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Abstract

From both theoretical and applied perspectives, first passage time prob-
lems for random processes are challenging and of great interest. In this
thesis, our contribution consists on providing explicit or quasi-explicit
solutions for these problems in two different settings.

In the first one, we deal with problems related to the distribution of the
first passage time (FPT) of a Brownian motion over a continuous curve.
We provide several representations for the density of the FPT of a fixed
level by an Ornstein-Uhlenbeck process. This problem is known to be
closely connected to the one of the FPT of a Brownian motion over the
square root boundary. Then, we compute the joint Laplace transform of
the L1 and L2 norms of the 3-dimensional Bessel bridges. This result is
used to illustrate a relationship which we establish between the laws of
the FPT of a Brownian motion over a twice continuously differentiable
curve and the quadratic and linear ones. Finally, we introduce a trans-
formation which maps a continuous function into a family of continuous
functions and we establish its analytical and algebraic properties. We
deduce a simple and explicit relationship between the densities of the
FPT over each element of this family by a selfsimilar diffusion.

In the second setting, we are concerned with the study of exit prob-
lems associated to Generalized Ornstein-Uhlenbeck processes. These
are constructed from the classical Ornstein-Uhlenbeck process by sim-
ply replacing the driving Brownian motion by a Lévy process. They are
diffusions with possible jumps. We consider two cases: The spectrally
negative case, that is when the process has only downward jumps and
the case when the Lévy process is a compound Poisson process with
exponentially distributed jumps. We derive an expression, in terms of
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iv Abstract

new special functions, for the joint Laplace transform of the FPT of a
fixed level and the primitives of theses processes taken at this stopping
time. This result allows to compute the Laplace transform of the price
of a European call option on the maximum on the yield in the gener-
alized Vasicek model. Finally, we study the resolvent density of these
processes when the Lévy process is α-stable (1 < α ≤ 2). In particular,
we construct their q-scale function which generalizes the Mittag-Leffler
function.



Zusammenfassung

Grenzüberschreitungsprobleme in stochastischen Prozessen sind heraus-
fordernd und sehr interessant, sowohl vom theoretischen als auch vom
angewandten Standpunkt betrachtet. Der Beitrag dieser Dissertation
besteht aus (quasi-)expliziten Lösungen für solche Probleme in zwei ver-
schiedenen Fällen.

Im ersten Fall behandeln wir Probleme im Zusammenhang mit der
Verteilung der ersten berschreitungszeit (First Passage Time, FPT)
einer Brownschen Bewegung über eine stetige Kurve. Wir zeigen mehre-
re Darstellungen für die Dichte der FPT eines Ornstein-Uhlenbeck-Pro-
zesses über einen konstanten Schwellwert. Dieses Problem ist bekan-
ntermassen eng verbunden mit jenem der FPT einer Brownschen Bewe-
gung über die Quadratwurzelfunktion. Wir berechnen dann die gemein-
same Laplace-Transformierte der L1- und L2-Normen der dreidimen-
sionalen Bessel-Brücken. Dieses Resultat wird verwendet zur Illustra-
tion einer von uns hergestellten Beziehung zwischen der Verteilung der
FPT einer Brownschen Bewegung über eine zweimal stetig differenzier-
bare Funktion und der Verteilung im quadratischen und im linearen
Fall. Schliesslich führen wir eine Transformation ein, die eine stetige
Funktion auf eine Familie von stetigen Funktionen abbildet, und wir
zeigen die analytischen und algebraischen Eigenschaften dieser Trans-
formation. Mit Hilfe einer selbstähnlichen Diffusion leiten wir eine ein-
fache und explizite Beziehung her zwischen den Dichten der FPT über
jedes Element der Familie.

Im zweiten Fall befassen wir uns mit dem Studium von Austrittsprob-
lemen im Zusammenhang mit verallgemeinerten Ornstein -Uhlenbeck-
Prozessen. Diese werden aus klassischen Ornstein-Uhlenbeck-Prozessen
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vi Zusammenfassung

konstruiert, indem man die treibende Brownsche Bewegung durch einen
Lévy-Prozess ersetzt. Es sind dies Diffusionen mit mglichen Sprüngen.
Wir betrachten zwei mgliche Fälle: Erstens den spektral negativen Fall,
in dem der Prozess nur Abwärtssprünge aufweist, und zweitens den Fall,
in dem der Lévy-Prozess ein verbundener Poisson-Prozess mit exponen-
tialverteilten Sprüngen ist. Wir leiten eine Darstellung her basierend
auf neuen, speziellen Funktionen für die gemeinsame Laplace-Transfo-
rmierte der FPT über einen konstanten Schwellwert und den Primitiven
dieser Prozesse betrachtet an der so definierten Stoppzeit. Dieses Re-
sultat ermglicht die Berechnung der Laplace-Transformierten einer Eu-
ropäischen Call-Option auf dem maximalen Zins im verallgemeinerten
Vasicek-Modell. Schliesslich studieren wir die Dichte des Resolventen
solcher Prozesse für den Fall, in dem der Lévy-Prozess α-stabil ist mit
1 < α ≤ 2. Insbesondere konstruieren wir deren Skalenfunktion, welche
die Mittag-Leffler-Funktion verallgemeinert.
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Introduction

The motivation for studying first passage time problems is two-fold. On
the one hand, they are of great theoretical interest since they are con-
nected to many fields of mathematics such as probability theory, func-
tional analysis, number theory and numerical analysis. On the other
hand, its theory has drawn tremendous amount of attention in many sci-
entific disciplines. Indeed, first passage time distributions are required
in many phenomena in chemistry, physics, biology and neurology. For
example, an understanding of such stopping times is important for those
studying the theories of chemical reaction rates, neuron dynamics, and
escape-rates in diffusion processes with absorbing boundaries. These
systems typically depend on a random variable (or one that can be ad-
equately approximated as random) reaching some threshold value.
In quantitative finance, such questions arise in many different practical
issues such as the pricing of path-dependent options and credit risk.
The former options, as tailor-made contingent claims, have become in-
creasingly popular hedging and speculation tools in recent years. In
particular, path-dependent options, most of them comprise barrier op-
tions, are successful to reduce the cost of hedging. These barrier options
embed digital options. If the relative position of the underlying and the
boundary matters at the date of maturity, these binary derivatives are
of the European type and their valuation is simpler than European call
or put options. On the other hand, if this relative position matters
during the entire time to maturity, pricing these digital derivatives is
more involved as they are path-dependent. In the latter case, they
are dubbed one-touch digital options and their valuation boils down to
computing first passage time distributions. Another important family
of path-dependent options are the lookback ones. Their payoff depends
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2 Introduction

on the maximum or minimum underlying asset price attained during
the option’s life. Furthermore, other common assets can be showed to
involve digital options when properly modelled. For example, corporate
bondholders have a short position on digital positions, where the bound-
ary corresponds to the default threshold. By the same token, Longstaff
and Schwartz [79] price digital credit-spread options with the logarithm
of the credit spread assumed to follow a mean-reverting process.

Despite the importance and wide applications of first passage times,
explicit analytic solutions to such problems are not known except for
very few instances. Among them, we mention that for one-dimensional
time-homogeneous diffusions, the Laplace transform of the first passage
time is given as a solution of a second order differential equation sub-
ject to some boundary conditions, see for instance the book of Borodin
and Salminen [17] for a collection of explicit results. The Laplace trans-
form of the first passage time, above and below, of a spectrally negative
Lévy process is also known in terms of the Laplace exponent and the
scale function associated to the process, see e.g. the thorough survey
of Bingham [14]. In these two cases, several numerical methods have
been developed to inverse these Laplace transforms, see for instance
Abate and Whitt [1], Linetsky [78] and Rogers [106]. More generally,
the mainstream of the research of the problem with general boundary
crossings for Markov processes, is based on the Kolmogorov partial dif-
ferential equations for the transition probability density function, and
focuses on finding solutions of certain integral or differential equations
for the first passage time densities. Our contribution in this thesis, is to
find explicit solutions to some problems related to first passage times by
using merely martingales techniques. More precisely, we shall consider
the following two issues.

The first one deals essentially with the distribution of the first crossing
time of the Brownian motion over some deterministic continuous func-
tions. This is an old and still open problem. For instance, the formula
which states that the density, denoted by p, of the first passage time of
a Brownian motion over the linear boundary c+ bt is given by

p(t) =
c

t3/2
Φ

(
c+ bt√

t

)

with Φ(y) = 1
2π e

−y2/2t , is called the Bachelier-Lévy formula, see e.g. Lerche
[76]. Indeed, Lévy [77] refers in Processus stochastiques et mouvement



Introduction 3

Brownien to Bachelier who has already treated first-passage densities in
1900 in his thesis Théorie de la Spéculation. In statistics the problem
of determining the time of first passage of a Brownian motion to certain
moving barriers arises asymptotically in sequential analysis, see Darling
and Siegert [26], in computing the power of statistical test, see Durbin
[36] and the iterated logarithm law, see Robbins and Siegmund [103],
Novikov [84] and the references therein. We also mention that a review
of applications in engineering can be found in Blake and Lindsey [15].

In the second part, we consider some exit problems associated to gen-
eralized Ornstein-Uhlenbeck processes, for short GOU. The classical
Ornstein-Uhlenbeck process was first derived by Ornstein and Uhlen-
beck [121] as the solution of the Langevin equation

du

dt
= −λu(t) +A(t)

where the first term on the right is due to the frictional resistance which
is supposed proportional to the velocity. The second term represents
the random forces (Maxwell’s law or Gaussian distribution in this case).
They were interested in computing the transition probabilities. Then,
Doob [34] studied their path properties derived from the ones of the
Brownian motion by using a deterministic time change. In this paper, he
also studied the path properties of the solution of the Langevin equation
with random forces given as symmetric stable distributions. Finally,
Hadjiev [51] introduced the GOU process as the solution of the linear
stochastic differential equation

dXt = −λXtdt+ dZt

where Z is a spectrally negative Lévy process, that is a process with
stationary and independent increments and continuous in probability
having only negative jumps. He gives an explicit form for the Laplace
transform of their first passage times above. We mention that in the
literature several terminologies can be found for this class of random
processes: Ornstein-Uhlenbeck type processes, shot noise processes, fil-
tered Poisson process, etc.. From a theoretical viewpoint, the interest
of studying exit problems associated to this class of processes relies on
understanding better the fluctuation of more general time-homogeneous
Markov processes beyond the Lévy processes. Although the increments
of the GOU processes are not independent neither stationary, it is still
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possible to get explicit results thanks to the relationship with their un-
derlying Lévy process. Moreover, GOU processes have found many ap-
plications in several fields. Recently, they have been used intensively in
finance, for modelling the stochastic volatility of a stock price process,
see e.g. Barndorff and Shephard [9], and for describing the dynamics
of the instantaneous interest rate. The latter application, as a gener-
alization of the Vasicek model, deserves a particular attention as these
processes belong to the class of one factor affine term structure model.
These are well known to be tractable, in the sense that it is easy to fit
the entire yield curve by basically solving Riccati equations, see Duffie
et al. [35] for a survey on affine processes.

Organisation and Outline of this Thesis

This thesis consists of five self-contained chapters, each with its own
introduction. They are all devoted to the treatment of examples of first
passage time problems and related objects. The settings differ from each
other either by changing the process or the boundary. The processes
considered in the thesis are Brownian motion, Gauss-Markov processes
of Ornstein-Uhlenbeck type (continuous) and generalized Ornstein-Uh-
lenbeck processes (with jumps), while the boundaries are taken to be
either constant or continuous deterministic functions. In the following
lines, we discuss the content of each chapter and we quote in parenthesis
the paper(s) related to each chapter.

Chapter 1. ([7]) In this Chapter, different expressions for the density of
the first passage time of a fixed level by the classical Ornstein-Uhlenbeck
process are gathered. This problem has attracted attention for a long
time but the interest was renewed recently due to some general impor-
tance in many fields of applied mathematics. For instance, in finance,
this density is used for the pricing of lookback options on yields in the
Vasicek model.
The expressions consist of a series expansion involving parabolic func-
tions and their zeros, the representation using Bessel bridges and an
integral representation. Detailed algorithm for implementing each ap-
proach is provided and some numerical simulations are performed. This
Chapter can be considered as a survey, for instance, the known series
expansion for the density has never been rigorously proved in the litera-
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ture. It can also be seen as a guiding case for computing the distribution
of first passage time of more general diffusions.

Chapter 2. ([4]) The second Chapter is devoted to the study of the joint

distribution of the couple
(∫ 1

0
rs ds,

∫ 1
0
r2s ds

)
where r is a 3-dimensional

Bessel bridge between x and y ≥ 0. The motivation for studying the
law of this bivariate random variable comes from its intimate connection
with the law of the first passage time of the Brownian motion over the
square root and quadratic boundaries. It is also challenging to develop
a probabilistic methodology to compute explicitly this joint Laplace
transform. An instructive probabilistic construction of the parabolic
cylinder is provided. Next, for the case y = 0 the distribution of the
above couple is obtained by using merely stochastic tools. The case
y 6= 0 is then studied by making use of the Feynman-Kac formula. Then,
it is shown that the distribution of the first passage time of a continuous
time random process over the linear and quadratic boundaries can be
obtained as the limit of the distribution of a familly of first passage times
of this process over any ”smooth” (in a neighborood of 0) boundaries.
This device is illustrated with the example of the first passage time of a
Brownian motion over the square root boundary. In this case, it yields
to an easy computation of some limits of ratio of parabolic cylinder
functions. These limits appeared already in the literature but relied on
complicated analytical arguments. Finally, the joint Laplace tranform
of the bivariate random variable is used to derive some new explicit
formulas concerning some functional of the 3- and 1- dimensional Bessel
process and the radial part of the δ-dimensional Ornstein-Uhlenbeck
processes.

Chapter 3. ([6],[3],[5]) The third chapter consists on the study of some
functional transformations and their application to the boundary cross-
ing problem for selfsimilar diffusions, which are either Brownian motion,
Bessel processes or their natural powers.
Let B be a standard Brownian motion and f a continuous function
on R+ with f(0) 6= 0. Introduce T (f) = inf {s ≥ 0; Bs = f(s)}. The
explicit determination of the distribution of T (f), even for elementary
functions, is an old and difficult task which has been initiated by Bache-
lier (constant level) and Lévy (linear curve) and has attracted the atten-
tion of many researchers. The main result of this Chapter is an explicit
relationship between the law of T (f) and the one of the first passage
time of the Brownian motion to a family of curves obtained from f via
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the following transform

S(α,β) : C(R+
0 ,R

+) −→ C([0, ζ(β)),R+)

f 7−→
(
1 + αβ.

α

)
f

(
α2.

1 + αβ.

)

where α > 0, β ∈ R and ζ(β) = −β−1 when β < 0, and equals to +∞
otherwise. We shall develop two different methodologies to establish
this connection.
In order to describe the main steps of the first one, we need to introduce
the Gauss-Markov process of Ornstein-Uhlenbeck type with parameter
φ ∈ C ([0, a),R+) (for short GMOU), denoted by U (φ), defined by

U
(φ)
t = φ(t)

(
U
(φ)
0 +

∫ t

0

φ−1(s) dBs

)
, 0 ≤ t < a,

where U
(φ)
0 ∈ R. The first step consists on showing that the law of U

is connected via a time-space harmonic function to the law of a family
of GMOU processes whose parameters are obtained from φ as follows.
For α > 0 and β reals, we define the mapping Π(α,β) by

Π(α,β) : C∞
(
R+
)
−→ C∞

(
R+
)

φ 7−→ φ(.)

(
α+ β

∫ .

0

φ−2(s)ds

)

where C∞ (R+) :=
⋃
b>0 C ([0, b),R+). As a second step, we show that

the law of the level crossing to a fixed boundary of a GMOU process
is linked to the law of the first passage time of the Brownian motion
to a specific curve via a deterministic time change. We now describe
the transform Σ which connects the parameter of the GMOU and the
curve. To a function φ ∈ C∞ (R+) we associate the increasing function
τ(.) =

∫ .
0

ds
φ2(s) and denote by A its inverse. We define the mapping Σ

by

Σ : C∞
(
R+
)
−→ C∞

(
R+
)

φ 7−→ 1/φ ◦A.

The mapping Σ is called Doob’s transform. Finally, the original trans-
form is constructed by combining the two previous ones in the following
way

S(α,β) = Σ ◦Π(α,−β) ◦ Σ, (α, β) ∈ R+ × R+
0 .
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We study in details these transformations by providing some algebraic
and analytical properties.
For the second approach, we fix α = 1 and set S(1,β) = S(β). We observe
that, when β < 0, the image by S(β) of a standard Brownian motion is
a Brownian bridge of length −β−1. Algebraic and analytic properties
of S(β) are also studied.
As new classes of explicit examples, the family a

√
(1 + λ1t) (1 + λ2t),

where a, λ1 6= λ2 are real numbers is considered for the Brownian
motion. It is shown that this methodology also applies to the Bessel
processes and in this case we investigate the first passage time over a
straight line.
This Chapter ends up with a survey of the usual methods for the treat-
ment of the first crossing time over a single curve by a Brownian motion.

Chapter 4. ([91]) Some first passage time problems are considered
therein for spectrally negative generalized Ornstein-Uhlenbeck processes.
For a fixed real a > x we define the stopping time Ta = inf{s ≥ 0;Xs ≥
a} and introduce the primitive It =

∫ t
0
Xsds defined for t ≥ 0. We recall

the Laplace transform of Ta which has been computed by Hadjiev [51]
and Novikov [86]. Note that in this case Ta is actually a hitting time
since these processes do not have positive jumps and therefore they
hit levels above continuously. Then, the attention is focussed on the
joint distribution of the couple (Ta, ITa). The associated double-Laplace
transform is provided in terms of new functions. The case when the un-
derlying Lévy process is given as a sum of a spectrally negative Lévy
process and an independent Compound Poisson process with exponen-
tial jumps is also considered. The explicit form for the joint Laplace
transform is computed explicitly. The Chapter closes with an analyti-
cal formula for the Laplace transform with respect to time to maturity
of the price of a European call option on maximum on yields in the
framework of generalized Vasicek models. These models belong to the
attractive class of affine term structure models.

Chapter 5. ([90]) The last Chapter is an attempt to find the law of
the first passage time of a level below the starting point, the associated
overshoot and the exit from an interval of spectrally negative α-stable
(1 < α ≤ 2) Ornstein-Uhlenbeck processes, denoted by X. These are
particular instances of the processes studied in Chapter 4, that is the
Lévy process is in this case an α-stable process. The solution of these
problems for processes with jumps are only known explicitly in the sim-
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pler case of spectrally negative Lévy process: The Laplace transform
are obtained in terms of the so-called scale function and the Laplace
exponent of these processes. All the techniques developed for the Lévy
processes rely on their space homogeneity property. Since X does not
have this property, a new approach using tools borrowed from the poten-
tial theory (q-potential of local time, q-resolvent density, dual process,
switch identity between Markov processes) is suggested to solve these
problems. The nice feature of this approach is to reduce the problems
described above in the one of computing the Laplace transform of the
hitting times (to any level) of X which can be obtained by finding an
appropriate family of martingales. For the downward hitting at the
level 0, this is done by introducing a new function which generalizes
the Mittag-Leffler one. It is shown that this function is the so-called
scale function of X. However, for any other levels y (y 6= 0) below, the
problem remains open. The Laplace transforms of first passage times
are provided for some related processes such as the process killed when
it enters the negative half line and the process conditioned to stay posi-
tive. The law of the maximum of the associated bridge is characterized
in terms of the q-resolvent density. By letting λ tend to zero in the defi-
nition of X (see the SDE in Chapter 4), so that λ-parameterized family
converges to the driving Lévy process Z, some results are recovered for
spectrally negative α-stable Lévy processes.



Chapter 1

Representations of the

First Passage Time

Density of an

Ornstein-Uhlenbeck

Process

Det er svært at sp̊a, specielt om fremtiden.
Storm P.

(It is difficult to predict, especially about the future.)

1.1 Introduction

In this Chapter, we gather different expressions for the density function
of the first passage time (or first hitting time) to a fixed level by an
Ornstein-Uhlenbeck process, abbreviated as OU process. This density

9
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is used in different areas of mathematical finance. Indeed, it is con-
nected to some pricing formulas of interest rate path-dependent options
when the dynamics of the underlying asset is assumed to be a mean re-
verting OU process. For this, we refer to [73] and the references therein.
The knowledge of the sought density is also relevant in credit risk mod-
elling, see e.g. Jeanblanc and Rutkowski [58]. It is also required in other
fields of applied mathematics. For instance in biology, see [116], this is
used for modelling the time between firings of a nerve cell. Recently,
Leblanc et al. [73] and [74] showed that the density can be expressed as
the Laplace transform of a functional of a 3-dimensional Bessel bridge.
However, the authors used therein an erroneous spatial homogeneity
property for the 3-dimensional Bessel bridge, a mistake that has been
noticed by several authors, including [47]. The feature of this represen-
tation is of probabilistic nature and the details are given in Section 1.5.
We provide two other explicit expressions obtained by different tech-
niques. The feature of these two representations is of analytic nature.
The first expression is a series expansion involving the eigenvalues of
a Sturm-Liouville boundary value problem associated with the Laplace
transform of the first passage time (see e.g. Keilson and Ross [63]). An
analytic continuation argument is used to compute the cosine trans-
form of the first passage time which gives an integral representation of
the density. As discussed above – in specific contexts in mathemati-
cal finance – there is a need to perform numerical computations. The
three representations suggest ways to approximate the density function.
We point out that the OU process is considered here as a case study
since it is possible to adapt readily the methodologies described below
for a large class of one-dimensional diffusions. The remainder of this
Chapter is organized as follows. In the next Section the OU process is
reviewed and basic properties of the first passage time are presented. In
Section 1.3, 1.4 and 1.5 the series, the integral, and the Bessel bridge
representations of the density are respectively derived. Section 1.6 is de-
voted to numerical computations. Finally, some properties of Hermite
and parabolic cylinder functions are recalled in Section 1.7.

1.2 Preliminaries on OU Processes

Let B := (Bt, t ≥ 0) be a standard Brownian motion. The associated
OU process U := (Ut, t ≥ 0), with parameter λ ∈ R , is defined to be
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the unique solution of the equation

dUt = dBt − λUt dt, U0 = x ∈ R. (1.1)

This linear equation when integrated yields the realization

Ut = e−λt
(
x+

∫ t

0

eλs dBs

)
, t ≥ 0.

By the Dambis, Dubins-Schwarz Theorem, see [100, p.181], there is a
Brownian motion W := (Wt, t ≥ 0), defined on the same probability
space, such that ∫ t

0

eλsdBs =Wτ(t), t ≥ 0,

where τ(t) = (2λ)−1(e2λt−1). Hence, the representation Ut = e−λt
(
x+

Wτ(t)

)
holds. We mention that this latter relation was first introduced

by Doob [34]. He exploited this fact to derive some path properties of U .
In particular, he showed that this process has almost surely continuous
paths which are nowhere differentiable. In what follows, we suppose
that λ > 0. In this case, U is positively recurrent and its semigroup
has a unique invariant measure which is the law of a centered Gaussian
random variable with variance 1/2λ.

Remark 1.2.1 Note that if U0 is chosen to be distributed as the invari-
ant measure and independent of B, we get the only stationary Gaussian
Markov process.

The process U is a Feller one. Its infinitesimal generator, denoted by G,
is given, on C2b (R), by

Gf(x) = 1

2

∂2f

∂x2
(x)− λx∂f

∂x
(x), x ∈ R.

Next, denote by P(λ)
x the law of U when U0 = x ∈ R. Then, thanks

to Girsanov’s Theorem, for any fixed t > 0, the following absolute
continuity relationship holds

dP(λ)
x|Ft = exp

(
− λ

2
(B2

t − x2 − t)−
λ2

2

∫ t

0

B2
sds

)
dPx|Ft (1.2)

where Px = P(0)
x stands for the law of B started at x.
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Remark 1.2.2 We point out that the Radon-Nikodym derivative (1.2)
is a true martingale. Indeed, in the case of absolute continuity between
solutions of stochastic differential equations, it is not necessary to use
Novikov or Kazamaki criteria for checking the martingale property. We
refer to Mckean [81, p.66-67] for the description of the conditions for
this result to hold in a more general setting.

Let a ∈ R be given and fixed, and introduce the first passage times

Ha = inf {s ≥ 0; Us = a} and Ta = inf {s ≥ 0; Bs = a}.

The law of Ha (resp. Ta) is absolutely continuous with respect to the

Lebesgue measure and its density is denoted by p
(λ)
x→a(·) (resp. px→a(·))

i.e. P(λ)
x (Ha ∈ dt) = p

(λ)
x→a(t) dt, t > 0. The focus, in this Chapter,

will be on the situation that U starts below the hitting barrier, that
is x < a. The other case can be recovered by replacing a and x with
−a and −x in the density (since −U is also an OU process). For the
Laplace transform of Ha, we recall the following well-known result, see
Siegert [112] or Breiman [19].

Proposition 1.2.3 For x < a, the Laplace transform of Ha is given by

Ex
[
e−αHa

]
=
H−α/λ(−x

√
λ)

H−α/λ(−a
√
λ)

=
eλx

2/2D−α/λ(−x
√
2λ)

eλa2/2D−α/λ(−a
√
2λ)

(1.3)

where Hν(·) and Dν(·) stand for the Hermite and parabolic cylinder
functions respectively, see Section 1.7 for a thorough study of these func-
tions.

Remark 1.2.4 In Proposition 2.2.3, we will show a new proof of this
result which relies merely on probabilistic arguments.

Proof. Thanks to the general theory of one-dimensional diffusion, we
refer to Itô and McKean [57, p.150], the Laplace transform of the first
passage time is the unique solution of the following Sturm-Liouville
boundary value problem

Gu(x) = αu(x), for x < a, (1.4)

u(x)|x=a = 1 and lim
x→−∞

u(x) = 0.
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This is a singular boundary value problem since the interval is not
bounded. We refer to [57], where it is shown that the solution to the
above problem takes the form

Ex[e−αHa ] =
ψα(x)

ψα(a)

where ψα(·) is, up to some multiplicative constant, the unique increasing
positive solution of the equation Gψ = αψ. By the definition of Hermite
functions, see Section 1.7, we get that ψα(x) = H−α/λ(x

√
λ) leading to

(1.3). This completes the proof. ¤

Remark 1.2.5 For λ < 0 the process U is transient. The study can
be related to the recurrent case as follows. By the chain’s rule, see
e.g. Borodin and Salminen [17], we have for any fixed t > 0

dP(λ)
x|Ft = exp

(
λ(U2

t − x2 − t)
)
dP(−λ)

x|Ft .

This combined with Doob’s optional stopping Theorem yields

p(λ)x→a(t) = exp
(
λ(a2 − x2 − t)

)
p(−λ)x→a(t), t > 0.

Remark 1.2.6 Note that thanks to the scaling property of B, we see

that Ex
[
e−αHa

]
= Ex√λ

[
e−αλ

−1Ha
√
λ

]
and hence

p(λ)x→a(t) = λp
(1)

x
√
λ→a

√
λ
(λt), t > 0. (1.5)

Therefore, the study may be reduced to the case λ = 1.

Remark 1.2.7 For the special case a = 0 there is a simple expression

for p
(λ)
x→0(·). Indeed, we shall first recall that for the Brownian motion,

recovered by letting λ→ 0, we have

px→a(t) =
|a− x|√
2πt3

exp

(
− (a− x)2

2t

)
, t > 0. (1.6)

Now, with T
(
√

)
a = inf{s ≥ 0; Ws + x = a

√
1 + 2λs}, Doob’s transform

implies the identity T
(
√

)
a = τ(Ha) a.s., as noticed by [19]. We deduce

that p
(λ)
x→0(t) = τ ′(t)px→0(τ(t)), and recover thus

p
(λ)
x→0(t) =

|x|√
2π

exp

(
− λx2e−λt

2 sinh(λt)
+
λt

2

)(
λ

sinh(λt)

)3/2

, t > 0, (1.7)
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which appeared in Pitman and Yor [96].

Remark 1.2.8 When, in (1.1), B is replaced by (Bt + µt, t ≥ 0), for
some µ ∈ R, the resulting process is a mean reverting one. This is given
by

(µ)Ut =
µ

λ
+ e−λt

(
x− µ

λ
+

∫ t

0

eλs dBs

)
, t > 0.

The corresponding first passage time density, denoted by (µ)p
(λ)
x→a(t), is

easily seen to be related to that with µ = 0 via

(µ)p(λ)x→a(t) = p
(λ)
x−µ

λ→a−
µ
λ
(t), t > 0.

1.3 The Series Representation

This Section is devoted to inverting the Laplace transform of the dis-
tribution of Ha by means of the Cauchy Residue Theorem. Let Dν(·)
be the parabolic cylinder function with index ν ∈ R. For a fixed b, de-
note by (νj,b)j≥1 the ordered sequence of positive zeros of the function
ν 7→ Dν(b). We are now ready to state the following result which ap-
peared without a rigorous justification in many references. For instance,
we found it in [63] and also in [101] where the authors study the zeros
of the parabolic cylinder functions. A similar expression is given in [87]
for the density of the first passage time of the Brownian motion to the
square root boundary, connected to the distribution we are focusing on
by Doob’s transform.

Theorem 1.3.1 Fix x < a, then the density of Ha is given by the
following series expansion

p(λ)x→a(t) = −λeλ(x
2−a2)/2

∞∑

j=1

Dνj,−a√2λ
(−x

√
2λ)

D′νj,−a√2λ
(−a

√
2λ)

e−λνj,−a
√
2λt (1.8)

where D′νj,b(b) = ∂Dν(b)
∂ν |ν=νj,b . For any t0 > 0, the series converges

uniformly for t > t0.

Proof. The substitution v(x) = e−x
2/4 u(x/

√
2λ) transforms (1.4) into

the Weber equation v′′ −
(
α
λ − 1

2 + q(x)
)
v = 0 where q(x) := x2/4. A
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fundamental solution of the latter equation is given by x 7→ D−α/λ(−x).
Since x 7→ q(x) is real-valued, continuous and q(x) → ∞ as x → ∞,
the Weber operator has a pure point spectrum, we refer to Hille [54,
Theorem 10.3.4]. Moreover, the eigenvalues are simple, positive and
bounded from below, see [101] and [120] for more details about the
distribution of the spectrum. As a consequence, the Laplace transform
(1.3) is meromorphic as a function of the parameter α, whose poles are
simple, negative and are given by the sequence {αj = −λνj,−a√2λ}j≥1.
The residue of the Laplace transform at αj , j > 0, is easily computed
to be

Resα=αj Ex[e−αHa ] = −λeλ(x
2−a2)/2D−αj/λ(−x

√
2λ)

D′−αj/λ(−a
√
2λ)

.

To check that the conditions of [53] are satisfied, we make use of the
asymptotic properties of parabolic cylinder functions recalled in Sec-
tion 1.7. The Heaviside expansion Theorem in [53] gives the expression
of the density where the parameters are given by the eigenvalues of the
associated Sturm-Liouville equation. The uniform convergence of the
series on [t0,∞), for any t0 > 0, follows from the asymptotic formulas
(1.18) and (1.19). ¤

The following local limit result is essentially due to the fact that the
series in formula (1.8) is uniformly convergent.

Corollary 1.3.2 Let the situation be as in Theorem 1.3.1, then

lim
T→∞

eλν1,−a
√
2λTP(λ)

x (Ha > T ) =
eλ(x

2−a2)/2

ν1,−a
√
2λ

Dν1,−a√2λ
(−x

√
2λ)

D′ν1,−a√2λ
(−a

√
2λ)

.

Remark 1.3.3 The distribution of Ha is infinitely divisible and may be
viewed as an infinite convolution of elementary mixtures of exponential
distributions. Kent [66] establishes a link between the canonical measure
of the first passage time of a fixed level by a one-dimensional diffusion
and the spectral measure of its infinitesimal generator. When the left
end point of the diffusion is not natural, the same author gives the series
expansion based on the spectral decomposition, see [65]. However, in our
case, the left-end point is natural therefore such methodology cannot be
applied directly.
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1.4 The Integral Representation

In this Section, we compute the cosine transform of the distribution of

Ha. Then the density p
(λ)
x→a(·) can be computed out from the cosine

transform, and its inverse, on L1(R+), via

p(λ)x→a(t) =
1

2π

∫ ∞

0

cos(αt)Ex [cos(αHa)] dα, t > 0.

Theorem 1.4.1 Fix x < a, then the density of Ha is given by

p(λ)x→a(t) =
λ

2π

∫ ∞

0

cos(αλt)Ĥ−α
(
−
√
λa,−

√
λx
)
dα (1.9)

where

Ĥα (a, x) =
Hrα(a)Hrα(x) +Hiα(x)Hiα(a)

Hr2α(a) +Hi2α(a)

and Hrα(·) and Hiα(·) are specified by formulas (1.15) and (1.16) re-
spectively.

Proof. To simplify the notation in the proof we only consider the case
λ = 1, and the general case λ > 0 can be recovered from (1.5). The
Laplace transform (1.3) is analytic on the domain {α ∈ C; Re(α) ≥ 0}.
Moreover, from the proof of Theorem 1.3.1, it is clear that the ra-
tio of the parabolic cylinder function is analytic on the domain {α ∈
C; Re(α) > −ν1,−a√2}, where we recall that ν1,−a

√
2 is the smallest

positive zero of the function ν 7→ Dν(−a
√
2). By analytical continua-

tion, we deduce that the Laplace transform is analytical on the domain
{α ∈ C; Re(α) > −ν1,−a√2}. It follows that

Ex[cos(αHa)] = Re

(Hiα(−x)
Hiα(−a)

)

=
Hr−α(−a)Hr−α(−x) +Hi−α(−x)Hi−α(−a)

Hr2−α(−a) +Hi2−α(−a)
.

The statement follows from the injectivity of the cosine transform. ¤
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1.5 The Bessel Bridge Representation

As mentioned in the Introduction, computing explicitly p
(λ)
x 7→a(t) amounts

to characterizing the distribution of a quadratic functional of the 3-di-
mensional Bessel bridge. In order to recall the connection we need to
provide some properties of the 3-dimensional Bessel process R . This
process might be defined as the radial part of a 3-dimensional Brownian
motion. In what follows, we just give some results which we shall use
in this Section and we postpone to Chapter 2 a more detailed study of
these processes. First, set for y ∈ R+, Ly = sup {s ≥ 0; Rs = y}, then
Williams’ time reversal result, see e.g. Revuz and Yor [100, p.498], says
that the processes

(
y −BTy−u, u ≤ Ty

)
and (Ru, u ≤ Ly) are equiva-

lent. A second time reversal result which we call the switching identity,
states that, for y ∈ R+, the processes (Rs, s ≤ t) conditionally on
R0 = x and Rt = y and (Rt−s, s ≤ t) conditionally on R0 = y and
Rt = x have the same distribution, see [100, p.468, Exercise 3.7]. The
process (Rs, s ≤ t) conditionally on R0 = x and Rt = y, which we sim-
ply denote by r, is the so-called 3-dimensional Bessel bridge over the
interval [0, t] between x and y. It is the unique strong solution of the
stochastic differential equation, for s < t,

drs =
(y − rs
t− s +

1

rs

)
ds+ dBs, r0 = x, rt = y.

Now, we quote the following result from [47] and provide its detailed
proof for the sake of completeness.

Theorem 1.5.1 Fix x < a, then the density of Ha is given by

p(λ)x→a(t) = e−λ(a
2−x2−t)/2E0→a−x

[
e−

λ2

2

∫ t
0
(ru−a)2 du

]
px→a(t) (1.10)

where r is a 3-dimensional Bessel bridge over the interval [0, t] between
0 and a− x and px→a(·) is given in (1.6).

Remark 1.5.2 From this result, we shall derive, in Chapter 2, the joint
Laplace transform of the L1 and L2 norms of the 3-dimensional Bessel
bridges.
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Proof. Combining relation (1.2) and Doob’s optional stopping Theo-
rem, we get

p(λ)x→a(t) = e−
λ
2 (a

2−x2−t)b(t)px→a(t),

where we set

b(t) = Ex
[
e−

λ2

2

∫ t
0
B2
u du

∣∣∣∣Ta = t

]
.

Next, we use successively the spatial homogeneity, the symmetry of B,
Williams’ time reversal identity, the transience property of R and the
commuting identity for R, in order to write

b(t) = Ea−x
[
e−

λ2

2

∫ t
0
(Bu−a)2 du

∣∣∣∣T0 = t

]

= E0

[
e−

λ2

2

∫ t
0
(Ru−a)2 du

∣∣∣∣La−x = t

]

= E0

[
e−

λ2

2

∫ t
0
(Ru−a)2 du

∣∣∣∣Rt = a− x
]

= Ea−x
[
e−

λ2

2

∫ t
0
(Rt−u−a)2du

∣∣∣∣Rt = 0

]
,

which completes the proof.

¤

1.6 Numerical Illustrations

Two standard techniques for approximating the density of the first pas-
sage time of diffusions are: the numerical approach to the solution of the
partial differential equation associated to the density (analytic method)
and direct Monte Carlo simulation (probabilistic method). The three
representations of the density suggest alternative ways to perform nu-
merical computations in the OU process case. Below, we provide a
short description of these approaches. We illustrate them, in the last
subsection, with two examples.

Series representation. The first approximation is to use the series
expansion (1.8). The infinite series is truncated after the first N terms,
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that is,

fS(t) = −λeλ(x
2−a2)/2

N∑

j=1

bj exp
(
− λajt

)
, t > 0,

where aj = νj,−a
√
2λ and bj = Dνj,−a

√
2λ
(−x

√
2λ)/D′νj,−a√2λ

(−a
√
2λ).

For t small, fS(t) is negative or decreasing. Let t0 be the point where

fS(t0) = 0 or f ′S(t0) = 0. Hence, the approximation of p
(λ)
x→a(·) is given

by fS(t) for t ≥ t0 and 0 for 0 < t < t0. The parabolic cylinder function
Dν(x) can be approximated by the series expansion given by (1.17) and
(1.12). From this, numerical values of νj,−a

√
2λ, Dνj,−a√2λ

(−x
√
2λ) and

D′νj,−a√2λ
(−a

√
2λ) can be estimated where the last term is computed

by the differential quotient. A problem is to choose suitable N for a
prescribed truncation error. Since we are approximating a density, there
are many ways to measure the quality of the chosen truncation param-
eter N . We give an average error ē based on large-n asymptotics that is
independent of the argument t and is easy to compute. Integrating the
absolute value of the N th term of the series and using the asymptotic
formulas (1.18) and (1.19) yield

∫ ∞

0

|λeλ(x2−a2)/2 bNe−λaN t| dt = eλ(x
2−a2)/2 |bN |/aN

∼ π−1eλ(x
2−a2)/2N−1.

The average error is defined to by ē = π−1eλ(x
2−a2)/2N−1. When

νj,−a
√
2λ, j = 1, . . . , N , are estimated, it is easy to numerically com-

pute the expectation of a bounded function of the first passage time
(e.g. prices of interest rate options presented in [73]) using the approx-
imation. Then ē gives a measure of how precise the expectation is
estimated. In the examples below we chose N = 100 and in Example 1
ē is equal to 0.005.

Integral representation. It is not a good method to approximate the
integral in (1.9) by the corresponding Riemann sum. Instead, we make

use of the trapezoidal rule. The approximation formula for p
(λ)
x→a(·) by

the integral representation is then given by

fI(t) =
eA/2

2t
hxa

(
A

2t

)
+
eA/2

t

N∑

k=1

(−1)k Re
(
hxa

(
A+ 2ikπ

2t

))
(1.11)



20 Chapter 1. First Passage Time Density of an OU Process

where hxa(α) = Hα/λ(−x)/Hα/λ(−a) and A > 0 is a constant. It follows

from Section 1.4 that the Laplace transform is given by E(λ)
x [e−νσa ] =

H−ν/λ(−x
√
λ)/H−ν/λ(−a

√
λ). Also, for this approach, the question

remains about a good choice for A and N . The numerical computation
of the integral leads to the discretisation error and the truncation error
(both depends on the argument t). A bound for the discretisation error
is Ce−A where C is constant that dominates the density. In the exam-
ples below A = 18.1 so the discretisation error is of order 10−7. There
is no simple bound for the truncation error. One can choose N when
the value of the last term is small. We set N = 500 in the examples
which is a conservative choice. In practice, one can determine A and N
based on trial and error. We refer to Abate and Whitt [1], for precise
statements and more details on this approximation method.

Bessel bridge representation. For the Bessel bridge approach, it
is needed to resort to some simulation techniques to compute the func-
tional of the 3-dimensional Bessel bridges in the expression (1.10). With

the notation E
[
G
(∫ t

0
g(rs) ds

)]
where G is some measurable and boun-

ded function and g is a regular function, the three steps to follow are

1. First, we compute the integral by considering the corresponding
Riemann sum

E
[
G

(∫ t

0

g(rs) ds

)]
' E

[
G

(
n∑

k=1

g
(
rk tn

))]
.

2. We approach r with another process r̄ by means of the Euler
scheme.

E

[
G

(
n∑

k=1

g
(
rk Tn

))]
' E

[
G

(
n∑

k=1

g
(
r̄k Tn

))]
.

The same step of discretisation is chosen for the Euler scheme and
the Riemann sum.

3. Finally, to estimate the expectation we use Monte Carlo method
by simulating a large number M of independent paths of the pro-
cess r̄

E

[
G

(
n∑

k=1

g
(
r̄k Tn

))]
' 1

M

M∑

i=1

G

(
n∑

k=1

g
(
r̄
(i)

k Tn

))
.
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Putting these steps together, at the end, the approximation formula for
(1.10) is given by

fB(t) = e−λ(a
2−x2−t)/2 1

M

M∑

i=1

G

(
n∑

k=1

g
(
r̄
(i)

k Tn

))
px→a(t).

Implementation and results. The two first approaches are ana-
lytic methods and very easy to implement using programs like Maple
or Mathematica, where it is possible to use built-in functions. However,
these require the knowledge of the Laplace transform of the first passage
time which can be computed only for some specific continuous Markov
processes. The Bessel bridge approach is a probabilistic method. Its
main advantage compared to the direct Monte Carlo one is that it over-
comes the problem of detecting the time at which the approximated
process crosses the boundary. We refer to [46] for an explanation of the
difficulties encountered with the direct Monte Carlo method. We also
emphasize that this algorithm estimates directly the density whereas
the direct Monte Carlo provides an approximation of the distribution
function. This method can readily be used to treat similar problems for
continuous Markov processes which laws are absolutely continuous with
respect to the Wiener measure.

In order to test the performance of the three methodologies, we car-
ried out two numerical examples. In both examples we have used the
following approximation parameters. For the series representation we
used N = 100 in the truncated series fS(·). For the integral method,
we have chosen A = 18.1 and took N = 500 terms in the series of fI(·).
In the approximation fB(·), the Bessel bridge method, we have simu-
lated M = 105 paths of the Bessel bridge with n = 1000 time steps on
the interval [0, 4]. In both examples we took the parameter of the OU
process to be λ = 1, which is sufficient by (1.5).

Example 1: We examine the example a = 0, which is the only case
where the density is known in closed form, indeed given by (2.9). The
OU process is starting from x = −1. The numerical approximations of

the density p
(1)
−1→0(t) are collected in Table 1. The table shows that

all the analytical approaches are accurate up to 10−5 digits whereas the
simulation approach is accurate up to 10−3 digits. Note that for the
series method t0 = 0.044 and hence for t = 0.04 the approximated value
for the density is set to be 0 as described above. In fact, fS(0.04) =
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−0.0019.

Example 2: In this example the OU process starts from x = 0. We

computed the density p
(1)
0→a(t) for a equals 0.50, 0.75 and 1.00.

In Figure 1, the results of the three densities are presented. In this
example there is no check of the numerical values since there is no closed
form formulas. But from Figure 1, one sees that the three methods give
numerical values which are very close and can hardly be distinguished.

t 0.04 0.08 0.1 0.25
Explicit 0.000310 0.057549 0.144538 0.762172
Series –0.001865 0.057540 0.144538 0.762172
Integral 0.000310 0.005754 0.144538 0.762172
Bessel Bridge 0.000310 0.057538 0.144534 0.762074

t 0.5 0.75 1 1.5
Explicit 0.760954 0.584084 0.441483 0.257945
Series 0.760954 0.584084 0.441483 0.257945
Integral 0.760954 0.584084 0.441483 0.257945
Bessel Bridge 0.760946 0.584362 0.441648 0.258012

t 2 2.5 3 4
Explicit 0.154101 0.092934 0.056248 0.020670
Series 0.154101 0.092934 0.056248 0.020670
integral 0.154122 0.092612 0.055968 0.020670
Bessel Bridge 0.154107 0.092841 0.056203 0.020596

Table 1.1: Different values of the density p
(1)
−1→0(t) of the first passage

time to the level a = 0 for an OU process starting from x = −1 with
parameter λ = 1.

1.7 Hermite Functions and their Complex

Decomposition

The special functions used in previous Sections are recalled below and
most the results can be found in Lebedev [72, Chapter 10]. The Hermite
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PSfrag replacements

1
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t

p
(1)
0→a(t)

a = 0.50

a = 0.75

a = 1.00

Figure 1.1: A drawing of the density t 7→ p
(λ)
x→a(t) for three values of

a when λ = 1 and x = 0. Solid line: Series representation. Dashed line
= Bessel Bridge approach.

function Hν(z) is defined by

Hν(z) =
2νΓ( 12 )

Γ( 1−ν2 )
Φ
(
− ν

2
,
1

2
; z2
)
+

2ν+
1
2Γ(− 1

2 )

Γ(− ν
2 )

zΦ
(1− ν

2
,
3

2
; z2
)

where Φ denotes the confluent hypergeometric function and Γ the gamma
function. The Hermite function has the following series representation

Hν(z) =
1

2Γ(−ν)
∞∑

m=0

(−1)m
m!

Γ

(
m− ν

2

)
(2z)m, |z| <∞, (1.12)

and satisfies the recurrence relations

∂Hν(z)
∂z

|z=a = 2νHν−1(a), Hν+1(z) = 2zHν(z)− 2νHν−1(z).
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Hν(z) is an entire function in both the variable z and parameter ν. The
couple Hν(±·) forms a fundamental solution to the ordinary Hermite
equation

v′′ − 2zv′ + 2νv = 0. (1.13)

The Hermite function, see [72, p.297], has the integral representation

Hν(z) =
2ν+1

Γ((1− ν)/2)

∫ ∞

0

e−u
2

u−ν(u2 + z2)ν/2 du, (1.14)

for Re(ν) < 1 and | arg z| < π/2. In particular, we have

Hν(0) = 2ν
Γ(1/2)

Γ((1− ν)/2) .

With the notation

Hiν(z)
Hiν(0)

= Hrν(z) + iHiν(z),

we get, from the representation (1.14),

Hrν(z) =
2√
π

∫ ∞

0

e−u
2

cos

(
ν

2
log
(
1 +

( z
u

)2))
du (1.15)

Hiν(z) =
2√
π

∫ ∞

0

e−u
2

sin

(
ν

2
log
(
1 +

( z
u

)2))
du. (1.16)

Replacing ν by iν in (1.13) and equalizing the real and imaginary parts
yield the system

GHr − 2νHi = 0 and GHi+ 2νHr = 0,

with boundary conditions

Hr(0) = 1, Hi(0) = 0.

The Weber equation

v′′ +
(
ν +

1

2
− z2

4

)
v = 0

has as a particular solution the parabolic cylinder function

Dν(z) = 2−ν/2e−z
2/4Hν(z/

√
2), z ∈ R. (1.17)
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We have the asymptotic formulas

Dν(z) ∼
√
2π

Γ(−ν)e
iπνz−ν−1ez

2/4 for |z| → +∞, π
4
< | arg z| < 5π

4
,

Dν(z) ∼ zνe−z
2/4 for |z| → +∞, | arg z| < 3π

4
,

Dν(z) ∼
√
2e−

1
4 (2ν+1) cos

(
z

√
ν +

1

2
− π

2
ν

)(
1 +O(ν−

1
4 )
)

for ν → +∞, z ∈ R.

We deduce from the later formula the following large-n asymptotics

νn,a ∼ 2n− 1 +
2λa

π2
+

4a

π

√
n− 1

4
+
λa

π2
(1.18)

and

Dνn(−x
√
2λ)

D′νn(−a
√
2λ)

∼
(−1)n+12

√
νn + 1

2

π
√
νn + 1

2 −
√
2λa

cos
(
x
√
λ(2νn + 1)− π

2
νn

)

(1.19)
where νn = νn,−a

√
2λ and for a fixed a, νn,a denotes the n

th positive zero

of the function ν 7→ Dν(a). We point out that the above representations
for the Hermite function might obviously be fit to the parabolic cylinder
one.





Chapter 2

On the Joint Law of the

L1 and L2 Norms of the

3-Dimensional Bessel

Bridge

Agdud mebla idles d’arggaz mebla iles.
Berber proverb.

(A people without culture, it is like a man without words.)

2.1 Introduction

Let r := (rs, s ≤ t) be a 3-dimensional Bessel bridge over the interval
[0, t] between x and y, where x, y are some positive real numbers and t
is a fixed time horizon. Introduce the couple of random variables

(
N

(1)
t (r), N

(2)
t (r)

)
=

(∫ t

0

rsds,

∫ t

0

r2sds

)
. (2.1)

In this Chapter, we aim to compute explicitly its joint Laplace trans-
form. Let W be a standard real-valued Brownian motion started at

27
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x ∈ R and recall that T
(
√

)
a = inf{s ≥ 0; Ws = a

√
1 + 2λs}, where

λ > 0 and a ∈ R. As mentioned in Remark 1.2.7, Doob’s trans-

form allows to relate T
(
√

)
a to the first passage time of the level a

by an Ornstein-Uhlenbeck process with parameter λ. That is with
Ha = inf{s ≥ 0; Us = a} and

Ut = e−λt
(
x+

∫ t

0

eλsdBs

)
, t ≥ 0, (2.2)

where B is another real-valued Brownian motion defined on the same

probability space, we have T
(
√

)
a = 1

2λ log (1 + 2λHa) a.s.. We shall see
that the determination of the distribution of Ha, or equivalently that

of T
(
√

)
a , amounts to studying the joint distribution of the L1 and L2

norms of a 3-dimensional Bessel bridge. While we are interested in the
joint law, we mention that there is a substantial literature devoted to
the study of the law of the L1 norm of the Brownian excursion, that
is when x = y = 0, see e.g. [80], [49], [92] and [59]. The L2 norm of
the Bessel bridge, which is closely related to the Lévy stochastic area
formula, has been also intensively studied by many authors including
for instance [97], [45] and the references therein.

Then, motivated by recovering the results for the L1 and L2 norms of a
3-dimensional Bessel bridge from the joint law, we develop a stochastic
device which allows to get the limit when one of the parameters of the
Laplace transform tends to 0. To this end, we establish a relationship
between the first passage times of the Brownian motion to a large class
of (smooth) curves to the linear or quadratic ones. As a by-product,
we show some connections between certain stochastic objects and some
special functions. We will show that this device applies to continuous
time stochastic processes.

The Chapter is organized as follows. In the next Section, after some
preliminaries on the 3-dimensional Bessel process, we derive the sought
joint law in terms of transforms via stochastic techniques for the case
y = 0. In particular, we give a probabilistic construction of the parabolic
cylinder function which characterizes the Laplace transform of the first
passage time of a fixed level by an Ornstein-Uhlenbeck process. For
any y > 0, we resort to the Feynman-Kac formula. Then, in Section
2.3 we show some relationships between first passage times over some
moving boundaries for general stochastic processes which we apply to
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the first passage time of the Brownian motion over the square root
boundary. This link allows to get some asymptotic results for ratio
of parabolic cylinder functions. We end up this Chapter by making
some connections between the studied law and the one of some other
functionals.

2.2 On the Law of
(
N

(1)
t (r), N

(2)
t (r)

)

The 3-dimensional Bessel process, denoted by R, is defined to be the
unique strong solution of

dRt = dBt +
1

Rt
dt, R0 = x ≥ 0.

This is a strong Markov process with speed measure given by m(dy) =
2y2dy. Its semigroup is absolutely continuous with respect to m with
density

qt(x, y) =
1

2
√
2πt

1

yx

(
e−

1
2t (x−y)

2 − e− 1
2t (x+y)

2
)
, x, y, t > 0,

and by passage to the limit as y tends to zero we obtain

qt(x, 0) =
1√
2πt3

e−
x2

2t , x, t > 0.

We shall denote by Qx the law of R when it is started at x and we
simply write Q for x = 0. Next, for y and t ≥ 0, the conditional
measure Qt

x,y = Qx[ . | Rt = y], viewed as a probability measure on
C ([0, t], [0,∞)), stands for the law of the 3-dimensional Bessel bridge
starting at x and ending at y at time t. Since R is transient, we have
Qt
x,y = Qx[ . | Ly = t] where Ly = sup{s ≥ 0; Rs = y}. Williams’ time

reversal relationship states that, for R0 = 0, B0 = x > 0, the processes
(RLx−s, s ≤ Lx) and (Bs, s ≤ T0) are equivalent.

Next, introduce, for x, y, β ≥ 0. the resolvent kernel, or the Green’s
function, G given by

Gβ(x, y)dy =

∫ ∞

0

e−βtEx
[
e−

λ2

2

∫ t
0
R2
s ds−α

∫ t
0
Rs ds, Rt ∈ dy

]
dt.
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As we shall see below we have Gβ(x, y) = w−1β m(y)ϕβ(x ∧ y)ψβ(x ∨ y)
where ϕβ (resp. ψβ) is the unique, up to some multiplicative positive
constant, decreasing, positive and bounded at +∞ solution (resp. in-
creasing, positive and bounded at 0 solution) of the Sturm-Liouville
equation

2−1φ′′(x) + x−1φ′(x)−
(
2−1λ2x2 + αx+ β

)
φ(x) = 0, x > 0. (2.3)

For a fixed t ≥ 0, let us introduce the notation

Υλ,αx→y(t) = Ex→y
[
e−

λ2

2 N
(2)
t (r)−αN(1)

t (r)
]
, λ, x and α ≥ 0.

We denote simply Υλ,αx (t) (resp. Υλ,α(t)) for Υλ,αx→0(t) (resp. Υ
λ,α
0→0(t)).

Remark 2.2.1 We point out that, thanks to the scaling property of

Bessel processes, we have the identity Υλ,α
x→y(t) = Υλt

2,αt3/2
x√
t
→ y√

t

(1).

2.2.1 Stochastic Approach for the Case y = 0

In here we show how to solve the Sturm-Liouville boundary value prob-
lem (2.3) by using stochastic devices.

Theorem 2.2.2 For x > 0 and β, α and λ ≥ 0, we have

∫ ∞

0

e−βtqt(x, 0)Υ
λ,α
x (t) dt =

1

x

D− β
λ− 1

2+
α2

2λ3

(√
2λ(x+ α

λ2 )
)

D− β
λ− 1

2+
α2

2λ3

(√
2αλ−3/2

) .

Consequently, We have

∫ ∞

0

(
e−βt − 1

)
Υλ,α(t)

dt√
2πt3

=
√
2λ

×



D(x)

− β
λ− 1

2+
α2

2λ3

(√
2αλ−3/2

)

D− β
λ− 1

2+
α2

2λ3

(√
2αλ−3/2

) −
D(x)

α2

2λ3
− 1

2

(√
2αλ−3/2

)

D α2

2λ3
− 1

2

(√
2αλ−3/2

)




where D(x)
ν (y) = ∂Dν(x)

∂x |x=y.
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Proof. We fix a = α/λ2, observe that

Υλ,aλ
2

x (t) = ea
2λ2t/2 Ex

[
e−

λ2

2

∫ t
0
(Ru+a)

2 du
∣∣Rt = 0

]
. (2.4)

Following a line of reasoning similar to the proof of Theorem 1.5.1, we
get

Ex
[
e−

λ2

2

∫ t
0
(Ru+a)

2 du
∣∣Rt = 0

]
= Ex+a

[
e−

λ2

2

∫ t
0
B2
u du

∣∣Ta = t
]
. (2.5)

Now, thanks to the absolute continuity relationship (1.2) and Doob’s
optional stopping Theorem, we can write

p
(λ)
x+a→a(t) = e

λ
2 (x

2+2ax+t)Ex+a
[
e−

λ2

2

∫ t
0
B2
u du

∣∣Ta = t
]
px→0(t). (2.6)

A combination of (2.4), (2.5) and (2.6) leads to

e(
1
2a

2λ2−λ
2 )tp

(λ)
x+a→a(t) = e

λ
2 x

2+aλxpx→0(t) Υ
λ,α
t (x).

By taking the Laplace transform with respect to the variable t on both
sides, we get

∫ ∞

0

e−βtqt(x, 0)Υ
λ,α
x (t) dt =

1

x
Ex+a

[
e−(β+

λ
2− α2

2λ2
)Ha
]
.

We now derive the expression of the Laplace transform of Ha. Although
this is a well-known result, see Proposition 1.2.3, below we give a new
proof which relies on probabilistic arguments.

Proposition 2.2.3 For any x, a ∈ R and β ≥ 0, we have

Ex
[
e−βHa

]
=
eλx

2/2D−β/λ(εx
√
2λ)

eλa2/2D−β/λ(εa
√
2λ)

(2.7)

where ε = sgn(x− a) and Dν stands for the parabolic cylinder function
which admits the following integral representation

Dν(z) =
21/2e−z

2/4

Γ
(
1−ν
2

)
∫ ∞

0

(
t2 + z2

)ν/2
t−νe−t

2/2 dt (2.8)

where Re(ν) < 1, |arg(z)| < π
2 .
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Proof. Recall that Doob’s transform implies the identity T
(
√

)
a =

τ(Ha) a.s., where τ(t) = (2λ)−1(e2λt − 1). Specializing on a = 0 we

deduce that p
(λ)
x→0(t) = τ ′(t)px→0(τ(t)). Hence, the expression

p
(λ)
x→0(t) =

| x |√
2π

exp
(
− λx2e−λt

2 sinh(λt)
+
λt

2

)( λ

sinh(λt)

)3/2

. (2.9)

It follows that

Ex
[
e−βH0

]
=

∫ ∞

0

e−βtτ ′(t)px→0(τ(t)) dt

=
|x|√
2π

∫ ∞

0

(1 + 2λt)
−β/2λ

t−3/2e−x
2/2t dt

=
1√
2π

∫ ∞

0

(
t2 + λx2

)−β/2λ
tβ/λe−t

2

dt.

Next, the continuity of the paths of U yields the following identity

Hx→0
(d)
= Hx→a + Ĥa→0, x ≤ a ≤ 0,

where thanks to the strong Markov property Ĥa→0 is independent of
Hx→a. It follows that

Ex
[
e−βHa

]
=

∫∞
0

(
t2 + λx2

)−β/2λ
tβ/λe−t

2

dt
∫∞
0

(t2 + λa2)
−β/2λ

tβ/λe−t2 dt
.

By using the integral representation of the parabolic cylinder function
(2.8), we get

Ex
[
e−βHa

]
=
eλx

2/2D−β/λ(x
√
2λ)

eλa2/2D−β/λ(a
√
2λ)

, x ≤ a.

We complete the proof of the Proposition by observing that the sym-
metry of B in (2.2) allows to recover the case x ≥ a. ¤

The proof of the first assertion of Theorem 2.2.2 is then completed by
putting pieces together. To prove the second one, it is enough to let x
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tend to 0 in the following formula

∫ ∞

0

(
e−βt − 1

)
e−x

2/2tΥλ,αx (t)
dt√
2πt3

=

1

x



D− β

λ− 1
2+

α2

2λ3

(√
2λ(x+ α

λ2 )
)

D− β
λ− 1

2+
α2

2λ3

(√
2αλ−3/2

) −
D− 1

2+
α2

2λ3

(√
2λ(x+ α

λ2 )
)

D− 1
2+

α2

2λ3

(√
2αλ−3/2

)


 .

¤

Below, we give a straightforward reformulation of the previous result,
which is based on the Laplace transform inversion formula. To this end,
we recall the expression of the density of Ha as a series expansion which
can be found for instance in Theorem 1.3.1. That is, for x and a real
numbers, we have

p(λ)x→a(t) = −λeλ(x
2−a2)/2

∞∑

n=1

Dνn,ε√2λa
(ε
√
2λx)

D′
νn,ε

√
2λa

(ε
√
2λa)

e−λνn,ε
√
2λat

where we set ε = sgn(x− a), D′
νn,b

(b) = ∂Dν(b)
∂ν |ν=νn,b and the sequence

(νj,b)j≥0 stands for the ordered positive zeros of the function ν → Dν(b).

Corollary 2.2.4 For λ, α, x and t > 0, we have

Υλ,αx (t) = −λ
√
2πt3

x
e
1
2

(
(α

2

λ2
−λ)(t−1)+ x2

t

) ∞∑

n=1

Dνn,c
(√

2λx+ c
)

D′
νn,c(c)

e−tλνn,c

(2.10)
where we set c =

√
2αλ−3/2.

Remark 2.2.5 It would be interesting to find a probabilistic methodol-
ogy to extend the result for the case y > 0.

2.2.2 Extension to y > 0 Using the Feynman-Kac

Formula

Our aim here is to provide an extension of the previous result to any
positive real numbers y by using the Feynman-Kac formula.
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Theorem 2.2.6 For y, x ≥ 0 and β > 0, we have

∫ ∞

0

e−βtqt(x, y) Υ
λ,α
x→y(t) dt =

Γ(βλ + 1
2 − α2

2λ3 )y√
λπx

S− β
λ− 1

2+
α2

2λ3

(√
2λ(x ∧ y + α

λ2 ), c
)
D− β

λ− 1
2+

α2

2λ3

(√
2λ(x ∨ y + α

λ2 )
)

D− β
λ− 1

2+
α2

2λ3
(c)

where Sα(x, y) = Dα(−x)Dα(y)−Dα(x)Dα(−y), x∧ y = inf(x, y) and
x ∨ y = sup(x, y).

Proof. We shall prove our statement by following a method which is
similar to that used by Shepp [110] for computing the double Laplace
transform of the integral of a Brownian bridge. Set F yε (x) =

1
2ε I{|x−y|<ε}

and a(x) =
(
λ2

2 x
2 + αx

)
. First, note that

lim
ε→0

Ex
[∫ ∞

0

e−βte−
∫ t
0
a(Rs) dsF yε (Rt) dt

]
=

∫ ∞

0

e−βtqt(x, y) Υ
λ,α
x→y(t) dt.

Then, the Feynman-Kac formula states that

φε(x) = Ex
[∫ ∞

0

e−βte−
∫ t
0
a(Rs) dsF yε (Rt) dt

]

is the bounded solution of

1

2
φ′′ε (x) +

1

x
φ′ε(x)− (a(x) + β)φε(x) = F yε (x), x > 0. (2.11)

In order to solve this equation, we first consider the following homoge-
neous one

1

2
φ′′(x) +

1

x
φ′(x)− (a(x) + β)φ(x) = 0, x > 0.

Setting φ(x) = x−1v(x), we get that v satisfies the Weber equation

1

2
v′′(x) =

(
λ2

2
x̄2 − α2

2λ2
+ β

)
v(x), x > 0, (2.12)

where x̄ = x+ α
λ2 . A fundamental solution of (2.12) is expressed in terms

of the parabolic cylinder function D− β
λ− 1

2+
α2

2λ3

(√
2λx̄

)
, see e.g. [48].
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Thus, the solution of (2.12) which is positive, decreasing and bounded
at ∞ is given by

ϕ(x) = x−1D− β
λ− 1

2+
α2

2λ3

(√
2λx̄

)
, x > 0.

The solution of (2.12) which is positive, increasing and bounded at 0
has the form

ψ(x) = x−1
(
c1D− β

λ− 1
2+

α2

2λ3

(
−
√
2λx̄

)
+ c2D− β

λ− 1
2+

α2

2λ3

(√
2λx̄

))

where c1 and c2 are constants. With c1 = D− β
λ− 1

2+
α2

2λ3

(√
2αλ−

3
2

)
and

c2 = −D− β
λ− 1

2+
α2

2λ3

(
−
√
2αλ−

3
2

)
, we check that ψ(x) is bounded at

0. The two solutions are linearly independent and their Wronskian,
normalized by the derivative of the scale function s′(x) = x−2, is given
by

wβ = D− β
λ− 1

2+
α2

2λ3

(√
2αλ−

3
2

)
wDβ

where wDα = 2
√
λπ

Γ( βλ+
1
2− α2

2λ3
)
is the Wronskian of the parabolic cylinder

functions. Next, we recall the Green formula for the solution of the
nonhomogeneous ODE (2.11), that is with second member given by F yε

φε(x) =
1

wβ

(
ϕ(x)

∫ x

0

ψ(r)F yε (r)m(dr) + ψ(x)

∫ ∞

x

ϕ(r)F yε (r)m(dr)

)

where we recall that the speed measure m of the 3-dimensional Bessel
process is m(dr) = 2r2 dr. The proof is then completed by passing to
the limit as ε tends to 0. ¤

Remark 2.2.7 Observing that limx→0 x
−1Sα(x, y) = wDα , we recover

the result of Proposition 2.2.2.

Remark 2.2.8 In the same vein than Corollary 2.2.4, it is possible to
derive an expression of the joint Laplace transform Υλ,α

x→y(t) as a series
expansion.
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2.3 Connection Between the Laws of First

Passage Times

Let λ > 0 and consider a function f which is twice continuously differ-
entiable on a neighborhood of 0. Let Z be a continuous time stochastic
process starting at x ∈ R, x 6= f(0). Introduce the stopping times

T
(f,µ)
δ (λ) = inf{s ≥ 0; Zs = δf(λs)− f(0)− µλs},

T (1)
α = inf{s ≥ 0; Zs = αs},
T (2)
α = inf{s ≥ 0; Zs = −

α

2
s2}.

We simply write T
(f)
δ (λ) = T

(f,0)
δ (λ). We shall describe a device which

allows to connect the laws of these first passage times. As an application,
we shall apply this technique to the first passage time of a Brownian mo-
tion over the square root boundary and derive some limit results of ra-
tios of the parabolic cylinder functions. These limit results have already
been shown with analytical techniques such as the Laplace’s method or
the method of steepest descent, see [89]. However our approach is new,
straightforward and relies only on probabilistic arguments and could
readily be extended to other examples.

Proposition 2.3.1 Let δ(1) = α/λ. Assume f ′(0) 6= 0, then

lim
λ→0

T
(f)

δ(1)
(λ) = Lαf

′(0) a.s.. (2.13)

Next, let δ(2) = α/λ2. Assume f ′′(0) 6= 0, then

lim
λ→0

T
(f,δ(2))

δ(2)
(λ) = S−αf

′′(0) a.s.. (2.14)

Proof. Using the following Taylor expansion

f(λt) = f(0) + λf ′(0)t+
λ2

2
f ′′(0)t2 + o(λ2),

we get that

lim
λ→0

T
(f,δ)
δ (λ) = inf{s ≥ 0; Zs = δλ(f ′(0)− µ)s+ δ

λ2f ′′(0)

2
s2 + o(λ2)}.

The first (resp. second) assertion is then obtained by choosing δ = δ(1)

(resp. δ(2)). ¤
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2.3.1 Brownian Motion and the Square Root Bound-

ary

We apply the previous technique to the first passage time of the Brow-
nian motion over the curve f(t) =

√
1 + 2t. It allows to evaluate some

known limits of the ratio of parabolic cylinder functions by a stochastic
approach.

Linear case

Set µ = 0.

Corollary 2.3.2 Let β > 0, x, α ∈ R then we have

lim
λ→0

D− β
2λ

(√
2λ(x+ α

λ )
)

D− β
2λ

(√
2αλ−1/2

) = e−|x|
√
α2+2β .

As a consequence, we also have

lim
λ→0

λeλ(x
2−2αλ x)/2

∑∞
n=1

Dν
n, α
λ

√
2λ

(
√
2λx)

D′
ν
n, α
λ

√
2λ

(
√
2αλ−1/2)

(1 + 2λt)−νn,εa
√
2λ/2t

= x√
2πt3

e−
1
2t (x−αt)

2

.

Proof. First, set δ = −α/λ. Then, by combining Doob’s transform
with Proposition 2.2.3, we recover the result of Breiman [19] about the

Mellin transform of T
(
√

)

δ

Ex+α
λ

[
(1 + 2λT

(
√

)

δ )−β/2λ
]
= eαx

D− β
2λ

(√
2λ(x+ α

λ )
)

D− β
2λ

(√
2αλ−1/2

) .

Next, recall that the Laplace transform of T
(1)
α is specified by, see

e.g. [62, p.197],

Ex
[
e−βT

(1)
α

]
= eαx−|x|

√
α2+2β .

The first statement follows readily from the first assertion of Proposition
2.3.1. The second one is an immediate reformulation of the previous one
in terms of density functions. ¤
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Quadratic case

In what follows, we investigate the second order expansion. We start

by computing the law of T
(2)
α , the first passage time of the Brownian

motion over the second order boundary. We denote by qx→α its density.
In the case xα < 0, its law has been computed by Groeneboom [49]
and Salminen [107] in terms of the Airy function, denoted by Ai, see
e.g. [72]. For the sake of completeness we recall their approach.

Lemma 2.3.3 For β and α, x > 0, hold the relations

Ex
[
e−βT

(2)
α G(T (2)

α )
]
=
Ai
(
21/3 β+αx

α2/3

)

Ai
(
21/3 β

α2/3

)

where G(t) = e
1
6α

2t3 and

Px(T (2)
α ∈ dt) = (2α2)1/3e−

1
6α

2t3
∞∑

k=0

Ai
(
υk − (2α)1/3x

)

Ai′(υk)
e2

−1/3α2/3υkt dt

where (υk)k≥0 is the decreasing sequence of negative zeros of the Airy
function.

Proof. Denote by Pα the law of the process
(
Bt +

α
2 t

2, t ≥ 0
)
. We

have the following absolute continuity relationship

dPαx|Ft = eα
∫ t
0
s dBs−α2

6 t
3

dPx|Ft

= eαtBt−α
∫ t
0
Bs ds−α2

6 t
3

dPx|Ft , t > 0,

where the last line follows from Itô’s formula. An application of the
Doob’s optional stopping Theorem yields

Ex
[
e−βT

(2)
α G(T (2)

α )
]
= Ex

[
e−βT0−α

∫ T0
0 Bsds

]
.

As in the previous Section, the expectation on the right-hand side can
be estimated via the Feynman-Kac formula. It is the solution to the
boundary value problem

1

2
ϕ′′(x)− (αx+ β)ϕ(x) = 0,

ϕ(0) = 1, lim
x→∞

ϕ(x) = 0,
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which is given in terms of the Airy function, see e.g. [59]. The expres-
sion of the density is a consequence of the Laplace transform inversion
formula and the residues Theorem, see [49] or [107] for more details. ¤

Next, we define the process U (µ) :=(U
(µ)
t , t ≥ 0) as the solution to the

stochastic differential equation

dU
(µ)
t =

(
−λU (µ)

t + µeλt
)
dt+ dBt, U

(µ)
0 = x ∈ R.

Note that U (µ) can also be expressed as follows

U
(µ)
t = e−λt

(
x− µ

2λ
+

µ

2λ
e2λt +

∫ t

0

eλsdBs

)
, t ≥ 0.

For x, a real numbers, we introduce the stopping time H
(µ)
a = inf{s ≥

0; U
(µ)
s = a} and denote by p

(λ,µ)
x→a (t) its density. Let us also introduce

the function Gλ(t) = e
µ2

2 τt−µe
λta, t ≥ 0. The law of H

(µ)
a is character-

ized in the following.

Proposition 2.3.4 For β > 0, we have

Ex
[
e−βH

(µ)
a Gλ(H

(µ)
a )

]
=
eλx

2/2−µxD− β
λ

(
εx
√
2λ
)

eλa2/2D− β
λ

(
εa
√
2λ
) (2.15)

where we set ε = sgn(x− a). In particular,

p
(λ,µ)
x→0 (t) =

| x |√
2π

e−µe
λt(µ2 sinh(λt)−a)−µx− λx2e−λt

2 sinh(λt)
+λt

2

(
λ

sinh(λt)

)3/2

.

(2.16)

Proof. The first assertion follows from the following absolutely conti-
nuity relationship

dP(λ,µ)
x|Ft = eµe

λtXt−µx−µ2

2 τt dP(λ)
x|Ft , t > 0, (2.17)

and the application of Doob’s optional stopping Theorem. We point out
that the exponential martingale is the one associated with the Gaussian
martingale

(
Bτ(t), t ≥ 0

)
. The expression of the density in the case

a = 0 is obtained from the Laplace inversion formula of the parabolic
cylinder function, see formula (2.9). ¤
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Remark 2.3.5 An expression of the density p
(λ,µ)
x→a (t) is given in Daniels

[22] as a contour integral. The author used a technique suggested by
Shepp [109].

Let us recall the notation T
(√,µ)
a = inf{s ≥ 0;Bs+µs = a

√
1 + 2λs−a}.

We recall that from Doob’s transform, we have

H(µ)
a = τ(T

(√,µ)
a ) a.s.. (2.18)

We are now ready to state the following limit result.

Corollary 2.3.6 For β, α and x > 0, we have

lim
λ→0

D− β
λ− 1

2+
α2

2λ3

(√
2λ(x+ α

λ2 )
)

D− β
λ− 1

2+
α2

2λ3

(√
2αλ−3/2

) =
Ai
(
21/3 β+αx

α2/3

)

Ai
(
21/3 β

α2/3

) .

Proof. Substituting β by β− α2

2λ2 , x by x+ α
λ2 and setting a = α

λ2 and
µ = α

λ in (2.15), we get

D− β
λ+

α2

2λ3

(√
2λ(x+ α

λ2 )
)

D− β
λ+

α2

2λ3

(√
2αλ−3/2

) = e−
λ
2 x

2+α2

λ3

×
∫ ∞

0

e−(β−
α2

2λ2
)t+ α2

2λ2
τt−α2

λ3
eλtp

(λ,αλ )

x+ α
λ2
→ 2α

λ2
(t) dt.

Note that τ
(
H

(α/λ)
α
λ2

)
→ T

(2)
α a.s., as λ→ 0. Thus, we have

lim
λ→0

e−
λ
2 x

2+α2

λ3

∫ ∞

0

e−(β−
α2

2λ2
)t+ α2

2λ2
τt−α2

λ3
eλtp

(λ,αλ )

x+ α
λ2
→ α

λ2
(t) dt

=

∫ ∞

0

e−βt+
1
6α

2t3qx→α(t) dt

=
Ai
(
21/3 β+αx

α2/3

)

Ai
(
21/3 β

α2/3

)

where the last line follows from Lemma 2.3.3. ¤
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Remark 2.3.7 By analogy to the results of Section 2.2, we have

lim
λ→0

∫ ∞

0

e−βtqt(x, 0)Υ
λ,α
x (t) dt =

1

x

Ai
(
21/3 β+αx

α2/3

)

Ai
(
21/3 β

α2/3

) ,

∫ ∞

0

(
e−βt − 1

)
Υ0,α(t)

dt√
2πt3

= (2α)1/3



Ai′
(
21/3β
α2/3

)

Ai
(
21/3β
α2/3

) − Ai′ (0)

Ai (0)




and

Υ0,α
x (t) =

1

x

√
2πt3e

x2

2t (2α2)1/3
∞∑

k=0

Ai
(
υk − (2α)1/3x

)

Ai′(υk)
e(

α2

2 )1/3υkt dt.

Remark 2.3.8 We mention that Lachal [70] get the following identity

Ex
[
e−βH0−α

∫H0
0 Us ds

]
= e

λ
2 x

2
D− β

λ+
α2

2λ3

(√
2λ(x+ α

λ2 )
)

D− β
λ+

α2

2λ3

(√
2αλ−3/2

)

which gives the following relationship
∫ ∞

0

e−βtqt(x, 0)Υ
λ,α
x (t) dt =

1

x
e−

λ
2 x

2

Ex
[
e−(β+

λ
2 )H0−α

∫H0
0 Us ds

]
.

We also indicate that the author computed the limit as λ→ 0 to recover
the result of Biane and Yor [13], Lefebvre [75] stating that

Ex
[
e−βT0−α

∫ T0
0 Bs ds

]
=

Ai
(
21/3 β+αx

α2/3

)

Ai
(
21/3 β

α2/3

) .

In order to compute the expression of the limit of the Laplace transform,
Lachal used an asymptotic result of the parabolic cylinder function which
has been derived by the method of steepest descent in [31].

2.3.2 Another Limit

From Proposition 2.2.2, we readily derive

lim
α→0

∫ ∞

0

e−βtxe−x
2/2tΥλ,αx (t)

dt√
2πt3

=
D− β

λ− 1
2

(√
2λx)

)

D− β
λ− 1

2
(0)

.
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We recall the following well known results regarding the Laplace trans-
form of the L2 norm of Bessel bridges. In conjunction with (2.9), for
the special case α = 0, we extract the relationship

Υλx(t) =
1

x

√
2πt3

(
λt

sinh(λt)

) 3
2

e−
x2

2t (λt coth(λt)−1). (2.19)

Since in this case the zeros of the function ν 7→ Dν(0) = 2ν
Γ( 12 )

Γ( 1−ν2 )

correspond to the odd poles of the Γ function, we also have

Υλx(t) = −λ
x

√
2πt3e

x2

2t

∞∑

n=1

D2n+1(x
√
2λ)

D(ν)
2n+1(0)

e−2(n+1)λt.

We precise that from the expression (2.19), it is easy to extend the
result to δ-dimensional Bessel bridges, for any δ > 0, which is closely
related to the Generalized Lévy stochastic area formula, see e.g. [97]. In-

deed, denoting by Υ
λ,(δ)
x its Laplace transform, thanks to the additivity

property of squared Bessel processes, we have

Υλ,(δ)x (t) =
1

x

√
2πt3

(
λt

sinh(λt)

) δ
2

e−
x2

2t (λt coth(λt)−1). (2.20)

In [45] the inverse of the Laplace transform Υ
λ,(δ)
x (t) is given in terms

of the parabolic cylinder functions.

2.4 Comments and some Applications

Our aim here is first to examine the law of the studied functional when
the fixed time t is replaced by some interesting stopping times and when
we consider both the 3-dimensional Bessel process and the reflected
Brownian motion (i.e. the 1-dimensional Bessel process). To a stopping
time S we associate the following notation, with δ = 1, 3,

Υλ,α,(δ)x (S) = Ex
[
e−βS−

λ2

2

∫ S
0
R2
u du−α

∫ S
0
Ru du

]

where, for this Section, R stands for a δ-dimensional Bessel process
starting from x ≥ 0. We denote by Qδ

x its law. Next, with Ky =
inf{s ≥ 0; Rs = y} and S = Ky, we state the following result.
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Proposition 2.4.1 Let x ≥ y,

Υλ,α,(3)x (Ky) =
y

x

D− β
λ− 1

2+
α2

2λ3

(√
2λ(x+ αλ−2)

)

D− β
λ− 1

2+
α2

2λ3

(√
2λ(y + αλ−2)

) . (2.21)

Proof. First, we recall the following absolute continuity relationship

dQ(3)
x|Ft = (Rt/x) dPx|Ft , on {K0 > t}.

Then, observe that Ky < K0 a.s. since x ≥ y. Next, denote by (µ)Hx

the first passage time to a fixed level x ∈ R of the mean reverting OU
process with parameter µ ∈ R. As mentioned in Remark 1.2.8, the

determination of its density, denoted by (µ)p
(λ)
x→a(t), can be reduced to

the case µ = 0 as follows

(µ)p(λ)x→a(t) = p
(λ)
x−µ

λ→a−
µ
λ
(t), t > 0.

Thus, we have

Υλ,α,(3)x (Ky) = Ex
[
e−βKy−λ2

2

∫Ky
0 R2

s ds−α
∫Ky
0 Rs ds

]

=
y

x
Ex
[
e−βTy−

λ2

2

∫ Ty
0 B2

s ds−α
∫ Ty
0 Bs ds

]

=
y

x
e
λ
2 (y

2−x2)Ex
[
e−(β+

λ
2 )Hy−α

∫Hy
0 Us ds

]

=
y

x
e
λ
2 (y

2−x2)+α
λ (y−x) Ex

[
e−(β+

λ
2− α2

2λ2
)(
α
λ
)Hy
]

=
y

x

D− β
λ− 1

2+
α2

2λ3

(√
2λ(x+ αλ−2)

)

D− β
λ− 1

2+
α2

2λ3

(√
2λ(y + αλ−2)

) .

¤

Corollary 2.4.2 Let α, β, λ ≥ 0. Then, for any x ≥ y ≥ 0, we have

Υλ,α,(1)x (Ky) =
D− β

λ− 1
2+

α2

2λ3

(√
2λ(x+ αλ−2)

)

D− β
λ− 1

2+
α2

2λ3

(√
2λ(y + αλ−2)

) . (2.22)
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Proof. The result follows from the absolute continuity relationship

dQ(3)
x|Ft = (Rt/x) dQ(1)

x|Ft , on {K0 > t},

where Q1 stands for the law of the reflected Brownian motion and K0

is the first time when the canonical process hits 0. ¤

Next, let (σl, l ≥ 0) be defined as the right continuous inverse process
of the local time (lt, t ≥ 0) at 0 of the reflected Brownian motion. It is
a 1

2 -stable subordinator, its Laplace exponent is given by

E
[
e−βσl

]
= e−l

√
2β .

We denote by n and (eu, 0 ≤ u ≤ V ) Itô’s measure associated with the
reflected Brownian motion and the generic excursion process under n
respectively. We recall that with the choice of the normalization of the
local time via the occupation formula with respect to the speed measure,
we have n(V ∈ dt) = dt√

2πt3
, see e.g. [56].

Proposition 2.4.3 Let α, β, λ ≥ 0.

− log
(
Υλ,α,(1)(σ1)

)
=
√
2λ

D(x)

− β
λ− 1

2+
α2

2λ3

(√
2αλ−3/2

)

D− β
λ− 1

2+
α2

2λ3

(√
2αλ−3/2

) . (2.23)

Proof. From the exponential formula of excursions theory, see e.g. [100]
and the fact that conditionally on V = t the process (eu, u ≤ V ) is a
3-dimensional Bessel bridge over [0, t] between 0 and 0. We get

− log
(
Υλ,α,(1)(σ1)

)
=

∫
n(de)

(
1− e−βV−λ2

2

∫ V
0
e2u du−α

∫ V
0
eu du

)

=

∫ ∞

0

(
1− e−βtΥλ,α(t)

) dt√
2πt3

.

Next, set J(β) =
∫∞
0

(
1− e−βtΥλ,α(t)

)
dt√
2πt3

. Thus, we have

J(β)− J(0) =

∫ ∞

0

(
1− e−βt

)
Υλ,α(t)

dt√
2πt3

.

The statement follows from Proposition 2.2.2. ¤
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Finally, we shall extend the above computations to the radial part of
a δ-dimensional Ornstein-Uhlenbeck process, with δ = 1, 3, denoted by
O, with parameter θ ∈ R+. The law of this process, when started at

x > 0, is denoted by P(θ),δ
x . Girsanov’s Theorem gives

dP(θ),δ
x|Ft = e−

θ
2 (R

2
t−x2−δt)− θ2

2

∫ t
0
R2
u du dQδ

x|Ft , t > 0. (2.24)

We also shall need the densities of its semigroup which are given, for
x, y, t > 0, by

p
(θ),δ
t (x, y) =

y

x

λ
√
2e

3λt
2

√
π sinh(λt)

e−
λe−λt

2 sinh(λt)
(x2+y2) sinh

(
λxy

2 sinh(λt)

)
.

We simply write p
(θ),1
t (x) = p

(θ),1
t (0, x) For a fixed t ≥ 0, we set

(θ)Υλ,α,(δ)x→y (t) = Ex
[
e−

λ2

2

∫ t
0
O2
u du−α

∫ t
0
Ou du

∣∣Ot = y
]
, λ, x, α ≥ 0.

Proposition 2.4.4 Set κ = λ2 + θ2, ω1 = β + θ
2 and ω3 = β+ 3θ

2 . For
x and β > 0, we have

∫ ∞

0

e−βtp(θ),1t (x)(θ)Υλ,α,(1)x (t) dt = e−
θ
2x

2
D−ω1

κ − 1
2+

α2

2κ3

(√
2κ(x+ α

κ2 )
)

D− β
κ− 1

2+
α2

2κ3

(√
2ακ−3/2

)

and

∫ ∞

0

e−βtp(θ),3t (x)(θ)Υλ,α,(3)x (t) dt = e−
θ
2x

2

x
D−ω3

κ − 1
2+

α2

2κ3

(√
2κ(x+ α

κ2 )
)

D− β
κ− 1

2+
α2

2κ3

(√
2ακ−3/2

) .

Proof. From the absolute continuity relationship (2.24), we have

Ex
[
e−

λ2

2

∫ t
0
O2
s ds−α

∫ t
0
Os ds

]

= Ex
[
e−

θ
2 (R

2
t−x2−δt)e−(

λ2+θ2

2 )
∫ t
0
R2
s ds−α

∫ t
0
Rs ds

]
.

The results follow by the same reasoning as for the proof of Proposition
2.2.2. ¤





Chapter 3

Study of some Functional

Transformations with an

Application to some

First Crossing Problems

for Selfsimilar Diffusions

Though this be madness, yet there is method in’t.
W. Shakespeare (Hamlet, II,i,206)

3.1 Introduction and Preliminaries on some

Nonlinear Spaces

Let B be a standard Brownian motion and f a continuous function on
R+ such that f(0) 6= 0. We consider the first passage time problem
consisting on the determination of the distribution of the stopping time
T (f) = inf {s ≥ 0; Bs = f(s)}. Following Strassen [117], we know that

47
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if f is continuously differentiable then the law of T (f) is absolutely con-
tinuous with respect to the Lebesgue measure with a continuous density.
This problem, which has been studied since the early 1900’s, originally
attracted researchers because of its connections to sequential analysis,
non-parametric tests and iterated logarithm law, see [84], [103] and the
references therein. From the explicit viewpoint, some elaborated fine
methods have proven efficiency each for specific elementary examples.
For instance, the Bachelier-Lévy formula for the straight lines, Doob’s
transform for the square root boundaries [19], [83], and the direct ap-
plication of Girsanov’s Theorem for the quadratic functions [49]. In the
general setting, the celebrated method of images allows, at least theo-
retically, to solve the problem for a class of curves which are solutions,
in the unknown x for a fixed t, of implicit equations of the type

h(x, t)
(def)
=

∫ ∞

0

eux−
u2

2 tF (du) = a (3.1)

where a is some fixed positive constant and F is a positive σ-finite mea-
sure. Another method which is worth to be mentioned, discovered by
Durbin in [36] and [37], transforms the problem into the calculation
of a conditional expectation. Further reading about asymptotic stud-
ies, numerical techniques and other recent applications can be found
in Borovkov and Novikov [18], Darling and al. [26], Daniels [21], [23],
[24] [25], Di Nardo et al. [30], Durbin [39], Ferebee [40], [41], Novikov
et al. [85], [86], Peskir [94], [93], Pötzelberger and Wang [99], Ricciardi
et al. [102], Roberts [104], Roberts and Shortland [105], Siegmund [113]
and the references therein.

We proceed by giving some notation. Let R+
0 = R+ ∪ {0} and R+

∞ =
R+ ∪{∞}. We recall that for a set I ⊂ R+, C(I,R+) denotes the space
of positive continuous function defined on I. We also define, for a fixed
couple (a, b) ∈ R+

∞ × R+
∞, the nonlinear functional space

A−2,ba =

{
h ∈ C

(
[0, a),R+

)
;

∫ a

0

h−2(s) ds = b

}
.

Thus, we have the following identities C ([0, a),R+) =
⋃
b≥0A

−2,b
a and

we set C∞ (R+) :=
⋃
b>0 C ([0, b),R+).

In this Chapter, we aim to provide an explicit relationship between the
law of T (f) and the one of the first passage time of the Brownian motion
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over an element of a family of curves obtained from f via the following
transform

S(α,β) : C(R+
0 ,R

+) −→ C([0, ζ(β)),R+)

f 7−→
(
1 + αβ.

α

)
f

(
α2.

1 + αβ.

)
(3.2)

where β ∈ R, α ∈ R+ and ζ(β) = −β−1 when β < 0, and equals +∞
otherwise. Note that to simplify notation , we write f (α,β) = S(α,β)f .
For α = 1, we shall refer to S(β) = S(1,β) as the family of elemen-
tary transformations. We take two different routes to establish this
connection. First, we shall show it directly by studying the analytical
transformations allowing to construct Brownian bridges from a Brow-
nian motion. In order to describe the second approach, we need to
introduce the Gauss-Markov process of Ornstein-Uhlenbeck type with
parameter φ ∈ A−2,ba (for short GMOUφ), denoted by U (φ), defined by

U
(φ)
t = φ(t)

(
U
(φ)
0 +

∫ t

0

φ−1(s) dBs

)
, 0 ≤ t < a, (3.3)

where B is a standard Brownian motion and U
(φ)
0 ∈ R. We shall drop

the exponent φ when it is not ambiguous. The first step consists on
showing that the law of U (φ) is connected via a time-space harmonic
function to the laws of a family of GMOU processes whose parameters
are obtained from φ as follows. For α > 0 and β real numbers, we define
the mapping Π(α,β) by

Π(α,β) : C∞
(
R+
)
−→ C∞

(
R+
)

φ 7−→ φ(.)

(
α+ β

∫ .

0

φ−2(s)ds

)
. (3.4)

Thus, we shall show that there exists a Doob’s h-transform between the
law of U (φ) and U (θ) where θ = Π(α,β)φ. As a second step, we show that
the law of the level crossing to a fixed boundary of a GMOU process
is linked to the law of the first passage time of the Brownian motion
to a specific curve via a deterministic time change. We now describe
the transform Σ which connects the parameter of the GMOU and the
curve. To a function φ ∈ C∞ (R+) we associate the increasing function
τ (φ)(.) =

∫ .
0

ds
φ2(s) and denote by %(φ) its inverse. To simplify notation,

when there will be no confusion, these will be simply denoted by τ and
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% . We define the mapping Σ by

Σ : C∞
(
R+
)
−→ C∞

(
R+
)

φ 7−→ 1/φ ◦ %. (3.5)

We call the mapping Σ Doob’s transform. Finally, we introduce the last
transform which is obtained by combining the two previous ones in the
following way

S(α,β) = Σ ◦Π(α,−β) ◦ Σ, (α, β) ∈ R+ × R+
0 . (3.6)

In the diagram below, we show how these transformations are connected.

f
S(α,β)−−−−→ f (α,β)

Σ

y
xΣ

φ −−−−−→
Π(α,−β)

θ

We shall note that for α = 1, we have the identity S(1,β) = S(β), which
explains the notation . It will turn out that the methodology also ap-
plies to the Bessel processes which is in agreement with the title. Indeed,
the Bessel processes (or their powers) together with the Brownian mo-
tion, form the class of selfsimilar diffusions with continuous paths, see
Lamperti [71].

In what follows, we introduce some spaces which will be the basis of
our study. Let us denote by Mr+ the space of positive Radon measures
defined on R+

0 . Fix µ ∈ Mr+, and introduce the associated Sturm-
Liouville equation

φ′′ = µφ, on R+
0 , (3.7)

defined in the sense of distributions. The solutions are gathered in the
set

SL(µ,+)(R+
0 ) =

{
φ ∈ C(R+

0 ,R
+);φ′′ = µφ

}
.

Finally, we introduce the set of positive convex functions, that is

V +(R+
0 ) =

{
φ ∈ C(R+

0 ,R
+); φ convex

}
.

We now explain the organization of the Chapter. In Section 3.2, we
start by providing some properties of the family of transformations
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{Π(α,β);α ∈ R+, β ∈ R}. Then, we recall elementary properties of
Gauss-Markov processes of type (3.3) and study the action of Π on
their parameters. Section 3.3 is devoted to the study of Doob’s map-
ping Σ and its switching role in the context of the first passage time
problem. Results on boundary crossing for the Brownian motion and
their analogues for Bessel processes, obtained through both the family
{S(α,β);α, β ∈ R+ × R} and {S(β);β ∈ R}, are collected in Section
3.4. We close the Chapter by providing a survey on the most known
fine methods for the study of the distribution of first passage time of a
Brownian motion over a given smooth function.

3.2 Sturm-Liouville Equation and Gauss-

Markov Processes

Consider the equation (3.7) for some µ ∈Mr+. It is easy to check that
if φ is a solution then so is ϑ(.) = φ

∫ .
0

ds
φ2(s) and the set of solutions

to this equation is given by the vectorial space spanned by φ and ϑ.
Furthermore, all positive solutions of (3.7) are convex. Moreover, we
know that there exists a unique positive decreasing solution, denoted
by ϕ, such that ϕ(0) = 1. It satisfies limt→∞ ϕ(t) ∈ [0, 1] and the strict
inequality ϕ(∞) < 1, except in the trivial case µ = 0. Moreover, under
the condition

∫
(1+ s)µ(ds) <∞, we have ϕ(∞) > 0. See, for instance,

the Appendix 8 of Revuz and Yor [100] for a detailed discussion about
this topic. Writing ψ = ϕ

∫ .
0

ds
ϕ2(s) , we have the following characteriza-

tion of the space of positive convex function.

Lemma 3.2.1

V +(R+
0 ) =

⋃

µ∈Mr+

⋃

α>0

⋃

β≥0

{
Π(α,β)ϕ; ϕ′′ = µϕ

}
.

Proof. The result follows after these identities

V +(R+
0 ) =

⋃

µ∈Mr+

SL(µ,+)(R+
0 )

=
⋃

µ∈Mr+

⋃

α>0

⋃

β≥0

{
αϕ+ βψ; ϕ′′ = µϕ

}



52 Chapter 3. Boundary Crossing Problem

=
⋃

µ∈Mr+

⋃

α>0

⋃

β≥0

{
Π(α,β)ϕ; ϕ′′ = µϕ

}
.

¤

Next, we state some elementary properties of the family Π(α,β).

Proposition 3.2.2 1. Fix α, α′ ∈ R+ and β, β′ ∈ R. Then,

Π(α,β) ◦Π(α′,β′) = Π(αα′,α′β+β′/α).

In particular Π(α,β) ◦Π(1/α,−β) = Id.

2. (Π(1,β))β≥0 is a semigroup.

3. Fix a, b ∈ R+
∞, and α, β ∈ R+. If φ ∈ A−2,ba then Π(α,β)φ ∈ A−2,ca

with c = b/(α(α + βb)) and Π(α,−β)φ ∈ A−2,b
′

a′ with a′ = a, b′ =
b

α(α−βb) if b < α/β and a′ = %(αβ ), b
′ =∞ otherwise.

4. For α and β real numbers, Π(α,β) preserves the convexity and
concavity.

Proof. The proof of the first two items follows from some easy algebra.
For (3), fix φ ∈ A−2,ba and recall that Π(α,β)φ(t) = φ(t)(α+βτ(t)). Then,
by integration we get

τ (Π
(α,β)φ)(t) =

∫ t

0

ds
(
Π(α,β)φ(s)

)2

=
τ(t)

α(α+ βτ(t))
.

Next, if α, β > 0, then Π(α,β)φ > 0 on [0, a) and τ (Π
(α,β)φ)(a) = b

α(α+βb) .

On the other hand, Π(α,−β)φ > 0 on [0, a ∧ %(αβ )). Finally, we have

τ (Π
(α,−β)φ)(a) = b

α(α−βb) and τ (Π
(α,−β)φ)

(
%(αβ )

)
=∞. The proof of the

last item is obtained by differentiating twice in the sense of distributions.
¤

Remark 3.2.3 We point out that Π(1,β) is related to the transformation
Tβ introduced by Donati et al. in [32] as follows Π(1,β) = exp ◦Tβ ◦ log.
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Next, to a function φ ∈ A−2,b
ζ(φ)

we associate the Gauss-Markov process of

Ornstein-Uhlenbeck type U (φ) starting from U
(φ)
0 ∈ R which is defined

by (3.3). Next, we denote by P(φ)
x the law of U (φ) when started at U

(φ)
0 =

x ∈ R and write simply P(φ) when x = 0. Similarly, Px stands for the
law of (x+Bt, t ≥ 0). To a fixed y ∈ R we associate the first passage time

H
(φ)
y = inf

{
s ≥ 0; U

(φ)
s = y

}
. Without loss of generality, we choose the

normalization φ(0) = 1 and we emphasize that the study also applies
to negative-valued function thanks to the symmetry property of B.

U (φ) is a continuous Gaussian process with mean m(t) = U
(φ)
0 φ(t) and

covariance

v(s, t) = φ(t ∨ s)Π0,1φ(s ∧ t),
= φ(t ∨ s)ϑ(s ∧ t), s, t ≤ ζ(φ).

Remark 3.2.4 First note that with the choice φ ≡ 1, U (1) is simply
a Brownian motion. Also, by choosing φ(t) = e−λt, with λ ∈ R, U (φ)

boils down to the classical Ornstein-Uhlenbeck process. Moreover, in

this case, by taking λ > 0 and U
(φ)
0 to be centered, normally distributed

with variance 1/2λ and independent of B, we get the only stationary
Gaussian Markov process.

The laws of associated hitting times of constant levels of the family{
U (φ), φ ∈ SL(µ,+)(R+

0 )
}

are all related. Next, to a couple (α, β) ∈
R+ × R we associate θ = Π(α,β)φ. Then, θ ∈ A−2,b

′

ζ(θ)
where ζ(θ) and b′

are given in Proposition 3.2.2. Denote by ζ = ζ (φ) ∧ ζ(θ) and introduce
the function, for t < ζ and x ∈ R,

M(t, x) =

(
φ(t)

θ(t)

) 1
2

e
β
2

x2

φ(t)θ(t) . (3.8)

In particular, we haveM(0, x) = α−1/2e
βx2

2α . We are now ready to state
the following.

Lemma 3.2.5 The process
(
M(t, U

(φ)
t ), 0 ≤ t < ζ

)
is a P(φ)-martingale.
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Proof. In the special case φ ≡ 1, observe that

M(t, Bt) =
1√

α+ βt
e
β
2

B2
t

α+βt

= e
β
∫ t
0
BsdBs
α+βs −

β2

2

∫ t
0

B2
s

(α+βs)2
ds

which is a bounded P-local martingale and hence a true martingale.

The martingale property follows from the fact that M(t, U
(φ)
t ) has the

same distribution as M(τ(t), Bt). ¤

We are now ready to state the main result of this Section.

Theorem 3.2.6 For x, y ∈ R, we have

P(θ)
x

(
H(θ)
y ∈ dt

)
=
M(t, y)

M(0, x)
P(φ)
x

(
H(φ)
y ∈ dt

)
, t < ζ. (3.9)

Proof. From the previous Lemma, we deduce by using Girsanov’s The-
orem that

dP(θ)
x|Ft =

M(t, U
(φ)
t )

M(0, x)
dP(φ)

x|Ft , t < ζ. (3.10)

Next, on the set {H(φ)
y ≤ t} ∈ Ft∧Hy , we have M(t ∧ Hy, U

(φ)
t∧Hy ) =

M(Hy, y). So Doob’s optional stopping Theorem implies

P(θ)
x (Hy ≤ t) = Ex

[
1{Hy≤t}

M(t, U
(φ)
t )

M(0, x)

]

= Ex

[
1{Hy≤t}Ex

[
M(t, U

(φ)
t )

M(0, x)

∣∣Ft∧Hy

]]

= Ex
[
1{Hy≤t}

M(Hy, y)

M(0, x)

]
.

Our claim follows then by differentiation. ¤

Remark 3.2.7 To a process X and a function φ, we associate the pro-
cess M (φ)(X) defined for any fixed t < ζ(φ) by

M
(φ)
t (X) =

1√
φ(t)

e
1
2
φ′(t)
φ(t)

X2
t− 1

2

∫ t
0
X2
sµ(ds)
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where φ′′ = µφ in the sense of distributions. By checking that the

jumps of the various involved processes cancel, we see that M
(φ)
t (U (φ))

is continuous. Because, for any fixed t < ζ(φ), the random variable U
(φ)
t

is proper, that is P(φ)
x (U

(φ)
t < ∞) = 1, we conclude that M

(φ)
t (U (φ)))

is a true Px-martingale. In other words, E[M (φ)
t (U (φ))] = 1 for any

t < ζ(φ).

Remark 3.2.8 Relation (3.10) is also obtained by the chain rule as
follows. For t < ζ(φ), we have

dP(φ)
x|Ft =

M
(φ)
t (B)

M
(φ)
0 (x)

dPx|Ft

=
M

(θ)
0 (x)M

(θ)
t (B)

M
(θ)
t (B)M

(θ)
0 (x)

M
(φ)
t (B)

M
(φ)
0 (x)

dPx|Ft

=
M(t, U

(φ)
t )

M(0, x)
dP(θ)

x|Ft .

3.3 Doob’s Transform and Switching of First

Passage Time Problem

Recall that Doob’s transform Σ is defined by formula (3.5) of Section
3.1. We start by providing some elementary properties of Σ.

Proposition 3.3.1 1. Σ is an involution, i.e. Σ2 = Id.

2. Fix a, b ∈ R+
∞. Σ

(
A−2,ba

)
= A−2,ab .

3. Let φ, θ ∈ C(R+
0 ,R+) with φ non increasing such that φ ≤ θ then

we have Σφ ≥ Σθ.

4. Σ preserves and reverses the monotonicity.

5. Σ transforms a convex function into a concave one.

6. If f ∈ C(n)
(
R+
0 ,R+

)
for some n ∈ N then sgn

(
f (n)(Σf)(n)

)
=

−1.
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7. Recall that for (α, β) ∈ R+ × R, S(α,β) = Σ ◦ Π(α,−β) ◦ Σ. Let

φ ∈ A−2,ba , then S(α,β)φ ∈ A−2,b
′

a′ where a′ = a, b′ = b/(α(α+βb))
if b < −α/β and a′ = %(α/β), b′ = ∞ otherwise. Moreover, we
have

Sα,βφ(·) =
(
1 + αβ·

α

)
φ

(
α2·

1 + αβ·

)
.

Proof. (1) Let φ ∈ C∞ (R+). From the identity φ ◦ % = 1/Σφ, we
deduce that %(.) =

∫ .
0
φ2(%(s))ds. Hence, Σ2φ = Σ(1/φ ◦ %) = φ◦%◦τ =

φ. (2) Let φ ∈ A−2,ba and denote f = Σφ. First, note that τ is an
homeomorphism from [0, a) into [0, b). Hence, f ∈ C ([0, b),R+). We
conclude by observing that %(b) = a. (3) follows from the fact that
%(φ) ≤ %(θ) which implies that φ ◦ %(φ) ≤ φ ◦ %(θ) ≤ θ ◦ %(θ). Items
(4) and (5) are immediate consequences of the fact that % is increasing.
(6) is shown by induction. Note that (4) and (5) give n = 1, 2. Since
Σφ◦τ = 1/φ, it follows that (Σφ)′ = −φ′◦%. Furthermore, we see that if
ϕ is decreasing (resp. increasing) then f is increasing (resp. decreasing).
(7) From Propositions 3.2.2 and 3.3.1, we deduce readily the first part
of the assertion. For the identity, we set ϑ = φτ . By integration, we see
that

∫ ·

0

ds

(αφ(s)− βϑ(s))2 =
1

α

τ(·)
α− βτ(·) .

Inverting and using the fact that τ ◦ % = Id , yields

∫ ·

0

ds

(Σ ◦Πα,−βφ)2 (s)
= %

(
α2·

1 + αβ·

)
.

The item follows by differentiation. ¤

We show that Σ transforms the space of positive solutions of the Sturm-
Liouville equation (3.7) to the space of solutions to a non-linear second
order differential equation. As we pointed out, we have

Σ
{
SL(µ)(R+

0 )
}
=
⋃

α>0

⋃

β≥0

{(
S(α,β) ◦ Σ

)
ϕ
}
. (3.11)

Theorem 3.3.2 Let µ ∈ Mr+ and let ϕ be the positive decreasing
solution of (3.7). Consider on R+

0 the nonlinear differential equation
f3f ′′d. = −µ(d%.) defined in the sense of distributions. Then, this
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equation has a unique positive, increasing and concave solution such
that f(0) = 1 and f ′(0) = −ϕ′(0). Furthermore, its positive solutions
on R+ are given by the set Σ

{
SL(µ)(R+

0 )
}
.

Proof. From the identity φ(·)(Σφ)(τ(·)) = 1, we deduce that φ′(·) =
−(Σφ)′(τ(·)) and φ′′(·) = −(Σφ)′′(τ(·))/φ2(·) in the sense of distribu-
tions. The proof is then completed by respectively putting pieces to-
gether and performing the change of variable s = τ(t), keeping in mind
that we can integrate the other way around. ¤

Lemma 3.3.3 φ ∈ A−2,∞∞ ∩ V +(R+
0 ) if and only if φ is decreasing and∫

(1+ s)
φ′′(s)

φ(s)
ds =∞. Consequently f ∈ A−2,∞∞ and is concave if and

only if Σf ∈ A−2,∞∞ ∩ V +(R+
0 ).

Proof. As discussed in Section 2, we have ϕ(∞) = 0 if
∫
(1+s)ϕ

′′(s)
ϕ(s) ds =

∞. The second assertion is an immediate consequence of the first one.
¤

The following result is required later and is important in the derivation
of our classification of concave boundaries with respect to the behavior
of the tail of the distribution of the corresponding boundary crossing
random times at +∞.

Proposition 3.3.4 Let g ∈ A−2,b
ζ(g)

. Moreover, we assume that g is

concave and write g′+(.) for its right derivative. Then, there exists a
unique increasing and concave function f with f(0) = 1 such that, for
any t < ζ(g), we have the following identity

g(t) =

(
1 + αβt

α

)
f

(
α2t

1 + αβt

)
(3.12)

where α = 1/g(0) and β = g′+(0) − αf ′(0). Furthermore, we have

f ∈ A−2,b
′

ζ(f)
where ζ(f) = ζ(g), b′ = α2b/(1 − αβb) if b > 1/(αβ) or

ζ(f) = %(g)(1/(αβ)), b′ = ∞ otherwise. Consequently, if ζ(g) = ∞ and
β > 0, we have

g(t) ∼ βf

(
α

β

)
t, as t→∞. (3.13)
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Proof. Items (5) and (2) of Proposition 3.3.1 implies that φ = Σg

is convex and φ ∈ A−2,ζ
(g)

b . Define then µ by φ′′ = µφ in the sense
of distributions. This is a positive Radon measure on [0, b) and the
associated equation (3.7) admits a unique couple of solutions (ϕ,ψ)
satisfying the conditions on [0, b) fixed in Section 3.2. In particular, ϕ
is positive, convex and decreasing with ϕ(0) = 1. Thus, there exists a
unique pair (α, β) ∈ R+ × R such that φ = Π(α,−β)ϕ. By choosing f =
Σϕ, we get a function which fulfills the required properties. Finally, we
easily check that α = 1/g(0) and β = −φ′(0)+αϕ′(0). The result follows
then by recalling that g′ = −(Σφ)′ and the fact that f = S(1/α,−β)g. ¤

Remark 3.3.5 The quantity ϕ′(0) already appeared as the Lévy expo-
nent of a subordinator. Indeed, let (lat , a ∈ R, t ≥ 0) be a bi-continuous
version of the local time of B. Write lt for the local time of B at the
level 0 and denote by σ its right inverse i.e. σr = inf{s ≥ 0; ls ≥ r}. If
g is a C1-function with compact support in (0,∞) then the stopped pro-
cess

(∫ σr
0
g(Bs) ds, r ≥ 0

)
is a subordinator. Its Laplace-Lévy exponent

is given by

E
[
e−λ

∫ σ1
0 g(Bs) ds

]
= eϕ

′(0), λ ≥ 0,

where ϕ is defined as above with µ(dx) = λg(x)dx, x ≥ 0. This is
nothing but a reformulation of the second Ray-Knight Theorem which
states that

(
laσr , a ≥ 0

)
is a squared Bessel process of dimension 0. More

generally, the couple (ϕ,ψ) is involved in fine studies of other functionals
of Bessel processes and, for interested readers, we refer to [100, Chap.
XI and XII].

Now, we turn to the relationship between the first passage time to a
constant level by a GMOU (φ) with φ ∈ A−2,ba , denoted simply by U ,
and the first passage time to the curve Σφ by the Brownian motion.
By Dumbis, Dubins-Schwarz Theorem, see Revuz and Yor [100, p.181],
there exists a unique standard Brownian motion W such that, for any
t ≥ 0, we have

U
(φ)
t = φ(t)

(
U
(φ)
0 +Wτ(t)

)
, U

(φ)
0 ∈ R, (3.14)

where τ(t) =
∫ t
0
φ−2(s) ds. We recall that the relation (3.14) was

first introduced by Doob in [34] in the case of the stationary Ornstein-
Uhlenbeck process, see Chapter 1 for more details. For the sake of sim-

plicity, throughout the rest of this Section, we set U
(φ)
0 = 0. Recall the
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notation H
(φ)
y = inf

{
s ≥ 0; U

(φ)
s = y

}
, we simply write H(φ) = H

(φ)
1 ,

and finally T (f) = inf {s ≥ 0; Bs = f(s)} where f ∈ C(R+
0 ,R+). In

the following lines we generalize the idea of Breiman [19] which consists
on using Doob’s transform to connect the law of the first passage time
of the Brownian motion to the square root boundary and the one of
the Ornstein-Uhlenbeck process to a fixed level. We have the following
result.

Theorem 3.3.6 For any φ ∈ A−2,ba we have the equality in law

H(φ) =

∫ T (Σφ)

0

ds

(Σφ)2(s)
, on [0, a ∧ b).

As a consequence, we have, for t < a ∧ b,

P(φ)
(
H(φ) ∈ dt

)
= τ ′(t)P

(
T (Σφ) ∈ dτ(t)

)
.

In particular, P(φ)
(
H(φ) < a

)
= P

(
T (Σφ) < b

)
.

Proof. We can write

H(φ) = inf

{
s ≥ 0; φ(s)

∫ s

0

φ−1(u) dBu = 1

}

= inf
{
s ≥ 0; φ (% (τ(s)))Wτ(s) = 1

}

= %(T (Σφ))

which gives the first statement. The second one follows. ¤

Remark 3.3.7 By observing that H
(φ)
0 = τ(T0) a.s., we derive from

Proposition 3.6.1 an expression for h
φ′′/φ
x . Indeed, for x > 0, we have,

for t < ζ(φ),

hφ
′′/φ
x (0, t) =

(
τ(t)

t

)3/2(
φ(0)

φ(t)

)1/2

e
−x2

(
φ′(0)
φ(0)

+ 1
t− 1

τ(t)

)

. (3.15)
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3.4 First Passage Time and the Elemen-

tary Family of Mappings

In this Section, we present two different methodologies to derive the
relationship between the density of first passage time of a curve to a
parameterized family of curves by the Brownian motion.

3.4.1 The Composition Approach

Now, we are interested in the transform S(α,β) = Σ◦Π(α,−β)◦Σ, (α, β) ∈
R+×R. Note that it enjoys the following property. For α, α′ ∈ R+ and
β, β′ ∈ R, we have

S(α,β) ◦ S(α′,β′) = S(αα′,α′β+β′/α).

In particular S(α,β) ◦ S(1/α,−β) = Id. We leave to the next subsec-
tion the study of the case α = 1. Next, to simplify notation we write

f (α,β) = S(α,β)f and fix f ∈ A−2,ba . We recall that f (α,β) ∈ A−2,b
′

ζ(f)
where

ζ(f) = a, b′ = b/(α(α + βb)) if b < −α/β and ζ(f) = %(α/β), b′ = ∞
otherwise. We point out that we can extend the domain of action of
the map S(α,β) to the space of probability measures. That is, in the
absolute continuous case, to the measure µ(dt) = h(t)dt we associate
S(α,β)(µ)(dt) = S(α,β)(h(t))dt. We are now ready to state the main
result of this Chapter.

Theorem 3.4.1 For any t < ζ(f), we have the relationship

P
(
T (f(α,β)) ∈ dt

)
=

(
α

1 + αβt

) 5
2

e−
αβf(α,β)(t)2

2(1+αβt) S(α,β)
(
P
(
T (f) ∈ dt

))
.

(3.16)

Proof. Let θ = Σf (α,β) and φ = Π(1/α,β)θ. Then, from Theorems
3.2.6 and 3.3.6, we get successively, with the obvious notation,

P
(
T (f(β)) ∈ dt

)
= %(θ)

′
(t)P(θ)

(
H ∈ d%(θ)(t)

)

=
M(%(θ)(t), 1)

M(0, 0)
%(θ)

′
(t)P(φ)

(
H ∈ d%(θ)(t)

)
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=
M(%(θ)(t), 1)

M(0, 0)
%(θ)

′
(t)τ (φ)

′
(%(θ)(t))

×P
(
T (f) ∈ dτ (φ)(%(θ)(t))

)
.

Next, note that θ(%(θ)(t)) = 1/f (α,β)(t). From Proposition 3.2.2 we
observe that τ (θ)(%(φ)(t)) = t/(α(α − βt)), then we easily deduce that
τ (φ)(%θ(t)) = α2t/(1 + αβt). Finally, we conclude by observing that
φ(%(θ)(t)) = (1 + αβt)/(αf (α,β))(t)).

¤

We postpone to the next Section the investigations of some known ex-
amples.

3.4.2 The Family of Elementary Transformations

We shall now focus on the family
{
S(β);β ∈ R

}
, defined in (3.2), and

study its elementary properties as well as its application to the boundary
crossing problem for the Brownian motion and Bessel processes. A
way to think about this family is, as we have seen, its realization as
the composition Σ ◦ Π(1,−β) ◦ Σ. We shall prove that it is possible to
derive our relationship between crossing boundaries distribution directly
without going through the study of GMOU processes. We proceed by
providing some properties of the studied family.

Proposition 3.4.2 The family
{
S(β), β ∈ R

}
has the following proper-

ties.

1. For α, β ∈ R, we have S(α) ◦ S(β) = S(α+β).

2. (S(β))β≥0 is a semigroup.

3. For a fixed β ∈ R the mapping S(β) is linear and its invariant
subspace is the set of linear functions.

Proof. The statements (1), (2) and the first part of (3) are obvious.
We also easily check that the space of linear functions is invariant. Next,
assume that there exists β ∈ R and a continuous mapping f : R+ →
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R such that S(β)(f) = f on [0, ζ(β)[. Then, for all n ∈ N we have
S(nβ)(f) = f on [0, ζ(nβ))[. If β < 0, then f and S(β)(f) are different
since their are not defined on the same domain. In the other case,
we observe that f is invariant by S(β) if and only if f̂(t) = f(t)/t is

invariant by (1+β.)−1S(β). Repeating this procedure, we obtain that f̂
is invariant through the transformation (1+nβ.)−1S(nβ) for any n ∈ N∗.
Then, letting n → ∞ and using the right continuity of f̂ , we get that
f̂(t) = lims→0 f̂(s) for t ∈ R+. In other words, f is linear. ¤

At a first stage, we shall show how a specific element of this family allows
to realize a standard Brownian bridge B(br), of length T > 0, from a
given Brownian motion B. Recall that B(br) is the unique solution, on
[0, T [, of the linear equation

B
(br)
t = Bt −

∫ t

0

B
(br)
s

T − sds, t < T,

which, when integrated, yields the well-known expression

B
(br)
t = (T − t)

∫ t

0

dBs
T − s , t < T. (3.17)

Note that the law of B(br) is also obtained as a Doob’s h-transform of
that of B. Indeed, denoting by P(br) and P, respectively, the laws of
B(br) and B, then, for 0 ≤ t < T , these probability measures are related
as follows

dP(br)
|Ft =

(
T

T − t

) 1
2

e−
1
2

B2
t

T−t dP|Ft

=
1√

1 + βt
e
β
2

B2
t

1+βt dP|Ft (3.18)

where β = −T−1. In the sequel, we write simply ζ(β) for ζ(1+βt), that
is ζ(β) = −β−1 for β < 0. Observe that the above results remain true
when β > 0. Consequently, as an extension of the family of standard
Brownian bridges, we introduce the real-parameterized family of GMOU
processes with parameters {(1 + βt), β ∈ R}, defined, for a fixed β ∈ R,
by

U
(β)
t = (1 + βt)

∫ t

0

dBs
1 + βs

, t < ζ(β).
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This implies readily that

U
(β)
t = S(β)(B(β))t, t < ζ(β), (3.19)

where B(β) is the martingale

B
(β)
t =

∫ t
1−βt

0

dBs
1 + βs

, t < ζ(−β). (3.20)

Next, we have

〈
∫ ·

0

dBs
1 + βs

〉t =
t

1 + βt
−→
t→ζβ

{ 1
β , β > 0

∞, otherwise.

Thus, if β ≤ 0 then B(β) is a Brownian motion defined on R+. Oth-
erwise, we can extend the definition of B(β) such that it becomes a
Brownian motion on R+ as

B
(β)
t =





∫ t
1−βt
0

dBs
1+βs , t ≤ β−1

∫ 1
β

0
dBs
1+βs + B̃t− 1

β
, t > β−1

where B̃ is an another Brownian motion, independent of B.

Next, we need to introduce H
(−β)
f = inf{s ≥ 0; U

(−β)
s = f(s)} and, for

convenience, write simply f (β) = S(β)(f). The support of H−βf is the

interval [0, β−1] when β is positive. Similarly, we close the curve f (β)

at −β−1 when β is negative. Theorem 3.3.6 allows us to connect H
(−β)
f

and T (f(β)) as follows

H
(−β)
f

(d)
=

T (f(β))

1 + βT (f(β))
and T (f(β)) (d)

=
H

(−β)
f

1− βH(−β)
f

. (3.21)

We carry on our discussion by observing that we can also extend the
domain of the family of transformations S(β) to the space of probability
measures in the same fashion than for S(α,β). The main result of this
Section is the following.

Theorem 3.4.3 For any t < ζ(β), we have the relationship

P
(
T (f(β)) ∈ dt

)
=

1

(1 + βt)5/2
e−

1
2

β
1+βt f

(β)(t)2S(β)
(
P(T (f) ∈ dt)

)
.

(3.22)
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Proof. Introduce the funtion h(t, x) = 1√
1+βt

e
β
2

x2

1+βt . From (3.18), it

is clear that h
(
t ∧ T (f), Xt∧T (f)

)
is a uniformly integrable martingale.

Next, thanks to Lemma 3.21 and using the dominated convergence, we
can write, for any λ ≥ 0,

Ex
[
e−λT

f(β)

I{T (f(β))<ζ(β)}

]

= Ex


e
−λ
(

H
(−β)
f

1−βH(−β)
f

)

I{H(−β)
f <ζ(−β)}




= E

[
1√

1− βT (f)
exp

{
−λ T (f)

1− βT (f)
− β

2

f2(T (f))

1− βT (f)

}
I{T (f)<ζ(−β)}

]

=

∫ ζ(−β)

0

1√
1− βt exp

{
−λ t

1− βt −
β

2

f2(t)

1− βt

}
P
(
T (f) ∈ dt

)

=

∫ ζ(β)

0

e−λr

(1 + βr)3/2
e−

β
2 (1+βr)f

2( r
1+βr )P

(
T (f) ∈ d

(
r

1 + βr

))

We complete the proof by using the injectivity of the Laplace transform
and make use of S(β) in the notation. ¤

Remark 3.4.4 Note that in the proof of the previous Theorem, the
condition of f being positive can be relaxed and one can consider real
valued function instead.

We shall now be concerned with some properties of the resulting curves
and the distributions of the corresponding crossing times. As usual, the
notation f ∼ g stands for limt→∞ f(t)/g(t) = 1. In the case β < 0 we
shall split the discussion into two cases depending on whether the limit
limt→+∞ f(t)/t = f̃(∞) is finite or not. We have the following local
limit result.

Theorem 3.4.5 In the case β > 0, we have

lim
t→∞

t3/2

dt
e
1
2β(1+βt)f

2( 1β )P
(
T (f(β)) ∈ dt

)
=
β−3/2

dβ−1
P
(
T (f) ∈ d

(
β−1

))
.

Proof. It is an immediate consequence of the fact that when β > 0 we
have f (β) ∼ βf(1/β)t. ¤
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3.4.3 Some Examples

In the Table below, we collect the images by S(β) of the most studied
curves and mention that some other curves for which the density is
known explicitly can be found in Lerche [76, p.27]. For any real numbers
a, b and b1, we have the following correspondences

f f (β)

a+ bt a+ (b+ aβ)t√
1 + 2bt

√
(1 + βt)(1 + (β + 2b)t)

(b+ t)2 (b+(1+β))t)2

1+βt

a
2 − t

a ln

(
b+

√
b2+4b1e

− a2
t

2

)
a(1+βt)

2 − t
a ln


 b+

√

b2+4b1e
− a2(1+βt)

t

2




a > 0, b ≥ 0, b1 > −b2/4

Remark 3.4.6 We refer to Lemma 2.3.3 for the expression of the den-
sity of the quadratic curve. We also mention that the density of the first
passage time to the last boundary has been derived by Daniels [22], by
using the method of images, and is given by

P(T (f) ∈ dt) = 1√
2πt3

(
e−

f(t)2

2t − b1
2
e−

(f(t)−a)2
2t

)
dt.

We proceed by studying the two first examples given in the Table.

1. In the first example, taking b = 0, we easily recover the Bachelier-
Lévy formula which is the distribution of the first passage time
of the Brownian motion to the linear curve (µt, t ≥ 0), denoted

by T
(1)
µ . Indeed, by choosing f = a and β = µ/a then we have

f (β)(t) = a+µt. Recall that, for the hitting time of the level a by
B, we have the well-known formula

Pa (T0 ∈ dt) =
|a|√
2πt3

e−
a2

2t dt. (3.23)
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t
2 4 6 8 10

2
4

6

β = 0

β = −0.1
β = −0.3

β = 0.05
β = 0.2

S   (f)(t)(β)

Figure 3.1: Image of the function
√
1 + 2t by S(β) for several values

of β.

Thus, a straightforward application of Theorem 3.4.1 yields

Pa
(
T (1)
µ ∈ dt

)
=

|a|√
2πt3

e−µa−
µ2

2 t− a2

2t dt

which is also easily checked by using Girsanov’s Theorem.

2. Now, we suggest to compute the law of the first passage time of
the Brownian motion to the square root of a quadratic function,
see Figure 1. More precisely, we seek to determine the distribution
of the stopping time

T (λ1,λ2)
a = inf

{
s ≥ 0; Bs = a

√
(1 + λ1s) (1 + λ2s)

}

where a and λ1 < λ2 are fixed real numbers. We do not treat
the case λ1 = λ2 since it is elementary. First, we assume that

λ2 = 0 and, to simplify notation, we set λ1 = λ and T
(λ,0)
a = T

(λ)
a .

It is the case studied by L. Breiman in [19], which is linked to
the first passage time to a fixed level by an Ornstein-Uhlenbeck
process. Indeed, with Ut = e−λt/2

∫ t
0
eλs/2dBs, for any t ≥ 0 and

Ha = inf{s ≥ 0; Us = a}, we have the equality in law

T (λ)
a

(d)
= λ−1

(
eλHa − 1

)
(3.24)
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which might be seen as a particular case of Theorem 3.3.6. Then,
we observe that it is enough to consider only the case a > 0 since
the other can be recovered from the symmetry of the Brownian
motion. We complete the computation by using (3.24) to get, for
t < ζ(λ),

P
(
T (λ)
a ∈ dt

)
=

1

1 + λt
P (Ha ∈ d·)

∣∣
·= 1

λ log(1+λt)
dt (3.25)

where several representations of the density of Ha can be found in
Chapter 1. Now, if λ1 < λ2 then on [0, ζ(λ1)], which is the support

of T
(λ1,λ2)
a if λ1 is positive and its support is finite otherwise, we

have

S(λ1)
(√

1 + (λ2 − λ1)·
)
=
√

(1 + λ2·) (1 + λ1·).

By using Theorem 3.4.3, we obtain, for t < ζ(λ1),

P
(
T (λ1,λ2)
a ∈ dt

)
=
e−

1
2λ1(1+λ2t)

(1 + λ1t)5/2
S(λ1)

(
P(T (λ2−λ1)

a ∈ dt)
)

which ends by using (3.25).

3.5 Application to Bessel Processes

We start by recalling some well-known facts concerning Bessel processes.
Let δ, z ≥ 0 and set ν = δ

2 −1. It is plain that the stochastic differential
equation

dQ
(ν)
t = 2

√
|Q(ν)

t |dBt + δdt, Q
(ν)
0 = z,

admits a unique strong solution, see e.g. [100]. A realization of a Bessel

process of dimension δ (or of index ν) is given by R(ν) =
√
Q(ν). In

particular, for δ > 1, it is the unique solution of the equation

dR
(ν)
t = dBt +

δ − 1

2R
(ν)
t

dt, R
(ν)
0 = x =

√
z.

The Laplace transform of the squared Bessel process Q(ν) takes the
following form

Ez
[
e−λQ

(ν)
t

]
=

1

(1 + 2λt)ν+1Γ(ν + 1)
e−

λz
1+2λt , λ ≥ 0, (3.26)
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and the density of the semigroup is given by

pνt (z, y) =
1

2t

(y
z

)ν/2
e−

z+y
2t Iν

(√
zy

t

)
, t > 0, z 6= 0,

pνt (0, y) =
1

(2t)ν+1Γ(ν + 1)
e−

y
2t , t > 0,

where we recall that Iν is the modified Bessel function of the first kind
of index ν. The case z = 0 is obtained by passage to the limit and,
for further results on Bessel processes, we refer to [100]. Observe that

the law of Sβ(R(ν)), denoted by Q(ν,β)
x , is absolutely continuous with

respect to that of R(ν), denoted by Q(ν)
x , and these are related via the

mutual relation

dQ(ν,β)
x |Ft =

1

(1 + βt)ν+1
e
− β

2

(
R2t
1+βt−x

2

)

dQ(ν)
x |Ft (3.27)

for any t < ζ(β). We also note that (3.19) remains true when B(β)

and U (β) are replaced, respectively, by R(ν,β) and Sβ(R), where these
objects are defined following the same procedure. Next, we shall recall
and provide an interpretation of Lamperti’s relation [71] in terms of the
mappings we introduced earlier. The latter states that, for any fixed
ν > 0, there exists a Brownian motion B such that one has

eB
ν
t = R(ν)

(∫ t

0

e2B
ν
s ds

)
(3.28)

where Bνt = Bt + νt for any t ≥ 0. This reads Σ
(
e−B

ν)
= R(ν) and

Σ
(
eB

ν)
= 1/R(ν)

. . We do not intend to go further in this direction
however the following result is worth to be mentioned.

Corollary 3.5.1 We have the equalities

Π(α,β)
(
e−B

ν
)

= e−B
ν

(
α+ β

∫ .

0

e2B
ν
s ds

)

= Π(α,β) ◦ Σ
(
R(ν)

)

= Σ ◦ S(α,β)
(
R(ν)

)
.

Now, we are ready to state the analogue of Theorem 3.4.1 in the Bessel

setting. We modify the notation by introducingK (f) = inf{s ≥ 0;R
(ν)
s =
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f(s)}, for any f ∈ C
(
R+
0 ,R+

)
, for Bessel processes. The proof of the

following result will be omitted since it is similar to the Brownian case.

Theorem 3.5.2 For any t < ζ(β), holds the relationship

Q(ν)
x

(
K(f(β)) ∈ dt

)
=
e
−β
2

(
f(β)(t)2

1+βt −x2
)

(1 + βt)ν+3
S(β)

(
Q(ν)
x

(
K(f) ∈ dt

))
.

(3.29)

We shall now make explicit computations for the case where f is taken
to be a straight line i.e. f(t) = a+ bt, t ≥ 0, where a > 0 and b is some
fixed real numbers. Observe that with β = b/a, we have S(β)(a) =
{a+ bt, t ≥ 0} when b > 0 and S(β)(a) = {a+ bt, t ≤ −b/a} otherwise.

Next, set K(a+b·) = inf{s ≥ 0; R
(ν)
s = a + bs} and set Ĥ

(β)
a = inf{s ≥

0; S(β)(R
(ν)
s ) = a}. Note that if b < 0 then the support of K(a+b·) is

(0,−b/a) and recall that the distribution of K (a) is characterized by

Ex
[
e−

λ2

2 K
(a)
]
=





x−νIν(xλ)
a−νIν(aλ) , x ≤ a,

x−νKν(xλ)
a−νKν(aλ) , x ≥ a.

for λ > 0, where Kν is the modified Bessel function of the second kind.
In particular, for x < a, we have

Q(ν)
x (K(a) ∈ dt) =

∞∑

k=1

x−νjν,kJν(jν,k xa )
a2−νJν+1(jν,k)

e−j
2
ν,kt/2a

2

dt (3.30)

where (jν,k)k≥1 is the ordered increasing sequence of the zeros of Bessel
function of the first kind Jν , see e.g. [17]. We shall now characterize the
distribution of K(a+b·) in terms of its Laplace transform and compute
its density in the case x < a.

Theorem 3.5.3 For λ > 0, we have

Ex
[
e−

λ2

2 K
(a+b·)

I{K(a+b·)<∞}

]
=





C
∫∞
0

Iν(x
√
2u)

Iν(a
√
2u)

pνb/2a(x̄, u) du, x ≤ a,

C
∫∞
0

Kν(x
√
2u)

Kν(a
√
2u)

pνb/2a(x̄, u) du, x ≥ a,
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where C = e−
b
2a (a

2−x2) x−ν
a−ν and x̄ = (λ2 + b2)/2. In particular, for

x < a, we have

Q(ν)
x (K(a+b·) ∈ dt)

dt
=
e
b
2a (a

2−x2)+ b2

2 t

(1 + b
a t)

ν+2

∞∑

k=1

x−νjkJν(jk xa )
a2−νJν+1(jk)

e−
j2kt

2a(a+bt)

(3.31)
where jk = jν,k.

Proof. A reformulation of the second identity (3.21) for Bessel pro-
cesses provides the identity

K(a+b·) =
Ĥ

(b/a)
a

1 + b
aĤ

(b/a)
a

a.s.

where β = b/a. That allows us to write

Ex
[
e−

λ2

2 K
(a+b·)

I
{K(a+b·)<ζ(−

b
a
)}

]

= Ex


e
−λ2

2
Ĥ
(b/a)
a

1+ b
a
Ĥ
(b/a)
a I

{Ĥ(b/a)
a <ζ(−

b
a
)}




= Ex

[
e
−λ2

2
K(a)

1+ b
a
K(a)

(1 +
b

a
K(a))−δ/2e

b
2a

(
a2

1+ b
a
K(a)

−x2
)

I
{K(a)<ζ(−

b
a
)}

]

= e
b
2a (a

2−x2)Ex

[
e
− x̄K(a)

1+ b
a
K(a)

(1 +
b

a
K(a))−δ/2I

{K(a)<ζ(−
b
a
)}

]

= e
b
2a (a

2−x2)
∫ ∞

0

pνb/2a(x̄, u)Ex
[
e−uK

(a)

I
{K(a)<ζ(−

b
a
)}

]
du

where we used identity (3.26). We conclude by using (3.30) to get the
first assertion. Relation (3.31) is a consequence of the combination of
Theorem 3.5.2 and (3.30). ¤

Remark 3.5.4 The process R(ν),b = (R
(ν)
t + bt, t ≥ 0) is easily seen to

be inhomogeneous since it solves the equation

R
(ν),b
t = Bt +

δ − 1

2

∫ t

0

ds

R
(ν),b
s − bs

+ bt.
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The reader should not confuse it with what is called a Bessel with a
”naive” drift b, introduced in [123] and defined as the solution to

Q
(ν)
t = Bt +

δ − 1

2

∫ t

0

ds

Q
(ν)
s

+ bt.

Remark 3.5.5 By setting δ = 1 we are lead to the reflected Brownian
motion. Amongst the consequences, we see that our analysis extends
to the first passage time of the double barrier (x ± f(s), s ≥ 0), i.e.
inf{s ≥ 0;Bs = x± f(s)}, and the same kind of results prevails.

Remark 3.5.6 We mention that like for the Brownian motion case,
the Mellin transform of the first passage time of Bessel processes to the
square root boundary has been expressed by [29] in terms of Hypergeo-
metric function. When the process starts below the curve, the density
can be expressed as a series expansion in terms of the zeros of this func-
tion.

3.6 Survey of Known Methods

Several methods appeared in the literature to solve the mentioned first
passage time problem in some specific cases. We collect below the most
significant ones and refer to Hobson et al. [55] for a similar survey.

3.6.1 Girsanov’s Approach

The first method we describe below was formalized in the general setting
by Salminen [107] but was previously used by Novikov [85] for asymp-
totic results and by Groeneboom [49] for the curve f(t) = ct2+ b, c and
b positive real numbers and t ≥ 0. Assuming that f ∈ C2

(
R+
0 ,R

)
such

that f(0) 6= 0 then the law Pfx of the process Bf , where B
f
t = Bt−f(t) =

Bt + f(0)−
∫ t
0
f ′(s) ds, for a fixed t ≥ 0, is absolutely continuous with

respect to the law of B denoted by Px. The Radon-Nikodym derivative
being the martingale

M
(f)
t =

dPfx+f(0)
dPx+f(0)

|Ft = exp
(
−
∫ t

0

f ′(s)dBs −
1

2

∫ t

0

f ′(s)2ds
)
. (3.32)
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A careful application of Doob’s optional stopping Theorem combined
with a device borrowed from [47] and [7], based on Williams’ time re-
versal result, yields the following identity which is a slightly modification
of [107, Theorem 2.1]

Px(T (f) ∈ dt)
Px+f(0)(T0 ∈ dt)

= ef
′(0)(x+f(0))− 1

2

∫ t
0
f ′2(s)dsEx+f(0)

[
e
∫ t
0
rsf

′′(s) ds
]
,

(3.33)
valid for t ≥ 0, where we recall that r is a 3-dimensional Bessel bridge
over the interval [0, t] between x+ f(0) and 0.

We proceed by exploiting the absolute continuity relationship between

P(φ)
x , the law of the GMOU (φ) process, and the Wiener measure in

order to connect their first passage time distributions. Let r be a δ-
dimensional Bessel bridge over [0, t] between x > 0 and z > 0. We

denote by Q(δ)
x→z its law. To a given µ ∈Mr+, we associate the quantity

hδ,µx (y, t) = Ex→0

[
e−

1
2

∫ t
0
(rs+y)

2µ(ds)
]

(3.34)

where t > 0 and y ∈ R and write simply hµ = h3,µ. In order to simplify
notation, we assume for the rest of this Section that φ ∈ A−2,b∞ . Now,
we are ready to state the following.

Proposition 3.6.1 For x > y > 0, we have

P(φ)
x (H(φ)

y ∈ dt) =
(

1

φ(t)

)1/2

e
1
2

(
φ′(t)
φ(t)

y2−φ′(0)x2
)

h
φ′′/φ
x−y (y, t) Px(Ty ∈ dt).

(3.35)

Proof. In remark 3.2.8 we obtained

dP(φ)
x|Ft =

M
(φ)
t (B)

M
(φ)
0 (x)

dPx|Ft , t < ζ(φ).

Next, set

m(t) =

√
φ(0)

φ(t)
e
1
2

{
φ′(t)
φ(t)

y2−φ′(0)
φ(0)

x2
}

.
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Then, Doob’s optional stopping Theorem allows to get

P(φ)
x (H(φ)

y ∈ dt) = m(t) Ex
[
e−

1
2

∫ t
0
B2
s
φ′′(s)
φ(s)

ds, Ty ∈ dt
]

= m(t) Ex
[
e−

1
2

∫ t
0
B2
s
φ′′(s)
φ(s)

ds|Ty = t

]
Px(Ty ∈ dt).

We conclude by following a line of reasoning similar to the proof of
Theorem 1.5.1. ¤

We do not know how to compute explicitly the quantity (3.34) except
for the particular value y = 0, see Pitman and Yor [97] or Remark
3.3.7 for a simple proof. The unpleasant presence of y in the expression
forbids us to use the additive property possessed by the square Bessel
processes. It breaks down the hope to extend the technique developed
in [97]. In fact, we have a better understanding of this by switching to
a generalized squared radial Ornstein-Uhlenbeck process with the help
of a probability change of measure.

Proposition 3.6.2 Set F (φ) = φ′/φ and let x, z > 0 and y ∈ R. We
have

hδ,µx,z(y, t) = e−
1
2{F (φ)(t)(z+y)2−F (φ)(0)(x+y)2−δ log φ(t)

φ(0)}Q(δ,φ)
x (Rt ∈ dz)

Q(δ,0)
x (Rt ∈ dz)

where R, under the probability Q(δ,φ)
x , satisfies the integral equation

Rt = x+Bt + y log φ(t) +
δ − 1

2

∫ t

0

ds

Rs
+

∫ t

0

F (φ)(s)Rs ds. (3.36)

Proof. We easily check by Itô’s formula that the process (N (φ), t ≥ 0)
defined, for a fixed t ≥ 0, by

N
(φ)
t (y) = e

1
2 [F

(µ)(t)(Rt+y)
2−F (µ)(0)(x+y)2−δ log φ(t)]− 1

2

∫ t
0
(Rs+y)

2µ(ds)

(3.37)
is a P-martingale. By Girsanov’s Theorem, under the probability mea-
sure Q(δ,φ) = N (φ)P, the process R satisfies (3.36). Our assertion fol-
lows. ¤
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3.6.2 Standard Method of Images

On {(x, t) ∈ R × R+; x ≤ f(t)} set h(x, t)dx = P
(
T (f) > t,Bt ∈ dx

)

and observe that the space-time function h is the unique solution to the

heat equation ∂
∂th = 1

2
∂2

∂x2 with boundary conditions

h (f(t), t) = 0, h(., 0) = δ0(.) on ]−∞, f(0)] (3.38)

where δ0 stands for the Dirac function at 0. The standard method of
images assumes the knowledge of h which admits the following repre-
sentation, for some a > 0

h(x, t) =
1√
t
η

(
x√
t

)
− 1

a

∫ ∞

0

1√
t
η

(
x− s√

t

)
F (ds) (3.39)

where η(x) = 1√
2π
e−

x2

2 and F (ds) is some positive, σ-finite measure

with
∫∞
0
η(
√
εs)F (ds) < ∞ for all ε > 0. In Lerche [76, p.21], it is

shown that if f is the unique root of the equation h(x, t) = 0 for t fixed
and x unknown then we have

P
(
T (f) ≤ t

)
= 1− η

(
f(t)√
t

)
+

1

a

∫ ∞

0

η

(
f(t)− s√

t

)
F (ds), t > 0.

(3.40)
It is a challenging task to find further probabilistic links relating F (ds)
to f such as the following one. If f ≥ 0 and f(0) > 0 we have

∫ ∞

0

F (ds)e−λs = E
[
e−λf(T

(f))−λ2

2 T
(f)
]

which easily seen to hold true, see [2]. Also, because f satisfies h(f(.), .) =
0, we see that ∫ ∞

0

F (ds)e−
s2

2t+s
f(t)
t = a, t > 0. (3.41)

The drawback of this method is that the collected class of curves which
can be treated using this tool must satisfy some criterions such as the
concavity, see [76]. Finally, the above method extends to the case where
the support of F (ds) is any subset of R. However, the corresponding
boundary problem may be a two-sided one. As an instructive check we
show that our method agrees with the method of images.

Proposition 3.6.3 For a fixed β > 0 let h(β) be defined by (3.39) where

F (ds) is replaced by F (ds)e−βs
2/2. Then, for a fixed t > 0, f (β) is the
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unique solution to h(β)(x, t) = 0. In other words, equation (3.40) is
in agreement with Theorem 3.4.1 when F (ds) and f are respectively

replaced by F (ds)e−βs
2/2 and f (β).

Proof. The first assertion can easily be proved using (3.41) where t is
replaced by t/(1 + βt), for t > 0. The second one is checked via some
easy computations. ¤

3.6.3 Durbin’s Approach

In [37], Durbin showed that, in the absolute continuous case, the prob-
lem reduces to the computation of a conditional expectation. That is,
assuming that f is continuously differentiable and f(0) 6= 0 then, for
any t > 0, holds the relationship

P
(
T (f) ∈ dt

)
=

1√
2πt

e−
f2(t)
2t h(t)dt (3.42)

where

h(t) = lim
s↗t

1

t− sE
[
Bs − f(s);T (f) > s

∣∣Bt = f(t)
]
.

There seems to be no-known way to compute the function h. Alter-
natively, another probabilistic representation for h, found in [2], says
that

h(t) = lim
ε→0

1

ε
P
(
T (f) > t

∣∣Bt = f(t)− ε
)
.

This approach is compared to the standard method of images in [38].

Kendall [64] shows an intuitive interpretation involving the family of
local times of B at f denoted by lB=f

. . Note that (3.42) may be written

as P
(
T (f) ∈ dt

)
= h(t)E[dlB=f

t ], t ≥ 0. Hence, integrating over [0, a]
yields

E
[∫ a

0

h(s)dlB=f
s

]
= P

(
T (f) < a

)
.

Now, if g : R+ × R+ → R+ solves the equation

E
[∫ a

t

g(s, a)dlB=f
s

∣∣Bt = f(t)

]
= 1, 0 < t < a,
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then we easily check that

E
[∫ a

0

g(s, a)dlB=f
s

]
= P

(
T (f) < a

)
.

holds true as well. However, it is not clear how to express g in terms of
h.

3.6.4 An Integral Representation

We end up this section with some integral equations satisfied by the
density in the absolute continuous case. First, observe that if f is posi-
tive and does not vanish then B, when started at B0 = x > f(0), must
hit f before 0. The strong Markov property gives then birth to

x√
2πt3

e−
x2

2t =

∫ t

0

Px(T (f) ∈ dr) f(r)√
2π(t− r)

e−
f(r)2

2(t−r) , t > 0. (3.43)

The above conditions on f can be relaxed leading to the conclusion that
(3.43) holds for a larger class of curves, see [76]. Amongst other integral
equations we quote the following one. Assuming that f is differentiable,
we have, for t ≥ 0,

Px(T (f) ∈ dt)
dt

=
f(t)√
2πt3

e−
f(t)2

2t −
∫ t

0

nt(u)
1/2

√
π(t− u)e

−nt(u) Px
(
T (f) ∈ du

)

where nt(u) = (f(t)−f(u))2
2(t−u) . For these and other well-known integral

equations we refer to [37], [41] and [76], for some new ones we refer to
[93] and [27].
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4.1 Introduction

Let Z :=(Zt, t ≥ 0) be a spectrally negative Lévy process starting
from 0 given on a filtered probability space (Ω,F , (Ft)t≥0,P) where
the filtration (Ft)t≥0 satisfies the usual conditions. For any λ > 0,
we define a generalized Ornstein-Uhlenbeck (for short GOU) process
X :=(Xt, t ≥ 0) , starting from x ∈ R, with backward driven Lévy
process (for short BDLP) Z as the unique solution to the following
stochastic differential equation

dXt = −λXt dt+ dZt, X0 = x. (4.1)

These are a generalization of the classical Ornstein-Uhlenbeck process
constructed by simply replacing the driving Brownian motion with a
Lévy process. In this Chapter we are concerned with the positive ran-
dom variables Ha and the functional It defined by

Ha = inf {s ≥ 0; Xs > a} and It =

∫ t

0

Xs ds (4.2)

respectively. The Laplace transform of Ha is known from Hadjiev [51].
There is an important literature regarding the distribution of additive
functionals, stopped at certain random times, of diffusion processes, see
for instance the book of [17] for a collection of explicit results. How-
ever, the law of such functionals for Markov processes with jumps are
not known except in some special cases (e.g. the exponential functional
of some Lévy processes, see [20] and the Hilbert transform of Lévy
processes see [43] and [10]). The explicit form of the joint distribu-
tion (Ha, IHa), when X is the classical Ornstein-Uhlenbeck, is given by
Lachal [70]. Here, the author exploits the fact that the bivariate pro-
cess (Xt, It, t ≥ 0) is a Markov process. We shall extend his result by
providing the Laplace transform of this two-dimensional distribution in
the general case, i.e. when X is a GOU process as defined above. We
recall that first passage time problems for Markov processes are closely
related to the finding of an appropriate martingale associated to the
process. We shall provide a methodology which allows us to build up
the martingale used to compute the joint Laplace transform we are look-
ing for. In a second step we shall combine martingales and Markovian
techniques to derive the Laplace-Fourier transform.

GOU processes have found many applications in several fields. They
are widely used in finance today to model the stochastic volatility of a
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stock price process (see e.g. [9]) and for describing the dynamics of the
instantaneous interest rate. The latter application, as a generalization
of the Vasicek model, deserves particular attention, as these processes
belong to the class of one factor affine term structure model. These are
well known to be tractable, in the sense that it is easy to fit the entire
yield curve by basically solving Riccati equations, see Duffie et al. [35]
for a survey on affine processes. From the expression of the joint Laplace
transform of (Ha, IHa), we provide an analytical formula for the price
of a European call option on maximum on yields in the framework of
GOU processes.

This Chapter is organized as follows. In Section 2, we recall some facts
about spectrally negative Lévy and GOU processes and their first pas-
sage times above a constant level. In Section 3, we give an explicit
form for the joint Laplace transform (Ha, IHa) in terms of new special
functions. Sections 4 and 5 are devoted to some special cases. First, we
study the stable OU processes, that is when Z is a stable process. Then,
we consider the two sided case for which the positive jumps part is a
compound Poisson process whose jumps are exponentially distributed.
In the last Section, we apply the previous results to the pricing of a
path-dependent option on yields with a more detailed study of the sta-
ble Vasicek case.

4.2 Preliminaries

4.2.1 Lévy Processes

Unless stated, throughout the rest of this Chapter Z := (Zt, t ≥ 0)
denotes a real-valued spectrally negative Lévy process starting from 0.
It is a process with stationary and independent increments, whose Lévy
measure ν charges only the negative real line (ν((0,∞)) = 0). Due to
the absence of positive jumps, it is possible to extend analytically the
characteristic function of Z to the negative imaginary line. Thus, one
characterizes this process by its so-called Laplace exponent ψ : [0,∞)→
(−∞,∞) which is specified by the identity

E
[
euZt

]
= etψ(u), t, u ≥ 0,
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and has the form

ψ(u) = bu+
1

2
σ2u2 +

∫ 0

−∞
(eur − 1− urχ(r))ν(dr)

where χ(r) := I{r>−1}, b ∈ R , σ ≥ 0 and ν(.) is the Lévy measure on

(−∞, 0] which satisfies the integrability condition
∫ 0
−∞(1 ∧ x2) ν(dx) <

∞. It is known that ψ is a convex function with limu→∞ ψ(u) = +∞.
We assume that the process X does not drift to −∞, which is the
case when ψ′(0+) is non-negative, see Bertoin [11, Chapter VII] for a
thorough description of these processes.
We introduce the first passage time process T := (Ta, a ≥ 0) defined, for
a fixed a ≥ 0, by Ta = inf {s ≥ 0; Zs > a}. Denoting by φ the inverse
function of ψ, the Laplace exponent of T is given by, see [11, Theorem
VII.1],

E
[
e−uTaI{Ta<∞}

]
= e−aφ(u), u ≥ 0. (4.3)

4.2.2 GOU Processes

In this Section, we review some well-known facts concerning GOU pro-
cesses and for the sake of completeness provide their proofs. By a tech-
nique of variation of constants, the solution of (4.1) can be written in
terms of Z as follows

Xt = e−λt
(
x+

∫ t

0

eλs dZs

)
, t ≥ 0. (4.4)

From this representation, it is an easy exercise to derive the Laplace
exponent of X, see Hadjiev [51].

Proposition 4.2.1 For u ≥ 0, we have

Ex
[
euXt

]
= exp

(
e−λtxu+

∫ t

0

ψ(e−λru) dr

)

where Ex is the expectation operator with respect to Px, the law of the
process starting from x.

Proof. We consider an arbitrary subdivision 0 = t0 < . . . < tn = t
and introduce ε = maxi≤n |ti − ti−1|. Let g be a bounded deterministic
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function. Using the independency and the stationarity of the increments
of the Lévy process Z, we get, for u ≥ 0

E
[
exp

(
u

∫ t

0

g(s) dZs

)]
= lim

ε→0

n∏

i=1

E
[
exp

(
ug(ti)(Zti − Zti−1)

)]

= lim
ε→0

n∏

i=1

E
[
exp

(
ug(ti)Zti−ti−1

)]

= lim
ε→0

n∏

i=1

E [exp (ψ (ug(ti)) (ti − ti−1))]

= exp

(
−
∫ t

0

ψ(ug(r)) dr

)
.

Finally, choosing g(t) = e−λt, the statement follows. ¤

From the representation (4.4), we get that Xt −→
∫∞
0
e−λs dZs a.s. as

t tends to ∞. Consequently, the Laplace transform of the limiting
distribution of X, denoted by ρ̂X(u), u ≥ 0, is given by

ρ̂X(u) = exp

(∫ ∞

0

ψ(e−λru) dr

)
,

whenever the Lévy measure satisfies the condition

∫

r<−1
log |r| ν(dr) <∞, (4.5)

see Sato [108, Chapter III]. We assume that this condition holds through-
out this Chapter. A nice feature, for both practice and theory, is the
fact that ρ is a selfdecomposable distribution. Conversely, any selfde-
composable distribution can be viewed as the limiting distribution of a
GOU process. For interesting papers on this relationship and applica-
tions, we refer to Jeanblanc et al. [60], Jurek [61] and Sato [108] and
the references therein.

The process X is a Feller process. Its infinitesimal generator A is an
integro-differential operator acting on C2c (R), the space of twice con-
tinuously differentiable functions with compact support. It is defined
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by

Af(x) =
1

2
σ2f ′′(x) + (b− λx)f ′(x) +
∫ 0

−∞
(f(x+ r)− f(x)− f ′(x)rχ(r)) ν(dr).

To complete the description, we mention that X is a special semimartin-
gale with triplet of predictable characteristics given by

(
bt− λ

∫ t

0

Xs ds,
1

2
σ2t, ν(dr)dt

)
. (4.6)

Next, we deal with the Laplace transform of the first passage time of
a fixed level y ≥ x of the GOU process which appeared in Hadjiev [51]
and Novikov [86]. For sake of completeness, we give a detail proof of
this result and we follow the approach of Novikov [86]. We construct an
exponential family of martingales and we estimate the Laplace trans-
form by applying Doob’s optional stopping Theorem. Before stating
the main result of this Section, we set up some notation and give some
Lemmas. We define the function ϕ by

ϕ(u) =
1

λ

∫ u

0

ψ(r)

r
dr, u ≥ 0,

and decompose it as follows

ϕ(u) =
1

λ

(
mu+

σ2

2
u2 + I1(u) + I2(u)

)

where

I1(u) =

∫ ∞

0

∫ u

0

r−1(erw − rwI{w>−1} − 1)I{w>−1} dr ν(dw),

and

I2(u) =

∫ ∞

0

∫ u

0

r−1(erw − 1)I{w≥−1} dr ν(dw)

= A−
∫ ∞

0

[
log(u) +

∫ ∞

−wu
r−1e−r dr

]
I{w≥−1} ν(dw),

with A =

∫ ∞

0

[eγ + log(−w)] I{w≥−1} ν(dw) and eγ is the Euler con-

stant, see [72].
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Remark 4.2.2 Note that the Laplace transform of X can be expressed
in terms of the function ϕ. Indeed, for u ≥ 0, we have

Ex
[
euXt

]
= exp

(
e−λtxu+ ϕ(u)− ϕ(ue−λt)

)
.

Moreover, we have the identity ϕ(u) = log(ρ̂X(u)).

Lemma 4.2.3 If

σ > 0 or

∫ ∞

0

|w|I{−1<w<0} ν(dw) =∞, (4.7)

then

lim
u→∞

ϕ(u)

u
=∞. (4.8)

If

σ = 0 or

∫ ∞

0

|w|I{−1<w<0} ν(dw) <∞, (4.9)

then

lim
u→∞

ϕ(u)

u
=

1

λ

(∫ ∞

0

|w|I{−1<w<0} ν(dw)
)
. (4.10)

Proof. It is clear, from the condition (4.5), that the integral I1 is finite.
For I2 we use the following asymptotic result, as u tends to ∞

I2(u) = − log(u)ν((−∞,−1]) + 1

λ

(∫ ∞

0

|w|I{−1<w<0} ν(dw)
)
+O(1).

That is I2(u) ³ O(log(u)). By the inequality ew − wI{|w|<1} − 1 ≥
w2

2 I{w<0}, we find that

I1(u) ≥
u2

4

∫ ∞

0

w2I{w>0} ν(dw) +O(1).

Hence,

λϕ(u) ≥ mu+
u2

4

(
σ2 +

∫ ∞

0

w2I{w>0} ν(dw)

)
+O(log(u)).
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Thus if σ > 0 we obtain the limit (4.8). Now, we assume that condition
(4.9) holds. Then,

λϕ(u) = mu+

∫ ∞

0

[∫ u

0

erw − rw − 1

r
dr

]
I{−1<w<0} ν(dw) + I2(u).

Note that for x < 0 and v > 0 the following inequalities hold

0 ≤ erw − rw − 1

r
≤ −w.

Taking into account the assumption

∫ ∞

0

|w|I{−1<w<0}ν(dw) <∞, using

the dominated convergence Theorem and the l’Hospital rule, we find

lim
u→∞

1

u

∫ ∞

0

[∫ u

0

erw − rw − 1

r
dr

]
I{−1<w<0} ν(dw) =

∫ ∞

0

|w|I{−1<w<0} ν(dw).

(4.10) follows.

If

∫ ∞

0

|w|I{−1<w<0} ν(dw) =∞, a similar argument leads to the follow-

ing estimate, with any ε > 0

lim
u→∞

ϕ(u)

u
≥ 1

λ

(
m+

∫ ∞

0

|w|I{−1<w<−ε} ν(dw)
)
.

Letting ε→ 0, we obtain (4.8). ¤

Fix a > x. For the remainder of the Chapter, we shall impose the
following condition.

Assumption 1

Either σ > 0 or

∫ 0

−1
rν(dr) =∞ or b−

∫ 0

−1
rν(dr) > λa.

We proceed by introducing the following function, for x ∈ R,

Hν(x) =

∫ ∞

0

exp (xr − ϕ(r)) rν−1dr.
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Theorem 4.2.4 For any γ > 0, the process
(
e−γtH γ

λ
(Xt), t ≥ 0

)
is a

martingale.

Proof. The martingale property follows from an application of Fubini’s
Theorem, justified by Lemma 4.2.3, together with remark 4.2.2. ¤

Finally, we derive the Laplace transform of Ha.

Proposition 4.2.5 For a > x, and γ > 0, we have

Ex
[
e−γHa

]
=
H γ

λ
(x)

H γ
λ
(a)

.

Proof. It is a straightforward application of Doob’s optional stopping
Theorem to the bounded stopping time Ha∧ t. The passage to the limit
t→∞ is justified by Lemma 4.2.3 and by dominated convergence. ¤

We end up this Section with the following limit result.

Proposition 4.2.6 Let x, a ∈ R and γ > 0, then we have

lim
λ→0

H γ
λ
(x)

H γ
λ
(a)

= e−(x−a)φ(γ).

Proof. We can rewrite H by considering the following change of vari-
able r = φ(s) and denoting z = λ−1

Hzγ(x) =

∫ ∞

0

exp

(
xφ(r)− z

∫ φ(r)

1

ψ(u)
du

u

)
φ(r)zγ−1φ′(r)dr

=

∫ ∞

0

fx(r) exp (−zp(r; γ)) dr

where fx(r) = exφ(r)φ(r)−1φ′(r) and p(t; γ) =
∫ r
1
φ′(u)
φ(u) udu−γ log(φ(r)).

We use the Laplace’s method to derive an asymptotic approximation
for large value of the parameter z, see [89, Theorem 2.1]. We get the
following approximation

Hzγ(x) ∼ fx(γ)e
−zp(γ)

(
2π

xp′′(γ)

) 1
2

as z →∞,
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where p′(t) = φ′(t)
φ(t) (t− γ) and p′′(γ) =

φ′(γ)
φ(γ) 6= 0. The result follows.

¤

4.3 Study of the Law of (Ha, IHa
)

Our aim in this Section is to characterize the joint law of the couple

(Ha,

∫ Ha

0

Xs ds) through transform techniques. We shall start with

computing the following joint Laplace transform, for any x ≤ a,

Λ(γ,θ)
a (x) = Ex

[
e−γHa+θIHa

]
, γ, θ > 0.

To this end, we introduce the GOU process, denoted by X
θ
λ , with the

triplet of predictable characteristics

(
b′t− λ

∫ t

0

Xs ds,
σ2

2
t, e

θ
λ rν(dr)dt

)

where b′ := b + θ
λσ

2 +

∫ −1

−∞
(e

θ
λ r − 1)rν(dr). Before stating our main

result we note the following intermediate result.

Lemma 4.3.1 For γ, θ > 0 such that η := γ − ψ( θλ ) > 0, and a > x,
we have

Λ(γ,θ)
a (x) = e−

θ
λ (a−x) Ex

[
e−η H

( θ
λ
)

a

]

where H
( θλ )
a = inf

{
s ≥ 0; X

θ
λ
s > a

}
.

Remark 4.3.2 We note that this Lemma can easily be extended to com-

pute the joint law of the couple (Ha,

∫ Ha

0

Λ(Xs) ds) where X is the so-

lution to the SDE dXt = Λ(Xt)dt+dZt, X0 = x < a, and where Λ(x) is
any locally integrable function on R and Ha = inf {s ≥ 0; Xs > a} such
that a is regular for itself.

Proof. Fix a > x. Exploiting the fact that X has non-positive jumps,
we get

∫ Ha

0

Xs ds =
1

λ
(ZHa + x− a)
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which yields

Λ(γ,θ)
a (x) = e−

θ
λ (a−x) Ex

[
e−γHa+

θ
λZHa

]
.

We recall that Ft = σ(Zs, s ≤ t) denotes the natural filtration of Z up to
time t. We now consider the Girsanov’s transform P(ξ) of the probability

measure P which is defined by dP(ξ)
|Ft

= exp (ξZt − tψ(ξ)) dP|Ft , t, ξ ≥
0. Under P(ξ), Z, denoted by Z(ξ), is again a Lévy process with the
following Laplace exponent, for u ≥ 0

ψ(ξ)(u) := log
(
E
[
euZ

(ξ)
1

])

= log
(
E
[
e(u+ξ)Z1

])
− ψ(ξ)

=

(
b+ σ2ξ +

∫ −1

−∞
(eξr − 1)rν(dr)

)
u+

1

2
σ2u2

+

∫ 0

−∞
(eur − 1− urχ(r))eξrν(dr).

By choosing ξ = θ
λ and using the representation (4.6), it is straightfor-

ward to deduce the triplet of predictable characteristics of the associated
GOU process X

θ
λ . We point out that X

θ
λ has again non-positive jumps,

since the two probability measures are absolutely continuous. Finally,
our relationship follows from the computations

Λ(γ,θ)
a (x) = e−

θ
λ (a−x) Ex

[
e−γHa+

θ
λZHa

]

= e−
θ
λ (a−x) Ex

[
e−(γ−ψ(

θ
λ ))Ha+

θ
λZHa−ψ( θλ )Ha

]

= e−
θ
λ (a−x) Ex

[
e−(γ−ψ(

θ
λ ))H

( θ
λ
)

a

]
.

¤

Introduce the function ϕβ defined by

ϕβ(u) =
1

λ

∫ u

0

ψ(r + β)

r
dr, u ≥ 0.

We are now ready to state the main result of this Section.



88 Chapter 4. First Passage Times of GOU Processes

Theorem 4.3.3 For γ, θ > 0 and a > x, we have

Λ(γ,θ)
a (x) = e−

θ
λ (a−x)

H γ
λ ,

θ
λ
(x)

H γ
λ ,

θ
λ
(a)

,

where

Hν,β(x) =
∫ ∞

0

exp (xr − ϕβ(r)) rν−1dr.

Proof. Combining the results of the previous Lemma and Proposition
4.2.5, with the obvious notation, we obtain

Λ(γ,θ)
a (x) = e−

θ
λ (a−x)

H( θλ )
η
λ

(x)

H( θλ )
η
λ

(a)
.

Next, since

H( θλ )
η
λ

(x) =

∫ ∞

0

exp

(
xr − 1

λ

∫ r

1

ψ( θλ )(v)
dv

v

)
r
η
λ−1dr

=

∫ ∞

0

exp

(
xr − 1

λ

∫ r

1

ψ(v +
θ

λ
)
dv

v

)
r
γ
λ−1dr

= exp

(
1

λ

∫ 1

0

ψ(v +
θ

λ
)
dv

v

)
H γ

λ ,
θ
λ
(x),

we obtain the identity

H( θλ )
η
λ

(x)

H( θλ )
η
λ

(a)
=
H γ

λ ,
θ
λ
(x)

H γ
λ ,

θ
λ
(a)

.

By using the convexity of ψ and the fact that limu→∞ ψ(u) = +∞, we
have for a fixed θ > 0 and large u, ψ(u + θ) ≥ ψ(u). Moreover, under

the assumption 1, Novikov [86] shows that limu→∞ u−1
∫ u

0

ψ(r)r−1dr =

+∞. Therefore, by following a line of reasoning similar to [86, Theorem
2] the proof is completed. ¤

In Section 4.4, the special case with stable BDLP’s is studied in detail.
In what follows, we provide the Laplace-Fourier transform of the joint
distribution. We first show the following Lemma.
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Lemma 4.3.4 The bivariate process (Xt, It, t ≥ 0) is a Markov process.
Its infinitesimal generator is defined on C2,1c (R× R) by

A∗f(x, y) =
1

2
σ2
∂2f

∂x2
(x, y) + (b− λx)∂f

∂x
(x, y) + x

∂f

∂y
(x, y) +

∫ 0

−∞

(
f(x+ r, y)− f(x, y)− ∂f

∂x
(x, y)rχ(r)

)
ν(dr).

Proof. We start by recalling that, although the additive functional It
is not Markovian, the bivariate process (It, Xt, t ≥ 0) is a strong Markov
process, see [16]. The second part of the Lemma is a consequence of
Itô’s formula. Indeed, for any function f ∈ C2,1c (R× R), we have

f(Xt, It) = f(x, 0) +

∫ t

0

∂f

∂x
(Xs− , Is) dXs +

1

2

∫ t

0

∂2f

∂x2
(Xs, Is) d〈Xc〉s

+
∑

0<s≤t
f(Xs, Is)− f(Xs−, Is)−

∂f

∂x
(Xs−, Is)∆Xs +

∫ t

0

∂f

∂y
(Xs, Is) dIs

= f(x, 0)− λ
∫ t

0

∂f

∂x
(Xs, Is)Xs ds+

∫ t

0

∂f

∂x
(Xs−, Is) dZs +

1

2

∫ t

0

∂2f

∂x2
(Xs, Is) d〈Zc〉s +

∫ t

0

∂f

∂y
(Xs, Is)Xs ds+

∑

0<s≤t
f(Xs− +∆Zs, Is)− f(Xs−, Is)−

∂f

∂x
(Xs−, Is)∆Zs

where Xc denotes the continuous martingale part of X. Finally, taking
into consideration that d〈Zc〉s = σ2ds, we obtain A∗. ¤

Corollary 4.3.5 For γ, θ, λ > 0 and a > x, we have

Λ(γ,iθ)
a (x) =

H γ
λ ,

iθ
λ
(x)

H γ
λ ,

iθ
λ
(a)

where Hν,β(x) = eβxHν,β(x).
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Proof. In order to simplify the notation in the proof we assume that
σ = 0. We consider the process M :=(Mt, t ≥ 0) defined, for a fixed
t ≥ 0, by

Mt = exp

(
−γt+ iθ

∫ t

0

Xs ds

)
H γ

λ ,
iθ
λ
(Xt).

We shall prove that M is a complex martingale. From the integral
representation (4.11), it follows that the function Hν,β(x) is analytic in

the domain <(ν) > 0, <(β) > 0, x ∈ R. Set u(t, x, y) := e−γt+i(θy+
θ
λx),

g(x) := H γ
λ ,

iθ
λ
(x) and f(t, x, y) := u(t, x, y)g(x). Thanks to the remark

following Proposition 4.2.5, we see that g is a solution of the following
integro-differential equation

A(i θλ )g(x) = (γ − ψ(i θ
λ
))g(x) (4.11)

with

A(ξ)f(x) = (b̄− λx)f ′(x) +
∫ 0

−∞
(f(x+ r)− f(x)− f ′(x)rχ(r)) eξrν(dr)

where we recall that b̄ := b+

∫ 0

−∞
(eξr − 1)rχ(r)ν(dr). We observe that

∂f

∂y
(t, x, y) = iθu(t, x, y)g(x)

∂f

∂x
(t, x, y) = u(t, x, y)

(
i
θ

λ
g(x) + g′(x)

)
.

By applying the change of variables formula for processes with finite
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variation, we get

df(t,Xt, It) =

(
∂f

∂t
(t,Xt, It)− λXt

∂f

∂x
(t,Xt, It) +

∂f

∂y
(t,Xt, It)

)
dt

+

∫ 0

−∞
f(x+ r, y)− f(x, y)− ∂f

∂x
(x, y)rν(dr)dt

+
∂f

∂x
(t,Xt−, It)dZt

= u(t, x, y)

((
b+

∫ 0

−∞
(e

θ
λ r − 1)rχ(r)ν(dr)− λXt

)
g′(x)

∫ 0

−∞
(g(x+ r)− g(x)− g′(x)rχ(r)) e θλ rν(dr) +

(
−γ + ib

θ

λ
+

∫ 0

−∞
e
θ
λ r − 1− i θ

λ
rχ(r)ν(dr)

)
g(x)

)
dt

+Nt,

where (Nt, t ≥ 0) is a F-martingale. Consequently, by using the fact
that g is a solution of the equation (4.11), we have shown that (Mt, t ≥
0) is also a purely discontinuous martingale with respect to the natural
filtration of X.
Next, we derive the following estimates, for any t ≥ 0

E [|MHa∧t|] ≤ E
[
|H γ

λ ,
iθ
λ
(XHa∧t)|

]

≤ E
[
|H γ

λ ,
θ
λ
(XHa∧t)|

]

≤ E
[
|H γ

λ ,
θ
λ
(a)|

]
<∞.

We complete the proof of the corollary by applying the Doob’s optional
sampling Theorem at the bounded stopping time Ha ∧ t and the domi-
nated convergence Theorem. ¤

In the sequel, we assume that the exponential moments of the BDLP Z
are finite, that is

Assumption 2

∫

r<−1
evrν(dr) <∞ for every v ∈ R.
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Theorem 4.3.6 For γ, θ, λ > 0 and a > x we have:

Λ(γ,−θ)
a (x) = e

θ
λ (a−x)

H γ
λ ,− θ

λ
(x)

H γ
λ ,− θ

λ
(a)

.

Proof. It is well known that when the Lévy measure of Z satisfies the
assumption 2, its Laplace exponent is an entire function, see [115]. Then
we can follow the same route as for the proof of the Theorem 4.3.3, but
using the martingale (exp (−ξZt − tψ(−ξ)) , t ≥ 0), for any ξ > 0, in
the Girsanov transform. ¤

Remark 4.3.7 Note that if for a fixed δ > 0, we assume only that∫

r<−1
e−

δ
λ rν(dr) <∞, then Λ(γ,−θ) is well defined for any θ < δ, since

the Laplace exponent is analytic in a convex domain.

4.4 The Stable Case

We investigate the stable OU processes, that is the GOU processes with
stable BDLP’s, in more detail. We recall that a stable process Z :=
(Zt, t ≥ 0) with index α ∈ (0, 2] is a Lévy process which enjoys the

selfsimilarity property (Zkt, t ≥ 0)
(d)
= (k1/αZt, t ≥ 0), for any k > 0.

If the stable process has non-positive jumps, excluding the negative of
stable subordinator, its Laplace exponent is given, for 1 < α ≤ 2, by

ψ(u) = cuα, u ≥ 0,

where c = c̃ | cos( 12πα) |−1 and c̃ > 0, see [108, Example 46.7]). Finally,
it is worth noting that if Z is a stable process, with index α, we have
the following representation for X, for any t ≥ 0,

Xt = e−λt
(
x+ Z̃τ(t)

)
(4.12)

where Z̃ is an α-stable Lévy process defined on the same probability

space as Z and τ(t) = eαλt−1
αλ .

We now compute the Laplace transform of the first passage time of a
constant level by the stable OU process (α ∈ (1, 2]). As we have said,
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another proof exists of this result, see [51]. However, we shall describe a
methodology which can be extended to more general selfsimilar Markov
processes with one sided jumps and for which singleton is regular for
itself. For instance, we refer to [71] for a characterization of selfsimilar
processes in R+, the so-called semi-stable processes. Our proof is based
on the selfsimilarity property of Z. We shall proceed in two steps. First,
we give the Mellin transform of the first passage time of the BDLP
to a specific curve, see [109] and [123] for selfsimilar diffusions with
continuous paths and [85] for spectrally negative Lévy processes. Using
a deterministic time change we then derive the Laplace transform of
Ha. It is clear that the first passage time of a constant level of these
processes inherits the selfsimilarity property. Consequently, a unique
monotone and continuous function ϕ exists such that, for γ > 0

Ex
[
e−γTa

]
=
ϕ
(
γ1/αx

)

ϕ
(
γ1/αa

)

where x ≶ a depending on the side of the jumps of X. We recall that in

the stable case ϕ(x) = e−c
−1/αx. In order to emphasize the role played

by the scaling property in the proof of the following result we shall keep
the notation ϕ. We introduce the following positive random variable

T (α,d)
y = inf

{
s ≥ 0; Zs ≥ a(s+ d)1/α

}
, (a > x),

which is the first passage time of the process Z above the curve a(t+d)α.

Theorem 4.4.1 For 1 < α ≤ 2 and m > 0, the Mellin transform of

the random variable T
(α,d)
a is given by

Ex
[
(T (α,d)
a + d)−mI{T (α,d)

a <∞}

]
= d−m

Hm(d−1/αx)

Hm(a)
(4.13)

where

Hm(−x) =

∫ ∞

0

ϕ
(
−xr1/α

)
e−rrm−1 dr

= α

∞∑

k=0

(−1)kΓ( kα +m)

ck/αk!
xk.

Proof. From (4.3) and the selfsimilarity of Z, it is clear that the process
(e−γtϕ(γ1/αZt), t ≥ 0) is a F-martingale. By an application of Doob’s
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optional sampling Theorem, we have (using the bounded stopping time

T
(α,d)
y ∧ t and then applying the dominated convergence Theorem)

Ex
[
e−γT

(α,d)
a ϕ

(
γ1/αZ

T
(α,d)
a

)]
= ϕ

(
γ1/αx

)
(4.14)

where by integrating both sides of (4.14) by the measure e−dγγm−1dγ,
and using Fubini’s Theorem we get

Ex
[∫ ∞

0

e−γ(T
(α,d)
a +d)ϕ

(
γ1/αZ

T
(α,d)
a

)
γm−1dγ

]

=

∫ ∞

0

ϕ
(
γ1/αx

)
e−dγγm−1dγ.

Using the fact that Z has non-positive jumps, it follows that Z
T
(α,d)
a

=

y(T
(α,d)
a + d)1/α. Thus,

Ex
[∫ ∞

0

e−γ(T
(α,d)
a +d)ϕ

(
γ1/αy(T (α,d)

a + d)1/α
)
γm−1dγ

]

= d−mHm(d−1/αx).

The change of variable r = γ(T
(α,d)
a + d) yields

Ex
[∫ ∞

0

e−rϕ
(
r1/αa

)
rm−1(T (α,d)

a + d)−mdr

]
= d−mHm(d−1/αx).

Thus, we have

Ex
[
(T (α,d)
a + d)−m

]
= d−m

Hm(d−1/αx)

Hm(a)
.

Next, note that

Hm(−x) =

∞∑

k=0

(−1)k(c−1/αx)k
k!

∫ ∞

0

e−rrm+ k
α−1dr.

The proof is then completed by using the representation of the Gamma

function Γ (z) =

∫ ∞

0

e−rrz−1dr, <(z) > 0. ¤

Remark 4.4.2 Let Z = (Zt, t ≥ 0) denotes a real-valued spectrally neg-
ative Lévy process starting from 0. Introduce the time-changed process
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Yt = exp (ZAt), where At = inf{s ≥ 0;ϑ(s) :=

∫ s

0

exp(αZu) du > t}.
Lamperti showed that (Yt, t ≥ 0) is a R+-valued càdlàg α selfsimilar
Markov process. Let us denote by HY

a (resp. Ty) the first passage time
of Y (resp. Z) at the level a > 0. We have the following identity

HY
y

(d)
= ϑ(Tlog(y))

=

∫ Tlog(y)

0

exp(αZu) du.

We point out that there is an error in the statement of Theorem 2 in
[122]. Indeed, Itô’s formula for processes with finite variation together
with the fact that X has no positive jumps yield

ϑ(Tx) = ϑ(T0) +

∫ x

0

eαu dTu +
∑

0≤u≤x
(ϑ(Tu)− ϑ(Tu−)− eαu∆Du)

=

∫ x

0

eαu dTu +
∑

0≤u≤x
(

∫ Tu

Tu−

exp(αZu) du− eαu∆Du).

The last term on the right hand-side was forgotten by the author in his
proof.

For more information on the property of the function H, we refer to
[85]. As a consequence we state the following result.

Theorem 4.4.3 The Laplace transform of the random variable Ha is
given by

Ex [exp (−γHa)] =
H γ

αλ
((αλ)1/αx)

H γ
αλ

((αλ)1/αa)
, a > x.

Proof. Fix a > x. We have the following relationship between first
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passage times

Ha = inf {s ≥ 0; Xs > a}

= inf

{
s ≥ 0; e−λt

(
x+

∫ t

0

eλs dZs

)
> a

}

= inf
{
s ≥ 0; e−λt

(
x+ Z̃τ(s)

)
> a

}

= A
(
inf
{
s ≥ 0; x+ Z̃s > a (αλs+ 1)

1/α
})

= A
(
T
(α,(αλ)−1)

(αλ)1/αa

)

where we have performed the deterministic time change A(t) = τ−1(t),
i.e. A(t) = 1

αλ ln(αλt+ 1). Therefore,

Ex
[
e−γHa

]
= Ex

[
(αλT

(α,(αλ)−1)

(αλ)1/αa
+ 1)−

γ
λα

]

= (αλ)−
γ
λαEx

[
(T

(α,(αλ)−1)

(αλ)1/αa
+ (αλ)−1)−

γ
λα

]

=
H γ

αλ
((αλ)1/αx)

H γ
αλ

((αλ)1/αa)
.

¤

Finally, we mention the expression of Λ
(γ,θ)
a in this case.

Theorem 4.4.4 For γ, θ > 0 and a > x, we have

Λ(γ,θ)
y (x) = e−

θ
λ (a−x)

H γ
λ ,

θ
λ
(x)

H γ
λ ,

θ
λ
(a)

where Hν,β(x) =
∫ ∞

0

exp

(
xr − c

λ

∫ r

0

(v + β)α
dv

v

)
rν−1dr.

Remark 4.4.5 When Z is a Brownian with drift b (i.e. α = 2, c = 1
2),

we obtain

Λ(γ,θ)
a (x) = eλ/2(x

2−a2)−λb(x−a)
Dν
(
−
√
2λ(x− θ)

)

Dν
(
−
√
2λ(a− θ)

) (4.15)
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where ν := θ2

2λ3 + bθ
λ2 −

γ
λ , θ =

b
λ + θ

λ2 , and

Dν(x) =
e−x

2/2

Γ(−ν)

∫ ∞

0

exp

(
−xr − 1

2
r2
)
r−ν−1 dr

denotes the parabolic cylinder function, see Chapter 1. We also note
that, by taking b = 0 in (4.15), we recover the result of Lachal [70].

4.5 The Compound Poisson Case with Ex-

ponential Jumps

In this part, we extend the results of the previous sections by including
positive jumps in the dynamics of X. More precisely, we add an inde-
pendent component which is a compound Poisson process whose jump
sizes have an exponential distribution. Let Z+ :=(Z+

t , t ≥ 0) be a
compound Poisson process, that is for t ≥ 0,

Z+
t =

Nt(q)∑

k=1

ξk

where (Nt, t ≥ 0) is a Poisson process with parameter p > 0 and
(ξk, k ≥ 1) is a sequence of i.i.d. random variables. Further, we assume
that ξ1 is exponentially distributed with positive parameter p. The law
of Z+ is characterized by its Laplace transform

logE
[
euZ

+
1
]
= ψ+(u), u ∈ Cp,

where ψ+(u) = uq
p−u and Cp = {u ∈ C : <(u) < p}. Next, we introduce

the spectrally negative Lévy process Z−t , with Lévy measure denoted by
ν−. It is a measure with support on R− which satisfies the integrability

condition
∫ 0
−∞(1∧r2)ν−(dr) <∞. Set θ− = inf{u ≤ 0 : E[euZ

−
1 ] <∞},

with the convention that inf{Ø} =∞, we have

logE
[
euZ

−
1
]
= ψ−(u), u ∈ Cθ− ,

where ψ−(u) = mu+ σ
2u

2 +
∫ 0
−∞(eur − 1− urI{r>−1})ν−(dr), m ∈ R ,

σ ∈ R+ and Cθ− = {u ∈ C : <(u) > θ−}. Finally we consider the Lévy
process Z :=(Zt, t ≥ 0) defined, for t ≥ 0, by

Zt = Z+
t + Z−t .
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Since the two components are independent, we have the identity

logE
[
euZ1

]
= ψ(u), u ∈ C = Cp ∩ Cθ− ,

where ψ has the form

ψ(u) = ψ+(u) + ψ−(u).

For any λ > 0, we define the GOU processX :=(Xt, t ≥ 0) associated to
Z as the unique solution of the following stochastic differential equation

dXt = −λXt dt+ dZt, X0 = x ∈ R.

We introduce the first passage time κa defined by

κa = inf {s ≥ 0; Xs > a} , x < a.

We denote by ∆a the overshoot of X over the level a, i.e. ∆a = Xκa−a.
In what follows, we shall compute the law of the couple (κa,

∫ κa
0

Xs ds)
by evaluating its joint Laplace transform which we denote as follows

Λ(γ,θ)
a (x) := Ex

[
e−γκa+θ

∫ κa
0

Xs ds
]
.

As for the one sided case, the Laplace transform of the first passage
time κa can also be computed with the help of martingales techniques,
see Novikov et al [88]. Indeed, define

ϕ(u) =
1

λ

∫ u

1

ψ−(r)

r
dr, u > θ−,

and introduce, for x ∈ R, the function

Hγ(q;x) =
∫ 1

0

epxu−ϕ(pu)u
γ
λ−1(1− u) qλ−1 du.

We recall the result of [88] and for sake of completeness we sketch the
proof.

Proposition 4.5.1 For x < a and for any γ > 0,

Ex
[
e−γκa

]
=
Hγ(q + λ;x)

Hγ(q; a)
,

and the law of the overshoot is given by

Ex
[
eu∆a

]
=

1

1− u/p , u < p.
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Proof. Since the proof is similar to the one of Proposition 4.2.5, we
just describe the main steps. In [88], it is shown that the process
(e−γtHγ(q;X)t, t ≥ 0) is a F-martingale. Then, thanks to the Wald
identity we have

Ex
[
e−γκaHγ(q + λ;Xκa)

]
= Hγ(q + λ;x).

Now using the facts that the random variables κa and ∆a are indepen-
dent and

Ex
[
eu∆a

]
=

1

1− u/p , u < p,

we deduce the Laplace transform of κa

Ex
[
eu∆a

]
=
Hγ(q + λ;x)

Hγ(q; a)
, x < a.

¤

Next, we deal with the computation of Λ. Let us introduce, for θ ∈ C,
the function

ϕθ(u) =
1

λ

∫ u

1

ψ−(r + θ
λ )

r
dr, u < p.

Set p̂ = p− θ
λ , and define the function Hγ,θ, for x ∈ R, as follows

Hγ,θ(q;x) =
∫ 1

0

ep̂ux−ϕθ(p̂u)u
γ
λ−1(1− u) qλ−1 du.

We are ready to extend the results of Section 4.3.

Proposition 4.5.2 For γ, λ > 0, and θ
λ ∈ C, we have

Λ(γ,θ)
a (x) = e

θ
λ (x−a) p̂

p

Hγ,θ(q̂ + λ;x+ m̂
p̂ )

Hγ,θ(q̂; a+ m̂
p̂ )

, x < a,

where q̂ = qp
p̂ and m̂ = 1

θ/λ−1e
θ/λ−q( 1

θ/λ−q + 1)− e−q( 1q − 1).

Proof. Fix a > x, we have
∫ κa

0

Xs ds =
1

λ
(Zκa + x−Xκa)
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which yields

Λ(γ,θ)
a (x) = e

θ
λx Ex

[
e−(γ−ψ(

θ
λ ))κa+

θ
λZκa−ψ( θλ )κa− θ

λXκa

]
.

For ψ(ξ) <∞, that is for ξ ∈ C ∩R, the process (exp (ξZt − tψ(ξ)) , t ≥
0) is a F-martingale. We now consider the Girsanov’s transform P(ξ) of
the probability measure P which is defined by

dP(ξ)
|Ft

= exp (ξZt − tψ(ξ)) dP|Ft , t ≥ 0.

Under P(ξ), Z is again a Lévy process with the following Laplace expo-
nent, for u ≥ 0,

ψ(ξ)(u) := ψ(u+ ξ)− ψ(ξ).

We have for θ
λ ∈ C ∩ R,

Λ(γ,θ)
a (x) = e

θ
λ (x−a) E( θλ )

x

[
e−(γ−ψ(

θ
λ ))κa− θ

λ∆a

]
.

After some easy algebra, one finds that, under P( θλ ), Z+ is again com-
pound Poisson process with exponential jumps of parameter p̂ = p+ θ

λ

and drift m̂ = 1
θ/λ−1e

θ/λ−q( 1
θ/λ−q+1)−e−q( 1q−1). The Poisson process

has parameter q̂ = pq
p̂ . Thus, we have

E( θλ )
x

[
e−(γ−ψ(

θ
λ ))κa

]
=

Hγ,θ(q̂ + λ;x+ m̂
p̂ )

Hγ,θ(q̂; a+ m̂
p̂ )

and

E( θλ )
x

[
eu∆a

]
=

1

1− u/p̂ , u < p̂.

Using the fact that the overshoot and the first passage time are inde-
pendent random variables, we obtain

Λ(γ,θ)
a (x) = e

θ
λ (x−a) E( θλ )

x

[
e−(γ−ψ(

θ
λ ))κa

]
E( θλ )
x

[
e−

θ
λ∆a

]
.

The statement follows from Proposition 4.5.1. ¤
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We close this Section by investigating the case when the BDLP Z is
simply a compound Poisson process, i.e. Z = Z−. We recall that the
Laplace transform of the first passage time κa is given by, see [88],

Ex
[
e−γκa

]
=

Φ
(
γ
λ ,

p+γ
λ + 1; q(x− m

λ )
)

Φ
(
γ
λ ,

p+γ
λ ; q(a− m

λ )
) , x < a, (4.16)

where Φ denotes the Kummer function.

Proposition 4.5.3 For γ, θ > 0 such that η := γ − ψ( θλ ) > 0, and
a > x, we have

Λ(γ,θ)
a (x) =

e
θ
λxp̂

p̂+ γθ

Φ
(
γθ
λ ,

p̂+γθ
λ + 1; (q + θ

λ )(x− m̂
λ )
)

Φ
(
γθ
λ ,

p̂+γθ
λ ; q(a− m̂

λ )
) q + θ

λ

q

where γθ = γ− θ
λ (m+ p

q−θ/λ ), p̂ = p−λ
θ and m̂ = m+ 1

θ/λ−1e
θ/λ−q( 1

θ/λ−q+

1)− e−q( 1q − 1).

Proof. Fix a > x, by combining the results of Proposition 4.5.1 with
the expression (4.16), we get

Λ(γ,θ)
a (x) = e

θ
λx E( θλ )

x

[
e−(γ−ψ(

θ
λ ))κa

]
E( θλ )
x

[
e−

θ
λ∆a

]

= e
θ
λx

p̂

p̂+ γθ

Φ
(
γθ
λ ,

p̂+γθ
λ + 1; (q + θ

λ )(x− m̂
λ )
)

Φ
(
γθ
λ ,

p̂+γθ
λ ; q(a− m̂

λ )
) q + θ

λ

q
.

¤

4.6 Application to Finance

We apply the results of the previous Sections to the pricing of a Eu-
ropean call option on maximum on yields in the generalized Vasicek
framework. We extend the results of [73] by allowing jumps in the in-
terest rate dynamics. We refer to their paper for the motivation and
the description of the financial problems.
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In our framework, that is when the interest rate dynamics is given as
the solution of (4.1), it is an easy task to derive the current price of the
discount bond

Px(0, T ) := Ex

[
exp

(
−
∫ T

0

Xs ds

)]

= exp (A(T )x+D(T ))

where A(t) = 1
λ

(
1− e−λt

)
and D(t) = −

∫ t

0

ψ(A(r))dr, where ψ stands

for the Laplace exponent of Z. The price of the option is given by

CX (0, T ∗,K;x, T ) := Ex


e−

∫ T
0
Xs ds

(
sup

u∈[0,T∗]
Xu −K

)+



where K ∈ R+ denotes (resp. T ∗ ∈ R+ ) the strike (resp. the time to
maturity). Next, we shall give a closed form expression for the Laplace
transform with respect to time to maturity of this functional. For γ > 0,
we introduce the notation

Lγ(K;x, T ) :=

∫ ∞

0

e−γT
∗
CX(0, T ∗,K;x, T ) dT ∗.

Proposition 4.6.1 We assume that

∫

r<−1
e−

1
λ rν(dr) <∞. Then, for

x ≤ K, we have

Lγ(K;x, T ) = H γ
λ ,− 1

λ
(x)

∫ ∞

K

ey/λ
Pγ(a)

H γ
λ ,− 1

λ
(a)

da (4.17)

where Pγ(a) :=

∫ ∞

0

e−γTPa(0, T ) dT .

Proof. Observing that {supu∈[0,T∗]Xu < a} = {Ha < T ∗}, and using
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the strong Markov property of the process X we obtain

Lγ(K;x, T ) = Ex

[∫ ∞

K

da

∫ ∞

Ha

dT ∗ exp

(
−γT ∗ −

∫ T∗

0

Xs ds

)]

= Ex
[∫ ∞

K

da

∫ ∞

Ha

dT ∗ exp
(
− γ(T ∗ −Ha)− γHa

−
∫ Ha

0

Xs ds−
∫ T∗

Ha

Xs ds

)]

=

∫ ∞

K

da Ex

[
exp

(
−γHa −

∫ Ha

0

Xs ds

)]
Pγ(a).

To get the desired expression for the Laplace transform of the option

price it remains to compute Ex

[
exp

(
−γHa −

∫ Ha

0

Xs ds

)]
. From

Theorem 4.3.6 and Remark 4.3.7, choosing θ = 1, we obtain

Ex

[
exp

(
−γHa −

∫ Ha

0

Xs ds

)]
= e

1
λ (a−x)

H γ
λ ,− 1

λ
(x)

H γ
λ ,− 1

λ
(a)

.

The identity (4.17) follows. ¤

Finally, we conclude this Section by investigating the possibility that
the interest rates in the mean reverting stable Vasicek model, become
negative. In this case, we have ψ(u) = bu+ cδαuα, δ > 0. The Laplace
transform of the limiting distribution of the process X is given by

E
[
exp

(
uρX

)]
= exp

(
cδαuα

∫ ∞

0

e−λαr dr + bu

∫ ∞

0

e−λr dr

)

= exp

(
cδα

λα
uα +

b

λ
u

)
.

We recognize the Laplace transform of a α-stable random variable with
δα

λα , β = −1 and b
λ . In Table 1, we show the probability of a negative

long-term interest rate pn and the mean value r̄ for different values of
the index but with the other parameter being constant (b = 0.01, λ =
0.1 and δ = 0.00025). These results are the outcomes of Monte Carlo
simulation. We recall that for α = 2 the mean value is simply given
by the coefficient of the drift term b

λ , whereas for 1 < α < 2 the stable
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random variables without drift are not centered. We observe that the
probability of negative interest rate decreases with the index α, but
remains very small for moderate values of α. Moreover, the mean value
of X stays almost unchanged for the same value of the index and equals
the ratio b

λ = 0.1, which is a realistic level, for instance, for an annual
interest rate. It is worth noting that it is possible to get both very small
values for pn and reasonable values for long-term interest rates y for any
α by playing with the family of the parameters (λ, b, δ).

Table 4.1:
α pn(≈) y
2 0 1
1.8 1.1×10−7 0.0996
1.5 6.4×10−5 0.099
1.2 0.015 0.086



Chapter 5

On the Resolvent

Density of Regular

α-Stable

Ornstein-Uhlenbeck

Processes

Earth is not a gift from our parents, it is a loan from our children.
Amerindian Proverb

5.1 Introduction

The fluctuation theory for Lévy processes has proved enormously fruit-
ful in both theory and application. It originates in an analytical ar-
gument such as the Wiener-Hopf factorization. Unfortunately, except
for the stable and the completely asymmetric case, explicit expressions
for these factors can not be found. In very recent work, much effort

105
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has been devoted to reprove these factors, in the spectrally negative
case, by means of probabilistic devices such as excursion theory, see
Bertoin [11] or martingale techniques, see Kyprianou and Palmowski
[69], Nguyen-Ngoc and Yor [82]. Moreover, it is well known that the
law of the exit times associated to the completely asymmetric Lévy
processes is characterized in terms of these factors. In this Chapter,
we aim to solve some exit problems associated to a spectrally negative
α-stable Ornstein-Uhlenbeck process X via the resolvent density (or
Green function). It seems rather difficult to use directly the techniques
developed for Lévy processes since the properties of the stationarity and
independency of the increments are required at some stage, properties
which are not fulfilled by X. However, the connection with its underly-
ing Lévy process allows to use some devices which bring us to explicit
results. Our approach consists on computing the resolvent density by
a combination of martingales techniques and potential theory. More
precisely, we compute the law of the hitting time of a fixed level by
the α-stable Ornstein-Uhlenbeck process. Then, we derive its resolvent
density in terms of the q-scale function associated to X which is given
explicitly in terms of a generalization of the Mittag-Leffler function. It
turns out that the knowledge of the hitting time distribution is suffi-
cient to characterize the Laplace transform of the exit from above of an
interval for X. The rest of the Chapter is organized as follows. The
next Section is devoted to some recalls about the properties of the re-
solvent density of X. In Section 3, we derive the resolvent density at
0 of general α-stable Ornstein-Uhlenbeck processes. Focusing on the
spectrally negative case, in Section 4, we give an explicit expression of
the resolvent density. In Section 4, we introduce several processes to X,
obtained as Doob’s h-transform and compute the Laplace transform of
their first passage times. More precisely, we characterize the process X
conditioned to stay positive and the bridges associated to X. Finally,
in the last Section we make the connection with the well known results
for the Lévy case.

5.2 Preliminaries

Let Z := (Zt, t ≥ 0) be a stable process with index α ∈ (1, 2] defined on
a filtered probability space (Ω, (Ft)t≥0,P) . We recall that Z is a càdlàg
process with stationary and independent increments which fulfils the
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scaling property (Zct, t ≥ 0)
(d)
= (c1/αZt, t ≥ 0), for any c > 0, where

(d)
=

denotes equality in distribution. The characteristic function of Z has
the following form

Ψ(u) = c−1 | u |α (1− iβsgn(u) tan(πα/2)), u ∈ (−∞,+∞),

where c > 0 and β ∈ [−1, 1] is the skewness parameter. With the choice
β = −1, the process is spectrally negative, i.e. Z does not jump upwards.
In this case, it is possible to extend Ψ on the negative imaginary line to
derive the Laplace exponent of Z

ψ(u) = c−1uα, u ≥ 0. (5.1)

The distribution of Z1 is absolutely continuous with a continuous den-
sity denoted by pc, i.e. P(Z1 ∈ dx) = pc(x)dx. Note that, by the
scaling property, we have P(Zt ∈ dx) = t−1/αpc(t−1/αx)dx. Doob [34]
introduced the α-stable Ornstein-Uhlenbeck process (Xt, t ≥ 0) ,with
parameter λ > 0 which is defined by

Xt = e−λt Zτ(t), t ≥ 0, (5.2)

where τ(t) = eαλt−1
αλ . Note that for t > 0, X is governed by the stochas-

tic differential equation

dXt = −λXt dt+ dZt, (5.3)

with X0 = 0. X is ergodic with unique invariant measure pλc(x)dx, see
Sato [108]. We point out, that in this case, we have pλc(x) = ρX(x),
where we recall that ρX(x) is the density of the limiting distribution
of X, see Chapter 4. Without loss of generality, in the following, we
assume that c = 1 in (5.1), unless stated. Its semigroup is specified by
the kernel Px(Xt ∈ dy) = pt(x, y)p

λ(y)dy, t > 0, with

pt(x, y) =
τ(t)−1/α

pλ(y)
eλtp

(
τ(t)−1/α(eλty − x)

)
, x, y ≥ 0. (5.4)

It is known that each point of the real line is regular (for itself), that is
for any x ∈ R, Px(Hx = 0) = 1, where Hx = inf{s > 0;Xs = x} denotes
the first hitting time of x by X, see Shiga [111]. As a consequence, for
each singleton {y} ∈ R, X admits a local time, denoted by Lyt . The
continuous additive functional Ly is determined by its q-potential, uq,
which is finite for any q > 0 and given by

uq(x, y) = Ex
[∫ ∞

0

e−qt dLyt

]
.
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From the definition of Ly, we derive the following

uq(x, y) = Ex

[∫ Hy

0

e−qt dLyt

]
+ Ex

[∫ ∞

Hy

e−qt dLyt

]

= Ex
[∫ ∞

0

e−q(u+Hy) dLyu+Hy

]

= Ex
[
e−qHy

]
Ey
[∫ ∞

0

e−qu dLyu

]

where the last line follows from the strong Markov property. Thus, we
obtain the following identity

Ex
[
e−qHy

]
=
uq(x, y)

uq(y, y)
, x, y ∈ R. (5.5)

For any q > 0, let Rq be the q-resolvent of X which is defined, for every
measurable function f ≥ 0, by

Rqf(x) =

∫ ∞

0

e−qtEx [f(Xt)] dt, x ∈ R.

Note that we have, for any x ∈ R,

Rqf(x) = Ex
[∫

y∈R
dyf(y)

∫ ∞

0

e−qt dLyt

]

=

∫

y∈R
dyf(y)uq(x, y). (5.6)

Finally, we summarize in the following some properties of the resolvent
of X.

Lemma 5.2.1 1. Rq has the strong Feller property. There exists
a jointly borel measurable function, denoted by rq such that for
x, y ∈ R, Rq(x, dy) = rq(x, y)pλ(y)dy.

2. For q > 0, the mapping (x, y) 7→ rq(x, y) is continuous and
bounded by max(q−1, 0) on R× R.

3. The q-potential of Ly is related to the resolvent density of X as
follows

uq(x, y)pλ(y) = rq(x, y), x, y ∈ R.



5.3. The General α-Stable OU Process 109

Proof. Since each point of the real line is regular (for itself) and X is
recurrent the fine topology coincides with the initial topology of R, see
Bally and Stoica [8]. The first assertion follows. The second assertion
follows from Proposition 3.1 in [8]. The last assertion follows from
equation (5.6). ¤

Remark 5.2.2 Note that, for x, y ∈ R, we also have

Ex
[
e−qHy

]
=
rq(x, y)

rq(y, y)
. (5.7)

5.3 The General α-Stable OU Process

Throughout this Section we consider the general α-stable Ornstein Uh-
lenbeck process with α ∈ (1, 2]. We will compute the resolvent density
at the origin. In what follows rq stands for rq(0, 0).

Theorem 5.3.1 Let q > 0, we have

rq =

(
p(0)pλ(0)(αλ)1/α−1B

(
q

αλ
, 1− 1

α

))
(5.8)

where B stands for the Beta function and

p(0) =
cos
(
1
α arctan(β tan πα

2 )
)

α sin π
αΓ(1− 1

α )

(
1 + β2 tan2

πα

2

)−1/2α
.

In particular, for the spectrally negative case (β = −1), the expression
reduces to

rq =
pλ(0)λ1/α−1α1/αΓ( q

αλ )

Γ( q
αλ + 1− 1

α )
(5.9)

where Γ denotes the Gamma function.
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Proof. From the expression of the density of the semigroup (5.4), we
get

rq =

∫ ∞

0

e−qtpt(0, 0)p
λ(0)dt

= p(0)pλ(0)

∫ ∞

0

e−qtκλ(t) dt

= p(0)(αλ)1/α−1B( q
αλ

, 1− 1

α
)

where κλ(t) = τ(t)−1/αeλt/2 and the expression follows from [48, p.
376]. We have for β = −1, see [119, Formula 4.9.1],

p(0) =
sin(πα )

πc1/α
Γ

(
1 +

1

α

)
.

Finally in this case we get

rq =
λ1/α−1α1/α sin(πα )

πc1/α
Γ

(
1 +

1

α

)
B
(
q

αλ
, 1− 1

α

)

=
λ1/α−1α1/α

c1/α
Γ( q

αλ )

Γ( q
αλ + 1− 1

α )

where we have used the following identities

Γ(ν + 1) = νΓ(ν), Γ(1− ν) = −νΓ(−ν) and Γ(ν)Γ(−ν) = − π

ν sin(πν)
.

¤

Next, we introduce σ = (σl, l ≥ 0) the right continuous inverse of the
continuous and increasing functional (L0

t , t ≥ 0). It is plain that σ,
as the inverse local time of a standard process, is a subordinator, see
e.g. Blumenthal and Getoor [16]. It is also well known that its Laplace
exponent is expressed in terms of the q-potential of the local time. More
precisely, we have

− log
(
E
[
e−qσl

])
=

l

uq
(5.10)

where uq = uq(0, 0). Let us also introduce the recurrent δ-dimensional
radial Ornstein-Uhlenbeck process with drift parameter µ > 0, which is
defined, for 0 < δ < 1, as the non-negative solution of

dRt =

(
δ − 1

2Rt
− µRt

)
dt+ dBt
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where B is a Brownian motion. Denote by σ(δ,µ) the inverse local time
at 0 of R. Next, we compute the density of the length of excursions
away from 0 for X, which we denote by h.

Corollary 5.3.2

h(s) =
( c
α

)1/α λ−1−1/α
Γ( 1α )

(eαλs − 1)1/α−1

and we have

(σl, l ≥ 0)
(d)
= (σ

(1/α,αλ)
l , l ≥ 0) (5.11)

where the positive constant of the stable process, in (5.1), is c = λ2α+1αα+1

Γα(1− 1
α )

.

Proof. Since the transition probabilities ofX are diffuse, σ is a driftless
subordinator see [44]. Thus, its Laplace exponent has the following form

1

uq
=

∫ ∞

0

(e−qs − 1)h(s)ds. (5.12)

Denoting Aα =
(
c
αλ

)1/α
λ−1, we have

AαΓ(
q
αλ + 1− 1

α )

Γ( q
αλ )

= q

∫ ∞

0

e−qsh(s) ds.

Next, using the following integral representation of the ratio of gamma
function

Γ( q
αλ + 1− 1

α )

Γ( q
αλ + 1)

=
αλ

Γ( 1α )

∫ ∞

0

e−qs(eαλs − 1)1/α−1 ds,

we deduce the expression for h. Finally, from the formula (59) in Pitman
and Yor [98], we notice that h is also the density of the Lévy measure
of the inverse local time of R with dimension δ = 1

α and parameter
µ = αλ. ¤

Remark 5.3.3 1. Let vq = limλ→0 r
q the resolvent density at 0 of

the BDLP. Since limλ→0 κλ(t) = t−1/α, we get

vq = p(0)

∫ ∞

0

e−qtt−1/α dt

= p(0) Γ(1− 1

α
)q1/α−1.
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In particular, we recover the well known result in the case of spec-
trally negative α-stable Lévy process, see e.g. [14],

vq =
q1/α−1

αc1/α
.

2. In the case of the classical Ornstein-Uhlenbeck process, we have,
see Hawkes and Truman [52],

vq =

√
λπ

Γ( qλ )D− q
λ
(0)D− q

λ
(0)

where we recall that D denotes the parabolic cylinder function, and

D−ν(0) =
√
π

2ν/2Γ(ν/2 + 1/2)
.

Then, by using the identity 22ν−1Γ(ν)Γ(ν + 1/2) =
√
π Γ(2ν), we

get

vq =

√
λ Γ( q2λ + 1/2)

2Γ( q2λ )

which corresponds to the formula (5.9) with α = 2 and c = 1/2.

5.4 The Spectrally Negative Case

In this Section, we focus on spectrally negative α-stable Ornstein-Uhlen-
beck processes, α ∈ (1, 2], starting from x ∈ R. Let us give some nota-
tion. LetH−y (Hy) and T

−
y , denotes the downward (upward) hitting time

of y by X and Z respectively. We also introduce T
(f),−
y the downward

hitting time of Z to the boundary f(t) = y(1 + αλt)1/α, t ≥ 0. Finally,

ηy (resp. η
(f)
y ) denotes the downward first passage time of Z over y

(resp. f). Next, we denote the Mittag-Leffler function of parameter
α > 0 by

Eα(x) =
∞∑

n=0

xn

Γ(1 + αn)
, x ∈ C,
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and its derivative by E ′α. We recall that the θ-scale function of Z,
denoted by Wθ, see Takács [118] or Bertoin [12] is given by

Wθ(x) = αxα−1E ′α((θ1/αx)α), <(x) ≥ 0 for 1 < α < 2

and we write simply V(θ1/αx) = αθ1−1/αWθ(x). Finally, we introduce
the functions

N q(x) =

∫ ∞

0

V
(
(uαλ)1/αx

)
e−uu

q
αλ−1du, x ∈ R+, <(q) > 1

α
− 1,

= α−1
∞∑

n=0

(αλ)
q
αλ+n+1− 1

α
Γ(n+ q

αλ − 1
α )

Γ(α(n+ 1))
xα(n+1)−1. (5.13)

and

N̄ q(x) =

∫ x

0

N q(y) dy. (5.14)

Next, we recall the following function, introduced in Chapter 4,

Hq(x) =

∫ ∞

0

eux−
uα

αλ u
q
λ−1du, x ∈ R and <(q) > 0, (5.15)

= α−1
∞∑

n=0

(αλ)
q
λ
+n

α
Γ(

n+ q
λ

α )

n!
xn. (5.16)

We recall that the function H has been introduced and studied by
Novikov [85]. H is well defined and continuous on R. With respect
to the parameter q, H.(x) has an analytical continuation to the right
half-plane. In particular, we have

Hq(0) = (αλ)
q
αλ

1

α
Γ(

q

αλ
)

and for α = 2, we have

D q
λ
(x) =

1

Γ( qλ )
Hq(x).

Next, we define the positive constant wq by

wq =
Hq(0)Hq(0)

rq

=
Γ( q

αλ + 1− 1
α )Γ(

q
αλ )

(αλ)
q
αλ

1
α

.
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Note that in the Brownian case, wq is identified as the wronskrian of the
parabolic cylinder functions D q

λ
(−.) and D q

λ
(+.). We are now ready to

state the main result of this Section.

Theorem 5.4.1 For any x, y ∈ R, and q > 0, we have

rq(x, y) = w−1q Hq(x)Hq(−y), x ≤ y,

rq(x, 0) = w−1q Hq(0) (Hq(x)−N q(x)) , x ≥ 0,
∫ x

0

rq(x, y) dy = 1 +N q(x)

(
1

Γ( q
αλ )

− qw−1q Hq−αλ(−x)
)
− N̄

q(x)

Γ( q
αλ )

.

Remark 5.4.2 It would be interesting to compute explicitly the resol-
vent density for any x ≥ y. It is linked to the problem of expressing the
q-scale function of the Lévy process, Wq(x − y) as a combination of a
function of x and y.

Remark 5.4.3 1. Note that if we consider the OU process driven
by a stable process with a linear drift µ ∈ R, the results of this
Chapter can be readily extended. Indeed, denoting by κµx→y the
first passage time of this process starting at x to the level y, we
have the following relationship between first passage times

κµλx→y = inf{s ≥ 0; e−λs
(
x− µ(eλs − 1) + Zτ(s)

)
< y}

= inf{s ≥ 0; e−λs
(
x− µ+ Zτ(s)

)
< y − µ}

= κx−µ→y−µ.

2. It is also possible to get the results for the case when λ < 0 by
using the fact that the invariant measure pλ is λ-excessive. Indeed,
we have the following absolute continuity relationship, with the
obvious notation,

dP(−λ)
x

dP(λ)
x

|Ft = e−λt
pλ(Xt)

pλ(x)
, t > 0.

3. In the case α = 2, that is when X is the classical Ornstein-
Uhlenbeck process, we get

rq(x, y) = w−1q eλ(x
2+y2)D− q

λ
((x ∧ y)

√
2λ)D− q

λ
(−(x ∨ y)

√
2λ).
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The proof of the Theorem is based on the identity (5.26). It is clear that
the Laplace transform of the hitting time of X is required. That will
be the focus of the following subsections. The proof of the Theorem is
then split into two main steps. The first one consists in computing the
distribution of the downward hitting time to 0 and relies on martingales
techniques. At a second stage we compute the law of the downward
hitting for the process starting from 0 by using the potential theory.
Finally, we conclude the proof by computing the first passage time below
the level 0.

5.4.1 The law of H−
0 : a Martingale Approach

Proposition 5.4.4 For any x ∈ R, and q > −να(y)(< −α−1), we have

Ex[e−qH
−
0 ] =

Hq(x)−N q(x)I{x≥0}
Hq(0)

. (5.17)

First we recall that, for x ≤ 0, the law of H0 has been evaluated by
Hadjiev [51], see Chapter 4, as follows.

Lemma 5.4.5 Let να(0) be the smallest positive zero of H.(0), then for
any x ≤ 0, and q > −να(0), we have

Ex[e−qH0 ] =
Hq(x)
Hq(0)

. (5.18)

Next, we aim to compute the law of the downward hitting time H−0 for
x ≥ 0. To this end, we introduce the process Y defined for each t ≥ 0
by Yt = (αλt+ 1)−1/αZt. We have the following.

Lemma 5.4.6 For all q > 0 and x ≥ 0, the process

Nt = (αλt+ 1)−
q
αλ

(
Hq(Yt)−N q(Yt))I{t≤η0}

)
(5.19)

is a Px-martingale.

Proof. Let us introduce the process

Mθ
t = e−θt

(
eθ

1/αZt − V(θ1/αZt)I{t≤η0}
)
.
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Then, we recall from Doney [33] that the law of the downward hitting
time T−0 of Z is given by

∫ ∞

0

e−βxEx[e−θT
−
0 ] dx =

1

β − θ1/α −
αθ1−1/α

βα − θ .

The right hand side is defined by continuity for β, θ > 0. Noting that for
β > θ1/α, 1

βα−θ =
∑∞
n=1 β

−αnθn−1, so inverting the Laplace transform
yields, for x ≥ 0

Ex[e−θT
−
0 ] = eθ

1/αx − V(θ1/αx).

The strong Markov property entails that M θ is a Px-martingale on
[0, T−0 ]. Further, note that for α = 2, the Brownian case, V(θ1/α(ZT−0 )) =

0. For the other cases, since Z does not creep downwards, we have
T−0 ≥ η0 a.s. which implies that M θ is a Px-martingale on [0, η0]. The
martingale property follows then by observing that the remaining part
of Mθ, after η0, is a Px-martingale. Note also that the first passage
time over 0 of Y is a.s. η0. Set θ̄ = αλθ, then by integrating M θ̄ by the
measure e−θθq−1dθ we get

∫ ∞

0

M θ̄
t e
−θθq−1dθ

=

∫ ∞

0

e−θ(αλt+1)
(
eθ̄

1/αZt − V(θ̄1/αZt)I{t≤η0}
)
θq−1dθ

= Nt

where we have set u = θ(αλt + 1). Since M θ̄ is a Px-martingale, the
martingale property for N follows by Fubini’s Theorem. ¤

The proof of the Proposition is completed by an application of Doob’s
optional stopping Theorem to the stopping time T−0 and by observing
from (5.2) that T−0 = τ(H−0 ) a.s..

Remark 5.4.7 Let 0 ≤ x ≤ a. By an application of Doob’s optional
stopping Theorem to the martingale M θ̄, using the linearity of the ex-

pectation sign and the fact that Ex[e−θTa ] = eθ
1/α(x−a), we recover from

the previous Lemma the following well known result

Ex[e−θTaI{Ta<η0}] =
W(θ1/αx)

W(θ1/αa)
.
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Similarly, since for 0 ≤ a ≤ x, Ex[e−θT
−
a ] = eθ

1/α(x−a)−V(θ1/α(x−a)),
we get

Ex[e−θT
−
a I{T−a <η0}] =

W(θ1/αx)−W(θ1/α(x− a))
W(θ1/αa)

.

5.4.2 The law of H−
y : a Potential Approach

We introduce the dual process of X, denoted by X̂, relative to the in-
variant measure pλ(x)dx. Since the dual of the Lévy process Z is −Z,
we note from (5.3) that X̂ has the same law that the spectrally posi-
tive stable Ornstein-Uhlenbeck process. It is solution to the stochastic
differential equation

dX̂t = −λX̂t dt− dZt.
Its semigroup with respect to the invariant measure is given by p̂t(x, y) =
pt(y, x), x, y ≥ 0. Recall that we have the following duality between the
resolvent densities

r̂q(x, y) = rq(y, x), x, y ∈ R. (5.20)

The law of the first hitting time of y by X̂, denoted by T̂y, is char-
acterized by its Laplace transform as follows. For q ≥ 0, x ≥ y, we
have

Ex[e−qT̂y ] =
Hq(−x)
Hq(−y)

.

Remark 5.4.8 Since the resolvent density is jointly continuous, all the
points are co-regular (regular for the dual). Thus, one can define, for the
dual, the local time and its associate q-potential at all points. Therefore
the dual identity of (5.26) holds also for X̂.

Proposition 5.4.9 For y ≤ 0, we have

E0[e
−qH−

y ] =
1

Hq(y)

(
Hq(0)−Hq(0)

N q(−y)
Hq(−y)

)

and

rq(0, y) = w−1q Hq(0) (Hq(−y)−N q(−y))
rq(y, y) = w−1q Hq(y)Hq(−y).
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Proof. Fix y ≤ 0. First, note that from the duality relationship, we

have rq(0, y) = r̂q(y, 0). Next, the identity r̂q(y, 0) = Ey[e−qT̂0 ]rq and
formula (5.9) yield

rq(0, y) = w−1q Hq(0) (Hq(−y)−N q(−y)) .

Then, observing that r̂q(y, y)E0[e
−qT̂y ] = rq(y, 0), we obtain

rq(y, y) = w−1q Hq(y)Hq(−y).

Finally, for y ≤ 0, we have

E0[e
−qH−

y ] =
rq(0, y)

rq(y, y)

=
Hq(0)

Hq(y)Hq(−y)
(Hq(−y)−N q(−y))

=
1

Hq(y)

(
Hq(0)−Hq(0)

N q(−y)
Hq(−y)

)
.

The proof is completed. ¤

5.4.3 The Stable OU Process Killed at κ0

We introduce the first passage time over the level 0 by X

κ0 = inf{s ≥ 0; Xs < 0}

and the first exit time from the interval (0, a]

H0,a = inf{s ≥ 0; Xs /∈ (0, a]}.

First, we give an expression of the Laplace transform of κ0.

Theorem 5.4.10 For x > 0, the Laplace transform of κ0 is given by

Ex[e−qκ0 ] =
N q

(x)−N q(x)

Γ( q
αλ )

where we recall that N q
(x) =

∫∞
0
Eα(uαλxα)e−uu

q
αλ−1du.
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Proof. It is clear that κ0 = A(η0) a.s.. Thus,

Ex
[
e−qκ0

]
= Ex

[
(αλη0 + 1)−

q
αλ

]
.

But, setting θ̄ = θαλ, we know that

Ex
[
e−θ̄η0

]
= Eα(θ̄xα)− αθ̄1−1/αxα−1E ′α(θ̄xα).

Finally, by integrating both sides of the latter equation by the measure
e−θθ

q
αλ−1dθ, and use Fubini’s Theorem, we obtain the result. ¤

Next, denote by rq0 (resp. r̂q0), the resolvent density of the process X

(resp. X̂) killed at time κ0. We end up by giving two nice consequences
of the previous results and the proof of Theorem 5.4.1 will be completed
by the Remark following this Corollary.

Corollary 5.4.11 Let 0 ≤ x ≤ a and q ≥ 0. Then,

Ex[e−qHaI{Ha<κ0}] =
N q(x)

N q(a)
.

In particular,

Px[Ha < κ0] =
N (x)

N (a)
.

Moreover, we have

Ex[e−qκ0I{κ0<Ha}] =
1

Γ( q
αλ )

(
N q

(x)− N
q(x)

N q(a)
N q

(a)

)
.

Consequently,

Ex[e−qH0,a ] =
1

Γ( q
αλ )

(
N q

(x)− N
q(x)

N q(a)
N q

(a)

)
.

Proof. First, note the following identity, for x ≤ a

Ex[e−qHaI{Ha<κ0}] =
rq0(x, a)

rq0(a, a)
.

We proceed by giving an expression of the resolvent density of X killed
upon entering the negative half-line. By the strong Markov property
and the absence of negative jumps for X̂, we get, for x, y ≥ 0,

r̂q0(y, x) = r̂q(y, x)− Ey[e−qT̂0 ]r̂q(0, x).
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The switch identity for Markov processes, see [16, Chap. VI], tells us
that r̂q0(x, y) = rq0(y, x). Hence,

rq0(x, y) = rq(x, y)− Hq(−y)Hq(0)
rq(x, 0).

The first assertion follows. The second assertion is obtained by passage
to the limit. Moreover, the Strong Markov property yields

Ex[e−qκ0 ] = Ex[e−qκ0I{κ0<Ha}] + Ex[e−qHaI{Ha<κ0}]Ea[e
−qκ0 ].

Using the result of the previous Theorem, we deduce the third assertion.
The last one follows readily from the identity

Ex[e−qH0,a ] = Ex[e−qκ0I{κ0<Ha}] + Ex[e−qHaI{Ha<κ0}].

¤

Remark 5.4.12 1. Note that for x ≤ y

rq0(x, y) = w−1q N q(x)Hq(−y).

2. From the Strong Markov property, we also have, for x ≥ 0

Ex
[
e−qκ0

]
= 1− q

∫ ∞

0

rq0(x, y)dy.

It is from this identity that we compute the last expression in The-
orem 5.4.1.

3. Finally we characterize the law of the first passage time below a
lower level. To this end, let us observe, from (5.3), that the process
of jumps of X, denoted by ∆X, is identical to the one of Z. It
is a Poisson point process valued in (−∞, 0) with characteristic
measure ν(dx) = x−α−1dx. Let y ≤ x ≤ z. Thus,

Ex
[
I{X

κ
−
0
∈dy}I{∆Xκ0∈dz}e

−qκ0
]
= rq0(x, y)ν(dz).

This result is a straightforward consequence of the compensation
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formula applied to ∆X. Indeed, we have

Ex
[
I{Xτ0−∈dy}I{∆Xτ0−∈dz}e

−qτ0
]

= Ex


∑

t≥0
I{Xt−∈dy}I{∆Xt∈dz}e

−qtI{Xs∈(0,∞)∀s<t}




= Ex
[∫ ∞

0

dt I{Xt∈dy}e
−qtI{Xs∈(0,∞)∀s<t}

]
ν(dz)

= Ex
[∫ ∞

0

dt e−qtp0t (x, y)

]
ν(dz)

where p0t (x, y) stands for the transition densities of the X killed
when entering the negative real line.

5.5 Some Related First Passage Times

In this Section, we study the law of the first passage time of some
(Markov) processes, the laws of which are constructed from the one of
X. In order to simplify the notation we shall work in the canonical
setting. That is, we denote by D ([0,∞)) (resp. D ([0, t]) for t > 0)
the space of càdlàg paths ω : [0,∞) −→ R (resp. ω : [0, t] −→ R).
D ([0,∞)) will be equipped with the Skohorod topology, with its Borel
σ-algebra F , and the natural filtration (Ft)t≥0. We keep the notation
X for the coordinate process. Let Px (resp. Ex) be the law (resp. the
expectation operator) of the stable OU process starting at x ∈ R.

5.5.1 The Stable OU Process Conditioned to Stay

Positive

Note from the previous subsection that the function N is a positive
invariant function for the stable OU process killed at κ0. Thus, we
introduce the new probability measure P↑ on D ([0,∞)) defined as a
Doob’s h-transform of this latter process.

P↑x(A) =
1

N (x)
Ex [N (Xt), A, t < κ0] , A ∈ Ft.
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It turns out that P↑x can be identified as the conditional law Px( | κ0 =
∞). Indeed denoting by θ the shift operator, we have, from the strong
Markov property, for any Borel set A ∈ Ft

Px(A | κ0 =∞) = Px(A, κ0 =∞)/Px(κ0 =∞)

= Px(A, t < κ0, κ0 ◦ θt =∞)/Px(κ0 =∞)

= Ex
[
PXt(κ0 =∞)/Px(κ0 =∞, A, t < κ0)

]

=
1

N (x)
Ex [N (Xt), A, t < κ0] .

Corollary 5.5.1 Let 0 ≤ x ≤ a. Then,

E↑x[e−qHa ] =
N (a)N q(x)

N (x)N q(a)
.

Proof. It is a direct consequence of the definition of P↑x, the Doob’s
optional stopping Theorem and the previous corollary. ¤

5.5.2 The Law of the Maximum of Bridges

Recall that the stable OU process is a strong Markov process with right
continuous paths. It has transition densities pt(x, y) with respect to the
σ-finite measure pλ. Moreover, there exists a second right process X̂
in duality with X relative to the measure pλ. Under these conditions
Fitzsimmons et al. [42] construct the bridges of X by using Doob’s
method of h-transform. Let us denote by Plx,y the law of X started at
x and conditioned to be at y at time t. We have the following absolute
continuity relationship, for l < t,

dPtx,y |Fl=
pt−l(Xl, y)

pt(x, y)
dPx |Fl . (5.21)

Let us still denote by Ha the first passage time of the canonical process
X at the level a > x. We assume that X has only negative jumps. The
law of the maximum of the bridge of X, denoted by M , is given in the
following

Theorem 5.5.2 For q > 0, x, y, a ∈ R with x ≤ a, we have
∫ ∞

0

e−qtPtx,y(Mt ≥ a)pt(x, y) dt = rq(a, y)
Hq(x)
Hq(a)

. (5.22)
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Proof. Thanks to the absolute continuity relationship (5.21) and Doob’s
optional stopping Theorem, we have

Ptx,y(Ha ∈ dl)pt(x, y) = pl−t(a, y)Px(Ha ∈ dl).

Then, by integrating, we get

Ptx,y(Ha ≥ t)pt(x, y) =

∫ t

0

pl−t(a, y)Px(τa ∈ dl). (5.23)

Next, we use the fact that Ptx,y(Ha ≤ t) = Ptx,y(Mt ≥ a). Finally by
taking the Laplace transform with respect to t, and by noticing the
convolution on the right hand side of (5.23), we complete the proof. ¤

5.6 The Lévy Case: λ → 0

We end up by showing that when considering the limit λ → 0, we
recover the results for spectrally negative Lévy processes. Let us denote
φ(q) = q1/α.

Proposition 5.6.1 We have the following limit results

lim
λ→0

H q
λ
(x)

H q
λ
(0)

= e−xφ(q), (5.24)

lim
λ→0

N q
λ (x)

H q
λ
(0)

= V(φ(q)x). (5.25)

As a consequence, we have the following results for the underlying α-
stable Lévy process

vq(x, y) = vq(y − x, 0)
= φ′(q)eφ(q)(x−y) −Wq(x− y)I{x≥y}.

Also, for x, y > 0, we get

vq0(x, y) = e−φ(q)yWq(x)−Wq(x− y)I{x≥y}.

For q > 0, x, y ∈ R, we have

Ex
[
e−qTy

]
= e−φ(q)(x−y) − 1

φ′(q)
Wq(x− y)I{x≥y}.



124 Chapter 5. Resolvent Density of GOU Processes

Let 0 ≤ x ≤ a.

Ex[e−qTaI{Ta<η0}] =
Wq(x)

Wq(a)
.

For any x, q > 0, we have

Ex
[
e−qη0

]
= 1− q

∫ ∞

0

vq0(x, y)dy

= 1 + q

∫ x

0

Wq(y)dy − q

φ(q)
Wq(x).

Finally, for a ∈ R with x ≤ a,
∫ ∞

0

e−qtPtx,y(Mt ≥ a)pt(x, y) dt

=
(
φ′(q)eφ(q)(a−y) −Wq(a− y)I{y≤a}

)
eφ(q)(x−a)

= φ′(q)eφ(q)(x−y) − eφ(q)(x−a)Wq(a− y)I{y≤a}.

Proof. We can rewrite H by considering the following change of vari-
able r = φ(s) and denoting z = λ−1

Hzγ(x) =

∫ ∞

0

exp

(
xφ(r)− z

∫ φ(r)

1

ψ(u)
du

u

)
φ(r)zγ−1φ′(r)dr

=

∫ ∞

0

fx(r) exp (−zp(r; γ)) dr

where fx(r) = exφ(r)φ(r)−1φ′(r) and p(t; γ) =
∫ r
1
φ′(u)
φ(u) udu−γ log(φ(r)).

We use the Laplace’s method to derive an asymptotic approximation
for large values of the parameter z, see [89, Theorem 2.1]. We get the
following approximation

Hzγ(x) ∼ fx(γ)e
−zp(γ)

(
2π

xp′′(γ)

) 1
2

(z →∞)

where p′(t) = φ′(t)
φ(t) (t−γ) and p′′(γ) =

φ′(γ)
φ(γ) 6= 0. The second limit is ob-

tained in a similar way. The rest follows after some easy computations.
¤

Remark 5.6.2 The last assertion of the proposition holds for any spec-
trally negative Lévy process.
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∧ x ∧ y= inf(x,y) 34
∨ x ∨ y=sup(x,y) 34
B Beta function 72
Γ Gamma function 23
C2b (R) Space of twice continuously differentiable and bounded

functions
11

Mr+ Space of positive Radon measures defined on R+
0 50

Bessel processes 9
Ky First passage time of a Bessel process to a fixed level y 42
Ly Last passage time of R to the level y 17
m(dy) Speed measure of the 3-dimensional Bessel process 29
N (1)(r) L1-norm of the 3-dimensional Bessel bridge 27
N (2)(r) L2-norm of the 3-dimensional Bessel bridge 27
Qν Square Bessel process of index ν 67
qt(x,y) Density of the semigroup of the 3-dimensional Bessel pro-

cess
29

R 3-dimensional Bessel process 17
r 3-dimensional Bessel bridge process 17
Υλ,αx→y(t) Joint Laplace transform of the L1 and L2-norms of the 3-

dimensional Bessel bridge
30

Brownian motion 9
Ai Airy function 38
B, W Standard Brownian motion 11
ζ(β) =ζ(1+βt) 62
f (α,β) =S(α,β)f 49
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Π(α,β) Transformation of Sturm-Liouville solutions 49
p.→a(t) Density of Ta 12

q.→α(t) Density of T
(2)
α 38

Σ Doob’s transform 50
σ Inverse local time of |B| 44
S(α,β) Family of transformation of curves 49
S(β) =S(1,β), family of elementary transformations 49
τ Deterministic time change of B, see Doob’s transform 11

T
(1)
α First passage time of the Brownian motion over the linear

curve
36

T
(2)
α First passage time of the Brownian motion over the

quadratic curve
36

T (
√
) First passage time of B over the square root boundary 14

T (f) First passage time of B over the curve f 47
T (f,µ) First passage time of B with drift µ over the curve f 36
Ta First passage time of the Brownian motion of the fixed level

a
12

υk Decreasing sequence of negative zeros of the Airy function 38
ϕ Decreasing solution of a Sturm-Liouville equation 30
ψ Increasing solution of a Sturm-Liouville equation 13
w Wronskrian of the solutions of a Sturm-Liouville equation 30

Classical Ornstein-Uhlenbeck process 9
Dν Parabolic cylinder function of index ν 12
G Infinitesimal generator of U 11

H
(µ)
a First passage time of U (µ) to a fixed level a 39

Ha First passage time of the OU process of the fixed level a 12
Hν Hermite function of index ν 12
λ Parameter of the OU process 11
P(λ) Law of the OU process with parameter λ 11

p
(λ,µ)
.→a (t) Density of H

(µ)
a 39

p
(λ)
.→a(t) Density of Ha 12
% Deterministic time change, inverse of τ 49
τ Deterministic time change 49
U Classical Ornstein-Uhlenbeck process 11
U (µ) Ornstein-Uhlenbeck process with drift µ 39
(µ)U Mean reverting OU process with parameter µ 14
Φ Confluent Hypergeometric function 23
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Generalized Ornstein-Uhlenbeck processes 78
Eα Mittag-Leffler function of parameter α 112
H−y Downward hitting time of X to the level y 112
Ha First passage time above of X to the level a 78
η(f) First passage time below of Z over the curve f 112
ηy First passage time below of Z to the level y 112
I Primitive of X 78
κb First passage time below of X to the level b 118
Ly Local time of X at y 107
N q q-scale function of X 113
ν Lévy measure of Z 79 38
Rq q-resolvent of X 108
rq q-resolvent density of X 108
σ Inverse local time of X 110
T−y Downward hitting time of Z to the level y 112

T (f),− Downward hitting time of Z to the curve f 112
Ty First passage time above of Z to the level y 80

T
(α,d)
y First passage time of Z over the curve y(t+ d)1/α 93
uq q-potential of the local time of X 107
vq q-resolvent density of Z 111
φ Pseudo-inverse of the Laplace exponent ψ 80
ϕ Primitive of the Laplace exponent of Z 82
Wθ θ-scale function of Z 113
X Generalized Ornstein-Uhlenbeck process 78

X̂ Dual process of X 116
ψ Laplace exponent of Z 79
Z Spectrally negative Lévy process 78
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[6] Alili, L and Patie, P. On the first crossing times of a Brownian
motion and a family of continuous curves. Comptes Rendus de
l’Académie des Sciences - Mathématiques, 340(3):225–228, 2005.
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process. Bull. Sci. Math., 119(2):147–156, 1995.
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[77] Lévy, P. Processus Stochastiques et Mouvement Brownien.
Gauthier-Villars, Paris, 1948.

[78] Linetsky, V. Computing hitting time densities for OU and CIR
processes: Applications to mean-reverting models. Journal of
Computational Finance, 7:1–22, 2004.

[79] Longstaff, F.A. and Schwartz, E.S. Valuing credit derivatives.
The Journal of Fixed Income, 5:6–12, 1995.

[80] Louchard, G. The Brownian excursion area. Comput. Math.
Appl., 10:413–417, 1984. Erratum:A12 (1986) 375.

[81] Mckean, H.P. Stochastic Integrals. 1969.



136 Bibliography

[82] Nguyen-Ngoc, L. and Yor, M. Some martingales associated to
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