

Déformation et mise en place des granites (360-300Ma) dans un segment de la Chaîne Varisque (Plateau de Millevaches, Massif Central)

Aude Gébelin

► To cite this version:

Aude Gébelin. Déformation et mise en place des granites (360-300Ma) dans un segment de la Chaîne Varisque (Plateau de Millevaches, Massif Central). Géologie appliquée. Université Montpellier II - Sciences et Techniques du Languedoc, 2004. Français. NNT: . tel-00008553

HAL Id: tel-00008553 https://theses.hal.science/tel-00008553

Submitted on 22 Feb 2005 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

UNIVERSITE MONTPELLIER II SCIENCES ET TECHNIQUES DU LANGUEDOC

pour obtenir le grade de

DOCTEUR DE L'UNIVERSITE MONTPELLIER II

Discipline : Sciences de la Terre Formation Doctorale : Structure et évolution de la Lithosphère Ecole Doctorale : Sciences de la Terre et de l'Eau

présentée et soutenue publiquement

par

Aude Gébelin

Le 3 Décembre 2004

Déformation et mise en place des granites (360-300Ma) dans un segment de la Chaîne Varisque (Plateau de Millevaches, Massif Central)

~

JURY

M. Maurice BRUNEL	Professeur, Université de Montpellier II	Directeur de Thèse
M. Michel FAURE	Professeur, Université d'Orléans	Directeur de Thèse
M. Jean-Marc LARDEAUX	Professeur, Université de Nice	Rapporteur
M. Didier MARQUER	Professeur, Université de Besançon	Rapporteur
M. Philippe ROSSI	Ingénieur BRGM, Orléans	Examinateur
M. Patrick MONIÉ	CR1 CNRS Montpellier	Examinateur
M. Patrick LEDRU	Ingénieur BRGM, Orléans	Invité
M. Philippe MATTE	DR, CNRS Montpellier	Invité

AVANT-PROPOS

Les travaux présentés dans ce mémoire de Thèse de Doctorat ont été réalisés dans le cadre d'un contrat de collaboration de recherche entre le Bureau de Recherche Géologique et Minière, le laboratoire Dynamique de la Lithosphère de l'Université de Montpellier II (UMR 5573) et l'Institut des Sciences de la Terre d'Orléans (UMR 6113). Ce projet a été financé pour une durée de trente six mois dans le cadre

du programme de la carte géologique de France sous la direction de Philippe Rossi.

Je tiens à remercier tout particulièrement Monsieur Philippe Rossi, directeur du Programme de la Carte Géologique de la France, qui a financé ce projet au cours de ces trois ans, pour m'avoir accordé sa confiance, son soutien moral et pour les discussions enrichissantes que nous avons eues sur le terrain et au B.R.G.M.

Un grand merci !

J'exprime ma profonde reconnaissance à Maurice Brunel et Michel Faure qui ont dirigé ce travail. Je leur sais gré de m'avoir accompagnée dans cette grande aventure de la Chaîne Varisque et les remercie pour la liberté qu'ils m'ont accordée dans l'organisation de ce mémoire, pour leur disponibilité sur le terrain et pour les conseils précieux et encouragements qu'ils m'ont insufflés ces trois années durant. Je les remercie infiniment pour m'avoir fait partager leurs connaissances, pour les suggestions et les critiques constructives qui ont permis l'élaboration de ce travail.

Philippe Matte m'a également sensibilisée à la grande géologie et à la tectonique des chaînes de montagnes. Son dynamisme et son enthousiasme sur le terrain ont été un moteur permanent au cours de cette étude. Je le remercie pour sa généreuse participation.

Ce travail n'aurait pu être réalisé sans le soutien constant de l'équipe géophysique du BRGM. Je pense en particulier à Guillaume Martelet qui m'a formée à l'outil gravimétrique. Un merci sans égal pour sa générosité et sa disponibilité sur le terrain, tant au BRGM qu'au téléphone. Les discussions enrichissantes que nous avons eues au bureau lors de l'élaboration des modélisations gravimétriques et des conseils en tous genres sur l'organisation de mon travail, m'ont toujours été d'un grand soutien.

Je remercie également Catherine Truffert pour avoir su apprécier l'intérêt d'une étude gravimétrique sur le massif granitique de Millevaches. Elle a permis que ce projet bénéficie d'un soutien financier du BRGM.

Merci à Jean-Yves Roig pour les discussions constructives que nous avons eues lors de la réalisation des modélisations gravimétriques sur le Millevaches.

Merci à Monsieur Jézéquel pour m'avoir permis de faire les mesures de densité au BRGM et d'avoir validé les résultats par l'utilisation des liqueurs denses.

Un grand merci à Yan Chen qui, sans lui, les mesures ASM sur les parties centre et sud du Millevaches n'auraient pu se faire. Son énergie sur le terrain, sa rigueur dans le travail et son écoute envers les autres ont été pour moi d'un grand enseignement. Son avis sur l'interprétation des données ASM a été d'une aide précieuse lors de la construction du modèle de mise en place du Millevaches. Je remercie généreusement Jean-Yves Talbot qui m'a appris à me servir d'un susceptomètre et m'a encadrée lors du traitement des données ASM.

Je suis très reconnaissante à Michel de St Blanquat pour m'avoir fait partagé son expérience sur les granites et pour m'avoir prodigué des conseils précieux lors de l'élaboration de la note soumise au BSGF.

Tous mes remerciements vont à l'équipe des géochronologistes de Montpellier. Merci à Patrick Monié et à Nicolas Arnaud de m'avoir inculqué la méthode de datation ⁴⁰Ar/³⁹Ar. Merci à Marc Jolivet pour m'avoir appris la méthode de séparation des minéraux aux liqueurs denses. Merci à Françoise Roger d'avoir accepté de dater les granites et granulites du Millevaches par la méthode absolue.

J'exprime toute ma reconnaissance à Jean-Marc Lardeaux et Didier Marquer qui ont accepté de juger ce travail. Je remercie également Patrick Monié, Philippe Rossi, Patrick Ledru et Philippe Matte pour avoir bien voulu faire partie de mon jury.

Merci à Nicole Lebreton qui m'a aidée dans l'étude pétrologique des granulites du Millevaches.

Merci à Didier Lahondère et Frédéric Simien du BRGM et à l'équipe de Besançon : je pense à Patrick Rolin, Didier Marquer, Charles Cartanaz, Michel Rossy et Philippe Henry pour les discussions dynamiques et enrichissantes que nous avons partagées sur le terrain.

Anne Delplanque a été d'une aide précieuse lors de la conception des illustrations. Pour son aide constructive, pour sa générosité de tous les instants et pour son soutien moral sans faille, un grand grand merci !

Je remercie Stéphane Dominguez pour la réalisation des MNT sur la région Limousin. Son énergie, sa bonne humeur et son enthousiasme en toute circonstance ont été d'un profond réconfort. Merci, merci encore.

La carte géologique de Felletin n'aurait pu être achevée sans l'aide précieuse de Christophe Nevado et Doriane Delmas pour la réalisation des lames minces. Un grand merci.

Les mesures de densité des granites du Millevaches et des formations encaissantes ont sollicité les muscles et les compétences de Bernard Sanche pour le prélèvement d'échantillons frais et représentatifs. Merci Bernard pour ces quatre jours de travail sur le terrain.

Je tiens à remercier Olivier Rouer pour sa disponibilité et son encadrement à la microsonde électronique du BRGM lors des mesures des monazites qui ont fait l'objet de datations par la méthode U-Th-Pb. Merci également à Manuel Duguet pour l'aide qu'il m'a apportée lors du traitement des données monazites. Je le remercie également pour son initiation au logiciel Thermocalc appliqué sur les granulites du Millevaches. Merci encore et encore pour son soutien permanent.

Je remercie Maurice Mattauer pour ses conseils avisés.

Je remercie Marc Daignières, Directeur de l'Ecole doctorale « Science de la terre et de l'eau » de m'avoir accueillie au sein de son école, ainsi que Jacques Malavieille dans un premier temps puis Serge Lallemand, Directeurs du laboratoire dynamique de la lithosphère.

Un grand merci ...

A Ann-Sophie Provost, Jacques Malavieille, Serge Lallemand, Alain Chauvet, Erik Doerflinger, Christian Romano, Pierre Labaume, Rémy Enjolvy, Kuo Jen Chang, Hamid Nazari, Ricardo Vassalo, Anne-Elizabeth Lebatard et Nicolas Estrada pour leur soutien quotidien.

À Mireille Massardo pour son aide administrative sans commune mesure au BRGM,

À Monsieur Lanez pour le prêt des cartes géologiques et documents du BRGM,

À Céline Fabrégat, Marie France Roch, Martine Rosset et Nathalie Mouly du laboratoire pour leur gentillesse et leur aide à la résolution des problèmes administratifs.

Cette longue liste d'acteurs qui ont permis l'élaboration de cette thèse n'aurait peut-être pu exister, sans au départ de cette longue aventure, les encouragements de Monsieur Jean Sougy et de Jean-Paul Sylvestre... et son aboutissement sans l'aide constante et régulière de Maurice Brunel.

Merci à Laure, Dany et Anthony

Merci à Marie-France Duguet et sa famille pour son accueil généreux et chaleureux

Merci à Anne et Flo

Merci à Grimoire de m'emmener loin très loin à grande vitesse pour oublier les difficultés de la vie Merci à ma grand mère Lolette Merci à Maman d'être présente à chaque instant depuis toujours Merci à toi Jean-Christophe... Merci

Merci à vous que j'aime tant et vers lesquels je reviens toujours.

Déformation et mise en place des granites (360-300Ma) dans un segment de la Chaîne Varisque (Plateau de Millevaches, Massif Central)

Aude Gébelin*

RESUMÉ - .

Le <u>Limousin (NW du Massif Central) est caractérisé par de larges massifs granitiques mis en place entre 360 et 290 Ma</u>. Ils présentent d'étroites relations spatiales avec de grands accidents ductiles en faille normale et décrochement qui prolongent vers le <u>SE la zone de cisaillement Sud Armoricaine</u>.

Le volumineux (~10000km³) complexe granitique N-S de Millevaches, limité par des décrochements et failles normales, est un exemple type de granite mis en place dans un contexte tectonique décrochant.

Le modèle de mise en place des granites de Millevaches prend en compte l'analyse structurale, microstructurale, magnétique (A.S.M.), gravimétrique et géochronologique (40 Ar/ 39 Ar et U/Pb). L'<u>ascension des magmas</u> se fait par des <u>conduits verticaux étroits</u> sous forme <u>d'injections successives</u> qui se relaient le long de l'axe principal N-S des Pradines. Les <u>magmas sont ensuite piégés puis canalisés par la foliation précoce</u>, anisotropie mécanique <u>sub-horizontale</u> majeure de la croûte moyenne. Les magmas syntectoniques du décrochement dextre N-S des Pradines enregistrent des trajectoires de déformation orientées N-S dans la faille et NW-SE de part et d'autre. La poussée du magma au toit du laccolite induit une <u>déformation par aplatissement relaxée par le développement de failles d'échappement sub-horizontales</u>. La mise en place syntectonique des leucogranites du Millevaches, datée à 313 ± 4 Ma est contemporaine du métamorphisme granulitique subi par les roches encaissantes.

Le <u>fonctionnement des décrochements</u> du Limousin <u>débute vers 350 Ma</u> et <u>finit vers 300 Ma</u>. Nous proposons que les deux générations de granites (granodiorite-monzogranite et leucogranite) se mettent en place dès 350 Ma, dans une ceinture tectonique résultant d'un contexte en transpression. Les cisaillements ductiles constituent les branches d'un large, long (~700 km), et unique système décrochant lithosphérique analogue à une <u>« pop-up structure »</u> NW-SE dextre allant du Massif Sud Armoricain au Limousin.

MOTS-CLÉS –Granite, zones de cisaillement ductiles, laccolite, microtectonique, A.S.M., gravimétrie, géochronologie ⁴⁰Ar/³⁹Ar, U-Pb et U-Th-Pb, transpression, Millevaches, Limousin, Chaîne Varisque.

Deformation and emplacement of granites (360-300Ma) within the Variscan belt (the example of the Millevaches plateau, French Massif Central)

ABSTRACT - .

The <u>Limousin</u> area is situated in the North West French Massif central and is characterized by large granitic plutons emplaced between 360 and 290 Ma. These plutons display close relationships with normal faults and strike slip faults forming the <u>SE extension of the South-Armorican shear zone</u>. The large N-S trending granitic complex of the Millevaches, limited by wrench faults and normal faults, displays structures characteristic of a emplacement within a strike-slip tectonic context.

Structural and microstructural analyses, AMS, gravity analysis and geochronology (⁴⁰Ar/³⁹Ar et U/Pb) allow us to propose a emplacement model for the Millevaches granite.

<u>Magma ascent</u> proceeds through <u>vertical narrow ducts</u> by <u>successive injections</u> along the NS-oriented principal axis of the Pradines fault. <u>Magmas are then trapped and channeled in the previously-formed flat-lying micaschist foliation</u> which constitutes a major mechanical anisotropy of the middle crust. Synkinematic plutons emplaced in the dextral wrenching Pradines fault record N-S trending deformation trajectories in the Pradines fault and NW-SE on both sides of it The magma rising towards the roof of the laccolithe induces <u>an oblate coaxial deformation accommodated by flat-lying normal faults</u>. The crystallization of synkinematic leucogranites of the Millevaches dated at 313 ± 4 Ma, is coeval with the granulitic metamorphism which affected the surrounding micaschists.

Within the Limousin area, the onset of <u>wrench tectonic is dated around 350 Ma and deformation ends around 300 Ma</u>. We suggest that the two generations of granite (granodiorite-monzogranite and leucogranite) were emplaced around 350 Ma in a tectonic belt resulting from a transpressive tectonic context in response to the continental collision between Laurentia and Gondwana. Ductile shear zones constitute branch of a large and single wrenching lithospheric system similar to a NW-SE trending dextral <u>"pop-up structure"</u> going from the south Armorican Massif to the Limousin.

KEY-WORDS – Granite, ductile shear zones, laccolithe, microtectonic, A.M.S., gravity, ⁴⁰Ar/³⁹Ar, U-Pb and U-Th-Pb geochronology, transpressive tectonic context, Millevaches, Limousin, Variscan belt

*- Laboratoire Dynamique de la Lithosphère, Université Montpellier II, CC060, Place E.Bataillon, 34095 cedex5 Montpellier.

CHAPITRE I: EVOLUTION TECTONO-METAMORPHIQUE DE LA CHAINE VARISQUE P.20

P.17

I. Architecture de la Chaîne Varisque en Europe	P21
I-1. Généralités	P.21
I-2. Description des trois domaines principaux de la chaîne Européenne	P.23
I-2-a. La zone méridionale	P.23
I-2-b. La zone centrale	P.24
I-2-c. La zone septentrionale	P.24
I-3. Les modèles d'évolution de la Chaîne Varisque	P.25
I-3-a. Modèle d'évolution monocyclique de la chaîne Varisque	P.25
I-3-b. Modèle polycyclique de la Chaîne Varisque	P.26
II. Cadre tectonique du Massif Central Français	P.26
II-1. Rappels historiques	P.26
II-2. Les grandes unités lithotectoniques	P.29
II-2-a. Les unités méridionales paléozoïques	P.29
<u>II-2-b. L'unité para-autochtone</u>	P.30
<u>II-2-c. L'Unité Inférieure des Gneiss</u>	P.30
<u>II-2-d. L'Unité Supérieure des Gneiss</u>	P.30
<u>II-2-e. Les unités épizonales</u>	P.31
II-3. Grands evenements tectonometamorphiques de la chaine Varisque dans le Massif Central	P.31
II-5-a. La distension Camoro-Ordovicienne: 500Ma-480Ma	P.32
II-3-0. Les événements de naute pression : 430-400Ma	P.32 D 32
II-5-C. Exhumation des foches de naute pression : anatexie et metamorphisme Barrovien. 400-5/01/1a II-3-d. La métamorphisme Barrovien entre 360Ma et 340Ma	P.32 D 32
II-3-e. La période 330-290Ma	P 34
II-3-e-i L'extension NW-SE du Carbonifère moven	р 35
II-3-e-ii L'extension NE-SW : fin du Carbonifère début du Permien	P.35
1 5 c h. E excession he by . In du cursonnele debut du Fernien	1.00
III. Les problèmes posés	P.35
III-1. La localisation des zones de suture	P.35
III-2. La profusion des granites	P.35
III-3. La phase d'extension tardi-orogénique	P.35
III-4. L'interprétation des linéations	P.36
III-5. La faille du Sillon Houiller	P.36
CHAPITRE II : METHODOLOGIE	P.39
I. Etude Structurale et cartographique	P.39
II. La mesure des Orientations Préférentielles de Réseau (O.P.R.): la technique EBSD	P.40
II-1. Instruments et techniques de mesure des OPR	P.40
II-2. Appareillage	P.41
II-3. Formation des figures de diffraction	P.41
II-4. Conditions de travail	P.42
III. L'Anisotropie de Susceptibilité Magnétique (A.S.M.)	P.44
III-1. Introduction	P.44
III-2. Principes de l'étude A. S. M.	P.44
III-3. Traitement des données A. S. M.	P.45
	-
IV. Etude des microstructures des roches magmatiques	P.46
IV-1. Exemples de microstructures magmatiques	P.46
IV-2. Exemples de microstructures acquises à l'état solide de très haute température (> 600-650°C) o	u juste
avant la cristallisation totale du magma (pre-full-crystallization)	P.46

Sommaire IV-3. Exemples de microstructures acquises à l'état solide de moyenne à basse température (356 600°C))°C < T < P.46
V. La Cravimátria	D 47
	P.4/
V-1. Kappels V 2. Définition de l'allimentide comme and include de météorement	P.47
V-2. Definition de l'empsoide comme système de reference	P.4/ D.47
V-3. Definition de l'anomale de Bouguer V-4. La gravimétrie appliquée aux gravites	P.4/ D.49
v-4. La gravimetrie appiquée aux granités	P.48
VI. Géochronologie	P.49
VI-1. 40 Ar/ 39 Ar	P.49
VI-1-a. Principes et caractéristiques : (Maluski, 1985 ;Mc Dougall et Harrison, 1999)	P.49
<u>VI-1-b. Méthode ⁴⁰Ar/³⁹Ar sur populations minérales appliquée pour notre étude</u>	P.49
VI-1-c. Méthode ⁴⁰ Ar/ ³⁹ Ar sur monograins et sections polies appliquée pour notre étude	P.50
VI-2. Uranium-Plomb sur zircon et monazite : technique analytique	P.50
VI-3. Datation chimique Th-U-Pb sur monazite	P.50
VI-3-a. Introduction	P.50
VI-3-b. Description de la methode utilisée (Cocherie et al., 2001)	P.51
VI-3-b-i. Procédure analytique	P.51
VI-3-D-11. Methode de calcul	P.52
VII. Conclusion	P.52
CHADITDE III STRUCTURE TECTONIQUE ET MICROTECTONIQUE DU LIM	IOUSIN
CDANDES ZONES DE CIGA IL EMENT (CDANTE (DATATIONS 40 A / 39 A	
GRANDES ZONES DE CISAILLEMENT / GRANTIE / DATATIONS ** Ar/ ** Ar	P.55
I. Introduction	P.55
II. Contexte géologique régional	P.56
II-1. Description générale du secteur étudié	P.56
II-2. Analyse de la carte morphologique	P.58
III Structura at géométrie de la zone de cisaillement ductile de Felletin-La Courtine	D 50
III. 51 ucture et geometrie de la zone de cisamement ductile de l'enclin-La Courtine	Г.39 Д <i>5</i> 0
III-1. IIII duucuon III-2. Structure générale de l'accident de Felletin-I a Courtine	P 61
III-2-a La branche NS	P 61
III-2-b. La branche NW-SE	P.61
III-3. Description pétrostructurale et cinématique des différents types de mylonites	P.61
III-3-a. Les Leucogranites	P.61
III-3-a-i. Les faciès non déformés	
III-3-a-ii. Les faciès mylonitiques à la jonction des décrochements dextres de St Michel de Ve Felletin-La Courtine (NW de Felletin)	eisse et de
III-3-a-iii. Les faciès mylonitiques de la bordure Est du Millevaches	
* Déformation en décrochement dextre N-S (Phase 1)	
* Déformation en faille inverse vers le SW (Phase 2)	
III-3-b. Les Granites à biotite	P.64
III-3-b-i. Composition	
III-3-b-ii. Faciès ultramylonitique au sud de Felletin (Fig. III-4) montrant une déformation en fai	lle inverse
vers le sua III-3-b-iii. Faciès protomylonitique dans le secteur de Clairavaux affecté par une défor	mation en
décrochement dextre	
III-3-b-iv. Faciès mylonitique du Mas d'Artige à la Courtine déformé en décrochement dextre	
III-3-c. Les Gneiss à biotite/sillimanite encaissant des granites III-3-c-i Composition	P.66
III-3-c-ii. Structure et cinématique	
III-3-c-ii. Microstructures	
* Faciès intermédiaire entre le paléosome et les métatexites	
*Les métatexites	
III-3-d. Les anatexites à cordiérite III-4. Conditions métamorphiques des gneiss à biotite-sillimonite (Unité Inférieure des Choise)	P.69 P.60
m-+. Commons metamor priques des greiss à monte-simmanite (Onne finerieure des Gließs)	1.09

Sommaire	
III-5. Etude des Orientations Préférentielles de Réseau (O.P.R.) du quartz par la méthode EBSD	P.70
III-5-a. O.P.R. du quartz dans les granites à biotite P.70	
<u>III-5-b.O.P.R. du quartz dans les leucogranites de bordure du Millevaches</u> P.71	F II (1
III-6. Datation "Ar/" Ar des echantilions provenant des decrochements de St Michel de Veisse et de	Felletin-
La Courune III 6 a Los granitos mulonitiques dos décrechements devtres de St Michel de Veisse et de Felletin Le	P./3
III-0-a. Les grantes mytointiques des decroenements dexites de 51 whener de Veisse et de renetin-La	P.73
III-6-a-i. Le décrochement de Saint Michel de Veisse (Ech. 246 et 232)	1
III-6-a-ii. Jonction entre les décrochements de St Michel de Veisse et Felletin-La Courtine (Ech. 524 e	et 3)
III-6-a-iii. Le décrochement dextre de Felletin-La Courtine	
III-6-a-iii. * Les leucogranites non déformés de la bordure NE du Millevaches, type Hyve	rneresse :
Echantillon 6	
III-6-a-iii. ** Les leucogranites déformés par un mécanisme en faille inverse vers le SV	V (phase
2) : Echantillon 265 <u>III-6-b. Les gneiss à biotite-sillimanite des failles de St Michel de Veisse et de la</u>	Courtine
* Echantillon 40	
* Echantillon 347	
III-7. Résultats des datations U-Th-Pb à la microsonde électronique sur les monazites des gneiss	à biotite-
sillimanite (Fig. III-6a, b et c)	P.82
* Echantillon 381	
III-8. Conclusions préliminaires sur l'accident de Felletin-La Courtine	P.82
IV. La zone de cisaillement ductile des Pradines au cœur du massif de Millevaches	P.85
IV-1. Structure et géométrie du décrochement dextre des Pradines	P.85
IV-2. Datation ⁴⁰ Ar/ ³⁹ Ar des leucogranites mylonitiques des Pradines : Echantillon 356	P.89
IV-3. Datation ⁴⁰ Ar/ ³⁹ Ar des granulites de Saint Pierre-Bellevue : Echantillon 404	P.89
IV-4. Conclusion sur les âges obtenus dans le décrochement dextre des Pradines	P.91
de l'accident des Prodines	D 01
IV-5-a Les leucograpites non déformés au coeur du massif · Echantillon MVG3	P 91
IV-5-b. Les granites norrhyroïdes à biotite : Echantillon MVG4	P.92
1+ 0 of 205 grantees porphytotates wereater + Denantation 11+ 0 -	
V Faille normale d'Argentat	P 94
V-1. Description de la faille normale d'Argentat	P.94
V-2. Description des leucogranites mylonitiques de la faille d'Argentat datés par la méthode ⁴⁰	$Ar/^{39}Ar$:
Echantillon 522	P.96
VI. Le décrochement sénestre de la Marche	P.97
VI-1. Description pétrostructurale	P.97
VI-2. Datation ⁴⁰ Ar/ ³⁹ Ar des granites mylonitiques de la Marche	P.97
VI-2-a. La faille de la Marche occidentale : Echantillon 334	P.97
VI-2-b. La faille de la Marche orientale	P.100
VI-2-b-i. Les leucogranites mylonitiques: Echantillon 284	
VI-2-b-u. Les gneiss à biotite-sillimanite du plateau d'Aigurande (à proximité de la faille de la l	Marche) :
Echantilion 551 VI 3 Décultate des datations II Th Dh à la microsonda électronique sur les monozites des laucegran	itas da la
V1-5. Resultats des datations U-11-r d'a la microsonde electromque sur les monazites des leucogran Marche orientale · Echantillon 284	P 103
Marche orientate : Echantinon 204	1.105
VII. Les failles normales au toit du massif laucogranitique de la Brâme	D 105
VII.1 Description nétrostructurale et datation $40 \mathrm{Ar}/^{39} \mathrm{Ar}$ du cœur des granites du massi	F.105 if de la
Brâme : Echantillon 300	P.105
VII-2. Description pétrostructurale et datation ⁴⁰ Ar/ ³⁹ Ar de la limite Est du massif, la faille de B	ussières-
Madeleine :Echantillon317	P.105
VII-3. Description pétrostructurale et datation ⁴⁰ Ar/ ³⁹ Ar de la limite ouest du massif, la faille de	Nantiat :
Echantillon 306	P.109
VII-4. Conclusion	P.109
VIII- Discussion et conclusion générale – Article soumis pour publication à Te	ectonics
P.110	

IX- Conclusions principales de l'article soumis à Tectonics	P.142
IX-1. Analyse cinématique	P.142

Sommaire	
IX-2. Les datations	P.142
IX-3. Le modèle tectonique global	P.142
CHAPITRE IV : LE MASSIF GRANITIQUE DE MILLEVACHES	P.145
I. Contexte géologique et présentation du massif granitique de Millevaches	P146
II. Pétrographie du massif de Millevaches	P.147
II-1. Les granites à biotite porphyroïdes	P.147
II-2. Les granites à deux micas	P.147
II-3. Les granulites	P.147
II-3-a. Description	P.147
II-3-a-i. Le paléosome	
II-3-a-ii. Le leucosome ou les leucogranites à Grt-Crd	
II-3-b. Etude thermobarométrique	P.151
II-3-b. i. Thermomètre Grenat / Cordiérite	
II-3-b. ii. Thermocalc	
II-4. Les micaschistes	P.152
III. Les données géochimiques suivant Stussi et Cuney, 1993 et Shaw (1991)	P.153
III-1. Caractéristiques géochimiques des granites à biotite porphyroïdes type Egletons	P.153
III-2. Caractéristiques géochimiques des granites à deux micas	P.153
III-3. Caractéristiques géochimiques des granites de Royère (granulites)	P.154
III-3-a. Etude de Stussi et Cuney (1993)	P.154
III-3-b. Etude de Shaw	P.155
	D 4
IV. Les données geophysiques preexistantes	P.155
IV-1. Les donnees sismiques	P.155
IV-2. Les données magnetiques IV-2. Les modéliention géométrique 2D du Surd Lineausin intégrant le mogrif quanitieure de Mil	P.155
TV-5. La modelisation geometrique 5D du Sud-Limousin integrant le massil granuque de Mil	levacnes P.15/
V Gravimétrie	P 158
V. 1 Prospection gravimátrique	P 158
V-1-a Acquisition des données	P 158
V-1-a-i Définition du levé gravimétrique	1.100
V-1-a-ii. La mesure du champ de pesanteur	
V-1-a-iii. Nivellement et Positionnement	
V-1-a-iv. Homogénéisation du levé gravimétrique	
V-2. Réduction et intégration des données pour l'obtention de l'anomalie de Bou	guer complète
P.159	
V-3. Obtention de l'anomalie de Bouguer résiduelle	P.159
<u>V-3-a. L'anomalie régionale</u>	P.159
V-3-b. L'anomalie de Bouguer residuelle: description de la carte (Fig. IV-11) et localisa	ntion des unités
geologiques,	P.159
V-4. Les mesures de densite V 5. Modélisation par la méthoda d'invarsion	P.103 D 162
V-5. Mouensation par la methode u inversion V 6. Discussion et conclusion de cette première partie de l'étude gravimétrique : Article par	r.105 1 au Bullatin da
la Société Géologique de France	P 164
V-7 Modélisation gravimétrique 2D	P.175
V-7-a Information mise à disposition pour la construction des modèles	P.175
V-7-a-i. Information géologique	11110
V-7-a-ii. Information sur la densité des roches	
V-7-a-iii. Information sur l'interface granite/encaissant	
V-7-a-iv. Information sur la profondeur des unités Limousines (gneiss et micaschistes) à p	artir des profils
sismiques (Bitri et al, 1999)	~ ~
V-7-a-v. Autre information concernant l'interface micaschiste / substratum	
V-7-a-vi. Extension des profils gravimétriques	
V-7-b. Résultats des modélisations gravimétriques suivant des coupes E-W à travers le massif	de Millevaches
	P.176
V-7-b-1. Coupe A (Fig. IV-14) 7 h ii Coupe B (Fig. IV-14)	

V-7-b-iii.Coupe C (Fig. IV-14)

Sommaire V-7-b-iv.Coupe D (Fig. IV-14) V-7-b-v. Conclusion sur les profils gravimétriques modélisés à travers le massif de Millevaches V-7-c. Résultats des modélisations gravimétriques régionales V-7-c-i. Profil E (Fig. IV-15) V-7-c-ii. Profil F (Fig. IV-15) V-7-c-ii. Profil G (Fig. IV-15) V-7-c-iv. Conclusion

VI. Anisotropie de Susceptibilité Magnétique (A. S. M.) appliquée au massif granitique de Millevaches P.181

VI-1. Méthode d'échantillonnage	P.182
VI-2. Minéralogie magnétique	P.182
VI-3. Les paramètres scalaires de l'A. S. M.	P.183
VI-3-a. La susceptibilité magnétique	P.183
VI-3-b. Les différents diagrammes P'-T, P'-Km et T-Km	P.183
VI-3-b-i. Le diagramme P'-T	
VI-3-b-ii. Le diagramme P'-Km et T-Km	
VI-3-c. Les cartes de répartition géographique du paramètre de forme et du degré d'anisotropie	P.184
VI-4. Les fabriques magnétiques	P.185
IV-4-a. Résultats A.S.M. en projection stéréographique	P.185
IV-4-b. Les linéations et foliations magnétiques	P.185
IV-4-b-i. Partie sud de l'étude	
IV-4-b-ii. Partie centre de l'étude (au sud de la latitude du village de Millevaches)	
IV-4-b-iii. Partie nord de l'étude (latitude de Millevaches et Peyrelevade)	
IV-4-b-iii. Partie extrême nord du massif (Jover, 1986)	
VI-5. Observations microstructurales	P.190

VII. Discussion et conclusion de l'étude gravimétrique associé aux données de l'anisotropie de susceptibilité magnétique acquises sur le massif de Millevaches : Article accepté pour publication à Journal of Structural Geology (voir Annexe 7).

VIII. Datation Uranium-Plomb sur zircon et monazite	P.195
VIII-1. Introduction et choix des échantillons	P.195
VIII-1-a. Le granite à deux micas mylonitique de la faille des Pradines : (MVG 2)	P.195
VIII-1-b. Le paléosome des granulites à Grt-Crd-Sil-Bt: (MVG 6)	P.195
VIII-1-c. Le leucosome de ces mêmes granulites : (MVG 8) appelé aussi Leucogranite à G	rt-Crd de RoyèreP.195
VIII-2. Technique analytique	P.195
VIII-3. Résultats des datations U/Pb	P.195
VIII-3-a. Les granites à deux micas mylonitique de la faille des Pradines (MVG2)	P.195
VIII-3-b. Les granulites de Saint Pierre-Bellevue.	P.196
VIII-3-b-i. Le paléosome (MVG6)	
VIII-3-b-ii. Le leucosome (MVG8)	
VIII-4. Discussion et Conclusion	P.198
IX. Datation chimique Th-U-Pb sur monazite	P.199
IX-1. Echantillon D61	P.199
IX-2. Echantillon MVG4	P.200
IX-3. Echantillon 487	P.200

X. Synthèse des résultats de l'ensemble des données acquises sur le massif granitique de Millevaches P.204

X-1. Principaux résultats de l'étude gravimétrique	P.204
X-2. Résultats acquis par l'étude de l'anisotropie de susceptibilité magnétique	P.204
X-3. Résultats des datations U/Pb par la méthode conventionnelle	P.205
X-4. Résultats des datations Th-U-Pb sur monazite par la méthode chimique	P.205
X-5. Résultats de l'étude thermobarométrique effectuée sur les granulites du Grand Janon	P.205
X-6. Modèle de mise en place du massif granitique de Millevaches	P.205

CHAPITRE V : DISCUSSION GENERALE ET CONCLUSION P.211

Sommaire	
I. Le Massif granitique de Millevaches	P.211
I-1. Observations structurales, cinématique et conditions de la déformation	P.211
I-2. Les résultats de l'Anisotropie de Susceptibilité Magnétique (A.S.M.).	P.212
I-3. Les résultats gravimétriques	P.212
I-4. Les résultats géochronologiques	P.213
I-5. Modèle de mise en place des granites du Millevaches (Fig.V-2)	P.213
II. Généralisation aux granites de la Marche, de la Brâme et du Guéret	P.214
II-1. Les granites à deux micas de la Marche	P.214
II-2. Le complexe leucogranitique de la Brâme	P.214
II-3. Le complexe granitique du Guéret	P.215
III. Evolution temporelle du modèle d'évolution des décrochements du Lim	ousin associés à la
mise en place des granites	P.216
IV. Raccord du Limousin avec le Massif Sud Armoricain	P.219
IV-1. Similitudes structurales	P.219
IV-2. Similitudes géochronologiques	P.219
V. Modèle géodynamique	P.219
VI. Origine des granites	P.219
VII. Les leucogranites dans la Chaîne Varisque et la Chaîne Himalaye	nne : analogies et
différences	P.221
VII. 1 Aspect géochimique	P.221
VII. 2 Aspect géométrique	P.221
VII. 3 Mécanismes d'ascension et de mise en place	P.222
VII. 4 Contexte géodynamique	P.222
VII. 5 Comparaison des granites du Limousin et du Massif Sud Armoricain avec les gr	anites IbériquesP.222
Références bibliographiques	P.225

Dans le Massif Central, la chaîne Varisque est caractérisée par de nombreux massifs granitiques de type divers, mis en place entre 360 et 290 Ma. Les granites sont de bons marqueurs de l'évolution de la croûte continentale lors des processus orogéniques.

Ce sont des roches moins déformées que l'encaissant qui sont faciles à dater par les méthodes radiochronologiques. Le caractère anisotrope et hétérogène des roches métamorphiques favorise le développement de structures complexes (plis, structures superposées,...). En revanche, la déformation ductile des massifs granitiques, marquée généralement par des bandes de cisaillement ou des plans de foliation est simple et cohérente à l'échelle du massif. Les zones de cisaillement séparent des domaines préservés peu ou pas déformés.

Les granites sont formés et souvent localisés dans les zones de forte activité orogénique tels que les décrochements ductiles, et sont donc intrinsèquement associés à la dynamique des chaînes de montagne. Ils permettent de donner une limite supérieure aux épisodes de déformation.

Associée à la mémoire structurale, qui a trait aux mécanismes de mise en place et de cristallisation, s'ajoute une mémoire géochimique qui fait appel aux étapes précoces de la vie des granites. La géochimie associée à la pétrologie permet d'accéder aux matériaux sources et aux phénomènes de fusion et de ségrégation responsables de leur genèse.

Leur capacité à enregistrer toutes les étapes de leur vie fait des granites, des objets précieux pour comprendre l'évolution des chaînes de montagne.

Cette étude est centrée sur l'évolution de l'orogenèse Varisque dans la région du Limousin (NW du Massif Central). La Chaîne Varisque est reconnue comme un modèle orogénique de collision à croûte épaissie par chevauchement (Matte, 1986), amincie ensuite par extension (Mattauer *et al.*, 1988 ; Faure, 1989 ; Van den Driessche et Brun, 1989 ; Faure *et al.*, 1990 ; Burg *et al.*, 1990 ; Faure, 1995).

Dans le Limousin, les nombreux massifs granitiques syn- ou post-tectoniques masquent les structures résultant des phases de déformation précoces. Ils se répartissent en deux groupes : les granites à biotite + cordiérite monzonitiques à granodioritiques et les leucogranites appelés aussi granites à deux micas. Leur mise en place s'est produite respectivement au Tournaisien (360-350Ma) et au Namuro-Wesphalien (330-310Ma). Leur origine reste incertaine, cependant pour Downes et al., (1997), les monzogranitesgranodiorites pourraient provenir du mélange de magmas mantelliques et crustaux. Les leucogranites résulteraient essentiellement de la fusion crustale (Lameyre, 1966; Vidal et al., 1984 ; Bernard-Griffiths et al., 1985 ; Turpin et al., 1990a; Cuney et al., 1990; Shaw, 1991). Leur mise en place pourrait être contrôlée d'après certains auteurs par le désépaississement de la chaîne en extension au Namuro-Wesphalien (Faure, 1989 ; Faure et Pons, 1991).

L'ensemble des granites présente d'étroites relations spatiales avec de grandes zones de cisaillement ductiles en décrochement et en faille normale. Y a t-il un contrôle des failles crustales sur le transport et la mise en place des magmas ? Quel est leur rôle dans les mécanismes d'exhumation des massifs granitiques ?

Inversement, les plutons représentent-ils des sites préférentiels pour la localisation de la déformation crustale ?

Une problématique de premier ordre, pour la structuration de la chaîne Varisque, touche à la chronologie relative entre la mise en place des magmas, le régime tectonique régional et le développement des zones de cisaillement ductiles associées. La cinématique et les époques de fonctionnement de ces accidents ne sont pas établies. La compréhension de la cinématique générale de ces grands couloirs mylonitiques et ses relations avec la localisation et la mise en place des magmas sont fondamentales pour comprendre la structuration de la chaîne Varisque.

Les grands décrochements du Limousin et les granites associés sont brusquement interrompus à l'Est, par la faille du Sillon Houiller. Ce grand accident de plus de 900km de long, et probablement de nature lithosphérique, complique la corrélation entre les parties Ouest et Est du Massif Central. La prolongation des accidents du Limousin à l'Est du Sillon Houiller reste pour l'instant hypothétique. Les raccords avec le segment Sud Armoricain séparé par les bassins méso et cénozoïques sont également problématiques.

L'analyse de la structure et des déformations en domaine ductile nécessite une étude pluridisciplinaire.

Afin de déterminer les relations structurales des différentes unités géologiques impliquées dans les zones de cisaillement ductiles et leurs cinématiques, une cartographie détaillée de ces grands accidents est indispensable.

Le décrochement dextre de Felletin – La Courtine (bordure NE du Millevaches) a fait l'objet d'une synthèse cartographique au 1/50 000 pour le service de la carte géologique de France du BRGM. La description détaillée de ce secteur, épargné par la mise en place excessive des leucogranites, met en évidence l'ensemble des formations représentatives du substratum affecté par les décrochements.

La cinématique des zones de cisaillements ductiles qui affectent les massifs leucogranitiques est déterminante pour comprendre les processus de déformation et de mise en place des granites. Associée à la cinématique, la résolution des orientations préférentielles de réseau (O.P.R.) des minéraux apporte des informations sur le régime de déformation et sur les mécanismes intracristallins actifs lors de cette déformation (Nicolas et Poirier, 1976).

Les données de terrain sont le plus souvent restreintes aux observations de surface. L'utilisation d'outils géophysiques est indispensable à l'imagerie des structures en profondeur. La sismique se limitant à des profils, seule la gravimétrie fournit une profondeur d'investigation suffisante pour déterminer la forme en 3-D d'un pluton dans son ensemble.

Limité par de grands décrochements, le massif granitique de Millevaches nous a permis d'étudier les mécanismes de mise en place des granites et leurs relations avec la tectonique décrochante. Ainsi, un levé

Introduction

gravimétrique, accompagné de mesures de densités, a été réalisé sur la partie nord-est du massif de Millevaches. La nouvelle carte d'anomalie résiduelle a permis de modéliser ce massif granitique et les structures géologiques environnantes.

Si les modélisations gravimétriques permettent de déterminer l'épaisseur des granites, la géométrie de leur plancher ainsi que celle de leur bordure en profondeur, elles fournissent peu d'informations sur leur mode de mise en place. Associée aux données de terrain, l'anisotropie de susceptibilité magnétique permet de cartographier les structures magmatiques des massifs granitiques qui traduisent les déformations pendant ou après la mise en place des magmas. La combinaison de la gravimétrie et des études magnéto-structurales est ainsi la méthode la mieux adaptée pour déterminer les modèles de mise en place des granites dans la croûte.

Pour préciser le mode de mise en place du pluton et voir les relations avec les failles qui l'affectent, une centaine de sites sur les parties centre et sud du Millevaches ont fait l'objet de mesure d'anisotropie de susceptibilité magnétique (A.S.M), en complément des données obtenues par Jover (1986) effectuées sur la partie nord du massif. Dans le but de pouvoir définir les conditions de formation des granites, les fabriques magnétiques obtenues ont été couplées à l'analyse détaillée des microstructures magmatiques.

On peut difficilement s'intéresser à la cinématique des grands accidents ductiles et à la mise en place des granites qu'ils jalonnent sans les dater. La période de fonctionnement de ces grands accidents n'est pas établie. La compréhension de la cinématique et de la période de fonctionnement des zones de cisaillement est fondamentale dans la reconstitution des orogènes car elle apporte des contraintes chronologiques sur les processus d'épaississement et d'amincissement crustaux et par là sur les phénomènes de subduction et d'exhumation qui contrôle la genèse des magmas et leur mise en place. Pour cela, une trentaine d'échantillons prélevés à l'intérieur des massifs granitiques et sur les zones de cisaillement ont été sélectionnés pour une datation par la méthode ⁴⁰Ar/³⁹Ar. Le but de ce travail a été tout d'abord de comparer les âges obtenus sur les granites non déformés avec ceux mis en évidence au sein des zones mylonitiques ; de déterminer ensuite, la nature polyphasée des sites de rétention de l'argon, en différents caractérisant les phénomènes de recristallisation syn-mylonitique qui se développent au cours du refroidissement du granite.

Les résultats obtenus par la méthode ⁴⁰Ar/³⁹Ar ont été couplés à l'analyse, par la méthode de datation U/Pb sur zircons et monazites, de trois échantillons provenant du massif granitique de Millevaches. Afin de lever toute indétermination sur l'interprétation des données U/Pb nous avons effectué une étude préalable des conditions P-T qui ont affectées les trois échantillons analysés.

Ce travail se divise en cinq parties :

Nous débuterons tout d'abord, lors d'un premier chapitre, par une présentation générale de l'évolution tectono-métamorphique de la Chaîne Varisque Ouest Européenne puis nous essaierons, par une synthèse bibliographique, de retracer la structure et l'évolution du Massif Central français et d'en dégager les problèmes majeurs qui en découlent.

Notre travail a fait l'objet d'une étude pluridisciplinaire dans les domaines de la cartographie (levés au 1/50 000 de la feuille de Felletin, n°691), de la microtectonique, de l'analyse pétrostructurale (dont Analyse de la Susceptibilité Magnétique), de la gravimétrie et de la géochronologie (datation ⁴⁰Ar/³⁹Ar, U/Pb et U-Th-Pb). Le deuxième chapitre est donc consacré à la description sommaire de ces différentes méthodologies.

Le troisième chapitre traite de la cinématique et du fonctionnement des grandes zones de cisaillements ductiles associées à la déformation et à la mise en place des granites. Nous décrivons l'ensemble des données structurales, des datations ⁴⁰Ar/³⁹Ar et U-Th-Pb acquises sur les grands accidents et à l'intérieur des massifs granitiques et nous les replaçons dans un contexte géodynamique régional. La synthèse des résultats est présentée dans un article soumis à *Tectonics*.

Le chapitre IV concerne l'étude de la structure, du contexte et du mode de mise en place du massif granitique du Millevaches. Il est divisé en plusieurs parties : Nous débutons tout d'abord par une description pétrostructurale des différentes formations aui composent le massif, puis présentons les résultats préliminaires de l'étude thermobarométrique effectuée sur les granulites du Millevaches. Après avoir fait le point sur les aspects géochimiques et géophysiques préexistants, nous présentons nos données gravimétriques acquises sur le massif, étendues ensuite à l'échelle régionale par des coupes de modélisations gravimétriques 2D. Associée à une réflexion générale sur la forme des plutons et leur mode de mise en place, l'acquisition des mesures du champ de pesanteur couplée aux mesures de densité faites sur les différentes formations du secteur étudié a fait l'objet d'une publication en anglais parue au Bulletin de la Société Géologique de France.

Nous poursuivons par l'étude de l'anisotropie de susceptibilité magnétique menée dans la partie centrale et méridionale du Millevaches en complément des données acquises par Jover en 1986. Couplée aux coupes de modélisations gravimétriques, l'interprétation des résultats est exposée dans un article accepté à *Journal of Structural Geology*. L'étude géochronologique clôture ce chapitre avec tout d'abord les datations U/Pb effectuées par la méthode conventionnelle sur trois échantillons du massif de Millevaches, puis les datations U-Th-Pb sur monazites acquises par la méthode chimique à la microsonde électronique.

Enfin, le chapitre V résume dans un schéma géodynamique général les résultats acquis au cours de ce travail et leurs conséquences pour la compréhension du modèle structural et cinématique du Massif Central français et sa place dans le segment Varisque ouest européen.

REATER GREATER FIG. I-2 - Reconstitution paléozoïque depuis l'ordovicien moyen (465 Ma) jusqu'à la fin du Carbonifère (340 Ma) d'après MATTE (2001), mettant en évidence les microplaques continentales Armorica et Avalonia.

0

0

w

60°5

N D w

0

0

CHAPITRE 1:

EVOLUTION TECTONO-METAMORPHIQUE DE LA CHAINE VARISQUE

I. Architecture de la Chaîne Varisque en Europe

I-1. Généralités

La ceinture Varisque d'Europe de l'ouest fait partie d'une immense chaîne de montagne de 8000 km de long sur 1000 km de large qui s'étendait du Caucase en Europe jusqu'au Nord des Etats Unis (Fig. I-1).

Elle résulte de la collision des continents Laurentia-Baltica (Amérique du Nord ou Laurentia et Europe du Nord ou Baltica) au NW et Gondwana (Afrique et Europe centrale et méridionale) au Sud (Fig. I-2). A partir des données paléomagnétiques et structurales, ont été définies entre ces deux blocs continentaux majeurs, plusieurs microplaques continentales, Avalonia et Armorica (Fig. I-2) formées d'un socle protérozoïque (650-550 Ma). Ces microplaques se sont détachées depuis la marge gondwanienne pendant le Cambro-Ordovicien (500-480 Ma) et se sont accrétées à Baltica et Laurentia avant la collision de Gondwana avec Laurentia-Baltica à la fin du Carbonifère (Matte, 2001 ; Matte, 2002). La collision s'est faite par fermeture d'au moins trois bassins océaniques nommés du nord vers le sud, Iapétus, Rhéïque et Galicia-Massif Central (Fig. I-2). Les données structurales (Matte, 1986) et géophysiques (Pinet et al., 1986; Matte et Hirn, 1988) ont montré des sens de subduction opposés pour les deux derniers (subduction vers le sud pour l'océan Rhéïque et vers le nord pour Galicia-Massif Central). Les zones de suture, représentant le lieu d'enracinement des grandes nappes, sont bien représentées de part et d'autre de la chaîne et mettent en évidence des fragments de croûte et de manteau océanique éclogitisés qui témoignent de paléosubductions Varisques. De part et d'autre des zones de suture, les ceintures orogéniques sont caractérisées par des formations de faible à fort degré métamorphique affectées par des chevauchements et des plis couchés déversés vers les bassins externes carbonifères (Fig. I-3).

Les coupes géologiques qui rendent le mieux compte du socle Varisque sont situées dans la Péninsule Ibérique et en France (Fig. I-3). Caractérisée par un système de double subduction de sens opposé, l'allure générale de la chaîne se reflète bien sur le profil NS de la France.

Bien que leur extension soit mal connue, les grandes nappes sont marquées en France par des chevauchements et des plis couchés vers le S-SW dans la zone méridionale (Montagne Noire) et vers le N-NW dans la zone septentrionale (Fig. I-3). Ces nappes sont formées de métasédiments, de métabasites et de métagranites ayant subi des conditions P-T de l'ordre de 5 kbar – 500°C qui correspondent aux conditions de la croûte continentale entre 15 et 20 kilomètres de profondeur. 15 à 20 km d'épaisseur de roches qui recouvraient ces métapélites ont donc été enlevés avant le dépôt des terrains carbonifère inférieur à supérieur soit par dénudation, érosion ou les deux. Où est partie cette quantité colossale de matière et par quel mécanisme ? Des roches de haute pression à ultra haute pression (Matte 1998 : Lardeaux et al. 2001) se trouvent dans la

(Matte, 1998 ; Lardeaux et al., 2001) se trouvent dans la nappe supérieure à matériel en partie océanique. La découverte des éclogites à coésite dans les Monts du Lyonnais témoigne d'une profondeur d'enfouissement de l'ordre de 90 km (Lardeaux et al., 2001).

Cette ancienne chaîne qui s'est édifiée entre 420 et 290 Ma a subi une érosion intense au cours du Carbonifère Supérieur jusqu'au début du Permien, elle constitue ainsi le socle anté-permien de toute l'Europe occidentale et centrale. La reconstruction anté-triasique de la chaîne est rendue difficile par le fonctionnement à la fin du Paléozoïque de grands décrochements qui ont repris les anciennes sutures (Arthaud et Matte, 1977 ; Bard, 1997).

Elle a été disloquée ensuite lors du mouvement mésozoïque des plaques et de l'ouverture de l'Océan Atlantique.

FIG. I-3 – Coupes géologiques simplifiées d'échelle crustale à travers la Chaîne Varisque dans la péninsule Ibérique et en France, sans les granites d'après MATTE (2001). En rose : Soubassement faiblement métamorphique tardi Protérozoïque. En blanc : Sédiments Paléozoïques. En vert : Sutures et nappes ophiolitiques. En jaune : Bassins externes Carbonifères. CCSZ : Décrochement sénestre de Coïmbra-Cordoba. Bray F : Faille de Bray. NASZ et SASZ sont les zones de cisaillements dextres Nord et Sud Armoricaines. VF : Front Varisque.

FIG. I-4 - Dispersion actuelle des parties de la Chaîne Varisque érodée d'après MATTE et MATTAUER (2003).

De part et d'autre de l'Atlantique, elle nous apparaît à l'heure actuelle en deux branches (Fig. I-4) totalement érodées avec un Moho situé entre 30 et 40 km de profondeur (Malavieille, 1993).

A l'ouest de l'Atlantique, on observe des segments de chaîne qui se sont formés entre deux continents tels que les Appalaches qui s'étendent depuis les Monts Ouachitas jusqu'à Terre Neuve et d'autres, comme la bordure ouest de l'Amérique du Sud que l'on suit jusqu'en Antarctique et en Australie, correspondant probablement à une ancienne bordure de continent (Fig. I-4). A l'Est de l'Atlantique, la Chaîne Varisque d'Europe et l'Oural forment la continuité orientale des Appalaches (Fig. I-4).

L'extension gigantesque de cette chaîne pénéplanée à travers le monde et la disparition des océans contemporains de sa formation augmentent les difficultés d'interprétation pour sa reconstitution.

Outre l'ouverture des grands océans (océans Atlantique, Indien, Pacifique) qui ont conduit à son fractionnement, la Chaîne Varisque a été oblitérée en partie et reprise par la tectonique Alpine.

La succession des orogèneses au cours des temps géologiques montre qu'il existe des cycles de formationdestruction qui rythment l'histoire de la Terre. Les causes de la disparition des chaînes sont encore mal connues. Depuis une quinzaine d'années, la découverte dans les chaînes de montagne de structures géologiques significatives d'une extension tels que les failles normales, a permis de reconsidérer les concepts antérieurs tenant en compte uniquement des phénomènes isostatiques. Les premiers modèles qui ont rendu compte des mécanismes de l'extension dans les continents ont vu le jour au début des années 80 dans la région des «Basin

FIG. I-5 – Profils sismiques COCORP (région des Basin and Range) et ECORS (Nord de la France) d'après MALAVIEILLE (1993), mettant en évidence un Moho plat. SR : Snake Range metamorphic core complexes. SD : Sevier Desert basin. BB : Brabant Block.

and Range» aux Etats-Unis. L'évolution des «Basin and Range» actuels est à un stade très avancé ayant dépassé les stades du rééquilibrage isostatique, car les études montrent une extension active continue qui amincit la croûte au-delà de son épaisseur normale. La comparaison des profils ECORS Chaîne Varisque (Fig. I-5) et COCORP Basin and Range (Fig. I-5) montre la ressemblance des structures de la croûte. Le Moho est plat sous les deux domaines et les racines de la chaîne n'existent plus. Le tracé des réflecteurs dans la croûte inférieure montre qu'elle est fortement litée. Ces observations confirment que, par endroit, la partie inférieure de la croûte est remobilisée pendant l'extension à cause du fluage des roches ductiles profondes et du magmatisme induit par une fusion crustale locale. C'est à ce phénomène précisément, bien répertorié dans le Limousin par la présence des nombreux massifs leucogranitiques, que nous porterons une attention particulière au cours de cette étude.

Avant d'aborder les problèmes de mise en place des leucogranites dans la croûte qui interviennent à la fin des processus orogéniques, et de réfléchir aux mécanismes qui ont contribué à la dénudation de la Chaîne Varisque, nous nous proposons d'établir un bilan des connaissances sur la Chaîne Varisque en Europe puis plus précisément sur le Massif Central qui fait l'objet de notre étude.

I-2. Description des trois domaines principaux de la Chaîne Européenne (Fig. I-6)

La Chaîne Européenne s'organise en trois zones principales : une zone centrale constituée par les domaines armoricains à l'ouest, et barrandiens à l'est ; une zone méridionale mise en évidence dans le Massif Central, les Pyrénées et l'Espagne, enfin, une zone septentrionale représentée dans les pays du nord de l'Europe, en Irlande, Grande-Bretagne, et Allemagne.

I-2-a. La zone méridionale (Fig. I-6 et I-7)

Elle est bien représentée dans la Péninsule Ibérique, sur une coupe E-W de la Galice occidentale aux Asturies et, au nord du Portugal (Fig. I-7), par les complexes de Cabo-Ortegal, Ordennes, Bragança et Morais qui forment la nappe supérieure. Ils sont caractérisés par d'épaisses séries paléozoïques affectées par une tectonique en décollement. La nappe supérieure contient des métabasites, des péridotites et des roches de haute pression. La base de ces séries est formée de laves et de sédiments qui pourraient correspondre à la marge amincie du Gondwana. Les ophiolites démembrées formant la série intermédiaire sont affectées d'un métamorphisme dans des conditions épi à mésozonales. Les roches de haute pression (éclogites et granulites de HP) sont plus énigmatiques. Elles ont été datées récemment à 390 Ma à Bragança (Roger et Matte, soumis). Ces âges sont peu éloignés de ceux fournis par Peucat et al. (1990) en Ibérie et dans le Massif

FIG. I-6 – Chaîne Varisque d'Europe de l'ouest et du nord de l'Afrique au Permien d'après MATTE (2002) laissant apparaître les zones de suture principales et l'extension des microplaques Avalonia et Armorica. En vert et pointillés : Suture Calédonienne Iapetus. En violet : Avalonia. En orange : Armorica. En vert : Nappes ophiolitiques enracinées dans la suture Galicia-Massif Central.. Tiretés : Nappes de la zone méridionale. Pointillés bleus : Bassins externes Carbonifères. Flèches rouges : Vergence des nappes. C.C.S.Z. : Coïmbra-Cordoba shear zone. Beja S. :Beja suture. O.M. : Ossa Morena. B.-M. : Bragança et Morais. C.O.-O. : Cabo Ortegal et Ordennes. Z.S.T : Zone Saxo-Thuringienne. Z.R.H. : Zone Rheno-Hercynienne. M.C. : Massif Central. F.N./E. : Faille Nord sur Erdre.

Chapitre I- Evolution tectono-métamorphique de la Chaîne Varisque d'Europe Central (Pin et Peucat, 1986) qui ont obtenu des âges M. siluriens.

L'équivalence des séries des complexes de Cabo-Ortegal, Ordennes, Bragança et Morais, se retrouve en France au niveau des complexes leptyno amphiboliques de Champtoceaux en Vendée, et dans le Massif Central. En Bohème, ces séries sont regroupées au sein de la nappe de Gföhl (Matte et al., 1985).

L'ensemble de ces séries est limité au nord, en France, et à l'ouest, en Espagne, par la zone de suture sud qui correspond à la fermeture de l'océan GaliciaMassif Central. En Espagne, la suture est localisée au niveau du décrochement dextre de Coimbra-Cordoba (Bard et al., 1980 ; Matte, 1986). Son équivalent en France se retrouve au sud de la Bretagne au niveau de la faille de Nord-sur-Erdre (Faure et al., 1997 ; Cartier et al., 2001). Elle se poursuivrait à l'Est sous le bassin de Paris au Nord du forage GPF de Couy-Sancerre puis dans les Vosges. Sa prolongation vers l'est apparaît beaucoup plus obscure, mais pourrait se retrouver au niveau de la virgation de Bohème (Matte, 2002) suivant une direction NNE-SSW depuis les Alpes externes

FIG. I-7 – Coupe N-W péninsule Ibérique d'après MATTE (1998).

Françaises dans lesquelles des ophiolites Paléozoïques ont été décrites (Ménot et al., 1988) jusqu'en Sardaigne où on a mis en évidence des nappes à vergence ouest (Carmignani et al., 1994).

I-2-b. La zone centrale (Fig. I-6)

Ce secteur est compris entre la suture Sud qui correspond à la subduction vers le nord de l'océan Galicia-Massif Central et la suture Nord, reflet de la subduction vers le sud de l'Océan Rhéïque. Comme vu précédemment, il correspond à la microplaque Armorica coincée entre les deux grands blocs Laurussia et Gondwana. Armorica serait représentée par les domaines armoricains à l'ouest et barrandien à l'est qui sont constitués par un socle précambrien structuré avant le Paléozoïque inférieur, recouvert ensuite par une plateforme paléozoïque peu déformée par les épisodes Varisques.

I-2-c. La zone septentrionale (Fig. I-6)

Elle est classiquement divisée en deux branches : au Nord on distingue la zone Rhéno-Hercynienne et au Sud, la zone Saxo-Thuringienne.

La zone Saxo-Thuringienne est constituée d'un socle de croûte continentale cadomien d'âge protérozoïque à

cambrien inférieur surmonté par des séries sédimentaires paléozoïques (Franke, 1984 ; Franke, 1989). Elle est séparée du bloc Barrandien par la suture de Tepla qui se poursuit selon les auteurs, à l'ouest, au niveau du cap Lizard (Matte et al., 1990 ; Robardet et al., 1994) en Grande Bretagne où des ophiolites sont reconnues (Franke, 1989). Au SW, en suivant la courbure de l'arc Ibéro-Armoricain, on la retrouve dans la Péninsule Ibérique au niveau du complexe ophiolitique de Beja-Acebuches qui sépare la zone d'Ossa-Morena de la zone Sud-Portugaise (Crespo-Blanc et Orozco, 1991 ; Matte, 2002).

Cette suture est le lieu d'enracinement des nappes à vergence NNW pour le sud de la Grande Bretagne, l'Allemagne et la Pologne, et à vergence SW dans la zone Sud Portugaise (Onézime et al., 2002).

La zone Saxo-Thuringienne chevauche vers le nord la zone Rhéno-Hercynienne.

La zone Rhéno-Hercynienne est caractérisée par une tectonique de nappes à vergence nord et un dépôt de flyschs syn-orogéniques. Elle est représentée par le Massif Schisteux-Rhénan, les Ardennes, le massif de Harz et se retrouve également en Cornouaille.

FIG. I-8– Modèle d'évolution monophasé de la Chaîne Varisque d'Europe sur la transversale Ibérique depuisl'ordovicien jusqu'au Carbonifère, d'après MATTE (2002). 1 : Manteau. 2 : Croûte continentale. 3 : Croûte océanique. 4 : Croûte d'arc possible. 5 : Sédiments Paléozoïques. 6 : Bassins Carbonifères.

I-3. Les modèles d'évolution de la Chaîne Varisque

I-3-a. Modèle d'évolution monocyclique de la Chaîne Varisque (Fig. I-8).

Matte (1986) propose un modèle monocyclique pour l'évolution de la Chaîne Varisque. Le cycle orogénique est caractérisé par une convergence continue entre les continents Laurussia et Gondwana depuis le Silurien jusqu'au Carbonifère inférieur. La Chaîne Varisque résulte de la subduction opposée de deux domaines océaniques : l'océan Rhéïque au nord se ferme par une subduction vers le sud tandis que l'océan Galicia Massif Central subducte vers le nord. L'épaississement de la chaîne s'effectue par l'empilement d'unités charriées. La géométrie d'ensemble présente par conséquent une allure en éventail, les chevauchements se faisant vers le Nord au niveau de la suture de l'océan Rhéïque et vers le Sud au niveau de la suture de l'océan Galicia Massif Central. Dans le modèle monophasé, les linéations NE-SW et NW-SE observées dans le Massif Central, résultent respectivement de la collision frontale puis oblique autour de l'arc ibéro-armoricain (Burg et al., 1987) lors de la subduction vers le nord de l'océan Galicia-Massif Central. Les mouvements à vergence NW sont le reflet de détachements syn à post exhumation pendant la mise en place des nappes vers le Sud (Mattauer, 1988) et accommodent l'extrusion vers le SE du Massif Central (Matte, 1991).

FIG. I-9- Modèle d'évolution polyphasée de la Chaîne Varisque d'Europe suivant une coupe d'échelle lithosphérique sur la transversale Ardennes-Massif Central au Viséen d'après FAURE et al. (2002).

I-3-b. Modèle polycyclique de la Chaîne Varisque (Fig. I-9).

Pin (1990), Faure et al. (1997) et (2002) remettent en cause l'idée d'un cycle orogénique unique et continu depuis le Silurien jusqu'au Carbonifère inférieur. Ils proposent un modèle polyphasé où les deux évènements compressifs décrits précédemment sont séparés par un épisode de distension au cours du Dévonien moyen. Le premier cycle de convergence se déroule du Cambrien jusqu'au Dévonien inférieur et correspond à la fermeture de l'océan Galicia-Massif Central. Le deuxième cycle de convergence qui est lié à la fermeture de l'Océan Rhéïque est suivi par la collision Laurussia-Gondwana depuis le Dévonien moyen jusqu'au Carbonifère inférieur.

Faure et al. (1997, 2002) mettent en avant le rôle joué par la subduction de l'océan Rhéïque vers le Sud dans la mise en place du magmatisme calco-alcalin Dévonien observé dans le Morvan, les Vosges et la Vendée. Lors de la subduction vers le sud, la plaque supérieure est soumise à un régime distensif qui provoque l'ouverture de bassins arrière-arc à croûte océanique (séries de la Brévenne). L'étape de collision (Fig. I-9 et I-17) est responsable la mise en place vers le nord des ophiolites du Lizard et de son équivalent dans la zone Saxothuringienne.

Les chevauchements vers le Nord sont également responsables de la fermeture du bassin de la Brévenne qui s'est produit entre 365 et 345 Ma. A cette époque la subduction vers le Nord de l'océan Galicia-Massif Central qui a induit la collision entre le Gondwana et la micro-plaque Armorica autour de 380 Ma est déjà achevée. Le panneau lithosphérique est recyclé dans le manteau et la croûte épaissie par l'empilement des nappes à vergence Sud a retrouvé son équilibre. La mise en place des nappes du versant Sud de la Montagne Noire apparaît sur la coupe comme un phénomène superficiel. La mise en place du magmatisme tardi-Viséen des tufs anthracifères s'explique dans ce modèle par une délamination lithosphérique sous le nord du Massif Central français. La phase d'extension se produit entre 330 et 335 Ma dans les zones internes de la chaîne alors que les domaines externes sont toujours en contexte compressif.

II. Cadre tectonique du Massif Central Français

II-1. Rappels historiques

Couvrant plus de 70 000 km^2 , le Massif Central Français est le plus vaste affleurement du socle Varisque en France.

Les premiers travaux dans le Massif Central ont débuté par le lever des cartes géologiques au 1/80 000ème à la fin du XIXème siècle. L'exploitation des données cartographiques ne s'est développée qu'à partir des années 30 en donnant lieu à des travaux de synthèse sur les grands ensembles lithologiques. Demay propose en 1948 un premier schéma structural du Massif Central. Il distingue une zone septentrionale très métamorphique d'une autre plus méridionale peu ou pas affectée par le métamorphisme. Reprenant les idées de Boule (1900) sur l'explication des inversions apparentes du métamorphisme, Demay devient également l'initiateur de la pensée « allochtoniste » en évoquant l'existence de plis couchés déversés du Nord vers le Sud et, par là, émet l'idée d'empilement de nappes dans le Massif Central (Fig. I-10). Il différencie trois grands domaines ; un socle ante-dévonien au Nord, une zone intermédiaire formée par des granites hercyniens, puis, une zone sud allant des Cévennes en Corrèze dont les formations sont caractérisées par un métamorphisme hercynien sensustricto.

FIG. I-10- Coupes géologiques de la Margeride et de la région médiane du Massif Central d'après DEMAY (1948).

Jung (1954) regroupe en un seul et même ensemble, le Plateau d'Aigurande, le Sud Limousin, la région de l'Aubrac, le Rouergue, la Montagne Noire et les Cévennes (Fig. I-11). Ces régions sont accolées à un noyau unique central « Arveno-Vosgien » formé de roches anté-hercyniennes, par l'intermédiaire de liens appelés « zones tectoniques de jointure » qui sont représentés par les leucogranites du Limousin, objet principal de notre étude. Notons que l'idée de zones de jointure est née de l'observation des cisaillements et de l'intense déformation qui affectent ces massifs leucogranitiques et leur donne un rôle « d'amortisseur des contraintes ». A l'opposé de celui de Demay, le schéma proposé par Jung, a conditionné pendant une vingtaine d'années, du point de vue des relations structurales et des conceptions stratigraphiques sur le Massif Central, la pensée des auteurs suivants: Roques (1941), Chenevoy et Ravier (1971) affineront le modèle précédent. Les études géochronologiques effectuées par Cantagrel et al., 1978; Pin, 1979; Pin et Peucat, 1986 ont conduit ces auteurs à confirmer la présence de protolithes précambriens (Briovérien) dans le Massif Central.

Le concept de mise en place de nappes dans le Massif Central initié par Demay réapparaît avec Grolier en 1971, Kornprobst et Poulain en 1972. Toutefois, ce modèle ne sera admis par la communauté scientifique qu'avec l'analogie proposée par Mattauer (1974) entre la Chaîne Himalayenne et la Chaîne Varisque. Il suggère l'existence de grands chevauchements de type himalayen dans le Massif Central pour expliquer la foliation subhorizontale des Cévennes mais également la superposition d'unités très métamorphiques sur d'autres peu ou pas métamorphiques. Parallèlement, Arthaud et Matte (1974) proposent une synthèse géologique sur les massifs hercyniens du Sud de la France où, suivant des critères lithostratigraphiques et tectonométamorphiques, ils divisent le secteur en trois parties :

Au sud, ils mettent en évidence dans les formations du Mouthoumet et de la Montagne Noire un métamorphisme de BP-BT et une tectonique à vergence sud. L'épaisseur considérable des unités affectées par une schistosité de flux et le déversement vers l'ouest des structures majeures précoces caractérisent plus au nord les régions des Cévennes et de l'Albigeois. Enfin, comme dans le secteur précédent, ils mettent en avant une tectonique polyphasée avec une première phase tangentielle précoce N-S et déversée vers l'ouest reprise par une phase à déversement S-SW. L'évolution tectonométamorphique est d'autant plus précoce (ante-viséenne) que les unités impliquées sont profondes et septentrionales.

Dans le Sud Limousin, Bernard-Griffiths, 1975; Santallier et al., 1978 proposent un âge Dévonien pour la tectonique et le métamorphisme Barrovien et de haute pression. Dans les séries de la Moyenne Dordogne, Tempier (1976) met en évidence l'antériorité du métamorphisme Barrovien suivi d'un métamorphisme de BP qui affectent les séries du «groupe de Neuvic», par rapport au chevauchement de la Nouaille qui amène des de haut degré métamorphique sur les gneiss micaschistes. Par la suite, basé sur le concept du chevauchement des séries du Groupe Leptyno Amphibolique et des anatexites à cordiérite sur les séries métapélitiques sous-jacentes, Burg et Matte (1978) reconsidèrent la carte géologique du Massif Central dans son ensemble. Pour Matte (1986), la tectonique collisionnelle médio-Varisque (400-340Ma) se caractérise par une migration des fronts de chevauchements pendant le Carbonifère, des zones internes de la Chaîne vers les zones externes (Fig. I-8). Cette tectonique est responsable de la polarité Nord-Sud du Massif Central. Dans la région du Limousin, Ledru et (1989) individualisent suivant des critères al. lithologiques, structuraux, métamorphiques et géochronologiques cinq unités bien distinctes dont la description détaillée sera présentée ultérieurement.

Notons que jusqu'alors les modèles proposés pour l'évolution de la Chaîne Varisque dans le Massif Central ne font intervenir qu'un seul cycle orogénique.

La géologie des années 80-90 a porté son attention sur l'importance des phénomènes extensifs dans les orogènes. Dans le Massif Central, Faure et Becq-Giraudon (1993); Burg et al. (1994); Faure et Pons (1991) et Faure (1995) ont mis en évidence deux

FIG. I-11- Carte des différents ensembles du Massif Central d'après JUNG (1954).

directions d'extension principales qui se sont développées au Carbonifère, début du Permien.

Nous détaillerons de façon plus précise ces phénomènes qui sont bien observés dans le Limousin.

L'existence d'un épisode distensif dans la Chaîne Varisque d'Europe au cours du Dévonien moyen à supérieur (Pin, 1990) a conduit certains auteurs tels que Faure et al. (1997), Roig (1997), Roig et Faure (2000), Faure et al. (2002) et Duguet (2003) à proposer une évolution polycyclique de la Chaîne Varisque du Massif Central Français (Fig. I-9).

FIG. I-12- Carte schématique des principales nappes du Massif Central français d'après LEDRU et al. (1989). 1 : Dépôts Viséens. Massifs granitiques 3. indifférenciés. Unités supérieures épizonales. 3a : Unité de Thiviers Paysac et de Génis. 3b : Unité de la Brévenne. 4 : Unité supérieure des gneiss. 5 : Unité inférieure des gneiss. 6: Complexes autochtones relatifs. 7: Unités méridionales d'âges Paléozoïques. 8: Chevauchements (370-390 Ma). Chevauchements et décrochements (350-320 Ma). 10:Chevauchements et décrochements (320 ± 10 Ma)

II-2. Les grandes unités lithotectoniques (Fig. I-12)

Nous avons évoqué précédemment qu'à partir d'un modèle initial à deux unités (Burg et Matte, 1978) où les séries les plus métamorphiques chevauchaient les micaschistes autochtones, nous sommes passés à un modèle plus complexe impliquant plusieurs nappes de degré métamorphique différent. Certains auteurs (Ledru et al., 1989; Ledru et al., 1994) ont en effet mis en évidence dans la région du Limousin, un empilement de plusieurs unités lithotectoniques distinctes sur la base des travaux antérieurs de Burg et Matte (1978) et Burg et al. (1984) dans d'autres secteurs du Massif Central. Ces unités sont individualisées en fonction de leurs lithologies, de leur évolution métamorphique et de leurs âges radiochronologiques. On distingue de la base vers le sommet, les unités suivantes : II-2-a. Les unités méridionales paléozoïques (Fig. I-12)

Peu ou pas représentées dans le Limousin, ces formations métasédimentaires affectées par

un métamorphisme anchizonal à schiste vert forment le front de la chaîne. Elles affleurent largement de part et d'autre de la zone axiale de la Montagne Noire, dans l'Albigeois et le sud des Cévennes (Fig. I-12). Dans la Montagne Noire, les séries sédimentaires très déformées lors de la tectonogénèse hercynienne vont du Cambrien inférieur au Viséen supérieur et forment de part et d'autre de la zone axiale, les nappes du versant sud (Arthaud et al., 1966) et les nappes du versant nord (Brunel, 1972). Dans l'Albigeois et les Cévennes, les séries sont formées de séquences de plate-forme et de volcanites cambro-ordoviciennes. Cette unité est formée de micaschistes incluant des niveaux de quartzites (Dronne, Thaurion ; Floc'h, 1983), de faciès leptyniques et/ou métagrauwackeux (Dôme de Sussac, Mouthier, 1976; Arc du Thaurion, Arène et Autran, 1972, Floc'h, 1974 ; Argentat, Ledru et Autran, 1987) et de rares orthogneiss. Il s'agit de métapélites, pélites et shales déposés en milieu épicontinental, affectés par un métamorphisme barrovien où le grenat et la biotite sont parfois associés à la staurotide. L'apparition du disthène dans certains secteurs (Plateau d'Aigurande, demi fenêtre de Sussac et dans l'unité de la Dronne) suggère un métamorphisme antérieur plus intense. Ces micaschistes forment l'encaissant des massifs leucogranitiques du Limousin (massif de Millevaches, plutons d'Aigurande, massif de la Brâme, St Sylvestre, St Goussaud) (Fig. 12). On les rencontre également sur la bordure sud des unités gneissiques dans le Lot, les Cévennes et la Chataigneraie (Fig. I-12).

Certains auteurs (Cogné et Wright, 1980 ; Guillot, 1981 ; Floc'h, 1983) attribuent un âge Briovérien à ces micaschistes par analogie lithologique avec les dépôts de Bretagne Centrale.

II-2-c. L'Unité Inférieure des Gneiss

L'Unité Inférieure des Gneiss est constituée par un ensemble d'orthogneiss intrusifs dans des métagrauwackes et des métapélites (gneiss à biotitesillimanite) dont les protolithes sont d'âge Protérorozoïque supérieur à Ordovicien. On distingue ainsi, dans le Limousin, de vastes ensembles orthogneissiques dérivés de granites calco-alcalins (Fig. I-12). Les orthogneiss de Meuzac et de St Yriex-La-Perche en sont des exemples, leurs protolithes sont datés respectivement à 495 ± 8 Ma par la méthode U/Pb sur zircons (Lafon, 1985) et à 468 + 8 Ma par la méthode Rb/Sr (Bernard-Griffiths, 1975). Ces orthogneiss calcoalcalins pourraient être comparés à ceux de la Montagne Noire récemment datés par la méthode U/Pb entre 450 et 460 Ma (Roger et al., 2004) et qui sont associés à la tectonique extensive ordovicienne (Pin et Marini, 1993). L'unité inférieure des gneiss correspond donc à la marge continentale protérozoïque à paléozoïque inférieur du Gondwana qui a subi une période de rifting au cours de l'ordovicien inférieur.

Dans le Limousin, ces granites calco-alcalin ont été orthogneissifiés au Dévonien moyen : l'orthogneiss de l'arc du Thaurion par exemple est daté à $375 \pm 6Ma$ (Rb/Sr sur RT, Duthou, 1977).

Des reliques de haute pression ont également été décrites dans le Limousin : éclogites et péridotites à grenat de Sauviat, éclogites du Puy-Robis et de la Faurie (Santallier et Floc'h, 1979), granulites acides du Thaurion, (Arène et Autran, 1972), de Chanteloube et du Mas Marie (Floch', 1983). Les nombreux travaux de Santallier (1981) montrent que les différentes variétés d'éclogites (à disthène et /ou zoïsite) témoignent de la recristallisation de protolithes de composition variée lors d'un même événement métamorphique de haute pression de 15kbar minimum à 700°-750°C.

L'unité supérieure des gneiss est caractérisée par la présence de reliques de haute pression (éclogites et

présence de reliques de haute pression (éclogites et granulites HP) qui représentent les témoins de la paléosubduction Varisque. L'âge du métamorphisme de haute pression n'est pas connu dans la région du Limousin mais d'une manière générale cet évènement est estimé entre 400 Ma et 440 Ma (Faure et al., 1997 et Matte et al., 1998). Les chemins P-T obtenus sur les éclogites à coésite des Monts du Lyonnais (Lardeaux et al., 2001) montrent la rapidité des processus d'exhumation des unités de haute pression. Leur décompression isotherme est responsable de l'anatexie des parties pélitiques (Mercier et al., 1991 ; Santallier et al., 1994) des Groupes Leptyno Amphiboliques qui donnent lieu aux migmatites à cordiérite bien connues dans la région d'Aubusson. Ces migmatites à cordiérite ont été datées par la méthode Rb/Sr sur roche totale dans le Limousin et dans les Monts du Lyonnais respectivement à 375 + 6 Ma (Duthou et al., 1977) et à 384 ± 16 Ma (Duthou et al., 1994). Des âges similaires à 374,8 ± 1,8 Ma ont été obtenus récemment sur les migmatites d'Aubusson par la méthode chimique U-Th-Pb sur monazite à la microsonde électronique (Rolin et al., en préparation). Les amphibolites plus réfractaires, emballées dans les migmatites du plateau d'Aigurande ont donné un âge de 389 ± 8 Ma par la méthode 40 Ar/ 39 Ar (Boutin et Montigny, 1993).

L'U.S.G. est le siège de nombreux massifs de diorites quartziques connus sous le nom de « ligne tonalitique du Limousin ». En accord avec Peiffer (1986), Roig et Faure (2000) les interprètent comme des plutons déracinés et charriés vers le NW vers 360 Ma. Pour Faure et al. (1997), ces roches datées par la méthode U/Pb (Bernard-Griffith et al., 1985) à 355 ± 2 Ma et à 379 ± 19 Ma, sont les témoins de racines d'un arc magmatique lié à la subduction vers le sud de l'océan Rhéïque au dévonien moyen.

Dans la région du Limousin, les relations structurales de l'U.S.G. avec l'U.I.G. sont complexes (Fig. I-12) et se présentent différemment dans le Haut Limousin et dans le Bas Limousin.

Sur le flanc sud du synforme de Saint Germain-les-Belles et au niveau de la klippe de Lonzac, le contact de base se fait par l'intermédiaire d'une discontinuité mylonitique à blastomylonitique marquée par la présence de lambeaux de péridotites serpentinisées. Leur appartenance à l'unité supérieure est très controversée (harzburgites et cumulats gabbroïques représentant une ophiolite non métamorphisée à haute pression (Mercier et al, 1985; Girardeau et al, 1986), roches mantelliques différenciées en contexte intraplaque et métamorphisées à haute pression (Maillet et al, 1984).

Dans le Bas Limousin, au niveau du synforme d'Uzerche et de l'antiforme de Tulle, l'unité supérieure repose en contact anormal sur le complexe de Vergonzac appartenant à l'unité inférieure des gneiss. Dans la région du Limousin, elles sont représentées par les unités de Génis et de Thiviers-Payzac (Roig, 1997), les unités de la Gartempe (Santallier et Floch', 1989) et de St Salvadour dans la synforme d'Uzerche (Bellot, 2001).

Ces unités sont corrélées à la série de Leyme dans le Quercy et à la nappe de Saint Sernin sur Rance dans le Rouergue (Duguet, 2003). Ces formations sont également représentées par les unités paléozoïques de Vendée (Guillot, 1981 ; Duguet, 2003).

L'unité de Génis est formée d'un ensemble de roches basiques (gabbros, basaltes, pillow lavas à affinité tholéitique de type MORB) et repose sur les schistes de Donzenac et les grés de Thiviers. Floch' (1983) et Ledru et al., (1989) attribuent cette unité à une ophiolite démembrée mise en place par l'intermédiaire d'un chevauchement sur l'unité de Thiviers-Payzac.

L'unité de Thiviers-Payzac est actuellement séparée de l'unité de Génis par le décrochement dextre Sud-Limousin dont les conditions P/T rétrogrades sont estimées à 500°C / 2 - 5kbar (Bellot, 2001). Elle est essentiellement composée par des métatufs dacitiques, des schistes à intercalations grauwackeuses, tuffacées et graphiteuses. Trois orthogneiss y sont intrusifs dont l'un d'entre eux, l'orthogneiss du Saut du Saumon a été daté à 470 Ma (Bernard-Griffiths, 1975). On distingue aussi un réseau filonien de dolérites à affinité calco-alcaline (ce réseau n'apparaît pas dans la série susjacente ordovicosilurienne de Génis). L'unité de Thiviers-Paysac est séparée cartographiquement de l'U.S.G. par le décrochement polyphasé d'Estivaux. La cinématique du jeu précoce de cet accident contemporain d'un métamorphisme prograde normal, est sénestre et la période minimale de son fonctionnement est estimée à 346 ± 3.5 Ma (méthode 40 Ar/ 39 Ar sur biotite) par l'intermédiaire du granite syntectonique d'Estivaux (Roig et al., 1997). Cet épisode est repris en décrochement dextre dans les conditions rétromorphiques du faciès schiste vert (Roig , 1997). Selon Roig (1997), ces décrochements sont postérieurs à une tectonique de nappe à vergence NW qui a permis la mise en place de l'unité de Thiviers-Payzac sur l'U. S. G. et l'U.I.G. dans un contexte de métamorphisme barrovien.

L'unité de la Gartempe est identique du point de vue lithologique à celles de Thiviers-Payzac. Elle est affectée par une tectonique chevauchante vers l'ouest contemporaine d'un métamorphisme barrovien prograde (Floch'et al., 1993). Elle est limitée au NE par les migmatites de Lanneau (U.I.G.) et au Sud par l'unité de Mézières (U.S.G. d'après Santallier et Floch', 1989). Le contact actuel entre l'unité de la Gartempe et les migmatites de Lanneau est en faille normale vers le SW. L'observation microstructurale et la présence de serpentinites jalonnant le contact entre les deux unités, encouragent Santallier et Floch' (1989) à l'interpréter comme un chevauchement. L'unité de la Gartempe reposerait donc en contact anormal sur les migmatites de Lanneau mais également sur l'unité de Mézières. Les formations de St Salvadour sont interprétées comme une klippe de l'unité de Thiviers-Payzac qui chevauche l'U.S.G. suivant une cinématique vers le NW à 360 Ma contemporaine d'un métamorphisme prograde dont les conditions sont estimées à 530°C / 2-3kar (Bellot, 2001).

La série de Leyme, formée d'une série détritique métamorphisée dans les conditions du faciès amphibolite profond (Roubichou, 1979) et de niveaux discontinus d'amphibolites, est équivalente aux grés de Thiviers et à ceux de la nappe de St Sernin sur Rance dans le Rouergue (Duguet, 2003). L'étude du contact (accident de Linac-Labathude) entre l'unité de Leyme et l'U.I.G. a fait l'objet de nombreuses discussions : Bossière et Guillot (1987) l'interprètent comme un chevauchement vers l'Est entraînant l'unité de Leyme sur l'U.I.G.. Roig (1997) en fait un décrochement à jeu polyphasé, d'abord sénestre contemporain de la phase à vergence NW dans les conditions barroviennes (Bouchez et Jover, 1986; 1997) puis dextre dans les conditions Roig, rétromorphiques du faciès schiste vert. Duguet (2003) opte pour le modèle compressif et interprète l'accident de Linac-Labathude comme un chevauchement à vergence NW qui amène l'unité de Leyme sur l'U.I.G. contemporain d'un métamorphisme prograde normal dont les conditions sont estimées entre 560°C et 650°C à 5 -8 kbar. Suivant cet auteur, la nappe de St Sernin sur Rance se déplacerait entre 340 et 360 Ma vers le NW sur les formations de l'U.S.G. et l'U.I.G.

En Vendée, les unités épizonales apparaissent au niveau du synclinorium de Chantonnay. Duguet (2003) montre que la superposition anormale de l'unité de Chantonnay sur l'U.S.G. est à relier à une tectonique cisaillante vers le NW mais ne se prononce pas, du fait de la faible intensité du métamorphisme syntectonique, sur la nature compressive ou extensive du contexte tectonique.

II-3. Grands évènements tectonométamorphiques de la Chaîne Varisque dans le Massif Central

L'histoire du Massif Central est difficile à retracer car les structures précoces des parties les plus internes de la Chaîne ont été en grande partie détruites et oblitérées par les évènements tardifs.

Les évènements tectonométamorphiques les plus précoces sont datés dans le Massif Central depuis le silurien (430-400Ma) qui correspond en moyenne à l'âge du métamorphisme de haute pression, jusqu'à la fin du carbonifère (300 Ma) âge des premiers dépôts postorogénique. La tectonique est caractérisée par l'empilement de plusieurs unités lithotectoniques bien distinctes (Burg et Matte, 1978; Ledru et al., 1989; Ledru et al., 1994), séparées par des contacts anormaux de nature variée tels que chevauchements, décrochements ou failles de détachement. La phase de convergence aurait duré approximativement 150 Ma entre 450 Ma et 300 Ma et le temps estimé pour l'édification de la Chaîne serait d'une centaine de millions d'années, soit de 380 Ma à 280Ma.

II-3-a. La distension Cambro-Ordovicienne: 500Ma-480Ma

Il est difficile de retracer l'histoire du mouvement relatif des continents pour les périodes antérieures à 300 millions d'années. Les paléomagnéticiens ont montré l'existence d'un supercontinent néoprotérozoïque, formé à la suite du cycle orogénique Panafricain, qui aurait commencé à se morceler entre 600 et 500 Ma. Cette période de rifting est contemporaine de la formation des océans qui provoquent la dispersion des blocs continentaux. Ces idées sont soutenues par les données paléomagnétiques (Van der Voo, 1993) paléogéographiques et faunistiques (Robardet et al., 1994). Les granitoïdes calco-alcalins d'âge ordovicien inférieur (massif de Meuzac par exemple) reconnus dans le sud Limousin témoignent d'un épisode de rifting. De même, la présence de roches basiques et ultra-basiques dans les groupes leptyno-amphiboliques sont en faveur d'une distension généralisée à l'Ordovicien (Pin et Lancelot, 1982 ; Pin et Marini, 1993). La nature de ces roches est très discutée selon les auteurs : elles seraient l'expression de bassins marginaux en site arrière-arc (Bodinier et al., 1988), d'une marge passive (Pin, 1990) ou d'un véritable océan (Dubuisson et al., 1989).

II-3-b. Les évènements de haute pression : 430-400Ma

La découverte de reliques de haute pression a permis d'introduire la notion de paléosubduction océanique et continentale. On peut estimer la profondeur d'enfouissement de certaines roches du Massif Central, jusqu'à une centaine de kilomètres (P :25-30Kb), grâce à la découverte de péridotites à grenat présentant des couronnes coronitiques progrades (Gardien et al., 1988) et de coésite dans les éclogites des Monts du Lyonnais (Lardeaux et al., 2001). Le métamorphisme de haute pression est également conservé dans les éclogites à glaucophane et les schistes bleus de la région de Najac (Delor et al., 1986). Quelques datations ponctuelles dans le Massif Central fixent ces évènements de haute pression entre l'Ordovicien supérieur et le Silurien. Notons les datations effectuées par la méthode U/Pb sur zircon dans le Lyonnais sur les éclogites de la Borie à 432+20/-10Ma (Ducrot et al., 1983) et les trondhjémites de Marvejols à 415+5Ma (Pin et Lancelot, 1982).

II-3-c. Exhumation des roches de haute pression : anatexie et métamorphisme Barrovien: 400-370Ma

Durant leur exhumation, les roches de haute pression subissent une décompression isotherme responsable de l'anatexie des parties pélitiques des complexes leptynoamphiboliques produisant les migmatites à cordiérite appelées localement « aubussonites ». Les roches basiques plus réfractaires ne fondent pas mais se rétromorphosent en amphibolites en conservant des cœurs d'éclogite.

Les amphibolites sont datées dans le plateau d'Aigurande à 389 ± 8 Ma par la méthode ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ (Boutin et Montigny, 1993). Des âges comparables sont obtenus sur les migmatites des Monts du Lyonnais à 384 ± 16 Ma (Rb/Sr roche totale, Duthou et al., 1994) ou du Limousin à 383 ± 5 Ma dans l'orthogneiss de Meuzac (U/Pb sur roche totale, Lafon, 1986). Les migmatites d'Aubusson sont datées à $374,8\pm1,8$ Ma par la méthode chimique U-Th-Pb sur monazites (Rolin et al., en préparation). Enfin celles des Herbiers en Vendée donnent par la même méthode un âge à 373 ± 6 Ma.

Cette anatexie est contemporaine d'un métamorphisme de pression intermédiaire. Cet événement est relié à la mise en place des nappes. L'âge de cet épisode se situe autour de 380 Ma dans les parties centrales de la chaîne, en Vendée et au nord du Massif Central, alors que dans les secteurs plus méridionaux, il a été daté autour de 350Ma (Pin, 1981).

Dans le Limousin, Roig et Faure (2000) décrivent un métamorphisme mésozonal à 700°C/7Kbar contemporain du développement d'une foliation S1 qui porte une linéation L1 orientée NE-SW. Les critères de cisaillement ductile associés à cette paragenèse barrovienne (à bt-ms-st-sil-grt) indiquent un déplacement du compartiment supérieur vers le SW. Ils mettent en évidence le chevauchement vers le SW d'une unité supérieure des gneiss (voir terminologie de Ledru et al., 1989) contenant les anatexites à cordiérite et les reliques de haute pression, sur une unité inférieure autour de 380Ma. Pour ces auteurs, cet événement n'est présent qu'à l'état de relique car il est en partie oblitéré par une deuxième phase (P2) à 360 Ma (Roig, 1997).

Notons que cette période correspond également à l'âge du magmatisme calco-alcalin qui affecte les séries du Massif Central (Bernard-Griffith et al., 1985) La diorite de Tallud est datée à 373 ± 6 Ma par la méthode U/Pb sur zircon. L'interprétation de cet épisode sera développée ultérieurement.

II-3-d. Le métamorphisme barrovien entre 360Ma et 340Ma

La cinématique associée au métamorphisme de pression intermédiaire est très mal définie dans le Massif Central et diverge suivant les auteurs. Comme évoqué précédemment, cet événement est plus jeune dans les parties externes de la Chaîne.

A Marvejols, il est daté autour de 350 Ma (Pin, 1981).

Ce métamorphisme, contemporain de la mise en place de nappes de charriage vers le SE, est caractérisé par une zonation métamorphique inverse (Burg et al., 1984). On distingue de la base au sommet des sédiments d'âge précambrien supérieur à silurien chevauchés par d'épaisses séries de métasédiments de pression intermédiaire et dépourvus de reliques de haute pression qui sont recouvertes à leur tour par des gneiss de haut degré métamorphique (groupe leptyno-amphibolique). Les boudins d'amphibolites sont assymétriques et montrent des sens de cisaillement au N150 (Fig. I-13).

FIG. I-13– Photographie montrant les boudins d'amphibolites cisaillés vers le sud dans la région de Marvejols.

De même, proche de Marvejols à St Léger de Peyre, les enclaves de pyrigarnite (grenat-omphacite) sont enveloppées au sein de boudins d'amphibolites cisaillés au N150 (Fig. I-14).

FIG. I-14- Photographie montrant des enclaves de pyrigarnite emballées dans les boudins d'amphibolites cisaillés vers le sud.

Les orthogneiss de Marvejols datés à $346 \pm 8Ma$ présentent des sens de cisaillement vers le SE. Selon Pin (1979), les orthogneiss de Marvejols sont d'anciens granites d'anatexie dont la mise en place syncinématique au niveau de la série de Marvejols est liée au charriage du supergroupe de Marvejols (Groupe Leptyno Amphibolique) sur les schistes et micaschistes du Lot. Une pegmatite échantillonnée dans la zone abritée d'un boudin d'amphibolite à grenat du groupe leptynoamphibolique cisaillé vers le SSE, fournit un âge à 344+13/-8Ma (Pin, 1979). Pin (1979) l'interprète comme l'âge du métamorphisme barrovien syn-nappe qui a affecté l'ensemble du supergroupe de Marvejols au Dinantien inférieur.

Ailleurs, dans le Massif Central, la cinématique s'exprime vers le SSW dans l'Albigeois (Guerange-Lozes et Alsac, 1986), dans les Monts du Lyonnais (Lardeaux et Dufour, 1987) et dans les Cévennes (Mattauer et Etchecopar, 1977; Arnaud et Burg, 1977; Faure et al., 1999).

En Montagne Noire, la fin de la mise en place des nappes vers le sud (Fig. I-15) se fait au Viséen supérieur-Namurien inférieur (330 à 310 Ma). Les premiers terrains discordants dans ce secteur de la chaîne Varisque sont d'âge stéphanien (290 Ma).

Dans le Limousin, pour Roig et Faure (2000) le métamorphisme barrovien autour de 350 Ma (600°C/5 Kbar) fait suite à celui déjà observé dans les anatexites à cordiérite affectées par des cisaillements vers le SW. Pour ces auteurs ainsi que pour Ledru et Autran (1987), il serait contemporain d'une tectonique tangentielle avec des chevauchements à faible pendage du SE vers le NW.

FIG. I-15- Coupes des nappes du versant sud de la Montagne Noire d'après ARTHAUD (1970).

Cet épisode est postdaté dans le Sud Limousin à 355 ± 4 Ma, (méthode ⁴⁰Ar/³⁹Ar biotite, Roig, 1997) par la granodiorite de Chanteix qui recoupe la foliation S2. De plus des biotites synfoliales qui forment des bandes de cisaillement vers le NW dans l'orthogneiss d'Argentat ont fourni un âge de 355 ± 8 Ma (Roig et Faure, 2000).

En Brévenne et dans le Rouergue et le Quercy, Leloix et al. (1999) et Duguet (2003) respectivement, décrivent également des mouvements vers le NNW. La compréhension de cette tectonique en cisaillement vers le NW pose encore des problèmes. Les microstructures attribuables à cette déformation suivant la linéation L2, NW-SE et associées au métamorphisme de moyenne pression-moyenne température indiquent une cinématique du SE vers le NW incompatible avec le déplacement vers le sud des nappes et par conséquent avec une zone de subduction à pendage nord.

Cette cinématique vers le NW peut-elle être alors attribuée à une tectonique de nappe ou est-elle le reflet d'une tectonique extensive syn convergence ?

Deux modèles classiques sont proposés :

- un modèle polyphasé qui admet deux tectoniques de nappes, la première à 380 Ma à vergence sud et la

deuxième vers 360 Ma à vergence NW (Girardeau et al., 1986; Roig et Faure, 2000).

FIG. I-16- Carte générale des structures extensives Carbonifère dans le Massif Central d'après FAURE (1995).

- un modèle monophasé où les cisaillements vers le SW à 380 Ma et vers le NW vers 360 Ma sont interprétés en contexte compressif. Les premiers sont la conséquence de la subduction vers le Nord de l'océan Galicia-Massif Central qui provoque la mise en place des nappes vers le Sud. Les seconds vers le NW sont interprétés en terme de détachements syn convergence qui accommodent l'extrusion vers le SE du Massif Central (Matte, 1991).

II-3-e. La période 330-290Ma (Fig. I-16)

La collision hercynienne et la subduction continentale subséquente conduisent, comme dans toutes

les chaînes de collision, à un épaississement crustal. La croûte épaissie et réchauffée par l'accroissement des éléments radiogéniques (U,Th, K), possède une rhéologie ductile qui va permettre à l'édifice structural de s'amincir et de retrouver son équilibre isostatique.

La contrainte principale sigma 1 horizontale lors de la compression devient verticale quand le poids dû à l'empilement des nappes est supérieur aux forces horizontales. Le régime tectonique devient donc extensif. Il se caractérise par des failles normales cassantes en surface et ductiles en profondeur. Cette tectonique en extension a été décrite dans plusieurs secteurs du Massif Central notamment au Mont Pilat. Ce régime a été actif depuis la fin du Viséen dans le nord alors que dans les domaines plus au sud (Montagne Noire, Pyrénées) la compression était toujours dominante.

II-3-e-i. L'extension NW-SE du Carbonifère moyen

Faure (1995) met en évidence à la transition viséen supérieur- namuro-westphalien (330-315Ma) un premier épisode extensif majeur de direction NW-SE (Fig. I-16). Cette période se caractérise par un intense phénomène de fusion crustale qui donne naissance à un grand nombre de massifs leucogranitiques.

Faure et al., (1990) montrent dans le Limousin, au niveau de la faille normale ductile d'Argentat, que la mise en place des leucogranites datés du Namuro-Wesphalien est contemporaine du développement de grands couloirs de déformation mylonitique. D'après Faure et al. (1990), ces évènements se déroulent dans les conditions rétromorphiques du faciès schiste vert. Pour ces auteurs, le magmatisme leucogranitique apparaît typiquement comme un phénomène syn-orogénique, la fusion débutant lors de l'épaississement et se poursuivant pendant l'extension.

Cette période est également contemporaine de la formation de bassins volcano-sédimentaires et de volcanisme sub-aérien.

II-3-e-ii. L'extension NE-SW : fin du Carbonifère début du Permien

Le désépaississement du Massif Central se poursuit pendant le Carbonifère supérieur (Stéphanien) suivant une direction d'allongement générale NE-SW (Fig. I-16) (Faure, 1995). Cette phase d'extension est responsable de la formation de dômes migmatitiques (Faure, 1993). Affectés par une direction d'extension NE-SW à N-S, les dômes granitiques et migmatitiques du Velay et de la Montagne Noire reflètent bien cette période (Van den Driesche et Brun, 1989 ; Malavieille et al., 1990 ; Echtler et Malavieille, 1990). Ces dômes sont associés à des décrochements ou des failles normales qui contrôlent l'ouverture des bassins houillers. Ces bassins contiennent les enregistrements sédimentaires et volcaniques de ce régime extensif qui peut être considéré comme tardi- à post-orogénique. Ils sont contrôlés structuralement par des failles dont le plus bel exemple du Massif Central est mis en évidence par le Sillon Houiller. Dans ce cas présent, les bassins se sont ouverts sur décrochement et forment tout le long de cet accident des pull-apart sénestres de direction NE-SW (Marest, 1985 ; Blès et al., 1989).

Le Carbonifère supérieur est également marqué par la granulitisation de la croûte inférieure qui pourrait être liée à un phénomène de délamination lithosphérique (Leyreloup et al., 1977).

Pour Burg et al. (1994), cette période est caractérisée par un amincissement crustal généralisé contemporain d'évènements magmatiques et d'érosion qui permettent le retour à l'état stable de la lithosphère continentale.

III. Les problèmes posés

La confrontation des deux modèles décrits plus haut au § I-3 montre que la compréhension et la reconstitution de la Chaîne Varisque reste aujourd'hui un grand problème scientifique.

III-1. La localisation des zones de suture

Un des problèmes majeurs évident est l'insuffisance des données cartographiques de détail liée aux mauvaises conditions d'affleurement mais également et surtout à la dislocation de la chaîne par l'expansion océanique Mésozoïque et à la surimposition du cycle Alpin. De là découle l'incertitude de la localisation des zones de suture indispensable à la reconstitution générale de la chaîne. Récemment, certains auteurs (Brun et al., 2002) ont suggéré que la continuité de la suture Galicia-Massif Central se poursuivait en France non sous le bassin de Paris au Nord du forage GPF de Couy-Sancerre mais au S-SW du Massif Central dans la continuité SE de l'unité de Champtoceaux. Ballèvre et al. (1992) en revanche localisent la suture sous le bassin de Paris mais estiment l'âge des éclogites autour de 360 Ma au lieu de 400-440 Ma (Faure et al., 1997; Matte, 1986; Matte, 2002). La localisation de la suture nord correspondant à la fermeture de l'océan Rhéïque est très discutée. Ces questions ne peuvent être probablement réglées que par l'acquisition d'une nouvelle imagerie géophysique de type ECORS.

III-2. La profusion des granites

La particularité frappante de la Chaîne Varisque est l'abondance considérable des granites. Dans le Massif Central, les roches granitiques occupent près de 50% de la surface des affleurements anté-stéphaniens. Quels sont les mécanismes de formation des magmas et de mise en place de l'ensemble des granites hercyniens? Résultentils d'un épaississement crustal ou bien au contraire sontils reliés à l'extension? Quelles sont les grandes causes géodynamiques lithosphériques qui les génèrent ?

III-3. La phase d'extension tardi-orogénique

La phase d'extension tardi-orogénique est difficile à contraindre à l'échelle de la chaîne. A quelle période pouvons-nous estimer l'initiation du régime extensif? Ménard et Molnard sont parmi les premiers à suggérer l'existence d'une extension tardi-orogénique de la Chaîne Varisque. Par la suite, Faure et Becq-Giraudon, (1993) mettent en évidence deux périodes d'extension dans le Massif Central. Jusqu'alors ces phénomènes avaient été suggérés seulement pour la faille d'Argentat (Ledru et Autran, 1987), dans la partie nord du dôme du Velay (Mattauer et al., 1988) et au niveau du granite de Montmarault (Barbarin et al., 1985).

Faure et al. (1990) réinterprètent la déformation du plateau d'Aigurande en contexte extensif. L'accident de Chambon à vergence NE qui mylonitise le leucogranite de Crozant est interprété en faille normale et non en chevauchement basculé. Il démontre également le caractère syntectonique de l'ensemble des leucogranites du plateau d'Aigurande et interprète leur géométrie
(enracinés au SE et déversés vers le NW) comme le résultat de l'extension tardi-orogénique namurowesphalienne liée au retour à l'équilibre de la croûte épaissie pendant la collision dévonienne. De même, il a été montré que le refroidissement des leucogranites du massif de la Brâme a été assisté par l'activité des failles normales de part et d'autre du pluton (Mollier et Bouchez, 1982; Faure et Pons, 1991). Ces observations témoignent d'un phénomène d'extension relativement tardif (Namuro-Wesphalien) dans l'histoire de la chaîne. Les données structurales de la série d'âge Viséen supérieur des « tufs anthracifères » mises en évidence dans la Sioule, les Monts du Lyonnais et le Morvan montrent que la tectonique extensive a pu débuter dans des conditions fragiles dans la croûte supérieure dès 335 Ma (Faure et al., 2002). Notons qu'à cette époque, les zones externes de la chaîne (Ardenne et Montagne Noire) étaient soumises à un régime compressif qui donne lieu au développement de grands plis couchés plurikilométriques. 335 Ma constitue un âge minimum : La découverte de gymnospermous taxa (Galtier et al., 1998) dans le sud des Vosges au sein des séries volcano sédimentaires viséennes suggère que ces séries, mises en place dans un environnement fluviatile à proximité d'un volcan, reposaient en discordance sur les unités déformées d'âge dévonien supérieur à tournaisien. La phase d'extension tardi-orogénique pourrait donc selon les secteurs avoir débuté autour de 350 Ma.

Des calcaires datés du Giventien (Dévonien moyen) par Conodontes et exempts de déformation décrits dans le Morvan (Delfour, 1989), sont rattachés par Faure et al. (1997) à l'épisode distensif du Dévonien moyen en contexte de marge active lié à la subduction vers le Sud de l'océan Rhéïque. Sont reliés également à cet événement par Faure et al., 1997 ; Roig et Faure, 2000, les séries de la Brevenne (Leloix et al., 1999), l'ensemble de roches ultrabasiques et basiques de « la ligne des Klippes » dans les Vosges (Fluck et al., 1987), les unités de Génis, le réseau filonien doléritique des grés de Thiviers et de Pompadour (Santallier, 1981) enfin la ligne tonalitique du Limousin. Si l'ensemble de ces formations est à relier à un phénomène de distension dans la plaque supérieure sous l'influence de la subduction vers le sud de l'océan Rhéïque, la localisation de la zone de suture doit être remise en cause. Actuellement un millier de kilomètres environ sépare les séries de la Brevenne de la suture de l'océan Rhéïque (Fig. I-17)!

III-4. L'interprétation des linéations

Deux types de linéations sont reconnus dans le Massif Central : La première orientée NE-SW est associée à des mouvements vers le SW. Elle est contemporaine d'un métamorphisme mésozonal, 700°C-7kbar (Lardeaux et al., 1989 ; Mercier et al., 1992 ; Roig et al., 2000) et est rattachée à la mise en place des nappes au Dévonien inférieur. Cette phase, bien répertoriée dans le Sud Limousin (Roig et Faure, 2000), le plateau d'Aigurande, la série de la Sioule, les Monts du Lyonnais (Faure et al., 1990), le Haut Allier (Burg, 1977) est synchrone de l'exhumation des unités de haute pression. La seconde linéation, orientée NW-SE est synchrone d'un métamorphisme de type Barrovien à 600°C-6kbar (Floc'h, 1983 ; Bellot, 2001). Les critères de cisaillement associés indiquent un déplacement des unités du SE vers le NW entre 360 et 340 Ma (Bouchez et Jover, 1986 ; Roig, 1997). La signification de cette cinématique vers le NW est difficile à recadrer dans un contexte géodynamique général car elle est incompatible avec la subduction vers le Nord de l'océan Galicia-Massif Central et par là avec la mise en place des nappes vers le Sud autour de 380 Ma.

A travers une étude de l'anisotropie de susceptibilité magnétique effectuée dans le Limousin sur le massif de Guéret (les granites péralumineux de type Guéret étant contemporain de cette phase), Bouchez et Jover (1986) interprètent ces linéations vers le NW en contexte compressif de mise en place de nappe vers le NW. De même, Roig et Faure (2000) traduisent cette cinématique à vergence NW par une « tectonique à plat » admettant un déplacement du SE vers le NW suite à la fermeture de l'océan Rhéïque. Lors d'une étude pétro génétique des séries du Quercy, Duguet (2003) montre que les paragenèses contemporaines des cisaillements vers le NW sont associées à un métamorphisme prograde normal incompatible avec une tectonique extensive. Il interprète dès lors l'accident de Linac-Labathude (Quercy) comme un chevauchement de l'unité de Leyme sur l'unité inférieure des gneiss.

Bellot (2001) en revanche propose que les cisaillements vers le NW, le métamorphisme de pression intermédiaire et les assemblages minéralogiques associés sont le résultat d'une tectonique transcurrente dextre produite autour de 360 Ma.

Par analogie avec la faille Sud-Tibétaine, Mattauer et al. (1988) et Matte (1991), interprètent ces cisaillements vers le NW en terme de détachement syn-convergence.

III-5. La faille du Sillon Houiller

Le Sillon houiller, accident majeur du Massif Central présente un jeu polyphasé : un décrochement ductile sénestre Namurien suivi d'un décrochement fragile senestre d'âge Stéphanien (Feybesse, 1981). Entre les séries de la Sioule à l'est et les granites de Guéret, du Tréban et les séries du Chavanon à l'ouest, Grolier et Letourneur (1968) propose un rejet décrochant sénestre de 60 km pour ce dernier épisode. De part et d'autre de cet accident, les chemins pression-température de l'unité supérieure des gneiss sont différents. A l'ouest Santallier, (1981); Floc'h, (1983) et Faure et al., (1990) montrent que ces unités passent dans le champ du disthène (faciès amphibolite profond) alors qu'à l'est ces unités sont affectées par un métamorphisme granulitique (dans le champ de la sillimanite) (Bodinier et al., 1988; Mercier et al., 1992). Ces observations pouvant être reliées à des phénomènes d'exhumation distincts de part et d'autre du Sillon Houiller, Duthou (1994) propose que ces processus seraient essentiellement d'ordre tectonique à l'Est du Sillon Houiller alors qu'à l'Ouest l'érosion jouerait un rôle déterminant. D'autre part, à l'ouest, l'évolution mésozonale est datée entre 390 et 370 Ma alors qu'à l'est, l'évolution métamorphique associée au charriage des nappes crustales vers les niveaux supérieurs de la croûte est estimée au plus tard entre 360 et 340 Ma (Costa, 1992).

FIG. I-17- Carte structurale de la Chaîne Varisque en France d'après FAURE (2001).

L'ampleur de cet accident est considérable car des études géophysiques (Aubert, 1978) ont pu mettre en évidence son prolongement vers le Nord au niveau de la faille de la Seine (bassin de Paris) qui selon Faure et al., (1997) se poursuivrait sous la Manche. Le Sillon Houiller se prolonge vers le sud jusqu'à Toulouse (faille de Villefranche). La compréhension de ce grand linéament est indispensable dans la reconstitution de la Chaîne Varisque d'Europe. Chapitre I- Evolution tectono-métamorphique de la Chaîne Varisque d'Europe

CHAPITRE II : METHODOLOGIE

Dans le Limousin, la structuration de la croûte continentale hercynienne est mal documentée. Deux causes principales sont mises en évidence :

- La qualité médiocre des affleurements, l'analyse cartographique peu détaillée.
- l'intrusion de nombreux plutons granitiques syn ou post tectoniques complique l'analyse des phases de structuration précoces de la Chaîne.

Ces granites, (essentiellement des leucogranites) sont bordés par de grands accidents mylonitiques en décrochement et en faille normale.

La problématique scientifique de ce travail a par conséquent pour but de mieux appréhender les relations entre la mise en place des granites et le fonctionnement des zones de cisaillement ductiles associées aux phases d'épaississement et d'amincissement crustal à l'échelle régionale. Cette thèse est une étude pluridisciplinaire où nous avons mis en œuvre des études combinées et complémentaires dans les domaines de la cartographie (levés au 1/50 000 de la feuille de Felletin, n°691), de la microtectonique, de l'analyse pétrostructurale (dont Analyse de la Susceptibilité Magnétique), de la gravimétrie et de la géochronologie (méthodes ⁴⁰Ar/³⁹Ar et U/Pb).

Ce chapitre II a pour but de présenter succinctement les différentes méthodes utilisées qui ont permis d'observer les objets à étudier à des échelles diverses.

I. Etude Structurale et cartographique

La tectonique, la géologie structurale et la pétrologie permettent de définir les paramètres cinématiques et thermomécaniques d'un système à toutes les échelles. Les structures géologiques sont les témoins des déformations finies et progressives et donnent accès aux conditions physiques qui régissent le comportement rhéologique du matériel au cours de sa déformation. La situation géologique du secteur étudié, a favorisé l'analyse de la déformation des roches granitiques dans le but d'en dégager l'intérêt comme marqueurs de la déformation de la croûte continentale. Les structures planaires et linéaires des roches granitiques ou métamorphiques ont été systématiquement mesurées sur le terrain. Quand celles-ci étaient difficilement reconnaissables à l'œil nu, notamment dans les roches granitiques, nous avons fait appel à la technique de l'anisotropie de susceptibilité magnétique (A.S.M.). L'analyse cinématique des grands accidents ductiles associés aux granites qui caractérisent la région du Limousin a été effectuée par l'observation des critères de cisaillement associée à l'étude détaillée des textures et microstructures. Certaines d'entre-elles ont fait l'objet de mesure des orientations préférentielles de réseau (OPR) du quartz. L'analyse de la fabrique des granites par la technique de l'A.S.M. a également été couplée de façon systématique à l'analyse des microstructures dans le but d'en déduire l'état rhéologique du magma lors de la déformation.

Dès lors, l'étude structurale associée à la cartographie de détail permet d'établir une chronologie relative des événements géologiques et d'estimer les conditions de pression et température dans lesquelles ils se sont développés.

Notre travail étant en partie basé sur l'analyse structurale et la cinématique des grandes zones de déformation ductiles qui bordent les massifs leucogranitiques du Limousin, nous avons entrepris une cartographie détaillée de la zone de cisaillement ductile de Felletin-La Courtine (voir localisation Fig. II-1, carte annexe 8). Celle-ci, située au niveau de la bordure Est du Millevaches a été faite pour essayer de comprendre les relations des différentes unités imbriquées dans cet accident.

La description détaillée de ce secteur est intéressante car ce dernier permet l'étude de l'ensemble des formations de l'encaissant du granite ici mieux préservées et affectées par les décrochements dont on peut préciser la cinématique.

Chapitre II -Méthodologie

FIG. II-1 – Modèle Numérique de Terrain au 1 : 1 000 000 (BRGM) montrant la localisation de la zone de cisaillement de Felletin-La Courtine cartographiée.

II. La mesure des Orientations Préférentielles de Réseau (O.P.R.): la technique EBSD

II-1. Instruments et techniques de mesure des OPR

La mesure des O.P.R. s'effectue classiquement à la platine universelle à 4 ou 5 axes montée sur un microscope optique. Cette technique présente cependant quelques limitations notamment par rapport à la taille des grains qui doit être suffisamment importante (> 30μ m) pour pouvoir faire l'objet d'une mesure. Seul l'axe-c ou [0001] des minéraux uniaxes (quartz ou ilménite) peut être mesuré. Les minéraux optiquement isotropes (grenat ou magnétite) ne peuvent être mesurés et les minéraux tricliniques (plagioclase par exemple) non plus car aucun axe cristallographique ne correspond à un axe optique et

par conséquent leur mesure nécessite une procédure complexe.

Les techniques de goniométrie de texture par diffraction des rayons X (Schmid et Casey, 1986), ou neutronique (Bouchez et al., 1979) sont aussi limitées, non par les propriétés optiques des minéraux, mais par la non visualisation des grains mesurés (l'étude grain par grain est inenvisageable).

La technique EBSD (Electron BackScattered Diffraction) développée ces dernières années (Lloyd et al., 1991; Adams et al., 1993; Dingley and Field, 1997) est basée sur la mesure des orientations cristallographiques par l'analyse des figures de diffraction produites par un microscope électronique à balayage. Cette méthode permet de mesurer toute taille de grain et n'est pas limitée par les propriétés optiques des minéraux.

Chapitre II -Méthodologie II-2. Appareillage (Fig. II-2)

L'ensemble de nos mesures a été effectué à l'université de Montpellier II. L'équipement comprend une colonne électronique (MEB), une caméra vidéo, un système d'imagerie cristallographique, un moniteur contrôlant le MEB, un autre donnant accès au logiciel Channel, enfin un dernier directement connecté à la caméra vidéo qui permet la visualisation des figures de diffraction sur l'écran phosphorescent.

Les électrons rétrodiffusés sont générés par un faisceau d'électrons focalisé sur la surface d'une section de roche polie inclinée de 70 degrés par rapport à l'horizontale. Ces électrons rétrodiffusés sont visualisés par l'intermédiaire d'un écran phosphorescent qui émet l'image photonique de la figure de diffraction. L'image photonique est captée par une caméra de haute résolution et, est ensuite traitée numériquement de façon à minimiser le bruit de fond. L'image de diffraction numérisée est indexée afin d'en retirer toute information cristallographique (logiciel informatique Channel +, Schmidt et Olesen, 1989).

II-3. Formation des figures de diffraction

Les figures de diffraction (Fig. II-3) formant des bandes brillantes appelées aussi « bandes de Kikuchi », résultent donc de la diffraction des électrons rétrodiffusés (Fig. II-3). On peut les observer en mode transmission ou balayage. Lorsque le faisceau électronique interagit avec l'échantillon poli, les électrons incidents sont diffusés dans toutes les directions. Pour une famille de plans réticulaires (hkl), les électrons se trouvant en position de Bragg sont diffractés sans perte d'énergie cinétique.

Cette interaction élastique à l'origine des électrons diffusés est régie par la loi de Bragg :

n $\lambda = 2 d_{hkl} \sin \theta$ Avec n=nombre entier

d_{hkl}=distance réticulaire (hkl)

 θ = angle de Bragg

 λ = longueur d'onde reliée à la tension d'accélération des électrons (V₀) par :

 $\lambda = h / (2m_0 eV_0 (1 + (eV_0/2m_0c^2)))^{1/2}$

Avec h=constante de Planck m_0 =masse de l'électron e=charge de l'électron c=vitesse de la lumière

Les trajectoires des électrons qui satisfont les conditions de Bragg définissent deux cônes appelés cônes de Kossel (Fig. II-3). Du fait de l'énergie élevée des électrons, les angles de Bragg sont faibles (\sim 0,5°) et l'intersection des deux cônes sur un écran phosphorescent laisse apparaître une paire de lignes parallèles : lignes de Kikuchi. Elles résultent donc de la diffraction des électrons sur une famille de plans réticulaires et contiennent l'information cristallographique du point analysé.

(b)

FIG. II-2 – Equipement EBSD de Montpellier d'après BASCOU (2002). a : Schéma de l'équipement. b :Photo de l'équipement: 1 :Colonne électronique du MEB. 2 : Caméra vidéo. 3 : Console du système d'imagerie cristallographique. 4 : Moniteur du PC contrôlant le MEB. 5 :Moniteur du PC donnant accès au logiciel Channel+. 6 : Moniteur connecté directement à la caméra vidéo et permettant la visualisation des figures de diffraction se formant sur l'écran phosphorescent.

II-4. Conditions de travail

Afin d'obtenir de belles figures de diffraction, les échantillons doivent être parfaitement polis, exempts d'irrégularités pouvant induire une déviation du faisceau électronique et entravant aussi l'écoulement des charges électriques issues du faisceau électronique. De façon à bien indexer les images, les bandes de Kikuchi doivent présenter un bon contraste obtenu grâce à des électrons très énergétiques (15-20 keV). L'inclinaison de l'échantillon est déterminante pour le contrôle de la profondeur d'intéraction des électrons avec la section polie. Les résultats de nos mesures sont décrits Chapitre III.

FIG. II-3 – Figures de diffraction par la technique EBSD. a : Figure de diffraction d'un quartz. b : Formation des lignes de Kikuchi suite à la diffraction des électrons sur les plans réticulaires d'après RANDLE et ENGLER (2000).

Chapitr	e II -Méthodologie		
III.	L'Anisotropie	de	Sı
Magi	nétique (A.S.M.)		

Susceptibilité

III-1. Introduction

Au cours de leur refroidissement, les granites ne réagissent pas de manière homogène dans le temps et / ou dans l'espace, notamment s'ils sont soumis à un déviateur de contrainte. Celui-ci peut être induit par le magma lui-même et/ou par la tectonique liée au contexte géodynamique.

Le simple contraste de viscosité entre le magma et son encaissant peut induire le développement d'une fabrique aussi faible soit-elle. A cela, se surimposent les contraintes tectoniques extérieures dont l'influence sur les mécanismes de mise en place et de transport des granites dans la croûte n'est pas négligeable. La fabrique peut ainsi représenter parfois l'empreinte des déformations subies par le magma lors du transport dans la croûte, et peut être ainsi utilisée comme marqueur de la déformation crustale associée à ce transport (Faure & Pons, 1991, Gleizes et al, 1997 ; Benn et al., 2001).

Le développement de la fabrique dépend de la cinétique de cristallisation des minéraux, de leur nature, de la rhéologie et du type de déformation que subit le magma au cours de son refroidissement. Lors de l'interprétation de la fabrique, l'ensemble de ces paramètres est à prendre en considération. Il est ainsi nécessaire de coupler la mesure de la fabrique à une analyse microstructurale de la roche à étudier, de façon à pouvoir préciser ses conditions d'acquisition et déceler par là le caractère syn- ou post-tectonique d'un granite (voir § IV).

La rhéologie est peut être un des paramètres les plus difficile à appréhender car au cours de son refroidissement, le magma traverse des états rhéologiques différents. Trois étapes sont classiquement reconnues (Vigneresse *et al.*, 1996; Arbaret *et al.*, 2000) : - Pour un volume de cristaux inférieur au seuil de percolation rigide (55% pour Vigneresse et al., 1996 ou moins selon les auteurs), le magma se comporte comme un liquide newtonien. Les minéraux tournent librement dans la matrice et acquièrent une orientation préférentielle de forme cyclique.

- Au dessus du seuil de percolation rigide, le magma a un comportement plastique. Les cristaux, de plus en plus nombreux, se lient entre eux et forment une ossature qui peut encore fluer librement dans le liquide. A ce stade le comportement rhéologique est dit « de type Bingham ».

- Au fur et à mesure, la viscosité augmente et le système se bloque peu à peu. L'orientation préférentielle de forme des minéraux se stabilise.

Pour un volume de cristaux autour de 75%, le système se bloque (de St Blanquat, 2002). Ce seuil est appelé « seuil de blocage des particules ». A ce stade, les cristaux se déforment plastiquement et/ou fragilement. Pour Vigneresse et al., (1996) ce seuil dépend des différentes phases minérales constitutives mais surtout de la déformation que subit le magma.

A la fin de la cristallisation du magma, la fabrique continue à se développer à l'état solide et son enregistrement se fait au travers des phases minérales telles que le quartz ou le feldspath. La température de déformation peut être estimée par l'observation des microstructures et l'analyse des orientations préférentielles du quartz (Gapais & Barbarin, 1986; Mainprice *et al.*, 1986; Blumenfeld et al., 1986; Gower and Simpson, 1992).

La technique de l'anisotropie de susceptibilité magnétique utilise les propriétés magnétiques des minéraux pour mesurer la fabrique d'un granite. Rapide et facile de mise en œuvre, cette méthode est incontournable quand la fabrique d'une roche ne peut être identifiée à l'œil nu.

La comparaison de la fabrique d'un granite obtenue par l'analyse structurale classique (mesures des foliations et linéations et de la déformation finie) et la fabrique magnétique acquise par l'étude de l'anisotropie de susceptibilité magnétique montre des résultats similaires (Rochette et al., 1992 ; Borradaille et Henry, 1997). Depuis une dizaine d'années, cette technique est couramment appliquée aux massifs granitiques (Jover, 1986 ; Gleizes, 1992 ; Benn et al., 1997).

III-2. Principes de l'étude A. S. M.

Un solide soumis à l'action d'un champ magnétique H présente une aimantation induite d'intensité constante J telle que J=K*H

J= aimantation induite en A/m

K= susceptibilité magnétique volumétrique du solide (sans dimension SI)

H= intensité du champ magnétique appliqué en A/m

La valeur de la susceptibilité magnétique d'un solide dépend de la température, de l'intensité du champ magnétique et de sa direction.

Suivant leur nature, le comportement des minéraux diffère vis à vis du champ magnétique.

Dans le cas des minéraux isotropes, K est un scalaire. Dans le cas contraire, K varie.

En champ faible, J et H sont linéaires et K correspond à un tenseur de rang 2 et peut être représenté par un ellipsoïde de révolution.

En champ fort, pour certains minéraux, les relations entre J et H sont toujours linéaires ; pour d'autres, à partir d'une certaine intensité du champ, l'aimantation J est saturée et K ne peut plus être décrit par un tenseur de rang 2.

Dans notre cas, la susceptibilité magnétique sera décrite sous la forme d'un ellipsoïde du fait que l'ensemble de nos mesures a été réalisé en champ faible.

En champ fort, trois grands types de comportements magnétiques peuvent être définis (Fig. II-4) :

FIG. II-4 – Relation entre l'aimantation et le champ magnétique pour les différents comportements magnétiques des solides d'après BOUCHEZ (2000). Mr : Aimantation rémanente. Ms : Aimantation à saturation.

*Comportement diamagnétique

La susceptibilité est toujours négative et faible $(10^{-5}SI)$ et indépendante de la température.

Dans les roches plutoniques les minéraux caractéristiques du diamagnétisme sont le quartz et le feldspath.

*Comportement paramagnétique

La susceptibilité est toujours positive et de faible intensité (10^{-5} à 10^{-4} SI). La biotite, la muscovite et l'amphibole, accessoirement la chlorite, le pyroxène, la tourmaline et le grenat sont les minéraux porteurs de ce type d'aimantation dans les granites. Ce comportement est généré par les atomes de fer contenus dans le minéral. Contrairement à la précédente, la susceptibilité paramagnétique varie avec la température suivant la loi de Curie-Weiss, c'est à dire que K_{para} diminue quand la température augmente.

Les susceptibilités diamagnétiques et paramagnétiques ne se manifestent qu'en présence d'un champ magnétique. Les minéraux correspondants ne présentent pas d'aimantation rémanente.

*Comportement ferromagnétique

Les minéraux ferromagnétiques conservent leur aimantation en absence de champ magnétique. On distingue trois sous types de comportements ferromagnétiques :

- le ferromagnétisme présente une susceptibilité de forte intensité. Elle est positive en champ faible. Le fer, le nickel, le cobalt et les alliages correspondants sont de ce type.

- le ferrimagnétisme dont la magnétite est le minéral caractéristique, la susceptibilité associée est positive et assez forte en champ faible (de 10^{-3} à 10^{3} SI).

En champ fort les susceptibilités ferromagnétiques et ferrimagnétiques s'annulent du fait d'une saturation de l'aimantation.

- l'antiferromagnétisme représente le comportement de l'hématite et de la goethite. La susceptibilité antiferromagnétique est positive et plus faible en champ faible que les deux précédentes. Elle reste la même en champ fort.

La susceptibilité magnétique d'une roche, en champ faible, est la somme de toutes les contributions magnétiques. Les susceptibilités diamagnétiques et antiferromagnétiques sont négligeables en comparaison des autres comportements. Ce sont donc les phases minérales ferromagnétiques et paramagnétiques qui contribuent le plus à la susceptibilité totale d'une roche et à son anisotropie. Nous verrons ultérieurement que dans notre étude des granites, les minéraux porteurs de l'aimantation sont les micas (paramagnétique). La connaissance minéralogique de la roche à étudier est donc indispensable pour définir les minéraux porteurs de l'A.S.M.. Celle ci a plusieurs origines :

- Elle provient en partie de l'anisotropie cristalline des grains (la susceptibilité peut être plus forte le long de certains axes cristallins).

- Elle peut être due à une anisotropie de la forme des grains (susceptibilité différente suivant le grand axe et le petit axe du grain).

- Elle peut être influencée par la distribution spatiale des grains.

III-3. Traitement des données A. S. M.

Nous avons réalisé nos mesures au laboratoire de Magnétisme des Roches, commun à l'I.S.T.O. (Institut des Sciences de la Terre d'Orléans) et au B.R.G.M. (Bureau de Recherche Géologique et Minière), à l'aide du susceptomètre Kappabridge KLY-3S de la société AGICO. Le principe de cet appareil consiste à appliquer un champ magnétique de faible intensité à l'échantillon et à mesurer l'aimantation induite. L'échantillon est mesuré suivant 3 axes perpendiculaires à température ambiante. Pour chaque position donnée, l'échantillon tourne autour d'un axe et plusieurs mesures sont faites au cours de ces rotations. Associé à l'appareil, un logiciel permet de déterminer l'orientation géographique et les valeurs des trois axes principaux de l'ellipsoïde de susceptibilité ainsi que la susceptibilité totale de l'échantillon. On définit ainsi le tenseur de susceptibilité.

Comme évoqué précédemment, ce tenseur de rang 2, K_{ij} (avec i, j = 1, 2, 3), est symétrique et peut être représenté graphiquement par un ellipsoïde (Fig. II-5). L'ellipsoïde de susceptibilité magnétique définit la fabrique magnétique. Il possède 3 axes principaux K_1 , K_2 , K_3 avec ($K_1 \geq K_2 \geq K_3$). La fabrique magnétique de l'échantillon est donc définie par l'orientation et la valeur des axes principaux de l'ellipsoïde. K_1 correspond à l'alignement des minéraux magnétiques, définissant la linéation magnétique. K_3 reflète le plan moyen d'orientation du clivage (001) de la biotite et par là la foliation magnétique.

FIG. II-5 – Ellipsoïde de susceptibilité magnétique.

Plusieurs paramètres scalaires sont définis :

La susceptibilité magnétique moyenne, $K_m \colon K_m = (K_1 + K_2 + K_3)/3$

Elle représente la somme de toutes les contributions magnétiques

Le degré d'anisotropie, $P : P = K_1 / K_3$

Ou P'= exp $[2 \times \Sigma(\ln K_i/K_m)^2]^{1/2}$ Le degré d'anisotropie peut s'exprimer en pourcentage, P% : P%=(P-1) x 100

Le paramètre de forme (ou paramètre de Jelinek, 1981), T :

 $T = [\ln (K_2/K_3) - \ln (K_1/K_2)] / [\ln (K_2/K_3) + \ln (K_1/K_2)]$ Ce paramètre décrit la forme de l'ellipsoïde et varie de +1 (forme en galette) à -1 (forme en cigare).

Le paramètre de Flinn : $P_{Flinn} = (K_1/K_2) / (K_2/K_3)$

Ce paramètre représente la forme de l'ellipsoïde de l'A. S. M.

Pour $0 < P_{Flinn} < 1$, l'ellipsoïde est aplati Pour $P_{Flinn} > 1$, l'ellipsoïde est allongé

De nombreuses études (Jover, 1986 ; Boradaille, 1988 ; Rochette et al., 1992 ; Boradaille et Henry, 1997) ont mis en évidence les corrélations entre les fabriques magnétiques et l'ellipsoïde de déformation fini, déterminé à partir des observations structurales des granites.

Ils ont également montré que les zones d'intense déformation correspondaient au degré d'anisotropie magnétique le plus élevé. Il faut cependant être prudent dans certain cas, ceux pour lesquels les granites contiennent de la tourmaline car celle-ci induit une inversion de la fabrique magnétique (la linéation magnétique correspond au pôle de foliation magnétique et inversement).

L'application de l'étude A.S.M. au massif de Millevaches sera détaillée dans le Chapitre IV.

IV. Etude des microstructures des roches magmatiques

Les microstructures enregistrent l'état rhéologique du magma au cours de son refroidissement. Afin de comprendre les relations entre la tectonique et le magmatisme, il est indispensable de caractériser les mécanismes de déformation qui contrôlent les systèmes magma / roche. Certains critères microstructuraux permettent de connaître l'existence des derniers liquides présents dans la roche avant sa cristallisation totale. L'identification de ces liquides est d'autant plus difficile que la roche continue à se déformer après sa cristallisation totale et que les minéraux recristallisent statiquement sous l'effet d'une température suffisamment élevée (recuit). Décrivant en détail les microstructures des granites du Millevaches au cours du Chapitre IV, nous nous contentons de présenter ci-dessous quelques exemples de critères de reconnaissance des déformations magmatiques, des déformations à l'état solide de haute température enfin des déformations à l'état solide de moyenne à basse température.

IV-1. Exemples de microstructures magmatiques

- Absence de déformation interne des cristaux (sousjoints dans les quartz par exemple)

- Accolement de cristaux en cours de cristallisation (synneusis).

- Micas non kinkés

- Alignement parallèle de cristaux automorphes sans déformation interne

- Imbrication de cristaux automorphes

- Quartz interstitiel

- Associations microaplite et myrmékite qui selon Hibbard (1979, 1987) cristallisent directement à partir d'un « melt » saturé en H_2O .

IV-2. Exemples de microstructures acquises à l'état solide de très haute température (> 600-650°C) ou juste avant la cristallisation totale du magma (prefull-crystallization)

- Intense migration aux joints de grains (Jessel, 1987)

- Présence de sous-joints, kinks,...
- Présence de mâcles du microcline (Eggleton et Buseck, 1980)
- Formation de sous-joints à 90° dans les quartz
- Allongement et boudinage d'agrégats cristallins
- Recristallisation dynamique
- Quartz en échiquier avec sous joints prismatiques < c > et basal < a > (Mainprice et al., 1986; Blumenfeld et al., 1986)

- Limites curvilignes entre quartz et feldspath (Gower et Simpson, 1992)

- Systèmes de glissement prismatique < c > du quartz

IV-3. Exemples de microstructures acquises à l'état solide de moyenne à basse température $(350^{\circ}C < T < 600^{\circ}C)$

- Fracturation des feldspaths

- Systèmes de glissement prismatique < a > et systèmes de glissement rhomboédrique et basal < a > du quartz

Chapitre II -Méthodologie V. La Gravimétrie

La gravimétrie est l'étude des variations spatiales et temporelles du champ de pesanteur terrestre. Les variations spatiales du champ sont liées aux variations de densité des roches sous-jacentes. Elles sont caractérisées à la fois par leur intensité, leur forme et leur longueur d'onde et reflètent la géométrie et la densité des sources qui les génèrent.

Le champ de pesanteur varie avec la latitude, l'altitude, la forme du relief (masse entre un niveau de référence et la surface du sol) et les anomalies de densité sous le niveau de référence. Le but de notre travail est de connaître ces anomalies de densité en dessous du niveau de référence.

V-1. Rappels

La pesanteur à la surface de la Terre dépend de l'attraction newtonienne des masses de la Terre induisant l'accélération gravitationnelle et de l'accélération centrifuge due à la rotation de la Terre.

L'accélération gravitationnelle est calculée à partir de la loi de gravitation universelle de Newton :

 $F= G.m.m'/d^2$ F= Force gravitationnelle attractive s'exerçant entre deux corps ponctuels

m et m'= masses respectives des deux corps ponctuels d= distance séparant m et m'

G= constante de gravitation universelle= 6,67. 10-11 $m^3 kg^{-1} s^{-2}$

 $F=G.m.M/r^2$ correspond à la force gravitationnelle qui s'exerce sur une masse ponctuelle située à la surface de la Terre avec :

M=masse de la Terre

m=masse ponctuelle située à la surface de la Terre r=rayon terrestre

Or F=m.g donc l'accélération gravitationnelle de la Terre s'écrit $g_a=G.M/r^2$

 \mathbf{g}_{a} s'exprime en m.s⁻² or en gravimétrie on utilise généralement le Gal (1 Gal= 10⁻² m.s⁻²). Cette valeur de l'attraction gravitationnelle n'est utilisable que pour une Terre théorique sphérique, immobile et homogène.

V-2. Définition de l'ellipsoïde comme système de référence (Fig. II-6)

La Terre n'est pas sphérique, elle est bombée à l'équateur et aplatie aux pôles. Cette déformation est liée à la rotation de la terre sur elle-même sous l'effet d'une accélération centrifuge opposée à l'accélération gravitationnelle. Pour modéliser la Terre, on la compare à un corps sphéroïdal de révolution symétrique par rapport au plan de l'équateur.

Ce sphéroïde de référence correspond à un ellipsoïde de révolution (appelé ellipsoïde de référence). L'ellipsoïde de référence est une surface mathématique qui s'approche au mieux de la forme de la Terre. Le potentiel du champ de pesanteur est par définition constant mais l'accélération de la pesanteur varie sur cette surface. Cette variation ne dépend que de la latitude selon la formule établie par Clairault. La formule de g dans le système IGSN71, en tout point du sphéroïde s'écrit :

```
g=g_0 (1+\alpha \sin^2 \phi -\beta \sin^2 2\phi)
```

 $g_{0:}$ valeur de la pesanteur à l'équateur= 978,031 gals ϕ : latitude

 α et β : constantes dépendant de la forme et de la vitesse de rotation de la Terre

 α =0,005302357 et β =-0,0000058655

Cette valeur théorique de l'accélération de la pesanteur n'est qu'approximative car elle fait abstraction de la topographie et de la géologie. Ces variations influencent le niveau réel de la mer, l'observateur doit donc en tenir compte lorsqu'il mesure des altitudes.

Pour cela on définit un niveau moyen expérimental des mers (équipotentiel) appelé Géoïde. Le Géoïde est une

surface physique qui sert de référence pour les investigations gravimétriques et géodésiques. C'est la

forme d'équilibre de notre planète qui serait obtenue si la surface des océans au repos se prolongeait sous les continents. L'ellipsoïde de référence et le Géoïde ne

coïncident pas. Le Géoïde est déformé vers le haut sous les continents par l'attraction des masses situées au-

dessus et vers le bas sur les bassins océaniques. La différence entre les deux ne dépassant toutefois pas 50 m (Telford et al., 1990), elle n'a aucune influence sur notre

interprétation géologique.

(échelles non respectées, aplatissement exagéré)

FIG. II-6 – Représentation schématique du système de référence de la Terre : Sphéroïde, Ellipsoïde et Géoïde d'après VAN DEN BOSCH (1981).

V-3. Définition de l'anomalie de Bouguer

L'anomalie de Bouguer correspond à l'anomalie mesurée sur le secteur d'étude, à laquelle on retranche l'anomalie théorique corrigée de l'altitude et du relief. Cette anomalie de Bouguer est complète, c'est à dire qu'elle prend en compte la répartition de l'ensemble des masses. Pour obtenir une image de la profondeur des premiers kilomètres du globe, nous devons retirer au signal de l'anomalie de Bouguer complète, l'anomalie régionale qui reflète les hétérogénéités de densité profonde.

L'anomalie de Bouguer s'exprime sous la forme :

$$\begin{split} A_{B} &= g_{mes}\text{-} (g_{th}\text{-}0,3086.h + 2\pi G\rho_{B}h - \rho_{B}T), \\ &= g_{mes}\text{-} [(g_{th} + \rho_{B}T)\text{-}h (0,3086 - 2\pi G\rho_{B})], \\ &= g_{mes}\text{-} [(g_{th} + \rho_{B}T) + K.h], \end{split}$$

 g_{mes} et g_{th} sont respectivement le champ gravimétrique mesuré et sur le géoïde

Chapitre II -Méthodologie

0,3086 =valeur du gradient de pesanteur dans l'air (en mGal/m)

h =altitude au point de mesure

 ρ_B =densité de Bouguer

G=constante de gravitation

 $\rho_B T =$ correction de terrain

L'anomalie de Bouguer est nulle dans le cas idéal où le terme correctif (K.h) correspond parfaitement à l'effet des masses situées entre la topographie et le géoïde.

En réalité, l'anomalie de Bouguer n'est pas nulle. Son amplitude est proportionnelle à l'altitude h du point considéré et dépend de la densité ρ_B utilisée pour la calculer. Si la densité ρ_B est sur ou sous-estimée, il subsistera dans l'anomalie de Bouguer une composante corrélée ou non avec la topographie.

V-4. La gravimétrie appliquée aux granites

La gravimétrie est une méthode couramment utilisée pour l'imagerie des granites en profondeur (Vigneresse and Brun, 1983 ; Améglio, 1998 ; Martelet *et al.*, 1999). Cet outil géophysique est la méthode la plus adaptée pour modéliser la forme en 3D d'un pluton dans son ensemble. Lorsqu'un contraste de densité par rapport aux roches encaissantes existe (2,62 g/cm³ pour les granites contre 2,75 g/cm³ pour les micaschistes), l'emprise des granites est très vite décelable sur les cartes d'anomalies gravimétriques, souvent marquée par une forte anomalie négative. L'observation de la carte d'anomalie de Bouguer à l'échelle de la France (Fig. II-7) permet de mettre en évidence par un simple regard la localisation des massifs granitiques. Les Pyrénées, les Alpes et le Massif Central se distinguent immédiatement par la présence de granites, de même que le cisaillement Sud Armoricain jalonné de leucogranites.

De par la détermination de l'épaisseur granitique, de l'interface granite / encaissant et des zones possibles d'enracinement, les modélisations gravimétriques effectuées sur les granites permettent de mieux comprendre leurs structures en profondeur et leur contexte de mise en place. On peut essayer de mettre en évidence les relations entre les zones possibles d'enracinement (anomalie fortement négative) et les grands accidents ductiles qui sont souvent associés aux granites et par conséquent mieux appréhender les mécanismes de mise en place des magmas et de construction des chambres magmatiques. L'imagerie de l'interface granite / encaissant associée à la localisation des failles qui bordent les granites permettent de mieux comprendre le rôle de celles-ci dans les mécanismes d'exhumation des granites. L'étude gravimétrique détaillée que nous avons appliquée sur le massif granitique de Millevaches sera développée dans le Chapitre IV.

Anomalie de Bouguer

FIG. II-7 - Carte d'anomalie de Bouguer à l'échelle de la France d'après GRANJEAN et al., 1998.

Chapitre II - Méthodologie VI. Géochronologie

VI-1. ⁴⁰Ar/³⁹Ar

Les datations ⁴⁰Ar/³⁹Ar effectuées lors de ce travail ont été réalisées au laboratoire Dynamique de la Lithosphère de l'Université des Sciences et Techniques du Languedoc à Montpellier (France). La méthode ⁴⁰Ar/³⁹Ar offre plusieurs techniques susceptibles de mettre en évidence les hétérogénéités isotopiques. En effet, le couplage des techniques de chauffage par paliers de température sur des populations minérales (four) ou sur monograin (laser continu) ainsi que celles par fusion ponctuelle sur monograin par laser pulsé ou sur section polie peuvent aider à mieux cerner les variations de composition isotopique dont l'origine peut être diverse (excès ou perte d'argon, intercalation de chlorite primaire dans les feuillets de biotite, altération, déformation et recristallisation de minéraux...).

<u>VI-1-a. Principes et caractéristiques : (Maluski,</u> <u>1985 ;Mc Dougall et Harrison, 1999)</u>

La datation ⁴⁰Ar/³⁹Ar dérive de la méthode K-Ar. Le K possède trois isotopes ⁴¹K, ⁴⁰K et ³⁹K dont seul le ⁴⁰K est radioactif. Il se désintègre en ⁴⁰Ca (89,5%) et ⁴⁰Ar (10,5%) respectivement par radioactivité β^- (λ_{β} =4,961. 10⁻¹⁰ ans ⁻¹) et par capture électronique (λ_e =0,582. 10⁻¹⁰ ans ⁻¹). La technique K-Ar est basée uniquement sur la production d'⁴⁰Ca par désintégration naturelle du ⁴⁰K. Dès lors, l'âge K-Ar apparent, basé sur le rapport du nombre d'atomes radiogéniques accumulés au cours du temps et du nombre d'atomes radioactifs actuellement présent, est donné par l'équation suivante:

t=1/ λ ln (1+ λ/λ_e . *⁴⁰Ar/⁴⁰K) avec $\lambda = \lambda_{\beta} + \lambda_e = 5,543 \cdot 10^{-10}$ ans ⁻¹

Dans l'atmosphère, l'argon possède trois isotopes naturels ⁴⁰Ar, ³⁸Ar et ³⁶Ar dont les proportions sont constantes. Le rapport ⁴⁰Ar/³⁶Ar est de 295,5 et permet de soustraire à l'⁴⁰Ar mesuré lors d'une analyse, la part d'argon non radiogénique. C'est ainsi qu'au cours des analyses, on effectue des prises d'air permettant une évaluation du rapport ⁴⁰Ar/³⁶Ar atmosphérique dans les conditions de l'analyse.

La méthode K-Ar est limitée car elle ne permet pas d'évaluer les pertes ou les gains d'argon radiogénique au cours de l'histoire géologique du minéral. Afin de lever ces incertitudes, on irradie dans un premier temps l'échantillon dont on veut déterminer l'âge sous un flux de neutrons rapides afin d'obtenir de l'³⁹Ar à partir du ³⁹K. Le rapport ⁴⁰K/³⁹K est constant dans la nature et la mesure de *⁴⁰Ar/³⁹Ar revient à déterminer par conséquent le rapport *⁴⁰Ar/⁴⁰K qui correspond à un âge apparent. Ceci ne peut être vrai que si l'on connaît le rendement de la réaction ³⁹K (n,p) ³⁹Ar. C'est ainsi qu'on irradie en même temps que les échantillons, un échantillon standard d'âge connu, par exemple la hornblende MMHb dont l'âge est contraint à 520,4 ± 1,7 Ma (Sanson et Alexander, 1987) ou la biotite de Bergell daté à 24,2 ± 0,3 Ma (Hess et Lippolt, 1994) qui permet

de déterminer le paramètre J constant pour chaque irradiation :

$$J=(e^{\lambda t \ std} -1) / (*^{40}Ar/^{39}Ar)_{std}$$

L'âge ⁴⁰Ar/³⁹Ar sera obtenu par l'équation :

$$t=1/\lambda \ln (1 + J \cdot *^{40}Ar/^{39}Ar)$$

En plus des corrections d'argon atmosphérique évoquées précédemment, il est nécessaire d'effectuer les corrections d'interférences isotopiques d'origine nucléaire. En effet, au cours de l'irradiation les isotopes de l'argon sont créés par interaction du flux de neutrons avec les isotopes du K, du Ca, de l'Ar et du Cl. Les interférences les plus importantes sont liées aux réactions nucléaires à partir du K et du Ca.

⁴⁰ K (n, p)	⁴⁰ Ar
40 Ca (n, n α)	³⁶ Ar
42 Ca (n, α)	³⁹ Ar

Afin d'obtenir une mesure précise du rapport $*^{40}$ Ar/ 39 Ar, les facteurs de correction sont effectués en irradiant des sels ultra-purs de KF et de Ca F₂ en même temps que les échantillons et le standard.

La correction des isotopes ⁴⁰Ar, ³⁶Ar et ³⁹Ar est rendue possible par la désintégration du ⁴⁰Ca en ³⁷Ar dont la période de vie est courte (35,1 jours). Il faut donc ramener la valeur mesurée d'³⁷Ar (³⁷Ar_m) à la valeur réelle (³⁷Ar₀) que l'on obtiendrait à la sortie du réacteur nucléaire.

Ce calcul est donné par l'équation suivante :

³⁷Ar₀ = (³⁷Ar_m. exp (λ37.t) . λ37. ti) / (1-exp (-λ37.ti)) t= durée d'irradiation, ti=intervalle de temps entre l'irradiation et l'analyse, λ 37=constante de désintégration de ³⁷Ar=0,01974j⁻¹

L'analyse des sels permet de définir trois coefficients de correction :

$$({}^{40}\text{Ar}/{}^{39}\text{Ar})$$
 K, $({}^{39}\text{Ar}/{}^{37}\text{Ar})$ Ca et $({}^{36}\text{Ar}/{}^{37}\text{Ar})$

<u>VI-1-b. Méthode ⁴⁰Ar/³⁹Ar sur populations minérales</u> appliquée pour notre étude

Des populations de grains de biotite et de muscovite ont été sélectionnées pour être analysées par la méthode classique 40 Ar/ 39 Ar selon le protocole décrit par Arnaud et al. (1993) et Arnaud et al. (2003). Le chauffage se fait dans un four à induction permettant une bonne résolution thermique lors du processus de dégazage fractionné. Après purification sur des getters, le gaz est introduit dans un spectromètre de masse VG 3600. L'irradiation des échantillons a été réalisée au Canada. Le standard utilisé est une sanidine du Fish Canyon Tuff dont l'âge est de 28,48 Ma. Les blancs effectués au cours des analyses varient entre 2,240.10⁻¹⁴ cm³ et 3,36 10^{-12} cm³ pour l³⁴⁰Ar et entre 1,344. 10^{-14} cm³ et 4,48. 10^{-15} cm³ pour l³⁴⁰Ar. Les marges d'erreur sont données à 1σ . Les calculs de régression sont déterminés à partir des programmes décrits dans Arnaud et al. (2003).

Chapitre II -Méthodologie <u>VI-1-c. Méthode ⁴⁰Ar/³⁹Ar sur monograins et sections</u> polies appliquée pour notre étude

Des âges ⁴⁰Ar/³⁹Ar ont également été obtenus en utilisant la méthode laser sur monograin de biotite et muscovite selon le protocole de Mc Dougall et Harrison (1999) et Monié et al. (1994). Un laser continu à argon ionisé de type Lexel 3500 d'une puissance de 6W est utilisé pour l'extraction du gaz de minéraux isolés ou de sections polies déposés sur un support en CuOFHC qui est placé dans une chambre maintenue sous vide. Un obturateur placé sur le trajet du rayon laser permet d'obtenir des temps d'exposition de l'ordre de la milliseconde nécessaires pour les expériences de dégazage ponctuel. Le gaz est ensuite purifié dans une ligne de verre à l'aide de getters, piège à froid et charbon actif avant d'être introduit dans le spectromètre de masse MAP 215-50 équipé d'une source de type Nier. Lors des analyses au laser, la tension du multiplicateur d'électrons a varié entre 2,05 et 2,25 kV. Le standard utilisé est une hornblende (MMHB4) datée à 520,4 + 1,7 Ma. Les blancs de ligne, mesurés toutes les trois analyses ont été évalués autour de 3.10⁻¹² cm³ pour l'⁴⁰Ar et autour de 4.10⁻¹⁴ cm³ pour l'³⁶Ar. Les marges d'erreur sont données à 1σ . Les calculs de régression sont déterminés selon le modèle de York modifié.

La focalisation extrême du faisceau laser effectuée sur un monograin de biotite ou de muscovite par fusion totale d'un volume réduit de matière de 50μ m à 80μ m de diamètre sur 20 à 40μ m de profondeur, nous a permis d'obtenir des cartes de répartition d'âges apparents.

On peut ainsi observer d'éventuelles zonations d'âges du cœur par rapport à la périphérie du minéral et par là mettre en évidence des événements perturbateurs (Monié et al., 1994 ; Hames et Cheney, 1997) ou appréhender le temps de refroidissement d'un granite qui, lorsqu'il est très lent, produit des pertes d'⁴⁰*Ar par diffusion volumique continue (Hodges et Bowring, 1995).

Cette technique par focalisation du laser peut être employée sur des sections de roches polies et permet ainsi de mettre en relation directe un âge avec la zone abrasée (clastes, zone de cisaillement, queue de cristallisation). L'avantage de cette technique est de pouvoir dater des zones dans la roche dont la taille trop petite aurait empêché une séparation. En revanche, l'inconvénient de cette technique réside dans le fait que pour obtenir un signal conséquent (et donc un âge précis), un volume relativement important doit être fondu. Les risques de pollution par la présence de minéraux adjacents à la zone à analyser sont d'autant plus nombreux que le volume fondu est important. Cependant, les textures des mylonites des zones de cisaillement ductile qui nous intéressent représentent une telle complexité, notamment due à la coexistence des diverses générations de micas anté- et syn-cinématiques, qu'une analyse in situ de ces minéraux par la méthode ' Ar/³⁹Ar par sonde laser est capitale pour essayer d'affiner les résultats obtenus sur population et monograin. Nous essaierons de déterminer la nature polyphasée des sites de rétention de l'argon en caractérisant les différents phénomènes de recristallisation mylonitique qui se développent au cours du refroidissement du granite.

Grâce à l'ensemble de ces techniques, nous distinguerons :

- l'âge de refroidissement du granite
- l'âge de cristallisation syntectonique
- l'âge des micas primaires ou des micas secondaires

VI-2. Uranium-Plomb sur zircon et monazite : technique analytique

Les analyses U/Pb sur zircons et monazites ont été effectuées dans le laboratoire "Magmas et Volcans" (UMR 6524, Université Blaise Pascal, Clermont-Ferrand) par la méthode conventionnelle (ID-TIMS) par Françoise Roger (UMR 5573, Université Montpellier 2) selon le protocole décrit dans J.L. Paquette et C. Pin (2001). Durant la période d'analyse, le blanc total en Pb a été compris entre 2 et 5 pg, le blanc d'U étant négligeable. Les ellipses d'erreur (2σ) et les calculs de régression sont déterminés à partir des programmes PbDat 1.24 et Isoplot/Ex 2.49 (Ludwig, 1993, 2001). Tous les résultats sont donnés à 95 % de niveau de confiance. Les constantes de désintégration utilisées pour le système U/Pb sont celles déterminées par Jaffey et al. (1971) et recommandées par l'IUGS (Steiger et Jäger, 1977).

VI-3. Datation chimique Th-U-Pb sur monazite

VI-3-a. Introduction

La monazite est un phosphate de Terres Rares (Ce, La, Nd, Th, Y) PO₄ présent comme phase accessoire dans les roches granitiques et métamorphiques. Du fait de la présence en quantité non négligeable de Thorium, d'Uranium et d'un peu de Pb, la monazite a été utilisée pour la datation U-Pb (Parrish, 1990). Les processus de diffusion de la monazite étant très lents (Parrish, 1990 et Cherniak et al., 2000), elle conserve la trace des informations chimiques et géochronologiques des évènements métamorphiques précoces. Des travaux récents (Montel et al., 1996, 2000; Cocherie et al., 1998 ; Williams et al., 1999a) ont montré que l'analyse des monazites à la microsonde électronique pouvait être une méthode efficace pour déterminer leur âge de cristallisation. L'âge est déterminé en mesurant les concentrations d'Uranium, de Thorium et de Plomb avec comme hypothèse que la quantité de plomb commun est négligeable (tout le plomb contenu dans le minéral est issu de la désintégration du Thorium et de l'Uranium) et que les concentrations élémentaires n'ont pas été modifiées de façon significative par les transferts de masse ultérieurs (Montel et al., 1996 ; Cocherie et al., 1998). On suppose donc que la monazite a évolué en système clos depuis sa cristallisation ou qu'elle a connu une perte en plomb totale au cours d'un événement postérieur. Dans ce cas, le chronomètre a été remis à zéro et l'âge obtenu correspond à celui de l'événement perturbateur.

Cette méthode chimique à la microsonde électronique offre la possibilité d'effectuer des datations ponctuelles sur monograin en utilisant un faisceau électronique de 1 à 2 μ m de diamètre contre 20 à 30 μ m pour la sonde ionique. L'aptitude de cette méthode à effectuer des

Chapitre II -Méthodologie

traversées du grain avec un pas de 2 à 3 μ m a permis de démontrer l'absence de processus de diffusion dans la monazite à 700°C (Cocherie et al., 1998) voire même audelà, à 900°C selon Braun et al. (1998). Ces auteurs ont montré que, l'interaction des fluides sur une monazite est limitée et se concentre uniquement dans les zones de défauts cristallins (fractures). Par conséquent, la cristallisation de la monazite magmatique primaire peut être datée séparément des évènements métamorphiques qu'elle peut subir après sa cristallisation. Un des avantages supplémentaires de la datation à la microsonde électronique est la possibilité de mesure in situ directement sur lame polie. Cela permet de mettre en évidence les relations texturales de la monazite à dater avec les autres phases minérales.

Cette méthode attrayante présente néanmoins de gros inconvénients relatifs à la faible précision des mesures de concentrations en U, Th et Pb. Le calcul d'erreur sur l'âge pour chaque point d'analyse dépend de la quantité d'U et de Th dans la monazite qui a une influence directe sur la quantité de Pb. Pour Cocherie et al., (1998), l'erreur absolue sur les quantités d'U, de Th et de Pb est constante, de l'ordre de 150 ppm, mais compte tenu de la normalisation, il est difficile de diminuer la marge d'erreur en dessous de 2%.

Ceci engendre des barres d'erreur importantes, de l'ordre de \pm 30 Ma et de \pm 120 Ma (Cocherie et al., 1998)

respectivement pour des roches d'environ 300 Ma et 3000 Ma. Ces barres d'erreur d'autant plus grandes que les âges sont jeunes ont été diminuées de façon considérable par une méthode statistique développée par Cocherie et al. (2001).

FIG. II-8 – Spectre EDS (Système à dispersion d'énergie) caractéristique de la monazite.

VI-3-b. Description de la méthode utilisée (Cocherie et al., 2001)

VI-3-b-i. Procédure analytique

Préalablement repérées en lame mince et au microscope électronique à balayage puis étudiées en détail de façon à repérer d'éventuelles zonations, les monazites sont analysées à la microsonde électronique. Nos mesures ont été effectuées à la microsonde électronique CAMECA SX 50 du B.R.G.M. équipée de

cinq spectromètres utilisant une tension accélératrice de 20 kV pour un courant de 110 nA. Les temps de comptage (pic + bruit de fond) sont de 240s pour le Pb, 200s pour l'U, 40s pour les autres éléments (soit 4 mn pour une analyse complète). Les raies analysées sont Th $M\alpha$, Pb $M\alpha$, U $M\alpha$, NdL β , SmL α , CeL α , LaL α , PrL β , GdL β , YL α , CaK α et SiK α (Fig. II-8).

Un programme de correction PaP est utilisé pour corriger les interférences entre les raies. Les interférences spectrales de Y sur Pb $M\alpha \,\epsilon\tau \,\delta\epsilon$ sont également corrigées.

Chapitre II - Méthodologie

Les standards utilisés sont PbS pour le Pb, UO_2 pour l'U, Th O_2 pour Th. Pour les autres éléments nous avons utilisés des phosphates synthétiques (XPO₄) pour REE et Y, l'apatite pour le Ca et l'andradite pour le Si.

VI-3-b-ii. Méthode de calcul

La méthode de calcul est basée sur le diagramme Th/Pb = f (U/Pb) (Cocherie et al., 2001). L'équation de désintégration divisée par Pb donne :

I =Th/Pb *
$$M_{208}$$
 / M_{232} (e ^{$\lambda 232t$} - 1) + U/Pb * {[M_{206} / M_{238} *
0.9928 (e ^{$\lambda 238t$} - 1)] + [M_{207} / M_{235} * 0.007200 (e ^{$\lambda 235t$} - 1)]}

M208, M232, M206, M238, M207, et M235 sont les masses atomiques du ²⁰⁸ Pb, ²³² Th, ²⁰⁶ Pb, ²³⁸ U, ²⁰⁷ Pb, et ²³⁵ U; λ 232, λ 238, et λ 235 sont les constantes de désintégration 4.9475.10⁻¹¹an⁻¹, 1.55125.10⁻¹⁰an⁻¹, et 9.8485.10⁻¹⁰an⁻¹; ²³⁸ U/(²³⁵ U+ ²³⁸ U) =0.9928 et ²³⁵ U/(²³⁵ U+ ²³⁸ U) =0.007200.

Dans ce diagramme les isochrones sont des droites dont la pente est:

$$S = -\{ [M_{206} / M_{238}^* .9928 (e^{\lambda 238t} - 1)] + [M_{207} / M_{235}^* \\ 0.007200(e^{\lambda 235t} - 1)] \} / [M_{208} / M_{232}^* (e^{\lambda 232t} - 1)]$$

Dans le cas d'une isochrone théorique, tous les points doivent fournir un même âge avec des teneurs en U et Th variables. L'intercept de cette isochrone avec l'axe Th/Pb est uniquement fonction de l'âge Th-Pb. Il en va de même pour l'intersection de l'isochrone avec l'axe U/Pb. Dans le cas idéal, les âges Th-Pb et U-Pb qui sont donc indépendants sont identiques. Les intercepts sont donnés par :

(Th/Pb) $_0 = 1/[c^{\lambda 232tTh-Pb} - 1) M_{208} / M_{232}]$

 $\begin{array}{ll} (U/Pb)_{0} = 1/ \left\{ [M_{206} \ /M_{238} \ ^{*} \ 0.9928 \ (e^{\ \lambda 238tU\text{-Pb}\text{-}} \ 1)] + [M_{207} \ /M_{235} \ ^{*} 0.007200 \ (e^{\ \lambda 235tU\text{-Pb}\text{-}} \ 1)] \right\} \end{array}$

Les erreurs sur les rapports U/Pb et Th/Pb sont corrélées. Pour chaque point, les enveloppes d'erreurs sont donc représentées par des ellipses. Les erreurs absolues concernant U, Th, Pb ne sont pas corrélées. Ainsi, Cov(U, Th), Cov(U, Pb), et Cov(Th,Pb) sont égales à zéro et le coefficient de corrélation est donné par :

 $\begin{aligned} \rho_{U/Pb, Th/Pb} &= E_{Pb}^{2} / [(E_{U}^{2} + E_{Pb}^{2}) * (E_{Th}^{2} + E_{Pb}^{2})]^{0.5} \\ E_{Pb}, E_{U}, \text{ et } E_{Th} \text{ sont les erreurs en pourcentage pour Pb,} \\ U, \text{ et Th.} \end{aligned}$

Pour déterminer si la régression calculée à partir des points expérimentaux correspond à une isochrone vraie, on trace les isochrones théoriques. Si la droite calculée est parallèle aux isochrones théoriques alors on peut considérer cette droite comme une isochrone vraie et l'âge calculé qui en découle comme géologiquement significatif. Dans ce cas, les âges Th-Pb et U-Pb sont indistinguables à l'intérieur de la barre d'erreur.

Si la droite de régression est une isochrone vraie, on peut théoriquement calculer un âge en tout point de cette droite. La prochaine étape consiste à trouver le point de la droite le plus approprié pour calculer un âge (c'est-àdire pour lequel l'erreur est la plus faible). L'équation suivante donne le calcul d'erreur en tout point de la droite (Ludwig, 1980).

Th/Pb = I + S.U/Pb + ou - $[\Delta I^2 + \Delta S^2 * U/Pb^* (U/Pb - 2U/Pb_{bar})]^{0.5}$

où S est la pente de la droite et I l'intercept $(Th/Pb)_0$. Cette équation va déterminer les hyperboles de confiance de chaque côté de la droite de régression. L'intervalle le plus étroit entre les hyperboles est localisé au point moyen pondéré de la droite de régression. La définition de ce point est donnée ci-dessous.

Pour un groupe de N X-Y points déterminé par leurs coordonnées X et Y (ici U/Pb et Th/Pb), Ludwig (1998) utilisant la notation de Tittenrigton et Halliday (1979), a développé un algorithme qui calcule une moyenne pondérée tout en minimisant les sommes (S) des carrés des N résiduelles des erreurs pondérées.

$$S = \Sigma \; (A_i^{2} + B_i^{2} - 2A_iB_i \; \rho_{Xi, \; Yi}) / (1 - \rho_{Xi, \; Yi}^{2})$$

 A_i et B_i sont les résiduelles des erreurs pondérées. $A_i = (X_i - X_{bar}) / \sigma_{Xi}$ et $B_i = (Y_i - Y_{bar}) / \sigma_{Yi}$; et $\rho_{Xi, Yi}$ sont les corrélations d'erreurs entre X et Y, avec $\rho_{Xi,Yi} = cov(X_{is}Y_i) / (\sigma_{Xi} \sigma_{Yi})$.

Le point recherché (U/Pb_{bar}; Th/Pb_{bar}) est obtenu par la résolution simultanée des équations résultant de la dérivation de l'équation ci-dessus minimisant S. En d'autres termes on recherche le barycentre de tous les points.

VII. Conclusion

L'approche pluridisciplinaire ainsi développée nous a permis de mieux cerner dans l'espace et dans le temps les relations entre la déformation et la mise en place des granites et le fonctionnement des zones de cisaillement ductiles dans le Limousin.

La cartographie, base de toute étude géologique détermine les relations structurales des différentes unités géologiques impliquées dans les zones de cisaillement et permet l'établissement d'une chronologie relative.

L'analyse tectonique et microtectonique précise la cinématique des grands accidents du Limousin (failles normales et décrochements) qui jalonnent les massifs granitiques. L'observation texturale et l'analyse des « OPR » des différents types de mylonites permet d'apprécier les conditions de température à laquelle s'est développée la déformation. Les différentes étapes de refroidissement des granites sont suivies grâce aux transformations que subissent les différentes phases minérales durant le fonctionnement de la zone de cisaillement.

Les datations ⁴⁰Ar/³⁹Ar associées à l'analyse pétrostructurale et à la cinématique des mylonites permettent de fixer l'âge des déplacements sur les grands accidents de différents types et de déterminer le passage d'un isotherme donné.

D'autre part, la compréhension du mode de mise en place des magmas implique de connaître la forme tridimensionnelle des massifs granitiques ainsi que le contexte tectonique dans lequel ils ont évolué. La géométrie 3D des plutons est déterminée à partir des

Chapitre II -Méthodologie

modélisations gravimétriques. L'interprétation de la forme est cependant facilitée par la connaissance de la structure interne du pluton. L'anisotropie de susceptibilité magnétique est un outil précieux pour imager les trajectoires de linéations et foliations magmatiques quand celles-ci sont indécriptables à l'œil nu. Par exemple, l'interprétation en tant que conduit d'alimentation du magma de certaines zones caractérisées par une forte anomalie gravimétrique négative, peut être confirmée ou infirmée par la détermination des linéations magnétiques (respectivement plongeantes ou sub horizontales) au dessus de ce secteur.

Ajoutons que ce raisonnement ne peut être acceptable uniquement que si l'analyse des textures parallèlement à la linéation magnétique certifie le caractère magmatique ou « pre-full crystallization » de la déformation.

Les outils gravimétriques, A.S.M. et microstructuraux apportant chacun séparément des informations sur la formation et l'évolution des massifs granitiques, sont d'autant plus pertinents qu'ils sont couplés. Le massif de Millevaches est orienté N-S oblique à l'allure générale E-W à NW-SE de la chaîne Varisque, limité et affecté en son cœur par de grands accidents ductiles. Ces caractéristiques ont justifié une attention particulière sur ce massif où les outils gravimétriques et A.S.M. ont été appliqués.

Enfin, combinée à l'analyse des mylonites par la méthode 40 Ar/ 39 Ar, la <u>datation U-Pb</u> par la méthode conventionnelle des granites à deux micas du massif de Millevaches et des roches métamorphiques qu'il contient permet de mieux fixer la chronologie relative entre la mise en place des magmas, leur refroidissement et le développement des zones de cisaillement.

Chapitre II -Méthodologie

CHAPITRE III : STRUCTURE, TECTONIQUE ET MICROTECTONIQUE DU LIMOUSIN GRANDES ZONES DE CISAILLEMENT / GRANITE / DATATIONS ⁴⁰ Ar/ ³⁹ Ar

I. Introduction

Situé à l'ouest de la faille du Sillon Houiller, le Limousin représente la partie occidentale du Massif Central Français (Fig. III-1). Cette région se distingue par ses massifs granitiques qui dissimulent les structures des phases de déformation précoces. Deux types de granites couvrent cette région : les granites de type péralumineux à biotite \pm cordiérite monzonitiques à granodioritiques (type Guéret) dont la mise en place est estimée au Tournaisien (360-350Ma) et les granites à deux micas (leucogranites) apparus plus tardivement au Namuro-Wesphalien (330-300Ma).

Pour Downes et al., (1997), les monzogranitesgranodiorites proviendraient du mélange de magmas mantelliques et crustaux. Les granites à deux micas résulteraient essentiellement de la fusion crustale (Vidal et al., 1984 ; Bernard-Griffiths et al., 1985 ; Turpin et al., 1990a ; Cuney et al., 1990 ; Shaw, 1991).

Quelque soit leur type, ces granites présentent d'étroites relations spatiales avec de grandes zones de cisaillement ductiles d'importance régionale qui pourraient constituer la continuité du cisaillement Sud Armoricain (Fig. III-1). Le Limousin est lacéré par un réseau d'accidents mylonitiques décrochants orientés E-W à NW-SE qui est recoupé à angle droit par des failles normales N-S (Fig. III-2). Pour exemple, le décrochement E-W sénestre de la Marche intimement lié à un certain nombre de massifs leucogranitiques, est recoupé par les failles normales de Nantiat et de Bussières-Madeleine (Fig. III-2) qui ont joué un rôle fondamental dans la structuration N-S du massif leucogranitique de la Brâme (Mollier and Bouchez, 1982; Faure and Pons, 1991).

Les décrochements E-W à NW-SE d'Arrênes, de St Michel de Veisse - Felletin - La Courtine sont incisés par la faille normale d'Argentat de direction N-S (Fig. III-2). L'observation de la carte géologique montre que ces zones mylonitiques forment généralement les limites des massifs granitiques mais que cependant elles peuvent parfois les recouper. C'est le cas du décrochement dextre NNW-SSE des Pradines qui tranche le massif granitique de Millevaches sur toute sa longueur (Fig. III-2).

L'association granite / faille ductile est une observation fréquemment décrite dans d'autres secteurs du globe (Hutton and Reavy, 1992, Davidson, 1992, Tikoff and Teyssier 1992 et Tikoff and St Blanquat, 1997). Elle ouvre le débat sur le rôle joué par les grandes zones de cisaillement dans les mécanismes de déformation et de mise en place des granites. Les décrochements contrôlent-ils le transport et la mise en place des magmas ? Quelle est leur ampleur ? Sont-ils d'échelle crustale ou s'étendent-ils jusqu'au manteau sous-continental ? Parallèlement, la découverte récente de croûte continentale partiellement fondue sous les chaînes de montagne actuelles (Nelson et al., 1996 ; Schmitz et al., 1999) conduit à s'interroger sur l'influence et les conséquences de ce « melt » sur la déformation et le comportement rhéologique de la croûte. Certains auteurs (St Blanquat, 2002), pensent qu'hormis les effets qu'il peut induire sur la déformabilité de la croûte continentale, il peut également jouer un rôle sur la vitesse des déformations et des soulèvements associés qui peuvent être très rapides et participer à la création de relief.

Dans le Limousin, les magmas ont pu représenter des sites préférentiels pour la localisation de la déformation crustale et favoriser le développement de failles normales ductiles.

La cinématique et la période de fonctionnement des accidents de cette région ne sont pas connues et font l'objet de discussion sur la structure et l'évolution de la croûte continentale dans le Massif Central. C'est ainsi, parallèlement à l'étude cinématique que et microtectonique des mylonites, nous déterminerons par la méthode de datation ⁴⁰Ar/³⁹Ar, la période de fonctionnement des grandes zones de cisaillements ductiles de façon à mieux comprendre les relations entre les décrochements et les failles normales, la connexion possible de ceux-ci avec la zone de cisaillement Sud-Armoricaine (Fig. III-1) et le contexte géodynamique dans lequel ce réseau de failles s'est développé.

Pour cela, nous avons échantillonné les granites au cœur des massifs et sur leur bordure de façon à mettre en évidence un caractère syntectonique possible déjà suggéré par Mollier et Bouchez (1982), Faure et Pons (1991), Faure et al., (1990) pour le massif de la Brâme. Nous avons également effectué des datations ⁴⁰Ar/³⁹Ar sur les gneiss à biotite-sillimanite-cordiérite, qui représentent leur encaissant, à l'intérieur et loin des zones de failles pour éviter une quelconque influence des granites qui leur sont systématiquement associés.

Les granulites apparaissant sous forme d'enclaves dans les granites ont aussi été analysées. Certaines des datations ⁴⁰Ar/³⁹Ar ont été couplées par la méthode U/Pb (voir chapitre IV).

L'ensemble des données géochronologiques et microtectoniques associées est analysé à l'échelle régionale du Limousin et replacé dans un schéma géodynamique général. Un modèle d'évolution crustale des secteurs Limousin et Sud Armoricain est proposé de manière à discuter des relations entre les évènements magmatiques et tectoniques qui se sont déroulés dans l'orogène Varisque entre 360 et 300 Ma.

FIG. III-1 – Carte géologique de la France au 1 : 1 000 000 (BRGM) mettant en évidence les relations entre les zones de cisaillements du Limousin et la zone de cisaillement Sud Armoricaine.

II. Contexte géologique régional

II-1. Description générale du secteur étudié (Fig. III-2)

Structurée par un grand nombre de zones de cisaillement ductiles, la région nord Limousin est importante pour comprendre la structuration de la croûte continentale hercynienne.

Ce domaine est situé à l'Est de la grande faille subméridienne (N10E à N 20E) du Sillon Houiller qui correspond à un décrochement sénestre d'âge Carbonifère supérieur (Grolier et Letourneur, 1968; Grolier, 1971b). Il comprend le plateau de Millevaches, le massif de Guéret, et le plateau d'Aigurande. Cette région est caractérisée par un grand nombre de massifs granitiques représentés par les leucogranites de la Marche, le complexe leucogranitique de la Brâme -St Sylvestre - St Goussaud, les granites de Guéret, les leucogranites et les granites porphyroïdes à biotite de Millevaches. Ces corps granitiques sont bordés de façon systématique par de grands accidents mylonitiques en décrochement et en faille normale dont la cinématique et la période de fonctionnement devront être précisées au cours de ce travail.

Deux types d'accidents sont mis en évidence :

- Des grands décrochements de direction E-W à NW-SE
 - Des failles normales ductiles de direction N-S

Les failles normales limitent les deux plus vastes massifs leucogranitiques du nord Limousin qui sont représentés tout d'abord par le complexe leucogranitique de la Brâme, Saint Sylvestre et Saint Goussaud au NW, puis par le massif granitique de Millevaches au centre. Présentant une forme allongée subméridienne, ces

massifs se surimposent aux séries préexistantes et tranchent les grands accidents majeurs décrochants.

L'âge de mise en place du complexe leucogranitique de la Brâme - St Sylvestre - St Goussaud est estimé à 324 \pm 4 Ma (Holliger et al., 1986). Il est séparé à l'est du massif granitique de Guéret par la faille normale de Bussières – Madeleine (N20°E) et à l'ouest, des unités paléozoïques de Bellac par le prolongement NE de la faille de Nantiat (N50°E).

La faille de Bussière –Madeleine (B.-M.) affecte, le long de la RN20 et prés de la Chapelle Templière, des granites porphyroïdes dont le plan de foliation NNE porte une linéation NW-SE (N120°E à N 130°E) marquée par la muscovite, les rubans de quartz et parfois de la sillimanite fibreuse. Les critères de cisaillement Chapitre III- Structure, tectonique et microtectonique du Limousin

parallèlement à la linéation indiquent un mouvement en faille normale vers l'est.

La faille de Nantiat est jalonnée par des mylonites de leucogranites dont la foliation et la linéation (orientée N110° à N140°) sont respectivement parallèles aux foliations et linéations magmatiques du granite de la Brâme suggérant un jeu normal vers l'ouest synmagmatique de la faille (Mollier et Bouchez, 1982; Faure et Pons, 1991; Faure et al., 1990).

La partie nord du Limousin est occupée par le massif du Guéret qui est constitué par un ensemble de granitoïdes à cordiérite, de migmatites et de gneiss. L'âge de mise en place des granites de Guéret est estimé à 356 ± 10 Ma (Berthier, 1979). L'ensemble des formations du massif de Guéret est affecté par une

foliation sub-horizontale et chevauche au sud la série du Chavanon formée par les micaschistes et les gneiss à btsil (Faure, 1995).

Le massif de Guéret est interrompu à l'Est, par le décrochement sénestre du Sillon Houiller.

Suivant les auteurs, le rejet horizontal de cette faille est estimé autour de 60 Km (Grolier, 1971), et s'il en est ainsi on retrouve au sein des séries métamorphiques de la Sioule et dans le massif du Tréban, les séries du Chavanon et du Guéret (Grolier et Letourneur, 1968 ; Grolier, 1971b).

FIG. III-2 – Carte géologique simplifiée de la partie nord-ouest du Massif Central avec localisation des échantillons datés par la méthode 40 Ar/ 39 Ar (N°blancs sur fond noir). F.M.OC. : Faille de la Marche Occidentale. F.M.OR. : Faille de la Marche Orientale. F.B.M. : Faille de Bussières-Madeleine. F.A. : Faille d'Arrênes. F.S.M.V. : Faille de Saint Michel de Veisse. F.F.L.C. : Faille de Felletin- La Courtine. F.AMB. : Faille d'Ambrugeat.

Le Guéret est limité au nord par la série métamorphique du plateau d'Aigurande, à l'ouest et au sud-ouest par les leucogranites de la Brâme- Saint Sylvestre- Saint Goussaud et par les séries métamorphiques du Chavanon au sud.

La limite entre le Guéret et les unités environnantes est marquée par de grands accidents ductiles.

Il est bordé au nord par le décrochement sénestre de la Marche qui se connecte à l'ouest avec la faille de Bussières-Madeleine de direction N-S qui en tournant se relie à son tour au SE à la faille décrochante dextre d'Arrènes-La Courtine. La continuité Est de celle-ci correspond au décrochement dextre de St Michel de Veisse qui constitue la limite méridionale du massif de Guéret et joue le rôle de frontière avec le plateau de Millevaches plus au sud.

Le massif de Millevaches s'étend sur 160 km depuis la Creuse au nord jusqu'au sud de la Corrèze suivant un allongement N-S, transverse aux grands chevauchements de la chaîne hercynienne globalement orientés NW-SE à E-W. Il est séparé, à l'ouest, des séries métamorphiques du Limousin (Floch', 1983) par la faille normale, ductile et cassante d'Argentat ; au nord, du granite de Guéret par le décrochement dextre de St Michel de Veisse ; et à l'est, des anatexites à cordiérite et des paragneiss à biotite-sillimanite par la zone de cisaillement ductile de Felletin-La Courtine relayée plus au sud par la faille cassante d'Ambrugeat. L'orientation NS du Millevaches semble contrôlée en partie par l'accident interne décrochant dextre de Pradines d'épaisseur pluri kilométriques (4-5 km), parallèle à la faille d'Argentat.

Bien que masquées par le sédimentaire du seuil du Poitou, ces grandes zones mylonitiques pourraient correspondre à la continuité des cisaillements Sud Armoricain (Fig. III-1). De récentes données géophysiques et géologiques effectuées dans le cadre du programme de l'ANDRA ont montré la corrélation entre les deux régions (Rolin et Colchen, 2001).

II-2. Analyse de la carte morphologique (Fig. III-3)

La carte du relief dont la résolution du modèle numérique de terrain est à 90 m montre que ces grands accidents ductiles présentent des qualités de traces morphologiques différentes. En effet, les failles d'Ouzilly et d'Arrênes sont nettement moins bien marquées que celles de St Michel de Veisse et de Felletin-La Courtine. Celle-ci est bien visible, probablement dû à un processus d'érosion différentielle. La faille de la Marche apparaît plus diffuse dans sa partie occidentale que dans sa partie orientale. Les failles normales de Nantiat et de Bussières-Madeleine qui bordent les leucogranites de la Brâme respectivement à l'ouest et à l'est ne ressortent pas en comparaison de la faille normale d'Argentat. Celle-ci en effet forme un sillon assez net dans la topographie et sépare les unités du Limousin occidental dont l'altitude moyenne oscille entre 300 et 400 m, du plateau de Millevaches dont les reliefs atteignent aisément les 900m. La faille des Pradines, dont nous verrons ultérieurement que le rôle dans la mise en place des granites du Millevaches est

prépondérant, est très prononcée dans la morphologie du plateau. Bien que non ductile, la faille de la Creuse qui traverse le massif granitique de Guéret suivant une direction NW-SE dessine une ligne en bordure d'une dépression considérable. Son extension vers le sud semble se raccorder au décrochement de Felletin-La Courtine qui forme la bordure NE du massif de Millevaches. Les décrochements de St Michel de Veisse et de La Courtine apparaissent décalés suivant un jeu dextre par la faille de la Creuse. Le décrochement d'Estivaux est très difficilement identifiable dans la topographie du sud Limousin comparé à la grande dépression formée par la faille du Sillon Houiller.

Il est bien évident que la morphologie actuelle n'est pas représentative des failles ductiles anciennes mais l'ensemble des observations faîtes à partir de la carte du relief montre que certaines d'entre elles ont pu être réactivées et que d'autres ont servi les processus d'érosion différentielle. Tardivement, l'ensemble des structures semble avoir été affecté par une fracturation NE-SW généralisée.

Dans la suite de notre étude, nous avons tout d'abord porté notre attention sur l'accident ductile de Felletin-La Courtine. De par son ampleur plurikilométrique et de la diversité des formations qu'il met en évidence, il apparaît représentatif des accidents ductiles de la région Limousin.

Chapitre III- Structure, tectonique et microtectonique du Limousin

FIG. III-3 – Carte morphologique de la région du Limousin avec une résolution à 90 m (3 secondes d'arc, soit 0.0008333°). Source des données altimétriques : NASA mission SRTM, 2000.

III. Structure et géométrie de la zone de cisaillement ductile de Felletin-La Courtine (Fig. III-4)

III-1. Introduction

Situé sur la carte au 1/50000 de Felletin, l'accident de Felletin-La Courtine borde le plateau du Millevaches dans sa partie Est. Il se suit du nord au sud sur une cinquantaine de kilomètres et met en évidence des roches mylonitiques sur une épaisseur d'échelle kilométrique. Il apparaît ainsi comme une zone de déformation ductile majeure.

Afin de comprendre les relations des différentes unités imbriquées dans cet accident, nous avons entrepris une cartographie de détail de ce secteur. L'analyse des microstructures a été couplée à la mesure des orientations préférentielles du quartz dans les granites mylonitiques impliqués dans la zone de faille. Ces mesures ont permis une estimation des conditions de T°c pour lesquelles les systèmes de glissement ont pu être activés. La datation ⁴⁰Ar/³⁹Ar sur les leucogranites mylonitiques a permis d'estimer leur période de fonctionnement.

Se relayant à l'est au décrochement dextre de Saint Michel de Veisse qui borde la partie nord du massif de Millevaches, la zone cisaillante de Felletin –La Courtine s'engage suivant une direction NS au niveau du village de Felletin où elle limite les leucogranites du Millevaches, du massif de Guéret et des séries cristallophylliennes du Chavanon. Elle se réoriente vers le SE à proximité du Mas d'Artige et sépare ainsi, suivant un axe NW-SE, le granite du Guéret et les séries du Chavanon au nord, du granite d'Ussel et des gneiss anatectiques au sud. On la suit jusque dans les gorges du Chavanon au niveau de Monestier-Port-Dieu (Fig. III-2).

Chapitre III- Structure, tectonique et microtectonique du Limousin III-2. Structure générale de l'accident de Felletin-La Courtine (Fig. III-4)

Les différentes unités géologiques affleurant au niveau de la zone de cisaillement de Felletin-La Courtine sont représentées par des gneiss à biotite-sillimanite présentant des septas plus micaschisteux, des migmatites à cordiérite, des granites à biotite de type Guéret et des leucogranites.

III-2-a. La branche NS (Secteur 1et 2 sur Fig. III-4)

La structuration des leucogranites de bordure suivant le segment N-S est polyphasée. Les plans de foliation varient entre N000 et N160 avec des pendages subverticaux qui portent une linéation plongeant de 30° sud. La mise en évidence de microstructures C/S dextres (Figure a, Planche I) indique un abaissement du compartiment est vers le sud (phase 1) (Fig. III-4a). Ce mécanisme est repris plus tardivement en faille inverse vers le SW. Dans ce cas les plans de foliation sont orientés NW-SE avec des pendages de 20° à 30° vers le NE où l'on peut voir une linéation NE-SW. La cinématique révèle par l'intermédiaire des structures C-S (Figure b, Planche I) un jeu en faille inverse vers le SW (phase 2) (Fig. III-4b). Ces deux mécanismes distincts sont observables sur un même affleurement (Figure c, Planche I). L'observation de cette phase 2 est bien identifiable à l'est de Felletin dans le secteur de St Quentin-La-Chabanne.

A l'est des leucogranites mylonitiques de bordure, les gneiss et les granites à biotite présentent des plans de foliation orientés N130 - N160 et inclinés de 20 à 85° vers l'Est. Le pendage des gneiss à biotite/sillimanite au contact des leucogranites et celui des granites à biotite augmente progressivement d'ouest en est (secteur 1, Fig. III-4). Suivant une coupe W - E, le contact entre les leucogranites (phase 2) et les gneiss à biotite/sillimanite se fait suivant une orientation N140-20 E, celui entre les gneiss à biotite/sillimanite et les granites à biotite est N160 50 E, enfin celui entre les granites à biotite et les anatexites à cordiérite est orienté NW-SE avec un pendage de 60°E qui par endroit devient subvertical (secteur 1, Fig. III-4). La linéation d'étirement présente un faible plongement et donc une direction peu éloignée de celle de la foliation avec un pitch oscillant entre 0° et 30° vers le nord majoritairement. L'observation des microstructures associées indique un mécanisme en faille inverse dextre vers le sud.

Au sud du secteur 1, l'ensemble des formations se verticalise. Les leucogranites de la bordure du Millevaches sont structurés par la phase 1, c'est à dire que les plans de foliation sont orientés N-S avec un pendage sub vertical, la linéation magmatique associée est sub horizontale ou plonge de 30° vers le sud. Au nord du village de Clairavaux, seule une bande de gneiss à biotite/sillimanite apparaît au contact des leucogranites de bordure, puis inversement, au niveau de la latitude de Clairavaux, ce sont les granites à biotite qui sont au contact des leucogranites. Entre les leucogranites et les gneiss à Bt-Sil d'une part et les leucogranites et les granites à Bt d'autre part (Secteur 2 sur Fig. III-4), on distingue une zone ultramylonitique où la roche apparaît totalement fracturée et altérée. Le protolithe est à ce

niveau totalement indiscernable. Cette zone fracturée pourrait être le reflet d'une faille tardive cassante, telle que la faille de la Creuse (Fig. III-3, § II-2) qui aurait décalé suivant un jeu dextre le décrochement de St Michel de Veisse avec celui de Felletin-La Courtine.

Au sud de Clairavaux, l'ensemble des formations (gneiss à biotite/sillimanite, granite à biotite ou anatexites à cordiérite) est orienté N-S à NW-SE avec un pendage sub vertical ou légèrement penté vers l'ouest; les linéations associées sont sub horizontales. Les critères de cisaillement indiquent un mécanisme en décrochement dextre.

III-2-b. La branche NW-SE (Secteur 3 sur Fig. III-4)

Entre Clairavaux et le Mas d'Artige, l'orientation des plans de foliations pivote progressivement pour prendre une direction WNW-ESE (N110 à N120). Le pendage de la foliation affectant les différentes formations varie entre 55°W et 90°. La linéation minérale est subhorizontale et les critères de cisaillement dextres restent constants.

III-3. Description pétrostructurale et cinématique des différents types de mylonites

III-3-a. Les Leucogranites (Planche I et II)

Les leucogranites de la bordure Est du Millevaches montrent une évolution du cœur vers la périphérie depuis des granites équants jusquà des orthogneiss présentant des structures C-S indiquant un sens de cisaillement dextre. Comme indiqué précédemment, ces structures sont dans la partie nord reprises en faille inverse vers le SW.

Ces leucogranites sont en fait des granites à deux micas, de teinte rosée à blanchâtre, et présentent un grain moyen à grossier (\simeq 5mm). Ils sont composés de feldspath potassique, de quartz, de plagioclase (andésine ou oligoclase), de muscovite et de biotite.

III-3-a-i. Les faciès non déformés

Les muscovites sont automorphes et peuvent atteindre une taille pluricentimétrique.

Les quartz présentent fréquemment une structure « en échiquier » (Figure a, planche II) avec apparition de sous joints basaux et prismatiques < c >. Ces derniers ne pouvant être activés qu'à très haute température (> 700°C, Mainprice et al., 1986; Blumenfeld et al., 1986), confirment la texture magmatique de ces leucogranites ou la faible déformation ductile de très haute température qui se développe à proximité de la bordure du massif. Pour Hippert et al. (2001), l'activation des systèmes de glissement basal < a > à très haute température est typique des conditions anhydres.

Les biotites magmatiques montrent elles aussi quelques signes de déformation ductile en se déformant progressivement (Fig. a, Planche II). Chapitre III- Structure, tectonique et microtectonique du Limousin III-3-a-ii. Les faciès mylonitiques à la jonction des décrochements dextres de St Michel de Veisse et de Felletin-La Courtine (NW de Felletin)

Les leucogranites sont déformés à l'état sub-solidus et montrent des sens de cisaillement dextres et sénestres avec par endroit des plis isoclinaux dont les sens de déversement divergent. Le plan de foliation est orienté N120 70°S et porte une linéation sub-horizontale. La divergence des sens de cisaillement pourrait être la conséquence d'une déformation coaxiale prédominante subi par le granite à l'état visqueux.

L'observation des leucogranites à l'échelle de l'affleurement suggère leur écrasement contre une masse rigide tel que le granite de Guéret déjà refroidi depuis 335 Ma (Faure, 1995).

En lame mince, les quartz de ces échantillons présentent des joints de grains à 90° (Fig. b, Planche II), décrits par Gapais (1986) et Tommasi et Vauchez (1994) comme des textures sub solidus, conséquence d'une grande mobilité des joints de grains.

PLANCHE I- Microstructures dans les leucogranites de bordure du massif de Millevaches à l'échelle du macroéchantillon. a : Echantillon 189. Microstructure C-S indiquant un mouvement décrochement dextre avec abaissement du compartiment Est. b : Echantillon 5. Bandes de cisaillement mettant en évidence le mouvement inverse vers le SW. c : Echantillon 265. Echantillon ayant enregistré les deux phases. La première en décrochement dextre, la seconde en mouvement inverse vers le SW.

Chapitre III- Structure, tectonique et microtectonique du Limousin

PLANCHE II - Microstructures dans les leucogranites de bordure du massif de Millevaches à l'échelle de la lame mince. a : Quartz en « échiquier ». b : Quartz en mosaïque (joints de grain à 90°). c : Fracturation et déformation plastique des feldspaths. d : Recristallisation intense du quartz et du felspath dans les ombres de pression des felspaths potassiques. e : Développement de muscovites secondaires syncisaillement dans les queues de recristallisation des muscovites primaires. f : Phénomène de recristallisation de muscovites secondaires généralisé à partir des muscovites primaires magmatiques. g : Micro zone de cisaillement avec développement des grains de quartz à 40°C du plan de cisaillement. h : Migration intense aux joints de grain des quartz avec micafish dextre indiquant un mécanisme en faille inverse vers le SW.

Chapitre III- Structure, tectonique et microtectonique du Limousin III-3-a-iii. Les faciès mylonitiques de la bordure Est du Millevaches

* Déformation en décrochement dextre N-S (Phase 1)

Les leucogranites présentent une orientation bien marquée par les plans de foliation et l'apparition d'une linéation minérale sub horizontale ou plongeant de 30° vers le sud (voir bloc diagramme Fig. III-4).

L'observation à l'échelle de la lame mince montre des muscovites primaires syn-magmatiques asymétriques (micafish) (Fig. c, d, e et h, planche II).

Les feldspaths sont fracturés ou cisaillés en pile de livres et sont déformés plastiquement (Fig. c, Planche II). Ils développent des ombres de pression à leurs extrémités où recristallisent des grains de plagioclase et de quartz (Fig. d, planche II). Ces queues de cristallisation asymétrique indiquent un mécanisme en décrochement dextre vers le SSE avec un léger abaissement du compartiment est.

Les quartz montrent des bordures de grains lobées, et curvilignes attestant d'un intense phénomène de migration aux joints de grains (Fig. d, Planche II). Pour Jessel (1987) cette géométrie s'acquiert sous l'influence d'une très haute température et de contraintes modérées.

Dans les faciès les plus intensément déformés, les muscovites primaires en poisson développent des queues de recristallisation de muscovites secondaires syncisaillement pouvant atteindre 0,5mm (Fig. e, Planche II). Au cours du refroidissement du granite, ce phénomène de recristallisation de micas secondaires s'amplifie jusqu'à faire disparaître en totalité les muscovites précoces (Fig. f, Planche II). Les bandes de cisaillement sont soulignées par des rubans de quartz dont les grains allongés sont obliques de 35 à 40° par rapport au plan de cisaillement (Fig. g, Planche II). Nous verrons ultérieurement (§ III-5-b) que la déformation qui les a affectée s'est faite dans des conditions de haute température.

* Déformation en faille inverse vers le SW (Phase 2) (§ III-2-a)

Les textures de quartz attestent d'une forte migration aux joints de grains et les grains sont allongés et inclinés de 35 à 40°C (Fig. h, Planche II) par rapport au cisaillement dont la cinématique indique un déplacement du compartiment supérieur vers le SW (bloc diagramme secteur 1, Fig. III-4).

Les muscovites sont asymétriques et développent également par endroit des recristallisations de micas secondaires. On ne distingue pas de différence de textures entre les leucogranites qui enregistrent la phase 1 (Planche I,c) en décrochement dextre vers le Sud et celle-ci. Cela suggère que la phase 2 en faille inverse vers le SW ait pu se faire dans le continuum de la phase 1 en décrochement dextre vers le sud.

III-3-b. Les Granites à biotite (Planche III et IV)

III-3-b-i. Composition

Bien que pauvres en muscovites, ces granites d'aspect gris bleuté présentent un grain moyen dont la taille est comprise entre 2 et 5 mm. Le plagioclase est dominant et légèrement bleuté. Le feldspath potassique apparaît quelquefois sous forme de phénocristaux centimétriques (Fig. a, Planche III). Le quartz présente des textures plus ou moins variées suivant le taux de déformation subi par la roche. Ces granites sont riches en biotite mais pauvres en muscovite. D'après Vauchelle (1988) et par comparaison avec le même type de faciès observé sur la carte de St Sulpice-les-Champs (faciès Villatange, Rolin et al., en préparation) au niveau du décrochement dextre de St Michel de Veisse, la composition minéralogique de ce granite à biotite reflète celle d'une granodiorite à tonalite.

Dans la zone de cisaillement de Felletin-La Courtine, les granites à biotite n'apparaissent que très rarement non déformés.

III-3-b-ii. Faciès ultramylonitique au sud de Felletin (Fig. *III-4) montrant une déformation en faille inverse vers le Sud*

Les granites à biotite ultramylonitiques sont identifiables sur le terrain par leur aspect noirâtre à grain fin. La foliation est orientée N150, pend de 50° au nord et porte une linéation minérale N-S. Les critères de cisaillement indiquent un mécanisme en faille inverse vers le sud (Fig. III-4c).

L'étude en lame mince confirme la granulométrie infiniment fine de ces roches. Ces ultramylonites (Fig. b, Planche III) sont composées d'une alternance de trois types de rubans : des rubans très riches en micas, d'autres formés de plagioclase et de feldspath potassique enfin, des rubans de quartz recristallisé. Les rubans micacés sont issus du broyage des biotites et des muscovites.

De rares micafish de muscovites primaires sont quelquefois préservés et montrent à leurs extrémités des recristallisations de muscovite secondaire. Les plagioclases et les feldspaths potassiques sont broyés ou ont recristallisé.

Certains phénocristaux de feldspath, ayant échappé au broyage de la roche, sont cisaillés en chevauchement vers le sud.

Les rubans de quartz sont formés de grains allongés et sont inclinés avec un top vers le sud de 40° sur le plan de cisaillement (Fig. c, Planche III). L'introduction de la lame onde auxiliaire montre une fabrique de ces rubans (Fig. d, Planche III). Ils forment fréquemment des plis isoclinaux en faveur d'un cisaillement vers le sud (Fig. e, Planche III).

Chapitre III- Structure, tectonique et microtectonique du Limousin

PLANCHE III - Microstructures observées dans les granites à biotite (type Guéret) au sein de la zone de cisaillement de Felletin-La Courtine à l'échelle du macroéchantillon et de la lame mince. a : Phénocristaux de felspath potassique centimétriques. b : Echantillon 95. Faciès ultramylonitique. c : Echantillon 95. Rubans de quartz en lumière naturelle avec fabrique de forme oblique de 35 à 40° par rapport au plan de cisaillement. d : Echantillon 95. Rubans de quartz à grains obliques montrant une fabrique par ajout de la lame onde. e : Echantillon 95. Microplis d'entrainement formés par les rubans de quartz. f : Linéation horizontale bien exprimée dans les faciès mylonitiques. g : Faciès des granites à proximité de la carrière de Clairavaux. h : Echantillon 375. Microstructures C-S mettant en évidence le mouvement décrochant dextre.

PLANCHE **IV** - Microstructures observées dans les granites à biotite (type Guéret) au sein de la zone de cisaillement de Felletin-La Courtine à l'échelle de la lame mince (suite). a : Echantillon 375. Recristallisation du quartz et des plagioclases dans les ombres de pression des feldspaths potassiques. b : Echantillon 375. Grains de quartz obliques de 35° à 40° sur le plan de cisaillement.

III-3-b-iii. Faciès protomylonitique dans le secteur de Clairavaux affecté par une déformation en décrochement dextre

A proximité de la carrière de Clairavaux, les granites à biotite présentent une foliation orientée NS avec un pendage proche de la verticale. La linéation est horizontale (Fig. f, Planche III). Les critères de cisaillement associés indiquent un mouvement en décrochement dextre (voir bloc diagramme Fig.III-4). Au SSE de Clairavaux, la roche sombre prend un aspect cataclastique (Fig. g, Planche III) et montre par endroit des injections de fluides.

En lame mince, les grains de quartz sont allongés et forment des lentilles au sein de la trâme. La mise en évidence d'extinction onduleuse au sein de la plupart des grains de quartz montre qu'ils ont subi une déformation plastique importante.

III-3-b-iv. Faciès mylonitique du Mas d'Artige à la Courtine déformé en décrochement dextre

Les granites à biotite montrent à l'affleurement de belles structures C-S caractéristiques d'un mouvement

décrochant dextre vers le S-SE (voir bloc diagramme Fig.III-4) de la faille (Fig. h, Planche III). Les feldspaths potassiques développent des ombres de pression dans lesquelles viennent recristalliser des grains de quartz et de plagioclase (oligoclase et andésine) (Fig. a, Planche IV).

Les grains de quartz situés soit dans les queues de recristallisation soit dans des rubans sont obliques de 35°à 40° par rapport au plan de cisaillement (Fig. b, Planche IV). Le sens de cisaillement est également donné par les micafishs formés par les biotites.

III-3-c. Les Gneiss à biotite/sillimanite encaissant des granites (Planche V)

III-3-c-i. Composition

A l'échelle de l'affleurement, ces formations sont massives, à grain fin et de couleur grise. On distingue deux faciès principaux : Les paragneiss au sens strict et les métatexites identifiables sur le terrain par la présence de lits quartzo-felspathique en alternance avec les lits micacés. Chapitre III- Structure, tectonique et microtectonique du Limousin

Les paragneiss sont composés de plagioclase, quartz, biotite, sillimanite prismatique et fibreuse \pm muscovite \pm cordiérite \pm grenat. Les métatexites sont formées de feldspath potassique, plagioclase, quartz, biotite, sillimanite prismatique et fibreuse \pm cordiérite \pm grenat.

La biotite et la sillimanite associées parfois à la cordiérite sont les minéraux qui soulignent la foliation (Fig. a, Planche V). Le grenat n'apparaît en paragenèse avec la sillimanite et la biotite qu'exceptionnellement (Fig. b, Planche V).

Le disthène est absent mais a été observé en inclusion dans le plagioclase dans la série des gneiss de l'Artense (Mercier et al., 1992). Il a également été décrit dans la zone Moldanubienne au sein des mêmes formations (Scheuvens, 2002).

III-3-c-ii. Structure et cinématique

Dans la partie nord de la zone de cisaillement, entre Felletin et Clairavaux, le plan de foliation est orienté N-S à NW-SE, varie de 20° à 70°E et porte une linéation sub horizontale (Fig. III-4).

Du sud de Clairavaux jusqu'à la Courtine voire même jusqu'au gorges du Chavanon, la foliation prend une direction E-W à NW-SE avec un pendage subvertical (Fig. III-4).

Les critères cinématiques (ombres de pression asymétriques autour des felspaths, micafish, poisson de sillimanite et parfois microplis d'entraînement) sont en faveur d'un mouvement décrochant dextre.

III-3-c-ii. Microstructures

* Faciès intermédiaire entre le paléosome et les métatexites

La roche est formée en majorité par l'alternance de rubans de quartz poly cristallin et de biotite et sillimanite (Fig. g, Planche V) cisaillées dessinant une silhouette dissymétrique en forme de poisson (Fig. d, Planche V).

*Les métatexites

Selon le degré de fusion partielle atteint, ces formations témoignent de conditions de température élevées (entre 650° et 750°C). La muscovite est absente. Le feldspath potassique apparaît sous forme de larges cristaux et constitue la phase principale.

La foliation principale est définie par l'alternance de a) rubans de quartz (50%), de plagioclase (40%) et de feldspath potassique (10%); de b) rubans de biotite et sillimanite cisaillés autour des cristaux de cordiérite ; et de c) l'orientation préférentielle de forme de feldspath et de quartz à l'intérieur du paléosome (Fig. c, Planche V).

La limite des grains entre le quartz et le plagioclase montre de façon quasi-systématique des renflements et bombements. Ces observations qui sont également remarquées à la limite quartz-feldspath potassique (Fig. e, Planche V) sont issues d'après Gower et Simpson, (1992) de phénomènes de dissolution – précipitation à l'état solide du feldspath à la limite quartz-feldspath quand celle-ci est parallèle à la foliation. Les plagioclases et les feldspaths potassiques montrent quelques signes de déformation plastique en laissant apparaître une extinction onduleuse. Les grains de quartz présentent des textures en échiquier (Fig. f, Planche V) en mettant en évidence des sous joints basaux et primatiques $< c > (T > 700^{\circ}C, Mainprice et al., 1986;$ Blumenfeld et al., 1986) . Les rubans de quartz sont formés de grains lobés et curvilignes (Fig. g, Planche V) témoignant d'une forte migration aux joints de grains (Jessel, 1987) ou bien de grains dont les limites sont à angles droits (Fig. h, Planche V) (Gapais et Barbarin, 1986 ; Tommasi et Vauchez, 1994).

Chapitre III- Structure, tectonique et microtectonique du Limousin

PLANCHE V - Microstructures observées dans les gneiss à biotite-sillimanite de la zone de cisaillement de Felletin-La Courtine à l'échelle de la lame mince. a : Sillimanite prismatique, biotite et parfois cordiérite en paragenèse. b : Paragenèse à grenat, sillimanite, biotite. c : Alternance du leucosome et du paléosome dans les faciès métatexitiques cisaillés dextres. d : Sillimanite fibreuse en poisson indiquant un sens de cisaillement vers le SE. e : Limite curviligne entre le quartz et le feldspath potassique. f : Développement dans les quartz de sous joints basaux et prismatiques < c >. g : Migration aux joints de grain de quartz formant des rubans. h : Structure en mosaïque avec joints de grain à 90°.

PLANCHE VI - Microstructures observées dans les anatexites à cordiérite de la bordure Est du massif de Millevaches. a : Cordiérite pinitisée en lumière naturelle. b : Cordiérite pinitisée en lumière polarisée. c : Grenat en inclusion dans une cordiérite pinitisée. d : Texture du quartz mettant en évidence des quartz en échiquier (en bas à gauche) et de quartz en mosaïque (joints de grains à 90°).

III-3-d. Les anatexites à cordiérite (Planche VI)

formations Ces connues 50115 le. nom « d'Aubussonites » forment une ceinture continue autour du granite de Guéret depuis Aubusson jusqu'au sillon houiller (Fig. III-2). Dans notre secteur, elles apparaissent à l'est de la zone de cisaillement de Felletin-La Courtine et sont en contact avec les gneiss à biotitesillimanite. Depuis la zone des gneiss métatexitiques à felspath potassique, plagioclase, quartz, sillimanite et biotite, le degré d'anatexie augmente. Le leucosome ne se concentre plus seulement sous forme de rubans mais forme des poches de melt. Les métatexites deviennent des diatexites contenant des passées restitiques à biotitesillimanite. La cordiérite est systématiquement associée au feldspath potassique.

Ces anatexites constituent un ensemble massif de couleur sombre. Malheureusement, rares sont les affleurements qui permettent d'observer un faciès non altéré. Quand le phénomène d'altération est prédominant, la roche prend un aspect jaunâtre. Les affleurements de la carrière du Puy-du-Roi à Aubusson se distinguent en offrant une roche saine et non altérée. Celle-ci est caractérisée par de nombreuses tâches centimétriques à contours diffus de couleur noirâtre formées de cordiérite et de quartz.

Cet assemblage baigne au cœur d'une matrice constituée par le feldspath potassique, le plagioclase, le quartz et la biotite. En lame mince la paragenèse observée est à feldspath potassique, plagioclase, quartz, cordiérite, biotite + grenat. La cordiérite apparaît souvent pinitisée (Fig. a et b, Planche VI). La muscovite et le grenat sont rares. La muscovite a plutôt une origine rétromorphique. Le grenat qui apparaît en inclusion dans la cordiérite est lié à l'épisode anatectique post-folial de la série des gneiss à biotite-sillimanite (Fig. c, Planche VI). Le plagioclase est toujours hypautomorphe. Le quartz est souvent interstitiel. Il présente les mêmes types de microstructures que celles rencontrées dans les métatexites des gneiss à biotite-sillimanite (Fig. d, Planche VI) (structures en échiquier, contours lobés attestant d'une intense migration au joint de grain, limites curvilignes avec le feldspath...). La sillimanite est quasi absente sauf dans les termes un peu moins anatectiques. Du disthène en inclusion dans les plagioclases ou placé au cœur de sillimanite prismatique a été décrit par Martin (1980) dans ces mêmes formations.

III-4. Conditions métamorphiques des gneiss à biotite-sillimanite (Unité Inférieure des Gneiss)

Aucun assemblage métamorphique (absence de grenat, entre autre) ne nous a permis de calculer les conditions thermobarométriques d'équilibre des gneiss à biotite-sillimanite et anatexites à cordiérite. Ces formations ont perdu dans une proportion inconnue une

Chapitre III- Structure, tectonique et microtectonique du Limousin partie de leur substance sous la forme d'un liquide silicaté de composition inconnue. Il est donc impossible de savoir qu'elle était la composition exacte de la roche à son état d'équilibre.

La présence de reliques de disthène ou de grenat dans les plagioclases conduit cependant, Mercier et al., (1992) à penser que la réaction Grt + Ky => Pl + Qtz a été franchie dans le sens d'une diminution de pression.

Mercier et al., (1992) évaluent les conditions P-T du stade synfolial, par l'utilisation du baromètre grenatplagioclase-silicate d'alumine-quartz (Ghent, 1976; Newton et Haselton, 1981 et du thermomètre grenatbiotite (Ferry et Spear, 1978), à 669-750°C et entre 6 et 8,2 Kb.

Scheuvens (2002) montre, au cours d'une étude effectuée dans la zone Moldanubienne sur les mêmes formations offrant une évolution métamorphique continue, que la quantité relativement importante (> 10%) de sillimanite fibreuse ne peut s'expliquer ni par la transition polymorphique du disthène en sillimanite, ni par des réactions ioniques couplées de type Carmichael (1969), car le disthène ne représente qu'une phase accessoire (< 2%) dans la zone des micaschistes à staurotide-disthène bien connus dans le Limousin (Floch', 1983).

L'assemblage à Sil + Bt \pm Grt + H₂0 ou melt proviendrait de la réaction discontinue dans le système KFMASH (Scheuvens, 2002):

$St + Ms + Qtz \implies Sil + Bt + Grt + H_20$ ou melt

La fusion partielle augmente progressivement et la quantité de feldspath potassique dans le leucosome est de plus en plus importante.

L'augmentation de liquide silicatée peut se faire suivant la réaction de déshydratation suivante (Thompson, 1982 et Spear et al., 1999):

$Ms + Pl + Qtz \Rightarrow Al_2SiO_5 + Kfs + Bt + melt$

Cette réaction ne peut se faire qu'en considérant suivant Vielzeuf et Holloway (1988) et Spear et al. (1999) que la réaction de fusion utilise uniquement la quantité d'eau présente dans le système (aucune proportion d'eau externe n'est apportée dans le système). A travers des travaux expérimentaux Patiño-Douce et Harris (1998) estiment les conditions de P-T de cette réaction à 0,6 GPa et 730°C.

Le passage de la zone à Sil, Bt, Kfs à la zone à Kfs, Crd se fait par augmentation de l'anatexie suivant une réaction continue de déshydratation de la biotite décrite par Grant (1985) :

$Bt + Pl + Al_2SiO_5 + Qtz \implies Crd + melt$

Lebreton et Thompson (1988) estime les conditions P-T à 5 -6 Kb et 760° - 780° C.

La cordiérite peut également provenir de la réaction (Montel et al., 1992):

Grt + Sil + Qtz => Crd

En accord avec nos observations (Fig. c, Planche VI), la description d'auréole réactionnelle de cordiérite autour des grenats par Scheuvens (2002) l'amène à retenir cette réaction. D'après Mukhopadhyay et Holdaway (1994), cette réaction est caractérisée par un faible rapport Dp/Dt

et se produit par conséquent lors de phénomène d'exhumation.

L'ensemble des minéraux se déstabilise dans les conditions du faciès schiste vert (chloritisation des biotites et cordiérite pinitisée). Les réactions suivantes (Thompson et Tracy, 1979) se font à pression et température décroissantes.

 $Al_2SiO_5 + Kfs + H_20 =>Ms + Qtz$

 $Al_2SiO_5 + Crd + Bt + H_20 =>Chl + Ms + Qtz$

Mercier et al, (1992) estiment les conditions P-T de ce dernier stade à une température inférieure à 500°C et une pression de 3 Kb.

III-5. Etude des Orientations Préférentielles de Réseau (O.P.R.) du quartz par la méthode EBSD (voir localisation des échantillons Fig. III-4)

La technique de mesure des orientations préférentielles de réseau du quartz par la méthode EBSD est décrite au Chapitre précédent § II. Nous présenterons par conséquent ici que les résultats.

III-5-a. O.P.R. du quartz dans les granites à biotite (Fig. III-5)

Nous avons effectué des mesures d' O.P.R. du quartz sur trois échantillons de granites mylonitisés (95, 375 et 12). Le quartz se présente sous la forme de rubans polycristallins. Les grains des rubans présentent une orientation préférentielle de forme (O.P.F.) fortement oblique de 35° à 40° environ sur le plan des rubans (Fig. c et d, Planche III ; Fig. a et b, Planche IV)

Le premier échantillon (95) provient du Mas Laurent au sud de Felletin et correspond à la bande des granites à biotite ultramylonitisés (voir description § III-3-b.). La foliation est orientée N150, pend de 50° au NE et porte une linéation minérale N-S. Les critères de cisaillement indiquent un mécanisme en faille inverse vers le sud.

Les figures de pôle directes du quartz de l'échantillons 95 (Fig. III-5) montrent un maxima d'axes < c > sur l'axe Y. On note cependant une obliquité du pôle qui le décentre de quelques degrés par rapport à Y. Ce décalage pourrait être lié à une déformation de forme de la foliation (en effet, les rubans de quartz mesurés sont légèrement flexueux).

Les pôles des plans prismatiques $\langle a \rangle$ (Fig. III-5) ne permettent pas de déduire un sens de cisaillement même dans le cas où on effectuerait une rotation autour de la linéation de façon à recentrer le pôle des axes $\langle c \rangle$ sur Y. La distribution des axes $\langle c \rangle$ sur Y ou à proximité est caractéristique du glissement prismatique $\langle a \rangle$ qui ne peut être activé que sous des conditions de température relativement élevées entre 400°c et 700°c (Tullis et al., 1973, Mainprice and Paterson, 1984). Cette recristallisation dynamique du quartz associée au décrochement dextre de la Courtine a pu se développer lors du refroidissement des granites de type Guéret.

<u>L'échantillon 375</u> localisé vers la Courtine, est caractérisé par de belles structures C-S caractéristiques d'un mouvement décrochant dextre vers le S-SE de la faille (voir description § III-3-b et Planche III, h). Comme l'échantillon précédent, les axes < c > du quartz sont très fortement concentrés sur l'axe Y caractéristique *Chapitre III- Structure, tectonique et microtectonique du Limousin* de l'activation du système de glissement prismatique < a >. De même, les axes < a > ne permettent pas de confirmer le sens de cisaillement dextre bien mis en évidence en lame mince et à l'échelle de l'affleurement. La recristallisation des grains de quartz dans les rubans et dans les queues de recristallisation des feldspaths potassiques s'est faîte au cours du refroidissement du granite. Les granites à biotites sont donc syn à post tectoniques du décrochement ductile dextre de Felletin-La Courtine.

Les axes <c> de <u>l'échantillon 12</u> prélevé au niveau du lac de La Courtine, définissent des pôles de concentration entre les axes Y et Z. Les pôles des plans prismatiques a et m sont caractérisés par des maximas de concentration à environ 20- 25° de la linéation. Les pôles des plans (r) montrent un maximum de concentration sub-perpendiculaire à la foliation, la répartition est bimodale. Les figures de pôle inverses soulignent l'importance du plan (r) et ses relations directes avec la foliation et la linéation. Kruhl et Peternell (2002) ont montré que pour des températures proches des conditions de cristallisation d'un granite syntectonique, l'orientation préférentielle des joints de grains de quartz s'effectuait parallèlement aux plans rhomboèdriques. Cette orientation cristallographique se développerait dans des niveaux de basse énergie, d'autant plus faible que la température augmente. Kruhl et Peternell (2002) ajoutent que l'acquisition et la stabilisation de cette orientation préférentielle centrée sur {1011} serait un processus de courte durée qui se produirait immédiatement après la fin de la déformation.

III-5-b.O.P.R. du quartz dans les leucogranites de bordure du Millevaches (Fig. III-5)

L'échantillon provient des leucogranites de la bordure Est du massif granitique de Millevaches (188). L'étude des axes < c > du quartz a été faite sur des grains issus d'une micro shear zone (Figure g, Planche II) localisée au sommet d'une queue de recristallisation d'un feldspath potassique.

Cette petite zone de cisaillement indiquant un sens de cisaillement dextre forme des rubans de quartz dont les grains sont allongés et inclinés de 40° par rapport au plan de cisaillement. Les figures de pôle directes du quartz montrent que les axes < c > sont concentrés sur l'axe Y caractéristique du glissement prismatique < a >, avec un maximum secondaire moins marqué situé entre Y et Z. Les directions < a > permettent de définir un sens de cisaillement dextre conforme à celui identifié sur les macro échantillons.

En résumé, les fabriques des axes < c > du quartz effectuées sur les quatre échantillons de granite à biotite (95, 356 et 12) et de leucogranite (188) affectés par le décrochement dextre de Felletin – La Courtine ont été acquises dans des conditions de T° relativement élevées entre 400° et 700°C au cours du refroidissement du granite. La mise en place des granites est considérée syn à post-tectonique du fonctionnement des grandes zones cisaillantes.

FIG. III-5 –Orientations préférentielles de réseau du quartz mesurées par la technique EBSD. Projection sur l'hémisphère inférieur, en aire égale. La foliation (XY) est verticale et la linéation (X) est horizontale. Les contours sont en % ; N est le nombre de mesures. MD : Maximum de densité.

III-6. Datation ⁴⁰Ar/³⁹Ar des échantillons provenant des décrochements de St Michel de Veisse et de Felletin-La Courtine

(voir description de la technique analytique Chapitre II, §V-1 ; et localisation des échantillons Fig. III-2, Tableau 9, annexe 1)

III-6-a. Les granites mylonitiques des décrochements dextres de St Michel de Veisse et de Felletin-La Courtine

III-6-a-i. Le décrochement de Saint Michel de Veisse (Ech. 246 et 232)

Deux échantillons de mylonites de leucogranite affectés par ce grand accident en limite septentrionale du massif de Millevaches, ont été sélectionnés.

L'échantillon 246 (Tableau 1 et 8, Annexe 1) se situe au NW du massif. Il contient des clastes de muscovites primaires millimétriques (Fig. a, Planche VII) qui présentent des recristallisations de muscovites secondaires dans les zones abritées, présentes aussi dans la foliation.

Une <u>population de muscovite</u> fournit un âge plateau à **313,0** \pm **2,8 Ma** pour 65% du dégazage de l^{>39}Ar (Fig. a, Planche VIII). Dans le diagramme isochrone, les points majoritairement très radiogéniques se regroupent près de l'axe des abscisses. La <u>droite isochrone</u> indique cependant un âge identique de **315,3** \pm **3,0 Ma** (Fig. b, Planche VIII).

Le dégazage progressif d'un <u>monograin de biotite</u> donne un âge plateau à **327,6 ± 4,3 Ma** correspondant à 90 % du dégazage de l'³⁹ Ar à basse température (Fig. c, Planche VIII). La petite taille du grain associé à une faible quantité d'argon dégazé implique une marge d'erreur importante sur les résultats.

L'échantillon 232 (Tableau 1, Annexe 1) prélevé sur les leucogranites de la limite nord du massif de Millevaches donne un âge sur <u>population de muscovite</u> primaire (Fig. b, Planche VII) à 324.0 \pm 3.0 Ma (Fig. d, Planche VIII). Ce résultat peut être interprété comme un âge K/Ar étant donné que 90% de l'argon cumulé a dégazé instantanément à haute température. La <u>droite</u> isochrone propose un âge similaire à 324.9 \pm 5,1 Ma (Fig. e, Planche VIII).

L'analyse ponctuelle d'un <u>monograin de muscovite</u> (Fig. f, Planche VIII) donne six âges dont la moyenne pondérée est à $325,7 \pm 3,5$ Ma.

Parallèlement, nous avons daté séparément sur section polie des clastes de muscovites primaires et des

zones de cisaillement de micas néoformés. Ces derniers se développent à basse température (~300°C) et marquent les derniers stades de l'activité des cisaillements. Les âges obtenus sont compris entre 340 Ma et 300 Ma (Fig. g, Planche VIII). Les clastes de muscovite fournissent des âges jeunes qui varient entre 297,5 <u>+</u> 4,0 Ma et 313,8 <u>+</u> 3,4 Ma semblables aux âges obtenus précédemment sur l'échantillon 246. Les résultats obtenus sur les zones de cisaillement (recristallisation des micas) sont variables et dans l'ensemble un peu plus vieux que ceux acquis sur les clastes. Ces données ne sont pas logiques car les zones de cisaillement recristallisées liées à la fin du fonctionnement des accidents devraient être plus jeunes. Nous pensons que ces résultats sont dus au dégazage des feldspaths adjacents à la zone de cisaillement qui fournissent de l'argon en excès, ou bien, aux fluides piégés dans les zones de cisaillement et porteurs d'excès d'argon.

III-6-a-ii. Jonction entre les décrochements de St Michel de Veisse et Felletin-La Courtine (Ech. 524 et 3)

L'échantillon 524 (Tableau 2, Annexe 1) est situé dans le coin NE du Millevaches (hameau des Conches). Il fait parti des rares leucogranites, avec ceux du Coq Hardi dont on fera la description ultérieurement, qui livrent des sens de cisaillement sénestres. L'échantillon 524 (Fig.c, Planche VII) a fait l'objet de datations par <u>sonde laser sur section polie</u>. Les âges obtenus sur les <u>muscovites cisaillées</u> (clastes) sont compris entre 303,8 <u>+</u> 6,7 Ma et 318,2 <u>+</u> 2,6 Ma. La <u>moyenne pondérée</u> est de 313,3 <u>+</u> 4.9 Ma.

L'échantillon 3 (Tableau 2, Annexe 1) a été prélevé sur la bordure NE du Millevaches au hameau du Coq Hardi à l'ouest de Felletin. Il représente les leucogranites mylonitiques de bordure dont le plan de foliation est orienté N110 avec un pendage de 60° sud. Comme l'échantillon 524 (Fig.c, Planche VII), les cisaillements observés suivant la linéation sub horizontale montrent des sens de cisaillement sénestres vers l'WNW. La mise en évidence dans les quartz de joints de grain à 90° (Fig.d, Planche VII) est en faveur d'une déformation chaude sub-solidus. Les âges obtenus sur <u>section polie</u> dans les <u>zones de cisaillement</u> (recristallisation des micas) uniquement sont compris entre **306,5** <u>+</u> **1,6 Ma et 324,95** <u>+</u> **1,4 Ma** (Fig. a, Planche IX).

Chapitre III- Structure, tectonique et microtectonique du Limousin

PLANCHE VII – Photographie des différents micas datés par la méthode 40 Ar/ 39 Ar. a. Echantillon 246 montrant les micafish formés par les muscovites magmatiques. b. Echantillon 232 où l'on distingue les recristallisations secondaires de micas autour des muscovites primaires et dans les petites zones de cisaillement. c. Echantillon 524 mettant en évidence les bandes de cisaillement sénestres formées par les muscovites primaires et secondaires. d. Echantillon 3. Le quartz dont les joints de grain sont à 90° est typique d'une déformation sub-solidus de haute température. Recristallisation de micas secondaires à partir des muscovites magmatiques. e. Echantillon 6. Biotites et muscovites magmatiques non déformées. A noter, la présence de zircons en inclusion dans les biotites. f. Echantillon 265 montrant les recristallisations de quartz et de plagioclase dans les ombres de pression des feldspaths potassiques et les microshears à micas néoformées à partir des micafishs primaires. g. Echantillon 241. Population de biotites en paragenèse avec la sillimanite. h. Echantillon 347. Population de biotites en paragenèse avec la sillimanite.

PLANCHE VIII – Résultats ⁴⁰Ar/³⁹Ar effectués sur les leucogranites mylonitiques (éch. 246 et 232) du décrochement dextre de St Michel de Veisse.

Chapitre III- Structure, tectonique et microtectonique du Limousin III-6-a-iii. Le décrochement dextre de Felletin-La Courtine

III-6-a-iii. * Les **leucogranites non déformés** de la bordure NE du Millevaches, type Hyverneresse : **Echantillon 6** (Tableau 2 et 8, annexe 1) :

Les spectres d'âges obtenus sur les <u>populations de</u> <u>biotite et de muscovite</u> (Fig. e, Planche VII) montrent un excès d'argon à basse température (uniquement pour les muscovites) et à haute température (Fig. a et b, Planche X) relié de façon systématique pour les muscovites à une chute du rapport ³⁹ Ar K/³⁷ Ar Ca et une augmentation du rapport ³⁸ Ar Cl/³⁹ Ar K (Fig. c et d, Planche X).

Cet excès peu prononcé pour les <u>muscovites</u> permet de définir un âge plateau à $322,2 \pm 3.0$ Ma sur environ 70% de l'argon libéré (Fig. b, Planche X).

Pour les <u>biotites</u>, le spectre d'âges est beaucoup plus discordant, avec une croissance progressive des âges apparents compris entre 305 et 338 Ma. Pour 70% de l'³⁹Ar libéré, ces âges se situent entre 317 et 322 Ma. Le traitement des données en diagramme isochrone permet de définir un âge par intercept de **320,8 ± 4,3 Ma** (Fig. e, Planche X) avec un rapport initial ⁴⁰Ar/³⁶Ar de 450± 47

qui témoigne d'une contamination par de l'argon en excès. Cet âge est compatible avec celui fourni par la muscovite. Les perturbations du spectre de la biotite pourraient être reliées à la présence d'inclusions de zircons dans la biotite (Fig. e, Planche VII).

Compte tenu des températures de fermeture des différents systèmes (400°C pour la muscovite (Hames et Bowring, 1994) et 300°c pour la biotite (Harrison et al., 1985), un taux de <u>refroidissement rapide est envisagé</u> pour ces granites entre 400°c et 300°c.

Le dégazage progressif d'un <u>monograin de biotite</u> donne un spectre moins perturbé que celui obtenu sur population mais on note ici encore une croissance régulière des âges qui varient entre 318 Ma et 331 Ma (Fig. f, Planche X).

Dans le diagramme isochrone, les points très radiogéniques sont regroupés sur l'axe des abscisses. Ils définissent cependant une <u>droite isochrone</u> qui donne un âge à $322,8 \pm 3,5$ Ma similaire aux âges obtenus sur population de biotite et de muscovite (Fig. g, Planche X).

PLANCHE X – Résultats⁴⁰Ar/³⁹Ar effectués sur les leucogranites mylonitiques (échantillon 6) de la bordure NE du massif de Millevaches.

PLANCHE XI – Résultats ⁴⁰Ar/³⁹Ar effectués sur les leucogranites et granites ultramylonitiques à biotite (échantillon 265 et 95) de la bordure NE du massif de Millevaches.

Chapitre III- Structure, tectonique et microtectonique du Limousin III-6-a-iii. ** Les leucogranites déformés par un mécanisme en faille inverse vers le SW (phase 2) : Echantillon 265 (Tableau 2, annexe 1)

L'échantillon 265 (Fig. c, Planche I) a fait l'objet d'une série de datations effectuées sur <u>section polie</u> par abrasion laser. Les résultats obtenus dans les <u>zones de</u> <u>cisaillement et sur les micas en poisson</u> (clastes) sont compris entre 307,7 \pm 5,2 Ma et 324,6 \pm 3,1 Ma (Fig. a, Planche XI). Il n'y a pas de différence significative entre les âges obtenus sur les clastes de muscovite et sur les micas néoformés dans les zones de cisaillement (Fig. f, Planche VII) à la fin de leur fonctionnement. Cette gamme d'âge est identique à celle que l'on obtient sur les leucogranites du Coq Hardi (§*III-6-a-ii*, échantillon 3) du coin NE du massif et dont la structuration est en décrochement sénestre.

La gamme d'âges entre **305 et 325 Ma** obtenue sur les échantillons déformés en faille inverse vers le SW (Ech. 265), en décrochement sénestre (Ech. 3 et 524) et dextre (Ech. 246 et 232) est similaire. Les âges de refroidissement des leucogranites non déformés (Ech. 6) sont inclus dans cet intervalle.

III-6-a-iii. *** Les granites ultramylonitiques à biotite (Fig. b, Planche III) déformés en faille inverse vers le sud : Echantillon 95 (Tableau 3, annexe 1)

Les datations faites sur <u>section polie</u> par abrasion au laser sur les zones enrichies en micas, peuvent être assimilées à un âge sur roche totale. L'histogramme de fréquence des âges (Fig. c, Planche XI) ne montre aucun maximum significatif, les âges variant depuis **305 Ma à 367 Ma** (Fig. b, Planche XI). Notons toutefois un maximum entre 325 et 330 Ma.

Ces granites ultramylonitiques à biotite sont comparables d'un point de vue pétrologique aux granites de Villatange (Faciès Guéret au nord du Millevaches) datés à $353 \pm 5,8$ Ma sur monazite par la microsonde électronique (Rolin et al., en préparation). La grande variation des âges (de 305 Ma à 367 Ma) obtenue sur les ultramylonites de ces faciès pourrait refléter des phénomènes d'héritage d'argon dans les micas ou des effets de remobilisation de l'argon radiogénique depuis la mise en place des granites jusqu'aux derniers stades de mylonitisation.

III-6-b. Les gneiss à biotite-sillimanite des failles de St Michel de Veisse et de la Courtine

Trois échantillons ont été prélevés au sein des décrochements de St Michel de Veisse (Ech. 241) et de Felletin-La Courtine- Savennes (Ech. 40 et 347)

* Echantillon 241 (Tableau 3, annexe 1)

Les <u>populations de biotite</u> de l'échantillon 241 (Fig. g, Planche VII) situé dans la faille de St Michel de Veisse et proche des leucogranites mylonitiques de l'échantillon 246 (§*III-6-a-i*), fournissent un palier unique à **310,5** ± **0,8 Ma** pour 75% d'³⁹ Ar cumulatif (Fig.a, Planche XII). Les autres paliers obtenus à plus haute température (>600°c) donnent des âges autour de 320 Ma. Cette géométrie du spectre en bosse a été décrite par Ruffet et al. (1991), qui attribuent ce phénomène à un effet de recul de 1^{39} Ar dans une biotite chloritisée induisant une augmentation du rapport 40 Ar/ 39 Ar.

L'étude sur <u>monograin de biotite</u> par abrasion laser donne des âges compris entre $307,7 \pm 4,1$ Ma et $321,3 \pm 4,3$ Ma (Fig.b, Planche XII). La <u>moyenne pondérée</u> est de $312,7 \pm 3,3$ Ma. Ces âges sont similaires à ceux que nous avons obtenus sur les leucogranites mylonitiques de la faille décrochante de St Michel de Veisse.

* Echantillon 40 (Tableau 3 et 8, annexe 1)

Les <u>populations de biotite</u> de l'échantillon 40 (observées Fig.a, Planche V) prélevé au sein de la faille de la Courtine dégaze à basse température 60% d'³⁹ Ar en un seul palier indiquant un âge de 315,4 \pm 2,9 Ma (Fig.c, Planche XII). Cet âge obtenu en un seul palier n'a aucune signification. Les paliers de plus haute température produisent des âges autour de 320 Ma.

Un âge identique a été mis en évidence par dégazage progressif d'un <u>monograin de biotite</u>. Sept paliers représentant 80% du dégazage total de l'³⁹ Ar donne un âge plateau à **317,3** \pm **3,3 Ma** (Fig.d, Planche XII) qui présente une bonne corrélation avec la <u>droite isochrone</u> fournissant un âge à **316,3** \pm **3,5 Ma** (Fig.e, Planche XII).

* Echantillon 347 (Tableau 3, 4 et 8, annexe 1)

Cet échantillon a été prélevé à proximité de Savennes (gorges du Chavanon), loin des massifs granitiques qui pouvaient engendrer une réhomogénéisation isotopique lors de leur mise en place. La zone de cisaillement dont il provient, constitue la prolongation SE du décrochement de Felletin-La Courtine.

Le plan de foliation de cet échantillon est orienté E-W et pend de 60° vers le nord. La linéation est sub horizontale. Les bandes de cisaillement à biotite et sillimanite confirment le mouvement en décrochement dextre.

Le dégazage des <u>populations de biotite</u> (Fig. h, Planche VII) montre un spectre perturbé où dès le premier palier 56% de l'³⁹ Ar est expulsé. Ce palier unique fournit un âge à **341,3** \pm **3,2 Ma** (Fig. f, Planche XII). Les paliers de plus haute température indiquent des âges plus vieux compris entre **340 et 355 Ma**.

Le dégazage progressif sur <u>monograin</u> confirme le comportement chaotique de ces minéraux qui laissent apparaître un spectre en creux et en bosse. Le spectre croit depuis des valeurs à 324 Ma jusqu'à 352 Ma (Fig. g, Planche XII). **352,6 \pm 5,4 Ma est interprété comme un âge minimum de fermeture initiale de la biotite qui subit une réouverture à un âge maximal de 324,8 \pm 2,6 Ma.**

PLANCHE XII – Résultats ⁴⁰Ar/³⁹Ar effectués sur les gneiss à biotite-sillimanite (échantillon 241, 40 et 347) de la zone de cisaillement de St Michel de Veisse Felletin-La Courtine.

U-Th-Pb age at weighted average point from U/Pb=f(Th/Pb) diagram													
Pente	∆pente	Xbar	Ybar	Age	∆Age+	∆Age-	MSWD						
-3.03	0.49	6.72295	41.4338	354,0	4,9	-4,7	1,02						

Fig. III-6 c : Tableau récapitulatif des données du diagramme isochrone pour l'échantillon 381.

Chapitre III- Structure, tectonique et microtectonique du Limousin III-7. Résultats des datations U-Th-Pb à la microsonde électronique sur les monazites des gneiss à biotite-sillimanite (Fig. III-6a, b et c)

La procédure analytique et les méthodes de calcul sont décrites Chapitre II, § V-3.

* Echantillon 381 (localisation, tableau 1, annexe 2)

Cet échantillon correspond à la série des gneiss à biotite-sillimanite. Prélevé à proximité du hameau de Marsouneix à l'est de Couffy-sur-Sarsonne (SE de La Courtine), il fait parti de la zone de cisaillement ductile de Felletin-La Courtine qui se poursuit jusque dans les gorges du Chavanon. La paragenèse est à Qtz, Kfs, Pl, Bt, Sil, Crd. La foliation verticale est orientée N335 avec une linéation sub horizontale. Les critères de cisaillement dextres. La description détaillée de ces échantillons est donnée Chapitre III, § III-3-c.La moyenne pondérée effectuée sur 155 échantillons est de **347,5 \pm 5,1 Ma** (Fig. III-6 a).

La <u>droite isochrone</u> indique un âge de **354,0** +**4,9** /-**4,7 Ma** (Fig. III-6 b). La moyenne pondérée et l'âge isochrone donnent des résultats identiques. La bonne répartition des points expérimentaux a permis de calculer une droite de régression. L'âge donné par la droite de régression peut être pris en considération du fait que les âges donnés par les rapports Th/Pb et U/Pb sont similaires aux marges d'erreur près (Fig. III-6 c).

Ces résultats sont en accord avec les âges obtenus sur biotite par la méthode 40 Ar/ 39 Ar sur les gneiss des gorges du Chavanon (Ech. 347, §III-7-b, Chapitre III) et du plateau d'Aigurande (voir ultérieurement, Ech. 331, IV-2-b-ii, Chapitre III). Compte tenu de la température de fermeture pour l'argon de la biotite à 300°C, les âges 40 Ar/ 39 Ar vers 350 Ma postdatent la déformation ductile cisaillante à biotite-sillimanite contemporaine du stade syn-folial dont les conditions P-T ont été estimées à 669-750°C et à 6 – 8 Kb (Mercier et al., 1992 ; § III-4).

L'assemblage à Bt-Sil peut provenir de la réaction discontinue dans le système KFMASH (Scheuvens, 2002) $St + Ms + Qtz => Sil + Bt + Grt + H_20$ ou melt.

Qu'en est -il pour les monazites ?

La réaction ci-dessus ne tient pas compte des phases accessoires telle que la monazite.

L'assemblage à Grt-Bt-Sil-Ms-Pl-Qtz-Mnz-Ap observé dans des migmatites de la province de New Hampshire a fait l'objet d'une modélisation des réactions qui tiennent compte des phases majeures et accessoires (Piles et Spear, 2003). Le modèle de Gibbs montre que la monazite se développe avec l'augmentation de température suivant la réaction décrite par Piles et Spear (2003) :

$\mathbf{Grt} + \mathbf{Ms} + \mathbf{Ap} = \mathbf{Sil} + \mathbf{Bt} + \mathbf{Mo}.$

La cristallisation des monazites pourrait être contemporaine du stade synfolial qui a donné lieu aux cisaillements à Bt-Sil.

Si tel est le cas, la température de fermeture de la monazite se situant entre 600-750°C (Copeland et al., 1988 ; Parrish, 1990), et celle de la biotite vers 300°C, on en déduit que le passage des deux isothermes s'est fait

dans un laps de temps très court vers 350 Ma, reflet d'une exhumation rapide de cette unité de gneiss.

Cette hypothèse est en accord avec Mercier et al., (1992) qui indiquent qu'à partir du stade synfolial, l'Unité des gneiss à Bt-Sil (Unité Inférieure des Gneiss) subit une évolution métamorphique dans des conditions rétromorphiques sous l'influence d'un phénomène d'exhumation.

La phase majeure d'épaississement crustal est donc déjà achevée à 350 Ma.

III-8. Conclusions préliminaires sur l'accident de Felletin-La Courtine

Schéma d'évolution de cet accident majeur :

- **355-350 Ma** : Initiation de l'accident de Felletin-La Courtine avant la mise en place des granites à deux micas (leucogranites) et des granites à biotite de type Guéret (Fig. III-7A et B).

* Ces âges sont révélés par les monazites des gneiss à biotite-sillimanite datées par la méthode chimique U-Th-Pb (Ech. 381, § III-7) et par les datations
⁴⁰Ar/³⁹Ar des biotites de ces mêmes gneiss (Ech. 347, § III-7-b et 331, § VI-2-b-ii).

 356 ± 10 Ma : Mise en place des granites de Guéret (méthode Rb/Sr ; Berthier et al., 1979) dans la zone de cisaillement.

<u>*Age</u> confirmé par la datation chimique sur monazite à 353 <u>+</u> 5.8 Ma (Rolin et al., en préparation) des granites de Villatange (Guéret au nord du Millevaches) similaires d'un point de vue pétrologique à l'échantillon 95 (§*III-6-a-iii.* ***)

<u>*Mise en place syntectonique</u> (Fig. III-7C) confirmée par les O.P.R. du quartz des ultramylonites et mylonites de ces granites (échantillon 95-375 et 12, § III-5, fabrique du quartz acquise entre 400°C et 700°C).

*Le même type de déformation ultramylonitique dans le décrochement dextre de St Michel de Veisse indique que les zones de cisaillement de Felletin-La Courtine et de St Michel de Veisse étaient en continuité vers 350-355 Ma.

*Les études gravimétriques et A.S.M. effectuées sur les granites de type Guéret (Jover, 1986 ; Gébelin et al., 2004, Gébelin et al., soumis et Chapitre IV) mettent en évidence un laccolite dont l'épaisseur n'excède pas quelques centaines de mètres au nord du Millevaches.

Ces résultats gravimétriques favorisent un modèle en laccolite de faible épaisseur sub horizontale, mais ne permet pas de situer les zones d'alimentation et de provenance des magmas. Le jeu syn magmatique des failles de St Michel de Veisse et de Felletin-La Courtine montre qu'elles pourraient constituer des conduits d'alimentation possibles pour la remontée des magmas dans la croûte.

- Perturbation du mécanisme en décrochement dextre de la faille lors de la mise en place des granites de Guéret qui enregistrent localement un mouvement en faille inverse vers le sud (Fig. III-7C).
- **335 Ma** : Limite maximale du refroidissement des granites de Guéret. La discordance des tuffs anthracifères sur les granites de Guéret indique que ces derniers étaient déjà refroidis à 335 Ma (Faure, 1995).
- **320 Ma :** Mise en place syntectonique des granites à deux micas du Millevaches

*La datation ⁴⁰Ar/³⁹Ar des micas des leucogranites non déformés du coin NE du Millevaches (Ech. 6, § *III-6-a-iii.* *) suggère un taux de refroidissement rapide pour ces granites entre 400°c et 300°c, probablement peu éloigné de leur âge de mise en place.

*Age à 320 Ma confirmé par la datation U/Pb sur zircon des granites à deux micas de Chasselines – Goutelle (idem que Ech. 6) à 320 ± 5 Ma (Rolin et al., en préparation)

*Age à 320 Ma cohérent avec âge de mise en place des granites à deux micas des Pradines daté sur monazite et zircon à 313 ± 4 Ma par la méthode U/Pb (voir Chapitre IV).

*Mise en place syntectonique validé par i) l'étude des O.P.R. du quartz des petites zones de cisaillement de l'échantillon 188 (§ III-5) et ii) la gamme d'âges entre 305 et 325 Ma obtenue sur les mylonites des leucogranites de la bordure NE du Millevaches.

- Réhomogénisation des biotites des gneiss à biotitesillimanite qui enregistrent des âges de refroidissement autour de 315 Ma (Ech. 40 et 241, § III-6-b) dans les décrochements de St Michel de Veisse et Felletin-La Courtine. (L'échantillon 347 loin de toute intrusion granitique a conservé son âge de refroidissement initial).
- Bombement du coin NE du Millevaches (Fig. III-7E), cisaillements sénestres et dextres et mouvements en faille inverse vers le SW enregistrés dans les mylonites des leucogranites du NE du massif sont le résultat d'une déformation en aplatissement.

Nous proposons que cette déformation coaxiale (axe Z orienté NE-SW) est liée à la mise en place du SW vers le NE des granites à deux micas du Millevaches contre le massif granitique de Guéret refroidi. Nous discuterons ultérieurement du rôle du décrochement des Pradines dans la mise en place des granites à deux micas du Millevaches.

La zone de cisaillement de Felletin-La Courtine peut aussi avoir jouer le rôle de conduit d'alimentation pour ces granites à deux micas.

- Synchronisme des accidents de Felletin-La courtine et de St Michel de Veisse entre 305 et 320 Ma confirmé par les âges similaires obtenus sur les mylonites de granites à deux micas.
- **305-300 Ma** : Fin du fonctionnement de l'accident de Felletin-La Courtine.

*Cette période est estimée à partir des âges les plus jeunes obtenus sur section polie dans les zones de cisaillement recristallisées (Ech. 524, 3).

Chapitre III- Structure, tectonique et microtectonique du Limousin

FIG. III-7 – Schéma illustrant les étapes successives ayant conduit à la structuration complexe de la zone de cisaillement ductile de Felletin-La Courtine. A : Initiation de l'accident de Felletin –La Courtine à 355-350Ma à la suite de la phase majeure d'épaississement crustal. B : 350 Ma Fonctionnement du décrochement dextre. C : Mise en place syntectonique des granites de Guéret à 350 Ma. D : Structuration des granites de Guéret au cours de leur refroidissement (de ~345 à ~335 Ma) qui enregistrent par endroit un léger mécanisme en faille inverse vers le Sud. E : Mise en place syntectonique vers 320 Ma des granites à deux micas (ou leucogranites), formant actuellement le massif de Millevaches. Ces derniers venant butés contre les granites de type Guéret déjà refroidis à 335 Ma induisent une forte composante coaxiale à l'origine des mouvements décrochant dextres (phase 1) et sénestres mais également des mouvements rétroactifs inverses vers le SW (Phase 2). F : Allure générale actuelle de la faille avec mise en évidence du bombement (en haut à gauche) crée par les granites à deux micas lors de l'activité de la faille.

IV. La zone de cisaillement ductile des Pradines au cœur du massif de Millevaches

IV-1. Structure et géométrie du décrochement dextre des Pradines

Le massif granitique de Millevaches est recoupé dans sa longueur par un grand décrochement ductile d'épaisseur plurikilométrique (jusqu'à 6 km). Cette zone mylonitique ou « faille des Pradines » est un objet structural de grande envergure de direction NNW-SSE parallèle à la longueur du massif de Millevaches (Fig. III-8).

Dans la commune de Sarran (Fig. III-2 et III-8) en Corrèze, les leucogranites mylonitiques affectés par ce grand linéament présentent une foliation verticale orientée N-S qui porte une linéation horizontale. L'orientation de la foliation peut varier légèrement et devenir NNW-SSE avec un pendage variant entre 90° et 55° (Fig. a, Planche XIII). La déformation ductile se caractérise par des structures C-S dextres très pénétratives. L'abondance des bandes de cisaillement C ainsi que l'angle C-S (entre 25° et 30°) sont constants dans la masse leucogranitique et définissent un faciès très homogène à l'échelle de l'affleurement (Fig. b, Planche XIII). Les microstructures C-S indiquent un sens de cisaillement dextre (Fig. b, c et d, Planche XIII). Elles sont formées par de grandes plages de biotite et de muscovite qui délimitent des rubans de quartz polycristallins (Fig. c, Planche XIII). Ces derniers présentent en lame mince des joints de grains à 90°C (Fig. e, Planche XIII) décrits par Gapais et Barbarin (1986) et Tommasi et Vauchez (1994) comme étant des structures sub solidus. L'aspect très pénétratif des microstructures C-S suggère que les plans C et S se soient formés en même temps. Par définition, il s'agit de vraies structures C-S et non de bandes de cisaillement. La composition des muscovites analysées à la microsonde électronique (Tableau 10, annexe 1) tombe dans le champ des muscovites magmatiques (Fig. f (Ech. 356), Planche XIII) du diagramme ternaire FeO+MnO, TiO2 et MgO de Miller (1987). L'ensemble de ces observations permet de conclure que la mise en place des

leucogranites est syntectonique du décrochement ductile dextre des Pradines.

A l'est de l'axe NNW-SSE des Pradines, les granites à biotite porphyroïdes présentent une texture magmatique (Fig. g, Planche XIII). La foliation des granites passe d'une orientation NNW – SSE au cœur de la faille à une direction NW-SE à WNW-ESE en s'éloignant vers l'est. Ce changement d'orientation de la foliation est conforme à une torsion due au décrochement dextre de la faille des Pradines.

Plus au nord, à l'est de Treignac (Fig. III-2), (hameau de Lestard), le décrochement affecte les micaschistes qui montrent de belles structures C-S dextre (Fig. h et h', Planche XIII). Cette observation sous entend que le décrochement a fonctionné et a affecté la croûte avant la mise en place des leucogranites.

Au moulin de Naud (Fig. III-2), la fusion partielle affecte les micaschistes. Les divers stades y sont représentés : i) micaschistes indemnes de toute trace d'anatexie (paléosome) ii) l'anatexie affecte les micaschistes lit par lit (métatexite) (Fig. a et c, Planche XIV), iii) franchissement du seuil d'interconnection des fluides, le leucosome recoupe la foliation, iv) genèse d'un leucogranite (néosome) (Fig. b, Planche XIV).

On distingue quelquefois des enclaves de micaschistes au sein des leucogranites (Fig. b, Planche XIV). L'observation de structures C-S dextres (Fig. a, Planche XIV) dans les métatexites confirme que l'anatexie s'est effectuée pendant le fonctionnement du décrochement des Pradines.

En accord avec Lameyre (1966), Cuney et al. (1990) et Shaw (1991), les affleurements du moulin de Naud confirment que les leucogranites du massif de Millevaches résultent de la fusion crustale.

FIG. III-8 – Carte morphologique de Meymac (Corrèze) à laquelle est superposée la carte géologique au 1/ 50000 mettant en évidence le décrochement dextre des Pradines. Le point blanc localise le village de Sarran.

PLANCHE XIII – Photographies illustrant la faille des Pradines à l'échelle du macroéchantillon et de la lame mince. a. Affleurement montrant les leucogranites affectés par le décrochement dextre des Pradines. Le pendage de la foliation varie entre 55° et 70° vers l'ouest. b. Microstructures C-S indiquant un sens de cisaillement dextre à l'échelle de l'affleurement (Localité de Sarran). c. Microstructures C-S à l'échelle de la lame mince. d. Microstructures C-S à l'échelle de la lame mince. e. Microstructures du quartz montrant des contours rectangulaires qui forment un réseau réticulaire ou en mosaïque typique d'une déformation de haute température. f. diagramme ternaire FeO+MnO, TiO2 et MgO de Miller (1987) montrant que les muscovites des leucogranites des Pradines (Ech. 356) se placent dans le champ des muscovites magmatiques. g. Granites à biotite porphyroïdes affectés par la faille des Pradines à proximité de la localité de Gourdon-Murat. h. Structures C-S dans les micaschistes affectés par le décrochement dextre des Pradines à l'échelle de l'affleurement. h'. Même échantillon que h scié.

Chapitre III- Structure, tectonique et microtectonique du Limousin

PLANCHE XIV – Photographies illustrant les phénomènes de fusion partielle dans l'axe du décrochement des Pradines et les granulites associées de la partie Nord du Millevaches. a. Micaschistes subissant le phénomène de fusion partielle lit par lit pendant le fonctionnement du décrochement dextre des Pradines. A noter les belles structures C-S. b. Affleurement mettant en évidence des enclaves de micaschistes à foliation sub verticale au sein du leucosome correspondant aux leucogranites. c. Fusion partielle des micaschistes sur un échantillon scié. d. Affleurement des granulites plissées du hameau des grands Janon à proximité de St Pierre-Bellevue dans la partie nord du Millevaches. e. Mise en évidence des parties paléosomes et leucosomes dans les granulites. f. Détail du leucosome appelé aussi leucogranite à grenat-cordiérite montrant des grenats centimétriques. g. Grenats cisaillés dextres dans les granulites. h. Microplis d'entraînement formés par les rubans de quartz et de grenat dans les micaschistes granulitiques en partie fondus indiquant un sens de cisaillement dextre parallèlement à la linéation.

A proximité de St Pierre-Bellevue (Fig. III-2), des formations micaschisteuses (Fig. d, Planche XIV) affleurent suivant un allongement NNW-SSE dans la prolongation nord du décrochement dextre des Pradines. Ces micaschistes présentent une foliation sub verticale orientée NNW-SSE qui porte une linéation subhorizontale. Les critères de cisaillement associés indiquent un mécanisme en décrochement dextre (Fig. g et h, Planche XIV). La paragenèse à feldspath potassique, plagioclase, quartz, biotite, cordiérite, grenat et sillimanite indique que ces roches ont subi un métamorphisme dans les conditions du faciès granulite. Ces granulites sont constituées de deux parties (Fig. e, Planche XIV) : le paléosome dont la paragenèse est à Kfs-Pl-Qtz-Bt-Crd-Grt-Sil+Il+Sp et un leucosome à Kfs-Pl-Qtz-Grt-Crd+Bt+Sil+To+Sp (Fig. e et f, Planche XIV). La description détaillée de ces formations est donnée au chapitre IV, §II-3.

Les conditions thermobarométriques du métamorphisme granulitique sont estimées à 700° C - 850° C et à 5 - 6 kbars (chapitre IV, §II-3).

IV-2. Datation ⁴⁰Ar/³⁹Ar des leucogranites mylonitiques des Pradines : Echantillon 356 (Tableau 4 et 8, annexe 1)

(voir description de la technique analytique Chapitre II, §V-1 ; et localisation des échantillons Fig. III-2, Tableau 9, annexe 1)

L'échantillon 356 a été prélevé près de la localité de Sarran (Fig. III-2) (Corrèze) dans le but de contraindre la période de fonctionnement du grand décrochement dextre des Pradines. Les échantillons analysés correspondent aux faciès les plus déformés (Fig. b, Planche XIII). Les datations ⁴⁰Ar/³⁹Ar sur biotite et muscovite permettent de dater le passage des isothermes 300°C et 400°C respectivement (Harrison *et al.*, 1985 ; Hames et Bowring, 1994). Les observations précédentes montrent que la déformation mylonitique est de haute température entre 500 et 700°C. En supposant que le refroidissement est rapide et que la cinématique dextre perdure au stade fragile/ductile, les âges ⁴⁰Ar/³⁹Ar peuvent être interprétés comme des âges de mylonitisation.

Le dégazage progressif des populations de biotite et de muscovite fournit des spectres d'âges perturbés avec des excès d'argon à haute température pour les biotites.

Le spectre obtenu sur les <u>populations de biotite</u> montre que 85% du dégazage s'est effectué au cours des quatre premiers paliers à basse température (entre 450°c et 600°c) donnant des âges compris entre **305 et 315 Ma** (Fig. a, Planche XV).

Les premiers paliers des <u>populations de muscovite</u> fournissent un âge de **310,2** \pm **2,9 Ma** pour une quantité d'³⁹Ar cumulatif de 43% (Fig. b, Planche XV). Le palier suivant qui correspond à 20% de l'³⁹Ar dégazé est caractérisé par une augmentation du rapport ⁴⁰Ar/³⁹Ar. Les paliers suivants fournissent des âges compris entre **312 et 315,5 Ma**.

Les <u>droites isochrones</u> fournissent des âges similaires de 307.9 ± 4.1 Ma pour les <u>biotites</u> (Fig. c, Planche XV) et

de **313,7** <u>+</u> **3,1 Ma** pour les <u>muscovites</u> (Fig. d, Planche XV).

Le dégazage progressif par sonde laser d'un <u>monograin de biotite</u> montre que son comportement est identique à celui observé sur population avec pour caractéristique un fort dégazage à basse température puisque 90% d'³⁹Ar est dégazé dans les quatre premiers paliers. On obtient un âge plateau à **313,4** \pm **7,6 Ma** (Fig. e, Planche XV). Une droite isochrone ne peut être définie car les points définissant le plateau, sont tous regroupés près de l'axe des abscisses (Fig. f, Planche XV).

Les âges 40 Ar/ 39 Ar obtenus par <u>fusion ponctuelle</u> sur un <u>monograin de muscovite</u> sont compris entre **303** ± **3 Ma et 310,9** ± **5,3 Ma** (Fig. g, Planche XV). Le premier point à 326,1 ± 13,6 Ma est lié à une pollution de surface avec 16% d'argon atmosphérique. La moyenne pondérée fournit un âge à 305,8 ± 3,3 Ma.

La cartographie d'âge établie par l'analyse ponctuelle sur un monograin de biotite laisse apparaître une variation importante des âges compris entre 284 + 6Ma et 345 + 10 Ma (Fig. h, Planche XV). Les âges les plus vieux $(\overline{333,5 \pm 4,9}$ Ma et 345 ± 10 Ma) sont liés à une augmentation du rapport ³⁸ Ar Cl/³⁹ Ar K (tableau 4, annexe 1) et témoignent de la présence de chlore et de fluides enrichis en ⁴⁰ Ar à l'origine des âges élevés. Du fait de l'absence de chlore à l'analyse microsonde (tableau 10, annexe 1), il est difficile de connaître l'origine de l'augmentation du rapport ³⁸ Ar Cl/ ³⁹ Ar K. La moyenne pondérée donne un âge de 315,07 ± 3,8 Ma. Les âges obtenus sur muscovite présentent une variation moins importante que ceux acquis sur les biotites et nous permettent d'estimer la fin de fonctionnement du décrochement des Pradines entre 300 et 320 Ma. Cependant la faible différence d'âge, enregistré par ces deux types de micas montre que le refroidissement de ces leucogranites a été rapide entre 300°C et 400°C.

IV-3. Datation ⁴⁰Ar/³⁹Ar des granulites de Saint Pierre-Bellevue : Echantillon 404 (tableau 5, annexe 1)

Le dégazage progressif des <u>populations de biotite</u> provenant du **paléosome** révèle un spectre d'âges extrêmement perturbé qui donne un âge total de **312,0** <u>+</u> **2,9 Ma** (Fig. a, Planche XVI) pour des valeurs comprises entre 310 et 327 Ma. Les diagrammes Ca/K et Cl/K en fonction du pourcentage d'³⁹Ar libéré témoignent d'une structure cristallo-chimique complexe de ces biotites (Fig. b, Planche XVI). A chaque augmentation du rapport ⁴⁰Ar/³⁹Ar correspond une chute du rapport ³⁹ Ar K/³⁷ Ar Ca. La droite isochrone donne un âge à 318, 6 <u>+</u> 3,8 Ma (Fig. c, Planche XVI) similaire à l'âge total fourni par le spectre d'âges.

L'analyse sur <u>section polie</u> (tableau 5, annexe 1) des biotites en équilibre avec le grenat, la cordiérite et la sillimanite fournit des âges compris entre **313,5** \pm **1 Ma et 317,5** \pm **5,8 Ma** qui sont cohérents avec les âges U/Pb à 315 \pm 4 Ma décrits Chapitre IV.

L'analyse sur <u>section polie</u> (tableau 5, annexe 1) des biotites du leucosome en équilibre avec le grenat donne un âge à $308,4 \pm 0,8$ Ma.

PLANCHE XV - Résultats ⁴⁰Ar/³⁹Ar effectués sur les leucogranites mylonitiques du décrochement des Pradines

PLANCHE XVI – Résultats ⁴⁰Ar/³⁹Ar effectués sur les biotites des granulites du Grand Janon (Nord du Millevaches)

IV-4. Conclusion sur les âges obtenus dans le décrochement dextre des Pradines

Les micas des leucogranites mylonitiques du décrochement dextre des Pradines (Echantillon 356) fournissent des âges ⁴⁰Ar/³⁹Ar autour entre 300 et 320 Ma. Les données argon à <u>300-320 Ma</u> acquises sur les biotites et les muscovites <u>datent le passage des isothermes 300°C et 400°C qui intervient après l'étape de mylonitisation principale</u>. Les données argon sont en accord avec les datations U/Pb (voir Chapitre IV) qui indiquent un âge de mise en place à 315 Ma. Ces résultats indiquent <u>un refroidissement rapide des leucogranites depuis leur mise en place</u>. La mylonitisation est donc synchrone de la mise en place des leucogranites des Pradines.

Les âges argon obtenus sur le <u>paléosome des</u> <u>granulites</u> affectées par le décrochement des Pradines sont identiques à celui acquis sur le <u>leucosome</u> et sont en bon accord avec les résultats obtenus par la méthode U/Pb (voir Chapitre IV) qui date le <u>métamorphisme</u> <u>granulitique autour de 315 Ma</u>. L'ensemble de ces résultats est également cohérent avec ceux des leucogranites mylonitiques des Pradines. Ces trois échantillons sont donc en étroite relation. La structuration en décrochement dextre des granulites et du leucosome correspondant est donc contemporaine de la mise en place des leucogranites des Pradines vers 315 Ma (Chapitre IV).

IV-5. Autres datations ⁴⁰Ar/³⁹Ar effectuées sur des échantillons de granites non ou peu déformés à proximité de l'accident des Pradines

IV-5-a. Les leucogranites non déformés au coeur du massif : Echantillon MVG3 (Tableau 5, annexe 1)

Couplée à l'analyse des mylonites, la datation ⁴⁰Ar/³⁹Ar des leucogranites non déformés permet de mieux appréhender la chronologie relative entre l'âge de refroidissement des magmas et la période de fonctionnement des zones de cisaillement. Dans le cas où les biotites et les muscovites des leucogranites non

déformés présentent des âges similaires, on supposera (compte tenu des températures de fermeture de chacun) un refroidissement rapide de ces granites. Si ces âges sont proches des âges de mylonitisation, on suggérera une mise en place syntectonique pour ces granites.

Ces leucogranites non déformés présentent une granulométrie moyenne. Le quartz est abondant, le plagioclase (oligoclase) est xénomorphe, le microcline très rare est également xénomorphe. La biotite et la muscovite sont automorphes. Les biotites sont parfois chloritisées et présentent des inclusions de zircons et/ou monazites.

Les échantillons analysés proviennent du petit hameau de Commerly situé au sud de la ville de Bugeat (Fig. III-2) en Corrèze. Ils ont fait tout d'abord l'objet d'un dégazage progressif sur <u>population de muscovite</u> dont le spectre d'âges présente une typologie particulière. Après une série d'âges discordants et représentant moins de 12% de l' ³⁹Ar total, s'individualise un palier unique à **322,1 ± 3,0 Ma** (Fig. a, Planche XVII).

L'âge de $322,1 \pm 3,0$ Ma obtenu sur les muscovites magmatiques correspond à un **âge K/Ar**, toute la quantité d'argon contenu dans le minéral ayant dégazé à haute température. Compte tenu des marges d'erreur, l'<u>isochrone</u> correspondante fournit un âge semblable à **330,2 \pm 5,2 Ma** (Fig. e, Planche XVII).

Le dégazage progressif des biotites sur population fournit un spectre discordant montrant dans un premier temps une croissance régulière des âges depuis 257,1 + 1,05 Ma jusqu'à 332,5 + 0,5 Ma pour 56% d'³⁹Ar (Fig. b, Planche XVII). A partir de 600°c, le spectre décrit une bosse mise en évidence par l'augmentation des rapports ⁴⁰Ar/³⁹Ar qui diminuent vers 950°c. Ce type de spectre a été décrit par Ruffet et al (1991). Ces auteurs ont décelé au microscope électronique à transmission une intercroissance de chlorite primaire entre les feuillets de biotite qui pourrait être à l'origine des perturbations spectrales non par un excès d'⁴⁰Ar qui engendre une augmentation du rapport 40 Ar/ 39 Ar mais par recul de l' 39 Ar depuis la biotite vers la chlorite. Cette augmentation des âges est corrélée avec une croissance du rapport ³⁸ Ar Cl/39 Ar K (Fig. d, Planche XVII). Les analyses à la microsonde lors d'une traversée des biotites (tableau 10, annexe 1) montrent la présence de chlore dont la quantité ne varie pas du cœur à la périphérie. Ce chlore pourrait être issu des fluides qui sont responsables de la chloritisation des biotites. Dès lors, les perturbations du spectre qui se traduisent par une augmentation du rapport 40 A ${}^{r/39}$ A ³⁹Ar/³⁹Ar pourraient être interprétées par un recul de l' ³⁹Ar depuis la biotite vers les feuillets intercalés de

chlorite et non par un excès d' ⁴⁰Ar (Ruffet et al., 1991). D'autre part, la présence quasi-systématique de zircons en inclusion dans les biotites peut engendrer des perturbations dans l'organisation du réseau cristallin de la biotite et de ce fait provoquer lors du dégazage des àcoups qui se traduisent par des fluctuations dans le spectre d'âges.

La <u>droite isochrone des biotites</u> fournit un âge à $335,1 \pm 6,6$ Ma (Fig. f, Planche XVII) avec un rapport initial de 446 ± 72 .

Ces résultats défectueux ne nous permettent pas de discuter la chronologie relative entre l'âge de refroidissement des magmas et la période de fonctionnement de la zone de cisaillement des Pradines. Toutefois, ces âges sont plus vieux que ceux obtenus sur les leucogranites mylonitiques.

Doit-on évoquer cependant que les magmas loin de la faille ne sont pas issus de la même injection magmatique que celle datée au sein de la faille. Si l'on suppose que la faille des Pradines joue le rôle de conduit d'alimentation pour les magmas, les leucogranites mylonitiques datent les dernières injections de magmas. En accord avec la structure complexe en plusieurs plutons (Stussi et Cuney, 1990), il existe plusieurs générations de leucogranites dans le massif.

IV-5-b. Les granites porphyroïdes à biotite : Echantillon MVG4 (Tableau 5, annexe 1)

Cet échantillon prélevé à Bugeat dans la continuité nord du décrochement des Pradines (Fig. III-2) a fait l'objet d'un dégazage progressif sur les populations de biotite qui donnent un spectre caractérisé par une augmentation progressive des âges, de 272 Ma à 326 Ma représentant 50% du dégazage d'³⁹Ar, suivi d'une brusque élévation des âges (326 à 357 Ma) entre 600°c et 750°c (Fig. g, Planche XVII). A l'inverse des observations précédentes, cette hausse du rapport 40 Ar/ 39 Ar est couplée à une chute du rapport 38 Ar Cl/ 39 Ar K (Fig. i, Planche XVII). Les analyses à la microsonde (tableau 10, annexe 1) révèlent cependant la présence de chlore dans les biotites qui pourrait être issu de fluides avant induit la chloritisation des micas. L'augmentation des âges à basse température pourrait correspondre au dégazage des chlorites dont le premier pic se fait autour de 550° (Ruffet et al., 1991).

La <u>droite isochrone</u> indique un âge de **332,4** \pm **4,6 Ma** (Fig. h, Planche XVII). Celui-ci doit être interprété avec prudence du fait de son coefficient de corrélation pondéré élevé (31.83) et d'un rapport ⁴⁰Ar/³⁶Ar initial bas.

V-1. Description de la faille normale d'Argentat

La faille d'Argentat constitue la bordure ouest du massif granitique de Millevaches. Elle s'étend du nord au sud depuis le Nord de Bourganeuf où elle interrompt la continuité des décrochements d'Arrênes et de St Michel de Veisse suivant un jeu sénestre (Fig.III-2). C'est une frontière majeure entre les formations du Limousin à l'ouest (Floc'h, 1983) et les granites du Millevaches à l'est (Fig. III, 9 et 10). Son histoire complexe est polyphasée. Son jeu ductile est associé à l'âge de mise en place syntectonique des leucogranites du massif de Millevaches au Viséen dans un régime extensif (Roig et al., 2002). Pour ces auteurs, cet événement est contemporain d'une phase d'hydrothermalisme marquée

par le développement de muscovites en plaquage au contact de la faille dont l'âge de refroidissement 40 Ar/ 39 Ar se situe autour de 335 Ma. Cette tectonique en extension est responsable de l'exhumation du massif granitique de Millevaches (Roig et al., 2002). A la fin du Carbonifère, cette faille est réactivée et subit une déformation cassante (Roig et al., 2002).

Un récent profil sismique (Bitri et al., 1999) orienté NE-SW a été effectué dans le Sud Limousin (voir localisation Fig.III-9). Il recoupe les granites du Millevaches, la faille d'Argentat, la synforme d'Uzerche, l'antiforme de Tulle et la faille Sud Limousine. Il met en évidence un système de failles normales à pendage NW, un rejet de 8 km de la faille d'Argentat, enfin une unité discordante à la pile lithotectonique USG/UIG/UPA et du moho qui est compris entre 28 et 31km (Fig. III-11).

FIG. III-9 – Carte géologique simplifiée du Sud Limousin montrant la localisation de la coupe FIG. III-10 et du profil sismique FIG. III-11 d'après ROIG et FAURE (2000).

FIG. III-10 – Coupe à travers l'antiforme de Tulle et l'ouest du massif granitique de Millevaches mettant en évidence le jeu normal de la faille d'Argentat d'après ROIG et FAURE (2000).

FIG. III-11 – Interprétation du profil sismique d'Argentat d'après BITRI et al. (1999). A: Unités gneissiques. B, C, D, E, F, G: Unités discordantes. G : Micaschistes. H : Leucogranites du Millevaches.

V-2. Description des leucogranites mylonitiques de la faille d'Argentat datés par la méthode ⁴⁰Ar/³⁹Ar : Echantillon 522 (Tableau 6, annexe 1, Planche XVIII)

(voir description de la technique analytique Chapitre II, §V-1 ; et localisation des échantillons Fig. III-2, Tableau 9, annexe 1)

Les échantillons ont été prélevés à proximité de la commune de Bourganeuf sur la D8 avant le hameau de Châteaumerle (Tableau 9, annexe 1). Il s'agit de leucogranites mylonitiques dont le plan de foliation orienté NE-SW pend de 20° au NW. La déformation est caractérisée par des microstructures C-S confirmant le mécanisme en faille normale vers le NW (Fig. a, Planche XVIII). En lame mince, les feldspaths sont fracturés et montrent parfois des traces de déformation plastique (extinction onduleuse). Les muscovites primaires sont déformées et forment des micafishs (Fig. b, Planche XVIII) dont le sens est en accord avec celui donné par les C-S. Elles recristallisent en petits grains secondaires dans les bandes de cisaillement ou dans les zones abritées des muscovites primaires (Fig. c, Planche XVIII). Le quartz est intensément déformé et forme des rubans polycristallins à grain fin montrant une orientation préférentielle de réseau. Les grains des rubans ont une orientation préférentielle de forme allongée et inclinée d'environ 25° par rapport au plan de cisaillement (Fig. d, Planche XVIII). Ces textures ressemblent à celles identifiées dans les granites à biotite et les leucogranites de la zone de cisaillement ductile de Felletin-La Courtine dont la mesure de l'O.P.R. du quartz indiquait une acquisition de la fabrique entre 400°C et 700°C.

Nous avons daté les zones de cisaillement par sonde laser sur section polie de façon à contraindre la période de fonctionnement de la faille normale. Ces zones de cisaillement très finement recristallisées à partir des micas originels reflètent les déformations acquises le plus tardivement au cours du processus de mylonitisation. Sur l'ensemble de la section polie les résultats (Tableau 6, annexe 1) montrent une variation des âges très importante qui va de 305,95 ± 12,89 Ma à 414,36 ± 10,38 Ma. Les marges d'erreur élevées sont le reflet d'une zone d'abrasion restreinte (les recristallisations de micas marquant la fin de l'activité des failles représentent des zones de faible épaisseur) qui fournit des signaux de faible intensité.

PLANCHE XVIII – Photographies illustrant les microstructures des leucogranites mylonitiques de la faille d'Argentat à l'échelle du macroéchantillon et de la lame mince. a : Structures C-S typique indicant un sens de cisaillement vers le NW . b : Echantillon 522. Micafishs de muscovites magmatiques. c : Echantillon 522. Recristallisation de micas secondaires dans les petites zones de cisaillement et dans les zones abritées des muscovites primaires. d : Echantillon 522. Rubans de quartz polycristallins mettant en évidence l'obliquité des grains de 25° par rapport au plan de cisaillement. L'inclinaison des grains est en faveur d'un mouvement normal vers le NW.

Chapitre III- Structure, tectonique et microtectonique du Limousin VI. Le décrochement sénestre de la Marche

Le décrochement sénestre de la Marche sépare le plateau d'Aigurande au nord et le massif granitique de Guéret au sud. Il affecte sur une épaisseur plurikilométrique les gneiss à biotite-sillimanite et les leucogranites (Fig. a, b, Planche XIX). L'analyse structurale et microstructurale des leucogranites mylonitiques de la Marche Orientale (Fig. III-2) révèlent des critères de cisaillement sénestre. La cinématique de cet accident a fait l'objet de discussion. Rolin et Colchen, (2001) ont mis en évidence, dans la partie orientale de la faille de la Marche, une déformation dextre synchrone du granite de Chanon mis en place à 323 ± 6 Ma (Rb/Sr sur roche totale, Quenardel et al., 1991). Cette déformation est antérieure à celle des leucogranites de la Marche qui recoupent les structures mylonitiques ductiles dextres. Les cisaillements ductiles sénestres qui affectent les leucogranites de la Marche seraient donc postérieurs aux cisaillements dextres. Choukroune et al. (1983) montrent par les mesures des axes < c > et < a > du quartz augoniomètre de texture que la mise en place des leucogranites de la Marche est syntectonique du décrochement sénestre. La déformation s'acquiert dans des conditions thermiques relativement élevées. Ces auteurs ne considèrent pas la faille de la Marche comme un équivalent du cisaillement Sud-Armoricain. Ils en déduisent que le champ de déformation a tourné de 50° entre le Massif Armoricain et le Massif Central depuis une composante N-S à NW-SE dans le Massif Armoricain à NE-SW dans le Limousin (Choukroune et al., 1983).

VI-1. Description pétrostructurale

Les leucogranites sont intensément déformés. Les phénocristaux originels de feldspath potassique et de plagioclase sont fracturés (Fig. a, b et c, Planche XX). La structure originelle du granite a été détruite en grande partie (Fig. b, Planche XX). Le quartz a recristallisé sous forme de rubans (Fig. c, Planche XX) ou bien dans les zones de contrainte maximale (Fig. d, Planche XIX), autour des porphyroclastes et/ou dans les ombres de pression de ces derniers (Fig. e, Planche XIX). L'allongement des grains de quartz dans les rubans se fait suivant un angle d'environ 30° à 40° par rapport au plan de cisaillement cohérent avec un sens de cisaillement sénestre (Fig. e, Planche XX). Les plagioclases sont également recristallisés et présentent une structure globuleuse. Les biotites et les muscovites ont tendance à se disposer autour des feldspaths (Fig. f, Planche XX) qui se transforment fréquemment en microcline (Fig. f, Planche XX). Les biotites présentent quelquefois des inclusions de zircons et/ou de monazites. Les muscovites forment des micafish syn-magmatiques de grande taille (millimétrique) qui montrent des recristallisations secondaires syn-cisaillement dans les zones abritées ou bien tout autour du claste originel (Fig. g, Planche XX). Selon les faciès mylonitiques, la recristallisation des muscovites primaires en muscovites secondaires est très forte et donne des bandes de cisaillement très fines (0,1mm de large) de micas recristallisés (Fig. h, Planche XX). Seuls quelques clastes muscovites millimétriques persistent. de Ces phénomènes de recristallisation s'effectuent au cours du refroidissement du granite.

Ces leucogranites présentent d'étroites relations spatiales avec les décrochements. Les données structurales (Choukroune et al., 1983) et géophysiques (Dumas et al., 1990 ; Gébelin et al., soumis) s'accordent pour une mise en place syn tectonique. La datation 40^{40} Ar/39Ar des muscovites en poisson donnera une indication sur l'âge de refroidissement des leucogranites à 400°C, mais également une limite supérieure de la déformation ductile en décrochement sénestre qui les a affectés. Les âges obtenus sur sections polies dans les zones de shear recristallisées devraient fournir des âges plus jeunes. Les recristallisations de micas néoformés se développent au fur et à mesure que le granite se refroidit. La datation des parties les plus cristallisées nous indiquera l'âge de la fin du fonctionnement des cisaillements ayant induit le développement des micas à environ 300°C.

VI-2. Datation ⁴⁰Ar/³⁹Ar des granites mylonitiques de la Marche

(voir description de la technique analytique Chapitre II, §V-1 ; et localisation des échantillons Fig. III-2, Tableau 9, annexe 1)

VI-2-a. La faille de la Marche occidentale : Echantillon 334 (Tableau 6 et 8, annexe 1)

Les biotites et les muscovites des mylonites des leucogranites affectés par la faille de la Marche au niveau de Saint Sulpice-les-Feuilles ont été analysées. Le plan de foliation est orienté N120 et pend de 80 vers le SW. La linéation associée plonge entre 40° et 50° à l'ouest. Les critères de cisaillement sénestres parallèlement à cette linéation indique un mouvement inverse vers le NE (Fig. c, Planche XIX). Cette cinématique en faille inverse vers le NE est également celle des gneiss à biotite-sillimanite de ce secteur (Fig. d, Planche XIX).

L'âge plateau obtenu sur les <u>populations de muscovite</u> (Fig. h, Planche XXI) représente 60% du dégazage et donne un âge à 324.9 ± 3.0 Ma (Fig. a, Planche XXI). La <u>droite isochrone</u> à 326.9 ± 3.0 Ma donne un âge cohérent (Fig. c, Planche XXI).

Bien que présentant un excès d'argon non négligeable qui pourrait être lié à un lessivage du potassium lors d'un phénomène de chloritisation (diminution du rapport ³⁹ Ar K/³⁷ Ar Ca, (Fig. e, Planche XXI)) et/ou à un effet de recul de l'³⁹Ar pendant l'irradiation (Ruffet et al., 1991), le spectre de la population de biotite donne des âges compris entre **316** et **322 Ma** pour 75% de l'argon libéré (Fig. d, Planche XXI). Les perturbations du spectre pourraient également être causées par la présence de zircons en inclusion dans les biotites (Fig. i, Planche XXI). L'alignement des points définit une <u>isochrone</u> à **316**,7 <u>+</u> **6,2 Ma** (Fig. f, Planche XXI) avec un coefficient de corrélation pondéré élevé (4,6).

L'analyse ponctuelle sur <u>monograin de biotite</u> n'est pas satisfaisante du fait d'un pourcentage important d'argon atmosphérique, indicateur d'une ouverture du système et d'une interaction possible avec des fluides. La gamme d'âges obtenus fluctue entre **286 Ma et 349 Ma** Chapitre III- Structure, tectonique et microtectonique du Limousin (Fig. g, Planche XXI), et donne une moyenne pondérée à **322,2** +/- **3,5 Ma** proche de l'âge obtenu sur population de biotites. Les âges les plus vieux sont associés à des rapports ³⁸ Ar /³⁹ Ar élevés (tableau 6, annexe 1) suggérant des phénomènes d'interaction fluide / roche. Nous retiendrons pour ces échantillons les âges à **324,9** <u>+</u> **3,0 Ma et 326,9** <u>+</u> **3,0 Ma** (Fig. a et b, Planche XXI) obtenus sur les <u>micafish de muscovite</u> qui postdatent les

mouvements chevauchants vers le NE. Ces âges sont identiques à ceux obtenus sur les leucogranites du NE du Millevaches (échantillon 6, § *III-6-a-iii.* *) non affectés par les grands décrochements pour lequel les muscovites primaires ont donné un âge de refroidissement à $322,8 \pm 3,5$ Ma, interprété comme proche de l'âge de mise en place.

PLANCHE XIX – Photographies montrant les microstructures des leucogranites et des gneiss à biotite-sillimanite affectés par l'accident de la Marche à l'échelle du macro échantillon. a : Echantillon 284. Leucogranites mylonitiques avec passées ultramylonitiques prélevés au sud de Dun-le-Palestel sur la D5. La déformation est très pénétrative et les critères de cisaillement sont sénestres. F : N100-90°, L : N100-0° b : Echantillon 283. Leucogranites situés à 500m au nord du précédent. La déformation est moins intense et les critères de cisaillement sont moins significatifs F : N080-65SE, L : N100-30°. c : Echantillon 334. Leucogranites provenant de la Marche occidentale, vers Cromac (Moulin de Réculais). Les microstructures C-S indiquent un mouvement en faille inverse vers le NE. d : Echantillon 333. Gneiss à biotite-sillimanite indiquant un mouvement en faille inverse vers le NE (Cromac).

Chapitre III- Structure, tectonique et microtectonique du Limousin

PLANCHE XX – Microstructures des leucogranites mylonitiques à ultramylonitiques du décrochement sénestre de la Marche au sud de Dun-le-Palestel (Echantillon 284). a : Plagioclase fracturé séparé des micafishs par des rubans de quartz recristallisés. b : Faciès ultramylonitique résultant d' un broyage intense de la roche et néoformation de micas secondaires dans les bandes de cisaillement. c : Feldspath potassique cisaillé par un petit jeu senestre et alternance de rubans de quartz et de bandes de cisaillement à micas néoformés à partir des muscovites magmatiques. d : Rubans de quartz formés de grains excessivement allongés dans la zone de contrainte la plus élevée. e : Ruban de quartz formant des structures C-S aux épontes d'un feldspath potassique. Les grains de quartz sont systématiquement inclinés de 30° à 40° par rapport aux plans de cisaillement. f : Muscovites disposées autour d'un feldspath potassique se transformant en microcline. g : Micafish de muscovite magmatique avec recristallisation de micas secondaires dans les ombres de pression majoritairement. h : Micro bandes de cisaillement formées de micas secondaires se développant lors des derniers stades du fonctionnement des décrochements.

VI-2-b-i. Les leucogranites mylonitiques: Echantillon 284 (Tableau 6, annexe 1)

Les leucogranites mylonitiques au sud de Dun-le-Palestel, présentent un plan de foliation vertical orienté N100. Les critères de cisaillement observés parallèlement à la linéation N100 horizontale sont sénestres (Fig. a, Planche XIX et Planche XX). La déformation en cisaillement sénestre transforme les leucogranites en protomylonites ou en ultramylonites suivant le taux de cisaillement appliqué. Deux sections polies de ces deux types de mylonites ont été irradiées. En lame mince, la lame 284e est caractérisée par de grosses (1 mm) muscovites magmatiques cisaillées avec des recristallisations de muscovite syncisaillement en zone abritée (Fig. g, Planche XX).

La lame 284c correspond à une zone ultramylonitique où les recristallisations secondaires de muscovite constituent des zones de shear très fines (0,1 mm) (Fig. h, Planche XX) et dont l'âge pourrait correspondre aux derniers stades de l'activité du cisaillement sénestre de la Marche.

L'utilisation de la technique ⁴⁰ Ar/³⁹Ar par sonde laser sur section polie permet l'analyse de zones dont la taille des grains n'aurait pas permis la séparation. La datation in situ des différentes muscovites a donc été entreprise.

Sur 7 datations effectuées sur la lame 284e (Fig. a, Planche XXII), 4 correspondent (points 3, 4, 5 et 6) à des analyses de <u>muscovites magmatiques</u> dont les âges sont compris dans l'intervalle **334 Ma et 342 Ma**. Les données analytiques obtenues dans les <u>zones de shear</u> recristallisées (points 2 et 7) indiquent respectivement des âges à **316,4 ± 5 Ma et 312,2 ± 2,4 Ma**. L'analyse n°1 fournit un âge encore plus jeune à **293,3 ± 2,3 Ma**.

Les points analysés sur la lame 284c (Fig.b, Planche XXII) dans les zones de cisaillement très fines (< 1mm) formées par la recristallisation des micas primaires vers 300°C ou peut-être en dessous donnent une gamme d'âges comprise entre 314,3 \pm 5,5 Ma et 319,9 \pm 1,9 Ma (points 2, 4, 5 et 6). Les points n°1, n°3 et n°7 donnent des âges plus vieux respectivement à 333,9 \pm 10,1 Ma, 324,3 \pm 2,0 Ma et 329,1 \pm 5,9 Ma. Les âges les plus vieux pourraient être soit liés à une pollution de minéraux adjacents lors de l'abrasion au laser, soit à des zones moins recristallisées et donc un peu plus âgées.

Ces différentes analyses montrent que les âges les plus jeunes sont associés aux zones de cisaillement contenant des petites muscovites secondaires. Au contraire, les clastes de muscovites magmatiques primaires sont plus anciens. Il semble donc logique d'affirmer que les âges compris dans l'intervalle 320 – 290 Ma sont les âges des zones de cisaillement sénestres les plus tardives.

VI-2-b-ii. Les gneiss à biotite-sillimanite du plateau d'Aigurande (à proximité de la faille de la Marche) : **Echantillon 331** (Tableau 7 et 8, annexe 1)

Ces formations représentent l'encaissant des leucogranites de la Marche. La foliation des gneiss

(échantillon 331) est orientée E-W avec un pendage sub vertical. La linéation plonge de 30° vers l'Est. Les bandes de cisaillement à biotite et sillimanite indiquent un mouvement décrochant sénestre conforme à la cinématique de la faille de la Marche orientale. Les bandes de cisaillement à biotite-sillimanite de ces contemporaines gneiss pourraient être du métamorphisme synfolial estimé à 700°-750°C et 6 à 8 Kb sur les mêmes formations de l'Artense (Mercier et al., 1992). De façon à s'assurer d'une éventuelle réhomogénisation des micas, ces gneiss ont été échantillonnés loin des leucogranites. Connaître l'âge de refroidissement des biotites nous permettra de donner une limite supérieure i) aux cisaillements précoces à biotite-sillimanite, ii) au métamorphisme à 700°-750°C et 6 à 8 Kb.

Le dégazage progressif d'un <u>monograin de biotite</u> fournit un âge plateau à $348,5 \pm 4,1$ Ma (Fig. c, Planche XXII). La taille du grain étant très petite, les signaux enregistrés sont faibles et la marge d'erreur importante. L'abondance d'argon radiogénique rassemble toutes les mesures sur l'axe des abscisses dans le diagramme isochrone. Elles ne peuvent donc s'aligner pour former une droite (Fig. d, Planche X XII).

Compte tenu de la température de fermeture pour l'argon de la biotite à 300°C, $348,5 \pm 4,1$ Ma constitue une limite supérieure pour la déformation ductile précoce à biotite et sillimanite en décrochement sénestre contemporaine du métamorphisme synfolial estimé à 700°-750°C et 6 à 8 Kb (Mercier et al, 1992). Cet âge est identique à celui obtenu sur les monazites (méthode chimique U-Th-Pb) des gneiss à Bt-Sil identiques (Ech. 381, § III-7). Comme évoqué plus haut, les gneiss à Bt-Sil ont subi vers 350 Ma un refroidissement rapide entre 750°-600°C et 300°C, reflet de l'exhumation de ces unités.

Des âges similaires ont été mis en évidence pour le décrochement d'Estivaux dans le sud Limousin sur des biotites du granite syncinématique d'Estivaux par la méthode ⁴⁰Ar/³⁹Ar (Roig, 1997) et pour le décrochement du Grand Chemin dans les Monts du Lyonnais, également sur des biotites d'un granite syncinématique (Costa, 1993). Pour le Limousin, Roig associe l'âge à 350 Ma obtenu sur les biotites cisaillées à la mise en place des nappes vers le NW dans le Limousin.

PLANCHE XXI – Résultats 40 Ar/ 39 Ar effectués sur les leucogranites mylonitiques affectés par les mouvements en faille inverse vers le NE de la Marche occidentale (Echantillon 334). h : Micafishs de muscovites magmatiques. i : Biotites syn-cisaillement présentant des zircons en inclusion.

PLANCHE XXII – Résultats ⁴⁰Ar/³⁹Ar effectués sur les leucogranites mylonitiques du décrochement sénestre de la Marche orientale (Echantillon 284).

Chapitre III- Structure, tectonique et microtectonique du Limousin VI-3. Résultats des datations U-Th-Pb à la microsonde électronique sur les monazites des leucogranites de la Marche orientale : Echantillon 284

La procédure analytique et les méthodes de calcul sont décrites Chapitre II, § V-3.

Cet échantillon correspondant aux leucogranites mylonitiques du décrochement sénestre de la Marche a été prélevé le long de la D5 au sud de Dun-le-Palestel. Il est identique à celui daté par la méthode ⁴⁰Ar/³⁹Ar (section polie 284 c, Planche XXII). Les monazites présentent des relations texturales avec le feldspath potassique, le plagioclase, le quartz et les micafishs sénestres de biotite et de muscovite.

Les monazites sont peu nombreuses, de petite taille (entre 20 et $35 \ \mu m$) et ne présentent aucune zonation.

La moyenne pondérée des âges individuels (au nombre de 56) est de **328,8** <u>+</u> **5,8 Ma** avec un MSWD de 0,98 (Fig. III-12a).

L'âge isochrone est de 334,5 + 4,9 / - 6,2 Ma (Fig. III-12b). On peut considérer cet âge comme significatif du fait que la droite de régression calculée à partir des points expérimentaux est parallèle à la droite isochrone théorique (les rapports Th/Pb et U/Pb fournissent le même âge dans les barres d'erreurs, Fig. III-12c). L'âge isochrone retenu est calculé à partir du barycentre des points expérimentaux là où il est le mieux défini c'est-àdire à l'endroit où les hyperboles de confiance sont le plus rapprochées.

L'âge obtenu en effectuant la moyenne des âges individuels et celui de la droite isochrone sont cohérents. L'âge à 334,5 + 4,9 / – 6,2 Ma est interprété comme l'âge de mise en place des leucogranites de la Marche. Des âges similaires compris dans l'intervalle 334 Ma et 342 Ma ont été obtenus par la méthode ⁴⁰Ar/³⁹Ar sur sections polies sur les muscovites magmatiques de ces mêmes échantillons. Les âges ⁴⁰Ar/³⁹Ar sont donc significatifs. Compte tenu des températures de fermeture des différents systèmes (entre 600 et 750°C pour la monazite (Copeland et al., 1988) et 400°C pour la muscovite (Hames et Bowring, 1994)), un taux de refroidissement rapide est envisagé pour ces granites entre 700°C et 400°C.

Intercept ages from U/Pb=f(Th/Pb) diagram												
Th-Pb age, intercept with Th/Pb-axis												
U/Pb	Th/Pb	∆i+	Age	∆Age +	∆Age -							
0	66	2.3	338,8	12,1	-11,3							
U-Pb age, intercept with U/Pb-axis												
U/Pb	Th/Pb	Δ +	Δ-	Age	∆Age +	∆Age -						
21,29	0	22.67	20.13	326,1	3287,6	-165,5						
U-Th-Pb age at weighted average point from U/Pb=f(Th/Pb) diagram												
Pente	∆pente	Xbar	Ybar	Age	∆Age+	∆Age-	MSWD					
-3.09	0.27	7.46	42.80	334,5	4,9	-6,2	1,2					

Fig. III-12c : Tableau récapitulatif des données du diagramme isochrone pour l'échantillon 284.

VII. Les failles normales au toit du massif leucogranitique de la Brâme

(voir description de la technique analytique Chapitre II, §V-1 ; et localisation des échantillons Fig. III-2, Tableau 9, annexe 1)

VII-1. Description pétrostructurale et datation ⁴⁰Ar/³⁹Ar du cœur des granites du massif de la Brâme : Echantillon 300 (Tableau 7 et 8, annexe 1)

La structuration des foliations magmatiques, plates au cœur du massif et pentées de part et d'autre ont conduit plusieurs auteurs à proposer pour le complexe leucogranitique de la Brâme une mise en place syntectonique des failles qui le bordent (Mollier et Bouchez, 1982; Faure et Pons, 1991; Faure et al., 1990). La mise en place de ces leucogranites est datée à 324 ± 4 Ma (Holliger et al., 1986). En revanche les failles normales de Nantiat et de Bussières-Madeleine situées à l'ouest et à l'est, n'ont jamais fait l'objet de datation ⁴⁰Ar/³⁹Ar dans la partie nord du massif. De façon à confirmer ou infirmer ces hypothèses, nous avons échantillonné les granites au cœur (Ech. 300) et à la périphérie du massif (Ech. 317 et 306).

Le complexe leucogranitique de la Brame-St Sylvestre - St Goussaud est séparé du massif granitique de Guéret au nord et à l'est par les failles d'Arrênes-Ouzilly et Bussières - Madeleine (B.M.) (N20°E) respectivement et à l'ouest des unités paléozoïques de Bellac par le prolongement NE de la faille de Nantiat (N50°E) (Fig. III-2).

Les failles de B.M. et de Nantiat correspondent à des failles normales ductiles respectivement pentées vers l'est (basculement du bloc Guéret à l'est) et vers l'ouest (Fig. III-13a). Lespinasse et al. (1986) montrent que les failles de B.M. et de Nantiat sont des accidents ductiles pentés que l'on peut suivre sur une épaisseur de 1,5 km. Dans sa partie nord, les leucogranites sont structurés en lame horizontale (Fig. III-13d). Les foliations sont peu pentées (Fig. III-13b) et les linéations orientées N120°E sont sub horizontales (Fig. III-13c). Ces observations sont confirmées par l'étude gravimétrique menée par Audrain et al., (1989) qui met en évidence un massif leucogranitique peu profondément enraciné entre 1,6 et 2,1 km en moyenne. La mise en place de ces leucogranites est estimé à 324 + 4 Ma (Holliger et al., 1986).

L'échantillon prélevé provient de Saint Sornin Leulac (Fig. III-13) situé au cœur du massif de la Brâme. Il correspond à un granite à tendance porphyroïde, à biotite. La granulométrie est variable, passant d'un grain moyen (1 à 3 mm avec mégacristaux de feldspath potassique de 2 à 5 mm) à un grain grossier (feldspath potassique de 1 à 4 cm et biotite de 1cm). L'observation en lame mince laisse apparaître plusieurs phases minérales : Feldspath K très perthitique et myrmékitisé contenant parfois des inclusions de sillimanite ; plagioclase (An10-16) ; biotite en agrégats orientés avec inclusions fréquentes de zircon et/ou de monazite ; un peu de muscovite ; de la sillimanite orientée dans les plans de foliation (Fig. a, Planche XXIV) et/ou en inclusion dans le quartz, le felspath K ou la muscovite ; des minéraux accessoires (apatite, zircon, monazite et rares oxydes). Dans ce secteur les leucogranites sont caractérisés par une foliation magmatique assez plate (N070-35NW) qui porte une linéation orientée NW-SE marquée par la biotite et la sillimanite. Les microstructures indiquent un mécanisme en faille normale vers le NW.

La <u>population de biotite</u> (Fig. b, Planche XXIV) fournit un âge plateau de **313,1** \pm **2,9 Ma** pour plus de 80% de l'³⁹Ar libéré (Fig. a, Planche XXIII) et <u>une</u> <u>isochrone</u> similaire à **313,4** \pm **2,9 Ma** (Fig. b, Planche XXIII).

Les <u>fusions ponctuelles</u> réalisées sur une <u>biotite</u> du même échantillon et effectuées perpendiculairement au plan (001) du mica donnent des âges compris entre **306,5** ± **2,4** Ma et **315,2** ± **3.0** Ma (Fig. c, Planche XXIII) peu éloignés de ceux obtenus sur population. Le premier point donnant un âge vieux à $360,3 \pm 2,7$ Ma est à relier à un phénomène de pollution de la surface du grain avec un rapport ³⁸Ar / ³⁹Ar élevé (tableau 1).

Nous interprétons ces âges comme des âges de refroidissement à $300 - 350^{\circ}$ c (température de fermeture de la biotite, Harrison et al., 1985) compatible avec les âges de mise en place à 318 ± 5 Ma et 324 ± 4 Ma obtenus par la méthode U/Pb sur monazite et zircon (Holliger et al., 1986) dans les leucogranites de Saint Sylvestre de même faciès. Ces résultats sont compris dans l'intervalle des âges obtenus par Scaillet et al. (1996) sur l'ensemble du massif avec des âges sur muscovite compris entre 301 Ma à la base du laccolite et 314 Ma au toit et sur biotite entre 300 et 320 Ma.

VII-2. Description pétrostructurale et datation ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ de la limite Est du massif, la faille de Bussières-Madeleine : Echantillon 317 (Tableau 7 et 8, annexe 1)

Les échantillons prélevés au hameau de Chégurat prés de La Chapelle-Templière correspondent à des granites à deux micas et à mégacristaux de feldspath potassique affectés par une déformation ductile de haute température (600° C – 650° C) en faille normale vers l'Est (faille de Bussières-Madeleine). Les plans de foliation orientés N-S avec un pendage de 60° vers l'Est portent une linéation qui plonge au N130. La mise en évidence de microstructures C-S dextres indique un abaissement du compartiment Est vers le SE.

Les plans de cisaillement sont formés par des micafishs représentés par des biotites et des muscovites (Fig. c, Planche XXIV). Les muscovites sont froissées, preuve d'une déformation plastique de haute température à l'état solide (Fig. d, Planche XXIV). Les rubans de quartz sont formés de grains avec des sous joints à 90° qui forment un réseau en mosaïque décrit par Gapais et al., 1986 et Tommasi et Vauchez., 1994 comme étant des textures acquises à l'état solide à haute température (Fig. e, Planche XXIV). Les quartz présentent aussi des joints de grains curvilignes témoignant d'une forte migration aux joints de grain se produisant vers 600°C (Jessel, 1987).

Le dégazage progressif d'un <u>monograin de biotite</u> syn-cisaillement donne un spectre assez homogène qui

fournit un âge plateau à **305,5** \pm **3,3 Ma** pour 72 % de l'³⁹Ar libéré (Fig. d, Planche XXIII). Le deuxième palier à 314,3 \pm 2 Ma est contaminé par de l'argon en excès lié vraisemblablement au dégazage d'inclusions riches en chlore. Le premier et les deux derniers paliers de dégazage fournissent des âges jeunes non significatifs correspondant à un signal de faible intensité. La <u>droite</u>

isochrone donne un âge à $310,7 \pm 3,2$ Ma (Fig. e, Planche XXIII).

Les âges compris dans l'intervalle $305,5 \pm 3,3$ Ma et $310,7 \pm 3,2$ Ma fixent une limite supérieure pour la déformation ductile en faille normale vers le SE qui est estimée autour de 600°C (la température de fermeture de la biotite étant de 300°C).

FIG. III-13 – Structuration ductile de la partie septentrionale du massif de la Brâme d'après LESPINASSE et al. (1986). a : Image cartographique des trajectoires de foliation, (1) foliations magmatiques ; (2) foliations plastiques de l'encaissant. b : Pôles des foliations, canevas de Schmidt, hem. inf., 134 mesures, coupures pour 0,8 ; 2 ; 5 ; 8 max 11%... c : Stéréogramme des linéations mesurées dans le granite et son encaissant. Canevas de Schmidt, hem. inf., 78 mesures, coupures pour 0,8 ; 1,6 ; 3 ; max 6%. Noter : Les linéations sont sub horizontales ; l'axe de zone du meilleur plan moyen des linéations (noté AZ), est orienté N30°E et plonge de 25° vers le Sud. d : Coupe schématique NW-SE.

PLANCHE XXIII – Résultats ⁴⁰Ar/³⁹Ar effectués sur les leucogranites du massif de la Brâme.

PLANCHE XXIV – Microstructures observées au cœur du massif leucogranitique de la Brâme et sur ses bordures. a : Echantillon 300 (St Sornin Leulac). Plans de cisaillement soulignés par la sillimanite et quelques micas secondaires. b : Echantillon 300 (St Sornin Leulac). Biotites cisaillées avec inclusion de zircons. c :Echantillon 317 (Faille de Bussières-Madeleine-hameau de Chégurat). Micafishs de biotite et de muscovite vers le N130. d. Echantillon 317. Biotite et plagioclase kinkés. e. Echantillon 317. Micafishs séparés par des rubans de quartz recristallisés avec joints de grains flexueux ou à 90°. f. Echantillon 306 (Faille de Nantiat-Rancon). Micafishs de muscovites magmatiques avec recristallisation de micas secondaires dans les ombres de pression.

Chapitre III- Structure, tectonique et microtectonique du Limousin VII-3. Description pétrostructurale et datation ⁴⁰Ar/³⁹Ar de la limite ouest du massif, la faille de Nantiat : Echantillon 306 (Tableau 7, annexe 1)

Les leucogranites mylonitiques de la faille normale de Nantiat ont été prélevés à Rancon, à l'ouest de Châteauponsac (Fig. III-13a), pour une analyse ponctuelle par sonde laser sur section polie.

La foliation NS pend de 40° vers l'ouest et porte une linéation qui plonge de 35° au N300.

En lame mince, les muscovites asymétriques sont millimétriques et présentent des recristallisations de micas secondaires dans les queues de cristallisation (Fig. f, Planche XXIV). Les bandes de cisaillement formées par les muscovites et les biotites sont séparées par des rubans de quartz recristallisés. La limite entre les grains de quartz est curviligne impliquant qu'ils ont subis un intense phénomène de migration aux joints de grains typique d'une déformation de haute température autour de 600°C (Jessel, 1987). Les limites de grains entre le quartz et le feldspath sont lobées, significatives d'une déformation de haute température attempérature d'une déformation de haute température s'une déformation de haute température (T > 600°C, Gower et Simpson 1992).

Sur 9 fusions ponctuelles (Fig. f, Planche XXIII) réalisées dans les zones de cisaillement ou dans les clastes, seuls trois âges (7, 8, 9) sont cohérents avec l'orogenèse Varisque. Ceux de 321,9 ± 7,0 Ma et de 323,1 + 2,5 Ma sont obtenus sur des clastes de muscovite et celui de 312,6 + 1,5 Ma sur une zone de cisaillement, caractérisée par la recristallisation secondaire des micas. Les points 1, 4 et 6 sont définis par des âges extrêmement vieux (541,3 ± 1,7 Ma, 692,7 + 6,8 Ma et 467,6 + 5,2 Ma) non significatifs qui sont le reflet d'un rapport ³⁸Ar / ³⁹Ar anormalement élevé comparé à ceux des points 7, 8 et 9 et traduisent une contamination par des fluides riches en chlore. Les points 2 et 3 indiquant également de vieux âges sont le résultat de signaux de faible intensité (marges d'erreur élevées).

Les âges varisques obtenus sur cet échantillon sont de même ordre de grandeur ou un peu plus vieux que ceux obtenus au cœur du massif et sur les mylonites de la faille de Bussières-Madeleine. La période comprise entre 310 et 325 Ma fixe la limite supérieure pour l'âge de la déformation ductile de haute température (entre 600°C et 750°C) en faille normale vers l'ouest.

VII-4. Conclusion

Les biotites du granite de la Brâme (Echantillon 300) procurent un âge plateau à 313 ± 3 Ma, confirmé par l'analyse ponctuelle sur monograin, qui est interprété comme un âge de refroidissement pour l'ensemble du massif. Ces résultats ne sont pas incohérents avec une mise en place autour des 320 Ma – 325 Ma datée par la méthode U/Pb sur zircon (Holliger et al., 1986). Les âges compris dans l'intervalle $305,5 \pm 3,3$ Ma et $310,7 \pm 3,2$ Ma constituent un âge minimum pour la fin de la déformation ductile en faille normale vers le SE (faille de Bussières – Madeleine). Les âges varisques obtenus sur la faille de Nantiat dans les micro zones de cisaillement sont légèrement plus vieux que ceux acquis sur la faille de B. - M. mais compte tenu des marges d'erreur sont toutefois en accord avec l'ensemble des résultats.

Les données acquises sur le massif de la Brâme confirment sa mise en place syntectonique déjà proposée par Mollier et Bouchez, (1982) ; Faure et Pons, (1991) ; Faure et al., (1990).

Relationships between carboniferous magmatism and ductile shear zones in the Northwestern French Massif Central: New ⁴⁰Ar/³⁹Ar dating

Aude Gébelin^a, Maurice Brunel^a, Michel Faure^b, Patrick Monié^a, Nicolas Arnaud^a

^a Laboratoire Dynamique de la Lithosphère, Université Montpellier II, CC060, Place E.Bataillon, 34095 cedex5 Montpellier, France

^b Institut des Sciences de la Terre d'Orléans, UMR 6113, Université d'Orléans, BP 6759, 45067 Orléans Cedex 2, France

*Corresponding author Tel. International: +33.4.67.14.45.97; fax International: +33.4.67.52.39.08 E-mail address: gebelin@dstu.univ-montp2.fr

Keywords: ⁴⁰Ar/³⁹Ar dating, Microtectonics, Mylonite, Granite, Variscan orogeny, French Massif Central

Abstract

Within the Limousin area, variscan granitic plutons are spatially associated with normal faults and major strike-slip shear zones that continue the South Armorican shear zone. The new 40 Ar/ 39 Ar dating and microstructural study of mylonites allow us to estimate the onset of movement on beginning of dextral wrench faults around 350-360 Ma and the end of the shearing around 300 Ma. We propose that the two generations of granitoïds (granodiorites-monzogranites and leucogranites) were emplaced in transpressional context developing dextral strike-slip faulting and thrusting in response to a N-S to NW-SE convergence. The morphology and faulting pattern of the Limousin and Armorican massifs is compared to a pop-up structure now partially eroded.

The main, large ductile shear zone of the pop-up structure may correspond to a lithospheric scale strike-slip fault channeling the granitic magmas ascent. The syntectonic emplacement of granitic melts in ductile strike-slip shear zones could be explained by lower crust partial melting induced by shear heating in the upper mantle.

Chapitre III- Structure, tectonique et microtectonique du Limousin 1. Introduction

Many studies have shown that melts have an influence upon the rheology and deformation of the crust (Davidson et al., 1994). Some examples described by Hutton and Reavy (1992), Davidson et al. (1992), Tikoff and Teyssier (1992) and Tikoff and St Blanquat, (1997) showed a close relationships between magmas and crustal ductile shear zones. Never theless, qualitative observations of geological maps, lead to the following questions: does the deformation triggers the magma formation and its ascent? Does magma rheology has an impact of the location of the crustal deformation? Finally, do both, magmas and tectonics, represent the results of a larger scale event? All these questions can be debated in our studied zone: the Limousin area, located in the northwestern part of the French Massif Central (France).

The Variscan French Massif Central, is a collision belt which first experienced crustal stacking and thickening (Matte, 1986), followed by extension and crustal thinning (Faure, 1989; Van den Driessche and Brun, 1989; Faure *et al.*, 1990; Burg *et al.*, 1990; Faure, 1995). During the Carboniferous post-collisional crustal thinning episode, many leucogranites were emplaced in the crust hiding the earlier crustal structures and consequently their own zone-source (Faure, 1989; Faure and Pons, 1991).

On the western side of the Sillon Houiller sinistral wrench fault, the Limousin area is characterised by numerous leucogranites resulting from, partial melting of the pre-Variscan crustal basement (Cuney *et al.*, 1990).

These leucogranitic intrusions are spatially associated with normal faults and major strike-slip shear zones that may have controlled the ascent and emplacement of magmas.

Two different ductile shear zones are recognized: a series of E-W to NW-SE striking wrench faults, usually incised at right angles by N-S normal faults. For example (Figure 1), the Marche sinistral wrench fault in close association with leucogranites, is cut by the N-S Nantiat Bussières-Madeleine normal and faults. which tectonically assisted the Brâme leucogranite cooling (Mollier and Bouchez, 1982; Faure and Pons, 1991). The E-W to NW-SE Arrênes-St Michel de Veisse-Felletin -La Courtine wrench fault network is incised by the N-S normal Argentat fault (Figure 1). Shear zones often form the boundaries of granitic massifs but sometimes cut across them. This is the case of the N-S Pradines dextral wrench fault that crosses the Millevaches massif lengthways (Gébelin et al, 2004).

The E-W to NW-SE wrench fault and the general geometry of Limousin accidents could correlated to the South Armorican shear zone extent.

The kinematics and the activity period of these accidents are misunderstood and are the subjected to discussion about the structure and the evolution of the continental crust in this part of the Massif Central. The aim of this study is to understand: i) the relationships between normal faults and strike-slip shear zones, ii) the structural link between the Limousin accidents and the South Armorican shear zone, iii) the geodynamic context in which the fault pattern developed. To assess those questions, ${}^{40}\text{Ar}{}^{39}\text{Ar}$ dating has been used on

variousseries. Granites cores and borders were dated to infer a possible syntectonic granite emplacement, as already suggested by Mollier and Bouchez, (1982), Faure et al., (1990), Faure and Pons, (1991), Gébelin et al., (2004). Biotite-sillimanite-cordierite gneisses collected within and far of the shear zone, and representing the granite basement were also dated. Finally, granulite enclaves within granite were dated. The ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ ages, the granites deformation textural study and the shear zones kinematics will be first compared and discussed within the Limousin strike-slip faulting context, then replaced in a general geodynamical scheme. A crustal evolution model of the Limousin and Armorican massif areas will be proposed in order to discuss the relationships between magmatism and tectonic events experienced by the Variscan orogeny between 360 and 300 Ma.

2. Geological setting

The West European Variscan belt results from the collision between Gondwana and Laurentia-Baltica plates. The following chronology of the main events is compliant to the Limousin geology: an eo-Variscan Silurian stage relate to the closure of oceanic domains, leading to the formation of high-pressure rocks (Santallier et al., 1994; Lardeaux et al., 2001). A Devonian to early Carboniferous stage related to the continental collision and nappe stacking in Barrovian metamorphism conditions. In Limousin, the end of the nappe tectonics is characterised by two main igneous events dated at about 355 Ma: the emplacement of peraluminous biotite + cordierite granites (Guéret type) and the so-called "tonalitic line" consisting in a series of high and medium-K calc-alkaline diorites, tonalites and monzogranites. A first late Visean to Namurian extensional tectonics resulting in a post-collisional crustal thinning (Faure, 1995). This extensional stage induced a ductile deformation characterized by a NW-SE stretching direction and was coeval with the Limousin leucogranites emplacement (peraluminous two-mica granite) and associated strike-slip and normal faults (Faure, 1995). Finally, a late orogenic extensional tectonics (Late Carboniferous to Early Permian in age) yields intra-mountane coal basins and was coeval with the lower granulitic crust formation (Pin and Vielzeuf, 1983).

Slashed by many ductile shear zones, the Limousin is a key area for a good understanding of the Variscan continental crust structuration. This area is covered-up to the west by the "Seuil du Poitou" Mesozoic series and limited to the east by the Sillon Houiller sinistral wrench fault. From west to east, we recognised the Brâme, Millevaches, and Guéret massifs, which are bounded by large ductile mylonitic shear zones of two different types (Figure 1):

The first one represented by E-W to NW-SE striking wrench faults like the E-W Marche sisnistral wrench fault which separates the Guéret massif from the Aigurande plateau, or the NW-SE Ouzilly, Arrênes, St Michel de Veisse and Felletin-La Courtine dextral wrench faults.

The Second type corresponds to normal faults and cut the previous strike-slip faults (type one) at right angles.

Figure 1 :

Simplified geological map of the northwestern part of the French Massif Central with the location of ⁴⁰Ar/³⁹Ar dating.

From west to east, we distinguish the N-S Nantiat normal fault which forms the western boundary of Brâme leucogranites and separates them from the Bellac Paleozoïc units; The Bussières-Madeleine normal fault which limits the Brâme massif from the Guéret massif on its western border; The N-S normal Argentat fault which forms the western boundary of the Millevaches massif.

On its western side, the Millevaches plateau is separated from the Limousin metamorphic units [Floc'h, 1983] by the ductile and brittle Argentat fault; To the north, the "St Michel de Veisse" dextral wrench fault which limits the Millevaches to the Guéret granitic massif; And finally to the east, the Millevaches massif is divided from cordierite anatexites and biotite-sillimanite paragneiss units by the Felletin - la Courtine shear zone. It is affected in its central part by the N-S (2 to 6 km) thick Pradines ductile dextral wrench fault. **3.** The mylonitic deformation features: Example of the Felletin – La Courtine dextral ductile shear zone (Figure 1 and 2)

3.1 Outcrop scale description

The Felletin-La Courtine fault zone was mapped along the northeastern edge of the Millevaches massif (Figure 1). The Felletin-La Courtine fault zone shows preserved metasedimentary series, possibly equivalent to the Limousin area. Quartz lattice preferred orientation performed on the granites derived mylonites within the Felletin-La Courtine fault zone fielded a temperature estimate between 400 and 700°C for the mylonitization. The Felletin-La Courtine fault zone deforms rocks that have undergone previous Variscan deformation such as cordierite migmatites, biotite-sillimanite gneiss and *Chapitre III- Structure, tectonique et microtectonique du Limousin* micaschists. Its peculiar geometry consists of two sections.

The N-S section

Along the eastern edge of the Millevaches massif, the Felletin-La Courtine fault zone affects the Millevaches leucogranites which experienced two deformation events. First, N-S foliation is sub vertical and the lineation plunges shallowly ($< 30^\circ$) to the south (sample 188, Figure 2a). Shearbands indicate a dextral wrench sense. It is worth noting that to the east and NE of Felletin (Figure 2), sinistral wrench movement in the mylonitic leucogranites can be observed (sample 3 and 524on Figure 1).

The first deformation is superimposed by a second, corresponding to southwestward reverse faulting. The associated foliation strikes NW-SE and dips shallowly ($< 30^\circ$) to the NE. The lineation is oriented NE-SW and develops shearbands indicating sinistral SWestward shearing (Figure 2b). Both, dextral wrench fault and reverse fault can be observed within the same granite. The first and second lineations are defined by the orientation of mica wrapping around well-preserved feldspar porphyroclasts and by deformed quartz grains (see description in thin-section in § 3.2).

The Felletin-La Courtine fault zone also affects cordierite migmatites, biotite granites (Guéret type) and biotite- sillimanite gneisses. Those last two formations form N-S fault-bounded lozenges. North of the Felletin-La Courtine fault zone, the foliation of gneisses and granites is orientated N310 - N340 and dips between 20° and 85° NE from west to east (Figure 2, zone 1, F1). The gneiss foliation is consistent with the flat leucogranites foliation (second phases). The biotite granite foliation strikes around N330-50°NE to become sub vertical near the cordierite migmatites (Figure 2, zone 1). The gneiss and granite lineation dips shallowly (30°) (Figure 2, zone 1, L1). Shearbands indicate (in particular in the ultramylonites of biotite granite) a south directed reverse fault mechanism. These ultramylonitic granite (sample 95, §3.2) outcrops are well recognizable from their blackish aspect.

Southward, near Clairavaux, the Felletin-La Courtine fault zone moves away from the Millevaches leucogranites and from a N-S direction (Figure 2, zone 2, F2), the foliation gradually strikes NW-SE. In that area, all series become sub vertical. Lineations are sub horizontal with shallow down-dip plunge that rarely exceeds 25° southeastward (Figure 2, zone 2, L2). Shear criteria indicate dextral wrench sense movement.

The EW to NW-SE section

The biotite-sillimanite gneiss and biotite granites form stripes parallel to the Felletin-La Courtine fault zone general trend. The foliation planes strike N300-and dip 55 to 80° SW (Figure 2, zone 3, F3). Near Clairavaux, the foliation usually dips 60° to the SW, but towards the southeast it becomes sub vertical. In all series, the lineations have a low dip varying between 0° and 20° (Figure 2, zone 3, L3).

Biotite granite outcrop in the EW to NW-SE section show large shearbands indicating a dextral sense of shearing (samples 375 and 12, Figure 3g). Feldspars have asymmetric pressure shadows containing small quartz grains, and plagioclases (Figure 3a). Here too, the quartz grain shape is inclined of 40° with respect to the shear plane.

3.2 Mylonites description in thin section

3.2.a Granite mylonites

The mylonites protolith corresponds to syntectonic leucogranites or syntectonic Gueret type granite emplaced in strike-slip faults.

The leucogranites (or 2 micas granite) and Gueret type granite are compose of K-feldspar, plagioclase, quartz, biotite, muscovite (ubiquitous in the leucogranites and rare in Gueret type granite), plus accessory minerals (apatite, zircon, monazite). Several deformation stages are expressed in the field: protomylonites, mylonites and ultramylonites (Figure 2).

Within the leucogranite mylonites, in the initial stages, quartz and micas forming micafish (1 cm size) outline C surfaces. Micafish always locate around asymmetric σ - type K-feldspar. Gradually, the magmatic muscovite is surrounded by smaller secondary muscovite crystals that also occurring in pressure shadows (Figure 3b). In the ultramylonitic stage, the recrystallization of primary muscovite into secondary muscovite is important and gives thin shear bands (0.1 mm thick) built of new formed mica (Figure 3c). These are supposed to develop at the end of fault activity under low temperature conditions (300°C). The quartz ribbons form micro dextral shear-zones and present a maximum grain shape orientation around 40 ° angle with ribbon boundaries (sample 188, Figure 3d).

For Gueret type granite (sample 95, Figure 3e), the ultramylonitic microstructure consists essentially of three types of alternating bands: mica bands + plagioclase pure K-feldspar bands (fine-grained aggregates plus porphyroclasts) and quartz. The biotite and muscovite crystals are disrupted to form fine-grained, mica-rich bands, associated with white mica resulting from plagioclase breakdown. Scarce magmatic muscovite crystals dextrally sheared are preserved. K-feldspar occurs as stretched layers of finely crushed microbreccia where a few, rounded porphyroclasts can be seen. Quartz is concentrated in pure quartz bands that extend parallel to the shear planes. These bands consist of fine-grained recrystallized aggregates and the main axe of quartz grain gives the average orientation of the X-axis. This direction lies entirely within S surfaces in the initial deformation stages and makes an angle of 35° with C surfaces (Figure 3f). Quartz bands develop isoclinal microfolds consistent with the overall dextral shear sense.

In mylonitic facies (sample 375 and 12, Figure 3a, 3g), the porphyroclasts present well-developed asymmetric tails of recrystallized plagioclase and quartz. Grain shape orientation indicates dextral shearing. The majority of porphyroclasts show a consistent asymmetry at both outcrop and microscopic scale. The quartz ribbons are formed of elongated small grains making an angle around 35-40° with C shearing surfaces.

Figure 2:

Geological map of Felletin-La Courtine shear zone.

Figure 3:

a) Sample 375, (biotite granite mylonite), recrystallization of quartz and feldspath in the pressure-shadow forming micro dextral shear-zones measured using EBSD microprobe. b) Leucogranite, recrystallization of secondary muscovite in the magmatic muscovite pressure shadow. c)(Leucogranite), recrystallization secondary micas in micro shear band. d) Sample 188, (leucogranite), quartz ribbon forming a micro dextral shear-zone and presenting elongated small quartz grains making an angle around 35-40° with C shearing surface. These ribbons has been performed using EBSD microprobe. e) Sample 95, (biotite granite ultramylonite), ultramylonitic texture. f) Quartz ribbons formed of elongated small grains making an angle around 35-40° with C shearing surface. Quartz grain has been performed using EBSD microprobe. g) Outcrop 375, (biotite granite mylonite), C-S structure indicating a dextral sense of shearing. h) Sample 40, (biotite-sillimanite gneiss), sillimanite dextral sheared.

Chapitre III- Structure, tectonique et microtectonique du Limousin **3.2. b Paragneiss-mylonites**

Biotite-Sillimanite paragneiss represent the metamorphic pelitic sequence. They are located within the Felletin-La Courtine fault zone. They are composed of K-felspar, plagioclase, quartz, biotite, sillimanite and scarce muscovite. On XZ oriented sections a strong layering is formed by pluricentimetric quartz ribbons separating elongated aggregates of sillimanite and biotite. C-S microstructures with stable prismatic and fibrolite sillimanite and biotite yield a dextral shearing sense (Figure 3h). Cordierite is sometimes related to these phases. Large quartz grains show undulatory extinction and subgrain boundaries, with interlobate subgrain indicating grain boundary migration (T>600°C; Jessel, 1987). Rectangular grain boundaries form a reticular or mosaic-like pattern indicating extensive grain boundary migration, typical of high temperature (T>600-650°C) sub-solidus deformation [Gapais et al., 1986 ; Tommasi and Vauchez., 1994]. K- feldspar shows undulatory extinction and microcline domains (T> 600-650°C; Eggleton et Buseck, 1980). Ubiquitous myrmekites are located systematically adjacent to the Kfeldspars.

3.3 Quartz preferred orientation by electron diffraction techniques

Four samples of mylonitic biotite granite coming from the Felletin-La Courtine ductile shear zone have been studied using EBSD.

The first rock (sample 95, Figure 3e), sampled in the N-S section, consists of ultramylonitic Gueret type granite (see description §3.2a). The ultramylonites foliation strikes N330, dips 50° NE, and bears an N-S mineral lineation. C-S criteria indicate a top to the south reverse fault mechanism.

The quartz c-axes fabric is of girdle type and contains a marked concentration of C axes parallel to the Y-axis of the finite strain ellipsoid (Figure 4). This is compatible with plastic deformation by dominantly < a > prismatic glide, which occurs between 400°c and 700°c (Tullis et al., 1973, Mainprice and Paterson, 1984). The quartz c-axes pole shows a small obliquity with respect to Y (Figure 4).

Samples 12 and 375 (Figure 3a and 3g) correspond to mylonites in the Guéret type granite. They are located within the NW-SE portion of the La Courtine-Felletin shear zone (Figure 3, zone 3). The foliation planes are subvertical and strike E-W and the lineation is subhorizontal. These granites experienced a less intense deformation than the first sample (95). X is therefore defined by the quartz grain shape orientation.

The quartz c-axes of sample 12 (Figure 4) can be interpreted as the result of preferential activation of prismatic $\langle a \rangle$ and rhomboedric glide systems. The a and m-axis maxima make an angle of 20°-25° with the lineation (X). The r-axis maximum has a bimodal distribution in the XZ plane at right angle with the foliation. The inverse pole figures show the importance of r plane and its direct relationships with the foliation and the lineation. For temperatures close to those developed during the syntectonic granite crystallization, Kruhl and Peternell (2002) showed that the quartz slip systems act with rhomb planes. These authors add that the acquisition and the stabilisation of this glide system is a fast process that occurs immediately after the end of the deformation.

The quartz c-axes pattern of sample 375 shows a dominant maximum closer to the centre and characterizes a dominant < a > prismatic glide. Another lower ponderated maximum develops in the XZ plane (Figure 4).

Sample 188 corresponds to the mylonitic (Figure 2d) leucogranites forming the NE edge of the Millevaches massif (Figure 3, zone 2). As seen previously, they present a N-S subvertical foliation bearing a low –down plunge ($< 30^{\circ}$) to the south. C-S relationships indicate dextral wrench movement.

The quartz c-axes are clustered in the dominant maximum in the centre (Y) of the pole figure. Another maximum develops at 40° from Y. The quartz-a-axis maximum implies a dextral shear convenient with field and microstructures observations (Figure 4).

In four samples, the fabric contains a marked concentration of c axes parallel to the Y-axis of the finite strain ellipsoid. This is compatible with plastic deformation by dominant prismatic $\langle a \rangle$ glide. The shearing sense deduced from microstructural and field observations is dextral. The quartz-a-axis maximum of sample 188 confirms this vorticity of flow. For the others samples, it is difficult to deduce through the quartz-a-axis a sense of shearing. The petrographical data (stability of mica) combined with a dominant prismatic slip in the quartz suggest that the deformation took place at relatively high temperature between 400° and 700°C. The development of C and S surfaces is acquired at this time. The quartz fabric acquisition developed during the biotite granite (Guéret type) and leucogranite cooling.

3.4 ⁴⁰Ar/³⁹Ar dating of St Michel de Veisse – Felletin -La Courtine ductile shear zone (see location on Figure 1 and Table A)

The age of the St Michel de Veisse and Felletin-La Courtine accidents activity period is misunderstood. To understand the relative chronology between magma emplacement, regional tectonic context and ductile shear zones, samples have been collected within shear zones and far of them. To infer a possible syntectonic granite emplacement already suggested by the microstructural study, granites cores and borders were dated by ⁴⁰Ar/³⁹Ar method. Representing the granite basement, biotite-sillimanite gneisses were also analysed within the shear zone and also far of granite which could induce resetting.

3.4.a Undeformed leucogranite (Figure 5a, Table 1)

Sample 6 comes from the NE edge of the Millevaches massif near St Quentin-la-Chabanne on the western boundary of the Felletin-La Courtine shear zone. It contains K-feldspar, plagioclase, quartz, biotite and predominantly coarse muscovite large grain (10 mm). Biotite shows sometimes a beginning of chloritisation and contains inclusions of zircon and/or monazite.

The bulk biotite sample has a discordant age spectrum with apparent ages ranging from 305 to 338 Ma. For 70% of the total ³⁹Ar released, these ages vary

Figure 4:

Quartz LPO measured using the EBSD technique. Equal area projection, lower hemisphere. Foliation (XY plane) is vertical and lineation (X) is horizontal in this plane. N: number of measurements. DM : maximum density.

Chapitre III- Structure, tectonique et microtectonique du Limousin between 317 and 322 Ma. The ${}^{36}\text{Ar}/{}^{40}\text{Ar}$ versus 39 Ar/ 40 Ar isotope correlation plot gives an intercept age of 320.8 ± 4.3 Ma with an initial 40 Ar/ 36 Ar ratio of 450 ± 47 (Table B) which suggests the presence of some excess 40 Ar, possibly linked with the partial chloritisation of the biotite.

A single crystal of biotite gives an age spectrum less disturbed than the bulk sample one, but we note an age increasing from 318 Ma to 331 Ma. The ³⁶Ar/⁴⁰Ar versus ³⁹Ar/⁴⁰Ar isotope correlation plot gives an intercept age of 322.8 + 3.5 Ma with an initial 40 Ar/ 36 Ar ratio of 299 <u>+</u> 37 (Table B).

The bulk muscovite sample yields a plateau age of 322.2 ± 3.0 Ma on 70% of the total ³⁹Ar released (Table B). The fact that biotite and muscovite have respectively closure temperature for argon diffusion of 300°C and 400°C (Harrison et al., 1985;+ Hames and Bowring, 1994), the similarity of ages indicates that cooling was fast at 320-322 Ma when the granite crosscuts the 300-400°C isotherms.

3.4.b Northern continuity of Felletin-La Courtine fault, St Michel de Veisse fault (Sample 246, 241) (see *location Figure1 and table A)*

It is difficult to individualize the Felletin-La Courtine and St Michel de Veisse faults for they are in continuity.

St Michel de Veisse fault presents a E-W to NW-SE orientation and it forms the northern edge of the Millevaches massif. Kinematic criteria associated to the subhorizontal lineation including asymmetric plagioclase augens, boudinage, mica fish structures, indicate a dextral sense of shearing. Many samples have been collected along this fault (sample 246 and 241).

We analyzed a bulk muscovite sample from a mylonitic leucogranite (246).Muscovite yielded a plateau age of 313.0 ± 2.8 Ma for 68% of ³⁹Ar released (Figure 5b, Table 1) and an intercept age of 315.3 + 3.0Ma in the 36 Ar/ 40 Ar versus 39 Ar/ 40 Ar isotope correlation plot (Table B, ${}^{40}\text{Ar}/{}^{36}\text{Ar}$ of 324 + 28; MSWD=0.69).

The biotite-sillimanite gneiss (241) from the St Michel de Veisse fault provides a weighted average of 312.7 ± 3.3 Ma on nine spots obtained on a single biotite grain (Figure 5c, Table 2).

3.4.cThe Felletin-La Courtine fault (Sample 524, 3, 265, 40, 347; Figure 1)

To the east and NE of Felletin (Figure 3), sinistral wrench movements in the mylonitic leucogranites can be observed. To compare the activity period of dextral and sinistral wrench movements, two mylonites indicating sinistral sense of shearing (sample 3 and 524, Figure 1) have been analysed on polished section.

Dating of tiny secondary mica within shear bands give ages ranging from 303.8 ± 6.7 Ma to 318.3 ± 2.6 Ma on sample 524 (Figure 5d) and from 306.5 ± 1.6 Ma to 325.0 ± 1.4 Ma on sample 3 (Figure 5e) (Table 2). These ages are consistent with the results obtained within dextral wrench fault (sample 246).

To discuss relations between wrenching and reverse faulting observed in the mylonitic leucogranites of the

NE edge of the Millevaches massif, we analysed on polished section the muscovites of sample 265 indicating southwestward movements (Figure 1).

Muscovite ages range from 307.7 ± 5.2 to $324.6 \pm$ 3.1 Ma (Figure 5f, Table 2). Similarly, those obtained on recrystallized shear zone vary from 310.5 ± 3.1 Ma to 316.0 ± 4.9 Ma. These ages are consistent with the wrench fault activity.

A single crystal of biotite (sample 40) coming from biotite-sillimanite gneiss septa in the Felletin -La Courtine fault, yields a plateau age of 317.3 ± 3.3 Ma for 80% of ³⁹Ar released (Figure 5h, Table 3 and B). The isochron gives an age of 316.3 ± 3.5 Ma with an initial ${}^{40}\text{Ar}/{}^{36}\text{Ar}$ ratio of 347 \pm 93 and a MSWD=2.1 (Table B).

Sample 347 was collected far of leucogranites in the Gorges du Chavanon forming the SE continuity of Felletin-La Courtine shear zone. The foliation strikes N080 and dips 60° nortwards. The lineation down-dip plunges N270.Biotite grains are dextrally sheared.

The bulk sample of biotite yields a discordant age spectrum with a unique plateau of 341.3 ± 3.2 Ma for 58% of ³⁹Ar released (Figure 5g, Table 5 and B). There is a very sharp increase in the ages at 700°c with a maximum age of 349.0 ± 0.4 Ma at 800° C, then it decreases to come back to 336 Ma at 1400°C.

The age spectrum of a single grain of biotite increases from 324 Ma to 352 Ma. 352.6 + 5.4 Ma could correspond to a minimum age of biotite initial stage that was resetted at 324.8 ± 2.6 Ma (Figure 5g, Table 5). This age around 324 Ma is consistent with other ages obtained on the ductile strike slip St Michel de Veisse and Felletin-La Courtine shear zones.

3.5 Preliminary conclusion about the Felletin-La Courtine ductile shear zone

The Felletin-la Courtine ductile shear zone involves many rock types: Bt-Sil gneiss, Crd anatexites, biotite granites and leucogranites. Its complexity, dextral wrench fault, sinistral wrench fault and reverse fault, results from several deformation mechanisms.

355-350 Ma: The fault first affected the Paleozoic nappes before the successive granite intrusions disturbed its geometry (sketch A and B, Figure 6).

The Guéret granite is older than the leucogranites. Ultramylonitic sample 95 is derived from the Guéret granite dated at 356 ± 10 Ma by Rb/Sr (Berthier et al., 1979) and to the Villatange granite dated recently on monazite by electron microprobe at 353 ± 5.8 Ma (Rolin et al., submitted). As seen before (§4.2), the Gueret type granite (sample 95) recorded the ductile deformation on the Felletin-la Courtine ductile shear zone during it's cooling between 400°C and 700°C. Along the St Michel de Veisse wrench fault, the Guéret type granite shows the same type of deformation. We conclude that the Felletin-la Courtine and St Michel de Veisse faults were already active at 350 – 360 Ma.

Figure 6: Sketch of Felletin-La Courtine shear zone evolution.

- 356 ± 10 Ma: Syntectonic emplacement of Guéret type granites within the St Michel de Veisse and Felletin-La Courtine shear zones (sketch C, Figure 6).
- 345-335 Ma: the Guéret type granite emplacement that locally record southward reverse movements disturbs the mechanism of the dextral wrench fault (sketch D, Figure 6).
- 335 Ma : The unconformity of the "Visean Tufs Anthracifères" formation (Faure et al. 2002) in the Guéret granite indicate it already cooled at 335 Ma.
- 320 Ma : Syntectonic emplacement of Millevaches leucogranites (sketch E, Figure 6).

The similarity of ages obtained on biotite and muscovite of Millevaches undeformed leucogranites (sample 6) indicate a fast cooling at 320-322 Ma between 300 and 400°C. These cooling ages are consistent with i) the crystallization age of 313 ± 4 Ma obtained on the Pradines leucogranites (by U/Pb on zircon and monazite; Gébelin et al., in preparation), and ii) with the

crystallization age of 320 ± 5 Ma of leucogranites located on the NE edge of the Millevaches massif (U/Pb on zircon; Rolin et al., submitted). These ages are identical to those from the mylonitic leucogranites. The quartz lattice preferred orientations of sample 188 (§3.3) indicating that the deformation took place at relatively high temperature between 400° and 700°C during the leucogranite cooling. From all these informations, we conclude the Millevaches leucogranites emplacement is syntectonic of St Michel de Veisse and Felletin-La Courtine shear zones.

 Mylonitic leucogranites or biotite-sillimanite gneiss (sample 241 and 40) give similar ages in both the Felletin-La Courtine and the St Michel de Veisse faults. We can consequently conclude to a synchronism of these two faults indicating synchronous movement on these two faults between 305 and 320 Ma.

The particular sigmoid geometry of the FCSZ could be explained by the Millevaches leucogranites emplacement near 320 Ma (sketch F, sample 6), later than the already cooled Guéret granite. This implies localized NE-SW compression in the NE edge of the

Chapitre III- Structure, tectonique et microtectonique du Limousin Millevaches massif (sketch E, Figure 6). The various senses of shear observed in the leucogranites of the NE corner of the Millevaches massif, give the same 40 Ar/ 39 Ar ages between 305 and 320 Ma (sample 524 and 3) and are consistent with a high coaxial deformation related to NE-SW local compression.

Moreover, the rotation from E-W to NW-SE of the sub-vertical foliation along the Saint Michel de Veisse fault to N-S along the Felletin-La Courtine shear zone suggests a synchronism of the two ductile faults. The C-S shear criteria and fabric measurements by EBSD confirm that shearing deformation proceeds during the granite cooling.

4. The Pradines dextral wrench fault (see location on Figure 1 and Table A)

The N-S-oriented Pradines dextral wrench fault crosses the Millevaches massif lengthways on 4 to 6 km width. Previous works (Gébelin et al., 2004; Gébelin et al., submitted), show that the leucogranite emplacement is syntectonic. To determine the Pradines fault activity, we sampled the mylonitic leucogranites (2micas granite).

In the north continuity of the Pradines fault, micaschists, experienced a granulitic metamorphism, crop out as NNW-SSE directed vertical lenses. The NNW-SSE subvertical foliation bears a sub horizontal lineation. The sample shows flattened ribbon garnets of several centimeter in lengths, surrounded by 5mm thick cordierite ribbons, quartz ribbons and biotite-sillimanite layers. Garnets present cordierite-sillimanite-biotite asymmetric pressure shadows whose assymetry is consistent with a dextral shearing sense. The metamorphic assemblages K-feldspar, plagioclase, quartz, biotite, sillimanite, garnet, cordierite, and spinel indicates temperature of granulite syn- metamorphic deformation of about 700 - 750°C consistent with the P-T conditions of 6-8 Kbar and 800°C-1100°C estimated by Shaw (1991). The field observations show these formations experienced an increasing rate of melting. The leucosome forms a halo around the paleosome giving rise to the Crd-Grt leucogranite. These leucogranites display dextral C-S microstructures similar to those of the Pradines leucogranites and in the granulites paleosome.

4.1 The Pradines dextral wrench fault

The first sample (356) is located at Sarrans in the core of the Millevaches massif. This leucogranite, composed of K-felspar, plagioclase (oligoclase), quartz, biotite and muscovite.

The bulk muscovite sample yields an age of 310.2 ± 2.9 Ma for 46 % of released ³⁹Ar (Figure 7a, Table 3 and B). The next step representing 20% of total ³⁹Ar released, is characterised by an increase of ⁴⁰Ar/³⁹Ar ratio. The following ones give ages between 312 and 315.5 Ma. The muscovite isochron age of 313.7 ± 3.1 Ma has been calculated with a MSWD=1.92 (Table B).

The five spots obtained on a single muscovite grain range between 303.0 ± 3.0 Ma and 310.9 ± 5.3 Ma (Figure 7b, Table 3).

Muscovite of sample 356 allows to estimate the end of the Pradines activity between 300 and 315 Ma. These argon data are consistent with U/Pb ages obtained on monazite and zircon for the same sample 356 indicating an emplacement age of 313 + 4 Ma of Pradines leucogranites (Gébelin et al., 2004). Considering closure temperature of muscovite at 400°C (Hames and Bowring, 1994) and of monazite at 600-750°C (Copeland et al., 1988; Parrish, 1990), these results show a rapid cooling of Pradines leucogranites from their emplacement. The mylonitization of Pradines leucogranites, acquired around 600°C (Gébelin et al., 2004), is therefore synchronous of the leucogranites emplacement.

4.2 St Pierre Bellevue granulitic lenses

4.2.a The granulite paleosomes

Biotite from a polished section gives ages varying between 313.5 ± 1.0 Ma and 317.5 ± 5.8 Ma (Figure 7c, n°1, 2, 4, 5; Table 3). In agreement with previous isochron, these ages around 315 Ma are interpreted as cooling ages at 300.

4.2.b The granulite leucosomes

The leucosome is composed of K-feldspar, plagioclase, quartz, garnet, cordierite and a very scarce biotite. Biotite on a polished section gives an age of 308.4 ± 0.8 Ma (Figure 7c, n°3; Table 3).

Argon ages achieved on the granulite paleosomes and leucosomes are also consistent with U/Pb result obtained on the same rock on monazite dating the age of granulitisation respectively at 314 ± 4 Ma and 316 ± 2 Ma (Gébelin et al., 2004).

4.3 Conclusion on the Millevaches massif:

The similar ages obtained on the Pradines mylonitic leucogranites, the granulite paleosomes and leucosomes strengthen the idea of a close relationship between the Pradines fault, the Pradines leucogranites and the granulitic metamorphism that affected the micaschists representing the granite basement. We propose the granulitic metamorphism was synchronous to the Pradines leucogranite emplacement and coevals with the activity of the Pradines dextral wrench fault between 310 and 318 Ma.

5. The Marche sinistral wrench fault (see location on Figure 1, Table A and 4)

Along the eastern part of the Marche fault, structures and quartz fabric patterns within syntectonic leucogranites give evidence of large ductile transcurrent sinistral shearing (Choukroune et al., 1983). In the western part of the fault, leucogranites recorded NEward reverse movement. To compare the activity period of these two mechanisms, mylonitic leucogranites have been sampled in the two areas. These results will be compare with the others obtained on the St Michel de Veisse, Felletin-La Courtine and Pradines dextral wrench faults.

Figure 7: Pradines and Marche faults ⁴⁰Ar/³⁹Ar data. Sample location in Fig. 1

5.1 West Marche fault

Samples have been collected in the western part of the Marche fault. Sample 334 (Figure 1) corresponds to a mylonitic leucogranite formed during the activity of the Marche fault. The foliation strikes N120 and dips 80° SW. The lineation has a westward pitch of 50°. Micafish structures, σ -type pressure shadows with quartz and mica indicate a NEward reverse movement.

The bulk muscovite sample gives a good plateau age (Figure 7d, Table 4) of 324.9 ± 3.0 Ma for 60% of the ³⁹Ar released and an isochron age of 326.9 ± 3.0 Ma with an initial ⁴⁰Ar/³⁶Ar ratio of 293 ± 18 and a MSWD =0.3

(Table B). 325 Ma indicate a minimum age for the fault activity.

5.2 East Marche fault

5.2.a Mylonitic leucogranite

The leucogranite sample affected by the Marche fault is located in the south of Dun–le- Palestel (sample 284, Figure 1). Foliation strikes N100 with a vertical dip bearing horizontal stretching lineation. ⁴⁰Ar/³⁹Ar investigations have been performed both on protomylonitic and ultramylonitic samples to document

Chapitre III- Structure, tectonique et microtectonique du Limousin

the effect of mylonitization on argon behavior in micas. In thin section, the protomylonite shows sinistral micafish formed by magmatic muscovite with a few recrystallized secondary muscovite crystals in pressure shadows (Same type of Figure 3b). In the ultramylonitic facies, where no magmatic crystals remain, the recrystallization process is more intense and yields shear bands of secondary micas (Same type as on Figure 3c).

In the first polished section (sample 284e), four clasts of muscovite give ages varying from 333.8 ± 6.7 Ma to 342.3 ± 4.4 Ma (Figure 7e, Table 4). Shear bands provide younger ages than the clasts ranging from 293.3 ± 2.3 Ma to 316.4 ± 5.0 Ma (Figure 7e, Table 4). The ultramylonitic facies yields ages (sample 284c), for recrystallized mica inside micro-shear zones (Figure 3c), ranging from 339.9 ± 10.1 Ma and 314.3 ± 5.5 Ma (Figure 7f, Table 4). The first data is old, probably because of a ⁴⁰Ar excess due to feldspar rapt on laser way. The other results are younger compared to the ages obtained on magmatic clasts of the protomylonites.

The average age of clasts of 339.9 ± 4.2 Ma could be interpreted as recording the cooling of leucogranites at approximately 400°C. Theses magmatic clasts are sinistrally sheared and are in favour of a functioning of the Marche fault at already 340Ma.

The other ages obtained on the recrystallized shear band reflect the end of the functioning of the Marche sinistral wrench fault at 300 Ma.

5.2.b Biotite-sillimanite gneiss: Aigurande plateau (Sample 331, Figure 1)

This outcrop is located on the Aigurande plateau far from the granites. The gneiss foliation is E-W oriented with a high dip of 85°S. The lineation has a pitch of 40° eastwards. The biotite and sillimanite crystal shapes indicate a sinistral wrench shearing sense. The biotitesillimanite gneiss syn-metamorphic deformation is estimated at 669-750°C and 6 - 8 Kb in the Artense area (Mercier et al., 1992; § III-4).

A single crystal of biotite yielded a plateau age of 348.5 ± 4.1 Ma for 95 % ³⁹Ar released (Figure 7g, Table 5 and B). 348.5 ± 4.1 is a cooling age postdating the high temperature ductile deformation (669-750°C) marked by biotite and sillimanite shear bands. This ⁴⁰Ar³⁹Ar age is consistent with the ones found in the south Limousin on the Estivaux synkinematic granite biotites (Roig et al., 1996) and in the Monts du Lyonnais on the Grand Chemin wrench fault (Costa et al., 1993).

5.3 Conclusion of Marche fault mylonites

The leucogranite mylonites of the Marche fault, and especially the east Marche fault, display older ages than the Millevaches. The cooling ages around 335 Ma obtained on polished section on the muscovite clasts reflect an earlier leucogranite emplacement. The end of the Marche fault activity is dated at around 310-300 Ma. The monazites analysis of the Marche leucogranites by electron microprobe give crystallization ages of 335 ± 5 Ma (Gébelin, 2004) which is in agreement with muscovite clasts ⁴⁰Ar/³⁹Ar ages around 330-335 Ma.

The biotite-sillimanite shearbands ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ dating of the Aigurande plateau indicates a minimum age of 350 Ma for the Marche fault activity.

8. ⁴⁰Ar/³⁹Ar data Outline and Discussion

The ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ data obtained on granitic massifs and on associated ductile shear zones differentiate many major events that played a significant role in the structuration of the crust of the Limousin area.

The quartz preferred orientation patterns performed on the Guéret ultramylonites of the FCSZ are compatible with temperature estimates ($400/700^{\circ}$ C) of plastic deformation dominated by < a > prismatic and rhomboedric glide systems. This deformation is syn-Guéret granite emplacement around 350 Ma (Berthier et al., 1979; Rolin et al., submit).

The sheared biotites of Aigurande plateau Biotite-Sillimanite gneiss (sample 331) record high temperature ductile deformation at 348.5 + 4.1 Ma. Another evidence of this event is also revealed (352.6 \pm 5.4 Ma) in the sheared Chavanon gneiss (sample 347) which constitute the southeast continuity of the Felletin - La Courtine dextral wrench fault. The Estivaux wrench fault separating the Thiviers-Payzac unit from the Upper Gneiss Unit to the north is dated at 346 ± 3 Ma by ⁴⁰Ar/³⁹Ar method (Roig et al., 1996). The Grand Chemin dextral wrench fault that divides the Upper Gneiss Unit from Brevenne series is estimated at 349 + 3 Ma by ⁴⁰Ar/³⁹Ar method on the syntectonic granite biotites (Leloix, 1998). All these data are in favour of a beginning of the strike-slip faults activity around 350 Ma

Cooling ages of muscovites at 400°C around 340-330 Ma have been recorded in the East Marche leucogranites (sample 284). Recent works by argon dating show also cooling ages at 336-337 Ma for the Vallet granite located in the Champtoceaux syncline in the Armorican massif (Gumiaux et al., 2004).

Late Visean ages are widespread in the northern and western parts of the French Massif Central. The unconformity of the "Tufs Anthracifères" formation (Faure et al. 2002) in the Sioule area and in the Brevenne-Violay unit supports the importance of the Late Visean tectono-thermal event.

Fast cooling rates $(35^{\circ}C \pm 15^{\circ}C/Ma)$ from biotite and muscovite (between 300° and 400°C) at 322 Ma have been evidenced for the leucogranites of the Millevaches NE edge (sample 6). Considering that this cooling rate is constant, the leucogranite emplacement is not very much older than 322 Ma. Precisely, the zircons from this leucogranitic facies are dated at 320 ± 5 Ma by U/Pb method (Rolin et al., submitted). The monazites of Pradines syntectonic leucogranites in the Millevaches massif core record a similar emplacement age of 313 ± 4 Ma (Gébelin, 2004). Other leucogranitic massifs of this area were emplaced during this period: the Blond leucogranite is dated at 319 ± 7 Ma (U/Pb on zircon; Alexandrov et al., 2000), the Brâme- St Sylvestre complex was emplaced at 324 ± 4 Ma (U/Pb; Holliger et *Chapitre III- Structure, tectonique et microtectonique du Limousin* al., 1986) and the Porcherie leucogranite is dated at 317

 \pm 3 Ma (U/Pb on monazite; Lafon and Respaut, 1988). The mylonites on the north and NE edge of the Millevaches (samples 246, 524, 3 and 265) record dextral wrench movements from 320 Ma to 305 Ma. Argon data recorded the St Michel de Veisse and Felletin-La Courtine faults activities after the NE edge leucogranites emplacement at 320 Ma. The quartz preferred orientation patterns in the shear bands reveal a dominant prismatic < a > glide system, which attests of the fault activity during the granite cooling and confirms the syntectonic emplacement of leucogranites.

Mylonites of other leucogranite samples collected in the Felletin-La Courtine shear zone display the same range of ages. The Biotite-Sillimanite gneiss (sample 40 and 241) record the FCSZ activity between 305 and 320 Ma which also correspond to the Pradines leucogranite syntectonic emplacement.

The end of the Marche activity estimation by the ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ dating of tiny secondary mica of the ultramylonitic facies shear band is estimated around 310 and 300 Ma, in agreement with the others data obtained on the wrench fault of the Felletin-La Courtine fault.

9. Argument for close relationships between magmas emplacement and fault activity

1) Mapping of magmatic foliations and lineations (AMS and field observations) of the Millevaches granites within the shear zones shows the dextral wrenching senses of the Pradines and Felletin-La Courtine fault (Gébelin et al., submitted). To the north of the Millevaches massif (Jover, 1986; Gébelin et al, submitted) the foliation and lineation trajectories are parallel to the northern boundary where they follow the NW-SE direction of the St Michel de Veisse fault and then the N-S direction of the Felletin La Courtine shear zone. In the Argentat fault zone, the AMS measurements and field observations on the mylonitic leucogranites are consistent with NW-SE stretching lineations.

2) The Brâme granitic complex antiformal structure cooling was tectonically assisted by the N-S Nantiat and Bussières-Madeleine faults, which accommodated the magma on either side of the massif (Mollier and Bouchez, 1982; Faure and Pons, 1991).

3) The Marche leucogranite magmatic foliation is parallel to the Marche sinistral wrench fault and the structures and quartz fabric patterns of associated mylonites give evidence of a granite syntectonic emplacement (Choukroune et al., 1983).

4) The gravity modelling of the Aigurande plateau leucogranites (Dumas et al., 1990; Gébelin et al., submitted) shows 2-km-thick rooted plutons downwards the Marche fault plane. Southeastwards of the Crevant pluton, underneath the micaschist outcrops, the negative gravity anomaly shows the granite occurrence at depth which roots in the Marche fault (Gébelin et al., submitted).

5) Petrostructural study and 40 Ar/ 39 Ar dating show a syntectonic emplacement of Estivaux granite in the Estivaux wrench fault (Roig et al., 1996).

The previous arguments show that strike-slip faulting had an impact on the leucogranites and Gueret

type granites structuration. We conclude that the wrench faults are initiated before to during the granites emplacement. Note that the structure (Figure 2a, e and g) and record of the ductile deformation of the Felletin-La Courtine fault in the Villatange or Guéret type granites (samples 95, 375 and 12) between 400° and 700°C show that strike-slip faulting began at 350Ma, thus until some 20 to 30 Ma before the first leucogranites emplaced. This is confirmed by the Estivaux wrench fault activity at 346 + 3 Ma (40 Ar/ 39 Ar on biotite; Roig, 1996). From their onset around 350 Ma, strike-slip faults grew up forming a horsetail pattern from the South Armorican shear zone (Figure 9a) in which gradually the peraluminous biotite \pm cordierite granites (Guéret type) and the leucogranites emplaced (Figure 8). On the other side of the Sillon Houiller, the leucogranites form a E-W to WSW-ENE corridor up to the south of the Vosges (Figure 9a).

Regarding normal faulting, we'll discuss in the next paragraph whether the normal faults control the emplacement and transport of magmas or inversely whether magmas represent preferential sites for the localisation of the crustal deformation.

10. Timing of leucogranites emplacement relative to shear zone development

What is the timing of pluton emplacement relative to the normal fault development?

Geological mapping (Figure 1) shows that NW-SE strike-slip faults are offset by N-S normal faults and illustrates the anteriority of strike-slip faults versus normal faults. Through our structural observation, we propose that magmas represent weak zones, especially in the granite roof, and focus the crustal deformation inducing the development of normal faults.

The Millevaches massif

As already suggested in previous works (Gébelin et al., 2004 and Gébelin et al., submitted), the Millevaches leucogranites ascended in the middle crust through vertical narrow shear zones of at least crustal scale (Pradines fault) and was thus emplaced into the preexistent sub horizontal micaschist foliation. The Pradines fault is interpreted as the south branch of the Ouzilly-La Courtine wrench fault. In the inner part of the N-S Pradines fault, the magmatic foliation is subvertical but it is sub horizontal on both sides of it (Figure 10e). The Millevaches massif consists of several plutons of porphyritic biotite granite and leucogranite (two-mica granite) which are both affected by the Pradines fault. Previous works (Gébelin et al., 2004 and Gébelin et al., submitted) suggest a quasi synchronous emplacement of granites with a small anteriority for the porphyritic biotite granites (chemical dating on monazites give crystallization ages around 327 Ma; Gébelin, 2004). In our model (Figure 9e), the Pradines fault first induced the porphyritic biotite granites emplacement.

Inversely, the rheology of the magma has an impact of the location of the crustal deformation inducing the normal fault development. Magma ascent proceeds through vertical narrow ducts by successive injections along the NS-oriented principal axis of the Pradines fault. Magmas are then trapped and channeled in the Chapitre III- Structure, tectonique et microtectonique du Limousin

previously-formed flat-lying micaschist foliation which constitutes a major mechanical anisotropy of the middle crust. The magma rising towards the roof of the laccolithe induces an oblate coaxial deformation accommodated by flat-lying normal faults (Figure 10e), represented by the Argentat fault to the west part of the Pradines fault. Field observations are confirmed by the Anisotropy of Magnetic Susceptibility measurements near Eymoutiers (Jover, 1986 and Gébelin et al., submitted).

To the east of the Pradines fault, the magnetic foliation is flat then vertical in the Felletin-La Courtine dextral wrench fault (Figure 9e). In this area, the Felletin-La Courtine dextral wrench fault prevails on possible normal fault. This interpretation is consistent with the Felletin-La Courtine fault anteriority in respect to the normal fault.

The Northeastern edge of the Millevaches massif presents a peculiar geometry. As seen previously in the Felletin-La Courtine shear zone description, the leucogranite experienced two events: First, leucogranites record dextral shearing. In this case, the N-S foliation is subvertical and the lineation plunges shallowly ($< 30^\circ$) (Figure 3a). Shearbands indicate dextral wrenching sense. Second, this first mechanism is superimposed by south westward directed reverse fault (Figure 3b). This last mechanism could be due to a strong coaxial deformation at the pluton roof (Figure 10e).

As seen previously, the Gueret granites emplacement is estimated around 350 Ma and they are already cooled at 320 Ma during the leucogranites emplacement. Moreover, previous works (gebelin et al, submitted) show that the Pradines fault initiate the magma ascend in the middle or upper crust. The leucogranites migrate consequently from west to east, (respectively from the inner part of the Pradines fault to the FCSZ) through the pre-existent sub horizontally micaschist foliation. Consequently, the leucogranites squash against the Gueret granite and in the roof against the micaschists foliation, inducing a high coaxial deformation. This explain the slight reverse movement to the SW (Figure 9e) and the sinistral and dextral wrench movements recorded in the NE corner of the Millevaches massif (Figure 10e).

The consequence is that the leucogranites, coming from the Pradines fault have disturbed the NW-SE continue geometry of the St Michel de Veisse and Felletin-La Courtine dextral wrench fault inducing a punch in the NE corner and create an inflexion and a swelling of the active wrench fault (Figure 10e).

In this scheme, magma controls the fault geometry that initially probably drew continuity between the St Michel de Veisse and Felletin-La Courtine fault.

The Brâme massif (Figure 8)

The Brâme- St Sylvestre complex emplacement, is dated at 324 ± 4 Ma (U/Pb on zircon; Holliger et al., 1986) also presents a laccolith type geometry (Audrain and al., 1989; Gébelin and al., submit). The Brâme massif is limited to the west and east by the Nantiat and Bussières-Madeleine normal faults for which Mollier and Bouchez (1982), Faure and Pons (1991), Faure et al.

(1990) suggested a activity synchrone to the granites emplacement.

Figure 8: Model of Brâme leucogranites emplacement (see description in the text)

We suggest that the Brâme leucogranites emplacement followed the crack opening system of Hutton, (1988) along the Ouzilly-Arrênes wrench fault (Figure 8a).

First, the dextral wrench fault tears along its WNW direction, and creates a vertical crack then filled with granitic magma (Figure 8b). Due to a partial locking in the west part of the wrench fault, the crack gradually opens southwesward (Figure 8c).

This system evolved in time, and magma migrated gradually southward through the pre-existing subhorizontal micaschists foliation (Figure 8c). The system Chapitre III- Structure, tectonique et microtectonique du Limousin

gradually slows down inducing the northward migration of some of the magmas (Figure 8d et 8e).

The magma push on the laccolith roof is accommodated by normal faulting as for instance the Nantiat and the Bussières-Madeleine fault.

The geological map of France shows the final stage of this possible model showing the Brâme granites limited to the north by the Marche fault and they cut the Ouzilly-Arrênes fault to the south (Figure 1).

The Marche leucogranites

Along the Marche sisnistral wrench fault, syntectonic leucogranites (Choukroune et al., 1983) are vertically foliated and record sinistral sense of shearing in parallel with E-W horizontal lineation. As the Pradines fault, we propose that the Marche vertical sinistral wrench fault plays a feeding zone role and allows the magmas ascent in the middle crust. The magmas emplacement in the inner zone of the Marche fault could emplace according to the crack opening system (Hutton, 1988)

The residual Bouguer anomaly map (Gébelin et al., 2004) and gravity modeling (Gébelin et al., submitted) shows north of the Marche fault, the occurrence of such granite with laccolithic-like geometry at depth is attested by the persistence of the gravity low even if denser gneisses are mapped at surface.

The gravity modeling profiles show that leucogranites at depth are rooted in the Marche fault.

The Aigurande plutons

The Marche sinistral wrench fault separates to the north the Guéret massif from the Aigurande plateau. Several leucogranitic plutons are spatially related to this fault such as the Crozant, Orsennes, Méasnes, le Crevant granites. Gravity modeling show leucogranites have laccolithic like geometry and they rooted southwards (Dumas et *al.*, 1990) into the Marche fault plane (Gébelin et al., submitted). Here too, this fault plays a feeding zone role.

The shape of the Aigurande plutons is comparable to the leucogranites emplaced along the South Armorican Shear Zone, in French Brittany (e.g. Berthé *et al.*, 1979; Vigneresse and Brun, 1983; Martelet *et al.*, 2004).

11. Relationships between South Armorican and Limousin shear zones

Similarities concerning the nature, the structure, and the age appear between the Armorican massif and Limousin formations. The NW-SE wrench faults pattern observed from the Brittany cap could extend as far as the Limousin area. The ANDRA drilling achievement through the "Seuil du Poitou" (Virlogeux et al., 1999) allowed to describe the South Armorican shear zone extent under the Mesozoïc cover and thus to connect it to the Limousin faults (Rolin and Colchen, 2001; Cuney, 2001). Cholet faults are in continuity with the Marche fault; and the Ouzilly, Arrênes, St Michel de Veisse, Felletin- La Courtine dextral wrench faults form the SE continuity of Bressuire, Partenay faults (Figure 9b).

⁴⁰Ar/³⁹Ar data done on the Meso-Variscan granitoïds of the Charroux-Civray plutonic complex show the existence of a major calk-alcaline event on the Seuil du Poitou around 350 Ma synchronous with the emplacement of the large peraluminous Guéret-type granodiorites in the northern Limousin (Le Carlier de Veslud, 2004). The Seuil du Poitou granites are also spatially associated with faults, which join up the South Armorican massif to the Limousin (Figure 9).

Recent works on the Armorican massif (Gumiaux et al., submitted) show St Lambert leucogranite, located in the Angers area, recorded the end of shearing deformation of the northern branch of the North Armorican Shear Zone at 312 ± 3 Ma (Faure and Cartier, 1998). As well, the Allaire massif located in the South Armorican shear zone evidenced 40 Ar/³⁹Ar cooling ages between 312 and 305 Ma (Ruffet, unpublished data). These data are within the error brackets in good agreement with our new 40 Ar/³⁹Ar data for the Limousin that record the end of faults activity between 305 and 315 Ma.

Granites emplaced during shear deformation of the South Armorican shear zone as the Mortagne or Partenay pluton are dated at 313 + 15 Ma. Just north of the south Armorican shear zone, the Rostrenen intrusion yields a U-Pb zircon age around 315 - 325 Ma (Bosse et al., 1997). South of the South Brittany domain, leucogranites emplaced around 305 - 300 Ma (Bernard-Griffiths et al., 1985). All these ages are in agreement with our 40 Ar/ 39 Ar cooling ages at 320 Ma and 313 Ma respectively on the NE edge leucogranites of the Millevaches massif and on the Brâme leucogranites; but also with the Limousin leucogranites emplacement ages obtained by U/Pb such as: the Pradines leucogranites dated at 313 + 4 Ma (U/Pb, Gébelin et al., in preparation), the Porcherie leucogranite at 317 ± 3 Ma (U/Pb, Lafon and Respaut, 1988), the Blond leucogranite at 319 + 7 Ma (U/Pb, Alexandrov et al., 2000), and finally the Brâme- St Sylvestre complex emplaced at 324 ± 4 Ma (U/Pb, Holliger et al., 1986).

All these data suggest the two domains, namely the Limousin and the south Armorican massif, experienced two major granitic events related with shearing deformation: first, a major calk-alcaline magmatic event around 350 Ma and second, a crustal melting event around 320 Ma. The end of strike-slip fault activity are estimated from previous work on the South Armorican massif (Gumiaux et al., submitted) and from our new ⁴⁰Ar/³⁹Ar data for the Limousin between 300 and 310 Ma. But, it is worth noting that the Stephanian formations are sub-vertical in the South Armorican shear zone (Rolin and Colchen, 2001). The end of the fault activity could be later around 300-290 Ma. Consequently, the E-W to NW-SE Limousin mylonitic accidents represent the SE extension of south Armorican shear zone following a pony tail system (Figure 9).

12. Conclusion

This microstructural and geochronological study and correlated previous works (Gébelin al, 2004; Gébelin et al, submitted) emphasises relationships between the emplacement of leucogranites and the ductile shear zones. The common association of leucogranites and strike-slip faults may arise from the nucleation of shear zones on pre and/or syn-existing magma bodies. This assumption is supported by the clear tectonic control of faults in the development of the internal magmatic fabric in many leucogranitic plutons of the Limousin (Jover,

Figure 9:

a) Map of leucogranites in France according to Autran and Lameyre (1980), b) Map of relations between South Armorican shear zones and Limousin shear zones showing an half of possible pop-up structure, Ch. F.: Cholet fault, O. F.: Ouzilly fault, P. F.: Pradines fault, St M.V.F.: St Michel de Veisse fault, A. F: Ambrugeat fault, E. F.: Estivaux fault, M. F.: Marche fault.

1986; Gébelin et al., submitted). Inversely, the normal faults development could be induce by the magmas, which represent privileged zones for the localisation of the crustal deformation.

Consequently, of the continental collision between Laurentia-Baltica and Gondwana, large strike-slip faulting initiated in the suture zone and spread out in the S-SE part of it. Strike slip faults contribute to the continental crust structuration at the same time that thrusting and nappes stacking forming a "pop-up structures" (Mc Clay and Bonora, 2001). Pop-ups and transpressional uplifts are integral parts of intraplate strike-slip fault zones (Sylvester and Smith, 1976; Sylvester, 1988) with formation of antiformal uplifted domes above divergent reverse faults. In a plane view, they are broadly lozenge-shaped, whereas in cross section they are bounded by convex-up faults that flatten upwards near the surface, forming a positive flower-palm tree structure (Sylvester and Smith, 1976; Sylvester, 1988; Mc Clay and Bonora, 2001). The pop-up asymmetry is generated when the boundary fault changes from strike-slip to oblique reverse-slip along strike (McClay and Bonora, 2001).

The complex 3D architecture of the pop-up structure of the Armorican massif and of the French Massif Central is difficult to visualize at large scale, because once formed; these areas were uplifted and rapidly eroded (Figure 9 and 11). This model could explain the different thrusts vergences to the SSE and to the NW.

<=Figure 10: Sketch of faults evolution associated at the granites emplacement in the Limousin area.

Analog structures are described along the San Andreas fault system (Sylvester and Smith, 1976; Jones et al., 1994) or along the Altaï fault system in Mongolia (Cunningham et al., 1996). Before to enter the 3-D popup geometry description, the figure 10 proposes an evolution of faults associated with the granites emplacement in the Limousin area.

- A general large dextral wrench fault pattern develops around 360 Ma in response to the Gondwana Armorica plates convergence associated to a NW-SE to N-S compressive tectonic (Figure 10a). The development of a "pop-up structure" from South Brittany (Figure 9 and 11) corresponds at this period, in the Limousin part, to the NW-SE Ouzilly- Arrênes wrench faults which form a single fault line in continuity with the Cholet fault (Figure 9). The Marche sinistral wrench fault represent a NE-SW antithetic fault which connects on the NW-SE Cholet-Ouzilly-Arrênes faults.

- 360-350 Ma: The Ouzilly-Arrênes faults divides into two branchs representing by the St Michel de Veisse and the Pradines dextral wrench faults.

- 350 Ma: St Michel de Veisse separates to form the Ambrugeat and Felletin-La Courtine dextral wrench faults. This period marks the date of emplacement of peraluminous biotite <u>+</u> cordierite Guéret granites along the St Michel de Veisse and Felletin - La Courtine dextral wrench faults (Figure 10c). These granites (Guéret and Marche) intrude the crust according to the crack-opening model (Hutton, 1988) (Figure 10c), then the magmas migrate into the pre-existing sub-horizontal metamorphic formation. This statement is in good agreement with the gravity data, which show that the Guéret granite is a very thin laccolith (Gébelin et al., submitted). The Gueret granite do not show large negative gravity anomaly usually interpreted as deep rooting zone. The structural analysis shows the importance of syn-magmatic ductile faults that could correspond as feeding zone.

- 335 Ma : The unconformity of the "Visean Tufs Anthracifères" formation (Faure et al. 2002) in the Guéret granite indicate it already cooled at 335 Ma

335 Ma is the age for the possible emplacement of Marche leucogranites around within East Marche sinistral wrench fault (Figure 10d). The monazites dating of Marche leucogranites by electron microprobe yields crystallization ages at 335 ± 5 Ma (Gébelin, 2004) which are in agreement with muscovite clasts dated by 40 Ar/ 39 Ar at 330-335 Ma (sample 284).

The system evolved in time and gradually the antithetic Marche sinistral wrench fault rotate clockwise, consistently with the regional dextral strike-slip component. With the time, the angle at domain boundaries change from NW-SE at 350 Ma, it becomes N-S to NE-SW (Figure 10) inducing locally reverse movement NEward, especially along the occidental Marche fault (Figure 10e). Consequently, the low angle

Figure 10 :

Sketch of faults evolution associated at the granites emplacement in the Limousin area.

(< 45°) between the Marche fault and the Cholet-Ouzilly-Arrênes ...faults does not reflect the one developed during the initiation of the Marche fault.

The restoration of Central Brittany structures in a dextral simple shear system has already suggested by Gumiaux et al. (2004).

- 320 Ma is the age of emplacement of Marche, Brâme-St Sylvestre granites, at the NE edge of the Millevaches massif leucogranites. At this time, the Tuf anthraciferes discordance dated at 335 Ma (Faure et al., 2002) indicate that the Guéret granite is already cooled. This provokes a high coaxial deformation in the NE edge of Millevaches massif (Figure 10e) inducing a "punch" of the boundary during the leucogranite syntectonic emplacement.

The occidental Marche leucogranites (sample 334) record a slight reverse movement NE ward with the limit conditions change (σ 1 become N-S to NE-SW).

- At the same time, the sheared biotite-sillimanite gneisses are intruded at 320 Ma by the leucogranites. Their emplacement induces an isotopic rehomogenization of biotite-sillimanite gneiss because they

Chapitre III- Structure, tectonique et microtectonique du Limousin record cooling ages between 320 and 305 Ma instead of 350 Ma.

- The end of the leucogranites emplacement leads to normal faulting, development at the contact between the pre existing micaschists and the pluton roof (Figure 10e).

- Very poor geochronological data are available on the porphyritic biotite granite of the Millevaches massif, but their structural relationships gave us to understand that their emplacement quite coevals the leucogranites emplacement. The Auriat porphyritic granite at the northwestern edge of the Millevaches massif (Figure 1) was emplaced at 324 ± 1 Ma, U/Pb data on zircon (Gébauer, 1981) and chemical dating on monazites gives crystallization ages around 327 Ma (Gébelin, 2004).

This study suggests that two generations of granitoïds (the granodiorites-monzogranites at 350 Ma and the leucogranites at 320 Ma) emplaced in a transpressional context, which develops dextral strikeslip faulting and thrusting in response to an N-S to NW-SE plate convergence. The 40 Ar/ 39 Ar dating and microstructural study of mylonites allow us to estimate the beginning of dextral wrenching faults around 350-360 Ma and the end of the shearing between 305-310 Ma. But taking into account the Stephanian formations vertical in the South Armorican shear zone (Rolin and Colchen, 2001), the end of the shearing could be dated later around 300 Ma. Leucogranites were produced by the partial melting of metasediments at middle to lower crust level. The coexistence of restitic cordierite and garnet in one intrusion of the Millevaches massif leads Shaw (1991) to estimate a partial melting depth varying between 18 and 25 km. Granodiorites-monzogranites are thought to be derived from deeper levels of the tectonically-thickened continental crust, probably very close to the interface between metasedimentary and basic igneous lower crust (Shaw, 1991).

We propose that all the granites (granodioritesmonzogranites and leucogranites) emplaced through large strike-slip shear zones focusing magma at depth. As already described for the Millevaches massif (Gébelin et al., submitted), once the magma reaches the upper crust through vertical conduits (Pradines fault), it spreads-out laterally into the micaschist sub horizontal foliation explaining the laccolithic-like geometry of many Limousin granites. The Pradines dextral wrench fault and the others ductile shear zones of Limousin and Armorican massif could belong to a large and single dextral strike-slip fault zone responsible of "the pop-up architecture" (Figure 11).

The main and large ductile shear zone of the pop-up structure is interpreted as a lithospheric scale strike-slip fault (Figure 11). The syntectonic emplacement of granitic melts in ductile strike-slip shear zones results of lower crust partial melting. As in the red River shear zone model, shear heating in the upper mantle can be strong enough to initiate partial melting of the lower crust and induce the ascent of crustal melts in the shear zone accentuating the thermal anomaly (Leloup, 1999). Then the melt production may result also of breakdown (dehydratation melting) of hydrous minerals (micas and amphibole) (Shaw, 1991 ; Thompson and Conolly, 1995).

The contribution of mantle-derived melts could be at the origin of the granodiorites-monzogranites which are for most of them generated around 350 Ma by mixing melts of metasedimentary lower crust and basic magmas origins (Shaw, 1991). The initiation of leucogranite magmatism did not occur until some 20 at 30 Ma after the first granodiorite-monzogranites were emplaced. The leucogranites received no material input from basic lower crustal rocks but were purely derived of partial melting of metasedimentary lower crust.

The relative timing and composition of syn-shearing granites (peraluminous biotite \pm cordierite and leucogranite) could be explained by the many stages that occur during shear-heating: At the beginning, shear-heating of upper mantle induces melting of the bottom of the crust, then melts ascend in the fault zone, and finally mid-crustal fusion occurs, accompanied by dehydratation melting (Leloup, 1999). This type of mechanism is proposed to explain the two generations of granitoids (calc-alkaline metaluminous granodiorites to adamellites and sodic peraluminous leucogranites) emplaced along the Don Féliciano transcurrent belt of Brazil (Tommasi et al., 1994).

Shear-heating models have been also proposed for the San Andreas fault, an seem to explain properly the main heat-flow characteristics (Ricard et al., 1983). For this same fault, Sylvester and Smith (1976) described complex palm tree structures. In our case, because of the erosion and of Sillon Houiller sisnistral wrench fault play, it is no more possible to imagine the whole of the suspected pop-structure. However, assuming a 50 km Stephanian left-lateral offset of the Sillon Houiller (Grolier and Letourneur, 1968 ; Grolier, 1971b),the Morvan leucogranites belt striking E-W to WSW-ENE (Figure 9a) could be the eastward extension of the pop-up structure.

To produce larger amounts of melt, we can also invoke a lithospheric delamination proposed by Downes *et al.* (1990) through the study of granulite facies xenoliths in the Massif Central, which coincided with the Namuro-Wesphalian magmatic event. This could not represent the sole mechanism because it explains magmatism related only to late post-orogenic strike-slip faults, but not the granodiorite-monzogranites which emplaced around 350 Ma in a transpressional context.

Figure 11 :

Sketch of continental strike-slip fault illustring the 3-D geometry of a part of the possible pop-up structure affecting the Armorican Massif and the Limousin area around 350 Ma. S.A.S.Z.: South Armorican Shear Zone, Ch. F.: Cholet Fault, Par. F.: Partenay Fault, M. F.: Marche Fault, O. A. F.: Arrênes-Ouzilly Fault, St M.V.F.: St Michel de Veisse Fault, P. F.: Pradines Fault, A. F.: Ambrugeat Fault, F. C. F.: Felletin-La Courtine Fault, E. F.: Estivaux Fault.

Appendix: analytical procedure 1. Electron backscatter diffraction (EBSD)

Quartz preferred orientations were measured on a scanning electron backscatter diffraction techniques (EBSD; Lloyd et al., 1991; Adams et al., 1993; Dingley and Field, 1997) using the EBSD/SEM system at ISTEEMontpellier. Backscattered electron (BSE) diffraction in the scanning electron microscope has become an important tool for the combined study of microstructures in crystalline materials. It is possible to measure complete crystallographic orientations of single crystallites with direct reference to the microstructure (Neumann, 2000; Heidelbach et al., 2000).

EBSD is based on automatic analysis of diffraction patterns. These patterns composed of Kikuchi bands are generated by interaction of a vertical incident electron beam with a flat crystal surface. A phosphor screen is located close to the thin section to collect the backscattered electrons and to emit a photonic image, which is then processed and indexed using the CHANNEL+software (Schmidt and Olesen, 1989). The Euler angles (φ 1, φ 2, φ 3) are determined for each quartz grain and stored with the nature of the mineral. The whole procedure can be carried out automatically. The precision of crystal orientations measured from electron backscattering patterns is better than 1° (Krieger Lassen, 1996).

2. ⁴⁰Ar/³⁹Ar dating:

Around twenty samples have been collected along the Limousin ductile shear zones and in the leucogranitic massifs. During this study, different techniques of argon extraction were used. Bulk mineral samples (10 mg) have been degassed using a classical step heating procedure in an induction furnace. Step heating and spot fusion experiments were also performed on single grains with a laser probe. In addition, in situ laser probe analyses have been conducted on polished thin rock sections, 10 x 10mm and 1mm thick. The combination of these different techniques has the advantage to bring important information on the argon behaviour during mylonitization and cooling of the various rocks. For example, in mylonitic rocks, we frequently observed the coexistence of different generations of mica that develop at the time of granite emplacement and during subsequent shearing. In the most deformed samples, only the ultramylonitic facies shear band of tiny secondary mica are present. Therefore, the comparison of results from such rocks has the potential to give us age constraints on the cooling of the various granites, on

Chapitre III- Structure, tectonique et microtectonique du Limousin their deformation and subsequent cooling, on the scale of argon migration during mylonitization , on the eventual presence of excess argon and on the role of recrystallization as a factor of argon resetting.

Analytical procedure for bulk samples

The bulk samples of biotite and muscovite were separated by magnetic separator and sometimes by heavy liquids. All the final mineral separates were obtained by hand-picking. The samples were irradiated in the Mac Master reactor with total fluxes of 10^{18} n/cm². The irradiation standard is the Fish Canyon Tuff sanidine (28,48 Ma).

The classical step heating procedure, used for bulk samples, is described by Arnaud et al. (1993) and Arnaud et al. (2003). Heating was performed using an double vacuumfurnace allowing a good thermal resolution during the fractionated degassing process. After extraction and purification of rare gases, argon was introduced in a VG 3600 mass spectrometer and isotopes from mass 36 to mass 40 were measured by peak-switching in six runs. Ages have been calculated after correction for blanks (varying between 2,240.10⁻¹⁴ cm³ and 3,36 10⁻¹² cm³ for ⁴⁰Ar and between 1,344. 10⁻¹⁴ cm³ and 4,48. 10⁻¹⁵ cm³ for ³⁶Ar), mass discrimination, radioactive decay of ³⁹Ar and ³⁷Ar and irradiation-induced mass interferences. Errors are given at 1 σ .

Analytical procedure for single grains

The single grains of biotite and muscovite for the laser probe experiments were carefully selected under a binocular microscope from a coarse fraction of the crushed rock sample. Then, they were ultrasonically cleaned in methanol and distilled water to remove surface related contaminants such as small feldspar grains. All samples were packed in aluminium foil and irradiated for 70h in the McMaster nuclear reactor (Canada) together with the MMHb4 hornblende neutron flux monitor dated at $520,4 \pm 1,7$ Ma. After irradiation, all samples were placed on a Cu holder inside a UHV gas extraction system and baked for 48h at 200°C. Stepheating done on single grain, spot fusion and polished section experiments were conducted with the laser operating in the continuous or semi-pulsed mode (Monié et al., 1997). The analytical device consists of: a multiline continuous 6-W argon-ion laser; a beam shutter for selection of exposure times; divergent and convergent lenses for definition of the beam diameter; a small inlet line for the extraction and purification of gases; a MAP 215-50 noble gas mass spectrometer. For the laser spot fusions done on a single crystal or on a polished section, the maximum laser beam diameter was 50µm for 20 to 40µm in depth. The experiments are monitored through a binocular microscope coupled with a video color camera to observe the mineral behaviour during laser probe degassing. Each analysis involves 5 min for gas extraction and cleaning and 15 min for data acquisition by peak switching from mass 40 to mass 36. System blanks were evaluated every three analyses and ranged from 3.10^{-12} cm³ for 40 Ar to 4.10^{-14} cm³ for 36 Ar. Ages and errors were calculated according to Mc Dougall and Harrison (1999). Errors are given at 1σ .

References

Adams, B.I., S.I. Wright and, K. Kunze, Orientation imaging: the emergence of a new microscopy, *Metallurgical Transactions*, 24A, 819-831, 1993.

Alexandrov, P., A. Cheilletz, E. Deloule, and M. Cuney, 319 \pm 7 Ma age for the Blond granite (northwest Limousin, French Massif Central) obtained by U/Pb ionprobe dating of zircons, *C. R. Acad Sci*, 330, 1-7, 2000.

Arnaud, N., M. Brunel, J.M. Cantagrel, and P. Tapponnier, High cooling and denudation rates at Kongur Shan, eastern Pamir (Xinjiang, China) revealed by (super 40) Ar/ (super 39) Ar alkali feldspar thermochronologie, *Tectonics*, 12, 6, 1335-1346, 1993.

Arnaud, N., P. Tapponnier, F. Roger, M. Brunel, U. Schärer, C. Wen, and Z. Xu, Evidence for Mesozoic shear along the western Kunlun and Altyn-Tagh fault, northern Tibet (China), *J Geophys Res-Solid Earth* 108(B1), doi:10.1029/2001JB000904, 2003.

Audrain, J., J.L. Vigneresse, M. Cuney, and M. Friedrich, Modèle gravimétrique et mise en place du complexe granitique hyperalumineux de St Sylvestre (Massif Central français), *C. R. Acad Sci., Ser. 2*, 309, 1907-1914, 1989.

Autran, A., J. Lameyre, Evolutions géologiques de la France, *Mémoire du BRGM n° 107*, 1980.

Berthier, F., J.L. Duthou, and M. Roques, Datation géochronologique Rb/Sr sur roches totales du granite de Guéret (Massif Central). Age fini-Dévonien de mise en place de l'un de ses faciès types, *Bull. Bur. Rech. Géol. Min. Fr.*, I, 31-42, 1979.

Boutin, R., and R. Montigny, Datation 39Ar/40Ar des amphibolites du complexe leptyno-amphibolique du plateau d'Aigurande : collision varisque à 390 Ma dans le Nord-Ouest du Massif Central français, *C. R. Acad. Sci., Ser. 2*, 316, 1391-1398, 1993.

Burg, J.-P., J.P. Brun, and J. Van Den Driessche, Le sillon houiller du Massif Central Français: Faille de transfert pendant l'amincissement crustal de la chaine varisque?. - *C. R. Acad. Sci.*, Paris, 311, Série II, 147-152., 1990.

Choukroune P., D. Gapais, and P. Matte, Tectonique hercynienne et deformation cisaillante: la faille ductile senestre de la Marche (Massif Central français), *C. R. Acad. Sc. Paris*, t. 296, 1983.

Costa S., H. Maluski, and J.M. Lardeau, ⁴⁰Ar-³⁹Ar chronology of Variscan tectonometamorphic events in an exhumed crustal nappe: The Monts du Lyonnais complex (Massif Central, France), Chem. Geol., 105, 339-359, 1993.

Chapitre III- Structure, tectonique et microtectonique du Limousin Cuney, M., M. Friedrich, P. Blumenfeld, A. Bourguignon, M.C. Boiron, J.L. Vigneresse, and B. Poty, Metallogenesis in the French part of the Variscan orogen. Part I: U preconcentrations in pre-Variscan and Variscan formations - a comparison with Sn, W and Au, *Tectonophysics*, 177, 39-57, 1990.

Cuney M., M. Brouand, and J.M. Stussi, Le magmatisme hercynien en Vendée. Corrélations avec la socle du Poitou et l'ouest du Massif Central français, *Géologie de la France*, n°1-2, 117-142, 2001.

Cunningham, W.D., B.F. Windley, D. Dorjnamjaa, G. Badamgarov, and M. Saandar, A structural transect across the Mongolian western Altai: active transpressional mountain building in central Asia, *Tectonics*, 15, 142-156, 1996.

Davidson, C., L.S. Hollister, and S.M. Schmid, Role of melt in the formation of a deep-crustal compressive shear zone: the MacLaren Glacier metamorphic belt, South Central Alaska, *Tectonics*, 11, 348-359, 1992.

Davidson, C., S.M. Schmid, and L.S. Hollister, Role of melt during deformation in the deep crust, *Terra Nova*, 6, 133-142, 1994.

Dingley D.J. and D.P. Field, Electron backscatter diffraction and orientation imaging microscopy, *Materials Science and Technology*, 69-78, 1997.

Downes, H., C. Dupuy, and A.F. Leyreloup, Crustal evolution of the Hercynian belt of Western Europe: Evidence from lower crustal granulitic xenoliths (French Massif Central), *Chemical Geology*, 83, 209-231, 1990.

Dumas, E., M. Faure, and J. Pons, L'architecture des plutons leucogranitiques du plateau d'Aigurande et l'amincissement crustal tardi-varisque, *C. R. Acad. Sci.*, *Ser. 2*, Paris II, 310, 1533-1539, 1990.

Duthou, J.L., Chronologie Rb-Sr et géochimie des granitoïdes d'un segment de la chaîne varisque. Relations avec le métamorphisme: le Nord-Limousin. *Thèse 3^{ème} cycle*, Université de Clermont-Ferrand, Annales Scientifiques de l'Université de Clermont-Ferrand, 63, 290, 1977.

Duthou, J.L., M. Chenevoy, and M. Gay, Age Rb-Sr Dévonien moyen des migmatites à cordierite des Monts du Lyonnais (Massif central Français), *C. R. Acad. Sci.*, Paris, Sér. II, 319, 791-796, 1994.

Eggleton, R. A., Buseck, P.R., The orthoclasemicrocline inversion: a high-resolution transmission electron microscope study and strain analysis. Contribution to Mineralogy and Petrology 74, 123-133, 1980.

Faure, M., L'amincissement crustal de la chaîne varisque à partir de la déformation ductile des leucogranites du Limousin, *C. R. Acad. Sci.*, Paris II, 309, 1839-1845, 1989.

Faure, M., Late carboniferous extension in the Variscan French Massif Central, *Tectonics*, 14, 132-153, 1995.

Faure, M., and J. Pons, Crustal thinning recorded by the shape of the Namurian-Wesphalian leucogranite in the Variscan belt of the northwest Massif Central, France, *Geology*, 19, 730-733, 1991.

Faure, M., A. Prost, and E. Lasne, Déformation ductile extensive d'âge Namuro-Wesphalien dans le plateau d'Aigurande, Massif Central Français, *Bull. Soc. Geol. Fr.*, 8, 189-197, 1990.

Faure, M., and C. Cartier, Deformations ductiles polyphasees dans l'antiforme orthogneissique de St-Clement-de-la-Place (unite de Lanvaux, Massif armoricain). Polyphase ductile deformation in the Saint Clement de la Place orthogneiss antiform, Lanvaux Formation, Armorican Massif, *C. R. Acad. Sci.*, Paris, Sér. II, 326, n°11, 795-802, 1998.

Faure, M., P. Monié, C. Pin, H. Maluski, and C. Leloix, Late Visean thermal event in the northern part of the French Massif Central : new 40Ar/39Ar and Rb-Sr isotopic constraints on the Hercynian syn-orogenic extension, *Int. J. Earth Sciences*, 91: 53-75, 2002.

Floc'h, J.P., La série métamorphique du Limousin central: une traverse de la branche ligérienne de l'orogène varisque, de l'Aquitaine à la zone broyée d'Argentat (Massif Central Français), *Thèse d'Etat, Univ. Limoges*, 445 p, 1983.

Gapais, D., and B. Barbarin, Quartz fabric transition in a cooling syntectonic granite (Hermitage massif, France), *Tectonophysics*, 125, n°4, 357-370, 1986.

Gébauer, H., J. Bernard-Griffiths, and M. Grünenfelder, U/Pb zircon and monazite dating of mafic-ultramafic complex and its country rocks. Example: Sauviat-sur-Vige, French Massif Central, *Contributions to Mineralogy and Petrology*, 76, 292-300, 1981.

Gébelin, A., G. Martelet, M. Brunel, M. Faure, and P. Rossi, Late Hercynian leucogranites modelling as deduced from new gravity data : the example of the Millevaches massif, Massif Central, France, *Bull. Soc. géol. Fr.*, t. 175, 3, 239-248, 2004.

Gébelin, A., G. Martelet, Y. Chen, M. Brunel, and M. Faure, Highlighting the structure of late Variscan leucogranites in the French Massif Central by new AMS, gravity and structural results from the Millevaches massif, *Journal of Structural Geology*, 2004, submitted.

Gébelin, A., Déformation et mise en place des granites (360-300Ma) dans un segment de la Chaîne Varisque (Plateau de Millevaches, Massif Central), Thèse, Univ. Montpellier, 2004.

Grolier, J., and J. Letourneur, L'évolution tectonique du grand Sillon Houiller du Massif Central français, *Proc.* 23 rd. Int. Geol. Congr., I, 107-116, 1968.

Chapitre III- Structure, tectonique et microtectonique du Limousin Grolier, J., Contribution à l'étude géologique des séries cristallophylliennes inverses du Massif Central Français : la série de la Sioule (Puy de Dôme, Allier), *Mem. BRGM*, 64, 163pp., 1971a.

Gumiaux, C., D. Gapais, J.P. Brun, J.Chantraine, and G. Ruffet, Tectonic history of the Variscan Armorican Shear belt (Brittany, France), *Geodinamica Acta*, 2004.

Hames, W.E. and Bowring, S.A., An empirical evaluation of the argon diffusion geometry in muscovite, *Earth and Planetary Science Letters*, vol.124, no.1-4, pp.161-169, 1994.

Harrison, T. M., I. Duncan, and Mc Dougall, Diffusion of 40Ar in biotite: temperature, pressure and compositional effects, *Geochim. Cosmochim. Acta*, 49, 2461-2468, 1985.

Heidelbach, F., K. Kunze, and H.R. Wenk, Texture analysis of a recrystallised quartzite using electron diffraction in the scanning electron microscope, *Journal of Structural Geology*, 22, 91-104, 2000.

Holliger P., M. Cuney, M. Friedrich, and L. Turpin, Age carbonifère de l'Unité de Brâme du complexe granitique perlumineux de St Sylvestre (NW du Massif Central) défini par les données isotopiques U-Pb sur zircon et monazite, *C. R. Acad. Sci.*, *Ser. 2*, 303, 1309-1314, 1986.

Hutton, D.H.W., Granite emplacement mechanism and tectonic controls: inferences from deformation studies, *Trans. Royal Soc. Edinburgh: Earth Sci.*, 79, 245-255, 1988.

Hutton, D.H.W., and R. J. Reavy, Strike-slip tectonics and granite petrogenesis, *Tectonics*, 11, 960-967, 1992.

Jessel, M.W., Grain-boundary migration microstructures in a naturally deformed quartzite, *Journal of structural geology*, 9, 1007-1014, 1987.

Jones, D.L., R. Graymer, C. Wang, T.V. McEvilly, and A. Lornax, Neogene transpressive evolution of the California Coast Ranges, *Tectonics*, 13, 561-574, 1994.

Jover, O., Les massifs granitiques de Guéret et du nord-Millevaches. Analyse structurale et modèle de mise en place (Massif Central Français), *Thèse de doctorat*, Nantes 233, 1986.

Krieger Lassen, N.C., The relative precision of crystal orientations measured from electron backscattering patterns, *Journal of Microscopy*, 181, 72-81, 1996.

Kruhl, J.H. and, M. Peternell, The equilibration of highangle grain boundaries in dynamically recrystallized quartz: the effect of crystallography and temperature, *Journal of Structural Geology*, 24, 1125-1137, 2002.

Lardeaux J.-M., P. Ledru, I. Daniel, and S. Duchene, The Variscan French Massif Central: a new addition to the ultra-high pressure metamorphic 'club': exhumation processes and geodynamic consequences, *Tectonophysics*, 332, 143-167, 2001.

Le Carlier de Veslud, C., M. Cuney, J.J. Royer, J.P. Floc'h, L. Améglio, P. Alexandrov, J.L. Vigneresse, P. Chèvremont, and Y. Itard, Relationships between granitoids and mineral deposits: three-dimensional modelling of the Variscan Limousin Province (NW French Massif Central), *Transactions of the Royal Society of Edinburg: Earth Sciences*, 91, 283-301, 2000.

Le Carlier de Veslud C., P. Alexandre, M. Cuney, G. Ruffet, A. Cheilletz and, D. Virlogeux, Thermochronology 40 Ar/ 39 Ar et évolution thermique des granitoïdes méso-varisques du complexe plutonique de Charroux-Civray (Seuil du Poitou), *Bull. Soc. géol. Fr.*, t. 175, n°2, 95-106, 2004.

Leloix C. Arguments pour une évolution polycyclique de la chaîne hercynienne. Structure des unités dévonodinantiennes du Nord-Est du Massif Central (Brévenne-Bourbonnais-Morvan), *Thèse de 3e cycle, Université d'Orléans*, 248p, 1998.

Leloup, P.H., Y. Ricard, J. Battaglia, and R. Lacassin, Shear heating in continental strike-slip shear zones: model and field examples, *Geophys. J. Int.*, 136, 19-40, 1999.

Lister, G., M.Paterson and, B. Hobbs, The simulation of fabric development in plastic deformation and its application to quartzite: the model, *Tectonophysics*, 45, 107-158, 1978.

Lloyd, G.E., N.H. Schmidt, D. Mainprice, and Prior D.J., Crystallographic textures, *Mineralogical Magazine*, 55, 331-345, 1991.

McClay, K. and, M. Bonora, Analog models of restraining stopovers in strike-slip fault systems, *AAPG Bulletin*, 85, 233-260, 2001.

Mattauer, M., M. Brunel, and P. Matte, Failles normales ductiles et grands chevauchements. Une nouvelle analogie entre l'Himalaya et la chaîne Hercynienne du Massif Central Français, *C. R. Acad .Sci., Paris II*, 306, 671-676, 1988.

Matte, P., Tectonics and plate Tectonics model for the Variscan belt of Europe, *Tectonophysics* 126, 329-374, 1986

Tectonophysics, 126, 329-374, 1986.

Mollier, B., and J.L. Bouchez, Structuration magmatique du complexe granitique de Brâme-St Sylvestre-St Goussaud (Limousin, Massif Central français), *C.R. Acad. Sci., Ser. 2*, 294, 1329-1334, 1982.

Monié, P., R. Caby, and M.H. Arthaud, The Neoproterozoic brasiliano orogen of Northeast Brazil. ⁴⁰Ar-³⁹Ar ages and petro-structural data from Ceara. *Precambrian Res.*, 81, 241-264, 1997.

Neumann, B., Texture development of recrystallised quartz polycrystals unravelled by orientation and

Chapitre III- Structure, tectonique et microtectonique du Limousin misorientation characteristics, *Journal of Structural Geology*, 22, 1695-1711, 2000.

Pin, C.and D. Vielzeuf, Granulites and related rocks in Variscan median Europe: A dualistic interpretation, *Tectonophysics*, 93, 47-74, 1983.

Ricard, Y., C. Froidevaux, and J.F. Hermance, Model heat flow and magnetotellurics for the San Andreas and oceanic transform faults, *Ann. Geophys.*, 1, 47-52, 1983.

Roig, J.Y., M. Faure, and P. Ledru, Polyphase wrench tectonics in the southern french Massif Central: kinematic inferences from pre-and syntectonic granitoids, *Geol Rundsch*, 85, 138-153, 1996.

Rolin P., and M. Colchen, Carte structurale du socle Varisque Vendée-Seuil du Poitou-Limousin, *Géologie de la France*, 1-2, 3-6, 2001.

Rolin, P., C. Cartanaz, P. Henry, M. Rossy, A. Cocherie, F. Salen, and B. Delwalle, Notice explicative de la Carte géologique de Saint Sulpice-les-Champs (N°666) au 1/50 000, Editions B.R.G.M., Orléans, submitted.

Ruffet, G., G. Féraud, and M. Amouric, Comparison of ⁴⁰Ar-³⁹Ar conventional and laser dating of biotites from the North Trégor Batholith, *Geochimica et Cosmochimica Acta*, 55, 1675-1688, 1991.

Santallier D., J.M. Lardeaux, J. Marchand and C. Marignac, Metamorphism. In : Keppies J.D. (Eds), Premesozoic geology in France and related areas, *Springer Verlag*, 325-340, 1994.

Scaillet, S., M. Cuney, C. Le Carlier de Veslud, A. Cheilletz, and J.J. Royer, Cooling pattern and mineralisation history of the St Sylvestre and Western Marche leucogranite pluton, French Massif Central: II. Thermal modelling and implications for the mechanisms of U-mineralization, *Geochimica et Cosmochimica Acta*, 60, 4673-88, 1996b.

Schmidt, N.H., and N.O. Olesen, Computer-aided determination of crystal-lattice orientation from electronchanneling patterns in the SEM, Canadian Mineralogist, 27, 15-22, 1989.

Shaw, A., The petrogenesis of Hercynian granites, French Massif Central. PhD. Thesis, Birkbeck College, University of London, London, 1991.

Sylvester, A.G., Strike-slip faults, *Geological Society of America Bulletin*, 100, 1666-1703, 1988.

Sylvester, A.G. and, R.R. Smith, Tectonic transpression and basement-controlled deformation in the San Andreas fault zone, Salton trough, California, *AAPG Bulletin*, 60, 74-96, 1976.

Tikoff., B. and, M.Saint Blanquat (de), Transpressional shearing and strike-slip partitioning in the late Cretaceous Sierra Nevada magmatic arc, California, *Tectonics*, 16, 442-459, 1997.

Tikoff, B. and, C.Teyssier, Crustal-scale, en échelon "P-shear" tensional bridges: a possible solution to the batholithic room problem, *Geology*, 20, 927-930, 1992.

Tommasi, A. and, A. Vauchez, Magma-assisted strain localization in an orogen-parallel transcurrent shear zone of southern Brazil, *Tectonics*, 13, n°2, 421-437, 1994.

Tommasi, A., A. Vauchez, L.A.D. Fernandez, and C.C. Porcher, Magma-assisted strain localization in an orogen-parallel transcurrent shear zone of southern Brazil, *Tectonics*, 13, 421-437, 1994.

Thompson, A.B. and A.D. Conolly, Melting of the continental crust: some thermal and petrological constrains on anatexis in continental collision zones and other tectonic settings, *J. geophys. Res.*, 100, 15565-15579, 1995.

Tullis, J., J.M. Christie, and D.T. Griggs, Microstructures and preferred orientations of experimentally deformed quartzites, *Geological Society of America Bulletin*, 84, 297-314, 1973.

Van Den Driessche, J., and, J.P. Brun, Un modèle de l'extension paléozoïque supérieur dans le Sud du Massif Central, *C. R. Acad. Sci., Paris II*, 309, 1607-1613, 1989.

Virlogeux, D., Roux J. and Guillemot, D. Apport de la géophysique à la connaissance du massif de Charroux-Civray et du socle poitevin. In :Etudes du massif de Charroux-Civray, Journées scientifiques CNRS/ANDRA, Poitiers, 13 et 14 octobre 1997 ; EDP sciences, Les Ulis, 33-62, 1999.

Table A: Samples location

Table B: ⁴⁰Ar/³⁹Ar synthetic results for bulk sample, single grain and polished section

Table 1, 2, 3, 4, 5: 40 Ar/ 39 Ar synthetic results for bulk sample and single grain

N1º	40 4 =* / 20 4 =	26 4 = (40 4 = * (4000)	20 4 #/40 4 #	204 - /204 -	0/ 20 4 -	0/ 40*	Age	+- 1 a d
N ² 6 Bulk	40Ar [*] /39Ar	36Ar/40Ar^(1000)	39Ar/40Ar	38Ar/39Ar	% 39Ar	% 40*	(Ma)	1 S ,0,
sampl	e		J= 0.01401					
1	13.13	0.675	0.0609	0.035	7.4	20.1	304.68	0.94
2	13,72	0,110	0,0704	0.033	28,3	3,4	317,12	0,47
3	13,87	0,033	0,0713	0,032	61,1	1,1	320,28	0,42
4	13,95	0,029	0,0710	0,032	80,1	1,0	321,98	0,46
5	14,15	0,143	0,0676	0,034	83,8	4,4	326,26	0,66
6	14,43	0,323	0,0626	0,034	86,6	9,7	332,20	1,02
7	14,69	0,397	0,0600	0,035	89,3	11,9	337,59	1,22
8	14,72	0,295	0,0619	0,034	94,0	8,8	338,23	0,75
9	14,56	0,146	0,0656	0,030	99,0	4,4	334,86	0,64
10	14,4	0,059	0,0681	0,032	100,0	1,8	331,59	0,81
6 Bulk	muscovite	·	·	·		,	,	
sampl	е		J= 0,01401					
1	14,26	0,605	0,0575	0,019	5,4	82,0	328,55	0,96
2	14	0,060	0,0701	0,014	9,8	98,1	323,13	0,80
3	13,91	0,030	0,0711	0,013	17,9	99,0	321,26	0,39
4	13,93	0,014	0,0714	0,013	41,7	99,5	321,63	0,44
5	13,96	0,008	0,0713	0,013	62,1	99,6	322,35	0,40
6	14	0,009	0,0711	0,013	77,3	99,6	323,16	0,49
7	14	0,012	0,0711	0,013	85,2	99,5	323,02	0,43
8	14,05	0,009	0,0709	0,013	89,4	99,6	324,26	0,63
9	14,19	0,004	0,0703	0,011	93,4	99,8	327,13	0,50
10	14,05	0,000	0,0711	0,012	96,3	99,9	324,23	0,62
11	13,95	0,018	0,0712	0,014	100,0	99,3	321,96	0,66
6 Sing	le biotite-step	heating	J=0,012713					
1	49,119	1,575	0,0108	0,046	1	53,5	875,32	22,42
2	15,736	0,930	0,0460	0,018	2,4	72,6	329,02	13,14
3	15,174	0,262	0,0607	0,017	13,5	92,3	318,24	2,28
4	15,216	0,065	0,0644	0,020	24,5	98,1	319,05	2,28
5	15,223	0,010	0,0653	0,019	31,5	99,7	319,19	4,22
6	15,378	0 ,011	0,0648	0,021	38,1	99,7	322,16	4,14
7	15,302	0,014	0,0650	0,020	51,8	99,6	320,71	2,19
8	15,475	0,002	0,0644	0,021	58,9	100,0	324,02	4,57
9	15,479	0,001	0,0644	0,019	67,3	100,0	324,11	3,26
10	15,578	0,010	0,0639	0,021	75,8	99,7	325,99	3,54
11	15,849	0,035	0,0624	0,009	92,7	99,0	331,17	2,35
12	15,191	0,073	0,0643	0,015	94,6	97,9	318,58	21,07
13	15,406	0,010	0,0646	0,017	99,9	99,7	322,70	8,20
7	13,48	0,061	0,0727	0,055	63,8	98,1	312,08	0,59
8	13,5	0,036	0,0732	0,056	69,1	98,8	312,41	0,51
9	13,5	0,018	0,0736	0,056	80,1	99,3	312,41	0,44
10	13,55	0,013	0,0734	0,056	96,3	99,5	313,52	0,45
11	13,53	0,022	0,0734	0,057	100,0	99,2	313,09	0,38
246 B	ulk muscovite	sample	J= 0,01401					
1	13,75	0,429	0,0634	0,018	5,5	87,2	317,77	1,08
2	13,54	0,042	0,0728	0,012	24,1	98,6	313,47	0,55
3	13,48	0,011	0,0738	0,012	46,4	99,5	312,07	0,52
4	13,53	0,013	0,0735	0,012	63,8	99,5	313,19	0,22
5	13,57	0,011	0,0733	0,012	73,6	99,5	313,95	0,38
6	13,62	0,004	0,0732	0,012	82,6	99,7	315,10	0,44
7	13,63	0,000	0,0732	0,012	93,5	99,9	315,33	0,35
8	13,67	0,000	0,0730	0,011	100,0	99,9	<u>316,19</u>	0,42

N IO	40.4 -+ /00.4	004-404-4(4000)	00 1 - / 40 1 -	004	0/ 00 4 -	0/ 40*	Age	
N	40Ar [*] /39Ar	36Ar/40Ar^(1000)	39Ar/40Ar	38Ar/39Ar	% 39Ar	% 40*	(Ma)	+- 1s,a,
	241 Single							
	biotite-spot							
	fusion		J=0,012713					
1	15,084	0,067	0,0650	0,006	4,7	99,7	316,50	4,23
2	15,018	0,040	0,0657	0,007	14,7	98,9	315,24	3,34
3	14,703	0,067	0,0666	0,011	26,2	98,1	309,16	2,36
4	15,239	0,126	0,0631	0,007	34,0	96,3	319,50	8,22
5	14,94	0,043	0,0660	0,007	45,1	98,8	313,73	2,17
6	14,868	0,067	0,0659	0,005	58,3	98,1	312,36	3,20
7	14,628	0,072	0,0669	0,007	72,7	97,9	307,71	4,10
8	14,805	0,043	0,0666	0,006	88,9	98,8	311,14	3,04
9	14,978	0,066	0,0653	0,007	100,0	98,1	314,47	5,76
Sample	e 524 Polishe	d section	J=0,014019					
1	13,379	0,097	0,0730	0,000	15,9	97,1	310,11	1,72
2	13,612	0,094	0,0710	0,000	56,5	97,2	315,07	1,56
3	13,086	0,221	0,0710	0,000	67,2	93,5	303,86	6,79
4	13,762	0,117	0,0700	0,000	79,1	96,5	318,26	2,60
5	13,558	0,168	0,0700	0,000	86,4	95,1	313,93	4,17
6	13,592	0,188	0,0690	0,000	100,0	94,5	314,65	2,48
Sample	e 3 Polished							
section	1		J=0,012713					
1	15,323	0,060	0,0639	0,000	4,4	98,2	321,11	3,06
2	14,781	0,329	0,0610	0,001	10,6	90,3	310,68	2,87
3	15,358	0,031	0,0644	0,000	19	99,1	321,78	1,29
4	15,523	0,059	0,0632	0,000	30	98,2	324,95	1,39
5	14,794	0,142	0,0647	0,003	39,3	95,8	310,93	2,47
6	14,567	0,121	0,0661	0,000	48,7	96,4	306,54	1,61
7	14,632	0,152	0,0652	0,000	61,4	95,5	307,80	0,76
8	14,695	0,556	0,0568	0,007	92,2	83,6	309,01	1,00
9	15,041	0,035	0,0657	0,000	100	99,0	315,68	3,16
Sample	e 265 Polishe	d section	J=0,012713			- · -		.
1	14,775	0,187	0,0639	0,005	16,1	94,5	310,55	3,14
2	14,707	0,794	0,0520	0,005	27,1	96,2	309,24	5,35
3	15,506	0,070	0,0631	0,000	41,4	97,9	324,61	3,09
4	15,263	0,153	0,0625	0,001	70,2	95,5	319,96	2,50
5	15,06	0,130	0,0638	0,014	87,8	96,2	316,05	4,91
6	14,984	0,129	0,0641	0,000	99,9	96,2	314,59	7,20
7	14,627	0,225	0,0638	0,001	24,3	93,3	307,70	5,17
8	15,269	0,267	0,0603	0,003	100	92,1	320,08	2,52

							Age	+-
N°	40Ar*/39Ar	36Ar/40Ar*(1000)	39Ar/40Ar	38Ar/39Ar	% 39Ar	% 40*	(Ma)	1s,d,
40 Sin	gle biotite-ste	p heating	J=0,012713					
1	114,734	0,064	0,0085	0,062	0	98,1	1622,99	136,21
2	0,991	3,246	0,0411	0,096	0,6	4,1	22,60	53,39
3	5,738	1,926	0,0750	0,002	2,2	43,1	127,04	19,90
4	14,485	0,126	0,0664	0,016	4	96,3	304,95	16,90
5	14,77	0,109	0,0655	0,028	11,3	96,8	310,45	5,21
6	14,797	0,038	0,0668	0,033	20,5	98,9	310,99	3,59
7	15,058	0,043	0,0655	0,019	52,4	98,8	316,01	1,61
8	15,149	0,115	0,0637	0,026	61,2	96,6	317,77	5,22
9	15,393	0,036	0,0642	0,024	70,1	99,0	322,45	1,81
10	14,923	0.166	0.0637	0.018	82.5	95.1	313.42	2.81
11	15,145	0.214	0.0618	0.025	88.2	93.7	317.68	4.98
12	15.228	0.087	0.0639	0.084	92.5	97.5	319.28	4.28
13	15.33	0.166	0.0620	0.015	99,9	95.1	321.23	4,91
356 Bi	ilk muscovite	sample	J = 0.01401	0,010	00,0	,.	•=:,=•	.,• .
1	13 38	0.616	0.0610	0.023	22	81 7	309 96	1 36
2	13 41	0.023	0 0740	0.013	_,_ 19.6	99.2	310 59	0.50
3	13 39	0,006	0 0744	0.012	46.2	99.7	310 14	0.27
4	14 45	0,008	0.0689	0.012	65.8	99.6	332.66	17 60
5	13 47	0,000	0,0000	0,010	76 7	99,5	311 94	0.43
6	13,47	0,012	0,0738	0,012	82.0	90,0 90 6	312 32	0,40
7	13,49	0,000	0,0735	0,013	02,3 86 1	99,0 00 0	31/ 31	0,01
0	13,50	0,000	0,0733	0,012	00, 1 99 0	99,9	215 22	0,71
0	13,05	0,000	0,0732	0,011	00,9	99,9	215 11	0,91
9 10	13,02	0,000	0,0733	0,011	100.0	99,9	315,11	0,54
Sampl	a 356 Single i	0,000 muscovite-spot	0,0752	0,011	100,0	99,9	515,07	0,52
fusion	e ooo olligie i	nuscovite-spot	J=0.012713					
1	15 585	0.540	0.0539	0.016	2	84 1	326 13	13 62
2	14 383	0 152	0.0663	0,000	11 1	95.5	302 97	2 91
3	14,000	0.084	0.0670	0,000	21.7	97.5	306 14	2,01
4	14,640	0,004	0,0070	0,000	74.8	97,0 97.4	306.81	6 1 1
5	14,001	0,000	0,0000	0,000	01 <u>4</u>	98.6	303 72	3 56
6	14,702	0,045	0,0000	0,000	100	98.1	310.87	5 30
404 Bi	ulk biotite	0,000	0,0000	0,020	100	30,1	510,07	5,50
sample	9		J= 0,01401					
1	10,5	1,102	0.0641	0.055	0.6	67,3	247,57	1,13
2	13,5	0,577	0,0613	0.058	1,5	82,8	312,53	0,87
3	13.61	0.324	0.0664	0.057	3.6	90.3	314.78	0.61
4	13.67	0.184	0.0690	0.057	7.2	94.4	316.22	0.53
5	13,78	0.094	0.0705	0.056	12.5	97.1	318.36	0.66
6	13.77	0.047	0.0715	0.056	20.2	98.5	318.30	0.69
7	13 39	0.020	0 0741	0.054	36.2	99.3	310 26	0.54
8	13,39	0,016	0 0742	0.054	51.8	99.4	310 24	0,70
9	13,93	0.015	0 0714	0.056	58.1	99.4	321 59	0 44
10	14.2	0.026	0.0698	0,056	60.6	99.1	327 29	0.46
11	14 23	0.029	0.0696	0.056	62 8	99.0	327 86	0.48
12	14 15	0.028	0 0700	0.055	66.4	99,0 99 N	326 22	0.57
13	14 1	0 024	0 0703	0.055	55,∓ 74 8	99.2	325 14	0.35
14	13.4A	0,024	0 0730	0.053	100 0	00,2 00 5	311 63	0.33
	10,70	0,010	0,0100	0,000	100,0	55,5	511,05	0,00

		· · · · ·					Age	+-
N°	40Ar*/39Ar	36Ar/40Ar*(1000)	39Ar/40Ar	38Ar/39Ar	% 39Ar	% 40*	(Ma)	1s,d,
Sample	e 404 Polishe	d section-granulite	paleosome					
			J= 0,01401					
1	13,727	0,041	0,0720	0,025	2,8	98,8	317,52	5,84
2	13,711	0,032	0,0720	0,023	9,9	99,1	317,17	2,28
4	13,575	0,047	0,0730	0,021	92,1	98,6	314,29	3,74
5	13,536	0,020	0,0730	0,022	100,0	99,4	313,50	1,14
Sample 404 Polished section-granulite leucosome								
3	13,298	0,043	0,0740	0,036	87,8	98,7	308,38	0,81
334 Bu	Ik muscovite	sample	J= 0,01401					
1	14,11	0,577	0,0587	0,018	4,2	82,9	325,49	0,69
2	14,24	0,117	0,0677	0,013	6,7	96,4	328,15	0,68
3	14,09	0,080	0,0692	0,013	11,1	97,5	325,04	0,77
4	14,07	0,035	0,0703	0,012	23,4	98,8	324,52	0,72
5	14,09	0,080	0,0692	0,013	27,8	97,5	325,04	0,77
6	14,07	0,035	0,0703	0,012	40,0	98,8	324,52	0,72
7	14,08	0,018	0,0705	0,012	56,9	99,3	324,79	0,42
8	14,11	0,014	0,0705	0,012	68,4	99,5	325,37	0,40
9	14,17	0,012	0,0702	0,012	77,5	99,5	326,62	0,32
10	14,22	0,008	0,0700	0,012	85,4	99,6	327,83	0,32
11	14,22	0,003	0,0702	0,012	92,0	99,8	327,68	0,45
12	14,27	0,003	0,0699	0,012	100,0	99,8	328,73	0,51
Sample	e 284 Polishe	ed section	J=0,012713					
1	13,888	0,148	0,0688	0,006	11,3	95,7	293,35	2,32
2	15,08	0,207	0,0622	0,000	13,7	93,9	316,45	5,03
3	15,988	0,069	0,0612	0,000	15,3	98,0	333,83	6,77
4	16,074	0,134	0,0597	0,026	18,1	96,1	335,48	10,28
5	16,178	0,129	0,0594	0,025	50,1	96,2	337,45	1,49
6	16,435	0,130	0,0584	0,022	93	96,2	342,33	4,44
7	14,861	0,131	0,0646	0,001	99,9	96,2	312,22	2,37
Sample	e 284c Polish	ed section	J=0,012713					
1	16,311	0,137	0,0588	0,001	5,2	96,0	339,97	10,09
2	15,084	0,188	0,0626	0,000	21,4	94,5	316,51	1,67
3	15,493	0,078	0,0630	0,000	48,9	97,7	324,38	2,03
4	15,263	0,137	0,0628	0,000	67	96,0	319,95	1,88
5	14,967	0,137	0,0639	0,001	72,7	96,0	314,26	5,55
6	15,064	0,151	0,0634	0,000	89,3	95,6	316,13	2,12
7	15,74	0,133	0,0610	0,000	99,9	96,1	329,09	5,95
8	14,64	0,130	0,0656	0,014	84,7	96,2	307,95	3,53
9	14,349	0,256	0,0644	0,014	95,6	92,5	302,32	3,23
10	10,589	0,983	0,0669	0,013	97,7	71,0	227,85	23,34
11	9,665	1,263	0,0648	0,014	99,9	62,7	209,08	13, <u>9</u> 7

4

Chapitre III- Structure, tectonique et microtectonique du Limousin								
N°	40Ar*/39Ar	36Ar/40Ar*(100	0) 39Ar/40Ar	38Ar/39Ar	% 39Ar	% 40*	Age (Ma)	+-
0.47.0		and the attention of	1-0.040740					1s,d,
347 Sir	igle biotite-st	ep heating	J=0,012/13					
1	22,292	0,117	0,0433	0,028	1,2	96,5	450,15	57,67
2	16,922	0,006	0,0589	0,000	30,7	99,8	351,54	2,98
3	16,644	0,022	0,0596	0,000	50,5	99,3	346,29	4,24
4	16,29	0,102	0,0595	0,000	62,3	97,0	339,58	8,25
5	16,756	0,008	0,0595	0,000	71,5	99,7	348,41	8,57
6	16,841	0,002	0,0593	0,001	86	99,9	350,01	5,44
7	17,056	0,007	0,0584	0,000	91,1	99,8	354,07	14,84
8	17,073	0,028	0,0580	0,008	95,3	99,2	354,39	15,59
9	16,318	0,021	0,0608	0,000	97,2	99,4	340,12	40,02
10	15,14	0,280	0,0605	0,000	99,9	91,7	317,59	28,08
347 Bu	lk biotite		J= 0,01401					
sample	!							
1	14,63	0,084	0,0666	0,015	58,1	97,4	336,29	0,59
2	15,1	0,017	0,0658	0,014	69,8	99,4	346,22	0,42
3	15,24	0,039	0,0648	0,015	79,6	98,7	349,07	0,44
4	15,06	0,029	0,0658	0,015	89,5	99,0	345,36	0,48
5	14,88	0,026	0,0666	0,015	97,0	99,1	341,62	0,63
6	14,61	0,039	0,0675	0,017	100,0	98,7	336,05	0,73
331 Sir	ngle biotite-st	ep heating	J=0,012713					
1	5,829	20,624	0,0384	0,000	0	22,4	128,98	394,54
2	13,735	0,846	0,0545	0,000	0,1	75,0	290,36	71,80
3	16,263	0,059	0,0604	0,000	2,2	98,3	339,07	6,10
4	17,925	0,063	0,0547	0,000	4	98,1	370,37	26,75
5	15,516	0,248	0,0597	0,003	13,9	92,7	324,81	2,58
6	16,402	0,066	0,0597	0,030	20,1	98,1	341,71	3,55
7	16,854	0,073	0,0580	0,000	23,8	97,8	350,27	5,55
8	16,273	0,012	0,0612	0,109	28,7	99,6	339,26	7,08
9	16,07	0,058	0,0611	0,022	44,5	98,3	335,40	1,89
10	16,084	0,090	0,0605	0,008	53,9	97,3	335,65	2,49
11	16.654	0.005	0.0599	0.000	83	99.8	346.48	1.94
12	16,436	0.066	0.0596	0.037	88.9	98.0	342.35	5.51
13	16,977	0,025	0,0584	0,021	96,5	99,2	352,58	5,43
14	16,295	0,123	0,0591	0,077	100	96,3	339,67	10,85

Chapitre III- Structure, tectonique et microtectonique du Limousin

Sample	Lithology	Assemblages	Localisation	C.L.II-X	C.L.II-Y
	undeformed		Millevaches massif-St Quentin-		
6	leucogranite	Kfs,PI,Qtz, Bt,Ms	la-Chabanne	583,9	2093,85
			St Michel-de-Veisse fault-		
246	mylonitic leucogranite	Kfs,PI,Qtz, Bt,Ms	Pontarion	561	2113,8
		Qtz, PI, Kfs, Bt, Ms,	St Michel-de-Veisse fault-St		
241	bt-sil-crd gneiss	Sil, Crd	Hilaire-le-Château	565,5	2109,2
			St Michel-de-Veisse fault-St		
524	mylonitic leucogranite	Kfs,PI,Qtz, Bt,Ms	Michel-de-Veisse	574,4	2107,7
			Felletin-La Courtine fault-West		
3	mylonitic leucogranite	Kfs,PI,Qtz, Bt,Ms	of Felletin	584,55	2098,15
			Felletin-La Courtine fault-St		
265	mylonitic leucogranite	Kfs,PI,Qtz, Bt,Ms	Quentin-la-Chabanne	585,9	2093,65
	biotite-sillimanite	Qtz, PI, Kfs, Bt, Ms,	Felletin-La Courtine fault-		
40	gneiss	Sil, Crd	Masd'Artige	435,6	2084
356	mylonitic leucogranite	Kfs,PI,Qtz, Bt,Ms	Pradines fault-Sarran	001°56'47"01	45°24'05"
		Qtz, PI, Kfs, Bt, Sil,	Pradines fault-St Pierre-		
404	Granulite	Crd, Grt,sp	Bellevue	565,1	2103,3
			West Marche fault-St Sulpice-		
334	mylonitic leucogranite	Kfs,PI,Qtz, Bt,Ms	les-Feuilles	519	2149,7
284c			East Marche fault-Dun-le-		
/284	mylonitic leucogranite	Kfs,PI,Qtz, Bt,Ms	Palestel	548,6	2142,8
	biotite-sillimanite				
331	gneiss	Qtz, Pl, Kfs, Bt, Ms, Sil	North of Marche fault-Marseuil	559,4	2145,7
	biotite-sillimanite	Qtz, PI, Kfs, Bt, Ms,	Felletin-La Courtine fault-		
347	gneiss	Sil, Crd	Confolent-Port-Dieu	614,2	2060,55

Table A: Samples location

Sample	Total age	Plateau	Isochron	⁴⁰ Ar/ ³⁶ Ar	MSWD
6 Bulk biotite sample	320.0 <u>+</u> 2.9		320.8 <u>+</u> 4.3	450 <u>+</u> 47	1.71
6 Bulk muscovite sample	317.9 <u>+</u> 2.9	322.2 <u>+</u> 3			
6 Single biotite-step heating	329.7 <u>+</u> 3.4		322.8 <u>+</u> 3.5	299 <u>+</u> 37	2.17
246 Bulk muscovite sample	308.0 <u>+</u> 2.8	313.0 <u>+</u> 2.8	315.3 <u>+</u> 3.0	324 <u>+</u> 28	0.69
40 Single biotite-step heating	313.2 <u>+</u> 3.3		316.3 <u>+</u> 3.5	347 <u>+</u> 93	2.1
356 Bulk muscovite sample	301.5 <u>+</u> 2.8	310.2 <u>+</u> 2.9	313.7 <u>+</u> 3.1	249 <u>+</u> 11	1.92
404 Bulk biotite sample	312.0 <u>+</u> 2.9		318.6 <u>+</u> 3.8	314 <u>+</u> 45	5.64
334 Bulk muscovite sample	324.6 <u>+</u> 3	324.9 <u>+</u> 3	326.9 <u>+</u> 3.0	293 <u>+</u> 18	0.3
331 Single biotite-step					
heating	348.9 <u>+</u> 4.2	348.5 <u>+</u> 4.1			
347 Bulk biotite sample	334.3 <u>+</u> 3.1	341.4 <u>+</u> 3.2			

Table B : ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ synthetic results for bulk sample and single grain

IX- Conclusions principales de ce chapitre et de l'article Tectonics

IX-1. Analyse cinématique / Relations magmatisme-tectonique

- Les granites de Guéret enregistrent la déformation ductile en décrochement dextre des failles d'Arrênes St Michel de Veisse Felletin- La Courtine à 350 Ma (mesure des O.P.R. du quartz).
- Les leucogranites enregistrent la déformation ductile en décrochement dextre des failles de St Michel de Veisse et de Felletin-La Courtine à 320 Ma (mesure des O.P.R. du quartz).
- Les grands décrochements ont commencé à fonctionner autour de 350 Ma. Ils exercent un contrôle majeur sur la mise en place des granites de type Guéret à 350 Ma et des leucogranites à 320 Ma.
- Les failles normales sont postérieures aux décrochements et sont initiées au toit des leucogranites vers 320 Ma. Leur mise en place favorise la localisation de la déformation crustale en faille normale.

IX-2. Les datations

- 348,5 ± 4,1 Ma constitue une limite supérieure pour la déformation ductile cisaillante des gneiss à biotite-sillimanite, encaissant des granites. Ces âges sont confirmés par la datation U-Th-Pb à 350 Ma des monazites de ces même gneiss dont la cristallisation est contemporaine du stade synfolial à Bt-Sil.
- 340-335 Ma pourrait correspondre à l'âge de mise en place des leucogranites de la Marche orientale syntectonique de la déformation en décrochement sénestre (datation ⁴⁰Ar/³⁹Ar sur micafishs de muscovite et datation U-Th-Pb sur monazite)
- Les âges ⁴⁰Ar/³⁹Ar à 325 Ma obtenus sur les micafishs de muscovite constituent une limite supérieure pour la cinématique en faille inverse vers le NE de la Marche occidentale.
- Fonctionnement synchrone des accidents ductiles de St Michel de Veisse et de Felletin-La Courtine entre 320 et 305 Ma
- 315 320 Ma correspond à l'âge de mise en place des granites à deux micas du Millevaches syntectonique des décrochements des Pradines, de St Michel de Veisse et de Felletin La Courtine.
- Les âges compris dans l'intervalle 305,5 <u>+</u> 3,3 Ma et 310,7 <u>+</u> 3,2 Ma sont des âges minimum pour la fin de la déformation ductile en faille normale des leucogranites de la Brâme.
- Les datations par la méthode ⁴⁰Ar/³⁹Ar permettent d'estimer la fin du fonctionnement des cisaillements entre 310 et 300 Ma. Cependant, la présence de Stéphanien verticalisé dans la zone de cisaillement Sud Armoricaine suggère un fonctionnement des grands accidents jusqu'à 290 Ma.

IX-3. Le modèle tectonique global

- Les décrochements du Limousin représentent la continuité orientale du cisaillement Sud-Armoricain. Ces deux domaines ont subi deux évènements magmatiques majeurs contemporains d'une déformation ductile cisaillante : le premier est associé aux granodiorites peralumineuses de type Guéret dont la mise en place se situe vers 350 Ma, la seconde est reliée au phénomène de fusion crustale ayant donné lieu à la mise en place des leucogranites vers 320 Ma.
- Les deux générations de granitoïdes (granodiorites-monzogranites et leucogranites) se sont mises en place dans un contexte transpressif initiant vers 350 Ma le développement de grands décrochements et de failles chevauchantes en réponse à la convergence N-S à NW-SE entre le Gondwana au sud et Armorica au nord. Dès lors, l'achèvement de la phase d'épaississement dans le Massif Central se ferait autour de 350 Ma.
- L'architecture des failles du Limousin et du massif Sud Armoricain est comparée à celle d'une « pop-up structure » actuellement en partie érodée.
- La vaste et unique zone de cisaillement ductile de la « pop-up structure » pourrait correspondre à un grand décrochement d'échelle lithosphérique acheminant la montée des magmas dans la croûte.

- Deux processus sont envisagés pour la genèse des magmas leucogranitiques :
 - Un processus de délamination lithosphérique conduisant à l'anatexie de la croûte inférieure et à la localisation de chambres magmatiques à ce niveau (voir Chapitre IV).

- Un processus de shear-heating au niveau du manteau supérieur initiant la fusion mantellique. Les magmas mantelliques ainsi formés provoquent la fusion partielle de la croûte inférieure. Le melt qui en résulte remonte dans la zone de cisaillement accentuant l'anomalie thermique. Par la suite, la fusion de la croûte moyenne se développe et est accentuée par la déshydratation des minéraux hydratés (micas et amphiboles).
Chapitre III- Structure, tectonique et microtectonique du Limousin

FIG. IV-1a – Carte géologique simplifiée de la partie nord-ouest du Massif Central.

I. Contexte géologique et présentation du massif granitique de Millevaches

Situé au NW du Massif Central, le massif de Millevaches correspond à un vaste complexe granitique d'orientation Nord-Sud (Fig. IV-1b). Il est limité à l'ouest par la faille normale dextre ductile et fragile d'Argentat qui le sépare des séries métamorphiques du Limousin (Floch', 1983) (Fig. IV-1a). Au nord, il est séparé du massif granitique de Guéret par le décrochement dextre de St Michel de Veisse (Fig. IV-1a et b). Enfin à l'Est, l'accident ductile de Felletin-La Courtine relayé plus au sud par la faille cassante d'Ambrugeat le dissocie des gneiss à biotite-sillimanite et des migmatites à cordiérite (Fig. IV-1a). L'orientation NS du Millevaches est parallèle au décrochement dextre interne des Pradines mais également à la faille d'Argentat qui constitue sa bordure ouest (Fig. IV-1b). La forme allongée N-S du Millevaches est due aux failles qui le bordent et qui le structure (faille des Pradines; Chapitre III, §IV).

Le Millevaches est composé de granites à biotite porphyroïdes, de leucogranites à Grt-Crd et de granites à deux micas encaissés dans des micaschistes affleurant dans la partie sud du massif. On retrouve ces micaschistes sous la forme d'enclaves orientées N-S dans le centre du Millevaches ou E-W à NW-SE le long de sa bordure Nord (Fig. IV-1b). Dans la partie nord du massif, affleurent des granulites à Bt-Sil-Grt-Crd sous forme de septas N-S systématiquement associés aux leucogranites à Grt-Crd (Fig. IV-1b).

Les granites à biotite porphyroïdes, associés aux leucogranites à Grt-Crd et aux granulites sont considérés comme les granites les plus anciens comparés aux granites à deux micas qui les recoupent (Mouret, 1924; Raguin, 1938; Lameyre, 1966). Les relations structurales entre les granites d'Egletons (granites à biotite porphyroïdes) et les granites à deux micas à proximité de Péret Bel Air dans la mine de Boucheron (Fig. VI-1b), montrent cependant que leur mise en place est contemporaine (Stussi et Cuney, 1990).

Les granites à deux micas sont interprétés par certains auteurs (Lameyre, 1982, 1984; Bonin et Lameyre, 1984; Duthou et Floc'h, 1989) comme des diapirs traversants la pile de nappes métamorphiques. Pour d'autres, ils se sont mis en place sous forme de lames par l'intermédiaire de zone de cisaillement sub-horizontale à vergence NW (Bouchez et Jover, 1986; Jover et Bouchez, 1986).

La signification des linéations magmatiques dans les granites du Millevaches mais également dans les autres massifs granitiques environnants est très discutée (Bouchez et Jover, 1986 ; Lanneau et al., 1988 ; Faure, 1989 ; Faure et al., 1990). Les linéations magmatiques des granites du Millevaches présentent deux directions (Jover et Bouchez, 1986). La première orientée N-S caractérise les granites à biotite porphyroïdes et les leucogranites à Grt-Crd. Elle serait reliée à des accidents N-S qui affectent le socle pendant la convergence varisque précoce (Jover et Bouchez, 1986). La seconde de direction NW-SE se distingue dans les massifs granitiques de Millevaches et de Guéret et serait associée à un chevauchement majeur vers le NW (de type Main Central Thrust Himalayen) (Jover et Bouchez, 1986).

FIG. IV-1b – Carte pétro-structurale du massif granitique de Millevaches.

Pour Mattauer et al. (1988) et Faure (1989, 1990, 1995), ces linéations NW-SE sont liées à une extension tardi orogénique. Sur la base des datations anciennes effectuées par la méthode Rb/Sr sur roche totale, on évalue l'âge de mise en place des granites à deux micas autour de 335 Ma. Les granites à deux micas de St Julien aux Bois et de Goulles, situés tous deux au sud du massif (Fig. IV-1b), sont datés respectivement à 336 ± 7 Ma et à 332 ± 6 Ma (Monier, 1980). Shaw (1991) date par la méthode Rb/Sr les granites à deux micas du Millevaches à 322 ± 12 Ma. Ceux de Courcelles (Fig. IV-1b) localisés dans la partie NE du massif de Millevaches donnent des âges plus récents à 320 ± 5 Ma par la méthode U/Pb sur zircon (Rolin et al, 2004).

Le granite de Bouchefarol (Fig. IV-1b), assimilé aux granites à biotite porphyroïdes donne un âge de 357 ± 7 Ma par la méthode Rb/Sr sur roche totale (Augay, 1979). Le granite d'Egletons (Fig. IV-1b) a fait l'objet d'une datation Rb/Sr par Vialette (1962) à 319 ± 6 Ma.

La datation chimique Th-U-Pb sur monazite à la microsonde électronique des leucogranites à Grt-Crd fournit un âge isochrone à $323,2 \pm 3,9$ Ma (Rolin et al., en préparation). Augay (1979) obtient sur le même faciès un âge à 332 ± 15 Ma par la méthode Rb/Sr sur roche totale.

II. Pétrographie du massif de Millevaches

II-1. Les granites à biotite porphyroïdes

Ils affleurent principalement au centre et dans la partie nord du massif (Fig. IV-1b). C'est un granite à grain moyen (1-4 mm), à feldspath potassique (dont mégacristaux feldspathiques pluricentimétriques (2 à 10 cm)), plagioclase, quartz et biotite. Les phénocristaux de feldspath potassique sont automorphes et contiennent parfois en inclusion du plagioclase, de la biotite et du quartz. Le plagioclase a une composition d'oligoclaseandésine variant entre An₂₆ et An₃₁ (Shaw, 1991) et ne présente pas de zonation. Le quartz est interstitiel. Les biotites sont fortement pléochroïques et contiennent des minéraux accessoires en inclusion (apatite, zircon et monazite). Elles sont fréquemment affectées par des phénomènes de chloritisation. Les granites à biotite porphyroïde présentent une fabrique planaire marquée par l'orientation des biotites et des phénocristaux de potassique. L'étude de l'orientation feldspath préférentielle du plan (010) des feldspaths potassiques permet de définir à l'échelle du massif de Millevaches, une direction globalement N-S pour ces granites, qui se réorientent en E-W à NW-SE à proximité du décrochement de St Michel de Veisse et à l'est du décrochement des Pradines (Mezure, 1980).

II-2. Les granites à deux micas

Les granites à deux micas « leucogranites » forment l'essentiel du massif de Millevaches. Ils présentent des variations de faciès, liées à la taille du grain qui varie entre 1mm et 5mm, leur composition minéralogique reste cependant constante. Le feldspath potassique est représenté par l'orthose ou le microcline. Le plagioclase présente une composition d'albite ou d'oligoclase (An $_4$ – An $_{12}$ (Stussi, 1977)). La muscovite est abondante et d'origine magmatique (voir diagramme ternaire [FeO+MnO, TiO2 et MgO] de Miller (1987), Chapitre III, Planche XIII). La biotite est fortement pléochroïque et peut montrer des signes de chloritisation. La sillimanite apparaît quelquefois sous forme de fibrolite. Le zircon et la monazite sont généralement en inclusion dans la biotite. L'apatite est fréquemment en équilibre avec la biotite. La description détaillée en lame mince des granites à deux micas est donnée au Chapitre III, III-3-a., Planche II.

II-3. Les granulites

II-3-a. Description

Situées au nord du massif de Millevaches, ces formations correspondent à des septas de granulites à Bt-Grt-Sil-Crd orientés globalement N-S parallèlement au massif.

Elles sont constituées de deux parties : le paléosome dont la paragenèse est à Kfs-Pl-Qtz-Bt-Crd-Grt-Sil<u>+Il+Sp</u> et un leucosome à Kfs-Pl-Qtz-Grt-Crd<u>+Bt+Sil+To+Sp</u>. Ce dernier correspond au leucogranites à Grt-Crd. Ces granulites sont situées cartographiquement dans le prolongement nord du décrochement dextre des Pradines (Fig. IV-1b).

II-3-a-i. Le paléosome

L'affleurement le plus représentatif se situe à proximité de St Pierre-Bellevue, au hameau du grand Janon. Les plans de foliation subverticaux sont orientés NNW-SSE et portent une linéation sub-horizontale.

A l'échelle du macro échantillon (Chapitre III, §IV-1., Planche XIV), la paragenèse de la roche est à feldspath potassique, plagioclase, quartz, grenat, biotite, sillimanite, cordiérite. Ces formations présentent un rubanement formé par l'alternance i) de grenats monocristallins centimétriques allongés dans le plan XZ, ii) de biotites en équilibre avec la sillimanite et la cordiérite iii) de rubans de cordiérite (4cm) dont l'épaisseur peut atteindre 4 à 5 mm (Fig. a, Planche XXV).

A l'échelle de la lame mince, les grenats en ruban centimétrique (Fig. b, Planche XXV) présentent des contours curvilignes amiboïdes (Fig. c, Planche XXV). Cette croissance dendritique (Fig. c, Planche XXV) suggère un développement rapide. Dans le plan XY, les grenats forment des galettes aplaties centimétriques suggérant une croissance dans des conditions de haute température (autour de 700°C). Leur analyse à la microsonde électronique ainsi que les cartographies des principaux éléments constitutifs ne dévoilent aucune zonation significative du cœur à la périphérie (Fig. d, Planche XXV) si ce n'est un léger enrichissement du cœur en manganèse. Ils contiennent des inclusions d'ilménite, de biotite et de sillimanite prismatique (Fig. a, Planche XXVI). Ces dernières, envahissent le minéral, quelquefois dans sa totalité. En règle générale, les sillimanites sont moins fréquentes sur les bordures des grenats qu'au cœur (Fig. b, Planche XXV). Shaw (1991) décrit la présence de spinelle en inclusion dans la cordiérite. Les grenats présentent de façon quasisystématique sur leurs bordures des auréoles de

cordiérite au contact avec la matrice (Fig. b et c, Planche XXVI).

Il s'agit d'auréole réactionnelle du type : Grt + Sil + Qtz =>Crd. La cordiérite non altérée et automorphe laisse apparaître de très belles macles en baïonnettes (Fig. d, Planche XXVI).

La biotite est automorphe et riche en titane (3 < TiO2 <5,5, analyses, Annexe 3). Bien que rare, le feldspath potassique peut être en équilibre avec le grenat. Le plagioclase n'est pas zoné (analyses, Annexe 3). La muscovite est absente. Ces formations présentent une texture de recuit (Fig. e, Planche XXV) caractéristique du faciès granulite.

Les grenats montrent dans le plan XZ des queues de cristallisation asymétriques à sillimanite, cordiérite, biotite qui témoignent d'un mouvement en décrochement dextre (Fig. f, Planche XXV) actif dans les conditions P-T de l'assemblage métamorphique à l'équilibre ($700 < T < 800^{\circ}$ C, § II-3-b).

II-3-a-ii. Le leucosome ou les leucogranites à Grt-Crd (voir description et illustrations Chapitre III, §IV-1., Planche XIV)

Ces formations sont de façon systématique associées aux granulites à Bt-Grt-Sil-Crd. Sur le terrain nous pouvons mettre en évidence une anatexie progressive des granulites à Bt-Grt-Sil-Crd dont le terme ultime correspond à un granite leucocrate à grenat-cordiérite.

Le granite très clair, blanc à rose possède un grain homogène moyen (3mm) à grossier (7mm) (Fig. g, Planche XXVI). Il prend quelquefois un aspect porphyroïde (feldspath potassique de 1 à 2 cm). De structure équante ou grossièrement foliée, il est pauvre en biotite. Il possède des grenats centimétriques (Fig. h et i , Planche XXVI) qui sont soit regroupés en amas (Chapitre III, Fig. f, Planche XIV) soit dispersés dans la roche (Fig. g, Planche XXVI). Ce leucogranite renferme également des nodules centimétriques de cordiérite. La biotite apparaît parfois en amas ou en septas orientés. Ce leucosome est également affecté par un mouvement en décrochement dextre matérialisé par des plans C-S (Fig. i, Planche XXVI).

A l'échelle de la lame mince le granite montre une texture grenue. Le plagioclase forme des cristaux trapus à tendance sub-automorphe. Le feldspath potassique subautomorphe est maclé Carlsbad. La biotite se présente en lamelle dispersée de façon homogène, en amas autour des cristaux de cordiérite ou associée au grenat. La biotite est généralement non altérée mais montre parfois des traces de chloritisation. La cordiérite souvent pinitisée est associée au quartz. Le grenat forme des cristaux globuleux dispersés ou regroupés en nodules. Il a une composition d'almandin (analyses LEUCOSOME, Annexe 3). Le quartz forme des plages généralement xénomorphes allongées. La sillimanite est rare. La muscovite est absente. Les minéraux accessoires sont le zircon, la monazite, l'ilménite, la tourmaline et le spinelle. Ce dernier a été identifié par Shaw (1991) en inclusion dans la cordiérite.

PLANCHE XXV-Les formations granulitiques du hameau du Grand Janon à proximité de St Pierre-Bellevue (Nord du Millevaches). a. Aspect macroscopique des granulites sur un échantillon scié. Les grenats, les cordiérites et les sillimanites forment des rubans. b. Rubans de grenats en lame mince. Notons que les inclusions de sillimanite (halo gris sombre à l'intérieur du grenat) sont plus nombreuses au cœur qu'à la périphérie. La sillimanite est également observée dans la trame de la roche. c. Bordure du grenat curviligne au MEB. Croissance dendritique suggérant une croissance rapide. d. Cartographie d'éléments faîte à la microsonde électronique SX 100 de Montpellier d'un grenat ne montrant aucune zonation significative. Léger enrichissement du cœur en manganèse lié à sa croissance (d).

PLANCHE XXVI-Les formations granulitiques du hameau du Grand Janon à proximité de St Pierre-Bellevue (Nord du Millevaches) (suite). a. Inclusions de biotite, sillimanite et ilménite dans les grenats. b. Auréole réactionnelle du grenat avec la sillimanite et le quartz donnant naissance à la cordiérite autour du grenat. c. Frange de cordiérite autour du grenat. d. Macle en baïonnette typique de la cordiérite. e. Texture polygonale de recuit typique du faciès granulite. f. Queue de cristallisation à biotite, sillimanite, cordiérite autour des grenats indiquant un mouvement décrochant dextre vers le SSE. g. Partie leucosome à l'échelle de l'affleurement. h. Grenat centimétrique dans la partie leucosome. Notons la limite nette entre la partie métatexitique et le terme ultime anatectique. i. Leucosome laissant apparaître des plans C-S dextres. Notons quelquefois la présence de tourmaline.

Un essai d'évaluation des conditions P-T dans les faciès sombres des granulites (paléosome) est tenté par la méthode classique. Ce faciès représente le protolithe des parties ayant subies l'anatexie (métatexites et leucosome à Grt-Crd).

La cartographie d'éléments (Al, Ca, Mg, Mn et Fe) sur les grenats (fig. d, Planche XXV) ne révèle pas de très fortes zonations. Contrairement à certains minéraux comme la biotite ou la chlorite, le grenat est un minéral peu sensible aux processus de diffusion intracristalline qui peuvent intervenir lors de rééquilibrage postmétamorphique ou d'événements métamorphiques postérieurs. Les grenats ont donc la particularité de conserver quelquefois des zonations chimiques qui reflètent l'évolution des conditions P-T au cours de leur croissance.

Le grenat (fig. d, Planche XXV) présente un appauvrissement en Mn du cœur vers la périphérie qui est interprété comme le résultat du fractionnement du Mn durant un métamorphisme prograde. Il présente également un léger enrichissement en Fe (bordure externe un peu plus rouge) et un appauvrissement en Mg du cœur à la périphérie (bordure externe un peu plus bleutée).

Les analyses chimiques (Annexe 3) montrent que les grenats se caractérisent par un pôle almandin dominant entre 75 et 82%, un pôle pyrope relativement faible entre 8 et 20%, un pôle spessartite qui varie entre 2 et 5 % enfin un pôle grossulaire quasi inexistant autour de 2%. L'enrichissement du cœur des grenats en Mn n'est pas systématique sur l'ensemble des échantillons analysés.

II-3-b. i. Thermomètre Grenat / Cordiérite :

Les analyses des couples grenat-cordiérite servant au calcul de lnK_D ont été effectuées à l'aide de la microsonde électronique SX 100 de l'Université Montpellier II.

Thompson propose deux équations, l'une tenant compte de la pression (Thompson, 1976) :

$$Ln K_D = \frac{Gt-Cd}{Fe-Mg} = (2724,948 / T) -0,896 + (0,0155 * P)/T$$

L'autre simplifiée (Thompson, 1976):

$$\begin{array}{rcl}
& & Gt-Cd \\
& Ln K_D & = (2724,948 / T) -0,896 \\
& & Fe-Mg
\end{array}$$

Gt-Cd $K_D = (X \text{ Gt,Fe} / (1 - X \text{ Gt,Fe})) / (X \text{ Cd,Fe} / (1 - X \text{ Cd,Fe}))$ Fe-Mg

De façon à compenser les erreurs d'estimations de température et les effets d'éléments autres que Fe et Mg sur K_D , Thompson donne les incertitudes suivantes : $\Delta T{=}~50^{\circ}C$ et $\Delta~K_D$ / $K_D=5\%$

Les résultats (Annexe 3) obtenus par la première équation sur deux couples Grt-Cd en équilibre indiquent une T°C comprise entre :

715°C et 730°C pour P à 3Kbar

705°C et 720°C pour P à 4,5Kbar

720°C et 740°C pour P à 6Kbar

730°C et 750°C pour P à 8Kbar

Pour ces mêmes couples, les résultats (Annexe 3) obtenus par la seconde équation indiquent une T°C de 700°C.

Nous avons testé le thermomètre de Holdaway & Lee (1977) qui, se basant sur les travaux de Thompson (1976) ont établi la relation suivante :

$$Ln K_D = (3094,809 / T) -1,354 + (0,0152 * P)/T$$

Fe-Mg

Les résultats (Annexe 3) acquis sur les mêmes couples indiquent des températures de l'ordre de 700°C obtenues pour des pressions différentes.

Le thermomètre Ferry & Spear (1978) présente quelques limitations :

Il n'est applicable qu'entre 550°C et 800°C, sur des roches où les teneurs en Ca et Mn du grenat sont négligeables et les teneurs en Al ^{VI} et Ti de la biotite telles qu'elles n'influent pas sur l'idéalité des solutions et sur le partage Fe-Mg ((AlVI + Ti) / (Al VI + Ti + Fe + Mg) < 0,15.

Cette dernière condition n'est pas remplie par les biotites de nos échantillons pour lesquelles le partage Fe-Mg se situe autour de 0,20.

II-3-b. ii. Thermocalc

Parallèlement, toujours sur les mêmes faciès de granulites (paléosome), nous avons essayé de contraindre les paramètres P et T avec le programme THERMOCALC.

Nous avons calculé les conditions pression-température des minéraux à l'équilibre en utilisant le mode average P-T de THERMOCALC v 3.21 associé à la dernière base de données thermodynamiques (Holland et Powell, 1998). Ce mode utilise des équilibres indépendants. Ces équilibres qui dépendent de la composition chimique des phases minérales mises en jeu, doivent se recouper avec un certain intervalle de confiance dans un domaine P-T représentant les conditions pression et température qui ont prévalu lors de la cristallisation de ces phases minérales. Les activités des différents pôles purs utilisées pour le calcul des conditions P-T sont calculées grâce au module AX de THERMOCALC à partir des données obtenues à la microsonde électronique. Les modèles d'activités utilisés tiennent compte de la dernière mise à jour de la base de données thermodynamiques (Holland et Powell, 1998).

Nous avons vu précédemment que les paragenèses observées étaient :

Feldspath K – plagioclase – quartz – biotite – sillimanite – cordiérite – grenat – ilménite - spinelle

Dans ce programme de calcul, seules les erreurs de la base de données thermodynamiques et celles des activités des différents pôles purs répercutées dans les calculs de THERMOCALC sont prises en compte. THERMOCALC calcule également deux paramètres statistiques qui permettent de valider ou non les calculs thermobarométriques effectués. Le premier paramètre est un coefficient de corrélation R^2 , le second paramètre correspond au test du χ^2 .

		Pression et température	_
Echantillons	Equilibres indépendants	moyenne	Statistiques
		(sd: erreur absolue)	cor = 0.848
MVG6-grtcoeur	1) $gr + q + 2sill = 3an$	T = 836°C, sd = 57	sigfit = 0.47
	2) $2py + 5q + 4sill = 3crd$	P = 6.1 kbars, sd = 0.8	
	3) 5gr + 3fcrd + 6sill = 2alm + 15an		
	4) py + east + 3q = phl + crd		
	5) east + 2crd = 2py + san + H2O + 3sill		
	6) 4ann + 3fcrd + 3q = 6alm + 4san + 4H2O		
404	1) gr + q + 2sill = 3an	T = 834°C, sd = 59	cor = 0.870
	2) 2py + 5q + 4sill = 3crd	P = 6.1 kbars, sd = 0.9	sigfit = 0.62
	3) 5gr + 3fcrd + 6sill = 2alm + 15an		
	4) east + 2crd = 2py + san + H2O + 3sill		
	5) 10phl + 21sill = 9east + san + 6crd + H2O		
	6) 4ann + 3fcrd + 3q = 6alm + 4san + 4H2O		
MVG6-grtperif	1) $gr + q + 2sill = 3an$	$I = 784^{\circ}C$, sd = 54	cor = 0.868
	2) $2py + 5q + 4sill = 3crd$	P = 5.8 kbars, sd = 0.8	sigfit = 0.81
	3) 5gr + 3fcrd + 6sill = 2alm + 15an		
	4) east + 2crd = 2py + san + H2O + 3sill		
	5) 10phl + 21sill = 9east + san + 6crd + H2O		
	6) 4ann + 3fcrd + 3q = 6alm + 4san + 4H2O		

FIG. IV-2 - Conditions Pression-Température calculées par le mode average P-T de THERMOCALC v 3.21

Le programme de THERMOCALC indique des températures oscillant entre **750°C et 850°C** et des pressions de l'ordre de **5 à 6** Kbars. L'erreur absolue sur la pression et sur la température est respectivement d'environ 1kbar et 60° C. Les valeurs des coefficients R² et χ^2 permettent de valider les calculs effectués. Ces pressions et températures ont été calculées en tenant compte d'une activité en eau égale à 1 (a_{H20}=1).

Pour des roches ayant atteint le faciès granulite, il est très probable que l'activité en H_20 soit inférieure à 1. Dans le cas d'un fluide constitué par du CO_2 et H_2O , les pressions et températures seront probablement légèrement inférieures à celles calculées avec $a_{H20}=1$. Ces résultats doivent de ce fait, être pris avec prudence.

Concernant la partie leucosome, l'absence de sillimanite et de biotite dans les assemblages minéralogiques ne permet à THERMOCALC de calculer suffisamment d'équilibres indépendants pour fournir avec des statistiques acceptables une pression et une température. Au regard des relations sur le terrain entre leucosome et paléosome, il est vraisemblable que les conditions P-T de cristallisation du leucosome aient été peu différentes de celles régnant dans le paléosome.

Ces résultats sont en accord avec les estimations géochimiques de Shaw (1991) (§III-3-b).

II-4. Les micaschistes

L'encaissant des granites du Millevaches est formé de micaschistes qui, suivant la terminologie de Ledru et al. (1989), correspondent à l'unité para-autochtone.

Le long de la bordure ouest du Millevaches, leur foliation est concordante avec la bordure des granites et suivent une orientation qui varie entre N140 et N160 avec un pendage de 35° à 65° W à proximité de la faille d'Argentat. Au nord, ils sont coincés entre les granites du Millevaches et ceux de Guéret et affleurent très localement sous forme de septas verticaux orientés N120 dans le décrochement de St Michel de Veisse. A l'est, on les rencontre surtout dans la partie sud, vers Marcillac (Fig.IV-1a) où la foliation orientée NW-SE est très peu pentée (<30°).

C'est dans la partie méridionale du massif, au sud de la vallée de la Dordogne, limitée à l'ouest par la faille d'Argentat et à l'est par le Sillon Houiller, qu'ils sont le mieux représentés. Deux phases de déformation principales sont enregistrées dans ce secteur (Guillot P.L. et al, 1992).

La première (phase D1), correspondant à la transposition de la stratification S0 en foliation S1 est associée au développement de plis isoclinaux à axes NW-SE. Cette phase ne s'observe plus qu'au niveau de rares charnières de plis très aplatis. Le métamorphisme associé ne subsistant plus qu'à l'état de relique, est à grenat, biotite,

muscovite et à silicate d'alumine (sillimanite et disthène). Ces derniers sont mis en évidence au niveau de l'unité de Saint-Paul-de-Vern – Terrou où les conditions P-T sont estimées à 650°-660°C et 6 kbar (Guillot P.L. et al, 1992).

La deuxième phase D2 est marquée par une foliation de plan axial S2 et un métamorphisme développé dans les conditions du faciès amphibolite. La disposition des isogrades a été modifiée par la tectonique tardive. Suivant une coupe NW-SE, depuis la faille d'Argentat à l'ouest jusqu'au granite à deux micas de Goulles vers l'est (Fig. IV-1b), trois zones d'isométamorphisme attestant d'un métamorphisme prograde ont été reconnues : zone à almandin seul, zone à almandinstaurotide et zone à almandin-sillimanite. L'anatexie post-D2 est atteinte entre Camps et Sousceyrac avec des conditions P-T estimées à 650°-700°C et 4-6 kbar (Monier, 1980).

Postérieurement, la mise en place des granites induit un métamorphisme de contact à cordiérite et andalousite évalué à 580°C-2kbar (Feix, 1988).

III. Les données géochimiques suivant Stussi et Cuney, 1993 et Shaw (1991)

Stussi et Cuney (1993) ont mis en évidence sur les trois formations caractéristiques du Millevaches (granites à biotite porphyroïdes, granites à deux micas, granulites (paléosome et leucosome à Grt-Crd), trois grands types d'évolution géochimique et minéralogique.

III-1. Caractéristiques géochimiques des granites à biotite porphyroïdes type Egletons (Fig. IV-3a et 3b)

5<IA<30

avec IA=index d'aluminosité = Al-(K+Na+2Ca) $16,5\% < AL_2O_3 < 18,0\%$

L'index d'aluminosité est constant à légèrement croissant lorsque l'index de différenciation (ID=Fe+Mg+Ti) décroît.

Ces granites (type E1, voir Fig. IV-3b) proviendraient d'un phénomène de mélange entre un magma anatectique peralumineux crustal de composition E2 (Fig. IV-3b) et un matériel métasédimentaire immature ou igné granodioritique métalumineux. Cette hypothèse avait déjà été proposée par Lameyre et al. (1989) pour les granites aluminopotassiques du Guéret pour lesquels il envisageait un phénomène de mélange entre un magma crustal peralumineux et un magma calcoalcalin. Les granites de type E3 (Fig. IV-3b) présentent une évolution chimico-minéralogique semblable à celle des granites E1.

III-2. Caractéristiques géochimiques des granites à deux micas (type Hyverneresse, bordure NE du Millevaches) (Fig. IV-3a et 3b)

Ils sont très siliceux 71,0%<SiO2<74,5%.

Leur composition est faiblement ferro-magnésienne 0.9%<Fe₂0₃t+Mg0+TiO₂<2.6%.

Stussi et Cuney (1990) individualisent deux faciès, HVA et HVB qui se différencient par deux types de fractionnements différents. HVA est défini par des corrélations positives entre IA et ID (Fig. IV-3a). Il implique le fractionnement du quartz, du plagioclase, de la biotite et de la muscovite. HVB présente des corrélations négatives entre IA et ID (Fig. IV-3a). Ce type d'évolution, subi par la plupart des leucogranites Varisques implique uniquement le fractionnement du quartz, des feldspaths et des biotites.

Le spectre des terres rares normalisé aux chondrites montre que les granites à deux micas du Millevaches mais également ceux de la Marche, de la Margeride et du Velay présentent tous de faibles teneurs en Ba, Sr, Ti et Zr et une forte concentration en Rb, P et Ga (White et Chappell, 1983).

Pour Williamson et al., (1996), la composition péralumineuse et les caractéristiques isotopiques (ϵ Nd = -8.2 à -6) des granites à deux micas indiquent qu'ils s'apparentent aux granites de type S et sont donc issus de la fusion partielle de metasédiments de base de croûte. Pour Downes et al., (1990) ; Williamson et al., (1992) et Williamson et al., (1996), le phénomène de fusion partielle serait probablement lié à une délamination lithosphérique induisant un sous plaquage à la base de croûte de magmas basiques mantelliques entre 360 et 270 Ma. Ce phénomène se serait intensifié par des réactions de déshydratation et d'extraction de fluides de la croûte inférieure liés au métamorphisme granulitique, entre 300 et 280 Ma (Costa et al., 1993).

b	ROYERE							EGLETONS				HYVERNERESSE									
\mathbf{D}	A1	A2	A3	В	C1	C2	C3	F	E1	E2	E3a	E3b	M1	M2	М3	M4	HVA	HVB	е	с	w
In									7	3	5	5	3	3	2	2	9	18			1
SiO2	68,14	69,00	70,50	70,43	71,30	73,90	71,30	72,03	66,76	69,00	71,00	72,06	70,54	71,63	71,86	71,64	71,46	72,9	73,01	71,10	73,39
AI2O3	15,15	14,92	15,20	14,24	14,80	13,80	13,50	14,58	15,67	15,64	14,95	14,41	14,93	14,75	14,78	14,62	14,82	14,5	14,71	14,35	14,39
Fe2O3t	3,02	2,88	2,78	2,31	2,33	0,84	1,74	1,07	3,71	2,61	2,30	1,66	2,35	1,88	1,71	1,83	1,99	1,44	1,42	1,63	1,43
MnO	0,04	0,04	0,04	0,04	0,05	0,01	0,02	0,02	0,05	0,04	0,04	0,02	0,05	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04
MgO	1,46	1,19	1,29	0,94	0,99	0,64	0,99	0,54	2,17	1,38	1,09	0,68	0,67	0,58	0,37	0,64	0,54	0,25	0,24	0,31	0,14
CaO	1,88	1,66	1,84	1,04	1,58	1,14	1,64	0,77	2,44	1,92	1,57	1,10	0,71	0,51	0,51	0,46	0,58	0,39	0,44	0,44	0,28
Na2O	3,42	3,41	3,47	3,07	3,42	2,97	3,08	2,95	3,36	3,55	3,58	3,43	3,11	3,16	3,17	3,12	3,14	3,26	3,51	3,09	3,29
к20	3,78	4,25	4,32	5,15	4,75	6,00	5,31	6,04	4,60	5,12	4,83	4,89	5,08	5,36	5,54	5,29	5,26	5,24	4,74	5,34	5,13
TiO2	0,42	0,39	0,43	0,57	0,29	0,14	0,18	0,12	0,54	0,39	0,28	0,25	0,35	0,29	0,34	0,28	0,31	0,21	0,24	0,24	0,10
P2O5	0,18	0,21							0,20	0,17	0,19	0,11	0,32	0,33	0,37	0,3	0,33	0,28	0,37	0,28	0,29
P.F.	1,13	0,96	0,74	1,01	0,92	0,87	1,01	1,04	0,70	0,66	0,85	0,18	1,17	0,74	0,87	1,19	1,29	1,18	1,28	1,37	1,17
Total	98,62	98,91	100,61	98,80	100,43	100,31	98,77	99,16	100,04	100,37	100,54	99,46	99,28	99,27	99,56	99,41	99,76	99,69	100,00	98,19	99,65
Fe+Mg+Ti	80	71	72	60	58	28	28	28	107	72	60	41	51	42	35	42	42	27	. 27	31	23
Al-(K+Na+2Ca)	39	33	28	33	22	6	6	35	14	15	19	29	59	55	51	57	57	54	59	52	57
Q	165	163	166	170	166	174	164	167	136	137	158	173	175	176	173	179	177	184	186	176	189
K-(Na+Ca)	-63	-49	-53	-8	-37	11	-16	20	-54	-40	-41	-26	-5	3	7	4	0	-1	-20	6	-2

FIG. IV-3 – a : Les granitoïdes du complexe de Millevaches d'après STUSSI et CUNEY (1993) dans le diagramme des minéraux caractéristiques de Debon et Le Fort (1983). Corrélations positives dans les granitoïdes de Royère (A, B, C, F) (Leucogranites à Grt-Crd) et HVA d'Hyverneresse (Granites à 2 micas du NE du Millevaches); corrélations négatives dans les granitoïdes d'Egletons (E1, E2, E3) et HVB d'Hyverneresse. Comparaison avec les granites aluminopotassiques de Guéret et avec les granites de type-S australiens.

b : Composition chimique des granitoïdes de Royère, Egletons et Hyverneresse utilisés dans les bilans de masse d'après STUSSI et CUNEY (1993). M1, M2, M3, M4 : composition moyenne des échantillons des granites du faciès HVA. c, e, w : échantillons prélevés au centre, à l'est et à l'ouest du faciès HVB. HVA et HVB : compositions chimiques moyennes de ces faciès. Q=Si/3-(K+Na+2Ca/3).

III-3. Caractéristiques géochimiques des granites de Royère (granulites)

Ces granites se situent dans la partie Nord du massif et correspondent aux granulites et leucogranites à Grt-Crd dont nous avons fait la description au § II-3. Rappelons que pour nous, il s'agit de granulites présentant une partie paléosome à Kfs, Pl, Qtz, Bt, Sil, Grt, Crd et une partie leucosome à Kfs, Pl, Qtz, Grt, Crd, \pm Bt \pm Sil \pm To.

III-3-a. Etude de Stussi et Cuney (1993)

Stussi et Cuney (1993) différencient les granites à biotite (RA, RB, RC; proche du paléosome) et les leucogranites à biotite (RD, RE, RF, plus proche du leucosome).

<u>Les granites à biotite</u> : Ils présentent 65,0%<SiO2<70% et 3,3%<Fe₂0₃t+Mg0+TiO₂<6,6%.

Le faciès RC (Fig. IV-3-a) se distingue des deux autres par un rapport quartz/feldspaths plus élevé et une composition moins péralumineuse. Les faciès RA et RB (Fig. IV-3-a) présentent des variations chimiques quasi identiques avec pour RA un index d'aluminosité et un index de différenciation un peu plus élevé.

Les leucogranites à biotite (Fig. IV-3-a) :

Stussi et Cuney (1993) différencient trois faciès : le faciès RD, équigranulaire à cordiérite, grenat \pm sillimanite, le faciès RE équigranulaire à cordiérite et grenat et le faciès RF porphyroïde à cordiérite et sillimanites rares. Selon Razafimahefa (1987), ces trois types présentent des compositions similaires avec 71,0%<SiO2<73,5% et 1,1%<Fe₂0₃t+Mg0+TiO₂<2,5%.

Contrairement aux granites à biotite porphyroïdes et aux granites à deux micas, l'excès d'alumine (5 < IA < 50) de ces formations riche en biotite (biotite alumineuse à $18,0\% < AL_2O_3 < 20,0\%$), diminue quand ID décroit (Fig. IV-3a). Ce comportement est opposé à celui de la plupart des granites à biotite de la Chaîne Varisque française mais comparable à celui présenté par les granites de type-S du Lachlan fold belt d'Australie (White et Chappell, 1977). Par comparaison avec ces derniers, Stussi et Cuney (1993) proposent que ces formations se développent par un processus de démixtion restiteliquide. Les différents faciès observés de Royère résulteraient de la fusion partielle de différents protolithes à péraluminosité variable. A partir des

évolutions chimico-minéralogiques observées et des bilans de masses calculés, ces auteurs proposent un modèle de type cristallisation fractionnée pour expliquer les variations internes à chaque faciès et entre RA et RB. En résumé, comme les granites S de Lachlan fold belt, la discrimination entre les modèles de démixion restitemagma et de cristallisation fractionnée n'est pas établie en raison de la non caractérisation de la nature restitique de certains minéraux de ce type de granite.

III-3-b. Etude de Shaw

Pour Shaw (1991), ces granulites à grenat, cordiérite, sillimanite, biotite et spinelle (rare) présentent des caractères géochimiques et isotopiques similaires à ceux des granites à deux micas.

Différente de celle des granites à deux micas, la composition minéralogique des granulites fournit des informations importantes sur leur origine et les conditions de fusion partielle qui les ont engendrées. Un tel assemblage pourrait être issu de la fusion de roches pélitiques à relativement haute pression (Green, 1976). Les études expérimentales de Green (1976) sur le même type de roches, montrent que pour une température comprise entre 800°C et 1100°C, le grenat est stable à une pression supérieure à 4kb alors que la cordiérite l'est à des pressions inférieures à 10kb. De plus, la composition du grenat avec moins de 10% de manganèse (confirmé par nos propres analyses, Annexe 3), laisse penser qu'ils ont cristallisé à plus de 18 km de profondeur (Green, 1977). Les études expérimentales de Green (1976) conduisent Shaw (1991) a proposer une profondeur de fusion partielle pour la genèse de ces granulites entre 18 et 25 km. Ces résultats sont en accord avec nos données thermobarométriques (II-4-b).Pour lui, les critères ci-dessus, montrent que les granulites résultent d'un degré de fusion partielle plus fort que les granites à deux micas. La faible teneur en HREE (et Y) de ces derniers indique que les grenats (phase principale responsable du HREE) sont restés dans la partie restitique pendant la fusion partielle. La similitude de la composition isotopique initiale des granulites et des granites à deux micas indique qu'ils sont issus du même matériel originel. Leurs différences minéralogiques et géochimiques proviendraient du degré de fusion partielle plus ou moins élevé subi par le matériel source (Shaw, 1991). Cette hypothèse a déjà été proposée par Holtz (1989) pour les granites à 2 micas et les leucogranites à Grt-Crd (granulites) du nord du Portugal. La profondeur de mise en place des granulites (paléosome) et par extension d'après Shaw (1991), celle des granites à deux micas est plus importante que celle estimée à $10,5 \pm 1$ km par Scaillet et al. (1996b) pour le complexe leucogranitique du St Sylvestre.

IV. Les données géophysiques préexistantes

IV-1. Les données sismiques

Deux profils sismiques ont été réalisés dans le cadre du programme Géofrance 3D du Massif Central.

Le profil Laurieras orienté N-S est situé à l'ouest du massif de Millevaches. Il recoupe l'antiforme de Meuzac, la synforme d'Uzerche et l'unité de Thiviers-

Paysac dans le sud Limousin (Fig. IV-1a). Bien que ne traversant pas le Millevaches, ce profil sismique apporte des informations sur la profondeur des unités gneissiques du sud Limousin. Ces données sont essentielles pour l'élaboration de nos modélisations gravimétriques E-W à travers le massif granitique de Millevaches (Fig. IV-14) car afin d'éviter les effets de bordure, tous les profils gravimétriques sont élargis de 100 kilomètres de part et d'autres de la structure à modéliser. Leur description détaillée est exposée dans le § V-7.

Le profil Lauriéras (Fig. IV-4) met en évidence une croûte supérieure réflective marquant un antiforme, un système de failles normales à pendage nord qui affecte l'Unité Inférieure des Gneiss, un dôme sismiquement sourd dans la croûte moyenne, une croûte inférieure litée d'une épaisseur de 9km, enfin un Moho entre 30 et 31 km.

Le profil Argentat (Fig. III-10, Chapitre III) présente une direction NE-SW et traverse l'antiforme de Tulle, la synforme d'Uzerche, la faille d'Argentat et la partie ouest du massif de Millevaches. Ce profil sismique confirme l'extension crustale de la faille d'Argentat dont le rejet est estimé entre 7 et 8 km. De 14 km sous l'antiforme de Tulle, la base des micaschistes passe à 7 km sous le massif de Millevaches. Cette sismique met également en évidence un système d'unités monoclinales à pendage apparent vers le SW dans la croûte supérieure, une croûte inférieure litée épaisse de 8km et un Moho compris entre 29 et 27 km avec un pendage apparent vers le SW.

FIG. IV-4 – Interprétation du profil sismique Laurieras. A et B: Unités gneissiques. C: Unités para-autochtone. D: Unité discordante (socle ?). E: Zone sismiquement transparente. R: Réflecteur au toit de la zone sismiquement transparente.

IV-2. Les données magnétiques

Dans le cadre du projet « Cartographie et Métallogénie 3D du Massif Central Français », un vol magnétique aéroporté à 900 m a été effectué suivant deux coupes principales : La première orientée NNW-SSE recoupe du nord vers le sud la partie ouest du Limousin (Fig. IV-5), la seconde de direction W-E s'étend de la Chataigneraie jusqu'au Cévennes.

La carte (Fig. IV-5) illustre la signature magnétique du contenu lithologique des unités du Limousin qui se distinguent assez bien les unes par rapport aux autres.

L'ensemble des roches basiques (gabbros, basaltes, pillow lavas à affinité tholéite de type MORB) qui caractérise cartographiquement l'unité de Génis (voir localisation, Fig. IV-1a) est confirmé par la persistance d'une anomalie fortement positive.

Les roches de haute pression (éclogites) contenues dans les synformes d'Uzerche et de St Germain-les-Belles (voir localisation, Fig. IV-1a) (Unité Supérieure des Gneiss) sont marquées par une anomalie positive. En revanche, la réponse magnétique de l'Unité Inférieure des Gneiss composée en majeure partie par des orthogneiss est beaucoup moins intense que celle définie dans l'Unité Supérieure. Les granites du massif de Millevaches n'ont pas de signature magnétique particulière excepté le long de la faille d'Argentat au sud de Bourganeuf (voir localisation, Fig. IV-1a).

Le profil aéromagnétique survole le granite de Guéret uniquement dans sa partie ouest et met en évidence une anomalie positive au niveau des anatexites à cordiérite qui apparaissent « en fenêtre » au cœur du massif (voir localisation, Fig. IV-1a).

FIG. IV-5 – Carte aéromagnétique du Sud Limousin. L'amplitude de l'anomalie magnétique varie de 150 nT entre les deux extrêmes (Rouge=positif, Bleu=négatif)

IV-3. La modélisation géométrique 3D du Sud-Limousin intégrant le massif granitique de Millevaches

Bellot (2001) propose à partir d'une compilation de données géophysiques (profils sismiques, cartes aéromagnétiques et profils gravimétriques 2D) acquises dans le Sud-Limousin (ouest du Millevaches), une modélisation 3D de ce secteur (Fig. IV-6). Ce modèle révèle les structures crustales sur une dizaine de kilomètres de profondeur à 335 Ma. Il met en évidence le jeu de la faille normale d'Argentat, les leucogranites peu épais de la bordure extrême ouest du Millevaches et les grandes structures plissées du Sud-Limousin. Il considère que la croûte continentale est revenue à une épaisseur normale après érosion et amincissement d'une croûte préalablement épaissie. Il considère à la suite de Faure (1995) que cet amincissement est le résultat d'une extension tardi-orogénique NW-SE qui affecte les unités du Massif Central au Viséen moyen.

Selon Bellot (2001), les grandes structures crustales antiforme et synforme de cette région auraient pour cause la mise en place de granites profonds.

L'initiation des plis et d'une tectonique transcurrente sénestre se ferait conjointement à la mise en place de massifs granodioritiques autour de 350 Ma. Ces phénomènes s'intensifieraient vers 335 Ma avec la mise en place des granites du Millevaches vers 335 Ma (Monier, 1980), de Cornil à 335 Ma au cœur de l'antiforme de Tulle (Roig et al, 2001), de pegmatites déformées au cœur du synforme d'Uzerche, du leucogranite de la Porcherie au sein d'un anticlinal replissant la synforme de St Germain-les-Belles (317 \pm 3Ma) Lafon et Respaut, (1988), enfin des leucogranites et pegmatites à 338-333 Ma dans l'antiforme de Meuzac (Alexandrov, 2000).

En accord avec Roig et al., (2001), il suggère le jeu ductile d'Argentat syn à post mise en place des granites du Millevaches à 335 Ma.

L'âge de mise en place du dôme granitique d'axe N110° au cœur de l'antiforme de Meuzac, mis en évidence par la sismique réflexion, est estimé à 335 Ma par la datation des leucogranites et des pegmatites associés (Alexandrov, 2000).

FIG. IV-6 – Modèle géométrique 3D obtenu pour le Sud-Limousin d'après BELLOT (2001)

V. Gravimétrie

Les rappels généraux de l'étude gravimétrique appliquée aux massifs granitiques sont décrits Chapitre II, § V.

V-1. Prospection gravimétrique

V-1-a. Acquisition des données

V-1-a-i. Définition du levé gravimétrique

L'observation du levé gravimétrique de la France laisse apparaître quelques hétérogénéités. Dans notre secteur (ensemble du massif de Millevaches), seule la partie NE du massif n'était pas couverte. Pour modéliser avec précision les granites du Millevaches, il était nécessaire d'acquérir des mesures du champ de pesanteur dans cette zone. Le levé s'est effectué depuis le centre du massif granitique jusqu'à sa bordure Est et a été étendu latéralement aux formations encaissantes de façon à s'affranchir lors des modélisations des effets de bordure.

Outre le fait d'affiner la géométrie des structures géologiques, ces données nouvelles contribuent à l'amélioration de la carte gravimétrique française.

Nous avons acquis et positionné approximativement 200 mesures gravimétriques sur une zone de 450 km². Leur densité de répartition est d'environ 1pt. /2 km² sur l'ensemble du secteur couvert, avec une répartition de l'ordre d'un point tous les kilomètres suivant des coupes E-W de la bordure Est du Millevaches. Cette acquisition effectuée dans le but d'une observation régionale de l'anomalie gravimétrique ne nécessite pas cependant une analyse microgravimétrique d'extrême précision.

V-1-a-ii. La mesure du champ de pesanteur

* Matériel utilisé : microgravimètre Scintrex CG3-M

L'ensemble des mesures a été réalisé à l'aide du microgravimètre Scintrex CG3-M 9711408 préalablement étalonné sur la ligne d'étalonnage du BIPM (Bureau International des Poids et Mesures).

Le fonctionnement du Scintrex CG3-M repose sur le principe du peson à ressort dont la tension équilibre le poids mg d'une masse m (Fig. IV-7). Le ressort est constitué de quartz et les déplacements du peson sont assujettis par l'intermédiaire d'un système capacitif qui les convertit en signaux électriques. Ce gravimètre permet des mesures rapides d'une résolution d'1µGal. La précision de la mesure est liée à la qualité de l'étalonnage du capteur mais également à la variation des paramètres extérieurs (pression atmosphérique et température). Nous retiendrons un ordre de grandeur de l'erreur instrumentale de 10µGal en chaque point de mesure. Notons que l'erreur commise sur la mesure gravimétrique est inférieure à celle qu'engendrent les imprécisions de positionnement et les corrections de terrain.

Du fait de son enceinte thermostatée, réduisant de façon considérable la sensibilité aux variations extérieures de température, et de l'interface de commandes digitales qui limite l'influence de l'utilisateur sur la mesure, le Scintrex CG3-M présente une plus grande facilité d'utilisation par rapport à un gravimètre de type Lacoste & Romberg. Autre particularité, le Scintrex ne nécessite pas le blocage de la masse lors du transport.

Cet appareil permet une mesure de g relative et non absolue c'est à dire qu'il ne peut mesurer au cours du temps que les variations du champ de pesanteur entre deux points ou en un même point. Il est donc nécessaire de rattacher le gravimètre tous les jours à une base gravimétrique de référence dont on connaît la valeur absolue de la composante verticale de la pesanteur. Dans notre cas nous avons utilisé la base gravimétrique d'Aubusson (n°701) (voir localisation Fig.IV-11).

FIG. IV-7 - Principe du microgravimètre Scintrex CG3-M

* La dérive instrumentale

Le ressort du capteur est sensible aux variations thermiques et aux sollicitations mécaniques qu'il subit au cours de la journée et qui au cours de la vie du gravimètre provoquent une variation infinitésimale et continue de la valeur du champ mesuré. Au cours de notre levé, la dérive journalière a toujours été estimée par au moins une réoccupation à la base d'ouverture de la journée. A l'échelle de la journée, le champ varie en moyenne de l'ordre de quelques centaines de microgals (Fig. IV-8).

FIG. IV-8 – Dérive instrumentale au cours de notre levé gravimétrique. En blanc : dérive de jour. En noir : dérive de nuit.

V-1-a-iii. Nivellement et Positionnement

Un bon nivellement des stations de mesure est primordial pour assurer une bonne précision de l'anomalie de Bouguer et l'anomalie à l'air libre. Le

gradient vertical de la pesanteur dans l'air est de 0,3086 mGal/m. Une variation verticale du gravimètre de 3mm provoque une variation de g_z mesuré de 1µGal.

En fonction de la précision voulue sur g_z , on utilise divers types de positionnement (par exemple nivellement géodésique utilisé pour la microgravimétrie). Dans notre cas, une précision de l'ordre du mètre est suffisante. Le nivellement des stations de mesure gravimétrique a ainsi été effectué en employant de façon systématique les repères de nivellement de l'I.G.N. (Institut Géographique National). Pour une précision de l'ordre du mètre en altitude, l'erreur associée est de 300µGal.

La précision du positionnement géographique en X/Y intervient sur la valeur du g théorique par l'intermédiaire de la variation de g avec la latitude liée à l'aplatissement de la Terre, et sur les corrections de terrain. Au cours de notre campagne gravimétrique, nous avons utilisé un récepteur GPS (Global Positioning System de type GARMIN 12) qui fournit une position à quelques mètres près.

V-1-a-iv. Homogénéisation du levé gravimétrique

L'ensemble des coordonnées géographiques GPS (système géodésique WGS 84) a été recalculé dans le système NTF (Nouvelle Triangulation Française) Lambert zone II étendu afin d'intégrer nos mesures gravimétriques dans les bases de données du BRGM.

V-2. Réduction et intégration des données pour l'obtention de l'anomalie de Bouguer complète

Les anomalies gravimétriques ont été calculées en utilisant la formule du g théorique sur l'ellipsoïde de Hayford 1930 et rapportées au réseau de bases gravimétriques CGF 65. Pour obtenir l'anomalie de Bouguer complète, on a effectué les corrections à l'air libre, de plateau et de terrain à chaque mesure (tableau, Annexe 4). Pour les deux dernières, nous avons pris une densité de réduction de 2.6 g/cm³ proche de la densité moyenne des granites.

La correction de terrain a été faite jusqu'à 167 km de façon à assurer une bonne cohérence des données nouvelles avec celles de la base gravimétrique française (Martelet et al., 2002).

Les corrections de terrain en champ proche ont été calculées à l'aide des abaques de Hammer (1939) jusqu'à 53 m à partir du point de mesure.

Au-delà de 50 mètres du point de mesure et jusqu'à 167 km, les corrections de terrain ont été calculées numériquement au BRGM à l'aide de trois MNT (Modèle Numérique de Terrain) de résolution variable. Pour trois zones concentriques de rayon 50m à 3km, de 3km à 10km et de 10 à 167 km autour du point de mesure, on a utilisé un modèle numérique de terrain d'un pas de 50m, 250m et 1000m, respectivement.

Après avoir appliqué l'ensemble de ces corrections, on obtient l'anomalie de Bouguer complète (Fig. V-9) qui reflète la répartition des densités des roches sous la topographie.

L'erreur sur les corrections de terrain est essentiellement liée au décalage d'altitude entre les MNT et les stations gravimétriques : l'erreur varie entre 0,1 mGal et 0,6 mGal suivant l'irrégularité de la topographie. L'erreur quadratique moyenne sur l'anomalie de Bouguer complète liée aux mesures, au positionnement et aux corrections de terrain est de 0,7 mGal.

V-3. Obtention de l'anomalie de Bouguer résiduelle

V-3-a. L'anomalie régionale

Pour obtenir une image satisfaisante de la répartition des masses à quelques kilomètres sous la surface, nous devons nous affranchir des variations régionales de grandes longueurs d'onde qui reflètent les masses profondes. Nous devons par conséquent retirer l'anomalie régionale à l'anomalie de Bouguer complète. Après avoir testé plusieurs méthodes (filtrage, retrait de cartes prolongées vers le haut et retrait de surfaces polynomiales lissées), nous avons opté pour un retrait d'une surface polynomiale de degré 3 calculée à l'échelle du Massif Central et représentant la tendance régionale (Fig. V-10).

V-3-b. L'anomalie de Bouguer résiduelle : description de la carte (Fig. IV-11) et localisation des unités géologiques (Fig. IV-1a)

Par comparaison avec la carte d'anomalie de Bouguer complète, la carte d'anomalie résiduelle a perdu l'effet des variations régionales. Elle délimite bien les limites d'affleurement du massif de Millevaches. Elle est cohérente avec les formations géologiques (anomalie négative à l'aplomb des limites d'affleurement des granites et anomalie positive associée aux paragneiss). Cette observation est en accord avec les mesures de densité acquises à l'échelle régionale et dont la présentation fera l'objet du prochain paragraphe.

Le complexe leucogranitique de la Brâme, St Sylvestre et St Goussaud est marqué par une forte anomalie négative qui persiste vers le SW et se renforce au niveau du leucogranite de Blond (NW de Limoges). Vers le nord, l'anomalie résiduelle se divise en trois branches: d'est en ouest, et de part et d'autre du massif de la Brâme, l'anomalie négative souligne de façon intense les leucogranites adjacent à la faille de la Marche. Dans la continuité nord-est de la Brâme, elle met en évidence les plutons leucogranitiques du plateau d'Aigurande (d'ouest en est, Crozant, Orsennes, Méasnes, le Crevant).

Au nord du massif de Millevaches, le massif granitique de Guéret est souligné par une forte anomalie positive, comparable en intensité à celle que l'on peut observer au niveau des synformes de St Germain-les-Belles et d'Uzerche (ouest du Millevaches) ! Ces deux domaines sont formés de metagrauwackes présentant des reliques de roches de haute pression de densité nettement plus élevé que celle des granites (2,83 contre 2,62 en moyenne). L'anomalie positive associée au massif granitique de Guéret indique par conséquent une épaisseur de granite limitée et suggère la présence de roches de forte densité en profondeur. Les anatexites à cordiérite (aubussonites) apparaissent en fenêtre dans la partie NW du massif de Guéret. Ces unités de forte densité (2,72) forment le soubassement des granites de Guéret.

FIG. IV-9 - Carte d'anomalie de Bouguer complète de la partie NW du Massif Central (voir correspondance des unités géologiques Fig. III-2).

FIG. IV-10 – Carte de l'anomalie de Bouguer régionale correspondant à une surface polynomiale de degré 3.

Chapitre IV-Le massif granitique de Millevaches

FIG. IV-11 - Carte d'anomalie de Bouguer résiduelle de la partie NW du Massif Central avec positionnement de quelques bases gravimétriques (carrés blancs) (voir correspondance des unités géologiques Fig. III-2).

L'ensemble du Millevaches est associé à une anomalie négative peu prononcée indiquant une faible épaisseur des granites qui le constitue. Ceci est en accord avec l'interprétation du profil sismique d'Argentat qui recoupe la bordure ouest du plateau de Millevaches. (Bitri et al., 1999). Ce profil met en évidence la structuration sub-horizontale des micaschistes qui forment l'encaissant des granites, et le jeu normal de la faille d'Argentat qui place les granites du Millevaches à un niveau structural plus élevé, comparé à celui des unités gneissiques Limousines. Ce profil confirme l'importance du rôle joué par la faille d'Argentat dans l'exhumation du massif de Millevaches (Ledru and Autran, 1987; Mattauer *et al.*, 1988; Faure, 1995; Roig *et al.*, 1998).

Dans les parties Sud et Est, l'anomalie négative s'accentue indiquant un épaississement des granites.

Dans la partie nord du massif, l'anomalie négative diminue suggérant un amincissement important des granites. A proximité du massif granitique de Guéret, l'anomalie devient même positive. Cette observation est probablement liée à l'influence des anatexites à cordiérite de forte densité qui constituent le soubassement des granites de Guéret d'épaisseur négligeable dans cette partie.

V-4. Les mesures de densité

Les variations spatiales du champ de pesanteur sont liées aux distributions de densité qui existent en profondeur. L'interprétation des anomalies gravimétriques exige la connaissance précise de la densité des différentes roches, telles qu'elles se présentent à l'affleurement.

Une anomalie positive est provoquée par un excès de masse par rapport à son environnement et inversement. La masse correspond au produit du volume de roche par sa densité. Connaissant l'anomalie mesurée, il est donc indispensable, de déterminer avec précision la valeur de la densité, de façon à estimer le volume de l'objet perturbateur du champ de pesanteur.

Aucune mesure de densité précise n'était disponible dans cette région. Afin de modéliser au mieux les granites du massif de Millevaches et les unités environnantes, nous avons effectué des mesures de densité sur les échantillons représentatifs (voir Tabl. 1,pub. BSGF, § V-6). Nous les avons prélevés à l'aide d'une foreuse portative de façon à les recueillir les plus frais possible et exempt d'altération superficielle.

Pour les mesures, nous avons utilisé la méthode de la double pesée du fait de sa facilité de mise en œuvre. Deux pesées sont réalisées : La première se fait dans l'air sur l'échantillon sec (m1) tandis que la seconde se déroule dans l'eau (m2). Pour s'affranchir des erreurs liées à la porosité de la roche, c'est à dire de façon à s'assurer de la pénétration complète de l'eau dans les pores de l'échantillon, ces derniers sont immergés dans l'eau pendant environ quatre jours avant la mesure.

La pesée s'est faite à l'aide d'une balance électronique de type Mettler PC 4400.

En appliquant le principe de la poussée d'Archimède, la densité des échantillons est donnée par la formule :

Densité= m1/(m1-m2)

L'incertitude moyenne sur chaque échantillon est de 0,01 g/cm³.

Plusieurs calibrages aux liqueurs denses ont permis de confirmer la justesse des densités établies par pesée. Les résultats sont donnés dans le tableau ci-dessous :

Nous retiendrons pour les principaux faciès: Granite à deux micas (Leucogranite) : 2,64 g/cm³ Granite à biotite porphyroïde : 2,62 g/cm³ Anatexites à cordiérite : 2,72 g/cm³

Unité inférieure des gneiss (suivant la terminologie de Ledru et al., 1989) formée par des orthogneiss anatectiques à sillimanite et des paragneiss à biotitesillimanite : 2,78 g/cm³ Micaschiste: 2,75 g/cm³

Les granites représentent les roches les plus légères de notre zone d'étude. Toutefois, leur richesse en feldspath potassique et muscovite et la part non négligeable de biotite font des leucogranites des roches un peu plus denses que les granites à biotite porphyroïdes (2,64 g/cm³ contre 2,62 g/cm³). Pour ces derniers, la densité varie en fonction de la quantité de feldspath potassique contenu dans la roche. L'échantillon sera d'autant plus léger, que la quantité de feldspath potassique sera importante. Nous verrons ultérieurement que ce faible contraste de densité entre les deux types de faciès nous a empêché, lors de la construction des modèles numériques, de modéliser leurs relations géométriques dans le massif de Millevaches.

Les anatexites à cordiérite sont des roches relativement denses. Les échantillons les plus représentatifs sont peu nombreux du fait de la forte altération qui affecte et caractérise ces formations. Quel que soit le lieu d'échantillonnage, (carrière du Puy du Roy à Aubusson ou vers Bujaleuf), leur densité est constante et indique 2,72 g/cm³.

Bien qu'un peu plus altérées, les anatexites prélevées à l'ouest de Guéret, fournissent un contraste de densité significatif $(2,67 \text{ g/cm}^3)$ avec les leucogranites et les granites à biotite porphyroïdes qui permettrait dans tous les cas de les dissocier lors des modélisations gravimétriques.

L'unité inférieure des gneiss est difficile à caractériser du point de vue de la densité car elle est formée d'une alternance d'orthogneiss anatectiques à sillimanite et de gneiss à biotite-sillimanite. Les deux types de roches présentent des densités élevées qui varient à l'échelle régionale entre 2,64 et 2,78 g/cm³. La quantité de sillimanite au sein de la roche influence fortement les mesures. Pour les modélisations numériques appliquées au massif de Millevaches, nous retiendrons 2,78 g/cm³.

Les micaschistes affleurent peu dans la région ou sont souvent altérés. Ceux recueillis au sud du massif de St Goussaud à Châtelus-le-Marcheix, dans les gorges du Chavanon ou vers Marcillac-la Croisille indiquent une densité élevée pouvant atteindre 2,81 g/cm³. La moyenne effectuée sur l'ensemble des mesures et la comparaison de mesures répertoriées dans la banque de données du BRGM nous ont permis de retenir une densité moyenne de 2,75 g/cm³.

V-5. Modélisation par la méthode d'inversion (Fig. IV-12)

Pour quantifier les interprétations résultant de l'observation de la carte d'anomalie résiduelle de Bouguer, une inversion du champ gravimétrique est réalisée.

Cette méthode consiste à modéliser la profondeur de l'interface granite/encaissant sous le massif de Millevaches à l'aide d'un logiciel d'inversion nommé IBIS (Chenot et Débeglia, 1990). La profondeur moyenne de l'interface modélisée est calculée à partir de la méthode d'analyse spectrale Spector et Grant (1970). Fixant un contraste de densité entre le granite et l'encaissant, en l'occurrence ici 0,11 (2,73 g/cm³ pour les micaschistes et 2,62 g/cm³ pour les granites), l'interface granite/encaissant est ensuite itérativement déformée et son effet gravimétrique comparé à l'anomalie mesurée. (Compte tenu de la non acquisition des mesures de densité lors de la modélisation par la méthode d'inversion, nous avons utilisé 2,73 g/cm³ au lieu 2,75

g/cm³ pour la densité des micaschistes. Par ailleurs, cette différence est négligeable et n'affecte en rien l'interface inversée ; sa profondeur moyenne aurait été de l'ordre de 10% inférieure si on avait pris 2,75g/cm³).

FIG. IV-12 - Carte de la profondeur de l'interface granite / encaissant obtenue par l'inversion de l'anomalie gravimétrique à l'aide du logiciel IBIS.

La carte d'inversion indique une épaisseur moyenne de granite entre 1,5 et 4 km, avec un maximum autour de 6 km. Ces estimations sont cohérentes avec celles obtenues sur des massifs granitiques voisins (Audrain et al., 1989) ou sur des massifs d'extension comparables (Pétrequin, 1979; Talbot, 2003).

La confiance concernant la géométrie du plancher du pluton dépend essentiellement de la qualité des densités. Le contraste de densité choisi, constant entre les granites et les unités simplifie la modélisation. La variation de densité des roches avec la profondeur n'est pas prise en compte. Comme pour le pluton du Sidobre (Améglio et al., 1994), nos essais montrent que l'incertitude de 0,01 à 0,02 g/cm³ sur le contraste de densité utilisé pour l'inversion, modifie la profondeur moyenne du plancher du granite de 250 à 500m mais sans changer significativement sa géométrie.

Comme le suggérait la carte d'anomalie de Bouguer résiduelle, l'interface granite/encaissant est plus profonde dans les parties Sud et Est du massif, ou elle peut atteindre 5 à 6 km de profondeur. Au sud, cet enracinement pourrait être aussi expliqué par la présence du granite porphyroïde de Glénat plutôt qu'aux leucogranites superficiels mis en évidence au niveau de la faille d'Argentat (Roig, communication personnelle).

Concernant la partie Est du massif, des travaux miniers dans le secteur de Meymac ont révélé la présence d'un granite (granite de Neuf Jours) profond mis en place tardivement (Burnol et al., 1980). Les caractères minéralogiques et géochimiques montrent que les granites porphyroïdes à deux micas de Boucheron et de la Mine situés à l'ouest du granite de Meymac et à l'ENE de Péret-bel-air (Fig. IV-1b), ne sont pas l'extension occidentale du massif de Meymac mais correspondent à deux intrusions distinctes (Stussi et Cuney, 1990). Compte tenu des considérations ci-dessus et de l'hétérogénéité du Millevaches en plusieurs petites intrusions, les parties extrêmes Sud et Est du Millevaches ne nous paraissent pas pouvoir constituer des zones d'enracinement pour l'ensemble du massif.

V-6. Discussion et conclusion de cette première partie de l'étude gravimétrique : Article paru au Bulletin de la Société Géologique de France

Late Hercynian leucogranites modelling as deduced from new gravity data : the example of the Millevaches massif (Massif Central, France)

AUDE GEBELIN¹, GUILLAUME MARTELET², MAURICE BRUNEL¹, MICHEL FAURE³ and PHILIPPE ROSSI²

Key words. - Gravimetry, Density, Laccolith, Millevaches massif, Crustal structure.

Abstract. - The Millevaches granitic complex, located in the northern part of the French Massif Central, is elongated in a N-S direction, perpendicular to the main E-W trend of the Hercynian belt. It is affected on its limits and in its core by several ductile shear zones that have necessarily played a great role in the emplacement and exhumation of the massif. Based on gravity modelling and recent field observations, this study intends to highlight the massif structure at depth and discuss its mode of emplacement and relations with the surrounding terrains.

The new gravity and density measurements on the north-east part of the Millevaches massif improve the gravity coverage of the northern Limousin. Using these new data we model the deep structure of the Millevaches plateau. The density measurements made on the different types of granites of the massif, and on the surrounding terrains improve the interpretation of the Bouguer anomaly. Analysis and inversion of the residual Bouguer anomaly in the area show that the Millevaches massif is 2 to 4 km-thick, from north to south and from west to east, locally rooting down to about 6 km deep in its eastern and southern terminations. These two zones coincide with porphyritic plutons and, because of the complex composite structure of the massif, cannot be definitively interpreted as feeding zones. In the field, the N-S-oriented Pradines vertical fault affects the core of the massif on 4 to 5 km width. Microstructural observations evidence that the faulting is contemporaneous of the granites emplacement. We suggest that this tectonic lineament could have triggered the migration of the magma, although it is not related to a clear gravity anomaly. AMS measurements in the north-central part of the Millevaches massif suggest that the magnetic foliation and lineation display a general sub-horizontal pattern. Moreover, on the western border of the Millevaches massif, the Argentat deep seismic profile shows sub-horizontal layering of gneisses and micaschists and evidences normal faulting offset of this layering along Argentat fault. This agrees fairly well with the gravity results, suggesting that (i) the Millevaches massif would be at a high structural level in the crust, (ii) the exhumation of the massif would have been favoured along the Argentat normal fault. As a whole, the massif can be described as a laccolith, 2 to 4 km-thick, emplaced as a "magmatic lens" into the sub-horizontally foliated gneisses and micaschists.

Modélisation des leucogranites tardi-hercyniens à partir de nouvelles données gravimétriques : l'exemple du massif de Millevaches (Massif central)

Mots-clés. - Gravimétrie, Densité, Laccolithe, Massif de Millevaches, Structure crustale.

Résumé. - Le massif granitique de Millevaches orienté N-S est transverse aux grands chevauchements de la chaîne hercynienne. Il est affecté en son cœur et au niveau de ses bordures par de grandes zones de cisaillement ductiles. On propose que ces accidents aient joué un rôle significatif dans la mise en place et dans les mécanismes d'exhumation du massif. Sur la base d'une modélisation gravimétrique et d'observations de terrain, cette étude est destinée à mieux comprendre la structure en profondeur du massif, son contexte de mise en place et ses relations avec l'encaissant.

Afin d'améliorer la couverture gravimétrique régionale, de nouvelles données gravimétriques ont été acquises sur la partie nord-est du Millevaches et permettent de modéliser la structure profonde du massif. En complément, des mesures de densité ont été effectuées sur l'ensemble des granites du plateau de Millevaches, ainsi que sur les formations encaissantes pour affiner la lecture de l'anomalie gravimétrique. L'observation de l'anomalie résiduelle et de son inversion, permettent de modéliser ce massif granitique comme un laccolithe dont le plancher se situe entre 2 et 4 km de profondeur du nord vers le sud et de l'ouest vers l'est. Deux zones d'épaississement bien marquées (épaisseur supérieure à 5 km) sont mises en évidence, à l'est, à l'aplomb du granite de Meymac et à l'extrémité sud du Millevaches. Elles sont toutes deux superposées au faciès porphyroïde et compte tenu de la structure complexe du massif elles ne peuvent être considérées avec certitude comme zones d'alimentation de l'ensemble du massif.

L'analyse microstructurale de la zone de cisaillement des Pradines parallèle à l'orientation N-S du massif et qui l'affecte au centre sur une largeur de 4 à 5 km, met en évidence des textures sub-solidus dans les granites qui indiquent une mise en place synchrone de ces derniers. Comme hypothèse de travail, nous proposons que cet accident décrochant représente une zone de faiblesse ayant joué un rôle dans la migration des magmas. Cette structure qui n'est que faiblement marquée en gravimétrie pourrait néanmoins avoir favorisé la migration des magmas.

¹ Laboratoire Dynamique de la Lithosphère, Université Montpellier II, CC060, Place E.Bataillon, 34095 Montpellier cedex 5.

e-mail : gebelin@dstu.univ-montp2.fr ² BRGM, CDG-MA, BP 6009, 45060 Orléans cedex 2.

³ Dept. des Sciences de la Terre, Université d'Orléans, 45060 Orléans cedex 2

Manuscrit déposé le 24 avril 2003 ; accepté après révision le 9 janvier 2004.

L'acquisition de données d'anisotropie de susceptibilité magnétique effectuées dans la partie nord du massif de Millevaches mettent en évidence des directions préférentielles de fluidalité magnatique sub-horizontales.

En accord avec le modèle gravimétrique, ces résultats indiquent que les granites du Millevaches se seraient mis en place dans la foliation horizontale préexistante des gneiss et des micaschistes. Par ailleurs, le profil de sismique réflexion Argentat qui recoupe la bordure ouest du Millevaches indique une structuration en lames horizontales de l'encaissant formé par les gneiss et micaschistes. Il montre également une remontée de ces structures et du plancher du Millevaches à l'est de la faille d'Argentat démontrant le rôle important joué par celle-ci dans les mécanismes d'exhumation du massif.

INTRODUCTION

The Variscan Massif Central, France, is known to be a collision belt which first experienced crustal stacking and thickening [Matte, 1986], followed by extension and thinning [Mattauer et al., 1988; Faure, 1989; Van den Driessche and Brun, 1989; Faure et al., 1990; Burg et al., 1990; Faure, 1995]. Syn- or post-tectonic leucogranite plutons related to the post thickening thermal event crop out over large areas within the Massif Central hiding the earlier crustal structures. Some authors propose that leucogranites were emplaced during the Carboniferous post-collision crustal thinning episode [Faure, 1989; Faure and Pons, 1991]. Most Hercynian leucogranites are bounded by ductile shear zones which probably played a significant role in magma emplacement and/or subsequent exhumation of the massifs. Relationships between magmatism and deformation in orogenic belts are a large question. Indeed, close spatial and temporal relationships between faults and plutons have been recently described [Tikoff and St Blanquat, 1997]. Based on observation of geological maps several authors propose that magma ascent and emplacement is controlled by faults [Hutton, 1988; D'Lemos et al., 1992]. Others show that magmatic processes can produce regional deformation [Tikoff et al., 1999]. During their emplacement, large and hot magma volumes induce thermal heterogeneities that may disturb the regional deformation field. Shear zones can result from the instability propagation and in this case the pluton is closely related to their development [Holm, 1995]. The knowledge of depth processes is crucial for an overall understanding of phenomenon and requires using the geophysical tools. It is now well accepted that gravity modelling is appropriate to get a 3D image of geological bodies, and especially of granitic plutons [e.g. Vigneresse and Brun, 1983; Améglio, 1998; Martelet et al., 1999]. The gravity modelling complements the structural study that is restricted to the surface interpretation compared to the inferred thickness of granitic plutons. In this study, the gravity modelling is performed using simple assumptions in order to bring a first overview of the Millevaches massif geometry at depth. Together with other structural and geophysical data, this brings new constraints to investigate the relationships between the massif and the host rocks as well as its mode of emplacement. This could be related to large ductile shear zones which affect the Millevaches massif on its boundaries and in its centre. Trying to detect a possible negative anomaly along the fault, evidence of close relationships between fault and magma, the gravity associated with the kinematics study will help us to understand the fault impact on the magmas emplacement and on the mechanism of exhumation. To infer the 3D shape of several plutons in the Hercynian belt, several authors performed gravity modelling [Martelet *et al.*, 1999; Audrain *et al.*, 1989; Dumas *et al.*, 1990; Améglio *et al.*, 1994]. These studies allowed to raise questions in some cases about the bubble shape of plutons in orogenic belts. According to Vigneresse [1995] the granites emplaced during extensional deformation are thin with many root zones whereas the ones emplaced in context of shear deformation or compression are more deeply rooted with only one or a few roots. We will compare the Millevaches massif shape with others surrounding Hercynian plutons.

GEOLOGICAL SETTING

This study focuses on the Millevaches granitic complex, located on the northwestern part of the Massif Central, France (fig. 1). The Millevaches massif is 160 km-long, it follows a N-S trend and is sub-perpendicular to the E-W to WNW-ESE main thrusts of the Hercynian belt. On its western side, the Millevaches plateau is separated from the Limousin metamorphic units [Floc'h, 1983] by the ductile and brittle Argentat fault; to the north, it is separated from the Guéret granitic massif by the "St Michel de Veisse" dextral wrench fault, and in the east it is separated from cordierite anatexites and biotite-sillimanite paragneiss units by the Felletin - la Courtine shear zone, followed southward by the Ambrugeat fault (fig. 1). The massif is affected in its central part by the N-S Pradines ductile dextral wrench fault. Understanding the general kinematics of these major shear zones, their relations with plutonism and their role in the exhumation of the granitic massif is essential to better apprehend the transition between compressive, wrench and extensional tectonics in the Hercynian belt.

The Millevaches massif is composed of several porphyritic biotite granites and leucogranites plutons hosted in micaschists, forming N-S or NW-SE elongated stripes (fig. 1). Whole rock Rb/Sr isochrones give late Visean ages between 332 and 336 Ma [Augay, 1979; Monier, 1980] for the leucogranites emplacement. Furthermore, ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ step-heating age spectra performed on muscovites of leucogranites give ages between 335 and 337 Ma [Roig *et al.*, 2002]. According to Donnot [1965] the different magmas were emplaced at the same time. Other authors propose two generations of granites; the porphyritic biotite granite resulting from melting of the lower crust are thought to be early compared to later leucogranites [Mouret, 1924; Raguin, 1938; Lameyre, 1966]. According to Monier [1980], the south of the Millevaches is composed of distinct plutons, each corresponding to a different melting event.

FIG. 1. – Simplified geological map of the northwestern part of the Massif Central, France. FIG. 1. – Carte géologique simplifiée de la partie nord-ouest du Massif central.

In the northern part of the Millevaches, three main domains can be distinguished according to magnetic susceptibility anisotropy [Jover, 1986]. The earliest porphyritic biotite granites, related to cordierite-garnet granites, show N-S sub-horizontal magnetic lineation and vertical magnetic foliation planes, parallel to granulite lenses. These formations are cut by later leucogranites parted in two groups by the author [Jover, 1986] : the former having NW-SE vertical foliations and sub-horizontal lineations, the latter having E-W to NW-SE sub-horizontal lineations and foliations.

GRAVITY DATA

Data acquisition

In order to get sufficient gravity stations to model the deep structures of the Millevaches massif, we had to complete the regional gravity coverage. In addition to the data from the French Gravity Database (white dots on figure 2), we measured 200 new gravity stations in the northeastern part of the Millevaches massif (black dots on figure 2). In most parts of the 450 km² surveyed area, we sampled 0.5 km⁻²

FIG. 2. – Residual Bouguer anomaly map of the northwestern part of the Massif Central. White dots correspond to the gravity coverage available in the French Gravity Database and black dots show the new gravity stations we measured.

FIG. 2. – Carte d'anomalie de Bouguer résiduelle de la partie nord-ouest du Massif central. Les points blancs et noirs localisent respectivement les données de la Banque gravimétrique française et les nouvelles stations gravimétriques mesurées dans cette étude.

gravity measurements. The data were measured with a Scintrex CG3-M micro-gravimeter which had been calibrated along the Sèvres-Orléans baseline. In the field, the measurements were tied to the CGF 65 French gravity base network. Stations were positioned with about 1 metre accuracy in altitude using bench marks from the Institut Géographique Na-

tional. Latitude and longitude were obtained using simple mode GPS positioning, with an accuracy of a few meters. The positioning was finally converted to the NTF French geodetic system using the WGS84 – Clarke 1880 transformation and projected into the Lambert II étendu projection, the altitude reference being at sea level.

Data reduction and integration

The gravity anomaly was computed with respect to the theoretical value of g on Hayford-1930 ellipsoid. In order to obtain the complete Bouguer anomaly, we successively performed standard free air, plateau and terrain corrections. For the two latter, a 2.6 g/cm³ Bouguer reduction density was chosen, close to the expected density of the granites. Terrain corrections were computed up to 167 km to ensure a good consistency of the new dataset with the French Gravity Database [Martelet et al., 2002]. Up to 53 m, terrain corrections were estimated in the field using Hammer charts [Hammer, 1939]. Beyond that distance, they were computed numerically using three DTM with grid sizes of 50 m, 250 m and 1 000 m, within annular zones of radius respectively 53 m-3 km, 3-10 km and 10-167 km. The error in the terrain correction is mostly due to the altitude offset between the DTM and the gravity stations : it varies from 0.1 to 0.6 m.Gal depending on the roughness of the topography. The mean quadratic error on the complete Bouguer anomaly due to the measurement, positioning and terrain corrections is 0.7 m.Gal.

Residual Bouguer anomaly

In order to highlight the short wavelengths of the gravity map, we have computed a residual Bouguer anomaly map (fig. 2) by removing a degree 3 polynomial computed at the scale of the Massif Central and representing the regional trend. The resulting residual anomaly (fig. 2) (i) has apparently lost all regional trend, (ii) is consistent with the geology (negative anomalies are related to granites, and positive ones to gneissic units), (iii) fits fairly well with the outcropping limits of the Millevaches massif. Using the density measurements results (table I), the residual Bouguer anomaly map is consistent with the location of lithotectonic units : negative gravity anomalies are found to coincide with the granites (average density 2.62), whereas positive anomalies are related to the heavier gneissic or micaschists units (average density respectively 2.78 and 2.74). Hence, the Brâme, St Sylvestre, and St Goussaud granitic complexes are related to clear negative anomalies which are persistent to the southwest and strengthen under the Blond leucogranite (NW of Limoges). To the north, the anomaly is divided into three branches. To the east and west, the negative anomaly underlines the leucogranites along the Marche fault. Finally, the negative anomaly heads to the northeast where, on the plateau of Aigurande, it clearly limits, from west to east, the leucogranitic plutons of Crozant, Orsennes, Measnes and Le Crevant, which are very well isolated as Dumas et al. [1990] suggested. Surprisingly, north of the Millevaches, the Guéret granite is underlined by an abnormal positive anomaly, which is comparable in intensity to that observed in the synforms of Uzerche or St Germainles-Belles, west of the Millevaches (location on fig. 1). These are eclogite-bearing metagrauwackes of density about 2.83, much higher than the granites. The positive anomaly associated with the Guéret granite therefore indicates the limited thickness of the pluton and suggests that the massif is underlain by high density rocks. Indeed, cordierite anatexites crop out within a tectonic window in the northwestern part of the Guéret massif. This high density unit also plunges gently underneath the granite at its southern limit, which suggests that it possibly underlies the overall massif.

With respect to its large extension, the Millevaches massif exhibits a relatively weak negative anomaly, suggesting a rather thin and laccolithic-like geometry. This is in agreement with the interpretation of the Argentat deep seismic profile which crosses the western border of the Millevaches plateau [Bitri et al., 1999]. This profile shows the sub-horizontal structure of micaschists and the normal offset of the footwall of the fault which suggests an exhumation of the Millevaches plateau compared to the surrounding terrains. In this scheme the Argentat normal fault, located at the western border of the Millevaches plateau (fig. 1), would have played a major role in the exhumation of the massif [Ledru and Autran, 1987; Mattauer et al., 1988 ; Faure, 1995 ; Roig et al., 1998]. In the southern and eastern parts of the Millevaches, the negative anomaly strengthens, indicating thickening and the probable existence of two roots, which are found to be associated with porphyritic plutons. North of the massif, the negative anomaly decreases, suggesting northward thinning of the granite. Close to the Guéret granitic massif, the anomaly even becomes positive probably due to the presence of nearby high density cordierite anatexites that would underlie the Guéret massif. In order to give quantitative estimates of these interpretations, the variations in thickness of the Millevaches have been computed performing an inversion of the gravity field.

GRAVITY INVERSION

The gravity field is inverted in terms of depth to the bottom of the granite using IBIS code [Chenot and Débeglia, 1990]. Prior to the inversion, the average depth of the modelled interface is calculated using Spector and Grant [1970] spectral analysis method. Then, assuming a density contrast of 0.11 (2.73-2.62) between the granite and the host rocks, the interface is iteratively deformed and its gravity effect compared to the Bouguer anomaly until the misfit between both is considered small. Figure 3 shows the geometry of the obtained granite/micaschists interface. Average thickness of the granite ranges between 2 and 4 km, with a maximum of about 6 km, which is in good agreement with estimations published on nearby massifs [e.g. Audrain et al., 1989], or on massifs with comparable extension [e.g. Pétrequin, 1979; Talbot, 2003]. Uncertainties attached to the modelled geometry of the pluton floor are mainly related to the uncertainty on densities. We have chosen a constant density contrast between the granites and the surrounding rocks in order to keep the modelling as simple as possible. Indeed, we have considered neither depth-dependent densities, nor varying densities of the pluton basement, since we have poor constraints on these parameters. Moreover, in accordance with results obtained in comparable conditions for the Sidobre pluton [Améglio et al., 1994], our tests show that uncertainties of 0.01 to 0.02 g/cm³ on the density contrast used for the inversion shifts the average depth of the pluton floor by about 250 to 500 m, without significantly altering its shape. As previously suggested in the residual Bouguer anomaly map, the bottom of the massif is deeper in its eastern, and southern parts, with thickness reaching 5 to 6 km. In the south, this deep-rooting could be associated Density measurements obtained by double weighing method with an average uncertainty on each sample of 0.01 g/cm³. Several calibrations using heavy liquids allowed to verify the accuracy of the density measurements.

TABL. I. – Mesures de densité.

Mesures de densité réalisées par la méthode de la double pesée, avec une incertitude moyenne de 0,01 g/cm³ sur chaque échantillon. Plusieurs calibrages aux liqueurs denses ont permis de s'assurer de la justesse des densités établies par pesée.

N° Ech	D (a/cm3)	Type lithologique	Localisation	N° Ech	D (g/cm3) Type lithologique
D2	2 58	granite à 2 micas porphyroïde	Meymac	D66	2 67 granite à Bt porphyroïde massif de Millevaches
D3	2 58	granite à 2 micas porphyroïde	Meymac	D67	2 72 aubussonite Aubusson
D4	2,50	granite à 2 micas porphyroide	Meymac	D68	2 65 leucogranite mylonitique Felletin-La Courtine
D5	2,00	granite à 2 micas porphyroïde	Meymac	D60	2,65 Icacogramic mylomidade relicting a Courtine
DG	2,04	grainte a 2 micas porpriyroide	Sorpac	D03	2,61 granite a bit type duelet mytorinique l'elletin-La Courtine
D7	2,00	gnelss anatectique un peu altere	Sornac	D71	2,00 granne type guerer Feiletin La Courtine
	2,12		Sornac		2,71 aubussonite reie Penetini-La Courtine
	2,7		Correct	F-I-C	2,04 leucografile très frais Peyrat-le-chateau
D9	2,0	aubussonile alleree	Somac	070	2,64 leucogranite tres trais Compeix
	2,75	gneiss anatectique tres trais	Somac	D72	2,58 granite a 2 micas porphyroide Meymac
D11 D10	2,62	leucogranite	massif de Millevaches	D73	2,6 granite egletons
D12	2,6	leucogranite	massif de Millevaches	D74	2,62 granite egletons
D13	2,6	leucogranite	massif de Millevaches	D75	2,62 leucogranite massif de Millevaches
D14	2,59	granite a Bt porphyroide	massif de Millevaches	D//	2,61 leucogranite massif de Millevaches
D15	2,6	granite à Bt porphyroïde	massif de Millevaches	D78	2,64 leucogranite massit de Millevaches
D16	2,65	granite à Bt porphyroïde	massif de Millevaches	D79	2,69 micaschiste Est de Marcillac
D17	2,61	granite à Bt porphyroïde	massif de Millevaches	D80	2,7 micaschiste Est de Marcillac
D18	2,61	leucogranite porphyroïde	massif de Millevaches	D81	2,62 gneiss oeillée Est de Marcillac
D19	2,6	granite à Bt porphyroïde	massif de Millevaches	D82	2,66 gneiss anatectique Est de Marcillac
D20	2,64	granite à Bt porphyroïde	massif de Millevaches	D83	2,7 gneiss anatectique Est de Marcillac
D22	2,61	granite à Bt porphyroïde	massif de Millevaches	D84	2,75 gneiss anatectique trés frais Est de Marcillac
D23	2,63	Leucogranite à grain moyen	massif de Millevaches	G5	2,6 leucogranite massif de Millevaches
D24	2,59	leucogranite porphyroïde	massif de Millevaches	G27	2,73 aubussonite massif de Millevaches
D25	2,6	leucogranite à grain fin	massif de Millevaches	G40	2,59 leucogranite massif de Millevaches
D26	2,65	microgranite	massif de Millevaches	G42	2,62 leucogranite massif de Millevaches
D27	2,64	granite à Bt porphyroïde	massif de Millevaches	G52	2,62 leucogranite massif de Millevaches
D28	2,61	leucogranite	Domps	G61	2,63 leucogranite massif de Millevaches
D29	2,76	gneiss anatectique	Sussac	G78	2,54 granite à Bt massif de Millevaches
D31	2,61	aubussonite altérée	Châteauneuf-la-Forêt	G91	2,63 leucogranite massif de Millevaches
D32	2,65	gneiss anatectique	Châteauneuf-la-Forêt	G174	2,64 granite à Bt massif de Millevaches
D33	2.72	aubussonite très fraîche	vers Buialeuf	3	2.61 leucogranite mylonitique bordure Est du Millevaches
D34	2.64	granite mylonitique	vers Bujaleuf	5	2.62 leucogranite mylonitique bordure Est du Millevaches
D35	2.6	granite à Bt porphyroïde	NW de Pevrat-le-Château	14	2 72 gneiss anatectique bordure Est du Millevaches
D36	2 64	granite à Bt	NW de Peyrat-le-Château	25	2 66 gneiss anatectique bordure Est du Millevaches
D37	2.6	leucogranite porphyroïde	NW de Peyrat-le-Château	47	2 72 aubussonite bordure Est du Millevaches
D38	2.6		NW de Peyrat-le-Château	71a	2 62 granite guéret cataclasé bordure Est du Millevaches
D39	2.6	gneiss anatectique altéré	NW de Peyrat-le-Château	95	2 68 ultramylonite granite guéret bordure Est du Millevaches
D40	2.61	microgranite	NW de Peyrat-le-Château	96	2 71 ultramylonite granite guéret bordure Est du Millevaches
D41	2,01		NW de Peyrat-le-Château	98h	2.64 leucograpite mylopitique bordure Est du Millevaches
D41	2,03	gabbro/ dolárite	NW de Peyrat-le-Château	103	2,64 leucogramite mytorinique bordure Est du Millevaches
D42	2,57	Jauggaranita mylanitiqua	NW de Peyrat le Château	103	2,00 granite gueret protomytonitique bordure Est du Millevaches
D43	2,00	micacobisto frais	Châtelus le Marcheix	104	2,74 granite guéret protomytonitique bordure Est du Millevaches
D44 D45	2,70		St Goussoud	112	2,00 granite guéret protomytonitique bordure Est du Millevaches
D45	2,05		St Goussaud	110	2,70 granite guéret protomylonitique bordure Est du Millevaches
D40	2,01		W do Guórat	106	2.6 Jourograpite mylenitique bordure Est du Millevaches
D47	2,07	aronito à Pt type Cuéret	W de Guéret	120	2,0 reucograme myjorinique bordure Est du Millevaches
D40	2,04	granne a Di type Guerei	W de Guéret	100	2, 7 grieiss bi/sii burdure Est du Millevaches
D49	2,07			100	2,04 Granite de Guerer mylonitique Dordure Est du Millevaches
D50	2,04			109	2,02 reucogramile mylomilique Dordure Est du Millevaches
051	2,7	gneiss anatectique		1980	2,72 gneiss anatectique Trais bordure Est du Millevaches
D52	2,71	gneiss anatectique		1980	2,78 gneiss anatectique tres trais bordure Est du Millevaches
D53	2,7	gneiss anatectique	Celle Dunoise	2250	2,62 leucogranite mylonitique bordure Est du Millevaches
D54	2,66	grieiss anatectique		227	∠,o∠ ieucogranite myionitique bordure Est du Millevaches
D55	2,67	granite a Bt type Gueret	vv de Gueret	236	2,04 leucogranite mylonitique bordure Est du Millevaches
D56	2,57	granite a Bt type Gueret	vv de Gueret	238	2,59 leucogranite myionitique bordure Est du Millevaches
D57	2,66	granite a Bt type Gueret	NVV de Bourganeut	245	2,67 granite bordure Est du Millevaches
D58	2,61	Ieucogranite mylonitique	massif de Millevaches	253	2,61 granite type guéret bordure Est du Millevaches
D59	2,64	granite à Bt porphyroïde	massif de Millevaches	265	2,63 leucogranite mylonitique bordure Est du Millevaches
D60	2,62	leucogranite	massif de Millevaches	279	2,59 granite bordure Est du Millevaches
D61	2,66	granite à Bt porphyroïde	massif de Millevaches	283	2,64 leucogranite mylonitique sud de Dun-le-Palestel
D62	2,7	granite à Bt porphyroïde	massif de Millevaches	284	2,64 leucogranite mylonitique sud de Dun-le-Palestel
D63	2,62	leucogranite	massif de Millevaches	345	2,72 micaschiste gorges du Chavanon
D64	2,62	granite à Bt porphyroïde	massif de Millevaches	346	2,71 gneiss anatectique gorges du Chavanon
D65	2,64	granite à Bt porphyroïde	massif de Millevaches	349b	2,81 micaschiste trés frais gorges du Chavanon

with the Glénat porphyritic granite rather than with the shallow leucogranites that mark out the Argentat fault (Roig, personal communication). Related to the easternmost negative anomaly, mining work in the Meymac area revealed the occurrence of a buried late granite [Burnol *et al.*, 1980]. It is however difficult to know whether the anomaly is due to the Meymac porphyroid granite or to the late

leucogranite body. Figure 4 presents a geological cross-section (profile A A') through the Millevaches granitic massif.

In the central part of the massif strongly affected by the Pradines shear zone, the gravity does not detect any large anomaly. The N-S oriented Pradines fault affects leucogranites and porphyritic biotite granites of the Millevaches massif in a 4 to 5 km-wide corridor. The N-S trending vertical foliation and sub-horizontal lineation define a consistent pattern associated with the emplacement of granites during dextral shearing. Indeed, from south to

north within the shear zone, the leucogranites are typical biotite-muscovite C-S orthogneisses, and mylonites that indicate a dextral sense of shear (fig. 5). Furthermore, the microstructural study of Pradines dextral wrench fault mylonites shows sub-solidus deformation textures (fig. 6) : rectangular grain boundaries shape form a reticular or mosaic-like pattern indicating extensive grain boundary migration, typical of high temperature sub-solidus deformation [Gapais *et al.*, 1986; Tommasi and Vauchez., 1994]. These observations suggest a synchronous emplacement of leucogranites with the Pradines fault activity. Vertically foliated gneiss xenoliths prolongate the Pradines fault to the north. This occurrence advocates that the fault could have locally weakened the crust and favoured the migration of magmas.

Eastward and close to the leucogranite mylonites, the porphyritic biotite granites show magmatic textures with a N-S to NNW-SSE preferential orientations of the (010) plane in K-feldspars which become NW-SE southeastwards [Mezure, 1980]. According to field relationships at the regional scale [Lameyre, 1966] the porphyritic biotite granite could have been emplaced at the same time as the leucogranites or more likely just before. We propose that the trend of this NW-SE foliation recorded strain field during the Pradines fault activity. In this last case the magma should not crystallise everywhere to record the effects of the dextral wrench Pradines fault.

DISCUSSION

Following Améglio *et al.* [1997] gravity and structural results for several plutons show that magma emplacement is largely controlled by the anisotropy and rheology of the

FIG. 3. – Map of the depth to the granite/micaschists interface, obtained by inversion of the gravity anomaly using the IBIS code. A A' : Cross-section, fig. 4.

FIG. 3. – Carte de profondeur de l'interface granite/encaissant obtenue par inversion de l'anomalie gravimétrique à l'aide du logiciel IBIS. A A' : coupe de la figure 4.

FIG. 4. – Sketch geological cross-section. (see location on fig. 3). FIG. 4. – *Coupe géologique schématique interprétative.* (Voir la localisation sur la figure 3).

FIG. 5. – Typical C-S structures developed in the leucogranites of the Pradines fault indicating a dextral sense of shearing. FIG. 5. – Structures C-S affectant les leucogranites de la faille des Pradines indiquant un sens de cisaillement dextre.

FIG. 6. – Quartz microstructures within foliated granite showing rectangular contours forming a reticular or mosaic-like pattern typical of high temperature deformation.

FIG. 6. – Microstructures du quartz montrant des contours rectangulaires qui forment un réseau réticulaire ou en mosaïque typique d'une déformation de haute température.

crust, in particular around the brittle-ductile transition. Local dilatancy of the brittle crust may be achieved under either compressive or extensive regime, but dominated by transcurent movements. These authors differentiate "flat-shaped" and "wedge-shaped" plutons on geometrical criteria and related tectonic regime criteria : (i) flat-shaped plutons have much broader horizontal than vertical extension and would spread parallel to the pre-existing tectonic layering of the crust, whereas, (ii) wedge-shaped plutons would infill more or less vertical fractures in the brittle crust. In addition, relations between plutons and the tectonic structures is generally evidenced; whether these relations are genetic or related to the exhumation is often less clear. This is illustrated in the Limousin area, where several plutonic complexes were emplaced during the late-Hercynian period. The leucogranitic complex of la Brâme – St Sylvestre dated at 318 ± 5 Ma and 324 ± 4 Ma by U-Pb method [Holliger et al., 1986] has a flat-shaped geometry, with a rather low thickness of about 2 km [Audrain et al., 1989], and an overall flat foliation. Likewise, the Sidobre granite located in the Montagne Noire (SW Massif central) was emplaced at 304 ± 8 Ma [Pin, 1991], and appears as a 2 to 3 km thick sill, the emplacement of which was favoured by normal faults that also certainly played a role of feeding zone [Améglio et al., 1994]. On the opposite, the plutons of the Aigurande plateau are rather of the wedge-shaped type. The Crevant leucogranitic massif is dated at 312 ± 6 Ma [Petitpierre and Duthou, 1980] by Rb/Sr on whole rock and Crozant and Orsennes at 312 ± 20 Ma [Rolin *et al.*, 1982] by the same method. The bodies are rooted southward around 3 km depth and spread laterally [Dumas et al., 1990]. Owing to their close relationships, their emplacement is certainly linked with the Marche senestral wrench fault. These plutons could be compared with those of the South Armorican Shear Zone, such as the Mortagne pluton [Guineberteau et al., 1987], which was emplaced between 300 and 360 Ma [Hanmer et al., 1982; Le Corre et al., 1991], deeply rooted into the shear zone and extrusive beyond the surface toward NE.

The Millevaches massif is the largest one. It was emplaced during the same late Hercynian period. Our model shows a large and rather thin batholith that can be classified in the "flat-shaped" type. In the context of the Hercynian orogeny, a wealth of geological considerations, synthesised by Faure and Pons [1991] document the emplacement of such type of plutons in a late-orogenic extensional tectonic environment.

Other tabular Hercynian granites have been recognized in western Europe and NW Africa. The idea of magma injection through fault and lateral expansion has already been discussed by Lagarde et al. [1990] about the late Carboniferous plutons of the Moroccan Meseta. To explain the emplacement of granitic plutons within high structural levels along crustal faults and their tabular shape, he suggests that faults collect melts at depth and control sites of emplacement within shallow crustal levels in which rheology permit the lateral expansion of magma [Lagarde et al., 1990]. Similarly, the Itaporanga pluton in the northeast of Brazil is an example of granite that emplaced into a shear zone and spread out laterally as a sill [Archanjo et al., 1999]. According to Hutton [1996], the Itaporanga pluton presents a syntectonic emplacement because of the magmatic and magnetic fabrics which are coherent with the country rock deformation. Relationships between faulting and granitic ascent have also been described in the Himalayas with emplacement of leucogranites along the North Himalayan Detachment [Burg and Brunel, 1984; Searle, 2003]. This fault zone behaves like a barrier to the magma ascent and controls the pluton emplacement in an extensional shear zone [Guillot et al., 1995].

Owing to its overall tabular shape and geometric relationship with the surrounding terrains, the emplacement of the Millevaches massif can apparently be explained by this process : once it has reached the upper crust, the magma spreads laterally into the sub horizontal micaschist foliation (profile AA', figure 4). Lately, its exhumation is favoured along several faults that bound its limits and especially the Argentat normal fault. In the present state of knowledge, as a working hypothesis, we propose to interpret the Millevaches as a laccolitic intrusion driven and emplaced above a N-S trending vertical lineament. However, the question of the magma feeding process still needs investigations since only a weak negative anomaly is expressed along the N-S Pradines shear zone. According to Fyfe [1973], or Reches and Fink [1988], we imagine the magma conduits as very narrow, jagged and instable pipes that disappear at the end of the magma transfer and give in consequence a weak anomaly.

CONCLUSION

During the Hercynian orogeny large amounts of magmas resulting from the partial melting of the pre-Variscan basement [Cuney *et al.*, 1990] were produced, as can presently be observed in the Limousin area (Massif central, France). The process of magma segregation, their ascent and emplacement mechanisms, as well as their relationships with the regional tectonics are still debated. Gravity modelling combined with structural analysis yield a first overview of the Millevaches massif geometry at depth. Together with other structural and geophysical data, this brings new constraints that help investigate the relationships between the massif and the host rocks, as well as its mode of emplacement.

New gravity and rock densities have been measured which improve the gravity knowledge of the northern Limousin. Analysis and inversion of the residual Bouguer anomaly in the area show that the Millevaches massif is 2 to 4 km-thick, from north to south, rooting down to about 6 km depth in its eastern and southern terminations. These two zones coincide with porphyritic plutons but, because of the complex composite structure of the massif, cannot be definitively interpreted as feeding zones for the whole massif. Independent AMS and seismic results are in good agreement with the overall flat-lying geometry we derive from gravity modelling. These geophysical constraints also suggest, in agreement with field observations, that the exhumation of the massif was achieved along several boundary faults and especially the Argentat normal fault. The scenario of emplacement of the massif as a laccolith at a high crustal level and its exhumation in relation with tectonic structures seems compatible with previously recognised situation for other batholiths in the late-Hercynian extensional context.

We further suggest that the Pradines shear zone, which is oriented parallel to the massif length and affects its core on a 4 to 5 km-wide corridor, could have triggered the migration of the magma (profile AA', figure 4). However, the question of the magma feeding process requires further investigations, since only a weak negative anomaly is expressed along the N-S Pradines fault. In the field, throughout the shear corridor in the leucogranites along the Pradines fault, typical C-S structures indicating a dextral sense of shear have been confirmed. Moreover, in this zone, quartz microstructures showing rectangular contours forming a mosaic-like pattern are typical of high temperature sub-solidus deformation cœval with leucogranite cooling.

Combining new geochronology (⁴⁰Ar/³⁹Ar method on the Pradines shear zones, together with the U-Pb method to determine the crystallization age of leucogranites), microstructural and ASM data, will be essential to further understand the internal magmatic processes, as well as the geodynamic context of the Millevaches massif emplacement.

Acknowledgments. – We thank J.-Y. Roig and C. Truffert for fruitful discussions. We are grateful to M. Diament for providing us with a microgravimeter, and N. Debéglia for initiating us to the IBIS inversion software. We thank M. Jézequel for facilitating the density measurements. We used Geosoft software for the geophysical data mapping. This work is a contribution to research program entitled "Massif Central/ Limousin" of the Service de la Carte Géologique de la France, funded by BRGM.

References

- AMEGLIO L. (1998). Gravimétrie et forme tridimensionnelle des plutons granitiques. – Thèse de Doctorat, Univ. Toulouse III, 245 p.
- AMEGLIO L., VIGNERESSE J.-L. & BOUCHEZ J.-L. (1997). Granite pluton geometry and emplacement mode inferred from combined fabric and gravity data. *In* : J.-L. BOUCHEZ, D.H.W. HUTTON & W.E. STEPHENS, Eds., Granite : from segregation of melt to emplacement fabriques. – Kluwer Academic Publishers, Dordrecht, 199-214.
- AMEGLIO L., VIGNERESSE J.-L., DARROZES J. & BOUCHEZ J.-L. (1994). Forme du massif granitique du Sidobre (Montagne Noire, France) : sensibilité de l'inversion des données gravimétriques au contraste de densité. – C. R. Acad. Sci., Paris, 319, 2, 1183-1190.
- ARCHANJO C.-J., DA SILVA, E.-R. & CABY R. (1999). Magnetic fabric and pluton emplacement in a transpressive shear zone system : the Itaporango porphyritic granitic pluton (northeast Brazil). – *Tectonophysics*, **312**, 331- 345.
- AUDRAIN J., VIGNERESSE J.-L., CUNEY M. & FRIEDRICH M. (1989). Modèle gravimétrique et mise en place du complexe hyperalumineux de Saint-Sylvestre (Massif central français). – C. R. Acad. Sci., Paris, **309**, 1907-1914.
- AUGAY J.-F. (1979). Les leucogranites et monzogranites de la région d'Eymoutiers-Peyrat le Château (massif du Millevaches, Massif central français). Gisement et pétrologie. – Unpubl. doctoral Dissertation, University of Lyon I, Lyon.

- BITRI A., TRUFFERT C., BELLOT J.-P., BOUCHOT V., LEDRU P., MILESI J.-P. & ROIG J.-Y. (1999). – Imagerie des paléochamps hydrothermaux As-Au-Sb d'échelle crustale et des pièges associés dans la chaîne varisque : sismique réflexion verticale (GéoFrance3D : Massif central français). – C. R. Acad. Sci., Paris, **329**, 771-777.
- BURG J.-P., BRUN J.-P. & VAN DEN DRIESSCHE J. (1990). Le sillon houiller du Massif central français : faille de transfert pendant l'amincissement crustal de la chaîne varisque ? – C. R. Acad. Sci., Paris, **311**, II, 147-152.
- BURG J.-P., BRUNEL M., GAPAIS D., CHEN G.M. & LIU G.H. (1984). Deformation of leucogranites of the crystalline Main Central Sheet in southern Tibet (China). – J. Struct. Geol., 6, 5, 535-542.
- BURNOL L., PERONNE Y. & VAUCORBEIL H. (1980). La coupole cachée de leucogranite de Neuf-Jours (Corrèze) et les minéralisations en tungstène associées. – Chron. Rech. Min., 455, 93-116.
- CHENOT D. & DEBEGLIA N. (1990). Three-dimensional gravity or magnetic constrained depth inversion with lateral and vertical variation of contrast. – *Geophysics*, **55**, 327-335.
- CUNEY M., FRIEDRICH M., BLUMENFELD P., BOURGUIGNON A., BOIRON M.-C., VIGNERESSE J.-L. & POTY B. (1990). – Metallogenesis in the French part of the Variscan orogen. Part I : U preconcentrations in pre-Variscan and Variscan formations; a comparison with Sn, W and Au. – *Tectonophysics*, **177**, 39-57.
- D'LEMOS R.S., BROWN M. & STRACHAN R.A. (1992). Granite magma generation, ascent and emplacement within a transpressional orogen. – J. Geol. Soc. London, 149, 487-496.

- DONNOT M. (1965). Micaschistes et granites du plateau de Millevaches. Ann. Fac. Sci., Univ. Clermont-Ferrand, **27**, 139 p.
- DUMAS E., FAURE M. & PONS J. (1990). L'architecture des plutons leucogranitiques du plateau d'Aigurande et l'amincissement crustal tardi-varisque. – C. R. Acad. Sci., Paris, 310, Série II, 1533-1539.
- FAURE M. (1989). L'amincissement crustal de la chaîne varisque à partir de la déformation ductile des leucogranites du Limousin. – C. R. Acad. Sci., Paris II, 309, 1839-1845.
- FAURE M. (1995). Late Carboniferous extension in the Variscan French Massif Central. – *Tectonics*, 14, 132-153.
- FAURE M. & PONS J. (1991). Crustal thinning recorded by the shape of the Namurian-Wesphalian leucogranite in the Variscan belt of the northwest Massif Central, France. – *Geology*, 19, 730-733.
- FAURE M., PROST A. & LASNE E. (1990). Déformation ductile extensive d'âge namuro-wesphalien dans le plateau d'Aigurande, Massif central français. – Bull. Soc. géol. Fr., 8, 189-197.
- FLOC'H J.-P. (1983). La série métamorphique du Limousin central : une traverse de la branche ligérienne de l'orogène varisque, de l'Aquitaine à la zone broyée d'Argentat (Massif central français). – Thèse d'Etat, Univ. Limoges, 445 p.
- FYFE W.S. (1973). The generation of batholiths. *Tectonophysics*, **17**, 273.
- GAPAIS D. & BARBARIN B. (1986). Quartz fabric transition in a cooling syntectonic granite (Hermitage massif, France). – *Tectonophy*sics, **125**, 4, 357-370.
- GUILLOT S., PECHER A. & LE FORT P. (1995). Contrôles tectoniques et thermiques de la mise en place des leucogranites himalayens. – C. R. Acad. Sci., Paris, 320, 55-61.
- GUINEBERTEAU B., BOUCHEZ J.-L. & VIGNERESSE J.-L. (1987). The Mortagne granite pluton (France) emplaced by pull-apart along a shear zone : structural and gravimetric arguments and regional implication. – *Geol. Soc. Amer. Bull.*, **99**, 763-770.
- HAMMER S. (1939). Terrain corrections for gravimeter stations. Geophysics, 4, 184-194.
- HANMER S.K., LE CORRE C. & BERTHE D. (1982). The role of Hercynian granites in the deformation and metamorphism of Brioverian and Paleozoic rocks of central Brittany. – J. Geol. Soc. London, 139, 85-93.
- HOLLIGER P., CUNEY M., FRIEDRICH M. & TURPIN L. (1986). Age carbonifère de l'unité de Brâme du complexe granitique peralumineux de St Sylvestre (NW du Massif central) défini par les données isotopiques U-Pb sur zircon et monazite. – C. R. Acad. Sci., II, 303, 1309-1314.
- HOLM D.K. (1995). Relation of deformation and multiple intrusion in the Death Valley extended region, California, with implications for magma entrapment mechanism. – J. Geophys. Res., 100, 10495-10505.
- HUTTON D.H.W. (1988). Granite emplacement mechanisms and tectonic controls : inferences from deformation studies. – *Trans. R. Soc. Edin., Earth Sci.*, **79**, 245-255.
- HUTTON D.H.W. (1996). The 'space problem' in the emplacement of granite. – *Episodes*, **19**, 114-119.
- JOVER O. (1986). Les massifs granitiques de Guéret et du nord-Millevaches. Analyse structurale et modèle de mise en place (Massif central français). – Thèse, Univ. Nantes, 233 p.
- LAGARDE J.-L., BRUN J.-P. & GAPAIS D. (1990). Formation des plutons granitiques par injection et expansion latérale dans leur site de mise en place : une alternative au diapirisme en domaine épizonal. – C. R. Acad. Sci., Paris, **310**, 1109-1114.
- LAMEYRE J. (1966). Leucogranites et muscovitisation dans le Massif central français. – Thèse, Univ. de Clermont-Ferrand, 264 p.
- LE CORRE C., AUVRAY B., BALLEVRE M. & ROBARDET M. (1991). Le Massif armoricain. - Sciences Géologiques, 44, 31-103.
- LEDRU P. & AUTRAN A. (1987). L'édification de la chaîne Varisque dans le Limousin. Rôle de la faille d'Argentat à la limite Limousin-Millevaches. – Prog. G.P.F., Doc. BRGM, Orléans, 87-106.
- MARTELET G., DIAMENT M. & TRUFFERT C. (1999). Un levé gravimétrique détaillé dans les Cévennes : apport à l'imagerie crustale (programme GéoFrance3D - Massif central). – C. R. Acad. Sci., Paris, **328**, 727-732.
- MARTELET G., DEBEGLIA N. & TRUFFERT C. (2002). Homogénéisation et validation des corrections de terrain gravimétriques jusqu'à la

Bull. Soc. géol. Fr., 2004, nº 3

distance de 167 km sur l'ensemble de la France. – C. R. Geosciences, 334, 449-454.

- MATTAUER M., BRUNEL M. & MATTE P. (1988). Failles normales ductiles et grands chevauchements. Une nouvelle analogie entre l'Himalaya et la chaîne hercynienne du Massif central français. – C. R. Acad. Sci., Paris II, **306**, 671-676.
- MATTE P. (1986). Tectonics and plate tectonics model for the Variscan belt of Europe. *Tectonophysics*, **126**, 329-374.
- MEZURE J.-F. (1980). Etude structurale des granites d'Egletons, Meymac et Ussel (Nord). Contribution à l'estimation quantitative de la déformation. Pétrographie et géochimie. – Thesis of speciality, Univ. Clermont-Ferrant, 191p.
- MONIER G. (1980). Pétrologie des granitoïdes du Sud Millevaches (Massif central français). Minéralogie, géochimie, géochronologie. – Thèse 3^{ème} Cycle, Univ. Clermont II, 288p.
- MOURET G. (1924). Sur la structure de la région granitique de Millevaches. – C. R. Acad. Sci., Paris, **179**, 1612-1615.
- PETITPIERRE E. & DUTHOU J.-L. (1980). Age westphalien par la méthode Rb/Sr du leucogranite de Crevant, Plateau d'Aigurande (Massif central francais). – C. R. Acad. Sci., **291**, 163-166.
- PETREQUIN M. (1979). Etude gravimétrique du massif de la Margeride et de sa bordure méridionale. Thèse 3ème cycle, Univ. Montpellier, 128p.
- PIN C. (1991). Sr-Nd isotopic study of igneous and metasedimentary enclaves in some Hercynian granitoids from the Massif Central, France. *In*: J. DIDIER & B. BARBARIN, Ed., Enclaves and granite petrology. – *Developments in Petrology*, Elsevier, 333-343.
- RAGUIN E. (1938). Contribution à l'étude du plateau de Millevaches (révision de la feuille de Limoges). Bull. Serv. Carte géol. Fr., 39, 197, 113-119.
- RECHES Z. & FINK J. (1988). The mechanism of intrusion of the Inyo dike, Long Valley, California. J. Geophys. Res., 93, 627-662.
- ROIG J.-Y., FAURE M. & TRUFFERT C. (1998). Folding and granite emplacement inferred from structural, strain, TEM, and gravimetric analyses : The case study of the Tulle antiform, SW French Massif Central. – J. Struct. Geol., 20, 9-10, 1169-1189.
- ROIG J.-Y., FAURE M. & MALUSKI H. (2002). Surimposed tectonic and hydrothermal events during the late-orogenic extension in the western French Massif Central : a structural and ⁴⁰Ar/³⁹Ar study. – *Terra Nova*, 14, 25-32.
- ROLIN P., DUTHOU J.-L. & QUENARDEL J.-M. (1982). Datation Rb/Sr des leucogranites de Crozant et d'Orsennes : conséquences sur l'âge de la dernière phase de tectonique tangentielle du Plateau d'Aigurande (NW du Massif central français). – C. R. Acad. Sci., II, 294, 799-802.
- SEARLE M.P., SIMPSON R.L., LAW R.D., PARRISH R.R. & WATERS D.J. (2003). – The structural geometry, metamorphic and magmatic evolution of the Everest Massif, High Himalaya of Nepal-South Tibet. – J. Geol. Soc. London, 160, 3, 345-366.
- SPECTOR A. & GRANT F.-S. (1970). Statistical models for interpreting aeromagnetic data. – *Geophysics*, 35, 293-302.
- TALBOT J.-Y. (2003). Apport des études ASM et gravimétriques des plutons cévenols à la caractérisation structurale de l'évolution tardihercynienne du Massif central – Thèse de Doctorat, Université d'Orléans, 288 p.
- TIKOFF B. & SAINT BLANQUAT (de) M. (1997). Transpressional shearing and strike-slip partitioning in the late Cretaceous Sierra Nevada magmatic arc, California. – *Tectonics*, **16**, 442-459.
- TIKOFF B., SAINT BLANQUAT (DE) M. & TEYSSIER C. (1999). Translation and the resolution of the pluton space problem. – J. Struct. Geol., 21, 1109-1117.
- TOMMASI A. & VAUCHEZ A. (1994). Magma-assisted strain localization in an orogen-parallel transcurrent shear zone of southern Brazil. – *Tectonics*, **13**, 2, 421-437.
- VAN DEN DRIESSCHE J. & BRUN J.-P. (1989). Un modèle de l'extension paléozoïque supérieur dans le sud du Massif central. – C. R. Acad. Sci., Paris, II, 309, 1607-1613.
- VIGNERESSE J.-L. (1995). Control of granite emplacement by regional deformation. – *Tectonophysics*, 249, 173-186.
- VIGNERESSE J.-L. & BRUN J.-P. (1983). Les leucogranites armoricains marqueurs de la déformation régionale : apport de la gravimétrie. – Bull. Soc. géol. Fr., XXV, 3, 357-366.

Chapitre IV-Le massif granitique de Millevaches V-7. Modélisation gravimétrique 2D

V-7-a. Information mise à disposition pour la construction des modèles

Outre la connaissance des densités, et afin de réduire au maximum la non-unicité des sources inhérentes à la méthode gravimétrique, la construction des modèles gravimétriques nécessite une bonne connaissance des relations structurales de l'objet à modéliser avec les unités environnantes. Toutes les informations acquises lors de l'étude de terrain ou lors de campagnes géophysiques sont à prendre en considération.

V-7-a-i. Information géologique

L'analyse structurale à partir des cartes géologiques est indispensable pour délimiter les corps en surface et pour mettre en évidence leurs relations structurales (pendages, failles,...) avec les différentes unités à modéliser. Pour la modélisation gravimétrique du massif de Millevaches et des unités environnantes au nord de celui-ci, une trentaine de cartes géologiques au 1/50 000 ont été utilisées. Nos observations personnelles acquises lors du levé de la carte géologique de Felletin ou lors de missions de terrain dans d'autres secteurs ont également été intégrées dans les modélisations.

Ledru et al. (1989) mettent en évidence un empilement de nappes d'unités très métamorphiques sur des unités moins métamorphiques. Ces séries ont fait l'objet d'une description détaillée au chapitre I. Lors de la réalisation des profils gravimétriques, la disposition de ces unités (Unité Supérieure des Gneiss chevauchant l'Unité Inférieure des Gneiss qui à son tour repose sur les micaschistes para-autochtone) a été respectée.

V-7-a-ii. Information sur la densité des roches

La densité d'un certain nombre de formations a été mesurée lors de notre étude (voir § VI-4 et Tabl. 1,pub. BSGF, § V-6) ; cependant pour la densité d'autres roches spécifiques, situées notamment à l'ouest du Millevaches (antiforme de Tulle), ainsi que pour les unités sédimentaires mésozoïques, nous avons fait appel à la banque de données du BRGM.

Voici un récapitulatif des densités utilisées pour nos modélisations :

Jurassique : 2,65 g/cm³ Trias : 2,65 g/cm³ Leptynite de l'antiforme de Tulle : 2,83 g/cm³ Volcanisme bimodal : 2,74 g/cm³ Orthogneiss de l'antiforme de Tulle : 2,66 g/cm³ Orthogneiss de Chameyrat-Argentat : 2,78 g/cm³ Orthogneiss anatectiques et paragneiss à biotitesillimanite (Unité Inférieure des Gneiss) : 2,78 g/cm³ Micaschistes : 2,75 g/cm³ Dôme granitique : 2,62 g/cm³ Substratum indifférencié : 2,80 g/cm³ (Cette valeur est en accord avec celle utilisée pour d'autres études similaires (Martelet, 1999). Métagrauwackes et roches de haute pression (Unité Supérieure des Gneiss) : 2,83 g/cm³

Anatexites à cordiérite : 2,72 g/cm³

Diorite quartzique : 2,80 g/cm³ Granite à biotite porphyroïde : 2,62 g/cm³ Leucogranite : 2,64 g/cm³ Granite de neuf jours : 2,64 g/cm³ Corps de forte densité sous le massif de Guéret : 3,1 g/cm³

V-7-a-iii. Information sur l'interface granite/encaissant

La profondeur des granites du Millevaches a été déterminée lors de la modélisation par la méthode d'inversion décrite au paragraphe V-5. Cette étude nous a permis de mettre en évidence une épaisseur de granite entre 1,5 et 4 km de profondeur qui varie du nord vers le sud. Deux zones d'épaississement bien marquées ont également été mises en évidence à l'est, à l'aplomb du granite de Meymac et à l'extrémité sud du massif de Millevaches.

V-7-a-iv. Information sur la profondeur des unités Limousines (gneiss et micaschistes) à partir des profils sismiques (Bitri et al, 1999)

Dans le cadre du programme Géofrance 3D, deux profils sismiques ont été réalisés dans le Limousin : l'un est orienté N-S et recoupe l'antiforme de Meuzac, l'autre présente une direction NE-SW et traverse l'antiforme de Tulle, la synforme d'Uzerche et la faille d'Argentat.

L'interprétation de ces profils sismiques montre que la faille normale d'Argentat décale sur une épaisseur de 5 à 7 km l'ensemble des unités du Limousin. De 14 km sous l'antiforme de Tulle, la base des micaschistes passe à 7 km sous le massif de Millevaches.

Les unités gneissiques para-autochtones et les séries migmatitiques bien mises en évidence à partir du profil sismique dans le sud Limousin, n'apparaissent pas à l'aplomb des granites du Millevaches. Seuls les micaschistes constituent l'encaissant des granites.

Comme hypothèse de travail, nous avons étendu la géométrie des unités métamorphiques profondes Limousines plus au nord, le long de la bordure ouest du Millevaches.

Le profil de l'anomalie gravimétrique mesurée est symétrique au 1^{er} ordre de part et d'autre du massif de Millevaches, ce qui suggère que la disposition des unités métamorphiques para-autochtones profondes peut être comparable à l'est du massif. Celui-ci apparaît de ce fait comme un bloc remonté par rapport aux unités métamorphiques régionales. Lors de la construction de nos modèles numériques suivant des coupes E-W à travers le Millevaches, nous avons placé, afin de respecter à la fois la symétrie de l'anomalie gravimétrique observée et le profil sismique Argentat, la base de l'unité des micaschistes à 7 km sous les granites du Millevaches et à 14 km de part et d'autre.

L'interprétation du profil sismique N-S de Lauriéras révèle la présence d'un dôme granitique sous l'antiforme de Meuzac. Nous avons tenu compte de cette observation lors de l'élaboration du profil gravimétrique B qui traverse ce secteur.

Chapitre IV-Le massif granitique de Millevaches V-7-a-v. Autre information concernant l'interface micaschiste / substratum

L'interface modélisée la plus profonde correspond à la base des micaschistes qui sont en contact avec un substratum indifférencié dont la densité a été fixée à 2,8 g/cm³. Cette valeur a été choisie de façon à ce que le contraste de densité entre les micaschistes et le soubassement soit significatif et en même temps plausible dans la réalité. Ajoutons que cette hypothèse est justifiée, car lors de la modélisation de l'anomalie de Bouguer résiduelle, seules les anomalies de courte et de moyenne longueur d'onde sont considérées. Celles-ci sont principalement associées aux sources superficielles dont la profondeur ne dépasse pas approximativement les 10 kilomètres.

V-7-a-vi. Extension des profils gravimétriques

De façon à éviter les effets de bordure, tous les profils ont été étendus à environ 100 kilomètres des deux côtés des structures à modéliser.

V-7-b. Résultats des modélisations gravimétriques suivant des coupes E-W à travers le massif de Millevaches

Les modélisations 2D ont été réalisées à l'aide du logiciel GM-SYS de GEOSOFT à partir de la carte d'anomalie résiduelle. Bien que les points de mesure du champ de pesanteur soient peu espacés (1 à 2 points par km²), les profils effectués ne recoupent pas nécessairement les points de mesure. L'anomalie gravimétrique mesurée correspond dans ce cas à une extrapolation des points. Ceci permet d'expliquer dans certains cas la présence d'un creux ou d'une bosse localisée de faible extension, et difficilement modélisable.

La construction des modèles se fait en plusieurs étapes successives. Pour simplifier : à partir des informations dont on dispose, on fabrique les corps des différentes unités géologiques à modéliser que l'on place le long du profil en fonction de leurs limites d'affleurement. (Le stylet que l'on utilise lors de la construction du modèle est directement relié à la carte géologique du million de la France numérisée). Les unités qui n'apparaissent pas à l'affleurement sont positionnées en fonction des informations géophysiques que l'on a. On attribue une valeur de densité à chacun des corps, et on les déforme : (i) selon la connaissance géologique disponible et (ii) de façon à ajuster l'effet du modèle avec l'anomalie mesurée.

🧲 Chevauchements 🖌 Failles normales 🖳 Limites d'affleurement

FIG. IV-13 – Localisation des coupes de modélisation gravimétriques sur la carte d'anomalie de Bouguer résiduelle de la partie nord-ouest du Massif Central. F. E. : Faille d'Estivaux. F. F. C. : Faille de Felletin-La Courtine. F. St M. V. : Faille de St Michel de Veisse. F. A. : Faille d'Arrênes. F. M. Oc. : Faille de la Marche Occidentale. F. M. Or. : Faille de la Marche Orientale.

V-7-b-i.Coupe A (Fig. IV-14)

Le profil A est orienté E-W à NE-SW. Il est situé légèrement plus au sud que le profil sismique profond d'Argentat et recoupe l'antiforme de Tulle et l'extrémité est de la synforme d'Uzerche (Fig. IV-13). D'ouest en est, le granite de Millevaches s'épaissit de 1,5km à 3km. Immédiatement à l'est du décrochement dextre des Pradines, l'anomalie négative reste faible ce qui suggère la présence de masse granitique sous les micaschistes affleurant. Plus à l'est, l'anomalie augmente progressivement et devient positive à l'aplomb des unités gneissiques. Elle diminue à nouveau sous l'influence du granite d'Ussel. A l'ouest du Millevaches, l'anomalie augmente à l'approche des roches de haute pression caractérisées par une forte densité $(2,80 \text{ g/cm}^3)$ puis diminue au niveau de l'antiforme de Tulle du fait de la présence de leucogranite (Roig *et al.*, 1998; Bellot, 2001) dont l'épaisseur peut être modélisée à 4 km.

V-7-b-ii.Coupe B (Fig. IV-14)

Ce profil gravimétrique E-W est situé au centre du massif de Millevaches et recoupe le granite porphyroïde de Meymac (Fig. IV-13).

A l'extrémité est du massif, l'intensité de l'anomalie gravimétrique est fortement négative ce qui sous entend un fort épaississement de granite. Les explorations

minières ont mis en évidence la présence d'un granite enfoui appelé « granite de Neuf Jours » (Burnol *et al.*, 1980) qui contribue en grande partie à cette anomalie. Les granites de Meymac et de Neuf Jours sont modélisés comme un corps magmatique unique de 6 à 7 km d'épaisseur. Compte tenu de l'épaisseur moyenne des granites de Millevaches entre 3 à 4 km suivant ce profil, la limite entre les deux granites pourrait être envisagée à cette profondeur (voir pointillés sur la coupe B). Cette zone n'est pas interprétée en tant que zone d'enracinement pour les granites de Millevaches.

L'épaisseur des granites du Millevaches diminue progressivement en se déplaçant vers l'ouest pour atteindre 2 à 2,5 km. Au niveau de la faille d'Argentat, l'anomalie résiduelle croît sous l'influence des gneiss à biotite-sillimanite. Cependant, la présence d'une lame de granite au mur de la faille d'Argentat est indispensable pour ajuster l'anomalie. Cette géométrie se confirme sur l'ensemble des profils E-W du Millevaches.

Vers l'ouest, malgré la présence d'unités gneissiques d'assez forte densité, l'anomalie gravimétrique diminue de façon significative. La présence d'un dôme granitique à 8km de profondeur sur le profil sismique de Lauriéras (Bitri et al., 1999) permet de modéliser cette anomalie.

V-7-b-iii.Coupe C (Fig. IV-14)

Cette coupe orientée E-W, recoupe à l'ouest du Millevaches, la synforme de St Germain-les-Belles et à l'est la zone de cisaillement de Felletin-la Courtine (Fig. IV-13). L'anomalie gravimétrique résiduelle est symétrique de part et d'autre du massif granitique de Millevaches. Comme nous l'avions déjà mis en évidence par la méthode d'inversion (§ V-5), les granites du Millevaches s'épaississent progressivement vers l'est pour atteindre une profondeur de 3km. Des anomalies secondaires de courte longueur d'onde reflètent de légères variations de densité dans les granites, ou des variations de profondeur du plancher des granites du Millevaches. Par commodité c'est ainsi que nous l'avons dessiné.

De part et d'autre du massif de Millevaches, l'anomalie de Bouguer augmente : à l'ouest, les gneiss de haute pression (éclogites) de St Germain-les-Belles et à l'est, les anatexites à cordiérite et les gneiss à biotitesillimanite sont les causes de ces anomalies de densité.

V-7-b-iv.Coupe D (Fig. IV-14)

La coupe D (Fig. IV-13 modélise au nord le massif de Millevaches, comme un laccolite de 1 à 2 km d'épaisseur.

A l'ouest de la faille d'Argentat, l'anomalie gravimétrique diminue fortement au dessus du granite d'Auriat modélisé comme un laccolite de 3,5 km de profondeur. La différence observée entre l'épaisseur des granites du Millevaches et le granite d'Auriat pourrait être expliqué par le jeu normal de la faille d'Argentat qui induit une remontée du Millevaches par rapport aux unités Limousines. A l'est du Millevaches, l'anomalie gravimétrique augmente rapidement avec les affleurements d'anatexites à cordiérite, puis diminue progressivement vers l'est, avec la présence des granites de Guéret qui s'épaississent à l'aplomb du granite de Crocq. Celui-ci atteint environ 4 km d'épaisseur maximum.

V-7-b-v. Conclusion sur les profils gravimétriques modélisés à travers le massif de Millevaches

L'ensemble de ces quatre profils gravimétriques confirment les résultats obtenus par l'observation de la carte d'anomalie résiduelle de Bouguer (§V-3-b) et l'inversion du champ gravimétrique (§V-5) qui permettent d'interpréter le Millevaches comme un laccolite de faible épaisseur variant d'ouest en est de 1,5 km à 3 ou 4 km.

L'inclinaison apparente du plancher des granites du Millevaches vers l'est est probablement liée au jeu normal de la faille d'Argentat qui bascule le massif. Cette hypothèse est cohérente avec le profil sismique Argentat (Bitri *et al.*, 1999) qui montre un décalage vertical du bloc Millevaches par rapport aux unités gneissiques du Limousin. Le résultat des profils gravimétriques est en bon accord avec l'interprétation des deux profils sismiques de Bitri et al. (1999). Les modèles gravimétriques confirment parfaitement les épaisseurs des différentes unités de gneiss ainsi que l'existence d'un dôme anatectique granitique dans l'antiforme de Meuzac.

Modélisations gravimétriques suivant des coupes E-W à travers le massif de Millevaches.
V-7-c. Résultats des modélisations gravimétriques régionales

Trois autres profils gravimétriques régionaux permettent de comparer le massif de Millevaches avec les autres plutons granitiques de la région, mais aussi de mieux comprendre leurs relations avec les unités géologiques environnantes.

Les deux premiers sont orientés suivant un axe N-S depuis le plateau d'Aigurande jusqu'au Millevaches. Le troisième de direction E-W traverse les massifs de la Brâme et de Guéret. Sur ces trois profils, ainsi que sur les quatre premiers, la modélisation gravimétrique respecte la cohérence géométrique concernant la profondeur des interfaces.

V-7-c-i. Profil E (Fig. IV-15)

Le profil E orienté NNW-SSE, débute au niveau du leucogranite de Crozant dans le plateau d'Aigurande, traverse les granites de Guéret et de Millevaches, se poursuit au SE vers le granite de Meymac et se termine près du Sillon Houiller (Fig. IV-13).

La partie centrale du profil met en évidence une forte anomalie positive en désaccord avec la faible densité des granites de Guéret (autour de 2,62 ; 2,64 g/cm³). Cette anomalie nécessite une faible épaisseur de granite de Guéret de moins de quelques centaines de mètres. La présence systématique des anatexites à cordiérite au mur du granite de Guéret ne suffit pas pour ajuster l'anomalie de grande longueur d'onde au dessus du massif. Il est donc indispensable d'évoquer l'existence d'une source profonde de forte densité. Un modèle possible permettant d'ajuster correctement l'anomalie observée, consiste à placer un corps très dense de 3,1 g/cm³ et d'un kilomètre d'épaisseur sous le massif entre 4 et 5km de profondeur. En plan horizontal, ce corps présente une forme ellipsoïdale WNW-ESE semblable à l'anomalie de Bouguer résiduelle de la carte (Fig. IV-11) au centre du massif du Guéret. L'intensité de cette anomalie est comparable à celle des synformes d'Uzerche et de St Germain-les-Belles où affleurent des roches de très haute pression de forte densité à $3,1 \text{ g/ cm}^3$. Cette proposition d'une présence de roches de haute pression type éclogite dans le massif de Guéret, est renforcée par la signature magnétique positive de ce secteur observée sur la carte du levé aéromagnétique (FIG. IV-5).

Au nord du profil, le décrochement sénestre de la Marche sépare le plateau d'Aigurande du massif de Guéret plus au sud (Fig. IV-1a). L'ensemble des plutons leucogranitiques d'Aigurande dont le pluton de Crozant, présentent des relations spatiales avec ce grand décrochement. En accord avec les travaux antérieurs de modélisation gravimétriques de Dumas et al. (1990) sur l'ensemble de ces plutons, le leucogranite de Crozant d'environ 2 kilomètres d'épaisseur s'enracine au SE contre la faille de la Marche.

Au sud du massif de Guéret, comme sur les modélisations gravimétriques précédentes, le massif de Millevaches présente une faible épaisseur qui varie de 1 à 4 km de profondeur du nord vers le sud.

A l'extrême sud du profil, la forte diminution de l'anomalie gravimétrique résiduelle correspond, comme

sur le profil B, au granite porphyroïde de Meymac et au granite de Neuf Jours enfoui.

Plus au sud, l'anomalie augmente avec l'affleurement des unités métamorphiques para-autochtone.

V-7-c-ii. Profil F (Fig. IV-15)

Le profil gravimétrique régional F orienté NNE-SSW, s'étend depuis l'est du plateau d'Aigurande, traverse les massifs granitiques de Guéret et de Millevaches et se termine au SW à proximité d'Uzerche (Fig. IV-13). Ce profil recoupe les coupes gravimétriques C, D et E décrites précédemment. Il permet : i) de confirmer la géométrie d'ensemble des unités profondes et superficielles, ii) de réaffirmer la faible épaisseur de granite de Guéret et la nécessité de rajouter un corps de forte densité entre 4 et 5 kilomètres de profondeur sous les granites.

Dans le plateau d'Aigurande, la faible anomalie implique l'existence d'un granite en profondeur sous les micaschistes affleurant au nord de la faille de la Marche. La masse granitique modélisée fait 4 kilomètres d'épaisseur au nord de la faille de la Marche. Son toit est horizontal mais son plancher incliné forme un coin vers le NE.

Dans la partie sud, le profil recoupe la partie NW des granites du Millevaches dont l'épaisseur n'excède pas ici 1,5km.

V-7-c-iii. Profil G (Fig. IV-15)

Cette coupe gravimétrique orientée E-W, recoupe d'ouest en est les unités de la Gartempe, le massif leucogranitique de la Brâme et le massif de Guéret (Fig. IV-13). L'allure générale du profil reflète des roches d'assez forte densité, excepté au dessus des leucogranites de la Brâme où l'anomalie gravimétrique présente un creux significatif. Celui-ci est modélisé par un laccolite de 4 kilomètres d'épaisseur. Il apparaît deux fois plus épais que dans le modèle d'inversion proposé par Audrain et al. (1989). De part et d'autre du granite de la Brâme, l'anomalie résiduelle est positive : à l'ouest, elle correspond aux unités de la Gartempe de forte densité et à l'est aux anatexites à cordiérite et surtout au corps dense supposé (3,1 g/cm³). Sur cette coupe, les granites de Guéret quasi inexistants, commencent à s'épaissir à l'approche du Sillon Houiller.

V-7-c-iv. Conclusion

L'étude gravimétrique permet de proposer une modélisation de la structure du massif de Millevaches et de préciser certaines de ses relations avec les unités métamorphiques du Limousin.

Les granites du massif de Guéret, du massif de Millevaches, du plateau d'Aigurande et de la Marche ainsi modélisés ne présentent pas la même forme.

La forme des plutons de Crozant, Orsennes, Méasnes et le Crevant (Dumas et al., 1990) n'est pas sans rappeler celle des leucogranites mis en place le long du décrochement sud Armoricain (Berthé *et al.*, 1979; Vigneresse et Brun, 1983; Martelet *et al.*, 2004). Leur forme suggère une structure diapirique avec une zone d'enracinement bien exprimée localisée dans la faille.

Chapitre IV-Le massif granitique de Millevaches

FIG. IV-15- Modélisations gravimétriques à l'échelle régionale.

Cette géométrie est différente de celle des granites de Millevaches et de Guéret peu épais mais très étendus où les zones de racines sont cachées.

Le modèle Millevaches sera envisagé après l'étude A.S.M..

VI. Anisotropie de Susceptibilité Magnétique (A. S. M.) appliquée au massif granitique de Millevaches

Les principes de l'étude de l'A. S. M. sur les massifs granitiques ainsi que le traitement des données est exposé au Chapitre II « Méthodologie » § III.

Le massif de Millevaches est affecté par de grandes zones de cisaillement ductiles qui sont responsables de l'orientation N-S du massif. La détermination de la fabrique des granites du Millevaches apportera i) des informations sur les déformations subies par les magmas lors de leur mise en place et montrera ii) le rôle significatif joué par les failles dans la structuration interne des granites.

Ces granites ont longtemps été interprété comme des diapirs traversant la pile de nappes métamorphiques (Lameyre, 1982, 1984 ; Duthou et Floc'h, 1989). Notre étude gravimétrique remet en cause ce concept et permet de modéliser le massif de Millevaches comme un laccolite de 1,5 à 4 km de profondeur du nord vers le sud. Les données obtenues par Jover (1986) sur les granites de la partie nord du massif mettent en évidence des linéations et foliations magnétiques sub-horizontales cohérentes avec une géométrie laccolitique. En complément des données de Jover (1986), l'acquisition des fabriques magnétiques dans les granites des parties centre et sud du Millevaches a été réalisée dans le but de confirmer la structuration en lame horizontale des granites du Millevaches.

Couplé à l'étude gravimétrique, l'A.S.M. permettra d'affiner la cinématique des failles qui affectent le massif de Millevaches et de préciser son mode de mise en place.

VI-1. Méthode d'échantillonnage (Fig. IV-16)

L'étude A.S.M. nécessite d'effectuer un échantillonnage régulier du massif granitique à étudier. Le choix de la maille se fait en fonction de la dimension du massif, de sa structuration (il n'est pas nécessaire d'insister dans les zones très déformées où la fabrique du granite est visible à l'œil nu), des conditions d'affleurement et de leur qualité. Pour notre étude, nous avons prélevé 700 carottes réparties sur 105 sites régulièrement espacés dans les parties centre nord et sud du massif de Millevaches.

Le prélèvement des échantillons se fait par forage à l'aide d'une sondeuse portative qui permet à l'aide d'un foret à diamant d'obtenir des carottes de 3 à 7 cm de longueur et de 2,5 cm de diamètre. Pour chaque site d'échantillonnage, on essaie de prélever entre 5 et 10 carottes de façon à obtenir une bonne moyenne statistique. Chacune d'entre-elles est orientée par rapport au Nord magnétique à l'aide d'une boussole et d'un orientomètre (Fig. IV-16).

FIG. VI-16 – Procédure d'échantillonnage pour mesure d'anisotropie de la susceptibilité magnétique d'après BOUCHEZ (1997). a : Orientation de l'échantillon : R :Direction de l'horizontale du plan perpendiculaire au plan vertical P' passant par l'axe de la carotte. α : Plongement de la carotte. b : Carotte orientée extraite et échantillons correspondants. c : Orientation de l'axe K1, de l'ellipsoïde d'ASM dans le repère de l'échantillon. d : Orientation de l'ellipsoïde d'ASM dans le repère de l'échantillon et dans le repère géographique.

On repère l'azimut du plan et le plongement de la carotte. Quand le temps le permet, nous mesurons l'azimuth magnétique mais également celui du soleil. La différence entre les deux, dans notre secteur, est négligeable (<5°). L'échantillonnage a principalement été effectué sur des granites à biotite porphyroïdes et sur des granites à deux micas (leucogranite). Quelques prélèvements sur des granites à grenat-cordiérite ont été faits. De retour au laboratoire, les échantillons sont sciés suivant une taille conventionnelle permettant de les mesurer dans l'appareil (2,5 de diamètre sur 2 cm de long).

VI-2. Minéralogie magnétique

La susceptibilité magnétique varie selon la nature des minéraux (voir Chapitre II, §III-2). Dans toute étude de l'A. S. M., il est indispensable de connaître le ou les minéraux porteurs de l'aimantation magnétique. Le but de cette approche est d'estimer la part de la contribution chacun (minéraux ferromagnétiques de 011 paramagnétiques. etc...) dans la susceptibilité magnétique. Plusieurs techniques propres aux études de magnétisme des roches peuvent être utilisées telles que la susceptibilité totale, l'aimantation rémanente naturelle, le thermomagnétisme ou la courbe de mesure d'hystérésis. Quelle que soit la méthode choisie, une étude minutieuse au microscope pétrographique est indispensable.

Nos mesures ont porté uniquement sur trois types de granites :

- Les granites à deux micas sont constitués par le feldspath potassique, le plagioclase, le quartz, la biotite et la muscovite. Ces deux dernières représentent les phases principales paramagnétiques. Dans certains échantillons peuvent apparaître quelques sillimanites.

- Les granites à biotite porphyroïdes présentent du feldspath potassique, du plagioclase, du quartz et de la biotite.

- Quelques mesures ont été testées sur les leucogranites à feldspath potassique, plagioclase, quartz, grenat, cordiérite et opaques.

Les phases principales ferromagnésiennes porteuses de l'aimantation sont la biotite et la muscovite.

Pour déterminer les minéraux porteurs de l'aimantation, nous avons appliqué à chaque type d'échantillon la mesure de la courbe d'hystérésis magnétique. Cette méthode consiste à mesurer les variations du moment magnétique d'un échantillon placé dans un champ magnétique. Les variations du moment magnétique diffèrent suivant le type d'aimantation porté par les minéraux constitutifs de l'échantillon. Les minéraux paramagnétiques (les micas par exemple) présentent des variations linéaires qui sont réversibles dans un champ croissant et décroissant à l'inverse des ferromagnétiques qui dessinent une courbe d'hystérésis.

Nos mesures (Fig. IV-17) ont été faites au laboratoire paléomagnétique de St Maur (Paris).

La relation entre le moment magnétique induit et le champ magnétique est linéaire, et identique pour une augmentation et une diminution du champ quel que soit

le type d'échantillon analysé. Nous déduisons par conséquent, que les mesures d'anisotropie de susceptibilité magnétique sont associées en toute confiance à la sous fabrique des micas (biotite et muscovite).

FIG. IV-17 – Courbes d'hystérésis du moment magnétique en fonction du champ magnétique.

VI-3. Les paramètres scalaires de l'A. S. M.

Les mesures A.S.M. donnent accès aux différents paramètres scalaires tels que la susceptibilité magnétique (Km), le degré d'anisotropie (P') et le paramètre de forme (T). Km permet d'apprécier certaines caractéristiques de la minéralogie des granites. P' et T renseignent sur le champ de déformation des différents types de granite.

VI-3-a. La susceptibilité magnétique

La susceptibilité magnétique moyenne (BMS) a été mesurée à l'aide du susceptomètre Kappabridge KLY-3S (Chapitre II, § III-3.).

La BMS des granites à deux micas est plus faible que celle associée aux granites à biotite porphyroïdes. L'histogramme des susceptibilités magnétiques montre une distribution asymétrique uni-modale variant de 10 à 180.10⁻⁶ SI avec une valeur moyenne de 60.10⁻⁶ SI (Fig. IV-18).

FIG. IV-18 – Histogramme de susceptibilité magnétique des sites ASM. En noir : Granites à biotite porphyroïdes. En gris : Granites à deux micas. En blanc : Leucogranites à Grt-Crd.

Ces valeurs de faible intensité confirment l'absence de minéraux ferromagnétiques et ferrimagnétiques dans l'ensemble des granites du Millevaches. La biotite et la muscovite sont donc bien les minéraux porteurs de l'aimantation. Bien que la quantité de fer dans les muscovites soit bien inférieure à celles des biotites, (entre 19% et 24,5% pour les biotites contre 1,5% pour les muscovites), elle est suffisante pour induire une susceptibilité magnétique (tableau, annexe 5).

Le test effectué sur les trois échantillons de leucogranites à Grt-Crd montre également une susceptibilité magnétique peu importante (entre 35,2. 10^{-6} SI et 47,3. 10^{-6} SI) liée au faible pourcentage de biotite dans l'échantillon.

VI-3-b. Les différents diagrammes P'-T, P'-Km et T-Km

VI-3-b-i. Le diagramme P'-T

Pour décrire la forme de l'ellipsoïde A. S. M. et le degré d'anisotropie, nous avons reporté les valeurs du paramètre de forme T en fonction du degré d'anisotropie P (Jelinek, 1978 and 1981; Hrouda, 1982) des trois types d'échantillons (Fig.IV-19). Les granites à biotite porphyroïdes et les granites à deux micas présentent le même type de fabriques magnétiques. La majorité des sites de l'ensemble des granites présentent d'assez faible valeur du degré d'anisotropie (<10%) typique des granites « paramagnétiques où P' % excède rarement 10%.

La distribution des paramètres T et P' montre une répartition homogène entre les ellipsoïdes (en cigare ou en galette) qui suggère une mise en place des deux types de granites dans le même contexte tectonique.

Pour Stussi et Cuney (1990), d'après les observations structurales dans la carrière de Boucheron, à l'ENE de Péret-bel-air (Fig. IV-1a), la mise en place des deux magmas est contemporaine.

FIG. IV-19 – Paramètre de forme en fonction du degré d'anisotropie. Carrés noirs : Granites à biotite porphyroïdes. Losanges gris: Granites à deux micas. Triangles blancs : Leucogranites à Grt-Crd.

VI-3-b-ii. Le diagramme P'-Km et T-Km

Ces diagrammes permettent d'évaluer l'effet de la minéralogie magnétique (nature et teneur des différents porteurs magnétiques) sur la forme de l'ellipsoïde (paramètre T) et sur son excentricité (paramètre P').

Le diagramme P'-Km (Fig. IV, 20), montre que le degré d'anisotropie est d'autant plus élevé que la susceptibilité est faible que ce soit pour les granites à deux micas ou les granites à biotite porphyroïdes. On note cependant une moyenne où l'ensemble des granites montrent de faibles valeurs de P' (\sim 5%) pour des susceptibilités moyennes autour de 50.10⁻⁶SI.

Le diagramme T-Km (Fig. IV, 21) montre une distribution homogène des points de part et d'autre de l'ellipsoïde en cigare ou en galette. La susceptibilité moyenne est constante (autour de 50.10^{-6} SI) et le paramètre T couvre tout le champ de variation des ellipsoïdes de forme.

FIG. IV-20 – Degré d'anisotropie en fonction de la susceptibilité magnétique. Carrés noirs : Granites à biotite porphyroïdes. Losanges gris : Granites à deux micas. Triangles blancs : Leucogranites à Grt-Crd.

FIG. IV-21 – Paramètre de forme en fonction de la susceptibilité magnétique. Carrés noirs : Granites à biotite porphyroïdes. Losanges gris : Granites à deux micas. Triangles blancs : Leucogranites à Grt-Crd.

VI-3-c. Les cartes de répartition géographique du paramètre de forme et du degré d'anisotropie

La répartition géographique du paramètre de forme T (Fig. IV-22) montre que l'ellipsoïde de susceptibilité en galette est bien défini au nord du massif de Millevaches, le long du décrochement ductile dextre de St Michel de Veisse, avec T>0.35 et entre Eymoutiers et Peyrelevade avec 0 < T < 0.35. La majorité des données A. S. M sur ce territoire a été acquise par Jover en 1986. L'ellipsoïde de susceptibilité en forme de cigare est marqué le long du décrochement dextre des Pradines avec un T<-0.35 et à l'Est de celui-ci (-0.35</p>

L'ellipsoïde en cigare est également représenté au niveau de la prolongation nord de la faille des Pradines, à l'Est (-0.35 < T < 0) et au NNE (T<-0.35) d'Eymoutiers en accord avec les linéations NW-SE sub-horizontales ou plongeant au NW définies dans ce secteur.

Ce même type d'observation peut être décrite à l'Est de Bourganeuf, secteur caractérisé par un paramètre de forme -0.35 < T < 0.

La carte du paramètre d'anisotropie (Fig. IV-23) montre que plus de 90% des sites présentent un degré d'anisotropie relativement faible avec des valeurs n'excédant pas les 8% à 10%. Quelques sites (moins de 10%), principalement situés au nord du massif, en particulier, le long du décrochement de St Michel de Veisse indiquent que son activité a pu avoir une influence possible sur le paramètre P'.

Il est important de noter que la faille des Pradines et sa prolongation N-NW sont caractérisées par un faible degré d'anisotropie (P'<10%) suggérant que l'acquisition de l'anisotropie de susceptibilité magnétique s'est faite à l'état magmatique, pendant la mise en place des granites (Hargraves et al., 1991).

Les axes principaux de l'ellipsoïde de susceptibilité magnétique définis par Kmax, Kint et Kmin sont déterminés pour chaque échantillon. Une moyenne pour chaque axe est calculée sur chaque site par la méthode statistique de Bingham (1964, voir tableau Annexe 5). K_{max} et K_{min} représentent respectivement la linéation magnétique et le pôle de la foliation magnétique. L'étude de la minéralogie magnétique (§VI-2.) a montré que la fabrique magnétique mesurée dans les granites du Millevaches correspond principalement à la sousfabrique pétrographique des micas. La distribution spatiale de ces paramètres permet d'obtenir une cartographie des structures magmatiques à l'échelle du massif et d'imaginer, dans le cas d'une bonne cohérence directionnelle des structures à l'échelle du massif, un modèle cinématique.

IV-4-a. Résultats A.S.M. en projection stéréographique

Nous avons reporté les trois axes principaux de la susceptibilité magnétique en projection stéréographique pour chaque site avec un indice de confiance de 95% (Fig. IV-24 a et b). On distingue trois groupes de site : Le groupe I (52% des sites) pour lequel les trois axes sont parfaitement groupés (tableau Annexe 5, Fig. IV-24). Le groupe II (22% des sites) correspond aux sites où Kmax est bien défini par rapport à K_{int} et K_{min} (tableau Annexe 5, Fig. IV-24). Enfin le groupe III (26% des sites) où inversement, c'est K_{min} qui est mieux groupé par rapport aux deux autres (tableau Annexe 5, Fig. IV-24).

IV-4-b. Les linéations et foliations magnétiques

La carte des linéations magnétiques (Fig. IV-25) du massif de Millevaches met en évidence l'importance des linéations sub-horizontales orientées NW-SE dans les granites à deux micas et les granites à biotite porphyroïdes.

IV-4-b-i. Partie sud de l'étude

A l'est du décrochement ductile des Pradines, les linéations magnétiques bien définies sont orientées NW-SE et plongent faiblement, rarement plus de 30°.

Les foliations magnétiques également orientées NW-SE, ont un pendage qui varie entre 0 et 40°. Quelques sites seulement, à proximité des failles des Pradines et d'Ambrugeat (MV76, MV63 et MV23, Fig. IV-24b et IV-26), ont de fort pendage.

IV-4-b-ii. Partie centre de l'étude (au sud de la latitude du village de Millevaches)

Dans la continuité nord de la faille des Pradines, les linéations sub-horizontales présentent une direction NNW-SSE (Sites d'échantillonnage MV 77 - MV 78 -MV 34 - MV 35 -MV 36 - MV 37 - MV38 - MV 40 sur Fig. IV-24b et IV-25). En revanche, à l'est de cette faille, les linéations NW-SE prédominent.

La distribution des foliations magnétiques (Fig. IV-26) à l'échelle du massif est moins évidente. Leur orientation est généralement parallèle aux bordures du massif. Au centre du massif, les plans de foliation sont peu pentés (<40°) excepté dans la continuité nord du décrochement des Pradines où le pendage de la foliation magnétique varie entre 90 et 45° (Fig. IV-26).

IV-4-b-iii. Partie nord de l'étude (latitude de Millevaches et Peyrelevade)

La répartition des linéations magnétiques est un peu plus aléatoire par rapport au sud mais trois directions majeures peuvent être distinguées. Une linéation magnétique dominante orientée NW-SE et deux autres de direction N-S et NE-SW coexistent. La linéation magnétique NE-SW n'est observée que sur quelques affleurements de granite à deux micas localisés à l'W-NW du village de Millevaches (Sites MV3 - MV8 - MV10 - MV12 - MV79, FIG. IV-24 a). Ces sites particuliers sont associés à une susceptibilité magnétique de faible intensité (37.5, 44.9 et 44.3 x10-⁶ SI respectivement pour les sites MV 8, MV 12 et MV 79, voir tableau, Annexe 5) et d'une précision sur la donnée A. S. M. elle-même relativement faible avec $\alpha 95_{max}$ sur K_{max} à 32.5°, 25.5°, 28.1° et 29.4° pour les sites respectifs MV 3, MV 10, MV 12 et MV 79 (voir tableau, Annexe 5).

Les foliations magnétiques se répartissent en deux groupes :

Le premier groupe est caractérisé par une orientation NW-SE avec un pendage de 60° vers le NE au nord du décrochement des Pradines. Ce pendage diminue progressivement en se dirigeant vers la faille d'Argentat, à proximité d'Eymoutiers.

La mesure de ces foliations magnétiques est en accord avec les observations structurales de terrain, au niveau de la latitude de Treignac (Fig. IV-1b). Depuis le cœur de la faille des Pradines, la foliation des granites très redressée (> 50°) se suit sur 5 km d'épaisseur. En se dirigeant vers l'ouest, la foliation passe ensuite très rapidement à une foliation sub-horizontale avant Treignac. De Treignac jusqu'à la faille d'Argentat, les plans de foliation passent progressivement d'une foliation sub horizontale à une foliation inclinée de 30 à 40° vers le NW.

Le second groupe, situé à l'est des Pradines, montre une orientation NE-SW à E-W avec un pendage subhorizontal. Les observations de terrain confirment également les mesures données par l'A. S. M. à l'est du décrochement des Pradines.

Jover qui a mesuré la fabrique des granites dans la partie nord du massif entre Royère-de-Vassivière et le décrochement de St Michel de Veisse, relie les linéations magnétiques horizontales et les foliations magnétiques verticales au faciès des granites à biotite porphyroïdes. Pour lui les linéations magnétiques NW-SE sont uniquement associés aux granites à deux micas. Nos mesures dans la partie plus au sud du massif, à l'est de la faille des Pradines, montrent cependant que les linéations sub-horizontales NW-SE existent aussi bien dans les granites à biotite porphyroïdes que dans les granites à deux micas.

Chapitre IV-Le massif granitique de Millevaches IV-4-b-iii. Partie extrême nord du massif (Jover, 1986)

Les foliations magnétiques à fort pendage se localisent parallèlement à la faille de St Michel de Veisse. A l'est de la faille, les plans de foliation se réorientent pour suivre la bordure du massif granitique. D'une orientation E-W à NW-SE dans le décrochement dextre de St Michel de Veisse, ils deviennent progressivement N-S, et parallèles au décrochement dextre de Felletin-La Courtine (Fig. IV-26).

Au centre du massif, entre Royère-de-Vassivière et Eymoutiers, la foliation magnétique des granites à deux micas est orientée N-S avec un fort pendage (>65°). Le même type d'observation a été fait au nord de Royère. Nous proposons que ces foliations magnétiques sub-verticales correspondent à la prolongation nord du décrochement des Pradines.

FIG. IV-22 - Répartition géographique du paramètre de forme T

FIG. IV-23 – Carte du paramètre d'anisotropie P.

FIG. IV-24 a – Stéréogrammes des fabriques magnétiques de la partie Nord Millevaches. Les trois axes principaux de l'ellipsoïde ($K_{max} > K_{int} > K_{min}$) sont représentés respectivement par les carrés, les triangles et les cercles. Les petits symboles noirs représentent chacune des données obtenues sur un même site; les symboles gris de taille plus importante correspondent à la donnée moyenne du site.

FIG. IV-24 b – Stéréogrammes des fabriques magnétiques de la partie Centre Sud du Millevaches (même légende que FIG. IV-15b).

FIG. IV-25 - Carte des linéations magnétiques du massif de Millevaches. a) Données de Jover (1986). b) Notre secteur d'étude

VI-5. Observations microstructurales

Afin de déterminer le contexte rhéologique (état magmatique ou état solide) dans lequel les fabriques magnétiques se sont développées, les microstructures et textures de trente et un échantillons orientés (carottes orientées) dans les divers faciès granitiques ont été analysés en lame mince. On distingue quatre types d'échantillon en fonction de leur minéralogie, de leur déformation et de l'orientation de leur linéation magnétique. Le **type I** (MV77-MV78-MV15-MV84-MV35) représente **les granites à biotite porphyroïdes** situés dans le prolongement nord de la faille des Pradines. Ils ont mémorisé une **linéation magnétique N-S** développée dans des conditions de « pre-full crystallization » (volume de cristaux < 70-75%). Les textures sont caractérisées par de grandes plages de quartz pluri-millimétriques dépourvues de sousjoints (Figure a, Planche XXVII).

FIG. IV-26 - Carte des foliations magnétiques du massif de Millevaches. a) Données de Jover (1986). b) Notre secteur d'étude

Ce sont des quartz recristallisés avec des joints de grain à 120° sans extinction onduleuse. Les biotites ne sont pas déformées (absence « de kinks »). Les feldspaths potassiques sont localement myrmékitiques (Figure b, Planche XXVII). Ces myrmékites sont interprétées comme les produits de cristallisation d'un magma saturé en H₂O (Hibbard, 1987). Les plagioclases ont conservé leur zonage compositionnel (Figure c, Planche XXVII). Le **type II** (MV13, MV95, MV105, MV67, MV94, MV18, MV33) est associé au faciès des **granites à biotite porphyroïdes** présentant une **linéation magnétique orientée NW-SE**. Ce type de granite affleure à l'est et au nord-est de la faille des Pradines. Les critères texturaux parallèlement à la linéation NW-SE décrivent un état transitoire entre un état magmatique (ou de « pre-full crystallization ») et un état solide. Selon de St Blanquat (2002), le système se

bloque et les cristaux commencent à se déformer plastiquement à partir de 75% de volume de cristaux.

La morphologie des bordures des grains de quartz est curviligne typique d'une déformation de haute température. Ce phénomène donnant lieu au développement d'une géométrie courbe et flexueuse aux joints de grain est décrit dans la littérature par Jessel (1987) comme un phénomène de migration intense en limite de grain (Figure d, Planche XXVII).

Les grains de quartz montrent fréquemment des textures dites « en échiquier » où les sous joints basaux et prismatiques < c > coexistent (Figure e, Planche XXVII). L'activation du glissement prismatique < c > prédominant ne peut se faire que dans des conditions de température élevées supérieures à 600°C (Mainprice et al., 1986; Blumenfeld et al., 1986).

La limite entre les grains de quartz et de feldspath dessine une géométrie courbe particulière (Figure f, Planche XXVII). Suivant Gower et Simpson (1992), cette morphologie est en liaison avec des phénomènes de dissolution – précipitation qui se produisent à la limite du quartz et du feldspath quand ces deux derniers sont orientés parallèlement à la foliation. Ce processus de glissement à l'état solide par diffusion s'effectue à haute température (650°C-750°C).

Dans ce type d'échantillon, les feldspaths potassiques montrent de nombreuses myrmékites se développant en majorité sur les faces perpendiculaires à la direction maximale de raccourcissement.

Les feldspaths se transforment fréquemment en microcline (Figure g, Planche XXVII), typique d'une déformation à l'état solide (Eggleton and Buseck, 1980). Les biotites apparaissent quelquefois kinkées (Figure h, Planche XXVII), preuve qu'elles ont subies des déformations plastiques. Les grains de quartz montrent des signes de recristallisation statique. Le développement des joints de grains de quartz à 90° formant des textures en mosaïque, illustre leur grande mobilité à haute température (Gapais and Barbarin, 1986).

Les microstructures observées dans les granites à biotites porphyroïdes révèlent que l'acquisition de la fabrique magnétique s'est effectuée avant la cristallisation totale du magma ou juste après (état subsolidus). Les microstructures caractéristiques du « prefull crystallization » sont plutôt observées dans le prolongement nord du décrochement ductile des Pradines alors que celle à la transition état magmatiqueétat solide ou à l'état solide proviennent d'échantillons prélevés à l'est de cette faille. Précédemment, nous avons vu que les textures des granites à deux micas mylonitiques de la faille des Pradines sont caractérisées par des déformations de haute température indiquant une mise en place syntectonique (Gébelin et al., 2004). Ces observations ont été validées par les données géochronologiques 40 Ar/39 Ar (Chapitre III, § IV-2 et U/Pb § *VIII-3-a*).

La corrélation entre le degré d'anisotropie P et les différents types de microstructures montrent que le

paramètre P présente des valeurs plus élevées pour le type II (2 < P < 9.4%) avec une moyenne de P=5.4% que pour le type I où (3.5 < P < 6.9) avec 4.9% de moyenne.

En accord avec les travaux d' Hargraves (1991), plus les déformations se font à état magmatique plus faible est le degré d'anisotropie.

Le **type III** (MV7, MV9, MV10, MV12, MV6, MV16, MV50, MV44) caractérise les **granites à deux micas** dont la **linéation est orientée N-S à NNE-SSW**. Ils affleurent au SW de Peyrelevade excepté MV44 et MV50 qui sont situés au nord des Pradines.

Leur texture, caractérisée par des quartz euhédraux, dépourvus d'extinction onduleuse et de micas non déformés reflète un état magmatique (Fig. a, Planche XXVIII). L'unique signe d'un état transitoire (limite magmatique-solide) est la présence de microcline observé dans l'échantillon MV 9 et l'observation dans les quartz d'extinction onduleuse dans MV6-MV16-MV50-MV44.

Le type IV (MV1, MV3, MV19, MV21, MV25, MV28, MV38, MV45, MV52, MV54, MV56) représentent des granites à deux micas mettant en évidence des microstructures à la transition magmatiques-solides ou à l'état solide. Ils proviennent de part et d'autre de la faille des Pradines. La linéation magnétique associée est orientée en majorité NW-SE mais certains échantillons peuvent présenter une linéation N-S à NE-SW. Parallèlement à celle-ci, on observe dans les quartz un intense phénomène de migration aux joints de grains (Fig. b, Planche XXVIII). Les quartz présentent couramment des sillimanites en inclusion (Fig.c, Planche XXVIII).

De nombreux grains présentent des textures en échiquier (sous-joints orthogonaux basal < a > et prismatique < c >) (Fig. d, Planche XXVIII) où le glissement prismatique < c > dominant ne peut être activé qu'à haute température (Mainprice et al., 1986; Blumenfeld et al., 1986). Comme décrit ci-dessus, dans les granites à biotite porphyroïdes, la géométrie curviligne (Fig. e, Planche XXVIII), fréquente voire systématique entre le quartz et le feldspath potassique dans certains échantillons est une preuve supplémentaire d'une déformation de haute température (Gower and Simpson, 1992). Le développement de microcline est quasi systématique. Les micas sont plus souvent déformés (Fig. f, Planche XXVIII) par rapport à ceux du type III et les feldspaths potassiques présentent des traces de déformation plastique (extinction onduleuse). Ils sont quelquefois soulignés par de la sillimanite prismatique en association avec la biotite (Fig. g, Planche XXVIII). Les myrmékites les caractérisent très souvent (Fig. h, Planche XXVIII).

En résumé, les différentes microstructures observées qu'elles soient de type magmatique ou à la transition magmatique – solide ont enregistré une déformation de haute température (> 600° C).

PLANCHE XXVII- Microstructures des granites à biotites porphyroïdes observées parallèlement à la linéation magnétique. a : Quartz primaires dépourvus de sous joints. b : Feldspath potassique affecté par de nombreuses myrmékites. c : Zonage compositionnel observé dans le plagioclase. d : Migration intense aux joints de grains de quartz. e : Quartz en ' 'échiquier''. f : Phénomène de dissolution-précipitation à la frontière quartz-feldspath se développant entre 650°C et 750°C. g : Microcline, typique d'une déformation de haute température à l'état solide. h : Biotite à extinction onduleuse.

PLANCHE XXVIII- Microstructures des granites à deux micas observées parallèlement à la linéation magnétique. a :Microstructures magmatiques montrant des grains de quartz à extinction franche. b : Migration au joints de grain de quartz. c : Sillimanites prismatiques en inclusion dans les quartz. d : Quartz en échiquier où les sous joints basaux et prismatiques < c > sont bien mis en évidence. e : Géométrie curviligne entre quartz et feldspath se développant dans des conditions de haute température (650°C-750°C). f : Muscovite froissée qui s'effectue dans le continuum magmatique. g : Association sillimanite-biotite dans les plans de cisaillement entre les feldspaths potassiques. h : Présence fréquente de myrmékites.

VII. Discussion et conclusion de l'étude gravimétrique associée aux données de l'anisotropie de susceptibilité magnétique acquises sur le massif de Millevaches : Article accepté à Journal of Structural Geology (voir Annexe 7).

VIII. Datation Uranium-Plomb sur zircon et monazite

VIII-1. Introduction et choix des échantillons

Les méthodes géochimiques isotopiques de datations absolues permettent de déterminer l'âge d'un seuil de température (équilibre isotopique) franchi par les roches à un certain moment de leur histoire géologique.

La première étape de l'étude géochronologique avec la méthode ⁴⁰Ar/³⁹Ar permet de déterminer généralement l'âge de franchissement d'une température proche de la limite fragile ductile, entre 300 et 400°C selon le minéral utilisé. On détermine ainsi la limite supérieure pour la déformation (par fluage plastique) observée dans les roches.

Pour aborder la datation des âges de mise en place ou de solidification des magmas granitiques, on doit s'adresser à des systèmes isotopiques qui sont à l'équilibre à plus haute température (entre 600 et 750°C).

Les températures d'équilibre des isotopes de l'uranium et du plomb dans les zircons ou monazites sont les plus proches des températures de la solidification des magmas granitiques et par conséquent, les mieux adaptées pour déterminer l'âge le plus proche de la mise en place des granites ou l'âge du métamorphisme des roches profondes encaissantes.

Nous avons ciblé trois échantillons :

VIII-1-a. Le granite à deux micas mylonitique de la faille des Pradines : (MVG 2)

La zone mylonitique des Pradines de direction N-S parallèle à celle du massif de Millevaches, est un objet structural de grande envergure. L'étude microtectonique des mylonites des granites à deux micas des Pradines a montré que leur mise en place est syntectonique. Couplées aux résultats obtenus par la méthode ⁴⁰Ar/³⁹Ar sur les micas déformés, les données U/Pb vont permettre de confirmer ou d'infirmer ce résultat.

VIII-1-b. Le paléosome des granulites de St Pierre-Bellevue à Grt-Crd-Sil-Bt: (MVG 6)

Ces paragneiss mélanocrates, témoins de la croûte moyenne, s'équilibrent dans les conditions P/T du métamorphisme du faciès granulite qui sont estimées à 5 - 6 kbars et 700° et 850°C (§ II-4-b). La datation U/Pb sur monazite du paléosome doit permettre de contraindre l'âge de cet événement.

VIII-1-c. Le leucosome de ces mêmes granulites : (MVG 8) appelé aussi Leucogranite à Grt-Crd de Royère Certains auteurs (Augay, 1979; Rolin et al, en préparation) considèrent que ces leucogranites à Grt-Crd sont des magmas intrusifs dans les formations micaschisteuses à Grt-Crd-Sil-Bt. Nous avons vu contrairement (Chapitre IV, §II-3 et Chapitre III, §IV-1) que l'évolution progressive de la production de melt depuis le paléosome jusqu'au leucogranite à Grt-Crd bien observée sur le terrain ou en lame mince, montre que ces leucogranites à Grt-Crd sont la partie claire leucosome des granulites à Grt-Crd-Sil-Bt-Sp. Les âges des monazites des leucogranites et des micaschistes granulitiques doivent dans ce cas être identiques.

VIII-2. Technique analytique

La technique analytique est indiquée Chapitre II- §V-2.

VIII-3. Résultats des datations U/Pb (tableau, annexe 6)

VIII-3-a. Datation du granite mylonitique à deux micas de la faille des Pradines (MVG2)

Ces mylonites (Echantillon 356) sont décrites Chapitre III, § IV, illustrations correspondantes en Planche XIII et les résultats des datations ⁴⁰Ar/³⁹Ar en Chapitre III, § IV-2. Ce paragraphe ne reprendra que les points les plus importants.

L'échantillon MVG 2 est un granite à deux micas mylonitisé prélévé sur la D.142 près de la localité de Sarran. Les plans de foliation orientés NNW-SSE présentent un pendage sub-vertical, et portent une linéation sub-horizontale. La paragenèse est à feldspath potassique – plagioclase – quartz – biotite - muscovite. Les microstructures C-S à biotite et muscovite indiquent un sens de cisaillement dextre, elles sont considérées comme des structures sub-solidus ce qui implique que le décrochement dextre des Pradines soit syn mise en place du pluton.

La formation contemporaine des plans de foliation (S) et de cisaillement (C) soulignés par les biotites et les muscovites, les textures du quartz en mosaïque (sous joints à 90°) ainsi que l'origine magmatique (cf. diagramme ternaire (FeO+MnO, TiO₂ et MgO) Chapitre III, Planche XIII) des muscovites prélevées dans le plan de cisaillement sont autant d'argument pour une déformation de haute température (~ 650-700°C, Gapais et al., 1986 ; Tommassi et Vauchez, 1994). Tous ces faits sont en faveur d'une mylonitisation synchrone de la mise en place du granite des Pradines.

L'étude des zircons sous loupe binoculaire a permis d'observer une population hétérogène, la majorité des grains sont métamictes, de type S d'après la classification de Pupin (1976), et présentent de nombreuses inclusions. Trois fractions de 2, 3 et 5 zircons (Tableau 1, Annexe 6) ont été analysées. Ces zircons en aiguille, transparents, incolores et sans cœur hérité visible sont considérés comme les meilleurs candidats pour caractériser la cristallisation du magma leucogranitique. Deux fractions (n°4 et 5) ont été abrasées selon la technique de Krogh (1975). Les fractions n°4 et 5 ont des teneurs en Pb et en U de l'ordre de 400-450 ppm et 9 500-10 000 ppm, par contre les teneurs de la fraction n°3 sont environ 10 fois moins élevées (Tableau 1, Annexe 6). Ces trois

fractions reportées dans le diagramme concordia s'alignent suivant une discordia définie par l'intercept supérieur à 318 ± 6 Ma et l'intercept inférieur à -46 ± 66 Ma (MSWD = 0,52) (Fig. IV-27). La fraction n°3 présente un taux de discordance élevé environ 30% ceci est sûrement lié à l'absence d'abrasion. Deux monograins automorphes de monazites ont été analysés (Tableau 1, Annexe 6), les deux points analytiques sont concordants à 313 ± 1 Ma (Fig. IV-27). Cet âge est en accord avec l'âge des zircons obtenu par l'intercept supérieur à 318 ± 6 Ma. La régression linéaire sur les 3 fractions de zircons et les 2 monograins de monazite définit une discordia dont l'intercept supérieur est à 313 ± 4 Ma et l'intercept inférieur à 0 ± 25 Ma (MSWD = 8). De même, la moyenne pondérée sur les âges 207 Pb/ 206 Pb de ces 5 fractions est de 314 ± 4 Ma (MSWD = 6.4).

L'intercept supérieur à 313 ± 4 Ma est interprété comme l'âge de la mise en place du granite syncinématique des Pradines. En effet, les zircons analysés sont d'origine magmatique et la température de fermeture du système U/Pb des monazites est estimée entre 600-750°C (Copeland et al., 1988 ; Parrish, 1990), température identique à la température de mylonitisation.

FIG. IV-27- Diagramme concordia des granites à deux micas des Pradines.

VIII-3-b. Datation des granulites de Saint Pierre-Bellevue.

Pour ces paragneiss, le choix d'analyser en U/Pb les monazites plutôt que les zircons permet de s'affranchir des composantes héritées. Ces granulites sont décrites in extenso au Chapitre III, §IV-1, Planche XIV et Chapitre IV, § II-3 et le résultat des datations ⁴⁰Ar/³⁹Ar est donné en Chapitre III, §IV-3.

VIII-3-b-i. Datation du paléosome (MVG6)

L'affleurement le plus représentatif de la partie paléosome-restite (MVG 6) de la granulite se situe à proximité de St Pierre-Bellevue, au hameau du Grand Janon. C'est une granulite à Kfs-Pl-Qtz-Bt-Crd-Grt-Sil<u>+II+Sp</u>. Les plans de foliation subverticaux orientés NNW-SSE portent une linéation sub-horizontale. Les grenats centimétriques sont en équilibre dans l'assemblage Grt-Sil-Bt-Crd. Ils présentent en section XZ des queues de cristallisation asymétriques à Sil, Bt et Crd qui témoignent d'un mouvement en décrochement

dextre. Les conditions d'équilibre et déformation de ces granulites ont été estimées entre 700° et 850°C.

Cinq monograins de monazite ont été analysés (Tableau 1, Annexe 6). Les concentrations en Pb et en U sont respectivement de l'ordre de 1 500-6 500 ppm et 14 500-70 000 ppm. Reportés dans un diagramme concordia, les 5 points sont concordants à sub-concordants. Le point analytique n° 10 a subi une faible perte en Pb. La régression linéaire sur ces 5 points donne

un âge par intercept supérieur à 315 ± 4 Ma, l'intercept inférieur est à 0 ± 25 Ma (Fig. IV-28).

La température de fermeture du système U/Pb des monazites étant estimée entre 600-750°C (Copeland et al., 1988 ; Parrish, 1990), la température de la granulitisation étant estimée entre 700 et 850°C, l'âge à 315 ± 4 Ma est interprété comme celui du métamorphisme granulitique.

FIG. IV-28- Diagramme concordia du paléosome des granulites du Grand Janon.

VIII-3-b-ii. Datation du leucosome (MVG8)

Cinq monograins de monazites ont été analysés (Tableau 1, Annexe 6). Les concentrations en Pb et en U sont très variables d'un grain à l'autre, les teneurs en Pb varient entre 884 ppm et 20 088 ppm (Tableau 1, Annexe 6).

Reportés dans un diagramme concordia, les 5 points sont concordants à sub-concordants autour de 313 et 320 Ma (Fig. IV-29). Les moyennes pondérées sur les âges ${}^{206}\text{Pb}/{}^{238}\text{U}$ et ${}^{207}\text{Pb}/{}^{235}\text{U}$ sont respectivement 316 ± 2 Ma et 315.5 ± 2.2 Ma, ces deux moyennes sont identiques.

Compte tenu de la température de fermeture du système U/Pb des monazites l'âge à 316 ± 2 Ma est interprété comme l'âge de l'anatexie.

10. 1V-2)- Diagramme concordia du reacosome (Ecacogramie a Ort-Cru) des grandmes du

VIII-4. Discussion et Conclusion

Les arguments de l'analyse microtectonique, cinématique, texturale et géochimique des mylonites des Pradines avaient suggéré une mise en place des magmas syntectonique du décrochement dextre des Pradines. Les datations absolues confirment et précisent ce scénario.

La datation U/Pb de la mylonite des Pradines, du paléosome des granulites de Saint Pierre-Bellevue et du leucosome des granulites donne des âges très cohérents entre eux. Reportées dans un diagramme concordia les 12 monazites de ces trois échantillons sont toutes concordantes à sub-concordantes et se positionnent entre 311 et 320 Ma (Fig. IV-30). La moyenne pondérée des âges ${}^{207}\text{Pb}/{}^{206}\text{Pb}$ est de 315 ± 2 Ma. Les âges U/Pb sont proches des âges ⁴⁰Ar/³⁹Ar sur micas (Gébelin et al., 2004). La mylonitisation des Pradines, le métamorphisme granulitique, l'anatexie à partir des granulites et la mise en place des magmas leucogranitiques du Millevaches sont contemporains.

L'âge de la mise en place du granite à deux micas des Pradines a été daté par la méthode U/Pb sur zircon et monazite par intercept supérieur à 313 ± 4 Ma. L'âge U/Pb est en accord avec les données obtenues autour de 310-315 Ma en ⁴⁰Ar/³⁹Ar sur les micas de la mylonite (Gebelin et al., 2004). Ces résultats indiquent que la mylonitisation est donc synchrone de la mise en place des granites à deux micas des Pradines et que le taux de refroidissement est très rapide depuis leur mise en place jusqu'à l'isotherme 300°C minimum.

La datation U/Pb sur monazites des granulites de Saint Pierre -Bellevue, a permis de mettre en évidence un âge de **315 ± 4 Ma** pour le faciés paléosome (MVG 6), qui est interprété comme l'âge du métamorphisme granulitique. De même un âge de **316 ± 2 Ma** a été obtenu sur le faciès leucosome (leucogranite à Grt-Crd) (MVG 8) qui représente le terme ultime de l'anatexie de ces granulites.

La granulitisation et l'anatexie des granulites sont donc synchrones autour de 315 Ma, et elles sont contemporaines de la mise en place et de la mylonitisation du granite à deux micas associé à la faille des Pradines.

FIG. IV-30- Diagramme concordia récapitulatif

N°	Nom	Localisation	Description	Age U/Pb $(\pm 2\sigma)$
MVG2	Mylonite de la faille des Pradines	N 45°24'05'' E01°56'47''01 Alt : 688 m	Granite à deux micas mylonitisé Kfs, Pl, Qtz, Bt, Ms Foliation N 345°- 75°W	313 ± 4 Ma (Zircon + Monazite) 313 ± 1 Ma (Monazite)
MVG6	Granulite du Grand Janon	N45°55'37''09 E 001°53'14'' Alt : 727 m	Paléosome de la granulite à Kfs, Pl, Qtz, Bt, Sil, Grt, Crd	315 ± 4 Ma
MVG8	Granite à Grenat	N 5°57'26''04 E001°51'19''0 Alt : 578 m	Leucosome de la granulite Kfs, Pl, Qtz, Grt, Crd	316 ± 2 Ma

Tableau récapitulatif des résultats U/Pb

IX. Datation chimique Th-U-Pb sur monazite

La procédure analytique et les méthodes de calcul sont décrites Chapitre II, § V-3.

IX-1. Echantillon D61

Cet échantillon de granite à biotite porphyroïde provient de la partie NW du massif de Millevaches. Il a été prélevé à proximité de la D8 entre Bourganeuf et Royère-de-Vassivière (Fig. IV-1b) à l'ouest des granulites de St Pierre-Bellevue. Leur description est effectuée dans le Chapitre IV II-1. Les monazites sont nombreuses et sont en paragenèse avec l'ensemble des phases minérales. Leurs tailles varient entre 15 et 85 μ m. Elles ne sont pas zonées.

L'âge obtenu en effectuant la moyenne des âges individuels (n=149) est de $327,5 \pm 2,7$ Ma (Fig. IV-31a). L'âge isochrone est de 329,0 + 8,3 /- 6,2 Ma (MSWD=1) (Fig. IV-31b). La moyenne pondérée et l'âge isochrone donnent des résultats identiques. La bonne répartition des

points expérimentaux permet de calculer une droite de régression. L'âge donné par celle-ci peut être pris en considération du fait que la droite calculée est parallèle à la droite isochrone. Les âges donnés par les rapports Th/Pb et U/Pb sont ainsi similaires aux marges d'erreur près (Fig. IV-31c).

IX-2. Echantillon MVG4

Cet échantillon prélevé sur la D979 à l'ouest de Bugeat (Fig. IV-1b), représente également les granites à biotite porphyroïdes du Millevaches.

Les monazites sont abondantes et de très grande taille puisque certaines atteignent 400µm !

La moyenne pondérée prenant en compte 182 âges individuels est de $336,3 \pm 3,9$ Ma (Fig. IV-32a). La droite isochrone fournit un âge de $342,5 \pm 5,1$ / -4,8 Ma (MSWD=1,3) (Fig. IV-32b). Ces résultats indiquent des âges plus vieux que ceux donnés par l'échantillon précédent D61. La droite de régression calculée est quasi-parallèle à l'isochrone théorique de référence. Les âges donnés par les rapports Th/Pb et U/Pb sont identiques dans les barres d'erreurs (Fig. IV-32c). On peut donc admettre que la droite de régression est représentative d'une isochrone vraie.

Les relations structurales des granites à biotite porphyroïde et des granites à deux micas (Fig. IV-1b) indiquent que leur mise en place est contemporaine. La répartition du paramètre de forme en fonction du degré d'anisotropie des granites à biotite porphyroïdes et des granites à deux micas est en faveur d'une mise en place dans un contexte tectonique identique. Les âges vieux cidessus de 342.5 + 5.1 / -4.8 Ma, comparés à ceux obtenus par la méthode conventionnelle U/Pb sur les granites à deux micas autour de 315 Ma, sont par conséquent en désaccord avec les observations de terrain.

Les granites à biotite porphyroïdes enregistrent le jeu décrochant dextre de la faille des Pradines au stade magmatique (Mezure, 1980; Stussi et Cuney, 1990). D'une orientation N-S à NNW-SSE au sein de la faille des Pradines, ils se réorientent NW-SE de part et d'autre de celle-ci.

Or, les données géochronologiques ont montré que la mise en place des granites à deux micas des Pradines est aussi syntectonique du décrochement à 315 Ma.

Par conséquent, les âges plus vieux à 342,5 + 5,1 / - 4,8 Ma obtenus sur monazite par la méthode chimique U-Th-Pb indiquent que :

-la faille des Pradines joue depuis 342,5 + 5,1 / -4,8 Ma. -il existe plusieurs générations de granites à biotite porphyroïde, une contemporaine de la mise en place des granites à deux micas, une autre plus ancienne.

-La méthode chimique U-Th-Pb sur monazite n'est pas la méthode la mieux adaptée pour dater ces échantillons.

L'âge obtenu à 329,0 + 8,3 /- 6,2 Ma sur les monazites des granites à biotite porphyroïdes de l'échantillon D61 constitue un âge de mise en place minimum.

IX-3. Echantillon 487

Cet échantillon provient de la Forêt-Belleville (voir Fig. i, Planche XXVI) dans la partie NW du massif de Millevaches. Il représente le leucosome des granulites orientées N-S à NW-SE qui forment la prolongation nord du décrochement dextre des Pradines. L'ensemble de ces formations enregistre le mouvement décrochant dextre. La paragenèse est à Kfs-Pl-Qtz-Grt-Crd+Bt \pm Sil \pm To \pm Sp. Les monazites sont nombreuses souvent en contact avec les grenats. Leurs tailles varient entre 30 et 90 μ m. On les retrouve en équilibre avec les plagioclases, les grenats et les cordiérites mais également en inclusion dans ces mêmes phases. Elles se sont formées au cours du métamorphisme dans le faciès granulite.

La moyenne pondérée des âges individuels de 136 mesures indique un âge de $324,8 \pm 3,6$ Ma (Fig. IV-33a). La droite isochrone fournit un âge de $327,4 \pm 5,1/-4,8$ Ma (Fig. IV-33b). La droite de régression calculée est légèrement oblique par rapport à l'isochrone théorique de référence. Néanmoins, cette obliquité reste limitée et la droite de régression est comprise entre les hyperboles de confiance. Les âges donnés par les rapports Th/Pb et U/Pb sont identiques dans les barres d'erreurs (Fig. IV-33c).

Cet âge est légèrement plus vieux que celui à 316 ± 2 Ma ou 314 ± 4 Ma obtenu par la méthode conventionnelle U/Pb sur monazite et interprété comme l'âge du métamorphisme granulitique (Fig. IV-29). En revanche, compte tenu des marges d'erreurs, il est identique à celui acquis par Rolin et al. (en préparation) à $323,2 \pm 3,9$ Ma par la méthode chimique. Cet écart ne provient pas d'un mélange de population de monazites car la moyenne des âges effectuée pour chaque grain est similaire.

0

Pente

-3.1

∆pente

0.3

Xbar

13.8

Fig. IV-31c : Tableau récapitulatif des données du diagramme isochrone pour l'échantillon D61

Ybar

23.5

Age

329,0

∆Age+

8,3

∆Age-

-6,2

MSWD

1

Intercent	ages from LI/	Ph=f(Th/Ph) d	liagram				
Th-Pb ag	e, intercept wi	ith Th/Pb-axis	S				
U/Pb	Th/Pb	∆i+	Age	∆Age +	∆Age -		
0	64,8	1.8	345,0	9,8	-9,2		
U-Pb age	, intercept wit	h U/Pb-axis					
U/Pb	Th/Pb	Δ +	Δ-	Age	∆Age +	∆Age -	
20,71	0	1.83	1.5	334,9	25,2	-26,4	
U-Th-Pb a	age at weighte	ed average po	oint from U/Pb	=f(Th/Pb) diag	gram		
Pente	∆pente	Xbar	Ybar	Age	∆Age+	∆Age-	MSWD
-3.13	0.32	4.808	49.764	342,5	5,1	-4,8	1,3

Fig. IV-32c : Tableau récapitulatif des données du diagramme isochrone pour l'échantillon MVG4

Th-Pb age	, intercept wi	ith Th/Pb-axis					
U/Pb	Th/Pb	∆i+	Age	∆Age +	∆Age -		
0	65,8	3.6	339,8	19,5	-17,5		
U-Pb age,	intercept wit	h U/Pb-axis					
U/Pb	Th/Pb	Δ +	Δ -	Age	∆Age +	∆Age -	
22	0	1.39	1.13	315,9	16,5	-18,2	
U-Th-Pb a	ge at weighte	ed average poi	nt from U/Pb=	=f(Th/Pb) diag	gram		
Pente	Δ pente	Xbar	Ybar	Age	∆Age+	∆Age-	MSWD
-2.99	0.32	10.7988	33.5211	327,4	5,1	-4,8	1,5

Fig. IV-33c : Tableau récapitulatif des données du diagramme isochrone pour l'échantillon 487.

X. Synthèse des résultats de l'ensemble des données acquises sur le massif granitique de Millevaches

X-1. Principaux résultats de l'étude gravimétrique

- Le Millevaches apparaît comme un laccolite dont le plancher se situe entre 1,5 et 4 km de profondeur du nord vers le sud et de l'ouest vers l'est.
- Il présente deux zones d'épaississement bien marquées (> 5km), au centre-est, à l'aplomb du granite de Meymac et à son extrémité sud. Ces deux secteurs sont excentrés par rapport à l'axe NS d'allongement du massif granitique. L'anomalie négative de forte intensité de la zone Est reflète un granite enfoui tardif « le granite de Neufs Jours », mis en évidence par les travaux miniers de Burnol et al. (1980). Dans la partie Sud, l'anomalie gravimétrique négative serait préférentiellement associée au granite porphyroïde de Glénat plutôt qu'aux leucogranites superficiels observés à proximité de la faille d'Argentat (Roig, communication personnelle).

Par conséquent, compte tenu des considérations ci-dessus et de la structure complexe en petits plutons du Millevaches (Stussi et Cuney, 1990), les secteurs Est et Sud ne peuvent correspondre aux zones d'alimentation de l'ensemble du massif de Millevaches.

- Le résultat des profils de modélisation gravimétrique est en bon accord avec l'interprétation des profils sismiques de Bitri et al. (1999).
- Les coupes de modélisation gravimétriques à travers le Millevaches ainsi que celles d'extension plus régionale le traversant, confirment sa forme laccolitique et son épaisseur décroissante du nord vers le sud, décelées par l'observation de la carte d'anomalie de Bouguer résiduelle et par la modélisation de l'interface granite / encaissant par la méthode d'inversion.
- Du nord au sud du massif de Millevaches, les différents profils gravimétriques signalent la présence systématique de granite au mur de la faille d'Argentat, ce qui confirme bien son rôle prépondérant dans la structuration des granites de la bordure ouest du Millevaches.
- Le granite d'Auriat situé au NW du Millevaches est modélisé comme un laccolite de 3,5 km d'épaisseur, bien plus épais que Millevaches (1km dans ce secteur). Le jeu normal ductile et fragile de la faille d'Argentat et le basculement de bloc associé explique cette différence d'épaisseur.
- Le granite de Guéret est un laccolite dont l'épaisseur n'excède pas quelques centaines de mètres au nord du massif de Millevaches. Il s'épaissit à l'approche de la faille du Sillon Houiller où il atteint environ un kilomètre.
- Le granite de Guéret est associé à une forte anomalie positive de forme ellipsoïdale. Celle-ci reflète un corps très dense de 3,1 g/cm³ et d'un kilomètre d'épaisseur, situé sous le massif de Guéret entre 4 et 5 km de profondeur. Par comparaison avec les anomalies gravimétriques des synformes de St Germainles-Belles et d'Uzerche, ce corps orienté WNW-ESE, pourrait représenter des roches de haute pression.
- Sous le plateau d'Aigurande, au nord du décrochement de la Marche Orientale, les micaschistes dissimulent des masses granitiques enfouies, de forme tabulaire et d'épaisseur plurikilométrique (4 km) qui sont enracinées dans la faille de la Marche.

X-2. Résultats acquis par l'étude de l'anisotropie de susceptibilité magnétique

- Les linéations et foliations magnétiques confirment l'importance de la zone décrochante dextre des Pradines.
- Dans la partie sud, à l'est des Pradines, les foliations magnétiques sont orientées NW-SE avec un pendage variant entre 0 et 40°. Dans le prolongement du décrochement des Pradines au centre et au nord de notre étude, les foliations magnétiques présentent une direction NNW-SSE avec un pendage de 60° en moyenne vers le NE. De part et d'autre du décrochement des Pradines, les foliations magnétiques orientées NW-SE sont sub-horizontales.
- Dans la partie sud, à l'est des Pradines, les linéations magnétiques sont orientées NW-SE avec un plongement n'excédant qu'exceptionnellement les 30°. Au centre et au nord, dans la continuité nord des Pradines, les linéations magnétiques sont horizontales avec une direction NNW-SSE. De part et d'autre des Pradines, les linéations magnétiques sont orientées NW-SE et sont sub-horizontales.
- L'ellipsoïde de déformation en cigare, bien défini le long du décrochement des Pradines et dans sa continuité nord renforce la fiabilité des linéations magnétiques sub-horizontales, orientées NNW-SSE. Ce type d'ellipsoïde est également mis en évidence à proximité de la faille d'Argentat dans les secteurs d'Eymoutiers et de Bourganeuf où les linéations sub-horizontales ou plongeant vers le NW présentent une direction NW-SE.
- L'ellipsoïde de déformation en galette est bien marqué le long du décrochement de St Michel de Veisse et dans le coin NE du massif de Millevaches (données Jover, 1986).

- La répartition du paramètre de forme en fonction du degré d'anisotropie des granites à biotite porphyroïdes et des granites à deux micas montre que ces deux types de granite se sont mis en place dans un contexte tectonique identique.
- Les granites du décrochement des Pradines et de sa prolongation nord sont caractérisés par un degré d'anisotropie relativement faible (P<10%). Cette observation indique que l'anisotropie de susceptibilité magnétique a été acquise à l'état magmatique, pendant la mise en place des granites.
- Les microstructures observées parallèlement à la linéation magnétique révèlent que l'acquisition de la fabrique s'est faite dans des conditions de « pre-full cristallisation » ou dans le continuum magmatique, juste après la cristallisation totale du magma.

X-3. Résultats des datations U/Pb par la méthode conventionnelle

- L'âge U/Pb de mise en place des granites à deux micas mylonitiques syntectoniques du décrochement des Pradines est estimé à 313 ± 4 Ma sur zircons et monazites.
- Le métamorphisme granulitique qui a donné lieu au paléosome à Kfs-Pl-Qtz-Bt-Sil-Crd-Grt des granulites du Grand Janon (Nord du Millevaches) est daté par les monazites à 315 <u>+</u> 4 Ma.
- La partie leucosome des granulites du Grand Janon, appelée également « leucogranite à Grt-Crd de Royère » donne un âge similaire sur monazite à 316 <u>+</u> 2 Ma.
- L'ensemble de ces résultats est en accord avec les âges ⁴⁰Ar /³⁹Ar obtenues sur les micas entre 305 et 315 Ma. La mise en place des granites à deux micas du Millevaches, le métamorphisme granulitique, l'anatexie à partir des granulites et l'activité du décrochement des Pradines sont quatre processus simultanés.

X-4. Résultats des datations Th-U-Pb sur monazite par la méthode chimique

• Les monazites des granites à biotite porphyroïde du massif de Millevaches donnent une gamme d'âge variable entre les échantillons prélevés au nord du massif, entre Bourganeuf et Royère –de- Vassivières, et ceux échantillonnés au centre vers Bugeat. Les premiers donnent une moyenne pondérée à 327,5 ± 2,7 Ma et une isochrone à 329 + 8,3 -6,2 Ma, tandis que la moyenne pondérée des seconds est de 336 ± 4 Ma et l'âge isochrone correspondant est de 342 ± 5 Ma. Le coefficient de corrélation pondérée de l'âge isochrone accorde plus de fiabilité sur l'âge à 329 + 8,3 -6,2 Ma des granites à biotite porphyroïde du nord du massif (MSWD= 1) que sur l'âge de ceux prélevés à Bugeat (MSWD=1,3).

La répartition du paramètre de forme en fonction du degré d'anisotropie des granites à biotite porphyroïdes et des granites à deux micas ainsi que leurs relations structurales (Stussi et Cuney, 1990), sont en faveur d'un âge de mise en place (pour les granites à biotite porphyroïde) peu éloigné de celui des granites à deux micas autour de 313 ± 4 Ma. Il existe un paradoxe entre les âges et les relations structurales des deux types de granite.

• Les monazites du leucosome des granulites prélevé dans le nord du massif dans la Forêt-Belleville indiquent un âge isochrone à 327 ± 5 Ma et une moyenne pondérée à 325 ± 4 Ma. Ces âges sont légèrement plus vieux que ceux obtenus par la méthode conventionnelle à 316 ± 2 Ma.

X-5. Résultats de l'étude thermobarométrique effectuée sur les granulites du Grand Janon

• Les conditions thermobarométriques estimées par le logiciel THERMOCALC indiquent des conditions de Pression – Température de 5 à 6 kbar et de 800°-850°C en moyenne pour le paléosome des granulites. Ces résultats sont en accord avec les estimations géochimiques obtenues par Shaw en 1991 qui considère une profondeur de mise en place des granulites entre 18 et 25 km. Pour cet auteur, celle-ci correspond également à celle des granites à deux micas.

X-6. Modèle de mise en place du massif granitique de Millevaches

A partir de l'ensemble des données structurales de terrain, d'anisotropie de susceptibilité magnétique et gravimétriques, une série de coupes géologiques E-W (Fig. IV-34) est proposée, du nord vers le sud du massif granitique de Millevaches qui apparaît comme une lame granitique horizontale nourrie par de minces conduits verticaux. Les foliations magnétiques enregistrées dans les granites, verticales dans la zone de faille des Pradines et horizontales de part et d'autre, sont confirmées par les observations de terrain (Fig. a, b, c et d, Planche XXIX). Cette structuration est également mise en évidence dans les micaschistes qui ont enregistrés le jeu dextre des Pradines. En section XZ les bandes de cisaillement dextre indiquent le sens du décrochement (Fig. h et h', Planche XIII, Chapitre III). De part et d'autre, du grand accident, les micaschistes subissant par endroit la fusion partielle qui génère les leucogranites, présentent une foliation sub horizontale (Fig. e et f, Planche XXIX).

Les modélisations gravimétriques imposent systématiquement sur tous les profils la présence d'une lame de leucogranite au mur de la faille d'Argentat. Celle-ci pourrait jouer un rôle dans l'alimentation des leucogranites situés au cœur de l'antiforme de Tulle (partie ouest de la coupe A).

La coupe A (Fig. IV-34), située dans la partie centre sud du massif, à l'est du décrochement des Pradines, laisse apparaître sous les micaschistes, des laccolites de leucogranites (ou granites à biotite porphyroïde).

La coupe B (Fig. IV-34), est la plus représentative des leucogranites du Millevaches. Verticaux dans le décrochement des Pradines et sub horizontaux de part et d'autre, ils sont à nouveau structurés verticalement au niveau de la bordure Est du Millevaches par la faille d'Ambrugeat. Celle-ci formant la continuité sud de la faille de Felletin-La Courtine a probablement joué précocement en décrochement dextre. La faille d'Ambrugeat laisse apparaître actuellement son jeu fragile tardif mais par endroit, des bandes de cisaillement attestant d'un mouvement décrochant sont décelées sur quelques échantillons volants de leucogranite. Les décrochements dextres de Felletin-La Courtine et d'Ambrugeat pourraient constituer des zones d'alimentation pour les magmas à l'origine des granites à deux micas du Millevaches. A l'est de la faille d'Ambrugeat, faute de plus amples informations, nous avons dessiné les granites de Meymac et de Neufs Jours superposés dans un seul bloc.

La coupe D (Fig. IV-34), localisée à l'extrémité nord du Millevaches montre une faible épaisseur de granite. Deux affleurements de granulites sont représentés. Ces derniers pourraient correspondre à la continuité nord de la faille des Pradines. L'un d'entre-eux, situé au hameau du Grand Janon sur la commune de St Pierre-Bellevue qui met en évidence dans les granulites des mouvements décrochants dextres (Chapitre III, §VI), nous conduit à envisager la prolongation des Pradines préférentiellement dans cette zone. A l'extrémité Est du massif, les leucogranites sont affectés par le décrochement dextre de Felletin-La Courtine (Chapitre III, §III-3). Les plans de foliations des granites de Guéret qui se verticalisent à l'aplomb du granite de Crocq ont été dessinés à partir des données A.S.M. de Jover (1986). En accord avec les données gravimétriques, le granite d'Auriat situé à l'ouest du Millevaches apparaît comme un laccolite de 3,5 km d'épaisseur.

L'importante longueur de l'accident des Pradines suivant la direction NNW-SSE parallèle au massif de Millevaches, son épaisseur plurikilométrique (5km), les structures C-S formées par les micas d'origine magmatique dans les leucogranites mylonitiques, les textures sub-solidus (quartz en mosaïque), font du décrochement dextre des Pradines (voir description détaillée, Chapitre III, §IV) une structure de grande ampleur fondamentale dans la mise en place des granites du Millevaches. Toutes les observations microstructurales s'accordent avec une mise en place des leucogranites du Millevaches syntectonique du décrochement des Pradines. Cette conclusion tectonique est confirmée par les données géochronologiques U/Pb et ⁴⁰Ar/³⁹Ar. Les granulites du Grand Janon affectées par le jeu dextre décrochant donnent un âge identique à celui des leucogranites.

A partir de l'ensemble de ces données nous proposons le modèle de mise en place suivant pour les leucogranites de Millevaches :

STADE I (Fig a. IV-35)

- Le décrochement des Pradines affecte une croûte préalablement structurée horizontalement.
- Cet accident concentre le magma en profondeur et joue un rôle de conduit d'alimentation.
- Les caractéristiques géochimiques des leucogranites montrent qu'ils sont issus de la fusion de métasédiments de la croûte inférieure (Downes et al., 1990; Shaw, 1991; Williamson et al., 1996). L'anatexie de la croûte inférieure pourrait être liée à un processus de délamination lithosphérique suggéré par Downes et al., (1990) et Leyreloup (1992) provoquant le sous plaquage d'un coin d'asthénosphère à la base de la croûte. Les magmas asthénosphériques réchauffant la base de la croûte conduisent à son anatexie. Les magmas se concentrent dans des chambres magmatiques localisées dans des espaces transtensifs en base de croûte.
- L'ascension des magmas se fait au sein de la zone de faille sous forme d'injections successives qui se relaient le long du décrochement des Pradines. Les magmas et le décrochement créent un système de plume dont le grand axe reste parallèle à la faille des Pradines.

STADE II (Fig b. IV-35)

- Le magma remonte dans la croûte moyenne. L'absence de signature gravimétrique du conduit d'alimentation nous laisse penser que : i) le magma remonte très rapidement (de 0,1 à 1000 ans, Petford et al., 1993) et n'a donc pas le temps de cristalliser dans le conduit d'alimentation; ii) ce dernier est étroit (entre 2 et 20 mètres, Petford et al., 1993) et se referme immédiatement après le passage du magma.
- Chaque injection, constituée de magma à faible teneur en cristaux (< 30% ; Vigneresse *et al.*, 1996), est piégée ensuite par une anisotropie mécanique (discontinuité rhéologique) par l'action combinée du contraste de densité magma / encaissant et de la contrainte tectonique régionale (Hutton, 1992 ; Petford *et al.*, 1993 ; D'Lemos *et al.*, 1993; Clemens *et al.*, 1997).
- Le magma migre de part et d'autre de l'accident des Pradines, parallèlement aux feuillets subhorizontaux des métapélites.
- Le magma qui se met en place pendant le fonctionnement du décrochement des Pradines enregistre la contrainte maximum horizontale NNW-SSE à l'intérieur de la faille et NW-SE de part et d'autre.

Aucune trace de linéations verticales, reflet de l'ascension des magmas, n'est observée sur le terrain du fait que, dès leur arrivée dans la croûte moyenne, les magmas sont structurés par le jeu décrochant. Les linéations verticales sont immédiatement oblitérées par le fonctionnement en décrochement dextre.

- La complexité du Millevaches en plusieurs petits plutons, décelés par les divers travaux miniers (Stussi et Cuney, 1990), pourrait être expliquée par la remontée rapide du magma par « pulses » se relayant dans le temps le long de la faille. A chaque remontée correspond un petit laccolite.
- Le système de plumes magmatiques NNW-SSE pourrait correspondre à de grandes fractures ouvertes qui seraient en accord localement avec un σ 3 orienté WSW-ENE.

Chapitre IV-Le massif granitique de Millevaches

PLANCHE XXIX- Photographies mettant en évidence la structuration des leucogranites du Millevaches à l'intérieur de l'accident des Pradines et de part et d'autre. a :Foliation granitique à fort pendage dans la zone mylonitique des Pradines. b : Foliation plate à Treignac (bordure ouest du Millevaches). c :Fusion partielle des micaschistes foliés verticalement dans la zone de faille des Pradines (Lestard) donnant naissance aux leucogranites. d. Foliation granitique horizontale à Treignac. e : Fusion partielle des micaschistes structurés horizontalement à l'ouest des Pradines donnant lieu aux leucogranites. f. Micaschistes sub horizontaux subissant progressivement le phénomène de fusion partielle.

FIG. IV-35- Modèle de mise en place proposé pour le massif granitique de Millevaches

CHAPITRE V : DISCUSSION GENERALE ET CONCLUSION

L'étude du Limousin a permis de mieux comprendre les mécanismes de mise en place des granites et leurs relations avec la tectonique décrochante.

La mise en place des granites de cette région est étroitement liée au fonctionnement des grandes zones de cisaillement ductiles.

I. Le Massif granitique de Millevaches

I-1. Observations structurales, cinématique et conditions de la déformation

La mise en place du massif granitique de Millevaches est contrôlée par trois grands décrochements. Il est limité à l'ouest par la faille normale ductile puis fragile d'Argentat qui le sépare des séries métamorphiques du Limousin (Floch', 1983). Au nord, il est séparé du massif granitique de Guéret par le décrochement dextre de St Michel de Veisse qui se connecte à l'ESE au décrochement dextre N-S de Felletin-La Courtine. Ce dernier se divise en deux branches : l'une, représentée par la faille N-S d'Ambrugeat, forme la limite Est du Millevaches et le dissocie des gneiss à biotite-sillimanite et des migmatites à cordiérite à l'Est; l'autre s'infléchit au SE vers la Courtine et se poursuit dans les gorges du Chavanon. Il est affecté au centre par le décrochement dextre NNW-SSE des Pradines parallèle à la direction NS du Millevaches.

Les mylonites des granites à deux micas du décrochement de St Michel de Veisse et de Felletin-La Courtine présentent des bandes de cisaillement dextres très pénétratives. La mesure des O.P.R. du quartz sur les granites à deux micas mylonitiques de la bordure Est du Millevaches montre que la déformation en décrochement dextre s'est effectuée dans des conditions de température relativement élevées entre 400° et 700°C au cours du refroidissement du granite. Dans le coin nord - est du Millevaches, à la jonction des failles de St Michel de Veisse et de Felletin-La Courtine, les mylonites de granites à deux micas montrent des sens de cisaillements opposés. Plus au Sud, à l'WSW de Felletin, les décrochements dextres sont repris par un mécanisme en faille inverse ductile vers le SW. Les microstructures associées sont en faveur d'une déformation acquise à l'état solide (volume de cristaux < à 75%) dans le continuum magmatique.

Les failles de St Michel de Veisse et la Courtine affectent également les même granodiorites à monzogranites de Guéret. La mesure des O.P.R. du quartz des mylonites et ultramylonites de ces granites montre une distribution des axes < c > sur Ycaractéristique du glissement prismatique < a > qui ne peut être activé que sous des conditions de température élevées entre 400°c et 700°c, au cours du refroidissement des granites.

Le <u>décrochement des Pradines</u>, orienté NNW-SSE affecte les granites à deux micas et les granites à biotite porphyroïdes du Millevaches sur cinq à six kilomètres de large (Fig.V-1). La déformation des granites à deux

FIG. V-1 – Carte pétrostructurale du massif de Millevaches.

micas se caractérise par des bandes de cisaillement dextres très pénétratives. L'abondance des bandes de cisaillement C ainsi que l'angle C-S (entre 25° et 30°) sont constants dans la masse leucogranitique et définissent un faciès très homogène à l'échelle de l'affleurement. Les microstructures C-S indiquent un sens de cisaillement dextre. Elles sont formées par de grandes plages de biotite et de muscovite qui délimitent des rubans de quartz polycristallins. Ces derniers présentent en lame mince des joints de grains à 90° décrits par Gapais et Barbarin (1986) et Tommasi et Vauchez (1994) comme étant des structures sub-solidus. L'aspect très pénétratif des microstructures C-S suggère que les plans C et S se soient formés en même temps. Les muscovites analysées à la microsonde électronique se placent dans le diagramme ternaire FeO+MnO, TiO2 et MgO de Miller (1987) dans le champ des muscovites magmatiques. L'ensemble de ces observations conduit à penser que la mise en place des granites à deux micas est syntectonique du décrochement ductile dextre des Pradines.

Les granites à biotite porphyroïdes ont enregistré le jeu décrochant dextre de la faille des Pradines lors de leur mise en place. D'une orientation N-S à NNW-SSE au sein de la faille des Pradines, ils se réorientent NW-SE de part et d'autre de celle-ci (Fig.V-1). Ces observations sont confirmées par Stussi et Cuney (1990) qui pensent que la réorientation des mégacristaux de K feldspaths dans les granites de Boucharon et de la Mine (prés de Péret-Bel-Air, Fig.V-1) s'est faite au stade magmatique. En se basant sur l'orientation préférentielle des feldspaths potassiques dans le secteur d'Egletons, Mezure (1980) arrive aux mêmes conclusions.

De part et d'autre du décrochement des Pradines, les granites à deux micas et les granites à biotite porphyroïdes présentent des plans de foliation sub horizontaux. A proximité de la faille d'Argentat, ces derniers se réorientent vers l'WNW. Les sens de cisaillement parallèles à la linéation orientée NW sont en faveur d'un mouvement en faille normale vers le NW.

Au Nord du massif de Millevaches, affleurent des granulites de haute température - moyenne pression disposées suivant une direction NNW-SSE (Fig.V-1). Elles sont constituées de deux parties : un paléosome dont la paragenèse est à Kfs-Pl-Qtz-Bt-Crd-Grt-Sil et un leucosome à Kfs-Pl-Qtz-Grt-Crd. Ces granulites présentent une foliation sub verticale orientée NNW-SSE qui porte une linéation subhorizontale. Les critères de cisaillement associés indiquent un mécanisme en décrochement dextre. Ces formations pourraient former la prolongation nord du décrochement dextre des Pradines. Les conditions thermobarométriques estimées par le logiciel THERMOCALC indiquent des conditions de Pression – Température de 5à 6 kbar et de 800°-850°C en moyenne pour le paléosome. Ces deux types de roches diffèrent essentiellement par un degré d'anatexie plus ou moins important. Il en va de même pour l'origine des granites à deux micas dont la différence minéralogique et géochimique avec les granulites proviendrait d'après Shaw (1991) du degré de fusion partielle plus ou moins élevé subi par le matériel source. La profondeur de mise en place du leucosome à Grt-Crd et, par extension (Shaw, 1991), celle des granites à deux micas est estimée entre 18 et 21 km.

I-2. Les résultats de l'Anisotropie de Susceptibilité Magnétique (A.S.M.).

L' A.S.M mesurée sur les granites à deux micas et sur les granites à biotite porphyroïdes permet d'affiner la géométrie et la cinématique des failles ductiles, et confirme leur fonctionnement pendant la mise en place des granites de Millevaches.

A proximité de la faille normale d'Argentat, les plans de foliation magnétique sont pentés de 30 à 40° vers le NW. La linéation magnétique orientée NW-SE et sub-horizontale ou plonge de 30°au NW.

Dans la partie extrême nord du massif (Jover, 1986), les foliations magnétiques à fort pendage se localisent parallèlement à la faille de St Michel de Veisse. A l'est de la faille, les plans de foliation tournent et suivent la bordure du massif granitique. D'une orientation E-W à NW-SE dans le décrochement dextre de St Michel de Veisse, elles deviennent progressivement N-S parallèlement au décrochement dextre de Felletin-La Courtine (Fig.V-1).

Dans la zone du décrochement des Pradines et son prolongement nord, la linéation magnétique est horizontale et orientée NNW-SSE. Elle devient NW-SE quand on s'éloigne de la faille.

Les foliations magnétiques présentent une direction NNW-SSE parallèle à la direction du décrochement avec un pendage moyen de 60° vers le NE (Fig.V-1). En s'éloignant du cisaillement des Pradines, les foliations magnétiques deviennent sub-horizontales et et sont orientées NW-SE.

La répartition du paramètre de forme en fonction du degré d'anisotropie des granites à biotite porphyroïdes et des granites à deux micas montre que ces deux types de granite se sont mis en place dans un contexte tectonique identique. En accord avec les résultats A.S.M, les relations structurales entre les granites à biotite porphyroïdes et les granites à deux micas observées par Stussi et Cuney (1990) lors de leurs travaux dans la mine de Boucheron, à proximité de Péret Bel Air (Fig.V-1), les conduisent également à proposer une mise en place subcontemporaine pour ces deux types de granites.

I-3. Les résultats gravimétriques

La carte d'anomalie de Bouguer résiduelle et la modélisation de l'interface granite / encaissant par la méthode d'inversion montre que le Millevaches s'apparente à un laccolite dont le plancher se situe entre <u>1,5 et 4 km de profondeur</u> du nord vers le sud et de l'ouest vers l'est.

Il présente deux zones d'épaississement bien marquées (> 5km), au centre-est, à l'aplomb du granite de Meymac et à son extrémité sud. Ces deux secteurs sont excentrés par rapport à l'extension géographique N-S du massif granitique. L'anomalie négative de forte intensité de la zone Est reflète un granite enfoui tardif « le granite de Neufs Jours », mis en évidence par les travaux miniers de Burnol et al. (1980). Sur des critères minéralogiques et géochimiques, Stussi et Cuney (1990) montrent que les granites de Meymac ne constituent pas

l'extension orientale des granites de Boucheron et de la Mine situés à l'est du Millevaches. Ces derniers correspondent à deux autres intrusions.

Dans la partie Sud, l'anomalie gravimétrique négative serait préférentiellement associée au granite porphyroïde de Glénat plutôt qu'aux leucogranites superficiels observés à proximité de la faille d'Argentat (Roig, communication personnelle).

Compte tenu des considérations ci-dessus et de la structure complexe du Millevaches, les secteurs Est et Sud ne peuvent correspondre aux zones d'alimentation de l'ensemble du massif de Millevaches.

Les coupes de modélisation gravimétriques à travers le Millevaches ainsi que celles d'extension plus régionale le traversant, confirment sa forme laccolitique et son épaisseur décroissante du nord vers le sud.

Le long de la bordure ouest du massif de Millevaches, l'ensemble des modélisations gravimétriques impose la présence systématique de granite le long du mur de la faille d'Argentat.

I-4. Les résultats géochronologiques

Les datations géochronologiques U/Pb et ⁴⁰Ar/³⁹Ar confortent les données de géologie structurale en faveur d'une mise en place des granites à deux micas syntectonique du décrochement dextre des Pradines.

Les micas formant les structures C-S des leucogranites mylonitiques, fournissent des âges ⁴⁰Ar/³⁹Ar autour de 315 Ma. Les données argon à 300-320 Ma acquises sur les biotites et les muscovites datent le passage des isothermes 300°C et 400°C qui postdatent la mylonitisation principale de plus haute température.

L'âge de la mise en place du granite à deux micas des Pradines a été daté par la méthode U/Pb sur zircon et monazite par intercept supérieur à 313 ± 4 Ma.

Les données tectoniques et microtectoniques, associées aux données U/Pb et ⁴⁰Ar/³⁹Ar sont en faveur d'une mylonitisation des granites à deux micas des Pradines synchrone de leur mise en place et d'un refroidissement rapide des granites à deux micas depuis leur mise en place.

La datation U/Pb sur monazites du paléosome des granulites de la continuité nord des Pradines, a permis de mettre en évidence un âge de 315 ± 4 Ma. Cet âge est interprété comme l'âge du métamorphisme granulitique. De même un âge de 316 ± 2 Ma a été obtenu sur le leucosome à grenat-cordiérite qui représente le terme ultime de l'anatexie de ces granulites.

Le métamorphisme granulitique est contemporain de la mise en place et de la mylonitisation du granite à deux micas associé à la faille des Pradines.

Les datations 40 Ar/ 39 Ar effectuées sur les mylonites de granites des décrochements de St Michel de Veisse et de Felletin-La Courtine peuvent être interprétées comme des âges de refroidissement à la fin de leur fonctionnement vers 310 – 300 Ma.

I-5. Modèle de mise en place des granites du Millevaches (Fig.V-2)

A partir des résultats ci-dessus, nous proposons que le décrochement dextre des Pradines a permis la remontée des magmas dans la croûte moyenne et a joué un rôle significatif dans la mise en place des granites du Millevaches.

- Le décrochement des Pradines affecte une croûte préalablement structurée horizontalement.

- Cet accident concentre le magma en profondeur et joue un rôle de conduit d'alimentation.

- Les magmas sont issus d'une fusion relativement rapide (de 100 à 100.000 ans) (Holtz & Johannes, 1991 ; Patiño Douce & Johnston, 1991) qui pourrait être liée à un apport de chaleur convectif par sous-plaquage (Downes et al., 1990 ; Leyreloup, 1992) ou intrusion dans la croûte inférieure de magmas basaltiques issus du manteau (Davidson *et al.*, 1992 ; Petford & Gallagher, 2001). Le magma est concentré dans la croûte inférieure au sein de chambres magmatiques.

- Le grand décrochement des Pradines contrôle le magma en profondeur, issu de la fusion de la croûte inférieure, en créant un « système de plume » orienté NNW-SSE.

- L'ascension s'est effectuée probablement très rapidement (de 0,1 à 1000 ans ; Petford *et al.*, 1993) au sein de la zone de faille, sous forme d'injections successives qui se sont relayées le long du grand axe NNW-SSE des Pradines par l'action combinée du contraste de densité magma / encaissant et de la contrainte tectonique régionale (Hutton, 1992 ; Petford *et al.*, 1993 ; Clemens *et al.*, 1997).

- L'absence de signature gravimétrique de ces conduits verticaux nous amène à penser qu'ils sont étroits (entre 2 et 20 m; Petford *et al.*, 1993) et se referment immédiatement après le passage du magma de telle sorte que celui-ci n'ait pas le temps de cristalliser.

- Chaque injection, constituée probablement de magma à faible teneur en cristaux (<30%; Vigneresse et al., 1996) est piégée par une anisotropie mécanique dans la croûte moyenne. Dans le Limousin, celle-ci correspond à la structuration sub-horizontale des micaschistes et des métapélites acquise lors de la tectonique tangentielle en nappes du Massif Central.

- La migration des magmas parallèlement aux feuillets micaschisteux conduit à la formation d'un laccolite qui se forme en deux temps, tout d'abord par propagation latérale puis, par épaississement vertical.

- Le magma qui se met en place pendant le fonctionnement du décrochement des Pradines enregistre le champ de contrainte NNW-SSE à l'intérieur de la faille et NW-SE de part et d'autre.

- La poussée de magma au toit du laccolite induit une déformation par aplatissement (contrainte verticale) qui pourrait être relaxée par le développement de faille subhorizontale et normale au toit du granite. La faille ductile d'Argentat joue ce rôle en absorbant le déplacement du magma qui remonte depuis l'axe ascensionnel principal NNW-SSE des Pradines.

Lors de la propagation latérale des magmas à l'est du couloir des Pradines, le développement de la faille sub horizontale et normale vers l'est au toit des granites a été stoppé par le fonctionnement du décrochement dextre de Felletin-La Courtine. Cette expansion latérale a aussi été arrêtée par la masse granitique rigide du Guéret refroidi au moins depuis 335 Ma. La discordance des Tuffs Anthracifères Viséen en est la preuve (Faure et al., 2002). Dès lors, butant contre le Guéret, la propagation latérale des granites à deux micas du Millevaches dans le

coin nord-est s'est arrêtée, induisant des mouvements rétroactifs en faille inverse vers le SW enregistrés dans les granites mylonitiques et une forte déformation coaxiale mise en évidence par les C-S dextres et sénestres. Cette déformation coaxiale est bien enregistrée par la fabrique magnétique des granites à deux micas de ce secteur qui est caractérisée par un ellipsoïde de déformation en galette.

FIG. V-2 – Modèle de mise en place des granites du massif de Millevaches.

II. Généralisation aux granites de la Marche, de la Brâme et du Guéret

Le mode de mise en place des granites de Millevaches, caractérisé par une ascension des magmas dans un conduit vertical puis par une mise en place par expansion latérale dans un plan horizontal, peut se généraliser à l'ensemble de la région du Limousin.

II-1. Les granites à deux micas de la Marche

La déformation du granite de la Marche est décrite comme une déformation ductile synmagmatique en décrochement sénestre (Choukroune et al., 1983).

Les données structurales et de terrain, couplées à l'étude gravimétrique (Dumas et al, 1990; Gébelin et al., soumis) permettent de confirmer ce résultat et de proposer un modèle de mise en place pour les granites de la Marche et du plateau d'Aigurande.

La structuration verticale des granites à deux micas à l'aplomb de la faille est associée à une forte anomalie gravimétrique négative, cohérente avec l'interprétation de cette zone comme un conduit d'alimentation.

Loin de la faille, la gravimétrie modélise des laccolites de granites d'épaisseur plurikilométriques (4

kms) enfouis sous les micaschistes qui viennent progressivement s'enraciner dans la faille de la Marche.

L'âge de mise en place des granites à deux micas de la Marche est donné par les monazites datées par la méthode chimique U-Th-Pb à 335 ± 5 Ma. Cet âge est cohérent avec les résultats obtenus sur les muscovites magmatiques des mêmes échantillons par la méthode ${}^{40}\text{Ar}/{}^{39}\text{Ar}$.

II-2. Le complexe leucogranitique de la Brâme

Les granites à deux micas de la Brâme datés à 324 ± 4 Ma (méthode U/Pb, Holliger et al., 1986) présentent également une forme laccolitique (Audrain et al., 1989 ; Gébelin et al., soumis).

Le massif granitique de la Brâme est limité à l'ouest et à l'est par les failles normales ductiles de Nantiat et de Bussières-Madeleine pour lesquelles Mollier et Bouchez (1982), Faure et Pons (1991), Faure et al., (1990) ont proposé un fonctionnement synchrone de la mise en place des granites.

A partir de ce résultat, de nos observations structurales et modèles gravimétriques, nous proposons que les granites de la Brâme se soient mis en place suivant le modèle de « crack opening » (Hutton, 1988) le long du décrochement d'Ouzilly – Arrênes(Fig. V-3a).

Dans un premier stade, le décrochement dextre se déchire parallèlement à son axe WNW pour créer une fente verticale qui va jouer le rôle de conduit d'alimentation (Fig. V-3b).

La fente s'ouvre en progressant préférentiellement vers le sud, en raison du blocage partiel à l'ouest du décrochement (Fig. V-3b).

Le magma migre ensuite vers le SSW en utilisant la structuration sub-horizontale des micaschistes (Fig.V-3c).

La poussée du magma au toit du laccolite est amortie par le déploiement de part et d'autre du cœur du massif par des failles sub-horizontales et normales (failles de Nantiat à l'Ouest et de Bussières-Madeleine à l'Est) qui accompagnent le déplacement du magma (Fig. V-3d).

In fine, la carte géologique de la France qui rend compte de l'état final de ce modèle possible, montre que ces granites sont limités au Nord par la faille de la Marche et recoupent la faille d'Ouzilly – Arrênes (Chapitre IV, FIG. IV-1a).

II-3. Le complexe granitique du Guéret

La partie nord du Limousin est occupée par le massif granitique de Guéret dont l'âge de mise en place est estimé à 356 ± 10 Ma (Rb/Sr sur roches totales; Berthier, 1979). Il est limité au nord par le décrochement sénestre de la Marche et au sud par le réseau de faille d'Ouzilly, Arrènes, St Michel de Veisse et Felletin-La Courtine.

L'étude de l'anisotropie de susceptibilité magnétique sur les granites de Guéret met en évidence des plans de foliation magnétique sub-horizontaux et des linéations magnétiques orientées NW-SE subhorizontales (Jover, 1986).

L'observation de la carte d'anomalie de Bouguer résiduelle à l'échelle régionale et les coupes de modélisations gravimétriques traversant les granites de Guéret mettent en évidence un laccolite dont l'épaisseur n'excède pas quelques centaines de mètres au nord du Millevaches.

Ces résultats gravimétriques favorisent un modèle en laccolite sub horizontal de faible épaisseur, mais ne permet pas de situer les zones d'alimentation et de provenance des magmas.

L'analyse structurale montre également l'importance des failles ductiles syn magmatiques d'Arrênes, de St Michel de Veisse et de Felletin-La Courtine.

On suppose, sans plus de précision, que les grands accidents ductiles qui bordent le massif granitique de Guéret sont tous des candidats possibles pour drainer les magmas profonds.

FIG. V-3 – Modèle de mise en place du massif granitique de la Brâme suivant le modèle de « crack-opening » (Hutton, 1988).

a : Décrochement dextre d'Ouzilly-Arrênes orienté WNW.

b : Déchirement du décrochement parallèlement à son axe et création d'une fente verticale qui sert de conduit d'alimentation pour la mise en place des magmas. Ouverture de la fente préférentiellement vers le SSW par blocage partiel à l'ouest du décrochement (croix). c : Migration du magma vers le SSW parallèlement aux feuillets micaschisteux sub horizontaux. d : Progression du magma vers le SSW et développement de failles sub horizontales et normales au toit du laccolite. L'activité du décrochement dextre cesse peu à peu et le magma migre légèrement vers la bordure Nord. e. Le magma continue à migrer vers le SSW mais aussi vers le nord par baisse d'activité du décrochement (?). Les failles initialement sub horizontales au toit du granite deviennent de plus en plus pentées de part et d'autre du cœur du massif.

FIG. V-4 – Modèle d'évolution tectonique du Limousin (Voir commentaires des figures dans le texte).

III. Evolution temporelle du modèle d'évolution des décrochements du Limousin associés à la mise en place des granites

A partir des observations microstructurales et des résultats géochronologiques ⁴⁰Ar/³⁹Ar, U/Pb par méthode conventionnelle et U-Th-Pb par méthode chimique obtenus sur les gneiss à Bt-Sil et sur les granites non déformés et mylonitiques, nous proposons un modèle d'évolution tectonique du Limousin.

- A la suite de la phase majeure d'épaississement de l'orogenèse Varisque liée à la subduction vers le Nord de l'océan Galicia-Massif Central sous la microplaque Armorica (Matte, 2002), se développe vers 350 Ma un grand réseau de failles décrochantes dextres en contexte transpressif (Fig. V-4).

Les âges ${}^{40}Ar/{}^{89}Ar$ acquis sur les biotites des gneiss à Bt-Sil du plateau d'Aigurande et du Chavanon et les âges (méthode chimique U-Th-Pb) sur monazites de ces mêmes formations témoignent de cet épisode à 350 Ma. L'écart des températures de fermeture entre ces deux systèmes de datation suppose un refroidissement rapide, qui pourrait se corréler avec la phase d'exhumation postérieure à l'épaississement dans cette région du Massif Central.

- Vers 350-360 Ma (Fig. V-4 a), avant la mise en place des grands massifs de granite, l'ensemble du réseau de faille formé par Ouzilly, Arrênes formait un seul et même décrochement dextre.

Les travaux de forage élaborés par l'ANDRA (Virlogeux et al., 1999) au niveau du Seuil du Poitou montrent que le décrochement sénestre de la Marche se connecte au réseau d'Ouzilly-Arrênes. On propose que le décrochement sénestre de la Marche constituait à ce stade, une faille antithétique du système décrochant dextre majeur (Fig. V-4 a).

- Le système décrochant dextre évolue dans le temps et dans l'espace créant des branches anastomosées.

Les failles d'Ouzilly-Arrênes se divisent pour donner naissance aux décrochements des Pradines et de St Michel de Veisse (Fig. V-4b).

- Vers 350 Ma (Fig. V-4c), St Michel de Veisse se scinde en deux branches ; l'une est prise en relais par la faille d'Ambrugeat au sud, l'autre s'infléchit au SE vers la Courtine et se poursuit dans les gorges du Chavanon.

- 350 Ma représente également l'âge de mise en place des granites à biotite de Guéret (Fig. V-4c) (Berthier et al., 1979). Ils sont limités par les décrochements dextres de St Michel de Veisse et de Felletin-La Courtine qui enregistrent une déformation ductile acquise au cours du refroidissement des granites entre 400°C et 700°C.

- 335 Ma (Fig. V-4d) correspond à l'âge de mise en place des granites à deux micas dans le décrochement de la Marche Orientale (méthode chimique U-Th-Pb).

Les âges ⁴⁰Ar/³⁹Ar de refroidissement des clastes de muscovite primaire sur les mêmes échantillons indiquent des âges similaires. Ces magmas, dans le décrochement sénestre de la Marche, peuvent aussi migrer en utilisant

Chapitre V-Discussion générale et conclusion

la pré structuration sub-horizontale des micaschistes. Ils sont probablement localisés soit par des modèles de structure pull-apart (Guinebertau et al., 1987), soit par crack opening (Hutton, 1988).

335 Ma marque également la limite maximale d'âge de refroidissement des granites de Guéret, correspondant à la discordance des Tuffs Anthracifères (Faure et al., 2002).

- 335-330 Ma pourrait correspondre à l'âge de mise en place des granites à biotite porphyroïdes du Millevaches (Fig. V-4d), datés par la méthode chimique U-Th-Pb sur monazites. Les relations structurales entre les granites à deux micas et les granites à biotite porphyroïdes, les résultats A.S.M. et l'âge à 324 ± 1 Ma (méthode U/Pb sur zircon, Gébauer, 1981) laissent cependant penser que la mise en place des granites à biotite porphyroïdes du Millevaches est plus tardive que 330-335 Ma.

- Le système en cisaillement simple dextre évolue, induisant une rotation horaire progressive du décrochement sénestre de la Marche qui d'une direction initiale NE-SW à 360-350 Ma devient E-W vers 320Ma (Fig. V-4e).

-325-320 Ma est l'âge de mise en place des granites à deux micas de la Brâme daté par la méthode U/Pb à 324 \pm 4 Ma (Holliger et al., 1986).

Mise en place des granites de la Marche Occidentale, le long du décrochement qui se transforme peu à peu en faille inverse vers le NE (Fig. V-4e). L'évolution du système en cisaillement simple dextre induit une rotation horaire de l'ensemble des structures qui depuis une direction initiale NE-SW vers 350 Ma (Fig. V-4a, b, c) se réoriente ENE-WSW à E-W (Fig. V-4e).

-320-315 Ma correspond à l'âge de mise en place syntectonique des granites à deux micas du Millevaches (Fig. V-2e). Les magmas migrant à l'est du couloir des Pradines sont stoppés i) par les décrochements de St Michel de Veisse-Felletin-La Courtine qui continuent à fonctionner, ii) par le bloc Guéret refroidi depuis 335 Ma. La poussée des granites à deux micas perturbe la continuité des deux décrochements actifs, créant un bombement dans le coin nord est du Millevaches. Cette forte contrainte coaxiale induit des sens de cisaillements divergents à ce niveau, enregistrés par les granites. La résistance du Guéret face à la rhéologie des granites à deux micas provoque un mouvement rétroactif dans ces derniers correspondant aux mouvements en faille inverse vers le SW.

- 315 Ma correspond aussi à l'âge du métamorphisme granulitique daté pour la première fois en U/Pb sur monazites.

- Les âges ⁴⁰Ar/³⁹Ar des gneiss à Bt-Sil encaissant des granites à deux micas sont rajeunis, mais la cinématique C-S à Bt-Sil décrochante dextre ancienne (350 Ma) est préservée.

- Les failles normales ductiles, telles que la faille d'Argentat ou les failles de Bussières – Madeleine et de Nantiat sont initiées au toit des granites à 315-320 Ma dans le cas du Millevaches et à 320 -325 Ma pour la Brâme (Fig. V-4e).

- Les faciès mylonitiques des granites à deux micas datent la fin du fonctionnement des zones de cisaillement ductile du Limousin vers 300 Ma (méthode ⁴⁰Ar/³⁹Ar).

FIG. V-4 (suite) - Modèle d'évolution tectonique du Limousin. (Voir commentaires de la figure dans le texte).

IV. Raccord du Limousin avec le massif Sud Armoricain

Il existe de nombreuses similitudes concernant l'âge et la structure des formations géologiques entre le Limousin et le Massif Sud Armoricain.

IV-1. Similitudes structurales

Les travaux de forage de l'ANDRA (Virlogeux et al., 1999) dans le Seuil du Poitou ont montré les raccords entre les différentes structures de ces deux régions :

- La faille de Cholet est en continuité avec la faille de la Marche et le réseau d'Ouzilly – Arrênes – St Michel de Veisse – Felletin-La Courtine (Fig. V-5b).

- Le décrochement d'Estivaux constituerait plutôt le prolongement SE de la faille de Parthenay (Fig. V-5b).

IV-2. Similitudes géochronologiques

Les données ⁴⁰Ar/³⁹Ar faites sur les granitoïdes du complexe plutonique de Charroux-Civray mettent en évidence l'existence d'un événement calco-alcalin majeur dans le seuil du Poitou vers 350 Ma synchrone de la mise en place des granodiorites-monzogranites de type Guéret dans le Limousin (Le Carlier de Veslud, 2004).

Le leucogranite de St Lambert (Fig. V-5b), à l'WNWd'Angers a enregistré la fin de la déformation cisaillante de la branche nord du Massif Armoricain à 312 ± 3 Ma (Faure et Cartier, 1998).

La mise en place des granites de Mortagne (Fig. V-5b) pendant le fonctionnement du cisaillement Sud Armoricain est estimé à 313 ± 15 Ma (Guineberteau, 1984).

Juste au Nord du cisaillement Sud Armoricain, l'intrusion de Rostrenen (Fig. V-5b) est daté à 315-325 Ma par la méthode U/Pb sur zircon (Bosse et al., 1997).

Le massif d'Allaire (Fig. V-5b) situé dans le cisaillement Sud Armoricain révèle des âges de refroidissement ⁴⁰Ar/³⁹Ar entre 312 et 305 Ma (Ruffet, données non publiées) en accord avec nos résultats ⁴⁰Ar/³⁹Ar qui enregistrent la fin du fonctionnement des grands accidents ductiles du Limousin autour de 300 Ma.

La présence de Stéphanien plissé vertical dans la zone du cisaillement Sud Armoricain (Colchen et Rolin, 2001) indique que le fonctionnement des grands accidents décrochant continue jusqu'à 290 Ma.

V. Modèle géodynamique

Nous proposons ainsi que la faille des Pradines et l'ensemble des décrochements du Limousin représentent les branches d'un large et unique système décrochant d'échelle lithosphérique que nous assimilons à une « pop-up structure » intéressant les régions du Massif Sud Armoricain et du Limousin (Fig. V-6 et Fig. V-7). Mc Clay et Bonora (2001) proposent un modèle analogique qui met en évidence le développement grands simultané décrochements de et de chevauchements. En plan, la « pop-up structure » dessine une forme losangique asymétrique alors qu'en coupe, elle dévoile une géométrie en éventail semblable à celle d'un palmier (Sylvester et Smith, 1976; Sylvester, 1988; Mc Clay et Bonora, 2001). Décrochements et failles

inverses se connectent en profondeur pour former un même et seul système de faille (Fig. V-7). L'asymétrie de la pop-up structure est générée par le changement de contrainte aux limites de faille qui d'abord décrochant se transforme peu à peu en faille inverse au fur et à mesure que la déformation en cisaillement simple évolue dans le temps (McClay and Bonora, 2001). Ainsi, au fur et à mesure de sa rotation horaire, la faille occidentale de la Marche, enregistre à la fin de son activité des mouvements en faille inverse vers le NE. Il en est de même pour les chevauchements signalés au niveau du décrochement d'Estivaux (carte Ledru et al., 1989). Dans le massif Sud Armoricain, certains chevauchements orientés globalement E- W sont supposés tourner au fur et à mesure de l'évolution du système en cisaillement simple dextre (Gumiaux et al., 2004).

La structuration sub-horizontale de la croûte inférieure litée peut influencer sur le développement de grands chevauchements plats de part et d'autre du système décrochant (Fig. V-7).

L'architecture complexe 3D de la pop-up structure du Limousin et du Massif Armoricain est difficile à visualiser à grande échelle du fait du niveau d'érosion variable entre ces régions mais également du jeu tardif sénestre de la faille du Sillon Houiller qui empêche de visualiser la partie Est de la pop-up structure. En annulant les 50 km de décalage sénestre du Sillon Houiller (Grolier et Letourneur, 1968 ; Grolier, 1971b), la ceinture des leucogranites du Morvan de direction E-W à WSW-ENE pourrait constituer la continuité Est de la pop-up structure (Fig. V-5a)

VI. Origine des granites

Dans la chaîne hercynienne, les granodioritesmonzogranites et les granites à deux micas se sont donc mis en place dans un contexte transpressif, les premiers vers 350 Ma, les seconds à 320Ma.

Les caractéristiques géochimiques indiquent que les granites à deux micas sont issus de la fusion partielle de métasédiments de la croûte inférieure ou moyenne. La fusion partielle s'est effectuée entre 18 et 21 km ou plus d'après Shaw (1991). Selon cet auteur, les granodiorites à monzogranites sont issus de la fusion partielle de métasédiments de la croûte inférieure et de magmas basiques à la limite croûte inférieure -manteau supérieur. Leur profondeur de mise en place est estimée à (14 \pm 2 km) (Freiberger et al., 2001).

Les deux types de granites se mettent en place au sein du fonctionnement de la grande zone de cisaillement décrochante dextre d'échelle lithosphérique qui va donner la mégastructure pop-up Limousin – Massif Armoricain (Fig. V-6).

Par analogie avec ce qui est proposé pour la faille de la Rivière Rouge (Leloup, 1999), nous proposons que le processus de shear-heating (Fig. V-6 et V-7) pourrait constituer un des mécanismes générateurs de magmas.

- Le phénomène de shear-heating affecte le manteau supérieur.

- Les magmas mantelliques résultants remontent à la base de la croûte et provoque sa fusion partielle.

- Les produits de fusion de la croûte inférieure et une part des magmas mantelliques remontent progressivement dans la zone de cisaillement jusque dans la croûte

FIG. V-5 – a : Carte des leucogranites de la France associés aux zones de cisaillements ductiles d'après AUTRAN et LAMEYRE (1980). C.S.A. : Cisaillement Sud Armoricain. b : Raccord entre les décrochements du Limousin et le cisaillement Sud-Armoricain. F. Ch. : Faille de Cholet. F. M. : Faille de la Marche. F. O. : Faille d'Ouzilly. F.A. : Faille d'Arrênes. F. St M. V. : Faille de St Michel de Veisse. F.F.C. : Faille de Felletin-La Courtine. F. P. : Faille des Pradines. F. A. : Faille d'Ambrugeat. F. E. : Faille d'Estivaux.

moyenne à supérieure $(14 \pm 2 \text{ km})$ (Freiberger et al., 2001).

- A ce niveau, l'ensemble de ces magmas se met en place pour donner les granodiorites à monzogranites datés vers 350 Ma (Berthier, 1979; Le Carlier de Veslud et al., 2004).

L'initiation du magmatisme leucogranitique (ou granites à deux micas) ne se produit seulement que 20 à 30 Ma après que les premières granodiorites et monzogranites se soient mis en place.

La fusion partielle de la croûte inférieure amorcée en partie par le processus de shear-heating du manteau supérieur a induit une anomalie thermique au sein de la croûte inférieure et moyenne. Cette anomalie thermique ne peut à elle seule provoquer la fusion partielle des métasédiments de la croûte moyenne à l'origine des granites à deux micas. La production croissante de magma résulte d'un apport d'eau dans le système qui provient de la rupture des liaisons O-H de minéraux hydratés tels que les amphiboles et les micas dans la croûte moyenne (Shaw, 1991 ; Thompson and Conolly, 1995).

La réaction de la muscovite :

ms + qtz + pl \Leftrightarrow melt + sil + kfs + bt (Thompson, 1996; Vigneresse, 2001) débute autour de 720°C à 600 MPa et atteint son maximum à 780°C (Patino Douce & Harris, 1998).

La production de « melt » à partir de la biotite se fait suivant la réaction (Patino Douce & Harris, 1998) : Chapitre V-Discussion générale et conclusion

 $bt + qtz + pl + sil \Leftrightarrow melt + sil + kfs + grt + ilm$ La température de rupture des liaisons O-H de la biotite se fait vers 800-900°C et est indépendant de la pression.

Tommasi et al., (1994) explique la genèse des granites calco-alcalins et des leucogranites, dont la mise en place est syntectonique de la zone de cisaillement de Don Féliciano (Brésil), par le processus de shear – heating.

Pour expliquer, le métamorphisme granulitique, ainsi que la quantité importante de granites dans le Massif Central Downes et al., (1990), ont évoqué la possibilité d'un phénomène de délamination lithosphérique.

Du fait que ce processus intervient d'après Matte (2002), dans les derniers stades d'évolution de la chaîne Varisque (entre 330 et 310 Ma), le modèle proposé par Downes et al., (1990) explique uniquement le magmatisme ayant engendré les granites à deux micas autour de 320 Ma, mais non celui des granodiorites – monzogranites qui se sont mis en place dans un contexte purement transpressif à 350 Ma.

VII. Les leucogranites dans la Chaîne Varisque et la Chaîne Himalayenne : analogies et différences

Ces deux chaînes ont souvent été comparées, car toutes deux sont reconnues comme des modèles de chaîne de collision par subduction intraocéanique puis intracontinentale (Mattauer, 1986).

Le système de faille himalayen et la structure pop-up cisaillante que l'on décrit du Massif Armoricain au Limousin représentent des zones cisaillantes transcrustales. Elles ont toutes deux la particularité d'être jalonnées par des granites syntectoniques.

Dans les deux cas, les granites associés, péralumineux sont issus de la fusion partielle de métasédiments de la croûte moyenne à inférieure et de magmas basiques à la limite croûte inférieure -manteau supérieur pour les granodiorites – monzogranites type Guéret observés essentiellement dans la chaîne Varisque.

VII. 1 Aspect géochimique

Dans le Massif Central, les granites leucocrates à muscovite ou à deux micas sont répertoriés comme leucogranites. Ils sont caractérisés par des rapports Rb/Sr et 87 Sr/ 86 Sr variables (2 < Rb/Sr < 60 et 0,7431 < 87 Sr/ 86 Sr < 1,5191 ; Williamson et al., 1996). Leur ɛNd initial varie peu entre -8,2 et -6,1 excepté pour les leucogranites de la Brâme St Sylvestre dont le ɛNd initial est compris entre -9,7 et -4,7.

Les éléments majeurs et en trace qui les caractérisent (fortes teneurs en Rb et Ga, faibles teneurs en Ba et Sr et augmentation de SiO2 quand LREE et Eu/Eu*diminuent) sont expliqués, soit par fractionnement du plagioclase (Downes et Duthou, 1988 ; White, 1990), soit par un faible degré de fusion du plagioclase présent dans la source. Ces deux processus induisent une augmentation de la teneur en eau dans le magma qui peut conduire à la cristallisation de muscovite. La faible variation de leur composition géochimique, la corrélation positive des teneurs en Rb et P_2O_5 , la diminution des éléments compatibles, LREE, Th et Zr avec l'augmentation de la teneur en Rb, sont les caractéristiques d'un processus de fusion partielle pour la genèse de ces granites à deux micas (Williamson et al., 1996).

La comparaison des valeurs ε Nd initial des granites à deux micas (entre -9,7 et -4,7), des métasédiments de la croûte supérieure (en dessous ~9km de profondeur) (ε Nd_{340Ma}=-13,0 à -8,8 ; ε Nd_{280Ma}=-13,7 à -9,4), et de la croûte inférieure (ε Nd_{340Ma}=-8,6 à -4,3 ; ε Nd_{280Ma}=-9,0 à -4,8) permettent à Downes et al., (1990), et Williamson et al., (1996) de proposer que les métasédiments de la croûte inférieure soient les candidats les plus probables de la source des granites à deux micas du Massif Central.

Les leucogranites himalayens sont également caractérisés par une forte hétérogénéité isotopique des rapports 87 Sr/ 86 Sr et Rb/Sr (Le Fort et al., 1987). En revanche, leur ϵ Nd varie entre -11 et -18 (Vidal et al., 1984 ; Ayres et al., 1997). Ces valeurs confirment l'absence de source mantellique.

Ces caractéristiques géochimiques permettent de déterminer qu'en Himalaya, le magmatisme leucogranitique est initié au niveau du M.C.T. qui provoque le chevauchement de roches de haut degré métamorphique sur les formations schisteuses riches en fluides du moyen Himalaya. La libération en grande quantité de ces fluides va provoquer la fusion partielle de la base de la dalle du Tibet (Fourcade 1981, Le Fort, 1981; France-Lanord et Lefort, 1988).

Pour Williamson et al., 1996, le mécanisme de genèse des granites à deux micas du Massif Central est sensiblement différent. Les compositions péralumineuses et les caractéristiques isotopiques (ɛNd=-8,2 à -6) indiquent qu'il s'agit de granites de type S, formés par la fusion partielle de métasédiments de la croûte inférieure. En accord avec Downes et al., (1990) et Williamson et al., (1992), Williamson et al. (1996) expliquent l'initiation de la fusion partielle par le plaquage de magmas basiques dérivant du manteau sous la croûte entre 360 et 270 Ma. La production de « melt » s'intensifierait par des réactions de déshydratation et d'extraction de fluides de la croûte inférieure liés au métamorphisme granulitique, entre 300 et 280 Ma (Costa et al., 1993).

Quelque soit le contexte géodynamique dans lequel ils ont évolué, la genèse et le développement des granites himalayens et du Massif Central sont gouvernés par les fluides dont l'origine et la circulation reste problématique. Dans les deux cas, les grandes zones de cisaillement ductiles contrôlent sans aucun doute, la circulation de ces fluides et certainement la localisation de la fusion partielle associée et in fine, la mise en place des magmas leucogranitiques.

VII. 2 Aspect géométrique

Géométriquement, les granites du Massif Central et de l'Himalaya apparaissent fréquemment comme des grands laccolites guidés par la structure faiblement pentée de l'encaissant. Le toit des plutons est limité par des failles normales : le STDS (South Tibetan

Chapitre V-Discussion générale et conclusion

Detachment System) pour les granites himalayens, la faille d'Argentat pour le massif de Millevaches et les failles de Nantiat et de Bussières-Madeleine pour le massif de la Brâme. Ce sont des corps lenticulaires de faible épaisseur en Himalaya aussi bien que dans le Massif Central. Le Millevaches de quelques kilomètres d'épaisseur (~4km) s'étend sur 130 km du nord au sud. Les volumes comparés des granites du Manaslu et du Millevaches par exemple en font des corps d'importance très comparable.

VII. 3 Mécanismes d'ascension et de mise en place

L'ascension des magmas himalayens comme celui du Manaslu se fait par l'intermédiaire de fentes verticales qui correspondent à des zones de relais distensives entre deux décrochements (Guillot, 1993). L'augmentation de la pression interne sous la couverture sédimentaire induit une migration latérale des magmas. Les dernières venues magmatiques « repoussent » les premières, provoquant un fort aplatissement dans le granite.

Ce modèle de mise en place des magmas remontant dans des conduits verticaux puis canalisés par une anisotropie mécanique sub-horizontale est tout à fait analogue à celui que nous proposons pour les granites du Limousin. Ici les conduits verticaux dépendent de la pop up structure alors que l'anisotropie crustale sub horizontale est préexistante et correspond à la géométrie des nappes.

VII. 4 Contexte géodynamique

Par comparaison avec la faille de la Rivière Rouge, la grande structure « pop-up » décrochante dextre d'échelle lithosphérique que nous décrivons du Massif Armoricain au Limousin et pour laquelle nous attribuons un rôle majeur dans la genèse des magmas pourrait accommoder l'extrusion du Massif Central vers le SE. Le shear-heating du manteau supérieur proposé par Leloup (1999) pour la faille de la Rivière Rouge est le processus qui s'accorde le mieux avec l'évolution géochimique du magmatisme syncinématique que l'on observe dans le Limousin depuis la mise en place précoce des granodiorites péralumineuses de type Guéret à celle des leucogranites qui se fait seulement 20 à 30 Ma après.

VII. 5 Comparaison des granites du Limousin et du Massif Sud Armoricain avec les granites Ibériques

En suivant la courbure de l'arc Ibéro-Armoricain, la pop-up structure et ses leucogranites trouvent un prolongement possible en Galice. Les magmas leucogranitiques en Espagne et Portugal sont très comparables aux leucogranites (et granites à deux micas) du Limousin et du Massif Armoricain. Ils se situent systématiquement à l'Est et au nord est de la zone de suture de Coimbra-Cordoba (Bard et al., 1980; Matte, 1986) (Fig. V-8) et comme dans le Limousin, sous les nappes à matériel ophiolitique. Ils se sont mis en place entre 330 et 310 Ma. Leur caractéristiques géochimiques montrent qu'ils sont issus de la fusion crustale de métasédiments (Castro et al., 2000). Comme dans le massif de Millevaches, ils contiennent des micaschistes affectés par un métamorphisme granulitique dont les conditions P-T estimées à 800 ± 50°C et 4 à 6 kbar

(Barbero, 1995) sont en accord avec nos données thermobarométriques sur les granulites de St Pierre-Bellevue (Nord Millevaches). Les leucogranites de ce segment Ibérique sont structurés N-S à NW-SE parallèlement à la grande zone de cisaillement qui suit progressivement l'arc Ibéro Armoricain. Les critères cidessus suggèrent que les leucogranites Ibériques sont issus des mêmes mécanismes structuraux et de genèse que ceux du Massif Armoricain et du Limousin. La prolongation symétrique dans la virgation Ibéro-Armoricaine (Fig. V-8) du système pop-up structure en Galice en ferait un objet structural transcontinental d'une très grande envergure, environ 1700 km de long, comparable au plus grandes failles d'Asie.

Les magmas leucogranitiques du Massif Central, du Massif Sud Armoricain et de l'Espagne soulignent une structure lithosphérique décrochante majeure d'environ 1700 km de long assimilée à une « pop-up structure », qui s'est développée dans un régime transpressif faisant suite à la phase majeure d'épaississement de l'orogenèse Varisque vers 350 Ma (Fig. V-6 et V-7). Cette grande structure a probablement guidé l'extrusion du Massif Central vers le SE par l'action combinée de décrochements et de chevauchements. Adjoint au processus d'épaississement crustal qui contribue au développement puis à l'amplification de l'anomalie thermique, (jusque 60 Ma environ après l'épaississement (England et Thompson, 1984, 1986)), le shear-heating du manteau supérieur pourrait participer à la création de fusion partielle de la croûte inférieure à moyenne, induisant peu à peu une anomalie thermique généralisée dans l'ensemble de la zone cisaillante.

Chacune des branches verticales décrochantes qui se développe à partir de la zone de cisaillement majeure constituent une zone de localisation et de conduit d'alimentation possible pour les fluides et les magmas profonds (Fig. V-7). Dès leur arrivée dans la croûte moyenne, les magmas sont piégés puis canalisés par la foliation précoce sub-horizontale. L'expansion latérale considérable de ces granites est très probablement liée à la déshydratation de la biotite et de la muscovite qui accentue la production de « melt ».

Dans la chaîne Varisque la fusion partielle de la croûte est certainement facilitée par le fort gradient géothermique de 35°C/km contre 25°C/km pour la croûte himalayenne (Vigneresse et Burg, 2003). La transition fragile/ductile qui constitue le niveau structural préférentiel de mise en place de ces granites est forcément beaucoup plus superficielle dans la croûte Varisque. La profondeur de mise en place des leucogranites varisques dans la croûte moyenne (vers 15km de profondeur) s'explique par l'intersection du gradient géothermique élevé (35°C/km) avec la courbe de remontée du magma à ce niveau crustal (Vigneresse et Burg, 2003).

Le Limousin qui apparaît sur la carte géologique de la France comme une région constituée en majorité de granites est un paradoxe. Cette abondance relative de granite s'explique à présent plus aisément par le modèle de mise en place des magmas proposé et au niveau d'érosion de la croûte qui transforme le Millevaches en un véritable plateau morphologique.

FIG. V-6 : Schéma simplifié illustrant la géométrie 3D de la "pop-up structure" vers 300 Ma qui affecte le Limousin et le Massif Sud-Armoricain à partir de 350 Ma. C.S.A. : Cisaillement Sud Armoricain, F.Ch. : Faille de Cholet, F.O.A. : Faille d'Ouzilly-Arrênes, F.M.V : Faille de St Michel de Veisse, F. M.:Faille de la Marche, F. P. : Faille des Pradines, F. C. : Faille de la Courtine, F.A. : Faille d'Ambrugeat.

FIG. V-7 : Schéma simplifié de la « pop-up structure » vers 300 Ma en coupe.

FIG. V-8 : Prolongement possible de la « pop-up structure » en Galice.

Références bibliographiques

- ADAMS, B.I., WRIGHT, S.I. & KUNZE, K. (1993). Orientation imaging: the emergence of a new microscopy, *Metallurgical Transactions*, 24A, 819-831.
- ALEXANDROV, P., CHEILLETZ, A., DELOULE, E. & CUNEY, M. (2000). – 319 ± 7 Ma age for the Blond granite (northwest Limousin, French Massif Central) obtained by U/Pb ionprobe dating of zircons, C. R. Acad Sci, 330, 1-7.
- AMEGLIO L. (1998). Gravimétrie et forme tridimensionnelle des plutons granitiques. Thèse de Doctorat, Univ. Toulouse III, 245 p.
- AMEGLIO, L., VIGNERESSE, J.-L. & BOUCHEZ, J.-L. (1997). Granite pluton geometry and emplacement mode inferred from combined fabric and gravity data. In: BOUCHEZ, J.L., HUTTON, D.H.W. & STEPHENS, W.E. (eds.) Granite: From Segregation of Melt to Emplacement Fabrics, Kluwer Academic Publishers, Dordrecht, 199-214.
- AMEGLIO, L., VIGNERESSE, J.-L., DARROZES, J. & BOUCHEZ, J.-L. (1994). – Forme du massif granitique du Sidobre (Montagne Noire, France): sensibilité de l'inversion des données gravimétriques au contraste de densité. - C. R. Acad. Sci., Paris, **319**, 2, 1183-1190.
- ARBARET, L, FERNANDEZ, A., JEZEK, J., ILDEFONSE, B., LAUNEAU, P. & DIOT, H. (2000). – Analogue and numerical modelling of shape fabrics : application to strain and flow determination in magmas. *Trans. R. Soc. Edinburgh: Earth Sci.*, **90**, 97-109.
- ARCHANJO, C.-J., DA SILVA, E.-R. & CABY, R. (1999). Magnetic fabric and pluton emplacement in a transpressive shear zone system: the Itaporango porphyritic granitic pluton (northeast Brazil). - *Tectonophysics*, **312**, 331-345.
- ARENE, J. & AUTRAN, A. (1972). Notice de la carte géologique au 1/50 000 de Bourganeuf. *BRGM ed.*
- ARNAUD, F. & BURG, J.-.P. (1997). Microstructures des mylonites schisteuses: cartographie des chevauchements Varisques dans les Cévennes et détermination de leur cinématique. C. R. Acad. Sci., Paris, 317, 1441-1447.
- ARNAUD, N., BRUNEL, M., CANTAGREL, J.-M. & TAPPONNIER, P. (1993). – High cooling and denudation rates at Kongur Shan, eastern Pamir (Xinjiang, China) revealed by (super 40) Ar/ (super 39) Ar alkali feldspar thermochronologie, *Tectonics*, v.12, 6, 1335-1346.
- ARNAUD, N., TAPPONNIER, P., ROGER, F., BRUNEL, M., SCHÄRER, U., Wen, C. & Xu, Z. (2003). – Evidence for Mesozoic shear along the western Kunlun and Altyn-Tagh fault, northern Tibet (China), J Geophys Res-Solid Earth 108(B1), doi:10.1029/2001JB000904.
- ARTHAUD, F. & MATTE, P. (1974-1977). Coll. Int. CNRS Rennes 1974 - Paris 1977. 497-513.
- ARTHAUD, F. & MATTE, P. (1977). Late-Paleozoic strike-slip faulting in southern Europe and northern Africa : Result of a right lateral shear zone between the Appalachians and the Urals : *Geol. Soc. Am. Bull*, **88**, 1305-1320.
- ARTHAUD, F. (1966). Sur les relations entre les lineations et les structures hercyniennes du versant sud de le Montagne-Noire. The relations between lineations and Hercynian structures of the south slope of the Montagne Noire. Soc. Géol. Fr., C. R., 1, 18-19.
- ARTHAUD, F. (1970). Etude tectonique et microtectonique compare de deux domaines hercyniens : les nappes de la Montagne Noire (France) et l'anticlinorium de l'Iglesiente (Sardaigne). Thèse Univ. Montpellier.
- AUBERT, M. (1978). Interprétation de la plus intense anomalie magnétique mesurée en France à 3 km d'altitude. Bull. BRGM, II, n°2.

- AUDRAIN, J., VIGNERESSE J.-L., CUNEY M. & FRIEDRICH M. (1989). – Modèle gravimétrique et mise en place du complexe hyperalumineux de Saint-Sylvestre (Massif central français). C. R. Acad. Sci., Paris, **309**, 1907-1914.
- AUGAY, J.-F. (1979). Les leucogranites et monzogranites de la région d'Eymoutiers - Peyrat le Château (Massif du Millevaches, Massif Central Français). Gisement et pétrologie. Unpubl. doctoral Dissertation, University of Lyon I, Lyon.
- AUTRAN, A., LAMEYRE, J. (1980). Evolutions géologiques de la France, Mémoire du BRGM n° 107.
- BARBARIN, B., BELIN, J.-M., FERNANDEZ, A., GROLIER, J., LACOUR, A. & TURLAND, M. (1985). – Observations de petrologie structurale sur le granite de Montmarault (Allier, Puyp-de-Dome). Observations of structural petrology of the Montmarault Granite, Allier, Puy-de-Dome. *Geologie de la France*, v.1985, n°.4, 381-388.
- BARBERO, L. (1995). Granulite facies metamorphism in the Anatectic Complex of Toledo, Spain: Late Hecynian tectonic evolution by crustal extension. J. Geol. Soc. London, 152, 365-382.
- BARD, J.P. (1997). Démenbrement anté-mésozoïque de la chaîne varisque d'Europe occidentale et d'Afrique du Nord : Rôle essentiel des grands décrochements transpressifs dextres accompagnant la rotation-translation horaire de l'Afrique durant le Stéphanien : Paris, C. R. Acad. Sci., 324, 693-704.
- BARD, J.-P., BURG, J.-P., MATTE, P. & RIBEIRO, A. (1980). La chaîne hercynienne d'Europe occidentale en terme de tectonique des plaques. – In : 26^e Congrès Géol. Int., Coll. C6, Géologie de l'Europe, 233-246.
- BEHR, H. J., ENGEL, W., FRANKE, W., GIESE, P. & WEBER, K. (1984). – The Variscan belt in central Europe: main structures, geodynamic implications, open questions. *Tectonophysics*, **109**, 15-40.
- BELLOT, J.-P. (2001). La structure de la croûte varisque du Sud-Limousin (Massif central français) et ses relations avec les minéralisations aurifères tardi-orogéniques: apports des données géologiques, gitologiques, géophysiques et de la modélisation 3D. Thèse de 3^{eme} cycle. Université Montpellier II, 320 pp.
- BENN, K., HORNE, R.J., KONTAK, D.J., PIGNOTTA, G. & EVANS, N.G. (1997). – Syn-Acadian emplacement model for the South Mountain Batholith, Meguna Terrane, Novia Scotia : Magnetic fabric and structural analyses. *Geol. Soc. Am. Bull*, **109**, 1279-1293.
- BENN, K., PATERSON, S.R., LUND, S.P., PIGNOTTA, G.S. & KRUSE, S. (2001). – Magmatic fabrics in batholiths as markers of regional strains and plate kinematics :example of the Cretaceous Mt. Stuart batholith. *Phys. Chem. Earth*, 26, 343-354.
- BERGANTZ, G.W. (1989). Underplating and partial melting: implications for melt generation and extraction. *Science*, 254, 1039-1095.
- BERNARD-GRIFFITHS, J. (1975). Essai sur la signification des âges au strontium dans une série métamorphique : le Bas Limousin (Massif Central français). – Thèse de 3^e cycle, Université de Clermond Ferrand, Ann. Sci., 55, 243p.
- BERNARD-GRIFFITHS, J., GEBAUER, D., GRÜNENFELDER, M. & PIBOULE, M. (1985). The tonalite belt of Limousin. *Bull. Soc. Géol. Fr.*, 1, 459–622.
- BERTHE, D., CHOUKROUNE, P. & JEGOUZO, P. (1979). Orthogneiss mylonite and non coaxial deformation of granites : the example of the South Armorican Shear zone (France). J. Struct. Geol., 1, 31-42.

- BERTHIER, F., DUTHOU, J.L. & ROQUES, M. (1979). Datation géochronologique Rb/Sr sur roches totales du granite de Guéret (Massif Central). Age fini-Dévonien de mise en place de l'un de ses faciès types, Bull. Bur. Rech. Géol. Min. Fr., I, 31-42.
- BINGHAM, C. (1964). Distribution on a sphere and on the projective plane. Ph.D. thesis, Yale University.
- BITRI, A., TRUFFERT, C., BELLOT, J.-P., BOUCHOT, V., LEDRU, P., MILESI, J.-P. & ROIG J.-Y. (1999). – Imagerie des paléochamps hydrothermaux As-Au-Sb d'échelle crustale et des pièges associés dans la chaîne varisque : sismique réflexion verticale (GéoFrance3D : Massif central français). *C. R. Acad. Sci.*, Paris, **329**, 771-777.
- BLÈS, J. L., BONIJOLY, D., CASTAING, C. & GROS, Y. (1989). Successive post-variscan stress fields in the French Massif Central and its borders (Western European plate): C:omparison with geodynamic data. *Tectonophysics*, 169, 79-111.
- BLUMENFELD, P., MAINPRICE, D. & BOUCHEZ, J.-L. (1986). cslip in quartz from subsolidus deformed granite. *Tectonophysics* 127, 97-115.
- BODINIER, J.-L., BURG, J.-P., LEYRELOUP, A.F. & VIDAL, H. (1988). – Reliques d'un bassin d'arriere-arc subducte, puis obducte dans la region de Marvejols (Massif central). Relics of a subducted then obducted back-arc basin in the Marvejols region, Central Massif. Bull. Soc. Géol. Fr., Ser. 8, 4, no.1, 21-33.
- BONIN, B. & LAMEYRE, J. (1986). Contribution à la géologie du Limousin, III: Relations entre surcharge tectonique et mobilité verticale des magmas leucogranitiques. C. R. Acad. Sci., Paris, **302**, 467-472.
- BORADAILLE, G.J. & HENRY, B. (1997). Tectonics applications of magnetic susceptibility and its anisotropy. *Earth-Sciences Review*, **42**, 49-93.
- BORADAILLE, G.J. (1988). Magnetic susceptibility, petrofabrics and strain. *Tectonophysics*, **156**, 1-20.
- BORRADAILLE, G.J. (1997). Tectonic applications of magnetic susceptibility an dits anisotropy. *Earth-Sciences Review*, 42, 49-93.
- BOSSIERE G. & GUILLOT P.L. (1987). L'accident de Linac-Labathude, une zone de cisaillement majeure dans les formations métamorphiques quercynoises à l'Ouest de la dislocation d'Argentat. – *Programme GPFI*, Thème 3, 49-69
- BOUCHEZ, J. L. & JOVER, O. (1986). Le Massif Central : un chevauchement de type himalayen vers l'ouest-Nord-Ouest. *C. R. Acad. Sci.*, **302**, 675-680.
- BOULE, M. (1900). -Bull. Serv. Carte Géol., v. 47, 7-26.
- BOUTIN, R. & MONTIGNY, R. (1993). Datation 39Ar/40Ar des amphibolites du complexe leptyno-amphibolique du plateau d'Aigurande : collision varisque à 390 Ma dans le Nord-Ouest du Massif Central français, C. R. Acad. Sci., Ser. 2, 316, 1391-1398.
- BROWN, M. & SOLAR, G.S. (1998). Granite ascent and emplacement during contractional deformation in convergent orogens. J. Struct. Geol., 20, 1365-1393.
- BRUN, J.P., GAPAIS, D., CAPDEVILA, R., GUMIAUX, C., GRANET, M. & CHANTRAINE, J. (2002). – La suture sud de la collision Hercynienne en France :une tentative de restauration : Réunion des Sciences de la Terre, Nantes, France, Abstracts, 77.
- BRUNEL, M. (1972). Etude de la tectonique hercynienne polyphasée dans le massif pré-hercynien du Mendic et son enveloppe sédimentaire : versant nord de la Montagne Noire (Massif

central français). Thèse de 3^{ème} cycle, Université de Montpellier II.

- BURG, J.-P. & MATTE, P. (1978). A cross section through the french Massif Central and the scope of its variscan geodynamic evolution. – Z. Dt. Geol. Ges., 129, 429-460.
- BURG, J.-P., BALE, P., BRUN, J.-P. & GIRARDEAU, J. (1987). Stretching lineation and transport direction in the Ibero-Armorican arc during the siluro-devonian collision: *Geodyn. Acta*, 1, n°1, 71-87.
- BURG, J.-P., BRUN, J.-P. & VAN DEN DRIESSCHE, J. (1990). Le sillon houiller du Massif Central Français: Faille de transfert pendant l'amincissement crustal de la chaine varisque?. - C. R. Acad. Sci., Paris, Ser. II, 311, 147-152.
- BURG, J.-P., BRUNEL, M., GAPAIS, D., CHEN, G.M. & LIU, G.H. (1984). – Deformation of leucogranites of the crystalline Main Central Sheet in southern Tibet (China). – J. Struct.Geol., 6, n°5, 535-542.
- BURG, J.-P., LEYRELOUP, A., MARCHAND, J. & MATTE, P. (1984). – Inverted metamorphic zonation and large scale thrusting in variscan belt: an example in the French Massif central. *In*: Hutton D.H.W. and Sanderson D.J., Eds, Variscan tectonics of the North Atlantic region. - *Spec. Publ. Geol. Soc. London*, 44-61.
- BURG, J.P., VAN DEN DRIESSCHE, J. & BRUN, J.P., (1994). Syn-to post thickening in the Variscan Belt of the Western Europe: modes and structural consequences. - Géologie de la France, 3, 33–51.
- BURNOL, L., PERONNE, Y. & VAUCORBEIL, H. (1980). La coupole cachée de leucogranite de Neuf-Jours (Corrèze) et les minéralisations en tungstène associées. - Chron. Rech. Min., 455, 93-116.
- CANTAGREL, J.M., DUTHOU, J.L. & BERNARD-GRIFFITHS, J. (1978). – Geochronology of paleozoïc magmatism in the Massif Central (France): its connection with tectonism and metamorphism. In: «Fourth Conf. Geochronol. Cosmochronol. Isotope Geol. », Denver : 55-58.
- CARMIGNANI, L., CAROSI, R., DI PISA, A., GATTIGLIO, M., MUSUMECI, G., OGGIANO, G. & PERTUSATI, P.C. (1994). – The Hercynian chain in Sardinia (Italy): *Geodyn. Acta*, **7**, 31-47.
- CARTIER, C., FAURE, M. & LARDEUX, H. (2001). The Hercynian orogeny in the South Armorican Massif (St-Georges-sur-Loire Unit, Ligerian Domain, France): rifting and welding of continental stripes. - *Terra nova*, **13**, 143-149.
- CASTRO, A., CORRETGE, L.G., EL-BIAD, M., EL-HMIDI, H., FERNANDEZ, C. & PATINO DOUCE, A.E. (2000). – Experimental constraints on Hercynian Anatexis in the Iberian Massif, Spain, *J. Petrol.*, 41, 1471-1488.
- CHENEVOY, M. & RAVIER, J. (1971). Caractères généraux des métamorphismes du Massif Central. – In : « Symposium J. Jung. Géologie, géomorphologie et structures profondes du Massif Central français », Plein air service Clermont Ferrand, 109-132.
- CHENOT, D. & DEBEGLIA, N. (1990). Three-dimensional gravity or magnetic constrained depth inversion with lateral and vertical variation of contrast. - *Geophysics*, 55, 327-335.
- CHERNIAK, D.J., WATSON, E.B., HARRISON, T.M. & GROVE, M. (2000). – Pb diffusion in monazite : a progress report on a combined RBS/SIMS study. EOS Trans. AGU **81**, S25 Spring Meeting Supplement.
- CHOUKROUNE, P., GAPAIS, D. & MATTE, P. (1983). Tectonique hercynienne et deformation cisaillante: la faille ductile senestre de la Marche (Massif Central français), *C. R. Acad. Sc. Paris*, t. **296**.

- COCHERIE, A. & ALBAREDE, F. (2001). An improved U-Th-Pb age calculation for electron microprobe dating of monazite. – Geochim. Cosmochim. Acta, 65, 4509–4522.
- COCHERIE, A., LEGENDRE, O., PEUCAT, J.J. & KOUAMELAN, A. N. (1998). – Geochronology of polygenetic monazites constrained by in situ electron microprobe Th-U-total Pb determination: Implications for lead behaviour in monazite. *Geochim. Cosmochim. Acta*, 62, 2475–2497.
- COGNE, J. & WRIGHT, A.E. (1980). L'Orogene cadomien; vers un essai d'interpretation paleogeodynamique unitaire des phenomenes orogeniques fini-precambriens d'Europe moyenne et occidentale, et leur signification a l'origine de la croute et du mobilisme varisque puis alpin. The Cadomian Orogeny; unified paleogeodynamic interpretation of late Precambrian orogeny in Central and Western Europe, origin of the crust and Variscan and Alpine mobilization. Geologie de l'Europe, du Precambrien aux bassins sedimentaires post-hercyniens--Geology of Europe, from Precambrian to the post-Hercynian sedimentary basins. *Memoires du B.R.G.M.*, n°108, 29-55.
- COGNE, J. (1977). La chaîne hercynienne oust européenne correspondelle à un orogène par collision? Proposition pour une inter prétation géodynamique globale. In : « Coll. Int. CNRS », Rennes : 111-129.
- COLCHEN, M., ROLIN, P. (1996). Le Complexe des Essarts-Mervent dans la transversale vendeenne de la chaine hercynienne. Essarts-Mervent Complex in the Vendee transverse of the Hercynian Geosyncline. *Réunion Annuelle des Sciences de la Terre* 7, 51 p.
- COPELAND, P., Parrish, R.R., Harrison T.M. (1988). Identification of inherited Pb in monazite and its implications for U-Pb systematics. *Nature*, 333, 760-763.
- CORRY, C.E. (1988). Laccoliths; Mechanics of emplacement and growth. *Geol. Soc. of Am. Special Paper*, **220**, 110 p.
- COSTA, S. (1992). East-West diachronism of the collisional age in French Massif Central: implications for the European variscan orogen. – *Geodyn. Acta*, **5**, 51-68.
- COSTA, S., MALUSKI, H. & LARDEAU, J.-M. (1993). ⁴⁰Ar-³⁹Ar chronology of Variscan tectonometamorphic events in an exhumed crustal nappe: The Monts du Lyonnais complex (Massif Central, France), *Chem. Geol.*, **105**, 339-359.
- COSTA, S., REY, P. & TODT, W. (1993). Late Carboniferous age of lower-crustal granulite-facies xenoliths in the eastern French Massif Central: Implications for post-thickening crustal processes. *Terra Abstr.*, 5, 233.
- COURRIOUX, G. (1983). Exemple de mise en place d'un leucogranite pendant le fonctionnement d'une zone de cisaillement : le granite hercynien de Puentedeume (Galice, Espagne). *Bull. Soc. Géol. Fr.*, **125**, 301-307.
- CRESPO-BLANC, A. & OROZCO, M. (1991). The boundary between the Ossa - Morena and South portuguese Zones (Southern Iberian Massif): a major suture in the european hercynian chain. - *Geologische Rundschau*, **80/3**, 691-702.
- CUNEY, M. & STUSSI, J.M. (1989). Synthèse géochimique sur les granites du Millevaches. Détermination de leur potentialité uranifère. Rapport au <u>CEA</u>, 64 p + annexes, dont une carte géochimique en couleur du Millevaches au 1/100 000°).
- CUNEY, M., BROUAND, M. & STUSSI, J.M. (2001). Le magmatisme hercynien en Vendée. Corrélations avec la socle du Poitou et l'ouest du Massif Central français, *Géologie de la France*, n°1-2, 117-142.
- CUNEY, M., FRIEDRICH, M., BLUMENFELD, P., BOURGUIGNON, A., BOIRON, M.-C., VIGNERESSE, J.-L. & POTY, B. (1990). – Metallogenesis in the French part of the Variscan

orogen. Part I: U preconcentrations in pre-Variscan and Variscan formations - a comparison with Sn, W and Au. - Tectonophysics, **177**, 39-57.

- CUNNINGHAM, W.D., WINDLEY, B.F., DORJNAMJAA, D., BADAMGAROV, G. & SAANDAR, M. (1996). – A structural transect across the Mongolian western Altai: active transpressional mountain building in central Asia, *Tectonics*, 15, 142-156.
- DAVIDSON, C., HOLLISTER, L.S., & SCHMID, S.M. (1992). Role of melt in the formation of a deep-crustal compressive shear zone: the MacLaren Glacier metamorphic belt, South Central Alaska. *Tectonics*, 11, 348-359.
- DAVIDSON, C., SCHMID, S.M. & Hollister, L.S. (1994). Role of melt during deformation in the deep crust, *Terra Nova*, 6, 133-142.
- DELOR, C., LEYRELOUP, A., BODINIER, J.-L. & BURG, J.-P. (1986). – Découverte d'éclogites à glaucophane dans la klippe de Najac (Massif Central français): nouveaux témoins d'un stade de haute pression dans la chaîne de collision varisque. C. R. Acad. Sci., Paris, **302**, 739-744.
- DEMAY, A. (1948). Tectonique anté-stéphanienne du Massif Central. Mem. Serv. Carte Géol., 37, p 259.
- DINGLEY, D.J. & FIELD, D.P. (1997). Electron backscatter diffraction and orientation imaging microscopy. *Materials Science and Technology*, 69-78.
- D'LEMOS, R.S., BROWN, M. & STRACHAN, R.A. (1992). Granite magma generation, ascent and emplacement within a transpressional orogen. J. Geol. Soc. London, 149, 487-496.
- DONNOT, M. (1965). Micaschistes et granites du plateau de Millevaches. Ann. Fac. Sci. Univ. Clermont-Ferrand, 27, 139 p.
- DOWNES, H. & DUTHOU, J.L. (1988). Isotopic and trace-element arguments for the lower-crustal origin of Hercynian granitoids and pre-Hercynian orthogneisses, Massif Central (France), Chem. Geol., 68, 291-308.
- DOWNES, H., DUPUY, C. & LEYRELOUP, A.F. (1990). Crustal evolution of the Hercynian belt of Western Europe: Evidence from lower crustal granulitic xenoliths (French Massif Central). *Chem. Geol.*, 83, 209-231.
- DOWNES, H., SHAW, A., WILLIAMSON, B. J. & THIRLWALL, M. F. (1997). – Hercynian granodiorites and monzogranites, Massif Central, France. *Chem. Geol.*, **136**, no.1-2, 99-122.
- DUBUISSON, G., MERCIER, J. C. C., GIRARDEAU, J. & FRIZON, J. Y. (1989). – Evidence for a lost ocean in Variscan tarranes of the western Massif Central (France). *Nature.* 337, 23, 729-732.
- DUCROT, J., LANCELOT, J.R. & MARCHAND, J. (1983). Datation U-Pb sur zircon de l'éclogite de la Borie (Haut-Allier, France) et conséquences sur l'évolution anté-hercynienne de l'Europe occidentale. - *Earth Planet. Sci. Lett.*, **62**, 385-394
- DUGUET, M. (2003). Evolution tectono-métamorphique des unites de type Thiviers-Paysac dans la chaîne hercynienne française (Massif Cental et Vendée). Univ. D'Orléans, 255.
- DUMAS, E., FAURE, M. & PONS, J. (1990). L'architecture des plutons leucogranitiques du plateau d'Aigurande et l'amincissement crustal tardi-varisque. - C. R. Acad. Sci., Paris, 310, Ser. II, 1533-1539.
- DUTHOU, J.-L. & FLOC'H, J.P. (1989). Evolution tectonométamorphique du Massif Central. Réunion Extraordinaire de la Société géologique de France, *Bull. Soc. Geol. Fr.*, **4**, 667-693.

- DUTHOU, J.-L. (1977). Chronologie Rb-Sr et géochimie des granitoïdes d'un segment de la chaîne varisque. Relations avec le métamorphisme: le Nord-Limousin. Thèse 3^{ème} cycle, Université de Clermont-Ferrand, Annales Scientifiques de l'Université de Clermont-Ferrand, 63, 290 p.
- DUTHOU, J.-L., CHENEVOY, M. & GAY, M. (1994). Age Rb-Sr Dévonien moyen des migmatites à cordierite des Monts du Lyonnais (Massif central Français). - C. R. Acad. Sci., Paris, Ser. II, **319**, 791-796.
- ECHTLER, H. & MALAVIEILLE, J. (1990). –Extensional tectonics, basement uplift and Stephano-Permian collapse basin in a late Variscan metamorphic core complex (Montagne Noire, southern Massif Central). C. R. Acad. Sci., Paris, Tectonophysics, 177, n°1-3, 125-138.
- EGGLETON, R. A. & BUSECK, P.R. (1980). The orthoclasemicrocline inversion: a high-resolution transmission electron microscope study and strain analysis. *Contrib. Mineral. Petrol.*, **74**, 123-133.
- ENGLAND , P.C. & THOMPSON, A.B. (1984). Pressure-temperaturetime paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust. – J. Petrol., 25, 4, 894-928.
- ENGLAND , P.C. & THOMPSON, A.B. (1986).- Some thermal and tectonic models for crustal melting in continental collision zones. In: Collision tectonics. – Collision tectonics. – *Geol. Soc. Spec. Publ.*, **19**, 83-94.
- FAURE, M. (1989). L'amincissement crustal de la chaîne varisque à partir de la déformation ductile des leucogranites du Limousin. - C. R. Acad. Sci., Paris II, **309**, 1839-1845.
- FAURE, M., (1995). Late Carboniferous extension in the Variscan French Massif central. - *Tectonics*, 14, 132-153.
- FAURE, M. & BECQ-GIRAUDON, (1993). Sur la succession des épisodes extensifs au cours du désépaississement carbonifères du Massif Central français. - C. R. Acad. Sci., 316, 967-973.
- FAURE, M. & CARTIER, C. (1998). Deformations ductiles polyphasees dans l'antiforme orthogneissique de St-Clement-de-la-Place (unite de Lanvaux, Massif armoricain). Polyphase ductile deformation in the Saint Clement de la Place orthogneiss antiform, Lanvaux Formation, Armorican Massif, C. R. Acad. Sci., Paris, Ser. II, 326, n°11, 795-802.
- FAURE, M. & PONS, J. (1991). Crustal thinning recorded by the shape of the Namurian-Wesphalian leucogranite in the Variscan belt of the northwest Massif Central, France. - *Geology*, 19, 730-733.
- FAURE, M., CHARONNAT, X. & CHAUVET, A. (1999). Schéma structural et évolution tectonique du domaine paraautochtone cévenol de la chaîne hercynienne (Massif Central français). C. R. Acad. Sci., Paris, 328, 401-407.
- FAURE, M., LELOIX, C. & ROIG, J.-Y. (1997). L'évolution polycyclique de la chaîne hercynienne. - Bull. Soc. Géol. Fr., 168, 695-705.
- FAURE, M., PROST, A. & LASNE, E. (1990). Déformation ductile extensive d'âge Namuro-Wesphalien dans le plateau d'Aigurande, Massif Central Français. - Bull. Soc. Geol. Fr., 8, 189-197.
- FAURE, M., MONIE, P., PIN, C., MALUSKI, H. & LELOIX, C. (2002). – Late Visean thermal event in the northern part of the French Massif Central : new 40Ar/39Ar and Rb-Sr isotopic constraints on the Hercynian syn-orogenic extension, *Int. J. Earth Sciences*, **91**, 53-75.

- FEIX, I. (1988). Etude géologique dans le Sud-Millevaches : lithologie, géochimie, métamorphisme et structure des séries situées au Sud de la vallée de la Dordogne. Place dans le Massif central français occidental. Thèse de 3^e cycle, Université d'Orléans, 2 vol., 534p.
- FERRY, J.M. & SPEAR, F.S. (1978). -Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. *Contrib. Mineral. Petrol.*, **66**, 113-117.
- FEYBESSE, J.L. (1981). Tectonique et microtectonique de la region de Laroquebrou. Rôle de la déformation ductile et évolution du Sillon Houiller. *Thèse 3^{ème} cycle*, Univ. Clermont-Ferrand, 277p..
- FLOC'H J.-P., (1974). Données nouvelles sur la lithologie et les déformations dans la partie occidentale de l'Arc du Thaurion (Limousin, Massif-Central francais). New data on the lithology and deformation in the western part of the Thaurion Arc, Limousin, French Central Massif. *Reunion* Annuelle des Sciences de la Terre, n°2, 175 p.
- FLOC'H, J.-P., JOUBERT, J.M., CONSTANS, J. & MAURIN, G. (1993). – Notice explicative de la feuille au 1/50000 de Bellac. - Orléans: B.R.G.M., 78 p.
- FLOC'H, J.-P. (1983). La série métamorphique du Limousin central: une traverse de la branche ligérienne de l'orogène varisque, de l'Aquitaine à la zone broyée d'Argentat (Massif Central Français). - Thèse d'Etat, Univ. Limoges, 445 p.
- FOURCADE, S. (1981). Géochimie des granitoïdes, thèse de l'Université de Paris 7, 189p.
- FRANCE-LANORD, C. & LE FORT, P. (1988). Crustal meting and granite genesis during the Himalayan collision orogenesis. *Trans. R. Soc. Edinburgh: Earth Sci.***79**, 183-196.
- FRANKE, W. (1984). Late events in the tectonic history of the Saxo-Thuringian Zone. In: Variscan tectonics of the North Atlantic region. Blackwell Special Publication, 33-45.
- FRANKE, W. (1989). Tectonostratigraphic units in the Variscan belt of central Europe. – *Geol. Soc. of Am.*, Spec. Paper, 230, 67-90.
- FYFE, W.S. (1973). The generation of batholiths. *Tectonophysics*, **17**, 273.
- GAPAIS, D. & BARBARIN, B. (1986). Quartz fabric transition in a cooling syntectonic granite (Hermitage massif, France). -*Tectonophysics*, **125**, n°4, 357-370.
- GARDIEN, V., LARDEAUX, J. M. & MISSERI, M. (1988). Les peridotites des Monts du Lyonnais (M.C.F.); temoins privilegies d'une subduction de lithosphere paleozoique. The Monts du Lyonnais peridotites, Central Massif, France; a record of Paleozoic lithospheric subduction. C. R. Acad. Sci., Ser. 2, Mecanique, Physique, Chimie, Sciences de l'Univers, Sciences de la Terre, **307**, no.19, 1967-1972.
- GÉBAUER, H., BERNARD-GRIFFITHS, J. & GRÜNENFELDER, M. (1981). – U/Pb zircon and monazite dating of maficultramafic complex and its country rocks. Example: Sauviat-sur-Vige, French Massif Central, Contrib. Mineral. Petrol., 76, 292-300.
- GEBELIN, A., MARTELET, G., BRUNEL, M., FAURE, M. & ROSSI, P. (2004). – Late Hercynian leucogranites modelling as deduced from new gravity data: the example of the Millevaches massif, Massif Central, France. Bull. Soc. Géol. Fr., 175, n°3, 239-248.
- GÉBELIN, A., MARTELET, G., CHEN, Y., BRUNEL, M. & FAURE, M. (2004). – Highlighting the structure of late Variscan leucogranites in the French Massif Central by new AMS, gravity and structural results from the Millevaches massif, J. Struct. Geol., accepted.

- GIRARDEAU, J., DUBUISSON, G. & MERCIER, J.-C. (1986). Cinématique de mise en place des ophiolites et nappes cristallophylienne du Limousin, Ouest du Massif Central français. *Bull. Soc. Géol. Fr.*, Ser. II, **8**, 5, 849-860.
- GLEIZES, G., (1992). Structure des granites hercyniens des Pyrénées de Mont-Louis-Andorre à la Maladeta. Thèse de Doctorat, Université Paul-Sabatier, Toulouse, 259p.
- GLEIZES, G., LEBLANC, D. & BOUCHEZ, J.L. (1997). –Variscan granites of the Pyrenees revisited: their role as syntectonic markers of the orogen. *Terra Nova*, **9**, 38-41.
- GOWER, R.J.W. & SIMPSON, C. (1992). Phase boundary mobility in naturally deformed, high-grade quartzofeldspathic rocks: evidence for diffusional creep. J. Struct. Geol., 14, 301-313.
- GRANT, J.A. (1985). Phase equilibria in low-pressure partial melting of politic rocks. Amer. J. Sci., 285, 409-435.
- GREEN, T.H. (1976). Experimental generation of cordierite- or garnetbearing granitic liquids from a pelitic composition, Geology (Boulder), v.4, 2, 85-88.
- GROLIER, J. & LETOURNEUR, J. (1968). L'évolution tectonique du grand Sillon Houiller du Massif Central français. Proc. 23 rd. Int. Geol. Cong., I, 107-116.
- GROLIER, J. (1971). Contribution à l'étude géologique des séries cristallophyliennes inverses du Massif central français : la série de la Sioule. *Mémoire du B.R.G.M.*, 64, 163p.
- GUERANGE–LOZES, J. & ALSAC, C. (1986). Les nappes Varisques de l'Albigeois cristallin ; lithostratigraphie, volcanisme et déformations. *Géologie de la France*.
- GUILLOT, P.L. (1981). Les séries métamorphiques du Bas Limousin : de la vallée de l'Isle à la vallée de la Vézère, le socle en bordure du Bassin aquitain. Thèse d'état, Université d'Orléans, 391p.
- GUILLOT, P.L., ASTRUC, J.G., FEIX, I., HUMBERT, L., LEFAVRAIS-HENRI, M., LEFAVRAIS-RAYMOND,
 A., MICHARD, A., MONIER, G., ROUBICHOU, P. (1992). – Notice de la carte géologique au 1/50000 : Feuille de Saint-Céré (810). Orléans : B.R.G.M., 76p.
- GUILLOT, S. (1993). Le granite du Manaslu (Nepal Central) marqueur de la subduction et de l'extension intracontinentales Himalayennes.
- GUILLOT, S., PÊCHER, A. & LE FORT, P. (1995). Contrôles tectoniques et thermiques de la mise en place des leucogranites himalayens. C. R. Acad. Sci., Paris, 320, 55-61.
- GUINEBERTEAU, B. (1984). -Le massif granitique de Mortagne sur Sèvre (Vendée): structure, gravimétrie, mise en place, distribution de U/Th/K. Thèse de 3^{ème} cycle, Nantes, 178p.
- GUINEBERTEAU, B., BOUCHEZ, J.-L. & VIGNERESSE, J.-L. (1987). – The Mortagne granite pluton (France) emplaced by pullapart along a shear zone: structural and gravimetric arguments and regional implication. *Geol. Soc. Am. Bull.*, 99, 763-770.
- GUMIAUX, C., GAPAIS, D., BRUN, J.P., CHANTRAINE, J. & RUFFET G. (2004). – Tectonic history of the Variscan Armorican Shear belt (Brittany, France). *Geodyn. Acta.*
- HAMES, W.E. & CHENEY, J.T. (1997). On the loss of ⁴⁰Ar* from muscovite during polymetamorphism. Geochim. Cosmochim. Acta, 61, 3863-3872.
- HAMES, W.E. and BOWRING, S.A. (1994). An empirical evaluation of the argon diffusion geometry in muscovite, *Earth Planet. Sci. Lett.*, **124**, no.1-4, pp.161-169.

- HAMMER, S. (1939). Terrain corrections for gravimeter stations. *Geophysics*, 4, 184-194.
- HANMER, S.K., LE CORRE, C. & BERTHE, D. (1982). The role of Hercynian granites in the deformation and metamorphism of Brioverian and Paleozoic rocks of central Brittany. J. Geol. Soc. London, 139, 85-93.
- HARGRAVES, R.B., JOHNSON, D. & CHAN, C.Y. (1991). Distribution anisotropy; the cause of AMS in igneous rocks ? *Geophysical research Letters*, 18, n°12, 2193-2196.
- HARRISON, T. M., DUNCAN, I. & Mc DOUGALL, (1985). Diffusion of 40Ar in biotite: temperature, pressure and compositional effects, *Geochim. Cosmochim. Acta*, 49, 2461-2468.
- HEIDELBACH, F., KUNZE, K. & WENK, H.R. (2000). Texture analysis of a recrystallised quartzite using electron diffraction in the scanning electron microscope, J. Struct. Geol., 22, 91-104.
- HIBBARD, M.J. (1979). Myrmekites as a marker between preaqueous and postaqueous phase saturation in granitic systems. *Geol. Soc. Am. Bull*, **90**, 1047-1062.
- HIBBARD, M.J. (1987). Deformation of incompletely crystallized magma systems: granitic gneisses and their tectonic implications. J. Geol., 95, 543-561.
- HIPPERT, J.F., ROCHA, A., LANA, C., EGYDIO-SILVA, M., TAKESHITA, T. (2001). – Quartz plastic segregation and ribbon development in high-grade striped gneisses. - J. Struct. Geol, 23, 67-80.
- HODGES, K.W. & BOWRING, S.A. (1995). ⁴⁰Ar/³⁹Ar thermochronology of isotopically zoned micas: Insights from the southwestern USA Proterozoic orogen. *Geochim. Cosmochim. Acta*, **59**, 3205-3220.
- HOGAN, J.P. & GILBERT, M.C. (1995). The A-type Mount Scott granite sheet : importance of crustal magma trap. *Journal Geophysical Research*, 100, 15792-15799.
- HOLDAWAY, M.J. & LEE, S.M. (1977). Fe-Mg cordierite stability in high-grade politic rocks based on experimental, theoretical, and natural observations. Contrib. Mineral. Petrol., 63, 175-198.
- HOLLAND, T.J.B. & POWELL, R. (1998). An internally consistent thermodynamic data set for phases of petrological interest. *J. metamorphic Geol.*, 16, 309-343.
- HOLLIGER, P., CUNEY, M., FRIEDRICH, M. & TURPIN, L. (1986). -Age carbonifère de l'Unité de Brâme du complexe granitique peralumineux de St Sylvestre (NO du Massif Central) définipar les données isotopiques U-Pb sur zircon et monazite. C. R. Acad. Sci., Ser. 2, 303, 1309-1314.
- HOLM, D.K. (1995). Relation of deformation and multiple intrusion in the Death Valley extended region, California, with implications for magma entrapment mechanism. J. Geophys. Res., 100, 10495-10505.
- HROUDA, F. (1982). Magnetic anisotropy of rocks and its application in geology and geophysics. *Geophysical Surveys*, 5, 37-82.
- HUPPERT, H.E. & SPARKS, R.S.J. (1988). The generation of granitic magmas by intrusion of basalt into continental crust. J. Petrol., 29, 599-624.
- HUTTON, D.H.W. & REAVY, R. J. (1992). Strike-slip tectonics and granite petrogenesis. *Tectonics*, **11**, 960-967.
- HUTTON, D.H.W. (1982). A tectonic model for the emplacement of the Main Donegal granite, NW Ireland. J. Geol. Soc. London, 139, 615-631.

- HUTTON, D.H.W. (1988). Granite emplacement mechanisms and tectonic controls: inferences from deformation studies. *Trans. R. Soc. Edin.*: Earth Sci., **79**, 245-255.
- HUTTON, D.H.W. (1996). The 'space problem' in the emplacement of granite. *Episodes*, 19, 114-119.
- INGRAM, G.M. & HUTTON, D.H.W. (1994). The Great Tonalite Sill: Emplacement into a contractional shear zone and implications for Late Cretaceous to early Eocene tectonics in southeastern Alaska and British Columbia. *Geol. Soc. Am. Bull*, **106**, 715-728.
- JACKSON, M.D. & POLLARD, D.P. (1988). The laccolith-stock controversy: New results from the southern Henry Mountains, Utah. Geol. Soc. Am. Bull, 100, 117-139.
- JAFFREY, A.H., FLYNN, K.F., GLENDENIN, L.E., BENTLEY, W.C., ESSLING, A.M. (1971). – Precision measurement of halflives and specific activities of 235U and 238U, *Phys. Rev.* C4, 1889-1906.
- JELINEK, V. (1978). Statistical processing of anisotropy of magnetic susceptibility measured on groups of specimens. *Studia Geophyzika et Geodetika*, 22, 50-62.
- JELINEK, V., (1981). Characterization of the magnetic fabric of rocks. *Tectonophysics*, **79**, 563-567.
- JESSEL, M.W. (1987). Grain-boundary migration microstructures in a naturally deformed quartzite. J. Struct. Geol., 9, 1007-1014.
- JONES, D.L., GRAYMER, R., WANG, C., MCEVILLY, T.V. & LORNAX, A. (1994). – Neogene transpressive evolution of the California Coast Ranges. *Tectonics*, 13, 561-574.
- JOVER, O. & BOUCHEZ, J.L. (1986). Mise en place syntectonique des granitoides de l'Ouest du Massif Central francais. Syntectonic emplacement of granitoids in the French western Massif Central, C. R. Acad. Sci., Serie 2, Mecanique, Physique, Chimie, Sciences de l'Univers, Sciences de la Terre, v..303, 10, .969-974.
- JOVER, O. (1986). Les massifs granitiques de Guéret et du nord-Millevaches. Analyse structurale et modèle de mise en place (Massif Central Français). - Thèse, Univ. Nantes, 233 p.
- JUNG, J. (1954). Problèmes géologiques dans les vieux terrains du Massif Central français. – Ann. Herbert et Haug., Fac. Sci. Paris VIII, 235, 62p.
- KORNPROBST, J. & POULAIN, D. (1972). Relations structurales entre les "micaschists supérieurs" et les "micaschists inférieurs" dans la region de St Geniez d'Olt (Aveyron). C. R. Acad. Sci., 274, 3511-3514.
- KOSSMAT, F. (1927). Gliederung des Varistischens Gebirgsbanes. -Abh. Sachs. Geol. Landesamtes, 1, 39.
- KOUKOUVELAS, I., PE-PIPER, G. & PIPER, D. J. W. (2002). The role of dextral transpressional faulting in the evolution of an early Carboniferous mafic-felsic plutonic and volcanic complex : Cobequid Highlands, Nova Scotia, Canada. *Tectonophysics*, 348, 219-246.
- KRIEGER LASSEN, N.C. (1996). The relative precision of crystal orientations measured from electron backscattering patterns. J. Microsc., 181, 72-81.
- KRUHL, J.H. & PETERNELL, M. (2002). The equilibration of highangle grain boundaries in dynamically recrystallized quartz: the effect of crystallography and temperature. J. Struct. Geol., 24, 1125-1137.
- LAFON, J.M., LANCELOT, J.R. & MERCIER, J.C.C. (1985). Datation U-Pb de l'orthogneiss de Meuzac; sa signification. U-Pb dating of the Meuza Orthogneiss; significance. Programme geologie profonde de la France; deuxieme

phase d'investigatio, 1984-1985. Documents - B.R.G.M., 95.3, 129-139.

- LAGARDE, J.-L., BRUN, J.-P. & GAPAIS, D. (1990). Formation des plutons granitiques par injection et expansion latérale dans leur site de mise en place: une alternative au diapirisme en domaine épizonal. C. R. Acad. Sci., Paris, **310**, 1109-1114.
- LAMEYRE, J. (1966). Leucogranites et muscovitisation dans le massif Central Français. - Thèse, Univ. de Clermont-Ferrand, 264 p.
- LAMEYRE, J. (1966). Leucogranites et muscovitisation dans le massif Central Français. - Thèse, Univ. de Clermont-Ferrand, 264 p.
- LAMEYRE, J. (1982). Contribution à la géologie du Limousin : arguments pour des fenêtres ouvertes dans un grand charriage par des diapirs leucogranitiques. C. R. Acad. Sci., 2949, 1237-1240.
- LAMEYRE, J. (1984). Contribution a la geologie du Limousin; (II), Les leucogranites fini-carboniferes et le modele himalayen. Contribution to the geology of Limousin, France; (II), The Upper Carboniferous leucogranites and the Himalayan model, C. R. Acad. Sci., v.298, .20, 895-900.
- LARDEAUX, J.M. & DUFOUR, E. (1987). Champs de déformations superposées dans la chaîne Varisque. Exemple de la zone Nord des Monts du Lyonnais (Massif Central français). C. R. Acad. Sci., 305, 61-64.
- LARDEAUX, J.-M., LEDRU, P., DANIEL, I., DUCHENE, S. (2001). -The Variscan French Massif Central: a new addition to the ultra-high pressure metamorphic `club': exhumation processes and geodynamic consequences. *Tectonophysics*, 332, 143-167.
- LE BRETON, N. & THOMPSON, A.B., 1988. Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. *Contrib. Mineral. Petrol.*, 99, 226-237.
- LE CARLIER DE VESLUD, C., ALEXANDRE, P., CUNEY, M., RUFFET, G., CHEILLETZ, A. & VIRLOGEUX, D. (2004). – Thermochronology ⁴⁰Ar/³⁹Ar et évolution thermique des granitoïdes méso-varisques du complexe plutonique de Charroux-Civray (Seuil du Poitou). *Bull. Soc. géol. Fr.*, **175**, n°2, 95-106.
- LE CARLIER DE VESLUD, C., CUNEY, M., ROYER, J.J., FLOC'H, J.P., AMEGLIO, L., ALEXANDROV, P., VIGNERESSE, J.L., CHEVREMONT, P. & ITARD, Y. (2000). – Relationships between granitoids and mineral deposits: three-dimensional modelling of the Variscan Limousin Province (NW French Massif Central). *Trans. R. Soc. Edinburgh: Earth Sci.*, **91**, 283-301.
- LE CORRE, C., AUVRAY, B., BALLEVRE, M. & ROBARDET, M. (1991). – Le Massif Armoricain. *Sciences Géologiques*, 44, 31-103.
- LE FORT, P. (1981). Manaslu leucogranite : a collision signature of the Himalaya, a model for its genesis and emplacement, *Journal of Geophysical Research* B86, 10545-10568.
- LE FORT, P. CUNEY, M., DENIEL, C., France-LANORD, C., SHEPPARD, S.M.F., UPRETI, B.N. & VIDAL, P. (1987).
 - Crustal generation of the Himalayan leucogranites, *Tectonophysics*, v.134, 1-3, 39-57.
- LEDRU, P. & AUTRAN, A. (1987). L'édification de la chaîne Varisque dans le Limousin. Rôle de la faille d'Argentat à la limite Limousin-Millevaches.- Prog. G.P.F., Doc. B.R.G.M., Orléans, 87-106.
- LEDRU, P., AUTRAN, A. & SANTALLIER, D. (1994). Lithostratigraphy of Variscan terranes in the French Massif Central : a basis for paleogeographical reconstitution. In:

"Pre-mesozoïc geology in France and related areas." Keppie J.D. (Ed.), Springer Verlag.

- LEDRU, P., AUTRAN, A. (1987). L'édification de la chaîne varisque dans le Limousin, rôle de la faille d'Argentat à la limite Limousin-Millevaches. - *In:* Géol. Prof. France. Thème 3 : Chevauchements synmétamorphes varisques du Limousin. *Document du BRGM*, **140**, 51-91.
- LEDRU, P., LARDEAUX, J.-M., SANTALLIER, D., AUTRAN, A. QUENARDEL, J.-M., FLOC'H, J.-P., LEROUGE, G., MAILLET, N., MARCHAND, J. & PLOQUIN, A. (1989). – Où sont les nappes dans le Massif central français ? *Bull. Soc. Géol. Fr.*, **8**, 605-618.
- LELOIX, C., FAURE, M. & FEYBESSE, J.L. (1999). Hercynian polyphase tectonics in the Northeast French Massif Central; the closure of the Brevenne Devonian-Dinantian rift. *Int. J. Earth Sci.*, **88**, n°.3, 409-421.
- LELOUP, P.H., RICARD, Y., BATTAGLIA, J. & LACASSIN, R. (1999). – Shear heating in continental strike-slip shear zones: model and field examples, *Geophys. J. Int.*, **136**, 19-40.
- LEYRELOUP, A.F. (1992). La croûte métamorphique du Sud de la France (Massif Central, Languedoc). Géologie des surfaces et des enclaves remontées par les volcans Cénozoïques : Le rôle des intrusions mafiques basi-crustales dans la croûte inférieure. *Thèse de doctorat d'état. Université Montpellier II.* 2t, 557 p.
- LEYRELOUP, A.F., DUPUY, C. & ANDRIAMBOLOLONA, R. (1977).
 Catazonal xenoliths in French Neogene volcanic rocks: Contribution of the lower crust. Part 2: chemical composition and consequences on the evolution of the french Massif Central Precambrian crust. *Contrib. Mineral. Petro.*, 62, 283-300.
- LILLIE, F. (1974). Ana lyse tectonique et fracturation des gisements uranifères de Vendée. Thèse de 3^{ème} cycle, Strasbourg 101p.
- LISTER, G., PATERSON, M. & HOBBS, B. (1978). The simulation of fabric development in plastic deformation and its application to quartzite: the model, *Tectonophysics*, 45, 107-158.
- LLOYD, G.E., SCHMIDT, N.H., MAINPRICE, D. & PRIOR, D.J. (1991). – Crystallographic textures, *Mineralogical Magazine*, **55**, 331-345.
- LUDWIG, K.R. (1993). Pbdat: a computer program for processing Pb-U-Th isotope data, version 1.24, *United States Geological Survey open-file report*, 88-542.
- LUDWIG, K.R. (2001). User manual for Isoplot/Ex rev. 2.49. A geochronological toolkit for Microsoft Excel., *Berkeley Geochronology Center Special Publication*, 1a, 1-56.
- MAILLET, N., PIBOULE, M., SANTALLIER, D. & CABANIS, B. (1984). – Diversité d'origine des ultrabasites dans la série métamorphique du Limousin., Doc. BRGM, 81-3, 1-24.
- MAINPRICE, D., BOUCHEZ, J.-L., BLUMENFELD, P. & TUBIA, J.M. (1986). – Dominant c slip in naturally deformed quartz: Implications for dramatic plastic softening at high temperature. Geology, 14, 819-822.
- MAINPRICE, D.H. & PATERSON, M.S. (1984). Chemical effects of water on the strength and deformation of crustal rocks, J. Geophys. Res.. B, v..89, 6, 4257-4269.
- MALAVIEILLE, J. (1993). Late orogenic extension mountain belts insights from the Basin and Range and the late paleozoïc Variscan belt. *Tectonics*, **12**, n°5, 1115-1130.
- MALAVIEILLE, J., GUILLOT, S., COSTA, S., LARDEAUX, J.M. & GARDIEN, V. (1990). Collapse of the thickened

Variscan crust in the french Massif Central: Mont du Pilat extensional shear zone and St. – Etienne carboniferous basin. *Tectonophysics*, **177**, 139-149.

- MALUSKI, H. (1985). Method argon 39-argon 40. Principes et applications aux minéraux des roches terrestres. In : Roth E., Poty B. (Eds.), Méthodes de datation par les phénomènes nucléaires naturels. Masson, 341-372.
- MAREST, D. (1985). Comparaison des evolutions dynamiques des basins houillers limniques du Limousin: mise en place de modèles de dépôts. Thèse 3^{ème} cycle et Mém. Sc. Terre Univ. Curie, Paris, n° 85-52, 282 p..
- MARTELET, G., CALCAGNO, Ph., GUMIAUX, C., TRUFFERT, C., BITRI, A., GAPAIS, D. & BRUN, J.P. (2004). – Integrated 3D geophysical and geological modelling of the Hercynian Suture Zone in the Champtoceaux area (South Brittany, France). *Tectonophysics*, in press.
- MARTELET, G., DEBEGLIA, N., & TRUFFERT, C. (2002). Homogénéisation et validation des corrections de terrain gravimétriques jusqu'à la distance de 167 km sur l'ensemble de la France. - C. R. Geosciences, 334, 449-454.
- MARTELET, G., DIAMENT M. & TRUFFERT C. (1999). Un levé gravimétrique détaillé dans les Cévennes : apport à l'imagerie crustale (programme GéoFrance3D - Massif Central). C. R. Acad. Sci., Paris, **328**, 727-732.
- MATTAUER, M. & ETCHECOPAR, A. (1976). Argumentation en faveur de chevauchements de type himalayen dans la chaîne hercynienne du Massif Central français. In : « *Coll. Int. C.N.R.S.* », Sèvres, France, 261-267.
- MATTAUER, M. (1974). Existe t-il des chevauchements de type himalayen dans la chaîne hercynienne? - Coll. Int. C.N.R.S., 268, 261-267.
- MATTAUER, M. (1986). Intracontinental subduction, crust mantle decollement and crustal-stacking wedge in the Himalayas and other collision belts. Himalayan Tectonics, Coward & Riess (eds), *Geol. Soc. Spec. Publ.*, **19**, 37-50.
- MATTAUER, M., BRUNEL, M. & MATTE, P. (1988). Failles normales ductiles et grands chevauchements. Une nouvelle analogie entre l'Himalaya et la chaîne hercynienne du Massif Central français. C.R. Acad. Sci., Fr., Paris, 306, 671-676.
- MATTE, P. (1986). La chaîne varisque parmi les chaînes paléozoïques péri-atlantiques, modèle d'évolution et position des grands blocs continentaux au Permo-carbonifère. *Bull. Soc. Géol. Fr.*, **8**, 9-24.
- MATTE, P. (1991). Accretionary history and crustal evolution of the Variscan Belt in western Europe. *Tectonophysics*, **196**, 309-339.
- MATTE, P. (1998). Continental subduction and exhumation of HP rocks in Paleozoic belts : Uralides and Variscides. *Journal* of the Geological Society of Swedn (GFF), Special Issue : Tectonics and General History of Phanerozoic Orogens, **120**, 209-222.
- MATTE, P. (2001). The Variscan collage and orogeny (480-290 Ma) and the tectonic definition of the Armorica microplate: a review. *Terra Nova*, **13**, 122-128.
- MATTE, P. (2002). Variscides between the Appalachians and the Urals: Similarities and differences between Paleozoic subduction and collision belts. *Geol. Soc. of Am.*, 364, p. 239-251.
- MATTE, P. & HIRN, A. (1988). Seismic signature and tectonic cross section of the Variscan Belt in Western France. *Tectonics*, 72, 141-155.

- MATTE, P. & MATTAUER, M. (2003). -La chaine hercynienne reconstituee. The Hercynian Range reconstructed. *Pour la Science*, **311**, 58-63.
- MATTE, P., MALUSKI, H. & ECHTLER H. (1985). Cisaillements ductiles Varisques vers l'Est-Sud-Est dans les nappes du Waldviertel (Sud-Est du Massif de Bohème, Autriche). Données microtectoniques et radiométriques ⁴⁰Ar/³⁹Ar. C. R. Acad. Sci., **301**, 721-724.
- MATTE, P., MALUSKI, H., RAJLICH, P. & FRANKE, W. (1990). Terrane boundaries in the Bohemian Massif. Result of a large scale variscan shearing. *Tectonophysics*, **177**, 151-170.
- Mc CLAY, K. & BONORA, M. (2001).- Analog models of restraining stopovers in strike-slip fault systems, *AAPG Bulletin*, 85, 233-260.
- Mc DOUGALL, I. & HARRISON, T.M. (1999). Geochronology and thermochronology by the 40Ar/39Ar method. Oxford University Press, New York, USA, 212 pp.
- MENOT, R.P., PEUCAT, J.J., SCARENZI, D. & PIBOULE, M. (1988).
 496 M.y. age of plagiogranites in the Chamrousse ophiolite complex (external crystalline massifs in the French Alps): Evidence of lower Paleozoïc oceanisation. *Earth Planet. Sci. Lett.*, 88, p. 82-92.
- MERCIER, J.C.C, GIRARDEAU, J., PRINZHOFER, A. & DUBUISSON, G. (1985). – Les complexes ophiolitiques du Limousin; structure, petrologie et geochimie. The ophiolitic complexes of Limousin; structure, petrology and geochemistry. Programme geologie profonde de la France; deuxieme phase d'investigatio, 1984-1985. Documents – B.R.G.M., 95.3, 35-48.
- MERCIER, L., JOHAN, V., LARDEAUX, J.-M. & LEDRU, P. (1992).
 Evolutions tectono-métamorphiques des nappes de l'Artense (Massif Central français) : nouveaux marqueurs de la collision dans la chaîne varisque. *Bull. Soc. Géol. Fr.*, 163, 641-649.
- MERCIER, L., LARDEAUX, J.M. & DAVY, P. (1991). On the tectonic significance of retrograde P-T-t paths in eclogites of the french Massif Central. *Tectonics*, 10, n°1, 131-140.
- MEZURE, J.-F., (1980). Etude structurale des granites d'Egletons, Meymac et Ussel (Nord). Contribution à l'estimation quantitative de la déformation. Pétrographie et géochimie. Thesis of speciality, Univ. Clermont-Ferrant, 191p.
- MOLLIER, B. & BOUCHEZ, J.-L. (1982). Structuration magmatique du complexe granitique de Brâme-St Sylvestre-St Goussaud (Limousin, Massif Central français). C.R. Acad. Sci., Ser. 2, 294, 1329-1334.
- MONIÉ, P., CABY, R. & ARTHAUD, M.H. (1997). The Neoproterozoic brasiliano orogen of Northeast Brazil. ⁴⁰Ar-³⁹Ar ages and petro-structural data from Ceara. *Precambrian Res.*, **81**, 241-264.
- MONIE, P., SOLIVA, J., BRUNEL, M. & MALUSKI, H. (1994). Les cisaillements mylonitiques du granite de Millas (Pyrénées, France). Age Crétacé ⁴⁰Ar/³⁹Ar et interpretation tectonique. *Bull. Soc. Géol. Fr.*, **165**, 559-571.
- MONIER, G. (1980). Pétrologie des granitoïdes du Sud Millevaches (Massif Central Français). Minéralogie, géochimie, géochronologie. Thèse 3^{ème} Cycle, Univ. Clermont II, 288p.
- MONTEL, J.M., FOREST, S., VESCHAMBRE, M., NICOLLET, C. & PROVOST, A. (1996). – Electron microprobe dating of monazite. *Chem. Geol.*, 131, 37-53.
- MONTEL, J.M., KORNPROBST, J. & VIELZEUF, D. (2000). Preservation of old U-Th-Pb ages in shielded monazite: example from the Beni Bousera Hercynian kinzigites (Morocco). J. Metamorph. Geol., 18, 335-342.

- MOURET, G. (1924). Sur la structure de la région granitique de Millevaches. C. R. Acad. Sc., Paris, **179**, 1612-1615.
- MOUTHIER, B. (1976). Lithostratigraphie et métamorphisme des formations cristallophylliennes de la région de Chateauneuf-la-Forêt (Haut Limousin) Massif Central français. *Thèse de 3^{ème} cycle*, Univ. Lyon, **508**, 2 vol., 161.
- MUKHOPADHYAY, B. & HOLDAWAY, M.J. (1994). Cordieritegarnet-sillimanite-quartz equilibrium. I. New experimental calibration in the system FeO-Al₂O₃-SiO₂-H₂O and certain P-T-XH₂O relations. *Contrib. Mineral. Petrol.*, **116**, 462-472.
- NELSON, K.D. and many others... (1996). Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results. Science, **274**, 1684-1687.
- NEUMANN, B. (2000). Texture development of recrystallised quartz polycrystals unravelled by orientation and misorientation characteristics. J. Struct. Geol., 22, 1695-1711.
- NICOLAS, A. & POIRIER, J.P. (1976). Crystalline plasticity and solid state flow in metamorphic rocks. New York: Willey, 444 p.
- ONEZIME, J., CHARVET, J., FAURE, M., CHAUVET, A. & PANIS, D. (2002). – Structural evolution of the outhermost segment of the West European Variscides : the South Portuguese Zone (SW Iberia). J. Struct. Geol., 24, 451-468.
- PARRISH, R.R. (1990). U-Pb dating of monazite and its application to geological problems. *Can. J. Earth. Sci.*, 27, 1431-1450.
- PATIÑO–DOUCE, A.E. & HARRIS, N. (1998). Experimental constraints on Himalayan anatexis. J. Petrol., 39, 689-710.
- PEIFFER, M. T. (1986). La signification de la ligne tonalitique du Limousin. Son implication dans la structuration Varisque du Massif Central français. C. R. Acad. Sci., Ser. II, 303, 4, 305-310.
- PETFORD, N. & GALLAGHER, K. (2001). Partial melting of mafic (amphibolitic) lower crust by periodic influx of basaltic magma. *Earth Planet. Sci. Lett.*, **193**, 483-499.
- PETFORD, N. (1996). Dykes or diapirs? Trans. R. Soc. Edinburgh: Earth Sci., 87, 105-114.
- PETFORD, N., KERR, R.C. &LISTER, J.R. (1993). Dike transport of granitoid magmas. *Geology*, **21**, 845-848.
- PETITPIERRE, E. & DUTHOU, J.-L. (1980). Age westphalien par la methode Rb/Sr du leucogranite de Crevant, Plateau d'Aigurande (Massif Central francais). C. R. Acad. Sc., 291, 163-166.
- PETREQUIN, M. (1979). Etude gravimétrique du massif de le Margeride et de sa bordure méridionale. Thèse 3ème cycle, Univ. Montpellier, 128p.
- PEUCAT, J.J., BERNARD-GRIFFITHS, J., GIL IBARGUCHI, J.I., DALLMEYER, R.D., MENOT, R.P., CORNICHET, J. & IGLESIAS PONCE DE LEAON, M. (1990). -Geochemical and geochronological cross section of the deep Variscan crust : the Cabo Ortegal high-pressure nappe (northwestern Spain). *Tectonophysics*, 177, 263-292.
- PIN C. & LANCELOT J. (1982). U-Pb dating of an early Paleozoïc bimodal magmatism in the French Massif Central and its further metamorphic evolution. *Contrib. Mineral. Petrol.*, 79, 1-12.
- PIN, C. & MARINI, F. (1993). Early Ordovician continental break-up in Variscan Europe: Nd-Sr isotope and trace element evidence from bimodal igneous associations of the Southern Massif Central, France. *Lithos*, **29**, 177-196.

- PIN, C. & PEUCAT, J.J. (1986). Age des episodes de métamorphismepaléozoïque dans le Massif Central et le Massif Armoricain. Bull. Soc. Geol. Fr., 8, II, 3, 461-469.
- PIN, C. (1979). Géochronologie U-Pb et microtectonique des séries métamorphiques anté-stéphaniennes de l'Aubrac et de la région de Marvejols (Massif Central). *Thèse 3^{ème} cycle*, Univ. Montpellier, 205.
- PIN, C. (1981). Old inherited zircons in two synkinematic variscan granitoids : the « granite du Pinet » and the « orthogneiss de Marvejols » (southern French Massif central). N. Jb. Miner. Abh., 142, 27-48.
- PIN, C. (1990). Variscan oceans: ages, origins and geodynamic implications inferred from geochemical and radiometric data. *Tectonophysics*, **177**, 215-227.
- PIN, C. (1991). Sr-Nd isotopic study of igneous and metasedimentary enclaves in some hercynian granitoids from the Massif Central, France. In:DIDIER J. & BARBARIN B. (ed.) Developments in Petrology: Enclaves and granite petrology, Elsevier, 333-343.
- PIN, C.& VIELZEUF, D. (1983). Granulites and related rocks in Variscan median Europe: A dualistic interpretation. *Tectonophysics*, 93, 47-74.
- PINET, et al., (1986). Crustal thinning on the Aquitaine shelf, Bay of Biscay, frm seismic data. *Nature*, **325**, 513-516.
- POLLARD, D.D. & JOHNSON, A.M. (1973). Mechanics of growth of of some laccolithic intrusions in the Henry Mountains, Utah, II - Bending and failure of overburden layers and sill formation. *Tectonophysics*, **18**, 318-354.
- QUENARDEL, J.M., COHEN-JULIEN, M., FREYTET, P., LEMAIRE, D., LEROUGE, G., PEULVAST, J.-P., CONSTANS, J. & VAUTRELLE, C. (1991). – Notice de la carte géologique d'Aigurande à 1/50 000. Editions BRGM, Orléans, 100 p.
- RAGUIN, E. (1938). Contribution à l'étude du plateau de Millevaches (révision de la feuille de Limoges). Bull. Serv. Carte géol. Fr., 39, n°197, 113-119.
- RECHES, Z. & FINK, J. (1988). The mechanism of intrusion of the Inyo dike, Long Valley, California. J. Geophys. Res., 93, 627-662.
- RICARD, Y., FROIDEVAUX, C. & Hermance, J.F. (1983). Model heat flow and magnetotellurics for the San Andreas and oceanic transform faults. *Ann. Geophys.*, 1, 47-52.
- ROBARDET, M., VERNIERS, J., FEIST, R. & PARIS, F. (1994). Le Paléozoïque anté-varisque de France, contexte paléogéographique et géodynamique. *Géologie de la France*, **3**, 3-31.
- ROCHETTE, P., JACKSON, M. & AUBOURG, C. (1992). Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. *Reviews of Geophysics*, **30**, 209-226.
- ROGER, F. & MATTE, P. (soumis). Early Variscan HP metamorphism in the western Iberian Allochthon. A 390 Ma U/Pb age for the Bragança eclogite (NW Portugal), *Int. J. Earth Sci.*.
- ROIG, J. Y. & FAURE, M. (2000). La tectonique cisaillante polyphasée du Sud-Limousin (Massif central français) et son interprétation dans un modèle d'évolution polycyclique de la chaîne hercynienne--Polyphase shear tectonics in the South-Limousin (French Massif Central) and its interpretation in a polycyclic evolution model of the Hercynian Belt. Principaux Resultats Scientifiques. Bull. Soc. Géol. Fr., 171, n°3, pp. 295-307.
- ROIG, J.-Y. (1997). Evolution tectono-métamorphique d'un segment de la chaîne hercynienne. Rôle du plutonisme dans la caractérisation des tectoniques du Sud-Limousin (Massif

Central français). Thèse de 3eme cycle, Université d'Orléans, 287p.

- ROIG, J.Y., FAURE, M. & LEDRU, P. (1996). Polyphase wrench tectonics in the southern french Massif Central : kinematic inferences from pre- and syntectonic granitoids. *Geol Rundsch*, 85, 138-153.
- ROIG, J.-Y., FAURE, M. & MALUSKI, H. (2002). Surimposed tectonic and hydrothermal events during the late-orogenic extension in the Western French Massif Central: a structural and ⁴⁰Ar³⁹Ar study. *Terra Nova*, 14, 25-32.
- ROIG, J.-Y., FAURE, M. & TRUFFERT, C. (1998). Folding and granite emplacement inferred from structural, strain, TEM, and gravimetric analyses: The case study of the Tulle antiform, SO French Massif Central. J. Struct. Geol., 20, 9-10, 1169-1189.
- ROLIN, P. & COLCHEN, M. (2001). Carte structurale du socle Varisque Vendée-Seuil du Poitou-Limousin, Géologie de la France, 1-2, 3-6.
- ROLIN, P., CARTANAZ, C., HENRY, P., ROSSY, M., COCHERIE, A., SALEN, F. & Delwalle, B. – Notice explicative de la Carte géologique de Saint Sulpice-les-Champs (N°666) au 1/50 000, Editions B.R.G.M., Orléans, en préparation.
- ROLIN, P., DUTHOU, J.-L. & QUEDARNEL, J.-M. (1982). Datation Rb/Sr des leucogranites de Crozant et d'Orsennes: conséquences sur l'âge de la dernière phase de tectonique tangentielle du Plateau d'Aigurande (NW du Massif Central Français). C. R. Acad. Sci., Ser.II, 294, 799-802.
- ROQUES, M. (1941). Les schistes cristallins de la partie Sud-Ouest du Massif Central français. *Mem. Serv. Carte Géol.*, 527.
- ROUBICHOU, P. (1979). Les formations metamorphiques de la region de Leyme pres Saint-Cere (Lot); etude structurale et petrographique. Metamorphic formations in the Leyme region near Saint-Cere, Lot; structural and petrographic study. Documents - B.R.G.M., n°.18, 16.
- RUFFET, G., FÉRAUD, G. & AMOURIC, M. (1991). Comparison of ⁴⁰Ar-³⁹Ar conventional and laser dating of biotites from the North Trégor Batholith. *Geochim. Cosmochim. Acta*, **55**, 1675-1688.
- SAINT BLANQUAT (de), M. (2002). Recherches sur les relations entre la tectonique et le magmatisme granitique. HDR, Université Paul-Sabatier Toulouse III.
- SANTALLIER, D. & FLOC'H, J. P. (1979). Les éclogites de la Faurie (Bas-Limousin, feuille d'Uzerche a 1/50 000). The Faurie eclogites, Bas Limousin; Uzerche Sheet 1:50,000. Bulletin du Bureau de Recherches Geologiques et Minieres. Section 1: Geologie de la France, n°.2, 109-119.
- SANTALLIER, D. (1981). Les roches basiques de la série métamorphique du Bas Limousin (Massif Central, France). Thèse d'état, Orléans, 340p.
- SANTALLIER, D., FLOC'H, J. P. & GUILLOT, P.L. (1978). Quelques aspects du metamorphisme devonien en Bas-Limousin (Massif central, France). Devonian metamorphism in the Bas-Limousin region, Central Massif, France. Bulletin de Mineralogie, 101, n°.1,77-88.
- SANTALLIER, D., FLOC'H, J.-P. (1989). Tectonique tangentielle et décrochements ductiles dévono-carbonifères superposés dans la région de Bellac (nord-ouest du Massif Central français). C. R. Acad. Sci., 309, 1419-1424.
- SANTALLIER, D., LARDEAUX, J.M., MARCHAND, J. & MARIGNAC, C. (1994). – Metamorphism. In: Keppies J.D. (Eds), Pre-mesozoic geology in France and related areas, Springer Verlag, 325-340.

- SCAILLET, S., CUNEY, M., LE CARLIER DE VESLUD, C., CHEILLETZ, A. & ROYER, J.J. (1996). – Cooling pattern and mineralisation history of the St Sylvestre and Western Marche leucogranite pluton, French Massif Central: II. Thermal modelling and implications for the mechanisms of U-mineralization. *Geochim. Cosmochim. Acta*, 60, b, 4673-4688.
- SCHEUVENS, D. (2002). Metamorphism and microstructures along a high-temperature metamorphic field gradient: the northeastern boundary of the Kralovsky hvozd unit (Bohemian Massif, Czech Republic). J. metamorphic Geol., 20, 413-428.
- SCHMIDT, N.H. & OLESEN, N.O. (1989). Computer-aided determination of crystal-lattice orientation from electronchanneling patterns in the SEM. *Canadian Mineralogist*, 27, 15-22.
- SCHMITZ, M., et al.. (11 auteurs) (1999). The crustal structure beneath the Central Andean forearc and magmatic arc as derived from seismic studies – the PISCO 94 experiment in northern Chile. Journal of South American Earth Sciences, 12, 237-260.
- SEARLE, M.P., SIMPSON, R.L., LAW, R.D., PARRISH, R.R. & WATERS, D.J. (2003). – The structural geometry, metamorphic and magmatic evolution of the Everest Massif, High Himalaya of Nepal-South Tibet. J. Geol. Soc. London, 160, n°3, 345-366.
- SHAW, A. (1991). The petrogenesis of Hercynian granites, French Massif Central. PhD. Thesis, Birkbeck College, University of London, London.
- SPEAR, F.S., KOHN, M.J. & CHENEY, J.T. (1999).- P-T paths from anatectic pelites, *Contrib. Mineral. Petrol.*, v.134, 1, pp.17-32.
- SPECTOR A. & GRANT F.-S. (1970). Statistical models for interpreting aeromagnetic data. - *Geophysics*, 35, 293-302.
- SPEER, J.A., Mc SWEEN, H.Y. & GATES, A.E. (1994). Generation, segregation, ascent, and emplacement of Alleghanian plutons in the Southern Appalachians. J. Geol., 102, 249-267.
- STEIGER, R.H. & JAGER, E. (1977). Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology, Earth Planet. Sci. Lett. 36, 359-362.
- STUSSI, J.M. & CUNEY, M. (1990).-Granites et leucogranites des massifs de Peret Bel Air et Egletons, Rapport sur les travaux réalisés dans le cadre du Contrat MC/15/142-CEA/DAMN-CREGU.
- STUSSI, J.M. & CUNEY, M. (1993). Modèles d'évolution géochimique de granitoïdes peralumineux. L'exemple du complexe plutonique varisque du Millevaches (Massif Central français). Bull. Soc. Géol. France, 164, 585-596.
- SYLVESTER, A.G. & SMITH, R.R. (1976). Tectonic transpression and basement-controlled deformation in the San Andreas fault zone, Salton trough, California, AAPG Bulletin, 60, 74-96.
- SYLVESTER, A.G. (1988). Strike-slip faults, Geol. Soc. Am. Bull, 100, 1666-1703.
- TALBOT J.Y. (2003). Apport des études ASM et gravimétriques des plutons cévenols à la caractérisation structurale de l'évolution tardi-hercynienne du Massif Central - Thèse de Doctorat, Université d'Orléans, 288 p.
- TELFORD, W.N., GELDART, L.P., SHERIFF, R.E. & KEYS, D.A. (1990). – Applied geophysics. Cambridge University Press, 860p.

- TEMPIER,P. (1976).- Présentation d'un nouveau schéma structural pour les schistes cristallins de la moyenne Dordogne et de leur prolongement meridional. Presentation of a new structural pattern for the crystalline schists of the central Dordogne and of their southern extension. C. R. Acad. Sci., Serie D: Sciences Naturelles, 282, n°.16, 1481-1484.
- THOMPSON, A.B. & CONOLLY, A.D. (1995).- Melting of the continental crust: some thermal and petrological constrains on anatexis in continental collision zones and other tectonic settings, J. geophys. Res., 100, 15565-15579.
- THOMPSON, A.B. & TRACY, R.J. (1979). Model systems for anatexis of politic rocks: II-Facies series melting and reactions in the system: CaO-KAIO₂-NaAIO₂-Al₂O₃-SiO₂-H₂O, *Contrib. Mineral. Petrol.*, **70**, 429-438.
- THOMPSON, A.B. (1982). Dehydratation melting of pelitic rocks and the generation of H20-undersaturated granitic liquids. Am. J. Sci., 282, 1567-1595.
- THOMPSON, A.B. (1996). Fertility of crustal rocks during anatexis. Proceeding of the Royal Society of Edinburg, Earth Sciences, 87, 1-10.
- TIKOFF B. & SAINT BLANQUAT (de) M. (1997). Transpressional shearing and strike-slip partitioning in the late Cretaceous Sierra Nevada magmatic arc, California. - *Tectonics*, 16, 442-459.
- TIKOFF B., SAINT BLANQUAT (de) M. & TEYSSIER C. (1999). -Translation and the resolution of the pluton space problem. - J. Struct. Geol., 21, 1109-1117.
- TIKOFF, B. & TEYSSIER, C. (1992).- Crustal-scale, en échelon "Pshear" tensional bridges: a possible solution to the batholithic room problem, *Geology*, **20**, 927-930.
- TOMMASI A. & VAUCHEZ A. (1994). Magma-assisted strain localization in an orogen-parallel transcurrent shear zone of southern Brazil. - *Tectonics*, 13, n°2, 421-437.
- TULLIS, J., CHRISTIE, J.M. & GRIGGS, D.T. (1973). Microstructures and preferred orientations of experimentally deformed quartzites, *Geol. Soc. Am. Bull*, 84, 297-314.
- TURPIN, L., CUNEY, M., FRIEDRICH, M. BOUCHEZ, J.L. & AUBERTIN, M. (1990). - Meta-igneous origin of Hercynian peraluminous granites in N. W. French Massif Central; implications for crustal history reconstructions. *Contrib. Mineral. Petrol.*, vol.104, no.2, pp.163-172.
- VAN DEN DRIESSCHE, J. & BRUN, J.-P. (1989). Un modèle de l'extension paléozoïque supérieur dans le Sud du Massif Central. - C. R. Acad. Sci., Paris II, 309, 1607-1613.
- VAN DER VOO, R. (1993). Paleomagnetism of the Atlantic, Tethys and Iapetus oceans. Cambridge University Press, Cambridge, 412 p..
- VAUCHELLE, L. (1988). L'extrémité occidentale du massif de Guéret (Massif Central français). Thèse, Clermont-Ferrand, n°88, 12, 397 p.
- VIDAL, P. (1973). Premières données géochronologiques sur les granites hercyniens du sud du Massif Armoricain. Bull. Soc. Géol. Fr., 7, 239-245.
- VIDAL, P., BERNARD-GRIFFITHS, J., PEUCAT, J.J., COCHERIE, A., LE FORT, P., SHEPPARD, S.M.F. (1984). - Geochemical comparison between Himalayan and Hercynian leucogranites. *Phys. Earth Plan. et Int.*, v..35, 1-3, 179-190.
- VIELZEUF, D. & HOLLOWAY, J.R. (1988). Experimental determination of the fluid-absent melting relations in the pelitic system; consequences for crustal differentiation, *Contrib. Mineral. Petrol.*, v.1.98, .3, pp.257-276.

- VIGNERESSE J.-L. (1995). Control of granite emplacement by regional deformation. *Tectonophysics*, **249**, 173-186.
- VIGNERESSE, J.-L. & BRUN, J.-P. (1983). Les leucogranites armoricains marqueurs de la déformation régionale : apport de la gravimétrie. - Bull. Soc. Géol. Fr., t.XXV-3, 357-366.
- VIGNERESSE, J.L., BARBEY, P. & CUNEY, M. (1996). -Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer., J. Petrol., 37, 6, 1579-1600.
- VIRLOGEUX, D., ROUX, J. & GUILLEMOT, D. (1999).- Apport de la géophysique à la connaissance du massif de Charroux-Civray et du socle poitevin. In :Etudes du massif de Charroux-Civray, Journées scientifiques CNRS/ANDRA, Poitiers, 13 et 14 octobre 1997 ; EDP sciences, Les Ulis, 33-62.
- WHITE, A.J.R. (1990). Text accompanying "A workshop on crustal protoliths of granites." University of St. Andrews, St Andrews, 45p.
- WHITE, A.J.R. & CHAPPELL, B.W. (1977). Ultrametamorphism and granitoid genesis, *Tectonophysics*, **43**, 7-22.
- WILLIAMS, M.L., JERCINOVIC, M.J. & TERRY, M.P. (1999). Age mapping on the electron microprobe:deconvoluting multistage tectonic histories. *Geology*, 27, 1023-1026.
- WILLIAMSON, B.J, DOWNES, H. & THIRLWALL, M.F. (1992).- The relationship between crustal magmatic underplating and granite genesis; an example from the Velay granite complex, Massif Central, France, Special Paper – Geol. Soc. of Am., v..272, 235-245.
- WILLIAMSON, B.J., SHAW, A., DOWNES, H. & THIRLWALL, M.F. (1996). – Geochemical constraints on the genesis of Hercynian two-mica leucogranites from the Massif Central, France, *Chemical Geology*, **127**, 25-42.

ANNEXES

ANNEXE 1

TABLEAU 1								
N°	40Ar*/39Ar	36Ar/40Ar*(10	0 39Ar/40Ar	38Ar/39Ar	% 39Ar	% 40*	Age (Ma)	+- 1s,d,
246 Pop. Ms			J= 0,01401					
1	13,75	0,429	0,0634	0,018	5,5	87,2	317,77	1,08
2	13,54	0,042	0,0728	0,012	24,1	98,6	313,47	0,55
3	13,48	0,011	0,0738	0,012	46,4	99,5	312,07	0,52
4	13,53	0,013	0,0735	0,012	63,8	99,5	313,19	0,22
5	13.57	0.011	0.0733	0.012	73.6	99.5	313,95	0.38
6	13.62	0.004	0.0732	0.012	82.6	99.7	315 10	0.44
7	13,62	0,000	0.0732	0.012	93.5	99.9	315 33	0.35
8	13,03	0,000	0,0730	0,012	100.0	99,9 99 9	316.10	0,00
0	13,07	0,000	0,0750	0,011	100,0	55,5	510,19	0,42
246 Mon Bt			I_0 012713					
240 WOII. Dt	21 157	0.041	0.0217	0.040	0.5	00.0	602.01	107.00
1	15 670	0,041	0,0317	0,049	0,5	90,0	227.04	7.21
2	15,679	0,225	0,0595	0,001	11,3	93,4	327,94	1,31
3	15,019	0,176	0,0000	0,000	50,4	94,0	320,70	14,00
4	15,498	0,165	0,0613	0,000	70,1	95,2	324,47	5,80
5	15,793	0,164	0,0602	0,001	83,8	95,2	330,10	9,87
6	15,908	0,165	0,0597	0,000	94,9	95,2	332,30	7,22
7	16,647	0,154	0,0573	0,000	97,6	95,5	346,36	27,56
8	17,718	0,025	0,0560	0,014	99,1	99,3	366,50	50,87
9	17,758	0,046	0,0555	0,001	100	98,7	367,25	93,91
232 Pop. Ms			J= 0,01401					
1	32,46	0,771	0,0238	0,060	0,3	77,2	676,32	375,00
2	12,64	1,573	0,0423	0,000	0,4	53,4	294,18	19,68
3	9,57	1,336	0,0632	0,061	0,6	60,4	226,94	9,24
4	12,35	0,736	0,0633	0,039	0,9	78,2	287,99	6,16
5	13.77	0.667	0.0582	0.035	1.3	80.2	318.30	5.16
6	14.09	0.578	0.0588	0.028	2.0	82.8	325.12	2,79
7	13.87	0 569	0 0599	0,009	29	83.1	320 31	3.09
8	14.04	0,005	0,0000	0,000	93.6	98.5	323.96	0,05
0	14.07	0,040	0,0702	0,013	90,0 00 6	08.3	324.60	0,40
10	13.1	0,002	0,0033	0,011	100.0	70.3	304.07	5.07
10	10,1	0,037	0,0000	0,000	100,0	15,5	304,07	5,07
232 Spot Ms			J=0.012713					
1	15 808	0.063	0.0620	0.000	11 7	94.8	330 39	5 21
2	16 161	0,000	0,0020	0,000	16.7	85.9	337 12	1/ 12
2	15 535	0,000	0,0017	0,000	30.4	96.5	325.17	3.52
3	15,333	0,075	0,0023	0,003	22.1	30,5 92.6	222,17	17.45
4	15,377	0,133	0,0624	0,047	33,1	02,0	322,14	17,45
5	15,477	0,020	0,0639	0,000	07,1	90,3	324,07	1,09
0	15,54	0,002	0,0043	0,003	100	95,6	325,20	4,23
222 S polio			I_0 012712					
232 3. polie	14 660	0.204	J=0,012713	0.004	15.0	00.2	200.27	1.66
1	14,002	0,394	0,0002	0,004	15,0	70.0	300,37	1,00
2	14,101	0,000	0,0540	0,004	21,7	76,2	297,50	4,04
3	14,942	0,198	0,0630	0,000	30,5	94,1	313,78	3,37
4	15,841	0,002	0,0630	0,000	35,4	99,9	331,02	4,80
5	15,278	0,001	0,0653	0,001	43	100,0	320,24	5,59
6	16,192	0,034	0,0611	0,006	46,1	99,0	337,72	6,76
1	14,748	0,232	0,0631	0,000	73,9	93,1	310,03	1,29
8	14,907	0,190	0,0633	0,000	92,2	94,4	313,11	1,57
9	15,278	0,118	0,0631	0,007	100	96,5	320,25	3,19
2	15,736	0,930	0,0460	0,018	2,4	72,6	329,02	13,14
3	15,174	0,262	0,0607	0,017	13,5	92,3	318,24	2,28
4	15,216	0,065	0,0644	0,020	24,5	98,1	319,05	2,28
5	15,223	0,010	0,0653	0,019	31,5	99,7	319,19	4,22
6	15,378	0 ,011	0,0648	0,021	38,1	99,7	322,16	4,14
7	15,302	0,014	0,0650	0,020	51,8	99,6	320,71	2,19
8	15,475	0,002	0,0644	0,021	58,9	100,0	324,02	4,57
9	15,479	0,001	0,0644	0,019	67,3	100,0	324,11	3,26
10	15,578	0,010	0,0639	0,021	75,8	99,7	325,99	3,54
11	15,849	0,035	0,0624	0,009	92,7	99,0	331,17	2,35
12	15,191	0.073	0,0643	0.015	94.6	97.9	318.58	21.07
13	15,406	0.010	0.0646	0.017	99.9	99.7	322.70	8,20
7	13.48	0.061	0.0727	0.055	63.8	98.1	312.08	0.59
8	13.5	0.036	0.0732	0.056	69.1	98.8	312 41	0.51
q	13.5	0.018	0.0736	0.056	80.1	99.3	312 41	0 44
10	13 55	0.013	0.0734	0.056	96.3	99.5	313 52	0.45
11	13.53	0.022	0.0734	0.057	100.0	99.2	313.09	0.38
	. 0,00	-,	2,3.0.	-,00.	,.	, <u>-</u>	2.0,00	2,00

TABLEAU 2								
N°	40Ar*/39Ar	36Ar/40Ar*(10	00 39Ar/40Ar	38Ar/39Ar	% 39Ar	% 40*	Age (Ma)	+- 1s,d,
524 S. polie			J=0,014019					
1	13,379	0,097	0,0730	0,000	15,9	97,1	310,11	1,72
2	13,612	0,094	0,0710	0,000	56,5	97,2	315,07	1,56
3	13,086	0,221	0,0710	0,000	67,2	93,5	303,86	6,79
4	13,762	0.117	0.0700	0.000	79.1	96.5	318.26	2.60
5	13,558	0.168	0.0700	0.000	86.4	95.1	313,93	4.17
6	13 592	0 188	0,0690	0,000	100.0	94.5	314 65	2 48
Ũ	10,002	0,100	0,0000	0,000	100,0	54,5	014,00	2,40
3.5 polie			.I=0 012713					
1	15 323	0.060	0.0639	0 000	44	98.2	321 11	3.06
2	14 781	0,000	0.0610	0,000	10.6	90.3	310.68	2.87
2	15 259	0,023	0,0010	0,001	10,0	00,0	221 70	1.20
3	15,550	0,051	0,0044	0,000	20	09.1	224.05	1,29
4	10,020	0,039	0,0032	0,000	20.2	90,2	324,95	1,39
5	14,794	0,142	0,0047	0,003	39,3	95,8	206 54	2,47
0	14,507	0,121	0,0001	0,000	40,7	90,4	300,54	1,01
/	14,632	0,152	0,0652	0,000	01,4	95,5	307,80	0,76
8	14,695	0,556	0,0568	0,007	92,2	83,6	309,01	1,00
9	15,041	0,035	0,0657	0,000	100	99,0	315,68	3,16
0.D. M								
6 Pop. Ms	44.00	0.005	J= 0,01401	0.040			000 55	0.00
1	14,26	0,605	0,0575	0,019	5,4	82,0	328,55	0,96
2	14	0,060	0,0701	0,014	9,8	98,1	323,13	0,80
3	13,91	0,030	0,0711	0,013	17,9	99,0	321,26	0,39
4	13,93	0,014	0,0714	0,013	41,7	99,5	321,63	0,44
5	13,96	0,008	0,0713	0,013	62,1	99,6	322,35	0,40
6	14	0,009	0,0711	0,013	77,3	99,6	323,16	0,49
7	14	0,012	0,0711	0,013	85,2	99,5	323,02	0,43
8	14,05	0,009	0,0709	0,013	89,4	99,6	324,26	0,63
9	14,19	0,004	0,0703	0,011	93,4	99,8	327,13	0,50
10	14,05	0,000	0,0711	0,012	96,3	99,9	324,23	0,62
11	13,95	0,018	0,0712	0,014	100,0	99,3	321,96	0,66
6 Pop. Bt			J= 0,01401					
1	13,13	0,675	0,0609	0,035	7,4	20,1	304,68	0,94
2	13,72	0,110	0,0704	0,033	28,3	3,4	317,12	0,47
3	13,87	0,033	0,0713	0,032	61,1	1,1	320,28	0,42
4	13,95	0,029	0,0710	0,032	80,1	1,0	321,98	0,46
5	14,15	0,143	0,0676	0,034	83,8	4,4	326,26	0,66
6	14,43	0,323	0,0626	0,034	86,6	9,7	332,20	1,02
7	14,69	0,397	0,0600	0,035	89,3	11,9	337,59	1,22
8	14,72	0,295	0,0619	0,034	94,0	8,8	338,23	0,75
9	14,56	0,146	0,0656	0,030	99,0	4,4	334,86	0,64
10	14,4	0,059	0,0681	0,032	100,0	1,8	331,59	0,81
6 Mon. Bt			J=0,012713					
1	49,119	1,575	0,0108	0,046	1	53,5	875,32	22,42
2	15,736	0,930	0,0460	0,018	2,4	72,6	329,02	13,14
3	15,174	0.262	0.0607	0.017	13.5	92.3	318.24	2.28
4	15.216	0.065	0.0644	0.020	24.5	98.1	319.05	2.28
5	15,223	0.010	0.0653	0.019	31.5	99.7	319.19	4.22
6	15.378	0.011	0.0648	0.021	38.1	99.7	322,16	4,14
7	15.302	0.014	0.0650	0.020	51.8	99.6	320.71	2.19
8	15,475	0.002	0.0644	0.021	58.9	100.0	324.02	4.57
9	15,479	0.001	0.0644	0.019	67.3	100.0	324.11	3.26
10	15 578	0.010	0.0639	0.021	75.8	99.7	325.99	3 54
10	15,870	0.035	0.0624	0,021	92.7	99,7	331 17	2 35
12	15 101	0,000	0,0643	0,005	94.6	97.9	318 58	2,00
12	15,191	0,075	0,0045	0,013	00,0	00.7	322 70	8 20
15	10,400	0,010	0,0040	0,017	33,3	33,1	522,10	0,20
265 S. polie			J=0.012713					
1	14,775	0.187	0.0639	0.005	16.1	94.5	310.55	3.14
2	14 707	0 794	0.0520	0.005	27 1	96.2	309 24	5.35
2	15 506	0 070	0.0631	0,000	<u>27,1</u> <u>41</u> <u>4</u>	97 Q	324 61	3 09
1	15 263	0 153	0.0625	0 001	70.2	05 5	310 06	2 50
5	15,200	0,133	0,0020	0,001	27 Q	00,0 06 0	316.05	2,30 1 Q1
6	1/ 02/	0,130	0,0030	0,014	07,0	30,2 QR 2	31/ 50	יפ, ר 7 20
7	1/ 607	0,123	0,0041	0,000	99,9 94 9	00,2 02 2	307 70	5 17
γ 8	15 260	0,220	0,0000	0,001	100	00,0	320 02	2,17
Ŭ	10,209	0,207	0,0003	0,005	100	JZ, I	520,00	2,02

TABLEAU 3								
N°	40Ar*/39Ar	36Ar/40Ar*(100	0 39Ar/40Ar	38Ar/39Ar	% 39Ar	% 40*	Age (Ma)	+- 1s,d,
95 S. polie			J=0,012713					
2	15,716	0,670	0,0510	0,016	2	80,2	328,63	11,87
3	15,624	0,610	0,0524	0,004	7,1	82,0	326,88	5,21
4	14,96	0,588	0,0552	0,010	11,4	82,6	314,13	5,08
5	15,854	0,289	0,0576	0,014	18,4	91,5	331,27	4,60
6	14,501	0,616	0.0563	0,010	25,8	81,8	305,26	4,25
7	15.767	0.272	0.0583	0.008	37,9	92,0	329,61	1.87
8	16.833	0.240	0.0551	0.008	46.2	92.9	349.87	2.02
9	17.16	0,215	0.0545	0.006	55.9	93.6	356.04	2.26
10	16.538	0.027	0.0599	0.004	68.8	99.2	344.29	1,18
11	17 764	0.027	0.0558	0,006	96.1	99.2	367.38	2 01
12	17 258	0.086	0.0564	0,008	100	97.5	357.88	2,01
12	17,200	0,000	I_0 012713	0,000	100	01,0	007,00	، ج.
13	15 782	0 131	0.0609		100		320 89	2 25
10	10,702	0,101	0,0000		100		020,00	2,20
241 Pop. Bt			J= 0.01401					
1	13.41	0.058	0.0732	0.018	73.4	98.2	310.51	0.78
2	13.77	0.043	0.0716	0.018	81.3	98.6	318.23	0.53
- 3	13.9	0.047	0 0709	0.019	88.5	98.5	320.92	0.44
4	13 65	0,033	0.0724	0.019	95.1	98.9	315 74	0.69
5	13 54	0.022	0.0733	0.019	98.8	99.2	313 27	0.49
6	13 36	0,022	0,0736	0.020	100.0	98.3	309.45	0,43
U	10,00	0,004	0,0700	0,020	100,0	56,6	000,40	0,70
241 Mon. Bt			J=0.012713					
1	15.084	0.067	0.0650	0.006	4.7	99.7	316.50	4.23
2	15,018	0.040	0.0657	0.007	14.7	98.9	315.24	3.34
- 3	14,703	0.067	0.0666	0.011	26.2	98.1	309.16	2.36
4	15,239	0,126	0.0631	0.007	34.0	96.3	319.50	8.22
5	14 94	0.043	0,0001	0.007	45 1	98.8	213 73	2 17
6	1/ 868	0,0-0	0,0000	0,007	58.3	90,0	212 26	2,17
7	14,000	0,007	0,0000	0,000	72 7	07 Q	207 71	<i>3,20</i> <i>1</i> 10
γ Q	14,020	0,012	0,0003	0,007	، <u>ح</u> , ، 88 0	08.8	211 1/	3.04
0	14,000	0,043	0,0000	0,000	00,9 100 0	90,0 08 1	311,14 21/ /7	5,04
3	14,570	0,000	0,0000	0,007	100,0	30,1	זד,דוט	5,70
40 Pop. Bt			J= 0 01401					
1	13.54	0.115	0 0713	0.018	64.6	96.5	313.27	0.51
2	14.27	0.046	0.0691	0.018	80.9	98.5	328,72	0.66
- 3	14.31	0.038	0,0690	0.017	96.0	98.8	329.67	7 49
4	13.8	0,000	0,0000	0.016	99.6	99.1	318.96	0.83
5	12.95	0.580	0.0639	0.000	100.0	82.7	300,77	4.58
Ŭ	12,00	0,000	0,0000	0,000	100,0	02,1	000,11	7,00
40 Mon, Bt			J=0.012713					
1	114,734	0,064	0.0085	0,062	0	98,1	1622,99	136,21
2	0.991	3.246	0.0411	0.096	0.6	4.1	22.60	53.39
3	5,738	1,926	0.0750	0.002	2.2	43.1	127.04	19.90
4	14.485	0.126	0.0664	0.016	4	96.3	304.95	16.90
5	14.77	0,109	0.0655	0.028	11.3	96.8	310.45	5.21
6	14 797	0.038	0.0668	0.033	20.5	98.9	310,99	3 59
7	15 058	0.043	0.0655	0,000	52.4	98.8	316.01	1 61
8	15 149	0 115	0.0637	0.026	61.2	96.6	317 77	5.22
a 5	15 393	0,110	0.0642	0,020	70.1	99.0	272 45	1 81
	14 023	0,000	0,0042	0,02-	82.5	95,0	313 12	2.81
10	14,525	0,100	0,0037	0,010	02,0 88.2	03.7	217 68	2,01 1 08
12	15,145	0,214	0,0010	0,020	00,2 02 5	93,7	210.28	4,50
13	15 22	0,007	0,0000	0,00-	92,5 00 0	97,5	221 22	4,20
15	15,55	0,100	0,0020	0,015	55,5	35,1	521,25	4,91
347 Pop Bt			J- 0 01401					
1	14 63	0.084	0.0666	0.015	58.1	97 4	336 29	0.59
2	15 1	0.017	0.0658	0.014	69.8	99.4	346.22	0.42
3	15.24	0,017	0.0648	0.015	79.6	98.7	3/9 07	0,42
1	15,24	0,000	0,0040	0,015	80.5	00,7	345 36	0.48
4 5	14.88	0,029	0,0050	0,015	97.0	99,0 99,1	3/1 62	0,40
5	14,00	0,020	0,0000	0,013	100.0	99,1	336.05	0,03
U U	10,01	0,000	0,0070	0,017	100,0	30,1	000,00	0,10

TABLEAU 4								
N°	40Ar*/39Ar	36Ar/40Ar*(10	0⊧39Ar/40Ar	38Ar/39Ar	% 39Ar	% 40*	Age (Ma)	+- 1s,d,
347 Mon. Bt			J=0,012713					
1	5,829	20,624	0,0384	0,000	0	22,4	128,98	394,54
2	13,735	0,846	0,0545	0,000	0,1	75,0	290,36	71,80
3	16,263	0,059	0,0604	0,000	2,2	98,3	339,07	6,10
4	17,925	0,063	0,0547	0,000	4	98,1	370,37	26,75
5	15,516	0,248	0.0597	0,003	13,9	92,7	324,81	2,58
6	16,402	0.066	0.0597	0.030	20.1	98.1	341.71	3.55
7	16,854	0.073	0.0580	0.000	23.8	97.8	350.27	5.55
8	16,273	0.012	0.0612	0,109	28.7	99.6	339.26	7.08
a a	16.07	0.058	0.0611	0.022	44.5	08,0	335.40	1 80
10	16.08/	0,000	0,0011	0,022	53.0	97.3	335.65	2 / 9
11	16,654	0,005	0,0000	0,000	83	00.8	346.48	1 0/
11	10,004	0,005	0,0599	0,000	00	99,0	240,40	1,54
12	10,430	0,000	0,0590	0,037	00,9	96,0	342,33	5,51
13	16,977	0,025	0,0504	0,021	96,5	99,2	302,00	0,43 10.95
14	10,295	0,125	0,0591	0,077	100	90,3	339,07	10,65
356 Pop. Bt			I- 0 01401					
1 1	13.08	0.316	0.0692	0.022	9.7	90.5	303 61	0.67
1 2	12 20	0,010	0,0032	0,022	24.6	09.1	210.15	0,07
2	13,39	0,061	0,0732	0,020	34,0	90,1	310,15	0,49
3	13,50	0,040	0,0728	0,020	12,1	98,7	313,81	0,46
4	13,64	0,028	0,0726	0,019	86,3	99,0	315,39	0,54
5	14,15	0,120	0,0681	0,016	88,6	96,3	326,32	1,13
6	14,32	0,209	0,0654	0,014	90,6	93,7	329,82	1,64
7	14,73	0,224	0,0633	0,017	92,4	93,3	338,38	1,75
8	14,05	0,129	0,0684	0,019	97,1	96,1	324,26	1,00
9	14,17	0,116	0,0681	0,015	99,3	96,4	326,71	1,35
10	15,02	0,205	0,0625	0,000	100,0	93,9	344,46	3,08
356 Pop. Ms			J= 0,01401					
1	13,38	0,616	0,0610	0,023	2,2	81,7	309,96	1,36
2	13,41	0,023	0,0740	0,013	19,6	99,2	310,59	0,50
3	13,39	0,006	0,0744	0,012	46,2	99,7	310,14	0,27
4	14,45	0,008	0,0689	0,013	65,8	99,6	332,66	17,60
5	13,47	0,012	0,0738	0,012	76,7	99,5	311,94	0,43
6	13,49	0,008	0,0738	0,013	82,9	99,6	312,32	0,61
7	13,58	0,000	0,0735	0,012	86,1	99,9	314,31	0,71
8	13,63	0,000	0,0732	0,011	88,9	99,9	315,38	0,91
9	13,62	0,000	0,0733	0,011	93,8	99,9	315,11	0,54
10	13,65	0,000	0,0732	0,011	100,0	99,9	315,67	0,52
356 Mon. Bt			J=0,012713					
1	11,4	2,483	0,0233	0,013	2,3	26,7	244,19	66,93
2	14,3	0,195	0,0657	0,004	47,9	94,3	301,36	3,29
3	14,898	0,098	0,0651	0,007	84,3	97,1	312,94	6,72
4	15,066	0,063	0,0651	0,010	89,8	98,2	316,18	27,80
5	10,43	1,053	0,0660	0,010	94,2	68,9	224,65	25,22
6	10,371	0,598	0,0793	0,016	96,2	82,4	223,46	6,37
7	2,231	2,885	0,0660	0,016	97,5	14,8	50,46	2510,71
8	-6,751	5,057	0,0732	0,010	99,9	0,0	-161,87	952,86
356 Spot Ms	45 505	0 5 4 0	J=0,012713	0.010	~	04.4	000.10	40.00
1	15,585	0,540	0,0539	0,016	2	84,1	326,13	13,62
2	14,383	0,152	0,0663	0,000	11,1	95,5	302,97	2,91
3	14,546	0,084	0,0670	0,000	21,7	97,5	306,14	2,97
4	14,581	0,090	0,0666	0,000	74,8	97,4	306,81	6,11
5	14,422	0,049	0,0683	0,000	91,4	98,6	303,72	3,56
6	14,792	0,065	0,0660	0,026	100	98,1	310,87	5,30
050.0 15			1 0 0 1 0 - 1 -					
356 Spot Bt	44047	4 4 4 0	J=0,012713	0.000		00.1	000.00	0.57
1	14,647	1,148	0,0450	0,020	11,9	66,1	308,09	3,57
2	15,23	0,593	0,0541	0,013	22,1	82,5	319,32	4,30
3	13,419	0,482	0,0638	0,011	34,7	85,8	284,18	6,36
4	14,951	0,072	0,0653	0,012	47,5	97,9	313,95	2,52
5	14,577	0,191	0,0647	0,007	53,9	94,4	306,73	3,69
6	15,97	0,050	0,0616	0,024	63,6	98,6	333,48	4,87
7	16,611	0,123	0,0580	0,021	68,5	96,4	345,67	9,81
8	15,037	0,009	0,0663	0,012	77,4	99,8	315,61	3,37
9	14,643	0,088	0,0664	0,007	85,5	97,4	308,01	4,97
10	15,328	0,074	0,0638	0,009	100	97,9	321,20	2,16

TABLEAU 5								
N°	40Ar*/39Ar	36Ar/40Ar*(100	0⊧39Ar/40Ar	38Ar/39Ar	% 39Ar	% 40*	Age (Ma)	+- 1s,d,
404 Pop. Bt			J= 0,01401					
1	10,5	1,102	0,0641	0,055	0,6	67,3	247,57	1,13
2	13,5	0,577	0,0613	0,058	1,5	82,8	312,53	0,87
3	13,61	0,324	0,0664	0,057	3,6	90,3	314,78	0,61
4	13,67	0,184	0,0690	0,057	7,2	94,4	316,22	0,53
5	13.78	0.094	0.0705	0.056	12.5	97.1	318.36	0.66
6	13.77	0.047	0.0715	0.056	20.2	98.5	318.30	0.69
7	13.39	0.020	0.0741	0.054	36.2	99.3	310.26	0.54
8	13 39	0.016	0.0742	0.054	51.8	99.4	310.24	0,70
0	13.03	0,015	0,0742	0,004	58.1	00.4	321 50	0,10
10	14.2	0,015	0,0714	0,050	50,1	99,4 00.1	227.09	0,44
10	14,2	0,020	0,0090	0,050	62.9	99,1	227,23	0,40
11	14,23	0,029	0,0090	0,050	02,0	99,0	327,00	0,40
12	14,15	0,028	0,0700	0,055	00,4	99,0	326,22	0,57
13	14,1	0,024	0,0703	0,055	74,8	99,Z	325,14	0,35
14	13,46	0,013	0,0739	0,053	100,0	99,5	311,63	0,33
404.0			1 0 04 404					
404 S. polie	10 707	0.044	J= 0,01401	0.005			047 50	5.04
1Paleosome	13,727	0,041	0,0720	0,025	2,8	98,8	317,52	5,84
2 Paléosome	13,711	0,032	0,0720	0,023	9,9	99,1	317,17	2,28
3 Leucosome	13,298	0,043	0,0740	0,036	87,8	98,7	308,38	0,81
4 Paléosome	13,575	0,047	0,0730	0,021	92,1	98,6	314,29	3,74
5 Paléosome	13,536	0,020	0,0730	0,022	100,0	99,4	313,50	1,14
MVG3 Pop. Ms			J= 0,01401					
1	1,35	3,187	0,0431	0,277	0,2	5,8	33,69	40,23
2	11,25	0,376	0,0790	0,083	0,6	88,8	264,02	7,85
3	-4	5,103	0,1265	0,201	0,7	-50,6	0,00	0,00
4	-0,6	3,540	0,0728	0,198	0,8	-4,4	0,00	0,00
5	3.98	1.820	0.1169	0.238	0.9	46.5	97.82	20.09
6	12.96	0.842	0.0580	0.088	1.2	75.1	301.06	15.14
7	14.52	0.205	0.0647	0.063	1.7	93.9	333.99	5.85
8	14.3	0.593	0.0576	0.039	2.9	82.4	329.52	6,45
9	13.87	1 053	0.0496	0,050	4.0	68.8	320.42	6 68
10	14 15	0.428	0,0400	0,000	-,0 5.0	87.2	326 37	6.28
10	14,13	0,420	0,0010	0,010	5,0 6 1	95.5	320,57	3 72
12	15.24	0,140	0,0007	0,010	7 1	00,0	340.08	2.80
12	14.06	0,000	0,0055	0,013	11 7	33,3	224 20	2,00
13	14,00	0,255	0,0057	0,018	100.0	92,3	324,30	1,00
14	13,99	0,011	0,0711	0,013	100,0	99,5	323,00	0,52
MVC2 Dop. Bt			I_ 0.01401					
NIVG3 POP. Bt	10.07	4 020	J= 0,01401	0.050	4.0	40.0	057.04	1.00
1	10,97	1,939	0,0389	0,053	4,6	42,6	257,91	1,06
2	13,81	0,520	0,0612	0,041	10,0	84,5	319,03	0,62
3	14,22	0,160	0,0669	0,041	17,9	95,1	327,68	0,49
4	14,36	0,080	0,0679	0,041	28,0	97,5	330,67	0,51
5	14,43	0,056	0,0681	0,041	40,4	98,2	332,18	0,51
6	14,45	0,040	0,0683	0,041	56,7	98,7	332,52	0,46
7	14,56	0,061	0,0674	0,039	64,6	98,1	334,85	0,38
8	14,74	0,270	0,0624	0,039	69,1	91,9	338,62	0,59
9	15,12	0,404	0,0582	0,035	72,4	87,9	346,64	1,00
10	15,13	0,394	0,0583	0,037	76,1	88,3	346,93	0,92
11	15,5	0,323	0,0583	0,039	81,6	90,4	354,57	0,59
12	15,68	0,168	0,0605	0,042	89,0	94,9	358,29	0,64
13	15,03	0,074	0,0650	0,040	97,7	97,7	344,70	0,45
14	14,71	0,048	0,0669	0,037	99,4	98,5	338,09	0,75
15	14,23	0,033	0,0695	0,006	100,0	98,9	327,90	1,41
MVG4 Pop. Bt			J= 0,01401					
1	11,6	1,039	0,0597	0,052	2,2	69.2	271.66	3,10
2	13,18	0.331	0,0684	0.047	5.6	90,1	305.62	1.56
3	13.79	0.183	0.0685	0.048	11.1	94.5	318.64	1.38
4	13.94	0,105	0.0694	0.046	19.6	96.8	321.86	0.70
5	14 02	0 103	0.0691	0.047	32.2	96 R	323 46	0.63
ě	14 1	0.098	0.0688	0.046	45 4	97.0	325.26	0.53
7	1/ 16	0,030	0,0000	0,040	-10,4 56 0	07,0 QQ 1	326 56	0,00
Q	15 61	0,020	0,0700	0,044	61 0	00.0	256 01	50.02
0	14.04	0,020	0,0030	0,042	01,9 6F 4	33,3	240.04	1 22
Э 10	14,91	0,002	0,0009	0,038	00,1	99,0 00 0	342,20	1,23
10	10,35	0,019	0,0647	0,036	67,1	99,3	351,33	1,12
11	15,35	0,053	0,0640	0,037	69,6	98,3	351,43	1,56
12	14,96	0,055	0,0657	0,040	74,3	98,2	343,33	1,11
13	14,33	0,056	0,0685	0,044	86,7	98,2	330,09	0,64

TABLEAU 6								
N°	40Ar*/39Ar	36Ar/40Ar*(10	0⊧39Ar/40Ar	38Ar/39Ar	% 39Ar	% 40*	Age (Ma)	+- 1s.d.
522 S polio	107 11 7007 11		I_0 01/010	00/ 1/00/ 1	/0 00/ 1	/0 10	/ igo (iiia)	,,
522 S. polle	40.044	0.000	J=0,014019	0.047	40.4	04.4	007.04	0.00
1	13,244	0,300	0,0690	0,017	18,4	91,1	307,24	9,62
2	18,418	0,136	0,0520	0,046	35,6	96,0	414,36	10,38
3	15,199	0,177	0,0620	0,035	51,1	94,8	348,47	18,94
4	14,567	0.152	0.0660	0.048	64.2	95.5	335.25	15.99
5	18.07	0,126	0.0530	0 121	74.5	06.3	407.35	10.04
5	10,07	0,120	0,0330	0,121	74,5	30,3	407,33	10,94
6	13,183	0,131	0,0730	0,041	89,8	96,1	305,95	12,89
7	14,913	0,182	0,0630	0,033	100,0	94,6	342,51	20,58
334 Pop. Ms			J= 0,01401					
1	14.11	0.577	0.0587	0.018	4.2	82.9	325.49	0.69
2	14.24	0 117	0.0677	0.013	6.7	96.4	328 15	0,68
2	14.00	0,117	0,0017	0,010	11 1	07.5	225,10	0,00
3	14,09	0,080	0,0092	0,013	11,1	97,5	325,04	0,77
4	14,07	0,035	0,0703	0,012	23,4	98,8	324,52	0,72
5	14,09	0,080	0,0692	0,013	27,8	97,5	325,04	0,77
6	14,07	0,035	0,0703	0,012	40,0	98,8	324,52	0,72
7	14.08	0.018	0.0705	0.012	56.9	99.3	324.79	0.42
8	14 11	0.014	0.0705	0.012	68.4	99.5	325 37	0.40
0	1/ 17	0,017	0,0700	0,012	77 5	00,5	276 67	0,-10
9	14,17	0,012	0,0702	0,012	11,5	99,0	320,02	0,32
10	14,22	0,008	0,0700	0,012	85,4	99,6	327,83	0,32
11	14,22	0,003	0,0702	0,012	92,0	99,8	327,68	0,45
12	14,27	0,003	0,0699	0,012	100,0	99,8	328,73	0,51
334 Pop. Bt			J= 0.01401					
1	11 96	1 108	0.0561	0 025	Q 1	67.2	279 53	0.87
2	11,00	0,005	0,0001	0,020	10.0	07,2	215,00	0,07
2	13,03	0,235	0,0002	0,022	19,6	92,9	315,20	0,56
3	13,7	0,075	0,0713	0,021	35,5	97,6	316,80	0,50
4	13,78	0,039	0,0716	0,021	52,6	98,7	318,49	0,62
5	13,84	0,038	0,0713	0,021	65,3	98,7	319,76	0,49
6	13.94	0.077	0.0700	0.021	74.6	97.6	321.80	0.54
7	14 22	0,219	0.0657	0.021	77.7	93.4	327.85	0.85
8	14.55	0,230	0.0610	0,021	70.0	00,1	334.67	0,00
0	14,55	0,330	0,0019	0,022	79,9	30,1	334,07	0,75
9	14,75	0,371	0,0603	0,021	82,9	88,9	338,98	0,95
10	15,26	0,254	0,0605	0,022	89,4	92,4	349,55	0,62
11	14,77	0,126	0,0651	0,021	96,9	96,2	339,38	0,42
12	14,57	0,089	0,0667	0,020	99,4	97,3	335,21	0,62
13	14.78	0.042	0.0668	0.013	100.0	98.8	339.49	2.02
	,				,		,	,
334 Spot Bt			J=0.012713					
1	13 809	2 691	0.0148	0.006	67	20.5	291 82	10 21
2	16,803	1 1 8 5	0.0385	0,000	12.5	65.0	3/0 30	6.24
2	10,003	1,100	0,0305	0,010	12,5	00,0	349,30	0,24
3	16,197	1,263	0,0385	0,007	20,1	62,7	337,81	5,20
4	14,601	0,709	0,0541	0,007	32,3	79,1	307,20	2,29
5	14,589	0,882	0,0506	0,007	45	74,0	306,97	3,16
6	16,609	0,458	0,0520	0,009	64,1	86,5	345,62	3,63
7	13,524	0.835	0,0556	0.007	78,4	75,4	286,25	3,17
8	15,903	0.560	0.0524	0.009	87.9	83.5	332 20	4.92
9	16 529	0.076	0.0591	0.008	100	97 R	344 11	2 97
Ŭ	10,020	0,010	0,0001	0,000	100	07,0	577,11	2,01
284e S polio			I-0 012712					
	12 000	0 4 4 9	J=U,U12/13	0.006	11 0	05 7	202.25	2 22
	13,888	0,148	0,0088	0,006	11,3	95,7	293,35	2,32
2	15,08	0,207	0,0622	0,000	13,7	93,9	316,45	5,03
3	15,988	0,069	0,0612	0,000	15,3	98,0	333,83	6,77
4	16,074	0,134	0,0597	0,026	18,1	96,1	335,48	10,28
5	16.178	0.129	0,0594	0.025	50.1	96.2	337.45	1.49
6	16 435	0 130	0.0584	0.022	93	96.2	342 33	4 44
7	1/ 261	0,100	0,000-	0,022	00 0	06.2	310 00	-, 2 27
· ·	14,001	0,131	0,0040	0,001	53,5	90,Z	512,22	2,37
284c S polio			I-0 012712					
2040 S. polie	16 244	0 127	0.0500	0.004	5.0	06.0	220 07	10.00
	10,311	0,137	0,0588	0,001	5,Z	96,0	339,97	10,09
2	15,084	0,188	0,0626	0,000	21,4	94,5	316,51	1,67
3	15,493	0,078	0,0630	0,000	48,9	97,7	324,38	2,03
4	15,263	0,137	0,0628	0,000	67	96,0	319,95	1,88
5	14.967	0.137	0.0639	0.001	72.7	96.0	314.26	5.55
6	15 064	0 151	0.0634	0,000	80 3	95.6	316 13	2 1 2
7	15 7/	0 122	0.0610	0,000	00,0	00,0 06 1	320.00	5 05
l '	13,74	0,155	0,0010	0,000	55,5	50,1	525,03	5,55
L								

TABLEAU 7								
N°	40Ar*/39Ar	36Ar/40Ar*(10	0 39Ar/40Ar	38Ar/39Ar	% 39Ar	% 40*	Age (Ma)	+- 1s,d,
331 Mon. Bt			J=0.012713					
1	22 292	0 117	0.0433	0.028	12	96 5	450 15	57 67
2	16 022	0,006	0.0580	0,020	30.7	00,0	351 54	2.08
2	16,522	0,000	0,0505	0,000	50,7	00.3	346.20	4.24
3	16,044	0,022	0,0590	0,000	50,5	99,3	340,29	4,24
4	10,29	0,102	0,0595	0,000	02,3	97,0	339,30	0,25
5	16,756	0,008	0,0595	0,000	/1,5	99,7	348,41	8,57
6	16,841	0,002	0,0593	0,001	86	99,9	350,01	5,44
7	17,056	0,007	0,0584	0,000	91,1	99,8	354,07	14,84
8	17,073	0,028	0,0580	0,008	95,3	99,2	354,39	15,59
9	16,318	0,021	0,0608	0,000	97,2	99,4	340,12	40,02
10	15,14	0,280	0,0605	0,000	99,9	91,7	317,59	28,08
300 Pop. Bt			J=0,01401					
1	13.36	0.536	0.0629	0.051	2.8	84.0	309.54	1.00
2	13.41	0.155	0.0710	0.056	11.4	95.3	310.66	0.66
3	13 55	0.054	0.0725	0.057	28.0	98.3	313 52	0.40
4	13.54	0,004	0,0723	0,007	20,0 /0.2	00,0 00 3	313 35	0,40
4	12,54	0,020	0,0735	0,050	49,2	99,3	212,55	5 16
5	13,51	0,020	0,0735	0,056	00,0 01 5	99,3	312,79	5,10
6	13,48	0,055	0,0728	0,056	61,5	98,2	312,17	0,58
/	13,48	0,061	0,0727	0,055	63,8	98,1	312,08	0,59
8	13,5	0,036	0,0732	0,056	69,1	98,8	312,41	0,51
9	13,5	0,018	0,0736	0,056	80,1	99,3	312,41	0,44
10	13,55	0,013	0,0734	0,056	96,3	99,5	313,52	0,45
11	13,53	0,022	0,0734	0,057	100,0	99,2	313,09	0,38
300 Mon. Bt			J=0,012713					
1	17,386	0,108	0.0556	0,042	14,8	96.8	360,28	2,71
2	15.018	0.125	0.0641	0.028	31.9	96.3	315.24	2.67
3	15 014	0.079	0.0650	0.030	54.5	97 7	315 17	2 99
4	14 706	0.084	0,0663	0.046	65.9	97.6	309.23	4 79
5	14,700	0,004	0,0000	0,040	80.7	94.7	306.48	2 37
5	14,004	0,100	0,0050	0,029	100	07.1	212 62	2,37
0	14,002	0,096	0,0652	0,036	100	97,1	312,02	2,30
247 Man Dt			1 0 040740					
317 Mon. Bt		0.057	J=0,012/13	0.040	•			5.00
1	14,711	3,257	0,0025	0,242	0	3,8	309,33	5,00
2	10,225	1,534	0,0534	0,012	2,3	54,7	220,50	16,07
3	14,969	0,115	0,0644	0,014	23,8	96,7	314,31	1,79
4	14,574	0,152	0,0655	0,014	36,4	95,5	306,67	5,00
5	14,48	0,158	0,0657	0,012	49,8	95,4	304,86	1,63
6	14,501	0,168	0,0655	0,015	61,2	95,1	305,25	2,85
7	14,55	0,146	0,0657	0,013	74	95,7	306,21	3,34
8	14,64	0,130	0,0656	0,014	84,7	96.2	307,95	3,53
9	14.349	0.256	0.0644	0.014	95.6	92.5	302.32	3.23
10	10,589	0.983	0.0669	0.013	97.7	71.0	227.85	23.34
11	9 665	1 263	0.0648	0.014	99.9	62.7	209.08	13 97
	3,005	1,200	0,0040	0,014	55,5	02,1	203,00	10,57
206 S polio			I_0 012712					
300 S. polie	27 522	1 005	0.0245	0.070	10.7	67.7	E 11 01	0.71
1	27,523	1,095	0,0245	0,072	10,7	67,7	541,31	2,71
2	23,691	0,006	0,0421	0,007	11,9	99,9	474,99	15,31
3	22,373	0,007	0,0446	0,006	13	99,8	451,60	16,71
4	36,817	2,033	0,0108	0,220	25,8	40,0	692,68	6,78
5	16,804	0,032	0,0589	0,004	33,9	99,1	349,31	6,20
6	23,273	0,289	0,0392	0,037	38,8	91,5	467,60	5,24
7	15,365	0,827	0,0491	0,006	42,5	75,6	321,92	6,96
8	14,884	0,401	0,0592	0,004	90,8	88,2	312,66	1,54
9	15,429	0.125	0,0624	0.001	100	96.4	323,14	2,47
	., -	, -	,	,		,	- , -	,

N° Echantillon	Age total	Plateau	Isochrone	40Ar/36Ar	MSWD
246 Pop. Ms	308.0 + 2.8	313.0 + 2.8	315.3 + 3.0	324 + 28	0.69
246 Mon. Bt-step heating	330.5 + 4.5	327.6 + 4.3			
6 Pop. Bt	320.0 + 2.9		320.8 + 4.3	450 + 47	1.71
6 Pop. mS	317.9 + 2.9	322.2 + 3			
6 Mon Bt-step heating	329.7 + 3.4		322.8 + 3.5	299 + 37	2.17
40 Mon. Btstep heating	313.2 + 3.3		316.3 + 3.5	347 + 93	2.1
347 Pop. Bt.	334.3 + 3.1	341.4 + 3.2			
356 Pop.Bt.	309.9 + 2.9		307.9 + 4.1	747 + 107	0.43
356 Pop. Ms	301.5 + 2.8	310.2 + 2.9	313.7 + 3.1	249 + 11	1.92
404 Pop.Bt	312.0 + 2.9		318.6 + 3.8	314 + 45	5.64
334 Pop. Bt.	318.4 + 2.9		316.7 + 6.2	556 + 103	4.6
334 Pop. Ms.	324.6 + 3	324.9 + 3	326.9 + 3.0	293 + 18	0.3
331 Mon. Btstep heating	348.9 + 4.2	348.5 + 4.1			
300 Pop. Bt.	309.3 + 2.9	313.1 + 2.9	313.4 + 2.9	295 + 190	0.05
317 Mon Btstep heating	301.7 + 3.3	305.5 + 3.3	310.7 + 3.2	187 + 76	0.21

Tableau 8 : Résultats synthétiques 40Ar/39Ar sur monograin et population

Ech.	Lithologie	Assemblages	Localisation	C.L.II-X
246	Leucogranite mylonitique	Kfs, PI, Qtz, Bt, Ms	Faille de St Michel-de-Veisse -Pontarion	560,65
232	Leucogranite mylonitique	Kfs, PI, Qtz, Bt, Ms	Faille de St Michel-de-Veisse -St Michel-de-Veisse	577,08
524	Leucogranite mylonitique	Kfs, PI, Qtz, Bt, Ms	Faille de St Michel-de-Veisse-Les Conches, St Michel-de-Veisse	574,48
3	Leucogranite mylonitique	Kfs, PI, Qtz, Bt, Ms	Faille de Felletin-La Courtine- Coq Hardi, Ouest de Felletin	584,55
9	Leucogranite non déformé	Kfs, PI, Qtz, Bt, Ms	bordure NE massif de Millevaches -D 992 St Quentin-la-Chabanne	583,9
265	Leucogranite mylonitique	Kfs, PI, Qtz, Bt, Ms	Faille de Felletin-La Courtine-St Quentin-la-Chabanne	585,9
95	Leucogranite ultramylonitique	Kfs,PI,Qtz, Bt,Ms	Faille de Felletin-La Courtine-D982-Mas Laurent Sud de Felletin	586,8
241	Gneiss à bt-sil-crd	Qtz, PI, Kfs, Bt, Ms, Sil, Crd	Faille de St Michel-de-Veisse-St Hilaire-le-Château	565,5
40	Gneiss à bt-sil-crd	Qtz, PI, Kfs, Bt, Ms, Sil, Crd	Faille de Felletin-La Courtine- Mas d'Artige	435,6
347	Gneiss à Bt-Sil	Qtz, PI, Kfs, Bt, Ms, Sil, Crd	Faille de Felletin-La Courtine-Confolent-Port-Dieu	614,2
356	Leucogranite mylonitique	Kfs, PI, Qtz, Bt, Ms	Faille des Pradines- D142, Sarran	001° 56'47 1"
404	Granulite	Qtz, PI, Kfs, Bt, Sil, Crd, Grt,sp	Faille des Pradines-St Pierre-Bellevue	565,1
MVG3	Leucogranite non déformé	Kfs, PI, Qtz, Bt, Ms	Centre du massif de Millevaches -Commerly	001° 59'08 4"
MVG4	Granite à Bt porphyroïde	Kfs, PI, Qtz, Bt	Centre du massif de Millevaches -Bugeat	001° 53'14 0"
522	Leucogranite mylonitique	Kfs, PI, Qtz, Bt, Ms	Faille d'Argentat- Bourganeuf	555,4
334	Leucogranite mylonitique	Kfs, PI, Qtz, Bt, Ms	Faille de la Marche Occidentale-Moulin Réculais, St Sulpice-les-Feuilles	519
284c /284	Leucogranite mylonitique	Kfs, PI, Qtz, Bt, Ms	Faille de la Marche Orientale-Dun-le-Palestel	548,6
331	Gneiss à Bt-Sil	Qtz, PI, Kfs, Bt, Ms, Sil	Nord de la Marche Orientale-Marseuil	559,4
300	leucogranite	Kfs, PI, Qtz, Bt, Ms	massif de la Brâme -St Sornin Leulac	520,5
317	Leucogranite mylonitique	Kfs, PI, Qtz, Bt, Ms	Faille de Bussières-Madeleine-LaChapelle-Templière	528
306	Leucogranite mylonitique	Kfs, PI, Qtz, Bt, Ms	Faille de Nantiat-Rancon	511,5

Tableau 9

		Traversée	1 Ms					Traversée	1 Bt				1 Ms	1Bt	1Bt	1Bt		1Bt		1Bt	1Bt		Traversée	1 Ms		Traversée	1 Ms			Traversée	1 Bt			Traversée	1 Bt		1 Ms		1 Ms		1 Ms		1Bt
Echaptillons		ms MVG3	ms MVG3	ms MVG3	ms MVG3	ms MVG3	bt MVG3	bt MVG3	bt MVG3	bt MVG3	bt MVG3	bt MVG3	ms MVG3	bt MVG3	bt MVG3	bt-c MVG4	bt-p MVG4	bt-c MVG4	bt-p MVG4	bt-c MVG4	bt-c MVG4	bt-p MVG4	ms356	btp356	btpc356	btpc356	btp356	btp356	btc356	btcp356	msp356	mspc356	msp356	msc356	msc356	msc356	btp356 btc356						
Totol	I UIAI	97.705	97.798	97.528	96.885	98.128	97.253	97.665	97.541	97.780	97.896	98.060	98.107	97.871	97.189	97.440	97.370	97.570	97.011	97.458	97.625	97.695	96.926	98.068	98.124	97.799	98.210	97.564	97.888	97.749	97.365	97.515	96.671	98.097	97.319	97.527	98.503	98.445	98.449	98.104	98.516	97.595	97.871 98.168
	CaC	0.003	0.006	0.008	0.000	0.265	0.025	0.030	0.000	0.000	0.007	0.000	0.000	0.043	0.019	0.001	0.024	0.025	0.010	0.020	0.014	0.003	0.002	0.018	0.000	0.000	0.020	0.000	0.001	0.000	0.000	0.003	0.005	0.035	0.038	0.004	0.010	0.013	0.000	0.000	0.000	0.012	0.000
כ	5	0.002	0.001	0.000	0.000	0.000	0.044	0.042	0.050	0.036	0.048	0.040	0.006	0.044	0.040	0.049	0.054	0.055	0.055	0.049	0.046	0.038	0.008	0.000	0.002	0.003	0.000	0.000	0.000	0.008	0.007	0.010	0.015	0.008	0.016	0.004	0.008	0.000	0.001	0.000	0.003	0.000	0.018 0.013
UCN		11.102	11.108	10.981	11.081	11.323	9.954	10.103	10.276	10.264	10.264	10.319	11.163	10.112	10.130	10.609	10.536	10.496	10.482	10.496	10.596	10.649	10.972	10.965	11.153	11.259	11.095	11.281	11.345	10.130	9.997	9.949	10.074	10.091	10.061	10.045	11.168	11.357	11.270	11.161	11.513	11.410	10.051 10.154
		1.477	1.510	1.558	1.547	1.557	24.057	23.837	23.731	23.439	23.437	23.330	1.546	24.078	23.763	19.235	19.355	19.360	19.290	19.136	19.002	19.139	1.470	1.519	1.427	1.490	1.493	1.517	1.548	24.096	24.172	24.074	23.970	23.999	24.263	23.792	1.477	1.489	1.501	1.512	1.595	1.526	24.668 24.623
CaM	DIIV	0.025	0.008	0.029	0.025	0.014	0.367	0.332	0.357	0.362	0.365	0.374	0.019	0.378	0.360	0.274	0.288	0.304	0.304	0.294	0.279	0.267	0.016	0.023	0.012	0.001	0.022	0.022	0.018	0.364	0.371	0.319	0.356	0.350	0.340	0.344	0.011	0.011	0.025	0.032	0.019	0.019	0.365 0.402
	01200	0.000	0.007	0.014	0.002	0.010	0.000	0.016	0.022	0.000	0.036	0.000	0.032	0.000	0.013	0.017	0.065	0.052	0.040	0.013	0.031	0.024	0.000	0.012	0.008	0.012	0.030	0.000	0.020	0.001	0.000	0.011	0.000	0.008	0.012	0.003	0.010	0.000	0.000	0.000	0.000	0.000	0.013 0.000
3, MVG4, 356 McO	Ofini	0.724	0.703	0.758	0.813	0.795	6.411	6.297	6.502	6.245	6.058	6.183	0.737	6.340	6.487	9.718	9.855	9.454	9.543	9.541	9.811	9.736	0.655	0.711	0.704	0.679	0.690	0.733	0.736	4.967	4.892	5.025	5.082	5.139	5.080	5.055	0.694	0.678	0.712	0.689	0.769	0.676	5.001 5.009
antillons MVG	NazO	0.591	0.583	0.663	0.705	0.492	0.061	0.080	0.077	0.064	0.064	0.097	0.675	0.064	0.050	0.098	0.111	0.134	0.111	0.128	0.136	0.074	0.725	0.629	0.585	0.583	0.682	0.556	0.501	0.085	0.100	0.100	0.103	0.130	0.158	0.084	0.595	0.612	0.567	0.603	0.433	0.474	0.075 0.050
s pour les éch TiOO	1102	0.956	0.928	0.881	0.782	0.849	2.842	3.046	2.990	3.219	3.422	3.109	0.991	3.146	3.236	3.256	3.483	3.407	3.255	3.263	3.576	3.618	0.712	0.800	0.738	0.614	0.573	0.903	0.673	2.709	2.772	2.708	2.639	2.745	2.837	2.764	0.819	0.573	0.919	0.730	0.776	0.559	2.757 2.675
ments majeur	300	47.711	47.892	47.744	47.177	47.915	35.627	35.453	35.086	35.787	35.488	35.667	47.755	35.635	35.258	36.503	36.196	36.330	36.048	36.684	36.625	36.332	47.334	47.949	48.210	47.586	48.025	47.713	47.803	35.607	35.360	35.762	35.032	36.113	35.253	35.727	48.335	48.360	48.258	47.960	48.359	47.531	35.642 35.790
s micas en élé		35.114	2 35.053	5 34.891	3 34.753	34.908	17.865	11 18.430	18.450	8 18.363	9 18.706	18.941	13 35.183	14 18.030	15 17.831	16 17.680	17 17.404	18 17.951	19 17.873	20 17.833	21 17.509	22 17.816	23 35.034	24 35.443	25 35.285	26 35.571	27 35.581	28 34.840	29 35.243	30 19.781	31 19.694	32 19.556	33 19.396	34 19.479	35 19.261	36 19.705	37 35.376	38 35.351	39 35.197	40 35.416	41 35.049	42 35.388	43 19.281 44 19.452
Analyse de		6(perif)	0			4(perif)	12(perif)		7(perif)			10(perif)																															

ANNEXE 2
Corr	0,966	0,974	0,970	0.975	0,934	0,972	0,760	0.943	0.966	0,968	0,975	0,974	0,973	0,972	0,807	0,960	0,972	0,947	0,971	0,802	0,944	0,017	0,972	0,720	0,968	0,959	0,738	0,856	0.960	0,788	0,879	0,716	0,810	0.910	0,924	0,911	0,900	0.764	0.938	0,767	0,844	0,961	0,971	0,980	0,891	0,803	0,965	n+oʻn
Error Th/Pb %	14,32	14,70	16,31	18,41	17,51	13,76	15,53 23.48	15.26	12.73	12,99	14,42	14,22	14,04	13,83 13 35	11.28	11,83	13,81	13,99	13,67	8,29	72,04	28,34 28,20	17,93	16,56	17,07	14,87	16,94	26,24	16.14	17,95	15,85	23,27	14,00 17.05	8.35	8,98	8,39	8,00	3,UZ 22.88	16.00	13,34	13,15	11,88	13,04	15,00	14,22	17,04	13,94 11 85	00'11
Th/Pb	47,569	52,848	54,590	26,509 46.692	64,239	48,549	54,108 62 266	56.410	43.732	39,745	42,983	45,020	42,460	44,625	63.969	40,288	42,050	62,039	43,314	65,299	34,99Z 57 075	57,073 66 901	49,870	66,239	56,248	54,356	65,920	64,934 53 080	61.153	64,549	62,545	60,003	54,027	26,681	27,216	27,395	27,635	32,315 47.645	51.830	62,507	59,905	41,026	47,007	47,907 56,552	44,765	41,192	37,304	40,014
Error U/Pb %	14,88	14,86	17,26	20,42 19.40	21,02	13,76	24,81 28.60	17.43	12.73	12,99	14,42	14,22	14,04	13,83 13 35	15,61	11,83	13,81	15,47	13,67	10,34	10,23 36 60	54.07	19,18	28,32	18,38	16,05	28,33	38,66	17.73	28,15	21,03	41,82	20,33 27.66	8,35	8,98	8,39	8,00	38.32	18.73	20,49	17,85	11,88	13,04	16,65	18,06	25,91	14,47 15.55	10,00
U/Pb	4,805	5,875	4,845	4,093 5.285	2,812	7,794	1,200	3.182	7.190	8,573	7,230	6,917	7,057	6,983 7 378	1,466	7,154	7,217	3,436	6,973	1,55/	104,0	0.946	4,906	1,058	4,540	4,051	1,115	1,680	3.942	1,308	1,930	1,035	1,440	13.592	12,738	13,676	11,839	1.197	2.958	1,240	1,666	9,264	0,915	6,749	2,094	1,383	4,730	1,1 40
Error U* ppm	505	534	502	414	533	580	517	542	577	567	493	509	501	525 548	786	596	512	628	521	110/	023	385	438	570	495	539	557	397	549	523	567	410	564 406	1031	907	1038	1016	359	491	658	645	665 FFO	702	511	485	400	436 568	000
Error U*	2,14	2,04	2,21	2.29	2,44	2,00	2,63 2,70	2.34	2.00	2,00	2,00	2,00	2,00	00 2	2,30	2,00	2,00	2,23	2,00	2,15	2,00	3.13	2,30	2,58	2,27	2,23	2,59	2,96	2,27	2,63	2,47	2,99	2,51 2,68	2.00	2,00	2,00	2,00	3.18	2,43	2,43	2,39	2,00	2,00	2,04	2,51	2,88	2,15	2 ,41
U*(Th) ppm	23618	26154	22687	18493	21851	29008	19684 15462	23206	28832	28368	24672	25471	25029	26229	34172	29789	25576	28205	26054	51581	34903 12667	12280	19041	22083	21750	24181	21479	13403	24152	19889	22917	13711	22481	51532	45363	51919	50802	11298	20196	27030	26976	33241	6/0/20	25016	19323	13856	20236	00007
Error Th* ppm	1647	1736	1632	1348	1730	1884	1690	1765	1877	1846	1606	1658	1630	1/0/	2557	1942	1666	2040	1697	3600	1207	1251	1428	1853	1608	1755	1812	1297	1784	1702	1843	1335	1841 1648	3350	2951	3374	3308	1177	1600	2141	2100	2161	1/34	1656	1591	1316	1429 1865	1000
Error Th* %	2,14	2,04	2,21	2.29	2,44	2,00	2,63 2,70	2.34	2.00	2,00	2,00	2,00	2,00	2,00	2.30	2,00	2,00	2,23	2,00	2,15	2,00	2,30	2,30	2,58	2,27	2,23	2,59	3.00	2,27	2,63	2,47	2,99	2,51	2.00	2,00	2,00	2,00	3,18	2,43	2,43	2,39	2,00	2,00	2.04	2,51	2,88	2,15	- 1,1
Th*(U) ppm	76990	84980	73755	58778	70964	94198	64316 50238	75538	93840	92314	80321	82889	81518	85362 80140	111149	97092	83294	91606	84835	16/680	114009	30026	62004	71804	70691	78690	69842	430/1	78423	64691	74538	44689	73429 60784	167513	147571	168717	165419	37050	65881	87989	87855	108040	02004	81126	63368	45635	66316 77200	11230
MPb	207,497	207,462	207,543	207,455	207,736	207,312	207,846 207,716	207.676	207.301	207,176	207,291	207,330	207,296	207,322	207,842	207,266	207,281	207,681	207,310	207,427	201,122	207,892	207,507	207,881	207,574	207,599	207,876	201,821	207.641	207,857	207,800	207,874	207,822	206.764	206,803	206,774	206,845	207,830	207.673	207,859	207,816	207,155	005, 102	207.436	207,720	207,784	207,408	201,101
Error Pb ppm	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	20
Error Pb %	12,32	12,70	14,31	16.31	15,51	11,76	13,53 21.48	21,40	10.73	10,99	12,42	12,22	12,04	11,83 11 25	9.28	9,83	11,81	11,99	11,67	6,29	8,23 20.04	26.20	15,93	14,56	15,07	12,87	14,94	24,24	14,14	15,95	13,85	21,27	12,00 15.05	6.35	6,98	6,39	6,00	20.88	14,00	11,34	11,15	9,88	11,04	14,50	12,22	15,04	11,94 0 85	3,00
dq Mqq	1218	1181	1049	914	967	1275	1108 608	1131	1398	1365	1207	1227	1246	126/	1617	1526	1271	1251	1285	2383	746	571	942	1031	966	1165	1004	619 713	1060	940	1083	705	1250	2364	2150	2349	2499	2130 718	1072	1322	1345	1519	1209	1034	1227	866	1256	0701
Error Th DDM	1158	1249	1145	90 I 859	1243	1238	1199 870	1276	1223	1085	1038	1105	1058	1131	2069	1230	1069	1553	1113	3112	G/71	010	939	1365	1120	1267	1324	804	1297	1214	1355	846	1351	1261	1170	1287	1381	1309	1111	1653	1611	1246	1214	1170	1099	822	937	0/01
Error Th %	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2.00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	0.0	2,00	2,00	2,00	2,00	2,00	2,00	2.00	2,00	2,00	2,00	2,00	2.00	2,00	2,00	2,00	2,00	2.00	2,00	2,00	2,00	200	2,00	2,00	2,00	2,00	7,00
Th ppm	57920	62430	57240	48040	62130	61920	59970 13480	63820	61130	54240	51900	55260	52890	5656U 57410	103440	61500	53430	77640	55660	155620	10800	38170	46960	68260	56000	63330	66200	37850	64850	60690	67740	42310	67550 F6400	63070	58500	64340	69070	34230	55540	82650	80560	62310	60/10	58490	54940	41090	46850 68660	00000
Error U DDM	150	150	150	150	150	199	150	150	201	234	175	170	176	177 105	150	218	183	150	179	150	308	150	150	150	150	150	150	150	150	150	150	150	150	643	548	642	592	150	150	150	150	281	174	150	150	150	150	20
Error U %	2,56	2,16	2,95	3.09	5,51	2,00	11,28 7 31	4.17	2.00	2,00	2,00	2,00	2,00	2,00	6,33	2,00	2,00	3,49	2,00	4,04	2,00 14 56	07.78	3.25	13,76	3,32	3,18	13,39	14,42	3.59	12,20	7,18	20,55	8,33 1 7 61	2.00	2,00	2,00	2,00	2,00	4.73	9,15	6,70	2,00	2,00	2,15	5,84	10,87	2,53	0,0
n mqq	5850	6940	5080	3/40	2720	9940	1330 2080	3600	10050	11700	8730	8490	8790	8850	2370	10920	9170	4300	8960	3/10	10410	540	4620	1 090	4520	4720	1120	780 780	4180	1230	2090	730	1800	32130	27380	32120	29590	01 642	3170	1640	2240	140/0	0310	0/00	2570	1380	5940 2630	0007
Error Age Ma	51	46	53	04 65	55	42	62 75	52	43	43	49	47	48	46	38	42	47	43	46	21	3/ 86	00	62	55	55	50	56	86 05	50	60	53	85	55 6F	27	29	26	27	104	60	46	46	38	44	44	64	87	60 54	5
Age Ma	354	312	319	351	305	304	385	335	334	332	337	332	343	333	326	353	342	306	340	318	509 260	302	340	321	316	332	322	318 304	303	325	325	353	381	318	328	313	340	322 433	364	336	343	316	322	222 286	433	487	424	0444
Ech. 284	Ł	2	е,	4 rC	9	7	ω σ	ء 10	11	12	13	14	15	16	18	19	20	21	52 53	57	24 25	296	27	28	29	30	31	88	34	35	36	37	89	64	41	42	43	4 5	46	47	48	49	20	52	53	54	55 55	Tableau 1

Corr	987	,981	,982	,986	,973	,979 983	,985	,983	,986	985	989	,988	984	084 084	980	,988	,962	626	,980	,982	060	,981	,987	982	986	,982	982	,983 062	.955	,943	,903	,987	984	,984	,984	0960	,941	,894	.844	,958	,977	984	,982	,980	626	,973	,971 978	,985	,980	,981 .979	,982	978	,970	,966	,962 967	696	,977 970	,966	,975
- 0		-	~	0		~~~		0	_	~~~		0				0	-		0	_	~ ~		~			0	_					_		~			0			0						0	-		+										0
Errol Th/PI	20.81	16,82	17,43	19,92	19,42	20,52	24,37	22,39	18,71	20,52	21,15	21,06	20,32	10.46	16,35	20,35	20,52	18.58	16,26	23,51	20,02	18,56	21,78	17.25	19,65	17,11	17,21	19,12	30.55	26,37	19,05	21,61	19.13	18,60	18,46	21.67	25,27	20,12	21,77	20,60	19,85	18,06	18,31	18,57	22,17	23,2(23,22	20,52	18,32	17,91	18,09	15,55	18,28	19,87	26,18	13,16	15,02	12,62	15,89
Th/Pb	47.256	35,321	35,882	41,825	38,295	43,010	51,652	49,164	38,567	36.477	43,960	45,523	46,167	52,073 43,712	33,579	42,557	46,150	39.401	33,098	53,381	52,879	38,778	46,522	33,351	39,926	34,834	35,483	0CC,UP	56,495	54,125	55,408	45,891	27'C'RS	39,165	39,258	49.724	59,605	47,774	54,310	55,707	50,000	37,666	47,197	42,157	50,158	49,535	45,037 44.811	48,754	43,944	45,703	49,563	37,764 45.075	42,224	44,901	55,240 57 167	36,590	35,678	27,603	41,259
Error U/Pb	21.19	16,97	17,63	20,22	21,02	24,21	25,72	23,63	18,71	20,53	21,18	21,29	20,94	22,93	16,48	20,39	23,38	19.41	16,28	25,08	26,58 21.76	19,19	22,34	17,38	19,87	17,16	17,28	20,28	37.21	32,70	24,86	22,11	19,48	18,91	18,68	25.05	31,37	26,94	26.17	23,79	21,17	18,15 18,25	18,77	19,29	23,87	25,81	26,01 22.54	21,00	18,93	18,32 17.38	18,46	15,61	19,79	22,19	30,73	13,19	15,04	12,64	16,29
d//b	7.914	6,963	7,014	7,815	4,844	6.262	6,665	6,293	8,435 0 E0 2	8,338	9,461	8,553	6,998	7 200	6,888	8,993	3,832 E 04E	5.859	7,044	6,022	8,6/5 0 807	6,305	7,727	7 146	8,101	7,384	7,330	3 700	3.317	2,924	2,182	7,816	7,092	7,296	7,419	3.659	2,869	2,054	2,221	3,584	5,378	7,553	6,645	6,087	5,460	4,609	4,461 5,460	7,469	6,320	6,596 6.427	6,779	6,574	4,646	4,133	3,691	7,537	10,400 10,305	11,255	5,778
Error U*	382 382	369	364	365	351	370	363	372	364 264	364	362	371	382	381	364	364	379	368	363	379	355	365	367	351	358	362	364	301 235	332	354	449	366	363	367	369	382	386	392	429	426	408	366	417	384	379	365	345 366	393	398	415 432	434	406 265	388	381	361 359	503	492 524	556	423
Error U*	2.13	2,05	2,08	2,11	2,47	2,39	2,40	2,36	2,00	2,00	2,01	2,09	2,20 2.20	C,2	2,04	2,02	2,61	2.27	2,01	2,42	2,26	2,22	2,20	2 00 2 00	2,07	2,02	2,03	2,20	3.06	2,95	2,66	2,18	2,07	2,11	2,08	2.65	2,83	2,84	2,74	2,55	2,34	2,03 2,05	2,14	2,23	2,44	2,61	2,67 2,42	2,16	2,19	2,13	2,11	2,02	2,40	2,54	2,81 2,80	2,00	2,00	2,00	2,13
U*(Th) nom	17910	17968	17501	17294	14239	15505	15136	15753	18199	18185	18015	17759	17351	1/293 17808	17880	18053	14528	16210	18055	15662	15/29	16465	16717	17064	17270	17917	17948	163/3	10848	12024	16871	16783	16881	17414	17734	14412	13666	13781	16927	16693	17432	17971	19453	17210	15524	14015	15123 15123	18208	18179	19462 20493	20540	20086	16181	15010	12820	25127	24577	27814	19891
Error Th*	ppm 1241	1204	1188	1188	1151	11.80	1180	1211	1185	1181	1176	1204	1244	1263	1191	1183	1237	1203	1187	1232	1152	1192	1193 1205	1147	1166	1182	1190	9/11	1081	1155	1464	1190	11/4	1195	1204	1247	1256	1282	139/ 1497	1387	1329	1192	1356	1252	1234	1189	1126	1277	1295	1350 1405	1412	1326	1268	1244	1174 1168	1640	1598 1708	1813	1381
Error Th*	2.13	2,05	2,08	2,11	2,47	2,39	2,40	2,36	2,00	2,00	2,01	2,09	2,20	0 14	2,04	2,02	2,61	2.27	2,01	2,42	2,26	2,22	2,20	2,06 2,06	2,07	2,02	2,03	2,20	3.06	2,95	2,66	2,18	2,U/ 2,15	2,11	2,08	2.65	2,83	2,84	2,74	2,55	2,34	2,03 2,05	2,14	2,23	2,44	2,61	2,67 2,42	2,16	2,19	2,13	2,11	2,02	2,40	2,54	2,81 2,80	2,00	2,00 2,00	2,00	2,13
Th*(U)	58176	58714	57167	56285	46625	49535 50410	49158	51226	59259 FORED	58859	58487	57678	56437	57055	58486	58664	47456	52954	59058	50872	509/5 57262	53766	54323	55798	56228	58522	58610	333/9	35303	39186	55010	54545	55037	56772	57805	47011	4447	45115	55267	54325	56729	58613	63274	56131	50510	45661	42085	59141	59227	63344 66705	66748	65595 44766	52890	49036	41723 41683	81984	79925 • 5414	90634	64929
MPb	207.293	207,217	207,221	207,243	207,410	207,414	207,404	207,407	207,170	207,136	207,178	207,241	207,336	207,379	207,198	207,187	207,564	207.343	207,181	207,457	207,303	207,305	207,297	207.178	207,205	207,183	207,196	207,503	207.666	207,687	207,757	207,286	207,263	207,244	207,237	207,602	207,715	207,738	207,805	207,641	207,474	207,201 207,218	207,368	207,356	207,470	207,526	207,503	207,332	207,358	207,357	207,380	207,274	207,464	207,529	207,631	207,197	207,032	206,868	207,369
Error Pb	ppm 150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150 150	150	150	150	150	150	150	150 150	150	150
Error Pb	% 18.81	14,84	15,43	17,92	17,42	20.87	22,37	20,39	16,71	16,23	19,15	19,06	18,32	20,12 17 46	14,39	18,35	18,54	16.58	14,26	21,51	23,83 10 75	16,56	19,78	15.25	17,69	15,11	15,21	21,12	28.59	24,37	17,05	19,61	17,30	16,63	16,46	19.67	23,27	18,12	19,71	18,60	17,85	16,06 16 12	16,31	16,57	20,17	21,20	21,24 19.05	18,52	16,34	15,91 15.04	16,09	13,55	16,28	17,87	24,18 25.21	11,19	13,04 11 AE	10,64	13,89
Pb	797	1011	972	837	861	81U 719	671	736	897	808 925	783	787	819	/46 850	1042	817	809	905	1052	697	629 760	906	758	084	848	993	986	847 617	525	616	880	765	8076 876	902	911	762	645	828	101 927	806	840	934 931	920	905 864	744	707	788	810	918	943 997	932	1107	921	840	620 595	1340	1150	1410	1080
Error Th	ppm 754	714	698	700	659	716	693	723	692 202	675 675	689	716	756	751	200	969	747	713	696	745	666 667	702	747	656	677	692	700	604	593	666	975	702	089 969	706	715 en7	758	769	791	908 1007	898	840	713	868	763	746	701	636 706	200	807	862 917	924	836 705	207	754	685 680	981	821 820	778	891
Error Th	2.00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2.00	2,00	2,00	2,00	2,00	2,00	00,2	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2.00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00 2,00	2,00	2,00
Th	37680	35710	34890	35000	32970	34820 35780	34640	36170	34610	34090	34430	35820	37800	38830 37550	35000	34780	37330	35640	34820	37230	33280	35120	35280	32810	33860	34580	35000	34340	29640 29640	33320	48750	35110	34260	35320	35770	37910	38430	39550 45 400	50370	44920	42020	35170	43400	38160	37300	35040	31800	39490	40330	43100 45840	46210	41820	38900	37700	34270	49030	41030	38920	44560
Error U	150	150	150	150	150	150	150	150	151	154	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150 150	150	150	150	150	150	202	239 270	317	150
Error U	2.38	2,13	2,20	2,29	3,60	3,33	3,36	3,24	2,00	2,00	2,02	2,23	2,62	2,81	2,09	2,04	4,84	2,83	2,02	3,57	2,75	2,63	2,56	2.13	2,18	2,05	2,07	10,2	8.62	8,33	7,81	2,51	2,18	2,28	2,22	5.38	8,11	8,82	8,88 10.00	5,19	3,32	2,09 2,13	2,45	2,72	3,69	4,60	4,76 3.49	2,48	2,59	2,41 2,34	2,37	2,06	3,50	4,32	6,55 6.36	2,00	2,00	2,00	2,40
n	6310	7040	6820	6540	4170	4500	4470	4630	7570	7710	7410	6730	5730	533U	7180	7350	3100	5300	7410	4200	5460 7450	5710	5860	2030	6870	7330	7230	284U	1740	1800	1920	5980	6210 6210	6580	6760	2790	1850	1700	1500	2890	4520	7190	6110	5510 5060	4060	3260	3150 4300	6050	5800	6220 6410	6320	7280	4280	3470	2290	10100	11960 13500	15870	6240
Error Age	Ma 64	65	67	67	82	74	26	73	64	63 64	64	65	67	67 65	99	64	81	52	65	74	72 65	71	69 65	88	67	65	65	100	105	96	70	69	00 69	67	66 22	8	85	86	e) 12	20	67	65 65	60	68 65	52	83	90 22	64	64	60 57	57	20	32	78	66	· 48	49 AR	\$ 4	60
Age Ma	308	386	381	334	413	320	306	322	340	353	301	306	326	333	399	313	382	383	399	308	2//	378	313	395	339	380	377	350	333	352	358	315	343 357	356	354	363	325	410	375	333	332	357 356	326	362	330	347	376 358	307	347	334 335	313	378	390	383	333	367	323 345	350	373
Ech. 381	F	- 2	e	4	2 2	9	- 8	6	10	12	13	14	15	16	18	19	20	22	23	24	22 96	27	28	67	31	32	33	ę, ę	8	37	38	39	40	42	43	45	46	47	48	50	51	52	54	55	20	58	59 60	61	62	63	65	66	68	69	70	72	73	75	76

	381 Age	Age	∩			f ag	Th	Th T	Pb	Error Pb	Error Pb	MPb	Th*(U)	Error Th*	Error Th*	U*(Th)	L L* or	U*	U/Pb	Error U/Pb	Th/Pb	Error Th/Pb	Corr
	414	Ma 97	0202	7.25	ppm 150	32480	%	ppm 650	727	% 20.64	ppm 150	207.643	39259	2.91	ppm 1141	11989	2.91	ррт 348	2.848	% 27.89	44.695	% 22.64	0.939
	341	65	5080	2,95	150	42570	2,00	851	898	16,71	150	207,434	59112	2,27	1340	18153	2,27	411	5,658	19,66	47,414	18,71	0,978
	369	71	4750	3,16	150	38020	2,00	760	881	17,02	150	207,416	53521	2,34	1250	16400	2,34	383	5,389	20,17	43,132	19,02	0,976
	304 290	94 58	2310 7140	6,49 2.10	150 150	31670 41750	2,00	633 835	531 837	28,26 17.92	150 150	207,606	39171 64911	2,86	1120	12063 20011	2,04	345 407	4,353 8.531	34,76 20.02	59,675 49.885	30,26 19.92	0,972
	370	8	5960	2,52	150	40100	2,00	802	984	15,24	150	207,344	59552	2,17	1292	18246	2,17	396	6,055	17,75	40,736	17,24	0,978
	347	60	7930	2,00	159	37 090	2,00	742	972	15,44	150	207,180	62924	2,00	1258	19315	2,00	386	8,162	17,44	38,176	17,44	0,983
	379	61 63	8520	2,00	170	35550	2,00	711	1070 061	14,01 15.61	150	207,125	63375 50087	2,00	1268	19405 18305	2,00	388	7,959	16,01 17.68	33,210 37 760	16,01 17.61	0,980
	344	65	7050	2,13	150	34640	2,00	693	882	17,00	150	207,203	57603	2,05	1181	17685	2,05	363	2,990	19,13	39,260	19,00	0,985
	355	89	5120	2,93	150	39500	2,00	790	890	16,86	150	207,401	56191	2,28	1279	17237	2,28	392	5,754	19,79	44,395	18,86	0,978
	328 328	90 65	3880	3,87	150	45800	2,00	916 916	854 854	10,94	150	207,558	58422	2.40	1389	17.959	2,40	420	4,448	21,44	53.648	19,57	0.970
	379	69	4150	3,61	150	42390	2,00	848	947	15,85	150	207,508	55943	2,39	1338	17130	2,39	410	4,384	19,46	44,780	17,85	0,967
	364	65	7250	2,07	150	34480	2,00	690	944	15,88	150	207,188	58131	2,03	1179	17819	2,03	361	7,677	17,95	36,513	17,88	0,984
	346	96 63	/640 8160	2,00	153	32190	2,00	644 688	8/9	17,07 15.68	150	207,131	5/0/8 61015	2,00	1142	1/522	2,00	350	8,696 8.531	19,07	36,638 35,985	19,07 17.68	0,986
	398	99	6780	2,21	150	36230	2,00	725	1037	14,46	150	207,241	58405	2,08	1215	17857	2,08	372	6,538	16,68	34,936	16,46	0,979
	370	62	5650	2,65	150	43790	2,00	876	1028	14,59	150	207,403	62230	2,19	1365	19067	2,19	418	5,494	17,24	42,580	16,59	0,975
	350	65 66	5410 3980	2,77	150	41580 45640	2,00	832 913	924 980	16,23 15.31	150	207,400 207,548	59209 58633	2,23	1320	18170	2,23 2,30	405	5,852 4.063	19,00 19.08	44,976 46.595	18,23 17.31	0,978
	317	11	4170	3,60	150	35070	2,00	701	687	21,85	150	207,436	48624	2,45	1189	14959	2,45	366	6,074	25,45	51,081	23,85	0,983
	336	72	3710	4,04	150	40310	2,00	806	784	19,13	150	207,530	52386	2,47	1294	16094	2,47	398	4,731	23,17	51,401	21,13	0,973
	372	6/ 56	6920	2,39	150	35110 46820	2,00	207 936	1152	20,40	150	207.346	55493 69408	2,14	1189 1426	21264	2,14	300 437	8,54U 6.007	22,79	41,747	22,40	0.975
No No<	363	56	7340	2,04	150	44940	2,00	899	1117	13,43	150	207,303	68883	2,02	1388	21117	2,02	426	6,573	15,48	40,247	15,43	0,978
No No<	335	60	6500 6540	2,31	150	42570	2,00	851	950	15,78	150	207,333	63726 64677	2,10	1340 1366	19579	2,10	412	6,840 £ 71£	18,09	44,795	17,78	0,982
No 0	380	61	0699	2,24	150	41830	2,00	837	1081	13,88	150	207,330	63681	2,08	1327	19497	2,08	406	6,190	16,12	38,704	15,88	0,977
NN N	297	60	6590	2,28	150	41750	2,00	835	835	17,96	150	207,320	63139	2,09	1322	19454	2,09	407	7,891	20,24	49,991	19,96	0,986
No Titole	335	62	6210 6180	2,42	150	41500	2,00	821 830	915 1036	16,40 14.48	150	207,337	61263 61679	2,14	1309	18822 18890	2,14 2,14	402	6,789 5 965	18,81 16 91	44,877 40.058	18,40 16,48	0,982
No No<	369	67	5360	2,80	150	39770	2,00	795	943	15,91	150	207,385	57262	2,24	1285	17547	2,24	394	5,685	18,71	42,182	12,91	0,977
101 101 2.42 101 <td>353</td> <td>45</td> <td>15260</td> <td>2,00</td> <td>305</td> <td>38410</td> <td>2,00</td> <td>768</td> <td>1384</td> <td>10,84</td> <td>150</td> <td>206,881</td> <td>88148</td> <td>2,00</td> <td>1763</td> <td>27044</td> <td>2,00</td> <td>541</td> <td>11,023</td> <td>12,84</td> <td>27,745</td> <td>12,84</td> <td>0,967</td>	353	45	15260	2,00	305	38410	2,00	768	1384	10,84	150	206,881	88148	2,00	1763	27044	2,00	541	11,023	12,84	27,745	12,84	0,967
311 6 6 6 6 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	318	88	5890 6120	2,55	150	40590	2,00	821	/40 864	17.36	150	207.344	5908U	2.15	1298	187413	2.15	400	7.081	19.81	54,839 47,473	22,27 19.36	0.984
31 9 9000 21.1 1010 20.1 1010	315	61	6360	2,36	150	40970	2,00	819	864	17,35	150	207,326	61640	2,12	1307	18966	2,12	402	7,358	19,71	47,398	19,35	0,984
311 69 7700 200 <td>341</td> <td>60</td> <td>6330 6930</td> <td>2,37 2.16</td> <td>150</td> <td>43230</td> <td>2,00</td> <td>865 866</td> <td>970 868</td> <td>15,47 17 28</td> <td>150</td> <td>207,351 207,314</td> <td>63843 65801</td> <td>2,12 2,06</td> <td>1353</td> <td>19606 20275</td> <td>2,12 2,06</td> <td>416</td> <td>6,528 7 98.2</td> <td>17,84</td> <td>44,584 49,885</td> <td>17,47 19.28</td> <td>0,980</td>	341	60	6330 6930	2,37 2.16	150	43230	2,00	865 866	970 868	15,47 17 28	150	207,351 207,314	63843 65801	2,12 2,06	1353	19606 20275	2,12 2,06	416	6,528 7 98.2	17,84	44,584 49,885	17,47 19.28	0,980
341 6 7250 210 871 310 871 210 971 146 3039 145 103	381	56	7650	2,00	153	43980	2,00	880	1173	12,79	150	207,274	68968	2,00	1379	21114	2,00	422	6,523	14,79	37,499	14,79	0,976
37 57 600 2.0 2.0	341	49	12330	2,00	247	40520	2,00	810 775	1225	12,25	150	207,010	80672 64022	2,00	1613	24773	2,00	495	10,069 6.060	14,25 15 06	33,089 22 7E0	14,25 16.06	0,974
370 6 7600 171 6600 210 171 6600 1760 </td <td>377</td> <td>57</td> <td>0069</td> <td>2,17</td> <td>150</td> <td>45300</td> <td>2,00</td> <td>906</td> <td>1140</td> <td>13,16</td> <td>150</td> <td>207,333</td> <td>67830</td> <td>2,06</td> <td>1396</td> <td>20773</td> <td>2,06</td> <td>427</td> <td>6,055</td> <td>15,34</td> <td>39,750</td> <td>15,16</td> <td>0,975</td>	377	57	0069	2,17	150	45300	2,00	906	1140	13,16	150	207,333	67830	2,06	1396	20773	2,06	427	6,055	15,34	39,750	15,16	0,975
304 5 600 1.01 610 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 0.01 1.01 0.01 1.01 0.01 1.01 0.01<	330	52	8550	2,00	171	45990	2,00	920	1085	13,83	150	207,246	73809	2,00	1476	22685	2,00	454	7,883	15,83	42,404	15,83	0,980
398 60 323 150 6700 271 150 1705 1600 1716 </td <td>344</td> <td>46 57</td> <td>12040</td> <td>2,00</td> <td>241</td> <td>46330</td> <td>200</td> <td>927 1120</td> <td>1310 1319</td> <td>11,45</td> <td>150</td> <td>207,087</td> <td>77092</td> <td>2,00</td> <td>1/11</td> <td>26264</td> <td>2,00</td> <td>626 493</td> <td>9,191 4.889</td> <td>13,45 13,70</td> <td>35,366</td> <td>13,45</td> <td>0.970</td>	344	46 57	12040	2,00	241	46330	200	927 1120	1310 1319	11,45	150	207,087	77092	2,00	1/11	26264	2,00	626 493	9,191 4.889	13,45 13,70	35,366	13,45	0.970
33 53 100 210 510 100 11.7 100 210.66 10.7 11.7 100 11.7 100 11.7 100 11.7 100 11.7 100 11.7 100 11.7 100 11.7 100 11.7 100 11.7 100 11.7 100 11.7 100 11.7 100 11.7 100 11.7 100 11.7 100 11.7 100 100 11.7 100 100 11.7 100 <td>338</td> <td>8</td> <td>4380</td> <td>3,42</td> <td>150</td> <td>50240</td> <td>2,00</td> <td>1005</td> <td>972</td> <td>15,43</td> <td>150</td> <td>207,549</td> <td>64500</td> <td>2,31</td> <td>1493</td> <td>19812</td> <td>2,31</td> <td>459</td> <td>4,506</td> <td>18,86</td> <td>51,691</td> <td>17,43</td> <td>0,968</td>	338	8	4380	3,42	150	50240	2,00	1005	972	15,43	150	207,549	64500	2,31	1493	19812	2,31	459	4,506	18,86	51,691	17,43	0,968
373 667 576 163 163 173 163 <td>392</td> <td>88</td> <td>3830 5730</td> <td>3,92</td> <td>150</td> <td>49560</td> <td>2,00</td> <td>991 851</td> <td>1088 957</td> <td>13,79</td> <td>150</td> <td>207,586 207.386</td> <td>62081 61243</td> <td>2,39</td> <td>1482 1340</td> <td>18990</td> <td>2,39</td> <td>453</td> <td>3,521</td> <td>17,70</td> <td>45,556 44,475</td> <td>15,79 17.67</td> <td>0,952</td>	392	88	3830 5730	3,92	150	49560	2,00	991 851	1088 957	13,79	150	207,586 207.386	62081 61243	2,39	1482 1340	18990	2,39	453	3,521	17,70	45,556 44,475	15,79 17.67	0,952
337 580 2164 150 47.40 200 48.56 17.46 100 47.47 17.46 100 47.46 100 47.46 100 47.46 100 47.46 100 47.46 100 47.46 100 47.46 100 47.46 100 47.46 100 48.36 100 48.36 100 48.36 100 48.36 100 48.36 100 48.36 100 48.36 100 <td>378</td> <td>62</td> <td>5670</td> <td>2,65</td> <td>150</td> <td>43990</td> <td>2,00</td> <td>880</td> <td>1054</td> <td>14,23</td> <td>150</td> <td>207,403</td> <td>62506</td> <td>2,19</td> <td>1370</td> <td>19141</td> <td>2,19</td> <td>419</td> <td>5,379</td> <td>16,88</td> <td>41,731</td> <td>16,23</td> <td>0,974</td>	378	62	5670	2,65	150	43990	2,00	880	1054	14,23	150	207,403	62506	2,19	1370	19141	2,19	419	5,379	16,88	41,731	16,23	0,974
	327	58	5900	2,54	150	47420	2,00	948	971	15,46	150	207,418	66612 69447	2,16	1436	20478	2,16	442	6,079	18,00	48,859	17,46	0,979
333 56 6130 2101 6130 2101 6130 2101 6130 61	355	20 20	7640	2,00	153	40430	2,00	809	10.19	14,50	150	207,237	65336	2,00	1307	20042	2,00	401	7,386	16,50	39,087	16,50	0,981
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	339	56	8430 6470	2,00	169	41240	2,00	825	1038	14,46	150	207,202	68688	2,00	1374	21096	2,00	422	8,125 5 470	16,46 15 73	39,748 44.002	16,46 15 20	0,981
382 7.3 2.040 6,70 15.00 15.7 2.040 15.6 15.00 15.4 15.00 15.4 15.4 15.00 15.4 15.4 15.00 15.4 15.00 15.4 15.00 15.6 15.00 15.6 15.00 15.6 15.00 15.6 15.00 15.6 15.00 15.6 15.00 15.6 15.00 15.6 15.00 15.6 </td <td>371</td> <td>8 8</td> <td>6920</td> <td>2,43</td> <td>150</td> <td>48310</td> <td>2,00</td> <td>996</td> <td>11/20</td> <td>13,30</td> <td>150</td> <td>207.359</td> <td>70895</td> <td>2,13</td> <td>1456</td> <td>21722</td> <td>2,13</td> <td>446</td> <td>5,902</td> <td>15,73</td> <td>41,393</td> <td>14.79</td> <td>0.974</td>	371	8 8	6920	2,43	150	48310	2,00	996	11/20	13,30	150	207.359	70895	2,13	1456	21722	2,13	446	5,902	15,73	41,393	14.79	0.974
353 10 350 4,17 150 4370 2,00 87.1 5560 1,16 150 150.7 1709 2,56 150.7 1709 2,56 150.7 1709 2,56 150.7 1709 2,56 150.7 17,39 2,56 150.7 17,39 2,56 150.7 17,39 2,50 150.7 17,39 2,50 150.7 17,39 2,50 150.7 17,39 2,50 150.7 17,39 2,50 150.7 17,39 10,90 <td>383</td> <td>73</td> <td>2240</td> <td>6,70</td> <td>150</td> <td>45780</td> <td>2,00</td> <td>916 2</td> <td>910</td> <td>16,48</td> <td>150</td> <td>207,710</td> <td>53098</td> <td>2,65</td> <td>1406</td> <td>16253</td> <td>2,65</td> <td>430</td> <td>2,462</td> <td>23,18</td> <td>50,308</td> <td>18,48</td> <td>0,920</td>	383	73	2240	6,70	150	45780	2,00	916 2	910	16,48	150	207,710	53098	2,65	1406	16253	2,65	430	2,462	23,18	50,308	18,48	0,920
236 53 5340 236 150 42560 230 851 733 1535 153 1535 153	355	72	3020	4,97	150	43700	2,00	874 877	850 901	17,65 16.66	150	207,621	53545	2,55 2,46	1363	16425 17039	2,55 2,46	419	3,554 3,986	22,62	51,420 48 712	19,65 18,66	0,956
364 62 5940 253 150 42302 16.82 103 17.34 42.362 16.82 0.37 375 160 240 2.33 150 42.302 16.82 0.37 375 161 243 150 43.00 16.86 17.30 43.00 16.89 0.37 375 161 241 150 43.00 16.86 17.30 43.00 16.86 17.30 43.00 16.86 337 161 241 150 207.355 5683 2.10 1346 7.70 2.33 55.30 0.30 276 533 150 17.0 2.00 887 160 27.33 154.6 2.30 17.40 2.34 17.40 2.34 17.40 2.34 17.40 2.34 17.40 2.34 17.46 0.397 317 55 54.30 16.30 27.31 16.34 2.32 16.36 2.32 17.41 2.34 </td <td>288</td> <td>63</td> <td>5240</td> <td>2,86</td> <td>150</td> <td>42550</td> <td>2,00</td> <td>851</td> <td>763</td> <td>19,66</td> <td>150</td> <td>207,423</td> <td>59545</td> <td>2,25</td> <td>1337</td> <td>18359</td> <td>2,25</td> <td>412</td> <td>6,867</td> <td>22,52</td> <td>55,761</td> <td>21,66</td> <td>0,984</td>	288	63	5240	2,86	150	42550	2,00	851	763	19,66	150	207,423	59545	2,25	1337	18359	2,25	412	6,867	22,52	55,761	21,66	0,984
330 100 10000 1000 1000	364	62	5940	2,53	150	42920	2,00	858	1012	14,82	150	207,374	62298	2,16	1348	19097	2,16	413	5,867	17,34	42,392	16,82	0,977
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	337	60	6210	2,42	150	43350	2,00	867 830	1008	14,88 15.93	150	207,350	63595 62638	2,13	1356	19508	2,13	416 405	6,160	17,29	43,000	16,88 17,93	0,978
206 72 5162 2.48 150 3260 2.00 782 685 7.10 2.75 61667 2.48 1591 2.48 1591 2.48 1591 2.48 1591 2.48 1591 2.48 1506 2.393 0.091 310 65 150 32.00 165 190 1436 17.40 2.033 346 16.56 0.994 0.994 311 65 6700 2.01 14.56 15.0 2.07.525 6.0295 2.34 1413 1467 2.34 43.06 17.40 0.905 315 65 6700 2.01 15.40 15.45 15.45 6.0295 2.34 1417 17.45 0.966 17.40 0.916 316 61 15.0 15.46 15.46 15.46 15.46 15.47 15.47 17.46 0.966 0.916 317 69 21.41 17.46 17.46 17.46 17.46 <	276	63	5700	2,63	150	41170	2,00	823	734	20,45	150	207,376	59641	2,20	1309	18405	2,20	404	7,770	23,08	56,120	22,45	0,987
320 630 4300 6450 200 4300 4400 6650 200 6650 200 6650 200 6650 200 6650 200 6650 200 6650 200 6650 200 6650 200 6650 200 6600 200 6600 200 6600 200 6600 200 6600 200 6600 200 6600 200 6600 200 6600 200 6600 200 6600 200 6600 200 6600 200 6600 200 6600 200 6600 200 6600 200 6600 200 6600 200 200 48.06 12.0 207 412 1200 200 48.06 12.00 200 200 200 200 200 200 200 200 200 200 200 200 20	298	72	3710	4,04 235	150	39620	2,00	792 765	685	21,89 18 00	150	207,525 207 204	51662 58085	2,48	1279	15917 18160	2,48 2 12	394 386	5,413 8.080	25,93 21 34	57,806 48.406	23,89 20 00	0,979
315 55 6780 2.21 150 47360 5.00 947 17.40 15.40 13.54 15.40	382	65	4330	3,46	150	46150	2,00	923	1030	14,56	150	207,522	60295	2,34	1413	18457	2,34	433	4,204	18,03	44,806	16,56	0,964
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	315	55 64	6780	2,21	150	47350	2,00	947	974	15,40	150	207,361	69385	2,07	1435	21349	2,07	441	6,962	17,61 46.45	48,619	17,40	0,982
337 69 2180 6,88 150 4,8630 2,00 973 840 17,86 55/27 2,82 1461 17118 2,836 2,744 57,833 19,86 0,327 414 72 2740 5,477 150 4610 17118 2,83 2,849 2,866 16,569 0,321 3414 72 2740 5,477 150 4870 2,007 944 16,356 16,356 0,331 346 7 2,68 16,30 2,196 6,413 2,18 14,35 2,18 478 2,136 45,025 16,17 0,967 346 66 530 2,18 14,35 2,096 2,171 0,472 2,18 44,00 3,868 14,40 3,868 14,40 3,868 14,40 3,868 14,40 3,967 3,971 0,971 410 60 5820 2,58 16,30 2,24 443 2,31 4,302 2,115	337	20	5460	2,75	150	46800	2,00	936 936	026	15,46	150	207,443	04024 64574	2,21	1424	19836	2,21	438	4,019 5,629	18,21	42,000 48,247	17,46	0,976
14 12 140 241 150 487.53 12.04 68.64 10.03 14.75 150 185.64 1.2.42 68.64 10.03 14.75 150 17.44 68.64 17.55 1.03 17.14 10.05 10.01 14.75 150 27.44 5.46 17.55 16.75 15.04 16.56 16.16 17.16 10.967 16.17 10.967 16.04 10.961 17.16 10.967 16.17 10.967 16.17 16.96 2.17 14.32 2.0166 2.17 4.87 5.181 17.37 3.866 14.40 0.967 344 60 5820 2.56 150 47.06 2.00 981 14.40 10.967 48.24 17.15 0.967 344 60 5820 2.56 150 47.43 5.92 18.07 48.24 17.15 0.974 344 60 51.0 2.06 2.07 15.46 6603 2.17 14.43	337	69 F	2180	6,88	150	48630	2,00	973	840	17,86	150	207,730	55727	2,62	1461	17118	2,62	449	2,595	24,74	57,893	19,86	0,927
410 60 5820 2.58 150 47030 2.00 941 1210 12,40 150 207,418 66083 2,17 14.32 20196 2,17 437 4,810 14,97 38.868 14,40 0,997 344 60 510 2,03 2,07 15,15 150 207,418 664502 2,44 1444 0,997 0,997 344 60 510 2,77 150 2,74 1444 19803 2,43 439 14,40 0,997 344 60 510 2,77 150 2,74 1444 19803 2,43 439 14,40 0,997 0,997 16,97 48,22 17,15 0,974 344 50 516 4700 2,50 154 156 2,74 1444 19803 2,24 443 5192 18,07 48,22 17,15 0,974 334 50 516 1,50 2,54 143	349	77 50	2/40	5,47 2,62	150	45220 46810	000	904 a36	1003	14,95 14 71	150	207,656	54193 65481	2,58 2.18	1396	20096	2,58 2 18	426	2,731 5,618	20,42	45,069 45,802	16,95 16.71	0,931
344 60 5140 292 150 47760 200 4555 990 1515 150 207,414 18003 2.24 443 5192 1807 48.22 17.15 0.0974 3.44 60 5140 2.92 14.4 19803 2.24 443 5192 18.07 48.23 17.15 0.0974 3.45 5 5 900 15.15 150 2.06 2.07 443 5192 18.07 48.23 7.154 0.0974 3.45 5 5 5 5 5 443 5192 18.07 48.23 7.154 0.0974	410	60	5820	2,58	150	47030	2,00	941	1210	12,40	150	207,418	66083	2,17	1432	20186	2,17	437	4,810	14,97	38,868	14,40	0,967
	344	60	5140	2,92	150	47760	2,00	955	066	15,15	150	207,474	64502	2,24	1444	19803	2,24	443	5,192	18,07	48,242	17,15	0,974

	-		
Corr	0,971	0,953	0,946
Error Th/Pb %	18,48	15,60	19,12
Th/Pb	52,341	43,808	55,524
Error U/Pb %	20,00	17,42	22,60
U/Pb	4,692	3,564	3,128
Error U* ppm	443	445	449
Error U* %	2,34	2,38	2,54
U*(Th) ppm	18907	18692	17677
Error Th* ppm	1441	1457	1461
Error Th* %	2,34	2,38	2,54
Th*(U) ppm	61525	61159	57562
MPb	207,539	207,570	207,677
Error Pb ppm	150	150	150
Error Pb %	16,48	13,60	17,12
uudd 9d	910	1103	876
Error Th ppm	953	996	973
Error Th %	2,00	2,00	2,00
Th ppm	47630	48300	48640
Error U ppm	150	150	150
Error U %	3,51	3,82	5,47
U mqq	4270	3930	2740
Error Age Ma	62	64	67
Age Ma	332	403	341
Ech. 381	153	154	155
	-	-	-

						Π						Π			Τ		T	Π	T	Τ	Π					Τ			Ι		T	Т			Т	П	Τ	П		Π		1				T	Π						I	Т	Π	-
Corr	0,971	0,963	0,954	0,943	0,962	0,967	0,974	0,969	0,971	0,977	0/600	0,966	0,977	0,957	0,966	0,969	0.966	0,972	0,968	0,971	0,968	0,975	0,974	0,959	0,975	0,939	0,945	0,953	0,968	0,980	0,977	0.973	0,969	0,971	0.968	0,974	0,986	0,975	0,975	0,974	0,965	0,967	0,967	0,967	0,971	0,968	0,973	0,967	0,970	0,970	0.970	0,974	0,973	0,974	0,968	0,974
Error Th/Pb	% 13,50	12,25	11,16	10,13 12 83	12,12	12,77	14,34	13,21	13,57	14,98 13 27	13,46	12,62	15,06	11,46 13.61	12,62	13,18	13,54	13,81	12,94	13,63	12,96	14,58 13 91	14,24	11,63	14,54	9,86	10,28	11,00	13,08	16,18	14,96	13.91	13,14	13,63	12.93	14,30	19,13	14,46	13,37 14,38	14,25	12,56	12,83	12,87	12,80	13,61	13,02 11.95	13,95	12,90	13,32	13,39	13,30 12,83	14,23	13,94	14,13	13,06	14,34
Th/Pb	46,672	40,657	33,704	27,089	37,287	41,080	46,990	42,408	43,049	50,148 45.510	45,471	40,751	50,366	45,957 54.636	40,208	44,508	41,560	46,878	46,813	45,895	44,246	47,887	47,017	37,853	49,269 33 744	32,537	32,499	36,811 41.922	46,304	48,707	45,398	46.240	44,004	44,380	41,837	48,049	47,423	48,716	44,304 47,854	48,103	41,497 40.784	41,383	41,769 47,662	42,049	42,809	39,710 36,619	44,824	40,611	41,230	43,693	42,932	45,811	45,609 45,241	45,453	41,547	46,141
Error U/Pb	% 13,50	12,25	11,16	10,13 12.83	12,12	12,77	14,34	13,21	13,57	14,98 13 27	13,46	12,62	15,06	11,46 13.61	12,62	13,18	13,54	13,81	12,94	13,63	12,96	14,58 13 91	14,24	11,63	14,54	9,86	10,28	11,00	13,08	16,19	14,96	13.91	13,14	13,63	12.93	14,30	19,22	14,46	13,3/ 14,38	14,25	12,56 12,65	12,83	12,87	12,80	13,61	13,02 11.95	13,95	12,90	12,32	13,39	13,30 12,83	14,23	13,94 13.04	14,13	13,06	14,34
d//U	6,802	7,579	10,976	14,095 6.512	8,731	7,985	7,667 8.064	7,929	8,301	8,305 6 080	6,461	7,217	7,899	6,392 6 749	6,569	7,006	6.608	7,435	6,937	7.313	7,002	8,120 8,040	6,726	9,393	7,424	10,454	11,849	9,257 6.943	5,755	7,064	6,685 e Enn	6.643	6,434	6,256 e 167	6.963	6,934	8,187	6,785	6,283 8,529	7,399	6,978 7 00.4	8,219	8,151 8.556	8,411	8,947	8,367 8,636	8,923	8,010	8,752	8,655	8,332	9,263	8,978 8.07.4	9,180	8,540	9,171
Error U*	552	587	669	828	598	574	538 545	561	558	549 558	535	557	538	651 610	534	555	548	555	585	220 553	564	545	519	655	540 693	780	791	685 611	541	467	478	320 525	537	513 E44	544	530	202 406	524	564 564	544	560 580	580	579 581	593	572	560	570	564 506	582 582	582	571	573	579	573	578	569
Lror €	2,00	2,00	2,00	2,00 2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2.00	2,00	2,00	2.00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2.00	2,00	2,00	2.00	2,00	2.03	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00 2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00
U*(Th) pom	27580	29355	34956	41382 26443	29909	28697	26899 27268	28053	27922	27469	26749	27849	26890	32535 30476	26692	27750	27418	27752	29245	27629	28180	27263 27488	25949	32753	27025	39003	39568	34258 30559	27033	23321	23889 26.265	26275	26843	25644 27170	27190	26493	19960	26216 26205	26235 28188	27188	27995 28085	28991	28970 20062	29634	28582	27998	28525	28183 20205	29108	29111	28530	28671	28930 28946	28664	28904	28436
Error Th*	1794	1912	2274	2689 1725	1948	1868	1748	1825	1816	1782 1816	1742	1815	1745	2118 1978	1741	1806	1788	1804	1902	1797	1834	1770	1688	2131	1755 2253	2540	2572	2230	1761	1518	1555	1710	1749	1671	1772	1722	1318	1704	1/09	1767	1824	1887	1885	1927	1857	1823 1953	1853	1835	1892	1892	1859	1861	1878	1861	1880	1846
Error Th*	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2.00	2,00	2,03	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2.00
Th*(U) ppm	39712	95610	13685	34431 36236	97400	93404	87404 8864.4	91270	90785	89115 2080.4	90004 87082	90743	37264	05908 3884	87072	90313	59384 89384	90202	95107	89844	91722	88520 89347	84402	06556	37770 12642	26976	28614	11513 99564	38055	75784	77751	85495	87440	83540 	88587	36121	54812	85217	55467 91488	38337	91221 34351	94326	94251 04478	96375	92873	91135 97627	92631	91744	94599 94599	94594	92862	93048	93920 93650	93042	94001	92286
MPb	7,353 8	07,244 9	06,978 1	06,755 1 07.316 8	77,137	7,225	7,305 8	7,243	07,229 8	77,234 8	7,364 8	07,267 9	07,322 8	7,373 1	07,303	7,320	7.315 8	07,317 9	7,346	07.315 8	07,318 9	7,288 8	77,361 8	7,110 1	07,339 8	06,984 1	06,923 1	7,103 1	07,418	7,356	07,349	7.359 8	07,351 8	7,367 8	7.295	7,358	07,280 (7,372 8	7.266	07,330 8	77,220 5	7,215	77,223 (7,212	7,192	77,187	7,215	7,218 9	7,203 9	07,217	07.216	07,208	07,220 9	7,208	7,199 (07.216
Error Pb	150 2(150 20	150 21	150 21	150 21	150 21	150 21	150 21	150 21	150 21	150 21	150 20	150 21	150 21	150 21	150 21	150 21	150 20	150 21	150 21	150 20	150 21	150 21	150 20	150 21	150 21	150 21	150 21	150 21	150 20	150 21	150 21	150 20	150 21	150 21	150 21	150 21	150 21	150 21	150 21	150 21	150 21	150 21	150 21	150 21	150 21	150 21	150 21	150 21	150 21	150 21	150 20	150 21	150 21	150 21	150 2
Pb	% 1,50	0,25	9,16	8,13 0.83	0,12	0,77	2,34	1,21	1,57	2,98	1,46	0,62	3,06	9,46 1.61	0,62	1,18	1,54	1,81	0,94	1,63	0,96	2,58	2,24	9,63	2,54	7,86	8,28	9,00	1,08	4,18	2,96	1.91	1,14	1,63	0.93	2,30	7,13	2,46	1,3/ 2,38	2,25	0,56	0,83	0,87	0,80	1,61	1,02	1,95	0,90	1,32	1,39	1,30	2,23	1,94	2,13	1,06	2,34
- Pp	304 1	463 1	638	385 1	482 1	393 1	216 1	338 1	296 1	156 1	309 1	412 1	148 1	586 292	413 1	342 1	300 1 416 1	270 1	371 1	289	368 1	192 1 260 1	225 1	558	196 626	907	811 8	543	354 1	058 1	158 1	260 1	346 1	290 1	373 1	220 1	876 1	204 1	320 1 211 1	224 1	420 1	385 1	380 1	389 1	292 1	361 1 508	255 1	376 1	325 1	317 1	32/ 1	226 1	256 1	236 1	356 1	216 1 1
Th	217 1	190 1	104	136 1 136 1	105	144 1	142 142	135	116 1	159 1	191 1	151 1	157 1	458 1	136 1	194	1 77	190 1	284	184	211 1	142 128 1	152 1	179 1	179 098	241 1	177 1	226 1 293	254 1	030 1	051 1	165	185 1	145	149	172	331	173 1	169 1	178 1	179 1	146 1	153 1	168 1	106 1	104	125 1	117 1	138	151 1	140 129 1	124 1	146 1	124	127 1	122
Th	%00 1	,00	100	000	80	1 00	000	00	1	00	00	,00	100	000	00	00	00	100	00	000	100	000	00	100	00,00	00	100	00	00	100	00	00	00	00	00	00	000	1 00	00	1	00	00	1 1	100	100	000	00	1 00	00	00	00	,00	00	00	100	00
L G	1860	9490 2	5210 2	970	260 2	210 2	120	220 2	800	010	1540	540 2	830 2	5900 590	800	720 2	870	520 2	1180	180	1540 2	1090	.009	2 0969	1880 S	090	860 2	320	680	510 2	2260	330 1260	230 2	250 2	440	8620 200	530	0999	960	0063	1930	300	650 2	3390 2	310 2	210	260 2	870	0069	550 2	3440	5180 2	300	200	340 2	100
L L	. <u>22</u>	22 55	60 55	80 45	59 55	22 57	86 57	12 56	15 55	92 57 86 67	69 25	04 57	81 57	74 72	86 56	88 55	87 55	89 55	90 64	89 20	92 60	94 57 03 56	65 57	93 26	78 56 55 54	66	29 55	08 61 14 64	56 62	50 51	55 52	67 55	73 55	61 57 70 57	91 57	69	50 41	63 56	57 57 57	81 56	98 55 26	28 57	25 57	34 56	31 55	54 54 60 55	24 56	20 55	32 56	28 57	24 56	27 56	26 57 76 57	27 56	32 56	23 56
лог П	% 00	00 2	00	00	00	00 2	00	00	00 2	00	00	00 2	00	00	00	00	00	00	00	00	00	00	00	00 2	00	00	00 4	00 00	00	01 1	00	00	00	00	00	00	00	00	00 00	00	00	00	00	00 2	00 2	00	00	00	00	00	00	00 2	00	00	00 2	00
	70 2,	090 2,	980 2	2000	340 2,	120 2,	320 2	310 2,	760 2,	200	60 Z	190 2,	170 2,	140 2	80 2	100	200	140 2,	510	30 2	80 2,	380 2 130 2	40 2,	630 2,	760 2	940 2,	460 2,	710 2. 710 2.	90 2,	170 2,	40 2	200	60 2,	170	60 2	160 2,	20	70 2	330 2.	160 2,	310 2, 200 2,	380 2,	250 2	580 2,	560 2	390 2	200 2,	020 2	300 2,	400 2,	190 2.	360 2,	280 2	350 2,	580 2,	150 2,
Je Je	4 88	2 11	17	5 26 90	12	3 11	1 2	10 10	4 10	4 K	5 84	4 10	5 90	8 10 0 87	26 9	4 94	5 4	4 94	2 6	6 4 9 9	3 96	4 96	6 82	14	4 6 17	3 19	3 21	1 15	5 77	1 74	0 20	9 9 9 9 9	5 86	-7 	22	20	8 0	6 81 81	3 20	4 90	- 1 - 9,	2 2	11.	11	3 11	11	2 11.	3 11	11(11	3 11	2 11.	11.	11:	2 11	11
e 	6 4	13 4	12	00	6 <u>6</u>	15 4	2 8	0 6	14	4 4	4 4	9 4	15 4	99 er	4	33	0 rc	6 4	33	2 2	\5 4	7 4	6 4	38	7 2 2 2 7 4	8	2 3	8 8	5	3 5	- - -	2 5	5 4	4 4	8	8	30	7 4	4 4	1	4 4	0.0	9	4	2 4	7 4	4	37 4	5 4	3 4	2	16 4	1	6	4 4	96
IB7 Ag	1 32	2 34	3 32	5 30 36	6 34	7 33	8 31	10 32	11 32	12 29	14 33	15 34	16 29	17 35 18 29	19 36	20 33	22 35	23 31	24 32	26 32	27 33	28 30	30 32	31 32	32 30	34 33	35 31	36 35 35	38 34	39 31	40 33	41 34	43 34	44 34	46 34	47 31	49 30	50 31	52 29	53 31	54 34 55 34	56 33	57 32	59 32	60 31	61 35	63 30	64 33	66 31	67 31	68 33 33	70 29	71 30	73 29	74 32	75 29
Ech. 4								1			1																																													

Corr	0.963	0,971	0,973	0,960	0,972	0.973	0,969	0,971	0,964	0,972	0.967	0.965	0,971	0,968	0,965	0,964	0,973	0,962	0,970	0,974	0.970	0,967	0,962	0,968	0,973	0,973	0,968	0,973	0,963	0,970	0,970	0.963	0,970	0,964	0,965	0,968	0,970	0,966	0,970	0,966	0,969	0,970	0,976	0.956	0,964	0,973	0,979	0,973	0.946	0,905
Error Th/Pb %	12.20	13,88	14,40	11,79	13,86	13.91	13,20	13,65	12,37	13,79	12.80	12.49	13,65	13,05	12,48	12,33	13,90	12,05	13,44	13.50	13.36	12,90	12,07	12,92	14,08	14,17	13,03	14,10	12,15	13,31	13,42	12,32	13,46	12,29	12,4 <i>1</i> 12,76	12,98	13,35	12,71	13,45	12,66 11.56	13,11	13,33	14,76	11.32	12,28	13,98	15,53	14,12 13 72	10.35	8,17
Th/Pb	53.111	47,221	48,963	38,720	46,851	46,907	43,425	45,589	39,373	44,000 A5 5 46	42,828	41.228	45,080	43,796	40,457	40,043	45,536	38,320	42,677	45,410	42.569	39,944	39,302	42,836	47,077	38 538	41,075	46,288	38,822	42,399	44,072	38.328	43,320	39,501	39,670	42,445	43,985	41,401	46,530	43,188 39.047	44,675	46,271	50,721	36.176	40,057	46,771	51,910	48,112	30.589	23,075
Error U/Pb %	12,20	13,95	14,53	11,79	13,86	13.91	13,20	13,65	12,37	13,79	12,80	12.49	13,65	13,05	12,48	12,33	13,90	12,05	13,44	13.50	13.36	12,90	12,07	12,92	14,08	14,19	13,03	14,10	12,15	13,31	13,42	12,32	13,46	12,29	12,4/ 12.76	12,98	13,35	12,71	13,45	12,66	13,11	13,33	14,76	11.32	12,28	13,98	15,53	14,12	10.35	8,17
U/Pb	6.966	5,717	5,818	9,285	7,058	8.116	8,238	8,733	7,868	0,024	8.722	8.474	9,451	9,070	8,110	8,138 8,704	9,236	7,578	8,975 0.265	9,303	8.779	8,137	6,790	6,522	6,823	6,020	8,177	8,919	7,717	8,594	8,717	0,433	8,482	7,689	7,056	6,900	7,110	6,450	7,493	8,916 8,629	7,252	7,106	7,927	8.112	6,921	7,043	7,967	7,700	12,736	13,698
Error U*	686	516	514	649	543	200 568	578	586	577	0/0	100 100	605	601	612	588	584	586	577	580	000	578	562	561	540	529	532 565	566	575	580	574	585 501	50C	571	578	572	545	545	536	572	625 647	567	565	554	043 618	561	537	531	557	795	1010
Error U*	2.00	2,02	2,04	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2.00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,01	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00
U*(Th) ppm	34295	25535	25250	32473	27161	28407	28913	29311	28863	20012	30430	30249	30056	30611	29403	29082	29322	28852	28994	28615	28881	28088	28048	27020	26439	26541	28286	28743	29024	28699	29269	28927	28541	28886	28585	27238	27266	26804	28581	31260	28328	28250	27697	30899	28029	26832	26566	27864 27866	39775	50506
Error Th*	2226	1681	1673	2113	1/66	1845	1880	1904	1880	10/1	1978	1968	1951	1988	1914	1933 1898	1903	1881	1884	1860 1860	1877	1829	1830	1761	1720	1/31	1841	1866	1892	1866	1902	1885	1855	1882	1862	1775	1775	1748	1858	2031	1843	1837	1797	2015	1828	1745	1723	1810	2585	3287
Error Th* %	2.00	2,02	2,04	2,00	2,00	2,00	2,00	2,00	2,00	200	2:00	2:00	2,00	2,00	2,00	2,00	200	2,00	2,00	200	2:00	2,00	2,00	2,00	2,00	2,01	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2:00	2,00	2,00	2,00	2,00	2,00	2,00
Th*(U) ppm	111304	83151	82157	105626	88317	92264	94001	95179	94020	01810	98902	98394	97548	99423	95712	96640	95170	94062	94216 0040E	03000	93870	91443	91503	88047	85986	86295	92046	93301	94584	93302	95089	94274	92770	94113	93116 90386	88729	88745	87406	92899	101566	92161	91872	89872	100753	91393	87251	86171	90504 90580	129244	164365
MPb	207.398	207,429	207,436	207,126	207,339	207,279	207,237	207,233	207,212	201,220	207.204	207.199	207,191	207,196	207,211	207,204	207,206	207,216	207,189	207,136	207,198	207,203	207,278	207,334	207,356	207,240	207,214	207,230	207,214	207,206	207,218	207,202	207,222	207,224	207,222	207,305	207,308	207,324	207,310	207,198	207,307	207,331	207,324	207.157	207,278	207,339	207,332	207,313	206,859	206,695
Error Pb	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150
Error Pb %	10,20	11,88	12,40	9,79	11,86	11.91	11,20	11,65	10,37	11,73	10.80	10.49	11,65	11,05	10,48	10,33	11,90	10,05	11,44	11.50	11.36	10,90	10,07	10,92	12,08	12,17	11,03	12,10	10,15	11,31	11,42	10,92	11,46	10,29	10,47 10.76	10,98	11,35	10,71	11,45	10,66 9.56	11,11	11,33	12,76	9.32	10,28	11,98	13,53	12,12	835	6,17
Pb ppm	1470	1263	1210	1533	1265	14.10	1339	1287	1446	12/3	1390	1430	1288	1357	1432	1452 1343	1260	1492	1311	1304	1320	1376	1489	1374	1241	1233	1360	1240	1479	1326	1314	1374	1309	1458	1433 1305	1367	1322	1400	1311	1408 1569	1350	1324	1176	1609	1459	1252	1108	1238	1796	2430
Error Th	1561	1193	1185	1187	1186	1181	1163	1174	1139	1142	1190	1179	1161	1189	1158	1163	1148	1144	1119	1003	1124	1100	1170	1177	1169	1243	1117	1148	1148	1125	1158	1132	1134	1152	113/ 1167	1160	1163	1159	1220	1216	1206	1225	1193	1164	1169	1171	1151	1191	1099	1121
Error Th %	2.00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2.00	2.00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2.00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2.00	2,00	2,00	2,00	2,00	2,00	2,00
4T ppm	78070	59640	59250	59340	59280	59070	58140	58680	56950	001/2	59510	58970	58050	59440	57920	000999	57390	57190	55970	50150	26200	54980	58520	58850	58440	621/0	55860	57400	57400	56240	5/890	56600	56690	57590	06583	58010	58150	57960	08609	60790	60310	61270	59630	58200	58460	58570	57530	59550 60350	54930	56060
Error U	205	150	150	285	1/9	204	221	225	228	0 <i>6</i> 27	242	242	243	246	232	236	233	226	235	952	232	224	202	179	169	7150	222	221	228	228	672	231	222	224	107	189	188	181	196	192	196	188	186	261	202	176	177	191 186	457	666
Error U %	2.00	2,08	2,13	2,00	2,00	2.00	2,00	2,00	2,00	2,00	2.00	2.00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2.00	2,00	2,00	2,00	2,00	2,02	2,00	2,00	2,00	2,00	2,00	2,000	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2.00	2,00	2,00	2,00	2,00	2,00	2,00
n D	10240	7220	7040	14230	8930	3200 10220	11030	11240	11380	11230	12120	12120	12170	12310	11610	11820	11640	11310	11770	11420	11590	11200	10110	0968	8470	10730	11120	11060	11410	11400	11450	11560	11100	11210	1113U 9840	9430	9400	9030	9820	12550	0626	9410	9320	13050	10100	8820	8830	9530 0300	22870	33280
Error Age Ma	36	47	48	38	45	43	42	41	43	42	40	41	40	40	42	42	41	43	42	43	42	44	44	45	46	45	43	42	43	42	42	42 43	43	43	43	45	45	46	43	39 39	43	43	43	4	: 4	45	45	43	# 6	27
Age Ma	296	341	330	326	322	307	320	304	345	300	316	326	297	307	336	33/ 318	298	356	313	315	316	338	365	350	324	320	332	299	351	319	310 276	351	317	348	345	346	334	359	317	311 334	329	323	294	358	358	322	289	307 317	313	333
Ech. 487(suite)	77	78	29	80	81	83	84	85	86	10	00 89	06	91	92	93	94	96	97	86	99	101	102	103	104	105	106	108	109	110	111	112	114	115	116	111	119	120	121	122	123	125	126	127	129	130	131	132	133	135	136

Corr	0,940	0,939	0,917	0.917	0,928	0,952	0,934	0,939	0,957	0,972	0,963	0,934	0,944	0,940	0,940	0,330	0,000	0,943	0,946	0,946	0,937	0,903	0.979	0,984	0,979	0,978	0,977	0,966	0,903	0.945	0.956	0,931	0,954	0,926	0,930	0,949	0,954	0,958	0,969	0,952	0,945	0,934	0,949		0.944	0,943	0,943	0,944 0,943 0,943 0,949 0,949	0,944 0,944 0,943 0,943 0,943 0,949 0,922	0,944 0,943 0,943 0,949 0,922 0,932 0,932	0,944 0,943 0,943 0,949 0,949 0,922 0,932 0,947	0.944 0.943 0.943 0.943 0.949 0.922 0.947 0.959 0.959 0.956	0.944 0.943 0.949 0.949 0.949 0.949 0.949 0.948 0.948 0.948 0.948 0.948 0.948	0.944 0.943 0.943 0.949 0.949 0.949 0.949 0.948 0.948 0.948 0.948 0.948 0.956 0.956	0.944 0.943 0.943 0.943 0.947 0.946 0.946 0.946 0.947 0.946 0.947 0.948 0.947 0.948 0.947 0.948 0.947 0.947 0.948 0.947 0.947 0.948 0.947 0.947 0.948 0.947 0.948 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.9466 0.9466 0.9466 0.9466 0.9466 0.9466 0.9466 0.9466 0.9466 0.9466 0.9466 0.9466 0.9466 0.9466 0.94666 0.94666 0.94666 0.9466666 0.94666666666666666666666666666666666666	0.943 0.943 0.943 0.943 0.932 0.932 0.932 0.948 0.948 0.948 0.953 0.953 0.953 0.953 0.953 0.953 0.953 0.953 0.953 0.953 0.953 0.953 0.953 0.953 0.953 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.0555 0.05550 0.05550 0.05550 0.055500000000	0.944 0.943 0.943 0.943 0.947 0.947 0.947 0.946 0.953 0.955 0.955 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.956 0.9566 0.9566 0.956 0.956 0.956 0.9566 0.9566 0.9566 0.9566 0.9566 0.956	0,944 0,943 0,943 0,943 0,947 0,947 0,947 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946	0.943 0.943 0.943 0.943 0.943 0.947 0.948 0.948 0.948 0.948 0.948 0.948 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.943 0.9430 0.94300000000000000000000000000000000000	0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046	0,944 0,943 0,943 0,947 0,947 0,947 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,947 0,948 0,948 0,948 0,948 0,948 0,948 0,948 0,948 0,948 0,948 0,948 0,948 0,948 0,948 0,948 0,948 0,948 0,948 0,948 0,948 0,948 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,947 0,946 0,946 0,947 0,946 0,947 0,946 0,947 0,946 0,947 0,946 0,947 0,946 0,947 0,946 0,947 0,946 0,947 0,946 0,947 0,946 0,943 0,946 0,947 0,946 0,947 0,946 0,947 0,946 0,947 0,946 0,947 0,946 0,947 0,946 0,947 0,946 0,946 0,947 0,946 0,947 0,946 0,947 0,946 0,946 0,946 0,946 0,946 0,947 0,946 0,947 0,946 0,947 0,946 0,947 0,946 0,947 0,946 0,947 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,9460 0,9460 0,9460 0,9460000000000000000000000000000000000	0.944 0.943 0.943 0.947 0.947 0.947 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.947 0.946 0.947 0.946 0.942 0.936 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.0000000000	0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,044 0,046 0,044 0,046 0,044 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046 0,046	0,944 0,943 0,943 0,943 0,947 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,947 0,946 0,947 0,946 0,947 0,946 0,947 0,946 0,947 0,946 0,947 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,947 0,946 0,947 0,946 0,947 0,946 0,947 0,947 0,946 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,946 0,947 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,946 0,947 0,946 0,947 0,946 0,947 0,946 0,947 0,946 0,947 0,946 0,947 0,946 0,947 0,946 0,947 0,947 0,947 0,946 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,947 0,9470	0.944 0.943 0.943 0.943 0.947 0.947 0.947 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.942 0.937 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.934 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.936 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.0000000000	0.944 0.943 0.943 0.943 0.947 0.947 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.947 0.946 0.947 0.946 0.947 0.946 0.947 0.946 0.947 0.946 0.947 0.946 0.947 0.946 0.947 0.946 0.947 0.946 0.946 0.947 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.947 0.946 0.946 0.947 0.946 0.946 0.947 0.946 0.947 0.946 0.947 0.946 0.947 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.946 0.947 0.946 0.947 0.946 0.947 0.946 0.947 0.946 0.947 0.946 0.947 0.946 0.947 0.946 0.947 0.946 0.947 0.946 0.947 0.946 0.947 0.946 0.947 0.946 0.947 0.946 0.947 0.946 0.947 0.946 0.947 0.946 0.947 0.946 0.947 0.946 0.947 0.946 0.947 0.946 0.947 0.946 0.947 0.946 0.947 0.946 0.947 0.946 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.94700000000000000000000000000000000000
Error Th/Pb	9,95	9,81	8,64	8,65 8,65	9,19	10,94	9,54	9,00	11,42	13,83	12,17	9,54	10,18	9,94	9,92	a,00	11 00	10,11	10,34	10,37	9,/3 17 EE	15,30	15.63	17,65	15,79	15,19	15,18	12,71	12,23	10.27	11.35	9,33	11,11	9,07	9,26	10,60	10,11	11,51	13,11	10,88	10,30	9,52	10,03		10,13	10,13 10,18 10,17	10,13 10,18 10,12	10,13 10,18 10,17 10,12 10,59 8 86	10,13 10,18 10,17 10,12 10,59 8,86 9.39	10,13 10,18 10,17 10,12 8,86 9,39 10,45	10,13 10,13 10,17 10,17 10,159 8,86 9,39 10,45 11,68	10,13 10,13 10,17 10,17 10,159 9,39 9,39 9,39 9,39 10,45 11,68	10,13 10,17 10,17 10,17 10,12 9,39 9,39 9,39 11,68 11,68 11,68 11,64 11,04	0,13 10,17 10,17 10,12 10,59 9,39 11,68 11,04 11,04 11,04 11,04 11,04 11,04 11,04 11,04 11,04 11,04 11,04 11,04 11,04 11,04 11,04 11,05 10,07 10	10.13 10.14 10.17 10.17 10.17 10.18 10.54 11.04 11.045 110	10.13 10.13 10.17 10.17 10.17 10.18 10.54 11.68 11.68 11.68 11.64	10,13 10,17 10,17 10,17 10,54 10,54 10,54 11,04 11,04 11,04 9,71 9,71 9,71 10,39 9,71 10,39	10,13 10,17 10,17 10,17 10,15 10,15 10,15 10,15 10,15 10,15 11,04	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10,13 10,17 10,17 10,17 10,159 10,59 11,045	10,13 10,17 10,17 10,17 10,15 10,15 10,15 11,04 10,04	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10,17 10,17 10,17 10,17 10,17 10,159 10,59 11,045 11,0	10,13 10,17 10,17 10,17 10,159 10,059 11,045	10,13 10,13 10,17 10,17 10,17 10,13 10,16 8,86 9,39 9,39 9,07 11,04 10,12 11,04 10,12 11,04 10,12 11,04 11,04 9,07 9,69 9,69 9,69 9,69 9,69 9,69 9,63 9,63 9,63 9,63 9,63 9,63 9,63 9,63 9,63 9,63 9,63 9,63 9,63 9,63 9,63 9,63 9,63 9,63 9,63 9,63 9,63 9,63 9,65 11,33 9,65 11,33 9,65 9,65	10,13 10,17 10,17 10,17 10,159 10,059 11,045
Th/Pb	23,777	24,376	22,884	18,911	19,641	26,113	19,018	96120	31,071	36,437	30,743	22,635	23,871	23,158	23,348	22,630	28,220	22,129	23,511	25,238	22,482	36 845	32,991	34,905	33,061	33,742	41,429	33,062	30,006	23.561	27,865	22,587	26,799	22,989	21,251	25,271	21.04.05	28,421	35,393	26,037	24,732	22,880	20,011	7 0.07	24.537	24,537 24,256	24,537 24,256 24,936	24,537 24,256 24,936 26,772 18,374	24,537 24,256 24,936 24,936 24,936 28,772 18,374 23,181	24,537 24,256 24,936 26,772 18,374 23,181 23,181 30,128	24,537 24,556 24,936 24,936 26,772 26,772 23,181 30,128 30,128	24,537 24,556 24,936 28,772 28,772 18,374 18,374 33,128 30,128 30,128 33,599 33,599 33,599 33,549	24,537 24,556 24,936 24,936 28,336 33,772 18,374 18,374 33,599 33,599 33,599 33,599 27,870 27,870 28,563	24,537 24,556 26,772 26,772 18,374 18,374 30,128 30,128 30,128 35,599 37,599 37,599 37,5470 23,586 35,543 23,569 37,5470 23,569 23,569 22,566 22,566 22,566 22,566 22,576 22,576 22,576 22,576 22,576 22,576 22,777 22,777 22,777 22,777 22,777 22,777 22,777 22,777 22,777 22,777 22,777 22,777 22,777 22,777 22,777 22,777 22,776 22,777 22,777 22,777 22,777 22,777 22,777 22,777 22,777 22,777 22,777 22,777 22,777 22,777 22,777 22,777 22,777 22,777 22,777 22,777 22,777 22,777 22,777 22,777 22,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,777 23,7777 23,7777 23,7777 23,7777 23,7777 23,77777 23,77777 23,7777777777	24,537 24,256 24,926 28,926 28,737 33,181 33,181 33,543 33,543 33,543 28,686 27,870 27,870 28,686 21,090 21,090	24,537 24,256 24,926 22,926 22,926 18,374 23,181 23,181 23,181 23,543 23,543 23,543 23,543 23,543 23,1090 23,1090 23,1000 23,1000	24,537 24,556 24,956 28,772 28,772 28,772 28,772 28,772 28,589 23,599 23,599 23,599 23,599 23,599 23,599 23,599 23,599 23,599 23,597 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 23,120 20,120 20,120 20,120 20,120 20,120 20,120 20,120 20,120 20,120 20,120 20,120 20,120 20,120 20,120 20,120 20,120 20,120 20,120 20,120 20,120 20,120 20,120 20,120 20,120 20,120 20,120 20,120 20,120 20,120 20,120 20,120 20,120 20,120 20,120 20,120,120 20,120,120 20,120,120,120 20,120,120,120,120,120,120,1	24,537 24,556 24,926 28,972 18,374 18,374 28,569 33,599 33,599 33,599 33,599 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,593 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,553 33,5553 33,5553 33,5553 33,5553 33,5553 33,5553 33,5553 33,5553 33,5553 33,5553 33,5553 33,5553 33,5553 33,5553 33,55553 33,55553 33,55553 33,55553 33,555553 33,55555555	24,537 24,256 24,926 25,772 26,772 23,137 23,137 23,128 30,128 30,128 30,128 23,120 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21,034 21	24.537 24.537 24.956 28.956 28.772 28.772 28.172 23.181 33.599 27.143 23.120 21.143 21.143 21.143 21.143 21.143 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.850 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.450 22.4500 22.4500 22.4500 22.4500 22.4500 22.4500 22.4500 22.4500 22.4500 22.4500 22.4500 22.4500 22.4500 22.4500 22.4500 22.4500 22.4500 22.45000 22.45000 22.4500000000000000000000000000000000000	24,537 24,256 24,256 24,256 26,772 24,256 24,257 24,257 24,27 24,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,143 21,	24.537 24.537 24.266 24.366 24.366 25.714 25.414 25.414 25.414 25.414 25.456 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 21.1445 2	24,537 24,256 24,256 24,256 18,777 18,777 18,777 18,777 18,777 24,24 24,167 25,457 25,457 25,457 26,457 21,455 21,455 21,455 21,455 21,455 21,455 21,455 21,455 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,4567 22,45677 22,45677 22,45677 22,456777777777777777777777	24.537 24.256 24.266 24.266 24.266 25.772 24.261 23.181 23.181 23.187 25.670 25.670 25.670 25.670 26.671 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27	24.537 24.537 24.266 24.366 18.777 18.777 18.777 18.777 24.366 21.030 25.666 21.030 25.666 21.030 22.656 21.030 21.030 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.557 23.5577 23.557 23.5577 23.5577 23.5577 23.5577 23.5577 23.55777 23.557777 23.5577777777777777777777777777777777777	24.537 24.2587 24.2566 24.2566 24.2566 25.171 27.1314 35.1589 35.1589 35.1689 35.145 27.150 27.150 19.7150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.150 27.1500 27.1500 27.1500 27.1
U/Pb	% 9,95	9,81	8,64	8,65 8,65	9,19	10,94	9,54	3,00	11,42	13,83	12,17	9,54	10,18	9,94	9,92	3,00 0,67	11 00	10,11	10,34	10,37	9,/3 47 E6	15.38	15.63	17,65	15,79	15,19	15,18	12,71	12,23	3,30	11.35	9,33	11,11	9,07	9,26	10,60	11,0/	11,51	13,11	10,88	10,30	9,52	10,03	10,13	10.18	10,18	10,18 10,17 10,12	10,18 10,17 10,12 10,59 8 86	10,18 10,17 10,59 8,86 9,39	10,18 10,17 10,12 8,86 9,39 10,45	10,18 10,17 10,12 10,59 8,86 9,39 9,39 11,68 11,68	10,18 10,17 10,12 10,59 8,86 9,39 9,39 11,68 11,68 10,54	10,18 10,17 10,12 10,59 9,39 9,39 9,39 10,45 11,68 11,68 11,68 11,68 11,68	10,18 10,17 10,17 10,12 9,39 9,39 9,39 10,45 11,68 11,68 11,68 11,68 11,68 11,68 11,68 11,68 11,68 11,68 11,68 11,68 11,68 11,68 12,78 14,78 14,	10,18 10,17 10,17 10,159 8,86 8,86 8,86 10,154 11,68 11,68 11,68 11,68 11,68 11,68 11,68 11,04 2,07 9,07 9,07	10,18 10,17 10,17 10,15 8,86 8,86 8,86 10,15 10,54 11,68 11,68 11,64 11,68 11,64 11,	10,178 10,172 10,125 10,159 10,159 10,159 11,168 11,168 11,168 11,04 11,04 11,04 11,04 11,04 11,04 11,04 11,03 11,03 10,130	10,18 10,17 10,15 10,15 10,15 9,38 9,38 11,68 11,68 11,68 11,04 11	10,18 10,17 10,12 10,12 10,145 11,68 11,68 11,68 11,058 9,07 9,71 9,71 9,71 9,71 9,71 9,73 9,73 10,39 10,39 10,39 10,39 10,39 10,39 10,39 10,39 10,39 10,39 10,58 10,58 10,58 10,58 10,55	10,18 10,18 10,12 10,12 10,54 11,64 11,64 11,64 11,64 11,64 11,64 11,64 11,04 11,04 11,04 11,04 11,04 11,07	10,18 10,12 10,12 10,59 10,59 8,86 9,39 9,07 9,07 9,07 9,07 9,07 9,07 9,07 9,0	10.18 10.18 10.12 10.25 10.25 10.25 10.25 10.25 10.25 10.25 10.25 10.25 10.25 10.26 10.26 10.26 10.26 10.26 10.26 10.26 10.26 10.26 10.26 10.26 10.26 10.26 10.26 10.25 10.26 10.26 10.25	10,18 10,18 10,12 10,12 10,12 10,18 8,86 8,86 9,39 10,54 11,04 9,87 10,12 9,87 10,12 9,87 10,12 9,87 10,12 9,87 10,12 9,87 9,87 10,12 9,87 10,12 9,87 10,12 9,87 10,12 9,87 10,12 9,87 10,12 10,	10.18 10.12 10.12 10.12 10.13 8.86 8.86 9.39 10.45 10.45 10.45 10.45 10.45 10.45 10.45 10.45 10.64 9.80 9.81 9.81 10.13 9.81 9.81 9.81 9.81 9.81 9.81 9.81 9.81	10.18 10.18 10.12 10.12 10.15 10.15 10.15 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.12 10.16 10.12 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.16 10.57	10,18 10,18 10,12 10,12 10,13 8,86 8,86 9,39 10,45 10,45 10,45 10,45 10,45 10,45 10,45 10,45 10,45 10,45 10,39 9,81 10,12 9,81 10,12 9,81 10,13
U/Pb	13,590	13,853	13,112	14,143	13,916	13,819	15,442	12,5/2	10,968	9,980	11,470	14,076	15,171	13,999	14,357	17 957	12,337	13,215	13,972	12,544	14,1/8	11,031	268.6	11,339	10,613	10,975	10,184	10,016	10,794	13,202	12.923	15,311	15,205	13,713	16,374	14,335	13,2/0	11,756	9,944	13,495	14,132	12,764	14,309	13,5678		13,790	13,790	13,790 13,790 13,350 14,288 15,383	13,790 13,790 14,288 15,383 12,729	13,790 13,790 13,350 14,288 15,383 12,729 10,550	13,750 13,750 14,288 15,383 15,383 15,383 12,729 10,978	13,790 13,790 13,790 14,288 15,383 15,383 12,729 10,550 10,978 11,409 9,906	13,000 13,350 14,288 12,729 10,550 10,550 10,550 11,409 9,906 13,096	13,750 13,750 14,288 15,383 12,729 12,729 11,409 8,906 13,096 15,022	13,790 13,790 14,288 14,288 12,729 10,978 11,409 9,906 13,096 13,096 15,034 15,634	13,790 13,790 13,350 14,288 15,383 15,790 10,978 10,978 10,978 11,409 9,906 13,096 15,634 15,634 15,634 15,634 13,644 14,181	13,790 13,790 14,788 15,888 15,888 15,729 10,550 10,550 11,409 11,509 11	13,790 13,790 14,288 15,289 12,729 12,729 12,729 12,729 11,409 11,409 11,409 13,096 11,409 13,096 13,096 13,096 13,096 13,096 13,096 14,418 11,418 11,409 13,606 13,606 14,418 11,409 14,418 11,409 14,418 11,409 14,418 11,409 14,418 11,409 14,418 11,409 14,418 11,409 14,418 11,409 14,418 11,409 14,41814,418 14,418 14,418 14,41814,418 14,418 14,418 14,41814,418 14	13,790 13,790 15,383 15,383 15,383 15,383 10,978 10,978 11,409 10,978 11,409 10,978 11,409 11,409 11,409 11,409 13,096 13,096 13,096 13,096 14,181 14,181 14,181 14,181 14,573 14,573	13,790 13,790 13,350 13,350 15,383 10,578 10,570 10,570 10,573 10,978 11,409 9,066 11,409 9,1306 11,409 11,	13,790 13,780 14,280 15,383 16,383 10,978 10,978 10,978 10,978 1,409 10,978 1,409 1,	13,790 13,790 14,289 15,383 15,383 15,729 10,570 11,409 11,409 11,409 11,409 11,409 11,409 11,409 11,409 11,400 11	13,730 13,730 14,238 15,333 16,333 16,333 10,550 10,550 10,563 11,409 9,906 9,306 11,409 11,403 11,403 11,403 13,614 14,131 14,131 14,131 14,131 13,810 14,575 14,575 14,575 14,575 14,575 14,575 14,575 14,575 14,575 14,575 12,3810 12,3810 12,3810 12,3810 12,3810 12,3810 12,573 12,573	13,790 14,280 14,280 15,790 16,282 17,120 17,1400 11,400 13,066 11,400 13,066 13,066 11,400 13,066 13,066 13,066 13,056 13,654 13,654 13,654 13,656 13,657 13,657 13,657 13,657 13,657 13,657 13,657 13,657 13,677 13,677 13,677 13,677 13,856 13,856 13,856 13,857 13,856 13,857 13,857 13,956 13,957 13,956 13,101	13,730 14,280 14,280 15,330 15,330 15,330 10,550 11,409 11,409 11,409 11,409 11,409 11,409 11,409 13,006 13,006 13,006 13,502 14,118 14,573 14,573 14,573 14,572 14	13,790 13,790 14,286 12,790 12,790 12,790 12,790 12,790 11,400 11,400 13,006 11,400 13,006 13,006 13,006 13,006 13,006 13,006 13,007 13,006 13,007 13,007 13,007 13,007 13,007 13,017 13,018 13,010 13,010 13,010 13,010 13,010 13,010 13,010 13,010 13,010 13,010 13,010 13,010 13,010 13,010
_ 	ррт 789	820	910 0E0	806 806	833	733	847	000 731	653	537	617	836	826	798	CL8	783	711	740	762	728	819 554	512	441	423	452	486	522	565	080 010	747	069	912	773	881	946	7/2	122	646	562	726	785	789	G/ /	778		780	776	787 787 020	780 776 920 806	780 776 920 806 703	780 787 787 920 806 660	780 776 920 806 806 703 701 701	780 776 920 920 806 703 703 703 701 701 701 701	780 787 787 787 703 680 680 703 703 703 703 703 703 701 701 728	780 787 787 787 703 660 660 660 701 701 701 701 701 701 701 703	780 787 787 787 787 703 703 703 703 704 783 7128 7128 7128 7128 7128 7128 7128 7128	780 787 787 787 920 920 660 701 584 781 781 783 780 780	780 787 787 787 787 788 660 660 660 660 660 701 783 713 814 761 761 783 761 783	787 787 787 787 787 780 660 660 660 660 781 781 781 781 761 761 761 783 833 833	787 787 787 787 787 780 806 703 703 703 781 781 783 783 882 882 883 883 883 883	787 787 787 787 787 780 701 701 701 701 701 701 701 701 701 70	7/80 7/97 9/20 9/20 9/20 9/20 9/20 9/20 9/20 9/20	778 778 900 900 900 900 900 900 901 912 912 803 803 803 803 803 803 803 803 803 803	780 787 787 787 280 805 805 805 813 813 813 813 813 813 813 813 813 813	776 776 776 920 920 906 914 701 703 806 805 885 885 885 885 885 885 885 885 885	780 787 787 920 920 905 805 813 813 813 813 813 813 813 813 813 813
Ē ≛ :	% 2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	00,4	2,00	2,00	2,00	2,00	2,00	0,2	2,00	2,00	2,00	2,00	2,00	2,00	2,00	00,2	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00		2,00	2,00 2,00	2,00 2,00 2,00	2,00 2,00 2,00 2,00	2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00	2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00	2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00	2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00	2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00	2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00	2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00	2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00	2:00 2:00 2:00 2:00 2:00 2:00 2:00 2:00	22000000000000000000000000000000000000	28888888888888888888888888888888888888	200 200 200 200 200 200 200 200 200 200	200 200 200 200 200 200 200 200 200 200	200 200 200 200 200 200 200 200 200 200	200 200 200 200 200 200 200 200 200 200	200 200 200 200 200 200 200 200 200 200
U*(Th) pom	39426	40977	45523	46519	41635	36671	42338	36553	32673	26870	30858	41825	41311	39886	407/3 44.47E	30140	35573	36989	38115	36386	40934	25592	22034	21167	22587	24278	26112	28250	23322	37371	34477	45585	38654	44060	47324	38578	30098	32308	28119	36312	39274	39467	38/09	38900	38997		3881/	38817 39359 45000	38817 39359 45990 40284	38817 39359 45990 40284 35128	38817 39359 45990 45990 3017 33017	38817 39359 45990 45990 35128 35128 35050 35050 35050	38817 39359 402890 40284 35128 35128 35017 35050 29184 29184 36391	38817 39359 40284 35128 35128 35050 35050 29184 36391 45616	3817 3859 45990 40284 40284 35128 35128 35128 35128 35128 35050 25184 45616 45616 45616	38517 3859 45990 45990 45990 35012 35050 25184 35311 45616 45616 45616 330161 330161	383617 383617 45990 45990 35128 35128 35128 35128 35128 35160 35184 45616 45616 45616 45616 39161 38067 38067 38067	38817 38867 45990 45990 45990 35128 35128 35128 35128 35128 35128 35128 35160 35118 45616 45616 45616 38161 38161 38161 38161 38161 38161 45616	383517 383597 45990 45284 36128 36128 35351 36351 45616 45616 45616 38057 38057 38057 38057 38057 41640 41640	383517 38359 45990 45990 36128 36128 36057 36050 269184 35050 269184 36057 36057 38057 38057 38057 38057 41640 40646	383597 38359 45990 45990 45990 351284 351284 351284 35017 38057 38057 38057 38057 38057 38057 38057 38057 41640 4116 4116	383617 383617 45980 45980 45980 35128 35128 35128 35128 35128 45616 46679 40679 38057 38057 38057 38057 4102 4102 4102 41026 41026 41026 41026 41026 41026 41026 41056 20515 3007 20557 20	38517 38257 45590 45590 35017 35017 35050 35017 35050 35050 35050 35050 35050 35050 35050 35050 35050 35050 35050 35050 41640 4115 41155 41155 41155 41155 41155 37257 37255 37255 37255 37255 37255 37255 37255 37255 37255 377555 377555 377555 377555 377555 377555 3775555 3775555 3775555 37755555 37755555 37755555555	33351 33559 40284 40284 35128 35017 35050 333017 35550 333017 46616 46719 36950 339967 41166 41116 41116 41116 41176 411	33359 33559 40599 40599 35128 35128 35128 35128 35128 35128 35118 35128 35118	33355 33556 40284 40284 35128 35017 35017 35017 35017 35017 36167 36167 36167 36167 36167 4116 4116 4116 4116 4116 4116 41178 38980 38980 38980 38980 38950 4116 4116 41178 41
F + E	ррт 2566	2665	2965	3119 3028	2713	2384	2754	2380	2127	1748	2008	2721	2684	2595	7090	2030	2313	2410	2480	2370	2003	1667	1435	1376	1470	1579	1696	1840	1910	2433	2242	2962	2509	2868	3073	2507	234/ 2377	2104	1830	2362	2553	2572	6107	2531	2537	2526	2121	2557 2503	2557 2557 2993 2625	2557 2993 2625 2289	2557 2993 2625 2148 2148	2557 2993 2625 289 2148 2148 2148 2148 2284	2557 2933 2625 2625 2625 2748 2148 2148 2148 2189 1899 2366	2557 2593 2625 2625 2625 2148 2148 2148 2148 2148 2148 2148 2366 2366 2366	2557 2557 2625 2625 2893 2893 2148 2148 2894 18999 18996 2366 2366	2557 2557 2993 2625 2625 2148 2289 1899 1899 1899 2366 2967 2967 25647 2551	2557 2993 2993 2895 2148 2148 2148 2148 2366 2366 2366 2367 2517 2551 2536	2557 2993 2893 2893 2845 2148 2148 2148 2866 2866 2867 2867 2867 2511 2551 2551 2551 2551 2551 2551 255	2557 2657 2693 2993 2289 2148 2289 1899 1899 2867 28647 28647 2851 2551 2551 2551 2553 2803 2803	2557 2557 2933 2933 2289 2148 2284 1899 2867 2867 2867 2867 2551 2551 2551 2551 2551 2551 2551 2567 2567 2567 2567 2567 2567 2567 2567	2657 2693 2693 2693 2693 2693 2984 1899 1899 1899 1899 1899 2967 2517 2517 2517 2536 2967 2536 2547 2536 2537 2536 2537 2537 2537 2537 2537 2537 2547 2557 2557 2567 2567 2567 2567 2567 256	2657 2693 2893 2893 2893 2893 2894 1899 2866 2867 2867 2867 2812 2812 2812 2812 2812 2812 2812 281	2657 2657 2825 2825 2825 2825 2826 2847 2847 2867 2844 2867 2864 2867 2864 2867 2867 2867 2867 2867 2867 2867 2867	2657 2657 2658 2658 2658 2148 2248 2667 22867 22867 22867 22867 22867 22867 22875 20075 20075 20075 20075 20	2657 2857 2828 28285 28285 28285 28264 2866 2866 2866 2866 2866 2866 286	2657 2657 2658 2658 2658 2659 2148 2667 22667 2667 2667 2667 2667 2667 26
14 14	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	00	00 6	2,00	2,00	2,00	00,2	00%	2.00	2,00	2,00	2,00	2,00	2,00	2,00	00%	2.00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00		2,00	2,00 2,00	2,00 2,00 2,00	2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00	20000000000000000000000000000000000000	2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00	2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00	2200 2000 2000 2000 2000 2000 2000 200	2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2000 2000 2000 2000 2000 2000 2000 200	2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00	2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00	2200 2200 2200 2200 2200 2200 2200 220	2000 2000 2000 2000 2000 2000 2000 200	2220 2220 2220 2220 2220 2220 2200 220	2200 2200 2200 2200 2200 2200 2200 220	2200 2200 2200 2200 2200 2200 2200 220	2200 2200 2200 2200 2200 2200 2200 220	2200 2200 2200 2200 2200 2200 2200 220
Th*(U) ppm	128291	133268	148265	151422	135638	119199	137706	118989	106361	87400	100404	136074	134189	129753	6/0721	127544	115663	120490	123981	118484	133169	83101	7172	68783	73505	78957	84780	92001	4 22062	121644	112108	148110	125445	143388	153662	125363	11/339 118845	105176	91503	118076	127675	128599	125958	126535	126844	126291	127845	1 406.28	149628 131250	149628 131250 114455	149628 131250 114455 107382	149628 131250 114455 107382 114179 94967	149628 131250 114455 107382 114179 94967 118280	149628 131250 1131250 107382 114179 94967 118280 148330	149628 131250 1131250 114455 107382 114179 94967 94967 118280 118280	149628 131250 1131255 114455 114455 114455 94967 14477 1148330 132226 132226 132226 132228 132228	149628 131250 1131255 114455 114455 94967 14477 94967 1148330 132226 132256 132226 12548 125548 125548 125548 125548	149628 131250 131250 1013455 1013455 1013455 1013455 1013455 1013455 11318280 1132328 1132328 1125548 11255548 12555555555555555555555555555555555555	149628 131250 131250 1013455 1013455 1013455 1013455 94967 13236 13236 13236 13236 13236 132548 132548 132548 132548 132548 132548 132548 132555 132555 1325548 1325555 1325555 1325555 1325555 1325555 1325555 1325555 13255555 13255555 132555555 1325555555555	149628 131250 131250 107485 107485 107485 107485 1074830 148330 148330 132236 123781 128810 1322748 132211 132211	149628 131250 131250 107382 107382 107382 107382 107382 107382 132256 132226 132226 132226 132226 1322781 132271 132271 132271 132271 133761 133761	149628 114250 114155 114155 114173 94967 114173 114173 1148280 1128280	149628 131250 131250 114125 94967 94967 11127548 1125280 123784 123784 123784 123784 132270 132271 13271 13271 13271 13271 13271 13271 13258 103358	149928 1131290 1131290 113282 113282 113283 113283 113283 113283 113281	149628 111429 111429 111429 94967 111479 94967 112236 111429 112236 113236 113236 113236 113251 113256 113256 113269 112069 112069 11200000000000000000000000000000000000	149528 1141250 1141252 114125 114179 94867 94867 114179 94867 114179 114179 114179 114221 1122561 114221 1122261 1122276 112276
MPb	206,712	206,715	206,711	206.579	206,620	206,747	206,565	206,040	206,938	207,062	206,911	206,675	206,666	206,687	206,680	206,010	206.816	206,692	206,695	206,775	206,669	200,342	207.017	206,979	206,985	206,978	207,115	207,012	206,929	206,009	206.808	206,639	206,716	206,693	206,586	206,716	206/95	206,862	207,049	206,756	206,712	206,723	200,730	206.724	206,715	206,742	206,743		206.730	206,730 206,942	206,942 206,942 206,976	206,730 206,942 206,976 206,866	206,730 206,942 206,942 206,866 206,866 207,053 206,815	206,942 206,942 206,976 206,866 206,815 207,053 207,053 206,618	206,976 206,976 206,976 206,866 206,815 206,618 206,540	206,730 206,942 206,976 206,866 207,053 206,618 206,618 206,659	206,942 206,942 206,942 206,946 207,053 207,053 206,618 206,651 206,651 206,651 206,651 206,651 206,651 206,651	206,730 206,942 206,942 206,946 206,915 206,618 206,618 206,681 206,681 206,681 206,681 206,681 206,681 206,681	206,730 206,942 206,942 206,946 206,946 206,946 206,640 206,640 206,664 206,664 206,664 206,664 206,673 206,664 206,673 206,673 206,673 206,739 206,739 206,739 206,730 206,942 206,742 206,74	206,730 206,730 206,942 2016,942 2016,943 2016,943 2016,943 2016,653 2016,653 2016,653 2016,653 2016,653 2016,531 2016,5	206.730 206.730 206.942 206.946 206.946 206.6415 206.651 206.651 206.651 206.651 206.651 206.651 206.651 206.703 206.703 206.703	206,730 206,730 206,942 206,846 206,846 206,841 206,641 206,641 206,641 206,673 206,671 206,773 207,703 207,70	206.730 206.942 206.942 206.942 206.866 206.866 206.691 206.614 206.614 206.614 206.614 206.614 206.614 206.614 206.614 206.615 206.710 206.615 206.615 206.615 206.615 206.615 206.615 206.615 206.615 206.615 206.615 206.615 206.615 206.615 206.615 206.615 206.615 206.615 206.710 206.615 206.710 206.615 206.710 206.615 206.710 206.715 206.710 206.715 206.710 206.715 207.705 206.715 207.705 206.715 207.705 206.715 207.705 206.715 207.705 206.715 207.705 206.715 207.705 206.715 207.705 206.715 207.705 206.715 207.70	2005/2005/2005/2005/2005/2005/2005/2005	206,730 206,730 206,942 206,942 207,056 206,649 206,654 206,654 206,674 206,674 206,674 206,674 206,674 206,674 206,674 206,674 206,674 200,655 200,57	2006.730 2005.730 2005.942 2005.942 2005.644 2005.644 2005.644 2005.644 2005.644 2005.644 2005.644 2005.644 2005.644 2005.644 2005.644 2005.644 2005.644 2005.7100 2005.7100 2005.7
Pp	ррт 150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	8	150	150 150	150 150	150 150 150	150 150 150 150	150 150 150 150	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	155 155 155 155 155 155 155 155 155 155	150 150 150 150 150 150 150 150 150 150	150 150 150 150 150 150 150 150	150 150 150 150 150 150 150 150 150 150	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
e :	% 7,95	7,81	6,64 6.59	0,00 6,65	7,19	8,94	7,54	6, 00 1, 00	9,42	11,83	10,17	7,54	8,18	7,94	7.60	7.62	a na	8,11	8,34	8,37	1,13	13.38	13.63	15,65	13,79	13,19	13,18	10,71	7.06	8 27	9.35	7,33	9,11	7,07	7,26	8,60	9,U7 8.32	9,51	11,11	8,88	8,30	7,52	0,03 0 1 2	0,13 8.18	8,17	8,12	8,59 6.86	7 30		8,45	8,45 9,68	8,45 8,45 8,54 10.71	8,45 9,68 8,54 10,71 9,04	9,04 9,68 8,54 10,71 9,04 7,07	, 50 9,68 9,68 10,71 7,07 7,07 7,07 7,81	8,45 9,845 10,71 9,04 7,81 7,81 7,71 7,71	8,54 9,68 8,54 9,04 9,04 7,07 7,81 7,81 8,13 8,13 8,12	8,45 9,68 8,54 9,04 9,04 7,07 7,07 7,07 7,71 8,12 8,12 8,12 7,52	8,45 9,68 8,54 10,71 7,07 7,04 7,04 7,04 7,04 7,04 7,04 7,04	8,45 9,68 9,68 7,07 7,07 7,07 7,17 7,17 7,17 7,83 8,08 8,08 8,08	8,45 9,68 9,68 9,64 9,04 9,04 7,07 7,10 7,10 7,10 7,10 7,10 8,13 8,12 8,13 8,12 8,13 8,12 7,53 7,53 7,69 7,69	8 45 9 68 9 68 9 68 9 004 10,54 7 8 7 7 1 1 1 7 1 8 2 8 3 9 2 8 1 2 52 7 1 52 7 1 52 5 7 1 52 5 7 1 52 5 7 1 52 5 7 1 52 5 7 52 52 7 1 52 5 7 1 52 5 7 1 52 5 7 1 52 5 7 1 52 5 7 1 52 5 7 1 52 5 7 1 52 5 7 1 52 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8,455 9,685 9,685 10,74 7,07 7,07 7,07 7,11 7,12 7,52 7,52 7,52 7,52 9,93 9,93 9,93	8,45 9,68 9,68 9,68 9,68 10,74 7,04 7,04 8,12 7,14 8,12 7,83 8,12 7,83 7,83 7,52 7,52 7,52 7,53 7,53 7,53 7,53 7,53 7,53 7,53 7,53	8,45 9,668 9,968 10,74 7,07 7,81 7,71 7,89 8,13 7,89 7,89 7,89 9,93 7,89 9,93 7,13 7,89 7,89 9,93 7,137 7,121 7,89 9,937 7,121	845 966 966 966 904 10,74 704 7,78 7,83 7,78 7,58 7,58 7,58 7,58 7,58 7,58 7,58
d H M M M M M	1887	1919	2261	2256	2087	1678	1989	1210	1593	1268	1475	1989	1834	1889	1893	1067	1650	1849	1798	1793	1941	1121	1100	959	1087	1137	1138	1401	1400	1813	1604	2048	1647	2121	2065	1745	1803	1577	1351	1689	1807	1995	1/3/	1835	1835	1847	1747	2030	1	1//4	1549	17.74 1756 1401	17.14 15.49 17.56 14.01 16.60	17.74 1549 1756 1401 1660 2121	1774 1549 1756 1401 2121 1921	1774 1549 1401 1660 1921 1946 1788	1774 1549 1660 1660 2121 1926 1946 1788 1848	1774 1491 1401 1401 1421 1946 1946 1848 1848 1995	1774 1756 1401 1401 1921 1946 1848 1848 1848 1848 1857	1174 17549 1660 1660 1946 1946 1848 1848 1895 1917	1174 17549 1660 1660 1946 1946 1848 1857 1917 1951	1174 1756 1660 1128 1129 1982 1985 1985 1985 1983 1983	1/174 1/756 1/1756 1/260 1/260 1/260 1/288 1/288 1/288 1/288 1/289 1/297	1774 17756 1660 1921 12121 1788 18855 1788 18855 1788 18855 1788 19917 1788 1995 1788 1995 1597 1995 1995 1995 1995 1995 1995	15/17 17/26 16/60 17/21 17/28 19/21 19/21 19/21 19/21 19/21 19/21 19/21 19/21 19/21 19/21 19/21 19/21 19/21 19/21 19/21 19/21 19/21 19/21	17/24 17/26 17/26 17/26 17/26 19/27 17/28 19/96 19/97 19/96 19/97
2 F	897	936	035	853	820	876	756	031	066	924	202	006	876	875	884	800	031 031	818	845	905	8/3	826 826	726	669	719	767	943	926	880	1 3U 854	894	925	883	975	878	882	920	896	956	879	894	913 004	904 870	6/0 600	890	921	935 804	941	069	041		929	979 996 952	979 996 895	979 996 995 895 895	979 9952 895 895 895 895 895 895 895 895 895 895	979 995 995 995 995 995 995 937 730 730	979 9955 9955 893 8823 8827 730 912	979 996 996 8895 8823 8823 730 730 912 912 983	979 996 8955 8835 8833 8833 7327 7327 7327 9922 983	979 979 9952 9952 9912 9912 9922 9922 9922 992	979 979 995 995 9912 9912 9923 9923 9923 9923 9923 9923	979 979 8952 8952 8955 9953 9922 9923 9976 874	979 979 9952 9952 9953 912 912 9922 9923 9923 9933 9922 9933 9922 9933 9976 9976 876	979 979 8852 8852 8823 9912 9912 9923 9923 9923 9923 9923 99	979 999 9996 9996 9992 9912 9912 9912 9912
E f i	2,00	2,00	2,00	200	2,00	2,00	200	000	2,00	2,00	2,00	2,00	2,00	200	00	00	800	2,00	2,00	2,00	00	00	200	2,00	2,00	2,00	2,00	2,00	00	00	2.00	2,00	2,00	2,00	2,00	2,00	00	200	2,00	2,00	2,00	500	200	2.00	2,00	2,00	2,00	2.00	2,00	2,00		00	200	2000	20000000000000000000000000000000000000	00000000000000000000000000000000000000		000000000000000000000000000000000000000						20000000000000000000000000000000000000		00000000000000000000000000000000000000
- 	860	0629	730	0620	000	820	820	240	9490	\$220	350	5010	1200	5740	240		200	910	270	250	0040	310	300	3460	950	1370	150	3310	2280	210	0021	250	150	3750	880	060	0880	820	800	1026	1680	640	130	020	520	0909	180	090	3460	090	1930	800	1800 1620	620 1730	8800 620 1730 1640	8800 6520 1730 140 2330	8800 6620 1640 330 5500	8800 620 1730 140 330 5500 5500	8800 620 620 140 330 5500 1150	8800 6620 140 3330 5590 1150 1150	8800 6620 6620 5500 5500 5590 1110 1150	8800 6620 6620 5500 5500 5500 5500 5500 55	8800 6620 6620 5500 5500 5500 5500 5500 5110 67790 67790	8800 6720 6720 6720 6720 6530 6530 6550 6550 7110 7110 7110 7110 7110 7180 7180	68800 6620 6620 5333 3330 5590 5590 5590 5590 5590 559	6620 6620 6620 5500 5500 5500 5500 5500
2 -	13 4	32 46	93 4F	68 00	81 4'	64 4	14 3	45 04	49 49	53 4(38 4	60 4	57 4	29	44 55	10	25 44	89 4(02 42	50 4	00 4	4 4	18 36	17 3%	31 35	50 3(32 4	81 46	75 24	85 41	15 44	27 46	01 44	82 46	76 4	4	53 44	71 4	69 47	56 4	11 44	09 4	9/ 60	01 04	06 4	93 46	73 46	17 4	74 5:	40	10	78	78 4	78 45 35 47 37 44	78 35 37 24 41 44 41 41 32 44 41 41 41 41 41 41 41 41 41 41 41 41	232 232 232 24 4 24 4 24 4 4 4 4 4 4 4 4 4 4 4 4 4	55 24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	78 44 335 44 337 44 331 34 82 38 82 44 44 44 44 44 44 44 44 44 44 44 44 44	78 335 337 44 82 30 44 44 44 44 44 44 44 30 30 44 44 30 31 44 44 30 31 44 44 30 31 44 44 30 31 55 55 44 44 55 55 56 56 57 56 56 56 56 56 56 56 56 56 56 56 56 56	78 3355 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	78 33355 3399 200 200 44 44 44 44 44 44 44 44 44 44 44 44 4	23333333333333333333333333333333333333	78 78 78 78 78 78 78 78 78 78	78 44 45 33 54 44 44 44 44 44 44 44 44 44 44 44 44	2229 233 233 233 233 233 233 233	7 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4
5	0 5	00 5	00	000	0 5	00	9	00	0	0 2	0 3	00 5	20	00	000		00	0 4	0 5	00	000		2 2 2	0 2	00 2	00 2	00 2	00	000	000	1 4	00	00 5	00 5	9 00	00	00	00	00 2	00 4	00 5	200	0000	200	0 5	00	00	200	0 3	00	9		00	0000	0000;	00000	000000000000000000000000000000000000000	00 00 00 00 00 00 00 00 00 00 00 00 00	000000000000000000000000000000000000000	000000000000000000000000000000000000000						
	10 2,0	90 2,(01 01 01 01 01 01	5, 2, 0	50 2,0	30 2,0	0	200	20	30 2,0	20 2,(90 2,(30	0 10 10 10 10 10 10 10 10 10 10 10 10 10	000	000	0.0	30 2,0	20 2,0	30 2,0		002	00	70 2,(10 2,(30 2,(90 2,0	30 2,0		000	20 20	20	50 2,(30 2,(0 2'(0 2,0	00 D2	50 10 10	30 2,(90 2,(30 2,0	20	00 20	2.0	0 2,0	30 2,(2,0	10 2.0	2,0	0	000		50 50 01	2,0 2,0 2,0 2,0	200 50 300 50 300 50	2000 210 210 210 210 210 210 210 210 210	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	200 2.00 2.00 2.00 2.00 2.00 2.00 2.00	2000 2000 2000 2000 2000 2000 2000 200		22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
	2562	2655	2967	3341	2905	2319	3071	3007	1747	1266	1692	2796	2783	264/	21/7	2540	2125	2443	2512	2246	2G/7	1287	1080	1087	1154	1246	1159	1403	1982	107	2073	3135	2505	2906	3381	2501	2190	185/	1343	2279	2550	2546	2400	2506	2531	2466	2496	2582	1872	1701	1385		2174	217/ 3186	217/ 3186 3003	217/ 3186 3000 2650	2174 3187 2005 2655 2538 2538	217/2 3186 3005 2650 2650 2650 2650 2650 2650 2650 2	2172 3187 3005 2655 2655 2535 2535 2535 2535 2535 253	217 318 3005 2655 2536 2776 2651 2651 2651 2651 2651 2651 2651 265	217 318 2653 2535 2535 2535 2535 2555 2555 2555	2172 3188 3000 2665 2532 2532 2553 2553 2667 2667 2667 2667 2869 2869 2869 2869 2869 2869 2869 2869	217 318 2655 2552 2552 2552 2667 2667 2667 1823 2667 1823 2667 1823 2867 1823 2867 1823 2867 1823 2867 1823 2867 1823 2867 1823 2867 2867 2867 2867 2867 2867 2867 2867	217/ 3188 26505 26505 26505 26605 26	2172 3187 2650 2650 2650 2650 2650 2660 2660 2660	2172 3187 2532 2533 2533 2533 2533 2533 2533 253
Age	33 33	32	88	29 29	32	35	31	35 35	88	45	40	31	33	ŝ	32	3 6	8 %	35	34	35	32	47	54	55	53	49	46	43	24 24 26	34	37	29	33	8	28	33	ςς Υ	8 8	43	35	33	88	55.52	3.9	33	ŝ	ee ee	335	36	88	30 47		35	35 29	33 33 33	5 33 33 39 32	3 3 3 3 3 3 3 3	32 32 33 33 33 33	33 33 33 39 39 39 39 39 39 39 39 39 39 3	33 33 33 39 34 33 39 39 39	8 33 33 33 33 38 38 8 33 33 33 38 38 8 39 39 39 39 39 39 39 39	2 8 8 8 3 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 4 8 8 8 3 3 8 8 8 8 8 8	3 3 4 2 2 2 3 3 3 3 4 3 3 5 2 8	888888388888888888888888888888888888888	3 8 8 8 8 8 8 3 3 3 8 8 8 8 8 8 8 8 8 8
Age Ma	331	324	343	336	346	317	325	326	337	326	330	329	308	328	325	347	324	345	326	340	328	303	344	313	332	324	302	342	345	335	322	311	296	333	303	313	31/	337	332	322	319	349	311	326	326	329	308	348	348	324	331		316	316 322	316 322 327	316 322 327 343 375	316 327 327 327 343 325 328	316 322 327 327 328 328 328 328 328	316 327 327 327 328 328 328 328 329	316 327 327 327 328 328 328 328 328	316 327 327 327 327 328 328 328 328 328 328 328	316 327 327 327 325 325 326 325 326 326 326 326 326 326 326 326 327 326 327 326 327 326 327 326 327 326 327 326 327 326 327 327 327 327 327 327 327 327 327 327	316 327 327 327 325 326 326 328 328 328 328 328 328 328 328 328 328	316 327 327 325 326 326 326 328 328 328 328 328 328 328 328 328 328	326 327 327 327 325 325 326 328 328 328 328 328 328 328 329 328 329 328 329 328 329 328 328 329 328 328 328 328 328 328 328 328 328 328	326 327 327 327 325 323 325 326 329 329 329 329 329 329 329 329 329 329
-	1	2	en ₹	4 เว	9	7		4 م	1	12	13	14	15	16	/1	0	200	21	22	23	24	26	27	28	29	30	31	88	55	t K	38	37	38	39	4	41	42	4	45	46	47	48	43	51	52	53	54	56	57	58	60 90		61	61 62	63 63	61 63 65	60 88 88 88 88 88 88 88 88 88 88 88 88 88	61 62 65 66 67	61 62 65 67 68 67 88	60 88 89 89 80 80 80 80 80 80 80 80 80 80 80 80 80	61 62 63 63 64 64 65 64 65 65 64 65 65 64 65 65 64 65 65 64 65 65 64 65 65 65 65 65 65 65 65 65 65 65 65 65	61 83 83 86 86 86 87 7 7 7 7 7 7 7	61 62 63 66 66 67 73 73 73 73 73	61 62 63 66 66 67 69 67 67 7 7 7 7 7 7 7 7 7 7 7	61 62 63 65 64 66 66 73 73 77 73 75	61 62 63 63 66 66 67 67 73 73 73 75 75 75

Corr	0,925	0,983	0,980 0.984	0,970	0,948	0,946	0,953	0,940	0,953	0,959	0,957	0.962	0,960	0,962	0,948	0,935	0,947	0,943	0,955	0,934	0.950	0,938	0,937	0,934	0.929	0,903	0,906	0,887	0,858	0,867	0,913	0,952	0,940	0,914	0.974	0,978	0,975	0,976	0,977	0,980	0,976	0,974	0,904	0,899	0,904	0,942	0,936	0,929	0,930	0,936	0,945	0,979	0,968	0,923 0,866
Error Th/Pb	9,01	17,37	16,01 17.52	13,32	10,56 10.58	10,39	10,96	9,92 11,29	11,02	11,68	11,45 11 EE	12.08	11,84	12,04	10,52	9,60	10,43	10,17	11,23	9,51 0.65	3,03	9,75	9,71	9,50	9,25	8,09	8,20	7.45	6,91	7,11	8,50 a 71	10,92	9,94	8,53	14,30 18,76	15,40	14,45 46 24	14,79	15,11	16,42 15,40	16,52	14,27	8.82	7,97	8,13 8.71	10,04	9,63 0.76	9,88	9,28	9,62 8 19	10,29	15,78 16.48	12,91	8,93 7,08
Th/Pb	21,438	19,099	17,397 22.062	22,008	23,077 23,816	23,378	25,583	22,908	25,775	28,460	27,787	29.431	28,358	27,859 22,413	24,739	22,406	24,805 24,265	25,084	26,773	21,645 23,117	25.974	23,284	22,851	21,946	20.780	16,097	16,232	15,393	13,755	14,273	17,908 24.046	28,669	24,699	21,858	38,/13	38,667	26,329	30,585	37,931	48,010 44 802	47,964	38,353	31,2/14 18,991	16,541	11,822 20.175	25,293	23,407	21.908	21,291	24,056 18.094	20,564	38,058 37.128	29,873	20,195 14,593
Error U/Pb	9,01	17,37	16,01 17.52	13,32	10,56 10.58	10,39	10,96	9,92 11,29	11,02	11,68	11,45 11,65	12.08	11,84	12,04	10,52	9,60	10,43	10,17	11,23	9,51 0 85	3,00	9,75	9,71	9,50 8 54	9.25	8,09	8,20	7.45	6,91	7,11	8,50 a 71	10,92	9,94	8,53	14,30	15,40	14,45 16.24	14,79	15,11	16,50 15 84	17,08	14,27	8.82	7,97	8,13 8.71	10,04	9,63 0.76	9,20 9,88	9,28	9,62 8 19	10,29	15,78 16.48	12,91	8,93 7,08
U/Pb	14,879	14,754	13,466 13.929	13,196	14,761 13.028	12,274	14,697	13,696	12,427	12,739	12,646 12,725	13.741	12,910	12,303	13,563	12,878	14,304	12,384	13,728	13,459 14 268	14,806	13,171	13,818	15,435	16,239	16,166	15,740	17,575	15,937	15,841	16,227 13.428	13,374	12,014	7 000	6.817	8,731	11,343	8,876	8,083	6,952 5 404	5,663	6,617	14,469	16,943	16,779	13,794	13,797	13.632	13,753	13,590	15,883	11,688 11.523	12,099	16,321 16,179
Error U*	919	403	403	529	767 712	695	756	/82 688	676	999	673 664	679	660	623	745	780	781	737	714	804 818	787	787	811	888	937	1039	1003	1228	1233	1186	1004 810	747	740	947	482 412	461	468 444	444	451	457 458	454	449 606	900 833	1107	1089	805	825 961	775	836	826 903	804	510 476	585	976 1220
Error U*	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2.00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,02	2,16	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00 2,00
U*(Th) nom	45933	20126	20130 20011	26444	38327 35584	34760	37799	34402	33820	33286	33644 23405	33938	32977	31170 35860	37255	38977	39044	36865	35714	40182	39368	39344	40539	44406	4/ 333	51969	50146	50.388 61.460	61631	59314	50176 40506	37343	37003	47372	24096	23064	23403 22246	21395	22572	22590	21070	22453	30239 44631	55358	54443 45213	40240	41261	4300/ 38773	41799	41303 49669	40192	25483 23789	29254	48816 60982
Error Th*	2987 2987	1310	1314 1303	1723	2492 2317	2266	2456	2000	2202	2165	2189 2160	2204	2144	2029 2328	2424	2540	2538	2401	2321	2618 2650	2557	2562	2638	2886	3043	3381	3264	3994	4015	3863	3262 2636	2427	2412	3084	15/0	1501	1526 111E	1397	1471	1486 1404	1479	1466	2907	3598	3538 2945	2617	2685	2525	2722	2688 3734	2612	1654 1545	1903	3171 3970
Error Th*	% 2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2.00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,02	2,16	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00 2,00
Th*(U)	149367	65513	65680 65128	86147	124582 115866	113311	122775	12//61	110120	108236	109437	10/304	107214	101429	121187	127009	126900	120074	116072	130875	127842	128113	131922	144293	152173	169066	163208	183218	200729	193165	163121	121339	120601	154197	62366	75070	76293	69862	73551	73433	68595	73301	90302 145333	179911	1 /6893	130840	134248	126247	136112	134384	130595	82701 77236	95148	158565 198494
MPb	206,629	206,585	206,583 206.668	206,691	206,663 206.732	206,750	206,710	206,692	206,789	206,825	206,817	206,805	206,817	206,831	206,731	206,709	206,708 206,718	206,778	206,762	206,675	206,714	206,717	206,687	206,623	206,581	206,486	206,499	206,477 206,443	206,438	206,452	206,523 206,722	206,805	206,785	206,665	207,203	207,155	206,842	207,032	207,182	207,356	207,439	207,278	206,590	206,479	206,510	206,733	206,699 206,699	206,675	206,659	206,717 206,559	206,585	207,007	206,872	206,567 206,452
Error Pb	150 150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150 150	150	150 150
Error Pb	% 7,01	15,37	14,01 15.52	11,32	8,56 8,58	8,39	8,96	9.29	9,02	9,68	9,45 0.66	9,33 10.08	9,84	10,04 8 22	0,22 8,52	7,60	8,43 8.33	8,17	9,23	7,51	69''	7,75	7,71	7,50	7.25	6,09	6,20	5,92 5,45	4,91	5,11	6,50	8,92	7,94	6,53	12,30	13,40	12,45	14,24	13,11	14,42 13.40	14,52	12,27	6.82	5,97	6,13 6,71	8,04	7,63	7.88	7,28	7,62 6 19	8,29	13,78 14.48	10,91	6,93 5,08
qd	2139	926	1071	1325	1753 1749	1788	1675	1893 1615	1662	1549	1588	1371	1524	1494 1875	1760	1973	1780	1835	1626	1999	1726	1936	1945	2001	2070	2461	2419	2530	3057	2933	2308	1682	1889	2297	9621	1119	1205	1173	1144	1040	1033	1223	2198	2513	2445 2734	1865	1966 2066	1904	2060	1968 2423	1809	1088 1036	1374	2166 2951
Error Th	917	373	373 426	583	809 833	836	857	86/ 849	857	882	882	000 876	865	832 854	871	884	883	921	871	865	200	902	889	878	098 098	792	785	841 848	841	837	827 035	<u>965</u>	933	1004	944 851	865	635	717	868	999 1005	991	938	904 835	831	8/2 0U2	944	920 004	904 834	877	947 877	744	828 769	821	875 861
Error Th	2,00	2,00	2,00 2.00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2.00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00 2,00
ЧТ Мас	45860	18640	18630 21320	29170	40460 41660	41790	42840	433/0	42850	44080	44120	42.030	43230	41620	43540	44210	44150	46040	43530	43260	44840	45080	44450	43920	43010	39620	39270	420/0	42050	41860	41340 46750	48230	46650	50200	47200	43270	31730	35870	43410	49930 50750	49550	46890	41750	41560	43580 45080	47180	46010	41720	43860	47350	37210	41420 38470	41060	43740 43070
Error U	637	288	288 269	350	518 456	439	492	427 427	413	395	402	400	394	368 455	477	508	509 403	455	446	538 546	511	510	538	618 676	672 672	796	762	808 968	974	929	749 523	450	454	639	192	195	273 264	208	185	150	150	162	320 636	851	821	515	542	519 519	567	535	575	254 239	333	707 955
Error U	2,00	2,00	2,00 2.00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,000	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2.00	2,00	2,00	2,00	2.00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,07	2,56	2,00	2,00	2,00	2,00	2,00	2,00	2,000	2,00	2,00	2,00	2,00	2,00	2,00 2,00
U U	31830	14400	14420 13460	17490	25880	21940	24610	25930	20660	19730	20080	20450	19680	18380 22760	23870	25410	25460	22730	22320	26900	25560	25500	26880	30890	33610	39790	38080	43440	48720	46460	37460 26140	22500	22690	31950	9610 6100	9770	13670	10410	9250	7230	5850	8090	31810	42570	31370	25730	27120	25960	28330	36200	28740	12720	16630	35350 47750
Error Age	Ma 29	58	28 28	46	88	37	34	37	37	38	37	37	38	40 36	8 8	34	8 2	¥ %	35	8 F	3 8	33	32	90	58 53	27	27	<u>8</u> %	24	24	27	34	35	29	90	52	51	26 2	53	52 55	56	53	30 4	25	£ 6	32	32	34 0	32	3 33	32	47 50	42	27 24
Age Ma	322	335	367 334	346	317 340	355	307	333 325	340	322	326	304	320	331	327	349	316 327	344	315	344	304	340	332	312	306	328	334	312	343	342	319	312	352	335	348	335	355	377	349	318	338	374	341	315	342	321	330	339	341	330	312	296 302	325	308 335
	ECN. U61	78	6/	81	82	84	85	80 87	88	68	90	60	93	88	96 96	67	88 00	100	101	102	104	105	106	107	109	110	111	112	114	115	116	118	119	120	121	123	124 125	126	127	128	130	131	133	134	135	137	138	140	141	142	144	145 146	147	148 149

	Age Ma	Error Age Ma	n mqq	Error U %	Error U	hT Mqq	Error Th %	Error Th	d P ppm	Error Pb %	Error Pb nnm	MPb	Th*(U) ppm	Error Th* %	Error Th*	U*(Th) ppm	Error U*	Error U*	U/Pb	Error U/Pb %	Th/Pb	Error Th/Pb %	Corr
	-	Ma 49	4790	3,13	150	63300	2,00	1266	1066	% 14,07	150	207,595	78854	2,22	ppm 1753	24284	% 2,22	ррт 540	4,492	% 17,20	59,361	% 16,07	0,966
		45	7480	2,01	150	62360	2,00	1247	1250	12,00	150	207,433	86686	2,00	1735	26655	2,00	534	5,984	14,01	49,892	14,00	0,973
		41	10130	2,00	203	64310	2,00	1286	1428	10,50	150	207,320	97269	2,00	1945	29896	2,00	598	7,094	12,50	45,037	12,50	0,965
		47	7170	2,09	150 151	59770 60110	2,00	1195	1246	12,04	150	207,432	83110 84640	2,03	1684	25531 25076	2,03	517 520	5,756	14,13 13 34	47,980 45 424	14,04	0,972
		53	3740	4.01	150	61740	2.00	1235	1096	13.68	150	207.658	73911	2.33	1723	22712	2.33	529	3.412	17.69	56,318	15.68	0.950
		59	4350	3,45	150	50250	2,00	1005	882	17,01	150	207,551	64379	2,32	1492	19821	2,32	459	4,934	20,46	56,994	19,01	0,973
		80	1430	10,49	150	43130	2,00	863	761	19,70	150	207,788	47792	2,83	1352	14659	2,83	415	1,878	30,19	56,642	21,70	0,878
		80	1420	10,56	150	42320	2,00	846	663	22,61	150	207,786	46936	2,84	1334	14440	2,84	410	2,141	33,18	63,796	24,61	0,902
		00	1330	11,11	150	43460 43460	2,00	809 860	712	21,17 21,05	150	207, 801	02224	2,84 2,84	1350	14683	2,84 2,84	417	1,815	31,28	61 000	22,17 23.05	0,878
		262	1640	9.15	150	43190	2.00	864	748	20.04	150	207.764	48532	2.79	1352	14899	2.79	415	2.192	29.19	57.714	22.04	0.905
		79	1420	10,56	150	43410	2,00	868	671	22,37	150	207,791	48024	2,82	1356	14779	2,82	417	2,118	32,93	64,738	24,37	0,901
		76	1810	8,29	150	44020	2,00	880	709	21,15	150	207,748	49904	2,74	1368	15351	2,74	421	2,552	29,44	62,066	23,15	0,927
	1	11	1750	8,57	150	42840	2,00	857	626	23,95 40.05	150	207,750	48517	2,77	1343	14957	2,17	414	2,794	32,52	68,397	25,95 20,05	0,938
		70	1680	R 03	150	43220	2,00	864	820	18,05	150	201, 250	47457	2,00 2.78	1354	14906	2,00	415	2001	23,00	52,013	20,02	0,030
	1	57	6420	2,34	150	46830	2,00	937	1021	14,69	150	207.379	67732	2,10	1425	20804	2,10	438	6,288	17.03	45,868	16.69	0.979
No No<		57	3420	4,39	150	56740	2,00	1135	952	15,76	150	207,660	67854	2,39	1622	20879	2,39	499	3,594	20,15	59,626	17,76	0,956
		52	3300	4,55	150	63920	2,00	1278	1025	14,64	150	207,699	74639	2,37	1766	22979	2,37	544	3,221	19,19	62,387	16,64	0,946
N N		46	7040	2,13	150	62180	2,00	1244	1215	12,35	150	207,455	85069	2,04	1731	26165	2,04	532	5,796	14,48	51,193	14,35	0,973
7 7		45	7470	2,01	150	61520	2,00	1230	1155	12,98	150	207,429	85//4	2,00	1/1/	26417	2,00	529	6,466	14,99	53,252 26,224	14,98	0,977
7 8000 1011 9000 1011 9000 1011 9000 1011 9000 1011 9000 1011 9000 1011 90000 9000 9000 9		25	00/2/2	2,00	202	51000	200	1300	13/1	11.01	150	200,700	04754	2,00	1805	41022 20165	2,00	020 583	5 030	3,01 13.45	53 048	3,0 I 13 AF	0,830
1 1		24	2900	5.17	150	59650	2.00	1193	1021	14.70	150	207.712	69086	2.43	1681	21232	2.43	517	2.841	19.87	58.439	16.70	0.935
1 1		29	1380	10.87	150	43910	2.00	878	761	19.71	150	207.797	48408	2.82	1367	14853	2.82	419	1.813	30.58	57.696	21.71	0.871
1 1	<u> </u>	73	1420	10,56	150	48870	2,00	977	923	16,25	150	207,809	53510	2,74	1468	16376	2,74	449	1,539	26,82	52,955	18,25	0,832
N N	-+	61	1930	7,77	150	57280	2,00	1146	882	17,00	150	207,786	63551	2,57	1633	19560	2,57	503	2,187	24,77	64,917	19,00	0,903
1 1	+	58	1720	8,72	150	61820	2,00	1236	931	16,11	150	207,816	67408	2,56	1724	20750	2,56	531	1,847	24,83	66,391	18,11	0,873
9 730 0.3	-	51	3320	4,52	150	66520	2,00	1330	1121	13,38	150	207,706	77318	2,35	1818	23772	2,35	559 526	2,961	17,89	59,318	15,38	0,937
N N	+	5 ¥	2010	4,04 F.05	150	67540	200	1351	1120	13,00	150	201,103	12300	2,39	1830	2422	2,39	220	2,009	10,12	50,100 60,203	15,00	0,935
No. No. <td>+</td> <td>54</td> <td>2720</td> <td>5.51</td> <td>150</td> <td>64140</td> <td>2.00</td> <td>1283</td> <td>1075</td> <td>13.96</td> <td>150</td> <td>207.742</td> <td>72990</td> <td>2.43</td> <td>1771</td> <td>22433</td> <td>2.43</td> <td>544</td> <td>2.531</td> <td>19.47</td> <td>59.685</td> <td>15.96</td> <td>0.921</td>	+	54	2720	5.51	150	64140	2.00	1283	1075	13.96	150	207.742	72990	2.43	1771	22433	2.43	544	2.531	19.47	59.685	15.96	0.921
No No<	1	56	2020	7,43	150	63870	2,00	1277	666	15,02	150	207,796	70436	2,51	1765	21668	2,51	543	2,023	22,44	63,950	17,02	0,889
No. No. <td>1</td> <td>56</td> <td>2160</td> <td>6,94</td> <td>150</td> <td>62930</td> <td>2,00</td> <td>1259</td> <td>947</td> <td>15,85</td> <td>150</td> <td>207,783</td> <td>69944</td> <td>2,50</td> <td>1746</td> <td>21540</td> <td>2,50</td> <td>538</td> <td>2,282</td> <td>22,79</td> <td>66,477</td> <td>17,85</td> <td>0,909</td>	1	56	2160	6,94	150	62930	2,00	1259	947	15,85	150	207,783	69944	2,50	1746	21540	2,50	538	2,282	22,79	66,477	17,85	0,909
67 78/10 64/14 10/14 64/14 11		53	2470	6,07	150	66170	2,00	1323	1060	14,16	150	207,767	74200	2,44	1811	22823	2,44	557	2,331	20,23	62,453	16,16	0,910
No 111 No	+	55	2510	5,98	150	66190	2,00	1324	1320	11,36	150	207,763	74399	2,44	1814	22749	2,44	555	1,901	17,34	50,128	13,36	0,872
3 1779 677 670 1700 670 1700 670 1700 670 1700 <td>-+-</td> <td>23</td> <td>3360</td> <td>4,46</td> <td>150</td> <td>62530</td> <td>2,00</td> <td>1251</td> <td>981</td> <td>15,29</td> <td>150</td> <td>207,689</td> <td>73437</td> <td>2,37</td> <td>1738</td> <td>22623</td> <td>2,37</td> <td>535</td> <td>3,425</td> <td>19,75</td> <td>63,735 FC 606</td> <td>17,29</td> <td>0,952</td>	-+-	23	3360	4,46	150	62530	2,00	1251	981	15,29	150	207,689	73437	2,37	1738	22623	2,37	535	3,425	19,75	63,735 FC 606	17,29	0,952
5 7.73 6.10 6.00 7.00 7.00 7.	+	69	1180	12,71	150	52830	2,00	105/	932	16,10	150	207,845	56680	2,73	1546	1/3/0	2,73	4/4	1,266	28,81	50,626	18,10 15.96	0,779
0 0	+	00	2170	6,07 6,01	150	000390	200	1312	1025	13,00	150	201,024	73680	2,55	1821	210/3	2,33	203	2,018	20,036	61 07A	15.00	0,887
m m	_	5 &	1000	15.00	150	43060	00	861	605	21.60	150	207,841	46315	2,4/ 2 01	1349	14228	2 01	415	1 440	36.60	61 997	23.60	0.818
Q2 Q2<	_	76	1220	12.30	150	46350	2,00	100	751	19.96	150	207,824	50321	2.81	1415	15461	2.81	435	1.624	32.26	61,689	21.96	0.847
4 (1200 246 3000 200 710 713 710 <td>-</td> <td>52</td> <td>9650</td> <td>2.00</td> <td>193</td> <td>41490</td> <td>2,00</td> <td>830</td> <td>066</td> <td>15.16</td> <td>150</td> <td>207.141</td> <td>72830</td> <td>2.00</td> <td>1457</td> <td>22425</td> <td>2.00</td> <td>449</td> <td>9.752</td> <td>17.16</td> <td>41.929</td> <td>17.16</td> <td>0.983</td>	-	52	9650	2.00	193	41490	2,00	830	066	15.16	150	207.141	72830	2.00	1457	22425	2.00	449	9.752	17.16	41.929	17.16	0.983
66 104 144 160 3660 200 77 5691 771 569 770 5691 771 5691 770 <td>-</td> <td>48</td> <td>12300</td> <td>2,00</td> <td>246</td> <td>42080</td> <td>2,00</td> <td>842</td> <td>1271</td> <td>11,80</td> <td>150</td> <td>207,030</td> <td>82154</td> <td>2,00</td> <td>1643</td> <td>25216</td> <td>2,00</td> <td>504</td> <td>9,677</td> <td>13,80</td> <td>33,106</td> <td>13,80</td> <td>0,972</td>	-	48	12300	2,00	246	42080	2,00	842	1271	11,80	150	207,030	82154	2,00	1643	25216	2,00	504	9,677	13,80	33,106	13,80	0,972
98 100 145 100 38400 200 770 611 2717 190 3700 132 310 370 132 310 270 270 270 7 1000 1450 190 38400 200 770 611 270 270 270 170 170 170 270	-	95	1040	14,42	150	36060	2,00	721	558	26,87	150	207,811	39441	3,06	1209	12134	3,06	372	1,863	41,30	64,605	28,87	0,879
ŋ 100 14.66 15.0 36.30 2.00 7.01 14.66 15.0 36.30 2.00 7.01 14.66 17.66 65.20 17.66 65.20 17.76 66.20 17.76 66.20 17.76 66.20 17.76 66.20 17.76 66.20 17.76 66.20 17.76 66.20 17.76 66.20 17.76 66.20 17.76 66.20 17.76 66.20 17.76 66.20 17.76 66.20 17.76 66.20 17.76 66.20 17.76 66.20 17.76 66.20 17.76 66.20 17.76 17.76 66.20 17.76 66.20 17.76 66.20 17.76 66.20 17.76 66.20 17.76 66.20 17.76		98	920	16,30	150	35950	2,00	719	691	21,72	150	207,827	38959	3,10	1210	11913	3,10	370	1,332	38,03	52,058	23,72	0,796
70 6870 2.06 7.00 7.00 7.01 6.70 2.01 7.11 6.70 7.20 7.20 7.20 7.20 7.20 7.20 7.70 7		97	1010	14,85	150	35340	2,00	707	541	27,71	150	207,812	38622	3,09	1194	11885	3,09	367	1,866	42,56	65,290	29,71	0,879
37 11030 2.30 171 3847 2.00 171 3847 166 172 270 173 17	- 1	70	5670	2,65	150	36300	2,00	726	992	15,12	150	207,321	54855	2,22	1217	16763	2,22	372	5,715	17,76	36,585	17,12	0,977
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_	53	10530	2,00	211	38470	2,00	749	1101	13,62	150	207,062	72757	2,00	1455	22345	2,00	447	9,565	15,62	34,943	15,62	0,979
0 0.10 0.11 0.20 0.01 1.12 0.01 0.12 0.01 0.12 0.01 0.	_	7/	0716	2,93	091	30980	2,00	774	808	10,04	021	201,373	53/28	2,23	1230	10420	2,23	3/0	5,337	18,57	38,549	11,04	G/A/0
64 400 377 150 4700 277 150 4700 277 150 4700 277 150 4700 277 150 1730	_	67	43.10	3,48	150	30300 44160	007	883	1001	14.90	150	207 509	58242	2,36	1373	17826	2,36	30/ 420	4306	18.47	44 120	16.90	0.966
64 64 65 150 207542 6465 150 16822 2.11 467 5533 1696 55165 1696 55165 1696 55165 1696 55165 1696 55165 1696 55165 1696 5516 1696 55165 1696 5516 1696 <t< td=""><td>-</td><td>64</td><td>4000</td><td>3,75</td><td>150</td><td>47510</td><td>2,00</td><td>950</td><td>924</td><td>16,24</td><td>150</td><td>207,560</td><td>60537</td><td>2,38</td><td>1439</td><td>18589</td><td>2,38</td><td>442</td><td>4,329</td><td>19,99</td><td>51,423</td><td>18,24</td><td>0,967</td></t<>	-	64	4000	3,75	150	47510	2,00	950	924	16,24	150	207,560	60537	2,38	1439	18589	2,38	442	4,329	19,99	51,423	18,24	0,967
60 1330 1347 150 1526 100 1755 150 1750 1751 166 1556 1759 1759 1759 1759 1759 1759 1759 1759 1759 1759 1759 1759 1759 160 15579 150 15579 150 15579 150 1573 150 1573 150 1573 150 1573 150 1573 150 1573 150 1573 150 1573 150 150 1573 150 1573 150 150 1573 150 150 1573 150 150 150 1573 150 150 1573 150	_	59	4450	3,37	150	49830	2,00	997	804	18,65	150	207,542	64255	2,31	1483	19822	2,31	457	5,533	22,02	61,962	20,65	0,978
59 1500 1,00 150 1,00 1,		60	4390	3,42	150	50280	2,00	1006	964	15,56	150	207,548	64569 56046	2,31	1494	19838	2,31	459 466	4,555	18,98	52,168	17,56	0,969
66 14.0 10.4 150 66.00 1.0.4 1.50 65.00 1.17 1.00 1.17 1.00 1.17 1.00 1.17 1.00 1.17 1.00 1.17 1.00 1.17 1.00 1.17 1.00 1.17 1.00 <th< td=""><td>_</td><td>202</td><td>1630</td><td>0,07 0,20</td><td>150</td><td>5135U</td><td>00%</td><td>1001</td><td>0/ I 1066</td><td>14.08</td><td>150</td><td>207,822</td><td>20040 66675</td><td>2,11</td><td>1716</td><td>20440</td><td>2,11</td><td>400 526</td><td>1,304</td><td>20,03 23,28</td><td>57,570</td><td>16.08</td><td>0,820</td></th<>	_	202	1630	0,07 0,20	150	5135U	00%	1001	0/ I 1066	14.08	150	207,822	20040 66675	2,11	1716	20440	2,11	400 526	1,304	20,03 23,28	57,570	16.08	0,820
59 1390 10,7 160 6160 20.0 15.7 15.0 17.9 17	+	65	1480	10.14	150	56840	2.00	1137	1088	13.79	150	207.825	61679	2.64	1627	18864	2.64	498	1.360	23.92	52.242	15.79	0.797
69 1290 1163 160 5090 2.00 107 19.33 150 507.53 21.33 1507 15.73	+	59	1390	10,79	150	61630	2.00	1233	950	15,79	150	207,844	66150	2,60	1720	20344	2.60	529	1,463	26.58	64.861	17.79	0.819
64 1330 1339 150 56830 200 1117 1079 1331 150 2057 1534 1534 1534 1634 1737 1534 1536 153	-	69	1290	11,63	150	50990	2,00	1020	776	19,33	150	207,830	55182	2,73	1507	16979	2,73	464	1,663	30,96	65,723	21,33	0,852
64 12/10 6/70 12/00 13/41 15/34 15/	-	56	4430	3,39	150	55830	2,00	1117	1079	13,91	150	207,579	70259	2,28	1605	21571	2,28	493	4,107	17,29	51,757	15,91	0,962
66 130 100 1201 1079 13.90 13.00 1201 13.00 <td>-</td> <td>64</td> <td>2210</td> <td>6,79</td> <td>150</td> <td>52350</td> <td>2,00</td> <td>1047</td> <td>785</td> <td>19,11</td> <td>150</td> <td>207,743</td> <td>59522</td> <td>2,58</td> <td>1534</td> <td>18341</td> <td>2,58</td> <td>473</td> <td>2,816</td> <td>25,90</td> <td>66,699</td> <td>21,11</td> <td>0,937</td>	-	64	2210	6,79	150	52350	2,00	1047	785	19,11	150	207,743	59522	2,58	1534	18341	2,58	473	2,816	25,90	66,699	21,11	0,937
31 6410 3.05 150 6174 3.05 1.27 1.275 1.26 1.275	_	56	1870	8,02	150	64070	2,00	1281	1079	13,90	150	207,809	70161	2,52	1770	21540	2,52	543	1,732	21,92	59,353	15,90	0,857
63 5360 2.55 150 7.340 6.73.4 5360.2 2.71 602 2.71 602 2.347 13.74 5360.5 13.70 0.900 66 1560 516 100 114 130 207.61 5600 2.65 1578 153.6 561 139.4 0.52.7 66 1560 5450 170 2.00 140 150 57.66 66.23 13.94 0.97.6 66 1560 5450 2.07.812 56600 2.65 1578 153.6 51.76 65.23 17.94 0.87.7 67 174 150 2.07.81 5600 2.65 17.38 2.79 41.73 51.76 65.23 17.94 0.87 67 174 150 2.00 17.9 2.715 56.9 17.9 2.76 65.23 17.90 0.87 7 11.6 10 2.00 17.9 2.775 56.9 17.8 56.9	-+	51	4910	3,05	150	61430	2,00	1229	1235	12,15	150	207,576	77439	2,22	1718	23751	2,22	527	3,977	15,20	49,756	14,15	0,957
6 150 9.17 1.00 0.00 0.0	_	43 60	2440	2,55	150	13540	00,2	14/1	1340	11,20	150	201,5/16	92696	2,11	1959	20000	2,11	602 E04	4,397	13,74	54,895	13,20	0,960
0 1100 1364 150 0200 1500 1730 0700 2.00 17.20 17.20 0.003 10 1364 150 0200 207.817 6000 2.63 1730 207.617 2.00 2.00 2.558 0.004 175 1800 17.44 150 0204 150 207.817 5786 207.81 27.01 17.91 1.1419 3.16 361 1.172 6.313 1.720 0.804 175 160 31.66 2.00 190 207.815 5786 207.817 5786 2.030 2.06 2.568 0.804 175 161.06 3.460 2.00 100 2.76 4.86 2.79 4.86 2.70 0.81 170 0.1100 15.66 10.01 1362 2.79 4.86 1.80 2.4.20 2.5.85 0.801 161 800 15.16 1418 156.28 2.79 4.86 1.460 <td></td> <td>90 65</td> <td>1560</td> <td>0,13</td> <td>150</td> <td>54520</td> <td>00%</td> <td>1090</td> <td>300 836</td> <td>17 04</td> <td>150</td> <td>207,812</td> <td>59590</td> <td>2,31</td> <td>1578</td> <td>18336</td> <td>2,31</td> <td>301 486</td> <td>2,014 1 R66</td> <td>22,22 27 56</td> <td>01,103 65,223</td> <td>10,07</td> <td>0.876</td>		90 65	1560	0,13	150	54520	00%	1090	300 836	17 04	150	207,812	59590	2,31	1578	18336	2,31	301 486	2,014 1 R66	22,22 27 56	01,103 65,223	10,07	0.876
102 860 17.44 150 34480 2.00 660 629 2.3.65 150 3.16 11.73 11.419 3.16 3.128 6.4820 2.3.65 0.801 3.178 6.3.65 0.801		808	1100	3,02	150	62500	2,00	1250	987	15.20	150	201,012	66080	2,63	1738	20303	2,63	534	1,114	28.83	63.313	17.20	0.738
75 1330 11,28 150 46500 2.00 930 735 20,40 150 207,812 508.25 2.79 1418 156.28 1.809 31.68 63.554 22.40 0.871 81 930 15.15 150 837 67.84 20,40 1800 207.841 4870 2.90 418 1,400 37.27 64.365 24.12 0.821 81 930 15.16 150 237 64.365 24.12 0.821 23.48 0.811 2.041 0.811 0.811 2.90 418 1,460 37.27 64.365 24.28 0.821 0.821 2.90 418 1,412 2.90 418 1,460 37.27 64.365 23.46 0.680 96 160 200 873 21.28 150 207.816 44293 2.94 1301 13561 2.349 56.365 23.48 0.680 160 150 206 20.915 <		102	860	17.44	150	34480	2.00	0690	629	23.85	150	207,831	37288	3.16	1179	11419	3.16	361	1.367	41.29	54.820	25.85	0.804
81 990 15,15 150 43660 2.00 873 67.9 2.01 1412 2.90 418 1,460 37.27 64.365 2.412 0.823 92 660 22.73 150 21.68 150 207.844 46870 2.90 1361 1412 2.90 418 1,460 37.27 64.365 23.28 0.800 92 660 22.73 150 277.81 1405 2.94 13691 3.67 393 65.265 23.28 0.800 92 160 20.7 84.333 2.94 13691 15.802 3.07 393 15.26 23.28 0.840 93 160 2.00 813 15.6 15.6 27.788 84.423 2.94 13641 2.94 36.86 56.265 23.28 0.848 160 2.77 84.333 2.94 1361 13541 2.94 1366 2.94 2.94 13.48 0.846		75	1330	11,28	150	46500	2,00	930	735	20,40	150	207,812	50825	2,79	1418	15628	2,79	436	1,809	31,68	63,254	22,40	0,871
92 660 22.73 150 39650 2.00 733 705 21.26 150 207.817 1805 3.07 1283 1292 3.07 204 330 0366 4.3.99 66.205 23.26 0690 160 1301 1301 1201 2.00 430 14201 2.00 881 177 12.15 150 207.816 4.4293 2.04 160 2.70 456 9.942 14.76 150 2.07 680 4.4293 2.04 160 24.75 150 14.76 150 2.77 15 150 2.07 160 24.75 150 2.07 160 24.75 150 2.07 160 24.75 150 2.07 160 24.75 150 2.07 160 24.75 150 2.07 160 24.75 150 2.07 160 24.75 150 2.07 160 24.75 150 2.07 160 24.75 150 2.07 160 24.75 150 2.07 160 24.75 150 2.04 150 24.75 150 2.04 150 24.75 150 2.07 160 24.75 150 2.07 160 24.75 150 2.07 160 24.75 150 2.07 160 24.75 150 24.	<u> </u>	81	066	15,15	150	43650	2,00	873	678	22,12	150	207,844	46870	2,90	1361	14412	2,90	418	1,460	37,27	64,365	24,12	0,822
i 86 1130 13,27 150 40610 2,00 812 695 21,58 150 207,816 44293 2,94 1301 15591 2,94 399 1,626 34,86 58,435 23,58 0,848 48 1170 2,00 24 399 1,626 34,86 58,435 2,358 0,848 177 12,75 150 207,058 80445 2,00 1609 24726 2,00 495 9,942 14,75 36,012 14,75 0,976 0,	_	92	660	22,73	150	39650	2,00	793	705	21,26	150	207,877	41805	3,07	1283	12802	3,07	393	0,936	43,99	56,205	23,26	0,680
48 11700 2,00 234 42380 2,00 848 1177 12,75 150 207,058 80445 2,00 1609 24726 2,00 495 9,942 14,75 36,012 14,75 0,976		86	1130	13,27	150	40610	2,00	812	695	21,58	150	207,816	44293	2,94	1301	13591	2,94	399	1,626	34,86	58,435	23,58	0,848
	\rightarrow	48	11700	2,00	234	42380	2,00	848	1177	12,75	150	207,058	80445	2,00	1609	24726	2,00	495	9,942	14,75	36,012	14,75	0,976
	ł.																						I

				1		ТΤ		-				-	1			1	1 1	1			1	1	T T	1	1	1	1			1			-		1		1		1		г т	1	1 1		1			1				1		1 1		-	1 1	<u> </u>
Corr	0,981	0,982	0,980	0,983	0,942	0,915	0,924	0.900	0,931	0,886	0,801	0.953	0,830	0,817	0,818	0.976	0,976	0,822	0.979	0,926	0,915	0,948	0,971	0,962	0,946	0,969	0,976	0,956	0,962	0,949	0,955	0,965	0,925	0,980	0,963	0,961	0,964	0,960	0,945	0,947	0,945	0.977	0,976	0,956	0,967	0,965	0.966	0,963	0,964	0.967	0,979	0,977	0.962	0,939	0,952	0.922	0,876	0,895 0,941
Error Th/Pb	% 16,25	20,82	18,66	20,92 19.96	17,54	14,54	15,71	10,38	16,22	14,62	17,21 14.68	15,95	17,21	16,57	15,16 15,57	14.62	14,64	24,34	16.31	17,27	16,36	17,29	14,53	17,39	10,39	13,26	14,83	11,38	12,11	10,61	11,16	12,43	15,51	16,38	12,17	11,95	12,34	11,83	15,73	10,49	10,25	12,83	14,80	11,35 11 88	12,74	12,50	12.67	12,90	12,28	10,57	15,73	15,05	11,34	16,06	10,89	13,32	18,56	15,81 18,20
Th/Pb	39,337	45,334	44,994	51,235 59.887	62,533	51,818	55,858 EF 2.46	047,00 55,084	53,350	48,816	58,850 42 884	45,335	66,087	61,885	57,049 E1 33E	33.712	37,069	50,940	36,823	62,185	58,103	63,630	53,433	66,138 04.055	54 954	42,595	44,868	35,118	41,963	35,296	34,563	37,361	51 763	45,601	32,649	31,011 31 005	30,904	28,807	44,134 27 321	26,933	25,703	34,362 47.189	44,403	33,277	36,928	36,590	44,02/	46,912	37,545	34,520	45,726	47,342	30.908	50,965	31,925 51,070	64.921	61,959	52,690 61,861
Error U/Pb	% 16,25	21,83	19,36	21,84 22.78	20,64	17,63	18,97	18,92	19,39	18,84	26,32 14.68	17,88	25,15	24,57	22,09	14.62	14,64	37,64	16.54	21,11	20,29	19,96	14,84	19,24	10,39 16.45	13,26	14,83	11,38	12,11	10,61	11,16	12,43	15,80	16,44	12,17	11,95	12,34	11,83	18,00	10,49	10,25	12,83	14,80	11,35 11 88	12,74	12,50	12.67	13,19	12,28	10,5/	15,73	15,05	11,34	18,78	10,89	23.00	25,39	20,33 21,65
U/Pb	7,314	6,247	6,175	6,469 3.723	3,045	2,466	2,605	3,1/4	2,749	2,027	1,369 9.586	3,554	1,531	1,457	1,474 0 805	9.787	8,932	1,459	6.431	2,616	2,422	3,271	5,429	4,002	3 135	7,672	6,553	9,184 2,044	3,044 9,365	8,629	9,400	6,835	5,783 5,929	6,979	10,845	11,699	12,422	11,887	3,236 12 146	11,621	10,736	10,8/10	9,409	8,402 10,684	10,800	10,836	o, 140 7.956	4,762	10,380 7 345	7.795	10,026	7,109	11,286	2,981	11,548	3,040 2,511	1,877	2,118 2,969
Error U*	408	372	399	400 458	522	530	525	548	495	505	506 539	448	551	542	549 407	479	482	359	386	526	523	535	544	548	100	553	475	639	070 661	678	655	526	503 501	442	616	640 600	636 636	633	444 705	703	676	475	541	597 654	619	631 502	200 593	546	640	509	527	498	674 674	483	721 668	515	495	501 503
Error U*	2,00	2,31	2,22	2,27	2,42	2,41	2,43	2,40	2,46	2,51	2,64 2,00	2,39	2,56	2,57	2,54	2.00	2,00	3,14	2.08	2,46	2,47	2,38	2,08	2,30	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,23 2,08	2,02	2,00	2,00	2,00	2,00	2,44	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,07	2,00	2,00	2,00	2,00	2,00	2,44	2,00	2.51	2,61	2,52 2,47
U*(Th) nnm	20403	16078	17997	17636 18508	21523	21936	21609	22515	20162	20149	19160 26963	18725	21559	21075	21612	23930	24110	11437	2100/	21364	21172	22441	26182	23778	3254/ 24058	27656	23769	31933	33047	33913	32763	26286	30041 24108	21902	30804	32016	31813	31647	35.274	35134	33822	23375	27064	29839 37708	30948	31565	29630	26339	31989	3090/ 25473	26348	24907	31917	19841	36058	20520	18946	19826 20380
Error Th*	ррт 1330	1211	1299	1300 1488	1695	1729	1711	1541	1615	1652	1650 1751	1465	1791	1763	1789	1559	1570	1175	1262	1709	1702	1736	1767	1775	2120	1800	1548	2080	2147	2211	2134	1717	1630	1439	2005	2083	2068	2060	1454 2207	2289	2208	1931 1546	1757	1948 2127	2011	2051	1928	1780	2079	2024 1663	1709	1619	2189 2189	1577	2345	162U	1610	1634 1633
Error Th*	2,00	2,31	2,22	2,27	2,42	2,41	2,43	2,40	2,46	2,51	2,64	2,39	2,56	2,57	2,54	2.00	2,00	3,14	2,40	2,46	2,47	2,38	2,08	2,30	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,23 2.08	2,02	2,00	2,00	2,00	2,00	2,44	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,07	2,00	2,00	2,00	2,00	2,00	2,44	2,00 2,00	2,23	2,61	2,52 2,47
Th*(U)	66511	52358	58620	57297 60135	69921	71610	70406	73421	65747	65925	62450 87553	61219	70068	68603	70489 FO6F4	77937	78504	37416	60616	69444	68938	72862	85096	77095	106280	89998	77390	104023	107367	110545	106720	85826	39028 78356	71254	100233	104136 99249	103398	102997	59/U5 114825	114465	110383	76057	87857	97383 106340	100560	102573	96389	85889	103966	83161	85453	80970	109472	64747	117264 7047.4	66648	61641	64729 66226
MPb	207,245	207,376	207,378	207,413	207,712	207,717	207,721	207,752	207,698	207,745	207,840	207,582	207,841	207,839	207,826	207.033	207,124	207,811	207.272	207,744	207,745	207,700	207,496	207,659	207,673	207,260	207,352	207,084	207,161	207,116	207,065	207,252	207.451	207,332	206,968	206,906	206,876	206,863	201,602	206,841	206,856	200,992	207,186	207,100	207,030	207,024	207.245	207,495	207,058	207.154	207,170	207,341	206,854	207,667	206,927	207.761	207,803	207,752 207,715
Error Pb	150 150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150 150	150	150
Error Pb	% 14,25	18,82	16,66	18,92 17.96	15,54	12,54	13,71	14,38	14,22	12,62	15,21 12.68	13.95	15,21	14,57	13,16	12.62	12,64	22,34	14,31	15,27	14,36	15,29	12,53	15,39	8,39 12.47	11,26	12,83	9,38	10,11	8,61	9,16	10,43	13.60	14,38	10,17	9,95 a a 1	10,34	9,83	13,/5 8.73	8,49	8,25	10,83	12,80	9,35 0 88	10,74	10,50	10.67	10,90	10,28	10.82	13,73	13,05	9,34 10.03	14,06	8,89	11,52	16,56	13,81 16,20
Pb	1053	797	006	793 835	965	1196	1094	1178	1055	1189	986 1183	1075	986	1030	1140 1105	1188	1187	672	1048	982	1045	981	1197	974	1/88	1332	1169	1599	1483	1743	1637	1438	142/	1043	1475	1508 1513	1451	1526	1091	1767	1817	1385	1172	1604 1518	1396	1429	1405	1376	1459	1387	1092	1149	1496	1067	1688	912	906	1086 926
Error Th	ppm 828	723	810	813 1001	1207	1240	1222	1298	1126	1161	1161	975	1303	1274	1300	801	880	684	772	1222	1214	1249	1279	1289	1320	1135	1049	1123	1245	1230	1132	1075	11.34	951	963	935 066	300 897	879	963 038	952	934	1058	1041	1068	1031	1045	1200	1291	1095	957	666	1088	899 925	1087	1078	1330	1122	1144 1146
Error Th	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2.00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00 2,00
ЧТ	41410	36140	40510	40630 50030	60370	61980	61120	01.010 64910	56290	58040	58050	48730	65160	63720	65010 56740	40060	43990	34210	38590	61090	60700	62440	63970	64450	66.080	56740	52450	56170	62240	61520	56590	53730	57100	47570	48170	46760	44830	43960	48150	47580	46710	47580 52890	52050	53390 53610	51560	52270	59330 60020	64530	54760	042870 47870	49940	54410	46230	54370	53880 55530	59210	56110	57220 57290
Error U	ррт 154	150	150	150 150	150	150	150	150	150	150	150 227	150	150	150	150	233	212	150	150	150	150	150	150	150	208	204	153	294	278	301	308	197	150	150	320	353	360	363	150	411	390	301	221	270	302	310 216	210	150	303 766	216	219	163	302 389	150	390 1E0	150 150	150	150 150
Error U	2,00	3,01	2,70	2,92 4.82	5,10	5,08	5,26	4,53	5,17	6,22	2.00	3,93	9,93	10,00	8,93 16 65	2.00	2,00	15,31	2,23	5,84	5,93	3,30 4,67	2,31	3,85	3 98	2,00	2,00	2,00	2,00	2,00	2,00	2,00	3,78 2.29	2,06	2,00	2,00	2,00	2,00	4,25 2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,29	2,00	2.00	2,00	2,00	2,00	4,72	2,00 3 7 B	3,70 6,55	8,82	6,52 5,45
U U	7700	4980	5560	5130 3110	2940	2950	2850	3310 2610	2900	2410	1350 11340	3820	1510	1500	1680	11630	10600	980	6740	2570	2530	3210	6500	3900	3770	10220	7660	14690	13890	15040	15390	9830	3970 6540	7280	16000	17640	18020	18140 2520	3530	20530	19510	7120	11030	13480	15080	15480	11180	6550	15140	10810	10950	8170	18120	3180	19490	2290	1700	2300 2750
Error Age	Ma 58	72	65	66	28	56	28	/c	60	61	63	5 2 2	56	28	57	20	50	102	8 8	56	57	23	46	20	51	24	50	99 99	38	38	38	47	41	54	40	39	39	39	00 36	88	38	51	44	42 38	40	39	42	47	39	41	45	48	37	61	35	58 51	63	61 58
Age Ma	355	341	344	311	309	374	348	359	359	403	353	393	315	336	362	342	339	401	387	317	339	302	316	283	311	332	339	345	310	354	345	376	321	328	331	326	316	333	409 336	347	370	322	300	370	312	313	327	359	315	374	287	319	34/ 307	369	324 367	307	329	375 313
Ech. MVG4	17	78	79	88	82	83	84	60 92 92	87	88	86	91	92	93	94 14	96	67	86	39 100	101	102	104	105	106	10/	109	110	111	113	114	115	116	11/	119	120	121	123	124	1.25 1.26	127	128	130	131	132	134	135	137	138	139	140	142	143	145	146	147	149	150	151 152

Corr	200.0	0,887	0,840	0,814	0,767	0,803	0,872	0,841	0,842	0,782	0,765	0,975	0,981	0,977	0,978	0,802	0,753	0,793	0,855	0,802	0,797	0,839	0,814	0,706	0,379	0,780	0,820	0,971	0,897	0,956	0,959
Error Th/Pb %	10.00	10,39	16,44	18,92	20,58	20,35	18,22	17,46	15,89	26,04	24,47	18,18	16,24	15,04	15,28	16,98	14,22	18,09	20,48	19,41	17,68	18,89	18,53	21,60	24,85	17,67	13,56	15,50	15,85	12,96	13,82
дЧ/НЪ	10101	193,931	58,802	58,451	55,480	52,138	60,045	64,214	59,569	62,591	59,650	46,209	44,346	40,794	42,393	58,864	54,246	59,197	63,930	61,691	62,035	62,788	59,237	57,111	52,661	60,138	58,087	50,558	59,081	50,381	53,348
Error U/Pb	04 FD	21,03	23,48	28,73	33,89	31,74	25,04	25,14	22,46	43,02	41,22	19,25	16,24	15,04	15,28	25,85	22,57	28,19	29,43	30,12	27,31	27,61	28,06	39,08	78,41	27,97	19,25	16,10	20,32	13,64	14,65
U/Pb	1 10 0	2,014	1,598	1,432	1,214	1,370	1,838	1,597	1,621	1,266	1,198	5,263	8,486	7,644	7,231	1,378	1,181	1,330	1,688	1,369	1,349	1,577	1,432	1,006	0,411	1,275	1,503	5,194	2,143	4,085	4,185
Error U*	100	031 	525	468	424	411	491	533	545	390	394	413	466	464	458	512	558	489	469	477	515	493	480	418	361	503	612	495	543	573	566
Error U*	و د د	2,51	2,5/	2,73	2,89	2,90	2,62	2,57	2,53	3,05	3,03	2,29	2,00	2,00	2,00	2,63	2,55	2,69	2,71	2,72	2,64	2,66	2,70	2,95	3,34	2,67	2,44	2,15	2,47	2,14	2,17
U*(Th) ppm	1111	10117	20405	17170	14694	14157	18758	20711	21496	12790	13018	18026	23318	23195	22880	19460	21828	18174	17324	17508	19515	18535	17801	14163	10827	18883	25073	23030	21967	26746	26107
Error Th*	1100	06/1	1/10	1526	1385	1343	1599	1734	1775	1269	1285	1346	1515	1511	1490	1668	1822	1593	1525	1552	1675	1603	1564	1364	1183	1640	1997	1612	1768	1868	1842
Error Th*	° 1	2,51	2,57	2,73	2,89	2,90	2,62	2,57	2,53	3,05	3,03	2,29	2,00	2,00	2,00	2,63	2,55	2,69	2,71	2,72	2,64	2,66	2,70	2,95	3,34	2,67	2,44	2,15	2,47	2,14	2,17
Th*(U) ppm	20000	00001	66489	55970	47980	46292	61075	67350	70021	41631	42427	58757	75769	75535	74504	63428	71318	59231	56335	57002	63529	60305	58006	46223	35454	61525	81737	74947	71524	87168	84973
MPb	707 700	C81,1U2	207,819	207,834	207,848	207,824	207,801	207,832	207,819	207,857	207,858	207,452	207,233	207,242	207,284	207,839	207,848	207,845	207,824	207,846	207,849	207,831	207,835	207,872	207,928	207,852	207,826	207,491	207,772	207,572	207,583
Error Pb	1 10	061	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150
Error Pb	1100	14,33	14,44	16,92	18,58	18,35	16,22	15,46	13,89	24,04	22,47	16,18	14,24	13,04	13,28	14,98	12,22	16,09	18,48	17,41	15,68	16,89	16,53	19,60	22,85	15,67	11,56	13,50	13,85	10,96	11,82
dq	40.40	1042	1039	887	807	818	925	970	1080	624	668	927	1054	1150	1130	1001	1227	932	812	862	956	888	908	765	656	957	1298	1111	1083	1369	1269
Error Th	1044	1241	1222	1037	896	853	1111	1246	1286	781	796	857	934	938	958	1179	1332	1104	1038	1063	1187	1115	1075	874	691	1151	1508	1123	1279	1379	1354
Error Th %	° 00 0	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00
udd 4L	00000	00700	61080	51830	44780	42630	55540	62310	64320	09068	39820	42850	46720	46910	47900	58930	66580	55190	51880	53160	08869	55750	53770	43710	34570	57550	75380	56170	63970	68950	67690
Error U	1100	001	150	150	150	150	150	150	150	150	150	150	621	176	163	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150
Error U %	0/	7,14	9,04	11,81	15,31	13,39	8,82	9,68	8,57	18,99	18,75	3,07	2,00	2,00	2,00	10,87	10,34	12,10	10,95	12,71	11,63	10,71	11,54	19,48	55,56	12,30	2,69	2,60	6,47	2,68	2,82
udd N	04.00	2100	1660	1270	980	1120	1700	1550	1750	062	800	4880	8940	8790	8170	1380	1450	1240	1370	1180	1290	1400	1300	022	270	1220	1950	5770	2320	5590	5310
Age Age	NIG L	10	6G	20	81	84	64	58	22	91	06	65	51	51	52	62	22	99	68	68	62	64	67	83	108	64	50	52	55	46	47
Age Ma	000	339	350	354	376	395	339	323	345	335	352	354	312	342	340	353	385	352	323	338	337	330	350	370	413	348	355	332	339	352	335
Ech. MVG4	1 10	103	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182

PALEOSOME

PALEOSOME							GRENAT			
DIOTITE							N° Ech	MVG6-grtc	404	MVG6-grtp
	MV/CG arts	404	MUCG arts	44	46	l i i i i i i i i i i i i i i i i i i i	FeO No2O	30,007	37,409	30,010
		404	www.grup	44	40		NazO	0	0 007	0,007
3102	35,277	19 501	17 905	34,92	35,215		N2O MpO	0 62	0,007	0,017
	17,445	3 061	4 735	5 401	5 454		SiO2	36 901	36 310	2,
FeO	20 499	18 892	4,733	17 883	15 276		0102 CaO	0.642	0 597	0.693
MaO	20,435	10,032	10,300	10,655	11 419		Cr2O3	0,042	0,037	0,030
CaO	0,40	0.015	0.017	0.048	0.001		AI2O3	21 549	21 315	21 706
MnO	0,014	0,013	0,017	0,040	0,001			0 022	0.022	0.032
Cr2O3	0,041	0,014	0,000	0,010	0,010		MaQ	4 793	3 749	4 316
K20	10.28	9 467	8 873	9 091	9 223		Somme	100 616	100,361	10142 6
Na2O	0 141	0 106	0 431	0,399	0.322		0011110	100,010		
Total	97 075	95 95	96 817	139 60	140 41		Si4+	2 92728857	2 91226472	2 8868752
		,	,	,	,		Ti4+	0.00131263	0.00132682	0.00190168
Si	2.67092513	2.66896522	2.65801612	2.64122195	2.66093666		Al3+	2.01458045	2.01424547	2.02118011
Al	1,55665949	1.64627329	1.57044767	1.52423857	1.55766548		Fe3+	0.12821715	0.15928744	0.20405178
Ti	0 27679046	0 17378933	0 26513362	0.31234714	0.30993984		Cr3+	0,12021110	0,10020111	0,20100110
Fe	1 29801041	1 19277279	1 14000231	1 13121843	0.96536584		Ma2+	0 56683898	0 44816433	0 5083952
Ma	0.95370967	1 18557301	1 20078685	1 20136098	1 28624685		Fe2+	2 26554686	2 35301674	2 17562443
Ca	0.00113577	0.00121336	0.00135623	0.00389015	8 0966E-05		Mn2+	0.04165411	0.05969316	0 14052486
Mn	0.00262945	0.00089525	0.0024596	0.00121729	0,00096008		Ca2+	0.05456125	0.05128534	0.05866111
Cr	0.00412892	0,00000020	0,002 1000	0,00121120	0,00000000		somme5	2 9286012	2 91215957	2 88320559
K	0,99510184	0 91373672	0 84462556	0 87911698	0 89101168		Sommed	2,0200012	2,01210001	2,00020000
Na	0.02069997	0.0155164	0.06222248	0.05851729	0.04717841					
Total	7 77979112	7 79873537	7 74505044	7 75312876	7 71938581		Almandin	75 5182285	78 4338913	72 5208142
XFe	0 57645283	0 50151361	0 48701623	0 48496459	0 42874418		nvrone	18 8946327	14 9388109	16 9465065
(*Al'*)	1 32907487	1 33103478	1 34198388	1 35877805	1 33906334		spessartite	1 38847024	1 98977205	4 68416197
AIIV	1 32907487	1 33103478	1 34198388	1,35877805	1,33906334		grossulaire	1 81870849	1 70951125	1 95537034
AIVI	0 22758462	0.31523851	0 2284638	0 16546052	0 21860214		grooodiano	1,01010010	1,70001120	1,00001001
	0,22730402	0,01020001	0,2204030	0,10040002	0,21000214					
CORDIERITE									39	40
FeO	9,916	9,656	9,788	9,868	9,863	9,993	9,884	9,828	10,239	9,897
Na2O	0,156	0,169	0,141	0,168	0,159	0,182	0,212	0,179	0,179	0,198
K2O										
MnO	0,07	0,04	0,058	0,065	0,037	0,088	0,058	0,056	0,084	0,085
SiO2	47,791	48,243	47,699	48,415	48,273	48,358	48,242	48,814	47,688	47,917
CaO										
Cr2O3										
AI2O3	32,78	33,012	32,919	33,059	32,974	33,091	32,984	33,145	32,842	32,939
TiO2										
MgO	7,335	7,323	7,366	7,339	7,351	7,305	7,3	7,405	7,127	7,195
somme	9804,8	9844,3	9797,1	9891,4	9865,7	9901,7	9868	9942,7	9815,9	9823,1
0.00										
SiO2	79,5456059	80,2979361	79,3924767	80,584221	80,3478695	80,4893475	80,2962716	81,2483356	79,3741678	79,7553262
AI2O3	32,1498627	32,3774029	32,2861907	32,4234994	32,3401334	32,4548843	32,3499412	32,5078462	32,2106709	32,3058062
1102	0	0	0	0	0	0	0	0	0	(7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
MgO	18,2009926	18,1712159	18,2779156	18,2109181	18,2406948	18,1265509	18,1141439	18,3746898	17,6848635	17,853598
FeO	13,8009743	13,4391093	13,6228253	13,7341684	13,7272095	13,908142	13,756437	13,6784969	14,2505219	13,7745303
MnO	0,09867494	0,05638568	0,08175923	0,09162673	0,05215675	0,12404849	0,08175923	0,07893995	0,11840992	0,11981957
CaO	0	0	0	0	0	0	0	0	0	0
Na2O	0,25169409	0,2726686	0,22749274	0,27105518	0,25653437	0,29364311	0,34204582	0,28880284	0,28880284	0,31945789
o'										
Si4+	159,091212	160,595872	158,784953	161,168442	160,695739	160,978695	160,592543	162,496671	158,748336	159,510652
Al3+	96,4495881	97,1322087	96,858572	97,2704982	97,0204002	97,3646528	97,0498235	97,5235386	96,6320126	96,9174186
114+	0	0	0	0	0	0	0	0	0	17 050500
Mg2+	18,2009926	18,1712159	18,2779156	18,2109181	18,2406948	18,1265509	18,1141439	18,3746898	17,6848635	17,853598
Fe2+	13,8009743	13,4391093	13,6228253	13,7341684	13,7272095	13,908142	13,756437	13,6784969	14,2505219	13,7745303
Mn2+	0,09867494	0,05638568	0,08175923	0,09162673	0,05215675	0,12404849	0,08175923	0,07893995	0,11840992	0,11981957
Ca2+	0	0	0	0	0	0	0	0	0	
Na+	0,50338819	0,54533721	0,45498548	0,54211036	0,51306873	0,58728622	0,68409164	0,57760568	0,57760568	0,63891578
somme2	288,14483	289,940129	288,081011	291,017764	290,249269	291,089375	290,278799	292,729942	288,011749	288,814935
facteur	0,06246859	0,06208178	0,06248242	0,06185189	0,06201566	0,06183668	0,06200935	0,06149012	0,06249745	0,06232365
cations normalisés à 1	8 Oxvaènes									
Si4+	4.9691015	4,985039	4,96063442	4,98428673	4,98282616	4,97719387	4.97911972	4,99597011	4,96068311	4.97064279
Al3+	4.01671291	4.02009377	4.03463894	4.01090972	4.01118944	4.01380446	4.01199773	3,99782289	4.02616961	4.02683131
Ma2+	1 13699026	1 12810147	1 14204848	1 12637978	1 13120873	1 12088569	1 12324631	1 12986193	1 10525888	1 11270134
Fe2+	0 86212734	0 83432386	0 85118715	0 84948433	0 85130106	0 8600333	0 85302774	0 84100245	0 89062120	0 85847806
Mn2+	0.00616408	0.00350052	0.00510852	0.00566729	0.00323454	0.00767075	0.00506984	0.00485403	0.00740032	0.00746750
Na+	0.0628919	0.06771101	0.05685719	0.06706111	0.06363659	0.07263166	0.08484016	0.07103409	0.07219776	0.07963912
somme3	11.053988	11.0387696	11.0504747	11.043789	11.0433974	11.0522197	11.0573015	11.0406355	11.062331	11.0557611

PALEOSOME

KfS										
SiO2	64,964	63,975	64,41	64,161	64,529	64,209	63,789	63,905	62,837	63,907
AI2O3	19,431	19,397	19,404	19,474	19,557	19,314	19,18	19,072	18,773	19,17
CaO	0,084	0,098	0,095	0,105	0,215	0,095	0,143	0,104	0,048	0,165
Na2O	2,872	2,142	2,128	2,906	3,104	2,254	2,29	2,502	1,179	2,72
K2O	12,373	13,473	13,185	12,394	11,664	13,156	13,142	12,764	14,889	12,398
total	99,724	99,085	99,222	99,04	99,069	99,028	98,544	98,347	97,726	98,36
Si	2,96906112	2,95815264	2,9665744	2,95704489	2,96160285	2,96512598	2,96282455	2,96883784	2,96487696	2,9651344
AI	1,04657806	1,0569999	1,0532302	1,05772325	1,05780158	1,05111338	1,049878	1,04418625	1,04389065	1,04820966
sommeSiAl	4,01563918	4,01515254	4,0198046	4,01476815	4,01940444	4,01623935	4,01270256	4,01302409	4,00876761	4,01334406
Ca	0,00411289	0,00485465	0,00468757	0,00518439	0,01057139	0,00469994	0,00711571	0,00517615	0,00242636	0,00820166
Na	0,25447151	0,1920163	0,19001239	0,25965145	0,27618618	0,20179458	0,20620727	0,22534467	0,10784832	0,24466576
к	0,72132405	0,79466413	0,77462426	0,72863043	0,68285487	0,7749615	0,77862908	0,75639291	0,89611919	0,73376434
sommeCaNaK	0,97990845	0,99153509	0,96932422	0,99346627	0,96961245	0,98145602	0,99195206	0,98691373	1,00639387	0,98663176
%Albite	25.9689064	19.3655578	19.6025628	26.1359099	28.4841827	20.5607361	20.7880277	22.8332693	10.7163133	24.7980831
%anorthite	0,41972234	0,4896099	0,48359122	0,52184904	1,09027005	0,47887473	0,71734391	0,52447852	0,241094	0,83127883
%orthose	73,6113712	80,1448323	79,913846	73,342241	70,4255472	78,9603892	78,4946283	76,6422522	89,0425927	74,3706381

101Gran2	106Gran2	59Gran2	60Gran2
62,521	63,051	73,529	62,765
22,896	23,263	15,457	23,011
4,011	3,982	0,494	3,94
8,724	8,835	6,844	8,802
0,219	0,171	0,675	0,231
98,371	99,302	96,999	98,749
2,80347853	2,7997086	3,2324687	2,80344391
1,20993218	1,21735338	0,80081273	1,21126711
4,01341071	4,01706198	4,03328143	4,01471102
0,19268411	0,18942794	0,02326615	0,18853521
0,75839476	0,76056398	0,58330274	0,76219141
0,01252635	0,00968559	0,03785197	0,0131612
0,96360522	0,95967751	0,64442086	0,96388782
78,7038869	79,252038	90,515807	79,0747009
19,9961671	19,7387075	3,61039689	19,559871
1,29994599	1,00925443	5,87379613	1,36542812

1PLAGIOCLASE	Périphérie	Intermédiaire	Cœur	Intermédiaire	Périphérie
SiO2	63,107	63,498	63,438	63,181	63,157
AI2O3	23,196	23,207	23,126	23,039	23,137
CaO	4,036	3,9	3,775	3,889	3,943
Na2O	9,177	9,524	9,558	9,49	9,314
K2O	0,295	0,361	0,365	0,379	0,303
total	99,811	100,49	100,262	99,978	99,854
Si	2,79502764	2,79633435	2,79926398	2,79722175	2,79671616
AI	1,21074244	1,20442052	1,20261049	1,20208207	1,20743577
sommeSiAl	4,00577008	4,00075487	4,00187447	3,99930381	4,00415193
Ca	0,19150568	0,18399905	0,17845686	0,18445918	0,1870577
Na	0,78798446	0,81312401	0,81765434	0,81454477	0,7995976
К	0,01666632	0,02027894	0,02054453	0,02140369	0,01711506
sommeCaNaK	0,99615645	1,017402	1,01665574	1,02040764	1,00377036
%Albite	79,1024802	79,9216053	80,4258821	79,8254289	79,6594147
%anorthite	19,2244577	18,0851864	17,5533226	18,0770085	18,6355076
%orthose	1,67306207	1,99320828	2,02079538	2,09756258	1,7050777

Thermomètre Grt/Crd

1984 Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crt A/B LN(A/B) T(K) T(°c) 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 1003,1222 730,122202 Pot. 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 987,711549 714,711549 Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crt A/B LN(A/B) T(K) T(°c) Pot. 41 et 40 5,33390691 0,80580333 6,61936568 1,88999955 994,776903 721,776903 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 979,494456 706,494456 Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crt A/B LN(A/B) 1011,4675 738,467501 Pot. 41 et 40 5,33390691 0,80580333 6,61936568 1,88999955 1011,4675 738,467501 Pot. 41 et 40 5,33390691 0,80580333 6,61936568 1,88999955 1022,59457 749,594567 Pot. 41 et 40 5,33390691 0,80580333 6,61936568 1,88999955 978,086304 705,086304 <th>r 4,5Kbar r 3Kbar r 6Kbar r 8Kbar</th>	r 4,5Kbar r 3Kbar r 6Kbar r 8Kbar
41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 1003,1222 730,122202 Pou 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 987,711549 714,711549 Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crc A/B LN(A/B) T(K) T(°c) Pou 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 994,776903 721,776903 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 979,494456 706,494456 Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crc A/B LN(A/B) 41 et 40 5,33390691 0,80580333 6,61936568 1,88999955 1011,4675 738,467501 Pou 41 et 40 5,33390691 0,80580333 6,61936568 1,88999955 1022,59457 749,594567 Pou 41 et 39 5,33390691 0,77152685 6,913443 1,93346778 1006,88477 733,884766 THOMPSON (1976) A B KD Kfe/(1-Xfe)Grt Xfe/(1-Xfe)Crc A/B LN(A/B) T(K) T(°c) 41 et 40 5,33390691 0,80580333 6,61936568 1,88999955 978,086	r 4,5Kbar r 3Kbar r 6Kbar r 8Kbar
41 et 40 5,33390691 0,77152685 6,913443 1,93346778 987,711549 714,711549 Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crt A/B LN(A/B) T(K) T(°c) Pou 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 994,776903 721,776903 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 979,494456 706,494456 Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crt A/B LN(A/B) 41 et 39 5,33390691 0,77152685 6,913443 1,93346778 995,928642 722,928642 Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crt A/B LN(A/B) 1 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 1022,59457 749,594567 Pou 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 1022,59457 749,594567 Pou 41 et 39 5,33390691 0,77152685 6,913443 1,93346778 963,06027 733,884766 THOMPSON (1976) A B KD T(K) T(°c) 733,884766 HoLDAWAY & LEE A B KD Kfe/(1-Xfe)Grt Xfe/(1-Xfe)Crt	r 3Kbar r 6Kbar r 8Kbar
Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crt A/B LN(A/B) T(K) T(°c) Pot. 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 994,776903 721,926842 722,928642 722,928642 722,928642 722,928642 722,928642 722,928642 722,928642 723,984766 749,594567 749,594567 749,594567 749,594567 749,594567 749,594567	r 3Kbar r 6Kbar r 8Kbar
Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crc A/B LN(A/B) T(K) T(°c) Pou 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 994,776903 721,776903 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 979,494456 706,494456 Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crc A/B LN(A/B) 1011,4675 738,467501 Pou 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 1011,4675 738,467501 Pou 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 995,928642 722,928642 Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crc A/B LN(A/B) 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 1022,59457 749,594567 Pou 41 et 40 5,33390691 0,80580333 6,61936568 1,88999955 1022,59457 749,594567 Pou 41 et 40 5,33390691 0,80580333 6,61936568 1,88999955 978,086304 705,086304 41 et 40 5,33390691 0,80580333 </th <th>r 3Kbar r 6Kbar r 8Kbar</th>	r 3Kbar r 6Kbar r 8Kbar
41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 994,776903 721,776903 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 979,494456 706,494456 Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crc A/B LN(A/B) 41 et 39 5,33390691 0,77152685 6,913443 1,93346778 995,928642 722,928642 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 995,928642 722,928642 Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crc A/B LN(A/B) 41 et 40 5,33390691 0,80580333 6,61936568 1,88999955 1022,59457 749,594567 Pou 41 et 40 5,33390691 0,80580333 6,61936568 1,88999955 1022,59457 749,594567 Pou THOMPSON (1976) A B KD Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crc A/B LN(A/B) T(K) T(°c) 41 et 40 5,33390691 0,80580333 6,61936568 1,88999955 978,086304 705,086304 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 963,06027 690,06027 HOLDAWAY & LEE	r 6Kbar r 8Kbar
41 et 40 5,33390691 0,77152685 6,913443 1,93346778 979,494456 706,494456 Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crc A/B LN(A/B) 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 1011,4675 738,467501 Pou 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 995,928642 722,928642 Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crc A/B LN(A/B) 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 1022,59457 749,594567 Pou 41 et 40 5,33390691 0,80580333 6,61936568 1,88999955 1022,59457 749,594567 Pou 41 et 40 5,33390691 0,80580333 6,61936568 1,88999955 978,086304 705,086304 THOMPSON (1976) A B KD KD Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crt A/B LN(A/B) T(K) T(°c) 41 et 40 5,33390691 0,80580333 6,61936568 1,88999955 978,086304 705,086304 HOLDAWAY & LEE A B KD K K K K K (°c) 690,06027	r 6Kbar r 8Kbar
Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crt A/B LN(A/B) 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 1011,4675 738,467501 Pou 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 995,928642 722,928642 Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crt A/B LN(A/B) 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 1022,59457 749,594567 Pou 41 et 40 5,33390691 0,80580333 6,61936568 1,88999955 1006,88477 733,884766 THOMPSON (1976) A B KD Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crt A/B LN(A/B) T(K) T(°c) 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 978,086304 705,086304 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 963,06027 690,06027 HOLDAWAY & LEE 1977 A B KD N°Ech. Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crt A/B LN(A/B) T(K) T(°c) 41 et 40 5,33390691 0,8058033 6,61936568 1,889	r 6Kbar r 8Kbar
41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 1011,4675 738,467501 Pou 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 995,928642 722,928642 Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crc A/B LN(A/B) 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 1022,59457 749,594567 Pou 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 1006,88477 733,884766 THOMPSON (1976) A B KD Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crc A/B LN(A/B) T(K) T(°c) 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 978,086304 705,086304 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 963,06027 690,06027 HOLDAWAY & LEE 1977 A B KD N°Ech. Xfe/(1-Xfe)Crt Xfe/(1-Xfe)Crt A/B LN(A/B) T(K) T(°c) 41 et 40 5,33390691 0,80580333 6,61936568 1,8899955 975,095389 702,095389 P	r 6Kbar r 8Kbar
41 et 40 5,33390691 0,77152685 6,913443 1,93346778 995,928642 722,928642 Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crc A/B LN(A/B) 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 1022,59457 749,594567 Pou 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 1006,88477 733,884766 THOMPSON (1976) A B KD Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crc A/B LN(A/B) T(K) T(°c) 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 978,086304 705,086304 41 et 39 5,33390691 0,77152685 6,913443 1,93346778 963,06027 690,06027 HOLDAWAY & LEE 1977 A B KD N°Ech. Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crc A/B LN(A/B) T(K) T(°c) 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 975,095389 702,095389 Pou HOLDAWAY & LEE A B KD Ke/(1-Xfe)Grt Xfe/(1-Xfe)Crc A/B LN(A/B) T(K) T(°c)	r 8Kbar
Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crc A/B LN(A/B) 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 1022,59457 749,594567 Pou 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 1006,88477 733,884766 THOMPSON (1976) A B KD T(K) T(°c) 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 978,086304 705,086304 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 963,06027 690,06027 HolDAWAY & LEE 1977 A B KD N°Ech. Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crc A/B LN(A/B) T(K) T(°c) 41 et 40 5,33390691 0,80580333 6,61936568 1,88999955 975,095389 702,095389 Pou 41 et 40 5,33390691 0,80580333 6,619365658 1,88999955 975,095389 702,095389 Pou 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 962,202283 689,202283	r 8Kbar
Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crt A/B LN(A/B) 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 1022,59457 749,594567 Pou 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 1006,88477 733,884766 THOMPSON (1976) A B KD Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crt A/B LN(A/B) T(K) T(°c) 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 978,086304 705,086304 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 963,06027 690,06027 HOLDAWAY & LEE 1977 A B KD N°Ech. Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crt A/B LN(A/B) T(K) T(°c) 41 et 40 5,33390691 0,80580333 6,61936568 1,88999955 975,095389 702,095389 Pou 41 et 39 5,33390691 0,77152685 6,913443 1,93346778 962,202283 682,202283 682,202283 682,202283 682,202283 682,202283 682,202283 682,202283	r 8Kbar
41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 1022,59457 749,594567 Pou 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 1006,88477 733,884766 THOMPSON (1976) A B KD Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crt A/B LN(A/B) T(K) T(°c) 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 978,086304 705,086304 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 963,06027 690,06027 HOLDAWAY & LEE 1977 A B KD 1977 Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crt A/B LN(A/B) T(K) T(°c) 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 975,095389 702,095389 Pou 41 et 40 5,33390691 0,80580333 6,61936568 1,88999955 975,095389 702,095389 Pou 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 962,202283 682,202283	r 8Kbar
41 et 40 5,33390691 0,77152685 6,913443 1,93346778 1006,88477 733,884766 THOMPSON (1976) A B KD Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crc A/B LN(A/B) T(K) T(°c) 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 978,086304 705,086304 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 963,06027 690,06027 HOLDAWAY & LEE 1977 A B KD 1977 N°Ech. Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crc A/B LN(A/B) T(K) T(°c) 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 975,095389 702,095389 Poulder 10 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 962,202283 688,202283	
A B KD Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crt A/B LN(A/B) T(K) T(°c) 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 978,086304 705,086304 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 963,06027 690,06027 HOLDAWAY & LEE 1977 A B KD Vfe/(1-Xfe)Grt Xfe/(1-Xfe)Crt A/B LN(A/B) T(K) T(°c) 41 et 40 5,33390691 0,80580333 6,61936568 1,88999955 975,095389 702,095389 Pou 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 962,202283 689,202283	
A B KD Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crt A/B LN(A/B) T(K) T(°c) 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 978,086304 705,086304 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 963,06027 690,06027 HOLDAWAY & LEE P A B KD 1977 N°Ech. Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crt A/B LN(A/B) T(K) T(°c) 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 975,095389 702,095389 Pou 41 et 39 5,33390691 0,80580333 6,619365658 1,88999955 975,095389 702,095389 Pou 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 962,202283 688,202283	
Xte/(1-Xte)Grt Xte/(1-Xte)Crt A/B LN(A/b) I (K) I (°c) 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 978,086304 705,086304 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 963,06027 690,06027 HOLDAWAY & LEE 1977 N°Ech. Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crt A/B LN(A/B) T (K) T (°c) 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 975,095389 702,095389 Pou 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 962,202283 689,202283	
41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 978,086304 705,086304 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 963,06027 690,06027 HOLDAWAY & LEE A B KD 1977 N°Ech. Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crt A/B LN(A/B) T(K) T(°c) 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 975,095389 702,095389 Pou 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 962,202283 689,202283	
HOLDAWAY & LEE A B KD 1977 N°Ech. Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crt A/B LN(A/B) T(K) T(°c) 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 975,095389 702,095389 Pou 41 et 40 5 33390691 0,77152685 6,913443 1,93346778 962,02283 688,202283	
HOLDAWAY & LEE A B KD 1977 N°Ech. Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crc A/B LN(A/B) T(K) T(°c) 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 975,095389 702,095389 Pou 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 962 202283 689 202283	
HOLDAWAY & LEE A B KD 1977 N°Ech. Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crt A/B LN(A/B) T(K) T(°c) 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 975,095389 702,095389 Pou 41 et 40 5,33390691 0,71152685 6,913443 1,93346778 962,202283 689,202283	
1977 N°Ech. Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crt A/B LN(A/B) T(K) T(°c) 41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 975,095389 702,095389 Pou 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 962 202283 689 202283	
41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 975,095389 702,095389 Pou 41 et 40 5,33390691 0,77152685 6,913443 1,93346778 962,202283 689,202283	
41 et 40 5 33390691 0 77152685 6 913443 1 93346778 962 202283 689 202283	r 4 5Khar
	1,0100
	r 2Khar
	i Sitbai
41 et 40 5,3330061 0,7152685 6,0134/43 1,033/6778 055 266854 682 266854	
416140 3,5556051 0,77152055 0,515445 1,55540770 355,20054 002,20054	
Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crc A/B LN(A/B) Pou	r 6Kbar
41 et 39 5,33390691 0,80580333 6,61936568 1,88999955 982,12375 709,12375	
41 et 40 5,33390691 0,77152685 6,913443 1,93346778 969,137712 696,137712	
Xfe/(1-Xfe)Grt Xfe/(1-Xfe)Crr A/B LN(A/B)	
41 et 39 5 33390691 0 80580333 6 61936568 1 88999955 991 494898 718 494898 Pou	
41 et 40 5 33390691 0 77152685 6 913443 1 93346778 978 384951 705 384951	r 8Kbar

ш	
\geq	
5	
2	
00	
0	
C	
ń	
Ξ.	
ш	

BIOTITE				GRE	ENAT											
N° Ech	60	68	75	N° E	ch	53	54	55	56	57	58	59	80	81	82	84
SiO2	34,775	35,566	35,631	FeO	_	36,208	36,598	36,206	36,305	36,059	36,202	37,174	34,493	34,249	34,413	34,011
AI2O3	19,622	17,459	17,439	Na2(0	0,014	0,019	0	0	0,003	0	0,007	0,022	0,036	0,022	0,027
TiO2	1,047	6,057	5,925	K20	_	0	0,004	0,002	0	0	0,005	0,003	0	0,003	0,002	0
FeO	22,474	18,832	19,335	MnO	~	1,42	1,495	1,351	1,415	1,321	1,359	1,57	1,555	1,577	1,561	1,495
MgO	8,536	8,738	9,035	Si02	2	37,582	37,425	37,537	37,639	37,744	37,548	37,592	37,867	37,792	37,762	37,912
CaO	0,006	0,001	0,001	CaO	~	0,877	0,866	0,889	0,866	0,861	0,869	0,854	0,654	0,644	0,744	0,74
MnO	0,084	0,073	0,078	Cr2C	<u> </u>	0,026	0,023	0,014	0,034	0,077	0,018	0,036	0,007	0,031	0,017	0
Cr203	0,024	0,056	0,055	AI2O	33	21,789	21,591	21,604	21,617	21,733	21,656	21,772	21,836	21,591	21,7	21,851
K20	10,072	10,22	10,34	Ti02	2	0,053	0,021	0	0,023	0,021	0,016	0,055	0,009	0,016	0,02	0,037
Na2O	0,054	0,121	0,122	MgO	~	4,34	4,007	4,381	4,18	4,375	4,36	3,592	5,48	5,474	5,415	5,601
Total	96,694	97,123	97,961			102,3	102,04	101,98	102,07	102,19	102,03	10,65	101,92	101,41	101,65	101,67
i																
ß	2,65763119	2,66746161	2,65711433	Si4+		2,94077806	2,94348087	2,94656866	2,95571903	2,9558389	2,94621791	2,94776966	2,95013198	2,9590888	2,95082676	2,95632788
AI	1,76755614	1,54342273	1,53287302	Ti4+	,	0,00311925	0,00124225	0	0,00135845	0,00123693	0,00094426	0,00324379	0,00052737	0,00094226	0,00117547	0,00217005
Ξ	0,06017688	0,34164585	0,33229669	AI3+	,	2,00932299	2,00125421	1,99857876	2,00055542	2,00577682	2,00256394	2,0119933	2,00485849	1,99232861	1,9983822	2,0080629
Fe	1,43642641	1,18123153	1,20587374	Fe3+	+	0,1033979	0,1111679	0,10761541	0,08317895	0,07576006	0,10249564	0,08511243	0,09671455	0,09145481	0,10009543	0,07902301
Mg	0,97245919	0,9769326	1,00438402	Cr3+	+	0,00160832	0,00143002	0,00086876	0,00211067	0,00476694	0,00111652	0,0022316	0,00043112	0,00191883	0,00105016	0
Ca	0,00049133	8,0363E-05	7,9905E-05	Mg2-	t	0,50628722	0,46983312	0,51269034	0,48935748	0,51078222	0,5100226	0,419913	0,63648179	0,63898078	0,6308296	0,65112797
Mn	0,00543773	0,00463764	0,00492706	Fe2+	+	2,26573841	2,29574244	2,26890038	2,30075744	2,28553178	2,27277867	2,35236475	2,15034543	2,15092498	2,14851599	2,13865482
ບັ	0,00144963	0,00331947	0,00324162	Mn2.	<i>t</i>	0,0941043	0,09958166	0,08981546	0,09410664	0,08761418	0,09031009	0,10426451	0,10260055	0,10457516	0,10330715	0,09873152
×	0,98411904	0,97998267	0,98584154	Ca2+	+	0,07351972	0,07296914	0,07476196	0,07285593	0,0722367	0,07304992	0,07174273	0,05458587	0,05402141	0,06228502	0,06182008
Na	0,00800206	0,01759662	0,01764098	som	nme5	2,93964966	2,93812635	2,94616814	2,95707748	2,95616488	2,94616128	2,94828499	2,94401364	2,94850233	2,94493776	2,9503344
Total	7,8937496	7,71631108	7,74427292													
XFe	0,59630329	0,54733165	0,54558059													
(*AI'*)	1,34236881	1,33253839	1,34288567	Alm	andin	75,5246138	76,524748	75,6300127	76,6919146	76,1843925	75,7592889	78,4121585	71,6781811	71,6974992	71,6171997	71,2884941
AIIV	1,34236881	1,33253839	1,34288567	pyro	adc	16,8762408	15,661104	17,0896781	16,311916	17,026074	17,0007534	13,9970999	21,2160596	21,2993592	21,0276534	21,7042658
AIVI	0,42518733	0,21088434	0,18998736	sbes	ssartite	3,13680983	3,31938851	2,99384864	3,13688788	2,92047262	3,01033618	3,47548365	3,42001826	3,48583881	3,44357157	3,29105076
				gros	ssulaire	2,4506575	2,43230462	2,49206537	2,42853086	2,40789005	2,43499737	2,39142435	1,8195289	1,80071364	2,0761672	2,06066923

LEUCOSOME

PLAGIOC.										
N° Ech	61	62	63	64	65	99	67	73	74	83
SiO2	62,112	62,883	62,37	62,275	61,957	62,097	62,885	62,456	62,63	61,905
AI2O3	24,175	23,755	24,092	23,705	23,994	23,901	24,117	24,205	23,948	24,12
CaO	5,053	4,71	4,951	4,613	4,642	4,874	4,915	5,069	4,811	4,967
Na2O	8,693	8,796	9,001	8,803	8,953	8,735	8,86	8,615	8,871	8,471
K2O	0,562	0,573	0,238	0,603	0,536	0,483	0,406	0,734	0,626	0,543
total	100,595	100,717	100,652	99,999	100,082	100,09	101,183	101,079	100,886	100,006
ß	2,74289084	2,76870173	2,74894416	2,76295298	2,7487129	2,75310672	2,75636431	2,7460725	2,75680542	2,7463426
A	1,25814178	1,2326167	1,25139127	1,23945228	1,25450312	1,2488164	1,24578451	1,25421795	1,24229016	1,26106183
sommeSiAl	4,00103262	4,00131843	4,00033543	4,00240525	4,00321602	4,00192312	4,00214882	4,00029045	3,99909558	4,00740443
Ca	0,23905852	0,22217017	0,23377874	0,21926289	0,22063076	0,23150473	0,23079957	0,23877126	0,22687204	0,23607232
Na	0,74423662	0,75082113	0,76911146	0,75717943	0,77004469	0,750799	0,75289016	0,73434723	0,75701525	0,72857122
×	0,03165763	0,03218152	0,01338062	0,03412605	0,03033282	0,02731546	0,02269993	0,0411664	0,03514852	0,0307282
sommeCaNaK	1,01495277	1,00517282	1,01627082	1,01056837	1,02100827	1,00961919	1,00638966	1,01428489	1,01903581	0,99537179
%Alhite	73 3272173	74 6957256	75 679774	74 926096	75 420025	74 3645726	74 8109989	72 4004902	74 287404	73 1958882
%anorthite	23,5536596	22,1026837	23,003587	21.696987	21.6091057	22,9299059	22,93342	23.5408471	22.2634021	23.716999
%orthose	3,11912306	3,20159078	1,31663893	3,37691698	2,9708693	2,70552142	2,25558104	4,05866264	3,44919387	3,08711283

KfS				
N° Ech	69	70	71	72
SiO2	64,213	64,3	64,15	64,233
AI2O3	19,081	18,945	19,148	19,127
CaO	0,077	0,099	0,09	0,089
Na2O	1,766	1,682	1,668	2,63
K20	15,007	15,634	15,673	14,676
total	100,144	100,66	100,729	100,755
Si	2,96045158	2,95976126	2,95182889	2,94845009
AI	1,03673134	1,0277096	1,03836019	1,03469542
sommeSiAl	3,99718292	3,98747086	3,99018908	3,98314551
Ca	0,00380319	0,00488206	0,00443669	0,00437671
Na	0,15784617	0,15009978	0,14879862	0,23404516
×	0,88254712	0,91796227	0,91993188	0,85931481
sommeCaNal	1,04419648	1,07294411	1,07316719	1,09773668
%Albite	15,1165201	13,9895244	13,865372	21,3207018
%anorthite	0,36422137	0,45501501	0,41342007	0,39870284
%orthose	84,5192585	85,5554606	85,7212079	78,2805954

LEUCOSOME

CORDIERITE				
N° Ech	76	77	78	62
FeO	9,469	9,26	9,336	9,274
Na2O	0,219	0,203	0,209	0,252
K2O	0,003	0	0,002	0,004
MnO	0,125	0,143	0,107	0,13
SiO2	48,634	48,256	48,097	48,466
CaO	0,006	0,005	0,01	0,004
Cr2O3	0	0,005	0,015	0,001
AI2O3	33,225	33,049	33,109 2	33,166 <u> </u>
1102	0,015	0	0,004	0
MgO	7,699	7,595	7,669	7,791
somme	9939,5	9851,6	9855,8	9908,8
SiO2	80,948735	80,3195739	80,0549268	80,6691079
AI2O3	32,5863084	32,4136916	32,4725383	32,5284425
TiO2	0,01877817	0	0,00500751	0
MgO	19,1042184	18,8461538	19,0297767	19,3325062
FeO	13,1788448	12,887961	12,993737	12,9074461
MnO	0,17620524	0,2015788	0,15083169	0,18325345
CaO	0,010699	0,00891583	0,01783167	0,00713267
Na2O	0,35333979	0,32752501	0,33720555	0,40658277
Si4+	161,89747	160,639148	160,109854	161,338216
AI3+	97,7589251	97,2410749	97,4176148	97,5853276
Ti4+	0,03755633	0	0,01001502	0
Mg2+	19,1042184	18,8461538	19,0297767	19,3325062
Fe2+	13,1788448	12,887961	12,993737	12,9074461
Mn2+	0,17620524	0,2015788	0,15083169	0,18325345
Ca2+	0,010699	0,00891583	0,01783167	0,00713267
Na+	0,70667957	0,65505002	0,6744111	0,81316554
somme2	292,870598	290,479882	290,404071	292,167047
facteur	0,06146059	0,06196643	0,0619826	0,06160859
cations normalis	l sés à 18 Oxygè	nes		
Si4+	4,97515708	4,9771169	4,96201267	4,96991004
AI3+	4,00554753	4,01712122	4,02546483	4,008063
Mg2+	1,17415655	1,16782879	1,17951508	1,19104846
Fe2+	0,80997959	0,79862088	0,80538563	0,79520956
Mn2+	0,01082968	0,01249112	0,00934894	0,01128999
Na+	0,08686589	0,08118222	0,08360351	0,10019597
somme3	11,0625363	11,0543611	11,0653307	11,075717

Boug complète 2.6 (mGal)	-27,73389243	-33,98398174	-35,42179969 -34 28476254	-33,71481117	-33,03339779	-33,57968238 -34 32805464	-33,97484891	-33,27172036	-33,25329712	-34,34321822	-35,30278176	-35,81476384	-36,19509562	-36,01330032	-35,983846 -34 4340438	-33.26492093	-32,62355966	-32,79436861	-32,4253385	-33,14586751	-37 617604	-36.95049975	-36,80447194	-37,53146618	-39,08416299	-37,9871929	-39,006/0306	-37.87220277	-37,13260386	-36,16888497	-36,29774864	-37,10307884	-36,87989885	-39,65566778	-40,42104435	-41,16207723 -4216820667	-42,7560344	-43,27194795	-43,93444065 -44.21302577	-44,44739182	-45,41531427	-47,11474459	-48.07894056	-49,04903553	-50,39539316	-51,49026884 -48 37076533	-47,47244929	-47,7213763	-44,68316233	-45,87231701 -41 00706467	-45,10109864	-45,1161219	-45,38723202	-44,19393419 -44,47966024
CTterrain2.6(milli)	0,178	0,054	0015	0,004	0,03	0,016	0.055	0,018	0,044	0,032	0,013	0,045	0,025	0,054	0,014	0.05	0,01	0,042	0,056	0,02	0,00	0.017	0,021	0,017	0,026	0,402	0,127	0.102	0,023	0,049	0,014	0,072 0,292	0,194	0,096	0,016	0,015 0.039	0,053	0,09	0,34	0,041	0,396	0,041	0.029	0,081	0,031	0,028	0,034	0,053	0,015	0,019	0,129	0,108	0.041	0,032 0,016
CT167_2,6	1,20670522	0,57737522	0,49586748	0,41615826	0,31026252	0,34967739	0,70957617	0,59961313	0,67310383	0.56074765	0,57247817	0,62683852	0,64143583	0,65535939	0,52681991	0.71954774	0,37851704	0,35492374	0,57251096	0,61099774	0.33651009	0,27366583	0,35225252	0,49293739	0,64820826	0,63765339	1,0328333 0.58628101	0.58585235	0,53914165	0,52963696	0,5261993	0,37079843	0,44665626	0,8919153	0,76641217	0,59461548 0 7202667	0,80258496	1,46324609	1,99959217	1,17419391	0,53732391	0,456482	0.336311303	0,31484191	0,26299791	0,2933433 0 503308	0,561808	0,42719583	0,57116687	0,43918748	0,66147165	0,73626235	0,72102861	1,21227826 0,64352939
CTterr2.6(µ)	178	54	0 ¥	5 4	30	16 24	55	18	4 5	52 44	13	45	25	52 ;	14	202	10	42	56	88	8 C	17	21	17	26	402	121	102	23	49	14	202	194	96	16	15 30	53	06	340	<u>5</u> 1	396	41	80 00	81	31	28 65	8 8	53	15	19	129	108	41	32 16
CT167_2.3	1,06747	0,510755	0,438652	0,36814	0,274463	0,30933	0.627702	0,530427	0,595438	0,496046	0,506423	0,554511	0,567424	0,579741	0,466033	0.636523	0,334842	0,313971	0,506452	0,540498	0.297682	0.242089	0,311608	0,43606	0,573415	0,564078	0,515002	0.518254	0,476933	0,468525	0,465484	0.328014	0.395119	0,789002	0,67798	0,526006	0,709979	1,29441	1,7688/	1,03871	0,475325	0,403811	0.293506	0,278514	0,232652	0,259496	0,496984	0,377904	0,505263	0,388512	0,585148	0,651309	0.548504	0,569276
simple 2.6 (m	29,1185976	-34,615357	35,9176672 -34 702507	34,1349694	33,3736603	33,9453598 35,0130266	34.7394251	33,8893335	33,9704009	34,2204170	35,8882599	36,4866024	36,8615315	36,7226597	36,5246659 36,1031344	34.0344687	33,0120767	33,1912923	33,0538495	33,7768653	30,472033037 9641141	37.2411656	37,1777245	38,0414036	39,7583713	39,0268463	-40,108001 30 5342740	38,5600551	37,6947455	36,7475219	36,8379479	37,7667773	37,5205551	40,6435831	41,2034565	41,7716927 42 9274734	43,6116194	-44,825194	46,2/40328 45 7220884	45,6625857	46,3486382	47,6122266	40,3/41/00 48 4442517	49,4448774	50,6893911	51,8116121 48 9480733	48,0682573	48,2015721	45,2693292	46,3305045 42 6942128	45,8915703	45,9603842	-46,049059 -46,04828	45,4382125 45,1391896
Z(m)	430,11 -	778,2	736	712 -	710 -	737 -	845	836 -	845 -	- 628	861 -	817 -	853 -	780 -	833	855	811 -	- 797	- 092	744 -	- 67/	748 -	711 -	702 -	708	- 587	003 199	830	863 -	855 -	- 877	- 761	748 -	843 -	877 -	- 788 869 -	888	853	- 008 783	738 -	705 -	703	- 202	671 -	694 -	668 - 762 -	705 -	- 669	818	743 -	789 -	784 -	808	863 -
Ylb2(m)	2106809	2087123	2087141 2087078	2087852	2087867	2086649	2087055	2086741	2087340	2085954	2085222	2084707	2084609	2084158	2083314 2082518	2081948	2081140	2080758	2080833	2080262	2073225	2073408	2074028	2074262	2074830	2075493 2076033	2070933	2077465	2077712	2078314	2078495	2078032	2077492	2063038	2062546	2063535 2063548	2063573	2063297	2062873	2061255	2060539	2060573	2060547	2060984	2061087	2060913 2064002	2063633	2061978	2066054	2066995 2068079	2066257	2066787	2067619	2068685 2068932
Xlb2(m)	586573	573461	572735 571788	571228	570016	571149 57446	575657	576295	577877	579484	580486	581349	582131	583271	583631 584660	585323	587554	588678	590348	591824 501554	590569	589790	588609	587304	585643	584768	581066	580818	580027	578908	577490	6120/0	573527	575364	576440	579170	580241	581530	582839 582699	584149 584149	585106	586302	588376	589249	590672	591692 590575	589277	588120	589579	591867 580762	588265	586966	584985 584985	584894 583500
longitude	2,16333334	1,99527778	1,98594445 1 07377778	1,96652778	1,95094445	1,96558334 2 00704445	2.02352778	2,03175	2,05205556	2,00041007	2,08569445	2,09680556	2,10686112	2,12152778	2,12619445 2,130666666	2.14797223	2,17666667	2,19111112	2,21255556	2,23152778 2,23846445	2,22019443 2,21555556	2,20555556	2,19038889	2,17363889	2,15230556	2,14105556	2,12300112 2,10502778	2.09027778	2,08011112	2,06572223	2,0475	2,03119445	1.99666667	2,021	2,03480556	2,05013889	2,0834445	2,09997223	2,116/5 2,115	2,13358334	2,14586112	2,16116667	2,18772223	2,19888889	2,21711112	2,23016667 2 21580556	2,19919445	2,18441667	2,203	2,23230556 2 20530556	2,18616667	2,1695	2,16291667 2 14408334	2,14288889 2,125
latitude	15,9613889	15,7838889	15,7840278	15,7903611	15,7904444	15,7795278	15.7833611	15,7805556	45,786	40,7003333 15 7735833	15,7670278	15,7624167	15,7615556	15,7575278	15,7499444	15.7376944	15,7304722	15,7270556	45,72775	15,7226389	15,6593056	15,6609444	45,6665	15,6685833	15,6736667	15,6796111	0 /20720,04	45,69725	15,6994444	15,7048333	15,7064167	45,/0425 15 7021389	45,69725	45,5672778	15,5628889	45,5718333 45,572	45,57225	15,5698056	45,5660278 45,5555	45,5515	15,5450833	15,5454167	15,5452222	15,5491667	t5,5501111	15,5485556 15,5763333	45,573	15,5580833	15,5947778	45,6032778 45,613	15,5965833	15,6013333	45 6087778	15,6183611 15,6205556
gthéo(Hayford)	980716,1644	980700,146	980700,1586	980700,7301	980700,7377	980699,7524 4	980700.0984	980699,8452	980700,3366	980699,6251	980698,6243	980698,2081	980698,1304	980697,7669	980697,0825	980695.9769	980695,325	980695,0166	980695,0793	980694,618 4	980688 9017	980689.0496	980689,5511	980689,7391	980690,1979	980690,7345		980692.3265	980692,5246	980693,011	980693,1539	980692,9583	980692,3265	980680,5951	980680,199	980681,0063 4 980681 0214	980681,0439	980680,8233	980680,4823 4	980679,1709	980678,5917	980678,6218	980678.6043	980678,9603	980679,0456	980678,9052 4 980681 4125 4	980681,1116	980679,7652	980683,0774	980683,8446 4	980683,2403	980683,6691	980684.341 4	980685,2061 4 980685,4041
lat(rad)	0,8021774	0,79907944	0,79908186 0 7000712	0,7991924	0,79919386	0,79900332	0.79907023	0,79902126	0,79911629	0,79889957	0,79878516	0,79870468	0,79868965	0,79861935	0,798487	0.79827319	0,79814714	0,79808751	0,79809963	0,79801043	0,79690505	0,79693365	0,79703062	0,79706698	0,7971557	0,79725945	0,7976469 070761031	0.79756731	0,79760561	0,79769966	0,79772729	0,79765263	0,79756731	0,79529886	0,7952226	0,79537837 0 79538128	0,79538564	0,79534298	0,79527705 07950933	0,79502349	0,7949115	0,79491731	0.79491392	0,79498276	0,79499925	0,7949721 0 79545691	0,79539873	0,79513839	0,79577883	0,79592718 0.79609687	0,79581034	0,79589324	0,79602317	0,79619044
gmes(CGF65)	980601,170	980510,155	980511,301 080518451	980524,437	980525,605	980518,658 080500 786	980496.646	980499,040	980497,653	980496 753	980490,829	980498,599	980490,959	980505,309	980494,241 080486 233	980491.233	980500,389	980502,696	980510,284	980512,294	980501 392	980502.463	980510,415	980511,536	980509,080	980494,975 080470,475	9604/9,425 080480.637	980488.049	980482,523	980485,554	980500,980	980505,155 980505,056	980505,460	980471,638	980463,894	980462,136 980464 589	980460,134	980465,688	980474,480 980477 476	980486,159	980491,483	980490,649	980482,447	980495,544	980489,792	980493,721 980480 324	980492,283	980492,001	980474,486	980489,167 080502 466	980479,817	980481,175	980470,915 980470,379	980467,461 980464,165
gcor-dérive	5855,733	5764,718	5765,864	5779,000	5780,168	5773,221 5756.023	5751.883	5754,277	5752,890	5751 990	5746,066	5753,836	5746,196	5760,546	5749,478 5741 470	5746.470	5755,625	5757,933	5765,521	5767,531	5756,629	5757.700	5765,652	5766,773	5764,317	5750,211 5734 563	5735 874	5743.285	5737,760	5740,791	5756,217	5760 293	5760,697	5727,742	5719,998	5718,240 5720.693	5716,238	5721,792	5/30,584 5733 580	5742,263	5747,587	5746,753	5746.103	5751,648	5745,896	5749,825 5736 427	5748,387	5748,105	5730,590	5745,271 5758 570	5735,921	5737,279	5726 483	5723,565 5720,269
temps(h)	12,467	13,450	14,133 14 367	14,567	14,817	15,217 7 267	7.650	7,783	8,083 0,003	0,203 8.450	8,617	8,783	000'6	9,167	9,383 0 533	9.717	9,933	10,200	10,650	10,850	12,367	12.533	12,783	13,033	13,217	13,417	13,033	14.083	14,300	14,483	14,733	15,033	15,433	7,717	7,950	8,183 8.500	8,700	8,900	9,217 9.417	9,733	9,967	10,267	10,500	10,883	11,067	11,300	12,300	12,517	12,717	12,900	13,483	13,650	13,883	14,217 14,400
Dérive (mgal/h)	0,0394	0,0394	0,0394	0,0394	0,0394	0,0394 0.0388	0.0388	0,0388	0,0388	U,U388 D 0388	0,0388	0,0388	0,0388	0,0388	0,0388	0.0388	0,0388	0,0388	0,0388	0,0388	0,0388	0,0388	0,0388	0,0388	0,0388	0,0388	0,0388	0.0388	0,0388	0,0388	0,0388	U, U388 D D388	0,0388	0,0406	0,0406	0,0406	0,0406	0,0406	0,0406	0,0406	0,0406	0,0406	0.0406	0,0406	0,0406	0,0406	0,0406	0,0406	0,0406	0,0406	0,0406	0,0406	0,0406	0,0406 0,0406
Grav.	5855,733	5764,757	5765,93 5773 080	5779,083	5780,261	5773,329 5756 06	5751.935	5754,334	5752,959	5752 073	5746,155	5753,932	5746,3	5760,657	5749,597 5741 505	5746.602	5755,766	5758,084	5765,689	5767,707	5756 864	5757.941	5765,903	5767,034	5764,585	5750,487 5724.046	57.36,940	5743.587	5738,07	5741,108	5756,544	5760.638	5761.051	5727,801	5720,066	5718,318 5720 784	5716,337	5721,899	5/30,/04 5733 708	5742,404	5747,737	5746,915	5746.282	5751,835	5746,091	5750,029 5736.665	5748,632	5748,359	5730,852	5745,54 5758 847	5736,214	5737,579	57.26,798	5723,888 5720,599
Station	1.	5.		ί.	.9	. 0	3. 10.	11.	12.	. 4 1	15.	16.	17.	18.	19. 20	21.	22.	23.	24.	25.	28.	29.	30.	31.	32.		о 4. С		37.	38.	39.	40.	42.	45.	46.	47. 48	49.	50.	51. 52	53.	54.	55. 56	.00 27	58.	59.	60. 61	62.	63.	64. 01	65. 66	67.	68.	- 06- 20	71. 72.

Boua complète 2.6 (mGal)	-42,96094993	-47,43087046	-41,86838652	-41,29906747	-40,20371379	-41,51565888	-41,79332911 -43.34460675	-43,64317764	-38,73290651	-33,00331 213 -41,47485492	-40,6047651	-39,54815801	-39,81329464	-36,8767421	-35,50793968	-34,41051185	-34,1957428	-34,3590971	-34,69116587	-33,33216256	-34,07919643 -33 87366 404	-33 82642001	-34,40697364	-36,14462085	-33,66483762	-36,17139328	-31,2113/224 36 60463404	-36.07951461	-35,42649034	-34,85823127	-35,12192247	-35,52540374 -32 24543615	-33,47751402	-33,47614405	-31,17254989	-32,14394226 -33,13533366	-35,1417177	-34,87480547	-34,03310151 -33 7084386	-30,33150012	-28,71380238	-31,12909542	-31,30097743	-30,77970644	-29,97265393	-30,65908023	-23,02320/00	-31,1539975	-31,04641181	-30,68294277	-31,0178034	-31,55066841	-31,80965279 -20 81802500	-20,01032333 -29,91644557 -32.84588164
CTterrain2.6(milli)	0,02	0	0,022	0,026	0,064	0,02	0.245	0	0,055	0.006	0,131	0,027	0,107	0,11	960'0	0.047	0,027	0,066	0,138	0,051	0,006	0.041	0,039	0,009	0,065	0,053	0,145 0,125	0,029	0,233	0,103	0,014	0,095	0,079	0,1	0,037	0,000	0,059	0,018	0,011	0,205	0,037	0,003	0.059	0,065	0,074	0,02	0.02	0,06	0,196	0,013	0,029	0	0,085	0,008 0.021
CT167 2.6	0,56261965	0,66205043	0,60171574	0,45087957	0,4999653	0,5454133	U,/153/8/ 1.09385843	0,71459191	0,54675852	0.57239791	0,44908557	0,62677861	1,12786078	0,72125243	0.38250296	0.35426809	0,53296609	0,55221852	0,51661887	0,60114261	0,57403478 056202148	0.71135548	0,64684157	0,67217574	0,59323748	0,45323765	0,53411009	0,65178383	0,74170765	0,65229817	0,59202904	2,20823652 1.79336696	1,42294609	1,03763061	0,39113157	0.68030357	0,5486927	0,37529417	0,42621574 0.45966983	1,57965826	1,02134783	0,54840896	0.56050122	0,58782609	0,63296435	0,75013391	0.97212983	1,82608174	1,35782174	0,70122226	0,54881478	0,47502226	0,45812791 ^ / 0591496	0,73695304
CTterr2.6(u)	20	0	52	26	f 8	50	33 245	0	55	8° 9	131	27	107	110	8 8	47	27	99	138	51	9 5	1	39	6	65	53	0 1	29	233	103	4 4 7	ся 119	62	100	37	- 69	29	18	11	205	37	ოყ	8	65	74	20	20	3 09	196	13	29 10	0	85 24	5 % ^t
CT167 2.3	0,497702	0,58566	0,532287	0,398855	0,442277	0,482481	0.967644	0,632139	0,483671	0.506352	0,397268	0,554458	0,997723	0,638031	0.338368	0.313391	0,47147	0,488501	0,457009	0,53178	0,5078	0.629276	0,572206	0,594617	0,524787	0,400941	0,472482	0.576578	0,656126	0,577033	0,523718	1,95344	1,25876	0,917904	0,346001	0.601807	0,485382	0,331991	0,377037	1,39739	0,9035	0,485131	0.495828	0,52	0,55993	0,66358	0.859961	1,61538	1,20115	0,620312	0,749050 0,48549	0,420212	0,405267	0,65192 0.476807
simple 2.6 (m	43,5435696	48,0929209	42,4921023	-41,775947 76 1360767	40,7676791	42,0810722	42,5417078	44,3577695	-39,334665	40,197,1021 42.0532528	41,1848507	40,2019366	41,0481554	37,7079945	35,9104426	34,8117799	34,7557089	34,9773156	35,3457847	33,9843052	34,6592312 34 4774764	34 5787755	35,0928152	36,8257966	34,3230751	36,6776309	37,8904823	36.7602984	-36,401198	35,6135294	35,7279515	37,8286403 34,1578031	34,9794601	34,6137747	31,6006815	32,7761623 33.8846372	35,7494104	35,2680996	34,4/031/2 34 2151084	32,1161584	29,7721502	31,6805044	31.9204786	31,4325325	30,6796183	31,4292141	29,902,0900 30.992,8799	33,0400792	32,6002336	-31,397165	32,0652/52 31,5956182	32,0256907	32,3527807 21 2288400	31,3300403 30,6613986 33.4058809
Z(m) 1	889	914	- 006	863	- 962	887 -	822	923	875	892 892	814	856 -	807	- 9//	- 477	112	782	793	741 -	752	017 815	028	846	876 -	858	822	804 000	000 868	. 962	840	833	620	2002	781	742	- /9/	774	723	743	597 -	738	697	748	717	737	775	774	619	676 -	796	855	801 -	750 - 820	832 832 832
Ylb2(m)	2069249	2071419	2071284	2071205	2070288	2067433	2064070	2067122	2078757	2073166	2072745	2075076	2076586	2079891	2081915	2084353	2085559	2085616	2083825	2085108	2083381	2083531	2081963	2082121	2080457	2079588	9760802	2083239	2080472	2084200	2086138	208/045	2090329	2089981	2089517	2088926 2089147	2089014	2090624	2091051	2091080	2091145	2091787	2090146	2085169	2089905	2088409	2087356	2088692	2085317	2085237	2085169	2085220	2087977 วาณะ 801	2087272 2087272 2082124
Xlb2(m)	581973	581128	579685	578628	575891	578236	584343	582704	582602 591575	581166	577832	577932	577818	574262	571929	570254	571792	573439	573626	575373	577268	577515	578357	579843	578827	580321	1/2120	580886	584372	584779	584268 585245	585764	584831	583297	581476	577611	574659	575805	578733	587007	588857	590792	591615	591541	587914	590651	587228	586324	586424	587919	591541	593056	592754 501818	589507 589507 591978
lonaitude	2,10541667	2,0945	2,076	2,06244445 2,04456566	2,02738889	2,05758334	2,13597223	2,11486112	2,11313889	2.09491667	2,05216667	2,05333334	2,05180556	2,00597223	1,99200007	1.9542223	1,97391667	1,99508334	1,99758334	2,01997223	2,04441667	2,03000112	2,05847223	2,07755556	2,06458334	2,08380556	2,09725	2.09091667	2,13580556	2,14091667	2,13427778	2,15341667	2,14138889	2,12166667	2,09825	2,07994445	2,01058334	2,02525	2,04122223	2,16936112	2,19316667	2,21805556	2,22052/10	2,20288888	2,18105556	2,21630556	2,17230556	2,16063889	2,16202778	2,18125	2,22780556	2,24727778	2,24336112	2,20161112 2,20161112
latitude	5,6233611	15,6428611	15,6416111	5,6408611	5,6325278	15,6069167	5.5768333	45,60425	15,7089167	15,6585833	5,6546944	I5,6756667	45,68925	45,7188611	45,/335	5.7588333	45,76975	15,7703333	15,7542222	15,7658333	45,7503611	LE 7517222	5,7376389	15,7391111	k5,7241111	15,7163333	000000	5.7491944	15,7243889	15,7579444	15,7753611	5.8046111	15,8130833	15,8099167	15,8056944	45,8003333	5,8009444	15,8154722	15,8193611	5,8198889	45,8205	15,8263056	5 8115556	5,8090833	15,8093333	15,7959167	15,7863889	15,7983889	15,7680278	15,7673333	43,700 15,7667778	45,76725	15,7920556	15,7856667 15,7856667 15,7393889
athéo(Havford)	980685,6574 4	980687,4174 4	980687,3046	980687,2369 4	980686,4848	980684,1731 4	980681,4576 2	980683,9324	980693,3795 4	980688.8365 2	980688,4855 4	980690,3784	980691,6045	980694,277 4	980695,5983 980695 9117 2	980697.8847	980698,87	980698,9226	980697,4685	980698,5165	980697,1201 4 0806057788	980697,2429 z	980695,9718 4	980696,1047	980694,7509 4	980694,0489 4	980694,8136 2	980697.0148 2	980694,776	980697,8045	980699,3764 4	980702.0162	980702,7808	980702,495	980702,114	980701,6301 2	980701,6853	980702,9964	980/03,34/4 2	980703,395	980703,4502	980703,9741 ²	980702.6429 2	980702,4198	980702,4424	980701,2315 4	980700.3717 2	980701,4547	980698,7145 4	980698,6519 4	980698,6017 2	980698,6443	980700,8831 4	980700,3065 2 980700,3065 2 980696.1298 2
lat(rad)	0,7962777	0,79661804	0,79659622	0,79658313 0 70652302	0,79643769	0,79599069	0.79546564	0,79594415	0,79777093	0.79689245	0,79682457	0,79719061	0,79742768	0,79794449	0,79819999	0.79864214	0,79883267	0,79884285	0,79856166	0,79876431	0,79849427 0 70823480	0,79851803	0,79827222	0,79829792	0,79803612	0,79790037	0,79804824	0,79847391 0.79847391	0,79804097	0,79862662	0,7989306	0,79944111	0,79958898	0,79953371	0,79946002	0,79936645	0,79937711	0,79963067	0,79969855	0,79970776	0,79971842	0,79981975	0,79956231	0,79951916	0,79952353	0,79928936	0,79912307	0,79933251	0,79880261	0,79879049	0,79878079	0,79878904	0,79922197 ^ 700/5132	0,79911047 0,79830277
ames(CGF65)	980464,616	980456,835	980465,119	980473,154 080477,218	980486,788	980464,994	980459,596 980466.065	980455,288	980479,342	980468.687	980484,777	980479,268	980489,431	980501,633	980510,855	980521.115	980507,980	980505,615	980514,175	980514,388	980508,723 080408,723	980491 156	980491,967	980484,377	980489,120	980493,251	980484,417	980481.958	980499,445	980494,477	980497,332	980544.069	980528,039	980511,947	980522,366	980518.173 980518.173	980511,399	980523,374	980514,540 980520 940	980552,082	980526,329	980533,131	980521.377	980527,831	980524,613	980515,066	980514.842	980544,825	980531,144	980508,325	980496,735 980496,297	980506,691	980518,785 980518,785	980502,729 980496,607
acor-dérive	5720,720	5712,939	5721,222	5729,258 5733 324	5742,892	5721,098	5722.169	5711,392	5736,337	5725.682	5741,772	5736,263	5746,426	5758,628	5767 850	5778.110	5764,975	5762,610	5771,170	5771,383	5765,718 5765,673	5748 151	5748,962	5741,372	5746,115	5750,246	214,1412	5738.953	5756,440	5751,472	5754,327	5801.064	5785,034	5768,942	5779,361	5775.168	5768,394	5780,369	5777 935	5809,955	5784,202	5791,004	5779.250	5785,704	5782,486	5772,939 5774 595	5772.715	5802,698	5789,017	5766,198	5754,170	5764,564	5776,658 5762 814	5760,602 5754,480
temps(h)	14,567	144,733	14,900	15,100 15,467	15,683	15,933	16,100 16.517	16,750	7,267 7 460	7.617	7,950	8,150	8,350	8,700	9,033 9,200	9.417	9,633	9,817	10,000	10,250	10,433 10,617	10,800	11,550	11,700	11,883	12,233	12,383	12.783	13,283	13,533	13,683	13,883	14,300	14,467	14,650	14,833 15,033	15,400	15,550	15,683 15,850	6,750	7,000	7,283	7,783	8,167	8,367	8,883	9,117 9.317	9,750	10,000	10,317	10,650	10,783	11,717	12,267 12,267
Dérive (maal/h)	0,0406	0,0406	0,0406	0,0406	0,0406	0,0406	0,0406	0,0406	0,03938	0.03938	0,03938	0,03938	0,03938	0,03938	0,03938	0.03938	0,03938	0,03938	0,03938	0,03938	0,03938	0.03938	0,03938	0,03938	0,03938	0,03938	0,03938	0.03938	0,03938	0,03938	0,03938	0,03938	0,03938	0,03938	0,03938	0,03938	0,03938	0,03938	0,03938	0,0436	0,0436	0,0436	0,0436	0,0436	0,0436	0,0436	0.0436	0,0436	0,0436	0,0436	0,0436	0,0436	0,0436	0,0436 0,0436 0.0436
Grav.	5721,057	5718,561	5721,573	5729,617 5723 605	5743,274	5721,49	5722.585	5711,818	5736,38 5720.069	5725.738	5741,842	5736,34	5746,511	5758,727	5767 969	5778.237	5765,111	5762,753	5771,32	5771,543	5765,885 5755 748	5748.333	5749,173	5741,589	5746,339	5750,484	020,141,050	5739.213	5756,72	5751,761	5754,622	5801.374	5785,354	5769,268	5779,694	5775.517	5768,757	5780,738	5771,909 5778 316	5809,981	5784,239	5791,053 5703 033	5779.321	5785,792	5782,583	5773,058 5771 564	5772.853	5802,855	5789,185	5766,38	5754,766	5764,766	5776,901	5760,869 5754,761
Station	73.	74.	75.	76. 77	78.	79.	81. 81.	82.	85. 66	87.	88.	89.	90.	91. 00	22	94.	95.	96.	97.	98. 0	99. 100	. 6	102.	103.	104.	105.	-90 -	108.	109.	110.	111.	113.	114.	115.	116.	117. 118.	119.	120.	121.	125.	126.	127.	129.	130.	131.	132.	34.	135.	136.	137.	130. 139.	140.	141.	143. 143.

-31,34-37301 -31,82936673 -26,56080486	0,028 0,028	0,2407713 0,48540304	0 28	0,21299 0,21299 0,429395	-31,351,251,552 -32,070138 -27,0742079	548 574	2101189 2102976	574399 575999	1,30230003 2,00658334 2,02711112	45,9266111	980713,0261	0,80157041 0,80157041	980570,086 980571,347	5829,717 5830,978	12,103 12,317 12,567	0,0474 0,0474 0,0474	76 176
-30,58413678	0,025	0,32486661	25 64	0,287382	-30,9340034	575	2101086	569290	1,94075	45,9093333	980711,4669	0,80126886	980565,728	5825,359	11,883	0474	00
-33,04054887	0,02	0,45020809	20	0,398261	-33,510757	600	2097479	572693	1,98480556	45,8770278	980708,5516	0,80070502	980555,245	5814,876	10,567	,0474	0
-34,30626946	0,056	0,77313939	20	0,683931	-35,1354088	694	2094771	580836	2,08980556	45,8529444	980706,3782	0,80028469	980532,679	5792,310	a, 300 10,083	,0474	00
-30,542/10800 -33 2935527	0,000	0,6445004.5 n 3255.4939	۵ پ	CC I U / C,U	-31,2432091 -33,6751021	0/3 656	20907406	5841/4 580307	2,132/2223	45,87113024	980708,5165	0,80069824	980542,400 080543 864	5802,037 5803 495	⊴,5533 0,000	0474) c
-28,85072429 -30.60276866	0,081	0,61066652	» 8	0,540205	-29,5423908 21 2422601	562 673	2100813	581831 59477	2,10238889	45,9073333 45,8711380	980711,2864	0,80123395	980569,535	5829,166 5802.037	9,400 0,683	0474	õ
-26,14522596	0,236	0,96586157	236	0,854416	-27,3470875	503	2102068	584841	2,14113889	45,9186944	980712,3117	0,80143224	980584,536	5844,167	9,200	0474	0 (
-25,81599079	0,026	0,67042809	26	0,593071	-26,5124189	531	2101671	582918	2,11636112	45,9150833	980711,9858	0,80136921	980579,454	5839,085	9,067	,0474	0
-24,39871845	0,013	0,28545739	13	0,25252	-24,6971758	593	2103429	581447	2,09733334	45,9308611	980713,4096	0,80164459	980570,314	5829,945	8,917	,0474	0
-23,53672509	0,025	0,26570417	25	0,235046	-23,8274293	565	2107277	577521	2,04652778	45,9653611	980716,5228	0,80224673	980579,887	5839,518	8,633	,0474	0
-24,15772876	0,025	0,31354983	25	0,277371	-24,4962786	601	2107081	582933	2,11636112	45,96375	980716,3774	0,80221861	980571,885	5831,516	8,317	,0474	0
-25,11303912	0,019	0,31828183	19	0,281557	-25,4503209	592	2103647	584117	2,13175	45,9328889	980713,5926	0,80167998	980569,944	5829,575	8,083	0474	Ó
-27,13229072	0,21	0,84674991	210	0,749048	-28,1890406	488	2104331	586094	2,1572223	45,9390833	980714,1516	0,80178809	980588,528	5848,159	7,917	0474	ō
-33,14654275	0.036	0.26	36	0.23	-33,4425427	590	2101740	593506	2,25283334	45,9158889	980712.0585	0.80138327	980560,817	5820,448	7,450	0474	0
-31.66536233	0.046	0.31105609	46	0.275165	-32.0224184	568	2102555	591763	2.23036112	45.9231944	980712.7178	0.80151078	980567.288	5826.919	7.283	474	0.0
-32,48703863	0,285	0,59140617	285	0,523167	-33,3634448	666	2097542	570422	1,95555556	45,8775	980708,5942	0,80071326	980542,257	5801,072	16,617	1328	0.0
-33.00293272	0,116	0.34322261	116	0.30362	-33.4621553	559	2098884	573352	1.99322233	45.8896944	980709.6947	0.80092609	980564,623	5823,437	16,400	4328	00
-34,31665322	0,019	0,42488183	19	0,375857	-34,760535	663	2096592	576470	2,0335	45,8691944	980707,8447	0,8005683	980540,710	5799,524	16,100	4328	00
-34,43043091	0.039	0.43930617	39	0.388617	-34.9087371	681	2094210	575403	2.01988889	45,8477222	980705,9069	0,80019354	980535,030	5793.845	15,750	14328	0
-33.75894567	0.018	0.49510217	6	0.437975	-34.2720478	676	2093503	576900	2.03919445	45.8414167	980705.3378	0.80008349	980536.096	5794.910	15,567	4328	000
-34,03020200 36 2660710	770,0	0,00010040	7 5	0,000,00	0104100'00-	10/	2023002	2/1000	2,1201112	40,19010	1000,101000	0,700022281	900514,020	57 1 2,043	16,300	07070	5 0
-30,61168635	0,034	0,35619887	1 5	0,315099	-31,0018852	179	GG88802	590148	2,20961112	45,8898889	980/09,7122	0,80092949	980553,524	5812,338	14,183	04328	ວ່
-33,65657697	0,044	0,30951078	4	0,273798	-34,0100878	632	2099659	594180	2,26155556	45,8971667	980710,369	0,80105651	980550,174	5808,989	13,900	04328	Ó
-32,68087163	0,042	0,33332678	42	0,294866	-33,0561984	631	2097042	592914	2,24527778	45,8736111	980708,2433	0,80064539	980549,202	5808,016	13,650	04328	õ
-32,02823327	0,015	0,31368661	15	0,277492	-32,3569199	635	2098318	591928	2,23255556	45,8850833	980709,2785	0,80084562	980550,138	5808,952	13,467	04328	ó
-29.59028358	0.017	0.72772417	17	0,643756	-30,3350077	629	2094172	588202	2,18466667	45,8477222	980705,9069	0,80019354	980543,996	5802.811	13,133	04328	60
-31.47827676	0.003	0.62547183	<u></u>	0.553302	-32,1067486	711	2092018	588919	2,19394445	45,8283611	980704.1596	0.79985563	980530.095	5788.909	12.933	14328	56
-40,23770901	010,0	0,340/20/ 0.58627065	0 02	0,500409	-40,0044903 -34 1861142	141	2070929	291042	2,23191007 2 23386112	45,656061	90000/,/0009 080602/067	0,70758282	900500,1002	5760 087	12,033	04328	o c
-40,57919045	0,013	0,/4616496	50	0,660069	-41,3383554	193	20/3/11	584032	2,13166667	45,6635556	980689,2853	0,79697923	980489,617	5/48,431	11,317	04328	5 c
-40,56892115	0,054	1,1972887	54	1,05914	-41,8202098	769	2072229	586542	2,16391667	45,6502778	980688,0869	0,79674749	980492,728	5751,543	11,050	04328	0
-40,9399557	0,015	0,53554235	15	0,473749	-41,4904981	760	2069689	587265	2,17325	45,6274444	980686,0259	0,79634897	980492,794	5751,609	10,733	,04328	0
-43,43348564	0,069	0,79655748	69	0,704647	-44,2990431	826	2071105	584090	2,1325	45,6401111	980687,1692	0,79657004	980477,951	5736,766	10,267	,04328	0
-40,92136093	0,025	0,43330583	25	0,383309	-41,3796668	825	2065511	576113	2,03047223	45,5895556	980682,606	0,79568768	980476,507	5735,322	9,717	0,04328	0
-39,67031457	0,027	0,60669078	27	0,536688	-40,3040054	846	2067801	575498	2,02247223	45,6101389	980684,4639	0,79604693	980475,248	5734,062	9,400	0,04328	
-39,24702871	0.015	0.38120748	15	0,337222	-39.6432362	813	2072201	575591	2,02344445	45,6497222	980688,0367	0,79673779	980486,070	5744,885	9,183	0.04328	
-38,42882934	0,02	0,4060567	20	0,359204	-38,854886	821	2073195	574175	2,0052223	45,6586111	980688,839	0,79689293	980486,063	5744,878	8,967	04328	0
-38,03895838	0,057	0,56463522	57	0,499485	-38,6605936	819	2075999	575399	2,02077778	45,6838889	980691,1206	0,79733411	980488,938	5747,753	8,617	04328	0
-46.80608775	0.074	0.85359696	74	0.755105	-47.7336847	815	2065041	586294	2.16094445	45.5856111	980682.25	0.79561884	980471.793	5729.666	16.417	0436	
-55.43160458	0.027	0.78882643	27	0.697808	-56.247431	711	2062672	586584	2,16472223	45.5643056	980680.3268	0.79524699	980470.142	5728.015	16.183	0.0436	
-38.98653877	0.014	0.61133461	14	0.540796	-39.6118734	679	2071268	588258	2,18594445	45,6416667	980687.3096	0.79659719	980512.129	5770.002	15.700	0436	
-35 36487 271	200	0.60743009	2 0	0.537342	-35 9723028	111	2076929	586178	2 15911112	45 6975556	980691 9028	0.79748537	980513 972	5771 845	15,250	0436	
-33.52108989	0.015	0.44055191	15	0.389719	-33.9766418	814	2078871	587686	2,17841667	45.7100556	980693.4823	0.7977908	980496.982	5754,855	15.017	0436	δ C
-34 09455355	60.0	0.42241635	6	0.373676	-34.6069699	751	2077361	587867	2.18077778	45,6964722	980692.2563	0.79755373	980507,705	5765.578	14,850	0436	íc
-34.05965582	0.038	0.4401947	38	0,389403	-34,5378505	749	2077143	590301	2.21202778	45.6945556	980692.0833	0,79752028	980508,000	5765.873	14,633	0436	0
-35.32305195	0	0.33420965	; c	0.295647	-35.6572616	755	2075694	589141	2.19716667	45.6815	980690.905	0.79729242	980504.504	5762.377	14.467	0436	
-35,85519963	0.034	0.36281078	34	0,320948	-36,2520104	749	2074970	589914	2.20711112	45.675	980690.3183	0.79717897	980504,521	5762.394	14,133	0436	
-34.70379754	0.071	0.31223061	2	0.276204	-35,0870282	749	2076147	591747	2.23061112	45,6856111	980691.276	0.79736417	980506.644	5764.517	13,933	0436	50
-31,41,201,330	100,0	0,4303113	<u> </u>	0,40300	1470905,10-	770	2002000	203302	2,20100000	43,/403333	900090,1303	0,1 3042331	900200,011 000607 673	0/ 30,330	12,300	9640	o o
-31.47201338	0.031	0.4563113	31	0.40366	-31.9593247	822	2082899	589962	2.20755556	45.7463333	980696.7565	0.79842397	980500.677	5758.550	12.900	0436	0
nong volinpiere z. u (ilior	C I terrain 2.6(milli)	CT167_2,6	CI terr2.6(µ	r CT167_2.3	g simple 2.6 (r	(m) Z	YIb2(m)	Xlb2(m)	longitude	latitude	gthéo(Hayford)	lat(rad)	gmes(CGF65)	gcor-dérive	temps(h)	rive(mgal/h)	Dé

Site	TYPE	N	BMS		K1				K3			P' (%)	Т
				Dec	Inc	α 95 min	α 95 max	Dec	Inc	α 95 min	α 95 max		
MV1	2 micas y	5	30.7	186.1	44.9	4.3	6.5	53.7	34.5	0.6	26.4	4.7	-0.138
MV2	2 micas y	6	51,7	71,7	33,9	8,3	22,1	220,6	49,1	2,5	10	4,3	-0,274
MV3	2 micas y	6	60,2	49,5	41,3	9,1	32,5	190,1	43,2	10,4	12,8	2,6	0,83
MV4	2 micas y	8	51,6	114,9	14,3	6,1	11	214,9	33,9	4,1	7,7	4,9	0,389
MV5	2 micas y	7	34,7	116,4	27,5	2,7	11,4	23,9	3,4	5,3	8,8	4,3	-0,047
MV6	2 micas y	7	37,7	138,8	24,8	5,8	10,6	339	62,9	4,1	6,4	5,4	0,71
MV7	2 micas y	9	43,5	8,3	42,7	6,6	10,5	176,7	48,2	8,4	23,7	3,7	0,455
MV8	2 micas γ	8	37,5	231,4	16,8	4,5	17,8	0,5	63,1	3,9	4,9	3,9	0,698
MV9	2 micas γ	8	56,2	345,9	15,3	3,6	4,8	255,1	4,7	2,1	9,8	9,7	0,183
MV10	orphyritic Bt	6	60,8	206,6	5,6	4,1	25,5	296,6	70,6	3	15	7,3	0,63
MV11	orphyritic Bt	5	55,7	11,7	23,3	1,9	5,9	189,4	66,7	2	6,2	8,9	0,364
MV12	2 micas y	6	44,9	27,7	7,4	5,1	28,1	284	65,6	4,1	5,5	5,9	0,815
MV13	orphyritic Bt	4	51,2	178,1	10,3	4,4	1/	57	72,5	5,2	13,2	4,4	0,159
IVIV14	2 misses at	4	03,1	152,4	10,4	11,4	29,5	252,4	38,9	6,9	20	3,7	0,111
MV/16	2 micas y	5	71,Z	20,5	03,5	10,4	14,1	163,9	20,6	7,9	20,1	3,5	-0,122
MV/17	2 micas y	0	47.2	125 /	37.2	3,5	25.2	200,5	75,4	1,0	11 R	12,2	0,079
M\/18	orphyritic Bt	4	47,2	120,4	37,2	5.7	25,2	50.5	70.1	6.5	21.8	4,0	-0.047
MV/10	2 micros y	10	61.4	137.2	22.5	7.6	13.3	30,5	59.3	7.2	13.4	8.4	0.394
MV20	2 micas y	7	47.9	325.2	21.7	14	31.6	172.1	73.6	13.1	14.9	5.5	0,735
MV21	2 micas y	6	51.2	300.7	19.1	5.9	19.1	188.8	44.1	4.4	8.5	12.1	0,736
MV22a	2 micas y	6	69.9	87.8	9	4	5.1	317.9	75.9	3.4	8.5	8.6	0.11
MV22b	2 micas y	3	69,9	113,3	18,6	0,1	22,5	236,1	54,8	2,8	22,5	8,6	0,11
MV23	2 micas y	5	52,5	229,2	46,3	9	14,8	110,9	23,8	6	21,3	5,4	0,339
MV24	2 micas y	7	43,7	179,3	27,7	17,7	27,2	80,4	29,3	13,7	19,2	2,3	0,34
MV25	2 micas y	9	46,1	111,2	38,7	3,7	6,6	239,7	38,3	3,8	15,2	3,8	-0,332
MV26	2 micas y	9	39,3	86,7	27,5	3,4	6,3	265,5	61,7	6,1	23,9	4,8	-0,622
MV27	Grt-Crd leuco	9	39,6	179	51,8	11,8	18,6	62,5	22,5	6,6	17,1	2,4	0,773
MV28	2 micas y	7	41,9	120,1	12,7	3,9	12,9	227,8	56,3	10,7	39,5	15,8	0,63
MV29	2 micas y	7	47,8	120,1	12,7	3,9	12,9	227,8	56,3	10,7	39,5	4,9	-0,714
MV30	2 micas y	4	57,6	310,7	4,8	16,7	26,8	214,1	53,1	8,5	18,4	5,3	0,811
MV31	orphyritic Bt	7	49	0,6	8,9	4,3	8,4	192,1	80,2	7,2	20	4,6	-0,292
MV32	orphyritic Bt	5	56,3	214,1	10	15,2	44,3	113,4	65	19,3	26,3	15,6	0,583
IVIV33	orpnyritic Bt	1	67,4	138,9	2	2,8	10,2	229,2	53,6	8,9	21,5	5,2	-0,243
IVIV34	orphyritic Bt	5	32,4	5,9	5,6	14,7	23,2 22 F	2/1,1	34,9	19,4	26,5	4,/	-0,219
IVIV 35	orpnyritic Bt	ð 6	00,1	357,1	Ö 4	12.2	23,5	09,5	10,8	7,5 14.6	20,1	3,8	0,331
IVIV30	2 micas γ	6	92,6	337,4	8,1	13,3	27,6	229,4	44,4	14,6	19,7	4,2	0,586
M\/38	2 mices M	/ 8	00,2 40 5	165.5	20,9	0 1	21,1	277 2	42,1 43.1	0,0	∠3,ŏ 18.2	4,∠ 7 8	0.430
M//30	2 micas y	6	43,0	25.8	13.6	छ,। 7 8	13.7	1217	+3,4	7 1	24.2	7,0 5,8	-0 1/1
MV40	Frt-Crd leuco	q	47.3	20,0	21.4	8.1	11.3	254.9	21,3 41.1	9	35.7	5.5	-0,141
MV40	orphyritic Bt	5	67.4	19.7	58.7	9.2	27.3	238.9	22.7	37	15.6	6.2	0,544
MV43	orphyritic Bt	6	172.9	241.5	9.9	9,1	37.4	133.4	30.5	3.5	16	3.2	0,706
MV44	2 micas y	7	97.3	151.1	16.8	11.1	22.5	246.5	3.7	9,9	20	4.1	-0.006
MV45	2 micas y	7	73.3	252.7	22.8	3.2	15.3	69.8	66.9	3.8	11.7	4.3	0.263
MV47	2 micas y	6	51,5	319,3	11,2	11,6	28,5	216,7	42,8	3,9	12,9	2,5	0,394
MV48	2 micas y	6	59,6	87,4	62,7	3,7	38,5	341,9	7,5	3,4	6,7	6,9	0,827
MV49	2 micas y	6	83,9	46,1	31,1	13,1	34,8	304,3	5,6	12,4	19,1	6,3	0,671
MV50	2 micas y	6	134,2	1,8	20,5	4	12,6	266,4	13,2	6,8	13,3	3,1	-0,153
MV51	2 micas y	7	66,4	327,4	24,2	6,1	9,4	228,8	20	4,2	14,4	4,9	0,142
MV52	2 micas y	9	57,6	130,3	17,9	3,9	13,4	337,4	70,8	3,9	8,9	3,4	0,136
MV53	2 micas y	6	43,5	359,5	25,4	7,3	30,9	240,8	32,9	6	21,9	2,7	0,107
MV54	2 micas y	6	14,8	119,2	31,6	10,7	27	272,4	61,2	13,2	22	9,4	0,035
MV55	2 micas y	6	58	140,3	10,7	2,3	5,6	258	68,5	4,9	11,6	4,8	-0,247
MV56	2 micas y	6	116,5	128,5	2,9	5,6	12,3	227,3	48,4	4,3	28,8	5,1	-0,39
MV57	orphyritic Bt	6	58,5	137,7	31,7	5,4	6	237,4	12,9	4,8	15,9	6,1	-0,379
MV58	orphyritic Bt	6	57,5	161,1	29,3	3,5	5,4	17,7	54,7	4,4	19,2	4,5	-0,547
MV59	2 micas y	6	36,4	111,9	47,6	7	22,5	352,6	25,7	5,7	7,7	6,8	0,323
MV60	orphyritic Bt	6	39,4	121,5	4,5	1,3	6,9	22,7	61,3	5,8	17,8	6	0,094
MV61	2 micas y	1	37,8	301	0,5	9,7	20	28,9	51,1	9,2	31,4	3	-0,31
MV62	2 micas y	6	49,4	154,2	3,7	3,9	8,7	348,5	84,6	3,7	13,4	5,2	-0,305
NV63	2 micas y	5	47,2	311,9	0,0	3,0	13,7	45	23,5	7,1	25,5	5,6	-0,146
MV/65	2 micas y	0	43,0	331.3	7.9	3,0	14,5	65.2	34.3	3,3	25.2	1,1	-0.278
MV66	2 micas y	8	48.2	322.1	9.6	5	65	62.5	43.3	5.1	17.5	4,5 53	-0,270
MV67	orphyritic Bt	6	50.5	312.6	3,0	84	17.8	222.2	54.2	11	25.5	33	-0,233
MV68	orphyritic Bt	6	57.2	128.8	7.6	5.4	13.3	233.4	40.2	3.9	32.2	3.7	-0.699
MV69	orphyritic Bt	7	40.4	111.8	1.6	9	29.6	141.7	89.6	6.9	19.2	4.6	0.48
MV70	orphyritic Bt	7	54.1	139.9	4.3	3	5.3	262.5	82.1	3.1	11	9.8	0.102
MV71	orphyritic Bt	5	50,6	144,6	6,7	4	7,2	40	64,3	2,4	5,8	7,3	0,006
MV72	orphyritic Bt	6	81,7	330,7	6,3	9,8	13,6	221,9	71,1	9,8	14	7,5	0,314
MV73	orphyritic Bt	8	56,5	164,6	9,8	3,6	16,3	272,2	71,2	6,5	15,1	4,9	0,185
MV74	orphyritic Bt	6	79	330,4	15,8	9,5	18,2	201,4	67,4	3,6	20,5	4,6	-0,005
MV75	orphyritic Bt	4	46,6	342,7	31,8	12,7	18,2	239,1	26,4	11,5	23,3	3,2	-0,146
MV76	orphyritic Bt	6	42,4	328,8	19,5	2,2	17,8	230,9	23,9	10,6	16,2	3,6	-0,044
MV77	orphyritic Bt	7	68,4	352,1	15,6	5,7	14,5	254,5	9,6	9,2	24,8	4,3	-0,558
MV78	orphyritic Bt	8	58,2	167,2	1,5	5,1	12,8	71,4	76,3	4,8	15,5	6,9	-0,258
MV79	2 micas y	8	44,3	214,4	4,6	4,5	29,4	319,2	71,1	3,7	5,6	4,4	0,788
MV80	2 micas y	6	61,5	171	21,2	3,8	8,1	24,8	64,4	5,1	7,4	7,4	0,374
IVIVOT MV/00	2 micas γ	1	00,0 66 4	3127	10,3	2	10,9	202 7	09,0	3,∠ 2 E	14,0	0,4 6	0,049
IVI V 62 M\/83	2 micas γ	0	00,1	913,7	22,0	21	10,0	202,7	41,/	3,5	0,2 8.6	36	0,749
M\/84	orphyritic P+	+	80.0	345.5	20.7	3.6	17.5	247 6	16.0	3,0 4 1	13	6.1	0.238
M\/85	orphyritic Pt	6	16.5	327.6	20,7	15 /	10./	216.3	50.5	83	43 A	20	-0 351
MV86	irt-Crd lenco	6	35.2	339.2	47	77	14.3	244.4	56 1	9.3	14.6	13.1	0.26
MV87	orphyritic Bt	6	47.6	328.8	8.6	4.3	13.5	226.6	50	3.9	4.5	7.3	0.455
MV88	2 micas v	7	83,1	312,4	21,3	8,6	15,6	207.9	6,9	5,5	36	5,2	-0,718
MV89	2 micas y	8	72,1	47,1	44,5	14,8	26,7	229,4	42	7	30,8	2,3	-0,61
MV90	2 micas y	7	49,6	167	31,4	5,5	16,2	259,8	21,5	10,8	40,6	4,3	-0,768
MV91	2 micas y	6	34,2	101,9	36,6	16	28,1	4	4,6	27,1	36,4	3	-0,617
MV92	2 micas y	9	<u>52,</u> 4	95,2	25	4,3	5,9	<u>319,</u> 8	56,9	4,5	5,9	5,5	0,379
MV93	2 micas y	7	27,6	232,6	19,8	9,3	23,3	140,2	1,1	8,7	14,9	2,1	0,576
MV94	orphyritic Bt	5	54,8	359,8	6,1	13,1	30,1	131,8	80,8	1,4	19,9	2	0,359
MV95	orphyritic Bt	9	31,5	130,6	2,1	8,5	15,2	40,4	77,7	13,8	20,2	6,1	-0,1
MV96	orphyritic Bt	6	73,1	54	39,1	21,7	30,8	233,1	57,1	9,9	27,5	3,3	0,36
MV97	orphyritic Bt	7	13,8	184,7	8,2	9,2	13,2	279,6	33,4	12,1	20,9	6,5	-0,181
MV98	orphyritic Bt	7	103,8	162,8	3,9	4,1	8,6	32	80,9	2,1	21,8	4,1	-0,224
MV99	2 micas y	7	69,7	323	38,4	11,8	23,8	198,5	38,8	12,5	29	4,2	-0,343
MV100	2 micas y	8	73,5	341,9	8,2	8,9	15,5	108,6	80,2	10,3	16,7	4,8	0,023
MV101	2 micas γ	8	60,1	126,9	12,6	9,6	17,5	217,2	43,4	15,4	32,5	3	-0,52
MV102	2 micas γ	6	65,7	229,4	19,3	4,2	5,9	130,5	24,3	3,4	5	2,3	0,269
MV103	2 micas y	6	47,5	352	61,4	18,9	37,1	157,1	23,7	5,8	39,7	4,8	-0,023
MV/105	∠ micas γ orphyritic P+	0	39,/	138,0	4,1	D,3 ∧	10,0	00,Z	14,2	3,1	20,3	0,3	0,13/
IVI V 105	orphyrnic Bt	ŏ	111,2	283	1	4	11,9	191,3	00	4,2	ø	9,4	0,552

Tableau 1. Données d'anisotropie de susceptibilité magnétique. N: nombre d'échantillon;

BMS: Bulk magnetic susceptibility in 10⁻⁶ SI; Dec, Inc, a_{95min}, a_{95max}: declination, inclination, Bingham [1964] bimodal statistics data, respectively, in degrees; P': degré d'anisotropie; T: param. de forme [Jelinek, 1981; Hrouda, 1982].

	Poids	Conc.	(mdd)			± 2 ?		± 2?			± 2 ?		Ages (M	a)
	(mg)	Pb	U	$^{206}\text{Pb}/^{204}\text{Pb}$	$^{207}\text{Pb}/^{235}\text{U}$	%	$^{206}\text{Pb}/^{238}\text{U}$	%	Rho	207 Pb/ 206 Pb	%	207 Pb/ 235 U	$^{206}PbJ^{238}U$	207 Pb/ 206 Pb ± 2 ?
MVG 2 :	Mylonit	te des Pra	adines											
Mona1	0.005	2 426	25 346	3 577	0.36185	0.26	0.04989	0.25	0.97	0.05260	0.07	314	314	312 ± 2
Mona2	0.006	1 217	16730	6486	0.35990	0.37	0.04956	0.37	0.98	0.05267	0.06	312	312	315 ± 1
Z1	0.001	52.6	1 272	475	0.25104	2.78	0.03396	1.42	0.56	0.05361	2.30	227	215	355 ± 52
Z2	0.001	404	9 576	2 386	0.31855	0.31	0.04369	0.18	0.62	0.05289	0.24	281	276	324 ± 6
Z3	0.001	456	9 563	2 786	0.36176	0.29	0.04859	0.18	0.66	0.05399	0.21	314	306	371 ± 5
MVG 6 :	·													
Monal	0.010	1 316	14 625	41 381	0.36542	0.36	0.05038	0.37	0.99	0.05260	0.05	316	317	312 ± 1
Mona2	0.009	1 387	15 007	28 848	0.36900	0.33	0.05076	0.33	0.98	0.05272	0.05	319	319	317 ± 1
Mona3	0.002	2 049	22 258	6 594	0.36690	0.30	0.05048	0.22	0.78	0.05272	0.09	317	317	317 ± 2
Mona4	0.002	6 487	70 370	16 918	0.36387	0.36	0.05007	0.35	0.98	0.05270	0.07	315	315	316 ± 2
Mona5	0.001	2 139	22 501	6 674	0.35892	0.27	0.04948	0.18	0.70	0.05261	0.19	311	311	312 ± 4
MVG 8 :	·													
Mona1	0.003	4 148	43 775	3 398	0.36329	0.32	0.05018	0.32	0.97	0.05251	0.07	315	316	$308\pm\!\!2$
Mona2	0.006	1 093	8 588	2,988	0.36494	0.35	0.05033	0.31	0.89	0.05258	0.16	317	316	311 ± 4
Mona3	0.004	884	6 866	3 757	0.36422	0.40	0.05028	0.25	0.67	0.05253	0.29	316	315	309 ± 7
Mona4	0.003	2 815	21 037	1 422	0.36220	0.32	0.04996	0.26	0.86	0.05258	0.16	314	314	311 ± 4
Mona5	0.006	20 088	19 037	2 179	0.36830	0.36	0.05074	0.33	0.91	0.05264	0.14	318	319	313 ± 3

Tableau 1: Résultats analytiques U/Pb pour les zircons (Z) et les monograins de monazites (Mona) de la mylonite des Pradines (MVG 2), pour Les rapports isotopiques sont corrigés de la discrimination de masse (0.1 %/amu pour le Pb et U), de la contribution du traceur et des blancs. Le le paléosome de la granulite du Grand Janon (MVG 6) et le leucosome de cette granulite (MVG 8).

Pb commun initial est déterminés d'après le modèle à deux stades de Stacey et Kramers (1975). Les erreurs sur les rapports isotopiques sont données en %.
Highlighting the structure of late Variscan leucogranites in the French Massif Central by new AMS, gravity and structural results from the Millevaches massif

Aude Gébelin^{a,*}, Guillaume Martelet^b, Yan Chen^c, Maurice Brunel^a, Michel Faure^c

^a Laboratoire Dynamique de la Lithosphère, Université Montpellier II, CC060, Place E.Bataillon, 34095 cedex5 Montpellier, France

^b BRGM, BP 6009, 45060 Orléans Cedex, France

^c Institut des Sciences de la Terre d'Orléans, UMR 6113, Université d'Orléans, BP 6759, 45067 Orléans Cedex 2, France

*Corresponding author Tel. International: +33.4.67.14.45.97; fax International: +33.4.67.52.39.08 E-mail address: gebelin@dstu.univ-montp2.fr

Keywords: AMS; Gravity; Shear zone; Granitic pluton; French Massif Central

Abstract

Hercynian leucogranitic plutons crop out over large areas in the French Massif Central hiding the earlier crustal structures. In the Limousin area, these granitic intrusions are spatially associated with normal faults and strike-slip shear zones that continue the South Armorican shear zone. The N-S trending Millevaches granitic complex located in the middle of the French Massif Central is usually interpreted as a diapir that crops-out in a window through the metamorphic units. Reassessment of this Namuro-Wesphalian granitic massif, using a combination of new structural, gravity and anisotropy of magnetic susceptibility (AMS) data on the Millevaches massif, provides from north to south an approximately one-to-fourkilometre thick tabular shape that was emplaced into the sub-horizontal gneisses and micaschists. The formation of these Millevaches granites involved magma ascending in a vertical N-S striking narrow feeder dike which, once halted in the upper crust, was mechanically controlled by the sub-horizontal micaschist foliation and spread-out laterally as a sill. The magma stemmed from a chamber at depth and was supplied by a N-S trending thermal plume system. The magma reached the upper crust through large shear zones that have affected the crust since late-variscan time.

I. Introduction

Granitic magmatism constitutes one of the main processes of material and heat transfer in the continental crust. Granites form three quarters of orogenic belts surfaces and record the regional strain field during their emplacement. The mechanisms of emplacement and the deformation of granites provide information on continental crustal evolution processes. In the last few years, Speer et al. (1994) and Ingram and Hutton (1994) proposed that the shear zones could play a role in transport and emplacement of magmas within the crust. Many studies (Tikoff and Saint Blanquat (de), 1997 ; Brown and Solar, 1998 ; Koukouvelas et al., 2002) emphasize close relationships between faults and plutonism in various tectonic contexts (magmatic arc, continental collision zone, etc). Hutton (1982) and Courrioux (1983) document links between the pluton's internal fabric, geometry and kinematics of the shear zones. The internal fabric of the pluton represents a memory of the deformation field when magma was emplaced in the crust, and is hence a record of crustal deformation related to the magma transport (Faure and Pons, 1991; D'Lemos *et al.*, 1992; Gleizes *et al.*, 1997).

There is currently debate about how tectonic movements along shear zones control the mechanisms of genesis, transport, ascent and emplacement of magmas. This paper documents the relationships between master faults and granites in the case of the Millevaches massif.

The Millevaches massif belongs to the northwestern part of the Variscan French Massif Central. Its N-S elongated shape trends perpendicular to the usual E-W to NW-SE structural directions. This huge granite massif is affected by large ductile shear zones, which may have played a role in magma emplacement. This study will illustrate the role played by these ductile accidents in relation with the fabric patterns recorded by the granites. The surface structural observations completed by gravity modelling constrain the geometry of the deep structures of the massif.

Anisotropy of magnetic susceptibility has been performed with a view to determining the internal fabrics of Millevaches granites within the central part of the massif, complements the published data of the northern part of the massif (Jover, 1986). Combining field structural observations and gravity modelling, the anisotropy of magnetic susceptibility measurements will be essential to further understand the internal magmatic processes as well as the geodynamic context of the Millevaches massif emplacement.

II. Geological setting

1. Regional framework

The study area belongs to the northwestern part of the Variscan French Massif Central (Fig. 1). The Limousin region is located to the west of the Sillon Houiller sinistral wrench fault, and is characterised by numerous leucogranitic plutons related to the Variscan orogeny.

The Variscan tectonic evolution in the French Massif Central ranges from Late Silurian times corresponding to the HP-MT metamorphism event up to late Carboniferousearly Permian that marks the end of the late-orogenic sedimentation (coal-bearing and intramountainous basins) (Matte, 1998). Crustal thickening is achieved by south-verging deep-seated metamorphic nappes associated with high-pressure metamorphism and crustal melting (Matte, 1986; Ledru et al., 1989). In the south part of the Limousin, Roig and Faure (2000) describe two different superimposed thrusting events. The older event is dated as middle Devonian and corresponds to a top-to the SW thrusting at minimum PT conditions of 7 Kbar/700°C. The latest event is a top-to-the-NW shearing which occurred in late Devonian-early Carboniferous under Barrovian conditions.

The post-Variscan extension phase is divided into two successive stages (Faure and Becq-Giraudon, 1993). The first one is dated as Namuro-Wesphalian (330-315 Ma) and is coeval with a NW-SE stretching lineation. The leucogranites emplacement in Limousin occurred during this period (Faure, 1995). The second extensional event of Late Carboniferous to Early Permian age is characterised by NE-SW stretching.

Late-Variscan times corresponded to lithosphere fracturing which resulted in a conjugate network of dextral and sinistral crustal wrench faults (Arthaud and Matte, 1977). The dextral South Armorican shear zone is one of these fractures zones that could be responsible for the adjacent emplacement of biotite-muscovite granites (Lillié, 1974; Guineberteau, 1984) dated at ca. 320 Ma (Vidal, 1973). It is possible that the South Armorican shear zone could continue into the Limousin (Colchen et al., 1996). The Limousin structural map is characterised by a series of E-W and NW-SE striking wrench faults such as in the north, the E-W Marche sisnistral wrench fault and the NW-SE Ouzilly, Arrènes, St Michel de Veisse and Felletin-La Courtine dextral wrench faults in central and southern areas

(Figure 1a) As in the Armorican massif, these faults have the same direction and all of them have close spatial relationships with leucogranites. In the Limousin, normal faults cut these strike-slip faults at right angles. From west to east, we recognise the Nantiat normal fault which forms the west boundary of Brâme leucogranites and separates them from the Bellac Paleozoïc units. The Bussières-Madeleine normal fault (B.-M. F.) separates the Brâme massif from the Guéret massif in the east. The normal Argentat fault forms the eastern boundary of the Millevaches massif.

2. The Millevaches granitic complex

The N-S trending Millevaches massif is 160 km long and perpendicular to the E-W to NW-SE trend of the main Variscan thrusts. On the western side, the ductile and brittle Argentat dextral normal fault separates the Millevaches massif from the Limousin metamorphic units (Floch', 1983). To the North, the St Michel de Veisse dextral wrench fault separates the Millevaches and Guéret Massifs. Finally to the east, the boundary with cordierite anatectic and biotite-sillimanite paragneiss units corresponds to the Felletin- La Courtine shear zone, and further to the south, the St Sétier and Ambrugeat faults. The thick (2-5 km) and N-S Pradines ductile dextral wrench fault cuts the Millevaches massif in its centre (Figure1b).

The Millevaches massif consists of several plutons of porphyritic biotite granite and two mica granite (leucogranite) hosted inside micaschists forming N-S or NW-SE elongated stripes (Figure1b).

The porphyritic biotite granites associated with garnet bearing leucogranites and HT-BP granulites are considered as the oldest and the two micas granites which cut them are the youngest (Mouret, 1924; Raguin, 1938; Lameyre, 1966). The micaschists crop out along the boundary faults or as xenoliths (granulites) within plutons.

The Bt-Crd-Grt-Sil granulites crop out as N-S directed vertical lenses, in continuation to the north of the Pradines fault. Grt-Crd leucogranites that could represent granulite melt partly surround them. These Grt-Crd leucogranites have a close spatial relationship with the porphyritic biotite granites.

It is difficult to precisely set the timing of the emplacement of the various facies because available radiometric data are very scarce or questionable. Rb/Sr available ages for the leucogranites of the south part of the Millevaches, on whole rock yields an age of 332 ± 6 Ma in the Goulles leucogranite, and 336 ± 7 Ma in the St Julien-aux-Bois leucogranite (Monier, 1980). The Bouchefarol porphyritic-biotite granite gives, an age of 357 ± 7 Ma (Augay, 1979) and the Grt-Crd leucogranite has a 332 ± 15 Ma age from the Rb/Sr method (Augay, 1979).

3. Country rock structures (Fig. 1)

The host-rock of the Millevaches consists of micaschists known as the Paraautochthonous Unit (Ledru et al., 1989). The micaschists and the granites follow a N170 orientation on the west and east margins of the Millevaches massif and a N120 trend in the northern part.

In the Argentat fault zone, the orientation of the micaschists and granites foliation fluctuates between N140° and N160° with a dip varying between 35° and 65° west.

In the southeastern part of the massif, near Marcillac-la-Croisille (M. la C.), the Pradines fault forms the boundary between the leucogranites and the micaschists. The micaschists foliation dips low ($<30^{\circ}$) to the NW. To the Northeast, against the Ambrugeat fault, the foliation planes dip vertically and trend N-S.

III. Magnetic fabrics of Millevaches granites

1. Sampling and magnetic mineralogy

We collected about 700 oriented cores from 105 regularly spaced sites in the northcentral part and in the south-central part of the Millevaches (Fig. 4). In combination with Jover's study (1986) in the northern part of the massif, a good surface sampling coverage has been achieved. Sampling at each site was performed with a portable gasoline drill. About 5 to 10 cores of 7 cm in length and 2,5 cm in diameter well distributed on the outcrop were extracted. When possible, both magnetic and solar azimuths were measured. The difference between them is negligible ($<5^\circ$). The collection is mainly composed of porphyritic biotite granites and biotite - muscovite granites (leucogranites). A few Grt-Crd leucogranites were also sampled.

To identify the magnetic carriers, we measured the hysteresis loops on several representative specimens. For this, we used a translation inductometer within an electromagnet providing a field of up to 1.0 T at the Paleomagnetic Laboratory of Saint Maur (Paris).We observed during increasing and decreasing magnetic fields the linear superimposition of the two curves (Fig. 2). Therefore, the Anisotropy of Magnetic Susceptibility (AMS) measurements can be confidently related to the mica (mainly biotite and muscovite) subfabric (Fig. 2).

Bulk magnetic susceptibility (BMS) was measured with a KLY3 kappabridge. The BMS of two mica granites were weaker than those of the porphyritic biotite granites. (Fig. 3). The BMS intensity histogram shows a unimodal asymmetric distribution, ranging from 10 to 180.10^{-6} SI and with a mean value of 60.10^{-6} SI (Fig. 3). These low values confirm the absence of high intensity ferro- or ferri-magnetic minerals in our collection.

2. Magnetic fabric pattern

The AMS measurements were carried out using a KLY3 spinner kappabridge. The principal axes of the magnetic susceptibility ellipsoid, K_{max} , K_{int} and K_{min} , have been defined from each sample and an average of each axis has been calculated for each site with Bingham bimodal statistics (1964; see Table 1 for the results). In terms of deformation, K_{max} and K_{min} refer respectively to the magnetic lineation and the pole of the magnetic foliation. Their spatial distributions are used to define the magnetic fabric pattern of the Millevaches granite and then to determine the flow structure of granitic plutons.

Figure 4 presents equal-area stereographic projections of three principal axes of magnetic susceptibility for each site with corresponding confidence intervals at 95% level. Although most of the sampled sites have shown well grouped orientations, three subdivisions may be recognised. Group I gathers the majority of population (52%) with three well distinguishable axes (Table 1 and Fig. 4); Group II shows a well grouped K_{max} axes with scattered distribution of K_{int} and K_{min} (22%; Table 1 and Fig. 4) and Group III produced well grouped K_{min} with a scattered distribution of K_{max} and K_{int} (26%; Table 1 and Fig. 4).

At the scale of the study area, the fabric pattern of the Millevaches massif revealed sub-horizontal lineations (Fig. 6) both for the two mica granites and the porphyritic biotite granites with a predominantly NW-SE orientation.

In the southern part of the study area (Fig. 4b), the majority of magnetic lineations reveals a NW-SE orientation with shallow down-dip plunge that rarely exceeds 30°. The magnetic foliations strike NW-SE with a dip ranging between 0 and 40°. Two or three sites show higher dips near the Pradines and Ambrugeat faults (MV76, MV63 and MV23, see location on Fig. 4).

In the central part (south of Millevaches latitude), and particularly in the northern continuity of the Pradines fault, sub-horizontal lineations strike N-S (Sites MV 77 - MV 78 - MV 34 - MV 35 - MV 36 - MV 37 - MV 38 - MV 39 - MV 40 in Fig. 6). East of the Pradines fault, the NW-SE trending lineations are predominant. The magnetic foliation pattern is less clear. Their orientations are often parallel to the edges of the massif, but low dips become steeper especially in the north of the Pradines dextral wrench fault (Fig. 7) exhibiting a dip varying between 90 and 45° .

In the northern part (between Millevaches and Peyrelevade latitudes) (Fig. 4a), the magnetic lineation pattern is more scattered but reveals three main trends. The NW-SE trends are still dominant but N-S and NE-SW directions are also measured. This NE-SW lineation is restricted to a few sites of two-micas-granites in the W-NW part of Millevaches village (e.g. Sites MV3 - MV8 - MV10 - MV12 - MV79 in Fig. 6). These sites present relatively low magnetic susceptibility intensity (37.5, 44.9 and 44.3 x10-⁶ SI for MV 8, MV 12 and MV 79 respectively; Table 1) and poor statistic precision parameter of AMS data with significant confidence radii at 95% level (e.g. 32.5°, 25.5°, 28.1° and 29.4° for MV 3, MV 10, MV 12 and MV 79 respectively; Table 1).

The magnetic foliation falls into two groups: the main one strikes to the NW-SE with an average dip of 60° to the NW. The foliation dip decreases gradually going to Argentat fault, near Eymoutiers (Fig. 7). The second group strikes NE-SW to E-W with a sub-horizontal dip.

According to Jover (1986) who carried out measurements on the north part of the massif (Figs. 6 and 7), the N-S sub-horizontal magnetic lineations are associated with vertical magnetic foliation within the porphyritic biotite granite. This author showed occurrence of the NW-SE sub-horizontal lineations mainly in the two mica granites. However, porphyritic biotite granites in the eastern part of the Pradines fault also recorded the NW-SE lineations.

Magnetic foliations with steeper dip are often measured parallel to the St Michel de Veisse fault (Fig. 7). Within the northeastern part of the massif, foliation planes follow the edge shape of the pluton and strike E-W to NW-SE parallel to St Michel de Veisse fault to become southward, N-S, like the Felletin-La Courtine ductile fault (Fig. 7). Within the inner part of the Millevaches massif, between Royère de Vassivière and Eymoutiers, the two-mica-granites foliation strikes N-S with a steep eastward dip (>65°; Fig. 7). The same observation was made in the northern part of Royère. This area can therefore, be considered as the northward end of the Pradines fault.

To describe the shape of the AMS ellipsoid and the anisotropy degree, two parameters, T and P' (Jelinek, 1978 and 1981; Hrouda, 1982) are computed for each site (see Table 1). Both two-mica and porphyritic granites show common magnetic fabric characters (Fig. 5). The plot of the shape (T) and anisotropy degree (P) parameters shows a mixed feature of the linear (prolate) and planar (oblate) shapes between these two principal types of granites (Fig. 5). However, the spatial distribution of the two parameters is more complex. The oblate shape has been characterised along the St Michel de Veisse fault (T>0.35) and between Eymoutiers and Peyrelevade (0 < T < 0.35), (Jover, 1986). On the other hand, the prolate type ellipsoid has been well defined along the Pradines fault (T<-0.35) and to the east (-0.35</td>

in this branch (Fig. 6). The prolate-dominated shape parameter has been also observed in the north of Eymoutiers district with T value varying between -0.35 and 0 and is in agreement with the regular NW-SE lineations. More than 90% sites show relatively weak anisotropy degree with P values less than 8%. Some anomalous sites (less than 10% of total population), mainly distributed in the northern part of the massif along the St Michel de Veisse fault indicate the possible influence of tectonic motion of this fault. On the AMS, it is worth to note that the Pradines fault and its N-NW extension are characterised by low P values (P<10%). These general lower P values suggest that the investigated AMS in this study was acquired during the emplacement of granitic massifs (Hargraves et al., 1991).

3. Microstructural observations

In order to recognize the process by which the magnetic fabrics are acquired, namely pre-full crystallization state, solid state flow or post crystallization state, a textural investigation has been made on 31 thin sections of representative samples. The samples have been subdivided in four types according to their mineralogy and orientation of magnetic lineation:

Type I (MV77-MV78-MV15-MV84-MV35; Fig. 4) corresponds to porphyritic biotite granite presenting a N-S magnetic lineation characterized by pre-full crystallization. These samples are located in the northern continuity of the Pradines fault. The texture shows xenomorphic aggregates of large quartz without substructure (Fig. 8a). These quartz grains do not present any sign of undulatory extinction or recrystallization. In this rock, the only oriented minerals are euhedral K-feldspars and plagioclases. Ubiquitous myrmekites, located adjacent to the K-feldspars (Fig. 8b) are interpreted as the result of crystallization of hydrous magma (Hibbard, 1987).

Type II (MV13, MV95, MV105, MV67, MV94, MV18, MV33; Fig. 4) is represented by porphyritic biotite granites with NW-SE lineation, which usually crop-out to the east and northeast side of the Pradines fault. These rocks provide microstructural criteria for a transition from pre-full crystallization to solid-state flow. The quartz textures show a typical deformation of high temperature recrystallization specified by the morphology of grain boundaries between adjacent quartz grains. The bowed grain boundaries and triple junctions (Fig. 8c) are due to grain-boundary migration (Jessel, 1987). At some sites, quartz grains present a chessboard-like texture (Fig. 8d), indicating both < a > and < c > dislocation slipduring high temperature (> 600 °C) deformation under hydrous conditions (Mainprice et al., 1986; Blumenfeld et al., 1986). The peculiar curved shape of the boundary between quartz and feldspar is observed (Fig. 8d). According to Gower and Simpson (1992), this quartzfeldspar morphology is relevant to feldspar dissolution-precipitation at quartz-feldspar boundaries when oriented parallel to the foliation. This process of solid-state creep by diffusion occurs at high temperature (650°C-750°C). Most K-feldspars are affected by myrmekites usually developed in zones perpendicular to the local direction of maximum shortening.

Interestingly, orthoclase frequently inverts to microcline (Fig. 8e). This process is typical of solid-state deformation (Eggleton and Buseck, 1980). Some of the biotite grains show kinking or undulatory extinction microstructures, which suggest plastic deformation (Fig. 8f). Sample MV13 shows sub-solidus static recrystallization in quartz (Fig. 8g). The rectangular contouring of quartz grains boundaries illustrates high mobility of grain boundaries at elevated temperature (Gapais and Barbarin, 1986).

The microstructures observed in the porphyritic biotite granite reveal a pre-full crystallization or solid state fabric. The lack of deformation after complete crystallization, indicates that acquisition of magnetic lineation in the porphyritic biotite granites is achieved during the magmatic stage or immediately after crystallization stage. Pre-full crystallization microstructures are rather observed in the samples located in the northward continuity of the Pradines fault whereas the solid-state microstructures are recorded in the granites located at east to northeast of the Pradines fault. Note that the two mica granites mylonites of the Pradines fault show typical signs of high temperature deformation that suggests a synchronous emplacement of two micas granites with the Pradines fault activity (Gébelin *et al.*, 2004). Similar observations have been made in the porphyritic biotite granites adjacent to the Pradines fault.

Correlation between the type of microstructures and the P parameter reveals a slightly higher P value for the texture of Type II that experienced a solid or sub-solidus state deformation (2 < P < 9.4%) with an average of P=5.4% than for the textures of Type I showing mainly pre-full crystallization textures with (3.5 < P < 6.9) and an average of 4.9%.

Type III (MV7, MV9, MV10, MV12, MV6, MV16, MV50, MV44;, Fig. 4) corresponds to two micas granites mainly characterized by N-S to NNE-SSW lineation. They come from the SW of Peyrelevade except MV44 and MV50 situated in the northward continuity of the Pradines fault. Their textures are characterised by euhedral quartz crystals, none undulatory extinction is observed and micas are not deformed. These samples have preserved their primary magmatic textures. The only observation that could provide evidence for solid-state deformation is the occurrence of microcline in sample MV9. For the four last samples (MV6-MV16-MV50-MV44), the quartz grains present sometimes undulatory extinction.

Type IV samples (MV1, MV3, MV19, MV21, MV25, MV28, MV38, MV45, MV52, MV54, MV56, Fig. 4) have pre-full recrystallization textures or deformations recorded just after the magmatic stage. They are mainly from the two mica granites and come from the both sides of the Pradines fault. Their lineations are, for most cases, NW-SE directed but a few have N-S or NE-SW direction. Grain boundary migration is more intense and shows interlobate quartz. The quartz "chessboard" textures, characteristic of prism $\langle c \rangle$ slip system (Mainprice et al., 1986; Blumenfeld et al., 1986) are recurrent, and likewise, the formation of cuspate grain boundary microstructures between quartz and feldspar (Fig. 8h) (Gower and Simpson, 1992). The occurrence of microcline is almost systematic. Micas and feldspars are sometimes kinked or bent. Few occurrences of myrmekites indicate slight melt relocation during the granite cooling.

Like the porphyritic biotite granite, two mica granites magnetic fabrics were acquired during or just after the magma crystallization.

IV. Gravity study

Previous work on the Millevaches massif allowed us to model the geometry of the entire massif. Analysis and inversion of the residual Bouguer anomaly in the area (Fig. 9) showed that the Millevaches massif is 2 to 4 km-thick, from north to south and from west to east, locally rooting down to about 6 km depth in its eastern and southern extremities (Gébelin *et al.*, 2004). In order to discuss in more detail the structure of the Millevaches massif, four 2D gravity cross-sections oriented E-W across the massif are presented (profiles A, B, C and D, fig.9). In addition, two meridian general gravity cross-sections are discussed at the regional scale (profiles E and F, fig.9), they point to the relationship of the Millevaches massif with the surrounding terrains. To best constrain the gravity models, all the available independent

information has been taken into account. The outcropping limits of the surface formations were derived from the geological maps (Cuney and Stussi, 1989) and personnal field observations. Structural indications such as the foliation dip and the faults traces were incorporated in the models. The densities of the various geological were measured by Gébelin *et al.* (2004). The densities of the main units are: $?=2640 \text{ kg/m}^3$ for the two micas granites, $?=2620 \text{ kg/m}^3$ for the porphyritic biotite granites, $?=2750 \text{ kg/m}^3$ for the micaschists, $?=2780 \text{ kg/m}^3$ for Bt/Sil gneiss, $?=2720 \text{ kg/m}^3$ for Crd migmatite of "aubussonite" type. It must be kept in mind that due to the weak density contrast between porphyritic biotite granites and two micas granites, contacts at depth between both facies are poorly constrained. The deepest modelled interface is the bottom of the micaschists which lies on an undifferentiated substratum of density 2800 kg/m³, *i.e.* possible density contrasts deeper than the micaschists are not taken into account. This assumption is valid because we model the residual Bouguer anomaly: in this case, only short to intermediate wavelength anomalies are considered, that are mainly associated to sources shallower than approximately 10 km depth. In order to avoid edge effects, all profiles were extended at both ends of about 100 km.

The Limousin substratum belongs to the para-autochthonous unit upon which internal and more metamorphic units were thrusted (Ledru et al., 1989). These units correspond to the Massif Central nappes and consist from top of to bottom, the Upper Gneiss Unit (UGU), the Lower Gneiss Unit (LGU) and finally the para-autochthonous micaschist unit (Ledru et al., 1989). By convenience we use in our gravity model, the organization of Crd anatexites (UGU), with or without high-pressure rock, on Bt/Sil gneiss (LGU), on micaschists. The Crd anatexites might be the result of the Bt/Sil gneiss partial melting; hence it is difficult to apprehend the thickness of these two units.

In our modelling, structural relationships and depth of the deep para-autochtonous gneiss and micaschist formations is adapted from Argentat deep seismic profile (Bitri et al., 1999) that crosses the western border of the Millevaches plateau (Fig. 9). The seismic interpretation which we integrate in our gravity profile A shows that the Argentat normal fault offsets the bottom of the micaschists from about 14 km depth west of the Millevaches to about 7 km depth underneath the Millevaches massif. Seismics also indicates that deep paraautochtonous gneissic and migmatitic series, that are imaged west of the massif, are not recognized below the granite, which lies directly onto the micaschists. As a hypothesis, this geometry of the deep metamorphic units has been generalized northwards along the western border of the Millevaches massif. Moreover, the occurrence of these para-autochtonous metamorphic units is observed in the field on both sides of the Millevaches massif, and the gravity anomaly is symmetric at the western and eastern borders of the massif. Consequently, we hypothesized that the geometry of the deep metamorphic units west of the massif could be reproduced symmetrically at its eastern border, making the assumption that the Millevaches plateau was exhumed as a block, driven along the faults that enclose it to the west, north and east.

The first gravity profile A (Fig. 10) is located in the southern-central part of the Millevaches plateau, in the prolongation of the Argentat deep seismic profile (Fig. 9). From west to east, the granite thickens from about 1.5 to 3 km. Immediately to the east of the Pradines fault, the anomaly remains low, suggesting the presence of buried granite under the surface micaschists. More to the east, the anomaly increases as gneissic units come to the surface, and decreases again because the influence of Ussel granite. West of the Millevaches massif, the anomaly (i) increases because of the dense (2800 kg/m³) high pressure rocks that crop out in the Uzerche synform, and (ii) decreases in the Tulle antiform because of a 4-km-thick two micas granite occurrence (Roig *et al.*, 1998; Bellot, 2001).

Cross-section B (Fig. 10) trends E-W across the central part of the Millevaches and crosscuts the Meymac porphyritic pluton. At the eastern extremity of the Millevaches massif, the highly negative gravity anomaly suggests an important thickening of granite. In this area, mining exploration also revealed the presence of buried late granite called the "Neuf Jours pluton" (Burnol et al., 1980), which might partly contributes to the anomaly. The exact relation between the Meymac and Neufs Jours granites at depth is a question mark as suggested on Figure 10. Meymac and Neuf Jours granites are modelled as a single magmatic body of about 6 to 7-km-thick, and interpreted as an isolated batholite rather than a feeding zone for the entire Millevaches massif. The thickness of the Millevaches massif progressively decreases westwards. West of the outcropping limit of the granite, the anomaly becomes positive due to the effect of the outcropping dense Bt/Sil gneisses. In this zone, to account for the relatively moderate increase of the Bouguer anomaly, the modelling allows the granite to be extended at depth, in the footwall of the Argentat fault. This geometry is observed all along the western border of the plateau, in the four sections A, B, C and D. At the western end of profile B (Fig. 10), the anomaly significantly decreases, in relation with the deep granitic dome that was imaged at about 8 to 15-20 km depth in the Laurieras deep seismic profile (Bitri et al., 1999) (see location of profile on Fig. 9).

Gravity profile C (Fig. 10) exhibits a fairly symmetric Bouguer anomaly from one side of the Millevaches massif to the other. As previously determined by the gravity field inversion (Gébelin *et al.*, 2004), the massif gradually thickens eastwards, between 1.5 to 3 km. Short wavelength secondary anomalies reflect low amplitude depth variations and/or granite density variations. On both sides of the Millevaches, the Bouguer anomaly increases because dense deep metamorphic units crop out at the surface: west of the massif, eclogite-bearing high pressure metamorphic assemblages in the S^t Germain-les-Belles synform, and east of the massif, high density Cordierite migmatites and Biotite/Sillimanite gneisses.

Gravity profile D (Fig. 10) is located in the northern part of the Millevaches massif, which is modelled as a 1 to 2 km-thick laccolith, from west to east. West-side of the Argentat fault, the gravity anomaly abruptly decreases above the Auriat granite, which is modelled as a 3.5 km-thick pluton. The observed difference in thickness between the Auriat and Millevaches granites could be explained by the uplift of the Millevaches block at footwall of the Argentat normal fault. East of the Millevaches massif, the gravity anomaly abruptly increases because dense gneissic units crop out, and slowly decreases eastwards with thickening of the Guéret granite in the area of Crocq porphyritic granite.

Altogether, these four cross-sections of Millevaches massif, are in agreement with previous results (Gébelin *et al.*, 2004), that interpret it as a laccolith-like batholith, which thickens eastward from about 1.5 km to 3 or 4 km. This apparent E-W tilting of the bottom contact of the massif is certainly due to a west-side vertical offset of the massif which we could relate to the normal Argentat faulting. This assumption is consistent with the interpretation of the Argentat seismic profile (Bitri *et al.*, 1999) which shows a vertical offset of the Millevaches block when compare the two sides of the fault.

To compare the Millevaches massif with others granitic plutons and investigate relationships with surrounding terrains, we present two regional sub-meridian gravity profiles (E and F) orthogonal to the four previous A, B, C and D sections. All profiles are modelled in geometrical coherence with each other's.

Regional gravity profile E (Fig. 11) begins to the NNW in the Crozant pluton of the Aigurande plateau, north of Guéret massif, and goes SSE into the Meymac granite, east of the

Millevaches. The central part of the profile exhibits a strong positive anomaly that does not fit with the low Guéret granite densities (about 2620 kg/m^3). This implies very thin Guéret granite in this area (no more than a few hundred metres), as evidenced by the occurrence of Crd anatexites outcrops in its central part. This is in fact not enough to account for the entire intermediate wavelength positive anomaly. Thus necessary to invoke a deep dense source. One possible solution that allows fitting the amplitude and wavelength of this anomaly is a very dense (3100 kg/m³) body, extending north of the S^t Michel de Veisse fault, below the Guéret massif, between 4 and 5 km depth. This dense body could be likely high-pressure dense rocks of the Upper Gneiss Unit.

The Marche sinistral wrench fault separates to the north the Guéret massif from the Aigurande plateau. Several leucogranitic plutons are spatially related to this fault such as the Crozant granite. In agreement with previous more detailed modelling of the pluton (Dumas et *al.*, 1990), we model it as a 2-km-thick pluton rooted southwards into the Marche fault plane. South of the Guéret massif, the Millevaches massif thickens from about 1 to 4 km as shown by slow decreases of the gravity anomaly. At the SSE end of the profile, the minimum of the gravity anomaly corresponds to the Meymac pluton and buried Neuf Jour granite, and is in agreement with the B profile. More to the south, the anomaly increases with coming out to the surface of the dense metamorphic para-autochtonous units.

Regional gravity profile F (Fig. 11) is oriented NNE-SSW. It extends across the Aigurande plateau, the Guéret and Millevaches massifs from north to south. This profile crosscuts C, D and E profiles and allows to confirm the overall geometries of the surface and deep units, highlighting the shallowness of the Guéret granite and the necessity of the high-density body at about 4 to 5 km below the surface. To the north, leucogranite plutons are deep-rooted into the Marche fault; north of the fault, the occurrence of such granite at depth is attested by the persistence of the gravity low even if denser gneisses are mapped at surface. To the south, the profile crosscuts the north-western part of the Millevaches massif where the thickness is the lowest: not more than 1.5 km along this profile.

The gravity study allows to propose a model of the Millevaches massif structure and its relationships with the country rocks at the regional scale of the Limousin. Visibly, the shape of the granites modelled in the Aigurande plateau, the Guéret and Millevaches massifs, is variable. The leucogranites located in the Aigurande plateau, like the Crozant pluton, are directly associated with the Marche wrench fault, that could be the initiator of the magma emplacement (Faure and Pons, 1991). The shape of these plutons is comparable to the leucogranites emplaced along the South Armorican Shear Zone, in French Brittany (e.g. Berthé et al., 1979; Vigneresse and Brun, 1983; Martelet et al., 2004). Their shape reveals "diapiric structure" with a well-expressed root, localized into the fault, and the upper part of the batholite extravased in the surrounding units. This is at variance with large composite massifs such as Guéret and Millevaches where gravity doesn't evidence any feeding zones. Both massifs are thin compared to their cartographic extent. Both thicken somewhere (the Meymac granite for the Millevaches, and the Crocq granite for the Guéret). In both cases also, the AMS shows a sub-horizontal foliation, bearing a NW-SE oriented lineation. This led Jover (1986), for the Guéret massif to interpret that magma was emplaced at east and then flowed westwards, within the pre-existing Crd migmatite foliation. This model will be discussed in the following but an alternative emplacement mode will be proposed for the Millevaches massif.

V. Discussion

Combining field observations, AMS data and gravity models, three E-W geological crosssections through the Millevaches massif have been drawn (Fig. 12). The geometry of lithotectonic units derives from the gravity modelling, based on the seismic profiles interpretation. Magnetic foliations and field structural observations constrain the granites inner structuration and their relationships with faults. The magnetic foliation pattern shows a general sub-horizontal dip, which increases near the boundaries and in proximity to the Pradines dextral wrench fault (Profiles A and B on Fig. 12). Most the lineations are subhorizontal, none of them present a high down-dip plunge which could suggest rooting of the granite. In particular, in the eastern part of the massif, the strong negative gravity anomaly is not related to high-dipping magnetic lineations. Furthermore, the decentralized location of this negative anomaly with respect to the Millevaches N-S general trend does not suggest that the Millevaches rooted there (Profile B, Fig. 12). However, no other clear gravity negative anomaly showing a thickening of granites allow us to propose a feeding zone for the massif. The E-W gravity cross-sections through the Millevaches show from north to south the 1 to 4 km thick tabular shape of the massif.

The flat magnetic foliations and lineations are therefore in good agreement with the gravity thin and flat laccolith model (Fig.12). Based on the gravity models of Figure 10, and as shown on geological A and B cross-sections (Figure 12), the thickness of granite slightly increases near the Pradines fault. As discussed later, we propose that this N-S lineament constitute a probable feeding zone for the Millevaches granites.

The magnetic lineations reveal three main trends namely: a major NW-SE direction, a N-S trend more often observed in the porphyritic biotite granite and finally few NE-SW orientations recorded into the two mica granites.

The microstructures reveal pre-full crystallization state or solid-state flow. The pre-full crystallization microstructures are often correlated with the N-S lineation, which are usually located in the north or northeast of the Pradines fault. The magnetic anisotropy degree associated with these N-S lineations is weak (P < 10%) and consistent with the acquiring of the magnetic fabric during the magma crystallization (Hargraves et al., 1991). These granites have not suffered important deformation since then.

The NW-SE magnetic lineations, which developed on both sides of the Pradines fault, present transitional microstructures between pre-full crystallization and solid-state flow.

Magnetic fabrics and microtextural observations show that the porphyritic biotite granites and two mica granites (leucogranites) recorded the same deformation that could indicate a similar cooling age. The plot of the shape (T) and anisotropy degree (P) parameters show an undifferentiated repartition of the linear (prolate) and planar (oblate) shapes (Fig. 5) between the two principal types of granites, and thus confirm the idea that they are contemporaneous and/or emplaced in the same tectonic context.

The very scarce NE-SW lineations are situated in the centre, west of Peyrelevade, and in the northern part of the Millevaches (Jover, 1986). They are characterized by the same transitional microstructures. These lineations are not relevant to flow determination because the magnetic prolate ellipsoid shape is poorly defined and the intensity of magnetic susceptibility is low.

North of Millevaches massif, the Pradines N-S to NNW-SSE orientation seems to be interrupted or taken over from the E-W to NW-SE Arènes-Ouzilly, St Michel de Veisse, La Courtine ductile shear zones (Fig.1).

The NW-SE magnetic lineations, on both sides of the Pradines fault are in agreement with a dextral sense of shearing. In the northern part of the massif, the same NW-SE lineations recorded in the two mica granites or in the porphyritic biotite granites, become progressively

parallel to the St Michel de Veisse fault. This suggests that Pradines and St Michel de Veisse faults were active at the same time, during granites emplacement.

Within the northeastern part of the Millevaches massif, the sub-vertical foliation follows the edge of the pluton: from E-W to NW-SE along the Saint Michel de Veisse fault, it becomes N-S along the Felletin-La Courtine ductile fault. Along this fault, the leucogranites display a N-S vertical foliation that shows a 20° to 30° southward dipping lineation. The C-S shear criteria yield a dextral shearing sense acquired during the granite cooling (550°C-600°C). These observations evidence the coeval functioning of St Michel de Veisse and Felletin-La Courtine faults.

Along the Argentat normal fault, the general direction of the lineation is NW-SE. This direction is recorded by AMS in the leucogranites located between Bourganeuf and Eymoutiers (Fig. 6). North of the Millevaches massif near Bourganeuf, the field observations show a porphyritic biotite granite reorientation, which from a NNW-SSE sub vertical foliation east of Bourganeuf, passes to 30 to 40° westward dips going towards Argentat fault. Likewise, these observations suggest a synchronous emplacement of the two types of granites during the functioning of the Argentat fault.

To sum up, the Millevaches magmas are controlled by three N-S accidents that imposed their N-S trend with first, the predominant Pradines dextral wrench fault in the middle that played a feeding-zone role, then on the westward side, the Argentat ductile normal fault that confined the magmas flow and finally at east on eastward the Felletin-La Courtine dextral wrench fault (Fig. 12). These three N-S accidents are taking over the NW-SE St Michel de Veisse fault that also recorded the crystallization of magmas.

VI. Conclusion

AMS, gravity and tectonics results combined allow to propose a mode of emplacement for the Millevaches massif that does not invoke the classical diapiric model (Lameyre, 1982; Duthou and Floc'h, 1989). The flat magnetic foliations and lineations are in good agreement with the gravity thin and flat laccolith model (Fig.12). The E-W gravity cross-sections through the Millevaches confirm from north to south the 1 to 4 km thick tabular shape of the massif. The structural study thanks to the AMS investigation allowed better understanding of the magmas emplacement context and their relationships with the regional ductile shear zones.

The magnetic foliation pattern shows a general sub horizontal dip with an increase near the boundaries and especially directly in line with the N-S Pradines dextral wrench fault (Fig. 12). The magnetic lineation reveals two main trends: a N-S direction characterized by pre-full crystallization microstructures and located in the inner part of the Pradines fault zone and a predominant NW-SE orientation distinguished by pre-full crystallization and solid-state flow microstructures. These NW-SE lineations on either side of the central Pradines fault zone draw with the median N-S lineations a sigmoid shape pattern that is in agreement with a dextral shear zone. Within fault zones as well as far from faults, the occurrence of pre-full crystallization to solid state microstructures shows that these magnetic lineations were acquired during or shortly after crystallization of the magma. We propose that the magnetic lineation field matches the tectonic driven magmatic flow. A sketch model (fig. 13) proposes that the thick Pradines shear zone is a feeding magmatic zone with vertical flow. Its N-S orientation parallel to the general trend of the massif, its large thickness (4 to 5 km), the occurrence of vertically foliated xenoliths that extend it northwards (profile D, Fig. 12), the typical C-S structures indicative of a dextral shearing sense and the high-temperature recurrent quartz microstructures attest of the great role played by the Pradines fault in the

Millevaches magma emplacement. However, there is no field evidence of vertical flow at the surface, where the tectonic dextral transcurrent movement prevails. The high-dipping lineations related to the magma ascent have been obliterated during the granite emplacement by the Pradines dextral wrench mechanism.

Four principal mechanisms support the granitic continental magmatism: fusion, segregation, ascent and emplacement. Our AMS study gives insight in the emplacement mechanisms. The AMS and gravity data evidence the close relationships between the Millevaches magmas and boundary faults. The deep root zones location of the Millevaches massif remains little known. At variance with the Aigurande plutons, the Brâme massif or the Auriat granite where gravity root zones are detected, no large negative anomaly associated with the supposed feeding zone. Lack of deep data under the Pradines fault, do not allow to explain with accuracy the ascent mechanisms of Millevaches granites. However, the gravity study made on the massif and its environment gives insights on the large debate of granites ascent mechanisms in the upper crust.

The weak negative anomaly underneath the Pradines fault could be explained by narrow or unstable feeding zones that disappear after the passage of magma that did not crystallize in the conduit. We can imagine a magma chamber at depth that supplies a N-S trending thermal plume system upwards. Once the magma reaches the upper crust through the Pradines dextral wrench fault, it spreads-out laterally into the sub horizontal micaschist foliation (Fig. 13). This proposed assumption for the ascent and emplacement mechanisms of the Millevaches massif was first put forward by Pollard and Johnson, 1973 ; Jackson and Pollard, 1988 ; Corry, 1988 through quantitative studies of the laccoliths emplacement in the crust. These authors summarize the laccolith formation in three stages: vertical ascent in narrow dikes, emplacement and horizontal propagation as sills, and finally, in situ inflation and doming. In our case, we explain the horizontal propagation by magma migration through the pre-existing sub-horizontal micaschists foliation. For Hogan and Gilbert (1995), the tabular plutons outcome from magmas with a weak crystals content (< 30%) subsequently trapped by a mechanical anisotropy inside the upper crust.

What are the source and nature of heat allowing such important quantity of granites in the Limousin?

Such heat source is consistent with the development of lithospheric delamination proposed by Downes et al. (1990) and Leyreloup (1992) through the study of granulite facies xenoliths in the Massif Central, which coincided with the Namuro-Wesphalian magmatic event. The idea of a lower crust fusion under the effect of heat transfer by underplating or intrusion in the lower crust of basaltic magmas, was formerly suggested by several authors (Huppert and Sparks, 1988; Bergantz, 1989; Davidson et al., 1992; Petford and Gallagher, 2001). The model we propose for Millevaches magmatism puts forward the creation of magma chambers above the Moho as the result of lower crust partial-melting driven by basic magmas underplating. In this scheme, the N-S Pradines fault of crustal scale could focus the magma at depth and create a N-S trending thermal plume and subsequent rapid ascent (Petford et al., 1993) of magma in the upper crust. Different pulses of ascent could correspond to various plutons. The composite geometry (many small laccoliths) of the Millevaches massif could be the result of a pulsed source of magmas, which ascends rapidly through the crust (Petford, 1996). The lithospheric delamination concept under the Limousin area finds a geodynamic explanation with the crustal extensional tectonics (Faure, 1995) characterized by an E-W to NW-SE maximum stretching direction and responsible of detachment fault, and emplacement of leucogranites in the Limousin area. In our model of granite emplacement, the N-S trending thermal plumes correspond to open cracks and are consistent with an E-W boudinage extension direction at the magma chamber level (Fig. 13).

Acknowledgments

We thank C. Truffert and J.Y. Roig for fruitful discussions concerning the Argentat seismic profile interpretation as well as on the geology of nearby areas. Anne Delplanque is also warmly thanked for providing support in the 3D drawing. Gravity modelling and geophysical maps were produced using Geosoft/GM-SYS software.

References

Arthaud, F., Matte, P., 1977. Late paleozoic strike-slip faulting in Southern Europe and Northern Africa: results of a right lateral shear zone between the Appalachians and the Urals. Geological Society of America Bulletin 88, 1305-1320.

Augay, J.F. 1979. Les leucogranites et monzogranites de la région d'Eymoutiers - Peyrat le Château (Massif du Millevaches, Massif Central Français). Gisement et pétrologie. Unpublished. doctoral Dissertation, University of Lyon I, Lyon.

Bellot, J.Ph., 2001. La structure de la croûte varisque du Sud-Limousin (Massif central français) et ses relations avec les minéralisations aurifères tardi-orogéniques : apport des données géologiques, gitologiques, géophysiques et de la modélisation 3D. Thèse de Doctorat de l'Université Montpellier II.

Bergantz G.W., 1989. Underplating and partial melting : implications for melt generation and extraction. Science, 254, 1039-1095.

Berthé, D., Choukroune, P., Jégouzo, P., 1979. Orthogneiss mylonite and non coaxial deformation of granites : the example of the South Armorican Shear zone (France). Journal of Structural geology, 1, 31-42.

Bingham, C., 1964. Distribution on a sphere and on the projective plane. Ph.D. thesis, Yale University.

Bitri, A., Truffert, C., Bellot, J.-P., Bouchot, V., Ledru, P., Milesi, J.-P., Roig J.-Y., 1999. Imagerie des paléochamps hydrothermaux As-Au-Sb d'échelle crustale et des pièges associés dans la chaîne varisque : sismique réflexion verticale (GéoFrance3D : Massif central français). Comptes Rendus de l'Académie des Sciences, Paris, 329, 771-777.

Blumenfeld, P., Mainprice, D., Bouchez, J.-L., 1986. c-slip in quartz from subsolidus deformed granite. Tectonophysics 127, 97-115.

Brown, M., Solar, G.S., 1998. Granite ascent and emplacement during contractional deformation in convergent orogens. Journal of Structural Geology 20, 1365-1393.

Burnol, L., Peronne, Y., Vaucorbeil, H., 1980. La coupole cachée de leucogranite de Neuf-Jours (Corrèze) et les minéralisations en tungstène associées. Chronique Recherche Minière 455, 93-116.

Colchen, M., Rolin, P., 1996. Le Complexe des Essarts-Mervent dans la transversale vendeenne de la chaine hercynienne. Essarts-Mervent Complex in the Vendee transverse of the Hercynian Geosyncline. Réunion Annuelle des Sciences de la Terre 7, 51 p.

Corry, C.E., 1988. Laccoliths; Mechanics of emplacement and growth. Geological Society of America. Special Paper 220, 110 p.

Courrioux, G., 1983. Exemple de mise en place d'un leucogranite pendant le fonctionnement d'une zone de cisaillement : le granite hercynien de Puentedeume (Galice, Espagne). Bulletin de la Société géologique de France 125, 301-307.

Cuney, M., Stussi, J.M., 1989. Synthèse géochimique sur les granites du Millevaches. Détermination de leur potentialité uranifère. Rapport au <u>CEA</u>, 64 p + annexes, dont une carte géochimique en couleur du Millevaches au $1/100\ 000^\circ$).

Davidson, C., Hollister, L.S., and Schmid, S.M., 1992. Role of melt in the formation of a deep-crustal compressive shear zone: the MacLaren Glacier metamorphic belt, South Central Alaska. Tectonics 11, 348-359.

D'Lemos, R.S., Brown, M., Strachan, R.A., 1992. Granite magma generation, ascent and emplacement in a transpressional orogen. Journal Geological Society of London, 149, 487-490.

Downes, H., Dupuy, C., Leyreloup, A.F., 1990. Crustal evolution of the Hercynian belt of Western Europe: Evidence from lower crustal granulitic xenoliths (French Massif Central). Chemical Geology 83, 209-231.

Dumas, E., Faure, M., Pons, J., 1990. L'architecture des plutons leucogranitiques du plateau d'Aigurande et l'amincissement crustal tardi-varisque. Comptes Rendus de l'Académie des Sciences, Paris, 310, Série II, 1533-1539.

Duthou, J.L., Floc'h, J.P., 1989. Evolution tectonométamorphique du Massif Central. Réunion Extraordinaire de la Société géologique de France, Bulletin de la Société géologique de France 4 :667-693.

Eggleton, R. A., Buseck, P.R., 1980. The orthoclase-microcline inversion: a high-resolution transmission electron microscope study and strain analysis. Contribution to Mineralogy and Petrology 74, 123-133.

Faure, M., 1995. Late orogenic carboniferous extensions in the Variscan French Massif Central. Tectonics 14, 132-153.

Faure, M., Pons, J., 1991. Crustal thinning recorded by the shape of the Namurian-Westphalian leucogranite in the Variscan belt of the Northwest Massif Central, France. Geology 19, 730-733.

Faure, M., Becq-Giraudon, J.F., 1993. Sur la succession des épisodes extensifs au cours du des-épaississement carbonifère du Massif Central Français. Comptes Rendus de l'Académie des Sciences 316, 967-973.

Floc'h, J-P., 1983. La série métamorphique du Limousin central: une traverse de la branche ligérienne de l'orogène varisque, de l'Aquitaine à la zone broyée d'Argentat (Massif Central Français). Thèse d'Etat, Limoges 445 p..

Gapais, D., Barbarin B. (1986). Quartz fabric transition in a cooling syntectonic granite (Hermitage massif, France). Tectonophysics, 125, n°4, 357-370.

Gébelin, A., Martelet, G., Brunel, M., Faure, M., Rossi, P., 2004. Late Hercynian leucogranites modelling as deduced from new gravity data: the example of the Millevaches massif, Massif Central, France. Bulletin de la Société géologique de France (In Press).

Gleizes, G., Leblanc, D., Bouchez, J.L., 1997. Variscan granites of the Pyrenees revisited: their role as syntectonic markers of the orogen. Terra Nova, 9, 38-41.

Gower, R.J.W., Simpson, C., 1992. Phase boundary mobility in naturally deformed, highgrade quartzofeldspathic rocks: evidence for diffusional creep. Journal of structural geology 14, 301-313.

Guineberteau, B., 1984.Le massif granitique de Mortagne sur Sèvre (Vendée): structure, gravimétrie, mise en place, distribution de U/Th/K. Thèse de 3^{ème} cycle, Nantes, 178p.

Hargraves, R.B., Johnson, D., Chan, C.Y., 1991. Distribution anisotropy; the cause of AMS in igneous rocks? Geophysical research Letters v.18, n.12, 2193-2196.

Hibbard, M.J., 1987. Deformation of incompletely crystallized magma systems: granitic gneisses and their tectonic implications. Journal of Geology 95, 543-561.

Hogan J.P., Gilbert M.C., 1995. The A-type Mount Scott granite sheet : importance of crustal magma trap. Journal Geophysical Research, 100, 15792-15799.

Hrouda, F., 1982. Magnetic anisotropy of rocks and its application in geology and geophysics. Geophysical Surveys 5, 37-82.

Huppert, H.E. and Sparks, R.S.J., 1988. The generation of granitic magmas by intrusion of basalt into continental crust. Journal of Petrology. 29, 599-624.

Hutton, D.H.W., 1982. A tectonic model for the emplacement of the Main Donegal granite, NW Ireland. Journal Geological Society of London 139, 615-631.

Ingram, G.M., Hutton, D.H.W., 1994. The Great Tonalite Sill: Emplacement into a contractional shear zone and implications for Late Cretaceous to early Eocene tectonics in southeastern Alaska and British Columbia. Geological Society of America Bulletin 106, 715-728.

Jackson, M.D., and Pollard, D.P., 1988. The laccolith-stock controversy: New results from the southern Henry Mountains, Utah. Geological Society of America Bulletin, 100, 117-139.

Jelinek, V., 1978. Statistical processing of anisotropy of magnetic susceptibility measured on groups of specimens. Studia Geophyzika et Geodetika 22, 50-62.

Jelinek, V., 1981. Characterization of the magnetic fabric of rocks. Tectonophysics 79, 563-567.

Jessel, M.W., 1987. Grain-boundary migration microstructures in a naturally deformed quartzite. Journal of structural geology 9, 1007-1014.

Jover, O., 1986. Les massifs granitiques de Guéret et du nord-Millevaches. Analyse structurale et modèle de mise en place (Massif Central Français). Thèse de doctorat, Nantes 233 p..

Koukouvelas, I., Pe-Piper, G., Piper, D. J. W., 2002. The role of dextral transpressional faulting in the evolution of an early Carboniferous mafic-felsic plutonic and volcanic complex : Cobequid Highlands, Nova Scotia, Canada. Tectonophysics 348, 219-246.

Lameyre, J., 1966. Leucogranites et muscovitisation dans le massif Central Français. Thèse, Clermont-Ferrand 264 p..

Lameyre, J., 1982. Contribution à la géologie du Limousin : arguments pour des fenêtres ouvertes dans un grand charriage par des diapirs leucogranitiques. Comptes Rendus de l'Académie des Sciences 2949, 1237-1240.

Ledru, P., Lardeaux, J.-M., Santallier, D., Autran, A., Quenardel, J.-M., Floc'h, J.-P., 1989. Où sont les nappes dans le Massif central français ?. Bulletin de la Société géologique de France 8, 605-618.

Leyreloup A. F., 1992. La croûte métamorphique du Sud de la France (Massif Central, Languedoc). Géologie des surfaces et des enclaves remontées par les volcans Cénozoïques : Le rôle des intrusions mafiques basi-crustales dans la croûte inférieure. Thèse de doctorat d'état. Université Montpellier II. 2t, 557 p.

Lillié, F., 1974. Ana lyse tectonique et fracturation des gisements uranifères de Vendée. Thèse de 3^{ème} cycle, Strasbourg 101p.

Mainprice, D., Bouchez, J.-L., 1986. Dominant c slip in naturally deformed quartz: Implications for dramatic plastic softening at high temperature. Geology 14, 819-822.

Martelet, G., Calcagno, Ph., Gumiaux, C., Truffert, C., Bitri, A., Gapais, D. and Brun, J.P., 2004. Integrated 3D geophysical and geological modelling of the Hercynian Suture Zone in the Champtoceaux area (South Brittany, France). Tectonophysics, in press.

Matte, P., 1986. Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics 126, 329-374.

Matte, P., 1998. Continental subduction and exhumation of HP rocks in Paleozoic belts: Uralides and Varicides. Special Issue Tectonics and General History of Phanerozoic orogens. Geological Society Sweden (G.F.F.) 120, 209-222.

Monier, G. 1980. Pétrologie des granitoïdes du Sud Millevaches (Massif Central Français). Minéralogie, géochimie, géochronologie. Thèse 3^{ème} Cycle, Université de Clermont II, 288p.

Mouret, G., 1924. Sur la structure de la région granitique de Millevaches. Comptes Rendus de l'Académie des Sciences de Paris 179, 1612-1615.

Petford N., 1996. Dykes or diapirs? Transactions of the Royal Society of Edinburg: Earth Sciences, 87, 105-114.

Petford N., Kerr, R.C., and Lister, J.R., 1993. Dike transport of granitoid magmas. Geology 21, 845-848.

Petford N., Gallagher K., 2001. Partial melting of mafic (amphibolitic) lower crust by periodic influx of basaltic magma. Earth and Planetary Science Letters, 193, 483-499.

Pollard, D.D., and Johnson, A.M., 1973. Mechanics of growth of of some laccolithic intrusions in the Henry Mountains, Utah, II - Bending and failure of overburden layers and sill formation: Tectonophysics, 18, 318-354.

Raguin, E., 1938. Contribution à l'étude du plateau de Millevaches (révision de la feuille de Limoges). Bulletin du Service de la Carte géologique de la France 197, 113-119.

Roig, J.-Y., Faure, M., Truffert, C., 1998. Folding and granite emplacement inferred from structural, strain, TEM, and gravimetric analyses: The case study of the Tulle antiform, SO French Massif Central. Journal of Structural Geology, 20, 9-10, 1169-1189.

Roig, J.-Y., Faure, M., 2000. La tectonique cisaillante polyphasée du Sud Limousin (Massif Central Français) et son interprétation dans un modèle d'évolution polycyclique de la chaîne hercynienne. Bulletin de la Société géologique de France 3, 295-307.

Speer, J.A., McSween, H.Y., Gates, A.E., 1994. Generation, segregation, ascent, and emplacement of Alleghanian plutons in the Southern Appalachians. Journal of Geology 102, 249-267.

Tikoff, B., Saint Blanquat (de) M., 1997. Transpressional shearing and strike-slip partitioning in the late Cretaceous Sierra Nevada magmatic arc, California. Tectonics 16, 442-459.

Vidal, P., 1973. Premières données géochronologiques sur les granites hercyniens du sud du Massif Armoricain. Bulletin de la Société géologique de France 7, 239-245.

Vigneresse, J.L. and Brun, J.P., 1983. Les leucogranites armoricains marqueurs de la déformation régionale : apport de la gravimétrie. Bulletin de la Société Géologique de France 25, 357-366.

Figure captions

Figure 1 :Simplified geological map of the northwestern part of the Massif Central, France. a) Structural map of the study area in the French Massif Central. b) Millevaches massif lithologic units map.

Figure 2 :Hysteresis curve showing linear and superposing induced magnetic moments with respect to increasing and decreasing applied magnetic fields.

Figure 3 :Frequency histogram for bulk magnetic susceptibility.

Figure 4 :Equal area-projection of AMS results for a)the north part and b)the south part of our study area in the Millevaches massif. The three main axes of the ellipsoid (K $_{max} > K _{int} > K _{min}$) are represented by squares, triangles and circles respectively with unweighted 95% confidence zones. The small symbols are for the specimen data, the large grey symbols are for the site average data.

Figure 5: Plots of the shape (T) and anisotropy degree (P) parameters showing an homogeneous repartition between the linear (prolate) and planar(oblate) shapes.

Figure 6: Magnetic lineations of the Millevaches massif: a) AMS data from Jover (1986), b) AMS data from our study area.

Figure 7: Magnetic foliations of the Millevaches massif: a) AMS data from Jover (1986), b) AMS data from our study area.

Figure 8: Details of microstructures. Sections are cut perpendicular to foliation and parallel to lineation.

(a) Large quartz crystals within porphyritic biotite granite indicate primary formation (MV78). (b) Development of myrmekites adjacent to the K-feldspar in porphyritic biotite granite (MV84). (c) Polycrystalline quartz aggregate showing an intense phenomenon of grain boundary migration typical of high temperature deformation within porphyritic biotite granite (MV105). (d) Quartz with chess-board pattern indicating both $\langle a \rangle$ and [c] dislocation slip activity during high-temperature deformation in porphyritic biotite granite (MV94). Note the curved geometry of the quartz-feldspar phase boundary (underlined by the white arrows). (e) Orthoclase inversion to microcline typical of solid-state deformation within porphyritic biotite granite (MV67). (f) Kinking of biotite showing evidence of solid state flow (MV105). (g) Quartz grains with squared contours suggesting high crystallographic control on grain boundary orientations during high temperature within porphyritic biotite granite (MV13). (h)

Grain boundary cups between quartz and feldspar indicative of a type of solid-state diffusional creep in two mica granites deformed at elevated temperatures (MV18).

Figure 9: Profile location on Residual Bouguer anomaly map of the north-western part of the Massif Central. White circle correspond to the Bitri et al. (1999) seismic profiles location.

Figure 10: Direct 2D gravity modelling through the Millevaches massif along E-W cross sections from south to north. The A, B, C and D profiles show that the Millevaches massif, is from north to south a 1 to 4 thick laccolith which deepens from about 1.5 km on its western flank to about 3-4 km on its eastern limit.

Figure 11: N-S regional direct 2D gravity modelling from the Aigurande plateau to the Millevaches massif. These two profiles crosscut the four previous A, B, C and D models with a geometrical coherence with them. The main particularity observed through these N-S profiles is the thinness of the Guéret granite and the presence of the high-density body at about 4 to 5 km below the Guéret surface. To the north, the 2D gravity modelling confirm the close relationships detected by Dumas et *al.*, in 1990 between the leucogranites plutons and the Marche fault. Finally, south of the Guéret, the Millevaches massif thickens from about 1 to 4 km as the gravity anomaly slowly decreases.

Figure 12: Sketch geological cross-sections, built fromAMS and gravity data through the Millevaches granitic massif along profiles A, B and D. (See location on figure 9).

Figure 13: Proposal of model of Millevaches leucogranites emplacement in the crust. a) First stage of granite emplacement. The magma migration in the crust has done through the N-S Pradines vertical fault. This lineament (at least of crustal extension), focused the magmas at depth (lower crust) and played a feeding zone role for them in that once they had reached the upper crust they spread-out laterally using the sub horizontal micaschist foliation. In the lower crust, the fault control the magma geometry creating a parallel N-S thermal magma plume system deriving of magma chamber located above the moho. The layered lower crust anatexie could be due to an asthenospheric piece upwelling under the crust, by lithospheric delamination argued by Downes *et al.* (1990) through the study of granulite-facies xenoliths in the Massif Central.

b) Final stage of magma emplacement. The migration of magma through the sub horizontal micaschist foliation reached its maximum, forming the Millevaches laccolith. The magma emplace during the Pradines dextral wrench fault functioning and record the movement of it. The long black arrows on both side of the fault represent the magnetic lineations trends recorded by the Millevaches granites. At the bottom of the crust, the narrow thermal plume system progress, closing gradually under the Pradines fault and to reopen elsewhere under another fault.

Table 1. Anisotropy of magnetic susceptibility data. N: number of specimens; BMS: Bulk magnetic susceptibility in 10^{-6} SI; Dec, Inc, a_{95min} , a_{95max} : declination, inclination, Bingham [1964] bimodal statistics data, respectively, in degrees; P': anisotropy degree; T: shape parameter [Jelinek, 1981; Hrouda, 1982].

Figure1: Simplified geological map of the north-western part of the Massif Central, France.(a) Structural map of the study area in the French Massif Central. (b) Millevaches massif lithologic units map.

Figure 2: Hysteresis curve showing linear and superposing induced magnetic moments with respect to increasing and decreasing applied magnetic fields.

Figure 3: Frequency histogram for bulk magnetic susceptibility

Figure 4 :Equal-area projection of AMS results for (a) the north part and (b) the south part of our study area in the Millevaches massif. The three main axes of the ellipsoid (Kmax \geq K int \geq Kmin) are represented by squares, triangles and circles respectively with unweighted 95% confidence zones. The small symbols are for the specimen data, the large grey symbols are for the site average data.

Figure 5: Plot of the shape (T) and anisotropy degree (P) parameters showing a well mixed pattern of the linear (prolate) and planar (oblate) shapes between the two principal types of granite.

Figure 6: Magnetic lineations of the Millevaches massif a) AMS data from Jover (1986), b) AMS data from our study area.

Figure 7: Magnetic foliations of the Millevaches massif a) AMS data from Jover (1986), b) AMS data from our study area.

Figure 8: Details of microstructures

Figure 11

Figure 12:

Sketch geological cross-sections, built from AMS and Gravity data, through the Millevaches granitic massif along profiles A, B and D (location on Figure 9).

Site	TYPE	N	BMS		K1				K3			P' (%)	Т
				Dec	Inc	α 95 min	α _{95 max}	Dec	Inc	α 95 min	$\alpha_{95 \text{ max}}$		
MV1	2 micas y	5	30,7	186,1	44,9	4,3	6,5	53,7	34,5	0,6	26,4	4,7	-0,138
MV2	2 micas y	6	51,7	71,7	33,9	8,3	22,1	220,6	49,1	2,5	10	4,3	-0,274
MV3	2 micas y	6	60,2	49,5	41,3	9,1	32,5	190,1	43,2	10,4	12,8	2,6	0,83
MV4	2 micas y	8	51,6	114,9	14,3	6,1	11	214,9	33,9	4,1	7,7	4,9	0,389
MV6	2 micas y 2 micas y	7	34,7	138.8	27,5	2,7	11,4	23,9	3,4	5,3	8,8 6.4	4,3	-0,047
MV7	2 micas y	9	43.5	8.3	42.7	6.6	10,0	176.7	48.2	8.4	23.7	3.7	0,455
MV8	2 micas y	8	37,5	231,4	16,8	4,5	17,8	0,5	63,1	3,9	4,9	3,9	0,698
MV9	2 micas y	8	56,2	345,9	15,3	3,6	4,8	255,1	4,7	2,1	9,8	9,7	0,183
MV10	porphyritic Bt γ	6	60,8	206,6	5,6	4,1	25,5	296,6	70,6	3	15	7,3	0,63
MV11	porphyritic Bt γ	5	55,7	11,7	23,3	1,9	5,9	189,4	66,7	2	6,2	8,9	0,364
MV12 MV/13	2 micas y	6	44,9 51.2	27,7	7,4	5,1	28,1	284	65,6 72.5	4,1	5,5	5,9	0,815
MV13	porphyritic Bt y	4	63.1	152.4	10,3	11.4	29.5	252.4	38.9	6.9	20	3.7	0,133
MV15	2 micas y	5	71,2	20,5	63,5	10,4	14,1	163,9	20,6	7,9	20,1	3,5	-0,122
MV16	2 micas y	8	55,9	345,8	11,7	3,5	8,6	206,5	75,4	1,8	5,2	12,2	0,679
MV17	porphyritic Bt γ	4	47,2	125,4	37,2	11,3	25,2	31,3	5,6	10,2	11,8	4,8	0,053
MV18	porphyritic Bt γ	6	66,7	139,5	0,6	5,7	9,5	50,5	79,1	6,5	21,8	7,4	-0,047
MV19	2 micas y	10	61,4	137,2	22,5	7,6	13,3	3	59,3	7,2	13,4	8,4	0,394
MV/21	2 micas y	6	47,9	325,2	21,7	50	31,0	172,1	13,0	13,1	14,9	5,5 12.1	0,735
MV22a	2 micas y	6	69.9	87.8	9	4	5.1	317.9	75.9	3.4	8.5	8.6	0,730
MV22b	2 micas y	3	69,9	113,3	18,6	0,1	22,5	236,1	54,8	2,8	22,5	8,6	0,11
MV23	2 micas y	5	52,5	229,2	46,3	9	14,8	110,9	23,8	6	21,3	5,4	0,339
MV24	2 micas y	7	43,7	179,3	27,7	17,7	27,2	80,4	29,3	13,7	19,2	2,3	0,34
MV25	2 micas y	9	46,1	111,2	38,7	3,7	6,6	239,7	38,3	3,8	15,2	3,8	-0,332
MV26	2 micas y	9	39,3	86,7	27,5	3,4	6,3	265,5	61,7	6,1	23,9	4,8	-0,622
MV27	Grt-Crd leucoy	9	39,6	179	51,8	11,8	18,6	62,5	22,5	6,6 10.7	17,1	2,4	0,773
MV/29	2 micas y 2 micas y	7	41,9	120,1	12,7	3,9	12,9	227.8	56.3	10,7	39,5	4.0	-0 714
MV30	2 micas y	4	57.6	310.7	4.8	16.7	26.8	214.1	53.1	8.5	18.4	5.3	0.811
MV31	porphyritic Bt γ	7	49	0,6	8,9	4,3	8,4	192,1	80,2	7,2	20	4,6	-0,292
MV32	porphyritic Bt γ	5	56,3	214,1	10	15,2	44,3	113,4	65	19,3	26,3	15,6	0,583
MV33	porphyritic Bt γ	7	67,4	138,9	2	2,8	10,2	229,2	53,6	8,9	21,5	5,2	-0,243
MV34	porphyritic Bt y	5	32,4	5,9	5,6	14,7	23,2	271,1	34,9	19,4	26,5	4,7	-0,219
MV35	porphyritic Bt γ	8	60,1	357,1	8	15	23,5	89,5	10,8	7,5	20,1	3,8	0,331
MV36	2 micas y	6	92,6	337,4	8,1	13,3	27,6	229,4	44,4	14,6	19,7	4,2	0,586
MV37	porpnyritic Bt γ	7	86,2	1/3,7	20,9	11,2	27,7	/1,8 277.2	42,1	8,6	23,8	4,2	0,147
MV/30	2 micas γ 2 micas γ	6	49,0 58.3	25.8	13.6	7.8	13.7	1217,3	-+3,4	7 1	24.3	5.8	-0 141
MV40	Grt-Crd leucoy	9	47.3	3.1	21.4	8.1	11.3	254.9	41.1	9	35.7	5.5	-0.626
MV41	porphyritic Bt y	5	67,4	19,7	58,7	9,2	27,3	238,9	22,7	3,7	15,6	6,2	0,544
MV43	porphyritic Bt γ	6	172,9	241,5	9,9	9,1	37,4	133,4	30,5	3,5	16	3,2	0,706
MV44	2 micas y	7	97,3	151,1	16,8	11,1	22,5	246,5	3,7	9,9	20	4,1	-0,006
MV45	2 micas y	7	73,3	252,7	22,8	3,2	15,3	69,8	66,9	3,8	11,7	4,3	0,263
MV47	2 micas y	6	51,5	319,3	11,2	11,6	28,5	216,7	42,8	3,9	12,9	2,5	0,394
MV48	2 micas y	6	59,6	87,4	62,7	3,7	38,5	341,9	7,5	3,4	6,7	6,9	0,827
MV/50	2 micas y 2 micas y	6	03,9 134.2	40,1	20.5	13,1	34,0	266.4	0,0 13.2	6.8	13.3	0,3	-0.153
MV51	2 micas y	7	66.4	327.4	20,3	61	9.4	228.8	20	4.2	14.4	4.9	0.142
MV52	2 micas y	9	57.6	130.3	17.9	3.9	13.4	337.4	70.8	3.9	8.9	3.4	0.136
MV53	2 micas y	6	43,5	359,5	25,4	7,3	30,9	240,8	32,9	6	21,9	2,7	0,107
MV54	2 micas y	6	14,8	119,2	31,6	10,7	27	272,4	61,2	13,2	22	9,4	0,035
MV55	2 micas y	6	58	140,3	10,7	2,3	5,6	258	68,5	4,9	11,6	4,8	-0,247
MV56	2 micas y	6	116,5	128,5	2,9	5,6	12,3	227,3	48,4	4,3	28,8	5,1	-0,39
MV57	porphyritic Bt γ	6	58,5	137,7	31,7	5,4	6	237,4	12,9	4,8	15,9	6,1	-0,379
MV58 MV/50	porphyritic Bt γ	6	57,5	161,1	29,3	3,5	5,4	17,7	54,7 25.7	4,4	19,2	4,5	-0,547
MV60	porphyritic Bt y	6	39.4	121.5	47,0	13	6.9	22.7	61.3	5.8	17.8	6	0,323
MV61	2 micas y	7	37.8	301	0.5	9.7	20	28.9	51.1	9,0	31.4	3	-0.31
MV62	2 micas y	6	49,4	154,2	3,7	3,9	8,7	348,5	84,6	3,7	13,4	5,2	-0,305
MV63	2 micas y	5	47,2	311,9	8,6	3,8	15,7	45	23,5	7,1	25,5	5,6	-0,148
MV64	2 micas y	8	43,8	108,6	1,4	3,8	14,5	6,1	72,7	3,3	12,9	7,7	0,508
MV65	2 micas y	8	56,6	331,3	7,9	3	11,9	65,2	34,3	8,3	25,2	4,3	-0,278
MV/67	2 micas y	8	48,2 50.5	322,1	9,6	5	0,5	62,5 222.2	43,3	5,1	17,5	5,3	-0,295
MV68	porphyritic Bt y	6	57.2	128.8	7.6	5.4	13.3	233.4	40.2	3.9	32.2	3,3	-0,507
MV69	porphyritic Bt γ	7	40,4	111.8	1,6	9	29,6	141.7	89,6	6,9	19,2	4,6	0,48
MV70	porphyritic Bt y	7	54,1	139,9	4,3	3	5,3	262,5	82,1	3,1	11	9,8	0,102
MV71	porphyritic Bt y	5	50,6	144,6	6,7	4	7,2	40	64,3	2,4	5,8	7,3	0,006
MV72	porphyritic Bt γ	6	81,7	330,7	6,3	9,8	13,6	221,9	71,1	9,8	14	7,5	0,314
MV73	porphyritic Bt γ	8	56,5	164,6	9,8	3,6	16,3	272,2	71,2	6,5	15,1	4,9	0,185
M\/75	porphyritic Bt y	0 4	19 46.6	342 7	10,0 31.8	9,0 12 7	18.2	201,4	26.4	0,0 11 5	20,5	4,0	-0,005
MV76	porphyritic Bt y	6	42.4	328.8	19.5	2.2	17.8	230.9	23.9	10.6	16.2	3.6	-0.044
MV77	porphyritic Bt y	7	68,4	352,1	15,6	5,7	14,5	254,5	9,6	9,2	24,8	4,3	-0,558
MV78	porphyritic Bt γ	8	58,2	167,2	1,5	5,1	12,8	71,4	76,3	4,8	15,5	6,9	-0,258
MV79	2 micas y	8	44,3	214,4	4,6	4,5	29,4	319,2	71,1	3,7	5,6	4,4	0,788
MV80	2 micas y	6	61,5	171	21,2	3,8	8,1	24,8	64,4	5,1	7,4	7,4	0,374
MV81	2 micas y	7	58,8	337,2	18,3	2	10,9	106	59,8	3,2	14,6	5,4	0,049
IVIV82	2 micas γ 2 micas γ	6	05,1	313,7	22,6	6 2.1	15,8	202,7	41,7	3,5	8,2	6	0.547
M\/84	2 micas γ porphyritic Bt γ	4	9,7 80 0	345 5	20.7	3,1 3,6	30,5	247 6	160	3,0 4 1	0,0	3,0 6 1	0,547
MV85	porphyritic Bt y	6	16.5	327.6	22.8	15.4	19.4	216.3	59.5	8.3	43.4	20	-0.351
MV86	Grt-Crd leucoy	6	35,2	339,2	4,7	7,7	14,3	244,4	56,1	9,3	14,6	13,1	0,26
MV87	porphyritic Bt γ	6	47,6	328,8	8,6	4,3	13,5	226,6	50	3,9	4,5	7,3	0,455
MV88	2 micas y	7	83,1	312,4	21,3	8,6	15,6	207,9	6,9	5,5	36	5,2	-0,718
MV89	2 micas y	8	72,1	47,1	44,5	14,8	26,7	229,4	42	7	30,8	2,3	-0,61
MV90	2 micas y	7	49,6	167	31,4	5,5	16,2	259,8	21,5	10,8	40,6	4,3	-0,768
MV91	2 micas y	6	34,2 52.4	101,9	36,6	16	28,1	4	4,6	27,1	36,4	3	-0,617
MV/93	2 micas y 2 micas v		27.6	232 6	19.8	93	23.3	140.2	1 1	4,0	14.9	21	0,576
MV94	porphyritic Bt v	5	54.8	359.8	6.1	13.1	30.1	131.8	80.8	1.4	19.9	2	0.359
MV95	porphyritic Bt y	9	31,5	130,6	2,1	8,5	15,2	40,4	77,7	13,8	20,2	6,1	-0,1
MV96	porphyritic Bt y	6	73,1	54	39,1	21,7	30,8	233,1	57,1	9,9	27,5	3,3	0,36
MV97	porphyritic Bt y	7	13,8	184,7	8,2	9,2	13,2	279,6	33,4	12,1	20,9	6,5	-0,181
MV98	porphyritic Bt γ	7	103,8	162,8	3,9	4,1	8,6	32	80,9	2,1	21,8	4,1	-0,224
MV99	2 micas y	7	69,7	323	38,4	11,8	23,8	198,5	38,8	12,5	29	4,2	-0,343
MV100	2 micas y	8	/3,5	341,9	8,2	8,9	15,5	108,6	80,2	10,3	16,7	4,8	0,023
MV/102	2 micas y	6	65.7	229.4	19.3	5,0 4 2	5.9	130.5	24.3	3.4	52,5	23	0.269
MV102	2 micas y	6	47.5	352	61.4	18.9	37.1	157.1	23.7	5.8	39.7	4.8	-0,023
MV104	2 micas y	8	39,7	139,6	4,1	5,3	18,8	50,2	74,2	9,1	20,3	5,3	0,137
MV105	porphyritic Bt γ	8	111,2	283	1	4	11,9	191,3	66	4,2	6	9,4	0,552

Table 1. Anisotropy of magnetic susceptibility data. N: number of specimens;

BMS: Bulk magnetic susceptibility in 10⁻⁶ SI; Dec, Inc, a_{95min}, a_{95max}, declination, inclination, Bingham [1964] bimodal statistics data, respectively, in degrees; P': anisotropy degree; T: shape parameter [Jelinek, 1981; Hrouda, 1982].

Table1

ANNEXE 8
Carte géologique de la France à 1/50000 - Feuille 691 - FELLETIN

