Etude par RMN et µSR des composés antiferromagnétiques fortement frustrés à géométrie de bicouches kagomé

David Bono, Philippe Mendels Gaston Collin, Nicole Blanchard

Laboratoire de Physique des Solides

Laboratoire Léon Brillouin

Systèmes antiferromagnétiques

• Couplage AF entre deux spins Hamiltonien $H=J\Sigma_{\langle i,j \rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}$; (J>0) . Spins Heisenberg

Ordre de Néel

Réseaux de taille macroscopique

Réseaux kagomé AF parfait : un fondamental *liquide de spins* ?

- ∃ (?) gap fondamental-triplet ∆~J/20.
 Lecheminant, PRB 56, 2521 (1997);
 Waldtmann *et al.*, EPJB 2, 501 (1998).
- *Ă*(?) gap fondamental-2^{ème}

 singulet.
- Etat RVB ?
 Zengh *et al.*, PRB **51**, 2318 (1995);
 Mila, PRL **81**, 2356 (2000).

Kagomé ?

04/10/2004 ; LPS Orsay

Systèmes expérimentaux

• Kagomé : jarosites...

• Pyrochlores : Y₂Mo₂O₇, Tb₂Ti₂O₇...

- $H=J\Sigma_{\langle i,j\rangle}\mathbf{S}_{i}\mathbf{S}_{j}$ + perturbations ?
- Bicouches kagomé : $SrCr_{9p}Ga_{12-9p}O_{19}$ et Ba₂Sn₂ZnGa_{10-7p}Cr_{7p}O₂₂ ; Cr³⁺ S=3/2 Heisenberg

 SCGO : Ramirez *et al.*, PRL 64, 2070 (1990). Mendels *et al.*, PRL 85, 3496 (2000) ; Limot *et al.*, PRB 65, 144447 (2002).
 BSZCGO : Hagemann *et al.*, PRL 86, 894 (2001).

Chaleur spécifique

Ramirez et al., PRL 84, 2957 (2000).

Plan

- Mesures de susceptibilité (SQUID, RMN)
- \Rightarrow nature des corrélations, défauts
- Mesure de dynamique de spin (μSR)
- \Rightarrow nature des excitations

Susceptibilité macroscopique canonique (SQUID)

La RMN : une sonde locale du magnétisme

• Effet Zeeman (*I*=1/2)

• Résonance

- Déplacement ∝ susceptibilité moyenne.
- Largeur de raie : distribution de susceptibilité

RMN du ⁷¹Ga dans BSZCGO

RMN du ⁷¹Ga dans BSZCGO (basses températures)

Susceptibilité intrinsèque des bicouches

Susceptibilité des bicouches : existence d'un gap de spin ?

Susceptibilité des bicouches : corrélations à courte portée

• Champ moyen appliqué à des clusters.

Largeur de raie RMN : défauts étendus dans SCGO

- Largeur et forme des raie ⇒ défauts étendus (Limot *et al.*, PRB 65, 144447 (2002)).
- Théorie : polarisation alternée (Dommange *et al.*, PRB **68**, 24416 (2003)).

Largeur de raie RMN : nouveaux défauts dans BSZCGO

Existence de défauts indépendants de *p.*

04/10/2004 ; LPS Orsay

Susceptibilité hautes températures : conclusions

- Absence de transition pour $T < < \theta_{CW}$.
- Corrélations à très courte portée.
- Gap ? (<4 K ?)
- Nouveaux défauts dans BSZCGO.
- Susceptibilité intrinsèque.
- Limitations de la RMN dans BSZCGO :
 - Largeur de raie.
 - Fluctuations ?

Une transition de *type* verre de spin

• Transition intrinsèque... liée aux défauts ?

Etude de la dynamique de spins par μSR

- Résonance/Relaxation/Rotation de spin de muon
- Muon μ⁺
 - Spin 1/2.
 - Faisceau 100 % polarisé.
 - Temps de vie 2.2 μs.
 - $\mu^+ \rightarrow e^+$ + neutrinos.

 \Rightarrow Sonde locale du magnétisme.

Responsables d'instruments :

A. Amato (PSI), C. Baines (PSI) A.D. Hillier (ISIS)

Dispositif expérimental

Plateau de relaxation et polarisation non conventionnelle

• BSZCGO...

- Absence de gel.
- Neutrons : 70%

non-gelé (Broholm *et al.*, PRL **65**, 3173 (1990)).

Corrélation T_g (défauts ?)dynamique (intrinsèque)

• BSZCGO... et SCGO : même comportement.

Modes d'excitations classique ?

Une fonction de relaxation inhabituelle

Modes d'excitations quantiques : des spinons déconfinés ?

• Etat RVB :

- Etat fondamental non magnétique.
- Excitations : spinons déconfinés ?

Modes d'excitations quantiques ?

- Etat RVB :
 - Etat non magnétique,
 - Excitations : spinons déconfinés $\Rightarrow P_z(t) \propto P^{DKT}(ft)$; (f~0.01) (Uemura *et al.*, PRL **73**, 3306 (1994))

Limitations de ce modèle de fluctuations sporadiques

• RVB + terme exponentiel lié aux défauts de substitutions.

 $P_{z}(t) = x P^{DKT}(ft) + (1-x) \exp(-\lambda't)$

« Spinons » Dynamique « conventionnelle »

Modèle résonnant cohérent avec les expériences

 Ce modèle permet d'ajuster les dépendances en *T*, *H* et *p*.

Etat RVB pour T<T_g, Gel autour des défauts

1.0

0.5 x 0.5

0.0

Ο

1

0

0.01

0.95

0.97

0.86

0.79

0.1

 $H_{IF}(T)$

1.0

₫^{0.8}

0.6

0.95

0.92 0.89 0.97

0.86

0.79

0.71

5

6

4

2

3

T/T

Conclusion ; bicouches kagomé : le liquide de spin ?

- Forte frustration des interactions.
- Corrélations à très courte portée.
- \exists comportement de la relaxation singulier pour T<3 T_{a} .
- ∃ excitations magnétiques dynamiques pour T>0.03 K peu sensibles au champ.
- \Rightarrow excitations type « spinons déconfiné ». Etat cohérent en dessous de T_g .

Perspectives

- Etude de la dynamique par écho de spin de neutron (collaboration avec G. Ehlers, H. Mutka, C. Payen, R. Stewart).
- Etat liquide de spin
 - Systèmes kagomé quantiques (spin 1/2, Cu²⁺), plateau d'aimantation ⇒ Volborthite, organiques.
 - Systèmes J_1 - J_2 .
- Rôle de la frustration dans les systèmes métalliques ?
 - Delafossites, Cobaltites, Cuprates

Défauts indépendants des dilutions non magnétiques

• Valeur effective de *p* correcte (RMN, RX)

Bono et al., JPCM 16, S817 (2004).

Modèle généralisable ?

- Chaîne de Haldane S=1 ; (Y_{2-x}Ca_x)BaNiO₅
 - « Valence Bond Crystal », singulets localisés.
 - μSR : Kojima *et al.*, PRL **74**, 3471 (1995).

