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II/ Abstract  
 
The work focuses on potting materials for electronic components. A 
methodology to analyse the behaviour of cracks initiated in 
homogeneous materials or at the interface between different 
materials is addressed. An experimental procedure is described in 
order to measure the critical stress intensity factor of a 
homogeneous material. This procedure is then used to compare the 
crack behaviour in a bimaterial structure and to determine the 
validity of the results. Hereafter a method is proposed to determine 
crack growth under subcritical loading conditions. In the case of a 
crack at the interface of bimaterials, a methodology has been 
developed to measure the energy release rate necessary to let the 
crack propagate. With the help of numerical simulations, the 
corresponding stress intensity factors are computed as well as the 
resulting mixed mode angle. The whole work realised experimentally 
and the developed numerical simulations allow us to propose a 
methodology to analyse the behaviour of a crack placed in a multi-
material structure under thermo-mechanical loads. 
 
Keywords: energy release rate, stress intensity factors, fracture 
toughness, interface, mixed mode angle, finite element method 
 

III/ Zusammenfassung 
 
Die vorliegende Arbeit befasst sich mit Vergussmassen für 
elektronische Erzeugnisse. Eine Vorgehensweise wird vorgeschlagen, 
um das Verhalten von initiierten Rissen in homogenen Materialien 
oder entlang der Grenzschicht zwischen verschiedenen Materialien zu 
analysieren. Ein experimenteller Verfahrensschritt wird beschrieben, 
um den kritischen Spannungsintensitätsfaktor von homogenen 
Materialien zu messen. Dann wird dieser Verfahrensschritt benutzt, 
um das Rissverhalten in verschiedenen Materialien zu vergleichen und 
um das Ergebnisskonfidenzintervall festzulegen. Danach wird eine 
Methode vorgeschlagen, um das Risswachstum des betrachteten 
Materials unter subkritischer Belastung festzulegen. Im Fall eines 
Grenzschichtrisses wird eine Vorgehensweise entwickelt, um die 
Energiefreisetzungsrate zu messen, die benötigt wird, um den Riss 
sich ausbreiten zu lassen. Mit Hilfe von numerischen Simulationen 
werden die entsprechenden Spannungsintensitätsfaktoren und die 
Modusmischungswinkel ermittelt. Die komplette experimentelle Arbeit 
und die entwickelte numerische Simulationen führen zu einer 
Methodologie, um das Verhalten von einem Riss Verbundwerkstoffen und 
Bauteilen unter thermischen und mechanischen Belastungen zu 
beurteilen.  
 
Schlüsselwörter: Energiefreisetzungsrate, Spannungsintensitäts-
faktoren, Bruchzähigkeit, Grenzschicht, Modusmischungswinkel, Finite 
Elemente Methode 
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IV/ Résumé 
 
Ce travail s’articule autour de l’étude de matériaux coulés pour des 
composants électroniques. Une méthodologie est proposée pour 
analyser le comportement de fissures initiées dans des matériaux 
homogènes ou à l’interface entre différents matériaux. Une procédure 
expérimentale est décrite afin de mesurer le facteur d’intensité de 
contrainte critique d’un matériau homogène. Cette procédure est 
ensuite appliquée dans la comparaison du comportement d’une fissure 
d’un bimatériau et à la détermination du degré de validité des 
résultats. Une méthode est ensuite proposée pour déterminer la 
propagation de fissures dans les différents matériaux sous des 
chargements sous-critiques. Dans le cas d’une fissure à l’interface 
de bimatériaux, une méthodologie a été développée pour mesurer le 
taux de restitution d’énergie nécessaire à la propagation de la 
fissure. Les facteurs d’intensité de contraintes correspondants sont 
calculés à l’aide de simulations numériques, ainsi que l’angle de 
mode mixte résultant. L’ensemble des travaux expérimentaux réalisés 
et des simulations numériques développées permet de proposer une 
méthodologie d’analyse du comportement d’une fissure située au sein 
d’un composant multimatériau sollicité sous chargement thermo-
mécanique. 
 
Mots clés: taux de restitution d’énergie, facteurs d’intensité de 
contraintes, ténacité, interface, angle de mode mixte, méthode 
éléments finis 
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G Energy release rate (ERR) 
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K Stress intensity factor (SIF) 
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Li i=0,1 Fixed length 
M Moment of an applied force  
nI Exponent for a subcritical crack growth law 
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nn Exponent for Paris law 
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[P] Nodal force vector 
Q Hydrostatic pressure 
r Distance of a point to the origin in cylindrical system 
rk Radius of the K-annulus 
rp Radius of the plastic zone at crack tip 
R Fracture resistance 
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ti Thickness of beam i 
T T-stress in the near-tip region of a crack 
Tt Tangential force 
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u Applied displacement or measured displacement 
un Normal displacement 
ut Tangential displacement 
[u] nodal displacement vector 
U Total energy of the body or system 
Uk Kinetic energy  
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I/ Introduction 
 
 
 
Reliability of industrial devices is a question which becomes more 
and more sensitive, especially in automotive industry. In effect, 
electronic components are present in every car and under so many 
forms that taking the inventory becomes slowly an infinite listing. 
And the automotive industry is very affected by a lack of 
reliability of components. It can happen that failure of any 
component may lead to catastrophic effects, especially when this 
component is part of a safety system. And component manufacturers 
improve continuously their development process to offer the 
customers the insurance of the best product quality. That is why a 
step in this direction is the component reliability.  
 
However, while increasing the safety, more and more electronic 
components are introduced which are in contact with aggressive 
media. A major problem which can occur when devices are subjected to 
high stress level is failure by cracking of a component. But before 
the occurrence of the complete failure, it is possible that a crack 
may be initiated. And when a crack is discovered, for instance 
during an inspection in the framework of a maintenance operation, 
the difficulty is to judge the criticality of this crack. It is 
possible that the crack affects adversely the functions realised by 
the component. The easiest solution is simply the replacement of 
this component by a new one.  
 
Besides, maintenance control and experimental methods to evaluate 
the reliability, the numerical simulations are another possibility 
which are employed during the development phase of a component, from 
the research and development stage to the market introduction. For 
instance, Finite Element Analysis (FEA) became an indispensable tool 
to investigate the way a component is loaded and to detect the 
critical zones. By this means, design variations are easier and 
faster modelled and results are accessible faster than by testing of 
prototypes. Then, some drafted variations can be directly judged as 
unsuitable and the testing of such versions can be avoided. This 
stays almost valid for existing components which failed in service. 
Simulations can help in the better understanding of failure 
mechanisms as well as in the proposal of improvement solutions.  
 
However, the reliability of simulated results is based on the 
confidence of input data and techniques employed during the 
simulation. If the material properties and the loading conditions 
are not correctly considered in the simulation, the resulting 
conclusions will be wrong and this will lead to a wrong estimation 
of the reliability.  
 
The present work will be concerned with the failure mechanism 
appearing in encapsulation techniques. Encapsulation is employed to 
protect a component from external media such as humidity, fuel, dust 
particles, or other chemical substances and can provide thermal and 
electrical isolation. Mechanical failure like cracking of the 
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encapsulating material can generally lead to the complete failure of 
the component. And this type of failure can be caused by the 
stresses resulting from the assembly of different materials with 
different coefficients of thermal expansion (Fig.I-1). Other causes 
can lead to failure such as the shrinkage of the material while 
curing or swelling by absorption of humidity. But this work is 
essentially concentrating on the mechanical failure mechanism.  

 

Fig.I-1: Scheme of an encapsulated component with the critical domains for cracks and 
delamination 

 
From the assumption that a crack is already present, one has to 
consider that the following work takes place in the framework of the 
Linear Elastic Fracture Mechanics (LEFM). This theory describes the 
particularity of the stress state induced by a crack appearing in a 
bulk material or lying at the interface between two different 
materials. If one has to characterise a linear elastic material 
while cracking, classical parameters like the yield stress or the 
maximal tensile stress are no longer sufficient to describe 
efficiently what happens at the crack tip. It is such that a crack 
creates at the tip a stress concentration and by the way introduces 
in the stress state a singularity so that analytical solutions show 
that stresses are infinite. This phenomenon has been highlighted at 
the beginning of the 20th century and theories on fracture have been 
continuously developed and improved.  
 
Nowadays, suitable parameters avoiding the undesirable consequence 
of infinite stresses are known as well as experimental procedures to 
measure these parameters. However, their applications in industrial 
environment appear slowly, and Fracture Mechanics tends to become a 
tool taken into account by engineers. But the nature of the stress 
state induced by a crack remains a problem in the domain of the 
numerical simulation. In this domain, too, special procedures are 
implemented since the past decades in order to represent and to 
compute the stress singularity.  
 
These procedures need so many computational resources that they are 
time-consuming and by then, limited only to simple geometry such as 
laboratory specimens. But the continuous increase in the 
computational power of workstations and personal computers enables 

Material 1

M
at

er
ia

l 2
Material 3

Stress concentration

Crack in homogeneous material

Crack along the interface
between different materials
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the treatment of sufficiently complicated structures corresponding 
to real components. So that the need in the numerical estimation of 
the reliability in order to avoid failure of components corresponds 
to the moment where it becomes possible to simulate the processes 
involved in the failure.  

 

Fig.I-2: Example of a crack located at the corner of an embedded core 
 
The final objective of this study is to achieve the establishment of 
methods in order to be able to characterise completely by means of 
numerical simulations the behaviour of a crack in homogeneous 
materials as well as at the interface between two different 
materials (Fig.I-2). The modus operandi of the adequate measurement 
methods necessary to obtain the parameters involved in the crack 
behaviour will be presented. Due to the industrial framework and the 
confidentiality of the components studied, some data are obliged to 
be masked.  
 
This work will start with a description of the development of 
fracture mechanics theory. Researchers are acquiring continuously 
knowledge on the behaviour of a crack in homogeneous materials and 
they develop new concepts adapted to the description of the crack 
behaviour. The next part will present the main concepts helping to 
understand the different but related phenomenon of a crack between 
different materials. After that, a description of the complexity of 
the task involved in the numerical simulation of cracks will follow 
and some numerical methods available for these simulations will be 
presented. Then, the description of the experimental procedure will 
be presented. There exist numerous specimens to measure fracture 
parameters. The most important will be described and those chosen 
for our purpose will be highlighted as well as the methods employed 
to extract the results. The last part will deal with the 
presentation of results gathered with these methods.  
 
 
 
 

500 µm
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II/ Presentation of the concepts in fracture mechanics 
 
 
 

II.A/Introduction 
 
The wide range of materials and the various behaviour of them lead 
inevitably to a large number of tests designed to investigate a 
given property of a given material for given processing and shape. 
The most studied materials are the metals and one may note the need 
to determine the tensile and the shear modulus for different 
temperatures, the coefficient of thermal expansion, the electrical 
conductivity, the viscosity at high temperature an so forth. The 
same is true for plastics and polymers which were studied as 
intensively as metals since they began to be widely used in 
engineering applications.  
 
In this context, the failure of materials is a major concern when 
studying the reliability of products. So the pursuit of an 
understanding of the phenomena of fracture was needed and the 
grounds of the Fracture Mechanics were posed to provide a logical 
framework to analyse the problems. 
 
We will see the fundamental notions or concepts introduced by 
Griffith presenting the connection between fracture stress and flaw 
size and the progress of Irwin due to the introduction of stress 
intensity factors. After that a summary of linear elastic fracture 
mechanics as well as elastic plastic fracture mechanics is 
presented, followed the consideration of the crack propagation 
processes. 
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II.B/A history of fracture mechanics’ development 
 
 
 
Historically, rock blocks used in monumental structures since the 
ancient time often present unexplainable cracks. Such cracks could 
be provoked by work imperfections and may often be the source of 
failure by crack propagation. Master builders of ancient time 
already noticed that some stones compared to others presented 
fracture with low energy dissipation. Later, in the eighteenth 
century Coulomb (1736-1806) pioneered the investigation of the 
fracture of stones in compression and he developed a criterion which 
is still currently in use. Another particular aspect regarding 
brittle solids is the size effect phenomenon made by Galilei (1564-
1642). When visiting the venetian arsenal, he was surprised to note 
that workers paid more attention in the construction of big ships 
than in small ships. A master builder explained to him that it 
depended on greater brittleness of big ships compared to the smaller 
ones.  
 

II.B.1/Griffith fracture mechanics 
 
This idea that small structures generally exhibit higher strengths 
than larger ones, was retaken by Griffith in the 1920s who studied 
the phenomena of rupture in glass [1920-Griffith]. He made the 
assumptions that every body contains a distribution of imperfections 
or flaws and that failure occurs at the largest of these. Larger 
bodies have a greater likelihood of containing bigger flaws and 
will, thus, fail at lower stresses. By these assumptions he 
introduced the fundamental notions of the new born science of 
Fracture Mechanics.  
 
Nevertheless, one may note that new theories have always 
forerunners. For example, Inglis in 1913 considered the stresses 
applied near the edge of an elliptical notch. In the case where the 
relative size of the minor axis to the major axis is very small, the 
ellipse would appear as a straight crack and a small increase in the 
force applied to the tip would be sufficient to start a tear in the 
material. Furthermore, he noted that the increase in the length 
“exaggerates the stress yet further and the crack continues to 
spread in the manner characteristic of cracks” [1913-Inglis].  
 
So, Griffith used for his purpose an energy balance and developed 
his theory based on the concept that when a flaw grows in a body 
under given loading conditions, there is a decrease in its potential 
energy, and this amount of energy is released in the body by forming 
new surfaces of the growing flaw.  
 
Consider a through-thickness crack of length 2a located in a large 
brittle plate of uniform thickness B, subjected to a constant 
tensile stress σ. Griffith deduced the net change in potential 
energy of the large plate (Fig.II-1) to be: 
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where, for plane strain and plane stress, respectively, 
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Fig.II-1: A large plate of an elastic material containing a crack of length 2a 
 
Here, E is the Young’s modulus and ν is the Poisson’s ratio. The 
surface energy of the crack system in Fig.II-1 is: 
 
 

SS aBW γ4=  Eq.II-3
 
where γS is the free surface energy per unit surface area. The total 
system energy is then given by 
 
 

SSP aB
E

BaWWU γσπ 4
'

22

+−=+=  Eq.II-4

 
Griffith noted that the critical condition for the onset of crack 
growth is 
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where A=2aB is the crack area and dA denotes an incremental increase 
in the crack area. Note that the total surface area of two crack 
faces is 2A. The resulting critical stress for fracture initiation 
is 
 
 

a
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f π
γσ '2=  Eq.II-6

δa δa2a

σ

σ
B



Presentation of the concepts of fracture mechanics 

 - 9 - 

 
As the second derivative d²U/da² is negative, the above equilibrium 
condition, Eq.II-65, gives rise to unstable crack propagation. In 
addition, the materials considered by Griffith in this theory are 
inorganic glasses, which gave almost perfectly brittle cracks in 
that the energy necessary to create new surfaces equals the surface 
energy.  
 
For most materials this is not true since the stresses induced at 
the tip of the flaw cause large deformations and flow, which result 
in much more energy being dissipated. Considering the failure of 
steel, independently Orowan [1955-Orowan] and Irwin [1957-Irwin] 
provided the result that the dissipation was confined to as small 
zone at the flaw tip. This means that Eq.II-1 could still be used, 
but a plastic energy dissipation needs to be considered. The 
resultant expression for fracture initiation is 
 
 

a
E PS

f π
γγσ )('2 +=  Eq.II-7

 
where γP is the plastic work per unit area of surface created. Note 
that γP is much larger than γS. The criterion for crack growth can be 
expressed as: the strain energy release rate G must be larger than 
the critical work Gc which is required to create a new unit crack 
area. The notation G comes after Griffith.  
 
Irwin extended the Griffith theory using Westergaard’s method 
developed in 1939 [1939-Westergaard] and pointed that in the Eq.II-
7, the numerator is a material property. This equation can be 
rewritten into the form: 
 
 

a
K
π

σ =  Eq.II-8

 
where K is called the Stress Intensity Factor (SIF). It is said that 
the notation K may come from Kies, a colleague of Irwin at the US 
Naval Research Laboratory [1954-Irwin].  
 

II.B.2/Energy release rate 
 

II.B.2.a/Definition of G and R 
 
Let us suppose that the body in Fig.II-1 is submitted to a force 
that leads to crack growth. A change in the energy balance occurs in 
an irreversible manner during crack growth. A specific energy is 
needed to propagate the crack over an incremental area dA. One may 
define R as the fracture resistance of the body:  
 
 

dA
dWsR =  Eq.II-9
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It is necessary to consider the energy change in the system due to 
the crack increment da arising from the changes in external work and 
internal energy. This is defined as G, the energy release rate. 
Consider an elastic body of uniform thickness B containing a crack 
of length a submitted to an external force P related to a 
displacement u. The total mechanical energy of the cracked body WP is 
defined as 
 
 

Fp WW −Φ=  Eq.II-10
 
where Φ denotes the stored elastic deformation energy and WF is the 
external work done by the external forces. Irwin in 1956 [1998-
Suresh] proposed to approach the characterisation of the driving 
force for fracture in cracked elastic bodies. He introduced the 
energy release rate G (ERR) defined as 
 
 

dA
dWG P−=  Eq.II-11

 
where A denotes the crack area (A=2aB) and dA denotes an incremental 
increase of the crack area.  
 

II.B.2.b/Evaluation of G 
 
The cracked body is subjected to a fixed force P, and the mechanical 
energy (for a given crack length a) can be written as 
 
 

PuWandPuPdu F

u

===Φ ∫ 20

 Eq.II-12

 
From Eq.II-10 and Eq.II-12 it can be concluded that 
 
 

2
PuWP −=Φ−=  Eq.II-13

 
Consider a crack increment from a to a+δa, this causes an 
incremental displacement of δu under the load P. The energy release 
rate (ERR) for the body is written as 
 

 

PP

P

da
du

B
P

da
dW

B
G 






=






−=

2
1

 Eq.II-14

 
The crack advance by an increment δa for fixed P leads to an 
increase in the stored strain energy by the amount: 
 
 

22
uPuPuP

P

δδδδ =+−=Φ  Eq.II-15



Presentation of the concepts of fracture mechanics 

 - 11 - 

 

Fig.II-2: Elastic cracked body under (a) fixed load and (b) fixed displacement 
 
If the displacement is controlled, the force varies as shown in the 
Fig.II-2. When the crack advances by δa under a fixed displacement 
u, the change in WF is zero and δWP=δΦ. From Eq.II-10 follows 
 

 

uu
u a

P
B
u

aB
GorAG 








∂
∂−=








∂
Φ∂−=−=Φ

2
1δδ  Eq.II-16

 
The advance of crack length leads to a net decrease in the stored 
strain energy by the amount  
 

 

2
Pu

u

δδ −=Φ  Eq.II-17

 
Defining the compliance C as the inverse of the stiffness (C=u/P), 
the energy release rate is given by  
 
 

da
dC

B
PG
2

2

=  Eq.II-18 

 
The above result is valid for both load control or displacement 
control, i.e. the ERR G is independent of the type of loading. One 
may therefore note that: 
 

 
uP

Φ−=Φ δδ  Eq.II-19
 
Besides, the definition of G stays valid for both linear and non-
linear elastic deformation of the body. G is a function of the load 
(or displacement) and crack length for the cracked body. The 
Griffith criterion for fracture initiation in a brittle solid 
(Eq.II-6) can be rephrased in terms of G such that 
 

a

∆a

F

F

a

∆a

F

F

F

u uu u+δu

δWF=Fδu

δΦ=½Fδu

a
a+
δa

-δF-δΦ

(a) (b)
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SE

aG γπσ 2
'
² ==  Eq.II-20

 

II.B.3/Linear elastic fracture mechanics 
 
While the Griffith theory is based on the consideration of fracture 
from an energy point of view, one can derive more precise conditions 
for the growth of flaws when considering an linear elastic stress 
analysis. From a macroscopic point of view, one considers the three 
different modes of fracture by applying stress conditions to the 
crack front such that each mode is characterised by a stress state 
in each plane. Mode I is the tensile opening mode in which the crack 
faces separate in a direction normal to the plane of the crack 
(Fig.II-3a). By the same way, mode II is the in-plane sliding mode 
in which the crack faces slide in a direction normal to the crack 
front (Fig.II-3b), and mode III is the tearing mode (or anti-plane 
shear mode) in which the crack faces are sheared in a direction 
parallel to the crack front (Fig.II-3c).  

 

Fig.II-3: The three different modes of fracture 
 

II.B.3.a/Stress intensity factors 
 
It is now well established that for cracks in linear elastic media, 
the stress field near the tip (which is the only area we expect to 
influence crack growth) contains a singularity and obeys to a power 
law at the distance r from the crack tip. Considering only the 
dominant term, the stress intensity factors will then be defined in 
three dimension by giving the angular dependence of the stress field 
(see Fig.II-4) [1993-lawn] 
 
 

)(
2

),( θ
π

θσ i
ij

i
ij f

r
Kr =  Eq.II-21

 
The Eq.II-21 shows that the relevant information from the elastic 
field is reduced to three parameters, the three Ki. In detail only 
for the mode I, this gives: 
 

(a) (b) (c)
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Eq.II-22 

 
The corresponding displacements are: 
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Eq.II-23 

 
 

where ,0''')43(
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Fig.II-4: Coordinate system and stresses in the near-tip region of a crack 
 
A more general form of the stress state can be written considering 
now the terms of higher orders, introducing a second parameter  
 
 

)(²)()(
2

),( 2/5rOrOTf
r

Kr jxix
i

ij
i

ij +++= δδθ
π

θσ  Eq.II-24

 
where δij is the Kronecker symbol and O(r²) and O(r5/2) are vanishing 
terms as r→0. The second term is generally referred to as the “T 
stress”, containing the singular stress σxx=T. For example, if the 

body in Fig.II-1 is submitted to a uniform traction ∞
xxσ  and a uniform 

shear stress ∞
yyσ , then 

 

x

y
r

θ

σrr

σθθ

σrθ

σyy

σxxσxy

Plane stress 

Plane strain 



Presentation of the concepts of fracture mechanics 

 - 14 - 

 ∞∞∞ −== yyxxxxI TandaK σσπσ  Eq.II-25
 
However, it should be noted that each Ki gives information on load 
conditions for the respective mode, but the total loading condition 
is not represented by a “general K”, that is to say that 
Kg≠KI+KII+KIII. 
 

II.B.3.b/Plane stress versus Plane strain 
 
Most of the classical solutions in fracture mechanics reduce the 
problem to two dimensions [1995-Anderson].  

 

Fig.II-5: 3D deformation at the crack front  
 
That is, at least one of the principal stresses (respectively 
principal strains) is assumed to be blocked, which leads to plane 
stress (respectively plane strain) conditions. In general, the 
conditions ahead of a crack are three-dimensional as in Fig.II-5; 
however limiting cases where a two-dimensional analysis is 
considered provide a good approximation, depending on the through-
thickness variation of stress. 
 
Thus, if we consider a plate of thickness B, uncracked, subjected to 
in-plane loading, the plate would be in a plane stress state. When a 
crack is introduced, material near the crack tip is loaded to higher 
stresses than the surrounding material. Because of this, the crack 
tip material tries to contract near the surface (Fig.II-6) while 
material in the interior is constrained, resulting in a triaxial 
stress state. 
 
Let r be the distance from a point in the plane to the crack front 
(see Fig.II-5). For r<<B plane strain conditions exist in the 
interior of the plate whereas material on the surface of the plate 
is in a state of plane stress, because there are no stresses normal 
to the free surface. This may introduce an uncertainty in the 
determination of the critical stress intensity factor since it is 
related to the principal stresses, and also in the evaluation of the 
energy release rate. 

x
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Fig.II-6: Effect of specimen thickness on KIc 
 
Although the stress state at the elastic-plastic boundary is 
predominately plane stress when the plastic zone size is of the 
order of half the plate thickness (or larger), a triaxial stress 
state may exist deep inside the plastic zone.  
 

II.B.3.c/Evaluation of K 
 
A possibility to investigate the fracture toughness (KIc) is proposed 
by the American Society for Testing and Materials (ASTM) under the 
norm E399 for plane-strain fracture toughness of metallic materials 
and under the norm D5045-99 for plastics materials [1999-Astm].  
 
This test method covers the determination of the fracture toughness 
by tests using a variety of fatigue-cracked specimens. The standard 
offers to use Compact Tension (CT) (Fig.II-7(a)) or Three Points 
Bending (3PB) (Fig.II-7(b)) specimens. 

 

Fig.II-7: (a) Compact Tension (CT); (b) three point bending (3PB) samples 
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As recommended in the ASTM D5045-99, the KIc is calculated thanks to: 
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For the CT sample: 
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Eq.II-27

 
where B is the thickness, W the width, a is the crack length in cm, 
P the force in KN. Tab.II-1 shows as example the value of KIC and 
yield stress for different families of materials.  

 

Table II-1: Some fracture toughness data from [1996-Gross] and [1987-Kausch] 
 
However, like other properties as Young’s modulus and yield stress, 
this value also depends strongly on the temperature [1996-Gross] 
and, in case of polymers which show visco-elastic behaviour, can be 
time-dependent [2004-Wittler]. 
 

II.B.4/Elastic plastic fracture mechanics 
 

II.B.4.a/Conditions of K-dominance 
 
In order to respect the presumptions of linear elastic fracture 
mechanics, the material and geometrical non-linearity are confined 
to a very small length scale around the crack tip. If one pays 
attention to the spatial domain were yielding processes appear (see 
Fig.II-8), one has to consider:  

Fig.II-8(a): the small scale yielding (SSY),  
Fig.II-8(b): the contained yielding,  
Fig.II-8(c): the large scale yielding (LSY)  
and Fig.II-8(d): the fully yielded geometry.  

Material KIc [MPa.mm^(0,5)] Rp0,2 [MPa] 
High strength steel 800 ... 3000 1600 ... 2000 
30CrNiMo8 (-20°) 2000  
30CrNiMo8 (20°) 3650 1100 

Ti alloy 1200 ... 3000 800 ... 1200 
Al alloy 600 ... 2000 200 ... 600 

Al2O3 Ceramic 120 ... 300  
Concrete 5 ... 30  

Polypropylen 0,1 ... 0,2  
Polystyren 0,021 ... 0,083  

PMMA 0,036 ... 0,11  
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As shown in the equations Eq.II-22 to Eq.II-24, the stresses and 
displacements ahead of the crack tip are governed by the K factors. 
However, for ductile materials, even in presence of a crack, the 
material yields when stresses exceed the flow stress, and the linear 
elastic solutions are no longer valid. The usefulness of the K-field 
to describe the onset or the growth of cracks force the stress state 
to fulfil the so-called “small-scale yielding” conditions.  

 

Fig.II-8: Crack geometry and plastic flow 
 
These conditions require that the domain where inelastic 
deformations occur, no matter if they are caused by plasticity, 
creep, phase changes, has to be confined inside a region in which 
the asymptotic results still provide a good approximation to the 
full solution.  
 
Two common approaches to calculate the plastic deformation domain 
have been proposed: the von Mises yield criterion and the Dugdale 
model [1987-Kausch]. 
 
From the von Mises criterion, 
 
 ( ) ( ) ( )( ) ( )2222 2 yIIIIIIIIIIII σσσσσσσ <−+−+−  Eq.II-28 
 
where σI, σII and σIII are the principal stresses, one derives the form 
of the plastic zone (r<rp) for a plane stress state as 
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and for plane strain as 
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Barenblatt [1959-Barenblatt] and Dugdale [1960-Dugdale] were the 
first attempting to include cohesive forces in the crack tip region. 
Barenblatt assumed that cohesive forces act in a small zone (called 
“cohesive zone”) near the crack tip such that the crack faces are 
closed smoothly. For Dugdale, the distribution of these closing 
forces obeys to the laws of an elastic, perfectly plastic material.  
 
He considered a virtual crack which included the plastic zone 
(Fig.II-9) and added an acting stress corresponding to the yield 
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stress so that it tends to bend the surface of the virtual crack. 
Thus 
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Eq.II-31 

 
It can be shown that the crack tip opening displacement takes the 
form 
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Eq.II-32 

 
And asymptotically, when σ<<σy 
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Fig.II-9: The Dugdale plastic zone model 
 

II.B.4.b/The J-Integral 
 
Let us consider a crack in an homogeneous body of a linear or non-
linear elastic material free of body forces and subjected to a two-
dimensional deformation field. Assume that the body possesses a 
notch as in Fig.II-10. A straight crack is a limiting case. Define 
the strain-energy density w by: 
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where ε=[εij] is the infinitesimal strain tensor. Now consider the 
integral J defined by: 
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∫Γ 







∂
∂−= ds

x
utwdyJ  Eq.II-35 

 
Here Γ is a curve surrounding the notch tip, the integral being 
evaluated from the lower notch surface and continuing along the path 
Γ to the upper surface, t is the traction vector defined according 
to the outward normal along Γ, u is the displacement vector and ds 
is an element of arc length along Γ. 
 
Rice [1968-Rice] proved that the integral J according to Eq.II-35 is 
path independent. He noticed that J is the rate of change of 
potential energy, and that for an elastic body J is reduced to the 
ERR.  
 
 

dA
dWGJ P−==  Eq.II-36 

 
 

Fig.II-10: 2D Body containing a notch 
 
If one applies J on a neighboured contour around the crack tip with 
the Westergaard displacement and stress fields in mixed mode, the 
superposition of the two particular fields yields: 
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KKJ III
22 +=  for plane stress  

 
In the case of the SSY (Fig.II-8(a)), plastic zones are so small 
that they do not interfere with the results of the LEFM approach. In 
the case of contained yielding, Rice’s J-Integral sets the amplitude 
of the stress singularity and the size scale of large geometry 
changes (LGC). Assume that the region of J-dominance is larger than 
the region where microfracturing mechanisms and LGC take place, the 
J-Integral remains to be a reliable fracture parameter. This 
situation is the so-called “fracture under constrained conditions”. 
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On the contrary, if the J-domain is smaller than the microfracturing 
zone, the J-Integral may depend on factors like thickness, the a/W 
ratio (crack length / specimen width) and loading conditions.  
 
Under such assumptions, various additional fracture parameters have 
been introduced, among these we find: the quantity Q (hydrostatic 
stress, Q=(σrr+σθθ)/2), the T-stress (corresponds to KII=0) and the 
higher order amplitude. Like the “K-dominance”, one denotes by the 
J-Q annulus the domain of influence where both parameters J and Q 
characterise the stress state [2002-Dollhofer]. 
 

II.B.5/Crack propagation 
 
To study crack propagation, it is convenient to rewrite the energy 
balance of Eq.II-4 by considering the kinetic energy Uk, which was 
until now neglected.  
 
 

dA
dUR

dA
WdG kF +=−Φ−= )(

 Eq.II-38 

 
For fracture initiation, the body is stationary so Uk=0 and dUk/dA>0. 
When fracture occurs if 
 
 0≥− RG  Eq.II-39
 
If G>R, then the system is unstable since dUk/dA is positive, leading 
to an increase in fracture velocity. If we consider a case in which 
G monotonically increases, then at fracture: 
 
 RG =  Eq.II-40
 
And the stability of the subsequent behaviour depends on G and R at 
A+δA, i.e. the fracture is unstable if: 
 
 

A
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dA
dGG δδ +>+  Eq.II-41

 
And since G=R, we have the following condition for instability: 
 
 

dA
dR

dA
dG >  Eq.II-42

 
Note that for moving cracks where Uk>0, δUk can be negative and hence 
helps drive the crack by decelerating so that the criterium becomes: 
 
 

dA
dUkRG +>  Eq.II-43
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with 
 

 

²
²

dA
Ud

dA
dR

dA
dG k+>  Eq.II-44

 
It should be noted that equations Eq.II-39 and Eq.II-40 are the 
Lagragian conditions for stable equilibrium of a minimum in 
potential energy. 
 

II.B.6/The R-curve 
 
The criteria are often represented on a diagram, as shown below in 
Fig.II-11. Let us consider a crack of initial area A0, the energy 
required for propagation may be represented by R as a function of A. 
The curves for G are represented by lines, ordered in the sense of 
increasing load P.  

 

Fig.II-11: G and R curves as functions of fracture area A 
 
On line (1), for the initial part of the R-curve, G=R so that δA is 
zero. On line (2) G=R at point B’ which corresponds to a crack 
extension from A0 to A’. For A>A’ we can see that G<R i.e. 
dG/dA<dR/dA so that the crack grows a stable manner. This is true 
until the tangency point B”, after which dG/dA>dR/dA and the 
fracture is unstable. Thus, for the system represented by the R-
curve of the Fig.II-11 only the part up to B” is accessible for 
measurement. 
 
A limiting case for R is shown by the dashed lines. Here there is no 
stable crack growth: whether G<Gc or G=Gc. This case is the general 
form described by the Griffith criterion for perfectly brittle crack 
where Gc=2γ.  
 
The concept of the R-curve defines the behaviour of cracks when this 
is determined by the single parameter Gc. This implies that the 
energy dissipation processes are localised around the crack tip and 
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that the rest of the body is not involved. This assumption is 
reasonable in a physical way for brittle cracks in elastic systems 
which we are concerned with. 
 

II.B.7/Fatigue crack growth 
 

II.B.7.a/Subcritical crack growth or static fatigue 
 
Loading the sample above a critical value of KIc (or Gc or Jc) leads 
in general to elastic loading of the crack tip region, viscoelastic 
and time-dependent response of the material and sometimes to plastic 
deformations within the fracture process zone. But when the loading 
conditions are below the critical value, which is a material 
parameter, subcritical crack growth can occur.  
 
This phenomenon characterises the weakening process of the material 
at the crack tip and when the process zone displaces itself. The 
fact is that during all the process of propagation, virgin material 
is resisting to crack advance. This explains the relative stability 
of the phase of subcritical crack growth.  
 
Since subcritical crack growth precedes catastrophic fracture, a 
delay to failure is often observed in components subjected to a 
static load. Subcritical crack growth also leads to a time 
dependence of the strength, the slower the loading rate, the weaker 
the material. The science of fracture mechanics provides a logical 
framework for understanding the effect of subcritical crack growth 
on structures and for predicting lifetime. 
 
As a matter of fact, the rate of crack growth da/dt is governed by 
the laws of material deformation and breakdown. Several relations 
between KI and da/dt have been established but the most popular form 
has been found to be [1975-Beaumont]: 
 
 

In
II KA

dt
da =  Eq.II-45

 
where AI and nI are material parameters. One should mention the 
effect of environment on crack propagation. Even at sustained load 
below the critical level, rate-dependent growth appears when the 
cracked body is in contact with an interactive fluid environment 
[1993-Lawn]. Lawn used the term “kinetics” rather than “dynamics” to 
qualify these phenomena to distinguish the velocity range (typically 
in the magnitude of the m.s-1 down to and below nm.s-1 for kinetics to 
compare with the m.s-1 to km.s-1).  
 
From Eq.II-8 and Eq.II-45, one can determine the time ∆t necessary 
for the growth of a crack of length a1 to a length a2. For a constant 
stress σ0: 
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Eq.II-46 

 
If one assumes that instantaneous fracture occurs when KI reaches the 
critical KIc, and if one considers a geometrical scaling factor Y, 
then the time-to-failure tf is given by: 
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II.B.7.b/Cyclic fatigue 
 
Fatigue loading, repeated application of varying stress or strain 
amplitudes, has been widely studied for metals since the work of 
Albert in 1837 who presented the first results known on fatigue 
tests of driving ropes [2001-Toth]. Numerous authors were involved 
afterwards in the study of unexpected railway failures during 
services. York and separately Ranki in 1843 published papers on the 
design of railway axles and the term of “Fatigue” for materials 
appeared in 1854. Then, from 1858 Wöhler carried out experiments on 
smooth and notched railway axles using axial, bending and torsion 
loading conditions. But it is only after 1920 that Basquin 
represented the finite life of the Wöhler curve with the equation:  
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Eq.II-48 

 
The main problem was always related to fatigue crack growth (da/dN 
i.e. the crack growth rate) as a function of the loading condition. 
From Wöhler until the late 1950’s, the loading condition was 
characterised only by the stress amplitude, with the disadvantage 
that the crack length has to be explicitly added to test reports. 
But in 1961, Paris [1961-Paris] proposed the range of stress 
intensity factors (∆K) as a characteristic parameter for fatigue 
tests. This approach on the contrary requires direct evaluation of 
the crack advance. The “Paris law” can be written as 
 
 ( ) nn

n KA
dN
da ∆=  Eq.II-49

 
where An and nn are material parameters and ∆Κ  the applied stress 
intensity factor range. This is completely analogous to the 
expression of the subcritical crack growth law in Eq.II-45. The 
acceptance of the Paris law was limited because the ∆K value is 
based on a totally elastic material response even in the crack 
vicinity, while the fatigue crack growth is the result of plastic 
deformation and degradation in the crack vicinity. Other drawbacks 
of this “law” is that one neither takes into account the influence 
of a static mean stress nor the influence of a lower threshold value 
of K (i.e. a value below which no fatigue crack propagation occurs). 
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I.A.1 Creep and visco-elastic fracture 
 
Since the fracture mechanics was developed for steel and other 
metals, it cannot directly be applied to polymers. Visco-elastic 
fracture mechanics requires the incorporation of visco-elastic 
material response. The physical phenomena which take place at a 
crack tip in a stressed polymer point out that the breaking of 
macro-molecule chain bonds plays a fundamental role in the fracture 
of polymers. Fundamental to the development of visco-elastic 
fracture mechanics is the work by Scharpery [1975-Sharpery] who 
assumed a nonlinear visco-elastic constitutive equation in the form 
of a hereditary integral and, by means of the well known 
correspondence principle, developed a generalised J-integral [1984-
Shapery]. Major contributions to the field of visco-elastic fracture 
mechanics may be found in the book by J.G. Williams [1984-Williams].  
 
When submitted to high temperatures, even metals are subjected to 
uniform slow and stable deformation, termed creep. Whereas in 
fracture mechanics, creep is localised in the vicinity of a crack 
tip, under such conditions the classical hypotheses are no longer 
valid. The crack tip zone has to be replaced by a process zone 
embedded in a zone under creep conditions, itself surrounded by 
elastic material. For this purpose, the J-Integral was adapted to 
characterise steady state creep behaviour and became the C*-Integral. 
However, if crack growth becomes larger and eventually overtakes 
creep growth then the C* characterisation becomes invalid and the K 
approach is adapted. 
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II.C/Conclusion  
 
 
 
Of course, this chapter has not the pretention to describe the whole 
historical development of Fracture Mechanics. Many fields, many 
subjects were touched and developed since Galilei measured the 
strength of iron wire. One may note the contribution of Hutchinson, 
Rice and Rosengren in the development of the Elastic Plastic 
Fracture Mechanics, the numerous contributions in the field of 
fatigue since the middle of the eighteenth century and the study of 
dynamic fracture or effect of crack arrest. In the scope of 
developing a science for engineering reliability, one would have to 
consider the application of the Continuum Damage Mechanics too.  
 
The basic concepts of fracture mechanics were introduced which will 
be useful in the following work. We will limit ourselves to the 
framework of linear elastic fracture mechanics. In this scope, we 
will consider the characteristic material parameter which is the 
Stress Intensity Factor K. It will be determined thanks to the 
procedure described in the ASTM-Standard. By the same time, we will 
attempt to determine the Paris law for subcritical crack growth and 
implement it in a finite element software. 
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III/ Cracks between two dissimilar materials 
 
 
 

III.A/Introduction 
 
A bimaterial interface is the conjoining surface between two 
dissimilar materials that are typically fused or bonded together. 
Such interfaces are common in electronic packages, and are often 
sources of severe discontinuities in thermal and mechanical 
properties. The predominant failure mode in multi-layered structures 
wherein cracks are constrained to grow along the interfaces is 
termed “interfacial fracture”.  
 
Nevertheless, materials where such failure modes are observed are 
more and more employed in civil engineering and in avionics or 
vehicle engineering. Aggregated-bitumen composites are used in 
highways bridges, mortar-aggregate composites are used in buildings 
and construction, multi-layered composites materials are used in 
plane structures and the use of microcircuits encapsulated by 
plastic becomes increasingly popular.  
 
We will present in this part many concepts which were suggested to 
understand the phenomena occurring when we are in presence of an 
interfacial crack. Then will comes a theoretical development where 
fracture mechanics concepts are adapted in order to describe the 
special stress state at interfacial crack tips and finally we will 
focus on the experimental determination of convenient parameters.  
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III.B/Overview of interfacial fracture mechanics 
 
 
 
Elastic fracture mechanics concepts were re-examined for the case of 
an elastic interface crack [1988-Rice]. Williams in 1959 determined 
the characteristic oscillating stress singularity. Cherepanov in 
1962 gave the solution to specific problems as well as England, 
Erdogan and Rice & Shih. The case of crack penetration and/or crack 
deflection at an interface were also analysed during the 1970s by 
Cook & Erdogan in 1972, Erdogan and Biricikoglu in 1973 who 
investigated the behaviour of a crack penetrating the interface at 
right angles and in 1977 by Goree and Venezia who analysed several 
problems involving penetration and deflection of a crack. Additional 
works are reported in 1983 and in 1989, He & Hutchinson studied 
cases where a crack approaches an interface which leads to the 
competition between deflection and penetration [1989-He].  
 

III.B.1/Presentation of different concepts 
 
In the framework of multi-materials assemblies, it is well known 
that some geometries (corners, edges, notches, see Fig.III-1) can 
lead to harmful stress concentrations for structures or components. 
For instance, in electronic components, debonding at the microchip-
encapsulant interface can cause immediate or intermittent electrical 
failure and can have negative effect on the long-term performance of 
the microchip by providing a site for the collection of moisture and 
ionic contaminants. 

 

Fig.III-1: Configurations promoting stress concentration 
 
The analysis of stress singularities at a wedge tip and at an 
interface corner (i.e. the intersection of an interface with a 
traction-free surface) of bimaterial joints and at a corner of a 
fully embedded inclusion has been examined by various authors.  
 
Qian [2002-Qian] analysed the stress distribution at the interface 
junction of an elastic inclusion embedded in a brittle matrix. He 
derived the solutions for the stress and displacement fields and 
determined that the fields consist of symmetric and skew-symmetric 
(anti-symmetric) components identified as mode I and mode II. Reedy 
and Guess [2001-Reedy] have analysed the stress field near the 
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interface junction of a square rigid inclusion embedded in an epoxy 
resin and subjected to a uniform cooling or to an external applied 
pressure. Both fully bonded and unbonded conditions were considered. 
They found that in the case of the bonded inclusion, the singular 
stress state differed from the case where the inclusion was 
unbounded. It appeared that the unbonded inclusion was more likely 
to crack when cooled. Pahn and Earmme [2000-Pahn] determined the 
crack tip stress intensity factors as a function of the intensity of 
the singularity at the junction.  
 
The interface behaviour plays a non-negligible role in the integrity 
of structures realised by composite materials where the adhesion 
between the different components influences strongly the quality of 
the global structure. To investigate and to characterise the 
fibre/matrix interface, micromechanical testing techniques such as 
the pull-out test (Fig.III-2) are used to measure the debond force 
[1999-Zahndarov]. Another way to characterise the fibre/matrix 
interface is to consider the adhesion in terms of an interphase with 
infinitesimal thickness [1997-Chaboche]. This interphase, called a 
cohesive surface was initially proposed by Needleman in 1987 and 
taken up by Tveergard in 1990. This model relates directly the 
interface traction to the corresponding displacement 
discontinuities. 

 

Fig.III-2: Force applied to the fibre and acting at the fibre/matrix interface 
 
The forces Tn normal and Tt tangential are modelled as 
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where unc and utc represent maximum values of un and ut for which 
total separation occurs. Ek is a high stiffness value in compression, 
Et and Ei are the tangential and normal initial stiffness. D is a 
damage variable defined by 
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The function P(D) can be chosen by any function with P(0)∝σmax and P(1)=0 but Tveergard used 

P
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27
4)( max DDP −= σ  Eq.III-3 

 
The model of a cohesive surface can be implemented in numerical 
simulation codes. But this description does not account for strain 
rate dependence. However, crack initiation, crack growth and crack 
arrest emerge naturally as a result of the load. Quasi-static crack 
growth was modelled by Needleman in 1990 and in 1994. In 1997, 
dynamic studies were made by Siegmund et al [1997-Siegmund]. They 
carried out analyses of a crack growing first in an elastic solid 
and then across an interface and into an elastic-viscoplastic solid. 
They also highlighted the role of the crack speed. Friction and 
sliding contact have a role to play in such simulations. Monerie and 
Raous [2001-Monerie] take friction into account by adding an 
adhesion condition under the form of a Coulomb friction and showed 
numerically that a convenient choice of interfacial properties 
allows to increase the ductility or toughness of the component. 
Mechanisms involved in these improvements are the bridging and the 
trapping of matrix cracks by fibers.  
 
Interface models where the bond between the two materials is 
described by a zero-thickness medium (Fig.III-3) are very common and 
straightforward to implement in numerical codes by means of double 
nodes. The constitutive laws for the interface relate the traction 
vector [t] on the interface to the vector of displacement 
discontinuities [u]= 2

3
1

3
matmat uu −  between the material 1 and material 2. 

 

Fig.III-3: Schematic representation of an interface 
 
The Tveergard model can be considered as a constitutive law for 
interfaces. It has the convenience to introduce a parameter which 
can be interpreted as a damage parameter. Depending on the cohesive 
law used in the description of the interface, different types of 
phenomena can be modelled: elastic damage, elastic-plastic 
softening, elastic-plastic damage [1999-Walrick and 2000-
Coutellier], or more sophisticated models which describe the strain 
rate dependence by a viscous stress [2003-Rozycki]. In order to 
introduce a damage parameter, one has to consider the strain energy 
per unit surface transmitted by the interface. A possible expression 
is as follows [2000-Corigliano]: 
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where the subscripts 1,2 refer to in-plane directions, 3 to normal 
direction relative to the interface, and Di are three non-dimensional 
scalar damage variables which may vary between 0 (no damage) and 1 
(total damage). Ei and −+ /

3E  denote the interface stiffness, and the 

symbols 
+

.  and 
−

.  denote the positive and negative parts of u3. the 

traction forces are obtained by computing the derivate of the strain 
energy with respect to the displacement discontinuities  
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By the same way, thermodynamic forces Yi, called the damage energy 
release rates, are obtained from the derivatives with respect to the 
damage variables 
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Such approaches of cohesive zones can eventually be applied to 
multiscale analyses (Fig.III-4). One may consider interfacial 
cohesive laws to be part of micromechanics which have to be 
distinguished from macroscopic constitutive models.  

 

Fig.III-4: The stress-strain and cohesive laws are key issues in the analysis of engineering 
structures 

 
Examples are given by Sørensen [2004-Sørensen] who described the 
determination of cohesive laws by measurement of the J Integral and 
end-opening of the cohesive zone of double cantilever beam specimen. 
On the contrary, other approaches can be found considering that the 
knowledge of constituent characteristic laws at the microscale is 
enough to reproduce the response at a macroscopic scale. Chaboche 
and Feyel [2000-Chaboche] used a finite element method called FE² 
technique (Fig.III-5) where the micromechanical local behaviour and 
criteria are incorporated directly into the finite element 
structural analysis. 
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Fig.III-5: Principle of FE² models  
 

III.B.2/Dundurs parameters 
 
In the following, a crack between two dissimilar materials is 
considered. The co-ordinate system is centred at the crack tip and 
the x axis lies parallel to a crack face (Fig.III-6). 

 

Fig.III-6: Interface crack tip region 
 
When both materials are considered as elastic, homogeneous and 
isotropic with shear moduli µ1 and µ2, Poisson’s ratios ν1 and ν2, 
respectively, the stress field depends on the two Dundurs elastic 
mismatch parameters [1969-Dundurs]. Dundurs has observed that the 
solutions to plane problems of elasticity for bimaterials depend on 
these two non-dimensional combinations of the elastic moduli α, β 
and on the parameter ε. 
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Eq.III-7 

 
The bimaterial constant ε is responsible for the main differences of 
the linear elasticity solution for interfacial cracks in comparison 
to cracks in homogeneous media. 
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III.B.3/Stress singularity 
 
The stress field for an interfacial crack is described by a power-
law stress (see Eq.III-8). Such a field can exist at the tip of a 
crack between two dissimilar materials or at the corner of an 
inclusion. The order of the stress singularity λ (complex or real) 
depends on boundary conditions and elastic properties. 
 
 )(~),( 1 θσθσ λ−≅ krr  Eq.III-8
 
The coefficient k characterises the magnitude of the stress state in 
the region of the inclusion tip and is called the generalised stress 
intensity factor (GSIF) and is expressed in Mpa*mm1-λ. It is 
reasonable to make the hypothesis that failure occurs at a critical 
k value, kc, like in a classical linear elastic fracture mechanics 
formulation, except that the critical value is associated with a 
discontinuity different from a crack in a homogeneous material.  
 
The elastic solution can be expanded in the vicinity of the corner 
[2003-Leguillon] as 
 
 ...)()()0,0(),( +++= θθ λλ urkurkUyxU III

III  Eq.III-9
 
where (x,y) and (r,θ) are respectively the cartesian and the polar 
coordinate system with the origin at the corner (see Fig.III-7) and 
U is the displacement of a point.  
 
The first term of the development in the Eq.III-9 is a constant and 
corresponds to the rigid translation of the origin. The real 
exponents λI and λII lie between 0 and 1 and equal 1 only if the two 
materials are identical. They are called the singularity exponents 
and depend on the Young’s moduli and Poisson’s ratio of both 
materials. The associated modes are u1(θ) and u2(θ). The coefficients 
kI and kII are assimilated to the generalised stress intensity 
factors. 
 

Fig.III-7: Coordinate systems 
 
In the case of a notch where ω=90° in a homogeneous isotropic 
material, λI =0,545 and λII =0,908. For a crack in a homogeneous 
isotropic material (ω=0°), λI=λII=1/2 like in linear elastic fracture 
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mechanics. Noda in [2004-Noda] proposed formulas to express the 
generalised stress intensity factors as a function of the Dundurs 
parameters for a crack in a homogeneous material under mixed mode 
loading as well as the case of a crack perpendicular to and 
terminating at a bimaterial interface with any aspect ratio under 
any combination of the materials.  
 
It is interesting to remark that the main property of the J-Integral 
is to be path-independent. This remains valid as long as we consider 
only mechanical loads (mainly because in the considered contours to 
compute J, all sources of energy are outside). But under thermal 
loading conditions, sources of energy are located everywhere in the 
structures, including the considered contour, what leads to a path-
dependence of a J Integral [2003-Leguillon]. To avoid this 
difficulty, Leguillon proposes a way to compute the GSIF by another 
contour integral (always path dependent under thermal loads), but 
shifts the stress state solution by a quantity of αi∆T where αi 
denotes the expansion coefficient of material i and ∆T is the 
thermal load. 
 
In the case of interfacial cracks, the singularity exponents λI and 
λII are equal to λ=1/2+iε [1990-Hutchinson]. The near tip stress 
field is then described by the GSIF. It can be decomposed in a 
linear combination of two types of singularities, namely a coupled 
oscillatory field scaled by a complex k and a non-oscillatory field 
scaled by a real kIII [1991-Shih]. 
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If we restrict the case to two dimensions and consider the stress 
state along the interface (θ=0°) [2002-Dollhofer], the GSIF which 
measures the amplitude and phase of the external loading, allow to 
write  
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Eq.III-11 
 

 
Depending on the authors [2001-Molski], some think that it would be 
convenient to introduce a logarithm in the definition of this k: 
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where ε is the imaginary part of the stress field exponent λ at the 
crack tip, related to the Dundurs parameter β. The introduction of 
the logarithm leads to a loss of physical meaning of the k factors 
which no longer represent the material properties of structures. 
Thus, mixed mode conditions are always present at the crack tip and, 
as is the case for the decomposition into mode I and mode II, the k 
is then divided into symmetrical and anti-symmetrical components.  
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The stress intensity factors have the following units: 
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One may note that the displacement fields δi, i=x,y, or z, at a 
distance r behind the crack tip are given by 
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Eq.III-14 
 

 
with E’=E/(1-ν²) for plane strain and E’=E for plane stress. µ is 
the shear modulus of each material. The relation 1/cosh²(πε)=1-β² 
should be noted. 
 

III.B.4/Mixed mode 
 
According to [1990-Hutchinson], the relative proportion between 
normal and shear stresses varies in the sense of 
 
 riε=cos(εlnr)+isin(εlnr), Eq.III-15 
 
and this feature complicates the implementation of interfacial 
mechanics in several aspects. When ε≠0, the traction free line crack 
hypothesis is not fully respected. This implies that the crack faces 
interpenetrate behind the tip (with respect to Eq.III-14). Moreover, 
the factors kI and kII can not be straightforwardly interpreted as 
the mode I or mode II stress intensity factors. So, in order to 
introduce a characteristic quantity which represents mode I and mode 
II, one may define the mixed mode ratio ψ as the angle represented 
by 
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In the case of an interfacial crack, these factors ki are not well 
defined as we approach the crack tip. Since r tends to zero, the 
stress field shows an oscillatory part. Besides, one may choose 
between two different ways to define this mode mixity angle. One 
definition is based on the ligament stresses (stresses for θ=0) or 
on the stress intensities. For that, one may fix the distance L0 
ahead of the crack tip where the stresses are taken, and then define 
ψ as a function of the length L0.  
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The problem of the choice of L0 remains. Molski proposed to take the 
length equal to the crack length [2001-Molski]. Some authors [1998-
Ikeda] choose twice the crack length, depending on the crack 
configuration (is the crack propagating along the free surface or 
whithin the material). One may have to take account of the different 
orientation in the coordinate system if a crack presents two tips 
(e.g. in Fig.III-8). 

 

Fig.III-8: Embedded crack between two dissimilar materials 
 
A length between the inelastic zone size and the specimen size is 
another sensible choice of L0. Since the length L0 is arbitrarily 
chosen, it must be constant for a material pair, i.e. L0 must be 
independent of specimen size and specimen types. Let us note that 
when the distance L0 is changed to the distance L1, the mode mixity 
angle is changed according to  
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It may be necessary to underline that a mixed mode angle ψL0=0 is not 
generally associated with a pure mode I but represents a mode I at 
r=L0, whereas at any r≠L0 both mode I and II appear in combination.  
 
A convenient measure of material mismatch producing phase variation 
with distance is the quantity ε*=(180/π)εln(10). It can be 
interpretated as the change of the mixed mode angle in degrees for a 
distance increasing by a decade. One may introduce a second angle to 
complete the definition of the stress state: when ε=0, for cracks in 
a bulk material, the mode mixity can be defined in the usual way. In 
the space of the interface traction vector t={σyx,σyy,σyz}, one uses 

two angles ψ and ϕ (Fig.III-9), where: 
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Fig.III-9: Mixed mode angle in the ki space 
 
III.B.5/Energy release rate 
 
The reason why the energy release rate G (or the J Integral in 
elastic solutions) is usually used for modelling the fracture 
process is that they are proportional to the sum of the square 
values of the Generalised Stress Intensity Factor [1988-Rice]  
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where κi=(3-4νi) for plane strain and κi=(3-νi)/(1+νi) for plane 
stress, µi is the shear modulus for material i. Thus, for given 
loading conditions, that is to say in a given mixed mode angle ψL0, 
one may measure the loading amplitude G necessary to break the 
interface and one can get the so-called toughness curve of the 
interface for the phase ψL0, noted as Gc(ψL0). 
 

III.B.6/Interface toughness curves 
 
It has been generally observed that cracks in homogeneous isotropic 
brittle solids try to propagate on planes where local mode I 
conditions exist. As a consequence, one single critical parameter, 
KIc, is enough to control and predict fracture. By contrast, whenever 
planes of low crack resistance exist (e.g. composite materials with 
different fibre orientation in each ply) cracks may be led into 
these planes, independently of local mode mixity. Orthotropic 
materials are a good example where defined weak planes exist. By the 
same way, interfaces offer weak planes for crack propagation 
compared to bulk materials and depend strongly on mode mixity. In 
such cases, fracture resistance of weak planes is fully 
characterised by toughness values at various mixed mode angle (MMA).  
 
For a given mixed mode angle (MMA) ψL0 (and φ is given in three 
dimensions), the interface fracture energy (or interface crack 
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resistance) Γ is defined as the energy release rate at the onset of 
crack growth. The fracture energy Γ(ψL0,φ) is a property of the 
bimaterial interface. For a given material pair, it is a surface in 
ki space, which, in principle, can be fully determined by 
experiments. A crack will not propagate unless the driving force 
reaches the toughness surface, i.e. the mixed mode fracture 
condition is  
 
 G(ψL0,φ)=Γ(ψL0,φ) Eq.III-21 
 
This prevails for a given length L0 in the definition of ψL0. 
Especially, Γ(ψL0,φ) is the critical value of the energy release rate 
required to advance the crack along the interface under the MMA ψL0 
and φ, the latter being defined by the relative magnitudes of the 
in-plane shear to normal traction at r=L0.  
 
Liechti & Chai [1991-Liechti] describe a method to establish the 
range of in-plane fracture mode mixity and contact zone that can be 
obtained from a bimaterial sample. They measure the crack opening 
displacement and match the obtained values with finite element 
solutions to extract the mixed mode fracture parameters. They 
obtained an interfacial fracture energy as a function of mode 
mixture [1992-Liechti]. The Fig.III-10 shows an interfacial fracture 
energy curve obtained for Epoxy/Glass specimens for two different 
lengths L0 and for two different roughness λ of the glass surface.  

 

Fig.III-10: Interfacial fracture energy curves for Epoxy/Glass from Liechti&Chai [1991-Liechti] 
and Wang&Suo [1990-Wang] 

L0=0.1mm

Mode Mixity  
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III.C/Interfacial fracture toughness tests 
 
III.C.1/Most common tests 
 
Many studies [1999-Sundararaman], [1988-Williams], [2001-Auersperg] 
deal with a large number of sample geometries for the experimental 
determination of interfacial toughness (Fig.III-11). Among them, the 
most common design are the Asymmetric Double Cantilever Beam ADCB 
and the Asymmetric End Notched Flexure ENF. While each beam can have 
the same thickness, it is called “asymmetric” since it consists of 
dissimilar materials. This double beam geometry is very convenient 
since it allows a variation in the loading with just one geometry. 
Generally, the validity of such tests is ensured through the control 
of the flaw inserted as pre-crack, the analyses of results and 
independence of geometry [2000-Davies]. 
 
Others tests for mixed mode conditions include: the Single Leg 
Bending (SLB), Mixed Mode Flexure (MMF) and the Cracked Lap Shear 
(CLS). In the Single Leg Bending test (SLB), a part of the bottom 
leg is missing so that the entire reaction force at this end is 
transmitted to the top leg. One may note that two configurations 
exist for this test: the stiffer material at the top or at the 
bottom to induce two distinct mixed mode fracture conditions in the 
interfacial crack tip neighbourhood. The MMF is convenient because a 
single load is applied and produces simultaneously mode I and mode 
II. The CLS is more used in composite materials characterisation.  
 
Otherwise, a lot of tests are discussed in the literature. Some are 
designed to avoid the unstability of tests like the Stabilised End-
Notched Flexure (SENF), the Four points End-Notched Flexure (4ENF), 
the Symmetric beam under three point-bending (S3PB) or the 
Asymmetric beam under three point-bending (A3PB). 
 
The Symmetric Centre Cracked Beam (SCCB) specimen deserves special 
attention. Charalambides et al [1989-Charalambides] developed this 
specimen and provided analytical and finite element solutions. 
However, it was noted that this geometry allows the determination of 
the fracture resistance of bimaterial interfaces where the fracture 
toughness of the debonding layer material is relatively high. In 
this case, one has to take care to avoid a deviation of the crack 
path from the interface into the bulk. [1998-Hofinger].  
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Fig.III-11: Interfacial fracture tests specimens  
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III.C.2/Sandwich specimen 
 
Another possibility to investigate interface toughness was developed 
for the study of metal-ceramic interfaces [1998-Diemer]. Diemer made 
use of a small DCB specimen which is embedded in a CT specimen. 

 

Fig.III-12: Sandwich specimen in CT-Clamps 
 
In Fig.III-12, a is the crack length and F the force. The width of 
the copper layer is really small, in the order of 100µm. 
 
The idea of a sandwiched sample is also common to the Double 
Cleavage Drilled Compression test (DCDC) presented in Fig.III-13. 
This configuration was used By Turner and Evans [1996-Turner], Mao 
and Evans [1997-Mao] and Gaudette et al [1999-Gaudette] to study the 
mechanisms of crack growth along interfaces in glass specimen.  

 

Fig.III-13: Double Cleavage Drilled Compression specimen 
 
III.C.3/Experimental determination of the Energy Release Rate 
 

III.C.3.a/The compliance method 
 
An analytical method to interpret the experimental results comes 
from the Linear Elastic Fracture Mechanics. It allows to compute the 
critical energy release rate (ERR) by derivation of the specimen 
compliance. This may be reached by the classical beam theory [1988-
Williams]. Using the hypothesis that the global behaviour of the 
specimen is linear for each fixed crack length a, the ERR for a DCB 
test can be expressed as  
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²
 Eq.III-22 

 
where P is the applied loading force, B is the width, a is the crack 
length and δ is the crack opening in the case of the Asymmetric 
Double Cantilever Beam. δ is also defined as the vertical 
displacement in the case of a bending test (like End Notched Flexure 
or Symmetric 3-Point Bending). 
 
From the load-unload curves for different crack lengths, it is 
possible to determine the compliance corresponding to each crack 
length. The compliance δ/P corresponds to the slope of the curve 
P=f(δ). From the measured data for C=f(a), a linear regression 
allows to estimate an analytical function for C. Kanninen [1973-
Kanninen] or Bathias [2003-Surcin] proposed a 3rd order polynome for 
C(a). With this function it becomes easy to derive the compliance 
and to make use of the Eq.III-22.  

 

Fig.III-14: Typical load-displacement responses of interfacial fracture test 
 
This method is widely used for specimens with a linear response 
which is the case for most configurations. Besides the Compliance 
Method, some studies deliver other forms of data processing to 
achieve the determination of the energy release rate.  
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III.C.3.b/Area method of data reduction 
 
An area method of direct data reduction can be used to determine the 
critical energy release rate from the test results. Using this 
method the interfacial fracture toughness can be determined without 
knowing any material properties but it is viable only if the 
interfacial crack is stable. The experimental procedure involves the 
loading of the Asymmetric Double Cantilever Beam with an initial 
crack length until a crack advance is noticed. The specimen is then 
unloaded (the crack growth stops) and reloaded further crack advance 
occurs. The data required for the area method is obtained by the 
load-deflection response for many load-unload cycles. Gc is 
calculated for each cycle as the difference in areas under the load-
displacement curves divided by the incremental area of crack growth 
for that particular cycle. According to Sundararaman [2001-
Sundararaman], the fracture toughness can be given by 
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 Eq.III-23 

 
 
The area is calculated using the compliance Ci and Ci+1 with the 
critical load (Pc)i and (Pc)i+1 corresponding to the crack length ai 
and ai+1 and b is the width of specimen. The index i denotes the 
number of the crack increment.  
 

III.C.3.c/Closed-form analysis of the ADCB specimen 
 
For the Asymmetric Double Cantilever Beam, Sundararaman gives the 
analytical solution from the classical plate theory. 
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where Ei’=Ei for plane stress and Ei’=Ei/(1-νi²) for plane strain 
constraints, and Di is the bending rigidity. Williams gives a general 
formula to compute the ERR also when the loads applied on the beams 
are not symmetric. It enables G to be found exactly at the crack tip 
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where Mi is the moment applied on the beam i, ξ=[h1/(h1+h2)]. To 
determine the mode mixity, the ADCB can be used and the ERR for each 
mode is given by 
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This is true for a crack in a homogeneous material in case of 
delamination. At a=l (Fig.III-15), we have pure mode II and at a=L 
pure mode I. Thus, a complete variation of the ratio is obtained 
from one specimen. 

 

Fig.III-15: Variable ratio for mixed mode test 
 

III.C.3.d/Closed-form analysis of the SLB specimen 
 
In the case of the Single Leg Bending (Fig.III-11) the compliance is 
defined as the displacement applied at the center-point δ (the 
deflection) divided by the force P 
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And the total ERR can be shown to be [1999-Sundararaman] 
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where B is the uniform width and the ratio ρ=D/DT. D is defined as 
the effective bending rigidity of the uncracked regions and DT as the 
effective bending rigidity of the top cracked regions 
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where tT is the thickness of the top beam and E’ the Young modulus, 
depending on the plane stress or plane stress constraints. In the 
above equations, Au, Bu and Du are the axial, coupling and bending 
stiffnesses of the uncracked portion of the specimens, respectively 
and are given by 
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where the subscript 1 or 2 refers to material 1 or 2 and ti is the 
thickness of beam i.  
 

III.C.4/About deflection and penetration 
 
Whether an interface crack propagates within the interface or kinks 
out of the interface into one of the joined materials depends 
essentially on the mixed mode acting on the crack tip. An efficient 
criterion to predict the behaviour of the crack in a configuration 
(see Fig.III-16) has been proposed by He et Hutchinson [1989-He], 
[1990-Hutchinson]. The analysis is based on the classical 
competition of the ERR at the tip of a virtual extension either 
penetrating in the second material or deflecting along the 
interface.  

 

Fig.III-16: (a) main crack at the interface ; (b) penetration of the interface ; (c) deflection at the 
interface 

 
Considering the two trajectories of crack advance: let Gp denote the 
Energy Release Rate for penetration and Gd for deflection. The 
penetration is possible if 
 
 

pIc GG ≥)2(  Eq.III-31 
 
Eq.III-31 becomes a necessary condition to propagate in material 2. 
The penetrating crack is under a pure mode I. By the same way, a 
condition to deflect is 
 
 

dc GG ≥)(ψ  Eq.III-32 
 
The assumption made by Hutchinson is that the length increment ap and 
ad involved in these virtual processes of extension are assumed to be 
small and equal. The ratio Gd/Gp which turns out to be independent of 
the applied loads is compared to the ratio between the interface 
toughness Gc(ψ) for the relevant mode mixity and the toughness of 
material 2 in mode I. The condition for the crack to be deflected 
along the interface instead of penetrating is [1989-He]: 
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The assumption of ap=ad is a posteriori not intuitive. Leguillon 
[2001-Leguillon] proposed to revisit the He and Hutchinson’s 
criterion assuming that ad≠ap. The criterion is then written under the 
form: 
 
 12

)2(

)(
−











=<

λ
ψ

p

d

p

d

p

d

Ic

c

a
a

k
k

G
G

G
G

 
Eq.III-34 

 
Where ki denotes the generalised SIF and λ is the exponent of 
singularity. It is obtained by assuming Gd=Gc(ψ) and Gp<G

(2)
Ic i.e. 

deflection can occur while penetration is inhibited. 
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III.D/Conclusion 
 
 
 
We introduced here the notions to apply in the case of an crack 
lying at the interface between different materials. We found that 
this topic was studied in different engineering frameworks such as 
composite materials, structural adhesive joints or electronic 
packaging. We presented specimens as well as methods designed for 
the experimental determination of the energy release rate. However, 
some fields of study are not mentioned. We do not consider either 
dynamic or fatigue effects although some studies appeared in the 
past few years ([1998-Abou-Hamda] or [2004-Pirondi]) deal with these 
topics. The influence of ambient medium may be noted.  
 
In our work, we will study the behaviour of double beam specimens 
and attempt to determine the interfacial fracture energy curve. The 
linear response of the specimens tested in this work allows the use 
of the Compliance Method and the Area Method of Data Reduction will 
be chosen thanks to their easy implementation. The mixed mode angle 
will be extracted after the post processing from the numerical 
simulations.  
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IV/ Numerical methods available for fracture mechanics 
analyses 

 
 
 

IV.A/Introduction 
 
Numerical modelling has become an indispensable tool in fracture 
mechanics, since few practical problems have closed-form analytical 
solutions. Moreover, geometry encountered in industrial environments 
and treated by simulations are more and more complicated and asked 
for more and more computational resources.  
 
In this part, the main concepts are described, which were developed 
in the last decades for the treatment of fracture mechanics. Some 
numerical methods employed to solve fracture mechanics equations are 
browsed. We will see that the Finite Element Method is a widespread 
method, used in virtually all domains of structural mechanics. Since 
one of the fundament of FEM is the partition of the geometry into 
small shapes, the modelling of moving discontinuities like cracks 
becomes troublesome. That is why this method has been improved to 
model crack growth without remeshing. But there exist other methods 
the decomposition of the volume in small elements.  
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IV.B/Finite Element Implementation 
 
 
 
The following methods for inferring energy release rate in elastic 
bodies were proposed in the mid 70’s [1995-Anderson] and extended 
later to non-linear behaviour and large deformation at the crack 
tip. The FEM notations used afterwards are the classical ones. 
 

IV.B.1/Stiffness Derivative Formulation 
 
Consider a two-dimensional cracked body with unit thickness, subject 
to Mode I loading. The potential energy of the body WP in terms of 
the finite element solution is given by:  
 
 [ ] [ ][ ] [ ] [ ]PuuKuW TT

p −=
2
1

 Eq.IV-1 

 
where [u] is the vector of nodal displacements, [K] is the matrix of 
rigidity and [P] is the vector of nodal forces. We can also write G 
under this form: 
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Eq.IV-2 

 
where a denotes the crack length. Since [K][u]=[P] and in the 
absence of traction on the crack face, the first and the third terms 
also vanish (loads are held constant). The energy release rate is 
therefore given by : 
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 Eq.IV-3 

 
Suppose that we have generated a finite element mesh for a body with 
crack length a, extended thereafter by ∆a, there is no need to 
redraw the whole mesh, but just to accommodate the crack growth by 
moving elements near the crack tip and leaving the rest of the mesh 
intact. In such a process, the elements between Γ0 and Γ1 are 
distorted (see Fig.IV-1), such that their stiffness changes. This 
allows to determine the energy release rate from: 
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Eq.IV-4 
 

 
where [Ki] are the elemental stiffness matrices and Nc is the number 
of elements between the contours. It was demonstrated by Parks 
[1995-Anderson] that this expression of G is equivalent to J and is 
independent of the choice of the inner and outer contours. 
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One problem with the stiffness derivative approach is that it 
involves numerical differentiation, especially for thermal strain 
problems. That is why another approach has been developed to 
overcome theses difficulties. 
 

IV.B.2/Continuum approach 
 
DeLorenzi improved the virtual crack extension by considering the 
energy release rate of a continuum. This approach offers two 
advantages: the methodology is not restricted to FEM and it does not 
require numerical differentiation. The Fig.IV-1 illustrates this 
method. Material points inside Γ0 are translated to a distance ∆a in 
the x1 direction, while points outside of Γ1 remain fixed. For an 
elastic material, or one that obeys to plastic deformation theory, 
deLorenzi showed that the energy release rate is given by  
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where w is the strain energy density, ∆Ac the increase in crack area 
generated by the virtual crack advance, V the volume of the body and 
Pi the body forces and ti are components of the traction vector. This 
expression, however, only applies to virtual crack advance normal to 
the crack front, in the plane of the crack. 
 

Fig.IV-1: Continuum approach 
 

IV.B.3/The domain integral method 
 
Using the divergence theorem, we have seen that the contour integral 
can be expanded into an area integral in two dimensions or a volume 
integral in three dimensions over a finite domain surrounding the 
crack front. This domain integral is used to evaluate contour 
integrals in Abaqus [2004-Abaqus]. The method is quite robust in the 
sense that accurate contour integral estimations are usually 
obtained even with quite coarse meshes; because the integral is 
taken over a domain of elements surrounding the crack front, errors 
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in local solution parameters have less effect on energy-like 
quantities.  
 

IV.B.4/Mesh design 
 
The design of a finite element mesh is as much an art form as it is 
a science. Although many commercial codes have automatic mesh 
generation routines, crack problems require a specific sort of 
meshing. Crack tips cause stress concentrations. Thus, the closer a 
region is located at the crack tip, the more refined the mesh has to 
be. The J-integral is an energy measure; accurate J values can be 
obtained in linear elastic materials with a quite coarse mesh 
whereas non-linear cases need a reasonable refinement.  
 
Concerning the kind of elements required for meshing of 2D and 3D 
problems, second order elements are commonly used, and to model the 
crack tip singularity, one side has to be collapsed (see Fig.IV-2). 
The square root and the 1/r singularity can be built into a mesh 
using standard elements, provided that the crack tip is modelled 
with a ring of collapsed elements.  

 

Fig.IV-2: Adequate mesh for Fracture Mechanics 
 
If the nodes a, b and c are constrained to move together and if the 
midside nodes are moved to the fourth of the element length (see 
Fig.IV-3 and Fig.IV-4), then the stresses and strains obey a square 
root singularity. This combination is suitable for Linear Elastic 
Fracture Mechanics (LEFM) (Fig.IV-3(a)).  
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Fig.IV-3: Degenerated 2nd order element, combination suitable for (a) LEFM and (b) EPFM  
 
If the midside nodes remain at the midside points and nodes a, b, c 
are allowed to move independently, only the 1/r singularity is 
created. This combination is suitable for Elastic Plastic Fracture 
Mechanics (EPFM) (Fig.IV-3(b)).  
 

Fig.IV-4: Collapsed 3D element 
 

IV.B.5/Zencrack 
 
The program Zencrack is a commercial software product of Zentech 
international Ltd. This program is interfaced with Abaqus or 
MSC.Marc (from MSC Software) or more recently with Ansys (from SAS 
IP, Inc.). It can be used in three ways [2002-Zentech]: 
• To generate 3D finite element meshing containing one or more 

cracks 
• To determine the distribution of maximal energy release rates and 

stress intensity factors along the crack fronts in bulk materials 
• To calculate automatically fatigue crack growth in 3D bodies 

containing one or more cracks under arbitrary loading conditions. 
 
Cracks are introduced into a valid mesh of the “virgin” structure by 
a mapping scheme which replaces standard brick elements by a “crack-
block” [2000-Timbrell]. These crack-blocks represent either a 
quarter circular or a straight through crack front on one face using 
degenerated elements along the front (Fig.IV-5).  
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Fig.IV-5: Example of meshing using crack-blocks 
 
Zencrack is interfaced with Abaqus or MSC.Marc or Ansys by a script 
where the user can control the location where the crack will be 
introduced, the size of the generated crack front section for each 
crack-block as well as the movement control of through-thickness 
crack-blocks through the mesh. The user can also define which type 
of loads is applied (sustained load, cyclic, randomised) and the 
options for crack propagation (e.g. propagation laws). Zencrack 
generates automatically the options for the computation of the J 
Integral, which avoids the difficult tasks for the user of 
generating an adequate mesh and introducing the contour integral 
keyword. 
 
The result is a mesh containing the initial crack. This mesh is 
submitted for analysis to Abaqus [1994-Timbrell]. The results of the 
J Integral evaluations from Abaqus are post-processed by Zencrack 
which evaluates if crack propagation occurs or not and calculates if 
necessary, the propagation increment and the new position of the 
crack front. The new position is not necessarily in the same plane 
as the initial crack but can take into account an out of plane 
angle, estimated from the ERR after different positions. Further 
developments account for many parameters in crack growth such as 
multiple loads, thermal stresses and residual stresses [2002-Cook]. 
Techniques like heat transfer simulations or submodeling are 
compatible with Zencrack. 
 

IV.B.6/Calculation of the Energy Release Rate 
 

IV.B.6.a/Virtual Crack Closure Technique 
 
An alternative method to calculate the crack driving force is the 
virtual crack closure technique. This method is based on the premise 
that the ERR equals the work required to close a unit area of the 
crack. This is done in a 2D analysis using eight-node finite 
elements (see Fig.IV-6) 
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Fig.IV-6: Scheme of the near tip nodes for VCCT 
 
In [2001-Harries], the following formulation is proposed for the 2D-
case: 
 
 

lB
xtxtytyt

G xxyy

∆
∆+∆+∆+∆

=
2

562341562341
 Eq.IV-6 

 
In Eq.IV-6, 
• B is the uniform crack width, 
• ty1 and ty2 are the nodal forces in y-direction at node 1 and node 

2 respectively 
• tx1 and tx2 are the nodal forces in x-direction at node 1 and node 

2 respectively 
• ∆y34 and ∆y56 are relative displacements in y direction 
• ∆x34 and ∆x56 are relative displacements in x direction 
• ∆l is the characteristic length of elements surrounding the crack 

tip. 
 
The advantages of this method are that it requires only one 
simulation step, and that the ERR for mode I and mode II can be 
distinguished. Since the materials properties do not appear in 
Eq.IV-6, the VCCT is convenient either for crack analysis in bulk 
materials or at the interface between two materials. It is, then, 
possible to compute the mode mixity angle. A third advantage is that 
it can be used with elastic or viscoelastic materials like resins 
whereas some limitations were found in [2002-Witller], for instance 
when the temperature domain involved in the simulation includes the 
glass transition temperature.  
 
Another formulation for the VCCT can be found in [2000-Xiong]:  
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Eq.IV-7 

 
∆l is the crack tip element size, Px and Py are the x and y 
components of nodal forces, u and v are the x and y components of 
nodal displacements at the crack tip node i and surrounding nodes l, 
l’, m, m’. 
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IV.B.6.b/Modified crack closure integral 
 
To evaluate the crack load in FE simulations, a virtual crack 
extension can be used. Furthermore a modified crack closure integral 
may be applied to analyse viscoelastic effects on interfacial 
delamination [2002-Wittler]. This was generalised for the 3D case: 
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Eq.IV-8 

 
where ∆a is the virtual crack extension in x-direction and r is the 
distance of a given point in a polar coordinate system from the 
crack tip. The three modes are computed separately, and the sum of 
the three terms yields G*, which is the ERR. The star in the 
exponent indicates that the calculation was performed via the crack 
closure integral. These integrals lead to the numerical form:  
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where i=1 to 3, k12=0,5 and k45=0,5. When the nodes 1 and 2 
respectively 4 and 5 are laying on the free edge then k12=1 
respectively K45=1 (see Fig.IV-7).  
 

Fig.IV-7: Scheme of the near tip for the MCCI 
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IV.B.7/Alternatives Methods 
 

IV.B.7.a/Meshless methods 
 
The finite element method (FEM) is a powerful tool widely used in 
computational fracture mechanics. However, as indicated earlier, it 
induces complications since the crack must be taken into account in 
the topology of the studied device and that the crack tip 
singularity must be modelled accurately with degenerated elements to 
provide reasonable results. To avoid these laborious tasks, other 
alternative methods were developed in the FE framework where the 
crack problem is independent of the mesh. Such methods have been 
found to be efficient while simulating dynamic cases [2002-Chen]. 
 
The element-free Galerkin method (EFG) differs from the FE method in 
that the description is achieved by a model consisting of nodes and 
a description of the surfaces of the model [1996-Belythschko]. Each 
node possesses a domain of influence, usually circular in 2D and 
spherical in 3D, but does not extend across the boundaries. The 
crack is modelled in the EFG by free surfaces which can pass through 
the body. It is considered as a border for the domain of influence 
which can not be crossed.  
 
In the example of Fig.IV-8, the initial crack (solid line) does not 
affect the shape function of the quadrature point q since straight 
lines connecting q to any surrounding nodes will not intersect the 
crack. But when the crack advances (shown in dashed lines) the point 
q will no longer belong to the domain of influence for node 1 and 2.  
 
The shape functions can also take different forms. If the domain of 
influence is completely cut by the crack, the approximation will be 
discontinuous across the crack since the domain of influence will 
stop at the crack surfaces (see Fig.IV-9). However, near the crack 
tip, the domain is not completely cut by the crack, and how it is 
considered in the domain is a crucial parameter for the accuracy of 
the method [1996-Organ].  
 

Fig.IV-8: Crack advancing through two cells with 6x6 Gauss quadrature 
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In Fig.IV-9(b), the node I still “sees” the crack tip and the domain 
behind the tip. The problem comes from the border line AB. The 
discontinuity within the domain has to be considered with special 
care. The solution employed in Fig.IV-9(b) is the so-called 
visibility method [1996-Belytschko-2]. Another method to treat the 
discontinuity is to employ the diffraction method in the 
approximation (see Fig.IV-10). 
 

Fig.IV-9: Domain of influence (a) completely cut ; (b) near the crack tip 
 
Furthermore, an enriched EFG has been developed to incorporate the 
singular stress function applied in the LEFM. This incorporation was 
found to be simpler and causes substantially less trouble than FEM 
techniques [1997-Fleming].  
 

Fig.IV-10: Domain of influence by the diffraction method 
 
The Finite Element Method is used as the constitutive block for the 
methods coarsely described below. Much of the theoretical and 
numerical developments of FE can be extended and applied in order to 
refine the accuracy of solutions for engineering problems.  
 

IV.B.7.b/H-, P-, HP-Version of FEM 
 
H-adaptivity denotes a refinement of the cell. This method 
subdivides the cell into smaller ones and increases by the same time 
the element density in regions of high-stress gradients while the P-
adaptivity leaves the mesh density constant but increases the 
polynomial order of the element-shape function [2001-Stresscheck]. 
Reformulating a successfully running FE analysis model to a P-
adaptive solution is less time consuming than remeshing the 
geometry. It is a powerful analysis tool but needs substantially 
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more processing time than the H-adaptive process. The HP-adaptive 
technique is a combination of both methods.  
 

IV.B.7.c/eXtended Finite Element Method (XFEM) 
 
In a FE model, the elements near the crack tip and along the crack 
faces are enriched by asymptotic displacement fields. It was proven 
[1997-Fleming] that the use of discontinuous displacements along the 
crack produces a solution with zero traction along the crack faces 
(see Fig.IV-11).  
 
In the eXtended Finite Element Method (XFEM) (also true for the 
Generalised Finite Element Method presented in the next section), a 
standard FE mesh is created without considering any internal 
discontinuities (such as cracks, voids, third bodies...) [2003-
Karihaloo]. Then, these discontinuities are represented by 
additional displacement functions. In Fig.IV-11, nodes around the 
tip (circles) are enriched by crack tip functions while nodes along 
the faces (squares) are enriched with discontinuous functions. For 
example ,the Heaviside jump function H(x) is a discontinuous 
function across the crack surface and is constant on each side of 
the face: +1 on one side and –1 on the other side.  
 
The XFEM pays most attention to the enrichment of nodes to model the 
internal boundaries (cracks or inclusions) but shows a lack in the 
determination of accurate stress intensity factors. The SIFs are 
computed thanks to contour integrals via a post-processing procedure 
([2003-Karihaloo]). This lack comes from the fact that only the 
first term of the displacement field is taken into account. 
 

Fig.IV-11: Uniform mesh with enriched nodes to model a  crack 
 
However, this concept enables the integration of different types of 
singularities such as the cracks in bimaterial media [2003-Sukumar] 
(Fig.IV-12). In this case, the crack lies on element edges and no 
element partitioning is needed. 
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Fig.IV-12: Enriched nodes for a bimaterial crack 
 

IV.B.7.d/Generalised Finite Element Method (GFEM) 
 
The Generalised Finite Element Method (GFEM) is similar to the XFEM. 
The additional functions contain the analytically known or 
numerically computed handbook functions. Hence, the local and global 
solutions are enhanced within the PU method. However, the 
application is restricted within the range where these solutions 
were first computed. The P-adaptativity is allowed in the GFEM and 
provides accurate numerical solutions with relatively coarse meshes.  
 

IV.B.7.e/Boundary Element Method 
 
Deviation from FEM techniques, only the surface (or boundary) of the 
problem requires subdivision (see Fig.IV-13), thereby reducing the 
dimensionality of the problem and, thus, dramatically reducing the 
effort involved in obtaining a solution. The deep going analytical 
formulation of the method as boundary integral equation process with 
fundamental solutions ensure the high precision of the results 
[1997-Gaul].  
 
The boundary integral equations are discretised through finite 
element on the boundaries. After this algebra formulation and the 
boundary conditions are sufficient to compute the unkown boundary 
quantities. The BEM let the possibility to compute the quantities at 
any point in the domain and not only at the discretised points.  
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Fig.IV-13: Discretisation with FE and BEM 
 
Numerical problems among other singularities in field quantities and 
the derivation of these closed to boundaries can be handled by 
convenient formulations. Other limitations are in the use of 
constitutive properties. They have to be homogeneous in the studied 
domain. Inhomogeneous domains are to be treated by a substructure 
technique.  
 
Since this method in not so widely used as the FEM, the Boundary 
Element Method is for the moment an important complement to the 
Finite Element Method but can not replace it. Nevertheless there 
already exist softwares having implemented this method and which are 
employed in the framework of fracture mechanics.  
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IV.C/Conclusion 
 
 
 
We saw the difficulties necessary to introduce a crack in a 
geometry. The FEM is the most widely used technique and has 
benefited from decades of experience in simulation and computational 
resources to be improved but the major problem remains that this 
technique relies on continuum theory, and then does not predict when 
fracture will occur.  
 
As a consequence of the review of possible techniques, the work 
concentrates on the usage of the commercial package Abaqus, linked 
with Zencrack But one should always keep in mind that computer 
modelling can not replace experimentation. 
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V/ Experimental and numerical methods 
 
 
 

V.A/Introduction 
 
In order to correctly predict the behaviour of a crack in a real 
component, the material parameters required by the underlying models 
need to be accurately determined. Thus, special experimental 
techniques need to be developed.   
 
For this propose, we have to distinguish two different cases : 
• The first one is the case where a crack is located in a 

homogeneous material. By now, our task will be to see if the 
crack : 
• Will grow slowly by means of a study under subcritical 

conditions, in which case one should be able to predict the 
time-to-failure of the device 

• Or if the crack will propagate suddenly like in the case of 
brittle failure. 

 
• In the second case, a crack is already initiated at the interface 

between two different materials. Our propose is then to be able 
to say :  
• If the crack propagates along the interface  
• Or if it is deflected into the bulk, and in which direction. 

 
The whole experimental process will be described which was used in 
order to study the crack behaviour in the case of homogeneous 
materials as well as in the case of interfacial cracks.  
 
This process contains the handling of different sorts of specimens, 
the Compact Tension specimen (CT) to study cracks in homogeneous 
materials and the double cantilever beam (DCB) specimens to study 
cracks between two different materials. The experimental set-up for 
testing of specimens, the means used to record the results, and the 
way these data are processed will be listed. Ar the same time, the 
simulation techniques are introduced. 
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V.B/Experimental work 
 
 
 

V.B.1/Objectives 
 
The main objective is to record the appropriate data in order to be 
able to predict the behaviour of a crack in a component under 
thermal and mechanical loads. Concerning the cracks in homogeneous 
materials, the interest focuses on only one type of specimen and two 
resins. And for interfacial cracks, we will proceed with double 
cantilever beam specimens formed by the assembly of one of these 
resins and a thermoplastic plate.  
 

V.B.2/Preparation of specimens 
 

V.B.2.a/Preparation of the resin 
 
Common to the two types of specimens, the resin is prepared by 
mixing the resin with a hardener, potted in a mould and then put in 
an oven for the gelification and curing. 
 
The resin alone is preheated, before the hardener is added. The 
compounds are mixed together while the mould is preheated. Then the 
mixture is poured in a mould and put in the oven at about 70°C for 
the gelification phase for a couple of hours, the curing phase 
follows at a higher temperature for another couple of hours.  
 

V.B.2.b/Preparation of Compact Tension Specimens 
 
A very simple mould geometry is used for this kind of specimen. We 
cast the resin in the mould to get a plate with the dimensions 
160x160x6 mm. This plate is then cut into smaller parts with a size 
of 24x27mm² and a notch is introduced.  
 

V.B.2.c/Preparation of Double Cantilever Beam Specimens 
 
This type of specimen needed to pay more attention during handling. 
Since it consists of the assembly of two different materials, the 
way to join the two materials need to be considered. Another type of 
mould was especially designed for these aims. For this purpose, 
thermoplastic plates with the dimensions 125x25x2mm³ used as the 
“upper beam” of the double cantilever beam specimens were degreased 
with alcohol. The “lower beam” is furnished by a potted mass. The 
specimen-“family” was then constituted by different resin beam 
thicknesses of 2,4 and 10mm. In Fig.V-1, one mould type is depicted 
with a thickness of 4 and 10mm can be manufactured. Fig.V-2 shows a 
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specimen with a 4mm thick resin layer and a 2mm thick thermoplastic 
beam.  

 

Fig.V-1: Mould for double cantilever beam specimens 
 
To introduce a crack, in other words to produce pre-cracked 
specimens, each thermoplastic plate was covered at one end with a 
Teflon film and put into the mould.  

 

Fig.V-2: Examples of a precracked double cantilever beam specimen (thickness of resin: 4mm, 
thermoplastic 2mm) 

 
Mould-release agent was put on surfaces in contact with the resin to 
ensure an easy demoulding. 
 

V.B.3/Testing devices 
 

V.B.3.a/Optical crack tracer in the case of Compact Tension specimen 
 
In order to measure the fracture toughness KIc, Compact Tension 
specimens are investigated (Fig.V-3). One may note the importance of 
data independent of the specimen size. To achieve this, it is 
essential that the plastic zone has to be smaller than the specimen 
size W-a, a and B, where W is the width, a the crack length and B 
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the thickness. This condition can be controlled by application of 
the ASTM Standard D5045-99 [1999-ASTM]. 

 

Fig.V-3: Specimen configuration as specified in Test Method D5045-99 
 
Besides, the specimen size has to fit the domain size of application 
as well as to maintain the consumption of material as small as 
possible. For our purpose, a width of 20mm and a thickness of 6mm 
were chosen.  
 
Since a “non-ideal” pre-crack leads to an overestimation of values 
from Kc, the introduction of a proper pre-crack is an essential step 
in the preparation of the test. A small v-shape notch was introduced 
at the tip of the “main” notch by tapping with a razor blade until 
the appearance of a crack. This leads naturally to an non-ideal pre-
crack but then the specimen is loaded once or twice until crack 
propagation is noticed (detected by a drop of the force by 0,3%).  
 
These tests are conducted on a tensile machine from Zwick. The force 
is monitored by a load-cell with a capacity of 1000N and 
displacement values come from the movement of the actuator. 
 
To achieve the Kc measurement, an O.C.T.-device (Optical Crack 
Tracer) was used [2000-Uhlig]. The procedure is based on digital 
recording of images from the specimen surface (see Fig.V-4). The 
crack length is determined by an digital imaging software by 
treating the contrast difference in each image (see Fig.V-5). The Kc 
factor is computed from the force and the crack length according to 
the relation [1999-ASTM] (and for further details see Chapter II, 
Eq.II-27) 
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The cases of visco-elastic characterisation for different load rates 
and different temperatures were studied by Wittler [2002-Wittler]. 
He applied the principle of the master curve for visco-elastic 
behaviour to the fracture toughness and determined the limit of 
validity of such assumptions. 

 

Fig.V-4: Optical Crack Tracing  
 

Fig.V-5: Set of images recorded during a test and after post processed 
 
The crack length is determined for each image while the force is 
recorded at the same time. The relation from Eq.V-1 allows us to 
compute KIc and the following type of diagrams are then available 
(see Fig.V-6 and Fig.V-7). 

CT Specimen
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Fig.V-6: Evolution of crack length of a CT specimen during a test  
 

Fig.V-7: Evolution of load applied on a CT specimen during a test 
 

V.B.3.b/About subcritical crack growth 
 
The knowledge of subcritical crack growth behaviour, also termed 
slow crack growth, may be necessary while designing structural 
components. In fact, under certain stress or environment conditions, 
imperfections, flaws or cracks can slowly extend and lead to time-
dependent fracture. Cracking can therefore occur at loads below the 
fracture toughness KIc, and the threshold (for instance denominated 
KI

*) at which cracking starts depends widely on environmental 
conditions [2002-Wiederhorn]. However, under conditions leading to 
subcritical crack growth at KI<KIc the dynamics of crack propagation 
can be uniquely described by the stress intensity factor KI at the 
crack tip and a corresponding crack velocity da/dt, and the relation 
between da/dt and K can be written as 
 
 
 In

I KA
dt
da =  Eq.V-1

 
To measure the parameters AI and nI, the idea is to apply a constant 
load. Thanks to the OCT-device described above, the KIc is known. For 
a precracked specimen, the crack length is known. It is then 
possible to apply a force corresponding for instance to 90% of the 
fracture toughness. The crack growth rate can be calculated by 
measuring the final and initial values of crack length and the time 
during which the force is applied. This experimental approach is 
particularly useful for determining the da/dt=f(K) at low crack 
speed and therefore the test can be repeated several times on the 
same specimen [1975-Beaumont]. 
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V.B.3.c/Double Cantilever Beam Specimens 
 

Presentation 

 
The aim of this part of the work is to determine the behaviour of 
interface cracks. The literature investigation leads us to the 
choice of double cantilever beam specimens similar to those 
described in the Asymmetric Double Cantilever Beam (ADCB). The 
reason for this choice is that ADCB specimens allow a wide variation 
in loading conditions, realised by a special testing device which 
was developed in this work (Fig.V-8).  
 
The particularity of this device is the allowable variation of the 
orientation. It will help us to test the specimens in such different 
manners that with one type of geometry we can afford to reach a wide 
range of mixed mode angles and to be able to determine the 
interfacial toughness curve for a given couple of materials. 
 

Fig.V-8: Testing device for bimaterial specimen (configuration +30°) 
 
The specimen is clamped on the pre-cracked side and a block is glued 
on the top of the specimen (not visible in the Fig.V-8 but present 
in Fig.V-9) which enables the loading of the specimen. An important 
remark should be made here: the position 0° should not be confused 
with the ADCB configuration. Although the load is always applied in 
the normal direction to the crack plane, the reaction force in the 
ADCB is along the same axis as the applied force while in the 
configuration 0° it is with a certain angle. This leads to a 
different load condition and mixed mode.  

30°
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Fig.V-9: Modelling the difference between the ADCB and the configuration 0° 
 
The tests are conducted using a uni-axial loading frame in the 
Texture-Analyser from Stable Micro Systems as the expected critical 
loads are very small in magnitude. All tests are run under 
controlled displacement loading. The displacement rate is in a range 
of 0,01 to 0,05mm/min for all tests and the experimental 
displacements are acquired during the tests by the displacement of 
the traverse. The resulting load is measured by a 2500N load cell 
capacity. The approximate resolution is 1µm for the applied 
displacement and 0,01N for the measured load. In this part, tests 
for one material couple (thermoplastic/resin) for different specimen 
geometry and loading conditions are reported. 
 

Measurements 

 
For measurement of interface specimens, the same optical measurement 
device for the crack length is used again here as in case of the 
bulk specimens to determine the crack length after each load-unload 
cycle. The value of the force or the displacement is then used for 
an experimental determination of the interfacial fracture toughness. 
The final evaluation is provided by numerical simulations which 
deliver KI, KII and the mixed mode angle. 
 

Data processing 

 
In the chapter II-D-2-b, the “Area method of Data Reduction” (AMDR) 
to compute the interfacial energy release rate G was already 
introduced. The specimen is loaded until either a crack advance is 
noticed (or is heard) or a load drop is recorded. It is then 
unloaded and immediately reloaded. As written below, the test is 
recorded and the crack length is extracted (Fig.V-10). However, 
depending on the assembly of materials, the contact surface (or the 
interface) may not offer enough contrast, especially if both 
materials are of the same colour, or on the contrary a too high 
contrast (see for instance the specimen in place in Fig.V-8) to 
detect an eventual crack tip. For this reason, the specimen surface 
pointing towards the digital camera is sprayed with a dye to obtain 
a uniform coloured surface state. The crack creates a trace in the 
dye layer and is then easier to detect. However, digital image 
processing with the help of different filters from the measured 
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image sequence taken during crack propagation is always profitable 
if a high precision in the crack length determination needs to be 
achieved (Fig.V-11). 

 

Fig.V-10: Crack detection for double cantilever beam specimens 
 
 

Fig.V-11: Crack detection with filters: example on the Laplace Edge Crack Detection, crack tip 
at 50,07mm before crack advance and at 52,94mm after crack advance 

Before propagation

After propagation

Crack length increment
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Validity of the tests 

 
For a specimen with a lower beam of 10mm thickness for the resin and 
an upper beam of 2mm thermoplastic, tested under an angle of 0°, a 
sequence of load deflection curves as depicted in Fig.V-12 can be 
obtained. Clearly the response is linear.  
 
A diagram as given by Fig.V-12 allow us to extract for each test: 
- the slope (corresponding to the inverse of compliance) 
- the maximal force and displacement  
- and the analysis of the video sequence additionally yields the 

crack length.  
 
From the maximal force and displacement, thanks to the AMDR the 
energy release rate can directly be computed. The problem of this 
method is that the results depend strongly on the precision of each 
data source. This can lead to a great scatter of the results, and 
sometimes a negative energy but it helps us to receive a first 
estimation of the ERR.  
 

 

Fig.V-12: Force-displacement curves for a typical test 
 
From the force and displacement curve, we get the compliance. For 
each crack length, we have a compliance value. It is possible to 
interpolate the set of compliance data by a polynomial function 
[2003-Surcin]. When comparing the results between a third order and 
a second order polynomial fit, it is found that the second order 
polynomial function is fully satisfying (see Fig.V-13). With this 
analytical function, it becomes easy to derive the compliance 
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according to the crack length and to introduce the derived function 
into the computation of the ERR.  

 

Fig.V-13: Comparison between 2nd order and 3rd order polynomial interpolation function for the 
compliance 

 
The Area Method of Data Reduction delivers a first approximation of 
the specimen energy release rate. As shown in the Fig.V-14, the AMDR 
may not be really reliable and depends strongly on the precision of 
the different sources of data. On the contrary, the linear response 
of the specimen allows a satisfactory determination of the 
compliance and let the Compliance Method be used as second method to 
obtain a basis for comparison.  
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Fig.V-14: Comparison between the AMDR and the compliance methods 
 
It can be assumed that the ERR is independent of the crack length, 
since the interface is supposed to be homogeneous over the entire 
specimen. The compliance method leads in fact to interfacial 
fracture energy which is virtually constant for the whole range of 
crack length. In order to control the validity of this assumption, a 
reverse approach is taken.  
 
If the ERR is constant, then the force as a function of crack length 
can be derived from the formula G=(P²/2B)dC/da,  
 
 

21

2
AaA

BGP
+

=  Eq.V-2 
 

 
with B the specimen width, A1 and A2 two coefficients corresponding 
to the derived compliance according to a 2nd order polynomial. 
 
Obviously, a similar expression is obtained with the compliance 
following a 3rd order polynomial. It should be noticed that the 
compliance formula comes from the slope of the loading curve and not 
directly from the maximal displacement and force. However, the 
results in Fig.V-15 clearly show that the measured maximal forces as 
a function of a crack length follow the trend predicted by Eq.V-2. 
This indirect proof is applied since no reference data are available 
for the type of interfaces under investigation. The method offers a 
way to control the results and to check if they are valid or not.  
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Fig.V-15: Comparison between the force applied and the force extrapolated 
 

Measurement flowchart 

 
Based on the measurement that were done in this work, the following 
flowchart was applied (see Fig.V-16).  
• For the ith  crack length ai, the specimen was loaded until a crack 

advance was noticed (when a drop in load-displacement curve was 
noticed, or when the crack advance was heard or when the crack 
advance was visible). 

• Then the specimen was unloaded. The maximal force Pmax,i and the 
maximal displacement dmax,i are extracted as well as the new 
crack length ai+1. 

 
If the specimen can support a new load (depending on the crack 
length increments recorded so far) then new measure is restarted. If 
not the data are processed. At this point, the three methods (Area 
Method of Data Reduction, the Compliance Method and the numeric 
simulation) can be applied to compute the energy release rate.  
 
• On the experimental side, The AMDR and the Compliance Method are 

used directly with the experimental data to compute a value of 
the ERR and see if both values are comparable. This experimental 
mean value is then used in the reverse test to control the 
validity of the test.  

• On the numerical side, the maximal force and associated crack 
length are implemented in a model to compute the corresponding J-
integral as well as the associated stress intensity factors K1 and 
K2. Lastly, the mixed mode angle is computed with K1 and K2.  
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Fig.V-16: Measurement flowchart 
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V.C/Numerical modelling 
 

V.C.1/Objectives 
 
The methods for the numerical simulation of cracks in homogeneous 
materials and at interfaces used in this work will be described.  
 

V.C.2/Cracks in homogeneous materials 
 
As indicated in the chapter 3, the commercial software Zencrack 
version 7.3 is utilised in combination with Abaqus, version 6-4.1, 
to predict the crack propagation. From a virgin mesh in conjunction  
with data describing the crack (length, form of the crack front, 
propagation law), Zencrack creates a new mesh and starts the Abaqus 
job. Once the computation is finished, Zencrack post-processes the 
results. The program evaluates the stress conditions at the crack 
tip and updates the mesh with the new crack front position if a 
crack growth is requested. The procedure is described in Fig.V-17.  

 

Fig.V-17: Overview of the crack growth scheme 
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Following the ASTM-Standard, the virgin model of a compact tension 
specimen is dimensioned with a width W of 20mm and a thickness B of 
6mm as depicted in Fig.V-18. The model was meshed with the brick 
element type C3D8. In order to specify the crack size, one has to 
define the crack length. In order to create the crack faces, pairs 
of elements from the virgin mesh located between the notch and the 
desired crack front position must be picked out and specified in the 
Zencrack-script. Then, elements along the crack front are replaced 
with crack blocks, and the crack front position is specified by the 
ratio of the crack length in the element divide by the element 
length. Fig.V-19 depicts an example of a crack block being used to 
model a straight crack front. This particular one replaces one 
Abaqus element by 151 elements with 5 elements in the depth.  
 
In addition, if the elements along the crack front undergo a 
distortion leading to numerical errors, Zencrack allows a new mesh 
to be generated with these elements being “relaxed”, that is to say 
by shifting elements such that their distortion is diminished.  

 

Fig.V-18: Dimension of the CT model 
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Fig.V-19: Zencrack crack block, type st151x5.sup 
 
Fig.V-20 depicts a specimen mesh for a crack length of 9,74mm with 
elements being relaxed. Fig.V-21 shows as an example a cracked mesh. 
If one focuses on the crack front, one sees the crack block and the 
different contours of elements along which the J integral is 
evaluated. Zencrack is also able to deal with non-planar propagation 
(Fig.V-22(a), (b) and (c)) and can handle more than one crack at a 
time (Fig.V-23(a) and (b)).  
 

V.C.3/Interfacial cracks 
 
If requested, Zencrack can process results coming from the 
simulations with Abaqus, but one of the main limitations lies in the 
fact that, for the versions up to now, the program deals only with 
cracks in bulk materials. But the ability for Zencrack to generate 
cracked meshes will be very helpful for the treatment of interfacial 
cracks.  
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Fig.V-20: CT model with a crack length of 9,74mm under a tensile force of 85N 
 

Fig.V-21: Focus on the crack tip 
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Fig.V- 22: CT specimen, inclination of 15°. (a) Cracked specimen; (b) Crack advance;               
(c) Crack profile 

 
 

Fig.V- 23: Model of the plate with two holes, (a) initial state and (b) final state 
 
The uncracked model of the asymmetric double cantilever beam 
specimen (ADCB) used in this study is parameterised such that crack 
lengths measured during the tests are easily implemented in the 
numerical analysis (see Fig.V-24), as well as the associated forces. 
Zencrack is used here only as a meshing tool, and the cracked input 
file is slightly modified to give as an output not only the J 
integral but the K-factors too.  
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Fig.V-24: Zencrack used as meshing tool. (a) the uncracked model of an ADCB specimen, lower 
beam of 10mm thickness; (b) with a crack length of 31,47mm and (c) with 40,24mm 

 
Thanks to the Abaqus keyword *CONTOUR INTEGRAL, it is possible to 
get the K1 and K2 value along the crack front as well as the ERR 
computed from the formula 
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Abaqus makes a distinction between cracks in homogeneous materials 
and cracks “lying on the interface between two different materials”. 
It is explicitly written in the documentation [2004-Abaqus] that the 
K1 and K2 do not correspond to KI and KII and therefore it is possible 
to compute the mixed mode angle by taking the ratio K2/K1.  
 
The crack-block which is used (see Fig.V-19) allows us to replace 
one Abaqus standard element with a crack block containing 151 
elements, including 6 element rings (or 6 element contours). The 
path independence for J is controlled along the contours 2 to 6. 
This is to avoid inaccuracy from the first contour (also recommended 
by Abaqus [2004-Abaqus]).  
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V.D/Statistical approach 
 

V.D.1/objectives 
 
In order to obtain a better understanding of the statistical 
information provided by gathered data, a special approach is taken. 
For the analysis, the Weibull distribution is chosen to describe the 
set of results and the statistical approach is based on a bootstrap 
method [1997-Bootstrap]. 
 

V.D.2/Weibull distribution 
 
The Weibull distribution is widely used in the reliability analysis 
of components. It is based on the description of the set of data by 
a two-parametric function for the cumulative failure probability. 
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where m denotes the Weibull modulus and K0 is the scaling parameter, 
here it can be called the scaling toughness. For K=K0, the cumulative 
failure probability equals F(K0)=1-1/e=0,632. In other words, the 
toughness is lower or equal to K0 with a probability of 63,2%. The 
cumulative failure probability expresses the probability that the 
variable X takes a value less than or equal to x: 
 
 )Pr()( xXxF ≤=  Eq.V-6
 
The advantages of such a formulation are its mathematical 
simplicity, the amenability to graphical analysis and its wellknown 
ability to fit most lifetime data with a great confidence [2004-
Nist]. The Weibull plot is given by: 
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and the approximation of the failure probability utilised here is: 
 
 

N
iFa

5.0−=  Eq.V-8

 
The experimental Weibull data are compared with a fit of the Weibull 
distribution obtained by the maximum likelihood method.   
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V.D.3/Maximum likelihood 
 
The maximum likelihood method built so as to maximise the chance 
that a model fits a given data set.  
 
Even if a model provides an accurate description of statistical 
data, it is important that occasional outliners be discarded from 
the fit. Instead of minimising a residual between the model and all 
the data points, a maximum likelihood estimation therefore aims at 
maximising the probability that the model reproduces most, but not 
all the data points.  
 
The likelihood function L is defined as 
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Eq.V-9 
 

 
where N is total number of samples.  
 
The maximum likelihood of the Weibull modulus is  
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Eq.V-10 
 

 
and for the scaling toughness 
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Eq.V-10 and Eq.V-11 are estimated with an iterative method such as 
the Newton’s method. 
 

V.D.4/Bootstrap method 
 
The Bootstrap method is a non-parametric method invented in 1957 by 
B. Efron [1997-Bootstrap]. The aim of this method is to determine 
the confidence for parameters of a data distribution (see Fig.V-25). 
It is a powerful method since it is independent of assumption on the 
distribution function.  
 
A Bootstrap sample is a random set drawn from the original data set 
with replacement. If the original data set contains twenty samples 
(or for instance twenty measured values), a random number generator, 
here the Monte Carlo algorithm, is used to create a virtual data set 
constituted by twenty samples, each sample can be picked various 
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times since the selection is performed with replacement. Then, the 
Weibull parameters are estimated. 
 
By this Monte Carlo procedure, there can be created as many 
bootstrap samples as required, in this work typically thirty 
thousand times. That is to say, thirty thousand estimations for the 
Weibull parameters are available and are processed in order to 
represent the frequency of occurrence for the Weibull modulus and 
the scaling toughness. From the cumulative probability of the thirty 
thousand values of the scaling toughness, a confidence  interval can 
be obtained, i.e. the scaling toughness can for example be 
determined with 95% confidence.  

 

Fig.V-25: Flowchart for Bootstrap method 
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V.E/Conclusion 
 
 
 
The way the different specimens are manufactured has been presented. 
At the same time, the complete data processing, from acquisition to 
implementation in numerical models has been highlighted. The data 
acquired during the measurements can be processed via different 
methods to determine the interfacial energy release rate.  
 
One of the methods, the Area Method of Data Reductions delivers 
immediately a mean value for a set of data, but the scatter in the 
results depends on the precision of the measurement. The Compliance 
method delivers more reliable results since the specimen response to 
the loading case is almost linear. Besides, a test to control the 
quality of the measurements and to ensure its validity was arranged. 
Both methods will be applied in the following part. The way Zencrack 
is used for both crack situations, i.e. in the bulk material or at 
the interface between different materials is noted and statistical 
tools for the estimation of the results reliability are described.  
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VI/ Experimental results 
 
 
 

VI.A/Introduction 
 
The chapter presents results on the fracture toughness of potting 
materials obtained by CT specimen. One goal is to provide a method 
to ascertain reliable information on the fracture toughness and the 
scatter of the results. Another target is to establish a method to 
measure the subcritical crack growth. Experimental investigations 
are supplemented by simulations of crack growth. 
 
The second part deals with investigation of interfacial fracture 
toughness. A method is presented to measure the energy release rate 
on double beam specimens submitted to different types of loads. 
Further numerical simulations are performed and a comparison is made 
with experiments to validate the numerical models and to extract the 
mixed mode angle, the goal being to obtain the interfacial fracture 
toughness curve for a material combination. 
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VI.B/Homogeneous materials 
 
 
 
From a reliability point of view, determining the confidence of 
results can improve the lifetime prediction of devices. The better 
the material characteristics are known, the more reliable are the 
simulation results. The determination of the confidence of the 
obtained results is focused on here.  
 

VI.B.1/Fracture toughness as a function of crack length 
 
Two materials which differ singularly in their mechanical 
performance are selected and about twenty CT specimens for each 
material have been tested. 
 
For material 1, the mean value for the fracture toughness was 
determined to be 1,325 MPa m , with a standard deviation of 10,6% 
(see Fig.VI-1). For material 2, the fracture toughness is 1,001 
MPa m  with a standard deviation of 2,2% (see Fig.VI-2).  

 

Fig.VI-1: Kc measurement for material 1 
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Fig.VI-2: Kc measurement for material 2 
 

VI.B.2/Statistical analysis 
 
The data gathered during the experiments led on CT specimens are 
post-treated here by means of the bootstrap method.  
 

 

Fig.VI-3: Comparison between Weibull distribution and estimation for material 1 
 
Since the Weibull distribution depicted in the Fig.VI-3fits 
reasonably well to the estimation, it can be concluded that this 
data set can be described by the 2 parametric Weibull distribution. 
In the case of the material 1, a Weibull modulus of (m=18,41) and a 

-5

-4

-3

-2
-1

0

1

2

0 0,1 0,2 0,3 0,4

Ln(Kc)

Ln
(L

n(
1/

(1
-F

)))

Estimation Weibull

Weibull distribution

0

0,5

1

1,5

2

2,5

5 7 9 11 13 15
crack length [mm]

K
c 

[M
Pa

.m
^0

,5
]



Experimental results

 - 95 - 

scaling toughness (K0=1,369 MPa m ). This means that the toughness is 
lower or equal to 1,369 MPa m  with a probability of 63,2%.  
 
Next, the Bootstrap method described previously is applied in order 
to estimate the accuracy of the Weibull parameters. Fig.VI-4 and 
Fig.VI-5 depict the frequency of occurence of the Weibull modulus 
and the scaling toughness for material 1 based on 30.000 bootstrap 
samples. For comparison, the maximum likelihood estimated for the 
original data set is also plotted as the vertical dotted line. It is 
evident that the scaling toughness is provided with higher accuracy 
than the Weibull modulus.  

 

Fig.VI-4: Bootstrap method applied to the Weibull modulus for material 1 
 

Fig.VI-5: Bootstrap method applied to the scaling toughness for material 1 
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The Weibull modulus is then equal to 18,41 with a 95% confidence 
interval of [12,51 – 33,51]. And the scaling toughness is 1,369 
MPa m  with a 95% confidence interval [1,359 – 1,372].  

 

Fig.VI-6: Cumulative likelihood for the Weibull parameters of material 1 
 
The same analysis is performed for the second material. The Weibull 
distribution plotted in Fig.VI-7 fits well the estimated failure 
probability and for this material a Weibull modulus of 40,63 and a 
scaling toughness K0=0,997 MPa m  are determined via the maximum 
likelihood method. 
 

 

Fig.VI-7: Comparison between Weibull distribution and estimation for material 2 
 
The bootstrap method is applied and the frequency of occurrence of 
the Weibull modulus is plotted in Fig.VI-8. On the same diagram, the 
limits of the 95% confidence interval are represented and determined 
to be [32,46 – 70,00] for the Weibull modulus.  
 
The magnitude of the Weibull modulus delivers information on the 
reliability of the data set. The higher the modulus, the more 
reliable is the material under consideration. In this case, it 
proves that the material 2 really shows less scatter.  
 

-4

-3

-2

-1

0

1

2

-0,1 -0,08 -0,06 -0,04 -0,02 0 0,02 0,04 0,06

Ln(K)

Ln
(L

n(
1/

(1
-F

)))

Estimation Weibull

Weibull distribution

0

0,2

0,4

0,6

0,8

1

1,35 1,36 1,37 1,38 1,39 1,4
Scaling toughness

C
um

ul
at

iv
e 

pr
ob

ab
ilit

y

0,
95

Confidence interval

0

0,2

0,4

0,6

0,8

1

0 10 20 30 40 50 60
Weibull modulus

C
um

ul
at

iv
e 

pr
op

ab
ilit

y

0,
95

Confidence interval



Experimental results

 - 97 - 

 

Fig.VI-8: Bootstrap method applied to the Weibull modulus for material 2 
 

Fig.VI-9: Bootstrap method applied to the scaling toughness for material 2 
 
Fig.VI-9 depicts the bootstrap method applied to the scaling 
toughness. The maximum likelihood is then to be 0,997 with the 95% 
confidence interval of [0,995 – 1,005].  
 
The comparison between both materials can be combined in Table VI-1.  

Table VI- 1: Bootstrap method applied to the determination of the fracture toughness 
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The “relative error” in the Table VI-1 is calculated with the width 
of the confidence interval devised by the maximum likelihood. 
Example for the fracture toughness is given by: 
 
 

likelihoodK
KK

max

5,25,97 −
=  Eq.VI-1 

 
 
Obviously the fracture toughness of both materials is known with the 
same relative error. But the reliability of results of material 2 is 
higher compared to material 1, definitively since the relative error 
of the Weibull modulus is lower for material 2 than for material 1. 
Therefore, crack growth experiments are concentrated on material 2.  
 

Simulation 
 
A comparison between the results coming from the ASTM-standard and 
the simulations led with Zencrack running in parallel with Abaqus 
will take place.  
 
For a given crack length (9,4mm) and under a given load (P=75N), the 
ASTM-standard delivers a value for K of 24,68 MPa m . The model used 
for the simulation is presented in Fig.VI-10.   

 

Fig.VI-10: 3D model of CT specimen 
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plane stress, the out-of-plane stress is unable and respectively the 
displacement in plane strain. However, the Poisson’s ratio still 
plays a role in plane stress and plane strain as shown in Eq.VI-2 
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Eq.VI-2 
 

 
In 3D, these conditions are not fully fulfilled, neither at the edge 
of the specimen nor in the middle, what leads to some confusion when 
one wants to make comparisons between results and material 
characteristics. Besides, a numerical artefact in FE simulations is 
to set the Poisson’s ratio to zero when defining the material 
parameters if one wants to avoid through-thickness effects. But this 
artefact has no physical meaning since it corresponds neither to 
plane stress nor to plane strain conditions.  
 
Fig.VI-11 depicts the comparison between results of a FE simulation 
and the ASTM-D5045-99. The standard helps to determine K value under 
plane strain conditions. The ERR can be obtained by  
 
 

E
KG ²)1²( υ−=  Eq.VI-3 

 
 
The curved form of the J integral data along the front is due to the 
influence of the lateral contraction of the specimen on the stress 
state. If the Poisson’s ratio is set to 0, the through-thickness 
effect is suppressed and the J integral data are flat. However, one 
may think that, one approximates results on the free surface by 
plane stress conditions and that plane strain conditions apply in 
the middle of the specimen. But the value coming from the standard 
do not corroborate such a hypothesis. The data set “G from ASTM” 
corresponds to a plane strain state and the value in the middle of 
the specimen does not equal the plane strain value. If the mean 
value of the “J-Abaqus” is plotted, it approximates the G of ASTM 
with more or less satisfaction. 
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Fig.VI-11: Comparison of ERR values delivered by the simulations and ASTM-Standard for a 
given crack length and a given force 

 
The other case to consider is when the crack length varies. The 
force is still constant to 75N and the crack length varies between 9 
and 13mm. The trends of curves in Fig.VI-12 confirm that values 
taken at the free surface and at the middle bound the standard 
solution.  

 

Fig.VI-12: Comparison of ERR values for a given force 
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This investigation shows that the simulations on the case of the CT 
specimen are satisfying but highlights the fact that one has to 
interpret with special attention the results provided by the 
simulations if they have to be compared with experimental values.  
 

VI.B.3/Subcritical crack growth 
 

VI.B.3.a/Experimental data 
 
As described in the chapter V, a sustained load corresponding to a 
value K lower than the fracture toughness is applied to the CT 
specimen during a long time. The load is sustained in the order of 
magnitude of 40 minutes. The crack length is measured and the crack 
advance divided by the time gives the crack propagation velocity for 
the given K. Fig.VI-13 depicts an example of a such measure. The 
load is plotted depending on the time and the monitored crack length 
evolves slowly.  
 
The “hesitations” concerning crack length data come directly from 
the image recording. Since the digital camera does not record the 
real colours but the intensity of light received on the CCD captor, 
the crack tip can “move” from one image to the next in the range of 
one or two pixels.  

 

Fig.VI-13: Sustained load and crack advance on CT specimen 
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signal has slightly varied while the crack slowly propagates, 
although the testing frame should control the force during the crack 
advance  
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VI.B.3.b/Data processing 
 
Knowing the initial crack length helps in the choice of the force to 
apply. Since the fracture toughness is known, it is easy to 
calculate the force corresponding to 90% or 95%of the KIc. Knowing 
the time and the crack length increment during the test gives a 
crack propagation velocity da/dt for the applied K. 
 
Such measurements are repeated. When a distinct crack advance was 
noticed during a test, the applied force was diminished for the next 
test. This ensures to stay below the critical force. By repeated 
measurements, data for the crack growth law da/dt=f(K) can be 
collected (see Fig.VI-14).  

 

Fig.VI-14: Crack length increment for repeated tests under sustained loads 
 
The plot in Fig.VI-15 yields an estimation for the Paris law of 
material 2 at room temperature. 
 
 36710.0,1 K
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da −=  Eq.VI-4 

 

12

12,1

12,2

12,3

12,4

12,5

12,6

0 5000 10000 15000 20000

Time (s)

C
ra

ck
 le

ng
th

 (m
m

)



Experimental results

 - 103 - 

 

Fig.VI-15: Subcritical crack growth curve for material 2 (logarithmic plot) 
 
Beaumont showed that a form of poly(methyl methacrylate) (PMMA) 
presented a power of K from 25 [1975-Beaumont]. Subcritical crack 
growth can also be considered as a singular case of cyclic fatigue 
where the loading case varies from 0 to K and the dN (increment in 
number of cycles) is replaced by dt (time increment). This law could 
be compared with values from Hertzberg and Manson [1980-Hertzberg]. 
They reported growth rates for different polymer materials under 
cyclic loading. Polycarbonate and polystyrene showed a power of ∆K 
ranging from 4 to 6, while epoxy resin showed a power of 30. Fig.VI-
16 depicts these curves. “Macro” stands for macroscopic growth rate 
and “micro” for measurements from the fatigue striation spacing.  

 

Fig.VI-16:Comparison of growth rates in epoxy, polystyrene and polycarbonate [1980-
Hertzberg] 
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Other polymer materials such as poly(vinyl chloride) (PVC) showed a 
power of 2,4 and poly(methyl metachrylate) (PMMA) about 6 [1984-
Williams] under cyclic fatigue.   
 

VI.B.3.c/simulation 
 
The Paris law is then implemented in Zencrack. In the example given 
in Fig.VI-17, an initial crack length of 12,1mm is defined. The 
sustained load is applied and the crack length is represented versus 
time.  

 

Fig.VI-17: Evolution of crack length under sustained load 
 

In Fig.VI-17, the curve “middle” stands for the evolution of the 
displacement of the node in the middle of the specimen, which gives 
the evolution of the crack length. Following the conclusions related 
to the Fig.VI-11, since the K distribution is higher in the middle 
of the specimen, the resulting crack velocity is then higher too, 
leading to a more important displacement than at the free surface of 
the specimen.  
 
At a certain time, the so-called “time-to-failure” under the given 
load, the critical stress intensity factor is reached, leading to a 
very high acceleration of the crack velocity. With this method, the 
time to failure can be calculated, provided that accurate 
experimental crack growth data are available.  
 
Fig.VI-18 depicts the growth profile plots provided by Zencrack 
after an analysis. The initial open part of the crack is represented 
and the lines represent the growth profile. One finds again in (a) 
the difference between the middle and the free surface of the 
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specimen in the different crack front shapes whereas in (b), where 
ν=0.3, crack fronts are straight.  

 

Fig.VI-18: Crack growth profiles of a crack in a CT specimen under sustained load;                            
(a) with Nu=0.3 and (b) with Nu=0.0 

 
Fig-VI-19 depicts the initial and the final state of the simulation. 
In Fig.VI-19(a), the mesh was modified by Zencrack around the crack 
tip to represent the exact crack length. During the propagation 
simulation (Fig.VI-19(b)), the crack front was moved from one set of 
element locations to the other when the length increment implied a 
great distorsion overcoming the mesh quality parameters.  

 

Fig.VI-19: Model of CT specimen; (a) initial state and (b) final state 
 

(a) (b)

 
 

(b)(a)
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VI.C/Cracks between two different materials 
 

VI.C.1/S3PB 10mm/2mm 
 
Test were performed on homogeneous specimens with a lower beam of 
resin with a 10mm thickness. The specimen was placed in a 
conventional three-point-bending device.  

 

Fig.VI-20: Typical response for 10mm/2mm double cantilever beam specimen 
 
One can note two trends in the load-displacement curves in Fig.VI-
20. In the first half of the test series, the critical load tends to 
decrease while it rises again for the last tests. The first trend is 
observed for crack length smaller than one half of the specimen (for 
crack length prior to 55mm) and the second trend occurs when the 
crack reaches the specimen half. This trend can be explained by the 
load distribution under three point bending. Fig.VI-21 depicts the 
evolution of the crack length during the load/unload cycles. 
 
After the total separation of the specimen, one beam was 
investigated under an optical microscope in order to characterise 
the interface. The different crack front positions can be clearly 
distinguished as well as the “thumbnail” shape of crack front 
(Fig.VI-22). Since it is not possible to record in vivo such a crack 
front distribution, and in order to simplify the evolution of the 
crack shape, the assumption of a perfectly linear crack front is 
made. 
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Fig.VI-21: Evolution of crack length after each loading condition 
 

Fig.VI-22: Propagation paths on contact face 
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From the load-displacement curves, the compliance is calculated from 
the slope of each curve. After testing of different specimens, the 
compliance as a function of crack length can be obtained by a 
polynomial fit for a geometry with a 10mm beam (Resin) and a 2mm 
beam (thermoplastic material) (Fig.VI-23).  

 

Fig.VI-23: Compliance from different tests for the S3PB 10mm/2mm 
 
At this point, it is possible to compute the ERR and to compare the 
results coming from the Compliance Method (Chapter III-C-2-a) and 
the Area Method of Data Reduction (see Chapter III-C-2-b). Fig.VI-24 
points the main disadvantage of the AMDR, namely a large dispersion. 
The mean value for the AMDR is 0,0054 N/mm with 29% relative error 
while the Compliance Method gives an approximated value of 0,0051 
with “only” 20% error.  

 

Fig.VI-24: Comparison between the AMDR and the Compliance Method 
 
However, the fact that any knowledge of material parameters is 
necessary to reach these results is underlined. To control the 
validity of such tests, a reverse test has been developed (Fig.VI-
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25). Under the assumption of a constant critical energy release 
rate, one can determine the force which would have been necessary to 
apply. 

 

Fig.VI-25: Reverse test 
 
The deviation between the measured force and the “ideal” force, 
represented in the Fig.VI-25, lies below 7,5%, which suggests that 
the determination of the ERR by means of this procedure is 
sufficiently reliable. With the knowledge of the crack length and 
the corresponding force, numerical simulations are performed to 
investigate the mixed mode angle.  
 

Fig.VI-26: Energy release rate computed with Abaqus 
 
Fig.VI-26 depicts a comparison between the ERR determined by the 
Compliance method and the J integral delivered by Abaqus. Both 
results are superposed. It proves that the simulation agrees well 
with the experiments and that the values of K1 and K2, consequently 
the mixed mode angle, correspond to the type of loading.  
 
As depicted in the Fig.VI-27, the mixed mode angle (MMA) evolves 
linearly with the crack length. But its trend allows us to consider 
it as constant. The value of 27,1° (2% error) has been determined 
and associated with the ERR 0,006 N/mm. 
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Fig.VI-27: Mixed mode angle extracted from the simulations for 10mm/2mm 
 
If the ERR is represented in function of the mixed mode angle as in 
Fig.VI-28, it can be concluded that the energy release rate is 
constant for this type of test and that an ERR of 0,006 N/mm has to 
be brought to let a crack propagate between this thermoplastic and 
this resin under a loading condition of 27,1°.  

 

Fig.VI-28: ERR depending on the mixed mode angle 
 
It should be mentioned that the results of the simulation depend on 
the knowledge of the elastic constants for both materials, and an 
error in the estimation of these properties leads necessarily to an 
error of the computed critical energy release rate.  
 
At this point where the methodology was highlighted, the same data 
process is applied for each following configuration. At least three 
specimens were tested and only the pertinent results are depicted. 
At the end of this part, a sensitivity analysis is performed and a 
discussion takes place in Chapter VII. 

0

15

30

45

20 25 30 35 40 45 50 55 60

Crack length (mm)

M
ix

ed
 m

od
e 

an
gl

e 
(d

eg
)

0

0,002

0,004

0,006

0,008

0,01

0 15 30 45

Mixed mode angle (deg)

ER
R

 (N
/m

m
)



Experimental results

 - 111 - 

 

VI.C.2/S3PB 4mm/2mm 
 
Fig.VI-29 depicts the compliance curve coming from the S3PB test for 
a specimen of 4mm thick resin beam. 

 

Fig.VI-29: Compliance curve for the S3PB 4mm/2mm  
 

Fig.VI-30: Comparison of the ERR provided by the three methods for the S3PB 4mm/2mm, a 
mixed mode angle of 29,6 is noted 

 
As depicted in the Fig.VI-30, a mixed mode angle of 29,6° is 
obtained, and the energy release rate necessary for the crack to 
grow is 0,0052 N/mm, determined with a standard deviation of 27%. 
 

0

0,01

0,02

0,03

0,04

0,05

0,06

20 30 40 50 60 70 80
Crack length (mm)

C
om

pl
ia

nc
e 

(N
/m

m
)

Tests
Interpolation

0

0,005

0,01

0,015

30 35 40 45 50 55 60

Crack length (mm)

ER
R

 (N
/m

m
)

G-AMDR
G-dC/da
J from Abaqus

0

0,01

0,02

0,03

0 15 30 45
Mixed mode angle (deg)

J 
(N

/m
m

)



Experimental results  

 - 112 - 

 

VI.C.3/S3PB 2mm/2mm 
 
Fig.VI-31 and Fig.VI-32 depict the most relevant results of the 
experimental test on specimen of 2mm/2mm under three points bending. 

 

Fig.VI-31: Compliance curve for the S3PB 2mm/2mm 
 

Fig.VI-32: Comparison of the ERR for three different methods 
 
For this test, a MMA of 32,1° is obtained, and the energy release 
rate necessary for the crack to grow is 0,0025 N/mm, with a standard 
deviation of 8%.  
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VI.C.4/Angle of 0°, 2mm/2mm 
 
For a specimen of 2mm/2mm tested with the special device under a 
physical angle of 0°, the compliance curve in Fig.VI-33 and the ERR 
showed in Fig.VI-34 are obtained.  
 

Fig.VI-33: Compliance curve for the specimen 2mm/2mm tested with the special device under a 
physical angle of 0° 

 

Fig.VI-34: Comparison of the ERR provided by three methods and the associated mixed mode 
angle 

 
For this test, the MMA is –16,6°, and the associated energy release 
rate is 0,0048 N/mm, with a standard deviation of 20%. 
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VI.C.5/Angle of 0°, 4mm/2mm 
 
Fig.VI-35 depicts the compliance curve obtained by testing specimens 
of 4mm/2mm with the special device under an angle of 0°. 

 

Fig.VI-35: Compliance for the specimen 4mm/2mm under 0° 
 

Fig.VI-36: ERR for a 4mm/2mm under 0° 
 
As shown in Fig.VI-36, a mixed mode angle of 8,4° is obtained, and 
the energy release rate necessary for the crack to grow is 0,0088 
N/mm, with a standard deviation of 12%. 
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VI.C.6/Angle of 0°, 10mm/2mm 
 
Fig.VI-37 and Fig.VI-38 depict the experimental results of the 
10mm/2mm geometry under a physical angle of 0°. 
 

 

Fig.VI-37: Compliance of the 10mm/2mm geometry under 0° 
 

Fig.VI-38: ERR of the 10mm/2mm geometry under 0° 
 
For this test, a mixed mode angle of 26,1° is obtained, and the 
energy release rate necessary for the crack to grow is 0,0056 N/mm, 
with a standard deviation of 14%.  
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VI.C.7/Angle of 15°, 10mm/2mm 
 
The 10mm/2mm geometry is tested under a physical angle of 15°. 
Fig.VI-39 and Fig.VI-40 show the results. 
 

Fig.VI-39: Compliance curve for the 10mm/2mm geometry under 15° 
 

Fig.VI-40: ERR results for the 10mm/2mm under 15° 
 
For this test, a mixed mode angle of 25,1° is obtained, and the 
energy release rate necessary for the crack to grow is 0,0076 N/mm, 
with a standard deviation of 17%.  
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VI.C.8/Angle of 30°, 10mm/2mm 
 
The device is here oriented such that the specimens are tested under 
a physical angle of 30°. Fig.VI-41 depicts the measured compliance 
and Fig.VI-42 the comparison of the three methods to compute the 
ERR.  

 

Fig.VI-41: Compliance of the 10mm/2mm under 30° 
 

Fig.VI-42: ERR of the 10mm/2mm for 30° 
 
For this test, a mixed mode angle of 23,9° is obtained, and the 
energy release rate necessary for the crack to grow is 0,0030 N/mm, 
with a standard deviation of 24%.  
 

0
0,01
0,02
0,03
0,04
0,05
0,06
0,07
0,08

0 20 40 60 80
Crack length (mm)

C
om

pl
ia

nc
e 

(m
m

/N
)

Tests
Interpolation

 

0

0,002

0,004

0,006

0,008

0,01

0 10 20 30 40 50 60 70 80

Crack length (mm)

ER
R 

(N
/m

m
)

G-AMDR
G-dC/da
J

0

0,01

0,02

0,03

0 15 30 45

MMA (deg)

ER
R

 (N
/m

m
)

 



Experimental results  

 - 118 - 

 

VI.C.9/Angle of 45°, 10mm/2mm 
 

 

Fig.VI-43: Compliance of the 10mm/2mm under 45° 
 

Fig.VI-44: ERR of the 10mm/2mm under 45° 
 
Specimens with the geometry 10mm/2mm tested under a physical angle 
of 45° show a compliance as depicted in Fig.VI-43. The ERR provided 
by the three methods are represented in Fig.VI-44. For this test, a 
mixed mode angle of 21,3° is obtained, associated with an ERR of 
0,0455 N/mm, with a standard deviation of 22%.  
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VI.C.10/Sensitivity analysis 
 
A first sensitivity analysis has already been performed numerically. 
The influence of specimen geometry and material combination have 
been studied [2003-Leblanc]. The above results can sum up the 
variation of different parameters on experimental results. Firstly, 
concerning the tests on the symmetric three points bending, the 
thickness of the resin beam has varied. The resulting mixed mode 
angles are plotted in the Fig.VI-45 In the case of the S3PB, 
increasing the resin thickness leads to diminishing the mixed mode 
angle, i.e. reducing the contribution of mode II in the crack tip 
stress state.  
 

Fig.VI-45: Variation of the mixed mode angle with the resin layer thickness under 3 points 
bending 

 
Secondly, while keeping the physical loading angle constant to 0°, 
one lets the resin layer thickness vary. In this case, the mixed 
mode angle increases with the resin layer thickness as showed in the 
Fig.VI-46. 
 

Fig.VI-46: Variation of the mixed mode angle with the resin layer thickness under a physical 
angle of 0° 
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Finally, when the resin thickness is held constant and when the 
physical angle varies, the mixed mode angle depicted in the Fig.VI-
47 tends to diminish slightly while the thickness increases.  

 

Fig.VI-47: Variation of the mixed mode angle with the physical angle, the resin thickness being 
constant and equal to 10mm 
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VI.D/Interfacial fracture energy curve 
 
The ultimate result to present is the interfacial fracture energy 
curve resulting from the measurement campaign (Fig.VI-48) in 
conjunction with the numerical analysis. A trend could be depicted 
in this curve. But one has to be very careful with interpretations.  
 
The point corresponding to a MMA of 21,3° comes from the 45° 
configuration. The relative high difference with the other points 
come from that this configuration was tested first. Thereafter, the 
experimental procedure was improved since the tools used for the 
experiments were better understood. The finding that the specific 
fracture energy is almost independent of the mixed mode angle is 
surprising. The correlation between G and ψ has, therefore, to be 
further investigated.  
 

 

Fig.VI-48: Interfacial fracture energy curve 
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VII/ Discussion 
 
 
 
The choice of producing a FE analysis, in the fracture mechanics 
framework has to be highlighted.  
 

VII.A/ About the fracture toughness 
 

VII.A.1/Location of the crack 
 
The first question to answer is to know where the crack has to be 
introduced in the model. This may come from pictures of real 
components which where tested and failed or the critical locations 
may be identified from a damage mechanics analysis. Secondly, one 
has to fix the initial crack length. If the crack was already 
detected and if the component has not failed, then the length is 
defined by the dimensions depicted on the micrograph. If such a 
picture is not available, one may fix the initial crack length equal 
to the characteristic length of flaws contained in a material. It 
can be the size of a particle or the size of an air bubble.  
 
It is also possible to fix the initial length depending on the 
fracture toughness from Eq.VII-1. Suppose that the stress to failure 
σf is known, it is then possible, with the help of some scaling 
parameters Y, to determine a length corresponding to the Kc. For 
example, Y= π  for a straight crack in infinite specimen cracks and 
Y= π/2  for a penny crack in an infinite body. Then the simulation 
will say if the K arising in the crack domain is critical or not. If 
not, subcritical crack growth could occur. 
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Eq.VII-1 

 

VII.A.2/Type of mesh 
 
Then comes the question of the mesh generation. As seen earlier in 
chapter IV, the mesh has to be produced with brick elements. This is 
a practical solution if the geometry is simple, for instance, if the 
geometry presents a topology suitable for a block structured mesh.  
 
If not, there exists the possibility to isolate the crack domain, to 
mesh it with block elements and the rest of the geometry 
automatically with tetrahedrons.  
 
A third possibility as a FE analysis technique is the submodelling. 
An analysis will be performed on the whole component, considered as 
the global model, and results are transposed, or interpolated, to a 
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local part of the model, the submodel, which is meshed finer and 
will contain the crack.  
 

VII.A.3/Material parameters 
 
Obviously, as treated in this work, the material parameters play an 
important role. The influence of the fracture toughness in 
conjunction with the exponent of the propagation law on the time-to-
failure is investigated. Four cases have been distinguished. They 
are depicted in the Fig.VII-1.  
 
With the cumulative probability F (Chapter V, Eq.V-6), one 
determines lower and upper bounds for the maximum likelihood fit of 
the fracture toughness. The lower bound will be determined by the 
cumulative probability of 2,5% (i.e. the fracture toughness is lower 
or equal to the maximum likelihood fit with a probability of 2,5%, 
when F=0,025) and the upper bound will be determined by the 
cumulative probability of 97,5% (F=0,975).  
 
The time-to-failure tf is given by the equation from chapter II: 
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Case (a): case of a material with a low scatter and a high exponent 
 
The case (a) concerns the influence of the knowledge of KIC on the 
time-to-failure. The exponent nI of the subcritical crack growth law 
will be 36 and the coefficient AI equal to 1,0x107 (Chapter 5, 
Eq.VII-4). The scaling factor Y equals π  for a straight through 
crack and the applied stress equals 12,5 MPa (it corresponds to a 
force of 75N applied along the 6mm thickness of the CT specimen). 
The initial crack length will be fixed to 9,4mm, which corresponds 
to an initial K of 0,781 MPa m .  
 
From material 2 comes: 
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Eq.VII-3
 

 
Then,  
F=0,025 => K0,025=0,911 MPa m  
F=0,975 => K0,975=1,026 MPa m  

  ∆K=0,115 MPa m . 
 
Case (b): case of a material with a high scatter and a high exponent 
 
The case (b) deals with a larger width of the interval of K. From 
material 1 comes 
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Then,  
F=0,025 => K0,025=1,121 MPa m  
F=0,975 => K0,975=1,470 MPa m  

  ∆K=0,345 MPa m . 
 
This ∆K is applied to the maximum likelihood fit of K0 for material 2 
(0,997MPa m ) in order to compare the influence of the width of the 
confidence interval. This yields the values K0,025=0,823 and 
K0,975=1,171 MPa m  as lower and upper bounds. 
 
The case (c) stands for a material with a low scatter and a high 
exponent. It shows the influence of the exponent in the subcritical 
crack growth law. The exponent considered here comes from 
subcritical tests on PMMA [1987-Kausch] and is equal to 25, with the 
∆K of case (a). Case (d) corresponds to a material with a high 
scatter and a low exponent. It uses the exponent of case (c) and the 
width ∆K of case (b).  

 

Fig.VII-1: Cases to be considered 
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For each case, two times-to-failure are calculated. One 
corresponding to the lower bound tf,lower, and one corresponding to the 
upper bound, tf,upper. The quantity  Log(tf,upper/ tf,lower) is depicted in 
Fig.VII-2 for each case. In the case of a high exponent, the time-
to-failure can vary by a factor of 100 until 500000 times, depending 
on the scatter of the fracture toughness. For a lower exponent, the 
variation ranges from 50 to 100000 times. It means that simulations 
performed with a material with a high scatter, no matter the 
exponent, can not be considered as reliable since the predicted 
lifetime can vary by a factor of 500000. 
 
A procedure in the case of a material with large scatter and a high 
exponent in the crack propagation law can be to fix the allowed 
stress intensity factor to the lower bound of the 90% or 95% 
confidence interval Klow,90%. After having computed the loading case 
and determined the Kload occurring at the crack tip, this value is 
compared with the lower bound. In the case Kload<Klow,90%, one will say 
that the load represents no danger for the cracked component. In the 
other case, the crack will be considered as critical. Such a 
procedure can be likewise followed when the order of magnitude of 
the exponent in the propagation law is relative high.  
 
Another approach can be chosen when the fracture toughness is known 
with a high reliability. One decides to use two different exponents 
in the propagation law and to perform some simulations with each of 
these exponents and to check the difference in the results.  
 

Fig.VII-2: Comparison between four cases for the time-to-failure 
 

VII.B/About the interface investigation 
 
Based on the wide range of tests performed until now, one may note 
that the Area Method is easy to perform. One measures the crack 
lengths and load-displacement curves for at least six loading-
unloading cycle to get a minimum of five values for the ERR. It is 
also noted that the AMDR is applicable in cases where the specimen 
response to the load is mainly linear and the interfacial crack 
advance is stable. The first condition is fulfilled for each test 
configuration reported here while the second is fulfilled only for 
ADCB configurations, according to Auersperg et al [2001-Auersperg].  
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In practice, always more than eleven cycles can be taken per 
specimen. This allows us to get enough points to achieve an accurate 
interpolation of the compliance curve. As a matter of fact, the 
compliance method can be applied in any case and we are able to 
compute the energy release rate for each configuration.  
 
In general, it seems that the interfacial fracture toughness values 
obtained using the AMDR are of the same order of magnitude as those 
obtained through the Compliance Method or the finite-element 
analysis. As already mentioned, the trend of the obtained curve is 
not comparable to those in the literature. However, since the ERR 
values between the simulations and the experiments agree quite well, 
we presume that this trend describe the behaviour of the studied 
interface specimens. Naturally, further investigations will be 
performed to validate these results.  
 
As outlined by Sundararaman and Sitaraman [1999-Sundararaman], the 
effect of the finite width of the specimen should be taken into 
account. The waves on the fracture surface clearly show the 
particular form of the crack front and prove that the mixed mode 
angle and/or the ERR vary along the crack front, which is confirmed 
by the simulations.  
 
Fig.VII-3 shows the evolution of the mixed mode angle and of the J-
Integral along one half of the crack front. Boundary effects affect 
drastically the J-Integral distribution and the profile of the crack 
front form (often described by a “thumbnail” form) can be found to 
be the same in experiments and in simulations (Fig.VII-3(b)). 
However the effect if the free boundary is minimised by the large 
ratio width/thickness. Besides, the uncertainty in the determination 
of the critical ERR is increased by variation of the interface 
adhesion from specimen to specimen but this undesired manifestation 
coming from manufacture can be overcome by increasing the number of 
measurements.  
 
Further parameters should be considered, amongst others the residual 
stresses from manufacturing, the viscoelasticity of the resin and 
the anisotropy of thermoplastic. Residual stresses can affect the 
results in the sense of shrinkage. Since we cool the resin after 
potting, shrinkage takes place during this stage and could play a 
role by bending the thermoplastic plate. Bending deformed specimens 
were observed for 2mm thick resin layer, and this effect tends to be 
reduced when increasing the resin thickness.  
 
For the sake of simplification and since Abaqus allows to compute 
the Ki for interfacial cracks only under the assumption of a linear 
elastic case, viscoelasticity of the resin and anisotropy of the 
thermoplastics are not taken into account. Viscoelasticity could 
play a role through the relatively slow displacement rate and the 
repetition of the loading and unloading. But the low magnitude of 
the applied force and time let us suppose this effect can be 
reasonably neglected. In the same way, the anisotropy can be 
neglected, since the elastic properties do not strongly depend on 
the direction. A way to account for the non-linear material 
behaviour would be to implement a subroutine to be used with Abaqus 
which will compute the ERR via the Modified Crack Closure Technique 
presented in part III (B-6-b).  
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Fig.VII-3: Magnitude of: (a) the Mixed mode angle and (b): the ERR along the crack front 
 
Results presented in the previous part need to be completed by 
further investigations, especially with negative physical load 
angles and other bending tests like the Single Leg Bending. The 
practicability of such tests was demonstrated but not presented.  
 
However, we have to note that all the work on interfacial fracture 
toughness determination is based on the investigation of a 
relatively weak interface. This is unfortunately not always the 
case. One may have to deal with stronger interfaces which can not be 
measured by the presented methods. Sometimes the interface was 
tougher than one or both materials, which led either to crack 
kinking out of the interface plane (see for instance Fig.VII-4) or 
to a non uniform propagation (Fig.VII-5).  
 

 

Fig.VII-4: Crack kinking out of the interface plane 
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Strong interface by itself is not necessarily a problem. However, if 
the interface is very strong, such that it does not lead to failure, 
it might not be necessary to determine the critical ERR for such 
material couples. If we are asked if the interface resulting of such 
a material combination presents a risk for the reliability, the 
answer will be that the risk comes from one of the materials in 
presence and not from the material combination. Further 
investigations inspired by the works of He and Hutchinson [1989-He] 
or Leguillon [2001-Leguillon] on the topic of crack deviation and/or 
penetration need to be performed. 
 
Another case to consider is a non uniform propagation in the 
interface plane (see Fig.VII-5). Here is a combination of two 
effects observed after having taken the picture on the right: on one 
side a crack clearly started in the thermoplastic (side where the 
length is noted 15600µ) while on the other side the crack has 
continued to grow along the interface. Residual stresses from 
manufacturing may be the cause of this phenomenon.  
 

Fig.VII-5: Ultrasonic micrographs of an example of non uniform propagation 
 
From a numerical point of view, if one wants to study the 
delamination and assess the behaviour of the interfacial crack, one 
will run the simulation and pick out the value for K1 and K2 at the 
tip, by then the interfacial energy release rate Gcomputed is known. 
The mixed mode angle ψcomputed is then computed and compared to 
interfacial fracture energy Gc for the given mixed mode angle. The 
interface crack propagates if Gcomputed > Gc(ψcomputed). 
 
The final stage in the crack behaviour analyse is reached when both 
materials (above and below the crack) are characterised depending on 
the mixed mode angle. Besides, assuming the interfacial fracture 
energy depending on the mixed mode angle is also known, one will be 
able to determine the direction of propagation of the crack. With 
the criterion Gcomputed > Gc(ψcomputed), one is able to assess if the crack 
propagates along the interface. In the case where the interface 
resists the propagation, a criterion such as He and Hutchinson’s 
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 can be applied to determine if the crack will penetrate 

in a material.  
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VIII/ Conclusion and perspectives 
 
 
 
Reliability becomes a major objective in the industry, and improved 
methods were developed during the last decades. In order to increase 
the reliability of a product, the automotive industry is interested 
in the advantages provided by numerical simulations during the 
development. Cracks often appear as a major cause of failure of 
products in service and there exists a need to understand the 
phenomena occurring when a product contains a crack. A methodology 
to investigate the behaviour of cracks in homogeneous materials and 
at the interface between different materials has been addressed. 
 
In this work, the concepts of linear elastic fracture mechanics 
developed during the past decades have been presented.  
Different fracture criteria have been highlighted, among them the 
energy release rate and the stress intensity factors.  
A method to determine these criteria in the case of homogeneous 
materials has been found in a standard of the American Society of 
Standard and Technology.  
The determination of the crack behaviour can be achieved by a 
propagation analysis when a propagation law is available. 
 
Then the case of the crack lying at the interface between different 
materials is addressed.  
The concepts involved in homogeneous materials have been adapted in 
order to describe the specifics of the stress state created at the 
crack tip when such a configuration is present.  
The stress intensity factors have another meaning in the case of 
interfaces, and the mixed mode angle needs to be defined if one 
wants to achieve a description of the stresses.  
The case of the crack leaving the interface plane needs to be 
considered.  
 
In the domain of the simulation, there exist different methods to 
proceed to numerical analyses and to model a crack.  
The most common is the finite element method but others like the 
boundary element method and meshless methods tend to catch up their 
delay.  
The finite element method is the most widely used method, and 
complementary tools offer many possibilities in the domain of crack 
growth prediction.  
 
In order to determine the characteristic quantities required to 
perform a fracture mechanics analysis, experimental procedures to 
measure the fracture toughness of homogeneous materials and the 
crack propagation law were presented. This is realised thanks to the 
coupling between a tensile machine and a digital camera to process 
images recorded during a cracking test. A special testing device was 
developed to investigate the interfacial fracture energy under 
different mixed mode angles.  
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Fracture toughness has been measured for two different materials and 
a statistical analysis has been performed to supply information on 
the reliability of the measured results.  
It came out that the materials parameters can be described by a 
Weibull distribution. The materials responses present different 
behaviour, and the scatter in the results delivers information on 
how reliable these material properties are.  
The subcritical crack growth of a material has been measured at room 
temperature and the law has been implemented in a finite element 
software. 
Numerical simulations performed on a compact tension specimen 
deliver satisfactory results and they have been compared to 
analytical solutions provided by a standardised procedure. They are 
found to be in good agreement.  
The measured subcritical crack growth law implemented in the finite 
element software, enhanced by a commercial software dedicated to 
fracture mechanics simulations and propagation simulations allow 
analyses to be performed, by which the crack path can be predicted.  
The device especially developed for interfacial crack 
investigations, in conjunction with varying specimen geometry allows 
us to explore a wide range of mixed mode angle. Experimental results 
were extracted with two methods and compared with outputs from 
numerical models.  
In both cases, results agreed and the mixed mode angle from the 
simulation was associated with the corresponding experimental 
fracture energy. By this way, the interfacial fracture toughness 
curve can be determined for a given material combination.  
 
The whole work allows the establishment of procedures to: 
measure experimentally the fracture toughness of a material and to 
determine its confidence interval,  
compare different materials from a reliability point of view,  
measure experimentally the interfacial fracture energy for a 
material combination and, in combination with the simulations, to 
determine the interfacial fracture toughness curve, 
introduce a crack in a mesh and to perform a fracture mechanics 
analysis, in a homogeneous material as well as at the interface 
between different materials 
simulate the crack propagation and represent the crack path. 
 
Based on these achievements, it is possible to study some design 
variations of a cracked component and to study their influence on 
the crack behaviour. 
 
However, this work needs to be completed and enhanced by further 
investigations in both domains.  
Concerning cracks in homogeneous materials, one has to study the 
influence of parameters on the crack propagation such as the 
temperature, residual stresses, mixed mode conditions or cyclic 
fatigue.  
In the case of interfacial cracks, the results presented here need 
to be confirmed and enhanced by other mixed mode angles. One needs 
to characterise other material combinations and the influence of 
surface treatment on the interfacial fracture toughness.  
 
The work realised in the framework of this PhD-thesis allowed the 
installation of numerous tools and methods making the testing of 
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materials easier. These materials can contain a crack or not, which 
can be able to propagate itself under various loading conditions and 
to lead to the complete failure of components.  
 
In the framework of the experimentation, new testing devices were 
designed and numerical models including original features were 
developed during this work. These features required overcoming 
problems linked to associated technical difficulties, even if all 
the results gathered during the work are not presented in this 
report.  
 
A new industrial methodology can now be applied in the development 
of new components and numerous perspectives are already planned in 
the continuity of this work. 
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Abstract 

 
The work focuses on potting materials for electronic components. A methodology to 
analyse the behaviour of cracks initiated in homogeneous materials or at the 
interface between different materials is addressed. An experimental procedure is 
described in order to measure the critical stress intensity factor of a homogeneous 
material. This procedure is then used to compare the crack behaviour in a 
bimaterial structure and to determine the validity of the results. Hereafter a 
method is proposed to determine crack growth under subcritical loading conditions. 
In the case of a crack at the interface of bimaterials, a methodology has been 
developed to measure the energy release rate necessary to let the crack propagate. 
With the help of numerical simulations, the corresponding stress intensity factors 
are computed as well as the resulting mixed mode angle. The whole work realised 
experimentally and the developed numerical simulations allow us to propose a 
methodology to analyse the behaviour of a crack placed in a multi-material 
structure under thermo-mechanical loads. 
 
Keywords: energy release rate, stress intensity factors, fracture toughness, 
interface, mixed mode angle, finite element method 
 

Zusammenfassung 
 
Die vorliegende Arbeit befasst sich mit Vergussmassen für elektronische 
Erzeugnisse. Eine Vorgehensweise wird vorgeschlagen, um das Verhalten von 
initiierten Rissen in homogenen Materialien oder entlang der Grenzschicht zwischen 
verschiedenen Materialien zu analysieren. Ein experimenteller Verfahrensschritt 
wird beschrieben, um den kritischen Spannungsintensitätsfaktor von homogenen 
Materialien zu messen. Dann wird dieser Verfahrensschritt benutzt, um das 
Rissverhalten in verschiedenen Materialien zu vergleichen und um das Ergebniss-
konfidenzintervall festzulegen. Danach wird eine Methode vorgeschlagen, um das 
Risswachstum des betrachteten Materials unter subkritischer Belastung festzulegen. 
Im Fall eines Grenzschichtrisses wird eine Vorgehensweise entwickelt, um die 
Energiefreisetzungsrate zu messen, die benötigt wird, um den Riss sich ausbreiten 
zu lassen. Mit Hilfe von numerischen Simulationen werden die entsprechenden 
Spannungsintensitätsfaktoren und die Modusmischungswinkel ermittelt. Die komplette 
experimentelle Arbeit und die entwickelte numerische Simulationen führen zu einer 
Methodologie, um das Verhalten von einem Riss Verbundwerkstoffen und Bauteilen 
unter thermischen und mechanischen Belastungen zu beurteilen.  
 
Schlüsselwörter: Energiefreisetzungsrate, Spannungsintensitätsfaktoren, Bruchzähig-
keit, Grenzschicht, Modusmischungswinkel, Finite Elemente Methode 
 

Résumé 
 
Ce travail s’articule autour de l’étude de matériaux coulés pour des composants 
électroniques. Une méthodologie est proposée pour analyser le comportement de 
fissures initiées dans des matériaux homogènes ou à l’interface entre différents 
matériaux. Une procédure expérimentale est décrite afin de mesurer le facteur 
d’intensité de contrainte critique d’un matériau homogène. Cette procédure est 
ensuite appliquée dans la comparaison du comportement d’une fissure d’un bimatériau 
et à la détermination du degré de validité des résultats. Une méthode est ensuite 
proposée pour déterminer la propagation de fissures dans les différents matériaux 
sous des chargements sous-critiques. Dans le cas d’une fissure à l’interface de 
bimatériaux, une méthodologie a été développée pour mesurer le taux de restitution 
d’énergie nécessaire à la propagation de la fissure. Les facteurs d’intensité de 
contraintes correspondants sont calculés à l’aide de simulations numériques, ainsi 
que l’angle de mode mixte résultant. L’ensemble des travaux expérimentaux réalisés 
et des simulations numériques développées permet de proposer une méthodologie 
d’analyse du comportement d’une fissure située au sein d’un composant multimatériau 
sollicité sous chargement thermo-mécanique. 
 
Mots clés: taux de restitution d’énergie, facteurs d’intensité de contraintes, 
ténacité, interface, angle de mode mixte, méthode éléments finis 
 
 


