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Abstract

In this thesis, we are interested in the classification of Anosov flows with smooth
decompositions. Under certain supplementary geometric conditions, we obtain a se-
ries of classification results and our departing point is an idea called “go-and-back”.
One of the corollaries of our classification results is the following:

Let ¢; be an Anosov flow and 1)y be the geodesic flow of a hyperbolic manifold of

dimension at least 3. If ¢, and 1, are C' orbit equivalent, then they are C> orbit
equivalent.
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Chapter 1

Introduction Générale

Résumé — Dans le premier chapitre, je donne un résumé détaillé en francais de ma
these. Les chapitres suivants sont rédigés en anglais.

1.1 Histoire et motivation

[’étude des systemes dynamiques a plusieurs objectifs, notamment comprendre les
propriétés asymptotiques générales des actions des groupes non-compacts, mais aussi
classifier certaines classes d’actions spéciales et importantes.

Nous devons admettre le fait que certains systemes sont fait par la nature, et en
conséquence, leurs théories sont harmonieuses et profondes. Les flots géodésiques
des variétés a courbure négative sont, a mon avis, parmi ces systemes bien faits.
Rappelons d’abord la définition.

Soit N une variété riemannienne fermée, a courbure négative et SN son fibré
unitaire. Pour chaque vecteur u € SN, il existe une unique géodésique tangente
auwent = 0, notée 7,. Donc nous obtenons un flot ¢ : R x N — N tel que
o(t,u) = vu(t), ou 4, (t) représent le vecteur tangent de =, au temps t.

Comme les courbures sectionnelles sont supposé négatives, les géodésiques différentes
divergent souvent I'une de I'autre. Intuitivement, ces flots sont tres chaotiques.

Avant 'oeuvre fondamentale de D. V. Anosov, il y avait les travaux de Hedlund,
Hopf et Hadamard sur les flots géodésiques des variétés a courbure négative. En
particulier, ils ont montré l'ergodicité dans le cas des surfaces. L’'un des points
essentiels dans leur argument est de montrer 'existence des distributions stable et
instable forte, au moins pour les surfaces. Le fait que ces distributions sont souvent
tres peu différentiables était un obstacle pour montrer 'ergodicité de ces flots dans
toute sa généralité.

En 1967, D. V. Anosov publie son oeuvre intitulée ” Geodesic flows on Riemann
manifolds with negative curvature”. Peu apres, les systemes dynamiques axiomatisés
pour la premiere fois dans ce livre sont baptisés des systemes d’Anosov (ou les
systémes uniformément hyperboliques). Rappellons d’abord la définition.

Soient M une variété fermée avec une métrique riemannienne auxiliaire et ¢; un
flot C™° sur M dont le générateur est noté X. Alors ¢, est dit d’Anosov s’il existe
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chapitre I: Introduction générale

une décomposition ¢s-invariante du fibré tangent de M
TM=RX®E"®E-
et deux nombres positifs a et b tel que
| Dp=i(u®) |< ae ™ | u® |, V>0, Vu* € EF.

Ces deux distributions E+ et £~ s’appellent les distributions instable forte et stable
forte de ¢y, qui sont uniques et automatiquement continues. Anosov a montré que
ces deux distributions s’integrent en des feuilletages continus dont les feuilles sont
C*, qui sont notés respectivement F+ et F~. Les difféomorphismes d’Anosov sont
définis similairement. Rappellons que les flots géodésiques des variétés fermées a
courbure négatives sont d’Anosov.

En montrant ’absolue continuité des applications d’holonomie de F* et F~ et
en utilisant un argument classique dit a Hopf, Anosov établit I’ergodicité par rapport
a la forme volume invariante des flots géodésiques des variétés fermées a courbure
négative. Ceci était un triomphe de la théorie des systemes d’Anosov.

Pendant les vingt ans qui suivent, une étude descriptive de ces systemes est
menée. Elle nous permet de comprendre ces systemes beaucoup mieux que les autres.
Par exemple, nous savons qu’ils sont structurellement stables et ils préservent de
nombreuses mesures de probabilité.

Signalons que dans la définition d’un flot d’Anosov, les distributions stable et
instable forte sont supposées seulement C°. Or déja dans [An], Anosov a construit
des flots d’Anosov analytiques réels dont les distributions ne sont pas C!. Pour
alléger les notations, nous proposons la définition suivante.

Définition 1.1 — Soit ¢; un flot d’Anosov. Alors il est dit d’Anosov-lisse, si ses
distributions instable forte et stable forte sont C'*°.

Le premier résultat concernant les flots d’Anosov-lisses est dii & E. Ghys (voir
[Gh1]. Il a montré qu’a un changement de temps tres spécial et revétement fini pres,
un flot d’Anosov-lisse de contact de dimension 3 est C'*° conjugué au flot géodésique
d'une surface hyperbolique. Ce résultat crucial confirme I'intuition générale sur la
rareté des flots d’Anosov-lisses.

Ensuite dans [Kal], M. Kanai montre que pour un flot géodésique d'une variété
a courbure negative %—pincée, s’il est Anosov-lisse, alors il est C'*° conjugué au flot
géodésique d'une variété hyperbolique. Puis dans [FK], R. Feres et A. Katok ont
raffiné I'argument de Kanai pour améliorer la restriction sur le pincement.

Finalement dans [BFL2], Y. Benoist, P. Foulon et F. Labourie ont classifié les
flots d’Anosov-lisses de contact. Plus précisément, ils ont montré qu’a un change-
ment de temps tres spécial et revétement fini pres, chaque flot d’Anosov-lisse de con-
tact est C'™ conjugué au flot géodésique d'une variété localement symétrique de rang
un. Mentionnons que Y. Benoist et F. Labourie ont classifié les difféomorphismes
d’Anosov-lisses préservant des connexions linéaires. Avant leur résultat, il y avait
les travaux [Av] et [FI-K] traitant des cas partculiers.

12



chapitre I: Introduction générale

Maintenant nous expliquons un peu l'idée de la démonstration de ces résultats.
Rappellons d’abord que les connexions linéaires sont des structures géométriques
rigides, dont les groupes de symétries sont de dimension finie (voir Chapitre 2). En
revanche les formes symplectiques ne sont pas rigides, et leurs groupes de symétries
sont de dimension infinie.

[’observation cruciale pour les travaux ci-dessus est que l'existence d’une struc-
ture géométrique invariante et non-rigide pour un systeme d’Anosov-lisse entraine
souvent l'existence d'une autre structure géométrique rigide et invariante. Soit par
exemple ¢ un difféomorphisme d’Anosov-lisse préservant une forme symplectique w.
Alors ¢ préserve une unique connexion lisse V tel que VE* C E* et

Vw = 0, Vin:F = P:F[Yi7Y:F],

oll Y* représentent des sections de E* et P¥ représentent les projections de TM
sur B,

En effet, pour beaucoup de classes de systemes d’Anosov-lisses, nous pouvons
construire des structures géométriques rigides invariantes et lisses. Et puis, comme
il est communément considéré, un systeme chaotique et une structure géométrique
rigide lisse peuvent co-exister uniquement dans des cas tres spéciaux (voir [DG]).

Dans cette these, nous sommes aussi guidés par cette idée. Et en plus, nous
avons trouvé une technique d’aller et retour, qui est détaillée dans le chapitre 4
et qui nous sert de point de départ pour prouver la rigidité de plusieurs classes
de flots d’Anosov-lisses, dont les conséquences sur les flots géodésiques des variétés
hyperboliques nous paraissent frappantes.

1.2 Nos résultats et les idées de démonstration

1.2.1 Chapitre 2: Propriétés des structures géométriques
rigides

Dans le chapitre 2, nous établissons quelques propriétés structurelles pour les struc-
tures géométriques rigides admettant des pseudo-groupes d’isométries locales topologique-
ment transitifs, qui nous fournissent la base géométrique pour comprendre les flots
d’Anosov-lisses. Notre but est de relier I'’étude des structures géométriques rigides
localement homogenes, au moins sur un sous-ensemble ouvert-dense, a celle des
(G, X)-structures. Sans entrer dans les définitions plus ou moins formelles, nous
nous restreignons dans cet introduction aux connexions linéaires, exemples typiques
de structures géométriques rigides.

Soient M une variété et V une C'*° connexion linéaire définie sur M. Chaque
difféomorphisme ¢ de M envoie V sur une autre connexion notée ¢.V, et ¢ est
appelée une V-isométrie si ¢,V = V. Le groupe des V-isométries est noté (V)
et 'ensemble des V-isométries locales est noté I¢°. Dans [Grl], M. Gromov a
démontré le résultat fondamental suivant.
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chapitre I: Introduction générale

Théoréme 2.1 (M. Gromov) — Soit V une connexion linéaire C™ sur une variété
M. Si son pseudo-groupe d’isométries locales 19° admet une orbite dense, alors il
admet une unique orbite ouverte et dense.

Mentionnons que ce théoreme a été redémontré avec plus de soin dans [Be],
[Fe2] et [Ze2]. Pour nous, ce théoréme contitue la premiere étape pour transformer
I'étude des connexion linéaires C>° combinées avec des dynamiques chaotiques en
celle des (G, X)-structures. La seconde étape consiste a construire un espace modele.
Nous procédons comme suit.

Supposons que le pseudo-groupe des isometries locales de V admet une orbite
dense. Alors d’apres le théoreme ci-dessus, il admet une unique orbite ouverte et
dense, notée §2. Fixons un point = dans €2 et soit g I'ensemble des germes de champs
de Killing C* de V au voisinage de x. Nous notons h ’ensemble des éléments de g
qui s’anullent au point x. Alors nous pouvons montrer facilement que g et h sont des
algebres de Lie de dimension finie. Soit G le groupe de Lie connexe et simplement
connexe dont l'algebre de Lie est g et soit H le sous-groupe de Lie connexe de G
intégrant b.

Définition 2.2 — Sous les notations ci-dessus, V est dit normale si H est fermé
dans G.

Comme V |q est localement homogene, la normalité de V est indépendante du
point de base x choisi dans 2. Nous montrons

Proposition 2.1 — Soit V une connezxion linéaire C*>. Si son pseudo-groupe
d’isométries locales I8¢ admet une orbite dense, alors 1X¢ admet une unique or-
bite ouverte-dense notée Q. Si V est en plus normale et G et H sont définis
comme ci-dessus, alors il existe sur G /H une connexion linéaire V, G-invariante
et localement isométrique a V |q. Si nous prenons l'ensemble des isométries lo-
cales de (Q,V |q) sur (G/H,V) comme cartes, nous obtenons ainsi sur {2 une

(I(V), G/ H)-structure.

Rappellons que une connexion linéaire est dit complete si toutes ces géodésiques
peuvent étre définies sur R. En axiomatisant certaines propriétés des connex-
ions linéaires, nous avons trouvé une notion de complétude pour les structures
géométriques rigides générales. En rélevant des géodesiques, nous démontrons la
proposition suivante,

Proposition 2.4 — Soit M une variété connexe munie d'une (G, X )-structure. Sup-
posons que G préserve une C* connexion linéaire NV définie sur X. Si la structure

canoniquement associée N sur M est compléte, alors la (G, X)-structure sur M est
aussi compléte.

Les propositions ci-dessus sont toutes énnoncés pour les connexions linéaires.
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chapitre I: Introduction générale

Mais modulo des modifications évidentes, elles sont aussi valides pour les structures
géométriques rigides générales (voir Chapitre 2). Donc les notions et les proposi-
tions prouvées dans ce chapitre nous permettent de ramener I'étude des structures
géométriques rigides avec beaucoup d’isométries locales a celle des (G, X)-structures.

1.2.2 Chapitre 3: Propriétés dynamiques et géométriques
des systemes d’Anosov

Dans ce chapitre, nous rappellons et démontrons des propriétés des flots d’Anosov
en portant une attention particuliere au cas des flots d’Anosov-lisses.

Rappellons d’abord la définition de la mesure de Bowen-Margulis, qui est parti-
culierement importante tant dans notre idée que dans nos arguments.

Soit ¢; un flot d’Anosov topologiquement transitif. Alors il existe une unique
mesure de probabilité ¢,-invariante p, dit de Bowen-Margulis, dont I'entropie est
égale a I'entropie topologique (voir [BR] et [Mal]. Si en plus ¢; est topologique-
ment mélangeant, alors il existe quatre famille de mesures pu* et p™° supportées
respectivement par les feuilles de F* et F&0 telles que

+ht +,0
bl

pEo ¢ = e, pFo g = ey
ou h représente 1'entropie topologique de ¢;. Ces mesures sont appelées les mesures
de Margulis de ¢; (voir [Mal]). En plus, nous avons g = p* @ u° = p~ @ ut°
localement.

En utilisant les résultats de cohomologie classiques pour les flots d’Anosov, nous
pouvons montrer, en adaptant les arguments de [Fol], que pour un flot d’Anosov-
lisse topologiquement mélangeant, si sa mesure de Bowen-Margulis est égale a la
mesure de Lebesgue et ses distributions stable et instable fortes sont orientables,
alors ses mesures de Margulis sont données par des formes volumes lisses le long des
feuilles des distributions stable et instable, qui ne s’annullent nulle part.

A la fin du chapitre, nous détaillons la construction, suggérée par P. Tomter,
d’une famille de flots d’Anosov-lisses obtenue a partir de certaines représentations
des groupes Spin. Ces flots d’Anosov sont des couplages de flots géodésiques de
variétés hyperboliques avec certains automorphismes hyperboliques sur des tores.

1.2.3 Chapitre 4: Les changements de temps spéciaux des
flots d’Anosov-lisses

Dans ce chapitre, nous détaillons notre idée d’aller et retour dont la force sera
démontrée dans les chapitres suivantes. Dans [Par], W. Parry a démontré que pour
un flot d’Anosov dont la décomposition d’Anosov est O, il existe un changement
de temps C* dont la mesure de Bowen-Margulis est Lebesgue. Nous I'appellons le
changement de temps de Parry.

Le résultat central de ce chapitre est le théoréeme suivant, qui constitue le point
de départ pour les autres résultats.
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chapitre I: Introduction générale

Théoreme 4.1 — Soit ¢; un flot d’Anosov-lisse préservant une forme de volume.
Supposons en plus que E et B~ sont orientables. Alors son changement de temps
de Parry est aussi Anosov-lisse.

Si la mesure de Bowen-Margulis est égale a la mesure de Lebesgue, alors nous
avons vu dans le chapitre précédent que les mesures de Margulis sont données par
des familles de formes volumes. Nous démontrons le proposition suivante.

Proposition 4.2  Soit ¢; un flot d’Anosov-lisse topologiquement mélangeant dont
la mesure de Bowen-Marqgulis est égale a la mesure de Lebesque. Supposons que les
dimensions de ™ et E~ sont respectivement n et m. Si ¢ préserve une connexion
linéaire, alors il préserve une autre connexion V telle que les fibrés en droite N"E+
and N E~ admelttent des sections V-parallelles et non nulles.

Dans un second temps, nous étudions les changements de temps qui préservent la
propriété d’étre d’Anosov-lisse. En particulier, nous trouvons tous les changements
de temps d’Anosov-lisse des flots géodésiques des variétés localement symétriques
ainsi que des suspensions des infra-nilautomorphismes hyperboliques. Notamment,
ils sont déterminés par le premier groupe de cohomologie de la variété ambiante.

Notre idée d’aller et retour pour prouver la rigidité des flots d’Anosov-lisse est
de prendre d’abord le changement de temps de Parry pour renforcer a l'aide de
la Proposition 4.2 la structure géométrique sous-jacente. Ensuite nous essayons de
classifier ces flots synchronisés. Finalement nous refaisons un changement de temps
d’Anosov-lisse pour obtenir des informations sur le flot initial.

Dans les trois chapitres suivants, nous allons utiliser cet idée d’aller et retour
pour classifier certaines classes de flots d’Anosov-lisses.

1.2.4 Chapitre 5: Rigidité des flots d’ Anosov-lisses transver-
salement symplectiques

Un flot d’Anosov ¢; est dit transversalement symplectique s’il préserve une 2-forme
fermée w dont le noyau est RX, ot X est le générateur de ¢;. Par exemple, comme il
est bien connu, les flots géodésiques des variétés riemanniennes sont transversalement
symplectiques.

Les flots d’Anosov-lisse transversalement symplectique de dimension 3 sont déja
classifiés par E. Ghys. Dans [FK], R. Feres et A. Katok ont étudié les flots d’Anosov-
lisse transversalement symplectique de dimension 5. Notamment, ils ont classifié le
cas de contact (voir aussi [BFL]). Dans ce chapitre, notre résultat principal est
une classification complete de ces flots de dimension 5. Plus précisément, nous
démontrons

Théoreme 5.1 — Soit ¢; un flot d’Anosov-lisse de dimension 5. S’il est transver-
salement symplectique, alors a un changement de temps spécial et un revétement
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fini pres, ¢ est C° conjugué soit au flot géodésique d’une variété hyperbolique de
dimension 3 soit a la suspension d'un automorphisme hyperbolique et symplectique
de T*.

Idée de la preuve — Soit A la 1-forme canonique de ¢;, ¢’est-a-dire,
MX)=1, ME%) =0,

ot X représente le générateur de ¢,. D’apres les résultats de [BFL2], [FK] et [BL],
il suffit de montrer la non-existence du cas d\ # 0 et dA A d\ = 0. D’apres 'idée
d’aller et retour, nous pouvons supposer en plus que la mesure de Bowen-Margulis
de ¢; est Lebesgue. L’observation cruciale est que dans ce cas la, la décomposition
de Liapounov de ¢; est forcément lisse. Ensuite nous construisons des connexions in-
variantes canoniquement associées. Finalement nous éliminons tous les cas possibles
en utilisant des arguments de dynamique, d’algebres de Lie et de groupes discrets.
Signalons que la proposition 4.2 est cruciale dans nos arguments.

1.2.5 Chapitre 6 : Sur la classification des systemes d’Anosov
quasiconformes

Un flot d’Anosov est dit quasiconforme si ses restrictions sur ses feuilles stables et
instables fortes sont toutes quasiconformes, avec des distorsions de quasiconformité
uniformément bornées. Par exemple, les flots géodésiques des variétés hyperboliques
sont quasiconformes (et méme conformes).

Dans [Yu], C. Yue a démontré que si le flot géodésique d'une variété de dimen-
sion au moins trois et a courbure négative est quasiconforme, alors cette variété est
de courbure constante. Avant ce résultat, il y avait des travaux [Su] et [Ka2]. Trés
récemment, V. Sadovskaya a classifié les flots d’Anosov quasiconformes de contact
dont les distributions stables fortes sont de dimensions au moins 2. En combinant
son argument géométrique et notre technique d’aller et retour, nous généralisons
tous ces résultats de rigidité en montrant

Théoréme 6.1 — Soit ¢; un flot d’Anosov quasiconforme préservant une forme
volume. Si ET @ E~ est O™ et les dimensions de E* et E~ sont au moins égales a
2, alors a changement de temps constant et revétement fini pres, ¢ est C* conjugué
soit a la suspension d’un automorphisme hyperbolique d’un tore soit a un change-
ment de temps canonique du flot géodésique d’une variété hyperbolique.

Idée de la preuve — D’aprés I'idée d’aller et retour, nous pouvons supposer que
la mesure de Bowen-Margulis est égale a la mesure de Lebesgue. Nous montrons
que les linéarisations de V. Sadovskaya (voir [Sa]) sont C*°. Nous construisons une
connexion invariante, et concluons a l'aide d’arguments géométriques.

Soit ¢ un difféomorphisme d’Anosov quasiconforme. Alors la distribution £ @
E~ de sa suspension est bien sir C*°. Nous déduisons du théoreme ci-dessus la
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classification suivante.

Corollaire 6.1 — Soit ¢ un difféomorphisme d’Anosov quasiconforme préservant
une forme volume. Si ET et E~ sont de dimensions au moins égales a 2, alors a
un revétement fini pres, ¢ est C* conjugué a un automorphisme hyperbolique d’un
tore.

Dans [KS], B. Kalinin et V. Sadovskaya ont classifié des difféomorphismes d’Anosov
quasiconfomes et topologiquement transitifs dont les distributions stable et instable
forte sont de dimension au moins 3. Leur argument est tres élégant, mais rencontre
une difficulté essentielle dans les cas ot ET ou E~ est de dimension 2.

Elaborant sur [KS], nous classifions complétement les flots d’Anosov quasi-
conformes dont les distributions stable et instable fortes sont de dimension assez
grandes. Plus précisément, nous démontrons

Théoréme 6.2 — Soit ¢; un flot d’Anosov quasiconforme topologiquement transitif.
Si Et et E~ sont de dimensions au moins égales a 3, alors d un revétement fini
pres, ¢p est C orbitalement équivalent soit a la suspension dun automorphisme
hyperbolique d’un tore soit au flot géodésique dune variété hyperbolique.

Idée de la preuve — Nous pouvons construire une structure géométrique trans-
verse, invariante par le flot. Ensuite nous montrons la complétude des ces structures.
Un argument de diffusion trouvé par E. Ghys est crucial dans la preuve.

Si les dimensions de ET et £~ sont au moins égales & 2 et 'une des dimensions
de E* ou E~ est égale & 2, alors nous pouvons démontrer le résultat partiel suivant.

Proposition 6.1 — Soit ¢; un flot d’Anosov quasiconforme préservant une forme
volume. Si E1 est de dimension 2 et E~ est de dimension au moins égale a 2,
et les applications d’holonomie de ¢; peuvent étre définies globalement, alors a un
revétement fini prées, ¢y est C* orbitalement équivalent soit a la suspension d’un au-
tomorphisme hyperbolique d’un tore soit au flot géodésique d une variété hyperbolique
de dimension 3.

Les conjugaisons entre les flots d’Anosov ont fait 'objet de beaucoup d’études
(voir par exemple [Ham?2], [DM], [L1] et [L2]). Philosophiquement, il en existe
peu, méme parmi des conjugaisons C°.

Or les équivalences orbitales C” entre les flots d’Anosov sont abondantes. Par
exemple, si deux flots d’Anosov sont suffisament C!-proches, alors ils sont CY or-
bitalement équivalents d’apres la célebre stabilité structurelle des flots d’Anosov
(voir [HK]). Donc une question naturelle & se poser est si les équivalences orbitales
O entre les flots d’Anosov sont rares.

En montrant que les conditions du théoreme 6.2 et de la proposition 6.1 sont
préservées par équivalence orbitale C!, nous déduisons de ces deux résultats la
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conséquence suivante pour les flots géodésiques des variétés hyperboliques.

Théoréme 6.5 — Soient ¢y un flot d’Anosov et Yy le flot géodésique d’une variété
hyperbolique fermée de dimension au moins 3. Si ¢y et Uy sont C' orbitalement
équivalents, alors ils sont C* orbitalement équivalents.

En combinant le théoreme 6.5 avec quelques résultats classiques, nous obtenons

Proposition 6.2 — Soit M une variété connexe et fermée a courbure négative de
dimension m > 3. Alors nous avons les relations suivantes entre la dynamique et la
géométrie:

(1) Le flot géodésique de M est C° orbitalement équivalent & celui d’une variété
hyperbolique si et seulement si le revétement universel M avec sa métrique relevée
est quasi-isométrique a H™.

(2) Le flot géodésique de M est C* orbitalement équivalent a celui d’une variété
hyperbolique si et seulement si M est a courbure constante négative.

1.2.6 Chapitre 7 : Sur ’homogénéité des flots d’Anosov-
lisses affines

Dans ce chapitre, nous obtenons un résultat d’homogénéité pour les flots d’Anosov-
lisses affines. Plus précisément, nous démontrons

Théoréme 7.1 — Soit ¢; un flot d’Anosov-lisse affine sur M préservant une forme
volume. Noté par ggt son changement de temps de Parry. Alors nous avons [’alternative
sutvante :

(1) A un changement de temps constant et un revétement fini pres, ¢ est C con-
Jugué a la suspension d’un nilautomorphisme hyperbolique.

(2) qgt est topologiquement mélangeante et il existe un groupe de Lie G contenant le
groupe fondamental I' de M comme un sous groupe discrete, un sous group fermé
H de G et un vecteur o dans l’algebre de Lie de G tel que ét est C* conjugué au
flot Yy : ING,/H — I'NG /H donné par ,(I'qH) =T'(g - exp(ta))H.

Idée de la preuve — L’essentiel est de montrer que la structure g est normale.
C’est une conséquence du fait que la mesure de Bowen-Margulis de ¢; est égale a la
mesure de Lebesgue. Dans la démonstration, nous nous sommes inspirés de [BFL)].

Rappellons que les flots d’Anosov symétriques sont des exemples de flots d’ Anosov-
lisses (voir le chapitre 3 pour plus de détail). Nous proposons la conjecture suivante.

Conjecture 7.1 — Soit ¢, un flot d’Anosov-lisse affine préservant une forme vol-

ume. Alors ¢y est commensurable a un changement de temps tres spécial d'un flot
d’Anosov symétrique.

19



chapitre I: Introduction générale

Le théoréme 7.1 doit nous fournir le point de départ pour une future classification
des flots d’Anosov-lisse affines.

1.3 A short introduction in English

In this thesis, we consider the relationship between rigid geometric structures and
hyperbolic dynamical systems. Our goal is to better understand the Anosov flows
with C>° Anosov distributions. To simplify the notations, we propose the following

Definition 1.1 — Let ¢; be a C*° Anosov flow. Then it is said to be Anosov-smooth
if its strong unstable and strong stable distributions are both C'*°.

In chapter 2, we relate the study of rigid geometric structures with topologically
transitive pseudo-groups of local isometries with that of (G, X)-structures. Then
in chapter 3, we recall and prove certain dynamical and geometrical properties of
Anosov-smooth flows. The Bowen-Margulis measures will play a crucial role in our
arguments.

In chapter 4, we outline our idea of go-and-back, which will serve as the departing
point of the following chapters.

In chapter 5, by using the idea of go-and-back we classify completely the 5-
dimensional transversely symplectic Anosov-smooth flows, which have been studied
by R. Feres and A. Katok in [FK].

In chapter 6, we classify quasiconformal Anosov systems in most cases. In partic-
ular, the volume-preserving quasiconformal Anosov diffeomorphisms are classified.
Then we apply our classification results to orbit equivalence rigidity of the geodesic
flows of hyperbolic manifold.

In chapter 7, we prove a homogeneity result about affine Anosov-smooth flows,
which should furnish the departing point for a possible future classification of such
flows.

Part of the material of this thesis has already appeared in journals. Chapter 5
has been announced in [Fal]. The complete version is to appear in Journal of the
Institute of Mathematics of Jussieu ([Fa3]). The first part of chapter 4 has appeared
in [Fa2]. The second part of chapter 4 combined with the first part of chapter 6
will appear in Ergodic Theory and Dynamical Systems ([Fa4]).
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Chapter 2

Properties of Rigid Geometric
Structures

Abstract — In this chapter, we establish some structural properties for the C*°
rigid geometric structures admitting topologically transitive pseudogroups of local
isometries. These geometric properties are of fundamental importance to understand
the Anosov-smooth flows.

2.1 Introduction

2.1.1 Definition of rigid geometric structures

In this subsection, we fix the notation and recall some elementary facts about geo-
metric structures (see [CQ] and [Gr1] for more details).

Let M and N be two C'* manifolds. Denote by Dif f° (M, N) the space of C*
local diffeomorphisms from M into N. For any z,y € M and any k£ > 0, we define

Dy (M,N) = {jz6 | ¢ € Dif [i5(M.N), ¢(x) =y},
where j¥¢ denotes the k-jet at x of ¢. We define also
G*(n,R) = Df, 5 (R",R").

Then G*(n,R) is naturally a Lie group with respect to the composition of k-jets.
For any k£ > 1 we denote by T¥R" the vector space of (k — 1)-jets at zero of C™
vector fields on R™. Then G¥(n, R) admits a natural linear representation p on TAR"
such that for any jf¢ € G*(n,R) and any j¥~'Y € TFR™ we have

p(iEd)(G5Y) = 451 (Do (Y)).

It is easily seen that p is injective and with respect to this faithful representation,
G*(n,R) becomes a real algebraic group (see [CQ] and [OV]).

For [ > k > 0 we have the natural projection 7l : G'(n,R) — G¥(n,R), which is
in fact a homomorphism of real algebraic groups.
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Suppose that M is of dimension n. We define for any k£ > 1,
F*M = Upens Dy ) (R", M), DPM = Uy yens DG, (M, M).

Then G*(n,R) acts naturally on F*¥M by right composition and with respect to
this action F'*M becomes a G*(n, R)-principal bundle. We call F*M the k-th order
frame bundle of M and each element of F¥M a frame of order k.

Let Z be a smooth real algebraic variety admitting an algebraic action of G*(n, R)
from left. Then a O section of the associated fiber bundle 7 : F*M % Z — M is
said to be a C'*° geometric structure of type Z and order k on M. Recall that these
sections are in bijection with C°° G¥(n, R)-equivariant maps from F*M into Z (see
[Fe]).

For a C'*° diffeomorphism ¢ of M and a C* geometric structure g on M, we
denote by ¢.g the image of the natural action of ¢ on ¢g. Then ¢ is said to be an
isometry of g if ¢.g = g. The isometry group of g is denoted by I(g).

Now suppose that g is of type Z and order k. For any i > 0 we denote by J! Z the
space of i-jets at zero of smooth maps from R” into Z. Then J!Z is also a smooth
real algebraic variety admitting a natural algebraic action of G**/(n, R) (see [CQ]).
By differentiating g (see [CQ] for the details), we get a C> G*¢(n, R)-equivariant
map g' : F*M — JiZ ie. a C° geometric structure of type J: Z and order (k+1).
This structure ¢’ is said to be the i-th order prolongation of g.

For any i > 0 and ¢ € Dif f5(M, M), ¢ sends g° to another local geometric

structure denoted by ¢.(g"). View ¢' as a section and define for all z,y € M
L = {370 | 6 € Dif fpo(M, M), ¢(x) =y, (¢.(9")(y) = ¢'(y)}-

If ¢* is viewed as a G*%(n)-equivariant map, then
[:f;;l = {jfﬂﬁb | NS Diffl?)%(Ma M); 925(33) =1, (gi : Jk+i¢) |F§+"M: gi |F§+iM}-

Similar to G**(n,R), DE“J;)(M , M) is naturally a real algebraic group. Since
the action of G*(n,R) on Z is supposed to be algebraic, then it is easily seen that
I¥H is a real algebraic subgroup of Dé“;;)(M , M) (see [CQ]). In addition, for all
7 > 1 > 0 the natural projection 7T,I:
algebraic groups.

+J . Tk+j k+i g :
w0 L) — I3 is a homomorphism of real

Definition 2.1 — Under the notations above, the geometric structure g is said
to be rigid, if there exists ¢ > 0 such that for any z € M, m T [FHH+L — Jhti g

injective.

If g is rigid, then for all I > 7 > i, W’,fi§ D I
Corollary 5.5 of [CQ)]).
We denote by [alf; the space of germs at x of g-local isometries sending z to .

Then for any x € M, Ij;; is a group admitting for any 5 > 0 the natural projection
w106 — I547 such that m%;(¢) = jit/¢. We define

T,x

k+] . . . . . .\
— I is also injective (see

k+7 __ k+j loc __ loc
1 - U:r,yEM]m,y 3 I — Ux,ye]\/flm’y-
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Each element of I** is said to be a (k + i)-th order isometric jet of g.

I**7 and I'°¢ are both pseudogroups acting naturally on M. For any = € M we
denote respectively by ¥ (z) and I'°°(z) their orbits of z. If I'® acts transitively
on M, then g is said to be locally homogeneous.

Many geometric structures are rigid. For example, pseudo-Riemannian metrics,
complete parallelisms and linear connections are all rigid (see [CQ)]). To illustrate
the more or less formal definitions above, let us prove by a simple calculation that
Riemannian metrics are rigid.

Let g be a C*° Riemannian metric on a n-dimensional manifold M. For any
x € M we want to see the injectivity of 77 : I, — I ,.

Fix a normal coordinate system of an open neighborhood of z. Then I;O; is
defined by the equations

0, 00,

06 =gu, V1<Fk<n.
gJo¢ 81’k 6a:l 9kl "

By taking the derivatives of these equations, we get for all 1 < s, k.l <n

06, 0000, . Po 06 06 P
o, 0w 00y 99 ° odx, 0wy T 99 ° Cou, Bmor, I

5’rgi,j °¢ o ¢

So I fx is defined by the following algebraic equations

0gp; 0p;
gi,j(l“) : oy, : 8—1'1 = gkl(x)a

06, 96, 0, P66 (00

0r91(x )8963 oz, 0x; +gi5( )&Ekams ox; i@ )&Tk 01,074 = Osri(2).

Since we have taken a normal coordinate system at x, then

9i,j(T) = 05, Opgij(z) =0, V1 <45,k <n.

Suppose that j2¢ € I?  and jl¢ = j1Id. Then we easily get from the previous two
algebraic equations

Po P
01,024 N al‘laxs’

V1<skl<n.

So
Py Po . Po, P
Oridr,  Or0rs Or0re  O0r0TK
Thus
Po _
8$kal's 7

i.e. j2¢ = j2Id. So 7% is injective and g is rigid.
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2.1.2 The organization of the chapter

In Section 2.2 we give a criterion for the completeness of a linear connection with
parallel torsion and curvature tensors. Then we deduce a criterion for the homo-
geneity of such a connection possibly enriched with a parallel geometric structure of
order one. This result is fundamental for Chapters 5 and 6.

In Section 2.3 the open-dense theorem of Gromov is reproved. Our observation
is that everything becomes easy and clear if we consider only the rigid geometric
structures admitting topologically transitive pseudogroups of local isometries, which
is the only interesting case as far as applications to this thesis are concerned.

In Section 2.4 we study the possibility of constructing a (G, X)-struture from
a locally homogeneous rigid geometric structure. We find a sufficient (and almost
necessary) condition to carry out such a construction.

In Section 2.5 we find a notion of completeness for locally homogeneous rigid geo-
metric structures which garantes the completeness of (G, X)-structures constructed
in the previous section.

So in principle, the results established in this chapter enable us to transfer the
study of rigid geometric structures with many local isometries to that of (G, X)-
structures.

2.2 Homogeneity of parallel linear connections

Linear connection is one of the most important rigid geometric structures, whose
study is both subtle and fundamental. In this section, we prove some properties
about a special (but important) class of linear connections.

Let V be a C* linear connection on a C*> manifold M. Then V is a C* rigid
geometric structure of order two (see [CQ]). We denote respectively by 7" and R
the torsion tensor and the curvature tensor of V. Then V is said to be parallel if
VR =0 and VT = 0.

Recall that V is said to be complete if all its maximal geodesics are defined on
R. We can prove the following

Lemma 2.1 — Let V be a C™ parallel linear connection on a connected mani-
fold M. Let Ey,---, E; be smooth distributions on M. Then V is complete if the
following conditions are satisfied:

O)WITM=E&---®E and VE; CE;V1<j<lI,

(2) For any 1 < j <, the geodesics of V tangent to E; are defined on R.

Proof — For the terminology below, our reference is [KN]. Denote by F(M) the
frame bundle of M which is naturally identified to F'(M)and by 7 the projection of
F(M) onto M. The linear connection V gives a horizontal distribution H on FM
and FM is foliated by holonomy subbundles.

‘H is tangent to each holonomy subbundle and then so is any standard horizontal
field. For any uw € FM we denote by P(u) the holonomy subbundle containing
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u. The restrictions to P(u) of the standard horizontal fields of FM are also called

standard horizontal. By [KIN], V is complete if and only if for any = € M there

exists u € 77! (z) such that the standard horizontal fields of P(u) are all complete.
Take z € M and u € 7' (x) such that

u:(ui...,u%l,...’ull,... l)7

where {u],--- ,ufj} is a basis of Ej(z), V1 < j <. For all £ € R”, We denote
by B*(&) the standard horizontal field on P(u) corresponding to £ and denote by
(e1,---,e,) the canonical basis of R”. Take v € P(u). Because of Assumption (1),
v has the same form as u. Since for any 1 < m < n, the integral curve of B%(e,,),
begining at v, is just the horizontal lift, beginning at v, of the geodesic tangent to
Pr,,(v), then by Assumption (2), this integral curve is defined on R. We deduce
that B“(e,,) is complete.

Fix a basis of the holonomy algebra of V and denote by {Vi,- -, V,} the corre-
sponding vertical fields of P(u). Since V is supposed to be parallel, the fields

{‘/1: e a‘/s: Bu(el)a e 7Bu(en)}

generate a Lie algebra (see [KN]). Since these fields are all complete, this Lie algebra
must be induced by a smooth action on P(u) of a simply connected Lie group. So
for all £ € R”, the field B*(&) (= >, &B"(e;)) is complete. We deduce that V
is complete. [ o

Let V be a C' linear connection on a n-dimensional manifold M. If Z is a
smooth algebraic variety admitting an algebraic action from left of G*(n,R), then V
gives rise to an horizontal distribution on the associated bundle F*M x Z denoted by
Hz (see [KN]). A smooth curve v in F*M x Z is said to be parallel with respect to V
if it is everywhere tangent to Hz. A C* section o of the bundle 7 : FIM x 7 — M,
i.e. a C* geometric structure of type Z and order one, is said to be parallel if
Do (TM) C Hyz. Then it is easily seen that o is parallel iff it is parallel along any
smooth curve in M, i.e. o on is parallel for any smooth curve 7 in M.

Recall that the isometry group of each C*° rigid geometric structure g on M
denoted by I(g) is a Lie group acting smoothly on M (see [Grl]). The following
lemma is of fundamental importance for us.

Lemma 2.2 — Let V be a C*° complete linear connection on a connected and simply-
connected manifold M. Let 7 be a C* V-parallel geometric structure of order one
on M. If V is parallel, then I[(V,T) acts transitively on M.

Proof — Here I(V,7) denotes the isometry group of the combinated geometric
structure (V, 7). Fix ug € FM and denote by P(ug) the holonomy subbundle of
uy (see [KN]). Denote by G the group of affine diffeomorphisms of M preserving
P(ug). Then by the assumptions, G is naturally a Lie group and acts transitively
on M (see [KIN]). So we need only prove that g preserves 7 for all g € G.
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Take g € G and suppose that 7 is of type F. For all x € M, there exists
u € P(up) and a € F such that [u, a] = 7(z), where [u, a] denotes an element in
the associated bundle FM x F. Since g.(u) € P(up), then there exists a piecewise
smooth horizontal curve u(t) in P(ug) such that u(0) = u and u(1) = g.(u). Project
u(t) to M and denote the resulting curve by v. Then [u(t), a] gives a horizontal lift
of v in F'M % F and [u(0), a| = 7(x). Since 7 is V-parallel, then 7o v is also a
horizontal lift of 4. We deduce that [u(t), a] = (7 ov)(t) for all t € [0, 1] by the
uniqueness of the horizontal lift beginning at a fixed point. Then we have

7(9(z)) = 7(v(1)) = [u(1), d]

= [9:(w), a] = g.[u, a] = g.(7(z)).
So G C I(V, 7). We deduce that I(V,7) acts transitively on M. O

By combining the previous two lemmas we get the following

Corollary 2.1 — Let M be a C* connected manifold. Let V be a C* parallel linear
connection on M and 7 be a C* V-parallel geometric structure of order one on M.
Then 1 (V T) acts transitively on M if there exist smooth distributions Ey,--- , E
on M such that the following conditions are satisfied:

(2) For any 1 < j <1, the geodesics of V tangent to E; are defined on R.

2.3 Open-dense theorem

In the previous section we have seen that a complete parallel connection is locally
homogeneous. In spite of its importance, such a connection is not always the relevant
geometric structure arising from applications. So in order to understand various
phenomenas from the symmetry viewpoint, we need a guiding theory of a more
general nature, of which the departing point should be the open-dense theorem
discovered by M. Gromov.

In the following sections we shall propose some notions and prove certain prop-
erties to furnish such a (though still quite rough) theory. Let us show firstly by a
simple example what the open-dense theorem is about.

Lemma 2.3 — Let A be a C> complete parallelism on a C* manifold M. If its pseu-
dogroup of local isometries I'¢ admits a dense orbit, then I'°¢ acts transitively on M.

Proof — Suppose that M is n-dimensional. Recall that a C'>° complete parallelism
on M is by definition a C* section of 7 : F*M — M. Thus A is identified to n vector
fields {X3,---, X, } such that for all z € M, {X;(z),---, X, (x)} are independant.
So we get O™ functions {f];}1<ijr<n such that

X Xl = > fF

1<k<n

26



chapter II: Properties of rigid geometric structures

Since 1" admits a dense orbit, then each function fF; is constant on a dense subset
of M. So these functions are all constant. Thus {Xi,---,X,} generates a Lie
algebra denoted by g.

Denote by G the simply-connected Lie group with g as the right-invariant Lie
algebra. Then A is induced by a local G-action on M (see [Fel]). Denote by
{X1,---, X,} the right-invariant fields of G’ inducing A.

For any x € M we define «, : G — M such that a,(g) = gz. Then in a neigh-
borhood of the unit e € G, a, is a C* local diffeomorphism sending {X,---, X,,}
to {X1,---,X,}. So A is locally homogeneous, i.e. I acts transitively on M. O

As mentioned above this kind of open-dense phenomena for general rigid ge-
ometric structures was first understood by M. Gromov. Inspired by [Grl], Y.
Benoist reobtained this result (see [Be]). But his version is not sufficient for some
applications. So in the following we retake his arguments to obtain the following
application-oriented proposition which should, though weaker than that of M. Gro-
mov, be enough for most (if not all) applications.

Theorem 2.1 (M. Gromov) — Let M be a C* manifold and g be a C* rigid ge-
ometric structure on M such that its pseudogroup of local isometries I'°° admits a
dense orbit. Then I'°° admits a unique open-dense orbit denoted by .

In addition for any r > 1, I" N D"Q is a C* submanifold of D"M such that
Jor any x,y € Q and any n € I, there exists a unique germ of local isometry
integrating n. Furthermore, this germ of local isometry depends smoothly on n.

Remark 2.1 — Under the notations of Theorem 2.1, we suppose that ¢ and
are two local g-isometries both defined on a connected open subset U C (). Define
forr>1 )
U={z€U]|j0=jv}

By the unique existence of germs of local isometries integrating isometric jets, U is
seen to be closed and open. So if U # 0, then ¢ o= |uv -

For all ¢ € I"N D) we denote by ¢ the unique germ of local isometry integrating
(. The C* dependance of germs of local isometries on r-th order isometric jets has
the following meaning:

For any x,y € 2 and any n € I, there exists a connected open neighborhood U
of x in M and an open neighborhood V' of n in I" N D"Q) such that for all { € V', (
can be defined on U and the evaluation map © is C>°, where © : U x V. — M such

that O(u, () = ((u).

If U is a connected open neighborhood of z and V' is an open neighborhood of 7
such that for all ¢ € V, ¢ can be defined on U, then it is easily seen that © is also
C>*onUxV.

Theorem 2.1 will be proved via a few lemmas. Suppose that M is of dimension

n and g is a C'*° rigid geometric struture on M satisfying the conditions of Theorem
2.1. For any A C M we denote by A° its interior and by A~ its closure. Suppose in
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addition that g is of type Z and order k and fix z € M such that I'°¢(z) = M.

Lemma 2.4 — Under the notations above, for any i > 0, [k”(:r)o s open-dense
i M.

Proof - Fix i > 0 and define W = G**i(n, R)\ J! Z. By the G**(n, R)-equivariance
of ¢' there exists a unique C° map g : M — W such that the following diagram
commutes,

phtipg 9 Jiz
lpr lw
M—L

Then it is easily seen that for all y,z € M, I*(y) = I*(2) iff g'(y) = g'(=2).
Since the action of GF(n,R) on J! Z is algebraic, then by a classical result of M.
Rosenlicht (see [Ro]) there exists a stratification of J!Z into G¥*¢(n, R)-invariant
(> submanifolds
J 7 =ZyU---UZ
such that for any 0 < j <1, Z; is open in ZyU---UZ; and 7 : Z; — G (n, R)\ Z;
is a C'* fiber bundle.

Let j be the biggest number such that ¢'(F*" M) N Z; # 0. Thus (¢°)"*(Z;) is
open in F*M. Denote by p; the maximal rank of ¢’ on (¢°) ' Z; and define

S={ne "™ M|g@n) €z, rank,(g') = pi}.

So § is open in (¢") 'Z;. We deduce that V = pr(S) is open in M. Again by the
G*i(n, R)-invariance of ¢g* we get & = FFV. Define W; = G*(n, R)\ Z;. Then
W, is a ¢ manifold and we have the following commutative diagram,

Fk—i—va)Z]
-, |
v —L=W;

Note that g’ |, is C*°. Suppose that the fibers of 7 : Z; — W; is of dimension d;.
Then by the definition of S, it is easily seen that g | is of constant rank (p; — d;).

Take y € V N I*(x) and define w = g'(y). Since g’ |y is of constant rank, then
(g" |v) "' (w) is a closed submanifold of V. However

(@ [v) Mw) = (") (w)nV =I""(z)NV.

So I*i(z)NV is a C*° closed submanifold of V. Since I'°¢(z)” = M, then I*™(z)” =
M. So I**i(x) NV is dense in V. We deduce that

V C I"(2).
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Since in addition I'¢(z) C I**i(z) and ['°°(z) = M, then I"*"(x) contains an
open-dense subset of M. So I***(x) is open-dense in M. O

Denote I*%(z)° by Uy4. Since for all j > i > 0 we have [¥7(z) C [**(z), then
Usj C Uiyi. Under the notations above we have g'(Uyy;) = w. We deduce that
9" |pr+iy, ., is of constant rank d;.

Fix i > 0 and denote (k + i) by r. Then we get the commutative diagram,

FrU, 7 7 Hw)
lpr l/w
U, —— {w}

Define g, : I" — M x M such that ¢.(ji¢) = (z, ¢(x)). Then we have the following

Lemma 2.5 — " N (D"U,) is a C* submanifold of constant dimension of D"U,
and g, : "N D"U, — U, x U, is a C* surjective submersion.

Proof — Suppose that ji¢ € I" N (D"U,) and ¢(x) = y. Take a coordinate chart 0
of an open neighborhood V' of x. Then 6 gives canonically a C'™ local section s of
pr: F"V — V. Take a small open neighborhood V' of y. Then using s, D"(V, V")
is naturally identified with V' x F"V" in such a way that

I'aD"(V.V) ={(z. 1) | (z.)') e V. x F'V', g'(s(2)) = g'(K)}.

Since ¢’ |pry, is of constant rank d;, then I" N D"(V, V') is a C* submanifold of
codimension d; of D"(V,V'). So I" N (D"U,) is a C* submanifold of codimension d;
of D"U,.

Since by definition U, = I"(z)°, then ¢,(I"N(D"U,)) = U, x U,. We want to see
that ¢, |rn(pru,) is a submersion.

Define m, : F"M x F"M — D" M such that

my (Jo®, Jo¥) = Joo) (W 0 @)
Then m, is naturally a G"(n,R)-principal bundle. We define
L"={(n.¢)| (n,¢) € F"M x F'M, g'(n) = g'(¢)}-
Then it is easily seen that L™ = m*(I"). In particular,
L'N(F"U, x F'U,) =m, Y(I" U (D"U,)).

By the definition of L", we can see that L™ N (£"U, x F"U,) is a C*° submanifold of
FrU, x F"U,.
Denote by (pr, pr) the projection of L" N (F"U, x F"U,) to U, x U,. Then we
have
¢ om, = (pr,pr).
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Since m, is a submersion, then in order to prove that ¢, is a submersion, we need
only see that (pr,pr) is a submersion.
For any (n,¢) € L" N (F"U, x F"U,), we define

Ly ={¢ e F'U, | g'(n) =g'("N}, Li={n" € F'U. | ¢'(n') = g'(O)}-

Then L; and Ly are both €™ submanifolds of F"U,.. Denote respectively by pry and
pr1 the projections of Ly and Li onto U,. Then Dy, (pr,pr) is surjective if D¢pro
and D,pr; are both surjective.

Suppose that v = ¢(0) and z = ¢*(¢). Then we get a similar diagram as that in
Subsection 2.3 of [Be]. Thus by a simple diagram chasing, we can see that D¢pry
is surjective. Similarly D,pr; is also surjective. So g, is a submersion. [J

Remark 2.2 — For any = € U,, we define
I =g ({z} x U, I', = ¢, YU, x {z}).

Then by Lemma 2.5, I7 N F"U, and I’ N F"U, are both € submanifolds of D"U,
and their projections onto U, are both C’°° surjective submersions.

Lemma 2.6 For any r > 1, #/*' . "' n(D""'U,.,) — I"N(D'U,) is a
C® local diffeomorphism.

Proof — For any y,z € U,, I, = ¢ Yy x z) is a C° submanifold of D"U,. Since g
is rigid, then for all z € M, 77+ | r+1 is an injective homomorphism. In particular
m | is an immersion. We deduce that 77 *! : I7th — I7 is an immersion.
Since ¢41 |r+1n(pr+iv,,,) 1S a submersion by the previous lemma, then it is easy to
see that 771 | [ 1n(Dr+10,,,) 1S an immersion. So in order to prove the lemma, we
need only see that I" N (D"U,) is of constant dimension for r > 1.

Since dim(1% ) is decreasing with r, then for all » > 1, dim([I ) is constant.
Since we have by the previous lemma

dim(I" N (D"U,)) = dim(1 ) + dim(M x M),
then dim(I" N (D"U,)) is constant for all 7 > 1. Thus the lemma follows. O

Now we can finish the proof of Theorem 2.1 as in [Be]. Fix r > 1 and suppose
that n € I" N D"U,. Take a small open neighborhood V; of n in I" N (D"U,) such
that if V1 = 77 (V,), then 77 | |y, and ©7 3 |y, are C* diffeomorphisms onto
their images.

View V,_; as a C° differential relation. Then its holonomy solutions correspond
to C* local isometries of g. By the same arguments as in Subsection 3.2 of [Be], g
is seen to be C*°-complete and consistent (see [Be] for the definitions). Then by the
Frobenius theorem (see [Be]), there exists a unique germ of solution of V,._; passing
by 7._,(n), i.e. there exists a unique germ of C'*° g-local isometry ¢ integrating
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nr_1(n). Since g is rigid, then ¢ integrates also 7. The C'* dependance on r-th
order isometric jets of germs of g-local isometries follows from the proof of the
Frobenius theorem (see Subsection 3.2 of [Be]).

So each element of I" N (D"U,) can be integrated to a local isometry of g. Thus
U, C I'*(x). Inversely we have ['°°(z) C U, (see the proof of Lemma 2.4). So we
get

U, = I'(z).

In particular 1'°°(z) is open-dense in M. Since two open-dense orbits must intersect,
then 1'°°(x) is the unique open-dense orbit of 1!°¢. So Theorem 2.1 is proved. We
can easily deduce from this proposition the following

Corollary 2.2 — Under the conditions of Theorem 2.1, we have for all r > 1, Ij:‘fg
is isomorphic to I, . for any x € (). In particular Ii‘f;j 18 naturally a real algebraic
group for any x € €.

2.4 Normality and (G, X)-structures.

Throughout this section we denote by g a C'*° rigid geometric structure on M and
suppose that its pseudogroup of local isometries 7' admits a dense orbit. Then by
Theorem 2.1, I'°¢ admits a unique open-dense orbit denoted by €. In this section
we want to construct a (G, X)-structure on €. To simplify certain notations, we
consider in the following the right-invariant Lie algebras of Lie groups in the place
of their left-invariant Lie algebras, i.e. the Lie algebras of left-invariant vector fields.

Let Y be a C* vector field on M. Then Y is said to be a Killing field of g if
the local flow of Y preserves g. Fix x € 2 and denote by g the space of germs at x
of C* local Killing fields of g. Denote by h the subset of g consisting of elements
vanishing at z.

Lemma 2.7 — Under the notations above, g is a Lie algebra of finite dimension
and b is a Lie subalgebra of g. In addition there exists r > 1 such that Y = Z in g

It JzY = gz 2.

Proof — For two germs of local Killing fields Y and Z we define their bracket
as the germ at x of the local field [Y, Z]. Define their sum as the germ at x of the
local field (Y +Z2) and for any a € R, we define a-Y as the germ at x of the local field
a-Y. We want to see that g forms a Lie algebra with respect to these operations.

Suppose that ¢ is of type Z and order k and view ¢ as a map from F*M into
7. For each vector field X on M, we can lift it naturally to a vector field on F*M,
denoted by X(z) (see [GS]). Then X is Killing iff Dg(X 1)) = 0. Thus we get easily
Y+ Zeganda-Y € g. Since

Yy, Zay) = 1Y, Z] @y,
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then [Y, Z] is also contained in g. So g forms a Lie algebra and b is easily seen to
be a Lie subalgebra of g.

Fix r > 1 such that Theorem 2.1 is valid. Suppose that Y € h and jlY = 0.
Since we have naturally (see [CQ])

then jT¢ = jrId for all | t |< 1, where ¢} denotes the local flow of Y. So by
Theorem 2.1, there exists a small open neighborhood U of  such that ¢} can be
defined on U and ¢) |p=Id |y for all | t |[< 1. So Y =0 in h. Thus for Y, Z € b,
Y =7if jIY = j2Z. We deduce that h is of finite dimension. Then so is g. O

Remark 2.3 — Suppose that U is a connected open subset of €). Let Y and Z be
two C Killing fields of g defined on U. If there exists y € U such that j;Y = j77,
then by Lemma 2.7, Y = Z on U.

Suppose that G is the connected and simply-connected Lie group with g as its
right-invariant Lie algebra. Denote by H the connected Lie subgroup of G integrat-

ing b.

Definition 2.2 — Under the notations above, g is said to be normal if H is closed

in G.

Since g |q is locally homogeneous, then the normality of ¢ is independant of
the base point x chosen in €. If G denotes the connected and simply-connected
Lie group with g as its left-invariant Lie algebra and H denotes the connected Lie
subgroup of G integrating h, then it is easily seen that g is normal iff H is closed in G.

Lemma 2.8 — Under the notations above, if the center of g is trivial, then g is
normal.

Proof Recall that by Corollary 2.2, I is a real algebraic group. Define p :
Il%¢ — Aut(g) such that p(h)(Y) = Dh( ). Since p is a homomorphism of real
algebraic groups, then p(IL%¢) is a closed subgroup of Aut(g) (see [OV] and [Bo]).

By the local action of I loc on M, each right-invariant vector field of I induces
naturally a germ of local Kllhng field vanishing at x (see Remark 2.1). In this way,
we can identify the right-invariant Lie algebra of I'°¢ with b.

On the other hand, we have the adjoint representatlon Ad : G — Aut(g). It is
easily seen that Ad(H) and p(Il%) have the same Lie algebra in Aut(g). So

Ad(H) = (p(L%;))o-

Since the center of g is trivial, then H = (Ad™((p(I%%))0)o- So H is closed in G, i.c.
g is normal. [J
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From now on we suppose that g is in addition normal. Then we get a C>° manifold
G/ H. In the following we want to contruct on G, H a G-invariant geometric
structure g which is locally isometric to g |q.

Fix r > 1 such that Theorem 2.1 is valid. Then by Remak 2.2, I NET™Qis a C
submanifold of F"M and pr: I N F"Q — Qis a € surjective submersion. Since
I, , acts freely and properly and transitively on the fibers of pr by right composition,
then pr: I} NF"Q) — Qis a I -principal bundle. So we get the C'* diffeomorphism

pr: (I NFQ) /T, Q.

For any n € I NF"S), we denote by 7 the unique germ of local isometry inducing
7.

Take an open neighborhood V;. of j7(Id) in I} NF7Q. If V, is small enough, then
the following operation is well-defined and C'*°. For any n,( € V,,

- ¢ =Ju(ioQ).

We call this operation the multiplication of V,. Recall that 7 and ¢ denote respec-
tively the local isometries integrating n and ¢ of g. Certainly 7 - { is not necessarily
contained in V.. In the following, V, is supposed to be small enough such that all
the expressions below make sense.

Denote by V, /I7  the image of V, in (I7 N F"Q) /I . Then V, /I is open
and pr: V, /11, = pr(V, /I1,) = V', C M.

Denote by T.(V;.) the tangent space of V,. at e = j7(Id). Then it can be identified
to local right-invariant fields on V,. as following:

For any u € T.(V,) and any 8 € V, we define a local vector field u on V, such
that

u(B) = DRs(u),
where Rj denotes the right-multiplication by 3. Since the multiplication of V. is

associative, then u is right-invariant on V,. So for any a € V. and all | t |< 1, we
have

¢ (a) = ¢/ (e) - a.

In particular, for small munbers ¢ and s
dr'ys(€) = o1 (e) - ¢ (e).

Thus {¢}(e) }4«1 gives a local homomorphism of R into V.
Conversely each local right-invariant vector field Won V. is determined by W (e),
i.e. there exists u € T,(V,) such that W = 4. So for any u,v € T,(V}), we can define
their bracket [u,v] such that
[u,v] = [a,7].
In this way T,(V,) becomes a Lie algebra. Denote by V an open neighborhood of
zero in T,(V,). If V is small enough, then the following map is well-defined and C'*,

exp:V —V,,
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u — ¢¥(e).

In addition for ¢ and s small, we have exp(tu) - exp(su) = exp((t + s)u). It is easy
to see that D.exp = Id. So exp is a C* local diffeomorphism near zero. We define

Ad :V, — Aut(T.(V},))

a— (u— P =0 (@™ - exp(tu) - @)).

Then it is easily seen that Ad is a well-defined local homomorphism. Recall that
we are using throughout the right-invariant Lie algebras. Define also ad : T.(V,.) —
Der(T.(V;)) such that ad(u)(v) = [u,v]. Then it is easily checked that D.Ad = ad.

By using these notions and checking through the proof of Theorem 4.29 of chapter
one of [KMS], we can see that the classical Campbell-Baker-Hausdorff theorem is
also valid in our situation, i.e. for any u,v € V C T,(V,) such that V is very small,
we have

exp(u) - exp(v) = exp(u + v — %[u, vl 4.

The formula is the same as that for Lie groups. Recall that we are using throughout
the right-invariant Lie algebras in the place of left-invariant Lie algebras.
Define
p:T(V,) — g

P _
u— (y — g li=0 (¢, (eW(¥)),

where ¢, (a) denotes the germ extension of the local one-parameter subgroup ¢?(e)
of V,.. Then p is easily seen to be a Lie algebra isomorphism by checking through the
proof of Proposition 4.1 of chapter one of [KN]. Thus we get a local diffeomorphism
¢ sending e to e such that the following diagram commutes (when defined)

—1

—p>Te(V})

g
lexp lexp

Because of the Campbell-Baker-Hausdorff formula, we have for any a and b near e
in G, ¢(a) - ¢(b) = ¢(ab). In addition, ¢ sends an open neighborhood of & in H
onto an open neighborhood of e in I .. Denote by 7 the projection of G onto G/ H
and take a small neighborhood O of € in G. Then we get a well-defined C* local
diffeomorphism ¢ : 7(0) — V,/ I, , by defining for g € O,

o(gH) = ¢(9)I, ,.

Define 6 = (pr o #)~t. Then 6 is a C™ local diffeomorpism from M to G/ H
sending = to eH. For each small Y in g, it is easy to verify by the definition of ¢
that 0(¢Y (z)) = exp(Y)H.
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Define § = .g. Then § is a local O™ geometric structure on G/ H.

Lemma 2.9 — Under the notations above, the germ of g at eH can be uniquely
extended to a G-invariant C*° geometric structure g on G/ H, which is locally iso-
morphic to g |q-

Proof — By the definition of § and ¢ we can see that for any a near e, the left
multiplication by a sends the germ of § at €H to that of § at af. In particular, we
deduce that each element of H preserves the germ of § at eH.

So we can find a small open neighborhood U of el such that § can be defined
on U and for any y € U there exists a € G such that the left multiplication by a
sends the germ of § at e[ to that of g at y.

For any bH € G/ H, we define g such that its germ at bH is b,§. We need see
that g is well-defined. If y,z € U and b,c € G such that b(y) = ¢(2), then by the
definition of U, there exist o, 3 € G such that they send the germ of § at eH to
the germs of § at y and z. Thus 7' - ¢ '-b.-a € H. Since each element of H
preserves the germ of § at €[, then b,§ and c,§ have the same germ at b(y). So g is
well-defined on G/ H. Then by its definition g is G-invariant and locally isomorphic
to g |q. O

Recall that the isometry group of g is denoted by I(g). It is a Lie group acting
analytically and transitively on G /H (see [Grl]).

Lemma 2.10 — Under the notations above, each C* local g-isometry defined on
a connected open subset can be uniquely extended to a C'™ global isomelry of g.

Proof For any Y € g we denote by Y the right-invariant vector field on G
corresponding to Y. Denote by Y its quotient field on G H. Then by the defini-
tion of @, it is easily seen that 0,(Y) = Y2 as germs of fields at eH.

Since pr : I; N (F"Q) — Q is a surjective submersion, then for any u € T,Q
there exists v € T'(I; N (F"Q)) such that

D(pr)(v') = u.

Since u’ can be integrated to a local 1-parameter subgroup of V,., then u is tangent
to a local Killing field. We deduce that

glo={2() ] Zeg}=T.M,

So we have (0.(9)) |.a= T.5(G /H). In addition, 6,(g) is the Lie algebra of germs
at el of C™ local Killing fileds of g.

Take h € I'% . (g). Then we get a Lie algebra isomorphism A, : 0,(g) — 0.(g)
such that h*(W) = Dh(W). Thus there exists a Lie algebra isomorphism A of g
such that 6, 0 A = h, o 0,. We have A(h) = b.
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Denote by 9 the Lie group automorphism of G integrating A. Then we have
Y(H) = H. Denote by 7 the projection of G onto G/ H. then there exists a unique
C* diffeomorphism v of G/ H such that T o =1 o,

Recall that for any Y € g, 0.(Y) = Y = m (YT as germs of fields at eH. Then
we have the following equalities of germs at eH

B(0.(V)) = Bu(m (YD) = 7 0 0 (YF) = m(Detb(V)))
— m(AY)) = 0.(A(Y)) = h(6.(Y)).

Since g is of finite dimension, then we can find a small open neighborhood U of z
such that for any Y € g, Y can be defined on U and ¥(6,(Y)) = h.(0,.(Y)) on U.
Since (0.(9)) |.a= T.q(G /H) and 0,(Y) = Y, then we can well choose U so that
for all y € U there exists Z € g such that

9/)[0 1] (e ) c o), ¢1*Z(éH) =0(y),

where ¢?*? denotes the flow of 6,Z. Since ¥ and h fix both éH, then ¥(0(y)) =
h(0(y)). So we get 1 = h as germs of diffeomorphisms at eH. Since g is G-invariant
and 1 is induced by an automorphism of G, then v is in fact a global isometry of g.

Since G acts transitively by left-multiplication on G H, then for each local C™
isometry b’ of g sending y to z, there exists a global C* isometry 9’ of g such that

= 1)/ as germs at y of diffeomorphisms.

Suppose that f is a local isometry defined on a connected open subset U of M.
For each global g-isometry ¢, we define Uy, = {z € U | ¢ = f as germs at z}. Then
we have

U = Userg)Us-

In addition, Uy, NUy, = 0 if ¢y # ¢o. Since U is connected, then there exists a
unique global isometry ¢ of g such that ¢ [y= f. O

By combining the lemmas above we get the following

Proposition 2.1 — Let g be a C* rigid geometric structure. If its pseudogroup
of local isometries admits a dense orbit, then it admits a unique open-dense orbit
denoted by Q. If g is in addition normal and G and H are defined as above, then
there exists on G /H a G-invariant geometric structure g which is locally isometric
to g |q. In addition by taking the local isometries from (S, g |q) into (G /H,g) as
charts, we get on Q a (1(g), G/ H)-structure.

Lemma 2.11 — Let g be a real analytic rigid geometric structure on a real ana-
lytic manifold M. Suppose that its pseudogroup of local isometries 1'°¢ admits a
dense orbit. Then 1'°° has a unique open-dense orbit denoted by 2. If U is an open
subset of €2, then each C* g-Killing field defined on U is real analytic.

Proof Denote by X such a Killing field. By the argument above, for x € U,
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the germ of X at x is induced by a vector u € T.(V;.). Since g and M are both real
analytic, then V; is real analytic and % is a real analytic field. So {¢](e)}y<<1 gives
a local real analytic homomorphism of R into V. Since the evaluation map © (see
Remark 2.1) is certainly real analytic, then the germ of X at x is induced by a real
analytic local flow. So X is also real analytic. [

Remark 2.4 — Lemma 2.11 is certainly wrong for nonrigid geometric stuctures.
For example, (8%, R?) gives a counter-example.

Let g be a C* rigid geometric structure on a connected and simply connected
manifold M. If its isometry group I(g) acts transitively on M, then M and g are
naturally real analytic. By [DG], g is identified to the Lie algebra of real analytic
global g-Killing fields, which is by the previous lemma just the Lie algebra of C'>
global g-Killing fields. If we suppose in addition that each C'°* global Killing field
of g is complete, then g is isomorphic to the Lie algebra of I(g) and b is isomorphic
to the Lie algebra of the isotropy subgroup in /(g) of . Then we easily deduce that
g is normal in this case.

2.5 About completeness

2.5.1 Geodesic structures and associated notion of complete-
ness

Classically, geometry has two points of view, that of Riemann and that of Klein.
Rigid geometric structures are natural generalizations of Riemannian metrics and
(G, X)-structures are generalizations of homogeneous geometries. Since non-complete
(G, X)-structures have little use in the context of our thesis, then we want to find
a notion of completeness for rigid geometric structures to garantee the complete-
ness of the (G, X)-structures constructed in Proposition 2.1 from a given locally
homogeneous rigid geometric structure.

Recall that for each (G, X)-structure on M there exists a developing map D :
M — X, which is a local diffeomorphism (see [Th]). Then a (G, X)-structure is
said to be complete if its developing map is a surjective covering map onto X. Our
objective is to generalize the following classical proposition (see [Th])

Proposition 2.2 — Let M be a connected manifold with a (G, X)-structure. Suppose
that G preserves a C* Riemannian metric g on X. If the canonically associated
Riemannian metric g on M is complete, then the (G, X)-structure on M is also
complete.

Let us first generalize it to linear connections.

Lemma 2.12 Let V; and V4 be two C™ linear connections on two connected
manifolds My and M. Suppose that f is a C* local diffeomorphism from M, to M,
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sending V1 to V. If V4 is complete, then f is a surjective covering map onto Mo
and Vg is also complete.

Proof — Since V; is complete, then we can lift each piecewise smooth curve consist-
ing of pieces of Vy-geodesics. Since any two points of My can be related by such a
curve, then f is surjective and V5 is complete.

For all x € M, we fix an open neighborhood U of z such that U is a normal
neighborhood of each of its point (see [He]). Then f~'(U) is decomposed as the
disjoint union of its connected components

7 (U)=uU,.

By lifting Vsy-geodesics, it is easy to see that f(U;) = U for each connected
component U;. So in order to prove that f |p,: U; — U is a C* diffeomorphism, we
need only see the injectivity of f |y,.

Take y, z € U; such that f(y) = f(z). Take a C*° curve v in U; such that

7(0) =y, v(1) = =.

Define ¥ = f o~ and y = 5(0). Since U is a normal neighborhood of y and V is
complete, then the following curve is well-defined and smooth

A(t) = expy {(Dyf) " [(epy) " (3(1))]}-

Define A = {t € [0,1] | ¥(¢t) = v(¢)}. Then A is closed in [0, 1]. Since f is supposed
to be a local diffeomorphism and

foy=v=/[fon,

then A is also open in [0, 1]. However 4(0) = y = v(0). Thus A = [0, 1]. In particular
we get y = §(1) = (1) = z. So f |y, is injective. We deduce that f is a covering
map. [

By considering the developing maps, we can deduce from Lemma 2.12 the fol-
lowing

Proposition 2.3 — Let M be a connected manifold with a (G, X)-structure. Sup-
pose that G preserves a C* linear connection V on X. If the canonically associated
linear connection NV on M is complete, then the (G, X)-structure is also complete.

Now we want to abstract certain notions above to give a definition of complete-
ness for more general geometric structures.

Let Z be a smooth real algebraic variety acted upon algebraicly by a certain
G*(n,R). Denote by p this action and by ©(p) the space of C> geometric struc-
tures of type Z and order k with respect to p. Then O(p) forms a category with
isometries as morphisms.
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Definition 2.3 — A subset A of O(p) is said to be localized, if it satisfies the following
conditions:

(1) If (M, g) € A, then for any open subset V of M, (V,g |v) as well as its isometry
class are all contained in A.

(2) If (M, g) € O(p) and for any y € M there exists an open neighborhood V,, of y
such that (V,, g |v,) € A, then we have (M, g) € A.

For (M, g) € ©(p), the hull of g is by definition the intersection of all the local-
ized subsets containing (M, g) of ©(p), which is denoted by Hul(g). Thus Hul(g)
is the smallest localized subset containing (M, g) of ©(p).

Definition 2.4 A geodesic structure for a localized subset A of O(p) is a functorial
association to each element (M, g) of A a family of finitely piecewise-smooth curves
on M (with parameterization and defined on connected intervals) which are said to
be the geodesics on M, such that the following conditions are satisfied:

(1) Each isometry sends geodesics to geodesics.

(2) For any = € M there exists an open neighborhood U of = in M such that any
two points in U are joined by at least a geodesic contained in U and defined on [0, 1].
Denote by Gy the space of such geodesics and denote by 7y the projection of Gy
onto U x U sending each element of Gy to its endpoints. Then there exists a C
section defined on U x U of 7y with respect to the natural uniform topology of G .
(3) The restriction of a geodesic to a connected subinterval of definition is still a
geodesic, which is called a subgeodesic of the initial one.

(4) If 71 and 7, are two C> geodesics such that y; coincide with v, on a non-empty
open subset of definition, then they coincide on their common connected interval of
definition. In addition C'*° geodesics depend continuously on their subgeodesics.

For each U geodesic v there exists by Condition (4) a unique C'* geodesic
containing v and defined on a maximal interval, which is denoted by 4. Then a C*
geodesic v is said to be mazimal if v = 7.

Definition 2.5 — Under the notations above, an element g of A is said to be com-
plete with respect to a given geodesic structure of A, if each maximal C*° geodesic
of ¢ is defined on R.

Then a geometric structure ¢ is said to be complete if there exists a geodesic
structure on Hul(g) with respect to which g is complete.

For a localized subset A containing (M, g), each geodesic structure on A restricts
to a geodesic struture on Hul(g). In addition (M, g) is complete with respect to
this geodesic structure on A iff it is complete with respect to the restricted geodesic
structure on Hul(g).

Proposition 2.4 Let M be a connected manifold with a (G, X )-structure. Suppose
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that G preserves a C'*° geometric structure g on X. If the canonically associated
structure g on M is complete, then the (G, X)-structure is also complete.

Proof — We just mimic the proof of Proposition 2.3. Since g is complete, then
the universal lift g of ¢ is easily seen to be also complete. So this proposition follows
from the following

Sublemma — Suppose that f : (M, g1) — (Ma, ge) is a local isometry and gy is
complete. Suppose in addition that go € Hul(gy). Then f is a surjective covering
map onto Ms.

Proof — Since g; is complete, then by Condition (1) we can lift each curve con-
sisting of pieces of go-geodesics. Because of Condition (2), any two points of M, can
be related by such a curve. So f is surjective.

For any x € M, we fix an open neighborhood U of = satisfying Condition (2).
Then as in the proof of Lemma 2.5.1 we have

1 U)y=uu;

and f(U;) = U. Take y, z € U; such that f(y) = f(z). Take a smooth curve v in U;
relating y and z and define ¥ = f o . By Condition (2) we can find a continuous
family of go-geodesics defined on [0, 1| and jointing 7(0) to ¥(t) for all ¢ € [0, 1]. Then
by Condition (4) and the completeness of g; we can lift this family of geodesics to a
continuous family of g;-geodesics. So we get a C° curve 4 such that f o4 =7 and
4(0) = A(1) = y. So as in the proof of Lemma 2.12, we get y = §(1) = (1) = z, i.e.
f |u, is injective. We deduce that f is a covering map. O

2.5.2 Several illustrating examples and propositions

(1) Complete parallelisins.

Suppose that a C> n-dimensional complete parallelism on M is given by (X1, -+, X,,).
Define its geodesics as the space of curves of the form ~; *-- - %, where 1 <k <n
and for each 1 < j <k, ; is a piece of orbit of a - Xi, for a certain a € R™.

In this way we get a geodesic structure on the category of n-dimensional complete
parallelisms. In addition, (Xi,---,X,) is complete with respect to this geodesic
structure, iff X; is complete for all 1 < j <n.

Suppose that the pseudogroup of local isometries of A = (X1, , X,,) admits a
dense orbit and X is complete for all 1 < j < n. Then by Lemma 2.3.1, Q2 = M,

i.e. A is locally homogeneous. It is easily seen that b is trivial. So A is normal.

Then by Proposition 2.1, we can construct a (I(A), G)-structure on M. Since each

X, is supposed complete, then by Proposition 2.4 this (I(A), G)-structure is also
complete. So we get the following (see the proof of Lemma 2.3)

Proposition 2.5 — Let A be a C*> complete parallelism on a connected manifold
M. Suppose that each component of A is complete. Then the following conditions
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are equivalent:

(1) The pseudogroup 1" of A admits a dense orbit,

(2) The vector space spanned by the components of A is a Lie algebra,

(3) (M, A) is C> isomorphic to (I\G, A), where G is a connected and simply con-
nected Lie group, T is a discrete subgroup of G and A is given by a basis of the
left-invariant vector fields of G.

(2) Linear connections.

By associating to each C'* linear connection its usual geodesics we get on the
category of n-dimensional affine manifolds (for each fixed n) a geodesic structure.

In this case, Proposition 2.4 specializes to Proposition 2.3. For higher order
connections, we have similar geodesic structures by projecting the orbits of the
standard horizontal fields onto the base manifold.

Another particularly interesting case is A = {(X, E, F, V)}, where X is a vector
field , F and F' are two distributions and V is a linear connection on M such that

TM=RX®E®F

and
VX =0, VECE, VFCF.

Then A is a localized set. The geodesics are defined to be the products of the orbits
of a- X (for a € R") and the V-geodesics tangent to E or F. Then (X, £, F, V) is
complete with respect to this geodesic structure iff X is complete and the geodesics
tangent to £ or F' are complete.

We can associate to each affine Anosov-smooth flow ¢; an element of A, i.e.
(X, ET,E~,V). Then by the Anosov property, this structure is easily seen to be
complete (see Chapter VII for more details).

(3) Riemannian metrics.

To get a geodesic structure we simply associate to each n-dimensional Rieman-
nian manifold its usual geodesics. Then a Riemannian metric is complete with
respect to this geodesic strucure iff it is complete in the usual sense. In this case
Proposition 2.4 specializes to Proposition 2.2.

We define a magnetic Riemannian metric to be a couple (g, w), where g denotes
a (' Riemannian metric and w denotes a C'™ closed 2-form. Then the space of
n-dimensional magnetic Riemannian metrics gives a localized subset of a certain
O(p), denoted by A. We can find a geodesic structure on A as following.

Suppose that (g,w) € A and (g,w) is defined on M. For each small open set U
of M, we have the Lagrangian £ : TU — R such that

L) = 5ol u) — 6(u)

where df = w. Thus locally we have the Euler-Lagrange equation

i(ﬁﬁ(ﬂc,x’)) oL 0
dt* 0z oxr
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By projecting the integral curves of this equation to M, we get a family of local
curves. To see that the integral curves of different equations fit smoothly, we recall
simply that they are all solutions of the following equation

Vai =Y (),

where V denotes the Levi-Civita connection of g and Y denotes the endomorphism
associated to w, i.e. w(-,-) = g(Y(+),) (see [Pa]). In this way, we get a geodesic
structure on A. Then it is well-known that (g,w) is complete with respect to this
geodesic structure if M is compact and w is exact.

Proposition 2.6 — Let g be a C* rigid geometric structure on M. If it is nor-
mal and locally homogeneous and complete, then 1(g) acts transitively on M.

Proof — Since ¢ is normal and locally homogeneous, then by Proposition 2.1 we
can construct on M a (I(g), G/ H)-structure. Since g is complete, then by Propo-
sition 2.4 this structure is also complete. Since G/ H is simply-connected, then § is
isometric to g under the developing map of this (1(g), G/ H)-structure. We deduce

that I(g) acts transitively on M. O

We can not prove the existence of a geodesic structure for each category of C'*°
rigid geometric structures. For a fixed category, the geodesic structure is rarely
unique.

In most (if not all) physical modelizations, the space of states admits a underlying
rigid geometric structure, where rigidity corresponds to finite-order observability. To
understand the symmetry of the system, experiments can only tell us the existence
of local isometries on at most countably many points. Then the open-dense theorem
can give us the local homogeneity on a large scale, which in turn justifies that the
underlying structure should be rigid. The existence of a geodesic structure should
also be postulated because nothing can be deduced without a natural family of
curves corresponding to some kind of natural orbits of movement.

2.5.3 Concerning a theorem of Liouville

Let g be a C* geometric structure on M. If I(g) acts transitively on M, then g is
said to be homogeneous. Furthurmore, ¢ is said to be completely homogeneous if it
is homogeneous and each C° local g-isometry defined on a connected open subset
of M can be extended to a C* global g-isometry. For example, R? and S? and H?
are all completely homogeneous with respect to their canonical constantly curved
Riemannian metrics.

For all n > 2, the isometry group of the canonical conformal structure ¢, of
the sphere S™ is just the Mobius group Mob(n) (see [Mos]), which acts transitively
on S™. Then the following classical theorem of Liouville says essentially that ¢, is
completely homogeneous for n > 3.
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Theorem 2.2 (Liouville) — For n > 3, each C™ local conformal isometry defined
on a connected open subset of S™ is the restriction of a unique element of Mob(n).

Definition 2.6 — Let X be a connected and simply-connected manifold and g be
a C™ rigid geometric structure on X. Then (g, X) is said to be a rigid form if g
is complete and I(g) acts transitively on X and each C* global g-Killing field is
complete.

Lemma 2.13 — If (g, X) is a rigid form, then g is completely homogeneous.

Proof — Since (g, X) is a rigid form, then by Remark 2.4, g is normal. Then
by Proposition 2.1 we can construct on X a (I(g), G/ H)-structure. Since g is com-
plete, then by Proposition 2.4 this (1(g), G/ H)-struture is also complete. So (g, X)
is isometric to (g, G/ H). Then we conclude by Lemma 2.10. OJ

We can deduce from the previous lemma the following

Corollary 2.3 — Let M be a connected and simply-connected manifold and g be
a C* Riemannian metric on M. Then g is homogeneous iff it is completely homo-
geneous. If V is a C* complete linear connection on M, then ¥V is homogeneous iff
it 1s completely homogeneous.

Let us return to the conformal structures. For any n € N, we associate to each n-
dimensional C'*° conformal manifold its usual conformal geodesics (see [Fer]). Then
in this way we get on the category of n-dimensional conformal manifolds a geodesic
structure. Thus a C'*™ conformal structure is complete iff all its conformal geodesics
are defined on R.

The geodesics of ¢, on S™ are circles (with proper parametrizations). Then it is
easy to see that ¢, is complete with respect to this geodesic structure. Since S™ is
compact, then each C* global Killing field of ¢, is complete. As mentioned above,
for any n > 2 the isometry group of ¢, is the M6bius group Mob(n) (see [Mos]). So
I(cy,) acts transitively on S™. In addition for any n > 3 the n-dimensional conformal
structures are rigid. So (c,, S™) is a rigid form for any n > 3. Then we can deduce
from Lemma 2.13 that ¢, is completely homogeneous for any n > 3. In [Mos], G.
D. Mostow used some purely geometric arguments to prove that I(c,) =Mob(n) for
all n > 2. So by combining his arguments with the complete homogeneity of ¢, we
can reobtain Theorem 2.2.

Let (g, X) be a rigid form and M be a connected C* manifold. Then by Lemma
2.13, it is easy to see that there exists on M a geometric structure ¢’ locally isometric
to g iff M admits a (I(g), X )-structure.
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2.5.4 Decomposition of g for parallel linear connections

Let us return to consider the complete parallel linear connections. Denote by V
such a connection on a connected and simply connected manifold M and by 7 a
(> V-parallel geometric structure of order one on M. Denote by g the combinated
geometric structure (V, 7). Then by Lemma 2.2 the isometry group I(g) of g is a
Lie group acting transitively on M, which is denoted by G. Fix a point  in M and
denote by H the isotropy subgroup of x in G.

Since V is complete, each C* global g-Killing field is complete. In particular
(g, M) is arigid form. So by Lemma 2.13, each element of | jfg defined on a connected
open subset of M extends uniquely to an element of H, i.e. [ jfg =~ H. So by Corollary
2.2 H is naturally a real algebraic group. In particular H has only finitely many
connected components.

Since each element of H preserves V, the linear isotropy representation i : H —
GL(T,M) such that i(h) = D,h is injective. Since 7 is in addition algebraic, i(H)
is a closed Lie subgroup of GL(T, M) isomorphic to H under i. In the following we
identify H with i(H).

Denote by g’ and h’ the Lie algebras of G’ and H. Denote by g¥ the Lie algebra of
C™> global g-Killing fields and by h¥ its subalgebra containing the elements vanishing
at x. Then g’ is isomorphic to g under the following map

r:g — gf

u— (a— — |=0 exp(—tu) - a).

ot

We denote by Y* the corresponding Killing field of w under r. Recall that by [DG]
(see also Lemma 2.11) each local Killing field of g extends uniquely to a global
Killing field of g. So we get the following Lie algebra isomorphisms

and
o = pi =,
In addition we have the following injective linear map

jig — T,M ® End(T,M)

u— (Y, (Lyw = Vyu) [o).

By a simple calculation we get Di = j |i . In the following we identify h’ with
Di(h"). We identify also g’ and b’ with g and § as above. Then by some classical
arguments (see Theorem 2.8 of [KN]) we get the following linear bijection

jig—T,M®h
Y — (Ya, (Ly — Vy) [2).
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The corresponding Lie algebra structure on T, M @ b is easily verified to be
[(uv A)v (Ua B)] = (AU — Bu+ T(ua U)a [Av B] - R(U’v U))a

where T" and R denote respectively the torsion tensor and the curvature tensor of

V.
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Chapter 3

Dynamical and Geometrical
Properties of Anosov Systems

Abstract — Anosov-smooth flows can only be effectively studied in the flexible en-
vironment of general Anosov flows. So in this chapter, we recall and prove certain
dynamical and ergodic properties for general Anosov flows paying particular atten-
tion to the Anosov-smooth case.

3.1 Plan of the chapter

In Section 3.2 we recall some elementary facts concerning general flows and Anosov (-
smooth) flows. In Section 3.3 we give some applications of the Lifschitz cohomology
theorem for Anosov flows. In particular, Lemma 3.8 is very important for Chapter
4. In Section 3.4 we recall some known results about symmetric Anosov flows and
explain a construction of non-classical symmetric Anosov flows due to P. Tomter. It
should be mentioned that symmetric Anosov flows are Anosov-smooth.

3.2 Preliminaries

3.2.1 Multiplicative ergodic theorem

The multiplicative ergodic theorem of Oseledec is a central piece of the general the-
ory of dynamical systems, which is recalled as following (see [Le]).

Theorem 3.1 (Oseledec) — Let p be a probability measure on a measure space X
and 0 be an invertible measurable isomorphism of X preserving p. In addition 0 is
supposed to be p-ergodic. If A is a measurable map of X into GL(d,R) for a certain
d € Z* such that log || A(-) || and log || A=*(-) || are both integrable, then there exist
a measurable O-invariant subset B of X such that u(B) = 1 and for each x € B a
decomposition R = @<;<, W such that

(1) dim W is positive and constant and x — W is measurable,
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(2) A@)W; = Wy,

(3) v e WL iff Llog || A™(z)(v) ||— x: when n goes to positive infinity or negative
infinity, where A™(z) = A0 x) --- A(z) forn > 0 and A™ (x) = A~HO"z)--- A7HO ')
for n < 0.

In addition, if we denote by det;(z) the determinant of the restriction of A to W7 |

then we have

dimW? . x; = / log | detj(x) | dp.
X

Now if ¢, is a C*> flow on a C'*° manifold M, then by choosing a measurable
vector bundle isomorphism 7 of TM onto M x R?, we get a measurable map A of M
into GL(d, R) such that A(z) = Ty 0 Du(¢1) o7, ', where ¢ denotes the time-one
map of ¢;. So we deduce easily from the previous theorem the following

Theorem 3.2 — Let ¢y be a C™ flow on a C*° manifold M. Let i be a ¢i-invariant
probability measure on M such that ¢; is p-ergodic. Then there exist a measurable
¢i-invariant subset B of M such that u(B) = 1 and a measurable ¢;-invariant de-
composition TM |p= ®1<;<,L; such that

(1) dimL; is constant and positive,

(2) For any u € TB we have u € L; iff limy_. 1o 1log || Dé(u) ||= x:.

This decomposition is called the Lyapunov decomposition of ¢; with respect to p.
For any 1 < i <r, L; is called the Lyapunov subbundle of ¢, with Lyapunov exponent
Xi, which is often denoted by L,,. If a is not a Lyapunov exponent of ¢;, then L,
is defined to be {0}. In general the Lyapunov decomposition of ¢; with respect to
an invariant measure p is only defined on a p-conull subset whose geometry can be
extremely complicated. The following lemma is proved in [FK].

Lemma 3.1 — Under the conditions of Theorem 3.2, if o denotes a bounded measur-

able ¢y-invariant tensor of type (0, k) and 3, ;4. Xi; # 0, then we have o(Ly, -+, Ly, )
0. o

Proof — Suppose firstly that >, xi; > 0. Then for all u; € L;; and all £ > 0
and € < 1, we have o

[ o(uy, -+ up) [=] 0(Doi(ur), -+, Doy(u)) |

S” o || : || qu_t(ul) || s || ng—t(“k) ||S|| o || .e_t(zlgjgk)(ij—ke)‘

We deduce that o(uy, -+, ug) = 0. If 37, ;) xi; <0, then similar argument works.
. <j<
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3.2.2 Basic facts concerning Anosov flows

Now let us return to Anosov flows. Let ¢; be a C*> Anosov flow on a closed manifold
M. As mentioned in the Introduction, £* and E*° are all integrable to continuous
foliations with C* leaves (see [An]) denoted respectively by F* and F£°. For
Anosov-smooth flows this fundamental fact can be easily deduced from the Anosov

property.

Lemma 3.2 — If ¢, is Anosov-smooth, then E* and E+° are all integrable to O
foliations.

Proof — Since ¢, is supposed to be Anosov-smooth, then £ and E~ are both
C> distributions on M. Denote by P~ the projection of TM onto E~° with
respect to the Anosov splitting. Define for any C* sections Y and Z of ET,
K(Y,Z) = POy, Z]. Since the Anosov splitting is ¢;-invariant, then it is eas-
ily seen that K defines a ¢y-invariant section of (ET)* @ (E1)* ® E~Y. Thus we
get

Do ((K(Y, 2)) = K(D¢1(Y), Doo(2)) <|| K || - [| Doo(Y) || - || Do-+(Z) [ = 0,

if t - 4o00. So K(Y,Z) C E*. We deduce that K(Y,Z) =0, i.e. [Y,Z] is tangent
to ET. Then by the Frobenius theorem, E* is integrable. Similarly £~ is seen to
be integrable. Since £+ and £~ are both ¢-invariant, then £7° and £7° are both
involutive, i.e. integrable to C'*° foliations. [J

Now let us recall the following elementary proposition (see [HK] and [M]).

Proposition 3.1 — Let ¢, be a C*™ Anosov flow on M. Suppose that E*t is of
dimension k and E~ is of dimension l. Then each leaf of F* is C* diffeomorphic
to R* and each leaf of F~ is C> diffeomorphic to R'.

In addition a leaf of F*0 is C> diffeomorphic to R¥*Y iff it contains no periodic
orbit of ¢,. Otherwise it is C* diffeomorphic to S* x RF and it contains a unique
periodic orbit. Similarly a leaf of F~° is C* diffeomorphic to S* x Rl or R*!
depending on whether it contains a periodic orbit. In addition it contains at most
one periodic orbit of ¢;.

For any x € M the leaves containing x of F+ and F~ are denoted respectively
by W, and W, . The leaves containing = of F™? and F~ are denoted by W,°
and W%, By the following lemma we can suppose, up to finite covers, that these
four foliations and M are all orientable.

Lemma 3.3 — Let M be a finite cover of a closed manifold M and ¢, be a C*=
flow on M. Denote by ¢y the lift of ¥ onto M. Then 1y is Anosov iff ¥ is Anosov.
In addition 1, is Anosov-smooth iff so is ;.
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Proof — If ¢, is Anosov, then 1y is certainly Anosov. Conversely we suppose
that 1), is Anosov. Fix a C*° Riemannian metric on M. Then there exists a C°-
decomposition B - B
TM=RX®E"®E-
and a,b > 0 such that with respect to the lifted metric,
| DYge(u™) [[Sa-e ™ | u™ |, VE>0, Vu* € B

Denote by 7 the projection of M onto M. Take x € M and suppose that 7(y) =
x = 7(2).
If Dr(E}) € Dr(EF), then there exists ut € Ef, vt € Ef, v € EZ0 such
that
Dr(ut) = Dr(v") + Dr(v™"°), v £ 0.
Thus we get

t—o0

| DY (D (u®)) =l DY) | — 0

and

t—oo

| DY (D (u®)) [|=ll DY—e(v +070) || /=0,
which is a contradiction. So we get Dr(E}) C Dn(E}). Thus Dr(E}) = Dr(E?).

Similarly we have Dr(E,) = Dn(E7). So we can push down by m the Anosov
splitting of v, to abtain a continuous splitting of T'M, which satisfies certainly the
Anosov property for ¢;. So 9 is Anosov. It is evident that 1; is Anosov-smooth iff

S0 is Y. [

A general flow ¢, is said to be topologically transitive if it admits a dense orbit.
For an Anosov flow ¢; on M, topological transitivity is equivalent to each of the
following conditions (see [HK]):

(1) The set of periodic orbits of ¢; is dense in M.

(2) The set of nonwandering points of ¢, is M.

Recall that z is said to be a nonwandering point of ¢, if for any open neighborhood
U of x, there exists T > 0 such that ¢oU NU # 0.

If ¢; preserves a volume form, i.e. a probability measure in the Lebesgue measure
class, then by the recurrence theorem of Poincaré, its nonwandering points are dense
in M. However the set of nonwandering points is closed in M by its definition. So
we deduce that each volume-preserving Anosov flow is topologically transitive.

For each C'> Anosov flow ¢y, its canonical 1-form X is by definition the C section
of T*M such that

MX) =1, M(E*) =0.

Since E* and E~ are ¢,-invariant, then \ is also ¢s-invariant. If ¢; is Anosov-smooth,
then X is a C'*° 1-form on M.
If ¢; is Anosov-smooth, we define its rank as the following even number

rank(¢;) = 2 - max{k > 0 | A"d\ £ 0}.
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By convention, A%\ = 1. If ¢, is topologically transitive and its rank is 2k, then
AEdX vanishes nowhere on an open-dense subset of M.

If M is of dimension m, then we get easily 0 < rank(¢;) < 2-[%], where for each
a € R the symbol [a| denotes the biggest among the integers smaller than a.

A C* Riemannian metric on M is said to be Lyapunov for an Anosov flow ¢, if
there exists b > 0 such that

| Doze(u™) [|[< e || u® ||, Y u* € EF, Vi >0.
The existence of Lyapunov metrics for general Anosov flows is widely accepted. By

mimicing the arguments for diffeomorphisms, we give in the following a proof of this
fact for the Anosov-smooth case, which is enough for the need of the next section.

Lemma 3.4 — If ¢; is Anosov-smooth, then it admits a Lyapunov metric.
Proof - Fix a C* Riemannian metric g on M. Then there exist a,b > 0 such

that
| Doze(u™) |[< a-e™™ || u* |, Vu* € EX V>0,

Fix T >> 0 such that a? - e=27 < 1 and define

o= / 6°(g 15 )dt) @ ( / 60" (g | )dt) @ N2,

where A denotes the canonical 1-form of ¢;. Since ¢; is Anosov-smooth, then ¢, is a
C'* Riemannian metric. To simplify the notations, we denote D¢, (u) by ¢.u for all
u € TM. For any v~ € E~ and any s € (0, 1] we have

T
<uT,ul >= / < Quu”, ppu” > dt
0

s ([€]+1)s
S/ <qz$tu_,q§tu_ >dt++/ <<]§tu_,¢tu_ > dt
0 (

Tls
<(1+a®-e® ... 4a?. e[%]s) . / < Quu”, ppu” > dt.
0

On the other side, we have for any s € (0, 1]

T
< (;5su7, Q&Sui >1= / < ¢s+tu7, (;55+tu7 > dt
0

T+s s
=<u,u” > +/ < Quu”, ppu” > dt —/ < Quu, ppu” > dt
T 0

<<u,um >+ e 1) / < Quu, ppu > dt.
0
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Since a? - e 2T < 1, then < ¢ u™, p,u~ >1< Ay- < u™,u~ >, where

22T 4 g2, =25 4 ... 4 2. e[g]s
1+a2.6_2b5+...+a2.e[%}5

We have A; < 1 for all s € (0, 1]. Define

1 + 672bT(1 _ €f2bs)
Ay = T
1+ a_2(1 — 6_2bs)

Ag =

Then for all s € (0, 1] we easily get 0 < Ay < Ay < 1 and

. o
sll}& ;logAs = 2b(e — ?) < 0.

So there exists b > 0 such that A, < e72"' for all s € (0,1]. Thus
I su™ [h< e [l u™ |

Similarly we get || p_yut [1< e || ut ||, for all ut € E*.
For all ¢ > 0 we take N > 1 such that -+ < 1. Then

| ™ 1=l ¢z 0+ 0 bz (u®) < ™ | w* |-

So ¢; is a C*° Lyapunov metric for ¢;. [

Definition 3.1 — For a C°° Anosov flow ¢;, we denote by ® the orbit foliation
of its lifted flow ¢; on M. Then ¢, is said to have the section property if for each
r € M there exists a transverse section X of ¢ containing = such that each leaf of
® intersects X at most once. Such a transverse section is said to be fine.

If ¢; admits no homotopically trivial periodic orbit, then qgt admits no periodic
orbit, i.e. the orbits of ¢; are all diffeomorphic to R.

Lemma 3.5 — Let ¢; be a C* Anosov flow. Then under the notations above,
¢ has the section property if and only if it admits no homotopically trivial periodic
orbit.

Proof — Suppose that ¢; admits no homotopically trivial periodic orbit. Fix a
C* Riemannian metric on M and suppose on the contrary that ¢, does not have
the section property. Then there exist x € M and two sequences {z,}5>, C M and
{T,,}°2; € R* such that

d(l’n,l') < %7 d(ng(wn)vm) < %

Since the generator X of ¢; vanishes nowhere, then for any n > 1, T,, is bounded be-
low by a positive munber. If {7},}°°, is bounded above, then by taking a convergent
subsequence, we can produce a ¢;-periodic orbit, which contradicts the assumption.
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So {T,,}°° is not bounded above. Let us recall first the following

Closing lemma ([An], Lemma 13.1) — Let ¢; be a C* Anosov flow on a closed
manifold M. Then for any ¢ > 0, there exists 0 < § < € and ty > 0 such that if
xe M, T >ty and d(x,pr(z)) <9, then there exists x' € M and T" > 0 such that
|t =T |< € and ¢ (2') = 2’ and d(¢s(x), ¢s(2")) <e€, Vs €[0,T"].

Denote by 7 the projection of M onto M. Then with respect to the lifted metric,
there exists a > 0 such that

By, a) N7 ((y)) = {y}, Yy € M.

Define A = sup || X || and € = min(575,i(M)), where i(M) denotes the injectivity
radius of M. Then by the Closing lemma above, we get two numbers ¢ and ¢, with
respect to €. Fix NV > 1 such that ~ %~ <0 and Ty > ty. Sowe get 2’ € M and T > 0
such that | 77— Ty |< €, ¢p/(2') = :c and

d(ps(7'), bs(m(xn)) <€, ¥ s €0,T].

Since € < i(M), then we can construct a homotopy from O 71 (2") to O (7 (zN))
by relating the corresponding points by the unique geodesic of length smaller than
¢, where O(z’) denotes the ¢;-orbit of 2.

We can lift this homotopy such that the lift of O (7m(zy)) is 6[01/] (zN).
Denote by 2’ the lifted point of /. Then we get

d(@, o (¥)) < d(F,an)+

+d(zn, dry () + d(ry (Tn), o (28)) + A7/ (2n), v (T'))
<3¢+ A-e<a.

We deduce that ' = $T, ('), which again contradicts the assumption. So ¢; has the
section property if it has no homotopically trivial periodic orbit.

If ¢; admits a homotopically trivial periodic orbit, then ¢; admits a periodic
point denoted by x. Suppose on the contrary that there exists a fine transverse
section containing x. Then by the uniformity of foliations (see [CM]), there exists
also a fine transverse section X containing a piece of W Thus by the Anosov
property, each d)t orbit passing through a point near z of W accumulates to z in
the positive direction of (;St So ¥ is not fine, which is a contradiction. We deduce
that ¢; has not the section property if ¢; admits a homotopically trivial periodic
orbit. UJ

If ¢; has the section property, then by taking small transverse sections of P as
charts, the lifted orbit space M “® becomes a first countable C*° manifold, which
is however not necessarily Hausdoff.
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3.3 Cohomological results for Anosov flows

Denote by ¢; a C*° Anosov flow on M and by G a Lie group. A measurable map
C: M xR — (G is said to be a G-cocycle if

C(z,s+1t)=C(px,s) - C(z,t)

for all x € M and all s, € R. Each measurable map v : M — G gives a G-cocycle,
denoted by C,,, such that

Cu(z,t) = u(gex) - u(x) ™!

for any x € M and all t € R.
Let o be a ¢4-invariant measure on M. Two measurable functions f; and fo on
M are said to be equal with respect to u, denoted by f; = fo, a.e. u, if we have
u{fi # fo} = 0. Then two G-cocycles C; and Cy are said to be equal with respect to
1, denoted by
Cy =00y, ae. p,

if for all t € R, Cy(-,t) = Cs(-, 1), a.e. p.
The following theorem is a combination of some classical results, which is essen-
tial for the chapters below.

Theorem 3.3 (A. N. Livsic, R. de La llave, J. Marco, R. Moriyén) — Let ¢; be
a C* Anosov flow on M and let C be a C'* G-cocycle, where G is either the addi-
tive group R or the multiplicative group RY. Suppose that ¢, preserves a Lebesgue
measure p. If there exists a measurable map u : M — G such that C' = C,, p a.e,
then there exists a C*> map u : M — G such that u = u almost everywhere with
respect to p and C(x,t) = u(pwx) - u(x)™" for allz € M and all t € R.

Proof Suppose at first G = R. Then by Theorem 9 of [Li] there exists a continu-
ous function u such that u = u almost everywhere with respect to p. By continuty
we get

C(a.t) = u(¢) — (x)

for all x € M and all t € R. So for each ¢;-periodic point x of period T we have
C(z,T) = 0. Since each volume-preserving Anosov flow is topologically transitive,
then we can deduce from Theorem 2.1 of [LMM] the existence of a C'* function u
such that C(x,t) = 4(¢x) — u(x) for all x € M and all ¢t € R. Then we get @ = 4
by the topological transitivity of ¢;.

If C'is a R7-cocycle, then log o C'is a R-cocycle. So we can conclude from the
case of R-cocycle above. [

The previous proposition is often useful to prove the smoothness of certain, a
priori measurable, geometric objects associated to C'**° Anosov flows. Here are some

applications.
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Lemma 3.6 — Let ¢; be a C™ Anosov flow on an orientable manifold M. If it
preserves a Lebesque measure p, then p is given by a nowhere-vanishing C* volume
form on M.

Proof — Fix a (' volume form v on M. Then there exists a measurable func-
tion f such that f > 0 and g = fv. Define a C* map 6 : M — R* such that for
any x € M and any t € R,

. 1
(¢t V)(“T) - G(x,t) ) V(l')
Then 6 is easily seen to be a ' R’ -cocycle.
Since p is ¢p-invariant, then for any t € R, ¢;"(fv) = fo ¢ -

% =0(-,t), a.e. p. We deduce that

-v = fr. So

0(t

Cy=0, ae. pu.

Then by Theorem 3.3, there exists a C* map f : M — ]Rt such that f = f, a.e. p.
So p is given by the nowhere-vanishing C'*° volume form fv. [

A general flow 1, is said to be topologically mixing, if for all non-empty open sub-
sets U and V of M there exists T' > 0 such that for all ¢ > T" we have ), U NV £ ().
The following lemma is a simple reformulation of the principal result of [PI1].

Lemma 3.7 — Let ¢; be a C™ topologically transitive Anosov flow. Then we have
the following alternative:

(1) ¢y is topologically mixing,

(2) ¢y admits a C™ closed global section with constant return time.

Proof - If Case (2) is true, then up to a constant change of time scale, ¢, is C*
flow equivalent to the suspension of a C'° Anosov diffeomorphism. Thus it is not
topologically mixing. So the alternative is exclusive.

If there exists x € M such that W.F is not dense in M, then by Theorem 1.8 of
[P11] ET @ E~ is the tangent bundle of a C* foliation F. In addition the leaves
of F are all compact. So ¢, admits a C! closed global section with constant return
time. Then to realize Case (2) we need only prove that E* @ E~ is C™ in this case.

Denote by A the canonical 1-form of ¢;. Then A is, a priori, a continuous 1-form
on M. For each point y € M we take a small neighborhood F, of y in the leaf
containing y of F. Then we can construct a local C* chart 0, : (—e,¢) X F, — M
such that 6,(t, z) = ¢:(2). In this chart we have A = dt. We deduce that f7 A =0 for
each piecewise C'! closed curve 7 contained in the image of 6,. So \ is locally closed
(see Section two of [P11] for the definition). Then by Proposition 2.1 of [P11], A is
seen to be closed in a weak sense, i.e. for every C'' immersed two-disk o such that

do is piecewise C1,
/ A=0.
oo
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So by integrating along the closed curves, A gives an element in Hom(m (M), R),
i.e. the space of group homomorphisms of (M) into R, where 71 (M) denotes the
fundamental group of M. However we have naturally

Hom(m (M), R) = (Hy (M, R))* = H'(M.R),
where H'(M,R) denotes the first de Rham cohomology group of M. So there exists
a C' closed 1-form [ such that for each C'*° closed curve v,

pego

So by integrating (A — ) along curves, we get on M a well-defined continuous
function f. Then for any y € M and any ¢t € R we have

Feow - = [ (1 B (6s(0))ds.

Since the right-hand side of this identity is a C*° R-cocycle, then by Theorem
3.3, f is smooth. However by the definition of f we have

\— B =df

So A is also smooth. We deduce that Et @ E~ (= Ker)) is C*. So Case (2) is
realized if W is not dense for a certain point x € M.

Now suppose that for any x € M, Wt is dense in M. Fix a Riemannian metric
on M. For any x € M and any r > 0 we denote by M, , and W; . the balls of center
x and radius 7 in M and W,'. Take arbitrarily two open subsets U and V' in M and
a small ball M, . in V. Since M is closed and each strong unstable leaf is supposed
to be dense in M, then we can find R < +o0o such that

WiaN M, #0, Ve M.

Take a small disk W; 5 in U. Then by the Anosov property there exists 7" > 0 such
that

d)t(W;fé) ) W;(:p),m Vi>T.
SopUNV £0, Vi>T,ie. ¢ is topologically mixing. [

Among the dynamical invariants of an Anosov flow ¢, its topological entropy is
the most fundamental one, which is denoted by hy,,(¢) (see [HK] for the definition).
Denote by M(¢;) the set of ¢-invariant probability measures and by h,(¢;) the

metric entropy of each pin M(¢;) (see [HK] for the definition). Then it is well-
known that (see [HK])

htop (th) = SUPpeM(é) {hll (qbt)}
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The following proposition is a special case of Theorem 3.3 of [BR].

Proposition 3.2 — Let ¢y be a C™ topologically transitive Anosov flow on M. Then
there exists a unique ¢¢-invariant probability measure p such that h,(¢r) = hiop(Pt)-
Furthermore, p is ¢4-ergodic and positive on non-empty open subsets of M.

This measure p is said to be the Bowen-Margulis measure of ¢;. If ¢, is in
addition topologically mixing, then its Bowen-Margulis measure can be decomposed
into pieces. Let us recall firstly some notations.

Take a C*> Riemannian metric on M. Then for any x € M and any 6 > 0 we
denote by W; s the sphere in WF of center x and of radius § with respect to the

induced metric on W;F. Similarly we define W5 and Wj " Then by [PS], there
exists € > 0 such that for all 6 < € and all = € M the following map is a well-defined
local homeomorphism

. 770 +
0: W, x Wi — M,

(y, z) — ;25 n W;ig'
The image of 0 is said to be a product neighborhood of x. If ¢; is Anosov-smooth,
then 6 is a C*™ local diffeomorphism.

Take a curve [ tangent to W, such that [(0) = = and (1) = y. Since W;
and W;r 5 are both transverse sections of the foliation F °, then we get a holonomy
map of F ¥ along [ with respect to these two transverse sections. Since the curve [
is often clear from the context or matters little, then this holonomy map is usually
denoted by H;&O and is said to be a weak stable holonomy map. We can define and
denote the other holonomy maps similarly. If ¢; is Anosov-smooth, then all these
holonomy maps are C*°.

The following proposition is proved in [Mal].

Theorem 3.4 (G. A. Margulis) — Let ¢; be a C* topologically mizing Anosov flow.
Denote by h its topological entropy. Then there exists a unique (up to scalars) family
w0 of measures supported by the leaves of F™° such that

+,0 __ _ht, +,0
progr=¢€e"p

and invariant under the strong stable holonomy maps. Similarly there exists a unique
(up to scalars) family p=° of measures supported by the leaves of F—° such that

plo g =eMpu"
and itnvariant under the strong unstable holonomy maps. There exist also two
(unique up to scalars) families of measures pt and p= supported respectively by the
leaves of F* and F~ such that p* o ¢, = e u* and they are absolutely continuous
with respect to the weak holonomy maps.

In each product neighborhood, the Bowen-Margulis measure jv is proportional to
pt @ p=% and p= @ 0 and is equivalent to pt° @ u= and P @ pt.
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Remark 3.1 — The families of measures above are called the Margulis measures
of ¢;. Note that they are defined only for topologically mixing Anosov flows.

See [Fo] or [Has] for the definition of u* ® p™° The other products of Margulis
measures in a product neighborhood are defined similarly.

Take a C™ Riemannian metric on M and denote by v* the induced C'*° volume
forms along the leaves of F*. Denote by v° the induced volume forms along the
leaves of F£°. Then we can prove the following lemma, which was originally proved
for three-dimensional contact Anosov flows in [Fol].

Lemma 3.8 — Let ¢, be a C° topologically mizing Anosov-smooth flow on M.
Suppose that its Bowen-Marqgulis measure is equal to Lebesque measure and E+ and
E~ are both orientable. Then there exist C™ positive functions on M, f* and f*°
such that p* = f*v* and p*° = f0,+0,

Proof Let us prove firstly that along each leaf of F*, u* is absolutely continuous
with respect to v*, denoted by ut < v™.
Take a small ball W' in W5 and A C W, such that v*(A) = 0. Define

Q=W_; 0% A via the local product structure. Smce E*is C*, then forally € W__ 50
we have vT(y x A) = 0. Then by Fubini Theorem, 2 is of Lebesgue measure zero.
Since p is supposed to be in the Lebesgue class, then p(A) = 0. Since p is locally
decomposed as a product of p* and p=°, then

p(yx A) =0, ae pu°

Since p™ is absolutely continuous with respect to the weak stable holonomy maps,
then pu™(A) = 0. So pt < v*. Similarly we have vt < p*. So on each leaf of
F*, ut is equivalent to v*. Thus by the definition of u* (see [HK]), we can find a
measurable function f* on M such that f* > 0 and on each leaf W of F*,

wt =1y 5 o+
For all (z, t) € M x R we define
dv*
t) = ——(x).
f(w7 ) d(l/+ o ¢t> ('T)
Then it is easily seen that f is a O R’ -cocycle. We have for all ¢ € R,
(@)
f+ o Qst (M+ ¢t)
d(vt o ¢y)

d(pro¢r) dut  dv*
T dpt vt d(l/+ o ¢t)

ht f+ f(: t)v a.e. W
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Define C' : M x R — RT such that C(z,t) = " - f(z,t). Then C is also a C>
R? -cocycle and
Cpr =C, ae. p.

So by Theorem 3.3, f* coincides with a C'* positive function almost everywhere
with respect to p. Then by Lemma 20.5.11 of [HK] f* can be taken to be C'™®
positive such that on each leaf W of F*,

/’L+ = f+ |W;‘ V+7
which is denoted also by p+ = ftut. Similarly we get the C™ positive functions f~
and f9. O

Recall that each topologically transitive Anosov diffeomorphism is topologically
mixing (see [HK]). Then by similar arguments for flows (see also [Mal] and [HK]),
we can easily get the following

Lemma 3.9 — Let ¢ be a C* topologically transitive Anosov diffeomorphism on
M. Then there exists a unique ¢-invariant probability measure p on M such that
hu (@) = hiop(@). Furthermore, p is ¢-ergodic and positive on non-empty open sub-
sets of M. This measure p is called the Bowen-Margulis measure of ¢.

There exist two families (unique up to scalars) p* and pu~ of measures supported
respectively by the leaves of F* and F~ such that

pEop— ety

and invariant under the stable and unstable holonomy maps, where h denotes the
topological entropy of ¢. In each product neighborhood, 1 is proportional to u* & pu~
and p~ @ ut.

If the Bowen-Margulis measure of ¢ is Lebesque and E and E~ are both ori-
entable, then p* and p~ are given respectively by C nowhere-vanishing volume
forms along the leaves of F* and F .

3.4 Symmetric Anosov flows

3.4.1 Generalities
Let us recall firstly the following definition (see [To2]).

Definition 3.2 — Let ¢; be a C* flow on a manifold N. Then a Lie transfor-
mation group G of N is said to be a symmetry group of (N, vy) if G centralizes
{1+} in Diff(N) and the isotropy subgroups are compact in G.

A C* flow ¢, on a closed manifold M is said to be symmetric, if there exists
a normal covering space M of M, such that the group of deck transformations is

contained as a uniform lattice in an effective and transitive symmetry group of the
lifted flow ¢; on M.
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Compared to [To2], we have added to the definition of symmetric flows the ef-
fectiveness of the symmetry group action, which makes no essential difference.

Definition 3.3 — An infra-homogeneous manifold is a manifold of the form I'N\NG /K
such that

(1) G is a Lie group and K is a compact subgroup of GG such that G/ K is connected.
(2) T' is a uniform lattice in G acting freely on G/ K.

For an infra-homogeneous manifold we denote by g and € the Lie algebras of GG
and K. If a € g such that [a, ] = 0 and {exp(ta) }ier normalize K, then we get on
I'\G/K a well-defined flow 14(I'gK) = T'(g - exp(ta))K, ¥V t € R, which is said to
be an algebraic flow. A C'* flow is said to be algebraic if it is C'**° flow equivalent to
an algebraic flow (see [Ze]).

The following proposition is proved by P. Tomter (see [To2])

Proposition 3.3 — Let ¥ be a C* flow on a closed manifold M. Then 1y is
symmetric if and only if it is algebraic.

Let ¢; be a symmetric Anosov flow with generator X on a closed manifold M of
dimension one. Then M = S' C C*. Since a symmetry group of a certain lift ¢, of
¢; acts transitively on M, then X is identically zero or vanishes nowhere. Suppose
that X vanishes nowhere and denote by T the minimal positive periodic of ¢;. Then
we get a C* diffeomorphism p : R /Z — M such that p(t + Z) = ¢ur(1), which
conjugates the flow of % -0 to ¢¢. Thus up to C* flow equivalence, one-dimensional
algebraic flows are generated by {a - 0;}.cr-

So in the following, we consider only the algebraic flows defined on a manifold of
dimension at least two. Denote by ¢; such a flow. We suppose that ¢, is generated
by a € g such that [, €] = 0. Then we have the primary decomposition of g with
respect to ada, g = @respec(ada)Eax, Where spec(ada) denotes the spectrum of ada
on g. We define

Et = Dre(n)>0E0 15 £ = Pre)=0Er3, €7 = Pre(r)<0€n -

So we get,
g=CTaqe.

If K is connected, then because of [a, €] = 0 we can get on '\NG /K three C*
¢p-invariant vector bundles E* and EY and E~ by translating Dr(E1) and Dr(E°)
and Dm(E7) by left multiplications, where 7 denotes the projection of G onto G /K.
Then it is easy to see that the vectors in ET are contracted exponentially in the
positive direction of ¢; and those in £~ are dilated exponentially. In addition the
vectors in E° are neither contracted nor dilated exponentially (see [Tol] for full
details). We deduce that ¢; is Anosov iff £Y = Ra + &.

If K is not connected, then there exists a finite lift ¢, of ¢; with connected
isotropy subgroup. However by Lemma 3.3, ¢, is Anosov iff ¢, is Anosov. So we get
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the following

Lemma 3.10 — Let ¢; be an algebraic flow defined on a manifold of dimension
at least two. Fix an element o € g such that [a, ¥ = 0 and a generates the flow ¢,.
Then under the notations above ¢, is Anosov iff E° = Ra + €. In addition algebraic
Anosov flows are Anosov-smooth.

Remark 3.2 — Under the notations above, we define £ = @ge(n)=a€y x for any
a € R. If we denote by £ the translated vector bundle on '\ G /K, then by sim-
ilar arguments as in Lemma 3.3, it is easily seen that £ is well-defined and is a
Lyapunov bundle with Lyapunov exponent a of ¢; (see also [Tol]).

The classical examples of symmetric Anosov flows are the suspensions of hy-
perbolic infra-nilautomorphisms and the geodesic flows of closed locally symmetric
Riemannian spaces of rank one. Symmetric Riemannian spaces have been classified
by E. Cartan (see [He] for the details). Let us recall the definition of hyperbolic
infra-nilautomorphisms.

Let N be a connected and simply-connected nilpotent Lie group. Let C' be a
compact subgroup of Aut(N). If I' is a torsion-free uniform lattice of N x C, then
it is said to be an almost Bieberbach group. In this case I'N/V is a C'°° manifold
called an infra-nilmanifold.

Let 1 be an automorphism of N. If no eigenvalue of the differential D, is of
unit absolute value and oI ot)~' = T, then the induced diffeomorphism 1 of T\ V
is said to be a hyperbolic infra-nilautomorphism which is easily seen to be Anosov.
If I' € N, then % is said to be a hyperbolic nilautomorphism. It is easy to see that
the suspensions of such hyperbolic infra-nilautomorphisms are symmetric Anosov
flows (see [Tol] for the details).

3.4.2 A construction using Clifford algebras

In [Tol] P. Tomter constructed explicitely a seven-dimensional non-classical sym-
metric Anosov flow. By using his idea we construct here a whole family of new
symmetric Anosov flows of dimension 13. The construction is based on some repre-
sentations of spin groups. Let us recall firstly some notions about Clifford algebras.

Let V be a real (or complex) vector space with a quadratic form ¢g. Then the
Clifford algebra of (V, q) is defined to be the quotient algebra of the tensor algebra
®V by the idea generated by

u®@u+qu)-1, Yu eV,

which is denoted by CI(V, q). The linear map a(u) = —u on V extends uniquely to
an algebra isomorphism of CI(V, ¢) denoted also by a. We define for i = 0 or 1

CU(V,q) = {6 € CUV,q) | a(6) = (~1)'6}.
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Then CI°(V, q) is said to be the even part of CI(V,q) and CI*(V,q) is said to be the
odd part of CI(V,q). In addition we have

Cl(V,q) = Cl°(V,q) & CIY(V,q)

as vector spaces. Denote by Cl*(V, q) the group of invertible elements in CI(V, q).
Then there is a homomorphism

Ad : CI*(V,q) — Aut(CL(V, q))

called the adjoint representation which is given by

Ady(x) = ¢zd™".

The anti-automorphism of ®V defined by reversing the order in a simple product,
i.e. sending v; ® -+ ® v, to v, ® -+ ® vy, determines a unique anti-automorphism
of CI(V, q) which is denoted by & — Z and refered to as the check involution. Then
the reduced Clifford group is defined as follows

spino(V.q) = {6 € CI*(V.q) N CI(V.q) | Ady(V) C V. 66 =1},

which is nothing but the identity component of the spin group spin(V, q) (see [Ha]
or [LM]).

Now we begin to construct a new non-classical symmetric Anosov flow. Take an
integral quadratic form ¢ = —ngdz? +nydz? + nydr3 + n3dz? such that {ng,--- ,nsz}
are all positive integers and it admits no non-zero integral solutions. Such a quadratic
form exists (see [Di], Chapter XI).

Denote by {9, -+ ,03} the canonical basis of R* = V. Then each element a of
C19(V, q) is of the following form

a = Qg + a016’06’1 + aogaoag + CL038083 + CL128182+

+a130103 + a230205 + 01230001 0205.

By a simple calculation we can see that a € sping(V, q) iff the following two algebraic
equations are satisfied:

(1) aopapias — ap1G23 + ap2a13 — ag3a12 = 0,

2 2 2 2 2
(2) afj — noniag, — noeneagy, — NeN3ass + N1N2G s+
2 2 2
+N1n3a73 + NaN3ayz + NeNiNaNsy oy = 1.

So sping(V, q) is naturally a six-dimensional real algebraic group. It is easy to see
that its Lie algebra is

g = {b010001 + « -+ + b230205 | boy, + -+ , bog € R}.
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Chapter III: Dynamical and geometrical properties of Anosov systems

By a simple calculation we can see that the spectrum of ad(9y0;) on g is

{O, 2\/ Nonq, —2\/7’LQTL1}

and £° is generated by 9y0; and 9,0s.
Denote by K the connected subgroup of sping(V, q) generated by 050;. Then K
is compact. In fact we have for all t € R

oMO205) _ cos(y/mang - t) + sin(y/nans - t) - 205

The group sping(V,q) acts by multiplication on CI°(V,q). The spectrum of the
linear action of 9y0; on CI°(V, q) is easily seen to be {\/ngni, —/noni}. Thus in
the primary decomposition of CI°(V, q) x g with respect to ad(9y0;), we have

50 ZQK@Raoal

So in order to construct a symmetric Anosov flow we need only find a torsion-free
uniform lattice in C1°(V, q) x sping(V, q) (see Lemma 3.10). Let us recall firstly some
notions.

Let GG be a linear algebraic group defined over Q. A subgroup I' of GG is said to
be an arithmetic subgroup if there exists a certain faithful Q-representation p : G —
G L, such that p(I') is commensurable with p(G) N GL,(Z). The same condition is
then fulfilled for every faithful Q-representation of G.

Denote by Gg the subgroup of real points of G. Then an arithmetic subgroup I'
is always discrete in Gg. By the compactness criterion for arithmetic subgroups, for
reductive GG, I' is uniform in Gy iff G is anisotropic over Q, i.e. if it has no Q-split
torus S # {e} (see [Bor]).

The complex Clifford algebra C1(VC, q) is defined similarly as CI(V, q). We define
a linear algebraic group sping(VC, q) by the two algebraic equations above. Then
we have (sping(VC, q))r = sping(V,q). In addition Ad |sping(vC,q) 15 defined over
Q and is a finite covering map onto SO(q), which denotes the special g-orthogonal
subgroup of GL(V®).

Since ¢ admits no non-zero integral solutions, then SO(q) is anisotropic over Q
(see [Bor]). We deduce that sping(VC, q) is also anisotropic over Q.

The linear action by multiplication of sping(VC, g)on CI1°(VE, q) is defined over
Q and faithful. Take the lattice A = Z®- - -®Z0y0,0.05 C CI1°(V, q) and denote by I’
the isotropy subgroup of this lattice in sping(V, q). Since sping(VC, q) is anisotropic
over Q, then by the compactness criterion above, I' is seen to be a uniform lattice
in sping(V,q). By passing to a finite index torsion-free subgroup of I', we get a
torsion-free uniform lattice A x T of C1°(V, q) x sping(V, q). In particular A x T" acts
freely on (C1°(V,q) x sping(V, q)) /K.

So by Lemma 3.10, 9,0, gives a non-classical algebraic Anosov flows on the infra-
homogeneous manifold A x I\NCI%(V,q) x sping(V,q),/K. By taking the direct
product of these kind of representations we can thus get many examples of non-
classical symmetric Anosov flows.

Recall that P. Tomter used a three-variable quadratic form —nodz? + nydz? +
nodz3 to construct his seven-dimensional example.

\/ 1273
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Chapter III: Dynamical and geometrical properties of Anosov systems

3.4.3 A rough classification of symmetric Anosov flows

Recall that two flows ¢; and ¢? are said to be commensurable, if some finite normal
cover of ¢} is C°° flow equivalent to some finite normal cover of ¢?.

Since the isotropy subgroups of symmetric Anosov flows are supposed to be
compact, then it is essentially a Lie theoretical problem to classify such flows. By
Theorems five and six of [To2] we have the following

Proposition 3.4 — Let ¢; be a symmetric Anosov flow on a closed m-dimensional
manifold. Then we have the following descriptions:

(1) If rank(¢y) = 2[%], then ¢, is commensurable to the geodesic flow of a closed
locally symmetric Riemannian space of rank one.

(2) If rank(¢y) = 0, then ¢ is commensurable to the suspension of a hyperbolic
infra-nilautomorphism.

(3) If 0 <rank(¢;) < 2[%], then ¢, is commensurable to a flow 1, constructed as
following:

Define H = Spin(n,1) x Ky X --- x K, where n > 2 and spin(n,1) denotes the
spin group of a quadratic form of index one and Ki,--- , K, are compact, simply
connected and almost simple Lie groups. Let € @ p be a Cartan decomposition of
so(n, 1) and a be a non-zero element of p. Let & be the centralizer of a in ¥ and
K be the connected Lie subgroup of H with Lie algebra € ® gg, @ -+ ® gk,. Let
V' be a real vector space of positive dimension and p : H — GL(V) be a linear
representation such that in the Lie algebra of the semidirect product G =V x, H
we have

£ = gk ® Ra,

where £° is defined as above using the primary decomposition of gg with respect to
ada. Let T' be a uniform lattice in G acting freely on G /K. Then we get on the
infra-homogeneous manifold TG /K the following well-defined flow

P (TgK)=T(g-exp(ta))K, VteR, VgeQq.

Remark 3.3 — For Case (3) in the previous proposition, we can find in [To2]
an algebraic characterization of the linear representations fulfilling the conditions,
i.e. the existence of a uniform lattice and £ = gx @ Ra.

If the rank of a symmetric Anosov flow ¢; is zero or maximal, then it preserves
certainly a C™ volume form. Otherwise in Case (3) of the previous proposition,
since ada acts on V' without pure imaginary eigenvalues, then it is easy to verify
that [g, g] = g, where g denotes the Lie algebra of G. So the Haar measure of G is
bi-invariant, which passes to the quotient to give a flow-invariant volume form. So
we deduce that each symmetric Anosov flow preserves a C'*° volume form.
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Chapter 4

On Special Time Changes of
Anosov-smooth Flows

Abstract — Given an Anosov-smooth flow, we characterize all its Anosov-smooth
time changes and we prove the existence of an Anosov-smooth time change whose
Bowen-Margulis measure is in the Lebesque class. In Subsection 4.5, we outline our
go-and-back idea.

4.1 Introduction

4.1.1 Anosov-smooth time changes

Let ¢; be an Anosov flow on a closed manifold M. Denote by X the generator of ¢;.
For each C'*° positive function f the flow of fX is said to be a smooth time change
of ¢;. Since ¢; is Anosov, then the flow of fX is also Anosov (see [HK]). Denote
by EJTX and Ey the strong unstable and strong stable distributions of the flow of
fX. Then it is easily seen (see Lemma 1.2 of [LMM]) that

Efy ={u"+60"(u")- X |Vu" € ET},
where 07 is the unique C%-section of (ET)* such that
Lx(f70%)=f7"df |&+ -

Similarly we have E, = {u™ +07(u™) - X [V u™ € E~}, where 6~ is the unique
C%section of (E™)* such that

Lx(f707)=f"df |5
In particular we have E}FXO = B0 and E;XO =

Definition 4.1 — Let ¢, be a C"° Anosov flow on M with generator X. If « is

a C*° 1-form on M such that a(X) > 0 and Lxda = 0, then the flow of %X) is said
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Chapter IV: Special time changes of Anosov-smooth flows

to be a special time change of ¢;.

Lemma 4.1 — Let ¢; be an Anosov-smooth flow and iy be a C* time change of
¢¢. Then Yy is Anosov-smooth iff it is a special time change of ¢;.

Proof — Suppose that the generator of ¢, is fX and v; is Anosov-smooth. De-
note by As its canonical 1-form. Then A; is C*° and we have A\f(fX) = 1, ie.
f= Y %X) > 0. Since Ay is ¥y-invariant, then by the Anosov property of 1, we have
for any ut € E}LX and any ¢ > 0,

| dAp(fXu™) |=] dAs(fX Dby (uh) [y [ X | Do) (= 0.

So we get d\f(fX,Efyx) = 0. Similarly d\;(fX,E7y) = 0. We deduce that
’ifxd)\f = 0. Thus ’ixd)\f =0 and

ﬁxd)\f = Zxd(d)\f) + dlx(d)\f) =0.

So Ay fulfills the conditions in the definition of special time changes. Since fX =
ﬁ, then 1, is a special time change of ¢;.

Conversely we suppose that 1 is a special time change of ¢; generated by ai)
Since Lxyda = 0, then by the Anosov property we get as above ixda = 0. Denote

ﬁ by f. Then we have
m))
= —(ixda + d(a(X))) = —d(a(X)).

On the other hand, f~2 - df = a(X)?- d(ﬁ) = —d(a(X)). Then by the formula
above, we get

== —,Cxoz

Lx(f~ (=

(6%
a(X) a(X)

So 1) is Anosov-smooth. [J

(u®) - X |V u* € E*}.

Definition 4.2 — Let ¢; be an Anosov-smooth flow on M with generator X. If
a > 0 and (3 is a C* closed 1-form on M such that a + 3(X) > 0, then the flow of

a+g(x) is said to be a canonical time change of ¢;.

Certainly each canonical time change of ¢, is special. The problem is to determine
for a certain Anosov-smooth flow whether its special time changes are all canonical.

4.1.2 The organization of the chapter

In Section 4.2 we prove that the special time changes are canonical for either the
geodesic flows of closed locally symmetric Riemannian spaces of rank one or the
suspensions of hyperbolic infra-nilautomorphisms. In Section 4.3 we prove for each
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Anosov-smooth flow the existence of an Anosov-smooth time change whose Bowen-
Margulis measure is Lebesgue. Then in Section 4.4 we show that for such a time
change the Margulis measures are flat with respect to certain linear connections.
Finally in Section 4.5 we outline our go-and-back idea to prove the rigidity of Anosov-
smooth flows, which will furnish us the departing point of Chapters V and VI and
VII.

4.2 Special time changes of certain algebraic Anosov
flows

The following proposition is proved in [Ham1].

Proposition 4.1 (U. Hamenstadt) Let ¢, be the geodesic flow of a closed neg-
atively curved manifold. If its Anosov splitting is C*, then for each C' 1-form «
such that do is Y-invariant, da is proportional to dA, where A denotes the canonical

1-form of 1.
We deduce from this proposition the following

Lemma 4.2 — Let ¢; be the geodesic flow of a closed locally symmetric space of
rank one. Then each special time change of ¢; is canonical.

Proof — Denote by a a C* 1-form such that o(X) > 0 and Lxda = 0. Then
by the previous theorem there exists a € R such that

da = a-d\,

where A\ denotes the canonical 1-form of ¢;. So there exists a C* closed 1-form g
such that a = a - A + . We need only see that a > 0.

Suppose on the contrary that a < 0. Since a(X) = a+5(X) > 0, then 3(X) > 0.
Suppose that the locally symmetric space is of dimension n. Then we get

0= —/ BAXA(AHAN) = [ BA(A"AN)
oM M

= [ B(X)-AA(A"N) >0,
M

which is a contradiction. [

Now we want to find out all the special time changes of the suspensions of hy-
perbolic infra-nilautomorphisms (see Subsection 3.4.1 for definition).

Lemma 4.3 Let ¢ be a hyperbolic infra-nilautomorphism on I'NN. If a be a
C' closed 1-form such that da is ¢-invariant, then do is zero.
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Proof— By aresult of L. Auslander (see [Au]), each hyperbolic infra-nilautomorphism
is normally and finitely covered by a hyperbolic nilautomorphism. So we need only
prove this lemma for hyperbolic nilautomorphisms. So in the following we suppose
that I' € N. To simplify the notations we denote I'N/V also by M. Remark that
any hyperbolic nilautomorphism is topologically transitive and has dense periodic
orbits.

Firstly let us recall some notions. Consider the complexified vector bundles
TM @ C and T*"M ® C. Any diffeomorphism of M acts naturally on these two
complex vector bundles and also on their exterior powers by acting respectively on
the real and imaginary parts. The brackets of the sections of TM ® C are defined
by extending C-linearly the brackets of real vector fields. The action of sections of
TM ® C on C-valued C'* functions on M are defined by extending C-linearly the
action of real vector fields on R-valued C'*° functions. Then for all £ € N the exterior
derivation of the sections of A¥(T*M @ C) is defined as in the real case and is also
denoted by d, i.e. for arbitrary C* sections {Yp, -+, Yy} of TM @ C and arbitrary
C* section a of A*(T*M @ C) we have

da(Yo, - Yi) = 3 (~1) - Yi(a(¥o, -+ Fiu- - Yi))+

0<i<k

+Z )* - a([Y;, Y], Yo, -+, Y-, Y, - V).

1<j

Any smooth k-form 7 can be extended C-linearly to a section of AF(T*M @ C)
denoted by ¥¢. Then 7 is ¢-invariant iff 7€ is ¢-invariant.

A section of A¥(TM @C) or AF(T*M @C) (or AFT* M) is said to be left-invariant
if its lift to N is left-invariant.

Now let us returm to the proof of the lemma. Take independent left-invariant
sections of TM @ C, {X7,---, X, } such that the matrix A of ¢, is in Jordan form:

A1 0
Ay T
A= ;A= - , V1<j <k
S
Ay
0 Aj
Then for all m > n we have
)™ (D™ () g)m
(A)" = 0 - : V1< <k,
: .. (T) (/\j m—1
0 0oy

where [ denotes the order of A;. Denote by { X7, -+, X} the dual basis of { X3, -+, X, }.
Note that the matrix of ¢* is just A7 in the basis {X7,---, X*}. There exist C°
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complex functions {f;;} on M such that

1<i<j<n

Denote by I; the set of indices of A; in A. Take ¢, j € {1,---,k} such that i < j
and define an order on I; x I; as following:

For (s,t), (s',t') € I, x I, (s,t) < (&, t')iff s < s orif s =5, thent <t Let
(k,1) be the smallest element of I; x I;. For all m > n we have (¢™)*(da)® = (da)C,
ie.

(da)S = 3 fiod™(@" )V K] A (6" X (+)
1<i<j<n

By comparing the coefficients of X; A X of both sides we get

S = (NiXj)" (fri o 9™).

So if | AA;j |# 1, then fi; = 0. If | MA\; |= 1 and fi; # 0, then by the density of
the periodic orbits of ¢ there exists a point z in M and p > N such that fi;(z) # 0
and ¢P(z) = x. So we get (\A;)P = 1. We deduce that fi; 0 ¢ = fi;. But ¢* is
also a hyperbolic nilautomorphism, so topologically transitive. We deduce that fx,
is constant.

Take (s,t) € I; x I; and suppose that fyy is constant for all (s',¢') < (s,t). Then
by comparing the coefficients of X A X} of both sides of (%) and using the special
form of A™, we easily get

fst - (Az)\])m(fst o qu + P(m))v

where P(m) is a polynomial without term of degree zero. Then using similar argu-
ments as above we see that f5 is constant. So by induction on I; x I;, fq is seen
to be constant for all (a,b) € I; x I;. If in addition | \;\; |# 1, then we have in fact
fap = 0 for all (a,b) € I; x I;. So in order to prove this lemma, we need only see
that f, = 0 for all (a,b) € I; x I; such that | \;\; |= 1.

By the arguments above, (da)® is seen to be left-invariant. So da is also left-
invariant. In particular we deduce that da is C'*°. Since the Stokes formula is valid
for C* forms, then it is easily seen that da represents the zero cohomology class in
the first cohomology group of M. So by [No] there exists a left-invariant 1-form g
on I\UN such that d3 = da. Then we have (da)® = (d3)® = d(8%). Fix i < j such
that | \;A; |= 1. Let (k,) be the smallest element of I; x I; then we have

Ou X, Xa] = N[ X, X
Since ¢ is hyperbolic, then A\;\; can not be an eigenvalue of ¢.. So we get [ X}, X;| =

0. Now by induction on I; x I; we easily get [X,,X;] = 0 for all (a,b) € I; x I;.
Since 3% is left-invariant, then

fav = d(5) (X, Xp) = —B([Xa, Xi]) = 0.
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We deduce that (da)€ =0, i.e. da=0. O

Lemma 4.4 — Let ¢; be a C* flow on M generated by X. If f is a C* func-

tion on M such that 1 + X(f) > 0, then ¢; is C™ flow equivalent to the flow of
X
1+X(f) "

Proof — We define the following map,
XM — M

T = Ppa) ().

Then by a simple calculation we get

X

DyYp¥ (——) = X.
¢(1+XUQ
X X
Since X = ¢ H—, then we get a similar map ¢)™#*@ such that
+(1+X(f))(7f)
X
D 1+X(f X -

Denote by (bt the flow of 5 X . Then for all £ € R and all x € M we have

onlx) = B, ().
where B(t,) = [1(1+ X(f))(6(x))ds. So we get

Bt,x) =t + f(o(z)) — f(a).

Then for x € M we have

WD 0 X (@) = of_p 0 (05()

_ o f f B
- ¢—f(¢f(m)(w))(¢f(¢f(m>(w))(x)) =

So we get ¢1+§(f> o)X = Id. Similarly we have ¥ o¢1+§(f) = Id. So ¢, is C*> flow
equivalent to the flow of 1++(f) O

Now we can prove the following
Lemma 4.5 — Let ¢; be the suspension of a hyperbolic infra-nilautomorphism. Then

each special time change of ¢; is homothetic to ¢y, i.e. up to a constant change of
time scale, each special time change of ¢; is C™ flow equivalent to ¢;.
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Proof - Suppose that ¢, is the suspension flow of the hyperbolic infra-nilautomorphism
(¢, M). Denote by M the suspension manifold and by X the generator of ¢,.

Let a be a C* 1-form on M such that a(X) > 0 and Lyda = 0. Since da
is ¢s-invariant, then its restriction to M, da |y, is ¢-invariant. Then by Lemma
4.3, da | is zero, i.e. da(E™T, E7) = 0. However by the Anosov property, we have
da(X,ET) =da(X,E7) =0. Thus da = 0.

By Theorem 4 of [Hi] and Lemma 3.3 of [P11], we get H'(M,R) = R. Thus
there exists a € R such that [a] = [a-A] in HY(M,R), where A denotes the canonical
1-form of ¢;. By integrating along a periodic orbit of ¢; we get a > 0. Then by

Lemma 4.4 the flow of ﬁ is C* flow equivalent to that of %X .U

4.3 Parry time change.

Let ¢; be a C'* volume-preserving Anosov-smooth flow on M. Fix a C'°* Lyapunov
metric g on M. Then there exists b > 0 such that

| Dpse(u®) < e™ [ u™ ||, V>0, Vu™ € E*. (%)

We suppose that £t and E~ are both orientable. Denote by n and m the dimensions
of E* and E~ and by v* the induced volume forms of g |z+ on E*. Then v* and
v~ are C'° nowhere-vanishing sections of A"(E™)* and A™(E~)*. For all x € M
and all ¢ € R we define

97V )a (P;v7 )a
det(Doy |py) = 7 det(Dén |) = ==
Then by (x) we get for all t > 0,
det(Dy | gr) > €™, det(Dey |5-) < e ™. (%)

For all z € M we define

0
¢ () = 57 lio log(det(Doy | pz)).
Since E* are both O, then ¢+ and ¢~are both smooth. In addition by (x) we get
ot >nb>0, ¢~ < —mb<0.

Denote by X the generator of ¢; and define a C*° time change X+ = ¢£+ whose

flow is denoted by ¢;. Then ¢; is also a C'*° volume-preserving Anosov flow. In
[Par], W. Parry proved that the Bowen-Margulis measure of ¢; is in the Lebesgue
measure class. We propose the following

Definition 4.3 Let ¢; be a ' Anosov-smooth flow whose strong stable and
strong unstable distributions are both orientable. Under the notations above, the
flow generated by the vector field % is said to be the Parry time change of ¢;.
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The purpose of this section is to prove the following

Theorem 4.1 — Let ¢; be a C volume-preserving Anosov-smooth flow on M.
We suppose that ET and E~ are both orientable. Then its Parry time change is
also Anosov-smooth.

We shall prove this theorem via several lemmas. Under the notations above, we
denote by ¢; the Parry time change of ¢, and denote by ¢; the flow of f? We
shall prove Theorem 4.1 by finding explicitly the strong stable and strong unstable
distributions of ¢;". Let us prove firstly the following

Lemma 4.6 — Under the notations above, ¢, is C* flow equivalent to ¢; .

Proof — Denote by A the canonical 1-form of ¢;. Since ¢; preserves a volume
form, then we can find a C*° ¢-invariant volume form v (see Lemma 3.6) and a C'*
positive function g such that

v=g- ANV AV,

So we get
V=G = go i NAGYT A

=990 et(Do [5+)) - (det( Do |z-) -

ie. g =go¢- (det(Dey) |p+) - (det(Dey) |g-). By taking the logarithm of this
relation and differentiating at zero with respect to t, we get

¢+ ¢~ =—X(log(g)).
Recall that ¢* > 0 and —¢~ > 0. So we have for H = —log(g),

X X

X
AR —¢ '
ot —¢T + X(H) 1+ (Z=)(H)

Then by Lemma 4.4, the flow of %}, is C'* flow equivalent to that of % O

Let F be a C* foliation on M whose tangent bundle is denoted by F'. Then
the leafwise differential forms of F are just C* sections of the exterior powers of
F*. The exterior differentiation of leafwise differential forms of F can be defined
leafwise and is denoted again by d. For each section Y of F', the classical operations
Ly and iy can be defined naturally and the famous Cartan formula

ﬁy:doiy—i—’iyod

is certainly valid in this foliated context. Under these notations, we can prove the
following lemma by using the same calculation as that of the proof of Lemma 4.1.
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Lemma 4.7 — Let ¢y be a C™° Anosov flow with generator X. If E= is C* and « is a

C* section of (E=°)* such that a(X) > 0 and da(X, E~) = 0, then the strong stable
distribution of the flow of% is also C* and is given by {u~ — o;(g;;))X |u~ e E~}.
Similarly if ET is C* and « is a C™ section of (ET°)* such that a(X) > 0 and

do(X, ET) =0, then the strong unstable distribution of the flow of ﬁ is also C*°
and is given by {ut — %;))X |ut € Bt}

Thus in order to prove Theorem 4.1, we need only, by the previous two lemmas,
find two sections of (E~%)* and (E*Y)* to fulfill the conditions of Lemma 4.7 with
respect to ¢ and —¢~. Let us recall firstly some notations.

Definition 4.4 — Let F be a C* foliation on M and E be a vector bundle on M.
Denote by F' the tangent bundle of F. Then a bilinear map V : sec(F') x sec(E) —
sec(F) is called a C* linear connection on E along F if for sections Y and Z of F
and E and C* function f on M we have

Vi = [VyZ, VyfZ=Y()Z+ [VyZ.

If in the previous definition, F is supposed in addition to be an orientable line
bundle, then by taking a nowhere-vanishing section w of E, we can define the con-
nection form 3 and the curvature form €2 of V with respect to w such that

Vyw=B(Y)w, (VyVz —=V;Vy = Vyz)w = QY, Z)w

for sections Y and Z of F. Thus we have 3 € F* and Q € A2F*. By a simple
calculation, we get the classical structural equation of Cartan in this situation, i.e.
dp = Q. In addition, it is easily seen that {2 is independent on the nowhere-vanishing
section chosen.

To our Anosov-smooth flow ¢;, two linear connections on vector bundles along
foliations are canonically associated. We define V' : sec(E~ ) x sec(E*) — sec(E™)
such that

(V) gy YH = fIX.YH] 4+ PHY =, Y,

Then it is easily verified that VT is a C* linear connection on ET along F~°.
Similarly we have a C™ linear connection of £~ along F™° denoted by V~.

In a natural way (see [KN], Chapter I), V' induces a C'* connection on A" E™
along F—°, which is again denoted by V*. Similarly we get a C™ connection on
A™E~ along FT0 denoted again by V~. Take the dual sections w® of v* and denote
by 8~ and 3% the connection forms of V~ and V* with respect to w™ and w™. Their
curvature forms are denoted respectively by Q= and QF.

Since V1 is ¢y-invariant in a natural sense and Q7 is a section of A*(E°)*, then
by the Anosov property of ¢;, we have Q7 = 0. Similarly we have Q= = 0. Then by
the structural equation of Cartan, we get

dfT(X,E7) =0, df (X,ET)=0.
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Lemma 4.8 — Under the notations above, —31(X) = ¢+ and =3~ (X) = ¢~

Proof — Fix z € M and take a C*° diffeomorphism ¢ : R" — W;. Then we
get the following smooth map,

p:RxR" — W0

(t,v) = d((v)).

If e < 1, then U—€<t<€W¢—>t ., 1s easily seen to be diffeomorphic to (—¢, €) x R™ under
p~t. In addition, p~* sends F* |u76<t<eW;{ to the foliation {t X R"} _ ;- of (—¢, €) X
tz

R™.

_|_ 00 . . . +
SoonU_ i<Wy, we can find a €' connection along the foliation F |U_€<t<€W$m,

which is denoted by V}. Then there exists a C'*° connection V, on U_e<t<€W¢‘f; .
such that
(Vo)X =0, (Vo)y+ 2T =(VHy+ZT,

(Vo)x YT =[X, V7],

where Y and Z* denote arbitrary C'™ sections of E+ |U76<t<eW¢+ . Denote by 7
tT

the V,-parallel transport of E; along the ¢s-orbit of x. Then by the definition of
V. we get
T = Dd)t

If we denote by A; the determinant of 7, i.e.

N
- - )
vt (T—t)*wgt(x)

then we have

Ay = det(Doy |+ )-
By differentiating the two sides of this equality with respect to ¢ at zero we get

0
B li=0 B¢ = 97 ().
By the definitions of V, and %, we have (V,)xw' = Lxwt = 87 (X)w™. Since

(Va)xert)a) = o oco (r-o) sy

then we get

0 1

0
=5 lt=0 (Kt) T lt=0 At

B (X) ()

So for any x € M we have

=BT (X)(z) = ¢"(2).
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ie. —01(X) = ¢™. Similarly we can prove =3~ (X) =¢ . O

Proof of Theorem 4.1 — Since —f1(X) = ¢* and d*(X,E£~) = 0, then by
Lemma 4.7, the strong stable distribution of ¢ is C*°. Since —37(X) = ¢~ and
dB~ (X, ET) =0, then by Lemma 4.7, the strong unstable distribution of ¢, is C'°.
However by Lemma 4.6, ¢ and ¢; are C* flow equivalent. Thus the Parry time
change ¢;" of ¢; is Anosov-smooth. [J

4.4 A geometric property of Parry time change

Throughout this subsection we denote by ¢; a topologically mixing Anosov-smooth
flow preserving a C* linear connection V. We suppose that E* and E~ are both
orientable and the Bowen-Margulis measure of ¢; is in the Lebesgue measure class.

Denote by n and m the dimensions of £t and E~. Denote by h the topological
entropy of ¢; which is equal to its metric entropy by assumption. We can construct
another ¢-invariant C'*° linear connection V' such that

V'X =0, VE* C E*,

yeZT = PY[Y*, 2%, Vi Z* = PH(Vy=Z¥),

h h
VSCY+ - [Xv Y+} + _Y+7 iXYﬁ - [Xv Yﬁ] - _Y77
n m

This connection V' is said to be the canonical connection associated to V.

Definition 4.5 — Under the notations above, V 1is said to be canonical if it co-
incides with the canonical connection associated to V.

Remark 4.1 1In order to define the notion of canonical connections, it is not
necessary to suppose that ¢; is topologically mixing and the Bowen-Margulis mea-
sure of ¢, is in the Lebesgue class.

Since the Bowen-Margulis measure of ¢; is supposed to be in the Lebesgue class
and ¢, is topologically mixing, then by Lemma 3.8 the Margulis measures u*° and
p=? are given by C° nowhere-vanishing volume forms along the leaves of F+0
and F~0 So p™0 and p=0 are C*° nowhere-vanishing sections of A" (ET9)* and
/\m-i-l(E—,O)*.

Lemma 4.9 — Under the notations above, if V is canonical, then u™° and p=°
are both V-parallel.

Proof Since VET? C E*° then V induces on Et? a linear connection which

in turn induces a linear connection on the line bundle A" (E+9)*. We denote this
induced connection also by V. Then we want to see that V™" = 0.
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Denote by at the number % Then by the definition of V the parallel transport
of £ along an orbit of ¢, is given by

ut — et Dey(ut).

Since VX = 0, then X o ¢; is parallel. Fix z € M and a basis {u; }1<i<n of E. We
define
S(t) = (X o) Ae ™ Dy (uf) A--- Ae™® tDey(u).
Then S(t) is parallel along the ¢4-orbit of x, i.e. Vj,5(t) = 0. Since by Proposition
3.4
W00 gy = e,
then
(¢t)*ﬂ+,0 _ ena+tﬂ+,0’
i.e.

pHO(du(x)) = €™ - (¢_y) (10 (2)).

So with respect to the natural pairing of ™ and S, we have
0= < it (ou(x)), S(t) >

=< Vo,ut?, S>+ <yt Vs8>
=< Vatﬂ+’0, S>.

So Vg, u™0 = 0, i.e. u™0 is parallel along the orbits of ¢;. We deduce that Vxu™0 =
0.

Take a smooth curve  tangent to £~ and beginning at z. Since g+ is invariant
under the stable holonomy maps, then we get

p( (@) = (H )« (0 ().

By the definition of V, for any u™ € EF, the parallel transport of u™ along v is
obtained by the differentials of the weak stable holonomy maps,

— (DH, () (u).

Take a small curve [ tangent to £ and with u™ as the tangent vector at zero.

Fix ¢, then for all s < 1, H__,(I(s)) and Hm_v(t)(l( s)) are contained in W;E;()) ﬂVVlzs’;).
More premsely, in a product neighborhood of 7(¢), they are contained in the same
plats of W;r and I/Vl( ) o for e < 1, we can find a smooth function b : 0, ¢ = R

()
such that b(0) = 0 and

He o (1(5)) = buis) (H 31y (U(5))), ¥ s €0, ],

By differentiating the relation above with respect to s at zero, we get a number a(t)
such that
DH, ., (u") = DH_}, (u*) +a(t) - X (v(1)).
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Take a basis of B as above, {uf,---,u’} and define
S(t) = (DH_ ) (Xe Auf A= Auy).

Since (DH_,))(Xy) = X(7(t)), then by the relation above we get

S(t) = X (v() A (DH ) (ud) A=~ A (DH ) ().

We deduce that
VS =0.

Then we have

0=20 < put2t), S(t) >=< Vau™°, S(t)>.

So u? is parallel along . We deduce that Vy—put? = 0 for each section Y~ of E~.
Since VET0 C E+9 then for each point y in M, V induces naturally a linear
connection V |Wy+,o on ij 0 of which the parallel transport of a vector in TWy+ 0
along a curve in VVyJr ¥ coincides with that of V.
We denote by Q79 the curvature form of the connection V on A" E+9)*, Since
Q0 is a ¢p-invariant O 2-form on M, then by the Anosov property we get

Q0 (X, EY)y =0, QYY(ET, ET) =0.

It is easy to see that Q0 |, -0 18 just the connection form of the induced connection
of V |+ on A"FHTW 0) We deduce that the line bundle A" (TWH0)* is flat
with respect to V |W+0 So if two curves are homotopic with fixed endpoints in
W0, then their parallel transports are the same.

Along each curve [, we denote by P! . the parallel transport from I(s;) to I(s2)
of the line bundle A" (E+2)* with respect to V. For any y € M we denote by O,
the ¢;-orbit of y. Now we take a curve v tangent to E* and beginning at x. For

each fixed t and all s > 0 we get

Py, (p0(x))
p(v(1))

Py o B (ut0(x))
Py (u0(+(2)))

B0 )
PG OW)

where we have used that p™ is parallel along the orbits of ¢;. If s — 400, then
the length of ¢_; o7 goes to zero. Then by the compactness of M, ¢(t) goes to 1
if s — +o0o. We deduce that c(t) = 1, i.e. p™Y is parallel along . So we have
Vy+u™? = 0 for each section Y+ of E7.

In conclusion, we have proved that Vxu™" = 0 and Vy+put? = 0 for arbitrary
sections of E* and E~. Thus p*° is V-parallel. Similarly we can see that p=9 is
also V-parallel. [J

c(t) =
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We deduce from the previous lemma that ixu™° and ixpu 9 are also V-parallel,
which are respectively C*° nowhere-vanishing sections of A"(E1)* and A™(E7)*. So
by taking their dual sections, we get the following

Proposition 4.2 — Let ¢; be a topologically mixing Anosov-smooth flow of which the
Bowen-Margulis measure is in the Lebesque class. We suppose in addition that E*
and E~ are both orientable and of dimension respectively n and m. If ¢, preserves
a C™ canonical linear connection V, then the line bundles N"E* and N™E~ admit
both C* nowhere-vanishing V -parallel sections.

4.5 The idea

Our idea to prove the rigidity of certain Anosov-smooth flows is to take at first the
Parry time change in order to strengthen the geometric information by Proposition
4.2. Then we manage to classify these synchronised Anosov-smooth flows. Finally
we go back to find out the initial flows by the lemmas established in Sections 4.1
and 4.2 about special time changes.

The strength of this go-and-back idea will be demonstrated in the chapters below
(see the proof of Theorem 5.2 for a particularly clear illustration of our idea).
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Chapter 5

Smooth Rigidity of Transversely
Symplectic Anosov-smooth Flow

Abstract — In this chapter we study the Anosov-smooth flows preserving a trans-
verse symplectic form. In particular we give a classification of such flows in the case
of dimension five.

5.1 Introduction

5.1.1 Motivation and our main result

Let ¢; be a C'°° Anosov flow on M with generator X. If it preserves a C* closed
2-form w such that Kerw = RX, then ¢; is said to be transversely symplectic. This
closed 2-form w is said to be a transverse symplectic form of ¢;. Recall that the
kernel of w is defined to be

Kerw = {u € TM | i,w = 0}.

The classical examples of transversely symplectic Anosov flows are the geodesic flows
of negatively curved closed Riemannian manifolds and the suspensions of symplectic
Anosov diffeomorphisms. More precisely, if ¢; denotes the geodesic flow of a nega-
tively curved manifold, then its canonical 1-form A\ is contact. In addition ¢; is the
Reeb flow of A (see [Pa)), i.e.

AMX) =0, dAX,-)=0.

S0 d\ |g+ap- is non-degenerate, i.e. Ker(d\) = RX. Thus ¢, is transversely sym-
plectic with respect to dA.

If ¢ denotes a sympletic Anosov diffeomorphism with symplectic form w, then we
can extend w to a closed 2-form w on the suspension manifold by defining w(9;,-) = 0,
where 0; denotes the generator of the suspension flow. Since w is non-degenerate,
then the suspension of ¢ is transversely symplectic with respect to w.
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Chapter V: Rigidity of transversely symplectic Anosov-smooth flows

So there are plenty of transversely symplectic Anosov flows, which is due to
the fact that invariant transverse symplectic forms of Anosov flows are not rigid
geometric structures. Roughly speaking, transversely symplectic Anosov flows are
rather soft. But the situation changes radically in the case of transversely sym-
plectic Anosov-smooth flows, since we can then use the given transverse symplectic
form and the C*° Anosov splitting of the flow to construct a C'*° invariant pseudo-
Riemannian metric, or more essentially a C'* invariant linear connection (see [Kal]
and [BFL2] and Subsection 5.2.2 below). These canonically associated C* rigid ge-
ometric structures have furnished the departing point for the classification of certain
special (but important) classes of transversely symplectic Anosov-smooth flows, no-
tably the contact ones and the suspension ones (see [BFL2] and [BL] and Theorem
5.2 below).

Here are the known algebraic models of transversely symplectic Anosov-smooth
flows. The classical examples are certainly the suspensions of symplectic hyperbolic
infra-nilautomorphisms and the geodesic flows of closed locally symmetric spaces of
rank one. In addition, it is easy to verify that the spin examples constructed in
Subsection 3.4.2 are also transversely symplectic. This richness of algebraic models
makes very striking the classification problem of general transversely symplectic
Anosov-smooth flows.

In [Gh1], E. Ghys has classified three-dimensional transversely symplectic Anosov-
smooth flows (see also Theorem 5.2.2 below). In [FK], R. Feres and A. Katok studied
the five-dimensional transversely symplectic Anosov-smooth flows. They established
some quite raffined dynamical properties for such flows and they classified the con-
tact case. In this chapter, our main result is the complete classification of such flows
of dimension five. More presicely we prove

Theorem 5.1 — Let ¢; be a five-dimensional transversely symplectic Anosov-smooth
flow.  Then up to a constant change of time scale and finite covers, it is C™
flow equivalent either to a canonical time change of the geodesic flow of a three-
dimensional hyperbolic manifold or to the suspension of a symplectic hyperbolic au-
tomorphism of T*.

5.1.2 Plan of the chapter

In Section 5.2 we prove some properties for general transversely symplectic Anosov-
smooth flows. In particular using our idea outlined in Section 4.5, we give a new
proof of the classification of three-dimensional volume-preserving Anosov-smooth
flows originally obtained by E. Ghys. Then in Section 5.3 we prove Theorem 5.1.
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5.2 Preliminaries

5.2.1 Some elementary facts

Let us first prove some properties about transversely symplectic Anosov-smooth
flows. Denote by ¢; such a flow on M with generator X. Denote by w its transverse
symplectic form and by d)tﬁ a special time change of ¢, given by the C'*° 1-form (.
Then we have txw = 0. Thus

L x w=1 x dv+di x w=0.
B(X) B(X) B(X)

So we get the following lemma furnishing the basis to use our idea of taking suitable
time changes (see Section 4.5).

Lemma 5.1 — Fach special time change of a transversely symplectic Anosov-smooth
flow is also transversely symplectic and Anosov-smooth.

Since Kerw = RX, then w |g+ap- is non-degenerate. For x € M and u, v € Ef
we have by the Anosov property

| w(u,v) [|=]] wl¢Zu, o~ ) <[ w [ - [ oZu || - || ¢Zv |

<a e Jlwll-Jull-lv], vt>o0.

We deduce that w(E™T, ET) = 0. Similarly we get w(E~, E7) = 0. So Et and E~
are both Lagrangian subspaces of w |g+gr—. In particular we deduce that E* and
E~ have the same dimension and the dimension of M must be odd.

Denote by A the canonical 1-form of ¢;. Then it is easy to see that A A (A"w) is
a ¢p-invariant volume form if E* is n-dimensional. In particular we deduce that ¢
is topologically transitive (see Subsection 3.2.2).

5.2.2 Two dynamical lemmas and invariant parallel connec-
tions

Let ¢; be a C*-flow on a closed manifold M and v be a ¢;-invariant probability
measure. If ¢, is ergodic with respect v, then by Theorem 3.2, there exists a v-conull
¢p-invariant subset A of M and a ¢;-invariant measurable Lyapunov decomposition
of TM | As

TM |a= P1<i<kLi,

such that for any u; € L;,
Jdim 74 log || Déu(w) 1= xi.

Recall that L; is said to be the Lyapunov subbundle with Lyapunov exponent Y;,
which is also denoted by Lj,.
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The Lyapunov decomposition of ¢;, with respect to v, is said to be smooth if
there exists a v-conull ¢;-invariant subset A; of M and a C*> decomposition of T'M

into smooth subbundles
TM = @i<i<i i,

such that the Lyapunov decomposition is defined on A; and
Eila,=Li |p, V1<i<k.

If the support of v is M, then this C*° decomposition of T'M is certainly unique
and ¢;-invariant and is said to be the smooth Lyapunov decomposition of ¢;. The
Lyapunov exponent of F; is by definition that of L; for any 1 <17 < k. We define
E, = L, = {0} if a is not a Lyapunov exponent.

The following lemma is proved in [BFL1].

Lemma 5.2  We suppose that the Lyapunov decomposition of ¢; is C* and the
support of v is M. Under the notations above, if K is a C* ¢ -invariant tensor of
type (1, r), then

K(EXi17 T EXir) c EXi1 +e X

Let V be a ¢i-invariant C*° connection on M such that
VE, CE, V1<i1<k.

Then we have VK = 0 iff Vg, K = 0, where L denotes the C* Lyapunov subbundle
of Lyapunov exponent zero.

Proof — Because of the continuty of K we need only prove that
KLy, -+ Lyi,) C© L oty
on A. Take x € A and u; € L,,(x). Then we get

| Don(K (uy, -+ ur)) =[] K(Dge(wa), -+, Dor(ur)) ||

<[ K| - || Dos(ur) || -+ - || Dpe(ur) || -
So we have
.1 o1
Jim og(| Do(K ur, -+ ur)) ) < lim Flog(| Doufan) ||+ | Doylu,) )
=X t X,
and
.1 o1
Jim og(| Do ur, -+ ur)) ) 2 Jim Flog(| Dgufan) ||+ | Dy(u,) )
= Xin T+ X

82



Chapter V: Rigidity of transversely symplectic Anosov-smooth flows

We deduce that K(ui, -« ,u;) € Ly, 4opyy.- S0 K(Ey, o+ By ) © By, gy, -
Recall that by convention L, = E, = {0} if a is not a Lyapunov exponent.

Since K and V are both ¢s-invariant, then VK is a ¢s-invariant tensor of type
(I,7+1). So we get

(vaK) (Exi17 Ty EXir) C EEb+Xi1+"'+Xir'
Since V respects the C*° Lyapunov decomposition, then
(vaK)(EXi1 )t ?EXiT) = va(K(EXi] )t 5EX7,'T)) - C EXi]+"'+XiT'
So we get Vg, K =0 if b # 0. We deduce that VK =0 iff Vg, K = 0.

We can deduce from the previous lemma a special case of Lemma 3.1.

Lemma 5.3 — Denote by ¢ a C™ flow with smooth Lyapunov decomposition and

suppose that the support of v is M. Under the notations above, if T is a C° ¢;-

invariant tensor field of type (0,7) and >, ;-, xi, # 0, then we have 7(E;,,- -+ , E; ) =
0. o

Proof Denote by X the generator of ¢; and define 7 = 7 ® Id. Then T is a
¢¢-invariant tensor of type (1,7 4+ 1). By the definition of 7 we have

’l_'(Eil,"' ,EZ'T,X) :7'<Ei1,"' -;Eir) - X - Eo.
By Lemma 5.2 we get
?(Eil’..- ,Eu_,X) g EZlglﬁrXil'

Since by assumption ;.. X; # 0, then By coxy N Eo = {0}. So we have
(B, -, B;) =0.0 o

Now we denote by ¢, a transversely symplectic Anosov-smooth flow on M. Sup-
pose in addition that it has C'*° Lyapunov decomposition with respect to its invariant
volume form. Then under the notations above we can construct a C'*° ¢;-invariant
linear connection V on M such that

VX =0, Vw=0, VEF C EF,
VyYir = PRIYS Y], VXY = [X, Y] + ¢ Y,

where Y;= are smooth sections of £ with Lyapunov exponent a;".

Let K be a C™ ¢-invariant tensor field of type (1,r) and Z,---, Z, be the
sections of the C'*° Lyapunov subbundles, F, ,---,E, . Then by Lemma 5.2, we
have

(VxK)(Z1,- -+ )
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= [X.K(Zy,+ . Z)|+ (Y a)K(Zy,- . Z,)— K(X, Z1) + a1 Zy,-++) -+~

1<i<r

= [XvK(Zla"' ;Zr)]_ Z K(Zla"' 7[X7Zi]7"' 7Zr)

1<i<r
=(LxK)(Zy,--+,7Z,) =0.

Since ¢; is Anosov, then Fy = RX. So by Lemma 5.2, we get VK = 0. Thus by
using this remark to the torsion tensor 1" and the curvature tensor R of V, we get

VI'=0, VR=0

and
T(Ea7 Eb) g Ea-i—b: R(E67 Ed) = 07

if c+d # 0. In particular, V is seen to be parallel.
Lemma 5.4 — Under the notations above, V is complete.

Proof — Since ¢, is supposed to have C'*° Lyapunov decomposition, then ¢, is
Anosov-smooth. So we have the C°° decomposition TM = RX @ E* @ E~. Since
VX = 0, then each geodesic tangent to RX is defined on R. So by Lemma 2.1, in
order to see the completeness of V, we need only prove that the geodesics tangent
to ET or E— are defined on R.

Fix a C* Riemannian metric on M. Then there exists ¢ > 0 such that the
geodesic v, (tangent to u) is defined on (—1,1) if || u ||< e. For any ut € E*, we
have || Dé_y(u') ||< e if t >> 1. Since ¢, preserves V, then v,+ = ¢¢(Ygrut). S0 Yyt
is defined on (—1,1). We deduce that each geodesic tangent to £ is defined on R.
Similar we can see that the geodesics tangent to £~ are complete. [J

So for each transversely symplectic Anosov-smooth flow with C'*° Lyapunov de-
composition ¢;, we have constructed a C'° ¢;-invariant complete parallel linear con-
nection V, which is said to be canonically associated to ¢;. The idea of constructing
such a connection is due to M. Kanai, Y. Benoist, P. Foulon and F. Labourie (see
[Kal] and [BFL1)).

5.2.3 Characterisation of classical models and the three-
dimensional case

By combining some known results, we can prove the following

Proposition 5.1  Let ¢; be a transversely symplectic Anosov-smooth flow on a
m-dimensional manifold M.
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(1) If rank(¢,) = 2[%%]. then up to a constant change of time scale and finite covers,
o 1s C° flow equivalent to a canonical time change of the geodesic flow of a closed
locally symmetric space of rank one.

(2) If rank(¢;) = 0, then up to a constant change of time scale and finite cov-
ers, ¢¢ is C* flow equivalent to the suspension of a symplectic hyperbolic infra-
nilautomorphism.

Proof — Suppose that E* is of dimension n. Then by Subsection 5.2.1 we have
m=2n+ 1.

If rank(¢,) = 2[%F], then A"dA # 0. So the ¢p-invariant C'*° m-form A A (A"d)
is not identically zero. Since ¢, is topologically transitive, then there exists ¢ # 0
such that A A (A"dA) = ¢- A A (A"w). We deduce that A A (A"d\) vanishes nowhere,
i.e. A is a contact form. So we conclude in this case by the classification of contact
Anosov-smooth flows (see [BFL2]).

If rank(¢;) = 0, then d\ = 0. So E* @ E~ is integrable. By Theorem 3.1 of
[P11], ¢; admits a global section Y (a global section is by definition a connected
closed submanifold of codimension 1 which intersects each orbit transversally). De-
note by 7 the first return time function of 3. Then the Poincaré map of ¥ is by
definition ¥ = ¢,((-). For the sake of completeness, we prove in detail the following.

Sublemma — The previous Poincaré map 1 is a symplectic Anosov-smooth dif-
feomorphism.

Proof — Denote by FH0 and F~° respectively the corresponding foliations of E*°
and E—Y. Since X is transverse to X, then FHYNY gives a C™ foliation on 3 whose
tangent distribution is denote by Ei. Similarly we have the tangent distribution
Es of F0N 3.

Since F™0 is ¢-invariant, then the foliation F™0 N X is ¢-invariant. So Ey is
Y-invariant. Similarly ES is also -invariant.

Fix a Riemannian metric on M. Since ET | and E{ are both transverse to RX
(along X3), then we can project Ei onto ET |z with respect to RX. Denote this
projection by P*. Since X is compact, then we can find two positive numbers M;
and M5 such that

My <) Pru < M [, ¥ ou € B
For any z € 3 and any u € (Ey)., u splitts uniquely as
u= Pl (u) +aX,, a €R.

We have
(D) () = (Da7(u) + 0) Xy@) + (Datr(a)) (P ).
Thus
(Da)(u) = (Pjiyy)~ [(Daprm) (P )],
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So for all n € N,
(Dw¢n)(u) - (qun(gg))71<Dx¢7'(x)+---+7(w"*](m)))(P;u)'

We have a similar formula for E5. Now a simple estimation shows that 1 is an
Anosov diffeomorphism with C> unstable and stable distributions Fy and Eg, i.e.
1) is Anosov-smooth.

Denote by w the transverse symplectic form of ¢,. Then w restricts to a C'™
closed 2-form wys; on X. Since Kerw = RX, then it is easy to see that wy is non-
degenerate and -invariant. So 1 is symplectic. [

By [BL] and the previous sublemma, 1 is seen to be C*° conjugate to a hyper-
bolic infra-nilautomorphism. Then by Corollary 3.5 of [P11], the integral manifolds
of E* @ E~ are compact. So we can take a leaf of ET @ E— as ¥. With respect to
this section, the first return time function is contant. So case two of Proposition 5.1
is true. [

It is easy to see by [HuK] that a three-dimensional Anosov-smooth flow is trans-
versely symplectic iff it is volume-preserving. Since such a flow must be either
contact or a suspension, then the previous theorem gives a classification of three-
dimensional volume-preserving Anosov-smooth flows originally obtained by E. Ghys
(see [Gh1]). In the following we reobtain this classification by using our go-and-back
idea (see Subsection 4.5).

Theorem 5.2 (E Ghys) — Let ¢; be a volume-preserving Anosov-smooth flow on
a closed three-dimensional manifold M. Then up to finite covers and a constant
change of time scale, ¢; is C* flow equivalent either to a canonical time change of
the geodesic flow of a closed hyperbolic surface or to the suspension of a hyperbolic
automorphism of T?.

Proof — By replacing ¢; by its Parry time change, we suppose firstly that the
Bowen-Margulis measure of ¢; is in the Lebesgue measure class. Up to finite covers,
we suppose also that £ and £ are both orientable.

By Lemma 3.7, ¢, is either topologically mixing or a suspension. These two cases
will be treated seperately.

If ¢, is topologically mixing, then by Lemma 3.8, the Margulis measures p+ and
= are given by C* nowhere-vanishing volume forms along the leaves of F* and
F~. So we can define two C* fields Y and Y~ tangent to E* and E~ such that
pE(Y*) = 1. Since for t € R

prog ="t pTog=e"um,
where h denotes the topological entropy of ¢;, then we have
(X, Yt =—h- YT, XY |=h-Y .
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In particular we deduce that ¢;[Y T, Y] = [YT, Y] fort € R. So [Y*,Y ] is
tangent to RX. Since ¢, preserves a volume form, then it is topologically transitive.
So there exists a € R such that [Y, Y] =a- X.

If @ =0, then Et* @ E~ is integrable. Since ¢; is of codimensional one, then we
deduce by [PI1] that the leaves of Et@® E~ are all compact. So ¢ is not topologicaly
mixing, which is a contradiction. We deduce that a # 0.

So we get a C* complete parallelism (Y7, Y~ X) on M. Denote by g the Lie
algebra generated by these three fields. Then we have g = s[,(2,R). So by Proposi-

tion 2.5, ¢; is C* flow equivalent to the algebraic Anosov flow on '\ SL(2, R) given
by the right multiplication of diagonal matrices. Thus up to finite covers, ¢; is C'*°
flow equivalent to the geodesic flow of a closed hyperbolic surface.

If ¢; is not topologically mixing, then by Lemma 3.7, E* @ E~ is integrable with
closed leaves. Take a leaf X of this foliation and denote by ¢ its poincaré map. Since
the Bowen-Margulis measure of ¢; is Lebesgue, then the Bowen-Margulis measure
of ¢ is also Lebesgue. Thus by Lemma 3.9 and the arguments above, we can find
two C'*° nowhere-vanishing vector fields Y and Y~ tangent respectively to E* and
E~ such that ¢,Y " = "Y'+ and ¢.Y~ = e "Y' ~, where h denotes the topologically
entropy of ¢. So we get ¢, [Y T, Y| =Y, Y~|. Thus Y, Y] =0.

Denote by 0, the generator of ¢;. Then the vector fields Z+ = eFMY* are
well-defined on M. So we get again a C'™ complete parallelism (7,77, X) on
M. Denote by g the Lie algebra generated by these three fields. Then we have
g = R? x R, where the semidirect product is given by multiplication on R? of order
two diagonal matrices of trace zero. So by Proposition 2.5, ¢; is C'* flow equivalent
to the algebraic Anosov flow on I'\NR? x R given by the right multiplication of the
one-parameter subgroup of R? x R generated by ((0,0),1). Then it is easy to see
that up to finite covers, ¢; is C*° flow equivalent to the suspension of a hyperbolic
automorphism of T? (see [Tol]).

Since the initial Anosov-smooth flow ¢, is a special time change of its Parry time
change, then we finish the proof of this theorem by Lemmas 4.2 and 4.5. OJ

Remark 5.1 — In [Gh3], a final classification of three-dimensional Anosov flows
with smooth weak stable and unstable distributions is achieved, which is related to
some very interesting results about group actions on the circle.

5.3 Classification of five-dimensional transversely
symplectic Anosov-smooth flows.

In this section, we prove Theorem 5.1.

5.3.1 Some preparations.

Suppose that ¢, satisfies the conditions of Theorem 5.1. Denote by X its generator
and by w its transverse symplectic form. Denote by v the invariant volume form of

87



Chapter V: Rigidity of transversely symplectic Anosov-smooth flows

¢¢. It a is a Lyapunov exponent of ¢; with respect to v, then by Lemma 3.1, —a is
also a Lyapunov exponent of ¢;. Since M is of dimension five, then there exist only
two possibilities concerning the Lyapunov exponents of ¢,

(1) —a<0<a,

(2) —a<—-b<0<b<a.

Denote by q@t the Parry time change of ¢;. Then by Lemma 5.1, qZ;t is also a trans-
versely symplectic Anosov-smooth flow. Since M is of dimension five, then the rank
of q@t can only be zero or two or four.

If rank(qgt) = 4, then by Proposition 5.1, up to a constant change of time scale,
quSt is finitely covered by a canonical time change of the geodesic flow of a three-
dimensional locally symmetric space of rank one. But such a Riemannan space
must have contant negative curvature. Then we deduce from Lemma 4.2 that up to
finite covers, ¢, is C'™ flow equivalent to a canonical time change of the geodesic flow
of a three-dimensional hyperbolic manifold, i.e. Theorem 5.1 is true in this case.

If rank(ggt) = 0, then by Proposition 5.1, up to a constant change of time scale,
(Z)t is finitely covered by the suspension of a four-dimensional symplectic hyperbolic
nilautomorphism. But in the case of dimension four such a hyperbolic nilauto-
morphism must be of the form (T*, A), where A is the induced application of an
invertible hyperbolic matrix A in GL(4,Z). Then we deduce from Lemma 4.5 that
up to a constant change of time scale and finite covers, ¢; is C'™° flow equivalent to
the suspension of a symplectic hyperbolic automorphism of T#, i.e.Theorem 5.1 is
also true in this case.

Thus in order to prove Theorem 5.1, we need only prove the non-existence of the
case of rank two. So throughout the following we suppose on the contrary that ¢;
is a five-dimensional transversely symplectic Anosov-smooth flow of rank two whose
Bowen-Margulis measure is Lebesgue (i.e. we denote qAﬁt again by ¢;). We shall find
a contradiction as following:

At first ¢; is proved to have C'° Lyapunov decomposition. Then we get a C'*
complete parallel linear connection V associated to ¢;, which is constructed in Sub-
section 5.2.2. So by Lemma 2.2, ¢, is homogeneous. Then by some dynamical and
Lie theoretical arguments we finish the proof by showing that each possible algebraic
model of ¢, is absurd.

Now let us procced into the proof. Denote by A the canonical 1-form of ¢;. Since
rank(¢;) = 2, then

dN#0, dANdN=0.

Define U = {x € M | (d\), # 0}. Since ¢; is topologically transitive and preserves
d\, then U is a ¢4-invariant open-dense subset of M. Denote by 7 the projection of
TM onto M. We define

Ei={u€e EY®E |i,d\=0, 7(u) € U}

and
Ef=E.NEY, E/ =ENE".
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Since ¢, preserves d\ and ET and £, then £; and E]” and E; are all ¢;-invariant.

Lemma 5.5 — Under the notations above, Ey is a two-dimensional C*° subbun-
dle of TM |y . B and Ey are both one-dimensional C* subbundles of TM |y such
that B, = E} @ B .

Proof — For all x € U, we have (d\), # 0. So near z, we can find C* local
sections of ET @ E~, Vi and V3, such that dA(V}, V5) = 1. Denote by V the C*
local distribution spanned by V; and V5 and denote by V= the orthogonal of V' with
respect to dA |g+ap--

Since d |y is non-degenerate, then V N V<L = {0}. For all w € ET @ E~ such
that m(u) near z, the following vector is contained in V-,

Plu) = u—dA(u, Va(m(w))) - Vi(m(u)) — dA(Vi(m(u)), u) - Va(m(u)).

So we deduce that locally E* @ E~ = V @ V* and the projection of E* ® E~ onto
V4 with respect to this decomposition is C*. In particular V+ is C,

Since dA |y is non-degenerate and dA A dA = 0, then d\ |y, .= 0. Thus locally
E, = V+. In particular, E; is O and two-dimensional.

Since d\(E*, EX) = 0 by the Anosov property of ¢;, then for all u € Fy, its
projections to E* and E~ are also contained in E;. So we have By = Ef @ E; . If
for some point = in U, (Ef), is of dimension two, then (d\), will be zero, which
contradicts our assumption. Thus E;” and E; are both of dimension one and C*. [J

Lemma 5.6 — Under the notations above, the Lyapunov decomposition of ¢y with
respect to its invariant volume form is smooth.

Proof — If ¢; has only one positive Lyapunov exponent, then its Lyapunov de-
composition is just the restriction of that of Anosov onto a v-conull subset of M.
Since ¢, is Anosov-smooth, then the lemma is true in this case.

Suppose that ¢; has two positive Lyapunov exponents b < a. Then there exists
a v-conull subset A of M, such that

TM |z»= LT ® L7 ® L] @ LT ® RX,

where LT and Li are the Lyapunov subbundles with exponents £b and +a (see
Subsection 5.2.2).
Since U is a ¢y-invariant open-dense subset and the flow is v-ergodic (see [An]),
then U is v-conull. So v(UNA) = 1.
Take x € U N A and non-zero vectors [ € (L), for i = 1 or 2. By Lemma 3.1
we get
d\(If,15) =0, d\(y,13)=0.

Since (d)), # 0, then we must have dA(I],17) # 0 or dA(I5,15) # 0.
Suppose at first that d\(l3,1;) # 0. Since d\ A d\ = 0, then we must have
d\(I7,17) =0. Solf € (Ef), and ] € (E]),, ie. (L), = (F{), and (L}), =
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(E7 )z Since w |p+gp- is non-degenerate and w(l{,l;) = 0 by Lemma 3.1, then
w(lf,17) # 0. We deduce that (d\ Aw), # 0. So A A dX A w is not identically zero.
Then by the topological transitivity of ¢;, there exists ¢ # 0 such that

ANAINNw=c-ANwAw.

So A A d\ A w is nowhere zero. We deduce that d\ vanishes nowhere and U = M.
In particular, F; and E are all C* subbundles of 7M.

If dA(I,1;) # 0, then by similar arguments, we can see that (L3 ), = (E3 ), and
d\ vanishes nowhere on M and Ef are both C'* subbundles of TM.

So for any x € A, (Ef), = (LF), or (L3 ),. Define

ANi={y e A Ef(y) =Li()} i=1.2

Then A; and A; are both mesurable and ¢ -invariant. So one of them is v-conull.
Suppose at first that (A;) = 1. Then we have Ei |x,= LT |, .
By Lemma 3.1, we have on Ay:

Lf = [Ker(vw— w(Lf,v))] N E*.

Since d\ Aw vanishes nowhere, then we can define two ¢;-invariant C'*° line subbun-
dles of T"M as following

Ef = [Ker(vw— w(Ef,v))| N E*.

Then we have By |s,= L |z, . So the Lyapunov decomposition coincides on A,
with a C° decomposition of T'M, i.e. it is smooth.
If v(Ay) = 1, then similar argument works. [

Remark 5.2 — In the proof of the previous lemma, we have seen that dA\ A w # 0
if ¢; has two positive Lyapunov exponents. If d\ A w # 0, then we must have
w(Ey, Ey) # 0. Thus we can define two C™ line bundles as in the previous lemma,
ie.
Ef = [Ker(vw— w(Ef,v))| N E*.
Then we have the following smooth decomposition
TM =RX®Ef®Ef ®Ef @ E,.

If ¢; has two positive Lyapunov exponents, then this decomposition is just the C*
Lyapunov decomposition of ¢;. If ¢; has only one Lyapunov exponent, then the C*
Lyapunov decomposition of ¢, is TM = RX @ ET @ E~.

Since ¢; has C'™ Lyapunov decomposition with respect to its invariant volume
form, then by Subsection 5.2.2 (see Lemma 5.4), we get a C*° complete parallel linear
connection V canonically associated to ¢;. Since by the construction of V, ()N( Ei)
is a O™ V- parallel geometric structure of order one on M then by Lemma 2.2, the
isometry group of (V X Ei) acts transitively on M. In partlcular we deduce that
d) vanishes nowhere. So F;" and E] are two well-defined C* line bundles on M.

Up to finite covers we suppose in the following that E* and Ei and M are all
orientable.
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5.3.2 The construction of a parallel geometric structure

Larger is the geometric structure, smaller is its isometry group. So in this subsection
we try to enrich the underlying invariant geometric structure (V, X, Ef) of ¢; to
get a smaller (but transitive) isometry group.

Since the Bowen-Margulis measure of ¢; is Lebesgue, then by Pesin’s entropy
formula, the topological entropy of ¢, is equal to the sum of its positive Lyapunov
exponents (with multiplicity). If ¢; has only one positive Lyapunov exponent, then
V is canonical (see Section 4.4 and Subsection 5.2.2). So by Proposition 4.2, A2E™
admits a C'™° nowhere-vanishing V-parallel section denoted by w.

However V is not canonical if ¢; has two positive Lyapunov exponents. So in this
case we need more delicate arguments to find such a section to enrich the geometric
structure.

Proposition 5.2 — Under the notations above, if ¢; has two positive Lyapunov
exponents, then N2E™ admits a C™ nowhere-vanishing ¥V -parallel section.

This proposition will be proved via several lemmas. Recall firstly that there exist
C*> ¢i-invariant line bundles £y and F, in this case (see Remark 5.2).

Since p't is given by C'* volume forms along the leaves of F by Lemma 3.8,
then it can be viewed as a C'™ nowhere-vanishing section of A?(E*)*. Denote by
wt its dual section. V induces a C™ linear connection on A2E* again denoted by
V. Denote by 87 the connection form of (V,A?E™) with respect to w™, i.e.

Vwt =" )wt.
Then QF = dB7T is the curvature form of (V,A2E™). The following calculation is
inspired by [Fo2]| and [BFL2].
Lemma 5.7 - dAAQT =0, QT AQT =0, QT Aw=0.
Proof — Since QF is ¢,-invariant and the flow is topologically transitive, then there
exists a constant ¢ such that

ANAANANQT =c- ANAwAw.

c/AAw/\w—//\/\dAAm
M M

:_/ d(A/\d/\/\ﬁﬂ:/ ANAAA BT =0.
M

oM
So ¢ = 0. We deduce that dA A QT = ix(A A dAN A QF) = 0. Similarly we get
QF AQT =0 using dA A QT = 0.
FANQTAw=5-AAwAw, then

3/ )\/\w/\w:/ﬁJ“/\d)\/\w.
M M
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EANAAANW =0 -AANwAw, then
BTANAANNw=6-BTANwAw

=45 -BHX)INAwAwW.

In the following we prove that [, 87(X)A Aw Aw = 0, which will finish the proof.

Since E;f and FE are both orientable line bundles, then we can find two C*
nowhere-vanishing sections w;” and w; of them. Using these two sections we get
from ¢, a C™ map A of M to GL(2,R). Then with respect to wi” A wy we get from
Theorem 3.1

/ log(detw;rAw;rD% |E+)dV = X1+ Xo-
M

By similar arguments as in the proof of Theorem 4.3.1, we get with respect to w™

5 (X) = 2 Jumo (Tog(det Dy |z)) — (1 + x2)

Since log(det,+ .+ Dd1 |p+) and log(det,+ Doy |p+) are two cohomologuous R-
cocycle of ¢, then their integrals with respect to the invariant volume form coincide.
We deduce that [, T(X)AAwAw=0.0

Lemma 5.8 — Under the notations above we have QT = 0.

Proof — In the direction of X, the situation is always clear. So in the following
we consider only the restrictions onto Et @ E~ of the forms and endomorphisms.

Since w |p+ap- is non-degenerate, then we can find a section ¥ of End(Et@E™)
such that Q*(-,-) = w(w(:), -). For all y € M we take i, € (Ei,), such that
(I3.17,15,1;) forms a dual basis of w,, i.e.

w(ly. 7)) =w(lf 7)) =1, w3, ;) =w(f,15)=0.

If ¢, (1) = 0, then in this basis we get

A
B
wy: 0
0

oo oo
(=N e )
oo o

Since Q7 Aw = 0 by Lemma 5.7, then Tri) = 24 = 0. By Lemma 3.1, we have
0=, 0L) =w@l,l;) =B -wlfi).
So B = 0. We deduce that v, = 0.

Now suppose that 1, (I{7) # 0. Since Q" A QF = 0, then det(t,) = 0. So there
exists y = alf + 6l such that a # 0 and ¢, (y) = 0. Then in a dual basis of the
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form (v, 1, y7,27), we have

o O O

wy:

SO OO
c o e
o OO

B

Since QT Aw = 0, then Tr(¢,) = 2B = 0. Again by Lemma 3.1, we get
0= (I7.07) =w(Ay,l5) =A-a-w(if,l7) = A«

So A = 0. We deduce that ¢ =0, i.e. QT =0. 0

Proof of Proposition 5.2 — By similar arguments as in Lemma 4.9, we can see
that Vxu™ = 0. We deduce that Vywt = 0. So g7 (X)w™ = Vxwt = 0, ie.
BH(X) =0.

Since dBT = QT =0 by Lemma 5.8, then we have

LxBT = d(BH(X)) +ixdBT = 0.

So there exists a € R such that 7 =a-A. Thus 0 = f7(X) = a, i.e. 5T =0. We
deduce that Vw* =0. O

So in any case A2ET adimts a C'™ nowhere-vanishing V-parallel section denoted
by w*. Define 7 = (X, Ef,w,w*). Then 7 is a C* V-parallel geometric structure

of order one. Define G = I(V,7). Then by Lemma 2.2, G acts transitively on M.

Fix 2 € M and denote by H the isotropy subgoup of z in GG. Denote by I' the
fundamental group of M. Then I is contained as a discrete subgroup in G and we
have M = I'NG,H.

5.3.3 Properties of the isometry group

Denote by g the Lie algebras of G which is identified to the Lie algebra of germs of
local Killing fields at x (see Subsection 2.5.4). Denote by h the Lie algebra of H.
At first let us find out the generator in g of ¢;.

We define G’ = Is(X, E,V,©). Then G C G’ and G’ acts also transitively on
M. Denote by H’ the isotropy subgroup of x in G’. Their Lie algebras are denoted
respectively by g’ and h’. Then by Subsection 2.5.4, we have the decompositions

g=T,M®h, o =T,MaY.

Under the identifications in Subsection 2.5.4, X is contained in the center of g and
there exists an element Lg in §’ such that
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Then on G’ /H’ the lifted flow ¢, is given by
Si(gH') = (g exp(—t(X, + Lo))H' = (g - exp(—tX,))H'.
So on G/ H the lifed flow ¢, is given by

¢ (gH) = (g- exp(—tX,))H.

Denote by Gy the identity comoponent of G. Then Gy acts also transitively
on M. By the long exact sequence of homotopy we get Hy = H N Gy. Since by
Subsection 2.5.4, G and H have both finitely many connected components, then up
to finite covers we suppose that I' C Gy. . .

Denote respectively by Q* and P* the stabilizers in Gy of W and W0, Then
we can see as following that they are all connected Lie subgroups of Gy, though not
a priori closed:

Since m: G — G/ H is a fiber bundle, then each curve in G/ H can be lifted to
(. So for each element a € Pt we can find a C™ curve [ in GG such that [(0) = e
and [(1)(z) = a(x) and [ C P*. Thus o' -1(1) € Hy. Since Hy is connected, then e
can be related to ¢ *-1(1) in Hy. We deduce that a can be joined to e by a piecewise
(™ curve in G contained completely in P*. Then by a classical result of Yamabe
(see [KMS]), P* is seen to be a connected Lie subgroup of G. Similarly Q* and
P~ are seen to be connected Lie subgroups of G.

Their Lie algebras are respectively

9" ={(uw,A) €glue B}

and
p* ={(u,A) €g|ue E"},

where we have identified TxM with T, M to simplify the notations.
For Y = (u, A) € g we have

0= ;Cy(:5+ = (ﬁy - Vy)&j—i_ = TT(A |E;}') . @—i_.

We deduce that Tr(A [g+) = 0 for all (u, A) € g.

Since we have D,h(X,) = X, for all h € Hy, then h(X,) = 0. So in the following
we identify Hy and b to their restrictions onto Ef @ E_ . A basis (u™, v, u~,v™) of
Ef @ E is said to be dual with respect to w if u* and v* are in EF and

wut,u ) =wh@rv?) =1, wu",v7)=wlhu")=0.
Lemma 5.9 — Under the notations above, Gy is simply connected and Hy is iso-

morphic to either {0} or R.

Proof — If dA\ Aw # 0, then by Remark 5.2, there exist two C> ¢-invariant line
bundles Fy and F, such that

w(BEf Ey) =0, w(Ey, Ef) = 0.
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Take a basis (If,1f,15,17) of (E* @ E~), such that If, € (E,),. Then for each
element h € Hy, we have in this basis

A O
0 Ay
Dsh=1 4
0 0

oXo o
Jo oo

since D, h preserves w, and Ef(z) and Ei(x). Since h preserves also @, then we
have A1 - Ao = 1. So Hj is isomorphic to 0 or R.

If d\ Aw = 0, then we can find a dual basis of EX & E_, (y*,1],l7,y), such
that I¥ € Ef and dA\(y*,y ) = 1. Denote by ¢ the section of End(E* @ E~) such
that

d)‘(7 ) = W(QP " )
Since d\ A w = 0, then Tryp = 0. Since we have in addition dA(/F,-) = 0 and d\
vanishes nowhere, then there exists B # 0 such that

Pr =

colmgo
oo oo
N ool
oo o

For all h € Hy, D,h preserves d)\,. So in the basis above the matrix of D,h must
have the following form

0

D,h = 0

SO U0

oo o O

Oalr O O
Ul

1
c

Since h preserves w*, then we have in addition ¢ = 1 . Thus H, is isomorphic to 0
or R.

So in any case Hy is simply connected. Then by the long exact sequence of
homotopy it is easily seen that GG is also simply connected. [J

We have the following

Lemma 5.10 — Under the notations above Ef ® Ey is integrable. If d\ A w # 0,
then ES @ Ey ®RX is also integrable.

Proof — Let Y, Z be two sections of Eff @ Ey. Then 0 = d\(Y, Z) = —\([Y, Z]).
So [V, Z] is also a section of ET @ E~. Since in addition

Z[Y,Z]d/\ = (ﬁyiz — Zzﬁy)d)\ = —Zz(dly + Zyd)d)\ =0,
then [Y, 7] is a section of Ef” @ E;. So Ef & E; is integrable.
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Since Ey and Ej are both ¢.-invariant, then [X, EF] C EF. Define two tensor
fields K* of type (1,2) on M such that

K*(Y,Z) = PEIPy(Y), Py (2)], VY, Z CTM.

Then K* are both ¢p-invariant. So by Lemma 5.2, we have K*(Ey, By ) C RX. We
deduce that (B, £y ] C B @ Ey @ RX, ie. Ef @ E; @ RX is integrable. O

In conclusion we need eliminate the following cases in order to prove the non-

existence of ¢y:

(I0) Two positive Lyapunov exponents and dimh = 0.

(I1) Two positive Lyapunov exponents and dimh = 1.

(I11) One positive Lyapunov exponent, dimh = 1 and dA A w # 0.

(I10) One positive Lyapunov exponent and dimh = 0.

(ITI1) One positive Lyapunov exponent, dimh = 1 and dA Aw = 0.

In the subsection below we shall eliminate these cases one by one.

5.3.4 Elimination case by case

(I0) In this case we have TM = RX @ Ef @ ES @ E] @ E5. Up to a constant
change of time scale, we suppose that the Lyapunov exponents of E]" and E are 1
and a.

As in Subsection 2.5.4, we identify the Lie algebra of G with that of the germs
of Killing fields at z. Since by assumption dimh = 0, then we have g = T, M (see
Subsection 2.5.4). Now we can find explicitly g as following.

For w and v in 1T,,M we have

[u,v] = T(u,v) — R(u,v) € T, M.

So R(u,v) =0 and [u,v| =T(u,v), VYV u,v e T, M.
Take a basis of T,M, (X,,15,1{,15,17), such that i, € (Ef,), and dA\(If,17) =
1. Extend lfQ to local sections of Ef2 denoted by lfQ. By the definition of V we get

(X, lf] = T(X,, ) = £lf

and
[Xo, 5] = *aly .

Since Ef @ Ey is integrable by Lemma 5.10, then we get
5 0 =T )
= (PO I+ P ) = [ 0] = 0.
Similarly we get [I7,1;] = X, by Lemma 5.10.

Lemma 5.11 — Under the notations above, we have 1 < a.
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Proof - Suppose on the contrary that 1 > a (Recall that a # 1). Then by Subsection
5.2.2, we have
T(Ef,Ey) C Ei_,.

If 1 —a+#a,then [If,15] =T(If,l15) = 0. If 1 — a = a, then there exists b € R such
that [I],15] = b- 1. So in any case there exists ¢ € R such that [I{,l5] =c-1J.

Since T(E;, EY) C Fi1q = {0}, then [If, 1] = 0. By the Jacobi identity of I
and I and I;, we get

0= [, [ 1+ [0 [l BT 4 [y, [0 ] = 1 e T+ I, —Xa] = 1,
which is absurd. [

Since a > 1, then we can suppose that [I{,l;] = c-I] and [I7,l5] = d- 1. Again
by the Jacobi identity of [{ and I and [, we have

0= [l;_ [lf_a lQ_H + [li_’ [l2_7 l;_]] = (1 —C d)lf

So ¢-d = 1. Now replacing {, by %12’ and [ by c- I, we get the following bracket
relations of g
(Xo, IF] = 215, [X,, 3] = %al5,
[lf, l;] =0, [l;_'/ lﬂ =1,
[ll_: l;_] = lf? [l;—, l2_] = Xy
The brackets, not appeared above, vanish by Subsection 5.2.2.

Since I, 1] = I7, then E;_, # {0}. We deduce that a = 2. Then by the bracket
relations above we get clearly

g~ R? xsl(2,R),

where the semi-direct product is given by matrix multiplication.
Since Gy is simply connected by Lemma 5.9, then we get

—_—~—

Go = R? x SL(2,R).

Since Hj is trivial, then I' is a uniform lattice of G. So case (10) is eliminated by
the following

—~——

Lemma 5.12 - R? x SL(2,R) has no cocompact lattice.

Proof — Suppose that there exists a cocompact lattice, denoted by A. Then by

P

[Ra], the projection of A to SL(2,R) must be discrete, denoted by A,. Since A,

is also cocompact in SL(2,R), then cd(Az) = 3 (cd denotes the cohomological di-
mension of a discrete group). We deduce that A NR? = 0. Since the linear action
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of SL(2,R) on R? is irreducible, then A NR? is in fact cocompact in R%. A simple
calculation shows that A, preserves A N R? for the natural linear action. So its

—_—

image m(Ay) in SL(2,R) (under the natural projection 7 : SL(2,R) — SL(2,R)) is

e

conjugate to a subgroup of SL(2,7Z). Since Ay is cocompact in SL(2,R), then 7(Ay)
is also cocompact in SL(2,R). We deduce that SL(2,Z) is cocompact in SL(2,R),
which is absurd. [J

(I1) Define S = Py — P — P, + P;. Then b is generated by S and we have
g="T,M 3dRS.

As above we suppose that the Lyapunov exponents of Ej” and E; are 1 and a.
Take a basis of T,M, (X,,15,1{,17,17) such that [, € B, and dA(I3,17) = 1.
Suppose at first that a > 1. Then we can find ¢ and d such that

Wil ]=c-l, [l ] =d- 1T
By the Jacobi identity of S and [ and 5, we get
0 =[S, [ i 0 + [ 15, ST+ 12, [S, 1]
=c -l + [, L]+ [y, -] =3c1.
So ¢ = 0. Similarly we get d = 0. If @ < 1, then we can find ¢’ and d’' such that

[lf_v 12_] =c- l;—, [ll_a l;] =d- 12_

Then again by the Jacobi identity of S and [{ and [, we get as above ¢ = d’ = 0.
We deduce that in any case

1] =0, [l 5] = 0.
Now by similar calculations as above we get the following bracket relations,
(S, 5] = I, [S. ] = £z,
(Xo F] = 205, [ X, 5] = aly, [IF,05] = X, + 5.
The brackets, not appeared above, vanish. Define two elements

X,+S
o= —
a+1

— X, +aS
9 5_ a+1 .

Thus g is decomposed as a direct product of two ideals
g2 (Rif ®RIf @RA) & (Rl ®Rl; @ Ra).
Then by the bracket relations above, we get
g2 (R?* x R) x sl(2,R),
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where the semi-direct product R? xR is given by the linear action on R? of the order
two diagonal matrices of trace zero. Since Gy is simply-connected by Lemma 5.9,
then we have

Go = (R* x R) x SL(2,R).

Before studying the action of I' on the space of lifted weak unstable leaves, we
shall at first prove a lemma about general Anosov flows.

Let 1y be a C>° Anosov flow on a closed manifold N. Denote by wt its lifted flow
on the universal covering space N. Denote by F+9 the lifted foilation of F+° and by
N / FHO the space of lifted weak unstable leaves with the quotient topology. Thus
the fundamental group 1 (N) acts naturally on N,/ F 0. The following lemma has
appeared in some special contexts (see for example [BFL2] and [Ba]). For the sake
of completeness, we prove it in detail.

Lemma 5.13 — Under the notations above, if v € m(N) and v # e, then each
y-fized point of N /FT0 is either v-contractive or y-repulsive.

Proof — Recall at first some notions. Suppose that ¢ is a C*° diffeomorphism
on a manifold M and a € M such that ¢(a) = a. Then ¢ is said to be contrac-
tive on an open neighborhood U of a, if for each open neighborhood W of a there
exists N > 0 such that ¢"U C W for all n > N. This fixed point a is said to be
¢-contractive if ¢ is contractive on some open neighborhood of a. Then a is said to
be ¢-repulsive if it is ¢~ t-contractive. .

Now let us return to the proof of the lemma. Suppose that W0 is fixed by ~.
Then there exists t € R such that

W’W; = gthv; .

If t = 0, then we can take a curve [ in Wj such that [(0) = z and (1) = ~a. If
s < 0, then ¢4(m(l)) will be tiny, where 7 denotes the projection of N onto N. Thus
¢s(m(l)) is homotopically trivial. We deduce that m(l) is also homotopically trivial,
i.e. v = e, which is a contradiction. So ¢ # 0.

By replacing v by ! if necessary, we suppose that ¢ < 0. We can see as following
that W0 is y-contractive.

Fix a C*° Riemannian metric g on N. Denote by g the lifted metric on N. By
[An] the induced metrics on the leaves of F? are all complete. Then with respect
to its induced metric W; is a complete metric space. Since v acts isometrically,
then y™" o (gm is a contraction of W; if n > 1. Thus it admits a unique fixed point
in W; denoted again by x. So we get

VT = gtxa

i.e. the orbit of x is fixed by 7.
Denote by U the saturated set of W with respect to f F+0. Then by the local
product structure of gbt, U is open. So the projection of Wm into N S F*t0 s an
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open neighborhood of W; ¥ denoted by U. For y € Waj we have

nN+’0 —= Nt’o
W, W o)’

Since vz = ¢y, then (5_,” oy™)(x) = x. So (¢7_nt o) (y) o We deduce that

W"VIN/; 0 — W0 uniformly. So 7 contracts on U. O
Now let us return to our ¢;. Denote by P, the stabilizer of W; in Gy. Then
Hy C Py and P, is connected. So Gy, P is identified to the lifted leaf space
M /F+9. Define
pT=RX,®h®RIf ®RI.

Then p* is the Lie algebra of Py and P is seen to be closed in Gy. Since Gy is
simply connected by Lemma 5.9, then by the long exact sequence of homotopy we
get 7T1(G0/P0) = 0.

Define G} = (R? x R) x SL(2,R) and denote by P; the connected Lie subgroup
of G} with Lie algebra p™. Then G}, P} is naturally identified to R' x S!. Denote
by 7 the projection of Gy onto G and by P the group 7~'(P;). Then we get

Go/P,~GL /Pl ~R! x S,

We deduce that Gy /Py = R! x R!.

Since ¢; preserves a volume form, then the set of periodic points of ¢; is dense in
M. Take gHy € Gy, Hy such that its projection in M is of period T. If ¢ (gHy) =
gHy, then each orbit of_ (;5; is periodic. We deduce that each ¢s-orbit is periodic
by the homogeneity of ¢;, which contradicts the topological transitivity of ¢;. So

¢r(g9Ho) # gHo. N
Now take v € T" C Gy such that v(gHy) = ¢r(gHp). Then we have v # e and
there exists h € Hj such that (see the beginning of Subsection 5.3.3)

v =g(h-exp(—TX,))g™".

Since 7 fixes the orbit of gHy, then it fixes also g and gF} for its natural action
on Go,/Py and Go/F}. So by Lemma 5.13, the v-action on Gy, F} admits at
least a contractive (or repulsive) fixed point, notably gPJ. Then by some direct but
lengthy calculations the corresponding y-action on Gy, P} = R' x S' is seen to be
as following:

v:R' xSt - R x §* (%)

(y, [u]) = (exp™y +d. [Au]),

where ¢ # 0 and A is matrix with two different positive eigenvalues. Here S! is
viewed as the set of directions, i.e.

St {[u] |u € C*,u~v & u=tv,t >0}
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Then GL(2,R) acts on S* by matrix multiplication. It is easy to see (by drawing a
picture) that v has exactly four fixed points on R! x S!. Two of them are saddles.

Up to an isomorphism of covering spaces, the projection of G, Fy onto Gy, F}
is as following

R! x R' — R x S! ()
(z, 0)  (z, [€”]).
Since the y-action on Gy, Fy is a lift of the y-action on Go, P, then by (x) and

(#x) it is easily seen that on Gy, Py v admits either a saddle or no fixed point. But
either of them is absurd.

(IT1) Define as above S = Py — P;" — Py + P;. Then b is generated by S and
g =T, M ®RS. Up to a constant change of time scale we suppose that the unique
positive Lyapunov exponent of ¢; is one. Take a basis (X, I, (], 1,,l;) as in Case
(I1). Then by the definition of V we get easily

I, 1=0, [I7,15]=0.

Then by some similar calculations as before g is seen to be the same as that of
Case (I1) except that a = 1. But in Case (I1) we have found two elements o and 3
which have eliminated the effect of a on the structure of g. So in this case we get the
same Gy and Hj as in Case (I1). So the same argument proves the non-existence of
this case.

(I10) Since dimh = 0, then g = T,,M. Take a basis (X,,l5,1},1l;,1l;) of T,M such
that I € (EY), and d\(l7,l;) = 1. By similar calculations as in Case (10) we get
directly

[Xwa lfﬂ = :I:lli,27 [l2+7 l;] = Xy

The brackets, not appeared above, vanish. We deduce that
which is absurd.

(ITI1) In this case we can find a dual basis (I3,1],17.17) such that I € Ef(z)
and d\(I5,1;) = 1. Define an element S in End(E] & E) such that

SUE) = 1, S(E) =0,

Then we have S € h (see the proof of Lemma 5.9). Since dimh = 1, then we have
g=T,M @ RS.
By using the Jacobi identities we get the following bracket relations

[S. 5] = 15, [S. ] =0,

[Xm lli,2] = l1i,27 [lf—vl;] =0,
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[lj—le_] = _[ll_v l;—] =5, [l;_, 12_] =X;+a-5,
where a is an unknown parameter whose appearence is due to the non-unique choice
of I and 3.
Since [IF,1; —a-17] = X,, then by replacing I; by I; —a -] we get

g= (Rl ®RIf ®RS) x (Rl ® RI;RX,).
By taking a change of basis of Rlf @ Rl] ® RS = R? we get
g2 R* xs0(1,2),

where s0(1,2) denotes the Lie algebra of the isometry group of the quadratic form
q = —x3 + 2?2 + x3 and the semidirect product is given by linear multiplication.
Then Go and Hy can be realized as following

—~—

Go 2 R? x SO(1,2),

where SOy (1,2) is the identity component of the isometry group of the quadratic
form q above. The semidirect product is given by the composition of the projection of
S0y(1,2) onto SOu(1,2) and the linear action of SOy(1,2) on R3. Let ((0,0,1),0) €
R3x50(1,2). Then H, is the one-parameter subgroup of Gy generated by this vector.

The fundamental group I' is contained as a discrete subgroup in Gy acting freely
and properly and cocompactly on Gy, H,. Now we find a contradiction by showing

Lemma 5.14 — Gy admits no discrete subgroup acting properly and freely and co-
compactly on Gy, Hy.

Proof — Suppose on the contrary that there exists I' satisfying the conditions of
the lemma. Denote by 7 the natural projection of Gy onto the real algebraic group
G' = R? x SOy(1,2). Denote by 7(T) the Zariski closure of 7(T') in G".

If T is solvable, then 7(T) is solvable. So its Zariski closure 7(T) is also sov-
able. Then there exists a closed connected sovable subgroup R of G’ containing
cocompactly a finite index subgroup of 7(I"). So by replacing 7(I") by a finite in-
dex subgroup if necessary, 7(I") must be contained in a maximal connected sovable
subgroup of G’. However there exist only two such groups in G, i.e. R3 x AN and
R3 x SO(2), where KAN is the Iwasawa decomposition of SOg(1,2). Denote by
cd(-) the cohomological dimension of a group. Since I' acts freely and properly and

cocompactly on G, H, which is contratible, then cd(I') = 5.

If 7(T') C R SO(2), then T C R¥x50(2) & R¥xR. We deduce that cd(T') = 4,
which is a contradiction.
If 7(T) € R* x AN, then I' C (R?® x AN) x Z, where Z denotes the center

—_~——

of SOy(1,2). Define I" = T'N (R® x AN). Then we can see that cd(I”) > 4 (see
[Br]). So as above, up to finite index, I'" is contained cocompactly in a closed and
connected sovable Lie subgroup R’ of R? x AN. Since R? x AN is not unimodular,
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then R’ is of dimension at most four. We deduce that R’ must be either R? x A
or (R2 x N) x A. Since (R? x N) x A is neither unimodular, then I” can not be
contained cocompactly in this group. We deduce that I' is a cocompact discrete
subgroup of R x A. Since Hy is contained in R3, then I can not act properly on
Gy, Hy, which is a contradiction. B

We deduce that I' is not sovable. Then the natural projection of 7(I") to SOy(1, 2)
must be surjective. If the kernal of this projection is trivial, then I' must be contained

in SOy(1,2). So I' can not acts cocompactly on G, Hy, which is a contradiction.
We deduce that the kernal of this projection is not trivial. However since the action
of SOy(1,2) on R? is irreducible, then we must have 7(T") = G’, i.e. 7(T") is Zariski
dense in G'. o

Denote by A the image of the projection of I' into SOy(1,2) and by A its closure

in SOy(1,2) with respect to the Lie group topology. If the Lie algebra of A is
denoted by I, then by Theorem 8.24 of [Ra], [ is sovable. For all v € T" we have
Ad(m())(I) C . Since this condition is algebraic, then by the Zariski density of
7([), we get Ad(g)(l) C [ for all g € G'. We deduce that [ is a sovable ideal in

50(1,2). So I must be zero. We deduce that A is discrete in SOg(1,2). Thus
cd(A) < 3.

Since cd(T) = 5, then T NR? # {0}. Since the action of SOy(1,2) on R? is
irreducible, then I' N R? must be cocompact in R®. We deduce that I' can not acts
properly on Go, Hy, which is a contradiction. [
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Chapter 6

On Quasiconformal Anosov
Systems

Abstract — In this chapter we study the quasiconformal Anosov systems. The strik-
ing point is that they are already rigid without any assumptions about the smoothness
of the strong stable and unstable distributions.

6.1 Introduction

6.1.1 Motivations

Conformal geometry is a classically and currently fascinating subject, which is mean-
ingfully mixed together with hyperbolic dynamical systems under the impulsion of
the classical [Su], [Ka2] and [Yu] and the recent [L1], [L2], [Sa] and [KS]. Here
we study the rigidity of such systems by combining quasiconformal techniques with
our go-and-back idea.

Let us recall first some notions. Let ¢; be a C'*° Anosov flow on a closed manifold
M. Define two functions on M x R as following

maz{| Dn(u) || [u e EF, |[ul=1}
mind|| Doy(u) || [u € EF, [l u[|=1}

Kt (x,t) =

and
maz{|| Déy(u) || |u € B, ||ul=1}

min{[| Dey(u) || [u € B, [|u =1}

If K= (K™*) is bounded, then the Anosov flow ¢, is said to be quasiconformal on the
stable (unstable) distribution. If K+ and K~ are both bounded, then ¢; is said to
be quasiconformal. If it is the case, then the superior bound of K and K~ is said
to be the distortion of ¢;. The corresponding notions for Anosov diffeomorphisms
are defined similarly (see [Sal).

Recall that two C*° Anosov flows ¢, : M — M and v, : N — N are said to be
C* flow equivalent (k > 0) if there exists a C* diffeomorphism h : M — N such that

K (z,t) =
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¢ = h to,oh for all t € R. They are said to be C* orbit equivalent (k > 0) if
there exists a C* diffeomorphism h : M — N such that the flow x; = h™ ' o1, 0 h is
a time change of ¢;. By convention, a C° diffeomorphism means a homeomorphism.
Then we can prove the following

Lemma 6.1 — Let ¢, and 1y be two C* Anosov flows. If they are C* orbit equivalent
and 1, is quasiconformal, then ¢y is also quasiconformal.

Proof — Denote by ¢ : M — N the C! orbit conjugacy between ¢; and vy and
by F* and F£° the Anosov foliations of 1),. Then we have the following

Sublemma — Under the notations above, ¢(F*0) = F£0.

Proof — Define ¢, = ¢ o ¢y 0 1. Then ¢, is a C! flow on N with the same orbits
as . So there exists a C* map a : R x N — R such that ¢,(z) = VYot x)( x). Define
E~ = (D¢)(E™). Then it is the C” tangent bundle of the C* foliation F~ = ¢(F).

Let us prove firstly that £~ C E~°. Fix a C° Riemannian metric g on N such
that £+ and £~ and X are orthogonal to each other. Since ¢ is C'. then it is
bi-Lipschitz. We deduce that for all z € N and @ € £, || Dgy(1) ||— 0 if t — +oo.

If & = ut +aX, +u" and uT # 0, then by a simple calculation we get for a
certain function b, : R — R,

Dy(it) = D(Ya(ra) (@) + ba(t) - X5, ) + D(Wagea)) (@).

So we get || Dy (@) ||>|| D(Yaqea))(@t) | = +ooift — +oo, which is a contradiction.
We deduce that £~ C E~°. So ¢(F°) C F~°. Then it is easy to see that ¢(F ) =
F~Vie. ¢ sends C* diffeomorphically each leaf of = onto a leaf of 7= Similarly
we have ¢(F V) = F+0. O

In paticular we deduce from the sublemma above that Er®RX = Eiﬂa RX.
By projecting parallel to the direction of X, we get a C? section P of End(E™, EY)
and two positive constants A; and A, such that

Ay [ l[<ll Pla) 1< Az [ wll, ¥ u e B

Then it is easy to verify that for all x € N, Po ngigt = DyYot) 0 P.
If 44 is quasiconformal with distortion K, then we have the following estimation

Kt (2.t) = sup{|| Dé:(a*) || | || a* | =1, a* € Ef}
inf{| Do(@*) || | || a* |=1, a+ € EF}
_ A supf{|| P(Do(ah)) || | | @t =1, @t € B}

)
T A inf{|| P(D(@t)) || | | @t ||= 1, @t € Ef}
u+
A2 Sup{H waa(t»@)(up(wgﬂ) || | || ut ||_ L ut e E+}
= S Dt B 1 % = 1, i+ € B2}

[1P@H)]
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Az
< (=) K.
<(§)
Similarly K~ is also bounded. So (Z)t is quasiconformal. Since ¢ is a C! diffeomor-
phism, then it is bi-Lipschitz. We deduce that ¢, is also quasiconformal. []

It is easy to see that the geodesic flow of a closed real hyperbolic manifold is qua-
siconformal (even conformal). Then by the previous lemma, each C*° time change
of such a flow is quasiconformal. An Anosov diffeomorphism is quasiconformal iff
its suspension is quasiconformal. So if ¢ denotes a semisimple hyperbolic auto-
morphism of a torus with two enginvalues, then its suspension is a quasiconformal
Anosov flow.

It seems to be a common phenomena in mathematics that things can only be
effectively studied and understood when placed in a suitable and flexible environ-
ment. Conformal structures (Anosov flows) are pretty rigid while quasiconformal
structures (Anosov flows) seem to be much more flexible. We wish to better un-
derstand the classical conformal Anosov flows, notably the geodesic flows of closed
hyperbolic manifolds, by using quasiconformal techniques, which is our motivation
to study general qusiconformal Anosov systems.

6.1.2 Main theorems

Among quasiconformal Anosov systems, the quasiconformal geodesic flows were clas-
sically studied. In [Ka2] and [Yu] some elegant rigidity results were obtained via
the sphere at infinity. For example, in [Yu], C. Yue proved that if the geodesic flow
of a negatively curved closed manifold of dimension at least three is quasiconformal,
then this Riemannian manifold is of constant curvature. Quite recently in [Sa], V.
Sadovskaya proved that up to a very special time change, a quasiconformal contact
Anosov flow of dimension at least five is C*> flow equivalent to the geodesic flow of
a hyperbolic manifold. Here we improve all these rigidity results by proving

Theorem 6.1  Let ¢, be a C* wvolume-preserving quasiconformal Anosov flow
on a closed manifold M. If ET @ E~ is C* and the dimensions of ET and E~ are
at least two, then up to a constant change of time scale and finite covers, ¢; is C'™
flow equivalent either to the suspension of a hyperbolic automorphism of a torus or
to a canonical time change of the geodesic flow of a hyperbolic manifold.

Under the conditions of the previous theorem, if in addition the Bowen-Margulis
measure of ¢, is supposed to be in the Lebesgue measure class, then we prove that
up to a constant change of time scale and finite covers, ¢, is C'*° flow equivalent
either to the suspension of a hyperbolic automorphism of a torus or to the geodesic
flow of a hyperbolic manifold. By considering the suspensions, we can deduce from
Theorem 6.1 the following classification.

107



Chapter VI: On quasiconformal Anosov systems

Corollary 6.1 — Let ¢ be a C'™ wvolume-preserving quasiconformal Anosov diffeo-
morphism on a closed manifold X. If the dimensions of E* and E~ are at least two,
then up to finite covers ¢ is C'*° conjugate to a hyperbolic automorphism of a torus.

In [KS], B. Kalinin and V. Sadovskaya classified the topologically transitive
quasiconformal Anosov diffeomorphisms such that the dimensions of E* are at least
3. Their argument, though quite elegant, meets some essential difficulties in the
case such that the dimension of E* or E~ is 2.

Recently P. Foulon proved an entropy rigidity theorem for three-dimensional
contact Anosov flows (see [Fo]). Since a three-dimensional Anosov flow is certainly
quasiconformal, then by combining his result with Theorem 6.1, we get the following

Corollary 6.2 — Let ¢; be a C*° quasiconformal contact Anosov flow. If its Bowen-
Margulis measure is in the Lebesque class, then up to a constant change of time
scale and finite covers, ¢ is C™ flow equivalent to the geodesic flow of a hyperbolic
manifold.

By extending partially our Theorem 6.1 to the case of codimension one and
Anosov-smooth, we get the following corollary generalizing the classification result
in [Gh1] (see Theorem 5.2).

Corollary 6.3 Let ¢; be a C™ volume-preserving quasiconformal Anosov-smooth
flow. Then up to a constant change of time scale and finite covers, ¢, is C* flow
equivalent either to the suspension of a hyperbolic automorphism of a torus or to a
canonical time change of the geodesic flow of a hyperbolic manifold.

Based on the classification result in [KS] and Corollary 6.1, we try to classify
the quasiconformal Anosov flows up to C'*° orbit equivalence. If the strong stable
and strong unstable distributions have relatively high dimensions, then we get the
following final classification.

Theorem 6.2 — Let ¢y be a C topologically transitive quasiconformal Anosov flow
such that E+ and E~ are of dimension at least three. Then up to finite covers, ¢
is C™ orbit equivalent either to the geodesic flow of a hyperbolic manifold or to the
suspension of a hyperbolic automorphism of a torus.

Under the conditions of the previous theorem, if E*@® E~ is in addition C!, then
we prove that up to a constant change of time scale and finite covers, ¢; is C'*™° flow
equivalent either to a canonical time change of the geodesic flow of a hyperbolic
manifold or to the suspension of a hyperbolic automorphism of a torus.

If one of the dimensions of £+ and E~ is two, then by using Corollary 6.1, we
get the following partial result.
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Proposition 6.1 — Let ¢; be a C™ volume-preserving quasiconformal Anosov flow
such that E* is of dimension two and E~ is of dimension at least two. If ¢, has the
sphere-extension property, then up to finite covers, ¢; is C orbit equivalent either
to the geodesic flow of a three-dimensional hyperbolic manifold or to the suspension
of a hyperbolic automorphism of a torus.

If EY®E™ is in addition Ct, then up to a constant change of time scale and finite
covers, ¢ is C flow equivalent either to a canonical time change of the geodesic
flow of a three-dimensional hyperbolic manifold or to the suspension of a hyperbolic
automorphism of a torus.

The sphere-extension property will be defined in Section 6.3. Let us just mention
that this property is invariant under C* orbit equivalence.

Now we are in a position to get some concrete applications of our results above.
Recall at first that flow conjugacies between Anosov flows have been and being ex-
tensively studied. The philosophical conclusion is that they exist rarely, even C°
ones. Let us just mention two of the most beautiful supporting results (see also [L1]
and [L2]) :

Theorem 6.3 (U. Hamenstadt, [Ham2]) Let M be a closed negatively curved
manifold. If the geodesic flow of M is C° flow equivalent to that of a locally sym-
metric space of rank one N, then M is isometric to N.

Theorem 6.4 (R. de la Llave and R. Moriyén, [DM]) — Let ¢; and 1y be two C*
three-dimensional volume-preserving Anosov flows. If they are C' flow equivalent,
then they are C* flow equivalent.

On the contrary to the rareness of flow conjugacies, there exist plenty of C°
orbit conjugacies between Anosov flows. For example, if two C*° Anosov flows are
sufficiently C'-near, then they are Holder-continuous orbit equivalent by the cele-
brated structural stability (see [An]). However we can deduce from Theorem 6.2
and Proposition 6.1 the following result showing that C! orbit conjugacies are rare
in some cases, while Holder-continuous orbit conjugacies are abundant.

Theorem 6.5 — Let ¢; be a C*° Anosov flow and ; be the geodesic flow of a
closed hyperbolic manifold of dimension at least three. If ¢y and 1, are C' orbit
equivalent, then they are C* orbit equivalent.

Let us recall firstly some notions for the next corollary.

Definition 6.1 — Let (X,dx) and (Y,dy) be two metric spaces. Then they are
said to be quasi-isometric if there is a map f : X — Y and two positive numbers '
and D such that the following two conditions are satisfied:

(1) %dX<xy) - D< dY(f(x)af(y)) < CdX(xﬂy) + D: v T,y € X.

(2) For any y € Y, there exists € X such that dy(y, f(x)) < D.
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Roughly speaking, two metric spaces are quasi-isometric if and only if they are
bi-Lipschitz equivalent in the large scale. Recall that for any n > 2, a n-dimensional
Riemannian manifold M is said to be hyperbolic if it has constant sectional curva-
ture —1. Then we denote by H" the unique simply connected hyperbolic manifold.
By combining some classical results with our previous corollary, we get the following

Proposition 6.2 — Let M be a n-dimensional closed Riemannian manifold of neg-
ative curvature such that n > 3. Then we have the following relations between
dynamics and geometry:

(1) The geodesic flow of M is Hoélder-continuously orbit equivalent to that of a hy-
perbolic manifold if and only if the universal covering space M with its lifted metric
15 quasi-isometric to H™.

(2) The geodesic flow of M is C' orbit equivalent to that of a hyperbolic manifold if
and only if M has constant negative curvature.

6.1.3 The organization of the chapter

In Section 6.2 we prove the rigidity of quasiconformal Anosov flows under the as-
sumption that E+ @ E~ is smooth. More precisely we prove in this section Theorem
6.1 and Corollary 6.1. In Section 6.3 we recall and prove some properties of trans-
verse (G, T)-structures of foliations. Then in Section 6.4 we prove Theorem 6.2 and
Proposition 6.1. Finally in Section 6.5 we apply all these results to geodesic flows
to deduce Theorem 6.5 and Proposition 6.2.

6.2 Rigidity of quasiconformal Anosov flows

6.2.1 Linearizations and smooth conformal structures

In this subsection we review and adapt some results of [Sa] to our situation. The
starting point is the following elegant proposition from [Sa], which generalizes a
one-dimensional result in [KL].

Proposition 6.3 — Let f be a diffeomorphism of a compact Riemannian mani-
fold M, and let W be a continuous f-invariant foliation with C*> leaves. Suppose
that || Df |rwl|< 1, and there exist C' > 0 and € > 0 such that for any x € M and
n €N,

D™ lzw) - I DI zw]* < C(1 =€)
Then for any x € M, there exists a C* diffeomorphism h, : W, — T, W such that
(1) hfa: o f = Dfa: o hx;
(2) hy(x) =0 and (Dhy), is the identity map,
(3) hy depends continuously on x in C* topology.
In addition, the family h of maps h, satisfying (i), (it) and (iii) is unique.
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Now let ¢; be a quasiconformal Anosov flow on a closed manifold M. Fix a
Lyapunov metric on M. Then for each s < 0, || D¢; |g+||< 1. Denote by K the
distortion of ¢;. Then for any x € M and any n € N we have

I (D" )™ |- | D™ |pell= K (2, ms) < K.

So by the Anosov property of ¢, (¢s, FT) satisfies the conditions of the previous
proposition. So for any x € M there exists a C* diffeomorphism A} : W1 — EFf
such that
(1) h;s"zx) 0 ¢y = Dypps 0 h}*,
(2) hi#(x) = 0 and (Dh}*®), is the identity map,
(3) hi»* depends continuously on z in the C*° topology.

For any m € N, we observe easily that {h*'m},cas satisfies also these three
conditions with respect to ¢,. Then by the uniqueness of this family of maps for ¢,,
we get

him =k Va2 e M.

We deduce that for all @ € Q and a < 0, h}>* = b1, V 2 € M. Then by
Condition (3), we get

Iy © 0t = (Daty) o B, Vo e M, ¥Vt <0.
Denote h;>~! by h}. Thus we have
Wy © 0t = (Datpr) o bl YV x € M, Vi ER.

This continuous family of C'™ maps {h;} }.cas is said to be the unstable linearization
of E*. Similarly we get the stable linearization {h; },ear of E™.

By similar arguments, we get the stable and unstable linearizations for quasi-
conformal Anosov diffeomorphisms. Let us recall the following results established

in [Sal:

Theorem 6.5 ([Sa], Theorem 1.3) Let f be a topologically transitive C*° Anosov
diffeomorphism (¢; be a topologically mizing C*> Anosov flow) on a closed manifold
M which is quasiconformal on the unstable distribution. Then it is conformal with
respect to a Riemannian metric on this distribution which is continuous on M and
C* along the leaves of the unstable foliation.

Theorem 6.6 ([Sa], Theorem 1.4) Let f (¢:) be a C* Anosov diffeomorphism
(flow) on a closed manifold M with dimE+ > 2. Suppose that it is conformal with
respect to a Riemannian metric on the unstable distribution which is continuous
on M and C* along the leaves of the unstable foliation. Then the (weak) stable
holonomy maps are conformal and the (weak) stable distribution is C°.
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Let us recall briefly the steps to prove these two theorems in the case of flow.
Denote by ¢; a topologically mixing quasiconformal Anosov flow. Then by some
classical arguments (see [Su] and [Tu]), V. Sadovskaya found two measurable ¢;-
invariant conformal structures 7+ and 7~ along respectively the leaves of F* and F~.
Then as is usual for Anosov flows, these two conformal structures were pertubated
to continuous ¢-invariant ones denoted by 7+ and 7~. Using the linearizations,
she proved that along each leaf of FT, 7 is isometric to a vector space with its
canonical conformal struture, which has permitted her to blow up the smoothness
of weak holonomy maps. Then by using a result of J. L. Journé, she proved the
smoothness of the weak stable and unstable distributions.

By using Lemma 3.7, We can deduce from the previous two theorems the follow-
ing

Lemma 6.2 — Let ¢, be a C™ topologically transitive quasiconformal Anosov flow
such that the dimensions of E* and E~ are at least two. Then ET° and E=° are
both C®. If E* ® E~ is in addition supposed to be C, then ¢, is Anosov-smooth.

Proof — If ¢, is topologically mixing, then by Theorems 6.5 and 6.6, £ and
E=° are both C*°.

If ¢; is not topologically mixing, then by Lemma 3.7, ET@® E~ is a C'*™ integrable
distribution with C* compact leaves. Take a leaf 3 of the foliation of £ @& £~ and
T > 0 such that ¢ (X) = X. Then ¢ is a C™ topologically transitive quasiconformal
Anosov diffeomorphism. Again by Theorems 6.5 and 6.6, the unstable and stable
distributions of ¢ are seen to be C*°. We deduce that £7° and E~° are also C*°.

If E¥ @ E~ is in addition supposed to be C*, then E* = (E* @ E~) N EXY are
certainly C*>. OJ

If ¢, is a topologically transitive quasiconformal Anosov flow, then by Theorem
6.5 and Lemma 3.7, it preserves two continuous conformal strutures 7+ and 7~
which are C* along the leaves of F* and F~. Then by Theorem 6.6, these two
conformal structures are invariant under the weak holonomy maps. Thus if ¢; is
Anosov-smooth, then 7+ and 7= are both C*°. So we can deduce from Lemma 6.2
the following

Lemma 6.3 — Let ¢, be a C™ topologically transitive quasiconformal Anosov flow
such that ET @® E~ is C* and the dimensions of ET and E~ are at least two. Then
¢ preserves two C™ conformal structures along F and F~ denoted respectively by
7+ and 77, which are invariant under weak holonomy maps.

Let ¢, be a topologically transitive Anosov flow such that dimE* > 2. For any
x € M we can extend the conformal structure 7.7 at 0 € E to all other points of £
via linear translations. If the resulting translation-invariant conformal structure on
EF is denoted by of, then (E}, o) is isometric to the canonical conformal structure
of R™ if E* is n-dimensional.
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By Lemma 3.1 of [Sa], h} sends 77 [+ to of. So for any y € WF, bt o (b))~
is a conformal diffeomorphism from (o7, E;F) onto (o5, E;). Since the dimension
of E* is at least two, then h} o (k)™ is an affine map, i.e. the composition of a
linear map with a translation.

So if we pull back by A} and A the canonical flat linear connections of E;
and B onto WF, we get the same C'™ connection on W . Thus by pulling back
by the unstable linearization the canonical flat connections on the fibers of ET, we
get a well-defined transversely continuous connection along F* denoted by V* (see
[Kal] for some details about connections along a foliation). By Condition (1) of
the unstable linearization, V7' is easily seen to be ¢,-invariant. Similarly we get a
transversely continuous ¢;-invariant connection along F~ denoted by V.

If the linearizations {h¥},cpr depend smoothly on z, then V' and V— are cer-
tainly C*°. But in general {hE}, ¢y depend only continuously on z, even though £+
and E~ are both smooth. However if the Bowen-Margulis measure of ¢; is in the
Lebesgue measure class, then these two linearizations can be effectively proved to
depend smoothly on their base points, which is the key abservation of the following
subsection.

6.2.2 Construction of an invariant connection and homo-
geneity

Denote by ¢; an Anosov flow on a closed manifold M satisfying the conditions
of Theorem 6.1. In addition, we suppose throughout this section that its Bowen-
Margulis measure is Lebesgue. So if we denote by p the Bowen-Margulis measure of
¢, then p is given by a C'* nowhere-vanishing volume form on M (see Lemma 3.6).
Up to finite covers, We suppose that M and E* and E~ are all orientable. Under
these assumptions, ¢; is Anosov-smooth by Lemma 6.2.

Lemma 6.4  Under the notations above, if ¢, is in addition topologically mix-

ing, then h} and h, depend smoothly on x. In particular V™ and ¥V~ are C* on
M.

Proof — Suppose that dimE* = n (> 2). By Lemmas 6.2 and 6.3, Et is C*
and ¢, preserves a C'* conformal structure 7 along F+.

Fix a C' Riemannian metric on M. Denote by v* the induced Riemannian
volume form along the leaves of F and by u* the Margulis measure of ¢; supported
by the leaves of F*. Then by the assumptions and Lemma 3.8, there exist on M a
C* positive function f* such that u™ = fTv*, i.e. put is given by a family of C'™
nowhere-vanishing volume forms along the leaves of F*.

The volume of a frame of E* is by definition the evaluation of x* on this frame.
Then by claiming the 7+-conformal frames of volume one to be orthonormal, we get

a well-defined C° Riemannian metric along the leaves of F*, which is denoted by

g*.

Denote by V7 the leafwise Levi-Civita connections of g*. Since 77 is ¢-invariant
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and put o ¢, = eMput, then
orgt = e%thr, ViekR.

Thus V7 is ¢-invariant. For any x € M, we define b} : Ef — W] such that
ht(u) = exp¥" (u). Because of the ¢s-invariance of V*, we get

B+

) @ DOr = o hf, Vo e M, VteR.

Evidently, we have h}(0) = = and D,(h}) = Id and that h} depends smoothly on
x.

Since g* is certainly complete along each leaf of F*, then h} is surjective. Fix a
Riemannian metric on M. Then by the compactness of M, there exists € > 0 such
that for any @ € M, hi |(cpr | juj<ey 18 @ C° diffeomorphism onto its image. If
t > 1, then ¢_; contracts ET exponentially. Since we have in addition

B; = ¢t © B;__t(a:) © D¢—t7 Vi> 07

then A} is in fact injective and nowhere singular. We deduce that for any = € M,
ht is a C> diffeomorphism. By the uniqueness of the unstable linearization (see
Proposition 6.3), we get

hi = (hS)™! Vo e M.

We deduce that h} depends smoothly on x. Similarly we get the C™° dependence
of h; on x. Thus the leafwise connections V* and V™ constructed in the previous
subsection are C'*° on M. [J

Lemma 6.5 — Under the notations above, if ¢, is not topologically mixing, then
Theorem 6.1 is true.

Proof — Since ¢; is not topologically mixing, then by Lemma 3.7, E* & E~ is
integrable with C* compact leaves. Take a leaf ¥ of the foliation of E* @& E~ and
T > 0 such that ¢7(X) = 3. Then ¢r is a C™ topologically transitive quasicon-
formal Anosov diffeomorphism of ¥. In addition by Lemma 6.2, the stable and
unstable distributions of ¢ are both C'™°. Since the Bowen-Margulis measure of ¢,
is Lebesgue, then the Bowen-Margulis measure of ¢p is also lebesgue.

After some evident modifications, Lemma 6.4 is also valid for (¢7, 3) (see Lemma
3.9). So we get as in the case of flow two C'*° ¢p-invariant connections along F§
denoted by Vi (see Subsection 6.2.1). Then we can construct on ¥ a C® ¢p-
invariant connection V such that for arbitrary C> sections Y+ and Z* of Eg,

Vy+YT = PF[YE YTF], VyeZF = (VE)ye 25,

where Pg denote the projections of T onto E;

Then by [BL], ¢7 is C*°-conjugate to a hyperbolic infranilautomorphism. Since
o7 is in addition quasiconformal, then ¢ must be finitely covered by a hyperbolic
automorphism of a torus. So Theorem 6.1 is true in this case. [J
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Throughout the following of this subsection, we suppose that ¢; is topologically
mixing. Since ¢, is quasiconformal, then it has exactly three Lyapunov exponents
with respect to u denoted by {a™, 0, a*} such that = < 0 < a™. Since ¢; is Anosov-
smooth by Lemma 6.2, then its Lyapunov decomposition is C*>°. In addition, the
smooth Lyapunov decomposition of ¢; coincides its Anosov decomposition. By using
Lemma 6.4, we can construct a C'™ connection V on M such that

VX =0, VE* C E*,

Vy ZF = PRYE ZF], Vye2* = (VE)ye 27,
VxY* =[X, Y¥| +a*Y*,

where P* denote the projections of TM onto E* with respect to the Anosov split-
ting. Then it is easily seen that V is ¢s-invariant.

Suppose that dimE* = n and dimE~ = m. Then by Pesin’s entropy formula
and Lemma 3.1 we get

h=n-a" and n-a*+m-a~ =0.

We deduce that V is canonical (see Section 4.4). Then by the assumptions above
and Proposition 4.2, the line bundles A"E+ and A™E~ admit both C°° nowhere-
vanishing V-parallel sections denoted respectively by wt and w™.

Define 7 = (X, E*, 7%). Then 7 is a O™ ¢y-invariant geometric structure of
order one on M.

Lemma 6.6 — Under the notations above, T is V-parallel.

Proof - 7 is in a natural sense the sum of the geometric structures X and (E*, 771)
and (E~, 77). Then 7 is V-parallel iff these structures are parallel respectively.
Since VX = 0, then X is V-parallel.

Let us consider the structure (E™, 77) denoted by o™ to simplify the notations.
It is easily seen that ot is V-parallel iff VE* C E* and the 7F-conformal frames
are preserved by the parallel transport of Et along each piecewise smooth curve of
M (see [KIN]).

By the definition of V, the parallel transport of £t along the orbits of ¢; is given
by

ut — et Dgy(u).

Since 71 is ¢-invariant, then the 7F-conformal frames are preserved by the V-
parallel transport along the orbits of ¢y, i.e. 0 o ¢, is horizontal. So Do*(X) C 'H,
where H denotes the V-horizontal distribution of the corresponding fiber bundle.

Take a smooth curve 7 tangent to E*. The restriction of V to the leaves of F+
is V. On the leaf containing v, V* is isomorphic to the canonical flat connection
of a vector space. So the 7F-conformal frames are certainly preserved by the parallel
transport along 7, i.e. ot o~ is horizontal. Thus Dot (E*1) C H.
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Take another smooth curve v tangent to £~. Then by the definition of V, the
parallel transport along 7 is given by the differentials of the weak stable holonomy
maps. Since 71 is invariant with respect to these maps (see Lemma 6.3), then we
deduce that Do (E~) C H.

So we get Dot (TM) = Dot (Et® E- @RX) CH, ie. (ET, 77) is V-parallel.
Similarly (EF~, 77) is seen to be also parallel. we deduce that 7 is V-parallel. O

Recall that the Bowen-Margulis measure of ¢; is supposed to be in the class of
Lebesgue and V is canonical, then by Proposition 4.2, A" E+ and A™E~ admit both
(> nowhere-vanishing V-parallel sections denoted respectively by w™ and w™.

We define 0 = (1, wt, w™). Then o is a C* V-parallel geometric structure of
order one on M. Denote by M the universal covering space of M and by ¢ and v
the lifts of ¢ and V.

By similar argumments as in Subsection 5.2.2, we get VI' =0 and VR = 0 and
the completeness of V, where T" and R denote respectively the torsion tensor and
curvature tensor of V. So V is a C* ¢-invariant complete parallel linear connection.
Thus by Lemma 2.2, I(V, ) acts transitively on M.

Denote by G this isometry group. Fix a point =z € M and denote by H the
isotropy subgroup of z. Denote by I' the fundamental group of M. Then it is
contained in GG as a discrete subgroup and we have M = I'N\NGH.

By claiming the 7-conformal frames of w™-volume one to be orthonormal, we
can construct as in Lemma 6.4 a C'™ fiber metric on £ denoted again by ¢g*. Simi-
larly we can construct a C™ fiber metric g~ on £~. Then we get a C*° Riemannian
metric g on M such that

g=Naogteg,
where X\ denotes the canonical 1-form of ¢;. By the definition of o, each element
of G preserves g. So GG is contained as a closed subgroup in 7(g). We deduce that
H is a compact Lie subgroup of G (see [Be] ch.l, 1.78). So ¢; turns out to be a
symmetric Anosov flow (see Subsection 3.4.1).

By the rough classification of symmetric Anosov flows, i.e. Proposition 3.6, we
get the following

Lemma 6.7 — Suppose that 1 is a quasiconformal symmetric Anosov flow on a
m-dimensional manifold. Then we must have rank(yy) = 0 or 2[F].

Proof — Suppose on the contrary that 0 <rank(v;) < 2[%]. Then under the no-
tations of Proposition 3.6, we have that up to commensurability, a lift of ¢, is given

by
G/K % GIK

gK — (g-expta)K,
such that £° = Ker(ada) = gk @ Ra.
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Since a € p (see Proposition 3.6) and so(n, 1) is of rank one, then there exists
a >0 and X; € so(n, 1) such that

la-a, Xi|=2£2Xy, [Xy, X |=—-a-a.

Denote a - a again by «, i.e. considering the flow given by a - a. Denote by g,
the Lie subalgebra generated by {a, X, X }. Then we have

9o = sl1(2,R).

Recall that G = V x (Spin(n,1) x Ky X --- X K,), where V is a vector group
of positive dimension. By identifying V' with its Lie algebra, we get from this
semidirect product a linear representation of so(n,1) on V. The restriction onto g,
of this representation gives a s[(2, R)-module (see [Bol] 3).

Now by Proposition two of ([Bo2] ch.VIII, 1.2), there exists a non-zero vector e
in V and m € Z* U {0} such that

ale) =m-e.

Since Ker(ada) = gk @ Ra, then Ker(ada) NV = {0}. We deduce that m # 0.
By Remark 3.2 (see [Tol]), it is easily seen that the Lyapunov exponents of 1
are exactly R(spec(ada)), i.e. the real part of the spectrum of ada. Since 1 is
quasiconformal, then R(spec(ada)) has only three elements. Since X is taken such
that [o, X,] = 2X,, then we must have m = 2.
Define e; = —X_(e). Then by Propositions one and two of ([Bo2] ch.VIII, 1.2),
we get

€1 7é 07 04(61) = 07
which contradicts to Ker(ada) NV = {0}. O

We deduce by the previous lemma that rank(¢;) is maximal if ¢; is topologi-
cally mixing. Then again by Proposition 3.6, ¢; is commensurable to the geodesic
flow of a locally symmetric space of rank one. Since dimE* > 2. then ¢; is in
fact finitely covered by the geodesic flow of a locally symmetric space of rank one.
Since in addition ¢; is quasiconformal, then this locally symmetric space must have
constant negative curvature. So by combining the results above, we get the following

Lemma 6.8 — Let ¢; be a C* quasiconformal Anosov flow such that E* & E~
is O and dimE* > 2. If its Bowen-Margulis measure is in the Lebesgque measure
class, then up to finite covers and a constant change of time scale, ¢y is C* flow
equivalent either to the geodesic flow of a closed hyperbolic manifold or to the sus-
pension of a hyperbolic automorphism of a torus.

Remark 6.1 By [Bow|, the Bowen-Margulis measure of each symmetric Anosov
flow is in the Lebesgque measure class.
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6.2.3 Proofs of Theorem 6.1 and other rigidity results

Proof of Theorem 6.1 — Suppose that ¢, satisfies the conditions of Theorem 6.1.
Then by Lemma 6.2, ¢; is Anosov-smooth. Denote by qgt its Parry time change.
Then ¢, satisfies the conditions of Lemma 6.8. So it is C'*° flow equivalent either to
the suspension of a hyperbolic automorphism of a torus or to the geodesic flow of
a closed hyperbolic manifold. Now Theorem 6.1 is a direct consequence of Lemmas
4.2 and 4.5 concerning the special time changes of such flows. [

Proof of Corollary 6.1 — Suppose that ¢ satisfies the conditions of Corollary
6.1 and denote by ¢, the suspension of ¢. Thus the distribution Et @& E~ of ¢, is
C>. So ¢, satisfies the conditions of Theorem 6.1. Since ¢; admits a global section,
then it can not be the time change of a geodesic flow. So by Theorem 6.1, up to a
constant change of time scale, ¢, is finitely covered by the suspension of a hyper-
bolic automorphism of a torus. We deduce that ¢ is finitely covered by a hyperbolic
automorphism of a torus. [J

Corollary 6.2 is direct conclusion of Theorem 6.1 and Theorem one of [Fo]. In
order to prove Corollary 6.3, we need only prove the following

Lemma 6.9 — Let ¢; be a C volume-preserving quasiconformal Anosov-smooth
flow such that dimE™ =1 and dimE~ > 2. Then up to a constant change of time
scale and finite covers, ¢y is C* flow equivalent to the suspension of a hyperbolic
automorphism of a torus.

Proof — Denote by ¢ the Parry time change of ¢;. Since By and Ey are also
C*, then by [Gh2] Ef @ Ey is integrable with smooth compact leaves. Fix a leaf
¥ of the foliation of Eff @ Ey and T > 0 such that ¢3.X = 3. Then the Bowen-
Margulis measure of ¢¥ is in the Lebesgue measure class. Thus by Lemma 3.9, the
Margulis measures u= of ¢ are given by C* nowhere-vanishing volume forms along
the leaves of Fx.

Since dimFy, > 2, then we can prove as in Lemma 6.4 that the stable linearization
{h, } (well-defined) depends smoothly on z. So we get as in Subsection 6.2.1 a C*°
@¥-invariant connection along the leaves of F;;, which is denoted by V5.

Denote by Y+ the smooth section of Ei such that g™ (Y) = 1. Denote by h
the topological entropy of ¢¥.. Since ut o ¢¥ = e"u™, then

(64).Y* = .
Thus we get a C™ ¢¥-invariant connection Vi, along the leaves of Fy such that
(Vi)y-Yt=0.

So ¢, preserves a C'*° connection as in the proof of Lemma 6.5. Thus by [BL] ¢% is
finitely covered by a hyperbolic automorphism of a torus. Since ¢; is a special time
change of ¢}, then we conclude by Lemma 4.5. [J
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Now Corollary 6.3 is just a combination of the previous lemma and Theorem 6.1
and Theorem 5.2.

6.3 Geometric preparations

In this section we lie down the geometric basis for the proof of Theorem 6.2 and
Proposition 6.1.

6.3.1 Transverse (G, T)-structures

In this subsection, we consider the transverse (G,T)-structures of foliations. Let
F be a C* foliation on a connected manifold M. Denote by Q# the leaf space of
F and by F(A) the saturation of F on A for any A C M. We assume that the
holonomy maps of F are defined on connected transverse sections.

Let G be a real Lie group acting effectively and transitively on a connected
manifold 7. If X is a C* transverse section of F and ¢ is a C'*° diffeomorphism
of X onto its open image in 7', then (X, ¢) is said to be a transverse T-chart.
Two transverse T-charts (X1, ¢1) and (Yo, ¢2) are said to be compatible if for each
holonomy map h of a germ of ¥; to a germ of ¥y, the map ¢; 0 ho ¢, is locally the
restriction of elements of G.

A family of transverse sections is said to be covering if each leaf of F intersects at
least one of the sections in this family. By definition, a transverse (G, T)-structure
on F is a maximal family of compatible transverse T-charts of which the underlying
family of transverse sections is covering.

In order to define a transverse (G, T')-structure, we need just seperate out a family
of covering compatible T-charts. Then by considering all the T-charts compatible
with this famlly, we get automatically a transverse (G, T')-structure.

Denote by F the lifted foliation on the universal covering space M of M and
denote by 7 the projection of M onto M. For each transverse (G, T)-structure on
F, we get naturally a lifted transverse (G,T)-structure on F by considering the
composition of 7 with the T-charts of the given transverse (G, T')-structure on F.
Then by [Go] there exists a C* submersion D : M — T and a group homomorphism
H :m (M) — G satisfying the following two conditions:

(1) D(yx) = H(y)D(z), YV x € M,V v € m(M).

(2) The lifted foliation F is defined by D.

This submersion D is said to be the developing map of the transverse (G, T')-structure
of F and H is said to be the holonomy representation of D. The transverse (G, T)-
structure of F is said to be complete if D is a C'*° fibre bundle over D(M ).

If D" denotes another developing map with holonomy representation H’, then by
[Go] there exists a unique element g € G such that D' = goD and H' =g-H-g~".
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Since D is obtained by analytic continuation along curves (see [Go]), then for
each transverse section ¥ of F such that D | is a C™ diffeomorphism onto its
image, D |y is a transverse T-chart of the lifted transverse (G, T)-structure of F.

Since F is defined by the submersion D, then D sends each leaf of Fto a point
of T'. Thus for any = € M there exists a small C™ transverse section 3 containing
2 of F such that each leaf of F intersects Y at most once, i.e. F has the section
property (see Subsection 3.2.2). Then it is easily seen that each leaf of F is closed
in M.

Denote by @z the leaf space of F. Then we have the quotient map D : Qz —
D(M ) Since each leaf of F is closed, then D is bijective iff the D-inverse image of
each point of T'is connected. If this is the case, then by considering the projections
of small transverse T-charts, @ z becomes naturally a C'*° (seperable) manifold such
that D is a C* diffeomorphism of @z onto D(M ). In addition, the fundamental
group m (M) of M acts naturally on @Q z.

By [Hae] we have the following

Proposition 6.4 — Let (M1, F1) and (Ms, F2) be two C* foliations with complete
transverse (G, T)-structures. Suppose that their developing maps have both connected
fibres and the holonomy covers of their leaves are all contractible. If the m(M)-
action on Q7 is C> conjugate to the m1(Ma)-action on Q% then there exists a C™
map [ : My — M such that the following conditions are satisfied:

(1) f is a surjective homotopy equivalence.

(2) f sends each leaf of Fy onto a leaf of Fo and f sends different leaves to different
leaves.

(3) f is transversally a local C> diffeomorphism conjugating the two transverse
(G, T)-structures.

The lemma below is self-evident and will be used several times in the following.

Lemma 6.10 — Let (M, F) be a C*™ foliation with a transverse (G, T)-structure. If
Ty is an open subset of T" and G is a closed Lie subgroup of G' acting transitively on
Ty such that D(M) C Ty and H(m(M)) C Gy, then F admits a transverse (Gy1,Ty)-
structure with the same developing map D and the same holonomy representation
H, which is compatible with the initial transverse (G,T)-structure.

By adapting the arguments in [Gh3] we can prove the following
Lemma 6.11 Let (M, F) be a C* foliation with a transverse (G, T)-structure. If
the closed leaves of F are dense in M and the D-inverse image of each point of T

is connected, then H(m(M)) is a discrete subgroup of G.

Proof — Denote by m; the projection of M onto @z and by 7y the projection of
Q7 onto Qr the leaf space of F. Take a closed leaf F, of 7 and 7 € M such that
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7(Z) = 2. Since F} is closed, then we can find a fine transverse section X passing
through 7 such that 7 sends X diffeomorphically onto its image and F,Nm(X) = {z}.
So for each y € ¥ and y # 7, 7(y) is not in F,. Thus m, *(F}) is discrete in Q.

Since F, is closed and 7 1(F,) = m; (x5 }(F,)), then m; '(F,) is closed in Q.
So the (M )-orbit of F, i.e. 3 (F,) is closed and discrete in Qz.

Since the closed leaves of F are dense in M i.e. the union of all the closed leaves
is dense, then my-inverse images of these closed leaves form a dense subset P of @z
such that the 7 (M )-orbit of each point of P is closed and discrete.

Suppose on the contrary that H(m(M)) is not discrete in G. Since the D-
inverse image of each point of 7" is connected, then D induces a C*° diffeomorphism

—~

D:Qz— D(M). So D(P) is dense in D(M) and the H(mi(M))-orbit of each point
of D(P) is discrete and closed in D(M )

Take a non-trivial one-parameter subgroup g¢; of the closure of H(m(M)) in G.
For each t € R, g; preserves the closed complement of D(M ). So we have

9(D(M)) = D(M).

Thus g; fixes each point in D(P). We deduce that g; is a trivial one-parameter
subgroup, which is a contradiction. [J

6.3.2 Sphere-extension property

Let M be a C* manifold. Let F;, and F» be two continuous foliations with C'! leaves
on M such that

If F, is a foliation by planes, i.e. each leaf is C'* diffeomorphic to a certain R”, then
(F1, F») is said to be a plane foliation couple. The local leaves of F; are natural
transverse sections of F5 and we consider only the holonomy maps of F; with respect
to these special transverse sections.

For each leaf Fy, of F; we denote by S;, its one-point compactification which
is homeomorphic to a standard sphere. The point at infinity of S , is denoted by oo.

Definition 6.2 — Under the notations above, the plane foliation couple (Fi, F2)
is said to have the sphere-extension property if for each holonomy map 60 of F, send-
ing x to y there exists a homeomorphism © : S;, — S;, which coincides locally
with Fa-holonomy maps on S ,\ {00, ©7'(c0)} and extends the germ of 0 at z.

If ¢, is a lifted flow of an C* Anosov flow ¢, then ¢; is said to have the sphere-
extension property if (F*, F~°) and (F~,F*") have both the sphere-extension
property.

Recall that F+ and F~ are both foliations by planes. The corresponding notion
for Anosov diffeomorphisms is defined similarly.
Denote by (F1, F,) the lifted couple on M of (F;, F2). Then it is easily seen

that (Fi, F2) has the sphere-extension property if (.7?1, ]?2) has this property. So by
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considering the lifted flows and drawing pictures, we can easily see that the geodesic
flows of closed negatively curved manifolds have the sphere-extension property.

It is easily verified that hyperbolic infra-nilautomorphisms have the sphere-
extension property. However by [Man] each Anosov diffeomorphism defined on a
infra-nilmanifold is topologically conjugate to a hyperbolic infra-nilautomorphism.
We deduce that the suspensions of Anosov diffeomorphisms on infra-nilmanifolds
have the sphere-extension property.

Lemma 6.12 Let ¢, and v, be two C* orbit equivalent C* Anosov flows. Suppose
that the strong stable and strong unstable distributions of 1y are of dimension at
least two. If 1y has the sphere-extension property, then ¢; has also this property.

Proof — Denote by ¢ the C! orbit equivalence. Define ¢A>t = ¢o ¢, 00! and denote
by E* the strong distributions of ¥,. Define F= = ¢(F%) and FE0 = ¢(F=0),
It is clear that ¢; has the sphere-extension property iff (%t has this property in the
natural sense.

Since ¢; and 1 are C' orbit equivalent, then F£0 = F£0. Take a leaf of F+
and take a non-periodic point z in this leaf. We can identify W and W naturally
as following.

For all y € W, there exists t € R such that ¢ (y) € W;. If W;"° contains no
periodic orbit, this number ¢ is unique for each y in W; If W; 0 contains a periodic
orbit, then it contains exactly one periodic orbit (see Proposition 3.1). Denote by T'
its mininal positive period with respect to ¥;. So if ¥ (y) € W,F, then for all k € Z,
Verr(y) € W ) ) ) )

Conversely if ¢y, (y) € W& and ¢y, (y) € W,F, then oy, Wt = W, Thus
to —t1 € T -7Z. So by associating t + T - Z to y, we get a well-defined C* map from
Wt to R/TZ.

Thus by taking a lift if necessary, there exists a unique C* map 0, : W; — R
such that

0.(x) =0, Vo, (y) € W, ¥Vye Wi

Define a C* map 7, : W;* — W+ such that

Mo (Y) = Vo, ) ()

Then 7, is easily seen to be a local C'! diffeomorphism such that 7(x) = z. Similar
we get 77 : W — W such that 7(z) = x. If W0 contains no t-periodic orbit,
then 7 and 7 are both C* diffeomorphisms.

Suppose that W' contains a unique v-periodic orbit of period T'. Denote by

z the unique intersection point of this periodic orbit with W;*. For each k € Z, we
define

A ={y € WAz} [ on(y) = Yrr(y)}-
Then W\ {z} is the disjoint union of {As}rez. Each Ay is closed in W'\ {2} and
x € Ag. Take y € Ay and since ¢_7 is a contracting diffeomorphism of W, then
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a small ball containing y intersects with at most finitely many A; non-trivially. We
deduce that Ay is open.

Since £t is at least two-dimensional, then W:F\{z} is connected . We deduce
that Ag = W\ {z}, i.e. 7707 = Id. Similarly we have 770§ = Id. We identify W
and W under these two sliding C! diffeomorphisms 7 and 7). We can identify W;
and W similarly.

Since these identifications conjugate the holonomy maps and ; has the sphere
extension property, then ngSt has also this property. We deduce that ¢; has the
sphere-extension property. [

6.4 On orbit equivalence of quasiconformal Anosov
flows

In this section we prove Theorem 6.2 and Proposition 6.1.

6.4.1 Construction of a transverse geometric structure

Denote by ¢; a C* topologically transitive quasiconformal Anosov flow such that
E* and E~ are of dimensions at least three. Then by Theorem 6.5 and Lemma 6.2,
E+tY and E~° are both O and there exist 7+ and 7~ two continuous ¢-invariant
conformal structures on E* and E~ which are C*° along the leaves of F* and F .

Denote by @ the orbit foliation of ¢;. For each transverse section Y of ® we
get two O foliations Fyf and Fy on ¥ by intersecting F=° with X. Denote their
tangent distributions by EY and Ey, respectively.

We can identify E§ and E* by projecting F* onto E; parallel to the direction
of the flow. Under this identification, we get two conformal structures 75 and 7y
on FY and F5. Since 7y is easily seen to be invariant under the ®-holonomy maps
and the Fyf-holonomy maps, then 7w is C* on Y. Similarly we can see that 7f is
also C™° on X. So we get on each transverse section ¥ a C'° geometric structure
(FZ,72) which is invariant under the ®-holonomy maps.

Denote by ¢, the canonical conformal structure on the n-dimensional sphere S™
and by M, the isometry group of ¢,. Then M,, acts transitively on S™ and is called
the Mobius group. Suppose that E* is of dimension n and E~ is of dimension m.
Then we can construct as following a transverse (M,, x M,,, S™ x S™)-structure on
.

For any x € M we denote by S and S, the one-point compactifications of £}
and E . Then they admit naturally C'* conformal structures extending o;f and o .
Since

(hp)«(77) = o) and (hy).(77) =0,

then S and S, i.e. the one-point compactifications of W, and W admit also
natural conformal structures isometric to those of S and S; under the natural
extensions of A} and h, which are denoted by h} and h; .
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By fixing two conformal frames of £ and E, we get two C'* conformal isome-
tries ¢ : S — S™ and ¢, : S, — S™.

Take a C'™ small transverse section X, containing = and pieces of W,F and W .
Thus for § < 1 we get the local diffeomorphism

O, : Wi x W — 5,

(ya Z) - Wgz,y,% N W;z,Z,Q&'

Then we define ¢, : ¥, — S™ x S™ such that ¢, = (¢} x ¢7) o (b} x h;) 007"

Since 75 and 7y, are invariant under respectively the Fy -holonomy maps and the
Fi-holonomy maps, then by its definition, ¢, is easily seen to be a local isometry
of (Fg . 75.) to ({S™ x «}, {# x S™}, ¢, X ¢n).

Let h be any ®-holonomy map from a germ of 3, to a germ of X,. Then it is
easy to see that 60 Lo hod, is given by weak holonomy maps of ¢,. We deduce that
dyohogyt = ¢ x 1, where ¢ and 1 are respectively local isomertries of S™ and S™.
Since n,m > 3, then by the classical theorem of Liouville, i.e. Theorem 2.2, ¢ and
¥ can be both extended to global isometries of S™ and S™. So {(X,, ¢.) }eenr gives
a transverse (M,, X M,,,S™ x S™)-structure of ®.

6.4.2 Completeness

Fix a developing map D of the transverse (M,, x M,,, S™x S™)-structure of & defined
in the previous subsection. Denote by H the associated holonomy representation.

For each € M we construct an open subset U, of M such that U, is the union
of the leaves of F~? intersecting W0,

Lemma 6.13 — Under the notations above, each leaf of F+ intersects each leaf
of F~Y at most once.

Proof — By the definition of D, for any x € M, D(W;) must be contained in

a certain subset S™ x b. Then for any y € W; , there exists v; X vo € M,, X M,,, such
that

(71 X 72) oD = (Zya

where ggy is defined similarly as above. Denote by D; the composition pri;oD. Then
there exists an open neighborhood V;, of y in W, such that

oDy 3 o

~  ~-
Since h o bt is an affine map (see Subsection 6.2.1), then there exists v € M,
such that

~v oD, |W;: gzﬁ;j; OEI.
So D sends W diffeomorphically onto a set of the form (S™\a) x b.
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For any y € S™\ @ such that D(z) = y and z € W; , D sends W; diffeo-
morphically onto a set of the form y x (S™\w(y)). So we get a well-defined map
w:S™\a— S™. . N

Now suppose that W intersects W% at a point 2’ other than z. Then there
exist ¥,y € S™ such that y # ¢’ and

DWW, ) CyxS™ DW,)Cy xS

Denote by #” the intersection of the ¢y-orbit of 2’ with Ww_ . Then we have D(z") #
D(a'). However by the definition of D, D(z”) = D(a’), which is a contradiction. We

deduce that each leaf of F1 intersects each leaf of F—° at most once. [

The following lemma is a direct consequence of the previous lemma, which is
first observed by T. Barbot in [Ba].

Lemma 6.14  Under the notations above, the lifted orbit space Q3 is Hausdoff.

Proof — Suppose on the contrary that there exist two different orbits ®, and P,
such that each ®-saturated open neighborhood of @1 intersects that of <I>2 We want
to see that these two orbits are contained in the same leaf of F—0. B

Suppose that it is not the case. Denote by F} and Fy the leaves of F =Y containing
respectively these two orbits. Then by assumption the F*-saturated sets of F} and
F, intersect non-trivially. We deduce that there exists a leaf W intersecting F; and
F5. Denote by Vi and V5 two disjoint open subsets of W; containing respectively
the intersection of W with F, and that of W, with F,. Then by assumption the
F—O-gaturated set of V; intersects that of Vs non-trivially, which contradicts Lemma
6.13. _ _ _

Thus ®; and P, are contained in the same leaf of F —9. Similar we can prove
that they are contained in the same leaf of F +0 Then by Lemma 6.13, we have
®,; = &y, which is a contradiction. [

We can find a sequence {z;}3°, C M satisfying the following conditions:
(1) UpsU; = M.
(2) For each k > 1, ), = UF_,U; is connected,
where U,, is denoted by U;. Then we can prove the following lemma. It should be
mentioned that we are largely inspired by [Gh5].

Lemma 6.15 — For each k > 1, D |q,: Q@ — D(%) is a C> fiber bundle with
fiber R over D(S4). In addition D() is either the complement in S™ x S™ of
the graph of a continuous map from S™ to S™ or the complement of the union of
{x} x 8™ and of the graph of a continuous map from (S"\{*}) to S™.

Proof We prove this lemma by induction. For k = 1 we have €; = U;. In
the proof of Lemma 6.13 we have seen that D sends W} diffeomorphically onto a
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set of the form (S™\a) x b. For any y € S™\a such that D(z) = y and z € Wi

T
D sends W diffeomorphically onto a set of the form y x (S™\w(y)). So we get a
well-defined map w : S"\a — S™.

Denote by Gr(w) the graph of w. Then the complement of Gr(w) in (S™\a) x S™
is the open set D(U;). So w is continuous. By the definition of U; the inverse images
of D |y, are all connected. Then by the existence of fine transverse sections D |, is
seen to be a fiber bundle of fiber R. So the lemma is true for k = 1.

Suppose that the lemma is true for €. Then D |q, is a fiber bundle with fiber
R and D(£2,) is the complement in S™ x S™ of the graph of a C° map uy, : S™ — S™
or of the union of a vertical a; x S™ and the graph of a C° map wu;, : S™\a, — S™.

In addition by the argument above, we know that D(Uy1) is the complement
of the union of b1 x S™ and of the graph of a C° map vp41 : S™\bpr1 — S™ and
D |y,,, is a fiber bundle with fiber R.

Since D(Ug41) N D(€Y) is the complement in S™ x S™ of a finite union of topo-
logical submanifolds of codimension at least two, then D(Ug,1) ND(€2) is connected
and open.

Firstly we want to see that D |g,,, is a fiber bundle with fiber R. Take x € (),
and y € Uy such that D(x) = D(y). Since 41 is connected, then Q N Uy, 1 # 0.
So we can take z € Q, NUy11 and a C° curve v in D(Uj41) ND(Y) connecting D(z)
and D(x).

Since D |q, and D |y,,, are fiber bundles with fiber R, then we can lift v to two
CY curves v, C 4, and vy, C Uy, such that 71(0) = 72(0) = z. Thus (1) and =
are contained in the same ¢y-orbit and so are v2(1) and y.

Denote by A the subset of ¢ € [0, 1] such that v;(t) and 72(t) are in the same
orbit of (}5;. By the section property, A is easily seen to be open in [0, 1]. Suppose
that {t,}°, C A and t, — t. If 71(¢) and 72(¢) are not in the same ¢p-orbit, then
by Lemma 6.14 there exist disjoint gt—saturated open neighborhoods of ~4(t) and
Yo(t). Thus for n > 1, v1(t,) and 4o(t,) are not in the same orbit of ¢, which
is a contradiction. We deduce that A is closed. Thus A = [0,1]. So z and y are
contained in the same ¢y-orbit. We deduce that D |, is a fiber bundle with fiber
R.

Now we want to see the form of D(Q41). Suppose at first that D(;) =
(Gr(ug)). Take p € S"™\bg+1. If up(p) # vi41(p), then D(€41) contains the

vertical p x S™. Since p # bgi1, then there exists x € Uyyq such that D(W,) =
PX(S™\Vks1(p)). So there exists y € €, such that pxvy1(p) € D(W,7). In particu-

—~

lar, D(W; )ﬂD(Wy_) # . So there exists t € R such that ¢, (W) = W, . We deduce
that D(W;) = p x S™, which is absurd. So in this case, D(Qx41) = (Gr(ug))©.

Suppose that D(Qx) = (Gr(ug) U (ax x S™))°. For each p € S™\{ay, bry1} we
get as above that ug(p) = vg1(p).

If ap, # by, then ug and v, can be extended to

the same continuous map u; on S™. In this case D(Qx11) = (Gr(ag))©.

If ay = bgy1, then we certainly have D(Qy1) = (Gr(ug) U (ax x S™))c. O
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We deduce from the previous lemma that D : M — D(]\N/[ ) is a C*° fiber bundle
with fiber R. So the transverse (M,, x M,,, S™ x S™)-structure of ¢ is complete. In
addition by the proof of the previous lemma we see that if b, is equal to b; for each

k > 1 then D(M) = (Gr(uy) U (a1 x S™))¢. If there exists k > 1 such that by # b;
then D(M) = (Gr(us))".

By exchanging the roles of ET and E~ in the previous lemma, we get the fol-
lowing two cases:

(1) D(M) = (5"\a) x (S™)
(2) D(M) = (Gr(f))¢ where f is a homeomorphism of S™ onto S™. In particular
n = m in this case.

Let us consider firstly Case (1). By changing the developing map we can sup-
pose that a = b = oo. Denote by CO, the isometry group of the canonical
conformal structure of R™. Then by Lemma 6.10 we get a compatible transverse
(CO,, x COWpy R™ x R™)-structure of ®. In particular, the weak stable and weak
unstable foliations admit transverse affine structures. So by [P12] the flow ¢, ad-
mits a C'> global section Y. Since the Poincaré map ¢ of ¥ is also topologically
transitive and quasiconformal, then by [KS], ¢ is C'*° conjugate to a finite factor of
a hyperbolic automorphism of a torus. We deduce that up to finite covers, ¢, is C*
orbit equivalent to the suspension of a hyperbolic automorphism of a torus.

Now we consider Case (2). Denote by T' the fundamental group of M. Then
by Lemma 6.11 the group H(I') is discrete in M,, x M,,. Define H; = pry o H and
Hy = pro o H. Then we have

foHi(Y)of ' =Ha(y), VyeT.

We deduce that H;(I') and Ho(T") are both discrete in M,,. Denote H(I") by T’
and Hqo([') by I's. Since ¢; is topologically transitive, then ¢ admits at least a
simply connected leaf. We deduce that H is injective. So I' and I'; and T’y are all
isomorphic.

We can prove that I'y is uniform in M, as following. Suppose on the contrary
that 'y is not uniform. Then I'; admits a finite index torsion free subgroup I'} such
that cd(I")) < n, where cd(I'}) denotes the cohomological dimension of I'}. So by
passing to a finite index subgroup if necessary, we can suppose that cd(I') < n.

Denote by BT the classifying space of I' and by ET the universal covering space
of BI". Then we have

BT 2T \H"", EI = H"™,

where H"*! denotes the simply connected hyperbolic space of dimension n + 1.
Denote by ET' xr M the quotient manifold of ET" x M under the diagonal action of
I'. Then we have the following fibre bundle with fiber M

m : BT xp M — BT,
I'((a,z)) — I'(a).
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By using the cohomology Leray-Serre spectral sequence to this fibre bundle (see
[Mc]), we get that

—~

B3 = HP(D, HY(M)
converges to HPT(ET xp M). Since M is a fibre bundle with fiber R and base

(S™ x S™)IN(Gr(f)), then M is homotopically equivalent to the sphere S™. Since we
have in addition c¢d(I") < n, then we deduce from the spectral sequence above that
H>™ 1 (ET xp M) is trivial,

However by projecting onto the second factor ET" Xrp M is easily seen to be also
a fibre bundle over M and with contractible fiber ET". So ET xr M is homotopically
equivalent to M. We deduce that H*"*1(M) is trivial, which is absurd. So T'; is
uniform in M,,. Similarly I'y is also uniform in M,,.

Since f conjugates I'; to I's, then by Mostow’s rigidity theorem (see [Mos]) f is
contained in M,. So by replacing D by (Id x f~!) oD, we can suppose that f = Id
and

D(M) = (5" x SY\A,

where A denotes the diagonal of S™ x S™. In addition, we have H; = H,. So by
Lemma 6.10, ® admits a compatible transverse (M, (S™ x S™)\A)-structure with
respect to the diagonal action of M,, on (S™ x S™)\ A.

Lift ¢; to a finite cover to eliminate the torsion of I and define V' = H(T')\H"*!,
Then V' is a closed hyperbolic manifold. In addition, the I'-action on Qg is C*°
conjugate to the H(I')-action on the leaf space of the lifted geodesic flow of V' under
D and ‘H. Since the holonomy of each periodic orbit of ¢; is non-trivial, then the
holonomy covering of each leaf of ® is contractible. Denote by 1y the geodesic flow of
V. So by Proposition 6.4 there exists a C* homotopy equivalence h conjugating the
leaf space of ¢; with that of 1;. However A is not in general a C'* diffeomorphism.
In order to get a C'* orbit conjugacy between ¢; and 1, we use a classical diffusion
argument discovered by E. Ghys. Let us recall briefly this argument (see [Gh3] and
[Ba] for details):

There exists a C'* function u : R x M — R such that

h(¢t(x)) - wu(t,ac)(h(x)) VteR, VzelM

Define for T > 1, ur(z) = %fOTu(s,x)ds and hy : M — T'V such that hp(z) =
Yup@)(h(z)). I T > 1, then we can see that hp satisfies the same conditions as h
and is a C* diffeomorphism.

So up to finite covers, ¢; is C'°° orbit equivalent to the geodesic flow of a closed
hyperbolic manifold, which finishes the proof of the first part of Theorem 6.2.

6.4.3 Smoothness blowing up

In this subsection we prove the second part of Theorem 6.2. Suppose that ¢, satisifes
the conditions of Theorem 6.2 such that £+ @ E~ is in addition C'. Because of the
first part of Theorem 6.2, ¢; is seen to be volume-preserving. So in order to prove
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the second part of Theorem 6.2, we need only prove the C*° smoothness of E*@® E~
and then use Theorem 6.1.

Lemma 6.16 — Under the notations above, ET @ E~ is C.

Proof — Suppose at first that ¢; is C°° orbit equivalent to the geodesic flow
of a hyperbolic manifold (up to finite covers). Denote by A the canonical 1-form of
¢ and by X the generator of ¢;. Up to C*™ flow conjugacy we suppose that ¢; is
generated by fX.

Since ET @ E~ is supposed to be C!, then X is C! and A\(X) = % is . It
is easily seen that dA is ¢;-invariant. Then by the Anosov property of ¢;, we get
irxd\ = 0. Thus ixd\ = 0. We deduce that dX is ¢y-invariant. Denote by X
the canonical 1-form of v);. Then by Proposition 4.2, there exists a € R such that
d\N=a-dN.

Define 3 = A —a- ). Then 3 is a C! 1-form such that d3 = 0. In addition
B(X)=XMX)—ais C™.

Sublemma — Let ¢; be a C™ wvolume-preserving Anosov flow on M with gener-
ator X. If a is a C* 1-form on M such that da = 0 and a(X) is C*, then « is
.

Proof — Since da = 0 and the Stokes formula is valid for C'* forms (even for Lipchitz
forms), then there exists a C*° 1-form [ giving the same element of (H;(M,R))* as
that given by a. So by integrating (a — 3) along curves, we get a well-defined C?
function f on M. Thus for any z € M and any t € R we have

o) - ) = | (@(X) = B(X) o 6u(x)ds.

Since a(X) is supposed to be C*, then by Proposition 3.2, f is seen to be C*°.
However by the definition of f, we have a — § = df. Thus a is C*. [J

We deduce from this sublemma that 3 is C*°. Thus A is C®. So ET ® E~ is
also C'°.

If ¢; is C'™ orbit equivalent to the suspension v, of a hyperbolic automorphism
of a torus (up to finite covers), then by similar arguments as above, we can see that
d\ is Y-invariant.

Take a leaf X of the foliation of the sum of the strong stable and the strong
unstable distributions of ¢; and denote by 1 its Poincaré map. Then X |g is C' and
d(\ |g) is y-invariant. Thus by Lemma 4.3 we get d(\ |z) = 0. We deduce that
d\ = 0. Since in addition A\(X) = % is €, then by the previous sublemma A is

f
C>®. Thus ET & E~ is also C*®. I

Proof of Proposition 6.1 Suppose that ¢; satisfies the conditions of Proposition
6.1.1. Similar to the previous section, we can construct a C'° geometric structure
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(FZ,75) on each transverse section ¥ of ®. Similarly we can construct a family
of transverse charts {(X;, ¢.)}zen- Then because of the sphere-extension property,
these charts are easily seen to be compatible with respect to the natural action of
My x M, on S? x S™. So in this way we get a transverse (My x M,,, S? x S™)-
structure on ®. Then as in the previous subsection the proof splits into Case (1)
and Case (2). Each of them is understood in the same manner as in the previous
subsection.

6.5 Applications to the geodesic flows of closed
hyperbolic manifolds

Now let us begin to prove Theorem 6.5.

Lemma 6.17 — Let ¢; and 1y be two C™* Anosov flows which are C' orbit equiva-
lent. If 1y is volume-preserving, then so is ¢;.

Proof - By conjugating ¢; by the C! orbit conjugacy, we can suppose that ¢,
is a C! flow and a time change of ¢;. Denote by v the 1);-invariant volume form
and by X the generator of ¢;. Then by taking iyr we get a family of ¥-holonomy
invariant volume forms on the transverse sections of ¥, where ¥ denotes the orbit
foliation of ;. This family of transversal volume forms is also ®-holonomy invari-
ant. Denote by dt, the normalized foliated measure along the leaves of ® such that
dt,(Y) = 1, where Y denotes the generator of ¢;. In each flow box of ¢; we take
the product measure vy ® dtg. Then it is easily seen that in the intersection of
two flow boxes the two measures coincide. Then we can extend this family of local
measures to a measure g on M which is in the Lebesgue class and easily seen to be
¢p-invariant. [

Proof of Theorem 6.5 — Since 9, is conformal, then by Lemma 6.1, ¢, is quasi-
conformal. In addition by Lemmas 6.12 and 6.17, ¢, satisfies either the conditions
of Theorem 6.2 or those of Proposition 6.1. So up to finite covers, ¢; is C'> orbit
equivalent either to a suspension or to the geodesic flow of a hyperbolic manifold
zﬁt. Since v is contact, then it admits no C* global section. So up to finite covers,
¢y is C'™ orbit equivalent to 1/3,5.

However in the proofs of Theorem 6.2 and Proposition 6.1, we passed to a finite
cover only in order to eliminate the torsion in the fundamental group of M. But
in the current case, the fundamental group has no torsion by the classical Cartan
theorem. So ¢ is C* orbit equivalent to 1@. Then by Mostow’s rigidity theorem
(see [Mos] and [Ma2]) ¢ is C* flow equivalent to 1. We deduce that ¢, is C*
orbit equivalent to ;. [

Proof of Proposition 6.2 — Let us prove firstly (1). Suppose that the geodesic
flow of M is Holder-continuously orbit equivalent to that of a hyperbolic manifold
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N. Since n > 3, then the fundamental group of M is isomorphic to that of N. Since
71 (M) with its word metric is quasi-isometric to M and 71 (/N) is quasi-isometric to
H", then we deduce that M is quasi-isometric to H".

Conversely, if M is quasi-isometric to H", then (M) is also quasi-isometric to
H". Thus by [Su] and [Tu], there exists a uniform lattice I' in the isometric group
of H" and a surjective group homomorphism p : 7 (M) — T such that the kernal
of p is finite. However by a classical result of E. Cartan, m, (M) is without torsion.
We deduce that 71 (M) is isomorphic to I'. In particular, I" is also without torsion.
So N = I'N\H" is a closed hyperbolic manifold.

Denote respectively by ¢; and v, the geodesic flows of M and N. Since 7, (M) =
71 (N), then by [Gr], ¢; is CY orbit equivalent to ;. Since each continuous orbit
conjugacy between Anosov flows can be C? approximated by Holder-continuous orbit
conjugacies (see [HK]), then (1) is true.

Now let us prove (2). We need only prove the necessarity. Suppose that the
geodesic flow ¢, of M is C! orbit equivalent to the geodesic flow 1, of a closed
hyperbolic manifold N. Since v, is conformal, then by Lemma 6.1, ¢; is quasicon-
formal. Thus by Corollary 6.4, it is C'* orbit equivalent to the geodesic flow of N.
Since C* orbit conjugacy preserves weak stable and weak unstable distributions,
then ¢; is Anosov-smooth. So by [BFL], it is C'*° flow equivalent to the geodesic
flow of a hyperbolic manifold. Then by [BCG], M has constant negative curvature.
]
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Chapter 7

On the Homogeneity of Affine
Anosov-smooth Flows

Abstract — In this chapter we prove a homogeneity result for affine Anosov-smooth
flows, which should furnish the departing point for a future classification of such

flows.

7.1 Introduction

In the chapters above, a guiding idea was to construct C'>° invariant linear connec-
tions from the given geometric structures. These (more or less) canonically con-
structed connections were in the center of our arguments. In this chapter we try to
understand the general affine Anosov-smooth flows, i.e. the connection-preserving
Anosov-smooth flows.

In Section 7.2 we formulate a conjecture about such flows. Then in Section 7.3
we prove the homogeneity of Parry time changes by using the results concerning
rigid geometric strutures established in Chapter 2.

7.2 Invariant connections of Anosov flows and a
conjecture

Let ¢; be an Anosov-smooth flow on M. If V* is a C* ¢;-invariant linear con-
nection along F* and V™ is a C* ¢-invariant linear connection along F~, then
(V*,V7) is said to be a C* connection couple of ¢;. We denote by A(¢;) the set of
C™ connection couples of ¢;. Let us prove firstly the following

Lemma 7.1 Let N be a C* manifold and {F;}f_, be some C* distributions
such that TN = F1 @ - ® FEy. For all1 <i <k, let V; be a C* linear connection

133



Chapter VII: On the homogeneity of affine Anosov-smooth flows

of E; along E;. Then there exists a smooth linear connection ¥V on N such that
VE; CFE; for all1 <1 <k and in addition V 1is preserved by each diffeomorphism
preserving the decomposition and {V;}¥_;.

Proof — For each 1 < i < k, we denote by P the linear projection of TN onto
E; with respect to the decomposition. Then for arbitrary C*° vector fields Y and
7, we define

VvZ= Y PPY.PZ)+ > (Vi)payP'Z

1<i#j<k 1<i<k

Thus V is easily seen to be a C'*° linear connection fulfilling the conditions. [

Lemma 7.2 — Suppose that ¢; is Anosov-smooth. Then ¢; preserves a C* lin-

ear connection iff A(¢y) # 0.

Proof — Denote by Pt and P~ the projections of TM onto Et and E~. If ¢; pre-
serves a C* linear connection V, then it is easy to see that (PToV, P~oV) € A(¢y).
So A(6r) # 0.

Conversely we suppose that A(¢;) # 0. There exists a C™ ¢p-invariant con-
nection of RX along RX, VY such that (V%) xX = 0. So by Lemma 7.1, we can
construct a C™ ¢-invariant linear connection from VY and each element of A(¢,).
Since A(¢;) # 0, then ¢; preserves at least one C*° linear connection. [

The following lemma furnishes the basis of applying the go-and-back idea (see
Section 4.5).

Lemma 7.3 — Let ¢; and v be two Anosov-smooth flows such that they are time
changes of each other. Then there exists a natural bijection between A(¢;) and A(1y).
In particular, ¢y is affine (i.e. connection-preserving) iff vy is affine.

Proof — Denote by E* the strong unstable distribution of 1, and suppose that
(VF,V7) € AMon).

Since 1y and ¢, are time changes of each other, i.e. they are C'*° orbit equivalent,
then for any z € M, W;H = W0, Thus for any y € W, there exists ¢ € R such
that ¢,(y) € W

If W9 contains no periodic orbit, this number ¢ is unique for each y in W,
If W9 contains a periodic orbit, then it contains exactly one periodic orbit (see
Proposition 3.1). Denote by 7" its mininal positive period. So if ¢:(y) € W, then
for all k € Z, ¢rir1(y) € Wi

Conversely if ¢, (y) € W,F and ¢, (y) € Wi, then ¢y, W5 = W, Thus
to —ty € T'-7Z. So by associating t + T - Z to y, we get a well-defined C'"*° map from
W to R/TZ.

Thus by taking a lift if necessary, there exists a unique C* map 6, : Wf — R
such that

0.(x) =0, do,)(y) €W, Vye WS
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Define a C* map O, : W5 — W, such that

O.(y) = G0, (¥)-

Then O, is easily seen to be a local diffeomorphism. Thus we can find an open
neighborhood U,f of x in W, such that O, [+ is a diffeomorphism onto its image.
So we get a family of maps {O, |+ }eenm-

For any z.y € M, if z € U} NU,/, then W, = W,F. Define

a=0,(z) —0,(2),
then ¢4(0.(2)) = g, () (2) € W,F, ie. ¢ W5 =W, For all w € W,
Datty(w) (W) € GW, = W,F.
So there exists k € Z such that
Oy =0, +a+k-T,
where T is taken to be zero if W; 0 contains no periodic orbit. So we get
0,0 0, = barrr

Since V7 is ¢-invariant, then we can pull it back by {O, |+ }senr to get a well-
defined C™ linear connection along F* denoted by V*.

Now let us prove that V* is 1),-invariant. At first there exists a C* map [ :
M x R — R such that

e = Ppia(+):
For any x € M and any t € R, we define a C* map n : W — R such that

Then for all y € W,
o) (Ve(V)) = Gou) 4t (V) € SaanWe" = Wi .
Since in addition n(x) = 0, then we have 5o )_; = Oy, (), L.e. for all y € W,

Bz, t) + 0.:(y) = Oyya) (V1 (y)) + By, 1).

Then it is easily verified that

@'l/)t(iﬂ) © 1/)t = ¢ﬁ(w,t) © @w

Thus V7 is Yp-invariant. Similarly we get a C°° ¢-invariant connection along F-
denoted by V™.
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In conclusion we have constructed an application from A(¢;) to A(¢). Simi-
larly we get an application from A(v;) to A(¢;). By the construction, these two
applications are the inverses of each other.

In particular, we get A(¢p;) # 0 iff A(y,) # 0. So by Lemma 7.2, ¢, is affine iff
Yy is affine. [

Corollary 7.1 — Suppose that ¢, is a topologically transitive affine Anosov-smooth
flow. If rank(¢) = 0, then up to a constant change of time scale, ¢; is C™ flow
equivalent to the suspension of a hyperbolic infra-nilautomorphism.

Proof — Since rank(¢;) = 0, then by Theorem 3.1 of [P11], ¢; admits a C'*° closed
global section X. The induced diffeomorphism ¢ is easily seen to be Anosov-smooth
(see Subsection 5.2.3). Since the suspension of ¢ is a C* time change of ¢, and
¢ is supposed to be affine, then by Lemma 7.3, the suspension of ¢ is affine. So
¢ is also affine. We deduce by [BL] that ¢ is C* conjugate to a hyperbolic infra-
nilautomorphism.

Then again by [Pl1], E* @ E~ is integrable with compact leaves. Then the
corollary follows by taking a leaf of the foliation of E* @ E~ as X. [

Lemma 7.4 — Symmetric Anosov flows and their special time changes are all
connection-preserving.

Proof — By Lemma 7.3, we need only prove that each symmetric Anosov flow is
connection-preserving. Denote by ¢; a symmetric Anosov flow on a m-dimensional
manifold M. If rank(¢,) = 0 or [%], it is certainly connection-preserving (see [BFL2]
and [BL]). If 0 <rank(¢,) < [%], then by Proposition 3.6, ¢; is commensurable to
an algebraic flow 1), defined on I'NV %, H /K. Since V x, H /K is canonically dif-
feomorphic to V' x (H /K, then we get two foliations of V' x, H /K, F; = {V X x}
and Fp = {* x (H,/K)}. The flow 9, induces naturally a flow ¢, on H /K which
is a lift of the geodesic flow of a hyperbolic space. So we can find a H-invariant and
y-invariant connection V, along F,. By combining the canonical flat connection
along F; and Vs, we can construct by Lemma 7.1 a left-invariant and v;-invariant
connection on V' x, H /K. We deduce that ¢, is connection-preserving. [

We have seen in Section 3.4 that each symmetric Anosov flow is volume-preserving
and Anosov-smooth. So we arrive at the following

Conjecture 7.1 — Let ¢; be a volume-preserving affine Anosov-smooth flow. Then
it is commesuable to a canonical time change of a symmetric Anosov flow.

At the moment, I can not prove this conjecture. But in the following section, we
shall estalish a weaker result.
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7.3 Homogeneity of Parry time changes

Suppose in this section that ¢; is a volume-preserving affine Anosov-smooth flow
of which the Bowen-Margulis measure is in the Lebesgue class and E* are both
orientable. Because of Corollary 7.1 and Lemma 3.7, we suppose in addition that
¢, is topologically mixing. The topological entropy of ¢; is denoted by h and the
dimensions of £t and £~ are supposed to be n and m.

Define a* = 2 and a= = —2 and take an element (V*, V™) € A(¢), which is
not empty by Lemma 7.2. Then we can construct a C* ¢;-invariant canonical linear
connection V (see Section 4.4) such that

VX =0, VE* C E*, Vy+2T = PFY*, 77,

VysZF = (VE)ys 2%, VxY* = [ X, VE] +aFY™E

So by Proposition 4.2, the line bundle A" E+ admits a C'™° nowhere-vanishing V-
parallel section denoted by w™. Denote by Q the curvature form of (V,A"E™T).
Since w™ is V-parallel, then we have QT = 0.

Denote by v the C* nowhere-vanishing invariant volume form of ¢; and define
the underlying geometric structure of ¢; as

g= (X,E+,E_,V,V).

Since linear connections are rigid, then g is a C'*° rigid geometric structure of order
two on M. In addition, g is ¢;-invariant.

Since ¢; preserves a volume-form, then it is topologically transitive and its pe-
riodic orbits are dense in M (see Subsection 3.2.2). So by Theorem 2.1, the pseu-
dogroup of C* local g-isometries I'¢ admits a unique open-dense orbit denoted by
Q2. Fix a periodic point x in 2. Then by Section 2.4, we get two Lie algebras g and
h. recall that g denotes the space of germs at x of C* local g-Killing fields.

For all Y € g, we define

Ay =Ly — Vy.

It is easy to verify that Ay is a local C*° (1, 1)-tensor. Then we get a linear map
Jj:g— T,M x End(T,M) such that j(Y) = (Ya, (Ay).), which is easily seen to be
injective. Since g |,= T, M (see Subsection 2.4), then

pri(j(g)) =T M.

If the Lie algebra structure of g is pushed forward onto j(g) by j, then for all
(u,A), (', A') € j(g)., we have

[(u, A), (W', A)] = [Au' — Au + T'(u,u’), [A, A'] — R(u, u')],

where T" and R denote the torsion tensor and the curvature tensor of V.
Define ¢ : 1% — GL(T,M) such that i(h) = Dyh. Then i is easily seen to be
injective and real algebraic (see Corollary 2.2). So I'°¢ is identified under 7 to a

T,x
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closed subgroup of GL(T,M) (see [OV] and [Bor]). As in Subsection 2.5.4, the

left-invariant Lie algebra of Ij;g can be identified to b as following:

T2 Qriee — b

4 — (g — % o exp(—tu)(y)).

Then under this identification, it is easily verified that Di=j |y .

Since x is chosen to be ¢;-periodic, then there exists T' > 0 such that ¢r(z) = .
Thus D,¢r € z(Ii"g) Denote by Ly the logarithm of the hyperbolic part in the
complete Jordan decomposition of D,¢r (see [He] and [Eb]). Since I[% is real
algebraic, then Lo € j(b).

In the following, we identify g with j(g). b with j(h) and 1% with i(I%¢). Re-
placing T by nT (n > 1) if nescessary, we can see by the Anosov property that the
eigenvalues of Ly on E are strictly positive and its eigenvalues on E are strictly
negative. In addition, we have Ly(X,) = 0.

Define dy : g — R such that dx((u, A)) = Tr(A |g+). Since for all u,v € T'M we
have Tr(R(u,v) |g+) = Q% (u,v) and QF = 0, then for all (u, A), (v, B) € g, we get

dx([(u, A), (v, B)]) = Tr(([4, B] = R(u,v)) | z¢) = 0.

So dy is a character of g, i.e. a Lie algebra homomorphism from g into R. Define
g = Ker(dy) and b/ = hNg’. Since dx(Lg) > 0, then g’ and b’ are both codimension-
one ideals in g and bh.

Lemma 7.5 — Under the notations above, the center of g is RX and the center
of ¢ is trivial.

Proof Certainly RX is contained in the center of g. Suppose that a = (u™+u~+
aX,, A) is in the center of g. Then

[L(), Oé] = (LO(U+) + L()(U_) + CLL()(XI), [L(), A]) = 0.

Since the eigenvalues of Ly on E are strictly positive and its eigenvalues on E_ are
strictly negative, then we get ut = u~ = 0. Thus a —aX (€ b) is in the center of g.
Since pri(j(g)) = T, M, then for all u € T, M, there exists (u, B) € g. So

(@ —aX),(u, B)] = ((a — aX)(u), @ —aX, B]) =0.

Thus (v —aX)(u) = 0 for all u € T, M. So a = aX, i.e. the center of g is RX. By
a simple calculation, we get dy(X) = —h < 0. So the center of g’ is trivial. O

Denote by G the connected and simply connected Lie group with left-invariant

Lie algebra g and by H the connected Lie subgroup of G integrating h. Then by
Section 2.4, g is normal iff H is closed in G.
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Lemma 7.6 — Under the notations above, g is normal, i.e. H is closed in G.

Proof — Define I = {h € I’¢ | h,w™ = w* as germs at x}. Since h sends parallel sec-
tions of A"E™ to parallel sections, then h,w® = w™ as germs at z iff (h,w™), = w .
So I is a real algebraic subgroup of I..

It is easy to see that for all Y € g, Lywt = dx(Y)-wt. Soy ={Y € h | Lyw' =
0 as germ at x}. Then the Lie algebra of I is identified to h" under r.

Define p : Il°¢ — Aut(g) such that p(h)(Y") = Dh(Y). Since p is algebraic, then
p(I) is a closed in Aut(g).

On the other hand, we denote by G’ and H' the connected Lie subgroups of G
integrating g’ and h’. Then we have the restriction of the adjoint representation of
G to G', Ad : G' — Aut(g). It is easily seen that p(I) and Ad(H') have the same
Lie algebra in Aut(g). Since in addition the center of ¢ is trivial by Lemma 7.3.1,
then

H' = (Ad™*((p(1))o))o-
So H' is closed in G".

Denote by R the one-parameter subgroup of G integrating RL,. Since g ~
g x RLy and G is simply-connected, then G’ and R are both closed in G and
G ~ G' x R. We deduce that H’ x R is closed in G.

Since H’ is normal in H and R C H, then H' x R is a Lie subgroup of the
connected Lie group H. Thus H' x R = H since they have the same dimension. So
H is closed in G. O

~ Denote by M the manifold G /H. Then by Proposition 2.1, we get on M a
G-invariant geometric structure g locally isomorphic to g |o. We have
g=(X,ET,E~,V,n).

In addition by taking all the C'* local isometries from g |q to g, we get on  a
(I(g), M)-structure. For each connected and simply-connected open subset O of €,
by classical arguments, there exists a developing map 6 : O — M which is a C*®
local diffeomorphism such that 6.(g |0) = g. The following arguments are largely

inspired by those of [BFL2].

Lemma 7.7 — Under the notations above, the V-geodesics tangent to E* or E-
and the V-geodesics tangent to E* or E~ are complete.

Proof — By the same arguments as in Lemma 5.4, we can see that the V-geodesics
tangent to E* or E7 are defined on R. Now we want to see that the V-geodesics
tangent to £ or £~ are also complete. Define firstly

A:{y€Q|W;§Q, W, CQ}.
Since () is ¢y-invariant, then A is also ¢;-invariant. Since for all y € M we have

Wy+ = {Z | d(¢t(z)v¢t(y)) - 07 if t — —OO},
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then it is easy to see that Per(¢;) N2 C A. Thus A is dense in 2.

Take y € A and a (I(g), M)-chart ¢ such that ¢(y) = z. Since each leaf of F* is
diffeomorphic to R™, then for all ut € E* and all T > 0, we can find a connected and
simply-connected open neighborhood Oy contained in § of the geodesic vY: |—r1-
Then we can find a unique developing map 6y : Op — M such that the germ of 07
at y is the same as that of ¢ at y. Since (0r).(g) = g, then the geodesic 7)) sty AN
be defined on [T, T]. We deduce that each V-geodesic containing z and tangent
to £ is defined on R. Then by the homogeneity of g, the V-geodesics tangent to

E7 are complete. Similarly the V-geodesics tangent to £~ are also complete. [J

Using Lemma 7.7, we can construct A-coordinates and A-starred open sets as in
[BFL2]. Let us recall some details. For each point y € M, we define ¢, : T,M — M
such that

7»Z)y(y+ +1X, +Y7) = ¢5t(635pv(7_1/+ Y7)),

where exp" denotes the exponential map of V and 7y+(Y ™) denotes the image of
parallel transport of Y~ along the V-geodesic vy + [,1]. Because of Lemma 7.7, 1),
is defined on 7),M. In an open neighborhood of zero, v, gives a ' coordinate,
which is said to be the A-coordinate with _respect to y. Similarly for all y € M and
all y € G/ H we have the A-coordinates 15 and 1/3@.

An open subset O of M is said to be A-starred with respect to y if there exists
an open subset U C T, M such that
(1) ¥y is a C> diffeomorphism of U onto O.
2)UY =Y +tX,+Y~ € U, thenforall s € [0,1], YT +tX,+sY~ and sY " +tX,
and stX,, are also contained in U.

If O is an A-starred open set with respect to y and 6 is a developing map of O
into G/ H, then we have by construction 6 o 1, = zﬁg(y) oT,0.

Lemma 7.8 — Let y € A and O an A-starred open set with respect to y. Then
there exists a open-dense subset O of O such that O’ is also A-starred with respect
toy and O" C Q.

Proof — Suppose that U is the open set of T, M associated to O. Define
U={Y=Y"+tX,+Y €U |¢(YT+tX,+sY")eQ, Vsel01]}.

Define O’ = 1, (U’). Then we have O’ C 2 by definition. Since € is open, then U’
is also open in U. Thus O’ is open in O.
Suppose that z = ¢, (YT +tX, +Y ") € ANO. Then for all s € [0, 1],

V(YT +tX, +sY ") = exp¥(s- Togv D (Y 7)) € W, C €
So we get ANO C O'. Thus O is dense in O.

fY*T+tX,+Y~ €U, then certainly Y+ +tX,+sY~ € U’ forall s € [0,1]. In
addition, sY* +tX, and stX, are contained in U’ by the definition of U. So O' is
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A-starred with respect to y. O
Lemma 7.9 — Under the notations above, 2 = M.

Proof — Take a cover of M by A-starred open sets {O,,}. Then for each i, we
can find by Lemma 7.8 an A-starred open set O, in O,, N {2 which is dense in O,

Since O’ is contractible and contained in €2, then there exists a developing map
0 of Oy, mto G/ H. Define 0 : O,, — G /H such that

0= lEG(yi) o (T,,0) wyj

Then 0 is an extension of #. Since O,, is open-dense in Oy, then by the following
sublemma, @ is seen to be a local 1sometry sending g to g. Since g is homogeneous,
then g is locally homogeneous, i.e. Q = M.

Sublemma — Suppose that 0 be a C* map from (M,V) to (N, V'), where V and V'
denote two C* linear connections. If there exists an open-dense subset V' of M such

that 0 |y is a local diffeomorphism sending V to V', then 6 is a local diffeomorphism
on M sending V to V'.

Proof — For each z € M\V, we take a C° curve [ defined on [—1,1] in M such
that [(0) =z and (1) =y € V and [(t) # 0 for all t € [—1, 1]. Define

A={s€[0,1] | (DO)y~ is bijective for all T € [s,1]}, t =inf(A).

Since V' is open and @ |y is a local diffeomorphism, then A is not empty and ¢ is
well-defined. In order to see that @ is a local diffeomorphism on M, it is enough to
prove that t = 0.

Suppose on the contrary that ¢ > 0. Then by the definition of ¢, we get (D))
is bijective for all 7 € (¢,1]. Define [ = @ ol. Then [ |1 gives a nonsingular curve
in N.

For each 7 € (t, 1], we can find an open neighborhood O, of I(7) such that 6 |o,
is a C*° diffeomorphism. It is well-known that 6 |o_ sends V |o, to V' iff its induced
map on FO, sends the horizontal distribution of V to that of V', where FO, denotes
the frame bundle of O,. Since V N O, is dense in O, and 0 |y is affine, then we
deduce that @ is affine on O,.

For each u € Tj;y M we denote by J(s) its parallel transport along [ (on [— ])

1,
Then J = 0,(J) is parallel along [ |(;1). Take a chart in a neighborhood of [(¢) an
consider the following linear system:

where {I';;} denote the Christoffel symbols of V' along [ and {z*} denote the coor-
dinates of [. Fix € such that (t —e€,t 4+ ¢€) C [—1, 1] and the system above is defined.
Take t; =t + £. Then there exists a unique solution {I'} of system above defined
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on (t — et + €) and satisfying I'(t;) = J'(t;) for all 7. Thus by some classical re-
sults concerning linear differential systems, we get I | 1e)= J |(t,t4¢) and I vanishes
nowhere on (t —¢,t +¢€). So we get

0.(u) = lirtn+ J(s)=1I(t) #0.
Thus (D0),) is bijective and t > in f(A), which is a contradiction.
We deduce that ¢ = 0. Thus 6 is a local diffeomorphism on M. Now it is easy
to see as above that 6 sends V to V. [

Since g is locally homogeneous by Lemma 7.9, then we get a C° developing
map 0 : M — M. Since by Lemma 7.7, ¢ is complete with respect to the geodesic
structure in example (2) of Subsection 2.5.2, then 6 is a surjective diffeomorphism
by Proposition 2.4. So we get the following

Proposition 7.1 — Suppose that ¢, is a C* topologically mizing affine Anosov-
smooth flow such that E* and E~ are both orientable. If its Bowen-Margulis mea-
sure is lebesque, then ¢, preserves a C'° canonical linear connection V such that
1(g) acts transitively on M, where g denotes the lift on M ofg=(X,ET,E~,V,v).

See Section 4.4 for the definition of canonical connections. We deduce from
Proposition 7.1 and Corollary 7.1 the following

Theorem 7.1 — Let ¢ be a C™° wvolume-preserving affine Anosov-smooth flow on
M. Denote by qgt its Parry time change. Then we have the following alternatives :
(1) Up to a constant change of time scale and finite covers, ¢, is C> flow equivalent
to the suspension of a hyperbolic nilautomorphism.

(2) dgt is topologically mizing and there exists a Lie group G containing the fun-
damental group 1" of M as a discrete subgroup, a closed subgroup H of G and a
vector o in the Lie algebra of G, such that qgt is C*° flow equivalent to the flow

v TNG/H —T\G,/H given by v,(TgH) =T(g - exp(ta))H.

We stop our Anosov-smooth journey here to take a little break.......
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