Auto-organisation épitaxiale : des surfaces aux matériaux magnétiques

O.Fruchart

HDR – 25/09/2003 http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/

Laboratoire Louis Néel.

1. Introduction

- 2. Co/Au(111) nano-columns
- 3. Fe/bcc(110) stripes

From surfaces to functional materials at 300K

4. Conclusion and perspectives

Olivier Fruchart – HDR – 25/09/2003 – p.2

Self-assembly

Self-organization

Olivier Fruchart – HDR – 25/09/2003 – p.3

Ordering in 1D; anisotropy

Co(250K - 0.12ML)/Pt(997)

A. Dallmeyer *et al.*, Phys.Rev.B 61(8), R5153 (2000).

Conclusion

- * Fundamental physics
- * Low temperature

Tc<300K

* Difficult and expensive experiments

Open question

Any use for common magnetic materials?

Olivier Fruchart - HDR - 25/09/2003 - p.4

From surfaces to magnetic materials

Model systems

Study the intrinsic microscopic details of phenomena that are too complex in common systems: hysteresis, ...

Demonstrate functionality at 300K

From fundamental physics at low temperature to ferromagnetic systems at 300K

Olivier Fruchart – HDR – 25/09/2003 – p.5

3. Fe/bcc(110) stripes

4. Conclusion and perspectives

Olivier Fruchart – HDR – 25/09/2003 – p.7

O. Fruchart et al., Phys. Rev. Lett. 23, 2769 (1999)

FACTS

Co, Ni, Fe, Cu, Rh growth on Au(111)
> self-organized arrays of dots
ORIGIN ?

First observations:

D.D. Chambliss et al., PRL 66, 1721 (1991)

B.Voigtlander et al., PRB 44, 10354 (1991)

Olivier Fruchart – HDR – 25/09/2003 – p.8

Laboratoire Louis Néel

Fe, Co, Ni (etc.) nucleation: atomic place exchange mechnism with Au atoms

Leading parameter :

deposit has a higher surface energy than Au. (and Au atoms stress near chevrons)

FIRST REPORT (Ni/Au(111)]:

J.A.Meyer et al., Surf.Sci.**365**, L647 (1996)

Olivier Fruchart - HDR - 25/09/2003 - p.11

Laboratoire Louis Néel

t ~ 1s

Experiments

Arrhenius law

Phenomenological thermal activation

 $t = t_0 \exp\left(\frac{\Delta E}{k_B T}\right) \begin{pmatrix} t_0 \sim 10^{-9} \text{ s} \\ \text{Precession} \end{pmatrix}$ $\Rightarrow \Delta E = k_B T \ln(t/t_0) \sim 25 k_B T$

Blocking temperature

 $T_{\rm b} = KV / 25k_{\rm B}$

For T>Tb:

- zero remanence
- zero coercivity

Olivier Fruchart – HDR – 25/09/2003 – p.12

$T_{\rm b} = KV / 25k_{\rm B}$

Co/Au(111)

TWO ROUTES TO OVERCOME SUPERPARAMAGNETISM

• Increase K

Problem: *K* does not increase as fast as *V* decreases

- P. Gambardella et al., Nature 416, 301 (2002)
- P. Gambardella et al., Science 300, 1130 (2003)

Increase V Problem : lateral coalescence occurs S. Padovani et al., PRB59, 11887 (1999)

HOW INCREASE THE HEIGHT OF THE NANOSTRUCTURES ?

H.Takeshita et al., JMMM165, 38 (1997) Olivier Fruchart – HDR – 25/09/2003 – p.13

Laboratoire Louis Néel

Olivier Fruchart – HDR – 25/09/2003 – p.15

Laboratoire Louis Néel

Laboratoire Louis Néel

Step 3 : 0.1AL Co @500K

Laboratoire Louis Néel

2. Co/Au(111) [2.2 Pillars > Scanning Tunneling Spectroscopy]

Olivier Fruchart - HDR - 25/09/2003 - p.18

Laboratoire Louis Néel

One step = (0.1ML Co) + (0.9ML Au) @500K

Co6Au6

Co10Au10

Olivier Fruchart – HDR – 25/09/2003 – p.19

Final picture

- Self-organization nearly undisturbed
- Pillars with a vertical aspect ratio
- Geometric parameters can be tailored

Olivier Fruchart – HDR – 25/09/2003 – p.20

Laboratoire Louis Néel

Brillouin 1/2 function

> Good quantitative agreement 5 1 pillar = 1 magnetic entity

 \succ

Laboratoire Louis Néel

Olivier Fruchart – HDR – 25/09/2003 – p.26

Signature of demagnetizing dipolar interactions: agrees with model

Olivier Fruchart – HDR – 25/09/2003 – p.29

2. Co/Au(111) [2.3 Magnetism > Rise of blocking temperature]

G. Renaud, M. Noblet, O. Ulrich / A. Barbier DRFMC/SP2M/IRS (CEA-Grenoble) / CEA-Saclay **J.-P. Deville, F. Scheurer, J. Mané-Mané** IPCMS (CNRS/ULP/ECPM), Strasbourg

Olivier Fruchart – HDR – 25/09/2003 – p.33

Laboratoire Louis Néel

RHEED: Reflection High Energy Electron Diffraction

Olivier Fruchart - HDR - 25/09/2003 - p.34

Laboratoire Louis Néel

2. Co/Au(111) [2.4 GISAXS > Scattering patterns]

INTRA-ROW ORDER: SUPER-CRYSTAL

DQ/Q=3%

INTER-ROW ORDER: LIQUIDE-TYPE

> K=8.5nm s=2.1nm

Olivier Fruchart – HDR – 25/09/2003 – p.35

Laboratoire Louis Néel

2. Co/Au(111) [2.4 GISAXS > 'Super-crystallography']

Olivier Fruchart – HDR – 25/09/2003 – p.36

Quantitative analysis

Information about dot's size, shape, coalescence, etc.

Organization used as a tool, not as a goal

Olivier Fruchart – HDR – 25/09/2003 – p.37

Laboratoire Louis Néel

Co/Au(111) overview

- New process for vertical growth from flat dots
- Coercivity at room temperature
- Information through X-ray scattering Generalization to pillars and magnetic studies?..

Olivier Fruchart – HDR – 25/09/2003 – p.38

4. Conclusion and perspectives_{Olivier Fruchart} - HDR - 25/09/2003 - p.39

Is there an intermediate world ?

Olivier Fruchart – HDR – 25/09/2003 – p.40

3. Fe/bcc(110) stripes [3.2 Growth]

Buffer layer growth : O. Fruchart, S. Jaren, J. Rothman, Appl. Surf. Sci. 135, 218 (1998)

Olivier Fruchart - HDR - 25/09/2003 - p.41

Growth of Fe/Mo(110) at 450°C

Metastable thickness for Fe/Mo(110)

Olivier Fruchart – HDR – 25/09/2003 – p.43

Laboratoire Louis Néel

Nucleation along edges

Growth @ 150°C

STM, 750nm x 750nm

Annealing : 450°C

stress relaxation : stripe formationmetastable thickness : 7ML

STM, 950nm x 950nm

Role of stress at edges

Olivier Fruchart - HDR - 25/09/2003 - p.44

Laboratoire Louis Néel

Valid for other systems ?

3 ML Fe₆₅Ni₃₅/ Cu(111)-vic 1.2°

S. Cherifi et al., PRB 64 (2001) 184405

Olivier Fruchart - HDR - 25/09/2003 - p.45

Laboratoire Louis Néel

3. Fe/bcc(110) stripes [3.2 Growth]

Thickness still too small for quasistatic coercivity at 300K

Mo[001]

Olivier Fruchart – HDR – 25/09/2003 – p.46

Sapphire\W(8nm)\Fe(150°C, 450°C annealing)

Ex-situ AFM

- Stripes for Fe/W(110)
- Increased height : 5nm
- Why difference with Mo ?

Olivier Fruchart – HDR – 25/09/2003 – p.47

Coercivity at 300K

Laboratoire Louis Néel

Olivier Fruchart – HDR – 25/09/2003 – p.49

PEEM = PhotoElectron Emission Microscope

Sample: Sapphire\Mo(8nm)\W(1nm)\ Fe(2.5nm)\Mo(1nm)\Al(3nm)

ELETTRA Syncrotron, Trieste

Laboratoire Louis Néel

Domain patterns

Laboratoire Louis Néel

PEEM resolution

 $180^{\circ} > \lambda = 110$ nm

 $90^{\circ} > \lambda = 50$ nm

PEEM resolution better than 50nm

Olivier Fruchart – HDR – 25/09/2003 – p.52

1. Introduction

2. Co/Au(111) nano-columns

4. Conclusion and perspectives

Olivier Fruchart - HDR - 25/09/2003 - p.53

FROM SURFACES TO MAGNETIC MATERIALS

Original growth processes:

Use surface science effects:

dislocations, atomic steps, reconstructions, etc.

Self-organization with multi-atomic-layers height

> Magnetism:

Rise Curie and blocking temperature
 > coercivity and stable domains

Increase amounts of material

Laboratoire Louis Néel

Origin of metastable thickness

Laboratoire Louis Néel

Olivier Fruchart – HDR – 25/09/2003 – p.55

4. Perspectives [parameters for shape of dots]

Wulff's theorem

Free crystal

Wulff Kaishev's theorem

Supported crystal (growth on surfaces)

Laboratoire Louis Néel

Influence of both surface energy and lattice mismatch (>dislocations)

NEED: Control independently surface energy and lattice parameters mismatch

Olivier Fruchart – HDR – 25/09/2003 – p.58

FROM SURFACES TO MAGNETIC MATERIALS ... and back

GROWTH ENGINEERING

A tool: independant control of lattice parameter and interface

- Ultrathin interface layers
- Solid solutions of bcc elements

New 3D self-organized systems

CoAg/bcc(110) or FeAg/bcc(110)

CHARACTERIZATION TECHNIQUES

- PEEM Microscopy
- X-ray magnetic scattering

APPLICATION TO MAGNETISM

Fundamental properties:

- Interface anisotropy, non-linear magneto-elasticity
- Dislocation' magnetic anisotropy

Micromagnetism:

- Magnetization reversal, nucleation
- Walls and vortex manipulation

Transport:

- GMR: cpp configuration with in-plane current
- Polarized current-assisted magnetization reversal

Olivier Fruchart – HDR – 25/09/2003 – p.59

•

PhD students

P.-O. Jubert (1998–2001) / M. Eleoui (2001-2004)

Jean-Christophe Toussaint

Laboratoire Louis Néel (numerical micromagnetism)

Dominique Givord

Director of LLN and advisor during PhD

And many many other people !

Olivier Fruchart – HDR – 25/09/2003 – p.60

Overview

Laboratoire Louis Néel