

Modélisation et évaluation des équilibres de complexation entre la Matière Organique Naturelle, les métaux traces et le proton Applications aux eaux naturelles

Cédric Garnier

Laboratoire des Processus de Transferts et d'Échanges dans l'Environnement

Université du Sud Toulon Var

Plan de l'exposé:

Problématique

• Modélisation des propriétés de complexation et d'acidité de la Matière Organique Naturelle

• Techniques d'analyses spécifiques aux interactions entre la MON, les métaux traces et le proton

• Applications à des systèmes naturels

• Conclusions et Perspectives

Problématique

Les métaux traces dans l'environnement

La complexation Métal-Ligand est définie par:

- Équilibre: $iM + jL \Leftrightarrow M_iL_j$
- Constante de stabilité, *K*: $K = [M_i L_i] / ([M]^i . [L]^j)$
- Capacité complexante, L_T , i.e. concentration totale en ligand L

Définition de la spéciation ⇔ connaissance complète des propriétés de TOUS les ligands

⇒ Étude de la Matière Organique Naturelle (MON)

Problématique

Caractérisation de la MON dissoute

MON: mélange, hautement hétérogène, de macro-molécules/colloïdes/polymères

Caractérisation de la MON dissoute

MON: mélange, hautement hétérogène, de macro-molécules/colloïdes/polymères

On peut définir la MON par différentes approches:

- Analyse quantitative:
 - -composition atomique (% C, H, N, O, S...),
 - -concentration massique (ex: COD, COT),
 - -proportion acides Fulvique / Humique (solubilité fonction du pH),

-...

- Analyse fonctionnelle:
 - -composition moléculaire (% aromatiques, % alcools...),
 - -présence de groupements spécifiques (-COOH, -NH₂, -OH...),
- Analyse de propriétés spécifiques:
 - -sites acides,
 - -sites complexant les métaux traces (Cu, Cd, Pb, Zn, Hg...),
 - -adsorption sur des particules, des colloïdes...
 - -degré de maturité, ...

Objectifs de ce travail de recherche

- Mise en place d'un modèle chimique représentant la MON:
 - prenant en compte les phénomènes de complexation, acidité, compétition
 - intégrable dans un modèle biogéochimique (MOCO, IFREMER)
- Développement de techniques d'analyse spécifiques aux interactions entre la MON, les métaux traces (Cd, Pb) et le proton
 - sur la plus large fenêtre analytique
 - ⇔ couvrir la distribution de propriétés de la MON
 - en ayant recours à une seule technique par interaction analysée
- Applications à des matières organiques naturelles et standards
 - valider le modèle chimique de MON et les techniques d'analyse
 - estimer leurs limites

Plan de l'exposé:

• Problématique

 Modélisation des propriétés de complexation et d'acidité de la Matière Organique Naturelle

• Techniques d'analyses spécifiques aux interactions entre la MON, les métaux traces et le proton

• Applications à des systèmes naturels

• Conclusions et Perspectives

Deux catégories de modélisation des propriétés de complexation de la MON:

- Distribution continue de ligands:
 - définition d'une fonction de type: $L_T = f(log(K))$
 - ex: gaussienne(s) du modèle NICCA-Donnan (Benedetti et al., 1995)
 - differential equilibrium function (DEF) ex: MODELm (*Huber et al.*, 2002)

• Distribution discrète de ligands:

- set de molécules organiques représentant les sites de complexation de la MON (-COOH, -SH, φ-OH ...) (*Cathalifaud et al.*, 1996)
 ex: EDTA, cystéine, phénol, acide acétique...
- set de "sites" virtuels

ex: Model V (Tipping and Hurley, 1992), Quasi-Particules (Sposito, 1981)

- ...

- . . .

Concept de *quasi-particules* (Sposito, 1981)

Quelles différences par rapport à la définition «usuelle» d'un site complexant?

- ne représentent pas des molécules ou sites réels sur la MON
- entités virtuelles, plus appropriées à un modèle mathématique
- définies par plusieurs propriétés comme:
 - concentration
 - constante(s) de stabilité vis-à-vis des métaux traces
 - constante(s) d'acidité
 - propriétés de fluorescence

Les *quasi-particules* peuvent modéliser simultanément la *complexation* ET la *compétition* de la MON vis-à-vis des métaux traces et du proton

Types de quasi-particules utilisées

Afin de modéliser les propriétés de complexation de la MON, 3 types de *quasi-particules* ont été définies:

- I. Sites spécifiques au proton $MON + H^+ \Leftrightarrow MON-H$ (K_H^I, C^I)
- II. Sites échangeables, prenant en compte les compétitions métal/métal et métal/proton

MON + Mⁿ⁺ \Leftrightarrow MON-M (K_H^{II}, K_{M,i}^{II}, C^{II} pour i métaux traces)

III. Sites spécifiques à un seul métal $MON + M^{n+} \Leftrightarrow MON-M$ (K_H^{III}, K_M^{III}, C^{III})

Types de quasi-particules utilisées

Ce set de *quasi-particules* est appelé *chimio-type* et représente le comportement de la MON

Détermination des paramètres de complexation et^{Modélisation} d'acidité du *chimio-type*

modélisation de données expérimentales

• Nécessité de:

- calculer la spéciation chimique des espèces
- modéliser simultanément différentes interactions de la MON

⇒ Logiciel de spéciation et d'optimisation

- Limitations des techniques habituellement utilisées:
 - techniques de linéarisation des données: Chau, Ružić, Scatchard, ...

 \Rightarrow 1 ou 2 sites, pas de calcul de spéciation

- programmes d'optimisation non-linéaire: FITEQL, BEST7, ...
 - ⇒ nombre limité de paramètres, restriction à un type d'analyse ou d'interaction

Développement d'un programme spécifique: PROSECE

Principe général de PROSECE

(PRogramme d'Optimisation et de SpEciation Chimique en Environnement)

- *PROSECE* est constitué de deux modules:
 - Calcul de la spéciation chimique des espèces
 - . résolution de l'équilibre par un algorithme de Newton-Raphson
 - . minimisation de l'écart au bilan de masse
 - Optimisation de paramètres de complexation, d'acidité, ...
 - . utilisation d'un simplex modifié ⇔ ajustement des valeurs des paramètres
 - . simulation des données expérimentales (titrations potentiométriques, ...)

I/ Module de calcul de la spéciation chimique:

Définition du système chimique (Cd, L, H, ...) ⇔ tableau des équilibres (Morel, 1983)

	L ²⁻	Cd ²⁺	H^{+}		
L 2-	$\alpha_{1,1} = 1$	0	0		
Cd ²⁺	0	1	0		
H +	0	0	1		
OH -	0	0	-1	K _e	
CdL	1	0	0	K _{CdL}	
HL -	1	0	1	K _{HL}	
H ₂ L	1	0	$\alpha_{7,3} = 2$	K _{H2L}	

en posant $C_i = [\text{composant}]$ et $S_i = [\text{composé}]$:

$$C_{i,tot} = \sum_{j=1}^{Ns} \alpha_{ji} \cdot S_j \quad \text{et} \quad S_j = K_j \times \prod_{i=1}^{Nc} C_i^{\alpha_j}$$
$$C_{i,tot} = C_i + \sum_{j=1}^{Ns} \alpha_{ji} \times K_j \times \prod_{i=1}^{Nc} C_i^{\alpha_{ji}}$$

méthode de Newton-Raphson modifiée

minimisation de l'écart au bilan de masse

calcul de C_i et S_j ($C_{i,tot}$, α_{ji} et K_j connus) \longrightarrow Spéciation

(programmes: MINEQL, CHESS, FITEQL, ...)

II/ Module d'optimisation:

Détermination des paramètres représentant au mieux les propriétés de la MON analysée

Comparaison théorique de *PROSECE* à d'autres techniques de traitement de données

Objectifs:

- estimer l'influence du mode de titration (répartition des ajouts)
- comparer *PROSECE* à différentes traitements de données linéaires et nonlinéaires

Expériences réalisées:

- systèmes chimique étudiés: 1 métal (M) complexé par 1 ou 2 ligands (L₁, L₂)
- modes de titration: ajouts linéaires, par décades et *logarithmiques*

Comparaison théorique de *PROSECE* à d'autres techniques de traitement de données

Objectifs:

- estimer l'influence du mode de titration (répartition des ajouts)
- comparer *PROSECE* à différentes traitements de données linéaires et nonlinéaires

Expériences réalisées:

- systèmes chimique étudiés: 1 métal (M) complexé par 1 ou 2 ligands (L₁, L₂)
- modes de titration: ajouts linéaires, par décades et *logarithmiques*
- simulation d'expériences sous MINEQL pour différents couples (K_i, L_{iT})
 - . un ligand: 3 expériences

 $\begin{bmatrix}
L_{1T}: 10 a 90 \text{ nM} \\
\log K_{1}: 8.7 a 9.7
\end{bmatrix}$ $K_{1}.L_{1T} = 50$. deux ligands: 16 expériences $L_{1T}: 10 \text{ et } 30 \text{ nM} \\
\log K_{1}: 8 \text{ et } 10 \\
L_{2T}: 100 \text{ et } 300 \text{ nM} \\
\log K_{2}: 6 \text{ et } 7
\end{bmatrix}$ $K_{1}.L_{1T} = 1 a 300$ $K_{2}.L_{2T} = 0.1 a 3$

- ajouts d'un bruit aléatoire entre -2 et +2 %

Modélisation

Système à deux ligands:

graphiques contours: erreurs = $f(L_{1T}, K_1, L_{2T}, K_2)$

Ružić – titration linéaire: erreur sur K₁ 300 100 $L_{IT}K_I$ 3 0.10.3 1.03.0 $L_{2T} K_2$

PROSECE – titration linéaire: erreur sur K₁

1000.00 900.00 800.00 700.00 600.00 500.00

Modélisation

Système à deux ligands:

graphiques contours: erreurs =
$$f(L_{1T}, K_1, L_{2T}, K_2)$$

Ružić – titration logarithmique: erreur sur K_1

19

Techniques utilisées pour le traitement des données:

- linéarisation:
 - . Chau-Buffle: 1 ligand
 - . Scatchard: 1 ou 2 ligands
 - . Ružić-van den Berg: 1 ou 2 ligands
- optimisation non-linéaire:
 - . fitting après transformation des données suivant Ružić
 - . PROSECE

<u>Résultats</u>:

- calcul des erreurs sur chaque paramètre: comparaison aux valeurs théoriques
- représentation de ces erreurs sous la forme de graphiques contours
- analyse de ces graphiques

Modélisation

Conclusions de cette étude théorique

• Titrations *logarithmique* et décade

- > mode linéaire, pourtant couramment utilisé, même pour 1 ligand

- Techniques de linéarisations:
 - < techniques non-linéaires, surtout en mode linéaire
 - très sensibles au bruit expérimental
 - 1 ligand: corrélation entre l'erreur sur le paramètre et l'intervalle de confiance
- **PROSECE**
 - > à toutes les autres méthodes
 - moins sensible à l'effet du bruit expérimental
- *Graphiques contours* erreurs = $f(L_{1T}.K_1, L_{2T}.K_2)$

- permet la prédiction de l'erreur pour des modélisation sur des données expérimentales

⇒ Combinaison retenue pour l'analyse de MON:
 titration *logarithmique* – modélisation par *PROSECE*

⇒ Utilisation pour la modélisation des propriétés de MON par un *chimio-type* 20

Plan de l'exposé:

• Problématique

• Modélisation des propriétés de complexation et d'acidité de la Matière Organique Naturelle

• Techniques d'analyses spécifiques aux interactions entre la MON, les métaux traces et le proton

• Applications à des systèmes naturels

• Conclusions et Perspectives

Techniques d'analyses utilisées

Deux types de techniques analytiques ont été spécifiquement développées pour l'étude:

- des interactions spécifiques et non-spécifiques MON-métaux, et des phénomènes de compétition métal/métal et métal/proton:
 - titrations par ajouts *logarithmiques* de Cd et Pb
 - suivi par DPASV (Differential Pulse Anodic Stripping Voltametry) des concentrations labiles en Cd et Pb
- des interactions spécifiques MON-proton
 - titrations acido-basiques (ajouts de HNO₃ et KOH)
 - suivi par micro-électrode de pH

Objectifs:

- accroître la sensibilité de ces techniques
- élargir la gamme de pM et pH
- étudier différents phénomènes: complexation, acidité, compétition, ...
- automatiser les titrations, notamment les ajouts *logarithmiques*

Mise au point de la technique d'analyse:

<u>Objectif</u>: automatiser la titration en mode *logarithmique* sur la fenêtre analytique la plus large possible

- Développement d'un appareillage spécifique aux ajouts *logarithmiques*:
 - stand Metrohm VA663 + IME663 (électrode de travail: goutte pendante d'Hg)
 - voltamètre EcoChemie PGSTAT12
 - 4 Burettes automatiques d'ajouts Metrohm 765 (5 mL)
 - pH-mètre Metrohm 713 (micro-électrode de pH combinée)
 - cellule voltamétrique thermostatée
 - ensemble de mesure sous hotte à flux laminaire
 - contrôle par le logiciel GPES 4.9 (EcoChemie)

Mise au point de la technique d'analyse:

• Utilisation de 4 solutions standard (Cd ou Pb): 1, 10, 100 et 1000 μ M

⇒ optimisation de la répartition des ajouts: 30 ajouts de pM_T 9.3 à 5.3 en mode *logarithmique*

• Optimisation des paramètres de la procédure de mesure par DPASV

⇒ diminution de la limite de détection
⇒ augmentation de la gamme de concentrations
⇒ amélioration de la répétabilité de la mesure: 3 mesures par ajout

⇒ durée totale d'une titration: environ 48 h

Traitement mathématique des voltamogrammes: déconvolution des pics

Objectif: affiner la détermination des concentrations en Cd et Pb labiles

- ✓ Simulation de la ligne de base:
 - ⇒ utilisation d'un polynôme du $3^{\text{ème}}$ degré: I = f(E)

Traitement mathématique des voltamogrammes: déconvolution des pics

- ✓ Simulation de la ligne de base:
 - ⇒ utilisation d'un polynôme du $3^{\text{ème}}$ degré: I = f(E)
- ✓ Déconvolution des pics:
 - \Rightarrow fonctions gaussiennes

Traitement mathématique des voltamogrammes: déconvolution des pics

Traitement mathématique des voltamogrammes: déconvolution des pics

Traitement mathématique des voltamogrammes: déconvolution des pics

Analyse

Traitement mathématique des voltamogrammes: déconvolution des pics

Techniques d'analyses utilisées

Deux types de techniques analytiques ont été spécifiquement développées pour l'étude:

- des interactions spécifiques et non-spécifiques MON-métaux, et des phénomènes de compétition métal/métal et métal/proton:
 - titrations par ajouts *logarithmiques* de Cd et Pb
 - mesure simultanée par DPASV (Differential Pulse Anodic Stripping Voltametry) des concentrations labiles en Cd et Pb
- des interactions spécifiques MON-proton
 - titrations acido-basiques (ajouts de HNO₃ et KOH)
 - mesure par micro-électrode de pH

Objectifs:

- accroître la sensibilité de ces techniques
- élargir la fenêtre analytique (gammes de pM et pH)
- étudier simultanément différents phénomènes (complexation, acidité, compétition, ...)
- automatiser les titrations, notamment les ajouts logarithmiques

Interactions MON - proton:

- Appareillage utilisé:
 - 3 Titrino (potentiomètre + burette automatique d'ajout)
 - micro-électrode de pH combinée
 - cellule thermostatée
 - contrôle par le logiciel Tinet 2.4 (Metrohm)

- Titration acido-basique: ajustement des ajouts de HNO₃ et KOH
 - ajouts d'HNO₃ (0.2 M): pH initial \Rightarrow pH = 2
 - décarbonatation (bullage sous N₂): 20 min
 - ajouts de KOH (0.1 M): pH = 2 \Rightarrow 2.5 \Rightarrow 3.5 \Rightarrow 10.5 \Rightarrow 11.9
 - mesure du pH: stabilisation \Leftrightarrow 30-120 s ou 0.5 mV/min

⇒ durée totale d'une titration: environ 12 h (150 à 300 points)

Interactions MON - proton:

Analyse

<u>Traitement des courbes</u>: $pH = f(V_{KOH})$

Titrations acido-basiques de solutions d'EDTA et d'eau mQ

Traitement des données: comparaison à une titration d'eau mQ

- calcul de n_{OH}^{-} pour la MON et mQ - extrapolation, tracé de $(\Delta n_{OH}^{-})=f(pH)$

Initialisation des paramètres d'acidité:

- estimation de [H]_{To} par $(\Delta n_{OH})_{max}$
- répartition des sites acides: K_H^I, C^I

Plan de l'exposé:

- Problématique
- Modélisation des propriétés de complexation et d'acidité de la Matière Organique Naturelle
- Techniques d'analyses spécifiques aux interactions entre la MON, les métaux traces et le proton
- Applications à des systèmes naturels
- Conclusions et Perspectives

Modélisation des propriétés de l'Acide Fulvique Suwannee River (AFSR) par un *chimio-type*

Expériences réalisées:

- solutions d'AFSR: 20 ppm de COD (Cd,Pb) et 200 ppm de COD (H)
- $T = 25 \pm 0.2$ °C, I = 0.1 (NaNO₃)
- titration acido-basique (AFSR-H)
- titrations logarithmiques (AFSR-Cd et -Pb) à pH 7.8 (borax) et 4.6 (acétate)

Modélisation (PROSECE):

- définition d'un *chimio-type* à:
 - . 6 quasi-particules de type I
 - . 4 quasi-particules de type II
 - . 2 quasi-particules de type III
- modélisation de la courbe $pH = f(H_T) \Leftrightarrow$ détermination des paramètres de QPI
- modélisation des courbes $pM = f(pM_T) \Leftrightarrow$ détermination des paramètres des QPII et QPIII

Modélisation des propriétés de l'Acide Fulvique Suwannee River par un *chimio-type* titration acido-basique - optimisation des paramètres de *quasi-particules* de type I

Initialisation					
quasi-particule	log K	L_{T} (µM/ppm DOC)			
Ca1	3.5	2.5			
Ca2	4.5	2.5			
Ca3	5.5	2.5			
Ph1	8	2.5			
Ph2	9.5	2.5			
Ph3	11	2.5			

Initialisation

Modélisation des propriétés de l'Acide Fulvique Suwannee River par un *chimio-type* titration acido-basique - optimisation des paramètres de *quasi-particules* de type I

Initialisation					
quasi-particule	log K	$L_{\rm T}$ (µM/ppm DOC)			
Ca1	3.5	2.5			
Ca2	4.5	2.5			
Ca3	5.5	2.5			
Ph1	8	2.5			
Ph2	9.5	2.5			
Ph3	11	2.5			

Modélisation des propriétés de l'Acide Fulvique Suwannee River par un chimio-type

titration acido-basique - optimisation des paramètres de quasi-particules de type I

Initialisation					
quasi-particule	log K	L_{T} (µM/ppm DOC)			
Ca1	3.5	2.5			
Ca2	4.5	2.5			
Ca3	5.5	2.5			
Ph1	8	2.5			
Ph2	9.5	2.5			
Ph3	11	2.5			

Valeurs optimisées

quasi-particule	log K	L_{T} (µM/ppm DOC)
Ca1	3.9	4.3
Ca2	5.1	2.4
Ca3	6.3	0.8
Ph1	7.8	0.6
Ph2	9.4	1.4
Ph3	11.1	5.6

Initialisation

Modélisation des propriétés de l'Acide Fulvique Suwannee River par un chimio-type

Modélisation de la titration AFSR-proton par 6 quasi-particules de type I

Modélisation des propriétés de l'Acide Fulvique Suwannee River par un chimio-type

Modélisation des titrations AFSR-Pb (pH 7.8 et 4.6) par 4 quasi-particules de type II et 2 de type III

Modélisation des propriétés de l'Acide Fulvique Suwannee River par un chimio-type

Modélisation des titrations AFSR-Cd (pH 7.8 et 4.6) par 4 quasi-particules de type II et 2 de type III

Modélisation des propriétés de l'Acide Fulvique Suwannee River par un chimio-type

Distribution des 6 quasi-particules de type I

type I	Ll	L2	L3	L4	LS	L6			
pKa	3.9	5.1	6.3	7.8	9.4	11.1			
C (M/ppm DOC)	4.3E-06	2.4E-06	7.9E-07	6.0E-07	1.4E-06	5.6E-06			
type II	Ll	L2	L3	L4			type III	Ll	L2
pK Pb	11.0	9.8	7.3	6.2			рК. Рь	10.6	
pK Cd	6.1	9.0	6.8	3.2			pK.Cd		9.1
pKa H	8.3	8.7	7.7	10.8			pKa H	3.6	3.6
C (M/ppm DOC)	4.2E-10	7.8E-10	1.7E-08	2.2E-07			C (M/ppm DOC)	1.1E-09	3.1E-10

Chimio-type de l'AFSR

⇔ Simulation de l'ensemble des propriétés analysées de l'AFSR

Étude du comportement de la MON le long de la Seine

Expériences et modélisations réalisées:

- ✓ mesure du carbone organique dissous (COD)
- ✓ spectres de fluorescence 2D et 3D
- détermination des rapports I_a^{250nm}/I_c^{350nm} (indice de maturité de la MON)
- ✓ titrations acido-basiques des échantillons

modélisation par des quasi-particules de type I

Étude du comportement de la MON le long de la Seine

Variations du Carbone Organique Dissous:

- concentrations plus faibles en période estivale
- pas d'apports quantifiables de la ville de Rouen (entre La Bouille et Caudebec)
- décroissance régulière de l'amont à l'aval

Variations du rapport de fluorescence:

⇒information sur le degré de maturité de la MON
augmentation pendant la période estivale ⇔ production d'une MON juvénile résultant de l'activité biologique
couplage avec la diminution de COD?
maximums à Honfleur (aval) et Poses (amont) ⇔ deux zones de productions?

Étude du comportement de la MON le long de la Seine

Modélisation des propriétés d'acidité: influence de la teneur en COD

<u>Objectif</u>: étudier l'influence de la teneur en COD sur la détermination des propriétés d'acidité de MON

Échantillons analysés:

- solutions concentrées et diluées d'AF et AH Laurentian River: 225 à 4 ppm de COD
- solutions modèles d'acétate + phénol concentrées et diluées
- échantillons naturels: Seine Aval 2

Expériences réalisées:

- titrations acido-basiques
- traitement des courbes: $pH = f(V_{KOH})$
- détermination par PROSECE des propriétés d'acidité

Modélisation des propriétés d'acidité: influence de la teneur en COD

Solutions concentrées d'AFLR et AHLR:

erreur sur la modélisation par *PROSECE* des titrations potentiométriques de solutions d'AFLR (◆) et AHLR (□) en fonction du nombre de sites

Combinaison retenue: 3 sites de type carboxylique et 3 de type phénolique

Solutions diluées d'AFLR et AHLR:

Densités en sites de type carboxylique et de type phénolique optimisés

à teneur en COD faible: erreurs sur la modélisation, surtout pour les sites de type phénolique ⇔ changement du ratio carboxylique/phénolique

Modélisation des propriétés d'acidité: influence de la teneur en COD Applications

Limite pour une modélisation correcte

Concentration totale en sites optimisée et rapport carboxylique/phénolique en fonction de la concentration totale en sites attendue (Acétate-Phénol, MO extraite, MON)

Définition d'une valeur limite de concentration totale en sites, en dessous de laquelle la modélisation est incorrecte: 0.04 meq

⇒ échantillons de Seine Aval: concentration en sites acides > limite, COD faible
⇔ MON + colloïdes inorganiques ?

Plan de l'exposé:

- Problématique
- Modélisation des propriétés de complexation et d'acidité de la Matière Organique Naturelle
- Techniques d'analyses spécifiques aux interactions entre la MON, les métaux traces et le proton
- Applications à des systèmes naturels
- Conclusions et Perspectives

Conclusions:

• Utilisation de *quasi-particules* – définition d'un *chimio-type* pour représenter les propriétés de la MON

 \Rightarrow modélisation des propriétés de complexation de la MON vis-à-vis des métaux traces ET du proton, et les phénomènes de compétition

⇒ obtention de paramètres de complexation directement intégrables dans un model de transport de contaminants (MOCO-IFREMER)

⇒ traçage du comportement de la MON dans des milieux complexes

• Développement de *PROSECE*:

 \Rightarrow améliorer de la précision sur la modélisation de données expérimentales

- \Rightarrow applications à différents types de données:
 - . voltamétrie (DPASV)
 - . potentiométrie (pH, ISE Cu, Cd, ...)
 - . quenching de fluorescence
- Développement de techniques d'analyses spécifiques:

⇒ titrations *logarithmiques* – DPASV ⇔ augmentation de la fenêtre analytique et de la précision

⇒ analyse simultanée de différents phénomènes

Perspectives:

- Appliquer cette combinaison modélisation techniques d'analyse:
 - MON d'origines marines: GDR MONALISA, PNEC Nouvelle-Calédonie
 - MON fractionnées, par exemple par SEC, UFTS, ...
- Utiliser d'autres techniques d'analyse:
 - Analyser d'autres interactions: MON cations majeurs, autres métaux (Hg, Ag, ...), ...
 - Étendre la fenêtre analytique ⇔ la gamme de sites analysables
- Faciliter l'utilisation de *PROSECE*
- Corréler cette caractérisation fine à des mesures rapides (spectroscopie de fluorescence)
 - ⇔ caractériser rapidement les propriétés de MON