

Influence de la température sur le comportement statique et dynamique des capteurs de pression capacitifs au silicium

Mohamad Al Bahri

► To cite this version:

Mohamad Al Bahri. Influence de la température sur le comportement statique et dynamique des capteurs de pression capacitifs au silicium. Micro et nanotechnologies/Microélectronique. INSA de Toulouse, 2005. Français. NNT: . tel-00009524

HAL Id: tel-00009524 https://theses.hal.science/tel-00009524

Submitted on 17 Jun 2005

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Thèse

Préparée au Laboratoire d'Analyse et d'Architecture des Systèmes du CNRS

En vue de l'obtention du titre de Docteur de l'Institut National des Sciences Appliquées de Toulouse

Spécialité : Conception des Circuits Microélectroniques et Microsystèmes

Par Mohamad Al Bahri

Influence de la température sur le comportement statique et dynamique des capteurs de pression capacitifs au silicium

Soutenue le 24 mai 2005 devant le jury :

Président	A. MARTINEZ
Directeurs de thèse	P. PONS P. MENINI
Rapporteurs	L. MARTINEZ-SALAMERO C. PELLET
Invité	G. BLASQUEZ

Rapport LAAS N°05228

AVANT PROPOS

Les travaux présentés dans ce mémoire ont été effectués au Laboratoire d'Analyse et d'Architecteur des Systèmes (LAAS) du Centre National de la Recherche Scientifique (CNRS) à Toulouse au sein du groupe Technologies Micro et Nanostructures (TMN).

Je tiens tout d'abord à remercier Messieurs J.C LAPRIE et M. GHALLAB, Directeurs successifs du LAAS pour m'avoir intégré au LAAS.

Je remercie Monsieur A. MARTINEZ, Professeur à l'Institut National des Sciences Appliquées du Toulouse pour l'honneur qu'il nous a fait en acceptant d'être le président de notre jury de thèse.

Je remercie également Messieurs G. BLASQUEZ, G. SARRABAYROUSE et P. TEMPLE-BOYER responsables successifs du groupe TMN.

J 'exprime toute ma reconnaissance à Monsieur C. PELLET, Professeur à l'Université Bordeaux 1, ainsi qu'à Monsieur L. MARTINEZ-SALAMERO, Professeur à l'Université, Tarragone, pour avoir accepté d'être rapporteurs de ce mémoire.

Je tiens à remercier Monsieur G. BLASQUEZ, pour l'honneur qu'il nous a fait en acceptant d'être membre de notre jury de thèse.

Je tiens à exprimer ma profonde reconnaissance à Monsieur P. PONS, Chargé de Recherche au CNRS ainsi qu'à Monsieur Ph. MENINI, Maître de conférence à l'Université Paul Sabatier Toulouse III, pour leur encadrement efficace, leur aide, leur soutien moral, leurs encouragements ainsi que la sympathie qu'ils m'ont témoigné.

Tous mes remerciements vont également à Messieurs : A. BOUKABACHE, B. JAMES, B. ESTIBALS, C. DOUZIECH, H. CAMON et Mesdames : M.L. POURCIEL - GOUZY et N. HIGOUNET pour leur amitié.

Je tiens aussi à remercier à tous ceux qui m'ont apporté leur aide, à un moment ou à un autre :

- L'ensemble du personnel du service TEAM pour leur assistance et leurs conseils techniques en centrale de technologie, et en particulier Messieurs :
 T. DOCONTO et D. COLIN, avec qui j'ai eu le plaisir de discuter.
- L'ensemble du personnel de la documentation ainsi que C. BERTY qui ont assuré la réalisation matérielle du mémoire.
- L'ensemble du personnel du service sysadmin et en particulier Mesdames :
 M.D. CABANES et I. SILVAIN.
- Tout le personnel du service « magasin et maintenance ».
- Tout le personnel du service « gestion personnel ».
- Tout le personnel du service « enseignement » à l' I.N.S.A.T et en particulier Mesdames : G. MARTINEZ et M.J. CETTOLO.
- L'ensemble des permanents et thésards du laboratoire, pour leur aide amicale et leur soutien permanent.
- Tous les enseignants du département de génie électronique de l'Université d'Alep (Syrie), et en particulier Messieurs : K. ABDULLAH, M.F. SHRAIF, M. AL MOHAMMED, pour leur aide amicale et leur soutien permanent.

Je remercie tout le personnel du C.R.O.U.S et en particulier Mme M.C. COMPARIN pour avoir facilité mon intégration en France.

Pour finir, j'exprime toute ma reconnaissance à mes parents pour leur soutien déterminant et tout particulièrement à celle avec qui je partage ma vie depuis trois ans "ma chérie Naima" que j'embrasse très fort.

TABLE DES MATIERES

Pages

duction générale1

<u>CHAPITRE 1</u>: Modélisation des capteurs capacitifs

1.1. Introduction	5
1.2. Principe de fonctionnement	6
1.3. Comportement statique	б
1.3.1. Modélisation de la réponse en pression	6
1.3.1.1. Calcule de la capacité	6
1.3.1.2. Domaine de validité de l'approximation des faibles déflexions	8
1.3.1.3. Sensibilité à la pression	10
1.3.2. Modélisation de la réponse en tension	10
1.3.2.1. Force électrostatique	10
1.3.2.2. Calcul de la sensibilité à la pression électrostatique	11
1.4. Comportement dynamique	13
1.4.1. Fréquence de résonance	13
1.4.1.1. Application numérique	14
1.4.2. Excitation électrique de la membrane	15
1.4.2.1. Calcul de la tension de collage	16
1.4.2.2. Influence de la tension continue sur la fréquence propre	17
1.4.3. Relation entre la sensibilité à la pression et la fréquence de résonance	18
1.4.4. Modèle électrique du capteur au voisinage de la résonance fondament	ale . 18
1.5. Comportement thermique	22
1.5.1. Définition du coefficient thermique (TC)	22
1.5.2. Coefficient thermique de la capacité au repos	24
1.5.3. Coefficient thermique de la sensibilité à la pression	25
1.5.4. Coefficient thermique de la fréquence de résonance	26
1.5.5. Relations entre les coefficients thermiques des différentes variables	26
etuaiees	26
1.6. Conclusion	27

<u>CHAPITRE 2</u>: Conception et réalisation du capteur

2.1.	Introduction /Conception	31
2.2.	Réalisation	34
	2.2.1. Réalisation de la cavité avec le plot	35
	2.2.2. Réalisation de l'armature fixe et des contacts	39
	2.2.3. Assemblage Si /Verre	40
	2.2.4. Amincissement de l'armature déformable	41
	2.2.5. Prise de contact sur le Silicium	42
	2.2.6. Accès aux contacts	42
	2.2.7. Scellement sous vide	44
	2.2.8. Photographies des capteurs réalisés	45
	2.2.9. Montage des composants	46
2.3.	Dispositif expérimental	47
	2.3.1. Description du banc de test	47
	2.3.2. Conditions et précisions des mesures	47
	2.3.3. Dispositif de mesure spécifique au capteur	48
	2.3.3.1. Support du capteur - accès à la mesure	48
	2.3.3.2. Schéma électrique équivalent	50
2.4.	Conclusion	53

<u>CHAPITRE 3</u>: Influence de la température sur le comportement statique du capteur

3.1. Introduction	57
3.2. Comportement thermique en l'absence de pression appliquée	57
3.2.1. Capacité au repos à température ambiante (T= 30°C)	57
3.2.2. Détermination du modèle thermique	59
3.2.3. Analyse des résultats	63
3.2.3.1. Influence de l'épaisseur de la membrane	
3.2.3.2. Influence de la largeur de soudure	
3.2.3.3. Influence de l'épaisseur de l'armature fixe	
3.2.3.4. Influence de la géométrie de l'encastrement	68
3.3. Comportement thermique de la sensibilité à la tension	70
3.3.1. Sensibilité à la tension à température ambiante (T= 30°C)	
3.3.2. Modèle thermique Sv(T)	72
3.3.2.1. Détermination du coefficient thermique	

3.3.2.2. Détermination des coefficients q_{v0} et q_{v1}	75
3.3.2.3. Relation entre q_{y_0} et q_{y_1}	77
3.3.3. Analyse des résultats	79
3.3.3.1. Encastrement circulaire	79
3.3.3.2. Encastrement carré	81
3.3.3.3. Influence de la géométrie de l'encastrement	83
3.4. Calcul du comportement thermique de la sensibilité à la pression	84
3.4.1. Sensibilité à la pression à température ambiante (T= 30°C)	84
3.4.1.1. Capteurs non scellés	84
3.4.1.2. Capteurs scellés sous vide	85
3.4.2. Détermination du modèle thermique de la sensibilité à la pression	88
3.4.2.1. Encastrement circulaire	88
3.4.2.2. Encastrement carré	90
3.4.2.3. Influence de la géométrie de l'encastrement	91
3.5. Conclusion	92

<u>CHAPITRE 4</u>: Influence de la température sur le comportement dynamique du capteur

4.1. Introduction	
4.2. Comportement dynamique à température ambiante (T=30°C)99
4.2.1. Admittance électrique	
4.2.2. Fréquence de résonance des membranes à pression électrostatique	e 100
4.2.3. Influence de la tension continue	
4.3. Comportement thermique de f _r (0)	
4.3.1. Modèle thermique	
4.3.1.1. Détermination du coefficient thermique	
4.3.1.2. Détermination des coefficients q_{f0} et q_{f1}	
4.3.1.3. Relation entre q_{f0} et q_{f1}	
4.3.2. Analyse des résultats	
4.3.2.1. Encastrement circulaire	
4.3.2.2. Encastrement carré	
4.3.2.3. Influence de la géométrie de l'encastrement	
4.4. Comportement thermique de la sensibilité à la pression	116
4.5. Conclusion	119

Conclusion générale	
LISTE DES NOTATIONS ET SYMBOLES	
LISTE DES FIGURES	
LISTE DES TABLEAUX	
LISTE DES REFERENCES BIBLIOGRAPHIQUES	
ANNEXES	

INTRODUCTION GENERALE

La majorité des capteurs de pression disponibles sur le marché sont des capteurs piézorésistifs. Ces composants sont extrêmement sensibles à la température et ne peuvent fonctionner correctement sans l'addition de circuits de compensation onéreux. C'est pourquoi, depuis plusieurs années, des recherches s'orientent vers des capteurs de pression capacitifs à partir des technologies de la micro-électronique et de procédés spécifiques [1 à 11]. Par rapport aux capteurs de pression classiques, les capteurs micro-électroniques présentent plusieurs avantages. Ce type de capteur est caractérisé par une grande sensibilité à la pression, une fabrication en grande série [12], une petite taille, une faible consommation et une connexion facile avec les circuits intégrés MOS [13 à 16].

Par principe, ces capteurs peuvent avoir des caractéristiques quasiment indépendantes de la température. Dans ce cas, leur utilisation n'implique plus l'utilisation de circuits de compensation thermique. Il en résulte une amélioration de leur fiabilité et une réduction substantielle du prix de revient.

Ces capteurs sont actuellement largement diffusés dans le monde pour des applications grand public : dans les domaines de la santé [17 à 21] et de l'automobile [22] [23].

Les capteurs étudiés dans ce mémoire sont basés sur une filière technologique Silicium/verre. Cette filière est simple de mise en œuvre et permet de minimiser les capacités parasites.

Bien que possédant un faible dérive thermique, ces capteurs sont soumis à des déformations structurales associées aux coefficients de dilatation des différents matériaux utilisés [21] [24 à 30].

L'objectif de cette thèse consistait à caractériser l'influence de la température sur le comportement statique et dynamique du capteur dans une large gamme de température (-20°C à +150°C) et pour différentes caractéristiques géométriques. Ces données sont essentielles pour optimiser la structure des capteurs et définir des techniques de compensation adéquates.

1

Les travaux effectués sont synthétisés dans ce mémoire avec le schéma suivant.

Dans un premier chapitre, nous développons les modèles théoriques pour des capteurs à membrane circulaire. En régime statique, nous explicitons les modèles de la sensibilité à la tension et à la pression dans le domaine linéaire. En régime dynamique, nous déterminons la dépendance de la fréquence de résonance en fonction de la tension appliquée (pression électrostatique). Pour l'ensemble des modèles, nous calculons le coefficient thermique.

Dans le deuxième chapitre, nous définissons les structures des capteurs étudiés. Nous présentons ensuite le processus de fabrication et le dispositif de test mis en place et nous donnons ensuite leurs principales caractéristiques physiques et électriques à température ambiante.

Dans le troisième chapitre, nous montrons l'influence de la température sur le comportement statique et plus précisément la capacité au repos, la sensibilité à la tension et la sensibilité à la pression. et mettons en évidence l'effet des différents paramètres sur leur coefficient thermique.

Enfin, dans le quatrième chapitre, nous étudions d'abord l'influence de la température sur le comportement dynamique (fréquence de résonance). Ensuite, nous mettons en évidence l'effet des différents paramètres. Enfin, nous comparons les deux modèles du coefficient thermique de la sensibilité à la pression sur un grand nombre de capteurs. Par ailleurs, nous montrerons également qu'il existe une relation entre le coefficient thermique de la fréquence de résonance fondamentale et celui de la sensibilité à la pression.

Chapitre 1

Modélisation des capteurs capacitifs

1.1. Introduction

L'objectif de ce chapitre est de décrire de manière théorique les comportements statique et dynamique de la cellule sensible capacitive à membrane circulaire que nous avons étudié. Dans une première partie, nous développerons les modèles de la réponse en pression et en tension dans le domaine linéaire afin de calculer la sensibilité à la pression à partir de la mesure de la sensibilité à la tension. Ensuite, nous montrerons la dépendance de la fréquence de résonance à la tension et donc à la pression électrostatique. Puis, nous déterminerons le modèle électrique du capteur au voisinage de la résonance fondamentale. Enfin, nous calculerons le coefficient thermique de l'ensemble de ces variables.

1.2. Principe de fonctionnement

Les capteurs étudiés comportent une armature plane fixe et une armature plane déformable. En l'absence de pression différentielle entre les deux faces de la membrane, les armatures sont parallèles (Cf. Fig. 1.1). La capacité au repos C(0) est alors donnée par la relation :

$$C(0) = \varepsilon_0 \varepsilon_r \frac{A}{d}$$
(1.1)

où : ε_0 et ε_r représentent respectivement la permittivité du vide (8,86×10⁻¹² F/m) et la permittivité relative du gaz « emprisonné » dans la cavité. A est la surface de l'armature fixe et d est la distance interarmatures.

Figure 1.1 : Capteur de pression capacitif au repos

1.3. Comportement statique

1.3.1. Modélisation de la réponse en pression

1.3.1.1. Calcul de la capacité

Lorsqu'on applique une pression P_{ext} supérieure à la pression P_{in} contenue dans la cavité, l'armature déformable fléchit (Cf. Fig. 1.2).

Figure 1.2 : Capteur en fonctionnement ($P_{ext} > P_{in}$)

La distance séparant les deux électrodes varie en tous points [31]. La relation liant la capacité à la pression appliquée devient :

$$C(P_{ext} - P_{in}) = \varepsilon_0 \varepsilon_r \iint_A \frac{\partial A}{d - w(x, y)}$$
(1.2)

où ∂A représente un élément de surface de l'armature fixe et w(x,y) la déflexion de la membrane en tout point d'un repère cartésien dont le centre est le centre de la membrane.

Pour une membrane circulaire de rayon R et dans le cas des faibles déflexions (w<<h), la déflexion w est donnée en coordonnées cylindriques [32] [33] par :

$$w(r) = \frac{12P(1-v^2)R^4}{64Eh^3} (1-\frac{r^2}{R^2})^2$$
(1.3)

où $P = [P_{ext} - P_{in}]$ est la pression hydrostatique différentielle appliquée entre les deux faces de la membrane,

- E le module de Young (130 GPa pour le silicium),
- v le coefficient de poisson (0,28),
- et h l'épaisseur de la membrane.

On voit que la déflexion w(r) peut se décomposer en deux parties: une partie w(0) indépendante des coordonnées et une autre, $w_N(r)$ indépendante de la pression :

$$w(r) = w(0) w_{N}(r)$$
 (1.4)

avec $w_N(r)$ la déflexion normalisée :

$$w_N(r) = (1 - \frac{r^2}{R^2})^2$$
 (1.5)

et w(0) la déflexion au centre de la membrane :

$$w(0) = \frac{3(1-v^2)}{16\pi^2 E} \frac{S^2}{h^3} P$$
(1.6)

où S est la surface de la membrane.

L'équation (1.6) montre que la déflexion au centre est directement proportionnelle à la pression.

La réponse du capteur à la pression P s'écrit alors par :

$$C(P) = \varepsilon_0 \varepsilon_r \int_0^{R_m} \int_0^{2\pi} \frac{1}{d - w(r)} dr d\theta = \varepsilon_0 \varepsilon_r I_1$$
(1.7)

où R_m représente la rayon de l'armature fixe.

En développement l'intégrale I₁ on obtient (C.f. Annexe A) :

$$I_{1} = \frac{C(0)}{2\varepsilon_{0}\varepsilon_{r}\gamma^{2}}\sqrt{\frac{d}{w(0)}} \ln \left[\frac{\frac{d}{w(0)} + \gamma^{2}\sqrt{\frac{d}{w(0)}} + \gamma^{2} - 1}{\frac{d}{w(0)} - \gamma^{2}\sqrt{\frac{d}{w(0)}} + \gamma^{2} - 1}\right]$$
(1.8)

où

$$\gamma = \frac{R_{\rm m}}{R} = \sqrt{\frac{A}{S}} \tag{1.9}$$

Dans le régime quasi linéaire (w(0) $\leq\leq$ d), on peut développer l'équation (1.8) en série de Taylor. L'intégrale est alors approchée par :

$$I_1 \approx \frac{C(0)}{\varepsilon_0 \varepsilon_r} \left[1 + \frac{w(0)}{d} \Psi_{\gamma} \right]$$
(1.10)

où

$$\Psi_{\gamma} = \frac{1 - (1 - \gamma^2)^3}{3\gamma^2}$$
(1.11)

Une déflexion efficace peut alors être définie comme :

$$\mathbf{w}_{\rm eff} = \Psi_{\gamma} \mathbf{w}(0) \tag{1.12}$$

Pour $\gamma = 1$, la relation (1.10) peut se simplifier par :

$$I_1 \approx \frac{C(0)}{\varepsilon_0 \varepsilon_r} \left[1 + \frac{w(0)}{3d}\right]$$
(1.13)

La réponse du capteur approchée alors peut se mettre sous la forme suivante :

$$C_{L}(P) \approx C(0)[1 + \frac{W(0)}{3d}] \approx C(0)[1 + \frac{W_{eff}}{d}]$$
 (1.14)

A partir de (1.6), la relation (1.14) devient :

$$C_{L}(P) \approx C(0) \left[1 + \frac{(1 - v^{2})}{16E} \frac{R^{4}}{h^{3}} \frac{P}{d}\right]$$
 (1.15)

1.3.1.2. Domaine de validité de l'approximation des faibles déflexions

Les variations relatives de la capacité sont représentées sur la figure 1.3 avec et sans approximation des faibles déformations.

Figure 1.3 : Variation normalisée de la capacité en fonction de la déflexion normalisée au centre de la membrane

Afin d'évaluer la pertinence de l'approximation des faibles déformations (w(0) \ll d), nous avons calculé l'erreur définie par :

$$E(\%) = \frac{C - C_{L}}{C}$$
(1.16)

La figure 1.4 illustre cette erreur en fonction de la déflexion normalisée au centre de la membrane.

Figure 1.4 : Erreur de linéarité du capteur en fonction de la déflexion normalisée au centre de la membrane

On peut noter que pour une déformation normalisée inférieure à 12 %, l'approximation des faibles déformations introduit une erreur sur la réponse du capteur inférieure à \pm 0,3 %. Cette déformation normalisée de 12 % correspond à une variation de capacité de 4 %. Afin de rester dans le domaine linéaire, cette limite de 4 % sur la variation de capacité ne sera pas dépassée dans le reste de l'étude.

1.3.1.3. Sensibilité à la pression

Dans les conditions précédentes et d'après (1.15), la sensibilité du capteur à la pression est alors approximativement égale à :

$$Sp \approx \frac{\Delta C}{P} \approx \frac{C(0)}{d} \frac{R^4}{h^3} \frac{(1-v^2)}{16E}$$
 (1.17)

1.3.2. Modélisation de la réponse en tension

1.3.2.1. Force électrostatique

Lorsqu'on applique une différence de potentiel V entre les deux armatures, il existe une force électrostatique F_e définie par (1.18) qui provoque une variation ΔC de la capacité [34 à 37] (Cf. Fig. 1.5).

Figure 1.5 : Capteur en fonctionnement (Fe)

Cette méthode de mesure sera utilisée pour évaluer la sensibilité à la pression de cellules capacitives non scellées (pas de différence de pression entre l'intérieur et l'extérieur de la cavité).

A partir des relations (1.4) à (1.6), l'intégrale I_2 peut s'exprimer par :

$$I_{2} = \frac{1}{2d} \left\{ I_{1} + \frac{C(0)}{\varepsilon_{0}\varepsilon_{r}\gamma^{2}} \left[(\gamma^{2} - 1)(1 - \frac{w(0)}{d}(1 - \gamma^{2})^{2})^{-1} + (1 - \frac{w(0)}{d})^{-1} \right] \right\}$$
(1.19)

où I_1 est définie par (1.8).

Dans le cas des très faibles déflexions (w(0) $\leq d$), l'intégrale I₂ peut s'approximer par :

$$I_2 \approx \frac{C(0)}{\varepsilon_0 \varepsilon_r d} \left(1 + \frac{2w(0)}{d} \Psi_{\gamma}\right)$$
(1.20)

Pour $\gamma = 1$, la relation (1.20) peut se simplifier par :

$$I_2 \approx \frac{C(0)}{\epsilon_0 \epsilon_r d} (1 + \frac{2w(0)}{3d})$$
 (1.21)

La force électrostatique est alors approximativement égale à :

$$F_{e} \approx \frac{\varepsilon_{0}\varepsilon_{r}AV^{2}}{2d^{2}}\left(1 + \frac{2w(0)}{3d}\right) \approx F_{0} + k_{e}w_{eff}$$
(1.22)

où k_e est définie par [38] [39] :

$$k_{e} = \frac{\varepsilon_{0}\varepsilon_{r}AV^{2}}{d^{3}} = \frac{C(0)V^{2}}{d^{2}}$$
(1.23)

1.3.2.2. Calcul de la sensibilité à la pression électrostatique

La sensibilité à la pression des capteurs peut être évaluée à partir de la mesure de la sensibilité à la tension (Sp_{Sv}). Dans les conditions précédentes ($\Delta C/C(0) \approx w_{eff} / d \le 4 \%$), le deuxième terme de l'expression (1.22) devient négligeable et chaque élément de la membrane est alors soumis à une pression électrostatique P_e constante définie par :

$$P_{e} = \frac{F_{e}}{A} \approx \frac{\varepsilon_{0}\varepsilon_{r}V^{2}}{2d^{2}}$$
(1.24)

La sensibilité du capteur à la pression est alors approximativement égale à :

$$Sp \approx \frac{C(V) - C(0)}{P_e}$$
(1.25)

En combinant (1.24) et (1.25), (1.25) peut se mettre sous la forme :

$$Sp_{Sv^2} \approx \frac{2\varepsilon_0 \varepsilon_r A^2}{C^2(0)} S_{V^2}$$
(1.26)

où S_{v^2} est la sensibilité du capteur au carré de la tension appliquée et égale à :

$$S_{V^2} = \frac{C(V) - C(0)}{V^2}$$
(1.27)

Pour simplifier, S_{V^2} sera écrit Sv dans ce qui suit.

En combinant (1.17) et (1.26), la sensibilité théorique à la tension peut se mettre sous la forme :

$$Sv \approx \frac{\varepsilon_0^2 \varepsilon_r^2 A}{d^4} \frac{R^4}{h^3} \frac{(1-v^2)}{32E}$$
 (1.28)

1.4. Comportement dynamique

1.4.1. Fréquence de résonance

Nous présentons ici une modélisation simple de mouvement libre d'une membrane circulaire dont l'épaisseur h est négligeable devant les dimensions latérales. Quelle que soit sa géométrie, nous pouvons écrire l'équation fondamentale du mouvement avec l'opérateur Laplacien [40] :

$$\Delta(D\Delta(w)) + \rho h \frac{\partial^2 w}{\partial t^2} = 0$$
(1.29)

où t représente la variable temporelle, ρ la masse volumique du silicium (2,33×10³ kg/m³) et D la rigidité à la flexion du matériaux définie par D = $\frac{E h^3}{12(1 - v^2)}$.

En coordonnées polaires (r, θ), la relation (1.29) se met sous la forme :

$$D(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2})(\frac{\partial^2 w}{\partial r^2} + \frac{1}{r}\frac{\partial w}{\partial r} + \frac{1}{r^2}\frac{\partial^2 w}{\partial \theta^2}) + \rho h\frac{\partial^2 w}{\partial t^2} = 0$$
(1.30)

L'encastrement de la membrane sur ses bords impose les conditions aux limites suivantes :

$$w(\mathbf{R}, \theta) = \frac{\partial w(\mathbf{r}, \theta)}{\partial \mathbf{r}}\Big|_{\mathbf{r}=\mathbf{R}} = 0$$
(1.31)

La solution générale de la déflexion peut être découplée en une partie spatiale et une partie temporelle de la forme :

$$\mathbf{w}_{\mathrm{mn}} = \mathbf{w}_{\mathrm{mn}}(\mathbf{r}, \theta, \mathbf{t}) = \mathbf{w}_{\mathrm{mn}}(\mathbf{r}, \theta) \mathbf{e}^{j\lambda_{\mathrm{mn}}\mathbf{t}}$$
(1.32)

où λ_{mn} est une valeur propre fixant les valeurs de fréquence de résonance et $w_{mn}(r, \theta)$ est la fonction propre correspondant à la forme du mode de résonance.

En substituant l'équation (1.32) dans l'équation (1.30), et en résolvant l'équation (1.31) on trouve l'équation caractéristique :

$$J_{m}(\lambda_{mn})I_{m+1}(\lambda_{mn}) + I_{m}(\lambda_{mn})J_{m+1}(\lambda_{mn}) = 0$$

m = 0,1,2,...et n = 0,1,2,... (1.33)

où J_m et I_n sont respectivement la fonction de Bessel de premier type et d'ordre m et la fonction modifiée de Bessel de second type et d'ordre n. Les solutions de cette équation peuvent être résolues numériquement. Les valeurs de λ_{mn} sont, d'après [40], données dans le tableau1.1.

m n	0	1	2	3
0	3,196	4,611	5,906	7,143
1	6,306	7,799	9,197	10,537
2	9,440	10,958	12,402	13,795
3	12,577	14,108	15,579	17,005

	Tableau	1.	1	÷	Valeurs	de	λ_{mn}
--	---------	----	---	---	---------	----	----------------

Les pulsations de résonance s'écrivent alors [40] :

$$\Omega_{\rm mn} = \left(\frac{\lambda_{\rm mn}}{R}\right)^2 \sqrt{\frac{D}{\rho.h}}$$
(1.34)

Les fréquences de résonances sont alors définies par :

$$f_{mn} = \frac{h}{2\pi} \left(\frac{\lambda_{mn}}{R}\right)^2 \sqrt{\frac{E}{12(1-v^2)\rho}}$$
(1.35)

La fonction propre de la forme du mode de résonance s'écrit :

$$w_{mn}(r,\theta) = \left[J_{m} \left(\frac{\lambda_{mn}}{R} r \right) - \frac{J_{m}(\lambda_{mn})}{I_{m}(\lambda_{mn})} I_{m} \left(\frac{\lambda_{mn}}{R} r \right) \right] \cos m\theta$$

$$m = 0,1,2,...et \quad n = 0,1,2,...$$
(1.36)

1.4.1.1. Application numérique

D'après l'équation (1.35) et le tableau 1.1, la fréquence de résonance fondamentale théorique en fonction de l'épaisseur de la membrane pour les cellules réalisées est donnée par :

$$f_{00}(kHz) = 1,192 \times h(\mu m)$$
(1.37)

1.4.2. Excitation électrique de la membrane

Le capteur peut être représenté par un système masse-ressort à électrodes parallèles [37] [41] dans lequel la déformation est définie par weff (C.f. Fig.1.6).

Figure 1.6 : Modèle masse-ressort équivalent de la membrane mobile

La membrane est soumise à la force électrostatique due à la différence de potentiel \overline{V} , à la force de frottement, à la force de rappel, et à son inertie. Le mouvement de la membrane est régit par l'équation différentielle de second ordre suivante obtenue par application de la seconde loi de Newton :

$$m\frac{\partial^2 w_{eff}}{\partial t^2} + \lambda \frac{\partial w_{eff}}{\partial t} + k_m w_{eff} = F_e$$
(1.38)

où m représente la masse de la membrane (m = ρhS), k_m et λ sont respectivement le coefficient de raideur de la membrane et le coefficient d'amortissement et F_e est la force électrostatique définie par (1.22) dans laquelle V est remplacée par \overline{V} :

$$\overline{\mathbf{V}} = \mathbf{V} + \mathbf{v}(\mathbf{t}) \tag{1.39}$$

où V et v représentent respectivement la tension continue et variable dans le temps :

$$\mathbf{v}(\mathbf{t}) = \mathbf{v}_0 \cos \Omega \, \mathbf{t} \tag{1.40}$$

En portant (1.39) et (1.40) dans (1.22) et développement des calculs, on obtient la relation (1.41) suivante :

$$F_{e} \approx \frac{\varepsilon_{0}\varepsilon_{r}A}{2d^{2}} (1 + \frac{2w_{eff}}{d})(V^{2} + \frac{v_{0}^{2}}{2} + 2v_{0}V\cos\Omega t + \frac{v_{0}^{2}}{2}\cos2\Omega t)$$
(1.41)

L'expression (1.41) montre que l'amplitude du premier harmonique de la force est directement proportionnelle à V. Lorsque $\Omega = \Omega_{résonance}$, elle met le capteur en résonance. On peut voir aussi que la deuxième harmonique de la force est capable de mettre la membrane en vibration lorsque $\Omega = (1/2) \Omega_{résonance}$. Si V est très grand par rapport à v₀ (V >> v₀/4), cette harmonique sera considérablement atténuée et l'expression (1.41) se réduit à :

$$F_{e} \approx F_{0} + k_{e} w_{eff} + \frac{2v_{0}}{V} (F_{0} + k_{e} w_{eff}) \cos \Omega t$$
(1.42)

avec $w_{eff} \ll d/3$.

1.4.2.1. Calcul de la tension de collage

En régime permanent, les termes variables dans le temps s'annulent et l'équation (1.38) devient :

$$k_{m}w_{eff} = F_{e} = \frac{\varepsilon_{0}\varepsilon_{r}AV^{2}}{2(d - w_{eff})^{2}}$$
(1.43)

Nous avons utilisé ici l'expression de la force électrostatique sans approximation car les déplacements weff sont importants.

L'équilibre entre la force électrostatique et la force de rappel existe seulement pour des déplacements weff inférieurs à d/3. Pour w supérieur à d/3, la force électrostatique devient supérieure à la force de rappel et la membrane descend brusquement et entre en contact avec l'armature fixe. La tension de basculement est la tension nécessaire à appliquer pour que le déplacement weff atteigne d/3.

En remplaçant weff par d/3 dans l'équation précédente, on trouve l'expression de cette tension de basculement ou de collage, V_p :

$$V_{\rm P} = \sqrt{\frac{8}{27} \frac{k_{\rm m} d^3}{\epsilon_0 \epsilon_{\rm r} A}}$$
(1.44)

1.4.2.2. Influence de la tension continue sur la fréquence propre

En régime dynamique libre, le premier et le troisième terme de l'approximation de la force électrostatique définie par (1.42) s'annulent et l'équation (1.38) devient :

$$m\frac{\partial^2 w_{eff}}{\partial t^2} + \lambda \frac{\partial w_{eff}}{\partial t} + (k_m - k_e) w_{eff} \approx 0$$
(1.45)

L'approximation de la nouvelle fréquence propre f_v dans le cas des très faibles déflexions $(w_{eff} \ll d/3)$ [42] [43] peut être obtenue par :

$$f_{v} \approx \frac{1}{2\pi} \sqrt{\frac{k_{m} - k_{e}}{m}} \approx f_{0} \sqrt{1 - \frac{k_{e}}{k_{m}}}$$
(1.46)

où f_0 représente la fréquence propre naturelle pour V = 0 et qui est donnée par :

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{k_m}{m}}$$
(1.47)

En combinant les équations (1.44) et (1.46), (1.46) peut se mettre sous la forme :

$$f_v \approx f_0 \sqrt{1 - \frac{8}{27} V_N^2}$$
 (1.48)

où $\,V_N$ est la tension continue appliquée V normalisée par rapport à la tension de collage $V_p\!.$

Compte tenu que le terme $(8V_N^2/27)\langle\langle 1$ (très faibles déflexions), l'équation (1.48) peut se remettre alors sous la forme suivante :

$$f_v \approx f_0 (1 - \frac{4}{27} V_N^2)$$
 (1.49)

Cette relation indique que la variation de la fréquence propre naturelle est une fonction linéairement décroissante de V_N^2 .

En combinant les équations (1.44) et (1.47), l'équation (1.44) devient :

$$V_{\rm P} = 2\pi f_0 \sqrt{\frac{8}{27} \frac{\rho h S d^3}{\epsilon_0 \epsilon_{\rm r} A}}$$
(1.50)

Cette relation permet d'estimer la tension de basculement ou de collage V_p à partir de la mesure de la fréquence de résonance fondamentale.

1.4.3. Relation entre la sensibilité à la pression et la fréquence de résonance

La sensibilité à la pression des capteurs peut être évaluée à partir de la mesure de la fréquence de résonance (Sp_{fr}). En combinant les relations (1.14), (1.25), (1.43) et (1.47), la sensibilité du capteur à la pression est approximativement égale à :

$$Sp_{fr} \approx \frac{C^2(0)}{\varepsilon_0 \varepsilon_r m (2\pi f_0)^2}$$
(1.51)

En comparant (1.51) avec (1.26), la sensibilité à la tension peut également être évaluée à partir de la fréquence de résonance:

$$Sv_{fr} \approx \frac{C^4(0)}{8m(\pi\epsilon_0\epsilon_r A f_0)^2}$$
(1.52)

1.4.4. Modèle électrique du capteur au voisinage de la résonance fondamentale

Nous allons chercher le circuit électrique équivalent de la cellule sensible capacitive, au voisinage de la résonance fondamentale. Comme nous l'avons vu dans la section précédente (1.4.2), la force (pression) électrostatique d'après l'expression (1.41) provoque la mise en vibration de la membrane et donc la variation de la capacité :

$$C(t) = \varepsilon_0 \varepsilon_r \iint_A \frac{\partial A}{d - w(r, \theta, t)}$$
(1.53)

La différence de potentiel \overline{V} génère un courant i(t) qui s'écrit :

$$i(t) = \frac{d}{dt} [C(t)V(t)]$$
(1.54)

L'admittance électrique, à la pulsation Ω est de la forme :

$$Y(\Omega) = Gp + jCp\Omega \tag{1.55}$$

où $j^2 = -1$.

A partir des relations (1.53) à (1.55), on peut exprimer la partie réelle et imaginaire de l'admittance [44] [45] par :

$$Gp = \frac{1}{R_e Q^2} \frac{[\Omega/\Omega_r]^2}{[1 - (\Omega/\Omega_r)^2]^2 + [\Omega/(\Omega_r Q)]^2}$$
(1.56)

$$Cp = C_0 \left\{ 1 + \frac{1}{C_0 R_e Q \Omega_r} \frac{1 - (\Omega / \Omega_r)^2}{\left[1 - (\Omega / \Omega_r)^2\right]^2 + \left[\Omega / (\Omega_r Q)\right]^2} \right\}$$
(1.57)

où Ω_r représente la pulsation de résonance du circuit.

Le comportement au voisinage de la résonance fondamentale peut être assimilé à celle d'un résonateur à quartz [44] [45] dont le schéma électrique est présenté sur la figure 1.7.

Figure 1.7 : Circuit électrique équivalent au capteur capacitif, au voisinage de la résonance fondamentale

La fréquence de résonance série de ce circuit est donnée par :

$$f_r = \frac{1}{2\pi\sqrt{LC}}$$
(1.58)

et le facteur de qualité par :

$$Q = \frac{L\Omega_r}{R_e} = \frac{1}{R_e C\Omega_r}$$
(1.59)

D'après l'expression (1.57), on peut démontrer qu'à la résonance la capacité Cp est égale à :

$$C_p(\Omega_r) = C_0 \tag{1.60}$$

et qu'elle passe par des extrema (C.f. Fig. 1.8) définis par :

$$Cp(\Omega_{-}) = C_0 + (Q \cdot C/2)$$

$$Cp(\Omega_{+}) = C_0 - (Q \cdot C/2)$$
(1.61)

où les pulsations Ω_{-} et Ω_{+} sont données par :

$$\Omega_{-} = \Omega_{r} [1 - (1/Q)]^{1/2} \approx \Omega_{r} [1 - 1/(2Q)]$$

$$\Omega_{+} = \Omega_{r} [1 + (1/Q)]^{1/2} \approx \Omega_{r} [1 + 1/(2Q)]$$
(1.62)

D'après l'expression (1.56), les relations suivantes sont vérifiées (C.f. Fig. 1.9) :

$$G_{p}(\Omega_{r}) = 1/R_{e}$$

$$G_{p}(\Omega_{-}) = G_{p}(\Omega_{+}) = G_{p}(\Omega_{r})/2 = 1/2R_{e}$$
(1.63)

Le facteur de qualité ou de surtension s'écrit alors par :

$$Q = \Omega_r / (\Omega_+ - \Omega_-) = f_r / (f_+ - f_-)$$
(1.64)

Figure 1.8 : *Allure du comportement fréquentiel de la capacité Cp au voisinage de la résonance fondamentale dans le cas des faibles amortissements*

Figure 1.9 : Allure du comportement fréquentiel de la conductance Gp au voisinage de la résonance fondamentale dans le cas des faibles amortissements

1.5. Comportement thermique

1.5.1. Définition du coefficient thermique (TC)

La sensibilité à la température des dispositifs électroniques a été définie par le coefficient thermique TC donné par [24 à 26] :

$$TC[M] = \frac{1}{M} \frac{\partial M}{\partial T}$$
(1.65)

où M est une variable dépendante de la température (T).

Ce coefficient peut être exprimé soit en pour-cent par degré Celsius (%/°C), soit s'il est bien plus petit en partie par million par degré Celsius (PPM/°C). La normalisation par M permet de comparer des composants qui n'ont pas des caractéristiques géométriques identiques.

Dans le cas où M peut être exprimé par un polynôme du deuxième degré :

$$M(T) = a_{m0} + a_{m1}T + a_{m2}T^{2}$$
(1.66)

L'expression du coefficient thermique déduite du modèle s'écrit :

$$TC[M(T)] = \left(\frac{a_{m1}}{a_{m0}} + \frac{2a_{m2}}{a_{m0}}T\right) \left(1 + \frac{a_{m1}T + a_{m2}T^{2}}{a_{m0}}\right)^{-1}$$
(1.67)

Si $a_{m1}T + a_{m2}T^2 \langle \langle a_{m0} \rangle$, le coefficient thermique s'approche alors par :

$$TC[M(T)] \approx \left(\frac{a_{m1}}{a_{m0}} + \frac{2a_{m2}}{a_{m0}}T\right) \left(1 - \frac{a_{m1}T + a_{m2}T^2}{a_{m0}}\right)$$
(1.68)

et après développement par :

$$TC[M(T)] \approx \frac{a_{m1}}{a_{m0}} + \left(\frac{2a_{m2}}{a_{m0}} - \frac{a_{m1}^2}{a_{m0}^2}\right)T - \frac{3a_{m1}a_{m2}}{a_{m0}^2}T^2 - \frac{2a_{m2}^2}{a_{m0}^2}T^3$$
(1.69)

En négligeant les termes de degré 2 et 3, la relation (1.69) se réduit à :

$$TC[M(T)] \approx q_{m0} + q_{m1}T$$
(1.70)

où

$$q_{m0} = \frac{a_{m1}}{a_{m0}}$$
 et $q_{m1} = \frac{2a_{m2}}{a_{m0}} - q_{m0}^2$ (1.71)

 Si q_{m0} peut-être approximé par une fonction linéairement décroissante deq_{m1}, q_{m0} peut être alors modélisé par la relation :

$$q_{m0} \approx q_{m00} - T_m q_{m1} \tag{1.72}$$

où q_{m00} représente la valeur particulière de q_{m0} pour $q_{m1} = 0$ et T_m est la pente de la droite. Dans ce cas, le coefficient thermique sera donné par :

$$TC[M(T)] \approx q_{m00} + q_{m1}(T - T_m)$$
 (1.73)

où T_m est la température de croisement où les coefficients thermiques sont tous égaux (C.f. Fig. 1.10).

Figure 1.10 : Température de croisement

• Si les variations de M(T) sont une fonction linéaire de T ($a_{m2} = 0$), le coefficient thermique sera défini entièrement par q_{m0} et sera donné par :

$$TC[M(T)] \approx q_{m0}(1 - q_{m0}T)$$
 (1.74)

Dans les deux cas, TC[M(T)]est une fonction linéaire de la température.

1.5.2. Coefficient thermique de la capacité au repos

L'évaluation du comportement thermique de la capacité au repos nécessite de prendre en compte l'influence de la température sur distance interarmatures.

On peut considérer, en première approximation, que la variation de cette distance a deux origines.

La première est liée à la déformation de la membrane en silicium et provient des différences de coefficient de dilatation thermique du pyrex et du silicium. D'après [27], le coefficient de dilatation thermique du silicium n'est pas constant en température. La déformation de la membrane en température est alors de forme parabolique avec un maximum qui correspond à l'égalité des coefficients de dilatation thermiques tangents du silicium et du pyrex. Cette température est comprise entre 120 et 150 °C comme le montre la figure 1.11 ([27] p.24).

Figure 1.11 : Dilatation relative entre le pyrex et le silicium

La seconde origine est liée à la déformation du fond de la cavité de pyrex à cause des différences de coefficient de dilatation thermique du pyrex et de l'aluminium.

En considérant que ces deux coefficients sont constants en température, la déformation résultante doit être linéaire en température.

1.5.3. Coefficient thermique de la sensibilité à la pression

D'après les relations (1.6) et (1.17), la sensibilité à la pression peut s'exprimer par :

$$Sp = \frac{C^{2}(0)}{\varepsilon_{0}\varepsilon_{r}} \frac{1}{3 k}$$
(1.75)

où k représente la raideur de la membrane. Cette raideur comprend une partie linéaire k_L et une partie liée aux précontrainte k_σ :

$$k_{L}(T) = \frac{16\pi^{2}h^{3}}{3(1-\nu^{2})S}E(T)$$
(1.76)

et

$$k_{\sigma}(T) = 4\pi h \sigma(T) \tag{1.77}$$

Dans la raideur linéaire, seul le module de Young de silicium dépend de la température avec un coefficient voisin de -90 ppm/°C. La raideur de précontrainte est proportionnelle aux contraintes thermiques générées dans la membrane de silicium par la dilatation thermique différentielle du pyrex et du silicium. Pour des températures de soudure supérieures à 300°C, cette contrainte est en tension comme le montre la figure 1.12 ([28] p82).

Figure 1.12 : La contrainte résiduelle dans le silicium après la soudure thermoélectrique au Pyrex7740 pour différentes températures

Le coefficient thermique de la sensibilité à la pression est alors donné par :

$$TC[Sp(T)] = 2TC[C(0,T)] - TC[k(T)]$$
 (1.78)

Il peut s'exprimer par :

$$TC[Sp(T)] = 2TC[C(0,T)] - \frac{k_{L}}{k_{L} + k_{\sigma}} TC[E(T)] - \frac{k_{\sigma}}{k_{L} + k_{\sigma}} TC[\sigma(T)]$$
(1.79)

En considérant que $k_{\sigma} \ll k_L$, la relation (1.79) devient :

$$TC[Sp(T)] = 2TC[C(0,T)] - TC[E(T)] - \frac{k_{\sigma}}{k_{L}}TC[\sigma(T)]$$
(1.80)

1.5.4. Coefficient thermique de la fréquence de résonance

D'après la relation (1.47), le coefficient thermique de la fréquence de résonance peut s'exprimer par :

$$TC[f_{r}(0,T)] = \frac{1}{2}TC[k(T)]$$
(1.81)

où k(T) est définie par les relations (1.76) et (1.77).

La relation (1.81) peut alors s'exprimer par :

$$TC[f_{r}(0,T)] = \frac{1}{2}TC[E(T)] + \frac{1}{2}\frac{k_{\sigma}}{k_{L}}TC[\sigma(T)]$$
(1.81)

1.5.5. Relations entre les coefficients thermiques des différentes variables étudiées

Nous pouvons exprimer les coefficients thermiques des variables non mesurables : $Sp_{Sv}\,$ et $Sp_{\rm fr}$.

à partir des coefficients thermiques des variables mesurables :

C(0), Sv et f_r.

D'après (1.26), le coefficient thermique de la sensibilité à la pression (liée à la tension) peut s'exprimer par:

$$TC[Sp_{Sv}(T)] = TC[Sv(T)] - 2TC[C(0,T)] + 2TC[A]$$
(1.82)

où TC[A] représente la dilatation thermique de l'armature fixe. Compte tenu des épaisseurs respectives de cette armature et du support en Pyrex, cette dilatation sera négligée.

D'après (1.51), le coefficient thermique de la sensibilité à la pression (liée à la fréquence de résonance) peut s'exprimer par:

$$TC[Sp_{fr}(T)] = 2TC[C(0,T)] - 2TC[f_{r}(0,T)]$$
(1.83)

1.6. Conclusion

Les modèles théoriques ont été présentés pour des capteurs à membrane circulaire. En régime statique, les modèles de la sensibilité à la pression et à la tension ont été explicités dans le domaine linéaire. En régime dynamique, le modèle électrique du capteur au voisinage de la résonance fondamentale a été déterminé, la dépendance de la fréquence de résonance est étudiée en fonction de la tension appliquée (pression électrostatique). Pour l'ensemble des modèles, le coefficient thermique a été calculé.
Chapitre 2

Conception et réalisation du capteur

2.1. Introduction /Conception

La figure 2.1 représente une coupe schématique des cellules capacitives que nous avons conçues et réalisées en salle blanche du LAAS, avec les différents paramètres géométriques qui la caractérisent.

Figure 2.1 : *Vue en coupe des structures capacitives réalisées avec leur principaux paramètres géométriques*

La figure 2.2 montre une vue de dessus pour visualiser les deux géométries d'encastrement carré et circulaire.

Figure 2.2 : Vue de dessus pour encastrements carré et circulaire

Nos choix concernant ces paramètres ont été les suivants :

• Une membrane et une cavité circulaire ont été choisies afin d'accéder à des équations à solutions exacte.

- Le plot central a été réalisé afin d'éviter le court-circuit irréversible entre l'armature fixe et mobile lors de l'actionnement électrostatique [46].
- La géométrie de la zone d'encastrement est circulaire ou carré avec des largeurs variables afin d'étudier son impact sur le comportement thermique.
- Deux épaisseurs différentes d'armature fixe (0,1 et 0,8 μm) ont été réalisées afin d'évaluer l'influence des contraintes thermomécanique sur la déformation du capteur.

Les principales caractéristiques des matériaux utilisés pour fabriquer les capteurs sont précisées dans le tableau 2.1.

Matériaux		Caractéristiques				
		Epaisseur	Diamètre	Résistivité	Coefficient de dilatation thermique	
Pyrex* 7740		1mm		$3,2 \times 10^{15} \Omega cm$ à 20°C et 1 MHz	3,25 ppm/°C [48] entre 0 et 300°C	
Silicium <100> Type : P Dopage : B	Double face polie	$300\pm25\;\mu m$	10 cm	0,01 à 0,02 Ωcm	2 22 nnm/°C [47]	
	Simple face polie	$525 \pm 25 \ \mu m$		0,01 à 0,035 Ωcm	2,55 ppm/ C [47]	

Tableau 2.1 : Principales caractéristiques des matériaux utilisés pour fabriquer les capteurs

Le tableau 2.2 regroupe les valeurs de ces paramètres pour les différentes séries de capteurs réalisés.

Encastrement	e _m	a _b Canteurs		hs	d	hp	R
Lifeastrement	(µm)	(µm)	Capicuis	(µm)	(µm)	(mm)	(mm)
			P1d9-S	31	3,9		
			P2b2-S	32	3,2		
		500	P2e1-S	32	3,3		
			P2c2-S	32	3,4	T T	
			P2d1-S	35	3,2		
			P2b3-M	28	3,2		
		750	P2d3-M	33	3,1		
	0.8		P2a8-M	41	3		
	0,8		P2g4-L	28	3,5		
		1000	P2g1-L	28	3,5		
		1000	P1e7-L	30	3,7		
			P2e4-L	32	3,2		
			P1a5-XL	26	3,8		
		1500	P1a6-XL	30	3,9		1,75
		1500	P1c6-XL	35	3,7		
Circulaire			P2f5-XL	35	3,1		
	0,1	500	P5b9-S	31	4,4		
			P5e9-S	37	4,4	1	
			P5g9-S	39	4,3		
			P5f9-S	39	4,3		
		750	P5e8-M	37	4,2		
			P5c8-M	39	4,2		
			P5d8-M	40	4,2		
			P5d3-M	44	4,1		
		1000	P5b10-L	28	4,4		
			P5a4-L	35	4,1		
			P5e7-L	40	4,2		
			P5d4-L	44	4,2	+	
			P5b6-XL	39	4,1		
		1500	P5c6-XL	41	4,1		
			P5f6-XL	43	4,1		
		500	V3S1	35	3,2		
		300	V3S2	40	3,2		
		750	V3M1	35	3,2		
		750	V3M2	37	3,1		
Carré	0,8	1000	V3L1	36	3,1		
		1000	V3L2	40	3		
		250	V11XS1	110	4,3		
		500	V11S1	110	4,3	-	
		750	V11M1	115	4,3		

Tableau 2.2 : Valeurs moyennes des paramètres géométriques des capteurs étudiés

2.2. Réalisation

Le schéma synoptique des étapes de fabrication est donné sur la figure 2.3.

Figure 2.3 : Schéma synoptique des processus de réalisation des cellules sensibles capacitives

2.2.1. Réalisation de la cavité avec le plot

Le support rigide de ces dispositifs est un Pyrex de type borosilicate (CORNING 7740) qui d'une part est très résistant aux agents corrosifs et d'autre part possède un coefficient de dilatation voisin de celui de la membrane en silicium [48] [49]. Le substrat de Pyrex est usiné pour réaliser les cavités avec les plots. La gravure est réalisée par attaque chimique en phase liquide, dans un bain d'acide fluorhydrique dilué à 2.5 % ou à 12,5 %, en deux étapes afin d'obtenir un plot au centre du capteur (C.f. Fig. 2.4). Les paramètres de gravure sont donnés dans le tableau 2.3. Le matériau de masquage utilisé pour ces attaques est constitué par 0,5 μ m d'or et 0,04 μ m de chrome comme couche accrochage.

Tableau 2.3 : Paramètres de la gravure du Pyrex par HF dilué

Gravure humide du verre	HF (2,5 %)	HF (12,5 %)	
Concentration	HF (50 %) + eau DI 1:19	HF (50 %) + eau DI 1:3	
Vitesse d'attaque	650A°/min	5600A°/min	
Température	Amb	viante	

Dépôt du masque (Or/Cr) et ouverture des fenêtres de gravure

l^{ère} gravure chimique dans le Pyrex

2^{eme} gravure chimique dans le Pyrex

Figure 2.4 : Réalisation de la cavité avec le plot

Le tableau 2.4 précise les uniformités de gravure obtenues pour les deux bains de HF pour des profondeurs gravées identiques voisines de 4,2 µm. La valeur donnée est la moyenne obtenue sur un grand nombre de cavités gravées.

Le bain plus dilué permet d'améliorer l'uniformité de gravure d'un facteur 2 environ mais en divisant la vitesse de gravure par un facteur 9. Pour la fabrication des capteurs, le bain à (2,5 %) sera utilisé pour la série P5 et le bain à (12,5 %) sera utilisé pour la série P2 pour gagner du temps (60 min pour P5/ 7min pour P2 environ).

L'annexe B précise la cartographie des uniformités de gravure par les deux bains de HF.

 Tableau 2.4 : Uniformité de vitesse de gravure du pyrex (écart type normalisé/moyenne)

Gravure humide du verre	HF (2,5 %)	HF (12,5 %)
Uniformité (écart type normalisé)	< 2 %	< 4 %

La rugosité obtenue avant et après gravure est donnée dans le tableau 2.5. La figure 2.5 donne un exemple de rugosité obtenu. Nous pouvons constater que la gravure au HF détériore peu la qualité de la surface initiale du Pyrex quelle que soit la solution utilisée.

Tableau 2.5 : Différents paramètres de la rugosité du verre obtenue avant et après gravuremesuré par un profilomètre mécanique (Tencor)

Daramàtras	Valeurs (nm)					
rarametres	Verre non usiné	Usiné par HF (2,5%)	Usiné par HF (12,5%)			
Ru (Rugosité)	0,35	0,52	0,47			
Max Ru	0,49	0,61	0,61			
Rq (RMS)	0,45	0,65	0,61			
Rp (Peak)	1,56	2,13	2,21			
Rt (Peak/Valley)	3,36	3,82	4,17			

Figure 2.5 : Rugosité sur le verre a) non usiné, b) usiné par HF (2,5%) et c) par HF (12,5%)

La figure 2.6 donne un aspect du profil de la cavité avec le plot mesuré par un profilomètre mécanique. Nous pouvons constater une bonne uniformité de gravure sur le diamètre de la cavité ($< 0,1 \mu m$).

Figure 2.6 : Profil de la cavité avec le plot dans le Pyrex

La figure 2.7 obtenue au profilomètre optique nous montre bien la zone d'encastrement circulaire avec un espace réservé pour l'amenée du contact vers l'armature fixe.

Figure 2.7 : Profil 3D de la cavité, du plot et du chemin de découpe dans le Pyrex

2.2.2. Réalisation de l'armature fixe et des contacts

Un premier dépôt d'aluminium est effectué au fond de la cavité de verre pour constituer les armatures fixes et les contacts qui sont formés en dehors de la partie active du capteur au moyen d'interconnexions par l'intermédiaire d'un canal (C.f. Fig. 2.8 à 2.10). La gravure se fait par photolithographie et par attaque dans un mélange à base d'acide phosphorique. Un deuxième dépôt d'aluminium d'épaississement des contacts est alors nécessaire réalisé par lift off. Les conditions du dépôt sont données dans le tableau 2.6.

 Tableau 2.6 : Conditions du dépôt de l'aluminium

Technique de dépôt	Evaporation par un canon à électrons	
Pression	5×10^{-7} mbar	
Vitesse de dépôt	20 A°/sec	
Température	Ambiante	
Epaisseurs	0,1 et 0,8 μm	

Figure 2.8 : Dépôt du métal et gravure de l'armature fixe et des contacts

Figure 2.9 : Profil 3D de l'armature fixe, du contact et de l'interconnexion traversant le canal

Figure 2.10 : Zoom de Fig. 2.9 sur canal

2.2.3. Assemblage Si /Verre

Le matériau utilisé pour l'armature déformable est le silicium compte tenu de son excellent comportement mécanique et de son micro-usinage précis [47]. Il doit être suffisamment dopé pour que la résistivité de cette électrode soit faible (0,01 à 0,02 Ω cm). Le traitement du silicium se limite à un nettoyage de la plaque.

Il faut noter que le silicium utilisé pour former les capteurs, dont leurs encastrements sont carrés, a une seule face polie (face à souder) et l'autre face est rugueuse (C.f. Fig. 2.11).

Figure 2.11 : Surface supérieure du Si utilisé pour les capteurs dont l'encastrement est carré

Pour former le capteur de pression, il faut assembler les deux plaques (Si et verre) (C.f. Fig. 2.12). L'assemblage devant être résistant mécaniquement, étanche et durable dans le temps, c'est pourquoi on procède à une soudure thermoélectrique [50 à 53]. Cette méthode permet d'assurer l'assemblage des deux plaques à des température peu élevées (\leq 500 °C), en appliquant une tension continue de l'ordre de 300V entre les deux matériaux [54] [55] dans une atmosphère à pression contrôlée. Les conditions expérimentales que nous avons utilisées sont regroupées dans le tableau 2.7.

Figure 2.12 : Soudure Si / Verre

Atmosphère	Azote
Pression	1 à 1,5 Bar
Tension	300 V
Température	450 à 500 °C

Tableau 2.7 : Conditions expérimentales de l'assemblage Si /verre

2.2.4. Amincissement de l'armature déformable

Le silicium a ensuite été aminci de manière à obtenir des membranes d'épaisseur désirée (C.f. Fig. 2.13). L'amincissement est réalisé dans un bain de KOH [56 à 58]. Le tableau 2.8 donne les principaux paramètres de la gravure KOH. Les uniformités de gravure sont précisées dans l'annexe C.

Figure 2.13 : Amincissement du silicium

Température du bain	85°C
Concentration (dilution dans l'eau)	8 Kg de KOH pour 151 d'eau (0 53Kg /litre)
Concentration (unation dans i eau)	
Vitesse d'attaque	1 5µm /min
vitesse a attaque	1,5 µm / mm
Uniformité (écart type normalisé)	11 à 17 %
Omformite (ceart type normanse)	11 d 17 70

Tableau 2.8 : Paramètres de la gravure KOH

2.2.5. Prise de contact sur le Silicium

Une couche d'aluminium de 1µm est déposée (C.f. Table 2.5) sur le silicium pour faciliter la prise de contact. Ensuite, elle est gravée pour n'être gardée que sur la zone d'encastrement entre le silicium et le verre (C.f. Fig. 2.14).

Figure 2.14 : Prise de contact sur le Silicium

2.2.6. Accès aux contacts de l'armature fixe

La libération des contacts de l'armature fixe se fait par gravure sèche du silicium, dans un bâti de gravure plasma [59]. Le matériau de masquage utilisé est une résine photosensible de type (AZ1529 de 2,7 μ m) (C.f. Fig. 2.15). Le tableau 2.9 donne les paramètres de gravure plasma du Si.

Figure 2.15 : Accès aux contacts

Tableau 2.9	:	Conditions	de	gravure	RIE de S i
-------------	---	------------	----	---------	------------

Gravure RIE	Gaz	Puissance	Pression	V_{Bias}	Température	Vitesse d'attaque
de Si	SF6	800W	30 m Torr	100V	20°C	2,8 à 3 µm/min

Les figures 2.16 et 2.17 montrent respectivement deux profils 3D de capteurs avec encastrement circulaire et carré obtenus après gravure de silicium.

Figure 2.16 : Profil 3D de capteur circulaire

Figure 2.17 : Profil 3D de capteur avec encastrement carré

2.2.7. Scellement sous vide

La sensibilité de la détection capacitive à l'humidité implique le scellement de la cavité inter électrode dans une atmosphère contrôlée.

Afin de limiter les dérives thermiques générées par la dilatation du gaz de cette cavité, il est préférable de d'effectuer ce scellement sous vide plus ou moins poussé.

Le matériau utilisé pour le scellement doit par ailleurs posséder de bonnes propriétés diélectriques pour minimiser les capacités parasites rapportées par le scellement et de bonnes propriétés physiques pour constituer une barrière efficace.

Dans ce cadre de ce travail, nous avons utilisé pour le scellement un polymère (parylène) qui est déposé sous vide et à température ambiante par évaporation [60]. Il existe différents types de polymère de densité plus ou moins grande. Les principales propriétés des parylènes utilisés sont présentées dans le tableau 2.10 [61].

Propriétés	Parylène C	Parylène D
Densité (g/cm ³)	1,289	1,418
Constante diélectrique à 1MHz	2,95	2,80
Facteur de dissipation à 1MHz	0,013	0,002
Module d'Young (GPa)	3,2	2,8
Température de fusion (°C)	290	380

Tableau 2.10 : Principales propriétés des Parylène utilisés

L'intérêt du dépôt à température ambiante est qu'il permet le dépôt à travers une résine sacrificielle qui permet de protéger les zones où le dépôt ne doit pas être réalisé (plots contact, membrane). Les figures 2.18 (a et b) montre respectivement une vue par la face inférieure de la zone de scellement après le dépôt de parylène de type D et C.

Figure 2.18 : *Vue par face inférieure de la zone de scellement après dépôt parylène de a) type D et b) type C*

L'épaisseur déposée est voisine des deux tiers de la profondeur de la cavité dans le pyrex. On note une variation de couleur qui correspond à une variation de l'épaisseur de parylène le long de la zone de scellement. La zone de couleur uniforme à l'intérieur du canal correspond à la zone complètement scellée par le parylène. On constate que le parylène dont la densité est faible (type C) possède une largeur de pénétration dans le canal plus grande. Pour le parylène de plus forte densité, la zone du canal qui paraît complètement scellée est trop courte. Les tests d'étanchéité montrent en effet que les capteurs ne sont pas scellés. Par contre, les tests d'étanchéité sur les capteurs scellés avec du parylène de type C sont concluants.

2.2.8. Photographies des capteurs réalisés

La figure 2.19 montre une vue de dessous et de dessus des différentes structures réalisées.

Encastrement circulaire

Vue de dessous

après découpage du Pyrex

Figure 2.19 : Vue de dessous et de dessus des différentes structures réalisées

On voit clairement l'armature fixe de la forme circulaire (de rayon 1,7 mm), le contact et le plot situé au centre d'une cavité circulaire. Les dimensions maximales des capteurs réalisées sont 7,4 mm par 8 mm. La figure 2.20 montre une vue de dessus d'une plaquette de 4 pouces comportant 54 capteurs.

Figure 2.20 : *Plaquette*

2.2.9. Montage des composants

Après découpage, les cellules sont montées sur une embase de type TO3. Les cellules sont isolées de l'embase par une cale en silicium assemblée à l'aide d'une colle silicone pour éliminer toute contraintes thermomécaniques provenant de l'embase.

La dernière étape du processus de fabrication consiste à souder des micro fils d'Aluminium entre les contacts de la puce et les plots de l'embase. Les soudures sont réalisées par ultrason ("Wedge Bonding "). La combinaison d'une pression et de vibrations ultrasoniques permet de réaliser à froid la liaison métallurgique entre le fil et le plot [62]. La figure 2.21 montre l'aspect d'un capteur après montage.

Figure 2.21 : Capteur monté sur une embase TO3

2.3. Dispositif expérimental

2.3.1. Description du banc de test

Le banc de test utilisé pour la caractérisation en pression, en fréquence et en température des capteurs comprend trois parties principales :

- un dispositif de génération et de mesure de pression,
- un dispositif de régulation et de mesure de température,
- un analyseur d'impédance de type Quadtech 7600.

L'ensemble peut être schématisé de la façon suivante :

Figure 2.22 : Schéma du dispositif expérimental de caractérisation du capteur

2.3.2. Conditions et précisions des mesures

Les conditions de mesures sont regroupées dans le tableau 2.11 :

Analyzour d'impódance	Amplitude du signal alternatif	1 V
Anaryseur a impedance	Fréquence de mesure	10 kHz
Etuve	Plage de température	-20°C à +150°C
Fréquence de résonance	Pas du balayage en fréquence	1Hz (de10 kHz à 100 kHz)
Batteries	Tension continue (V_{Bias})	0 à 60 V
Régulateur de pression	Pression (cellules non scellées)	Vide

Tableau 2.11 : Conditions de mesures

La précision des mesures est liée à la précision des appareils utilisés lors de la caractérisation et à la stabilité de la régulation en température et en pression [63].

Le tableau 2.12 donne une estimation des erreurs totales commises sur les mesures de capacité, de température et de fréquence.

Mesurande	Précision de la mesure	Résolution	Erreur totale
Capacité	\pm 0,05 % L ^(*)	± 0,01fF	$\Delta C / C = \pm 0.05 \%$
Température	$\pm (0,1 \% L + 0,7)^{\circ}C$	± 0,1°C	$\Delta T < +0,95^{\circ}C^{(**)}$
		0,1Hz (de 10 Hz à 10 kHz)	
Fréquence	$\pm (0,25 \% L + 0,02) Hz$	1Hz (de 10 kHz à 100 kHz)	
		100Hz (de 100 kHz à 2 MHz)	

Tableau 2.12 : Précision des mesures

^(*) En pourcentage de la lecture L dans les conditions optimales de mesure (en tension, en fréquence et en bruit)

^(**)Valeur calculée pour $T_{MAX} = +150$ °C.

2.3.3. Dispositif de mesure spécifique au capteur

2.3.3.1. Support du capteur - accès à la mesure

Comme nous l'avons vu, la cellule sensible est montée sur une embase qui se fixe dans un bloc métallique étanche, ce qui permet de contrôler la pression.

L'ensemble du dispositif (embase, bloc métallique et des câbles) rajoute des capacités parasites qui peuvent être non négligeables et donc perturber la mesure.

Les figures 2.23 (a) et 2.23 (b) montrent une vue en coupe de l'ensemble du dispositif permettant la caractérisation en pression, en fréquence et en température de la cellule sensible.

Figure 2.23 : *Vue en coupe schématique du a) montage des cellules et localisation des capacités parasites et b) dispositif d'accès aux mesures de C_i*

Afin de localiser les principales capacités existantes entre les points A et B qui représentent les points de la mesure, nous avons reporté des pastilles numérotées de 1 à 7 sur cette même figure. Le tableau 2.13 défini ces principales capacités.

Tableau 2.13 : Définition	des principales	capacités entre	les points de la	n mesure (A et B)
---------------------------	-----------------	-----------------	------------------	-------------------

$\bigcirc \Rightarrow C_i$	Capacité intrinsèque de la cellule que l'on veut caractériser			
$\bigcirc \Rightarrow C_2$	Capacité de couplage entre les fils de mesure par l'intermédiaire de l'air			
$(3, \bigcirc \Rightarrow C_3, C_7)$	Capacités dues aux perles de verre qui isolent les plots de contact par rapport à l'embase			
$\textcircled{4} \Leftrightarrow C_4$	Capacité de l'air entre la membrane de silicium et le boîtier métallique (électriquement relié à la masse)			
$\bigcirc \Rightarrow C_5$	Capacité due au substrat de Pyrex			
$ ⓑ ⇔ C_6 $	Capacité due à la colle entre le Pyrex et l'embase (Pyrex- colle - cale de Si - colle- embase)			

La figure 2.23 (b) représente le dispositif que nous avons utilisé pour accéder aux mesures de la capacité C_i et de la conductance G_i . Ce système est conçu de manière à minimiser les capacités de couplage entre les fils de mesure. L'écartement des fils a donc été optimisé autrement dit la distance entre les fils est maintenue suffisamment grande pour que la capacité de couplage soit négligeable (< 0,05 pF).

Nous pouvons constater sur ce schéma que ce dispositif est doté d'un « écran métallique » afin de minimiser les phénomènes d'influences électromagnétiques. Cette pièce est reliée à la masse par l'intermédiaire du blindage du câble coaxial.

Tous les fils sont gainés avec du Téflon ce qui nous permet de faire des mesures à des températures élevées (jusqu'à 180°C). Pour les mêmes raisons, toutes les soudures ont été faites avec du fil de brasure en PbSnAg dont la température de fusion est de l'ordre de 300°C.

2.3.3.2. Schéma électrique équivalent

D'après la figure 2.23 (a), nous pouvons déduire un schéma électrique équivalent de l'impédance vue entre les points de la mesure (A, B). Ce schéma est représenté par la figure 2.24 :

Figure 2.24 : Schéma électrique équivalent de l'impédance vue entre A et B

Si l'on connecte l'embase à la masse, seules les capacités C_i et C_2 seront mesurées par l'analyseur d'impédance, c'est-à-dire la capacité intrinsèque de la cellule sensible et la capacité équivalente due au couplage entre les fils de mesure. Cette dernière peut être éliminé après avoir effectué une calibration spécifique du capacimètre en mesurant le « zéro » en court circuit et en circuit ouvert à l'extrémité des câbles.

Les résistances d'accès à chaque électrode de la cellule (R_a (A) + R_a (B) = R_a) peuvent être considérées comme négligeables par rapport à l'impédance équivalente à la capacité Ci en parallèle avec la conductance de fuite Gi. Nous verrons plus loin la vérification de cette hypothèse par des mesures expérimentales. Par conséquent, le schéma équivalent de la figure 2.24 se simplifie comme le montre la figure 2.25.

Figure 2.25: Schéma équivalent effectif de la cellule avec son montage lorsque l'embase est reliée à la masse et après avoir effectué une calibration spécifique du capacimètre

L'impédance Z de ce dipôle peut être donné par :

$$Z(\Omega; P) = |Z(\Omega; P)| e^{j \theta(\Omega; P)}$$
(2.1)

La caractérisation du capteur consiste à identifier |Z| et θ .

L'étude a été réalisée sur le composant P5f9-S. Ses principales caractéristiques géométriques sont indiquées dans le tableau 2.1. Ce composant présente la particularité de ne pas avoir été scellé, c'est à dire que $P_{ext} = P_{in}$ quel que soit P_{ext} . Les figures 2.26 (a) et 2.26 (b) donnent sa réponse spectrale.

Figure 2.26 : Comportement fréquentiel de la cellule sensible avec son montage *a)* |Z| *et b)* θ *pour* T = 25 °*C et sous vide*

L'impédance équivalente Z de la cellule sensible et son montage (cf. Fig. 2.25) en tenant compte de la résistance d'accès équivalente R_a est donnée par :

$$Z = R_a + \frac{1}{G_i + j\Omega C_i}$$
(2.2)

Lorsque: $\Omega = 0 \rightarrow |Z| = R_a + R_i$ et $\Omega = \infty \rightarrow |Z| = R_a$ (2.3)

D'après la figure 2.26 (a), on constate que $R_i \rangle R_a$. On peut alors conclure que le schéma électrique équivalent au dispositif est bien celui de la figure 2.25, c'est-à-dire un circuit parallèle constitué d'une conductance G_i et une capacité C_i .

Il découle de la figure 2.26 (b) que dans les gammes de fréquences 10 kHz à 100 kHz, la cellule peut être modélisée en première approximation par une capacité pure.

2.4. Conclusion

Après avoir décrit la structure générale des capteurs de pression capacitifs réalisés, nous avons défini et précisé les valeurs des principales grandeurs géométriques de nos composants. Puis, nous avons décrit les différents processus de réalisation des cellules sensibles capacitives. Enfin, nous avons présenté le dispositif de test mis en place qui nous a permis d'accéder à la capacité et à la conductance intrinsèque du capteur en supprimant les capacités parasites.

Chapitre 3

Influence de la température sur le comportement statique du capteur

3.1. Introduction

Nous avons étudié dans ce chapitre l'influence de la température sur le comportement statique des capteurs de pression. Deux paramètres ont été évalués : la capacité au repos et la sensibilité à la tension (image de la sensibilité à la pression du capteur).

Dans les deux cas nous avons analysé l'influence des paramètres géométriques sur le comportement thermique pour plusieurs capteurs de même type. Afin d'exploiter au mieux les résultats, les réponses brutes en température sont d'abord données pour déterminer le modèle le plus adéquat pour représenter cette réponse. Puis l'analyse est effectuée sur les paramètres de ce modèle.

Les capteurs étudiés ne possèdent pas une cavité interne scellée (sous vide ou sous atmosphère neutre), la zone active de la capacité est donc en contact direct avec l'air ambiant pendant le stockage du composant. Compte tenu de la grande sensibilité de la capacité à l'humidité il est donc nécessaire, avant la mesure d'éliminer cette humidité. Pour cela le capteur est chauffé à 180°C pendant une heure avec plusieurs cycles en pression d'azote /vide. Puis les mesures sont effectuées sous vide résiduel de quelques dizaines de Pa à températures décroissantes pour limiter les phénomènes de condensation résiduelle dans la cavité.

3.2. Comportement thermique en l'absence de pression appliquée

3.2.1. Capacité au repos à température ambiante (T = 30° C)

Le tableau 3.1 donne les valeurs théoriques et expérimentales de la capacité au repos de tous les capteurs étudiés. Les valeurs théoriques ont été calculées à partir de l'équation (1.1).

On note des écarts inférieurs à ± 3 % entre la théorie et l'expérience. Compte tenu de (1.1), cela peut correspondre à des variations de la distance interarmatures de ± 3 %. Ces variations proviennent pour l'essentiel de la non uniformité de la gravure du substrat de verre.

	d	C(0)	Erreur	
Capteurs	(µm)	Théorique	Expérimentale	(%)
P1d9-S	3,9	20,226	20,198	0,1
P2b2-S	3,2	24,650	24,749	-0,4
P2e1-S	3,3	23,903	23,983	-0,3
P2c2-S	3,4	23,200	23,022	0,8
P2d1-S	3,2	24,650	24,347	1,2
P2b3-M	3,2	24,650	24,194	1,9
P2d3-M	3,1	25,445	25,284	0,6
P2a8-M	3	26,293	26,866	-2,1
P2g4-L	3,5	22,537	22,81	-1,2
P2g1-L	3,5	22,537	22,821	-1,2
P1e7-L	3,7	21,319	21,427	-0,5
P2e4-L	3,2	24,650	24,638	0
P1a5-XL	3,8	20,758	21,039	-1,3
P1a6-XL	3,9	20,226	20,344	-0,6
P1c6-XL	3,7	21,319	21,189	0,6
P5b9-S	4,4	17,927	18,143	-1,2
P5e9-S	4,4	17,927	18,151	-1,2
P5g9-S	4,3	18,344	18,522	-1
P5f9-S	4,3	18,344	18,269	0,4
P5e8-M	4,2	18,781	18,886	-0,6
P5c8-M	4,2	18,781	18,754	0,1
P5d8-M	4,2	18,781	18,632	0,8
P5d3-M	4,1	19,239	19,055	1
P5b10-L	4,4	17,927	17,869	0,3
P5a4-L	4,1	19,239	19,133	0,6
P5e7-L	4,2	18,781	18,872	-0,5
P5d4-L	4,2	18,781	18,836	-0,3
P5b6-XL	4,1	19,239	19,165	0,4
P5c6-XL	4,1	19,239	19,162	0,4
P5f6-XL	4,1	19,239	19,284	-0,2
V3S1	3,2	24,650	24,342	1,3
V3S2	3,2	24,650	24,828	-0,7
V3M1	3,2	24,650	24,83	-0,7
V3M2	3,1	25,445	25,217	0,9
V3L1	3,1	25,445	25,582	-0,5
V3L2	3	26,293	25,998	1,1
V11XS1	4,4	17,927	18,352	-2,3
V11S1	4,4	17,927	18,35	-2,3
V11M1	4,4	17,927	18,489	-3

Tableau 3.1 : Valeurs théoriques et expérimentales de C(0) des capteurs étudiés $(T=30^{\circ}C, f=10 \text{ kHz}, P=0)$

3.2.2. Détermination du modèle thermique

Les figures 3.1 et 3.2 montrent respectivement l'influence de la température sur la capacité au repos de tous les capteurs de la série P5 caractérisés et sur les variations relatives de la capacité normalisée. Le tableau 3.2 récapitule les principaux paramètres des capteurs étudiés.

Encastrement	$a_b(\mu m)$	Série	hs (µm)	$e_m(\mu m)$	hp (mm)
Circulaire	500 à 1500	P5	31 à 44	0,1	
		P1 et P2	26 à 41		1
Carré	500 à 1000	V3	35 à 40	0,8	1
	250 à 750	V11	110 à 115		

Tableau 3.2 : Les principaux paramètres des capteurs étudiés

Figure 3.1 : Influence de la température sur la capacité au repos de tous les capteurs de la série P5 caractérisés

Figure 3.2 : Influence de la température sur les variations relatives de la capacité de tous les capteurs caractérisés (P1, P2, P1, V3, V11)

La figure 3.3 montre que la variation de la capacité en fonction de la température peut être approximée par une droite de la forme :

$$C(0,T) = a_{c0} + a_{c1}T$$
(3.1)

Les valeurs des coefficients a_{c0} et a_{c1} du modèle peuvent se calculer par la méthode des moindres carrés. Le tableau 3.3 montre les résultats obtenus par cette méthode dans le cas du capteur P5f9-S.

Figure 3.3 : *Modélisation de la capacité par un modèle linéaire*

Coefficients	Valeurs	NL (% R.P.E)
$a_{c0} (pF)$	18,215	
a_{c1} (fF/°C)	1,7	<±2,6
$q_{c0} = a_{c1} / a_{c0} (ppm/^{\circ}C)$	93,3	

 Tableau 3.3 : Coefficients donnés par le modèle

On voit que, dans la gamme des températures de -20°C à +150°C, un modèle linéaire est suffisant pour décrire le comportement thermique de la capacité au repos avec une non linéarité moyenne inférieure à $\pm 2,6$ % R.P.E.

D'après les relations (1.74) et (3.1), le coefficient thermique de la capacité au repos est approximativement égal à :

$$TC[C(0,T)] \approx q_{c0}(1-q_{c0}T)$$
 (3.2)

La figure 3.4 montre un exemple de coefficient thermique de la capacité au repos calculé à partir de l'expression générale (1.67) qui permet de calculer le coefficient thermique sans approximation et du tableau (3.3).

Figure 3.4 : Exemple de coefficient thermique de la capacité au repos

Nous voyons que le coefficient thermique de la capacité au repos varie linéairement avec la température comme l'indique l'équation (3.2) et est presque constant (93 ppm/°C) dans la plage de température considérée.

La figure 3.5 représente les coefficients thermiques de la capacité au repos de tous les capteurs caractérisés des différentes séries (P1, P2, P5, V3, V11).

Figure 3.5 : Coefficients thermiques de la capacité au repos de tous les capteurs caractérisés

3.2.3. Analyse des résultats

Le tableau 3.4 précise les valeurs du coefficient q_{c0} pour les différents capteurs étudiés.

Encastrement	$\mathbf{a_b}(\mu m)$	Capteurs	hs (µm)	$\mathbf{e_m}(\mu m)$	$\mathbf{q_{c0}} \text{ (ppm/°C)}$
		P1d9-S	31		155
	500	P2b2-S	32		155
		P2e1-S	32	-	176
		P2c2-S	32		190
		P2d1-S	35		150
		P2b3-M	28		176
	750	P2d3-M	33		167
		P2a8-M	41	0,8	173
		P2g4-L	28		190
	1000	P2g1-L	28		183
	1000	P1e7-L	30		177
		P2e4-L	32		199
		P1a5-XL	26		209
	1500	P1a6-XL	30		164
Circulaire		P1c6-XL	35		178
Circulatio		P5b9-S	31		97
	500	P5e9-S	37		95
		P5g9-S	39		93
		P5f9-S	39		93
		P5e8-M	37		95
	750	P5c8-M	39		91
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	P5d8-M	40	0,1	91
		P5d3-M	44		89
	1000	P5b10-L	28		98
		P5a4-L	35		95
		P5e7-L	40		92
		P5d4-L	44		89
		P5b6-XL	39		93
		P5c6-XL	41		92
		P5f6-XL	43		91
	500 750	V3S1	35	0,8	340
		V3S2	40		311
		V3M1	35		333
	1000	V3M2	37		291
Carre		V3L1	36		329
		V3L2	40		262
	250	V11XS1	110		93
	500	V11S1	110		92
	750	V11M1	115		86

Tableau 3.4 : Valeurs de q_{c0} en fonction des paramètres géométriques
A partir des données de ce tableau, on peut constater tout d'abord que q_{c0} ne dépend pas de la largeur de soudure (ce qui est contradictoire avec les précédents résultats obtenus [24 à 26] [30]) et qu'il est significativement dépendant des épaisseurs de la membrane et de l'armature fixe.

3.2.3.1. Influence de l'épaisseur de la membrane

a) Encastrement circulaire/armature fixe épaisse (série P2 et P1)

La figure 3.6 montre l'influence de l'épaisseur de la membrane pour des capteurs à encastrement circulaire de différentes largeurs (500 μ m à 1500 μ m) ayant une épaisseur d'armature fixe de 0,8 μ m.

Figure 3.6 : Corrélation entre q_{c0} et l'épaisseur de la membrane pour la série P1 et P2

Dans la plage d'épaisseur de membrane considérée (26 μ m à 41 μ m), on note une tendance à une diminution de q_{c0} avec l'épaisseur de la membrane bien que les résultats soient très dispersés. Il n'est pas possible de dégager une relation entre q_{c0} et l'épaisseur de la membrane qui permettrait de recalculer q_{c0} pour une épaisseur de membrane fixe.

Le tableau 3.5 donne donc les valeurs moyennées de q_{c0} des capteurs de la série P1 et P2.

Série	Encastrement	a _b	hs (moyenne)	e _m	q _{c0} (moyenne)
		(µm)	(µm)	(µm)	(ppm/°C)
P2 et P1		500	32		165
	Circulaire	750	34	0.8	172
	Chouland	1000	30	0,0	187
		1500	30		184

Tableau 3.5 : Valeurs moyennées de q_{c0} en fonction des paramètres géométriques

On ne note pas d'influence significative de la largeur de l'encastrement.

b) Encastrement circulaire/armature fixe fine (série P5)

La figure 3.7 précise sur un exemple l'influence de l'épaisseur de la membrane pour des capteurs à encastrement circulaire ayant une épaisseur d'armature fixe de 0,1 μ m et une largeur de soudure de 1000 μ m.

Figure 3.7 : Exemple de la corrélation entre q_{c0} et l'épaisseur de la membrane pour une type de la série P5

Il résulte de cette figure que q_{c0} est une fonction quasiment linéaire et décroissante de l'épaisseur de la membrane hs. Par suite, q_{c0} peut être modélisé par la relation :

$$q_{c0} = q_{c00} (1 - \delta_c \times hs)$$
(3.3)

où δ_c représente la pente de la droite.

Compte tenu des dispersions sur les épaisseurs des membranes des différents capteurs testés, le tableau 3.6 donne pour les différents capteurs circulaires les valeurs recalculées de q_{c0} pour hs = 35 µm afin de pouvoir effectuer une comparaison indépendante de hs.

Série	e _m	a _b	q_{c00}	$\delta_c \times 10^{-3}$	q _{c0} (hs=35 μm)
Serie	(µm)	(µm)	$(ppm/^{\circ}C^2)$	$(\mu m)^{-1}$	$(ppm/^{\circ}C^2)$
Р5		500	110,2	3,9	95,2
	0.1	750	122,8	6,4	95,3
	•,-	1000	114	4,9	94,4
		1500	119,2	5,6	95,8

Tableau 3.6 : Valeurs de q_{c0} recalculées des différents capteurs circulaires pour hs=35 µm

Dans la gamme de l'épaisseur considérée (28 μ m à 44 μ m), q_{c0} est pratiquement constant et voisin de 95 ppm/°C, ce qui est environ deux fois plus faible que dans le cas de l'armature épaisse.

c) Encastrement carré/armature fixe épaisse (série V3 et V11)

La figure 3.8 montre l'influence de l'épaisseur de la membrane pour des capteurs à encastrement carré de différentes largeurs (250 μ m à 1000 μ m) ayant une épaisseur d'armature fixe de 0,8 μ m.

Figure 3.8 : Corrélation entre q_{c0} et l'épaisseur de la membrane pour la série V3 et V11

Pour des épaisseurs de silicium inférieures à 40 μ m, on peut noter une diminution nette de q_{c0} avec l'augmentation de l'épaisseur mais difficilement quantifiable compte tenu du peu de points présents. Pour des épaisseurs comprises entre 35 et 40 μ m, q_{c0} est compris entre 260 et 340 ppm/°C.

Pour des épaisseurs de membrane beaucoup plus importantes (110 μ m), on peut noter une forte diminution de q_{c0} (\approx 90 ppm/°C) qui devient comparable aux résultats obtenus avec des membranes et des armatures fixes peu épaisses.

3.2.3.2. Influence de la largeur de soudure

a) Encastrement circulaire / armature fixe fine

Compte tenu des dispersions sur les épaisseurs des membranes des différents capteurs testés, les valeurs de q_{c0} pour tous les capteurs de la série P5 ont été recalculés d'après l'équation (3.3) pour une épaisseur commune de silicium de 35 µm. Tous les résultats sont proches de 95 ppm/°C quelle que soit la largeur de soudure.

b) Encastrement carré

D'après la figure 3.8 précédente, on peut constater que la largeur de soudure n'a pas influence significative sur le comportement thermique de la capacité au repos.

3.2.3.3. Influence de l'épaisseur de l'armature fixe

La figure 3.9 représente l'influence de l'épaisseur de l'armature fixe sur q_{c0} pour les capteurs de la série (P5) ayant une épaisseur d'armature fixe de 0,1 µm et de la série (P1, P2) ayant une épaisseur de 0,8 µm.

Figure 3.9 : Corrélation entre q_{c0} et l'épaisseur de l'armature fixe pour la série (P5) et la série (P1, P2)

On peut observer que les capteurs à armature fixe épaisse $(0,8 \ \mu m)$ sont environ deux fois plus sensibles à la température (avec une valeur moyenne de q_{c0} de 180 ppm/°C) que dans le cas d'armature fixe fine $(0,1 \ \mu m)$. D'autre part, on peut noter une forte dispersion des résultats sur les capteurs ayant une armature fixe plus épaisse sans doute liée à la dispersion technologique sur e_m

3.2.3.4. Influence de la géométrie de l'encastrement

La figure 3.10 montre une comparaison entre les capteurs de la série (P1, P2) ayant un encastrement circulaire et de la série (V3) ayant un encastrement carré. L'épaisseur de l'armature fixe est 0,8 µm dans les deux cas.

Figure 3.10 : Influence de la forme de l'encastrement sur q_{c0}

Il découle de cette figure que la valeur de q_{c0} dans le cas d'encastrement carrés est environ 1,6 fois plus grande que dans le cas d'encastrements circulaires (à épaisseur de silicium comparable).

3.3. Comportement thermique de la sensibilité à la tension

3.3.1. Sensibilité à la tension à température ambiante (T = 30° C)

Le tableau 3.7 donne les valeurs théoriques et expérimentales de Sv de tous les capteurs caractérisés. Les valeurs théoriques sont calculées à partir de l'équation (1.28).

	hs	d	Sv (Exp.)	Sv (Théo.)	Sv (Exp.) /
Composants	(µm)	(µm)	$(\mathrm{fF/V}^2)$	$(\mathrm{fF/V}^2)$	Sv (Théo.)
P1d9-S	31	3,9	0,550	0,211	2,61
P2b2-S	32	3,2	1,410	0,422	3,34
P2e1-S	32	3,3	1,150	0,374	3,07
P2c2-S	32	3,4	0,948	0,331	2,86
P2d1-S	35	3,2	0,895	0,323	2,77
P2b3-M	28	3,2	1,540	0,631	2,44
P2d3-M	33	3,1	1,180	0,437	2,7
P2a8-M	41	3	0,736	0,26	2,83
P2g1-L	28	3,5	1,390	0,441	3,15
P1e7-L	30	3,7	0,760	0,287	2,65
P2e4-L	32	3,2	1,140	0,422	2,7
P1a5-XL	26	3,8	1,010	0,396	2,55
P1a6-XL	30	3,9	0,501	0,232	2,16
P1c6-XL	35	3,7	0,407	0,181	2,25
P5b9-S	31	4,4	0,465	0,13	3,58
P5e9-S	37	4,4	0,219	0,076	2,88
P5g9-S	39	4,3	0,215	0,072	2,99
P5f9-S	39	4,3	0,208	0,072	2,89
P5e8-M	37	4,2	0,260	0,092	2,83
P5c8-M	39	4,2	0,220	0,079	2,78
P5d8-M	40	4,2	0,196	0,073	2,68
P5d3-M	44	4,1	0,146	0,06	2,43
P5b10-L	28	4,4	0,547	0,176	3,11
P5a4-L	35	4,1	0,283	0,12	2,36
P5e7-L	40	4,2	0,202	0,073	2,77
P5d4-L	44	4,2	0,141	0,055	2,56
P5b6-XL	39	4,1	0,197	0,087	2,26
P5c6-XL	41	4,1	0,173	0,075	2,31
P5f6-XL	43	4,1	0,158	0,065	2,43
V3S1	35	3,2	0,915	0,323	2,83
V3S2	40	3,2	0,608	0,216	2,81
V3M1	35	3,2	0,995	0,323	3,08
V3M2	37	3,1	0,837	0,31	2,7
V3L1	36	3,1	0,933	0,337	2,77
V3L2	40	3	0,748	0,28	2,67

Tableau 3.7 : Sensibilité à la tension des différents capteurs étudiés non scellés pour $T=30^{\circ}C$

On peut noter une sensibilité à la tension comprise entre 0,14 fF/V² et 1,54 fF/V² pour des épaisseurs de membranes comprises entre 44 μ m et 26 μ m.

Il existe un rapport voisin de 3 entre la sensibilité théorique et expérimentale. Afin d'évaluer l'origine potentielle de cet écart, nous avons calculé l'incertitude sur le calcul de le sensibilité à la tension :

D'après les relations (1.75) et (1.26), la sensibilité à la tension peut s'exprimer par :

$$Sv = \frac{\varepsilon_0^2 \varepsilon_r^2 A^2}{6} \frac{1}{d^4 k}$$
(3.4)

L'incertitude sur Sv est alors donnée par :

$$\frac{\Delta Sv}{Sv} = -4\frac{\Delta d}{d} - \frac{\Delta k}{k}$$
(3.5)

Dans le calcul de la sensibilité à la tension, il a été considéré en première approximation que la contrainte dans le silicium était nulle. D'après la figure 1.12, cette contrainte est en tension pour la température de soudure utilisée. La raideur calculée est donc sous estimée ce qui ne peut pas expliquer la sous évaluation de la sensibilité à la tension. En négligeant la raideur de précontrainte, la relation (3.5) devient :

$$\frac{\Delta Sv}{Sv} = -4\frac{\Delta d}{d} - 3\frac{\Delta h}{h} + \frac{\Delta S}{S}$$
(3.6)

On peut estimer l'erreur sur la mesure de la distance interarmatures avant soudure à $\pm 3 \%$ (Cf. CH2). Par ailleurs, les caractérisations montre que la déformation de la membrane après soudure était négligeable par rapport à la distance interarmatures.

L'erreur sur l'épaisseur de la membrane est aussi estimée à ± 3 % (Cf. CH2). L'erreur sur la surface peut être négligée.

En cumulant toutes ces erreurs potentielles, on obtient une erreur sur la sensibilité à la tension inférieure à \pm 21 %. Ceci ne permet donc pas d'expliquer le facteur 3 entre la sensibilité théorique et expérimentale dont l'origine n'a pas peut être identifiée. Néanmoins cette différence ne remet pas en cause l'étude sur le coefficient thermique qui est l'objectif de cette thèse.

3.3.2. Modèle thermique Sv(T)

3.3.2.1. Determination du coefficient thermique

La figure 3.11 montre un exemple de résultats de mesure de variations de la capacité en fonction du carré de la tension pour différentes températures.

Figure 3.11 : Variations de la capacité en fonction du carré de la tension pour différentes températures

Pour cet exemple et d'après l'expression (1.27), la sensibilité à la tension en fonction de la température est donnée par la figure 3.12.

Figure 3.12 : Modélisation de la sensibilité à la tension par un polynôme du deuxième degré

On voit qu'un polynôme de degré deux décrit précisément la sensibilité à la tension. On peut alors écrire :

$$Sv(T) = a_{v0} + a_{v1}T + a_{v2}T^{2}$$
(3.4)

Les valeurs des coefficients a_{v0} , a_{v1} et a_{v2} du polynôme se calculent par la méthode des moindres carrés. La figure 3.12 et le tableau 3.8 montrent les résultats donnés par cette méthode à partir des mesures.

Tableau 3.8 : Coefficients donnés par le modèle

Coefficients	Valeurs
$a_{v0} (fF/V^2)$	0,22
a_{v1} (fF/V ² /°C)	-185×10^{-6}
$a_{v2} (fF/V^{2/\circ}C^{2})$	$0,872 \times 10^{-6}$

Le coefficient thermique de la sensibilité à la tension TC [Sv(T)] est donné d'après (3.4) et (1.70) par :

$$TC[Sv(T)] \approx q_{v0} + q_{v1}T$$
(3.5)

avec
$$q_{v0} = \frac{a_{v1}}{a_{v0}}$$
 et $q_{v1} = \frac{2a_{v2}}{a_{v0}} - q_{v0}^2$.

Les figures 3.13 à 3.15 représentent les coefficients thermiques de la sensibilité à la tension de tous les capteurs des différentes séries caractérisés, obtenus à partir de l'expression générale (1.67) qui permet de calculer le coefficient thermique sans approximation.

Figure 3.13 : Coefficients thermiques de la sensibilité à la tension pour la série P5

Figure 3.14 : Coefficients thermiques de la sensibilité à la tension pour les séries P1 et P2

Figure 3.15 : Coefficients thermiques de la sensibilité à la tension pour la série V3

Nous voyons qu'en première approximation, le coefficient thermique de la sensibilité à la tension (TC[Sv(T)]) varie linéairement avec la température comme l'indique l'expression (3.5). Il passe par ailleurs de valeurs largement négatives à des valeurs largement positives en fonction de la température ce qui montre une très forte dépendance à la température.

Nous pouvons remarquer que dans le cas d'un encastrement circulaire, les coefficients thermiques de la sensibilité à la tension sont tous égaux (q_{v00}) pour une température T_v quel que soit le type de capteur. Ce qui n'est pas évident dans le cas d'un encastrement carré.

3.3.2.2. Détermination des coefficients q_{v0} et q_{v1}

Le tableau 3.9 précise les valeurs des paramètres du coefficient thermique de la sensibilité à la tension $(q_{v0} \text{ et } q_{v1})$ pour tous les capteurs étudiés.

Encastrement	em	a _b	Contours	d	hs	$\mathbf{q}_{\mathbf{v}0}$	q _{v1}
	(µm)	(µm)	Capteurs	(µm)	(µm)	(ppm/°C)	$(ppm/^{\circ}C^2)$
			P1d9-S	3,9	31	-1343	13,5
		500	P2b2-S	3,2	32	-1199	12,8
			P2e1-S	3,3	32	-1208	12,6
			P2c2-S	3,4	32	-1129	11,8
			P2d1-S	3,2	35	-840	9,5
			P2b3-M	3,2	28	-2123	18,9
	0.8	750	P2d3-M	3,1	33	-1066	11
	0,0		P2a8-M	3	41	-324	6,3
			P2g1-L	3,5	28	-2055	18,9
		1000	Ple7-L	3,7	30	-1646	15,5
			P2e4-L	3,2	32	-1218	12,7
		1500	P1a5-XL	3,8	26	-2264	19,8
			P1a6-XL	3,9	30	-1667	15,9
Circulaire			P1c6-XL	3,7	35	-775	9,5
		500	P5b9-S	4,4	31	-1610	13,3
			P5e9-S	4,4	37	-909	8,5
			P5g9-S	4,3	39	-842	8
			P5f9-S	4,3	39	-834	$\begin{array}{c} (\mathrm{ppm/^{\circ}C^2}) \\ 13,5 \\ 12,8 \\ 12,6 \\ 11,8 \\ 9,5 \\ 18,9 \\ 11 \\ 6,3 \\ 18,9 \\ 15,5 \\ 12,7 \\ 19,8 \\ 15,5 \\ 12,7 \\ 19,8 \\ 15,9 \\ 9,5 \\ 13,3 \\ 8,5 \\ 8 \\ 7,9 \\ 9,5 \\ 13,3 \\ 8,5 \\ 8 \\ 7,9 \\ 9,5 \\ 13,3 \\ 8,5 \\ 13,3 \\ 8,5 \\ 13,3 \\ 8,5 \\ 13,3 \\ 8,5 \\ 13,3 \\ 8,5 \\ 13,3 \\ 8,5 \\ 13,3 \\ 8,5 \\ 13,3 \\ 8,5 \\ 13,3 \\ 8,5 \\ 13,3 \\ 8,5 \\ 13,3 \\ 8,5 \\ 13,3 \\ 8,5 \\ 13,3 \\ 8,5 \\ 13,3 \\ 8,5 \\ 13,3 \\ 8,5 \\ 13,3 \\ 8,5 \\ 13,3 \\ 8,5 \\ 13,3 \\ 8,5 \\ 13,3 \\ 13,3 \\ 8,5 \\ 13,3 \\ 13,3 \\ 10,2 \\ 7,5 \\ 10,6 \\ 9,4 \\ 9,7 \\ 7,2 \\ \end{array}$
		750	P5e8-M	4,2	37	-902	8,4
			P5c8-M	4,2	39	-819	7,9
			P5d8-M	4,2	40	-794	7,6
	0,1		P5d3-M	4,1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,7	
			P5b10-L	4,4	28	-2385	18,8
		1000	P5a4-L	4,1	35	-1164	10,2
		1000	P5e7-L	4,2	40	-769	7,3
			P5d4-L	4,2	44	-537	5,8
			P5b6-XL	4,1	39	-828	7,8
		1500	P5c6-XL	4,1	41	-679	6,7
			P5f6-XL	4,1	43	-563	5,8
		500	V3S1	3,2	35	-102	10,2
		500	V3S2	3,2	40	-63,5	7,5
Carré	0.8	750	V3M1	3,2	35	-129	10,6
Curro	0,0	/30	V3M2	3,1	37	-186	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
		1000	V3L1	3,1	36	- 48	9,7
		1000	V3L2	3	40	- 41	7.2

Tableau 3.9 : Influence des dimensions sur la valeur des paramètres caractéristiques ducoefficient thermique de la sensibilité à la tension

Dans tous les cas, nous pouvons constater que q_{v0} et q_{v1} ont une forte dépendance avec l'épaisseur de la membrane.

3.3.2.3. Relation entre q_{v0} et q_{v1}

Afin de préciser cette relation, les figures 3.16 à 3.18 représentent la corrélation entre les deux paramètres q_{v0} et q_{v1} de tous les capteurs des différentes séries caractérisés.

Figure 3.16 : Variations du coefficient q_{v0} en fonction de q_{v1} pour la série P5 (encastrement circulaire) – $e_m = 0, 1 \mu m$

Figure 3.17 : Variations du coefficient q_{v0} en fonction de q_{v1} pour les séries P1 et P2 (encastrement circulaire) – $e_m = 0.8 \mu m$

Figure 3.18 : Variations du coefficient q_{v0} en fonction de q_{v1} pour la série V3 (encastrement carré) – $e_m = 0.8 \mu m$

Il résulte des figures 3.16 et 3.17 que dans le cas d'un encastrement circulaire, q_{v0} est une fonction linéaire décroissante de q_{v1} . Cette relation est indépendante de l'épaisseur de la membrane. Par suite, le coefficient thermique de la sensibilité à la tension peut s'écrire d'après la relation (1.73) de la manière suivante:

$$TC[Sv(T)] \approx q_{v00} + q_{v1}(T - T_v)$$
 (3.6)

où q_{v00} représente la valeur particulière de q_{v0} pour $q_{v1} = 0$, q_{v1} est la pente et T_v est la température de croisement (C.f. Fig. 3.13 et 3.14).

Le comportement de TC[Sv(T)], dans le cas d'un encastrement circulaire, se caractérise donc complètement par q_{v00} , q_{v1} et T_v.

La figure 3.18 montre que dans le cas d'un encastrement carré, les valeurs de q_{v0} et q_{v1} sont dispersés. En plus, deux capteurs de chaque type ne suffisent pas pour étudier la relation entre q_{v0} et q_{v1} et c'est pourquoi l'étude sera faite directement sur les courbes brutes du coefficient thermique de la sensibilité à la tension.

3.3.3. Analyse des résultats

3.3.3.1. Encastrement circulaire

Le tableau 3.10 donne pour les différentes séries la valeur de q_{v00} et T_v .

Tableau 3.10 : Valeurs du coefficient thermique de la sensibilité à la tension à la températurede croisement

$a_b(\mu m)$	Série	T _v (°C)	$q_{v00} \text{ (ppm/°C)}$
500 à 1500	P5 (0,1µm)	141,4	276
	P2 et P1 (0,8µm)	139,3	530

On peut constater que la température de croisement est quasiment identique pour tous les capteurs circulaires et voisine de 140°C et que q_{v00} ne dépend que de l'épaisseur de l'armature fixe et est indépendante de l'épaisseur de silicium. Les capteurs à armature fixe épaisse (0,8 µm) ont une valeur de q_{v00} 1,92 fois plus grande que dans le cas d'armature fixe fine (0,1 µm).

Afin d'évaluer l'impact des différents paramètres géométriques sur q_{v1} , nous avons donc dans ce qui suit effectué une étude comparative.

a) Influence de l'épaisseur de la membrane sur q_{v1}

Les figures 3.19 et 3.20 précisent respectivement l'influence de l'épaisseur de la membrane sur q_{v1} pour des capteurs à encastrement circulaire ayant deux épaisseurs d'armature fixe de 0,1 µm et 0,8 µm et une largeur de soudure de 1500 µm.

Figure 3.19 : Exemple de corrélation entre q_{vl} et l'épaisseur de la membrane dans le cas où l'armature fixe est fine

Figure 3.20 : Exemple de corrélation entre q_{vl} et l'épaisseur de la membrane dans le cas où l'armature fixe est épaisse

Il résulte des figures 3.19 et 3.20 que q_{v1} est une fonction quasiment linéaire et décroissante de l'épaisseur de la membrane hs pour les deux séries de capteur. Par suite, q_{v1} peut être modélisé par la relation :

$$q_{v1} = q_{v10} (1 - \delta_v \times hs) \tag{3.7}$$

où δ_v représente la pente de la droite.

Compte tenu des dispersions sur les épaisseurs des membranes des différents capteurs testés, le tableau 3.11 donne pour les différents capteurs circulaires les valeurs recalculées de q_{v1} pour hs = 35 µm afin de pouvoir effectuer une comparaison indépendante de hs.

Série	e _m	a _b	q_{v10}	$\delta_v \times 10^{-3}$	$q_{v10}\times\delta_v$	q _{v1} (hs=35 μm)
Serie	(µm)	(µm)	$(ppm/^{\circ}C^2)$	$(\mu m)^{-1}$	$(ppm/^{\circ}C^{2}/\mu m)$	$(ppm/^{\circ}C^{2})$
		500	34,1	19,8	0,676	10,5
P5	0.1	750	23,3	17,1	0,398	9,4
10	0,1	1000	27,3	18	0,492	10,1
		1500	26,9	18,3	0,492	9,7
		500	44	22,4	0,987	9,5
P2-P1	0.8	750	43,9	21,3	0,935	11,2
	0,0	1000	62,3	24,9	1,552	8
		1500	50	23	1,150	9,8

Tableau 3.11 : Valeurs de q_{vl} recalculées des différents capteurs circulaires pour $hs = 35 \ \mu m$

b) Influence de la largeur de soudure sur q_{v1}

Les différences entre les coefficients q_{v1} pour les différentes largeurs d'encastrement, sont comprises entre +18 % et -16 %. Néanmoins, on ne note pas de comportement systématique. Les différences pouvant être dues aux erreurs de mesures et /ou à la qualité de l'encastrement.

c) Influence de l'épaisseur de l'armature fixe sur q_{v1}

D'après les données du tableau 3.11, on peut observer que les capteurs à armature fixe épaisse ont une valeur moyenne de q_{v1} (9,6 ppm/°C²) proche de ceux à armature fixe fine (9,9 ppm/°C²).

3.3.3.2. Encastrement carré

L'étude de ce type de capteurs est beaucoup moins complète car nous n'avions qu'une seule épaisseur de l'armature fixe (0,8 μ m) et peu de valeurs différentes de l'épaisseur de la membrane. Nous n'avons donc pas assez de capteurs de même type avec épaisseurs différentes pour déterminer la relation entre q_{v1} et l'épaisseur de la membrane. C'est pourquoi

l'étude est faite directement sur les courbes brutes du coefficient thermique de la sensibilité à la tension.

La figure 3.21 représente les coefficients thermiques de la sensibilité à la tension des capteurs de la série V3 ayant des épaisseurs de silicium comprises entre (35 et 40 μ m) et trois largeurs différentes de soudure (500, 750 et 1000 μ m).

Figure 3.21 : Coefficients thermiques de la sensibilité à la tension pour les capteurs de la série V3

L'examen de cette figure indique que :

- La pente de TC[Sv(T)] (q_{v1}) dépend fortement de l'épaisseur de la membrane (≈ - 0,5 ppm/°C²/µm).
- TC [Sv(T)] est indépendant de la largeur de la soudure.

Autrement dit, on retrouve qualitativement les mêmes résultats que pour les capteurs à encastrement circulaires.

3.3.3.3. Influence de la géométrie de l'encastrement

La figure 3.22 compare les capteurs V3S1 et V3M1 ayant un encastrement carré avec P1c6-XL et P2d1-S ayant un encastrement (circulaire). Les épaisseurs du silicium et de l'armature fixe sont respectivement égales à 35 et $0,8 \mu m$.

Figure 3.22 : Comparaison de TC[Sv(T)] pour les deux différents encastrements

On peut remarquer sur cette figure que les pentes (q_{v1}) sont quasiment identiques. Il existe juste un décalage sur q_{v0} de 600 ppm/°C.

3.4. Calcul du comportement thermique de la sensibilité à la pression

3.4.1. Sensibilité à la pression à température ambiante (T= 30°C)

3.4.1.1. Capteurs non scellés

Le tableau 3.12 donne les valeurs de Sp (30°C) de tous les capteurs caractérisé, calculées à partir de l'équation (1.26).

d C (0,30°C) Sv hs Sp Composants (fF/V^2) (μm) (μm) (pF)(fF/Pa) P1d9-S 31 3.9 20,185 0,550 1.896 32 P2b2-S 3,2 24,749 1,410 3,237 P2e1-S 32 3,3 23,983 1,150 2,811 2,514 P2c2-S 32 0.948 3,4 23.022 P2d1-S 35 3,2 24,347 0,895 2,123 P2b3-M 28 3,2 24,194 1,540 3,699 33 P2d3-M 3,1 25.284 1,180 2.595 41 0,736 P2a8-M 3 26,866 1,433 P2g1-L 28 3,5 22,821 1,390 3,753 P1e7-L 30 21,427 0,760 2,326 3,7 P2e4-L 32 3,2 1,140 24,638 2,641 P1a5-XL 26 3,8 21,039 1,010 3,208 Pla6-XL 30 3,9 20,344 0,501 1,703 35 3.7 0,407 1.276 P1c6-XL 21,189 P5b9-S 31 18,143 0,465 1,986 4,4 P5e9-S 37 0,934 4,4 18,151 0,219 P5g9-S 39 4,3 18,522 0.215 0.882 39 P5f9-S 4,3 18,269 0,208 0,875 P5e8-M 37 4,2 0,260 1,025 18,886 39 P5c8-M 4,2 18,754 0,220 0,881 40 P5d8-M 4,2 18,631 0,196 0,794 44 0,146 P5d3-M 4,1 19,055 0,563 P5b10-L 28 4,4 17,869 0.547 2,410 P5a4-L 35 4.1 19.133 0.283 1,087 40 18,872 0.797 P5e7-L 0.202 4,2 0,559 P5d4-L 44 4,2 18,836 0,141 39 0.197 0.752 P5b6-XL 4.1 19,165 P5c6-XL 41 4,1 19,162 0.173 0,662 P5f6-XL 43 4.1 19,284 0.158 0,596 V3S1 35 3,2 24,342 0,915 2,171 V3S2 40 3,2 24,828 0,608 1,387 V3M1 35 0,995 2,269 3,2 24,830 V3M2 37 3,1 25,217 0.837 1,851 V3L1 36 3,1 25,582 0,933 2,005 V3L2 40 25,998 0,748 1,556 3

Tableau 3.12 : Sensibilité à la pression calculée pour différents capteurs étudiés non scellés

On peut noter une sensibilité à la pression comprise entre 0,56 fF/Pa et 3,76 fF/Pa pour des épaisseurs de membranes comprises entre 44 μ m et 26 μ m.

3.4.1.2. Capteurs scellés sous vide

L'étude a été réalisée sur le composant V4S1 dont le canal a été scellé sous vide avec du parylène. Les mesures ont été effectuées dans les conditions optimales c'est-à-dire : $U_m = 1V$ et $f_m = 10$ kHz et dans l'intervalle de pression [0 - 18] bars.

La figure 3.23 illustre la dépendance de la capacité à la pression pour la température ambiante.

Figure 3.23 : Influence de la pression sur la capacité pour T=30°C

On peut remarquer sur cette figure qu'il y a deux régimes linéaires, l'un est obtenu pour des faibles différences de pression (C.f. Fig. 3.24) et l'autre après avoir touché le plot par la membrane (C.f. Fig. 3.25). La pression calculée à partir de l'équation (1.6) pour laquelle la membrane touche le plot est environ 3,44 bar.

Figure 3.24 : Réponse en pression linéarisée pour des faibles différences de pression

Figure 3.25 : Réponse en pression linéarisée après avoir touché le plot

On remarque que :

- Le régime linéaire obtenu par le plot est beaucoup plus grand que celui obtenu dans le cas des faibles différences de pression.
- La sensibilité à la pression des deux régimes est presque identique ($\approx 2pF/bar$) avec une non linéarité moyenne \overline{NL} inférieure à ± 1,7 % R.P.E (C.f. Annexe D).

La figure 3.26 représente une comparaison (mesure - modèle) de la réponse en pression. Le modèle théorique est donné par les équations (1.6) à (1.8).

Figure 3.26 : Comparaison (mesure - modèle) de la réponse en pression

Nous pouvons constater que pour des différences de pression inférieures à la pression qui met la membrane en contact avec le plot, le modèle théorique décrit bien la réponse en pression du capteur avec une erreur inférieure à $\pm 1,6$ %.

3.4.2. Détermination du modèle thermique de la sensibilité à la pression

Le coefficient thermique de la sensibilité à la pression $(TC[Sp_{Sv}(T)])$ peut s'écrire d'après les équations (1.82), (3.2) et (3.5) de la manière suivante :

$$TC[Sp_{Sv}(T)] \approx q_{p0} + q_{p1}T$$
(3.8)

où

$$q_{p0} = q_{v0} - 2q_{c0}$$
 et $q_{p1} = q_{v1} + 2q_{c0}^2 \approx q_{v1}$ (3.9)

Le comportement de TC[Sp_{Sv}(T)] diffère donc uniquement de celui de TC[Sv(T)] par la valeur de l'offset q_{p0} . Néanmoins compte tenu des analyses différentes qui ont été faites précédemment sur TC[Sv(T)], il est apparu plus simple de retraiter les résultats dans les différents cas.

3.4.2.1. Encastrement circulaire

Les figures 3.27 et 3.28 représentent la corrélation entre les deux paramètres q_{p0} et q_{p1} , calculés d'après (3.9) et les données de tableaux (3.4) et (3.9), de tous les capteurs circulaires caractérisés.

Figure 3.27 : Variations du coefficient q_{p0} en fonction de q_{p1} pour la série P5 (encastrement circulaire) – $e_m = 0, 1 \ \mu m$

Figure 3.28 : Variations du coefficient q_{p0} en fonction de q_{p1} pour les séries P2 et P1(encastrement circulaire) – $e_m = 0.8 \ \mu m$

Il résulte des figures 3.27 et 3.28 que q_{p0} est une fonction linéaire décroissante de q_{p1} .

De la même manière que pour la sensibilité à la tension, le coefficient thermique de la sensibilité à la pression peut s'écrire d'après la relation (1.73) de la manière suivante:

$$TC[Sp(T)] \approx q_{p00} + q_{p1}(T - T_p)$$
(3.10)

où q_{p00} représente la valeur particulière de q_{p0} pour $q_{p1} = 0$, q_{p1} est la pente et T_p est la température de croisement.

Le tableau 3.13 donne pour les différentes séries circulaires la valeur de qp00 et Tp.

$a_b(\mu m)$	Série	T_p (°C)	q _{p00} (ppm/°C)
500 à 1500	P5 (0,1µm)	142,7	104
	P2 et P1 (0,8µm)	142,3	230

Tableau 3.13 : Valeurs du coefficient thermique de la sensibilité à la pression à la
température de croisement

La température de croisement T_p est identique à celle obtenue pour TC [Sv(T)] ce qui est normal. Par contre, q_{p00} est environ 2,5 fois faible pour TC [Sp(T)] que pour TC [Sv(T)].

On peut noter également que q_{p00} ne dépend ni la largeur de soudure ni de l'épaisseur de la membrane. Sa valeur est environ deux fois plus grande dans le cas d'armature fixe épaisse (0,8 µm) que dans le cas d'armature fixe fine (0,1 µm).

3.4.2.2. Encastrement carré

La figure 3.29 représente les coefficients thermiques de la sensibilité à la pression de tous les capteurs de la série V3 caractérisés ayant des épaisseurs de silicium comprises entre (35 et 40 µm) et trois largeurs différentes de soudure (500, 750 et 1000 µm).

Figure 3.29 : Coefficients thermiques de la sensibilité à la pression (série V3)

L'examen de cette figure indique que :

- La pente de TC[Sp(T)] (q_{p1}) dépend fortement de l'épaisseur de la membrane (≈ -0,5 ppm/°C²/µm).
- TC [Sp(T)] est indépendant de la largeur de la soudure.

3.4.2.3. Influence de la géométrie de l'encastrement

La figure 3.30 compare les capteurs V3S1 et V3M1 ayant un encastrement carré avec P1c6-XL et P2d1-S ayant un encastrement (circulaire). Les épaisseurs du silicium et de l'armature fixe sont respectivement égales à 35 et $0,8 \mu m$.

Figure 3.30 : Comparaison de TC[Sp (T)] pour les deux différents encastrement

On peut constater sur cette figure que les pentes (q_{p1}) sont quasiment identiques. Il existe juste un décalage moyen sur q_{p0} de 418 ppm/°C.

3.5. Conclusion

Ce chapitre était consacré à l'étude de la réponse statique du capteur à travers la capacité au repos, la sensibilité à la tension et la sensibilité à la pression.

3.5.1. Caractéristiques à température ambiante

3.5.1.1. Capacité au repos

Les valeurs de capacité au repos sont conformes, à ± 3 %, aux valeurs calculées à l'aide du modèle de capacité plane. Cette erreur correspond à une incertitude de $\pm 0,1$ µm sur la distance inter électrode et provient de la non uniformité de gravure mesurée sur la plaque de verre.

3.5.1.2. Sensibilité à la tension

Les valeurs de sensibilité à la tension expérimentales sont environ 3 fois plus grandes que celles obtenues avec le modèle. Les incertitudes sur les différents paramètres technologiques ne permettent pas d'expliquer cette différence (± 21 %). Les contraintes générées dans le silicium par la soudure sont par ailleurs en tension (Cf. [27] p24, [28] p78) et devraient diminuer la sensibilité à la tension expérimentale. L'origine de ce facteur multiplicatif n'a pas pu être identifiée.

3.5.1.3. Sensibilité à la pression

Des capteurs ont été scellés sous vide à l'aide d'un dépôt de paryléne. Les capteurs possèdent une membrane de 120 µm d'épaisseur environ. Dans ce cas, il existe une très bonne concordance entre la réponse expérimentale et théorique jusqu'au contact de la membrane avec le plot central. Pour des pressions supérieures à ce contact, il existe un second domaine de réponse linéaire dont la sensibilité est voisine à celle obtenue dans le domaine linéaire des faibles pressions. Cette caractéristique permet d'envisager des capteurs possédant deux plages de fonctionnement différentes.

3.5.2. Sensibilité à la température

La réponse du capteur en température est parfaitement définie par la connaissance de la dérive thermique de la capacité au repos et de la dérive thermique de la sensibilité à la pression. Cette dernière a été obtenue à partir de la réponse en tension de la capacité. Cette méthode permet de s'affranchir d'un banc de génération de pression. Les études ont été réalisées entre -20°C et 150°C.

Il est apparu dans les caractérisations que le comportement thermique était plus ou moins sensible à l'épaisseur de la membrane. Compte tenu des dispersions sur les épaisseurs des différents capteurs testés, il est donc difficile d'effectuer des comparaisons entre les capteurs de différentes géométries. C'est pourquoi nous avons dans un premier temps modélisé, quand cela était possible, l'influence de l'épaisseur de la membrane afin d'évaluer le comportement en température pour une épaisseur de silicium fixée et commune à tous les capteurs.

Le tableau 3.14 regroupe les principaux résultats obtenus sur les capteurs circulaires en fonction des paramètres géométriques.

Tableau 3.14 : Les principaux	résultats o	obtenus sur	·les capteurs	circulaires	en fonction des
	paramèt	tres géomé	ftriques		

		(² m	$26 \ \mu m < h < 44 \ \mu m$	
		0,1 µm	0,1 μm 0,8 μm e		$e_{m} = 0.8 \ \mu m$
$TC[C(0, T)] \qquad q_{c0}$		95 ppm/°C (hs = 35μm)	150 à 210 ppm/°C	- 0,56 ppm /°C²/μm	non reproductible
Д р00		104 ppm/°C	104 ppm/°C 230 ppm/°C indépendant de		nt de h
TC[Sp(T)]	q _{p1}	8 ppm/°C ² à 11 ppm/°C ² (hs = 35 μ m)		- 0,4 à - 0,68 ppm /°C²/μm	- 0,94 à -1,55 ppm /°C²/μm

```
T_{p} = 140^{\circ}C
```

Tous les résultats sont indépendants de la largeur de l'encastrement

3.5.2.1. Capacité au repos

La dérive thermique de la capacité au repos est liée à la variation en température de l'entrefer. Le coefficient thermique de la capacité au repos étant indépendant de la

température, on peut en déduire que la déformation prépondérante est celle du fond de la cavité générée par la dilatation différentielle du pyrex et de l'aluminium. En effet, dans le cas d'une déformation de la membrane, on obtiendrait un coefficient thermique linéaire avec la température à cause du caractère non constant du coefficient de dilatation thermique du silicium en température.

On note également une augmentation d'un facteur deux du coefficient thermique dans le cas d'une électrode métallique épaisse ce qui se justifie par les remarques précédentes.

On peut noter toutefois une légère influence de l'épaisseur de la membrane sur le coefficient thermique (- 0,56 ppm /°C²/µm pour une électrode de 0,1 µm d'épaisseur). Ceci montre que le coefficient thermique est tout de même légèrement lié à la raideur de la membrane. L'augmentation de l'épaisseur de silicium a pour effet de diminuer le coefficient thermique ce qui peut s'expliquer par l'augmentation de la raideur du substrat de silicium ou de la membrane.

La minimisation de la dérive thermique de la capacité au repos passe donc par une réduction des contraintes engendrées par la dilatation thermique de l'armature fixe. Ceci peut être obtenu en augmentant l'épaisseur de pyrex, en diminuant l'épaisseur de métallisation ou en utilisant une armature fixe métallique possédant une coefficient de dilatation thermique plus faible (ex. Ti).

3.5.2.2. Sensibilité à la pression

Le coefficient thermique peut se mettre sous la forme :

$$TC[Sp(T)] \approx q_{p00} + q_{p1}(T - T_p)$$
(3.10)

Les relations (1.78) à (1.80) montrent que la température T_p correspond à la température pour laquelle les coefficients de dilatation thermique du pyrex et du silicium sont égaux. D'après ([27] p24) cette température est comprise entre 120°C et 150°C. Les résultats obtenus (140°C) sont conformes aux données de la littérature.

D'après (1.80), q_{p00} ne dépend que du coefficient thermique de la capacité au repos et du coefficient thermique du module de Young de silicium. On doit donc retrouver un coefficient dont le comportement se rapproche du coefficient thermique de la capacité au repos. On trouve effectivement que q_{p00} est indépendant de la température, qu'il augmente avec l'épaisseur de l'armature fixe et qu'il est indépendant de l'épaisseur de silicium. Néanmoins, le modèle proposé par (1.80) est insuffisant pour expliquer les valeurs de q_{p00} obtenues si on considère un coefficient thermique du module de Young de silicium de - 90 ppm/C°.

Le tableau 3.14 montre par ailleurs que q_{p1} est indépendant de l'épaisseur de l'électrode métallique fixe (e_m), ce qui est conforme au modèle explicité dans (1.80). En effet, q_{p1} est lié à la dilatation différentielle de la membrane en silicium et du pyrex.

Par ailleurs, q_{p1} diminue quand l'épaisseur de la membrane augmente ce qui peut être s'expliquer par la diminution relative de la raideur de précontrainte dans la raideur totale où $k_{\sigma}/k_{L} \propto 1/h^{2}$ (C.f. Eq. 1.80).

Par contre, on peut noter que la diminution de q_{p1} avec l'augmentation de l'épaisseur de la membrane est environ deux fois plus grande pour une épaisseur d'électrode fixe de 0,8 µm. Cet effet ne peut pas être expliqué par le modèle proposé et montre que les phénomènes observés sont couplés et très complexes.

La minimisation de la dérive thermique de la sensibilité à la pression peut ainsi être obtenue tout d'abord en réduisant q_{p00} , donc q_{c0} (voir capacité au repos). La diminution de q_{p1} peut être obtenue en augmentant l'épaisseur de silicium (au détriment de la sensibilité à la pression). On peut aussi essayer d'utiliser des verres dont le coefficient de dilatation thermique se rapproche plus de celui du silicium [28] (Hoya SD2 glass).

Chapitre 4

Influence de la température sur le comportement dynamique du capteur

4.1. Introduction

Nous étudions dans ce chapitre l'influence de la température sur le comportement dynamique des capteurs de pression.

Dans une première partie, les modèles théoriques nécessaires à l'étude sont exposés. Il s'agit tout d'abord de la détermination de la fréquence de résonance fondamentale de membranes circulaires à pression électrostatique appliquée nulle. Puis, nous étudions l'influence de la tension continue sur cette fréquence de résonance. Le modèle électrique équivalant du capteur au voisinage de la résonance fondamentale est ensuite présenté.

Dans une deuxième partie, de la même manière que dans le chapitre précédent, nous analysons l'influence des paramètres géométriques sur le comportement thermique de fréquence de résonance fondamental à pression électrostatique appliquée nulle ($f_r(0,T)$). Enfin, nous comparons et validons les deux modèles du coefficient thermique de la sensibilité à la pression sur tous les capteurs caractérisés.

4.2. Comportement dynamique à température ambiante (T = 30 °C)

4.2.1. Admittance électrique

A titre d'exemple, sur les figures 4.1 (a) et 4.1 (b), ont été tracées la conductance et la capacité, du capteur P5f9-S. Ces paramètres se déduisent des mesures de l'admittance en fonction de la fréquence et à partir de la relation (1.55).

Par ailleurs, nous avons porté sue ces figures le comportement fréquentiel d'un résonateur à quartz qui aurait la même fréquence de résonance et le même facteur de surtension que le capteur.

On note un très bon accord entre le modèle électrique du résonateur à quartz et l'expérience.

Figure 4.1 : Comparaison mesure - modèle du comportement fréquentiel de a) la conductance Gp et b) la capacité Cp, autour de la résonance fondamentale à T=30°C

4.2.2. Fréquence de résonance des membranes à pression électrostatique appliquée nulle

Le tableau 4.1 répertorie les valeurs de la fréquence de résonance fondamentale pour tous les capteurs étudiés, mesurées à T=30°C et calculées à partir de l'équation (1.37).

	hs	fr =1,192×hs	fr (0,30°C)	Erreur
Composants		(Théorique)	(Expérimentale)	[(T-E)*100/E]
	(µm)	(KHz)	(KHz)	(%)
P1d9-S	31	36,952	36,090	2,4
P2b2-S	32	38,144	37,677	1,2
P2e1-S	32	38,144	37,213	2,5
P2c2-S	32	38,144	38,010	0,4
P2d1-S	35	41,72	40,952	1,9
P2b3-M	28	33,376	33,004	1,1
P2d3-M	33	39,336	39,057	0,7
P2a8-M	41	48,872	48,508	0,8
P2g1-L	28	33,376	33,574	-0,6
P1e7-L	30	35,760	34,892	2,5
P2e4-L	32	38,144	37,464	1,8
P1a5-XL	26	30,992	30,122	2,9
P1a6-XL	30	35,76	35,589	0,5
P1c6-XL	35	41,72	41,242	1,2
P2f5-XL	35	41,72	41,310	1
P5b9-S	31	36,952	36,251	1,9
P5e9-S	37	44,104	44,310	-0,5
P5g9-S	39	46,488	46,403	0,2
P5f9-S	39	46,488	46,177	0,7
P5e8-M	37	44,104	43,764	0,8
P5c8-M	39	46,488	46,427	0,1
P5d8-M	40	47,68	47,435	0,5
P5d3-M	44	52,448	53,444	-1,9
P5b10-L	28	33,376	32,455	2,8
P5a4-L	35	41,72	42,445	-1,7
P5e7-L	40	47,68	47,877	-0,4
P5d4-L	44	52,448	52,320	0,2
P5b6-XL	39	46,488	46,319	0,4
P5c6-XL	41	48,872	48,476	0,8
P5f6-XL	43	51,256	51,346	-0,2
V3S1	35	41,72	42,142	-1
V3S2	40	47,68	47,642	0,1
V3M1	35	41,72	41,063	1,6
V3M2	37	44,104	43,555	1,3
V3L1	36	42,912	42,399	1,2
V3L2	40	47,68	47,491	0,4

Tableau 4.1: Comparaison (Théorie- Mesure) des fréquences de résonance des capteursréalisées pour T=30°C

On note des écarts inférieurs à ± 3 % entre la théorie et l'expérience. Compte tenu de la relation (1.37), cela peut correspondre à des erreurs sur l'épaisseur des membranes de ± 3 %. Cette erreur est tout à fait possible puisque les épaisseurs mesurées sont voisines de 35 µm ce qui correspond à une incertitude de ± 1 µm.

4.2.3. Influence de la tension continue

Les figures 4.2 (a) et 4.2 (b) montre respectivement les variations de Gp et Cp au voisinage de la résonance fondamentale pour différentes tensions continues.

Figure 4.2 : Comportement fréquentiel de a) la conductance Gp et b) la capacité Cp, au voisinage de la résonance fondamentale , pour différentes tensions continues à $T=25^{\circ}C$

Le tableau 4.2 donne les valeurs des éléments de circuit électrique équivalent au capteur capacitif, au voisinage de la résonance fondamentale (C.f. Fig. 1.7), calculées à partir des relations (1.58) à (1.64) pour l'exemple précédent (V3S1).

Tableau	4.2 :	Valeurs	des	éléments	de	circuit	électrique	équivalent	au	capteur	(V3S1),	аи
voisinage	e de la	a résonar	ice f	ondament	ale,	pour d	ifférentes te	ensions con	tinu	es à $T=2$	5°C	

V	fr	Bp*	Q	C ₀	Gp max	R _e	С	L	QC
(volts)	(kHz)	(Hz)		(pF)	(µS)	$(K\Omega)$	(pF)	(H)	(pF)
1	42,095	18,5	2275	24,352	0,165	6061	0,274×10 ⁻³	52140	0,623
20	41,805	22	1900	24,701	106	9,434	0,212	68,25	403
25	41,573	16	2598	24,903	196	5,102	0,289	50,751	751
30	41,327	12,5	3306	25,158	289	3,459	0,337	44,042	1114
35	41,027	13	3156	25,481	390	2,564	0,480	31,366	1514
40	40,663	10	4066	25,886	519	1,928	0,499	30,691	2029
45	40,204	10,6	3793	26,383	670	1,493	0,699	22,411	2651
50	39,655	12,5	3172	27,002	856	1,169	1,082	14,881	3432
55	38,968	15	2598	27,794	1055	0,948	1,659	10,057	4310
60	38,096	18,5	2059	28,840	1280	0,781	2,597	6,721	5347

* Bande passante

A partir des données du tableau dessus, les figures (4.3) à (4.6) montrent la dépendance des paramètres QC, R_e, C, L et Q avec la tension continue V.

Figure 4.3 : Dépendance des paramètres QC et $1/R_e$ en fonction du carré de la tension continue

Figure 4.4 : Dépendance du paramètre C en fonction de la tension continue

Figure 4.5 : Dépendance du paramètre 1/L en fonction de la tension continue

Figure 4.6 : Dépendance du paramètre Q en fonction du carré de la tension continue

Il résulte de ces figures que, pour des valeurs de tension continue inférieures à 40V ($V_N < 0.5$ où $V_p = 83V$), les paramètres QC et $1/R_e$ sont proportionnels au carré de la tension continue et les paramètres C et L sont, en première approximation, respectivement proportionnels et inversement proportionnels à la tension.

Pour la fréquence, la figure 4.7 montre, pour quatre capteurs différents, que la fréquence propre fondamentale est une fonction linéaire décroissante de V_N^2 comme l'indique l'équation (1.49).

Figure 4.7 : Comparaison (mesure - modèle) des variations de la fréquence de résonance en fonction du carré de la tension normalisée

On note un très bon accord entre la théorie et l'expérience pour des valeurs du carré de la tension normalisée inférieures à 0,3 ($V_N < 0,5$), ce qui correspond au domaine de variation linéaire de la membrane (C.f. Eq. (1.49))

4.3. Comportement thermique de $f_r(0)$

Afin de mesurer la fréquence de résonance fondamental à pression électrostatique appliquée nulle $f_r(0)$, l'excitation de la membrane a été réalisée avec un signal alternatif sinusoïdal d'amplitude de 1V ajouté à une tension continue de 1V. Cette valeur a été choisie suffisamment faible pour ne pas contraindre la membrane et suffisamment grande pour que la fréquence de résonance soit visible (C.f. Eq. (1.41)).

4.3.1. Modèle thermique

4.3.1.1. Détermination du coefficient thermique

La figure 4.8 précise sur un exemple l'aspect des variations de la fréquence de résonance fondamental en fonction de la température. L'aspect des résultats observés sur cette figure suggère une représentation par un polynôme de degré deux :

$$f_r(0,T) = a_{f0} + a_{f1}T + a_{f2}T^2$$
(4.1)

Les valeurs des coefficients a_{f0} , a_{f1} et a_{f2} du polynôme se calculent par la méthode des moindres carrés.

Figure 4.8 : Modélisation de la fréquence de résonance par un polynôme du deuxième degré

La figure 4.8 et le tableau 4.3 montrent les résultats donnés par cette méthode à partir des mesures.

Coefficients	Valeurs
a _{f0} (kHz)	45,71
a _{fl} (kHz/°C)	25,8 ×10 ⁻³
a_{f2} (kHz/°C ²)	- 90,9 ×10 ⁻⁶

Tableau 4.3 : Coefficients donnés par la régression

Le coefficient thermique de la fréquence de résonance des membranes à pression électrostatique appliquée nulle $TC[f_r(0,T)]$ est donné d'après les relations (4.1) et (1.70) par :

$$TC[f_r(0,T)] \approx q_{f0} + q_{f1}T$$
 (4.2)

où $q_{f0} = \frac{a_{f1}}{a_{f0}}$ et $q_{f1} = \frac{2a_{f2}}{a_{f0}} - q_{f0}^2$.

La figure 4.9 représente les coefficients thermiques de la fréquence de résonance pour tous les capteurs circulaires caractérisés obtenus à partir de l'expression générale (1.67) qui permet de calculer le coefficient thermique sans approximation.

En première approximation, ces coefficients varient linéairement en fonction de la température. Ceci est d'autant plus vrai que les coefficients sont faibles. Ils peuvent êtres modélisés alors par l'expression (4.2).

Figure 4.9 : *Coefficients thermiques de la fréquence de résonance de tous les capteurs circulaires caractérisés*

Tout d'abord, les coefficients thermiques sont très dépendants des paramètres géométriques. De manière générale, les coefficients thermiques sont d'autant plus faibles et d'autant plus linéaires que l'épaisseur de la membrane est grande.

Nous pouvons ensuite remarquer que dans le cas d'un encastrement circulaire, les coefficients thermiques de la fréquence de résonance sont quasiment tous égaux (q_{f00}) et proches de zéro pour une température (T_f) quel que soit le type de capteur. Cela montre qu'il existe une corrélation entre les coefficients q_{f0} et q_{f1} .

4.3.1.2. Détermination des coefficients q_{f0} et q_{f1}

Le tableau 4.4 précise les valeurs des paramètres du coefficient thermique de la fréquence de résonance (q_{f0} et q_{f1}) pour tous les capteurs caractérisés.

Encastrement	em	a _b	Cantours	hs	q _{f0}	q _{f1}
	(µm)	(µm)	Capteurs	(µm)	(ppm/°C)	$(ppm/^{\circ}C^2)$
			P1d9-S	31	1028	-7,2
			P2b2-S	32	972	-6,8
		500	P2e1-S	32	963	-6,8
			P2c2-S	32	975	-6,9
			P2d1-S	35	709	-5
			P2b3-M	28	1382	-9,8
			P2d3-M	33	877	-6,2
	0,8	750	P2a8-M	41	469	-3,2
		100	P2g1-L	28	1356	-9,6
			P1e7-L	30	1173	-8,3
			P2e4-L	32	975	-6,8
			P1a5-XL	26	1573	-10,9
		1500	P1a6-XL	30	1136	-7,9
Circulaire		1200	P1c6-XL	35	712	-4,9
			P2f5-XL	35	723	-5
		500	P5b9-S	31	1004	-7
			P5e9-S	37	622	-4,4
			P5g9-S	39	563	-4
			P5f9-S	39	561	-4
		750	P5e8-M	37	626	-4,4
			P5c8-M	39	553	-3,9
			P5d8-M	40	520	-3,6
	0,1		P5d3-M	44	394	-2,8
			P5b10-L	28	1367	-9,6
		1000	P5a4-L	35	712	-5,1
			P5e7-L	40	511	-3,6
			P5d4-L	44	400	-2,8
		1.500	P5b6-XL	39	549	-3,9
		1500	P5c6-XL	41	479	-3,4
			P5f6-XL	43	420	-2,9
		500	V3S1	35	711	-5,3
		_ ~ ~	V3S2	40	507	-3,9
Carré	0.8	750	V3M1	35	718	-5,4
	- ,-		V3M2	37	644	-4,9
		1000	V3L1	36	679	-5,1
		1000	V3L2	40	511	-3,9

Tableau 4.4 : Influence des dimensions sur la valeur des paramètres caractéristiques ducoefficient thermique de la fréquence de résonance

Dans tous les cas, nous pouvons constater que q_{f0} et q_{f1} ont une forte dépendance avec l'épaisseur de la membrane.

4.3.1.3. Relation entre q_{f0} et q_{f1}

Afin de préciser cette relation, les figures 4.10 à 4.12 représentent la corrélation entre les deux paramètres q_{f0} et q_{f1} pour tous les capteurs caractérisés.

Figure 4.10 : Variations du coefficient q_{f0} en fonction de q_{f1} pour la série P5 (encastrement circulaire) – $e_m = 0, 1 \ \mu m$

Figure 4.11 : Variations du coefficient q_{f0} en fonction de q_{f1} pour les séries P2 et P1 (encastrement circulaire) $-e_m = 0.8 \ \mu m$

Figure 4.12 : Variations du coefficient q_{f0} en fonction de q_{f1} pour la série V3(encastrement carré) $- e_m = 0.8 \ \mu m$

Il résulte de ces figures que q_{f0} est une fonction linéaire décroissante de q_{f1} pour tous les capteurs.

De la même manière que pour la sensibilité à la tension, le coefficient thermique de la fréquence de résonance peur s'écrire d'après la relation (1.73) de la manière suivante:

$$TC[fr(0,T)] \approx q_{f00} + q_{f1}(T - T_f)$$
(4.3)

où q_{f00} représente la valeur particulière de q_{f0} pour $q_{f1} = 0$, q_{f1} est la pente et T_f est la température de croisement (C.f. Fig. 4.9).

Le comportement de TC [fr(0,T)] se caractérise donc complètement par q_{f00} , q_{f1} et T_f . Nous pouvons noter également que toutes ces courbes ont approximativement la même pente qui correspond à la température de croisement T_f .

4.3.2. Analyse des résultats

4.3.2.1. Encastrement circulaire

Le tableau 4.5 donne pour les différentes séries la valeur de q_{f00} et T_f .

$a_b(\mu m)$	Série	T _f (°C)	q _{f00} (ppm/°C)
500 à 1500	P5 (0,1µm)	142,8	-1,69
	P2 et P1 (0,8µm)	141,3	10,66

Tableau 4.5 : Valeurs du coefficient thermique de la fréquence de résonance à la températurede croisement

On peut constater que la température de croisement est quasiment identique pour tous les capteurs circulaires et voisine de 140 C°. On peut noter aussi que q_{f00} ne dépend ni la largeur de soudure ni l'épaisseur de la membrane et que sa valeur est très faible quelle que soit l'épaisseur de l'armature fixe (< 11 ppm/°C).

Afin d'évaluer l'impact des différents paramètres géométriques sur q_{f1} , nous avons donc dans ce qui suit effectué une étude comparative.

a) Influence de l'épaisseur de la membrane sur q_{fl}

Les figures 4.13 et 4.14 précisent respectivement l'influence de l'épaisseur de la membrane sur q_{f1} pour des capteurs à encastrement circulaire ayant une épaisseur d'armature fixe de 0,1 µm et 0,8 µm et une largeur de soudure de 1500 µm.

Figure 4.13 : *Exemple de corrélation entre* q_{fl} *et l'épaisseur de la membrane dans le cas où l'armature fixe est fine*

Figure 4.14 : Exemple de corrélation entre q_{fl} et l'épaisseur de la membrane dans le cas où l'armature fixe est épaisse

Il résulte de ces figures que q_{fl} est une fonction quasiment linéaire et croissante de l'épaisseur de la membrane hs pour les deux séries de capteur. Par suite, q_{fl} peut être modélisé par la relation :

$$q_{f1} = q_{f10} (-1 + \delta_f \times hs)$$
(4.4)

où δ_f représente la pente de la droite.

Compte tenu des dispersions sur les épaisseurs des membranes des différents capteurs testés, le tableau 4.6 donne pour les différents capteurs circulaires les valeurs recalculées de q_{f1} pour pour hs = 35 µm afin de pouvoir effectuer une comparaison indépendante de hs.

Cária	em	a _b	q_{f10}	$\delta_f \times 10^{-3}$	$q_{f10}\times \delta_f$	q _{f1} (hs=35 µm)
Serie	(µm)	(µm)	$(ppm/^{\circ}C^2)$	$(\mu m)^{-1}$	$(ppm/^{\circ}C^{2}/\mu m)$	$(ppm/^{\circ}C^2)$
		500	18,6	20,3	0,378	-5,4
P5	0.1	750	12,9	17,9	0,232	-4,8
10	0,1	1000	13,8	18,3	0,252	-5
		1500	12,8	18	0,231	-4,4
		500	25,7	23	0,590	-5
P2-P1	0.8	750	23,1	21,3	0,492	-5,9
	-,0	1000	28,6	23,7	0,680	-4,9
		1500	27,8	23,5	0,653	-4,9

Tableau 4.6 : Valeurs de q_{fl} recalculées des différents capteurs circulaires pour hs =35 μ m

b) Influence de la largeur de soudure sur q_{f1}

Les différences entre les coefficients q_{f1} , pour les différentes largeurs d'encastrement, sont comprises entre +18 % et -18,5 %. Néanmoins, on ne note pas de comportement systématique. Les différences pouvant être dues aux erreurs de mesures et /ou à la qualité de l'encastrement.

c) <u>Influence de l'épaisseur de l'armature fixe sur q_{f1}</u>

D'après les données du tableau 4.6, on peut observer que les capteurs à armature fixe épaisse ont une valeur moyenne de q_{fl} (- 4,9 ppm/°C²) proche de ceux à armature fixe fine (-5,2 ppm/°C²).

4.3.2.2. Encastrement carré

De la même manière que pour la sensibilité à la tension, l'étude est faite directement sur les courbes brutes du coefficient thermique de la fréquence de résonance. La figure 4.15 illustre l'influence de la largeur de soudure sur le coefficient thermique de la fréquence de résonance pour des capteurs ayant la même épaisseur de la membrane et de l'armature fixe (V3S1/V3M1) et (V3S2/V3L2). Elle illustre aussi l'influence de l'épaisseur de la membrane pour des capteurs ayant le même type (V3S1/V3S2).

Figure 4.15 : Influence de la largeur de soudure et de l'épaisseur de la membrane sur le coefficient thermique de la fréquence de résonance

Il découle de cette figure que :

- La pente de TC[fr(0,T)] (q_{f1}) dépend fortement de l'épaisseur de la membrane (≈ - 0,28 ppm/°C²/μm).
- TC[fr(0,T)] est indépendant de la largeur de la soudure.

Autrement dit, on retrouve qualitativement les mêmes résultats que pour les capteurs à encastrement circulaires.

4.3.2.3. Influence de la géométrie de l'encastrement

La figure 4.16 compare V3S1 (carré) / P2d1-S (circulaire) ayant 35µm d'épaisseur de la membrane et V3L2 (carré) / P5e7-L (circulaire) ayant 40 µm d'épaisseur de la membrane.

Figure 4.16 : Comparaison de TC [fr(0,T)] pour les deux différents encastrements

Il émerge de cette figure que la géométrie de l'encastrement n'a que peu d'influence sur le coefficient thermique de la fréquence de résonance.

4.4. Comportement thermique de la sensibilité à la pression

Nous pouvons calculer le coefficient thermique de la sensibilité à la pression soit par une approche statique (TC[Sp_{Sv}(T)]) (C.f. Eq. (1.82)) soit au travers de l'étude de la fréquence de résonance.

Le coefficient thermique de la sensibilité à la pression peut être donné d'après les relations (1.83), (3.2) et (4.2) par:

$$TC[Sp_{fr}(T)] = q_{p0_f} + q_{p1_f}T$$
(4.5)

où

$$q_{p0_f} = 2(q_{c0} - q_{f0})$$
 et $q_{p1_f} = -2(q_{c0}^2 + q_{f1})$ (4.6)

La figure 4.17 compare sur un exemple les deux modèles du coefficient thermique de la sensibilité à la pression ($TC[Sp_{Sv}(T)]$ et $TC[Sp_{fr}(T)]$).

Figure 4.17 : Comparaison des deux modèles du coefficient thermique de la sensibilité à la pression

On peut remarquer sur cette figure que les deux modèles sont quasiment identiques. Les pentes $(q_{p1f} \text{ et } q_{p1v})$ sont dans cet exemple identiques. Il existe un décalage sur q_{p0f} de 90 ppm/°C. Ce décalage peut provenir de phénomènes non pris dans le modèle utilisé pour

calculer le coefficient thermique de la sensibilité à la pression (TC[Sp(T)]) ou d'une limitation du modèle.

Le tableau 4.7 donne les valeurs des paramètres du coefficient thermique de la sensibilité à la pression pour les deux modèles et les écarts normalisée de tous les capteurs caractérisés.

Cantours	hs	q _{p0 f}	q _{p0 Sv}	$\Delta q_{p0}/q_{p0}$	q _{p1f}	q _{p1Sv}	Δq_{p1}
Capteurs	(µm)	(ppn	n∕°C)	(%)	(ppm	$/^{\circ}C^{2}$)	(%)
P1d9-S	31	-1747	-1653	-5.7	14,4	13.6	5,6
P2b2-S	32	-1635	-1509	-8,4	13,6	12,9	5,1
P2e1-S	32	-1575	-1560	-1	13,5	12,6	6,7
P2c2-S	32	-1570	-1510	-4	13,7	11,9	13,1
P2d1-S	35	-1118	-1141	2	9,9	9,5	4
P2b3-M	28	-2412	-2475	2,5	19,5	19	2,6
P2d3-M	33	-1421	-1400	-1,5	12,3	11,1	9,8
P2a8-M	41	-591	-670	11,8	6,3	6,3	0
P2g1-L	28	-2345	-2421	3,1	19	19	0
P1e7-L	30	-1992	-2000	0,4	16,5	15,5	6,1
P2e4-L	32	-1553	-1615	3,8	13,6	12,8	5,9
P1a5-XL	26	-2729	-2681	-1,8	21,7	19,9	8,3
P1a6-XL	30	-1945	-1994	2,5	15,8	16	-1,3
P1c6-XL	35	-1067	-1131	5,7	9,7	9,6	1
P5b9-S	31	-1814	-1803	-0,6	14	13,3	5
P5e9-S	37	-1054	-1099	4,1	8,7	8,5	2,3
P5g9-S	39	-940	-1028	8,6	8	8	0
P5f9-S	39	-936	-1021	8,3	8	7,9	1,3
P5e8-M	37	-1062	-1092	2,8	8,8	8,4	4,5
P5c8-M	39	-925	-1001	7,7	7,8	7,9	-1,3
P5d8-M	40	-858	-976	12,1	7,3	7,6	-4,1
P5d3-M	44	-609	-697	12,6	5,5	5,7	-3,6
P5b10-L	28	-2537	-2581	1,7	19,1	18,8	1,6
P5a4-L	35	-1235	-1354	8,8	10,1	10,2	-1
P5e7-L	40	-838	-953	12,1	7,1	7,3	-2,8
P5d4-L	44	-621	-716	13,3	5,6	5,8	-3,6
P5b6-XL	39	-912	-1014	10,1	7,7	7,8	-1,3
P5c6-XL	41	-774	-863	10,3	6,7	6,7	0
P5f6-XL	43	-660	-744	11,3	5,8	5,8	0
V3S1	35	-741	-782	5,2	10,4	10,4	0
V3S2	40	-393	-685	42,6	7,5	7,7	-2,7
V3M1	35	-769	-796	3,4	10,5	10,9	-3,8
V3M2	37	-706	-767	8	9,6	9,5	1
V3L1	36	-700	-706	0,8	10	9,9	1
V3L2	40	-499	-564	11,5	7.7	7,4	3.9

Tableau 4.7 : Valeurs des paramètres du coefficient thermique de la sensibilité à la pressionpour les deux modèles et les écarts normalisés

Les figures 4.18 et 4.19 représentent respectivement le nombre de capteurs en fonction des écarts normalisés entre les offsets ($\Delta q_{p0}/q_{p0Sv}$) et les pentes ($\Delta q_{p1}/q_{p1Sv}$) des deux modèles du coefficient thermique de la sensibilité à la pression de tous les capteurs caractérisés.

Figure 4.18 : Les nombres des capteurs en fonction des écarts normalisés entre les offsets $(\Delta q_{p0}/q_{p0Sv})$ des deux modèles du coefficient thermique de la sensibilité à la pression

Figure 4.19 : Les nombres des capteurs en fonction des écarts normalisés entre les pentes $(\Delta q_{p1}/q_{p1Sv})$ des deux modèles du coefficient thermique de la sensibilité à la pression

Globalement les q_{p0} sont différents (décalage de ± 10 % en moyenne) tandis que les q_{p1} sont identiques (< ± 5 %).

4.5. Conclusion

Ce chapitre était consacré à l'étude de la réponse dynamique du capteur au voisinage de la fréquence de résonance fondamentale.

4.5.1. Caractéristiques à température ambiante

La fréquence de résonance fondamentale des capteurs étudiés est identique ($\dot{a} \pm 3 \%$) aux valeurs théoriques calculées d'après la relation (1.37) dans le cas de membranes circulaires à pression électrostatique appliquée nulle. Ceci implique que l'influence des précontraintes dans la raideur totale de la membrane est faible.

De plus, le comportement au voisinage de la résonance fondamentale peut être simulé par un circuit électrique identique à celui d'un résonateur à quartz.

Par ailleurs, la fréquence propre fondamentale est proportionnelle à la pression électrostatique pour des variations inférieures à 4% avec un excellent accord entre théorie et expérience. Enfin, les différents paramètres du modèle électrique ont été paramétrés en fonction de la pression électrostatique.

4.5.2. Sensibilité à la température

Les caractérisations ont été réalisées uniquement sur la dérive thermique de la fréquence de résonance fondamentale à pression électrostatique nulle. La gamme de température dans laquelle les mesures ont été effectuées est comprise entre -20°C et 150°C.

Le coefficient thermique de la fréquence de résonance peut se mettre sous la forme :

$$TC[fr(0,T)] \approx q_{f00} + q_{f1}(T - T_f)$$
 (4.3)

Le tableau 4.8 regroupe les principaux résultats obtenus sur les capteurs circulaires.

		(² m	26 μm < h < 44 μm		
		0,1 µm	0,8 µm	$e_{\rm m} = 0,1 \ \mu {\rm m}$	$e_{m} = 0.8 \ \mu m$	
$\mathbf{q}_{\mathbf{f0}}$		-2 ppm/°C 11 ppm/°C		indépendant de h		
$TC[f_r(0,T)]$	q _{f1}	$\approx -5 \text{ ppm/°C}^2$ (hs = 35 µm)		0,2 à 0,4 ppm /°C ² /μm	0,5 à 0,7 ppm /°C²/μm	

Tableau 4.8 : Les principaux résultats obtenus sur les capteurs circulaires en fonction des
paramètres géométriques

 $T_f = 140^{\circ}C$

Tous les résultats sont indépendants de la largeur de l'encastrement

La température T_f est identique à la température T_p ce qui est conforme aux interprétations données dans le premier chapitre (C.f. Fig .1.11).

A la température T_f , le coefficient thermique est égal à q_{f00} et est indépendant de l'épaisseur de la membrane. q_{f00} est très faible (<11 ppm/°C).

D'après la relation (1.81), q_{f00} ne dépend que du coefficient thermique du module de Young. On voit ici que ce modèle simplifié ne permet pas de tenir compte de la réalité puisqu'on devrait obtenir un coefficient proche de - 45 ppm/°C.

La dépendance avec l'épaisseur de l'armature fixe montre que les phénomènes sont complexes et couplés.

Par ailleurs, q_{f1} qui est indépendante de l'épaisseur de l'armature fixe ce qui est conforme à la relation (1.81) dans laquelle q_{f1} est lié au coefficient thermique de la contrainte thermomécanique et donc à la dilatation différentielle du pyrex et du silicium.

 q_{f1} diminue en valeur absolue quand l'épaisseur de la membrane augmente ce qui peut être s'expliquer par la diminution de la raideur précontrainte dans la raideur totale. Par contre, on peut noter que la diminution de q_{f1} avec l'augmentation de l'épaisseur de la membrane est environ deux fois plus grande pour une épaisseur d'électrode fixe de 0,8 µm. Cet effet ne peut pas être expliqué par le modèle proposé et montre que les phénomènes observés sont complexes et couplés.

4.5.3. Comparaison entre les différents modèles de la sensibilité à la pression

Une comparaison a été menée, sur un grand nombre de capteurs, entre les deux modèles permettant de calculer le coefficient thermique de la sensibilité à la pression (C.f. relations (1.82) et (1.83)). Les deux modèles donnent des résultats similaires avec un décalage moyen inférieur à \pm 10 % sur q_{p0} et inférieur à \pm 5 % sur q_{p1}.

Le coefficient thermique de la sensibilité à la pression peut donc être calculé à partir de la détermination du coefficient thermique de la capacité au repos et du coefficient thermique de la sensibilité à la tension ou du coefficient thermique de la fréquence de résonance. Ceci permet de s'affranchir de mesures en pression qui peuvent être lourdes à réaliser et demandent un dispositif expérimental de très hautes performances.

CONCLUSION GENERALE

Dans le premier chapitre, nous avons présenté les modèles théoriques pour des capteurs à membrane circulaire. En régime statique, nous avons explicité les modèles de la sensibilité à la tension et à la pression dans le domaine linéaire. En régime dynamique, nous avons déterminé le modèle électrique du capteur au voisinage de la résonance fondamentale d'une part, et la dépendance de la fréquence de résonance en fonction de la tension appliquée (pression électrostatique) d'autre part. Pour l'ensemble des modèles, nous avons calculé le coefficient thermique.

Dans le deuxième chapitre, nous avons décrit les structures présentées et la technologie mise au point pour les réaliser. Ensuite, nous avons présenté le dispositif de test mis en place qui nous a permis d'accéder à la capacité et à la conductance intrinsèque du capteur en supprimant les capacités parasites.

Dans le troisième chapitre, nous avons étudié le comportement statique du capteur et plus précisément la capacité au repos, la sensibilité à la tension et la sensibilité à la pression. Les caractéristiques à température ambiante ont montré que la capacité au repos et la sensibilité à la pression sont conformes au modèle théorique. La présence du plot central en verre dans la cavité permet d'obtenir un second domaine de fonctionnement linéaire avec une sensibilité comparable aux faibles pressions. Cette caractéristique permet d'envisager des capteurs possédant deux plages de fonctionnement différentes.

La sensibilité du capteur à la température a été étudiée entre -20°C et 150°C à partir de la dérive de la capacité au repos et de la sensibilité à la tension. Les modèles développés ont ensuite permis de calculer la dérive de la sensibilité à la pression.

Les résultats obtenus ont montré que la dérive de la capacité au repos était quasiment linéaire avec la température et devait provenir de la dilatation différentielle du pyrex et de l'électrode fixe déposée au fond de la cavité. Il convient donc de minimiser l'épaisseur de cette électrode et d'utiliser un métal possédant un faible coefficient de dilatation thermique.

La dérive thermique de la sensibilité à la pression est de forme parabolique et correspond à la dilatation différentielle du silicium et du pyrex. Pour une température de 140°C, la dérive

thermique est indépendante de l'épaisseur de la membrane. Cette température correspond à l'égalité des coefficients de dilatation thermiques tangents du silicium et du pyrex. Cette dérive est par ailleurs aussi dépendante de la dérive de la capacité au repos.

Pour minimiser cette dérive de la sensibilité à la pression, il convient donc de minimiser la dérive de la capacité au repos et de réduire les déformations engendrées par la dilatation différentielle du silicium et du pyrex.

L'ensemble des résultats obtenus n'a pas montré de dépendance avec la largeur d'encastrement.

Dans le quatrième chapitre, nous avons étudié la réponse dynamique du capteur au voisinage de la résonance fondamentale.

Nous avons tout d'abord validé le modèle qui permet de calculer la fréquence de résonance fondamentale à température ambiante avec une erreur inférieure à ± 3 %. Il faut noter que la mesure de la fréquence de résonance est une technique très précise qui peut être utilisée pour mesurer les épaisseurs des membranes après une phase de calibration.

Nous avons ensuite validé le modèle qui montre que la fréquence propre fondamentale est proportionnelle à la pression électrostatique pour des variations inférieures à 4 %.

Les caractérisations en température ont été effectuées sur la fréquence propre fondamentale. Les modèles ont montré que la dérive thermique de la fréquence était liée à la variation de la raideur de la membrane à cause des contraintes thermomécaniques. Les conclusions sont aussi similaires à celles données pour la sensibilité à la pression.

Ceci a permis de valider l'équivalence entre les deux modèles utilisés pour calculer la dérive thermique de la sensibilité à la pression. Le premier utilise la dérive thermique de la capacité au repos et de la sensibilité à la tension. Le second modèle utilise la dérive thermique de la capacité au repos et de la fréquence de résonance fondamentale. La différence entre les deux modèles est inférieure à ± 15 %.

L'ensemble des travaux effectués a permis de caractériser finement le comportement statique et dynamique des capteurs de pression capacitifs réalisés à partir de la filière silicium/verre. Les modèles développés ont été dans la majorité des cas validés et ont permis de donner des interprétations sur le comportement observé.

Néanmoins, il serait nécessaire de compléter ces travaux par des simulations thermomécaniques afin de mieux cerner notamment les origines des dérives thermiques qui sont très complexes et qui mettent sûrement en œuvre des phénomènes croisés.

LISTE DES NOTATIONS ET SYMBOLES

Α	Surface de l'armature fixe de la cellule sensible
a _b	Largeur de la zone de soudure
Вр	Bande passante
С	Capacité du circuit électrique équivalent
C(t)	Capacité dynamique de la cellule sensible
C ₀ , C(0)	Capacité au repos de la cellule sensible
Ci	Capacité intrinsèque de la cellule sensible
CL	Modèle linéaire de la réponse en pression de la cellule
C _P	Capacité intervenant dans l'admittance Y
\widetilde{C}	Expression analytique de la réponse en pression sous forme de polynôme
D	Rigidité à la flexion
d	Distance séparant les deux armatures de la capacité
ΔC	Variation relative de la capacité
Δf	Variation relative de la fréquence
ΔΤ	Variation relative de la température
Ε	Module de Young du silicium
E.M.	Etendue de la mesure
e _m	Epaisseur de l'armature fixe
Fe	Force électrostatique
F ₀	Offset de la force électrostatique
Fr	Force de rappel
\mathbf{f}_{0}	Fréquence propre naturelle
f _r	Fréquence de résonance fondamentale
$\mathbf{f}_{\mathbf{v}}$	Nouvelle fréquence propre
Gp	Conductance intervenant dans l'admittance Y
Gi	Conductance de fuite de la cellule sensible
h, hs	Epaisseur du silicium
hc	Profondeurs de gravure du Pyrex

hp	Epaisseur du Pyrex
i(t)	Courant électrique
j	Opérateur complexe
J_m, I_n	Fonctions de Bessel
k _e	Coefficient intervenant dans la force électrostatique
k, k _m	Raideur de la membrane
k _L	Partie linéaire intervenant dans la raideur de la membrane
kσ	Partie liée aux précontrainte dans la raideur de la membrane
L	Inductance du circuit électrique équivalent
m	Masse de la membrane
NL	Non linéarité de la réponse en pression
NL	Non linéarité moyenne
Р	Pression hydrostatique différentielle
Pe	Pression électrostatique
Pext	Pression hydrostatique appliquée sur l'armature déformable
P _{in}	Pression dans la cavité
Q	Facteur de qualité ou de surtension du circuit électrique équivalent
q_{m0}, q_{m1}, q_{m00}	Coefficients des modèles
q_{c0}, q_{f10}, q_{v10} q_{v0}, q_{v1}, q_{v00} q_{p0}, q_{p1}, q_{p00} q_{f0}, q_{f1}, q_{f00} R	Coefficients expérimentaux Rayon de la membrane et de la cavité circulaire
Rm	Rayon de l'armature fixe
R _a	Résistance d'accès à la capacité de la cellule sensible
R _e	Résistance du circuit électrique équivalent
R _i	Résistance de fuite de la cellule sensible
Ru	Rugosité
R.P.E.	Réponse pleine échelle
r, θ	Coordonnées polaires
S	Surface de la membrane
Sp	Sensibilité à la pression
a	
Sp _{sv}	Sensibilité à la pression au travers de l'étude de la sensibilité à la tension
Sp _{Sv} Sp _{fr}	Sensibilité à la pression au travers de l'étude de la sensibilité à la tension Sensibilité à la pression au travers de l'étude de la fréquence de résonance

t	Variable temps
Т	Température
T _m	Température de croisement des modèles
T _v	Température de croisement des coefficients thermiques de la sensibilité à
T _p	la tension Température de croisement des coefficients thermiques de la sensibilité à la pression
T _f	Température de croisement des coefficients thermiques de la fréquence de résonance fondamentale
TC[M]	Coefficient thermique de la variable M
TC[C(0,T)]	Coefficient thermique de la capacité au repos
TC[fr(0,T)]	Coefficient thermique de la fréquence de résonance fondamental des membranes à pression électrostatique appliquée nulle
TC[Sv(T)]	Coefficient thermique de la sensibilité à la tension
TC[Sp(T)]	Coefficient thermique de la sensibilité à la pression
v(t)	Tension d'excitation sinusoïdale
V ₀	Amplitude de v(t)
V	Tension continue
$\overline{\mathrm{V}}$	Tension d'excitation sinusoïdale ajoutée à une tension continue
V _N	Tension continue normalisée
Vp	Tension de basculement ou de collage
W	Déflexion de la membrane
W _N	Déflexion normalisée
W _{eff}	Déflexion efficace de la membrane
w(r,θ)	Déflexion de la membrane au point de coordonnées (r,θ)
w(x,y)	Déflexion de la membrane au point de coordonnées (x,y)
$w_{mn}(r, \theta)$	Fonction propre correspondant à la forme du mode de résonance
x, y	Coordonnées cartésiennes
Y	Admittance électrique
Z	Module de l'impédance équivalente de la cellule et du montage
α_{si}	Coefficient de dilatation thermique de silicium
averre	Coefficient de dilatation thermique de verre
δ_{f}	Pente de la droite q_{f1} (hs)
δ_v	Pente de la droite q_{v1} (hs)
γ	Coefficient de surface
ε,	Permittivité relative du vide $(8,85 \times 10^{-12} \text{ F/m})$

٤r	Permittivité relative du gaz « emprisonné » dans la cavité
λ	Coefficient d'amortissement visqueux
λ_{mn}	Valeur propre fixant les valeurs de fréquence de résonance
ν	Coefficient de poisson
ρ	Masse volumique du silicium
σ(Τ)	Contraintes thermiques générées dans la membrane de silicium
Ω	Pulsation de l'excitation sinusoïdale
$\Omega_{\rm r}$	Pulsation de résonance série du circuit électrique équivalent
Ω_{-} Ω_{+}	Pulsations correspondant à des extrema de Cp
Ψ_{γ}	Fonction de γ

LISTE DES FIGURES

			Pages
Figure 1.1	:	Capteur de pression capacitif au repos	5
Figure 1.2	:	Capteur en fonctionnement ($P_{ext} > P_{in}$)	6
Figure 1.3	:	Variation normalisée de la capacité en fonction de la déflexion normalisée au centre de la membrane	9
Figure 1.4	:	Erreur de linéarité du capteur en fonction de la déflexion normalisée au centre de la membrane	9
Figure 1.5	:	Capteur en fonctionnement (Fe)	10
Figure 1.6	:	Modèle masse-ressort équivalent de la membrane mobile	15
Figure 1.7	:	Circuit électrique équivalent au capteur capacitif, au voisinage de la résonance fondamentale	19
Figure 1.8	:	Allure du comportement fréquentiel de la capacité Cp au voisinage de la résonance fondamentale dans le cas des faibles amortissements	21
Figure 1.9	:	Allure du comportement fréquentiel de la conductance Gp au voisinage de la résonance fondamentale dans le cas des faibles amortissements	21
Figure 1.10	:	Température de croisement	23
Figure 1.11	:	Dilatation relative entre le pyrex et le silicium	24
Figure 1.12	:	La contrainte résiduelle dans le silicium après la soudure thermoélectrique au Pyrex7740 pour différentes températures	25
Figure 2.1	:	<i>Vue en coupe des structures capacitives réalisées avec leur principaux paramètres géométriques</i>	31
Figure 2.2	:	Vue de dessus pour encastrements carré et circulaire	31
Figure 2.3	:	Schéma synoptique des processus de réalisation des cellules sensibles capacitives	34
Figure 2.4	:	Réalisation de la cavité avec le plot	35

Figure 2.5 :	Rugosité sur le verre a) non usiné, b) usiné par HF (2,5%) et c) par HF (12,5%)	37
Figure 2.6 :	Profil de la cavité avec le plot dans le Pyrex	38
Figure 2.7 :	Profil 3D de la cavité, du plot et du chemin de découpe dans le Pyrex	38
Figure 2.8 :	Dépôt due métal et gravure de l'armature fixe et des contacts	39
Figure 2.9 :	<i>Profil 3D de l'armature fixe, du contact et de l'interconnexion traversant le canal</i>	39
Figure 2.10 :	Zoom de Fig. 2.9 sur canal	40
Figure 2.11 :	Surface supérieure du Si utilisé pour les capteurs dont l'encastrement est carré	40
Figure 2.12 :	Soudure Si / Verre	41
Figure 2.13 :	Amincissement de Si	41
Figure 2.14 :	Prise de contact sur le Silicium	42
Figure 2.15 :	Accès aux contacts	42
Figure 2.16 :	Profil 3D de capteur circulaire	43
Figure 2.17 :	Profil 3D de capteur avec encastrement carré	43
Figure 2.18 :	<i>Vue par face inférieure de la zone de scellement après dépôt parylène de a) type D et b) type C</i>	44
Figure 2.19 :	Vue de dessous et de dessus des différentes structures réalisées	45
Figure 2.20 :	Plaquette	46
Figure 2.21 :	Capteur monté sur une embase TO3	46
Figure 2.22 :	Schéma du dispositif expérimental de caractérisation du capteur	47
Figure 2.23 :	<i>Vue en coupe schématique du a) montage des cellules et localisation des capacités parasites et b) dispositif d'accès aux mesures de C_i</i>	49
Figure 2.24 :	Schéma électrique équivalent de l'impédance vue entre A et B	50
Figure 2.25 :	Schéma équivalent effectif de la cellule avec son montage lorsque l'embase est reliée à la masse et après avoir effectué une calibration spécifique du capacimètre	51

Figure 2.26 :	Comportement fréquentiel de la cellule sensible avec son montage a) $ Z $ et b) θ pour $T = 25$ °C et sous vide	52
Figure 3.1 :	Influence de la température sur la capacité au repos de tous les capteurs de la série P5 caractérisés	59
Figure 3.2 :	Influence de la température sur les variations relatives de la capacité de tous les capteurs caractérisés (P1, P2, P5, V3, V11)	60
Figure 3.3 :	Modélisation de la capacité par un modèle linéaire	61
Figure 3.4 :	Exemple de coefficient thermique de la capacité au repos	62
Figure 3.5 :	Coefficients thermiques de la capacité au repos de tous les capteurs caractérisés	62
Figure 3.6 :	Corrélation entre q_{c0} et l'épaisseur de la membrane pour la série (P1, P2)	64
Figure 3.7 :	<i>Exemple de la corrélation entre</i> q_{c0} <i>et l'épaisseur de la membrane pour une type de la série P5</i>	65
Figure 3.8 :	Corrélation entre q_{c0} et l'épaisseur de la membrane pour la série V3 et V11	66
Figure 3.9 :	Corrélation entre q _{c0} et l'épaisseur de l'armature fixe pour la série (P5) et la série (P1, P2)	68
Figure 3.10 :	Influence de la forme de l'encastrement sur q_{c0}	69
Figure 3.11 :	<i>Variations de la capacité en fonction du carré de la tension pour différentes températures</i>	72
Figure 3.12 :	Modélisation de la sensibilité à la tension par un polynôme du deuxième degré	73
Figure 3.13 :	Coefficients thermiques de la sensibilité à la tension pour la série P5	74
Figure 3.14 :	Coefficients thermiques de la sensibilité à la tension pour les séries P1 et P2	74
Figure 3.15 :	Coefficients thermiques de la sensibilité à la tension pour la série V3	75
Figure 3.16 :	Variations du coefficient q_{v0} en fonction de q_{v1} pour la série P5 (encastrement circulaire) – $e_m = 0, 1 \mu m$	77
Figure 3.17 :	Variations du coefficient q_{v0} en fonction de q_{v1} pour les séries P2 et P1(encastrement circulaire) – $e_m = 0,8\mu m$	77

Figure 3.18 :	Variations du coefficient q_{v0} en fonction de q_{v1} pour la série V3 (encastrement carré) – $e_m = 0,8 \ \mu m$	78
Figure 3.19 :	<i>Exemple de corrélation entre</i> q_{vl} <i>et l'épaisseur de la membrane dans le cas où l'armature fixe est fine</i>	80
Figure 3.20 :	<i>Exemple de corrélation entre</i> q_{vl} <i>et l'épaisseur de la membrane dans le cas où l'armature fixe est épaisse</i>	80
Figure 3.21 :	Coefficients thermiques de la sensibilité à la tension pour les capteurs de la série V3	82
Figure 3.22 :	Comparaison de TC[Sv(T)] pour les deux différents encastrements	83
Figure 3.23 :	Influence de la pression sur la capacité pour $T = 30^{\circ}C$	85
Figure 3.24 :	<i>Réponse en pression linéarisée pour des faibles différences de pression</i>	86
Figure 3.25 :	Réponse en pression linéarisée après avoir touché le plot	86
Figure 3.26 :	Comparaison (mesure - modéle) de la réponse en pression	87
Figure 3.27 :	Variations du coefficient q_{p0} en fonction de q_{p1} pour la série P5 (encastrement circulaire) – $e_m = 0, 1 \mu m$	88
Figure 3.28 :	Variations du coefficient q_{p0} en fonction de q_{p1} pour les séries P2 et P1 (encastrement circulaire) – $e_m = 0,8 \ \mu m$	89
Figure 3.29 :	Coefficients thermiques de la sensibilité à la pression (série V3)	90
Figure 3.30 :	Comparaison de TC[Sp (T)] pour les deux différents encastrement	91
Figure 4.1 :	Comparaison mesure -modèle du comportement fréquentiel de a) Gp et b) Cp, autour de la résonance fondamentale à $T=30^{\circ}C$	100
Figure 4.2 :	Comportement fréquentiel de a) la conductance Gp et b) la capacité Cp, au voisinage de la résonance fondamentale, pour différentes tensions continues à $T=25$ °C	102
Figure 4.3 :	Dépendance des paramètres QC et $1/R_e$ en fonction du carré de la tension continue	103
Figure 4.4 :	Dépendance du paramètre C en fonction de la tension continue	104
Figure 4.5 :	Dépendance du paramètre 1/L en fonction de la tension continue	104
Figure 4.6 :	Dépendance du paramètre Q en fonction du carré de la tension continue	105

Figure 4.7 :	Comparaison (mesure - modèle) des variations de la fréquence de résonance en fonction du carré de la tension normalisée	106
Figure 4.8 :	Modélisation de la fréquence de résonance par un polynôme du deuxième degré	107
Figure 4.9 :	Coefficients thermiques de la fréquence de résonance de tous les capteurs circulaires caractérisés	108
Figure 4.10 :	Variations du coefficient q_{f0} en fonction de q_{f1} pour la série P5 (encastrement circulaire) – $e_m = 0, 1 \mu m$	110
Figure 4.11 :	Variations du coefficient q_{f0} en fonction de q_{f1} pour les séries P2 et P1 (encastrement circulaire) $-e_m = 0.8 \mu m$	110
Figure 4.12 :	Variations du coefficient q_{f0} en fonction de q_{f1} pour la série V3 (encastrement carré) $- e_m = 0,8 \mu m$	111
Figure 4.13 :	<i>Exemple de corrélation entre</i> q_{f1} <i>et l'épaisseur de la membrane dans le cas où l'armature fixe est fine</i>	112
Figure 4.14 :	<i>Exemple de corrélation entre</i> q_{f1} <i>et l'épaisseur de la membrane dans le cas où l'armature fixe est épaisse</i>	113
Figure 4.15 :	Influence de la largeur de soudure et de l'épaisseur de la membrane sur le coefficient thermique de la fréquence de résonance	114
Figure 4.16 :	Comparaison de TC[fr(0,T)] pour les deux différents encastrements	115
Figure 4.17 :	<i>Comparaison des deux modèles du coefficient thermique de la sensibilité à la pression</i>	116
Figure 4.18 :	Les nombres des capteurs en fonction des écarts normalisés entre les offsets ($\Delta q_{p0} / q_{p0s_v}$) des deux modèles du coefficient thermique de la sensibilité à la pression	118
Figure 4.19 :	Les nombres des capteurs en fonction des écarts normalisés entre les pentes ($\Delta q_{p1}/q_{p1sv}$) des deux modèles du coefficient thermique de la sensibilité à la pression	118

Pages

LISTE DES TABLEAUX

Tableau 1.1 :	Valeurs de λ_{mn}	14		
Tableau 2.1 :	Principales caractéristiques des matériaux utilisés pour fabriquer les capteurs pour fabriquer les capteurs	32		
Tableau 2.2 :	Valeurs moyennes des paramètres géométriques des capteurs étudiés	33		
Tableau 2.3 :	Paramètres de la gravure du Pyrex par HF dilué	35		
Tableau 2.4 :	Uniformité de vitesse de gravure du pyrex (écart type normalisé/moyenne)	36		
Tableau 2.5 :	Différents paramètres de la rugosité du verre obtenue avant et après gravure mesuré par un profilomètre mécanique (Tencor)	36		
Tableau 2.6 :	Conditions du dépôt de l'aluminium	39		
Tableau 2.7 :	Conditions expérimentales de l'assemblage Si /verre	41		
Tableau 2.8 :	Paramètres de la gravure KOH	42		
Tableau 2.9 :	Conditions de gravure RIE de Si	42		
Tableau 2.10 :	Principales propriétés des Parylène utilisés	44		
Tableau 2.11 :	Conditions de mesures	47		
Tableau 2.12 :	Précision des mesures	48		
Tableau 2.13 :	Définition des principales capacités entre les points de la mesure (A et B)	49		
Tableau 3.1 :	Valeurs théoriques et expérimentales de C(0) des capteurs étudiés (T=30°C, f=10 kHz, P=0)	58		
Tableau 3.2 :	Les principaux paramètres des capteurs étudiés	59		
Tableau 3.3 :	Coefficients donnés par le modèle	61		
Tableau 3.4 :	Valeurs de q_{c0} en fonction des paramètres géométriques	63		
Tableau 3.5 :	Valeurs moyennées de q_{c0} en fonction des paramètres géométriques			
--	--	-----	--	--
Tableau 3.6 :	Valeurs de q_{c0} recalculées des différents capteurs circulaires pour hs =35 μ m			
Tableau 3.7 :	Sensibilité à la tension des différents capteurs étudiés non scellés pour $T=30^{\circ}C$	70		
Tableau 3.8 :	Coefficients donnés par le modèle	73		
Tableau 3.9 :	Influence des dimensions sur la valeur des paramètres caractéristiques du coefficient thermique de la sensibilité à la tension	76		
Tableau 3.10 :	Valeurs du coefficient thermique de la sensibilité à la tension à la température de croisement	79		
Tableau 3.11 :	Cableau 3.11 : Valeurs de q_{vl} recalculées des différents capteurs circulaires pou hs =35 μm			
Tableau 3.12 :	eau 3.12 : Sensibilité à la pression calculée pour différents capteurs étudiés non scellés			
Tableau 3.13 :	Valeurs du coefficient thermique de la sensibilité à la pression à la température de croisement	89		
Tableau 3.14 :	Les principaux résultats obtenus sur les capteurs circulaires en fonction des paramètres géométriques	93		
Tableau 4.1 :	Comparaison (Théorie- Mesure) des fréquences de résonance des capteurs réalisés pour $T=30^{\circ}C$	101		
Tableau 4.2 :	`ableau 4.2 : Valeurs des éléments de circuit électrique équivalent au capteur (V3S1), au voisinage de la résonance fondamentale, pour différentes tensions continues à $T=25$ °C			
Tableau 4.3 :	Coefficients donnés par la régression	107		
Tableau 4.4 :	: Influence des dimensions sur la valeur des paramètres caractéristiques du coefficient thermique de la fréquence de résonance			
Tableau 4.5 :	<i>Valeurs du coefficient thermique de la fréquence de résonance à la température de croisement</i>	112		
Tableau 4.6 : Valeurs de q_{fl} recalculées des différents capteurs circulaires po $hs = 35 \ \mu m$				

Tableau 4.7 :	Valeurs des paramètres du coefficient thermique de la sensibilité	117
	à la pression pour les deux modèles et les écarts normalisés	

Tableau 4.8 :Les principaux résultats obtenus sur les capteurs circulaires en120fonction des paramètres géométriques

LISTE DES REFERENCES BIBLIOGRAPHIQUES

[1] N. BENMOUSSA

Conception, modélisation et réalisation d'un capteur de pression capacitif microélectronique Thèse de doctorant de l'UPS de Toulouse, Juillet 1985.

[2] Y. NACIRI

Contribution à l'étude de capteurs de pression capacitifs miniaturisés Thèse de doctorant de l'UPS de Toulouse, Octobre 1986.

P. Pons and G. Blasquez Low-cost High-sensitivity Integrated Pressure and Temperature Sensor Sensors and Actuators A, 41-42 (1994) 398-401.

P. Pons, G. Blasquez and R. Behocaray
 Feasibility of Capacitive Pressure Sensors Without Compensation Circuits
 Sensors and Actuators A, 37-38 (1993) 112-115.

[5] A. Hanneborge, P. Ohlkers *A capacitive silicon pressure sensor with low TC0 and high long-term stability* Sensors and Actuators, A. 21-23(1990) pp. 151-154.

[6] Y.S. Lee and K.D. Wise A batch-fabricated silicon capacitive pressure transducer with low temperature sensitivity. IEEE Transactions on Electron Devices, Vol. ED-29, NO.1, January1982.

- [7] D. Catling High-sensitivity silicon capacitive sensors for measuring medium-vacuum gas pressure. Sensors and Actuators A64 (1998) 157-164.
- [8] A. Jornod and F. Rudolf
 High-Precision Capacitive Absolute Pressure Sensor Sensors and Actuators, 17 (1989), pp. 415-421.

[9] R. PUERS *Capacitive sensors: when and how to use them* Sensors and Actuators, A37-38 (1993) 93-105.

[10] G. BLASQUEZ, P. PONS and A. BOUKABACHE *Capabilities and limits of silicon pressure sensors* Sensors and Actuators, 17 (1989) 387-403.

- [11] A. BOUKABACHE, Ph. MENINI, P. PONS *Microcapteurs de pression* Techniques de l'ingénieur, Traité électronique, R 2 070 -1/ R 2 070 -9.
- [12] H. BAU, N de ROOJI, B. HLOECK. SENSORS – *Mechanical sensors* Volume 7, pp. 110-125.
- [13] T. KUDOH, S. SHOJI and M. ESASHI An integrated miniature capacitive pressure sensor Sensors and Actuators A29 (1991) 185-193.
- T. Nagata, H. Terabe, S. Kuwahara, S. Sakurai, O.Tabata, S. Sugiyama and M. Esashi.
 Digital compensated capacitive pressure sensor using CMOS technology for low-pressure measurements. Sensors and Actuators A, 34 (1992) 173-177.
- [15] M. PEDERSEN, M.G.H. MEIJERINK, W. OLTHUIS, P.BERGVELD An IC-compatible polyimide pressure sensor with capacitive readout Sensors and Actuators A63 (1997) 163-168.
- Ph. MENINI, Ph. DONDON, G.BLASQUEZ, P. PONS, P. FAVARO,
 C. DOUZIECH
 Characterisation and modelling analysis of a capacitive pressure sensor based on a silicon/Pyrex* sensing cell and a BICMOS A/D integrated circuit
 Sensors and Actuators 85 (2000) 90-98.
- [17] S.Chatzandroulis, D. Goustouridis, P. Normand, D. Tsoukalas A solid-state pressure-sensing microsystem for biomedical applications Sensors and Actuators A 62 (1997) 551-555.
- [18] C. Hierold, B. Clasbrummel, D. Behrend, T. Scheiter, M. Steger, K. Oppermann, H. Kapels, E. Landgraf, D. Wenzel, D. Etzrodt *Low power integrated pressure sensor system for medical applications* Sensors and Actuators 73 (1999) 58-67.
- [19] O. Tohyama, M. Kohashi, M. Sugihara, H.Itoh
 A fiber-optic pressure microsensor for biomedical applications Sensors and Actuators A66 (1998) 150-154.
- [20] B. PUERS, A. VAN DEN BOSSCHE, E.PEETERS and W. SANSEN An implantable pressure sensor for use in cardiology Sensors and Actuators, A21 – A23 (1990) 944-947.
- M.J.S. SMITH, L. BOWMAN and J.D. MEINDL
 Analysis, Design, and Performance of a Capacitive Pressure Sensor IC
 IEEE Transactions on Biomedical Engineering, Vol. BME-33, NO.2, February 1986.

- [22] I. IGARASHI New technology of sensors for automotive applications Sensors and Actuators, 10 (1986) 181-193.
- [23] D. ESTEVE, A. COUSTRE et M. GARAJEDAGUI L'intégration des Systèmes Electroniques dans l'Automobile du XXIè siècle Ouvrage collectif, Ed. Cépaduès, juin 1995.
- [24] G. Blasquez, X. Chauffleur, P. Pons, C. Douziech, P. Favaro, Ph. Menini Intrinsic thermal drift in capacitive pressure sensors: mechanisms and minimisation Sensors and Actuators A85 (2000) 65-69.
- [25] G. Blasquez, X. Chauffleur, P. Pons, C. Douziech, P. Favaro, Ph. Menini *Thermal drift and chip size in capacitive pressure sensors* EUROSENSORS XIII, The 13th European Conference on Solid-State Transducers September 12-15, 1999, The Hague, The Netherlands.
- [26] G. Blasquez, C. Douziech, P. Pons *Analysis characterisation and optimisation of temperature coefficient parameters in capacitive pressure sensors* Sensors and Actuators A 93 (2001) 44-47.

[27] X. CHAUFFLEUR Modélisation par la méthode des éléments finis du comportement thermomécanique de capteurs de pression capacitifs et piézorésistifs en silicium Thèse de doctorant de l'UPS de Toulouse, Janvier 1998.

 [28] A. Cozma *Characterisation and optimisation of electrostatic bonding of wafers* Master Thesis KU Leuven, Belgium, 1994.

[29] A. Cozma and B. Puers *Charaterization of the electrostatic bonding of silicon and Pyrex glass* Journal of Micromechanics and Microengineering (5) (1995), pp. 98-102.

- [30] C. DOUZIECH
 Comportement thermique des capteurs de pression capacitifs au silicium Thèse de doctorant de l'UPS de Toulouse, Mars 2001.
- [31] G. Blasquez, Y. Naciri, N. Ben Moussa and P. Pons Static response of miniature capacitive sensors with square or rectangular silicon diaphragm Revue de Physique appliquée, 22 (Juillet 87), pp. 505-510.
- [32] S. Timoshenko and S. Woinowsky-krieger *Theory of plates and Shells, 2nd ed* New York: McGraw-Hill, 1959.

- [33] Wen H. KO Solid-State Capacitive Pressure Transducers Sensors and Actuators, 10 (1986), pp. 303-320.
- [34] H. CHAU and K.D. WISE
 Scaling limits in batch-fabricated silicon pressure sensors
 IEEE Transactions on Electron Devices, Vol. ED-34, NO.4, April 1987.
- [35] R. Puers, D. Lapadatu
 Electrostatic forces and their effects on capacitive mechanical sensors Sensors and Actuators, A56 (1996) 203-210.
- [36] R. Plonsey and R.E. Collin *Principles and applications of electromagnetic fields* New York: McGraw-Hill 1976.
- [37] E.S. Hung and S.D. Senturia *Extending the travel range of analog-tuned electrostatic actuators* Journal of Microelectromechanical Systems, Vol. 8, NO.4, December 1999, pp.497-505.
- [38] I. Bucher, A. Elka and E. Balmes On the dynamics and modelling of a micro electromechanical structure (MEMS) http://mechatronics.technion.ac.il/dynamics/pdf/bucher_no_33.pdf
- [39] Y. He, J. Marchetti, C. Gallegos, F. Maseeh Accurate fully-coupled natural frequency shift of MEMS actuators to voltage bias and other external forces http://www.intellisensesoftware.com/ papers/Accurate%20Fully-Coupled.pdf
- [40] WERNER SOEDEL Vibrations of shells and plates New York: Mechanical Engineering /10 -1981.
- [41] P.N. RATIER
 Simulation du comportement des capteurs de pression capacitifs microélectroniques
 Thèse de doctorant de l'INSA de Toulouse, Juin 1993.
- [42] Francis Tay E.H, Kumaran R, B.L.Chua and Logeeswaran VJ Electrostatic Spring Effect on the Dynamic Performance of Microresonators http://www.comppub.com/publications/MSM/2000/pdf/T56.01.pdf
- [43] H. CHEN, O. ROBERT
 Influence de la tension de polarisation et de l'amplitude d'oscillation sur la fréquence propre d'un micro-résonateur électrostatique
 JNRDM 2002, Grenoble, France, April 2002, p.81-82.

- [44] P. PONS
 Comportement dynamique des plaques minces de Silicium Application aux capteurs de pression Thèse de doctorant de l'INSA de Toulouse, Mai 1990.
- [45] P. PONS, G. BLASQUEZ, and N. RATIER Harmonic response of silicon capacitive pressure sensor Sensors and Actuators, A, 22-27 (1991), pp. 301-305.
- [46] M. AL Bahri, G. Blasquez, P. Pons, Ph. Menini
 Capteur de pression capacitif protégé contre les court circuits Revue internationale d'héliotechnique -N°30 -Automne 2004, pp. 39- 41.
- [47] Kurt.E. PETERSEN
 Silicon as a Mechanical Material
 Proceedings of the IEEE, vol. 70, nº 5, May 1982, pp. 420-457.
- [48] CORNING FRANCE Catalogue
- [49] J.P. DAVEZAC
 Le verre en électronique
 Techniques de l'ingénieur, Traité électronique, E 290-1 / E 291-12.
- [50] G. WALLIS and D.I. POMERANTZ
 Field Assisted Glass Metal Sealing Journal of Applied Physics, Vol. 40, NO.10, (1969) pp. 3946-3949.
- [51] P.R. Younger *Hermetic Glass Sealing by Electrostatic Bonding* Journal of Non-crystalline Solids, 38 and 39 (1980) pp. 909-914.
- [52] T. Rogers, J. Kowal Selection of Glass: Anodic bonding conditions and material compatibility for silicon-glass capacitive pressure sensors Sensors and Actuators A 46-47, (1995) pp. 113-120.
- [53] P. FAVARO Soudure moléculaire Silicium /Verre - Développement de procédés applicables aux microsystèmes Thèse de doctorant de l'UPS de Toulouse, Février 2000.
- [54] G. WALLIS
 Direct-current polarization during field-assisted glass-metal sealing
 Journal of the American Ceramic Society, Vol. 53, No. 10, (1970) pp. 563-567.

[55] G. WALLIS *Field assisted glass metal sealing* Electrocomponent Science and Technology, Vol. 2, No. 1, (1975) pp. 45-53.

- [56] Ed. Palik, O.J. Glembocki, and I. Heard Study of Bias-Dependant Etching of Si in Aqueous KOH J. Electrochem. Soc., Vol. 134, No. 2, (1987) pp. 404-409.
- [57] H. Schroder, E. OBERMEIER and A. STECKENBORN
 Effects of the etchmask properties on the anisotropy ratio in anisotropic etching of {100} silicon in aqueous KOH
 Micromechanical and Microengineering, Vol. 8, (1998) pp. 99-103.
- [58] G. KAMINSKY
 Micromachining of silicon mechanical structures
 Journal of Vacuum Science Technology. B, Vol. 3, No. 4, July/August 1985.
- [59] A. PERMUY, E. DONZIER, F. REZGUI
 Capteurs microélectroniques Techniques de l'ingénieur, Traité électronique, E 3 093 4/ E 3 093 5.
- [60] H-S. Noh, K-S. Moon, A. Cannon, P-J. Hesketh, C P. Wong Wafer bonding using microwave heating of parylene intermediate layers Journal of Micromechanics and Microengineering.14 (2004) 625-631. http://ej.iop.org/links/q40/bRJEB76JWBWLZY5QQgNIAA/jmm4_4_025.pdf
- [61] Typical Engineering Properties of Commercial Parylenes Documentation <u>http://www.paratech.nu</u>
- [62] G. DEHAINE Assemblage des circuits électroniques – Packaging Techniques de l'ingénieur, Traité électronique, E 2 435 -8.

[63] Ph. MENINI Faisabilité d'un capteur de pression capacitif miniature sur silicium Thèse de doctorant de l'UPS de Toulouse, Février 1998.

ANNEXES

Annexe A Modélisation de la réponse en pression

La figure A.1 illustre l'influence de la pression appliquée sur l'armature déformable du capteur circulaire dans le cas où $P = [P_{ext} - P_{in}] > 0$.

Figure A.1 : Capteur en fonctionnement ($P_{ext} > P_{in}$)

La réponse du capteur à la pression P s'écrit alors par :

$$C(P) = \varepsilon_0 \varepsilon_r \int_{\gamma,R}^{\gamma_2 R} \frac{2\pi dr}{d - w(r)}$$
(A.1)

où R représente la rayon de la membrane.

$$C(P) = \frac{\pi \varepsilon_0 \varepsilon_r}{d} \int_{\gamma_1 R}^{\gamma_2 R} \frac{2r}{1 - \frac{W(0)}{d} (1 - \frac{r^2}{R^2})^2} dr$$
(A.2)

où

$$\frac{A}{S} = \frac{\pi(\gamma_2^2 R^2 - \gamma_1^2 R^2)}{\pi R^2} = \gamma_2^2 - \gamma_1^2$$
(A.3)

où A est la surface de l'armature fixe et S est la surface de la membrane

Si on pose :

$$x = (1 - \frac{r^2}{R^2})(\frac{w(0)}{d})^{1/2} \implies 2rdr = -R^2(\frac{w(0)}{d})^{1/2} dx$$
(A.4)

et donc

$$r_{1} = \gamma_{1}R \implies x_{1} = (1 - \gamma_{1}^{2})(\frac{w(0)}{d})^{1/2}$$

$$r_{2} = \gamma_{2}R \implies x_{2} = (1 - \gamma_{2}^{2})(\frac{w(0)}{d})^{1/2}$$
(A.5)

A partir de (A.5), la relation (A.2) devient :

$$C(P) = \frac{\varepsilon_0 \varepsilon_r \pi R^2}{d} \sqrt{\frac{d}{w(0)}} \int_{x_2}^{x_1} \frac{dx}{1 - x^2}$$
(A.6)

$$C(P) = \frac{\varepsilon_0 \varepsilon_r S}{2d} \sqrt{\frac{d}{w(0)}} \left[\ln \frac{1+x}{1-x} \right]_{x_2}^{x_1}$$
(A.7)

$$C(P) = \frac{C(0)}{2(\gamma_2^2 - \gamma_1^2)} \sqrt{\frac{d}{w(0)}} \left[\ln \frac{[1 + x_1]}{[1 - x_1]} \frac{[1 - x_2]}{[1 + x_2]} \right]$$
(A.8)

En développement la relation (A.8) et d'après (A.5), on obtient :

$$C(P) = \frac{C(0)}{2(\gamma_2^2 - \gamma_1^2)} \sqrt{\frac{d}{w(0)}} \ln \left[\frac{\frac{d}{w(0)} + (\gamma_2^2 - \gamma_1^2) \sqrt{\frac{d}{w(0)}} + (\gamma_2^2 - 1)(1 - \gamma_1^2)}{\frac{d}{w(0)} - (\gamma_2^2 - \gamma_1^2) \sqrt{\frac{d}{w(0)}} + (\gamma_2^2 - 1)(1 - \gamma_1^2)} \right]$$
(A.9)

On peut développer l'équation (A.8) en série de Taylor :

$$C(P) = \frac{C(0)}{(\gamma_2^2 - \gamma_1^2)} \sqrt{\frac{d}{w(0)}} \left[x_1 - x_2 + \frac{x_1^3 - x_2^3}{3} + \frac{x_1^5 - x_2^5}{5} + \cdots \right]$$
(A.10)

où

$$\frac{1}{2}\ln\frac{1+x}{1-x} = \tanh^{-1}(x) = x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \dots$$
(A.11)

A partir de (A.6), la relation (A.10) devient :

$$C(P) = C(0) \begin{bmatrix} 1 + \frac{w(0)}{d} \frac{\left[(1 - \gamma_1^2)^3 - (1 - \gamma_2^2)^3\right]}{3(\gamma_2^2 - \gamma_1^2)} + \frac{w^2(0)}{d^2} \frac{\left[(1 - \gamma_1^2)^5 - (1 - \gamma_2^2)^5\right]}{5(\gamma_2^2 - \gamma_1^2)} \\ + \dots + \frac{w^{n-1}(0)}{d^{n-1}} \frac{\left[(1 - \gamma_1^2)^{2n-1} - (1 - \gamma_2^2)^{2n-1}\right]}{(2n-1)(\gamma_2^2 - \gamma_1^2)} + \dots \end{bmatrix}$$
(A.12)

et plus simple :

$$C(P) = C(0) \sum_{n=1}^{\infty} \frac{w^{n-1}(0)}{d^{n-1}} \frac{\left[(1-\gamma_1^2)^{2n-1} - (1-\gamma_2^2)^{2n-1} \right]}{(2n-1)(\gamma_2^2 - \gamma_1^2)}$$
(A.13)

Dans le régime quasi linéaire (w(0)<<d) et en se limitant en premier terme, la relation (A.12) se réduit à :

$$C(P) \cong C(0) \left\{ 1 + \frac{w(0)}{d} \Psi_{\gamma_{1,2}} \right\}$$
(A.14)

où

$$\Psi_{\gamma_{1,2}} = \frac{(1 - \gamma_1^2)^3 - (1 - \gamma_2^2)^3}{3(\gamma_2^2 - \gamma_1^2)}$$
(A.15)

Pour $\gamma_2 = 1$ et $\gamma_1 = 0$:

$$\Psi_{\gamma_{1,2}} = \frac{1}{3}$$
 (A.16)

La réponse du capteur approchée alors peut se mettre sous la forme suivante :

$$C_{L}(P) \cong C(0)[1 + \frac{w(0)}{3d}] \cong C(0)[1 + \frac{w_{eff}}{d}]$$
 (A.17)

Annexe B Uniformité de la profondeur de la cavité (hc)

Distribution des écarts à la profondeur moyenne de la cavité, normalisées à cette dernière (%)

Structuro	HF	hcmin	hcmax	hcmoy	V	Ecart type σ	σ _N normalisé
Suucture	dilué à	(µm)	(µm)	(µm)	(%)	(µm)	(%)
P2	12,5%	3,89	4,4	4,115	0,051	0,1556	3,78
P9		3,279	3,647	3,459	0,037	0,0934	2,70
P5	2,5%	4,2	4,4	4,3	0,020	0,0773	1,80
P1		4,64	4,84	4,721	0,020	0,0426	0,90

Annexe C Uniformité de l'épaisseur de la membrane (hs)

Distribution des écarts à la moyenne de l'épaisseur de la membrane, normalisées à cette dernière (%)

Structure	hsmin	hsmax	hSmoy	V	Ecart type (σ)	Normalisé (σ _N)
	(µm)	(µm)	(µm)	(%)	(µm)	(%)
P2	26	48	37	8,365	5,8	15,68
P5	26	46	39	7,663	4,2	10,77
P1	20	45	34,5	9,416	5,8	16,81

Annexe D Définition de la non linéarité NL

Un exemple de réponse en pression à température ambiante est représenté sur la figure D.1.

Figure D.1 : Modélisation de la réponse en pression de la cellule sensible

On peut remarquer que la réponse de la cellule peut être modélisée par une droite à laquelle on ajoute un terme de non linéarité. Autrement dit le modèle peut être mis sous la forme :

$$C(P) = C_{L}(0) + S_{P} \times P + NL(P)$$
(D.1)

Cette modélisation est représentée sur la figure D.1 pour une étendue de mesure qui corresponde à une variation normalisée de la capacité au repos de 24,46 % où :

 $C_L(0)$ représente la valeur de la capacité correspondant à l'intersection de la droite des moindres carrés avec l'axe des ordonnées pour P = 0. C'est donc l'ordonnée à l'origine et nous l'appellerons dans ce qui suit « **Offset** » ou « **Capacité au repos** ».

Sp représente la pente de cette droite. C'est la **sensibilité** de la cellule à la pression. Elle s'exprime en pF /bar.

NL est la **non linéarité** de la réponse en pression. Elle se calcule en faisant la différence entre un polynôme de régression sur les points de mesure $(\tilde{C}(P))$ et la droite des moindres carrés ($C_L(P)$) de ces mêmes points.

Nous exprimerons cette différence en pourcentage de la réponse pleine échelle (R.P.E.), ce que l'on peut exprimer par :

$$NL=100 \times \frac{\tilde{C}(P) - C_{L}(P)}{R.P.E.}$$
(D.2)

où

R.P.E. =
$$C_L(E.M) - C_L(0)$$
 (D.3)

La figure D.2 illustre l'évaluation de la non linéarité en fonction de la pression mesurée pour le cas exposé sur la figure D.1. Afin d'obtenir une information indépendante de la sensibilité du capteur, la NL est exprimée en fonction de la variation normalisée de la capacité.

Pour pouvoir comparer différentes non linéarités obtenues pour différentes étendues de mesure, nous avons défini la non linéarité moyenne qui s'écrit de la manière suivante :

$$\overline{\mathrm{NL}} = \pm \frac{\left|\mathrm{NL}_{(\mathrm{max})}\right| + \left|\mathrm{NL}_{(\mathrm{min})}\right|}{2} \tag{D.4}$$

Figure D.2 : Un exemple d'évaluation de la non linéarité en fonction de la variation normalisée de la capacité

Influence de la température sur le comportement statique et dynamique des capteurs de pression capacitifs au silicium

<u>RESUME</u> :

Ce mémoire traite de l'étude du comportement thermique des capteurs de pression capacitifs en silicium fabriqués à partir de la filière silicium/verre. Leur comportement statique et dynamique a été étudié pour différentes conceptions.

Dans le premier chapitre, les modèles théoriques sont développés pour des capteurs à membrane circulaire. En régime statique, les modèles (sensibilité à la pression et à la tension) sont explicités dans le domaine linéaire. En régime dynamique, la dépendance de la fréquence de résonance est étudiée en fonction de la tension appliquée (pression électrostatique). Pour l'ensemble des modèles, le coefficient thermique a été calculé.

Le deuxième chapitre décrit la géométrie du capteur étudié, la technologie utilisée ainsi que le dispositif de test mis en place.

La caractérisation du comportement statique en température a été étudiée dans le troisième chapitre. Il a été montré que le coefficient thermique de la capacité au repos est presque constant, qu'il ne dépend pas de la largeur de soudure et qu'il est fonction de l'épaisseur de la membrane, de l'épaisseur de l'armature fixe et la forme de l'encastrement. Le coefficient thermique de la sensibilité à la tension et de la sensibilité à la pression varie de manière quasi linéaire entre -20°C et +150°C.

La caractérisation du comportement dynamique en température a été étudiée dans le quatrième chapitre. Il est montré que le coefficient thermique de la fréquence de résonance varie linéairement entre -20°C et +150°C. Il est apparu que la largeur de soudure comme l'épaisseur de l'armature fixe, n'influence pas sur le coefficient thermique de la fréquence de résonance et que ce dernier dépend très fortement de l'épaisseur de la membrane et peu de la forme de l'encastrement. Une comparaison entre deux modèles du coefficient thermique de la sensibilité à la pression a été menée sur un grand nombre de capteurs. Elle a permis de valider ces deux modèles et de démontrer que la sensibilité à la pression dépend de la fréquence de résonance.

<u>MOTS CLES</u> : capteurs de pression capacitifs, influence de la température, coefficient thermique, silicium, modélisation, micro-technologies, comportement statique et dynamique

Influence of the temperature on the static and dynamic behavior of silicon capacitive pressure sensors

ABSTRACT:

This memory treats of the study of the thermal behavior of silicon capacitive pressure sensors manufactured based on silicon/glass technology. Their static and dynamic behavior is studied for various designs.

In the first chapter, the theory models are developed for sensors with circular diaphragm. In static mode, the models (pressure and tension sensitivities) are clarified in the linear field. In dynamic mode, the dependence of resonance frequency is studied with respect to the applied tension (electrostatic pressure). The thermal coefficient has been calculated for all the set of models.

The second chapter describes the geometry of the sensor under study, the used technology as well as the test platform.

The characterization of the static behavior with respect to the temperature is studied in the third chapter. It has been found that the thermal coefficient of the capacitance at rest is almost constant and independent of the bonded area width. On the other hand, this thermal coefficient is dependent on the diaphragm thickness, the fixed metal plate thickness and the embedding form. The thermal coefficient of the tension sensitivity and the pressure sensitivity varies in quasi-linear manner between -20°C and +150°C. The characterization of the dynamic behavior with respect to the temperature is studied in the fourth chapter. We have found that the thermal coefficient of the resonance frequency varies linearly between -20°C and +150°C. It appeared that the width of bonded area as the thickness of the fixed metal plate does not influence the thermal coefficient of the resonance frequency. This latter depends much more on the thickness of the diaphragm than on the embedding form, which the influence is minor. A comparison between the two models of the thermal coefficient of pressure sensitivity was carried out on a large number of sensors. It validates these two models and demonstrates that the pressure sensitivity depends on the resonance frequency.

<u>KEY WORDS</u> : capacitive pressure sensors, thermal coefficient, silicon, compensation, silicon, modelling, micro-technologies, static and dynamic behavior.