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Résumé en francais

0.1 Introduction

Dans cette thése nous considérons une classe de systémes dissipatifs hors d’équi-
libre. Avant de définir plus précisément quelle est cette classe, il est utile d’aborder
les notions de dissipation et de non-équilibre.

Soit un systéme macroscopique constitué de N particules classiques en interaction
dans un volume donné. Comme un tel systéme est formé de beaucoup de particules
(typiquement N est de 1'ordre du nombre d’Avogadro, N ~ 10?3), la description des
trajectoires individuelles est en général un objectif non réalisable. On est donc amené
a adopter une description probabiliste. Une configuration du systéme (correspondant
a une certaine échelle spatio-temporelle, ou degré de “coarse-graining”) sera notée w.
Alors I’état du systéme a un moment ¢ sera décrit par la distribution de probabi-
lité P(w,t) associée aux configurations possibles {w} du systéme. Supposons que le
niveau de “coarse-graining” soit tel que ’évolution du systéme soit markovienne et
donc descriptible par une équation maitresse. La dynamique du systéme peut étre
telle qu’aucun état stationnaire n’est atteint durant la période d’observation (e.g., le
systéme peut présenter un cycle limite ou un comportement chaotique). Il est évident
qu’un tel systéme est hors d’équilibre. Au contraire, supposons qu’un état stationnaire
soit atteint; I’ensemble des taux de transition Ws(w|w') devient stationnaire, ainsi
que la distribution des configurations possibles Ps(w). Un état d’équilibre est un cas
bien particulier d’état stationnaire. Qutre l'indépendance temporelle des grandeurs
caractéristiques du systéme, il n’y a pas d’échange macroscopique entre le systéme et
I’extérieur (i.e., aucun flux ne parcourt le systéme et ses frontiéres). Du point de vue
stochastique, ceci se traduit par la condition de bilan détaillé dans ’espace des confi-
gurations, i.e., a Véquilibre Ps(w)Ws(w|w') = Ps(w )Ws(w'|w), Yw, w’. Au contraire, un
état stationnaire de non-équilibre correspond & un systéme parcouru par au moins un
flux macroscopique a l'intérieur ainsi qu’a travers ses frontiéres (le systéme est néces-
sairement ouvert). Ce flux macroscopique correspond a des “boucles de courant” dans
I’espace des configurations, plus précisément, & une violation du bilan détaillé pour
certaines configurations : il existe w et ' tels que Ps(w)Ws(w|w') # Ps(w )Ws(w'|w).
Ceci est la caractéristique générale des systémes stochastiques dans un état station-
naire de non-équilibre.

Qu’entend-on par systéme dissipatif 7 Une définition courante est de dire que ’évo-
lution d’un tel systéme ne conserve pas I’énergie. Nous adoptons ici une définition plus

vil
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générale. Considérons les grandeurs nécessaires (nombre de particules, énergie, etc.)
pour décrire I'état d'un systéme. Il y a alors deux scénarios possibles permettant de
définir un systéme dissipatif. Le premier est le cas d’un systéme pour lequel au moins
une des grandeurs caractéristiques n’est pas conservée au cours de l’évolution. Par
exemple I'énergie totale diminue (collisions inélastiques), ou le nombre total de par-
ticules diminue (réactions d’annihilation). Le second scénario est tel que le systéme
atteint un état stationnaire dans lequel il existe un flux imposé par ’environnement
d’au moins une de ces grandeurs caractéristiques. Il s’agit par exemple de matiére gra-
nulaire soumise & une excitation externe : malgré les collisions inélastiques dissipant de
I’énergie, cette excitation représente une injection d’énergie compensant exactement
la perte due aux collisions.

Nous étudions dans un premier temps un gaz dilué en dimension d > 2 formé de
particules ayant des trajectoires balistiques entre collisions. Lorsque deux particules
entrent en collision, elles disparaissent avec probabilité p et subissent une collision
élastique avec probabilité (1 — p). Il est alors possible d’établir une description hy-
drodynamique d’un tel systéme en se basant sur la théorie cinétique. L’étude d’une
telle description peut révéler d’importantes conséquences sur la question de la validité
de I'hydrodynamique des systémes dissipatifs. Les réalisations expérimentales d’une
telle dynamique sont néanmoins difficiles & trouver, méme si la dynamique des dé-
fauts ponctuels dans des cristaux liquides nématiques de géométrie particuliére peut
révéler des similitudes. Dans un second temps, nous étudions un modéle pour la sépa-
ration de la matiére granulaire. Des particules granulaires (qui subissent des collisions
inélastiques) sont réparties dans des urnes communiquantes secouées verticalement
(ce qui correspond a une injection d’énergie). Ce modeéle simple reproduit certains
résultats expérimentaux, comme par exemple la brisure spontanée de symétrie de la
répartition des particules entre les urnes ainsi que la formation spontanée d’inhomo-
généités spatiales. L’approche théorique est cette fois basée sur une description en
terme d’équations maitresses.

La classe considérée est donc formée de systémes dissipatifs dilués hors d’équi-
libre. Le formalisme hydrodynamique développé s’applique & plusieurs types de tels
systémes (mélanges granulaires, annihilation pure, annihilation probabiliste). Un pen-
dant de ces systémes est le modéle pour la matiére granulaire.

Nous commencons par décrire le contexte et les outils théoriques principaux pour
I’étude de la description hydrodynamique d’un systéme dissipatif.

0.1.1 Contexte général

Soit un gaz dilué de particules dont les trajectoires sont balistiques entre colli-
sions. Les particules subissent des collisions binaires élastiques. La théorie cinétique
d’un tel systéme est un sujet bien établi dont ’étude remonte a plus de 40 ans. L’exis-
tence d’invariants collisionnels permet d’établir de facon naturelle une description
hydrodynamique basée sur la théorie cinétique. Au contraire, on peut considérer une
dynamique telle que lors des collisions soit le nombre de particules, leur impulsion,
ou leur énergie cinétique n’est plus conservée. La théorie cinétique ainsi que la des-
cription hydrodynamique d’un tel systéme sont bien plus délicates et de nombreuses
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questions restent sans réponse. Plusieurs travaux visant a établir une description hy-
drodynamique ont été réalisés pour le gaz granulaire. Un tel systéme se caractérise
par des collisions inélastiques entre particules, ol I'inélasticité est caractérisée par un
coefficient de restitution a € [0,1] (la limite élastique correspond & o = 1). Néan-
moins, la dynamique d’un tel systéme fait apparaitre un inconvénient majeur. En
effet, ’évolution est telle que des régions de plus en plus denses se forment. Dans de
telles régions, le gaz devient si dense que les corrélations prennent une importance
majeure. Or la description cinétique d’un tel systéme se base sur 1’équation de Boltz-
mann, qui fait intervenir 'hypotheése du chaos moléculaire (factorisation des fonctions
de distribution & deux points des vitesses, ce qui revient a négliger les corrélations des
vitesses des particules sur le point d’entrer en collision). Dans ces régions de haute
densité de particules, qui apparaissent dans la limite des temps longs, l’équation de
Boltzmann n’est plus en mesure de fournir une description adéquate.

Considérons a présent un systéme tel que lorsque deux particules entrent en col-
lision elles disparaissent (annihilation). Il a été montré que I’équation de Boltzmann
devient alors asymptotiquement exacte (dans la limite des temps longs). Par contre,
un tel systéme est hautement dissipatif (dans le sens ot aucun des champs hydro-
dynamiques densité n, vitesse u, et température 7' n’est conservé). Une description
hydrodynamique souléve donc des problémes fondamentaux dont la solution n’est ac-
tuellement pas connue. Pour contourner ces difficultés, une idée est de concevoir un
modele tel qu’il soit possible de contréler 'amplitude de la dissipation tout en gardant
une dynamique adéquatement décrite par I’équation de Boltzmann. Un tel modéle est
fourni par I'annihilation balistique probabiliste.

Considérons un systéme tel que lorsque deux particules entrent en collision, elles
disparaissent avec probabilité p (annihilation) ou subissent une collision élastique avec
probabilité (1—p). On parle alors d’annihilation balistique probabiliste. La dissipation
peut étre choisie aussi faible que désiré (p ~ 0). Ceci permet de diminuer arbitrai-
rement l'ampleur des effets remettant en cause une théorie cinétique de ’hydrody-
namique des systémes dissipatifs. De plus, le probléme des corrélations des vitesses
dans la limite des temps longs ne se pose pas. En effet, ’équation de Boltzmann de
I'annihilation balistique probabiliste fournit une description adéquate de 1’évolution
pour temps longs si p # 0.

Notre objectif majeur est donc de fournir une description cinétique bien établie de
I’hydrodynamique de ’annihilation balistique probabiliste. Une telle description est
particulierement bien adaptée pour permettre, dans un second temps, une vérification
quantitative de la validité de I’hydrodynamique d’un tel systéme. Nous rappelons brié-
vement les outils principaux permettant d’établir cette description, plus précisément
I’équation de Boltzmann et le développement de Chapman-Enskog.

0.1.2 L’équation de Boltzmann

L’équation de Boltzmann s’obtient sur la base de 'hypothése du chaos moléculaire.
Plus précisément, il s’agit de la factorisation de la fonction de distribution des vitesses
a deux points des particules sur le point d’entrer en collision. Cela revient a dire que
les corrélations des vitesses avant collision sont négligées. Une telle approximation est
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justifiée dans le cas d’un gaz suffisamment dilué. On fait hypothése supplémentaire
(d’autant mieux justifiée que la densité est faible) selon laquelle toutes les corrélations
d’ordre supérieur sont négligées. Seules les collisions binaires sont prises en considé-
ration.

Soit un gaz dilué dans un espace d-dimensionnel constitué N > 1 particules
sphériques de masse m et diamétre o, sous l'influence d'une force externe F. Nous
supposerons que ces particules iteragissent par un potentiel binaire de contact, i.e., que
les particules subissent des collisions & deux corps instantanées. Entre ces collisions
elles ont une trajectoire balistique. Soit f(r,v;t) la fonction de distribution du gaz
donnant la probabilité de trouver une particule de vitesse v a la position r au temps
t. L’équation de Boltzmann décrit alors I’évolution de f :

Qf(r,vl;t) +v Vef(r,viit) + Vy - F(r,vy)f(r,vy;t) _

ot = [f5 f1, (1)

ou l'opérateur de collision J est défini par

=t [ v [ a0 3 )0 - DG a0, @)

et & est un vecteur unitaire rejoignant le centre des particules au contact. Nous avons
noté g = vy — vy la vitesse relative, 6 la fonction de Heaviside, et b~! 'opérateur
restituant les vitesses de collision dont I’action est définie par

b lvi=vi=v, - (g )7, (3a)
b lvy =vh=vy+(g-7)F. (3b)

Dans l'opérateur de collision (2), le terme multiplié par b~! est un terme de gain,
tandis que le second représente une perte.

L’opérateur de collision de 'annihilation s’obtient de I'Eq. (2) en gardant unique-
ment le terme de perte.

Les calculs analytiques basés sur le modeéle des sphéres dures sont néanmoins
trés conséquents. Cette difficulté calculatoire découle de la présence du module d’une
vitesse relative g = |vi — va| dans l'opérateur de collision. Il est alors instructif d’étu-
dier d’autres modeéles plus simples dans l'espoir qu’ils capturent la méme physique
que celle de I’annihilation balistique probabiliste des sphéres dures. Considérons donc
deux autres modéles d’interaction entre particules. Les modéles de Maxwell et des
sphéres trés dures (VHP) peuvent étre caractérisés par leur section efficace. La sec-
tion efficace est proportionnelle & la vitesse relative pour le premier modéle, et & son
inverse pour le second. L’opérateur de collision de ces modéles s’obtient de 'Eq. (2)
par une moyenne de la fréquence de collision (g - &) sur I'angle solide. Les effets de la
section efficace sont alors inclus dans une fréquence de collision effective nad_lqbvgp_x.
Le paramétre libre ¢(x) définit 1’échelle de temps du systéme, ou x permet de sélec-
tionner un modele, i.e., x = 0 pour le modéle de Maxwell, x = 2 pour le modéle VHP,
tandis que la dynamique des sphéres dures correspond au cas x = 1. vp est la vitesse
thermique définie par vy = \/2kpT/m o kp est la constante de Boltzmann, T'(¢) la
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température cinétique dépendante du temps, et ¢ la portée du potentiel d’interaction.
L’opérateur de collision prend la forme

1-z
1= o [ ava, [ 4607 - Df@oi s, @)

ou Sy = 2742 /T(d/2) est la surface de I’angle solide, et T la fonction gamma d’Euler.

Enfin, il est utile de considérer un autre systéme souvent étudié dans la littérature :
le gaz granulaire. Dans ce cas, les collisions sont inélastiques. On a alors

14+« oy~

b vy = Vi =vy— 500 (g-o0)0, (5a)
1 o~
b lvy = vh = vy + ;a(g o), (5b)
o

ou « € [0,1] est le coefficient de restitution de la composante normale des vitesses.
L’opérateur de collision s’obtient par un simple changement de variables :

s =t [ v a0 @) @0 DV OfEva0. (6)

Le gaz granulaire va nous permettre de réaliser une comparaison de résultats connus
avec ceux issus d'une nouvelle méthode générale (qui s’applique & une classe de sys-
témes bien plus large que le gaz granulaire) que nous avons développée.

Nous abordons & présent un autre développement théorique majeur utilisé dans
ce mémoire.

0.1.3 Le développement de Chapman-Enskog

Le développement de Chapman-Enskog se base sur le concept général de sépara-
tion des échelles de temps. La dynamique d’un systéme peut étre telle que différents
phénomeénes physiques se déroulent sur différentes échelles de temps. L’hypothése de
séparation des échelles de temps sous-tendant le développement de Chapman-Enskog
meéne & deux conséquences fortement reliées.

La premiére est I'existence d’une solution normale, i.e., toute dépendance spatiale
et temporelle de la fonction de distribution f(r,v;t) s’exprime par dépendance fonc-
tionnelle dans les champs hydrodynamiques. La fonction de distribution f prend alors
la forme

flr,vit) = flv,n(x,t),u(r,t),T(r,t)]. (7)

Quelle est la justification d’une telle solution ? Soit ¢ le libre parcours moyen. Suppo-
sons que la variation des champs hydrodynamiques sur une échelle de longueur ¢ soit
faible, e.g., /|VInn| < 1. On associe les échelles de temps correspondantes 7 (pour
0) et 7, (pour |Vinn| = E;l). 7 est bien entendu le temps moyen de collision. Sur des
échelles t telles que t > 713 > 7, les particules se sont déplacées de plusieurs fois la
distance £j,. Ce régime hydrodynamique est alors indépendant des conditions initiales
(a distinguer du régime cinétique pour des temps de lordre de 7). Par conséquent,
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pour t > 7, 'état est entierement caractérisé par les champs n, u, et T'. Toute dépen-
dance spatiale et temporelle de la fonction de distribution peut donc étre exprimée par
une dépendance fonctionnelle dans les champs hydrodynamiques, menant a 'Eq. (7).
L’existence d’une solution normale repose donc sur la séparation d’échelles de temps
Tp, > T, ce qui méne aussi & la seconde conséquence.

La seconde conséquence se base aussi sur I'existence de ces deux échelles de temps
distinctes : I’échelle microscopique définie par le temps moyen de collision 7 et 1’échelle
macroscopique définie par le temps 75, associé aux variations des champs hydrodyna-
miques et de leur inhomogénéités. Par définition 75, > 7, ce qui revient a dire que sur
des échelles de temps microscopiques 7 les champs hydrodynamiques ne varient que
faiblement, i.e., ces champs ne sont donc que faiblement inhomogénes. Ceci permet
de réaliser un développement de la fonction de distribution dans les gradients :

F=fO L ar® 2@ 4 (8)

L'ordre f© représente donc la fonction de distribution homogéne qui apparait apreés
de courts temps t tels que 7 < t < 7,. On doit avoir 7 < ¢ pour satisfaire I’équilibre
local. Chaque puissance dans le paramétre formel A signifie un ordre donné dans
les gradients. Le paramétre A < 1 s’interpréte comme le rapport 7/7, ~ ¢/f,. On
suppose de méme 'existence d’une hiérarchie d’échelle de temps donc

8 00 18y, 23(2)

&_W+>\W+>\ W_F"" (9)
ol 8(k)/8t décrit I’évolution sur I’échelle de temps k. Le développement de Chapman-
Enskog s’obtient en insérant les séries (8) et (9) dans 'équation de Boltzmann. Ré-
coltant les termes de méme ordre en A puis résolvant ces équations ordre par ordre il
est possible de construire explicitement la solution.

Supposons a présent que certains champs hydrodynamiques ne soient plus conser-
vés par la dynamique. L’intégration de ’équation de Boltzmann sur les vitesses v avec
poids 1, mv, mv?/2 fournit les équations de bilan des champs n, u, et T, respecti-
vement. Il s’agit des équations hydrodynamigques décrivant 1’évolution de ces champs.
A chaque champ non conservé est alors associé un taux de déclin apparaissant dans
ces équations. Chaque taux définit une échelle de temps qui lui est inversement pro-
portionnelle. Le probleme est alors de déterminer si ces nouvelles échelles de temps
peuvent étre si petites (forte dissipation) qu’elles deviennent de ’ordre du temps carac-
téristique microscopique 7. L’existence d’une solution normale serait alors invalidée,
et la validité d’une description hydrodynamique remise en question.

L’annihilation balistique probabiliste permet d’avoir une dissipation aussi faible
que désirée. En effet, pour de petites probabilités d’annihilation p ~ 0 la dynamique
est essentiellement donnée par celle des sphéres dures. Ce paramétre continu p permet
donc de placer la dynamique aussi proche de la limite de validité de la description
hydrodynamique d'un systéme dissipatif que voulu. De plus, la dynamique a long
temps de ’annihilation balistique probabiliste est adéquatement décrite par I’équation
de Boltzmann. Nous commencons donc par I’étude de I'annihilation pure, i.e., p =1,
confrontant une solution exacte de I’équation de Boltzmann avec des simulations de
dynamique moléculaire pour vérifier I’hypothése sous-jacente du chaos moléculaire.
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0.2 Reésultats exacts sur la dynamique d’annihilation de
Boltzmann

Soit un systéme de sphéres de diamétre o se mouvant balistiquement dans R%.
Lorsque deux particules entrent en contact, elles disparaissent. Nous supposons la dis-
tribution de particules initialement spatialement homogéne, et que cette propriété est
conservée par I’évolution. La fonction de distribution prend alors la forme f(v;t) =
n(t)e(v;t), ot n(t) est la densité de particules et p(v;t) est la distribution de proba-
bilité des vitesses. Le probléme se simplifie considérant une distribution initiale des
vitesses de spectre discret. Un tel spectre est alors conservé par la dynamique. Un cas
simple en dimension d = 2 est

1 1
foit) = X(t)5——0(v —c1) + Y (t) 5——0(v — c2), (10)
2meq 27mcey
ou cg > ¢ = 0. X(t) et Y(¢t) sont les densités de particules de module de vitesse
c1 et cg, respectivement. Ces densités vérifient X (t) + Y (t) = n(t). Nous établissons
alors analytiquement une équation implicite donnant la solution de I’équation de
Boltzmann. Dans la limite des temps longs, nous trouvons les relations explicites

T—00 1
X ~ —7! 11
) (11a)
T—00 ‘/0 —1/Oc 4— kK 6/a —li/4’y
Y(r) ~ E(ZWXO) p— 47‘/0 +1 T , (11b)

avec T = 2mocat, v = c1/ca, a =4y /(k—4y), B = k/(4—k), Vo = Yo /X0, Xo = X(0),
Yo=Y (0), et k= [ dpy/1 42 — 2y cos .

Considérons a présent le probléme de I'annihilation balistique ot une partie X ()
des particules est immobile, ¢; = 0. Ce systéme décrit le probléme de I"annihilation
balistique en présence de piéges statiques. A nouveau, nous obtenons une solution
analytique, dont la limite des temps longs donne les relations explicites

T—00

X(1) = Xool[l + e2(Xo, Yo;7)], (12a)
Y(r) "= Xooea(Xo, Yo; 7), (12b)

ouf=mw/(4—m)et
ea(Xo, Yo; 7) = Vi OH/0 ™ up (— T X oo/ Xo) exp (— XooT) (13)

avec

Vo d2 B+% B
J:/O du ln(u)m [_<ﬂ+u> (14)

Xoo = X(t — 00) = Xo/(1+Vp/B)? # 0 est la concentration asymptotique de pieges.

Des simulations de dynamique moléculaire permettent de tester la validité de
I'hypothése du chaos moléculaire sous-jacente & l’équation de Boltzmann. Pour un
systéme de I’ordre de 10° sphéres, nous avons pu vérifier aussi bien 1'établissement du
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régime asymptotique que les prédictions des Egs. (11) et (12). En conclusion, nous
avons montré que la théorie cinétique de Boltzmann fournit une description adéquate
de la dynamique de ’annihilation pour une classe particuliére de conditions initiales.

L’hydrodynamique d'un gaz de sphéres dures est connue depuis longtemps. Pour
un gaz suffisamment dilué cette dynamique ne génére pas de fortes corrélations des
vitesses. D’autre part, nous avons montré que I’équation de Boltzmann fournit une
description adéquate de 'annihilation pure. Ainsi, ’équation de Boltzmann reste pour
des temps longs une description adéquate si les particules subissent une collision
élastique avec probabilité (1 —p), p # 0.

Notre but est d’étudier ’annihilation balistique probabiliste. Pour cela, dans un
premier temps, nous établissons et testons une nouvelle méthode permettant de calcu-
ler de maniére approximative la fonction de distribution des vitesses décrivant 1'état
homogéne pour une large classe de systémes. Pour estimer les avantages de cette
nouvelle méthode il est utile de considérer d’abord le gaz granulaire pour lequel des
résultats basés sur la “méthode traditionnelle” sont disponibles dans la littérature.

0.3 La premiére correction de Sonine

Soit un systéme homogéne sans forces externes et admettant (d + 2) invariants
de collision (la densité, chaque composante de 'impulsion, et I’énergie cinétique). La
fonction de distribution peut alors étre obtenue exactement et est une Maxwellienne.
Par contre, si un des champs hydrodynamiques n’est pas conservé [i.e., il existe moins
de (d+2) invariants de collision|, il n’est pas possible en général de trouver exactement
la fonction de distribution décrivant I’état homogéne. Une méthode approximative
pour la trouver est la suivante.

De nombreux travaux montrent que la fonction de distribution isotrope pour diffé-
rents systémes [annihilation balistique (probabiliste), gaz granulaires, ou encore agré-
gation balistique| prend la forme d'une solution d’échelle (ou de “scaling”)

f(o), (15)

f(V;t) = Edet)

ou (t) = \/2(w2)/d et ¢ = v/v. La méthode de calcul de f(c) consiste a développer
cette distribution dans la base des polynomes S;(c?) orthogonaux par rapport a la
mesure Maxwellienne M(c) = =42 exp(—c?) :

fle)y=M(e) |1+ aiSi(c) | . (16)

i>1

Les S; sont appelés polyndmes de Sonine, et ao fournit la premiére correction de
Sonine (la contrainte (c?) = d/2 impose la nullité du coefficient a;).

Nous savons que pour une large classe de systémes dissipatifs, la “queue” de la
distribution des vitesses est surpeuplée (décroissance moins rapide que gaussienne).
Par conséquent, une distribution de la forme M(1 + a2S3) ne fournit pas une bonne
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description pour de grandes vitesses et cela quelle que soit la valeur de ay. Par contre,
nous sommes en général amenés a calculer des moments de petit ordre, ce qui requiert
une meilleure précision de la fonction de distribution prés de origine. La méthode
traditionnelle permettant le calcul de as fait intervenir des moments d’ordre 4 dans les
vitesses. Donc, 8’il est possible de développer une méthode impliquant des moments
d’ordre inférieur, les erreurs issues des grandes vitesses seront minimisées. Ceci méne
& conclure que la limite des faibles vitesses de I’équation de Boltzmann “rescalée”

2 (a4 ent) Flen = T7.) an

contient une information utile. Une telle limite revient en effet a attribuer plus de
poids prés de l'origine. Dans ’Eq. (17) on a

I(f. ) = /R dex 4506 @)@ - cra) [0 2T F() - Flen ], (8)

et p, = pop(cP)/d. Cette limite fournit 'équation pi2.f(0) = lime,—o I(f, ). Le calcul
a lordre linéaire en ay fournit

40 +1)*(a® = 1) [V2(a? + 1) — 2]
Ala, d) ’

as = (19)

ou

Ala,d) =5+d(2 —d) +8a(a? +1)(d — 1) — a®(23 — 6d + d?) + o*(3 + 6d + d?)
+ a8 (=1+2d + d?) — V2(a® +1)%(a? = 1)(3 + 4d + 2d?) /4. (20)

Nous avons réalisé des simulations Monte Carlo aussi bien pour le gaz libre que
pour un gaz chauffé a I’aide d’un thermostat stochastique. Ces simulations permettent
de conclure que la méthode de la limite fournit de trés précises prédictions dans le
domaine d’intérét des petites vitesses. Par contre, dans le régime de moindre intérét
des grandes vitesses les résultats obtenus sont moins précis que ceux issus de la mé-
thode “traditionnelle”. En effet, cette méthode consiste en une interpolation globale
de la fonction de distribution des vitesses.

Comme discuté auparavant, notre but est de fournir une description de I’anni-
hilation balistique probabiliste. Ayant donc vérifié la précision de la méthode de la
limite pour la premiére correction de Sonine, nous pouvons a présent ’appliquer a ce
systéme.

0.4 Annihilation balistique probabiliste

Soit a présent un systéme tel que lorsque deux particules entrent en contact elles
disparaissent avec probabilité p et subissent une collision élastique avec probabilité
(1 — p). L’opérateur de collision est donc composé de la somme des opérateurs de
collision de I'annihilation avec poids p et de collision élastique avec poids (1—p). Nous
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considérons d’abord un systéme homogeéne et appliquons la méthode de la limite pour
établir la premiére correction de Sonine. La connaissance de cette solution homogéne
permettra ensuite d’appliquer le développement de Chapman-Enskog pour étudier les
inhomogénéités ainsi que 'hydrodynamique de ’annihilation balistique probabiliste.

0.4.1 La solution homogéne
0.4.1.1 Les exposants de déclin
La dynamique est telle que ni le nombre de particules ni I’énergie ne sont conservés.

Dans le régime de I'Eq. (15) nous avons établi exactement les exposants de déclin de
la densité & et de ’énergie 7 :

1 —£
no_ (1 +p + a6w0t> , (21a)
no 2
_ 1 —y
2 (et ) (21b)
Vo 2

ou la fréquence de collision w est donnée par

w(t) Zn(t)ﬁ(t)ad_l/dcldc:zd& (0 - c12) 0 (T - c12) fer1) f(e2), (22)
et le paramétre de dissipation d’énergie a. par

J deideade (o - ¢12) 6 (G - ¢12) le(cl)f( 2)

Qe = . (23)
[ dec2(e)] [ ] derdesdd (& c12)0(@ - er2) Flen) f(ea)
Dans I’'Eq. (21) on a wp = w(t = 0), 7p = 0(t = 0), et les exposants de déclin
2

= 24

£= i, (240)
e — 1

= . 24b
Ll (24b)

Ce résultat est exact (dans le contexte du chaos moléculaire) car aucune approxima-
tion n’est faite sur f dans les Eqgs. (22) et (23). Supposant a présent un développement
de la forme (16) tronqué au premier coefficient non nul ag, il résulte

1

1 3 )
ae_l—l—ﬁ—i-agg <1+8>+(’)(a2). (25)

L’évaluation explicite des exposants £ et v nécessite donc la connaissance de la pre-
miére correction de Sonine as.
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0.4.1.2 La premiére correction de Sonine

L’application de la méthode de la limite présentée dans la Sec. 0.3 fournit

3—2v2
4d +6 — V2 + S8V2(d - 1)

az(p) =8 (26)

Les exposants de déclin sont donc donnés par I'insertion des Eqgs. (26) et (25) dans (24).

Nous avons implémenté un schéma numérique Monte Carlo simulant la dynamique
de I'annihilation balistique probabiliste. Ces simulations sont en trés bon accord avec
les exposants de déclin prédits, ainsi qu’avec la distribution des vitesses issue du as
donné par I’'Eq. (26).

Soit u tel que f(c) o< ¢* pour ¢ — 0. Dans le cas de I’annihilation pure, il est connu
que I’évolution préserve p. Plus précisément, pour une distribution initiale continue
caractérisée par un p donné, I’évolution sera telle que pour tout temps la fonction
de distribution des vitesses sera caractérisée par le méme p. Une classe d’universalité
correspond donc & un y donné. Ceci n’est plus vrai pour I’annihilation balistique pro-
babiliste. En effet, les simulations numériques ménent a conjecturer 'universalité des
distributions des vitesses. Pour toute distribution initiale de u quelconque, 1’évolution
est telle que la distribution est attirée asymptotiquement vers celle caractérisée par

w=0.
0.4.2 La description hydrodynamique des sphéres dures pour ’an-
nihilation balistique probabiliste

Soit un systéme qui & présent est inhomogéne. Définissons les champs hydrodyna-
miques locaux de densité n, vitesse u, et de température 7' par

n(r,t) = /Rd dv f(r,v;t), (27a)
u(r,t) = ﬁ /Rd dvvf(r,v;t), (27b)
T(r,t) = m » dv V2 f(r,v;t), (27¢c)

ou V = v—u(r,t) est la déviation a la vitesse moyenne. L’intégration de I’équation de
Boltzmann avec moments 1, mv, et mwv?/2 fournit les équations de bilan des champs
hydrodynamiques. Ces équations font apparaitre des taux de déclin qui dépendent
de la fonction de distribution f. Il est donc nécessaire d’appliquer le développement
de Chapman-Enskog pour déterminer f. Le premier terme f(© du développement
de f étant déja connu, nous calculons approximativement (par un développement de
Sonine au premier ordre) la premiére correction W ala distribution f(© caractérisant
le systéme homogeéne.
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Les équations de bilan au premier ordre sont ainsi

O + Vi(ny;) = —pn[¢Q) + €M), (28a)
1
i+ — VP + u; Vi = —pureQ + €M), i=1,...,d,  (28D)
2
OT +wiViT + (P Vi + Vig) = —pTlef + &) (28¢)

Les {1(4”) sont les taux de déclin de la grandeur A obtenus a 'ordre n. Ainsi

d+2 1
g0 = 4 <1 - G2E> 0, (29a)
O=0, i=1....4, (29b)
d+2 8d + 11
59) = W <1 + a9 16 > Vo, (29(’)
et
0 =0, (30a)
1 1
T(i) = —ur </£*TviT + /ﬁﬁVﬂl) é‘z, (SOb)
&) =0, (30c)
ou
é*_(d+2)2 ) —86 — 101d + 32d? + 88d> + 28d* (31)
U 32(d— 1) 2 32(d + 2) '

Le coefficient 1y est défini par le rapport vy = p(o)/no, ot pO = nkpT est la
pression a ’ordre zéro et

; d+2 T(d/2) VmksT
0:

8 pd D2 g1

(32)

est la viscosité du gaz homogene de spheres dures. Le tenseur de pression Pj; est
donné par
2

Bj(r,t) = p(o)(sij -n <VZU] + Vjui — d

5ijvkuk> , (33)

ou 7 est le coefficient de viscosité de cisaillement. Le courant de chaleur ¢; est donné
par la loi linéaire de Fourier :

¢ = —kViT — pVin, (34)
ou k est le coefficient de conductivité thermique et p un coefficient de transport

qui n’a pas d’analogue dans le cas sans dissipation (ce coefficient est responsable du
phénomeéne d’inversion de température qui sera présenté plus loin). Ces relations ainsi
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que les coefficients de transport sont, bien entendu, issus de la théorie cinétique. Les
coefficients de transport sont solutions du systéme linéaire

1
7’]* = 2 = 17(0)*7 (353)
"o vy — 5P&p
1 1 d—1
LA S [—psg%* + a1, (351)
Ko vk — 2p&p 2 d

" n 2 P o d -1
Ro o 2uf —3péy — 2pe)*

Dans les Egs. (35) les taux de déclin sans dimensions sont 51(4”)* = 1(471)/1/0. Les
coefficients v}, v e et 1/ sont donnés par

1 2880 + 1544d — 2658d% — 1539d3 — 200d*
=t = 16 + 27d + 8d?% +
Vn =V = P3og [ e 32d(d + 2) }
d—1 1
1—p)—— (1 36
+a-p ( +a232> (36)
1 278 + 375d + 96d? + 2d°
— |3 +6d+2d% —
~ P84 [ Tod 32(d + 2)

(1= p) <1 _ a2%> (36b)

Les Egs. (28) forment ainsi un ensemble de (d+2) équations pour les (d+2) champs
hydrodynamiques au premier ordre (i.e., ordre Navier-Stokes). Ces équations ne sont
en général pas solubles analytiquement. Afin de faire une analyse de stabilité nous
les linéarisons en considérant une légére déviation dy(r,t) de I'état homogeéne yp(¢) :
dy(r,t) = y(r,t) —yg(t), on y = {n,u,T}. Insérant cette forme dans ’équation de
Navier-Stokes, on obtient des équations aux dérivées partielles dont les coefficients
dépendent du temps. Cette dépendance peut étre éliminée par un changement de
variables spatiale 1 = vy (t)/m/[kpTH(t)]r/2 et temporelle 7 = fotds vor (8)/2,
ainsi qu’en définissant les champs de Fourier adimensionnels py(7) = dnk(7)/ng (1),

= /m/| k:BTH )ouk(7), et Ox(T) = 6Tk (7)/Tr(7), ou la transformeée de
Fourler est oy (T fRd dl e_’k 16y(1,7). L’indice H indique une grandeur évaluée
dans I'état homogene Notons que 1 est défini (& une constate prés) en unités de libre
parcours moyen d’'un gaz homogeéne de densité ng(t).

Les équations hydrodynamiques ainsi linéarisées montrent ’existence d’un mode
de vitesse wy, découplé des autres modes. Ce mode wy, = wy — Wi, est par deé-
finition transverse & la perturbation de nombre d’onde k. Le mode de vitesse lon-
gitudinal est défini par Wi, = (Wi - €g)ek ol €k est le vecteur unitaire dans la
direction k. Nous trouvons que pour toute perturbation de nombre d’onde k telle
que k >k, = [2p§(TO)*/7]*]1/2, wy, est linéairement stable. De facon similaire, les
(d + 1) autres modes étant couplés, on définit k) tel que pour tout k > ky ces modes
sont linéairement stables. Nous trouvons néanmoins k| < k. Bien que wy soit li-
néairement découplé des autres modes, il peut leur étre couplé non linéairement (par
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exemple pour le gaz granulaire, ce couplage non linéaire est responsable de la perte de
stabilité de I’état homogene). Par conséquent, comme k| < ko et grace a ce couplage,
la limite de stabilité est issue des conditions sur k) uniquement. Soit par exemple une
boite cubique de volume L%, alors dans 'espace adimensionnel le plus petit nombre
d’onde dune perturbation est kyy, = 27/(Lno?1C), ot C est une constante. Etant
donné que la densité n(t) décroit en fonction du temps, kmyin(t) croit de facon mono-
tone. Il existe donc un temps tel que kpin(t) = k1. Ainsi la borne inférieure ki, (¢)
entre inévitablement dans la région ou la solution homogéne est stable. Méme si cette
affirmation n’est pas rigoureusement dérivée, on en conclut que toute instabilité ne
peut étre qu'un phénomeéne transitoire. Par un argument approximatif, nous avons
estimé pour p = 0.1 (et pour des conditions typiques correspondant a celles requises
pour une implémentation de dynamique moléculaire) que I’état homogéne redevient
stable aprés que la densité ne soit plus que d’environ la moitié de la densité initiale.
Ceci correspond & moins de 10 collisions par particule. Par analogie, les inhomogénéi-
tés dans un gaz granulaire ne sont observées qu’aprés quelques centaines de collisions
par particule. Il est ainsi improbable que des simulations de dynamique moléculaire
puissent révéler des inhomogénéités pour ’annihilation balistique probabiliste. Nous
n’avons en effet pas observé d’inhomogénéités a I'aide de nos simulations.

Les nombres d’ondes ky et kj sont des fonctions croissantes de la probabilité
d’annihilation p. Ainsi, plus la dissipation augmente plus la plage de modes stables se
réduit. Néanmoins, comme k| augmente rapidement en fonction de p, la région stable
k > k, peut correspondre & un régime “non hydrodynamique” lorsque p est supérieur
a une valeur critique (difficile & quantifier). En effet, notre description est restreinte a
des valeurs k < 1. Dans I’espace réel, k est proportionnel au libre parcours moyen. Ce
dernier est inversément proportionnel & la densité n qui décroit en fonction du temps.
Ainsi les grandes valeurs de k correspondent & de trés faibles densités. Or lorsque
la densité est faible le temps de libre parcours moyen devient grand, éventuellement
de l'ordre de gandeur de la variation des champs hydrodynamiques. Il n’y a alors
plus séparation des échelles de temps, ce qui invalide la méthode de dérivation des
équations de Navier-Stokes. k < 1 assure donc que le temps de variation des champs
hydrodynamiques soit sensiblement supérieur au temps de libre parcours moyen.

Comme déja mentionné dans la Sec. 0.1.2, les calculs analytiques basés sur le
modeéle des sphéres dures sont lourds. Il est alors instructif d’étudier d’autres modeéles
plus simples, dans I’espoir qu'ils capturent la méme physique que celle de ’annihilation
balistique probabiliste des sphéres dures. Nous étudions donc les modéles de Maxwell
et VHP.

0.4.3 La description hydrodynamique des modéles de Maxwell et
VHP

L’analyse est similaire a celle basée sur ’annihilation balistique probabiliste des
spheéres dures, mais fait a présent usage de I’équation de Boltzmann sous la forme (4).
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0.4.3.1 Le modéle de Maxwell

Nous établissons le résultat exact as = 0 et choisissons ’échelle de temps ¢ de
sorte & ce que les coefficients de transports soient normalisés pour p = 0. Un calcul
exact [i.e., sans hypothése sur la forme de la fonction de distribution f(l)] fournit

1
"=y (37a)
P2 + (1 - p)
1
K* = (37b)
d(d+2 ’
p2gd—1; + (1 - p)
wt=0. (37¢)
Les équations hydrodynamiques ont la forme (28), avec comme seul taux de déclin
non nul d+9
€0 = 22, (39)

2

0.4.3.2 Le modéle VHP

Un calcul exact de la premiére correction de Sonine (i.e., en tenant compte des
termes non linéaires en ag) fournit & nouveau as = 0. En choisissant 1’échelle de temps
¢ de sorte a ce que n*(p = 0) = 1, un calcul contenant des approximations similaires
a celles pour les sphéres dures donne

1
¥
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= p—— 22 :
p d X ) (39(’)
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vy =022 ) (402)
. . 2(d+3) 4(d - 1)
Les équations hydrodynamiques ont la forme (28), avec comme seuls taux de déclin
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0.4.3.3 Comparaisons avec les sphéres dures

Nous avons calculé les taux de déclin de densité n et de la vitesse thermique
v = 1/2(v?)/d. Les modeles de Maxwell et VHP fournissent des bornes inférieures et
supérieures aux taux de déclin des sphéres dures £ et y :

2d
2d +1

<€ <1, 0<vy< (42)

1
2d + 1
ou ¢ est le taux de déclin de la densité donné par 'Eq. (24a) et « celui de ¥ donné
par I'Eq. (24b) |en faisant encore usage des Eqgs. (25) et (26)]. Notons qu’aucun des
taux de déclin des modeles de Maxwell ou VHP ne dépend de p. Nous implémentons

des simulations Monte Carlo et montrons ’excellent accord avec les taux de déclin du
modeéle VHP.

La comparaison des coefficients de transport (35), (37), et (39) montre que les mo-
deéles de Maxwell et VHP générent une dépendance en p similaire a celle des sphéres
dures. De plus, le modéle de Maxwell (VHP) fournit, respectivement, une borne infé-

rieure (supérieure) a chacun des coefficients de transport des sphéres dures.

Nous réalisons & nouveau une analyse de stabilité linéaire des équations hydrody-
namiques pour de faibles perturbations autour de la solution homogéne. Le modéle de
Maxwell est tel que tous les modes sont stables. Par contre, le modéle VHP montre
un comportement qualitativement similaire & celui des sphéres dures. Comparant les
limites de stabilité linéaires, on conclut a nouveau que les modéles de Maxwell et VHP
fournissent respectivement une borne inférieure et supérieure aux sphéres dures.

En conclusion, les modéles de Maxwell et VHP capturent les mémes phénoménes
physiques que I’annihilation balistique probabiliste de sphéres dures. Ces derniers mo-
déles fournissent des bornes inférieures et supérieures & toutes les grandeurs physiques
pertinentes et comparables. De plus, la simplicité technique liée a ces modéles ouvre
des perspectives pour I’étude de 'influence des termes d’ordre supérieur entrant dans
les équations de Navier-Stokes.

Méme si ce résultat n’est pas rigoureusement dérivé, l'analyse des équations de
Navier-Stokes a permis de conclure que les inhomogénéités de I’annihilation balis-
tique probabiliste sont un phénoméne transitoire. Au contraire, il est connu que pour
le gaz granulaire la dynamique génére des zones de plus en plus denses, menant éven-
tuellement a une singularité de la fréquence de collision dans ces régions. Exploitant
cette idée, nous formulons un modéle reproduisant ces inhomogénéités pour étudier
la séparation de matiére granulaire.

0.5 Le modéle d’urnes

0.5.1 Définition générale du modéle

Nous étudions un modéle d'urnes pour la séparation de matiére granulaire. Soient
L > 2 urnes connectées séquentiellement par une fente a hauteur A. L’urne numéro ¢
est donc directement reliée aux urnes (i — 1) et (¢ + 1). Les conditions aux bords sont
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périodiques. N particules granulaires sont distribuées dans les L urnes. Le nombre de
particules dans l'urne i est noté INV;, et n; = N;/N. Les particules peuvent changer
d’urne si elles ont une énergie cinétique suffisante leur permettant d’atteindre la hau-
teur h. Ces urnes sont soumises a une oscillation verticale, et les particules subissent
des collisions inélastiques. Il s’agit donc & nouveau d’un systéme hors d’équilibre dans
le sens ou il y a dissipation d’énergie par les collisions inélastiques, dissipation com-
pensée par un mécanisme d’injection lié au mouvement vertical périodique du systéme
d’urnes. Plutot que de recourir & la théorie cinétique, nous énoncons un modéle phé-
noménologique capturant 'essentiel des propriétés physiques d’intérét.

Nous savons que pour un systéme granulaire la température cinétique est une
fonction décroissante de la densité. Le modeéle le plus simple qui reproduise la dé-
croissance de la température 7" dans 'urne ¢ en fonction de sa densité n; est T'(n;) =
To + A(1 —ny;), ou Ty et A sont des constantes positives. On suppose de plus que la
distribution de particules en fonction de la hauteur depuis le fond d’une urne satis-
fait la distribution de Boltzmann. On mesure la température en unités mgh/kp, ou
m est la masse des particules, g la constante de gravitation, et kg la constante de
Boltzmann. La dynamique du modéle est définie par :

(i) une des N particules est sélectionnée au hasard,

(ii) avec probabilité exp[—1/T'(n;)] la particule sélectionnée est placée aléatoire-
ment dans une des deux urnes voisines, ou ¢ est 'urne & laquelle appartient
initialement la particule.

Le flux de particules quittant 1'urne ¢ est alors donné par

F(n;) = njexp[—1/T(n;)]. (43)

En fonction des parameétres Ty et A, ce modeéle permet de décrire la transition de
phase entre une distribution symétrique et asymétrique des particules dans les urnes.
Pour reproduire une telle brisure de symétrie, il suffit que le flux F'(n) posséde un
seul maximum.

0.5.2 Le diagramme de phase et les propriétés dynamiques

Nous étudions dans un premier temps le modéle & L = 3 urnes sur la base des
équations maitresses. Nous établissons le diagramme de phase en fonction des deux
parameétres Ty et A (partiellement analytiquement). Il existe ainsi deux phases : la
phase symétrique (chaque urne contient le méme nombre de particules) et la phase
asymeétrique. Pour de faibles valeurs de Ty et A, I'état asymétrique (ny; > ny = ng)
est stable (région IT). Augmentant Ty (pour A fixé), I'état symétrique (nqy = ny =
ng) devient métastable (région IIT) jusqu’a une ligne spinodale ou I’état symétrique
devient stable et ’état asymétrique métastable (région IV). Enfin, augmentant encore
Tp I'état asymétrique perd sa métastabilité et seul I'état symétrique est stable (région
I). Les valeurs de Ty définissant ces régions dépendent évidemment de la valeur de A.
Contrairement au cas & L = 2 urnes, le point tricritique est ici localisé a l'origine Ty =
A = 0. Ainsi une transition de phase sera toujours de premier ordre et accompagnée
d’hystérese.
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Le recours a des simulations Monte Carlo permet d’avoir accés pas seulement aux
valeurs moyennes, mais a toute la dynamique incluant les fluctuations.

Définissons le temps de vie 7 d’un cluster. Soit un état initial asymétrique méta-
stable donné par la solution des équations maitresses (pour des paramétres Ty et A
situés dans la région IV o I'état asymeétrique est métastable). Une des urnes contient
donc une majorité de particules, notée Ny. On convient que cet état asymétrique est
détruit si le nombre de particules dans cette urne devient inférieur ou égal a, par
exemple, 0.99Ny. 7 est alors défini par le temps nécessaire pour que cet état asymé-
trique soit détruit.

En approchant la ligne séparant les régions IV et III (i.e., partant d'un état asy-
métrique métastable et en se rapprochant de la limite de stabilité de cet état), selon
la théorie des phénoménes critiques, 7 diverge comme 7 < N?, z > 0. Nous avons
réalisé des simulations pour différentes valeurs de L > 2 qui indiquent bien un tel
comportement, avec de plus z = 1/3.

Enfin, pour L > 1 nous avons étudié numériquement la diffusion d’un cluster
dans les urnes aprés perte de stabilité. Plus précisément, nous considérons un état
asymétrique qui perd sa stabilité a cause des fluctuations. Le cluster de particules est
donc détruit, et les particules diffusent dans les urnes adjacentes. Cette diffusion est
normale avec exposant 1/2 (i.e., décrite par I'équation de diffusion usuelle). La taille
y du cluster ayant perdu sa stabilité décroit en fonction du temps t selon y o ¢~ /2.

On peut reproduire une diffusion anomale en considérant les collisions & deux
particules, comme nous l’expliquons dans le paragraphe suivant.

0.5.3 Le modéle de paires

Il est possible de définir plusieurs modeéles décrivant la brisure de symétrie des
particules dans les urnes. Pour cela, il suffit que la fonction flux F'(n) n’ait qu'un seul
maximum. Considérons donc un modéle tenant compte de certaines des corrélations
a deux points et dont la dynamique est définie par :

(i) deux des N particules sont sélectionnées au hasard,

(ii) si et seulement si les particules sont dans la méme urne, avec probabilité
exp[—Bn%] les deux particules sont placées aléatoirement dans une des deux
urnes voisines, ou ¢ est I'urne a laquelle appartiennent initialement les deux
particules et B > 0 est une constante positive.

La probabilité que deux particules sélectionnées au hasard appartiennent a la méme
urne est N;(N; — 1)/[N(N — 1)], qui dans la limite N — oo devient n?. La fonction
flux est alors celle du modéle de Eggers : F((n;) = n? exp(—Bn?). Pour L = 2 la valeur
critique B. = 4 donne la transition entre les phases symétrique (B < 4) et asymétrique
(B > 4). Pour L = 3, il existe deux points critiques By = 6.552703411... et By = 9.
Pour B < Bj la solution symétrique est stable alors que la solution asymeétrique est
stable pour B > Bs. Dans l'intervalle B € [By, Bg| les deux solutions sont stables,
et il y a hystérése. A nouveau, des simulations numériques indiquent que 7 < N7,
z = 1/3. La diffusion d'un cluster devient anomale d’exposant 1/3.



0.5. LE MODELE D’URNES XXV

0.5.4 Les zéros de Yang-Lee

Il est possible d’établir de facon analytique la distribution de probabilité dans
I'état stationnaire en terme de la fonction de flux F(n). Ceci peut étre aisément
réalisé dans le cas général L > 2 a 'aide du formalisme des “zero-range processes”.
Dans le cas L = 2, on trouve

N —i+1
1 o F (A )
ps( Z— H L (44)
i=1 N
ou le facteur de normalisation (fonction de partition) Zy est
N N —i4+1
F ’L
eI ()

M=11i=1

Le choix le plus simple pour un flux F'(n) reproduisant la brisure de symeétrie est
F(n) = nexp(—An), A > 0. Dans la limite thermodynamique N — oo la brisure de
symétrie pour A = 2 est une transition de phase de second ordre (pour A < 2 I’état
symétrique est stable). Avec ce choix pour F(n) la fonction de partition (45) prend
la forme

Ty = f: (]\]\/D LMN-M) (46)

M=0

ou (J\]Y[) = N!/[M!/(N — M)!] est le coefficient binomial et z = exp (—A/N) est la

fugacité effective.

Il est important de constater que z est une fugacité qui dépend de la taille du
systéme N. Notons aussi que la fonction de partition (46) est mathématiquement
équivalente (avec un changement de variables approprié) a la fonction de partition
du modéle de Weiss-Ising en champ moyen. Néanmoins et malgré ’équilibre détaillé,
notre systéme est physiquement hors d’équilibre. En effet, il y a balance entre l'in-
jection d’énergie (oscillations verticales des urnes) et dissipation (par les collisions
inélastiques).

Nous étudions la théorie de Yang-Lee des transitions de phases sur la base de la
fonction de partition (46), avec une fugacité dépendant de la taille du systéme. Les
zéros de (46) sont obtenus numériquement pour différentes valeurs de N. Dans la
limite thermodynamique ces derniers s’approchent du cercle unité dans le plan des
fugacités z complexes. Dans le plan complexe du paramétre de controle A, les zéros
approchent le point critique A = 2 avec une pente de 7/4. Ceci confirme 'existence
d’une transition de second ordre. Enfin, nous montrons analytiquement que la densité
de zéros sur la ligne de zéros dans le plan complexe de A s’annule en loi de puissance
a l'approche du point critique. Il s’agit & nouveau d’une caractéristique de la théorie
d’équilibre des transitions de phase du second ordre.



xXxvi CHAPITRE 0. RESUME EN FRANCAIS
0.6 Conclusions, extensions et problémes ouverts

Nous avons étudié une classe de systémes hors équilibre dissipatifs dilués. Un
objectif majeur du travail reporté dans ce mémoire était de fournir une description
hydrodynamique basée sur la théorie cinétique. Nous avons donc étudié plusieurs pro-
priétés de 'hydrodynamique de l’annihilation balistique probabiliste. L’analyse de
stabilité des équations hydrodynamiques a montré entre autres que les inhomogénéi-
tés étaient transitoires, contrairement & ce qui est connu des gaz granulaires ou la
dynamique génére des zones de plus en plus denses. Nous avons ensuite formulé un
modéle pour étudier la séparation de matiére granulaire dans des urnes, permettant
ainsi de reproduire certaines observations expérimentales.

0.6.1 Reésumé des résultats obtenus

Nous avons trouvé la solution analytique de I’équation de Boltzmann pour un
modéle d’annihilation pure en dimension d > 2. Ce modéle est formé de sphéres dures
avec distribution initiale isotrope bimodale des vitesses. Des simulations de dynamique
moléculaire ont été confrontées avec la solution analytique. Ceci a permis de conclure
que 'équation de Boltzmann fournit une bonne description de la dynamique déja en
dimension d = 2 (en dimension supérieure d > 2 on s’attend a ce que le role des
corrélations diminue encore, alors qu’en dimension d = 1 I’équation de Boltzmann
n’est pas adéquate).

Considérant ensuite des distributions initiales continues, nous avons développé
une nouvelle méthode pour calculer la premiére correction a la maxwellienne pour un
gaz balistique homogeéne. Des simulations Monte Carlo ont permis de tester la pré-
cision de la méthode. Non seulement notre méthode est techniquement plus simple
a implémenter, mais en plus elle fournit des résultats bien plus précis que la mé-
thode “traditionnelle” dans le régime d’intérét des faibles vitesses pour les grandeurs
physiques pertinentes.

Ayant développé cette nouvelle méthode générale et testé la précision de I'équa-
tion de Boltzmann pour décrire I'annihilation pure, nous avons tourné notre attention
vers ’annihilation balistique probabiliste. Ainsi, les particules qui entrent en collision
disparaissent avec probabilité p ou subissent une collision élastique avec probabilité
(1—p). Nous avons établi la premiére correction a la distribution des vitesses maxwel-
lienne pour le systéme homogéne. Des simulations Monte Carlo ont montré la grande
précision de nos résultats analytiques. De plus, ces simulations ménent a postuler
Puniversalité des distributions des vitesses f(c). En effet, soit u tel que f(c) o c*
pour ¢ — 0, alors pour toute distribution initiale de p quelconque cette distribution
est asymptotiquement menée par la dynamique vers la distribution caractérisée par
w=0.

Nous avons ensuite étudié les inhomogénéités du gaz grace a un développement
de Chapman-Enskog. Nous avons ainsi établi une description hydrodynamique d’un
systéme pour lequel aucun des champs hydrodynamiques n’est associé a une grandeur
conservée. L’analyse de stabilité linéaire des équations hydrodynamiques indique que



0.6. CONCLUSIONS, EXTENSIONS ET PROBLEMES OUVERTS xxvii

toute inhomogénéité ne peut étre qu'un phénomeéne transitoire. Nous avons aussi
montré que les modeéles simplifiés de Maxwell et des particules trés dures (VHP)
capturent ’essentiel de la physique de ’annihilation balistique probabiliste du gaz de
sphéres dures. De plus, ces modeéles fournissent respectivement des bornes inférieures
et supérieures a toutes les grandeurs physiques pertinentes comparables.

Enfin, se basant sur une description en terme d’équations maitresses (et recou-
rant & des simulations Monte Carlo) nous avons étudié un modele reproduisant la
séparation de matiére granulaire répartie dans des urnes communiquantes. Cela nous
a permis d’illustrer des aspects contre-intuitifs comme par exemple la brisure spon-
tanée de symétrie, ainsi que de reproduire certaines observations expérimentales. La
dynamique de ce modéle est telle que le systéme est hors d’équilibre. Néanmoins, au
niveau de “coarse-graining” de la modélisation considérée, le bilan détaillé est vérifié
ce qui en fait un systéme d’équilibre. Nous avons montré que la théorie de 1’équilibre
de Yang-Lee des transitions de phase fournit une description adéquate de la transition
de second ordre dans un cas ou la fonction de partition est exprimée en terme d’une
fugacité dépendant de la taille du systéme.

0.6.2 Extensions et problémes ouverts

Mentionnons certains problémes ouverts vers lesquels pointe ce mémoire.

Une caractéristique de I’annihilation balistique probabiliste est que pour les temps
longs I’équation de Boltzmann fournit une description adéquate de la dynamique. D’un
autre coté, la dynamique moléculaire permet de simuler la dynamique sans aucune
approximation. Par conséquent, I'implémentation de simulations de dynamique molé-
culaire de ’annihilation balistique probabiliste permettrait un test direct de la validité
de la description hydrodynamique. Cette comparaison serait donc indépendante de
I’hypothése du chaos moléculaire. L’implémentation de telles simulations représente
cependant un travail considérable qui va au-dela du cadre de cette thése.

Nous avons vu que les inhomogénéités pour ’hydrodynamique de ’annihilation
balistique probabiliste sont transitoires, contrairement au cas du gaz granulaire. La
physique de I'annihilation balistique probabiliste révéle donc des différences impor-
tantes avec la physique du gaz granulaire. On peut donc s’attendre a découvrir d’autres
comportements a priori inattendus en considérant d’autres variantes de la dynamique
de ’annihilation balistique probabiliste, comme discuté ci-dessous.

La dynamique de ’annihilation balistique probabiliste est telle qu’aucun des champs
hydrodynamiques ne peut étre associé & une grandeur conservée. Cependant, par I'ac-
tion d’'un thermostat et d'un réservoir de particules il serait possible de compenser
exactement la perte de particules, d'impulsion, et d’énergie cinétique. La densité étant
alors conservée, il est possible que les inhomogénéités ne soient plus transitoires. Il
serait alors envisageable de les étudier a I’aide de la dynamique moléculaire.

A part le test numérique de la validité de ’hydrodynamique, il existe un grand
nombre d’études pouvant étre réalisées sur la base du formalisme présenté dans ce
mémoire et apportant donc des résultats concernant l’annihilation balistique pro-
babiliste. Plusieurs modéles initialement utilisés pour les gaz granulaires peuvent
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étre traduits dans le langage de l’annihilation balistique probabiliste (thermostats,
meélanges de particules, particules avec degrés de liberté interne, ou avec des régles
de collision plus complexes, ... ), pour différentes interactions (modeéles de Maxwell,
des sphéres dures, ou VHP) ou approches numériques (gaz sur réseau, dynamique
moléculaire, ou méthodes Monte Carlo).

Finalement, il est possible de généraliser les résultats de ce mémoire aux collisions
inélastiques. Ceci ménerait a une théorie unifiée de I’annihilation balistique probabi-
liste granulaire. A nouveau, des extensions possibles du modéle seraient de considérer
la dépendance du coefficient de restitution dans la vitesse (annihilation balistique pro-
babiliste viscoélastique), un coefficient de restitution aléatoire, ou encore un coefficient
de restitution tangentiel différent de I'unité. Il est bien connu que les inhomogénéités
du gaz viscoélastique sont transitoires. Par conséquent, il serait instructif d’étudier
les conséquences de la dépendance du coefficient de restitution dans la vitesse sur la
stabilité linéaire de ’annihilation balistique probabiliste viscoélastique.



Chapter 1

Introduction

1.1 General introduction

In this thesis we shall focus on a class of out-of-equilibrium dissipative systems. Let
us define first the general frame defining these systems.

1.1.1 General context

Let us consider a low density gas of hard spheres that move ballistically in the interval
between binary elastic collisions. The kinetic description of this problem was initiated
more than 40 years ago, and is now well established. For this model the number of
particles, the momentum, and the kinetic energy are all conserved. More generally,
one may consider a system for which the dynamics does not conserve one of the above
quantities. The fundamental theoretical background for the hydrodynamic description
of such a system remains a controversial issue. The difficulty to establish the validity
of such a description is due to the following point.

A hydrodynamic description rooted in the kinetic theory is based on the general
concept of separation of time scales. A first time scale is the microscopic time scale
defined by the average mean free collision time between particles. The second one
characterizes the variations of the coarse-grained hydrodynamic fields. The hydro-
dynamic description of a ballistic gas based on the kinetic theory exploits explicitly
the separation between these time scales, through a Chapman-Enskog perturbation
expansion. However, the picture of well-separated time scales changes if any of the
coarse-grained hydrodynamic fields is not conserved by the dynamics. Indeed, to
each non conserved field there is an associated decay rate due to the loss term in the
hydrodynamic equations. The inverse of each decay rate defines a new time scale.
Hence, if the decay rate increases, the associated time scale decreases. For strong
dissipation (large decay rates), one of the decay rates may become of the order of
the mean collision time. Consequently, this would invalidate the derivation of the
hydrodynamic description of the system.

This problem has been much investigated in the case of granular gases where
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particles collide inelastically. However, no clear conclusion has been drawn yet con-
cerning the domain of validity of the corresponding hydrodynamic description. The
only common-sense conclusion was that the description should be valid “significantly”
close to the elastic limit. The granular gases show some intrinsic “drawbacks” that
complicate the answer to the question of validity of a hydrodynamic description. In-
deed, it is known that the dynamics is such that density inhomogeneities and clusters
of particles form. Some clusters may become so dense that the velocity correlations
of the particles become essential in describing the dynamics. Eventually, the granular
gas may collapse. In such conditions, the Boltzmann description underlying the hy-
drodynamics would be invalidated. On the other hand, one may consider a different
system which does not show the emergence of such strong correlations generated by
the dynamics: annihilation dynamics. In such a system, when two particles collide
they instantaneously disappear from the system. A great advantage of ballistic an-
nihilation is that in the long time limit the Boltzmann equation becomes an exact
description of the dynamics. On the other hand, such a system is highly dissipative in
the sense that neither the density, nor the momentum, or the kinetic energy are con-
served. In view of the discussion above, it would be desirable to control the amplitude
of the dissipation with an additional parameter. To this purpose we introduce the
annihilation probability p € [0,1]. When two particles meet, they either disappear
from the system with probability p or scatter elastically with probability (1—p). This
mechanism is referred to as probabilistic ballistic annihilation (PBA).

To sum up, we have at our disposal a system such that for p # 0 the Boltzmann
equation is likely to describe exactly the dynamics. Moreover, the continuous control
parameter p allows the system to be in a regime that is as close as desired to the
elastic limit (p ~ 0) in order to avoid the problem of non-separation of time scales.

1.1.2 Objectives

The major objective of this work is to provide a well-established kinetic description
of probabilistic ballistic annihilation. Such a description then provides an adequate
framework for probing the validity of hydrodynamics of dissipative systems.

In order to achieve this goal, many properties of PBA (or kinetic theory of dilute
gases in general) have to be studied. We shall first focus on an exactly solvable model
for pure annihilation. For this system, we confront the exact asymptotic Boltztmann
solution to molecular dynamics in order to probe the hypothesis of molecular chaos.
It is known that the velocity function distribution describing the homogeneous state
of the granular gas is non Gaussian in several aspects. We develop a new method to
compute the first nonzero correction to the Maxwellian distribution in the small veloc-
ity domain (the so-called first Sonine correction). Monte Carlo simulations show that
this method turns out to be much more accurate than the “traditional” method. This
new method is used next to establish analytically the velocity distribution function
in a homogeneous gas for PBA and for different continuous initial conditions. These
results are confronted to Monte Carlo simulations. Starting from different continuous
initial conditions, the simulations lead to conjecture that for long times the velocity
distribution becomes universal: it does not depend on its initial form. The next step
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is to study inhomogeneities. This is achieved with a first order Chapman-Enskog ex-
pansion in the gradients of the spatial inhomogeneities, leading to the Navier-Stokes
hydrodynamic description of PBA. A linear stability analysis is performed. It shows
that inhomogeneities in PBA are only a transient effect, which is unlikely to be observ-
able by molecular dynamics simulations. It means that if for short times some dense
clusters form, they will inevitably be destroyed by the dynamics for longer times.
Therefore, and contrarily to granular gases with constant restitution coefficient, the
molecular chaos assumption is likely to be well-justified for all times beyond this short
transient regime. The analytical treatment of PBA of the hard sphere gas is however
quite involved. We therefore study two other models associated with two different
forms of the interaction between particles. Those models not only capture the essential
features of the hard sphere gas, but provide as well analytical upper and lower bounds
for all comparable quantities. The whole study therefore provides a well established
framework that may be further used in order to probe the validity of hydrodynamics
of dissipative systems. The above-mentioned systems are nonequilibrium dissipative
ones, in the sense that is stated below.

1.2 Nonequilibrium systems

The macroscopic system A we are considering is made of N > 1 interacting classical
particles in a given volume. Since the typical system of interest is made of many
particles (of the order of the Avogadro number, N ~ 10%3), the knowledge of all
individual trajectories in the phase space is in general an unrealistic goal. A more
tractable description can thus be obtained from a statistical approach. A microscopic
configuration of the system (corresponding to a given level of coarse-graining) is de-
noted w. The definition of a nonequilibrium system may be understood best if we
start from the definition of a system at equilibrium.

Depending on the constraints imposed on the system, several descriptions are
possible. Imposing constant energy E, number of particles N, and volume V yields
(assuming ergodicity) the micro-canonical statistical ensemble for the distribution of
configurations {w}. If the constraint of constant energy is relaxed and the system A
is put in contact with a thermal bath at temperature T, then it is described by the
canonical ensemble. The distribution function of the configurations {w} is given by
the canonical distribution P.(w) = exp[—fE(w)]/Z, where § = 1/(kpT) (with kp
the Boltzmann constant and Z the partition function). If moreover the constraint
of constant number of particles NV is relaxed and that the system is put in contact
with a reservoir of particles, then it is described by the grand canonical ensemble.
Depending on the constraints, other statistical ensembles can be obtained.

We now turn to the dynamics. The description is then obtained from the theory
of stochastic processes. We suppose that the evolution of the system is Markovian.
Let w and w’ be two different configurations of the system, and the transition rate
from w to w’ denoted by W(w|w'). The time-dependent probability distribution is
P(w;t). 1t is therefore possible to describe the dynamics of A through a master
equation. A system at equilibrium is such that there are in average no fluxes inside
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A and through its boundaries. In the canonical ensemble this property translates
into the detailed balance condition P.(w)W,(w|w') = Pe(W )We(W'|w), Vw,w’ for the
stationary equilibrium distribution P, and the equilibrium transition rates WW,. In the
microcanonical ensemble the probability distribution P.(w) is uniform on a surface
of constant energy and the detailed balance condition therefore becomes W, (w|w') =
We(w'|w), Yw,w’, which expresses the microreversibility. For example, a Hamiltonian
description (with the underlying time reversal symmetry) obeys the microreversibility
condition [1].

We now consider a nonequilibrium system. The dynamics of a nonequilibrium
system A is driven by open boundaries. There is a nonzero (average) flux between A
and its environment. As a consequence, there is a nonzero (average) flux inside the
system.

The asymptotic dynamics of A may not reach a steady state, but instead show a
limit cycle or a chaotic behavior. It is clear that such a system is out of equilibrium.
Suppose on the other hand that the system reaches asymptotically a steady state
Ps(w) (the corresponding transition rates are denoted Ws). Of course, the equilibrium
state (defined by the constraints discussed above) is a very particular case of stationary
state.! But in a nonequilibrium steady state there exist fluxes inside the system and
through its boundaries. These macroscopic fluxes correspond to “loops” of current in
the configuration space. From a stochastic point of view, a nonequilibrium steady-
state is such that the micro-dynamics does not obey detailed balance: there exist w
and w’ such that Ps(w)Ws(w|w') # Ps(w )Ws(w'|w) [3, 4].

Note that the definition given here may not be appropriated in some cases where
a given coarse-grained description of a system is taken into account. As a matter
of illustration, we shall consider the urn model defined in Chap. 6. Although de-
tailed balance is verified at a certain coarse-grained level, the urn model describes a
nonequilibrium system. The dynamics is generated by an energy injection mechanism
(through the vertical shaking of the sand beads) which compensates exactly the loss of
energy due to inelastic collisions between the particles. In the thermodynamic limit
the coarse-grained steady state is such that the number of particles in each of the
urns remains constant. Therefore this system is at equilibrium at the coarse-grained
macroscopic scale, but out-of-equilibrium at a microscopic scale.

1.3 Dissipative systems

What are dissipative systems? An common definition is that the evolution of the
system does not conserve the energy. We shall here consider a broader definition.
Let A be the dynamical system of N interacting particles, and €) the environment.
We consider the total number of particles, the total momentum, the total energy of
the system, or any other pertinent quantity that is needed to formulate a coarse-
grained description of A. Alternatively, one may consider the microscopic rules defin-

'Note that the time scale of the dynamical relaxation process in glassy systems may be so large
compared to experimental scales that the system may merely be considered as relaxing to equilib-
rium [2].
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ing the dynamics of the particles (two or many body collisions of non spherical objects,
charged particles interacting through the Coulomb potential, ...) and the correspond-
ing local quantities (number of particles, impulsion, kinetic energy, electric charge,
etc.). The global counterpart of those quantities (i.e., their average in A) are denoted
by X. We shall distinguish two different class of dissipative systems.

The first one corresponds to the case of a non stationary state where one or more
of the quantities X is not conserved by the dynamics of A. For example, the total
number of particles diminishes (annihilation reactions), or the total energy decreases
(inelastic collisions).

The second one is such that the stationary state of A requires a flow of any such a
quantity X between A and §2. This is for example the case of a granular material which
is shaken: although the inelastic collisions dissipate energy, there is a constant energy
injection mechanism through the shaking which exactly compensates the energy loss
due to the collisions.

1.4 The Boltzmann equation

1.4.1 Introduction and hypothesis

We consider a dilute gaz of N > 1 identical particles of mass m in a d-dimensional
volume which may be under the influence of an ezternal force F. The particles interact
through a two-body potential. Let f(r,v;t) be the one-particle distribution function
of the system. f(r,v;t)drdv gives the average number of particles at time ¢ in the
volume dr centered at position r, with speed dv around v. We define the average
number of particles at position r at time ¢ by

n(r,t) = /le dv f(r,v;t), (1.1)

and the local flow velocity density u(r,t) by

1
n(r;t)

u(r,t) = / dvv f(r,v;t), (1.2)
R4
such that the local flow velocity field is given by n(r,t)u(r,t). The average kinetic
energy T'(r,t) is defined from the principle of energy equipartition
d 1,
—n(r,t)kpT (r,t) = dv —mV=f(r,v;t), (1.3)
2 RA 2
where V. = v — u(r,t) describes the deviation around the mean local flow, and kp is
the Boltzmann constant. It follows that

T(r,1) = — m

—_— v 2 r. Vv, . .
(r,t)k:Bd/]Rdd Vif(r,vit) (1.4)

We shall establish an evolution equation, a kinetic equation, for the distribution
function f(r,v;t). An evolution equation involves an expression for df/0t, and thus
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introduces a time scale 7 (roughly, the mean time between two successive collisions
of the particles) on which there is a “significant” change of the velocity distribution
function. Let 7, be the duration of such a collision event.

A first approximation of Boltzmann’s description is to assume 7. < 7, which
means that the collisions are instantaneous on a scale 7. As shown below, this condi-
tion is intimately related with the condition of having a dilute gas.

Let o be the diameter of the particles (the domain-size of the interaction potential).
For a low density gas, n=1/% >> ¢, which means that the average distance between two
particles is much larger that the range of the interaction. This may be rewritten in
the form no? < 1. The mean free path is £ ~ 1/(no%!), and the condition no? < 1
translates into o < £. Let vp = /2kgT/m be the thermal velocity, then 7. ~ o/vp
is the collision time and 7 = £/vr is the mean free time. The condition no? < 1 then
translates into 7. < 7, and we recover the assumption of instantaneous (and spatially
localized) collisions.

This will also allow to take into account only binary collisions. Since o < £ one
may neglect the diameter of the particles at contact and state that they collide only
if they are at the same position r at time ¢. For instance, a Helium gas under normal
conditions is characterized by o ~ 3 A, n=1/3 ~ 30 A, vy ~ 17000 m/s, and A ~ 1’500
A, which gives 7./7 ~ 2 x 1073 < 1. Finally, the last hypothesis is to neglect the
correlations of the pre-collisional velocities of the particles that are about to scatter.
This hypothesis is known under the name of molecular chaos assumption. Molecular
chaos is expected to fail for dense gases. It is also an inappropriate approximation
in d = 1, but it holds with a good accuracy for d > 2. Note that the post-collisional
velocities (i.e., the velocities after the collision event) are strongly correlated.

1.4.2 The Knudsen gas

One may write the Boltzmann equation under the form

of _of of

= = = e ) (1.5)

coll

o Ot e
where 0f /Ot|gee describes the change of f due to the motion of the particles between
collisions. Of /0t|con describes the change of f due to the mutual interactions between
the particles. We first turn to the evaluation of 0f/0t|fee. For this purpose, we con-
sider the Knudsen gas where collisions between particles are neglected. The evolution
of each particle is then governed by Newton’s equation dv;(t)/dt = m =1 F[r;(t), v;(t)],
1 =1,...,N. A particle at position r and with velocity v at time t is at position
r’ = r + vit with velocity v/ = v + m~'F§t at time ¢t + 6t. Therefore

f(r,v;t)drdv = f(r',v';t)dr'dv’, (1.6)

where

1 1
dr'dv’ = (1 +—Vy Fot + —V,- F5t2> drdv. (1.7)
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A first-order expansion for small §t yields

f Vit = f(r,vit) + v -V, fot + L V. fot+ %& + O(5t?%). (1.8)
m
Inserting Egs. (1.8) and (1.7) in (1.6) one obtains
F
9/ =—v -V, f-V, - —f (1.9)
ot free m

This result is not restricted to conservative forces since the field F may depend on
the velocity v.

1.4.3 The binary encounter

The collision term Of/0t|con may be obtained from the truncation to first order of
a hierarchy of equations for the many body distribution functions (BBGKY hierar-
chy [5]). We decide however to present another route in order to derive the equation,
that is closer to the original derivation by Ludwig Boltzmann and maybe contains
more physical insight into the mechanisms of the collisions.

We consider two particles with velocities vi and vy The interaction is described
by an isotropic binary potential V' (|r; —ra|). The post-collisional velocities are given
by v} and v}, respectively (c.f. Fig. 1.1).

Figure 1.1: Sketch of a binary collision, where the domain of interaction of the two
particles is given by the dark-gray region.

The impulsion and energy are conserved in an elastic binary encounter, i.e., vi +
vy = Vi + vh and v? + v3 = v2 + v, respectively, where we have written v = |v|.
Making use of the last two conservation laws one obtains [vy —vo|? = [V} — v}|?. Tt is
instructive to consider the binary encounter in the frame of the center of mass. The
velocity of the center of mass is u = (v1 + v2)/2, the relative velocity g = vi — vo,
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and the relative position p = r; — ra. The conservation laws thus give

u=u, (1.10a)
g=49, (1.10b)

which simply mean that the center of mass undergoes an uniform translation and

that the relative energy is conserved. Consequently, the problem in the center of mass
frame is equivalent to the diffusion of one particle of velocity u by the central potential
V(|p|), for which only the direction of the relative velocity changes at collision (see
Fig. 1.2).

<>
|g|dt

Figure 1.2: Sketch of the geometry of a binary encounter in the center of mass frame
for a repulsive potential. The surface A is defined as being orthogonal to g. The
incident particle approaches the target with initial velocity g along the z axis, and
after the interaction leaves with a relative velocity g’. The scattering angle is given

by x.

Since g = ¢, the final velocity depends only on g and on the solid angle Q = (x, ¢).
The collision process is therefore governed by the interaction potential through the
differential cross section B(g,{2). Let I be the flux of incoming particles with speed
g, i.e., I is the number of particles passing per unit time through a unit surface
orthogonal to g. That is, I = n(g)Agdt/(Adt) = n(g)g, where n(g) is the number
of particles with velocity g per unit volume. B(g,€) is defined through the relation
I = B(g,Q2)d2. B therefore represents the number of particles scattered in the
solid angle dQ2 around € per unit time with incoming flux /. Since we consider
a symmetrically spherical potential, the cross section depends only on g and the
scattering angle Y.
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1.4.4 The collision term

The collision term is obtained from the difference of a gain term Cy and of a loss term
Cy, ie.,
8f/8t|c0u:Cg—Cl. (1.11)

Let dr be an infinitesimal volume centered around r, and dv an infinitesimal volume
centered around v in the velocity space. Cjdrdvdt gives the number of collisions
during ¢ and t + dt such that a particle of velocity v in dr acquires a post-collisional
velocity v/ ¢ dv. Cydrdvdt gives the number of collisions during ¢ and t+d¢ such that
a particle with initial arbitrary velocity v’ in dr acquires a post-collisional velocity
v € dv (those are the inverse collisions of the kind {v/,v5} — {v1,va}).

We first turn our attention to the loss term Cj. In the center of mass we con-
sider the target and incident particles of velocity v and vo, respectively. Since
f(r,va;t)dvsy is the number of particles per unit volume with velocity in dvs, a simi-
lar argument to that of the previous paragraph gives the corresponding flux of particles
f(r,ve;t)dvag. The number of particles scattered per unit time into the element df2
is therefore f(r,vo;t)dvogB(g,€2). Since in dr there are f(r,v;;t)drdv; target par-
ticles with velocity between vy and vi + dvy, the number of particles scattered into
the element df) reads

fr,vy;t) f(r,va;t)dvidvadrgB(g, ). (1.12)

Note that in the latter expression we have made use explicitly of the molecular chaos
assumption. The total number of scattered particles is obtained upon integrating over
all scattering directions and all velocities vy of incoming particles. It follows

Cidrdv, :/ dv2/dQf(r,vl;t)f(r,VQ;t)dvldrgB(g, ), (1.13)
RA

so that
C :/ va/ngB(g,Q)f(r,vl;t)f(r,VQ;t). (1.14)
RA

In order to find the gain term Cj, we consider the inverse collisions {v}, v} —
{v1,va} such that the final velocity vi € dvy. Following the same route as for the
loss term, the number of such collisions per unit time in dr is given by

Cyivi = | avia; [aag Bl DIV, (L)
vi(v],vh)edvy

where the final velocity vy (v], v}) of target particles depends on the initial velocities
v} and v),. Let & be the unit vector joining the center of the particles at their closest
approach (chosen such that & points from the incident particle to the target particle).
The conservation laws (1.10) then give the relation between the pre-collisional {v}, v}}
and post-collisional velocities {vy,va}:

vi=v, - (g 0)7, (1.16a)
vy =ve + (g-0)0. (1.16Dh)
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The Jacobian of the transformation (v, v}) — (vi,va) is equal to 1 (for an inverse
collision, the unit vector joining the centers of the particles at collision is —&). Since
from Eq. (1.10b) we have g = ¢’, upon simplifying both sides of Eq. (1.15) by dvy
one obtains

Cy= [ avs [ a0B(o. 05, ¥1i 01 x50, (1.17)

Inserting Egs. (1.14) and (1.17) in (1.11), from Egs (1.5) and (1.9) the Boltzmann
equation reads

O evist) + v Vaf(r,vist) + V- DEVDIEVED e 0 1 )

ot m

where the collision operator J is defined by

/ dVQ/ngB g7 f(r V17 )f(r7v,27t) - f(r7vl;t)f(r7v2;t)] :
(1.19)

Figure 1.3: Sketch of the geometry of a binary encounter in the center of mass frame
for a repulsive potential. The line joining the point A of maximum approach and the
target particle O defines the vector &

In the following, for the sake of simplicity we consider the particular case of
d = 3 dimensions. The results may however be generalized to arbitrary dimensions.
We would like to change variables from an integration over the solid angle dQ) =
sin ydydy about g’ to the solid angle do = sin ¢dydy about &. The scattering angle
X satisfies T — y = 21, where 1) is the angle between g and & (see Fig. 1.3). Therefore
2sin cos 1) = sin x and one obtains

9dQ =40(g-o)(g-o)do, (1.20)

where the integration is restricted to a hemisphere with the help of the Heaviside
function € (for example the one defined by g- & > 0). In Eq. (1.19) the gain term is
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such that {v],v}} are the pre-collisional velocities of the collision {v],v5} — {v1, va},
and thus we need to express the pre-collisional velocities as a function of the post-
collisional ones. We therefore introduce the operator for restituting collisions b~! such
that

b vy =V =v, - (g-0)7, (1.21a)
b vy =vh=vy+(g- )7, (1.21b)

and b~ 1h({v;}) = h(b='{v;}) for any function h of the velocities. The operator b
gives the post-collisionnal velocities as a function of the pre-collisional ones. Note
that the velocity of the center of mass (vi + v3)/2 is invariant under the action of b.
For hard spheres of diameter o, the differential cross section is simply the geometrical
radius B(g, x) = (0/2)?% which is independent of both relative velocity g and scattering
angle x [6, 7]. The latter expression combined with Egs. (1.20) and (1.19) gives in
arbitrary dimension d:

I =t [ v [a0e @) @0 - DD v, (122)

The Boltzmann equation

F(r, vl)f(r vy;t)

0
Ef(r,vl, t)+v-Vef(r,vi;t)+ Vy

ol 1/ dvz/do'ﬁg o)g- o’)(b VoD f(e,vist) f(r,vast)  (1.23)
R4

is a nonlinear integro-differential equation for the one particle distribution function
f(r,v;t). For a homogeneous system, the stationary velocity distribution is given by
the Maxwellian f(v) = Aexp(—Bv?), where the constants A and B are found from
the definitions (1.1) and (1.3).

1.5 The collision operator for several systems

1.5.1 The Enskog equation

For dense gases, the Boltzman equation (1.18) is not expected to provide an accurate
description due to a violation of the basic hypothesis that led to it (finite density
effects). A heuristic modification of the Boltzmann equation was proposed by Enskog
in 1922, known under the name of Enskog equation. This equation is based on the
two following ideas. First, the particles (which have a spherical shape) are separated
by the distance o (their diameter) at contact. Second, the collision frequency must
be modified by a factor C corresponding to excluded volume effects. The Enskog
collision operator is thus given by [5, 7|

Telf )= [ ava [az0e-5)(e-2)

x [C(r,r — &) f(r,vi;t) f(r — &, vo;t) — Clr,r + ) f(r,vi;t) f(r + &, v2;1)]
(1.24)
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where C(r,r+a) is the equilibrium pair correlation function at contact as a functional
of the nonequilibrium density n(r,t) defined by Eq. (1.1). Further investigations have
shown that the Enskog equation needs a slight modification in order to be compatible
with the Onsager reciprocity relations in nonequilibrium thermodynamics (leading
to the modified Enskog equation) [8, 9, 10]. Moreover, it was recently shown that
for granular mixtures the range of densities for which the Enskog equation applies
decreases with increasing dissipation [11].

1.5.2 The granular gas

The granular gas is a system of hard spheres that upon contact scatter inelastically
with constant normal restitution coefficient « € [0, 1] (i.e., & does not depend on time
or on the velocities). This is a minimal model for the collisions, which still captures
many interesting features reproduced by experiments, see below. Some refinements
have also been considered. For instance, the gas of viscoelastic particles where the
restitution coefficient depends on the relative velocity modulus g |12, 13|, the case
where particles have rotational degrees of freedom [14, 15|, or collision rules involving
a non-unity tangential restitution coefficient [16]|. The elastic case described in Sec. 1.4
corresponds to the limit aw = 1. If {v, v}} are the pre-collisional velocities, {v},v}}
the post-collisionnal ones, then the operator b [first introduced in Eq. (1.21)] acts as

1 PR
b lvi=v)=v; — i a(g -0)0, (1.25a)
2a
1
b lve = vh = vo + (g - 5)5, (1.25b)
2a
and
X 1+« o~
bvi =v] =vi — 5 (g-0)0, (1.26a)
1 o\~
bvy =v5 =vy + ; a(g -o)o. (1.26b)
From the rule (1.26), the tangential component of the velocity v = v — (g - 7)o

is not modified by the collisions. In the inelastic limit a = 0, the post-collisional
velocity reduces to its tangential component.

From Eq. (1.25), the Jacobian of the transformation (v}, v}) — (v1,v2) is equal
to a2 and Eq. (1.17) must therefore be multiplied by a~2. The equivalent of the

collision term (1.22) for inelastic hard spheres thus reads

Tpa =t [ v [a500e- 3 @) 0 1)1 vt (127

The dynamics of rapid granular gases has attracted a lot of attention since more
than 20 years |14, 17, 18]. It has now become a well studied topic [19, 20]. Flow of
granular media is said to be rapid when it is collision driven (referred to as granular
gas), and quasi-static when the contact process plays an important role (referred to as
granular liquid) [21]. The methods of kinetic theory are thus suitable to describe the
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granular gas regime. The dynamics of granular gases amounts for several spectacular
or unexpected manifestations. For a review of some of these effects, see |21, 22, 23].
We shall mention here only a few ones.

Contrarily to the hard sphere gas, it is known that the dynamics of granular gases
exhibits density inhomogeneities and clustering [24]|. This may ultimately lead to an
infinite number of collisions between particles in a finite time, the so-called inelastic
collapse |25, 26, 27|. This behavior may be understood qualitatively from the fact
that more collisions take place per unit time in the dense regions. Therefore the
local granular “temperature” defined by the local variance of the velocity distribution
decreases and so does the average velocity. Consequently, there is a flux of particles
flowing from the more dilute to the denser regions of the system. This leads to the
above mentioned inhomogeneities and eventually to the granular collapse. In the case
of viscoelastic particles, those density inhomogeneities are transient [12, 13].

Making use of the Chapman-Enskog expansion that we review in Sec. 1.6, one may
establish a hydrodynamic description of the granular gas. It is then possible to derive
Fourier law’s with transport coefficients that are obtained from the microscopic rules.
The heat flux is not only proportional to the gradient of the temperature, but also to
the density gradient. One consequence is that the heat flow may be directed from the
region of low temperature to the region of high temperature, which is the so-called
granular temperature inversion [28], that was also observed experimentally [29, 30].

We then consider a granular mixture made of two different species of particles
(defined by different masses, diameters, and normal restitution coefficients). It was
then predicted that the equipartition of energy in the equilibrium state is not satisfied.
Hence, the kinetic temperature of the two species are different [31, 32, 33]. This was
confirmed experimentally [34, 35]. In a rough granular gas with a single species, the
equipartition of energy between the average translational and rotational energies was
also shown to be broken [36].

Since collisions are dissipative, the stationary state is obtained through an in-
jection of energy that exactly compensates the cooling due to inelastic collisions.
Such an injection mechanism is modeled by an external force [through the term F in
Eq. (1.18)], i.e., a “thermostat” which mimics the different possible injection mecha-
nisms [37]. The velocity distribution in the (stationary) homogeneous state shows de-
viations from the Maxwell distribution both for low and high velocities [37]. Whereas
for small velocities the deviations from the Maxwellian are quite small, for large veloc-
ities the distribution shows an overpopulated tail proportional to exp(—Av”), where
v = 3/2 (v = 2 corresponds to the Maxwell distribution). Again, experiments tend
to confirm this prediction [23, 38].

1.5.3 The annihilation collision operator

Annihilation dynamics is such that when two particles meet they disappear from the
system. Therefore only the loss term of Eq. (1.22) remains, so that

S == [ avs [0 @) @ Vi vt (129
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A remarkable feature of ballistic annihilation is that the Boltzmann equation in d > 2
dimensions is likely to become an exact description of the dynamics at late times [39)].

Let ¢ be the mean free path, then the Grad limit consists in taking simultaneously
the limits of vanishing diameter ¢ — 0 and infinite density n(t) — oo such that the
mean free path £ is constant n(t)o?~! = £. Piasecki et al. have established the hierar-
chy equations obeyed by the reduced distribution functions fx(ry,vy,..., g, vg;t) for
annihilation dynamics. In the Grad limit the hierarchy takes the form of a Boltzmann-
like hierarchy, where all terms hindering the propagation of the molecular chaos have
vanished. Consequently, if the initial state is factorized, then the whole hierarchy re-
duces to one single nonlinear equation for the one point distribution function f(r,v;t):
the Boltzmann equation (1.18) with the collision operator (1.19). Annihilation dy-
namics is such that the particle density decreases in time. Therefore the ratio of
particle diameter to mean free path /¢ — 0 for long times, which is a common point
with the Grad limit. The long time limit of annihilation dynamics for d > 2 is thus
likely to be adequately described by the Boltzmann equation. This conclusion was
confirmed by molecular dynamics simulations (see Chap. 2 or Refs. [39, 40]).

1.5.4 The Maxwell and VHP collision operators

We consider particles interacting through a two body potential V(r) o »=™. For
dimensional reasons the energy conservation implies 7" ~ ¢?. Again, for dimen-
sional reasons and from the definition of B(g, (), the differential cross section satisfies
B(g,9Q) < 47! [see Eq. (1.19)]. Consequently gB(g,x) o g*, up = 1—2(d—1)/n. The
hard sphere gas is such that u = 1, or equivalently gB(g, x) g, therefore n — oc.

The Mazwell gas (or the gas of Maxwell molecules) is defined by a velocity inde-
pendent gB(g,(), therefore u = 0 and the particles interact through a pair potential
defined by n = 2(d — 1). On the other hand, the case ;> 1 cannot be obtained from
any positive n, i.e., from any simple power-law interaction. In this sense we say that
the interaction is “harder” than for hard spheres. We shall consider here the gas of
very hard particles (VHP) defined by gB(g,x) x ¢°.

The collision operator for the Maxwell and VHP models can be obtained from
Eq. (1.22). For this purpose, one may average the collision frequency (g - &) over the
solid angle and include the effects of a particular cross section into an effective collision
frequency no?"l¢vy . The dimensionless parameter ¢(z) defines the relevant time
scale (or equivalently the amplitude of the effective collision frequency) of the system,
where x is an index for the model considered (x = 0 corresponds to the Maxwell
model, x = 1 to the hard spheres, and x = 2 to the VHP model). ¢(x) may be freely
chosen to optimize the agreement with PBA of hard spheres, see, for example, [41].
One thus obtains

1—z
T = B [ vty [a5 07 - Dpvi s, (129
Sd RA
where Sq = 27%2/T'(d/2) is the solid angle surface, T’ the Euler gamma function,
vr = +/2/Bm the time-dependent thermal velocity, 3 = (kgT)~!, and o is the
diameter of the particles (or the range of the interaction potential).
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Note that we shall consider Maxwell and VHP models of granular gases [41, 42],
pure annihilation [43, 44|, or PBA [45].

1.6 The Chapman-Enskog expansion

The Chapman-Enskog expansion is based on the general concept of separation of
time scales. The dynamics of a system may be such that different physical processes
take place on different time scales. The identification of those time scales allows
to develop a perturbation theory in order to reconstruct the solution in terms of a
convergent time series: this is the so-called method of the multiple time scales [46, 47].
We shall describe here the particular case of the Chapman-Enskog expansion. This
expansion is targeted at building a solution to the Boltzmann equation where the
spatial average of the hydrodynamic (coarse-grained) fields n, u, and T (density,
momentum, and temperature, respectively) are conserved by the evolution. Since
those fields are conserved, it is expected that their evolution is much slower than
any microscopic portion of the system. This allows to state that for long times
(as compared to the mean free path) all space and time dependence of the velocity
distribution occurs through a functional dependence on the hydrodynamic fields: this
is the so-called normal solution for the distribution function. It is the starting point
for the Chapman-Enskog expansion. Of course, more subtle questions arise if one
or some of the hydrodynamic fields are not conserved by the dynamics. We shall
therefore discuss this expansion in more details in the following subsections.

1.6.1 The hypothesis

The Chapman-Enskog expansion relies on two key hypothesis. The first one is the
existence of a normal solution. The second one is based on the existence of two
well-separated time scales. However, as it will be shown below, these hypothesis are
related to each other. In the following we shall consider for the sake of simplicity the
case where there is no external force field, i.e., F = 0.

As explained in Sec. 1.4.1, in order to derive the Boltzmann equation it is required
to have a dilute gas. The time scale associated to a collision event 7, is therefore much
smaller than the mean collision time 7 between two particles. This was shown to be
compatible with the condition o < £, where o is the range of the interaction and £ the
mean free path. We now introduce a new length scale, the hydrodynamic length ¢,
such that on this scale the hydrodynamic fields vary “significantly”. The corresponding
time scale is 7, = ¢ /vp. The hypothesis for the existence of a normal solution is
that the variations of the hydrodynamic fields are small on the scale of the mean
free path. This means, for example, /|V Inn| < 1, which is equivalent to ¢ < /p,
or 7 < 7. Assuming this hypothesis, we shall see how the existence of the normal
solution becomes justified.

We consider a time ¢ such that 7 < ¢t < 73, and a small volume V' of typical size
much smaller than £;,. Due to the collisions we then expect that the gas in §V reaches
a state close to the local equilibrium characterized by the local values of n, u, and T
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(these values may vary depending on where 0V is located). This first rapid stage is
the so-called kinetic stage which depends on the initial conditions. Since t < 73, the
hydrodynamic fields do not significantly vary over the period ¢. On the other hand,
for t ~ 7, the particles have moved over distances of the order of ¢; and the system
reaches the local equilibrium state. This second slower stage is the hydrodynamic
stage, which does not depend on the initial conditions. Consequently, for times ¢ of
the order of 73 the state may be entirely characterized by the hydrodynamic fields
n, u, and T. The choice of these fields is motivated by the fact that in elastic gases
(which is the class of system for which the Chapman-Enskog procedure was originally
developed) they represent conserved quantities. Therefore, these fields vary only over
very long timescales 75, > 7. All spatial and temporal dependence of the distribution
function f(r,v;t) may consequently be expressed as a functional dependence on the
hydrodynamic fields, the so-called normal solution:

f(r,v;t) = flv,n(r,t),u(r,t), T(r,t)]. (1.30)

In order to determine f at one point the knowledge of the fields over the whole system
is therefore required. As discussed before, the choice of these hydrodynamic fields is
motivated by the fact that they are conserved by the collisions and therefore vary only
on time scales that are much bigger than the mean collision time 7. The question that
arises is to determine if the conditions for the existence of a normal solution are met
when some (or all) of the fields are not conserved. This is typically the case of granular
gases where particles collide inelastically, or annihilation where particles are removed
upon collision. For such dissipative systems (in the broader sense), one may associate a
non zero decay rate to each non-conserved field. The question is to determine whether
the new time scales thereby introduced by those decay rates are shorter than what
is allowed for the existence of a normal solution. This point is not yet quantitatively
clarified and is still subject to discussion [48, 49, 50]. The justification of the normal
solution may be done a posteriori by studying the relevance of the results through the
appearance of the homogeneous cooling state (HCS) for example [39, 51]. Note that
the existence of conserved fields is not a condition required for the Chapman-Enskog
expansion to hold. It is only necessary that the time scales introduced are bigger than
those associated to the microscopic non hydrodynamic excitations, e.g., 7. In the case
of granular gases for example, the temperature decay rate in proportional to (1 — a?)
where « is the restitution coefficient. The time scale is inversely proportional to the
decay rate. Therefore a@ may be chosen as close to unity as required in order to have
an arbitrary long time scale.

The second hypothesis states the existence of two distinct time scales. The mi-
croscopic time scale 7 is characterized by the average collision time, and the spatial
length is defined by the corresponding mean free path ¢. On the other hand, the
macroscopic time scale is defined by a typical time 73, describing the evolution of the
hydrodynamic fields and of their inhomogeneities. The hydrodynamic fields thus vary
only slightly on a time of the order of 7.. They are only very weakly inhomogeneous
on such length and time scales. This allows for a series expansion in orders of the
gradients of the fields:

F=rO a0 2@ 4 (1.31)
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where each power of the small parameter A\ < 1 means a given order in a spatial
gradient. Since 7/7, & £/f;, < 1 and |V In f| ~ 1/¢, the formal parameter A may
be seen as the ratio of the mean free path to the typical length of the hydrodynamic
variations A ~ (/¢ < 1. Note that the existence of those two well separated time
scales is already required for the formal construction of the normal solution. Therefore
the existence of a normal solution and the separation of time scales appear to be
related hypothesis.

Since f(© describes the homogeneous solution of the local equilibrium distribu-
tion, it has the same velocity moments v'*, n = 0, 1,2, as the complete distribution
f- Therefore f]R,d dvvf®) = 0, n = 0,1,2, k > 1. The evolution of the system
exhibits several time scales 7, ~ A*¢, k > 0. To obtain hierarchical equations for the
approximations f*), we thus have to expand the time derivative operator as [46]

o 0 0 0 o0 o) o)

= A— A= A N 1.32

ot 87’0+ 8¢1+ 8¢2+ ot ar TN T (1.32)
where we have made use of the shorthand notation 9%*)/dt. To a given order in
A in the temporal hierarchy (1.32) corresponds thus the same order in the spatial
hierarchy (1.31).

1.6.2 The hierarchy

Inserting the expansions (1.32) and (1.31) in the Boltzmann equation (1.18) yields

ok)
PIPA R TR A DIPVAEPAD SRV BRI B (1.33)

k>0 1>0 1>0 1>0

Equating the terms of the same order in A and solving the equations order by order
allows one to build the Chapman-Enskog solution. Since f depends on time only
through the hydrodynamic fields, the action of the time derivative is given by

ok oWp 9 9k, 0 OWT 9

o~ ot on ' ot 8ui+ ot orT’

(1.34)

where we have used Einstein’s summation convention. The time derivative %) /9t
describes the evolution of the field on the corresponding time scale. The time deriva-
tive of the hydrodynamic fields are obtained upon integrating the Boltzmann equation
over the velocities v; with weight 1, mv;, and mv%/2, and making use of the expan-
sions (1.31) and (1.32). Of course, the form of the balance equations thus obtained
depends on the system being modeled.

To zeroth order in the gradients, Eq. (1.33) gives
0=J[f, fO. (1.35)

The solution is given by the local homogeneous equilibrium distribution. Note that
depending on the system, this solution may or not be given by the local Maxwellian.
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For granular gases [37], ballistic annihilation [39], or PBA [52], it was shown that the
local equilibrium distribution was not Maxwellian in several aspects (although “close”
to the Maxwellian for small velocities).

To first order in the gradients, Eq. (1.33) gives the equation governing the first
correction to the homogeneous state:

9(0)
s +L|f

Q0 J—

(1)
af)—t + vy - V] 7. (1.36)

Note from Eq. (1.34) that the zeroth order derivative ) /9t applied on f(!) is equal
to zero if all hydrodynamic fields are conserved. L is the linearized collision operator

defined by
ﬁf(l) — _J[f(o)’f(l)] _ J[f(l)’f(o)] (137)

1.6.3 The linear collision operator

The linearized collision operator £ depends of the model considered. In general it is
not possible to find the first order distribution function without further approxima-
tions. The usual approximation, irrespective of the model, is to expand the distribu-
tion function to first nonzero order in a set of orthogonal polynomials [7, 20, 53|. These
so-called Sonine polynomials are eigenfunctions of the linearized collision operator for
Maxwell molecules.

In order to discuss some useful properties of the linearized collision operator, we
shall consider the particular class of systems where the homogeneous solution is given
by the Maxwellian velocity distribution function. For this class of systems, all hydro-
dynamic fields are conserved. Note that the knowledge of some of the properties of the
linearized collision operator will allow then to build in a similar way the appropriate
series expansion of the solution in the general case where the homogeneous state is
not Maxwellian (the Sonine polynomial expansion).

Since the hydrodynamic fields are conserved, the term 8(0)f(1)/8t in Eq. (1.36)
vanishes. Dividing both sides of the latter equation by O (v1) one obtains

oM

f(l) B
ot *

ok

vy - V] In £, (1.38)

£ is Maxwellian and thus £ (v1)f©(vy) = fO(v})fO(v}). The linear collision
operator then reads

£av) = [ ava [29B(5.0 O WR(n) + Blva) ~ B(vi) — B(sy)). (139

where @) = f(1)/ £(0),

The properties of the linear collision operator (1.39) were studied for several dif-
ferential cross sections [7]. We shall recall here only the main properties of interest
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in the context of the work presented in the next chapters. For the sake of simplicity,
we shall consider the three-dimensional case. Let

@1102) = [ av SOW)BPa(v) (1.40)

be the scalar product in L?(R3, e v dv). It is then easy to verify that £ is Hermitian,
ie., (O1|LDy) = (Bo]|LP1)T, and (®|LP) > 0. The eigenvalues of L are therefore real
and positive. It can be shown that for two-body interaction potentials of the form
V(r) oc r=™, n €]2,00[ the spectrum has a continuous part, and moreover that £ is
isotropic, i.e., £ commutes with the rotation operators in the velocity space [54, 55,

~ ~

56]. Therefore L[Y;™(V)X (V)] =Y,"(V)X2(V) where X; and X are functions that
depend only on V' = |V|. Y/™(V) are the spherical harmonics. The eigenfunctions
W,im of L thus take the form

Ui (V) = G (V)Y (V). (1.41)

There is a 5-time degenerated zero eigenvalue corresponding to the collisional invari-
ants 1, v, and v?. The eigenvalues \,; depend only on the two indices n and I.
The exact calculation of the eigenvalues and of the eigenvectors is possible only for
Maxwell molecules. In this case |7, 54, 55, 56|

Ui (V) = dS™ ()Y (@), (1.42)

where ¢ = V/vup, vp = /2kgT/m is the thermal velocity. S'(x) are the Sonine
polynomials defined by

S (e) = kzm(—@kp(l n k(;)(n _) k)k! (1.43)

which are related to the generalized Laguerre polynomials L. by

Fn+1+3/2) L)
+1/2 __
L = | s i (1.44)

The Sonine polynomials are orthogonal in L?([0, ool cle_CQdc), ie.,

*° n n I l+1
/0 dccle_cle( )(C)Sl( )(c) = (n—;i!—i_)éml. (1.45)

The eigenvectors (1.42) are thus orthonormal by respect to the scalar product in
LQ(IR?’,e_Cde). The corresponding eigenvalues may be found in [6, 7, 55, 56]. They
are defined as functionals of the differential cross section, and their explicit form may
only be found for Maxwell molecules where gB(g,x) does not depend neither on g
nor on the scattering angle x. For other interaction potentials, the eigenvalues are
obtained numerically [7]. Since for Maxwell molecules O is the local Maxwellian,
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the collision operator (1.39) expresses a scalar product of the form (1.45) (with an
additional angular integration).

In the case of the hard spheres gas it is possible to rewrite Eq. (1.38) in the form
LoM(V) = S(V)V; InT + Cy (V) V,uj, (1.46)
where S(V) is proportional to Ség(‘ﬂ)v, the tensor C(V) is proportional to Sé/é(V2)

(ViVj — 6;;V%/3), and @M (V) = M (V)/fO (V). Since the operator £ is isotropic,
the solution for ®1) (V) has the form

(V) = A(VHV;V;InT + B(V?)Ci;(V)V,uj, (1.47)
with the additional conditions

LIAWVAVI] = Si(V), (1.48a)
LIB(V?)Cyj(V)] = Ci5(V). (1.48D)

In the case of Maxwell molecules, S(V) and C(V) are proportional to the eigen-
functions Wq1,, (V) and Wgo,,(V), respectively. Therefore £LS(V) = A1S(V) and
LC(V) = A\2C(V), which combined to Eqgs. (1.48) gives A(V2)V; = S;(V)/A11
and B(V2)B(V?)C;;(V) = Ci;(V)/Xo2 where A, are the eigenvalues. However, for
other models the right-hand side of Eqgs. (1.48) is in general not proportional to an
eigenvalue of the linearized collision operator. One therefore expands the unknown
functions A(V?2) and B(V?) in the basis of the eigenfunctions of the linearized colli-
sion operator of Maxwell molecules. Moreover, it is required that for the particular
case of Maxwell molecules the expansion satisfies Eqs. (1.48) ezactly. This leaves only
the choice [ = 1 for the expansion of A(V?):

= anS{(e), (1.49)
n>0
and | = 2 for the expansion of B(V?):
(n
= baS5(c?). (1.50)
n=0

Since the moments 1, V, and V2 of ®1) must be equal to zero, one has (A(V?)|V?) =
0, which leads to ag = 0. Consequently, we verify that for Maxwell molecules only
the first terms a; and by are different from zero, and thus the expansions satisfy
Eq. (1.48), ie., A(V?) o 111 and B(V?)  tge. For other interaction models, the
unknown coefficients a;, ¢ > 1, and b;, i > 0, have to be determined from Egs. (1.48).
However, in order to simplify the problem one usually truncates the series (1.49)
and (1.50) to their first nonzero coefficients a; and by, truncation referred to as the
first Sonine approximation |6, 7, 55, 56, 57|.



Chapter 2

Some exact results for Boltzmann’s
annihilation dynamics

2.1 Outline of the chapter

The problem of ballistic annihilation for a spatially homogeneous system is revisited
within Boltzmann’s kinetic theory in two and three dimensions. Analytical results
are derived for the time evolution of the particle density for some isotropic discrete
bimodal velocity modulus distributions. According to the allowed values of the ve-
locity modulus, different behaviors are obtained: power law decay with non-universal
exponents depending continuously upon the ratio of the two velocities, or exponential
decay. When one of the two velocities is equal to zero, the model describes the prob-
lem of ballistic annihilation in presence of static traps. The analytical predictions are
shown to be in agreement with the results of two-dimensional molecular dynamics
simulations. The content of this chapter is based on Ref. [40].

2.2 Introduction

In ballistically controlled reactions, particles with a given initial velocity distribution
move freely (ballistic motion) in a d-dimensional space. When two of them meet,
they annihilate and disappear from the system. This apparently simple problem has
attracted a lot of attention during the past years [39, 43, 58, 59, 60, 61, 62, 63, 64,
65, 66, 67, 68, 69, 70| for the following reasons. First, this is one of the few problems
of nonequilibrium statistical physics that can be exactly solved in some cases, and
second it models some growth and coarsening processes [71].

This field was entered with the pioneering work by Elskens and Frisch [58], where
a one-dimensional system with only two possible velocities +c or —c was studied. Us-
ing combinatorial analysis, they showed that the density of particles was decreasing
according to a power law (t_1/2) in the case of a symmetric initial velocity distribu-
tion. The investigation of this one-dimensional problem was generalized by Droz et
al. |63, 64| to the three-velocity case where the initial velocity distribution is given

21
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by ¢(v;0) = p1o(v — ¢) + ped(v) + p—d(v + ¢) with py = p_ (symmetric case) and
p+ +po +p— = 1. It turns out that the decay of the particle density depends on
the details of the initial velocity distribution. The following analytical results were
obtained. For py < 1/4, the density n(v;t) of particles with velocity v = {0, +c, —c},
behaves in the long-time limit as n(0;t) ~ t=1, n(%c;t) ~ Y2, When py = 1/4,
n(0;t) ~ n(£c;t) ~ t~2/3. Finally, for pg > 1/4, one finds that n(0;t) saturates to a
nonzero stationary value, while n(=4c;t) decays faster than a power law. Moreover, it
was shown that in one dimension, annihilation dynamics creates strong correlations
between the velocities of colliding particles, which excludes a Boltzmann-like approx-
imation. Pairs of nearest neighbor particles have the tendency to align their velocities
and propagate in the same direction [63, 64].

An analytical investigation of the one-dimensional case with a continuous velocity
distribution is much more difficult. A dynamical scaling theory, whose validity was
supported by extensive numerical simulations for several velocity distributions, led
Rey et al. [65] to the conjecture that all the continuous velocity distributions ¢(v)
that are symmetric, regular and, such that ¢(0) # 0 are attracted in the long-time
regime towards the same Gaussian-like distribution and thus belong to the same
universality class.

For higher dimensions, most of the studies are based on an uncontrolled Boltzmann-
like description [43, 59, 60] or numerical simulations [69]. However, based on phenom-
enological mean-field-like arguments, Krapivsky et al. have studied the annihilation
kinematics of a bimodal velocity modulus distribution in d > 2 dimensions [61]. In the
case of a mixture of moving and motionless particles they showed that the stationary
particles always persist, while the density of moving particles decays exponentially.
This approach contains unknown phenomenological parameters, and thus a complete
comparison with the results obtained by numerical simulation is not possible.

In a recent paper, Piasecki et al. [39] gave an analytical derivation of the hierarchy
equations obeyed by the reduced distributions for the annihilation dynamics. In
dimension d > 1 for a spatially homogeneous system, and in the limit (the so-called
Grad limit) for which the particle diameter ¢ — 0, and the particle density n(t) — oo
such that n(t)o%t = ¢!, where £ is the mean free path, the hierarchy reduces to the
Boltzmann-like hierarchy. This hierarchy propagates the factorization of the reduced
k-particle distribution in terms of one-particle distribution functions. Thus, if the
initial state is factorized, the whole hierarchy reduces to one nonlinear equation for
the one-particle distribution. For annihilation kinetics, the ratio of particle diameter
to mean free path vanishes in the long-time limit and the situation becomes similar to
the Grad limit discussed above for £ — oo. Thus the long-time limit of the annihilation
dynamics (for d > 1) is likely to be adequately described by the nonlinear Boltzmann
equation.

A scaling analysis of the nonlinear Boltzmann equation led to analytical expres-
sions for the exponents describing the decay of the particle density and of the root-
mean-square velocity in the case of continuous velocity distributions [39].

In view of the different behaviors observed in one dimension for discrete or con-
tinuous velocity distributions, it is relevant to study the case of distributions with
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discrete modulus spectrum in dimensions higher than 1. The goal of this chapter is
to investigate simple examples of this kind in two dimensions for which the non linear
Boltzmann equation with collision operator given by Eq. (1.28) can be exactly solved.
The generalization of this approach to an arbitrary dimension is straightforward [40].

The validity of the Boltzmann description in the long-time limit will be confirmed
by comparing our analytical predictions with the results obtained by a molecular
dynamics simulation.

The chapter is organized as follows. In Sect. 2.3 we define the model. In Sect. 2.4
the two-dimensional Boltzmann equation is solved analytically for a two velocity mod-
ulus (c¢1 and ¢2) isotropic distribution. For simplicity we first consider the one velocity
model ¢; = c3 > 0 in three dimensions that allows to draw interesting comparisons
with the same model in one dimension. Then the implicit solution for the particle
densities in the general case ¢; > co > 0 is established in two dimensions. It is
shown analytically that in the long-time limit the particle densities decay according
to power laws, with exponents depending continuously on the value of the velocity
modulus ratio. We show that in arbitrary dimension and for any number of veloc-
ity modulus such that ¢; < ... < ¢y, the density describing particles with velocity
modulus ¢; always decays as the inverse of a rescaled time. We also find upper and
lower bounds to the particle densities that are compared with the numerical solution
of the dynamical equation. The particular case of a mixture of moving (co > 0) and
motionless (¢; = 0) particles is also investigated. It turns out that the particle densi-
ties decay exponentially to zero for the moving particles, and to a nonzero value for
the motionless ones. This phenomenology is independent of space dimension, and in
Sect. 2.5, it will be shown explicitly to hold in two dimensions by implementing mole-
cular dynamics simulations. This numerical method has the advantage of being free
of the approximations underlying Boltzmann’s dynamics and, therefore, provides an
interesting test for the analytical predictions. Section 2.6 contains our interpretations
and conclusions.

2.3 An exactly solvable model

We consider a system made of spheres of diameter ¢ moving ballistically in d-dimensional
space. If two particles touch each other, they annihilate and thus disappear from
the system. We consider only two-body collisions. The initial spatial distribution
of particles is supposed to be and to remain uniform uniform during the evolution.
Existing numerical simulations seem to be compatible with this assumption of homo-
geneity [39]. We are interested in the time evolution of the number density of particles
with a given velocity modulus.

Let f(v;t) be the distribution function of the density of particles in R¢ with
velocity v € R? at time ¢. For spatially homogeneous states, the distribution function
has the form

fvit) = n(t)e(v;i), (2.1)
where ¢(v;t) is the velocity probability density. In the long-time limit, Piasecki et
al. [39] have shown that the hierarchy satisfied by the reduced distributions ap-
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proached the Boltzmann hierarchy. If the initial state is factorized, the nonlinear
Boltzmann equation provides then the complete description of annihilation dynam-

ics,

% (vl;t):—ad_l/da' e(a-vu)(a-vu)/ddw Vil f(viit) f(vait).  (2.2)

R
Here 0 is the Heaviside function, vio = vi — va the relative velocity of two particles,
V12 = Vvi2/v12 a unit vector, vig = |viz|, and the integration with respect to deo is

the angular integration over the solid angle.

We consider spherically symmetric initial conditions f(v;0), v = |v|. This sym-
metry property is propagated by the dynamics. The Boltzmann equation (2.2) then
takes the form

0 _
e (v1:t) = —o% 18, f(vr; ) /]Rd dva |via|f(va;t), (2.3)
where [ is given by (see App. A.1)
R LT (B2
B = /dU 0(G - 012)(G - V12)* = WT%- (2.4)
2

Equation (2.3) is a nonlinear homogeneous integral equation for the distribution
function f(v;t). A simplification arises if the initial velocity distribution has a discrete
modulus spectrum. This spectrum is preserved by the annihilation dynamics as no
new velocities are created. A simple case is provided by the bimodal distribution

A 1—A
v,0) = ———0(v—c1) + ——(v — ¢2), 2.5
P0.0) = il = o) + 5o — e (2:5)
where ¢ > ¢; > 0, A denotes the fraction of particles with velocity modulus ¢;, and
27Td/2
S, = 2.6
1= Td) (2.6)

is the surface of a d-dimensional sphere of unit radius, where I' is the gamma function.

2.4 Exact results

Before addressing the general case, we first consider the single-species problem for
d = 3 where co = ¢1 > 0. The rest of the section presents the details of the calculations
for d = 2. We have carried out the d = 3 case (which is technically a bit easier) in [40],
and we will only quote the results (that are similar to those of d = 2).

2.4.1 Single-velocity modulus distribution
The Boltzmann equation (2.3) for d = 3 takes the form

00 2 us
2f(v;if) = —Uﬂ'f(’U;t)/ duqu(u;t)/ dgo/ d6 v/u? + v2 — 2uv cos 6
0 0 0

ot
(u+v)? —|u—v?
uv ’

= —%(770)2]‘“(1);15) /000 duv?f(u;t) [ (2.7)
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Setting co = ¢; = ¢ > 0 in Eq. (2.5), one obtains from Eq. (2.1)
1
flust) =n(t)=—d(v — ¢). (2.8)

2me

From the kinetic equation (2.7), we find

n § *° u—cC u U3—u—1)3
L6 — ) 2n(t) = 2 (ro)? 2 5(1}—6)/0 au 2 )[( o)’ —ju—of']

Amc? 4d7c? 4Amc?

ot 3 uv
(2.9)
which gives
d 4 9
&n(t) =—3mo en(t)?, (2.10)
whose solution is
n(t) o (2.11)

1+ %mf?noct’
where n(0) = np. A striking observation is that, in the limit ¢t — oo, the density (2.11)
becomes independent of its initial value ng. Note that the same phenomenon is

also present for simple diffusion limited annihilation such as A + A — 0, when the
dimension of the system is larger than 2 |72].

Contrary to the one-dimensional case for which it has been rigorously shown
that the density decays proportionally to t~1/2 [58], one sees from Eq. (2.11) that
in three dimensions, Boltzmann’s dynamics is faster as the density decays according
to t—1, which is the mean-field value [61]. We note, however, that the same behavior
n(t) o« 1/t holds in all dimensions within Boltzmann’s kinetic theory (and in fact,
more generally within the framework of a scaling analysis of the hierarchy governing
the dynamics of ballistic annihilation [39]). This discrepancy between Boltmann’s
prediction and the exact result in one dimension illustrates the crucial importance of
dynamical correlations when d = 1. On the other hand, as suggested in Ref. [39] and
explicitly shown below by molecular dynamics simulations, the nonlinear Boltzmann
equation is relevant for describing the long-time dynamics of ballistic annihilation
when d > 2. In this case the particles are very diluted and no dynamical correla-
tions can develop during the time evolution, which would violate the molecular chaos
hypothesis.

2.4.2 Mixture of particles with two nonzero velocity moduli

In the following we will present the details of the calculations for d = 2. The d = 3
case (which is technically a bit easier) was done in details in [40], and we will only
quote the results that are similar to d = 2.

Consider the case where particles with velocities ¢; > 0 and ¢y > c¢; are initially
present. Thus f(v;t) is of the form

Flost) = X(t)%é(v —e) + Y(t)FlcQé(v — o), (2.12)

where X (t) and Y (¢) are, respectively, the densities of particles with velocities ¢; and
ca. They add up to the total density X (¢) + Y (t) = n(¢). Inserting Eq. (2.12) into
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Eq. (2.3) gives

%X(t) = Z [XQ(t)%l +X(t Y(t)%l} , (2.13a)
%Y(t) _ e [X(t)Y(t)@ + Y%f)ﬁ} , (2.13b)
T C1 C2

where

Ij; = / dva vy — va|d(ve — ¢)
IRQ

= ci/ du|vic; —ug|o(u—1), (2.14)
R2

[vil=c;

with u = va/¢; and U = u/|u|. The integration is straightforward and leads to

s 82, i=1j,
i = o (2.15)
deile; — cj|Elk], 1 #

where

w/2 e
Elk] = / dz /1 4 k2sin?(z), k= 2| 5% i (2.16)
C; — Cj

0

Upon rescaling the time according to 7 = 2wocat, it follows from Eq. (2.13) that

):((T) = —4yX(7)? — k(9) X (7)Y (1), (2.17a)
Y (1) = —4Y ()% — k(7)) X (7)Y (1), (2.17b)

where 0 < v =c¢1/co < 1, k(7) = foﬂ de+/1 +72 — 2ycos g, and the overdot denotes
time derivative with respect to 7.

The set of equations (2.17) is a nonlinear homogeneous system of coupled differ-
ential equations with constant coefficients. An implicit solution can be obtained by
introducing the function V(1) defined as V(7) = Y (7)/X (7). From Eq. (2.17) we get

dY  4Y?4+ kXY  AVZ 4RV
dX  4yXZ+ KXY Ay + eV

(2.18)

According to the definition of V, the left-hand-side of Eq.(2.18) becomes dY/dX =
V + XdV/dX which yields

Xﬂ (A= Rr)VEP+ (k—)V
dx 4y + KV ’

(2.19)

so that

dX 4y +KrV
— = dVv. 2.20
X (A-r)V2+(k—4y)V (220

The decomposition of the latter equation in simple elements gives

dXx Q 15}
Y—d‘”<v+v+4_ﬁ>’ (2:21)
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with a =47v/(k —47y) 2 0 and 8 = k/(4 — k) — a > 0. Integrating Eq. (2.21) yields

N
Xo _ (Vo\" (Yot = (2.22)
X = Vv an ,1__4? 5 .

with V(0) = Vy = Yu/Xo, Xo = X(0), Yo = Y(0). The special case of v = 0 will
be discussed in Sec. 2.4.3, hence from now on we assume that v > 0, so that a > 0.
Equations (2.17) can also be written as

d /1Y) Y (1)
I <Y> =4y + KX(T), (2.23a)
4 (%) . X;Eg. (2.23D)

Multiplying the right-hand side of Eq. (2.23a) by Xy and making use of d/dr =
(dV/dr)d/dV one obtains

av d /X,
= 2.24
Tar () =@+ 224

so that making use of the derivative of the right-hand side of Eq. (2.22), one obtains
upon integration from 0 to 7 the relation

- B
Vo 1 d a (Vo4 K4y
Xm:/ du - <E> = . (225
v 4y + Kku du U u+ 52

Equation (2.25) implicitly defines the time dependence of the function V(7). The
procedure to obtain the densities X (7) and Y (7) from Eq. (2.25) is as follows. The
integration in Eq. (2.25) leads to Appel functions, that may be inverted (at least nu-
merically) in order to give V(7). The insertion of V(1) in Eq. (2.22) then gives X (7).
It is then straightforward to obtain Y (7), having determined V(7) and X (7). The
structure of the implicit relation (2.25) permits us to establish interesting analytical

results.

First, let us investigate the long time behavior of the particle densities X (7) and
Y (7). When 7 — oo, the left-hand side of Eq. (2.25) diverges linearly which implies
that lim;_,» V(7) = 0. So, in the long-time limit, the implicit relation (2.25) leads
to the asymptotic formula

oz L (Yot ﬁ/v()ds A (W)°
0T 4y ’““;‘Y v du \ u

4
S @] e

Since lim; o V(7) = 0, then —1 + (Vp/V)* ~ (Vp/V)%, then from Eq. (2.26) one

obtains 5
oo 1 (Vo + 52
X()Tva _OO 4 (W ‘/Oa, (227)
2 4—K




28 CHAPTER 2. SOME EXACT RESULTS FOR BOLTZMANN'S ...

so that 5/
- Vo + 5=\ 7
V(T) T’:OO ‘/0 ("9747 (4’)/X0T)_1/a, (228)
4—kK
On the other hand, Eq. (2.23b) may be written as
d /1 K
— =) =4+ = 2.29
dr <Y> + v’ ( )
in which we insert Eq. (2.28) in order to obtain the long-time relation
_ —B/a
d /1Y) rooo 1 (Vo + 52
— (<) 2 d b | dyXoT)Ve, 2.30
dT (Y) +K/‘/O ( ;1__%2/ ( ’Y OT) ( )

For 7 — oo the constant term on the right-hand side of the latter equation is ne-

glectible by comparison to 71/ 50 that upon integration we obtain
T Vi 4 — Ble
Yi(r) = 40 (4yXo) M ( — " v+ > T (2.31)
Y

Note that the exponent for the density Y (7) is a function of the ratio v = ¢1/c
and thus is nonuniversal. In the limit v — 1 one recovers the asymptotic behavior
of the single-velocity modulus distribution (see Sec. 2.4.4). On the other hand as
lim, o V(1) =0, Eq. (2.23a) takes the asymptotic form d/d7(1/X) = 4v. Hence we

conclude that

T—00 X T—00 ].
X(1) ~ 20 "I -1

— 9.32
1+ 47 Xor 4y (2.32)

Second, we may find analytical upper and lower bounds for X(7) and Y (7).
Granted that o > 0 and § > 0, the integrand of Eq. (2.25) is a strictly monotonic
decreasing positive function of u, therefore V(1) < Vj for all 7 > 0. Considering that
(479)7! > [4y + ku] 7! for u > 0, the insertion of Eq. (2.22) in Eq. (2.25) provides the
inequality Xo7 < (Xo/X — 1) /47, which leads to an upper bound for X (7). On the
other hand, the inequality (4y + ru)~! < [4y + V]! yields a lower bound, so that
we finally get

Xo < X(7) < _ Ko
1+ (4vXo + kYT 1+ 4y X7
Note that for times such that

(2.33)

dvXoT > 1, (2.34)

the upper bound (2.33) coincides with the exact asymptotic relation (2.32). The same
kind of analysis as that leading to Eq. (2.33) yields the upper bound,

Yo
0<Y(1) L ———.
(T) 14+ xkXoT
The width defined by the difference of the bounds in both cases (2.33) and (2.35)
is O(r7!). Figures 2.1 and 2.2 show the numerical solution for X(7), Y(7), the

bounds (2.33) and (2.35), as well as their asymptotic behaviors (2.32) and (2.31) on
a logarithmic scale.

(2.35)

The knowledge of the numerical solution (see Figs. 2.1 and 2.2) allows to determine
the crossover time, separating the early and long-time (power law) regimes.
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XIX

Figure 2.1: Upper and lower bounds (2.33) (dotted lines) as well as the numerical
solution of the set of equations (2.17) for X(7) with Xy = Yy, v = 0.2 (continuous
line). The inner logarithmic plot shows indeed the power law behavior X (1) ~ 77!
for 7 — oo, where the asymptotic solution (2.32) is represented by the dashed straight
line. Moreover, in this regime the solution converges to the upper bound (2.33).

2.4.3 Mixture of moving and motionless particles

We now consider a particular case of Sec. 2.4.2 that we solve exactly in the asymptotic
limit 7 — oco. The system is now characterized by a certain number of motionless
particles (zero velocity, ¢; = 0) whereas the rest of the particles have a given nonzero
velocity modulus. Thus, setting v = 0 in Eq. (2.22) we obtain

X _(B+V°
- (5 ) (2.36)

where 3 = 7/(4 — ). Since V(7) tends to zero, in the asymptotic limit 7 — oo the
right-hand side of Eq. (2.36) is finite and positive. The density X (7) cannot thus
tend to zero, and must approach a strictly positive value X (o0) = Xo, > 0. We thus

obtain 5
. X Xoo I] > 1
lim — = = = 2.37
T—oo Xog  Xp <ﬁ+VO (14 Vo/B)? (2:37)

so that x
0

Xoo=7—"""57- 2.38

=TT /Ay 2

The long-time behavior of X (7) is obtained from Eq. (2.23a) by setting v = 0 and

rescaling the time to absorb the term k(y = 0) = 7 so that

4 (5) v 219
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YIY,

Yt

Figure 2.2: Upper bound (2.35) (dashed lines) as well as the numerical solution of
the set of equations (2.17) for Y (7) with Xy = Yy, v = 0.2 (continuous line). The
inner logarithmic plot of the numerical solution shows indeed the power law behavior
Y (1) ~ 77%/* for 7 — oo, where the asymptotic solution (2.31) is represented by
the dashed straight. Furthermore, the use of both the upper bound (2.35) and the
asymptotic form (2.31) allows to find an analytical approximation for Y'(7), which
turns out to be exact in both limits 7 — 0 and 7 — oc.

Again, multiplying the latter equation by Xy, inserting Eq. (2.36) in the left-hand
side, and making use of d/d7 = (dV/dr)d/dV we obtain

1 d (B+W)’

XodT = =dV— 2.40
0T dev<5+v> ’ (2:40)

which upon integration yields

Vo 1d B+Vy B

Xor = du—— |— 2.41
o= uudu[ <B+u> (2.41)

Integrating by parts we obtain

g @ | B+’ B+ ) |

XoT = — dul — |- 1 - 2.42
e [ (55e) | morgrigs), - eo

Since 7 — oo we may replace V by 0 in the lower bound of the first integral of the
right-hand side of Eq. (2.42) so that

T—00

Xor ~ —J—In (2.43)

v (1+Va/B)°
Vol/(1+Vo/ﬂ) ’
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where 5
Vo d2 B+ Vi
J = dul — |- 2.44
/0 un(u)du2[ <ﬁ+u> (2.44)
Extracting V(1) from Eq. (2.43) we obtain
Vir) = Vol/(HVO/ﬁ)ﬁHe_JXm/XOe_XmT = 9(Xo, Yo; 7). (2.45)
Inserting Eq. (2.45) in Eq. (2.39) yields the expression
d (1 7200 1/(14+V0/B)P  —J X0 /X0~ Xeor
= <Y> Xy VOO o= T Xee [ Xo (2.46)
that we integrate in order to find
T—00 Xoo
X(r) =~ ~ Xoo[1 + €2(Xo, Yo; 7). (2.47)

1 —e2(Xo, Yo; 7)

Making use of Eq. (2.17a) for v = 0 with the appropriate rescaling of the time in
order to absorb k(y = 0) = 7 we obtain X = —XY. Eq. (2.47) then allows to find

Y(r) "2 Xoea(Xo, Yo; 7). (2.48)
Hence we have
X(1) "= X + Y (7). (2.49)

There is a qualitative difference from the case ¢; > 0. As shown in Fig. 2.3, the
density of particles at rest approaches the asymptotic value X, > 0 exponentially
fast, while the density of moving particles goes to zero exponentially. Table 2.1
summarizes the long-time behavior for the different cases.

‘62261>0‘02>01§é0‘ co>c1 =0 ‘
X(7) ! 1 Xoo[l + Aexp(—XooT)]
Y (1) 1 TR/ XooAexp(XooT)

Table 2.1: Summary of the density long-time behavior in two dimensions, where

A = A(Xo, Yo) = e2(Xo, Yo; 7) exp(XooT).

Note that generalizing our results to any dimension d > 2 is straightforward
(see [40], the main results for d = 3 being recalled in Table 2.2). The algebraic or
exponential decay of the particle densities hold irrespective of d. In particular, for
the general case ¢; > 0 the exponent of the density of “slow” particles is independent
of d so that X (7) "~ 771 (see Sec. 2.4.4). Finally the relation (2.49) still holds.

2.4.4 Generalization to d > 2 and many-velocity moduli

We shall now show that in arbitrary dimension d > 2 and for any number of velocity
modulus satisfying ¢; < ... < ¢y the density of the slowest particles n; in the long-
time limit always decays as ny ~ (4y17) "%, where v, = ¢1/cn.
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100 T T T

Figure 2.3: Linear-logarithmic plot of the numerical solution of the set of equa-
tions (2.17) for Xy = Yy, 7 = 0 (continuous lines). The asymptotic relations (2.47)
and (2.48) are shown by the dashed lines, and the asymptotic limit (2.38) by the
dotted line.

‘02:cl>0‘c2>017§0‘ co>c1 =0 ‘
X(7) ‘ 71 ‘ 1 Xoo[l + 3exp(—3XooT)]

1 r—(B+7%)/4y Xoo3exp(—3XooT)

Table 2.2: Summary of the density long-time behavior in three dimensions.

The distribution function is of the form

fwi) =Y "iff_)la(v — ), (2.50)

i=1 Sdc

where Sy is the surface of a d-dimensional sphere of unit radius given by Eq. (2.6).
Inserting Eq. (2.50) into the kinetic equation (2.3) yields

d o 1p al n;(t)
() =~ T nz(t);1 Es Ljs, (2.51)

where [;; is the d-dimensional counterpart of Eq. (2.14):

Iy =2mJg\ /2 + 2 Fy(eiyey),  Vij=1,...,N, (2.52)
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and

n 1, d=2,
17 = )

Jd = d—3 . (253)
H/ doy (sin )%,  d >3,
k=170

Fy(ci,c5) = /7r 49, [1—2-39  cos@sin®20 (2.54)
(2] 0 cg 4 C? : :

We note that the particular case Fy(c;,¢;) = Fy does not depend on any velocity
moduli. Upon rescaling the time according to (such that one recovers the previously
used rescaling for d = 2 or d = 3 [40])

BIJdFdlCN
Sa V2

T = tod! (2.55)

Eq. (2.51) becomes

: 2\/5 ol 2 2
() = _Tdni(f) > ni(r)\/42 + V3 Fulciy ¢j), (2.56)
j=1

where v; = ¢;/cn. Since n; < nj for all i < j, in the limit 7 — oo the density products

nin; for all j # 1 may be neglected. Therefore the evolution of the density ni(7) of
: : . : . T—00 9

slowest particles is asymptotically given by ni(7) =~ —4vynj(7). It follows upon

integration
T—00 ]. —1

ni(r) =~ E

Fig. 2.4 shows the numerical solution of Eq. (2.56) for d = 3 and the prediction (2.57).

(2.57)

2.5 Comparison with molecular dynamics simulations

The analytical predictions obtained in the preceding section rely on the validity of
the molecular chaos assumption, leading to the Boltzmann equation. It is therefore
instructive to compare these predictions to the results of molecular dynamics (MD)
simulations, where the exact equations of motion of the particles are integrated (see
Ref. [39] for more details concerning the method).

MD simulations are most efficiently performed in two dimensions, where the best
statistical accuracy can be achieved.

MD simulations have been implemented with systems of typically N = 10° to
4 x 10° spheres in two dimensions (discs). Periodic boundary conditions were en-
forced, and low densities considered, in order to minimize the excluded volume effects
discarded at the Boltzmann level (note that these effects are necessarily transient
since the density decreases with time).

Figure 2.5 compares the MD results obtained with v = 1/10 to the predictions of
Egs. (2.32) (for v = 1/10, the time decay of the “fast” particles is governed by the
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Figure 2.4: Numerical solution of the system (2.56) using a fourth-order Runge-Kutta
method for N = 10 velocity modulus ¢; such that ¢; < ... < ¢y, with ¢; = 0.1 and
c1p = 2.4. Each curve corresponds to a density n;(7), and the thicker the curve
that larger the value of ¢;. The dashed line represents the asymptotic behavior of
Eq. (2.57), which is seen to match the numerical solution for n1(7) in the long-time
regime.

exponent /4~ ~ 7.9). Although the large-time behaviors for X and Y are compatible
with those given by Egs. (2.31) and (2.32), it may be observed that the corresponding
asymptotic regime is difficult to probe, even for large systems. The parametric plot
[or “trajectory” Y (X)| shown in the inset is however in agreement with the relation
Y o X*/% deduced from Egs. (2.31) and (2.32).

We have also performed MD simulations for a mixture of moving and motionless
particles (v = 0), where it is expected that the density X of particles at rest de-
creases down to a nonvanishing value X,. In the situation of an equimolar mixture
(Xo = Yp), we have Vj = 1 so that according to Eq. (2.37), Xoo/Xo =~ 0.414. The

MD simulations are in agreement with this scenario, and we find X, /Xy ~ 0.408
irrespective of the initial conditions for a system with initially N = 2 x 10° particles.
The results for the time dependence of X and Y are displayed in Fig. 2.6. We con-
clude that the numerical simulations are again in agreement with the prediction of

Boltzmann’s kinetic theory.

2.6 Conclusions

We have shown that for some simple spatially homogeneous systems, characterized
by a velocity distribution with a discrete velocity modulus spectrum, it is possible to
find the exact solution for the nonlinear integral equation describing the dynamics of
ballistic annihilation. These results, obtained at the level of a Boltzmann equation,
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0

10

X/X, ; Y/Y,

Figure 2.5: Log-log plot of the densities X (upper curve) and Y (lower curve) as a
function of rescaled time, as obtained in the MD simulations of a two-dimensional
system with v = 0.1. The initial condition corresponds to an equimolar mixture
(Xo = Yp) of N =2 x 10° particles, with reduced density (Xo+ Yp)o? = 0.1 at 7 =0
(both species have the same diameter). The dashed lines have slopes —1 and —7.9
|as predicted by Egs. (2.31) and (2.32)]. Inset: log-log plot of Y as a function of X,
where the broken line has slope —7.9.

have been validated by explicit comparison with molecular dynamics simulations in
two dimensions.

For a single-velocity modulus distribution, the particle density of the model decays
asymptotically as n(t) ~ ¢!, irrespective of space dimension. It was however rigor-
ously shown that in one dimension, the decay is slower, n(t) ~ ¢t~'/2. This difference
is a consequence of the fact that in one dimension strong dynamical correlations are
created [63, 64|, which invalidate the approximation underlying Boltzmann’s dynam-
ics. In higher dimensions, the Boltzmann equation becomes exact in the long-time
limit.

In the case of a distribution with two different finite nonzero velocity moduli,
we found that both particle densities decay for a large time according to a power
law. The interesting feature is that the density of the slow particles decays as ¢!,
while the density of the fast particles decays more rapidly (e.g., as /%7 in two
dimensions and as t~377°)/47 in three dimensions [40]), with a nonuniversal exponent
depending continuously on the velocity modulus ratio v = ¢;/ce. A rough criterion
for the crossover time separating the short- and long-time regimes has been given in
Eq. (2.34). For N > 2 different finite nonzero velocity moduli the large-time decay of
the density according to t~! was shown to hold irrespectively of the dimension.
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Figure 2.6: Linear-logarithmic plot of the density of moving particles. Here, v = 0,
Xo = Yy =5 x 1073 /02 [corresponding to a very low total initial packing fraction
no = m(Xo + Yp)o?/4 = 0.0078]. The initial number of particles is N = 4 x 10°.
The results of MD simulations (continuous curve) are compared to the predictions
of Egs. (2.47) and (2.48), shown by the broken line. The inset shows that X — X,
and Y (obtained in MD) have asymptotically the same time decay [see Eqgs. (2.47)
and (2.48)].

Finally, the case ¢c; = 0 leads to a particularly interesting behavior. Independently
of the initial conditions, the densities of the moving and the motionless particles both
decrease exponentially fast; however down to a nonzero value for particles at rest.
This behavior is quite different from that observed in the one-dimensional case where
the initial value of the density of motionless particles plays an important role in
the long-time regime. This difference between one dimension and higher dimensions
reflects once again the important role played by the dynamically created correlations
ford =1.

The case with motionless particles can be viewed as a problem of ballistic annihi-
lation of particles with one-velocity moduli moving in a random medium containing
immobile traps (the motionless particles) that can capture a moving particle and then
disappear. Here again, the situation can be compared to similar problems in diffusion
limited annihilation where the presence of traps can modify the long-time dynamics
from a power law to an exponential decay [73].

It would be interesting to compare the above theoretical predictions with some
experimental data. Besides growth and coarsening problems, ballistic annihilation
could model other physical systems such as, for example, the fluorescence of laser
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excited gas atoms with quenching on contact [74]. However, the correspondence
between such experimental situations and our model is not yet close enough to allow
comparison. We would be highly interested in the knowledge of other physical systems
that could be described by the models studied here.






Chapter 3

On the first Sonine correction for
granular gases

3.1 Outline of the chapter

We consider the velocity distribution for a granular gas of inelastic hard spheres
described by the Boltzmann equation. We investigate both the free of forcing case
and a system heated by a stochastic force. We propose a new method to compute
the first correction to Gaussian behavior in a Sonine polynomial expansion quantified
by the fourth cumulant as. Our expressions are compared to previous results and
to those obtained through the numerical solution of the Boltzmann equation. It is
numerically shown that our method yields very accurate results for small velocities
of the rescaled distribution. We finally discuss the ambiguities inherent to a linear
approximation method in ag. This chapter follows the content of Ref. [75].

3.2 Introduction

Most theories of rapid granular flows consider a granular gas as an assembly of inelas-
tic hard spheres and assume uncorrelated binary collisions described by the Boltz-
mann equation, with a possible Enskog correction to account for excluded volume ef-
fects |24, 31, 51, 76, 77, 37, 78, 79, 80, 81, 82, 83|. The deviations from the Maxwellian
velocity distribution may be accounted for by an expansion in Sonine polynomials,
and it is often sufficient to retain only the leading term in this expansion, quantified
by ag, the fourth cumulant of the velocity distribution [24, 51, 79, 84, 85]. The pur-
pose of this chapter is twofold: first, we present a novel route to compute ao, directly
inspired from a method that has been recently proposed to compute with accuracy
the decay exponents and non Maxwellian features of gas subjected to ballistic annihi-
lation dynamics [39, 70| (where particles undergoing free flight motion disappear upon
contact [43, 59]). In essence, this method considers the limit of vanishing velocities of
the Boltzmann equation, and deduces ao from moments of the velocity distribution
that are a priori of lower order than those involved in the standard derivation [37, 79].

39
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We may consequently expect a better precision from this alternative approach, that
is analytically simpler to work out. We also know that the velocity distribution is non
Gaussian at high energies [37, 79|, so that extracting the relevant kinetic information
from the behavior at vanishing velocities seems a promising route. The second goal of
this chapter is to discuss the ambiguities common to both approaches encountered
performing computations up to linear order in as, neglecting not only higher order
Sonine contributions but also terms in ag, k =2,3. Such an ambiguity has first been
mentioned by Montanero and Santos [79].

3.3 The limit method for the first Sonine correction

Within the framework of the Boltzmann equation, as shown in Sec. 1.5.2 the one-
particle velocity distribution function f(v;t) for a homogeneous system free of forcing
obeys the relation

Oy f(vi;t) = I[f, fl, (3.1)

where the collision integral reads

Ilf, f] = 0%t /Rd va/d& 0(G - v12)(o - vi2) (@207t = 1) f(vist) f(vast). (3.2)

v1 — vy the relative velocity of two particles, Vis = vi2/v12, v12 = |vi2|, and & a unit
vector joining the centers of the grains. The space dimension is d. The precollisional
velocities v} and the postcollisional ones v; are related through the operator b~! and
read

In Eq. (3.2), o is the diameter of the particles, 6 the Heaviside distribution, vis =

1 oy~
v = b lvi = vy — + a(V12 - 0)0, (3.3a)
1+« oy~

vh = b vy = vo + (vig - 0)0, (3.3b)

2a
with a € [0, 1] the restitution coefficient. Note that b=tg(vy,va;t) = g[b~ vy, b~ tva;t].

If energy is supplied to the system, an additional forcing term is present in Eq. (3.1) [79],
but the general arguments and method presented below remain valid. To be more

specific, we shall also consider the situation where the system is driven into a non equi-

librium steady state by a random force acting on the particles [37, 78, 79]. With this

energy feeding mechanism, coined “stochastic thermostat”, the Fokker-Planck term

£2V2 f should be added to the right-hand side of Eq. (3.1) [37], where & is related to

the amplitude of the random force acting on the grains.

We are searching for an isotropic scaling solution f(c) of Eq. (3.2). The require-
ment of a time independent behavior with respect to the typical velocity o(t) =

\/2(v?) s /d imposes that [51, 37, 79, 86]
flvit) =

f(e), (3.4)

(1)

where the rescaled velocity is given by ¢ = v/o(t) and the angular brackets (-)¢
denote the average over f(v;t): (v?); = [p.dve?f(v,t)/n. The scaling form (3.4) is
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physically “reasonable” within the scaling theory [86], and this form may be justified
a posteriori making use of numerical simulations [51, 37, 79]. The presence of the
density n on the right-hand side of Eq. (3.4) ensures that fdcf(c) =1 and (?) =
[ de CQf(c) = d/2. Integrating Eq. (3.1) over ¢; with weight ¢, this scaling function
describing the homogeneous cooling state satisfies the time-independent equation [51,
37, 79]

2 (a4 erg) Flen = 17,00 (3.5
where o
iy = — /]R e &I(F ), (3.6)
and
7.5 = [ de [5G -0)(@ - cn) | 57@F) - Flenflen| . 6

It is useful to consider the hierarchy of moment equations obtained by integrating
Eq. (3.5) over ¢; with weight ¢} [37]

Hp = %p<0”>- (3.8)

The solution of Eq. (3.5) is non-Gaussian in several respects. The high energy tail
is overpopulated compared to the Maxwellian [37], a generic although not system-
atic feature for granular gases (a particular heating mechanism leading to an under-
population at large velocities has been studied in [79]). Deviation from Gaussian
behavior may also be observed at thermal scale or near the velocity origin. To study
the latter correction, it is convenient to resort to a Sonine expansion for the distrib-

ution function f(c) |87]

ﬂ@:ﬁﬂdb+§:%&@%} (3.9)

i>1

where M(c) = 742 exp(—c?) is the Maxwellian, and S;(c?) the Sonine polynomials
(that may be found in [87]; the first few are recalled in [37]). Such an expansion is
non perturbative in « since the distribution function is close to the Maxwellian for
all values of a. Due to the constraint (c?) = d/2 the first correction a; vanishes [37],
and for our purposes it is sufficient to know Sy(z) = 22/2 — (d + 2)x/2 + d(d + 2)/8.
If we define the normalization factor IN; by

/<kﬂ@&@mm%:%m, (3.10)
Rd

then for 5 > 0 and making use of Sy(c?) = 1 one obtains the coefficients a; as
polynomial moments of the scaling function:

1 ~
N | def@si) =a; (3.11)
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In particular, the coefficient as is related to the kurtosis of the velocity distribution

() = CKdTm(ag +1), (3.12)

so that, upon taking p = 4 in Eq. (3.8), we get

pa = (d+2)(1 + az)pa. (3.13)

3.3.1 The free cooling gas
3.3.1.1 The first Sonine correction

In the following analysis, we will only retain the first correction in the expansion (3.9):
f: M(l + a2S2). Computing uo and g4 to linear order in as with this functional
ansatz |and further linearizing Eq. (3.13)], one deduces a9 [37, 79|. This approach is
nonperturbative in the restitution coefficient. However, since the high energy tail of
M(1 + agS>) is very distinct from that of the exact solution of Eq. (3.5), computing
ag from relation (3.8) with p > 4 is expected to give a poor estimate, all the worse as
p increases. With this in mind, it appears that the limit of vanishing velocity of the
rescaled Boltzmann equation (3.5) contains an interesting piece of information:

pz F(0) = lim (. ) (3.14)
The main steps to compute this limit are given in appendix A.2. Up to a geometrical
prefactor, the loss term of lim I on the right-hand side reads f(0){c;) and is thus of
lower order than the quantities appearing in (3.13). Working at linear order in as, one
may therefore expect to achieve a better accuracy when computing the various terms
(except may be the gain term) appearing in (3.14) than in (3.13). In the context of
ballistic annihilation, a related remark lead to analytical predictions for the decay
exponents of the dynamics and non-Gaussian features of the velocity statistics, in
excellent agreement with the numerical simulations [39, 70]. In the present situation,
the gain term of I in (3.14) cannot be written as a collisional moment, so that the
situation is less clear and deserves some investigation. We propose to compare the
value of agy following this route to the standard one of Refs. [37, 79, 84|. Evaluating
(3.14) at first order in ag, we obtain:

4(a? +1)%(a* = 1) [V2(a? + 1) — 2]
Ala, d) '

ag = (3.15)

where
Ala,d) =5+d(2—d) +8a(a? +1)(d — 1) — a?(23 — 6d + d?) + a* (3 + 6d + d?)
+a8(=1+2d + d?) — V2(a? +1)%(a? — 1)(3 + 4d + 2d%) /4. (3.16)

In Fig. 3.1, we compare this result with the analytical expression of van Noije and
Ernst [37]. We also display the fourth cumulant ag obtained by Monte Carlo sim-
ulations from the numerical solution of the nonlinear Boltzmann equation (3.1) (so
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Figure 3.1: Comparison of the correction ay(«) for the free cooling in two dimensions
obtained in [37], with Eq. (3.15). The crosses correspond to the “exact” result, ob-
tained by solving the Boltzmann equation with the DSMC method, for 10° particles
and approximately 500 collisions for each particle. The inset is a zoom in the region
of the smallest root of the fourth cumulant.

called DSMC technique [88, 89]). Our expression appears more accurate at small
inelasticity, but less satisfying close to elastic behavior. The smallest root of as = 0
obtained with Eq. (3.15) is o = (v/2 — 1)'/2 ~ 0.643.... This root differs from the
value o** = 1/4/2 ~ 0.707... obtained upon solving (3.13) (both o* and a** do not
depend on space dimension d). The inset shows that the exact root is located in the
interval Jo*, o™, and seems closer to o**.

In order to understand the discrepancy close to the elastic limit shown in Fig. 3.1,
it is useful to study the first Sonine correction f(c;)/M(c;) = 14+a2S2(c?). The result
for @ = 0.8 where our method seems to be the less accurate is shown in Fig. 3.2, and
in Fig. 3.3 for a = 0.5.

In spite of the imprecision of our analytical expression for ag seen in Fig. 3.1,
Fig. 3.2 shows that the limit method is very accurate for small velocities, but turns
to quickly become more imprecise for bigger velocities. This suggests that computing
the fourth cumulant from the limit of vanishing velocities gives more weight to this
region which leads to a better behavior of the Sonine expansion for small velocities.
On the other hand, the traditional route yields a global interpolation for all velocities.
The good precision of our result for small velocities and the lower accuracy for higher
velocities is confirmed in Fig. 3.3. Exploiting the above qualitative interpretation of
the limit method, we expect to archieve a good accuracy using Eq. (3.15) in order to

find the first moment [39]:
N \/7_'(' as
(lely = - (1 . g) . (3.17)

Indeed, we suppose that the function as obtained from the limit method gives a precise
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Figure 3.2: Plot of f(c;)/M(c;) for @ = 0.8. The curve labelled “Eq. (3.15)” and
“Noije/Ernst” correspond to 1 4+ agS2 where ag is given respectively by Eq. (3.15)
and by the Sonine correction obtained by Noije and Ernst following the traditional
route [37]. “DSMC” refers to the full distribution obtained from the solution of the
Boltzmann equation (using 10° particles and averaging over 300 independent sam-

ples).
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Figure 3.3: Same as Fig. 3.2 for a = 0.5.
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Figure 3.4: First rescaled velocity moment (|c|) as a function of the restitution co-
efficient. DSMC is done for 10° particles and approximately 500 collisions for each
particle.

description of the rescaled velocity distribution for small velocities. Thus our as is
likely to describe more accurately a low order velocity moment than a high order one.
This is confirmed by Fig. 3.4.

3.3.1.2 Ambiguities inherent to the linear approximation

As emphasized by Montanero and Santos [79], a certain degree of ambiguity is present
when evaluating an identity such as (3.13) or (3.14) to first order in ay. According
to the way we rearrange the terms pg, po, and (d + 2)(1 + ag) in say Eq. (3.13) and
subsequently apply a Taylor series expansion in ae, we obtain different predictions
for as(«). For instance van Noije and Ernst did expand the relation (3.13) [37],
whereas Montanero and Santos also considered other possibilities such as pg/pe =
(d+ 2)(1 4+ ag) (this leads to a result which turns out to be fairly close to the one
in [37]) and also p4/(1+ a2) = (d+ 2)pz. For small « in the latter case, the resulting
as turns out to be 20% lower than the previous ones, and very close to the exact
(within Boltzmann’s equation framework) numerical results, for all the values of the
restitution coefficient [79]. We push further this remark and show in Fig. 3.5 the
eight simplest different possible functions as(«) obtained upon rearranging the terms
of Eq. (3.13) and expanding the result to first order in as. A similar ambiguity
is present making use of Eq. (3.14). The corresponding eight different possibilities
are plotted in Fig. 3.6. It appears that the envelope of the curves following from this
method is less spread than within the “traditional” route, by a factor of approximately
2. We thus achieve a better accuracy at small a.

The dispersion of the curves in Figs. 3.5 and 3.6 illustrates the nonvalidity of the
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Figure 3.5: The eight possible fourth cumulant as obtained from Eq. (3.13), cor-
responding to the two-dimensional homogeneous free cooling. We define n =
(d+ 2)(1 4 ag), then rewrite the equation gy = nue according to the eight possi-
ble different combinations mentioned in the legend, before doing the linear Taylor
expansion around ae = 0. The first curve is the plot of the function as obtained
by van Noije and Ernst [37], whereas the second one — obtained by Montanero and
Santos [79] is very close to the exact results shown by crosses.
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Figure 3.6: Same as Fig. 3.5, making use of Eq. (3.14) instead of (3.13) to compute
the first Sonine correction. In the legend, I denotes lim I and fy = f(0).
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linearization approximation at small . However and concentrating on Fig. 3.5
it appears that all curves do not have the same status. Brilliantov and Pd&schel
have indeed solved analytically the full nonlinear problem [i.e., working again with
the distribution function f = M(1 + aS2) but keeping nonlinear terms in as|, and
obtained results that are very close to those of Noije/Ernst, except for a < 0.2 where
they found slightly larger fourth cumulants [80]. Their result is therefore farther
away from the exact one obtained by DSMC (see, e.g., Fig. 3.1 where it appears than
the Noije/Ernst expression already overestimates the exact curve). The difference
between the DSMC results and those of Brilliantov/Péschel therefore illustrates the
relevance of Sonine terms a; with ¢ > 3 in expansion (3.9). However, some of the
curves shown in Fig. 3.5 lie close to the exact one, which means that it is possible to
correct the deficiencies of truncating fat second Sonine order by an ad-hoc linearizing
scheme. The agreement obtained is nevertheless incidental, and the corresponding
analytical expression should be considered as a semi-empirical interpolation supported
by numerical simulations. One should thus emphasize that the right way to compute
ay is to use its definition involving the fourth rescaled velocity cumulant of Eq. (3.12)
because this relation is not sensitive to higher order Sonine terms, nor to nonlinearities,
even if this route doesn’t give the most accurate description in the small velocity
domain (as seen from Figs. 3.2 and 3.3)

3.3.2 The heated granular gas

For completeness, we now briefly consider the stochastic thermostat situation [37, 78,
79, 85|, where the counterpart of Eq. (3.5) reads

~L2 V3 e = I(T. D). (3.18)

The Fokker-Planck diffusion term V2 represents the change of the distribution func-
tion caused by small random kicks (see, e.g., [90]). Considering again the limit ¢; — 0
and retaining only the first correction in the expansion (3.9), we get

2 (d+2)d+4)] . ==
97d/2 2+ap A _clllgol(f’f)

(3.19)

Given that the right-hand side is already known from the free cooling calculation,
it is straightforward to extend the previous results to the present case. As before,
there are 8 possible ways to extract ag from Eq. (3.19) working at linear order. The
resulting expressions are displayed in Fig. 3.7. On the other hand, the moment method
described in Refs. [37, 79] makes use of the identity pa(d + 2) = pg, that is a direct
consequence of Eq. (3.18). There are thus 4 possible rearrangements leading to the
different cumulants shown in the inset of Fig. 3.7. For comparison, we have also
implemented Monte Carlo simulations in the present heated situation (see the crosses
in Fig. 3.7). It is difficult to compare the dispersion of the curves with both methods
(8 possibilities versus 4), since our approach makes use of Eq. (3.19) which is of higher
order in ag than po(d+2) = ug, the starting point used in Refs. [37, 79]. Our method
appears here less accurate than for the free cooling, with again an underestimation of
as at large . However, this should be put in the context of the results of Sec. 3.3.1.2.
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Figure 3.7: The counterpart of Fig. 3.6 for the two dimensional stochastic thermostat.
The inset shows the 4 possibilities associated with the method of Refs. [37, 79]. The
symbols show the results of DSMC simulations.

3.4 The nonlinear problem

In order to get free from the ambiguities inherent to a linear computation in as, we
have also solved the full nonlinear problem. The computation becomes cumbersome,
and since Brilliantov and Poschel [80] have already initiated this route in 3 dimensions
for the homogeneous free cooling (thereby providing the calculation of ps and py),
we will turn our attention to the three dimensional situation. First and for the
sake of comparison, we have repeated the nonlinear derivation of Ref. [80] for the
stochastic thermostat. Second, we have computed the right-hand sides of Egs. (3.14)
and (3.19) without any linearization, from the form f = M(l + a2S3). The left-
hand sides only require the knowledge of po. For both free and forced situations, we
subsequently obtain a polynomial equation of degree 3 for as from which we extract
the physical root, the two others corresponding to unstable scaling solutions [80]. The
results are displayed in Fig. 3.8. In particular, our approach again suffers from an
underestimation of ag for a > 0.5, already observed within the linear computation,
and that is thus ascribable to Sonine terms of order 3 or higher. In this respect, it is
surprising that these terms do not affect similarly the moment method of Ref. [80] in
the same range of inelasticities.

3.5 Conclusions

To sum up, using a new approach we obtain the first non-Gaussian correction as
to the scaled velocity distribution. In view of the above results, we conclude that
our approach constitutes an improvement over the previous procedures in the small
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Figure 3.8: Fourth cumulant in 3 dimensions for a force free system in the regime
of homogeneous cooling. The curves correspond to the nonlinear solutions of Egs.
(3.13) (“traditional route”) and (3.14) (limit method, see text for details). The crosses
correspond to the Monte Carlo results.
stochastic thermostat.

The inset shows the same curves for the

velocity regime, and our analysis turns to be technically simpler to perform. We
have also discussed the ambiguities that arise 1) when restricting ourselves to second
Sonine order, and 2) when a further linearization of the various relevant relations is
performed. It appears that an ad-hoc linearization scheme (point 2) may circumvent
the limitations inherent to point 1. In any case, the computation of a non-Gaussian
correction suffers from uncontrolled approximations that systematically need to be
confronted against numerical simulations.






Chapter 4

Probabilistic ballistic annihilation

4.1 Outline of the chapter

We investigate the problem of ballistically controlled reactions in dimension d > 2
where particles either annihilate upon collision with probability p, or undergo an
elastic shock with probability 1 — p. Restricting to homogeneous systems, we pro-
vide in the scaling regime that emerges in the long time limit, analytical expressions
for the exponents describing the time decay of the density and the root-mean-square
velocity, as continuous functions of the probability p and of a parameter related to
the dissipation of energy. We work at the level of molecular chaos (non-linear Boltz-
mann equation), and using a systematic Sonine polynomials expansion of the velocity
distribution, we obtain in arbitrary dimension the first non-Gaussian correction and
the corresponding expressions for the decay exponents. We implement Monte-Carlo
simulations in two dimensions, that are in excellent agreement with our analytical
predictions. For p < 1, numerical simulations lead to conjecture that unlike for pure
annihilation (p = 1), the velocity distribution becomes universal, i.e., does not depend
on the initial conditions. For such a system neither mass, momentum, nor kinetic en-
ergy are conserved quantities. We establish the hydrodynamic equations from the
Boltzmann equation description. Within the Chapman-Enskog scheme, we deter-
mine the transport coefficients up to Navier-Stokes order, and give the closed set of
equations for the hydrodynamic fields chosen for the above coarse grained description
(density, momentum and kinetic temperature). Linear stability analysis is performed,
and the conditions of stability for the local fields are discussed. The content of this
chapter is strongly based on Refs. [52, 53|

4.2 Introduction

We consider an assembly of particles that move freely in d-dimensional space between
collisions, where only two body collisions are taken into account. The purpose of this
chapter is to present a model that unifies both the dynamics of annihilation [39, 43, 59,
60, 63, 64, 70] and of hard-sphere gases [56] using a continuous parameter p € [0, 1],

ol
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the probability that two particles annihilate when they touch each other [44]. The
model of probabilistic ballistic annihilation in one dimension for bimodal discrete
initial velocity distributions was introduced in [67, 91], whereas for higher dimensions
and arbitrary continuous initial velocity distributions it was considered in [52|. In
the limiting case p = 1, we recover the annihilation model originally defined by
Elskens and Frisch [58], that has attracted some attention since [39, 40, 43, 59, 60,
62, 65, 68, 70] and for p = 0 the system of hard-spheres. In our system in the limit
p — 0, p> 0 (denoted p — 0T), a particle will collide elastically many times before
being annihilated. Thus the particles have a diffusing-like motion before annihilating.
In one dimension (again for p = 1), the problem is well understood for discrete
initial velocity distributions [62, 65]. On the contrary, higher dimensions introduce
complications that make the problem much more difficult to treat [39, 70]. Only a
few specific initial velocity conditions lead to systems that are tractable using the
standard tools of kinetic theory [40].

Another extensively studied class of problems is the one of diffusion-limited anni-
hilation in which diffusing particles annihilate on contact with a given rate [72, 92, 93].
The simplest case corresponds to the reaction A + A — @. The number of particles
decays, in the long time regime, as a power law n(t) ~ t=¢. The decay exponent can
be exactly computed [94] and is & = min(1,d/2), where d is the dimension of the
system. However, the time decay exponents for the density found in our case when
p — 0T are different from the exponents found in diffusion-limited systems. The
reason for this difference is that the underlying microscopic mechanisms responsible
for diffusion are different. In our case, particles which have a bigger velocity modulus
have a bigger annihilation rate than the slow particles. The velocity dependence of
the annihilation rate is not present in the usual diffusion-limited annihilation.

It was recently shown [39] that in the long time limit, the annihilation dynamics
for dimensions higher than one is adequately described by the nonlinear Boltzmann
equation. This may be understood in a qualitative way by the fact that the density
of the gas decays as a function of time, so that the packing fraction (which is the
total volume occupied by the particles divided by the total volume of the system)
decreases, and the role played by correlations (re-collisions) becomes neglectible. The
Boltzmann equation thus becomes relevant at late times. With this phenomenology
in mind, we conjecture that in the case of probabilistic ballistic annihilation, the
Boltzmann equation adequately describes the dynamics for p > 0. For p = 0, the
resulting elastic hard sphere system would be correctly described by Boltzmann’s
equation in the low density regime only [56, 95].

The second part of the chapter (Sec. 4.4 and below) reports on the hydrodynamic
description of the system. The hydrodynamic description of a low density gas of elastic
hard spheres supported by an underlying kinetic theory has attracted a lot of attention
already more than 40 years ago [7, 96, 97|. It has now become a well established
description [20]. A key ingredient in the hydrodynamic approach is the existence
of collisional invariants (quantities conserved by the collisions). The question of the
relevance of a coarse-grained hydrodynamic approach is therefore more problematic
when the kinetic energy is no longer a collisional invariant [98|. This is the case of rapid
granular flows (that may be modeled by inelastic hard spheres in a first approach),
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where the hydrodynamic picture, despite including a hydrodynamic field associated
with the kinetic energy density, is nevertheless reliable (see, e.g., [78, 99, 100, 101]
and Dufty for a review [48]). It seems natural to test hydrodynamic-like approaches
further and in more extreme conditions, and investigate a system where particles react
so that there exist no collisional invariants. This chapter, focusing on the derivation
of the hydrodynamic description for such a system, is a first step in this direction.

Our starting point will be the Boltzmann equation, which describes correctly the
low density limit of granular gases (see [102] and [56, 95] for the elastic case). For
annihilation dynamics, the ratio of particle diameter to mean free path vanishes in
the long-time limit, such that for d > 1 the Boltzmann equation is valid at least at
late times [39, 40|. For such a dynamics, none of the standard hydrodynamic fields
(i.e., mass, momentum, and energy) is associated with a conserved quantity. There
are therefore three nonzero decay rates, one for each field. Numerical evidences show
that in the long time limit, a non-Maxwellian scaling solution for the homogeneous
system appears (homogeneous cooling state HCS [39, 70|, which also exists for inelas-
tic hard spheres [51]). Nothing is known about the stability of the latter solution,
the only existing result being that in one dimension, with a bimodal initial velocity
distribution, clusters of particles are spontaneously formed by the dynamics [65]. In
view of this situation we develop a hydrodynamic description for probabilistic ballistic
annihilation. The limiting case of vanishing annihilation probability p — 0 gives the
known results for elastic dilute gases [24], whereas the other limit p — 1 yields the
case of pure annihilation.

In order to derive the hydrodynamic equations, we make use of the Chapman-
Enskog method. We thus consider (at least) two distinct time scales in the system.
The microscopic time scale is characterized by the average collision time and the
corresponding length scale defined by the mean free path. The macroscopic time scale
is characterized by the typical time of evolution of the hydrodynamic fields and their
inhomogeneities. The fact that those two time scales are very different implies that on
the microscopic time scale the hydrodynamic fields vary only slightly. Therefore they
are on such length- and time scales only very weakly inhomogeneous. Combined with
the existence of a normal solution for the velocity distribution function (i.e., a solution
such that all time dependence may be expressed through the hydrodynamic fields),
this allows for a series expansion in orders of the gradients, i.e., to apply the Chapman-
Enskog method. The knowledge of the hydrodynamic equations thus obtained to first
order allows us to perform a stability analysis. Taking the HCS as a reference state,
we study the corresponding small spatial deviations of the hydrodynamic fields.

The chapter is organized as follows: in Sec. 4.3.1, we first introduce the Boltzmann
kinetic equation describing the probabilistic annihilation dynamics of a homogeneous
system in the scaling regime, that corresponds to asymptotically large times. We then
provide analytical expressions for the exponents £ and « governing the algebraic time
decay of the particle density and the root mean-square-velocity respectively. Next, we
give the first non-Gaussian correction as to the rescaled velocity distribution by means
of a Sonine polynomial expansion. This allows to give explicit expressions for the
exponents £ and y up to the first correction in ay. Sect. 4.3.2 shows the results of direct
Monte-Carlo simulations (DSMC) that are in very good agreement with the analytical



o4 CHAPTER 4. PROBABILISTIC BALLISTIC ANNIHILATION

results. In the insight of those simulations we clarify the ambiguities following from the
analytical computation of ay [75] and select the simplest and most accurate relation
for as. It is numerically shown that unlike for pure annihilation, the first Sonine
correction for 0 < p < 1 does not depend on the parameter p characterizing the
initial distribution f for small velocities: limy_ f(v;t = 0) oc |[v[*. We also show
analytical and numerical evidence that the conjecture put forward in |70] according
to which the exponent & = 4d/(4d 4+ 1) becomes exact in the limiting case p —
0% [70]. Sect. 4.3.3 contains conclusions concerning the first part of the chapter.
In Section 4.4.1 we present the inhomogeneous Boltzmann equation for probabilistic
ballistic annihilation, and establish the subsequent balance equations. Section 4.4.2 is
devoted to the Chapman-Enskog solution of the balance equations. For this purpose
we consider an expansion of the latter equations in a small formal parameter. The
solution to zeroth order provides the hydrodynamic fields of the HCS. Assuming small
spatial inhomogeneities, we make use of an explicit normal solution for the velocity
distribution function to first order. This allows us to establish the expression for the
transport coefficients and for the decay rates to first order, and thus the closed set
of equations for the hydrodynamic fields. The technical aspects of the derivations
are presented in the appendices while our main results are gathered in Eqs. (4.72).
In Section 4.4.3, we study the linear stability of those equations around the HCS.
Finally, Section 4.4.4 contains the discussion of the results and our conclusions. Since
from the point of view of dissipation probabilistic ballistic annihilation shares some
features with granular gases, making several parallels between those two systems will
prove to be instructive.

4.3 The first Sonine correction

4.3.1 Boltzmann kinetic equation
4.3.1.1 Scaling regime

We consider a system made of spheres of diameter o moving ballistically in d-dimensional
space. If two particles touch each other, they annihilate with probability p and thus
disappear from the system. With probability 1 — p, they undergo an elastic collision.
We consider only two body collisions. The initial spatial distribution of particles is
supposed to be and assumed to remain homogeneous. The Boltzmann equation for
the instantaneous one particle distribution function f(v;t) of a homogeneous free of
forcing low-density system of hard-spheres annihilating with probability p is given by

O f(vist) = pJalf, f1+ (1 = p)Jelf, [, (4.1)

where the annihilation operator J,, is defined by [39]

Ja[f, g] = —O'd_1 /]Rd dvz/dEQ(E -(/\12) (6‘ 'V12) f(VQ;t)g(Vl;t)

= —ad_lﬂl/ dvoviaf(va;t)g(vy;t), (4.2)
Rd
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and the elastic collision operator J. is defined by [103, 95, 102]

Je[f,g) = o1 /]Rd dvy /da' (6 -v12)0(F - vi2) (bt — 1)g(vi;t) f(vart). (4.3)

Note that Eq. (4.3) is obtained from Eq. (3.2) in the elastic limit & — 1. In the above
expressions, o is the diameter of the particles, vis = v; — vo the relative velocity,
v12 = |v12], 0 is the Heaviside distribution, & a unit vector joining the centers of two
particles at collision and the corresponding integral is running over the solid angle,

By = 7D/ T((d + 1)/2] (4.4)

is a particular case of Eq. (2.4), where I is the gamma, function, and b~! an operator
acting on the velocities as follows [104]:

b_1V12 = Vi2 — 2(V12 . 8)&, (453)

b_lvl = V1 — (V12 . 6‘)6’ (45b)

Egs. (4.5) follow from Egs. (3.3) in the elastic limit. Since J. describes elastic
collisions, this operator conserves the mass, momentum, and energy. On the other
hand, J, describes the annihilation process and thus none of the previous quantities
are conserved.

We are searching for an isotropic scaling solution of the homogeneous system,
where the time dependence of the distribution function is absorbed into the particles
density n(t) and in the typical velocity T(t) = 1/2(v2?)/d, where (v?) is the mean
squared velocity. This imposes the scaling form |39, 37]

f(vit) =

flo), (4.6)

where the rescaled velocity is given by ¢ = v/9(t). By construction, ff = 1. For
both the elastic (p = 0) and pure annihilation (p = 1) cases the form (4.6) was shown
to be an adequate solution [39, 37]. It is therefore expected to remain adequate for
arbitrary p € [0, 1].

4.3.1.2 Decay exponents in the scaling regime

Making use of Eq. (4.6) and integrating Eq. (4.1) over v; with weights 1 and v}, we
obtain the number density and energy time evolution

dn
T —pw(t)n, (4.7a)

d 2
(Z: ) = —paew(t)nT?, (4.7b)

where the collision frequency w is given by

w(t) = n(t)ﬁ(t)od‘lfdcldC2d& (- c12)6 (7 - c12) f(e1)f(c2), (4.8)
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and the time-independent energy dissipation parameter o, by

o — [ deideada (o - c12) 0 (0 - c12) C%f(cl){(c?) . (4.9)

[f dcch(c)] [f dcideada (6 - c12) 0 (6 - c12) f(c1)f(e2)

The time dependence of w(t) occurs only through n(¢)v(t). We made use of the fact
that the elastic dynamics does not contribute to the decay of energy or density, thus
the integration over the elastic collision term vanishes. The resolution of Egs. (4.7)
follows the method of Ref. [39]. We define the variable C counting the number of
collisions, such that dC = wdt. With this variable, the integration of the system (4.7)
is straightforward and gives

n(t) = ngexp[—pC(t)], (4.10a)
72 (t) = T2 exp[—p(ae — 1)C(1)]. (4.10Db)

From the definition of C(¢t) and Eq. (4.8)

)
E =W =W ’[’LOE 5 (411)

where wp = w(t = 0). Making use of Egs. (4.10) one obtains

dc 1
3 = wooxp [—p gaeC(t)} , (4.12)
which upon integration yields
1 I+
C(t) = - In(1 t]. 4.13
(0= 32—t (14 pT 5 %t (4.13)

The time evolution of n(t) and T(t) is therefore

—2/(1+ae)
no_ (1 + p1 + a6w0t> , (4.14a)
no 2
= 1 . (1-ae)/(1+ae)
ﬁ-:<1+p‘+aw@> , (4.14D)
Vo 2

where wy = w(t = 0) and Ty = T(t = 0). Note that Eqgs. (4.14) are still valid for

the non factorized two-point distributions [39]. We conclude from this result that the
dynamics are up to the time rescaling t — ¢/p (and importantly up to the numerical
value of a.) the same as the ones obtained for pure annihilation [39]. The decay
exponents are given by n(t) oc t=¢ and T(t) o< t77, with

2
= 4.15
€= 10 (1.150)
e — 1
= . 4.15b
Ll ( )

The scaling exponents consequently satisfy the constraint & + v = 1.
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4.3.1.3 Rescaled kinetic equation

Inserting the scaling form (4.6) in Eq. (4.1) and making use of Eqgs. (4.14), we obtain
(see App. A.3)

(c12) [1 + ! _2% (d—i- cldicl>] fler)
- f(cl)/Rd des |er|fe2) — %%Rf, 7, (4.16)

where

1.1 [ de [0 @)@ ) [Flc))f(ch) = Flenflen] @7

and f31 is given by Eq. (4.4). In equation (4.16), the angular brackets denote average
with weight f: for a given function ¢(cy, c2)

(q) = /d01d02 g(c1,c2) f(c1)fea) (4.18)
Making use of the identity [37]
d ~
/Rd dec” <d+ c&> fle) = —k:(ck>, (4.19)

and integrating Eq. (4.16) over ¢; with weight ¢}, one obtains

2 [ (c12ch) ) 1—p 2 e
e=1+—-| 77— 1 — , VEk >0, 4.20
R (st Ry o 2
where pp = — [pa dei P I(f, f) and from Eq. (4.9) ae = (c12¢2)/({c12)(c2)) is the

energy dissipation parameter.

4.3.1.4 First non-Gaussian correction

The solution of the Boltzmann equation for pure annihilation dynamics (p = 1) is
non Gaussian in several aspects. The tail of the distribution is overpopulated [39],
and deviations from the Gaussian behavior may also be observed near to the velocity
origin [39, 70|. It is thus reasonable to think that the velocity distribution function
obtained upon solving Eq. (4.16) will show similar deviations. To study the correction
close to the origin, it is convenient to apply a Sonine expansion for the distribution

function f(c) [87]
f(c) = ./W(c) [1 + Z aiSZ-(cQ)] , (4.21)

i>1

where /T/l/(c) = 142 exp(—c?) is the Maxwellian, and S;(c?) the Sonine polynomials.
Due to the constraint (c?) = d/2, the first correction a; vanishes [37]. For our
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purposes, it is sufficient to push the truncation of expression (4.21) to second order,
where Sa(z) = 22/2 — (d + 2)2/2 + d(d + 2)/8. In order to compute a and as, one
may follow the method used for inelastic granular gases in Ref. [37]: we may use the
hierarchy (4.20) for £ = 2 and k£ = 4 to obtain a system of two equations for the
two unknowns «, and ao. The calculations are however tedious and it appears useful
to consider the alternative method that consists in invoking the limit of vanishing
velocities of Eq. (2.3) [39]. Indeed, since we expect that the tail of the exact solution
for the distribution function differs significantly from M(c)[l + D i1 a;Si(c?)], the

computation of low order moments of ]7 should give a more accurate result. From
Eq. (4.16)

(o) |1+ a2 52| FO) = FO) ) - 2 i TR L 2

We see that the limit in Eq. (4.22) involves moments of a lower order than py. Ne-
glecting the corrections a;, ¢ > 3, the computation of the latter limit is obtained from
the elastic limit of the result in App. A.2:

~ e SIM —d  d(d
3%Hﬁﬂ:‘gﬁnfzar%(£”ﬁ+ow®, (4.23)

where Sy = 21%2/I'(d/2) is the surface of the d-dimensional sphere. Inserting
Eq. (4.23) in Eq. (4.22), one obtains a relation between o, and ay that is supple-
mented with that corresponding to & = 2 in (4.20), in order to finally obtain «, and
az-. To this end, we make use of the various relations between moments of the velocity
distribution and the fourth cumulant ag derived in [39]. To linear order in ag, the
corresponding system reads

ae=1+%<1—§>+a2§ E—lp%p(d—l)} (4.24)
_ <01202> . 1 1 3
e m =ltggtag <2 + g) +0(a3), (4.25)

where use have been made of the relation ps = 0 (the elastic shocks conserve the
total kinetic energy of the colliding pairs), which consequently eliminates p in the
second relation. However, as it was shown in previous works |75, 79|, there are some
ambiguities arising from the linearization procedure, that may affect as if this quantity
is not small enough. We have thus solved the full nonlinear problem, and then in order
to have a simpler expression of as, chosen the linearizing scheme that yields the closest
result (the difference does not exceed 10%) to the nonlinear solution. It turns out as
well that this scheme is the closest one to the numerical simulations of Sect. 4.3.2.
This correction is given by:

g 3—2v2
4d+6— V2 + E8V2(d - 1)

az(p) = (4.26)

In the limiting case of pure annihilation p — 1, one recovers the result of Ref. [39].
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Inserting this result into the definition Eqgs. (4.15), we obtain the decay exponents
€and v =1 — & In the limit p — 0T, we note that as vanishes, as may have been
anticipated: the velocity distribution then becomes close to its elastic Maxwellian
counterpart that holds for p = 0. In this limit, the decay exponent is £ = 4d/(4d+ 1),
as conjectured in [70]. We emphasize that the limit p — 0 is singular: £ is bounded
from above by 4d/(4d + 1) for any p > 0, whereas £ vanishes for p = 0. It is therefore
important to exclude p = 0 from the limit of small annihilation probabilities p in
order to get well behaved limiting expressions.

4.3.2 Simulation results

We implement a direct Monte-Carlo simulation (DSMC) scheme in order to solve the
Boltzmann equation. The algorithm may briefly be described as follows. We choose
at random two different particles {4, j}. If their velocity is such that w = v;; - > 0,
they may collide. Time is subsequently increased by (N?w)~!, where N is the number
of remaining particles. With probability p the two particles are then removed from the
system, and with probability 1 — p their velocity is modified according to Egs. (4.5).
For more details on the method see |39, 88, 89, 105, 106]. As the number of particles
decreases, the statistics at late times suffers from enhanced noise. It is thus necessary
to average over many independent realizations.

In dimension one, the dynamics of annihilation creates strong correlations between
particles [63, 64]. This precludes a Boltzmann approach that relies on the molecular
chaos assumption. We will thus focus on numerical simulations of two-dimensional
systems, and we expect the role of correlations to diminish when the dimensionality
increases.

4.3.2.1 First Sonine correction

Making use of the relation between ag and the fourth cumulant of the rescaled velocity

distribution [79]
4 4
— -1 4.27
we show in Fig. 4.1 the numerical values of the first Sonine correction as for different
values of p. The agreement with Eq. (4.26) is good in most cases.

It turns out that the discrepancy between Eq. (4.26) and DSMC is mainly due to
the limit method of computing as. This method yields a very precise distribution ]7
in the relevant region of interest in the framework of a Sonine polynomial expansion,
namely the small velocity region. On the other hand, it is less accurate in the less
interesting high velocity region, hence the discrepancy (see Chap. 3 or [75]).

4.3.2.2 Decay exponents

Plotting the density n/ng (and the root-mean-squared velocity T/7y) as a function of
time t on a log-log plot gives the decay exponents (see Fig. 4.2).
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Figure 4.1: First Sonine correction ay from the analytical estimate (4.26) and from
DSMC as a function of the annihilation probability, for d = 2. The initial number of
particles is 5 x 10%, and each value is obtained from approximately 10* independent
runs. The results are not sensitive to the initial velocity distribution. However, the
convergence process is much faster starting from a Gaussian distribution.
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Figure 4.2: The decay exponents £ and ~ (inset) in two dimensions, obtained ana-
lytically from Eqs. (4.24) and (4.25) that are inserted in Eq. (4.15), and from DSMC
(symbols). The initial number of particles is 5 x 105, and the number of indepen-
dent runs approximately 100. The values of the exponents are not very sensitive to
the probability p. The horizontal line shows the Maxwellian analytical prediction to
zeroth order in ag, i.e., £ and v from (4.24) and (4.15) with ag = 0.
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Figure 4.3: The time dependence in two dimensions of n and v (inset) on a logarithmic
scale for p = 0.6 and a Gaussian initial velocity distribution, showing a clear power
law behavior. The straight line is the linear interpolation giving the decay exponent.
Ny (N) is the initial (remaining) number of particles. We have denoted v the initial
root-mean-square velocity v. The same quantity is denoted v for ¢ > 0. The deviation
observed for large times is due to the low number of remaining particles.

The numerical results are in agreement with the analytical predictions obtained
from the set of Eqgs. (4.24) and (4.25) that is inserted in Eq. (4.15). The predicted
power-law behavior is observed over several decades, as shown by Fig. 4.3 for p = 0.5.

In Fig. 4.4, we show that the scaling relation £+~ = 1 is well obeyed for all values
of p. Such a relation holds in fact independently of the molecular chaos assumption
underlying the Boltzmann equation.

4.3.2.3 Evolution toward the asymptotic distribution

In order to have a more precise understanding and accuracy check of our results, it is
useful to study the velocity distribution in the scaling regime. Indeed, the distribution
may be adequately described by the Sonine correction as at late times only. Before
the scaling regime is reached, the velocity distribution f(cl) is time-dependent. A
very precise check consists in studying the evolution of the non-Gaussianities. To this
end, it is useful to consider numerically the quantity f(c;)/M(c;) = 1 + a2S2(c;).
Fig. 4.5 shows the evolution of f(cl)/ﬂ(cz) for different times corresponding to dif-
ferent densities, starting from an initial Gaussian distribution.

It turns out that both methods of computing as [directly using its definition
in terms of the fourth cumulant (4.27) or using f(c;)/M(ci)], are fully compatible
numerically. However, the latter method requires much more extensive simulations.
It is instructive to investigate the evolution toward the asymptotic solution starting
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Figure 4.4: Numerical verification of the relation £ + v = 1 in two dimensions for
different values of p. Note the y-scale.
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Figure 4.5: Plot of f(c;)/M(c1) at different times corresponding to different densities,
for p = 0.5. The initial number of particles is 2 x 107 and there are approximately 10°
independent runs. The initial distribution is Gaussian and thus corresponds to the
flat curve. The continuous curve is the analytical prediction 1 + a2S59 with ay given
by Eq. (4.26). The inset shows a magnification of the small velocities region.
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Figure 4.6: Same as Fig. 4.5 but for an initial distribution such that u = 3.

from different initial distributions, which are characterized by their behavior near the
origin. To this extend we define the exponent y by the behavior f(c) ~ |¢|* for ¢ — 0.
Fig. 4.6 shows the non-Gaussianities of the evolution towards the scaling function for
an initial distribution characterized by p = 3, and Fig. 4.7 for p = —3/2. Note that
in order that the Boltzmann equation (1.29) is integrable close to the velocity origin,

it is required that g4+ x +d > 0.

For both initial distributions g = 3 and g = —3/2, the solution is attracted
toward a scaling function characterized by u = 0. Hence, there is a qualitative
difference between probabilistic annihilation and pure annihilation. Indeed, it was
shown in a previous work that for pure annihilation p is conserved [70], and more
importantly that p indexes the “universality classes” of this process (two distributions
with the same p are characterized by the same long time exponent &). Obviously,
adding the effect of elastic collisions in the dynamics of probabilistic annihilation
violates the conservation of p. Next, the question is to know whether the asymp-
totic distribution depends on p or not. We consequently show in Fig. 4.8 the ratio
F=0e) [ F=(er) = [+ ag =) /11 + a7,

The ratio tends to unity, which implies that aé”zo) = ag”:?)). Moreover, we checked

that for the negative value y = —3/2, the same conclusion holds. The convergence
is however slower due to the divergence of the initial distribution near the velocity
origin. We thus conjecture that not only the first Sonine coefficient of probabilistic
annihilation but also the full velocity distribution (and hence, all decay exponents)
show an universal property in the sense that they do not depend on the initial velocity
distribution if 0 < p < 1. This is a nontrivial result since it was shown that this is
not true in the case of pure annihilation p =1 [70].

Finally, in order to clarify the relevance of the scaling function, we studied the
fourth cumulant as as a function of Ny/N, for the same parameters as those in
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Figure 4.7: Same as Fig. 4.5 but for an initial distribution such that p = —3/2 and
initially 4 x 107 particles.
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Figure 4.8: Plot of f0:=0)(¢cy)/f(=3)(¢y) for three different times, and p = 0.5. We
see that for late times the ratio of the two distributions tends to unity, which leads
to conjecture that the first Sonine corrections ao are the same in both cases p = 0
and p = 3. The results reported here correspond to particularly extensive simulations
(note the vertical scale).
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Figure 4.9: Plot of ag as a function of the densities Ny/N for different values of pu.
There are approximately 5 x 10* independent runs.

Figs. 4.5-4.7. The result is shown in Fig. 4.9. The fact that ay reaches a plateau indi-
cates that the system enters a scaling regime at late times. For p = —3/2 (Fig. 4.7),
due to the initial central peak, the initial distribution is extremely different from its
late time asymptotic counterpart, so that the transient evolution takes longer and the
plateau regime is only approached. Finally, it may be observed in Fig. 4.9 that for
the 3 initial conditions the fourth cumulants converge to the same value. This is a
further illustration of the universal behaviour discussed above.

4.3.3 Summary of the section

We gave empirical arguments for the relevance of the Boltzmann description for proba-
bilistic ballistic annihilation in dimensions greater than one. We obtained analytically
the decay exponents of the density of particles and of the root-mean-squared velocity
in terms of the energy dissipation parameter a. It turns out that upon rescaling time
according to t — t/p, p > 0, the formal structure of the decay equations is the same
as in the case of pure annihilation p = 1.

In the scaling regime (that emerges in the long time limit), the first Sonine correc-
tion ag to the Maxwellian distribution was obtained as a function of the continuous
parameter p. This allows to establish an explicit relation for the decay exponents. We
have shown that in the limit p — 07, the exponent ¢ governing the decay of particles,
n(t) oc t7¢, is given by & = 4d/(4d + 1), thereby confirming a conjecture put forward
in [70].

Numerical simulations (DSMC) in two dimensions are in agreement with the an-
alytical correction ag(p). Moreover, the analytical values for the decay exponents
obtained from the first correction as are in good agreement as well with numerics.
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The relation £ 4+~ = 1 was shown to hold for all values of p. The study of the dynam-
ics of non-Gaussianities embodied in a9Sy reveals a qualitative difference with pure
annihilation dynamics: the parameter y describing the small velocity behavior of the
rescaled distribution is not conserved for probabilistic annihilation when 0 < p < 1.
Numerical results for different values of y leads to conjecture the universality of the
rescaled velocity distribution in this process (this universality being lost for pure
annihilation only, i.e., for p = 1).

4.4 The hydrodynamic description

Since the notations in this section are quite involved, Appendix A.4 contains a sum-
mary of the notations used.

We now consider a local inhomogeneity of the distribution functions.! Thus the
Boltzmann equation (4.1) now reads

(8t +vi- V)f(rvvl;t) = pJa[f> f] + (1 _p)Jc[f, f]’ (428)

where the annihilation operator J, is defined by [39]

Jalf, 9l = -0 1By /Rd dvavia f(r, vo;t)g(r,vi;t), (4.29)

where (31 is given by Eq. (4.4) and the elastic collision operator J. is defined by [103,
95, 102

Je[f, 9] = o1 /Rd dVQ/da' (-vi2)0(o - Vlg)(b_l — Dg(r,vi;t)f(r,ve;t). (4.30)

4.4.1 Balance equations

In order to write hydrodynamic equations, we need to define the following local hy-
drodynamic fields:

n(r,t) = /Rd dv f(r,v;t), (4.31a)
u(r,t) = n(i ) /Rd dvvf(r,v;t), (4.31b)
T(r,t) = W/}Rd dv VZf(r,v;t), (4.31c)

Y

where n(r,t), u(r,t), and T(r,t) are the local number density, velocity, and tem-
perature, respectively. The definition of the temperature follows from the princi-
ple of equipartition of energy. In Eq. (4.31c), kp is the Boltzmann constant and
V = v —u(r,t) is the deviation from the mean flow velocity. The balance equations

'The calculations of this section may be found in even more details in [107].
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follow from integrating the moments 1, mv, and mv?/2 with weight given by the
Boltzmann equation (4.28). We thus obtain (see App. A.5)

1 1
Ou; + —V P +u;jVu; = —p—wlf, Vifl, i=1,...,d, (4.32b)

mn n

2 T m 9
T + u; VT + W(Pijviuj + Vjqj) = pgw[fa fl—= pWBdw[f’ V= £l (4.32¢)
where we have summation over repeated indices, u = (ug, ..., uq), and
wif,gl ="' /2d dvidva|vialg(ri, vi;t) f(r2, vast). (4.33)
R

In the balance equations (4.32), the pressure tensor Pj; and heat-flux ¢; are defined

by

Pyj(r,t) =m/ dv V;V; f(r,v;t) =/ dvf(rav§t)Dz‘j(V)+%5ij, (4.34)
Rd Rd
anz/cN%Vﬁmw07 (4.35)
Rd
where
V2
S;(V) = (%VQ - #@T) Vi. (4.37)

One sees from Egs. (4.32) that when the annihilation probability p — 0, all quantities
are conserved. In addition, the long time solution of the system in this limit is given
by the Maxwell distribution [52].

4.4.2 Chapman-Enskog solution

In order to solve Egs. (4.32), it is necessary to obtain a closed set of equations for
the hydrodynamic fields. This can be done using the Chapman-Enskog method, by
expressing the functional dependence of the pressure tensor F;; and of the heat flux
g; in terms of the hydrodynamic fields. Note that other routes have been developed
as well [103, 108]. A thorough comparison of the different approaches seems however
to be a difficult attempt [108]. In order to apply the Chapman-Enskog method, it
is necessary to make two assumptions. The first one is that all temporal and spatial
dependence of the distribution function f(r,v;t) may be expressed as a functional

dependence on the hydrodynamic fields:
F(r,vit) = £ [v,n(r,6), ulr,8), T(x, )] (4.38)

What is the physical justification for the existence of such a normal solution? Suppose
that the variations of the hydrodynamic fields are small on the scale of the mean
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free path £ ~ 1/(no?1), i.e., |V Inn| < 1. Therefore, to first order the functional
dependence of the distribution function may be made local in the hydrodynamic fields,
leading to the normal solution written above. Note that none of the hydrodynamic
fields is associated with a conserved quantity. The theoretical question that arises is
to know if the new timescales thereby introduced by the cooling rates are shorter than
what is allowed for the existence of a normal solution [48]. For sufficiently small p
this should be the case. However, in the related context of granular gases, this point
is not yet quantitatively clarified and is still subject to discussions |48, 49, 50|]. The
justification of the normal solution may be done a posteriori by studying the relevance
of the results through the appearance of the homogeneous cooling state (HCS) for
example [39, 51]. The second assumption is based on the existence of (at least) two
distinct timescales. The microscopic timescale is characterized by the average collision
time and the spatial length defined by the corresponding mean free path. On the
other hand, the macroscopic timescale is defined by a typical timescale describing
the evolution of the hydrodynamic fields and their inhomogeneities. The difference
in those two timescales implies that on the microscopic timescale the hydrodynamic
fields vary only very slightly. Thus, those fields are on such time and space scales
only very weakly inhomogeneous. This allows for a series expansion in orders of the
gradients of the fields:

F= OO N2f@ 4 (4.39)

where each power of the formal small parameter A means a given order in a spatial
gradient. The formal parameter A may be seen as the ratio of the mean free path to
the wavelength of the variation of the hydrodynamic fields. This shows again the idea
of the separation of both microscopic and macroscopic time and length scales. The
Chapman-Enskog method assumes the existence of a timescale hierarchy, and thus of
a time derivative hierarchy as well:

8 00 oM 5@

== A A 4.40

ot o TV T (4.40)
where a given order in the temporal hierarchy (4.40) corresponds to the same order in
the spatial hierarchy (4.39). One thus concludes that the higher the order of the spatial
gradient, the slower the corresponding temporal variation. Inserting expansions (4.39)
and (4.40) in the Boltzmann equation (4.28) one obtains

ka(k) L el

k>0 1>0

=pJa | D NFOSNFOL 4 (1 —p)Je | D NFODINFOL L (4.41)

1>0 1>0 120 1>0

Collecting the terms of a given order in A and solving the equations order by order
allows us to build the Chapman-Enskog solution.
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4.4.2.1 Zeroth order

To zeroth order in the gradients, Eq. (4.41) gives

8 1O = pI,[f O, O]+ (1 = p)T[f©, fO. (4.42)

This equation has a solution, describing the HCS, and which obeys the scaling relation

FO, vty = 7. (4.43)

The approximate expression for f(c) was established in Sec. 4.3.1.4 and is recalled by
Eq. (4.65). In Eq. (4.43), vp = [2/(8m)]'/? is the time dependent thermal velocity,
where § = 1/(kpT), and ¢ = V/vp, V. = v —u. The existence of a scaling solution
of the form (4.43) seems to be a general feature that is confirmed numerically (direct
Monte-Carlo simulations or molecular dynamics) not only for ballistic annihilation [39]
or granular gases [41], but for the dynamics of ballistic aggregation as well [109, 110].

The function f(© is isotropic. Thus to this order the pressure tensor (4.34) be-
comes Pi(jo) = p(o)éij, where p(®©) = nkgT is the hydrostatic pressure, and the heat-
flux (4.35) becomes q(©) = 0.

The balance equations (4.32) to zeroth order read

oyn = —pn&,go), (4.443a)
du; = —porel?,  i=1,....d, (4.44b)
T = —pTel?, (4.44c)

where the decay rates are

1
&) = —wlfO, 1, (4.452)
0 = iw[f@%w@], i=1,....d, (4.45D)
¢ nur
0 _ _m © 2o _ L e 0 A4

For antisymmetry reasons, one sees from Eq. (4.45b) that {&?) = 0. The two other
decay rates are given later on by Eqgs. (4.68).

4.4.2.2 First order
To first order in the gradients, the Boltzmann equation (4.41) reads
P + 7O = —[9) + vy - V]FO, (4.46)

where

TP =pLalf®, f D)+ (1 = p)Ll £, V), (4.47)
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with
Lo[fO, fI] = — 1, [fO, fO] — g, [y, £O), (4.48)

Le[fO, f O] = —J[fO, O] — 7. [f D, O, (4.49)

The balance equations (4.32) to first order become

at(l)n + Vi(nu;) = —pnélD, (4.50a)
OV + %wm +uViu; = —pordll,  di=1,...,d,  (4.50b)
2
Gt(l)T +u; V;T + ETVZ’LLZ = —pT&é}), (4.50(’,)
where the decay rates are given by

2

e = Ew[f(())’f(l)]’ (4.51a)

L R L T N (451b)
nur nvr

(1) _ 2 140 (1) 0) y2 ey M () 24007 (45

By definition we know that f() must be of first order in the gradients of the
hydrodynamic fields, therefore for a low density gas [57]

f(l) =A,V;InT + B;V; lnn—l—CijVjui. (4-52)

The coefficients A;, B;, and C;; depend on the fields n, V, and T'. Inserting Eq. (4.52)
in Eq. (4.46) and making use of Eqgs. (4.38), (4.43), and (4.44) one obtains the following
set of equations for A;, B;, and C;; (see Appendix A.6):

{~p [0T0r +€0n0, + 3P| + (7 - ) } A - p3e0B; = Ai, (4.532)
{=p[60T0r + €00, + &) + (7 - p) } B - p0 A; = Bi, (4.53D)
{—p [f(TO)TaT + éﬁo)nan} +(J = pQ)} Cij = Cij, (4.53c)

where
4 = %w] %”g;j”, (4.54n)
B = —V.fO _ ’@WT%JC_‘?’ (4.54b)
Cij = a%[vz-f@] éa%[vkﬂ”]&j, (4.54c)
and Q is a linear operator defined by
g = 7O, g) - %f—‘f,)w 01,0+ Lo, g, (4.55)
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where g is either A;, B;, or C;;, and the functionals &(11)’ 8), and f(Tl) are obtained

from Egs. (4.51) upon replacing f(!) by g. It is possible to show that from Eqs (4.54)
the solubility conditions ensuring the existence of the functions A;, B;, and C;; are
satisfied (see App. A.7).

4.4.2.3 Navier-Stokes transport coefficients

The hydrodynamic description of the flow requires the knowledge of transport coeffi-
cients. The concern of the present section is to determine the form and coefficients of
the constitutive equations. This can thus be achieved by linking those macroscopic
transport coefficients with their microscopic definition. Using a first order Sonine
polynomial expansion, it is then possible to find explicitly the transport coefficients
to first order. This will allow us to express the functions A;, B;, and C;; in terms of
the transport coefficients, thus determining the distribution function f(l).

The pressure tensor may be put in the form
2
Pij(r,t) = p(0)5ij —n (V@Uj + Vjuz- — Eé@jvkuk> — C(Sijvkuk, (4.56)

where p(®©) = nkpT is the ideal gas pressure, and 7 is the shear viscosity. For a low
density gas, the bulk viscosity ¢ vanishes therefore the last term in the pressure tensor
may be neglected |57, 111, 48|. Fourier’s linear law for heat conduction is

¢ = —kViT — pVin, (4.57)

where « is the thermal conductivity and p a transport coefficient that has no analogue
in the elastic case. A similar quantity appears for granular gases, which again is non-
vanishing in the inelastic case only [24, 112].

The identification of Eq. (4.56) with Eq. (4.34) using the result of the first-order

calculation yields
P — /R v Dy (V). (4.58)

Similarly, the identification of Eq. (4.57) with Eq. (4.35) using the first-order calcu-
lation leads to

gV = / dv S; (V) fO. (4.59)
R4
The main steps of the calculation are shown in Appendix A.8, and the result is
. _ M 1
vy = gpéy
" K 1 1 .« d—1
LA bp Ot 4 2y 1)] o (4.600)
RO v = 2p6p
. np 2 0« « d—1
Ro  2uf —3péy’ — 2p&y
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where as is the kurtosis of the distribution

4 1 av fOw) -1, (4.61)

“27A(d + 2) vEn Jpa
and d(d+2) k
+ B
= —— 4.62
R0 2(d — 1) m Mo, ( )
_ d+2 T(d/2) VmkgT A
07 7] p@d1Dn2 gd-1 ° (4.63)

are the thermal conductivity and shear viscosity coefficients for hard-spheres, respec-
tively [5]. 5,(10)* = &(10)/1/0 and f(TO)* = §(TO)/V0 are the dimensionless decay rates, where
vy = p(o)/no, with p(© = nkgT. The dimensionless coefficients Vp, Vi, and v, are
given by

1 JpadVSi(V)JA 1 [adV Si(V)QA

o 4.64
T 0 [ dVS(VIA Tuy [ dVSi(V)A; (4.64a)
dV S;(V)JB; dV S;(V)QB;
vy = LI SDIB 1 Jp VSO, (4.64b)
"W fgedVSi(V)Bi Ty [adV Si(V)B;
vy = 1 JpadVD5(V)JCy 1 Jpa dV Dy (V)QCy (4.64c)

a Lo fRd dVDij(V)Cij pVO fRd dVDz’j(V)Cij '

It must be emphasized that the above results are still exact within the Chapman-
Enskog expansion framework. However, the relations (4.64) and the decay rates (4.45)
cannot be evaluated analytically without approximations. For this purpose, we first
consider the Sonine expansion for f(®). We have shown in Sec. 4.3.1.4 that to first
non-Gaussian contribution in Sonine polynomials the distribution f© reads

o0 = 2 () frean [ (L) - 452 (L) 22

’UT vr
't V o ]. —V2/1)2

where

is the Maxwellian and

g 3—-2V2
4d+6 — V2 + SE8V2(d 1)

ag = (4.67)

The coefficient as was shown to be in very good agreement with direct Monte-Carlo
simulations [52]. The relation (4.65) allows us to compute the decay rates (see Ap-

pendix A.9):

d+2 1
O« — 272 (1 _ g0 —
) 1 <1 as 16) , (4.68a)

o« d+2 8d + 11 A
& =1 <1+a2 ) (4.68b)
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Next, we retain only the first order in a Sonine polynomial expansion applied to A,
B, and C (see App. A.10). We thus have

A(V) = as M(V)S(V), (4.692)
B(V) = by M(V)S(V), (4.69b)
C(V) = ceM(V)D(V), (4.69¢)

where a1, by, and ¢y are the coefficients of the development. This allows us to
compute the relations (4.64). For this purpose, as already shown the probabilistic
collision operator J given by Eq. (4.47) can be split into the sum of an annihilation
operator and of a collision operator. Each contribution may thus be treated separately.
Therefore we make use of previous calculations for the collision process [99]. The
calculations for the annihilation operator are shown in Appendix A.11, and the final
results read

2880 + 1544d — 265842 — 1539d°% — 200d*

1
Ve =V = Do [16+27d+8d2+a2

32 32d(d 1 2)
+(1 —p)d%,ll <1 + a23i2> , (1.70a)

Vi = pé [3 ©6d 2 o, 28 3;52C(zd++9g)d2 + 243
o <1 ! a2%> | (4.70Db)

One may check that these expressions approach unity when p — 0. The transport
coefficients are thus found from Eqgs. (4.60) using Eqs. (4.62), (4.63), (4.67), (4.68),
and (4.70).

In order to establish the decay rates to first order, one needs the distribution f)
(see Appendix A.12):

B3 2m n

fOV) = = M(V) | =5 8i(V) (5ViT + i Vi) + GPa(VIViui| - (A7)

4.4.2.4 Hydrodynamic equations

The pressure tensor and the heat flux defined by Eqs. (4.56) and (4.57), respectively,
are of order one in the gradients. Thus their insertion in the balance equations (4.32)
yields contributions of order two in the gradients. Consequently there are second order
terms (so called Burnett order) that contribute to the first order (so called Navier-
Stokes order) transport coefficients, and the knowledge of the distribution @ is thus
necessary. Indeed, use was made of the zeroth order relations P;; = p(o)éij and ¢; =0
to establish the balance equation for energy (4.50c). However, it was shown in the
framework of the weakly inelastic gas — consequently for an elastic gas — that those
Burnett contributions were three orders of magnitude smaller than the Navier-Stokes
contributions [24]. For the sake of simplicity, we will here neglect those second order
contributions. For small annihilation probabilities p, this approximation is thus likely
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to be justified. However, we have a priori no control on the error made when the
annihilation probability p is close to unity.

The hydrodynamic Navier-Stokes equations are given by

A + Vi(nug) = —pn[¢l® 4 W], (4.72a)
Dyu; + ivjpij +uiViu = —por€ll,  i=1,....d, (4.72Db)
mn
2
T +u; VT + WBd(PijVin + Vigqi) = —pT[#) + f(Tl)]a (4.72¢)

where the decay rates 57(10) and f%)) are given by Egs. (4.68a) and (4.68b), respectively.
P;; and g; are given by Eqgs. (4.56) with ¢ = 0, and (4.57) respectively. The rates
57(11), &), and &E,wl) may be calculated using their definition (4.50) and the distribu-
tion (4.71). We find (see Appendix A.13):

¢ = o, (4.73a)
&(i) = —ur <m*%ViT + /f%Vﬂl) é;, (4.73b)
M=o 4.73¢
T )
where
e = (d+2)? ) —86 — 101d + 32d* + 884> + 28d* (4.74)
v 32(d— 1) 2 32(d + 2) ' '

We thus have a closed set of equations for the hydrodynamic fields to the Navier-
Stokes order.

4.4.3 Stability analysis

The hydrodynamic Egs. (4.72) form a set of first order nonlinear partial differential
equations that cannot be solved analytically in general. However, their linear stability
analysis allows us to answer the question of formation of inhomogeneities. The scope
of the present study is to find under which conditions the homogeneous solution to
zeroth order, i.e., the HCS, is unstable under spatial perturbations. To this end we
consider a small deviation from the HCS and the linearization of Egs. (4.72) in the
latter perturbation. Egs. (4.44) give the time evolution of the HCS, which is found
to be (see App. A.14)

t\ "

ng(t) = no (1 +pt—> , (4.75a)
0
t -

Ty (t) = To (1 —i—pt—) , (4.75b)
0

where the decay exponents are ~, = 57(10) (0)to, vr = &EFO) (0)tp, and the relaxation

time t5!1 = ﬁlo)(O) + §$)(0)/2. The subscript H denotes a quantity evaluated in
the homogeneous state. The density and temperature fields of the HCS are thus
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decreasing monotonously in time, with exponents that depend on the annihilation
probability through the kurtosis of the velocity distribution. The explicit expression
of the decay exponents may be obtained straightforwardly using Eqgs. (4.68).

The linearization procedure used here follows the same route as the method used
for granular gases [24]. We define the deviations of the hydrodynamic fields from the
HCS by

5y(r7 t) = y(r7 t) - yH(t)7 (4'76)

where y = {n,u,T}. Inserting the form (4.76) in Eqgs. (4.73) yields differential equa-
tions with time-dependent coefficients. In order to obtain coefficients that do not
depend on time, it is necessary to introduce the new dimensionless space and time

1 m
1= 51/0]{(2'3)‘ /mr, (4.77a)

1 t
T = 5/ dsvom(s), (4.77D)
0

scales defined by

as well as the dimensionless Fourier fields

px(T) = () (4.78a)

Wi(7) = Zizggz;jauk(f), (4.78b)

O (7) (1512,{((:))’ (4.78¢)
where

oy (1) = /Rd dle ™15y (1, 7). (4.79)

From Eq. (4.77a), it appears that lengths are made dimensionless making use of

the time dependent mean free path as a reference scale. Making use of Eqs. (4.78)
and (4.77) in Egs. (4.72), the linearized hydrodynamic equations read (see App. A.15)

0

[E + 2p€£°)*} pi(7) + P& Ox(7) + ikwne (1) = 0, (4.80a)
0 cox, d=1 5

- S

ik | (1= pgon) () + (1= pEar")(r)| =0, (4.80D)

9 oe 1,
[E —pr + 3" k‘ﬂ Wi, (1) =0, (4.80c)
9 O« d+2 o

|:§+p£T +2(d—1)/{k 9k(7')

d+2

0)*
+[2p§(T) +m

L k:2] p(T) + EkakH (1) =0, (4.80d)
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where W, and wy are the longitudinal and transverse part of the velocity vector
defined by wi, = (Wi -€x)ex and Wi, = Wi — Wi, , Where €y is the unit vector along
the direction given by k. Eq. (4.80¢) for the shear mode is decoupled from the other
equations and can be integrated directly so that

wi, (1) = wi, (0) exp[sy (p, k)7], (4.81)
where )
s1(p k) = pey" — oKL (4.82)

The transversal velocity field wy  lies in the (d — 1) dimensional vector space that is
orthogonal to the vector space generated by k, and therefore the mode s, identifies
(d — 1) degenerated perpendicular modes. The longitudinal velocity field wy, lies in
the vector space of dimension one generated by k. Hence there are three hydrodynamic
fields to be determined, namely the density py, temperature 6y, and longitudinal
velocity field Wi, = wkHé\k. The linear system thus reads

Px Px
u')‘kll =M |wyg, |, (4.83)
O O
with the hydrodynamic matrix
—2pel” —ik —pei”
- * % 0)x* — * - * %
M = —ik(1—peapt)  pey)t - Sk k(L -peikt) | (484)
0)* * . 0)* *
—2]965“) - Q(ddt%):u ]'/”2 _%Zk _pé.é“) - Q(dd—tzl)"'i ]'/”2

The corresponding eigenmodes are given by ¢, (k) = exp[s,(p,k)7], n = 1,...,3,
where s,(p, k) are the eigenvalues of M. Each of the three fields above is a linear
combination of the eigenmodes, thus only the biggest real part of the eigenvalue
sn(p, k) has to be taken into account to discuss the limit of marginal stability of the
parallel mode of the velocity field. Fig. 4.10 shows the real part of the eigenvalues for
p = 0.1 and d = 3 (obtained numerically).

One may identify three regions from the dispersion relations. We first define k|
(dimensionless) by the condition R[s | (ki ,p)] = 0 (R denotes the real part), i.e.,

(0)+
2
k= \/Lf?{ , (4.85)

and k| by maxy, R[s (K, p)] = 0 (the expression for k| is too cumbersome to be
given here); we have kj < k. Figure 4.11 shows the dependence of k; and k| as
a function of the annihilation probability p. Then for all £ > k, all eigenvalues are
negative and therefore, according to Eq. (4.81), correspond to linearly stable modes.
For k € [k‘”, k] only the shear mode wy of the velocity field is linearly unstable. In
the case of granular gases in dimension larger than one this region exhibits velocity
vortices [26, 27, 51, 113], with a possible subsequent non-linear coupling to density
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Figure 4.10: Real part of the eigenvalues in dimensionless units for probabilistic
ballistic annihilation with p = 0.1 and d = 3. The dispersion relation obtained from
Eq. (4.82) is represented by a dashed line (labeled s ) whereas the three remaining
relations obtained upon solving Eq. (4.84) are represented by continuous lines (labeled

inhomogeneities. From 559)* = §$)/uo and Eq. (4.77b) one may integrate Eq. (4.44c¢)
in order to find Ty (1) = TH(0) exp[—?p&f,?)*ﬂ. Then equating Egs. (4.78b) and (4.81),
making use of the latter expression for T (7), of Eq. (4.82), and of Eq. (4.78b) for
7 =0, one finds

dug, (1) = uk, (0)exp (—%n*k%‘) . (4.86)

The exponential decay in the reduced variable 7 translates in a power-law-like decay
in the original variable ¢ [since the exponent k = k() depends itself on time|. Indeed,
the integration of Eq. (4.44c) yields 7 = — ln[TH(t)/TH(O)]/QgrE,?)*, that we replace in
Eq. (4.86) and make use of the homogeneous solution Ty (t) given by Eq. (4.75b) in
order to finally obtain

"7* k2

(511kl (t) = uy, (0) <1 —l—p%)_% , (4.87)

where ¢ = to/vm(0) is the dimensionless relaxation time. In the linear approximation
the perturbation of the transversal velocity field therefore decays even if s (k,p) > 0.
The rescaled modes with k£ < k| are linearly unstable.

However, a crucial point is that for any real (finite) system, the wave-numbers are
larger than 27/L (assuming a cubic box of size L), which corresponds to a time de-
pendent dimensionless wavenumber kpi, = 2m/(Lno®"1), which increases with time
as 1/n. This lower cutoff therefore inevitably enters into the stable region kpyi, > k1,
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Figure 4.11: Wavenumber %k, and k| in dimensionless units as a function of the
annihilation probability p for d = 3.

so that an instability may only be a transient effect. In other words, an unstable
mode associated to a given value of k£ corresponds to a perturbation at a wavelength
which increases with time in real space, and ultimately becomes larger than system
size. However, at late times, the Knudsen number defined as the ratio of mean free
path (which is proportional to kmpiy) over system size, becomes large, which should
invalidate a Navier-Stokes-like description. Similarly, the present coarse-grained ap-
proach is a priori restricted to low enough values of k. Given that k| increases quite
rapidly with p (see Figure 4.11), the stable region k > k; might correspond to a
“non-hydrodynamic” regime when p is larger than some (difficult to quantify) thresh-
old. Conclusions concerning the stability of the system for such parameters rely on
the validity of the hydrodynamic description (that could be tested by Monte Carlo or
Molecular Dynamics simulations) which is beyond the scope of the present chapter.

At this point, we conclude that the system may exhibit transient instabilities,
but safe statements may only be made for very low values of p for which k, is low
enough to guarantee that the hydrodynamic analysis holds. The stable region is then
ultimately met irrespective of system size.

With the above possible restrictions in mind, it is instructive to consider the
counterpart of Figure 2.1 for “large” values of p (see Fig. 2.3). For p > 0.893...,
we obtain the unphysical result that some eigenvalues increase and diverge upon
increasing k. This deficiency, which is a priori decoupled from the question of the
validity of hydrodynamics or of the Chapman-Enskog procedure, might be ascribable
to the approximations made in the present calculations (Sonine expansion limited to
leading non Gaussian order, together with a linear approximation with respect to the
kurtosis ag).
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Figure 4.12: Real part of the eigenvalues in dimensionless units for probabilistic
ballistic annihilation with p = 0.95 and d = 3. The figure caption is the same as
for Fig. 4.10.

4.4.4 Conclusions

In this chapter we construct a hydrodynamic description for probabilistic ballistic
annihilation in arbitrary dimension d > 2, where none of the hydrodynamic fields can
be associated with a conserved quantity. The motivation is not only to discuss the
possibility of large-scale instabilities in such a system, but also to provide the starting
point for further (numerical) studies centered on the applicability of hydrodynamics
to systems in which there are no collisional invariants. To this aim, we consider the
low density and long time regimes in order to make use of the Boltzmann equation
with the homogeneous cooling state (HCS) as a reference state. The Chapman-Enskog
method then allows us to build a systematic expansion in the gradients of the fields,
with an associated timescale hierarchy. We consider only the first (Navier-Stokes)
order in the gradients to build the hydrodynamic equations describing the dynam-
ics of probabilistic ballistic annihilation. The transport coefficients and decay rates
are established from the microscopic approach neglecting Burnett contributions and
restricting ourselves to the first non-Gaussian term in a Sonine expansion. We then
linearize the hydrodynamic equations around the HCS. The subsequent dispersion
relations inform on the range of the perturbation’s wavelength and time-scales for
which the system may exhibit density inhomogeneities.

Interestingly, the behavior of the dispersion relations and of the wave-numbers
ki and k) is qualitatively similar to its counterpart obtained for (inelastic) granular
gases [24, 114]. This leads us to conclude that some features of those models do
not depend on the details of the dynamics, but rather on the parameter controlling
the dissipation (referring to the existence of non conserved quantities) in the system,
namely p [or (1 — a?) in the case of granular gases, where « is the restitution coeffi-
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cient|. However, a specific feature of our model is that the mean free path increases
rapidly with time. Consequently, even if the stability analysis leads us to the conclu-
sion that this feature drives the system in a region where the homogeneous solution
with a vanishing flow field is stable, the associated Knudsen numbers may be too large
to validate our coarse-grained approach. At very small values of p however, the stable
region (k > k; with the notations of section 4.4.3) should be relevant, but then, the
effects of transient instabilities in the case where the system is large enough to allow
for kmin < k1 or knin < k:” seem difficult to assess.

Another point to emphasize is the amplitude of the dissipation in the system,
which appears through the decay rates of the hydrodynamic fields. Again, there must
be a clear separation between the macroscopic timescales described by those decay
rates, and between the microscopic timescales. This separation of scales is required
in the hydrodynamic approach in order to make use of the hydrodynamic fields n,
u, and 7' that are associated with non conserved quantities. The decay rates having
the dimension of the inverse of a time, their inverse thus defines a timescale. If
those decay rates increase, the associated timescales decay. In our case, we clearly
introduce three such timescales that are supposed to be macroscopic; one for each non-
conserved field. It is therefore required that the maximum of these decay rates defines
a macroscopic timescale that is much bigger than the microscopic one. Nevertheless
those decay rates increase as a function of the annihilation probability, hence the
decrease of the associated timescale. One question that arises is to determine for
which value of p the smallest timescale introduced by the decay rates is of the order
of the microscopic timescale which increases as a function of time because of the
decreasing density of particles remaining in the system. When this is the case, the
hydrodynamic description becomes irrelevant and one may not make use of the fields
n, v, and T any more. As the parameter p controls the dissipation in the system,
the question at hand here —left for future work— is reminiscent of the controversial
issue of the validity of hydrodynamics for granular gases with “low” coefficients of
restitution. Probabilistic ballistic annihilation is a particularly well suited system to
treat this problem by comparison to granular gases since the phenomenon of granular
collapse is absent. The subsequent correlations that may arise are therefore absent
for probabilistic ballistic annihilation.



Chapter 5

Maxwell and very hard particle
models for probabilistic ballistic
annihilation: hydrodynamic
description

5.1 Outline of the chapter

The hydrodynamic description of probabilistic ballistic annihilation, for which no
conservation laws hold, is an intricate problem with hard sphere-like dynamics for
which no exact solution exists. We consequently focus on simplified approaches,
the Maxwell and very hard particles (VHP) models, which allows us to compute
analytically upper and lower bounds for several quantities. The purpose is to test the
possibility of describing such a far from equilibrium dynamics with simplified kinetic
models. The motivation is also in turn to assess the relevance of some singular features
appearing within the original model and the approximations invoked to study it. The
scaling exponents are first obtained from the (simplified) Boltzmann equation, and are
confronted against Monte Carlo simulation (DSMC technique). Then, the Chapman-
Enskog method is used to obtain constitutive relations and transport coefficients.
The corresponding Navier-Stokes equations for the hydrodynamic fields are derived
for both Maxwell and VHP models. We finally perform a linear stability analysis
around the homogeneous solution, which illustrates the importance of dissipation in
the possible development of spatial inhomogeneities. The content of this chapter is
based on Ref. [45].

5.2 Introduction

The possibility to describe in terms of hydrodynamic equations the evolution of a
system where some physical quantities are not conserved is a challenging problem
of non-equilibrium statistical mechanics. Several questions have to be faced as for
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example the validity of the underlying kinetic theory, the choice of the hydrodynamical
fields that are supposed to describe the relevant excitations in the problem, or the
consistency of the method itself that is used to deduce the coarse-grained description
from the kinetic theory. Much attention has been recently paid to such questions,
mainly in the field of granular gas dynamics (see, e.g., [12, 48, 104, 115]). In such
systems, the kinetic energy is not conserved, while the linear momentum and number
of particles are. However, even for low dissipation, the derivation of the hydrodynamic
relations, based on a hard-sphere-like Boltzmann equation is not a simple task and
several approximations have to be invoked [48]. These difficulties lead to consider
some simpler models by choosing ad-hoc collision term in the Boltzmann equation.
The so-called Maxwell and very hard particles (VHP) models [116, 117, 118| are
particularly interesting and reproduce some qualitative features of the granular gas
of inelastic hard spheres [41, 119, 120, 121, 122, 123].

Another class of problems for which not only energy but also the density and
momentum are not conserved is probabilistic ballistic annihilation (PBA). In such
a system, the particles move ballistically between collisions. When two particles
meet, they undergo an instantaneous collision and are removed from the system with
probability p or undergo an elastic scattering with probability (1 —p). Since collisions
are assumed to be instantaneous, two body events only are taken into account. The
PBA model was first introduced in one dimension in [91]. In the limit p — 0, where
density, momentum and kinetic energy are conserved, one recovers a system of hard
spheres for which the hydrodynamic equations are well known [7, 96, 97|. The other
limit p = 1 (pure annihilation) has been the object of some work [39, 40, 43, 58, 59,
60, 62, 65, 68, 70]. It was shown that in the long time limit the annihilation dynamics
is exactly described by the Boltzmann equation in dimensions higher than one [39].
This may qualitatively be understood by the fact that the density of the gas decays
and, at late times, the packing fraction is very low. This fact lead to conjecture that
the Boltzmann equation is an adequate description of PBA at late times for p > 0 [52].

Given that p may be considered as a perturbation parameter allowing to recover
the elastic limit, the PBA model is particularly interesting in view of testing the
relevance and validity of the hydrodynamic description in general, which is a con-
troversial issue. The analytical treatment with usual hard sphere dynamics however
appears to be quite involved [53], and we study here the simplified Maxwell and VHP
versions of PBA. The motivation is here is not only to test the ability of simplified
kinetic models to mimic the hard sphere dynamics for a model far from equilibrium
(and with no conserved quantity, a more severe situation than that of granular gases)
but also to shed some light on some peculiar features obtained in the hydrodynamic
study of Ref. [53]|. In particular, this work exhibited divergent transport coefficients
for a critical value of p. We will see that such singularities are absent in the simpli-
fied approaches, which may indicate that they are not associated with any physically
relevant phenomenon. It will also appear that Maxwell and VHP approaches provide
useful bounds for the hard sphere dynamics, so that similar inequalities as those found
in [43, 44| concerning the scaling exponents can be obtained.

The chapter is organized as follows. In section 5.3 we introduce the Boltzmann
equation for both Maxwell and VHP models of probabilistic ballistic annihilation, as
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well as the balance equations for the coarse-grained fields. In section 5.4 we briefly
describe the Chapman-Enskog scheme while section 5.5 is devoted to the Maxwell
model. We first find the homogeneous state, and solve the corresponding homoge-
neous balance equations. To first order in the Chapman-Enskog expansion we then
study the effect of a small spatial inhomogeneity. We follow the traditional route
to compute the transport coefficients, which consists in truncating the first-order
velocity distribution function to the first nonzero term in a Sonine polynomial expan-
sion [53]. We then show that this truncation does not constitute an approximation for
the transport coefficients since they can be obtained by solving the Maxwell model
exactly to first order. The VHP model is subsequently investigated in section 5.6.
We first find the homogeneous cooling state, and then solve the corresponding ho-
mogeneous equations. We implement Monte Carlo simulations in order to check the
decay exponents found analytically. Next, we establish the transport coefficients to
first order in the Chapman-Enskog expansion before presenting a comparison of the
transport coefficients of the different models. In Sec. 5.7 we finally perform a linear
stability analysis of the Navier-Stokes hydrodynamic equations around the spatially
homogeneous state, and compare the results with PBA of hard spheres. OQur main
findings and conclusions are summarized in section 5.8.

Since the underlying calculations of this chapter are cumbersome, we present only
the main steps in order to focus onto the more relevant results. Further technical
details or explanations may be found in Chapter 4 [53] and Appendix A.4 contains a
summary of the notations used.

5.3 The Balance Equations

The Boltzmann equation for the one particle distribution f(r,v;t) of particles anni-
hilating upon collision with probability p reads

(at +V1 : V)f(r7vl;t) :pJa[fa f] + (1 _p)Jc[f7 f]? (51)

where J, is the annihilation operator defined by

Jalf: 9] = =0 p(@)vy T g(r, vi;t) /]Rd dv viy f(r, va;t) (5.2)
and J. is the collision operator:
-z
aifgl =o' P [ aveaty [a5 07 - Dgtevist s, (53)
d R4

In these equations, d denotes the spatial dimension, v1s = |v1 — v is the modulus of
the relative velocity, Sq = 2n%2/I'(d/2) is the solid angle surface, I the Euler gamma
function, vr = 1/2/m the time-dependent thermal velocity, 8 = (kgT)™!, o is the
diameter of the particles, & is a unit vector joining the centers of two particles and
the corresponding integral is running over the solid angle. Finally, b~! an operator
acting on the velocities as given by Egs. (4.5). The choice x = 0 (z = 2) corresponds
to the Maxwell (VHP) model, respectively. For hard sphere dynamics, that would
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correspond to x = 1, the relative velocity vis gives the rate of collision and its presence
makes analytical progress difficult. A convenient simplification [118] to overcome this
difficulty is to replace it by vfw%fz where v is introduced for dimensional reasons.
The quantity ¢(z) which sets the relevant time scale in the problem can be freely
chosen, and will be used in the following analysis to obtain the desired limiting be-
haviour in the limit p — 0 (see also [41] for related considerations). We also note that
particles interacting with an inverse power-law potential are described by a kinetic

equation with a cross section of the same form as in Eq. (5.3) [118].

In order to write hydrodynamic equations, we define in Eqs. (4.31) the local hy-
drodynamic fields number density n(r,t), velocity u(r,t), and temperature T'(r,t)
(the latter definition being kinetic with no thermodynamic basis). The definition of
the temperature follows from the principle of equipartition of energy. In Eq. (4.31c),
kp is the Boltzmann constant and V = v — u(r,t) is the deviation from the mean
flow velocity. The balance equations follow from integrating the moments 1, mv, and
muv? /2 with weight given by the Boltzmann equation (5.1). Following the same route
as in Chapter 4 we obtain the balance equations (4.32), where again

slfigl == [ avigif.gl (5.4

and the pressure tensor Pj; and heat-flux ¢; are defined by Eqgs. (4.34) and (4.35),
respectively. As expected, when the annihilation probability p — 0, all three coarse
grained fields n, u, and T are conserved.

5.4 The Chapman-Enskog solution

The Chapman-Enskog method allows from Egs. (4.32) to build a closed set of equa-
tions for the hydrodynamic fields (see, e.g., [12, 48]). For this purpose, it is required
to express the functional dependence of the pressure tensor F;; and of the heat flux
q; in terms of the hydrodynamic fields. The Chapman-Enskog approach relies on two
important assumptions. The first one is the existence of a normal solution in which
all temporal and spatial dependence of the distribution function f(r,v;t) may be ex-
pressed in terms of the hydrodynamic fields, f(r,v;t) = f[v,n(r,t),u(r,t),T(r,t)].
The discussion of the relevance of this first assumption can be found elsewhere (e.g.,
in |48]). The second assumption is based on the separation of the microscopic time
scale (the average collision time and the spatial length defined by the correspond-
ing mean free path) and macroscopic time scale (the evolution of the hydrodynamic
fields and their inhomogeneities). This separation implies that the hydrodynamic
fields are only weakly inhomogeneous, which allows for a series expansion in the gra-
dients of the fields, f = f© +efM 4+ 2@ 4 | where each power of the formal
small parameter € is associated to a given order in spatial gradients. The Chapman-
Enskog method assumes the existence of an associated time derivative hierarchy:
d/0t = 00 /ot + 0W) /ot + €20 /ot + .... The insertion of these expansions in
the Boltzmann equation yields Eq. (4.41). The Chapman-Enskog solution is obtained
upon solving the equations order by order in €.
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5.5 The Maxwell Model

5.5.1 The homogeneous state
To zeroth order in the gradients, Eq. (4.41) gives
OV FO = pIalfO, FOT+ (1 = p)JLFO, £ O, (5.5)

This equation has a solution, describing the homogeneous state, and which obeys the
scaling relation

O, vit) = (o), (5.6)

where vp = [2/(6m)]'/? is the time dependent thermal velocity, and ¢ = V/ovr,
V = v — u. The existence of a scaling solution of the form (5.6) seems to be a
general feature present in different but related contexts [39, 41, 44]|. This solution
being isotropic, one has u = 0.

Santos and Brey |124] showed that there exists a relationship between the homo-
geneous solutions of the Maxwell model with p = 0 and p # 0. We shall here briefly
reproduce their arguments. It is possible to rewrite the Boltzmann equation (5.5) for
2 = 0 under the form

o) 1O wit) = ~(Cs + Can(®) O vit) + [ avi [ 6@ O wit)f O wist),

" (5.7)
where t' = (1 — p)t, Cs = [dox(d), x(6) = 0¥ ¢(x = 1)vr/Sy, and Cr =
[dox(a)p/(1 — p) is the removal collision frequency. Integrating Eq. (5.7) over v,
the evolution of the number density is governed by dyn(t') = —Cgrn?(t'), the solution
being n(t') = ng/(14neCgrt’), where ng = n(t’ = 0). If we define 7(¢') = fotl dsn(s)/ng
and F(v;7) = fO(v:t)ng/n(t'), then F(v;) satisfies the Boltzmann equation with-
out annihilation (i.e., Cr = 0). F(v;7) therefore evolves towards a Maxwellian, and
so does f©: we have f(c) = e /72

5.5.2 The zeroth-order Chapman-Enskog solution

) —

p(o)éij, where p(© = nkgT is the hydrostatic pressure, and the heat flux (4.35) be-
comes q(°) = 0. The balance equations to zeroth order read

Since f©) is isotropic, to zeroth order the pressure tensor (4.34) becomes Pl(jo

0n = —pne®, (5.8a)
0 = —pore®, (5.8D)

0T = —pTeyY, (5.8¢)
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where the decay rates are

1
& = —wlf, £, (5.92)
1
€0 = —w[fO VO], i=1,....d (5.9b)
nvr
0 _ _m ©) 207 _ L 10 £0)

For antisymmetry reasons, one sees from Eq. (5.9b) that &S?) = 0. The calculation of
57(10) and &EFO) are straightforward and give 5,20) = no®1pMup and &E,?) = (0. We have
written oM for ¢(z = 0). The temperature of the Maxwell model is therefore conserved
in the homogeneous state (time independent thermal velocity vp). In addition, one

has
no

- © )’
1+ pt&n”’(0)
where the subscript H denotes a quantity evaluated in the homogeneous state, and

57(10) (0) is the decay rate for t = 0. Note that Eq. (5.10) was already established in
Sec. 5.5.1.

ny(t) (5.10)

5.5.3 The first-order Chapman-Enskog solution

To first order in the gradients, the Boltzmann equation (4.41) reads
0 + 7O =~ + v, - V) FO, (5.11)

the operator J being defined by Eqs. (A.31) and (A.32). The balance equations (4.32)
to first order become

at(l)n + Vi(nu;) = —pneD, (5.12a)
3t(1)uz' + %V@(nT) +u;Vu; = —va&(Lli), i=1,...,d, (5.12b)

ONT + VT + %Tviui = —pTel?), (5.12c)
where the decay rates are given by
W = %W[f(o),f(l)], (5.13a)
W = %w[f(o),Vif(l)] + %w[f(l),Vif(o)], i=1,...,d, (5.13b)
O = =Zalf O, O]+ Tl O, VAV 4 0, V2O 5.130)

By definition f() is of first order in the gradients of the hydrodynamic fields; for
a low density gas [12]

f(l) =A,V;InT + B;V; lnn—l—CijVjui. (5.14)
The coeflicients A;, B;, and C;; depend on the fields n, V, and T.
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5.5.3.1 The approximate first-order Chapman-Enskog solution

The hydrodynamic description of the flow requires the knowledge of transport coef-
ficients, which may be determined from a Sonine polynomial expansion of the first
order distribution function. In addition, the pressure tensor may be put in the form
2

Py(r,t) = p V8 — 1 (Viuj + Vju; — y

5ijvkuk> — (6i; Viug, (5.15)

where p(© = nkgT is the ideal gas pressure, 7 is the shear viscosity, and ( is the
bulk viscosity which vanishes for a low density gas [48]. Fourier’s linear law for heat
conduction is

qi = —kV;T — uVin, (5.16)

where « is the thermal conductivity and p a transport coefficient that has no analogue
in the elastic case |24, 28|.

The identification of Eq. (5.15) with Eq. (4.34) using the result of the first order
calculation yields

P = /Rd dv Dij (V) fO. (5.17)

Similarly, the identification of Eq. (5.16) with Eq. (4.35) using the first order calcu-
lation leads to

gV = / dv S; (V) fO. (5.18)
R4
The calculation follows the same route as in Chapter 4, and we obtain
1
A (5.192)
7o Vn
d—11
k=L =072 (5.19b)
K0 d vy
. Ny
- =0 5.19
W= =0 (5.19¢)

where the thermal conductivity xg and shear viscosity 7y coefficients for hard spheres
(used here to obtain dimensionless quantities) are given by Eqgs. (A.27) and (A.28),

respectively [5]. The dimensionless coefficients v, and v are given by

c 1 fudVS(VIJA 1 o dV Si(V)QA
T e dVSVA Py [ dVSi(V)A;
1 [oadV Dy(V)JC; 1 foudV Dy(V)QC;;
W JeadVDy(V)C;j "ty [ dV Dy(V)Cyj |

(5.20a)

(5.20b)

V. =

where vy = p(o)/no7 with p(© = nkpT. Note that the above relations are still exact
within the Chapman-Enskog expansion. The approximation consists in truncating
the function f() to the first nonzero term in a Sonine polynomial expansion:
A(V) = axM(V)S(V), (5.21a)
B(V) = byM(V)S(V), (5.21b)
C(V) = coM(V)D(V), (5.21c)
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where a1, b1, and ¢ are the coefficients of the development, and

n _V2 /2
M(V) = e Vi /vr (5.22)

is the Maxwellian in the scaling regime. This allows one to compute the rela-
tions (5.20), and one finds (see Appendix A.16)

20(d/2) [ d+2
20(d/2) [d+2 d—1
Vi = oM 21/7;(11(—14/2) [ ;r + (1 —p)T] : (5.23b)

The parameter M governing the collision frequency may be freely chosen to allow
for a relevant comparison with hard sphere dynamics (see, e.g., [41]). We choose ¢
such that the transport coefficients are normalized to one for p — 0, that is when all
collisions are elastic. It is remarkable that for the Maxwell model a single parameter
such as ¢ is sufficient to ensure normalization of all the transport coefficients (this
will not be the case in the VHP approach). This leads to

d—1)/2
oM = u. (5.24)

V2I'(d/2)
The above value turns out to be the same as the one obtained from the elastic limit of
the Maxwell model of granular gases [41]. In the latter case, ¢ was chosen matching
the temperature decay rate with that characterizing the homogeneous cooling state of
inelastic hard spheres. With the choice (5.24) the transport coefficients (5.19) become

o1 (5.25a)
7’] = 5 . a
p&2 + (1 -p)
. 1
K= s , (5.25b)
2Ed—1; +(1-p)
) (5.25¢)

Following the same route as in Chapter 4, the first-order distribution function (5.14)
reads
3 2m U

FO e, Vit) = = M(V) T3S (VIRViT + 2

iy | 92
FEh D;j(V)Vju; (5.26)

5.5.3.2 The exact first-order Chapman-Enskog solution

By construction of the Chapman-Enskog method, the velocity moments of f are given
by those of the local equilibrium distribution f(©). It is then easy to show that the
decay rates to first order (5.13) are equal to zero [therefore Qf() = 0, where the
operator 2 is defined in Appendix A.17]. Proceeding in a similar way as in [41], we
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obtain in Appendix A.17 the exact transport coefficients for the Maxwell model, i.e.,
without any approximation on the form of f(!). This may be done by integrating
the Boltzmann equation (A.169) over V with weight mV;V; and mV?V;/2. With the
choice for oM given by Eq. (5.24), one finds the same transport coefficients as those
given by Egs. (5.25). This means that the truncation of O to its first nonzero term
in a Sonine polynomial expansion is a harmless approximation when looking at the
transport coefficients (this is a peculiarity of the Maxwell model). In fact, it turns out
that the transport coefficients depend only on the first term in the Sonine polynomial
expansion of f() [7]. For example, the heat current (4.35) may be rewritten under
the form (6, 7|

¢ = _¥miﬁ3 (a1 ViT + b Vin), (5.27)
where the first nonzero coefficients (a1, b1) (that may depend on n and T') in the
Sonine expansion are defined by Eqgs. (5.21). Therefore the latter coefficients always
give an exact result for the transport coefficients, but the problem at hand is to
calculate them exactly. This turns out to be possible within the Maxwell model.

5.5.4 Hydrodynamic equations

Since the pressure tensor and the heat flux defined by Eqgs. (5.15) and (5.16), respec-
tively, are of order 1 in the gradients, their insertion in the balance equations (4.32)
yields contributions of order 2. Knowledge of the second order velocity distribution
@ is therefore required in order to find the correct decay rates that contribute to
Navier-Stokes order. It was shown in the framework of the weakly inelastic gas of
hard spheres — and consequently for an elastic gas — that those Burnett contributions
were three orders of magnitude smaller than the Navier-Stokes contributions [24]. For
the sake of simplicity, we shall therefore neglect those terms, with a priori no control
on the resulting error. Nevertheless, such an approximation is expected to be increas-
ingly more accurate as the annihilation probability is decreased. The corresponding
hydrodynamic Navier-Stokes equations are given by

Ay + Vi(nug) = —pn[el0) 4+ W], (5.28a)

Dpui + %vjpﬁ +u;Viu = —por[€Q + €M), i=1,...,d, (5.28b)
2

T +uw;ViT + WBd(Pijviu]‘ + Vigi) = —pT[&E,?) + 55,11)] (5.28¢)

P;j and g¢; are given by Eqgs. (5.15) with ( = 0, and (5.16) respectively. The rates

7(11), &(Lli), and Egpl) may be calculated using their definition (5.12) and the distribu-
tion (5.26) [53]. We find that all decay rates are equal to zero except

d+2
(0) _
€Tl 2

. (5.29)

We thus have a closed set of equations for the hydrodynamic fields to the Navier-
Stokes order.
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5.6 The VHP model

5.6.1 The homogeneous cooling state

Integrating the Boltzmann equation (5.1) over V for = 2, one obtains

dn
T —pw(t)n, (5.30)

where

w(t) = n(tyvr()o?16V (cy), (5.31)
and (g(c1,¢2)) = [goadeidey g(c1,¢2)f(c1)f(c2) denotes the average of a function
g(c1, c2) in the homogeneous cooling state (HCS). We have written ¢V for ¢(z = 2).
Following the same route as in [39, 52| or in Appendix A.3, the Boltzmann equation
may be rewritten in the form

1— e d ~ ~ ~ 1—p 1 ~~ ~
) 14+ 255 (a+ e )| Fen = Fe) [ acactoflen) - 2 LHT
(5.32)
where
o — Jrza derdey [ do C%QC%f(Cl)f( 2) _ (c2yc3) (5.33)
[ fia de 2J(0)] fgaa derdes [ d& &, fler) flea) () {cty)
and
7.7l = /]R dey / 6 2,01 — 1) f(e1) Fles). (5.34)

The limit ¢; — 0 of the Boltzmann equation (5.32) encodes a useful information
for ballistically controlled dynamics [39, 52, 70, 75]:

el (

Next, we consider the first nonzero correction to the Maxwellian in a Sonine polyno-
mial expansion of the HCS:

a>ﬂmzﬂmﬂ—il—4mfwﬂ (5.35)

p Sd c1—0

F(e) = M(c) [1+ az8a(c?)] (5.36)

where Mv(c) = 7742 ig the Maxwellian and So(c2) = ¢*/2 — (d + 2)c?/2 + d(d +
2)/8 the second Sonine polynomial [7]. Egs. (5.35) and (5.33) form a system of two
equations for the two unknown a, and ag. Making use of the relations (A.164), it is
a straightforward task to compute the limit in the right-hand side of Eq. (5.35) [75],
which gives

Sy d?*(d+2)
Clllr_{l I[f f] 2R T 16 (5.37)
Using Eq. (5.36), one easily obtains from Eq. (5.33)
1 2
a1 4t (5.38)

Qe = d as 2d.
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Figure 5.1: Plot of ay as a function of the densities Ny/N for different values of y for
the VHP model and p = 0.5, d = 2, Ny = 5 x 107. There are approximately 5 x 10
independent runs. The deviation from the asymptotic value of as (inset) is due to the
low remaining number of particles (large Ny/N).

Note that Eqgs. (5.37) and (5.38) are exact relations for which all nonlinear contribu-
tions in ag were kept. However, those nonlinear terms cancel out in each case. Making
use of {c3,) = d, the insertion of Egs. (5.37) and (5.36) in (5.35) gives

<1—a2d—;2> [1—1—&2M] :1+a2d(d7+2)%. (5.39)

8 8

Eq. (5.39) admits two solutions, the first one being ay = 0 and the second one as =
—2[d+p(4—d)]/[d(d+2)p]. The second solution is not physical since it diverges for p =
0. Therefore az = 0 and the HCS of the VHP model within the approximation (5.36)
is described by the local Maxwellian Mv(c) = 774/2¢=¢* We also note that upon
discussing the potential ambiguities resulting from such a linearization scheme in ag
(as done in |75, 79]), the same conclusion is reached.

We study the evolution towards the asymptotic scaling solution starting from
different initial distributions characterized by their behavior near the origin. We
define the exponent p by f(c) ~ |c|* for ¢ — 0. Similarly to Sec. 4.3.2.3, we implement
DSMC simulations and study the fourth cumulant ag as a function of Ny/N for several
values of p (see Fig. 5.1). The fact that ag reaches a plateau indicates that the
distribution enters the scaling regime at late times. Moreover, it seems from the inset
that the scaling values for ay do not (or very weakly, note the y scale of the inset)
depend on u. For negative values of u, the convergence is however slower due to the
divergence of the initial velocity distribution (see, e.g., Fig. 4.7) near the origin (the
comparison of Figs. 5.1 and 4.9 shows that the convergence for p = —3/2 in the VHP
case is much slower).
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5.6.2 The zeroth-order Chapman-Enskog solution

Proceeding in a similar way as already described, we obtain a set of equations formally
identical to Eqgs. (5.8) and (5.9). The calculation of the decay rates gives &(3) =0,
§(TO) = no® 1¢VHPyr, and 57(10) = gﬁ”d. The HCS is therefore given by

’I’LH(t) = no(l +pt/t0)_’yn, (5.40&)
TH(t) = T()(l + pt/to)_’YT, (5.40b)

where the decay exponents are ~, = 57(10) (0)to, yr = &EFO) (0)tp, and the relaxation
time ¢3! = 5,(10) (0) + §$)(0)/2. In other words, we have

o 2
Toa+1 T oyt

Yn (5.41)
These quantities do not depend either on ¢ nor on the annihilation probability p.
The former result is an exact property of the dynamics under study (the factor ¢ may
be absorbed into a rescaling of time ¢, leaving scaling exponents unaffected) while
the latter may a priori be an artifact of the approximations made (it will however
be shown below that the p dependence —if any— is extremely weak). If we define
the root-mean-square velocity by 7 = y/(v?), then from the definition (4.31¢) of the
temperature T(t) T;I/2(t), and from Eq. (5.40b) we have T ~ ¢~ for long times,
with v, = v7/2. The decay exponents v, and ~,, as well as the decay exponents
for the Maxwell model, agree with the prediction of Krapivsky and Sire [43], and
satisfy the scaling constraint ~, + v, = 1, which essentially expresses the unicity of
the relevant time scale in the problem. Moreover, making use of the expression for
the decay exponents of PBA of hard spheres ')/,IES and %I,{S obtained to linear order in
ay (see Chapter 4) |52, 53], it is easy to verify explicitly that the Maxwell and VHP
models provide bounds [43]

2d
2d +1

1
2d+1’

<) <1, 0<yB(p) < (5.42)

for all p € [0,1]. We emphasized however that the previous inequality have the status
of “empirical” observations, and could not be anticipated from rigorous arguments.

We performed Direct Monte Carlo Simulations (DSMC) in order to verify the
decay exponents of the VHP model. The algorithm is similar to the one described
in [44, 52|. For the sake of completeness, we briefly outline the main steps of the algo-
rithm. We choose at random two different particles {i,j}. The time is then increased
by vT/(N2vi2j) where N is the number of remaining particles. With probability p the
two particles are removed from the system, and with probability 1 — p their velocities
are modified according to Egs. (4.5). As the fluctuations increase for small N, it is
necessary to average over several independent realizations in order to diminish the
noise. A log-log plot of the density n/ng and the root-mean-squared velocity 7/7g as
a function of time gives the decay exponents (see Fig. 5.2). The DSMC results are
in excellent agreement with the analytical predictions and the expected power-law
behaviors are observed over several decades (see. Fig. 5.3).
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Figure 5.2: The decay exponents 7, and ~, (inset) in two dimensions for the VHP
model (z = 2). The analytical predictions v, = 2d/(2d + 1) = 0.8 and v, = 1/(2d +
1) = 0.2 are shown by the continuous lines while the symbols stand for the DSMC
results (obtained from approximately 300 independent runs and 107 initial particles).
From the above data, it appears that the scaling relation ~,, + v, = 1 is well obeyed
(the deviation from 1 does not exceed 4 x 10™%) and that the scaling exponents do
not depend on p. Note the y scale.
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Figure 5.3: Time dependence of n and 7 (inset) for d = 2 and p = 0.5 on a log-log
scale. The initial velocity distribution is Gaussian. Ny (resp. N) is the initial (resp.
remaining) number of particles. vy = T(0) is the root-mean-square velocity at t = 0,
whereas we write v for T(¢ > 0). The dashed straight line is a linear interpolation
giving the decay exponent of the power-law, and the deviations to this law for large
times is due to the low number of remaining particles.

5.6.3 The approximate first-order Chapman-Enskog solution

The procedure is similar to the one followed within the Maxwell model of Sec. 5.5.3
(or [53]), and we find

1
= — (5.43a)

£ 1 0)x
vy = 3Py

d—12v] —2pe0" — 3pel”

* -_— -4
K e , (5.43Db)
(0)x
* d 1€{Z
_ .
w= R (5.43¢)

where X = v[2v; — 2p&”" — 3per”"] + pe {—4v; + 3plen”” + 267},

o1 JadVSi(VIB 1 [padV Si(V)QB;
T W e dVSWVB Py [ dVSi(V)B;

(5.44)

and g}f’)* = 5,(10)/1/0, @EFO)* = §$)/1/0. Truncating the function f) to the first term in

a Sonine polynomial expansion as it was the case for Eqgs. (5.21), the coefficients Vs
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vy, and v, may be calculated with the help of App. A.16. We find

« _ vapV2D(d/2) [ (d+2)° _d+2)(d+4)
vy =¢ @z P +(1-p) 1 , (5.45a)
o _ v oynpV2D(d/2) [ (d+2)(d +3) _ yd=1)(d+4)
v, =v, = ¢ =12 5 +(1—-p) 7 . (5.45b)
The free parameter ¢VHY setting the frequency collision has a priori no reason

for being the same as for the Maxwell model. We choose this quantity such that
n*(p = 0) = 1, which means that the shear viscosity for the VHP gas is set for
vanishing p to coincide with the shear viscosity ng of hard spheres. This allows for
a better comparison of the transport coefficients for the Maxwell, hard sphere, and
VHP models. Other choices for ¢VH are possible. The condition n*(0) = 1 leads to

4
VHP M
= R 2 —— 4
¢ ¢ (d+2)(d+4)’ (5.46)
so that

” 2d
5%0) T d+ 4 (5.47a)

0)* 2

The first order distribution function reads

33 2m 1

JO e, Vit) = === M(V) | =5 SiV) (5VT + pVim) + FPu(VIVjui| . (5.48)

where the transport coefficients are given by Eqgs (5.43).

5.6.4 Hydrodynamic equations

The decay rates to first order may be calculated using the definitions (5.12) and the
distribution (5.48) [53], which gives

() =, (5.49a)
(1) * 1 * 1 *

W) = —vr | K=V + p*=Vin | &, (5.49b)
¢ T n

=, (5.49¢)

where

e = d*(d +2)* VHP V2I'(d/2)

“8(d—1) 4r(d=1)/2"
The Navier-Stokes hydrodynamic equations are thus given by Egs. (5.28) with the
decay rates (5.47) and (5.49).

(5.50)
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Figure 5.4: Dimensionless shear viscosity n* as a function of the annihilation proba-
bility p for the Maxwell (thin continuous line), VHP (dashed line), and hard spheres
models (thick continuous line).

5.6.5 Comparison of the transport coefficients

We compare the transport coefficients for the Maxwell, VHP, and hard sphere models
(the coefficients for the latter model being given in [53]). Figs. 5.4, 5.5, and 5.6 show
n*, k*, and p*, as a function of the annihilation probability.

Note that once we have chosen ¢(x = 2) such that n* — 1 for p — 0 there is no
reason to expect kK — 1 in the same limit. Other choices would have been possible
such as enforcing x* — 1 when p — 0.

From Figures 5.4, 5.5, and 5.6 it first appears that Mawxell and VHP models
capture the essential p dependence of the “hard sphere” transport coefficients. In
addition, they provide in most cases lower and upper bounds for n*, k* and p*.
However, as already pointed out in [53], for strong annihilation probability p ~ pg,
the hard sphere thermal conductivity and “Fourier” coefficient p diverge (see Figs
5.5 and 5.6) which leads to a violation of the VHP upper bound for x and p in the
vicinity of pg. The fact that VHP and Maxwell models lead to smooth and regular
transport coefficients for all values of p is a hint that the hard sphere divergence
obtained in previous work [53] is a possible artifact of the underlying approximations
and probably does not point towards a change of behavior nor a qualitative difference
in the scaling or transport properties. This point will be further discussed in the
concluding section. We finally note that an a prior: similar deficiency was already
reported for the Maxwell model of inelastic hard spheres [41].
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Figure 5.5: Reduced thermal conductivity £* as a function of the annihilation proba-
bility p for the Maxwell (thin continuous line), VHP (dashed line), and hard spheres
models (thick continuous line). The vertical lines gives the value p = 0.893... for
which a divergence of the hard sphere transport coefficients £* and p* appears (while
the shear viscosity exhibits regular behavior, see Fig. 5.4).
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Figure 5.6: Transport coefficient p* as a function of the annihilation probability p
(see Fig. 5.5 for more details). The Maxwell model is not represented since in this
case p* = 0.
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5.7 Stability analysis of the Navier-Stokes hydrodynamic
equations

5.7.1 Dispersion relations

The hydrodynamic equations. (5.28) cannot be solved analytically in general. How-
ever, their linear stability analysis allows one to answer the question of formation
of spatial inhomogeneities. The present study establishes under which conditions
the homogeneous state is stable. We consider here a small deviation from spatial
homogeneity [see Egs. (5.10) and (5.40)| and the linearization of Egs. (5.28) in the
latter perturbation. The procedure used here follows the same route as for granu-
lar gases [24| or PBA of hard spheres [53]. We define the deviations of the hydro-
dynamic fields from the homogeneous solution by dy(r,t) = y(r,t) — ym(t), where
y = {n,u,T}. Inserting this form in the Navier-Stokes-like equations yields differen-
tial equations with time-dependent coefficients. In order to obtain coefficients that
do not depend on time, it is necessary to introduce the new dimensionless space and
time scales defined by 1 = v (t)\/m/[kgTu(t)|r/2, T = f(f dsvom(s)/2, as well as the
dimensionless Fourier fields px(7) = on(7)/ng (1), wk(r) = /m/[kpTH(7)]duk (1),
and 6 (1) = 6Tk(7)/Tu(7), where Syx(T) = [padle”™!5y(1,7). Note that 1 is de-
fined (up to a constant prefactor) in units of the mean free path for a homogeneous
gas of density ny(t). The dimensionless time 7(¢) gives the accumulated number of
collisions per particles up to time ¢. Since we will study both the Maxwell and VHP
systems, we recall here the general results valid for non-vanishing decay rates 5,(10),
55,9), and 551). Making use of the dimensionless variables, the linearized hydrodynamic
equation for the transverse mode wy, = wy — Wi, appears to be decoupled from the
other equations, where the longitudinal velocity field is given by wy = (Wi - €x)ek
and €y is the unit vector along the direction given by k. The transversal velocity field
wi, consequently defines (d — 1) degenerated shear modes. Upon direct integration,
we have

wi, (7) = wi, (0) exp[s (p, k)7], (5.51)
where .
s1(p.k) = peid — oKL (5.52)

On the other hand, the longitudinal velocity field W, lies in the one dimensional vec-
tor space generated by k. Hence there are three hydrodynamic fields to be determined,
namely the density py, temperature 6y, and longitudinal velocity field Wi, = wk”’ék.
The hydrodynamic matrix of the corresponding linear system is given in [53]. The
corresponding eigenmodes are given by ¢, (k) = exp[s,(p,k)7], n = 1,...,3, where
sn(p, k) are the eigenvalues of M. Each of these three fields is a linear combination
of the eigenmodes; thus only the biggest real part of the eigenvalue s, (p, k) has to be
taken into account to discuss the limit of marginal stability of the different modes.

We define k; by the condition Re[s (k1 ,p)] =0, i.e.,

(0)+
[2
k= %, (5.53)
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and k) by maxy, Re[s) (ky,p)] =0, kj < k1. Therefore if k& > k, all rescaled modes
are linearly stable. For k € [k, k1] only the rescaled shear mode is linearly unstable
(the latter may however be non-linearly coupled to the other modes), and for k£ < k|
all eigenvalues are positive which leads to instabilities. However, it should be kept
in mind that the previous discussion involves rescaled modes only, and should be
connected to the original r variable. Indeed, for any real system (for example a cubic
box of volume L?) the smallest wavenumber allowed for a perturbation is given by
27 /L, which from the definition of 1 corresponds to the time-dependent dimensionless
wavenumber ki, = 27/(Lno?"1C) where C = 47(@=1/2/[(d + 2)I'(d/2)]. Since the
density n(t) is a decreasing function of time, ki, increases monotonously and there
exists a time ¢, such that kpin(t) > k1 for ¢t > t,. The lower cut-off kpy;, therefore
eventually enters the region where the homogeneous solution is stable. For ¢t =1,
the system is however not in a spatially homogeneous state, but it is nevertheless
tempting to conclude that the perturbations will be damped for ¢ > ¢,. Although
this statement is not rigorously derived, we conclude here that an instability can
only be a transient effect (transient instabilities were also predicted for viscoelastic
granular gases with velocity-dependent restitution coefficient [13]).

The time t; can be estimated from the condition kpin(t;) = k1. Making use
of the hypothesis of small spatial inhomogeneities, we may replace the density n(t)
appearing in the definition of ki, (t) by the homogeneous density ng(t) given by
Eq. (5.40a). We obtain

t, 1 Lnoad_127r(d_3)/2
— = - k —-15. 5.54
to  p (d+ 2)T(d/2) () (5.:54)

Is the transient instability alluded to easily observable in a simulation? A typical
number of particles for molecular dynamics simulations is of the order of 10, and
noo? = 5 x 1073 (which corresponds to a rather low total initial packing function
ngo? /4 ~ 0.004). For p = 0.1 and d = 2 Eq. (5.54) gives t, =~ 8.6tq.... Making
use of Eq. (5.40a) to approximate the density, one obtains n(t;) ~ 0.61ng. The
density inhomogeneities therefore start to decrease after that the density decreased
to only 0.61 times its initial value, which for p = 0.1 corresponds in average to only 4
collisions per particle. For comparison purposes, inhomogeneities in granular gases are
observed after a few hundred collisions per particle [12, 113]. In order to observe the
previous (and presumably transient) instabilities one would need molecular dynamics
simulations with very large systems. Another condition is to have a large enough p,
which increases k|, see Fig. 5.9. Equivalently, increasing p increases the divergence
rate s; at fixed k, see Eq. (5.52). For sufficiently small p (or small system sizes)
Eq. (5.54) does not have a positive solution because kyi, > k| already for t = 0.
To sum up, the typical size of the inhomogeneities may grow as a function of time
until ¢ ~ ¢, but the subsequent evolution should drive the system back to a time
dependent homogeneous regime.
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Figure 5.7: Real part of the eigenvalues in dimensionless units for the Maxwell model
with p = 0.1 and d = 3. The dispersion relation obtained from Eq. (5.52) is rep-
resented by a dashed line (labeled s;) whereas the three remaining relations are
represented by continuous lines (labeled s)). The shear mode (s1) and sound modes
(which are on this figure such that s = 0 when k& — 0) are degenerated twice.

5.7.2 Comparison between Maxwell, very hard particles and hard
sphere results

For the Maxwell model, the temperature decay rate §$) vanishes. It follows from
Eq. (5.52) that k; = 0 and the transverse mode is stable, which is confirmed by
Fig. 5.7. The Maxwell model appears to be linearly stable for all values of the an-
nihilation probability p. On the other hand, within the VHP approach, the decay
rate £7(0) # 0. The transverse mode may consequently be unstable for some wave-
numbers k of the perturbation (see Fig. 5.8), which by nonlinear coupling to the other
modes may lead to density inhomogeneities. Other modes than the shear may also be
linearly unstable, when rescaled wave numbers are such that k& > k). The thresholds
ki and kj are shown in Fig. 5.9 for the 3 models. It appears again that the hard
sphere quantity is bounded below by its Maxwell counterpart and above by VHP.
Note that the linear stability analysis does not suffer from arbitrariness related to the
free parameter ¢(x).

The imaginary part of the eigenvalues embodies the information on the propaga-
tion of the perturbations. In Fig. 5.8, we identify 3 different parallel modes for small
enough k (k < 0.05). Given that the shear mode is always (d — 1) times degenerated
and that there are d + 2 modes in total, none of the parallel modes are degenerated
for low enough k. Increasing k up to the first bifurcation, the sound modes become
degenerated and have a nonzero imaginary value. The non-propagating sound modes
thus have bifurcated into a pair of propagating modes. Since the eigenvalue for the
transverse velocity field is always real, we shall study here only the imaginary part
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Figure 5.8: Real part of the eigenvalues in dimensionless units for the VHP model with
p = 0.1 and d = 3. The dispersion relation obtained from Eq. (5.52) is represented by
a dashed line (labeled s, ) whereas the three remaining relations are represented by
continuous lines (labeled s)). The first two biggest parallel modes are sound modes.
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Figure 5.9: Wavenumber &, and k) in dimensionless units as a function of the anni-
hilation probability p for d = 3. HS and VHP superscripts denote the hard spheres
and very hard particles models, respectively. Within the Maxwell model, one has
ki>::h|::0
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Figure 5.10: Wave number k), in dimensionless units as a function of the annihilation
probability p for d = 3. The Maxwell model is not represented since in this case
k, = 0 for all p. The main inset shows the imaginary part of the eigenvalues in
dimensionless units for the VHP model for d = 3 and p = 0.1. The smaller inset
shows the propagation gap k € [0.1006...,0.1046...] of the sound modes.

of the other eigenvalues. We define k, such that for all £ < k, all eigenvalues are
real. It means that only perturbations with small enough wave numbers A such that
AL > k,/(2mno?71) are propagating. Fig. 5.10 shows k, as a function of the anni-
hilation probability p for the VHP, hard sphere, and Maxwell models. Once more,
the VHP and Maxwell models appear as upper and lower bounds, respectively. From
Fig. 5.7 the Maxwell sound modes are degenerated for all £ and therefore the sound
modes of the Maxwell model are always propagating, i.e., k, = 0. In the VHP case,
Fig. 5.8 shows a propagation gap for the sound modes, i.e., a k- window with £ > k,,
where the sound modes are not degenerated. This is confirmed by Fig. 5.10 (smaller
inset). A propagation gap in the sound mode dispersion relation has been observed
in neutron scattering experiments for example [125, 126].

5.8 Conclusions

Making use of the Chapman-Enskog scheme, we have derived in this chapter the hy-
drodynamic equations governing the coarse-grained number density, linear momentum
and kinetic energy density fields for an assembly of particles undergoing annihilating
collisions with probability p and an elastic scattering otherwise. In between collisions,
the motion is ballistic. To this aim, the relevant “hard sphere”like Boltzmann equa-
tion has been simplified first into its Maxwell, and second into its very hard particle
(VHP) form. In both cases, the corresponding Navier-Stokes equations take the same
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form as in the initial hard sphere description and read

on + Vi(nu;) = —pn &, (5.55a)
1
i +—V;P;; Vjiu; = — uis .05b
Orui + mnvj i+ u;Viu pur €y, (5.55b)
2
T + w;V;T + —(PZ]VZU] + quz) = —pT&r, (5.55C)
nkpd
with
d+2 o2 o [kpT
n=—1vy=4———noc" "4/ —, )
& 5 10 T{d/9) no - (5.56)
§u; = 0, (5.57)
§r =0, (5.58)

for the Maxwell model, and

2d

&n = i (5.59)
1 1 d?(d +2)
v = —vr ( K=Vl + ' =Vin | s, .
&u; ’UT</<, TV + nVn) Y (5.60)
2
— 61
&r Tra (5.61)

in the VHP case [the transport coefficients £* and p* are given by Eqs. (5.43)].

Our analysis showed that the Maxwell and VHP simplifications, that are more
amenable to analytic treatment, not only capture the essential features of hard sphere
dynamics, but also provide lower and upper bounds for all comparable quantities.
Some important differences should however be commented upon. A first difference is
that Maxwell and VHP lead to regular transport coefficients for all values of the anni-
hilation probability, whereas a divergence occurs for annihilating hard sphere thermal
conductivity x and Fourier coefficient p. We concluded from this comparison that
this divergence is presumably not physical and could result from the more stringent
approximations put forward in the hard sphere computation. It turns out that the
hard sphere case is such that the velocity distribution is non-Gaussian to zeroth order
in spatial gradient, whereas it is Gaussian in Maxwell and VHP cases. This fact could
be at the root of the divergence observed in the transport coefficients.

The second important difference between Maxwell, hard sphere and VHP dynam-
ics is that within the Maxwell model, all Fourier modes are found to be linearly stable.
This fact is intimately related to the non dissipative nature of the corresponding dy-
namics, an aspect which may be surprising at first: although particles are permanently
removed from the system, the mean kinetic energy is conserved on average ({7 = 0).
This may be considered as a deficiency of the Maxwell (over)simplification. On the
other hand, VHP dynamics is such that the collision frequency increases with the ve-
locity of a given population of particles, which in turn implies that the kinetic energy
decreases faster than the number of particles, hence &p > 0. This dissipation is at
the root of possible instabilities in the coarse-grained fields. However, these insta-
bilities manifest themselves for suitably rescaled fields, and we argued in section 5.7
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that they should presumably only translate into transient instabilities for the “real”
fields. Indeed, due to the decrease of density n(t), an unstable Fourier mode has a
wavenumber increasing like n~!, and eventually enters into a regime where damping
should wash out the perturbation. This feature presumably provides at least a linear
saturation mechanism for instabilities, different from usual non-linear saturation ef-
fects, that may also play a transient role here if the initial conditions are sufficiently
unstable [in other words, if n(t;) < n(t = 0)]. Our stability analysis was never-
theless restricted to perturbations around the time dependent homogeneous state, so
that strictly speaking, the effects of transient instabilities that may drive the system
into a strongly modulated state are unclear at the moment. This calls for a careful
numerical (molecular dynamics) study of the coarse-grained fields, which is left for
future work. This would also allow to question the validity of the hydrodynamic de-
scription, in a regime where the wave number is not much smaller than the inverse
mean free path £=! oc ne?! (in the previous Figures, k is expressed in units of £~1,
up to a prefactor of order one).



Chapter 6

Dynamics of the breakdown of
granular clusters

6.1 Outline of the chapter

Recently van der Meer et al. studied the breakdown of a granular cluster [127]. We
reexamine this problem using an urn model, which takes into account fluctuations
and finite-size effects. General arguments are given for the absence of a continuous
transition when the number of urns (compartments) is greater than two. Monte Carlo
simulations show that the lifetime of a cluster 7 diverges at the limits of stability as
7 ~ N1/3, where N is the number of particles. After the breakdown, depending on
the dynamical rules of our urn model, either normal or anomalous diffusion of the
cluster takes place. We also study the Yang-Lee theory of phase transitions with a
two urn model where the partition function can be expressed as a polynomial of a
size-dependent effective fugacity z. This chapter is based on Refs. [128, 129].

6.2 Introduction

Dissipation of kinetic energy during inelastic collisions in gaseous granular systems
has profound consequences [130, 131]. One of the most spectacular is the formation of
spatial inhomogeneities [113|, which drastically contrast with the uniform distribution
of molecules with essentially elastic collisions.

Some time ago Schlichting and Nordmeier presented a simple experiment which
demonstrates some consequences of inelasticity of granular systems [132]. They used
a container separated into two equal compartments by a wall which has a narrow
horizontal slit at a certain height. The container is filled with particles and subjected
to vertical shaking. For vigorous shaking the particles distribute equally between the
two compartments. However, when the shaking is sufficiently mild, a nonsymmetric
distribution occurs. In such a case the compartment with majority of particles, due to
numerous inelastic collisions, is effectively “cooler” than the other one. Consequently,
less particles are leaving this compartment, which stabilizes such an asymmetric dis-
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tribution of particles. To explain this experiment, Eggers derived a phenomenological
equation for the flux F'(n) of particles leaving a given compartment [133]

F(n) = Cnexp(—Bn?). (6.1)

In the above equation n € [0,1] is the concentration of particles in a given urn and
B and C are constants which depend on the properties of particles, typical sizes of
the system, and on the parameters of shaking (the constant C' may be eliminated
by an appropriate redefinition of the time scale). In agreement with the experiment,
Eq. (6.1) predicts unequal distribution of particles for sufficiently large B. The above
type of experiment was repeated in the case when the number of compartments L was
greater than two by van der Meer et al. [134]. In such a case the appearance of unequal
distributions of particles is accompanied by strong hysteresis, which is in agreement
with theoretical analysis [135]. Moreover, certain aspects of these phenomena for
L = 2 were approached using a hydrodynamic description that stems from kinetic
theory of granular gases [136].

Another aspect of the L > 2 setup was further examined by van der Meer et
al in [127]. They studied the dynamics of configurations (clusters) starting from
all particles localized in a single compartment. Using a theoretical model based on
Eq. (6.1), they have shown that when shaking is strong enough such a cluster breaks
down and diffuses with the anomalous diffusion exponent 1/3 (in the following we
refer to this model as MWL). For less vigorous shaking, the cluster remains relatively
stable and only after some time it abruptly breaks down. Some of their predictions
were confirmed experimentally.

In the framework of the MWL model it is rather difficult to include the effect of
fluctuations. Such fluctuations might originate due, for example, to a finite number of
particles and especially close to critical points they might play an important role. In
an attempt to take such effects into account a generalization of Ehrenfest’s [137, 138]
urn model was recently examined in the case L = 2 [139]. The relative simplicity of
the model allowed for a detailed study of its various characteristics.

The motivation of the present chapter is to re-examine the breakdown of granular
clusters using the urn model in the case L > 2. In section 6.3 we define the model
and present its steady-state phase diagram for L = 3. We also argue that, in analogy
to the L-state Potts model in the mean-field limit, there are no continuous transitions
for L > 2. In section 6.4 we examine the dynamics of the breakdown of clusters in a
similar way as van der Meer et al. [127]. Although qualitatively our results are similar
to theirs, in our model the diffusion of the cluster is normal with the exponent 1/2.
Moreover, we calculate the size dependence of the lifetime of a cluster 7 and show
that at the limits of stability it scales as N1/3. In section 6.5 we present a modified
version of the urn model which in the steady state reproduces the flux (6.1). The
diffusion of the broken down cluster is then shown to be anomalous with exponent
1/3, as it was already found [127]. It was suggested that the essential features of the
MWL model are independent on the detailed form of the flux (6.1), as long as it has
a single hump [127]. On the contrary, our results show that at least the diffusion
exponent depends on some details of the flux and not only on its qualitative shape
(in our models the flux is also a single hump function). Quantitative criterions on
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the form of the flux function ensuring the existence of anomalous diffusion were given
in [140]. We then turn our attention in section 6.6 to the study the zeros of the
partition function of a two-urn model with a size-dependent effective fugacity. We
show that several predictions of the Yang-Lee theory of phase transitions apply to
our model. In Section 6.7 we mention the connection between the urn model and the
class of the so-called zero-range process [141, 142, 143]. Finally, section 6.8 contains
our conclusions.

6.3 The model and its steady-state properties

Our model is a straightforward generalization of the two-urn model that was intro-
duced to describe spatial separation of vibrated sand [139]. Namely, N particles are
distributed between L > 2 urns and the number of particles in ¢-th urn is denoted as
N;, with the constraint Zle N; = N. Urns are connected through slits sequentially:
i-th urn is connected with (i — 1)-th and (¢ +1)-th. Moreover, periodic boundary con-
ditions are used, i.e., first and L-th urns are connected. Particles in a given urn (say
i-th) are subject to thermal fluctuations and the temperature T of this urn depends
on the number of particles in it as:

where n; is a fraction of the total number of particles in a given urn (n; = N;/N)
and Tp and A are positive constants. Equation (6.2) is the simplest function which
reproduces the fact that due to inelastic collisions between particles, their kinetic “tem-
perature” decreases as their number in a given urn increases. The relation between
the temperature and the number of particles is complicated and depends on several
parameters like density of particles or type of driving [144], however indication of a
simple dependence of the form (6.2) may also be found in the literature [145, 146]. We
suppose that the distribution of particles as a function of height z above the bottom
of the urn satisfies the Maxwell-Boltzmann distribution

N;
p(z, N;) = —27 exp [—M} : (6.3)

k:BT(ni) k:BT(nZ-)
where ¢ is the Earth acceleration, m the mass of the particles, and kp the Boltz-
mann constant. The fraction of particles which are above a certain height h is given
by [°dzp(z, N;) o< exp[—mgh/kpT(n;)]. We measure the temperature in units of
mgh/kp, and define the dynamics of the model as:

(i) Ome of the N particles is selected randomly.

(ii) With probability exp[—1/T(n;)] the selected particle is placed in a randomly
chosen neighboring urn, where ¢ is the urn of the selected particle.

The above rules implies that the flux of particles leaving ¢-th urn is, up to a
proportionality constant [that may be absorbed in the definition of the time in the
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Figure 6.1: The steady-state phase diagram for the three-urn model. The small figures
provide a short description of the different regions and their stability. See text for
more details of the description of phases.

evolution equations (6.5)], given by

1
F(n:) = n: _ , 6.4
(1) =i exp |~ 70— (6.4
where T'(n;) is defined in (6.2). Let us notice that the flux (6.4), similarly to (6.1), is
a single hump function. Having an expression for the flux we can write the equations
of motion as:

d’I’LZ' 1

T = EF(ni_l) + %F(ni-i-l) - F(nl)7 (6'5)

where ¢ = 1,2,..., L. Steady-state properties of this model can be obtained using
similar analysis as in the L = 2 case [139] or as for the L > 2 case in [135], but with
fluxes given this time by Eq. (6.1). The results of this analysis in the L = 3 case are
presented in Fig. 6.1.

In region I the symmetric n; = ngo = ng = 1/3 phase is stable. In region II the
asymmetric ny > no = ng phase is stable. In the steady state since there is no external
driving there are no steady state fluxes. Therefore the flux leaving and entering a
given urn must be equal, which means the detailed balance condition

(ni)w((ni)) = (nj)w({n;)), (6.6)
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for all 4,7 = 1,...,3, where the brackets () denote a time average in the steady
state, and w(n) = exp[—1/T'(n)] is the transition rate. We define the difference of
occupancies of the urns by

o ny —no
g1 = ON (6.7&)
ny —ns
= . 6.7b
2T TN (6.70)

In terms of the variables (1) and (g9) the detailed balance conditions (ni)w({n1)) =
(n2)w({n2)) and (n1)w((n1)) = (ng)w({ns)) give

(14 2(e1) + 2(e2)) w [g (14+2(e1) + 2(@))}

(1= 4fer) + 2(e0)) w [g (1 4{er) + 2<sz>>} —0. (6.8)

and
(14 2(e1) +2{(e9))w [g (1+2(e1) + 2(62))}
(14 2(er) - Alea)) w [g (14 2(er) - 4<s2>>} —0. (6.9)

A solution to Egs. (6.8) and (6.9) is the symmetric state (1) = (e2) = 0. However,
the question is to determine whether this solution is stable against fluctuations. To
this purpose, we expand Eq. (6.8) to first order in (1) and (e2). Equating the first
order terms gives the continuous line in Fig. 6.1 locating the limit of stability of the
symmetric phase [note that Eq. (6.9) gives the same result]:

A 2A
To=1\/— — —. 1
0=1/3 3 (6.10)

This equation has a very similar form to the corresponding equation in the L = 2
case [139]. In region IIT (IV) the symmetric (asymmetric) phase is metastable. The
line separating regions I and IV (or regions IV and III) can be determined only nu-
merically as a solution of a transcendental equation, similarly to the L = 2 case [139].
For example, in order to find the line between regions I and IV, the procedure consists
in (i) solving the transcendental equation (e.g., using Newton’s method) giving £; and
€9 in region IT in order to obtain the stable asymmetric solution (ii) increasing A by a
small amount dA and solving the transcendental equation for the steady state, until
the solution is such that e; = g5 = 0 (iii) starting again from point (i) but with a
slightly different value of Ty. There is also a third type of solution where two urns
contain majority of particles and the third urn has only a small fraction of them
(n1 = ng > ng3). Such a solution, which has saddle-like stability, exists only in region
IT (see Fig. 6.2). Similar solutions can be found for the MWL model [134, 135].

An important, qualitative difference with the case L = 2, is that regions I and 11
are always separated by regions III and IV, hence the tricritical point is located at
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Figure 6.2: Urn occupancies n;(t), i = 1,...,2, in region II for Tj = 0.001, A = 0.3,
and N = 9999, starting from the symmetric state. One time step corresponds to N
iterations. The evolution shows the existence of the metastable phase ny = ny > ng.

the origin Ty = A = 0. It means that a phase transition between these two phases
is always accompanied by hysteresis effects. On the other hand in the L = 2 case
continuous transitions are possible, which are not accompanied by hysteresis [139].
Such a behaviour is actually in agreement with experimental data and with MWL
model [134].

Has this qualitative difference a more general explanation or is it rather a coin-
cidental property? In our opinion, absence of continuous transitions for L > 2 is a
generic property of such systems and at least to some extent could be understood.
First, let us notice that the phase transition for L = 2 is a manifestation of the
spontaneous symmetry breaking in the system: in certain regime one of the two iden-
tical urns is preferentially filled with particles. Such a situation resembles the phase
transition in the S = 1/2 Ising model, where below certain temperature the up-down
symmetry is broken and the system acquires spontaneous magnetization [147]. Actu-
ally, this analogy can be confirmed more quantitatively. It was shown that for L = 2
and at the critical point the probability distribution has the same moment ratios as
in the Ising model in dimension d greater than the so-called upper critical dimension
(d > 4) for which the critical exponents take mean-field values [148]. Let us notice,
that in our model particles are selected randomly which means that this is essentially
a mean-field model, and therefore it may be regarded as above the upper critical di-
mension. Moreover, our model is a dynamical, spaceless model, contrary to the Ising
model, which is a lattice equilibrium model. The fact that such different models have
some similarities shows that as far as the critical behavior is concerned what really
matters is symmetry. In both cases this is the Zy symmetry which is broken below
the critical point.
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Pushing this analogy further, we expect that for L > 2 the phase transition
in our model should be similar to the phase transition of the L-state Potts model
above the critical dimension (since the Ising model is recovered from the g = 2 state
Potts model) [149]. In the L-state Potts model at sufficiently low temperature one of
the L symmetric ground states is preferentially selected. However, it is well-known
that above the upper critical dimension and for L > 2 there are only discontinuous
transitions in the Potts model [149]. Consequently, the transition in the urn model
should be discontinuous.

The analogy may be pushed ever further. Let £ be the correlation length, 7 the
relaxation time (that corresponds to the lifetime of the asymmetric state in the urn
model, or to a state of broken up-down symmetry for Ising model). At the critical
point there is a power-law divergence 7 ~ £7. For Ising model above critical dimension
with Glauber dynamics (where the order parameter is not conserved by the dynamics,
sometimes referred to as “model A”) the dynamical critical exponent is z = 2 [150]. At
the critical point since the correlation length diverges, one may identify the correlation
length with the length of the system such that the number of particles N in the system
is given by N = &% the lifetime therefore reads 7 ~ £2 = N2/4. Going back to the
two-urn model, the order parameter corresponding to the Glauber dynamics is the
difference of occupancies of the urns e = N4 — Np, such that ¢ relaxes to zero, which
corresponds to the symmetric state. It was shown that the relaxation time diverges
as 7 ~ NZ? where at the line of continuous transitions z = 1/2, at the tricritical
point z = 2/3, and at the spinodal line z = 1/3 [139]. Making use of the latter
critical exponents and of 7 ~ N?/% one finds for the urn model d. = 4 (line of
continuous transitions), d. = 3 (tricritical point), and d. = 6 (spinodal line). The
latter critical dimensions are the same ones as those found from a field theory for Ising
model [151, 152, 153, 154, 155|. Those results confirm again the analogy at criticality
between urn and L-state Potts models for Glauber dynamics in high dimensions.
However, it should be pointed out that it is not obvious to define the system length
¢ for the (spaceless) urn model.

Let us notice that one can easily break the symmetry of the compartments, e.g.,
changing the boundary conditions, which in our analogy introduces some asymmetry
in the Potts model. It is possible that in such a case the system effectively will
become similar to the L = 2 system and will exhibit a continuous transition. Finally,
we expect that for L > 3 the phase diagram should be topologically similar to the
one for L = 3 shown in Fig. 6.1.

6.4 Dynamical properties of cluster configurations

In the present section we study certain dynamical properties of cluster configurations.
We used Monte Carlo simulation. Since it is rather straightforward, we omit a more
detailed description of the numerical implementation of the dynamical rules of our
model. Initially, we place all particles in one urn and examine its subsequent evolution.
If the parameters Ty and A are such that the system is in region I then such a cluster is
unstable and after some time due to fluctuations it breaks down and particles spread



112 CHAPTER 6. DYNAMICS OF THE BREAKDOWN OF GRANULAR CLUSTERS

1 T T T T
A=0.3
09 1
0169
08 r 1
= 07r 4
s
06 0171 0.1705 0.1703 1
05 r J
04 1
0-3 1 1 1 1
0 500 1000 1500 2000 2500

Figure 6.3: The time evolution of the fraction of particles of the cluster n. close to
the limits of stability of the asymmetric phase (N = 5 x 10*, L = 3). The values
of Ty are indicated. For A = 0.3 the limit of stability of the asymmetric phase is at
Th = 0.169829772 . ... For a larger number of particles N, stochastic fluctuations will
diminish.

throughout all urns. This is illustrated in Fig. 6.3 which shows the concentration of
particles in the urn in which the particles were initially placed. Let us notice that
(i) the breakdown is relatively abrupt and during the evolution up to the breakdown
the concentration of particles only slightly decreases; (ii) upon approaching the line
separating regions IV and III the lifetime of the cluster 7 increases.

Note the time asymmetry of the clustering process. Indeed, metastable (or un-
stable) clusters are shown to collapse very abruptly (see Fig. 6.3 or Ref. [127]). On
the other hand, formation of clusters starting from a metastble (or unstable) uniform
distribution of particles is a much slower process [134, 135].

Since in region III the asymmetric state has an infinite lifetime it means that 7
must diverge upon approaching this region. This behavior is seen in Fig. 6.4. In
addition to the three-urn case we also made analogous measurements of 7 for L = 5
and 7 and the results are also shown in Fig. 6.4. Let us notice that results presented
in Fig. 6.3 and Fig. 6.4 are similar to those obtained by van der Meer [127], although
they are parametrized by a different variable.

The limit of stability of the asymmetric phase can be regarded as a critical point.
Thus, we expect that exactly at this point, e.g., the lifetime 7 has a power-law diver-
gence 7 = N? and z > 0. Such a behavior is shown in Fig. 6.5. From the slope of
the straight line, which is a least-square fit to our data we estimate z = 0.32(3). Let
us notice that in the two-urn model at the limits of stability 7 exhibits a very similar
divergence [139]. In the case L = 2 more precise calculations were possible strongly
suggesting that z = 1/3 which is also consistent with the present three-urn model
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Figure 6.5: The average lifetime of a cluster 7 as a function of the number of particles
N at the limits of stability of the asymmetric phase. Each point is an average of at
least 300 runs.
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Figure 6.6: The average occupancy of a central urn N, as a function of time ¢. The
slope of decay is very close to 0.5 which confirms the diffusive nature of spreading
(Ny ~ t~1/2). Each curve is obtained from averaging over 50 independent runs.

result. Let us emphasize that because in our model the number of particles is finite,
we can study size dependent quantities as shown in Fig. 6.5.

Finally, let us examine the breakdown of a cluster in the many-urn case L > 1. In
such a case a continuous approach to the MWL model shows that after breaking down,
the cluster diffuses with the anomalous exponent 1/3 [127|. Results of our simulations
are shown in Fig. 6.6. From these data we conclude that spreading of a cluster occurs
with the ordinary exponent 1/2 rather than anomalously. Ordinary diffusion in our
model can be also easily explained analytically applying basically the same continuous
approach as used in [127]. In this approach the set of equations of motion (6.5) is
transformed into a partial differential equation. Then, one immediately realizes that
the linear term in front of the exponent in Eq. (6.4) leads to the ordinary diffusion
equation. On the other hand, the anomalous diffusion of MWL model can be traced
back to the quadratic (in n) term in the flux in Eq. (6.1). This quadratic term is
related with two-particle collisions [127].

6.5 The pair model

One can easily construct urn models for which the expression for the flux will have a
different form. In particular, redefining the effective temperature (6.2) and drawing
each time a pair of particles we obtain an urn model with the flux of exactly the
same form as Eq. (6.1). This dynamics takes into account some of the two particles
correlations. It allows us to recover some properties of the MWL model and establish
further results.
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Figure 6.7: The steady-state phase diagram for the two and three-urn pair models.
See text for more details of the description of phases.

The model, which we call a pair model, is similar to the previously described one,
except that its dynamics is now defined as:

(i) Two different particles are selected randomly.

(ii) If and only if the two particles are in the same urn, with probability exp|[—Bn?]
the selected particles are placed in the same randomly chosen neighboring urn,
where ¢ is the urn of the selected particles.

One can easily see that the probability that two randomly selected particles belong
to the i-th urn is given as N;(N; — 1)/[N(N — 1)], which for N — oo becomes n?.
Multiplying nf with the transition probability exp(—Bn%) we obtain that the flux in
the pair model is proportional to Eq. (6.1). It means that as far as the steady-state
properties are concerned, the pair model is equivalent to the MWL [134, 135]. In
particular for L = 2 one easily obtains the critical value B = 4 for the continuous
transition between the symmetric (B < 4) and asymmetric phase (B > 4). For L =3
one obtains two critical points B; = 6.552703411... and By = 9. The first one can
only be determined numerically. Similarly to Fig. 6.1, for B < Bj the symmetric
solution is stable whereas for B > By the asymmetric solution is stable. In the
interval B € [Bj, Bs] both symmetric and asymmetric solutions are stable, which is
the interval showing hysteresis with respect to the driving parameter B (see Fig. 6.7).

Qualitatively the dynamical properties of cluster configurations in the pair model
are similar to those described in previous section. In particular for L = 3 and B = By,
the average lifetime of a cluster 7 as a function of the number of particles N once more
shows a power-law divergence 7 = N7, with z = 0.31(3) suggesting that z = 1/3. It
shows a certain universality of this exponent with respect to different dynamical rules.

Finally, Fig. 6.8 shows the diffusion of the broken down cluster. Since the as-
ymptotic slope of our data is very close to 1/3 we conclude that in this case the
diffusion is anomalous, as already predicted by van der Meer et al. who used the
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Figure 6.8: The average occupancy of a central urn N, as a function of time t for
the pair model. The slope of decay is very close to 1/3 which confirms the anomalous
diffusive nature of spreading (N, ~ ¢t~/3). Each curve is obtained from averaging
over 50 independent runs.

continuous approach [127]. This prediction was recently confirmed from an analytical
derivation |141].

The pair model and the model examined in the previous section exhibit quali-
tatively similar behavior for most of the physical quantities. The main difference is
the diffusion: it is anomalous in the pair model and ordinary in model examined in
the previous section. It would be desirable to experimentally examine the nature of
diffusion in such systems.

6.6 The Yang-Lee zeros

The microscopic dynamics of the urn model is out of equilibrium. Indeed, in the
stationary state there is a balance between an energy injection mechanism (vertical
shaking of the urns) and dissipation (through inelastic collisions between particles).
However, level of coarse graining of our description is such that the corresponding
stationary probability distribution obeys the detailed balance [140|. Therefore the
model we are studying is formally an equilibrium one. Moreover, as it will be shown,
it can be mapped onto an equilibrium mean-field Ising model [159, 160]. A basic
ingredient of the Yang-Lee theory of equilibrium phase transitions is that the grand-
canonical partition function can be expressed as a polynomial of a size-independent
control parameter the fugacity. The purpose of this section is to show, on our
simple model, that this might not be a necessary condition. Indeed, this model has a
partition function with a polynomial structure in terms of a size-dependent effective
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fugacity, and thus the validity of the Yang-Lee approach might be highly questionable.
We show, however, that the Yang-Lee strategy for this model still works.

We first define the model and the partition function is introduced as a polynomial
of an effective size-dependent fugacity. Then the zeros of the partition function are
studied numerically. They are shown to form a very complicated structure in the
plane of the complex fugacity. Nevertheless, they offer information about the nature
of the phase transition in our model.

6.6.1 The L =2 model

Let us now consider the two-urn model [139], a generalisation of Ehrenfest’s urn
model [137, 138]. The N particles are distributed between two urns, the first urn
containing M particles and the second one N — M. The dynamics is defined as
follows. At each time step, one particle is chosen at random in one of the urns. Then,
with a probability that depends on the number of particles present in the chosen
urn, i.e., with a state-dependent transition rate, this particle moves to the other urn.
Correspondingly, the flux F'(n) of particles leaving a given urn at a certain time
depends on the fraction n of the total number of particles in the given urn at that
moment. This model is thus by construction mean-field like. The master equation
for the probability distribution p(M,t) that there are M particles in a given urn at
time ¢ writes [139]:

p(M,t+1) :F(%) p(M—1,t)+F<M;1>p(M+1,t)

4 [1 _F <%> _F (%)] p(M,1). (6.11)

Its stationary solution is found to be [141]:

M
pS(M):Z—lNHW))’ (6.12)

- (6.13)
M=1i=1 W)

This model can describe the transition between a symmetric distribution of the
particles in the two urns, associated with a single peak of the probability distribution
at M = N/2 (for N even), to a symmetry breaking state described by a bimodal
distribution with peaks at M = N(1/2 4+ ¢). The order parameter ¢ measures the
difference in the occupancy of the two urns. To produce this symmetry breaking it
is sufficient that the flux function F'(n) has a single hump [133, 134, 139]. Indeed,
since in the steady-state the flux leaving an urn is equal to the flux entering this urn,
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it is sufficient that there exists two different values of the density n; # no such that
F(ny) = F(ng). The simplest possible choice for F'(n) having this property is

F(n) =nexp(—An), (6.14)

which corresponds to a state-dependent transition rate exp(—An). Thus the problem
is characterized by a single control parameter A. In the thermodynamic limit N — oo,
this symmetry breaking corresponds to a second-order phase transition. In this limit,
the probability distribution becomes d-peaked around the macroscopic stable state,
that is determined by the condition that the flux of particles directed from the first
urn to the second one equals the flux of particles from the second urn towards the
first one, F'(1/2 —¢) = F'(1/2 4 ¢), namely

(1/2—¢e)exp[—A(1/2 —¢e)] = (1/2+e)exp[-A(1/2+¢)]. (6.15)

A first order Taylor expansion in € allows one to find the critical value A, = 2. It
follows that in the thermodynamic limit for A < A, = 2 the stationary state is the
symmetric one, while for A > A, = 2 the equipartition of particles is broken, i.e., a
second order phase transition takes place at A = A, = 2.

6.6.2 Analysis of the zeros of the partition function

With such a choice of the flux F(n), one may rewrite the normalization factor (6.13)
as:

N M .
N—-i+1 N+1 2A
Zn =1+ Z H%exp <—AT> exp <WZ>

M=1i=1
N N—-M+1
B N+1 2AM(M +1)\ 1 ,
M=1 j=N
N
A N!
=1 ——MN-M)) ———
+MZ::IGXP< N M )> AN = M)
N
N> M(N=M)
=> z . (6.16)
M=0 M

Here (J\A/;) = N!/[MV(N — M)!] is the binomial coefficient and z = exp (—A/N) is the
effective fugacity. One can see that Zpy is a polynomial in z, that is related to the con-
trol parameter A of the model, but z is not a size-independent quantity, and depends
on the number of particles N. The partition function (6.16) can be mapped onto the
partition function of the mean-field Weiss-Ising model. This can be done by setting
in Eq. (5) of Ref. [160]: H =0, n — M, 8 — A/2, z = exp(—2(J), and thus the
Ising-Weiss canonical partition function becomes Zy = z~V/4 Z]\N/IZO (]\J\//[)ZM(N—M)7
up to the prefactor z~N/4 that is irrelevant [159].

We embark on studying the zeros of the partition function Zy. As a first step
we find zeros of Eq. (6.16), considering z as a complex N-independent variable. The
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results of our numerical calculations, using MATHEMATICA, for three values of N are
represented in Fig. 6.9. Note that the order of the polynomial of Eq. (6.16) increases
rapidly like N2/4, and therefore we were not able to perform precise calculations of
the roots beyond N = 71.

With increasing N these roots approach the unit circle. One can argue that this
should indeed be the case. First, let us associate with the partition function (6.16)
the complex free energy density

fn(2) = (1/N)In(Zy). (6.17)

For large N and |z| > 1 the partition function is dominated by the central term
M = N/2 and hence fy(|]z| > 1) ~ (N/4)Inz. Thus we define f(V(z) = (N/4)In z
as the free energy of the symmetric (M = N/2) phase. On the other hand, for |z| < 1
the dominant contribution are coming only from the M =0 and M = N terms, and
thus fn(]z] < 1) ~ 1/N — 0 in the thermodynamic limit. This allows to define
f@(2) = 0 as the free energy of the asymmetric phase. To obtain the location of the
zeros of Zx in this limit we have to equate real parts of the complex free energies on
both sides of the transition [161, 162]. Namely, we require that

Re fV(2) = Re f@(2). (6.18)

Using a polar representation z = 7e’® we obtain from Eq. (6.18) Re(Inr + i¢) = 0
and the only way to satisfy this equation is to have r = 1. Hence, asymptotically, the
zeros should be located on the unit circle, as confirmed by our numerical calculations.

However, the model with z as a control parameter (which has a transition with a
jump of the effective free energy density) is quite different from the original urn model
with A as a control parameter (which has a continuous phase transition). Therefore,
in order to infer some information about the phase transition in the urn model we
have to analyze the behavior of zeros of Eq. (6.16) in the complex A-plane, that can
be obtained from the zeros in the z-plane using the relation A = —NIn(z). Those
zeros are in our model the equivalent of the Fisher zeros (zeros of the canonical
partition function in the complex temperature plane for equilibrium systems) [163].
Transformation of zeros into the complex A-plane is shown in Fig. 6.10.

With increasing N the zeros approach the critical point A, = 2 with a slope of
/4, and with a vanishing density of zeros. These numerical observations seem to
confirm the second-order nature of the phase transition [156].

In the following we establish analytically the form of the line of zeros close to the
critical point, and the final result is presented as a continuous line in Fig. 6.10. As
already mentioned, in the thermodynamic limit the partition function is dominated
by the stationary state (6.15). Below the critical point the leading term of Zy for
N — oo is given by the central peak M = N/2:

N N
N AN _9. 1
ZN (N/2>exp< A4>, A<A. =2 (6.19)

On the other hand, for A > A, there are two leading contributions to Zy coming,
respectively, from M = N(1/2 —¢) and M = N(1/2 + ¢), where ¢ is the solution of
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Figure 6.9: Zeroes of the partition function (6.16) in the complex z-plane for three
values of N. The continuous line is the unit circle. The inset illustrates the behavior
in the vicinity of z = 1.
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Figure 6.10: Zeroes of Eq. (6.16) in the complex A-plane, nearby the critical value
A, = 2, for three values of N. The inset shows more roots for N = 71. The
continuous line is the analytical perturbative estimation (6.26) of the line of zeros in
the thermodynamic limit, see main text.

the macroscopic stationarity condition (6.15). Therefore:

ZN ~ 2(]\7(1/2- €)> exp [—AN G - E2>] , A>A. =2 (6.20)

Correspondingly, the effective free energy density f = limy_oo(1/N)In(Zy) [161,
162] associated with this partition function is

fO = —A/d4+ 2, A< A, =2, (6.21a)
FO = —A(1/4—e%) —(1/2—¢)In(1/2 —¢)
—(1/2 +¢)In(1/2 +¢), A>A.=2. (6.21b)

Let us now consider the behavior of the partition function and of the effective free
energy density as a function of the compler parameter A. Then the condition (6.18),
Re f1) = Re f@), together with Eq. (6.15) determine the line of zeros in the com-
plex A-plane. Note that now ¢ is a complex variable obtained from the steady-state
Eq. (6.15).

However, Eq. (6.18) is now too complicated to allow for a complete analysis of
the zeros line in the entire A-plane. But we are mainly interested in the behavior of
this line in the vicinity of the critical point A. = 2. Therefore, we shall look for a
perturbative solution of Egs. (6.15) and (6.18) in the small real parameter &« = Re A—2
around A.. Making use of the form A = (24 «) +ia and € = x + iy, Eq. (6.15) gives
for the real part

42+ a)r —4ya+In[(1/2 —2)* +y*] —In[(1/2 + 2)* +4*] =0, (6.22)
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and for the imaginary part

2(2 + o)y + 2ax — arctan (1/2y_ a:> — arctan (1/2y+ a:> =0. (6.23)

Equation (6.18) gives

2 2_2)—2 tan [ —2— ¢ L) 2
(24 a)(z® —y%) axy+yarcan<1/2_x>+yarc an<1/2+$ n

—%(1/2—1—&6)111 (1/2 + ) + ] —%(1/2—1-)111 (a/2-2?+9?] =0. (629)

From Egs. (6.22) and (6.23) one concludes that a scales like o and that x scales like y.
Since the model exhibits a second order phase transition, the transition is mean-field-
like, which guides us to a scaling for 2 and y like a'/2. We are thus led to consider
the following developments:

A = (2+a) +ialag + aay + a?ag +...), (6.25a)
€= a1/2(aco + oz +olry+..) + ia1/2(yo + oy +a’ys +...). (6.25b)

We substitute these expressions in Egs. (6.22) to (6.24), then solve them order by
order in o. This leads to the following parametric expression for the line of zeros in
the A-plane, in the vicinity of A, = 2:

A= (2+4a)+ia[l+0.6a+0.2443... 0> +0.1749... 0" + 0.1235...a* + O(a”)] .

(6.26)
The result of this perturbative calculation up to O(a®) is represented by the contin-
uous line in Fig. 6.10. Note that, indeed, the slope of this curve at the critical point
is /4, sign of a second-order phase transition. For completeness we shall give as well
the solution for € up to order O(a®):

z = a/?[0.6728... —0.1182...a + 0.0169. .. o

—0.0137... 0% +0.0014...a"* + O(a®)], (6.27a)
y = a'/?[0.2787... —0.2854...a + 0.0754. .. a?

—0.0477... 0% +0.0115... a* + O(a®)]. (6.27b)

Moreover, one can compute the density of zeros on the curve defined by Eq. (6.26)
in the vicinity of the critical point using the relationship [161, 162]:

2u(s) = ‘% Im (f(l) — f(z)) , (6.28)

where p(s) is the density of zeros at a distance s from the transition point, distance
measured along the line of zeros. Making use of Egs. (6.21) one finds

Im(fV — f@) =22 + @)zy + a(z? — ?)
+ (1/2 — x) arctan <1/2+$> — (1/2 + x) arctan <1/2y+ a:)
+y/2ln[(1/2 —2)2 +y*] —y/2In [(1/2 + 2)2 + 4% . (6.29)
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Figure 6.11: The minimum distance between the zeros of Zny and A. = 2 in the
complex A-plane as a function of N~%2. The continuous line is a least-square fit of
the form a + bN_1/2(1 +¢N™1), where a, b, and c are fitting parameters. Note that

3/2 is used in view of the small values of N that are accessible

the correction term N~
to calculations. Extrapolating to the N — oo limit we obtain a/A. ~ 1%, i.e., very

close to zero, that confirms the theoretical value A, = 2.

Making use of

s:a\/1+(1+0.6a+...)2, (6.30)

of 0/0s = (9s/0a)~10/0c, and of the solution (6.27), this gives in the vicinity of the
transition point p(s) = as + O(s?), with s = v/2a and a = 0.0045. ... The density of
zeros vanishes as a power law towards the transition point on the real axis —i.e., we
recovered yet another characteristic of the equilibrium theory for second-order phase
transitions.

Up to now, we have shown that the zeros of the partition function indeed provide
information about the location and the type of the phase transition. But, as pointed
out [157, 158] certain critical exponents are also encoded in the behavior of these zeros.
A similar conclusion can be drawn in our model. As shown in Fig. 6.11, the distance
|A — A.| between the closest root A to A, = 2 in the complex A-plane decreases like
N—1/2. A simple scaling argument shows [157, 158] that |A— A,| should scale with the
system size as N~1/”_ where v is the correlation length critical exponent. However,
our urn model is structureless and the correlation length does not seem to be a well-
defined quantity. Nevertheless, we can implement a definition of the critical exponent
v that is based on the finite-size scaling of moments of the order parameter [164].
Since the probability distribution at the critical point for urn models is known [141],
using the standard prescription [164] we obtain v = 2. Such a value agrees with the
finite-size scaling observed in Fig. 6.11.

In conclusion, we considered a simple stochastic model with state-dependent tran-
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sition rates for which the partition function can be computed analytically, and that
exhibits a second order phase transition. Our aim was to show that, although it is not
a straightforward task to apply the concepts of the Yang-Lee theory, it is a remarkable
and non-trivial fact that they still apply when the microscopic transition rates (ob-
tained from a master equations description) of the model are state-dependent. Once
more, this system is an equilibrium one in a mathematical sense since it satisfies de-
tailed balance at a certain coarse-grained level of description. On the other hand,
from the physical point of view it is a nonequilibrium system, since there is a continu-
ous flow of energy through the system. The energy input is due to the shaking of the
container, and energy is continuously dissipated through inelastic collisions between
the particles.

6.7 The link with zero-range processes

It was possible to write the evolution equations (master equations) for the probability
distribution p(M,t) that in a given urn at time ¢ there are M particles [139]. The
corresponding master equations were thus solved analytically for L = 2 [141] and
L = 3 [140]. However, in order to obtain results for arbitrary L it is useful to consider
the model as a zero-range process (ZRP) [140, 142], as first defined by Spitzer [165].
A 7ZRP is a process defined on a lattice of arbitrary dimension where the hopping
probabilities w,(n,) from one site to another one depend only on the number of
particles n, in the initial site. Therefore if n, is the occupation number of site
i, the configuration of the system is defined by the set (which may be infinite) of
occupation numbers {n#}ﬁzl. The total number of particles is conserved by the
dynamics: Zu n, = N. The ZRP formalism provides a steady state probability
distribution P({n,}) which is a product measure of the form

N
P({n,}) = ﬁ };[lf#(nu), (6.31)

where L is the number of states (sites), Z(N, L) the normalization factor, and f,(n,)
the marginals which are given by [142]

WO
f(n) = 1 oy =t (6.32)

The urn model corresponds to the particular case of a homogeneous ZRP for which
the hopping probabilities w(n,) do not depend on the site. The hopping rates u(n) of
the urn model are given by Eq. (6.4), so that the probability distribution of finding the
system of L urns in the state {nq,...,nr} reads off straightforwardly from Eqs. (6.31)
and (6.32).
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6.8 Conclusions

We examined two versions of the L-urn model for vibrated sand (L > 2). Our models
recover qualitatively experimental findings and previous steady-state calculations. In
addition, they take into account fluctuations caused by the finite number of particles.
Using symmetry properties, we relate them with high-dimensional Potts model and
argue that for L > 3 the phase transitions in such systems should be discontinuous.
Although several quantities exhibit qualitatively similar behaviors for the two different
versions of the model, there are important differences too. In particular, these models
predict a different diffusion of a broken-down cluster, which can be either ordinary or
anomalous, i.e., the type of diffusion is very sensitive to the dynamical rules of the
model, and thus to the form of the flux. Next, for L = 2 we have shown that the
concepts of the Yang-Lee theory still apply for the second order symmetry-breaking
phase transition of the system, although the microscopic transition rates of the model
are state-dependent. Finally, we have noted that the urn models belong to the class
of zero-range processes.






Chapter 7

Conclusions and outlook

The class of systems we studied is defined by nonequilibrium dilute dissipative systems
made of many interacting particles. The methods we developed may be applied
to several systems such as granular gases, granular mixtures, pure annihilation, or
probabilistic ballistic annihilation to cite a few ones. We also developed another
(although related) model of a nonequilibrium dissipative system, namely the urn
model for the separation of sand, which captures an essential feature of granular
gases: the formation of clusters and symmetry breaking. We shall first recall the
main results presented in this thesis.

7.1 Summary of the main results

One of the main objectives of this thesis was to provide a well established hydrody-
namic description of probabilistic ballistic annihilation (PBA). In order to reach this
goal, we made use of kinetic theory to study several properties of PBA.

We focused first on a model of pure annihilation that was solved exactly. This
system is made of hard spheres with isotropic discrete bimodal initial velocity distribu-
tions. For such a system colliding particles disappear, therefore the discrete spectrum
of the velocity distribution is preserved by the dynamics. This is the key ingredi-
ent leading to the analytical solution for the velocity distribution. We implemented
molecular dynamics simulations which were confronted with the analytical solution
based on Boltzmann’s equation. This allowed to draw the important conclusion that
Boltzmann’s equation provides an accurate description of the dynamics already in two
dimensions (it is expected that in higher dimensions the role of correlations diminish,
while in dimension one the Boltzmann description fails) [40]. In the following, we
turn our attention to continuous initial velocity distributions.

The next step was to develop a new method for building the first nonzero cor-
rection to the Maxwell distribution for a homogeneous dissipative ballistic gas. This
method mainly consists in taking the limit of vanishing velocities of the rescaled Boltz-
mann equation. The scope of this method is very wide since it applies to granular
gases, mixtures of particles, pure annihilation, probabilistic annihilation, etc. For

127
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comparison, we first used our method on granular gases, for which several results
based on the “traditional” method are already available in the literature. We im-
plemented Monte Carlo simulations in order to check the predictions of the velocity
distribution for granular gases in the scaling regime fobtained analytically from our
limit method. Our conclusion was that fprovides a very accurate description (not
attained by the “traditional” method) in the velocity domain of interest (small veloc-
ities). Moreover, this new method turns out to be technically simpler to implement
than the “traditional” method [75].

Having developed this new general method and tested the accuracy of the Boltz-
mann equation for annihilation dynamics, we turned our attention to PBA. In this
case colliding particles annihilate with probability p and scatter elastically with prob-
ability (1 — p). The first result was to obtain the velocity distribution function for
the homogeneous state and the decay exponents for the coarse grained density and
thermal velocity fields. Monte Carlo simulations have shown that the predictions
obtained from our limit method turned out to be very accurate (however the limit
of vanishing annihilation p — 0 is singular). Let u characterize the behavior of the
velocity distribution close to the origin: f(¢) o ¢*, ¢ — 0. It is known that for
pure annihilation the dynamics preserves the exponent y. On the other hand, our
simulations led us to conjecture that in the long time limit the velocity distribution
does not depend on the continuous initial velocity distribution. All distributions are
attracted towards the same distribution characterized by u = 0, and thus become
universal [52].

The next step was to study inhomogeneities in the gas. This allows for the exis-
tence of fluxes inside the system, associated with nonzero transport coefficients. In-
homogeneities were described by means of a first order Chapman-Enskog expansion.
We thus established a hydrodynamic description of a system where none of the usual
hydrodynamic fields is associated with a conserved quantity. The main result was to
obtain the Navier-Stokes equations (first correction to the hydrodynamic equations
describing a homogeneous flow) with transport coefficients and decay rates that stem
from the microdynamics. The linear stability analysis of the latter equations allowed
to conclude that presumably any inhomogeneity may only be a very short transient
effect. This is to be contrasted to granular gases with constant restitution coefficient,
where dense clusters form as a result of an initial inhomogeneity [45]. We have also
studied two models that are simpler to treat analytically: the Maxwell and very hard
particles models. We have shown that they not only capture the essential features
of the hard sphere gas, but also provide upper and lower bounds to all comparable
physical quantities [53].

Finally, we developed an urn model for the separation of granular matter. This
phenomenological model is based on a master equations description. The model was
shown to illustrate interesting and sometimes counterintuitive features like sponta-
neous symmetry breaking (clusterization), existence of metastable states, or anom-
alous diffusion of clusters for example. The model recovers qualitatively experimental
findings. Moreover, using symmetry properties we argued that for L > 2 urns the
model seems to be related with high-dimensional L-state Potts model [128]. In the
L = 2 case, we were also able to show that the Yang-Lee theory adequately describes
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the phase transition in the case where the partition function is expressed in terms of
a size-dependent effective fugacity [129].

7.2 Extensions and open problems

We would like to mention some problems opened by and which have not been treated
in this thesis.

One peculiarity of probabilistic ballistic annihilation is that for long times the
Boltzmann equation is likely to give an adequate description of the dynamics. On the
other hand, molecular dynamics simulations allow to reproduce the exact dynamics
without any underlying assumption (like molecular chaos). Consequently, an impor-
tant point would be to implement molecular dynamics simulations of PBA of hard
spheres in order to obtain numerically the transport coefficients for different annihi-
lation probabilities p. Indeed, comparing those transport coefficients with the ones
obtained analytically in this thesis would allow to probe directly the validity of the
hydrodynamic description. This comparison would be independent from the prob-
lem of molecular chaos. The implementation of such a molecular dynamics program
represents, however, a considerable amount of work and is beyond the range of this
thesis.

The dynamics of PBA revealed different physical phenomena as compared to gran-
ular gases, e.g., inhomogeneities in PBA appear to be transient.! One may therefore
presumably encounter unexpected behaviors from the study of slightly modified ver-
sions of PBA. It would therefore be worth to investigate several other variants of PBA
as discussed below.

The undriven system of PBA of hard spheres is such that none of the hydrody-
namic fields is associated with a conserved quantity. However, one could consider
the action of a generalized “thermostat” F that plays the role of a source term in the
Boltzmann equation (1.18). One usually considers a deterministic force proportional
to the velocity V (Gaussian thermostat) [166, 167]

Vi Ff(r,vit) =y(r,0)Vy - [Vf(r,v;t)] (7.1)
or a stochastic force (white noise thermostat) [37, 78, 168, 169, 170]

~y(r,t)T(r,t)

Vo Ff(rvit) = -2

V2 f(r,vit), (7.2)
where (r, t) describes the amplitude of the force. However, the latter two thermostats
are such that the number of particles and the impulsion are conserved: fdvkav .
Ff(r,vit) = 0, k = 0,1. One has therefore to invent an additional particle and
momentum injection mechanism. It would then be possible to have source terms
that compensate exactly the loss of particles, momentum, and kinetic energy. The
system could therefore be driven into a nonequilibrium steady state (different from the

!We shall make a comparison with granular gases since it is a well studied system which unveils
a rich variety of models.
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homogeneous cooling state). Since the density would be conserved, the conclusions
regarding the linear stability of the hydrodynamic equations are likely to change.
This study would provide some valuable theoretical insight. Indeed, it is probable
that inhomogeneities would not show up only as transient phenomena and that they
could be observed from molecular dynamics simulations. Again, this analysis could
be carried out for PBA of hard spheres, as well as for the simpler Maxwell and VHP
models which allow for a higher order analysis in the Chapman-Enskog expansion.

Besides probing the validity of hydrodynamics there is a very large amount of pos-
sible studies starting from the PBA formalism developed in this thesis. Indeed, many
of the models implemented in the context of granular gases may be translated in the
context of PBA (thermostats [37, 166, 171], mixtures of particles |6, 172|, particles
with internal degrees of freedom [14, 15|, more complex collision rules with non-unity
tangent restitution coefficient [173, 174|, ...) for several interactions (Maxwell [41],
hard spheres [53|, and VHP models [45]), or numerical approaches (lattice gas au-
tomata [175, 176], molecular dynamics [83, 88, 102, 105], or Monte Carlo meth-
ods [102, 121, 177]), or even taking into account excluded volume effects with the
Enskog equation [57]. Obtaining interesting conclusions for some of those extensions
would be a rather straightforward work based on the results of this thesis. We shall
mention as well that finding an experimental realization of (probabilistic) ballistic
annihilation is a difficult task. However, it seems that the dynamics of point defects
in nematic liquid crystals in specific geometries shares some features with ballistic
annihilation [178].

Finally, using the results presented in this thesis it is straightforward to generalize
the formalism of PBA to inelastic collisions. This would lead to a unified kinetic theory
for probabilistic ballistic annihilation of granular gases. Again, a further possible
extension would be then to take into account the velocity dependence of the restitution
coefficient (PBA of viscoelastic particles), or a random restitution coefficient [84]. In
the case of granular gases, it is known that if the restitution coefficient depends on
the velocity, then instabilities are transient [12, 13]. It would therefore be interesting
to study how this velocity dependence modifies the conclusions regarding the linear
stability of PBA, and if inhomogeneities could therefore be observed from molecular
dynamics simulations.
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Appendix

A.1 Calculation of j;
We note Qq = [d& = 27%2/T(d/2) the surface of a d-dimensional sphere, then

[d& (6 - ¥12)"0(6 - V12)
3%

(T2 7 i) S o T2 (sin o)™ cos(pa-2)*0(cos wa»)

( ;1:_12 Iy d‘Pl) 027r dy sz_:zl(sm Om)™

1Q OW/Q d 0(sin 0)?=2(cos 0)*

= 5ilq

2 772 46 (sin 0)d-2

T{(d—1)/2T((k+1)/2]

EQ 20[(d+k)/2]

2 T T[[d-1D/2AT(/2)
2T'(d/2)

a1 D[k +1)/2]

Tl(k+d)/2’

1
Br = §Qd

1
o

which is Eq. (2.4).

A.2 Calculation of the limit ¢; — 0 of the collision term

We define the loss term fl and gain term fg by

== lim [ des / 6 0(6 - €19)(5 - 1) f(e1) F(ca) (A.2a)
Iy = 3}2"5% /R dez / d6 0(G - €12) (G - e12) f(ch) (h), (A.2b)

so that lim., o If, /=1 + z].
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Taking the limit ¢; — 0 of the loss term yields the exact result

I = —Bif(0)(ca), (A.3)

where 8, = n(@=1/2/T'[(d + 1)/2] is the particular case k = 1 of Eq. (2.4). Making
use of the relation

no—axt _ ™% T[(d+n)/2]
/Rd dx |x|"e = @ T (d) (A.4)

for « € R, with T the Euler gamma function, it is easy to show that within the
framework of the Sonine expansion (4.21), neglecting the coefficients a;, i > 3,

I'[(d+n)/2]

() = [1 + 2hn - 2)} s

8

Making use of the particular case n = 1, Eq. (A.3) becomes

E:—S‘;L\/;O) {1+aQW} (1—%), (A.6)

where Sy = [ d& = 2792 /T(d/2) is the surface of the d-dimensional sphere.

Defining 5 = (1 + «)/(2c) > 1, the precollisional rescaled velocities ¢, and post-
collisional ones c; are related by

¢y = ¢1 — feiz - 7)7, (A.Ta)
ch = cy+ f(c12 - 7)o (A.7b)

The gain term (A.2b) thus reads

I, = % dc2/d89(8-62)(& -ca) f[B(ca- o)) flca — B(ca-0)a], (A8)
(8% Rd

where the function fis isotropic. Performing the integration over co before that over
o, we choose the x Cartesian coordinate as corresponding to the & direction. The

velocity cg is thus written co = ¢;X+ ¢, with ¢, = (c3-6) E Randc] =cy—¢,X €
RY!. Eq. (A.8) becomes

fg - % do /Rd deg 6(cz) Crf(ﬁcw&)f(c2 — B 0) (A.9)
= % 0°° deg g /Rdl de; f(ﬂc@f( A +c2(1— 5)2) ' (A.10)

Eq. (A.10) is an exact relation within Boltzmann’s framework. Making use of the
the Sonine expansion (4.21) where we retain only the first correction ag, Eq. (A.10)
becomes

_ S o0
7, - d / de, e o 17+0-P] / dey o= 1+ asS5(522)]
0 Rd-1

" and
x {1+ a2 [} +c2(1-p)%]}. (A.11)
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With the definition of the second Sonine polynomial Sy(z) = 22/2 — (d + 2)z/2 +
d(d + 2)/8, one sees that Eq. (A.11) may be expressed as a sum of products of the
integrals

Ji(n) = /Rd_l dc, e_cicﬁ, (A.12a)
Jz(n) = / deg e_[52+(1_52)]0302, (A.12b)
0

that are straightforwardly computed using the relation (A.4). Tedious but technically
simple calculations thus lead to

I, = Sd;\jéo) [1 4-2@2 +ayDy (o, d) + a%Dg(a,d)] , (A.13)
where
Di(a,d) = m [2(1 +a?)2(d? — 2d — 5) + 4(d — 1) (o — 1)2(1 + a?)
+8(at + 602 + 1)] (A.14)
and
Do(a,d) = m [12a3(1 +a?)(d - 1)(d — 2) — 40*(1 + a*)(24 + 4d — d?)

+da(l +a%)(d +6)(d—1) — (1 +a®)(26 + 28d + 9d2)} . (A15)
Finally, the limit ¢; — 0 of Eq. (3.7) is given by the sums of Eqgs. (A.6) and (A.13).

A.3 Boltzmann equation involving moments

Inserting the scaling form (4.6) in the Boltzmann equation (4.1), the contributions of
the right-hand side become

2 ~ ~
PIlf A = =po [ dealenlFle fleo). (A.16)

and

n2
(L =p)Jelf, f]= (1—p)0d_1%1[f,f]7 (A.17)

where

F.f1= [ des [060@ @)@ - @lersl [ F(e) ~ Fenfle)]. (A18)

The left-hand side of Eq. (4.1) becomes

1 d _ mnoc d ~
O f(viit) = ﬁ c1)om — Sd1 f(cl)atv + %8—;(1—01]6(61)
n _ d ~ 1__
= ﬁ |: atn - df( ) 8ﬂl —C d—qf(cl)%8t1}:|
n d ~ R
= O¢lnn — 0y Inv d+cld—c1 flcr). (A.19)
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On the other hand, Eqgs. (4.14) and (4.15) provide:

1
Inn = —¢pln <1 +p —Zaewot> ) (A.20a)
1
In? = —ypln <1 +p zaeth> , (A.20Db)
therefore
1+ae
P—5—Wwo
Oylnn = —¢&p—s———| A21a
t €p1+p1+2aewot ( )
1+ae
Oy InT = —p Py =0 (A.21b)

1 —{—pH%th?

Making use of Egs. (A.21) in Eq. (A.19), and of Egs. (A.16) and (A.17) the Boltzmann
equation reads

1tae ~
2 0 [—£+’y<d—l—01di>] flcr)

pl —{—pH—%th C1
= —polnwp /}R dey o] fe) fc2) + (1 = p)o®'nwI[f, f]. (A.22)

Egs. (4.14) yield
1

_ A23
1+ pliPewqt (4.23)

nv = novp
that we insert in Eq. (A.22) in order to obtain

! +20tewO [—f—i"Y <d+cldic1>] fler)

— poig, /R des Jexa|Flen) Flea) + (1~ p)o"TIF 1. (A24)

p

Eq. (4.8) gives wp:
wo = noBoo” " Bi{c1a), (A.25)

which in Eq. (A.24) yields the form (4.16) of the Boltzmann equation.

A.4 Summary of the notations

We shall recall here some of the notations used through chapters 4 and 5. x and p
are the transport coefficients appearing in Fourier’s linear heat conduction law (4.57),
and 7 is the shear viscosity appearing in the pressure tensor (4.56). A quantity A
that is made dimensionless is noted A*. The corresponding dimensionless transport
coefficients are written

Ui

nt=—, (A.26a)
To

k= (A.26b)
Ko

ut= e (A.26¢)

T/’io ’
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where a(d 'k
B +2) kp
2 I'(d/2 T
d+2 T(d/2) VmksT A28)

07 7] j@1n2 g1

are the thermal conductivity and shear viscosity coefficients for hard spheres, respec-

tively. The dimensionless coefficients v

s Vs and v, are given by

1 JpdVSi(V)JA 1 [adV Si(V)QA,

. = A.29

T 0 Jn dVS (VA Py [a dV (V)AL (A-29a)
dV S5;(V)JB; dV S;(V)QB;

I/* — ifRd ( ) _pi fRd ( ) ’ (Ang)
v JpdVSi(VIB Ty [radV Si(V)B;

v = 1 JgadVDy(V)JCij 1 JpadV Dy(V)QC; (200

W JeadVD5(V)Cy; "0 Jpa dV Dy(V)Cy5

where V=v —u

Y

© g -1 T
p T d—1 B
— == A.
70 no d+2 T(d/2) ne m (4.30)

and p®© = nkpT is the zeroth order pressure. In Egs. (A.29), the operator J is given
by

Jg =pLalf©, g1 + (1 — p)L[f©, g, (A.31)
where
Lo[f9, 9] = =T [f ), g] = Jalg, £, (A.322)
L[f©. g = —J[f O, g] — Jclg, f O, (A.32h)
(A.32c)

g being an arbitrary function. The collision operator J. (annihilation operator J,)
is defined by Eq. (5.3) [Eq. (5.2)]. The linear operator 2 is defined by Eq. (4.55).

The velocity distribution function is denoted f(r,v;t). In the scaling regime

fevit) = 20 Fo), (A.33)

v (t)

where ¢ = V/up. The time dependent [through T'(¢)| thermal velocity is

vp = 2kpT (A.34)
m

We note the Maxwellian in the homogeneous cooling state by

M) = =" o <—V—22> , (A.35)

vl (t)md/? v
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and the Maxwellian by -
M(c) = 7= Y2 exp(—c?). (A.36)

Therefore, we obtain a similar relation to Eq.(A.33): M(V) = (n/v%)ﬂ(c)

The decay rate for the field A = {n,u;, T} reads §f4m), where m denotes the order
in the Chapman-Enskog expansion. The corresponding dimensionless decay rate is

(m)
gom _ 84 (A.37)
Yo

A.5 Balance equations

In the following we adopt Einstein’s summation convention.

A.5.1 Mass

Integrating Eq. (4.28) over vi we obtain
8t/ dv f(r,v;t) —i—Vi/ dv v, f(r,v;t)
R4 R4
:p/ dv J,[f, f1+ (1 —p)/ dv J.[f, f]. (A.38)
R4 R4

Using the definition (4.31), the first term of the left-hand side gives 0;n, and the
second nu;. The last term of the right-hand side is equal to zero since the collision
operator preserves the number of particles. Finally, using Eqgs. (4.29) and (4.33) we
see that the first term of the right-hand side is equal to —pw[f, f]. We thus obtain
Eq. (4.32a).

A.5.2 Momentum

Integrating Eq. (4.28) over vy with weight mvy we obtain
on /]Rd dvmu; f(r,v;t) +V; /Rd dv muv; f(r, v t)
= p/]R,d dvmu Jo[f, f]+ (1 — p) /]R,d dv mu; J.[f, f].  (A.39)
Again, for similar reasons Eq. (A.39) becomes
O¢(nu;) + V; /]Rd dv v f(r,vit) = —pw[f, v f]. (A.40)
Making use of the definition (4.34j for the pressure tensor, we establish
V; /]Rd dv v, f(r,vit) = %V]Pij + Vjnuiu;, (A.41)

that we insert in Eq. (A.40). Making then use of the balance equation for mass (4.32a)
we obtain Eq. (4.32b).
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A.5.3 Energy

Integrating Eq. (4.28) over v; with weight mv?/2 we obtain

8t/Rddvv2f(r,v;t)+Vj/]Rddvv2vjf(r,v;t)
—p [ PRI+ 0 p) [ AvRRIL ). (A2
R4 R4

The definition (4.35) for the heat-flux allows to find the intermediate result

Vg = %Vj /]Rd dvvjv2f(r,v;t) — %Vjuj /]Rd dvo? f(r,v;t)

—mvjuk/ dvvjka(r,v;t)—{—mvjnuqu. (A.43)
R4

Making use of the definition (4.34) for the pressure tensor, Eq. (A.43) yields

2
Vj/ dv v?v; f(r,v;t) = — (P;Viuj + Vjg) + Vjuj/ dv o f(r,v;t)
R4 m R4

2
— 2V nuju? + nuiVu? + ukV Py 4 2upVnujug.  (A.44)

On the other hand, the definition (4.31c¢) for the temperature yields

m 1

— 2 .
oT = T 2(8tn)/]Rddvv f(r,v;t)

m
—2 - 2 ; A4
by Os) = 20, /}R v f(rvi), (A43)

in which we use the balance equations (4.32a) and (4.32b) in order to obtain

O /]Rd dv o f(r,v;t) :—%(pw[f,f]—i—ujvjn—knvjuj)/ dvo?f(r,v;t)

RA

1
T — 2 <Euijij + nujurViu; + pw(f, ujij]> . (A.46)

Finally, the insertion of Egs. (A.44) and (A.46) into Egs. (A.42) leads us to Eq. (4.32¢).

A.6 Equations for A;, B;, and C;; to first order

We would like to rewrite the right-hand side of Eq. (4.46) in a form involving gradients
of the hydrodynamic fields. The normal solution (4.38) gives

8f(0)8_n af(O)% af(O)a_T
on Ot  Ou; Ot or ot’

o fO(r,vit) = (A.47)
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and using the lightened notation vi = (v1,...,vq), r1 = (r1,...,74q):

(0)
8f 8f Vjuz- + v; —af

Vit = oT

V.T. (A.48)

Since f(©) is known [Eq. (4.43)], then 8f©) /on = f<0> /n,and f© /ou; = —af©) oV,
the right-hand side of Eq. (4.42) becomes
V. £O = o (1 L.V,
— [0+ v Vi) fY) = —f —atn + Ewm

afo
v,

fO

(Opu; + vV ju;) — 5T

(O,T +v;V;T). (A.49)

The terms in parenthesis may be rewritten using the first order balance equations (4.44).
Then Eq. (4.46) finally takes the form

0 + 7V = A;V;InT + B;V;Inn + Cy;Viu, + pf ™), (A.50)

where V; = v; — u;,

0 0
Q) = O - U ey U (A.51)
and
A; = —V-Taf(O) _ kT 00 (A.52a)
TR T T ov e
kT of©)
g0 _ kB
B; Vif oV (A.52b)
2 701"
o (0)

The velocity dependence of f(O) occurs only through V/vp. Because of the normaliza-

tion the temperature dependence of the function f(© is of the form T_d/Qf(O) (V/TV/?).
Therefore

o S
T 5 Ta T d/2f( )(‘r/T1/2)]
d a9 0 =

If we define x = V /T2, then 8/dx; = T'/?0/dV;, and

—+(0)
9 —(0) 1/2 1.,19f
— =——V= A.54
W) = vz oL (A 54)
Inserting Eq. (A.54) in Eq. (A.53) we obtain
(0)
o f(0 +- VTd/2 0 % 7O T2y, (A.55)

8T 3Vz
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On the other hand

10
20V;

Comparing Egs. (A.55) and (A.56) one obtains

d 1 0 —
Vi O] = 550+ GUT T IO (A.56)

Taf<0> 10
or 20V,
The insertion of Eq. (A.57) in the Eqgs. (A.52) yields the relations (4.54).

We now turn to the left-hand side of Eq. (4.46). Making use of the form (4.52)
for M) then

[Vif . (A.57)

9 f(@)
ot

= VZ'IIIT

0A; 00T L A o0n L A OOy
or ot ' on Ot = Ou; O

oB; 00T 9B, 00n  aB; 0w,
+V;lnn

oT ot on ot 0w, o

v | % 0T 9C; 0O0n  9C;; 0Oy,
7l or ot on Ot = Oup Ot
1907 1000 OOy,
iVi——— +CiiVi—— A.
+ANVim = + BiVi- == + 0V, (A.58)

The derivatives of the hydrodynamic fields are expressed using the zeroth-order bal-
ance equations (4.44):

1007

2t _ .
T ot PViéy
_ §T §T éhT
——p( ——V;In 8TVIT+8]vuJ (A.59a)
100
._ — _pv.£0
ot pvzé‘n
9¢0) 5 (0)
= — " vl s InT i |, (A.59b
pnanVnn+ T Vi +au]Vu] ( )
8(0)11,1
o€ o6, 088
= —p n@nZVI n+T ZVIT—l—alV]k (A.59¢)

Egs. (A.59) have to be inserted into Eq. (A.58). On the other hand, since J is a
linear operator we have

JfY = (JANVINT + (JB;)V;Inn + (JCij )V jus. (A.60)

Egs. (A.60) and (A.58) |[combined with Egs. (A.59)] allow to express the left-hand
side of Eq. (4.46): [8t(0) + J]fM. Since again Q is a linear operator, Qf() has the
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same form as in Eq. (A.60) where we replace J by Q. Making use of Eq. (A.50) we
thus obtain

—pa; + (J —pQA; = A, (A.6la)
_pﬂi + (J — pQ)Bl = BZ', (A61b)
—pYij + (J = pQ)Ci; = Ci, (A.6lc)
where
(0)
e (0) OA; (0) OAi 8A ) OA,; 85 oeY o&u,
= Tep) o + &) o+ ) 5 aT + BT + CiiT . (A.62a)
(0)
_ e (0)9B; ne©25i 33 (0) 9B; 35 g O,
Pi=Ter 7 & o, N+ Bin—2— + Ciin—-, - (A.62D)
0)
L0y ac” acw ocl”  ogl? oy
= Tér o7 + nép, +§uk D, + A; o + Bi—— P — + Cj . (A.62¢)

Eqgs. (A.61) represents a system of d(d + 2) partial differential equations for the
d(d + 2) unknown A;, B;, and C;j. Some simplifications are however possible.

Using the scaling form (4.43) and by definition of the decay rates (4.45) one has
£0 0 T2, (A.63)

n

Besides the trivial relation 0, f( =0, this yields

0
857(1,%/‘ 1o

and
35 (0)
871 = §n7T, (A.65)

where gn T = {5 §T }. Making use of the relations (A.64) and (A.65) with 5

=0,
as explained in Sec. 4.4.2.1, from the system (A.61) one obtains the relations ( 53).

A.7 Solubility conditions

1

The moments of v°, v!, v? with weight f are given by those of f(©). Therefore

W) = [ v =0, vEE 1w = (Ve (A0)

Let P be the projector in the subspace generated by {v°, v, v?} [57]:

d+2

=L w00 [ e, (467
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where

(i)} = {1,e1v + e, 307}, (A.68)
with ¢;, i = 1,...,3 are constants defined in [57]. The condition (A.66) means that
Pf=ProO. (A.69)

In particular

O ept, (A.70)

i.e., fM is in the orthogonal subspace to P. This condition reads

PfY =P (AV:InT + B;V;Inn + C;;V,U;), (A.71)
therefore
A
P(B| =0 (A.72)
C

The condition (A.72) is therefore a direct consequence of the Chapman-Enskog method.
Since P commutes with dr, 9, and J, applying P on both sides of Eqgs. (4.53) with the
constraints (A.72) yields the condition for nonzero A;, B;, and C;; to exist (solubility
conditions [57]):
A
PIB| =0 (A.73)
C

It is possible to verify explicitly that the relations (A.73) are satisfied |57].

A.8 Equations for the transport coefficients

As we will apply a Sonine expansion, the symmetry properties of A(V) and B(V)
are the same as those of S(V), whereas the properties of C(V) are the same as those
of D(V). Thus the insertion of Eq. (4.52) in Eq. (4.58) yields

ij

The identification of Eqs. (A.74) and (4.56) yields (see, e.g., [111])

Integrating Eq. (4.53¢) over V in R? with weight —1/[(d — 1)(d + 2)]D;;(V) and
making use of Eq. (A.75) one obtains

1

e Tor = et =~y

/R AV DGy, (AT6)
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where v, is given by Eq. (4.64c). Functional dependence analysis shows that nd,n = 0
and T0rn = n/2. Using the definitions (4.36) for D;;(V) and (A.170c) for C;;(V), it
is possible to compute the right-hand side of (A.76) which gives

1 1

— [ avmVvZsO, (A.77)
Vn = %pg(TO) d Jr

7]:

Using the hydrostatic pressure p(®) = nkpT with the definition (4.31c) for the tem-
perature, and dividing Eq. (A.77) by 1o [see Eq. (4.63)] we finally obtain Eq. (4.60a).

The insertion of Eq. (4.52) in Eq. (4.59) gives
g = /R AV S(V)AL(V)ViInT + /R AV Si(V)Be(V) Vi . (A78)
It is easy to show that
/]R AVS(V)A(V) V3 In T = é /R AVSL(V)AL(V) VT, (A.79)

therefore the identification of Egs. (A.78) and (5.16) yields

1
1
= /Rd AV Si(V)B;(V). (A.80b)

The fact that p # 0 is due to the annihilation process (or in general to a dissipative
mechanism of the dynamics). Integrating Eqs. (4.54a) and (4.54b) over V in R?
with weight —S;(V)/d and making further use of Eq. (A.80), then making use of
Tor(Tk) = 3Tk/2, TOr(nu) = 3nu/2, and nd,(Tk) = nd,(nu) = 0 obtained from
functional dependence analysis, it follows

1 11 1
N o OT [ipgv(%o)"”— g/ av Si(V)Ai(V)} ; (A.81a)
Vg — 2p€T R4
o= — |y Th—~ | dVSi(V)Bi(V)|. (AS81b)
Vu—%p&fpo)—pﬁo)" g d Jra

Using Eqgs. (4.54a), (4.54b), (4.37), and (4.67) one may calculate the integrals ap-

Y Y Y

pearing in the right-hand side of Egs. (A.81):

1 d+2nkpg

. (V) = AT eniB A.82
e /RddVSZ(V)AZ(V) > mB (2a2 + 1), (A.82a)
1 d+2 1
— VS, (V)B;i(V) = ——= 245, A.82b
dn/Rdd Si(V)Bi(V) 4 B*m “ (A.82b)

where v, and v, are given by Eqs. (4.64a) and (4.64b). The insertion of Eqgs. (A.82)
in (A.81) yields Egs. (4.60b) and (4.60c).
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A.9 Evaluation of &\ and ¢

The decay rates (4.45a) and (4.45¢) may be computed using the definition (4.33)
and Eqs. (4.65) and (4.66). We first change variables to ¢; = V;/vr, i = 1,2, then
to c12 = ¢; — ¢ and C = (¢1 + ¢2)/2 in order to decouple the integrals. Next, the
integrals being isotropic with a symmetric weight, only even powers of the components
of C and c19 will give nonzero contributions. Thus the terms (C-012)2 in the integrals
become C?c2,/d. Finally, the resulting integrals may be computed using the following
relation |70]: if we define

1
My = 3 /R deppdC e /2672 P, (A.83)

1
My = (c2C7) = —d/ dcipdC e 12/2e =20 n, O
T R2d

[1+a2{04+% 12+d2202 (d+2)02—d12c§2+d(d:2)}],
(A.84)
then
MY, = o(n—p)/2L1(d + "%/( ?/Fz[)(j +)/2]. (A.85)
=1+ —= [d(n* + p®) — 2d(n + p) + 2np(d + 2)] . (A.86)

M0 16d

Equations (A.85) and (A.86) may be easily verified using the relation (A.4). We
thus obtain the decay rates to zeroth order (4.68).

A.10 First order Sonine polynomial expansion for ()

The decay rates to zeroth order being known, it is next required to compute the
coefficients vy, vy, and v),. It is however beyond the scope of the present study if the
general functions .A i Bi, and Ci;j are used. In order to turn the problem to a tractable
one, it is required to expand the latter functions in Sonine polynomials, keeping only
the first nonzero contribution.

The generalized Sonine polynomials are defined by Eq. (1.43). Then S(V) =

— Sy (V2/v2)V/B, and D(V) = mSO,(VV — V2/d). For the sake of simplicity
and as mentioned in Sec. 1.6.3, only the first nonzero contribution in the expansion of

Aj;, B;, and C;; is kept. This approximation however yields accurate results |24, 57|.

As an example, we shall expand A in the base of eigenvectors of the linear collision
operator L:

AV)=MV) Y az-sgjg(v?)v, (A.87)

i>0
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where a; is the projection of A on the i-th eigenvector. The eigenvectors are given
by (see Sec. 1.6.3 or [6, 7])

Ui (V) ~ VIS™

l+1/2(V2)Ylm(‘7)’ (A.88)

where Ylm({/‘) are the spherical harmonics, V.= V/V. The latter eigenvectors are
orthogonal in L?(R%, M(V)dV). The condition that the moments of f are given
by those of f©) implies f) € P+, ie., PA = 0 (see App. A.7). Therefore since
Eq, (A.87) is odd in V|, one concludes from the projection operator (A.67) that the
condition P.A = 0 writes

/ AV VFO(V) = / AV VM(V)A(V) - VInT =0, (A.89)
R4 R4
which implies
/ AV VM(V)A(V) = 0. (A.90)
RA
Inserting the expansion (A.87) gives
Zaz/ AV M(V)S5),(VAVSEL VAV =0, (A.91)
120

where we have made use of Sé/é
product in L2(R4, M(V)dV):

1 (@
/}RddVVf()(V)ocZ (SSLVISSHV >L2(RdM(Vdv Zaz 0=0. (A92)

i>0

= 1. The latter equation may be written as a scalar

Therefore ag = 0 and the first nonzero term is a;. The truncation of the series to first
order yields A(V) = a3 M(V)S(V). Note that this result does not depend on the
form of the collision operator, thus is valid for annihilation as well. The first nonzero
order expansion in Sonine polynomials thus yields Eqgs. (4.69) [24, 7, 57].

A.11 Evaluation of v}, v}

*
s and v

Using the first order Sonine expansion (4.69), Egs. (4.64) reduce to

e — 1 JpadV Dy(V)J[MDyj]
17 U Joa AV Dy (V)M(V) Dy (V)
oL Jra AV Dy (V)QIMD;;]
L™ Vo Jo AV Dy (V)M(V)D;;(V)’
e w1 JgadVSi(V)J[MS]]
PR g [ dV Si(VIM(V)Si(V)
I fudV S,(V)QIMS]

P T AV S (VIMV)S, (V) (4.930)

(A.93a)
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K Yo

The denominators of Eqgs. (A.93) are straightforward to compute using the for-
mula (A.4). We thus find

. _ B 3 g
T (d+2)(d - 1)nry [/}Rd dV D3 (V) JIMD;j]
—p/Rd dVDZ](V)Q[MDZ]] s (A94a)
‘e 2mB . .
UK—VM = m[/ﬂ{d dVSZ(V)J[MSZ]

P / dVSZ-(V)Q[MSZ-]]. (A.94b)
Rd

The collision operator J defined by Eq. (4.47) is made of the sum of the annihilation
operator L, with weight p and of the elastic collisional operator L. with weight (1—p).
Using previous calculations for L. [99] [or making use of Egs. (A.166) to (A.168)], we
obtain the elastic gas contributions proportional to (1 — p) in the right-hand side of
Egs. (4.70), namely

A (1 - a23i2> , (A.95)
e = (1 —p)% (1 + a2312> . (A.96)

The following computations are technically simple, but lengthy. We shall thus

only give the main steps. The annihilation contributions, written vp?, v* and v,
are given by
5 '
*a — dV D;;(V)Ly[MD;; o (A9T7
Y (d+2)(d— 1)nvy /Rd 5(V)LalMDys] + 1, ( 2
a_ a2 / AV S;(V)Lo[MS] + v (A.97h)
v, =V = % a % Vi s :
" " d(d + 2)nvy Jra
where L, is given by Eqs. (4.48) and (4.29), and
/ (32
= — dV D;;(V)QIMD;;], A .98
“n (d+2)(d—1)nwy /]Rd i (V)UMDy] ( 2)
yrod oy 2m5 / dV S;(V)Q[MS;] (A.98b)
TR d(d+ 2y Jga ! “ '

Using the relation (which may easily be checked from a change of variables v; — v;,

i#7)
/ dV1 Y(Vl)La[MX]
R4

= /de dvidva [vio fO (vi) M(v2) X (v2) [Y (v1) + Y (v2)] . (A.99)
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where X and Y are arbitrary functions, changing variables to ¢; = v; /vy for i = 1,2,
then changing variables to cj2 = ¢; — ¢ [in the following we adopt the notation
ci2 = (€12,,...,c12,)] and C = (c1+c2)/2 in order to decouple the integrals, replacing
under the integral sign for symmetry reasons the relations (C - ¢12)? by C2c2,/d, and
using

/Rw dCdciz F(C)G(c12)(C - c12)*

:/ dCdC12 F(C)G(Clz) <d20 Cio — 2d04012 ) (AIOO)
R2d

where i and j can be chosen arbitrarily in the set {1,...,d} and F, G are arbitrary
isotropic integrable functions, one obtains

o _ ! r(d/2)
STy 1)Wd\/§r[(d+1)/2]Hl(a2,d) + v, (A.101a)
*xa __ . %a __ 1 F(d/2) !
LA drd/2T [(d + 1)/2]H2(“2’d)+’/n ) (A.101b)

where

k(az,d Z aw/ dC e 2¢" CZ/ dclge_cﬁmc{;l

(i,5)€Qk

+ Z %]/ dCe_202CZCl/ dcige™ ‘312/2CJJrl Ccla,, (A.102)
(i.5)e0k

with «a;; and ~;; that are functions of d and as, QF and Q”fY being the sets of allowed
values for the pairs (7,7) defining the moments in the integrals (A.102). Since the
calculations are technically simple but cumbersome, expressions for «;;, i, QF and
Qﬁ will not be given here. The integrals in the first sum of the right-hand side of
Eq. (A.102) may be computed using the formula (A.4). Eq. (A.100) may easily be
verified. If x, y € R, then

d
(x-y)* = Z i 221 YiY Yy [(1 — dijrr) + (1 — 6350k1) + (1 — 8indj1) + (1 — di1d1)]
ijkl=1
d
+ Z T2y Yt [0k + (L — Sijrt) (0ij0m + 0irdji 4 05dj1)] - (A.103)
ijkl=1

The second sum contains all even moments, whereas the first sum the odd moments.
The latter one will not contribute if integrated over a symmetric domain with an even
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K N”

weight. Therefore

d
/ dxdy F ()G (y)(x - y)*! :/ dxdyF(2)G(y) | Y @ijwrmiyitystibijr
R2d R2d ijkl:l
d
+ Z T X1 Yi Y YrY10ij 0kt (1 — 6450r16in)
ijkl=1
d
+ Z T X1 Yi Y Yk Yi0ik 051 (1 — 6450r16:1)
ijkl=1
d
+ Z T R Ty Y 5 YkY10i 05k (1 — 6;50k10% )
ijkl=1
:/ dxdyF(x sz 2yz2y]2 — 0ij)
R2d =
dxdyF(x A.104
+/]RZd xdy Zm ( )

The latter expression may be simplified making use of isotropy, thus yielding Eq. (A.100).

The integrals in the second sum of Eq. (A.102) may be computed using the par-
ticular case i = j = k = [ of the following lemma.

Lemma A.1 Letx = (21,...,24) € R% a >0,d >2, n €N, then:

Mijkl[n] #/ddX‘X‘ne_aIQ.’EixjfL’ka’l
R

_ dp3dtn)dtn+2)l[(d+n)/2] 1
1 dd+2) T(dj2) @/

X {57,]kl + - |:5z]5k:l( 57,k) + 5ik5jl(1 - 52]) + 5i15jk(1 —_ 5”):| } . (A105)

Proof: by isotropy the integral does not depend on the orientation of the coordinate
system therefore M;;i;[n] = Mjj;j[n] = b, Vi, j. The coordinate system being invariant
under rotations, in order that M;;; is nonzero it is necessary that (i,7) = (k,[), or

(i,k) = (4,0), or (i,1) = (4, k), which implies

M;ijra[n] = biji + (1 = dijrt) (0i50m + dindjt + 0l
= bdijr + C[5ij5kl(1 — i) + 0050 (1 — 635) + 65105, (1 — 52‘]‘)] ,(A.106)
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with

b:/ dx|x|”e_‘””2x‘11
RA
:/ drre” / gp/ / dfg_or* cost
0
d—2 -
X [H (sin6y) ] [H (sin ) ]
k=1 k=1
00 2 s
:/ drrd+"+3e—a7”2/ dy cos4g0H/ df(sin §)F 4, (A.107)
0 0 o1 0

The first integral may be calculated using Eq. (A.4), the second one gives

2 3
/ dy cost ¢ = —7T, (A.108)
0 4
and the last one
us k
/ df(sin §)F T = ﬁr (%) . (A.109)
0 r(53°)
Eq. (A.107) thus becomes
b—§2 7“(d+n)(d+n+2)T 5 @)
d—2 d—2 k+1
)(k +3) L (%)
x . (A.110)
LEII k(k+2)(k+4) k1;[1 I'(k/2)

Making use of

d—2
lifkt—lg)((kkigi) = S(d;(;)id?))_ U, (A.111)
d-2 ([d-2)+1
kZl?EZ_JQ/F;; - - [I‘(1/22) ] (A.112)
and B
e Nt iy
we finally obtain
p_ a3 dtn)(d+n+2)T [(d+n)/2] 1 i)

4 d(d +2) T(d/2) qldtntd/z’
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K p,}
On the other hand

c= /Rd dx|x|”e_‘””23:%x%

o0 5 27 i s
= / drr"e” " / dgp/ do; ... / dfy_, 7 cos® psin?
0 0 0 0

d—2 d—2
X [H(sian)4] rd=1 [H(sin@k)k]

k=1 k=1

B b /2Wd 5 9

= f027r 4 cos o o p cos” psin” p

4 7

3r4

= é (A.115)
3

Inserting Egs. (A.114) and (A.115) in Eq. (A.106) leads to the result (A.105). [

. . ’ ’ ’ .
Finally, in order to evaluate v;*, v, and v, we need the following lemma.

n Y K Y
Lemma A.2 Let x = (21,...,24) € R% a >0,d >2, n €N, then:

- n,_—ax? d2d+nr[(d+n)/2] 1
M;j[n] = /Rd dx [x["e Tilj = / 2d [(d/2) aldtn+2)/2

5. (A.116)

Proof: again, by isotropy the integral does not depend on the orientation of the
coordinate system therefore M;;[n] = M;j[n] = b, Vi, j. By definition M;;[n] = Mj;[n]
and the coordinate system being invariant under rotations M;;[n] = M1 j+1[n] Vi, 7,
which implies

MZ][TL] :Maij“‘c(l_éij)- (A.117)
In order to see that C' = 0 it is sufficient to calculate M;;[n] for given values of 4
and j:

00 d—2 . 2m
Mia[n] :/ dy prtd—le—ar? [H/ doy, (sin@k)k] / dy cospsinp, (A.118)
0 iy Jo 0

which is equal to zero since fo% dy cos psin ¢ = 0. Therefore M;; = M;; with

M = dx \x”|e_‘”2m%
R4

[e'¢) 2w d—2 .
:/ drr”+d+1e_‘"2/ de COS2QDH/ dfy, (sin 6;)**2.  (A.119)
0 0 o170

The first integral may be calculated using Eq. (A.4), and the last one is obtained from
Eq. (A.108). We thus have

d—2 k41

kk:+2

m F(n+d) d—2)/26d—2
M = J(n+d)—gigm %

v |
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Making use of
d—2

E+1 2(d -1)
A.120
1:[ kE(k+2) T(d+1) ( )
and of Egs. (A.112) and (A.113) we finally obtain Eq. (A.116). [ |
The calculation can thus be performed and since 1/,’;“, = 1/;“, = 0, as it will be

shown in the rest of this appendix, we obtain the first terms in the right-hand side of
Eqgs. (4.70).

A.11.1 Evaluation of v** and 1/;“/

Since S;(V) is odd in V (and M even) only the odd terms of Q[MS;] will give a

nonzero contribution to the integral (A.98b), i.e., the term proportional to &(i)
Eq. (4.55). Making use of Eq. (4.51b) we therefore obtain

/ ’ Qmﬁ?’ 8f(0)
=) 7& dv : A.121
Y TP TG+ 2)m J/Rd SiV) v (A.121)
where
1
Kij =~ (w [F©,V;MS;] +w[vjf(°),/vlsi}) (A.122)

are coefficients that do not depend on V. Making use of Eq. (A.4) and of the

. ! !
lemma A.2 we obtain vi* = 1/;‘1 =0.

A.11.2 Evaluation of 1/;“'

We are going to show that 1/,’7“1, = 0 from the result QC;; = 0. Indeed, we recall that to
first nonzero order C;; = coMDj;, therefore the conditions 2C;; = 0 and Eq. (A.98a)
imply I/;;a, = 0.

Since ) is a linear operator, then
QfY = (QA)V InT + (QB)V; InT + (QCi;)Vju;. (A.123)

From Eqs. (4.69), the symmetry properties of A and B are the same as those of S(V)
(i.e., odd in V) and the symmetry properties of C are the same as those of D;;(V)
(i.e., even in V). Therefore using Eqgs. (4.55) and (4.51) for symmetry reasons

af<0> 1
af<
0B, = - (w £, ViB)] +w[Vif©, B)]). (A.124b)
af© 2
QCy; = f(o)ﬁw[f(o)acij] + 8fT T( - Ew[f(o)acij]
m ) 120, m 2¢00) o
+nkBwa[f ,V2Ci] +nkBwa[v f ,CZ]]>. (A.124c)
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Inserting Egs. (A.124) in Eq. (A.123) and making use of Egs. (4.51) we obtain

af©

Q0 = = ureld 1 fO 201001V

of© 2 .0 m ©0) 172 m 2 £(0)
+ 5T T <—Ew[f ,CU] + nkBwa[f ,V Czy] + nk:Bwa[V f ,CU]> .

(A.125)
On the other hand, we may use the definition (4.55) for © which gives
af © L 9f ©
Qf) — £0)c1) _ T ) A12

We show in App. A.13 that @(}) = f(Tl) = 0. Note that the latter result is not affected
by the possiblility on a nonzero value for Q2C;;. Indeed, the term €QC;; contributes to
the transport coefficients only, and as it is seen in App. A.13 those coefficients are not
responsible for the eventual nullity of the first order decay rates. We may therefore
make use of &(11) = @Epl) = 0 without interferring with the conclusions drawn here.
Eq. (A.126) thus gives
(0)

851/ vred. (A.127)
Comparing Egs. (A.127) and (A.125) we conclude that the last two terms in Eq. (A.125)

must cancel each other. But recall that those last two terms originate from 2C;; V;u;
(and the first one from QA; and Q8;). This implies QC;;V;u; = 0. By isotropy

Qf = —

QCij = adij +b(1 —d;5),  a,beR. (A.128)
Therefore

d(d

-1
(QCZ])VZ’U,] = CLV]'U]' + T)bvkul, k,l S {1, c. ,d}. (A.129)

The symmetry properties of C;; being the same as those of D;;, we have TrC =
TrD = 0. Since 2 is a linear operator

TH(QC) = Q(Tr C) = 0, (A.130)

and from Eq. (A.128)
Tr(QC) = da. (A.131)

Comparing Eqgs. (A.130) and (A.131) it follows a = 0, that we insert in Eq. (A.129)
to obtain b = 0. Therefore 2C;; = 0, which implies 1/;;“/ = 0. Note that this result
can also be obtained from a direct calculation.

A.12 The distribution f

Using the form (4.52) for () and the first order Sonine expansion (4.69) one has

FOV) = M(V) [a1Si(V)VT + b1Si(V)Vin + coDy; (V) V ju3) . (A.132)
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The coefficients a1, b1, and ¢y may be expressed as functions of the transport co-
efficients, thus determining f). Eq. (A.75) in which we insert the Sonine expan-
sion (4.69) yields

1

@=Dd+2) /Rd dV Dy (V)M(V)Dy;(V) (A.133)

n= —=Co

= ¢ (A.134)

n

?7

where we have made use of the definitions (4.36) and (4.66).
Proceeding in a similar way with Eq. (A.80) and (4.69) it follows

k= —a1— [ AV Si(VIM(V)S,(V) (A.135)
dT Rd
. d+2nkp
= (A.136)
b= b [ AV S(VIMV)Si (V) (A.137)
dn R4
d+2 1

Replacing in Eq. (A.132) the coefficients ¢y, a1, and by obtained from Eqs. (A.134),
(A.136), and (A.138), one obtains the distribution (4.71).

A.13 Evaluation of &, ¢!V, and ¢!

The zeroth order and first order distributions f© and f®) being known, it is pos-
sible to compute the first order decay rates (4.51). The procedure is similar to the
calculation of the zero order decay rates of Appendix A.9. We first change variables
to ¢; = V;/vp, i = 1,2, then to c¢12 = ¢; — ¢cg and C = (c¢1 + ¢2)/2 so that

W[AfO, B

[(d/2) V2d+2[vr d
(&) rd 4 [2d-1

1 1
</£*TviT + ,u*EVm> I + ﬁ*Vj’u,iIQ] , (A.139)

where w|f, g] is defined by Eq. (4.33), (4, B) = {(1,1), (V, 1), (1, V), (Va,, 1), (1,V4,)},
Vi = (V;l,...,V ), and

id
d+2
I = / deya [epole /2 / dC e 2°* A(vpey) B(vrer) <c%— L) c1,
Rd ]Rd 2
x [14a282(c3)] . (A.140)

1
I, = / dcio |c12|e_0%2/2/ dC e_202A(vT02)B(vTcl) cl.cy. — —52-]-0%
Rd R Y d

X [1 + (IQSQ(C%)] s (A141)
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In the above integrals, c¢; and co are expressed as functions of C and c¢y2. Then, in
order to compute those integrals one needs lemmas A.1 and A.2. Assuming summation
over repeated indices, it is easy to show that

MM = M@ Mgy, (A.142)
MO M) = am@ @), (A.143)
Using the definition (A.105) one can show that
a a’ d + 2 a a’
Mi(jllezf;z )= Tb( M6, (A.144)
a a d+2 a)1(ad
My M) = —5 b5, (A.145)
wfg) mfe), = Ay (A.146)

For symmetry reasons, many of the terms in the integrals (A.140) and (A.141) vanish
upon integration. Nevertheless, the expressions are very cumbersome and the use of
symbolic computation programs is appreciable [179]. Eqs. (A.4), (A.105), (A.116),
and (A.142) to (A.145) thus allow us after a lengthy but technically simple calculation
to find the decay rates to first order (4.51).

A.14 Solution of the homogeneous cooling state
If we define a by vy = anT'/?, where vy = p(o)/no with p© = nkgT and 1y given by
Eq. (4.63), then the zeroth order equations (4.44) take the form
on = —n’T"?a,, (A.147a)
T = —nT>?ar, (A.147b)

where a,, = 5,(10)*pa and ap = &}m*pa. Guided by Haff’s law T'(t) = To(1 + t/to) 2,
to = g)) (0)/2, for the granular gas [59], we may solve Eqgs. (A.147) using

n(t) = c1(1 + cot), (A.148a)
T(t) = 63(1 + C4t)ﬂf2. (A.148b)
The substitution of Egs. (A.148) in Egs. (A.147) imposes
cy = ¢4 = c = c1/e3(an +ar/2), (A.149)
c1 2ar

= a3 g =T A.150
Y= mar Ve = sg ( )
=-1- /2——ﬂ (A.151)

= V2/4 = %, + ar :

Initial conditions n(0) = ng and T'(0) = Ty impose ¢; = ng and c¢3 = Ty. Therefore

c=p[e™(0) + &7 /2] = pty ", (A-152)

which leads to the solution given by Eqgs. (4.75).
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A.15 Linearized hydrodynamic equations
A.15.1 Density
From Egs. (4.72a) and (4.76)
Qon + Oyn + npVou; = —pdaron&* — pnarp€?* + 0(6?). (A.153)

Making use of Eq. (4.44a), i.e., On = —anVOHg,SO)*, and integrating Eq. (A.153)

Y

over 1 with weight exp(—ik - 1) it follows

1 .
— 9 (1) — 2pe 0 / dle ™! 4 ikwy, (1)
ny Rd I

(0)% 2]7{7(10)* —ik1
= —2p&, " pi(T) — oo /]Rd dle ™"y, (A.154)
where wi = k- wi(7). Making use of
1 *
Orpx(7) = - Oy (1) + pic(7)2pElY) (A.155)

and

(0)

2p&n ;

_ 28 / dle 1y,
VoH R4

= —ope0) /]R die™! = 2pe{0 (1) — pe*O1c(7) + O(5%)  (A.156)

in Eq. (A.154) we obtain Eq. (4.80a).

A.15.2 Momentum

Proceeding in a similar way, we obtain

* . . - d—2
8kaj(r) —pfrgfj) wkj(v') +ij9k(7') +ijpk(7') + % [k:jk:lwkj (T) + Tkjklwkl(T)

m 2
= —py/ — le k! M+ 0382). (A1
p kT vo /]Rdd € ’UTgui (5 ) ( 57)

Lemma A.3 let wy  be the perpendicular component of the velocity field to k, and

W, the parallel component, then

~ d—2
e; kik}jwki(T) + —kikjwkj(T):| = ]C2Wkl +

y 2(d — 1)k2wk . (A.158)

d I
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Proof: we note k = key, wy = wy, + Wk, Wk, = Wk - e, Wk, = Wk — Wi,
|Wi, | = wi, [Wi, | = wk, . Then:

d d
Z |:]€ k} wkz —|- d%‘lzkikjwkj(v')] = Z kjkj <Z /éiwkz'(T))

i=1 j=1

S () 2 ()[4 (2)]

w d—2 . ~ —~
— k2 < k> 4+ d kek (k;ek . wk“ek)

WkJ_

2(d—-1)

= kQWkL + d

K wi, (A.159)
|

This lemma allows to rewrite Eq. (A.157) as

(0 - pel") (kall) + ik [Pk (T) + Ox(7)] A0k> + %*k:Q

Making use of

—ez/dle ik : :pﬁzm*ikﬁk(ﬂé\k + p&utikpk(T)ek, (A.161)
kTu von

Eq. (A.160) leads to the linearized equations (4.80b) and (4.80c).

A.15.3 Temperature

From Eq. (4.72¢) and proceeding in a similar way as for the previous cases we obtain
the linearized equations (4.80d) for the temperature field 6y (7).

A.16 Summary of useful relations for the coefficients v/
and v,

The expressions (4.64) and (5.44) may be calculated with the help of the following
relations. Let X and Y be arbitrary functions, M(V) = n/(v47%?)exp(~V?/v2)
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the Maxwellian in the scaling regime, then

[ aviY LM
_ O‘d_lqb(ZL‘)U%«_r /RQd dvydvs vf2f(0) (Vl)M(V2)X(V2) [Y(Vl) + Y(V2)] , (A.162)

and

1—z
/ dv1 Y (v1)L [ MX] — Ud_lm
Rd B

X / dvidvy o7y fO (v)) M(v) X (v2) / da(b—1)[Y(v1) + Y (v2)], (A.163)
R2d

where Log = —Jo[f©,g] — Lalg, fQ] and L.g = —J[f©,g] — J.lg, f©] for an
arbitrary function ¢g. Let o € RT, then

n,—az? n?? T[(d+n)/2
/Rd dx|x|"e = @ T2 (A.164)

2 72 d4+nT|[(d+n)/2]
meme g = 5 (A
e s = T oo (A1)

In the integrals below, the results when §(&-g) is absent are obtained upon multiplying
the value of 3, by two. For & = (01,...,04q), g € R%, |&| = 1, we have [79]

o~ o~ ~ n ﬁn n—
/da b(c-g)(o g)oio; = ntd? 2(ngig; + 9%0;), (A.166)

[ 166G 8@ 0= g 5. (A.167)

el l(n+1)/2]

NCETTL (A.168)

5= [0 B)@ ) =

A.17 Exact transport coefficients of the Maxwell model

Following the same route as in [53] (or Chapter 4) we may rewrite the right-hand side
of Eq. (4.46) such that

0 + 7)Y = A;V;InT + B;V;Inn + Cy; Viu; + pf ™), (A.169)
where
Vi 0 kT o f©
Ay = = (0] _ 2B Al
kT o f©
B, = V£ _ 2B~ A.170b

Cij = 7=[V;f9] - ——k[ka(O)]éz'j, (A.170c)
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and € is a linear operator defined by

af©
oV,

af©

Qg = fOEVFO, g - 5T

2 vrEW[f0, ] + TR [fO, g]. (A.171)

The function g is either A;, B;, or C;;, and the functionals 5,(11), &), and &EFI) are

obtained from Egs. (5.13) upon replacing f) by ¢.

A.17.1 Pressure tensor

Integrating the Boltzmann equation (A.169) over V with weight mV;V; and taking
into account the symmetry properties of the coefficients (A.170) one obtains

OOPY )+ [ AVmVYLFO )+ (=) [ aVmliviL©), £0)
R R

:/ddeV;VjCkl(V)vkul, (A.172)
R

where we have made use of the definition (5.17) for the pressure tensor. The same
definition further allows us to write

/}R AV VL[, 70) = €0 P (x, 1), (A.173)

and using additionally Eq. (A.163), and (A.166) to (A.168):

VL O D) pY A174
[ AV LA, 0] = 0 2 P o), (A174)
Finally
/ LAV mVV;Cu(V)Viu = —p O A Vi, (A.175)
R
where
2
Aijkl = 5ik5jl + 5jk5il — Eaz]ékl (A.l?ﬁ)
Insertion of Egs. (A.173) to (A.175) in (A.172) yields
d+2
[&(0) + el + (1= p)e? —=| PP (e 1) = -p DAy Vi, (A.177)

The solution of Eq. (A.177) is PZ(JI) = —nAji Viw. Functional dependence analysis
1 _

shows that n « T2 and since to zeroth order the temperature is conserved atPZ-j =
0. Eq. (A.177) thus gives

= (A.178)
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A.17.2 Heat flux

Integrating the Boltzmann equation (A.169) over V with weight mV?2V;/2 and taking
into account the symmetry properties of the coefficients (A.170) one obtains

|

dVlnwﬂ%LdﬂmJﬂﬂ
lR.d 2

AV 2 V2ViL, [0, FO) 4 (1-p) /
2 ]R,d

:/‘dVémV%@hﬂﬂvmnT+/idV%mV%ﬂﬁOﬂVHmﬂ (A.179)
]Rd

R4

where we have made use of the definition (4.35) for the heat flux to first order.
Moreover, one finds

1
/Rd AV 5mV?ViL [0, 1) = €07 (x, 1), (A.180)

and using additionally Eq. (A.163), and (A.166) to (A.168):

1 2(d—1
/R AV omVAVL[fO, 1) = dE i 2§€,S°>q§”(r,t). (A.181)
Finally
0)
/}R AV VA (V)T = 2P g g, (A.182)
/}Rd dv %mVQV;Bk(V)Vk Inn = 0. (A.183)
Insertion of Egs. (A.180) to (A.183) in (A.179) gives
2(d -1 d+2p0k
[at“’) +pgl? + (1 - p)&) dg yn 25] () = =B (A

The solution of Eq. (A.184) is qi(l) = —AV,;T — uV;n. Functional dependence analysis
shows that A o« T%2 and p o T3/2n~1, therefore (9tq§1) = piéo)uvm. In order to

satisfy Eq. (A.184) it is therefore required that = 0 and

1
N = . (A.185)
pe + (1 —p)
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