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Étude quantitative des ensembles semi-pfaffiens

Résumé

Dans la présente thèse, on établit des bornes supérieures sur les nombres de Betti des
ensembles définis à l’aide de fonctions pfaffiennes, en fonction de la complexité pfaffienne
(ou format) de ces ensembles.

Les fonctions pfaffiennes ont été définies par Khovanskii, comme solutions au comporte-
ment quasi-polynomial de certains systèmes polynomiaux d’équations différentielles. Les
ensembles semi-pfaffiens satisfont une condition de signe booléene sur des fonctions pfaffi-
ennes, et les ensembles sous-pfaffiens sont projections de semi-pfaffiens. Wilkie a démontré
que les fonctions pfaffiennes engendrent une structure o-minimale, et Gabrielov a montré
que cette structure pouvait être efficacement décrite par des ensembles pfaffiens limites.

À l’aide de la théorie de Morse, de déformations, de recurrences sur le niveau combi-
natoire et de suites spectrales, on donne dans cette thèse des bornes effectives pour toutes
les catégories d’ensembles pré-citées.

Quantitative study of semi-Pfaffian sets

Abstract

In the present thesis, we establish upper-bounds on the Betti numbers of sets defined
using Pfaffian functions, in terms of the natural Pfaffian complexity (or format) of those
sets.

Pfaffian functions were introduced by Khovanskii, as solutions of certain polynomial dif-
ferential systems that have polynomial-like behaviour over the real domain. Semi-Pfaffian
sets are sets that satisfy a quantifier-free sign condition on such functions, and sub-Pfaffian
sets are linear projection of semi-Pfaffian sets. Wilkie showed that Pfaffian functions gen-
erate an o-minimal structure, and Gabrielov showed that this structure could be effectively
described by Pfaffian limit sets.

Using Morse theory, deformations, recursion on combinatorial levels and a spectral
sequence associated to continuous surjections, we give in this thesis effective estimates for
sets belonging to all of the above classes.
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l’Atlantique, m’ont donné leur amitié et leur soutien. Un merci particulier à Schmürtz,
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Introduction

Je n’ai jamais été assez loin pour bien sentir l’application de l’algèbre la
géométrie. Je n’aimais point cette manière d’opérer sans voir ce qu’on fait;
et il me semblait que résoudre un problème de géométrie par les équations,
c’était jouer un air en tournant une manivelle.

J.-J. Rousseau (Les Confessions, Livre VI)

Origine des fonctions pfaffiennes

Les fonctions pfaffiennes ont été définies par Khovanskii [Kh1, Kh2, Kh3] à la fin des
années soixante-dix. Ce sont des fonctions analytiques réelles aux propriétés de finitude
similaires aux polynômes. Si f = (f1, . . . , fℓ) sont des fonctions analytiques definies sur
un domaine U ⊆ Rn, on dit qu’elles forment une châıne pfaffienne sur U s’il existe des
polynômes à coefficients réels Pi,j tels que le système différentiel triangulaire suivant soit
vérifié pour tout x ∈ U .

dfi(x) =

n∑

j=1

Pi,j(x, f1(x), . . . , fi(x)) dxj ; pour tout 1 ≤ i ≤ ℓ.

(Le système est bien triangulaire, puisque pour tout i, dfi ne dépend que des fonctions
f1, . . . , fi.)

Plus généralement, une fonction pfaffienne est une fonction analytique réelle q qui
peut s’écrire sous la forme q(x) = Q(x, f1(x), . . . , fℓ(x)), oùQ est un polynôme et (f1, . . . , fℓ)
une châıne pfaffienne quelconque. Ces fonctions forment une classe importante qui com-
prend, en particulier, toutes les fonctions liouvilliennes et toutes les fonctions élémentaires
ne comprenant que des sinus et cosinus définis sur des intervalles bornés. Une notion plus
générale de fonction pfaffienne, en utilisant des châınes de variétés intégrales de 1-formes à
coefficients polynomiaux, est proposée dans [Kh3]. Ce cadre plus général donne localement
les mêmes fonctions, aussi nous nous permettrons de conserver la première définition, qui
est plus adaptée à notre travail, sans restreindre la portée de nos résultats.

Le résultat principal de la théorie des fonctions pfaffiennes est le suivant : tout système
de n équations pfaffiennes en n variables q1(x) = · · · = qn(x) = 0 n’a qu’un nombre fini

13



14 INTRODUCTION

de solutions réelles non dégénérées, c’est-à-dire des solutions où le déterminant jacobien
|∂qi/∂xj | ne s’annule pas. De plus, ce nombre de solutions peut être borné par une fonction
explicite des paramètres entiers (degré, nombres de variables. . . ) du système. Ce résultat
est connu sous le nom de theorème de Khovanskii, et c’est lui qui donne aux fonctions
pfaffiennes leur comportement quasi-polynomial. Dans le cas particulier où q1, . . . , qn sont
des polynômes dont le degré est au plus d, l’inégalité de Bézout affirme que le nombre
de solutions non-dégénérées du système est borné par dn, et le principe du théorème est
de se réduire à cette situation en remplaçant les fonctions de la châıne pfaffienne par des
variables et en utilisant le théorème de Rolle pour produire les équations manquantes.

Le fait que le système différentiel que satisfait la châıne pfaffienne est triangulaire est
crucial pour que le théorème de Khovanskii soit vérifié. Si on retire cette restriction (on
obtient alors une châıne de fonctions noetheriennes), on ne peut plus espérer avoir
de finitude globale1, comme on peut le constater avec l’exemple suivant : f1(x) = cosx,
f2(x) = sin x. La châıne (f1, f2) est noetherienne sur R, puisqu’elle vérifie f ′1 = −f2 et
f ′2 = f1, mais l’équation f1(x) = 0 a une infinité de solutions non-dégénérées sur R.

L’étude des fonctions pfaffiennes par Khovanskii était motivée par des questions liées à
la deuxième partie du seizième problème de Hilbert. Ce problème considère un champ
de vecteur polynomial dans le plan donné par

dy

dx
=
P (x, y)

Q(x, y)
.

La question originelle de Hilbert était de savoir combien de cycles limites (solutions peri-
odiques isolées) une telle équation peut avoir, et où ils se trouvent, en fonction des degrés
de P et Q. Ce problème ainsi formulé reste ouvert, et son étude a donné naissance à de
nombreuses questions annexes, dont certaines faisant intervenir les fonctions pfaffiennes.
En particulier, elles ont joué un rôle clef dans la solution du problème de Hilbert-
Arnold local pour les polycycles élémentaires. Ilyashenko et Yakovenko [IY] ont montré
que le nombre de cycles limites générés par un polycycle élémentaire dans une famille de
champs de vecteurs plans, lisse, générique et à k paramètres était fini, et Kaloshin [Kal]
a établi une borne supérieure explicite en fonction de k. Pour plus de détails sur l’histoire
du seizième problème et de ses variantes, voir [I].

Une autre application importante des fonctions pfaffiennes est la théorie des fewno-
mials (oligonômes), ou polynômes creux. On rappelle que pour un polynôme univarié
p(x) =

∑ r
i=1 aix

mi (où mi est croissante et ai 6= 0 pour tout i), la règle des signes de
Descartes affirme que le nombre de racines réelles strictement positives de p(x) (comptées
avec multiplicité) est borné par le nombre de changements de signes de la suite ai,
c’est-à-dire le nombre d’indices i tels que aiai+1 < 0. En particulier, on peut en déduire
que le nombre de zéro réels de p(x) est borné par 2r− 1, et donc est indépendant du degré
mr de p.

1Bien que la finitude soit toujours préservée localement, voir [GKh]
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Les fonctions pfaffiennes permettent de généraliser ce type de bornes au cas de polynômes
à plusieurs variables, et donnent une borne explicite qui est exponentielle en r2 et polyno-
miale en le nombre de variables. Des résultats analogues existent pour des polynômes à
faible complexité additive, la complexité additive d’un polynôme étant, informellement,
le nombre minimum d’additions nécessaires pour évaluer ce polynôme. Ainsi, le polynôme
f(x) = (1 + xp + xq)r a une complexité additive de 2 quelles que soient les valeurs des
paramètres p, q, r.2

Topologie modérée des ensembles pfaffiens

Ce comportement quasi-polynomial des fonctions pfaffiennes entrâıne que les propriétés des
ensembles pfaffiens, les ensembles définis à partir de ces fonctions, sont géométriquement
simples, évitant les exemples les plus pathologiques de la topologie. Par exemple, ces en-
sembles ont une notion de dimension bien définie, qui est un entier, et leurs caractéristiques
géométriques et topologiques tendent à être finies. De la même façon que l’inégalité de
Bézout permet d’établir des bornes explicites pour la complexité des ensembles semi-
algébriques, on peut utiliser le théorème de Khovanskii pour transformer ces résultats
de finitude en résultats quantitatifs.

Objet de la dissertation. – L’objet de cette thèse est d’appliquer la remarque
précédente au cas des nombres de Betti des ensembles pfaffiens.

Un tel projet nécéssite plus que simplement retranscrire les résultats déjà connus pour
les semi-algébriques dans ce nouveau cadre. En effet, les ensembles pfaffiens ont des de-
scriptions plus variées que les semi-algébriques3, et chaque forme apparâıt naturellement
dans certains contextes et requiert un traitement different. Une description détaillée de
ces différentes formes se trouve dans la section suivante.

Le cadre unifiant ces différents types d’ensembles pfaffiens est la théorie des structures
o-minimales, qui permet de manipuler ces ensembles d’une manière plus uniforme et nous
évitera d’avoir à résoudre certaines questions difficiles.

O-minimalité et fonctions pfaffiennes

Pour définir la structure o-minimale associée aux fonctions pfaffiennes et son intérêt pour
nous, faisons un détour par les semi-algébriques.

Les sous-ensembles semi-algébriques de Rn sont, par définition, les ensembles de l’algèbre
booléenne SAn générée par les ensembles de la forme {q > 0} pour tout polynôme réel q

2Ici, le fait que p soit un polynôme n’est pas crucial : ces résultats s’appliquent aussi aux séries de
Laurent, ou au cas où les exposants sont des réels positifs.

3Les semi-algébriques peuvent toujours être définies sans quantificateurs, pas les ensembles pfaffiens.
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à n variables. En particulier, SAn est stable par intersections finies, unions finies et
complémentaire. Quand on considère ces familles pour différentes dimensions n, deux
propriétés supplémentaires viennent s’ajouter. Une stabilité par produit cartésien qui
est assez évidente: on a clairement SAm × SAn ⊆ SAm+n; on a aussi un résultat moins
trivial, le théorème de Tarski-Seidenberg, qui dit que ces familles sont stables par pro-
jection linéaire : si π est la projection canonique π : Rm+n → Rn, et si A ∈ SAm+n, on
a π(A) ∈ SAn.

Les propriétés ci-dessus font que la famille des semi-algébriques est une structure. En
pratique, cela signifie qu’en partant de données semi-algébriques et en faisant des opérations
géométriques classiques, on s’attend à ne définir que des ensembles semi-algébriques.4

De la même façon, on définit les sous-ensembles semi-pfaffiens de Rn comme étant
les éléments de l’algèbre booléenne engendrée par les ensembles de la forme {q > 0}, où q
est une fonction pfaffienne en n variables. Les ensembles semi-pfaffiens ne sont pas stables
par projection, contrairement aux semi-algébriques, comme le montre un contre-exemple
classique de Osgood [Osg]. La projection d’un semi-pfaffien est appelée ensemble sous-
pfaffien. Si X ⊆ Rn est sous-pfaffien, on ne sait pas non plus, en général, si Rn\X est
aussi sous-pfaffien.5

En général, une structure est dite o-minimale si tous les ensembles appartenant à cette
structure ont un nombre fini de composantes connexes, et donc la structure des ensembles
semi-algébriques est un exemple de structure o-minimale. La notion d’o-minimalité a été
proposée en logique mathématique, plus précisément en théorie des modèles [D1, D4, KPS,
PS]. Les ensembles appartenant à des structures o-minimales sont connus comme ayant
une topologie modérée 6 : les hypothèses de stabilité sous les opérations de structure
et la finitude du nombre de composante connexes de tous ces ensembles suffit pour que
toute structure o-minimale admette une décomposition analogue à la décomposition
algébrique cylindrique des ensembles semi-algébriques.7 Il s’ensuit que les propriétés
géométriques et topologiques de toutes ces structures sont très similaires. En particulier,
notons que pour tout ensemble élément d’une structure o-minimale quelconque, la somme
de ses nombres de Betti est toujours finie.

Puisque les opérations booléennes, les projections et les produits cartésiens apparais-
sent naturellement en géométrie, il est logique pour nous de s’intéresser à la structure
pfaffienne : la plus petite collection d’ensembles contenant tous les semi-pfaffiens et stable
par les opérations de structure. Et puisque les fonctions pfaffiennes ont un comportement
très modéré, il était naturel d’espérer que cette structure soit o-minimale. Ce fait a été
prouvé par Wilkie [W2], en se basant sur des idées de Charbonnel [Ch]. Ces résultats ont

4À comparer avec le fait que si on part de données algébriques, par exemple V ⊆ Rn l’ensemble des zéros
communs d’un idéal de polynômes, les ensembles que l’on peut définir, comme par exemple l’ensemble des
points non-singuliers V ∗ ⊆ V est toujours semi-algébrique, mais pas en général algébrique.

5Si c’était le cas, les ensembles sous-pfaffiens formeraient une structure, voir la Remarque 1.66.
6L’expression a été proposée par Grothendieck dans [Gro], et reprise dans les travaux sur l’o-minimalité.
7Ce résultat est le fondement de la théorie des structures o-minimales, voir [C2, D4]
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été généralisés dans [KM, LR2, Sp]. L’une des difficultés est de construire cette structure
pfaffienne d’une manière plus explicite que la définition donnée plus haut. N’ayant pas de
théorème du complément pour les ensembles sous-pfaffiens, Wilkie a utilisé la notion de
clôture à l’infini pour obtenir une telle construction.

Ainsi, le problème posé au départ est raisonnable : la somme des nombres de Betti
est finie pour tout ensemble de la structure pfaffienne, et on peut espérer en tirer des
informations quantitatives. De plus, des arguments de topologie modérée vont beaucoup
aider dans la manipulation de ces ensembles. Reste une difficulté : la construction de
Wilkie n’est pas idéale pour y greffer des mesures de complexité. Les ensembles limites
développés par Gabrielov [G6] offrent une construction alternative de la structure pfaffienne
dans laquelle la notion de complexité est naturelle. La construction, expliquée en détails
dans le Chapitre 1, est grosso-modo la suivante : si X est une famille semi-pfaffienne
à un paramètre λ > 0, on pose X̌ la limite de Hausdorff des ensembles Xλ quand λ
tend vers zéro. Un couple semi-pfaffien est la donnée de deux telles familles, satisfaisant
certaines conditions supplémentaires. Quand ces conditions sont satisfaites, on définit la
clôture relative du couple (X, Y ) par (X, Y )0 = X̌\Y̌ . Gabrielov prouve dans [G6] que
tout ensemble de la structure pfaffienne peut s’exprimer comme un ensemble limite : une
réunion finie de clôtures relatives. Les ensembles semi-pfaffiens ayant une notion naturelle
de complexité, les ensembles limites en ont une aussi.

Différents types d’ensembles définissables

Un ensemble appartenant à une struture donnée est dit définissable dans cette structure,
et dans la présente thèse, définissable sera utilisé presque exclusivement pour la structure
pfaffienne. Du point de vue de la complexité, il est nécéssaire de distinguer dans la structure
pfaffienne les ensembles suivants.

• Une variété pfaffienne V est un ensemble défini par une condition de la forme
q1(x) = · · · = qr(x) = 0. On écrira aussi V = Z(q1, . . . , qr).

• Un ensemble semi-pfaffien est donné par une condition de signe booléenne portant
sur des fonctions pfaffiennes.

• Un ensemble sous-pfaffien est la projection linéaire d’un ensemble semi-pfaffien.

• La clôture relative d’un couple semi-pfaffien (X, Y ) est l’ensemble (X, Y )0 = X̌\Y̌ .

• Un ensemble pfaffien limite est la réunion finie de clôtures relatives.

Pour chacun de ces types d’ensembles, on peut associer une notion de complexité,
que nous appelerons format. C’est une suite d’entiers mesurant à la fois la complexité
combinatoire (nombre de fonctions pfaffiennes utilisées) et algébrique (degrés, longueur de
la châıne, nombre de variables) de la description de l’ensemble, et toutes les bornes seront
exprimées en fonction de ce format.
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Un traitement détaillé de toutes les notions évoquées jusqu’ici se trouve dans le Chapitre 1.
Ce traitement comprend les bases de la théorie de Khovanskii, bien sûr, mais aussi des
résultats essentiels sur les structures o-minimales et sur le rôle qu’elles jouent dans le
présent travail.

Présentation des résultats

Comme cela a déjà été mentionné, nous voulons établir des bornes supérieures pour la
somme des nombres de Betti de chaque type d’ensemble définissable dans la structure
pfaffienne. Pour ce faire, la remarque fondamentale est la suivante : si V = Z(q1, . . . , qr)
est une variété pfaffienne lisse et compacte, le théorème de Khovanskii nous permet de
borner la somme de ses nombres de Betti en fonction des degrés des équations définissant
V. En effet, cette somme est bornée par le nombre de points critiques de n’importe quelle
fonction de Morse sur V, et ces points critiques sont solutions d’un système pfaffien, faisant
intervenir les dérivées partielles des fonctions qi. Le bon comportement des ensembles
pfaffiens permet de généraliser ce résultat à n’importe quelle variété pfaffienne.

Cette borne pour les variétés sera notée V(· · · ) 8, et tous les résultats de cette thèse
peuvent s’exprimer en fonction de cette quantité V. Pour réduire les problèmes plus com-
pliqués à des questions de variétés, nous utiliserons des techniques de topologie algébrique,
des déformations et arguments de position générale, et l’o-minimalité de la structure pfaffi-
enne.

Topologie des ensembles semi-pfaffiens (Chapitre 2)

Le Chapitre 2 est consacré à des résultats sur les ensembles semi-pfaffiens, et le contenu
est de fait très proche de l’état de l’art sur les semi-algébriques.

On commence par établir la borne V pour les variétés pfaffiennes suivant les idées
évoquées précédemment (Théorème 2.3). Ces méthodes ont été introduites dans le cadre
algébrique par Oleinik, Petrovsky Thom et Milnor [O, OP, T, M2].

Du Théorème 2.3, on déduit (Théorème 2.17) une borne sur les nombres de Betti d’un
ensemble semi-pfaffien compact défini par une formule P-fermée9. Puis, le Théorème 2.25
établit une borne sur le nombre de cellules de signe connexes C(P) d’une famille de
fonctions pfaffiennes P. Ce nombre borne à la fois le nombre de composantes connexes
d’un ensemble semi-pfaffien quelconque et le nombre de conditions de signe simultanées
compatibles sur P. On déduit de cela une borne sur le rang de l’homologie de Borel-
Moore de tout ensemble semi-pfaffien localement fermé (Théorème 2.32). En particulier,

8où · · · est le format de la variété V, voir Definition 1.4.
9Si P = {p1, . . . , ps} est un ensemble de fonctions pfaffiennes, une condition de signe P-fermée est

obtenue par conjonction et disjonction (mais pas par négation) d’atomes de la forme {pi ≥ 0}, {pi ≤ 0}
ou {pi = 0} pour 1 ≤ i ≤ s.
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on en déduit une borne sur les nombres de Betti de tout ensemble semi-pfaffien compact,
même s’il n’est pas défini par une formule P-fermée.

De tels résultats étaient déjà connus pour les semi-algébriques, voir par exemple [B2,
BPR1, BPR3, Bürg, MMP, Yao].

Une constante du Chapitre 2 est l’utilisation de récurrences sur le niveau combina-
toire d’une famille de fonctions P. Cette notion apparâıt dans les articles de Basu, Pollack
et Roy; voir par exemple [BPR3]. Le niveau combinatoire de P est défini comme le plus
grand entier m tel qu’il existe m fonctions distinctes dans P ayant un zéro commun. En
se ramenant à des problèmes en position générale par déformation, on n’a pas besoin de
considérer des niveau combinatoires supérieurs à la dimension de l’espace ambiant, et un
niveau combinatoire de z’ero correspond à des variétés, et permet donc d’exprimer les
résultats en fonction de V. On obtient ainsi des bornes exactes 10, en plus des bornes
asymptotiques.

Le Chapitre 2 s’achève par une récente application du Théorème 2.17 (donnée sans
preuve, simplement pour référence) due à Gabrielov et Vorobjov : une borne sur la somme
des nombres de Betti d’un ensemble semi-pfaffien arbitraire (sans hypothèse ni topologique
ni sur la forme de la condition de signe définissant l’ensemble). Une borne simplement
exponentielle dans ce cas n’était pas connue même dans le cas semi-algébrique.

Nombres de Betti des sensembles sous-pfaffiens (Chapitre 3)

Dans le Chapitre 3, nous présentons une suite spectrale Er
p,q qui existe pour toute sur-

jection continue f : X → Y. On prouve que cette suite converge vers l’homologie singulière
de Y, H∗(Y ) pour toute f qui est un recouvrement par les compacts, c’est-à-dire si
pour tout compact L ⊆ Y, on peut trouver K ⊆ X compact aussi tel que f(K) = L. Une
construction analogue est bien connue dans le cadre de la cohomologie des faisceaux, sous
le nom de descente cohomologique (voir [Del]). Le terme E1

p,q est isomorphe à Hq(W
p), où

W p est la (p+ 1)-ème puissance fibrée de X sur Y ;

W p = X ×Y · · · ×Y X︸ ︷︷ ︸
(p+1) termes

= {(x0, . . . ,xp) | f(x0) = · · · = f(xp)}.

Ce résultat permet de donner une estimation des nombres de Betti de Y en fonction de
ceux des ensembles W p(Théorème 3.1).

Le Chapitre 3 applique ces résultats dans le cas où f est la projection d’un sous-ensemble
semi-pfaffien X d’un cube, avec X ouvert ou fermé. Dans ce cas, la suite spectrale est
convergente, et les produits fibrés correspondants X ×Y · · · ×Y X étant semi-pfaffiens, on
peut utiliser les résultats du Chapitre 2 pour borner les nombres de Betti du sous-pfaffien

10i.e. qui ne dépendent pas de constantes inconnues.
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Y = f(X) (Théorème 3.20). On en déduit par dualité une borne pour un ensemble défini
par un quantificateur universel (Corollaire 3.21).

Ces résultats peuvent être appliqués récursivement pour établir des bornes pour des
sous-ensembles du cube définis par ν blocs de quantificateurs alternés. Les résultats
ainsi obtenus (Corollaire 3.25 dans le cas pfaffien et Corollaire 3.26 dans le cas algébrique)
améliorent les résultats connus quand ν est petit.

Topologie des ensembles limites (Chapitres 4 et 5)

Les chapitres 4 et 5 sont consacrés à l’étude des ensembles limites.

Le Chapitre 4 établit une borne simplement exponentielle sur le nombre de com-
posantes connexes de la clôture relative (X, Y )0 d’un couple pfaffien (X, Y ), et par
conséquent une borne pour tout ensemble limite.

Ce résultat est obtenu par l’étude des extrema locaux d’une fonction distance Φ re-
streinte à la fibre Xλ ×Yλ pour λ≪ 1, ce qui, dans le cas où Xλ et Yλ sont lisses, se réduit
à l’étude de la restriction de Φ à des ouverts de Xλ × (Yλ)p, pour 1 ≤ p ≤ dim(X) + 1.
La borne dans ce cas est donnée par le Théorème 4.4, et la borne dans le cas singulier est
obtenue par déformation (Théorème 4.6).

Enfin, le Chapitre 5 s’attaque au problème des autres nombres de Betti des clôtures
relatives. On commence par le cas X0 = (X,∅)0, où la clôture est simplement la limite
de Hausdorff des fibres compactes Xλ quand λ tend vers zéro. On établit un résultat
général valable dans n’importe quelle structure o-minimale : les nombres de Betti de X0

sont bornés par les nombres de Betti de diagonales épaissies de Xλ pour λ ≪ 1. Ces
diagonales étant semi-pfaffiennes dans le cas qui nous intéresse, on obtient via les résultats
du Chapitre 2 des bornes explicites pour la clôture relative X0 (Théorème 5.7).

Pour la clôture relative (X, Y )0 avec Y non vide, on prouve que les nombres de Betti
de (X, Y )0 peuvent être explicitement bornés par une expression dépendant des formats
de Xλ et Yλ (Théorème 5.17). Ainsi, on confirme que c’est le format des fibres (plutôt
que le format total des familles X et Y ) qui mesure la complexité topologique des clôtures
relatives.

La démonstration de ces résultats est basée sur la suite spectrale qui apparâıt au
Chapitre 3. On montre que si X est une famille définissable de compacts à un paramètre,
on peut construire (de façon non-effective) une famille de surjections continues fλ :
Xλ → X0 pour λ≪ 1. Le cœur de la preuve est alors de montrer que les puissance fibrées
venues de la suite spectrale peuvent être approximées par des diagonales épaissies.
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Remarques sur les résultats obtenus

La borne donnée par le théorème de Khovanskii est généralement considérée comme très
pessimiste quand le nombre ℓ de fonctions dans la châıne pfaffienne est grand. En effet, la
borne donnée par ce théorème provient de l’application de l’inégalité de Bézout dans un cas
particulier où rien ne laisse penser que cette borne soit atteinte. Ainsi, toute amélioration
de la borne de Khovanskii serait une amélioration de V, et donc de tous les résultats
présentés ici.

Les résultats de cette thèse apparaissent aussi dans : [Z1] pour les sections 2.1 and 2.2 du
Chapitre 2, [GVZ] pour le Chapitre 3 et [GZ] pour le Chapitre 4. Les résultats du Chapitre 5
ont été acceptés pour publication sous une forme légèrement différente11 dans [Z2]. Pour les
clôtures relatives avec Y 6= ∅, un article offrant de meilleurs bornes est en préparation [Z3].

Enfin, il faut mentionner que le résultat récent de Gabrielov et Vorobjov [GV4] donnant
des bornes presque optimales pour les ensembles semi-algébriques donnés par une condition
de signe arbitraire est apparu alors que cette thèse était presque achevée, ne permettant
pas de complètement l’incorporer dans le texte. Le résultat a cependant été utilisé quand
il simplifiait substantiellement certaines difficultés techniques.

11L’article [Z2] généralise les résultats du Chapitre 5 à des limites de Hausdorff dans des familles à plus
de un paramètre.
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Chapter 1

Preliminaries

This chapter presents all the necessary background material about Pfaffian functions and
o-minimal structures. The material is organized as follows. The first section introduces
Pfaffian functions along with the bounds of Khovanskii about the number of solutions
of a Pfaffian system. Section 2 deals with semi and sub-Pfaffian sets, and their formats;
section 3 is about o-minimal structures on the real field and their basic geometric properties.
At last, Pfaffian limit sets are introduced in section 4. This section finishes with some
corollaries of the o-minimality of the structure of Pfaffian functions that will be widely
used in the other chapters.

1.1 Pfaffian functions

In this section, we define Pfaffian functions following Khovanskii; we define the notion
of complexity of Pfaffian functions and state the fundamental result in the theory: any
system of Pfaffian equations has a finite number of isolated1 solutions, that can be effectively
estimated from above by an expression involving only the discrete parameters of the Pfaffian
system (degrees, number of variables, and chain length). These parameters are often
referred to as the format or Pfaffian complexity of the functions.

1.1.1 Definition and examples

Definition 1.1 (Pfaffian chain) Let f = (f1, . . . , fℓ) be a sequence of real analytic func-
tions defined on a domain U ⊆ Rn. We say that they constitute a Pfaffian chain if there
exists polynomials Pi,j, each in n+ i indeterminates, such that the following equations

∂fi

∂xj
(x) = Pi,j(x, f1(x), . . . , fi(x)), 1 ≤ i ≤ ℓ, 1 ≤ j ≤ n, (1.1)

hold for all x ∈ U .

1Real soltions isolated over C, that is.

23
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This definition is sufficient when considering functions that are all simultaneously de-
fined. However, in all generality, one should use the following definition.

Definition 1.2 (Pfaffian chain 2) A sequence f = (f1, . . . , fℓ) of analytic functions in
U is called a Pfaffian chain if it satisfies on U a differential system of the form:

dfi =

n∑

j=1

Pi,j(x, f1(x), . . . , fi(x))dxj , (1.2)

where each Pi,j is a polynomial in n+ i indeterminates, and the following holds.

(P1) The graph Γi = {t = fi(x)} of fi is contained in a domain Ωi defined by polynomial
inequalities in (x, f1(x), . . . , fi−1(x), t), and such that ∂Γi ⊆ ∂Ωi.

(P2) Γi is a separating submanifold in Ωi, i.e. Ωi \ Γi is a disjoint union of the two sets
Ω+

i = {fi > 0} and Ω−i = {fi < 0}. ( See [Kh3, p. 38]. This is also called the Rolle
leaf condition in the terminology of [LR1, LR2].)

Definition 1.3 (Pfaffian function) Let f = (f1, . . . , fℓ) be a fixed Pfaffian chain, and
q(x) be an analytic function on the domain of that chain. We say that q is a Pfaffian
function in the chain f if there exists a polynomial Q such that q = Q(x, f), i.e.

q(x) = Q(x, f1(x), . . . , fℓ(x)) ∀x ∈ U . (1.3)

Definition 1.4 (Format) Let f = (f1, . . . , fℓ) be a Pfaffian chain. We call ℓ the length
(also called depth or order) of f . We say f is of degree α if all the polynomials Pi,j

appearing in (1.1) are of degree at most α. If Q is a polynomial of degree β in n+ℓ variables
and q = Q(x, f ), we say that β is the degree of q in f , and we will write β = degf(q).

Examples of Pfaffian functions

1. The polynomials are the Pfaffian functions such that ℓ = 0.

2. The exponential function f1(x) = ex is Pfaffian, with ℓ = 1 and α = 1, because of the
equation f ′1 = f1. More generally, we can define the iterated exponential functions
by the induction fr(x) = exp(fr−1(x)) for all x. Then, (f1, . . . , fr) is a Pfaffian chain
of length r and degree r for all r, since f ′r = f ′r−1fr = f1 · · · fr (by induction).

3. Let U = R\{0}, and let f(x) = x−1 and g(x) = ln |x|. Then, (f, g) is a Pfaffian chain
of degree α = 2 on U , since we have f ′ = −f 2 and g′ = f.

4. Let f(x) = (x2 + 1)−1 and g(x) = arctanx. Then, (f, g) is a Pfaffian chain of degree
α = 3 on R since we have f ′ = −2xf and g′ = f.
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5. Let f(x) = tanx and g(x) = cos2 x. We have f ′ = 1 + f 2 and g′ = −fg, so (f, g)
is a Pfaffian chain of degree α = 2 on the domain {x 6≡ π

2
[mod π]}. The function

h(x) = cos(2x) is Pfaffian in this chain, since we have h(x) = 2 g(x) − 1.

6. Let m ≥ 2 be an integer, and f and g be as above. Then, the previous example shows
that (f(x/2m), g(x/2m)) is a Pfaffian chain on the domain {x 6≡ mπ [mod 2mπ]}.
Then cos x is a Pfaffian function of degree m in that chain, since cosx is a polynomial
of degree m in cos(x/m) = 2 g(x/2m) − 1.

7. f(x) = cosx is not Pfaffian on the whole real line, since f(x) = 0 has infinitely many
isolated solutions (see Theorem 1.10).

More generally, if we consider the following functions (in any finite number of variables):
polynomials, exponentials, trigonometric functions and their composition inverses wherever
applicable. Then, the real elementary functions is the class obtained from these by taking
the closure under arithmetical operations and composition. If f is in this class and the
functions sin and cos appear in f only through their restriction to bounded intervals, the
f is Pfaffian on its domain of definition (See [Kh3, §1]).

Still, one of the most important applications of Pfaffian functions is to polynomials
themselves, and more specifically to the so-called fewnomials.

Definition 1.5 (Fewnomials) Fix K = {m1, . . . , mr} ∈ Nn a set of exponents. The
polynomial q is a K-fewnomial if it is of the form:

q(x) = Q(xm1 , . . . , xmr),

where Q is a polynomial in r variables. If β = deg(Q), we say that q has pseudo-degree β
in K.

Let ℓ = n + r, and f = (f1, . . . , fℓ) be the chain defined by:

fi(x) =

{
x−1

i if 1 ≤ i ≤ n,

xmi−n if i > n.
(1.4)

It is easy to see that f is a Pfaffian chain of length ℓ and degree α = 2 in the domain
U = {x1 · · ·xn 6= 0}, since we have:

∂fi

∂xj
=

{
−f 2

i if i = j ≤ n,

fjfi if i > n.

Then, a K-fewnomial q can be seen as a Pfaffian function in f , with degf q equal to the
pseudo-degree of q, but its format is completely independent of the usual degree of q.
This fact will enable us to generalize the well-known consequence of Descartes’s rule: a
univariate polynomial with m non-zero monomials has at most m− 1 positive roots.
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Remark 1.6 This is not necessarily the best way to see a K-fewnomial as a Pfaffian
function. On the first quadrant (R+)n, one can make the change of variables ti = log xi,
and questions about K-fewnomials can thus be reduced to questions about Pfaffian functions
in the chain (em1·t, . . . , emr ·t), which is of length only r compared to the chain (1.4) which
has length n+ r.

These considerations about fewnomials can be generalized in many ways: we do not
need the exponents to be integers, and we can consider functions in these chains of degree
larger than one. Though the number of monomials of such a function may depend on
the values of m1, . . . , mr they are still well-behaved. More generally, one can consider the
additive complexity of polynomials.

Definition 1.7 (Additive complexity [BR, Kh3]) Let m ∈ Nn and c ∈ R\{0}. Then,
the polynomial c+ xm is said to have additive complexity 1. If q is a polynomial, we say
its additive complexity is bounded by k + 1 if q(x) = c + xm0p1(x)m1 · · · pk(x)mk , where
m0 ∈ Nn, and for all 1 ≤ i ≤ k, mi ∈ N and pi is a polynomial of additive complexity
bounded by i.

In particular, if p has an additive complexity bounded by k, it means that it can be
evaluated using at most k additions. Since a function of the form p(x)m is Pfaffian with a
complexity independent of m on the domain {p(x) 6= 0}, so this notion can be approached
from the point of view of Pfaffian functions. Such an approach yields explicit bounds on
the number of roots of such polynomials (see Theorem 1.13).

Proposition 1.8 Let f = (f1, . . . , fℓ) be a Pfaffian chain on a domain U ⊆ Rn. Then,
the algebra generated by f is stable under differentiation. Moreover, the degree in f of
the sum, product, and partial derivatives of functions from this algebra can be estimated in
terms of the format of the original functions.

Proof: Let g = G(x, f ) and h = H(x, f ) be two functions from the algebra generated
by f , with deg(G) = β1 and deg(H) = β2. We have

(g + h)(x) = G(x, f1(x), . . . , fℓ(x)) +H(x, f1(x), . . . , fℓ(x)),

so g + h is in the algebra generated by f , and we have degf(g + h) ≤ max(β1, β2).

Similarly, we have

(gh)(x) = G(x, f1(x), . . . , fℓ(x))H(x, f1(x), . . . , fℓ(x)),

so gh is in the algebra generated by f with degf(gh) = β1 + β2.

At last, we have by the chain rule,

∂g

∂xj
(x) =

∂G

∂Xj
(x, f(x)) +

ℓ∑

k=1

∂G

∂Yk
(x, f (x))Pk,j(x, f (x)).

The stability under derivation of the algebra generated by f follows. If the degree of the
chain f is α, the degree of any first-order derivative of g is bounded by α + β1 − 1. ✷
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Remark 1.9 If f 1 and f2 are two Pfaffian chains defined on the same domain U , of length
respectively ℓ1 and ℓ2 and degree α1 and α2, the concatenation of f1 and f 2 gives a new
Pfaffian chain f of length at most ℓ1 + ℓ2 and degree max(α1, α2). Thus, we can always
work in the algebra generated by a fixed chain f .

1.1.2 Khovanskii’s theorem

The fundamental result about Pfaffian functions is the following theorem.

Theorem 1.10 (Khovanskii) Let f be a Pfaffian chain of length ℓ and degree α, with do-
main Rn. Let Q1, . . . , Qn be polynomials in n+ℓ variables of degrees respectively β1, . . . , βn,
and let for all 1 ≤ i ≤ n, qi(x) = Qi(x, f). Then the number of solutions of the system

q1(x) = · · · = qn(x) = 0, (1.5)

that are isolated in Cn is bounded from above by

2ℓ(ℓ−1)/2 β1 · · ·βn (β1 + · · · + βn − n+ min(n, ℓ)α + 1)ℓ. (1.6)

The above bound can be found in [Kh3, §3.12, Corollary 5]. It also holds when the
domain of the functions is the quadrant (R+)n. Over Cn, the result is of course not true,
since ex is a Pfaffian function. The complex analogue of the above result is a bound on the
multiplicity of the root of a system of complex Pfaffian functions [G2] (see also [GKh]).

Roughly, the method of proof is the following: one has to replace inductively the
functions fi(x) by variables yi, starting from fℓ(x). At each step, a Rolle-type argument
allows to produce an extra polynomial Qn+i so that the system

Qj(x, f1(x), . . . , fi−1(x), yi, . . . , yℓ) = 0, 1 ≤ j ≤ n+ i;

has at least as many isolated solutions as the original system. Thus, after replacing f1(x),
one obtains a system of n + ℓ polynomial equations in n + ℓ unknowns. The degrees of
the polynomials Qn+1, . . . , Qn+ℓ can be effectively estimated, and by Bézout’s theorem, the
number of isolated solutions of the final system can be bounded.

Remark 1.11 In [Kh3], Theorem 1.10 is formulated as a bound on the number of non-de-
generate roots of the system (1.5). If q is the map (q1, . . . , qn), the number of non-degenerate
roots of the system is simply the number of points x in the preimage q−1(0) for which the
rank of dq(x) is maximal. The two formulations are clearly equivalent.

Considering systems defined by sparse polynomials involving r non-zero monomials in
the positive quadrant, one can use the change of variables ti = log xi, – as explained in
Remark 1.6, – to reduce the problem to a problem about systems involving r exponential
functions. One can then bound the number of non-degenerate solutions independently of
the degrees of the polynomials, to obtain the following estimate.
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Corollary 1.12 (Fewnomial systems) Let q1, . . . , qn be polynomials in n variables such
that r monomials appear with a non-zero coefficient in at least one of these polynomials.
Then, the number of non-degenerate solutions of the system

q1(x) = · · · = qn(x) = 0,

in the quadrant (R+)n is bounded by

2r(r−1)/2 (n+ 1)r. (1.7)

For systems defined by polynomials of additive complexity bounded by k, (see Defini-
tion 1.7), there is a detailed proof in [BR, Chapter 4] that the number of non-degenerate
roots admits a computable upper-bound in terms of k. In the case n = 1, the following
explicit bound is given [BR, Theorem 4.2.4].

Theorem 1.13 (Bounded additive complexity) Let p(x) be a univariate polynomial
of additive complexity bounded by k. The number of real roots of p is at most

(k + 2)2k+1 22k2+2k+1;

which is less than 5k2
for k large enough.

1.1.3 Domains of bounded complexity

We will now define a class of domains U over which Khovanskii’s result can be easily
generalized. Note that in order to have the nice topological and geometrical properties we
hope for, one cannot generalize these results to domains that would be too pathological.

Definition 1.14 (Domain of bounded complexity) We say that U is a domain of
bounded complexity γ for the Pfaffian chain f = (f1, . . . , fℓ) if there exists a function
g of degree γ in the chain f such that the sets {g ≥ ε} form an exhausting family of
compact subsets of U for ε ≪ 1. We call g an exhausting function for U .

Example 1.15 Let f = (f1, . . . , fℓ) be a Pfaffian chain defined on a bounded domain U
of the form

U = {x ∈ Rn | g1(x) > 0, . . . , gr(x) > 0}, (1.8)

where (g1, . . . , gr) are Pfaffian functions in the chain f . Then, U is a domain of bounded
complexity, since g = g1 · · · gr is clearly an exhausting function for U .

Note that the assumption of boundedness of U can be dropped: let

ρ(x) =
1

1 + |x|2
. (1.9)
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The function ρ is a Pfaffian function defined on Rn, with a degree α = 3, since we have

dρ(x) = −2ρ2(x) (x1dx1 + · · · + xndxn).

Moreover, ρ(x) > 0 on Rn and the sets {ρ ≥ ε} are compact for 0 < ε < 1. So even
an unbounded domain U of the form (1.8) is a domain of bounded complexity for any
Pfaffian chain of the form (ρ, f1, . . . , fℓ), with exhausting function g = g1 · · · gr + ρ.

Over a domain of bounded complexity, Khovanskii’s estimates becomes the following.

Theorem 1.16 (Khovanskii’s theorem for a domain of bounded complexity) Let
f be a Pfaffian length of degree α and length ℓ defined on a domain U of bounded complexity
γ for f . Let Q1, . . . , Qn be polynomials in n + ℓ variables of degree respectively β1, . . . , βn

and let qi = Q(x, f ) for all i. Then, the number of solutions in U of the system

q1(x) = · · · = qn(x) = 0; (1.10)

which are isolated in Cn is bounded by

2ℓ(ℓ−1)/2β1 · · ·βn
γ

2
[β1 + · · · + βn + γ − n+ min(n+ 1, ℓ)α]ℓ (1.11)

Proof: Introduce a new variable t and consider the system given by

q1(x) = 0, . . . , qn(x) = 0, g(x) − t2 = ε; (1.12)

where ε is a fixed positive real number. Then, for any values of ε, every isolated solution of
the system (1.10) that is contained in the domain Ωε = U ∩{g(x) > ε} gives rise to exactly
two isolated solutions for (1.12). So it is enough to bound the number of isolated solutions
of (1.12) for a value of ε such that all the isolated solutions of (1.10) are contained in Ωε.
The choice of the parameter ε does not affect the complexity of the new system, and the
bound (1.11) can then be established following the results appearing in [Kh3]. ✷

1.2 Semi and sub-Pfaffian sets

Semi and sub-Pfaffian sets occur naturally in the study of Pfaffian functions: semi-Pfaffian
sets are sets that can be defined by a quantifier-free sign condition on Pfaffian functions,
and sub-Pfaffian sets are linear projections of semi-Pfaffian sets, or equivalently, defined
by existential sign conditions on Pfaffian functions.

Example 1.17 Let q be a Pfaffian function defined on a domain U ⊆ Rn. Then, the set
of critical points of q is semi-Pfaffian and the set of its critical values is sub-Pfaffian.
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Proof: This is straightforward. The critical locus of q is defined by

X =

{
x ∈ U |

∂q

∂x1

(x) = · · · =
∂q

∂xn

(x) = 0

}
;

and the set of critical values is

Y = {y ∈ R | ∃x ∈ X, q(x) = y}.

Since the partial derivatives of q are again Pfaffian functions, it is clear that X is semi-
Pfaffian and Y is sub-Pfaffian. ✷

Semi-Pfaffian and sub-Pfaffian sets have a lot of finiteness properties. The present
section contains mainly definitions and relevant examples, and we refer the reader to the
bibliography [GV1, G3, G5, G2, GV2, PV] for more details. A comprehensive survey [GV3]
will be available soon.

From now on, f = (f1, . . . , fℓ) will be a fixed Pfaffian chain of degree α defined on
a domain of bounded complexity U ⊆ Rn, and we will consider only functions fro, the
algebra generated by f .

1.2.1 Semi-Pfaffian sets

As mentioned in the beginning of this section, semi-Pfaffian sets are given by quantifier-free
sign conditions on Pfaffian functions. We start by recalling the definition of quantifier-free
formulas, and we define a notion of format for such formulas. This format will be all the
data we need to establish bounds on the topological complexity of semi-Pfaffian sets.

Definition 1.18 (QF formula) Let P = {p1, . . . , ps} be a set of Pfaffian functions. A
quantifier-free (QF) formula with atoms in P is constructed as follows:

1. An atom is of the form pi ⋆0, where 1 ≤ i ≤ s and ⋆ ∈ {=,≤,≥}. It is a QF formula;

2. If Φ is a QF formula, its negation ¬Φ is a formula;

3. If Φ and Ψ are QF formulas, then their conjunction Φ ∧ Ψ and their disjunction
Φ ∨ Ψ are QF formulas.

Definition 1.19 (Format of a formula) Let Φ be a QF formula as above. If the number
of variables is n, the length of f is ℓ, the degrees of the polynomials Pi,j in (1.1) is bounded
by α, s = |P| and β is the maximum of the degrees in the chain of the functions in P, we
call (n, ℓ, α, β, s) the format of Φ.

Definition 1.20 (P-closed formulas) We will say that the formula Φ is P-closed if it
was derived without negations, i.e. using rules 1 and 3 only.
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Definition 1.21 (Semi-Pfaffian set) A set X ⊆ U is called semi-Pfaffian if there exists
a finite set P of Pfaffian functions and a QF formula Φ with atoms in P such that

X = {x ∈ U | Φ(x)}.

We call format of X the format of the defining formula Φ.

The notion of format is important to establish the kind of quantitative bounds we want
on the topology of semi-Pfaffian sets. But the above definition can be improved.

Indeed, taking example on the algebraic case, one expects equalities and inequalities
to affect very differently bounds on the topology of the sets they define. If V = {x ∈ Rn |
p1(x) = · · · = ps(x) = 0} is a real algebraic variety defined by polynomials of degree at
most d, we know by a result of Oleinik-Petrovsky Thom and Milnor [OP, O, M2, T] that
the sum of its Betti numbers is bounded by d(2d− 1)n−1, so does not depend on s.

On the other hand, when dealing with inequalities, the number s of functions does
matter, as the following example shows: take pi(x) = (x− i)2 and let S = {x ∈ R | p1(x) >
0, . . . , ps(x) > 0}. Then S = R\{1, 2, . . . , s}, so it has s + 1 connected components.

To make full use of that difference between equalities and inequalities in our formulas,
we will introduce the following definitions.

Definition 1.22 (Variety) The semi-Pfaffian set V ⊆ U is called a variety if it is defined
using only equations. We will use the notation

Z(q1, . . . , qr) = {x ∈ U | q1(x) = · · · = qr(x) = 0}.

Definition 1.23 (Semi-Pfaffian subsets of a variety) If V = Z(q1, . . . , qr) is a Pfaf-
fian variety and Φ a QF formula, one can consider the semi-Pfaffian set X = {x ∈ V |
Φ(x)}. Then, the format of X is defined as (n, ℓ, α,max(β1, β2), s) where β1 is a bound on
the degrees of q1, . . . , qr and (n, ℓ, α, β2, s) is the format of Φ.

Remark 1.24 Such a cumbersome definition and notion of format may seem strange, but
we will see in Chapter 2 that this will allow us to establish more precise bounds on the
topology of X, for which r is irrelevant and the parameter d = dim(V ) plays a part.

A more usual definition for semi-Pfaffian sets is to define them as finite unions of basic
semi-Pfaffian sets, where a basic set is of the form

B = {x ∈ U | ϕ1(x) = · · · = ϕI(x) = 0, ψ1(x) > 0, . . . , ψJ(x) > 0}; (1.13)

for some Pfaffian functions ϕ1, . . . , ϕI and ψ1, . . . , ψJ . (Writing as semi-Pfaffian set as a
union of basic ones is just putting the defining formula Φ in disjunctive normal form, so
the two definitions are clearly equivalent.)
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Remark 1.25 Semi-Pfaffian sets presented as union of basic sets occur frequently in the
literature. The reader should be aware that the definition of their format in that case is
different. The format of a basic set of the form (1.13) is then defined as (I, J, n, ℓ, α, β),
and if X is the union of N basic sets B1, . . . , BN , of respective formats (Ii, Ji, n, ℓ, α, β), the
format of X is (N, I, J, n, ℓ, α, β), where I = max{I1, . . . , IN} and J = max{J1, . . . , JN}.
The two notions of formats are comparable.

Definition 1.26 (Effectively non-singular set) If X is a basic semi-Pfaffian set, we’ll
say that X is effectively non-singular if the functions ϕ1, . . . , ϕI appearing in (1.13) verify

∀x ∈ X, dϕ1(x) ∧ · · · ∧ dϕI(x) 6= 0.

If X is effectively non singular, it is a smooth submanifold of Rn of dimension n− I.

Basic sets appear rather naturally because they are easier to handle algorithmically. In
particular, effectively non-singular basic sets is what is used in [GV1] to produce a weak
stratification algorithm (using an oracle) for semi-Pfaffian sets.

Definition 1.27 (Restricted set) We say that a semi-Pfaffian set X is restricted if it
is relatively compact in U .

Let us introduce now the notations we will use for the topological invariants we want
to bound.

Notation 1.28 Throughout this thesis, if X is a topological space, Hi(X) will denote its
i-th homology group with integer coefficients, bi(X) will be the i-th Betti number of X,
which is the rank of Hi(X), and b(X) will denote the sum

∑
i bi(X).

If P = {p1, . . . , ps} a family of Pfaffian functions, we denote by S be the set of strict
sign conditions on P. If σ ∈ S, we have

σ(x) = p1(x)σ10 ∧ · · · ∧ ps(x)σs0; σi ∈ {<,>,=} for 1 ≤ i ≤ s. (1.14)

Then, for any fixed Pfaffian variety V, we can consider the following.

Definition 1.29 (Connected sign cells) A cell of the family P on the variety V is a
connected component of the basic semi-Pfaffian set S(V ; σ) = {x ∈ V | σ(x)} for some
σ ∈ S.

Then, we define the number of connected sign cells of P over V simply as the sum

C(V ;P) =
∑

σ∈S

b0(S(V ; σ)). (1.15)
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Remark 1.30 In particular, for any semi-Pfaffian set X = {x ∈ V | Φ(x)}, if Φ as atoms
in P, the number of connected components of X is bounded by C(V ;P).

Proof: Indeed, we can assume without loss of generality that Φ is in disjunctive normal
form, in which case it is of the form σ1 ∨ · · · ∨ σN for some σ1, . . . , σN ∈ S. Then, X =
S(V ; σ1) ∪ · · · ∪ S(V ; σN), so we have

b0(X) ≤ b0(S(V ; σ1)) + · · · + b0(S(V ; σN)) ≤ C(V ;P).

✷

Of course, higher Betti numbers are not sub-additive, so a similar procedure cannot be
followed in general.

Definition 1.31 (Consistent sign assignment) Let V be a Pfaffian variety, P a family
of Pfaffian functions, and S the set of strict sign conditions on P. Then σ ∈ S is a
consistent sign assignment of P on V if the basic set S(V ; σ) is not empty.

Then, C(V ;P) bounds also the number of consistent sign assignments σ ∈ S. The-
orem 2.25 shows that for a fixed variety V, C(V ;P) is a polynomial in the number s of
functions in P, and thus, the number of consistent sign assignments is asymptotically much
less than the trivial bound of 3s.

1.2.2 Sub-Pfaffian sets

Definition 1.32 The set Y ⊆ Rn is a sub-Pfaffian set if there exists a semi-Pfaffian set
X ⊆ U ⊆ Rn+p such that Y is the image of X by the canonical projection π : Rn+p → Rn.
Equivalently, this can be formulated by using an existential formula;

Y = {y ∈ Rn | ∃x ∈ Rp, (x, y) ∈ X}. (1.16)

Unlike semi-algebraic sets, semi-Pfaffian sets are not stable under projections.

Example 1.33 (Osgood [Osg]) The following sub-Pfaffian set is not semi-Pfaffian.

X = {(x, y, z) ∈ R3 | ∃u ∈ [0, 1], y = xu, z = xeu}.

Proof: The set X is clearly a strict subset of R3 that contains 0. If X is semi-Pfaffian,
there exists a non-zero analytic function F that vanishes on X in a neighbourhood of 0.
We can write F as a convergent series of homogeneous polynomials Fd, were deg(Fd) = d.
Then, we must have for all u ∈ [0, 1],

F (x, xu, xeu) =
∑

d≥0

xdFd(1, u, eu) = 0.

Thus, we must have Fd(1, u, eu) = 0 for all d ≥ 0 and all u ∈ [0, 1], which implies Fd ≡ 0 for
all d ≥ 0. Thus, F ≡ 0 is the only analytic function that vanishes on X in a neighbourhood
of 0. Since X is a strict subset of R3, it cannot be semi-Pfaffian. ✷
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Remark 1.34 (Sub-fewnomial sets) Let X ⊆ Rn+p be a semi-algebraic set and Y ⊆ Rn

be its projection. By the Tarski-Seidenberg theorem, Y is certainly semi-algebraic too. But
even though X may be a fewnomial set, Y is only sub-fewnomial: describing Y with a
fewnomial quantifier-free formula may not always be possible.

Example 1.35 (Gabrielov [G4]) Consider for all m ∈ N the set

Ym = {(x, y) ∈ R2 | ∃t ∈ R, tm − xt = 1, (y − t)m − x(y − t) = 1}. (1.17)

Then, there is no quantifier-free fewnomial formula describing Ym having a format inde-
pendent of m.

Remark 1.36 (Open problem) If Y is a sub-Pfaffian set and Y is not subanalytic, it is
not known whether its complement is also sub-Pfaffian or not. This is one of the reasons
that motivates the introduction of Pfaffian limit sets in Section 1.4.

1.3 Basic properties of o-minimal structures

In this section, we describe the main definitions and results concerning o-minimal struc-
tures. O-minimal structures appear in model theory, and provide a framework for the
ideas of tame topology [Gro]. Many surveys are available to the reader for more details, for
instance [C2, D4, DM2]. For more details about model-theoretic aspects, see also [D3, D2].

1.3.1 O-minimal expansions of the real field

Definition 1.37 (o-minimal structure) For all n ∈ N let Sn be a collection of subsets
of Rn, and let S = (Sn)n∈N. We say that S is an o-minimal structure on the field R if the
following axioms hold.

(O1) For all n, Sn is a Boolean algebra.

(O2) If A ∈ Sm and B ∈ Sn, then A× B ∈ Sm+n.

(O3) If A ∈ Sn+1, and π is the canonical projection Rn+1 → Rn, then π(A) ∈ Sn.

(O4) Sn contains all the semi-algebraic subsets of Rn.

(O5) All sets in S1 have a finite number of connected components.

Recall that (O1) means that the collections Sn are stable by finite intersection, fi-
nite unions and taking complements. The axioms (O1) through (O4) mean that S is a
structure. Axiom (O5) is called the o-minimality axiom.

Definition 1.38 (Definability) Let S be a structure. If A ∈ Sn, we say that A is S-
definable. A map f : A ⊆ Rm → B ⊆ Rn is called S-definable if and only if its graph
belongs to Sm+n.
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Example 1.39 Let Sn be the set of semi-algebraic subsets of Rn. Then, S = (Sn)n∈N is
an o-minimal structure.

Proof: Recall that a subset of Rn is semi-algebraic if it can be defined by a quantifier-
free sign condition on polynomials. Then, S is clearly a Boolean algebra and is stable by
Cartesian products. Elements of S1 can only have finitely many connected components
since polynomials in one variable have only finitely many zeros. Thus, the only non-trivial
axiom is (O3): stability by projection, which is the result of the classical Tarski-Seidenberg
theorem [BCR]. ✷

Example 1.40 Let Sn be the set of globally subanalytic sets: subsets of Rn that are sub-
analytic in RP n. Then, S = (Sn)n∈N is an o-minimal structure.

Proof: Here, S is stable by projections by definition, and the fact that it is a Boolean
algebra follows from Gabrielov’s theorem of the complement [G1]. The axioms 2 and 4
are clear, and the finiteness of the number of connected components follows from the local
properties of semi-analytic sets [Loj]. ✷

Definition 1.41 (Generated structure) Let S be a structure and A = (An)n∈N a col-
lection of subsets of Rn for all n ∈ N. If the closure of A under the Boolean operations,
Cartesian product and linear projections is S, we say that S is generated by A.

For example, the structure of semi-algebraic sets is generated by the sets {f = 0} for
all polynomials f, and the structure of globally subanalytic sets is generated by all the
restrictions f |[−1,1]n of all the graphs of functions f that are analytic in a neighbourhood
of [−1, 1]n.

After the general setting of o-minimal structures was introduced, a lot of effort was
put into constructing new examples. Our main interest here is the fact that o-minimal
functions do generate an o-minimal structure. This fact, proved first by Wilkie in [W2],
is the object of the next section. For now, let us mention two other cases that seem of
particular interest.

The structure Rexp generated by the exponential function is o-minimal [W1]. This
is of special interest since it relates to Tarski’s problem about the decidability of real
exponentiation [MW], which was one of the problems which first motivated the introduction
of o-minimal structures.

More recently, Rolin, Speissegger and Wilkie [RSW] constructed new o-minimal struc-
tures using certain quasi-analytic Denjoy-Carleman classes. This construction allowed to
settle two open problems: (1) if A1 and A2 generate o-minimal structures, the structure
generated by A1∪A2 is not necessarily o-minimal, (and thus, there is no ’largest’ o-minimal
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structure), and (2) there are some o-minimal structures that do not admit analytic cell
decomposition (see Theorem 1.44 and Remark 1.45).

We will now describe the main properties of o-minimal structures. Essentially, such
a structure has a geometrical and topological behaviour which is very similar to what
is observed in semi-algebraic sets. For the remaining of the chapter, S will be a fixed
o-minimal structure and we will write definable for S-definable. In the next chapters,
definable will always mean definable in the o-minimal structure generated by Pfaffian
functions.

1.3.2 The cell decomposition theorem

The cell decomposition theorem is an o-minimal analogue of the cylindrical algebraic de-
composition used in real algebraic geometry [BR, BCR]. Since most features of semi-
algebraic sets follow from that decomposition, they will have an equivalent for definable
sets in o-minimal structures. We fix S an o-minimal structure.

Definition 1.42 (Cylindrical cell) Cylindrical cells are defined by induction on the di-
mension of the ambient space n. A subset C of R is a cell if and only if it is an open
interval or a point. A set C ⊆ Rn is a cell if and only if there exists a cell D ⊆ Rn−1 such
that one of the two following conditions is true.

1. There exists a continuous definable function f : D → R such that C is one of the
following sets,

C0(f) = {(x′, xn) | xn = f(x′)},

C+(f) = {(x′, xn) | xn > f(x′)},

C−(f) = {(x′, xn) | xn < f(x′)}.

2. There exists continuous definable functions f and g from D into R such that f < g
on D and

C(f, g) = {(x′, xn) | f(x′) < xn < g(x′)}.

Definition 1.43 (Cell decomposition) A cell decomposition of R is a finite partition
of R into open intervals and points. For n > 1, we say that a finite set C of cylindrical
cells of Rn is a cell decomposition of Rn if C is a partition of Rn such that the collection
{π(C) | C ∈ C} is a cell decomposition of Rn−1. (Here again, π is the canonical projection
Rn → Rn−1.)

If A1, . . . , Ak are definable subsets of Rn and C is a cell decomposition of Rn, the par-
tition C is said to be compatible with A1, . . . , Ak if each Ai is a finite union of cells in
C.
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Theorem 1.44 (Cell decomposition theorem) 1. Let A1, . . . , Ak be definable sub-
sets of Rn. Then there exists a cell decomposition of Rn compatible with A1, . . . , Ak.

2. If f : A→ R is definable, A ⊆ Rn, there exists a cell decomposition of Rn compatible
with A such that for each cell C ⊆ A, the restriction f |C is continuous.

Remark 1.45 (Ck cell decompositions) The notions of cells and cell decomposition
can be generalized to the Ck setting for any k ∈ N ∪ {∞, ω} : we can define Ck-cells
by requiring that the graphs that appear in the definition of the cells are graph of Ck func-
tions. Then, a Ck cell decomposition of Rn would be of course a cell decomposition where
all the cells considered are Ck. For any fixed k ∈ N, a Ck analogue of Theorem 1.44 holds
for any o-minimal structure. Although analytic cell decomposition holds in many known
cases, including the Pfaffian case [LS1, DM1, Loi1], it does not hold in general [RSW].

As mentioned previously, Theorem 1.44 can be interpreted as a generalization of the
cylindrical algebraic decomposition. However, it is worth noting that the proof of Theo-
rem 1.44 is much more technical (it takes about ten pages in [D4]).

In the course of proving Theorem 1.44, the following theorem is necessary.

Theorem 1.46 (Monotonicity theorem) Let −∞ ≤ a < b ≤ ∞ and let f : (a, b) → R

be definable. Then, there exists a0 = a < a1 < · · · < ak = b such that on each interval
(ai, ai+1), the function f is either constant or strictly monotonous and continuous.

The following results are immediate corollaries of the existence of cell decomposition.

Corollary 1.47 Any definable set has a finite number of connected components.

Proof: Let A ⊆ Rn be definable and C be a definable cell decomposition of Rn compatible
with A. Each cell C ∈ C is connected, so the number of connected components of A is at
most the number of cells C ∈ C such that C ⊆ A. ✷

By construction, all cells in a cell decomposition are definably homeomorphic to a cube
(0, 1)d for some d. If C is a cell homeomorphic to (0, 1)d, we let d = dim(C). Then, it is
natural to define the dimension of a definable set A 6= ∅ as the maximum of dim(C) taken
over all cells C contained in A, for a given cell decomposition C compatible with A. Then,
the following holds.

Proposition 1.48 (Dimension is well behaved) Let A be a definable set, A 6= ∅, and
f : A → Rm a definable map. The dimension of A is well-defined (independent of the
choice of the cell decomposition C) and dimensions verifies the following properties.

1. dim(∂A) < dim(A);

2. dim(f(A)) ≤ dim(A).
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Corollary 1.49 (Uniform bound on fibers) Let A ⊆ Rm×Rn be definable, and define
for all x ∈ Rm the fiber

Ax = {y ∈ Rn | (x, y) ∈ A}.

Then, there exists N such that for all x ∈ Rm the fiber Ax has at most N connected
components.

Proof: Let C = {Ci} be a cell decomposition of Rm × Rn compatible with A. If A =
C1 ∪ · · · ∪ CN , we have Ax = (C1)x ∪ · · · ∪ (CN)x. Thus, it is enough to check that each
(Ci)x is connected, which is an easy induction on n. ✷

Proposition 1.50 (Definable choice) Let A ⊆ Rm × Rn be definable. Denote by π the
canonical projection Rm × Rn → Rm, and let B = π(A). Then, there exists a definable
s : B → Rn such that its graph Γ(s) is contained in A.

Proof: Suppose n = 1, and let C be a cell decomposition of Rm × R compatible with A.
Fix x ∈ B; there exists a cell C ∈ C such that C ⊆ A and x ∈ π(C). According to the type
of the cell C, we can define s(x) so that (x, s(x)) ∈ C.

• If C = C0(f), we let s(x) = f(x);

• if C = C+(f), we let s(x) = f(x) + 1;

• if C = C−(f), we let s(x) = f(x) − 1;

• and if C = C(f, g), we let s(x) = (f(x) + g(x))/2.

This solves the case n = 1, since s is certainly a definable function π(C) → R.

We finish the proof by induction on n. Assume the result holds up to n− 1, and let π′

be the canonical projection Rm × Rn → Rm × Rn−1 and A′ = π′(A). By induction, there
exists s′ : B → Rn−1 definable such that Γ(s′) ⊆ A′. We can use the case n = 1 for Γ(s′)
now, so there exists s′′ : Γ(s′) → R such that Γ(s′′) ⊆ A. The projection π restricted to
Γ(s′′) must be a bijection onto B, so Γ(s′′) is the graph of a definable function s : B → Rn.
✷

Corollary 1.51 (Curve lemma) Let A ⊆ Rn be definable and a ∈ ∂A. Then, there exists
a definable arc γ : (0, 1) → A such that limt→0 γ(t) = a.

Proof: Let a ∈ ∂A, and let B = {|x−a|, x ∈ A}. The set B is definable and since 0 ∈ B,
there must be an interval (0, ε) contained in B. By the definable choice theorem above,
there exists a function γ : t ∈ B 7→ γ(t) ∈ A such that |aγ(t)| = t. By Theorem 1.46, γ
is continuous on an interval (0, δ) for some δ ≤ ε, and by rescaling the variable t, we can
always assume that δ = 1. ✷
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1.3.3 Geometry of definable sets

We will now list some of the deeper consequences of the o-minimality axiom. First, asymp-
totic behaviour of definable functions is very controlled, and there is a dichotomy between
polynomially bounded o-minimal structures and structures where ex is definable [Mi]. Al-
though the usual, polynomial  Lojasiewicz inequality does not hold in o-minimal structures
that are not polynomially bounded, the following version does hold.

Theorem 1.52 (Generalized  Lojasiewicz inequality) Let f, g : A ⊆ Rn → R be de-
finable functions such that {f = 0} ⊆ {g = 0} and A is compact. Then, there exists a
definable Cp function ϕ such that |ϕ ◦ g(x)| ≤ |f(x)| for all x ∈ A.

Remark 1.53 For Pfaffian functions, a more explicit inequality, the exponential  Lojasiewicz
inequality, holds. See Proposition 1.75.

Definition 1.54 (Stratification) Let p ≥ 1 be an integer. A Cp stratification of a set A
is a partition of A into strata such that each stratum is a Cp-smooth submanifold and if X
and Y are two strata such that X ∩ Y 6= ∅, then we have X ⊆ Y .

Theorem 1.55 (Existence of stratifications) Let p ≥ 1 be a fixed integer.

1. Let A be definable. There exists a definable Cp stratification of A.

2. Let A be a closed definable set and f : A → R be a continuous definable function.
Then, there exists a definable Cp stratification of A such that for each stratum X, the
restriction f |X is Cp and of constant rank.

Remark 1.56 More precise results about stratification with specific regularity conditions
exist: e.g. Whitney, Thom [Loi2], Verdier [Loi3], etc. . .

The next result is about the local triviality of continuous definable maps. It originated
with Hardt in the semi-algebraic case [H].

Definition 1.57 (Trivial map) Let f : A → C be a definable map. The map f is
called (definably) trivial if there exists a definable set F and a definable homeomorphism
h : A→ C × F such that the following diagram commutes.

A
h

//

f
��?

?
?

?
?

?
?

C × F

π1
{{ww

ww
ww

ww
w

C

where π1 : C × F → C is the canonical projection.

Theorem 1.58 (Generic triviality) Let f : A → C be a continuous definable map.
there exists a finite definable partition C = C1 ∪ · · · ∪ Cr such that f is definably trivial
over each Ci.
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We finish our discussion of the general properties of o-minimal structures with questions
about triangulations of sets and maps, which will play a large role in the proofs of the results
of Chapter 5. For simplicial complexes, we use the terminology of [C2] rather than [D4].

Definition 1.59 (Simplex) Let a0, . . . , ad be affine-independent points in Rn, (not con-
tained in any (d − 1)-dimensional affine subspace). We define the closed simplex σ̄ =
[a0, . . . , ad] as the subset of Rn defined by

σ̄ =

{
d∑

i=0

wi ai |
d∑

i=0

wi = 1, w1 ≥ 0, . . . , wd ≥ 0

}
. (1.18)

The open simplex σ = (a0, . . . , ad) is defined as above, with the additional condition that
all weights wi are positive. The points a0, . . . , ad are called vertices of the (open or closed)
simplex. The dimension of the simplex is d.

Note that the condition w0 + · · · + wd = 1 in (1.18) implies that the weights wi are
uniquely determined.

Definition 1.60 (Faces) If σ̄ = [a0, . . . , ad] is a closed simplex, its faces are all the closed
simplexes of the form [ai, i ∈ I] where I is any non-empty subset of {0, . . . , d}.

Definition 1.61 (Simplicial complex) A (finite) simplicial complex K of Rn is a finite
collection {σ̄1, . . . , σ̄k} of closed simplices of Rn such that the following two conditions hold.

• For any i, j ∈ {1, . . . , k}, the intersection σ̄i ∩ σ̄j is a common face of σ̄i and σ̄j ;

• K is closed under taking faces.

We denote by |K| the subset σ̄1 ∪ · · · ∪ σ̄k of Rn.

Theorem 1.62 (Triangulation of compact definable sets) Let A ⊆ Rn be a compact
definable set, and B1, . . . , Bk be definable subsets of A. There exists a finite simplicial
complex K with vertices in Qn, sets S1, . . . , Sk of open simplices of K and a definable
homeomorphism Φ : |K| → A such that for each i, we have Bi = ∪σ∈Si

Φ(σ).

Note that the result still holds when A is not compact, provided we take the weaker
notion of simplicial complex where we do not require K to be closed under taking faces.
See [D4] for more details.

It is well-known that definable maps are not always triangulable: for example, the
blow-up map f(x, y) = (x, xy) is not. The result below says that definable continuous
maps from a compact into R always are. Recall that the function f : A→ R is triangulable
if there exists a finite simplicial complex K and a homeomorphism Φ : |K| → A such that
f ◦ Φ is affine. By affine map, we mean the following.
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Definition 1.63 (Affine map) Let g : σ̄ = [a0, . . . , ad] → R be a function defined on a
simplex. It is affine if it satisfies the equality

g

(
d∑

i=0

wi ai

)
=

d∑

i=0

wi g(ai); (1.19)

for all non-negative (w0, . . . , wd) such that w0 + · · · + wd = 1.

The proof of the following theorem in the o-minimal setting can be found in [C1, C2].

Theorem 1.64 (Triangulation of functions) Let A ⊆ Rn be a compact definable subset
in an o-minimal structure S and f : A→ R be a definable continuous function. Then, there
exists a finite simplicial complex K in Rn+1 and a definable homeomorphism Φ : |K| → A
such that f ◦ Φ is affine on each simplex of K.

Moreover, given finitely many definable subsets B1, . . . , Bk of A, we can choose the
triangulation Φ : |K| → A so that each Bi is the union of images of open simplices of K.

1.4 Pfaffian functions and o-minimality

As mentioned earlier, works of Charbonnel [Ch] and Wilkie [W2] led to the following result,
which we will use extensively in the present work. This theorem was then generalized
extensively in [KM, Sp, LR2].

Theorem 1.65 (Wilkie) The structure generated by Pfaffian functions is o-minimal.

The main result in [W2] is a theorem of the complement: Wilkie shows that the Pfaffian
structure can be obtained by starting from semi-Pfaffian sets and iterating the operations
of closure under finite unions, projections and closure at infinity, where the last operation
consists in considering all sets of the form A0∩A1∩· · ·∩Ap for sets A0, . . . , Ap already con-
structed. The end result is called the Charbonnel closure, and [W2, Theorem 1.8] says that
the Charbonnel closure obtained from semi-Pfaffian sets is closed under complementation
(and thus a bona fide structure) and o-minimal.

This construction of the Pfaffian structure, however, is not very convenient for quanti-
tative purposes, especially since if Tm denotes the pre-structure obtained after m iteration
and if X ⊆ Rn denotes a definable set that can be constructed within Tm, there doesn’t
seem to be any way to derive from Wilkie’s work an upper-bound a the number p such
that Rn\X can be constructed within Tm+p. This is what made it desirable to find an
alternative construction for the Pfaffian structure.

We will now describe in some details the construction of the Pfaffian structure via limit
sets that was suggested by Gabrielov in [G6]. Limit sets will provide a notion of format
for arbitrary definable sets, and we will show this format can effectively be used to derive
upper-bounds (Chapter 4 and 5).
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Remark 1.66 (About sub-Pfaffian sets) We come back to the open problem evoked in
Remark 1.36: if (C) is the statement: the complement of any sub-Pfaffian set is again
sub-Pfaffian, we do not know whether (C) holds or not. If we knew that (C) was true,
we could deduce easily that the Pfaffian structure is o-minimal, since then all definable
sets would be sub-Pfaffian and semi-Pfaffian sets (and thus sub-Pfaffian sets) always have
finitely many connected components.

Proof: Let us show that (C) would imply that sub-Pfaffian sets form a structure. Since
sub-Pfaffian sets are clearly stable under projection and Cartesian products. Also, sub-
Pfaffian sets are always closed under finite unions since if X and Y are sub-Pfaffian, we
can assume that X = π(X1) and Y = π(Y1) for some semi-Pfaffian subsets X1 and Y1 of
Rn+p, with π the canonical projection Rn+p → Rn, and thus X ∪ Y = π(X1 ∪ Y1), so it is
clearly sub-Pfaffian.

Hence, all we have to show is that if X and Y are sub-Pfaffian and (C) holds, then X∩Y
is sub-Pfaffian too. Since we’re assuming (C), it is enough to show that the complement
Rn\(X ∩ Y ) is sub-Pfaffian. But this is obvious, since Rn\(X ∩ Y ) = (Rn\X) ∪ (Rn\Y ) :
by (C), both (Rn\X) and (Rn\Y ) are again sub-Pfaffian, and we have just showed that
sub-Pfaffian sets were stable under finite unions. ✷

1.4.1 Relative closure and limit sets

From now on, we consider semi-Pfaffian subsets of Rn × R+ with a fixed Pfaffian chain
f = (f1, . . . , fℓ) in a domain U of bounded complexity. We write (x1, . . . , xn) for the
coordinates in Rn and λ for the last coordinate (which we think of as a parameter.) If X
is such a subset and λ > 0, Xλ is its fiber

Xλ = {x | (x, λ) ∈ X} ⊆ Rn;

and we consider X as the family of its fibers Xλ. We let

X+ = X ∩ {λ > 0}, and X̌ = {x ∈ Rn | (x, 0) ∈ X+}.

(Thus, X̌ is the Hausdorff limit of the family Xλ when λ goes to zero.) The following
definitions appear in [G6].

Definition 1.67 (Semi-Pfaffian family) Let X be a relatively compact semi-Pfaffian
subset of Rn ×R+. The family Xλ is said to be a semi-Pfaffian family if for any ε > 0, the
set X ∩{λ > ε} is restricted. (See Definition 1.27.) The format (n, ℓ, α, β, s) of the family
X is the format of the fiber Xλ for a small λ > 0.

Remark 1.68 (Format) Note that the format of X as a semi-Pfaffian set is different
from its format as a semi-Pfaffian family. We will sometimes refer to it as the fiber-wise
format to emphasize that fact. Note also that [G6] uses the format discussed in Remark 1.25
rather than the formula-based format, both being of course valid measures of the descriptive
complexity of limit sets.
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Definition 1.69 (Semi-Pfaffian couple) Let X and Y be semi-Pfaffian families in U
with a common chain (f1, . . . , fℓ). They form a semi-Pfaffian couple if the following prop-
erties are verified:

• (Ȳ )+ = Y+;

• (∂X)+ ⊆ Y.

Then, the format of the couple (X, Y ) is the component-wise maximum of the format of
the families X and Y.

Definition 1.70 (Relative closure) Let (X, Y ) be a semi-Pfaffian couple in U . We de-
fine the relative closure of (X, Y ) at λ = 0 by

(X, Y )0 = X̌ \ Y̌ ⊆ Ǔ . (1.20)

We will use the notation X0 = (X, ∂X)0.

Definition 1.71 (Limit set) Let Ω ⊆ Rn be an open domain. A limit set in Ω is a set
of the form (X1, Y1)0 ∪ · · · ∪ (Xk, Yk)0, where (Xi, Yi) are semi-Pfaffian couples respectively
defined in domains Ui ⊆ Rn × R+, such that Ǔi = Ω for 1 ≤ i ≤ k. If the formats of the
couples (Xi, Yi) is bounded component-wise by (n, ℓ, α, β, s) we say that the format of the
limit set is (n, ℓ, α, β, s, k)

Remark 1.72 We assumed that the semi-Pfaffian families X are all relatively compact.
This restriction allows us to avoid a separate treatment of infinity: we can see Rn as
embedded in RP n, in which case any set we consider can be subdivided into pieces that are
relatively compact in their own charts.

Example 1.73 Any (not necessarily restricted) semi-Pfaffian set X is a limit set.

Proof: It is enough to prove the result for a basic set X ⊆ U ,

X = {x ∈ U | ϕ1(x) = · · · = ϕI(x) = 0, ψ1(x) > 0, . . . , ψJ (x) > 0};

Let ψ = ψ1 · · ·ψJ and let g be an exhausting function for U . Define the sets

W = {(x, λ) ∈ X × Λ | g(x) > λ} ;

Y1 = {(x, λ) ∈ U × Λ | ϕ1(x) = · · · = ϕI(x) = 0, ψ(x) = 0, g(x) ≥ λ} ;

Y2 = {(x, λ) ∈ U × Λ | ϕ1(x) = · · · = ϕI(x) = 0, g(x) = λ} .

where Λ = (0, 1]. If Y = Y1 ∪ Y2, it is clear that (W,Y ) satisfies the requirements of a
semi-Pfaffian couple in Definition 1.69; its relative closure is clearly X. ✷

For all n ∈ N we let Sn be the collection of limit sets in Rn, and S = (Sn)n∈N. The
following theorem sums up the results in [G6, Theorems 2.9 and 5.1].
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Theorem 1.74 The collection S is a structure, and it is o-minimal. Moreover, if X is a
definable set obtained by a combination of Boolean operations and projections of the limit
sets L1, . . . , LN , the set X can be presented as a limit set whose format is bounded by an
effective function of the formats of L1, . . . , LN .

Moreover, it is clear that S coincides with the structure constructed by Wilkie. A key
result to work with limit sets is the following inequality.

Proposition 1.75 (Exponential  Lojasiewicz inequality) Let f be a Pfaffian chain
of length ℓ defined on a domain of bounded complexity U for f . Let q(x) = Q(x, f ), and
suppose that 0 ∈ cl(X ∩ {q > 0}). Then, there exists N ∈ N such that

0 ∈ cl({x ∈ X | q(x) ≥ 1/ expℓ(|x|
−N)});

where expℓ is the ℓ-th iterated exponential.

The proof relies on proving that the rank of the Hardy field generated by f at 0 is
bounded by ℓ+1 (see [Ros]). A detailed proof can be found in [G6], see also [Gri, L, LMP].

1.4.2 Special consequences of o-minimality

When giving bounds on the topology of sets defined using Pfaffian functions, one invokes
constantly the o-minimality of the structure generated by those functions. In this section
are gathered a few minor results that will be often used in the next chapters.

Lemma 1.76 (Existence of limits) Let f : (0, ε) → R be definable. Then, the function
f has a well-defined limit in R ∪ {±∞}.

Proof: This is a simple consequence from the monotonicity theorem (Theorem 1.46).
There exists δ > 0 such that the restriction of f to (0, δ) is continuous, and one of strictly
increasing, constant, or strictly decreasing. The case where f is constant on (0, δ) is trivial.
If f is strictly increasing on that interval, then either it is bounded from above, and then
f must have a finite limit at 0, or it is not bounded and the limit of f is +∞. The case
where f is decreasing is similar. ✷

Lemma 1.77 (Critical values) Let q : U ⊆ Rn → R be a C∞ definable function. Then,
q has finitely many critical values.

Proof: The set of critical values of q is a definable subset of R. (If q is a Pfaffian function,
this set is actually sub-Pfaffian, see Example 1.17.) By Sard’s lemma, it must be of measure
zero, and a definable subset of R of measure zero can only be finite. ✷

Recall that we denote by bi(X) the i-th Betti number of X (see Notation 1.28) and
b(X) =

∑
i bi(X).
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Lemma 1.78 (Deformation of basic sets) Let U be a domain of bounded complexity,
g an exhausting function for U and let X = {x ∈ U | q1(x) = · · · = qr(x) = 0, p1(x) >
0, . . . , ps(x) > 0} be a basic semi-Pfaffian set, and for ε > 0 and t ∈ (R+)s, define Xε =
{x ∈ U | q1(x) = · · · = qr(x) = 0, p1(x) ≥ εt1, . . . , ps(x) ≥ εts, g(x) ≥ ε}. Then for all
ε≪ 1, b(Xε) = b(X).

Proof: The groups H∗(X) are the direct limit of the singular homology groups of the
compact subsets of X ([Spa, Theorem 4.4.5].) Thus, b(X) = limε→0 b(Xε), and by the
generic triviality theorem (Theorem 1.58), this sequence is eventually stationary. ✷

Lemma 1.79 (topology of compact limits) Let Kε be a decreasing sequence of com-
pact definable sets defined for ε > 0, and let K be their intersection. Then, for all ε ≪ 1,
and all 0 ≤ i ≤ n, we have

bi(Kε) = bi(K)

Proof: Since all the sets considered are triangulable, their homological type is that of
a polyhedron, and the Čech homology Ȟ∗ and the singular homology H∗ are isomorphic.
Since the sequence Kn is compact and decreasing and the limit is compact too, we have [ES]

H∗(K) = lim
←−

H∗(Kε). (1.21)

But by generic triviality, the sets Kε are homeomorphic for ε≪ 1, hence the limit in (1.21)
becomes eventually stationary. ✷
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Chapter 2

Betti numbers of semi-Pfaffian sets

This chapter is devoted to the study of the possible complexity bounds that can be proved
on the Betti numbers of semi-Pfaffian sets defined on a domain of bounded complexity.
These results include bounds for the sum of Betti numbers of compact and non-compact
Pfaffian varieties (Theorem 2.8 and Theorem 2.10), bounds for the sum of Betti num-
bers of basic semi-Pfaffian sets (Lemma 2.14) and semi-Pfaffian sets given by P-closed
formulas (the main result of this chapter, Theorem 2.17). Theorem 2.25 gives a bound on
C(V ;P), the number of connected sign cells of the family P on V that was introduced in
Definition 1.29, and this allows to establish in Theorem 2.32 a bound on the Borel-Moore
homology of arbitrary (locally closed) semi-Pfaffian sets. In particular, this last result
provides an upper-bound for the sum of Betti numbers of any compact semi-Pfaffian set,
without requiring the defining formula to be P-closed.

Recently, Gabrielov and Vorobjov [GV4] generalized the results of the present chapter:
they established a general, single-exponential bound for the sum of the Betti numbers of
any semi-Pfaffian set, without any assumption on its topology or defining formula. Such a
result was not known even in the algebraic case, and the precise statement was added at
the end of this chapter (Theorem 2.34) for reference purposes.

The setting for the present chapter will be the following: we will consider a fixed Pfaffian
chain f of length ℓ and degree α in a domain U ⊆ Rn of bounded complexity for the chain
f . We will let g be an exhausting function for U , and γ = degf g.

Throughout this chapter, p1, . . . , ps, and q1, . . . , qr, will be Pfaffian functions in the fixed
chain f , and we’ll write P for {p1, . . . , ps} and degf P for max{degf pi | 1 ≤ i ≤ s}. The
number β will be a common upper-bound for degf pi and degf qj. We’ll let q = q2

1 + · · ·+q2
r

and V = Z(q1, . . . , qr) = Z(q). The dimension of V will be denoted by d. We’ll let

V(n, ℓ, α, β, γ) = 2ℓ(ℓ−1)/2β(α+ β − 1)n−1γ

2
[n(α + β − 1) + γ + min(n, ℓ)α]ℓ. (2.1)

The chapter is organized as follows.

• In the first section, we show that b(V ) can be bounded in terms of V(n, ℓ, α, β, γ).

47
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• In section 2.2, we show that if X is a semi-Pfaffian subset of a compact variety V
given by a P-closed formula, b(X) ≤ (5s)d V(n, ℓ, α, 2β, γ).

• In section 2.3, we show that C(V ;P) ≤ Σ(s, d)V(n, ℓ, α, β⋆, γ), where β⋆ = max(β, γ)
and

Σ(s, d) =
∑

0≤i≤d

(
4s+ 1

i

)
.

• The last section is devoted to proving that the rank of the Borel-Moore homology
groups of a locally closed X with the above format is bounded by an expression of
the form

bBM(X) ≤ s2d 2ℓ(ℓ−1)O(nβ + min(n, ℓ)α)2(n+ℓ);

for some constant depending on U .

The main results of this chapters are inspired by similar results in the semi-algebraic
case by Basu, Pollack and Roy [B2, BPR1, BPR3]. Note that more analogues could also be
formulated for more recent results in the same vein [B1, B4, B5]. Indeed, the o-minimality
of the structure generated by Pfaffian functions ensures that most arguments can still be
used. The use of infinitesimals in those papers can be avoided most of the time by placing
oneself in a compact setting and replacing the infinitesimals in small real numbers. (The
proof of Theorem 2.17 is an example of how one can compute a real number r such that
the condition that ε is an infinitesimal can be replaced by ε < r.)

As in the work of Basu, Pollack and Roy, one of the ideas behind the bounds is the
notion of combinatorial level of a family of functions P.

Definition 2.1 (Combinatorial level) Let X ⊆ U be a semi-Pfaffian set and P a family
of functions on U . The combinatorial level of the couple (X,P) is the largest integer m
such that there exists x in X and m functions in P vanishing at x.

This leads to a combinatorial definition of the idea of general position.

Definition 2.2 (General position) Let V be a Pfaffian variety. The set P is said to be
in general position with V if the combinatorial level of (V,P) is bounded by dim(V ).

2.1 Betti numbers of Pfaffian varieties

This section is devoted to proving the following analogue for Pfaffian varieties of the
Oleinik-Petrovskii-Thom-Milnor upper bound [O, OP, T, M2] on the Betti numbers of
real algebraic sets. As explained above, f is a fixed Pfaffian chain of degree α and length
ℓ, and U is a domain of bounded complexity for f with an exhausting function g such that
degf g = γ. We fix V = Z(q1, . . . , qr) a Pfaffian variety and let q = q2

1 + · · ·+ q2
r . The result

we will prove is the following.
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Theorem 2.3 Let V = Z(q) a Pfaffian variety with q as above, degf q = 2β. If V is
compact, its Betti numbers verify

b(V ) ≤ V(n, ℓ, α, β, γ);

where V(n, ℓ, α, β, γ) is defined in (2.1).
If V is not compact, we have b(V ) ≤ V(n, ℓ, α, β∗, γ), where β∗ = max(β, γ

2
).

In practice, it makes sense to assume that the chain f and the domain U are fixed, and
to let the degree β go to infinity. We then obtain a more manageable estimate.

Corollary 2.4 Let U be a fixed domain of bounded complexity for a Pfaffian chain f . If
V = Z(q1, . . . , qr) is a Pfaffian variety and degf qi ≤ β for all i, the following asymptotic
estimate holds.

b(V ) ≤ 2ℓ(ℓ−1)/2 O(nβ + min(n, ℓ)α)n+ℓ.

(Here, the constant in the O term depends on γ.)

2.1.1 Bound for compact Pfaffian varieties

In this section, we assume that the variety V ⊆ U is compact. Recall that if V =
Z(q1, . . . , qr), we let q = q2

1 + · · · + q2
r . Let Kr = {x ∈ U | q(x) ≤ r}. According to

Lemma 1.77, q has only a finite number of critical values, and so the Kr are smooth man-
ifolds with boundaries for all but finitely many values of r. Let K∗r ⊆ Kr be the union
of the connected components of Kr that intersect V. We want to show that b(V ) is equal
to b(K∗r ) for small values of r. We shall start by proving that K∗r is compact if r is small
enough.

Lemma 2.5 Let dV (x) be the distance of x to V, and for all δ > 0, let T (δ) = {x ∈ U |
dV (x) ≤ δ}. There exists δ1 > 0 such that K∗r = Kr ∩ T (δ1) for r ≪ 1.

Proof: Define, for any set C, dist(C, V ) = min{dV (x) | x ∈ C}. Let δ0 = dist(∂U , V ).
Since V is compact, we have δ0 > 0. Fix δ1 ∈ (0, δ0).

For all r > 0, let Cr = Kr\K
∗
r . This set is closed for all r. We will show that

dist(Cr, V ) > δ1 when r ≪ 1, by contradiction. If Cr ∩ T (δ1) 6= ∅ for all r > 0, their
intersection ∩r>0(Cr ∩ T (δ1)) must be non-empty too, since those sets are compact. But a
point in this intersection cannot be in V. Since V = ∩r>0Kr, we have a contradiction. ✷

Remark 2.6 It is important to consider K∗r , since Kr itself is not necessarily compact.
The following example comes from [BR].
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Let P : R2 → R be the map:

P (x, y) = (x2 + y2)((y(x2 + 1) − 1)2 + y2).

P−1(0) = {0} is compact, but as P (x, (1 + x2)−1) goes to 0 as x goes to infinity, the sets
{P ≤ r} are not bounded for r > 0.

Since the set T (δ1) is compact, Lemma 2.5 implies that K∗r is compact for r ≪ 1. Since
V = ∩r>0K

∗
r is compact too, we can apply Lemma 1.79 to conclude that b(V ) = b(K∗r ) for

r ≪ 1. To obtain a bound on b(V ), we need to establish a relation between the topology
of K∗r and the topology of its boundary.

Lemma 2.7 Let K = K∗r . Then b(∂K) = 2b(K).

Proof: Let Kc = Rn\K. The Mayer-Vietoris sequence in reduced homology of (K,Kc)
is:

· · · −→ H̃i+1(R
n) −→ H̃i(∂K) −→ H̃i(K) ⊕ H̃i(Kc) −→ H̃i(R

n) −→ · · · (2.2)

As H̃∗(R
n) = 0, this yields H̃i(∂K) ∼= H̃i(K) ⊕ H̃i(Kc), and as ∂K has a collar in Kc, we

have H̃i(Kc) ∼= H̃i(K
c).

Alexander duality gives H̃i(K
c) ∼= Ȟn−i−1(K). This yields the relations

bi(∂K) = bi(K) + bn−i−1(K), 0 ≤ i ≤ n− 1. (2.3)

We have bn(K) = bn(∂K) = 0, so summing all the equalities in (2.3) gives the result
b(∂K) = 2b(K). ✷

Theorem 2.8 (Compact varieties) Let f be a Pfaffian chain of length ℓ and degree α
defined in a domain U of bounded complexity γ. Let q1, . . . , qr be Pfaffian functions such
that degf qi ≤ β, and let V = Z(q1, . . . , qr). If V is compact, we have

b(V ) ≤ V(n, ℓ, α, β, γ); (2.4)

where V(n, ℓ, α, β, γ) is defined in (2.1).

Proof: For r ≪ 1, we know from Lemma 1.79 that b(K∗r ) = b(V ). According to
Lemma 2.7, it is enough to estimate the Betti numbers of W = ∂K∗r , which is a smooth
compact manifold for r ≪ 1.

Up to a rotation of the coordinate system, – which does not alter the complexity of V,
– we can assume that the projection map π of W on the x1 axis is a Morse function, i.e.
has only non-degenerate critical points with distinct critical values. By standard Morse
theory [M1], b(W ) is bounded by the number of critical points of π, which in turn is
bounded by the number of (non-degenerate) solutions of the system;

q(x) − r =
∂q

∂x2

(x) = · · · =
∂q

∂xn

(x) = 0.

The first equation has degree 2β in the chain f , and the others have degree α + 2β − 1.
From Theorem 1.16, such a system has at most 2V(nℓ, α, β, γ) solutions, and the bound
on b(V ) follows. ✷
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2.1.2 The case of non-compact varieties

Assume now that V ⊆ U is not compact. Let g be an exhausting function for U , and define
for all ε > 0,

Vε = {x ∈ V | g(x) ≥ ε}. (2.5)

The set Vε is compact for all ε > 0.

Proposition 2.9 For all ε≪ 1, we have b(Vε) = b(V ).

Proof: By generic triviality, there exists ε0 > 0 such that g restricted to V is a trivial
fibration over (0, ε0). In particular, this implies that for 0 < ε′ < ε < ε0, the inclusion
Vε →֒ Vε′ is a homotopy equivalence, and thus b(Vε) is constant for ε ∈ (0, ε0). By [Spa,
Theorem 4.4.6], H∗(V ) is the inductive limit of the groups H∗(Vε), and the result follows.
✷

Theorem 2.10 (Non-compact varieties) Let f be a Pfaffian chain of length ℓ and de-
gree α defined in a domain U of bounded complexity γ. Let q1, . . . , qr be Pfaffian functions
in f of degree at most β and V = Z(q1, . . . , qr). If V is not compact, we have

b(V ) ≤ V(n, ℓ, α, β∗, γ); (2.6)

where V is defined in (2.1) and β∗ = max(β, γ
2
).

Proof: Choose ε > 0 such that b(Vε) = b(V ), and define, for ω > 0 and η > 0, the set
K = {ωq + g ≥ ε− η}. Note that K is a compact subset of U .

We can choose sequences ων and ην such that the corresponding sets Kν are smooth
manifolds with boundary, but also such that the sequence is decreasing, and that Vε =
∩νKν . In order to do that, it is enough to take a sequence ην that decreases to 0, and, if
Mν = maxKν

q, to choose ων →ν ∞ such that (ων+1 − ων)Mν ≤ ην − ην+1.

Since the decreasing sequence of compacts Kν has the compact set Vε as a limit,
Lemma 1.79 gives that b(Vε) = limν→∞ b(Kν), and by the same arguments as in Lemma 2.7,
we have 2b(Kν) = b(∂Kν). As in the proof of Theorem 2.8, we reduced our the problem
to the one of estimating the Betti numbers of a compact smooth hypersurface given by a
single Pfaffian equation {ωq+ g = ε−η}. This estimate is established by the same method
as in the compact case, by counting critical points of a projection on a coordinate axis.
After a shift of coordinates, we must estimate the number of non-degenerate solutions of
the system

h(x) − ε+ η =
∂h

∂x2

(x) = · · · =
∂h

∂xn

(x) = 0; (2.7)

where h(x) = ωq(x) + g(x). Since degf q = 2β and degf g = γ, we must have degf h ≤
max(2β, γ), and Khovanskii’s bound from Theorem 1.16 gives that the system (2.7) has at
most 2V(n, ℓ, α, β∗, γ) non-degenerate solutions. ✷
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2.2 Betti numbers of semi-Pfaffian sets

In this section, f is still a Pfaffian chain defined on a domain of bounded complexity U .
Let V be a compact Pfaffian variety of dimension d and Φ be a P-closed QF formula, with
atoms in a finite set of Pfaffian functions P = {p1, . . . , ps}.

2.2.1 Going to general position

Recall that P and V are said to be in general position if the combinatorial level (V,P),
introduced in Definition 2.1, is bounded by d. The following proposition shows that one
can reduce to this case at a low complexity cost.

Proposition 2.11 (General position) Let X = {x ∈ V | Φ(x)}, where V and Φ are as
above. Then there exists a set of 2s Pfaffian functions P∗ and a P∗-closed QF formula
Φ∗ such that the set X∗ = {x ∈ V | Φ∗(x)} verifies b(X) = b(X∗). Moreover, we have
degf P = degf P∗.

Proof: Of course, the result is non-trivial only if the combinatorial level of (V,P) is at
least d+ 1, which implies in particular that s ≥ d+ 1.

Fix t ∈ (R+)s and let Pε = {p1 ± εt1, . . . , ps ± εts}. For all ε > 0, we build from Φ
a QF formula Φε which is Pε-closed, replacing the atoms of Φ according to the following
procedure.

• An atom of the form {pi ≥ 0} is replaced by {pi ≥ −εti};

• an atom of the form {pi ≤ 0} is replaced by {pi ≤ εti};

• an atom of the form {pi = 0} is replaced by the conjunction {pi ≤ εti}∧{pi ≥ −εti}.

Then, let Xε = {x ∈ V | Φε(x)}. The sets Xε are compact and X = ∩ε>0Xε. By
Lemma 1.79, there exists ε≪ 1 such that b(Xε) = b(X).

Assume that V is a C1-smooth submanifold, and let p = (p1, . . . , ps). By Sard’s lemma,
the set of critical values of p|V has measure zero. Hence, for a generic choice of (t1, . . . , ts),
we can find ε > 0 arbitrarily small such that any element of the form (±εt1, . . . ,±εts) is
a regular value of p|V . For such a choice, (V,Pε) is in general position and we can take
X∗ = Xε. If V is not a submanifold, it can be stratified as a disjoint union of submanifolds,
and we can choose a t that will work for every stratum. ✷

Proposition 2.12 (Mayer Vietoris inequalities) Let X1 and X2 be two compact semi-
Pfaffian sets. Then, for all i, the following inequalities hold.

bi(X1) + bi(X2) ≤ bi(X1 ∪X2) + bi(X1 ∩X2); (2.8)

bi(X1 ∪X2) ≤ bi(X1) + bi(X2) + bi−1(X1 ∩X2). (2.9)
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Proof: The Mayer-Vietoris sequence [Bred] for X1 and X2 is the following.

· · · → Hi+1(X1 ∪X2) → Hi(X1 ∩X2) → Hi(X1) ⊕Hi(X2) → Hi(X1 ∪X2) → · · ·

This sequence is exact when X1 and X2 are compact, and the above inequalities follow
easily. ✷

2.2.2 Betti numbers of a basic open set

If P = {p1, . . . , ps}, the basic open set defined by P on the variety V is the set

X(V ;P) = {x ∈ V | p1(x) > 0, . . . , ps(x) > 0}. (2.10)

Definition 2.13 Let B0(n, ℓ, α, β, γ, s,m) be the maximum of b(X) where X = X(V ;P)
for some set of Pfaffian functions P on a Pfaffian variety V = Z(q1, . . . , qr), with the
following conditions.

• All functions are polynomial in some Pfaffian chain f of length ℓ and degree α,
defined on a domain U of bounded complexity γ for f ;

• |P| = s; and the combinatorial level of (V,P) is m;

• degf pi and degf qj are bounded by β for 1 ≤ i ≤ s and 1 ≤ j ≤ r.

Then, B0 admits the following upper-bound.

Lemma 2.14 (Basic set bound) Let B0(n, ℓ, α, β, γ, s,m) be as in Definition 2.13. Then,

B0(n, ℓ, α, β, γ, s,m) ≤ 2m

(
s

m

)
V(n, ℓ, α, β, γ); (2.11)

where V(n, ℓ, α, β, γ) is defined in (2.1). In particular, if U is fixed and m ≤ n, we have

B0(n, ℓ, α, β, γ, s,m) ≤

(
s

m

)
2ℓ(ℓ−1)/2O(nβ + min(n, ℓ)α)n+ℓ; (2.12)

for a constant depending on γ.

Proof: Let Xε be the set:

Xε = {x ∈ V | p1(x) ≥ ε, . . . , ps(x) ≥ ε}. (2.13)
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Applying Lemma 1.78, we have b(Xε) = b(X) for ε ≪ 1. Consider now the sets:

T = {x ∈ V | p2 ≥ ε, . . . , ps ≥ ε} ⊃ Xε,

X−ε = T ∩ {p1 ≤ −ε},

R = Xε ∪X
−
ε ,

S = T ∩ {−ε ≤ p1 ≤ ε}.

W+ = T ∩ {p1 = ε},

W− = T ∩ {p1 = −ε},

W = W+ ∪W−.

As T = R ∪ S and W = R ∩ S and R and S are compact, the Mayer-Vietoris inequal-
ity (2.8) gives:

b(R) + b(S) ≤ b(T ) + b(W ).

As the union R = Xε ∪ X−ε is a disjoint union, the Mayer-Vietoris inequality (2.9) gives
b(R) = b(Xε) + b(X−ε ). This yields:

b(X) = b(Xε) ≤ b(R) ≤ b(T ) + b(W ). (2.14)

Let P1 = {p2, . . . , ps}. For ε ≪ 1, the set T has the same Betti numbers as the basic
set X(V ;P1), and b(W ) = b(X(V +

1 ;P1)) + b(X(V −1 ;P1)), where V +
1 = V ∩ Z(p1 + ε) and

V −1 = V ∩Z(p1 − ε). The set P1 has s− 1 elements, and the corresponding combinatorial
levels are bounded by m for (V ;P1) and by m − 1 for (V +

1 ;P1) and (V −1 ;P1). Thus, the
relation (2.14) gives the following inequality.

B0(n, ℓ, α, β, γ, s,m) ≤ B0(n, ℓ, α, β, γ, s− 1, m) + 2 B0(n, ℓ, α, β, γ, s− 1, m− 1).

When s = 0, we have X(V ; ∅) = V, and when m = 0, the functions pi have constant
sign on V, so that X(V ;P) = V or X(V ;P) = ∅, depending on whether all functions of P
are positive on V or not. Thus, we obtain the following initial conditions for the induction.

{
B0(n, ℓ, α, β, γ, 0, m) ≤ V(n, ℓ, α, β, γ);

B0(n, ℓ, α, β, γ, s, 0) ≤ V(n, ℓ, α, β, γ).
(2.15)

We will prove (2.11) by induction on s, for all m ≤ s. Assume that

B0(n, ℓ, α, β, γ, s− 1, m) ≤ 2m

(
s− 1

m

)
V(n, ℓ, α, β, γ);

holds for all integers m ≤ s− 1. We have:

B0(n, ℓ, α, β, γ, s,m) ≤ B0(n, ℓ, α, β, γ, s− 1, m) + 2B0(n, ℓ, α, β, γ, s− 1, m− 1)

≤ 2m

(
s− 1

m

)
V(n, ℓ, α, β, γ) + 2 · 2m−1

(
s− 1

m− 1

)
V(n, ℓ, α, β, γ)

≤ 2m

(
s

m

)
V(n, ℓ, α, β, γ);
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where the last line follows from the Newton identity. This proves the estimate (2.11), and
the asymptotic estimate follows easily from this and Corollary 2.4. ✷

2.2.3 Bound for a P-closed formula

Definition 2.15 Let B(n, ℓ, α, β, γ, s,m) be the maximum of b(X) where X = {x ∈ V |
Φ(x)} for some P-closed formula having atoms in a set of Pfaffian functions P, where
V = Z(q1, . . . , qr) and the following holds.

• All functions are polynomial in some Pfaffian chain f of length ℓ and degree α,
defined on a domain U of bounded complexity γ for f ;

• |P| = s; and the combinatorial level of (V,P) is m;

• degf pi and degf qj are bounded by β for 1 ≤ i ≤ s and 1 ≤ j ≤ r.

Recall that the notion of P-closed formula was introduced in Definition 1.20. It is a
quantifier-free formula with atoms of the form {p = 0}, {p ≥ 0} and {p ≤ 0} for p ∈ P
that is derived without using negations.

Theorem 2.16 Let B(n, ℓ, α, β, γ, s,m) be as in Definition 2.15. Then, the following in-
equality holds

B(n, ℓ, α, β, γ, s,m) ≤ B0(n, ℓ, α, 2β, γ, s,m) + 3sB(n, ℓ, α, β, γ, 3s,m− 1); (2.16)

where B0 is as in Definition 2.13.

Proof: Let P = {p1, . . . , ps} be a family of Pfaffian functions and X = {x ∈ V | Φ(x)};
where V is a Pfaffian variety and Φ is a P-closed formula, and all the formats fit the
requirements of Definition 2.15. We will decompose X into sets that do not involve the
conditions {pi = 0}

We will start by bounding b(X) with Betti numbers of sets where the sign condition
{p1 = 0} doesn’t appear. Assume that m < s, and let

I = {I = (i1, . . . , im) | 2 ≤ i1 < · · · < is ≤ s};

and for all I ∈ I, define

ZI = {x ∈ V | pi1(x) = · · · = pim(x) = 0}.

Let Z = ∪I∈IZI . The set Z is compact, and the restriction of p1 to Z is never zero, or it
would contradict the fact that the combinatorial level of (V,P) is bounded by m. Thus,
ε1 = minZ |p1| > 0. If m = s, I is empty and we can take any positive real for ε1.
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Let 0 < η1 < ε1/2. and consider the sets:

R1 = {x ∈ V | Φ(x) ∧ (p1(x) ≤ −η1 ∨ p1(x) ≥ η1)},

W+
1 = {x ∈ V | Φ(x) ∧ (p1(x) = η1)},

W−
1 = {x ∈ V | Φ(x) ∧ (p1(x) = −η1)},

S1 = {x ∈ V | Φ(x) ∧ (−η1 ≤ p1(x) ≤ η1)},

S ′1 = {x ∈ V | Φ(x) ∧ (p1(x) = 0)}.

As X = R1 ∪ S1 the Mayer-Vietoris inequality (2.9) yields b(X) ≤ b(R1) + b(S1) +
b(R1 ∩S1), and since R1 ∩S1 = W+

1 ∪W−
1 , we obtain b(X) ≤ b(R1) + b(S1) + b(W+

1 ∪W−
1 ).

By Lemma 1.79, we have for η1 ≪ 1, B(S1) = b(S ′1), and since W+
1 ∩W−

1 = ∅, we must
have by the Mayer-Vietoris inequality (2.9) again that b(W+

1 ∪W−
1 ) ≤ b(W+

1 ) + b(W−
1 ).

Thus, we have for b(X) the following bound;

b(X) ≤ b(R1) + b(S ′1) + b(W+
1 ) + b(W−

1 ). (2.17)

Introduce the following varieties:

V1 = V ∩ Z(p1), V +
1 = V ∩ Z(p1 − η1), V −1 = V ∩ Z(p1 + η1).

S ′1 is a semi-Pfaffian subset of the variety V1 given by sign conditions on P1 = P\{p1}.
If V1 6= ∅, (V1,P1) has a combinatorial level that is at most m− 1 : if there is x ∈ V1 and
pi1 , . . . , pim, in P1 = {p2, . . . , ps} such that pi1(x) = · · · = pim(x) = 0, then x is a point in
V be such that p1(x) = pi1(x) = · · · = pim(x) = 0. This contradicts the hypothesis that
the combinatorial level of (V,P) is bounded by m.

The sets W+
1 , and W−

1 are semi-Pfaffian subsets given by sign conditions over the family
P on the varieties V +

1 and V −1 respectively. According to the choice made for η1, those
varieties do not meet the set Z = ∪I∈IZI , since each ZI is a variety obtained by setting
exactly m of the functions in {p2, . . . ps} to zero. Thus, the combinatorial level of (V +

1 ,P),
– the system over which W+

1 is defined, – is bounded by m− 1. The same holds for W−
1 .

The above discussion for W+
1 and W−

1 works for s > m only, but when m = s, the
combinatorial levels of (V +

1 ,P) and (V −1 ,P) are still bounded by m − 1 : if m functions
were to vanish at a point x ∈ V +

1 , p1 would have to be one of them, but it’s impossible
since p1 ≡ η1 on V +

1 .

Thus, the relation (2.17) bounds b(X) in terms of the Betti numbers of three sets that
have a lower combinatorial level and one set, R1 that can be defined by a sign condition
that does not involve the atom {p1 = 0}.

Now, the set R1 is defined by sign conditions where the atom p1 = 0 doesn’t appear
any more. We can use a similar treatment on this set to eliminate the atom p2 = 0 by
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defining the following sets:

R2 = {x ∈ R1 | Φ(x) ∧ (p2(x) ≤ −η2 ∨ p2(x) ≥ η2)},

W+
2 = {x ∈ R1 | Φ(x) ∧ (p2(x) = η2)},

W−
2 = {x ∈ R1 | Φ(x) ∧ (p2(x) = −η2)},

S2 = {x ∈ R1 | Φ(x) ∧ (−η2 ≤ p2(x) ≤ η2)},

S ′2 = {x ∈ R1 | Φ(x) ∧ (p2(x) = 0)}.

Here, η2 is any positive real number smaller than ε2/2, where ε2 is the minimum of |p2|
over all the varieties given by m equations on V chosen among p1 = η1, p1 = −η1, and
pi = 0 for i ≥ 3. Repeating the previous arguments, we obtain

b(R1) ≤ b(R2) + b(S ′2) + b(W+
2 ) + b(W−

2 ) (2.18)

when η2 ≪ 1. Note that again, the sets S ′2,W
+
2 and W−

2 are defined with systems that
have a combinatorial level at most m − 1. Repeating this until all the functions pi have
been processed, we end up with a bound of the form:

b(X) ≤ b(Rs) +

s∑

i=1

b(S ′i) + b(W+
i ) + b(W−

i ). (2.19)

In this relation, the sets S ′i, W
+
i and W−

i are all defined by a system of combinatorial level
at most m−1. All that remains is to estimate b(Rs). We will show now that we can bound
b(Rs) by the sum of Betti numbers of a certain basic semi-Pfaffian set.

Let C be a connected component of Rs. Then, C is contained in one of the basic closed
sets of the form

{x ∈ V | p1(x) ≥ ±η1, . . . , ps(x) ≥ ±ηs}.

Indeed, if it wasn’t the case, there would be points y and z of C and an index i such that
pi(y) ≤ −ηi and pi(z) ≥ ηi. The points x and y would be joined by a curve contained in
C that would have to intersect the variety Z(pi). by construction, Rs does not meet any
of the varieties Z(p1), . . . ,Z(ps), so C is indeed contained in one of the sets of the form
above.

Let’s assume for simplicity that C is contained in the subset of V defined by pi(x) ≥ ηi

for all 1 ≤ i ≤ s. By Lemma 1.78, the equality b(C) = b(C ′) holds when η1, . . . , ηs are small,
where C ′ is the connected component of the basic set {x ∈ V | p1(x) > 0, . . . , ps(x) > 0}
such that C ⊆ C ′.

Define the basic set

Σ = {x ∈ V | p2
1(x) > 0, . . . , p2

s(x) > 0};

and let Σ∗ be the union of all connected components D of Σ such that D ∩ Rs 6= ∅.
Following the above arguments, we have b(Rs) = b(Σ∗) ≤ b(Σ) for η1, . . . , ηs small enough.
We can thus bound b(Rs) using Lemma 2.14, and the inequality (2.16) follows. ✷



58 CHAPTER 2. BETTI NUMBERS OF SEMI-PFAFFIAN SETS

Theorem 2.17 For B as in Definition 2.15, we have the following inequality.

B(n, ℓ, α, β, γ, s,m) ≤ (5s)m V(n, ℓ, α, 2β, γ). (2.20)

In particular, if X ⊆ V is a semi-Pfaffian subset of a compact variety V given by a P-closed
formula of format (n, ℓ, α, β, s), we have

b(X) ≤ (10s)d V(n, ℓ, α, 2β, γ). (2.21)

Proof: For m = 0, no function in P can change sign on X, so any connected component of
V is either not in X or a connected component of X. For any space X, its singular homology
is the direct sum of the homology of its connected components [Spa, Theorem 4.4.5]. Thus,
for m = 0, we have b(X) ≤ b(V ), and (2.20) holds by Theorem 2.8, since we certainly have
V(n, ℓ, α, β, γ) ≤ V(n, ℓ, α, 2β, γ).

Assume (2.20) holds at rank m−1. Using the inductive relation proved in Theorem 2.16
and the bound on B0 from Lemma 2.14, we obtain;

B(n, ℓ, α, β, γ, s,m) ≤

[
2m

(
s

m

)
+ 3 · 5m−1sm

]
V(n, ℓ, α, 2β, γ).

We can bound the binomial coefficient with:
(
s

m

)
=

s!

m!(s−m)!
=
s(s− 1) · · · (s−m + 1)

m!
≤ sm;

which gives us:

2m

(
s

m

)
+ 3 · 5m−1sm ≤

(
2m + 3 · 5m−1

)
sm ≤ (5s)m.

This concludes the induction, proving (2.20).

The inequality (2.21) follows from this and from the general position argument of
Proposition 2.11. ✷

Corollary 2.18 Let V ⊆ U compact Pfaffian variety, d = dim(V ), and let X = {x ∈ V |
Φ(x)} where Φ is a P-closed Pfaffian formula. If the format of X is (n, ℓ, α, β, γ, s), the
following bound holds.

b(X) ≤ sd 2ℓ(ℓ−1)/2O(nβ + min(n, ℓ)α)n+ℓ;

where the constant depends only on U .

Proof: The result follows simply from (2.21) and the asymptotic estimates for V appearing
in Corollary 2.4. ✷
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2.2.4 Bounds for non-compact semi-Pfaffian sets

The results of this section can be extended to the case where V is not compact, including
the case V = U . Let Φ be a P-closed formula and V ⊆ U be a non-compact Pfaffian variety.
Let X = {x ∈ V | Φ(x)}.

First, define Vε = V ∩ {g(x) ≥ ε}, where g is an exhausting function for U , and
Xε = X ∩ Vε. For ε ≪ 1, we have b(X) = b(Xε), so we are reduced to estimating b(Xε).

Proposition 2.11 on general position can be repeated verbatim for Xε instead of X, so
we can construct X∗ε compact defined by a P∗ closed formula, where the combinatorial
level of (V,P∗) is bounded by dim(V ), and |P∗| ≤ 2s+ 2.

If the combinatorial level of (V,P∗) is zero, we have b(X∗) ≤ b(Vε). If V 6= U , this can
be estimated using our bounds on varieties. If V = U , Lemma 2.7 indicates that b(Vε) can
be estimated from b(Z(g− ε)). Since Z(g− ε) is a compact variety, this last invariant can
be estimated by Theorem 2.8 without problem.

Thus, the inductions can be initiated. The Mayer-Vietoris arguments also hold in this
case: for instance, we can restrict all the set to {g(x) ≥ δ} for δ ≪ ε, so that we keep
compact sets at all times.

Thus, analogues of Lemma 2.14 and Theorem 2.17 hold for the case where V is not
compact. The precise bounds are slightly different, but we obtain asymptotic bounds which
are identical to Corollary 2.18. We will finish this discussion with the following result.

Corollary 2.19 (Complements of P-closed sets) Let f be a Pfaffian chain defined
on a domain U of bounded complexity. Let Φ be a P-closed Pfaffian formula of format
(n, ℓ, α, β, s) and let X = {x ∈ U | Φ(x)}. We have

b(Rn\X) ≤ sd 2ℓ(ℓ−1)/2O(nβ + min(n, ℓ)α)n+ℓ;

where the constant depends on U .

Proof: We can assume without loss of generality that X is compact. By Alexander
duality [Bred], the equality b(Rn\X) = b(X) + 1 holds, so the result follows from Corol-
lary 2.18. ✷

2.2.5 Applications to fewnomials

Now, we apply the results of this section to semi-algebraic sets defined in the positive
quadrant (R+)n. As explained in Remark 1.6, we can reduce the problem by a change
of variables to a problem about Pfaffian functions in a chain of length r, where r is the
number of non-zero monomials appearing in the polynomials defining the set. Thus, the
following result follows from Corollary 2.18.
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Corollary 2.20 Let X ⊆ V ⊆ (R+)n be defined by a P-closed formula, where V =
Z(q1, . . . , qr) and pi and qj are polynomials. If dim(V ) = d and the number of non-zero
monomials appearing in the polynomials pi and qj is r, we have

b(X) ≤ sd 2O(n2r4).

2.3 Counting the number of cells

Let f be a Pfaffian chain defined on a domain of bounded complexity U , and let q1, . . . , qr,
and P = {p1, . . . , ps} be Pfaffian functions in f . We let V = Z(q1, . . . , qr). This section
is devoted to giving an upper-bound on the number of cells C(V ;P) introduced in Defini-
tion 1.29.

Recall that we denote by S the set of conjunctions strict sign conditions σ on P. For
σ ∈ S, we let S(V ; σ) be the corresponding basic set {x ∈ V | σ(x)}.

To count the number of connected components of S(V ; σ), we construct a variety
V (σ) ⊆ S(V ; σ) such that b0(V (σ)) ≥ b0(S(V ; σ)).

2.3.1 Components deformation

Fix positive numbers a1, . . . , as, b1, . . . , bs, ε and δ, and let P ′ = {p1±δa1, . . . , ps±δas, p1±
ηb1, . . . , ps±ηbs, g−ε}. We let Ve = V ∩{g(x) ≥ ε}, and we choose ε≪ 1 so that Vε meets
every connected component of every set S(V ; σ) for σ ∈ S.

Fix δ > 0, and for any σ ∈ S, consider the set C1(σ) ⊆ Vε defined on P ′ by replacing
any atom {pi > 0} of σ by {pi ≥ δai} and any atom {pi < 0} by {pi ≤ −δai}.

Proposition 2.21 There is δ0 > 0 such that for all δ ≤ δ0 and for all strict sign condition
σ ∈ S, we have b0(S(V ; σ)) ≤ b0(C1(σ)).

Proof: It’s enough to find a δ0 for a fixed sign condition σ. Clearly, C1(σ) ⊆ S(V ; σ), so
all we need to do is prove that if D is a connected component of S(V ; σ), it meets C1(σ)
when δ is small enough. Fix x∗ ∈ D ∩ Vε. Then, x∗ ∈ C1(σ) if and only if for all i such
that pi(x

∗) 6= 0, we have |pi(x
∗)| ≥ δai. Since D∩Vε is compact, such a condition will hold

for δ small enough. ✷

Fix η > 0 and for a sign condition σ ∈ S, define C2(σ) to be the set defined on Vε

by the following replacement rules: as in the definition of C1(σ), any atom {pi > 0} of σ
by {pi ≥ δai} and any atom {pi < 0} by {pi ≤ −δai}. Moreover, the atoms of the type
{pi = 0} are replaced by {−ηbi ≤ pi ≤ ηbi}.

Proposition 2.22 Let δ ≤ δ0 be fixed. Then there exists a η0 > 0 such that for all σ ∈ S,
and for all η ≤ η0, we have the equality b0(C1(σ)) = b0(C2(σ)).
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Proof: Again, it is enough to prove the result for a fixed σ ∈ S. The sets C2(σ) form
a decreasing sequence of compacts converging to C1(σ) when η goes to zero, so the result
follows readily. ✷

2.3.2 Varieties and cells

The following result allows to extract from sets defined by weak inequalities varieties that
meet every connected components of those sets.

Proposition 2.23 Let p1, . . . , ps be Pfaffian functions, V a Pfaffian variety and C be a
connected component of the set {x ∈ V | p1(x) ≥ 0, . . . , ps(x) ≥ 0}. Then, there exists
I ⊆ {1, . . . , s}, ( possibly empty) such that C contains a connected component of the set
VI = {x ∈ V | pi(x) = 0 ∀i ∈ I}.

Proof: Take I a set such that C ∩VI 6= ∅ and I is maximal for inclusion. Let x ∈ C ∩VI

and D be the connected component of VI containing x. Assume D 6⊆ C. Let y in D\C :
there exists an index j 6∈ I such that pj(y) < 0. Since j 6∈ I, and x ∈ C, it implies that
pj(x) > 0. Let z(t) be a path connecting x = z(0) to y = z(1) in D; by the intermediate
value theorem, there exists t0 such that pj(z(t0)) = 0. If t0 is the smallest with this property,
we must have z(t0) ∈ C. But we have pi(z(t0)) = 0 for all i ∈ I ∪{j}, and that contradicts
the maximality of I since j 6∈ I. ✷

Proposition 2.24 There exists a1, . . . , as, ε positive real numbers such with ε < ε0 such
that, for all 0 < δ < 1 we can find positive real numbers b1, . . . , bs for which for all
0 < η < 1, the family

P ′ = {p1 ± δa1, . . . , ps ± δas, p1 ± ηb1, . . . , ps ± ηbs, g − ε};

is in general position over V.

Proof: This is essentially a repeat of the proof of Proposition 2.11. ✷

We can now state the main result.

Theorem 2.25 Let f be a Pfaffian chain defined on a domain U ⊆ Rn, of bounded com-
plexity γ. Let P = {p1, . . . , ps} be Pfaffian functions defined in the chain f with degree β
and V be a Pfaffian variety of dimension d given by equations of degree at most β in the
same chain. Then,

C(V ;P) ≤ Σ(s, d)V(n, ℓ, α, β⋆, γ); (2.22)

where β⋆ = max(β, γ) and

Σ(s, d) =
∑

0≤i≤d

(
4s+ 1

i

)
.
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Proof: According to the results proved in this section, it is enough to bound the number
of connected components of all the sets of the form C2(σ) for a suitable choice of the real
numbers a1, . . . , as, ε, δ, b1, . . . , bs and η.

For a fixed σ ∈ S, we can bound the number of connected components of C2(σ), using
Proposition 2.23, by counting the connected component of all the Pfaffian varieties defined
on V by equations taken among the elements of P ′.

According to Proposition 2.24, we can assume that the sets of the form C2(σ) are given
by functions which are in general position over V. Then, we have to count the connected
components of sets of the form

{x ∈ V | pi1 = ⋆i1 , . . . , pik = ⋆ik} or {x ∈ V | g = ε, pi2 = ⋆i2, . . . , pik = ⋆ik},

where ⋆i ∈ {−δai,−ηbi, δai, ηbi}, only for 0 ≤ k ≤ d.
This gives Σ(s, d) possible sets of equations over V. We can then apply Theorem 2.8

and the result follows. ✷

Remark 2.26 (Combinatorial lemma) We have Σ(s, d) ≤ (4s+ 1)d.

Proof: By definition, Σ(s, d) is the number of subsets of cardinality at most d in a set
with 4s + 1 elements. If f is a function from A = {1, . . . , d} to B = {1, . . . , 4s + 1}, we
have |f(A)| ≤ d, and thus Σ(s, d) is bounded by the number of maps f : A → B which is
(4s+ 1)d. ✷

Remark 2.27 As explained in Chapter 1, the bound (2.22) has two corollaries: it bounds
b0(X) for any semi-Pfaffian set X, and bounds the cardinality of the set of consistent sign
assignments: {σ ∈ S | S(V ; σ) 6= ∅}. In particular, note that for a fixed d, the bound on
C(V ;P) is a polynomial in s.

Corollary 2.28 (Fewnomial case) Let K be a set of r exponents in Nn. If V ⊆ Rn is
a d-dimensional variety defined by K-fewnomials and P is a set of s K-fewnomials, the
number of cells of P over V is bounded by

C(V ;P) ≤

(
s

d

)
2O(n2r4).

Proof: Divide Rn in 2n quadrants and the n coordinate hyperplanes. By Theorem 2.25,
a bound of this type holds for each quadrant, and we can iterate this on the coordinate
hyperplanes. The number of cells is then bounded by the sum of the number of cells of the
restriction to each set in the partition. Thus we get

C(V ;P) ≤ 2n

(
s

d

)
2O(n2r4) + n

(
s

d

)
2O((n−1)2r4);

and the result follows. ✷
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2.4 Borel-Moore homology of semi-Pfaffian sets

We conclude this chapter by estimates on the Borel-Moore Betti numbers of a locally closed
semi-Pfaffian set. These estimates follow the techniques that appear in [Bürg, MMP, Yao]
but yield a tighter bound even in the semi-algebraic case because of our use of the improved
bound on the number of cells (Theorem 2.25 in the previous section) derived from [BPR1].
In particular, this estimate lets us bound b(X) for X a compact semi-Pfaffian set which
is not necessarily defined by a P-closed formula. However, this estimate was recently
outranked by recent work of Gabrielov and Vorobjov [GV4]. Their result is stated in
Theorem 2.34 for reference purposes.

Throughout the rest of the section, we will assume without loss of generality that all
sets under consideration are bounded.

Recall that a locally closed subset of Rn is any set that can be defined as the intersection
of an open set and a closed set. In particular, any basic semi-Pfaffian set is locally closed,
but a general semi-Pfaffian set is not necessarily so, since clearly the subset of R2 defined
by {x < 0, y < 0} ∪ {x ≥ 0, y ≥ 0} is not locally closed.

Definition 2.29 (Borel-Moore homology) Let X be a locally closed semi-Pfaffian set.
We then define its Borel-Moore homology by

HBM

∗ (X) = H∗(X, ∂X; Z).

We will denote by bBM(X) the rank of HBM

∗ (X).

Note that when X is compact, we have of course b(X) = bBM(X). The key property of
Borel-Moore homology is the following result.

Lemma 2.30 Let X be a locally closed semi-Pfaffian set and Y ⊆ X be closed in X. Then,
the following inequality holds.

bBM(X) ≤ bBM(X\Y ) + bBM(Y ). (2.23)

Proof: (See also [BCR, §11.7].) Let C ⊆ B ⊆ A be compact definable sets. We can
triangulate A so that B and C are subcomplexes of A. This yields an exact sequence

· · · −→ Hi+1(A,B) −→ Hi(B,C) −→ Hi(A,C) −→ Hi(A,B) −→ · · · (2.24)

Now, if X is bounded and locally closed, we have X = U ∩ F for U open and F closed.
Thus, we have ∂X = ∂U ∩F, so ∂X is compact, and since Y is closed in X, the set ∂X ∪Y
is compact too. Thus, setting A = X, B = ∂X ∪ Y and C = ∂X in (2.24), we obtain the
exact sequence

· · · −→ Hi+1(X, ∂X∪Y ) −→ Hi(∂X∪Y, ∂X) −→ Hi(X, ∂X) −→ Hi(X, ∂X∪Y ) −→ · · ·
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Let Y ′ be the interior of Y in X. It is easy to check that X\Y = X\Y ′ and that ∂(X\Y ) =
∂X ∪ (Y \Y ′) = (∂X ∪ Y )\Y ′ (the last one since ∂X ∩ Y ′ = ∅). Thus, by excision, we
obtain for all i the following isomorphism

Hi(X, ∂X ∪ Y ) ∼= Hi(X\Y ′, (∂X ∪ Y )\Y ′) = HBM(X\Y ).

Similarly, since Y is closed in X, we have ∂Y ⊆ ∂X, so if Z is the interior of ∂X in ∂X ∪Y,
we have x ∈ ∂X ∩ ∂Y if and only if x 6∈ Z. Hence, one obtains by excision that

Hi(∂X ∪ Y, ∂X) ∼= Hi((∂X ∪ Y )\Z, ∂X\Z) = HBM(Y ).

Thus, we end up with the long exact sequence

· · · −→ HBM

i+1(X\Y ) −→ HBM

i (Y ) −→ HBM

i (X) −→ HBM

i (X\Y ) −→ · · ·

The inequality (2.23) then follows easily. ✷

This result allows to derive immediately an upper-bound for any basic set.

Proposition 2.31 Let P = {p1, . . . , ps} be a family of Pfaffian functions in a given chain
f of length ℓ and degree α, defined on a domain U of bounded complexity. Suppose that
the maximum of degf pi is bounded by β, and let σ ∈ S be a strict sign condition on P.
Then, if V is a Pfaffian variety of dimension d defined by equations of degree bounded by
β, we have

bBM(S(V ; σ)) ≤ sd 2ℓ(ℓ−1)/2O(nβ + min(n, ℓ)α)n+ℓ; (2.25)

where the constant depends only on the domain U .

Proof: Without loss of generality, we can assume that we have

S(V ; σ) = {x ∈ V | p1(x) = · · · = pr(x) = 0, pr+1 > 0, . . . , ps(x) > 0}.

Let q = pr+1 · · · ps, and define the sets

X = {x ∈ V | p1(x) = · · · = pr(x) = 0, pr+1 ≥ 0, . . . , ps(x) ≥ 0};

Y = {x ∈ V | p1(x) = · · · = pr(x) = 0, q(x) = 0, pr+1 ≥ 0, . . . , ps(x) ≥ 0}.

The sets X and Y are closed, with Y ⊆ X, and we have S(V ; σ) = X\Y. Thus, by
Lemma 2.30, we have

bBM(S(V ; σ)) ≤ bBM(X) + bBM(Y ) = b(X) + b(Y );

(since X and Y are compact). The upper-bound follows from the estimates on the sum of
Betti numbers for P-closed formulas appearing in Corollary 2.18. ✷
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Theorem 2.32 Let V be a Pfaffian variety of dimension d and X be a locally closed semi-
Pfaffian subset of V of format (n, ℓ, α, β, γ, s). The rank of the Borel-Moore homology of
X verify

bBM(X) ≤ s2d 2ℓ(ℓ−1)O(nβ + min(n, ℓ)α)2(n+ℓ); (2.26)

where the constant depends only on the domain U .

Proof: Let P = {p1, . . . , ps} be the set of possible functions appearing in the atoms of
the formula defining X. Using Lemma 2.30 twice, we obtain

bBM(X) ≤ bBM(X ∩ {p1 < 0}) + bBM(X ∩ {p1 = 0}) + bBM(X ∩ {p1 > 0}).

Repeating this inductively for p2, . . . , ps, we obtain

bBM(X) ≤
∑

σ∈S

bBM(X ∩ S(V ; σ)). (2.27)

Since X is defined on V by a sign condition on P, the intersections X ∩S(V ; σ) are either
empty or equal to S(V ; σ). The bound (2.25) is known for bBM(S(V ; σ)), and since the
number of terms appearing in the right-hand side of (2.27) is bounded by the number of
cells C(V ;P) of P on V, we can combine the bound from Theorem 2.25 to (2.25) to obtain
the above upper-bound on bBM(X). ✷

Remark 2.33 (Compact case) As mentioned earlier, if X is a compact semi-Pfaffian
set, it is certainly locally closed and verifies H∗(X) = HBM

∗ (X), and thus, in this case,
Theorem 2.32 gives an upper-bound on b(X).

We conclude this chapter by giving, for reference purposes, a very recent result (Summer
2003) of Gabrielov and Vorobjov. It is the most general upper-bound known for the sum
of the Betti numbers of semi-Pfaffian set, since it does not have require any hypothesis on
the topology of the set or the shape of the defining formula. As mentioned earlier, it gives
for compact sets a sharper bound than Theorem 2.32.

Theorem 2.34 (Gabrielov-Vorobjov [GV4]) Let X be any semi-Pfaffian set defined
by a quantifier free formula of format (n, ℓ, α, β, s). The sum of the Betti numbers of X
admits a bound of the form

b(X) ≤ 2ℓ(ℓ−1)/2 s2nO(nβ + min(n, ℓ)α)n+ℓ; (2.28)

where the constant depends only on the definable domain U .

The estimate (2.28) is obtained by constructing a set X1 defined by a P∗-closed formula,
where

P∗ = {hi | 1 ≤ i ≤ s} ∪ {h2
i − εj | 1 ≤ i, j ≤ s}.

For a suitable choice 1 ≫ ε1 ≫ · · · ≫ εs > 0, we have b(X1) = b(X), and the result then
follows from Theorem 2.17.
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Chapter 3

Betti numbers of sub-Pfaffian sets

The first section of this chapter is devoted to proving the following theorem.

Theorem 3.1 Let f : X → Y be a surjective continuous compact covering1 map. Then,
for all k ∈ N, we have

bk(Y ) ≤
∑

p+q=k

bq(W
p
f (X)); (3.1)

where Wp
f (X) is the (p+ 1)-fold fibered product of X over f,

Wp
f (X) = {(x0, . . . ,xp) ∈ Xp+1 | f(x0) = · · · = f(xp)}. (3.2)

The rest of the chapter contains applications of this result to establish upper-bounds
on the Betti numbers of sub-Pfaffian subsets of the cube. Applications of this theorem to
relative closures will be found in Chapter 5.

If I = [0, 1] and X is a semi-Pfaffian set in the N = n0 + · · ·+nν-dimensional cube IN ,
and Q1, . . . , Qν is a sequence of alternating quantifiers, the set

S = {x0 ∈ In0 | Qνxν ∈ Inν . . . Q1x1 ∈ In1 , (x0, . . . ,xν) ∈ X};

is a sub-Pfaffian set [G3]. If X is semi-algebraic, then S is semi-algebraic too. When ν is
small, the bounds established here for b(S) are better than the previously known bounds
coming from cell decomposition [Col, GV2, PV] or quantifier elimination.

The chapter is organized as follows: the first section describes the construction of a
spectral sequence Er

p,q that gives Theorem 3.1. Section 2 contains various topological lem-
mas, and section 3 applies the theorem to the case of a set defined by one quantifier block
(Theorem 3.20 and Corollary 3.21), initiating the induction. In section 4, we establish an
inductive relation for the bound for ν quantifiers (Theorem 3.24), and use it to deduce
general upper-bounds (Corollary 3.25 for the Pfaffian case and Corollary 3.26 for the alge-
braic case). For semi-algebraic sets, a comparison is presented in section 5 between those
bounds and the previously available ones using quantifier elimination.

1f : X → Y is compact covering if and only if for any compact L ⊆ Y, there exists a compact K ⊆ X

such that f(K) = L.

67
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3.1 Spectral sequence of a surjective map

For a closed surjection f, Theorem 3.1 will be proved in the following way. We will construct
a space Jf(X) which is homotopically equivalent to Y, and has a natural filtration Jf

p (X).
This filtration gives rise to a spectral sequence Er

p,q converging to the homology of Jf (X), as
described in the Appendix. The first term of the sequence E1

p,q is isomorphic toHq(W
p
f (X)),

which will prove the result. The convergence for a compact-covering map will be deduced
from the closed case in Theorem 3.12.

In this section, X, Y and P0, . . . Pp are topological spaces, and fi : Pi → Y are contin-
uous surjective maps. We denote by ∆p the standard p-simplex

∆p = {s = (s0, . . . , sp) ∈ Rp+1 | s0 ≥ 0, . . . , sp ≥ 0, s0 + · · · + sp = 1}.

Definition 3.2 (Join) For a sequence (P0, . . . , Pp) of topological spaces, their join P0 ∗
· · · ∗ Pp can be defined as the quotient

P0 × · · · × Pp × ∆p/ ∼;

where ∼ is the join relation

(x0, . . . , xp, s) ∼ (x′0, . . . , x
′
p, s
′) iff s = s′ and (si 6= 0) ⇒ (xi = x′i). (3.3)

Recall that if for all i, fi : Pi → Y is a continuous surjective map, we can define the
fibered product

P0 ×Y · · · ×Y Pp = {(x0, . . . , xp) ∈ P0 × · · · × Pp | f0(x0) = · · · = fp(xp)}.

Note that there is a natural map

F : P0 ×Y · · · ×Y Pp → Y

(x0, . . . , xp) 7→ fi(xi); (taking any 0 ≤ i ≤ p.)

Definition 3.3 (Fibered join) For P0, . . . , Pp as above, we define the fibered join P0 ∗Y

· · · ∗Y Pp as the quotient space of P0 ×Y · · · ×Y Pp × ∆p over the join relation (3.3).

The map F : P0 ×Y · · · ×Y Pp → Y extends naturally to P = P0 ∗Y · · · ∗Y Pp. Indeed,
for any (x0, . . . , xp) and (x′0, . . . , x

′
p) in P0 ×Y · · · ×Y Pp → Y such that (x0, . . . , xp, s) ∼

(x′0, . . . , x
′
p, s) for some s ∈ ∆p, we must have xi = x′i for some 0 ≤ i ≤ p, and thus

F (x0, . . . , xp) = F (x′0, . . . , x
′
p). We still denote this map by F. For any point y ∈ Y the

fiber F−1(y) coincides with the join f−1
0 (y) ∗ · · · ∗ f−1

p (y) of the fibers of fi.
The other natural map is the projection π : P → ∆p. If s is in the interior of ∆p, the

equivalence relation ∼ is trivial over s, so we must have

∀s ∈ int(∆p), π−1(s) = P0 ×Y · · · ×Y Pp.
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For 0 ≤ i ≤ p, define Qi to be the fibered join

Qi = P0 ∗Y · · · ∗Y Pi−1 ∗Y Pi+1 ∗Y · · · ∗Y Pp.

Then, one can define a map ϕi : Qi → P by

ϕi(y0, . . . , yi−1, yi+1, . . . , yp, t) = (y0, . . . , yi−1, xi, yi+1, . . . , yp, s)

where xi ∈ Pi is any point and

sj =






tj if j < i;

0 if j = i;

tj−1 if j > i.

Lemma 3.4 The map ϕi is an embedding Qi → P, and ϕi(Qi) = π−1{si = 0}. Moreover,
the space

P/

(
⋃

i

ϕi(Qi)

)
;

is homotopy equivalent to the p-th suspensionof P0 ×Y · · · ×Y Pp.

Proof: The map ϕi sends Qi to points (x0, . . . , xp, s) of P such that si = 0 by construction.
This means also that ϕi does not depend on the choice of the point xi ∈ Pi. ✷

We now consider the case of a continuous surjection f : X → Y. For all p ∈ N, define
Jf

p (X) to be the fibered join of p+ 1 copies of X over f,

Jf
p (X) = X ∗Y · · · ∗Y X︸ ︷︷ ︸

p+1 times

. (3.4)

Definition 3.5 (Join space) If f is as above, the join space Jf (X) is the quotient space

⊔

p

Jf
p (X)/ ∼; (3.5)

where we identify, for all p ∈ N,

Jf
p−1(X) ∼ ϕi(J

f
p−1(X)) ⊆ Jf

p (X), for all 0 ≤ i ≤ p.

When Y is a point, we write Jp(X) instead of Jf
p (X) and J(X) instead of Jf(X).

Lemma 3.6 Let ϕ : Jp(X) → J(X) be the natural map induced by the maps ϕi. Then
ϕ(Jp−1(X)) is contractible in ϕ(Jp(X)).
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Proof: Let x be a point inX. For t ∈ [0, 1], the maps gt(x, x1, . . . , xp, s) 7→ (x, x1, . . . , xp, ts)
define a contraction of ϕ0(Jp−1(X)) to the point x ∈ X where X is identified with its em-
bedding in Jp(X) as π−1(1, 0, . . . , 0). It is easy to see that the maps gt are compatible
with the equivalence relations in Definition 3.5 and define a contraction of ϕ(Jp−1(X)) to
a point in ϕ(Jp(X)). ✷

Proposition 3.7 Let f : X → Y be a closed surjective continuous map, where X and Y
are definable in an o-minimal structure. If Jf (X) is the join space introduced in Defini-
tion 3.5, we have

H∗(J
f (X)) ∼= H∗(Y ).

Proof: Let F : Jf (X) → Y be the natural map induced by f . Its fiber F−1y over a point
y ∈ Y coincides with the join space J(f−1y). According to Lemma 3.6, ϕ(Jp−1(f

−1y)) is
contractible in J(f−1y), for each p, so H̄∗(J(f−1y)) = 0.

Since J(f−1y) is a definable quotient, it is locally contractible, so by Proposition A.5,

we also have for the reduced Alexander cohomology ˜̄H∗(J(f−1y)) = 0.

Since F : Jf (X) → Y is a closed continuous surjection with fibers that are trivial for
the Alexander cohomology, we can apply to F the Vietoris-Begle theorem (Theorem A.6)
to obtain H̄∗(Jf(X)) ∼= H̄∗(Y ), which implies that H∗(J

f (X)) ∼= H∗(Y ). ✷

Notation 3.8 (Fibered products) Throughout this chapter, for f : X → Y a continu-
ous surjection, we will denote by Wp

f (X) the (p+ 1)-fold fibered product of X over f,

Wp
f (X) = X ×Y · · · ×Y X︸ ︷︷ ︸

p+1 times

= {(x0, . . . ,xp) ∈ (X)p+1 | f(x0) = · · · = f(xp)}.

Moreover, if A ⊆ X, we will denote by Wp
f (A) the corresponding fibered product for the

restriction f |A.

Theorem 3.9 (Spectral sequence, closed case) Let f : X → Y be a closed surjective
continuous map, where X and Y are definable in an o-minimal structure. Then, there
exists a spectral sequence Er

p,q converging to H∗(Y ) with

E1
p,q

∼= Hq(W
p
f (X)) (3.6)

Proof: By Theorem A.1, the filtration of Jf(X) by the spaces Jf
p (X) gives rise to a

spectral sequence Er
p,q converging to H∗(J

f(X)), which, by Proposition 3.7, is isomorphic
to H∗(Y ).

The first term of the sequence is E1
p,q = Hp+q(Ap), where

Ap = Jf
p (X)/

(
⋃

q<p

Jf
q (X)

)
.
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From Lemma 3.4, the space Ap is homotopy equivalent to the p-th suspension of Wp
f (X),

and thus we have E1
p,q

∼= Hq(W
p
f (X)), proving the theorem. ✷

One of the features of spectral sequences is that the rank of the limit of a spectral
sequence is controlled by the rank of the initial terms. Such estimates are discussed in
more details in Corollary A.2 in the appendix, and applying them to the present situation
yields the estimates of Theorem 3.1 for a closed f.

Remark 3.10 The condition of o-minimality is not really important here. If X is the
difference between a finite CW-complex and one of its subcomplexes, and Y is of the same
type, the spaces J(f−1y) are still locally contractible and the result still holds.

For a locally split map 2 f , the convergence of the same spectral sequence can be derived
from [DHI, Corollary 1.3]. However, this follows from a more general result: the spectral
sequence converges when f is a compact covering map. Let us first recall the definition.

Definition 3.11 (Compact covering) A map f : X → Y is called compact covering if
for all compact L ⊆ Y, there exists a compact K ⊆ X such that f(K) = L.

Note that if f is closed or locally split, it is necessarily compact-covering.

Theorem 3.12 (Spectral sequence, compact covering case) Let f : X → Y be a
definable, compact covering surjection. Then, there exists a spectral sequence Er

p,q converg-
ing to H∗(Y ) with

E1
p,q

∼= Hq(W
p
f (X)). (3.7)

Proof: Recall that the singular homology of a space is isomorphic to the direct limit of
its compact subsets [Spa, Theorem 4.4.6]. Since f is compact covering, if K and L range
over all compact subsets of X and Y respectively, the following inductive limits verify

lim
−→

H∗(f(K)) = lim
−→

H∗(L) ∼= H∗(Y ). (3.8)

Let p be fixed and Lp be a compact subset of the fibered product Wp
f (X). If for all 0 ≤ i ≤ p,

πi denotes the canonical projection (x0, . . . ,xp) 7→ xi, we let Kp = π0(Lp) ∪ · · · ∪ πp(Lp).
Observe then that the set Wp

f (Kp) is a compact subset of Wp
f (X) containing Lp. Thus, we

also have the following equality

lim
−→

H∗(W
p
f (Kp)) = lim

−→
H∗(Lp) ∼= H∗(W

p
f (X)). (3.9)

For any compact subset K of X, the restriction f |K is closed, so by Theorem 3.9, there
exists a spectral sequence Er

p,q(K) that converges to H∗(f(K)) and such that E1
p,q(K) ∼=

Hq(W
p
f (K)). By (3.8) and (3.9), the direct limit of Er

p,q(K) when K ranges over all compact
subsets of X is a spectral sequence converging to H∗(Y ) and verifying (3.7). ✷

2A map f : X → Y is locally split if it admits continuous sections defined around any point y ∈ Y. In
particular, the projection of an open set is always locally split.
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Example 3.13 Note that without an additional assumption on X and Y, the spectral se-
quence may not converge to H∗(Y ). For instance, consider for X any open segment in R3.
Let {a, b} = ∂X, assume a 6= b and let f be any projection such that f is 1-to-1 on X and
there exists c ∈ X such that f(a) = f(b) = f(c). Then, if Y = f(X), we have b1(Y ) = 2,
but since X is contractible, b1(X) = 0, and since f is 1-to-1 on X, we have b0(W1

f (X)) = 1,
so b1(Y ) > b1(X) + b0(W

1
f (X)). The inequality of Theorem 3.1 does not hold in this case.

Remark 3.14 For a map f with 0-dimensional fibers, a similar spectral sequence, called
“image computing spectral sequence”, was applied to problems in theory of singularities
and topology by Vassiliev [V], Goryunov-Mond [GoM], Goryunov [Go], Houston [Hou], and
others. In sheaf cohomology, the corresponding spectral sequence is known as cohomological
descent [Del].

3.2 Topological lemmas

Throughout the rest chapter, I denotes the closed interval [0, 1] and open and closed are
meant in a cube Im (for some m).

Lemma 3.15 Let X ⊆ In+p be closed (resp. open). Then, the sets

Y = {y | ∃x ∈ Ip, (x,y) ∈ X}, and Z = {y | ∀x ∈ Ip, (x,y) ∈ X};

are both closed (resp. open).

Proof: Let π be the canonical projection Rn+p → Rn. The sets Y and Z can be defined
by Y = π(X) and In\Z = π(In+p\X). Since π is continuous, it sends closed sets to closed
sets, since any closed subset of a cube is compact. Moreover, π also sends open sets to
open sets. The result then follows easily. ✷

Lemma 3.16 (Alexander duality in the cube 1) Let X ⊆ In be a definable open set.
For any 0 ≤ q ≤ n− 1, we have

H̃q(X ∪ Jn) ∼= Hn−q−1(In\X); (3.10)

where Jn = (−ε, 1 + ε)n\In for some ε > 0.

Proof: Let Sn = Rn ∪ {∞} be the one-point compactification of Rn, and let K be the
complement of X∪Jn in Sn. Since K is closed and not empty,we have by Alexander duality
in Sn [Bred, Corollary VI.8.6];

H̃q(X ∪ Jn) = H̃q(S
n\K) ∼= ˜̌Hn−q−1(K); (3.11)
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and since K is triangulable, the right-hand side of this equation is isomorphic to H̃n−q−1(K).
If C0, . . . , CN are the connected components ofK, where ∞ ∈ C0, then C0 = Sn\(−ε, 1+ε)n

is contractible and C1 ∪ · · · ∪ CN = In\X. This implies that

H∗(K) ∼= H∗(In\X) ⊕H∗(C0);

and as C0 is contractible, we obtain that H̃∗(K) ∼= H∗(In\X). Substituting this result
in (3.11) gives the lemma. ✷

To prove a similar result in the case where X is closed, we will need the following
lemma.

Lemma 3.17 Let I0 be the open interval (0, 1), and let X ⊆ In be closed. Then, we have
H∗(I

n
0 \X) ∼= H∗(I

n\X).

Proof: Consider for δ > 0 the set Xδ defined by

Xδ = {x ∈ In | dist(x,X) < δ}.

Since In\Xδ is a compact subset of In\X, we have H∗(I
n\X) ∼= H∗(I

n\Xδ) for δ ≪ 1.
(The proof uses the same arguments as the proof of Lemma 1.78.) But clearly In\Xδ is
homotopy equivalent to In

0 \Xδ, and we also have H∗(I
n
0 \Xδ) ∼= H∗(I

n
0 \X) for δ ≪ 1. ✷

Lemma 3.18 (Alexander duality in the cube 2) Let X ⊆ In be a definable closed
subset. For any 0 ≤ q ≤ n− 1, we have

Hq(I
n\X) ∼= H̃n−q−1(X ∪ ∂In). (3.12)

Proof: Let us consider the compact set K = X ∪ ∂In. As in the proof of Lemma 3.16,
Alexander duality in Sn gives

H̃q(S
n\K) ∼= ˜̌Hn−q−1(K). (3.13)

Again, the right-hand side above is isomorphic to H̃n−q−1(K), since K is triangulable.
Let C0, . . . , CN be the connected components of Sn\K, with ∞ ∈ C0. The component
C0 is simply Sn\In, and thus is contractible. As before, we can derive from this that
H̃∗(S

n\K) ∼= H∗(I
n\K). If I0 = (0, 1), we have In\K = In

0 \X, and we can conclude using
Lemma 3.17. ✷

Lemma 3.19 (Generalized Mayer-Vietoris inequalities) Let X1, . . . , Xm ⊆ In be all
open or all closed in In. Then

bi

(
⋃

1≤j≤m

Xj

)
≤

∑

J⊆{1,...,m}

bi−|J |+1

(
⋂

j∈J

Xj

)
; (3.14)

and

bi

(
⋂

1≤j≤m

Xj

)
≤

∑

J⊆{1,...,m}

bi+|J |−1

(
⋃

j∈J

Xj

)
. (3.15)
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Proof: The proof is by induction by m. For m = 2, the result follows from the exactness
of the Mayer-Vietoris sequence of (X1, X2). If the result is true up to m − 1, then define
Y = X2 ∪ · · · ∪Xm and Z = X2 ∩ · · · ∩Xm. Then (3.14) and (3.15) follow from the Mayer-
Vietoris sequences of (X1, Y ) and (X1, Z) respectively. ✷

3.3 The one quantifier case

In this section, we apply the spectral sequence discussed earlier to sub-Pfaffian sets defined
using a single quantifier.

Let f be a Pfaffian chain on a domain U ⊆ Rn0+n1 of bounded complexity γ for f , such
that In0+n1 ⊆ U . Let P be a set of Pfaffian functions in the chain f and Φ(x0,x1) be a
P-closed formula. We denote by π0 the canonical projection Rn0+n1 → Rn0.

Theorem 3.20 (Existential bound) Let Φ be as above, and let X = {(x0,x1) ∈ In0+n1 |
Φ(x0,x1)} and Y = π0(X). Then, if the format of Φ is (n0 + n1, α, β, s), we have for all
k ∈ N,

bk(Y ) ≤ (ks+ n0 + kn1)N 2L(L−1)/2 O(Nβ + min(N,L)α)N+L; (3.16)

where N = n0 + (k + 1)n1 and L = (k + 1)ℓ.
Moreover, if X ′ = {(x0,x1) ∈ In0+n1 | ¬Φ(x0,x1)} and Y ′ = π0(X ′), the same bound

holds for bk(Y ′).

Proof: Theorem 3.1 is applicable to the map π0 restricted to X, giving

bk(Y ) ≤
∑

p+q=k

bq(W
p(X));

where Wp(X) is the (p + 1)-fold fibered product of X over Y. We can build from the
Pfaffian chain f a chain F = (f(x0,y0), . . . ,f(x0,yp)) of length (p + 1)ℓ and degree α
by substituting successively each yj for x1. The set Wp(X) is defined by the following
quantifier-free formula in that chain.

(x0,y0, . . . ,yp) ∈ In0 × I(p+1)n1 ∧ Φ(x0,y0) ∧ · · · ∧ Φ(x0,yp).

This formula is P ′-closed for some P ′, and its format is

(n0 + (p+ 1)n1, (p+ 1)ℓ, α, β, (p+ 1)s+ 2[n0 + (p+ 1)n1]);

and by Corollary 2.18, we have

b(Wp(X)) ≤ (ps+ n0 + pn1)n0+(p+1)n1 2(p+1)ℓ((p+1)ℓ−1)/2

O[(n0 + pn1)β + min(n0 + pn1, pℓ)α]n0+(p+1)(n1+ℓ).
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Summing the above for 0 ≤ p ≤ k gives (3.16).

When considering the case of Y ′, Theorem 3.1 is again applicable, so we still have
bk(Y ′) ≤

∑
p+q=k bq(W

p(X ′)), but here Wp(X ′) is defined by the formula

(x0,y0, . . . ,yp) ∈ In0 × I(p+1)n1 ∧ ¬Φ(x0,y0) ∧ · · · ∧ ¬Φ(x0,yp);

which is neither a P-closed formula nor the negation of one, but we can reduce to that case
in the following way. Let Iε be the interval [ ε, 1− ε], and let Wp

ε (X ′) be the set defined by

Wp
ε (X ′) = {(x0,y0, . . . ,yp) ∈ int(In0+(p+1)n1) | ¬Φ(x0,y0) ∧ · · · ∧ ¬Φ(x0,yp)}.

For ε ≪ 1, we have bq(W
p(X ′)) = bq(W

p
ε (X ′)) for all q. Since Wp

ε (X ′) is given by the
negation of a P ′-closed formula of format

(n0 + (p+ 1)n1, (p+ 1)ℓ, α, β, (p+ 1)s+ 4[n0 + (p+ 1)n1]).

Corollary 2.19 is applicable, and yields the same asymptotic bound as the bound for
b(Wp(X)). ✷

Corollary 3.21 (Universal bound) Let Φ be as above and let Z = {x0 ∈ In0 | ∀x1 ∈
In1,¬Φ(x0,x1)}. Then, if the format of Φ is (n0 + n1, α, β, s), we have for all k ∈ N,

bk(Z) ≤ (n0 + (n0 − k)(s+ n1))
N∗

2L∗(L∗−1)/2 O(N∗β + min(N∗, L∗)α)N∗+L∗

; (3.17)

where N∗ = n0 + (n0 − k)n1, and L∗ = (n0 − k)ℓ.

Moreover, if Z ′ = {x0 ∈ In0 | ∀x1 ∈ In1 ,Φ(x0,x1)}, the same bound holds for bk(Z ′).

Proof: Let F be the closed set F = In0\Z.We have bk(Z) = bk(In0\Z), so by Lemma 3.18,
it is enough to estimate bn−k−1(F ∪ ∂In0) to estimate bk(Z). Let

X = {(x0,x1) ∈ In0+n1 | Φ(x0,x1)} ∪ ∂I
n0 × In1.

Note thatX can be given by a quantifier-free P-closed formula. Moreover, we have π0(X) =
F ∪ ∂In0 . Thus, we can apply Theorem 3.20 to estimate the Betti numbers of F ∪ ∂In0 ,
and thus of Z. The case of Z ′ is identical. ✷

Remark 3.22 The P-closed formula hypothesis is not really necessary here. Note that
similar estimates can be established for a compact set X defined by a formula Φ that is
not P-closed, replacing the estimates of Corollary 2.18 by the Borel-Moore estimates of
Theorem 2.32.
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3.4 The case of two and more quantifiers

We will now generalize the results of the previous section to the case of an arbitrary
number of quantifiers. Complementation (with the use of Alexander duality) allows to
apply repeatedly the spectral sequence argument, by forcing the outer quantifier to be
existential, and thus we can deduce estimates by induction.

Let us fix n0 ∈ N and n = (n1, n2, . . .) a sequence of positive integers. For any ν ≥ 0,
we let N(ν) = n0 + · · · + nν .

Definition 3.23 For n as above, we let E(n, n0, ν, ℓ, α, β, s) be the maximum of b(S),
where S ⊆ In0 is a sub-Pfaffian set defined as follows: Φ should be a quantifier-free formula
with format (N(ν), ℓ, α, β, s) (see Definition 1.18 and Definition 1.19), for some Pfaffian
chain f defined on a domain U ⊇ IN(ν). We assume furthermore that the semi-Pfaffian
set {x ∈ IN(ν) | Φ(x)} is either open or closed in IN(ν). Then, if Q1, . . . , Qν is a sequence
of alternating quantifiers, the set S is defined by

S = {x0 ∈ In0 | Qνxν ∈ Inν . . . Q1x1 ∈ In1 ,Φ(x0,x1,x2, . . . ,xν)}. (3.18)

If Φ1, . . . ,ΦM are quantifier-free formulas defined in the same Pfaffian chain, defining
only open or only closed sets in the cube IN(ν), and with the same format (N(ν), ℓ, α, β, s),
and if Q1, . . . , Qν is a fixed sequence of alternating quantifiers, we can define for all 1 ≤
m ≤M

Sm = {x0 ∈ In0 | Qνxν ∈ Inν . . . Q1x1 ∈ In1,Φm(x0,x1,x2, . . . ,xν)}.

Then, we also define EM(n, n0, ν, ℓ, α, β, s) to be the maximum of b(S), where

• S = S1 ∪ · · · ∪ SM , if Qν = ∃; or

• S = S1 ∩ · · · ∩ SM , if Qν = ∀.

Theorem 3.24 For any ν ≥ 1 and any values of the other parameters, the quantity
EM(n, n0, ν, ℓ, α, β, s) is bounded by

(4Mn0)n0 En0(n, (nν + 1)n0, ν − 1, n0ℓ, α, β, n0s). (3.19)

Proof: Let Φ1, . . . ,ΦM be quantifier-free formulas as in Definition 3.23, and consider the
sets

Xm = {(x0,x1) ∈ In0+n1 | ∀xν−1 ∈ Inν−1 . . . Q1x1 ∈ In1,Φm(x0,x1, . . . ,xν)}.

Let X = X1 ∪ · · · ∪ XM , and let Sm = π1(Xm), where π1 is the canonical projection
Rn0+n1 → Rn0. We will bound the Betti numbers of S = S1 ∪ · · · ∪ SM . We can always
reduce to this case by taking complement, in the same way as in the proof of Corollary 3.21.
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Step one: spectral sequence argument. Note that union and projection commute, so we
have S = π1(X). Since X is open or closed (by Lemma 3.15) we can apply Theorem 3.1
to π1 to obtain

bk(S) ≤
∑

p+q=k

bq(W
p(X));

where Wp(X) is the corresponding fibered product. If for all p, yp = (y0, . . . ,yp) denotes
a bloc of (p + 1) times nν variables, and if mp = n0 + (p + 1)nν denotes the total number
of variables in (x0,y

p), we have

Wp(X) = {(x0,y
p) ∈ Imp |

p∧

j=0

M∨

m=1

(x0,yj) ∈ Xm}. (3.20)

Step two: Mayer-Vietoris and duality. If we define for 1 ≤ m ≤M and 0 ≤ j ≤ p,

Y m
j = {(x0,y

p) ∈ Imp | (x0,yj) ∈ Xm}; (3.21)

we then have from (3.20)

Wp(X) =

p⋂

j=0

M⋃

m=1

Y m
j . (3.22)

We can use the generalized Mayer-Vietoris inequality (3.15) to transform the intersection
above in a union; we obtain

bq(W
p(X)) ≤

∑

J⊆{0,...,p}

bq+|J |−1

(
⋃

j∈J

M⋃

m=1

Y m
j

)
(3.23)

Define Q̃i as the opposite quantifier to Qi, i.e. Q̃i = ∃ if Qi = ∀ and vice-versa, and
for all j and m, let Zm

j be the subset defined by

Zm
j = {(x0,y

p) ∈ Imp | (x0,yj) 6∈ Xm} (3.24)

= {(x0,y
p) ∈ Imp | ∃xν−1 ∈ Inν−1 · · · Q̃1x1 ∈ In1 ¬Φm(x0,x1, . . . ,xν)}. (3.25)

By comparing (3.21) and (3.24), we notice that Zm
j = Imp\Y m

j . For all J, we have

⋂

j∈J

M⋂

m=1

Zm
j =

(
Imp\

⋃

j∈J

M⋃

m=1

Y m
j

)
;
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and so by Alexander duality (Lemma 3.16 or Lemma 3.18), we obtain (up to the boundary
terms which we will neglect for the sake of simplifying the notations)

bq+|J |−1

(
⋃

j∈J

M⋃

m=1

Y m
j

)
= bmp−q−|J |+1

(
⋂

j∈J

M⋂

m=1

Zm
j

)
. (3.26)

Now, using the other Mayer-Vietoris inequality (3.14), we have

bmp−q−|J |+1

(
⋂

j∈J

M⋂

m=1

Zm
j

)
≤

∑

K⊆J×{1,...,M}

bmp−q−|J |+|K|




⋃

(j,m)∈K

Zm
j


 . (3.27)

Note that the sets Zm
j are subsets of Imp, and therefore we have bi(Z

m
j ) = 0 for i ≥ mp.

Thus, we can restrict the sum above to subsets K such that mp − q − |J | + |K| ≤ mp − 1,
which gives

|K| ≤ q + |J | − 1 ≤ q + p. (3.28)

Combining this fact with (3.26) and (3.27), we obtain

bq+|J |−1

(
⋃

j∈J

M⋃

m=1

Y m
j

)
≤

∑

K⊆J×{1,...,M},|K|≤p+q

bmp−q−|J |+|K|




⋃

(j,m)∈K

Zm
j



 . (3.29)

Step three: combinatorial estimates for bq(W
p(X)). Let p and q be fixed. We will

estimate bq(W
p(X)) in terms of E . For any J ⊆ {0, . . . , p} and K ⊆ {0, . . . , p}×{1, . . . ,M},

we let

YJ =
⋃

j∈J

M⋃

m=1

Y m
j , and ZK =

⋃

(j,m)∈K

Zm
j .

We let j0 = |J | and k0 = |K|, and we denote by J (j0) and K(k0) respectively the set of
subsets of {0, . . . , p} of cardinality j0 and the set of subsets of {0, . . . , p}×{1, . . . ,M} with
cardinality k0. With these notations, the inequality (3.29) can be written as

bq+j0−1(YJ) ≤

p+q∑

k0=1

∑

K∈K(k0)

bmp−q−j0+k0(ZK). (3.30)

Let K ⊆ {0, . . . , p} × {1, . . . ,M} be fixed and consider the set

Σ(j0, K) = {J ∈ J (j0) | K ⊆ J × {1, . . . ,M}}.
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Then, for every J ∈ Σ(j0, K), the term bmp−q−j0+k0(ZK) appears, – when bounding bq+j0−1(YJ),
– on the right-hand side of (3.30). Thus, if σ(j0, K) denotes the cardinality of Σ(j0, K),
we obtain, when summing (3.30) over all J ∈ J (j0),

∑

J∈J (j0)

bq+j0−1(YJ) ≤

p+q∑

k0=1

∑

K∈K(k0)

σ(j0, K) bmp−q−j0+k0(ZK).

Since Σ(j0, K) ⊆ J (j0), we have the trivial bound σ(j0, K) ≤ 2j0+1 ≤ 2p+1. Using this in
the above inequality, we get

∑

J∈J (j0)

bq+j0−1(YJ) ≤ 2p+1

p+q∑

k0=1

∑

K∈K(k0)

bmp−q−j0+k0(ZK). (3.31)

Recall that from (3.23), we have

bq(W
p(X)) ≤

p+1∑

j0=1

∑

J∈J (j0)

bq+j0−1(YJ).

Thus, summing (3.31) for 1 ≤ j0 ≤ p + 1, we obtain

bq(W
p(X)) ≤ 2p+1

p+1∑

j0=1

p+q∑

k0=1

∑

K∈K(k0)

bmp−q−j0+k0(ZK).

We can change the ordering of the sums in the right hand side to obtain

bq(W
p(X)) ≤ 2p+1

p+q∑

k0=1

∑

K∈K(k0)

p+1∑

j0=1

bmp−q−j0+k0(ZK)

and since obviously
∑p+1

j0=1 bmp−q−j0+k0(ZK) ≤ b(ZK), we get

bq(W
p(X)) ≤ 2p+1

p+q∑

k0=1

∑

K∈K(k0)

b(ZK). (3.32)

Now, observe that every set ZK is given by a union of |K| sets Zm
j , which by the

formula (3.25) are sub-Pfaffian subsets of Imp given by an alternation of ν − 1 quantifier,
starting with ∃. The formula defining Zm

j is Φm(x0, . . . ,xν−1,yj). Thus, defining ZK may
require up to p+ q such formulas (since |K| ≤ p+ q) for 1 ≤ m ≤M and 0 ≤ j ≤ p. Since
each such formula involves s Pfaffian functions of degree at most β defined in a chain of
length ℓ, the set ZK can be defined with (p+ q)s functions which are defined in a Pfaffian
chain of length (p+ 1)ℓ. By definition of EM , it follows that

b(ZK) ≤ E |K|(n, mp, ν − 1, (p+ 1)ℓ, α, β, (p+ q)s)
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Since |K| ≤ p+ q, using this estimate in (3.32) gives that bq(W
p(X)) is bounded by

2p+1[M(p + 1)]p+q Ep+q(n, mp, ν − 1, (p+ 1)ℓ, α, β, (p+ q)s); (3.33)

since we have (as in Remark 2.26)

p+q∑

k0=1

∑

K∈K(k0)

1 =

p+q∑

k0=1

(
M(p+ 1)

k0

)
≤ [M(p + 1)]p+q.

Step four: summing up. To bound b(S), all we need to do now is to sum up (3.33) for
0 ≤ k ≤ n0−1 and p+ q = k. For all the terms in the sums, we have p+ q ≤ n0, p+ 1 ≤ n0

and mp ≤ (nν + 1)n0, so all the terms Ep+q from (3.33) will be bounded by

En0(n, (nν + 1)n0, ν − 1, n0ℓ, α, β, n0s).

All that remains to be estimated is a term of the form

n0−1∑

k=0

∑

p+q=k

2p+1[M(p + 1)]p+q

which is clearly bounded by (2M)n0
∑n0−1

k=0 knk
0 ≤ (4Mn0)n0 , and thus the bound (3.19)

follows. ✷

Corollary 3.25 Let uν = 2νn0nν · · ·n1 and vν = 22νn2
0n

2
ν · · ·n

2
3n2. Then, we have

E(n, n0, ν, ℓ, α, β, s) ≤ 2O(νuν+ℓ2v2
ν)sO(uν)[uν(α + β)]O(uν+ℓvν).

Proof: Using the Gabrielov-Vorobjov estimate for arbitrary semi-Pfaffian sets (Theo-
rem 2.34), we can generalize Theorem 3.20 and Corollary 3.21 to obtain, for ν = 1, that

EM(n, n0, 1, ℓ, α, β, s) ≤ 2n0ℓ(n0ℓ−1)/2 (sM)2n0(n1+1)O(n0n1(α+ β))n0(n1+1+ℓ). (3.34)

(Using the fact that union and existential quantifiers commute, as do intersections and
universal quantifiers.)

Let us now apply Theorem 3.24 inductively. After i iterations, we will denote by Ni the
number of free variables, si the number of Pfaffian functions, ℓi the length of the Pfaffian
chain, Mi the number of sets, and a number Fi so that

EM(n, n0, ν, ℓ, α, β, s) ≤ Fi E
Mi(n, Ni, ν − i, ℓi, α, β, si).

We let N0 = n0, s0 = s,M0 = M,F0 = 1, ℓ0 = ℓ. From Theorem 3.24, we know that

N1 = (nν + 1)n0, s1 = n0s, M1 = n0, F1 = (4Mn0)n0 and ℓ1 = n0ℓ.



3.4. THE CASE OF TWO AND MORE QUANTIFIERS 81

Thus, we obtain for these parameters the following inductions

Ni+1 = (nν−i + 1)Ni

si+1 = Nisi = sN0 · · ·Ni

Mi+1 = Ni

Fi+1 = Fi(4MiNi)
Ni

ℓi+1 = Niℓ+ ℓi = (N0 + · · · +Ni)ℓ.

From the induction on Ni, we obtain that Ni+1 ≤ 2Ninν−i+1, and thus for all i,

Ni ≤ 2in0nν · · ·nν−i+1;

After ν − 1 iteration, and applying (3.34), one gets

EM(n, n0, ν, ℓ, α, β, s) ≤ Fν−1 E
Mν−1(n, Nν−1, 1, ℓν−1, α, β, sν−1)

≤ Fν−1 2O(N2
ν−1ℓ2ν−1) (sν−1Mν−1)2Nν−1(n1+1)O(Nν−1n1(α+ β))Nν−1(n1+1+ℓν−1).

Using the notations introduced in the statement of the corollary, we obtain

Nν−1n1 = O(uν), and Nν−1ℓν−1 = Nν−1ℓ

ν−2∑

j=0

Nj ≤ Nν−1(ν − 1)Nν−2 = O(vν).

We also have 2Nν−1(n1 + 1) = O(uν), so we can bound the term (sν−1Mν−1)2Nν−1(n1+1) by

(sN0 · · ·Nν−3N
2
ν−2)O(uν) ≤ (sNν

ν−2)O(uν) ≤ (suν)O(uν);

and we also have

Fν−1 =

ν−1∏

i=0

(4MiNi)
Ni ≤ MN0 (4Nν−2Nν−1)

N0+···+Nν−1 ≤Mn0 2O(νuν).

Using the above estimates, one derives easily an upper-bound for EM(n, n0, ν, ℓ, α, β, s) in
terms of the parameters (M,n0, . . . , nν , ℓ, α, β, s), and the stated result follows from the
case where M = M0 = 1. ✷

Corollary 3.26 (Semi-algebraic case) Let S ⊆ In0 be as in Definition 3.23, for a for-
mula Φ having as atoms s polynomials of degree bounded by d. Then, we have

b(S) ≤ [2ν2

d s n0n1 · · ·nν ]O(2ν n0n1···nν).

Proof: The result follows from the proof of Corollary 3.25, replacing β by d and setting
α = ℓ = 0. ✷
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3.5 Comparison with quantifier elimination

We will now compare the results obtained in Corollary 3.26 with the bounds that can be
established using quantifier elimination. Similar comparisons can be made in the Pfaffian
case between Corollary 3.25 and effective cylindrical decomposition as appear in [GV2]
and [PV]. However, we will restrict our attention to the algebraic case for simplicity.

Let X be a semi-algebraic subspace of n0 + · · · + nν-space defined by s polynomials of
degree bounded by d, and let

S = {x0 ∈ Rn0 | Qνxν ∈ Rnν . . . Q1x1 ∈ Rn1 , (x0,x1,x2, . . . ,xν) ∈ X}.

The set S can be effectively described by a quantifier-free formula Ψ(x0). The best com-
plexity results for Ψ appear in [BPR2] (see also [B3]). We have there

Ψ(x0) =
∨

1≤i≤I

∧

1≤j≤Ji

sign(Pi,j(x0)) = εi,j;

for some family of polynomials Pi,j and some sign conditions εi,j ∈ {= 0, > 0, < 0}, with

I ≤ s
∏

i≥0(ni+1)d(n0+1)
∏

i≥1 O(ni);

Ji ≤ s
∏

i≥1(ni+1)d
∏

i≥1 O(ni);

degPi,j ≤ d
∏

i≥1 O(ni).

From this, we can derive the following estimate.

Proposition 3.27 Let S be as above. Then the sum of the Betti numbers of S verifies

b(S) ≤ s4n0(n0+1)
∏

i≥0(ni+1) dO(n2
0n1···nν).

Proof: The set S is defined by a quantifier-free formula involving at most σ = J1 · · ·JI

polynomials of degree δ ≤ d
∏

i≥1 O(ni). By [GV4], the sum of the Betti numbers is bounded
by O(σ2δ)n0 . Bounding σ and δ gives the proposition. ✷

Thus, the estimate in Proposition 3.27 is better than Corollary 3.26 asymptotically in
ν, but Corollary 3.26 is better for small values of ν. (For a fixed value of ν, Corollary 3.26
is better when n0 goes to infinity.)

Remark 3.28 Note that Proposition 3.27 is a much more general result than Corol-
lary 3.26, since it is not necessary to make assumptions on the topology of X or S, nor is
it necessary to restrict ourselves to cubes.



Chapter 4

Connected components of limit sets

In this chapter, we will give effective estimates for the number of connected components of
the relative closure (X, Y )0 of a semi-Pfaffian couple (X, Y ). This estimate is established
first in the smooth case, by estimating the number of local extrema of the distance function
dist(·, Yλ) on Xλ. In the singular case, deformation techniques are used to reduce to the
case of smooth hypersurfaces.

Note that the case where Y = ∅ is trivial. Indeed, this implies that (∂X)+ = ∅, and
since X is assumed to be relatively compact (see Remark 1.72), Xλ is compact for all λ
and the number of connected components of X0 is bounded by the number of connected
components of a generic fiber Xλ for λ ≪ 1. Since Xλ is semi-Pfaffian, Theorem 2.25
provides an estimate in that case.

Thus, we’ll assume throughout the present chapter that Y 6= ∅. In the first section, we
establish a property that proves the finiteness of b0((X, Y )0). This is used in the second
part to provide the quantitative estimates, first in the smooth case (Theorem 4.4) and then
in the singular case (Theorem 4.6). These results are then used in the third section to give
upper-bounds in the fewnomial case.

4.1 Finiteness of the number of connected compo-

nents

We show here how to reduce the problem of counting the number of connected components
of a limit set to a problem in the semi-Pfaffian setting.

Let Φ be the (squared) distance function on Rn × Rn :

Φ : Rn × Rn −→ R

(x,y) 7→ |x− y|2
(4.1)

For any λ > 0, we can define the distance to Yλ, Ψλ on Xλ by:

Ψλ(x) = min
y∈Yλ

Φ(x, y). (4.2)

83
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Define similarly for x ∈ X̌ :

Ψ(x) = min
y∈Y̌

Φ(x, y). (4.3)

Theorem 4.1 Let (X, Y ) be a semi-Pfaffian couple. Then, there exists λ ≪ 1 such that
for every connected component C of (X, Y )0, we can find a connected component Dλ of the
set of local maxima of Ψλ such that Dλ is arbitrarily close to C.

Proof: Let C be a connected component of (X, Y )0. Note that by definition of the relative
closure, if x is in C, it cannot be in Y̌ . So we must have Φ(x, y) > 0 for all y ∈ Y̌ , and
since Y̌ is compact, we must have Ψ(x) > 0. Also, any point in ∂C must be in X̌, but not
in (X, Y )0. So we must have ∂C ⊆ Y̌ , hence Ψ|∂C ≡ 0. This means that the restriction of
Ψ to C takes its maximum inside of C.

Choose x0 ∈ C, and let c = Ψ(x0) > 0. For a small λ, there is a point xλ ∈ Xλ close to
x0 such that cλ = Ψλ(xλ) is close to c, and is greater than the maximum of the values of
Ψλ over points of Xλ close to ∂C. Hence the set {x ∈ Xλ | Ψλ(x) ≥ cλ} is nonempty, and
the connected component Aλ of this set that contains xλ is close to C. There exists a local
maximum x∗λ ∈ Aλ of Ψλ. If Dλ is the connected component in the set of local maxima of
Ψλ, it is contained in Zλ and is close to C. ✷

From the above theorem, we can not only deduce that (X, Y )0 has finitely many con-
nected components, but also derive effective estimates.

4.2 Bounding the number of connected components

4.2.1 Finding local maxima of the distance function

We will now show how the number of connected components of the set of local maxima of
Ψλ that appear in Theorem 4.1 can be estimated when the sets Xλ and Yλ are smooth.

Define for all p,

Zp
λ = {(x, y0, . . . , yp) ∈W p

λ | Φ(x, y0) = · · · = Φ(x, yp)}, (4.4)

where

W p
λ = {(x, y0, . . . , yp) ∈ Xλ × (Yλ)p+1 | yi 6= yj, 0 ≤ i < j ≤ p}. (4.5)

Lemma 4.2 Assume (X, Y ) is a Pfaffian couple such that Xλ and Yλ are smooth for
all λ > 0. For a given λ > 0, let x∗ be a local maximum of Ψλ(x). Then, there exists
0 ≤ p ≤ dim(Xλ) and a point z∗ = (x∗, y∗0, . . . , y

∗
p) ∈ Zp

λ such that Zp
λ is smooth at z∗, and

z∗ is a critical point of Φ(x, y0) on Zp
λ.
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Proof: Since x∗ is a local maximum of Ψλ(x), there exists a point y∗0 ∈ Yλ such that
Φ(x∗, y∗0) = miny∈Yλ

Φ(x∗, y) = Ψλ(x∗). In particular, dyΦ(x, y) = 0 at (x, y) = (x∗, y∗0).
If (x∗, y∗0) is a critical point of Φ(x, y) (this is always the case when dim(Xλ) = 0) the
statement holds for p = 0. Otherwise dxΦ(x, y∗0) 6= 0 at x = x∗. Let ξ be a tangent vector
to X at x∗ such that dxΦ(x∗, y∗0)(ξ) > 0.

Assume that for all y ∈ Yλ such that Φ(x∗, y) = Ψλ(x∗), we have dxΦ(x, y)(ξ) > 0 when
x = x∗. Let γ(t) be a curve on Xλ such that γ(0) = x∗ and γ̇(0) = ξ. For all y ∈ Yλ,
there exists Ty such that for all 0 < t < Ty, the inequality Φ(γ(t), y) > Φ(x∗, y) holds. By
compactness of Yλ, this means we can find some t such that that inequality holds for all
y ∈ Yλ. Hence, Ψλ(γ(t)) > Ψλ(x∗), which contradicts the hypothesis that Ψλ has a local
maximum at x∗.

Since x∗ is a local maximum of Ψλ(x), there exists a point y∗1 ∈ Yλ such that dxΦ(x, y∗1)(ξ) ≤
0 at x = x∗ and Φ(x∗, y∗1) = Ψλ(x∗). In particular, y∗1 6= y∗0, dyΦ(x∗, y) = 0 at y = y∗1,
and dxΦ(x, y∗1) 6= dxΦ(x, y∗0) at x = x∗. This implies that (x∗, y∗0, y

∗
1) ∈ Z1

λ, and Z1
λ is

smooth at (x∗, y∗0, y
∗
1). If (x∗, y∗0, y

∗
1) is a critical point of Φ(x, y0) on Z1

λ (this is always
the case when dim(Xλ) = 1) the statement holds for p = 1. Otherwise dxΦ(x, y∗0) and
dxΦ(x, y∗1) are linearly independent at x = x∗. Since dim(Xλ) ≥ 2, there exists a tangent
vector ξ to Xλ at x∗ such that dxΦ(x∗, y∗0)(ξ) > 0 and dxΦ(x∗, y∗0)(ξ) > 0. Since x∗ is
a local maximum of Ψλ(x), there exists a point y∗2 ∈ Yλ such that dxΦ(x, y∗2)(ξ) ≤ 0 at
x = x∗ and Φ(x∗, y∗2) = Ψλ(x∗). This implies that (x∗, y∗0, y

∗
1, y
∗
2) ∈ Z2

λ, and Z2
λ is smooth

at (x∗, y∗0, y
∗
1, y
∗
2). The above arguments can be repeated now for Z2

λ, Z
3
λ, etc., to prove the

statement for all p ≤ dim(Xλ). ✷

Assume now that Xλ and Yλ are effectively non-singular, i.e. they are of the following
form:

Xλ = {x ∈ Rn | p1(x, λ) = · · · = pn−d(x, λ) = 0};

Yλ = {y ∈ Rn | q1(y, λ) = · · · = qn−k(y, λ) = 0};
(4.6)

where, for all λ > 0, we assume that dxp1 ∧ · · · ∧ dxpn−d 6= 0 on Xλ and that dyq1 ∧ · · · ∧
dyqn−k 6= 0 on Yλ. In particular, we have dim(Xλ) = d and dim(Yλ) = k.

Remark 4.3 Note that we assume that no inequalities appear in (4.6). We can clearly
make that assumption for Yλ, since that set has to be closed for all λ > 0. For Xλ, we
observe the following: if C is a connected component of Cp

λ, the critical set of Φ|Zp

λ
, the

function Φ is constant on C. If C contains a local maximum for Ψλ, it cannot meet ∂Xλ

because ∂Xλ ⊆ Yλ. Hence, we do not need to take into account the inequalities appearing
in the definition of Xλ.

Let us now define for all p,

θp : (y0, . . . , yp) ∈ (Yλ)p+1 7→
∑

0≤i<j≤p

|yi − yj|
2. (4.7)
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Then, for Xλ and Yλ as in (4.6), the sets Zp
λ are defined for all p by the following conditions.





p1(x, λ) = · · · = pn−d(x, λ) = 0;

q1(yi, λ) = · · · = qn−k(yi, λ) = 0, 0 ≤ i ≤ p;

Φ(x, yi) − Φ(x, yj) = 0, 0 ≤ i < j ≤ p;

(4.8)

and the inequality

θp(y0, . . . , yp) > 0. (4.9)

Under these hypotheses, we obtain the following bound.

Theorem 4.4 (Basic smooth case) Let (X, Y ) be a semi-Pfaffian couple defined in a
domain of bounded complexity γ, such that for all small λ > 0, Xλ and Yλ are effectively
non-singular basic sets of dimension respectively d and k. If the fiber-wise format of (X, Y )
is (n, ℓ, α, β, s), the number of connected components of (X, Y )0 is bounded by

2

d∑

p=0

V((p + 2)n, (p+ 2)ℓ, α, βp, γ); (4.10)

where βp = max{1 + (n − k)(α + β − 1), 1 + (n − d + p)(α + β − 1)}, and V is defined
in (2.1).

Proof: According to Theorem 4.1, we can chose λ > 0 such that for any connected
component C of (X, Y )0, we can find a connected component Dλ of the set of local maxima
of Ψλ such that Dλ is close to C. We see that for λ small enough, two connected components
C and C ′ of (X, Y )0 cannot share the same connected component Dλ, since Dλ cannot meet
Y̌ for λ small enough. Indeed, the distance from Dλ to Y̌ is bounded from below by the
distance from Dλ to Yλ, – which is at least cλ, – minus the distance between Yλ and Y̌ .
But the latter distance goes to zero, whereas the former goes to a positive constant c when
λ goes to zero.

Once that λ is fixed, all we need to do is estimate the number of connected components
of the set of local maxima of Ψλ. According to Lemma 4.2, we can reduce to estimating
the number of connected components of the critical sets Cp

λ of the restriction Φ|Zp

λ
for

0 ≤ λ ≤ d.

For the sake of concision, we will drop λ from the notations in this proof, writing Zp

for Zp
λ, pi(x) for pi(x, λ), etc. . .

A point z = (x, y0, . . . , yp) ∈ Zp is in Cp if and only if the following conditions are
satisfied:

{
dyΦ(x, yj) = 0, 0 ≤ j ≤ p;

rank (dxΦ(x, y0), . . . , dxΦ(x, yp)) ≤ p.
(4.11)



4.2. BOUNDING THE NUMBER OF CONNECTED COMPONENTS 87

For Xλ and Yλ as in (4.6), those conditions become:

{
rank {∇yq1(yi), . . . ,∇yqn−k(yi),∇yΦ(x, yi)} ≤ n− k, 0 ≤ i ≤ p;

rank {∇xp1(x), . . . ,∇xpn−d(x),∇xΦ(x, y0), . . . ,∇xΦ(x, y0)} ≤ n− d+ p.
(4.12)

Those conditions translate into all the maximal minors of the corresponding matrices van-
ishing. These minors are Pfaffian functions in the chain used to define X and Y. Their
degrees are respectively 1 + (n− k)(α + β − 1) and 1 + (n− d+ p)(α+ β − 1).

The number of connected components of Cp is bounded by the number of connected
components of the set Dp defined by the conditions in (4.8) and (4.9), and the vanishing
of the maximal minors corresponding to the conditions in (4.12).

Let Ep be the set defined by the equations (4.8) and (4.12), so that Dp = Ep∩{θp > 0}.
Then, the number of connected components of Dp is bounded by the number of connected
components of Ep plus the number of connected components of Ep ∩ {θp = ε} for a choice
of ε > 0 small enough.

Hence, we’re reduced to the problem of estimating the number of connected components
of two varieties in R(p+2)n defined in a Pfaffian chain of degree α and length (p+ 2)ℓ. Using
Theorem 2.8, we obtain the bound (4.10). ✷

4.2.2 Bounds for the singular case

Let’s consider now the case where Xλ and Yλ may be singular. We can use deformation
techniques to reduce to the smooth case. First, the following lemma shows we can reduce
to the case where Xλ is a basic set.

Lemma 4.5 Let X1, X2 and Y be semi-Pfaffian sets such that (X1, Y ) and (X2, Y ) are
Pfaffian families. Then, (X1 ∪X2, Y )0 = (X1, Y )0 ∪ (X2, Y )0.

The proof follows from the definition of the relative closure.

Theorem 4.6 (Singular case) Let (X, Y ) be a semi-Pfaffian couple defined in a domain
of bounded complexity γ. Assume Xλ and Yλ are unions of basic sets of format (n, ℓ, α, β, s).
If the number of basic sets in Xλ is M and the number of basic sets in Yλ is N, then the
number of connected components of (X, Y )0 is bounded by

2 MN
n−1∑

p=0

V((p + 2)n, (p+ 2)ℓ, α, β∗p , γ); (4.13)

where β∗p = 1 + (p+ 1)(α + 2β − 1) and V is defined in (2.1).
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Proof: Again, we want to estimate the number of local maxima of the function Ψλ defined
in (4.2).

By Lemma 4.5, we can restrict ourselves to the case where X is basic. Let Y =
Y1∪· · ·∪YN , where all the sets Yi are basic. For each basic set, we take the sum of squares
of the equations defining it: the corresponding positive functions, which we denote by p
and q1, . . . , qN , have degree 2β in the chain. Fix εi > 0, for 0 ≤ i ≤ N, and λ > 0, and let
X = {p(x, λ) = ε0} and for all 1 ≤ i ≤ N, let Yi = {qi(x, λ) = εi}.

Since Yλ is compact, if x∗ is a point in Xλ such that Ψλ has a local maximum at x = x∗,
there is a point y∗ in some (Yi)λ such that Φ(x, y) = Ψλ(x). Then, we can find a couple
(x′, y′) ∈ Xλ × (Yi)λ close to (x∗, y∗) such that Φ(x′, y′) is a local maximum of the distance
(measured by Φ) from Xλ to (Yi)λ.

Since for small enough ε0, . . . , εN , the sets Xλ and (Yi)λ are effectively non-singular
hypersurfaces, the number of local maxima of the distance of Xλ to (Yi)λ can be bounded
by (4.10), for appropriate values of the parameters. The estimate (4.13) follows. ✷

Corollary 4.7 Let U be a fixed domain of bounded complexity, and let (X, Y ) be a semi-
Pfaffian couple defined in U . If Xλ and Yλ are unions of basic sets of format (n, ℓ, α, β, s),
where Xλ is the union of M basic sets and Yλ is the union of N basic sets, the number of
connected components of (X, Y )0 is bounded by

MN 2(nℓ)2 O(n2(α + β))(n+1)ℓ;

for a constant that depends on U .

4.3 Application to fewnomials

In this section, we will apply our previous results to the case where the Pfaffian functions
we consider are fewnomials.

Recall from Definition 1.5 that we can consider the restriction of any polynomial q to
U = {x1 · · ·xn 6= 0} as a Pfaffian function whose complexity depends only on the number of
non zero monomials in q. Fix K = {m1, . . . , mr} ∈ Nn a set of exponents, and let ℓ = n+r,
and f = (f1, . . . , fℓ) be the functions defined by:

fi(x) =

{
x−1

i if 1 ≤ i ≤ n,

xmi−n if i > n.
(4.14)

Then, if q is a polynomial whose non-zero coefficients are in K, it can be written as a
Pfaffian function in f with degree β = 1.

Let now S ⊆ U be a bounded semi-algebraic set. We can define from S a semi-Pfaffian
family X ⊆ Rn × R by:

X = {(x, λ) ∈ U × R+ | x ∈ S, x1 > λ, . . . , xn > λ}. (4.15)
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If S is defined by K-fewnomials, we can apply the results from Theorems 4.4 and 4.6
to X, to obtain a bound on the number of connected components of S ∩ ∂U . Note that
from Example 1.35, one can build a K-fewnomial set S such that S is not a K-fewnomial
set (see [G4]).

Theorem 4.8 Let (X, Y ) be a semi-Pfaffian couple defined by degree 1 functions in the
chain (4.14). If X and Y are the union of respectively M and N basic sets, and letting
q = p+ 2, the number of connected components of (X, Y )0 is bounded by

MN

n−1∑

p=0

2q2(n+r)2/2(6n+ 6)q(3n+2r)qq(n+r). (4.16)

Proof: This bound is obtained using Theorem 4.6 for α = 2, β = 1 and ℓ = n+ r. ✷

Let X be a semi-Pfaffian family such that for all λ > 0, the set Xλ is defined by
K-fewnomials. By definition of a family, ∂Xλ is restricted for all λ > 0. By the results
contained in [G5], this set is semi-Pfaffian set in the same chain, and the format of ∂Xλ

can be estimated from the format of Xλ. Applying those results together with those of
Theorem 4.6, we can give estimates for the number of connected components of (X, ∂X)0.

Theorem 4.9 Let K be fixed and X be a semi-Pfaffian family in the chain (4.14). If X is
the union of N basic sets of format (n, ℓ = n+ r, α = 2, β = 1, s), the number of connected
components of X0 = (X, ∂X)0 is bounded by

N2sN+rO(n2)n(n+r)nO(n2+nr)

. (4.17)

Proof: Following [G5], the set ∂Xλ can be defined using the same Pfaffian chain as Xλ,
using N ′ basic sets and functions of degree at most β ′, where, under the hypotheses above,
the following bounds hold.

β ′ ≤ n(n+r)O(n)

, and N ′ ≤ NsN+rO(n2)N (n+r)rO(n)

.

The bound on the number of connected components follows readily. ✷
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Chapter 5

Topology of Hausdorff limits

In this chapter, we consider the following: U is a domain of bounded complexity in Rn×R+,
for a Pfaffian chain f of length ℓ and degree α, and V is a Pfaffian variety in U of dimension
d+ 1, with Vλ compact for λ > 0.

Let X ⊆ V be a semi-Pfaffian family that is defined by a P-closed formula Φ on V.
If ∂Xλ = ∅ for λ > 0, we can consider relative closure of X, X0 = (X,∅)0, which is the
Hausdorff limit of the family of compact sets Xλ. We will give in Theorem 5.7 an explicit
upper-bound on bk(X0) for any k > 0. This allows in turn to establish an upper-bound for
the Betti numbers of any relative closure (X, Y )0, even when Yλ 6= ∅ (Theorem 5.17). In
both cases, the bounds depend only on the format of generic fibers, and are not affected
by the dependence in the parameter λ.

The proof relies on the spectral sequence for closed surjections developed in Chap-
ter 3. Using triangulation, we construct a surjection fλ : Xλ → X0 for λ ≪ 1. Then, we
approximate the corresponding fibered products by semi-Pfaffian sets.

Remark 5.1 In the more general setting of o-minimal structures, the result of the present
chapter allow to estimate the Betti numbers of any Hausdorff limit in a definable family
in terms of simple definable sets (deformations of diagonals in Cartesian products). This
is the point of view adopted in [Z2]. One can reduce to the one parameter case using the
main result of [LS2].

5.1 Constructions with simplicial complexes

We describe here some constructions that involve simplicial complexes and PL-maps on
them. Using the fact that continuous definable functions in an o-minimal structure can be
triangulated, we will be able to use these construction in the next section.

It is important to note that the constructions done in this section are not explicit. They
can be achieved using general arguments from o-minimality, but we do not claim to be able

91



92 CHAPTER 5. TOPOLOGY OF HAUSDORFF LIMITS

to give an effective procedure to construct triangulations in the Pfaffian case. Consequently,
these constructions in themselves will not suffice to establish any Betti number bounds.

First, let us recall some of the notations used in the discussion of definable triangulations
in section 1.3.3. See Definition 1.59 and Definition 1.61 for more details. If a0, . . . , ad are
affine-independent points in Rn, we denote by σ = (a0, . . . , ad) the open simplex and
σ̄ = [a0, . . . , ad] the closed simplex defined by those points. We say that K = {σ̄1, . . . , σ̄k}
is a simplicial complex if it is closed under taking faces and for all i, j σ̄i ∩ σ̄j is a common
face of σ̄i and σ̄j . We denote by |K| the geometric realization of K.

5.1.1 Retraction on a subcomplex

Let K be a simplicial complex in Rn, and let L ⊆ K be a subcomplex, i.e. L is also a
simplicial complex.

Let S = stK(L) be the star of L in K, i.e. the union of all open σ such that σ̄ ∈ K and
has at least one vertex in L. We will define a continuous retraction F from S to L.

If a0, . . . , ad are vertices of K ordered such that a0, . . . , ak are in L and ak+1, . . . , ad are
not in L, (for some k such that 0 < k < d), the open simplex σ = (a0, . . . , ad) is contained
in S and we will define F on σ by

F

(
d∑

i=0

wi ai

)
=

1
∑k

i=0wi

k∑

i=0

wi ai. (5.1)

Proposition 5.2 The formula (5.1) defines a continuous retraction F from S to |L| that
maps all points on the segment [x, F (x)] to F (x).

Proof: Let σ be an open simplex appearing in S. Then σ is of the form (a0, . . . , ad),
where the vertices ai are ordered as above so that the vertices in L are exactly a0, . . . , ak

for some 0 < k < d.

Fix x ∈ σ, and let s =
∑k

i=0wi. Since all the weights wi are positive, the inequality
0 < k < d implies that 0 < s < 1. Thus, the formula (5.1) clearly defines a continuous
function from σ to |L|.

Let y = θx + (1 − θ)F (x) for θ ∈ (0, 1) be a point on the open segment (x, F (x)). We
have y =

∑k
i=0w

′
i ai, where

w′i =

{
θwi + (1 − θ)wi

s if 0 ≤ i ≤ k;

θwi if k + 1 ≤ i ≤ d.
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To prove that F (x) = F (y), we must prove that for all 0 ≤ i ≤ k,

wi∑k
j=0wj

=
w′i∑k

j=0w
′
j

.

Cross-multiplying, we get the following quantities.

wi

k∑

j=0

w′j = wi

k∑

j=0

(
θwj + (1 − θ)

wj

s

)
= wi (1 − θ + θs) ;

and

w′i

k∑

j=0

wj =
(
θwi + (1 − θ)

wi

s

)
s = (θs + (1 − θ))wi.

The two cross-multiplied quantities are indeed equal, so F (x) = F (y). ✷

For any x ∈ S\|L|, we denote by τx the open segment (x, F (x)).

Proposition 5.3 Let x and y be points of S\|L| such that τx and τy intersect. Then, we
have τx ⊆ τy or τy ⊆ τx.

Proof: Let z ∈ τx∩τy. By Proposition 5.2, we have F (x) = F (y) = F (z). Thus, τx and τy
have one endpoint in common, and at least one point in common. One must be contained
in the other. ✷

5.1.2 Level sets of a PL-function

Assume now that there exists a continuous function π : |K| → R with the following
properties.

• π is affine on each simplex σ̄ of K;

• π is positive on K;

• |L| = π−1(0).

For all λ > 0, we will denote by |K|λ the level set π−1(λ). We define also

λ0 = min{π(a) | a is a vertex of K, a 6∈ L}. (5.2)

Remark 5.4 Note that for all 0 < λ < λ0, the level set |K|λ is contained in the star S.
Indeed, if σ = (a0, . . . , ad) is a simplex that is not in S, we must have π(ai) ≥ λ0 for all
i since none of the ai are in L, and π being affine on σ̄, it follows that π(x) ≥ λ0 for all
x ∈ σ.
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We want to describe for 0 < λ < λ0, the restriction of the retraction F to the level
set |K|λ. We will denote by F λ this restriction. A similar construction is outlined in [C2,
Exercise 4.11].

Proposition 5.5 For all 0 < λ′ < λ < λ0, there exists a homeomorphism H : |K|λ →
|K|λ′ such that F λ ◦H = F λ′

.

Proof: Let x ∈ |K|λ. For any z ∈ τx, if z = θx + (1 − θ)F (x), we have

π(z) = θπ(x) + (1 − θ)π(F (x)) = θλ;

since z is in any simplex σ̄ of K that contains x and F (x) and since π is affine on the
simplices of K. Thus, z ∈ |K|λ′ if and only if θ = λ′/λ, and so the map h defined by

H(x) =
λ′

λ
x+

(
1 −

λ′

λ

)
F (x); (5.3)

maps |K|λ to |K|λ′.

The map H is certainly injective, since by Proposition 5.3, two segments τx and τy
cannot intersect if x and y are two distinct points of |K|λ. It is also surjective, since for
z ∈ |K|λ′, it is easy to verify that the point x defined by

x =
λ

λ′
z −

(
λ

λ′
− 1

)
F (z);

is a point in |K|λ such that H(x) = z.

The continuity of H follows from the continuity of F. Since H(x) ∈ τx by construction,
Proposition 5.2 implies that F (H(x)) = F (x). ✷

Proposition 5.6 For F λ defined as above, we have

lim
λ→0

max
x∈|K|λ

|x− F λ(x)| = 0. (5.4)

Proof: Let σ = (a0, . . . , ad) be an open simplex contained in S, such that σ 6⊆ |L|. As
before, we can assume that the vertices of σ that are in L are a0, . . . , ak, where 0 ≤ k < d
Fix x =

∑d
i=0wi ai is σ, and let s =

∑k
i=0wi. We have

d∑

i=k+1

wi =

d∑

i=0

wi −

k∑

i=0

wi = 1 − s;

and

x− F (x) =

d∑

i=0

wi ai −
1

s

k∑

i=0

wi ai =

(
1 −

1

s

)( k∑

i=0

wi ai

)
+

d∑

i=k+1

wi ai.
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By the triangle inequality, we obtain

|x− F (x)| ≤ max
o≤i≤d

|ai|

(∣∣∣∣1 −
1

s

∣∣∣∣

(
k∑

i=0

wi

)
+

d∑

i=k+1

wi

)
= 2(1 − s) max

0≤i≤d
|ai|. (5.5)

If x ∈ |K|λ, we have π(x) =
∑d

i=k+1wi π(ai) = λ. Since π(ai) ≥ λ0 for all i ≥ k + 1, it
follows that

λ =
d∑

i=k+1

wi π(ai) ≥ λ0

(
d∑

i=k+1

wi

)
= λ0(1 − s). (5.6)

It follows that 1 − s ≤ λ
λ0
. Combining this with (5.5), we obtain

|x− F (x)| ≤ 2
λ

λ0

max
0≤i≤d

|ai| ≤ 2
λ

λ0

max{|a|, a vertex of K}.

Thus, |x−F (x)| is bounded by a quantity independent of x that goes to zero when λ goes
to zero, and the result follows. ✷

5.2 Bounds on the Betti numbers of Hausdorff limits

Fix U a domain of bounded complexity γ for a Pfaffian chain f . Let X be a semi-Pfaffian
family with compact fibers defined on a variety V such that dim(V ) = d+ 1. Assume that
for all λ ∈ (0, 1), Xλ is compact, so that X0 = (X,∅)0. The main result of this chapter is
the following.

Theorem 5.7 Let X be a semi-Pfaffian family with compact fibers as above. If the format
of X is (n, ℓ, α, β, s), we have for all 0 ≤ k ≤ d,

bk(X0) ≤
k∑

p=0

(10s)(p+1)d V((p+ 1)n, (p+ 1)ℓ, α, 2β, γ); (5.7)

where V is defined in (2.1). In particular, we have

bk(X0) ≤ sd(k+1) 2(kℓ)2O(knβ + kmin(n, ℓ)α)(k+1)(n+ℓ);

where the constant depends on U .

Remark 5.8 If X is not defined by a P-closed formula, the method of proof is still valid,
and one can still establish bounds on bk(X0), using the Borel-Moore estimates from Chap-
ter 2. In that case, the bound obtained is

bk(X0) ≤ s2d(k+1) 22(kℓ)2O(knβ + kmin(n, ℓ)α)2(k+1)(n+ℓ);
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In the process of proving Theorem 5.7, we will actually prove a much more general
result. Before stating it, we need the following notation: for any integer p, we let ρp be the
function on (p+ 1)-tuples (x0, . . . ,xp) of points in Rn defined by

ρp(x0, . . . ,xp) =
∑

0≤i<j≤p

|xi − xj |
2;

Then we will prove the following theorem.

Theorem 5.9 Let X ⊆ Rn × R+ be a bounded set definable in any o-minimal structure,
such that the fibers Xλ are compact for all λ > 0. Let X0 be the Hausdorff limit of those
fibers when λ goes to zero. Then, there exists λ > 0 such that for any integer k, we have

bk(X0) ≤
∑

p+q=k

bq(D
p
λ(δ));

for some δ > 0, where the set Dp
λ(δ) is the expanded diagonal

Dp
λ(δ) = {(x0, . . . ,xp) ∈ (Xλ)p+1 | ρp(x0, . . . ,xp) ≤ δ}.

Remark 5.10 Using results on the definability of Hausdorff limits in o-minimal structures
(see for instance [LS2]), one can even generalize the above further: we can estimate in
this way the Betti numbers of any Hausdorff limit of a sequence of compact fibers in a
p-parameter definable family. See [Z2] for more details.

5.2.1 Triangulation of the projection on λ

Let A be the closure of X∩{0 < λ < 1}. By Theorem 1.64, there exists a simplicial complex
K such that |K| ⊆ Rn+1, a subcomplex L ⊆ K and a homeomorphism Φ : |K| → A such
that Φ(L) = X0 and such that πλ ◦ Φ is affine on each simplex of K.

Denote by F the retraction constructed in the previous section. For all λ < λ0, let
fλ = Φ−1 ◦ F λ.

Proposition 5.11 For all λ < λ0, the map fλ is a continuous surjection from Xλ to X0.
Moreover, we have

lim
λ→0

max
x∈Xλ

|x− fλ(x)| = 0. (5.8)

Proof: Since Φ is uniformly continuous, Proposition 5.6 implies (5.8). ✷

Define for p ∈ N and λ ∈ (0, λ0),

W p
λ = {(x0, . . . ,xp) ∈ (Xλ)p+1 | fλ(x0) = · · · = fλ(xp)}. (5.9)
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From Theorem 3.1 we have for any λ ∈ (0, λ0),

bk(X0) ≤
∑

p+q=k

bq(W
p
λ ). (5.10)

Thus, the problem is reduced to estimating the Betti numbers of the sets W p
λ . The first

step in that direction is the following.

Proposition 5.12 For all 0 < λ′ < λ < λ0, the sets W p
λ and W p

λ′ are homeomorphic.

Proof: Let H : |K|λ → |K|λ′ be the homeomorphism described in Proposition 5.5. Then,
the map h = Φ◦H ◦Φ−1 is a homeomorphism between Xλ and Xλ′ , and since F λ◦H = F λ′

,
we also have fλ ◦ h = fλ′

. It is then easy to check that the map hp : (Xλ)p+1 → (Xλ′)p+1

defined by

hp(x0, . . . ,xp) = (h(x0), . . . , h(xp)); (5.11)

maps W p
λ homeomorphically onto W p

λ′ . ✷

5.2.2 Approximating W
p

For p ∈ N and x0, . . . ,xp ∈ Rn, let ρp be the polynomial

ρp(x0, . . . ,xp) =
∑

0≤i<j≤p

|xi − xj |
2. (5.12)

For λ ∈ (0, λ0), ε > 0 and δ > 0, we define the following sets.

W p
λ (ε) = {(x0, . . . ,xp) ∈ (Xλ)p+1 | ρp(fλ(x0), . . . , fλ(xp)) ≤ ε};

Dp
λ(δ) = {(x0, . . . ,xp) ∈ (Xλ)p+1 | ρp(x0, . . . ,xp) ≤ δ}.

We will use these sets to approximate the sets W p. Namely, we will show that for any
p ∈ N, we can find appropriate values of λ and δ such that the Betti numbers of W p

λ and
Dp

λ(δ) coincide.

Proposition 5.13 Let p ∈ N be fixed. There exists ε0 > 0, such that for all λ ∈ (0, λ0)
and all 0 < ε′ < ε < ε0, the inclusion W p

λ (ε′) →֒ W p
λ (ε) is a homotopy equivalence. In

particular, this implies that

bq(W
p
λ (ε)) = bq(W

p
λ );

for all λ ∈ (0, λ0) and all ε ∈ (0, ε0).
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Proof: First, notice that it is enough to prove the result for a fixed λ ∈ (0, λ0), since
if 0 < λ′ < λ < λ0 are fixed, the map hp introduced in (5.11) induces a homeomorphism
between W p

λ (ε) and W p
λ′(ε) for any ε > 0.

Let us fix λ ∈ (0, λ0). By the generic triviality theorem (Theorem 1.58), there exists
ε0 > 0 such that the projection

{(x0, . . . ,xp, ε) | ε ∈ (0, ε0) and (x0, . . . ,xp) ∈Wλ(ε)} 7→ ε;

is a trivial fibration. It follows that for all 0 < ε′ < ε < ε0, the inclusion W p
λ (ε′) →֒ W p

λ (ε)
is a homotopy equivalence, and thus the homology groups H∗(W

p
λ (ε)) are isomorphic for

all ε ∈ (0, ε0).

The sets W p
λ and W p

λ (ε) being compact definable sets, they are homeomorphic to finite
simplicial complexes. This means that their singular and Čech homologies coincide, and
since W p

λ = ∩ε>0W
p
λ (ε), the continuity property of the Čech homology implies that H∗(W

p
λ )

is the projective limit of H∗(W
p
λ (ε)). Since the latter groups are constant when ε ∈ (0, ε0),

the result follows. ✷

Proposition 5.14 Let p ∈ N be fixed. For λ ≪ 1, there exist definable functions δ0(λ)
and δ1(λ) such that limλ→0 δ0(λ) = 0, limλ→0 δ1(λ) 6= 0, and such that for all δ0(λ) < δ′ <
δ < δ1(λ), the inclusion Dp

λ(δ′) →֒ Dp
λ(δ) is a homotopy equivalence.

Proof: Let λ ∈ (0, λ0) be fixed. By the same local triviality argument as above, there
exists d0 = 0 < d1 < · · · < dm < dm+1 = ∞ such that for all 0 ≤ i ≤ m and all
di < δ′ < δ < di+1, the inclusion Dp

λ(δ′) →֒ Dp
λ(δ) is a homotopy equivalence. When

λ varies, the values di(λ) can be taken as definable functions of the variable λ, so by
Lemma 1.76 each has a well-defined if possibly infinite limit when λ goes to zero. We
take δ0(λ) = dj(λ), where j is the largest index such that limλ→0 dj(λ) = 0, and take
δ1(λ) = dj+1(λ). ✷

We define for p ∈ N,

ηp(λ) = p(p+ 1)

(
4R max

x∈Xλ

|x− fλ(x)| + 2 (max
x∈Xλ

|x− fλ(x)|)2

)
; (5.13)

where, as before, R is a constant such that Xλ ⊆ B(0, R) for all λ > 0. By Proposition 5.11,
we have

lim
λ→0

ηp(λ) = 0.

Lemma 5.15 For all λ ∈ (0, λ0), δ > 0 and ε > 0, the following inclusions hold.

Dp
λ(δ) ⊆W p

λ (δ + ηp(λ)), and W p
λ (ε) ⊆ Dp

λ(ε+ ηp(λ)).
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Proof: Let m(λ) = maxx∈Xλ
|x − fλ(x)|. For any xi,xj in Xλ, the triangle inequality

gives

|fλ(xi) − fλ(xj)|
2 ≤ [|fλ(xi) − xi| + |xi − xj| + |xj − fλ(xj)|]

2

≤ [|xi − xj | + 2m(λ)]2

≤ |xi − xj |
2 + 8Rm(λ) + 4m(λ)2.

Summing this inequality for all 0 ≤ i < j ≤ p, we obtain that for any x0, . . . ,xp in Xλ,

ρp(fλ(x0), . . . , f
λ(xp)) ≤ ρp(x0, . . . ,xp) + ηp(λ).

The first inclusion follows easily from this inequality. The second inclusion follows from a
similar reasoning. ✷

Proposition 5.16 For any p ∈ N, there exists λ ∈ (0, λ0), ε ∈ (0, ε0) and δ > 0 such that

H∗(W
p
λ (ε)) ∼= H∗(D

p
λ(δ)). (5.14)

Proof: Let δ0(λ) and δ1(λ) be the functions defined in Proposition 5.14. Since the limit
when λ goes to zero of δ1(λ) − δ0(λ) is not zero, whereas the limit of ηp(λ) is zero, we
can choose λ > 0 such that δ1(λ) − δ0(λ) > 2ηp(λ). Then, we can choose δ′ > 0 such that
δ0(λ) < δ′ < δ′ + 2ηp(λ) < δ1(λ). Taking a smaller λ if necessary, we can also assume that
δ′ + 3ηp(λ) < ε0.

Let ε = δ′+ ηp(λ), δ = δ′+ 2ηp(λ) and ε′ = δ′+ 3ηp(λ). From Lemma 5.15, we have the
following sequence of inclusions;

Dp
λ(δ′)

i
→֒ W p

λ (ε)
j
→֒ Dp

λ(δ)
k
→֒ W p

λ (ε′).

By the choice of ε, ε′ and λ, λ′, the inclusions k ◦ j and j ◦ i are homotopy equivalences.
The resulting diagram in homology is the following;

H∗(Dλ(δ′))
(j◦i)∗
∼=

//

i∗

''OOOOOOOOOOO
H∗(Dλ(δ))

k∗

''OOOOOOOOOOO

H∗(Wλ(ε))
(k◦j)∗
∼=

//

j∗
77ooooooooooo

H∗(Wλ(ε′))

Since (j ◦ i)∗ = j∗ ◦ i∗, is an isomorphism, j∗ must be surjective, and similarly, the fact that
(k ◦ j)∗ = k∗ ◦ j∗ is an isomorphism implies that j∗ is injective. Hence, j∗ is an isomorphism
between H∗(Wλ(ε)) and H∗(Dλ(δ)), as required. ✷
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5.2.3 Proof of Theorem 5.7

Recall that from the spectral sequence inequality (5.10), all we need to do to bound bk(X0)
is to give explicit estimates on the Betti numbers of the sets W p

λ for all 0 ≤ p ≤ k.

Let p ∈ N be fixed, and choose ε, λ and δ as in Proposition 5.16. Since ε < ε0, the Betti
numbers of W p

λ (ε) and W p
λ are the same. Thus, we are reduced to estimating bq(D

p
λ(δ)).

This set is a semi-Pfaffian subset of V p+1
λ defined by a Q-closed formula, where Q is a set

of s(p+ 1) + 1 Pfaffian functions in n(p+ 1) variables, of degree bounded by β in a chain
of length (p+ 1)ℓ and degree α. More explicitly, the chain under consideration is

fp = (f1(x0, λ), . . . , fℓ(x0, λ), . . . , f1(xp, λ), . . . , fℓ(xp, λ)),

where λ is kept constant. It follows from Theorem 2.17 that

bq(D
p
λ(δ)) ≤ b(Dp

λ(δ)) ≤ (10s)d(p+1) V((p+ 1)n, (p+ 1)ℓ, α, 2β, γ).

The bound (5.7) follows. ✷

5.3 Betti numbers of a relative closure

In addition to the bound of Theorem 5.7, the techniques developed in the present chapter
allow us to give a rough estimate for the Betti numbers of a relative closure of a semi-
Pfaffian couple. In that case, – as for the Hausdorff limits, – the Betti numbers of the limit
depends on the format of the fibers, but not on the families’ dependence on the parameter
λ.

Theorem 5.17 Let (X, Y ) be a semi-Pfaffian couple. Then, the Betti numbers of its
relative closure (X, Y )0 can be bounded in terms of the format of the fibers Xλ and Yλ for
λ≪ 1.

Proof: Let δ0 > 0 and define

K0 = {x ∈ X̌ | dist(x, Y̌ ) ≥ δ0}.

Recall that (X, Y )0 = {x ∈ X̌ | dist(x, Y̌ ) > 0}, so K0 is a compact subset of (X, Y )0. For
δ0 ≪ 1, the Betti numbers of K0 and (X, Y )0 coincide. Let δ(λ) be any definable function
such that limλ→0 δ(λ) = δ0, and let

K = {(x, λ) ∈ X | dist(x, Yλ) ≥ δ(λ)}.

The set K is a definable family with compact fibers for λ > 0. The Hausdorff limit of this
family when λ goes to zero is K0. By Theorem 5.9, we have for all k ∈ N and all λ≪ 1,

bk(K0) ≤
∑

p+q=k

bq(D
p
λ(η));
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where η > 0 is fixed and

Dp
λ(η) = {(x0, . . . ,xp) ∈ (Kλ)p+1 | ρp(x0, . . . ,xp) ≤ η}.

Consider now the Cartesian product

T p
λ = {(x0, . . . ,xp,y0, . . . ,yp) | xi ∈ Xλ,yj ∈ Yλ}.

We can consider a cylindrical cell decomposition of T p
λ that would be compatible with

the subsets {ρp(x0, . . . ,xp) = η} and {|xi − yi| = δ(λ)}. The number of cells in such a
decomposition depends only on p and on the formats of Xλ and Yλ, and the projection
of this decomposition on the variables (x0, . . . ,xp) is compatible with Dp

λ. Thus, the total
number of cells in the decomposition of T p

λ bounds b(Dp
λ), and an upper-bound on bk(K0) =

bk((X, Y )0) follows. Explicit bounds, which would be doubly exponential in kn, can be
derived from [GV2, PV]. ✷

Remark 5.18 The explicit bound that would be obtained by the above method is very bad
(doubly exponential). In particular, the bounds obtained are worse than those obtained in
Chapter 4 in the case where k = 0. Better estimates, that coincide with Chapter 4 when
k = 0, are work in progress [Z3].
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Appendix A

Spectral sequence associated to a
filtered chain complex

A.1 Homology spectral sequence

We consider here only first quadrant homology spectral sequences. Assume {Er
p,q} are

modules over some ring R, which are non zero only for p, q, r ≥ 0.
This is a spectral sequence if for all r, p, q there is a differential dr

p,q : Er
p,q −→ Er

p−r,q+r−1

such that dr ◦ dr = 0, and such that

Er+1
p,q =

ker(dr
p,q)

dr
p+r,q−r+1

(
Er

p+r,q−r+1

) . (A.1)

Note that for r > p we have ker(dr
p,q) = Er

p,q since the image is a term that lies in p < 0.

Similarly, for r > q+ 1, the module Er
p+r,q−r+1 is zero, hence dr

p+r,q−r+1

(
Er

p+r,q−r+1

)
is zero

too. It follows from (A.1) that for all r > max(p, q + 1), we must have Er+1
p,q = Er

p,q. We
denote by E∞p,q the term at which Er

p,q stabilizes.

Let H be a chain complex with a an increasing filtration

0 ⊆ F0H ⊆ F1H ⊆ · · · ⊆ FpH ⊆ · · · ⊆ H

such that ∪pFpH = H. We say that Er
p,q converges to H if for all p and q we have

E∞p,q
∼=

FpHp+q

Fp−1Hp+q
(A.2)

It is usually denoted by Er
p,q ⇒ H.

A.2 Sequence associated with a filtered complex

Let C be a chain complex such that Cn = 0 for n < 0. Denote by dn the differential from
Cn to Cn−1. Assume that there is a filtration of C by subcomplexes {Fp}p∈N such that Fp

is increasing and ∪pFp = C.
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For n ∈ N, denote by Zn = ker(dn) the cycles in Cn and by Bn = dn+1Cn+1 the
boundaries. Let Hn = Zn/Bn. We can use the filtration Fp to approximate Zn and Bn, in
the following fashion: define, for all r ≥ 0,

Ar
p = {c ∈ Fp | dc ∈ Fp−r}.

The elements of Ar
p are cycles ’up to Fp−r.’ For r > p, they are really cycles.

One then defines approximate cycles Zr
p = Ar

p/Fp−1 and Br
p = dAr−1

p+r−1/Fp−1. Note that
the indices are chosen so that both are submodules of Fp/Fp−1, and we have the following
inclusions:

0 ⊆ B0
p ⊆ B1

p ⊆ · · · ⊆ B∞p ⊆ Z∞p ⊆ · · · ⊆ Z1
p ⊆ Z0

p = Fp/Fp−1.

Here, B∞p denotes the increasing union of the modules Br
p and Z∞p is the decreasing inter-

section of the modules Zr
p . We then define

Er
p,q = (Zr

p)p+q/(B
r
p)p+q.

Theorem A.1 With the above definitions, Er
p,q is a spectral sequence that converges to

H(C).

See [McCl] for a proof.

Corollary A.2 Let C be a chain complex such that Cn = 0 for n < 0, such that there
is an increasing exhaustive filtration of C and let Er

p,q be the associated homology spectral
sequence. Then, we have for all n,

rank Hn(C) ≤
∑

p+q=n

rank (E1
p,q).

Proof: From (A.1), it is clear that rankEr
p,q is a decreasing sequence when p and q are

fixed and r increases. Thus, we have rankE∞p,q ≤ rankE1
p,q. Since Er

p,q ⇒ H(C), it follows
from (A.2) that

Hn(C) ∼=
⊕

p+q=n

E∞p,q.

The result follows easily. ✷
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A.3 Alexander cohomolgy and applications

This section contains a short list of auxiliary results that play a role in the construction of
the filtration that gives rise to the spectral sequence of Theorem 3.9. We refer the reader
to Chapter 6 of [Spa] for more general statements, proofs and additional details.

In this section, H̄∗ denotes the Alexander cohomology.

Definition A.3 A topological space X is said to be homologically connected if for all
x ∈ X and all neighbourhood U of x, there exists a neighbourhood V ⊆ U such that the
map H̃q(V ) → H̃q(U) given by inclusion is trivial for all q.

Definition A.4 A topological space X is said to be locally contractible if for all x ∈ X
and all neighbourhood U of x, there exists a neighbourhood V ⊆ U such that V can be
deformed to x in U.

If X is locally contractible, it is homologically connected. In particular, all sets that
are definable in some o-minimal structures are locally contractible.

Proposition A.5 Let X be homologically connected. We have H̄∗(X) ∼= H∗(X), where
H∗(X) is the singular cohomology of X.

Theorem A.6 (Vietoris-Begle) Let F : A → B be a closed, continuous surjection be-

tween paracompact Hausdorff spaces. If for all q, we have ˜̄Hq(F−1y) = 0 for all y ∈ B, the
map F ∗ : H̄∗(B) → H̄∗(A) is an isomorphism.

See [Spa, p. 344] for a proof. Example 16 on the same page shows that the theorem
does not hold if F is not closed.
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Bertrand FORTIN

VU après soutenance pour autorisation de publication :

Le Président de Jury,


	Index of notations
	Remerciements
	Introduction
	Origine des fonctions pfaffiennes
	Topologie modérée des ensembles pfaffiens
	O-minimalité et fonctions pfaffiennes
	Différents types d'ensembles définissables

	Présentation des résultats
	Topologie des ensembles semi-pfaffiens (Chapitre 2)
	Nombres de Betti des sensembles sous-pfaffiens (Chapitre 3)
	Topologie des ensembles limites (Chapitres 4 et 5)

	Remarques sur les résultats obtenus

	Preliminaries
	Pfaffian functions
	Definition and examples
	Khovanskii's theorem
	Domains of bounded complexity

	Semi and sub-Pfaffian sets
	Semi-Pfaffian sets
	Sub-Pfaffian sets

	Basic properties of o-minimal structures
	O-minimal expansions of the real field
	The cell decomposition theorem
	Geometry of definable sets

	Pfaffian functions and o-minimality
	Relative closure and limit sets
	Special consequences of o-minimality


	Betti numbers of semi-Pfaffian sets
	Betti numbers of Pfaffian varieties
	Bound for compact Pfaffian varieties
	The case of non-compact varieties

	Betti numbers of semi-Pfaffian sets
	Going to general position
	Betti numbers of a basic open set
	Bound for a ¶-closed formula
	Bounds for non-compact semi-Pfaffian sets
	Applications to fewnomials

	Counting the number of cells
	Components deformation
	Varieties and cells

	Borel-Moore homology of semi-Pfaffian sets

	Betti numbers of sub-Pfaffian sets
	Spectral sequence of a surjective map
	Topological lemmas
	The one quantifier case
	The case of two and more quantifiers
	Comparison with quantifier elimination

	Connected components of limit sets
	Finiteness of the number of connected components
	Bounding the number of connected components
	Finding local maxima of the distance function
	Bounds for the singular case

	Application to fewnomials

	Topology of Hausdorff limits
	Constructions with simplicial complexes
	Retraction on a subcomplex
	Level sets of a PL-function

	Bounds on the Betti numbers of Hausdorff limits
	Triangulation of the projection on 
	Approximating Wp
	Proof of Theorem 5.7

	Betti numbers of a relative closure

	Spectral sequences
	Homology spectral sequence
	Sequence associated with a filtered complex
	Alexander cohomolgy and applications

	Bibliography

