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certain livre de Méchanique, et pour m’avoir toujours encouragé.
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Résumé

Cette Thèse porte sur les familles tangentielles et les équations de Hamilton–Jacobi. Ces
deux sujets sont reliés à des thèmes classiques en théorie des singularités, comme la théorie
des enveloppes, les singularités des fronts d’onde et des caustiques, la géométrie symplectique
et de contact. Les premiers trois chapitres de la Thèse sont consacrés à l’étude des familles
tangentielles, à la classification de leurs singularités stables et simples, et à leurs interprétation
dans le cadre de la Géométrie de Contact. Le dernier chapitre est dédié à l’étude des solutions
de minimax pour l’équation de Hamilton–Jacobi, notamment à la classification des leurs
singularités génériques de petite codimension.

Premier Chapitre. Dans ce chapitre on introduit la définition de famille tangentielle: il
s’agit d’un système de rayons émanés tangentiellement par une source curviligne (appelée
support). Cette classe de familles de courbes planes apparâıt dans plusieurs domaines des
mathématiques, comme par exemple la géométrie différentielle, la théorie des singularités
des caustiques et des fronts d’onde, et l’optique géométrique. Par exemple, les géodésiques
tangentes à une courbe dans une surface riemannienne forment une famille tangentielle
(géodésique). Toutefois, la définition de famille tangentielle a été donnée explicitement pour
la première fois dans cette Thèse.

Dans l’esprit du modèle physique qui a inspiré la définition de famille tangentielle, il est
naturel de déformer les familles tangentielles parmi les familles tangentielles: ces déformations
sont appelées tangentielles. Une telle déformation survient, par exemple, lorsqu’on considère
les familles des géodésiques tangentes à une courbe et on perturbe la métrique. Dans ce
chapitre on étudie les singularités stables de germes de familles tangentielles (par rapport à
la L–R équivalence). Le résultat principal est le suivant.

Théorème. Il existe exactement deux singularités de germes de familles tangentielles, stables
par petites déformations tangentielles, notée I, II et représentées par les germes (ξ + t, t2) et
(ξ + t, ξt2), la courbe support étant y = 0; les enveloppes correspondantes sont lisses ou bien
ont une auto-tangence d’ordre 2.

Ce résultat a des applications en géométrie riemannienne. Par exemple, on en déduit que
les auto-tangences d’ordre 2 des enveloppes des (germes de) familles tangentielles géodésiques
sont génériquement stables par petites déformation de la métrique. Ce résultat élémentaire
est, à ma connaissance, nouveau.

On étudie aussi des exemples de familles tangentielles globales, les familles des grands
cercles sur la sphère, tangents à un méridien générique. Cet exemple porte à généraliser
aux enveloppes les énoncés et les conjectures du “dernier Théorème géométrique de Jacobi”,
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vi Résumé

concernant le nombre de cusps dans les caustiques associées à un point donné sur une surface
riemannienne. Notamment, lorsque l’on remplace un point de la surface par une petite courbe
fermée, la notion de caustique (d’ordre n) de ce point est remplacée par celle d’enveloppe
(d’ordre n) des géodésiques tangentes à la courbe. Les énoncés et les conjectures sur le nombre
de cusps des caustiques sont remplacés par des énoncés et des conjectures sur le nombre de
cusps des enveloppes. Cet exemple montre les liens entre les familles tangentielles, le “dernier
enoncé géométrique de Jacobi”, les singularités des caustiques et des fronts d’onde, le collapse
lagrangien et la généralisation de Tabachnikov de la théorie de Sturm classique.

Deuxième Chapitre. Le deuxième chapitre de la Thèse est dédié à la classification des sin-
gularités simples des familles tangentielles (i.e., dont la modalité est zéro). Nous démontrons
que les singularités simples (non stables) de germes de familles tangentielles forment deux
séries infinies et quatre singularités sporadiques, dont nous donnons les formes normales et les
enveloppes correspondantes. En suite, on étudie les déformations tangentielles miniverselles
des ces germes, ce qui conduit à étudier les diagrammes de bifurcation et les perestroikas
de petite codimension des enveloppes correspondantes. Parmi les perestroikas décrites ici,
certaines n’avaient jamais été étudiées avant ce travail.

Les résultats de ce chapitre sont reliés et parfois généralisent des théories très remar-
quables, comme par exemple la théories des projections des surfaces de l’espace dans le plan,
la théorie des fonctions sur une variété ayant un bord, la théorie des applications du plan
dans le plan.

Troisième Chapitre. Dans le troisième chapitre nous construisons la version de contact
de la théorie des enveloppes. A toute famille tangentielle on peut associer une surface dans
le fibré cotangent projectivisé, appelée le graphe Legendrien de la famille tangentielle.

Théorème. Les graphes Legendriens des germes de familles tangentielles ayant une singu-
larité I ou II sont respectivement lisses ou ont génériquement une singularité de type “double
parapluie de Whitney” (c’est-à-dire A±

1 ).

Les autres singularités des graphes legendriens des germes de familles tangentielles ayant
une singularité II sont aussi étudiées: on retrouve ici deux séries de singularités, A±

n and Hn,
qui apparaissent déjà dans la Théorie de Mond des applications du plan dans l’espace.

Ensuite, nous étudions la stabilité des graphes legendrians sous déformations induites par
déformations tangentielles des familles correspondantes.

Théorème. Les doubles parapluies de Whitney sont des singularités des graphes Legendriens
stables par petites déformations tangentielles des familles qui les engendrent.

Dans la théorie de Mond déjà citée, les doubles parapluies de Whitney ne sont pas stables.
Ces résultats sont aussi reliés à la théorie des fonctions sur les variétés avec un bord.

On étudie aussi les projections des graphes Legendriens dans le plan. Pour cette étude,
on considère une relation d’équivalence sur l’ensemble des graphes Legendriens, préservant
la structure fibrée de leur espace ambiant. Les formes normales des projections des graphes
legendriens avec un “double parapluie de Whitney” sont données. Ce résultat généralise cer-
tains théorèmes de la théorie des projections de surfaces de O. A. Platonova, O. P. Shcherbak
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et V. V. Goryunov. De plus, les perestroikas des graphes Legendriens sous déformations non
tangentielles, appelées bec à bec legendrien, sont nouvelles.

Les résultats de ce chapitre ouvrent la voie à plusieurs généralisations, qui pourront
conduire à des applications de la théorie développée à l’étude des équations aux dérivées
partielles.

Quatrième Chapitre. Le dernier chapitre porte sur l’étude des solutions de minimax
des équations de Hamilton–Jacobi. Ces équations aux dérivées partielles apparaissent en
plusieurs domaines des mathématiques et de la physique, notamment les Systèmes Dy-
namiques, le Calcul des Variations, la Théorie du Contrôle, les Jeux Différentiels, la Mécanique
du Continu, l’Economie Mathématique et l’Optique.

Les solutions de minimax sont des solutions faibles de problèmes de Cauchy pour les
équations de Hamilton–Jacobi, construites à partir des familles génératrices (quadratiques
à l’infini) des solutions géométriques de ces problèmes. Le cadre ici est la Géométrie Sym-
plectique. Ces solutions ont été introduites par Marc Chaperon (suivant une idée de J.C.
Sikorav), et ont été étudiées, parmi d’autres auteurs, par Claude Viterbo.

On donne une nouvelle construction de la solution de minimax en termes de la Théorie de
Morse, ce qui en permet une meilleure compréhension. Avec ce point de départ, on démontre
la stabilité du minimax d’une fonction par petites déformation. Ce résultat (nouveau) fournit
une démonstration géométrique très simple de la continuité du minimax.

En suite, nous présentons une caractérisation géométrique de la solution de minimax,
qui permet de la déterminer aisément à partir de la solution multivoque du problème de
Cauchy. Ce résultat est basé sur un Théorème très profond de Chekanov and Pushkar sur
les décompositions admissibles des fronts d’onde et sur les invariants des nœuds legendriens.

Comme application de ces résultats, on classifie les singularités génériques de la solution
de minimax.

Théorème. Les singularités de codimension au plus 2 de la solution de minimax sont les
mêmes que celles de la solution de viscosité.

Ce résultat, bien connu dans le cas de Hamiltoniens convexes ou concaves, reste vrai même
dans le cas générale, lorsque les solutions de minimax et celles de viscosité sont différentes. Ce
résultat peut conduire à des exemples dans lesquels la solution de minimax a une signification
physique.

Les résultats de ce chapitre ont été pubiés dans les articles suivants: Generic singularities
of minimax solutions to Hamilton–Jacobi equations, à parâıtre dans Journal of Geometry
and Physics, et Caractérisation géométrique des solutions de minimax pour l’équation de
Hamilton-Jacobi, Enseignement Mathématique (2), 49 (2003), no 1–2, 3-34.
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Abstract

This Thesis is based on two different subjects, tangential families and minimax solutions to
Hamilton–Jacobi equations, which are related to several classical themes in Singularity The-
ory, as for instance Envelope Theory, Singularities of Caustics and Wave Fronts, Symplectic
and Contact Geometry. The first three chapters are devoted to the study of tangential fami-
lies and to the classification of their stable and simple singularities, and to their interpretation
in the frame of Contact Geometry. The last chapter is devoted to the study of minimax so-
lutions to Hamilton–Jacobi equations and the classification of their generic singularities of
small codimension.

Chapter 1. In this chapter we introduce the definition of tangential family: it is a system
of rays emanating tangentially from a curve (called support). This class of families of plane
curves arises in many mathematical branches, as for instance Differential Geometry, Singu-
larity Theory of Caustics and Wave Fronts and Geometric Optics. For example, the tangent
geodesics of a curve in a Riemannian surface form a (geodesic) tangential family. However,
the definition of tangential family is explicitely given for the first time in this Thesis.

Following the physical model inspiring the theory, it is natural to deform a tangential
family within the set of tangential families: such a deformation is called tangential. Tan-
gential deformations arise for instance when one consider a geodesic tangential family in a
Riemmannian surface and one perturb the metric.

In this chapter we classify, up to L-R equivalence, the stable tangential family singularities
(under small tangential deformations). Our main result is the following.

Theorem. There exists exactly two stable tangential family singualarities (under small tan-
gential deformations), denoted by I, II and represented by the map germs (ξ + t, t2) and
(ξ + t, ξt2), the support being y = 0; the corresponding envelopes are smooth and have an
order 2 self-tangency.

This result has several applications in Differential Geometry. For example, we deduce
that order 2 self-tangencies of envelopes of geodesic tangential families are generically stable
under small deformations of the metric. This elementary result is, to my knowledge, new.

We also study an example of global geodesic tangential family, namely the family of
great circles tangent to a generic meridian. This example allows to generalize to envelopes
the statements and conjectures of the “Last Geometrical Theorem of Jacobi”, concerning
the number of cusps in the caustics associated to a given point in a Riemannian surface.
The statements and conjectures describing the caustics are replaced by similar statements
concerning the envelopes of the geodesics tangent to the curve. This example shows the link
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between tangential families, the Last Geometrical Theorem of Jacobi, the Singularities of
Caustics and Wave Fronts, the Legendrian collapse and the Tabachnikov’s generalization of
Sturm Theory.

Chapter 2. Chapter 2 is devoted to the classification of simple singularities of tangential
family germs (i.e., singularities with no modulii). We prove that the simples singularities
form two infinite series and four sporadic singularities. We give their normal forms and their
corresponding envelopes.

Next, we give miniversal tangential deformations of these normal forms; this allows us
to describe the bifurcation diagrams of small codimension envelope perestroikas. Among the
resulting bifurcation diagram, someones do not appear earlier in Projection Theory. The
results of this chapter are related to many remarkable theories, as the Thoery of Projections
of Surfaces in the Plane, the Theory of Projection of Complete Intersections, the Theory of
Functions on Manifold with Boundary and Theory of Mappings from R3 to R2.

Chapter 3. In this Chapter we construct the Legendrian version of Envelope Theory. To
any tangential family one can associate a surface in the projectivized cotangent bundle, called
the Legendrian graph of the family.

Theorem. The singularities of Legendrian graphs of tangential family germs, having a sin-
gularity I or II, are smooth or have a “Double Whitney Umbrella” (i.e. a singularity A±

1 ).

We also study non typical singularities of legendrian graphs generated by tangential family
germs having a singularity II: we find two infinite series of singularities, namely A±

n and Hn,
arising in the general Mond’s Theory of mapping from R2 to R3. Tangential deformations of
tangential families induce deformations on their Legendrian graphs.

Theorem. The Double Whitney Umbrellas are stable singularities of Legendrian graphs un-
der small tangential deformations of the generating tangential families.

In Mond’s Theory, the Double Whitney Umbrellas are not stable. These results are
related with the Theory of Functions on a manifold with boundary.

Next, we study how Legendrian graphs project into their apparent contour. For this, we
consider en equivalence relation preserving the fibered structure of the projectivized cotan-
gent bundle. We give normal forms of typical Legendrian graph projection up to this equiv-
alence relation. Our result generalize some theorems in the Theories of Projections of O. A.
Platonova, O. P. Shcherbak and V. V. Goryunov. Furthermore, the Legendrian graph pere-
stroika under non tangential deformations of the generating family, called Legendrian bec à
bec, is new. Some results of this Chapter may lead to several generalizations and applications
in the study of PDE.

Chapter 4. The last Chapter deals with minimax solutions to Hamilton–Jacobi equations.
These PDE’s appear in many branches of Mathematics and Physics, as for instance Dynami-
cal System, Variational Calculus, Control Theory, Differential Games, Continuum Mechanics,
Geometric Optics and Economy. Minimax solutions are weak solutions of Cauchy problems
for Hamilton–Jacobi equations, constructed from generating families (quadratic at infinity)
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of geometric solutions of these prblems. The setting here is Symplectic Geometry. Mini-
max solutions have been introduced by Marc Chaperon (following an idea of Jean-Claude
Sikorav), and they have been studied by Claude Viterbo, among other authors.

We give a new construction of the minimax solution in terms of Morse Theory, leading to
a good understending of these solutions. With such a starting point, we prove the stability of
the minimax of a function under small deformation of the function. This (new) result leads
to a geometric natural proof of the continuity of minimax solutions.

Next, we present a geometric characterization of minimax solutions, which allow to find
easily the minimax solution from the graph of the multivalued solution to the Cauchy Prob-
lem. This result is based on a deep theorem of Chekanov and Pushkar about wave fronts
admissible decompositions and invariants of Legendrian knots.

As an application of our results, we classify small codimension generic singularities of
minimax solutions.

Theorem. The singularities of minimax and viscosity solutions of codimension t most 2
coincide.

This result, well known in the case of convex or concave Hamiltonians, holds also in the
general case, as for instance when minimax and viscosity solutions are different. This result
may lead to examples in which minimax solution has physical meaning.

The results of this Chapter has been published in the following papers: Generic singular-
ities of minimax solutions to Hamilton–Jacobi equations, to appear in Journal of Geometry
and Physics and Caractérisation géométrique des solutions de minimax pour l’équation de
Hamilton-Jacobi, Enseignement Mathématique (2), 49 (2003), no 1–2, 3-34.
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Chapter 1

Stable tangential families and their
envelopes

Abstract. We study tangential families, i.e. 1-parameter families of rays emanating tangentially

from given curves. We classify, up to the Left-Right equivalence, the stable singularities of tangential

family germs under tangential deformations, i.e., deformations of the germs among tangential family

germs. We prove that there are exactly two stable singularities of tangential family germs and we

prove that the corresponding envelopes are smooth or have a second order self-tangency. We give

examples where these families and deformations naturally arise, proving for instance that the second

order self-tangency of the envelope of any geodesic tangential family germ defined by a curve in a

Riemannian surface is stable under small deformations of the metric.

1.1 Introduction

Envelope Theory is a classical subject in Geometry, deeply related to the Theories of Caustics
and Wave Fronts, that naturally arises in Geometric Optics and Singularity Theory.

The (geometric) envelope of a family of plane curves is a new curve, tangent at each point
to a curve of the family. For example, the envelope of all the normal lines to a non-circular
ellipse is a closed curve, affine equivalent to the astroid. This curve is the locus determined
by the semicubic cusps of the ellipse equidistant fronts (see figure 1.1).

Envelope Theory has a long history, which beginning may be considered Huygens’ inves-
tigation of caustics of rays of light, in the second half of the XVII Century. However, it is
only with René Thom’s paper [28], published in 1963, that Envelope Theory has been cleared
up by Singularity Theory. Thom showed, in particular, that the only generic singularities of
envelopes of 1-parameter families of plane curves are semicubic cusps and transversal self-
intersections. The normal forms of generic families of plane curves have been found by V.I.
Arnold. He proved that a generic family can be reduced, near a regular point of its envelope,
to one of three normal forms (listed in section 1.2.2 below). These normal forms are discussed
in [4], Ch. I, §3. Some of them first appeared in [2]; see also [3].

In this chapter we study a special class of families of curves, that we call tangential
families. This case is not covered by Thom’s nor Arnold’s theories. A family of tangent curves
to a given curve (the support of the family) is a tangential family if it can be parametrized by

1
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Figure 1.1: Envelope of the normal lines to an ellipse.

the tangency point of its curves with the support, as for instance a system of rays emanating
tangentially from a support curve. For a first investigation of envelopes of tangential families
(in the case of singular support) see [15] and [16].

Tangential families naturally arise in Geometry of Caustics (see [10]) and in Differential
Geometry. For example, any curve in the Euclidean plane or in a Riemannian surface defines
the tangential family of its tangent lines or tangent geodesics. In these two examples a
perturbation of the Euclidean or Riemannian structure induces a deformation of the family
such that the deformed families are tangential. More generally, we call tangential deformation
of a tangential family every deformation of it among tangential families.

The aim of this chapter is to classify the tangential family germs which are stable under
small tangential deformations.

This chapter is divided into three parts. In the first part we present our results. Namely,
we prove that there are exactly two stable singularities of tangential family germs; the equiv-
alence relation we consider here is the usual Left–Right equivalence. The envelopes of stable
tangential family germs are smooth or have a second order self-tangency (see figure 1.2).

Figure 1.2: Two non equivalent tangential family germs.
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The second part is devoted to some applications of this theory. We generalize the basic
example of the lines tangent to a curve replacing the usual lines with the “straight” lines
defined by a local projective or Riemannian structure. As a consequence of our classifica-
tion, we prove that the second order self-tangencies of envelopes of projective or geodesic
tangential family germs are stable under small perturbations of the structure. Moreover,
we discuss an example of a global geodesic tangential family on the two-sphere, namely the
family of the great circles tangent to a generic sphere parallel. This example shows that
the theory of tangential families is related to the Last Geometrical Theorem of Jacobi and
its generalizations, including singularities of caustics, Lagrange collapses and Tabachnikov’s
generalizations of the classical Sturm Theory (cf. [7], [9]).

In the last part we prove the results announced in the first part, using standard techniques
of Singularity Theory of smooth maps, as for instance the Preparation Theorem of Mather,
Malgrange, Weierstrass and the Finite Determinacy Theorem.

1.2 Presentation of the results

Unless otherwise specified, all the objects considered below are supposed smooth, that is of
class C

∞; by curve we mean a dimension 1 embedded submanifold of R2.

1.2.1 Tangential families and their envelopes

Let us consider a mapping f : R2 → R2 of the plane R2, whose coordinates are denoted by
ξ and t. If ∂tf vanishes nowhere, then f defines the 1-parameter family of the plane curves
parameterized by fξ := f(ξ, ·) and indexed by ξ (indicating the curve in the family). The
curves in the family may have double points. The mapping f is called a parameterization of
the family.

Definition. The 1-parameter family parameterized by f is a tangential family if the partial
derivatives ∂ξf and ∂tf are parallel non zero vectors at every point (ξ, t = 0), and the image
of the mapping ξ 7→ f(ξ, 0) is a curve, called the support of the family.

In other terms, a family of plane curves, tangent to γ, is a tangential family whenever it
can be parameterized by the tangency points of the family curves with the family support.

Definition. The graph of the tangential family parameterized by f is the surface

Φ := {(q, p) : q = f(ξ, 0), p = f(ξ, t), ξ, t ∈ R} ⊂ γ × R2 .

Let us consider the two natural projections of the family graph on the support and on
the plane, respectively π1 : (q, p) 7→ q and π2 : (q, p) 7→ p.

Remark. The first projection π1 is a fibration; the images by π2 of its fibers are the curves
of the family.

Definition. The criminant set (or envelope in the source in Thom’s notations) of a tangen-
tial family is the critical set of the projection π2 of its graph to the plane. The envelope of
the family is the apparent contour of its graph in the plane (i.e., the critical value set of π2).
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Remark. The envelope of a tangential family is the critical value set of any of its parame-
terizations. In particular, the support of a tangential family belongs to its envelope.

Let us end this section with some examples.

Example 1.2.1. The family of the tangent lines to the parabola y = x2 is parameterized by

f(ξ, t) := (ξ + t, ξ2 + 2ξt) .

The criminant set is {t = 0}, so the envelope of the tangent lines coincides with the support
parabola.

Example 1.2.2. Let us consider in the plane {x, y} the tangential family of support y = 0,
defined by the graphs y = Pξ(x) of the polynomials

Pξ(x) := (x− ξ)2(x− 2ξ) ,

shown in figure 1.3. Its envelope is the union of the x-axis and the curve x3 + 27y = 0.

y

O
x

ξ

2ξ

Figure 1.3: The tangential family of Example 1.2.2.

Given a family of plane curves, a branch of its envelope is said to be geometric near a fixed
point if the family is tangential at this point, taking this branch as support. The envelopes
of the tangential families considered in the preceding examples are all geometric.

Example 1.2.3. The envelope of the tangent lines of the cubic parabola y = x3 is

{y = x3} ∪ {y = 0} .

The line {y = 0} belongs to the family and no other line in the family is tangent to it. Hence,
this branch of the envelope is not geometric.

1.2.2 Equivalences of tangential families

Our study of tangential families being local, without loss of generality, we can consider their
parameterizations as map germs (R2, 0)→ (R2, 0), that is, as elements of (m2)

2, where m2 is
the space of function germs in two variables vanishing at the origin.

Remark. The graph of any tangential family germ is smooth.
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Definition. We will denote by X0 the subset of (m2)
2 formed by all the map germs param-

eterizing locally a tangential family: f ∈ (m2)
2 belongs to X0 if and only if ∂ξf̄(ξ, 0) and

∂tf̄(ξ, 0) are parallel non zero vectors for every map f̄ : R2 → R2 which germ at (0, 0) is f ,
provided that ξ is small enough.

In this definition, the two parameters ξ and t play different roles: ξ is the parameter on
the base of the family and t is the parameter on each fiber of the family. However, to study
envelopes of tangential families we do not need to distinguish the parameters. In this case
we will use the notation (s, t) instead of (ξ, t) for the parameters, keeping the letter ξ for the
variable on the support.

Let us denote by Diff(R2, 0) the group of the diffeomorphism germs of the plane keeping
fixed the origin, and by A the direct product Diff(R2, 0)×Diff(R2, 0). Consider the subgroup
Aξ of A , formed by the diffeomorphism germs (ϕ, ψ) ∈ A such that ϕ is fibered with respect
to the first variable, that is of the form

(ξ, t) 7→ (Ξ(ξ), T (ξ, t)) .

Then the groups Aξ and A act on (m2)
2 by the rule

(ϕ, ψ) · f := ψ ◦ f ◦ ϕ−1

(this means changing the coordinate systems in the source and in the target of the map
germ).

Definition. Two map germs f, g ∈ (m2)
2 are Left-Right equivalent, or A -equivalent, if they

belong to the same A -orbit, that is, if there exists a commutative diagram

(R2, 0)
f−−−→ (R2, 0)





y





y

(R2, 0)
g−−−→ (R2, 0)

in which the vertical arrows are diffeomorphism germs. Similarly, f and g are fibered Left-
Right equivalent, or Aξ-equivalent, if they belong to the same Aξ-orbit.

Definition. The singularity of a tangential family f ∈ X0 is its A -equivalence class.

Remark. The set X0 is Aξ-invariant being not A -invariant:

Aξ ·X0 = X0 , A ·X0 6= X0 .

Indeed, for every f ∈ X0, the orbit A ·f contains map germs not defining tangential families:
A · f 6⊂ X0.

Example 1.2.4. The map germ parameterizing the family of the tangent lines of a parabola,
considered in Example 1.2.1, is A -equivalent to the map germ (ξ, t) 7→ (ξ, t2). This germ is
not a parameterization of a tangential family.
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If two tangential family germs are Aξ-equivalent, then there exists a diffeomorphism of the
plane sending the curves of the first family into those of the second family. This does not hold
in general if the two families are A -equivalent, being not Aξ-equivalent. This is the reason
why in order to classify tangential family germs it is natural to consider the Aξ-equivalence
instead of A -equivalence.

Remark. V.I. Arnold showed (see [2], [3] and [4]) that every generic 1-parameter family of
(possibly singular) plane curves, near a regular point of its envelope, is Aξ-equivalent to one
of the following three normal forms:

(a) (ξ, t) 7→ (ξ + t, t2),

(b) (ξ, t) 7→ (ξ + ξt+ t3, t2),

(c) (ξ, t) 7→ (t, (ξ + t2)2).

The family germs parameterized by these normal forms in the plane {x, y} are depicted in
figure 1.4. The envelopes of these families are the lines y = 0. Note that only the families

(a) (b) (c)

Figure 1.4: Generic families of curves near a regular point of the envelope.

which are Aξ-equivalent to the normal form (a) are tangential families. The converse is
discussed at the end of the next section.

In order to classify tangential family germs with respect to their envelopes, we can con-
sider A -equivalence instead of Aξ-equivalence, since the envelope of a tangential family is
diffeomorphic to the critical value set of every map germ A -equivalent to any of its param-
eterizations. In particular, envelopes of A -equivalent tangential families are diffeomorphic.

Definition. We denote by X ⊂ (m2)
2 the set of all the map germs which are A -equivalent

to tangential family germs:

X :=
⋃

f∈X0

(A · f) .

Note that X is invariant under the action of the Left–Right equivalence: A · X = X.
The set X is the union of A -orbits, which are immersed submanifolds. Their smoothness
has to be understood as the smoothness of their restrictions to every jet space JN(R2,R2),
endowed with the standard C N topology. Indeed, the action of A on (m2)

2 gives rise to the
quotient action of A N on JN(R2,R2), where A N is the group of N -jets at (0, 0) of pairs of
local diffeomorphisms. Since A N is a Lie group acting algebraically on the finite dimensional
space JN(R2,R2), its orbits are immersed submanifolds (see [26]).
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1.2.3 Tangential family germs of small codimension

In this section we study the A -orbits in the set X of small codimension. In order to do this,
we introduce first some definitions.

Definition. Given a tangential family germ, the fiber π−1
2 (0, 0) defines a unique character-

istic direction in the tangent plane to the family graph at the origin, that we call the vertical
direction.

Let f̂ be a mapping from the plane to the plane, which germ at the origin f belongs to
X0. A branch passing through the origin of the criminant set of the tangential family germ
f is any irreducible component of the restriction of the f̂ -critical set to an arbitrary small
neighborhood of the origin.

Lemma 1.2.1. Given any tangential family, the branch of its criminant set, whose projection
in the plane is the support of the family, is non vertical.

An example of the statement of Lemma 1.2.1 is shown in figure 1.5. The proof is given
in section 1.4.1.

O

vertical direction

x

q = constq ∈ γ

O
x

y

γ

π2

Φ

TOΦ

Figure 1.5: The vertical direction.

Definition. A tangential family germ is said to be of first type if its criminant set has only
one branch at the origin; the germ is said to be of second type if its criminant set has exactly
two branches passing through the origin and these branches are smooth, non vertical and
transversal one to the other.

We point out that in the preceding definition one has to count the envelope branches with
their multiplicity.

Example 1.2.5. The family of the tangent lines of y = x2 is of first type at every point of
the parabola. The family of tangent lines of y = x3 and the tangential family of Example
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1.2.2 are of second type at the origin. The tangential family germ parameterized near the
origin by the map germ

(ξ, t) 7→ (ξ + t, t4 + 4t2ξ2)

is not of first neither of second type. Indeed, its criminant set has three branches meeting
the origin, namely, the support y = 0 and the origin (0, 0) counted twice, corresponding to
the two complex branches of equations t = (1± i)ξ.

The type of a tangential family germ does not depend on the choice of its parameterization
but only on its A -orbit: if f ∈ X0 is of first or second type, then every element in (A ·f)∩X0

is of the same type.
The next statement is a geometric characterization of the first and second type tangential

families. The proof is given in section 1.4.1.

Proposition 1.2.1. A tangential family germ at O is of first type if and only if all the family
curves tangent to the support near O have tangency order 1. If a tangential family germ is
of second type at O, then the family curve, tangent to the support at O, has tangency order
greater than 1 (the tangency order of the other family curves close to this one being 1).

Let us denote respectively by I and II the subsets of X formed by the map germs which
are A -equivalent to first and second type tangential family germs respectively.

Theorem 1.2.1. The sets I and II define two singularities of tangential family germs, whose
representatives are listed in the table below, together with their extended codimensions and
the codimensions of the corresponding A -orbits in (m2)

2 (cf. section 1.4.2):

Singularity Representative Codime Codim

I fI(s, t) := (s+ t, t2) 0 1
II fII(s, t) := (s+ t, st2) 1 3

Moreover, all the other A -orbits in X have codimension at least 4 in (m2)
2.

The proof is in section 1.4.2. Theorem 1.2.1 has the following consequences.

Corollary 1.2.1. The tangential family germs of fixed type are A -equivalent.

Corollary 1.2.2. The envelope of any tangential family germ of first type is smooth, while
that of any tangential family germ of second type has a second order self-tangency.

Let us end this section discussing the action of Aξ on X0 ⊂ X. Theorem 1.2.1 does not
hold if we consider the Aξ-equivalence instead of the A -equivalence; indeed, the tangential
family germs of second type do not define an Aξ-singularity.

Example 1.2.6. The tangential families considered in Examples 1.2.2 and 1.2.3 are A -
equivalent but not Aξ-equivalent.
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Figure 1.6: The tangential family germ representing the singularity II.

However, the two map germs in Theorem 1.2.1 are tangential family germs, taking s = ξ
as distinguished parameter. In particular, the representative of the singularity I is one of
Arnold’s normal forms discussed in section 1.2.2 (the family (a) in figure 1.4). The tangential
family germ representing the singularity II is shown in figure 1.6.

Therefore, a 1-parameter family of plane curves is Aξ-equivalent to the map germ rep-
resenting the orbit I if and only if it is a tangential family germ of first type, that is, if it
belongs to the A -orbit I. In other words, the set I ∩ X0 is the intersection of an Aξ-orbit
with X0.

On the other hand, it turns out that the set II ∩ X0 contains infinitely many Aξ-orbits,
each one being of infinite codimension.

1.2.4 Tangential deformations and envelope stability

In this section we introduce the definition of tangential deformation and we state our main
result.

In some situations, as for instance in the study of geodesic tangential family evolution
under small perturbations of the metric, it would be natural to perturb a tangential family
only among tangential families.

Definition. A p-parameter tangential deformation of a tangential family germ f ∈ X0 is a
p-parameter family of mappings

{Fλ : R2 → R2, λ ∈ Rp} ,

such that the germ at the origin of F0 is f and Fλ parameterizes a tangential family whenever
|λ| is small enough.

For example, the translation of the origin is a 2-parameter tangential deformation. Note
that the support of a tangential family does not change, up to diffeomorphisms, under tan-
gential deformations of the family.



10 Stable tangential families and their envelopes

Definition. A tangential family singularity is said to be stable if for every representative
f of it, and for every tangential deformation {Fλ : λ ∈ Rp} of f , the tangential family
parameterized by Fλ has a singularity A -equivalent to that of f at some λ-depending point
arbitrary close to the origin for λ small enough.

We may state now our main result.

Theorem 1.2.2. The singularities I and II are the only stable singularities of tangential
family germs under small tangential deformations.

We have the following consequence of Theorem 1.2.2.

Corollary. The envelopes of the tangential family germs of first and second type are stable
under small tangential deformations.

The stability of the envelope second order self-tangency singularity is understood here as
follows. Let {Fλ : λ ∈ Rp} be a tangential deformation of f ∈ II∩X0 and let U be an arbitrary
small neighborhood of (0, 0) in R2. Then the envelope of the tangential family parameterized
by Fλ has a second order self-tangency at some λ-depending and family-depending point of
U , provided that λ is small enough.

According to Thom, the second order self-tangency is not a stable envelope singularity
under general deformations. This means that there exists deformations of singularity II,
which are not of tangential type, destroying the envelope second order self-tangency.

In section 1.4.2 we will prove the next result.

Theorem 1.2.3. The mapping F : R2 × R→ R2, defined by

F (s, t;λ) := (s+ t, λs+ st2) ,

is an A -miniversal deformation of the mapping F0, whose germ at the origin is fII(s, t).

The definition of A -miniversal deformation is recalled in section 1.4.2.
Theorem 1.2.3 allows us to prove the stability of the singularity II (the stability of the

map germ fI, which singularity is a fold, being well known). The direction (0, s) is transversal
to the A -orbit II at the point fII. To see this, denote by Fλ the map obtained from F fixing
the parameter value λ. For λ < 0 the critical value set of Fλ has two smooth branches, while
for λ > 0 it has two branches, having each one a semicubic cusp (see figure 1.7).

Figure 1.7: The “bec à bec” perestroika.

Such a perestroika is called “bec à bec” in Thom’s notation. In particular, F is not a
tangential deformation. This proves the announced transversality and that the singularity II
is stable under small tangential deformations.

The fact that the only stable singularities are I and II will be proven in section 1.4.3.
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Remark. The critical value sets of Fλ form a surface in the three-dimensional space {x, y, λ},
diffeomorphic to a semicubical edge –this holds for any A -miniversal deformation of any
element of II. In suitable coordinates {u, v, w}, the bec à bec perestroika can be described
as the metamorphose of the level sets of the function w2 − u on the cuspidal edge u3 = v2

near the critical value 0, as shown in figure 1.8 (see [3], example 4.6).

w

v

−u

w

v

−u

w

v

−u

Figure 1.8: Level sets w2 − u = c on the cuspidal edge u3 = v2 (c < 0 on the left, c = 0 in
the center and c > 0 on the right).

1.3 Examples and applications

The simplest example of a tangential family is given by the tangent lines of a curve. We
generalize it by replacing the Euclidean structure (defining usual lines) by a local projective
structure or a Riemannian structure. In this way we may associate to each curve a tangential
family, formed by the straight tangent lines or the tangent geodesic of the curve for the given
structure.

The general results concerning envelopes of tangential family germs and their stability
stated above provide some new results the applications discussed in this section. In particular,
we obtain in section 1.3.3 a generalization to the envelopes of the Last Geometric Theorem
of Jacobi and of the conjectures related to it.

To apply the results of section 1.2, we use the fact that the families defined as explained
below and their deformations admit a smooth parameterization. This is a consequence of
the Regularity Theorem for the solutions of second order differential equations with respect
to the initial conditions, and its variants involving parameters and systems of equations.

1.3.1 Projective tangential families

A (local) projective structure is the structure given, at any point of the plane near the origin,
by a second order differential equation (see [4]). The graphs of its solutions are, by definition,
the straight lines for this structure. For instance, the standard projective structure in the
Euclidean plane is defined by the equation y′′ = 0. A projective structure is said to be flat if
there exists a change of local coordinates bringing it to the standard projective structure.

Remark. Let us fix a flat projective structure. The envelope of the straight lines tangent to
a curve, having an inflection point, contains the support curve and the straight line, tangent
to it at the inflection point. In particular, the envelope is not geometric.
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Let us consider a curve γ in the plane R2, endowed with a projective structure. The
straight lines tangent to γ define a tangential family, that we call the projective tangential
family of support γ.

Corollary. Let us consider the germ of the projective tangential family of support γ at a
point P ∈ γ. If P is an ordinary point of γ, the family envelope is the germ of γ at P .
If P is a simple inflection point of γ, then the family envelope has two branches passing
through P (one of which is the support); these two branches have generically a second order
self-tangency at P : the curve germs for which the claim does not hold are contained in the
union of two codimension 1 submanifolds in the space of the curve germs having an inflection
point at P .

Remark. This Corollary provides a criterion distinguishing non flat projective structures.
Indeed, suppose that there exists a curve, having a simple inflection point, such that the
envelope of its tangent straight lines is geometric. Then the projective structure is not flat.

Consider a projective tangential family of support γ. A deformation of the projective
structure induces a tangential deformation of the projective family. In this setting, Theorem
1.2.2 reads as follows.

Corollary. The second order self-tangency of the envelope of any projective tangential
family germ is stable under small perturbations of the projective structure.

1.3.2 Geodesic tangential families

Let γ be a curve in a Riemannian surface. The geodesics tangent to γ form a tangential
family, that we call the geodesic tangential family of support γ.

Corollary. Let us consider the geodesic tangential family germ at a point P of its support
γ. If P is an ordinary point of γ, then the envelope of the family germ is the germ of γ
at P . If P is a simple inflection point of γ, then the envelope of the family germ has two
branches passing through the point P (one of which is the family support). Generically, these
two branches have a second order self-tangency at P : the curve germs γ for which the claim
does not hold are contained in the union of two codimension 1 submanifolds in the space of
all the curve germs having an inflection point at P .

Perturbations of the metric of the Riemannian surface induce tangential deformations on
geodesic tangential families.

Corollary. The second order self-tangencies of envelopes of geodesic tangential family
germs in a Riemannian surface are stable under small deformations of the metric.

Corollary. The second order self-tangencies of envelopes of geodesic tangential family
germs in a surface in the Euclidean three-space are stable under small deformations of the
surface (equipped with the induced metric).

We point out that the preceding Corollaries of Theorems 1.2.1 and 1.2.2 hold only in the
local setting.
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1.3.3 A global geodesic tangential family on the sphere

In this section we discuss an example of a global geodesic tangential family whose envelope
has infinitely many branches.

Let S2 be the radius 1 two-sphere in the Euclidean three-space, centered at the origin.
We consider S2 equipped with the induced metric. Let γr ⊂ S2 be a circle of radius r < 1 in
R3. Then consider the geodesic tangential family of support γr, depicted in figure 1.9.

S2
γr

−γr
S

N

Figure 1.9: The geodesic tangential family of a spherical circle.

Let us denote by
f : S1 × R→ S2

a global parameterization of this family, where for every ξ ∈ S1 ' γr ⊂ S2, the map
f(ξ, ·) : R → S2 is a 2π-periodical parameterization of the S2 great circle passing through
the point ξ. Therefore, the solutions of the equation detDf(ξ, t) = 0 are the curves Cn :=
(ξ ∈ S1, t = nπ), n ∈ Z, in the space S1 × R. Hence, the envelope of the family f has two
branches, namely γr and its opposite circle −γr, each one having infinite multiplicity. Let
us denote by En := f(Cn) the images of the branches Cn of the criminant set of the family.
Note that En = (−1)nγr.

Let S̃2 be a small perturbation of the sphere, for instance an ellipsoid. Such a deformation
induces a tangential deformation on the geodesic tangential family. Let us denote by γ̃r the
support of the perturbed family, which is a small perturbation of the circle γr, and by

f̃ : S1 × R→ S̃2

a global parameterization of the perturbed geodesic tangential family.
Let us fix N,M ∈ N arbitrary large, N < M . If the perturbation of the sphere is small

enough (the required smallness depending on M), the solutions C̃n of detDf̃ = 0 are pairwise
disjoint small perturbations of the solutions Cn of detDf = 0, for every n < M .

Definition. The envelope branch Ẽn = f̃(C̃n) will be called the order n envelope of γ̃r.

Each one of these envelopes is a small perturbation of the corresponding branch En of the
f -envelope. Since the unperturbed geodesic tangential family is of first type at every point
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of its envelope, by Theorem 1.2.2 the perturbed family is of first type at any point of the
envelope branches Ẽn for every |n| < N , provided that the perturbation is small enough. In
such a global setting, self-intersection singularities between different branches may arise.

The envelopes Ẽn of γ̃r can be viewed as caustics, which are the images under a geodesic
flow of the preceding envelopes Ẽn−1. Therefore generic singularities of spherical caustics,
such as semicubic cusps and transversal self-intersection, may arise in the envelopes Ẽn, when
N < n < M .

Theorem 1.3.1. For every fixed r > 0 and N,M ∈ N, the envelopes En of order |n| < N ,
are smooth closed spherical curves, and the envelopes En of order |n| < M , are spherical
caustics, whose Maslov number is equal to zero, provided that S̃2 is close enough to S2.

We consider now a fixed arbitrary small perturbation S̃2 of the sphere, and we shrink the
initial support curve γr toward the north pole; in other words, we consider the limit situation
as r → 0.

We shall discuss first the unperturbed family. When γr reduces to the north pole, the
geodesic tangential family becomes the sphere meridian family. All the envelope branches
shrink to a point, namely the even order branches to the north pole, the odd order branches
to the south pole.

On the deformed sphere, when r becomes arbitrary small, the support γ̃r shrinks to a
point P and the envelope branches Ẽn, defined for n < M , approach the caustics of order n
associated to this point. Let us recall that the caustic of a point on a Riemannian surface is
the set of the intersection points of infinitesimally close geodesics starting at this point, see
[7], i.e. the set of conjugated points of the initial point.

If the perturbed sphere S̃2 is a generic convex surface close enough to S2, then the Last
Geometrical Theorem of Jacobi states that the first caustic of any generic point has at least
4 cusps (see [9]). Thus, we have the following.

Theorem 1.3.2. If r is small enough, then the first order envelope of γ̃r has at least four
cusps, provided that S̃ is a generic convex surface close to the sphere.

P

Ẽ1

S̃2

caustic

γ̃r for r → 0

Figure 1.10: The Last Geometrical Theorem of Jacobi for envelopes.
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The situation of Theorem 1.3.2 is illustrated in figure 1.10. Conjecturally, every caustic
of a generic point on a generic convex surface has at least four cusps, but it is unproved
(to my knowledge) even for the surfaces close to a sphere. More precisely, for a fixed n,
the caustic of order n of a point has at least four cusps, provided that the perturbation is
small enough. But whether it holds simultaneously for all the values n provided that the
perturbation is small enough is still a conjecture (see [9]). This conjecture can be generalized
to the envelopes of closed convex smooth curves of small length on convex surfaces.

1.4 Proof of Theorems 1.2.1, 1.2.2 and 1.2.3

1.4.1 Prenormal forms of tangential families

Let us start reducing every tangential family germ to a map germ, depending on some
parameters. In order to do this, let us define as follows three real coefficients k0, k1 and α,
depending on the family. Let us consider a tangential family in the plane R2. Let P be the
point of the family support we want to study. Let us fix a new coordinate system {x, y} in
the plane, centered at P , in which the equation of the support is y = 0 near the origin.

Consider the family curve which is tangent to the support at (ξ, 0). Then define k0 and
k1 by the expansion k0 + k1ξ + o(ξ) of half of its curvature at this point (for ξ → 0). The
coefficient α is similarly defined by the expansion k0t

2 +αt3 + o(t3) for t→ 0 of the function
whose graph is the family curve which is tangent to the support at the origin. We will denote
by δ(n) any function in two variables with vanishing n-jet at the origin.

Theorem 1.4.1. Every tangential family germ is A -equivalent to a map germ of the form

(s, t) 7→
(

s, k0t
2 + (α− k1)t

3 + k1t
2s+ t2 · δ(1)

)

,

where k0, k1 and α are the coefficients, depending on the family, defined above.

The map germ in Theorem 1.4.1 will be called a prenormal form of the family. Note that
the prenormal form does not belong to the set X0.

Proof. For any given tangential family, let us choose an orthogonal coordinate system as in
the above definition of the coefficients k0, k1 and α. The map ξ 7→ (ξ, 0) parameterizes the
support. For any small enough value of ξ, consider the family curve corresponding to the
support point (ξ, 0). Near this point, the curve can be parameterized by its projection ξ + t
on the x-axis. In this manner we get a parameterization of the family, that can be written as

(ξ, t) 7→
(

t+ ξ, k0t
2 + k1t

2ξ + αt3 + t2 · δ(1)
)

. (1.1)

Taking in this map s := t + ξ and t as new parameters, we obtain the map germ in the
statement.

We prove now Lemma 1.2.1 (announced in section 1.2.3), stating that for every tangential
family germ, the branch of its criminant set, whose projection in the plane is the family
support, is non vertical (i.e. it is transversal to the vertical direction defined in section
1.2.3).
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Proof of Lemma 1.2.1. Let us consider a tangential family germ of support γ, parameterized
by a map germ f of the form (1.1). Consider in the three-space γ×R2 the local coordinates
{ξ, x, y}, where {x, y} is the coordinate system fixed on the plane. Then the family graph Φ
is parameterized near the origin O = (0, 0, 0) by the map germ (ξ, t) 7→ (ξ, f(ξ, t)), and its
tangent space TOΦ at the origin has equation y = 0. In the local coordinates, the projection
π2 : Φ → R2 writes as π2(ξ, f(ξ, t)) = f(ξ, t). Therefore, the vertical direction in TOΦ is
(1, 0, 0). On the other hand, γ is parameterized by ξ 7→ f(ξ, 0), so the velocity at the origin
of the corresponding criminant branch is (1, 1, 0). This proves that this branch is non vertical
at O.

The type of a tangential family germ is completely determined by the coefficients k0, k1

and α of its prenormal form.

Proposition 1.4.1. A tangential family germ is of first type if and only if k0 6= 0; it is of
second type if and only if k0 = 0 and k1 6= 0, α.

Proof. Let us consider a tangential family of support γ and graph Φ. Let f be the prenormal
form of the family. Then Φ is parameterized by

(s, t) 7→
(

s− t, s, f(s, t)
)

,

and the vertical direction in TOΦ is (1, 0, 0). The equation detDf(s, t) = 0 can be written as

2k0t+ 2k1st + 3(α− k1)t
2 + t · δ(1) = 0 .

The solution t = 0 defines the criminant set branch, whose projection is the family support.
Dividing the equation by t we get

2k0 + 2k1s+ 3(α− k1)t+ δ(1) = 0 . (1.2)

This equation has at least a solution passing through the origin if and only if k0 = 0. Hence,
the tangential family is of first type if and only if k0 6= 0.

Assume from now on k0 = 0. In this case equation (1.2) has exactly one smooth solution
passing through (0, 0) if and only if at least one of the coefficients k1 and (α − k1) is non
zero. If k1 6= 0, the solution is the graph of a function

S(t) = −3(α− k1)

2k1
t+ o(t) , for t→ 0 .

The velocity in TOΦ of the corresponding branch is (S ′(0)− 1, S ′(0), 0), which is non vertical
if and only if S ′(0) 6= 0, that is, α 6= k1 and it is transversal to the the first criminant branch
velocity (1, 1, 0). On the other hand, assume α 6= k1. In this case the solution of equation
(1.2) is the graph of a function

T (s) = − 2k1

3(α− k1)
s + o(s) , for s→ 0 .

The velocity of the corresponding branch in TOΦ is (1 − T ′(0), 1, 0), which is non vertical.
This branch is tangent to the first criminant branch if and only if k1 = 0. Therefore, the
tangential family parameterized by f (in the case k0 = 0) is of second type if and only if
k1 6= 0, α. The Proposition is now proven.

Taking into account the geometrical meaning of the coefficients, Proposition 1.2.1 follows
from Proposition 1.4.1.



Chapter 1 §4.2. Preliminary results of Singularity Theory 17

1.4.2 Preliminary results of Singularity Theory

The proof of Theorems 1.2.1 and 1.2.3 is based on the reduction of the prenormal form to a
polynomial map germ and the computation of the corresponding A -miniversal deformation.
In order to do this, first we recall some facts on Singularity Theory of smooth maps. For a
complete presentation of this theory, we refer the reader to [11], [13] or [26].

As before, let us denote respectively by s, t and x, y the coordinates in the source and in
the target space of a map germ f : (R2, 0) → (R2, 0). Such a germ defines, by the formula
f ∗g := g ◦ f , a homomorphism from the ring Ex,y of the function germs on the target to the
ring Es,t of the function germs on the source. Hence we can consider every Es,t-module as an
Ex,y-module via this homomorphism.

Let 〈f〉 ⊂ Es,t be the ideal generated by the components of f (for the structure of
Es,t-module). Let us recall the well known Preparation Theorem of Mather-Malgrange-
Weierstrass, in the case we deal with: the module Es,t is finitely generated as Ex,y-module
if and only if the quotient space Es,t/〈f〉 is a real vector space of finite dimension; moreover,
a basis of the vector space provides a generator system of the module. From now on, we shall
use the notation ms,t instead of m2 to point out that the variables of the considered germs
are s and t.

The extended tangent space at f to its orbit A · f is the subspace of E 2
s,t defined by

TeA (f) := Es,t · J(f) + f ∗(Ex,y) · R2 ,

where J(f) is the real vector space spanned by the first order partial derivatives of f . In a
similar way we define the tangent space at f to its orbit A · f by

TA (f) := ms,t · J(f) + f ∗(mx,y) ·R2 .

The extended codimension (resp., the codimension) of a map germ f is the dimension of the
quotient space E

2
s,t/TeA (f) (resp., (ms,t)

2/TA (f)) as a real vector space.
It is well known that the map germs of finite (extended) codimension are finitely deter-

mined, i.e. A -equivalent to their Taylor’s polynomial of some finite order (Finite Determi-
nacy Theorem). In [26] is proven that the restriction of the tangent space TA (f) to every
N-jet space JN (R2,R2) is equal to the usual tangent space in this space of the restriction of
the orbit A · f at the point jNf . Thus, the codimension in (ms,t)

2 of the orbit A · f is equal
to the codimension of the map germ f .

Consider an `-parameter deformation F of a mapping germ f ∈ (ms,t)
2, i.e., a family of

maps
{Fλ : R2 → R2, λ ∈ R`} ,

where Fλ := F (·;λ). A deformation A -equivalent to F is, by definition, a family {gλFλ},
where {gλ} is some deformation of the identity element of the group A .

Let h : (Rm, 0)→ (R`, 0) be a smooth map germ. By definition, the deformation induced
from F by the map h is the m-parameter deformation {Fh(λ)}. A deformation F of the germ
f is said to be A -versal if any deformation of f is A -equivalent to a deformation induced
from F . This means that every deformation F ′ of f can be represented as

F ′(s, t;µ) ≡ ψ(F (ϕ(s, t;µ), h(µ)), µ) ,
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where ϕ(s, t;µ) and ψ(x, y;µ) are deformations of the identity diffeomorphisms of the source
R2 and target R2, respectively (it is not required that ϕ(0;µ) = 0 and ϕ(0;µ) = 0 for µ 6= 0).
An A -versal deformation for which the base has the smallest possible dimension is called
miniversal.

Let F be a deformation of f and let λ1, . . . , λ` be coordinates in its base, λ(0) = 0.
Consider the initial velocities of F :

Ḟi = ∂λi
F (s, t; 0) , i = 1, . . . , ` .

The deformation F is said to be infinitesimally A -versal if its initial velocity vectors together
with the extended tangent space TeA (f) to f span the full extended space E 2

s,t of variations
of f . In other words, the map λ 7→ Fλ of the base (R`, 0) of the deformation into (E 2

s,t, f)
is required to be transverse to the Ae-orbit of f ; Ae is the pseudogroup Re ×Le, which is
the product of the pseudogroups Re and Le of local diffeomorphisms of the source space and
the target space. The condition of infinitesimal A -versality amount to the following relation
being fulfilled:

E
2
s,t = TeA (f) + R ·

{

Ḟ1, . . . , Ḟ`

}

The Versality Theorem states that a deformation is A -versal if and only if it is infinitesimally
A -versal. Moreover a uniqueness theorem also holds: any `-parameter A -versal deforma-
tion of f is A -equivalent to the deformation induced from any other `-parameter A -versal
deformation of f by a diffeomorphic mapping of the bases.

1.4.3 Proof of Theorem 1.2.1, 1.2.1 and 1.2.3

We can now start the proof of Theorem 1.2.1. We have to show that any map germ belonging
to I or II is A -equivalent to the map germs fI or fII respectively. The proof is, in both cases,
divided into two steps. The first one is the formal A -equivalence between fI (resp., fII)
and any germ in I (resp., II); let us recall that two map germs are formally A -equivalent
if they are A -equivalent modulo arbitrary large order terms. The second step is to verify
that the map germ has finite codimension. In this case the formal A -equivalence implies the
A -equivalence.

Let us begin bringing the map germs of the set I to the map germ h1(s, t) := (s, t2), which
is A -equivalent to

fI(s, t) = (s+ t, t2) .

Proposition 1.4.2. Every element of the set I is A -equivalent to h1.

Proof. All the prenormal forms of first type tangential family germs are A -equivalent to map
germs of the form (s, t2 + δ(2)). Consider now such a germ h̃1, that can be written as

(s, t) 7→
(

s, t2 + Pr(s, t) + δ(r)
)

,

where Pr is a homogeneous polynomial
∑r

j=0 bjs
jtr−j of order r > 2, and define

ϕ(s, t) :=

(

s, t− 1

2

r−1
∑

j=0

bjs
jtr−j−1

)

, ψ(x, y) := (x, y − brxr) .
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Then
(

ψ ◦ h̃1 ◦ ϕ
)

(s, t) =
(

s, t2 + δ(r)
)

. Iterating this argument, we obtain that the initial
prenormal form is formally A -equivalent to (s, t) 7→ (s, t2). Finally, the formal A -equivalence
implies the A -equivalence, due to the stability of the fold h1, meaning that the extended
codimension of h1 is zero.

We end the study of the orbit I by the computation of its codimension, its extended
codimension being zero, due to the fold stabity.

Proposition 1.4.3. The codimension of the map germ h1 is equal to 1.

Proof. By the Preparation Theorem, ms,t is generated, as Ex,y-module, by the map germs
s, t, t2. Since ∂sh1 = (1, 0) and ∂th1 = (0, 2t), the tangent space TA (h1) contains all the
vector monomials (sptq, 0) and (0, sptq) for p+ q ≥ 1 except (0, t). Therefore we have:

(ms,t)
2 = TA (h1)⊕ R ·

(

0
t

)

,

so the codimension of h1 is equal to 1.

Let us now prove that all the map germs in the set II are A -equivalent to the map germ
h2(s, t) := (s, t2(s+ t)), and then to the map germ

fII(s, t) = (s+ t, st2) .

Proposition 1.4.4. Every map germ in II is formally A -equivalent to h2.

Proof. By Theorem 1.4.1 and Proposition 1.4.1, every element of II is A -equivalent to a map
germ

(s, t) 7→ (s, (α− k1)t
3 + k1st

2 + t2 · δ(1)
)

, k1 6= 0, α .

which is A -equivalent, by rescaling, to a map germ h̃2 of the form

(s, t) 7→
(

s, t2(s+ t) + Pr(s, t) + δ(r)
)

,

where Pr is a homogeneous polynomial of order r > 3. We shall now prove that every map
germ of this form is A -equivalent to a map germ of the form (s, t) 7→

(

s, t2(s+t)+δ(r)
)

. This
equivalence provides by induction the formal A -equivalence between the initial prenormal
form and h2, proving the Proposition.

We can kill the coefficient of the monomial sr−jtj in Pr for any fixed j ∈ {2, . . . , r},
changing only the coefficient of sr−j+1tj−1 and coefficients of some higher order terms in the
second component of h̃2. This is made by the coordinate change

(s, t) 7→ (s, t+ csr−jsj−2) ,

for a suitable c ∈ R. Up to such coordinate changes, we may assume

Pr(s, t) = Asr−1t+Bsr .

Moreover, we can also suppose B = 0, up to the coordinate change

(x, y) 7→ (x, y − Bxr) .
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Now set
ϕ(s, t) := (s+ 3Asr−2/2, t− Asr−2/2) ;

then we have
(

ĥ2 ◦ ϕ
)

(s, t) =
(

s+ Asr−2, t2(s+ t) + δ(r)
)

.

Such a germ is formally A -equivalent to a germ of the same form with A = 0.

Proposition 1.4.5. The extended codimension and the codimension of the map germ h2 are
equal to 1 and 3.

To prove this Proposition we need the following Lemma.

Lemma 1.4.1. All the vector monomials (sptq, 0) for p + q ≥ 1 and (0, sptq) for p + q ≥ 3
belong to the tangent space TA (h2).

Proof. The tangent space TA (h2) contains the following vectors:

(

s
st2

)

,

(

t
t3

)

,

(

0
3t3 + 2st2

)

,

(

0
3st2 + 2ts2

)

,

(

s
0

)

,

(

0
s

)

,

(

t3 + st2

0

)

,

(

0
t3 + st2

)

.

Hence, the vector monomials {(sptq, 0) : p + q = 1} and {(0, sitj) : i + j = 3} belong to the
tangent space. Now assume that

{(sptq, 0) : p+ q = n} ∪ {(0, sitj) : i+ j = n + 2} ⊂ TA (h2) (1.3)

for some fixed n ≥ 1. Since the tangent space is an Ex,y-module, this implies that (sp+1tq, 0)
for p+ q = n and (0, si+1tj) for i+ j = n+ 2 belong to the tangent space. Moreover we have

sptq∂sh2 =

(

tn+1

tn+3

)

, sptq∂th2 =

(

0
3tn+3 + 2stn+2

)

.

This proves that also (tn+1, 0) and (0, tn+3) lie in the tangent space, so inclusion (1.3) holds
for n + 1.

Proof of Proposition 1.4.5. We have

〈f〉Es,t
= 〈s, t3 + st2〉Es,t

= 〈s, t3〉Es,t
,

so the real vector space ms,t/(〈f〉·ms,t) is generated by s, t, t2, t3. By the Preparation Theorem,
we have

(ms,t)
2 = TA (h2)⊕ Es,t ·

{(

0
t

)

,

(

0
t2

)}

, (1.4)

since (s, 0), (t, 0), (t2, 0), (t3, 0) and (0, t3) belong to the tangent space due to Lemma 1.4.1,
together with (0, s). This Lemma implies also

h∗2(mx,y) ·
{(

0
t

)

,

(

0
t2

)}

= TA (h2)⊕ R ·
(

0
st

)

.
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Thus, equation (1.4) can be written as follows

(ms,t)
2 = TA (h2)⊕ R ·

{(

0
t

)

,

(

0
st

)

,

(

0
t2

)}

. (1.5)

So the codimension of h2 is equal to 3.
We obtain from equality (1.5) and Lemma 1.4.1 that

E
2
s,t = TeA (h2)⊕ R ·

(

0
t

)

. (1.6)

Indeed (1, 0), (0, 1), (0, t2) = ∂sh2− (1, 0) and (0, 2st) = ∂th2− (0, t2) belong to the extended
tangent space. Hence the extended codimension of h2 is 1.

By Proposition 1.4.1, the other A -orbits in X (except I) are contained in the closure of
the orbit II, so their codimension is at least 4. This completes the proof of Theorem 1.2.1.

Equality (1.6) implies that the mapping R2 × R→ R2, defined by

(s, t;µ) 7→ (s, µt+ t3 + st2) ,

is an A -miniversal deformation of the map germ h2. Thus, the mapping

(s, t;λ) 7→ (s+ t, λs+ st2)

is an A -miniversal deformation of the map germ fII. Theorem 1.2.3 is proven.
Finally, it remains to complete the proof of Theorem 1.2.2: for this, we have to show that

the singularities I and II are the only stable singularities of tangential family germs. Let us
consider a tangential family germ f on prenormal form. Then the deformation f+λ(0, t3+t2s)
is tangential, and it is not trivial whenever f is not of first nor second type. Indeed, for every
small enough λ, the deformed family has a singularity of type II (Proposition 1.4.1). This
proves that every tangential family germ, stable under small tangential deformations, has a
singularity I or II. The proof of Theorem 1.2.2 is now completed.
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Chapter 2

Simple tangential families and
perestroikas of their envelopes

Abstract. Tangential families are 1-parameter families of rays emanating tangentially from given

curves. We classify tangential family germs according to their envelope degeneracies: we prove that

there are two infinite series and four sporadic simple tangential families (together with the two stable

singularities studied in [17]). We give their normal forms and miniversal tangential deformations,

and we describe the corresponding envelope perestroikas of small codimension. We also discuss

envelope singularities of some non simple tangential families.

2.1 Introduction

In [17] we introduced a special class of 1-parameter families of smooth plane curves, called
tangential families. A tangential family is a 1-parameter family of rays emanating tangentially
from a curve. In [15] and [16] we have considered also tangential families with singular support
(the singularity being a semicubic cusp).

Tangential families naturally arise in the Geometry of Caustics (see for example [10]) and
in Differential Geometry. For instance, every smooth curve in a Riemannian surface defines
the tangential family of its tangent geodesics.

The theory of tangential families is related to Singularity Theory, namely to the classical
theories of Thom and Arnold on envelopes of 1-parameter families of curves. Actually,
Thom proved that the only generic singularities of such envelopes are semicubic cusps and
transversal self-intersections (see [28]). Arnold gave the three normal forms to which is
possible to bring a generic family near a regular point of its envelope by a coordinate change
(see [2], [3]). Tangential family theory is a generalization of envelope theory. Indeed, every
1-parameter family of plane curves is tangential, with respect to every generic point of any
geometric branch of its envelope.

We have shown in [17] that there are exactly two singularities of tangential family germs
which are stable under small tangential deformations (i.e., deformations among tangential
families). We have also proved that the corresponding envelopes are smooth or have a second
order self-tangency.

In this chapter we study the simple singularities of tangential family germs, their miniver-

23
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sal tangential deformations and the corresponding perestroikas occurring to the family en-
velopes.

The chapter is divided into three parts. In the first part we present our results. We prove
that there are two infinite series and four sporadic simple tangential family germs which are
unstable. Our classification is a particular case of the more general classification of simple
projections of surfaces from the space to the plane, due to V. V. Goryunov (see [24], see also
[12]). We give the normal forms and miniversal tangential deformations of simple singularities
of tangential family germs. Moreover we study envelopes of non simple tangential families
in some particular case. In the second part we describe the small codimension perestroikas
occurring to envelopes of simple tangential families under small tangential deformations. In
the last part of the chapter we prove our results.

2.2 Simple singularities of tangential families

Unless otherwise specified, all the objects considered below are supposed real and of class
C ∞; by plane curve we mean an embedded dimension 1 submanifold of R2.

2.2.1 Preliminary results on tangential families

Let us consider a map f : R2 → R2 of the plane R2, whose coordinates are denoted by ξ
and t. Whenever the partial derivative ∂tf vanishes nowhere, such a mapping defines the
1-parameter family of plane curves parameterized by t, indicating the point on the curve,
and indexed by ξ, indicating the curve in the family. The map f is called a parameterization
of the family. We set fξ(t) := f(ξ, t).

Definition. The 1-parameter family parameterized by f is called a tangential family if its
partial derivatives ∂ξf and ∂tf are parallel non zero vectors at every point (ξ, 0), and the
image of the mapping ξ 7→ f(ξ, 0) is a curve, called the support of the family.

In other terms, a family of plane curves, tangent to γ, is a tangential family whenever it
can be parameterized by the tangency points of the family curves with the support.

The graph of such a family is by definition the smooth surface

Φ := {(q, p) : q = f(ξ, 0), p = f(ξ, t), ξ, t ∈ R} ⊂ γ × R2 .

Let us denote by π the projection (q, p) 7→ p of the graph on R2. The criminant set (or
envelope in the source in Thom’s notations) of the tangential family is the critical set of π.
The envelope is the apparent contour of the graph in the plane (i.e. the critical value set of
π). It turns out that the support of the family belong to the family envelope.

Below we will study tangential families near a fixed point of their supports, settled at the
origin. Without loss of generality, we may consider their parameterizations as map germs
(R2, 0)→ (R2, 0). Note that graphs of tangential family germs are smooth.

Let A be the direct product Diff(R2, 0) × Diff(R2, 0), where Diff(R2, 0) is the group of
the diffeomorphism germs of the plane keeping fixed the origin. Denote by mξ,t the space of
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function germs (R2, 0) → (R, 0) in the variables ξ and t. Then A acts on the space (mξ,t)
2

by
(ϕ, ψ) · f := ψ ◦ f ◦ ϕ−1 , (ϕ, ψ) ∈ A , f ∈ (mξ,t)

2 .

Two elements of (mξ,t)
2 are Left-Right equivalent, or A -equivalent, if they belong to the

same orbit under the action of the group A . Thus, the envelopes of A -equivalent tangential
family germs are diffeomorphic.

Let us denote by X0 the subset of (mξ,t)
2 formed by the tangential family germs. The

tangential family singularity of a tangential family f ∈ X0 is by definition its A -equivalence
class.

Given a tangential family, the fiber π−1(0, 0) defines a vertical direction in the tangent
plane of the family graph at the origin of γ × R2.

A branch passing through the origin of the criminant set of a tangential family f is
any irreducible component of the restriction of the critical set of f to an arbitrary small
neighborhood of the origin.

Definition. A tangential family is said to be of first type if its criminant set has only one
branch passing through the origin, of second type if it has exactly two branches passing
through the origin and these branches are smooth, non vertical and transversal one to the
other.

We will denote by X (resp. I, II) the set of all the map germs in (mξ,t)
2 which are A -

equivalent to tangential family germs (resp. tangential family germs of first type, of second
type). By construction, these sets are union of A -orbits, so they are invariant under the
A -action. Note that X is the smallest A -invariant set in (mξ,t)

2 containing the set X0 of
the tangential family germs.

Let us recall that a p-parameter tangential deformation of a tangential family germ f ∈ X0

is a p-parameter family of tangential families, parameterized by a p-parameter family of maps

{Fλ : R2 → R2, λ ∈ Rp} ,

such that the germ of F0 at the origin is f . For instance, the translation of the origin is a
tangential deformation with two parameters.

The singularity of a tangential family germ is said to be stable if for every representative
f of it and for every tangential deformation {Fλ : λ ∈ Rp} of f , the tangential family
parameterized by Fλ has a singularity A -equivalent to that of f at some point arbitrary
close to the origin, for every λ small enough.

We quote now from [17] the main result about stable tangential family germs.

Theorem 2.2.1. The sets I and II defines two singularities, which are all the stable singular-
ities of the tangential families. The table below lists the representatives of these singularities,
their extended codimensions and the codimensions of their orbits in (mξ,t)

2.

Singularity Representative Codime Codim

I (ξ, t2) 0 1
II (ξ, t3 + t2ξ) 1 3
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It follows from the Theorem that the envelope of every first type tangential family germ
is smooth, while that of every second type tangential family germ has a second order self-
tangency (see figure 2.1), and that these envelope singularities are stable under small tan-
gential deformations.

γ

γ

Figure 2.1: Stable tangential family germs of first and second type.

The stability of the envelope second order self-tangency is understood here as follows.
Let {Fλ : λ ∈ Rp} be a tangential deformation of a second type tangential family and let
U be an arbitrary small neighborhood of (0, 0) in R2. Then the envelope of the tangential
family parameterized by Fλ has a second order self-tangency at some λ-dependent and family-
dependent point of U , provided that λ is small enough.

2.2.2 Classification of tangential families

The set X of the map germs A -equivalent to tangential family germs is naturally decomposed
into classes of tangential family singularities, that is, into A -invariant sets, according to the
degeneracies of the corresponding envelopes. We will now define such a decomposition.

Let us recall that for any tangential family f ∈ X, the branch of its criminant set, which
projects into the family support, is never vertical (Lemma 1.2.1 in [17]). Therefore, the
criminant set of any tangential family germ f ∈ X0, which is not of first nor of second type,
realizes one among the following configurations:

(S) the criminant set of f has two (smooth) branches crossing at the origin, one of which
is vertical;

(T) the criminant set of f has two (smooth) branches crossing at the origin, which are
tangent;

(U) the criminant set of f has more than two branches crossing at the origin or at least a
singular branch passing through the origin.

In the preceding classification, one has to count every branch with its multiplicity and
also branches reduced to a point. Note that the properties S, T and U do not depend on the
choice of the parameterization of the family, but only on its A -orbit.
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Definition. A tangential family is said to be of type S, T or U if it satisfies the condition
(S), (T) or (U) respectively.

We denote by S, T and U the subsets of X formed by the map germs A -equivalent to
parameterizations of tangential family germs of type S, T and U respectively. These sets
are disjoint and A -invariant; in particular, they define three classes of tangential family
singularities. These classes, together with the stable singularities I and II, cover all the
tangential family singularities; indeed,

S ∪ T ∪ U = X r (I ∪ II) .

Let us refine the preceding classification.

Definition. Let us fix n ∈ N ∪ {∞}. A tangential family of type S is of type Sn whenever
the tangency order between its criminant set and the vertical direction is equal to n. A
tangential family of type T is of type Tn whenever its criminant set has a self-tangency of
order n.

To complete our classification we need some notations. We say that a curve has a singu-
larity of order b/a at a fixed point if in a suitable coordinate system {x, y}, centered at this
point, the curve is parameterized by t 7→ (ta, tb + o(tb)), where a, b ∈ N, a < b and a does
not divide b. For example, a semicubic cusp has a singularity of order 3/2. We will say that
the singular curve is tangent to the smooth curve, whose equation in the suitable coordinate
system is y = 0.

By the very definition, the envelopes of the S1-type tangential families have cusps of order
(2n+ 3)/2 at the origin (for some n ∈ N ∪ {∞}).

Definition. A tangential family of type S1 is said to be of type S1,n if its envelope has a
cusp of order (2n+ 3)/2 at the origin.

We will denote by Sn, Tn and S1,n the subsets of X composed by the map germs A -
equivalent to tangential family germs of the corresponding type.

2.2.3 Simple tangential families

We may state now our main results concerning the classification of tangential family singu-
larities, which are proven in sections 2.4.3, 2.4.4 and 2.4.5.

Theorem 2.2.2. For every n ∈ N, the sets S1,n and Tn are orbits for the action of A on X.
The set S2 split off into the four A -orbits of the map germs (ξ, t5 + t2ξ+ t6), (ξ, t5 + t2ξ± t9)
and (ξ, t5 + t2ξ).

Therefore, these orbits define some singularities, denoted by S1,n, Tn, S2,2, S
±
2,3 and S2,4.

Definition. A map germ f ∈ X is said to be simple if, by an arbitrary sufficiently small
perturbation of it, we can obtain representatives of only a finite number of tangential family
singularities. A tangential family singularity is simple whenever its representatives are simple.



28 Simple tangential families and perestroikas of their envelopes

Note that a map germ f ∈ X is simple if and only all the points of the orbit A · f are
simple.

Theorem 2.2.3. The simple tangential family singularities are exactly those listed in the
table below, together with their normal forms, extended codimensions and codimensions of
the corrsponding orbits in (mξ,t)

2.

Singularity Normal form codime codim in (mξ,t)
2

I (ξ, t2) 0 1
II (ξ, t3 + t2ξ) 1 3

S1,n (ξ, t4 + t2ξ + t2n+3) n+ 1 n+ 3
Tn

(

ξ, t3 + t2ξn+1
)

2n+ 1 2n+ 3
S2,2 (ξ, t5 + t2ξ + t6) 3 5
S±

2,3 (ξ, t5 + t2ξ ± t9) 4 6

S2,4 (ξ, t5 + t2ξ) 5 7

This table is part of Goryunov’s classification of simple projections of surfaces from R3

into R2 ([24]).
The proof of the Theorem is given in section 2.4.6.
We shall now describe the envelopes of simple tangential families. First, we introduce a

definition. A parameterized curve with a singularity b/a is asymmetric to a smooth curve
tangent to it at the singular point if it is contained into one of the two domains cut off near
the singular point by the smooth curve. For example, a cusp of order 5/2 parameterized
by t 7→ (t2, t4 + t5) is asymmetric to y = 0, while a cusp of order 5/2 parameterized by
t 7→ (t2, t5) is symmetric to y = 0.

Corollary. The envelope of every simple tangential family germ has two tangent branches,
one of which is the support of the family, provided that the family is not of first type. More-
over:

(i) for every S1,n-type family, the second branch of the envelope has a cusp of order (2n+
3)/2 at the tangency point, the cusp being asymmetric to the support;

(ii) for every S2-type tangential family, the second branch of the envelope has a singularity
of order 5/3 at the tangency point;

(iii) for every Tn-type family, the second branch of the envelope is smooth, and it has a
tangency of order 3n+ 2 with the support.

The envelope singularities of the simple tangential families are shown in figure 2.2. In
this figure, as in those below, the natural number over a tangency point between two smooth
branches denotes their tangency order; the rational number over a singular point denotes the
order of the singularity.

We end this section describing the envelopes of non simple tangential families in the cases
of Sn-type families, for n ≥ 3. The envelopes of such families have two branches, one of them
being the family support.
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T2m+1

6m + 5 6m + 2

T2m

5/3

S1,n
(2n + 3)/2 S2

Figure 2.2: The envelopes of the simple tangential families.

Theorem 2.2.4. For n ≥ 3, the envelope second branch of every Sn-type tangential family
germ has a singularity of order (n + 3)/(n + 1) at the tangency point with the support. If n
is even, this singularity is a cusp, which is asymmetric to the support.

S2m

(2m + 3)/(2m + 1)

S2m+1

(2m + 4)/(2m + 2)

Figure 2.3: Envelopes of Sn-type tangential families for n ≥ 3.

The Theorem will be proven in section 2.4.3.

2.2.4 Miniversal tangential deformations

The standard definition of versality of map germ deformations can be applied in a natural
way to the tangential deformations.

Definition. A p-parameter tangential deformation F : R2×Rp → R2 of a tangential family
germ f ∈ X0 is said to be an A -versal tangential deformation if any tangential deformation
of f is A -equivalent to a tangential deformation induced from it.

This means that every tangential deformation G : R2×Rq → R2 of f can be represented
as G(ξ, t;µ) ≡ Ψ(F (Φ(ξ, t;µ),Λ(µ));µ), where Φ(ξ, t;µ) and Ψ(ξ, t;µ) are deformations of
the identity diffeomorphisms of the source R2 and the target R2 and Λ is a map germ
(Rq, 0)→ (Rp, 0). It is not required that Φ(0, 0;µ) = 0 and Ψ(0, 0;µ) = 0 for µ 6= 0.

A miniversal tangential deformation is a versal deformation for which the base dimension
p is minimal. The number p is the same for all the A -equivalent map germs; it is by definition
the tangential codimension of the unperturbed tangential family.

Theorem 2.2.5. The A -miniversal tangential deformations of the map germs representing
the tangential family simple singularities (except Tn for n > 1) are listed in the table below,
together with their tangential codimensions τ .
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Singularity Miniversal tangential deformation τ

I (ξ, t2) 0
II (ξ, t3 + t2ξ) 0

S1,n

(

ξ, t4 + t2ξ + t2n+3 +
∑n

i=1 λit
2i+1
)

n
T1

(

ξ, t3 + t2ξ2 + λ1t
2
)

1
S2,2 (ξ, t5 + t2ξ + t6 + λ1t

3 + λ2t
4) 2

S±
2,3 (ξ, t5 + t2ξ ± t9 + λ1t

3 + λ2t
4 + λ3t

6) 3

S2,4 (ξ, t5 + t2ξ + λ1t
3 + λ2t

4 + λ3t
6 + λ4t

9) 4

The Theorem is proven in sections 2.4.3, 2.4.4 and 2.4.5.
For Tn-type tangential families, the Theorem provides a miniversal tangential deformation

only for the case n = 1. However, we have the following.

Theorem 2.2.6. For every n ∈ N, the mapping R2 × Rn → R2, defined by

(ξ, t) 7→
(

ξ, t3 + t2ξn+1 + t2
n
∑

i=1

λiξ
i−1

)

,

is a tangential deformation of the map germ representing the singularity Tn in the list of
Theorem 2.2.2. In particular, the tangential codimension of the singularity Tn is at least n.

Conjecture. The mapping defined in Theorem 2.2.6 is an A -miniversal tangential de-
formation of the map germ representing the orbit Tn for every n ∈ N. In particular, the
codimension of the singularity Tn is equal to n.

2.2.5 Adjacencies of tangential family singularities

In this section we shall describe the adjacencies of tangential family simple singularities and
the beginning of the adjacencies involving non simple singularities.

A singularity L is said to be adjacent to a singularity K, and we write L → K, if every
map germ in the orbit L can be deformed into a map germ in K by an arbitrary small
tangential deformation. If L → K → K ′, the class L is also adjacent to K ′. In this case we
omit the arrow L→ K ′.

The adjacencies of tangential family simple singularities are as follows.

I IIoo T1
oo T2

oo T3
oo T4

oo T5
oo . . .oo

S1,1

``AAAAAAAA

S1,2
oo S1,3

oo S1,4
oo S1,5

oo . . .oo

S2,2

aaCCCCCCCC

S±
2,3

oo S2,4
oo
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We denote by (L) some class of non simple singularities. For instance, (Sn)n≥3 denotes the
union of all the singularities of type Sn, for n ≥ 3. In the case of non simple singularities, the
arrow (L) → K means that there exists some singularity L′ ⊂ (L) adjacent to K; similarly,
(L) → (K) means that there exists two singularities L′ ⊂ (L) and K ′ ⊂ (K) such that
L→ K. The main adjacencies of non simple singularities are as follows:

(S∞) // (Sn)n≥3

��

// S2,4

(U) //

;;xxxxxxxxx

##GGGGGGGG
(S1,∞) // S1,m

(T∞) // Tr

2.3 Bifurcation diagrams of simple singularities

We shall discuss here the bifurcation diagrams of small codimension simple singularities of
tangential family germ, and the perestroikas occurring to the envelopes of these families
under small A -miniversal tangential deformations.

For this, let us recall some definitions. Let L be a tangential family singularity of tan-
gential codimension n. Denote by F : R2 × Rn → R2 a miniversal tangential deformation of
a representative f of the singularity L.

The discriminant of f is the submanifold of Rn formed by the parameter values λ for
which the critical value set of Fλ has more complicated singularities than for some arbitrary
close value of λ.

The germ at the origin of the discriminant does not depend (up to diffeomorphisms)
on the choice of the miniversal deformation of f neither on the choice of f in L. We call
this hypersurface germ the discriminant of the tangential family singularity. The bifurca-
tion diagram of a singularity is its discriminant, together with the corresponding envelopes
perestroikas.

2.3.1 Bifurcation diagrams of singularities S1,n

Let F be the A -miniversal tangential deformation of the singularity S1,1 given in Theorem
2.2.2:

F (ξ, t;λ) =
(

ξ, t4 + t2ξ + t5 + λt3
)

.

For any λ, the support of the family has equation y = 0. The critical value set of Fλ has a
second branch δλ. If λ 6= 0, the germ at the origin of Fλ belongs to the A -orbit II; hence, δλ
has a tangency of order 2 with the support.

For λ < 0, δλ has a semicubic cusp and a transversal self-intersection. When λ goes to
zero, these two singular points collide, and a cusp of order 5/2, asymmetric to the support,
arises. For λ > 0, the self-intersection point becomes complex, and the only singularity of δλ
is the semicubic cusp.
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The perestroika of the envelope singularity S1,1, resulting by the above discussion, is
depicted in figure 2.4 (in which γ denotes the family support).

3/2

γ
γ

γ

3/2

λ < 0 λ = 0 λ > 0

δλ

δλ

δλ

25/22

Figure 2.4: Envelope perestroika of the singularity S1,1.

Let us consider in the 3-space {x, y, λ} the singular surface

M :=
{(

Fλ(ξ, t), λ
)

: detDFλ(ξ, t) = 0
}

,

formed by the critical value sets of Fλ. This surface, shown in figure 2.5, is the union of
the plane {y = 0}, formed by the support curves, and the singular surface, formed by the
branches δλ.

y

x

λ

O
C

Figure 2.5: The singular surface M .

Remark. The surface M is diffeomorphic to a folded umbrella with a cubically tangent
smooth surface; the half-line of the umbrella self-intersection points is tangent to the smooth
surface. The surface M is also diffeomorphic to the surface formed by the tangent lines of
the curve t 7→ (t, t2, t4), corresponding to the curve C in figure 2.5, with the osculating plane
at its flattening point O.

The singular surface M appears in many problems in Singularity Theory. For instance,
M can be described as the set in the space {a, b, c} consisting of the polynomials X 4 +
aX3 + bX2 + c with multiple roots. This surface arises also in Kazaryan’s theory about set of
fundamental systems of solutions of a linear differential equation and in Shcherbak’s theory
of tangential singularities of projective curves (see [12], §4).
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Remark. The discriminant of S1,n contains the flag Vn−1 ⊃ Vn−2 ⊃ ... ⊃ V0, where

Vi := {λj = 0 : j = 1, ..., n− i} .

To each stratum VirVi−1 corresponds tangential families of type S1,i, according to adjacency
S1,n → S1,n−1 (where, by convenction, S1,0 = II).

The discriminant of the singularity S1,2 is represented in figure 2.6. It has been found
for me experimentally by Francesca Aicardi. Notice that it contains the flag V1 ⊃ V0 and a
curve, corresponding to a self-tangency of the envelope second branch.
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Figure 2.6: Bifurcation diagram of the singularity S1,2.

2.3.2 Bifurcation diagram of the singularity S2,2

Let G be the A -miniversal tangential deformation of the singularity S2,2:

G(ξ, t;λ1, λ2) = (ξ, t5 + t2ξ + t6 + λ1t
3 + λ2t

4) .

The equation detDGλ = 0 has two solutions, t = 0 and ξ = Ξ(t). The branch of the
critical value set corresponding to the first solution is the x-axis (the support γ of the family);
the second branch δλ is parameterized by t 7→ Gλ(t,Ξ(t)). It turns out that the latter branch
has singular points at the solutions of the equation

24t3 + 15t2 + 8λ2 + 3λ1 = 0 .

One of these solutions does not vanish when λ1 and λ2 go to zero. The corresponding
singular point of δλ is a semicubic cusp, which is far from the support (even for λ→ 0). The
preceding equation has two other solutions, which becomes zero at λ1 = λ2 = 0, provided
that λ1 ≤ ϕ1(λ2), where

ϕ1(λ2) =
16

45
λ2

2 + o(λ2
2) , for λ2 → 0 .
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Thus, the discriminant of S2,2 contains the curve λ1 = ϕ1(λ2), which is close to a parabola
near the origin. When λ belongs to this curve, δλ has a singularity 4/3.

Similarly, there are three other branches λ1 = ϕi(λ2), i = 2, 3, 4, corresponding to the
following degeneracies of the critical value set of Gλ: a cusp of δλ belongs to γ; δλ has a self-
intersection at a point of γ; δλ has a self-intersection at a cusp point. The curves λ1 = ϕi(λ2)
are close to some parabolæ near the origin, i.e. ϕi(λ2) = ciλ

2
2 + o(λ2

2) for λ2 → 0, with
c2 > c3 > 0 > c4.

The discriminant of the singularity is completed by the λ2 axis: when λ1 = 0, δλ has a cusp
of order 5/2 at its tangency point with the support, according to the adjacency S2,2 → S1,1.
The discriminant of the singularity S2,2 and the corresponding envelope perestroikas are
illustrated in figure 2.7. To my knowledge, this perestroika did not appear earlier.
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Figure 2.7: Bifurcation diagram of the singularity S2,2.

2.3.3 Bifurcations diagrams of the singularities Tn.

Let H be the tangential deformation of the singularity Tn:

H(ξ, t;λ1, . . . , λn) =

(

ξ, t3 + t2ξn+1 + t2
n
∑

i=1

λiξ
i−1

)

.
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The envelope of Hλ has two branches; one of them is the support of the family y = 0, which
is keeped fixed by the deformation. Denote again by δλ the envelope second branch of Hλ.
This branch is the graph y = Pλ(x) of the polynomial Pλ := 4

27
Q3
λ, where

Qλ(x) := xn+1 + λnx
n−1 + · · ·+ λ1 ,

which is the miniversal deformation of xn+1 for the Right equivalence on the space of function
germs (R, 0)→ R.

The discriminant of the deformation Hn of the singularity Tn is the set formed by the
values λ for which Pλ has roots of multiplicity greater than 3. If Qλ has a root of multiplicity
m, then Pλ has a root of multiplicity 3m. Thus, we have the following.

Theorem 2.3.1. The discriminant of the deformation Hn of the singularity Tn is diffeomor-
phic to a dimension n swallowtail.

The bifurcation diagrams of the deformations Hn of the singularities Tn are depicted in
figures 2.8, 2.9 and 2.10 for n = 1, 2 and 3 respectively. Let us recall that for n = 1 the
deformation H is a miniversal tangential deformation.

γ γ γ

5

δλδλδλ

22

λ < 0 λ = 0 λ > 0

Figure 2.8: Bifurcation diagram of the singularity T1.

In the case of the singularity T2, the parameter plane is divided into 4 orbits. In the orbit
d a singularity T1 arises, according to the adjacency T2 → T1.
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Figure 2.9: Bifurcation diagram of the deformation H2.

Similarly, in the case of the singularity T3 the parameter space split off into 9 orbits. In
the orbit c a singularity T2 arises, and in the orbits d, e, g and h some singularities T1 appear,
according to the adjacencies T3 → T2 → T1.
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Figure 2.10: Bifurcation diagram of the deformations H3.

2.4 Proofs

2.4.1 Prenormal forms of tangential families

Let us quote from [17] a standard prenormal form (for the A -equivalence) of map germs
parameterizing tangential families.

Let us fix a tangential family, defined near the origin and a coordinate system, centered
at this point, in which the family support is defined locally by the equation y = 0. Consider
the curve of the family, which is tangent to the support at (ξ, 0). Let 2

∑∞

i=0 kiξ
i be the

expansion for ξ → 0 of its curvature at the tangency point, so its curvature at the origin is
equal to 2k0. Let also k0t

2 + αt3 + o(t3) be the expansion for t → 0 of the function whose
graph is the tangent curve to the support at the origin. We will denote by δ(n) any function
of two variables with vanishing n-jet at the origin.

The following statement is a slight refinement of those in [17]; the proof is the same.

Theorem 2.4.1. Every tangential family germ is A -equivalent to a map germ of the form

(ξ, t) 7→
(

ξ,
(

α− k1)t
3 + t2

∞
∑

i=0

kiξ
i + t3 · δ(0)

)

,

where the coefficients ki and α, depending on the family, are defined as above.

The germ in the above statement is called prenormal form. Note that the prenormal
form of a tangential family germ is not unique, namely, the coefficients α and ki depend
on the coordinate system used to define them. However, the following characterizations of
tangential family types in terms of these coefficients do not depend on the choices made for
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their definition. In [17] we proved that a tangential family germ is of first type if and only if
k0 6= 0; it is of second type if and only if k0 = 0 and k1 6= 0, α. Therefore, for any tangential
family germ which is not of first nor of second type we have k0 = 0 and k1(k1 − α) = 0.

Let us characterize the tangential families of type S, T and U by their prenormal form.

Proposition 2.4.1. A tangential family germ is of type S, T or U if and only if the param-
eters of its prenormal form verify α = k1 6= 0, α 6= k1 = 0 or α = k1 = 0 respectively. More
precisely,

(i) a tangential family is of type Sn if and only if its prenormal form, evaluated at ξ = 0,
can be written, for t→ 0, as t 7→ (0, atn+3 + o(tn+3)), for some a 6= 0;

(ii) a tangential family is of type Tn if and only if ki = 0 for every i = 0, . . . , n and
α, kn+1 6= 0.

(iii) a tangential family is of type U if and only if its prenormal form can be written as
(ξ, t) 7→ (ξ, t2 · δ(1)).

Proof. Let us consider the prenormal form f of a tangential family germ (we assume that
the family is not of first type, i.e., k0 = 0). The criminant set equation associated to f can
be written as:

3(α− k1)t
2 + 2k1tξ + 2t · δ(1) = 0 . (2.1)

The first branch of the criminant set, corresponding to the solution t = 0, projects into the
family support. The family is of type S if and only if the second branch is transversal to
the first one, i.e., if and only if the corresponding solution of (2.1) is the graph of a function
t 7→ Ξ(t). In particular, Ξ′(0) = −3(α − k1)/(2k1) and k1 6= 0. The family graph Φ is
parameterized by (ξ, t) 7→ (t − ξ, f(ξ, t)), and the vertical direction at the origin in T0Φ is
(1, 0, 0). The velocity at the origin of the second criminant branch is (Ξ′(0)−1,−Ξ′(0), 0), so
the branch is vertical if and only Ξ′(0) = 0, that is, if α = k1. Assume now α = k1. Suppose
also that there exists a 6= 0 and n ∈ N such that

f(0, t) = (0, atn+3 + o(tn+3)) for t→ 0 .

We shall prove that this assumption is equivalent to the belonging of f to Sn. Indeed, we
have

Ξ(t) = −a(n + 3)

2k1
tn+1 + o(tn+1) , for t→ 0 .

Therefore, the second criminant branch is parameterized near the origin by

t 7→
(

t+ o(t),−a(n + 3)

2k1

tn+1 + o(tn+1),
(n + 1)a

2
tn+3 + o(tn+3)

)

, (2.2)

so it is tangent to the vertical direction at the origin, with tangency order equal to n. This
means that the family is of type Sn. Conversely, if the family is of type Sn, then the second
solution of the criminant set equation (2.1) is tangent to the t-axis, the tangency order being
equal to n. This implies that the function Ξ can be written as Ξ(t) = O(tn). This is the case
if and only if f(0, t) = (0, atn+3 + o(tn+3)) with a 6= 0. The first assertion is proven.
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Suppose now that the tangential family f is of type T . Then the second solution of (2.1)
is the graph of a function ξ 7→ τ(ξ), such that τ ′(0) = −(2k1)/(3(α − k1)). In particular,
α 6= k1. The velocity at the origin of the corresponding criminant branch is (τ ′(0)− 1, 1, 0),
which is parallel to the velocity (−1, 1, 0) of the first branch if and only if k1 = 0. Assume
now k1 = · · · = kn = 0 and kn+1 6= 0. In this case

τ(ξ) = −2kn+1

3α
ξn+1 + o(ξn+1) , for ξ → 0 .

The corresponding criminant branch is parameterized near the origin by

ξ 7→
(

−ξ − 2kn+1

3α
ξn+1 + o(ξn+1), ξ,

4k3
n+1

27α2
ξ3(n+1) + o(ξ3(n+1))

)

.

Therefore, the criminant set has a self-tangency of order n at the origin, i.e., the family is of
type Tn. Conversely, if the family is of type Tn, then the two solutions of the criminant set
equation (2.1) have a self-tangency of order n at the origin. This implies that the function τ
can be written as τ(ξ) = O(ξn), so k1 = · · · = kn = 0 and kn+1 = 0.

Finally, let us consider a tangential family whose prenormal form is (ξ, t) 7→ (ξ, t2 · δ(1))
Then the criminant set equation is of the form tϕ(ξ, t) = 0, where ϕ is a function with
vanishing 1-jet. The Newton diagram of this equation shows that the equation ϕC = 0,
where ϕC is the complexification of ϕ, has more than three branches or it has at least one
singular branch passing through the origin. On the other hand, if the 1-jet of ϕ is not
vanishing, then f has a singularity I, II, S or T .

Note that the above characterization of the U -type tangential families provides the adja-
cencies (U)→ Sn and (U)→ Tn.

Theorem 2.2.4 follows from the parameterization (2.2).

2.4.2 Preliminary background of Singularity Theory

In this section we recall some standard notations we will use in the proofs of Theorems 2.2.2
and 2.2.5; here we follow [11], [13], [26]. A map germ

f : (R2, 0)→ (R2, 0)

defines, by the formula f ∗g := g◦f , a homomorphism from the ring Ex,y of the function germs
in the target to the ring Eξ,t of the function germs in the source. Hence we can consider every
Eξ,t-module as an Ex,y-module via this homomorphism.

The extended tangent space to the A -orbit A · f at f is the subspace of E
2
ξ,t defined by

TeA (f) := Eξ,t · J(f) + f ∗(Ex,y) ·R2 ,

where J(f) is the real vector space spanned by the first order partial derivatives of f . In a
similar way, we define the tangent space at f as

TA (f) := mξ,t · J(f) + f ∗(mx,y) · R2 .
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Note that TeA (f) and TA (f) are Ex,y-modules, being in general not Eξ,t-modules. The codi-
mension in (mξ,t)

2 of an A -orbit A · f is the dimension of the quotient space (mξ,t)
2/TA (f)

as real vector space.
Let 〈f〉 be the Eξ,t-ideal generated by the components of f . Let us recall that the Prepa-

ration Theorem of Weierstrass-Malgrange-Mather (see [26]) states that the Ex,y-module Eξ,t

is finitely generated if and only if the quotient space mξ,t/〈f〉 is a real vector space of finite
dimension; moreover a basis of the latter space provides a generator system of the module.

Let us consider now the space R[[ξ, t]] endowed with a quasihomogeneous filtration defined
by the weights deg(ξ) = a and deg(t) = b. We assume that a and b are coprime natural
numbers. A function germ f ∈ mξ,t is said to be quasihomogeneous of degree d if for any
λ > 0 we have f(λaξ, λbt) = λdf(ξ, t). In particular, a monomial ξptq has weighted degree
equal to ap+ bq. A polynomial (function germ, power series) has order d if all its monomials
have degree d or higher. If all the monomials of the polynomial have degree d, we shall say
that the polynomial is quasihomogeneous of weighted degree d. A polynomial P (function
germ, power series) is said to be semiquasihomogeneous of degree d if it is of the form P ′ +R,
where P ′ is a quasihomogeneous polynomial of degree d and R is of order greater than d.
Note that we do not assume any nondegeneracy condition on P ′. A (formal) vector field V
has order d if differentiation in the direction of the field V raises the order of any function
by not less than d.

In [13] the following estimate is proven.

Lemma 2.4.1. Let f be a power series of order d and V = u ∂ξ + v ∂t a formal vector field
of order d′ > 0. Then the Taylor series

ϕ(ξ + u(ξ, t), t+ v(ξ, t)) = ϕ(ξ, t) + (u ∂ξϕ+ v ∂tϕ)(ξ, t) +R(ξ, t)

has remainder term R of order greater than d+ d′.

Let f = (f1, f2) be an element of (mξ,t)
2, whose components f1 and f2 are semiquasiho-

mogeneous function germs (of different degree) for the fixed quasihomogeneous filtration. In
order to simplify some forthcoming computations, we introduce the reduced tangent space to
the A -orbit at the point f , defined by

TrA (f) := g+(f) + f ∗(M) ,

where g+(f) is the space of the vector field germs having positive order, and M is the
Ex,y-module defined by

M :=
(

m
2
x,y ⊕ R · y

)

×
(

m
2
x,y ⊕ R · x

)

,

and m
2
x,y is the second power of the maximal ideal mx,y. Note that the reduced tangent space

is an Ex,y-module, being in general not an Eξ,t-module; furthermore, TrA (f) ⊂ TA (f).

Proposition 2.4.2. Let P and Q be two quasihomogeneous polynomials of weighted degree
p and q respectively. Then the map germ f = (f1, f2) is A -equivalent to a map germ of the
form

(f1 + P + δ(p), f2 +Q+ δ(q)) ,

provided that the reduced tangent space TrA (f) contains a map germ of the form
(

P + δ(p), Q+ δ(q)
)

.
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Proof. By the hypothesis, there exists a vector field V = v1 ∂ξ + v2 ∂t of positive order and
a map germ W = (w1, w2) inM, such that

V · f +W ◦ f ∗ = (f1 + P + δ(p), f2 +Q+ δ(q)) .

Moreover, by the very definition of the reduced tangent space, the map germs

ϕ : (ξ, t) 7→ (ξ + v1(ξ, t), t+ v2(ξ, t)) ,

ψ : (x, y) 7→ (x + w1(x, y), y + w2(x, y)) ,

are diffeomorphism germs. Let P = P s + P t and Q = Qs + Qt the decompositions of the
polynomials P and Q such that

V · f = (P s + δ(p), Qs + δ(q)) , W ◦ f ∗ = (P t + δ(p), Qt + δ(q)) .

Since V is a vector field of positive order, by the estimate in Lemma 2.4.1 we have

f(ξ + v1(ξ, t), t+ v2(ξ, t)) = (f1(ξ, t) + P s(ξ, t) + δ(p), f2(ξ, t) +Qs(ξ, t) + δ(q)) ,

so we have

(ψ ◦ f ◦ ϕ) = (f1 + P + δ(p), f2 +Q+ δ(q)) .

which is what we had to show.

2.4.3 S1-type tangential families

In this section we will prove the statements in Theorems 2.2.2 and 2.2.5 concerning the
S1-type tangential families.

Let us set

fn(ξ, t) := (ξ, t4 + t2ξ + t2n+3) .

Theorem 2.4.2. Every set S1,n is an A -orbit in (mξ,t)
2. In particular, every tangential

family of type S1,n is A -equivalent to the map germ fn.

Next, we compute the codimensions of these orbits.

Theorem 2.4.3. The codimension of the orbit S1,n in (mξ,t)
2 is equal to n + 3.

Finally, we determine the A -miniversal tangential deformations of the map germs fn.

Theorem 2.4.4. The extended codimension of fn is n + 1. The mapping R2 × Rn → R2,
defined by

(ξ, t;λ1, . . . , λn) 7→
(

ξ, t4 + t2ξ + t2n+3 +

n
∑

i=1

λit
2i+1

)

,

is an A -miniversal tangential deformation of the normal form fn. In particular, the tangen-
tial codimension of fn is n.
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To prove the preceding statements, we need to describe the tangent space to the orbits
S1,n at fn. Let us denote by m̃

p
ξ,t the Eξ,t-ideal generated by the monomials of degree p in the

quasihomogeneous filtration of R[[ξ, t]] defined by deg(t) = 1 and deg(ξ) = 2, and by δ̃(p)
any function whose Taylor series has order equal to p in this filtration.

A vector monomial of degree p is by definition an element of (mξ,t)
2 having a component

which is a monomial, the other component being zero.

Lemma 2.4.2. The tangent space TA (fn) contains the space

m̃
2n+1
ξ,t × m̃

2n+3
ξ,t .

Moreover, also the vector monomials (0, t2`+2) belong to TA (fn) for every natural number `.

Proof of Theorem 2.4.2

By Lemma 2.4.2 and the Finite Determinacy Theorem, the representative fn is A -finitely
determined. Thus, to prove Theorem 2.4.2 we have only to show that every map germ
belonging to the set S1,n is formally A -equivalent to fn.

By Proposition 2.4.1, the prenormal form of any S1,n-type tangential family may be
written as

(ξ, t) 7→
(

ξ, bt4 + αt2ξ + t2 · δ̃(2)
)

.

Since α and b are non zero, we may assume α = b = 1 by rescaling.

Lemma 2.4.3. Every tangential family of type S1 is formally A -equivalent to a map germ of
the form

(ξ, t) 7→
(

ξ, t4 + t2ξ +

∞
∑

i=1

bit
2i+3

)

, (2.3)

for some real coefficients bi.

Proof. This follows from the geometry of the admissible chains in the Newton Diagram of
the second component of the germs of the form

(ξ, t) 7→
(

ξ, t4 + t2ξ + t2 · δ̃(2)
)

,

see figure 2.11 (this terminology is explained in [13]).

Namely, suppose our prenormal form A -equivalent to a map germ

(ξ, t) 7→
(

ξ, t4 + t2ξ +

m
∑

i=1

bit
2i+3 + P (ξ, t) +Q(ξ, t) + δ̃(2m + 5)

)

,

where P and Q are quasihomogeneous polynomial of weighted degree 2m + 4 and 2m + 5
respectively, without terms ξm+2 nor tξm+2. By a coordinate change (ξ, t) 7→ (ξ, t + p(ξ, t))
for a suitable quasihomogeneous polynomial p of weighted degree 2m+ 2, we can bring P to
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Figure 2.11: Admissible chains in the Newton Diagram of the prenormal form.

ct2ξm+1 (changing possibly the coefficients of Q). Now it is easy to check that such a germ
is formally A -equivalent to

(ξ, t) 7→
(

ξ, t4 + t2ξ +
m
∑

i=1

bit
2i+3 +Q(ξ, t) + δ̃(2m + 5)

)

.

By a coordinate change (ξ, t) 7→ (ξ, t+ q(ξ, t)), where q is a quasihomogeneous polynomial of
degree 2m+ 3, we can reduce Q to b2m+5t

2m+5. The Lemma is now proven by induction.

Remark. A tangential family is of type S1,n if and only if it is formally A -equivalent to a
map germ of the form (2.3) such that bi = 0 for i < n and bn 6= 0. In this case we may
assume bn = 1 after rescaling.

We achieve the proof of Theorem 2.4.2 by induction. Assume that the map germ (2.3),
with bi = 0 for i < n and bn = 1, is formally A -equivalent to

(ξ, t) 7→
(

ξ, t4 + t2ξ + t2n+3 +
∞
∑

i≥m

bit
2i+3

)

for some m > n. By a polynomial coordinate change we can take this germ to the form

(ξ, t) 7→
(

ξ, t4 + t2ξ + t2n+3 + ct2n+3ξm−n + δ̃(2m+ 3)
)

.

Then there exists two constant A and B such that the preceding germ is transformed into

(ξ, t) 7→
(

ξ, t4 + t2ξ + t2n+3 + c′t2ξ2 + δ̃(2m+ 3)
)

under (ξ, t) 7→ (ξ, t + tξm−n, t) and (x, y) 7→ (x, y + Bxm−ny). Such a germ is A -equivalent
to

(ξ, t) 7→ (ξ − c′ξ2, t4 + t2ξ + t2n+3 + δ̃(2m+ 3))

by (ξ, t) 7→ (ξ − c′ξ2, t), and then it is formally A -equivalent to

(ξ, t) 7→ (ξ, t4 + t2ξ + t2n+3 + δ̃(2m+ 3)) .

Now the argument of Lemma 2.4.3 provides the formally A -equivalence with a germ of the
type

(ξ, t) 7→
(

ξ, t4 + t2ξ + t2n+3 +
∞
∑

i≥m+1

b′it
2i+3

)

.

Theorem 2.4.2 is therefore proven.
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Proof of Theorem 2.4.3

The Eξ,t-ideal 〈fn〉 is generated by ξ and t4; indeed,

〈

ξ, t4 + t2ξ + t2n+3
〉

Eξ,t
=
〈

ξ, t4 + t2n+3
〉

Eξ,t
=
〈

ξ, t4
〉

Eξ,t
,

since 1 + t2n−1 is invertible in Eξ,t. Therefore, the R-space mξ,t/(〈fn〉 · mξ,t) is generated
by {ξ, ξt, t4ξ, t5}, so, by the Preparation Theorem, mξ,t is generated, as Ex,y-module, by
{ξ, t, t2, t3, t4}. Now, for i ∈ N, ti∂ξfn = (ti, ti+2), and (0, t4), (0, t6) belong to the tangent
space (Lemma 2.4.2). Hence, we have

(mξ,t)
2 = TA (fn) + f ∗

n(Ex,y) ·
{(

0
t

)

,

(

0
t2

)

,

(

0
t3

)

,

(

0
t5

)}

. (2.4)

Lemma 2.4.4. The following inclusion holds:

f ∗
n(Ex,y) ·

{(

0
t

)

,

(

0
t2

)}

⊂ TA (fn) + R ·
{(

0
t

)

,

(

0
t2

)

,

(

0
tξ

)}

+

+ f ∗
n(Ex,y) ·

{(

0
t3

)

,

(

0
t5

)}

.

Lemma 2.4.5. For ` ∈ N, the following inclusion holds:

f ∗
n(Ex,y) ·

{(

0
t2`+1

)}

⊂ TA (fn) + R ·
(

0
t2`+1

)

+

+ f ∗
n(Ex,y) ·

{(

0
t2`+3

)

,

(

0
t2`+5

)}

.

By these two Lemmas and Lemma 2.4.2, we may rewrite (2.4) as

m
2
ξ,t = TA (fn)⊕ R ·

{(

0
t2

)

,

(

0
tξ

)}

⊕
n
⊕

i=0

R ·
(

0
t2i+1

)

, (2.5)

implying that the codimension of the map germ in (mξ,t)
2 is equal to n + 3 and proving

Theorem 2.4.3.
We end this section with the proofs of Lemmas 2.4.4 and 2.4.5.

Proof of Lemma 2.4.4. We have

f ∗
n(Ex,y) ·

(

0
t

)

= R ·
(

0
t

)

+ f ∗
n(mx,y) ·

(

0
t

)

=

= R ·
(

0
t

)

+ f ∗
n(Ex,y) ·

{(

0
tξ

)

,

(

0
t5 + t3ξ + t2n+4

)}

. (2.6)

By Lemma 2.4.2, the vector monomial (0, t2n+4) belongs to the tangent space TA (fn), so we
have

f ∗
n(Ex,y) ·

(

0
t5 + t3ξ + t2n+4

)

⊂ TA (fn) + f ∗
n(Ex,y) ·

{(

0
t3

)

,

(

0
t5

)}

. (2.7)
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On the other hand we have

f ∗
n(Ex,y) ·

(

0
tξ

)

= R ·
(

0
tξ

)

+ f ∗
n(Ex,y) ·

{(

0
tξx

)

,

(

0
tξy

)}

. (2.8)

Since
tξy = t5ξ + t2ξ2 + t2n+3ξ

and (0, t2n+3ξ) belongs to TA (fn) we obtain:

f ∗
n(Ex,y) ·

(

0
tξ

)

⊂ TA (fn) + R ·
(

0
tξ

)

+ f ∗
n(Ex,y) ·

{(

0
tξ2

)

,

(

0
t2

)

,

(

0
t5

)}

.

Now,
ξ ∂tfn − (0, (2n+ 3)t2n+2ξ) = (0, 4t3ξ + 2tξ2) ∈ TA (fn) ,

so we have that

f ∗
n(Ex,y) ·

(

0
tξ2

)

⊂ TA (fn) + f ∗
n(Ex,y) ·

(

0
t3

)

(2.9)

As a consequence of (2.6), (2.7), (2.8) and (2.9) we obtain:

f ∗
n(Ex,y) ·

(

0
t

)

⊂ TA (fn) + f ∗
n(Ex,y) ·

{(

0
t2

)

,

(

0
t3

)

,

(

0
t5

)}

. (2.10)

We consider now the Ex,y-ideal generated by (0, t2). Due to Lemma 2.4.2, the vector
monomials (0, t6), (0, t4ξ), (0, t2n+5) and

(0, t2ξ) = (0, y)− (0, t4)− (0, t2n+3)

belong to TA (fn), so (0, t2x), (0, t2y) ∈ TA (fn), and then

f ∗
n(mx,y) ·

(

0
t2

)

= f ∗
n(Ex,y) ·

{(

0
t2x

)

,

(

0
t2y

)}

⊂ TA (fn) ,

which implies that

f ∗
n(Ex,y) ·

(

0
t2

)

⊂ TA (fn) + R ·
(

0
t2

)

. (2.11)

The Lemma follows from inclusions (2.10) and (2.11).

Proof of Lemma 2.4.5. Let us consider the Ex,y-submodule f ∗
n(mx,y) · (0, t2`+1) of E 2

ξ,t, gener-

ated by (0, t2`+1x) = (0, t2`+1ξ) and

(0, t2`+1y) = (0, t2`+5 + t2`+3ξ + t2(`+n+1)) .

The vector (0, 2t2`+3 + t2`+1ξ) belongs to the tangent space, indeed it is a real linear
combination of t2`∂tfn and (0, t2(`+n+1)). Therefore,

f ∗
n(Ex,y) ·

(

0
t2`+1ξ

)

⊂ TA (fn) + f ∗
n(Ex,y) ·

(

0
t2`+3ξ

)

. (2.12)

In a similar way, it is easily checked that (0, 2t2`+5 + t2`+3ξ) ∈ TA (fn). Hence,

f ∗
n(Ex,y) ·

(

0
t2`+1y

)

⊂ TA (fn) + f ∗
n(Ex,y) ·

(

0
t2`+5

)

. (2.13)

Inclusions (2.12) and (2.13) prove Lemma 2.4.5.
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Proof of Theorem 2.4.4

As we have seen, the Eξ,t-ideal 〈fn〉 is generated by ξ and t4, so {1, t, t2, t3} is a generator
system of the Ex,y-module Eξ,t. The vector monomials (1, 0), (0, 1), (t2, 0) = t2∂ξfn − (0, t4)
and (0, t2) = ∂ξfn − (1, 0) belong to the extended tangent space TeA (fn). Hence, we have

E
2
ξ,t = TeA (fn) + f ∗

n(Ex,y) ·
{(

t
0

)

,

(

0
t

)

,

(

t3

0

)

,

(

0
t3

)}

(2.14)

We deduce from t∂ξfn = (t, t3) and t3∂ξfn = (t3, t5) that

TeA (fn) + f ∗
n(Ex,y) ·

{(

t
0

)

,

(

t3

0

)}

⊂ TeA (fn) + f ∗
n(Ex,y) ·

{(

0
t3

)

,

(

0
t5

)}

.

This inclusion and identity (2.14) imply

E
2
ξ,t = TeA (fn) + f ∗

n(Ex,y) ·
{(

0
t

)

,

(

0
t3

)

,

(

0
t5

)}

.

and therefore, by Lemma 2.4.2, Lemma 2.4.4 and Lemma 2.4.5, that

E
2
ξ,t = TeA (fn)⊕

n
⊕

i=0

R ·
(

0
t2i+1

)

.

Thus, the extended codimension of fn is n+ 1 and the mapping F : R2×Rn+1 → R2 defined
by

F (ξ, t;µ, λ1, . . . , λn) :=

(

ξ, t4 + t2ξ + t2n+3 + µt+
n
∑

i=1

λit
2i+1

)

,

is an A -miniversal deformation of the map germ fn.
Let us consider a miniversal tangential deformation

G : R2 × Rp → R2 , (t, ξ;α) 7→ G(ξ, t;α)

of the tangential family fn. Due to the versality of F , there exists a map germ

Λ : (Rp, 0)→ (Rn+1, 0) , α 7→ (µ(α), λ1(α), . . . , λn(α)) ,

such that Gα is equivalent to FΛ(α) whenever |α| is small enough. Since G is a tangential
deformation of the tangential family fn, the support of Gα is a smooth deformation of the
support of fn, whose equation is y = 0 and which is the projection of the criminant set
branch defined by t = 0.

We claim that µ ≡ 0 on a small enough neighborhood of the origin in Rp. Indeed, let ᾱ
be an arbitrary small parameter value, such that µ(α) is not vanishing. The criminant set of
FΛ(α) is defined by the equation

4t3 + 2tξ + (2n+ 3)t2n+2 + µ(α) +

n
∑

i=1

(2i+ 1)λi(α)t2i = 0 .
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µ = 0

µ = 0

µ > 0

µ > 0

µ < 0

µ < 0

Figure 2.12: Morse perestroika of the criminant set.

Then the criminant set experiences a Morse perestroika, as illustrated in figure 2.12, whenever
the parameter values passes from 0 to ᾱ. Indeed the (ξ, t)-function on the left-hand side of
the equation has an index 1 critical point at (0, 0), whose corresponding critical value is µ(α).

As a consequence, the envelope of FΛ(α) experiences a bec à bec perestroika. This is
impossible, since G is a tangential deformation of fn. On the other hand, by Theorem 2.4.1
we have that FΛ(α)|µ≡0 is A -equivalent to a tangential families for every choice of the smooth
map germ

α 7→ (λ1(α), . . . , λn(α)) ,

provided that α is small enough. We have therefore proven that F |µ=0 is an A -miniversal
tangential deformation of the tangential family fn. Theorem 2.4.4 is proven.

Proof of Lemma 2.4.2

Let us consider the following two families of claims, depending on a natural parameter ` ∈ N:

– P(`): the vectors (0, t(2n−1)α+4`) belong to TA (fn) for α ∈ {0, . . . , `};

– Q(`): the vectors (0, t(2n−1)α+4`+2) belong to TA (fn) for α ∈ {0, . . . , `}.

Lemma 2.4.6. The claims P(`) and Q(`) hold for all ` ∈ N.

It follows immediately from this Lemma that all the vector monomials (0, t2i+2), i ∈ N,
belong to TA (fn). Furthermore, every vector monomial (0, ξpt2(i−p)+3) of weighted degree
2i+ 3 belongs to the tangent space, whenever i ≥ n. Indeed,

t2(i−p−n)+1ξp ∂tfn = (0, 4t2(i−p−n+2)ξp + 2t2(i−p−n+1)ξp+1 + (n+ 3)t2(i−p)+3ξp) ,

and the vector monomials (0, t2(i−p−n+2)), (0, t2(i−p−n+1)) belong to the tangent space due to
the preceding remark. Therefore, we have:

{0} × m̃
2n+3
ξ,t ⊂ TA (fn) .

Now, this inclusion and the equality

ξptq ∂ξfn = (ξptq, ξptq+2)
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imply
m̃

2n+1
ξ,t × m̃

2n+3
ξ,t ⊂ TA (fn) .

Lemma 2.4.2 is therefore proven modulo Lemma 2.4.6.
We prove now Lemma 2.4.6. The proof is carried out by induction, and it is divided into

three steps.

First step. The claims P(1) and Q(1) hold.
First note that (0, t2ξ) = ξ∂ξfn − (x, 0) belongs to the tangent space TA (fn). Since

(0, y) = (0, t4 + t2ξ + t2n+3) , t ∂tfn =
(

0, 4t4 + 2t2ξ + (2n+ 3)t2n+3
)

,

the vector monomials (0, t4) and (0, t2n+3) lie in TA (fn), i.e., P(1) holds. Now, the claim
P(1) implies that the following vectors belong to the tangent space:

– t3 ∂tfn − (0, 2t4ξ) = (0, 4t6 + (2n+ 3)t2n+5) ,

– t4 ∂ξfn = (t4, t6) ,

– (y, 0) = (t4 + t2ξ + t2n+3, 0) ,

– t2n+3 ∂ξfn = (t2n+3, t2n+5) ,

– t2ξ ∂ξfn − (0, t4ξ) = (t2ξ, 0) .

Since these vectors are linearly independent, we have that (0, t6) and (0, t2n+5) are in the
tangent space, that is, Q(1) holds.

Second step. Assume that the claims P(i) and Q(i) hold for every i = 1, . . . , `− 1. Then
P(`) holds.

By the binomial formula, we have

y` =
∑̀

i=0

`−i
∑

j=0

`!

(`− i− j)! i! j! t
(2n−1)i+4`−2jξj .

All the vector monomials in the expansion, provided by the preceding formula for the vector
(0, y`), belong to the tangent space TA (fn), whenever they are divisible by a non zero power
of ξ. Indeed, fix J ∈ {1, . . . , `}. Up to a constant multiplicative factor, the vector monomials
divisible by ξJ are (0, t(2n−1)i+4`−2JξJ) for i ∈ {1, . . . , ` − J}. Such a germ lies in TA (fn),
due to the claim Q(`−m) with α = i if J = 2m+ 1 is odd, due to the claim P(`−m) with
α = i if J = 2m is even. Therefore,

v0 :=

(

0,
∑̀

j=0

(

`
i

)

t(2n−1)j+4`

)

∈ TA (fn) .

By assertion Q(`−1), the vectors (0, t(2n−1)i+4`−2) are in TA (fn) for i = 0, . . . , `−1. Hence,
we set

vi : = t(2n−1)i+4`−3 ∂tfn −
(

0, 2t(2n−1)i+4`−2ξ
)

=

=
(

0, 4t(2n−1)i+4` + (2n+ 3)t(2n−1)(i+1)+4`
)

∈ TA (fn) .
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We have defined `+ 1 vectors v0, . . . , v`, involving only the `+ 1 vector monomials ej :=
(

0, t(2n−1)j+4`
)

for j = 0, . . . , `. Let us consider the vector space R`+1, formally generated by
the vectors ej. Let A be the square matrix of order `+1, which columns are the components
of vj in this basis:

A :=

















( `0 ) 4 0 · · · 0

( `1 ) 2n+ 3 4
. . .

...
... 0 2n+ 3

. . . 0
...

...
. . .

. . . 4
( `` ) 0 · · · 0 2n+ 3

















.

Expanding the determinant by the first column and using the binomial formula, we find
detA = (2n+7)` 6= 0, thus A is invertible. This implies that the vector monomials ei belong
to the tangent space TA (fn), i.e. the claim P(`) holds.

Third step. Assume that the claims P(i) and Q(i) hold for i = 1, . . . , ` − 1. Then Q(`)
holds.

It is easily verified that the germs

–
(

t(2n−1)α+4j−2, 0
)

, j = 0, . . . , `, α = 0, . . . , j,

–
(

t(2n−1)α+4i, 0
)

, i = 0, . . . , `− 1, α = 0, . . . , i ,

belong to the tangent space (here we have used that P(`) holds). As in the preceding
step, this allow us to prove that all the vector monomials in the expansion, provided by the
binomial formula for the vector (y`, 0), are in TA (fn) whenever they are divisible by ξ, .
Thus we set

w0 :=

(

∑̀

j=0

(

`
j

)

t(2n−1)j+4`, 0

)

∈ TA (fn) .

By the claim P(`), we have (0, t(2n−1)i+4`) ∈ TA (fn) for all i = 0, . . . , ` − 1, so we may
define:

wi+1 : = t(2n−1)i+4`−1∂tfn − 2
(

0, t(2n−1)i+4`ξ
)

=
(

0, 4t(2n−1)i+4`+2 + (2n+ 3)t(2n−1)(i+1)+4`+2
)

∈ TA (fn) .

Furthermore, set w`+1+j := t(2n−1)j+4`∂tfn for j = 0, . . . , `.
We have defined 2(`+ 1) vectors wk, involving only the 2(`+ 1) vector monomials

εj :=
(

t(2n−1)j+4`, 0
)

, ε`+1+j :=
(

0, t(2n−1)j+4`+2
)

,

for j = 0, . . . , `. Consider the space R2(`+1) formally generated by the basis

{εk : k = 0, . . . , 2`+ 1} .
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Denote by B the square matrix of order 2`+ 2, formed by the coordinates of the vectors wk

in this basis:

B :=

























( `0 )
... O I`+1

( `` )
0 4 O
... 2n+ 3

. . . I`+1
...

. . . 4
0 O 2n+ 3

























,

where I`+1 is the identity matrix of order `+ 1. This matrix is equivalent to

B̃ =

(

Ã O`+1

∗ I`+1
,

)

where Ã is the matrix obtained from the matrix A in the second step of the proof, replacing
4 and 2n+3 by −4 and −(2n+3). Therefore det B̃ = (−2n−7)` 6= 0. Hence B is invertible,
and the map germs {εk : k = 0, . . . , 2`+ 1} belong to TA (fn). In particular, the claim Q(`)
holds. This ends the proof.

2.4.4 S2-type tangential families

By Proposition 2.4.1, every tangential family of type S2 can be parameterized by a map germ
of the form

(ξ, t) 7→
(

ξ, t5 + t2ξ + δ̃(5)
)

, (2.15)

where δ̃(n) denotes any function whose Taylor series has order n in the space R[[ξ, t]],
equipped with the quasi homogeneous filtration defined by the weights deg(ξ) = 3 and
deg(t) = 1.

Let us denote by m̃
n
ξ,t and J̃(n) respectively the ideal and the real vector space of Eξ,t

generated by the monomials ξptq of degree 3p + q = n. We set also J̃(p, q) := J̃(p) × J̃(q).
Let

g(ξ, t) := (ξ, t5 + t2ξ)

be the quasihomogeneous part of the germs (2.15).
The statements in Theorems 2.2.2 and 2.2.5 about the A -orbits of the S2-type tangential

families are proven by the following three theorems.

Theorem 2.4.5. The map germ g is 9-A -determined, and there are exactly four A -orbits
in X over g, represented by the map germs

– g2(ξ, t) := (ξ, t5 + t2ξ + t6) ,

– g±3 (ξ, t) := (ξ, t5 + t2ξ ± t9),

– g4(ξ, t) := g(ξ, t) = (ξ, t5 + t2ξ).

We denote by S2,2, S
±
2,3 and S2,4 respectively the A -orbits A · g2, A · g±3 and A · g4.
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Theorem 2.4.6. The codimensions of the orbits S2,2, S
±
2,3 and S2,4 in (mξ,t)

2 are respectively
5, 6 and 7.

Theorem 2.4.7. The extended codimensions of g2, g
±
3 and g4 are 3, 4 and 5. The map germs

(ξ, t;λ1, λ2) 7→ (ξ, t5 + t2ξ + t6 + λ1t
3 + λ2t

4) ,

(ξ, t;λ1, λ2, λ3) 7→ (ξ, t5 + t2ξ ± t9 + λ1t
3 + λ2t

4 + λ3t
6) ,

(ξ, t;λ1, λ2, λ3, λ4) 7→ (ξ, t5 + t2ξ + λ1t
3 + λ2t

4 + λ3t
6 + λ4t

9) .

are A -miniversal tangential deformations of the map germs g2, g
±
3 and g4 respectively. In

particular, the tangential codimensions of these germs are 2, 3 and 4.

Proof of Theorem 2.4.5.

We start the proof of Theorem 2.4.5 by the computation of the reduced tangent space TrA (g)
of the map germ g.

Lemma 2.4.7. The space m̃
8
ξ,t × m̃

10
ξ,t is contained in TrA (g).

It follows from the Lemma that (m10
ξ,t)

2 is contained in the extended tangent space TeA (g);
in particular, the map germ g is finitely determined.

Proof. The proof is by induction. By a direct computation one shows that

J̃(8, 10) ∪ J̃(9, 11) ∪ J̃(10, 12) ⊂ TrA (g).

Now, assume that TrA (g) contains the vector space

J̃(n, n+ 2) ∪ J̃(n+ 1, n+ 3) ∪ J̃(n+ 2, n+ 4) ;

then it contains also J̃(n+3, n+5). Indeed, since the reduced tangent space is an Ex,y-module,
it contains ξ · J̃(n, n+ 2); moreover

tn+1∂tg = (0, 5tn+5) mod ξ · J̃(n, n+ 2) ,

tn+3∂ξg = (tn+3, tn+5) ,

therefore also (tn+3, 0) and (0, tn+5) belong to the reduced tangent space.

Let us recall now a well known general theorem on A -finite determinacy, due to Gaffney
([23], see also [11] and [29]): the map germ g is r-A -determined if and only if

(mr+1
ξ,t )2 ⊂ TeA (ĝ) + (m2r+2

ξ,t )2

for every germ ĝ with the same r-jet as g. By Lemma 2.4.7, the preceding inclusion holds
with r = 9, so the map germ g is 9-A -determined.

We shall now complete the proof of Theorem 2.4.5. To bring any map germ, whose
quasihomogeneous part is g, to one among the map germs gi, we will use Proposition 2.4.2
at each step of the reduction. Let ĝ be a map germ of the form (2.15), namely

(ξ, t) 7→
(

ξ, t5 + t2ξ + P6(ξ, t) + δ̃(6)
)

,
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where P6(ξ, t) = a1t
6 + a2t

3 + a3ξ
2 is a quasihomogeneous polynomial of weighted degree

equal to 6. Let us consider the quasihomogeneous vector field of degree 1, V1 := (a2/2)t2 ∂t.
Since V1 · g = (0, 5a2t

6/2 + a2t
3ξ), the coordinate changes

(ξ, t) 7→
(

ξ, t− a2t
2/2
)

, (x, y) 7→ (x, y − a3x
3) ,

take our germ to the form

(ξ, t) 7→
(

ξ, t5 + t2ξ + (a1 − 5a2/2)t6 + δ̃(6)
)

. (2.16)

Let us set a := (a1 − 5a2/2). Then the initial germ is A -equivalent to a map germ of the
form

(ξ, t) 7→
(

ξ, t5 + t2ξ + at6 + δ̃(6)
)

.

Since all the vector monomials (0, ξptq) of weighted degree 7 and 8 belong to TrA (g), such a
germ is A -equivalent to a germ on the form:

(ξ, t) 7→
(

ξ, t5 + t2ξ + at6 + δ̃(8)
)

.

which may be rewritten as

(ξ, t) 7→
(

ξ, t5 + t2ξ + a t6 + P9(ξ, t) + δ̃(9)
)

,

where P9(ξ, t) := b1t
9 + b2t

6ξ + b3t
3ξ2 is a quasihomogeneous polynomial of weighted degree

equal to 9. Indeed, we may assume –up to a coordinate change in the target space– that
the coefficient of (0, ξ3) is vanishing. Consider the order 4 homogeneous vector field V4 :=
v4(ξ, t) ∂t, where

v4(ξ, t) =
2b2 − 5b3

4
t5 +

b3
2
t2ξ .

Then the coordinate change (ξ, t) 7→ (ξ, t− v4(ξ, t)) reduces the preceding germ to the case
P9(ξ, t) = c t9, where c = b1 − 5b2/2 + 25b3/4.

If the coefficient a of (0, t6) is not vanishing, we may normalize it to 1 (changing the value
of c). In this case, we can kill the last term in P9. In order to do this, we consider the
following vector field germ:

W :=
6c

5
ξ2 ∂ξ + c

(

2

5
tξ − 1

5
t5
)

∂t .

We have:

W · ĝ =

(

6c

5
ξ2,−6c

5
(t5ξ + t2ξ2 + t6ξ)− ct9

)

.

Hence, the coordinate changes

(ξ, t) 7→
(

ξ +
6c

5
ξ2, t +

2c

5
tξ − c

5
t5
)

, (x, y) 7→
(

x− 6c

5
x2, y +

6c

5
xy

)

,
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bring ĝ to the following form

(ξ, t) 7→
(

ξ, t5 + t2ξ + t6 + δ̃(9)
)

(here we use the estimate of Lemma 2.4.1). If the coefficient a of (0, t6) is zero, we can not
kill the term (0, t9). By a coordinate change, we can transform the map germ into

(ξ, t) 7→
(

ξ, t5 + t2ξ + b t9 + δ̃(9)
)

.

If b is not vanishing, we may normalize it to ±1. Since g is 9-A -determined, this implies that
the initial germ is A -equivalent to one among the four map germs g2, g

±
3 and g4. Theorem

2.4.5 is proven.

Proof of Theorem 2.4.6.

In order to compute the codimensions of the orbits S2,2, S
±
2,3 and S2,4 in (mξ,t)

2, first we
describe the tangent spaces to the orbits at the germs g2, g

±
3 and g4.

Lemma 2.4.8. The following inclusions hold:

– m̃
3
ξ,t × m

5
ξ,t ⊂ TA (g2),

– J̃(3, 5) ∪
(

m̃
5
ξ,t × m

7
ξ,t

)

⊂ TA (g3),

– J̃(3, 5) ∪ J̃(5, 7) ∪ J̃(6, 8) ∪
(

m̃
8
ξ,t × m

10
ξ,t

)

⊂ TA (g4).

The proof of this Lemma is provided by some easy computations completing Lemma 2.4.7.
We may compute now the S2-orbit codimensions. In all the four cases we deal with, the

ideal mξ,t/(〈gi〉 ·mξ,t), where i = 2, 3, 4, is generated by

{ξ, t, t2, t3, t4, t5}

(the forthcoming computations being identical for g+
3 and for g−3 , we omit from now on the

sign ±). Since tj ∂ξgi = (tj, tj+2) ∈ TA (gi), we obtain from the Preparation Theorem and
Lemma 2.4.8 that

(mξ,t)
2 = TA (gi) + g∗i (Ex,y) ·

{(

0
t

)

,

(

0
t2

)

,

(

0
t3

)

,

(

0
t4

)

,

(

0
t6

)}

. (2.17)

Consider first the case i = 2, concerning the orbit S2,2. Then (0, t6) belong to the tangent
space; moreover, by Lemma 2.4.8, we have

g∗2(Ex,y) ·
(

0
t

)

⊂ TA (g2)⊕ R ·
{(

0
t

)

,

(

0
ξt

)}

. (2.18)

Indeed, (0, ty), (0, tx2) and (0, txy) have weighted degrees at least 5. Similarly, the monomials
xtα and ytα have weighted degrees at least 5 whenever α ≥ 2, so

g∗2(Ex,y) ·
(

0
tα

)

= TA (g2)⊕ R ·
(

0
tα

)

. (2.19)
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Therefore, we obtain, from equality (2.17) by inclusions (2.18) and (2.19), the equality

(mξ,t)
2 = TA (g2)⊕ R ·

{(

0
t

)

,

(

0
tξ

)

,

(

0
t2

)

,

(

0
t3

)

,

(

0
t4

)}

, (2.20)

proving that the codimension of the map germ g2 is equal to 5.

Remark. The preceding equality provides the adjacency S2,2 → S1,1.

We consider now the orbits S±
2,2. In both cases, we have:

g∗3(Ex,y) ·
(

0
t

)

⊂ TA (g3)⊕ R ·
(

0
t

)

+ g∗3(Ex,y) ·
{(

0
tx

)

,

(

0
ty

)}

⊂

⊂ TA (g3)⊕ R ·
{(

0
t

)

,

(

0
tξ

)}

+ g∗3(Ex,y) ·
{(

0
tx2

)

,

(

0
txy

)

,

(

0
t6

)}

⊂

⊂ TA (g3)⊕ R ·
{(

0
t

)

,

(

0
tξ

)}

+ g∗3(Ex,y) ·
(

0
t6

)

.

For this computation, we have used the fact that t2 ∂tg3 = (0, 5t6 +2t3ξ+6t7), implying that

g∗3(Ex,y) ·
(

0
t3ξ

)

⊂ TA (g3) + R ·
(

0
t6

)

,

and the fact that tξx2, tξy have weighted degree greater than 6, so the corresponding vector
monomials (0, tξx) and (0, tξy) belong to the tangent space. Similarly, we have:

g∗3(Ex,y) ·
(

0
t2

)

⊂ TA (g3) + R ·
(

0
t2

)

,

g∗3(Ex,y) ·
(

0
t3

)

⊂ TA (g3) + R ·
{(

0
t3

)

,

(

0
t6

)}

,

g∗3(Ex,y) ·
(

0
t4

)

⊂ TA (g3) + R ·
(

0
t4

)

,

g∗3(Ex,u) ·
(

0
t6

)

⊂ TA (g3) + R ·
(

0
t6

)

.

By these inclusions, we get from (2.18) the equality

(mξ,t)
2 = TA (g3)⊕ R ·

{(

0
t

)

,

(

0
tξ

)

,

(

0
t2

)

,

(

0
t3

)

,

(

0
t4

)

,

(

0
t6

)}

, (2.21)

proving that the codimension of the map germs g±3 in (mξ,t)
2 are equal to 6.

Remark. The preceding equality provides the adjacency S±
2,3 → S2,2.
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Finally we consider the orbit S2,3. We have:

g∗4(Ex,y) ·
(

0
t

)

⊂ TA (g4)⊕ R ·
{(

0
t

)

,

(

0
tξ

)

,

(

0
t6

)

,

(

0
t9

)}

,

g∗4(Ex,y) ·
(

0
t2

)

⊂ TA (g4) + R ·
(

0
t2

)

,

g∗4(Ex,y) ·
(

0
t3

)

⊂ TA (g4) + R ·
{(

0
t3

)

,

(

0
t6

)

,

(

0
t9

)}

,

g∗4(Ex,y) ·
(

0
t4

)

⊂ TA (g4) + R ·
{(

0
t4

)

,

(

0
t9

)}

,

g∗4(Ex,y) ·
(

0
t6

)

⊂ TA (g4) + R ·
{(

0
t6

)

,

(

0
t9

)}

,

g∗4(Ex,y) ·
(

0
t9

)

⊂ TA (g4) + R ·
(

0
t9

)

.

By these inclusions, we get from (2.18) the equality

(mξ,t)
2 = TA (g4)⊕ R ·

{(

0
t

)

,

(

0
tξ

)

,

(

0
t2

)

,

(

0
t3

)}

⊕

⊕ R ·
{(

0
t4

)

,

(

0
t6

)

,

(

0
t9

)}

(2.22)

proving that the codimension of the map germ g4 in (mξ,t)
2 is equal to 7.

Remark. The preceding equality provides the adjacency S2,4 → S2,3.

The proof of Theorem 2.4.6 is completed.

Proof of Theorem 2.4.7.

We complete the study of S2-type tangential families computing their A -miniversal tangential
deformations.

Since the vectors (0, t2) and (0, tξ) belong to the extended tangent space TeA (g2), from
equality (2.20) we get:

(Eξ,t)
2 = TeA (g2)⊕ R ·

{(

0
t

)

,

(

0
t3

)

,

(

0
t4

)}

,

Similarly we have:

(Eξ,t)
2 = TeA (g±3 )⊕ R ·

{(

0
t

)

,

(

0
t3

)

,

(

0
t4

)

,

(

0
t6

)}

,

(Eξ,t)
2 = TeA (g4)⊕ R ·

{(

0
t

)

,

(

0
t3

)

,

(

0
t4

)

,

(

0
t6

)

,

(

0
t9

)}

.
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These formulæ prove that the mappings

G2 : R2 × R3 → R2 ,

G±
3 : R2 × R4 → R2 ,

G4 : R2 × R5 → R2 ,

defined by

G2 : (ξ, t;µ, λ1, λ2) 7→ (ξ, t5 + t2ξ + t6 + µt+ λ1t
3 + λ2t

4) ,

G±
3 : (ξ, t;µ, λ1, λ2, λ3) 7→ (ξ, t5 + t2ξ ± t9 + µt+ λ1t

3 + λ2t
4 + λ3t

6) ,

G4 : (ξ, t;µ, λ1, λ2, λ3, λ4) 7→ (ξ, t5 + t2ξ + µt+ λ1t
3 + λ2t

4 + λ3t
6 + λ4t

9) ,

are A -miniversal deformations of the map germs g2, g
±
3 and g4 respectively. In particular,

the extended codimensions of the latter germs are 3, 4 and 5. As in the proof of Theorem
2.4.5, we see that these deformations are tangential if and only if µ ≡ 0, and that in this case
we get a miniversal tangential deformation.

2.4.5 T -type tangential families

In this section we will complete the proof of Theorem 2.2.2, proving the statements concerning
the T -type tangential families.

Let us consider the space R[[ξ, t]] endowed with the quasihomogeneous filtration defined
by the weights deg(t) = n + 1 and deg(ξ) = 1. As usual, we denote by δ̃(m) any function
whose Taylor series has order m in this filtration, and by m̃

m
ξ,t the mξ,t-ideal generated by the

monomials ξptq of weighted degree p+ (n+ 1)q = m.
By Proposition 2.4.1, the prenormal form of any Tn-type tangential family can be written

as
(ξ, t) 7→

(

ξ, αt3 + kn+1t
2ξn+1 + δ̃(3n+ 3)

)

, (2.23)

Since α and kn+1 are non zero, we may assume by rescaling α = kn+1 = 1.

Theorem 2.4.8. Every set Tn is an A -orbit; in particular, every map germ belonging to Tn
is A -equivalent to the map germ

hn(ξ, t) := (ξ, t3 + t2ξn+1) .

Theorem 2.4.9. For every n ∈ N, the codimension in (mξ,t)
2 of the A -orbit Tn is equal to

2n+ 3.

Theorem 2.4.10. The extended codimension of hn is 2n+ 1. The mapping Hn : R2×Rn →
R2, defined by

Hn(ξ, t;λ1, . . . , λn) :=

(

ξ, t3 + t2ξn+1 +
n
∑

i=1

λit
2ξi−1

)

,

is a tangential deformation of the map germ hn. Moreover, for n = 1 the deformation is a
miniversal tangential deformation.
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Proof of Theorem 2.4.8

We start the proof of Theorem 2.4.8 by a Lemma, concerning the tangent space and the
reduced tangent space of the A -orbit at hn.

Lemma 2.4.9. The following inclusions hold for every n ∈ N:

m̃ξ,t × m̃
3n+3
ξ,t ⊂ TA (hn) , m̃

2
ξ,t × m̃

3n+4
ξ,t ⊂ TrA (hn) .

Proof. Let us consider the monomials of (weighted) degree M := (n + 1)m + p, where
m ∈ N r {1, 2} and p ∈ {0, . . . , n}, that is,

{

ξ(n+1)i+p tm−1 : i = 0, . . . , m
}

.

Now, for i = 0, . . . , m− 2, consider the following vectors:

– ξM−3n−2 ∂ξhn −
(

xM−3n−2, 0
)

=
(

0, (n+ 1)ξM−2(n+1) t2
)

,

– tm−2−i ξi(n+1)+p ∂thn =
(

0, 2tm−i−1 ξ(i+1)(n+1)+p
)

,

–
(

x(m−3)(n+1)+py
)

=
(

0, t3 ξ(m−3)(n+1)+p + t2 ξ(m−2)(n+1)+p
)

.

These vectors belong to TA (hn) whenever M ≥ 3n+3 and to TrA (hn) whenever M ≥ 3n+4.
We have defined m+ 1 linearly independent vectors, involving only the m + 1 degree M

monomials in the second component. Therefore we have

{0} × m̃
3n+3
ξ,t ⊂ TA (hn) , {0} × m̃

3n+4
ξ,t ⊂ TrA (hn) .

Since ∂ξ hn = (1, (n + 1)t2 ξn), every vector monomial (ξatb, 0) of degree 1 (resp., of degree
2) belongs to the tangent space to hn (resp., to the reduced tangent space).

This Lemma implies in particular that the map germ hn is finitely A -determined. Hence,
to prove Theorem 2.4.8, we have to show that every map germ in Tn is formally A -equivalent
to hn.

This follows from the fact that hn is a quasihomogeneous map germ and that every map
germ of the form

(ξ, t) 7→
(

0, δ̃(3n+ 3)
)

belongs to TrA (hn). So, due to Proposition 2.4.2, every map germ of the form (2.23) is
formally A -equivalent to hn. This ends the proof.

Proof of Theorem 2.4.9

By the Preparation Theorem, the Ex,y-module mξ,t is generated by ξ, t, t2, t3, indeed

〈hn〉Eξ,t
= 〈ξ, t3 + t2 ξn+1〉Eξ,t

= 〈ξ, t3〉Eξ,t
.

Therefore, by Lemma 2.4.9, we have:

(mξ,t)
2 = TA (hn) + h∗n(Ex,y) ·

{(

0
t

)

,

(

0
t2

)}

. (2.24)
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Using again Lemma 2.4.9, we obtain:

h∗n(Ex,y) ·
(

0
t

)

⊂ TA (hn)⊕
2n+1
⊕

i=0

R ·
(

0
tξi

)

,

h∗n(Ex,y) ·
(

0
t2

)

⊂ TA (hn)⊕
n
⊕

i=0

R ·
(

0
t2ξi

)

.

Since ∂thn = (0, 3t2 + 2tξn+1), these inclusions and identity (2.24) lead to:

(mξ,t)
2 = TA (hn)⊕

n+1
⊕

i=0

R ·
(

0
tξi

)

⊕
n
⊕

i=0

R ·
(

0
t2ξi

)

(2.25)

This formula shows that the codimension in (mξ,t)
2 of the A -orbit Tn is equal to 2n+ 3.

Proof of Theorem 2.4.10

Since the vector monomials (1, 0), (0, 1) and (0, t2ξn) belong to the extended tangent space
to the orbit Tn at hn, we deduce from (2.25) the following equality:

E
2
ξ,t = TeA (hn)⊕

n
⊕

i=0

R ·
(

0
tξi

)

⊕
n−1
⊕

i=0

R ·
(

0
t2ξi ,

)

(2.26)

which implies that the mapping Hn : R2 × R2n+1 → R2, defined by

Hn(ξ, t;λ, µ) :=

(

ξ, t3 + t2ξn+1 +
n
∑

i=0

µitξ
i +

n−1
∑

i=0

λit
2ξi

)

,

is an A -miniversal deformation of the map germ hn. In particular, the extended codimension
of hn is 2n+ 1.

The deformation Hn is tangential if and only if all the µi’s are vanishing. Indeed, assume
λ0 = · · · = λn−1 = 0. Then the equation of the critical set of the perturbed germ is

3t2 + 2tξn+1 +
n
∑

i=0

µiξ
i = 0 .

If the deformation is tangential, this equation has two solutions, which are the graphs of two
functions of ξ (for µi’s small enough). Now, the discriminant of the equation is:

4ξ2n+2 − 12
n
∑

i=0

µiξ
i ,

which is non negative in a whole neighborhood of ξ = 0 if and only if all the µi’s are vanishing.
On the other hand, it follows from Theorem 2.2.1, Proposition 2.4.1 and Theorem 2.4.8 that
Hn|µ≡0 is a tangential deformation.
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However, this not implies that the deformation is miniversal, that is, that every tangential
deformation of the map germ hn is induced from Hn|µ≡0. We shall prove now that this is
the case when n = 1.

Let H ′ : R2 ×Rp → R2, (t, ξ;α) 7→ H ′(ξ, t;α), a tangential deformation of h1. Then, due
to the A -versality of H1, H

′ is A -equivalent to

(t, ξ;α) 7→H1(t, ξ;λ(α), µ(α)) ,

for some mapping α 7→ (λ(α), µ(α)) vanishing at α = 0. The critical set equation of the
mapping H1( · ;λ(α), µ(α)) is

3t2 + 2t(λ0(α) + ξ2) + (µ0(α) + µ1(α)ξ) = 0 .

The deformation is tangential, so the equation discriminant is non negative, at least in the
vicinity of (ξ = 0, α = 0). Since the expansion of the discriminant can be written for ξ → 0
as

4(λ0(α)− 3µ0(α))− 12µ1(α)ξ + o(ξ) ,

so µ0(α) is vanishing at every α such that λ0(α) = 0. On the other hand, the deformed
family is a first type tangential family whenever λ0(α) 6= 0, so it is A -equivalent to (ξ, t) 7→
(ξ, t2). Therefore, there exists a coordinate change of the space R2, depending on α, taking
H1(ξ, t;λ0(α);µ0(α), µ1(α)) to H1(ξ, t;λ0(α); 0, µ1(α)). In this case, the discriminant of the
critical set equation can be rewritten for ξ → 0 as 4λ0(α)− 12µ1(α)ξ + o(ξ). As before, the
tangentiality condition implies that µ1 is vanishing over λ−1

0 (0), and then we can assume,
up to a coordinate change, that µ1 is vanishing everywhere. Hence, we have shown that the
initial tangential deformation H ′ is induced by H1|µ≡0; that is, H1|µ≡0 is an A -miniversal
tangential deformation of the map germ h1.

2.4.6 Proof of Theorem 2.2.3

Let us recall the statement of Theorem 2.2.3: the tangential family simple singularities are
exactly I, II, S1,n, Tn, S2,2, S2,3, S2,4, where n is any natural number.

To prove this Theorem we have to show that all the tangential family singularities be-
longing to the classes S1,∞, T∞, Sn for n > 2 and U are not simple. We shall prove now these
assertions.

First Claim: The tangential family singularities of type S1,∞ and T∞ are not simple.
Indeed, the orbits S1,∞ (resp., T∞) are contained in the closure of the orbits S1,n (resp.,

Tn) for every n ∈ N.

Second Claim: The tangential family singularities of type Sn are not simple, whenever
n ≥ 3.

We start proving the non simplicity of a special family of germs. Let us consider R[[ξ, t]]
endowed with the quasihomogeneous filtration defined by deg(ξ) = 4 and deg(t) = 1. We
denote by J̃(m,n) the space of the vector polynomials of weighted degree smaller or equal to
m in the first coordinate and to n in the second; δ̃(m) is any function having order m Taylor
series.
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Let us denote by fa a 1-parameter family of germs of the form

(ξ, t) 7→ (ξ, t6 + t2ξ + t7 + at9 + δ̃(9)) ,

where a ∈ R. Note that fa belongs to S3 for every a. We shall prove now that we can not
kill the terms (0, at9); by this, we mean that two map germs fa and fb are not A -equivalent,
provided that a 6= b. We do this by an explicit computation. Obviously, if two map germs
fa and fb are not A -equivalent in J̃(7, 9) for the induced action of the group A , they can
not be A -equivalent in the whole space (mξ,t)

2.

Every coordinate change (ϕ, ψ) acting on the (weighted) jet j7,9fa is as follows:

ϕ(ξ, t) = (ξ + P (ξ, t), t+Q(ξ, t))

ψ(x, y) = (x+ cy, y + dx2) ,

where c, d ∈ R and P and Q are polynomials of order 5 and 2 respectively:

P (ξ, t) = a1t
5 + a2tξ + a3t

6 + a4t
2ξ + a5t

7 + a6t
3ξ ,

Q(ξ, t) = b1t
2 + b2t

3 + b3t
4 + b4ξ ,

where ai, bi ∈ R. Consider the polynomial g obtained from fa under the conjugacy by (ϕ, ψ).
We impose to the resulting germ g to belong to the family {fa : a ∈ R}, that is g = fb for
some b depending on a, ai, bi, c, d.

Let us first compute the action of (ϕ, ψ) on the jet of order (5, 7) of fa:

j5,7g =
(

ξ + a1t
5 + a2tξ, t

6 + t2ξ + (1 + a1 + 6b1)t
7 + (a2 + 2b1)t

3ξ
)

.

The condition j5,7g = j5,7fb implies that a1 = a2 = b1 = 0. We consider next the jet of order
(6, 8):

j6,8g =
(

ξ + (a3 + c)t6 + (a4 + c)t2ξ, t6 + t2ξ + t7 + (a3 + 6b2)t
8 + (a4 + 2b2)t

4ξ + dξ2
)

.

The condition on g is equivalent to the following conditions on the coordinate changes:































a3 + c = 0

a4 + c = 0

a3 + 6b2 = 0

a4 + 2b2 = 0

d = 0

Since these equations are linearly independent, we get a3 = a4 = b2 = c = d = 0. We have
now the next jet

j7,9g =
(

ξ + a5t
7 + a6t

3ξ, t6 + t2ξ + t7 + (a + a5 + 6b3)t
9 + (a6 + 2b3 + 6b4)t

4ξ + 2b4tξ
2
)

.
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The condition j7,9g = j7,9fb is equivalent to the following equation system






























a5 = 0

a6 = 0

a+ a5 + 6b3 = b

a6 + 2b3 + 6b4 = 0

2b4 = 0

providing the solutions a5 = a6 = b3 = b4 = 0 and a = b.
Therefore, two map germs fa and fb can not be A -equivalent whenever a 6= b. This

means that in the neighboring of each map fa there are infinitely many A -orbits; that is, fa
is non simple.

Let us consider now a map germ f lying in S3. Assume f on the prenormal form:

f(ξ, t) = (ξ, t6 + t2ξ + δ̃(6))

(here we use Proposition 2.4.1). Due to the geometry of the Newton Diagram of the second
component of this germ, it is easy to see that f is A -equivalent to a map germ whose Taylor
expansion is of the form

(ξ, t) 7→ (ξ, t6 + t2ξ + At7 +Bt9 + δ̃(9)) ;

the formal argument to prove this is the same used in the proof of Lemma 2.4.3 in section
2.4.3. If A 6= 0, me may normalize it to 1. Now f is of the form fa(ξ, t) + (0, δ̃(9)), so in the
neighborhood of f there are infinitely many A -orbits. On the other hand, if A is vanishing,
we consider the following deformation: Fε(ξ, t) := f(ξ, t) + (0, εt7). For every ε 6= 0, Fε is
A -equivalent to a non simple germ, so f is also non simple.

We have proven that there are no S3 singularities which are simple. Finally, the sets Sn
for n > 3 are in the closure of S3, so there are no Sn>4 and S∞ singularities which are simple.
This concludes the proof of the second claim.

We remark that one can prove the non simplicity of the singularities Sn≥4 by the follow-
ing argument. Consider a tangential family of type S4. Its critical value set has, up to a
coordinate change, a branch of the form t 7→ (t5, t7 + o(t7)). These curves are non simple, as
proven by Bruce and Gaffney in [14] (see also [8]). This implies that also the corresponding
tangential families are non simple.

Third Claim: The tangential family singularities of type U are non simple.
We start the proof of the last claim with a particular case. Let us consider a 1-parameter

family of map germs {fa : a ∈ R} of the form

fa : (ξ, t) 7→
(

ξ,
1

4
t4 +

2

3
at3ξ +

1

2
t2ξ2 + t2 · δ(2)

)

.

For every a, fa is of type U , due to Proposition 2.4.1. Let us consider the complexification
fC

a : C2 → C2 of fa. The critical set equation of fC

a is

t(t2 + 2atξ + ξ2 + δ(2)) = 0 , (2.27)
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having as solutions t = 0 and the graphs of two functions that can be written as t1,2(ξ) =
ξ(a ±

√
a2 − 1). Let us consider the complex tangent space T C

0 Φa to the graph Φa of the
family fa. Note that the equation of T C

0 Φa in the three-space {ξ, x, y} is y = 0. The vertical
direction at the origin and the three solutions of the equation (2.27) define the following four
complex directions in T C

0 Φa:

(−1, 1, 0) , (1, 0, 0) , (a− 1 +
√
a2 − 1, 1, 0) , (a− 1−

√
a2 − 1, 1, 0) .

These four directions define four points on the projective complex line, namely −1, ∞,
P := a − 1 +

√
a2 − 1 and Q := a − 1−

√
a2 − 1. The complex Cross Ratio of these points

is a function of the parameter a:

CRC(−1,∞;P,Q) = 2a2 − 1 + 2
√
a2 − 1 .

The Cross Ratio associated to a tangential family is invariant under coordinate changes, that
is, A -equivalent tangential families have the same Cross Ratio. Therefore, two germs fa and
fb are non A -equivalent if their Cross Ratios are different, that is, if |a| 6= |b|. This proves
that the singularity containing a map germ fa for some a is not simple.

Consider now the prenormal form f of any U -type tangential family: f(ξ, t) = (ξ, t3 ·δ(1)).
Consider the 1-parameter deformation of f , defined by:

Fε(ξ, t) := f(ξ, t) + (0, ε(t4 + t2ξ2)) .

For every ε small enough, such a germ is A -equivalent to some map germ in the family
{fa : a ∈ R}. Hence, in the vicinity of f there are infinitely many A -orbits, so the singularity
A · f is non simple.

This ends the proof of the last claim and of Theorem 2.2.3.
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Chapter 3

Singularities of Legendrian graphs and
singular tangential families

Abstract. We construct the Legendrian version of envelope theory. The Legendrian graph of

a tangential family is the union of the Legendrian lifts of the family curves in the projectivized

cotangent bundle. We investigate singularities of Legendrian graphs of first and second type tan-

gential family germs and we study their stability under small tangential deformations of the families

generating them. We also find the normal forms of the projections of these Legendrian graphs into

the plane. This Legendrian construction allows us to consider singular tangential families, i.e.

1-parameter families of rays emanating tangentially from a given curve with a semicubic cusp.

3.1 Introduction

Tangential families are 1-parameter families of rays emanating tangentially from a given
smooth curve. Tangential families and their envelopes (or caustics) are natural objects in
Differential Geometry: for instance, every curve in a Riemannian surface defines the tangen-
tial family of its tangent geodesics.

The theory of tangential families is a generalization of the study developed by Thom (see
[28]) and Arnold for plane envelopes (see [2] and [3]). Indeed, every 1-parameter family of
planes curves is tangential, with respect to generic points of its geometric envelope branches.

In [17] we studied the stability of singularities of tangential family germs and their en-
velopes under small tangential deformations, i.e. deformations of the family among tangential
families. In [18] we classified the simple singularities of tangential family germs and we de-
scribed the corresponding envelope perestroikas.

In this chapter we construct the Legendrian version of the envelope theory. In particular,
we interpret the envelope of a tangential family as the apparent contour of a certain surface
in the projectivized cotangent bundle of the plane. This surface, that we call the Legendrian
graph of the family, is the union of the Legendrian lifts of the family curves in the projectivized
cotangent bundle.

Our first result concerns singularities of Legendrian graphs and their stability under small
tangential deformations. We prove that in this setting the double Whitney umbrella is stable.
In the theory of singularities of mappings from the plane to the three space, constructed by

63
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Mond in [27], this singularity of the image surface is not stable.

Our result is related to the theory of functions on manifolds with boundary, constructed
by Arnold and Lyashko (see [12]). More precisely, it is an example of a mapping from a
surface with boundary to the plane, the boundary being the lifting in the Legendrian graph
of the support of the family.

Furthermore, we find normal forms of projections of Legendrian graphs into the plane (in
the case of tangential families of first and second type). This result is related to the theory
of projections of surfaces into the plane, constructed by O. A. Platonova and O.P. Shcherbak
(see [12]) and to the theory of projections of complete intersections, due to V. V. Goryunov
([24]). Our result is new when the projected surface is singular (actually the double Whitney
umbrella). Our study is also related to the theory of singular Lagrangian varieties and their
Lagrangian mappings, constructed by A. B. Givental in [25].

The Legendrian construction allows us to consider singular tangential families, i.e. 1-
parameter families of rays emanating tangentially from given curves with semicubic cusps.
These families are defined from tangential families via the projective duality. We discuss
envelopes of singular families. Our results generalize the study of envelopes of 1-parameter
families of curves tangent to a curve having a semicubic cusp, carried out in [15] and [16].

This chapter is divided into two parts. In the first part we state our results. The second
part is devoted to the proofs.

3.2 Presentation of the results

Unless otherwise specified, all the objects considered below are supposed real and of class
C ∞; a plane curve is a dimension 1 embedded submanifold of the plane.

3.2.1 Envelopes of tangential families

Let f : R2 → R2 be a mapping of the source plane, equipped with the coordinates ξ and
t, to another plane. If ∂tf vanishes nowhere, then the mapping defines the 1-parameter
family of plane curves parameterized by t, indicating the point on the curve, and indexed
by ξ, indicating the curve in the family. The family curves may have self-intersections. The
mapping f is called a parameterization of the family. We set fξ(t) := f(ξ, t).

Definition. The 1-parameter family parameterized by f is a tangential family if the partial
derivatives ∂ξf and ∂tf are parallel non zero vectors at every point (ξ, t = 0), and the image
of the mapping ξ 7→ f(ξ, 0) is a curve, called the support of the family.

In other terms, a family of plane curves tangent to γ is a tangential family whenever it
can be parameterized by the tangency points of the family curves with the support. We will
denote such a family by {Γξ : ξ ∈ R}, where Γξ is the curve, tangent to the support at f(ξ, 0),
corresponding to the parameter value ξ.

Below we will consider tangential families near a fixed point of the support, settled at the
origin. Thus, without loss of generality, we can consider the parameterizations of tangential
families as elements of (mξ,t)

2, i.e. map germs (R2, 0)→ (R2, 0) in the variables ξ, t.
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The graph of a tangential family f is the surface

Φ := {(q, p) ∈ γ × R2 : q = f(ξ, 0), p = f(ξ, t), ξ, t ∈ R} .

Graphs of tangential family germs are smooth. The envelope of the family is the apparent
contour of its graph under the projection π : Φ → R2, π(q, p) := p. The criminant set (or
the envelope in the source) is the critical set of π.

The fiber π−1(0, 0) defines a vertical direction in the tangent space of the graph at the
origin. A tangential family germ is said to be of first type if its criminant set has only one
branch at the origin, of second type if it has exactly two branches passing through the origin
and these branches are smooth, non vertical and transversal each other.

Let Diff(Rn, 0) be the group of the diffeomorphism germs (Rn, 0) → (Rn, 0). The group
An := Diff(R2, 0)×Diff(Rn, 0) acts on the space (mξ,t)

n of the map germs (R2, 0)→ (Rn, 0)
by

(ϕ, ψ) · f := ψ ◦ f ◦ ϕ−1 .

Two map germs in (mξ,t)
n are said to be Left-Right equivalent, or An-equivalent, if they

belong to the same An-orbit. In this section we consider the case n = 2, below, we will deal
with the case n = 3.

We will denote by X (resp. I, II) the set of all map germs in (mξ,t)
2 which are A2-

equivalent to tangential family germs (resp. tangential family germs of first type, of second
type). By construction, these sets are union of A2-orbits, so they are invariant under the
A2-action.

Definition. A p-parameter tangential deformation of a tangential family germ f is a p-
parameter family of tangential families, parameterized by a p-parameter family of maps
{Fλ : R2 → R2, λ ∈ Rp}, such that the germ of F0 at the origin is f .

By a geometrical point of view, tangential deformations are deformations inducing smooth
deformations on the family support, the latter being a branch of the envelope.

We quote now from [17] the main result about stable tangential family germs.

Theorem 3.2.1. The sets I and II defines two singularities, which are all the stable singular-
ities of tangential family germs. The table below lists the normal forms of these singularities,
their extended codimensions and the codimensions of their orbits in the space (mξ,t)

2.

Singularity Representative codime codim

I (ξ, t2) 0 1
II (ξ, t3 + t2ξ) 1 3

It follows from the Theorem that the envelope of every first type tangential family germ
is smooth, while that of every second type tangential family germ has a second order self-
tangency, and that these envelope singularities are stable under small tangential deformations.
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3.2.2 Legendrian graphs and their singularities

In this section we define Legendrian graphs generated by tangential family germs and we
study their singularities up to the Left-Right equivalence in the case of tangential family
germs of first and second type.

Let us recall some standard constructions in contact geometry; for details, we refer the
reader to [5].

A contact element on a given manifold is a hyperplane in a tangent space. The set of all
contact elements on a given manifold B of dimension m is fibered over B, and the fiber over a
point of B is the projectivized cotangent space of B at this point (called the point of contact).
This set of all contact elements of B is called the space of the projectivized cotangent bundle
PT ∗B. Its dimension 2m− 1 is odd and it carries a natural contact structure.

This structure is defined by the following construction. A velocity of motion of a contact
element is called admissible if the velocity of the point of contact belongs to the contact
element. It is easy to see that the admissible velocities form a hyperplane at any given point
of PT ∗B, and that these hyperplanes define a contact structure.

The set of all the contact elements, tangent to any particular submanifold of B, is an inte-
gral manifold of their contact structure of PT ∗B. The dimension of such an integral manifold
is always m − 1. The integral submanifolds of this maximal dimension of a contact struc-
ture are called Legendrian submanifolds. Thus, to every submanifold of the base manifold
B there corresponds a Legendrian submanifold of the projectivized cotangent bundle. The
Legendrian manifold will be called the Legendrian lift of the initial submanifold in the base.
For instance, the Legendrian submanifold corresponding to a hypersurface of B is the set of
the tangent spaces of the hypersurface. It is naturally diffeomorphic to the hypersurface.

We shall apply this construction to the plane curves forming a tangential family. Let
{Γξ : ξ ∈ R} be a tangential family and PT ∗R2 the projectivized cotangent bundle to the
plane R2, endowed with the standard contact structure and with the Legendrian fibration
π : PT ∗R2 → R2. To any curve Γξ of the family we may associate its Legendrian lift Γ̂ξ
defined by

Γ̂ξ := {(p, L) : L is the tangent line to Γξ at p ∈ Γξ} ⊂ PT ∗R2 .

Each curve Γξ is parameterized by a smooth map, and the only admitted singularities for the
curve are self-intersections. Thus, the Legendrian lift of Γξ is well defined.

Definition. The Legendrian graph of a tangential family is the surface Λ of PT ∗R2 formed
by the Legendrian lifts of the family curves:

Λ :=
⋃

ξ∈R

Γ̂ξ .

Note that the envelopes of tangential families are π-apparent contours of their Legendrian
graphs.

As done for tangential families, we will consider local parameterizations of Legendrian
graphs: we will identify any Legendrian graph to any map germ parameterizing the graph
at the point, whose projection in the plane is the point near which is defined the tangential
family generating the graph.
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Without loss of generality, we can assume that these local parameterizations are map
germs (R2, 0)→ (R3, 0), that is, elements of the space (mξ,t)

3. On this space acts the group
A3, as we explained in section 3.2.1.

Definition. The A3-equivalence class of a map germ parameterizing a Legendrian graph is
called a Legendrian graph singularity.

The meaning of the classification of Legendrian graph singularities up to the Left-Right
equivalence is that we are looking at Legendrian graphs as surfaces in the 3-space: this
classification does not consider the fibration neither the contact structure in the projectivized
cotangent bundle. The classification of Legendrian graphs up to an equivalence relation
preserving the fiber structure of the cotangent bundle is the object of section 3.2.4.

We will say that a Legendrian graph is of first type (resp., second type) if it is generated by
a tangential family germ of first type (resp., second type). Let us denote by X̂ ⊂ (mξ,t)

3 the

set of the local parameterizations of the Legendrian graph, and by ÎI the smaller A3-invariant
set containing the map germs in (mξ,t)

3 parameterizing Legendrian graph germs of second
type. These two sets define two classes of singularities of Legendrian graphs. It turns out
that X̂ and ÎI are submanifolds of (mξ,t)

3.

Theorem 3.2.2. The Legendrian graph germs of first type are smooth, while those of second
type have generically a singularity A±

1 . The Legendrian graph germs of second type which do
not have a singularity A±

1 form a codimension 1 (non connected) submanifold of ÎI. These
Legendrian graph germs have a singularity belonging to the series A±

n or Hn for n ≥ 2 or
n =∞.

Let us recall that, by definition, a mapping from the plane to the three space has a
singularity A±

n if it is A3-equivalent to the map germ

(ξ, t) 7→ (ξ, t2, t3 ± tξn+1) .

The singularities A+
n and A−

n are A3-equivalent if and only if n is even. A mapping has a
singularity Hn if it is A3-equivalent to the map germ

(ξ, t) 7→ (ξ, ξt+ t3n−1, t3) .

All these singularities A±
n and Hn are simple, that is, by an arbitrary sufficiently small

perturbation of each one of them, we can obtain representatives of only a finite number of
singularities. The singularities A−

1 and A+
1 are shown in figure 3.1. They are also called

double Whitney umbrella, with real handles in the case A−
1 and complex handles in the case

A+
1 .

Remark. Singularities B±
n , C±

n , F4 of map germs from R2 to R3 appear as singularities of
Legendrian graph germs which are not of first nor second type. In particular, it turns out
that the Legendrian graph of a S-type tangential family germ has a singularity B±

n . For the
classification of simple tangential family germs we refer the reader to [18].
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A+
1A−1

Figure 3.1: Double Whitney umbrella.

3.2.3 Stability of singularities of Legendrian graphs

In this section we investigate the stability of Legendrian graph singularities under deforma-
tions induced by tangential deformations of the families generating the graphs.

Definition. A p-parameter family of surfaces {Λλ : λ ∈ Rp} ⊂ PT ∗R2 is said to be a
p-parameter tangential deformation of the Legendrian graph germ Λ whenever there exists a
tangential deformation {Γλ : λ ∈ Rp} of the tangential family Γ0 generating Λ, such that
every Λλ is the Legendrian graph generated by Γλ.

Let Λ be the germ of a Legendrian graph at a point P .

Definition. The singularity of Λ at P is said to be stable under small tangential deforma-
tions if for every tangential deformation {Λλ : λ ∈ Rp} of Λ and for every small enough λ,
the surface Λλ has an A3-equivalent singularity at some λ-depending point arbitrary close to
P .

Theorem 3.2.3. The double Whitney umbrella A±
1 (together with the embedding singularity)

is the only singularity of Legendrian graph germs which is stable under small tangential
deformations.

The perestroika occurring to Legendrian graphs having a singularity A±
1 and to their

apparent contours under non tangential deformations of the subjacent families are discussed
in section 3.2.4.

We end the study of the singularities of Legendrian graph germs describing their ad-
jacencies. A Legendrian graph singularity L is said to be adjacent to a Legendrian graph
singularity K, and we write L → K, if every Legendrian graph in the A3-orbit L can be
deformed into a Legendrian graph in K by an arbitrary small tangential deformation. If
L → K → K ′, the class L is also adjacent to K ′. In this case we omit the arrow L → K ′.
The hierarchy of the Legendrian graph singularities (under small tangential deformations) is
as follows (where E stay for embedding).

E A±
1

oo A2
oo A±

3
oo . . .oo

H2

``BBBBBBBB

H3
oo . . .oo

We point out that there are no adjacencies between singularities of the classes A±
n and Hm,

except H2 → A±
1 .
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3.2.4 Normal forms of Legendrian graph projections

In this section we study how Legendrian graphs project into the envelopes of their generating
tangential families. In other terms, we find normal forms of Legendrian graphs of first and
second type under an equivalence relation preserving the fiber structure of the projectivized
cotangent bundle PT ∗R2.

We start defining the equivalence relation for global Legendrian graphs.

Definition. The projections of two Legendrian graphs Λ1 and Λ2 by the Legendrian fibra-
tion π : PT ∗R2 → R2 into the plane are said to be equivalent if there exists a commutative
diagram

Λ1
i1−−−→ PT ∗R2 π−−−→ R2





y





y





y

Λ2
i2−−−→ PT ∗R2 π−−−→ R2

in which the vertical arrows are diffeomorphisms and i1, i2 are inclusions of the Legendrian
graphs into the projectivized cotangent bundle.

Such an equivalence is a pair, formed by a diffeomorphism between the two Legendrian
graphs and a diffeomorphism of the projectivized cotangent bundle fibered over its base
(which is not presumed to be a contactomorphism).

Remark. Apparent contours of Legendrian graphs under equivalent projections are diffeo-
morphic.

In terms of map germs, this equivalence relation reads as follows. Consider two local
parameterizations F,G : (R2, 0)→ (R3, 0) of two Legendrian graphs. In the local context, we
may assume that the projection π is the germ at the origin of the mapping (x, y, z) 7→ (x, y).
The projections of the Legendrian graphs parameterized by F and G are equivalent if and
only if there exists a commutative diagram

(R2, 0)
F−−−→ (R3, 0)

π−−−→ (R2, 0)




y





y





y

(R2, 0)
G−−−→ (R3, 0)

π−−−→ (R2, 0)

in which the vertical arrows are germs of diffeomorphisms fixing the origin. This equivalence
is provided by a pair (ϕ, ψ) ∈ A3, in which ψ is fibered over the plane with respect to π; i.e.
ψ is of the form

ψ(x, y, z) =
(

X(x, y), Y (x, y), Z(x, y, z)
)

.

Let us denote by A ∗
3 the subgroup of A3 formed by all the above pairs (ϕ, ψ). This

subgroup inherits the action of A3 on the space (mξ,t)
3. Two projections of Legendrian

graphs are locally equivalent if and only if the local parameterizations of the two Legendrian
graphs are A ∗

3 -equivalent.

Definition. The singularity of the germ of a projection of a Legendrian graph (or the
A ∗

3 -singularity of a Legendrian graph) is the A ∗
3 -equivalence class of this germ.
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A class of Legendrian graph A ∗
3 -singularities is by definition any subset of X̂ which is

invariant under the action of the group A
∗
3 . Any A3-singularity of Legendrian graph defines a

class of A ∗
3 -singularities. So, the set of the Legendrian graph germs having an A3-singularity

A±
1 is a class of A ∗

3 -singularities.

Definition. A (polynomial) normal form for a singularity class L (for any equivalence
relation) is a smooth map Φ : B → (R[ξ, t])3 of a finite dimensional smooth manifold (diffeo-
morphic to a vector space) into the space of triples of polynomials that satisfies the following
conditions:

1) the image Φ(B) intersects all the orbits in L;

2) the preimage of any orbit in L under Φ is a finite subset of B;

3) the preimage of the complement of L is contained in some proper hypersurface of B.

The dimension of B is called the modality of the singularity class.

We can state now our main result on the projections of Legendrian graphs.

Theorem 3.2.4. The germs of projections of Legendrian graphs of first and second type
(except the union of two codimension 1 submanifolds in ÎI) are A

∗
3 -equivalent to the projection

germs of the surfaces parameterized by the map germs f in the 3-space {x, y, z} by a pencil
of lines parallel to the z-axis, where f is the normal form in the following table, according to
the type of the Legendrian graph.

Type Singularity Normal form Restrictions

I fold (ξ, t2, t) ∅

II A±
1 (ξ, t3 + t2ξ + atξ2, t2 + bt3)

a 6= −1, 0
a < 1/3

The real numbers a and b in the table are moduli. Moreover, a Legendrian graph germ of
second type, parameterized by the above normal form, has an A3-singularity A+

1 if and only
if 0 < a < 1/3, it has an A ∗

3 -singularity A−
1 if and only if −1 6= a < 0.

The typical singularities of Legendrian graph projections, listed in the table above, are
depicted in figure 3.2.

A−1 A+
1

Figure 3.2: Typical Legendrian graph projections.
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The second order self-tangency singularity of envelopes of second type tangential family
germs is not stable under deformations of the family which are not of tangential type (see
[17]). Under such a deformation, the envelope experiences a bec à bec perestroika, that
may be interpreted as the apparent contour on the plane of the perestroika occurring to the
corresponding Legendrian graph, shown in figure 3.3.

A−1
A0 A0

A0A+
1 A0

Figure 3.3: Legendrian bec à bec perestroika.

We call it the Legendrian bec à bec perestroika. Actually, there are two Legendrian bec à
bec perestroika, according to the sign of the Legendrian graph singularity A±

1 . Figure 3.3 has
been obtained investigating the critical sets of the A3-miniversal deformation of the normal
form in Theorem 3.2.4, defined by

G : (λ; ξ, t) 7→ (ξ, λt+ t3 + t2ξ + atξ2, t2 + bt3) .

This deformation is non trivial, because the critical value sets ofGλ are not diffeomorphic each
other when λ crosses 0. On the other hand, it is well known that the extended codimension
of the map germs belonging to A±

1 is 1, so G is an A3-miniversal deformation.

3.2.5 Singular tangential families and their envelopes

As an application of the preceding results, in this section we study tangential families whose
supports have semicubic cusps.

First we recall a further construction in contact geometry (see again [5]). Denote by Pn

the real projective n-space. In this case, there exists a natural isomorphism

PT ∗Pn ' PT ∗(Pn∗) ,

where Pn∗ is the dual projective space of Pn. This isomorphism associates to a contact
element of Pn (that is, to a projective hyperplane and to one of its points) the dual contact
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element of Pn (consisting of the projective hyperplane considered as a point of Pn∗, and of
the point of Pn, considered as a hyperplane in Pn∗).

Thus, the manifold of the contact elements of the projective space is equipped with two
contact structures: the first is that of PT ∗Pn, the other comes from PT ∗Pn∗. These two
contact structure coincide.

Now let us consider a smooth hypersurface in Pn. Its tangent contact elements form
a Legendrian submanifold L in PT ∗Pn. The fibration π : PT ∗Pn → Pn is a Legendrian
fibration. The image of the Legendrian submanifold L in Pn∗ is called the dual hypersurface
to the initial one.

The dual hypersurface of a smooth hypersurface is the image of the corresponding Leg-
endrian submanifold of PT ∗Pn under the Legendrian projection π∗ : PT ∗Pn → Pn∗.

Example. Let us consider the case n = 2. Let γ be any smooth curve in the projective plane
P2 and let γ∗ be its dual curve in P2∗. If γ is convex, then γ∗ is also smooth and convex; if γ
has a simple inflection point, γ∗ has a semicubic cusp at the corresponding point. Moreover,
(γ∗)∗ = γ.

Remark. The affine version of this projective construction is called the Legendre transfor-
mation. More precisely, if the initial hypersurface is given by the equation w = f(q), and the
dual one by v = g(p), then the function g is called the Legendre transformation of f .

Thus, every tangential family in P2 defines, via the projective duality, a new 1-parameter
family of (maybe singular) planes curves in the dual plane P2∗ ' P2. If the support of the
tangential family is convex near a fixed point, the dual family is also tangential near the
corresponding point.

Definition. A singular tangential family is the dual family of a tangential family in P2,
whose support has an inflection point at the origin (that is, the tangency order between γ
and its tangent line at the origin is at least 2).

Supports of singular tangential families have cusp points. The envelope of a singular
tangential family is by definition the π∗-apparent contour of the Legendrian graph of the
corresponding smooth family.

As done for tangential family germs in [17], we can identify the germ of any singular
tangential family at the support cusp point to a family local parameterization, considered as
a map germ in (mξ,t)

2. The group A2 acts on this space, as explained in section 3.2.1. Two
singular tangential family germs are by definition A2-equivalent if their local parameterization
are A2-equivalent.

We denote by Y ⊂ (mξ,t)
2 the set formed by the map germs A2-equivalent to some singular

tangential family. A singular tangential family is said to be of first or second type if it is
dual to a family of first or second type respectively.

The next theorems, which proofs are given in section 3.3.6, describe the envelopes of
typical first and second type singular tangential family germs. These results generalize the
theorems concerning the envelopes of 1-parameter families of smooth curves, tangent to a
support curve having a semicubic cusps, presented in [15] and [16].

Theorem 3.2.5. The envelope of any singular tangential family germ of first type coincides
with its support and it is stable under small deformations of the family.
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Remark. The stability of the cusp points as envelope singularities has been proven by Thom
in [28]. However, the envelope stability does not imply the stability of the singular tangential
family germs. Actually, the singular tangential families, whose envelopes have cusp points,
have singularities which are not simple, as Dufour proved in [22]. In this paper, the study of
the envelope of a 1-parameter family of smooth hypersurfaces in Rn is reduced to the study
of a diagram

R
f←−−− Rn h−−−→ Rn ,

in which f is a fibration and h is the inclusion mapping of the fibers of f in the ambient space
Rn. The envelope is the set of the critical values of h. For these map diagrams, a natural
equivalence relation is defined.

Figure 3.4 shows a singular tangential family of first type and its dual family.

Figure 3.4: A first type singular tangential family and its dual family.

Let us denote by II∗ the subset of (mξ,t)
2 formed by the map germs which are A2-equivalent

to local parameterizations of singular tangential families of second type. Note that II∗ is
invariant under the action of A2, so it define a singularity class.

Theorem 3.2.6. The set II∗ is a smooth submanifold of (mξ,t)
2. The envelopes of typical

second type singular tangential family germs have three tangent branches at the origin, each
one having a semicubic cusp at this point. The family germs for which this claim does not
hold form a subset which is the union of a finite number of codimension 1 submanifolds of
II∗.

Figure 3.5 shows a typical singular tangential family of second type and its dual family. A
branch in the singular family envelope, indicated in the figure by a dotted line, corresponds
to the curve traced by the inflection points of the curves of the dual family. Note that the
curves forming a typical second type singular tangential family have cusps.

In the class of the non typical singular tangential families of second type there is the
class formed by the families whose curves are smooth, except the family curve tangent to the
support at the origin, which may have a cusp. We denote by Z the subset of (mξ,t) formed by
the map germs which are A2-equivalent to parameterizations of singular tangential families
of this class. It turns out that Z is a smooth codimension 1 submanifold of ÎI.
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Figure 3.5: A typical singular tangential family of second type and its dual family.

Theorem 3.2.7. The envelope of any singular tangential family germ in Z (except the union
of a finite number of codimension 1 submanifolds) has two tangent branches at the origin,
having both a semicubic cusp at this point.

A typical second type singular tangential family belonging to Z and its dual family are
represented in figure 3.6.

Figure 3.6: A typical singular tangential family in Z and its dual family.

It turns out that for these families, the curvature radius of the family curve at the tangency
point goes to infinity as the point approaches the cusp point. Under this hypothesis, Theorem
3.2.7 has been proven directly in [15] and [16]. In these papers we also study the stratification
of the submanifold formed by such families, according to the envelopes degeneracies.

3.3 Proofs

3.3.1 Parameterizations of Legendrian graphs

In this section we construct explicit parameterizations of Legendrian graphs.
Let us consider a tangential family. Without loss of generality, we may assume that the

point we want to study is the origin and that the support of the family is tangent at this
point to the x-axis. Indeed, a rigid motion of the plane obviously induces a transformation
in the projectivized cotangent bundle which does not change the A3-singularity neither the
A ∗

3 -singularity of the Legendrian graph generated by the family.



Chapter 3 §3.1 Parameterizations of Legendrian graphs 75

Under these hypothesis, the support γ of the family is the graph of a function g near
the origin. Let K(x) be the curvature at (x, g(x)) of the family curve corresponding to
this point, and Kγ(x) the curvature of the family support at the same point. Then define
the coefficients k0 and k1 by the expansion k0 + k1x + o(x) for x → 0 of the function
(K(x)−Kγ(x)) /2. Moreover, define the coefficients β0 and β1 by the expansion for x → 0,
β0x

2 + β1x
3 + o(x3), of the function g. Similarly, let us define α ∈ R by the expansion for

x→ 0, (k0 + β0)x
2 + (α+ β1)x

3 + o(x3), of the function, whose graph (near the origin) is the
family curve tangent to the support at (0, 0).

We denote by δ(n) any function of the two variables ξ, t whose n-jet at the origin vanishes.

Proposition 3.3.1. Every tangential family, whose support is tangent to the x-axis at the
origin, admits a local parameterization at (0, 0) of the form

(ξ, t) 7→
(

ξ + t, u2(ξ, t) + u3(ξ, t) + t2 · δ(1)
)

, (3.1)

where u2 and u3 are the following homogeneous polynomial:

u2(ξ, t) := k0t
2 + β0(t + ξ)2 ,

u3(ξ, t) := αt3 + k1t
2ξ + β1(t+ ξ)3 ,

and the coefficients α, k0, k1, β0 and β1 are defined as above.

Proof. For any given tangential family, let us choose a new orthogonal coordinate system as in
the above definition of the coefficients ki, βi and α. The map ξ 7→ (ξ, g(ξ)) parameterizes the
support near (0, 0). For any small enough value of ξ, consider the family curve corresponding
to the support point (ξ, g(ξ))). Near this point, the tangent curve can be parameterized by
its projection ξ+ t on the x-axis. In this manner we get the required parameterization of the
tangential family.

Remark. The coordinate change (x, y) 7→ (x, y − g(x)) takes the parameterization (3.1) to
the form

(ξ, t) 7→
(

ξ + t, k0t
2 + αt3 + k1t

2ξ + δ(3)
)

,

which is called the prenormal form of the family in [17] and [18]. As we proved in these
papers, the tangential family parameterized by (3.1) is of first type if and only if k0 6= 0 and
it is of second type if and only if k0 = 0 and k1 6= 0, α.

Given a tangential family, parameterized by a map germ of the form (3.1), we can identify
(locally at the origin) the space of the projectivized cotangent bundle PT ∗R2 of the plane
R2 = {x, y} with the space J1(R,R) ' R3 = {x, y, z} of the 1-jets of functions in the variable
t (ξ is viewed as a parameter).

In this space, the Legendrian graph generated by the family admits the following local
parameterization:

(ξ, t) 7→
(

ξ + t, u2(ξ, t) + u3(ξ, t) + t2 · δ(1), ∂tu2(ξ, t) + ∂tu3(ξ, t) + t · δ(1)
)

.

The coordinate change (ξ, t) 7→ (ξ − t, t) takes this germ to the form

(ξ, t) 7→
(

ξ, (k0t
2 + β0ξ

2) +
(

(α− k1)t
3 + k1t

2ξ + β1ξ
3
)

+ δ(3),

(2k0t + 2β0ξ) +
(

(3α− 2k1)t
2 + 2k1tξ + 3β1ξ

2
)

+ δ(2)
)

. (3.2)
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We call such a germ the standard parameterization of the Legendrian graph associated to
the tangential family parameterized by (3.1).

3.3.2 Proof of Theorem 3.2.2

The proof of Theorem 3.2.2 consists in the reduction of standard parameterizations of Leg-
endrian graphs to their A3-normal forms.

Let us begin with the case of first type tangential families.

Proposition 3.3.2. Every map germ of the form (3.2) is A3-equivalent to (ξ, t) 7→ (ξ, 0, t),
provided that k0 6= 0.

Proof. If k0 6= 0, the map germs of the form (3.2), that is

(ξ, t) 7→
(

ξ, k0t
2 + β0ξ

2 + δ(2), 2k0t+ 2β0ξ + δ(1)
)

,

are A3-equivalent to

(ξ, t) 7→
(

ξ, t2 + δ(2), 2t+ δ(1)
)

,

and then to the 1-jet (ξ, 0, t), which is A3-sufficient (that is, every map germ having the same
jet is A3-equivalent to it).

We consider now the Legendrian graphs generated by the tangential families of second
type.

Proposition 3.3.3. Every map germ of the form (3.2), with k0 = 0 and k1 being different
from the four values 0, α, 3α/2 and 3α, is A3-equivalent to a map germ of the form

(ξ, t) 7→ (ξ, t3 ± tξ2, t2) ,

where ± is the sign of (k1 − 3α)(α− k1)/k
2
1.

Proof. If k0 = 0, all the map germs (3.2) are A3-equivalent to

(ξ, t) 7→
(

ξ, (α− k1)t
3 + k1t

2ξ + δ(3), (3α− 2k1)t
2 + 2k1tξ + δ(2)

)

(3.3)

by (x, y, z) 7→ (x, y − β0x
2 − β1x

3, z − 2β0x− 3β1x
2). Now, the coordinate changing

(ξ, t) 7→
(

ξ, t+
k1

3α− 2k1
ξ

)

brings this germs to the form:

(

ξ, (α− k1)t
3+

k2
1

3α− 2k1

t2ξ +
k2

1(k1 − 3α)

(3α− 2k1)2
tξ2 +

k3
1(2α− k1)

(3α− 2k1)3
ξ3 + δ(3),

(3α− 2k1)t
2 − k2

1

3α− 2k1

ξ2 + δ(2)

)

. (3.4)
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Now, making

(x, y, z) 7→
(

x, y − k2
1

3α− 2k1
xz − k3

1(2α− k1)

(3α− 2k1)3
x3, z +

k2
1

3α− 2k1
x2

)

and by rescaling we obtain

(ξ, t) 7→
(

ξ, t3 ± tξ2 + δ(3), t2 + δ(2)
)

, (3.5)

where ± is the sign of (k1 − 3α)(α− k1). These germs are A3-equivalent to

(ξ, t) 7→
(

ξ, t3 ± tξ2 + δ(3), t2 + δ(3)
)

.

In [27], Theorem 1:2, it is proven that the 3-jet (ξ, t3 ± tξ2, t2) is A3-sufficient. Thus, every
standard parameterization of a Legendrian graph, satisfying the hypothesis of the Proposi-
tion, is A3-equivalent to this 3-jet.

Therefore, the Legendrian graph germs of first type are smooth and the Legendrian graph
germs of second type have generically an A±

1 singularity. The second type Legendrian graph
germs, having not this singularity, belong to the set formed by all the map germs in ÎI
which are A3-equivalent to standard parameterizations whose coefficients satisfy 2k1 = 3α
or 3α = k1. Let us recall that for second type tangential family germs we have k1 6= 0, α.
Hence, the image of the set of non typical Legendrian graphs in the parameter plane {α, k1}
is the union of the lines 2k1 = 3α or 3α = k1 without the origin, so it is a submanifold in
the manifold of second type Legendrian graph germs (which is the complement of the lines
k1 = 0 and k1 = α in the plane). Therefore, the non typical second type Legendrian graphs
form a submanifold in ÎI of codimension 1. This submanifold is not connected.

It remains to consider the case of a second type tangential family germ, whose Legendrian
graph is parameterized by a map germ belonging to these two submanifolds.

Proposition 3.3.4. Assume k0 = 0 and 3α = 2k1 6= 0. Then, every map germ of the form
(3.2), except those belonging to an infinite codimension submanifold of ÎI, is A3-equivalent to

(ξ, t) 7→ (ξ, t3, tξ + t3n−1)

for some n ≥ 2,

Proof. We obtain from (3.3) by the coordinate change (ξ, t) 7→ (ξ, t− ξ) the map germs

(ξ, t) 7→
(

ξ,−k1

3
t3 − 3k1tξ

2 +
4k1

3
ξ3 + δ(3), 2k1tξ − 2k1ξ

2 + δ(2)

)

,

which are A3-equivalent to

(ξ, t) 7→
(

ξ, t3 + tξ2 + δ(3), tξ + δ(2)
)

and then to
(ξ, t) 7→

(

ξ, t3 + δ(3), tξ + δ(3)
)

.
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The proposition is now a consequence of Mond’s classification of germs whose 3-jet is A3-
equivalent to (ξ, t) 7→ (ξ, t3, tξ) (see [27], section 4.2.1): every map germ, satisfying the
hypothesis of the Proposition, is A3-equivalent to a map germ (ξ, t3, tξ + t3n−1) or belongs
to a submanifold of ÎI, contained in the closure of all the orbits of these germs. Since the
codimensions in (mξ,t)

2 of these orbits grow with n, the codimension of the submanifold of
the remaining germs is infinite.

Proposition 3.3.5. Assume k0 = 0 and k1 = 3α 6= 0. Then, every map germ of the form
(3.2), except those belonging to an infinite codimension submanifold of ÎI, is A3-equivalent to

(ξ, t) 7→ (ξ, t3 ± tξn+1, t2)

for some n ≥ 2.

Proof. As in the proof of Proposition 3.3.3, we find that the map germs (3.2), with k0 = 0
and k1 = 3α, are A3-equivalent to a map germ of the form

(ξ, t) 7→
(

ξ, t3 + δ(3), t2 + δ(2)
)

.

As above, the proposition is now a consequence of Mond’s classification of germs whose 2-jet
is A3-equivalent to (ξ, t) 7→ (ξ, 0, t2) (see [27], §4.1).

Propositions 3.3.2, 3.3.3, 3.3.4 and 3.3.5 imply Theorem 3.2.2.

3.3.3 Preliminary background of Singularity Theory

In this section we recall some notations and results of Singularity Theory we will use in next
sections. For details, we refer the reader to [11], [13] or [26].

A map germ f ∈ (mξ,t)
3 defines, by f ∗g := f ◦ g, a homomorphism from the ring Ex,y,z of

the function germs in the target to the ring Eξ,t of the function germs in the source. Hence,
every Eξ,t-module has a structure of Ex,y,z-module via this homomorphism.

To prove Theorem 3.2.4, we have to find normal forms of map germs (3.3) for the A ∗
3 -

equivalence. In order to follow the usual scheme for this reduction, the main remark is the
following.

Remark. The Finite Determinacy Theorem for the equivalence relation we consider has
been proven by V. V. Goryunov in [24]. On the other hand, the subgroup A ∗

3 is a nice geo-
metric subgroup of A3. Thus, by Damon’s general theory ([20], [21]), the Finite Determinacy
Theorem holds for its action on (mξ,t)

3.

As usual, we define the extended tangent space to the orbit A ∗
3 · f at a map germ f for

the action of A ∗
3 as follows:

TeA
∗
3 (f) := Eξ,t · J(f) + f ∗(Ex,y) ·











1
0
0



 ,





0
1
0











+ f ∗(Ex,y,z) ·





0
0
1



 ,

where J(f) is the real vector space spanned by the first order partial derivatives of f . Note
that TeA

∗
3 (f) is an Ex,y-module, being not in general an Eξ,t-module nor an Ex,y,z-module.
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The reduced tangent space to the A3-orbit A3 ·f at f is by definition the following subspace
of E

3
ξ,t:

TrA
∗
3 (f) := g+(f) + f ∗(M∗) · R2 ,

where g+(f) is the space of all the vector field germs having positive order1 and M∗ is the
Ex,y-module defined by

M∗ :=
(

m
2
x,y ⊕ R · y

)

×
(

m
2
x,y ⊕ R · x

)

×
(

m
2
x,y,z ⊕ R · {x, y}

)

Note that the reduced tangent space is an Ex,y-module and

TrA
∗
3 (f) ⊂ TeA

∗
3 (f) .

Proposition 3.3.6. Let P , Q and R be three homogeneous polynomials of degree p, q and r
respectively. Then the map germ f = (f1, f2, f3) is A ∗

3 -equivalent to a map germ

(

f1 + P + δ(p), f2 +Q + δ(q), f3 +R + δ(r)
)

,

provided that the reduced tangent space at f contains a map germ
(

P + δ(p), Q+ δ(q), R+ δ(r)
)

.

The proof of this Proposition is identical to the proof given in [18] for the similar Propo-
sition involving map germs of (mξ,t)

2.
For p, q, r ∈ N, we denote by J(p) the real vector space of dimension p + 1 formed by

the homogeneous polynomials of degree p in the variables ξ and t, and by J(p, q, r) the real
vector subspace J(p)× J(q)× J(r) of (mξ,t)

3.

3.3.4 Proof of Theorem 3.2.4

In this section we prove Theorem 3.2.4. Recall that standard parameterizations of Legendrian
graphs are A ∗

3 -equivalent to map germs of the form (3.2):

(ξ, t) 7→
(

ξ, (k0t
2 + β0ξ

2) +
(

(α− k1)t
3 + k1t

2ξ + β1ξ
3
)

+ δ(3),

(2k0t + 2β0ξ) +
(

(3α− 2k1)t
2 + 2k1tξ + 3β1ξ

2
)

+ δ(2)
)

.

Proposition 3.3.7. Every map germ (3.2) is A ∗
3 -equivalent to the map germ (ξ, t) 7→

(ξ, t2, t), provided that k0 6= 0.

Proof. The initial germ is A ∗
3 -equivalent to a map germ

(ξ, t) 7→
(

ξ, t2 + δ(2), t+ δ(1)
)

.

It is easily checked that the reduced tangent space at (ξ, t2, t) contains the space m
2
ξ,t×m

3
ξ,t×

m
2
ξ,t. Due to the quasi homogeneity of this germ, this implies the formal A ∗

3 -equivalence to
the initial germ and their A

∗
3 -finite determinacy. The Proposition is therefore proven.

1A vector field has order d if differentiation in the direction of the field raises the order of any function
by not less than d.
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We consider now Legendrian graphs of second type tangential families. So, we assume
from now on k0 = 0. By the coordinate changes considered at the beginning of the proof of
Proposition 3.3.3, we transform (3.2) into (3.4). After killing the terms on (0, ξ3, 0), (0, 0, ξ2)
and rescaling, we get

(ξ, t) 7→
(

ξ, t3 + t2ξ + atξ2 + δ(3), t2 + δ(2)
)

, (3.6)

where a := (α− k1)(k1 − 3α)/k2
1.

Remark. For any tangential family germ of second type, whose Legendrian graph has a
singularity of type A±

1 , we have a < 1/3. Indeed,

a− 1

3
= −(3α− 2k1)

2

3k2
1

< 0 ,

since 3α 6= 2k1. The sign of a is the same sign ± in the A3-normal form in Proposition 3.3.3.

Lemma 3.3.1. Every map germ (3.6), such that a 6= 0, 1/3, is A ∗
3 -equivalent to a map germ

(ξ, t) 7→
(

ξ, t3 + t2ξ + atξ2 + δ(3), t2 + bt3 + δ(3)
)

, (3.7)

for some b ∈ R.

Proof. To prove the Lemma it is enough to show that the quotient space

J(2, 4, 3)/〈(0, 0, t3)〉R

is contained in the reduced tangent space at the quasi homogeneous part of (3.7),

F0(ξ, t) := (ξ, t3 + t2ξ + atξ2, t2) .

For this, let us consider the following vectors, lying in TrA3
∗(F0):

v1+i : = t2−iξi ∂tF0 ,

v4+i : = t2−iξi ∂ξF0 , for i = 0, 1, 2 ,

v7 : = (x2, 0, 0) ,

v8 : = (0, x4, 0) ,

v9 : = (0, 0, x3) ,

v10 : = (0, 0, y) ,

v11 : = (0, 0, xz) .

Consider the square matrix, whose columns are the projections of these vectors on the space
R11, spanned by the vector monomials

(t2, 0, 0), . . . , (ξ2, 0, 0) , (0, t4, 0), . . . , (0, ξ4, 0) , (0, 0, t2ξ), . . . , (0, 0, ξ3) .

This matrix is invertible, indeed its determinant 18a(1 − 3a) does not vanish under our
hypothesis, so all the preceding monomials belong to the reduced tangent space. The Propo-
sition is proven.
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The next Proposition completes the proof of Theorem 3.2.4.

Proposition 3.3.8. Every map germ ( 3.7), such that a 6= −1, 0, 1/3, is A ∗
3 -equivalent to a

map germ of the form

F (ξ, t) := (ξ, t3 + t2ξ + atξ2, t2 + bt3) .

for some constant b.

Notice that the conditions a 6= 0, 1/3 are always satisfied by any standard parameter-
ization of generic tangential family germ, provided that its Legendrian graph has an A±

1

singularity. On the other hand, a 6= −1 is a new condition, giving rise to the codimension 1
submanifold for which Theorem 3.2.4 does not hold. This submanifold is formed by typical
second type tangential family germs (i.e. their Legendrian graphs have singularities A±

1 ).

The proof of the Proposition is carried out by long computations, and it is left to the
next section.

3.3.5 Proof of Proposition 3.3.8

The proof of Proposition 3.3.8 is subdivided into two Lemmas.

Lemma 3.3.2. Every map germ ( 3.7), with a 6= −1 ,0 and 1/3, is formally A
∗
3 -equivalent to

the above normal form F of Proposition 3.3.8.

Lemma 3.3.3. For a 6= −1, 0, 1/3, the map germ F is A ∗
3 -finitely determined.

To prove Lemma 3.3.2 we compute the reduced tangent space at the quasi homogeneous
part

F0(ξ, t) = (ξ, t3 + t2ξ + atξ2, t2)

of the normal form F .

Lemma 3.3.4. The reduced tangent space TrA
∗
3 (F0) contains the space

m
3
ξ,t ×m

5
ξ,t ×m

4
ξ,t ,

provided that a 6= −1, 0, 1/3.

Lemma 3.3.2 follows from this Lemma and Proposition 3.3.6.

Proof. The proof is by induction.

Starting Step. We have J(3, 5, 4) ⊂ TrA3
∗(F0).
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We prove this claim by a direct computation. Let us set

w1+i : = t3−iξi∂tF0 , for i = 0, 1, 2, 3,

w5+i : = t3−iξi∂ξF0 , for i = 0, 1, 2, 3,

w9 : = (x3, 0, 0) ,

w10 : = (y, 0, 0) ,

w11 : = (0, x5, 0) ,

w12 : = (0, x2y, 0) ,

w13 : = (0, 0, x4) ,

w14 : = (0, 0, z2) ,

w15 : = (0, 0, xy) .

All these vectors belong to TrA
∗
3 (F0). Let us consider the square matrix formed by the

coordinates of the vectors wj in the space J(3, 5, 4), identified to the space R15 fixing the
basis of vector monomials

(t3, 0, 0), . . . , (0, 0, ξ4) .

It turns out that its determinant is

−16a(a + 1)(3a− 1) .

Therefore, under the hypothesis of Proposition 3.3.8, the matrix is invertible, so all the vector
monomials forming the basis of J(3, 5, 4) belong to the reduced tangent space. The claim of
the starting step is proven.

Induction Step. If J(n − 1, n + 1, n) is contained in TrA
∗
3 (F0), then the same holds for

J(n, n + 2, n+ 1).

Since TrA
∗
3 (F0) is an Ex,y-module via F0, the induction hypothesis implies that all the vector

monomials of J(n, n+2, n+1), which are divisible by ξ, belong to the reduced tangent space.
Then let us define

u1 := tn∂ξF0 = (tn, tn+2, 0) mod (ξ · Eξ,t)3 ,

u2 := tn∂tF0 = (0, 3tn+2, 2tn+1) mod (ξ · Eξ,t)3 ,

u3 :=











(ym, 0, 0) = (tn, 0, 0) mod (ξ · Eξ,t)3 , if n = 3m ,

(0, ym, 0) = (0, tn+2, 0) mod (ξ · Eξ,t)3 , if n+ 2 = 3m ,

(0, 0, ym) = (0, 0, tn+1) mod (ξ · Eξ,t)3 , if n+ 1 = 3m .

Therefore, we can write each vector monomial

(tn, 0, 0) , (0, tn+2, 0) , (0, 0, tn+1)

as a linear combination of the vectors u1, u2, u3 and of some element of TrA
∗
3 (F0). Thus,

these vector monomials belong to the reduced tangent space. This proves the induction
inclusion

J(n, n+ 2, n+ 1) ⊂ TrA
∗
3 (F0)

and achieves the proof of the Lemma.
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Notice that Lemma 3.3.4 provides also the A ∗
3 -finite determinacy of F0. Hence, Proposi-

tion 3.3.8 is now proven in the case b = 0. We assume from now on b 6= 0.
The proof of Lemma 3.3.3 is carried out again by induction.

Starting Step. The following inclusion holds:

J(3, 5, 4) ∪ J(4, 6, 5) ∪
(

{0} × {0} × J(6)
)

⊂ TeA
∗(F ) .

Let us start with a preliminary remark. Consider the following elements of TeA
∗
3 (F ):

u1 : = ξ ∂ξF − (x, 0, 0) ,

u2 : = t ∂tF ,

u3 : = (0, y, 0) ,

u4 : = (0, 0, z) .

Since u1 + u2 − 3u3 − 3u4 = (0, 0,−t2) and u1 + u2 − 3u3 − 2u4 = (0, 0, bt3), we have that
(0, 0, t2) and (0, 0, t3) are in the extended tangent space. Moreover , (0, 0, y)−(0, 0, t3+t2ξ) =
(0, 0, atξ2). Since a 6= 0, the vector monomial (0, 0, tξ2) belongs to the extended tangent
space.

Now let us set:

w1+i : = t3−iξi ∂tF , for i = 0, ..., 3 ,

w5+i : = t4−iξi ∂tF , for i = 0, ..., 4 ,

w10 : = (0, x2y, 0) ,

w11 : = (0, x3y, 0) ,

w12 : = (0, y2, 0) ,

w13 : = (0, 0, y2) ,

w14 : = (0, 0, z2) ,

w15 : = (0, 0, yz) ,

w16 : = y ∂ξF − (y, 0, 0) ,

w17 : = xy ∂ξF − (xy, 0, 0) .

These 17 vectors of the extended tangent space involve only the vector monomials (0, ξptq, 0)
for p + q = 5, 6 and (0, 0, ξptq) for p + q = 4, 5, 6. Due to the preliminary remark, we know
that

(0, 0, t3ξi) , (0, 0, t2ξi+1) , (0, 0, tξi+2) , (0, 0, ξi+3)

lie in the extended tangent space for i = 1, 2, 3. Then, let us consider the real subspace of
dimension 17 of the vector space

J(3, 5, 4) ∪ J(4, 6, 5) ∪
(

{0} × {0} × J(6)
)

,
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spanned by the vector monomials

(0, t5, 0), . . . , (0, tξ4, 0), (0, t6, 0), . . . , (0, t5ξ, 0),

(0, 0, t4), (0, 0, t5), (0, 0, t4ξ), (0, 0, t6), (0, 0, t5ξ), (0, 0, t4ξ2) .

Let us consider the square matrix, whose columns are the coordinates of the projections
of the vectors wi over the above space R17. Its determinant is

216ab3(3a− 1) ,

then the matrix is invertible under the hypothesis of Proposition 3.3.8. This implies that

{0} ×
(

J(5) ∪ J(6)
)

×
(

J(4) ∪ J(5) ∪ J(6)
)

⊂ TeA
∗(F ) .

It is now easy to check that also
(

J(3) ∪ J(4)
)

× {0} × {0} is contained in extended the
tangent space. Indeed, for p+ q = 3, 4, we have

ξptq ∂ξF = (ξptq, 0, 0) mod
(

{0} ×
(

J(5) ∪ J(6)
)

×
(

J(4) ∪ J(5) ∪ J(6)
))

.

The starting step is proven.

Induction Step. If J(n − 2, n, n − 1) ∪ J(n − 1, n + 1, n) is contained in TeA
∗
2 (F ), then

the same holds for J(n, n+ 2, n+ 1).

We have to prove only that (tn, 0, 0), (0, tn+2, 0) and (0, 0, tn+1) belong to the extended tangent
space. Since b 6= 0 and

tn−1 ∂tF = (0, 0, 3btn+1) mod J(n− 1, n+ 1, n) ,

we have (0, 0, tn+1) ∈ TeA ∗
3 (F ). In the case n = 3m + 2, the monomial (0, 0, t3m+4) lies to

the tangent space, indeed, by the induction hypothesis, (0, 0, t3m+1) is in the tangent space
and its product by z gives (0, 0, t3m+3 + bt3m+4).

Define:
u1 := tn ∂ξF = (tn, tn+2, 0) mod (ξ · Eξ,t)3 ,

u2 :=











(ym, 0, 0) = (tn, 0, 0) mod (ξ · Eξ,t)3 , if n = 3m ,

(0, ym+1, 0) = (0, tn+2, 0) mod (ξ · Eξ,t)3 , if n = 3m+ 1 .

(0, 3tn+2, 0) mod (ξ · Eξ,t)3 , if n = 3m+ 2 ,

where we have used the equality

tn ∂tF − (0, 0, 2tn+1 + 3btn+2) = (0, 3tn+2, 0)

and the preceding remark. The vector monomials (tn, 0, 0) (0, tn+2, 0) can be expressed as
linear combinations of these vectors and of some vector monomials of the extended tangent
space, so they belong to TeA

∗
3 (f). This proves that J(n, n+2, n) is contained in the tangent

space. Lemma 3.3.3 is now proven.
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3.3.6 Proof of Theorems 3.2.5, 3.2.6 and 3.2.7

In this section we prove the results of section 3.2.5, concerning singular tangential families.

Let us consider a tangential family, parameterized by a map germ f whose Taylor expan-
sion is (3.1), that is:

(ξ, t) 7→
(

ξ + t, (k0 + β0) t
2 + β0 tξ + β0 ξ

2 + (α + β1) t
3 + (k1 + 3β1) t

2ξ+

+ 3β1 tξ
2 + β1 ξ

3 + δ(3)
)

.

The family support is then parameterized by

ξ 7→
(

ξ, β0 ξ
2 + β1ξ

3 + o(ξ3)
)

,

for ξ → 0. So, the dual curve to the support has a semicubic cusp if and only if β0 = 0 and
β1 6= 0. It follows that any singular tangential family has a local parameterization g (which
is the Legendre transformation of f), whose expansion at the origin is

(

2k0 t+ δ(1), k0 t
2 + 2k0 ξt+ δ(2)

)

.

If k0 6= 0, then t = 0 is the only branch of the curve detDg = 0 passing through the origin.
Therefore the envelope of a singular tanegential family of first type reduces to its support.
Theorem 3.2.5 is proven.

Let us consider now a parameterization f of a second type tangential families. The set
II∗ of the second type singular tangential family germs is the smallest A2-invariant subset
in (mξ,t)

2 containing the Legendre transformations of the prenormal parameterizations (3.1)
of the dual family germs verifying k0 = β0 = 0. Hence II∗ is smooth (in the sense that its
restrictions to every jet space JN(R2,R2) are smooth).

In this case the expansion of the local parameterization g of a second type singular
tangential family germ writes as follows:

(ξ, t) 7→
(

3(α + β1) t
2 + 2(k1 + 3β1) tξ + 3β1 ξ

2 + δ(2),

(2α+ 2β1) t
3 + (6β1 + 3α + k1) t

2ξ + (2k1 + 6β1) tξ
2 + 2β1 ξ

3 + δ(3)
)

.

The equation detDg = 0 has three solutions
(

ξ, t = ti(ξ)
)

vanishing at the origin:

t0(ξ) = 0 , t1(ξ) =
2k1

k1 − 3α
ξ + o(ξ) , t2(ξ) =

k1 + 3β1

3(α+ β1)
ξ + o(ξ) .

Notice that these three solutions are well defined whenever k1 6= 3α. By replacing these
expressions in the expansion of g, we obtain the local parameterizations

ξ 7→
(

Ai ξ
2 + o(ξ2), Bi ξ

3 + o(ξ3)
)
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of the three branches of the singular tangential family, where

A0 = 3β1 ,

B0 = 2β1 ,

A1 =
4k3

1 + 27k2
1β1 − 54αβ1k1 + 27α2β1

(3α− β1)2
,

B1 =
2(k1 − α)(4k3

1 + 27k2
1β1 − 54αβ1k1 + 27α2β1)

(k1 − 3α)3
,

A2 = −k
2
1 + 6k1β1 − 9αβ1

3(α + β1)
,

B2 =
k3

1 − 9k2
1α− 27k1β

2
1 − 54k1αβ1 + 27αβ2

1 + 54α2β1

27(α+ β1)2
.

Therefore, these branches have three semicubic cusps whenever

(k1 − 3α)
∏

AiBi 6= 0 .

This means that the set in II∗ for which the three envelope cusps are not all semicubic may
be described as the smallest A2-invariant set containing the prenorml forms such that

(k1 − 3α)
∏

AiBi = 0 .

Indeed, this equation defines a finite union of submanifolds of JN (R2,R2) of codimension at
worst 1 for every N ∈ N. This ends the proof of Theorem 3.2.6.

The curves forming a singular tangential family are smooth if and only if the dual family
curves have not inflection points, that is, if and only if α + β1 = 0; so, the set Z of such
singular families is smooth. In this case the last solution t2 computed above is not defined
and the envelope has only two branches, parameterized by map germs whose expansions are

ξ 7→
(

Ãi ξ
2 + o(ξ2), B̃i ξ

3 + o(ξ3)
)

,

where A0 = −3α, B0 = −2α and

A1 = 4k1 − 3α , B1 =
8(k1 − α)(4k1 − 3α)

k1 − 3α
.

Theorem 3.2.7 is proven.
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Chapter 4

Minimax solutions to Hamilton-Jacobi
equations

Abstract. Minimax solutions are weak solutions to Cauchy problems involving Hamilton–Jacobi

equations, constructed from generating families (quadratic at infinity) of their geometric solutions.

We give a new construction of the minimax in terms of Morse theory, and we show its stability

under small perturbations of the generating family. We show that max–min solutions are equal

to minimax solutions. We consider wave fronts corresponding to geometric solutions as graphs of

multivalued solutions of Cauchy problems, and we give a geometric criterion to find their minimax.

Furthermore, we classify the small codimension generic singularities of minimax solutions.

4.1 Introduction

Hamilton–Jacobi equations play an important role in many fields of mathematics and physics,
as for instance calculus of variations, optimal control theory, differential games, continuum
mechanics and optics.

Let us consider a Cauchy Problem involving a Hamilton–Jacobi equation. For small
enough time t the solution u is classically determined using the characteristic method. Al-
though u is initially smooth, there exists in general a critical time beyond which character-
istics cross. After this time, the solution u is multivalued and singularities appear.

Therefore, the problem how to extract “true solutions” from geometric solutions and
multivalued solutions naturally arises. In this context, the construction of the viscosity
solution is the most known approach, due to its existence and uniqueness properties.

Following Maslov, the classical characteristic method leads to considering a Lagrangian
submanifold in the space-time cotangent bundle, called the geometric solution, as generalized
solution of (CP ). Its “projection” in the space of 0-jets over Q is, in general, the graph of a
multivalued function.

The study of singularities of solutions of Hamilton–Jacobi equations was begun by V.
I. Arnold in 1972 and led him to the theory of the singularities of wave fronts and caustic
and to the discovery of their relation with the discriminants of reflection groups (see [2]).
This approach can be generalized to the study of singularities of solutions of general PDE
equations, see [19].
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92 Minimax solutions to H–J equations

In 1991 Marc Chaperon proposed in [12] a geometric method to construct weak solutions
to Cauchy Problems for Hamilton–Jacobi equations:

(CP )

{

∂tu(t, q) +H(t, q, ∂qu(t, q)) = 0, for all t > 0, q ∈ Q,
u(0, q) = u0(q), for all q ∈ Q,

of Hamiltonian H and initial condition u0 on a manifold Q. The minimax method provides
a criterion to extract a true function from it.

This construction is based on generating families quadratic at infinity of Lagrangian
submanifolds. Existence and uniqueness Theorem for these families allows to associate to
each point of the space-time a function, which is quadratic at infinity in the parameters (the
generating family evaluated at this point). The function defined by its minimax critical value
is a Lipschitz weak solution of (CP ), called minimax solution.

The minimax solution has the same analytic properties of the viscosity solution, namely
existence and uniqueness theorems hold. However, the minimax solution is in general different
from the viscosity solution (they coincide in the case of convex or concave Hamiltonians).

This chapter is divided into four parts.
In the first part we describe a new construction of the minimax critical value of a function

quadratic at infinity, based on Morse Theory. This construction provides a simple character-
ization of minimax values of generic functions quadratic at infinity in terms of their Morse
complex. The main result of this part is the stability of the minimax critical value under
small deformations of the function.

In the second part we recall the definition of the geometric solution to (CP ) and we prove
that it is isotopy equivalent to the zero section of the space-time cotangent bundle. Hence,
it admits a unique generating family quadratic at infinity S(t, q; ξ). The minimax solution
at the point (t0 > 0, q0) is then the minimax critical value of the generating family evaluated
at this point:

min max{ξ 7→ S(t0, q0; ξ)} .
The minimax stability leads to a new, geometric, proof of the minimax solution continuity.
Moreover, we show that the other solution proposed by Chaperon in [12], called maxmin
solution, and constructed in an analogous way, actually is equal to the minimax solution.

In the third part we explain how reduce the problem of finding the minimax solution
associated to a given wave front (graph of a multivalued function) in any dimension to the
case of such a front in dimension 1. Then a recent Theorem by Chekanov and Pushkar ([15],
[14] and [20]) leads to a purely combinatoric geometric criterion providing the graph of the
minimax solution on the wave front.

In the last part of the chapter we study generic minimax singularities of codimension at
most 2. Our investigation is based on the classification of generic singularities of minimax
functions, given by Joukovskaia in [22]. It turns out that not all these generic singulari-
ties may arise in minimax solutions to Hamilton–Jacobi equations. This is due to global
topological properties of multivalued solutions (Chekanov’s invariants of wave fronts).

Namely, we prove that the generic singularities of codimension at most 2 of the minimax
solution and of the viscosity solution are the same. This result may be useful to find examples
in which the minimax solution has a physical meaning.

The results presented in this chapter has been published in [8] and [9].
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4.2 Minimax values of functions

4.2.1 Preliminary results

Let X be a topological space, Dn an oriented disc of dimension n and ψ : Sn−1 → X a
smooth map. We endow the disc boundary Sn−1 = ∂Dn with the induced orientation. The
pair σn := (Dn, ψ) is called a dimension n cell. The result of attaching the cell σn to X is
the space X ∪Dn modulo the identification of any point x ∈ Sn−1 with its image ψ(x). The
resulting space is denoted by X ∪ σn as well as X ∪ψ Dn.

A cell space is a space obtained attaching cells (a finite number for each dimension) to a
finite collection of points (0-cells). A cell space is called cell complex if any cell is attached
to a cell of smaller dimension.

It is well known that every cell space is homotopy equivalent to a cell complex, see for
instance [17], §4.

Let X be a cell complex. The union of all its cells of dimension not greater than n is
called the n-skeleton of X, denoted by Xn. Thus we have the sequence of skeletons

X0 ⊂ · · · ⊂ Xk ⊂ · · · ⊂ X .

The quotient space Xk−1/Xk−2, where Xk−2 is identified to a point, is a bouquet of dimension
k − 1 spheres. Let us consider a cell σk = (Dk, ψ) and the map:

ψi : ∂Dk = Sk−1 ψ−−−→ Xk−1 Id−−−→ Xk−1/Xk−2 πi−−−→ Sk−1
i ,

where πi is the projection on the i-th sphere in the bouquet. Let σk−1
i be the cell of X

corresponding to the sphere Sk−1
i .

Definition. The incidence coefficient of two cells σk and σk−1
i is the integer

[σk : σk−1
i ] := deg(ψi) ∈ Z .

Let us set E := RK. Let f : E → R be a generic function, i. e., a good Morse function (a
function is of Morse type if all its critical points are non degenerate and it is a good function
if all its critical values are different). We assume that f is of class C

2 and that the set of
its critical points is finite. By the Morse Lemma, near a critical point ξ̄ of f there exists a
coordinate system {ξ1, . . . , ξK} in which the function writes as:

f(ξ1, . . . , ξK) = f(ξ̄)− ξ2
1 − · · · − ξ2

k + ξ2
k+1 + · · ·+ ξ2

K.

The integer k, denoted by ind(ξ̄), is the index of the critical point ξ̄.
For every λ ∈ R, set

Eλ
f = Eλ := {ξ ∈ E : f(ξ) ≤ λ} .

Let us recall now two basic theorems in Morse theory. We refer to [23] for the proofs.

Theorem 4.2.1. If f has no critical values in [a, b], then Ea and Eb are diffeomorphic.

Theorem 4.2.2. Let c be the only critical value of f in [c− ε, c+ ε] and let k be the index of
the corresponding critical point. Then Ec+ε and Ec retract to the space obtained by attaching
a dimension k cell to Ec−ε.
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Therefore, every generic function on E defines a cell decomposition of the space and there
is a 1 : 1 correspondence between its cells and the critical points of the function (see [26]).

Example 4.2.1. The function f(x, y) := x2 − y2 has only one critical point, the origin, of
index 1. The sets Eλ are depicted in figure 4.1. For λ > 0, Xλ retracts over the space
obtained from X−λ attaching a segment (1-cell) to its boundary.

λ < 0 λ = 0 λ > 0

' D0

Figure 4.1: Perestroika of the sublevel sets of x2 − y2.

Remark. Theorems 4.2.1 and 4.2.2 hold for every good Morse function (even with an infinite
number of critical points) whenever the gradient field is well defined and integrable; for exam-
ple whenever the function satisfies the Palais–Smale condition: every sequence {ξn}n∈N, such
that ∇f(ξn)→ 0 for n→∞, admits a convergent subsequence, provided that {f(ξn)}n∈N is
bounded.

Let ξ, η be two critical points of f . We will denote by [ξ : η] the incidence coefficient
of their corresponding cells. Note that [ξ : η] 6= 0 implies that ind(ξ) = ind(η) + 1 and
f(ξ) > f(η).

The geometrical meaning of the incidence number is the following: two critical points
have non zero incidence number if and only if there exists a generic smooth deformation of
the function along which they collapse and then disappear.

Example 4.2.2. Let f : R→ R be the function f(x) = x3−εx, represented in figure 4.2. For
negative ε it has two critical points, ξ = −

√

ε/3 and η =
√

ε/3, of index 1 and 0 respectively.
When ε goes to zero, the two points collapse at the origin, and for ε > 0 the function has no
critical points. Thus, [ξ : η] 6= 0.

x

y = fε(x)

ε = 0

x

y = fε(x)

x

y = fε(x)

ε < 0 ε > 0

Figure 4.2: Birth/death of critical points.
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4.2.2 Morse complex of generic functions

Denote by {ξk1 , . . . , ξk#(k)} the set of the index k critical points of f , ordered according to

their values: f(ξk` ) < f(ξk`+1).

Definition. The Morse complex associated to f is the cell complex (M f
∗ , ∂∗), defined as

follows:

– the dimension k chain space M f
k is the set of the formal linear combinations over Q of

index k critical points:

Mf
k :=







#(k)
∑

`=1

α` ξ
k
` : α` ∈ Q







' Q#(k) ;

– the boundary operator is the linear map ∂k : Mf
k →Mf

k−1 defined by:

∂ξk` :=

#(k−1)
∑

m=1

[ξk` : ξk−1
m ] ξk−1

m .

For the proof of the equality ∂2 = 0 we refer to [17], §4.
Let b > 0 be a real number big enough for that the interval (−b, b) contains the critical

value set of f . Theorem 4.2.1 implies that Eλ ' E−b for λ ≤ −b and Eλ ' Eb for λ ≥ b. We
define E±∞ := E±b.

Remark. By Theorems 4.2.1 and 4.2.2, we have that E/E−∞ is a cell space, homotopy
equivalent to the Morse complex (M f

∗ , ∂∗). This implies that

H̃∗(M
f
∗ , ∂∗) ' H̃∗(E/E

−∞) ' H̃∗(E,E
−∞) ,

where H̃∗ denotes the reduced Q-homology complex.

Following Cerf ([11]), S.A. Barannikov proved that it is possible to “diagonalize” the
Morse complex. Actually, we consider homology groups over Q (instead of Z) in order to
make possible the diagonalization.

Algebraic Lemma ([5]). For each chain space M f
k there exists a generator system, repre-

sented by an invertible upper triangular matrix of dimension #(k), taking the Morse complex
to canonical form, i.e., the new ordered generators

{Ξk` : ` = 1, . . . ,#(k), k = 1, . . . , K}

verify one among the following conditions:

∂Ξk` = 0 or ∂Ξk` = Ξk−1
m . (4.1)

Moreover, every complex with ordered generator system admits a unique canonical form.
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Remark. It is possible to define the boundary operator in another way:

δ : Mf
k →Mf

k−1 , δξk` :=
∑

m

β(ξk` , ξ
k−1
m ) ξk−1

m ,

where β(ξk` , ξ
k−1
m ) is the algebraic number of integral curves of the vector field −∇f/|∇f |2

joining ξk` to ξk−1
m . Since the process of attaching cells is induced by retraction of the spaces

Eλ along the integral curves of this vector field, we have that [ξk` : ξk−1
m ] 6= 0 if and only if

there exists at least one integral curve joining the two corresponding critical points. Actually,
β(ξk` , ξ

k−1
m ) = [ξk` : ξk−1

m ].

Proof of the Algebraic Lemma. The proof is by induction. Assume that the generators Ξh
j

satisfy (4.1) for h = k, j ≤ ` and for h < k,

j ∈ {1, . . . ,#(h− 1)} .
Let Q be the set of indeces q such that Ξk−1

q = ∂Ξkq∗ for some q∗ ≤ `, and

P := {1, . . . ,#(k − 1)}rQ .

Then the equality

∂ξk`+1 =

#(k−1)
∑

m=1

αmΞk−1
m

may be written as

∂

(

ξk`+1 −
∑

q∈Q

αq∗Ξ
k
q∗

)

=
∑

p∈P

αpΞ
k−1
p .

If αp = 0 for all p in P , then the new generator

Ξk`+1 := ξk`+1 −
∑

q∈Q

αq∗ξ
k
q∗

is in canonical form, indeed ∂Ξk
`+1 = 0. Otherwise, let p0 be the greatest index in P for which

αp0 6= 0:

∂

(

ξk`+1 −
∑

q∈Q

αq∗Ξ
k
q∗

)

= αp0Ξ
k−1
p0

+
∑

p0>p∈P

αpΞ
k−1
p . (4.2)

Now replace Ξk−1
p0

by

Ξ̃k−1
p0

:= Ξk−1
p0

+
1

αp0

∑

p0>p∈P

αpΞ
k−1
p ,

which is still of the form (4.1): ∂Ξ̃k−1
p0

= ∂Ξk−1
p0

= 0. Then equality (4.2) becomes

1

αp0
∂

(

ξk`+1 −
∑

q∈Q

αq∗Ξ
k
q∗

)

= Ξ̃k−1
p0

;

so the generator

Ξk`+1 :=
1

αp0

(

ξk`+1 −
∑

q∈Q

αq∗Ξ
k
q∗

)

satisfies ∂Ξk`+1 = Ξ̃k−1
p0

. This proves the Lemma.
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4.2.3 Incident, coupled and free critical points

The incidence number of critical point pairs leads to a natural partition of the critical set of
f in the following way.

Let (M f
∗ , ∂∗) be the Morse complex in canonical form of a generic function f : E → R.

To every critical point ξk` of f we may associate the canonic generator Ξk
` by the relation

Ξk` =
∑

j≤`

αj ξ
k
j , where α` 6= 0 .

Definition. Two critical points ξk` and ξk−1
m are incident if [ξk` : ξk−1

m ] 6= 0, coupled if
∂Ξk` = Ξk−1

m . A critical point is free if it is not coupled to any critical point.

Definition. We call Morse diagram of f the following representation of its Morse complex.
Consider K + 1 vertical axes, with the same scale and the origins at the same level, and
indexed from the right on the left from 0 to K. On the k-th axis we consider the critical
points of index k, according to their values. We join incident points by a dotted line and
coupled points by a continuous line (see figure 4.3).

ξ1
1

ξ0
2

ξ0
1

ξ1
1

01

ξ0
1

ξ0
2

Figure 4.3: The Morse diagram of ξ 7→ ξ4 − ξ2 + ξ.

Remark. From each critical point many dotted lines may come out but no more than two
continuous line (in this case, the two lines are separated by the axis containing the critical
point). All these lines, oriented from critical points of greater index to critical points of
smaller index, have negative slope.

Proposition 4.2.1. Let ξk` , ξ
k−1
m be two coupled critical points. Then f(ξk−1

m ) is the maximal
value among those realized by the critical points, incident to ξk` , verifying

[ξkj : ξk−1
m ] = 0 for all j < ` ;

f(ξk` ) is the minimal value among those realized by the critical points, incident to ξk−1
m ,

verifying
[ξk` : ξk−1

j ] = 0 for all j > m .

Proposition 4.2.2. A critical point ξ is free if and only if for every incident critical point
η to ξ there exists an incident critical point ξ ′ to η such that

|f(ξ′)− f(η)| < |f(ξ)− f(η)| .
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Both Propositions are a consequence of the definition of the index p0 in the proof of the
Algebraic Lemma.

Propositions 4.2.1 and 4.2.2 allow us to characterize the coupled and the free critical
points of f as follows. Let Σ be the critical set of f . Denote by C1 a pair of critical points
realizing the minimum of the set

{f(ξ)− f(η) : ξ, η ∈ Σ, [ξ : η] 6= 0} .

Then define by induction Ci+1 from C1, . . . , Ci as a pair of critical points realizing the mini-
mum of the set

{f(ξ)− f(η) : ξ, η ∈ Σ r (C1 ∪ · · · ∪ Ci), [ξ : η] 6= 0} .

After a finite number of steps, we decompose the critical set into the disjoint union of pairs
Ci and a set F which does not contains incident critical points, i. e. [ξ : η] = 0 for every
ξ, η ∈ F .

Remark. Two critical points of f are coupled if and only if they belong to the same pair Ci
in the preceding critical set decomposition; a critical point is free if and only if it belongs to
F .

Proposition 4.2.3. The pairs of coupled critical points of f and −f are the same.

η1
1

η1
2

η0
1

η1
1

η0
1

1 0

η1
2

Figure 4.4: Morse diagram of ξ 7→ −(ξ4 − ξ2 + ξ).

Proof. An index k critical point ξk` of f is an index K − k critical point ηK−k
m of −f . Set

c := f(ξk` ). By Theorem 4.2.2 we have:

Ec+ε
f ' Ec−ε

f ∪ σk` , E−c+ε
−f ' E−c−ε

−f ∪ ηK−k
m .

Now, ∂σk` and ∂ηK−k+1
m are incident, so we have

[σij , σ
i−1
h ] = ±[ηK−i+1

h , ηK−i
j ]

(see [17], vol. III, §18). Therefore, the Morse complex of f and −f have the same incident
critical points. Since we obtain the Morse diagram of −f from the diagram of f with a
symmetry preserving line slopes (cf. figure 4.4), Proposition 4.2.2 implies that the pairs of
coupled critical points of f and −f are the same.
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4.2.4 Minimax critical values

In this section we define the minimax critical value of a function and we state its main
properties.

Let now f : E → R be a function of class C 2, quadratic at infinity, that is f is a non
degenerate quadratic form outside a compact set. We do not assume here that f is a good
Morse function.

For λ ∈ R, consider the natural restriction mappings %λ : E → Eλ, inducing the natural
homomorphisms between the relative reduced Q-homology groups:

%∗λ : H̃∗(E,E
−∞)→ H̃∗(E

λ, E−∞) .

Since f is quadratic at infinity, we have:

H̃∗(E,E
−∞) ' H̃∗(E/E

−∞) ' H̃∗(S
k∞) ,

where k∞ is the index of the quadratic part of f . Let Γ be a generator of the only non trivial
homology group H̃k∞(E,E−∞) ' Q.

Definition. The minimax of f is the real number

min max(f) := inf{λ ∈ R : %∗λΓ 6= 0} .
Remark. The infimum defining the minimax exists and it is finite, indeed %∗λγ = γ 6= 0 and
%∗−λγ = 0 whenever λ > a; it does not depend on the choice of the generator γ. Moreover,
the minimax of a function is a critical value, since by definition the topology of the sublevel
sets Xλ changes when λ crosses the minimax value.

In the case of generic functions, we can characterize the minimax value using the classi-
fication of its critical points given in section 4.2.3.

Theorem 4.2.3. Let f be a generic function quadratic at infinity. Then f has exactly one
free critical point, of index k∞, and the minimax of f is its value.

Proof. Let ξ be a critical point of f , Ξ the corresponding canonic generator of its Morse
complex. Then ξ is free if and only if

∂Ξ = 0 and Ξ /∈ ∂M f ,

that is, if and only if the class [Ξ] is non zero in H∗(M
f , ∂). We deduce from the isomorphism

H̃∗(E,E
−∞) ' H̃∗(M

f
∗ , ∂∗) that there exists one and only one generator Ξk∞

` whose homology
class is well defined and non trivial. Hence, Ξk∞

` is a multiple of Γ. So f has exactly one free
critical point, which index is k∞, and the minimax is realized by this point.

In order to make effective this characterization also in the general case we have to perturb
non generic functions.

Definition. A p-parameter deformation of f is a smooth p-parameter family

{fλ : E → R, λ ∈ Rp}
of C 2-functions having the same quadratic part at infinity that f = f0, that is, there exists
a compact set K ⊂ E such that fλ = Q∞ outside K for every small enough λ, where Q∞ is
the quadratic part of f .
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Figure 4.5: Small deformation of a non generic function.

Theorem 4.2.4. The minimax value of a function is stable under small deformations of it.

Proof. Let c1 < · · · < cr be the critical values of f . Fix ε > 0 small enough for that
ci+ε < ci+1−ε for every i = 1, . . . , r−1. If g is a small enough perturbation of f , its critical
values belong to

⋃

i=1,...,r−1

(ci − ε , ci + ε)

(see figure 4.5). Therefore, Eci+ε and Eci+ε
g are diffeomorphic, as well as Eci−ε and Eci−ε

g .
This implies that

H̃∗(E
ci+ε) ' H̃∗(E

ci+ε
g ) and H̃∗(E

−∞) ' H̃∗(E
−∞
g ) .

Now set

Ak := Hk(E
−∞) , Bk := H̃k(E

ci+ε) , Ck := H̃k(E
ci+ε, E−∞) ,

A′
k := Hk(E

−∞
g ) , B′

k := H̃k(E
ci+ε
g ) , C ′

k := H̃k(E
ci+ε
g , E−∞

g ) .

Then we have the following long exact sequences in relative homology:

. . . −−−→ Ak −−−→ Bk −−−→ Ck −−−→ Ak−1 −−−→ Bk−1 −−−→ . . .

'





y

'





y





y





y

'





y

'

. . . −−−→ A′
k −−−→ B′

k −−−→ C ′
k −−−→ A′

k−1 −−−→ B′
k−1 −−−→ . . .

The well known Five Lemma proves the isomorphism:

H̃k(E
ci+ε, E−∞) ' H̃k(E

ci+ε
g , E−∞

g ) .

Now denote by u = c` the minimax of f . Then for every i from 1 to `− 1 we have

H̃k∞(Eu+ε
g , E−∞

g ) 6= 0 and H̃k∞(Eci+ε
g , E−∞

g ) = 0 ,

showing that the minimax of g belongs to (u− ε, u+ ε). The Theorem is proven.
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The minimax of f admits the following “dual” construction. Consider

Ěλ := {ξ ∈ E : f(ξ) ≥ λ} ,

and the natural restriction mappings %̌λ : Ě → Eλ. Fix a generator ∆ of the only non trivial
relative homology group H̃K−k∞(E, Ě+∞) ' Q.

Definition. The max-min of f is the real number

max min(f) := sup{λ ∈ R : %̌∗λ∆ 6= 0} .

Theorem 4.2.5. The minimax of a function is equal to its max-min.

Proof. By Theorem 4.2.4 we may assume f generic. Then it follows from Proposition 4.2.3
and Theorem 4.2.3 that

min max(f) = −min max(−f) .

On the other hand, we have

max min(f) = −min max(−f) .

This ends the proof.

The next result will be useful in section 4.4.

Proposition 4.2.4. Let f be a good function, c the value of a degenerate critical point and
ε > 0 arbitrary small. Let us suppose that there exists a 1-parameter deformation fλ such
that:

– for λ < 0 small enough, fλ has no critical values in (c− ε, c+ ε);

– for λ > 0 small enough, fλ has exactly two critical values in (c − ε, c + ε), realized by
two non degenerate critical points ξ1 and ξ2.

Then ξ1 and ξ2 are coupled.

Proof. Let us set g := fλ for a positive arbitrary small value of λ, and h := fλ for a negative
arbitrary small value of λ. The same argument used in the proof of Theorem 4.2.4, up to
consider Ec−ε instead of E−∞, shows that:

H̃∗(E
c+ε
g , Ec−ε

g ) ' H̃∗(E
c+ε
h , Ec−ε

h ) .

By Theorem 4.2.2, we have H̃∗(E
c+ε
h , Ec−ε

h ) = 0. Therefore we obtain

H̃∗(E
c+ε
g , Ec−ε

g ) = 0 ,

so ξ1 and ξ2 are incident. Then they are coupled by Proposition 4.2.1.
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4.3 Minimax solutions to Hamilton–Jacobi equations

4.3.1 Generating families of Lagrangian submanifolds

Let X be a smooth manifold of dimension n, T ∗X its cotangent bundle. Denote by π :
T ∗X → X the natural fibration (x, y) 7→ x. The bundle T ∗X, endowed with the canonical
symplectic form dy ∧ dx, is a symplectic manifold of dimension 2n.

A Hamiltonian isotopy is the time T flow of a Hamiltonian

h : [0, T ]× T ∗X → T ∗X .

All the isotopies considered below are Hamiltonian. Two submanifolds of the cotangent
bundle are isotopy equivalent if there exists an isotopy transforming one into the other.

A submanifold of T ∗X is called Lagrangian if the symplectic form vanishes on it and
its dimension is equal to n. Hamiltonian isotopies transform Lagrangian submanifolds into
Lagrangian submanifolds.

Definition. A generating family of a Lagrangian submanifold L ⊂ T ∗X is a C 2-function
S : X × RK → R such that

L =
{

(x, ∂xS(x; ξ)) : ∂ξS(x; ξ) = 0
}

,

where S verifies also the rank condition

rk
(

∂2
ξξS, ∂

2
ξxS
)

|∂ξS=0 = max = K .

Given a generating family S, the following operations give rise to new generating families
T of the same Lagrangian submanifold:

(o) Addition of a constant: T (x; ξ) = S(x; ξ) + C for C ∈ R;

(i) Stabilization: T (x; ξ, η) = S(x; ξ) +Q(η), where Q is a non degenerate quadratic form;

(ii) Diffeomorphism: T (x; η) = S(x; ξ(x, η)), where (x; η) 7→ (x, ξ(x, η)) is a fibered diffeo-
morphism with respect to the coordinate x.

The stabilization is the only operation changing the number of parameters in the gener-
ating family.

Definition. Two generating families are equivalent if it is possible to obtain one from the
other by a finite sequence of the preceding operations.

Actually, it turns out that if two generating families are equivalent, then one can obtain
one from the other by a stabilization (to make equal the number of parameters), followed by
a fibered diffeomorphism and adding a constant (see [25]).

Definition. A generating family is quadratic at infinity (GFQI) if there exists a non de-
generate quadratic form Q∞ such that S(x; ξ) = Q∞(ξ), whenever |ξ| is large enough (the
required largeness of ξ being independent from x).
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The GFQI are an important class of generating families, due to the following existence
and uniqueness result. The existence statement has been proven by Sikorav in [24], the
uniqueness statement by Viterbo in [27], see also [25].

Theorem (Sikorav–Viterbo). Let X be a closed manifold (i.e. a boundaryless compact
manifold). Every Lagrangian submanifold of T ∗X, isotopy equivalent to the zero section

{(x; 0) : x ∈ X} ⊂ T ∗X

admits a unique GFQI modulo the preceding equivalence relation.

Remarks. (1) The Theorem still holds in the case of non compact manifold, provided that
the projection of the Lagrangian submanifold into the base is 1 : 1 outside a combact set.
(2) There exists a contact version of the existence statement concerning Legendrian subman-
ifolds of the jet space J1X, due to Yu. Chekanov (see [13]). However in this context there is
not, to my knowledge, an analogous of the uniqueness statement.

Let us denote by
ΣL := {(x, y) ∈ L : rkDπ|L(x, y) < n}

the set of singular points of the projection from L to X.

Definition. The apparent contour π(ΣL) of L in X by the projection π is called the caustic
of L.

Generically, the set of the singular points of a Lagrangian submanifold is the union of the
codimension 1 submanifold formed by the simple singular points (for which the rank of Dπ|L
is n− 1) and a finite collection of submanifolds which codimension is at least 3 (see [1]).

A Lagrangian submanifold L is exact if the Liouville’s 1-form y dx is exact over it, that
is, if there exists a function ζ : L → R such that y dx |L= dζ. In this case, we can associate
to L a Legendrian submanifold

{(x, ζ(x, y), y) : (x, y) ∈ L}

in the contact space J1X = {(x, z, y)} of 1-jets over X, equipped with the standard contact
form dz − y dx. This Legendrian submanifold is defined up to an addictive constant in z.

Definition. The wave front associated to L is the image in the space J 0X = {(x, z)} of 0-jets
over X of its Legendrian lift under the natural projection J 1X 7→ J0X, (x, z, y) 7→ (x, z).

If S is a GFQI of L, then its Legendrian lift is

{(x, S(x; ξ), ∂xS(x; ξ)) : ∂ξS(x; ξ) = 0} ,

so the corresponding wave front is

{(x, S(x; ξ)) : ∂ξS(x; ξ) = 0} .

Definition. The Maxwell set of L is the set formed by all the points x ∈ X for which the
function ξ 7→ S(x; ξ) is not good.
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Figure 4.6: The wave front associated to a Lagrangian curve.

Remarks. (1) By the Viterbo’s Uniqueness Theorem, the Maxwell sets of Lagrangian sub-
manifolds do not depend on the choice of their GFQI.
(2) The natural projection of the wave front generated by S to the base X is a fibration
outside its caustic and Maxwell set (see figure 4.6).
(3) The Maxwell set of a generic Lagrangian submanifold is a stratified hypersurface (i.e., it
is a finite union of smooth, pairwise disjoint arc connected manifolds, called strata, such that
the closure of each stratum is the stratum itself and a finite collection of smaller dimension
strata), see [2].

4.3.2 Geometric solutions

Let us consider the Cauchy Problem for a Hamilton–Jacobi equation on a manifold Q (bound-
aryless but not necessary compact), defined by a Hamiltonian H : [0,+∞[×T ∗Q → R of
class C 2 on ]0,+∞[×T ∗Q and continuous at the boundary, and by the C 1-initial condition
u0 : Q→ R:

(CP )

{

∂tu(t, q) +H(t, q, ∂qu(t, q)) = 0, ∀ t > 0, q ∈ Q
u(0, q) = u0(q), ∀ q ∈ Q .

In this section we define the geometric solution of (CP ), which is a Lagrangian submani-
fold in the cotangent bundle of the space-time. By the Theorem of Sikorav–Viterbo it has a
“unique” FGQI, denoted by S and defined up to an additive constant. Fixing this constant
in an suitable way, S is a (maybe multivalued) solution of our Cauchy problem. In the next
section we will use the minimax method to select a unique critical point of ξ 7→ S(t, q; ξ) over
every (t, q). In this way we will obtain a well defined section of the wave front, providing a
weak solution of the Cauchy Problem.

Let us consider on the cotangent bundle T ∗Q = {(q, p)}, endowed with the standard
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symplectic form dp ∧ dq, the Hamiltonian field XH = (∂pH,−∂qH) and its flow

ϕ : [0,+∞[×T ∗Q→ T ∗Q .

Its components ϕt(q, p) = (q̃(t), p̃(t)), called the characteristics of XH , are the solutions of
the Hamilton equations

{

d
dt
q̃(t) = ∂pH(t, q̃(t), p̃(t)),

d
dt
p̃(t) = −∂qH(t, q̃(t), p̃(t)),

verifying the initial conditions q̃(0) = q and p̃(0) = p.
Let L0 := {(q, du0(q)) : q ∈ Q} be the Lagrangian submanifold of T ∗Q generated by the

initial condition u0 and let Lt := ϕt(L0) be its time t evolution.

Remarks. (1) The submanifold L0 is isotopic to the zero section. The isotopy is generated
by the Hamiltonian −u0.
(2) Every Lt is a Lagrangian submanifold, isotopy equivalent to the zero section of T ∗Q.
Indeed, Lt is isotopic to L0 by ϕ−t and the isotopies form a group.
(3) It follows that Lt is exact and, by the Sikorav–Viterbo Theorem, it admits a unique
GFQI, that we will denote by St(q; ξ).

Let us consider now the space-time Q := R × Q, and its cotangent bundle T ∗Q =
{(t, q; τ, p)}, equipped with the standard symplectic form dp∧ dq+ dτ ∧ dt. The components
of the flow Φ : [0,+∞[×T ∗Q → T ∗Q, generated by the autonomous Hamiltonian τ +H, are

Φs(t, q; τ, p) =
(

t+ s, q̃(t+ s); τ̃(t + s), p̃(t + s)
)

,

where q̃, p̃ are the characteristics ofXH such that q̃(t) = q, p̃(t) = p, and τ̃(t) = −H
(

t, q̃(t), p̃(t)
)

.
For t ≥ 0, let us consider the inclusion mappings

it : T ∗Q ↪→ T ∗
Q, (q, p) 7→ (t, q;−H(t, q, p), p) .

A direct computation shows that the submanifold formed by the union of the characteristic
curves of Φ issuing from i0(L0),

L :=
⋃

s>0

Φs
(

i0(L0)
)

⊂ T ∗
Q,

is Lagrangian. Furthermore, for any fixed time T > 0, the submanifold

LT :=
⋃

0<s<T

Φs
(

i0(L0)
)

is also Lagrangian.

Definition. The Lagrangian submanifold L is called the geometric solution to (CP ), and
LT is called the truncated geometric solution at time T .

Remark. The flow Φs translates L by a time s along the characteristics:

Φs
(

it(Lt)
)

= Φs ◦ Φt
(

i0(L0)
)

= Φs+t
(

i0(L0)
)

= is+t(Ls+t)

(flow semigroup property).
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Figure 4.7: The isotopy transforming the geometric solution into the zero section.

Theorem 4.3.1. For every T , the truncated geometric solution ΛT is isotopy equivalent to
the zero section in T ∗Q.

Proof. For small enough time there exists a classical solution to (CP ). Hence we may assume
without loss of generality that there exists ε > 0 such that L is equal to the zero section over
(0, ε) × Q. Therefore H = 0 in a neighborhood of t = 0 and we can define a C 2-function
H̃ extending H by 0 to negative times. Hence, the flow Φ̃ generated by τ + H̃ extends the
initial flow Φ to the whole time axis. The Lagrangian submanifold

L̃ :=
⋃

s∈R

Φ̃s(i0(L0)) ⊂ T ∗
Q

is equal to L in the half space {t > 0} and to the zero section in the half space {t < 0}. As
a consequence, Φ̃−T is an isotopy between LT and the zero section (see figure 4.7).

Theorem 4.3.1 allows us to apply the Sikorav–Viterbo Theorem to the truncated geometric
solution to (PC).

Corollary. The truncated geometric solution LT admits a unique GFQI (modulo the equiv-
alence relations (i) and (ii) defined above) whose graph at t = 0 is equal to that of the initial
condition u0.

From now on, S will be such a GFQI.

Proof. Let S̃(t, q; ξ) be a GFQI of LT . Since it is a primitive of the Liouville’s 1-form p dq
on L0, we have:

dS̃(0, q; ξ̄0(q)) = du0(q) dq ,

where ξ̄0(q) is the only critical point of ξ 7→ S0(q; ξ). Therefore, there exists C ∈ R for which
S := S̃ + C verifies S(0, q; ξ̄0(q)) = u0(q) for all q ∈ Q.

Remark. It is possible to construct global generating families of geometric solutions as
follows. The action functional

∫

pdq −Hdt
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is a global generating family of L, whose parameters belong to an infinite dimension space.
By a fixed point method, proposed by Amann, Conley and Zehnder, one can obtain a true
generating family (whose parameters belong to a finite dimension space), see [10].

The exact Lagrangian submanifold

Lt := pr ◦ Φt(σ) ⊂ T ∗Q ,

is by definition the geometric solution at time t of (CP ). These submanifolds are the isochrone
sections of the global geometric solution. It is easy to check that Lt is isotopic to the zero
section. By the Uniqueness Theorem, its GFQI is St(q; ξ) := S(t, q; ξ).

Definition. We call multivalued solution (resp., multivalued solution at time t) to (CP ) the
graph of S (resp., St).

Examples of geometric and multivalued solutions are shown in figure 4.8.

0

Lt

t

gr(du0)

T∗Q
T∗Q

T∗Q

L

gr(u0)

time

space space

time

0

t

Q × R

Figure 4.8: Geometric and multivalued solutions.

4.3.3 Minimax solutions

Let S be the GFQI of the geometric solution to (CP ). The function ξ 7→ S(t, q; ξ) is quadratic
at infinity, so we may consider its minimax critical value, introduced in section 4.2.4.

Definition (Chaperon). The minimax solution to (CP ) is the function

u(t, q) := min max{ξ 7→ S(t, q; ξ)} .

Remark. For a Cauchy Problem on a non compact manifold, as for instance in the case
Q = Rn, we define the minimax solution as follows. Let (Hn)n be a sequence of smooth
Hamiltonians with compact support in the space variables (at least for finite times). Then, at
any Cauchy Problem defined by Hn and the given initial condition, we associate its minimax
solution un, defined as above. By definition, the minimax solution of the initial Cauchy
Problem is the limit of the solutions un for n→∞.
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Remark. In [12], Marc Chaperon introduced also the max-min solution, defined similarly
by

(t, q) 7→ max min{ξ 7→ S(t, q; ξ)} .
Actually, by Theorem 4.2.5, it coincides with the minimax solution.

Among other autors, minimax solutions has been studied by M. Chaperon ([12]), T.
Joukovskäıa ([22]), and C. Viterbo ([28]).

Theorem 4.3.2 (Chaperon). The minimax solution is a weak solution to (CP ), Lipschitz
on finite times, which not depends on the choice of the GFQI.

Recall that a weak solution to (CP ) is a continuous and almost everywhere differentiable
function, solving in these points the Hamilton–Jacobi equation; moreover, its restriction at
t = 0 is equal to the initial condition.

Proof. By Theorem 4.2.4, we may assume without loss of generality that the geometric
solution to (CP ) is generic. In this case its caustic and Maxwell set have zero measure.

The continuity of the minimax solution is a consequence of the minimax stability stated
in Theorem 4.2.4. Indeed, fix a point (t0, q0) in the space time. For all (t, q) arbitrary close
to (t0, q0), the function ξ 7→ S(t, q; ξ) is an arbitrary small deformation of ξ 7→ S(t0, q0; ξ)
and u(t, q) is arbitrary close to u(t0, q0).

If (t0, q0) is not in the Maxwell set, the Implicit Function Theorem guarantees that there
exists a neighborhood U of (t0, q0) in ]0,+∞[×Q, in which the free critical point of ξ 7→
S(t, q; ξ) is a C 1-function ξ̄(t, q), solving ∂ξS(t, q; ξ) = 0. Hence, for all (t, q) ∈ U , we have
u(t, q) = S(t, q; ξ̄(t, q)), so u is of class C 1.

This formula implies also that the minimax is a solution of the Hamilton–Jacobi equation
on U . Indeed, we have:

∂tu(t, q) = ∂tS(t, q; ξ̄(t, q)), ∂qu(t, q) = ∂qS(t, q; ξ̄(t, q)) ;

on the other hand, we have:

∂tS(t, q; ξ̄(t, q)) +H(t, q, ∂qS(t, q; ξ̄(t, q))) = 0 ,

since S generates the geometric solution. We have therefore proven that outside a zero
measure set the minimax is differentiable and it solves the equation. Moreover by construction
it satisfies the initial condition.

Since H and u0 are Lipschitz, in a finite time the tangent spaces to the isochrone wave
fronts associated to the geometric solution can not be vertical. So the minimax solution is
Lipschitz on [0, T ] for every fixed T .

Finally it follows from the Viterbo’s Uniqueness Theorem that the minimax solution does
not depend on the choice of the GFQI of the geometric solution.

Remark. Claude Viterbo showed that an analogous statement holds assuming Hamiltonian
functions and initial conditions only Lipschitz, see [28]. This is done approaching H and u0

by sequences {Hn}n∈N and {σn}n∈N of smooth Hamiltonians and initial conditions. For all
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n ∈ N we consider the minimax solution U [Hn, σn] of the Cauchy Problem defined by the
Hamiltonian Hn and the initial condition σn. It turns out that the function defined by

lim
n→+∞

U [Hn, σn]

is a weak solution to the Cauchy Problem of Hamiltonian H and initial condition u0.

We end this section discussing the relations between minimax and viscosity solutions.
Viscosity solutions to Hamilton–Jacobi equations have been introduced by Crandall and
Lions in [16], following the generalizations proposed by Kruzhkov for the Hopf’s formulæ.

Definition. A continuous function v : R̄+ ×Q→ R is a viscosity solution of (CP ) if

∂tψ(t, q) +H (t, q, ∂qψ(t, q)) ≤ 0 (resp., ≥ 0)

for any test function ψ ∈ C
1(R+×Q) for which v− ψ attains a local maximum (resp., local

minimum) at (t, q).

Existence and Uniqueness Theorems for the viscosity solution are proven in [16]. When the
Hamiltonian defining our Hamilton–Jacobi equation is convex or concave in the momenta,
the viscosity solution is explicitly given by the Lax–Hopf formula (Theorem of Bardi and
Evans, [6]). In this case, the relation between minimax and viscosity solutions is well known.

Theorem 4.3.3 (Joukovskaia, [22]). The minimax solution and the viscosity solution of
(CP ) are equal, provided that the Hamiltonian defining the equation is convex or concave in
the variables p.

In general, there are no exact formulæ of Lax–Hopf type providing the viscosity solution
for nonconvex nor concave Hamiltonians. Izumiya and Kossioris constructed in [21] the
viscosity solution beyond its first critical time. Actually, they proved that in the general case
the Lagrangian graph of the viscosity solution is not necessarily contained in the geometric
solution of the Hamilton–Jacobi equation. Hence, the minimax solution and the viscosity
solution are in general different.

4.4 Characterization of minimax solutions

4.4.1 Preliminary notations

Let J0R ' R2 = {(q, z)} be the space of 0-jets over R and π0 : J0R→ R the natural fibration
(q, z) 7→ q. A wave front in J0R is the image of a Legendrian curve in the contact space
J1R ' R3 = {(q, z, p)} under the projection

π1 : (q, z, p) 7→ (q, z) .

The only singularities of generic wave fronts are semicubic cusps and transversal self-intersections.
Let Σ be a wave front in J0R. A section of Σ is every connected maximal subset σ of Σ

which is the graph of a piecewise smooth function

χσ : π0(σ)→ R .
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A branch of Σ is a smooth section. A front is long if, outside a compact set of R, it is the
graph of a smooth function. Note that in the 1-jet set up we are considering, all the fronts
are flat, that is, their tangent lines are nowhere vertical.

A flat front may be cooriented fixing at any point the normal vector with positive z
component. If the front is also oriented, we may distinguish two type of cusps: positive, if
we pass from a branch to the other according to the coorientation, negative otherwise.

Two Legendrian curves in J1R are (Legendrian) isotopy equivalent if there exists a smooth
path joining them in the space of the embedded Legendrian curves. A self-tangency is by
definition safe if the coorientations of the tangent branches are opposite, dangerous other-
wise. The generic perestroikas occurring to wave fronts under Legendrian isotopies are the
following, illustrated in figure 4.9: cusp birth/death, triple intersection, cusp crossing and
safe self-tangency. These perestroikas are the projections of the Reidemeister moves for
Legendrian knots (see e.g. [3]).

3/2
3/2

4/3

3/2 3/2

Figure 4.9: Generic singularities along isotopies of wave fronts.

Note that the dangerous self-tangencies are not permitted because they correspond to
self-intersections of the Legendrian curve projecting into the front. Flat fronts can have only
dangerous self-tangencies.

The number of cusps in a front, counted with their signs, is invariant under Legendrian
isotopies, and it is called Maslov number.

4.4.2 Admissible decompositions of wave fronts

In this section we recall the construction of a new invariant of Legendrian knots, due to
Yu. Chekanov and P. Pushkar, that will lead to our geometric characterization of minimax
solutions.

The projection of a Legendrian knot from J1R to J0R by π1 is a closed wave front. Let
Σ be a generic front of this type.

A decomposition of Σ is a collection of closed curves X1, . . . , Xn ⊂ Σ, having a finite
number of self intersections, such that

X1 ∪ · · · ∪Xn = Σ

and Xi ∩Xj is a finite number of points whenever i 6= j.
A double point x ∈ Xi ∩ Xj of Σ is a jump (or a switch) if Xi and Xj are not smooth

at x; it is of Maslov type if the number of cusps (counted with their signs) along the front
between two intersecting branches at x is 0.
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Definition. A decomposition (X1, . . . , Xn) of Σ is said to be admissible if:

(1) Every curve Xi is homeomorphic to a disc boundary: ∂Xi = Bi;

(2) for i ∈ {1, . . . , n} and q ∈ R, the set Bi(q) := {z ∈ R : (q, z) ∈ Bi} is connected; in
particular, it is a cusp of the front whenever it is a point;

(3) if (q0, z) ∈ Xi ∩ Xj (i 6= j) is a jump, then for q 6= q0 close enough to q0, the set
Bi(q) ∩Bi(q) is Bi(q), or Bj(q), or is empty;

(4) all the jumps of the front are of Maslov type.

Remark. Conditions (1) and (2) imply that every curve Xi has exactly two cusps, dividing
it into two components σ+

i et σ−
i , where for all (q, z±i ) ∈ σ±

i we have z−i ≤ z+
i . Condition

(3) is equivalent to ask that there are no jump points realizing the forbidden configurations,
shown in figure 4.10.

σ+
i

σ−i
σ−j

σ+
j

σ−j

σ+
j

σ−i

σ+
i

σ+
j

σ−j
σ−i

σ+
i

(I) (III)(II)

Figure 4.10: Forbidden configurations near a jump point.

Theorem (Chekanov–Pushkar, [14], [15], [20]). The number of admissible decomposi-
tions of a wave front, projection of a Legendrian knot, is invariant under Legendrian isotopies
of the knot; moreover, the number of curves in the decomposition minus the number of jumps
is constant along the isotopy.

Remark. Eliashberg has given in [18] a prefiguration (without proof) of Chekanov–Pushkar
Theorem. This paper of Eliashberg suggested to J.C. Sikorav the initial idea of minimax
solution, next developed py Chaperon.

Chekanov–Pushkar Theorem allow to distinguish non Legendrian isotopic wave fronts
having the same Bennequin-number (that is, the self-linking number of a framed oriented
legendrian knot) and the same Maslov number (see [20]).

Example 4.4.1. Figure 4.11 shows two decompositions of a generic front, projection of a
Legendrian knot. The front is isotopy equivalent to the lips front (having two cusps and no
jumps). By the Chakanov–Pushkar Theorem it admits only one admissible decomposition
(on the left).
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Figure 4.11: Decompositions of a wave front isotopic to the lips front.

4.4.3 Characterization of the minimax solution

Let us come back to the Cauchy Problem (CP ), namely in the case Q = R. Fix t0 > 0.
Let S be a GFQI of the geometric solution L (truncated at T > t0). The Uniqueness
Theorem implies that St0(q; ξ) := S(t0, q; ξ) is the GFQI of the geometric solution at time t0,
Lt0 = L∩ T ∗({t0}×R). Therefore minimax solutions associated to L and Lt0 have the same
value at (t0, q0) and q0 respectively, namely

min max{ξ 7→ S(t0, q0; ξ)} .
Definition. A long flat wave front in J0R is a multivalued solution if it is isotopy equivalent
to the zero section and it is projection of an embedded Legendrian curve.

It follows from sections 4.3.2 and 4.3.3 that the wave fronts associated to the geometric
solutions Lt are multivalued solutions (up to replace the Cauchy Problem by a sequence of
approximating problems).

Remark. The Uniqueness Theorem gives a method to reduce the problem to finding the
minimax solution to (CP ) to the case Q = R. Indeed, let us consider the solution L of the
more general problem. Let S be its GFQI, Σ the corresponding wave front and

{γλ : λ ∈ [0, 1]} ⊂ T ∗
Q

a smooth 1-parameter family of curves (in the space-time) parameterized by s 7→ γλ(s). We
assume that the family fullfills the following conditions:

(A) the first curve γ0 is contained in the boundary t = 0;

(B) the limits γλ(±∞) are two points of the space-time boundary {0} × Q, which are
independent of the parameter value λ;

(C) for every λ ∈ [0, 1], the curve γλ is transversal to the caustic and the Maxwell set of
the geometric solution.

The restriction Lλ of the geometric solution to the cotangent bundle to γλ is a connected
Lagrangian curve, whose GFQI is S(γλ(s); ξ). The minimax of its graph Σλ over a point s is
equal to the minimax of Σ over γλ(s). Moreover, by construction Σγ is a multivalued solution.
Indeed, Σγ is flat and long; the mapping λ 7→ Σλ is a Legendrian isotopy transforming the
front Σ1 into the zero section of T ∗Q, see figure 4.12.
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Q

0 T

Q = S1

t

γr
γ1

γ1

caustic

caustic

Maxwell
set

Figure 4.12: Reduction to the unidimensional case (Q = S1).

We are going to study minimax sections of multivalued solutions in J 0R, using the clas-
sification of critical points given in section 4.3. Let us consider a multivalued solution Σ at
time t and its GFQI, denoted by S. Every branch of the front corresponds to a critical value
of ξ 7→ St(q; ξ).

Definition. The index of a branch is the index of its corresponding critical point minus the
index of the quadratic part of S.

The index of a branch does not depend on the choice of the GFQI. Note that the un-
bounded branch of the front has index 0, as well as the minimax section. Moreover, the index
changes by +1 (resp., −1) passing through a positive cusp (resp., negative cusp).

In order to use the Chekanov—Pushkar Theorem, we need to close our wave front adding
a “section at infinity”. To do this, we cut off the front outside a compact set K containing all
the compact branches of the front and then we close it adding two cusps and a (flat) section
at infinity σ∞, disjoint to the other sections of the front, as illustrated in figure 4.13.

3/2 3/2

σ∞

K

Figure 4.13: Closing multivalued solutions.

We denote by Σ̃ such a front, which is equal to Σ inside K. Since the minimax section
is equal to the maxmin section, nothing changes if the section at infinity overpasses or
downpasses K. The new front Σ̃ is the projection of a Legendrian knot.

When q run on R, every pair of coupled critical points of S moves on the front along two
sections, forming a closed curve. We denote by Xi these curves and by X0 the remaining
curve in Σ̃. This curve is the union of the section at infinity σ∞ and a section µ, which is
equal to the minimax of the non compact front inside K.
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Theorem 4.4.1. (X0, X1, . . . , Xn) is the only admissible decomposition of Σ̃.

Proof. By section 4.2.3, the curves X0, X1, . . . , Xn satisfy admissible decomposition axioms
(1) and (2). Axiom (4) is also satisfied. Indeed, the difference between the indeces of two
branches is the number of cusps between them along the front (Proposition 4.2.4).

It remains to check that axiom (3) is verified, i.e. forbidden configurations never arises.
For each curve Xi = σ+

i ∪ σ−
i , and q inside π0(Xi), we denote (q, ξ+

i ) ∈ σ+
i and (q, ξ+

i ) ∈ σ−
i ,

with ξ+
i > ξ−i , the two points of the curve over q. For X0 = σ∞∪µ, we denote the two points

over q by (q, ξ∞) ∈ σ∞ and (q, ξµ) ∈ µ, where ξ∞ > ξµ. Let J be a jump point, qJ := π0(J),
q 6= qJ arbitrary close to qJ .

Assume first J ∈ Xi ∩Xj, with i 6= j non zero. The Morse diagrams of ξ 7→ S(q; ξ) corre-
sponding to forbidden configurations (I), (II) and (III) are in contradiction with Proposition
4.2.1, as proven by figure 4.14 for configuration (I) and by figure 4.15 for configurations (II)
and (III).

σ+
j

σ+
i

σ−j

σ−i

ξ+
i

ξ−j

ξ−i

ind(σ+
j ) ind(σ−i )ind(σ−j ) = ind(σ+

i )

ξ+
j

J

Figure 4.14: Morse diagram of forbidden configuration (I).
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J
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i
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j

σ−i

σ−j

ind(σ+
i ) = ind(σ+

j )

ξ+
i

ξ+
j

ξ−i

ξ−j

ind(σ−i ) = ind(σ−j )

ξ+
i

ξ+
j

ind(σ+
i ) = ind(σ+

j ) ind(σ−i ) = ind(σ−j )

Figure 4.15: Morse diagram of forbidden configurations (II) and (III).

Since σ∞ has no jumps, it remains to consider a jump point J ∈ µ∩Xi, i > 0. We assume
that the section at infinity overpasses all the bounded sections of the front. Therefore, for
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these jumps the forbidden configuration (III) is not possible. Configurations (I) and (II) lead
to Morse diagrams in contradiction with Proposition 4.2.2, see figure 4.16.

σ−i

σ+
i

σ∞

J

µ

σ+
i

σ∞

σ−i

µ

ξ−i

ξ+
i

ξµ

0 −1

ξ+
i

ξ+
i

01

ξµ

Figure 4.16: Morse diagram of forbidden configurations (I) and (II).

We have proven that our decomposition is admissible.
Since the Legendrian curve projecting into the front Σ is isotopy equivalent to the zero

section, Σ̃ is isotopy equivalent to the lips front. Hence, by the Chekanov–Pushkar Theorem,
Σ̃ has exactly one admissible decomposition. This completes the proof.

Remarks. (1) Theorem 4.4.1 provides a combinatoric criterion to finding the minimax sec-
tion of a given dimension 1 wave front (of multivalued solution type). Actually, it is enough
to find the only admissible decomposition of the closed front associated to the multivalued
solution. The section coupled to the section at infinity is the minimax section.
(2) The axioms characterizing the admissible decompositions of wave fronts have been de-
fined by Chekanov and Pushkar as a generalization of the classification of the critical points
of a function. In this sense, Theorem 4.4.1 is the simple case whose generalization is the
Chekanov–Pushkar Theorem.

Example 4.4.2. We deduce from Theorem 4.4.1 and Example 4.4.1 that the minimax section
of the front in figure 4.17 is the bold line.

Q

R

S

P

µ

Figure 4.17: The minimax section of the front in Example 4.4.1

4.4.4 Vanishing triangles

In this section we describe an effective method to replace a multivalued solution by a simpler
one, having the same minimax section. This leads to finding the minimax section of the
initial wave front iterating this method.
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Definition. A triple intersection is said to be homogeneous if the branches intersecting at
the triple point have the same index (cf. §4.4.3).

Homogeneous triple intersections are the only perestroikas changing in a catastrophic
way (i.e. non continuous way) admissible decompositions of multivalued solutions (see figure
4.18).

µµ µ

Figure 4.18: Catastrophic change of the admissible decomposition.

Every homogeneous double point (i.e. intersection of two branches having the same index)
of an oriented multivalued solution defines in the front a closed connected curve according
to the front orientation. Such a curve is called a triangle whenever it has exactly two cusps.
The double point is the vertex of the triangle.

Let Σ be a multivalued solution and T a triangle on it. Fix an arbitrary small ball
centered at the vertex of T , intersecting only the two branches of the front meting at the
double point. We denote by Σ − T a multivalued solution equal to Σ r T outside the ball
and smooth inside it (see figure 4.19).

T

Σ− T

Figure 4.19: The front Σ− T .

Definition. A triangle T of Σ is vanishing if there exists a Legendrian isotopy joining Σ
and Σ− T among multivalued solutions without homogeneous triple intersections.

The following Theorem provides an effective method to simplify recursively a given multi-
valued solution. After a finite number of steps, we get a smooth multivalued solution, which
is actually the graph of the minimax solution to the initial problem.

Theorem 4.4.2. Let Σ be a multivalued solution and Σ = µ ∪X1 ∪ · · · ∪XN its admissible
decomposition, induced from that of the closed front Σ̃ (µ being the minimax section). Then
Σ is smooth or has a vanishing triangle T among the decomposition curves Xi. In this case,
the admissible decomposition of Σ− T is induced by that of Σ. In particular, the minimax of
Σ and Σ− T are equal outside the ball centered at the vertex of the vanishing triangle T .
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Proof. Consider the connected graph associated to the admissible decomposition of Σ̃ =
π1(L̃), i.e., the graph having a vertex for every curve in the decomposition and an edge
connecting two vertices for each jump between the corresponding curves. The Chekanov–
Pushkar Theorem implies that the number of curves forming the decomposition minus the
number of jumps is invariant under Legendrian isotopies.

Since L̃ is isotopy equivalent to a circle, projecting into the lips front, this number is 1
for every front obtained closing multivalued solutions. Hence the graph is actually a tree,
which leaves (i.e. vertex from which only one edge goes out) are triangles. Finally, it is easy
to check that the triangles, which are curves in the decomposition, are vanishing.

Example 4.4.3. Consider the front Σ depicted in figure 4.20, together with the tree associ-
ated to the admissible decomposition of the front.

A

B

C

DE

G

1
1

−1

−1

00

0

0

0

µ

X1

X2

X3

X4

µ

X3

X4X2

X1

Figure 4.20: The wave front Σ in Example 4.4.3 and its tree.

We claim that the minimax section µ is the section designed by a bold line. We apply
Theorem 4.4.2. The triangles TA, TE and TG, whose vertices are A, E and G, are vanishing.
Thus, outside three arbitrary small balls, centered at A, E and G, the minimax of the front
coincides to the minimax of the front Σ′ := ((Σ − TA) − TE) − TG, depicted in figure 4.21.
Now TD is vanishing, so the minimax is the announced section of the initial front.

BE

BGBA

D

0 1

0 µ

Figure 4.21: The wave front Σ′ in Example 4.4.3.
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4.5 Generic singularities of minimax solutions

In this section we will classify generic singularities of minimax solutions to Hamilton–Jacobi
equations, whose codimension is at most 2, up to the Left–Right equivalence fibered on the
time direction. Namely, let us consider the Cauchy Problem

(CP )

{

∂tu(t, q) +H(t, q, ∂qu(t, q)) = 0, for all t > 0, q ∈ Rn,

u(0, q) = u0(q), for all q ∈ Rn,

defined by a Hamiltonian H : R+×T ∗Rn → R of class C 2 on ]0,+∞[×T ∗Rn and continuous
at the boundary, and by the C 1-initial condition u0 : Rn → R. We denote by q = (q1, ..., qn)
the space coordinate.

Definition. A Cauchy Problem (CP ) is said to be generic whenever its geometric solution
Λ is generic as Lagrangian submanifold of the cotangent bundle T ∗Rn.

We define now the equivalence relation we will use to classify the singularities of the
minimax solutions of these problems.

Let us consider two functions

f, g : R× Rn → R

and let a, b be two points of the space-time R× Rn.

Definition. The germ of f at a and the germ of g at b are said to be fibered L–R equivalent
on the time (or equivalent) if there exists two diffeomorphism germs ϕ, ψ such that

(R× R, a)
u−−−→ (R, u(a))

ϕ





y

ψ





y

(R× R, b)
v−−−→ (R, v(b))

and ϕ is fibered with respect to the time axis:

ϕ(t, x) = (T (t), X(t, x)) .

A singularity of a function germ for this equivalence relation is its equivalence class. A
Cauchy Problem (CP ) is said to be generic if its geometric solution is a generic lagrangian
submanifold. As before, we will assume that the restriction of the geometric solution over
[0, T ] × Rn is 1 : 1 with the base. A minimax solution of a generic Cauchy Problem is also
called generic.

Remark. In [22], Joukovskaia proved that the singular set of every generic minimax solution
(i.e., the set formed by the points where the solution is not differentiable) is a closed stratified
hypersurface, diffeomorphic at any point to a semi-algebraic hypersurface.

Theorem 4.5.1. Let u be a generic minimax solution and let (t, q) be a point belonging to a
codimension c = 1, 2 stratum of its singular set. Then the germ of u at this point is equivalent
to one of the map germs at (0, 0) in the table below.
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c Normal form

1 |q1|
2 min{|q1|, t}
2 min{Y 4 − tY + qY : Y ∈ R}

The images of these normal forms (for n = 1) are depicted in figure 4.22. These map
germs are also the normal forms of the generic singularities (of codimension at most 2) of the
viscosity solution, whose classification has been done by Bogaevski in [7] via Lax-Hopf type
formulæ.

ttt

Figure 4.22: Generic singularities of minimax solutions.

Remark. These singularities are stable. By this, we mean the following. Let u be the
minimax solution of a Cauchy Problem (CP ). Consider a smooth deformation (CPλ), λ ∈ R`,
of it (including a deformation of the Hamilton–Jacobi equation and of the initial condition).
Denote by uλ the minimax solution of the deformed problem (CPλ). The stability of the
singularity of u at the point a means thet every minimax solution uλ of the perturbed
problem (CPλ) has an equivalent singularity at a point aλ arbitrary close to a, provided that
λ is small enough.

Joukovskaia studied, in her PhD thesis [22], the generic singularities of minimax functions,
i.e., functions defined as minimax levels of GFQI of Lagrangian submanifolds (which are not
necessarily geometric solutions of Hamilton–Jacobi equations).

Our Theorem states that not all the singularities of minimax functions may be realized as
singularities of minimax solutions. This is a consequence of global topological obstructions,
essentially due to the existence of the wave front invariants discovered by Chekanov and
Puskar. Here the situation is similar to that of viscosity solutions, in which not all the
metamorphosis of Maxwell sets of minimum functions may be realized by shock waves (see
[4]).
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To prove Theorem 4.5.1 we will show that some singularities in the general list, given by
Joukovskaia, do not arise as singularities of minimax solutions. In order to do this, let us
recall her Theorem.

Theorem (Joukovskaia, [22]). Every generic minimax function on R×Rn is equivalent,
at any point in a codimension 2 stratum of its singular set, to one of the map germs listed in
Theorem 4.5.1 (for c = 2) or to one of the following map germs:

(a) (t; q1, . . . , qn) 7→ max
{

t,−|q1|
}

;

(b) (t; q1, . . . , qn) 7→ max
{

|q1|,max{−|q1|, t}
}

.

The images of the normal forms (a) and (b) are shown in figure 4.23.

t

Figure 4.23: Singularities (a) and (b) of minimax functions.

Remark. The problem of the classification of singularities of minimax solutions of higher
codimensions is open and, in my opinion, it is interesting (namely, the generic singularities
arising in the physically interesting space dimensions 2 and 3).

Proof of Theorem 4.5.1. Without loss of generality, we may assume n = 1. Let us consider
a multivalued solution having a singularity (a) or (b). In both cases, we may suppose, by a
coordinate change fibered in the time direction, that the singular point is the origin. For both
singularities, there are three 0-index branches crossing at this point. Now fix an arbitrary
small neighborhood U of the origin in R2; then there exists an arbitrary small time t such
that the isochrone multivalued solution at this time takes over the isochrone section of U the
configuration shown in the left part of figure 4.24; moreover, all the other front branches are
smooth over U . Let us denote by α, µ and β the three branches intersecting at the singular
point, as shown in the figure: α ≤ µ ≤ β. The minimax section µ has three jumps in A, B
and C, shrinking to the homogeneous triple point at the origin as t goes to 0. We point out
that this configuration arises for the singularity (a) as well as for the singularity (b).
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α

β

µ
A

B

C

Figure 4.24: Configuration of the multivalued solution near a singularaty (a) or (b) of the
minimax solution.

By Theorem 4.4.2 we may recursively eliminate the vanishing triangles in the multivalued
solution without changing the minimax section neither the other pairs of coupled sections.
Hence, after a finite number of such operations, the front is composed by the (graph of the)
minimax solution, the (global) section α and its coupled section α∗, see the right part of
figure 4.25. Indeed, the section α does not belong to a vanishing triangle, since it has two

A

B

C

µ

α

α∗

Figure 4.25: Multivalued solution configurations near the singular point.

jumps. This front is not a multivalued solution. Hence, multivalued solutions can not have
singularities (a) nor (b).

In other words, both singularities (a) and (b) imply the existence of a cycle in the graph
associated to a decomposition of an isochrone multivalued solution of the Cauchy Problem.
This is impossible, since all the graphs associated to admissible decompositions of isochrone
multivalued solutions are trees, due to Theorem 4.4.2.
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[22] Joukovskäıa, T.; “Singularités de minimax et solutions faibles d’équations aux
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