chapitre 2 est consacré a des résultats sur les ensembles semi-pfaffiens, et le contenu
est de fait tres proche de 1'état de I'art sur les semi-algébriques.

On commence par établir la borne V pour les variétés pfaffiennes suivant les idées
évoquées précédemment (Théoreme [Z3). Ces méthodes ont été introduites dans le cadre
algébrique par Oleinik, Petrovsky Thom et Milnor [Ol [OP [T}, M2].

Du Théoreme 23, on déduit (Théoreme ZTT) une borne sur les nombres de Betti d'un
ensemble semi-pfaffien compact défini par une formule P-ferméel. Puis, le Théoreme 2220
établit une borne sur le nombre de cellules de signe connexes C(P) d’une famille de
fonctions pfaffiennes P. Ce nombre borne a la fois le nombre de composantes connexes
d’un ensemble semi-pfaffien quelconque et le nombre de conditions de signe simultanées
compatibles sur P. On déduit de cela une borne sur le rang de I’homologie de Borel-
Moore de tout ensemble semi-pfaffien localement fermé (Théoreme Z232). En particulier,

8ot - - - est le format de la variété V, voir Definition [CZ

9Gi P = {p1,...,ps} est un ensemble de fonctions pfaffiennes, une condition de signe P-fermée est
obtenue par conjonction et disjonction (mais pas par négation) d’atomes de la forme {p; > 0}, {p; < 0}
ou {p; =0} pour 1 <i<s.
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on en déduit une borne sur les nombres de Betti de tout ensemble semi-pfaffien compact,
meéme s’il n’est pas défini par une formule P-fermée.

De tels résultats étaient déja connus pour les semi-algébriques, voir par exemple [B2,
BPRT, BPR3, Biirg, MMP, [Yad).

Une constante du Chapitre 2 est 'utilisation de récurrences sur le niveau combina-
toire d’une famille de fonctions P. Cette notion apparait dans les articles de Basu, Pollack
et Roy; voir par exemple [BPR3|]. Le niveau combinatoire de P est défini comme le plus
grand entier m tel qu’il existe m fonctions distinctes dans P ayant un zéro commun. En
se ramenant a des problemes en position générale par déformation, on n’a pas besoin de
considérer des niveau combinatoires supérieurs a la dimension de l’espace ambiant, et un
niveau combinatoire de z’ero correspond a des variétés, et permet donc d’exprimer les
résultats en fonction de V. On obtient ainsi des bornes exactes , en plus des bornes
asymptotiques.

Le Chapitre 2 s’achéve par une récente application du Théoreme 2T1 (donnée sans
preuve, simplement pour référence) due & Gabrielov et Vorobjov : une borne sur la somme
des nombres de Betti d’'un ensemble semi-pfaffien arbitraire (sans hypothese ni topologique
ni sur la forme de la condition de signe définissant ’ensemble). Une borne simplement
exponentielle dans ce cas n’était pas connue méme dans le cas semi-algébrique.

Nombres de Betti des sensembles sous-pfaffiens (Chapitre 3)

Dans le Chapitre 3, nous présentons une suite spectrale £, qui existe pour toute sur-
jection continue f : X — Y. On prouve que cette suite converge vers 'homologie singuliere
de Y, H.(Y') pour toute f qui est un recouvrement par les compacts, c’est-a-dire si
pour tout compact L C Y, on peut trouver K C X compact aussi tel que f(K) = L. Une
construction analogue est bien connue dans le cadre de la cohomologie des faisceaux, sous
le nom de descente cohomologique (voir [Dell). Le terme E] , est isomorphe a Hy(WP), ot
WP est la (p+ 1)-eme puissance fibrée de X sur Y

WP = Xy sy X = {0, %) | fx) =0 = £}

(p+1) termes

Ce résultat permet de donner une estimation des nombres de Betti de Y en fonction de
ceux des ensembles WP(Théoreme BTI).

Le Chapitre 3 applique ces résultats dans le cas ou f est la projection d’un sous-ensemble
semi-pfaffien X d’un cube, avec X ouvert ou fermé. Dans ce cas, la suite spectrale est
convergente, et les produits fibrés correspondants X Xy -+ xy X étant semi-pfaffiens, on
peut utiliser les résultats du Chapitre 2 pour borner les nombres de Betti du sous-pfaffien

104 ¢. qui ne dépendent pas de constantes inconnues.
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Y = f(X) (Théoreme B20). On en déduit par dualité une borne pour un ensemble défini
par un quantificateur universel (Corollaire B21]).

Ces résultats peuvent étre appliqués récursivement pour établir des bornes pour des
sous-ensembles du cube définis par v blocs de quantificateurs alternés. Les résultats
ainsi obtenus (Corollaire B2 dans le cas pfaffien et Corollaire dans le cas algébrique)
améliorent les résultats connus quand v est petit.

Topologie des ensembles limites (Chapitres 4 et 5)

Les chapitres 4 et 5 sont consacrés a 1’étude des ensembles limites.

Le Chapitre 4 établit une borne simplement exponentielle sur le nombre de com-
posantes connexes de la cloture relative (X,Y)y d'un couple pfaffien (X,Y), et par
conséquent une borne pour tout ensemble limite.

Ce résultat est obtenu par 1’étude des extrema locaux d’'une fonction distance ® re-
streinte a la fibre X, x Y, pour A < 1, ce qui, dans le cas ou X et Y, sont lisses, se réduit
a 'étude de la restriction de ® a des ouverts de X, x (Y))P, pour 1 < p < dim(X) + 1.
La borne dans ce cas est donnée par le Théoreme 4], et la borne dans le cas singulier est
obtenue par déformation (Théoreme EG)).

Enfin, le Chapitre 5 s’attaque au probleme des autres nombres de Betti des clotures
relatives. On commence par le cas Xy = (X, &)o, ou la cloture est simplement la limite
de Hausdorff des fibres compactes X, quand A tend vers zéro. On établit un résultat
général valable dans n’importe quelle structure o-minimale : les nombres de Betti de X|
sont bornés par les nombres de Betti de diagonales épaissies de X, pour A < 1. Ces
diagonales étant semi-pfaffiennes dans le cas qui nous intéresse, on obtient via les résultats
du Chapitre 2 des bornes explicites pour la cloture relative Xy (Théoreme B.7).

Pour la cloture relative (X,Y), avec Y non vide, on prouve que les nombres de Betti
de (X,Y)o peuvent étre explicitement bornés par une expression dépendant des formats
de X, et Y\ (Théoreme BIT). Ainsi, on confirme que c’est le format des fibres (plutot
que le format total des familles X et Y') qui mesure la complexité topologique des clotures
relatives.

La démonstration de ces résultats est basée sur la suite spectrale qui apparait au
Chapitre 3. On montre que si X est une famille définissable de compacts a un parametre,
on peut construire (de facon non-effective) une famille de surjections continues f* :
X\ — Xg pour A < 1. Le coeur de la preuve est alors de montrer que les puissance fibrées
venues de la suite spectrale peuvent étre approximées par des diagonales épaissies.
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Remarques sur les résultats obtenus

La borne donnée par le théoreme de Khovanskii est généralement considérée comme tres
pessimiste quand le nombre ¢ de fonctions dans la chaine pfaffienne est grand. En effet, la
borne donnée par ce théoreme provient de I’application de I'inégalité de Bézout dans un cas
particulier ou rien ne laisse penser que cette borne soit atteinte. Ainsi, toute amélioration
de la borne de Khovanskii serait une amélioration de V), et donc de tous les résultats
présentés ici.

Les résultats de cette these apparaissent aussi dans : [Z1] pour les sections 2.1 and 2.2 du
Chapitre 2, [GVZ] pour le Chapitre 3 et [GZ] pour le Chapitre 4. Les résultats du Chapitre 5
ont été acceptés pour publication sous une forme légerement différentdt] dans [Z2]. Pour les
clotures relatives avec Y # @, un article offrant de meilleurs bornes est en préparation [Z3].

Enfin, il faut mentionner que le résultat récent de Gabrielov et Vorobjov [GV4] donnant
des bornes presque optimales pour les ensembles semi-algébriques donnés par une condition
de signe arbitraire est apparu alors que cette these était presque achevée, ne permettant
pas de completement l'incorporer dans le texte. Le résultat a cependant été utilisé quand
il simplifiait substantiellement certaines difficultés techniques.

U article [Z2] généralise les résultats du Chapitre 5 & des limites de Hausdorff dans des familles & plus
de un parametre.
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Chapter 1

Preliminaries

This chapter presents all the necessary background material about Pfaffian functions and
o-minimal structures. The material is organized as follows. The first section introduces
Pfaffian functions along with the bounds of Khovanskii about the number of solutions
of a Pfaffian system. Section 2 deals with semi and sub-Pfaffian sets, and their formats;
section 3 is about o-minimal structures on the real field and their basic geometric properties.
At last, Pfaffian limit sets are introduced in section 4. This section finishes with some
corollaries of the o-minimality of the structure of Pfaffian functions that will be widely
used in the other chapters.

1.1 Pfaffian functions

In this section, we define Pfaffian functions following Khovanskii; we define the notion
of complexity of Pfaffian functions and state the fundamental result in the theory: any
system of Pfaffian equations has a finite number of isolated] solutions, that can be effectively
estimated from above by an expression involving only the discrete parameters of the Pfaffian
system (degrees, number of variables, and chain length). These parameters are often
referred to as the format or Pfaffian complexity of the functions.

1.1.1 Definition and examples

Definition 1.1 (Pfaffian chain) Let f = (f1,..., fo) be a sequence of real analytic func-
tions defined on a domain U C R™. We say that they constitute o Pfaffian chain if there
exists polynomials P ;, each in n + 1 indeterminates, such that the following equations

Ofi
827]-

(@) = Py(w, ful@),..., fix)), 1<i<€1<j<n, (1.1)

hold for all x € U.

'Real soltions isolated over C, that is.

23
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This definition is sufficient when considering functions that are all simultaneously de-
fined. However, in all generality, one should use the following definition.

Definition 1.2 (Pfaffian chain 2) A sequence f = (fi,..., fi) of analytic functions in
U is called a Pfaffian chain if it satisfies on U a differential system of the form:

&= Y P @), ) (1.2

where each P;j is a polynomial in n + ¢ indeterminates, and the following holds.

(P1) The graph T'; = {t = fi(x)} of fi is contained in a domain ; defined by polynomial
inequalities in (x, fi(x), ..., fi—1(x),t), and such that OI'; C 0€Y;.

(P2) T'; is a separating submanifold in €);, i.e. Q; \ I'; is a disjoint union of the two sets
QF ={f; >0} and Q; = {f; < 0}. (See [Kh3, p. 38]. This is also called the Rolle
leaf condition in the terminology of [LE1l, [LR2].)

Definition 1.3 (Pfaffian function) Let f = (fi,..., fi) be a fized Pfaffian chain, and
q(x) be an analytic function on the domain of that chain. We say that q is a Pfaffian
function in the chain f if there ezists a polynomial Q such that ¢ = Q(zx, f), i.e.

q(x) = Q(z, fi(x),..., folzr)) Vrel. (1.3)

Definition 1.4 (Format) Let f = (fi,..., fi) be a Pfaffian chain. We call ¢ the length
(also called depth or order) of f. We say f is of degree « if all the polynomials P, ;
appearing in ([ILT) are of degree at most av. If Q) is a polynomial of degree 3 in n+{ variables
and q = Q(z, f), we say that 3 is the degree of ¢ in f, and we will write 3 = degz(q).

Examples of Pfaffian functions
1. The polynomials are the Pfaffian functions such that ¢ = 0.

2. The exponential function fi(z) = e” is Pfaffian, with £ = 1 and « = 1, because of the
equation f{ = f;. More generally, we can define the iterated exponential functions
by the induction f,.(z) = exp(f,—1(x)) for all . Then, (fi,..., f.) is a Pfaffian chain
of length r and degree r for all r, since f. = f/_,f. = fi--- f. (by induction).

3. Let U = R\{0}, and let f(z) = 7! and g(x) = In|z|. Then, (f, g) is a Pfaffian chain
of degree o = 2 on U, since we have f' = —f2? and ¢’ = f.

4. Let f(x) = (22 4+ 1)~ and g(z) = arctanz. Then, (f, g) is a Pfaffian chain of degree
a = 3 on R since we have [/ = —2zf and ¢’ = f.
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5. Let f(z) = tanx and g(x) = cos?x. We have f' = 1+ f? and ¢ = —fg, so (f,9)
is a Pfaffian chain of degree o = 2 on the domain {z # 7 [mod~]}. The function
h(xz) = cos(2x) is Pfaffian in this chain, since we have h(x) = 2 g(x) — 1.

6. Let m > 2 be an integer, and f and g be as above. Then, the previous example shows
that (f(z/2m),g(x/2m)) is a Pfaffian chain on the domain {z # mm [mod 2mm|}.
Then cos x is a Pfaffian function of degree m in that chain, since cos x is a polynomial
of degree m in cos(xz/m) =2 g(z/2m) — 1.

7. f(x) = cosx is not Pfaffian on the whole real line, since f(z) = 0 has infinitely many
isolated solutions (see Theorem [[LT0).

More generally, if we consider the following functions (in any finite number of variables):
polynomials, exponentials, trigonometric functions and their composition inverses wherever
applicable. Then, the real elementary functions is the class obtained from these by taking
the closure under arithmetical operations and composition. If f is in this class and the
functions sin and cos appear in f only through their restriction to bounded intervals, the
f is Pfaffian on its domain of definition (See [Kh3, §1]).

Still, one of the most important applications of Pfaffian functions is to polynomials
themselves, and more specifically to the so-called fewnomials.

Definition 1.5 (Fewnomials) Fiz K = {my,...,m,} € N" a set of exponents. The
polynomial q is a K-fewnomial if it is of the form:

q(z) = Q(z™, ..., ™),

where @ is a polynomial in v variables. If B = deg(Q), we say that q has pseudo-degree (3
n K.

Let { =n+r,and f = (f1,..., f¢) be the chain defined by:

o7 lif 1 <i<n,

It is easy to see that f is a Pfaffian chain of length ¢ and degree @ = 2 in the domain
U= {x---x, # 0}, since we have:

Then, a K-fewnomial ¢ can be seen as a Pfaffian function in f, with deg; ¢ equal to the
pseudo-degree of ¢, but its format is completely independent of the usual degree of q.
This fact will enable us to generalize the well-known consequence of Descartes’s rule: a
univariate polynomial with m non-zero monomials has at most m — 1 positive roots.
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Remark 1.6 This is not necessarily the best way to see a K-fewnomial as a Pfaffian
function. On the first quadrant (R,)"™, one can make the change of variables t; = logz;,
and questions about K-fewnomials can thus be reduced to questions about Pfaffian functions
in the chain (€™t ... e™") which is of length only v compared to the chain (CA) which
has length n + 7.

These considerations about fewnomials can be generalized in many ways: we do not
need the exponents to be integers, and we can consider functions in these chains of degree
larger than one. Though the number of monomials of such a function may depend on
the values of myq, ..., m, they are still well-behaved. More generally, one can consider the
additive complexity of polynomials.

Definition 1.7 (Additive complexity [BR], [Kh3]) Let m € N and ¢ € R\{0}. Then,
the polynomial ¢ + ™ 1is said to have additive complexity 1. If q is a polynomial, we say
its additive complexity is bounded by k + 1 if q(z) = ¢+ ™ py(x)™ - - - pp(x)™, where
mo € N and for all 1 < i < k, m; € N and p; is a polynomial of additive complexity
bounded by 1.

In particular, if p has an additive complexity bounded by k, it means that it can be
evaluated using at most k& additions. Since a function of the form p(z)™ is Pfaffian with a
complexity independent of m on the domain {p(x) # 0}, so this notion can be approached
from the point of view of Pfaffian functions. Such an approach yields explicit bounds on
the number of roots of such polynomials (see Theorem [LT3)).

Proposition 1.8 Let f = (f1,..., f¢) be a Pfaffian chain on a domain U C R™. Then,
the algebra generated by f is stable under differentiation. Moreover, the degree in f of
the sum, product, and partial derivatives of functions from this algebra can be estimated in
terms of the format of the original functions.

Proof: Let g = G(x, f) and h = H(x, f) be two functions from the algebra generated
by f, with deg(G) = (; and deg(H) = [>. We have

(9+h)(x) =Gz, fi(x), ..., folx) + H(z, fi(2), ..., f(z)),
s0 g+ h is in the algebra generated by f, and we have deg (g + h) < max(fy, 52).
Similarly, we have
(gh)(z) = G(z, fi(@), ..., fo(2)) H(z, fi(2),..., fo(@)),
so gh is in the algebra generated by f with deg;(gh) = 81 + Bo.
At last, we have by the chain rule,

dg aG
8—%@) = a—Xj(x’ fl@)+> 8—Yk($, f(x)) P j(z, f(z)).

The stability under derivation of the algebra generated by f follows. If the degree of the
chain f is «a, the degree of any first-order derivative of ¢ is bounded by a + 3; — 1. O
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Remark 1.9 If f, and f, are two Pfaffian chains defined on the same domainU, of length
respectively {1 and 5 and degree oy and «s, the concatenation of f, and f, gives a new
Pfaffian chain f of length at most {1 + {3 and degree max(ay, ). Thus, we can always
work in the algebra generated by a fized chain f.

1.1.2 Khovanskii’s theorem

The fundamental result about Pfaffian functions is the following theorem.

Theorem 1.10 (Khovanskii) Let f be a Pfaffian chain of length { and degree o, with do-
main R™. Let Qy, ..., Q, be polynomials in n+{ variables of degrees respectively By, . .., By,
and let for all 1 < i <n, ¢;(x) = Q;(x, f). Then the number of solutions of the system

@) = = gulz) =0, (1.5)
that are isolated in C" is bounded from above by
=123 .8, (By + -+ By —n+min(n, )a + 1)°. (1.6)

The above bound can be found in [Kh3| §3.12, Corollary 5]. It also holds when the
domain of the functions is the quadrant (R, )™. Over C", the result is of course not true,
since €’ is a Pfaffian function. The complex analogue of the above result is a bound on the
multiplicity of the root of a system of complex Pfaffian functions [G2] (see also [GKHI).

Roughly, the method of proof is the following: one has to replace inductively the
functions f;(x) by variables y;, starting from f,(x). At each step, a Rolle-type argument
allows to produce an extra polynomial ),,.; so that the system

Qj(x7f1(x)7"'7fi—1(x)7yi7'"7y€> = 07 1 SJ S n+Z7

has at least as many isolated solutions as the original system. Thus, after replacing f;(z),
one obtains a system of n + ¢ polynomial equations in n + ¢ unknowns. The degrees of
the polynomials @11, . .., @,1¢ can be effectively estimated, and by Bézout’s theorem, the
number of isolated solutions of the final system can be bounded.

Remark 1.11 In [Kh5], Theorem [l is formulated as a bound on the number of non-de-
generate roots of the system (LH). If q is the map (q1, . .., qn), the number of non-degenerate
roots of the system is simply the number of points x in the preimage q~1(0) for which the
rank of dq(x) is mazimal. The two formulations are clearly equivalent.

Considering systems defined by sparse polynomials involving r non-zero monomials in
the positive quadrant, one can use the change of variables ¢t; = logz;, — as explained in
Remark [C6l, — to reduce the problem to a problem about systems involving r exponential
functions. One can then bound the number of non-degenerate solutions independently of
the degrees of the polynomials, to obtain the following estimate.
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Corollary 1.12 (Fewnomial systems) Let qi,...,q, be polynomials in n variables such
that v monomials appear with a non-zero coefficient in at least one of these polynomials.
Then, the number of non-degenerate solutions of the system

qi(z) = = gnlz) =0,
in the quadrant (R, )™ is bounded by

(=112 (4 1), (1.7)

For systems defined by polynomials of additive complexity bounded by k, (see Defini-
tion [[), there is a detailed proof in [BR|, Chapter 4] that the number of non-degenerate
roots admits a computable upper-bound in terms of k. In the case n = 1, the following
explicit bound is given [BRl Theorem 4.2.4].

Theorem 1.13 (Bounded additive complexity) Let p(z) be a univariate polynomial
of additive complexity bounded by k. The number of real roots of p is at most

(k: + 2)2k+1 22k2+2k+1;

which is less than 5 for k large enough.

1.1.3 Domains of bounded complexity

We will now define a class of domains U over which Khovanskii’s result can be easily
generalized. Note that in order to have the nice topological and geometrical properties we
hope for, one cannot generalize these results to domains that would be too pathological.

Definition 1.14 (Domain of bounded complexity) We say that U is a domain of
bounded complexity v for the Pfaffian chain f = (f1,..., fo) if there exists a function
g of degree v in the chain f such that the sets {g > €} form an erhausting family of
compact subsets of U for e < 1. We call g an exhausting function for U.

Example 1.15 Let f = (fi1,..., fi) be a Pfaffian chain defined on a bounded domain U
of the form

U={zeR"|g(z)>0,...,g9.(x) >0}, (1.8)

where (g1, ..., gr) are Pfaffian functions in the chain f. Then, U is a domain of bounded
complexity, since g = gy -+ g, 1S clearly an exhausting function for U.

Note that the assumption of boundedness of ¢ can be dropped: let

B 1
N

plx) (1.9)
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The function p is a Pfaffian function defined on R", with a degree o« = 3, since we have
dp(z) = —2p%(z) (z1dxy + - - - + zpdy,).

Moreover, p(z) > 0 on R™ and the sets {p > e} are compact for 0 < ¢ < 1. So even
an unbounded domain U of the form (L) is a domain of bounded complexity for any
Pfaffian chain of the form (p, f1,..., f¢), with exhausting function g = ¢; - - - g, + p-

Over a domain of bounded complexity, Khovanskii’s estimates becomes the following.

Theorem 1.16 (Khovanskii’s theorem for a domain of bounded complexity) Let
f be a Pfaffian length of degree o and length £ defined on a domainU of bounded complezity

~v for f. Let Qq,...,Q, be polynomials in n + £ variables of degree respectively (31, ..., By

and let ¢; = Q(z, f) for all i. Then, the number of solutions in U of the system

qi(z) == gu(x) =0; (1.10)

which are isolated in C" is bounded by

2028, o 3, (B 4+ B+ —n+min(n + 1, D] (L1)

Proof: Introduce a new variable ¢t and consider the system given by

@(z)=0,...,q.(2) =0, g(x) —t* =¢; (1.12)

where € is a fixed positive real number. Then, for any values of €, every isolated solution of
the system ([CI) that is contained in the domain Q. = U N{g(z) > €} gives rise to exactly
two isolated solutions for (LIZ). So it is enough to bound the number of isolated solutions
of ([LI2) for a value of € such that all the isolated solutions of ([LI) are contained in €2..
The choice of the parameter € does not affect the complexity of the new system, and the
bound ([CTI]) can then be established following the results appearing in [Kh3]. O

1.2 Semi and sub-Pfaffian sets

Semi and sub-Pfaffian sets occur naturally in the study of Pfaffian functions: semi-Pfaffian
sets are sets that can be defined by a quantifier-free sign condition on Pfaffian functions,
and sub-Pfaffian sets are linear projections of semi-Pfaffian sets, or equivalently, defined
by existential sign conditions on Pfaffian functions.

Example 1.17 Let q be a Pfaffian function defined on a domain U C R™. Then, the set
of critical points of q is semi-Pfaffian and the set of its critical values is sub-Pfaffian.
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Proof: This is straightforward. The critical locus of ¢ is defined by

0q q

and the set of critical values is

V={yeR[JzeX q(x)=y}

Since the partial derivatives of ¢ are again Pfaffian functions, it is clear that X is semi-
Pfaffian and Y is sub-Pfaffian. O

Semi-Pfaffian and sub-Pfaffian sets have a lot of finiteness properties. The present
section contains mainly definitions and relevant examples, and we refer the reader to the
bibliography [GVIL IG3, IG5, [G2, [GV2, [PV] for more details. A comprehensive survey [GV3]
will be available soon.

From now on, f = (fi,..., fr) will be a fixed Pfaffian chain of degree « defined on
a domain of bounded complexity &4 C R", and we will consider only functions fro, the
algebra generated by f.

1.2.1 Semi-Pfaffian sets

As mentioned in the beginning of this section, semi-Pfaffian sets are given by quantifier-free
sign conditions on Pfaffian functions. We start by recalling the definition of quantifier-free
formulas, and we define a notion of format for such formulas. This format will be all the
data we need to establish bounds on the topological complexity of semi-Pfaffian sets.

Definition 1.18 (QF formula) Let P = {p1,...,ps} be a set of Pfaffian functions. A
quantifier-free (QF) formula with atoms in P is constructed as follows:

1. An atom is of the form p;x0, where 1 <i < s andx € {=,<,>}. It is a QF formula;
2. If ® is a QF formula, its negation =P is a formula;

3. If ® and ¥ are QF formulas, then their conjunction ® A U and their disjunction
O VU are QF formulas.

Definition 1.19 (Format of a formula) Let ® be a QF formula as above. If the number
of variables is n, the length of f is £, the degrees of the polynomials P, ; in ([LT) is bounded

by o, s = |P| and B is the mazimum of the degrees in the chain of the functions in P, we
call (n, ¢, o, B, s) the format of ®.

Definition 1.20 (P-closed formulas) We will say that the formula ® is P-closed if it
was deriwed without negations, i.e. using rules 1 and 3 only.
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Definition 1.21 (Semi-Pfaffian set) A set X C U is called semi-Pfaffian if there exists
a finite set P of Pfaffian functions and a QF formula ® with atoms in P such that

X={zel]|d(x)}.
We call format of X the format of the defining formula ®.

The notion of format is important to establish the kind of quantitative bounds we want
on the topology of semi-Pfaffian sets. But the above definition can be improved.

Indeed, taking example on the algebraic case, one expects equalities and inequalities
to affect very differently bounds on the topology of the sets they define. If V = {x € R" |
pi(z) = -+ = ps(x) = 0} is a real algebraic variety defined by polynomials of degree at
most d, we know by a result of Oleinik-Petrovsky Thom and Milnor [OP, [0 M2, [T] that
the sum of its Betti numbers is bounded by d(2d — 1)"~!, so does not depend on s.

On the other hand, when dealing with inequalities, the number s of functions does
matter, as the following example shows: take p;(x) = (z—i)*> and let S = {z € R | py(z) >
0,...,ps(x) > 0}. Then S =R\{1,2,...,s}, so it has s + 1 connected components.

To make full use of that difference between equalities and inequalities in our formulas,
we will introduce the following definitions.

Definition 1.22 (Variety) The semi-Pfaffian set V- C U is called a variety if it is defined
using only equations. We will use the notation

Z(q, . qr) ={z el |qzr) == q(x) =0}

Definition 1.23 (Semi-Pfaffian subsets of a variety) If V = Z(q,...,q,) is a Pfaf-
fian variety and ® a QF formula, one can consider the semi-Pfaffian set X = {x € V|
®(x)}. Then, the format of X is defined as (n, ¢, a, max (1, B2), s) where By is a bound on
the degrees of qu,...,q, and (n, 0, a, Bs, s) is the format of ®.

Remark 1.24 Such a cumbersome definition and notion of format may seem strange, but
we will see in Chapter [@ that this will allow us to establish more precise bounds on the
topology of X, for which r is irrelevant and the parameter d = dim(V') plays a part.

A more usual definition for semi-Pfaffian sets is to define them as finite unions of basic
semi-Pfaffian sets, where a basic set is of the form

B=A{zeUlp(r)=-=wpi(r) =0,¢(x) >0,..., ¢s(x) >0} (1.13)

for some Pfaffian functions ¢, ..., and 91, ...,1;. (Writing as semi-Pfaffian set as a
union of basic ones is just putting the defining formula & in disjunctive normal form, so
the two definitions are clearly equivalent.)
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Remark 1.25 Semi-Pfaffian sets presented as union of basic sets occur frequently in the
literature. The reader should be aware that the definition of their format in that case is
different. The format of a basic set of the form ([[LI3) is then defined as (I,J,n, ¢, a, 3),
and if X is the union of N basic sets By, ..., By, of respective formats (I;, J;,n, , a, 3), the
format of X is (N, I, J,n,l,c,3), where I = max{ly,...,In} and J = max{Jy,..., n}.
The two notions of formats are comparable.

Definition 1.26 (Effectively non-singular set) If X is a basic semi-Pfaffian set, we’ll
say that X is effectively non-singular if the functions ¢1, ..., er appearing in (CI3)) verify

Vee X, dp(x)A---Nder(x) #0.
If X s effectively non singular, it is a smooth submanifold of R™ of dimension n — I.

Basic sets appear rather naturally because they are easier to handle algorithmically. In
particular, effectively non-singular basic sets is what is used in [GVI] to produce a weak
stratification algorithm (using an oracle) for semi-Pfaffian sets.

Definition 1.27 (Restricted set) We say that a semi-Pfaffian set X is restricted if it
1s relatively compact in U.

Let us introduce now the notations we will use for the topological invariants we want
to bound.

Notation 1.28 Throughout this thesis, if X is a topological space, H;(X) will denote its
i-th homology group with integer coefficients, b;(X) will be the i-th Betti number of X,
which is the rank of H;(X), and b(X) will denote the sum >, b;(X).

If P={p1,...,ps} a family of Pfaffian functions, we denote by & be the set of strict
sign conditions on P. If 0 € &, we have

o(z) =pr(x)ol0A - Aps(x)os0; o, € {<,>=}for1<i<s. (1.14)
Then, for any fixed Pfaffian variety V, we can consider the following.

Definition 1.29 (Connected sign cells) A cell of the family P on the variety V' is a
connected component of the basic semi-Pfaffian set S(V;o) = {x € V | o(x)} for some
o€ 6.

Then, we define the number of connected sign cells of P over V simply as the sum

C(ViP) = b(S(V;0)). (1.15)

ceS
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Remark 1.30 In particular, for any semi-Pfaffian set X = {x € V | ®(x)}, if ® as atoms
in P, the number of connected components of X is bounded by C(V';P).

Proof: Indeed, we can assume without loss of generality that ® is in disjunctive normal
form, in which case it is of the form oy V ---V oy for some oq,...,05 € &. Then, X =
S(V;o1)U---US(V;on), so we have

bo(X) < bo(S(Vi01)) + -+ bo(S(Vion)) < C(V;P).
O

Of course, higher Betti numbers are not sub-additive, so a similar procedure cannot be
followed in general.

Definition 1.31 (Consistent sign assignment) Let V' be a Pfaffian variety, P a family
of Pfaffian functions, and & the set of strict sign conditions on P. Then o € & is a
consistent sign assignment of P on V' if the basic set S(V;0) is not empty.

Then, C(V;P) bounds also the number of consistent sign assignments o € &. The-
orem shows that for a fixed variety V, C(V;P) is a polynomial in the number s of
functions in P, and thus, the number of consistent sign assignments is asymptotically much
less than the trivial bound of 3°.

1.2.2 Sub-Pfaffian sets

Definition 1.32 The set Y C R" is a sub-Pfaffian set if there exists a semi-Pfaffian set
X CU CR™P such that Y is the image of X by the canonical projection 7 : R"*? — R™.
Equivalently, this can be formulated by using an existential formula;

Y={yeR"|dzeRP (z,y) € X} (1.16)
Unlike semi-algebraic sets, semi-Pfaffian sets are not stable under projections.
Example 1.33 (Osgood [Osg]) The following sub-Pfaffian set is not semi-Pfaffian.
X ={(z,y,2) €eR* | Ju € [0,1],y = vu, z = ze"}.

Proof: The set X is clearly a strict subset of R? that contains 0. If X is semi-Pfaffian,
there exists a non-zero analytic function F' that vanishes on X in a neighbourhood of 0.
We can write F' as a convergent series of homogeneous polynomials Fy, were deg(Fy) = d.
Then, we must have for all u € [0, 1],

F(z, xu, xe") Zdelue =0.

d>0

Thus, we must have Fy(1,u,e*) =0 for all d > 0 and all u € [0, 1], which implies F; = 0 for
all d > 0. Thus, F' = 0 is the only analytic function that vanishes on X in a neighbourhood
of 0. Since X is a strict subset of R3, it cannot be semi-Pfaffian. O
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Remark 1.34 (Sub-fewnomial sets) Let X C R"*? be a semi-algebraic set andY C R™
be its projection. By the Tarski-Seidenberg theorem, Y is certainly semi-algebraic too. But
even though X may be a fewnomial set, Y is only sub-fewnomial: describing Y with a
fewnomial quantifier-free formula may not always be possible.

Example 1.35 (Gabrielov [G4]) Consider for all m € N the set
Vio={(v,y) eR? | HER t" —at =1, (y — )" —a(y —t) = 1} (1.17)

Then, there is no quantifier-free fewnomial formula describing Y,, having a format inde-
pendent of m.

Remark 1.36 (Open problem) IfY is a sub-Pfaffian set and Y is not subanalytic, it is
not known whether its complement is also sub-Pfaffian or not. This is one of the reasons
that motivates the introduction of Pfaffian limit sets in Section [1

1.3 Basic properties of o-minimal structures

In this section, we describe the main definitions and results concerning o-minimal struc-
tures. O-minimal structures appear in model theory, and provide a framework for the
ideas of tame topology [Gra]. Many surveys are available to the reader for more details, for
instance [C2), [D4, [DM?2]. For more details about model-theoretic aspects, see also [D3, [D2].

1.3.1 O-minimal expansions of the real field

Definition 1.37 (o-minimal structure) For alln € N let S,, be a collection of subsets
of R, and let S = (S,)nen. We say that S is an o-minimal structure on the field R if the
following axioms hold.

(01) For alln, S, is a Boolean algebra.

(02) IfA€ S, and B€ S, then AX B € S 1n-

(03) If A€ S,y1, and 7 is the canonical projection R"™ — R" then 7w(A) € S,..
(04) S, contains all the semi-algebraic subsets of R™.

(05) All sets in S; have a finite number of connected components.

Recall that (O1) means that the collections S, are stable by finite intersection, fi-
nite unions and taking complements. The axioms (O1) through (O4) mean that S is a
structure. Axiom (O5) is called the o-minimality aziom.

Definition 1.38 (Definability) Let S be a structure. If A € S,, we say that A is S-
definable. A map f : A C R™ — B C R" s called S-definable if and only if its graph
belongs to Sypin.
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Example 1.39 Let S,, be the set of semi-algebraic subsets of R™. Then, S = (Sy)nen 1S
an o-minimal structure.

Proof: Recall that a subset of R" is semi-algebraic if it can be defined by a quantifier-
free sign condition on polynomials. Then, § is clearly a Boolean algebra and is stable by
Cartesian products. Elements of &; can only have finitely many connected components
since polynomials in one variable have only finitely many zeros. Thus, the only non-trivial
axiom is (O3): stability by projection, which is the result of the classical Tarski-Seidenberg
theorem [BCR]. O

Example 1.40 Let S,, be the set of globally subanalytic sets: subsets of R™ that are sub-
analytic in RP™. Then, § = (S,)nen is an o-minimal structure.

Proof: Here, S is stable by projections by definition, and the fact that it is a Boolean
algebra follows from Gabrielov’s theorem of the complement [GI]. The axioms 2 and 4
are clear, and the finiteness of the number of connected components follows from the local
properties of semi-analytic sets [Loj. O

Definition 1.41 (Generated structure) Let S be a structure and A = (A, )nen a col-
lection of subsets of R™ for all n € N. If the closure of A under the Boolean operations,
Cartesian product and linear projections is S, we say that S is generated by A.

For example, the structure of semi-algebraic sets is generated by the sets {f = 0} for
all polynomials f, and the structure of globally subanalytic sets is generated by all the
restrictions f[_1,1» of all the graphs of functions f that are analytic in a neighbourhood
of [—-1,1]™.

After the general setting of o-minimal structures was introduced, a lot of effort was
put into constructing new examples. Our main interest here is the fact that o-minimal
functions do generate an o-minimal structure. This fact, proved first by Wilkie in [W2],
is the object of the next section. For now, let us mention two other cases that seem of
particular interest.

The structure R, generated by the exponential function is o-minimal [WIJ. This
is of special interest since it relates to Tarski’s problem about the decidability of real
exponentiation [MW], which was one of the problems which first motivated the introduction
of o-minimal structures.

More recently, Rolin, Speissegger and Wilkie [RSW] constructed new o-minimal struc-
tures using certain quasi-analytic Denjoy-Carleman classes. This construction allowed to
settle two open problems: (1) if A; and Ay generate o-minimal structures, the structure
generated by A;UA, is not necessarily o-minimal, (and thus, there is no 'largest’ o-minimal
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structure), and (2) there are some o-minimal structures that do not admit analytic cell
decomposition (see Theorem [[44] and Remark [LZ5]).

We will now describe the main properties of o-minimal structures. Essentially, such
a structure has a geometrical and topological behaviour which is very similar to what
is observed in semi-algebraic sets. For the remaining of the chapter, & will be a fixed
o-minimal structure and we will write definable for S-definable. In the next chapters,
definable will always mean definable in the o-minimal structure generated by Pfaffian
functions.

1.3.2 The cell decomposition theorem

The cell decomposition theorem is an o-minimal analogue of the cylindrical algebraic de-
composition used in real algebraic geometry [BRl [BCR]. Since most features of semi-
algebraic sets follow from that decomposition, they will have an equivalent for definable
sets in o-minimal structures. We fix S an o-minimal structure.

Definition 1.42 (Cylindrical cell) Cylindrical cells are defined by induction on the di-
mension of the ambient space n. A subset C' of R s a cell if and only if it is an open
interval or a point. A set C C R" is a cell if and only if there exists a cell D C R"™ such
that one of the two following conditions is true.

1. There exists a continuous definable function f : D — R such that C is one of the
following sets,

Co(f) =L@ zn) [ 0 = f(a)},

2. There exists continuous definable functions f and g from D into R such that f < g
on D and

C(f,9) =L@ 2n) | f(2) <an < g(2')}.

Definition 1.43 (Cell decomposition) A cell decomposition of R is a finite partition
of R into open intervals and points. For n > 1, we say that a finite set C of cylindrical
cells of R™ is a cell decomposition of R™ if C is a partition of R™ such that the collection
{m(C) | C €C} is a cell decomposition of R"™'. (Here again, 7 is the canonical projection
R" — R" 1)

If Ay, ..., A are definable subsets of R™ and C is a cell decomposition of R", the par-
tition C is said to be compatible with Ay, ..., Ay if each A; is a finite union of cells in

C.
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Theorem 1.44 (Cell decomposition theorem) 1. Let Ay, ..., Ay be definable sub-
sets of R™. Then there exists a cell decomposition of R™ compatible with Ay, ..., Ag.

2. If f: A — R is definable, A C R™, there exists a cell decomposition of R™ compatible
with A such that for each cell C C A, the restriction f|c is continuous.

Remark 1.45 (C* cell decompositions) The notions of cells and cell decomposition
can be generalized to the C* setting for any k € N U {oo,w} : we can define C*-cells
by requiring that the graphs that appear in the definition of the cells are graph of C* func-
tions. Then, a C* cell decomposition of R™ would be of course a cell decomposition where
all the cells considered are C*. For any fized k € N, a C* analogue of Theorem [T.Z3) holds
for any o-minimal structure. Although analytic cell decomposition holds in many known
cases, including the Pfaffian case [LST, [DMI, [Loid), it does not hold in general [RSW)].

As mentioned previously, Theorem [[44] can be interpreted as a generalization of the
cylindrical algebraic decomposition. However, it is worth noting that the proof of Theo-
rem [[44] is much more technical (it takes about ten pages in [D4]).

In the course of proving Theorem [[44] the following theorem is necessary.

Theorem 1.46 (Monotonicity theorem) Let —co < a < b < oo and let f: (a,b) — R
be definable. Then, there exists ag = a < ay < --+ < ap = b such that on each interval
(@i, air1), the function f is either constant or strictly monotonous and continuous.

The following results are immediate corollaries of the existence of cell decomposition.

Corollary 1.47 Any definable set has a finite number of connected components.

Proof: Let A C R" be definable and C be a definable cell decomposition of R" compatible
with A. Each cell C' € C is connected, so the number of connected components of A is at
most the number of cells C € C such that C C A. O

By construction, all cells in a cell decomposition are definably homeomorphic to a cube
(0,1)? for some d. If C' is a cell homeomorphic to (0,1)%, we let d = dim(C). Then, it is
natural to define the dimension of a definable set A # & as the maximum of dim(C') taken
over all cells C' contained in A, for a given cell decomposition C compatible with A. Then,
the following holds.

Proposition 1.48 (Dimension is well behaved) Let A be a definable set, A # @, and
f A — R™ a definable map. The dimension of A is well-defined (independent of the
choice of the cell decomposition C) and dimensions verifies the following properties.

1. dim(0A) < dim(A);
2. dim(f(A4)) < dim(A).
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Corollary 1.49 (Uniform bound on fibers) Let A C R™ xR" be definable, and define
for all x € R™ the fiber

Ay ={y e R" | (z,y) € A}.

Then, there exists N such that for all x € R™ the fiber A, has at most N connected
components.

Proof: Let C = {C;} be a cell decomposition of R™ x R™ compatible with A. If A =
CyU---UCy, we have A, = (C1), U---U (Cy)z. Thus, it is enough to check that each
(C})s is connected, which is an easy induction on n. O

Proposition 1.50 (Definable choice) Let A C R™ x R" be definable. Denote by m the
canonical projection R™ x R"™ — R™ and let B = ©(A). Then, there exists a definable
s: B — R™ such that its graph I'(s) is contained in A.

Proof: Suppose n =1, and let C be a cell decomposition of R”™ x R compatible with A.
Fix x € B; there exists a cell C' € C such that C C A and x € 7(C'). According to the type
of the cell C, we can define s(z) so that (z,s(z)) € C.

It C' = Cy(f), we let s(z) = f(z);
it C =CL(f), welet s(z) = f(z) + 1;
if C'= C_(f), we let s(z) = f(z) — 1
and if C' = C(f, g), we let s(z) = (f(z) + g(z))/2.

This solves the case n = 1, since s is certainly a definable function 7(C') — R.

We finish the proof by induction on n. Assume the result holds up to n — 1, and let =’
be the canonical projection R™ x R” — R™ x R"! and A’ = 7/(A). By induction, there
exists s’ : B — R"! definable such that I'(s') C A’. We can use the case n = 1 for I'(s')
now, so there exists s” : I'(s') — R such that I'(s”) C A. The projection 7 restricted to
['(s”) must be a bijection onto B, so I'(s”) is the graph of a definable function s : B — R™.
O

Corollary 1.51 (Curve lemma) Let A C R™ be definable and a € OA. Then, there exists
a definable arc v : (0,1) — A such that lim;_oy(t) = a.

Proof: Let a € 0A, and let B = {|z —al|,x € A}. The set B is definable and since 0 € B,
there must be an interval (0,¢) contained in B. By the definable choice theorem above,
there exists a function v : t € B + ~v(t) € A such that |ay(t)| = t. By Theorem [0, v
is continuous on an interval (0, d) for some 6 < e, and by rescaling the variable ¢, we can
always assume that 6 = 1. O
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1.3.3 Geometry of definable sets

We will now list some of the deeper consequences of the o-minimality axiom. First, asymp-
totic behaviour of definable functions is very controlled, and there is a dichotomy between
polynomially bounded o-minimal structures and structures where e” is definable [Mi]. Al-
though the usual, polynomial Lojasiewicz inequality does not hold in o-minimal structures
that are not polynomially bounded, the following version does hold.

Theorem 1.52 (Generalized Lojasiewicz inequality) Let f,g: A C R™ — R be de-
finable functions such that {f = 0} C {g = 0} and A is compact. Then, there exists a
definable CP function ¢ such that |p o g(x)| < |f(z)| for all x € A.

Remark 1.53 For Pfaffian functions, a more explicit inequality, the exponential Lojasiewicz
inequality, holds. See Proposition [1.79

Definition 1.54 (Stratification) Let p > 1 be an integer. A C? stratification of a set A
is a partition of A into strata such that each stratum is a CP-smooth submanifold and if X
and Y are two strata such that X NY # &, then we have X C Y.

Theorem 1.55 (Existence of stratifications) Let p > 1 be a fized integer.
1. Let A be definable. There exists a definable CP stratification of A.

2. Let A be a closed definable set and f : A — R be a continuous definable function.
Then, there exists a definable C? stratification of A such that for each stratum X, the
restriction f|x is C? and of constant rank.

Remark 1.56 More precise results about stratification with specific reqularity conditions
exist: e.qg. Whitney, Thom [Loid], Verdier [Loi5], etc. ..

The next result is about the local triviality of continuous definable maps. It originated
with Hardt in the semi-algebraic case [H].

Definition 1.57 (Trivial map) Let f : A — C be a definable map. The map f is
called (definably) trivial if there exists a definable set F' and a definable homeomorphism
h:A— C x F such that the following diagram commutes.

h CxF

i

where my : C' x F' — C is the canonical projection.

A

Theorem 1.58 (Generic triviality) Let f : A — C be a continuous definable map.
there exists a finite definable partition C = Cy U --- U C, such that f is definably trivial
over each Cj.
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We finish our discussion of the general properties of o-minimal structures with questions
about triangulations of sets and maps, which will play a large role in the proofs of the results
of Chapter 5. For simplicial complexes, we use the terminology of [C2] rather than [[D4].

Definition 1.59 (Simplex) Let ay,...,aq be affine-independent points in R™, (not con-
tained in any (d — 1)-dimensional affine subspace). We define the closed simplex ¢ =
lag, .. .,aq] as the subset of R™ defined by

d d
UZ{ZwiaiIZwizl,wlzo,...,wdEO}- (1.18)
=0 =0

The open simplex o = (ay, . ..,aq) is defined as above, with the additional condition that
all weights w; are positive. The points ag, . . .,aq are called vertices of the (open or closed)
simplex. The dimension of the simplex is d.

Note that the condition wy + -+ + wy = 1 in ([CIY) implies that the weights w; are
uniquely determined.

Definition 1.60 (Faces) If 6 = [ag, ..., aq] is a closed simplez, its faces are all the closed
simplezes of the form [a;,i € I| where I is any non-empty subset of {0, ..., d}.

Definition 1.61 (Simplicial complex) A (finite) simplicial complex K of R" is a finite
collection {71, ...,0x} of closed simplices of R™ such that the following two conditions hold.

o Foranyi,j€{l,...,k}, the intersection 6; N a; is a common face of o; and G;;
e K is closed under taking faces.

We denote by |K| the subset 51 U ---Uay of R™.

Theorem 1.62 (Triangulation of compact definable sets) Let A CR"™ be a compact
definable set, and By, ..., By be definable subsets of A. There exists a finite simplicial
complexr K with vertices in Q", sets Sy,...,S, of open simplices of K and a definable
homeomorphism ® : |K| — A such that for each i, we have B; = Uyes, ®(0).

Note that the result still holds when A is not compact, provided we take the weaker
notion of simplicial complex where we do not require K to be closed under taking faces.
See [D4] for more details.

It is well-known that definable maps are not always triangulable: for example, the
blow-up map f(x,y) = (z,zy) is not. The result below says that definable continuous
maps from a compact into R always are. Recall that the function f : A — R is triangulable
if there exists a finite simplicial complex K and a homeomorphism ¢ : |K| — A such that
f o ® is affine. By affine map, we mean the following.
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Definition 1.63 (Affine map) Let g : ¢ = [ag,...,aq) — R be a function defined on a
simplex. It is affine if it satisfies the equality

d d
9 (Z Wy Cli) = ZWQ(%‘)% (1.19)
i=0 i=0
for all non-negative (wo, ..., wq) such that wy+ -+ -+ wg = 1.

The proof of the following theorem in the o-minimal setting can be found in [CI] [C2].

Theorem 1.64 (Triangulation of functions) Let A C R" be a compact definable subset
in an o-minimal structure S and f : A — R be a definable continuous function. Then, there
exists a finite simplicial complex K in R"™ and a definable homeomorphism ® : |K| — A
such that f o ® is affine on each simplex of K.

Moreover, given finitely many definable subsets By, ..., B, of A, we can choose the
triangulation ® : |K| — A so that each B; is the union of images of open simplices of K.

1.4 Pfaffian functions and o-minimality

As mentioned earlier, works of Charbonnel [Ch] and Wilkie [W2] led to the following result,
which we will use extensively in the present work. This theorem was then generalized
extensively in [KM, [Spl [LR2].

Theorem 1.65 (Wilkie) The structure generated by Pfaffian functions is o-minimal.

The main result in [W2] is a theorem of the complement: Wilkie shows that the Pfaffian
structure can be obtained by starting from semi-Pfaffian sets and iterating the operations
of closure under finite unions, projections and closure at infinity, where the last operation
consists in considering all sets of the form AgNA;N---NA, for sets Ay, ..., A, already con-
structed. The end result is called the Charbonnel closure, and [W2, Theorem 1.8] says that
the Charbonnel closure obtained from semi-Pfaffian sets is closed under complementation
(and thus a bona fide structure) and o-minimal.

This construction of the Pfaffian structure, however, is not very convenient for quanti-
tative purposes, especially since if 7,,, denotes the pre-structure obtained after m iteration
and if X C R"™ denotes a definable set that can be constructed within 7,,, there doesn’t
seem to be any way to derive from Wilkie’'s work an upper-bound a the number p such
that R™\ X can be constructed within 7;,,,. This is what made it desirable to find an
alternative construction for the Pfaffian structure.

We will now describe in some details the construction of the Pfaffian structure via limit
sets that was suggested by Gabrielov in [G6]. Limit sets will provide a notion of format
for arbitrary definable sets, and we will show this format can effectively be used to derive
upper-bounds (Chapter 4 and 5).
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Remark 1.66 (About sub-Pfaffian sets) We come back to the open problem evoked in
Remark [L3A: if (C) is the statement: the complement of any sub-Pfaffian set is again
sub-Pfaffian, we do not know whether (C) holds or not. If we knew that (C') was true,
we could deduce easily that the Pfaffian structure is o-minimal, since then all definable
sets would be sub-Pfaffian and semi-Pfaffian sets (and thus sub-Pfaffian sets) always have
finitely many connected components.

Proof: Let us show that (C') would imply that sub-Pfaffian sets form a structure. Since
sub-Pfaffian sets are clearly stable under projection and Cartesian products. Also, sub-
Pfaffian sets are always closed under finite unions since if X and Y are sub-Pfaffian, we
can assume that X = 7(X;) and Y = 7(Y]) for some semi-Pfaffian subsets X; and Y] of
R™? with 7 the canonical projection R — R" and thus X UY = 7(X; UY]), so it is
clearly sub-Pfaffian.

Hence, all we have to show is that if X and Y are sub-Pfaffian and (C') holds, then XNY
is sub-Pfaffian too. Since we're assuming (C'), it is enough to show that the complement
R™\(X NY) is sub-Pfaffian. But this is obvious, since R"\(X NY) = (R"\X) U (R"\Y) :
by (C), both (R™\X) and (R™\Y') are again sub-Pfaffian, and we have just showed that
sub-Pfaffian sets were stable under finite unions. O

1.4.1 Relative closure and limit sets

From now on, we consider semi-Pfaffian subsets of R™ x R, with a fixed Pfaffian chain
f = (fi,-.., f¢) in a domain U of bounded complexity. We write (z1,...,x,) for the
coordinates in R™ and A for the last coordinate (which we think of as a parameter.) If X
is such a subset and A > 0, X, is its fiber

X, = {z ] (x,)) € X} CR"
and we consider X as the family of its fibers X,. We let
X, =XNn{A>0}, and X = {z € R" | (2,0) € X }.

(Thus, X is the Hausdorff limit of the family X, when A goes to zero.) The following
definitions appear in [G6].

Definition 1.67 (Semi-Pfaffian family) Let X be a relatively compact semi-Pfaffian
subset of R™ x Ry. The family X, is said to be a semi-Pfaffian family if for any e > 0, the
set X N{\ > e} is restricted. (See Definition[I.27.) The format (n,{,«, 3,s) of the family
X is the format of the fiber Xy for a small A > 0.

Remark 1.68 (Format) Note that the format of X as a semi-Pfaffian set is different
from its format as a semi-Pfaffian family. We will sometimes refer to it as the fiber-wise
format to emphasize that fact. Note also that [GO] uses the format discussed in Remark[LZ3
rather than the formula-based format, both being of course valid measures of the descriptive
complexity of limit sets.
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Definition 1.69 (Semi-Pfaffian couple) Let X and Y be semi-Pfaffian families in U
with a common chain (f1,..., f¢). They form a semi-Pfaffian couple if the following prop-
erties are verified:

o (V) =Y,
e (0X), CY.

Then, the format of the couple (X,Y) is the component-wise maximum of the format of
the families X and Y.

Definition 1.70 (Relative closure) Let (X,Y) be a semi-Pfaffian couple in U. We de-
fine the relative closure of (X,Y) at A =0 by

(X, Y)o=X\Y CU. (1.20)
We will use the notation Xy = (X, 0X)o.

Definition 1.71 (Limit set) Let Q@ C R™ be an open domain. A limit set in 2 is a set
of the form (X1,Y1)oU---U (X, Yi)o, where (X;,Y;) are semi-Pfaffian couples respectively
defined in domains U; C R™ x Ry, such that U; = Q for 1 < i < k. If the formats of the
couples (X;,Y;) is bounded component-wise by (n,{,«, 3,s) we say that the format of the
limit set is (n, ¢, «, 3, s, k)

Remark 1.72 We assumed that the semi-Pfaffian families X are all relatively compact.
This restriction allows us to avoid a separate treatment of infinity: we can see R™ as
embedded in RP™, in which case any set we consider can be subdivided into pieces that are
relatively compact in their own charts.

Example 1.73 Any (not necessarily restricted) semi-Pfaffian set X is a limit set.

Proof: It is enough to prove the result for a basic set X C U,

X=A{zelU|pi(xr)=-=pi(x)=0,¢(x) >0,..., Ys(x) > 0};

Let ¢ =1/ - -1y and let g be an exhausting function for U. Define the sets

={(z,A) € X x A g(x) > A};

={(@N) eUxApi(r) == @i(x) =0, P(x) =0, g(x) = A};

={(@ ) eUxA|pi(z) = =¢i(x) =0, g(x) = A}
where A = (0,1]. If Y = Y, UY5, it is clear that (W,Y) satisfies the requirements of a
semi-Pfaffian couple in Definition [C6%; its relative closure is clearly X. O

For all n € N we let S, be the collection of limit sets in R", and S = (S,,)nen. The
following theorem sums up the results in [G6, Theorems 2.9 and 5.1].
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Theorem 1.74 The collection S is a structure, and it is o-minimal. Moreover, if X is a
definable set obtained by a combination of Boolean operations and projections of the limat
sets Ly, ..., Ly, the set X can be presented as a limit set whose format is bounded by an
effective function of the formats of Ly, ..., Ly.

Moreover, it is clear that S coincides with the structure constructed by Wilkie. A key
result to work with limit sets is the following inequality.

Proposition 1.75 (Exponential Lojasiewicz inequality) Let f be a Pfaffian chain
of length € defined on a domain of bounded complexity U for f. Let q(z) = Q(x, f), and
suppose that 0 € cl(X N {q > 0}). Then, there exists N € N such that

0 € cl({z € X |q(x) > 1/expy(l]™™)});
where exp, is the (-th iterated exponential.

The proof relies on proving that the rank of the Hardy field generated by f at 0 is
bounded by /41 (see [Ros|). A detailed proof can be found in [G6], see also [Guril, [ [LMP].

1.4.2 Special consequences of o-minimality

When giving bounds on the topology of sets defined using Pfaffian functions, one invokes
constantly the o-minimality of the structure generated by those functions. In this section
are gathered a few minor results that will be often used in the next chapters.

Lemma 1.76 (Existence of limits) Let f: (0,e) — R be definable. Then, the function
f has a well-defined limit in R U {£o00}.

Proof: This is a simple consequence from the monotonicity theorem (Theorem [[40]).
There exists § > 0 such that the restriction of f to (0, ) is continuous, and one of strictly
increasing, constant, or strictly decreasing. The case where f is constant on (0, ) is trivial.
If f is strictly increasing on that interval, then either it is bounded from above, and then
f must have a finite limit at 0, or it is not bounded and the limit of f is +00. The case
where f is decreasing is similar. O

Lemma 1.77 (Critical values) Let ¢ : U CR™ — R be a C* definable function. Then,
q has finitely many critical values.

Proof: The set of critical values of ¢ is a definable subset of R. (If ¢ is a Pfaffian function,
this set is actually sub-Pfaffian, see Example[[T7) By Sard’s lemma, it must be of measure
zero, and a definable subset of R of measure zero can only be finite. O

Recall that we denote by b;(X) the i-th Betti number of X (see Notation [[2¥) and
BX) = 3, bi(X).
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Lemma 1.78 (Deformation of basic sets) Let U be a domain of bounded complezity,
g an ezhausting function for U and let X = {x e U | ¢1(z) = -+ = ¢-(x) = 0,p1(z) >
0,...,ps(x) > 0} be a basic semi-Pfaffian set, and for e > 0 and t € (R,)*, define X, =
{reld | qlz)="-=qx) =0,p(x) > cty,...,ps(x) > ets,g(x) > e}. Then for all
e <1, b(X:) = b(X).

Proof: The groups H,(X) are the direct limit of the singular homology groups of the
compact subsets of X ([Spa, Theorem 4.4.5].) Thus, b(X) = lim._(b(X.), and by the
generic triviality theorem (Theorem [[LA8), this sequence is eventually stationary. O

Lemma 1.79 (topology of compact limits) Let K. be a decreasing sequence of com-
pact definable sets defined for € > 0, and let K be their intersection. Then, for all e < 1,
and all 0 <1 < n, we have

Proof: Since all the sets considered are triangulable, their homological type is that of
a polyhedron, and the Cech homology H, and the singular homology H, are isomorphic.
Since the sequence K, is compact and decreasing and the limit is compact too, we have [ES]

H.(K) = lim H,(K.). (1.21)

But by generic triviality, the sets K. are homeomorphic for € < 1, hence the limit in (C21])
becomes eventually stationary:. O
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Chapter 2

Betti numbers of semi-Pfaffian sets

This chapter is devoted to the study of the possible complexity bounds that can be proved
on the Betti numbers of semi-Pfaffian sets defined on a domain of bounded complexity.
These results include bounds for the sum of Betti numbers of compact and non-compact
Pfaffian varieties (Theorem and Theorem EZI0), bounds for the sum of Betti num-
bers of basic semi-Pfaffian sets (Lemma EZT4]) and semi-Pfaffian sets given by P-closed
formulas (the main result of this chapter, Theorem ZT17). Theorem gives a bound on
C(V;P), the number of connected sign cells of the family P on V' that was introduced in
Definition [L29, and this allows to establish in Theorem a bound on the Borel-Moore
homology of arbitrary (locally closed) semi-Pfaffian sets. In particular, this last result
provides an upper-bound for the sum of Betti numbers of any compact semi-Pfaffian set,
without requiring the defining formula to be P-closed.

Recently, Gabrielov and Vorobjov [GV4] generalized the results of the present chapter:
they established a general, single-exponential bound for the sum of the Betti numbers of
any semi-Pfaffian set, without any assumption on its topology or defining formula. Such a
result was not known even in the algebraic case, and the precise statement was added at
the end of this chapter (Theorem E234) for reference purposes.

The setting for the present chapter will be the following: we will consider a fixed Pfaffian
chain f of length ¢ and degree o in a domain &/ C R" of bounded complexity for the chain
J. We will let g be an exhausting function for U, and v = degy g.

Throughout this chapter, py, ..., ps, and g1, . . ., ¢, will be Pfaffian functions in the fixed
chain f, and we’ll write P for {py,...,p,} and deg; P for max{degyp; | 1 <i < s}. The
number 3 will be a common upper-bound for deg; p; and deg q;. We'll let ¢ = G+t g
and V = Z(q,...,q-) = Z(q). The dimension of V' will be denoted by d. We’ll let

V(n, la,B,7) = 2280 + 5 — 1)"_1%[n(a +B—1)+~+min(n, O)al’. (2.1

The chapter is organized as follows.

e In the first section, we show that b(V') can be bounded in terms of V(n, ¢, a, 3, 7).

47
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e In section 22 we show that if X is a semi-Pfaffian subset of a compact variety V
given by a P-closed formula, b(X) < (55)?V(n, {, o, 203,7).

e In section 2.3, we show that C(V;P) < X(s,d) V(n, !, a, *,7), where §* = max(3,7)

and
(s, d) = 3 (4S;r 1).

0<i<d

e The last section is devoted to proving that the rank of the Borel-Moore homology
groups of a locally closed X with the above format is bounded by an expression of
the form

bM(X) < 521297V O(n3 4 min(n, £)a)* "
for some constant depending on U.

The main results of this chapters are inspired by similar results in the semi-algebraic
case by Basu, Pollack and Roy [B2, [BPRIl [BPR3]. Note that more analogues could also be
formulated for more recent results in the same vein [BIl, [B4, [B5]. Indeed, the o-minimality
of the structure generated by Pfaffian functions ensures that most arguments can still be
used. The use of infinitesimals in those papers can be avoided most of the time by placing
oneself in a compact setting and replacing the infinitesimals in small real numbers. (The
proof of Theorem T is an example of how one can compute a real number r such that
the condition that ¢ is an infinitesimal can be replaced by € < r.)

As in the work of Basu, Pollack and Roy, one of the ideas behind the bounds is the
notion of combinatorial level of a family of functions P.

Definition 2.1 (Combinatorial level) Let X C U be a semi-Pfaffian set and P a family
of functions on U. The combinatorial level of the couple (X,P) is the largest integer m
such that there exists x in X and m functions in P vanishing at x.

This leads to a combinatorial definition of the idea of general position.

Definition 2.2 (General position) Let V' be a Pfaffian variety. The set P is said to be
in general position with V' if the combinatorial level of (V,P) is bounded by dim(V).

2.1 Betti numbers of Pfaffian varieties

This section is devoted to proving the following analogue for Pfaffian varieties of the
Oleinik-Petrovskii-Thom-Milnor upper bound [O} [OP] [T}, IM2] on the Betti numbers of
real algebraic sets. As explained above, f is a fixed Pfaffian chain of degree o and length
¢, and U is a domain of bounded complexity for f with an exhausting function g such that
degsg=~. We fix V= Z(qi,...,q,) a Pfaffian variety and let ¢ = ¢ +- - -+ ¢2. The result
we will prove is the following.
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Theorem 2.3 Let V = Z(q) a Pfaffian variety with q as above, degyq = 20. If V is
compact, its Betti numbers verify

where V(n, L, a, 3,7) is defined in (Z1).
If V' is mot compact, we have b(V') < V(n,l, a, 3*,7), where 3* = max(3, 3).
In practice, it makes sense to assume that the chain f and the domain U/ are fixed, and
to let the degree 3 go to infinity. We then obtain a more manageable estimate.

Corollary 2.4 Let U be a fired domain of bounded complexity for a Pfaffian chain f. If
V =Z(q,...,q) is a Pfaffian variety and deg; q; < 3 for all i, the following asymptotic
estimate holds.

b(V) < 24D/2 O(nfB + min(n, )a)"*.

(Here, the constant in the O term depends on 7.)

2.1.1 Bound for compact Pfaffian varieties

In this section, we assume that the variety V' C U is compact. Recall that if V =
Z(q1,..,q), welet ¢ = ¢+ -+ ¢ Let K, = {z € U | q(x) < r}. According to
Lemma [C77, ¢ has only a finite number of critical values, and so the K, are smooth man-
ifolds with boundaries for all but finitely many values of r. Let K C K, be the union
of the connected components of K, that intersect V. We want to show that b(V) is equal
to b(K ) for small values of r. We shall start by proving that K is compact if r is small
enough.

Lemma 2.5 Let dy(x) be the distance of x to V, and for all § > 0, let T(0) = {z € U |
dy(x) < 0}. There exists 1 > 0 such that K = K, NT(0,) forr < 1.

Proof: Define, for any set C, dist(C,V) = min{dy(x) | = € C}. Let &y = dist(oU, V).
Since V' is compact, we have dy > 0. Fix d; € (0, dp).

For all » > 0, let C, = K,\K}. This set is closed for all r. We will show that
dist(C,, V) > §; when r < 1, by contradiction. If C. NT'(d;) # @ for all r > 0, their
intersection N,~o(C. NT(d;)) must be non-empty too, since those sets are compact. But a
point in this intersection cannot be in V. Since V' = N,~¢ K, we have a contradiction. O

Remark 2.6 [t is important to consider K, since K, itself is not necessarily compact.
The following example comes from [BR|.
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Let P : R? — R be the map:
Pz,y) = (2 + y*)((y(2* + 1) = 1)* +¢°).

P~1(0) = {0} is compact, but as P(z, (1 + 2?)7!) goes to 0 as = goes to infinity, the sets
{P < r} are not bounded for r > 0.

Since the set T'(d;) is compact, Lemma ZH implies that K* is compact for r < 1. Since
V' = N,soK is compact too, we can apply Lemma [T to conclude that b(V') = b(K¥) for
r < 1. To obtain a bound on b(V'), we need to establish a relation between the topology
of K and the topology of its boundary.

Lemma 2.7 Let K = K. Then b(0K) = 2b(K).
Proof: Let K¢ = R"\K. The Mayer-Vietoris sequence in reduced homology of (K, K¢)

is:
As f[*~(R”) = 0, this yields H;(0K) = H;(K) & H;(K°), and as K has a collar in K¢, we
have HZ(W) = HZ(KC) B 5

Alexander duality gives H;(K¢) = H"""!(K). This yields the relations

b;(0K) = b;(K) + by—i—1(K), 0<i<n-—1. (2.3)
We have b,(K) = b,(0K) = 0, so summing all the equalities in (Z3]) gives the result
b(OK) = 2b(K). O

Theorem 2.8 (Compact varieties) Let f be a Pfaffian chain of length ¢ and degree o
defined in a domain U of bounded complexity . Let qi,...,q, be Pfaffian functions such
that degy q; < 3, and let V = Z(qu, ..., q;). If V is compact, we have

b(V) < V(n. L e, B,7); (2.4)
where V(n, L, , 3,7) is defined in [Z1]).

Proof: For r < 1, we know from Lemma that b(K}) = b(V). According to
Lemma 7 it is enough to estimate the Betti numbers of W = 0K, which is a smooth
compact manifold for r < 1.

Up to a rotation of the coordinate system, — which does not alter the complexity of V,

— we can assume that the projection map 7w of W on the x, axis is a Morse function, i.e.

has only non-degenerate critical points with distinct critical values. By standard Morse

theory [MI], (W) is bounded by the number of critical points of 7, which in turn is
bounded by the number of (non-degenerate) solutions of the system;

9q 9q

dla) =1 = g (@) == 5

The first equation has degree 23 in the chain f, and the others have degree o 4+ 23 — 1.

From Theorem [[LTA, such a system has at most 2V(nf, «, (3,7) solutions, and the bound

on b(V) follows. O

(x) = 0.
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2.1.2 The case of non-compact varieties

Assume now that V' C U is not compact. Let g be an exhausting function for ¢, and define
for all € > 0,

Vo= {eeV]g) =<} (25)
The set V. is compact for all £ > 0.

Proposition 2.9 For all ¢ < 1, we have b(V.) = b(V).

Proof: By generic triviality, there exists €9 > 0 such that g restricted to V' is a trivial
fibration over (0,eq). In particular, this implies that for 0 < & < & < &g, the inclusion
V. — V. is a homotopy equivalence, and thus b(V%) is constant for £ € (0,q). By [Spal
Theorem 4.4.6], H,(V) is the inductive limit of the groups H.(V.), and the result follows.
O

Theorem 2.10 (Non-compact varieties) Let f be a Pfaffian chain of length ¢ and de-
gree « defined in a domain U of bounded complexity . Let q,. .., q, be Pfaffian functions
in f of degree at most f andV = Z(q1,...,q.). If V is not compact, we have

b(V) < V(n, Lo, 5%, 7); (2.6)
where V is defined in ) and * = max((,2).

2
Proof: Choose € > 0 such that b(V.) = b(V), and define, for w > 0 and n > 0, the set
K ={wq+ g > e —n}. Note that K is a compact subset of U.

We can choose sequences w, and 7, such that the corresponding sets K, are smooth
manifolds with boundary, but also such that the sequence is decreasing, and that V. =
N, K,. In order to do that, it is enough to take a sequence 7, that decreases to 0, and, if
M, = maxg, q, to choose w, —, 0o such that (w,11 —w,)M, <1, — 1,41.

Since the decreasing sequence of compacts K, has the compact set V. as a limit,
Lemma [[LT9 gives that b(V;) = lim, ., b(K, ), and by the same arguments as in Lemma 27,
we have 2b(K,) = b(0K,). As in the proof of Theorem 8, we reduced our the problem
to the one of estimating the Betti numbers of a compact smooth hypersurface given by a
single Pfaffian equation {wqg+ g = ¢ —n}. This estimate is established by the same method
as in the compact case, by counting critical points of a projection on a coordinate axis.
After a shift of coordinates, we must estimate the number of non-degenerate solutions of
the system

oh oh
h _ - —_ ... = =0: 2.7
(1) == o (a) = o= (@) =0, (27)
where h(z) = wq(x) + g(v). Since deg;q = 23 and degyg = v, we must have deg;h <
max (24, 7), and Khovanskii’s bound from Theorem gives that the system (1) has at
most 2 V(n, {, a, f*,v) non-degenerate solutions. O
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2.2 Betti numbers of semi-Pfaffian sets

In this section, f is still a Pfaffian chain defined on a domain of bounded complexity U.
Let V' be a compact Pfaffian variety of dimension d and ® be a P-closed QF formula, with
atoms in a finite set of Pfaffian functions P = {py,...,ps}.

2.2.1 Going to general position

Recall that P and V' are said to be in general position if the combinatorial level (V,P),
introduced in Definition BTl is bounded by d. The following proposition shows that one
can reduce to this case at a low complexity cost.

Proposition 2.11 (General position) Let X = {z € V | ®(x)}, where V and ® are as
above. Then there exists a set of 2s Pfaffian functions P* and a P*-closed QF formula
O* such that the set X* = {x € V | ®*(z)} verifies b(X) = b(X*). Moreover, we have
deg; P = deg; P

Proof: Of course, the result is non-trivial only if the combinatorial level of (V,P) is at
least d 4+ 1, which implies in particular that s > d + 1.

Fix t € (Ry)® and let P. = {p; £ ety,...,ps L ets}. For all € > 0, we build from &
a QF formula . which is P.-closed, replacing the atoms of ® according to the following
procedure.

e An atom of the form {p; > 0} is replaced by {p; > —¢t;};

e an atom of the form {p; < 0} is replaced by {p; < et;};

e an atom of the form {p; = 0} is replaced by the conjunction {p; < et;} A{p; > —¢t;}.
Then, let X, = {z € V | &.(x)}. The sets X. are compact and X = N.-0X.. By

Lemma [T, there exists e < 1 such that b(X.) = b(X).

Assume that V' is a C'-smooth submanifold, and let p = (py, ..., p,). By Sard’s lemma,
the set of critical values of p|y has measure zero. Hence, for a generic choice of (t1,...,ts),
we can find € > 0 arbitrarily small such that any element of the form (£ety, ..., £et) is
a regular value of p|y. For such a choice, (V,P.) is in general position and we can take
X* = X.. If V is not a submanifold, it can be stratified as a disjoint union of submanifolds,
and we can choose a t that will work for every stratum. O

Proposition 2.12 (Mayer Vietoris inequalities) Let X and X3 be two compact semi-
Pfaffian sets. Then, for all i, the following inequalities hold.

bi( X1 U Xy) < bi(X1)+ bi(Xa) + b1 (X1 N Xo). (2.9)
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Proof: The Mayer-Vietoris sequence [Bred| for X; and X5 is the following.

= Hip (X1 U Xg) — Hy(X1 N Xo) — Hi(Xy) © Hi(X2) —» Hi(XiUXyp) — -
This sequence is exact when X; and X, are compact, and the above inequalities follow

easily. O

2.2.2 Betti numbers of a basic open set

If P={p1,...,ps}, the basic open set defined by P on the variety V is the set
X(V;P)={z eV |pi(z)>0,...,ps(x) > 0}. (2.10)
Definition 2.13 Let By(n,?, o, 3,7, s,m) be the mazimum of b(X) where X = X (V;P)

for some set of Pfaffian functions P on a Pfaffian variety V.= Z(qi,...,q.), with the
following conditions.

o All functions are polynomial in some Pfaffian chain f of length ¢ and degree a,
defined on a domain U of bounded complexity v for f;

e |P| = s; and the combinatorial level of (V,P) is m;

e degsp; and degg q; are bounded by 3 for 1 <i<sand1<j<r.
Then, By admits the following upper-bound.

Lemma 2.14 (Basic set bound) Let By(n,l, «, 3,7, s, m) be as in Definition[ZZ3. Then,

B()(nag?OQﬂvfy’ Svm) S 2™ (;) V(n7€7a7677); (211)
where V(n, L, «, 3,7) is defined in ). In particular, if U is fized and m < n, we have
Bo(n, l, o, B,7,s,m) < (;) 2/=D20(nB 4 min(n, £)a)"; (2.12)

for a constant depending on 7.

Proof: Let X, be the set:

Xe={z eV |p(x) >e,...,ps(x) > e} (2.13)
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Applying Lemma [[LT8, we have b(X.) = b(X) for ¢ < 1. Consider now the sets:

T:{$€V|p2257-"729825}3)(67
X, =Tn{p < —¢},
R=X.UX_,
S=TnN{—e<p <e}.
W+ :Tﬂ{pl 28},
W==Tn {p1 = —8},
W=Wrtuw-.
AsT=RUS and W =RNS and R and S are compact, the Mayer-Vietoris inequal-
ity (228) gives:
b(R) +b(S) < b(T) + b(W).
As the union R = X_. U X is a disjoint union, the Mayer-Vietoris inequality (Z9) gives
b(R) = b(X.) + b(X_ ). This yields:
b(X) =b(X.) <b(R) <b(T)+ b(W). (2.14)
Let Py = {ps,...,ps}. For € < 1, the set T has the same Betti numbers as the basic
set X(V;Py), and b(W) = b(X (V;7;P1)) + (X (Vi";P1)), where V" =V N Z(p; +¢) and
Vim =V NZ(p —e¢). The set Py has s — 1 elements, and the corresponding combinatorial

levels are bounded by m for (V;P;) and by m — 1 for (V;";P;) and (V,";P;). Thus, the
relation (ZT4)) gives the following inequality.

BO(n7£>aa/6777 s,m) S BO(/nweaaaﬁa’%S_ ]-am) _‘_QBQ(TL,E,O{,/B,’V,S_ ]->m_ 1)

When s = 0, we have X (V; @) =V, and when m = 0, the functions p; have constant
sign on V, so that X(V;P) =V or X(V;P) = @, depending on whether all functions of P
are positive on V' or not. Thus, we obtain the following initial conditions for the induction.

(2.15)
Bo(n, l,a,8,7,5,0) < V(n,l apB,7)

We will prove (2I0]) by induction on s, for all m < s. Assume that

{Bo<n7€7a7677707m> Sv(n7£7a767fy>;

-1
BO(nagaaa/67’%s - 1>m) S 2m (Sm ) V(na&aw@)’}/);
holds for all integers m < s — 1. We have:

BO(na&aa/Ba’% s,m) S B()(n,E,Oé,ﬁ,’)/,S— 1>m) +280(n7€aa>ﬁa7a8_ ]-am_ ]-)

<o (U N visas ot (07 ) vita o)

m—1

gzm(s)vm,e,a,ﬁ,w;
m
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where the last line follows from the Newton identity. This proves the estimate (2I1]), and
the asymptotic estimate follows easily from this and Corollary 241 O

2.2.3 Bound for a P-closed formula

Definition 2.15 Let B(n,{, o, 3,7, s,m) be the maximum of b(X) where X = {x € V|
O(x)} for some P-closed formula having atoms in a set of Pfaffian functions P, where
V =Z(q,...,q-) and the following holds.

o All functions are polynomial in some Pfaffian chain f of length ¢ and degree «,
defined on a domain U of bounded complexity v for f;

e |P| = s; and the combinatorial level of (V,P) is m;

e degsp; and degg q; are bounded by B for 1 <i<sand1<j<r.

Recall that the notion of P-closed formula was introduced in Definition [L20. It is a
quantifier-free formula with atoms of the form {p = 0}, {p > 0} and {p < 0} forp € P
that is derived without using negations.

Theorem 2.16 Let B(n,l,«, 3,7, s,m) be as in Definition [ZIA. Then, the following in-
equality holds

B(n,l, o, B,7,s,m) < By(n,l, e, 20,7,s,m)+ 3sB(n, {,a, 3,7,3s,m — 1); (2.16)

where By is as in Definition [Z13.
Proof: Let P = {p1,...,ps} be a family of Pfaffian functions and X = {z € V' | &(2)};
where V' is a Pfaffian variety and ® is a P-closed formula, and all the formats fit the

requirements of Definition EZTH. We will decompose X into sets that do not involve the
conditions {p; = 0}

We will start by bounding b(X) with Betti numbers of sets where the sign condition
{p1 = 0} doesn’t appear. Assume that m < s, and let

I:{I:(Zl,,lm)‘2§11<<’LSSS},
and for all I € Z, define
Zr={z eV |py(x)="---=pi,(x) =0}

Let Z = UrerZ;. The set Z is compact, and the restriction of p; to Z is never zero, or it
would contradict the fact that the combinatorial level of (V,P) is bounded by m. Thus,
g1 =ming |p;| > 0. If m = s, 7 is empty and we can take any positive real for ¢;.
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Let 0 < m < €1/2. and consider the sets:

(@) A (
(@) A (
Wi ={zeV|o@) A (p(z
Si={z eV |d(x)A(
Si={z eV |d(x)A(
As X = R; U S; the Mayer-Vietoris inequality ([Z3) yields b(X) < b(R;) + b(S1) +
b(RyNSy), and since Ry NSy = WP U, we obtain b(X) < b(Ry) +b(S1) +b(W," UTW,).

By Lemma [[T9, we have for n; < 1, B(S1) = b(S}), and since W;" NW, = &, we must
have by the Mayer-Vietoris inequality (Z3) again that b(W;" U W) < b(W;H) + b(W7).
Thus, we have for b(X) the following bound;

b(X) < b(Ry) + b(Sy) + b(W;H) + b(W7). (2.17)
Introduce the following varieties:
Vi=VNZp), Vir=VNnZpi—m), Vi =VNZ(p+m).

S] is a semi-Pfaffian subset of the variety V; given by sign conditions on P; = P\{p1}.
If Vi # @, (V1,P1) has a combinatorial level that is at most m — 1 : if there is z € V; and
Dits- -y Piny i1 Pr = {pa,...,ps} such that p;, (z) =--- = p; () =0, then x is a point in
V' be such that py(x) = p;, () = --+ = p;,, () = 0. This contradicts the hypothesis that
the combinatorial level of (V,P) is bounded by m.

The sets W;", and W, are semi-Pfaffian subsets given by sign conditions over the family
P on the varieties V;" and V,  respectively. According to the choice made for n;, those
varieties do not meet the set Z = UjezZ;, since each Z; is a variety obtained by setting
exactly m of the functions in {ps, ...ps} to zero. Thus, the combinatorial level of (V;", P),
— the system over which Wi is defined, — is bounded by m — 1. The same holds for W;.

The above discussion for W;" and W, works for s > m only, but when m = s, the
combinatorial levels of (V;*,P) and (V;~,P) are still bounded by m — 1 : if m functions
were to vanish at a point € V", p; would have to be one of them, but it’s impossible
since p; = n; on V;.

Thus, the relation (ZI7) bounds b(X) in terms of the Betti numbers of three sets that
have a lower combinatorial level and one set, Ry that can be defined by a sign condition
that does not involve the atom {p; = 0}.

Now, the set R; is defined by sign conditions where the atom p; = 0 doesn’t appear
any more. We can use a similar treatment on this set to eliminate the atom p, = 0 by
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defining the following sets:

R2:{$ER1|(I)(SL’
Wy ={z € R, | Dz

) A (pa(x) < —m2 V pa(z) > n2)},
) A
Wy, ={x € R | ®(x) A
) A
VAN

(pa(
(p2() = m2)},
(p2(z) = —m2) },
(=72 < pa(x) <m2)},
(p2(z) = 0)}.

Here, 7 is any positive real number smaller than e5/2, where 5 is the minimum of |ps|

SQI{LL’ER1|(I)(SL’
S, ={z € R, | ®(z)

over all the varieties given by m equations on V' chosen among p; = 1y, p1 = —n1, and
p; = 0 for i > 3. Repeating the previous arguments, we obtain
b(R1) < b(Ry) + b(S5) + b(W5") + b(Wy) (2.18)

when 7, < 1. Note that again, the sets S5, W," and W, are defined with systems that
have a combinatorial level at most m — 1. Repeating this until all the functions p; have
been processed, we end up with a bound of the form:

b(X +Zb )+ b(W:H) 4+ b(W;). (2.19)

In this relation, the sets S/, W;* and W, are all defined by a system of combinatorial level
at most m — 1. All that remains is to estimate b(R;). We will show now that we can bound

b(Rs) by the sum of Betti numbers of a certain basic semi-Pfaffian set.

Let C be a connected component of R,. Then, C' is contained in one of the basic closed
sets of the form

{x eV pi(x) > Em,...,ps(x) > E£n4}.

Indeed, if it wasn’t the case, there would be points y and z of C' and an index 7 such that
pi(y) < —n; and p;(z) > n;. The points z and y would be joined by a curve contained in
C' that would have to intersect the variety Z(p;). by construction, Ry does not meet any
of the varieties Z(py), ..., Z(ps), so C is indeed contained in one of the sets of the form
above.

Let’s assume for simplicity that C'is contained in the subset of V defined by p;(x) > n;
forall 1 <i < s. By Lemmal[T8 the equality b(C') = b(C") holds when 7y, . . ., 7, are small,
where C” is the connected component of the basic set {x € V' | pi(x) > 0,...,ps(z) > 0}
such that C' C C".

Define the basic set

Y={zeV|pi(x)>0,..., pi(z) > 0}

and let ¥* be the union of all connected components D of ¥ such that D N Ry # @.
Following the above arguments, we have b(Rs) = b(X*) < b(X) for 7y, ..., ns small enough.
We can thus bound b(R;) using Lemma T4l and the inequality (ZIG) follows. O
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Theorem 2.17 For B as in Definition [Z13, we have the following inequality.
B(n,l, o, B,7,s,m) < (5s)™ V(n,l,a,26,7). (2.20)

In particular, if X CV is a semi-Pfaffian subset of a compact variety V' given by a P-closed
formula of format (n, ¢, a, 3, s), we have

b(X) < (108)V(n, L, r, 23, 7). (2.21)

Proof: For m = 0, no function in P can change sign on X, so any connected component of
V is either not in X or a connected component of X. For any space X, its singular homology
is the direct sum of the homology of its connected components [Spa, Theorem 4.4.5]. Thus,
for m = 0, we have b(X) < b(V), and (ZZ0) holds by Theorem £, since we certainly have
V(n,la,B,7v) <V(n,l,a,28,7).

Assume (2220) holds at rank m — 1. Using the inductive relation proved in Theorem 216
and the bound on By from Lemma T4l we obtain;

B(n,l, o, B,7,s,m) < [Qm (;) +3- 5m_lsm] V(n, L, a,20,7).

We can bound the binomial coefficient with:

(s> . s _sls=D(s—mtl) _

- — ’
m

(s —m)! m!

which gives us:

g™ (S) +3.5m g < (27 43577 57 < (5s)™
m

This concludes the induction, proving (20).

The inequality (ZZI]) follows from this and from the general position argument of
Proposition EZTT1 O

Corollary 2.18 Let V C U compact Pfaffian variety, d = dim(V'), and let X = {x € V|
O(x)} where ® is a P-closed Pfaffian formula. If the format of X is (n, ¢, «, 3,7,s), the
following bound holds.

b(X) < s22/D20(ng + min(n, £)a)"

where the constant depends only on U.

Proof: The result follows simply from (ZZ1]) and the asymptotic estimates for } appearing
in Corollary 4L O
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2.2.4 Bounds for non-compact semi-Pfaffian sets

The results of this section can be extended to the case where V' is not compact, including
the case V = U. Let ® be a P-closed formula and V' C U be a non-compact Pfaffian variety.
Let X ={z e V| Q(z)}.

First, define V. = V N {g(x) > ¢}, where g is an exhausting function for U, and
X. =X NV.. Fore <1, we have b(X) = b(X.), so we are reduced to estimating b(X.).

Proposition EZTT] on general position can be repeated verbatim for X, instead of X, so
we can construct X! compact defined by a P* closed formula, where the combinatorial
level of (V,P*) is bounded by dim(V), and |P*| < 2s 4 2.

If the combinatorial level of (V,P*) is zero, we have b(X*) < b(V;). If V # U, this can
be estimated using our bounds on varieties. If V' = U, Lemma 7 indicates that b(V.) can
be estimated from b(Z(g —¢€)). Since Z(g — ¢) is a compact variety, this last invariant can
be estimated by Theorem without problem.

Thus, the inductions can be initiated. The Mayer-Vietoris arguments also hold in this
case: for instance, we can restrict all the set to {g(x) > d} for § < €, so that we keep
compact sets at all times.

Thus, analogues of Lemma EZT4 and Theorem EZT1 hold for the case where V is not
compact. The precise bounds are slightly different, but we obtain asymptotic bounds which
are identical to Corollary 2T We will finish this discussion with the following result.

Corollary 2.19 (Complements of P-closed sets) Let f be a Pfaffian chain defined
on a domain U of bounded complexity. Let ® be a P-closed Pfaffian formula of format
(n,l,a,B3,s) and let X = {x e U | D(x)}. We have

HR™M X) < s 2/V20(n3 + min(n, £)a)";

where the constant depends on U.

Proof: We can assume without loss of generality that X is compact. By Alexander
duality [Bred], the equality b(R™\X) = b(X) + 1 holds, so the result follows from Corol-
lary ZZT8 O

2.2.5 Applications to fewnomials

Now, we apply the results of this section to semi-algebraic sets defined in the positive
quadrant (R, )™ As explained in Remark [, we can reduce the problem by a change
of variables to a problem about Pfaffian functions in a chain of length r, where r is the
number of non-zero monomials appearing in the polynomials defining the set. Thus, the
following result follows from Corollary ZT8.
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Corollary 2.20 Let X C V C (Ry)™ be defined by a P-closed formula, where V =
Z(q1,-.-,¢) and p; and g; are polynomials. If Aim(V') = d and the number of non-zero
monomials appearing in the polynomials p; and q; is v, we have

b(X) < st 2007,

2.3 Counting the number of cells

Let f be a Pfaffian chain defined on a domain of bounded complexity i/, and let ¢, ..., g,
and P = {p1,...,ps} be Pfaffian functions in f. We let V' = Z(q1,...,q.). This section
is devoted to giving an upper-bound on the number of cells C(V'; P) introduced in Defini-
tion [C29

Recall that we denote by & the set of conjunctions strict sign conditions ¢ on P. For
o € S, we let S(V;0) be the corresponding basic set {z € V | o(z)}.

To count the number of connected components of S(V;0), we construct a variety
V(o) € S(V;0o) such that by(V (o)) > bo(S(V;0)).

2.3.1 Components deformation

Fix positive numbers ay, . .., as, by, ..., bs, e and 0, and let P = {p; +day, ..., pstdas,p1 +
nby,...,psEtnbs,g—e}. Welet V, = VN{g(z) > ¢}, and we choose ¢ < 1 so that V. meets
every connected component of every set S(V;0) for o € G.

Fix § > 0, and for any o € &, consider the set C1(0) C V. defined on P’ by replacing
any atom {p; > 0} of ¢ by {p; > da;} and any atom {p; < 0} by {p; < —da;}.

Proposition 2.21 There is 6g > 0 such that for all 6 < oy and for all strict sign condition
o€ 6, we have by(S(V;0)) < by(Cy(o)).

Proof: It’s enough to find a ¢y for a fixed sign condition o. Clearly, C;(c) C S(V;0), so
all we need to do is prove that if D is a connected component of S(V; o), it meets Cy (o)
when ¢ is small enough. Fix 2* € DN V.. Then, z* € C(0) if and only if for all i such
that p;(z*) # 0, we have |p;(z*)| > da;. Since DNV, is compact, such a condition will hold
for 6 small enough. O

Fix n > 0 and for a sign condition o € &, define Cy(c) to be the set defined on V.
by the following replacement rules: as in the definition of C (o), any atom {p; > 0} of o
by {p; > d0a;} and any atom {p; < 0} by {p; < —da;}. Moreover, the atoms of the type
{p; = 0} are replaced by {—nb; < p; < nb;}.

Proposition 2.22 Let § < &g be fixed. Then there exists a ng > 0 such that for all o € G,
and for all n < ny, we have the equality by(C1(0)) = bo(Cs(0)).
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Proof: Again, it is enough to prove the result for a fixed 0 € &. The sets Cy(0) form
a decreasing sequence of compacts converging to C(o) when 7 goes to zero, so the result
follows readily. O

2.3.2 Varieties and cells

The following result allows to extract from sets defined by weak inequalities varieties that
meet every connected components of those sets.

Proposition 2.23 Let py,...,ps be Pfaffian functions, V a Pfaffian variety and C be a
connected component of the set {x € V | pi(xz) > 0,...,ps(x) > 0}. Then, there exists

I C{1,...,s}, (possibly empty) such that C contains a connected component of the set
Vi={r eV |p(x)=0Viel}

Proof: Take I a set such that CNV; # @ and [ is maximal for inclusion. Let z € C'NV;
and D be the connected component of V; containing z. Assume D < C. Let y in D\C' :
there exists an index j ¢ I such that p;(y) < 0. Since j & I, and = € C, it implies that
p;j(z) > 0. Let z(t) be a path connecting x = 2(0) to y = z(1) in D; by the intermediate
value theorem, there exists ¢; such that p;(2(to)) = 0. If ¢, is the smallest with this property,
we must have z(ty) € C. But we have p;(z(tg)) = 0 for all i € TU{j}, and that contradicts

the maximality of I since j & I. O
Proposition 2.24 There exists aq,...,as, € positive real numbers such with € < ey such
that, for all 0 < 0 < 1 we can find positive real numbers by, ..., bs for which for all

0<n<1, the family
P ={p +day,...,psxdas,p1 £nby,...,ps £ nbs, g —e};

s in general position over V.

Proof: This is essentially a repeat of the proof of Proposition EZTTl O

We can now state the main result.

Theorem 2.25 Let f be a Pfaffian chain defined on a domain U C R™, of bounded com-
plexity . Let P = {p1,...,ps} be Pfaffian functions defined in the chain f with degree (3
and V' be a Pfaffian variety of dimension d given by equations of degree at most  in the
same chain. Then,

C(ViP) < E(s,d) V(n, L, o, 57, 7); (2.22)
where §* = max(3,~) and

S(s,d) = (452,“).

0<i<d
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Proof: According to the results proved in this section, it is enough to bound the number
of connected components of all the sets of the form Cy(c) for a suitable choice of the real
numbers aq, ..., as,€,0,b1,...,bs and n.

For a fixed o € &, we can bound the number of connected components of Cy(0), using
Proposition 223, by counting the connected component of all the Pfaffian varieties defined
on V by equations taken among the elements of P’.

According to Proposition 2224, we can assume that the sets of the form Cy(c) are given
by functions which are in general position over V. Then, we have to count the connected
components of sets of the form

{$€V|pll :*ilﬁ"'apik :*ik} or {ZEG V|9:57pi2 :*iza"'apik :*ik}a

where x; € {—da;, —nb;, da;,nb;}, only for 0 < k < d.
This gives (s, d) possible sets of equations over V. We can then apply Theorem
and the result follows. O

Remark 2.26 (Combinatorial lemma) We have X(s,d) < (4s + 1),

Proof: By definition, (s, d) is the number of subsets of cardinality at most d in a set
with 4s + 1 elements. If f is a function from A = {1,...,d} to B ={1,...,4s + 1}, we
have |f(A)| < d, and thus (s, d) is bounded by the number of maps f : A — B which is
(45 +1)2 O

Remark 2.27 As explained in Chapter 1, the bound ([Z22) has two corollaries: it bounds
bo(X) for any semi-Pfaffian set X, and bounds the cardinality of the set of consistent sign
assignments: {oc € & | S(V;0) # @}. In particular, note that for a fized d, the bound on
C(V;P) is a polynomial in s.

Corollary 2.28 (Fewnomial case) Let K be a set of r exponents in N". If V. C R"™ is
a d-dimensional variety defined by K-fewnomials and P is a set of s K-fewnomials, the
number of cells of P over V' is bounded by

C(V;P) < (2) 2001,

Proof: Divide R" in 2" quadrants and the n coordinate hyperplanes. By Theorem 223
a bound of this type holds for each quadrant, and we can iterate this on the coordinate
hyperplanes. The number of cells is then bounded by the sum of the number of cells of the
restriction to each set in the partition. Thus we get

C(V;P)<2" <Z> 200" 4 <Z> 20((n—1)r%);

and the result follows. |
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2.4 Borel-Moore homology of semi-Pfaffian sets

We conclude this chapter by estimates on the Borel-Moore Betti numbers of a locally closed
semi-Pfaffian set. These estimates follow the techniques that appear in [Birg, MMP] [Yaol
but yield a tighter bound even in the semi-algebraic case because of our use of the improved
bound on the number of cells (Theorem in the previous section) derived from [BPRI].
In particular, this estimate lets us bound b(X) for X a compact semi-Pfaffian set which
is nmot necessarily defined by a P-closed formula. However, this estimate was recently
outranked by recent work of Gabrielov and Vorobjov [GV4]. Their result is stated in
Theorem [Z34 for reference purposes.

Throughout the rest of the section, we will assume without loss of generality that all
sets under consideration are bounded.

Recall that a locally closed subset of R™ is any set that can be defined as the intersection
of an open set and a closed set. In particular, any basic semi-Pfaffian set is locally closed,
but a general semi-Pfaffian set is not necessarily so, since clearly the subset of R? defined
by {z <0,y <0}U{x >0,y > 0} is not locally closed.

Definition 2.29 (Borel-Moore homology) Let X be a locally closed semi-Pfaffian set.
We then define its Borel-Moore homology by

H™(X) = H,(X,0X,Z).
We will denote by b®(X) the rank of HM(X).

Note that when X is compact, we have of course b(X) = b®(X). The key property of
Borel-Moore homology is the following result.

Lemma 2.30 Let X be a locally closed semi-Pfaffian set andY C X be closed in X. Then,
the following inequality holds.

bP(X) < BP(X\Y) + b7 (Y). (2.23)

Proof: (See also [BCRJ §11.7].) Let C € B C A be compact definable sets. We can
triangulate A so that B and C' are subcomplexes of A. This yields an exact sequence

C— i+1(A> B) N HZ(B’C) SN HZ(A, C) — HZ(A, B) —_ e (2.24)

Now, if X is bounded and locally closed, we have X = U N F for U open and F' closed.
Thus, we have 0X = OUNF, so 0X is compact, and since Y is closed in X, the set 0.X UY
is compact too. Thus, setting A = X, B=0X UY and C = 0X in (Z24), we obtain the
exact sequence

s — H;i 1 (X,0XUY) — H;(0XUY,0X) — H;(X,0X) — H;(X,0XUY) — -
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Let Y be the interior of Y in X. It is easy to check that X\Y = X\Y" and that 9(X\Y) =
OX U (YY) = (0X UY)\Y’ (the last one since 0X NY’' = @&). Thus, by excision, we
obtain for all ¢ the following isomorphism

Hi(X,0X UY) = H(X\Y', (X UY)\Y') = H*M(X\Y).

Similarly, since Y is closed in X, we have Y C 90X, so if Z is the interior of 0X in 0X UY,
we have x € 0X NIY if and only if x ¢ Z. Hence, one obtains by excision that

H;(0X UY,0X) = H;((0X UY)\Z,0X\Z) = H™(Y).
Thus, we end up with the long exact sequence
o — HPH(X\Y) — HPM(Y) — HPYN(X) — HPY(X\Y) — -

The inequality (Z23]) then follows easily. O

This result allows to derive immediately an upper-bound for any basic set.

Proposition 2.31 Let P = {p1,...,ps} be a family of Pfaffian functions in a given chain
f of length € and degree «, defined on a domain U of bounded complexity. Suppose that
the mazimum of deg; p; is bounded by 3, and let o € & be a strict sign condition on P.
Then, if V' is a Pfaffian variety of dimension d defined by equations of degree bounded by
0B, we have

VPM(S(V;0)) < s421D20(nB 4 min(n, £)a)™; (2.25)

where the constant depends only on the domain U.

Proof: Without loss of generality, we can assume that we have
S(Vio)={z eV |p(zr)=---=px) =0,prs1 >0,...,ps(x) > 0}.
Let ¢ = p,41- - - ps, and define the sets

X={zeV|p(x)=-=p(x)=0,p,11 >0,...,ps(x) >0}
Y={zeV|p)=-=p(x)=0,qx) =0, pry1 >0,...,ps(x) >0}

The sets X and Y are closed, with Y C X, and we have S(V;o) = X\Y. Thus, by
Lemma 30, we have

b(S(V;0)) < bP(X) + 07 (Y) = b(X) + b(Y);

(since X and Y are compact). The upper-bound follows from the estimates on the sum of
Betti numbers for P-closed formulas appearing in Corollary ZT8. O
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Theorem 2.32 Let V' be a Pfaffian variety of dimension d and X be a locally closed semi-
Pfaffian subset of V' of format (n,¢,«, 3,v,s). The rank of the Borel-Moore homology of
X wverify

VPM(X) < 242D O(nf + min(n, £)a) 2™+, (2.26)

where the constant depends only on the domain U.

Proof: Let P = {pi1,...,ps} be the set of possible functions appearing in the atoms of
the formula defining X. Using Lemma twice, we obtain

PPM(X) <PM(X N{pr <0}) +"™M(X N{p =0}) +"M(X N{p; > 0}).
Repeating this inductively for ps, ..., ps, we obtain
PM(X) < Z b*M(X NS(V;0)). (2.27)

oS

Since X is defined on V' by a sign condition on P, the intersections X NS(V; o) are either
empty or equal to S(V;o). The bound ([ZZH) is known for b*(S(V;0)), and since the
number of terms appearing in the right-hand side of (ZZ1) is bounded by the number of
cells C(V;P) of P on V, we can combine the bound from Theorem to (ZZ0) to obtain
the above upper-bound on b (X). O

Remark 2.33 (Compact case) As mentioned earlier, if X is a compact semi-Pfaffian
set, it is certainly locally closed and verifies H (X) = HP(X), and thus, in this case,
Theorem [Z.33 gives an upper-bound on b(X).

We conclude this chapter by giving, for reference purposes, a very recent result (Summer
2003) of Gabrielov and Vorobjov. It is the most general upper-bound known for the sum
of the Betti numbers of semi-Pfaffian set, since it does not have require any hypothesis on
the topology of the set or the shape of the defining formula. As mentioned earlier, it gives
for compact sets a sharper bound than Theorem [Z32.

Theorem 2.34 (Gabrielov-Vorobjov [GV4]) Let X be any semi-Pfaffian set defined
by a quantifier free formula of format (n,l,«,3,s). The sum of the Betti numbers of X
admits a bound of the form

b(X) < 2°=D/2 ¢ O(n B + min(n, £)a)" (2.28)
where the constant depends only on the definable domain U.

The estimate (228 is obtained by constructing a set X; defined by a P*-closed formula,
where

P ={h|1<i<s}U{h}—¢;|1<i,j<s}

For a suitable choice 1 > ¢; > --- > ¢, > 0, we have b(X;) = b(X), and the result then
follows from Theorem 217}
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Chapter 3

Betti numbers of sub-Pfaffian sets

The first section of this chapter is devoted to proving the following theorem.

Theorem 3.1 Let f: X — Y be a surjective continuous compact coveringﬂ map. Then,
for all k € N, we have

be(Y) < ) by(WHX)); (3.1)
p+q=Fk
where WY(X) is the (p + 1)-fold fibered product of X over f,
WEX) = {(x0, -, %) € X7 | f(3x0) =+ = f(x,)}- (3.2)

The rest of the chapter contains applications of this result to establish upper-bounds
on the Betti numbers of sub-Pfaffian subsets of the cube. Applications of this theorem to
relative closures will be found in Chapter 5.

If I =[0,1] and X is a semi-Pfaffian set in the N = ng+ - - - + n,~dimensional cube I",
and @1, ..., Q, is a sequence of alternating quantifiers, the set

S={xgel™|Q,x, €I ...Q1x; €I (xg,...,%,) € X};

is a sub-Pfaffian set [G3]. If X is semi-algebraic, then S is semi-algebraic too. When v is
small, the bounds established here for b(S) are better than the previously known bounds
coming from cell decomposition [Col, [GV2, [PV] or quantifier elimination.

The chapter is organized as follows: the first section describes the construction of a
spectral sequence EJ , that gives Theorem Bl Section 2 contains various topological lem-
mas, and section 3 applies the theorem to the case of a set defined by one quantifier block
(Theorem and Corollary BZT]), initiating the induction. In section 4, we establish an
inductive relation for the bound for v quantifiers (Theorem B24l), and use it to deduce
general upper-bounds (Corollary B:2H for the Pfaffian case and Corollary for the alge-
braic case). For semi-algebraic sets, a comparison is presented in section 5 between those
bounds and the previously available ones using quantifier elimination.

Lf: X — Y is compact covering if and only if for any compact L C Y, there exists a compact K C X
such that f(K) = L.

67
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3.1 Spectral sequence of a surjective map

For a closed surjection f, Theorem BIlwill be proved in the following way. We will construct
a space J/(X) which is homotopically equivalent to Y, and has a natural filtration Jg (X).
This filtration gives rise to a spectral sequence £ , converging to the homology of .J (X)), as
described in the Appendix. The first term of the sequence F, , is isomorphic to H,(W}(X)),
which will prove the result. The convergence for a compact-covering map will be deduced
from the closed case in Theorem BT2

In this section, X,Y and F, ... P, are topological spaces, and f; : P, — Y are contin-
uous surjective maps. We denote by AP the standard p-simplex

AP = {s=(80,...,8) ERPTT | 5>0,...,8,>0, 59+ +s,=1}.

Definition 3.2 (Join) For a sequence (Py,...,P,) of topological spaces, their join Py *
% P, can be defined as the quotient

Pyx - x P, x AP/ ~;
where ~ 1is the join relation

(205 s p, 8) ~ (2,2, 8') iff s = 8 and (s; # 0) = (z; = 7). (3.3)

Recall that if for all 4, f; : P, — Y is a continuous surjective map, we can define the
fibered product

P() Xy « - Xpr:{(ZIZ'Q,...,ZIZ'p) GPQ Xoeee XPp | fo(l’o)::fp(l'p)}
Note that there is a natural map

FZPO Xy"'XprHY
(0, ..., xp) — fi(x;); (taking any 0 <i < p.)

Definition 3.3 (Fibered join) For Fy,..., P, as above, we define the fibered join Py *y
-+ xy P, as the quotient space of Py Xy -+ Xy P, x AP over the join relation (B3).

The map I': By Xy -+ Xy B, — Y extends naturally to P = ) *y --- xy P,. Indeed,

for any (zo,...,7,) and (zg,...,2,) in Py Xy --+ Xy B, — Y such that (zo,...,2p,5) ~
(2, .., 2,,5) for some s € AP, we must have x; = z} for some 0 < i < p, and thus

F(zo,...,xp) = F(xg,...,7,). We still denote this map by F. For any point y € Y the
fiber F~'(y) coincides with the join f; ' (y)* - - - * fp‘l(y) of the fibers of f;.

The other natural map is the projection m : P — AP. If s is in the interior of AP, the
equivalence relation ~ is trivial over s, so we must have

‘v’seint(Ap), 7T_1(S):P0 Xy"'Xpr.
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For 0 < i < p, define @); to be the fibered join
Qi:PO*Y"'*YPi—l*YPi—l—l*Y"'*YPP'
Then, one can define a map ¢; : QQ; — P by
Ci(Yos -+ Y1, Yirts -5 Ypr ) = (Yo, -+ 5 Yim1s Tiy Yi1, - -+, Yps S)
where x; € P; is any point and

t; if 7 <;
s; =140 if j = 1;
tj—l lfj > 1.

Lemma 3.4 The map @; is an embedding Q; — P, and p;(Q;) = 7~ '{s; = 0}. Moreover,
the space

P/ (U %’(Qz’)) ;
is homotopy equivalent to the p-th suspensionof Py Xy -+ Xy P,.

Proof: The map ¢; sends @Q); to points (zo, . . ., z,, s) of P such that s; = 0 by construction.
This means also that ¢; does not depend on the choice of the point z; € P;. O

We now consider the case of a continuous surjection f : X — Y. For all p € N, define
JI(X) to be the fibered join of p 4 1 copies of X over f,

JI(X)=Xxy %y X (3.4)
N————

p
p+1 times

Definition 3.5 (Join space) If f is as above, the join space J/(X) is the quotient space

L7 (X))~ (35)

where we identify, for all p € N,
T (X)) ~ @i(JI_(X)) C T/(X), forall0<i<p.
When'Y is a point, we write J,(X) instead of JJ(X) and J(X) instead of J/(X).

Lemma 3.6 Let ¢ : J,(X) — J(X) be the natural map induced by the maps ¢;. Then
o(Jp—1(X)) is contractible in o(J,(X)).
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Proof: Let x beapointin X. Fort € [0, 1], the maps g,(z, z1,...,2p,8) — (2, 21,...,2p, 1)
define a contraction of ¢g(J,—1(X)) to the point z € X where X is identified with its em-
bedding in J,(X) as 771(1,0,...,0). Tt is easy to see that the maps g; are compatible
with the equivalence relations in Definition B and define a contraction of ¢(J,—1(X)) to
a point in ¢(J,(X)). O

Proposition 3.7 Let f: X — Y be a closed surjective continuous map, where X and Y
are definable in an o-minimal structure. If J/(X) is the join space introduced in Defini-
tion [Z3, we have

H.(J'(X)) = H,(Y).

Proof: Let F': J/(X) — Y be the natural map induced by f. Its fiber F~!y over a point
y € Y coincides with the join space J(f™'y). According to Lemma B8, ¢(J,-1(f'y)) is
contractible in J(f~'y), for each p, so H*(J(f1y)) = 0.

Since J(f~'y) is a definable quotient, it is locally contractible, so by Proposition [AZ5,
we also have for the reduced Alexander cohomology H*(J(f~'y)) = 0.

Since F : J/(X) — Y is a closed continuous surjection with fibers that are trivial for

the Alexander cohomology, we can apply to F' the Vietoris-Begle theorem (Theorem [AZ6)
to obtain H*(J/ (X)) = H*(Y), which implies that H,(J/ (X)) = H,.(Y). O

Notation 3.8 (Fibered products) Throughout this chapter, for f : X — Y a continu-
ous surjection, we will denote by WJ’i(X) the (p + 1)-fold fibered product of X over f,

WEX) = X Xy - Xy X ={(x0,...,%,) € (X" | f(x0) =~ = f(x)}-

~
p+1times

Moreover, if A C X, we will denote by W]’?(A) the corresponding fibered product for the
restriction f|a.

Theorem 3.9 (Spectral sequence, closed case) Let f : X — Y be a closed surjective
continuous map, where X and Y are definable in an o-minimal structure. Then, there

exists a spectral sequence EJ .~ converging to H.(Y) with

E,, = H,(W;{(X)) (3.6)

Proof: By Theorem [AT] the filtration of J/(X) by the spaces JJ(X) gives rise to a
spectral sequence E7  converging to H,(J/ (X)), which, by Proposition B, is isomorphic
to H.(Y).

The first term of the sequence is E} , = H, 4(A,), where

Ay = JH(X)/ (U JJ(X)) .

q<p
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From Lemma 4], the space A, is homotopy equivalent to the p-th suspension of WJIC’ (X)),
and thus we have E} = H,(W}(X)), proving the theorem. O

One of the features of spectral sequences is that the rank of the limit of a spectral
sequence is controlled by the rank of the initial terms. Such estimates are discussed in
more details in Corollary in the appendix, and applying them to the present situation
yields the estimates of Theorem Bl for a closed f.

Remark 3.10 The condition of o-minimality is not really important here. If X 1is the
difference between a finite CW-complex and one of its subcomplezxes, and'Y is of the same
type, the spaces J(f~1y) are still locally contractible and the result still holds.

For a locally split mapﬁ f, the convergence of the same spectral sequence can be derived
from [DHI, Corollary 1.3]. However, this follows from a more general result: the spectral
sequence converges when f is a compact covering map. Let us first recall the definition.

Definition 3.11 (Compact covering) A map f: X — Y is called compact covering if
for all compact L C 'Y, there exists a compact K C X such that f(K) = L.

Note that if f is closed or locally split, it is necessarily compact-covering.

Theorem 3.12 (Spectral sequence, compact covering case) Let f : X — Y be a

definable, compact covering surjection. Then, there exists a spectral sequence E , converg-
ing to H,(Y') with

El, = H,(W!(X)). (3.7)

Proof: Recall that the singular homology of a space is isomorphic to the direct limit of
its compact subsets [Spal, Theorem 4.4.6]. Since f is compact covering, if K and L range
over all compact subsets of X and Y respectively, the following inductive limits verify

lim H.(f(K)) = lim H.(L) = H.(Y), (3.8)

Let p be fixed and L, be a compact subset of the fibered product W?(X ). If forall 0 < i < p,
m; denotes the canonical projection (Xo,...,X,) — X;, we let K, = mo(L,) U - Umy(L,).
Observe then that the set Wj’?(Kp) is a compact subset of W]’?(X ) containing L,. Thus, we
also have the following equality

lim H,(WP(K,)) = lim H,(L,) = H.(W}(X)). (3.9)

For any compact subset K of X, the restriction f|x is closed, so by Theorem B, there
exists a spectral sequence E7 (K) that converges to H,(f(K)) and such that E} (K) =
H,(W}(K)). By (B3) and (E3), the direct limit of £}  (K) when K ranges over all compact
subsets of X is a spectral sequence converging to H,(Y) and verifying (B7). O

2A map f: X — Y is locally split if it admits continuous sections defined around any point y € Y. In
particular, the projection of an open set is always locally split.
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Example 3.13 Note that without an additional assumption on X and Y, the spectral se-
quence may not converge to H,(Y). For instance, consider for X any open segment in R3.
Let {a,b} = 0X, assume a # b and let f be any projection such that f is 1-to-1 on X and
there exists ¢ € X such that f(a) = f(b) = f(c). Then, if Y = f(X), we have by(Y') = 2,
but since X is contractible, by (X) = 0, and since f is 1-to-1 on X, we have by(W(X)) = 1,
50 b1(Y) > b1 (X) + bo(W}(X)). The inequality of Theorem [Z1l does not hold in this case.

Remark 3.14 For a map f with 0-dimensional fibers, a similar spectral sequence, called
“Ilimage computing spectral sequence”, was applied to problems in theory of singularities
and topology by Vassiliev [VI], Goryunov-Mond [GoM], Goryunov [Gd], Houston [Hoi/, and
others. In sheaf cohomology, the corresponding spectral sequence is known as cohomological
descent [Del].

3.2 Topological lemmas

Throughout the rest chapter, I denotes the closed interval [0, 1] and open and closed are
meant in a cube I™ (for some m).

Lemma 3.15 Let X C I"™"? be closed (resp. open). Then, the sets
V={y|Ixel’ (xy)eX} and Z={yl|vxel’ (x,y)e X}

are both closed (resp. open).

Proof: Let 7 be the canonical projection R"™? — R™. The sets Y and Z can be defined
by Y = n(X) and I"\Z = n(I"*P\X). Since 7 is continuous, it sends closed sets to closed
sets, since any closed subset of a cube is compact. Moreover, 7 also sends open sets to
open sets. The result then follows easily. O

Lemma 3.16 (Alexander duality in the cube 1) Let X C I"™ be a definable open set.
For any 0 < q <n—1, we have

H, (X UJm) = H Y[\ X); (3.10)

where J" = (—e,1 4 €)"\I"™ for some € > 0.

Proof: Let S" = R" U {oo} be the one-point compactification of R", and let K be the
complement of X UJ" in S™. Since K is closed and not empty,we have by Alexander duality
in S™ [Bred), Corollary VI.8.6];

(X UJ") = Hy(S"\K) = H(K); (3.11)
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and since K is triangulable, the right-hand side of this equation is isomorphic to "9~ 1(K).
If Cy, ..., Cy are the connected components of K, where oo € Cp, then Cy = S™\(—¢, 1+¢&)"
is contractible and C; U --- U Cy = I"™\ X. This implies that

HY(K) = H*(I"\X) © H*(C);
and as Cy is contractible, we obtain that H*(K) = H*(I"\X). Substituting this result
in (BI) gives the lemma. O

To prove a similar result in the case where X is closed, we will need the following
lemma.

Lemma 3.17 Let Iy be the open interval (0,1), and let X C I™ be closed. Then, we have
H,(I)\X) = H,(I"\X).
Proof: Consider for § > 0 the set X defined by

X5 ={x € I"| dist(z, X) < 6}.

Since I™\ X, is a compact subset of I"\ X, we have H,(I"\X) = H,(I"\X;) for § < 1.
(The proof uses the same arguments as the proof of Lemma [[78.) But clearly I™\ X is
homotopy equivalent to I\ X5, and we also have H,([J\Xs) = H.(IJ\X) for 6 < 1. O

Lemma 3.18 (Alexander duality in the cube 2) Let X C I" be a definable closed
subset. For any 0 < q <n —1, we have
H,(I"\X) = H" Y X UaIm). (3.12)

Proof: Let us consider the compact set K = X U JI™. As in the proof of Lemma B0,
Alexander duality in S™ gives

H,(S"\K) = H""(K). (3.13)

Again, the right-hand side above is isomorphic to H n=a~1(K), since K is triangulable.
Let Cy,...,Cy be the connected components of S™\ K, with co € Cy. The component
Cy is simply S™\I", and thus is contractible. As before, we can derive from this that
H,(S"\K) = H,(I"\K). If I, = (0,1), we have I"\K = I\ X, and we can conclude using
Lemma B.17 O

Lemma 3.19 (Generalized Mayer-Vietoris inequalities) Let Xi,..., X,, C I" be all
open or all closed in I™. Then

bi < U Xj) < Z bi—|J1+1 (ﬂ Xj) ; (3.14)
1<j<m JC{L,..m} jeJ
and

bi< N Xj> < Zm}bHJH (UX]). (3.15)

1<j<m JC{1,.., jeJ
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Proof: The proof is by induction by m. For m = 2, the result follows from the exactness
of the Mayer-Vietoris sequence of (X7, X5). If the result is true up to m — 1, then define
Y=XoU---UX,, and Z = XoN---NX,,. Then (BId) and [BI3) follow from the Mayer-
Vietoris sequences of (X1,Y) and (X, Z) respectively. O

3.3 The one quantifier case

In this section, we apply the spectral sequence discussed earlier to sub-Pfaffian sets defined
using a single quantifier.

Let f be a Pfaffian chain on a domain & C R™*™ of bounded complexity ~ for f, such
that I™t™ C Uf. Let P be a set of Pfaffian functions in the chain f and ®(xg,x;) be a
P-closed formula. We denote by 7 the canonical projection R0 — R"0,

Theorem 3.20 (Existential bound) Let ® be as above, and let X = {(xg,x1) € [T |
O(xg,x1)} and Y = mo(X). Then, if the format of ® is (ng + ny,«, 5, s), we have for all
keN,

be(Y) < (ks 4+ ng + kny)N 2LE=Y2O( N3 + min(N, L) o)V L (3.16)

where N =ng + (k+ 1)ny and L = (k+ 1)L.
Moreover, if X' = {(x¢,x1) € I"*" | =®(x0,x1)} and Y' = my(X’), the same bound
holds for by (Y').

Proof: Theorem Bl is applicable to the map m restricted to X, giving

b(Y) < 3 b, W(X));

p+q=k

where WP(X) is the (p + 1)-fold fibered product of X over Y. We can build from the
Pfaffian chain f a chain F' = (f(x0,¥0),--., f(X0,¥p)) of length (p + 1)¢ and degree «
by substituting successively each y; for x;. The set WP(X) is defined by the following
quantifier-free formula in that chain.

(X0, ¥0,---,¥p) € 1™ X TP A B(xg,y0) A -+ A P(x0, Vp)-
This formula is P’-closed for some P’, and its format is

(no+ (p+ Vny, (p+ 1), B, (p+ 1)s + 2[ng + (p + 1)n4));
and by Corollary ZT8, we have

bOVP (X)) < (ps + ng + pny )"0t ETm 2@+ DU(p+1-1)/2
O[(no + pn1)3 + min(ng + pny, pl)a] ot EHHm+o,
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Summing the above for 0 < p < k gives (B10).

When considering the case of Y’, Theorem Bl is again applicable, so we still have
be(Y') < 321 gmi g WVP(XT)), but here WP(X') is defined by the formula

(Xo,yo, ey yp) € 1™ x [(p—l—l)nl A\ _|(I)(X0, Y(]) A A —|(I)(X0,yp);

which is neither a P-closed formula nor the negation of one, but we can reduce to that case
in the following way. Let I. be the interval [¢,1 —¢], and let WP(X') be the set defined by

WP(X") = {(x0,¥0,---,¥p) € int(["0+(p+1)n1) | =®(x0,y0) A -+ A =P(x0,¥,)}-

For ¢ < 1, we have b(WP(X")) = b,(WP(X')) for all ¢q. Since WP(X’) is given by the
negation of a P’-closed formula of format

(no + (p+ Dna, (p+ 1), o, B, (p+ 1)s 4 4[ng + (p + 1)ma]).
Corollary EZTY is applicable, and yields the same asymptotic bound as the bound for
b(WP(X)). O
Corollary 3.21 (Universal bound) Let ® be as above and let Z = {xy € I™ | ¥Vx; €
I —®(xg,x1)}. Then, if the format of ® is (ng + ny, o, 5, ), we have for all k € N,

be(Z) < (no + (ng — k) (s +n1))N 2" =D2 O( N*B 4 min(N*, L*) a)V +"; (3.17)
where N* = ng + (ng — k)ny, and L* = (ng — k)L.

Moreover, if Z' = {xq € I"™ | Vx; € I, ®(x0,x1)}, the same bound holds for by(Z').

Proof: Let I be the closed set F' = [0\ Z. We have b,(Z) = bi(1"°\Z), so by LemmaBI8
it is enough to estimate b,_p_1(F U OI™) to estimate by(Z). Let

X = {(Xo,Xl) € Jrotm | (I)(Xo,xl)} Uorm x 1.

Note that X can be given by a quantifier-free P-closed formula. Moreover, we have my(X) =
F U oIl™. Thus, we can apply Theorem to estimate the Betti numbers of F'U JI™,
and thus of Z. The case of Z’ is identical. O

Remark 3.22 The P-closed formula hypothesis is not really necessary here. Note that
similar estimates can be established for a compact set X defined by a formula ® that is

not P-closed, replacing the estimates of Corollary [Z18 by the Borel-Moore estimates of
Theorem [Z-33.
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3.4 The case of two and more quantifiers

We will now generalize the results of the previous section to the case of an arbitrary
number of quantifiers. Complementation (with the use of Alexander duality) allows to
apply repeatedly the spectral sequence argument, by forcing the outer quantifier to be
existential, and thus we can deduce estimates by induction.

Let us fix ng € N and n = (ny,no,...) a sequence of positive integers. For any v > 0,
we let N(v) =ng+---+n,.

Definition 3.23 For n as above, we let E(n,ng, v, l,,[3,s) be the maximum of b(S),
where S C I™ is a sub-Pfaffian set defined as follows: ® should be a quantifier-free formula
with format (N(v), ¢, «, 3, s) (see Definition I8 and Definition [L14), for some Pfaffian
chain f defined on a domain U D IN®). We assume furthermore that the semi-Pfaffian
set {x € INW) | ®(x)} is either open or closed in INW). Then, if Q1,...,Q, is a sequence
of alternating quantifiers, the set S is defined by

S = {XO S | QVX,/ el .. -lel € Inl,q)(XQ,Xl,Xg, R ,X,,)}. (318)

If ®1,...,®); are quantifier-free formulas defined in the same Pfaffian chain, defining
only open or only closed sets in the cube IV*), and with the same format (N (v), £, o, 3, 5),
and if Q)q,...,Q, is a fixed sequence of alternating quantifiers, we can define for all 1 <
m< M

Sm={Xo € I™ | Q,x, € I ...Q1x1 € [", D, (X0, X1,X2, .-, X))}
Then, we also define £M(n, ng, v, £, a, 3, 5) to be the maximum of b(S), where
e S=5U---US),if Q, =3;or
e S=5 NNy, ifQ,=V.

Theorem 3.24 For any v > 1 and any values of the other parameters, the quantity
EM(n,ng,v, L, a, 3,8) is bounded by

(4Mng)™ E™(n, (n, + 1)ng, v — 1, nol, o, B, npS). (3.19)

Proof: Let ®,...,®,; be quantifier-free formulas as in Definition B.23, and consider the
sets

X, = {(Xo,Xl) c Jrotm ‘ VX,_1 € I . lel S Inl, (I)m(Xo,Xl, . ,Xl,)}.

Let X = XjU---U Xy, and let S,, = m(X,,), where 7 is the canonical projection
R0+t — R"_ We will bound the Betti numbers of S = S; U---U Sy;. We can always
reduce to this case by taking complement, in the same way as in the proof of Corollary B-2Z1l
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Step one: spectral sequence argument. Note that union and projection commute, so we
have S = m1(X). Since X is open or closed (by Lemma BIH) we can apply Theorem Bl
to m to obtain

be(S) < Y b(WP(X));

where WP(X) is the corresponding fibered product. If for all p, y?” = (yo,...,y,) denotes
a bloc of (p + 1) times n, variables, and if m, = ng + (p + 1)n, denotes the total number
of variables in (xq,y"), we have

WP(X) = {(wo,y") € I"™ |\ (x0,5;) € X} (3.20)

7=0m=1

Step two: Mayer-Vietoris and duality. If we define for 1 <m < M and 0 < j < p,

Vi ={(x0,¥") € I"" | (%0,¥;) € Xm}; (3.21)

J

we then have from (B20)

WP(X) = ﬁ Uy (3.22)

7j=0m=1

We can use the generalized Mayer-Vietoris inequality (BIH) to transform the intersection
above in a union; we obtain

bWV (X)) < D byt <UUY;"> (3.23)
}

JC{0,....p jeJ m=1

Define @Z as the opposite quantifier to Q);, i.e. @Z = 73 if @); = V and vice-versa, and
for all j and m, let Z7" be the subset defined by

Z7" ={(x0,y") € I'"" | (x%0,¥;) & X} (3.24)
{(x0,y?) € I"™ | 3x,_q € [ 1 Q1x; € I™ Dy, (%0, X1,...,%,)}.  (3.25)

By comparing (BZ1) and (B24)), we notice that Z7* = ["™»\Y;™. For all J, we have

NNz - (myUr)

j€J m=1 je€J m=1
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and so by Alexander duality (Lemma BI6 or Lemma BI8), we obtain (up to the boundary
terms which we will neglect for the sake of simplifying the notations)

bgr1a1-1 (U U Ym) = by —g-1a141 (ﬂ ﬁ Z]m) : (3.26)

jeJ m=1 jeJ m=1

Now, using the other Mayer-Vietoris inequality (BI4), we have

M
bmy—q-171+1 (ﬂ ﬂZ}”> < D> bwegmax | U 20 (3.27)

jeJ m=1 KCJx{1,..,M} (jym)eK

Note that the sets ZJ" are subsets of ", and therefore we have b;(Z}") = 0 for i > m,,.
Thus, we can restrict the sum above to subsets K such that m, —q¢— |J| + |K| < m, — 1,
which gives

K| <q+|J|-1<q+p. (3.28)

Combining this fact with (B28) and (B2X1), we obtain

by+1s-1 (U U Ym) > byt | U 2] (3:29)
KCJx{1

jeJm=1 /  KCJx{l,., M},|K‘§p+q (j,m)EK

Step three: combinatorial estimates for b,(WP(X)). Let p and ¢ be fixed. We will
estimate b,(WP(X)) in terms of £. For any J C {0,...,p} and K C{0,...,p}x{1,..., M},
we let

YJ_UUY’”, and Z = | ) 2

jeJm=1 (jm)eK

We let jo = |J| and kg = | K|, and we denote by J(jo) and (ko) respectively the set of
subsets of {0, ..., p} of cardinality jo, and the set of subsets of {0,...,p} x{1,..., M} with
cardinality ko. With these notations, the inequality (B29) can be written as

p+q

tI+J0 1 YJ Z Z bmp q—Jjo+ko ZK) (3'30)

ko=1 KeK(ko)

Let K CH{0,...,p} x{1,..., M} be fixed and consider the set

S(jo, K) = {J € T(jo) | K C J x {1,..., M},
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Then, for every J € X(jo, K), the term by, —q—jo+k,(Zx ) appears, — when bounding by jo—1(Y7),
— on the right-hand side of ([B30). Thus, if o(jo, K) denotes the cardinality of X(jo, K),
we obtain, when summing (B30) over all J € J (jo),

p+q
Z bq+j0 1 YJ Z Z ]Oa mp—q_jO'HfO(ZK)‘
JET o) ko=1 KK (ko)

Since X(jo, K) € J(jo), we have the trivial bound o(jo, K) < 27%0t1 < 21 Using this in
the above inequality, we get

p+q

D barin (V) <2 D N by gk (Zic). (3:31)

JeT (jo) ko=1 KekK (ko)

Recall that from [B2Z3), we have

p+1

Z Z bgjo-1(Y7).

Jo=1J€T (j0)
Thus, summing [B31) for 1 < jo < p+ 1, we obtain

p+1 p+q

b WH(X)) 2D TN 0N bk (Zr0)-

jo=1ko=1 K ek (ko)
We can change the ordering of the sums in the right hand side to obtain

p+q p+1

bOVP (X)) <273 N > by gmjorrho (Z)

ko=1 KeK (ko) jo=1

and since obviously S0 b, i (Zk) < b(Zk), we get

Jjo=1
p+q
b OVP(X)) <2770 N b(Zk). (3.32)
ko=1 KeK (ko)

Now, observe that every set Zx is given by a union of |K| sets Z7", which by the
formula ([B:2H) are sub-Pfaffian subsets of I™» given by an alternation of v — 1 quantifier,
starting with 3. The formula defining Z7" is ®,,(Xo, ..., X,1,y;). Thus, defining Zx may
require up to p + ¢ such formulas (since |K| < p+¢q) for 1 <m < M and 0 < j < p. Since
each such formula involves s Pfaffian functions of degree at most  defined in a chain of
length ¢, the set Zx can be defined with (p + ¢)s functions which are defined in a Pfaffian
chain of length (p + 1)¢. By definition of £, it follows that

b(Zk) < 8‘K|(n,mp, v—1,(p+ 1Dl a,B,(p+q)s)



80 CHAPTER 3. BETTI NUMBERS OF SUB-PFAFFIAN SETS

Since | K| < p + ¢, using this estimate in ([B32) gives that b,(WP(X)) is bounded by
M (p+ 1P my v — 1, (p+ 1), @, B, (0 + 0)5); (3:33)

since we have (as in Remark 2Z.20])

> ¥ = (M) < pe

Step four: summing up. To bound b(S), all we need to do now is to sum up (B33)) for
0 <k <npg—1and p+q=k. For all the terms in the sums, we have p+q < ng, p+1 < ng
and m,, < (n, + 1)ng, so all the terms P from ([B3J) will be bounded by

E™(n, (n, + 1)ng,v — 1,nol, o, 3,108).

All that remains to be estimated is a term of the form

no—1

Z Z 2P+1[M(p_|_1)]1”+‘1

k=0 p+q=k

which is clearly bounded by (2M)" 370 knk < (4Mng)™, and thus the bound (FIH)
follows. O

Corollary 3.25 Let u, = 2"ngn,, - --ny and v, = 2*n2n? - - -n2ny. Then, we have

g(n’ no, v, L, o, 3, s) < 20(uuu+zzvﬁ)30(uu)[uy(a + ﬂ)]O(ueréuu)_

Proof: Using the Gabrielov-Vorobjov estimate for arbitrary semi-Pfaffian sets (Theo-
rem 2Z37]), we can generalize Theorem and Corollary BZ21] to obtain, for v = 1, that

EM(n,ng, 1,4, a, B, 5) < 2notmot=1/2 (g )2+ O (non, (o 4 B))moMm+1+0 - (3.34)

(Using the fact that union and existential quantifiers commute, as do intersections and
universal quantifiers.)

Let us now apply Theorem inductively. After i iterations, we will denote by N; the
number of free variables, s; the number of Pfaffian functions, ¢; the length of the Pfaffian
chain, M; the number of sets, and a number F; so that

EM(n,ng, v, b, a, B,s) < F; EMi(n, Ny, v — i, b, a, 3, 55).
We let Ny = ng,s0 = s, My = M, Fy = 1,¢y = £. From Theorem B.24] we know that

Ny = (n, + 1)ng, s1 = ngs, My = ng, F1 = (4Mngy)™ and ¢; = ngl.
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Thus, we obtain for these parameters the following inductions

Nip1 = (ny—; + 1)N;
Siy1 = N;s; = sNo - - - N;
Mty =N;
Fi1 = F(4M;N;)™
livi =Nl +10; = (No+---+ N;)L.
From the induction on NV;, we obtain that N;;; < 2N;n,_;.1, and thus for all 7,
Ni < 2'ngny -+ Ny

After v — 1 iteration, and applying [B34l), one gets

E,'M('n,’ No, V, Ea Q, ﬁa S) S FI/—l ng,,l(n’ Nl/—la ]-7 Eu—la Q, ﬁa Su—l)
<F, 2O(N371€371) (Su_lMV_l)2NV,1(n1+l) O(Nu—lnl (Oé + ﬁ))N,,,l(nl—i—l—i—éV,l).

Using the notations introduced in the statement of the corollary, we obtain

v—2
N,,_lnl = O(u,,), and N,,_lg,,_l = NV_lEZNj S N,,_l(l/ — 1)NV_2 = O(U,,).

=0
We also have 2N, _;(n; + 1) = O(u,), so we can bound the term (s,_;M,_;)*Nv-1(m+1) by
(sNo - 'Nv—3N3—2)O(uV) < (SNs—z)O(uy) < (SUV)O(HV)J

and we also have

v—1
Fyoy = [JUAMN)Y < MY (4N, N, ) Vo8t < o 9007,
1=0

Using the above estimates, one derives easily an upper-bound for £™(n, ng, v, £, a, 3, s) in
terms of the parameters (M, ng,...,n,, ¢, «,3,s), and the stated result follows from the
case where M = M, = 1. O

Corollary 3.26 (Semi-algebraic case) Let S C I™ be as in Definition [Z23, for a for-
mula ® having as atoms s polynomials of degree bounded by d. Then, we have

b(S) S [2V2d8 nonl . e ny]O(QV nonl...nu).

Proof: The result follows from the proof of Corollary B2H, replacing 8 by d and setting
a=0=0. O
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3.5 Comparison with quantifier elimination

We will now compare the results obtained in Corollary with the bounds that can be
established using quantifier elimination. Similar comparisons can be made in the Pfaffian
case between Corollary and effective cylindrical decomposition as appear in [GV2]
and [PV]. However, we will restrict our attention to the algebraic case for simplicity.

Let X be a semi-algebraic subspace of ng + - - - + n,-space defined by s polynomials of
degree bounded by d, and let

S = {X(] e R™ | Q.x, e R™...(Q1x1 € Rnl,(Xo,Xl,Xg,...,X,,) S X}

The set S can be effectively described by a quantifier-free formula W(xg). The best com-
plexity results for ¥ appear in [BPR2] (see also [B3]). We have there

Uxo) = \/ A\ sign(P;(x0)) = i;

1<<I 1<5<J;
for some family of polynomials P, ; and some sign conditions ¢; ; € {=0,> 0, < 0}, with

I S Snizo("i"‘l)d("o"‘l) Hizl O(ni).

Ji S sHiZI(nH'l)dHiZl O(”2)7

deg Pi,j S dHizl O("t)
From this, we can derive the following estimate.

Proposition 3.27 Let S be as above. Then the sum of the Betti numbers of S wverifies

b(S) < 54"0("0+1)H¢20(ni+1) dO(n(z)nlmnu)'

Proof: The set S is defined by a quantifier-free formula involving at most o = J; - - - J;
polynomials of degree § < dlli=10m) By [GV4], the sum of the Betti numbers is bounded
by O(c?6)™. Bounding o and § gives the proposition. O

Thus, the estimate in Proposition is better than Corollary asymptotically in

v, but Corollary is better for small values of v. (For a fixed value of v, Corollary
is better when ng goes to infinity.)

Remark 3.28 Note that Proposition [3.27 is a much more general result than Corol-
lary [Z20, since it is not necessary to make assumptions on the topology of X or S, nor is
it necessary to restrict ourselves to cubes.



Chapter 4

Connected components of limit sets

In this chapter, we will give effective estimates for the number of connected components of
the relative closure (X, Y)q of a semi-Pfaffian couple (X,Y’). This estimate is established
first in the smooth case, by estimating the number of local extrema of the distance function
dist(+,Y)) on X,. In the singular case, deformation techniques are used to reduce to the
case of smooth hypersurfaces.

Note that the case where Y = & is trivial. Indeed, this implies that (0X), = &, and
since X is assumed to be relatively compact (see Remark [[72), X is compact for all A
and the number of connected components of X is bounded by the number of connected
components of a generic fiber X, for A < 1. Since X, is semi-Pfaffian, Theorem P20
provides an estimate in that case.

Thus, we’ll assume throughout the present chapter that Y # @. In the first section, we
establish a property that proves the finiteness of bo((X,Y)o). This is used in the second
part to provide the quantitative estimates, first in the smooth case (Theorem E4]) and then
in the singular case (Theorem EE). These results are then used in the third section to give
upper-bounds in the fewnomial case.

4.1 Finiteness of the number of connected compo-
nents

We show here how to reduce the problem of counting the number of connected components
of a limit set to a problem in the semi-Pfaffian setting.
Let ® be the (squared) distance function on R™ x R" :

. R"xR" —R

(4.1)
(zy) = |z —y|?
For any A > 0, we can define the distance to Y), ¥, on X, by:
U, (x) = min ®(z,y). (4.2)
yeY

83
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Define similarly for z € X :

U(z) = min &(x,y). (4.3)

yey

Theorem 4.1 Let (X,Y) be a semi-Pfaffian couple. Then, there exists A < 1 such that
for every connected component C' of (X,Y)q, we can find a connected component Dy of the
set of local mazxima of Vy such that D) is arbitrarily close to C.

Proof: Let C be a connected component of (X, Y')o. Note that by definition of the relative
closure, if x is in C, it cannot be in Y. So we must have ®(x,y) > 0 for all y € Y, and
since Y is compact, we must have W(z) > 0. Also, any point in dC must be in X, but not
n (X,Y)o. So we must have C' C Y, hence \If|ac = 0. This means that the restriction of
¥ to C takes its maximum inside of C.

Choose xg € C, and let ¢ = U(x) > 0. For a small \, there is a point z, € X, close to
xo such that ¢y = Wy(z,) is close to ¢, and is greater than the maximum of the values of
U, over points of X close to dC. Hence the set {x € X, | Ux(z) > ¢} is nonempty, and
the connected component A, of this set that contains x is close to C. There exists a local
maximum x5 € Ay of U,. If D, is the connected component in the set of local maxima of
U,, it is contained in Z) and is close to C. O

From the above theorem, we can not only deduce that (X,Y"), has finitely many con-
nected components, but also derive effective estimates.

4.2 Bounding the number of connected components

4.2.1 Finding local maxima of the distance function

We will now show how the number of connected components of the set of local maxima of
U, that appear in Theorem E.T] can be estimated when the sets X, and Y are smooth.

Define for all p,

Zy =A@, 40, yp) € WX [ @(2,90) = -+ = P2, )}, (4.4)

where
W)Z\; = {('r7y07 cee 7yp) € X)\ X (Y)\)P-l—l ‘ Yi # y]70 S { <j S p} (45>

Lemma 4.2 Assume (X,Y) is a Pfaffian couple such that X, and Y\ are smooth for
all X\ > 0. For a given X\ > 0, let * be a local maximum of Vy(z). Then, there exists
0 <p < dim(X)) and a point z* = (x*,y5,...,ys) € Z3 such that Z} is smooth at z*, and

*

2* is a critical point of ®(x,y0) on Z5.
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Proof: Since z* is a local maximum of W, (z), there exists a point y5 € Y, such that
Q(z*,y5) = mingey, (a*,y) = ¥y(z*). In particular, d,®(z,y) = 0 at (z,y) = (2%, y;).
If (z*,y) is a critical point of ®(x,y) (this is always the case when dim(X,) = 0) the
statement holds for p = 0. Otherwise d,®(x,y;) # 0 at x = z*. Let £ be a tangent vector
to X at x* such that d,®(z*, y5)(£) > 0.

Assume that for all y € Y, such that ®(z*,y) = ¥, (z*), we have d,®(z,y)(£) > 0 when
x = x*. Let v(f) be a curve on X, such that v(0) = z* and 4(0) = &. For all y € Y,
there exists 7), such that for all 0 < ¢ < T, the inequality ®(y(t),y) > ®(z*,y) holds. By
compactness of Y), this means we can find some ¢ such that that inequality holds for all
y € Y. Hence, W)(y(t)) > W,(z*), which contradicts the hypothesis that W, has a local
maximum at x*.

Since z* is a local maximum of W) (z), there exists a point y; € Y) such that d,®(z, y7)(§) <

0 at z = z* and ®(z*, yf) = ¥a(z*). In particular, yi # y5, d,P(z*,y) =0 at y = yi,
and d,®(z,y}) # d.®(z,y;) at x = x*. This implies that (z*,y,y}) € Z3, and 7] is
smooth at (x*, ys,y7). If (z%,y,y7) is a critical point of ®(z, o) on Z; (this is always
the case when dim(X,) = 1) the statement holds for p = 1. Otherwise d,®(z,y;) and
d,®(z,y7) are linearly independent at x = z*. Since dim(X),) > 2, there exists a tangent
vector £ to X at a* such that d,®(z*, y5)(§) > 0 and d,P(z*,y§)(€) > 0. Since z* is
a local maximum of W,(x), there exists a point y; € Y, such that d,®(x,y5)(€) < 0 at
r = 2" and ®(z*,y3) = W (2*). This implies that (x*,y5, y5,y5) € Z3, and Z3 is smooth
at (z*, 43, y5,v3). The above arguments can be repeated now for Z%, Z3, etc., to prove the
statement for all p < dim(X,). O

Assume now that X, and Y) are effectively non-singular, i.e. they are of the following
form:

Xo={z e R" | pi(z,\) = -+ = pp_a(x,\) = 0}

where, for all A > 0, we assume that dypy A -+ A dypn—aq # 0 on X, and that dygs A--- A
dygn—r 7 0 on Y). In particular, we have dim(X,) = d and dim(Y)) = k.

(4.6)

Remark 4.3 Note that we assume that no inequalities appear in [EH). We can clearly
make that assumption for Yy, since that set has to be closed for all X > 0. For X, we
observe the following: if C' is a connected component of C%, the critical set of <I>|Z§, the
function ® is constant on C. If C' contains a local mazimum for Wy, it cannot meet 0X

because 0X, C Y\. Hence, we do not need to take into account the inequalities appearing
in the definition of X,.

Let us now define for all p,

Op: (Yo, ) € (V)P e 3y — gyl (4.7)

0<i<j<p
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Then, for X, and Y, as in (L0), the sets Z} are defined for all p by the following conditions.

(i, A) = = qu-r(yi, A) =0, 0= <p; (4.8)

and the inequality

0,(yo, - -.,yp) > 0. (4.9)

Under these hypotheses, we obtain the following bound.

Theorem 4.4 (Basic smooth case) Let (X,Y) be a semi-Pfaffian couple defined in a
domain of bounded complexity v, such that for all small A > 0, X, and Y are effectively
non-singular basic sets of dimension respectively d and k. If the fiber-wise format of (X,Y)
is (n, 0, , 3, s), the number of connected components of (X,Y)q is bounded by

d
2> V(p+2n, (p+2)t 0, B8,,7); (4.10)

p=0

where f, = max{l+ (n —k)(a+ 5 —1),14+(n—d+p)a+F—1)}, and V is defined

Proof: According to Theorem EIl, we can chose A > 0 such that for any connected
component C' of (X, YY)y, we can find a connected component D, of the set of local maxima
of W, such that D), is close to C. We see that for A small enough, two connected components
C and C’ of (X, Y)y cannot share the same connected component D), since D) cannot meet
Y for A small enough. Indeed, the distance from D, to Y is bounded from below by the
distance from D, to Y), — which is at least c,, — minus the distance between Y, and Y.
But the latter distance goes to zero, whereas the former goes to a positive constant ¢ when
A goes to zero.

Once that A is fixed, all we need to do is estimate the number of connected components
of the set of local maxima of W,. According to Lemma EE2, we can reduce to estimating
the number of connected components of the critical sets C} of the restriction @| zv for
0<A<Zd.

For the sake of concision, we will drop A from the notations in this proof, writing Z?
for Z%, pi(z) for pi(z, N), ete. ..

A point z = (z,y0,...,Yp) € ZP is in C? if and only if the following conditions are
satisfied:

{dy<1><x,yj> =0, 0<j<p;

(4.11)
rank (d,®(z, o), - .., dP(x,y,)) < p.
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For X, and Y, as in (6), those conditions become:
rank {Vyq1(yi), - - Vytn-s (), Vy@(z,4:)} <n—k, 0<i<p; (4.12)
rank {V,p1(x),..., Vipn_a(x), Vo @(x,90), ..., VoP(x,90)} <n—d+p.

Those conditions translate into all the maximal minors of the corresponding matrices van-
ishing. These minors are Pfaffian functions in the chain used to define X and Y. Their
degrees are respectively 1+ (n — k)(a+—1)and 1 + (n —d + p)(a+ 5 — 1).

The number of connected components of C? is bounded by the number of connected
components of the set DP defined by the conditions in (8) and ([E9), and the vanishing
of the maximal minors corresponding to the conditions in ([EI2).

Let EP be the set defined by the equations () and [IJ), so that D? = EPN{6, > 0}.
Then, the number of connected components of DP is bounded by the number of connected
components of EP plus the number of connected components of EP N{f, = ¢} for a choice
of € > 0 small enough.

Hence, we're reduced to the problem of estimating the number of connected components
of two varieties in RP*2" defined in a Pfaffian chain of degree a and length (p+2)¢. Using
Theorem [Z8, we obtain the bound (EI0). O

4.2.2 Bounds for the singular case

Let’s consider now the case where X, and Y, may be singular. We can use deformation
techniques to reduce to the smooth case. First, the following lemma shows we can reduce
to the case where X, is a basic set.

Lemma 4.5 Let X1, X5 and Y be semi-Pfaffian sets such that (X1,Y) and (X3,Y) are
Pfaffian families. Then, (X1 U X5,Y)o = (X1,Y)o U (X2, Y ).

The proof follows from the definition of the relative closure.

Theorem 4.6 (Singular case) Let (X,Y) be a semi-Pfaffian couple defined in a domain
of bounded complexity v. Assume Xy and Y, are unions of basic sets of format (n,?, a, 3, s).
If the number of basic sets in Xy is M and the number of basic sets in Yy is N, then the
number of connected components of (X,Y)o is bounded by

n—1

2 MN > V((p+2)n, (p+2)¢a,35,7); (4.13)

p=0

where B =1+ (p+1)(a+26 — 1) and V is defined in [2T).
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Proof: Again, we want to estimate the number of local maxima of the function ¥, defined
in (L2).

By Lemma B3, we can restrict ourselves to the case where X is basic. Let Y =
Y1 U---UYy, where all the sets Y; are basic. For each basic set, we take the sum of squares
of the equations defining it: the corresponding positive functions, which we denote by p
and ¢, ..., qy, have degree 2(3 in the chain. Fix ¢; > 0, for 0 <¢ < N, and A > 0, and let
X ={p(z,\) =¢o} and for all 1 <i < N, let V; = {qi(z,\) =¢&;}.

Since Y, is compact, if * is a point in X, such that ¥, has a local maximum at x = z*,
there is a point y* in some (Y;), such that ®(z,y) = W,(x). Then, we can find a couple
(', y') € X\ x (Vi) close to (z*,y*) such that ®(z’,7') is a local maximum of the distance
(measured by ®) from Xy to (J;)a.

Since for small enough ey, ..., ey, the sets X\ and ()}), are effectively non-singular
hypersurfaces, the number of local maxima of the distance of Xy to (};), can be bounded
by (EEI), for appropriate values of the parameters. The estimate ([EI3]) follows. O

Corollary 4.7 Let U be a fixed domain of bounded complezity, and let (X,Y) be a semi-
Pfaffian couple defined in U. If X\ and Y) are unions of basic sets of format (n,?, «, 3, s),
where Xy is the union of M basic sets and Yy is the union of N basic sets, the number of
connected components of (X,Y)o is bounded by

MN 20 O(n?(a + )"V

for a constant that depends on U.

4.3 Application to fewnomials

In this section, we will apply our previous results to the case where the Pfaffian functions
we consider are fewnomials.

Recall from Definition [[H that we can consider the restriction of any polynomial ¢ to
U ={zy- -z, # 0} as a Pfaffian function whose complexity depends only on the number of

non zero monomials in g. Fix K = {my,...,m,} € N" a set of exponents, and let £ = n+r,
and f = (f1,..., f¢) be the functions defined by:
7t if 1 <i <,
filz) = { e e (4.14)
M- if 4 > n.

Then, if g is a polynomial whose non-zero coefficients are in C, it can be written as a
Pfaffian function in f with degree g = 1.

Let now S C U be a bounded semi-algebraic set. We can define from S a semi-Pfaffian
family X C R™ x R by:

X=A{(xz,N)eUXRy|zeS, 1>\ ...,z, >} (4.15)
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If S is defined by K-fewnomials, we can apply the results from Theorems 4] and E6l
to X, to obtain a bound on the number of connected components of S N Y. Note that
from Example [339, one can build a K-fewnomial set S such that S is not a K-fewnomial
set (see [G4]).

Theorem 4.8 Let (X,Y) be a semi-Pfaffian couple defined by degree 1 functions in the
chain (EIA). If X and Y are the union of respectively M and N basic sets, and letting
q = p+ 2, the number of connected components of (X,Y)o is bounded by

n—1
MNY " 202 (G, - )82 gatntr), (4.16)

p=0
Proof: This bound is obtained using Theorem fora=2,=1land/=n+r. O

Let X be a semi-Pfaffian family such that for all A > 0, the set X, is defined by
IC-fewnomials. By definition of a family, 0X) is restricted for all A > 0. By the results
contained in [G5H], this set is semi-Pfaffian set in the same chain, and the format of 90X,
can be estimated from the format of X,. Applying those results together with those of
Theorem L0, we can give estimates for the number of connected components of (X, 90X ).

Theorem 4.9 Let K be fized and X be a semi-Pfaffian family in the chain @EI). If X is
the union of N basic sets of format (n,{ =n+r,a =2, =1,s), the number of connected
components of Xo = (X,0X)q is bounded by

2
nO(n“+nr)

N2SN+TO(n2)n(n+7‘) ) (417)

Proof: Following [G5], the set X, can be defined using the same Pfaffian chain as X,
using N/ basic sets and functions of degree at most 3’, where, under the hypotheses above,
the following bounds hold.

rO(n)

ﬁ/ < n(n+r)o(") and N’ < NsN+rO(n2)N(n+r)

)

The bound on the number of connected components follows readily. O
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Chapter 5

Topology of Hausdorff limits

In this chapter, we consider the following: i/ is a domain of bounded complexity in R" xR,
for a Pfaffian chain f of length ¢ and degree o, and V' is a Pfaffian variety in ¢ of dimension
d + 1, with V) compact for A > 0.

Let X C V be a semi-Pfaffian family that is defined by a P-closed formula ® on V.
If 0X, = @ for A > 0, we can consider relative closure of X, X, = (X, @)o, which is the
Hausdorff limit of the family of compact sets X,. We will give in Theorem B.7] an explicit
upper-bound on by (Xy) for any k& > 0. This allows in turn to establish an upper-bound for
the Betti numbers of any relative closure (X,Y)o, even when Y, # @ (Theorem B1T). In
both cases, the bounds depend only on the format of generic fibers, and are not affected
by the dependence in the parameter .

The proof relies on the spectral sequence for closed surjections developed in Chap-
ter 3. Using triangulation, we construct a surjection f* : X\ — X, for A < 1. Then, we
approximate the corresponding fibered products by semi-Pfaffian sets.

Remark 5.1 In the more general setting of o-minimal structures, the result of the present
chapter allow to estimate the Betti numbers of any Hausdorff limit in a definable family
in terms of simple definable sets (deformations of diagonals in Cartesian products). This
is the point of view adopted in [Z4]. One can reduce to the one parameter case using the
main result of [LS].

5.1 Constructions with simplicial complexes

We describe here some constructions that involve simplicial complexes and PL-maps on
them. Using the fact that continuous definable functions in an o-minimal structure can be
triangulated, we will be able to use these construction in the next section.

It is important to note that the constructions done in this section are not explicit. They
can be achieved using general arguments from o-minimality, but we do not claim to be able
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to give an effective procedure to construct triangulations in the Pfaffian case. Consequently,
these constructions in themselves will not suffice to establish any Betti number bounds.

First, let us recall some of the notations used in the discussion of definable triangulations
in section [L33 See Definition and Definition [LGTl for more details. If ag, ..., aq are
affine-independent points in R™, we denote by o = (ag,...,aq) the open simplex and
o = lag, ..., aq) the closed simplex defined by those points. We say that K = {ay,...,0%}
is a simplicial complex if it is closed under taking faces and for all ¢, 7 5; N &; is a common
face of g; and ;. We denote by | K| the geometric realization of K.

5.1.1 Retraction on a subcomplex

Let K be a simplicial complex in R", and let L C K be a subcomplex, i.e. L is also a
simplicial complex.

Let S = stx (L) be the star of L in K, i.e. the union of all open ¢ such that ¢ € K and
has at least one vertex in L. We will define a continuous retraction F' from S to L.

If ag, ..., a4 are vertices of K ordered such that aq,...,a; are in L and a1, ..., a4 are
not in L, (for some k such that 0 < k < d), the open simplex o = (aq, . .., aq) is contained
in S and we will define F' on ¢ by

F (Zwia,) = Zk; Zwiai. (5.1)

Proposition 5.2 The formula (&) defines a continuous retraction F from S to |L| that
maps all points on the segment |x, F'(x)] to F(x).

Proof: Let o be an open simplex appearing in S. Then o is of the form (ay,...,aq),
where the vertices a; are ordered as above so that the vertices in L are exactly aq, ..., ax
for some 0 < k < d.

Fix z € o, and let s = Zf:o w;. Since all the weights w; are positive, the inequality
0 < k < d implies that 0 < s < 1. Thus, the formula (&1]) clearly defines a continuous
function from o to |L|.

Let y =0z + (1 — 0)F(x) for 6 € (0,1) be a point on the open segment (z, F'(z)). We
have y = Zf:o w} a;, where

;w1 -0)% if0<i <k
’u].:
! Ow; ifk+1<i<d.
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To prove that F(x) = F(y), we must prove that for all 0 <1 <k,

w; W
k —y? :
ijo wj ijo w;

Cross-multiplying, we get the following quantities.

k k
wiZw;:wiZ(ijjL(l—H)%) =w; (1—0+0s);
j=0 J=0

and
w! zk:wj - (Hwi +(1- e)%) s = (0s + (1— 0))w,.

- S
Jj=0

The two cross-multiplied quantities are indeed equal, so F'(z) = F(y). O

For any x € S\|L|, we denote by 7, the open segment (z, F'(x)).

Proposition 5.3 Let x and y be points of S\|L| such that 7, and 7, intersect. Then, we
have 1, C 1, or 7y C T,.

Proof: Let z € 7,N7,. By Proposition B2, we have F'(z) = F(y) = F'(z). Thus, 7, and 7,
have one endpoint in common, and at least one point in common. One must be contained
in the other. O

5.1.2 Level sets of a PL-function

Assume now that there exists a continuous function 7 : |K| — R with the following
properties.

e 7 is affine on each simplex ¢ of K;
e 7 is positive on K
o |L| =710).
For all A > 0, we will denote by |K|, the level set 77()\). We define also
Ao = min{~w(a) | a is a vertex of K,a ¢ L}. (5.2)

Remark 5.4 Note that for all 0 < A < )Xo, the level set |K|y is contained in the star S.
Indeed, if o = (ag, . ..,aq) is a simplex that is not in S, we must have w(a;) > o for all
i since none of the a; are in L, and 7 being affine on &, it follows that w(x) > Ao for all
T € 0.
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We want to describe for 0 < A < )y, the restriction of the retraction F' to the level
set |K|y. We will denote by F* this restriction. A similar construction is outlined in [C2,
Exercise 4.11].

Proposition 5.5 For all 0 < N < X\ < X, there ezists a homeomorphism H : |K|y —
| K|y such that F* o H = F~'

Proof: Let x € |K|). For any z € 7, if 2 =0z + (1 — §)F(x), we have
m(z) =0n(z)+ (1 = 0)w(F(x)) = O\,

since z is in any simplex ¢ of K that contains x and F'(x) and since 7 is affine on the
simplices of K. Thus, z € |K|y if and only if § = X'/, and so the map h defined by

N N
H(x)—xxjt <1_X) F(z); (5.3)
maps |K|y to |K|y.

The map H is certainly injective, since by Proposition B3, two segments 7, and 7,
cannot intersect if  and y are two distinct points of |K|y. It is also surjective, since for
z € | K|y, it is easy to verify that the point = defined by

A A
x:yz—(y—l)F(z);

is a point in | K|, such that H(z) = z.

The continuity of H follows from the continuity of F. Since H(x) € 7, by construction,
Proposition B2 implies that F(H(x)) = F(x). O

Proposition 5.6 For F defined as above, we have

lim max |z — F*(z)| =0, 5.4
lim :ce\K|,\| ()] (5.4)
Proof: Let 0 = (ag,...,aq) be an open simplex contained in S, such that o & |L|. As
before, we can assume that the vertices of ¢ that are in L are ag, ..., ax, where 0 < k < d

) d . k
Fixx =) _,w;a; is 0, and let s =) 7 w;. We have

d d k
E wizg w,-—g w; =1—s;
i=k+1 =0 i=0

and

d

k k d
z—F(x):Zwiai—%;wiai: <1—§) (;wim) + Z w; a;.

1=0 i=k+1
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By the triangle inequality, we obtain
_ < _ = — )
|z — F(z)| érr<1a<>§|a2 ('1 ‘ (Zwl> + ;1w2> 2(1 —s) Org%m (5.5)

If x € |K|y, we have m(x) = Zf:kﬂ w; m(a;) = A. Since w(a;) > Ao for all i > k + 1, it
follows that

A= 'Z w; m(a;) > Ao (Z w,-) = No(1 — ). (5.6)

It follows that 1 — s < )f‘ Combining this with (BH), we obtain

A A
— <2 — <2—
|z — F(x)] <2 " Orgza<>§|al| 2 " max{|a|, a vertex of K}.

Thus, |z — F(x)| is bounded by a quantity independent of x that goes to zero when \ goes
to zero, and the result follows. O

5.2 Bounds on the Betti numbers of Hausdorff limits

Fix U a domain of bounded complexity ~ for a Pfaffian chain f. Let X be a semi-Pfaffian
family with compact fibers defined on a variety V' such that dim(V) = d+ 1. Assume that
for all A € (0,1), X, is compact, so that Xq = (X, &)o. The main result of this chapter is
the following.

Theorem 5.7 Let X be a semi-Pfaffian family with compact fibers as above. If the format
of X is (n,l,c, 3, 8), we have for all 0 < k < d,

be(Xo) < D _(10s)P VNV ((p+ Dn, (p + 1), @, 25, 7); (5.7)

where V is defined in (I?:[D In particular, we have
bi(Xo) < s+ 260 O (kn 3 + kmin(n, £)o) DO+,
where the constant depends on U.

Remark 5.8 If X is not defined by a P-closed formula, the method of proof is still valid,
and one can still establish bounds on by(Xy), using the Borel-Moore estimates from Chap-
ter 2. In that case, the bound obtained s

bk(X ) < 82d(k+1) 22 (k)2 (knﬁ_i_kmln(n g) ) k-‘rl)(n—l—f)



96 CHAPTER 5. TOPOLOGY OF HAUSDORFF LIMITS

In the process of proving Theorem B7, we will actually prove a much more general
result. Before stating it, we need the following notation: for any integer p, we let p, be the
function on (p + 1)-tuples (xo,...,X,) of points in R" defined by

Pp(Xo, ...y Xp) = Z Ix; — x;]%
0<i<j<p

Then we will prove the following theorem.

Theorem 5.9 Let X C R" x R, be a bounded set definable in any o-minimal structure,
such that the fibers X, are compact for all X > 0. Let Xy be the Hausdorff limit of those
fibers when \ goes to zero. Then, there exists A > 0 such that for any integer k, we have

be(Xo) < ) by(DR(6));

for some § > 0, where the set DY(0) is the expanded diagonal
DY(8) = {(x0, .- -,%,) € (X2)"™ | pp(x0,...,%,) <3}

Remark 5.10 Using results on the definability of Hausdorff limits in o-minimal structures
(see for instance [LSZ]), one can even generalize the above further: we can estimate in
this way the Betti numbers of any Hausdorff limit of a sequence of compact fibers in a
p-parameter definable family. See [Z9] for more details.

5.2.1 Triangulation of the projection on \

Let A be the closure of XN{0 < A < 1}. By Theorem [[64] there exists a simplicial complex
K such that |K| C R™" a subcomplex L C K and a homeomorphism ® : |K| — A such
that ®(L) = Xy and such that 7, o ® is affine on each simplex of K.

Denote by F' the retraction constructed in the previous section. For all A < Aq, let

fA=d"1o FM\

Proposition 5.11 For all A < X\g, the map f* is a continuous surjection from X, to Xo.
Moreover, we have

li — fMz)| =0. 5.8
lim max |2 — f*(z)| (5.8)
Proof: Since ® is uniformly continuous, Proposition .8 implies (B.F)). O

Define for p € N and X € (0, \g),

WY = {(x0,..,%,) € (Xa)""" | fA(x0) = -+ = fA(x)}- (5.9)
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From Theorem Bl we have for any A € (0, \g),

be(Xo) < > b, (WD). (5.10)

p+a=k

Thus, the problem is reduced to estimating the Betti numbers of the sets Wy. The first
step in that direction is the following.

Proposition 5.12 For all 0 < X < X < A, the sets Wy and WY, are homeomorphic.

Proof: Let H : |K|\ — | K|y be the homeomorphism described in Proposition i3 Then,
the map h = ®o Hod ! is a homeomorphism between X, and Xy, and since FAo H = FV
we also have f* o h = f. It is then easy to check that the map AP : (X, )Pt — (X, )P*!
defined by

h?(xq,...,%,) = (h(x0), ..., h(xp)): (5.11)

maps W? homeomorphically onto W5,. O

5.2.2 Approximating W?

For p € N and x,...,x, € R", let p, be the polynomial

pp(Xo, %) = D |xi—xy]% (5.12)

0<i<j<p

For A € (0, \g), € > 0 and 6 > 0, we define the following sets.

W2(e) = {(Xo - -+ %) € (O | pp(FA(x0), -, F1(5,)) < )
DE(8) = {(xos %) € (X2 | pylxo,..x,) < 5.

We will use these sets to approximate the sets W?. Namely, we will show that for any
p € N, we can find appropriate values of A and d such that the Betti numbers of W} and
DY (0) coincide.

Proposition 5.13 Let p € N be fized. There exists £g > 0, such that for all A € (0, \o)
and all 0 < & < e < g, the inclusion WY (e') — W¥(e) is a homotopy equivalence. In
particular, this implies that

bq(Wf(g)) = bq(W§)§

for all A € (0, o) and all € € (0,¢p).
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Proof: First, notice that it is enough to prove the result for a fixed A € (0, \g), since
if 0 < N < XA < A are fixed, the map h? introduced in (EI]l) induces a homeomorphism
between WY (e) and WY () for any € > 0.

Let us fix A € (0, ). By the generic triviality theorem (Theorem [[hE), there exists
g9 > 0 such that the projection

{(x0,...,%p,€) | € € (0,60) and (%o, ...,%X,) € Wy(e)} — ¢;

is a trivial fibration. It follows that for all 0 < &’ < & < g, the inclusion W7} (e") — W¥(¢)
is a homotopy equivalence, and thus the homology groups H,. (W7} (¢)) are isomorphic for
all € € (0,¢y).

The sets W1 and W} (e) being compact definable sets, they are homeomorphic to finite
simplicial complexes. This means that their singular and Cech homologies coincide, and
since WP = N.soW?,(¢), the continuity property of the Cech homology implies that H.(1/?)
is the projective limit of H,(W?(e)). Since the latter groups are constant when ¢ € (0, &),
the result follows. O

Proposition 5.14 Let p € N be fized. For A < 1, there exist definable functions dy(\)
and 61(X) such that limy_0 do(A) = 0, limy—o 61 (X) # 0, and such that for all §o(N) < ¢’ <
§ < 01(A), the inclusion DX (8") — DX (8) is a homotopy equivalence.

Proof: Let A € (0,)\) be fixed. By the same local triviality argument as above, there
exists dg = 0 < dy < --- < dp, < dype1 = o0 such that for all 0 < 7 < m and all
d; < ¢ < § < diyq, the inclusion DY(8') < DF(d) is a homotopy equivalence. When
A varies, the values d;(\) can be taken as definable functions of the variable A, so by
Lemma [C70 each has a well-defined if possibly infinite limit when A goes to zero. We
take do(A) = d;(X), where j is the largest index such that limy_od;(A) = 0, and take
51(N) = djsa (). :

We define for p € N,
() = p(p +1) (4R max ¢ — f(@)] +2 (max o — fA(x)|)2> ; (5.13)
zeX) zEX)

where, as before, R is a constant such that X, C B(0, R) for all A\ > 0. By Proposition 51Tl
we have

lim 73, (A) = 0.
Lemma 5.15 For all A € (0, ), 6 > 0 and € > 0, the following inclusions hold.

D(8) S WR(S +mp(N), and WX(e) € D3(e +mp(A))-
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Proof: Let m()\) = max,cx, | — f*(z)]. For any x;,x; in X, the triangle inequality
gives

(i) = )P < 1 Ga) = xal + s = x5] 4 x5 = fA(x)) [
< [Ixi = x| + 2m(N)]*
<|

x; — X, + 8Rm(\) + 4m(\)%.
Summing this inequality for all 0 < ¢ < j < p, we obtain that for any xo,...,x, in X},

Pp(f)\(XO)> S fA(Xp)) < pp(X0s -+ -5 Xp) + 1p(A).

The first inclusion follows easily from this inequality. The second inclusion follows from a
similar reasoning. O

Proposition 5.16 For any p € N, there ezists A € (0, \g), € € (0,20) and 6 > 0 such that

H.(WZ(e)) = H.(D%(9)). (5.14)

Proof: Let §y(A) and ;(\) be the functions defined in Proposition BI4l Since the limit
when A goes to zero of d;(A) — dp(A) is not zero, whereas the limit of 7,()\) is zero, we
can choose A > 0 such that d;(\) — dg(A\) > 27,(A). Then, we can choose ¢’ > 0 such that
do(A) < 0" <& +2m,(A) < 91(N). Taking a smaller A if necessary, we can also assume that
o'+ 37’]17()\) < €p.

Let e = 6" +n,(N), § = 8" +2n,(A\) and €' = §' + 3n,(N). From Lemma B.TH], we have the
following sequence of inclusions;

D23y <5 WE(e) & DL(S) & WE(E).

By the choice of ¢,¢" and A\, X, the inclusions ko j and j o4 are homotopy equivalences.
The resulting diagram in homology is the following;

H.(Dx(5)) Sk H.(Dx(6))

H.(Wx(£)

H.(Wx(e))

(koj)«

~

Since (j o). = Ji 0i4, is an isomorphism, j, must be surjective, and similarly, the fact that
(koj)s = kyo7, is an isomorphism implies that j, is injective. Hence, j, is an isomorphism
between H,(W,(g)) and H,(Dx(0)), as required. O
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5.2.3 Proof of Theorem (.7

Recall that from the spectral sequence inequality (BI0), all we need to do to bound by (Xo)
is to give explicit estimates on the Betti numbers of the sets W/{’ forall 0 <p<k.

Let p € N be fixed, and choose ¢, A and § as in Proposition B.T0. Since € < g, the Betti
numbers of W} (e) and W} are the same. Thus, we are reduced to estimating b,(D5(9)).
This set is a semi-Pfaffian subset of VY 1 defined by a O-closed formula, where Q is a set
of s(p+ 1) + 1 Pfaffian functions in n(p + 1) variables, of degree bounded by [ in a chain
of length (p + 1)¢ and degree a. More explicitly, the chain under consideration is

fp = (fl(Xo, )\), cey fg(Xo, )\), e fl(Xpa )\), cey fg(Xp, )\)),
where A is kept constant. It follows from Theorem 217 that
by(D3(8)) < B(D(8)) < (10s)™ DV ((p + 1), (p + 1)¢, @, 28, 7).

The bound (B7) follows. O

5.3 Betti numbers of a relative closure

In addition to the bound of Theorem B, the techniques developed in the present chapter
allow us to give a rough estimate for the Betti numbers of a relative closure of a semi-
Pfaffian couple. In that case, — as for the Hausdorff limits, — the Betti numbers of the limit

depends on the format of the fibers, but not on the families’ dependence on the parameter
A

Theorem 5.17 Let (X,Y) be a semi-Pfaffian couple. Then, the Betti numbers of its
relative closure (X,Y )o can be bounded in terms of the format of the fibers X, and Y, for
A 1.

Proof: Let dg > 0 and define
Ky = {z e X | dist(x,Y) > o}

Recall that (X,Y)y = {z € X | dist(z,Y) > 0}, so Kj is a compact subset of (X,Y),. For
dp < 1, the Betti numbers of Ky and (X, Y)q coincide. Let 6(\) be any definable function
such that limy_d(\) = dp, and let

K ={(z,\) € X | dist(z,Y3) > 6(\)}.

The set K is a definable family with compact fibers for A > 0. The Hausdorff limit of this
family when A goes to zero is K. By Theorem B9, we have for all K € N and all A < 1,

bi(Ko) < > by(Dh(n)):

p+q=k
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where 1 > 0 is fixed and
DY(n) = {(x0,- -, %p) € (K2 | py(x0, -, %) < 1}
Consider now the Cartesian product

Tf\):{(X0>"'axpay0a"'>y;7) | X GX)\,yj EY)\}

We can consider a cylindrical cell decomposition of 7} that would be compatible with
the subsets {p,(xo,...,%,) = n} and {|x; —y;| = d(A\)}. The number of cells in such a
decomposition depends only on p and on the formats of X, and Y), and the projection
of this decomposition on the variables (xo,...,X,) is compatible with DY. Thus, the total
number of cells in the decomposition of 7% bounds b(DY), and an upper-bound on by (Ky) =
be((X,Y)o) follows. Explicit bounds, which would be doubly exponential in kn, can be
derived from [GV2, [PV]. O

Remark 5.18 The explicit bound that would be obtained by the above method is very bad
(doubly exponential). In particular, the bounds obtained are worse than those obtained in
Chapter 4 in the case where k = 0. Better estimates, that coincide with Chapter 4 when
k =0, are work in progress [Z3].
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Appendix A

Spectral sequence associated to a
filtered chain complex

A.1 Homology spectral sequence

We consider here only first quadrant homology spectral sequences. Assume {E] } are
modules over some ring R, which are non zero only for p,q,r > 0.

This is a spectral sequence if for all 7, p, g there is a differential & , : B}, — E} . .
such that d" o d” = 0, and such that

gt kerldy) N
p.q dr (Er ) ( . )
p+r,g—r+1 p+r,g—r+1

Note that for r > p we have ker(d; ) = E] , since the image is a term that lies in p < 0.

- " : , . :
Similarly, for r > ¢+ 1, the module EJ, .., is zero, hence dj,, . .1 (Ep+r7q_r+1) is zero

too. It follows from ([A]) that for all r > max(p,q + 1), we must have EJ** = Er . We
denote by EJ5 the term at which E]  stabilizes.

Let H be a chain complex with a an increasing filtration
OClHCHHC.---CFHC---CH
such that U,F,H = H. We say that E  converges to H if for all p and g we have
FPHP'HI
Fp—al+q
It is usually denoted by £ = H.

00 v
Epvq -

(A.2)

A.2 Sequence associated with a filtered complex

Let C' be a chain complex such that C),, = 0 for n < 0. Denote by d,, the differential from
C,, to Cp,—1. Assume that there is a filtration of C' by subcomplexes {F}},en such that F),
is increasing and U, F}, = C.

103



104 APPENDIX A. SPECTRAL SEQUENCES

For n € N, denote by Z, = ker(d,) the cycles in C, and by B, = d,+1C,.1 the
boundaries. Let H,, = Z,/B,. We can use the filtration F, to approximate Z,, and B,, in
the following fashion: define, for all » > 0,

Ay ={c€F,|dce F,..}.
The elements of A} are cycles "up to F},_,.” For r > p, they are really cycles.

One then defines approximate cycles Z) = A7 /F, | and B) = dA;jr}n_l /F,—1. Note that

the indices are chosen so that both are submodules of F,/F,_;, and we have the following
inclusions:

0CBYCBC--CBXCZXC--CZ CZ =F,/F,..

p p p p P —

Here, B;° denotes the increasing union of the modules By and Z>° is the decreasing inter-
section of the modules Z]. We then define

E;;q = (Z;)p—irq/(B;)p—irq'

Theorem A.1 With the above definitions, E , is a spectral sequence that converges to
H(C).

See [McCl] for a proof.

Corollary A.2 Let C be a chain complex such that C, = 0 for n < 0, such that there
is an increasing exhaustive filtration of C' and let £, be the associated homology spectral
sequence. Then, we have for all n,

rank H,(C) < Z rank (E;q).

ptq=n

Proof: From (A, it is clear that rank E} , is a decreasing sequence when p and ¢ are
fixed and r increases. Thus, we have rank £ < rank E;q. Since E} , = H(C), it follows

from ([AZ2)) that
H,(C)= P Ep,.

ptq=n

The result follows easily. O
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A.3 Alexander cohomolgy and applications

This section contains a short list of auxiliary results that play a role in the construction of
the filtration that gives rise to the spectral sequence of Theorem We refer the reader
to Chapter 6 of [Spa] for more general statements, proofs and additional details.

In this section, H* denotes the Alexander cohomology.

Definition A.3 A topological space X is said to be homologically connected if for all
r € X and all neighbourhood U of x, there exists a neighbourhood V- C U such that the
map H, (V) — H,(U) given by inclusion is trivial for all q.

Definition A.4 A topological space X is said to be locally contractible if for all v € X
and all neighbourhood U of x, there exists a neighbourhood V- C U such that V can be
deformed to x in U.

If X is locally contractible, it is homologically connected. In particular, all sets that
are definable in some o-minimal structures are locally contractible.

Proposition A.5 Let X be homologically connected. We have H*(X) = H*(X), where
H*(X) is the singular cohomology of X.

Theorem A.6 (Vietoris-Begle) Let F': A — B be a closed, continuous surjection be-

tween paracompact Hausdorff spaces. If for all q, we have f]q(F_ly) =0 for ally € B, the
map F*: H*(B) — H*(A) is an isomorphism.

See [Spal, p. 344] for a proof. Example 16 on the same page shows that the theorem
does not hold if F' is not closed.
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