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Introduction générale

1 Avant-propos

Cette these est une compilation des articles publiés par 'auteur au cours de son docto-
rat (cf. [32,33,40,46,70-72]), mais nous expliquons aussi des travaux encore en préparation
(cf. [30,34]). Quelques modifications ont été introduites a la rédaction originale de fagon
a établir un rapport entre les différentes parties. Notre but est d’assurer une présentation
unifiée de ’ensemble des résultats. Nous avons, en particulier, décidé de regrouper les
diverses références bibliographiques, plutot que de les mettre a la fin de chaque chapitre.

2 Description de la these

2.1 L’inégalité de Kato lorsque Au est une mesure
(en collaboration avec H. Brezis)
L’inégalité de Kato est un outil simple mais tres puissant dans 1’étude des EDP el-
liptiques du second ordre (cf. [61]). Parmi ses innombrables formulations, 1'une des plus

classiques est la suivante :

Etant donnée une fonction u € LL (B;) telle que Au € L _(By), alors Aut € Mioo(By)
et

Aut > xpsoAu  dans D'(By), (1)

c’est-a-dire,
/ utAp > / Auyp, Yo e CX(By), avec p > 0 sur By.
By [u>0]

Nous rappelons que pu € Mo.(By) si et seulement si, pour tout w CC By, il existe C,, > 0
tel que

/ wdu’ < Cullollies Vi € CF(w).
B

La condition Au € Li,.(B;) impose des restrictions qui ne sont pas naturelles dans
plusieurs problemes que nous avons étudiés, puisque en général Au est seulement une
mesure de Radon. Il nous faut donc étendre (1) lorsque Au € My.(By).

D’abord, nous observons que si Au € Mo.(B1), alors Au™ € M.(B1). En effet, il
suffit de montrer que

Aut > —(Au)”  dans D'(By).

1



2 Introduction générale

Or, cette inégalité s’établit tres facilement a partir de I'inégalité de Kato classique, en
utilisant un argument de densité.

Ensuite, toute mesure de Radon p s’écrit sous la forme p = pq + e, ou p1g ne charge
pas les ensembles de capacité (newtonienne) nulle et ji. est une mesure concentrée sur un
ensemble de capacité zéro.

Soit u € L .(By) tel que Au € Mi,.(By). Dans ce cas, il est possible de montrer que
I'inégalité (1) doit étre remplacée par :

(AuT)q > Xus0)(Au)g  sur By, (2)
(—Aut), = (—Au)f sur By. (3)

(En vue du Lemme 2.1 dans le Chapitre 2, la fonction u est bien définie sauf sur les
ensembles de capacité nulle; en particulier, le produit X,>0)(Au)q a bien un sens.)

Dans les Chapitres 1-3, nous établissons quelques cas particuliers de (2)—(3). La preuve
de (2)—(3), par contre, est assez délicate, et nous ne la présentons pas ici. Le lecteur en
trouvera la démonstration dans un article de Brezis et Ponce [34]. Les deux ingrédients
principaux sont le principe du maximum « inverse » de Dupaigne et Ponce [46] (voir le
paragraphe 2.3 dans cette introduction) et la caractérisation des mesures diffuses par
Boccardo, Gallouét et Orsina [15, Théoreme 2.1].

Notre travail prend sa source dans un article tres intéressant d’Ancona [4] et dans une
question qui nous a été posée par Y. Li.

2.2 Singularités éliminables
(en collaboration avec J. Davila et L. Dupaigne)

Comme premiere application de I'inégalité de Kato que nous venons de présenter,
nous étudions le probleme des singularités éliminables des EDP elliptiques du second
ordre. Pour une introduction & ce sujet passionnant, voir le livre de Véron [86].

Un résultat classique dans cette direction est le suivant (cf. [59]) :

Soient K C B; un ensemble compact et v € Li (B;\K), avec v > 0 p.p. Supposons que

loc

—Au >0 dans D'(B\K).

Si la capacité newtonienne de K est nulle, alors u € L (B;) et

—Au >0 dans D'(By).

Nous observons d’abord que nous ne faisons aucune hypothese sur le comportement
de u au voisinage de K. Malgré tout, le théoreme ci-dessus nous dit que u a une certaine
régularité, a condition que ’ensemble K soit suffisamment petit.

Dans le premier chapitre, nous étudions ce résultat en détail lorsque K est une variété
de codimension supérieure ou égale a 2. Il est possible alors d’obtenir des formules tres
intéressantes pour la restriction du laplacien de u sur K. Cette méthode a quelques
inconvénients. D’abord, elle est limitée a des ensembles K qui sont tres réguliers. Puis,
lorsque K n’est pas une variété réguliere, mais juste un compact, il n’est pas clair en quel
sens K doit étre petit.



2. Description de la thése 3

Nous reprenons les singularités éliminables dans le Chapitre 3, ot nous étudions le
probleme dans le cadre général, a savoir sans I’hypothese de régularité sur I’ensemble K,
et méme pour des opérateurs quasi-linéaires au lieu du laplacien. En utilisant les inégalités
de Kato et de Harnack, nous étendons un lemme bien connu de Brezis et Lions [29].

2.3 Le principe du maximum « inverse »
(en collaboration avec L. Dupaigne)

Selon le principe du maximum classique, si u : B; — R est une fonction réguliere telle
que —Au > 0 sur By et si u > 0 sur 0By, alors u > 0 partout. Dans le Chapitre 3, nous
étudions en quelque sorte la réciproque de ce résultat, qui a été conjecturée par H. Brezis
et M. Marcus. Voici d’abord un exemple :

Soit (a;) une suite de points distincts dans R3. Etant donnée une suite (o) C R telle
que Y, || < oo, nous définissons

u(zr) = Z E fiai‘ pour presque tout z € R?.
K3

Il n’est pas difficile de montrer que si u > 0 p.p. sur R?, alors a; > 0, Vi > 1.
Une fagon équivalente d’énoncer le méme probléme est la suivante :
Soit u € L (R?) tel que

loc

—Au = Z a;0,, dans D'(R?).

Siu >0 p.p. sur R3, alors
—~Au >0 dans D'(R?).

Notre résultat suivant met en évidence le principe général sous-jacent dans I’exemple
ci-dessus :

Principe du maximum « inverse ». Soit u € Li (RY) tel que Au € Mio(RY). Si
u >0 p.p. sur RV alors
(—Au). >0 sur RY. (4)

Nous rappelons que (—Au). est la partie de (—Au) concentrée sur un ensemble de capacité
nulle.

En utilisant le principe du maximum « inverse » et I'inégalité de Kato (2)—(3), Brezis,
Marcus et Ponce [30] ont étudié l'existence des solutions du probleme elliptique non
linéaire :

—Au+ g(u) =p sur By,
u=0 sur 0B,

ou pu € M(By) et g : R — R est une fonction croissante et continue, avec g(0) = 0. Voir
a ce sujet le Théoreme 3.3 dans le Chapitre 3.
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2.4 Le principe du maximum fort
(en collaboration avec H. Brezis)

Nous présentons dans le deuxieme chapitre une autre application de l'inégalité de
Kato : le principe du maximum fort pour l'opérateur —A + a(z), avec un potentiel a €
LY(By).

Plus précisément, soit u € Li (By), u > 0 p.p. sur By, tel que Au € L{ (By) et

—Au+au >0 p.p.sur B;. (5)

Nous démontrons que si v = 0 sur un ensemble de mesure positive, alors v = 0 p.p. sur
Bl.

Un cas particulier de ce théoréeme (lorsque u est a support compact) a été utilisé par
Bénilan et Brezis [6] dans ’étude du probleme de Thomas-Fermi.

Rappelons que le principe du maximum classique affirme que si le potentiel a appar-
tient a LP, avec p > %, et si w = 0 en un point, alors u = 0 sur B;. Cette version tombe
en défaut dans notre situation : la fonction u peut avoir des zéros a 'intérieur du domaine
sans étre identiquement nulle. Par exemple, la condition (5) est vérifiée avec u(x) = |x|?
et a(x) = %

Ce résultat a été établi par Ancona [4] en utilisant des outils de la théorie du potentiel.
Nous présentons une démonstration « style EDP ».

2.5 Une nouvelle caractérisation des espaces de Sobolev

Dans [20], Bourgain, Brezis et Mironescu ont démontré que

i [ HDZIOR, oy dway = s [ wsPs wrewiemy), )
n—co [p JB, ]x _y’p B
ot (p,) C LY(RY) est une suite de fonctions radiales positives qui convergent vers la
masse de Dirac dy, et K, v est une constante géométrique qui dépend seulement de p et
de la dimension N de 'espace.

Motivés par ce résultat, nous établissons 'inégalité (voir le Chapitre 4) :

[=pmp<c [ [HOZIE, (oo asiy vie ). v "

valable en toute dimension supérieure ou égale a 2. Cette estimation peut étre déduite
d’un théoréme de compacité dans [20], sous ’hypothese que les fonctions p,, soient radiales
décroissantes. Nous montrons que l'inégalité (7) reste vrai sans cette derniere condition.
Ce résultat est assez inattendu, car dans [20] les auteurs ont construit un contre-exemple
en dimension 1 pour des fonctions p, qui n’étaient pas décroissantes.

En prenant la limite dans (7) lorsque n tend vers oo, nous retrouvons l'inégalité de
Poincaré classique :

/ 1 fal < A, / VIP, Vf e WH(B).
By

By
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Dans le Chapitre 5, nous étendons (6) dans plusieurs directions. Nous étudions cette
limite, par exemple, lorsque les fonctions p, ne sont plus radiales. En utilisant des résultats
bien connus de la théorie de la relaxation (voir a ce sujet le livre de Buttazzo [35]), il est
possible de démontrer que (6) reste vrai au sens de la I'-convergence.

2.6 Singularités topologiques des applications dans W1 (S§2;81)
(en collaboration avec H. Brezis et P. Mironescu)

Notre point de départ est 'article de Bourgain, Brezis et Mironescu [22] sur le pro-
bléme de minimisation dans R? :

Min / Va2, (8)
B3

u€H}(B3;51)

avec g : S? — S
L’analogue de ce probleme en 2-d a été étudié par Bethuel, Brezis et Hélein [11], et
consiste a minimiser la fonctionnelle d’énergie

/ VP
B2

sur toute les fonctions u € H'(B?* S') telles que u = g sur S', avec g : S — St ré-
gulier. Or, lorsque degg # 0, ce dernier probleme de minimisation est impossible, car
H}(B?* S') = ¢. En effet, la condition degg # 0 impose des singularités du type 7l
a lintérieur du domaine, qui ont une énergie H' infinie (voir, e.g., les articles de San-
dier [75] et de Han et Shafrir [58]). Pour éviter cette obstruction topologique, Bethuel,
Brezis et Hélein ont élargi la classe de fonctions admissibles en prenant H, ;(BQ; C). Par
contre, ils ont introduit un terme de pénalisation pour compenser le fait que ces fonc-
tions ne prennent plus leurs valeurs dans S'. Le probléme devient alors de minimiser la

fonctionnelle de Ginzburg-Landau :

1 2
Mi Vul? + — 1 — lul?
oLl [0}

qui a toujours une solution u.. Dans [11], les auteurs ont étudié le comportement des
suites (u.,) lorsque g; | 0.

En 3-d, la situation change complétement. En effet, pour toute fonction ¢ : S? — S*
réguliere, I'espace H,(B*; S") est non vide. Le probleme (8) a donc toujours une solution.

De facon a retrouver la méme obstruction topologique qu’en dimension 2, F. Bethuel
a suggéré qu’il fallait prendre des données au bord g ayant des singularités de la forme
é:g‘ (modulo rotations) au voisinage de a € S%. Or, en utilisant la théorie du degré pour
des fonctions H'/? (cf. Brezis et Nirenberg [23]), il est possible de démontrer que pour
une telle fonction g nous avons H gl(B3; S1) = ¢. Le probleme (8) devient alors impossible,
exactement comme avant.

Dans le cas ou g est réguliere sauf en un nombre fini de points, le comportement des
minimiseurs de la fonctionnelle de Ginzburg-Landau en 3-d, lorsque € | 0, a été étudié
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par Riviere [74] (voir aussi Lin et Riviere [64]). Bourgain, Brezis et Mironescu [22] ont
considéré le cas général lorsque g € H'/?(S%; S1). Ce probleme est tres difficile et passe
par une analyse des singularités topologiques de g.

Rappelons que W1 (S?; S1) n'est pas inclus dans H'/2(S2; S1) (voir, e.g., [18]). Malgré
tout, ces deux espaces ont plusieurs propriétés en commun. Nous observons que toute
application g € W1(S5?%; S1) a un déterminant jacobien Det (Vg), bien défini au sens des
distributions. En utilisant un résultat de densité de Bethuel et Zheng [12], il est possible
de montrer que Det (Vg) s’écrit toujours sous la forme

Det (Vg) —’H'Z —6,,) dans D'(S?),

pour des points p;,n; € S? tels que Zj d(pj,nj) < oo. La longueur de la connexion
minimale entre les singularités positives et négatives de g est définie par

L(g) = 1 Sup <Det (Vg),(>.

T ¢|Lip<1

(Cette définition prend sa source dans un article de Brezis, Coron et Lieb [28].)
Dans le Chapitre 6, nous étudions plusieurs propriétés de g. Nous démontrons, par
exemple, que

in, [ DAl = [ 196l +27L(o) 9)

¢EBV (S2R)

g=e'¥ sur S2
L’inégalité < était déja connue par Demengel et Hadiji [44] (voir aussi [54]) pour des
fonctions dans W*!'(B?; S'). Observons que le membre de gauche dans (9) coincide avec
I’énergie relaxée de g :

Eia(g) = Inf {hminf IVgnl; gn € C°(S*: 5" et g, — ¢ p.p.}.
n—oo SQ
Cette notion a été introduite par Bethuel, Brezis et Coron [10] dans leur étude des appli-
cations H'(B3;S?). L’énergie relaxée joue aussi un role trés important dans le cadre des
courants cartésiens (voir les livres de Giaquinta, Modica et Soucek [53,54]).
Comme corollaire de (9), nous avons 'inégalité

[ el <2 [ (vl (10
52 52

valable pour toute fonction ¢ € BV (S?;R) telle que g = ¢ sur S%. D4vila et Ignat [39]
ont récemment démontré que I'estimation (10) reste vraie méme pour des applications g
dans BV A valeurs dans S*.

Motivés par les travaux de Fonseca, Fusco et Marcellini [50], et aussi de Giaquinta,
Modica et Soucek [52], nous considérons ensuite le jacobien relaxé de g € WH1(S?; S1) :

TV (g) = Inf {hminf - | det (Vgn)| 3 gn € CF(S*R?) et g, — g dans Wl’l}.

n—oo
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Alors, nous montrons que TV (g) < oo si et seulement si g a un nombre fini de singularités.
Dans ce cas,

—TV (g) = nombre de singularités topologiques de g (multiplicité comprise).
7r

2.7 Les distributions de la forme } _; (6p;, — n,;)

Les résultats du paragraphe précédent mettent en lumiere 'importance d’étudier les
distributions de la forme

T = (0p; — 6,,) dans [Lip (X)]", (11)

J=1

ou X est un espace métrique complet et > i d(pj,mj) < oo. Plus précisément, T" est donné

par
o

(T.¢) =Y [C(pj) = ¢(ny)], V¢ € Lip (X).

J=1

La longueur de la connexion minimale de T" est définie comme avant :

L= Sup (T,(). (12)

‘ClLipSl

Bourgain, Brezis et Mironescu [22] ont montré que L admet une caractérisation duale :

(;?%{dej’n] ; :Z(éﬁj—(Sﬁj) dans [Lip(X)]*}. (13)
75 J

—

Alors que le supremum dans (12) est toujours atteint, cela n’est pas le cas avec l'infimum
dans (13). Par contre, nous démontrons que si H'(supp T') = 0, alors il existe deux suites
(pj), (n;) telles que

T = Z p] n] et L= Zd(ﬁ],fb]>
J

Nous montrons aussi que 71" est une mesure, c¢’est-a-dire qu’il existe C' > 0 tel que

si et seulement si T' s’écrit comme une somme finie de dipoles. Ce théoreme a été établi
par Smets [80], sous ’hypothese supplémentaire que X soit localement compact.

Les résultats ci-dessus sont une conséquence de l’existence d’une représentation irré-
ductible de T', une notion que nous introduisons dans le Chapitre 7.
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Variants of Kato’s inequality and
removable singularities
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1.1 Introduction!

The original motivation for this chapter is the following remark, which is related to
Kato’s inequality (see [61]). First, let us recall one of its many versions. Consider Q C RY
an open set, and v € L' () such that Av € L*(Q); then,

Alv| > sign (v) Av  in D'(Q), (1.1)

where sign (s) =1 if s > 0, —1 if s < 0, and zero at s = 0. If we assume in addition that
v is continuous in €2, then it is easy to verify that

Alv| = sign (v) Av  in D'([v # 0]). (1.2)

Comparison between (1.1) and (1.2) suggests that the inequality in (1.1) should be a
consequence of the fact that |v| achieves its minimum on the set [v = 0], where one has
Alv| > 0 in a suitable sense.

Motivated by this fact, we proved the following theorem, which gives a positive answer
to a question raised by Y. Li. Here and throughout this chapter, we denote by €2 an open
bounded subset of RV, with N > 1.

LCe chapitre a été écrit en collaboration avec J. Dévila; le texte original est déja sorti dans J. Anal.
Math. 91 (2003), 143-178.
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Theorem 1.1 Suppose u € C() is such that w > 0 in Q, and u = 0 on a compact set
K C Q. Assume, in addition, that

Au>g inD(Q\K), (1.3)
for some g € L'(Q). Then,
Au>gxax nD(Q); (1.4)
in other words,
/ ulAp > / gp, Yo e CF(Q), ¢ >0 in Q. (1.5)
0 O\K

We would like to emphasize that we do not make any assumptions on the size of the zero
set K ; we do not assume either that Au € L (Q\K).

A consequence of this theorem is that Au + |g| is a nonnegative distribution, from
which we conclude that Awu is a Radon measure on Q (see [78]). Since w is uniformly
bounded on Q, we have u € HL_(Q) (see [7]; see also Chapter 3). Theorem 1.1 can be
viewed in this way as a removable singularity result. Another possible interpretation, in
the spirit of Kato’s inequality, is the following :

Assume that equality holds in (1.3); that is, suppose that

Au=g inD(Q\K). (1.6)
We can now define the distribution

pi=A~Au—g inD'(Q), (1.7)

so that supp 4 C K. Then, according to Theorem 1.1, i is a nonnegative Radon measure
concentrated on K C [u = 0].
As an example, let u(z) := 3|ay| for € RY. Then,

Au=H " y=q inD'RY),

where HV~! denotes the (N — 1)-dimensional Hausdorff measure.

We also notice that if (1.6) holds and K is sufficiently small, then we can actually
conclude that g = 0 in Q. In order to make this precise, we first recall that the compact
set K C Q has zero H'-capacity, which we denote by cap, (K) = 0, if there exists a
sequence (¢,) C C§°(§2) such that ¢, > 1 in some neighborhood of K and

/|V<,0n]2—>0 as n — 0o.
0

In particular, it follows from Poincaré’s inequality that |K| = 0. See Section 3.2 for other
properties of K.
We then have the following corollary of Theorem 1.1 :

Corollary 1.1 Under the hypotheses of Theorem 1.1, suppose in addition that (1.6)
holds. If cap, (K) =0, then
Au=yg inD'(Q). (1.8)
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A slightly stronger version of Theorem 1.1, without the continuity assumption on w,
has been studied by Ddvila and Ponce [40]. In their case?, the function u belongs to
L'(2), and the condition u = 0 on K is to be understood in the sense that

1
lim — u =0, 1.9
rlo vV /NT(K) ( )

where N,.(K) denotes the neighborhood of K of radius r. This hypothesis is probably too
strong, but it is still unclear how to weaken it in this general setting.

In the sequel, we shall restrict our attention to singular sets K which are smooth
manifolds of RY, without boundary, having codimension k£ > 1. For this reason, we shall
use the more natural notation M, instead of K. It turns out that, in this special case, we
can get explicit formulas for p in terms of the mean value of u on tubular neighborhoods
of M. As we shall see, the cases £k = 1 and £ > 2 have completely different features,
the main reason for that being that manifolds of codimension k£ > 2 always have zero
H'-capacity (see Corollary 3.4).

In the case where K = M C () is a smooth manifold of codimension 1, we have been
able to relax (1.9) by assuming that u € L'(Q) satisfies

where Z, = Z,.(M) is the tubular neighborhood of M of radius r. In other words, for such
singular sets, one can replace the factor rAN in (1.9) by %, and still get the same conclusion
of Theorem 1.1. More precisely,

Theorem 1.2 Suppose M C ) has codimension 1. Let u € Li (), and assume that
there exists g € Li.() such that

Au=g D (Q\M).
If ,
13%;/& | = 0, (1.10)
then, for each ¢ € C§(Q), 7‘_12/: wp converges as r | 0, and
limlg/ up = 1/(uA<,0—gg0). (1.11)
rlo r? =, 2 Jq

In particular, if we suppose in addition that u > 0 a.e. in ), then

Au>g inD(Q). (1.12)

2Méme si ce chapitre est basé sur I'article [40], nous avons décidé d’introduire quelques modifications
au texte original. Une version assez différente du Théoreme 1.1 y est énoncé. Celui que nous présentons
ici met en évidence le rapport entre les Chapitres 1 et 3. Tous les autres résultats restent inchangés.
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Remark 1.1 We conclude a posteriori from (1.12) that u € W,2(Q2) for 1 < p < yranT
(see [7]; see also Corollary 3.2). Thus, condition (1.10) is actually equivalent to v = 0 in
M in the sense of traces.

We next study the case where the singular set M is a compact manifold of codimension
k > 2. It turns out that, in this case, the condition u > 0 a.e. in ) already suffices to
conclude that —Awu is a (nonnegative) measure on M. More precisely, we have

Theorem 1.3 Suppose M C Q has codimension k > 2. Let w € L} (Q), u > 0 a.e. in
Q, and assume there exists g € Li () such that

Au=g D (Q\M).

Set
pi=Au—g inDQ), (1.13)

which is a distribution supported on M.
Then,
W is a nonpositive measure on M (1.14)

and, for any ¢ € C§°(Q2), we have

1
—2(k—2)1im—/ up ifk >3,

rl0 7‘2

(b, ) = 1 1 = ) (1.15)
—2 lim ——— k=2
"o 2| log r| /ET wp i

A classical result in Potential Theory states that (1.14) still holds if M is replaced
by a compact set of zero capacity K (see, e.g., [59, Theorem 7.7]). We shall return to
this problem later, in Chapter 3, where we extend these results in greater generality. We
present in Section 1.5 a completely independent proof of (1.14) in our special case, in
order to deduce (1.15).

Even if we do not assume any conditions on the sign of u, we can still characterize
the case where p is a measure in terms of the growth of |u| near M. More precisely, we
have the following
Theorem 1.4 Suppose M C ) has codimension k > 3. Let u € L. (Q) (here we do not

loc

assume that u > 0 a.e. in Q), and suppose there exists g € L () such that

loc
Au=g mD(Q\M).

Set
pi=Au—g inD ).

Then, i 1s a Radon measure if, and only if,

1
—2/ |u|  remains bounded as 1 | 0. (1.16)
r? )z,
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In this case, for all ¢ € C§°(Q) we have

1 1
lriﬁ)l = /ET up exists and equals — m(u, ©). (1.17)
Moreover,
1 1
lgf(rjlﬁ /Er lu|  ezists and equals mHMHM, (1.18)
where

|| = sup{/ wdp : we C(M), ||w]e < 1}
M
denotes the usual norm of Radon measures on M.

Remark 1.2 Using a formula deduced in Section 1.3, it is possible to show that (1.17)
still holds if one replaces (1.16) by

rl07r

1
lim—/ lu| = 0. (1.19)

On the other hand, if one takes for instance the function u(z) = |93_13 in R*\{0}, then
T

Au = ¢0ydy for some constant ¢ # 0. In the notation of Theorem 1.4, let M := {0},
g :=0, and p := c01dy, so that u is a distribution of order 1 and

o1
llm—/ lu| > 0.
rlO ’r BT

We do not know if the condition (1.19) implies that p is a measure.

There is also a result analogous to Theorem 1.4 in the case of codimension k = 2 :

Theorem 1.5 Suppose M C Q has codimension k = 2. Let u € Li, (Q) (here we do not

loc

assume that u > 0 a.e. in Q), and suppose there exists g € L () such that
Au=g inD(Q\M).

Set
p:=~Au—g inD(Q).

Then, u is a Radon measure if, and only if,
1
—/ |u|  remains bounded as 1 | 0.
r2llogr| J=,
In this case, for all ¢ € C3°(2) we have

lim — / sts and equals  — {1, )
im ——— [ up exists and equals — = .
rlo r2|logr| Jz, 4 1 g V¥

Moreover,

lim —— /|| sts and equals |4
m —-—-—-——- u EexrtStsS anda equals — .
rl0 r2|logr| Jz, 1 g HiM
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As a consequence of Theorems 1.4 and 1.5, we have :

Corollary 1.2 Under the assumptions of Theorem 1.4 (resp. Theorem 1.5 for k = 2),
we have Au € L () if, and only if,

loc

1
lim—/|u|:O, fork >3,

rl0 7“2

1
lim —— =0 kE=2.
7}{8 r2|log r| /ET [ul , Jor

Applying Corollary 1.2, we obtain the following well-known result about removable
singularities :

Theorem 1.6 Assume M C €2 has codimension k > 3. Let c € R, and g : R, — R, be
a continuous function satisfying

limint 29 < o (1.20)

t—oo k2

Let u € Li (Q\M), u > 0 a.e. in Q, be such that g(u) € L (Q\M) and
—Au+cu=g(u) inD(Q\M). (1.21)
Then, u, g(u) € Li () and

loc
—Au+cu=g(u) inD'(Q). (1.22)

Theorem 1.6 was originally proved by Véron [85], and it was further extended by Baras
and Pierre [5]. It turns out that condition (1.20) is related to the fact that M~ ~* has zero
W?2#/2_capacity ; see the book of Véron [86] for details and other results on removable
singularities.

Remark 1.3 The above result may seem misleading at first. Assume, for instance, that
k
k>3, c=0, and g(t) = t*2. Although Theorem 1.6 implies

~Au=ur2 in D/(Q), (1.23)

one cannot conclude solely from this equation that w is smooth. Theorem 1.6 only asserts
that the singularities of u are not detectable in the distributional level. In fact, let M C €2
be a compact manifold of codimension k. In a very interesting paper of Mazzeo and
Pacard [69], they have been able to construct nonnegative functions u satisfying (1.23),
which are singular precisely on M.

Remark 1.4 Theorem 1.6 also holds for & = 2, as proved by Vézquez and Véron [84].
In this case, assumption (1.20) should be replaced by
t
lim inf &2 >0, Va>0. (1.24)

t—oo e%

For the convenience of the reader, we shall give a proof of Theorem 1.6 and Remark 1.4,
based on Corollary 1.2 above.
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1.2 Proof of Theorem 1.1

We first prove the following variant of Kato’s inequality :
Lemma 1.1 Let w C RY be a bounded open set and h € L'(w). If v € L*(w) satisfies
Av>h inD(w),

then
Avt > hypsq i D'(w).

In order to avoid any ambiguity regarding the definition of the set [v > 0], we can
assume that v itself is the precise representative of the equivalence class of v in L!(w)
(see, e.g., [47]). This way, [v > 0] is well-defined except for a null set. Also notice that
we cannot directly apply Kato’s inequality here since we do not assume that Av is an
L'-function.

Proof of Lemma 1.1. Take p € C§°(By) such that p > 0 in RV and [,y p = 1. For any
e > 0, define p.(z) := e Vp(x/e) on RY and v, := p. * v.
Let V CC w and § > 0. For £ > 0 small enough, we have
Av. > h. inD'(V).
By the standard Kato’s inequality, we get
A(’UE + 5)+ Z haX[vg+520] n D/(V)

In other words,

/(vs +0) Ap > / heXppe>—510, Yo € CP(V), p>0in V. (1.25)
Vv Vv

We now fix a sequence ¢, | 0. Clearly,

lim inf {han ()Xo, >3] (x)} > h(2)Xps>—o(x) = h™(2)Xp=—o(2)

n—oo

for a.e. x € V.
Applying Fatou’s Lemma to (1.25), with ¢ = ¢,,, we get

/(U +0)TAp > / {hX[v>—§] - h_X[v:—(s]}@‘ (1.26)
14 \%

Since h € L'(w), we must have h = 0 a.e. on the set [v = —4], for a.e. § > 0. In particular,
h™Xp=—5 =0 fora.e. 0> 0.

Take a sequence §; | 0 such that this holds; thus, (1.26) simply becomes

/(U+5j)+ASOZ/hX[v>—5,-]SO‘
Vv Vv
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Passing to the limit as j — oo, we conclude that
AU+ Z h‘X[UZO] in D/(V)

Since V' CC w was arbitrary, the result follows.

Proof of Theorem 1.1. (We would like to thank H. Brezis for simplifying our original
proof.)
We shall split the proof into two steps :

Step 1. Under the assumptions of the theorem, we have
Au > gXuso in D'(Q). (1.27)

Given § > 0, it follows from the previous lemma, applied with w = [u > 2J] and v = u—34,
that
A(u—30)" > gxpuzzs)  in D'([u > 26]).

Let ¢ € C§°(Q2) be such that 0 <1 < 11in 2, ¢ =1 in [u < 4], and suppy) C [u < 20].
For any ¢ € C§°(£2), ¢ > 0 in 2, we then have

/Q(u —30)TAp = /(u —30) Al + (1 — )]

Q

- / (u— 36)* Afp(1— )]
_ /[ . (1 — 36)* A (1 — )]

> / IXuz3a)p(1 — ) = / IX[u>35]#-
[u>24] Q
In other words,
Au—30)" > IX[u>35) 1IN D'(Q).
Passing to the limit as § | 0, we obtain (1.27).

Step 2. Proof of Theorem 1.1 completed.
Let h € C°(RY) be such that h =0 on K and h > 0 in RN\ K. Applying Step 1 to the
function u 4+ A\h, where A > 0, we get

Au+ AAR > (g + AR) X =0 = (9 + M) xox  in D'(Q).

Passing to the limit as A | 0, the result follows.
Proof of Corollary 1.1. It follows from Theorem 1.1 that

Au> gxoxk =g inD'(Q).

Here, we have used that |K| = 0. On the other hand, since (1.6) holds and cap, (K) = 0,
it is well-known that (see [59]; see also Theorem 3.1)

—Au>—g inD'(Q).

A comparison between these two inequalities implies that (1.8) holds.
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1.3 Some useful formulas

Let us first recall some standard results.

Given a compact smooth manifold MY~* (with or without boundary) embedded in
RY, with codimension k > 1, we define its distance function d : RY — R, by d(x) :=
dist (z, M). The case k = N is included, i.e., M may be a finite collection of points. It
is a well-known fact that for § > 0 small enough, the set Ns(M) is a smooth manifold
with boundary, also called the d-tubular neighborhood of M, which from now on we shall
denote by Z5(M), and when no confusion arises, simply write Z5. The distance function d

is Lipschitz in RY, it is smooth in Z;\ M, and satisfies (for the second property, see [65]) :

|Vd| =1 a.e. inRY, (1.28)

k-1
Ad = T + ag in 55 \ M, (129)

where ag is a bounded function in Z5 \ M.

For each z € Zj, there exists a unique element 7(x) € M for which the distance
function is realized, i.e., such that |z — 7(z)| = d(z). The projection 7 : E5 — M thus
defined is also smooth.

For simplicity, from now on we shall assume that =5 is a smooth tubular neighborhood
of M.

Finally, let us recall that, for every v € L*(RY), we have the coarea formula (see,

e.g., [47]) : 5
/EJU:/O /Ervdadr.

Lemma 1.2 Suppose M C €2 is a compact smooth manifold, without boundary, of codi-
mension k > 1. Let u € L{ (), and assume there exists g € Ll () such that

loc loc
Au=g D (Q\M).
Set
pi=~Au—g inD(Q).
For k> 1 andt,r > 0 define

1 ‘
z if0<t<r,
Gr(r,t) = E—1rk (1.30)
_Tt_k if 0 <r<t.
Then, for any R € (0,1) fized and ¢ € C§°(2), all the limits below exist and :
a) if k > 3, then
e =tm - [
ok —2) T T U o
(1.31)

1 (R
+ 7“_2/ G (r,t) (/ 2uVe - Vd+ ugoao) dt} ;
0 Et
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b) if k =2, then
1 1
- — 1 - =
5 (1 @) 7}?01{ 2[Tog 1] /ErusoJr

1 R
+—/ Go(r,t) /QUV(,D-Vd—I—ugoao dt ¢ ;
r?|logr| Jo =
c) if k=1, then

gy —tim e
el =lim =5 uet ol [ ue
1 T
+ﬁ (/ 2qu0~Vd—|—ugpao) dt}.
0 =

Proof. We first establish the following
Claim. For any ¢ € C5°(Q), the function s +— [,_ up is C' on (0, 1), and

d 1
(Au, p) :/ ulAp — 2/ uVy - Vd + Sk—ld_ (ﬁ/ ugo) —/ upag.  (1.34)
Zs 02, S \S 02 OZs

Proof of (1.34). We first assume that u is smooth.
Fix a smooth, non-increasing function ® : R — R such that ®(¢t) = 0 for ¢ > 1 and
®(t) =1 for t <0. For € > 0, set

t—1
o.(t) == o(—).
(1) ==
Now let ¢ € C3°(Q2) and, for €, s > 0, define

(1.32)

(1.33)

() it v € =5,
Pse(m) = p(2)P(d(x)/s) if € Eg4e) \ Zs,
0 if x € Q) \ Es(l—i—s)-

Observe that ¢, = ¢ in Z; and ¢, = 0 in Q \ E 14.). Using (1.29), we now compute
ASOS,S in Es(l—&—z;‘) \ Es :

2 1
Apye = Mp®o(dfs) + =V - VA BL(d/s) + ?¢{c1>g(d/s> + §q>;(d/s)(k 14 aod)}.
Since ¢, . is an admissible test function, we obtain
Bugo) = [ud®4fs) + I+ Bt B+ 1o (1.35)
Q

where

2
I, = —/thp -VdoL(d/s),
Q

S

1
[2:—2/1690(1)/5/(61/5)7
ST Ja

k—1 ©
I3 = T (d
v [ B als)

1
Iy = —/ucpag PL(d/s).
Q

S




1.3. Some useful formulas

19

Next, we find the limit as € | 0 of the four previous integrals. For this purpose, we

compute

d/s—1

>qu0 -Vd

so, by the coarea formula,

2 S(1+€) _ 1
= — {<I>'<T/S—> / uV - Vd} dr
€s Js S o=,

1
= 2/ {@'(t)/ uVep - Vd} dt.
0 85(1+5t)s

We now let € | 0 :

1
lim[1:2/ @'(t){/ qup-Vd} dt:—Z/ uVy - Vd.
€l0 0 0=, 0=,

We now proceed with I :

d/s—1

1 1
_[ _ @// d - @//(
27 2 /QUSD 2(d/s) 2262 /Es(1+s)\55 up -

1 !
= — CID”(t)/ wp p dt
€s Jo =5 (14et)

and, integrating by parts,

1
L= —q)’(t)/ ugp
es aEs(l-!—st)

Letting € | 0, we arrive at

t=1

t=0

lim/l, = — .
&}11,10’1 2 dS 85811,(70

The computations for I3, I, are similar, and they yield

k—1
lim I3 = — / up,
el0 S 9=,

limI, = — .
im 7, /8 _ wpag

Thus, passing to the limit as ¢ | 0 in (1.35), and using (1.36)—(1.39), we get

_ /0 1 (@/(t) {% /8 EA w} A_S(w)) dt.

(1.36)

(1.37)

(1.38)

(1.39)

d kE—1
(Au, ) = / ulAp — 2/ uVe - Vd+ —/ up — / wp — / upag. (1.40)
Es 9=, ds Joz, S Es Es
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il _ — Y 1.41
ds 0=, ucp S /aas e ds (Sk_l /Es ugo) 7 ( )

and therefore, combining (1.40) with (1.41), we find (1.34).

We now consider u as in the statement of the lemma, i.e., u € L () so that u:= Au—g
is a distribution with support in M, where g € LlOC(Q). Using a density argument, and
the fact that u € W2 (Q\ M), we deduce that the function s — Jo=, up is C* on (0,1)
and that

, d 1
(1, @) :[ (uAgp—ggp)—Q/H uVp - Vd+ sk 1@ (F/~ ugp)—/ﬁ wpag. (1.42)

At this point, we distinguish the three cases : a) k > 3, b) k=2, and ¢) k = 1.
a) Case k > 3.Fix R € (0,1) and let 0 < t < R. Dividing (1.42) by s*~! and integrating
over s € (t, R), we get

1 1 1
m(% @) = O(l)t’f_ﬂ by

up-+
0=

o
— / {ﬁ/ wpag + 2uVep - Vd} ds,
t =s

where o(1) denotes a quantity that goes to zero as ¢t — 0. Multiplying (1.43) by t*~! and
integrating over ¢ € (0,r) with 0 < r < R, we obtain

Q(k—l_z)w,@:oa)—ri/ wp— tk 1/ = /Mvdsdt (1.44)

where we use the notation

(1.43)

v:=2uVy - Vd+ upa. (1.45)
We now integrate by parts in the last term on the right-hand side of (1.44) :

R 1 /4 1 s=h R 1
/t 1 <£/: U) ds = {—Sk_l/: v] | —/t (1_k>s_k/: vds

1 1 |
:Rk’—l/_v_tk_—l —U‘i‘(kj—l) ) S—k/_vds.
R = =s

k—1
t /skl/ﬁ vdsdt = Rkl/ //vdH—

k—1

Therefore,

(1.46)

tk_l vdsdt,

sk

and, changing the order of integration in the last term of (1.46), this gives

r R 1 1 r k R 1
/ tk_l/ s_k/ Udsdt—E/ / UdS—F%/ s_k/ vds. (1.47)
0 t s 0 JE, r Es
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Then, (1.46) in combination with (1.47) yields

1 r R 1 Tk_2 1 r
— th1 — dsdt = —— - — dt
2 Jo / Sk_l/asv ’ szk/ kz?// i
k—1 |
+—k: er/T S—k/Esvds.

Hence, using (1.48) in (1.44), we conclude that

1 1 1 (7 kE—1 R
S =o(l) — = — dt——“/ —/ d
Q(k_2><u,s0> o(1) Tg/auwkr?/o /Etv P R ESU S

20(1)_}2/3@%}2/01% (Gk(r,t)/gtv) n

where Gy, is given by (1.30).
This establishes (1.31).

b) Case k = 2. Note that (1.42) is still valid and, since k = 2, it takes the form

o= [ ek (2 )

where v is given by (1.45). Dividing the last equation by s and integrating over s € (¢, R),
we get

(1.48)

R 1 1
3 =s 0=

Multiplying by ¢ and integrating over ¢t € (0,r), we obtain

L )—0(1)—;/7}/1%1/ vdsdt—;/u (1.49)
g e ®1 = r2|logr| Jo Ji s Je=, r2|logr| Jz, ? ’

But, integrating by parts,

Hence, using Fubini, we get

r Rl T2 r r Rl
/t/ —/ vds = — v—//vdt+/t/ —2/ vdsdt
0 t S Jo=, 2R Zr 0o J= 0 t S JE,
r? 1 /" r2 (R 1
= — — = dt + — — ds. 1.50
2R )=, " 2/0/5” +2/Ts2/53v5 (1.50)
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So, from (1.49) and (1.50), we infer that

1( ) (1) ! / + ! /7‘/ dt 1 /R 1 / dt
— =o0(l) - —— U _ vdt — —— — [ v
2 ¥ r2|logr| J=, v 2r2|logr| Jo Jz, 2llogr| J, 2 Jg,

1 1 R
=o0(l) - —— S Go(r. t dt.
o) 2| log 7| /erJrr?!logrl/o < 2 )/atv>

This proves (1.32).
c) Case k = 1. This time (1.42) becomes

d
(u,w)Z/(uAso—gsO)—/ vt o up
Q 9%, S Jo=,

Integrate the previous relation over s € (¢, \) :

(A =1t) (1, 0) = 0(1) — /EA\Et v+ /85A up — /aat up. (1.51)

where o(1) — 0 as A — 0. Since v = 2uVp - Vd + upag € L (Q), by letting ¢ | 0 in

loc

(1.51) we see that ltiLI(r)l ug exists and
0=,

M, ) = o(1) — /EAH/EA wp — (13%1/6& ugp) | (152)

We now integrate (1.52) over A € (0,7) and divide by r? to find

1 1 1/ 1 (7
§<u,¢>:0(1)+p/5rwﬂ—;(%l/aaucp)—T—Q/O /Etvdt,

which concludes the proof of the lemma.

1.4 Proof of Theorem 1.2

Set 1 := Au— g. Suppose that (1.10) holds. Then, since lifn up exists by Lemma 1.2,
T 0=,
we conclude that

liﬂ)l up =0, Ype C(Q). (1.53)
" 0=,

On the other hand, given € > 0, (1.10) implies that there exists § > 0 such that

/ lu| <er, Vre(0,0).

Therefore, we have

/ </ 2uV<,0-Vd+u<,0a0) dt‘ < C/ (/ |u|> dt
0 =N 0 Bt

r 2
gc/ 6tdt=5%, vr € (0,0).
0
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Since £ > 0 was arbitrary, we deduce that

1 T
liﬁ? 7"_2/ </ 2uVep - Vd + ugpao) dt = 0. (1.54)
T 0 of

Inserting (1.53) and (1.54) into (1.33), we get

1 o1 .
§<u,s0>=hm—/: up, Vo € Cgo(Q).

rl0 72

The limit in (1.11) now follows since, by definition, 4 = Awu— g. This completes the proof
of the theorem.

1.5 Proof of Theorem 1.3

We shall give a proof of Theorem 1.3 only for the case of codimension k£ > 3, the case
k = 2 being entirely analogous.
Using the fact that u > 0 a.e. in €2, we have

/OR Gi(r,1) ( /: V-V usacm) dt‘ <
o[ ([ a5 (] ) .

=t Rrk
<Cr u+C/ t_’“(/: u)dt, Vr e (0, R).

Choose Ry € (0, R) small, so that CR; <
v € CP(), p=1o0n Zg,. Then, by (1.55)

1 Ry Tk
5/ u—C’/ t_k</ u) dt <Cr?,  ¥re(0,R). (1.56)

We shall use (1.56) and a bootstrap argument to conclude that

=

. We now apply (1.31) with R := Ry and
nd our choice of Ry, we get

)

/ u < Cr?, Vre(0,R). (1.57)

=r

In fact, since fEt u is uniformly bounded for ¢ € (0, Ry), we have

Ry rk
/ s (/ u) dt < Cr, Vre (0,Ry). (1.58)

In particular, (1.56) and (1.58) imply that

1
5/ u<Cr, Vre(0,Ry),
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Ry Tk
/ - </ u) dt <Ot Ve (0,Ry). (1.59)

Therefore, by (1.56) and (1.59), we conclude that estimate (1.57) holds.
It then follows from (1.57) and (1.55), with R replaced by R;, that the right-hand side
in (1.55) is bounded by Cr?, Vr € (0, R;). In particular,

so that

1 [
hfglﬁ {/ G (r,t) </ 2uV e - Vd + ugoao) dt} = 0. (1.60)
" 0 =
By (1.31) and (1.60), we have
L = hmi/ Vi € C3(Q) (1.61)
2(](;-2) W, p) = 10 r2 = up, ¥ 0 : :

If we now apply (1.61) with estimate (1.57), then we conclude that u is a measure. Since
u >0 a.e. in Q, (1.61) implies that p is nonpositive.

1.6 Proof of Theorems 1.4 and 1.5

Proof of Theorem 1.4. We shall split the proof of the theorem into 3 steps :
Step 1. If

1
—2/ |u| remains bounded as r | 0, (1.62)
% Jz,
then p is a measure and
.1 o
() = <20 -2lim - [ wp. Vo GO (1.63)

It is easy to see that condition (1.62) implies that

Ry
lifg% {/ G (r,t) </ 2uVp - Vd + ugoao) dt} =0.
T 0 =

From the limit above and (1.31), we deduce that (1.63) holds. In particular, it follows
from (1.62) and (1.63) that p is a measure and

1
llm < 2(k—2) lil?l(i)nfﬁ/ﬁ |ul. (1.64)
Step 2. If 1 is a measure, then
1
—2/ |u| remains bounded as r | 0, (1.65)
r? Jz,

and

1
[l > 2(k —2) limls(.)upﬁ - ful. (1.66)

—T



1.6. Proof of Theorems 1.4 and 1.5 25

In this step, we shall use an estimate given in the proof of Theorem 1.3, and also the
representation of the solutions of Av = v in R¥ in terms of the fundamental solution.
More precisely, let F(z) = MC% be the fundamental solution of —A in RY, N > 3, where

the constant cy is chosen so that —AE = §,. If v is a Radon measure in R", then
vi=Exve Ll (RY) and —Av=v inD'(R").

Now let v := g + p in Q. Next, we decompose v = v — v~ in its positive and negative
parts, where v* = g 4 pu*. Let v := E * v*. As we observed above, we have

—Avt =t =g¢F +F in D'(RY).

Moreover, note that v= > 0 a.e. in R¥. In particular, the functions v* satisfy the as-
sumptions of Theorem 1.3, so that (1.14) holds with u and u replaced by v* and —u*,
respectively. In other words, we have

/ vE < Cr?, Vr e (0,1), (1.67)
and
Lt =i 1/ o, Vo e CR(Q) (1.68)
— = lim — v ) .
2(]{:_2) uo, e 10 7”2 = 2 ¥ 0
On the other hand, it is easy to see that u = v~ — v + w a.e. in Q, for some harmonic

function w. Since w is bounded in a neighborhood of M, we have

hm—/ |w| = 0. (1.69)

rl0 72

In particular, (1.65) follows from (1.67) and (1.69). Moreover, if we apply (1.68) with a
test function ¢ such that ¢ = 1 in some neighborhood of M, then we have

mmw = ﬁ((ﬁﬁ, 1)+ (u,1) +0)

1 1
=lim— | (v + o7 + Jw|) > limisoupﬁ/_ |ul.

This concludes the proof of Step 2.
Step 3. Proof of Theorem 1.4 completed.
By Steps 1 and 2 we know that u is a measure if and only if

1

— [ |u| remains bounded as r |0,
r =

r

in which case formula (1.17) holds. Moreover, applying (1.64) and (1.66) we get

Il < 2(k—2) hmmf—/ lu| < 2(k —2) hmsup—/ lu| < |p|m,
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so that all the inequalities are reduced to equalities in the estimate above and (1.18)
holds.

Proof of Theorem 1.5. The proof of Theorem 1.5 follows along the same lines and shall
be omitted.

Remark 1.5 Let us mention that formula (1.17) in Theorem 1.4 holds under weaker
conditions ; namely, that if

1
;/ lul =0 asr |0, (1.70)

then

1 1
lim — - % (Q).
im /Eruso 2y e TR E Q)

This formula can be easily deduced from Lemma 1.2.

1.7 Proof of Theorem 1.6

It follows from (1.20) and (1.21) that
—Au=g(u) —cu>—-C inDQ\M),

for some constant C' > 0 sufficiently large. Since cap, (M) = 0, we then conclude that
u € L (Q) and

loc

~Au>—C inD(Q).

In particular, Au is a Radon measure in 2. Using this property and (1.21), it is easy to
see that g(u) € Li .(Q) (see, e.g., Section 3.3); in particular,

loc

_k
ue LEZ(Q).

loc

Recall that M has codimension k; thus, |Z,| ~ r* as r | 0. It then follows from Holder’s

inequality that
k—2 k=2
= 12/k &\ F 9 &\ P
u < |Z, uk-2 <Cr uk-2 .

1
lim — u=0.
r|0 7”2 =,

By Corollary 1.2, we must have y = Au — cu + g(u) = 0 in M. Hence, (1.22) holds.

Therefore,

Proof of Remark 1.4. Let us assume that

t
lim inf & > (0 for every a > 0 sufficiently large.

t—oo  eat

As before, we have u, g(u) € LL _(2) and (1.21) is satisfied. In particular,

loc

e™ e Li (Q), Va>0. (1.71)
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By Jensen’s inequality and (1.71), we know that

1 au 1 Ca
o= J=, < / e™ < ,  Vr > 0 small,

—_
—
—

where C, > 0 is a constant depending on a. We conclude that

(1.72)

|~r|

Let 0 < oy < g be such that ayr? < |Z,| < agr? for all r > 0 small. From (1.72), we get

a / w< log (Cy/ayr?) 94 log (C, /al).
agr?logl/r J= log1/r log1/r

By letting r | 0, we deduce that

. 1 20(2
limsup ——— u< —
rio - r*|logr| Jg, a

If we take a — oo, then we have
rw r2|logr|/

We now invoke Corollary 1.2 to conclude that Theorem 1.6 also holds for k& = 2.
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Remarks on the strong maximum

[ ] [ ]
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2.4 A variant of Kato’s inequality when Awu is a Radon measure 35
2.5 Proof of Theorem 2.1 completed . . ... ... ... .... 37

2.1 Introduction®

The strong maximum principle asserts that if v is smooth, v > 0 and —Au > 0 in a
connected domain 2 C RV, then either v = 0 or v > 0 in . The same conclusion holds
when —A is replaced by —A + a(z) with a € LP(Q), p > I (this is a consequence of
Harnack’s inequality ; see, e.g., [81], and also [83, Corollary 5.3]). Another formulation of
the same fact says that if u(zg) = 0 for some point zo € Q, then u = 0 in . A similar
conclusion fails, however, when a ¢ LP(Q), for any p > . For instance, u(z) = |z|?
satisfies —Au + a(xz)u = 0 in By with a = % ¢ LN%(B,).

If u vanishes on a larger set, one may still hope to conclude, under some weaker
condition on a, that v = 0 in Q. Such a result was obtained by Bénilan and Brezis [6,
Appendix D] (with a contribution by R. Jensen) in the case where a € L'(£2) and supp u is
a compact subset of 2. Their maximum principle has been further extended by Ancona [4],
who proved Theorem 2.1 below.

We will assume throughout this chapter that €2 is a bounded connected domain in
RY, with N > 2.

We recall that a function v : 2 — R is quasicontinuous if there exists a sequence of
open subsets (w,) of Q such that v|q\,, is continuous for every n > 1, and cap,w, — 0

as n — 0o, where cap, w,, denotes the H'-capacity of w, (see Definition 3.2).

3Ce chapitre a été écrit en collaboration avec H. Brezis ; le texte original est déja sorti dans Differential
Integral Equations 16 (2003), 1-12.

29
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Theorem 2.1 (Ancona [4]) Let u € LY(Q), u > 0 a.e. in Q, be such that Au is a
Radon measure on ). Then, there exists u : 2 — R quasicontinuous such that u = U a.e.
n €.

Leta € L'(Q), a >0 a.e. in Q. If

—Au+au>0 inQ,

in the following sense
/ Au < / au  for every Borel set E C (, (2.1)
E E

and if @ = 0 on a set of positive H'-capacity in ), then v =0 a.e. in .

The proof given by Ancona is purely based on Potential Theory. Our aim in this
chapter will be to present one in the spirit of PDEs. We also carefully discuss the meaning
of the condition —Awu + au > 0 in €.

The next two corollaries follow immediately from the theorem above :

Corollary 2.1 Let u and a be as in Theorem 2.1, and suppose (2.1) is satisfied.

If u =10 on a subset of Q with positive measure, then u =0 a.e. in 2.

If u is continuous in Q0 and w = 0 on a subset of Q0 with positive H'-capacity, then u = 0
in §2.

Corollary 2.2 Let u and a be as in Theorem 2.1. Suppose that Au € L'(Q).

If
—Au+au>0 a.e in

and u =0 on a subset of Q) with positive measure, then u =0 a.e. in €.

The next corollary follows from Theorem 2.1 and Remark 2.3 :

Corollary 2.3 Let u and a be as in Theorem 2.1. Suppose that au € L (Q).
If
—Au-+au>0 inD'(Q),

i.€.
/uAgpS/augo, Vo € C3°(R2), p >0 in £,
Q Q

and u =0 on a subset of Q) with positive measure, then u =0 a.e. in Q.

Remark 2.1 In view of Corollary 2.3 above, it would seem natural to replace condition
(2.1) in Theorem 2.1 by

/uAgog/awp, Vo € C5°(2), ¢ > 0 in £,
) Q

which makes sense even if au € L () (note that aup > 0 a.e., so that the right-hand
side is always well-defined, possibly taking the value +o0c). However, the strong maximum
principle is no longer true in general ; see Remark 2.4.
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There are several interesting questions related to Theorem 2.1 :

Open Problem 1 In the statement of Theorem 2.1, suppose in addition that suppu C 2

is a compact set. Can one replace the assumption a € L} _ by a weaker condition, for

example a'/2 € Ll (or a'/? € I} for some p > 1), and still conclude that u = 0 a.e. in
Q7

Note that one cannot hope to go below L'/2. For instance, the C?-function u given by

u(z) = {<1 )t it ] < 1.

0 if |z > 1,

satisfies —Au + au > 0 for some function a(zx) such that a(x) ~ ————— for 2| S 1.

Here, a® € L' for every a < 1/2, but a/? ¢ L.

Here is another one :

Open Problem 2 Assume u € CY, u > 0, and a € L] _ for some 1 < ¢ < %, a>0a.e.,
satisfy (2.1). Suppose that v = 0 on a set I with cap,, () > 0, where cap,, refers to the
capacity associated with the Sobolev space W12 (see Definition 3.1). Can one conclude
that v = 0 in Q ? Same question if E has positive W2%-capacity.

Theorem 2.1 above shows that the answer is positive when ¢ = 1. It is also true when
q> %, by the strong maximum principle mentioned above. Note that if ¢ > % and x( is

any point, then cap,, ({xo}) > 0; see Lemma 3.1.

2.2 Some comments about condition (2.1)

Since in the statement of Theorem 2.1 it may happen that au ¢ L{ (), and so au
is not necessarily a distribution, one should be very careful in order to give a precise
meaning to the inequality

Au <aqu in .

More generally, let 1+ be a Radon measure on {2 and f a measurable function, f > 0
a.e. in (). Here are two possible definitions for the inequality 4 < f in € :

Definition 2.1 We shall write
2 Sl f in Q7
of
/ dp < / f for every Borel set E C ().
E E

Definition 2.2 We shall write
2 §2 f in Q7

if
/<Pdu§/fs0, Vi € C3°(22), ¢ > 0 1n Q.
Q Q
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In the first definition, we view f as the nonnegative measure f dx, while in the second
one f is treated as if it were a distribution (which need not be the case in general, unless
f € Line()).

loc

Remark 2.2 If 4 <; f in Q, then p <, f in 2. However, the converse is not true in
general ; see Remark 2.4 below.

Remark 2.3 If we assume in addition that f € L] _(Q), then p <; f in Q if, and only
if, u <o f in Q.

Remark 2.4 Theorem 2.1 above is no longer true in general (even for the case where
Au € L'(Q)) if we replace (2.1) by
—Au+au>50 in Q.

In fact, let N > 2. Take v € LY(RY), v > 0 a.e. in RY, such that suppv C By, Av €
LY(RY), but v is unbounded (this is possible since N > 2). In particular, there exists
be LYRY), b >0 ae. in RV, such that bv & L*(RY).

Let (x;) C By be a dense sequence in By and, for each j > 1, let

, {1 1—|ij}
v i=min g =, ———— ».
7 2

We define
> 1 Tr—x
u(@) =Y v ().
; Py N
=1 T —x;
a(z) == Z < b ( ]).
Py i
Then,

uwe LYRY), w>0ae. in RY,
Au € LYRY),
ac L'(RY), a>0a.e in RY.
Note that, by construction, / au = +o0 for every open set w C By. Thus, if ¢ € C§°(Q),

w

¢ > 0in RY, then we have

/ {—i—oo if supp p N By # ¢,
aup =
RN

0 otherwise.

We conclude that w satisfies
[ utes [ o voeCrm®Y, oz 0mRY
RN RN

but suppu C B and w # 0 in RY. In view of Theorem 2.1, it follows that the inequality
Au <q au is not satisfied in RY.
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From now on, we shall always consider the inequality Au < au in the sense of Defini-
tion 2.1. In particular, we shall omit the subscript 1 in the symbol <;.

2.3 Proof of the quasicontinuity of v in Theorem 2.1

Before proving the first part of Theorem 2.1 (see Lemma 2.1 below), we make the
following remark :
Remark 2.5 If v € H} (Q), then there exists o : 2 — R quasicontinuous such that
v =70 a.e. in § (see, e.g., [63]). In addition, ¢ is well-defined modulo polar subsets of €2,
i.e. if ¥; and ¥y are two quasicontinuous functions such that v = v = ¥y a.e. in €, then
there exists a polar set P C €2 such that o;(x) = 0z(z) for every x € Q\P (see [45]).
(Recall that a set P is polar if it has zero H'-capacity.)

Notation. Given k£ > 0, we denote by 7} : R — R the truncation function

ko if s>k,
Ti(s) =<¢s if—k<s<k,
-k ifs<-—k.

The existence of a quasicontinuous function # : {2 — R such that « = @ a.e. in €, as
in the statement of Theorem 2.1, is a consequence of Lemma 2.1 below :

Lemma 2.1 Assume u € L'(2) is such that Au is a Radon measure on . Then,
Tp(u) € HL (Q), VE>0, (2.2)

and, for each open subset A CC €1, there exists C4 > 0 so that

/AIVTk(U)}2 <k (/ﬂ | Al +(J,4/Q |u|) ., Vk>0. (2.3)

Moreover, there exists i : 2 — R quasicontinuous such that u = u a.e. in €.

Proof. We shall split the proof of Lemma 2.1 into two steps :

Step 1. Proof of (2.2) and (2.3).
Let p € C3°(B;) be a radial, nonnegative, mollifier. Set

wa(a) = p % u() = / pe( — yyuly) dy, V€ Q.

For k > 0 fixed, we have Ty(u.) € H'(2) and
VT (ue) = Ve X(juc|<k]s (2.4)

where X[ju.|<x denotes the characteristic function of the set [|u.| < k.
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Given an open set A CC Q, let ¢ € C°(Q2) be such that 0 < ¢ < 1in Q and ¢ =1 on
A. Using (2.4) and integrating by parts, we have

/Q‘VTk(uE)fgo:/QVTk(ug)-(Vus)go

(2.5)
—— [ Bw)@u) o - [ Tiw) Vu. - v
Q Q
On the other hand,
/QTk(uE) Vu. -V = —/QUEVTk(uE) -V — /QuETk(uE)Ago
Q Q
1 2
2 /ﬂ /ﬂ (2.6)

:% /Q [Th(ue)]* A — /Q ueTi(u) A

- _/QT,C(ug) (ug - %Tk(ua)) Ayp

> -k [ Judlagl
Q
It follows from (2.5) and (2.6) that

[1vnwl< [ \VTkwa)\?soszc( [ 1w+ il | ruar).
A Q supp ¢ supp ¢

In particular, for every 0 < e < dist (supp ¢, 092),

J19nf <k ([ 130+ 186l [ ).

Letting € | 0, we conclude that Ty(u) € H'(A) and (2.3) holds with Cy = ||Ap]| L.

Step 2. Under the assumptions of the lemma, there exists a function @ : {2 — R quasi-
continuous such that u = u a.e. in €.
By (2.2) and Remark 2.5, for each k > 0 there exists Tj(u) : 2 — R quasicontinuous

such that Ty (u) = Ti(u) a.e. in Q.
Let vy, := +Tj(u), so that

v, — 0 in LY(Q), Vg€ ][l,00)

and, by (2.3),

/ Vo> =0, VAcCcQ.
A
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In particular, vy — 0 in H} _(€), which implies there exists a polar set P C Q such that

loc

g(x) = Z Ti(u)(z) — 0, Vre Q\P. (2.7)
Set - -
sup {Tk(u)(a:)} if sup Tk(u)(x)‘ < 00,
w(x) := { keN keN
0 otherwise,

—~—

so that w = u a.e. in Q. By (2.7) and the quasicontinuity of the functions Ty (u), it is easy
to see that w is quasicontinuous in €2. This concludes the proof of the lemma.

2.4 A variant of Kato’s inequality when Awu is a Ra-
don measure

We start with the following (see [4])

Lemma 2.2 Assume u € L'(Q), u > 0 a.e. in Q, is such that Au is a Radon measure
on ). Then,
ATy(u) is a Radon measure, Yk > 0.

Moreover, for any a € L*(£2), a > 0 a.e. in §2, we have
ATy (u) — aTy(u) < (Au— au)Jr in D'(). (2.8)

Proof. We shall use the same notation as in the proof of Lemma 2.1. By the standard
L'-version of Kato’s inequality (see [61]) we have (note that T|g, is concave)

ATyp(ue) < t(us)Au.  in Q, Ve >0, (2.9)

where the function ¢; : R, — R is given by

4(6) 1 if0<s<k
S) .=
F 0 ifs> k.

Since Ty (s) > ti(s)s for every s > 0, and a > 0 a.e. in €2, it follows from (2.9) that
ATy (ue) — aTy(ue) < tp(ue) (Aug — aug) < (Au, — aug)+ in D'(Q).

In other words, we have

/Q [Tk(UE)AS@ - aTk(ﬂs)@} < / (AUE — au5)+go, (2.10)

Q

for every ¢ € C§°(£2), such that ¢ > 0 in Q.
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For A > 0, let Q) := {:c € Q:d(x,00) > )\}. Thus, if 0 < & < A, then we get

Au, — au, = (Au — au)E + (au). — au,

< pex (Au— au)+ + |(au). — au| + |au — au.| in Q.

Therefore, for any ¢ € C§°(2), ¢ > 0in Q, and 0 < & < dist (supp ¢, J2), we may write

/ (Aue - au5)+gp < / Pe * (Au — au)+gp—|—
Q Q
* HQOHLOO{H(GU)E B auHLl + ”aHLwHu - usHLl} (2.11)

— /Q(pg @) (Au — au)" + o(1).

Since p. * ¢ —  uniformly in €2 and (Au — au)+ is a Radon measure in €2, by letting
e ] 0in (2.10) and (2.11), we conclude that

/Q [Tk(U)AQO - aTk(u)go} < /Q (Au — au)+gp, Yo € C’(‘;O(Q)7 ©>0in Q.

Thus, ATy (u) is a Radon measure (take for instance a = 0), and (2.8) holds.

Lemma 2.3 Assume v € L'(Q), u > 0 a.e. in Q, is such that Au is a Radon measure
on Q. Let a € L'(Q), a >0 a.e. in Q. If

—Au+au>0 inQ,

in the following sense

/ Au < / au  for every Borel set E C (, (2.12)
E E

then
—ATy(u) + aTp(u) >0 in D’(Q), vk > 0. (2.13)

Proof. By the preceding lemma applied with a; := T;(a), where i is a positive integer,
we know that
ATy (u) — a;Ti(u) < (Au— )™ in D'(Q). (2.14)

On the other hand, from (2.12) we get
/(Au —au) < /(a —a;)u  for every Borel set £ C Q. (2.15)
E E

Since (@ — a;)u > 0 a.e. in Q, (2.15) implies that

0< /(Au —au)t < /(a —a;)u  for every Borel set E C Q. (2.16)
E E
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Hence, (Au—a;u)™ is a nonnegative measure which is absolutely continuous with respect
to the Lebesgue measure. Therefore, we have

(Au—au)t € L'(Q), Vi=1,2,... (2.17)
We now return to (2.16) to conclude that
0 < (Au—au)t <(a—a;)u ae. in Q.

In particular,
(Au—au)t |0 ae. in Qasi— oo. (2.18)

It follows from (2.17) and (2.18) that
(Au—au)™ — 0 in LY(Q) as i — oo. (2.19)

Finally, for any ¢ € C§°(2), ¢ > 0in Q, by (2.14) and (2.19) we have

/ﬂ [Tk(U)ASO - aTk(U)SO} < /QT;g(u)Acp —a;Typ(u)p < / (Au— aiu)+<p 0

Q

as i — 00, so that (2.13) holds.

2.5 Proof of Theorem 2.1 completed

It follows from Lemma 2.1 in Section 2.3 above that there exists @ : 2 — R quasiconti-
nuous such that u = @ a.e. in Q. Let us assume that « = 0 on a set of positive capacity
E C Q. We shall prove that u = 0 a.e. in €.

We split the proof into two steps :

Step 1. Assume in addition that u € L>(2), then u = 0 a.e. in €.
Since u € L*(Q), we have au € L'(Q2). It follows from (2.1) and Remark 2.3 that

—Au+au>0 inD(Q).
Let 0 < e < A In ), we have

Au. < (au). = au. + [(au). — au,]

2.20
< au, + [(au)6 - augrr =: au. + f.. (220
Since (au). — au in L'(Q), u. — w a.e. in Q, and u is bounded,
fo— 0 in LY(Q). (2.21)
1
Let § > 0 be a fixed number. Multiplying (2.20) by s e get
/U’E
A

Y <aq Je in 2y, Vee(0,A). (2.22)

U +0 — )
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We also remark that

(ue +9) Ue + 0

Let p € C§°(2) and 0 < e < dist(supp ¢, 9€2). We now multiply both sides of (2.23) by
©? and integrate by parts on ) to get

|VUE‘2 / 2
/(u5+5 VitV u8+5
Au. 20V - Vu,
_/ug—i-(;(p +/Q Ue + 0
I 2 1/ |Vu5|2 2 / 2
< Iz S YR 2
G IR e e

where in the last inequality we applied (2.22) and Cauchy-Schwarz.

Vu, 1 )
=V ( ) in Q. (2.23)

Therefore,
1 |Vu€|2 2 /( f€> 2 / 2
Z ) L2 El 2« + + 2 Vol“.
Q/Q(UEM)W_Q@ @ Q| ¢l
Since -
Ue . Ue
Viog (5 +1) = 5

the estimate above may be rewritten as

/’V10g< )‘ ") </Q(a+%) g02+2/Q|V<p\2. (2.24)

We now let € | 0 in (2.24). It follows from (2.21) that
log (% + 1) e HL (), V5>0,

and
2
1/ ‘Vlog (E—i—l)‘ ¢2§/(ag02+2|Vg0|2), Vip € C3° (). (2.25)
2 Jo 0 0

Let E C Q be a set of positive capacity such that « = 0 on E. Without any loss of
generality, we may assume that £ C (2 for some A > 0 sufficiently small.

Assume w CC €2 is an open connected set containing E. Let ¢ € C5°(€2) be a fixed test
function such that ¢ =1 on w.

By (2.25), we have

Since the quasicontinuous representative of log <S + 1) ; namely,

Viog (5 +1)[ b+ 20l
og (= +1)| <2 [ (aps+2[Veol?). (2.26)
0 0

P

log (%—i—l) = log (%—1—1),
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equals 0 on E C 2 with cap, (E) > 0, it follows from a variant of Poincaré’s inequality
(easily proved by contradiction) that there exists C' > 0 (depending only on E and ()

such that )
/log2 (%L + 1) < C/ ‘Vlog <% + 1) , Vo >0. (2.27)
Equations (2.26) and (2.27) yield
2 (U 2 2
/log <S + 1) < 20/ (api + 2|Vol?), V6> 0. (2.28)
w Q

In particular, the integral in the left-hand side remains bounded as ¢ | 0.
On the other hand,

log® <% + 1) — 400 ae. inw\[u=0]asd | 0. (2.29)

By (2.28) and (2.29), we conclude that © = 0 a.e. in w. Since w is an arbitrary connected
neighborhood of F in €2, for all A > 0 small, we conclude that ©v = 0 a.e. in €.

Step 2. Proof of Theorem 2.1 completed.
From Lemma 2.3, we know that ATj(u) is a Radon measure and

—ATy(u) +aTi(u) >0 in D'(Q).

In addition, T} (u) = T1(it) = 0 on E C Q with cap, (E) > 0.
By Step 1, we have T (u) = 0 a.e. in €2, and so u = 0 a.e. in Q.
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Chapitre 3

Singularities of positive
supersolutions in elliptic PDEs
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3.1 Introduction®

When can the set of singularities of a solution to a linear (or quasi-linear) elliptic
equation be removed ? To shed some light on this question, let us first recall a classical
result in Potential Theory.

Throughout this chapter, we assume that Q C RN, N > 2, is a bounded domain and
Y C  is a compact subset.

Let us assume that cap, (X) = 0, where cap, denotes the standard H'-capacity (see
Section 3.2 below). Let u € HL_(2\X) be a nonnegative function such that

loc
—Au>0 in D'(Q\X).

Note that no information is given about u on the set ¥. Nevertheless, it is well-known
that the function u actually belongs to Li () and satisfies

loc
—Au>0 inD'(Q). (3.1)

See, e.g., [59, Theorem 7.7]. Note that if cap, (¥) > 0, then (3.1) will no longer hold in
general.

4Ce chapitre a été écrit en collaboration avec L. Dupaigne ; le texte original est déja sorti dans Selecta
Math. (N.S.) 10 (2004), 341-358.

41
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Our first theorem extends this classical result to the operator —A + ¢, with ¢ € R. It
also generalizes a previous work of Brezis and Lions [29] (see also [40]), who considered
the case where X is a point :

Theorem 3.1 Assume that capy (3) = 0. Let c € R and f € L ().
Ifue Ll (Q\X), u>0 a.e. inQ, satisfies

—Au+cu>f inD(Q\Y), (3.2)

then u € LL (Q) and

loc

—Au+cu>f inD(Q). (3.3)

We would like to emphasize that above we do not assume that Au € L _(Q\X).

loc

Remark 3.1 Tt follows from Theorem 3.1 that Au € Miec(Q); thus, u € W,2P(2) for all
1 < p < 2 (see Corollary 3.2 below). This regularity result is very standard and just
follows from (3.3).

An interesting consequence of Theorem 3.1 is the following :

Corollary 3.1 Assume that cap, (X) = 0. Let ¢ € R and g : Ry — R be a continuous
nonnegative function.
Letuw e LL (Q\X), u>0 ae in Q, be such that g(u) € L (Q\X) and

—Au+cu>g(u) nD(Q\X). (3.4)

Then, u, g(u) € Li () and

loc
—Au+cu>g(u) inD(Q). (3.5)

This corollary can be interpreted as a linear version of a very general result of Baras
and Pierre [5] about removable singularities. Note that we do not impose any asymptotic
behavior on ¢g(t) as t — oo.

We recall that any Radon measure p in RY can be decomposed as a sum g = i, + i,
where pu, and g are the absolutely continuous and the singular parts of u with respect
to the Lebesgue measure. There are several other possible decompositions of u, however.
A less standard one is given by (see [14] and also [51])

B= fd + e,
where

pa(A) =0  for any Borel measurable set A C €2 such that cap, (4) = 0,
lpe| (Q\F) =0  for some Borel measurable set F' C 2 such that cap, (F') = 0.

In particular, the Radon measures pq and p. are singular with respect to each other.
Using the above notation, we have
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Theorem 3.2 (“Inverse” maximum principle) Let u € L] (Q) with u > 0 a.e. in
Q. Assume that Au is a Radon measure in §2. Then,

(—Au). >0 in Q. (3.6)

This “inverse” maximum principle plays a very important role in the study of the
nonlinear problem
—Au+ g(u) = in €2,
glu) =p i (3.7)
u=0 in 0,

where p is a nonnegative Radon measure and g is a continuous increasing function with
g(0) = 0. In a joint work with Brezis and Marcus [30], we established that (3.7) need not

have a solution for every measure p > 0. However, the following holds :

Theorem 3.3 (Brezis-Marcus-Ponce [30]) For every Radon measure > 0, there
ezists a largest positive measure p* < i for which (3.7) has a (unique) solution. Moreover,
we always have ] = 4.

We refer the reader to [30] for a proof of Theorem 3.3. We point out that p* strongly
depends on the nonlinearity g. In [30], we also study several properties of the mapping
u— p*; for instance, monotonicity, contraction, etc.

We now return to Theorem 3.1. This result can be extended to other second order
linear elliptic operators. In what follows, we use Einstein’s summation convention.

Theorem 3.4 Assume that capy (X) = 0. Fori,j € {1,...,N}, let a”,b',c € L>(Q),
f € LYQ), and g € L*(Q), where the coefficients a” are locally Lipschitz continuous in
O\X and satisfy the uniform ellipticity condition

a“&&; > NEPP, VEeRY,

for some A > 0.
Ifu e WEHQ\S), u >0 a.e. in Q, is such that

loc
—0;(a0u) + V' O+ cu > f+ 09" in D'(Q\X),
then u € Wb () and

Theorem 3.4 can be further generalized to the setting of quasi-linear elliptic equations as
follows :

Let A: OxRxRY - RY and B: Q x R xRN — R be two Carathéodory functions.
A weakly differentiable function v in w C Q is a supersolution of

—div A(z,v,Vv) > B(z,v,Vv) in D'(w)

if AY(z,v,Vv), B(z,v, Vv) are locally integrable in w and

/Ai(x,v, Vv)oip > /B(m,v,VU)g@, Vo € C5(w), ¢ > 0in w.

w
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We shall assume in the sequel that 1 < p < N, and that for a.e. x €  and for every
r >0, g€ RN, we have

(A2, 79| < aolgl”™" + ar (@)1 + g(),
—B(.CE, r, q) S b0($)|Q|p_1 + bl(x)rp_l + f(x)v :
Alz,r.q) - q 2 |q" — cr(2)r” — ea(x), (3.10)

where ag > 0 is constant, a;, b;,c; € L®(Q), f € LY(Q), and g € LP/P=1D(Q) are nonne-
gative functions.
Under these assumptions, we have the following

Theorem 3.5 Suppose that cap, (X) = 0. If u € WEP(Q\D), u > 0 a.e. in Q, satisfies
—div A(z, u, Vu) > B(z,u,Vu) in D' (Q\X), (3.11)

then
uP | VulPt e LL(9Q). (3.12)

loc

Furthermore, A'(x,u, Vu), B(x,u,Vu) € LL (Q) and u satisfies

loc
—div A(z,u, Vu) > B(z,u,Vu) in D'(Q). (3.13)
Here, cap, (X) denotes the W'P-capacity of X (see Definition 3.1 below).

Remark 3.2 The meaning of Vu in {2 requires some clarification. In fact, since u belongs

to W2P(Q\¥) and |2| = 0, then Vu is well-defined a.e. in Q. We take this as the defini-
tion of Vu in Q, even if u is not (locally) weakly differentiable in the whole domain (2.
By Corollary 3.2 below, if p > 2 — +, then |[Vu| € LL (). In this case, we can conclude

loc

that « € W21 (Q) and Vu is the weak derivative of u in Q (see Lemma 3.3).

loc

Remark 3.3 The fact that A'(z,u, Vu) € L () is a direct consequence of (3.8) and
(3.12). The corresponding property for B(z,u, Vu) requires some additional argument.

The proof of Theorem 3.5 relies on a standard Moser iteration technique in the spirit
of [82]. The same idea has been used by Serrin [79] to show that if u is a solution of

—div A(z,u, Vu) = B(z,u,Vu) in D'(Q\X)
and cap,, () = 0, then u is Holder continuous in §2 and satisfies
—div A(z,u, Vu) = B(z,u,Vu) in D'(Q).
Back to the case of supersolutions of (3.11), once (3.13) is established, then it is well-

known that the regularity result (3.12) can be improved. As we shall see in Section 3.5,
we have
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Corollary 3.2 Under the assumptions of Theorem 3.5, if u € W,oP(Q\ ), u > 0 a.c.
in Q, satisfies (3.11), then

upfl c I

loc

(), Vi<g< (3.14)

N —p’

VulP~t e Li (), V1<r<

loc

T (3.15)

Theorem 3.5 extends results of Bidaut-Véron [13] and also of Kilpeldinen [62] on
removable singularities for the p-Laplace operator :

Corollary 3.3 Assume that cap, (X) = 0. Let c € R and f € L|.(Q). Ifu € WP (Q\X),
u >0 a.e. in §2, satisfies

—Apu+cu’t > f in D(Q\Y),

then
uP [ VulPh € L ()

and we have
—Ayju+cu’ P> f inD(Q).
3.2 Some remarks about the p-capacity

Given 1 < p < 400, we first recall the definition of the p-capacity :

Definition 3.1 The p-capacity of a compact set ¥ C €2 is defined as
cap, (¥) = inf {/ IVolP @ oe CP (), ¢ > 1 in some neighborhood of E}.
Q

It follows from Definition 3.1 that if cap,(X) = 0, then cap,(X) = 0 for every 1 <
q < p. We next point out that in this definition we could have restricted ourselves to a
smaller class of functions ¢. Namely, we have

capp(E):inf{/ IVel? © e C5°(R), 0<p<1inQ, ¢ =1 in some nghd ofE}.
Q

Let indeed (¢,) C C5°(Q2), ¢, > 1 near X, be a minimizing sequence for cap, (X). Define
v, = min{p;", 1} and observe that v, = 1 in a neighborhood of 3. Denoting by (p.) a
sequence of standard mollifiers, it follows that for ¢ = ¢, small enough, w, = v, * p.,
also satisfies w,, = 1 in a neighborhood of 3. Also w,, € C§*(R2), w, > 0 in 2, and

/|an|p < /|V<,0n|p — cap, (X).

We also observe that if cap,(¥) = 0, then |X| = 0. Indeed, it follows from Poincaré’s
inequality that for any nonnegative ¢ € C§°(£2) such that ¢ =1 on X, we have

=) S/sop < c/ Vol
Q Q
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Taking the infimum with respect to ¢, we conclude that |X| = 0.
This result can be refined in more geometric terms (see [49] and also [47]) :

Lemma 3.1 (i) HN=YX) = 0 if, and only if, cap,(X) =0;

(it) if 1 <p <N and HN"P(Z) < oo, then cap,(X) =0;

(i) if 1 <p < N and cap,(X) =0, then H*(X) =0 for every s > N —p;

(iv) if p> N and cap,(X) =0, then ¥ = ¢.

Note that (iv) is just a consequence of Morrey’s inequality. In fact, if p > N and
(n) C C§°() is such that [ [Ve,[P — 0, then (¢,) converges uniformly to 0 as n — oo.
Since ¢, > 1 on Y, we must have ¥ = ¢. This shows in particular why, as mentioned
earlier, we restrict ourselves to the case p < V.

As a corollary of Lemma 3.1 (ii), we have the following :

Corollary 3.4 Let1 < p < N. If ¥ is contained in some manifold of codimension k > p,
then cap,(X) = 0.

We shall make use of the following two simple lemmas :
Lemma 3.2 Suppose cap,(X) = 0. Given 1 € C§°(2), there exists (¥,) C Cg°(Q\X)

such that
[nl <TW| inQ and Yy —p in WHP(Q).

If ¢ >0 in Q, then (¢,) can be chosen so that each 1, is nonnegative in €.

Lemma 3.3 Suppose cap,(X) = 0. If u € WP(Q\X), then u € WHP(Q).

Proof of Lemma 3.2. It suffices to take v, := (1 — ¢, )¢, where (¢,) C C§°(£2) is such
that 0 < ¢, < 1in Q, ¢, = 1 in some neighborhood of ¥, and [ |V,|P — 0 as n — oo.

Proof of Lemma 3.3. We split the proof into two steps :
Step 1. Assume in addition that u is bounded.

We first show that u is weakly differentiable in 2. In fact, since u is weakly differentiable
in Q\3, for each i = 1,..., N we have

/u@igo = —/@ugp, Vo € C3°(Q\X).
Q 0

Given ¢ € C°(Q), it follows from the previous lemma that we can find a uniformly
bounded sequence (1,,) in C§°(Q\X) converging to 1 in WH(Q). We now replace ¢ by
¥, in the above identity. Passing to the limit as n goes to oo, we find

/Quaiw - —/Qaiuw, Vi € C2°(9).

In particular, 0;u gives the weak derivative of u in 2. Since

/]Vu|p:/ |VulP < oo,
Q O\
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we conclude that u € WP (Q).
Step 2. Proof of the lemma completed.

By working with the positive and negative parts of u, we may always assume that u > 0.
For every k > 0, let now u; = min {u, k}, so that v, € WH(Q\X). It then follows from
the previous step that u, € W'?(Q) and

/Q wedith = — /Q e p—— /[u . By, Vb € C(9).

Note that Qu € LP(Q\X) = LP(Q) for every i = 1,...,N. As k — o0, we conclude that
u is weakly differentiable in © and v € WP(Q).

We now extend the definition of the p-capacity for any measurable subset of €. For
simplicity, we only consider the case p = 2.

Definition 3.2 Given an open set w C §2, we define

cap, (w) := sup { capy (K) : K is compact and K C w}.
For any Borel measurable set F' C €2, we let

cap,y (F') := inf { capy (w) 1w is open and F C w C Q}

One can easily see that Definition 3.2 agrees with Definition 3.1 when F C € is
compact. We also observe that if F} C Fy C 2, then cap, (F1) < cap, (F3).

3.3 Proof of Theorems 3.1 and 3.4

The proof of Theorem 3.1 (and also of Theorem 3.4) is essentially contained in Sec-
tion 3.5. However, it is enlightening to go through this special case before proving the
more general result.

Below, we shall denote by uy the function min {u, k}. Let us first state and prove the
following lemma :

Lemma 3.4 Let u € L'(w), u> 0 a.e. in w, be such that
—Au>h inD(w), (3.16)
where h € L'(w). Then, u, € H. (w) and
—Auy, > hxu<y  nD'(w). (3.17)

Moreover, for every k > 0, we have

/ IVug2o® < 2(k + 1)2/ (|rle* 4+ 2IVe]?), Ve e CPw), ¢ >0inw.  (3.18)
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Proof. We already know from Lemma 1.1 that
—Auy > hxp<y in D'(w). (3.19)
Moreover, since Au € Miy.(w), we have uj, € HL _(w) by Lemma 2.1. In order to conclude

the proof of the lemma, we only need to show that (3.18) holds. Note that this improves
our previous estimate (2.3), since (3.18) does not make use of the full norm |Au|.

We first multiply both sides of (3.19) by T where ¢ € C§°(w). Integrating by parts
u
the resulting expression, we get

2
¥ 2
. > — h|p®. 3.20
[vuev (2 == [ (3.20)
The left-hand side of (3.20) can be estimated by
2 2
© \Vugl® Vuy - Vo
: S R B I 1 o [ X1k VF
/wv“’“ v<uk+1> [J(uk+1)2¢+ TS
< —= 2
< 2/ (w1 1) 2+ |V<P|

Since ug + 1 < k + 1, we conclude from (3.20) and (3.21) that

1
3 [ [Tl < e 1 [ (bl + 2V0P).

This is precisely (3.18).

(3.21)

Proof of Theorem 3.1. Applying the previous lemma with w = Q\X, we see that
up € HL (Q\X) for every k > 0 and

—Auy, + cuXpu<r] > [Xu<r 0 D'(Q\D). (3.22)

In addition,
1 ~
3 [IVulet < G 1p [ (R +20el), WoecE@\m),  (323)
Q Q

where h = (f — cu)Xju<n-

Let ¢ € C§°(2), v > 0 in 2. Since cap, (X) = 0, it follows from Lemma 3.2 that there
exists a sequence (p,) C C5°(Q\X) such that 0 < ¢, < ¥ and ¢, — ¥ in H'(Q). We
now replace ¢ by ¢, in (3.23). Passing to the limit as n goes to co, we conclude that

X )
5 /Q Vurv* < (k + 1) /Q (1Rl + 2]V ).

Take for instance 1 = 1 in some neighborhood of ¥; Lemma 3.3 then implies that
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We now use ¢, as a test function in (3.22) :

Q Q Q

Since uy, € H. (), as n — oo we find that

/ Vauy - Vip + C/ UX[u<k] > / X<k, Vi € Cg°(), ¢ > 01in Q.
Q Q Q

In other words,
—Auy, + CUX [u<k] > fX[u<k] in D/(Q) (3.24)

Assume for the moment that v € L .(Q). In this case, we are allowed to take k — oo in
(3.24), from which (3.3) follows.

Thus, in order to conclude the proof of Theorem 3.1, we only need to prove that u €
Li (Q), which requires a Harnack-type estimate. For this, we multiply both sides of (3.24)

loc

by ﬁ, where ¢ € C§°(2). Proceeding exactly as in the previous lemma, we obtain

Vu|? N-2 N_2
/ | ’% <ld [0+ [116 4N [ )7 (Tl
N (ug + 1) Q Q Q

We claim that, by choosing ¢ appropriately, this inequality implies that v € Li  (Q).
The argument in this case is essentially the same as in the more general setting. For this
reason, we shall postpone the details until the next section (see Steps 2 and 3). This
concludes the proof of Theorem 3.1.

The proof of Theorem 3.4 follows along the same lines (although a little more techni-
cal) and we shall omit it.

3.4 Proof of Corollary 3.1 and Theorem 3.2
Proof of Corollary 3.1. Since g(u) > 0 a.e. in €, the function u satisfies
—Au+cu>0 inD(Q\X).
Applying Theorem 3.1 with f = 0, we conclude that v € L{ () and
—Au+cu>0 inD(Q).

In particular, Au is a Radon measure in 2. By taking a smaller open set if necessary, we
may assume that [, [Au| < oo.

Let (y,) be an increasing sequence of nonnegative test functions such that 0 < ¢, <1
in Q and @, (x) T 1 for every z € Q\X. It follows from (3.4) that

/g(u)g@ng—/gpnAu—l—c/gonug/|Au!+|c|/|u!.
Q Q Q Q Q
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As n — 0o, we conclude that

Jatw < [ 1au+1d [ <o

(recall that |X| = 0). Thus, g(u) € L .(Q2) and, clearly, (3.5) holds.

loc

Before establishing Theorem 3.2, we state the following variant of Lemma 3.4 :

Lemma 3.5 Let u € L'(w), u >0 a.e. in w, be such that Au is a Radon measure on ).
Then, ux € H\ (w), Auy is a Radon measure on Q, and

Auy, < (Au)t  in D'(w). (3.25)

Proof of Theorem 3.2. It follows from the previous lemma applied with w = 2 that
up € HE.(Q), VE > 0.
Let us simply denote Au by p in 2. We fix a compact set K C F', where F' is a set of zero
H'-capacity such that |u.|(Q\F) = 0; in particular, cap, (K) = 0. Applying Lemma 3.5
with w = Q\ K, we have

Aup < pt in D'(Q\K). (3.26)
Given ¢ € C§°(Q), v > 0 in , let (¢,) C C(Q\K) be such that 0 < ¢, < in Q and
©n — 1 in HY(Q). Then,

/ Vug - Vo, = / Vuy - Vi and / o, dut < Ydut, Yn>1. (3.27)
Q Q Q O\K
Combining (3.26) and (3.27), we conclude that
—/wmps Gdirt, Wb e CE(Q), ¥ = 0in &
Q O\K

in other words,
Aug < xa\g p™ in D'(Q).

As k — oo, we get
p=Au < xo\x ptin D'(Q).

Thus,
Me LK: IULKS 0 in €.

Recall that K C ) was an arbitrary compact subset of F'. By the inner regularity of
Radon measures, we finally conclude that

fe <0 in Q.
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3.5 Proof of Theorem 3.5

By assumption, we know that A*(z,u, Vu), B(z,u, Vu) € LL _(Q\X), and

/ Az, u, Vu)djp > / B(z,u,Vu)p, Yo e Ci?(Q\X), ¢ >0in (L
Q Q

Since u € WLP(Q\X) and A satisfies (3.8), we actually have

Al(z,u, Vu) € LD (O\5).

loc

It follows from a density argument that

/Ai(x,u,Vu)aivz/B(a:,mVu)v (3.28)
Q

Q

for every v € WP(Q) N L>(Q) such that v > 0 a.e. in Q and suppv C Q\X.
After replacing u by v + 1, we can assume that v > 1 a.e. in 2. Indeed, the function
v = u + 1 satisfies

—div A(x,v, Vo) > B(z,v,Vv) in D'(Q\ %),

where A(z,r,q) = A(z,7 — 1,¢) and B(zx,r,q) = B(x,r — 1,q). The functions A and B
clearly verify assumptions (3.8)—(3.10).
We shall split the proof of Theorem 3.5 into three steps :

Step 1. For every k > 1, uy, € VV&CP(Q) Moreover, given 0 < o < p — 1, we have

AL

et <c{ [aw v wom s [povws [ o) )
Q U Q Q Q
for all %Z} € C(())O(Q)v ¢ > 0 in Qa where C' = C(p7 g, ||a'z||ooa ||bz||007 |ICZ||OO)
Let ¢ € C§°(2\X) be such that ¢ > 0 in Q. We first apply (3.28) with

1 1

v = wpp? = ( T~ T )gop in Q.
ul, kp—o—1

Note in particular that v > 0 in 2, and v = 0 a.e. on the set [u > k] ; hence, d;v = 0 a.e.
on [u > k|. We have

/B(x,u, Vu)v S/Ai(x,u, Vu)ov
Q

Q

= / Az, uy, Vug) 0 (wkéop)
[u<k]

Q

p—0o
Uy,

(3.30)

+ p/ Az, ug, Vg )wpOip "1
Q
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We now apply (3.10) with r = uy, and ¢ = Vuy. Multiplying the resulting inequality by
P

and integrating over €2, we get

VulP A'(z, ug, Vug)O;u P
/' k;l sopé/ (= v ak) kw”+/cwiw”+/02—f—a-
Q Uk Q uk Q Q U

Combining (3.30) and (3.31) yields

p—0o
Uy,

|Vuk]p

p—0o
Q U

s0p§1+ll+/clu‘,§¢p+/02<pp7
Q Q
where

I= ——/ B(z,u, Vu)v,
Q

e L/Ai(x,uk,Vuk)wk@god’_l.
p—o—1Jg

We first estimate (3.32). Since 0 < p — 1, we can apply (3.9) to get

I< C/ <bO|Vu|p_1 + byuPt 4 f)v
Q

p

Recall that v =0 a.e. on [u > k] and v < p(ifl a.e. in Q. We then have
U,

(pp
I< 0/ <b0|vu|p S f) _
[u<k] uy

p—1
SC{/bolvuk| p+/bug0—|—/fpol}
Q ukz
|v |p1 o,.p D
<(C ﬁgﬁ + bluk@ + 2
o up Q Q

We now estimate the first integral in the right-hand side of (3.34). We first write

\Vuk|p_1 ]Vuk|p o
Uk

k
For an arbitrary 6 > 0, it follows from Young’s inequality that
VP! |Vugl?
Q U o up Q

Inserting this into (3.34), we obtain

I<$§ [Vu "“' o + Cs {/uggop—l—/fgop}.
Quk Q Q

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)
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We now consider (3.33). Using (3.8) and arguing as above, we have

II = L/Ai(%uk,vuk)wk@@@p_l
p—o—1Jg
<C <a0|Vu\p*1 + ajuP~t + g) wy|Veo|pP ™t
u<k
[u<k] . 1 1 o1 (3.36)
SC{/ OW . !Wﬂl+/a1uz¢’ |V¢|+/gm|W)\}
VugP~t o o _
SC{/%%@? llvw|+/a1ukw” 1IVsOIJr/gso” 1|V90|}~
Q  u Q Q
On the other hand, given § > 0, it follows from Young’s inequality that
\Y
/Q | f’j,' — "Vl <5/| o + Cs /uk|w|p (3.37)
In addition,
[ogeiwa<ef [+ [wwer), (3.38)
Q Q Q
/gsﬁp‘llvsol < / |V90|p+/g”/(”‘1’90”- (3.39)
Q Q Q
We now apply (3.36)—(3.39). Since uy > 1 a.e. in §2, we get
\RL
m<s (! ,f“i,‘ ’”+05{/ uZ(sop+|W|p>+/gp/<P‘”sop}- (3.40)
Q U Q Q
Choosing § > 0 sufficiently small, we conclude from (3.31), (3.35) and (3.40) that
VP
Sl <ol [uw+wan+ [ ¢+ [} G
Q U Q Q Q

Let ¢ € C§°(R2), v > 0in Q. Applying Lemma 3.2, we can find a sequence of nonnegative
functions (1) in C§°(Q\X) converging to ¢ in WP(Q) and a.e. in 2, such that 1, < v
in Q. Replacing ¢ by v, in (3.41) and then letting n — oo we find (3.29).
Let w CC Q2 be some fixed open set containing ¥. We now take ¢y € C5°(2) so that
o =1onwand 0 <y < 1in Q. Applying (3.29) with o = 0, we obtain

/w\zyvuk\pgcch{/ﬂ(1+|woyp)+/ggp/<fo1>+/Qf}.

In particular, u, € WhP(w\X). Tt follows from Lemma 3.3 that u, € W'P(w). This
concludes the first step of the proof.

Step 2. Given 0 < 0 < p — 1, we can find an open w CC () containing ¥ so that

7 + [|[Vug || <C / u“+/ p/(p1>+/ . Vk>1, (3.42
Il s, + 19 <€ e [ (i} vz g
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where C' = C(p, a,w, Q, |ai] oo, |: |l 0o, ||c@]|oo)

Let w CC Q be a neighborhood of ¥ with measure |w| small enough to be chosen later
on (recall that |X| = 0, so that such w actually exists). We then take ¢y € C§°(€2), so
that suppyy C Q2 and Yy = 1 on w. Since u; € VVéf(Q) and u, > 1 a.e. in €2, we have
wI’” e WLP(Q) and

loc

o vuk
V(Uk/p¢0) = z —0
p u,lC /P

wo + ulPVepy  in Q.

It follows from (3.29) that

[Ivaere] <c{ [ sivar + [ oo [ o).

Since Vg = 0 on w, we get

o p o p _
/‘V(uk/pwo)‘ Scl/uk+02{(1+uv¢o|fpoc)/uk—l—/gp/(p 1)—l—/f}
Q w Q\w Q Q

SCl/UZ—l—CQK,

where K denotes the term in brackets and Cy, Cy are positive constants independent of
k; note also that C'; does not depend on w.
Applying the Sobolev inequality, we find

N-—p N-—p
= N T ) < O oL CyK ifl N, (3.43
u, < Quk (N < Cy [ uj + Ch ifl<p< N, (3.43)

(/ugq)q gé’l/ug+c~*2K, Vg € [1,00) if p=N, (3.44)

where C is independent of w.

We shall assume in the sequel that 1 < p < N, since the case p = N can be dealt with in
a similar way.

From Holder’s inequality, we know that

N—p

s N\ W
/u‘,; < |w[P/N (/ ukN_p) : (3.45)

Inserting (3.45) into (3.43), we find

(1- ]w]p/Né'l)/ui < WPV Cy K.

w

We now choose w so that [w[?/NC) < 1/2. Thus, we have

1 _
- / W < WPy K. (3.46)
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We finally conclude from (3.43) and the above that

N—p

(/ uZN") < (2QwPNCy +1)Cy K < 20, K. (3.47)

This gives the estimate for the first term in the left-hand side of (3.42). We now estimate
the second one.
Applying Holder’s inequality, we have

\V4 R _o)e N
/|v“k|oN oy N ul(cp Ve

p U);N 1

» o N N 1—o_N
N-1 N N-1
< |Vuk| P W NP ) ?
—_ —0 k .
w Uk w

By (3.29) and (3.46), the first integral is bounded by C'K. Note that +— pj\(fp 5 < -

for o < p — 1; thus, by Hélder’s inequality, the second integral can be estlmated by
C K~/ Therefore,

N

a N
pN-1 — OK~N-T1,

/|Vuk|0NN (C’K)%NL(CKN P/ a>)

This concludes the proof of Step 2.
Step 3. Proof of (3.12).

Since u € WLP(Q\X), it suffices to show that uP~!, |Vu|P~! are integrable in some neigh-

borhood of X..
Given 0 < o < p — 1, it follows from the previous step that (3.42) holds for some small
open set w containing Y. In particular,

N
o Nep
/ukNp < C{/ u0+/gp/(P1)+/f} , Vk>1. (348)
w O\w Q Q

(Shrinking the domain €2 if necessary, we can always assume that fg\w u’ < 00.)

N —
By making the special choice 0 = (p — 1) n (3.48), we immediately see that
uP™t e LY (w).

Note also that, according to (3.42), we have

N

/|Vuk|ozv 1 <C{/ u® +/ p/(p— 1)+/f}N1, Vk‘z 1. (349)
AN\w

Take in particular ¢ = (p — 1)T Since |X| = 0 and u € W,2P(2\X), we have

loc
Vg = X< Vu ae. in . Applying the Monotone Convergence Theorem to (3.49), we
conclude that (3.12) holds.
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The argument above actually shows that (3.14) and (3.15) hold ; moreover, we have

+ [IVull?, x

o N - <C{/ U—f-/ p/pl / }
N=p (w) Lle ON\w

where € = C/(p,0,, %, e [l i) and 0 < 0 < p— 1.
Step 4. A'(z,u, Vu), B(z,u, Vu) € L] _(Q) and

g
el

—div A(z,u, Vu) > B(z,u, Vu) in D'(Q).

In view of (3.12) and the structure estimate (3.8), A*(x,u, Vu) € L ().

Given k > 0, let F}, € C*(R) be a non-increasing function such that Fy(¢) = 1if t < k/2,

Fi(t) =0if t > k and |F{| < 4/k in R. Since F}, is non-increasing, we have in particular

that 0 < F, <1in R.

Note that F), o u = F}, o uj. As a consequence of the first step, we thus have
FroucWiP(Q) and  V(Fyou)= Fi(u)Vu a.e. in Q.

loc

Given ¢ € C§°(2\X), ¢ > 0 in Q, it follows from (3.28) applied to the function v =
Fi(u) ¢ that

/B(m,u, Vu)Fk(u)gpg/Ai(x,u, Vu)&;uF,é(u)go—i—/Ai(a:,u, Vu)oyp Fi.(u)
Q Q Q
:/Ai(x,uk,Vuk)aiuk F,g(u)gojt/Ai(x,uk,Vuk)(?i@Fk(u),
0

! (3.50)

where we have used the fact that Fi(t) = Fj.(t) = 0 for all ¢ > k.

Given ¢ € C*(Q2), v > 0 in €, let (¢,) be a sequence of nonnegative functions in
Cs°(Q\X) converging to v with respect to the W!P-norm and also a.e. in €.

We first observe that, in view of (3.9) and (3.12), we have

B(z,u, Vu) > —bo|VulP™t = biu’~' — f € L, ().

It follows from Fatou’s Lemma that

n—oo

/B(x,u,Vu)Fk(u)@Z)§liminf/B(m,u,Vu)Fk(u)wn.
Q Q

c [P/

e (82), we can

We now apply (3.50) with ¢ replaced by ,. Since A*(z, uy, Vuy)
take n — oo in the resulting inequality to get

/B(x,u, Vu)Fk(u)l/zS/Ai(ac,uk,Vuk)aiuk Fé(u)zﬁ#—/Ai(x,uk,Vuk)ﬁil/JFk(u),
Q Q Q

(3.51)
for every ¢ € C§°(Q2) such that ¢ > 0 in Q.
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We now let k& — oo in the inequality above. By Fatou’s Lemma,

/ B(z,u, Vu)p < ligninf/ B(z,u, Vu)F(u) 1. (3.52)
Q —oo Jo
Next, since

| A, wg, Vug)| < ao| VugrP~" + alui_l + g < ao|VulP P +aut + g€ LL.(Q),

it follows from the Dominated Convergence Theorem that

lim [ A'(z,up, Vug)0ih Fi(u) :/Ai(a:,u, Vu)os. (3.53)
Q

k—oo QO

Finally, recall that —4/k < F] < 0 in R. Using (3.10), we have
[ A, Vo Fw v < [ (1l - el - ) Fiw s
Q Q

/ (lealed + leal)o.
[§<u<H

<

|

Since uj /k < ui_l < uP7l, we get

/ Az, ug, Vug)Oyuy, Fi(u) ¥ < 4/ <|C1|up_1 + %)1# —0 ask—o0. (3.54)
Q

(£ <u<k]

It then follows from (3.51)—(3.54) that
/ B(z,u, Vu)p < / Az, u, Vu)oph, Y € C(Q), ¥ >0 in Q.
Q Q

In particular, since B(xz,u, Vu) is bounded from below by an L -function in 2, we must
have B(z,u,Vu) € Li ().

loc
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An estimate in the spirit of
Poincaré’s inequality
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4.1 Introduction®

Assume Q € RN, N > 1, is a bounded domain with Lipschitz boundary, and let
1 <p < 0. It is a well-known fact that there exists a constant Ag = Ag(p, ) > 0 such
that the following form of Poincaré’s inequality holds :

/ 1 fal? < A, / D, Vfe W' (), (4.1)
Q Q

where fq 1= ﬁ fo f-
On the other hand, let (p,) C L'(RY) be a sequence of radial functions satisfying

pn >0 ae. in RY,

L=1, ¥n>1,

/RN g ! (4.2)
lim pn(h)dh =0, Vé>0.

=0 J|h|>8

°Ce chapitre a été publié dans J. Eur. Math. Soc. (JEMS) 6 (2004), 1-15; une version résumée était
déja sortie dans C. R. Acad. Sci. Paris, Ser. I 337 (2003), 253-257.

29
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Under these assumptions, the following pointwise limit was established by Bourgain,
Brezis and Mironescu [20] :

: |f(x /
1 oz —y|) dedy = K,n [ [DfI? 4.3
s [ IEZIOE (o) dody = s, [ 101 (43)
for every f € W'P(Q), where K, v :][ ley - o[PdHN
SN-1

In the next chapter we shall prove several extensions of (4.3). Our aim here will be,
rather, to show the following estimate related to (4.1) :

Theorem 4.1 Assume N > 2. Let (p,) C LY(RY) be a sequence of radial functions
satisfying (4.2). Given § > 0, there exists ng > 1 sufficiently large such that

Jir=sor < (ws) [ [T, oy oty )

for every f € LP(2) and n > ny.

The choice of ng > 1 depends not only on § > 0, but also on p, 2 and on the sequence
(pn)n>1- Special cases of this inequality have been used in the study of problems related
to the Ginzburg-Landau functional (see [21,22]; see also Corollaries 4.1-4.4 below).

We first point out that (4.4) is stronger than (4.1), in the sense that the right-hand side

of (4.4) can be always estimated by / |IDfP. In fact, given f € WhP(Q2), we first extend

Q
f to RY so that f € WHP(RY). It is then easy to see that (see, e.g., [20, Theorem 1] ; see
also Lemma 5.1)

| [P -y dway < [ pay<c [ o as)

If N =1, then one can construct examples of sequences (p,) C L'(R) for which (4.4)
fails (see [20, Counterexample 1]). In this case, we need to impose an additional condition
n (pn); see Theorem 4.3 below.
Theorem 4.1 will be deduced from the following compactness result :

Theorem 4.2 Assume N > 2. Let (p,) C L*(RY) be a sequence of radial functions
satisfying (4.2). If (f,) C LP(QY) is a bounded sequence such that

(@) = fu(®)l?
r—yl)drdy < B, VYn2>1, 4.6

[ [ BT, oy (4.6
then (fy) is relatively compact in LP(£2).
Assume that f, — f in LP(Q2). Then,

(a) feWP(Q)ifl <p<oo;

(b) f e BV(Q) ifp=1.
In both cases, we have / |IDfIP <

Q

B
, where B is given by (4.6).
p,N
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This result was already known under the additional assumption that p, is radially
decreasing for every n > 1 (see [20, Theorem 4]).

We now consider the case N = 1.
Given p, € L'(R), we shall assume that p, is defined for every x € R in the following

way
1 T+r
lim —/ pn if x is a Lebesgue point of p,,
pn<x> =Qr=02r Ju
400 otherwise.

Given 6y € (0,1) we define

Pnoo(z) = 1inf p,(6z), VzeR.

0p<6<1

By construction,
Pngo () < pn(fx), VY eR, Vo€ lb,l1]. (4.7)

We then have the following result :

Theorem 4.3 Let (p,) C LY(R) be a sequence of functions satisfying (4.2). Assume
there exist 0y € (0,1) and ag > 0 such that

/pn,go >ap>0, Vn>1 (4.8)
R
If (fn) € LP(0,1) is a bounded sequence such that

1 rl _ p
/0/0 |f"(ﬁ_§’|;(y)| pu(x—y) dody < B, Yn>1, (4.9)

then (f,) is relatively compact in LP(0,1).
Moreover, all the other statements of Theorems 4.1 and 4.2 are also valid. In particular,
inequality (4.4) holds with 2 = (0,1).

4.2 Some examples

We now state some inequalities coming from Theorems 4.1 and 4.3. In all cases,
condition (4.2) is satisfied for N > 1; it is also easy to see that (4.8) holds when N = 1.
Below, we denote by @ = (0,1)" the N-dimensional unit cube and by oy the (N — 1)-
dimensional Hausdorff measure of SV,

For every N > 1 we then have the following corollaries :

Corollary 4.1 (Bourgain-Brezis-Mironescu [21])

/lf—fQ|pscso<1—s>p/ @) = FWF 44 vy e 120,
Q QRIQ

|z — y|Ntsp

for every 0 < 5o < s < 1.
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Proof. We simply apply Theorem 4.1 (resp. Theorem 4.3) with

p 1-— Sn
o TR0

pn<h) = \V/h S Bl,

where (s,,) is any sequence such that s, T 1.

This inequality takes into account the correction factor (1 — s)'/? we should put in
front of the Gagliardo seminorm |f|ws» as s T 1; see (5.6) in the next chapter. In [21],
the authors study related estimates arising from the Sobolev imbedding LY — W*? for

1

the critical exponent % = — & see also [68] for a more elementary approach.

Corollary 4.2 (Bourgain-Brezis-Mironescu [22])

_ f.|P 1 |f(z) = fF)IP dx dy
/C;’f fQ’ Soso‘log&?’ /Q‘/Q ‘x—y‘P (|SL’—y|—|—€)N

for every f € LP(Q) and 0 < € < &.

Proof. This follows from Theorem 4.1 (resp. Theorem 4.3) with

1 1
on|logey,| (|h| + &)

pu(h) = Vh € B,

N?

where ¢, | 0.

A stronger form of this inequality is the following

Corollary 4.3

()~ )l :
Lir=tor < oz [ [ SR8  dray. s e ()

|lx—y|>e

for every 0 < e < g9 < 1.
Proof. For any sequence ¢, | 0, we take

0 if |h| < e,

pn(h>: 1 .
fe, hl < 1.
onllogen a¥ Ten <A<

We have been informed by H. Brezis that Bourgain and Brezis [16] have proved that

fW)P .
Lir=sor < ooy | [ SO TUE dvay. vy e ()

for every 0 < € < g, using a Paley-Littlewood decomposition of f. Note that this estimate
can be deduced instead from the corollary above.
Here is another example :
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Corollary 4.4

/Q\f—fQV’s EONNtf// @)~ f@)P dudy, Vf € L7(Q),

|z— y\<6
for every 0 < € < gg.

Proof. We use Theorem 4.1 (resp. Theorem 4.3) applied to

1 N+p
pu(h) =S on NP
0 if |h| > e,.

TP if (B < e,

Concerning the behavior of the constants, let Ay denote the best constant in (4.1).
Then, in Corollary 4.1 the constant Cy, can be chosen so that

Ao

Ky non

Csy —

as sg T 1.

Similarly, in Corollaries 4.2-4.4 we have C;, converging to the same limit as ¢y | 0.
Applying Theorem 4.1 to p =1 and f = xg, where E C () is any measurable set, we
get (see also [21] for related results) :

Corollary 4.5 Let N > 2. Given a sequence of radial functions (p,) C L*(RYN) satisfying
(4.2), then, for any C' > Ay/Ki n, there exists ng > 1 such that

[E|Q\E| < C// prlle = y)) dx dy, VE C (Q measurable, Yn > ny.
Q\E \x - ?J‘

4.3 Estimates in dimension N = 1

Given any g € L?(R), let G, : [0,00) — [0,00) be the (continuous) function defined
by

Gp(t) = /R lg(x +t) — g(z)|P dx, Vt>0.

We start with the following

t

Lemma 4.1 Given 0 < s <t, let k € N and 6 € [0,1) be such that — = k + 6. Then,
s

there exists C, > 0 such that for every g € LP(R) we have

Gylt) _ c, {Gp(S) N Gp(QS)}_ (4.10)

tp sP tp
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Proof. Note that
l9(x +1t) — g(z)]" = |g(z + ks + 0s) — g(z)[P

<2 H{lg(a + ks) = g(@)” + gl + ks + 05) = glw + ks)P" |
k-1
<Ry gla s+ ) — gla + js)IP+
j=0
+ 207 g(x + ks + 0s) — g(x + ks)[?.

Integrating with respect to x € R and changing variables we get

Gp(t) < 2°7UPGL(s) + 201G (0s).

Recall that k < E We then conclude that (4.10) holds with C), = 2P~
s

Another estimate we shall need is given by the lemma below :

Lemma 4.2 Let r > 0. There exists a constant C, > 0 so that the following holds : for
every g € LP(0,2r) such that g =0 a.e. in (r,2r) we have

s T _ p
/ lglP < Cprp/ 9z + tip 9(@) dx, Vte (0,r). (4.11)
0 0

Proof. By a scaling argument, it suffices to prove the lemma for » = 1. We now extend
g € LP(0,2) to the entire half-line so that ¢ = 0 a.e. in (1, 00).

Given 0 < t < 1, let £ > 1 be the first integer satisfying k&t > 1. In particular, for
x € (0,1) we have = + kt > 1; thus,

k-1

lg(2)]” = |g(x + kt) — g(x) ] < k" Z lg(x + jt +1) — gz + jt)|".

Integrating this inequality with respect to x we get

1 k-1 o0
/ P <k Y / gz + jt + 1) — g(a + jO)P da
0 =0 70
[e'e) 1
< / gz + 1) — g@)Pde = k7 / gz + ) — g(a)P da.
0 0

2
Note however that k£ < n The lemma now follows by taking C), = 2.

4.4 Compactness in LY (RY) for N > 2

loc

Given f € LP(RY), we consider F, : RY — [0, 00) defined by

Fy(h) = /RN flz+h) — f(@)Pde, VheRY.
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This function is continuous and satisfies
F,(h1 + hy) < or—1 [Fp(hl) + Fp(hg)], Vhy, he € RV,
We have the following

Lemma 4.3 Assume N > 2. Then, there exists C, > 0 such that

/ Fy(tv) do(v) < C’p/ Fy(sv) do(v) for every 0 < s < t. (4.12)
SN-1

gn-1  SP

Proof. Let 0 < s < t < co. Givenv € SNt and w € (Rv)*, we apply the one dimensional
estimate in Lemma 4.1 to the function

g(1) = f(w+ Tv) fora.e. 7>0.
Integrating the resulting expression with respect to w € (R’U)J‘, it follows that for every

v € SV-1 we have . . oo
) () o) i

tP sP tp

for some 6 € [0,1) (depending on s and t). We now split the proof into two cases :
Case 1. N is even.

Let O € O(N) be an orthogonal transformation such that (Ow,w) = 0 for every w € RY
(this is possible since N is even). We then consider

0 / 02
Oyw = §w +14/1— ZOw,

0 / 02
Osw = §w —/1— ZOw.

Note that Oy, 05 € O(N) and
bw = Oyw + Oyw, Yw € RY;

thus,
F,(fsv) < ZP*I{FP(S O1v) + Fy(s Ogv)}.

Inserting this inequality into (4.13), we get

Fy(tv)
tp

sv) 4+ F,(s O1v) + F,(s Oqv)
sp

S Cpr(

Integrating with respect to v € S¥~1, we obtain (4.12).
Case 2. N is odd.
Let v € SN~ We denote by S~~2 the (N — 2)-sphere orthogonal to v :

SN=2.— SN=1 1 (Rou)*.
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Reasoning as in the previous case, we see that

/ Eltw) v < ¢, / Eolsw) v (4.14)
Sy 2

tp S{;V_Q sp
On SM—1, we consider the measure j defined as
w(A) = / HN2(ANSY?)do(v) for every Borel set A C SV
SN-—-1
Note that p is invariant under orthogonal transformations, i.e. u(OA) = p(A) for every
O € O(N), and pu(SV~1) = |[SN=2||SN=1. Tt then follows that
p= SV HY T gy

We now integrate (4.14) with respect to v € S¥~1. Using the observation above we get
(4.12).

The lemma above implies the following compactness result :

Proposition 4.1 Assume N > 2. Let (f,) C LP(RY) be a bounded sequence of functions
such that

// |fn S WP e —yl) dedy < B, Wn> 1. (4.15)
RN JRN y|p

Then, (f.) is relatively compact in L (RY).
Proof. Fix ty > 0. Let ng > 1 be such that

We first prove the following
Claim. There exists a constant C' = C(p, N, B) > 0 such that

/  Fu(to) do(v) < O (4.16)

for every 0 <t <ty and every n > ng. (I}, denotes the function F}, associated to f,.)
In fact, let s,7 > 0 be such that 0 < s < ty < 7. It follows from the previous lemma that

F, F,
/ Fup(T0) do(v) < C, Fap(sv) do(v).
GN—1 TP gN-1 sp

We now multiply both sides by s¥~'p,(s) and then integrate the resulting expression
with respect to s running from 0 to t,. We get

L —Fn’p(TU) do(v) < /SNl —Fn’p(TU) do(v) /Oto pn(s)s L ds

QISN_I‘ SN-—1 TP TP

to F
<C / no(5V) (3N dor(v) ds
0 JeN-1

sp

<cf Eusth) ) 1y an
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Note that the last term is precisely the double integral in the left-hand side of (4.15). We
then conclude that

/ F,p(tv)do(v) < C7tP, V7 >ty, VYn > ny.
SN-1
We now let 0 < t < ty. Using the above estimate with 7 =ty and 7 =t + ¢y, we get
/ Fo,(t) do(v) < 271 { / Fo(tov) do + / oy ((E+ to)o) da}
gN-1 gN—-1 SN-1

< ?PIC[Hh + (t+ to)?] < Ot}

for every n > ng. This proves the claim.

Once we reach at this point, we can proceed as in [20].

1
We first set &5 := @X B, For any 0 < 0 < %, it follows from the previous estimate that

/IR{N ‘(I)é * fn(x) - fn(l')’pdl' = /RN
< / e+ 1) = ful@)? dhde
RNJ Bs

1 /9
= @/0 /SN_1 E,p(tv) do(v) t" 1 dt

]{3 [fulz + h) = fulz)] dh ’ dx

Cty [° v
< — | tYTHdt < Cth.
~ |Bs| Jo -
Thus,
/N@g*fn(a:)—fn(x)|pd:1:§0t§, Vn > no, Vo € (0,t). (4.17)
R

We now conclude the proof by applying a variant of the Fréchet-Kolmogorov Theorem.
In fact, since (f,,) is bounded in LP(RY), then for every ¢ > 0 fixed the sequence (s * f,,)
is relatively compact in LP (RY) (see [24, Corollary IV.27]), hence it is totally bounded

in L (RY). Using (4.17), it follows that (f,) is also totally bounded in LI (RY), which
implies that (f,) is relatively compact in L (RY).

loc

4.5 An LP-estimate near the boundary of (2

In this section we shall prove the following

Lemma 4.4 Assume N > 2. Then, there exist constants ro > 0 (depending on Q and on
the sequence (pn)n>1) and C1,Cy > 0 (depending on p, Q and N ) so that the following
holds : given 0 < r < rg we can find ng > 1 such that

» p » |f (@) = f(y)]” B
/Q|f\ scl/m\f\ + Cyr /Q/Q F— pn (|2 —y|) dxdy (4.18)

for every f € LP(Q2) and n > ny.
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Here,

Q, = {x € Q:d(z,00) > r}.

Proof. Let zq € 9€). Without loss of generality, we may assume that zo = 0. Take rq > 0
sufficiently small such that (up to a rotation of 9€2) the set 92 N By, is the graph of a
Lipschitz function . For simplicity, we can also assume that v has Lipschitz constant at
most 1/2.

Given 0 < r < rg, we consider the graph of v :

I, = {w = (z/,y(z) e RN : 2’ € B;,}
Let A be the upper half cone

A= {:E = (z,ry) €RY 1 |2'| < :EN}.
Because v has Lipschitz constant at most 1/2, we have

QNB,,Ccl,+(ANB,) C QN B;, (4.19)

for every 0 < r < ry. We first prove the following

Claim. There exists ng > 1, depending on r € (0,ry), such that if f € LP(2) and f =0
a.e. in €),., then

|f(x) = F(y)”
fsor ————pu(lr —yl|) dzd
/QHBT/Q P < or /QFWBM/QHBM |z — ylr pn (|z —y]) dxdy

for every n > ny.
In fact, given ¢ € I, and v € AN SY~!, we consider the function

g(t) = f(§+tv) for ae. t € (0,2r).

Applying Lemma 4.2 to g, we get

/T |F(€+ sv)Pds < Crp/T F(E+svtto) = fE+s0)l
0 0 tp

for every 0 <t < r.
Recall that & = (2/,v(2')) for some 2’ € B, C RN~1. We first integrate the above estimate
with respect to 2’ € B/, and then we perform the change of coordinates

y = (,7(2") + sv
with respect to the variables 2’ and s. Using (4.19) we then find

_ P
/ |f|p < C?“p/ |f(y+tv) f(y)l dy
QNB, /o I'r+(ANB;) tr

< C?“p/ |f(y +tv) = f(y)l dy.
QNBs,

(4.20)

p
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Take ng > 1 sufficiently large so that

/ Pn > =, Vn=mng

Since each p,, is a radial function, there exists ¢ > 0 such that

/ pn >, Yn>mng.
ANB,

We now multiply (4.20) by p,(t)t¥ 1. Integrating the resulting expression with respect
tot € (0,r) and v € AN SN we get

|fly+h)—fy)P
P COrP n(|h]) dhd
c/QﬂBr/g |f| S ' /f;ﬂB3r/AﬁBT |h|p P <| |> Y

» |f(z) = fly)]” D) ded
= /ﬂmBM/QmBM |x_y|p pn(|!E y|) e

This completes the proof of the claim.

DO | —

Using a standard covering argument, it follows from the claim above that there exists
no > 1, depending on r € (0,ry), such that if f € LP(Q2) and f =0 a.e. in €2,, then

b [ (M@ -FQP
/Q\Qmm sCr /Q/Q = — yl? pn (lz —yl) dxdy (4.21)

for every n > ng, where the constant C' > 0 is independent of f, r and n.

We now take f € LP(Q2) arbitrary. In other words, we do not impose any restriction on
the set supp f.

Let ¢ € C*°(Q) be such that ( = 0 on ©,, ¢ = 1 on Q\Q,5, 0 < ¢ < 1 on Q and
V(| < C/r on Q. Applying (4.21) to the function (f we get

b < O ¢ (@ — WP N
/Q\Wlfl <c // pu (| — y]) de dy

I:v —ylP

< 2 10y p{//u (lz —yl) dody+

ylp

# [ [1rr =0 (ool doay .

We now estimate the second double integral in the right-hand side. Since ((z) = ((y) = 1
for every z,y € Q\Q, /5, we have

[ oSt e~ ] ]

xEQ\QT/4 CCEQT/4
yeQr/Z ye
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Note that dist (Q\QTM, Q,«/Q) = r/4, thus

Il g%/wpn-/gmp wd ] s%/ﬁrﬂm”-

r€Q\Q, /4 T€Q, /4
YEQ, /2 yeQ

We then conclude that

= /M 1P+ /Q\W I

IS i VA CO R )| T
SC/WW o [ [HTIE, (o =) dodys

p
|h|>% Q

Taking ng > 1 large enough so that

/ <l wn>
Pn > o~ n = no,
\h|>£ 20

we see that (4.18) holds.

4.6 Proof of Theorems 4.1 and 4.2

Proof of Theorem 4.2. Given | > 1, we fix ¢; € Cg°(Q2) such that ¢; = 1 on . It
is easy to see that the sequence (¢;f,)n>1 satisfies the assumptions of Proposition 4.1.
In particular, (f,) is relatively compact in LP(€);). Applying a standard diagonalization
argument, we can extract a subsequence (f,,) such that f, — f in L (€). Since the
original sequence is bounded in L?(2), we have f € L?(Q).

Claim. f € BV(Q)if p=1and f € W'?(Q) if 1 < p < co; moreover,

B
DfP < .
/Q | | KPJV

Let ¢ € C5°(By) be such that ¢ > 0 and [ ¢ = 1. Given § > 0, we define

ws(x) = (%ng <%> , Vo eRY.

It follows from Jensen’s inequality and estimate (4.6) that

_ P
/ / 5 * fn(T) — @5 * fn(y)] pn (| —y|) dedy < B, ¥n>1. (4.22)
Qs Qs |z —ylP

We now observe that for each ¢ > 0 fixed, the subsequence (@5 * f,;);>1 converges to
ws * f in C?(Qs). Taking n; — oo in (4.22) we get (see Remark 5.4)

Kp,N/ |D(ps = f)|" < B, V§>0.
Qs
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The claim now follows by taking 6 — 0.

We are left to prove that f,, — f in LP(€2).
In order to show this, we apply (4.18) with f replaced by f,, — f. Using (4.5) and (4.6)

we get
/ | fny = [IP < 01/ [fay = fIP + CorP22™ (B + C/ !Df!p)
Q Q, Q

for every n; > ng(r). For r > 0 fixed we let j — oo. It follows that

limsup/ | fo; — fIP < CorP2P™! (B+C/ |Df|p> :
j—ooo  JQ Q
Taking r — 0, we conclude that f,, — f in LP(£2).

As a corollary of Theorem 4.2, we have

Proof of Theorem 4.1. Let Ay > 0 be the best constant of the inequality (4.1). Assume
by contradiction that there exists C' > Ay/K, n for which (4.4) fails for every n > nq.
This means there exists a sequence (f,,) in LP(Q) verifying the following properties :

/Ifnl” =1 and /fn =0, (4.23)
//Wh|x_£)” (e —yl) dedy < . (4.24)

Note that ( f,,) satisfies the assumptions of Theorem 4.2. We can then extract a convergent
subsequence f, — f in LP(Q). In particular, it follows from (4.23) that

/Q|f|p:1 and /Qf:().

On the other hand, from (4.24) we have

/|Df|” ,,Nc

a contradiction.

These two facts imply that 1 <
p N C

4.7 Proof of Theorem 4.3

We first observe that after replacing the sequence p,, by M, we can always
assume that each p, is an even function. Note that (4.9) still holds with the same constant
B.

To prove the theorem we shall follow the sames steps as before. We start with a
compactness lemma, :
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Lemma 4.5 Assume there exists 0y € (0,1) and oy > 0 such that (4.8) holds. If (f,) C
LP(R) is a bounded sequence of functions such that

// [tz |$—y|p )lpp (x—y)dedy < B, ¥Yn>1, (4.25)

then (f,) is relatively compact in L}, (R).

Proof. Let /5 > 1 be a fixed integer. We first prove the following
Claim. Estimate (4.10) still holds with 6 replaced by

0 1/t
:=1—-—=1——(-—k
é() éo (S )
(with the constant C, also depending on ¢p).
Indeed, it suffices to notice that

G, (0s) < G,,((Z—j) < 2p1£0{Gp(s) 1 G, (s - Z—j) }

Inserting this inequality into (4.10), the claim follows.

Given 0y € (0,1), we take £y > 2 sufficiently large so that 1/¢y < 1 — 6y ; in particular,
we have 0y < 6 <1

We now fix ¢y > 0. Take ng > 1 sufficiently large so that

O\,>
2
o

(&%)
N T Vn > ny.

We know from our claim that

Fuslr) _ {F os) Fn,p@s)}

TP P TP

for every 0 < s < ty < 7. We multiply both sides of this inequality by py,. Using (4.7)
and integrating the resulting expression from 0 to ¢, we get

for every 7 >ty and n > ng. We now estimate the second integral in the right-hand side
of this inequality. We first observe that

1 to _ _ T
— F, ,(05)p,(6s) ds < /
0

™ J

anp(és)

— 2(0s)ds =: 1.
(G3)p pn(0s)

We then make the change of variables h = fs (note that 6 is a function of s for fixed 7).
Recall that, by definition,

s = k+1 _ T forkgz<k+1.
EO 60 S
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Thus,

= E,,(h dh > F, o (h (4.27)
k
— Z/ L()pn(h)k— < C/ L()pn(h) dh.
o Jo-bee o1 o

This last inequality comes from the fact that ;- belongs to at most C'ky intervals of the
form o
Bl S > 1.
((1 ég)k—l—l’k) for k> 1
Inserting (4.27) into (4.26), and using (4.25), we conclude that

Fuslr) £ € [ Busd), 4, C
0

TP e’ sP Qp

for every T >ty and n > ng. Proceeding as in the proof of (4.16), this implies that
/ |fulz +1) = fulz)]Pdz < CtG, Yt € (0,t0), VYn = no.
R

In other words, the sequence (f,) is relatively compact in Li (R) (see, for instance, [24,
Theorem IV.25]).

The analogue of Lemma 4.4 is the following

Lemma 4.6 There exist ro > 0 (depending on (pn)n>1) and constants Cy,Cy > 0 (de-
pending on p) so that the following holds : given 0 < r < ro we can find ng > 1 such

that
[rse [ iprew [[[HOIOP, (e ay

for every f € LP(0,1) and n > ny.

Proof. We proceed exactly as in the proof of Lemma 4.4. Actually, this case is even
simpler since the claim is essentially contained in Lemma 4.2. Note in particular that
condition (4.8) is not needed here.

Theorem 4.3 can now be proved as in the previous section.
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Chapitre 5

A new approach to Sobolev spaces
and connections to I'-convergence
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5.1 Introduction®

This chapter is motivated by some results of Bourgain, Brezis and Mironescu [20] who
studied quantities of the type

/Q/Q W&(x—y) dx dy, (5.1)

6Ce chapitre a été publié dans Calc. Var. Partial Differential Equations 19 (2004), 229-255.

75
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and connected their limit, as ¢ | 0, to the W1P-norm of f (resp. BV for p = 1).
Here, we shall extend their work by replacing | - |P with a continuous function w; the
functions p. are no longer assumed to be radial.

Let Q C RY be an open set such that 02 is compact and Lipschitz. Given a function
f € LL.(Q), we consider the functional

/Q/Q” (W) pelw —y)dedy, (5.2)

where w : [0,00) — [0,00) is continuous and (p.) C L*(RY) is a family of functions
satisfying the following properties

((p. >0 ae. inRY,

=1, Ve>0,
/RNP c (5.3)

lim pe(h)dh =0, ¥ >0.
el0 Jip>s

We show that, in general, there exists a sequence ¢; | 0 for which the pointwise limit
in (5.2) exists. Of course, the sequence (¢;) will be chosen independently of the function
f we start with. By imposing an extra condition on (p.), we obtain new characterizations
for the Sobolev spaces WP, with 1 < p < oo, and BV. At the end we prove the I'-
convergence of (5.2). As we will see, our results can also be used to get some information
about noncoercive functionals.

We have been inspired by the simplified proofs presented by Brezis [26], following a
suggestion of E. Stein (see Lemma 5.4). Our approach unifies the proofs of some well-
known results, including the BV-case, and also deals with more general families (p.) C
LY(RYN) (cf. [18,20,26,38,55,56,67]).

5.1.1 The radial case

Before studying the case of an arbitrary family (p.), let us first state some known
results when p. is radial.

Assume that 1 < p < oo. In this case, Bourgain, Brezis and Mironescu [18] have
proved the following

Theorem 5.1 Let 1 < p < co. For any f € WHP(Q), we have

@Il _ :
1 Q/Q P pe (|Jz —y|) dedy prN/Q|Df\, (5.4)

£l0 |
where K, N :][ ley - o|P dHN L.
SN-1

It is somewhat surprising here that the limit does not depend on the choice of the
family (pe). Let us consider, for instance,

pe(h) = -t VhE B,

a ‘h‘N*Ep’
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which we have already encountered in the previous chapter. Switching € by 1 — s, then
(5.4) becomes :

@ 0P ok [
lim (1 )/Q i dady =2 /Q\Df|. (5.5)

s11 |z — y|Ntep

Note that the double integral in the left-hand side of (5.5) is, by definition, (a power of)
the Gagliardo seminorm |- |ys.» of the fractional Sobolev spaces W#P(2), with 0 < s < 1.
This way, (5.5) can be rewritten as

lim (1= )'7|flwer = Kl flwin,  VF € W(Q) (5.6)

which shows WP as a “limit” of the spaces W*? as s | 1.
There is also a converse statement of Theorem 5.1, namely (see [20])

Theorem 5.2 Let 1 < p < co. Assume that f € LP(Q) satisfies

liminf/ﬂ/Q W&(M—M) dr dy < oo.

el0
Then, f € WYP(Q). In particular, (5.4) holds.

According to Theorems 5.1 and 5.2, we can actually characterize the space WP (Q)
just in terms of the quantities (5.1) as ¢ | 0.

The case p = 1 is a little more delicate. Theorem 5.1 is still valid for p = 1, but
Theorem 5.2 is no longer true. It turns out that the good approach is to look at functions
f € BV(Q), of bounded variation. Here,

BV (Q) := {f € L'(Q) : Df is a Radon measure}.

We then consider BV (£2) equipped with the seminorm

\flBy = sup{/ fdive @ & € C°(RY) and ||®||p~ < 1 in Q} = / |Df].
Q Q
The analogue of Theorem 5.1 for BV-functions was proved by Davila [38] :

Theorem 5.3 For any f € BV (Q2), we have

@
i [ [ LD L (o) dedy = K1 [ 1D (57)

€l0
Its converse, however, had already been established in [20] :

Theorem 5.4 Assume that f € L*(Q) satisfies

o |f(x) = f(y)]
hmmf/g/ﬂwps(\x—y\) dr dy < co.

el0

Then, f € BV(Q).
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Our next step will be to consider the general case of families of functions (p.) which
are not necessarily radial. As we shall see below, the two main features will be : 1) the
limit in (5.1) strongly depends on the choice of (p.); 2) by choosing p. concentrating
along a certain direction, the analogues of Theorems 5.2 and 5.4 will no longer be true
(see Corollary 5.2).

5.1.2 Construction of the subsequence ¢; | 0

We start with a family of functions (p.) in L*(RY) satisfying (5.3). To each &€ > 0 we
associate the positive Radon measure p. on SV~! defined by

pe(E) = / p. for each Borel set £ C SV~
R4E

where Ry E := {rz : r > 0 and € E} is the cone generated by E with respect to the
origin.

The family (u.) is bounded in M(S™~1) (the space of Radon measures on S¥~1), so
there exist a sequence ¢; | 0 and p € M(SY~1) such that

fe; = o in M(SNT). (5.8)

In particular, g > 0 on S¥=! and p(SV1) = 1.

In Section 5.2 we present some examples of admissible families (p.) for which the
measure i can be written down explicitly.

5.1.3 The pointwise limit of (5.1) as ¢; | 0

Using the above notation, we have

Theorem 5.5 If f € W'P(Q), p > 1, then there exists C' > 0 such that
_ p
// Mpg(iﬂ —y)dedy < C, Ve>D0.
QJQ [z —y|

p

Moreover,

im [ [ W&xx—y)dm@/: / ( /.. !Df-a\pdu(0)>-

The case p = 1 can be further extended to include the case of BV -functions :

Theorem 5.6 If f € BV (), then there exists C > 0 such that

/Q/Q W%(x ) drdy < C, Ve > 0. (5.9)

In addition, we have

t [ f W%(m—y)dzdy: /.. ( / |Df~0\) du(o).
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We point out that the right-hand side of the identity above is well-defined since the
function o € SNt +—— [ |Df - 0| is continuous.

There are special cho%ces of (p-) which give some very interesting expressions (see
Sections 4.2 and 5.2). Taking, for instance, p. radial for each ¢ > 0, we can deduce
Theorems 5.1 and 5.3 as corollaries of the above results. In fact, an easy computation
shows that, in this case, y = %VHN Hgn-t.

Another example is given by p.(z) := ELN p (f), for some fixed nonnegative function p €
LY(RY). We then obtain the following limit originally proved by Gobbino and Mora [56] :

Corollary 5.1 Let p € L'(RY), p >0 a.e. in RV,
If feWr(Q), p>1, or z'ff € BV(Q) and p =1, then

T = |:c—y|p o(” ;y)dxdy‘AN</‘ 3F ) (%) d.

In the special case where Q = R¥, by a simple change of variables we may rewrite
the above identity as

i [ L e (]l i) o

We can also take families (p.) which privilege certain directions. Let, for instance,

1
Pe = WX(—S,E)X(—&Q,EQ)(N*U;

we have (see Example 5.3) :

Corollary 5.2 If f e W'YP(Q), p> 1, or if f € BV(Q) and p =1, then

|f(z) = f)lP )!” N / of I’
li dr dy = 2 —
ifélaw i // \x— Bary
|z1—y1|<e
|z; —yi|<e?
i=2,....,N

Remark 5.1 The results in this section rely heavily on the Lipschitz regularity of 0f).
In fact, take for instance N = 2 and Q := B;(0)\{(21,0) : 0 < z; < 1}. On Q one can
easily construct a smooth function f € W?(Q) such that

lim f(zy,29) =1 and  lim f(x1,29) =0.

z2|0 z210
%<$1<1 %<z1<1

However, taking (p.) radial we have

lgifgl/g/ﬂ%,og(\x—y\)dmdy:—koo.

See Theorem 5.2; note that f ¢ W'P(By), while the integral above is actually being
computed on B; x By (since {(z1,0) : 0 < z; < 1} is a null set in R?). See also
Remark 5.2 below.
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5.1.4 Some new characterizations of W!? for 1 < p < oo, and BV

As we have already mentioned, if u € W'?(Q) and 1 < p < oo, then

lilrrsll%up/Q/Q W%(m —y)drdy < +o0 (5.10)

(if p = 1, then W1(Q) may be replaced by BV (£2)). In order to prove the converse, we
shall impose the following condition on the family (p.) :

there exist linearly independent vectors vy, ...,vy € RY
and § > 0 such that
limsup/ pe >0, Vi=1,... N.

el0 Cs(vi)

Here, for any v € RV\{0} and § > 0, Cs(v) denotes the cone

(Y

Cs(v) = {w e RM\{0} : % > (1- 5)} .

|v]
We then have

Theorem 5.7 Let f € LP(Q2), p > 1. Suppose
_ p
limlsoup /Q/Q %pg(x —y)drdy < oo,

where (p.) satisfies (5.3) and (5.11).
Then, f € WY(Q) if p > 1, and f € BV(Q) if p = 1. Moreover, there exists o > 0
(depending only on (pe)) such that

— p
a/ |IDfIP < limsup// Mpa(x —y)dzdy.
Q e JaJo o |-yl
From Theorem 5.7, we deduce Theorems 5.2 and 5.4. Another corollary is the following
(see [56]) :
Corollary 5.3 Let p € L*(RY), p > 0 a.e. in RN, be such that [ p > 0.
Let f € LP(QY), with p > 1. If

1 |f@) = fWP (z—y
hlg%)nfg_zv Q/Q P p( 6 )dxdy<oo,

then f € WYP(Q) ifp>1, and f € BV(Q) if p=1.

We shall discuss in Section 5.10 what can be said about f without assuming (5.11).

We conclude this section with the following criterion to decide whether a function f,
defined on an open connected set A C RY, is constant ; this extends some of the results
in [26] :
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Corollary 5.4 Assume A C RY is an open connected set. Let f € LP(A) be such that

. |f(x) = f)P _
lgfg/f‘/fxwpa(w—y)dxdy—(),

where p > 1 and (p.) satisfies (5.3) and (5.11). Then, f = const a.e. in A.

Some variants of this corollary have been extensively studied by Ignat [60].

Remark 5.2 A careful inspection in the proof of Theorem 5.7 shows that it still holds
without any assumption on the regularity of 2. The converse statement, however, relies
heavily on the smoothness of 9€). It would be interesting to find an expression similar
o (5.10), which characterizes W1P(2), without any additional assumptions on . The
example in Remark 5.1 suggests the following

Open Problem 3 Suppose (p.) is a family of radial functions satisfying (5.3). Given
1 <p<oo,let feLP(Q) be such that

. [f(z) = f()]”
hrr;ls(,)up/Q/Q Wpa(dg(:v,y)) dz dy < 400,

where dg, denotes the geodesic distance in 2. Can one conclude that u € W1P(Q), without
assuming any regularity of 0§27

The answer to this problem does not seem to be known even in the case of a disk without
a line segment.

5.1.5 Extensions to continuous functions w: R, — R

We now consider the problem of determining the limit of (5.2) as ¢; | 0. Assuming
that w is asymptotic linear at infinity, we obtain the following result which extends
Theorem 5.6. Below, we denote by w,, the function

wy(v) = / w(|v-ol)du(o), YveRY. (5.12)
gN-1
Theorem 5.8 Let w : [0,00) — [0,00) be a continuous function satisfying

w* := lim @ € [0, 00).

t—o00

If Q C RY is unbounded, suppose in addition that there exists C > 0 such that
lw(t)| < Ct, Vvt >0.
If f € BV(Q), then

}Lrgo// ('f ‘< )’)paj(:v—y)dxdyz
- [aon+e [ ([10701) duto)

where Df = D*f LN + DSf is the Radon-Nikodym decomposition of Df with respect to
the Lebesgue measure.
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Another result in this direction is the following :

Theorem 5.9 Assume @ : [0,00) — [0,00) is convexr and increasing, and let f €

Wl (RN) be such that &(|Df]) € LY(RN).

loc
For any continuous function w satisfying

0<w(t) <a(t), Vt=0, (5.13)

i [ f w(%) pea = ydrdy = [ w,(DP), (5.14)

5.1.6 Remarks about the I'-convergence of (5.2)

we have

We first recall the definition of I'-lower and upper limits (with respect to the L'(Q)-
topology) ; see, for instance, the paper of De Giorgi and Franzoni [41] :
Given a bounded open set A C R, let (F}) be any sequence of functionals F} : L'(A) —
[0, +00]. For each f € L'(A), we set

Lo hrgmfF(f) ::min{lurilan (f;): f;— fin Ll(A)}, (5.15)
I gy limsup F; (f):=min { limsup Fj(f;) : f; — f in Ll(A)}. (5.16)
j—00 j—00

(A standard diagonalization argument shows that both minima are really attained.)
If both limits are equal at some point f € L'(A), we say that the sequence (F}) I'-
converges at f, and we denote this common number by ' LAY hm Fi(f).

Given F : L'(A) — [0, +0o0], the lower semicontinuous envelope of F, sc; L1(A) F. is the

greatest L'(A)-lower semicontinuous functional less than or equal to F. In terms of the
I'-convergence we have

sca) FI(f) = min{lijrgiong(fj) c fj— fin Ll(A)}. (5.17)

We recall that w** denotes the convex lower semicontinuous envelope of w : [0,00) —
[0,00) (which in our case coincides with the greatest convex function less than or equal
to w).

Theorem 5.10 Assume Q C RY is a bounded open set with Lipschitz boundary and
w:[0,00) — [0,00) is continuous.

If

Wi = (w*), inRY, (5.18)

n

then
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for every f € LY (), where F : L}*(Q2) — [0, +00] is given by
+00 otherwise.

The theorem above reduces the problem of studying the I'-convergence of our func-
tionals to a relaxation problem ; namely, to determine the lower semicontinuous envelope
of F'. A very nice introduction to this subject can be found in the book of Buttazzo [35].
In view of Theorem 5.10, we have the following

Corollary 5.5 Under the assumptions of Theorem 5.10, we have
L flx) = fy)]
r —hm//w(l— . (r—y)drdy =
Ll(Q)j—>oo ato |$_y| p;( )
= D*f)dz + (5e) diD*
Lewnae+ [ @) (5om) Aoy

for every f € BV (Q), where (w/’j*)oo is the recession function of wy* (see Section 5.11).

(5.20)

In Section 5.11, we present some examples of functions w and measures p for which
(5.18) is satisfied. Note that equality (5.18) does not hold in general. In fact, take p =
#HN ! gv-1 (which corresponds to a family (p.) of radial functions); then, one can
construct a continuous function w which is not convex, while w, is. We do not know
whether condition (5.18) is necessary to prove the I'-convergence of (5.2).

5.2 Determining the measure p € M(SN-1)

Before proceeding, we point out that the family (u.) we defined in Section 5.1 is
absolutely continuous with respect to the Hausdorff measure H™ 1| gv—1 in S¥~1, that
is, g € LY(SN~1) and it is given by

pe(o) = / pe(to)tN "t dt  for ae. 0 € SN
0

In particular, . > 0 a.e. in SV~! and / pe = 1 for every € > 0. Since p,, = in

SN-1
M(SN=1), these properties imply that the Radon measure j itself is nonnegative and
dp = 1.

gN-1

Example 5.1 Suppose that p. is radial for every € > 0. Then, u. = % for every € > 0,
and so p = %HNH | gv—1. Therefore,

wy(v) = ]éN_l w(|v-al)dHN (o), Vv eRM.
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Taking in particular w(t) = t?, p > 0, and using the symmetry of SV~! we have
wu(v) = Ky n|v|P, VoveRY,

where

_ ) N-1 _ 2 2

Example 5.2 Let p € L'(RY), p > 0 a.e. in RY, be such that [ p = 1. For each £ > 0,
define

1 T N
pe(z) == g—Np (g) for a.e. z € R".

Therefore,
p(o) = pe(o) = / p(to)t"~tdt for a.e. 0 € SN
0

The function w, may be written in this case as

wu(v):/RNva-l%Dp(z)dz, Vv € RY.

Example 5.3 Let

1
Pe = SN aN—1 X(-ee)x(~e2,e2)(N =D

Oe; + 90—,

It is easy to see that pu = , whence

wu(v) = w(|v1]), Vo eRYN.

More generally, let 1 < k < N be a fixed integer, and write RY = R* @ RV~*. We now

define
1

Pe ‘= 757 T SN—k XBF XBA;*’V-
€ €

| BE| x [BE|

We observe that supp g C S*~1, p1 is uniform on S*~! and pu(S*~1) = 1. We then conclude

1
that n = —Hk_l Lsk—l.

o
Taking in particular w(t) = t?, p > 0, we get

0 (0) = KypuloP, Vo = (o) € B,

where K, is defined in Example 5.1.

In the next example, we show that given any nonnegative measure p € M(SV™1),
with x(SV~1) = 1, one can find a family (p.) satisfying (5.3) for which

e = pin M(SNT). (5.21)
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Example 5.4 Let u € M(SV1), u > 0, be such that u(SV~!) = 1. We define

1 T N
pe(r) = g—N/SMn(g y) du(y), VreRY,

where n € C5°(R”) is a nonnegative function such that ['n =1 and suppn C B.
Notice that p. € Cg°(RY), p- > 0in RY, [ p. =1 and supp p. C Bo.. Thus, (p.) satisfies
(5.3). In addition, one can easily check that (5.21) holds for such family.

We conclude this section with the following remark which will be useful in some of
the proofs :

Remark 5.3 Assume 6 € C(SV~1). For each ¢ > 0 we have

/RN ’ (%) pe(h) dh = /SN_1 0(0) dpc(o).

Jim [ QZ)p%mMM=1LN1wwduw>

5.3 The regular case

In particular,

The next proposition implies that (5.2) always converges (up to the fixed subsequence
ej | 0 we have constructed) if 2 is bounded and f is smooth. More precisely,

Proposition 5.1 Assume Q C RY is bounded, and let w : [0,00) — [0,00) be a conti-
nuous function.

If f € C*(Q), then

lim //u) (M) pe;(x —y) dr dy :/w#(Df). (5.22)
I=Jala |z =yl Q
Proof. For each f € C?(Q), we set M; := ||Df| . Since w is uniformly continuous in

0, M¢], given any ¢ > 0 there exists Cs > 0 such that
f
lw(s) —w(t)] < Csls —t|+9, Vs, tel0,M].

In particular, we have

L (1 <>)_MODﬂ@_égﬁolSgum»—ﬂw—Dﬂ@-u—yM+5

|z —y |z —y

< Cslz —y|+9

for every z,y € RV, with x # y. Therefore,

G = e R CER= )

< |Q|{05/ \h|p5(h)dh—|—5+maxw~/ ps(h)dh}.
|h|<1 [0,M] |h|>1

—y)drdy <




86 Chapitre 5. A new approach to Sobolev spaces and connections to I'-convergence

By (5.3), the first and the last terms in the right-hand side tend to zero as € | 0, for every
fixed & > 0. By taking ¢ | 0 in the resulting expression, we conclude that

o (Fa=) - (e =g

In other words, to prove (5.22), it suffices to show that

i [ [ (Jpror =yl ot - warar= [uion. 6
We first write
/Q/RNW <’Df(fv) : %D pe, (h) da dh =
:/Q/w (‘Df(x), x:y| )psj(x—y)dxdlﬂr (5.24)
//RN\Q (‘Df |D pe, (& — y) da dy.

To estimate the last term in (5.24), fix A > 0. We have

/Q/RN\QW (’Df(x) ' |§ : ; D pe(x —y)dvdy <

< max w - {|Q| pe(h) dh + |\, |
[h|>A

y)dx dy = 0.

€l0

pe(h) dh} .

[0,M] |h|<A

We first take € | 0 and then A | 0 to get

13%/52/1}{N\Qw<(w( |x_ |Dp€x— y) da dy = 0. (5.25)

By Remark 5.3, (5.24) and (5.25), we conclude that (5.23) holds.

The next two remarks will be used in Section 5.11 to study the I'-convergence of (5.2) :

Remark 5.4 It follows from the proof of Proposition 5.1 that the convergence in (5.22)
is uniform on the bounded subsets of C?(12).

Remark 5.5 A slight modification in the argument above shows that (5.22) still holds
for any f € C*(Q).
5.4 Some useful estimates

The following lemmas will be used throughout this paper. Since they have been ex-
tensively applied (see [20,26,38]), we shall only sketch their proofs.
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Lemma 5.1 Assume w : [0,00) — [0,00) is conver.
If f € WEHRN), then

loc

/RN/RNW (W) pe(r —y)drdy <

< /RN x ()Df(x) : %D p(h)dzdh, Ve >0,

Proof. Let § > 0. For any R > 0, it follows from a standard application of the Funda-
mental Theorem of Calculus and Jensen’s inequality that

/BR/BR (|f5 iz —y| ()‘)05(9«"— y) dz dy <
/BR/]RN (‘Df‘s TDPs(h)dxdh (5.27)
/RN/RN ()Df %D (h) da dh.

Taking ¢ | 0, and then R — oo, we obtain (5.26).

(5.26)

Lemma 5.2 Assume f € W'P(Q), with p > 1. Let f € W'P(RN) be an extension of f
in RY. For every r,e > 0 we have

/Q/Q Wﬂa(x —y)dxdy <
- /r<ﬂ>/|h|<r bf

Proof. For any § € (0,r), we have

// s ’(I}—y’p ol pe(x —y)dr dy =
=L L

lz—yl<r  |z— y|>r

| f5(x )P 27| % /
(r—y)drdy + ——=— ..
// |x — y|p pe(x —y) I

lx—y|<r

(5.28)

1St [
. () dz dh ..
7) |h|) pelh) dodh + P \h|>rp

Proceeding as before to estimate the first term in the right-hand side of the inequality
(note that if z,y € Q and |z — y| < r then tx + (1 — t)y € N,(2) for every t € [0,1]), we
obtain (5.28).

The next lemma can be proved exactly as above. Actually, applying Jensen’s inequality
as in the last estimate of (5.27), we do not make use of the weak convergence Dfs = D f

in M(RY).
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Lemma 5.3 Assume f € BV (Q). Let f € BV(RY) be an estension of f in RYN. For
every r,e > 0 we have

/Q/Q Wﬂa(fﬁ —y)dzdy <
g/m@(/ D7 | Yoy an-+ 2Lt [

The following lemma was pointed out by E. Stein. It comes from a simple application
of Jensen’s inequality and a change of variables.

Lemma 5.4 Assume w : [0,00) — [0,00) is convez, and let f € L]

we have
// (‘fé iz —y| fuly )|)Ps($— y) dx dy <
// (|f |x_y|( )‘)pg(gj—y)dxdy, Vs € (0,7).

5.5 Proof of Theorems 5.5 and 5.6

Proof of Theorem 5.5. Given f € WP(Q), we take an extension f € W5HP(RY) of f.
For any g € C5°(RY), using the triangle inequality and Lemma 5.1 we have

‘ </Q/Q W% (z — y) dx @)”p_

gz 1/p
//‘ |x—y|p oot —vear) | <

< ([ [lu=s |$_<f DO, (¢~ gy as i)

ylr
<( [ 107=pgr)”

Let 7 — oco. We conclude the proof by using a variant of Proposition 5.1 for Cj°-functions
and the density of C§°(RY) in W'P(RY).

Proof of Theorem 5.6. Given f € BV (1), there exists an extension f € BV (R") such
that / |IDf| =0 (see, e.g., [47] ; this last property can be obtained by a local reflexion

(Q). For each r >0

loc

o9
across the boundary). Applying Lemma 5.3, we see that (5.9) holds.
By Lemmas 5.3 and 5.4, we have for any 0 < § < r that

/ / fsle) = Foly )’paj(fﬂ—y)dxdyg
QrNBy /. J QNBy )y |$ —
< /Q/Q Mpaj(x—y) dr dy < (5.29)

|z —y

S/(/m o7 |h|) an s 21 /|”
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We make the following remarks :
(i) The function o € SV~ +—s / IDf - o] € R is continuous ;

(ii) If w C Q is open and / |Df| =0, then
Ow

w w

uniformly with respect to o € SV~1.
By (i) and Remark 5.3, we have

Jlggo RN (/NT(Q) ’Df_ |_Z|Dp€j(h) = /SN—l </NT(Q) |Df 0|> du(U). (5'3())

Note that, by the outer regularity of Radon measures,

/ |Df~o—\e/|Df-o| ast | 0,
() Q

uniformly with respect to o € S¥=1; hence,

im [ ( / Y «r!) nie) = [ ( JALz «r!) au(o)
= [ ([ 105-01) duto).

where in the last step we used that / |IDf| = 0.
o9
Let us denote by I(r,d,7) the left-hand side of (5.29). According to Proposition 5.1, we

have
100,00 = i 16009 = [ ([ Dfs-ol) duto).
J—=e0 SN-1 Q:NBy .

Note that for a.e. » > 0 we have

(5.31)

/ IDf| = 0. (5.32)
9(QrNBy ;)

In particular, we can extract a sequence 7 | 0 for which (5.32) holds for every r = ry.
As § | 0, it follows from (ii) that

I(ry,0,00) = / </ |Df - a|> du(o), Vk=>1.
SN-1 QrkﬁBl/rk

By the inner regularity of Radon measures, we finally get

1(0,0, 00) :/Sm (/Q|Df~a\) du(o). (5.33)
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It follows from (5.30), (5.31), and (5.33) that, as j — oo, d | 0, and ry | 0, the middle
term in (5.29) stays bounded from below and from above by

/SN—I (/Q D "|) dp(o).

This concludes the proof of Theorem 5.6.

5.6 Proof of Theorem 5.7
Let p > 1 and f € LP(Q) be such that
// W&(w —y)drdy < C, Ve >0 small, (5.34)
aJa -

for some C' > 0. It follows from Lemma 5.4 that, for any 0 < § < r, we have

— p
/ / fs(x) = Js(w) pe(x —y)derdy < C, Ve >0 small
rNBy »,-ﬁBl/,. ’x - y’p

By Proposition 5.1 and Jensen’s inequality (recall that p(SV=1) = 1), we get

/QmBl/r {/SN_1 [Dfs(x) -] dﬂ(a)}p d <

(5.35)
< / / |Dfs(z) - 0| dz du(o) < C,
QrNBy,J SN-1L

for every § € (0,r).

Remark 5.6 In the special case of Examples 5.1 and 5.2, it is easy to see that the
measure j satisfies the coercivity condition

aly| < / lv-o|du(o), YveRY, (5.36)
SN-—-1
for some o > 0. By (5.35) and (5.36), we conclude that
C
/ |Df5|p§_7 VCSE(O:T)'
Q7‘mBl/'r O[p

Therefore, f € WIP(Q) if p > 1, and f € BV(Q) if p = 1. In addition, the following
estimate holds o

(=S

Q ar

This argument shows that, to characterize the elements in W'?(Q) for p > 1, or BV ()
for p =1, in terms of (5.34), it suffices to show that (5.36) holds.
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Let [, : S~ — R, be the function given by

I,(v) = / lv-o|ldu(o), Yve SN
gN-1

Then, I, is continuous ; moreover, (5.36) holds if, and only if, I, > 0 in S¥~!. Conversely,
I,(vg) = 0 for some vy € SN~ if, and only if, voL supp p, i.e. supp u is contained in an
(N — 1)-dimensional vector space. In other words, we have the following :

Lemma 5.5 (5.36) holds if, and only if, supp u contains a basis of RY.

Theorem 5.7 is now an easy consequence of Lemma 5.5.

5.7 Proof of Theorem 5.8

Theorem 5.8 will be deduced from Theorem 5.6 and the following lemma applied to
the function f(t) := w(t) — w™t, where t € [0, 00).

Lemma 5.6 Let 5 :[0,00) — R be a continuous function such that

im 20 _ (5.37)

t—oo

If Q C RY is unbounded, suppose in addition that there exists C' > 0 such that
B(t)] < Ct, Vt>0. (5.38)
If f € BV(Q), then

i [ o (P20 aavay = [ 0o, o)

where D*f is the absolutely continuous part of Df with respect to the Lebesgue measure
in RN, and (3,(v) := / B(|v-ol)du(o) for every v e RY.

SN-1

In order to prove Lemma 5.6 we shall need the next two simple remarks :

Remark 5.7 Let vy, v, € M(RY) be such that v; < vy in RY, then
VP <2 and 5 <1y inRY,
where v; = v2 LV + 15 is the Radon-Nikodym decomposition of v;, i = 1, 2.

Remark 5.8 If (v;) is a sequence of nonnegative measures in M(SV~!) such that v; = v
in M(SN™1), then

/du < liminf/ dv; < limsup/ dv; < / dv VA C SV~ open.
A A A A

j—00 J—00

This is a simple consequence of the inner and outer regularity of Radon measures (see,
e.g., [47]).
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Proof of Lemma 5.6. Let f € BV (Q). After extending f to the whole space R (take
for instance f = 0 in RV\Q), we may suppose that f € BV (R"). Motivated by the work
of Dévila [38], we define

vy(x) = /RNﬁ (‘f(‘” i ?})L’_ f(m)‘) pe,(h)dh for ac. z € RY.

In particular, (v;) is bounded in L{, (RY) (by Lemma 5.3) so that, up to a subsequence,
there exists v € Mo.(RY) such that

vi > v in Mg (RY).

We shall prove that v is absolutely continuous with respect to the Lebesgue measure, and
v=03,(D*f) a.e. in RV,

Step 1. v° =0 in RV,

By (5.37), for each 6 > 0 there exists Cs > 0 such that

6(s)] < 05+ C5, Vs> 0. (5.40)

We now take 7o € RY and R > 0. For r € (0, R), it follows from (5.40) and Lemma 5.3

that
/ / / [t 0 =S () de dh + 05| B
Br_r mo) Br—r(z0)/ RN |h‘

s&/ IDf|+—||f||L1/ 0., + Cs|Bal.
Br(zo0) r |h|>r

Take 7 — oo and then r | 0; Remark 5.8 implies that

/ b< IDf| + Cs|Brl, Va0 € RY, VR > 0.
Br(xo) Br(zo)

In particular, by Remark 5.7,
0<1°<o|D°f] inRY, v§>o0.

We now let d | 0 to conclude that 5 = 0 in R¥.
Step 2. v* = §,(D*f) a.e. in RY.
Let 6 > 0. By (5.37) and the continuity of 3 we have

1B(s) = B(t)| < Csls —t| +0(1+s+1), Vs, t>0, (5.41)

for some Cj5 > 0.
Let 29 € RY and R > 0. For r € (0, R) fixed, using (5.41) we can estimate

AN e e R GECR )

pe,;(h) dx dh
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by an expression of the form
CsA1 + 0 A,

4 /B | / \f(rc+h)—f(|:2)’—Daf(x>~h|p5j(h) dzdh.

. |[f(z+h) = f(z)] . .
Ay = /JBRr(mo)/IRN{1+ 7 + |D*f ()| ¢ pe, (h) dz dh.

Let us drop the zq from Bg_,(x) for a moment, and simply write Bg_,.. We first estimate
the quantity

where

k:/‘ v@+hwamw—Dvmwhux

]
If || > r, we just bound I from above by

@AW+ @] e g < 2 .
re [ (B ) o < 2is - [0

If |h| < r, then we have

[g/BRT{/Ol\Daf(:chth) D*f(x |dt}d:c+/ol{/BRr(m+th) ]Dsf]}dt
S/BRT{/01\Daf(x+th)—Daf(a:)|dt}da:+/BR(mO)\Dsf\

Using these two inequalities, we can now estimate A; as

A < /BR/h<{/ D*f(x +th) — D*f(x ‘dt}pa(h)dxdh—k

R (M f |Daf!> /|h r

< sup {/BR|Daf(x+v) D*f(x \dx}

vEB,
S 2| fll 2 a
+/‘mﬂ+<iii+/|Dﬂ>/ pe,-
Br r Br [h|>r

We now consider A,. Using Lemma 5.3, we have

h) —
A, < | Bl + / [z +h) — f(@)] pe, (h) da dht
Br_, h|<7‘ |h|

9
+—Hf”“/ psj+/ D f| <
r |h|>r Br
9
<ipal+2 [ o2 o,
Br

|h|=r
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Taking j — oo, and then r | 0, it follows from Remarks 5.3 and 5.8, and the estimates
above that

[ weswn) <o [ oavo(isde2 [ og)
Br(zo) Br(xo) Br(zo)

for all zo € RY and R > 0.
In particular, by Remark 5.7,

v — B, (D*F)] <6(1+2|D*f]) ae. inRY, V§>0.
| W(D*f)] < 6(1+2[D°f])

We let § | 0 to conclude that v* = 3,(D*f) a.e. in RY.

Step 3. Proof of Lemma 5.6 completed.
If follows from Steps 1 and 2 that v = 3,(D?f) a.e. in RY. We now prove (5.39). Given
r > 0, we write

/Tyj S[]Lﬁ(%) pe,(x — y) dw dy+
+/T/RN\QB<W> st(fﬂ—y)dxdyg/gyj'

Observe that dist (€2,,RM\Q) =r > 0. Applying (5.40) (take, for instance, § = 1) if Q is
bounded, or (5.38) if not, it is easy to check that the term of the form fQT.fRN\Q in the

expression above tends to 0 as j — oco. We obtain (5.39) by letting j — oo, and then
r 10, in (5.42).

(5.42)

5.8 Proof of Theorem 5.9

Step 1. (5.14) holds if w is convex.
For any § € (0,7), r > 0 fixed, it follows from Lemmas 5.1 and 5.4 that

/mBl /T/mgl LY (|f6(ﬁ, - ﬁ(y”) pe, (@ — y) du dy <
= /Q/Qw (W) pe;(x —y) dedy < (5.43)

e
< [ o (jps@ o] ) puwasan

w(|Df-ol) <&(|Df]) € L'(RY), Voe SN

Note that

Thus,
ce SN — /w(|Df(x) -o])dz € R is continuous.

We now let j — 00, ¢ | 0, and r | 0 in (5.43). Applying Remark 5.3 and Proposition 5.1,
we see that (5.14) holds in this case.
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Step 2. (5.14) holds if w is convex on [R, c0) for some R > 0.
It suffices to write w as w = w; + ws in [0, 00), where

0 if 0 <t <R,
wi(t) = .
w(t) —w(R) ift> R.

In particular, wy is convex and ws is bounded. Note that if 2 is unbounded, then @(0) = 0;
thus, we(t) < ©(t) < Ct for t > 0 small. We now apply the previous step to w; and
Lemma 5.6 to wy. This gives (5.14).

Step 3. Proof of Theorem 5.9 completed.

Let R > 0 fixed. For an arbitrary continuous function w satisfying (5.13) we take two
continuous functions 0 < w < w < wWsuch that w =w=won [0,R],and w =0, w =@
on [R+1,00).

Applying Step 2 and Lemma 5.6 we conclude that

/Q L(Df) <h]ni101é1f// ('f |x_y|( )|)p5j(x—y)da:dy

Sli?iscgp/g)/ﬂw (%) pe;(x —y)drdy < /Q@(Df)-

Taking R — 0o, we obtain (5.14) from the Dominated Convergence Theorem.

5.9 Orlicz-Sobolev spaces and W'

Let w : [0,00) — [0,00) be a nondecreasing convex function such that w(0) = 0 and
satisfying the coercivity condition

lim wit) = 00. (5.44)
The Orlicz spaces are defined as
L¥(Q) = {f € Li,.(Q): /Qw(a\f\) < oo for some a > 0} . (5.45)
Analogously, we have the Orlicz-Sobolev spaces (see, e.g., [73])
Whe(Q) = {f € L4(Q) : |Df] € LW(Q)}. (5.46)
We have the following characterization for these spaces :

Theorem 5.11 Suppose that (5.3) and (5.11) hold.
Let f € L¥(Q). Then, f € W'(Q) if, and only if, there exists 3 > 0 such that

lin:lsoup// < - y|(y)|) pe(x —y)dr dy < oc. (5.47)
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The description of the Sobolev space W11() is more delicate since it is not reflexive,
and so bounded sequences do not necessarily converge weakly to an element in W11(Q)
(but they do converge weakly in BV (£2)).

We first recall that given g € L'(€) there exists a nondecreasing convex function
wy @ [0,00) — [0, 00) such that g € L(Q) (see, e.g., [42]). In particular, W () can be
written as the union of all Orlicz-Sobolev spaces. More precisely,

whi) = | W), (5.48)

w convex
and coercive

This gives an indirect characterization of W1(Q), by means of the Orlicz-Sobolev spaces,
in terms of (5.47).

Proof of Theorem 5.11.

Step 1. If f € W (Q), then there exists 3 > 0 such that (5.47) holds.

Using the Lipschitz regularity of 02, we can extend f to the whole space RY so that
f € Wh(RY). By the definition of the Orlicz-Sobolev spaces, there exists 3 > 0 such
that

w(BIDS]) € L} (RY).
Estimate (5.47) now follows immediately from Lemma 5.1 applied to the function Gf.

Step 2. If (5.47) is satisfied, then f € W (Q).
Let €; | 0 and u € M(SN™1) be as in (5.8). Let a > 0 be such that

alv] < / lv-o|du(o), YveRY. (5.49)
SN-1

Take C' > 0 satistying
[[o (ML), iy, v
/o |z =y

Proceeding as in Section 5.6 and using (5.49) we have
/ w(aB|Dfs])dz < C, V§e€(0,r), Vr>D0.
Q0B

In particular, we conclude that f € BV(2). However, (5.44) implies that the family
Dfs is equi-integrable on the compact subsets of Q. Therefore, Df € L (), and so

loc

Dfs — Df a.e. in €. Letting ¢ | 0, we conclude that w(aﬁ]Df]) e LY(Q).

5.10 Some properties of f under no additional as-
sumptions on (p.)

Even without assumption (5.11), we can still derive some information about f just

from (5.10). In order to simplify our notation, we state our results in the special case
Q=R":
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Theorem 5.12 Let f € LP(RY), p > 1, be such that

. [f(z) = f)l”
hmmf/RN/RN ng(x —y)drdy < oo.

el0
Then, there exists a vector subspace E C RY, with dim E > 1, such that

flEsw € WH(E + w) for a.e. we E+X,  ifp>1;
fle+w € BV(E + w) for a.e. we E+, ifp=1.

In addition, there exists o > 0 such that

o [ Desp <timgur [ [ wpe@ —y)dudy.

|
In particular, we have

Corollary 5.6 Assume f € L (RY), p > 1, is such that

loc

liminf/RN/RN W%(w —y)dxdy = 0.

el0

Then, there exist a vector space E C RN, with dimE = k > 1, and a function f €
LY (RN=*) such that

loc
flw+w) = fw) forae veFE andae we E*.
In other words, f is a function of (N — k)-variables.

Note that, by Corollary 5.2, this is the best we can expect from f in general.

Proof of Theorem 5.12. Let ¢; | 0 and u € M(SV™1) be as in (5.8), and such that
there exists C' > 0 satisfying

_ p
/ / [f(z) = f(y)] pe.(x —y)dedy < C, Vj € N large enough.
rvJry |2 —ylP ’

Arguing as in Section 5.6, we conclude that

/RN {/SN |Dfs() -] du(U)}pdaz <C, V6>0.

P {w cRY . /SN_1 o - o] dp(o) = 0} | (5.50)

Note that F is a vector subspace properly contained in R, since 1 > 0 and p(S™~1) = 1.
Let k:=dim F*+ > 1. Given v =v' +0v" € F @ F*+ =RY, we have

/ v - o du(o) = / W 0" dya(o)
SgN-1 SN—1ApFL

= / [v" - 0" du(o”) > av”| for some & > 0.
gk—1

Define

(5.51)
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By (5.50) and (5.51), we conclude that
@ [ IDefip<c W
RN

The theorem follows by letting 6 | 0 and taking F = F'*.

5.11 Proof of Theorem 5.10

Throughout this section we shall assume that Q C RY is bounded.
For each j = 1,2,... we take

yim [ o (M) o gy dvay, vre i

Theorem 5.10 will be a consequence of the following two lemmas :

Lemma 5.7
I limsup Fy(f) < scpyo F(f), Vfe L), (5.52)

j—00
where F' is the functional given by (5.19).

Proof. Let f € C'(Q). Taking the constant sequence f; := f for each j > 1 in (5.16), it
follows from Remark 5.5 that

I L) -hmsupF(f) < lim Fj(f) :/Qwu(Df),

J—00 J—oo

whence

[y limsup Fy(f) < F(f), Vfe€ LY(Q).

Jj—oo

LH(Q)

Since I'/ o -lim sup Fj is lower semicontinuous in LY(Q) (see [41]), (5.52) follows.

J—o0

Lemma 5.8

Iy liminf F5(f) = scpy o Ga(f), V[ € LY(9), (5.53)

o)L

where, for each open set A C RN, the functional G 4 is defined as
[ @9 7gec@,
+00 if g € LY(A)\C*(A).

Proof. Fix 0 < 0 < r. Let f € L}(Q) and (f;) C L*(Q) be such that f; — f in L'(Q).
Applying Lemma 5.4, for each 7 > 1 we have

Rz [ [ (!fg |I_y|<>|>pej(%_dey
// <|f]5 |x_§j|a<y>|)p€j($_y>dxdy'

Galg) = (5.54)
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Note that for each § > 0 fixed we have f;; — f5 in C?(Q,). It follows from Remark 5.4

that / / <|f]6 |x_£]|5<y>|)pej(x_wdxdyw /Qr<w**>ﬂ<Df5>.

Therefore,

liminf F;(f;) _/Q (W) u(Dfs), Ve (0,r).

J]—00

Given A CC €, let r > 0 sufficiently small so that A C €2,.. We have

h}ggfﬂgﬂ) > GA(f(;) > SCEl(A)GA<f§), Vo € (0,7").
Letting 0 | 0 and using the lower semicontinuity of sc;, ,Ga in L'(A), we conclude that

lim inf F;(f;) > sup {SCLl(A)GA(f) A CC Q} (5.55)

j—>OO

Since 2 C R is a bounded open set with Lipschitz boundary and (w**), is convex, we
can apply Theorem 4.4 in [37] which implies that

sup {sczl(A)GA(f) : ACC Q} = SCZI(Q)GQ(f). (5.56)

Since the sequence f; — f in L'(Q) was arbitrary, (5.53) follows from (5.55) and (5.56).
Proof of Theorem 5.10. Let

Gy /Q Sp(Df) 7@,
oo if f € L (Q\C'(®).

Then,

sciiF(f) = ¢ G(f), VfeL'(Q). (5.57)
(This follows from (5.17) and (5.58) below.)
By hypothesis, w** = (w**),,, so that Go(f) = G(f) for every f € L'(Q2). Theorem 5.10
now follows from (5.52), (5.53) and (5.57).

Proof of Corollary 5.5. By relaxation, we know that (see [35, Theorems 4.2.8 and
4.4.1])

sy FUf) = / S (Df), Vf € C'@). (5.58)

Q
We now define the recession function (wz*)oo : RY — [0, +o0] as
0o w* (tv
()" (v) == lim ”t( ), Vv € RY.

w

(The limit above always exists in [0, +00] since w;* is convex.)
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Applying Theorem 4.7 in [37] to (5.58), we get

w( dD* S
() (d‘DSjZl)d]D fl (5.59)

for every f € BV (Q). Here, Df = D*f LN + D*f is the Radon-Nikodym decomposition

of Df, and d\g=§| denotes the Radon-Nikodym derivative of D®f with respect to |D?f|.

This concludes the proof of the corollary.

SCr1(q) F(f):/QwZ*(Daf)da:—l—/

Q

Remark 5.9 Let v be a vector-valued Radon measure in RY with values in RY. As in
Goffman and Serrin [57], we define

oot = { i ()

for every Borel set A C RY, where the supremum is taken over all finite disjoint partitions

A = |; 4i in terms of Borel sets A;, and | - | denotes the Lebesgue measure in RY (if
|As| =0, then [A;] w* (V|(AA_"‘)) is to be understood as the limit (w;*)oo(u(A,))) With such

definition, w**v is a positive measure in RY and (see [57, Theorem 2])

W(A) = /A Wi () da + /A (w;*)”(%) dl| (5.60)

for any Borel set A C RV,
Applying (5.60) with v = Df, f € BV (Q), and A = Q, we can rewrite (5.20) in the more

elegant form
f(x) = f(W) -
I }ggo// ( ‘I_y‘ pe; (@ —y) de dy = /Q% Df.

A question naturally arises from Theorem 5.10 : for what families of continuous func-
tions w : [0,00) — [0,00) and nonnegative Radon measures 1 € M(SV~!) do we have
the equality

Wi = (W), inRY? (5.61)

Here are some examples :

Example 5.5 If w is convex, then so is w),. In this case, we have

W= (W) =w, nRY

In particular,

|f(z /
hm - (|l — dedy =K DfP,
/ ‘x_y‘p p (lz —yl) dvdy = Ky v Q! f1

el0

for every f € WHP(Q). If p = 1, then the above limit still holds for f € BV (Q).
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Example 5.6 Assume that w : [0,00) — [0,00) is concave. In particular, w is nonde-
creasing and the limit

exists. We then conclude that w**(t) = w™t + w(0) for every ¢ > 0; thus,

(™)(0) :ww/ v - o] du() + w(0), Vo€ RV

gN-1

We now observe that w, is also concave. In addition, w,(0) = w(0) and, for each v € RY,

we have
(¢
lim wultv) = woo/ lv-o|du(o),
t SNfl

t—o00

so that wi* < (w*),, in RY. Since the reverse inequality is always true, we must have

wi(v) = (W)u(v) = woo/ lv-o|du(o) +w(0), YveRN.

K gN-1

Example 5.7 Suppose that w(0) = 0 and

t—oo
In particular, w,(0) = 0 and, for each v € R",

lim “utY) (tv)

t—o00 t

=0.

We conclude that
W’ = (W), =0 inRY

The next example shows that (5.61) holds for arbitrary continuous functions w :
[0,00) — [0, 00) for a special class of measures u € M(SV-1).

N
Example 5.8 Assume that u = Z a;0.,, where a; > 0,Vi =1,..., N, and Zfil a; = 1.

i=1

We shall prove that
N
wir() = aw™ (Ju;]) = (W)u(v), Vv eRN (5.62)
=1

Let £ € RY and ¢ € R be such that

N
wy(v) = Zaiw(|vi|) >&-v+e, YoeRY (5.63)

=1
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By a standard separation-of-variable argument, there exist aq,...,ay_1 € R such that

W(‘Uly) zéivi—l—ai, Vizl,...,N—l,
anw(lon]) = Evoy +¢— (a1 + -+ + ay-1),

for every v € RY. From this, we get

N
(W)u(v) = Z%W**OWD >€&-v+e, YoeRY (5.64)

i=1

Since (5.64) holds for any pair £ € RY and ¢ € R such that (5.63) is satisfied, we conclude
that (w*), > w* in RN, This readily implies (5.62).

As a consequence of Example 5.8, we see that, for any w : [0, 00) — [0, 00) continuous

and for any f € Wh1(Q), we have

FL1( 11{{)182]\7 : // ( |m—y| dxdy = 2 Qw ’8x1

|z1—y1|<e
s —y;|<e?
i=2,..,N
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6.1 Introduction’

Let G C R? be a smooth bounded domain with = dG simply connected. In a recent
paper, Bourgain, Brezis, and Mironescu [22] studied properties of

HY2(Q; 81 = {g € H2(Q;R?) : |g| = 1 a.e. on Q}

(In what follows, we identify R? with C.)
The space W N L™ shares some properties with H'/? and it is natural to investigate

Wh(Q; St = {g € WH(Q;R?) 1 |g| =1 a.e. on Q}

"Ce chapitre a été écrit en collaboration avec H. Brezis et P. Mironescu; le texte original est déja sorti
dans Geometric analysis of PDE and several complex variables (S. Chanillo, P. Cordaro, N. Hanges, J.
Hounie et A. Meziani, eds.), Contemporary Mathematics, American Mathematical Society, 2004.
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One of the issues that we shall discuss is the question of existence of a lifting and, more
precisely, “optimal” liftings. If g € WH(Q; S1) N C°(Q; SY), then g admits a “canonical”
lifting o € WHH(Q; R) N CO(; R) satisfying

el = [ 19l (6.1)

(Since g € C° and ( is simply connected, there exists a ¢ € C° such that g = ¢ and
(6.1) holds for this ¢.) However, if one removes the continuity assumption, then a general
g € WH(Q; S1) need not have a lifting ¢ in WH(Q; R). This obstruction phenomenon—
which also holds for other Sobolev spaces—is due to topological singularities of g and has
been extensively studied in [18]; see also earlier results of Schoen and Uhlenbeck [77] and
Bethuel [9].

It has been established by Giaquinta, Modica, and Soucek [54] that every map g €
W(Q; S') admits a lifting in BV (;R). However, as we shall see below, for some maps
g in WhH! we may have

min {/ |Dy| : ¢ € BV(Q;R) and g = e'? a.e.} > / Vgl
Q Q

where the measure Dy is the distributional derivative of (.
As we shall prove (see Corollary 6.6 below), there is always a ¢ € BV (€2;R) such that

g = e and
[1pel<z [ 19l (6.2)
Q Q

The constant 2 in (6.2) is optimal (see Remark 6.2 below). Inequality (6.2) has been

extended by Dévila and Ignat [39] to maps g € BV (Q;S') (here, Q can be an arbitrary

domain in RY); the striking fact is that (6.2), with constant 2, holds in any dimension.
It is natural to study, for a given g € W1(Q; S1), the quantity

E(g) = min {/Q |Dg| : o € BV(;R) and g = e a.e.}. (6.3)

Another quantity which is commonly studied in the framework of Sobolev maps with
values into manifolds (see [10], and also [54]) is the relaxed energy

E.a(g) = inf {liminf/ IVgn|: gn € C®(Q;8) and g, — ¢ a.e.}. (6.4)

It is not difficult to prove (see Proposition 6.2) that
Ewa(g) = E(g9), Vg€ WLl(Q;Sl)-

As we shall establish in Section 6.3, the gap

E(g) - /Q Vgl (6.5)
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can be easily computed in terms of the minimal connection L(g) of the topological sin-
gularities of g. For example, if g € C®(Q \ {P,N};S") N W'l deg(g, P) = +1, and
deg (g, N) = —1, then L(g) is the geodesic distance in 2 between N and P, and the
gap (6.5) equals 2w L(g). For the definition of L(g) when ¢ is an arbitrary element of
Wh1(Q; S1), see (6.9) below. The concept of a minimal connection connecting the topo-
logical singularities has its source in [28].

One of our main results is

Theorem 6.1 Let g € Wh1(Q; SY). We have

- [ 191 = 27L(o). (6.6)

The first result of this kind (see [10]) concerned the Dirichlet integral [|Vg|* and
maps ¢ from a 3-d domain into S%. Inequality < in (6.6) has been known for some time
(see [44] and [54]) ; it relies on the dipole construction introduced in [28]. The exact lower
bound for the relaxed energy is always a more delicate issue. It can presumably be proved
using the theory of Cartesian currents of [54]; however, the precise relationship between
the formalism of [54] and (6.6) is yet to be clarified. We call the attention of the reader
to the fact that, in the H'/?-setting studied in [22], the analogue of Theorem 6.1 is open;
we only have

Era(g) = |glz2 ~ L(g)-

There is another interpretation of L(g) as the “L'-distance” of g A Vg to the class of
gradient maps. More precisely, given g € WH1(Q; R?), consider the vector field g A Vg
defined in a local frame by

gANVG= (9N g, g Ngy)-
When g is smooth with values into S, g A Vg is a gradient map since we may always
write g = €, so that ¢ A Vg = V. However, if g € Wh1(Q; S1), then g A Vg is an
L'-vector field which need not be a gradient map, e.g., when g(z) ~ (x — a)/|r — a| near
a point a € €2, then g A Vg is not a gradient map since

(9N Ga)y # (9N gy inD'(Q).
Actually, the following holds :

Theorem 6.2 For every g € WHH(Q; SY), we have

L(g)=— inf /]g/\Vg V| = min /]g/\Vg D1|. (6.7)

2T peC> (Q;R 277 YEBV (4R)

There are many minimizers v in (6.7) ; however, at least one of them satisfies g = 'V
a.e. in €.

Let g € WH(Q;R?) N L. Following the ideas of Brezis, Coron, and Lieb [28] (or
more specifically, of Demengel and Hadiji [44] for this particular setting), we introduce
the distribution 7'(g) € D’(2;R), defined by its action on Lip (£2; R) through the formula

(T(g), ) = / (9 A Vg)- VI, (6.8)
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where V+¢ = ({,, —(,). In other words,

T(g) = =(9 A go)y + (9 A gy)a = 2Det (Vg),
where Det (Vg) denotes the distributional Jacobian of g. We then set

Llg) = 5= max_ (T(g).C). (69

We first state some analogues of the results in [22] :

Theorem 6.3 Assume g € WH1(Q; SY). There exist two sequences (P;), (N;) in Q such
that Y, |P; — N;| < oo and

T(g) = 2m Z (6p, — On,) in D'(). (6.10)

Moreover,

L(g) = inf ¥ _d(P;, Ny), (6.11)
where d denotes the geodesic distance on €2, and the infimum is taken over all possible
sequences (P;), (N;) satisfying (6.10).

As it was already pointed out in [22, Lemma 20], we have

(T(9),) = 2r / deg (9,T) dA,

R

where I'y = {x €Q; ((z)= /\} is equipped with the appropriate orientation (Lemma 20
in [22] is stated for g € H'/2, but the proof also covers the case where g € W''). Here is
a new property :

Theorem 6.4 Assume g € WH1(Q; SY), and let ¢ € Lip (;R) with ||V{||z=~ < 1. Then,

/R |deg(9,Ty)| dA < L(g). (6.12)

In particular, if ¢ is a mazimizer in (6.9), then

deg(g,I'y) >0 for a.e. A. (6.13)

Finally, we study a notion of relaxed Jacobian determinants in the spirit of Fonseca,
Fusco, and Marcellini [50], and also Giaquinta, Modica, and Soucek [52]. Given g €
Wh1(Q; S1), we set (using the same notation as in [50])

TV (g) = inf {liminf/ |Gnz A Gny| + gn € CZ(Q;R?) and g, — ¢ in Wl’l}. (6.14)
Q

n—oo

Of course this number is possibly infinite. The following is a far-reaching extension of
some results in [50] :
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Theorem 6.5 Let g € WH1(Q; SY). Then,
TV(g) <oo <= Det(Vg) is a measure.

In this case, we have

Det (Vg) =7 » (dp, —dn,) in D'(Q)

finite

and

TV (g) = | Det (Vg)|m-

1

In particular, =TV (g) is an integer which equals the number of topological singularities
T

of g (counting their multiplicities).

Remark 6.1 The conclusion of Theorem 6.5 still holds if one replaces the strong WWh!-

convergence in (6.14) by the weak Whl-convergence. There are numerous variants and
extensions of Theorem 6.5 in Sections 6.4 and 6.5 below.

6.2 Properties of Wh1(S1; S1)
Even though the core of this chapter deals with maps from a two dimensional manifold
Q with values into S!, it is illuminating to start with the study of Whl-maps from S*

into itself.
Let g € Wh1(St: S1). There are two natural quantities associated with g; namely,

E(g) = min {|¢IBV o€ BV(SYR), g=c¥ a.e.}

and

n—od

FEra(g) = inf {liminf/ gn| = gn € C(SSY), degg, =0, gn — g a.e.}.
S1

It turns out that the two quantities are equal and that they can be easily computed
in terms of g :

Theorem 6.6 Let g € WH1(St: S1). Then,

Puals) = Blg) = [ 131+ 2] deg.), (6.15)

Proof. First equality in (6.15) : “>”. Let (g,) € C*(S*; S') be such that deg g, = 0 and
gn — ¢ a.e. Then, we may write g, = e, with ¢,, € C*°(S%;R) and

[ nl= [l
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Subtracting a suitable integer multiple of 27, we may assume that (¢,) is bounded in
Wh1(SL:R). After passing to a subsequence, we may further assume that v, — ¥ a.e.
for some 1 € BV (S';R). Therefore,

liminf/ |G| :liminf/ [N 2/ 4|
n—oo g1 n—oo Sl S1

and, clearly, ¥ = g a.e.
“<” Let ¢ € BV(S'; R) be such that

[¥|pv = min {|¢|py : g =€ ae.}.

Consider a sequence (¢,) C C*(S';R) such that 1, — 1 a.e. and [, | — [¢]5y. If
we set g, = e, then clearly g, € C*(S'; S1), degg, = 0, and g, — g a.e. Moreover,

tim [ gl =t [ 1] = oo
Second equality in (6.15) : “>”. This assertion has been established under slightly more
general assumptions in [22].

Here is an alternative approach. Let g € W11(S!: S1). We prove that, if ¢ € BV (S';R)
satisfies ¢ = ¥ a.e., then

olav = [ o]+ 2n|deg gl (6.16)
S

The main ingredient will be the chain rule formula for BV -maps, due to Vol’'pert ; see [87],
and also [1].
Chain rule. Let ¢ € BV(S!;R). Recall that there is a representative oy of ¢ which is
continuous except at (at most) countably many points a,, € S*; in the sequel, we take ¢
to be g itself. Moreover, at the points a,,, ¢ admits limits from the “right” and from the
“left”, say ¢(a,+) and p(a,—).
Let ¢ be the distributional derivative of ¢, which is a Borel measure. The diffuse part of
P is

de - QO Z an+ n_>] 6an-

Vol'pert’s chain rule for BV -maps on a bounded interval (or a closed curve) asserts that,
if I e C*(R;R), then

Fop=F(p)pa+ Z P(an+)) = F(p(an—))]ba,.

A more general version of the chain rule, which is valid in R", is stated and explained in
the proof of Lemma 6.5 in Section 6.3 below.

We now return to the proof of (6.16). By the chain rule formula, we have

G =iePpq + Z (efelan®) — grelan=)y 5,
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Using the continuity of g, we have g(a,,) = ¢'#(®+) = (@) for each n. Hence,
g =ie"pq.
Since g € L' and ¥ = g a.c., we thus find that
. r,
gNGg = —9g= Q4.
tg
Consequently,

[Plm = |@alm + 10— @alm =g A glm+1g A g — olm = /1 19 +19 A g —¢lm. (6.17)
S
On the other hand,

GNG—=Plm > {gNANg— &, 1) =1(gAg,1)| = 27| degg|. (6.18)

(The last equality is clear when g is smooth ; the case of a general W'1l-map follows by
approximation.)
Finally, by combining (6.17) and (6.18) we find that

elav > [ 9]+ 27| deggl,
S

as claimed.
Second equality in (6.15) : “<”. Since S\ {1} is simply connected, we may write g = ¢
on S'\ {1}, for some ¢ € WH(ST\ {1};R) such that |p| = |g| in S*\{1}. Since ¢ is
continuous, we have

p(1+) — ¢(1—) = 2m deg g.

Passing to the full S, we have

oloy = / @+ |o(14) — p(1-)] = / 9] + 2| deg g1,
S1\{1} 51

As a consequence of Theorem 6.6, we have
Corollary 6.1 For every g € WhH(S1; S,
E(g) < 2|glwa. (6.19)

Remark 6.2 The constant 2 in (6.19) is optimal. Indeed, for ¢ = Id, we have |g|y11 =
27, while E(g) = 47 by Theorem 6.6.

It is easy to see from the definition of the relaxed energy that F,. is lower semicon-
tinuous with respect to the pointwise a.e. convergence in S'. In view of Theorem 6.6, we
have the following :



110 Chapitre 6. W''-maps with values into S*

Corollary 6.2 Let (g,) € WH(SY;SY) be such that g, — g a.e. for some map g €
Whi(Sh SY). Then,

/ 1] + 27| deg g| < lim inf (/ 1ul + 27 deggn|>. (6.20)
S1 n—oo S1

Remark 6.3 The constant 27 in (6.20) cannot be improved. In fact, assume that (6.20)
holds with 27 replaced by some C. In particular, for any sequence (g,) C C*°(S';S)
such that degg, = 0 and g, — Id a.e., we have

2w+0:/ \g'\+0|degg|gnmmf(/ |gn|—|—C’|deggn\):1iminf/ gl (6.21)
g1 n—00 g1 n—oo  Ja1

On the other hand, according to Theorem 6.6, the sequence (g,,) can be chosen so that

lim |gn| = / |g| + 27| deg g| = 4. (6.22)
St St

n—oo

A comparison between (6.21) and (6.22) implies C' < 27.

Inequality (6.20) still holds if one replaces | deg g| and |deg g,| by degg and deg g,,
under the additional assumption that the sequence (g,) is bounded in W' ; this as-
sumption is essential, see Remark 6.4 below. More precisely, we have

Proposition 6.1 (Bourgain-Brezis-Mironescu [22]) Given g,,g € WH(S1; SY) sa-
tisfying g, — g a.e and
Sup |gn|py < o0,

then
/ |g] + 27 deg g < liminf (/ |g'n|+27rdeggn). (6.23)
Sl n—oo g1

We present here an alternative approach based on Corollary 6.2.

Proof. Assume |g,|py < C, Vn. In particular,

1 C
2m Js1 2m

Since deg g, takes only integer values, after passing to a subsequence, we can assume that
d = deg gy, ¥Yn. Given € > 0, let h € C*(S'; S') be such that degh = —d and h(z) =1,
Vz € S"\B.(1). Clearly,

hg, — hg a.e.in S' and deghg, =0, Vn.

It follows from Corollary 6.2 that

/ \gh + gh| + 27 (deg g — d) gliminf/ |\gnh + gnh] §1iminf/ |g'n|+/ h|. (6.24)
Sl n—oo g1 n—oo g1 g1
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On the other hand, since h(z) = 1 for x € S*\ B.(1), we have

[labrgil= [ gl [ fghe gl
st S1\B.(1) S1NB.(1)
= R RN R RN (6.29
S\ B (1 SINB:(1) SINB(1)
/\g\—z/ it [

Comparison between (6.24) and (6.25) yields

/ 9 -2 / 3] + 27(deg g — d) < lim inf / 6n]
51 S1NB.(1) n—oo [g1

Taking € — 0, we obtain (6.23).

An immediate consequence of Proposition 6.1 is

Corollary 6.3 Under the assumptions of Proposition 6.1, we have

[ 1o < it ( [ lonl = 2 e - degg|).
S1 n—oo S1

Remark 6.4 Proposition 6.1 (or, equivalently, Corollary 6.3) is false without the as-

sumption sup,, |gn|py < oo. Here is an example. Let n > 1 be a fixed integer. Given

0<j<n-—1leta;,= 2% and I;,, = [ajn, Qjr1,0 — 2%] C R. On each interval I;,,, we

define f,(t) = 2mj — a;,. We then extend f,, continuously to [0, 2], so that f, is affine
linear outside the set (J; [, and f,(27) = 27(n —1).
By construction, f, is Lipschitz, nondecreasing, and f,,(27) — f,,(0) € 2nZ. Note that

27
d(fn(t), —t+ 27TZ) S |aj+17n — aj’n| == 7, Vt € LJ]]‘771 )

J

n
10,22\ | Zjn| = on
J
Set g, (0) = 7+ Then, we have g, — g a.e., where g = Id ; however,

/1 |g| + 27 deg g = 4,
S

while

S
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6.3 Properties of WH1(Q; S1)
We start with the rigorous definitions of T'(g) and of the class Lip mentioned in the
Introduction. If g € WH1(Q; R?), we set
1/2

. o1 ? Og1 2 09 2 092 2
’Vg‘Kax) (5) (5 ()|

where (x,y) is any orthonormal frame at some point on 2, and we let

lglwin = / Vgl
Q

We now recall the definition of 7'(g) :

(T(g). ) = / (979G — (97 9,)G], VC € Lip (4 R).

Q

U U1
VAN = U V2 — UV1,
U2 %)

and the integrand is computed in any orthonormal frame (z, y) such that (x, y, n) is direct,
where n is the outward normal to G. (This integrand is frame invariant.) The class of
testing functions, Lip (2;R), is the set of functions which are Lipschitz with respect to
the geodesic distance d in €). For such a map, we set

_ 1) =<yl
|¢|Lip = sup W = |IV(]|p=-

Y

Here,

We next collect some straightforward properties of 7'(¢g) and L(g) :

Lemma 6.1 We have
a) T(g) = —T(g), Vg € WH(Q;R*) N L ;
b) T(gh) =T(g) +T(h), Vg,h € W (Q;5) ;
c) L(g) < 5=lglwiillgll=, Vg € WL R?) N L ;
d) if gn,g € WH(Q;R?) N L™ are such that g, — g in W and ||g,||~ < C, then
L(gn) — L(g).

Proof. The only property that requires some proof is d). Since

(T (g), ¢) — (T(9),C)] < / 19119 (g — 9)IIVC] + / 190 — g1Vl VC],

we have
|L(gn) — L(9)| < Clgn — glwrr + |(gn — 9)Vg|| 11,

and d) follows by dominated convergence.

Recall the following density result of Bethuel and Zheng [12] :
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Lemma 6.2 The class
R = {g e W (Q; 8N 1 g € C®(Q\ A; SY), where A is some finite set}

is dense in Wh1(Q; S1).

When g € R, a straightforward adaptation of the proof of Lemma 2 in [22] yields the
following :

Lemma 6.3 If g € WH(Q;SY), g € C°(Q\ {ay,...,ax}; SY), then
k
T(g) = QWZdj5aj in D'(2).
=1

Here, d; = deg (g, a;) is the topological degree of g restricted to any small circle around
a;, positively oriented with respect to the outward normal. Moreover, L(g) is the length
of the minimal connection associated to the configuration (a;,d,;), with respect to the
geodesic distance on 2 (see Remark 6.5 below).

Remark 6.5 By the definition of T'(g), we have (T'(g),1) = 0. Thus, by Lemma 6.3 we
have Z?Zl d; = 0. Therefore, we may write the collection of points (a;) (repeated with
multiplicity |d;|) as

(PIJ"‘7‘P£7N17"'7NZ>7

where ( = %Z?zl |d;| ; the points of degree 0 do not appear in this list, a; is counted
among the points F; if d; > 0, and among the points V; otherwise. Then,

l
L(g) = min » d(Pj, No(;))-

og€ES
¢ et

This formula first appeared in the context of S?-valued maps; see [28].

Using the density of R in W1(Q;S!), one can easily obtain Theorem 6.3 from
Lemma 6.3. The analogue of Theorem 6.3 for H'/2(£2; S') was proved in [22], and the
arguments there also apply to our case.

A converse to Theorem 6.3 is also true. Namely, for any sequence of points (B;), (V;)
satisfying Y, | P, — N;| < 00, one can find g € WH(Q; S*) such that (6.10) holds ; see [22].
Motivated by this, we state the following :

Open Problem 4 Let 1 < p < 2. Given g € W?(Q; S), can one find (5;), (N;) such
that >, |P — N;|*P~! < 0o and (6.10) holds ?

Open Problem 5 Given two sequences (F;), (N;) such that >°, | P, — N;|*P~1 < oo for
some 1 < p < 2, does there exist some g € W'P(Q;S') such that (6.10) holds? If the
answer is negative (as we suspect), what is the right condition on the points P;, N; (in
terms of the p-capacity 7) which guarantees the existence of g ?
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We now consider the following class

Wl’l
)

Y = (C>(Q; ST

I

this class is properly contained in W' (Q; S') (see Remark 6.7 below).
It turns out that maps in Y can be characterized in terms of their distribution 7'(g) :

Theorem 6.7 Let g € Wh1(Q; SY). Then, the following properties are equivalent :
a) geY;
b) T(g9)=0; .
c) there exists o € WH(Q;R) such that g = ¢ a.e. in Q.

Remark 6.6 The analogue of this result for maps in B; C R? with values into S? was
proved by Bethuel [8]. When € is a smooth bounded open set in R?, the equivalence a)
< b) was established by Demengel [43]. We could adapt the argument in [43] to our case,
but we present below a different approach, based on an idea of Carbou [36].

Remark 6.7 Using Theorem 6.7, it is easy to construct maps in W (Q; S1)\ Y. Assume,
e.g., that Q = S? and let g(z,y, 2) = (z,y) . By Lemma 6.3, we have T'(g) = 27 (dn —Js),

(7, y)]

where N, S are the North and South pole of S?. By Theorem 6.7, this implies that g ¢ Y.

Proof of Theorem 6.7.
a) = b) By Lemma 6.3, we have T'(g) = 0 if g € C>(; S'). By Lemma 6.1, g — T'(g) is
continuous with respect to Whl-convergence, and thus T'(g) = 0, Vg € Y.

b) = ¢) We argue as in [36]; see also [18]. Let xo € Q and assume that Q C R? near z.
Since T'(g) = 0, the L'-vector field

Fy g NGy
OF1 OF, .

satisfies, near x, 0 = m in the sense of distributions. By a variant of the Poincaré
Yy x

Lemma (see [18]), we may find a neighborhood w of zg and a function v € W'l (w;R)
such that g = ¢’¥*9) in w, for some constant C.
Consider a finite covering of {2 with open sets w; such that

(i) in each w; we may write g = €'#/ for some p; € W (w;;R);

(i) w; Nwy is connected, V7, Vk.
In w; Nwy, the map @; — i belongs to W' and is 27Z-valued ; thus, it has to be constant
a.e. Since 2 is simply connected, we may therefore find a map ¢ in W1(2; R) such that
© — ¢; is, a.e. in wj, a constant integer multiple of 27. In particular, g = e in Q.
c) = a) Let (¢,) C C*(;R) be such that ¢, — ¢ in W, Set g, = €. Then, clearly,
gn € C°(Q; SY) and g,, — g in WH,

Remark 6.8 It follows from Theorem 6.7 that, given a map g € Wh1(Q; S1), in general
we may not write g = e’¢ for some ¢ € WH(Q; R); consider, for example, the map ¢ in
Remark 6.7. However, it follows from Theorem 6.2 that we may write g = ¥ for some
¢ € BV(Q;R). This conclusion still holds for maps g € BV (Q; S); see [54], and also [39].
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Remark 6.9 In view of Theorem 6.2, the equivalence L(g) = 0 & 3 ¢ € WHH(;R)
such that g = e becomes transparent. Indeed, if L(g) = 0, then, by Theorem 6.2,
there is some ¢ € BV(;R) such that Dy = g A Vg € L. Thus, ¢ € Wh! and it is
straightforward that

V(ge™) = e7*(Vg —igVyp) = ige (g A Vg — V) = 0,

so that g = '+ for some constant C. On the other hand, if g = e for some ¢ € WH1,
then Vo = g A Vg (as above), and thus L(g) = 0.

Before starting the proof of Theorem 6.2, we recall the “generalized dipole” construc-
tion presented in [22] :

Lemma 6.4 Let g € WY (Q;SY). Then, for each € > 0, there is some h = h. €
WHH(Q; SY) such that
(i) ‘h‘Wl,l < QWL(Q) +e;

(i) T(h) = T(g) |
(iii) there is a function ¢ = 1. € BV (Q;R) such that h = e™ a.e. and

Y| gy < 4AwL(g) + ¢;

(iv) meas (supp ¢) = meas (supp (h — 1)) < e.

Proof of Theorem 6.2. Let ¢ € BV (;R) and ¢ € Lip (2;R) be such that |V(| < 1.
Then,

97 V9~ Dbl 2 [ (97 V9)- V¢~ [ Do T = (T(9).0).
O 0
so that .
%!9 AVg — DY|m@) > L(g),

by taking the supremum over (.
It thus remains to construct, for each £ > 0, a map 1 € C*°(€; R) such that

/ lg ANVg—V| <21L(g) + <.
Q

Recall that, by Lemma 6.4, we may find some h € W (Q; S') such that T'(h) = T(g)
and

/|Vh| < 2rL(g) + /2.
Q

Set k := gh, so that k € Y, by Lemma 6.1 and Theorem 6.7. Write k = € for some
© € Wh and let ¢ € C*°(;R) be such that / Vo — VY| < %
Q
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Then,

/|g/\Vg—Vz/1\:/\(hk)/\V(hk)—VM:/|h/\Vh+k/\Vk:—V1p|
(9] (9] Q
:/|hAVh+w—w|g/|hAVh|+/|w—w|
[9] 9] Q

< / |Vh ~|—§ <27L(g) +e.
Q

In order to conclude the proof of Theorem 6.2, we only need to show the following
Claim. Given g € W11(Q; S1), there exists some ¢ € BV (£2;R) such that

g=¢% ae inQ (6.26)

and
|9 A Vg — Dol pma) = 27L(g). (6.27)

In other words, in (6.7), one may restrict the minimization to the class of functions

Y € BV ({;R) such that g = e,

Using the same argument as above, we can write g as
g = hpe™ in Q, (6.28)

where p, € WH(Q; R), h, € WH(Q; S1), and
1
|hn‘W1,1 < 27TL(g) + —.
n

Moreover, in view of (iv) in Lemma 6.4, we can also assume that h,, — 1 a.e.
Note that

1
/ 9 A Vg — V| = / o A V| = / Vha| <2mL(g)+ L. (6.20)
Q Q Q n

Subtracting a suitable integer multiple of 27 from ¢,,, we may assume that (¢,,) is bounded
in WHH(Q;R). After passing to a subsequence if necessary, we can find ¢ € BV (Q;R)
such that

on — @ ae. inQ and Vi, > Dp in M(Q).

Since h, — 1 a.e. in Q, it follows from (6.28) that g = e a.e. in . Letting n — oo in
(6.29), we obtain

/\g/\Vg—Dgo| gliminf/ lg AVg—Ve,| <21L(g).
Q el Ja

This establishes “<” in (6.27). The reverse inequality follows trivially from (6.7).
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Remark 6.10 Here is an example which shows that a minimizing function v in (6.7)
is not necessarily a lifting of g (modulo constants). Assume for simplicity €2 is flat and
consider a map ¢ having four singular points, say P; = (0,0), P, = (1,1), N; = (1,0) and
Ny = (0,1) in Q. In other words, S = P; Ny P,Ns is a square. We may write g = e = ei¥2
where

Y1 € C(Q\ ([P, N1] U [P, No]))  and  py € C=(Q\ ([P1, No] U [Ps, N1])).

Then, |g A Vg — Di| = 27wy (resp. |g A Vg — Dips| = 271s), where vy (resp. v2) denotes
the 1-dimensional Hausdorff measure on [Py, Ni| U [P, Na| (resp. [Pr, Na] U [Ps, Ni)).

It follows from Theorem 6.2 that 11,1, are minimizers in (6.7). Moreover, we may assume
that 11 = 19 in the square S. By convexity, the function ¢ = (¢; + 10)/2 is also a
minimizer. Outside S, ¢ is smooth and, clearly, g = ae® in Q\ S for some o € S*. One
may check that a = —1, and thus

i g inS,
e = _
—g inQ\S,
so that 1 is not a lifting of g.

Going back to the general situation, let K be the set of minimizers of the problem
i A - D
Jnin, / lg A Vg — Dy

satisfying [ = 0. Clearly, K is convex and compact in L*(Q; R).

Open Problem 6 Is it true that

PY+C

¢ is an extreme point of K <= ¢ = ¥+ for some constant C'?

Another result, strongly related to Theorem 6.1, is the following :

Theorem 6.8 Let g € WH1(Q; SY). Then,
inf {WBV Lg =it o e WEQR), @, € BV(Q;R)} —4rL(g).  (6.30)

The analogue of Theorem 6.8 for the space H'/2(2; S') was established in [22], and the
arguments there can be adapted to our case. The proof we present below for “>” in (6.30)
is however different.

Proof of Theorem 6.8.

Proof of “<”. With ¢ > 0 fixed and h given by Lemma 6.4, we write ¢ = hk, where
k = gh. By Lemma 6.1 a), b), we have T'(k) = 0. Therefore, by Theorem 6.7 we may write
k = ¢ for some ¢ € WHH(Q;R). It follows that g = ¢/¥*¥) with 1 given by Lemma 6.4.
Inequality “<” in (6.30) follows from (iii) in Lemma 6.4.

Proof of “>”. We rely on the following
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Lemma 6.5 Let o € BV (;R) be such that g = e € WH1(Q; B). Then,
[ Delmee) = lglwrr + 19 A Vg = Dol amey-
Proof. We split the measure Dy as
Dy = D*p + D@ + Dip, (6.31)
where a, ¢, and j stand respectively for the absolutely continuous, Cantor, and jump part.
Applying Vol'pert’s chain rule to the composition f(p), where f(t) = ¢, we obtain

flo™) — flo7)

Dg = D(f o) = f(p)D* + f'(¢) D% + . Die. (6.32)

The meaning of this identity is the following : recall that, for every function ¢ € BV (Q),
the Lebesgue set of ¢ is the complement of a set of o-finite H!-measure. We may assume
that ¢ coincides with its precise representative on the Lebesgue set of . Since | D*p|(A) =
|D¢p|(A) = 0 whenever H'(A) < oo, the first two terms in the right-hand side of (6.32)
are well-defined (i.e. independently of the choice of the representative of ). The last
term in (6.32) is to be understood as follows : the jump set J of ¢ is a countable union
of Lipschitz curves C; and, at H!-a.e. point x of C;, C; has a normal vector and ¢ has
one-sided limits at = along the normal direction ; the quantities ¢ and ¢~ stand for the
two one-sided limits. We refer the reader to [1] for a proof of (6.32).

Since g € WHL, it follows that D°g = Dig = 0, so that D@ = 0 and

Vg = f(p)D* =igD*p. (6.33)

From (6.33), we obtain that

1

gANVg=—Vg= D%p.

tg

Thus, .
Do=Dp—gANVg.
Since the decomposition (6.31) consists of mutually orthogonal measures, we have
|Dy| = |D*| + | Dg| = [ig Vgl +19 A Vg — Dolao)
= |glwra + 19 A Vg — Dol sma)-

Proof of Theorem 6.8 completed. Write g = €/*17%2) with ¢, € W, ¢, € BV.

Then, with h = ge™*, we have h = ¢*2, h € W' and T'(h) = T'(g). Theorem 6.2 and
Lemma 6.5 yield

| De2|mie) = [hlwrr +[h AV = Dgs|pme)
> |hlwia + 20 L(h) > 4nL(h) = 47 L(g),
since 2w L(h) < |h|y11, by Lemma 6.1.

Maps in W'1(£2; S') need not belong to H'/2(€; S). Nevertheless, we have the follo-
wing link between W1 and H'Y? :
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Theorem 6.9 Let g € WH(Q; SY). Then, there exist h € W'(Q; V)N HY?(Q; S1) and
o € WH(Q;R) such that g = e?h a.e. in (.
The analogue of Theorem 6.9 for H/2(£); S') was established in [22].

Proof. We rely on the following additional property of the maps h = h. constructed in
Lemma 6.4 (see [22]) :

(v) h e HY?(Q; Sh).
Pick any of the maps h as in Lemma 6.4. Then, T(gh) = 0, so that, by Theorem 6.7, we
may write gh = e for some ¢ € W (Q;R). The decomposition g = e*h has all the
required properties.

From Theorem 6.2, we have

Corollary 6.4 For each g € Wh1(Q; SY), there exists ¢ € BV (S;R) such that g = e'?
a.e. in €.

Corollary 6.5 (Giaquinta-Modica-Soucek [54]) Given g € WH(Q; S), we can find
a sequence (g,) C C=(Q;S), bounded in W', such that g, — g a.e.

We now establish the
Proposition 6.2 For each g € WH(Q; S'), we have

Era(g) = E(g).

Proof. “<”. Let ¢ € BV(Q;R) be such that g = ¢. Let (p,,) C C°(;R) be such that
©n — @ ae. and [, V| — [¢|py. We define g, = e"¥" € C=(Q; S*). Then,

gn—g ae. and /ﬁ@ﬁ=/ﬁ@Aﬂwa
Q Q

so that “<” follows.

“>7. Let (gn,) C C*°(%;5") be such that g, — g a.e. and [,|Vg,| — Era(g). Since
Q is simply connected, we may write g, = €'#", with ¢, € C*(Q;R). Since [,|Vg,| =
Jo IV @y, we may find some ¢ € BV (€; R) such that, after subtracting an integer multiple
of 27 from ¢,, and up to some subsequence, ¢,, — @ a.e.; we then conclude that

|§0’BV < hmlnf/ |VSOn| = Erel(.g)'
n—oo  Jq

The relaxed energy is also related to the minimal connection L(g). This is the content
of Theorem 6.1 :

l%@ILWWHM@,WEwWQ§> (6.34)

Proof of Theorem 6.1. Inequality “<” in (6.34) was proved in [44] when € is a smooth
bounded open set in R?, and their argument could be easily adapted to our situation.
Here is another way. By Proposition 6.2, we know that

Erai(g9) = |Dgo|a
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for some ¢y € BV (£2;R) such that g = e*°. By Lemma 6.5 and Theorem 6.2, we have

|Dolm = |glwir +19 A Vg — Dol > |glwi + 27 L(g).

For the reverse inequality “>" in (6.34), we argue as follows. By Theorem 6.2, we may
find some ¢; € BV such that g = e*' and

|9 A Vg — Doi|pm = 27L(g).
Combining with Lemma 6.5 yields
|Do1lpm = |glwir 4 1g A Vg — D1y = |glwra + 2 L(g).

By Proposition 6.2, we finally get

Era(g) > |Dp1|pm = |glwra + 27L(g).

Corollary 6.6 For each g € WH1(Q; SY), there is some ¢ € BV (;R) such that g = e
a.e. and |¢|py < 2|g|lwra.

Corollary 6.6 is a special case of a much more general result of Dévila and Ignat [39]
which asserts that the same conclusion holds for maps g € BV (; S*).

Proof. The corollary follows from Proposition 6.2, Theorem 6.1, and the inequality
1
L(g) < 5_lglwr, Vg € WH(Q; 8.
T

We now present a coarea type formula proved in [22], which relates the quantity
(T(g),¢) and the degree of g € Wh1(Q;S') with respect to the level sets of (. More
precisely, let ¢ € C*°(Q;R). If A € R is a regular value of (, let

My={zeQ:((z) =)}

We orient I'y such that, for each z € Ty, the basis (7(z), V((z),n(x)) is direct, where
n(x) denotes the outward normal to Q at .

Given g € WH(Q; S), the restriction of g to the level set 'y belongs to Wt c C°
for a.e. \; this follows from the coarea formula. Therefore, deg (¢;I"\) makes sense for
a.e. A, and I'y is a union of simple curves, say I'y = (J~;. Then, we set

deg (g;Tx) = ) _ deg (g;7)-
J
In [22], the authors proved that for every g € Wh1(Q2; S') we have

(T(g),¢) = 27T/deg (g;T\) dX.

R
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We point out that this formula still holds if ¢ € Lip (Q2;R). If we assume in addition that
|¢|Lip < 1, then a simple corollary of (6.35) is the inequality :

/R deg (g: F,\)d)\‘ < I(g). (6.35)

The novelty in Theorem 6.4 is that this estimate remains true if one replaces deg (g; ')
by its absolute value inside the integral in (6.35).

Proof of Theorem 6.4. We shall first establish (6.12) for functions g in the class R,
and then we argue by density.

Let g € R and ¢ € Lip (€;R), with |(|rip, < 1. By Lemma 6.3, we can find finitely many
points P;, N; such that

T(g)=2m» (dp, —0dn,) inD'(Q).

=1

Let A € R be a regular value of ¢ such that A # ((FP;),((V;) for any ¢ € {1,...,k}. Then,
we have

deg (9;T'») = card {i : ((P;) > A} — card {i : ((NN;) > A},

so that .
1 i )
deg (9:15) =5 { sign [((P;) — ¢] — sign [¢(N;) — (] }
i=1
After relabeling the negative points V; if necessary, we can assume that
k
L(g) = Zd(Pm N;).
i=1

Let v; be a geodesic arc in €2 connecting P; to NN;. Clearly,
1

2

Using the area formula, we obtain

N k
/Rmeg@;wdxé ;/Rcafd{%%:“@ :A}“”:;/%

This establishes (6.12) for maps g € R.
For a general g € WH(Q; S), it follows from Lemma 6.2 that we can find a sequence
(g9n) C R such that g, — g strongly in WhL. In particular, by Lemma 6.1 d) we have

L(gn) — L(g).

Passing to a subsequence, we may assume that u,|r, converges to u|r, in W and hence
uniformly, for a.e. A. Thus,

sign [¢(P;) — ¢] — sign [¢(NV;) — d‘ < card {z € v; : {(x) = A}

0
a—g < L(g).

deg (gn; ) — deg (g;T)) for a.e. .
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Applying Fatou’s Lemma, we find

/Ideg (g:Tx)[dA < liminf/ | deg (gn; Tx)|dA < lim L(g,) = L(g).
R n—oo R n—oo

This proves (6.12). Note that (6.13) follows immediately from (6.12). In fact, if ¢ maxi-
mizes (6.9), then

L(g) = /Rdeg (g;T\) dX < /R|deg (g;TA)| dX\ < L(g).

Therefore, deg (g;'y) = |deg (g;T'\)| > 0 for a.e. .
Given two (infinite) sequences of points (F;) and (1V;) in €2 such that

> d(P, N;) < o0, (6.36)
=1

we may introduce the distribution

and the number .
L =— max (T,(),
2m [¢lLip<1 < C>
where the best Lipschitz constant |(|ri, refers to the geodesic distance d on €. The
distribution 7" admits many representations, and it has been proved in [22, Lemma 12’]

(see also Proposition 7.2) that
L = inf { > d(P;,Ny) Y (65, —05,) = Y (65, — ) in D’(Q)}.
J J i

We also recall that if the sequences (F;), (IV;) consist of a finite number of points, say
Pl,PQ,...,Pk, Nl,NQ,...7Nk, then

k
L=minY d(P;, No), (6.37)
i=1
where the minimum in (6.37) is taken over all permutations of the integers {1,2,...,k}.

In our next result, we are given points (F;), (N;) satisfying (6.36), and we ask what
is the least “W1!-energy” needed to produce singularities of degree +1 at the points P;,
and degree —1 at the points N, ; more precisely, we consider the class of all maps ¢ in
Wh(Q; S1) such that

T(g) =2m Z (6p, — On,). (6.38)

[We know (see Lemma 16 in [22]) that such class of maps g is not empty.]
The answer is given by
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Theorem 6.10 Let P;, N; € Q be such that ), d(P;, N;) < oo. Then,

inf {/ Vg|: g€ W' SY) satisfying (6.38)} =2rL. (6.39)
Q

In particular,
1
d(P,N) = %inf {/ Vg|: g€ WH(Q;SY), T(g) = 2n(dp — 6N)}

:_mf{/m 9 € W (P, N}:5Y), _1}‘

deg (g, P) = +1 and deg(g,N) =
Proof. Given P;, N; as above, we fix some gy € Wh1(Q; S1) such that

(6.40)

T(go) =T =2m Z((Spi —On,).

By Lemma 6.4, for each ¢ > 0 we may find a map h € WH(Q; S') such that T'(h) =
T(go) =T and

/ \Vh| <27L(g9) + € =2nL +¢,
Q

which implies “<” in (6.39). Inequality “>" in (6.39) follows from Lemma 6.1 c).
To prove the second equality in (6.40), it suffices to apply Lemma 15 in [22].

In view of Theorem 6.10, it is natural to define, for every P, N €

(P, N) = % inf { gl g € W@ 8, T(g) = 2m(6p — o) }.
Here, [ ]jy11 is a general given semi-norm on W11 (Q; C) equivalent to | |yy1,1. Of course,
p depends on the choice of | |y1.1. We require from [ |11 some structural properties :

(Pl) [ag]Wl,l = [g]Wl,l, Vg € Wl’l(Q;C), Vo € St ;

(P2) [glwes = lglwr, Vg € WH(@;C).

(P3) [ghlwir < |lgllze[Rlwra + ||B]| L [g]wra, Vg, h € WHH(Q; C) N L.
It follows from (P3) that p is a distance.

For each g € W11(€Q; S'), we may define a new relaxed energy associated to [ Jy11 by
setting

Eia(g) = inf { liyrg%gf [gnlwin : gn € O SY), g, — g a.e.}.

Let
Eg) = 55w {{T(9).Q)  [¢() — Cw)| < plary), ¥,y € 02}

We end this section with the following

Open Problem 7 Given g € WH(Q; S1), is it true that

Ev(g) = [glwra +27L(g) ?
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6.4 WhHl(Q;S') and relaxed Jacobians

Given any function g € WHP(Q;R?), with p > 1, a natural concept associated to g is
the following

n—oo

TV,(g) = inf {lim inf/ |Gnz A Gny| + gn € O (4 R?), g, — g with respect to 7'},
Q

for some topology 7.
There are several topologies 7 of interest. For example, given 1 < p < 2 and g €
WP (Q; R?), we consider

TV,s(g) = TV computed with respect to the strong W'?-topology,
TV,w(g) = TV computed with respect to the weak W'?-topology.

In the case p = 1, for every g € WH(Q; R?), we also define
TViw-(g) = TV computed with respect to the weak* W'!-topology.

In what follows, we are going to work with the weak W'!-topology and simply write TV
for the total variation 7'V} ,,. But we will also state results for TV, ,, and T'V,, s for every
1 <p <2, and for TV} 4~ ; see Remarks 6.11 and 6.13 below.

Let us start with a simple

Proposition 6.3 Assume g € WHH(Q;R?) N L™ and TV (g) < oco. Then, Det (Vg) €
M(Q) and
| Det (Vg) i < TV(9). (6.41)

Proof. Since TV (g) < oo, there exists a sequence (g,,) C C*°(€2;R?) such that
gn — g weakly in WH, (6.42)

1
/ |Gna A\ gny| < TV (g) + e (6.43)
Q

Let M = ||g|l~ and P : R? — By, be the orthogonal projection onto Bys. Set g, =
Pg,. Tt is easy to see (using Dunford-Pettis’ theorem) that g, satisfies (6.42) and (6.43).
Moreover, by a standard regularization argument, we may assume that the functions g,
are smooth. In what follows, we will denote g, by ¢,, and so we also have

[gnllzee < [lgllzo. (6.44)

We claim that
g AVgn — gAVg weakly in L'.

In fact, it suffices to notice that

/ 19 — 9l Vgn] — 0,
Q
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which follows from Egorov’s and Dunford-Pettis’ theorems. Hence,

1
na N\ Gny = 5 (gn A gny)w + (gn:c A gn)y

converges to Det (Vg) in the sense of distributions. We deduce from (6.43) that Det (Vg)
belongs to M(£2) and that (6.41) holds.

Remark 6.11 The conclusion of Proposition 6.3 is no longer true if we compute the
total variation of g with respect to the weak*-topology of Wbt TV} ,«(g). In fact, assume
g € Wh(Q; S1). Tt follows from Corollary 6.2 that there exists (g,) C C*(£2;S!) such
that g, — ¢ in W1, Since gny A Gny = 0 for each n, we conclude that TV} ,+(g) = 0. On
the other hand, for some maps g in W1(Q; S*) we have Det (Vg) # 0; see Theorem 6.11
below. A fortiori, the conclusion of Proposition 3 fails if 7 is the strong L'-topology (or
the convergence pointwise a.e.).

In general, the inequality in (6.41) is strict. This fact was pointed out by an example
in [66] ; see also [52]. There, the map g € W1 (Q;R?) takes its values in an eight-shaped
curve and satisfies Deg (Vg) = 0 in the sense of distributions, while TV (g) > 0. It is
therefore remarkable that equality in (6.41) holds whenever the map g takes its values in
S!. This is the content of our next result, which extends Theorem 6.5 :

Theorem 6.11 Assume g € WHP(Q; S1), 1 < p < 2, is such that Det (Vg) € M. Then,
there exists a sequence (g,) C C*(;R?) such that

gn — g strongly in WP
and
TV(g) = lim [ |gnz A gny| = | Det (Vg) .
n—oo Q

Moreover, in this case,

Det (Vg) =7 Z (0p, — On,) in D'().

finite

1
In particular, —| Det (Vg)|m equals the number of topological singularities of g, taking
T

into account their multiplicities.

Remark 6.12 Theorem 6.11 extends and clarifies some of the results of [50]. Although
in their case € is a smooth bounded domain in R?, the above results, stated for Q = 0G,
adapt easily to bounded domains ; see Section 6.5.2.

Proof of Theorem 6.11. The fact that
Det (Vg) measure =— Det(Vyg) =7 Z (0p, — In;,)
finite

is a consequence of Theorem 6.5 and of Theorem 7.5, which will be established in the
next chapter ; see also [80]. Let us assume, for simplicity, that Det (Vg) = 7(dp — 0n);
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the argument below still applies to the general case. Suppose, in addition, that €2 is flat
and horizontal near P and N. We start by defining, near P and N, a map h by setting

_p\*! N\ T
h(z) = <|:;——P|> near P, h(z) = <|i——N|) near N.
For appropriate choices of £, we have deg (h, P) = +1 and deg (h, N) = —1. Then, h
extends to a map in C*°(Q\{P, N}; S) n W?(Q; S, 1 < p < 2. Set

h(x) if d(x,P)>1/n and d(z, N) > 1/n,
d(x, P)h(z) ifd(z,P)<1/n,
d(z, N)h(z) ifd(z,N)<1/n.

Clearly, h,, — h in WP and

/ | g A hy| = 2.
Q

Let k := gh. Since T'(k) = 0, we may write k = ¢’? for some ¢ € W' (see Theorem 6.7).
Moreover, g, h € WYPNL*® implies k € WP, From this, we easily conclude that ¢ € WP,
Let (¢,) C C*(2;R) be such that ¢, — ¢ in WP, Since a point has zero H!-capacity
(see Lemma 3.1), we may also assume that ¢, (z) =0 if d(z, P) < 1/n or d(z, N) < 1/n.
Clearly, g, = h,e“" belongs to C*(; R?) and g, — g in WP. Since gnue Agny = Pz Ay,
we obtain

/ |gn:v /\gny| =27 = |I)et (v9)|/\/17
Q

which shows that
TV (g) < |Det (Vg)|m-

The reverse inequality follows from Proposition 6.3.
Remark 6.13 Theorem 6.11 and Proposition 6.3 imply that, for every p € [1,2),
TVou(9) = TV,s(9) =TV(g), Vge WH(Q;S%).
We do not know whether the same holds without assuming that g is S'-valued :
Open Problem 8 Let g € WH1(Q;R?). Is it true that
TViw(g) =TVis(9)?
Assume in addition that g € W1?(Q; R?) for some 1 < p < 2. Does one have

TViw(9) = TVis(g) = TVpw(g) = TV, (9)?

Remark 6.14 The analogue of Remark 6.13 for p > 2 is true, but uninteresting. Indeed,
every g € WHP(Q; S1), with p > 2, is a strong limit in WP of a sequence (g,,) in C*°(€; S*)
(see, e.g., [12]). Thus, TV (g9) = 0 and TV, ,,(g) = TV, s(g) = 0 for every g € W'P(Q; S*).
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6.5 Further directions and open problems

6.5.1 Some examples of BV-functions with jumps

It is natural to try to extend the above (or part of the above) results to the class
of maps g in BV (Q;S'), where Q = G, G C R? as in the Introduction. Every g €
BV (£; S') admits a lifting p € BV (2;R) (see [54] and also [39]). Hence, we may define
the two quantities E(g) and Ei(g) as in (6.3) and (6.4), and we always have E(g) =
Era(g). The difficulty starts when we try to find a simple formula for F as in Theorem 6.1.
To illustrate the heart of the matter, it is worthwhile to start, as in Section 6.2, with the
simpler case BV (S'; S1).

Clearly, every g € BV(S1; S1) admits a lifting ¢ € BV (S';R). Hence, we may define
the two quantities F(g) and E(g) as in Section 6.2, and we always have E(g) = Era(g).
A major obstruction appears when trying to find an explicit formula for them. First,
there are two natural ways of defining the BV -norm of ¢ :

gl = / 41
Sl

alavs = [ (1 + lic) + 3 dss (g(an)- g0, ),

and

where dg1 denotes the geodesic distance on S!. It is easy to see that
lg|py = inf {liminf/ |Gnl = gn € C®(SY;R?) and g, — g a.e.},
n— oo St
lg| By = inf {liminf/ |gn| : gn € C=(S';S") and g, — ¢ a.e.}.
n—oo St

We also have, for every g € BV (S'; S1),

E(g) > |glvst = |g9|Bv.
Moreover,
E(g) —lglpy =0 <= geC"and degg = 0.
An interesting estimate for E(g) when g € BV is the following

Theorem 6.12 For every g € BV (S'; S'), we have

E(g9) <2|g|pv.

The above result is a variant of a nice theorem of [39] which asserts that if u €
BV (U; SY), where U is a domain in RY, then u = ¥ for some ¢ € BV (U;R) with
lolgv < 2|g|gv. The proof of Theorem 6.12 is a straightforward adaptation of the in-
genious method in [39]. As we have already pointed out in Remark 6.2, the constant 2
in Theorem 6.12 is optimal in W', A less intuitive fact is that the constant 2 is also
optimal for piecewise constant functions. Here is an example :
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Example 6.1 Fix an integer £ > 1 and set

2rj 21 om(j + 1
g(0) = ik for 2T g 2TUED Ly
k k
Then,
4
glpy = 2ksin—  and  E(g) =47 — —.
k k
The inequality
4
E(g) < 4w — %

is straightforward ; however, the reverse inequality is more delicate and relies on the
following lemma whose proof is left to the reader :

Lemma 6.6 For every choice of aq, ..., a € Z with Z]. a; =1, we have
1 2
2 |pmw|z2
7j=1

A striking difference with formula (6.15) is that neither

1

- (B(g) ~ lglsv) nor o (B(g) — lolevs)

2

is necessarily an integer. Here is an example :

Example 6.2 Let
1 for 0 < 0 < 27/3,

g(0) = < /3 for 2n/3 < 6 < 47 /3,
/3 for 4n /3 < 0 < 2m.

An easy computation shows that

&
E(g) = 3 lglBy = 3\/5, and |g|pys1 = 27.

In fact, it seems hopeless to have an analogue of Theorem 6.6 since there is no reaso-
nable notion of degree for maps in BV (S'; S1). This is a consequence of

Theorem 6.13 The space BV (S'; S') is path-connected.
Proof. Let ¢ € BV(S';R) be such that g = e’#. We claim that the map
F:tel0,1] — e e BV(S'; Sh) (6.45)

is strongly continuous. This implies, in particular, that every map in BV (S'; S') can be
connected to 1.
The continuity of F' in (6.45) follows from
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Lemma 6.7 Let f: R? — R be such that :
(i) t — f(t,x) is continuous, Vx € R ;
(ii) f. is continuous and bounded.

Then, for every ¢ € BV (£;R), the map

t— f(t,p) € BV({;R)

1S continuous.

Proof. It suffices to establish continuity at ¢t = 0. Set F(t) = f(t, ). For every t, we
have F(t) € BV(Q;R). Let C' > 0 be such that |f.(t,z)| < C, Vt, V.
Since

|f(t,z)| < |f(t,0)] + Clal,

we find that F(¢t) — F(0) in L'(Q) as t — 0. Therefore, it suffices to prove that DF(t) —
DF(0) in M(£2). By the chain rule, we have

f(ta ¢<x+)) - f(tv 90(1:_))
p(r+) — p(z—)

Thus, [DF(t)| < C|Dyl|, Vt. On the other hand, f,(¢,¢(z)) — f.(0,¢(z)) a.e. with
respect to Dp. Moreover,

plz+) — olz—) p(r+) — p(z—)

DF(t) = fu(t, (x)) D% + Dig.

a.e. with respect to D). Therefore,
|De(t) — Dgo(O)|M —0 ast—0,

by dominated convergence.

There is however an interesting concept of multivalued degree which associates to
every g € BV(S'; S') a bounded subset of Z. The starting point is the following

Definition 6.1 Let g € BV (I;S"), where I is an interval. A canonical lifting of g is any
map ¢ € BV (I;R) such that

g=¢e% inl and FE(g)= | Do pmn)-
The structure of canonical liftings is quite rigid. In fact, the following holds :

Theorem 6.14 If p1 and @o are two canonical liftings of the same map g, then

pr— o= Y +6,,.

finite

Moreover, if g € BV N C°, then the canonical lifting is uniquely determined modulo 2,
and coincides with a continuous lifting.
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Using canonical liftings, we may define a multivalued degree for maps in BV (S*; S1) :
Definition 6.2 Let g € BV(S';S'). Assume g is continuous at z € S*. We let

p(z+) — p(z—)
2

Deg, g = { . 1s a canonical lifting of g in Sl\{z}} :

Since, clearly, for each canonical lifting we have

et )| L[y

2

the set Deg, g is bounded. It follows from the second part of Theorem 6.14 that Deg, g =
{deg g} if g € BV N C°. As another example, let

1 ifo<f<nm,
ﬂ@z{

-1 if7w<6<2m.

Then, it is easy to see that Deg; g = {—1,0,1}.
We collect below some properties of Deg; :

Theorem 6.15 Assume g € BV(S'; S1). Then,
(a) Deg, g is a finite set of successive integers ;
(b) Deg, g is independent of the choice of z.

Another possible definition of a multivalued degree is the following :

Definition 6.3 Given g € BV (S'; S'), we set

Degyg = {43 (6,) € C¥(8%5Y) st g — g e [linl = [ ll, dewgn = a}.
Actually, both definitions yield the same degree :

Theorem 6.16 We have
Deg := Deg; = Deg, .

Moreover, the function g — Deg g is continuous in the multivalued sense.

A final interesting property of Deg is that it is “almost always” single-valued :
Theorem 6.17 Let
U= {g € BV(S';S") : Degyg is single-valued}.
Then, U is a dense open subset of BV (S'; S1).

We omit the proofs of Theorems 6.14-6.17 and we refer the reader to [31] for details.
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6.5.2 Some analogues of Theorems 6.1, 6.3, and 6.5 for domains
in R?

Most of the above results admit counterparts in the case where the 2-d manifold €2
is replaced by a bounded, simply connected domain in R? with smooth boundary. To
illustrate this, we state the analogues of the main results ; namely, Theorems 6.1, 6.3, and
6.5.

Let g € Wh1(Q; S1), and consider the distribution

<ﬂmma@wwmv%,w6mm@9»

A natural (pseudo-) metric on Q is given by
do(z,y) = min { |z — |, d(z, 0) + d(y, 92) }.
Note that if ¢ € W,>°(Q), then

¢(2) = CW)| < IV |lz=da(z,y), Vaz,y€ Q.

We also set )

L(g) = o ey (T'(9),¢)-

IVQll Lo <1

We then have the following

Theorem 6.18 There exist sequences (P;), (N;) in Q such that Y, do(P;, N;) < oo and

Moreover,

L@:MZ%@N%

where the infimum is taken over all possible representations of T'(g).

~ With E(g) defined exactly as in (6.3), and Fia(g) as in (6.4) (where Q is replaced by
), we have

Theorem 6.19 For every g € Wh1(Q; S,
E(g) = Eralg) = / Vgl +2mL(g).
0

Similarly, defining TV (g) as in (6.14) (with 2 replaced by Q), we also have
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Theorem 6.20 Let g € WHH(Q; SY). Then,
TV(g) <oo <= Det(Vg) e M(Q) = [C’O(ﬁ)}*.

In this case, there exists a finite number of points a; € Q0 and integers d; € Z\{0} such
that

k
Det (Vg) =7 Z dida,

i=1

and

TV (g) = | Det (Vg)las =7 > _ |dil-

=1

Theorems 6.19, 6.18, and 6.20 are established in [31].

6.5.3 Extensions of Theorems 6.1, 6.2, and 6.3 to higher dimen-
sions

Let G € R¥*! be a smooth bounded domain and let 2 := 9G. Given a map v in
WEN=1(Q; SN=1) we define the L'-vector field

D(u) = (Dy,...,Dy),

where
Dj = det (Ugy, .-y Ugy s Uy Uy sy Usy )

We then associate to u the distribution
T(u) = div D(u) = N Det (Vu).

Set .
L(u) = oo e (T'(w), )

Here, we denote by oy the (N — 1)-Hausdorff measure of S™¥~1. The relaxed energy is
defined by

n—oo

Ere(u) = inf {liminf/ IV, [N, € 0°(Q; SN and w, — u a.e.},
0

where | | denotes the Euclidean norm.
We then have the following analogues of Theorems 6.1-6.3 :

Theorem 6.21 For every u € WhHN=1(Q; SN-1),

Era(u) :/ IVul" ! + onL(u).
Q
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Theorem 6.22 For every u € WHN=1(Q; SN-1),

inf /\D V)| = onL(u).

vEC® (SN -
Theorem 6.23 For every u € WHIN=1(Q; SN=1) | there ewist sequences (B;), (N;) in Q
such that ). |P; — N;| < oo and

u)=oy Yy (6p, —0dy,) inD(Q).
For the proofs, we refer the reader to [31].

6.5.4 Extension of T'V to higher dimensions and to fractional
Sobolev spaces

Let © and u be as in Section 6.5.3. Set

n—oo

TV (u) = inf {liminf/ | det V| : u, € C(;RY) and u,, — v in leN—l}'
Q

The analogue of Theorem 6.5 becomes
Theorem 6.24 Let u € WHN=1(Q; SN=1). Then,
TV(u) < oo <= Det(Vu) is a measure.

In this case, we have

Det (V) = UWN 3" (6 —6n,) inD(Q)
finite

and
TV (u) = | Det (Vu)|m

Remark 6.15 In the definition of T'V given above, one cannot replace the strong conver-
gence in WHN=1 by the weak convergence when N > 3. Indeed, we point out that every
map u € WHN=HQ; SN1) is a weak limit in W1V ~1 of a sequence (u,,) C C*°(Q; SV71),
when N > 3. However, one can replace the strong convergence of u,, in W1 =1 by the
weak convergence of u, in WHV~! and the equi-integrability of |Vu, |V~ (see [31] for
details).

We may go one step further. Let N — 1 < p < oo. In [17], the authors have defined
the distribution Det (Vu) for maps u € WWN=D/Pr(Q; SN-1) By analogy with the above
definitions of TV, set

TV (u) = inf {liminf/ | det V| : u, € C®(Q;RY), u, — u in W(N_l)/p’p}.
Q

n—oo

We have the following
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Theorem 6.25 Let N —1 <p < N and u € WWN=1/PP(Q: SN=1) Then,
TV(u) <oo <= Det(Vu) is a measure

and the conclusions of Theorem 6.24 hold.

We refer to [31] for the proofs of Theorems 6.24 and 6.25. The case p > N in Theorem 6.25
is still open :

Open Problem 9 Does the assertion of Theorem 6.24 hold when p > N 7

6.5.5 Extension of Theorem 6.3 to maps with values into a curve

Let G C R3 be a smooth bounded domain with Q = G simply connected. Assume
I' € R? is a smooth curve, with finitely many self-intersections. We then define

W T) = {g € WHH(Q;R?) : g(x) € T for ae. ¢ € Q}

Given a map g € WH(Q;T), we define the distribution T'(g) exactly as in (6.8).
We denote by Ay, ..., Ay the bounded connected components of R?\I'. We then have
(see [31]) :

Theorem 6.26 Given g € WHH(Q;T), there exist sequences (Pij), (Ni;) in Q, with
j=1,....k, such that 3, . |A;| d(P;;, Ni;) < oo and

T(9) =23 14| Y (6r, — o)) (6.46)

There are many open directions here :

1) Does Theorem 6.26 remain valid for any smooth (or even rectifiable) curve, without
assuming that the number of self-intersections of I' is finite ?

2) What are the counterparts of Theorems 6.1, 6.2, and 6.5 in this general setting ?
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7.1 Introduction®

Given a complete metric space (X, d) and two sequences of points (p;), (n;) C X such
that Y, d(p;, ;) < 0o, we consider the following linear functional in [ Lip (X)] :

T:= Z (6132 - 57%)7 (71)

more precisely, T is given by

(T,¢) =>_ [¢lp:) — ¢(na)], V¢ € Lip (X). (7.2)

)

8Ce chapitre a été publié¢ dans J. Funct. Anal. 210 (2004), 391-435; une version résumée était déja
sortie dans C. R. Acad. Sci. Paris, Ser. I 336 (2003), 571-576.
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Note that ). d(p;, n;) < oo implies that T" is well-defined and continuous in Lip (X).

We shall present in this chapter some properties satisfied by 7. Our proofs rely on
the existence of irreducible representations of T', a notion which we introduce below ; see
Definition 7.3.

In applications, T describes the location and the topological degree of singularities of
maps u defined on X with values into a sphere S*.

As we have already seen, this is the case for maps v € WH(S?; S1). We could also
have considered maps u € H'/2(S52; S1). The way we define T'(u) in this setting, however,
is more involved. We refer the reader to [22] for details (see also [19]). These spaces come
from the study of the Ginzburg-Landau model in 3-d.

Another example, but now arising from liquid crystals in R?, is when we take X = R3
and k£ = 2. We then consider

H'Y(R? S?) = {u 'R* — R3: / |Vul? < 0o and |u| =1 a.e. in R?’}.
R3

Note that, for any v € H'(R?; S?), we have
D(u) == (u - uy Ay, u-uy Aug,u-u, Auy) € L' (R R?).

In particular, the distribution div D(u) is well-defined in R?®; moreover, one can show
there exist sequences of points (r;), (¢;) C R?® such that (see [27])

= 1
d iy Y o V 27
ZZI (ri, 4i) < o Rg\ u|
div D(u) = 47 Y " (8, — 6,,) in D'(R?).
=1

Let p1,...,pk, n1,...,n, be finitely many points (not necessarily distinct) in X. The
length of the minimal connection between these points is given by

k
L := mi d(p; ; .
Crrlégi < (pm no(z))a (7 3)
where Sy denotes the group of permutations of {1,... k}. It has be shown by Brezis,
Coron, and Lieb [28] that the number L satisfies

k
L = sup Z [C(pi) = ¢(na)], (7.4)

[ClLip<1’—

where |(|rip denotes the best Lipschitz constant of ¢ (see Brezis [25] for an elementary
proof; a third proof of the same result has been recently found by Sandier [76]). It is easy
to see that the supremum in (7.4) is actually achieved.

More generally, consider two sequences (p;), (n;) C X such that

Z d(pi, ni) < oo. (7.5)
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(By abuse of notation, we allow sequences indexed on a finite subset of N, which includes
the previous case.)

Motivated by (7.4), we define the length of the minimal connection between these
points as

T := T,() = i) — i) 7.6
|| S (T,¢) s Z [¢(pi) — ¢(n)] (7.6)
[¢Lip<1

where T is the linear functional given by (7.1). We point out that the supremum is still
achieved in this case; see Proposition 7.2. In Section 7.2, we compare this number with
some alternative definitions.

Let

Z = {T € [Lip (X)]”

T can be written in the form (7.1) for some
(pi), (n;) C X such that ), d(p;,n;) < oo :

Note that if T' € Z then —T € Z, and T} + 15 € Z whenever 11,15 € Z. As we shall
see in Section 7.12, Z is a complete metric space with respect to the distance induced by
-1

We also introduce the notion of support of T :

Definition 7.1 Let (w;)ier be the family of all open subsets of X such that, for each
1 € I, the following holds : if ( € [Lip (X)]* and ¢ =0 on X\w;, then (T,() = 0. We
set supp T := X\ U,¢; wi-

Clearly, suppT C U, {pi} UU, {n:}, although the strictly inequality can actually
occur ; see, however, Theorem 7.4 below. As we have already mentioned in the previous
chapter, there are several possible representations of 7" as a sum of the form (7.1). Moreo-
ver, such representations need not be equivalent modulo a permutation of points. In fact,
if (¢;) is a sequence rapidly converging to p in X (in the sense that ). d(g;, ¢i+1) < 00),
then we can write 6, — 0, = > o0, (84,,, — ;) in [Lip (X)]", where n := gi.

The next proposition is the counterpart of (7.3) in the general setting (see [22,
Lemma 12’], and also Proposition 7.2 below)

Proposition 7.1 For any T € Z, we have
1T = brglg {Z d(pi, ;) : T = (5 — 65,) in [Lip (X)}*}. (7.7)
() - '

In contrast with the case of a finite number of points, the infimum above need not be
achieved in general ; see Example 7.1 below. Here is a case where it is still attained :

Theorem 7.1 If H'(suppT) = 0, then the infimum in (7.7) is attained. In other words,
there exist (p;), (n;) in X such that

IT|| = Zd(ﬁi,ﬁi) and T = Z (85 — 0a,) in [Lip (X)]".
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Ny Py s Ds N6 Do P
ny P1 n; P3

ny

F1G. 7.1 — Dipoles ¢,, — 9,, in Example 7.1

Above, H! denotes the 1-dimensional Hausdorff measure. In particular, if we assume the
set U, {pi} U, {n;} is countable, then Theorem 7.1 holds.

In any case, it is always possible to decompose T in terms of simpler functionals,
taking into account the length of its minimal connection. But let us first introduce a
definition :

Definition 7.2 T € Z is said to be regular in X if there exist (p;), (n;) C X such that
7)) = d(pi i) and T=>> (55 —0dz,) in [Lip(X)]".

T € Z is singular in X if, whenever T =Ty + Ty, |T|| = ||T1|| + || T2, and T} is regular
in X, then Ty = 0.

Here is an example of T' € Z which is singular :

Example 7.1 Let X = [0, 1] and C,, C [0, 1] be a Cantor-type set with Lebesgue measure
a > 0. We denote by (Jx)k>1, Jx = (ng, pr), the sequence of disjoint open intervals which
are removed from [0, 1] in the construction of C,. We then take py = 0 and ng = 1. In
Section 7.6, we show that T =) .., (0,, — 0p,) is singular and ||T|| = «. For descriptive
purposes we can think of representing each dipole §,, — d,, as an arrow pointing from n;
to p;. In Figure 7.1, we represent T' geometrically according to this convention.

We have the following

Theorem 7.2 For any T' € Z there exist Tieg, Tsing € Z such that Tieg is reqular, Tyng
s singular,

T = Tog + Ting, and [T = [Thegll + [ Tingll (7.5)
Moreover, there exists (T;) C Z such that
Tang =) Ty NTungl =Y T, and T3] = H'(supp T;), V3. (7.9)
J J

In addition, each set supp T; is homeomorphic to the Cantor set in R.

The decomposition of T in terms of a regular and a singular part, as in (7.8), need
not be unique ; see Example 7.9.

We point out that Theorem 7.1 is a special case of the above. In fact, it follows from
the proof of Theorem 7.2 that Tieg, Thing, and (1) can be chosen so that

supp T’ = supp Treg U supp Tying and U supp 1 C supp Ting-
J



7.1. Introduction 139

Therefore, if H'(suppT) = 0, then ||T}|| = H'(supp ;) = 0 for each j. We conclude that
Ting = >_; T; = 0 in [Lip (X)]", and so T = T, is regular in X.

A natural question regarding 7' € Z is whether it has a “simplest” representation in
the following sense :

Definition 7.3 The representation ), (6,, — 0n,) is reducible if there exist Ny C Ny C N,
with card Ny < card Ny, and points r;,q; € X, © € Ny, such that

Z(épz _57%) = Z(én _5%) in [Llp(X)}*
1€Ny 1€Ny
> i (0p; — 6n,) will be called irreducible if it is not reducible.

The next result states that one can always find an irreducible representation of T :

Theorem 7.3 Any linear functional T € Z has an irreducible representation. More
precisely, there exist sequences (p;), (n;) in X, satisfying (7.5), such that

T = Z (85 — 0ay) in [Lip (X)]7, (7.10)

and so that this representation s irreducible.

Our proof of Theorem 7.3 relies on the notion of maximal paths; see Section 7.5. This
approach requires the following interesting lemma :

Lemma 7.1 If
Z (5172 - 571;) = (6T1 - 5(11) + (57‘2 - 6112) in [Lip (X)}*

=1

for some r1,qy,72,q2 € X, then there exists N C N such that
Z (Op; — 0ny)  equals (8, — 0q,) or (8, — 8q,) in [Lip (X)] .
i€N
As a corollary of this lemma, we can now give a simpler characterization of irreducible

representations (see also Proposition 7.8) :

Corollary 7.1 ). (0p, — 0n,) is reducible if, and only if, one of the following conditions
holds :

(a) p; =n; for somei,j>1;

(b) there exists an infinite subset N C N such that

Z (5;!% - 57%) =0, — 6f1 i [Lip (X>]*

ieN

for some r,q € X.
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If T' can be written as a finite sum of dipoles of the form 4, — ¢, then the irreducible
representation of 7" is unique (modulo a permutation of the points). This need not be the
case in general. Assume, for example, that X = [0, 1], and let (p;), (n;) be two sequences
converging to 0, such that p; > n; > p;41 for every ¢ > 1. Then,

>

i=1

o0
p1_50 +§: p1+1_
i=1
o0

(5p1 - 60) - + Z Pz+2 - m

are all irreducible representations of the same operator in [Lip [0, 1]} .
However, we have the following

Theorem 7.4 Assume (7.10) is an irreducible representation of T'. Then,

suppT = U {pi} U U {ni}.

In particular, if ¢ € Lip (X) and { =0 on supp T, then (T,() = 0.

A simple consequence of Theorem 7.4 is the corollary below :

Corollary 7.2 Let T € Z. If suppT is finite, then there exist finitely many p1, ..., Pk,
N1, ...,Ng, € X such that

T = Z (05 — 0a;) in [Lip (X)]". (7.11)

Another result in this direction is the theorem below which completely solves an open
problem raised by H. Brezis. We denote by BLip (X) the subspace of bounded Lipschitz
functions :

Theorem 7.5 Let T € Z. Assume that
{T,Q)] < ClCllze, V€ € BLip (X) (7.12)

for some C' > 0. Then, there exist points ay,...,a; and integers di, ..., dy, >, d; =0,
such that

T = Zdiéai in [ Lip (X)r
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We point out that (7.11) is equivalent to saying that (7.12) holds (since ), d; = 0).
Theorem 7.5 has been proved by Smets [80] (using the Riesz Representation Theorem)
under the additional assumption that X is locally compact. Our proof, instead, makes use
of the existence of irreducible representations of 7', which only requires X to be complete.
Very simple examples show that Theorem 7.5 is no longer true without this assumption
on X.

Ambrosio and Kirchheim [2, 3] have recently extended the theory of currents and
rectifiable sets to more general complete metric spaces. Since our functionals T" can be
seen as a current in their setting, a natural question is whether some of our theorems
could be deduced from their results. Unfortunately, we have not been able to establish
the relation between our approach and their formalism.

We conclude this section by explaining the notion of indecomposable functionals taken
from Federer [48]. Given T € Z, we define

m(T) = sup (T,(), V(e BLip(X).
[¢llLoe=1
Let
I::{TGZ:m(T)<oo}.

It follows from Theorem 7.5 that T" € 7 if, and only if, T can be written in terms of
finitely many dipoles. In fact, we have m(T) = 2kq, where kg > 0 is the smallest integer
such that (7.11) holds. Moreover,

m(T1 + TQ) S m(Tl) + m(Tg), VTl,TQ c 7.
We now consider Z equipped with the norm
N(T) = ||T||+m(T), VT eZ.
As in Federer [48, §4.2.25], we say that T € Z is indecomposable if there exists no S € 7
with
S#0#T—-S and N(T)=N(S)+ N(T-2S5).

It is then easy to see that T € 7 is indecomposable if, and only if, there exist r,q € X
such that T' = (4, — &,) in [ Lip (X)] ". Thus, every element in Z can be written as a finite

sum of indecomposable parts, which is none other than a connection of T'. Note, however,
that this notion is restricted to the subspace Z ; Z.

7.2 Alternative definitions of minimal connections

Throughout this chapter, we shall always assume that the sequences (p;) and (n;) in
X satisfy ), d(pi,n;) < oo.

Let T := ", (8, — 6n,) in [Lip (X)]". There are several alternative ways of defining
the length of the minimal connection between (p;) and (n;) :
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Definition 7.4

[e.o]

Ly := .
1 all\?—fﬂ\] d(pza na(z)) (7 13)
bijection =1

Definition 7.5

Ly := lim min > d(pi, Nos))-

Definition 7.6

{del,nl ): T = On;) 'n[Lip(X)r}.

7

Definition 7.7

Clearly, we have
L1 S L2 and ||T|| S L4 S Lg. (714)

Using (7.4) and ) . d(p;,n;) < 0o, we can actually prove the following (see also [22])

Proposition 7.2

Moreover, the supremum in (7.6) is achieved.

Proof.

Step 1. L3 < Ls.

Given k > 1 and o € Sk, we extend o to N so that o(i) = i for every i > k. In particular,
T =3 (0p, — On,,) in [Lip (X)] *. By definition, we have

k

L3 < Zd(pi,na(i)) = Z d(pi, No(iy) + Z d(ps, ni).

i=1 i=1 i>k
Since o € S} is arbitrary, we conclude that

k
L3 < min d pza na(l + Zd Pi, nz

og€ESy,
i=1 >k

Letting k — oo, we get Ls < Ls.

Step 2. Ly < ||T.

Given ¢ > 0, we fix k& > 1 large enough so that ) ., d(p;,n;) < €. Let 0 € S} and
¢ € Lip (X)), |C|Llp <1, be such that

Z d(pi, noi)) = Z [C(pi) — ¢(na)].
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Thus,
k o)
Ly—e¢< Zd<piana(i)) < Z [C(pi) —C(na)] +e < |T|| +e.
i=1 i=1

Since € > 0 is arbitrary, we must have Ly < ||T°]].

In view of (7.14), (7.15) follows the two previous steps.
Step 3. The supremum in (7.6) is attained.

For each k > 1, let ¢, € Lip (X), |Ck|rip < 1, be such that

D G = Glna)] = min Z d(pi; no(i))-

=1

For the sake of normalization, we may assume that (j.(xo) = 0 for some fixed xy € X.
In particular, for each ¢ > 1 the sequences (Ck(xi))k, where x; = p; or n;, are bounded.
Passing to a subsequence if necessary, we may assume that all the limits

C(zi) = k}g& Gl®i), i = pi,ni,
exist. It is easy to see that ¢, defined on A := |, {p;} U, {n:}, satisfies
L= Z [5(2%) - 5(%)]

(we use here that >, d(p;, n;) < 00).

On the other hand, since \{“ lLip4) < 1, we can extend 5 to X without increasing its
Lipschitz constant (take for instance ((z) := inf,ca {Z(a) + d(x,a)}). We conclude the
supremum in (7.6) is achieved.

Remark 7.1 The strict inequality L, < ||T']] may actually occur in (7.15). In fact, take
(a;)iez such that >, d(a;,a;4+1) < co. In particular, both limits

r:= lim a; and ¢:= lim q;

i—-+00 i——00
exist (since X is complete). Thus,

“+oo

T= Z <5ai+1 _5(11') =0, _511 in [Lip (X)]*

1=—00

Note that ||T'|| = d(r,q), but L; = 0.

Remark 7.2 The infimum in (7.13) need not be achieved in general. Consider the se-
quence of points (p;);>1 and (n;);>1 given in Example 7.1. We claim that L; = 0, even
though p; # nj, Vi,j. In fact, given ¢ > 0 we can find 71,51 € N, 41,71 # 1, such that
Ip1 — N4, | + [0y — pj| < 5. Weset (1) := ¢ and 0(j;1) := 1. Proceeding by induction, at
each step £ > 1 we can extend this bijection o so that

o {1, YU — i UL k)



144 Chapitre 7. On the distributions of the form ), (6p, — 0n,)

satisfies

k
Z I —nowy| <&, Vk>1.
=1

At the end, we conclude that L; < e. Since ¢ > 0 was arbitrary, the claim follows.

7.3 Cycles

As we have already mentioned in Example 7.1, we can think of identifying each dipole
0p, —0p, With an arrow pointing from n; to p;. In order to make a clear distinction between
all the dipoles, we shall usually indicate each ¢,, — d,, by its index ¢. This way we will be
able to distinguish equal dipoles arising from different indices.

Our strategy to deal with the linear functional T' =) 2, (0,, — d,,) will be to equip
the set of arrows ¢ with a suitable order relation. The motivation of this approach comes
from elementary concepts in Geometry, as it will soon become clear.

We start with the following :

Definition 7.8 A chain (A, <) is a set of indices A C N equipped with a partial order
relation <.

In general, we shall call A itself a chain, < being implicitly understood. The order <
induces an orientation in the set of dipoles (d,, — dn,)ien-

We shall usually be interested in the order relation < modulo cyclic permutations of
the elements in A. In order to make this precise, we start with an auxiliary notion :

Definition 7.9 A subchain Ay C A (equipped with the order relation induced from A) is
called a segment if whenever \y < A < Ay in A and A\, Ay € Ay, then X\ € A;.

We now introduce the notion of a cycle :

Definition 7.10 Given two chains A, A, we write A ~ A if
(i) A=A (as sets) ;
(ii) there exist two disjoint segments Ay, Ay C A such that A = Ay U Ay and the
inclusions A1, Ay C A are order preserving.
It is easy to see that ~ defines an equivalence relation in the class of all chains. The
equivalence class [A] of A induced by ~ will be called a cycle.

Assume A is the finite chain containing A\; < --- < \x, which we denote as (A - -+ Ag).
In this special case, [A] will be the union of all cyclic permutations of A, namely

A] = {()\1 ) O A A O A )\k_l)}.

Since any representative of [A] (A now being finite or infinite) contains the same set of
indices, we can actually think of [A] as being the set of indices i € A itself. Moreover, [A]
has a well-defined orientation, induced by the order of any of its representatives A € [A].
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We now define

Ty =) (0 = 0u,) in [Lip (X)),

AEA

=Y _d(px,my),
AEA

Liay = || Tiayll-

We call £[5) the length of [A].

Given € > 0, an e-chain A, = (A --- )A) is a finite subchain of A such that if i € A
and i € {1, ce L%J}, then ¢ € A.. Note that if A is infinite, then it has an infinite
number of e-chains (for an ¢ > 0 fixed), since one can always add to A. indices in A
outside {1,...,[1]}.

The co-length of [A¢] is the number

[[kAE] = d(p)\lﬂ n)\z) oot d<p)\k717 n)\k) + d(pkm n)\l)'
[t measures the total jump from one dipole to the next one as we travel along [A.].
Lemma 7.2 If A, C A,,, then
E[Asl] + ngfl] S E[AQ] + E)[)(Acfz}' (716)

Proof. It suffices to check (7.16) when A., differs from A., by exactly one index and then
argue by induction. In order to add an index 75 between i; and i3, we just need to apply
the triangle inequality to get

d(pil ) nw) < d(pil ) niz) + d(pizﬁ niz) + d(pi2> nm)

Notice that the second term in the right-hand side enters in the definition of the length
{[a.,], while the other two appear in the definition of the co-length EFAEQ]' This proves the
lemma.

A simple consequence of (7.16) is the equality below :
Proposition 7.3

s =i ('f*):l'( ) 1
by = lim (E ) ) = Tim (sup G,y ) (7.17)

where both the infimum and the supremum are taken over the class of all e-chains of A.

We define the common number {y, in (7.17) to be the co-length of [A].

Proof. We denote by ¢* the limit in the right-hand side of (7.17) (note that it is well-
defined, but may be infinite). Given m < £*, let A, be an e-chain of A such that m < E’{A E

We now take a sequence of €;-chains A.;, where ¢; | 0, such that

lim frAaj} = lim (inf ETAE])

j—00 el0 Ac

Since A. is finite, there exists j, > 1 sufficiently large so that A D A. for every j > jo.
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Applying (7.16) we get
m <l <)+ Cag) = bag)y Vi 2 o
Taking 7 — oo and then ¢ | 0, we conclude that

<t (inf o
m < l;lr(r)l <1/I\1€f€[AE]>,

from which (7.17) follows.

Combining Lemma 7.2 and Proposition 7.3, we get
Corollary 7.3 Given a chain A, for any subchain A C A we have

Corollary 7.4 Assume A is a chain. If Ay C Ay C --- C A is an increasing sequence of
subchains such that A = J, Ay, then

Ciay = lm £y,
Note that, for every A., we have

Liag < min {4, 6}

since both £y and £, , correspond to special choices of permutations in (7.3).
Taking € | 0, we conclude that

Lix < min {€j), €y }-
There are three cases of interest when the equality holds :

Definition 7.11 Assume [A] is a cycle.
(a) [A] is a minimal cycle if Lia) = {1 ;
(b) [A] is a co-minimal cycle if Liay = €]y, ;
(¢) [A] is aloop if £y = 0 (this is a special case of (b)) ; in particular,

Tiyy =0 in [Lip (X)]". (7.18)
Here are some examples :

Example 7.2 Assume A = (1 2 --- k); that is, consider the dipoles d,, — 0p,, ..., 0p, —
Op,, oriented in this order. We have :

(i) If Lia) = 1o}, then the pairs [py,n4], ..., [pr, ns] form a minimal connection.

(i) If Ly = (75> then a minimal connection is given by [p1, 2],y [Pe—1, Nk, [P, M1)-
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VIR P3 n& Ps
n Ds P /
Pﬁz 1y ng
[A] [As] [A]

F1a. 7.2 — Decomposition of [A] in terms of three co-minimal cycles

(iii) More generally, let 0 € Sy be a permutation which minimizes (7.3). Recall that
o can be written as a composition of disjoint cycles (in the algebraic sense), say
o1, ...,0;. Note, however, that each o; induces in a natural way a cycle [A;] (in the
sense of Definition 7.10). For instance, if

o1:l—i— =i, = 1,

then Ay = (1 4y --- i,). This way, we can write {1,...,k} = A; U---UA; so that
k 7 j
Ly = Y d(pino@) = Y d(pinow) = > Ly (7.19)
i=1 1=1 i€l =1

Figure 7.2 shows such a decomposition with £ = 6, A; = (14 2), Ay = (3 5) and
A3 = (6). Proposition 7.4 extends this construction to the case of an infinite number
of points.

Example 7.3 Let X = [0,1] and p;,n; € [0,1] be as in Example 7.1. We consider
Ao = NU{0} oriented clockwise with respect to Figure 7.1. Using the equality L, = ||T||
in Proposition 7.2, it is easy to see that

L[Ao] == [[k/\o]’

where « is the Lebesgue measure of C,,. In other words, [Ag] is a co-minimal cycle.
Note that if we consider the cycle [Ag|ani oriented in the opposite direction (i.e. counter-
clockwise with respect to Figure 7.1), then

EFAo]anti = Liag) + EEFAO] =2
The proposition below extends (7.19) to the case of infinitely many points :

Proposition 7.4 Let

T := Z(api —4,,) in [Lip (X)]".
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There exists a sequence of disjoint co-minimal cycles [A;] such that N =J; A; and
7= Y by (7.20)
J

Proof. For each k£ > 1, let 0 € S}, be such that

k k
Zd(piano(i)> = min d(p;, n&(i))- (7.21)

i=1 e
It follows from Example 7.2 (iii), that we can write {1,...,k} = Ay U---UA; in terms
of disjoint chains (this decomposition actually depends on k) so that (7.19) holds. For
i >k, welet A; = (7).
We now relabel Ay, ..., Aj, Apqq, ... as

Al,]m A2,k7 A3,k7 R

in such a way that the smallest integer in A;,  is less than the smallest integer in Aj, &
whenever 7; < jo.

By construction, 1 € Ay for every k > 1.

Let oy, be the smallest integer in A;; greater than 1. If ay — oo as & — oo, then we
set Ay := (1). Otherwise, (o) has a convergent subsequence ay, — aj; since ag, is an
integer, we actually have ay, = a; for all [ sufficiently large.

Let 3, be the smallest integer in A , greater than a,. If 5, — oo, then we set Ay := (1 aq).
Otherwise, passing to a further subsequence if necessary, we may assume that 3 = by,
for all [ large enough ; moreover, we can also assume that one of the following inclusions
is order preserving :

(1 ay by) C Ay, VI large, or (1 by a1) C Ay, VI large.

Using a standard diagonalization argument, we can construct a subsequence (k;) (not
necessarily the same as the one above) and a chain Aj, containing 1, such that the
following holds :

(a) given an e-chain Ay, C Ay, we can find N = N(A; ) > 1 sufficiently large so that

Ay C Ay, for every [ > N, and this inclusion is order preserving.

We now repeat the same construction with Agy, and so on (the only difference here is
that we should start with the smallest integer in the set N\ A;, which necessarily belongs
to Agy, for [ sufficiently large). This way we can construct disjoint chains Ay, Ag, ... and
a universal subsequence (k;) (here we apply once again a diagonalization argument) so
that
(b) N = szl Ay
(c) property (a) holds for every A;, after replacing Ay by A;.
By (b), we have

T= ZTM in [ Lip (X)]". (7.22)
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Moreover, (c) implies that

Uy = hm E[A V.

]kl}

On the other hand, it follows from (c) and (7.16) that

Ons) + Gag oy < U + Ghy g V2N

Thus,
We now rewrite (7.21) as
megk = },I;H;Zd P o) + ) d(pimi)
1>k
Applying Proposition 7.2 we obtain
i 37, = 7 (7.24)
J

Combining (7.22), (7.23) and (7.24) we get
1T < Z [Tzl < ZK[A] < Zlilfggf%m} < EgZEFAj,kl] =TIl
j j

Therefore, we must have equality everywhere. In particular,

TN => | Tiayll and ([Tl = Gy, V4,

J

which is precisely (7.20).

We now present some properties of [A] when EFA] < oo. Let us first introduce some
notation

Definition 7.12 Let A be a chain. Given a family of points (xy)aer, we say that the
limit

a:= lim x,
AEAT

exists if, given € > 0, there exists \g € A such that d(xy,a) < &, YA > Ag.
The limit a := }ir/l\li xy s defined similarly, after replacing X\ > \g by A < Ag.
€

Proposition 7.5 If E[A] < 00, then the following limits exist

lim py, lim py, hmn, and  lim n,.
/\eATpA AeAlp NeAT xeAap
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Proof. It suffices to show the first limit exists (since all the others can be derived from this
case). Moreover, because A is countable, we only need to show that for every increasing
sequence (\; )]>1 in A, (py,) converges.

We have

Zd(PAj,ij+1 Z { (DA, M) + d(nA],pAJH)} < lia) + -
j=1 j=1

Therefore, (py,) is Cauchy, so it converges.

Corollary 7.5 If £y < 00, then e {pa} and Uycp {na} are relatively compact in X.
In particular, supp i) s compact.

Remark 7.3 Let A; and Ay be two disjoint chains such that ngl] + KFAQ] < 00. We take
A := Ay U Ay with the order induced from each A; and such that A; < As. In view of
Proposition 7.5 we can define

T lim and ¢;:= lim ny, fori=1,2.
LT e @= dh ™ ’

Clearly, we have

L) < Liay) + Liag),
i) = €ian) + O, (7.25)
by = (b = s, @) +dr,00) + (Gay) — 02, 2) ) + d(r2,00).

In particular,
> (ﬁw d(rl,q1)>+(EE‘A2]—d(r2,q2)). (7.26)

7.4 Simple cycles

Throughout this section, we shall assume that [A] is a nonempty cycle such that
E’[“A] < 00. Recall that

Ty = Z (0py — 0ny) in [Lip (X)r

We define the gap of [A] to be the number given by

gap [A] := sup {dist ( lim p,, lim n,\) } (7.27)
AE[A] AEAT AEA|

Roughly speaking, gap [A] measures the jump of [A] across two adjacent dipoles, while
the co-length érA} measures the total jump along [A]. We point out that, since é’[“A] < 00,
the supremum in (7.27) is actually achieved.
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Example 7.4 Assume A is finite, say A = (1 --- k). In this case, we have
gap [A] = max {d(ph n2); - d(Pr—1, 1), d(pr, n1)}

In particular, if gap [A] = 0, then Tjy = 0 in [Lip (X)r This need not be the case in
general. In fact, in Example 7.3 we have gap [Ag] = 0, even though Ly, = a > 0.

We now consider the following

Definition 7.13 [A] is a closed cycle if gap [A] = 0.

For example, we have

Lemma 7.3 If [A] is a co-minimal cycle and Tjpy is singular in X, then [A] is a closed
cycle.

Proof. Let [A] be a co-minimal cycle such that gap [A] > 0. Without loss of generality,
we may assume that the supremum in (7.27) is achieved by A itself :

(no, o) ,  where ng /\g[{lTp,\ and pg /\g{{ll )

We define the chain Ay := AU {0} oriented in such a way that 0 is the largest element in
Ag. Applying Remark 7.3 with Ay := A, Ay := {0}, 11 = q2 := ng and ¢; = 19 := pg, we
get

[ Tiaol | < €iagy = €lay — d(n0, po) = [ Tiagll — d(n0, o) < [[Tianl

(we use the triangle inequality to obtain the last estimate). Thus,
Tia) = (Ong = Opg) +Tiag) - and [ Tja)[| = d(no, po) + [|Tia, |

We conclude that T}, is not singular.

In order to introduce the notion of simple cycles, we shall need an auxiliary

Definition 7.14 A subchain A1 C A is a segment of [A] if Ay is a segment of some
representative A € [A] (see Definition 7.9). Equivalently, Ay C A is a segment of [A] if
either Ay or A\A; is a segment of A.

A simple cycle will be defined as follows :

Definition 7.15 [A] is a simple cycle if
(i) [A] is a closed cycle;
(i) if Ay is a segment of [A] such that [A1] is a closed cycle, then Ay = A.

Since gap [A] = 0, condition (ii) in the definition above is equivalent to saying that

1) if Ay & A i t, then li li :
(ii’) if Ay G A is a segment, enAEl/r\I}Tp)\%/\ele?in/\

Note that [Ag] given by Example 7.3 is a simple cycle.
The orientation of a simple cycle [A] is compatible with the topology induced by X
on the set [J,c, {pr,n2} in the following sense :
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Lemma 7.4 Assume [A] is a simple cycle. Given
(1) a sequence (\g)k>1 in A such that either py, — Py, OT Mx, — Dag
(i4) two indices p, jiz € A such that py < Ao < p with respect to some representative
e Al
then there exists kg > 1 such that

p < XN < pizin A, Yk > k. (7.28)

Proof. Assume by contradiction there exist py, — py, and g1 < A\g < o in A such that
(7.28) does not hold. (The case where ny, — p,, can be dealt with in a similar way.)
Replacing A by another representative of [A], we can assume that

< )\0 < U2 < )\k in A, vk > k’o. (729)

Moreover, passing to a subsequence if necessary, we can also assume that (A\g)g>1 is
either nondecreasing or non-increasing in A. We consider each one of these possibilities
separately :

Case 1. (A;)r>1 is nondecreasing in A.
Let

A= o< a< ).
k=1

Note that A; is a segment of A. We claim that gap [A;] = 0. In order to see this, it suffices

to show that
lin = = lim . 7.30
)\61 l UDN Do >\€1 1Tp>\ ( )

The first equality holds because gap [A] = 0, while the second one follows from py, — py,-
Therefore, we have constructed a closed segment [A;] strictly contained in [A], which is
a contradiction.

Case 2. (\g)r>1 is non-increasing in A.
In this case, we take

A=) o <A< M),
k=1

We first observe that A; is nonempty since puo € A;. In order to get a contradiction, it
suffices to show that the second equality in (7.30) holds, and then argue as before.

If\, = \forall k > 1 sufficiently large, then A; = (Mg < A < :\) and we are done. On the
other hand, if (A;)r>1 has infinitely many distinct terms, then we have d(py,,ny,) — 0.

['hus,
lim = lim n,, = lim = Dy
e T10,\ h Ne = I Dy = P

(The first equality follows from gap [A] = 0.) As we explained before, this gives a contra-
diction.

Using the same ideas we can prove a slightly more general result :
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Lemma 7.5 Let [A] be a simple cycle. Given py < vo < vg < ug in A, let g be a point in

the closure of the set
U {pa} U {na}.

v1<A<vo

If (A\k)k>1 is a sequence in A such that px, — q, then there exists ko > 1 such that
< Ap < po, Vk > k.
This lemma will be used to prove our next result :
Proposition 7.6 Assume [A] is a simple cycle. Then,
i = H'(Sw)),

where

Sy = U {pa}U{n}.

AEA
Proof. We split the proof into three steps :

Step 1. Given iy < po in A, we consider the segment A := (u; < A < ). Then, we
have
diam Sz) < {5 + £z, — APy, ) (7.31)

Since S[f\] is compact, for any > 0 we can find an e-chain

such that
k
S < U [Balps,) U By(n3)].
=1
Thus,
diam Sjz) < d(ns,, ps,) + d(ps,,ns,) + -+ d(ns, . ps,) + 20
= Uz, + (5, — dlng, . ps,) + 20
< Uiy + O — d(ng,,p5,) + 2.

We first let ¢ | 0. Then, gap [A] = 0 implies that n3, — p,, and p5, — n,,. Since n > 0
was arbitrary, (7.31) follows.

Step 2.
H' (Siap) < 4.

(This inequality holds even if [A] is just a closed cycle, not necessarily simple.)
Let 6 > 0 fixed. Given an e-chain A, = (A -+ A\x) C A, we define the segments

Ai = (/\z <A< )\i+1>7 1= 1, .. .,]{Z (732)

(we use the convention that A\jyq := Aq).
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By taking € > 0 sufficiently small, we can assume that
diamS[Ai] < 5, Vi = 1, ey k.

Since gap [A] = 0, we have
k
St = J S
i=1

It follows from the previous step and (7.26) that

k
H%(S[A]) < Z diam S|

i=1

k
<Y {lag + (G — dlpai i)

i=1

igA-
Taking € | 0, we conclude that

H(Spa)) = lm My (Sig) < €y
Step 3.
(i < H(Spw)- (7.33)

Given an e-chain A, = (A -+ \g) C A, we consider the segments A; given by (7.32).
Since [A] is simple, the sets Su,) are disjoint (see Lemma 7.5). Let § > 0 be such that

d(Sia, ) Siag,1) > 20, iy # i, (7.34)

Take (Bj;);es to be a finite open covering of Sjy) so that diam B; < § for every j € J.
We claim we can select

(i) a new e-chain A = (5\1 e 5\1) containing Ac; .
(ii) [ distinct elements from the family (B;);ecs, say Bi,. .., B;
such that )
p;\i,n;\iﬂ € B;, Vi = 1,...,[. (735)

We proceed as follows :
We first define the segments

L' = {)\ € Ay <A< o for some iy < po such that py,,,n,, € Bj}.

Note that if B; N Sja) # ¢, then I'; # ¢. In fact, assume for instance that p, € B;. Since
gap [A] = 0, then either there exists pio > p such that n,, = p, or we can find a decreasing
sequence fi; |y such that n,; — p,. The set B; being open, we conclude that n,, € B;
for some pj, > p. Thus, in both case we have I'; # ¢. Moreover, (7.34) implies that I'; is
contained in some segment (A; < A < A\;j1q).
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We also define

r; ;= lim
I Nery Tp A

to be the upper endpoint of I';.
Let Ay := A; and By be an element of the family (B;);e; containing py,. By abuse of
notation, we denote by I'y the segment I'; corresponding to By. We have two possibilities
for I'y :

(a1) T’y has a largest element X : in this case, we have

ns, € B, and P, B,

(since By is open and gap [A] = 0) ; we then choose B, € (B;) ;e such that ps, € By
(by) 'y does not have a largest element : this implies the existence of an increasing
sequence (y;) in I'y such that

Ny, € By, Vj>1, and Pu; — T1;

moreover, d(p,,,n,,) — 0.
Let By € (B;)jes be such that r, € Bsy. Since By and B, are both open, we can find
Jo > 1 sufficiently large so that

Ny, € Bl N BQ and Puj, € Bg.

We then take Ay := 115,
Note that in both cases we have

Bl 7£ BQ, n;Q € Bl, and pS\Z € BQ.

We can now repeat the construction above with Ao and Bs, and so on until we get
ny, € B;. In order to see this will be indeed the case, it suffices to prove the following :

Claim. A, := (A --- X)) D A..
Let us check for instance that A, € A. (the general case follows by induction) : let
1 < l; <l be such that )\ll <Ay < >\11+1 Since

pj‘ll’nj‘llJA S Bl1 and p;\ll S S[Aﬂ,

we have N3, € Siay- On the other hand, Ay < 5\11+1 implies that Psi Z Siay- In
particular,
d<p5\11+1’n5\11+1) > 2(5,

from which we conclude that :\l1+1 = )o. This establishes the claim.

By construction, the sets By, . .., B, are all distinct and (7.35) holds. It follows from (7.35)
that .
d(ps,,n3,,,) < diam B;.

Thus,

l !
EE‘AE} = Zd (px,» 1+1 Z m B; < Zdlam B;.
i=1 i=1

JjeJ
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In particular,
i/I\lf ffAE] < Z diam B;.
: jeJ
where the infimum is taken over all e-chains of [A]. We now take the infimum with respect
to all (finite) open coverings (B;);cs of Sy, with diam B; < 6 for all j € J. We get
inf (i) < H5(Sp))-

Note that this estimate holds for ¢ > 0 fixed and every § > 0 sufficiently small. Taking
9 | 0 and then ¢ | 0, we obtain (7.33).

We conclude this section with the following result which will be used in the proof of
Theorem 7.2 :

Proposition 7.7 Let [A] be a co-minimal cycle. If Tiz) is singular, then we can write
A =U;A; as a disjoint union of subchains, where each [A;] is a simple cycle and

Uy = Z Gy (7.36)
J

In particular, [A;] is a co-minimal cycle and Tia,) is singular for every j.
Proof. Consider the family

Ay is a subchain of [A] and k € A, Vk € A;
F = (Ak’)keA if Akl N Akz 7& ¢? then Ak1 = Akg ; . (737)
ZAk ngk} < KFA]

(The sum ), is taken over all disjoint components of (Ay)ren-)
Since (A)rea € F (i.e. we take Ay = A for each k), F is nonempty. We consider the order
relation < in F given by (Ag)r < (Ag) iff Ax D Ay for every k € A.

Step 1. If (Ax)rea € F, then [A;] is a co-minimal cycle and Tjy,) is singular for every
k € A. Moreover,
=D
Ay,

Since [A] is co-minimal cycle, it follows from the triangle inequality applied to Tjy =
ZAk T[Ak] that

Lig <Y Ling <3 g < Gy = L. (7.38)
Ap Ak
Therefore, equality holds everywhere in (7.38), and we have

=D Uy and Ly =0, VEEA.
Ak

In particular, [Aj] is a co-minimal cycle. Since Ljy) = > A, Ly and Ty is singular, we
conclude that every Tjy,) is singular (see Remark 7.8 (b)).
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Step 2. F has a maximal element.

By Zorn’s Lemma, it suffices to show that if ((Ak,a)ke A)a is a linearly ordered family in
F, then it has an upper bound.

For each k € A, we set Ay := (), Ak

Clearly, the first two properties in (7.37) are satisfied by (Ag)rea. We now check the last
one.

Let Ag,, ..., Ag be the first [ disjoint subchains in (Ag)res. Take ag sufficiently large so
that Ay, g, -+, Akao are disjoint. Applying Corollary 7.3, we get

l l l
PR ED DL R D (SRS IW)
=1 =1 i=1

< Uay + Ay = Oay, uuny)-

Since [ was arbitrary and A = (J,, Ak, we conclude that ), Uiry < G- Thus, (Ag)ren €
F.
We can now invoke Zorn’s Lemma to conclude that F has a maximal element.

Step 3. Proof of the proposition completed.

Let (Ag)kea be a maximal element of F. We claim that [Ay] is simple for every k € A.
Suppose by contradiction that Ay is not simple. By definition, we can split Ay = Ay 1UA 2
so that both Ay and Ay o are segments of [Ax] and gap [A; ;1] = 0. Since gap [A] = 0, we
also have gap [Ag 2] = 0. It follows from Remark 7.3 that

gFAk] - gFAk,ll + grf\kg]’

but this contradicts the maximality of (Ag)kea in F.
The proposition follows from Step 1 after relabeling and removing the repeated compo-
nents of (Ag)kea-

7.5 Paths and loops
Let I" be a chain such that KE‘F] < 00. We know from Proposition 7.5 that both limits

r:= lim p), and ¢:= lim n,
Aert AeT|

exist. Clearly, we have ([, > d(r, q).

Definition 7.16 T' is a path from q to r if

EFT] = d(’l", Q)

This definition can be rephrased in terms of loops (see Definition 7.11 (c)). In fact, let
po := q and ng := r. We consider the chain A :=I" U {0}, where 0 is the largest element
in A. Then, I' is a path from ¢ to r iff [A] is a loop. In particular, all results for loops can
be translated in terms of paths, and conversely.
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r'=Ppy Py= 1y

P3=1ny P3=ny

Po=1y p=n

F1G. 7.3 — A finite path I" from ¢ to r and the cycle [A] associated to I’

Example 7.5 Assume ' = (1 -+ k) is a finite path from ¢ to r. Then ¢ = ny and r = py ;
moreover, we have p; = n;y 1 for every ¢ = 1,...,k — 1. Figure 7.3 shows a finite path "
(with £ = 4) and the cycle [A] associated to it.

A less trivial example is given by Example 7.1 with o = 0. In this case, we take I' = N
oriented from left to right in Figure 7.1. It is easy to see that I' is a path from 0 to 1.

Remark 7.4 If T is a path from ¢ to r, then it follows from (7.18) that
Tiry = 6, — 6, in [Lip (X)]". (7.39)
In particular,

Ly = Uiy = d(r, q) < l). (7.40)

Remark 7.5 Assume I'y is a segment of I', and let r; and ¢; be the corresponding
endpoints. We claim that I'y is a path from ¢; to r;.

Suppose for simplicity that I'y := '\I'; is also a segment and I'y < I's. Note that ¢; = ¢
and ro = r. Applying (7.25) with A replaced by I" we get

(ffrl] —d(r, Q1)> +d(r1,g2) + (gfrz] —d(r2, Q2)> =0.

Since each one of these terms is nonnegative, we must have (i | = d(r1,q) (note also
that d(ry,¢g2) = 0).
The general case follows from the above since I'\I'; is a union of at most two segments.

A simple consequence of Proposition 7.4 is the following :

Corollary 7.6 Assume

o0

> (8p, = 0n,) =0 in [Lip (X)]".

i=1

Then, we can write N =J; A; as a disjoint union, where each [A;] is a loop.
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The corollary below is just a restatement of the previous one in terms of paths :

Corollary 7.7 If

> (8p, = 0n,) =0, — 6, in [Lip(X)]’
i=1
for some r,q € X, r # q, then there exists a path I' from q to r.

As a consequence, we can now prove Lemma 7.1 :

Proof of Lemma 7.1. Assume that g cannot be connected to r; by any path. We write

(5100 - 5710) + Z (5101 - 5m) = 57“1 - 5(11 in [Lip (X)}*v
=1

where py := ¢ and ng := ry. It follows from Corollary 7.7 that there exists a path I' from
¢ to r1. We claim that 0 ¢ I'. In fact, otherwise the segment [\ > 0] C I" would be a
path from py = ¢ to r1, which cannot be the case by assumption. The result now follows
directly from (7.39).

Combining Corollaries 7.1 and 7.7, we get the proposition below. This is especially
suitable to study irreducible representations (see, e.g., Lemma 7.7).

Proposition 7.8 Assume ), (6p, — 6n,) is reducible and p; # n; for every i,j. Then,
there exists an infinite path I' from q to r, for some r,q € X.

The following lemma will be used in the proof of Theorem 7.3 :

Lemma 7.6 Let N ¢ N. For each J € N, there exists a path Iy ; which is mazimal

among all paths in N containing j.

Proof. This is a simple application of Zorn’s Lemma. In fact, note that (j) is a path
containing j. Moreover, if (T',) is a linearly ordered set of paths containing j, then we
define I' := |, I's, equipped with the order relation induced from each I',. We claim that
[' is a path.

In fact, let (a;) be an increasing sequence such that I' = [J;I's;. On the one hand,
Corollary 7.4 says that

U = jliﬂlglo E’[“FQJ_]. (7.41)

In particular, KFF] < {r) < 0o. We conclude from Proposition 7.5 that both limits
=i d =1 42
ro=limpy and ¢:= limn, (7.42)

exist,.
On the other hand, each 'y, is a path from some g; to some r;. It is easy to see from
(7.42) that ¢; — ¢q and 7; — r. Recall that

Ui, = d(ry,45), V3,

As j — oo, we get () = d(r,q); thus, I' is a path.
The statement now follows from Zorn’s Lemma.
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Ny Py s Ps N6 Do 7 pr
ny P> ny P ny P3

1

FiG. 7.4 — Dipoles ¢,, — d,, in Example 7.6

7.6 Examples

We shall use the same notation as in Examples 7.1 and 7.3 throughout this section.
The example below shows that the converse to Theorem 7.1 does not hold in general.
Namely, T € Z may be regular and yet we can have H!(suppT') > 0.

Example 7.6 Assume X = [0, 1]. We consider the chain A := N oriented so that k; < ko
iff pr, < pi, in [0, 1] (see Figure 7.4). We claim that

Tia) = Z (0p; — 0p;)  1s irreducible.

=1

In view of Proposition 7.8, it suffices to show that if I' is a path containing io > 1, then
' = (ip). Let r,q € C,, ¢ < r, be the endpoints of I'. It is easy to see that the inclusion
I' C A is order preserving and that I" is a segment of A. Thus,

Gy = d(r, q) + |lg, 7]\ U Ji| = d(r,q) + |Cu N [g,7]).

Since I' is a path, the second term in the right-hand side has to vanish. In other words,
we must have (q,r) C J;,, which implies that I' = (ig). This proves the claim.
According to Proposition 7.2, we have

i=1

In particular, [A] is a minimal cycle and T}y is regular.
In the next example we show that 7]z + (09 — 1) is singular.

Example 7.7 As in Example 7.3, we consider the chain Ay := A U {0} so that [Ao] is
oriented clockwise with respect to Figure 7.1.
According to the previous example,

Ting = Z (0p, — 6n,;) is irreducible.

i=0
Moreover, it follows from Proposition 7.2 that
L[Ao] = EFAO] = .

In particular, [Ag] is a co-minimal cycle.
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We claim that T}y, is singular.
Let (i be the Lipschitz function such that (x(¢) = 0 if ¢t < ny, () = d(pk, nx) if t > pg,
and (;, is affine linear on J,. We define

Ct) =1t =) Glt)

(by construction, ¢ is constant on each Ji). Note that |(|r;, < 1 and

Ling ==Y [¢(pi) — ((ns)]

1=0

In other words, ( is a function which achieves the supremum in (7.6).
Given r,q € [0,1], r # g, we have |((r) — ((q)| < d(r,q). Thus,

[ Tiag) — (8- = 8,)[| > Z [C(p) = ¢(ni)] = [¢(r) = C(@)] > 1 Tiag)ll — d(r, q).

This proves our claim (see Lemma 7.8).

We now combine somewhat Examples 7.6 and 7.7 :
Example 7.8 Let X = S! equipped with its geodesic distance. We shall identify R? with
the complex plane C. Using the same notation as above, we define

2Tt

Tp =€ and g =™ V> 1.

We consider the chain A = N oriented anticlockwise with respect to Figure 7.5.
Note that
lpy=27(1—a) and () =2ma.

Applying Proposition 7.2, we get
Lz} = 27 min {a, 1-— a}.

Thus,
(a) if 0 < o < 1, then [A] is a co-minimal cycle and T}y is singular (we proceed as in
the previous example) ;
(b) if 3 <« <1, then [A] is a minimal cycle and Tjy) is regular.

7.7 Proof of Theorem 7.3

It suffices to consider the case where

*

T = (0p, = 0n,) in [Lip (X)}

=1
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is an infinite sum of dipoles. The strategy will be to construct a sequence of disjoint paths
['1,Ts, ... and sets N =: N; D Ny D --- inductively as follows.

Let T'; be a maximal path containing 1 (such a path exists by Lemma 7.6). Set Ny :=
{jeN:j&I}

Given k£ > 2 such that N, # ¢, let j; be the smallest integer in N and let 'y be a
maximal path among those in Nj containing ji. Set Ny := {j € Ny : j & ', }.

By construction, each I'y is a path from some ny to some py, and these paths are disjoint
from each other. It follows from (7.39) that

T = ZT[F;Q] = Z (5I3k - 5ﬁk) n [Lip (X)]*’

keN/ keN/

where N’ := {k : py, # ny}.

We claim this representation is irreducible.

Suppose by contradiction it is reducible. By maximality, we must have p;, # n; for all
i,j € N'. Then, according to Proposition 7.8, we can find an infinite path IV from ¢ to r
(I'" is a path with respect to the dipoles 63, — d5, ). In particular,

> (65, — 0a,) = 0, =6, in [Lip(X)]".

kel

Consider I' := Uker, I';, with the order induced by I”, i.e. Ay < Ay in I' iff one of the
following conditions holds :

(1) )\1, Ay € I'y, for some k € IV and AL < Ay in I'y;

(ii)) A1 € Ty, Ao € Ty, and ky < kg in TV,
Then, one can easily check that I is a path from ¢ to r (associated to the dipoles d,, —dy, ).
But this contradicts the maximality of I'y,, where ky is the smallest integer in I'. This
concludes the proof of the theorem.
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Remark 7.6 Since d(pg, ng) < ZjeNk d(p;,n;) for every k, we conclude that the points
Pr, N € X constructed above also satisfy the estimate

> d(pr,in) < d(piyna).
B i

7.8 A lemma on irreducible representations

Lemma 7.7 Assume T € Z and T # 0 in [ Lip (X)]* Let

be an irreducible representation of T
Then, given any 6 > 0 and ig > 1, there exists ¢ € BLip (X) such that

- 1
||C||L°° S 17 SUPPC C B&(pio)7 and <T7 C> Z Z (744)

Proof. If the representation in (7.43) is a finite sum of Dirac masses, then we are done.
Therefore, we can assume that

[e.9]

and ig =1.
Let A := X\ Bj(p1). We consider the quotient space X/A endowed with the metric

d(%, ) = min {d(w,y), d(z, A) + d(y, A)}, Va,y € X.

The quotient map 7 : X — X/A induces the linear functional
T =Y (65 —0n,) in[Lip(X/A)]".

=1

Since the representation in (7.43) is irreducible, we have T' # 0 in | Lip (X/A)] "
In fact, suppose by contradiction that 7' = 0. Applying Corollary 7.7 to the identity

Z (05, = 0n,) = 0y — &, in [Lip (X/A)],

=2

we can find a path I' starting at p;. Since p; # n; for every j > 1, I' has no smallest
index. In particular, the path (A < A\g) C I' contains infinitely many indices for all Ay € T".
Choosing Ay appropriately, we can assume that

lhar) = Y, d(pi,ni) <
1€(A<X0)

N3
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Therefore, after replacing I' by (A < Xg) if necessary, we may assume that ;rj < 5. In
particular, p;,n; € B,2(p1) for every i € I'. Since the restriction of the quotient map
7 Byja(p1) — Brja(p1) is an isometry, I' induces a path in X starting at p;, in the
family of dipoles d,, — d,,,. But this contradicts the fact that the representation of T is
irreducible. We conclude that T' # 0 in [ Lip (X/A)] "

Let L > 0 be the length of the minimal connection of 7. By Proposition 7.2, there exist
k>1,0 €S8, and ¢ € Lip (X/A), |C|Lip < 1, such that

K
Z (Dis Mo i) =

By taking k large enough, we may also assume that

> dpi,mi) <

i>k+1

03|b”

Y
VAN
w|§|

(7.45)

=1

oolbu

For the sake of normalization, we set ¢ (A) = 0. We claim that ¢ can be chosen so that

4L

I8l < 5

In fact, for each i =1, ..., k, we define the intervals
Ji = [C(ﬁa(i))7§<ﬁi)] CR

(Note that {(p;) > ((Tigw) by (7.45).)

Let h: R — R continuous such that 2(0) = 0, h is constant outside J; J; and h is affine
linear with slope 1 on each J;. It is easy to see that ho( satisfies |ho ¢ lLip < 1 and (7.45).
Moreover, since Y, |J;| < 3L, we have ||k o (lloe < < 3L. This proves our claim.

We now let ¢ := %5 Then, ||{]|c <1 and

The lemma now follows by taking the pull-back of ¢, namely ¢ := ( o 7.

Remark 7.7 An inspection of the proof shows that one can construct ¢ so that (7.44)
holds with 1/4 replaced by any number 6 € (0, 1).

7.9 Proof of Theorems 7.4 and 7.5

Theorems 7.4 and 7.5 can now be immediately derived from Lemma 7.7 :
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Proof of Theorem 7.4. As we have already pointed out, we always have

suppT’ C U {pi} U U {7},

even if the representation is not irreducible. To prove the reverse inclusion, let B C X
be an open set containing some p;, or some n;,. Using the previous lemma we can find
¢ € Lip (X) such that (T, () > 0 and supp ¢ C B. In other words, B Nsupp T # ¢.

Proof of Theorem 7.5. Assume the irreducible representation of 7" has infinitely many
terms. We shall show that there is no C' > 0 for which (7.12) is true.

Without loss of generality, we may assume there are infinitely many distinct points p;,
say pi, e, - .. Given M > 0, let 6 > 0 be such that the balls Bs(p;) are disjoint from each
other for : = 1,..., M. Applying the lemma above to these balls, then, for each iy, we
get a bounded Lipschitz function (;, satisfying (7.44). The function ¢ := Zf‘il (; satisfies

e <1 and (1,002

Since M can be chosen arbitrarily large, the theorem follows.

7.10 Some comments about Definition 7.2

In this section we present some properties related to regular and singular functionals
in Z (in the sense of Definition 7.2). At the end, we shall prove that every T € Z can be
decomposed in terms of a regular and singular part.

We first show that Definition 7.2 is intrinsic in the sense that it does not depend on
the ambient space X. More precisely, we have

Proposition 7.9 Let T € Z. Then,

(a) T is reqular in X iff T is regular in supp T ;

(b) T is singular in X iff T is singular in suppT'.
In particular, the minimization problem (7.7) has a solution in X if, and only if, it has
a solution wn supp 1.

Proof.
Step 1. Proof of (a).
Assume T is regular in supp 7. By definition, there exist (p;), (n;) C supp 7" such that

T = Zd(pi,ni) and T = Z (0p; — Op,) In [Lip (supr)]*.

Since the number ||7'|| is the same, whether we compute it using X or supp 7T as the
ambient space, we conclude that T is regular in X.
Suppose now that T is regular in X. Then, we can find sequences (p;), (n;) C X such

that
IT) = d(pi,n;) and T = (6, —dn,) in [Lip(X)]".
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It follows from Remark 7.6 that we can construct an irreducible representation of T :
T=Y (3 —0s,) in[Lip(X)]",
J

so that

1T <> d(pi,ni) <> d(pi,ni) = T

Since p;,n; € suppT for every j (see Theorem 7.4), we conclude that 7" is regular in
supp 1.

Step 2. Proof of (b).

Assume T is not singular in supp 7. Then, we can find T;,T> € Z(suppT) such that
T =T+ T, |T|| = Ty + ||T2]], and T} # 0 is regular in supp 7. By (a), T is also
regular in X. We conclude that T is not singular in X.

The converse statement is a trivial consequence of the following lemma :

Lemma 7.8 If T € Z is not singular in X, then there exist r,q € suppT, r # q, such
that
IT|| = d(r,q) + || T = (6, = &) |- (7.46)

Proof.
Step 1. (7.46) holds for some r,q € X, with r # q.
Let Ty =), (6,, — &;) € Z be regular and nonzero such that

TN = 1730l + 1T = Tl = Y d(ri qi) + | T = Th]|.

Without loss of generality, we may assume that r; # ¢;. Then, applying the triangle
inequality we have

1T < {[(Bry = da) || + |7 = (6 = 04|
< H(67’1 - 6‘11)“ + H Z (57“z - 5%) ‘ + HT - Z(éh - 5‘11)
i#1 i

<Y dlrig) + T =10 = |IT].

Therefore, equality must hold everywhere. Since d(ry,q1) = ||((5,n1 — (5q1)H, we conclude
that (7.46) holds with r := 7 and ¢ := ¢;.
Step 2. Proof of the lemma completed.

Let r =: ng and ¢ =: po be two distinct points in X for which (7.46) holds, and let
T =% ,(0p, — 0n;) in [Lip (X)]" be an irreducible representation of T
Applying Proposition 7.4 to

T =T — (60 — 0p,) = Z (65, — 6,,) in [Lip (X)]",

1
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we can decompose 1" in terms of disjoint cycles :
ZT[A [Lip (X))

such that

1T = ng/\j]- (7.47)
J

Without loss of generality, we may assume that 0 € A;.
We claim that A;\{0} is nonempty. In fact, assume by contradiction that A; = (0). Then,
we would have

|71l = d(po, no) + 1T = 2d(po, no) + D _ Lir,y = 2d(po, no) + |I T
#1

In the last step we use that T' = Tia;), and so
j#1 11

T <> 1Tl <> )

J#1 J#1

Therefore, we must have py = ng, which is a contradiction.
By taking another representative of [A;] if necessary, we may assume that 0 is the largest
element in A;. Let

7:= lim and ¢:= Lm n,.
)\EA1\{O}Tp>\ q AeA\{0}] A

Since py,ny € supp 1 for every A\ # 0, we have 7, ¢ € supp 7.
Note that 7 # . In fact, if 7 = ¢, then we would have

i = Loy + Liav oy

In other words, (0) could have been taken as one of the cycles in (7.47). As we have
already seen, this cannot be the case; thus, 7 # q.

We claim that (7.46) holds with 7 and g.

By a slight abuse of notation, let us denote by [A]new the cycle [A;] where 6,, — 6y, is
replaced by the dipole §; — d7. It is easy to see that (see, e.g., Remark 7.3)

EAl] - K[Al + d(fa nO) + d(p07 g)
We then have

Il = d(po, no) + |I T

= d(po, n0) + d(F,m0) + d(po, @) + Uia e + D lin,)
J#1
> d(7,q) + ||T + (65 — 67)]|-

Thus,
IT|| > d(7,q) + ||T — (6 — 65)|| = ITI.
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This establishes the lemma.

A simple consequence of Lemma 7.8 is the following : assume we are given some
T € Z, and we want to show that 7" is singular; it suffices to show that if r,q € supp T’
satisfies (7.46), then r = ¢q. We have already used this fact in Section 7.6.

We now state some properties related to Definition 7.2 :

Remark 7.8 Assume 7' =T, + Ty, where 71,75 € Z and ||T|| = ||T1|| + ||T2||- Then, we
have :

(a) if T} and T; are both regular, then so is T';

(b) if T is singular, then 77 and T5 are singular as well.
(a) and (b) follow immediately from Definition 7.2 (in fact, they still hold in the case of
infinite sums). Note, however, that

(c) if we know that T and T} are regular, then we cannot conclude that T is regular.

Take, for instance,
Fm Yl =) T — Y5, 6,
=1 >0

where p; and n; are given by Example 7.1. Then, T} and T = §; — J, are regular,
but T is singular. Also note that

suppT = {0,1} & C, = supp Ty U supp Ts.

(d) it is possible to construct 77,7 € Z, both singular, such that 7' = T} + Ty is
regular. Let X = S equipped with its geodesic distance. We consider two sequences
in S (see Figure 7.6) :

e 1= Pk and g 1= ™ Vk >0,
re = e and g = ™R Wk < 0,

where p, and n; belong to the Cantor set C, as before. Then,

T, = Z (67, — 0q,) + (61,0) — 6(=1,0))

k>1
Toi= ) (On = 00) + (610 = 1)
k<—1
are both singular for every o € (0,1) and || 71| = ||T2|| = an.

We now take oo = % Then, (see, e.g., Example 7.8)
T =T +T, isregular and ||T|| =m = ||T1|| + || T2
The proposition below gives the first part of Theorem 7.2 :

Proposition 7.10 Giwen T € Z, there exist Tieg, Tsing € Z such that Tieg ts regular,
Tsing @s singular,

T = Treg + Tsinga and ”TH = ||Treg|| + “iTSing”'
Moreover, T,ey and T, can be chosen so that

supp 1" = supp Treg U supp Ting. (7.48)
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F1G. 7.6 — Dipoles in Remark 7.8 (d)

Proof. In view of Proposition 7.9, it suffices to prove the result for X = supp 7T, in which
case (7.48) is automatically satisfied.

We proceed by transfinite induction.

Let Ty :=T and Ty, := 0.

Let a > 1 be a nonlimit countable ordinal. If 7T, 1 is not singular, then we can find
T,,Ty1 € Z such that T, is regular, T,,; # 0 in [Lip (X)]*,

YLfIZZJLJ,+'7; and Hjb*ﬂ|::H7LJ|

+ || T l- (7.49)

Assume, for instance, that a« = k € N. Summing (7.49) over « replaced by j we get

k k
T=>"Tyu+T and T = [Tl + |Till.
j=1

j=1
If « is a limit countable ordinal, then we take

T,:=T-) Tsy and T,;=0.

B<a

By construction, for every a we have

T=) Tsa+Ta and [Tl =Y |Tsall + || Tull-

BLa BLla

In particular, (see Remark 7.8 (a))

Z Tps1 is regular.

BLa

On the other hand, note that if 7, is not singular, then we have the strict inequality
ITall > ||Tas1ll- In other words, the family (||Ta||)a is strictly decreasing, so it can only
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have countably many terms. Therefore, our construction has to stop at some countable
ordinal v, which means that 7, is singular. Thus,

T = Tieg + Thing, Wwhere Tep = Z Ts1 and Tyne :=Th,.

B<ap

We now show that the decomposition of 7" in terms of a regular and a singular part
need not be unique.

Example 7.9 Let X = S! equipped with its geodesic distance as before. We consider
two sequences (ry)rez, (qx)rez C S* given by (see Figure 7.7)

rei=e™ and g =™ Vk >0,
rei=e P and g :=e ™' VEk<O0.

Then,

T:= Z (0, — 0g,) is irreducible and ||T| = .

k=—o00
Moreover,

T =3 (6~ 04) + Y (0, —3,) in [Lip(X)]"

k<0 k>0

is a decomposition of T" in terms of a regular and a singular part. By symmetry, we also
have a second decomposition ; namely, = >, + >, 0

7.11 Proof of Theorem 7.2 completed

In view of Proposition 7.10, we are left to show that (7.9) holds, where each supp 7T; is
homeomorphic to the Cantor set in R.
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Without loss of generality, we may assume that 7' is singular. Let
i=1

be an irreducible representation of T'.
Applying Proposition 7.4, we can find a sequence of disjoint co-minimal cycles ([A;]) such
that

T=> Tay and [T = [Tl (7.50)

J J

Since T' is singular, so is T, for each j. Moreover, Proposition 7.7 implies that we can
further split each [A;] in terms of simple cycles so that (7.36) holds. Therefore, we can
assume that each [A;] is a simple cycle.
Since the representation

Ty =Ty =Y _ (6, —6ny) in [Lip(X)]’ (7.51)

AEA;

is still irreducible, we have S(y ;) = supp 7j. In particular, we conclude from Proposition 7.6
that
I T3] = H* (supp T5). (7.52)

Assertion (7.9) is an immediate consequence of (7.50)—(7.52). Note also that

supp1 = U supp 7.

J

The last part of the theorem follows from the proposition below :

Proposition 7.11 Assume that [A] is a simple cycle and

Ty = Y (0 = du,) in [Lip (X)]"

A€A

is an irreducible representation of Tix). Then, supp1ia) is homeomorphic to the Cantor
set in R.

Proof. Since A is infinite, we can assume that A = NU {0}, and 0 is its largest element.
The fact that the representation of Tj, is irreducible and gap [A] = 0 implies that A
cannot have a smallest element. We now take A; := A\{0}.

Let C C [0,1] be the standard Cantor set in R. We denote by (Ji)k>1, Jx = (ak, by), the
sequence of disjoint open intervals which are removed from [0, 1] in the construction of
C. We define 2 := N to be an ordered set so that k; < ky iff a, < ay,.

We claim there exists a bijection o : {2 — A; which preserves the order of ), i.e. if ky < ko
in Q, then o(ky) < o(ky) in Ay.

In fact, let (1) := 1. We next define

0(2) := smallest integer in {A € Ay : A < 1},
0(3) := smallest integer in {A € Ay : A > 1}.
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Note that ¢(2) < o(1) < 0(3). Moreover, we can keep this construction indefinitely since
each of the sets of the form

{)\GA11>\<>\0}, {)\EAli)\>)\o}, and {)\EAli)\0<)\<)\1}

has no smallest nor largest element. This proves our claim.
We define the map

Ue{ae} U{br} — supp Ty

Qe [— ng(k)

bk: — Do (k)
Note that £ is uniformly continuous (since (] + £f, < 00), and so it can be extended by
continuity as a map h : C' — suppT]y. It is easy to see that h is surjective.
We claim that A is injective. Suppose by contradiction h is not injective. We can find
¢ < d in C such that h(c) = h(d). Let Q; := {k : J; C (¢,d)}. Then o(;) is a segment
of A1 & A such that gapo(€Q;) = 0. In other words, [0(€y)] is a closed cycle, which is a
contradiction.
We conclude that / is a continuous bijection between C' and supp T}s;. Since C'is compact,
h is a homeomorphism.

7.12 Compact subsets of Z

We start with the following (see [22])

Proposition 7.12 Z is a complete metric space.

Proof. It suffices to show that if the series T":= ), T}, converges absolutely and T}, € Z
for each £ > 1, then T € Z.

For k > 1 fixed, it follows from Proposition 7.2 that we can find sequences (p¥); and (nF);
in X such that

T => (8 —d,) in [Lip(X)]",

i

1
> d(pk k) < Il + 5

Thus,

DD dphnf) < DI+ 1 < oo,
k 7 k

from which we conclude that

T = ZZ S = O

In order to describe the compact subsets of Z, we first introduce a definition :
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Definition 7.17 A C Z is equisummable if, and only if, A is bounded and, for each
e > 0, there exist k. > 1 and K. C X compact such that the following holds : for every
T e Awecan find Ty, Ty € Z, T =T+ T in Z, where

(i) Ty can be written as a sum of at most k. dipoles supported in K. ;

(i) | T2l <e.

Note that this definition is satisfied if A is finite. More generally, we have the following

Theorem 7.6 A C Z is relatively compact if, and only if, A is equisummable.

Proof. Assume A is relatively compact in Z, and let (7}) in A be such that T, — T € Z.
It suffices to show that (7T}) is equisummable. Without loss of generality, we may assume
that 7" = 0; in other words, ||T%|| — 0. Given € > 0, let kg > 1 be such that ||T;|| < ¢
for every k > k. On the other hand, Definition 7.17 clearly holds for the finite set
{T1,...,Tk,—1}. We conclude that (T}) is equisummable.

We now prove the converse statement. By assumption, given £ > 0 there exist k. > 1 and
a compact set K. C X such that for each T' € A we can write T' =T, + T5 in Z, where

ke
Tiy=> (0p—0n), pmi€K., and |Df<c. (7.53)

=1

Since A is bounded and K. is compact, {77 }1e.4 is relatively compact in Z. In particular,
there exists a finite number of balls B.(S1),...,B.(S,) in Z which cover {7} }rca. By
(7.53), the balls By.(S1),. .., B2(S,) cover A, which means that A is totally bounded.
Since X is complete, A is relatively compact.

In contrast with Proposition 7.12, the example below shows that Z is not closed in
[Lip (X)] " with respect to the weak* topology :

Example 7.10 Let X = [0, 1]. For each k£ > 1 we define

2k —2
Toi= ) (0 —04)
§=0
j even
It is easy to see that
1

T, = 5(51 — &) & Z.

Recall that, in general, Lip (X) is not separable; this implies that the unit ball in
[Lip (X )]* is not metrizable with respect to the weak® topology. The example below
shows that bounded sequences in Z do not necessarily converge in the weak* topology of

[Lip (X)]".
Example 7.11 We take X =[0,1] C R. Let

Ty, = k(611 — do).
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If ¢ € Lip (X) has a derivative at 0, then we have

¢(1/k) = ¢(0)

T = '(0).
It is then clear that (7},) has no subsequence converging in [ Lip (X)] "
However, because ||Ty|| = 1, we can find a subnet (T}, )aca such that
Ty, =T

for some T' € ¢onv (Z). Since suppT = {0}, it follows from Corollary 7.2 that T' ¢ Z
(otherwise T" would be expressed in terms of finitely many dipoles, which clearly cannot
be the case).

An alternative approach to show that 7' ¢ Z (without making use of irreducible repre-
sentations) is the following. Assume by contradiction that 7" € Z. Then, given ¢ > 0,
there exists M. > 0 such that

(T, O < Mc[[¢llz + €lClLip, V¢ € Lip (X).

This estimate implies that given any sequence ((;);>1 in Lip (X)), such that |(;|up < 1,
V3 > 1, and ¢; — 0 uniformly in X, then

lim <T7 <J> = O;

Jj—00

but this property contradicts the fact that (T, ¢) = ¢'(0) for every ¢ € C*[0, 1].
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Résumé

Dans cette these, nous étudions d’abord le probleme des singularités éliminables des
EDP elliptiques du second ordre ; le cas modele étant —Au+cu > f sur Q\ K, avec u > 0
et cap, (K) = 0. Nous démontrons aussi un principe du maximum fort pour 'opérateur
—A + a(z), avec un potentiel a € L'. Ces deux résultats utilisent plusieurs formulations
de I'inégalité de Kato classique.

Nous présentons ensuite quelques variantes de I'inégalité de Poincaré, motivés par une
nouvelle caractérisation des espaces de Sobolev.

Puis, nous nous intéressons aux singularités topologiques des fonctions dans 'espace
whi(s2; 81, A cet effet, nous étudions leur énergie relaxée et la variation totale du
jacobien. Finalement, nous considérons plusieurs propriétés des distributions de la forme
>_; (0p; = dn;), définies sur un espace métrique complet.

Mots-clés: Inégalité de Kato, singularités éliminables, inégalité de Poincaré, espaces de
Sobolev, singularités topologiques, énergie relaxée, connexion minimale

Abstract

In this dissertation, we first study removable singularity results for second order elliptic
PDEs, the model case being the following : —Au + cu > f in Q\K, with v > 0 and
capy (K) = 0. We also prove a strong maximum principle for the operator —A + a(x),
with a potential a € L'. These results rely on some variants of the standard Kato’s
inequality.

We next present an estimate in the spirit of Poincaré’s inequality. The motivation for
our result comes from a new characterization of the Sobolev spaces.

We also study topological singularities of maps ¢ € W11(S5?% S1): we compute, for
instance, the relaxed energy and the total variation of the Jacobian of g. Finally, we
consider several properties of the distributions of the form »_; (d,; — d,;), defined on a
complete metric space.

Keywords: Kato’s inequality, removable singularities, Poincaré’s inequality, Sobolev
spaces, topological singularities, relaxed energy, minimal connection






