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Résumé

Titre

Extraction en Milieu Supercritique : Etude Spectroscopique des Interactions – Com-

paraison avec des Solvants Classiques

Résumé Court

Le dioxyde de carbone supercritique (SF-CO2) a été choisi afin d’étudier l’extraction

en milieu supercritique d’ions métalliques tels que le césium et l’uranium. Un intérêt

particulier a été porté au rôle de l’eau lors de ces extractions ainsi qu’à son interaction

avec des agents chélateurs (AC). En première partie, les éthers couronne ont été

choisis comme AC du césium et leur interaction avec l’eau a été étudiée dans le

SF-CO2 en utilisant la spectroscopie InfraRouge à Transformée de Fourier (IR-TF).

Une configuration sandwich entre deux éthers couronne et une molécule d’eau a été

observée dans le SF-CO2. Pour les configurations simple et pontée, l’équilibre a été

défini et l’enthalpie de formation de la liaison hydrogène a été calculée. Ces résultats

ont ensuite été comparés à ceux obtenus dans des mélanges de CHCl3 et de CCl4 en

utilisant la spectroscopie à Résonance Magnétique Nucléaire (RMN). Pour conclure

cette première partie, le rôle de l’eau a été étudié lors de l’extraction du picrate de

césium par le DCH18C6 et les constantes d’équilibre ont été déterminées.

Dans une deuxième partie, l’extraction de l’uranium a été étudiée dans le SF-CO2.

Des complexes de Phosphate de TriButyle (TBP), d’eau et d’acide nitrique ont été

utilisés comme AC et oxydants. L’IR-TF a été utilisée pour étudier l’interaction
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entre le TBP et l’eau dans le SF-CO2. Ces résultats ont été comparés à ceux trouvés

dans le CHCl3 en utilisant la RMN. Cette même spectroscopie a été utilisée pour

comprendre les interactions entre l’acide nitrique, le TBP et l’eau, seuls puis dissous

dans du CHCl3. La formation de microgouttelettes d’acide et d’eau dues à l’effet

anti-solvant a été observée et quantifiée. Pour conclure ce travail de thèse j’ai réussi

à optimiser l’extraction et la récupération d’uranium enrichi provenant de cendres

d’incinération de déchets de fabrication de combustible nucléaire. Un complexe de

TBP, d’eau et d’acide nitrique dissous dans du SF-CO2 a été utilisé à cette fin.

Mots Clefs

RMN – IR – Extraction – Fluides supercritiques – CO2 – Dioxyde de carbone –

Solvants – Acide nitrique – Uranium – Césium – Eau – Ethers couronne – TBP –

Uranyle – Retraitement – Déchets nucléaires – Liaison hydrogène – Effet anti-solvant

Introduction

Mon travail de thèse est basé sur l’extraction de cations métalliques à l’aide de diox-

ide de carbone supercritique. L’uranium et le césium ont été spécialement choisis

pour leur abondance dans les déchets nucléaires d’origines diverses. L’eau fait partie

intégrante de ces systèmes et j’ai concentré une partie de mon travail de recherche

sur le rôle de l’eau dans ces extractions. Mais avant de discuter en détails ce tra-

vail, je vais décrire brièvement les caractéristiques de l’extraction à l’aide de fluides

supercritiques.

Les fluides supercritiques, du fait de leurs propriétés uniques, sont de plus en

plus utilisés pour l’extraction d’ions métalliques provenant de matériaux liquides ou

solides. Le fluide le plus souvent utilisé dans ces procédés est le dioxyde de carbone

(CO2). Il a de nombreux avantages : il est peu toxique, bon marché et relativement

bénin pour l’environnement, ses constantes critiques sont modérées (Tc = 31,0 ◦C et

Pc = 7,38 MPa) et son pouvoir de solvatation peut être modifié par simple changement
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de température et/ou de pression.

Néanmoins, le dioxyde de carbone est un solvant apolaire et nécessite souvent

l’adjonction d’agents chélateurs pour faciliter l’extraction d’ions métalliques. Afin

d’améliorer qualitativement et quantitativement l’extraction, ces agents doivent avoir

des propriétés spécifiques : ils doivent être solubles dans le CO2 et sélectifs de l’ion

métallique que l’on veut extraire. Durant mon travail de thèse, deux types d’agents

chélateurs ont été étudiés : les éthers couronne et le phosphate de tributyle.

0.1 Interactions entre Ethers Couronne et Eau

Les éthers couronne sont des macrocycles pouvant abriter au centre de leur cavité des

cations de différentes tailles. Ils sont souvent utilisés pour extraire des ions alcalins

tel que le lithium, le potassium ou le césium. La taille de la cavité dépend de l’éther

couronne utilisé, le rendant généralement spécifique à un cation donné. Les éthers

couronne sont relativement solubles dans le dioxyde de carbone et dans de nombreux

solvants. Ils sont donc indiqués en tant qu’agents chélateurs dans le traitement de

déchets contenant des cations métalliques. Ils peuvent être utilisés, par exemple, pour

le traitement de déchets nucléaires contenant du césium 137. Ce traitement peut être

réalisé à l’aide de dioxyde de carbone supercritique.

De tels déchets sont souvent extraits de matrices contenant de l’eau. L’eau fait

partie intégrante du procédé d’extraction. Il est donc nécessaire de connâıtre les

interactions entre l’eau et les éthers couronne dans différents solvants.

0.1.1 En Milieu Supercritique

Pour cette étude, la spectroscopie infrarouge à transformée de Fourier (IR-TF) a été

utilisée comme méthode d’analyse (Figure 1). Cette méthode permet de distinguer

trois types de liaisons entre les éthers couronne (18-couronne-6 pour cette étude) et

l’eau. Le D2O a été préféré à l’H2O afin d’éviter la superposition des raies intenses

provenant du dioxyde de carbone, entre 3500 cm−1 et 3800 cm−1, et celles de l’eau.
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Figure 1: Schéma expérimental de la spectroscopie infrarouge à transformée de
Fourier.

Le premier type de configuration n’est observé qu’à haut rapport de concentra-

tion entre les éthers couronne et le D2O; il s’agit d’un “sandwich” composé de deux

molécules de 18-couronne-6 entourant une molécule d’eau (Figure 2 c.). A faibles rap-

ports de concentrations, une molécule d’eau peut être liée à un seul éther couronne de

deux manières différentes (Figure 2 a. et b.). Le premier type de configuration est dit

ponté et consiste en deux liaisons hydrogène entre le D2O et deux atomes d’oxygène

provenant de la cavité de 18-couronne-6. Le deuxième type de configuration est dit

simple, le D2O forme une seule liaison hydrogène avec un atome d’oxygène provenant

de la cavité de l’éther couronne.

Les constantes d’équilibre de ces deux types de configurations ont été calculées

et varient entre 16(4) et 9(2) L·mol−1 pour la configuration simple et entre 10(3) et

5(2) L·mol−1 pour la configuration pontée lorsque la densité du dioxyde de carbone
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Figure 2: Structure moléculaire des trois types de liaisons entre éthers couronne et
eau. Conformations pontée (a), simple (b) et en sandwich (c).

augmente de 850 à 960 g·L−1. La mesure des constantes d’équilibre à différentes

températures et à pression constante a permis de calculer l’enthalpie de formation

des deux complexes considérés. Elle vaut -12(2) kJ·mol−1 pour le complexe simple

et -38(3) kJ·mol−1 pour le complexe ponté. Ces valeurs sont en accord avec celles

reportées pour des solvants classiques.

L’équilibre entre la forme pontée et la forme simple est décrit comme suit :

2 18C6 + 2 D2O 
 18C6·D2O
simple + 18C6·D2O

pontée (1)

A partir de cet équilibre, la constante d’équilibre K est donnée par:

K =
[18C6·D2O

simple][18C6·D2O
pontée]

[D2O]2[18C6]2
= Ks ·Kp (2)

avec

Ks =
[18C6·D2O

simple]

[D2O][18C6]
et Kp =

[18C6·D2O
pontée]

[D2O][18C6]
(3)

Ceci m’a permis de comparer ces résultats à ceux obtenus par la spectroscopie

RMN (Résonance Magnétique Nucléaire), cette dernière ne permettant pas de dis-

tinguer la forme pontée de la forme simple. La constante d’équilibre, K, varie entre

34(4) et 300(30) L2·mol−2 lorsque la densité du CO2 augmente à pression constante
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(∼20 MPa). Dans les même conditions, la fraction molaire, k d’éther couronne liée à

l’eau varie entre 33(3) et 54(5)%.

0.1.2 Dans des Solvants Classiques

L’interaction éthers couronne/eau dans des mélanges de chloroforme (CHCl3) et de

tétrachlorure de carbone (CCl4) a également été étudiée afin de déterminer l’influence

du solvant sur cette interaction. Pour cette étude, la RMN a été utilisée comme

méthode d’analyse.

La RMN ne permet pas de distinguer les deux types de configurations possibles

(simple et pontée) entre un éther couronne et une molécule d’eau. De ce fait, les

différentes configurations ne peuvent pas être précisées par cette méthode. Il faut

aussi noter que les concentrations choisies sont suffisamment faibles pour que la con-

figuration “sandwich” entre deux molécules d’éther couronne et une molécule d’eau

ne puisse pas être observée. L’équilibre est donc décrit par la formation d’un com-

plexe 1:1 entre une molécule d’eau et un éther couronne en rapide échange avec des

molécules non complexées d’eau et de ligand.

La fraction molaire, k d’éther couronne complexé avec une molécule d’eau a été

calculée pour différents éthers couronne. Si k augmente avec la taille de la cavité de

15(1)% pour 12-couronne-4 à 97(5)% pour 18-couronne-6, l’addition de tétrachlorure

de carbone abaisse la valeur de k pour tous les éthers couronne en équilibre avec l’eau

et la constante est proche de zéro dans le CCl4 pur. Au contraire, le coefficient de

partage des éthers couronne entre la phase organique et la phase aqueuse augmente

exponentiellement avec le pourcentage de CCl4 dans cette phase.

Cette étude montre que l’interaction entre l’eau et les éthers couronne dépend

fortement de la nature du solvant utilisé. Il a été démontré qu’un solvant à faible con-

stante diélectrique, comme le CCl4 n’est pas favorable à la formation d’un complexe

entre l’éther couronne et l’eau. Ceci a aussi été démontré pour le dioxyde de car-

bone à haute pression et température. Lorsque la valeur de la constante diélectrique



0.1 Interactions entre Ethers Couronne et Eau 25

augmente en utilisant le CHCl3 comme solvant ou lorsque le CO2 est utilisé à basse

pression et température, les éthers couronne sont plus enclins à former un complexe

avec l’eau. Ces résultats sont importants car l’eau joue un rôle primordial dans

l’extraction d’ions métalliques utilisant des éthers couronne comme extractant.

0.1.3 Rôle de l’eau dans l’équilibre établi lors de l’extraction
du césium par les éthers couronne

La RMN, comme précédemment, a été utilisée en tant que méthode d’analyse pour

cette étude. L’introduction de césium (sous la forme de picrate de césium) dans

l’équilibre induit de nouvelles relations d’équilibre dans la phase organique. Elle sont

décrites comme suit :

CsP + L 
 CsPL avec K1 =
[CsPL]

[CsP][L]
(4)

CsPL + L 
 CsPL2 avec K2 =
[CsPL2]

[CsP][L]
(5)

L + H2O 
 L·H2O avec Ka =
[L·H2O]

[L][H2O]
(6)

CsPL + H2O 
 CsPL·H2O avec Kb =
[CsPL·H2O]

[CsPL][H2O]
(7)

CsPL2 + H2O 
 CsPL2·H2O avec Kc =
[CsPL2·H2O]

[CsPL2][H2O]
(8)

avec P pour picrate et L pour ligand (dicyclohexane18-couronne-6 ou DCH18-couronne-

6).

Les résultats de l’interaction entre DCH18-couronne-6 et l’eau sont similaires à

ceux trouvés précédemment sans addition de césium. En effet, la fraction molaire, k,

d’éther couronne lié à l’eau vaut 73(8)% et la constante d’équilibre Ka vaut 38(13)

L·mol−1. Il a également été montré que la constante Kc est nulle. Il n’y a donc pas

de formation de sandwich entre deux éthers couronne, un picrate de césium et une

molécule d’eau. La constante K2 est égale à 47(15) L·mol−1 ce qui implique qu’en

l’absence d’eau, le sandwich entre deux éthers couronne et un picrate de césium
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est préféré au complexe simple ne comprenant qu’un éther couronne et un picrate de

césium. Quant à la constante Kb, elle vaut 27(7) L·mol−1 ce qui indique une préférence

pour le complexe hydraté CsPL·H2O sur celui non hydraté. Ces résultats montrent

l’importance de l’eau dans l’extraction d’ions métalliques à l’aide de polyéthers macro-

cycliques.

0.2 Interaction entre le TBP, l’Eau et l’Acide Ni-

trique

Le phosphate de tributyle (TBP) est employé depuis des années dans le système

PUREX (Plutonium URanium EXtraction) pour extraire et séparer l’uranium. Le

CO2 peut remplacer avantageusement le dodécane ou le kérosène habituellement

utilisés dans de tels procédés. Ce solvant a en effet deux avantages sur les solvants

classiques : il est beaucoup moins toxique pour l’environnement et, du fait de sa

supercriticalité, il peut pénétrer plus en profondeur des matrices solides comme des

cendres ou de la terre. L’acide nitrique et le TBP forment un complexe relativement

soluble dans le CO2 et permettent d’oxyder et d’extraire l’uranium.

0.2.1 Interaction entre le TBP et l’Eau

En Milieu Supercritique

Une étude similaire à celle faite dans le cas des éthers couronne et de l’eau a été

conduite pour étudier l’interaction entre le TBP et l’eau dans le CO2.

Comme pour le cas des éthers couronne, à haute concentration en TBP, la con-

figuration comprenant deux molécules de TBP liées à une seule molécule d’eau est

observée. La partie quantitative de cette étude a été réalisée à faible concentration

en TBP; dans ces conditions, il y a formation d’un complexe 1:1 entre le TBP et

l’eau en rapide échange avec du TBP et de l’eau non liés. L’enthalpie de formation

de ce complexe est égale à -9(2) kJ·mol−1 alors que sa constante de formation varie

entre 12(3) et 9(2) L·mol−1 lorsque la pression de CO2 augmente de 20 à 40 MPa à



0.2 Interaction entre le TBP, l’Eau et l’Acide Nitrique 27

constante température (40 ◦C).

La fraction molaire, k, de TBP complexé avec une molécule d’eau varie entre 18(1)

et 22(1)% avec l’augmentation de la densité du dioxyde de carbone. En l’absence

de solvant, la fraction molaire k est de 100% car une solution de TBP saturée en

eau a un rapport molaire de 1:1. Cette différence fait que, lorsqu’une solution de

TBP saturée en eau est dissoute dans un solvant, il y a formation instantanée de

micro-gouttelettes d’eau. Lors de cette formation, un nuage est d’abord observé puis

les micelles s’agglomèrent pour former de plus grosses gouttelettes qui finalement se

collent aux parois du récipient. Ce phénomène existe aussi lorsque de l’acide nitrique

est ajouté au mélange TBP-eau. Connaissant la solubilité de l’eau dans le CO2 aux

conditions expérimentales utilisées, la quantité des micro-goutelettes a été déterminée

après équilibre. Lorsque 0,5 mL de TBP saturé en eau (rapport molaire 1:1 entre le

TBP et l’eau) est mélangé au CO2 dans une cellule de 10 mL, la quantité de micro-

gouttelettes formées varie de 0 à 11(2) µL lorsque la température diminue de 70 à 25

◦C à pression constante (∼20 MPa).

Dans des Solvants Classiques

Une étude similaire a été réalisée en utilisant la RMN et en remplaçant le dioxyde

de carbone par du chloroforme afin d’explorer l’effet du solvant sur l’équilibre. Les

concentrations choisies sont telles que seul le complexe 1:1 entre le TBP et l’eau est

observé. Différentes quantités de TBP ont été dissoutes dans du chloroforme. Ces

solutions ont ensuite été mélangées avec le même volume d’eau et, après équilibre, la

phase organique a été analysée par RMN.

A partir des mesures du déplacement chimique de l’eau dans le TBP et le CDCl3,

les déplacements chimiques δ0 et δ1 de l’eau dans du chloroforme pur et dans du TBP

pur ont été calculés. δ0 = 1,51(0,04) ppm et δ1 = 3,51(0,04) ppm. Le déplacement

chimique du chloroforme en fonction de sa concentration dans le TBP a également

été calculé.
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L’analyse de ces données m’a également permis de calculer la constante de for-

mation (K = 2,7(0,2) L·mol−1) du complexe TBP-eau et la fraction molaire, k, de

TBP complexée avec une molécule d’eau (k = 15(1)%). Cette valeur est inférieure

à celle trouvée pour le CO2 montrant qu’il y a moins de complexes TBP-eau formés

dans le chloroforme que dans le CO2. La concentration de l’eau libre, c’est à dire

non complexée au TBP, dans le chloroforme a également été calculée ([H2O]org =

0,07(0,02) mol·L−1), cette valeur correspond aux valeurs trouvées dans la littérature.

Enfin, la quantité de micro-gouttelettes a été calculée. Elle vaut 14(1) µL dans les

mêmes conditions que précédemment (lorsque le CO2 a été utilisé comme solvant).

Cette valeur est supérieure de 3 µL à la valeur maximale trouvée pour le CO2 (11(1)

µL à 20 MPa et 25 ◦C).

0.2.2 Interaction entre le TBP, l’Eau et l’Acide Nitrique

Le phosphate de tributyle forme des liaisons hydrogène avec l’acide nitrique et l’eau,

donnant un complexe, TBP·(HNO3)x·(H2O)y, très soluble dans le dioxyde de carbone

supercritique (Figure 3). Le nombre de molécules d’acide nitrique par molécule de

TBP, x, peut prendre des valeurs comprises entre 0 et 2,5. D’un autre coté, le nom-

bre de molécules d’eau par molécule de TBP, y, varie entre 0,4 et 0,8. Lorsqu’un

tel complexe est dissous dans un solvant il y a formation instantanée de micro-

gouttelettes d’acide nitrique. Ces gouttelettes ont été détectées par RMN. Il a été

prouvé que la concentration en acide des micro-gouttelettes augmente lorsque le nom-

bre de molécules d’acide par molecule d’eau, x/y, dans le complexe de TBP, augmente.

La quantité et l’acidité des micro-gouttelettes ainsi formées peut jouer un rôle impor-

tant dans la dissolution et l’oxydation de dioxyde d’uranium lors de l’extraction de

tels composés avec du dioxyde de carbone.
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Figure 3: Une des configurations possible pour les liaisons hydrogènes entre une
molécule de TBP, d’acide nitrique et d’eau.

0.2.3 Mise en Pratique : Extraction de l’Uranium à l’Aide
de Phosphate de Tributyle et d’Acide Nitrique

La société AREVA (à Richland, Etat de Washington, USA) m’a permis d’utiliser

la technique d’extraction supercritique afin de récupérer l’uranium enrichi contenu

dans différentes matrices. Certaines de ces matrices sont des cendres venant de

l’incinération de déchets secondaires à la fabrication du combustible nucléaire. Ces

cendres contiennent de 5 à 10% d’uranium enrichi à 2-3%.

L’extraction se déroule en deux étapes. Premièrement, l’oxyde d’uranium, UO2,

contenu dans la matrice est oxydé avec de l’acide nitrique et le nitrate d’uranyle

résultant est extrait avec du TBP et du CO2. Pour cette première étape, un complexe

TBP·(HNO3)x·(H2O)y est dissous dans le dioxyde de carbone. Deuxièmement, l’ion

uranyle est récupéré dans de l’eau pour être recyclé. Ces deux étapes sont présentées

en détails sur la Figure 4.

Les conditions optimales de l’extraction sont les suivantes : (i) le complexe utilisé

est TBP·(HNO3)1.8·(H2O)0.4, (ii) la température et la pression d’extraction sont re-
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Figure 4: Schéma expérimental pour l’extraction d’UO2.

spectivement de 60 ◦C et de 20 MPa, (iii) pour chaque gramme de cendre, 2 mL du

complexe de TBP sont nécessaires, (iv) le temps de l’extraction statique est d’une

heure et le débit est inférieur à 0.5 mL/min.

L’uranium a été récupéré de la phase organique de deux manières. Premièrement,

la phase organique avait une concentration en acide de 5 mol·L−1 et l’uranium (à

535 g·L−1) a été extrait avec de l’eau à 50 ◦C. Seulement 15(1)% de l’uranium a été

récupéré de cette manière. Deuxièmement, l’uranium a été récupéré sous pression et

en ligne avec l’extraction. Les conditions optimum sont : 20 MPa et 50 ◦C , avec

1,9 mL d’eau par mL de TBP. Le rendement de la récupération sous pression est

bien meilleur que celui de la récupération à pression atmosphérique. Ce rendement

diminue lorsque la concentration en acide augmente ou lorsque la concentration en

uranium diminue. Lorsque les conditions ont été modifiées (température réduite à

24 ◦C ou volume d’eau réduit à 1 mL par mL de TBP), une perte allant jusqu’à



0.2 Interaction entre le TBP, l’Eau et l’Acide Nitrique 31

68% dans l’efficacité de la récupération de l’uranium a été observée. Cette perte est

moindre à basse concentration en acide nitrique.

Conclusion

Durant ce travail de thèse, deux types d’extractants d’ions métalliques ont été étudiés.

Les premiers, appelés éthers couronne, sont utilisés pour extraire des cations alcalins

comme le césium. Leurs interactions avec l’eau ont été étudiées à l’aide de deux

méthodes d’analyse différentes. La première méthode utilisée est la spectroscopie IR-

TF. Cette méthode manque de précision, mais permet de distinguer les différentes

configurations possibles. L’autre méthode utilisée est la RMN. Cette méthode est plus

précise quantitativement, mais ne permet pas de discerner les configurations simples

et pontées entre les éthers couronne et l’eau. Elle permet néanmoins d’étudier, sans

interférences, des systèmes plus compliqués tel que le système éther couronne, eau

et picrate de césium. Il n’a malheureusement pas été possible de l’utiliser dans les

fluides supercritiques, l’équipement à disposition ne le permettant pas.

L’autre type d’extractant utilisé est le TBP. Cet extractant peut former un com-

plexe en se mélangeant à l’acide nitrique. Ce complexe a été caractérisé et étudié

dans différents solvants. Lorsqu’il est dilué dans le dioxyde de carbone, la formation

de micro-gouttelettes d’acide facilite l’oxydation de l’UO2 et l’extraction de l’UO2+
2 .

Il a été prouvé que ce principe peut être utilisé pour extraire l’uranium de milieux

tels que des cendres provenant de l’incinération de déchets secondaires à la fabricaton

du combustible nucléaire. De nombreux progrès peuvent être faits dans la mise en

application à grande échelle de ce procédé écologique d’extraction, notamment en ce

qui concerne la récupération de l’uranium.





General Introduction

My thesis work is focused on the supercritical fluid extraction of uranium and cesium.

These elements are present in nuclear waste, such as nuclear manufacturing byprod-

ucts or Spent Nuclear Fuel (SNF). Uranium is the main element constituting the fuel

and Cesium-137 is an abundant fission product with a relatively long half-life that

contributes largely to the heat production in SNF. The processing of uranium and

cesium is of particular importance for waste management.

Water is often present in such waste and it plays an important role in the extrac-

tion process, which I studied as part of this research. I used different spectroscopic

methods for analyzing the relevant chemical interaction in supercritical fluids and in

solvents such as chloroform and carbon tetrachloride. In this introduction, I will first

describe the origins and the diversity of nuclear waste and current practical methods

of managing them, as well as the futuristic waste management processes envisioned

by scientists. I will then describe the industry standard reprocessing technique which

is solvent extraction. Supercritical fluids, especially carbon dioxide, are good alterna-

tives to organic solvents in this process. I will therefore describe their characteristics.

Thereafter I will relate the special characteristics of uranium and cesium as well as

the chelating agents I used to extract them. Last, the spectroscopic techniques that

I used will be briefly described.

Nuclear Wastes and Nuclear Waste Management

Nuclear byproducts and waste have been a serious issue from the dawn of the nuclear

age. The first use of nuclear energy for military purposes during the world war II was
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accompanied by the generation of large quantities of waste that continued to grow

during the arms race between the United States and the Soviet Union as well as other

countries with nuclear arms. The peaceful applications of nuclear energy, particularly

for generating electric power, are also responsible for producing large quantities of

heavy metal and radioactive waste through different steps of the fuel cycle. Hundreds

of nuclear power plants are operating today in many countries (Figure 5). There are

many other industrial applications of nuclear materials and they are used routinely

in hospitals for medical diagnosis and treatments.

Figure 5: World map of nuclear reactors from the International Nuclear Safety Center
(INSC) web page.1

Nuclear waste management is not only a problem in the present, but also will be

in the future. Indeed, the fuel industry declining, the oil supply is going down and

developing countries like India and China have a huge demand for power which is a

basic need and is required for economic growth. Furthermore, to reverse the global

warming effect, the emission of greenhouse gases from industry, transportation and

power plants needs to be reduced. The solution to this problem is electricity produced

from plants that do not generate greenhouse effect gases. The electricity can be for

industrial use, home use or public transportation. Natural gas is cleaner than coal
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because it does not produce as many particles and byproducts as coal or oil, but 4% of

natural gas is lost during transport. The contribution of methane to global warming

is 25% worse than that of CO2, which is also produced by these plants. On the other

hand, renewable energy (i.e. hydroelectric, windpower, solar, etc.) has now reached a

plateau. There are not many large dams that can still be built on the world’s rivers;

wind-mills are expensive, inefficient and consume too much space; solar energy lacks

power and is expensive. The only obvious way to overcome the energy crisis that is

building is to increase the number of nuclear power plants.

For the same amount of energy produced, one can find more uranium in the

filters and waste of a coal power plant than in a nuclear power plant. Furthermore,

the Industrial Accident Safety Rate (IASR), based on the number of accidents per

hour and per worker, in American nuclear power plants is well below the IASR for

manufacturing industries and is at the same level as the IASR for banks or real estate

agencies. For these reasons, the approval rate for new nuclear power plants in general

opinion polls in America increased up to 60% recently. This approval rate is even

greater in places where a nuclear power plant is already in place.

The majority of nuclear waste is associated with the uranium fuel cycle. The

front end of the fuel cycle, the so called pre-fission stage, which includes mining, and

enrichment and fuel fabrication activities, generates uranium-containing byproducts

and waste. The back end of the fuel cycle, the stage after the fuel is irradiated in

the reactors, generates large quantities of radioactive waste products. While these

fission products are intentionally generated in production reactors for the purpose of

processing to extract weapons grade plutonium, they are considered waste products

when generated by power reactors. Most of the nuclear waste generated today comes

from power plants and is stored without reprocessing, particularly in the United

States. European countries and Japan continue to make progress in reprocessing,

which can reduce the volume of highly radioactive waste and allow the recycling of

useful isotopes. Regardless of the sources of nuclear waste – power plants, the legacy
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of cold war nuclear weapons, hospital waste, food irradiation, etc. – improvements

in the technology of handling and reprocessing are necessary for the economics of the

respective application as well as for environmental protection. These reprocessing

techniques are basically chemical in nature, and this thesis is a contribution in this

direction.

Nuclear waste can be divided into four categories depending on its toxicity8:

(i) Low-Level Waste (LLW): The level of radioactivity and the half-life of the radioac-

tive isotopes in low-level waste are both relatively small and LLW does not require

shielding during handling and transport. To reduce its volume, it is often compacted

or incinerated before disposal. Storing the waste for a period of 10 to 50 years will

allow most of the radioactive isotopes in low-level waste to decay, at which point the

waste is not considered radioactive and can be disposed as normal waste. This kind

of waste, for example, is generated by hospitals and industries.

(ii) Intermediate-Level Waste (ILW) contains higher amounts of radioactivity and

some requires shielding. This waste, for example, is made of contaminated materials

from the manufacture of nuclear fuel, e.g., gloves, shielding outfits, plastic containers,

papers, etc. In such cases, the contaminated material can be incinerated to lower the

amount of waste and the resulting ash can be treated and then discarded as LLW.

(iii) High-Level Waste (HLW) comes mostly from the core of nuclear reactors and

from nuclear weapons processing. HLW contains fission products, including uranium

and plutonium, generated in the reactor core. HLW is highly radioactive and some

isotopes have extremely long half-lives (some longer than 100,000 years). Therefore,

HLW will take a long time to return to safe levels of radioactivity.

(iv) Transuranic Wastes have atomic numbers greater than uranium. They come

mainly from weapons production and consist of clothing, tools, rags, residues, de-

bris and other such items contaminated with small amounts of radioactive elements,

mostly plutonium. Because of the long half-lives of these elements, this waste is not

disposed of as either low-level or intermediate-level waste. It does not have the very
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high radioactivity of high-level waste, nor its high heat generation.

In addition to the problems arising from the management of accumulating waste,

there is another concern: the pollution generated by the Chernobyl incident, which

quickly covered a large area (Figure 6). This disaster turned a localized problem into

a major environmental one. Unless another solution is found, the population in the

area affected by such pollution must wait for the intensity of radioactivity to decay

and disperse sufficiently in order to return and pursue farming. However, certain

places, e.g., proximal to a source of drinking water, will need real decontamination

efforts.

Figure 6: Gamma radiation map in the Chernobyl area, results of the May 29, 1986,
Gamma Radiation Survey.2

Different ways of disposing of nuclear waste have been under investigation and

trial.8 First, short-term storage can be used. It decreases the radioactivity of HLW

up to 100 times in 10 years. Unfortunately, the decay of radioactive material is not
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linear but exponential, which limits the usefulness of passive storage. Short-term

storage is a necessity for HLW because these materials cannot be shipped or handled

easily when they are just coming out of the core of a reactor. It is important to

know that short-term storage is not a final option; it only lowers the danger level

of the waste but does not eliminate it. The waste will still need to be processed or

stored in another way afterward. It is important to make sure that the storage area

is stable and well protected from accidents or natural disaster. The spread of such

radioactive material in drinking water or on agricultural and hunting lands would be

a catastrophe.

As a follow-up or as a second option, long-term storage can be used for HLW

or ILW. HLW and long-lived waste from ILW (from fuel reprocessing) are generally

buried deep underground whereas ILW’s short-lived waste (mainly from reactors) is

generally buried in shallow repositories. Forgetting them underground until the dan-

ger is no longer present seems to be a good idea, but it does not take into account the

fact that some waste has a very long half-life and nobody can assure that humanity

will remember it after several thousand years. We are still discovering artifacts that

are less than five thousand years old, for instance, in Egypt. Even the ancient Egyp-

tian language and alphabet were forgotten. Will the archaeologist of the future dig

with a Geiger counter? Besides, the earth is moving all the time in an unpredictable

manner. Nobody can assure that the waste will remain stable and not be dispersed

with underground water or seismic activity.

The toxicity of the waste beyond its radioactivity is another aspect to consider.

Indeed, some of this waste contains plutonium, one of the most toxic of all elements.

Some people consider sending such waste into space, but the cost would be enormous

and unethical.

Nevertheless, there is a way of minimizing the consequences of leaks or other

problems that might cause the waste to be scattered; it is the vitrification process

before storage. With this method, radioactive waste is mixed with silica and melted
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into glass beads. This process should prevent radioactive elements from going into

the atmosphere or the groundwater, even if they are in direct contact with it.

In the United States, the Nuclear Regulatory Commission (NRC) uses the funds

collected from nuclear power plant taxes to develop waste disposal programs. There

is a long-term underground storage currently under development at Yucca Mountain,

Nevada.9

Another way to get rid of such waste is to process it.10 One way of processing

nuclear waste is to transmute the unstable isotopes to stable ones in the same way

alchemists would transform or transmute lead into gold. There have been some at-

tempts to use photons in the x-ray range in a high-powered electron linear accelerator.

The use of a laser to remove neutrons from a radioactive isotope also has been inves-

tigated. If the use of this technology were possible, Cesium-137 could be transmuted

to Cesium-136 with a half-life of 13.1 days instead of 30.2 years. Unfortunately, this

seems to be only an alchemist’s dream. A more realistic way to use transmutation is

to irradiate an isotope with neutrons in an accelerator to allow the isotope to absorb

a neutron. With this process, iodine-129 can be transmuted to stable xenon with

neutron absorption. The Accelerator Transmutation of Waste (ATW) system is cur-

rently being developed at Los Alamos National Laboratory in New Mexico.11,12 The

downside of ATW is that long-lived radioisotopes should be isolated for them to be

transmuted without interferences and without transmuting good radioisotopes into

bad ones. For example, Uranium-238, which is the main constituent of Spent Nuclear

Fuel (SNF) can be transmuted into Plutonium-239. 239Pu is not as manageable as

238U and has a half-life of 25 thousand years.

Solvent Extraction

Solvent extraction has already been proven to be a good method to separate radioiso-

topes from SNF. One of the most famous solvent extraction processes is the PUREX

(Plutonium Uranium Recovery by Extraction) process. The principle of this pro-
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cess is to separate uranium and plutonium from the fission products and from one

another. First the pellets are prepared for the dissolution (i.e. decladded). Then

the SNF is dissolved in a solution of nitric acid in which the tetravalent uranium is

oxidized to uranium(VI). Second, the uranium(VI) and plutonium(IV) nitrates are

extracted from the nitric acid solution with a mixture of kerosene and Tri-n-Butyl

Phosphate (TBP) (at 70% and 30% respectively), while the fission products remain in

the aqueous nitric phase.13 The plutonium is then reduced to an oxidation state III.

In the trivalent state, the plutonium is insoluble in the organic phase and is therefore

easily stripped out with water. Finally, the remaining uranium nitrate is stripped

out of the organic solution with heated water. Uranium(VI) and plutonium(III) can

also be purified and converted to uranium trioxide (UO3) and plutonium dioxide

(PuO2). Despite this, solvent extraction has a big downside: its secondary waste

production. If the organic solvents used in a Purex-like process could be exchanged

for a volatile solvent that is harmless to the environment, the functioning cost would

be reduced. That is exactly what Supercritical Fluid Extraction (SFE) does by using

carbon dioxide.

Supercritical Fluids

A fluid is called supercritical when both its temperature and pressure exceed their

critical values (Tc for the critical temperature and Pc for the critical pressure). See

Figure 7. A phase diagram for CO2 is shown in Figure 7 with a representation of

the supercritical and the subcritical region. When a substance is at a pressure and

temperature that is near the supercritical area, its state is called subcritical.

Supercritical fluid density depends on pressure and temperature. The density

generally increases with a pressure increase and decreases with a temperature increase.

Near the critical point, it is not unusual to observe inconsistency in density or other

physical properties. The system can be greatly disturbed by a small difference in

temperature or pressure or by adding a substance or an impurity to the fluid. It
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Figure 7: Phase diagram for CO2, the shaded areas are the subcritical and supercrit-
ical fluid regions.

is then important to pursue quantitative measurements in the neighborhood of the

critical values.

Different fluids such as water, methanol, ammonia, etc. can be in the supercritical

state, see Table 1. Supercritical CO2 offers numerous advantages over the other fluids:

it has moderate critical values and it is inert, nontoxic, nonflammable, inexpensive

and widely available in purified form. Furthermore, it is a gas at normal temperature

and pressure, allowing an easy recovery of the extracted species without generation

of secondary wastes that are very hard to discard or reprocess.

The solubility of a substance in Supercritical CO2 is related to its density and

temperature. Solubility increases with an increase in density at constant temperature

and decreases with increasing temperature at constant pressure.7,14 With regard to

the above factors, we can see that supercritical CO2 is more economic in the long

run. Besides the fact that supercritical CO2 requires less energy to reach its critical

parameters, its density can be easily raised to improve solubility.
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Table 1: Supercritical fluids critical values.

Name Symbol Tc Pc ρa
c

(◦C) (MPa) (g·L−1)

Methanol CH3-OH 240 ± 1 8.1 ± 0.1 273
Methane CH4 -82.6 ± 0.3 4.61 ± 0.03 162
Carbon dioxide CO2 31.03 ± 0.04 7.380 ± 0.015 467
Ammonia NH3 132.3 ± 0.01 11.300 ± 0.005 225
Water H2O 374 ± 2 22.064 ± 0.005 322
Nitrogen N2 -273.0248 ± 0.0005 12.619 ± 0.001 952

Source: The National Institute of Standards and Technology (NIST) Chemistry Web-
Book, http://webbook.nist.gov/
a uncertainty on densities ≤ 2 (g·L−1)

CO2 is the most widely used substance for supercritical fluid applications. For

many years, it has been used on a large scale to remove caffeine from coffee and

tea. CO2 is also used to extract other lipophylic substances such as nicotine. The

extraction of metallic ions is more challenging because they are generally insoluble in

CO2 . To circumvent this problem, neutral chelating agents are chosen15–17 and I will

describe in details their action later in this general introduction.

During my thesis work, I studied supercritical fluid extraction (SFE), directly or

indirectly with the use of organic solvents such as chloroform or carbon tetrachloride.

I focused on the extraction of two elements present in nuclear waste and nuclear

contamination sites. The first one, cesium-137, is a man-made isotope produced by

the fission of uranium-235. Its half-life is 30.17 years. Cesium-137 is present in a

radio-contaminated environment such as the Chernobyl area, but it is more of an

issue in nuclear power plant waste. The second, uranium, is the main isotope present

in Spent Nuclear Fuel (SNF) and is also found in nuclear weapons and in ILW.

Cesium and Uranium Elements

Cesium-137 is a relatively long-lived isotope with a large contribution to the heat

production in SNF. As shown on Figure 8 and appendix A, cesium is one of the
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most abundant fission products in SNF from Pressurized Water Reactors (PWR) 150

days after its discharge. The amount of cesium produced per ton of uranium in the

fresh fuel load is even greater in Liquid Metal Fast Breeder Reactors (LMFBR) such

as Super-Phenix in France. Recovering the cesium from waste is a very interesting

project because it lowers the radioactivity of the matrices from where it is extracted,

allowing the remaining material to be more easily handled and discarded. After

separation from the waste, 137Cs is a good candidate for long-term storage because

of its moderate half-life. Cesium-137 can also be recycled and used for radiotherapy,

for example.

Cesium-137 is also a concern in cesium-contaminated areas such as the Chernobyl

area. It is accumulated in the human body, mimicking potassium, which disturbs the

transmission of nerve messages. Extracting cesium from cesium-contaminated areas,

along with other isotope cleaning, can effectively reduce the waiting period (∼300

years for 137Cs) required to return the land to the people.
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of uranium (freshly loaded in the reactor) versus the atomic number of the element.3
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The other element in which I was interested, is uranium. The uranium in nuclear

waste generally contains a higher uranium-235 isotope fraction than it does in natural

form, which makes it attractive to recover and recycle for use as fuel in power reactors.

This recycling strategy would reduce the energy needed and reduce the pollution

generated to enrich uranium. Recycling uranium from waste is particularly relevant

considering that the natural abundance of the uranium-235 isotope is only 0.72%

while recovered uranium (from fuel manufacturing waste for example) contains up to

∼4% 235U.

Chelating Agents

Because supercritical CO2 is a nonpolar solvent, there is a weak solute-solvent in-

teraction in the Supercritical Fluid Extraction (SFE) of metal ions. Consequently,

supercritical CO2 needs the presence of a chelating agent,14–17 also called ligand, to

enhance its ability to extract metal ions and their counter ions into a hydrophilic

liquid.

The role of a chelating agent is to bind with the metal ion to form a metal chelate

that is soluble in CO2. Furthermore, a good chelating agent needs to have the fol-

lowing properties: it has to be soluble in CO2, selective for the species that needs to

be extracted, and relatively harmless for the environment, or easily recyclable.

Metal chelates can be formed in CO2 using two methods. First, the chelating agent

is dissolved in CO2, which is then directed into the sample containing the metal ions.

In the second method, the ligand is introduced into the sample before the SFE is

initiated.

Most matrices, from which metal ions are extracted, contain water. During the

extraction, chelating agents change the hydration sphere of the ions. Some water

can be solubilized in the organic phase with or without the help of the chelating

agent. Consequently, the presence of water has a great effect on the efficiency of the

extraction.16,18 Therefore, the understanding of the water interaction with ligands
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and metal ions has a significant impact on the understanding of the thermodynamics

of the extraction. The understanding of these interactions might lead to the discovery

of new ways to enhance the extraction efficiency.

Crown ethers have been intensively studied for their selectivity in the solvent ex-

traction of cations and, especially, alkaline-earth-metal cations.18–23 See Figure 9 for

a representation of 18-crown-6. Furthermore, crown ethers have relatively high sol-

ubility in sub- and supercritical CO2.
14 These properties make crown ethers highly

attractive for Supercritical Fluid Extraction (SFE) of cesium. A study24 used crown

ethers to extract sodium and potassium cations in supercritical CO2 with perfluoro-

carboxylic acid as a counter ion. Another study performed by Wai et al.25 showed a

successful extraction of cesium with crown ethers and fluorinated compounds. Nev-

ertheless, the role of water and the interactions involved in the chelating process

were not detailed in these publications. I paid special attention to these important

properties in my work.

On the other hand, the TBP-nitric acid efficiency in the Purex process has been

proven.13 See Figure 9 for the representation of TBP and nitric acid, respectively.

TBP is highly soluble in supercritical CO2
14,26 and forms an adduct with nitric acid.

This adduct can be used to dissolve uranium oxides.27–29 The resulting metal chelate,

2TBP·UO2(NO3)2·2H2O, is known to have very high solubility in CO2.
30,31 Conse-

quently, TBP-nitric acid adducts were chosen as chelating agents for the extraction

of uranium.

Spectroscopic Methods Used

For this research work, two experimental devices were used : Proton Nuclear Magnetic

Resonance (NMR) and Fourier Transform Infra-Red spectroscopy (FT-IR). NMR is

a precise analytical tool for the quantitative understanding of water interactions in

organic solvents.32,33 The crown ether-water interactions with and without cesium

picrate and the TBP-nitric acid-water interactions in solvents were determined using
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Figure 9: Representation of a crown ether (18-crown-6) and the TBP and nitric acid
molecules.

this analytical technique. Unfortunately, I was unable to use it with supercritical

fluids in spite of numerous attempts. I tried to use capillaries, but they were not

suitable for my system where many compounds were dissolved in CO2. I also tried to

use a PEEK (TM)1 polymer high-pressure cell34 in collaboration with C. Yonker (Pa-

cific Northwest National Laboratory, Richland, Washington), but the results obtained

were random and not reproducible. The reasons for this failure might be the inability

to have a lock on the NMR spectroscope or a consistent standard for concentration

determination.

I was not able to use the NMR for quantitative measurement in supercritical

fluids with the materials that I tried. Nevertheless, as an alternative technique, I

used FT-IR spectroscopy with the help of John Fulton and his lab equipment35 in

the Fundamental Science Directorate of the Pacific Northwest National Laboratory in

Richland, Washington. FT-IR is not as accurate as NMR, and the overlapping of rays

from different species can be a problem. However, if the system is kept simple with

a limited number of compounds, it can be used for quantitative measurements with

1Manufactured by Victrex plc.
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an acceptable accuracy. Indeed, it has been used successfully in the past few years

to study hydrogen bonding in supercritical CO2.
36–40 I used FT-IR successfully to

understand crown ether-water and TBP-water interactions in super- and subcritical

CO2. Furthermore, I was able to distinguish different crown ether-water configura-

tions where the NMR was showing only an average of all configurations.

Finally, I used gamma spectroscopy to monitor the enhancement of the uranium

extraction from ash with supercritical CO2. This gamma spectroscopy technique

lacks accuracy but gives fast and inexpensive approximate measurements of uranium,

which is used to estimate the extraction efficiency. Key samples were analyzed by

Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) for higher accuracy.

Overview of the Thesis Structure

My thesis is divided into two chapters. The first one focuses on cesium extraction

with crown ethers and the second one on uranium extraction with a TBP/nitric acid

complex.

In the first chapter, I describe the crown-ether water interaction because the water

plays an important role in solvent extraction. To pursue this goal, I first used the

FT-IR spectroscopy in supercritical CO2 and then the NMR technique in organic

solvents for comparison. To finalize this part of my research, I show the results of the

addition of cesium picrate to the system in order to understand the whole picture of

the recovery of cesium.

In the second chapter, I describe the antisolvent effect of the TBP-water and

the TBP-water-nitric acid systems in supercritical CO2 and in solvents using FT-IR

and NMR. To conclude this part, I demonstrate the efficiency of supercritical fluid

extraction for a pilot plant where the uranium is extracted from the incineration ash

of the byproduct of the nuclear fuel production. For this work, I used the TBP-nitric

acid solutions described in supercritical CO2. Lastly, I will summarize the conclusions

of this research thesis.





Chapter 1

Crown Ether-Water Interaction

Introduction

The scope of work presented in this chapter covers the various mechanisms of the

cesium extraction in supercritical fluids and solvents using crown ethers as ligands.

Special attention is focused on the role of water. The interaction in sub- and super-

critical CO2 were studied in detail. This was complemented and compared with a

parallel study using solvents, specifically chloroform and carbon tetrachloride mix-

tures. Different spectroscopic tools, Fourier Transformed Infra-Red (FT-IR) and Nu-

clear Magnetic Resonance (NMR) were used for the analysis thus yielding detailed

information about the molecule structure and the interaction equilibria as these tech-

niques complement each other. To conclude the work of this chapter, the role of water

was studied in the cesium extraction equilibrium using crown ethers.

I will first describe the crown ethers properties. Crown ethers are macrocycles

formed of a succession of ether molecules (-H2C-O-CH2- named methoxymethane or

methyl methyl ether) bonded together through the carbon atoms to form a ring. The

carbon atoms are positioned outside of the ring whereas the oxygen atoms are inside

the cavity and therefore form a powerful attractor for positively charged atoms or

molecules. Furthermore, the number of ether molecules forming the ring determines

the size of the internal cavity and is therefore very selective of the cation extracted.

Representations of different crown ethers are shown in Figure 1.1. When unsub-
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stituted, their nomenclature depend on the number of chemical bonds and oxygen

atoms in their cycle. For example, a macrocycle composed of 12 chemical bonds and

4 oxygen atoms is called 12-crown-4 or 12C4 and a macrocycle composed of 18 bonds

and 6 oxygen atoms is called 18-crown-6 or 18C6. Unsubstituted, crown ethers can

be in various conformations. The most represented conformation for 18-crown-6 is

D3d (Figure 1.1) but other conformations are possible where the crown is more or

less closed on itself like a jaw. Different substitutes can take the place of the hydro-

gen atoms outside the ring. Some substitutes such as the cyclohexane or benzene

molecules are very commonly used and are represented in Figure 1.2. When these

substitutes are used with 18-crown-6, they force the crown ether to be in a “plane”

or D3d conformation.

Solvent extraction technique is commonly applied for the removal of metal, or-

ganic molecules or ions from soil or aqueous solutions using many acidic, anionic

or neutral extractants.41–46 Crown ethers have been intensively used as extractants

for their selectivity and efficiency to extract cations and especially alkaline-earth-

metallic cations from aqueous solutions, making them ideal for the extraction of

cesium.41,47,48 Furthermore, crown ethers are soluble in a large variety of solvents

like carbon tetrachloride, chloroform or supercritical carbon dioxide, making them

suitable for environmentally friendly processes using supercritical CO2.

In such extractions, the organic or the CO2 phase contains often water and its

interaction in the solvent needs to be taken in account especially since Dietz et al.18

showed that the efficiency of a solvent extraction depends on the solubility of water

in the organic phase.

Most published research on solvent extraction do not discuss the role of water

in sufficient detail.18,36,49–53 For example, Dietz et al.18 studied the extraction of

cesium from acidic nitrate media using crown ethers as extractant in various organic

solvents. An increase in the efficiency of the extraction was observed when the water

solubility in the organic phase increased. The enhanced extraction efficiency was
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Figure 1.1: Molecular structure of 12-Crown-4 (a); 15-Crown-5 (b); 18-Crown-6 (c);
24-Crown-8 (d).

partly attributed to the water-saturated organic phase. Another study52 states that

the role of the water must be taken into account in the description of the equilibria of

the extraction from water since the organic phase is water saturated. Some molecular

dynamics studies54 showed that the water is mainly bridge-bonded to the crown ether

in a D3d conformation. In addition, Moyer et al.36 used FT-IR to describe the general

equilibrium between water and 18-crown-6 in carbon tetrachloride. This study neither

discusses the effect of the solvent nor describes the ligand partition between the two

phases. Moreover, no published work described the water-crown ether interaction in

supercritical fluids.

It was therefore important as a first step in this work to analyze the crown ether-
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Figure 1.2: Molecular structure of dicyclohexano-18-Crown-6 (a) and of dibenzo-18-
Crown-6 (b).

water interaction in supercritical and liquid CO2. Thereafter, I used Nuclear Magnetic

Resonance (NMR) to study the role of the solvent in this interaction. Solvents such

as chloroform and carbon tetrachloride were used. I finally worked on constructing a

more complete picture of the cesium extraction by introducing some cesium picrate

to the water-crown ether equilibrium.
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cal CO2

Introduction

The purpose of this section is to provide in-depth understanding of the interaction

between water and crown ethers in supercritical fluids. The description of this inter-

action is important to give an insight into cesium extraction using crown ethers. This

interaction was studied in supercritical CO2 using the Fourier Transform Infra-Red

(FT-IR) spectroscopy. I will therefore describe this analytical tool in more details

because of the impact on the specific adaptations necessary for my experiments.

The FT-IR spectroscopy is the spectroscopic technique most widely used to ana-

lyze molecular structures. It is a fast and sensitive method for most chemical systems.

Furthermore, it is an economically attractive device that is easy to use. Essentially,

FT-IR is used for the understanding of the chemical bonds. Chemical bonds have

frequencies of vibration that are mostly in the infra-red domain. These frequencies

depend on the nature and on the environment of chemical bonds. Thus, if a molecule

is irradiated with a range of waves within the infra-red region, it will absorb all the

waves that have the same frequency as the frequency of vibration of the bonds of

the molecule. Therefore the absorption spectra can be represented by the plot of the

intensity of the transmitted beam versus the frequency of vibration. The analysis of

such spectra can give the molecular structure of the molecule irradiated. At a fun-

damental level, the vibration between two atoms can be explained with the classical

mechanics model of the harmonic oscillator composed of two masses attached to the

opposite ends of a spring. According to this model, the frequency of the oscillations

(ω) in rad/s is obtained from

ω =
√

ks /µ (1.1)

where ks is a constant related to the strength of the chemical bond analogous to the

spring constant which is the ratio between the spring force and the displacement. The
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reduced mass, µ, is defined as

µ =
m1m2

m1 + m2

(1.2)

where m1 and m2 are the masses of the atoms 1 and 2 respectively. The frequency of

oscillation, ω in rad/s, is related to the frequency (ν) in Hertz according to

ω = 2πν, (1.3)

and to the wavenumber (ν̄) in cm−1 is obtained from

ν̄ =
ν

100 c
(1.4)

where c is the speed of light in m/s. Combining the above equations, the wave number

is:

ν̄ =

√
ks

200πc

√
m1 + m2

m1m2

(1.5)

which demonstrates that the wave number (proportional to the frequency of vibration)

clearly depends on the mass of the atoms, i.e. the isotopes used.

Utilizing the previous equations, the O–H bond in the water molecule can be

approximated as a diatomic molecule. Thus, a significant shift in wave number should

be expected by using deutered water instead of normal water. This is confirmed by

the following calculations, where the constant ks for the O–D and the O–H bond

was assumed to be the same as an approximation. The two frequencies are related

according to

ν̄O-D = ν̄O-H

√
µO-H

µO-D

= ν̄O-H

√
16× 1

16 + 1

/
16× 2

16 + 2
= 0.73× ν̄O-H· (1.6)

This approximation is very good given that the symmetric stretching vibration wave

numbers for O–H and O–D are known to be 3652 and 2666 cm−1 respectively.55 the

ratio of the measured frequencies is 2666/3652 = 0.73, confirming the accuracy of

equation 1.6. In the work presented in this section, I used this property to avoid the

overlapping of intense CO2 absorption bands between 3500 and 3800 cm−1 with water

bands by using D2O instead of H2O.
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Most of the IR spectrometers are Fourier transformed. Their principle of operation

is described here with reference to Figure 1.3. A laser source of infra-red radiation

is used to generate the main beam. This beam travels from the source to a half-

transparent mirror (beam-splitter) positioned at 135 degrees, which splits the beam

in two. The first beam (11) is reflected at 90 degrees and hit a mirror that is fixed

and perpendicular to the beam. The second beam (22) is transmitted and bounces

off a mirror that is perpendicular to the beam. This mirror can be moved to change

the length of the optical path. Both beams return to the beam-splitter where half of

all the photons travel toward the source and are lost, and the other half are reflected

(2) or transmitted (1) to the sample with a phase difference due to their different

path-lengths. The combined beam transmitted through the sample finally arrives at

a detector placed at the other side of the test sample and the resulting signal will be

analyzed.

Figure 1.3: Fourier Transform Infra-Red (FT-IR) spectrometer.
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Due to the difference in optical path (δ), the two beams with two different phases

will go through the sample. It will therefore produce some interferences that are either

constructive or destructive resulting in intensity changes depending on the value of

δ. As a result the graph of the intensity as function of δ can be plotted. To obtain

the spectrum, which is a plot of intensity versus frequency, a mathematical tool is

needed. This tool is called the Fourier transformation and it is generally done by a

computer connected to the spectrometer.

The resulting spectrum is composed of peaks of varying width. As explained

before, the position of those peaks depends on the bond energy and therefore depends

on the nature of the bond and on its chemical environment. On the other hand, at

relatively low concentration, the intensity (I) of a peak at a given wave number can

be used to calculate the concentration of the molecule responsible for the peak using

the Beer Lambert law:

I = I0e
−ε l C (1.7)

where I0 is the initial intensity (before the sample), l is the light path-length in

the sample, C is the concentration of the molecule responsible for the signal and ε

is the wavelength dependent molar absorptivity coefficient. The coefficient ε needs

to be calculated from the spectra of the molecule at known concentrations. Gener-

ally the computer connected to the spectrometer transforms the intensities values in

absorbance, (A), which is defined from

A = − ln
I

I0

(1.8)

The absorbance is therefore directly proportional to the concentration, C, and ac-

cording to the Beer-Lambert law,

A = ε l C· (1.9)

To minimize the interference of the background noise, and thus improve accuracy,

one can sum up the absorbances for the entire width of the peak. In such case the
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Beer-Lambert law would be written as:∫ ν̄2

ν̄1

A dν =

∫ ν̄2

ν̄1

ε l C dν = l C

∫ ν̄2

ν̄1

ε dν (1.10)

where ν1 and ν2 are the wavenumbers for which the peak begins and ends.

This spectroscopic technique can be used in supercritical fluids and it has been

used successfully in the past few years to study hydrogen bonding in CO2.
37–40 I

used FT-IR to understand crown ether-water and TBP-water interactions in super-

and subcritical CO2. Because FT-IR actually measures the bond energy between

atoms and molecules, it provides structural information and good understanding of

how the species are bonded in a solution. Furthermore, there are vast databases

of spectra available which is helpful for the recognition of most of the bonds in very

different molecules. The main problem with FT-IR is its low accuracy for quantitative

measurements. The spectral peaks are generally broad and the determination of the

intensities generally lacks precision. FT-IR can be easily overloaded with a system

that contains too many different species causing the overlapping of peaks. In such

cases the intensity and therefore the concentration determination will be even less

accurate. Nevertheless, with a system kept as simple as possible and with the use of

innovative techniques to avoid overlapping, as I did with substituting deuterium for

hydrogen, FT-IR can be used effectively for quantitative analysis. Moreover, with the

use of a specially designed high pressure cell, it can be easily used for measurement

in supercritical fluids.

In this section, I will present the experimental setup and a summary of the results

that are detailed in the paper “An FT-IR study of crown ether-water complexation in

supercritical CO2,” which I published with other colleagues. This paper is reproduced

here as appendix F. Generalization and more details beyond the published work will

be presented.
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1.1.1 Experimental Work

Chemicals.

D2O (100% D, 99.96% pure), 18-Crown-6 (99.5% pure), dicyclohexano-18-crown-6

(98% pure), methanol-d (99.5+ atom % D) and carbon tetrachloride (99.9% pure)

were purchased from Aldrich Chemicals Company and used without further purifi-

cation. Carbon dioxide was obtained as Supercritical Fluid Chromatography (SFC)

grade (purity ≥ 99.99%) from Scott Specialty Gases Inc.

Experimental Setup.

The experimental setup is shown in Figure (1.4). It consists of a syringe pump

(ISCO, model 100DX) that pressurizes, regulates and delivers CO2 to a specially

designed high pressure cell. A detailed description of the high pressure cell will

be presented later. The pressure is measured with an electronic transducer (Precise

Sensor Inc., model D451-10) with a ± 0.1 MPa accuracy. To avoid any incident caused

by over pressurization, a rupture disc was installed on the line between the cell and

the syringe pump. The cell is heated with four electric cartridge heaters and the

temperature is monitored by a controller (Watlow company) with a ± 1 ◦C accuracy.

For safety reasons, the controller was set up to shut down the heater if the temperature

exceeds 80 ◦C. The different solutions inside the cell were analyzed using a Bruker

IFS 66V FT-IR spectrometer with a Mercury-Cadmium-Telluride (MCT) detector

(Kolmar Technologies). A 5 min acquisition time and an 80 kHz scanner velocity

for a 4 cm−1 wavenumber resolution were used to optimize the spectrum quality and

signal-to-noise ratio. Spectrum analysis and corrections, including curve fitting and

spectrum subtraction, were performed with the OPUS (Bruker Optics) software. At

the end of each experiment, the solutions were released to a hood.

The stainless steel cell is rated up to 50 MPa and has an internal volume of 9.2 mL.

It has an observation window made of sapphire which allows visual determination of

the number of phases present inside the cell. This kind of information is important for
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Figure 1.4: Fourier Transform Infra-Red (FT-IR) experimental setup.
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quantitative analysis, as some water droplets can potentially form in the path of the

beam, which would alter the measured spectral data. The infrared beam is focused

along two conical holes and passes through two small diamond windows providing a

path-length of 100 µm. The stirring of the solution during the whole experiment was

done using a Teflon-coated magnetic stirring bar.

Water contamination from the atmosphere or from previous cleaning can change

equilibrium parameters and lead to erroneous results. Such contamination of the cell

and its content must be avoided. Thus, for each experiment, the cell was purged with

nitrogen, and chemicals were introduced to the cell under a glove box. The cell was

then connected to the line and the CO2 was introduced. The solutions were stirred

for 20 to 30 minutes to reach equilibrium after each change of experimental condi-

tions such as chemicals, concentration of species, pressure, and temperature. Longer

experimental times were tested without any significant change in the IR spectra.

Heavy water (D2O) was used instead of H2O to avoid the overlapping of water

peaks and strong CO2 absorption bands between the wave numbers of 3500 and 3800

cm−1. The pure CO2 density was varied from 660 to 1040 g·L−1 by adjusting the

temperature between 25 and 70 ◦C and the pressure between 20 and 40 MPa. The

pure CO2 density was determined using a reported table from the National Institute

of Standards and Technology (NIST) Chemistry WebBook.56

It is important to contain the chemicals inside the cell to maintain accuracy for

quantitative analysis and to avoid any back flow to the pump. Therefore, any decrease

in density was prevented in successive experiments that did not require new chemicals

but simply required increasing pressure and/or decreasing temperature. After each

set of experiments, the cell was cleaned several times with CO2 and acetone and dried

using nitrogen. A blank spectrum was taken to be certain that there is no contam-

ination. It was also used to subtract the empty cell spectrum, including the signal

from the diamond windows, from the spectrum of each sample. Another background

correction was performed because of the overlapping of weak 18-crown-6 bands (C-H
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stretch) and D2O bands. The spectrum of pure 18-crown-6 at the same pressure and

temperature as the sample was also subtracted.

To study the nature of crown-water hydrogen bonding in liquid and supercritical

CO2, a series of mixtures composed of a fixed D2O concentration (0.049 mol·L−1) and

variable 18-crown-6 concentrations (up to 0.25 mol·L−1) were introduced in the cell

with a syringe before the CO2 was added.

1.1.2 Summary of the Results

FT-IR spectroscopy was used as an analytical method for the understanding of crown

ethers-water interaction. The chosen crown ether for this study was 18-Crown-6 and

D2O was used instead of water to avoid overlapping of CO2 intense signal and water

peaks in the wave number range between 3500 and 3800 cm−1.

Three types of bonding were observed between the crown ether and the water.

The first one (Figure 1.5(c)) can only be observed at high crown to D2O concentra-

tion ratio. The configuration is a “sandwich” formed with two 18-crown-6 molecules

surrounding one water molecule. The sandwich configuration is one possible con-

figuration among many, examples of other configurations being the “offset” or the

“perpendicular.” This configuration is characterized by a broad peak at 2590 cm−1.

At low crown to D2O concentration ratio, a water molecule can bond with a crown

ether molecule in two different ways. The first type is a bridge configuration (Figure

1.5(a)) formed by hydrogen bonds between D2O and two oxygen atoms that belong

to the crown cavity. The bonds involved in this configuration have the same nature

as the one in the sandwich configuration, thus their respective FT-IR peaks are over-

lapping. The second type is a single configuration (Figure 1.5(b)) where D2O makes

a single hydrogen bond with an oxygen atom belonging to the crown ether cavity.

It is characterized by two peaks at 2679 and 2733 cm−1 assigned respectively to the

hydrogen-bonded O–D stretching and the unbonded O–D stretching.

The equilibrium constants of formation, Ks and Kb for the single and the bridge
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Figure 1.5: Molecular structure of the water-crown ether interaction in the bridge
form (a), the single configuration (b) and the sandwich form (c).

configurations, were calculated with the CO2 density increased at several step from

850 to 960 g·L−1. For the single configuration, Ks was found to vary between 16 ±

4 and 9 ± 2 L·mol−1. For the bridge configuration Kb was found to vary between

10 ± 3 and 5 ± 2 L·mol−1 in the range of CO2 densities considered. Different

equilibrium constant measurements at constant pressure and variable temperature

allow the calculation of the enthalpy of the hydrogen bond for the two complexes.

Their values were calculated to be -12 ± 2 kJ·mol−1 for the single complex, and -38

± 3 kJ·mol−1 for the bridge one. These values are in agreement with hydrogen bond

enthalpy values found in the literature for other solvents.57

1.1.3 Additional Description

The equilibrium parameters of crown ether-water interaction in supercritical CO2

found by FT-IR need to be compared with the equilibrium parameters in solvents

analyzed by NMR. The later is described in section 1.2. NMR is an analytical tech-

nique that does not allow the differentiation of the two configurations being bridge

or single. Thus, the equilibrium parameters of both the single and the bridge con-

figurations need to be calculated from the FT-IR study in supercritical fluids. For

this purpose, the equilibrium is described next in the section covering the theoretical
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analysis.

Theoretical Calculations

The equilibrium relation is given as

2 18C6 + 2 D2O 
 18C6·D2O
single + 18C6·D2O

bridge (1.11)

From this equilibrium, the constant K can be defined as

K =
[18C6·D2O

single][18C6·D2O
bridge]

[D2O]2[18C6]2
= Ks ·Kb (1.12)

where

Ks =
[18C6·D2O

single]

[D2O][18C6]
and Kb =

[18C6·D2O
bridge]

[D2O][18C6]
(1.13)

and the molar fraction, k, of crown ether bonded to water is given as

k =
[18C6·D2O

single] + [18C6·D2O
bridge]

[18C6·D2O
single] + [18C6·D2O

bridge] + [18C6]
· (1.14)

The molar enthalpy (∆H) of the hydrogen bond, at constant pressure can be

determined from the equilibrium constant (equation 1.12) using the well-known ther-

modynamic relations (equation 1.15, 1.16 and 1.17):(
∂∆G

∂T

)
P

= −∆S =
∆G−∆H

T
, (1.15)

∆G0 = −RT ln K, (1.16)

and (
∂ ln K

∂(1/T )

)
P

= −∆H

R
, (1.17)

where T is the absolute temperature in K, ∆S is the entropy in J·mol−1·K−1, ∆G is

the Gibbs free energy in J·mol−1, and R is the molar gas constant in J·K−1·mol−1.
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Table 1.1: Equilibrium parameters for water-crown-ether interaction in supercritical
fluids.

Pressure temp density K = Ks ×Kb k [D2O]
MPa ◦C g.cm−3 L2·mol−2 % mol·L−1

20.2 60 0.724 34 33 0.035
20.2 50 0.784 62 35 0.034
20.2 40 0.840 161 45 0.031
20.1 35 0.866 108 40 0.032
20.0 33 0.876 174 45 0.030
20.0 31 0.886 242 47 0.029
20.0 25 0.913 298 54 0.028

20.2 40 0.840 161 45 0.031
30.3 40 0.910 53 34 0.035
35.4 40 0.935 61 35 0.034
40.5 40 0.956 64 35 0.034

40.5 25 1.004 178 44 0.030

Typical Statistical errors are: Pressure ± 0.1 MPa, Temperature ± 1 ◦C, K± 10%
and k± 10%

Results and Discussion

The variation of the constant of formation, K, and the molar fraction of crown ether

bonded to water, k, with pressure and temperature are shown in Table 1.1. The

constant of formation K varies from 34 ± 4 to 300 ± 30 L2·mol−2 when the temper-

ature decreases from 60 to 25 ◦C at constant pressure (of ∼20 MPa). At constant

temperature (40 ◦C), K tends to decrease with pressure increase (from 20 to 40 MPa).

The same trend is observed for the molar fraction k of crown ether bonded to

water. Figure 1.6 shows this trend at constant pressure (20 MPa). When the density

increases (i.e. the temperature decreases) the value of k increases from 33 ± 4%

to 54 ± 6%. Therefore, there is more water molecules bonded to the crown at low

temperature or at high density for a constant pressure of 20 MPa.

The variations of k at constant temperature (40 ◦C) versus density is shown in
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Figure 1.6: Molar fraction of crown ether bonded to water k versus density at constant
pressure (20 MPa). Lines are guides for the eyes and do not have any theoretical or
analytical value.

Figure 1.7. When the density increases (i.e. pressure increases), the value of k

decreases rapidly at first and then reaches a plateau at approximately 35% when the

density exceeds 900 g·L−1. At lower pressure values, there is more water bonded

to the crown ether. However, pressure does not appear to influence the amount of

bonded water for pressures higher than 30 MPa.

Equation 1.17 shows that the plot of ln K versus 1/T at constant temperature

(Figure 1.8) can give the value of the molar enthalpy, ∆H, of the hydrogen bond

between water and 18C6. To demonstrate this, linear regression of the plotted data

is needed and the resulting slope multiplied by the inverse of the molar gas constant

(R = 8.3144 J·K−1·mol−1) gives directly the value of ∆H. At 20 MPa, ∆H was found

equal to -51 ± 6 kJ·mol−1.

Consequently, the complexation process is exothermic and since the species are

more entropically ordered it explains the decrease of the K values with the increase of

temperature. In other respects, it is important to remember that for this calculation
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Figure 1.7: Molar fraction of crown ether bonded to water k versus density at constant
temperature (40 ◦C). Lines are guides for the eyes and do not have any theoretical or
analytical value.

I needed to assume that ∆H is independent of density. This result is in accordance

with the values for hydrogen bonding in the literature.57

Figure 1.9 shows the dependence of [D2O] on the global equilibrium constant K.

The amount of free water in CO2 decreases when K increases. This dependence

appears to be linear simply because the range of the water concentration data is too

narrow to clearly display any curvature as expected from equation 1.12.

Conclusion

This section was devoted to the study of water-crown ether interaction in sub- and

supercritical CO2 using FT-IR. This analytical technique allows us to see the different

configurations, including bridge, single, and sandwich forms between water and crown

ethers. The equilibrium constant, the molar fraction of crown ether bonded to water,

and the amount of free water were determined for the bridge and single configurations

at different pressures and temperatures. From these data, the enthalpy of the hydro-
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Figure 1.8: Dependence of ln K on 1000/T at 20 MPa.

gen bond was found to be -12 ± 2 kJ·mol−1 and -38 ± 3 kJ·mol−1 for the single and

the bridge configurations respectively. These results correspond to a total enthalpy

of -51 kJ·mol−1for the two hydrogen bond configurations as found in the global study

that lumps together the equilibra of the bridge and the single configuration in one

equilibrium. This last group of results will be compared in the next section, section

1.2.3, to the one in organic solvent using NMR (Nuclear Magnetic Resonance) as a

method of analysis.
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Figure 1.9: Dependence of free water [D2O] on the equilibrium constant K.



1.2 Crown Ether-Water Interaction in Solvents

Introduction

The main objective of the work describe in this section is to understand the role of

the solvent in the interaction between water and crown ethers. This interaction will

be compared to the one in supercritical CO2 described in the previous section. The

description of this interaction will lead to a better understanding of cesium extraction

using crown ethers. This interaction was studied with Nuclear Magnetic Resonance

(NMR) spectroscopy. I will therefore describe this analytical tool before discussing

the water-crown ether interaction in more detail.

The history of NMR started in the late thirties with the discovery by Rabi of

the magnetic moment. In 1946, two different research groups observed for the first

time an NMR signal. Bloch, Hanse, and Packard from Stanford University detected

the signal 1H of water; while Purcell, Torrey, and Pound from Harvard University

detected it in paraffin wax. Bloch and Purcell shared the Nobel prize of Physics

in 1952 for this discovery. Since then, numerous improvements have been made and

NMR is nowadays the most important and most used technique to determine chemical

structures or to perform Magnetic Resonance Imaging (MRI).

Basically, the NMR spectroscopic technique is based on measuring the absorption

of Radio Frequency (RF) radiation from the nucleus in a strong magnetic field. After

the absorption of the radiation, the spin of the nucleus will go to its highest energy

state. Thereafter, the nucleus will return to its initial state by emitting RF radiation,

which is recorded versus time for the spectrum.

The principle of the NMR operation is described in more details as follows. The

nucleus of some atoms has an angular moment ~M ; these nuclei are therefore similar

to an electric charge in rotation. As a result, the nucleus has a nuclear magnetic

moment ~µ that is directly proportional to the angular moment. The constant of pro-

portionality, γ, is called magnetogyric ratio and it is a characteristic of each particular
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nucleus. When a nucleus with a magnetic moment is placed in a magnetic field ~H0,

it gains an excess of potential energy, Es, where

Es = −~µ · ~H0 = −γ ~M · ~H0 (1.18)

The projection of ~M over ~H0 is quantified in the sense that it can only take integral

or half integral multiples of ~, which is the Plank constant (h = 6.6261× 10−34J · s)

divided by 2π. Hence, this projection, Mz, can take 2I+1 values:

Mz ∈ {I~, (I − 1)~, . . . , (1− I)~,−~} (1.19)

where I is the nuclear spin quantum number. The spin quantum number, I, can take

different values (0, 1/2, 1, 3/2, 2 . . ., cf. Table 1.2) depending on the nucleus.

Table 1.2: Values of I, the quantum spin number, for different nucleus.

1H 2H 12C 13C 14N 15N 19F 31P 16O 17O 133Cs 137Cs
1/2 1 0 1/2 1 1/2 1/2 1/2 0 5/2 7/2 7/2

Nuclei with a nuclear spin quantum number equal to zero do not have a nuclear

magnetic moment and therefore can not be seen by NMR. The analysis of the spin

state I = 1/2 is very straightforward because of its spherical charge distribution with

no electric quadrupole moment. This is why NMR is intensively used to analyze

hydrogen nuclei and, to less extent, carbon 13, fluorine 19 and phosphorous 31 nuclei.

Therefore, for the rest of this presentation, I will consider only the properties of the

I = 1/2 spin state.

According to equations 1.18 and 1.19, with a spin state of I=1/2, Mz = 1/2~ or

−1/2~ and Es = −1/2~γH0 or +1/2~γH0. Therefore, a nucleus which has a potential

energy E in the absence of magnetic field, will have two different possible energies

when placed in a magnetic field ~H0 (Figure 1.10. The difference between these two

energies ∆E is equal to γ~H0.

The number of nuclei in each energy state follows the Boltzmann relation:

n2

n1

= e−∆E/kBT = e−γ~H0/kBT (1.20)
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Figure 1.10: Potential energy of a nucleus with a spin state I=1/2 outside and inside
a magnetic field.

where n1 and n2 are the number of nuclei in the state E1 = E + Es1 and E2 =

E +Es2, kB is the constant of Boltzmann (kB = 1.38066× 10−23J ·K−1) and T is the

temperature in K. Consequently more nuclei are in the state E1 than in the state E2.

However nuclei can transit from state E1 to E2 under an adequate electromagnetic

field. The frequency of this electromagnetic wave follows the Einstein equation,

hν = ∆E = γ~H0 (1.21)

which leads to defining the frequency

ν =
γH0

2π
(1.22)

which is generally in the radio frequency wavelength, i.e. from 20 to 900 MHz, for a

magnetic field strength between 1 and 20 Tesla. For comparison, the earth magnetic

field is approximately 10−4 T and the energy of a IR transition is a thousand times

greater whereas the one of an electronic transition is nearly one million times greater.

NMR is a sensitive and non destructive analytical method but it has drawbacks.

The equipment is very expensive because it needs to be able to observe a very little

change in frequency or energy, and at the same time, it needs to be capable of pro-

ducing a very strong magnetic field. A typical NMR experiment setup is represented

as a simplified diagram in Figure 1.11. During the NMR experiment, represented in

figure 1.12, the sample is placed in a tunable magnetic field and irradiated with RF
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waves from a transmitter. The wave frequency is maxed out for the proton NMR

(i.e. it is chosen close to 500 MHz when a 500 MHz spectrometer is used and close

to 300 MHz with a 300 MHz spectrometer). The time during which the sample is

irradiated is called pulse-width and lasts 1 to 30 µs depending on the system studied.

The pulse-width can also be given in degrees which correspond to the angle that the

spin has with the z-axes at the end of the pulse. During irradiation, waves having

the same energy as the energy difference between the spin states of the nuclei are ab-

sorbed in the sample. This matching of energies (frequencies) is called the resonance.

When the nuclei in the sample returns to its normal state, RF waves are emitted and

acquired by the receiver. Wave intensities are then recorded as a function of time

and the resulting graph is called the Free Induction Decay (FID). Acquisition lasts

for several seconds and the process is performed several times to reduce the signal to

noise ratio. In between pulses, the sample has to go back to equilibrium (relaxation)

to avoid the overlapping of the signals, this is the relaxation delay that takes 5 to 20

seconds, depending on the sample. Therefore, the time between scans is equal to the

pulse-width (which is relatively small and can be ignored) plus the acquisition time

plus the relaxation delay. After the last scan, the FID is finally Fourier transformed

to obtain the spectra of the intensities versus frequencies.

Proton NMR (PNMR) is the most commonly used NMR spectroscopy because

of the abundance of hydrogen in organic molecules and because of the simplicity of

its spectral interpretation. Each peak in such spectra offers three characteristics:

location, intensity, and coupling.

First, the location of a peak is defined as the frequency at which the proton enters

in resonance. This property depends on the electron(s) surrounding the nucleus.

Electrons are responsible for bonds between atoms and as charged particles they are

responsive to the external magnetic field. When electrons are put in a magnetic field

H0, they would move to compensate for the effect of H0 and therefore shield the

nucleus that will enter in resonance at a higher frequency. As a consequence, one can
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Figure 1.11: Nuclear magnetic resonance experiment.4

have an idea of the surrounding of the atom observed depending on the location of a

peak. The downside is that this location will differ from one spectrometer to another,

indeed the location of a peak is dependent on both the RF and the strength of the

magnetic field and the later can not be standardized due to magnet differences. To go

around this problem, most scientist use as a reference a compound that is chemically

nonreactive, gives a single sharp peak, and does not interfere with the resonances of

the species in the sample studied. The compound that meets all these specifications is

TetraMethylSilane, (CH3)4Si or TMS. The frequency of a peak, δ, is called a chemical

shift (from that of the TMS, taken as a reference). Nevertheless, there is another

problem with the spacing between the peaks being still not standardized. The way

to solve his problem is to divide the frequency observed of the peak by the frequency

of the spectrometer (i.e. 100 or 500 MHz). Since the number obtained is very small

(Hz divided by MHz), the result is multiplied by one million and the part per million

unit (ppm)is used.
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Figure 1.12: Acquisition sequence for a nuclear magnetic resonance experiment.

The second characteristic of a PNMR spectrum is intensity. The intensity of a peak

for a nucleus type is directly proportional to the number of nuclei having exactly the

same electronic surroundings. These nuclei are called isochronous because they show

at the same chemical shift. For example, the peak of the three protons of a methyl

group will show at the same chemical shift, and the peak will have an intensity three

times greater than the one of an alcohol group.

Coupling is the third major property of a PNMR spectrum. When different sets

of hydrogen atoms are close together in a molecule (i.e. when there is generally three

bonds or less in between them), there is a spin-spin interaction and their nuclei are

coupled. For example, the spectrum of ethanal (CH3CHO, Figure 1.13) can be looked

at . In this molecule, a proton from the methyl can “see” the proton from the aldehyde

group, they are coupled. Therefore the methyl peak will be split in a doublet. In the

same way, the proton from the aldehyde group can “see” the three protons from the

methyl group and the proton peak from the aldehyde will split in a quartet (Figure

1.14 a.).
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In all cases, the space between the coupled peaks is constant for a given multiplet

and it is called coupling constant (J). J is independent of the magnetic field strength,

and is the same for both groups of the same spin-spin interaction. Quantitatively, J

value is generally between 2 and 10 Hz. In Figure 1.14, the ideal splitting patterns are

shown with their intensities. A group will split in a doublet if it“sees” one proton, to

a triplet if it “sees” two, in a quartet if it “sees” three, etc. The global intensity is the

same as the one you would have with a single peak, but the relative intensity depends

on the tree shown in Figure 1.14 b. It happens nevertheless that the chemical shifts

are too close to one another and the pattern of the multiplets are distorted.

In this section I will present the experimental setup and a summary of the results

that are detailed in the paper “Partition Coefficients and Equilibrium Constants of

Crown Ethers between Water and Organic Solvents Determined by Proton Nuclear

Magnetic Resonance,” which I published with other colleagues. This paper is repro-

duced as appendix G. At last, I will compare the results from this section to the one

using FT-IR in solvents.

1.2.1 Experimental Section

All chemicals were purchased from Aldrich Chemical Company and used without

further purification. Chloroform was used in its deuterated form (99.5% CDCl3) and

the water phase contains 5% D2O by volume.

The crown ethers were diluted in the CDCl3 + CCl4 mixtures with a concentration

range of 0.02 to 0.2 mol·L−1. These solutions were subsequently mixed with an equal

volume of the D2O-enriched water and the equilibrium was reached by shaking the two

phases with a wrist-type shaker for 2 hours or more. The studies involving 15-crown-

5, 18-crown-6 and dicyclohexano-18-crown-6 in solvents containing high percentages

of CCl4 required longer shaking time to get consistent data. After the shaking, the

mixtures were centrifuged for one hour.

The remaining organic and aqueous phases were then analyzed by proton NMR
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using a 500 MHz Bruker DRX500 spectrometer. To obtain quantitative results, 16

scans were taken and for each, the pulse interval was set to 11.3 sec (acquisition time

3.3 sec, relaxation delay 8 sec). The pulse-width was 30 degrees (corresponding to a 2

µs pulse) in all systems (organic, aqueous, with or without chelator agent). Chemical

shifts in the organic phase were calibrated by setting the chloroform chemical shift to

7.24 ppm. For the solvent mixtures containing CCl4, the chloroform resonance peak

shifts upfield (lower ppm) as CCl4 was added. The shift was measured by turning

off the field lock; this operation allows the comparison of the solvent mixtures at

constant field. A 0.14 ppm shift was observed when the solvent used is 25% CHCl3 in

CCl4 instead of 100% CHCl3. An upfield correction was then added for all mixed

solvent samples run with a CDCl3 field lock. The intensity (based on integrated area

calculations for all data) of the water peaks in the Proton-NMR (PNMR) spectra

was corrected for the 5% D2O (by volume) present in the water phase. For the 100%

CCl4 mixture, an insert filled up with benzene-d6 has been used as a reference for

the intensity and the chemical shift, which was set at 7.15 ppm.

Typical PNMR spectra for 18-crown-6 in the CDCl3 phase are shown in Figure

1.15. A single resonance peak for the protons belonging to unsubstituted crown ethers

is generally observed in the region between 3 and 4 ppm. The free water and the

bonded water are in rapid exchange in solution due to the equilibrium. The observed

water resonance peak consists then of an average of the resonance of the free water

and the bonded water. Thus the resonance peak for the water shifts downfield as the

concentration of the bonded water is increased which correspond to an increase in

ligand concentration. The concentration of the ligand in the organic phase has been

corrected for its solubility in the aqueous phase based on PNMR measurements of its

partition between the two phases.
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1.2.2 Summary of Results

The influence of solvent on water-crown ethers interaction was studied by NMR in

chloroform and carbon tetrachloride mixtures. The two configurations (single or

bridge) of 1:1 water-crown ether complex, that have been observed by Moyer et al.36

in carbon tetrachloride using FTIR, cannot be distinguished by NMR analysis. There-

fore only one complex, taking in account the two configurations, is used for the differ-

ent calculations. The analysis of the data shows that water and crown ether form a

1:1 complex in rapid exchange with uncomplexed ligand and water. The crown ether

concentrations used for this study are small enough to avoid the formation of a 1:2

complex or “sandwich” between one water and two crown ether molecules.

Different constants were determined in the course of this study. First the partition

coefficient (D) for crown ether between the two phases was found to depend strongly

on the solvent. Its value for 18-crown-6 varies from 0.25 ± 0.02 in a 100% CDCl3 so-

lution to 48 ± 3 in a 100% CCl43. Otherwise, D stays in the same order of magnitude

for different crown ethers soluble in water. Second, the equilibrium constant (K) and

the molar fraction (k) of crown ether complexed with water were measured. They

were found to depend strongly on the cavity size. For example, k varies from 15 ±

1% for 12-crown-4 to 97 ± 5% for 18-crown-6 in chloroform. Moreover, the molar

fraction k is reduced to 70% for DC18C6 in 100% CDCl3 which shows the effect of a

substituant like the cyclohexane. In the other hand, the molar fraction k varies from

97 ± 5% in 100% CDCl3 to 61 ± 3% in 25% CDCl3 in CCl4 for 18-crown-6 which

shows that k is also affected by the solvent used. Last, the chemical shifts of free and

complexed water in the organic phase were determined for each solvent mixture and

each crown ether.

1.2.3 Comparison to FT-IR Results in CO2

Beside the difference in solvent and in the spectroscopic tool used, there is a third

difference between the two experiments. In the first experiment (using FT-IR in CO2)
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the total amount of water in the organic phase is constant and completely dissolved

in the organic phase. In the second experiment (using NMR in solvents), the amount

of free water is constant, but the total amount of water is not constant, as there

is a reservoir of water allowing water to go in the organic phase to be bonded to

crown ether when the crown ether concentration increases. Therefore, the partition

coefficient of water between the organic and the water phase was not determined in

the first experiment. The only data that I can compare is the equilibrium constant

(K) and the molar fraction of ligand complexed to water (k). In an effort to clarify

this distinction in the rest of this section, these constants will be respectively called

K1 and k1 for the first experiment using FT-IR in CO2 and K2 and k2 for the second

experiment using PNMR in solvents. The values of theses constants are detailed in

Table 1.3.

Table 1.3: Comparison of the values of the equilibrium constants K1 and K2 and of
the molar fractions of ligand complexed to water k1 and k2.

CO2 CDCl3/CCl4 mixtures
Pressure Temperature Density K1 k1 CDCl3 K2 k2

MPa ◦C g·L−1 L2·mol−2 % % /vol L·mol−1 %

20.2 60 724 34 33 25 141 61
20.2 40 840 161 45 50 97 63
20.0 25 913 298 54 75 102 79

20.2 40 840 161 45 50 97 63
40.5 40 956 64 35 100 545 97

In CO2, at constant pressure, the values of K1 and k1 decrease with an increase

in temperature and their values decrease as well at constant temperature with an

increase in pressure. Whereas in CDCl3 and CCl4 mixtures the values of K2 and k2

decreases as the percentage of CDCl3 in CCl4 decreases. Therefore, at high pressure

and temperature, regarding the equilibrium constants and the molar fraction of ligand

bonded to the water, CO2 behave more like CCl4 which is a nonpolar solvent (its
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dielectric constant ε = 2.24 and its electric dipole moment in the gas phase µ is equal

to zero58). On the other hand, when the temperature and pressure of CO2 decreases

its properties are closer to the one of CDCl3 which is a polar solvent (CHCl3 dielectric

constant ε = 4.81 and CHCl3 electric dipole moment in the gas phase µ = 1.01 D,58

the isotopic effect is weak for these properties and their values should be closed to

the one of CDCl3).

The amount of free water in solvents can be compared to the one in CO2. Numer-

ous published studies have recorded the solubility of water in sub and supercritical

CO2.
59,60 Values obtained from Argonne National laboratory in collaboration with

Michael J. Chen61,62 are reproduced in Table 1.4 and are compared with the one from

Fulton et al.59 to the one in different mixtures of CCl4 and CDCl3. At constant tem-

perature and at increased pressure, [H2O] increases to reach approximately the value

of free water in CDCl3 when the density exceeds 0.8 g.cm−3. When the density is fixed

at 900 g·L−1, or the pressure is fixed at 34.5 MPa, the amount of free water increases

rapidly when the temperature is increasing. Regarding water solubility, CO2 behaves

like CCl4 at low pressure and temperature and shifts to a behavior resembling that

of CDCl3 when the temperature and/or the pressure increases.

Table 1.4: Comparison of water solubilities in solvents and in CO2.

CO2 CDCl3/CCl4 mixtures
Pressure Temperature Density [D2O] CDCl3 [H2O]

MPa ◦C g·L−1 mol·L−1 % /vol mol·L−1

8.3a 35 576 0.032 0 0.00
17.6a 35 845 0.067 25 0.011
26.2a 35 909 0.074 50 0.017
36.2a 50 905 0.122 75 0.037
45.5a 65 901 0.183 100 0.060
34.5b 50 804 0.137
34.5b 75 896 0.271

a. Michael J. Chen,61,62 b. Fulton et al.59
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Conclusion

This study shows that interaction between water and crown ethers depends strongly

on the crown ether used and on the nature of solvents. The main factor of this

dependence is the polarity of the solvent. As the polarity increases (decrease of

CCl4 concentration in CDCl3), the molar fraction (k) of crown ether complexed with

water increases from 61 to 97% for 18-crown-6. These values can be compared to the

ones in supercritical fluids, where regarding the values of k, CO2 behaves more like

CDCl3 at low temperature and low pressure. These tendencies are the same regarding

the equilibrium constant K in both systems whereas it is the opposite for the quantity

of free water in the oil that is the same as the solubility of water in oil. This value

increases with the polarity of the solvent and increases with increasing pressure and

temperature. Therefore CO2 is a tunable solvent that can behave like a polar or non

polar solvent depending on the property observed and its pressure, temperature, and

density.

These data are important for understanding and improvement of liquid-liquid

extraction of metallic ions with crown ethers, where water plays an important role.

Section 1.3 will show this importance for cesium extraction.
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Figure 1.13: P-NMR spectrum of the ethanal molecule (CH3CHO).5
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Figure 1.14: coupling due to spin-spin interactions and relative intensities.
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Figure 1.15: Typical PNMR spectra of 18-crown-6 in the CDCl3 phase. The concen-
trations of 18-crown-6 after equilibrium with water are 0.00, 0.002, 0.075 and 0.153
mol·L−1 (from top to bottom) and the water peaks are at 1.565, 1.874, 2.393 and
2.668 ppm, respectively.



1.3 Introduction to Cesium Extraction Equilibrium

Using Crown Ethers

Introduction

The purpose of this section is to show the importance of the water in the equilibrium

describing the solvent extraction of cesium picrate using Dicyclohexano-18-crown-6

(DCH18C6) as a ligand. This section complements the previous presentation of the

interaction between water and crown ethers in various solvents (section 1.2). I must

first describe the origin and properties of cesium–137 before venturing into the details

of its extraction equilibria.

Cesium–137 (137Cs) is an isotope produced by the fission of uranium-235 which

takes place in nuclear reactors or when an atomic bomb is detonated. It is radioactive

with a physical half-life of 30.17 years. It can be found in the soil and is metabolized

in plants and animals. Its concentration is particularly high in wild animals and in

mushrooms because of the specificity of game way of eating and mushrooms accumu-

lation mechanisms. Furthermore, those species are generally found in forests where

the soil is protected from rain washing and wind dispersion causing a slow natural

decrease in concentration.

Soil contamination is mainly the result of atmospheric nuclear weapon tests and

of the Chernobyl reactor accident. The contamination is high in Ukraine and Russia

and still a concern in western Europe. 137Cs is dangerous for the human consumption

because it is recognized by the body and accumulated mimicking potassium, which is

important in the transmission of nerve messages. Like any radioactive material it also

increases the risk of cancer when inhaled or ingested. 137Cs contamination of land

and foodstuffs in the territories around Chernobyl is a major problem, as thousands

of square miles of land in Belarus, Russia and Ukraine cannot be used for agricultural

production whereas in some areas the population had to be relocated. These social

and economic consequences of 137Cs contamination will remain for decades unless a
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decontamination solution is found.

Nuclear waste from power plants is another source of 137Cs. This isotope is abun-

dant in Spent Nuclear Fuel (SNF) and is largely responsible for the heat produced in

such waste. 137Cs has a relatively long half-life (30.17 years) and therefore it survives

the short-term storage period of 10 years commonly allocated for SNF. In order to

recycle the uranium and the plutonium from nuclear waste, one should clean it up

by removing other isotopes like strontium-90 and 137Cs. Furthermore, 137Cs can be

recycled and used for radiotherapy at cancer medical centers.

Crown ethers, with their particular geometry, can be used to extract and separate

alkali ions from soil, water or other media. Their cavity varies in size depending on

the number of oxygen atoms forming it. They can thus be selective for one specific

ion size like the cesium cation. In this section, I am presenting a new model allowing

the calculation of the interaction between crown ether, water and cesium picrate

in a two-phases medium. The crown ether chosen for this study is dicyclohexano-

18-crown-6 (Figure 1.16 a.). Its cavity size is compatible with the extraction of

the cesium ion. The two cyclohexane molecules attached to the crown ether force

the cavity to be open in a “plane” conformation, which is more favorable for the

extraction. Furthermore, the DCH18C6 is not soluble in water which simplifies the

calculations and the understanding of the equilibrium. Because of the explosive nature

of the picrate ion (Figure 1.16 b.) chosen as a counter ion, I could not analyze these

interactions in supercritical fluid by FT-IR. I had to use, like in the previous section,

NMR as an analytical instrument and chloroform as a solvent. The radioactive 137Cs

and the stable Cesium-133 isotopes have the same chemical properties, therefore I

used 133Cs isotope for the following experiments that describe crown ether–water–

cesium picrate interactions that occur during the extraction of cesium from water

with chloroform.
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Figure 1.16: Molecular structure of dicyclohexano-18-Crown-6 (a) and of Cesium
picrate (b).

1.3.1 Experimental Work

Dicyclohexano-18-crown-6 (DCH18C6, 98% pur), chloroform-d (99.5% CDCl3) were

purchased from Aldrich Chemical Company and used with no further purification.

Cesium picrate was synthesized from cesium chloride and picric acid and was recrys-

tallized in water. Its purity is estimated to be over 95% because no impurity peak

can be seen in the NMR spectra of the specie dissolved in water (5% D2O).

The ligand was dissolved in chloroform-d (in the concentration range of 0.05–0.4

mol·L−1) whereas the cesium picrate was dissolved in water (in the concentration

range of 0.01–0.12 mol·L−1). The two solutions were mixed in equal volume for 4

hours to reach equilibrium. Both phases were analyzed with a 500 MHz Brucker

DRX500 spectrometer. The pulse interval was set to 9 sec (acquisition time 3 sec,

relaxation delay 6 sec). DCH18C6 has a very low solubility in water and is not

detectable in the water phase by NMR. Thus, its solubility in water was considered

equal to zero and it was used as a standard for the peak integration in the organic

phase.

Two typical PNMR spectra for DCH18C6 with water and cesium picrate in the

CDCl3 phase are shown in Figure 1.17 where the initial ligand concentration ([L]) is
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0.4 mol·L−1 and the initial cesium picrate concentration ([CsPi]) is 30 mmol·L−1 and

in Figure 1.18 where [L] = 0.05 mol·L−1 and [CsPi] = 8 mmol·L−1 . The chloroform

chemical shift was set at 7.24 ppm and used for the calibration of all other chemical

shifts in the organic phase. The group of peaks around 3.6 ppm is attributed to

the 20 protons of the crown ether ring, whereas the 4 peaks for the protons of the

cyclohexanes are between 1 and 2 ppm. The single resonance peak for the two equiv-

alent protons of the picrate ion is found at 8.8 ppm. The free water and the bonded

water are in rapid exchange in the solution due to their equilibrium. The observed

water resonance peak consists of an average of the resonance of the free water and

the bonded water in CDCl3. Thus the resonance peak for the water shifts downfield

as the ligand concentration is increased. In these spectra, the water resonance in

CDCl3 is found at 2.2 ppm (Figure 1.18) and 2.9 ppm (Figure 1.17). In this last

figure, the concentrations are very low and the contamination of a water droplet can

be seen at 4.7 ppm, which correspond to the chemical shift of water in water.

 0.0 2.0 4.0 6.0 8.0 10.0

ppm

Figure 1.17: Typical PNMR spectrum for DCH18C6 (at 0.4 mol·L−1) with water and
cesium picrate (at 30 mmol·L−1) in the CDCl3 phase).
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 0.0 2.0 4.0 6.0 8.0 10.0

ppm

Figure 1.18: Typical PNMR spectrum for DCH18C6 (at 0.05 mol·L−1) with water
and cesium picrate (at 8 mmol·L−1) in the CDCl3 phase).

1.3.2 Calculations

NMR spectra give directly the total concentration of cesium picrate (CsPi), ligand

(L) and water in the organic phase by an integration of the peaks belonging to the

former species. In order to simplify the notation, the suffix “aq” was added to the

species in the aqueous phase, whereas no suffix was added to the species in the organic

phase.

Equilibrium Model Between the Two Phases

The partition of water, crown ether and cesium picrate between the organic and the

aqueous phase is described as:

H2Oaq 
 H2O (1.23)

Laq 
 L (1.24)

CsPiaq 
 CsPi (1.25)
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Equilibrium Model in the Organic Phase

In the organic phase, the interaction between water, cesium picrate and DC18C6

follows the equilibrium reactions:

CsPi + L 
 CsPiL (1.26)

CsPiL + L 
 CsPiL2 (1.27)

L + H2O 
 L·H2O (1.28)

CsPiL + H2O 
 CsPiL·H2O (1.29)

CsPiL2 + H2O 
 CsPiL2·H2O (1.30)

Equilibrium Constants

Equilibrium constants corresponding to equations (1.26) through (1.30) are respec-

tively defined as:

K1 =
[CsPiL]

[CsPi][L]
(1.31)

K2 =
[CsPiL2]

[CsPiL][L]
(1.32)

Ka =
[L·H2O]

[L][H2O]
(1.33)

Kb =
[CsPiL·H2O]

[CsPiL][H2O]
(1.34)

Kc =
[CsPiL2·H2O]

[CsPiL2][H2O]
(1.35)
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Determining the Concentration of Different Species

The total unbonded water concentration [H2O] is constant at equilibrium, because of

the equilibrium relation (1.23). To facilitate further calculation the following notation

is employed for the former equilibrium constants.

kx = [H2O]Kx (1.36)

with x = a, b or c.

Material balance at equilibrium leads to equations (1.38), (1.40) and (1.42) where

the “org” suffix is used for the total concentration in the organic phase.

[L]org = [L] + [L·H2O] + [CsPiL] + [CsPiL·H2O] + 2[CsPiL2] + 2[CsPiL2·H2O]

(1.37)

⇒ [L]org = (1 + ka)[L] + (1 + kb)[CsPiL] + 2(1 + kc)[CsPiL2] (1.38)

[CsPi]org = [CsPi] + [CsPiL] + [CsPiL·H2O] + [CsPiL2] + [CsPiL2·H2O] (1.39)

Cesium picrate solubility in the organic phase is very low and considered as null.

⇒ [CsPi]org = 0[L] + (1 + kb)[CsPiL] + (1 + kc)[CsPiL2] (1.40)

[H2O]org = [H2O] + [L·H2O] + [CsPiL·H2O] + [CsPiL2·H2O] (1.41)

⇒ [H2O]org − [H2O] = ka[L] + kb[CsPiL] + kc[CsPiL2] (1.42)

Equations (1.38), (1.40) and (1.42) can be put in a matrix product as follows:

 [L]org

[CsPi]org
[H2O]org − [H2O]

 = A

 [L]
[CsPiL]
[CsPiL2]

 (1.43)
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where A is a 3×3 matrix defined as:

A =

 1 + ka 1 + kb 2(1 + kc)
0 1 + kb 1 + kc

ka kb kc

 · (1.44)

The resulting [L], [CsPiL] and [CsPiL2] concentrations can then be found by solving

equation (1.43) to get

 [L]
[CsPiL]
[CsPiL2]

 = A−1

 [L]org
[CsPi]org

[H2O]org − [H2O]

 (1.45)

where

A−1 =
1

−D
·B , (1.46)

B =

 kb − kc −kb(kc + 2) + kc (1 + kb)(1 + kc)
−ka(kc + 1) ka(kc + 2)− kc (1 + ka)(1 + kc)
ka(kb + 1) kb − ka −(1 + ka)(1 + kb)

 , (1.47)

and

D = (1 + ka)(kc − kb)− ka(1 + kb)(1 + kc). (1.48)

The unbonded water concentration calculations are shown later on in this section.

Other species concentration can be derived directly from the ka, kb and kc values as

shown by equations (1.33) through (1.36).

Determination of ka and k

The molar fraction of water molecules bonded to the ligand, k, is defined by

k =
[L·H2O]

[L]+[L·H2O]
(1.49)
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Because of equilibrium (1.23), the unbonded water concentration in the organic phase

([H2O]) is independent of the other species dissolved and thus independent of the

[L·H2O]/[L] ratio and k.

When no cesium picrate is added to the solution, the material balance is

[H2O]org = [H2O] + [L·H2O] (1.50)

[L]org = [L] + [L·H2O] (1.51)

Combining the material balance relations (1.50) and (1.51) with equation (1.49), the

linear relation

[H2O]org = k[L]org + [H2O] (1.52)

can be derived. According to this equation, a linear plot of [H2O]org versus [L]org

should give the value of k as the slope, and the unbonded water concentration, that

is constant and is independent of the other dissolved species, as the y-axes intercept.

Replacing [L·H2O] by ka[L] using equations (1.33) and (1.36) in equation (1.49) leads

us to determine the relationship between k and ka from

k =
ka

1 + ka

(1.53)

or

ka =
k

1− k
(1.54)

Determination of the Constants kb and kc

The constants, kb and kc, are respectively dependent on the concentrations of the

CsPiL complex and on the CsPiL2 “sandwich” which are used to calculate K2. There-
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fore, the correct values of kb and kc are the one for which K2 is constant for a large

set of data. As a consequence, values of the constants kb and kc, were calculated

by minimizing the standard deviation on the equilibrium constant K2 for different

concentrations in ligand (from 0.05 to 0.40 mol·L−1) and in cesium picrate (up to 0.12

mol·L−1).

1.3.3 Results and Discussion

The total water versus cesium picrate concentration in the organic phase for different

ligand concentrations is shown in Figure 1.19. Since unbonded cesium picrate is

insoluble in the organic phase, all the cesium picrate in these experiments is bonded.

As expected, the total water concentration in the organic phase decreases when the

cesium picrate concentration increases. Indeed, the cesium picrate is captured inside

the crown ether cavity instead of water. There is then less water than can be carried

out from the water phase to the organic phase by crown ether.
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Figure 1.19: Total cesium picrate concentration versus water concentration in the
organic phase for different initial ligand (L = DCH18C6) concentrations (from 0.05
to 0.4 mol·L−1).
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The y axis intercept value for each ligand concentration in Figure 1.19 gives the

water concentration in the organic phase when no cesium picrate is added to the

solution. A plot of this value versus the ligand concentration is shown on Figure 1.20.
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Figure 1.20: Total water concentration versus total ligand concentration in the organic
phase.

The constant unbonded water concentration in the organic phase is found to be

0.07 ± 0.01 mol·L−1 using the linear regression on the data shown in Figure 1.20

and equation (1.52). This value is in good agreement with the experiment and with

another calculation made in section (1.2.1) on page 75 that involved different crown

ethers and water equilibrium in chloroform. The equation (1.52) also gives the molar

fraction of water molecules bonded to the ligand (k). It is found to be 73 ± 4% and

confirms the value found in section (1.2.2) for DC18C6 (70%). Therefore, about 30%

of water in solution is not bonded to the crown.

The equilibrium constant Ka was found via equation (1.36) and (1.54) to be equal

to 38 ± 13 L ·mol−1. This result is in accordance with the previous study in section

(1.2.1) where Ka (named K in section (1.2.1)) was equal to 32 ± 3 L·mol−1.
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The equilibrium constant Kc was found to be equal to zero. Therefore, there

is no sandwich between two crown ethers and one cesium picrate when the water

is involved. The only sandwich forms in the organic phase are not complexed with

water.

The equilibrium constant Kb was found to be equal to 21 ± 7 L ·mol−1. Thus the

1:1:1 complex between crown ether, water and cesium picrate is preferred to the one

without water.

The equilibrium constant K2 was found to be equal to 47 ± 15 L · mol−1. This

last result implies that when no water is involved in the complexion process, the

sandwich form between two crown ethers and one cesium picrate is preferred than

the 1:1 complex between one crown ether and one cesium picrate.

Conclusion

In this section, the cesium picrate-water-crown ether interactions were fully described

using chloroform as a solvent. The importance of the role of water in the solvent

extraction of cesium was demonstrated. The molar fraction of water bonded to the

ligand (DCH18C6), k, was calculated from the measured data, and found to be 73 ±

4%. This result confirms the value calculated in the study of the crown ether–water

interaction in chloroform without cesium picrate (i.e. 70 ± 4% in section 1.2.2 page

77). This result implies that there is only 30% of the water that is not bonded in the

organic phase.

Cesium extraction was described using four equilibrium reactions. The calculation

of the equilibrium constants leads to three conclusions.

1. The sandwich configuration in between two crown ether and one cesium picrate

is not possible if water is part of it.

2. The one–to–one complex of the cesium picrate with the crown ether is preferred

with water than without.
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3. the “sandwich” configuration is preferred to the one–to–one complex, when no

water is involved.

It was also observed that the amount of water in the organic phase decreases with

the increase of the cesium picrate concentration (Figure 1.19). It seems that the water

is competing with crown ether to be carried out of the water phase. The efficiency of

the extraction might be enhanced in a “water–free” extraction.

For future consideration, additional experiments need to be performed in super-

critical CO2 to find out if cesium extraction is efficient enough and confirm the fea-

sibility of large scale plants to extract cesium from spent nuclear fuel (SNF) or clean

large contaminated areas.
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Conclusion

In this chapter, the interaction between water and crown ethers was studied in sub and

supercritical CO2 and in organic solvents that have physical properties comparable to

the ones of CO2. Two different spectroscopies were used to describe these interactions.

First, the FT-IR spectroscopy used in CO2, and second the NMR spectroscopy used

in organic solvents. These two spectroscopies have their specific advantages and

drawbacks. The FT-IR spectroscopy is a simple and affordable technique and most

chemical laboratories possess a FT-IR spectrometer. The interpretation of a FT-IR

spectrum can shed light on the bonds involved in a chemical system. On the other

hand, NMR is very accurate in regard to the qualitative and quantitative analysis

and its spectrum interpretation is straightforward. However it is an expensive device

that is complex to operate and because of these reasons, it is not as easily usable as

FT-IR in a non-conventional way. The versatility of the FT-IR technique allows the

conduct of experiments in supercritical fluids that were not possible to perform with

our NMR equipment.

First the crown ether–water interaction were studied in supercritical CO2 and

then in solvents that have a low dielectric constant and that are believed to have

solubility parameters in the same magnitude as the one of CO2. Carbon tetrachloride

and chloroform were selected as solvents, and to investigate their properties, mixtures

of these two solvents at different volume ratios were used. It was demonstrated that

regarding the equilibrium constant K and the molar fraction of ligand complexed

with water k, CO2 acts like a solvent with high dielectric constant at low temperature

and pressure and its behavior gets closer to the one of CCl4 when temperature and

pressure increase. On the other hand, with regards to the solubility of water in the

CO2 phase (amount of free water), it is the opposite. That is, the solubility increases

with an increase in temperature and pressure in the same manner it increases as the

dielectric constant of the solvent increases.
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Finally, experiments were conducted with cesium, and the important role of water

in the extraction process was demonstrated. No sandwich can be formed between

two crown ethers and a cesium picrate with water bonded to it. Conversely, the 1:1

complex seems to be preferred with water. The amount of water tends to increase

with an increase in the concentration of the ligand in the organic phase because the

ligand carries water into the oil. It was also observed that the amount of water in

oil decreases with the increase of the cesium picrate concentration. Therefore, the

efficiency of the extraction might be enhanced if the water is removed from the sample.

Indeed, water competes with cesium for space in the crown ether cavity in which they

are carried into the organic phase.

More experiments need to be performed in supercritical CO2 to ascertain whether

cesium extraction is efficient enough to build a large scale plant to reprocess spent

nuclear fuel (SNF) or to be able to clean large contaminated areas. For the SNF

retreatment, a cesium extraction plant could be combined to a uranium extraction

plant using a PUREX (Plutonium Uranium Recovery by Extraction) like process in

supercritical CO2. Using the fact that CO2 is a tunable solvent, such a plant could

also be used to extract and separate other radioactive elements, reducing the risk

and the cost of having several extraction plants. The next chapter will describe the

feasibility of supercritical CO2 processes for the extraction of uranium.



Chapter 2

TriButyl Phosphate–Water–Nitric
Acid Interaction

Introduction

This chapter is focused on the most important constituent of various nuclear waste,

uranium. This study complements and benefits from the previous chapter, where the

supercritical fluid extraction (SFE) of cesium was investigated and the role of the

water in this extraction was detailed. Nitric acid and TriButyl Phosphate (TBP)

complexes are used as oxidizing agent and ligand to extract uranium in supercritical

CO2. The antisolvent effect is observed when the TBP–water and the TBP–nitric

acid–water adducts are dissolved in a solvent. This effect was investigated in order

to have a better understanding of the mechanism of the extraction. I conclude this

chapter by presenting a practical application: TBP–nitric acid–water adducts were

used for the supercritical fluid extraction of uranium from incineration ash of the

byproduct of the nuclear fuel production. However, before describing my research

work in more detail, I will present a brief background on solvent extraction and

especially on the PUREX (Plutonium Recovery by Extraction) process on which the

supercritical extraction of uranium is based.

Numerous physical and chemical processes have been envisaged to separate, repro-

cess and recycle spent nuclear fuel and nuclear waste. Some thought to use neutrons

absorption to transmute highly radioactive isotopes to stable or fast decaying ones,
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but this costly method has not been proven viable yet and has many drawbacks. Oth-

ers thought of chemical processes to separate radioisotopes that can be reprocessed

and recycled. The first chemical process used in a large scale plant (1945, Hanford,

Washington State, USA) was the bismuth phosphate process10 which is designed to

precipitate the plutonium with bismuth phosphate. This process was abandoned

in the late forties, for solvent extraction processes, because it had too many steps,

generated a large amount of waste and required a succession of dissolutions and pre-

cipitations that cannot be automated in a continuous way. Solvent extraction has

the advantage of reprocessing both uranium and plutonium in a continuous way. The

first large-scale plant that used solvent extraction was built by GE (General Electric

company) at Hanford in 1951. This plant used the Redox process which consists of

salting the aqueous solution containing the waste with aluminum nitrate and using

2-hexanone as an extractant for uranyl and plutonyl nitrate. This plant was replaced

with a PUREX (Plutonium Recovery by Extraction) plant in 1956 after it was suc-

cessfully used by the DuPont company in Savannah River (South Carolina State,

USA) plutonium production plant. The Purex process uses nitric acid as a oxidizing

agent and TBP (TriButyl Phosphate) and kerosene as an extractant. This process is

still the most commonly used nowadays and I will describe it in more details later,

but first I will describe the properties of TBP.

TBP is a molecule that has three butyl ether groups attached to the phosphorus

atom which is also double-bonded to a single oxygen atom. Recent molecular dy-

namics studies shown that this single oxygen can be hydrogen bonded to water or

nitric acid.63,64 Indeed, the oxygen of the P=O bond in TBP is very electronegative,

making TBP a Lewis base that can be engaged in hydrogen bonding with water or

other lewis acids like nitric acid. Figure 2.1 shows one possible configuration of hy-

drogen bonds between a TBP, a nitric acid, and a water molecule. TBP is a colorless

liquid at room temperature (boiling point is 289 ◦C at normal pressure65), it is almost

non-volatile and it is non-miscible with water (solubility in water at 25 ◦C = 0.39
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g·L−1). It does not react with nitric acid, it is stable under high level of radiation

and it is miscible with common organic solvents such as kerosene, dodecane, alcohol,

acetone, chloroform and carbon dioxide.26

Figure 2.1: One of the possible configurations of hydrogen bonds between a TBP, a
nitric acid and a water molecule.

Figure 2.2 (simplified from a schematic drawing in “Nuclear Chemical Engineer-

ing”13) describes the principal steps for the Purex process. First, the matrix contain-

ing the uranium and the plutonium, which can be spent nuclear fuel or other waste,

needs to be prepared for the dissolution. This preparation, the so-called decladding,

is used when the matrix is cladded which is common for spent nuclear fuel; it consists

of opening the cladding with mechanical and chemical methods. This preparation

will allow the dissolution of the matrix which is the second step. The matrix is dis-

solved in hot nitric acid. Nitric acid is used to oxidize the uranium to an oxidation

state VI. Both of these steps produce radioactive gases, and mostly NOx that can be

converted to nitric acid and recycled. After the dissolution, the remaining cladding

hulls are discarded and the acidity of the feed solution is adjusted to a desirable

value. For the primary extraction, a mixture of TBP (30% by volume) and kerosene
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is added to the nitric acid solution and the uranium and the plutonium are separated

from the other water soluble contaminants. After the primary decontamination, the

plutonium is separated from the uranium by reducing the plutonium(IV) to pluto-

nium(III) which is not soluble in the organic phase. Both uranium and plutonium

nitrates are thereafter purified separatly using a succession of solvent extractions.

The aqueous solutions are finally evaporated and the uranium and the plutonium

nitrates are converted to their oxide form by calcination.

The Purex process has numerous advantages; the volume of waste is low compared

to preceding methods and the salting agent (HNO3) can be removed by evaporation,

TBP is less volatile and flammable than hexanone, and the cost of operation is low.

Nevertheless, the process needs kerosene or dodecane in large volume. These solvents

are flammable, toxic for the environment and cannot be easily recycled, therefore the

use of carbon dioxide, which can be released in the atmosphere after the extraction,

will add a real plus to the process. Furthermore, the physical properties of super-

critical CO2 can enhance the extraction efficiency, especially when the extractants

are deeply bonded to the matrix and when the Purex process is not efficient. In this

chapter, I will demonstrate the efficiency of uranium extraction for a pilot plant in

which the uranium is extracted from ash (incineration of byproduct of the manufac-

ture of UO2 pellets) using a TBP-nitric acid solution in supercritical CO2, but before

that I needed to present a study of the TBP-water-nitric acid complex in supercritical

CO2 and in solvents using FT-IR and NMR.

Some compounds are more soluble in one solvent than in another, therefore, when

a change of solvent occurs to a chemical system, the solute can precipitate out of the

system. This phenomenon has been used for a long time, for example, to precipitate

the soap after the saponification process and it is called the salting-out effect. The

changes in the solvent can be induced by the addition of a poor solvent for the solute

or by the addition of a salt very soluble in the solvent. When this technique is used

in supercritical fluids it is called the antisolvent effect and it is induced by a change
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of pressure or temperature and therefore a change in solubility of the fluid.

When the TBP-water complex is diluted in a solvent like CO2 or CDCl3 , some

water droplets appear immediately due to the anti-solvent effect. Some nitric acid

droplets, at different concentrations, are also observed when the TBP-nitric acid com-

plex is used. It is believed that these droplets improve the extraction of uranium with

CO2 over the traditional Purex process, by improving the dissolution and oxidation

of uranium dioxide. In this chapter, this phenomenon is quantified by using FT-IR as

an analytical device in super- and sub-critical CO2. This study was then compared to

the one using proton NMR spectroscopy in organic solvents. Last, I demonstrate the

efficiency of uranium extraction for a pilot plant where the uranium is extracted from

the ash, which is the product of the nuclear fuel fabrication waste, using a TBP-nitric

acid solution in supercritical CO2.
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Figure 2.2: Principal steps of the Purex process.



2.1 Interaction of Tributyl Phosphate with Water

Introduction

In this section, an investigation of the interaction between TBP and water in different

solvents is presented. The knowledge of this interaction is important as a first step to

have a better understanding of the interaction between TBP, water and nitric acid in

the uranium extraction process. For this process, TBP-nitric acid-water complexes

are mixed with CO2 to oxidize uranium(IV) to its hexavalent state and to extract

it into the CO2 phase. When one of these TBP complexes is mixed with a solvent

having a low dielectric constant, some micro-droplets appear due to the antisolvent

effect. The amount and acidity of these droplets are believed to play important role in

the extraction of uranium with supercritical CO2. This phenomenon is also observed

when a TBP-water complex is diluted in an organic solvent such as chloroform or

liquid and supercritical CO2. To study this effect, the interaction of TBP and water

was studied in supercritical and liquid CO2 and in chloroform.

2.1.1 Interaction of Tributyl Phosphate with Water in Super-
critical CO2 Analyzed by Fourier Transform Infra-Red
Spectroscopy

This first part of the section is devoted to describing the TBP-water interaction in

sub- and supercritical CO2. The FT-IR spectroscopy was used as an analytical tool.

Experimental Work

The experiment setup including the protocol, the cell, the spectrometer and the FT-

IR settings are the same as described in chapter 1.1.1 on page 58. As mentioned

previously, D2O was used instead of H2O because strong CO2 absorption peaks be-

tween 3500 and 3800 cm−1 are overlapping the H2O signal.

Tributyl Phosphate or TBP (≥ 99% purity) and D2O (100% D, 99.96% pure)

were purchased from Aldrich Chemical Co. and used without further purification.
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CO2 (purity ≥ 99.99%) was obtained from Scott Speciality Gases Inc.

A series of mixtures composed of a fixed D2O concentration (0.054 mol·L−1) and

variable TBP concentrations (from 0.04 to 0.16 mol·L−1) were used to study the

nature of TBP-water hydrogen bonding in liquid and supercritical CO2. Each solution

was introduced in the cell with a syringe before the addition of CO2. The pressure

and temperature of CO2 were controlled in order to record the first spectrum at the

lower density. The density was then increased by lowering the temperature (from 70

to 25 ◦C) before increasing the pressure (from 200 to 40 MPa). In this manner, a set

of spectra was recorded at different densities for each solution.

Peak Assignments

The FT-IR spectra of free and bonded D2O at different TBP concentrations (0-0.16

mol·L−1) and at one fixed D2O concentration (0.054 mol·L−1) in supercritical CO2

(40 ◦C, 20 MPa) is shown on Figure 2.3. The peak assignments for those spectra is

based on the one made for the crown ether-water interaction in CO2 detailed in my

published paper “An FT-IR study of crown ether-water complexation in supercritical

CO2,” which is reproduced here as appendix F.

The spectrum of pure D2O (i.e. without any TBP) gives directly the position of

the free water peaks; the O-D stretching asymmetric peak is at 2761 cm−1 whereas

the symmetric one is at 2654 cm−1. Those values are in agreement with the ones

found in the literature.35,55 When TBP was added to the system, an additional peak

appeared between 2730 and 2732 cm−1. This peak corresponds to the unbonded O-D

stretching vibration marked as (2) in Figure 2.4. Unlike the case in the crown-ether-

water spectrum, we cannot observe any peak for the bonded O-D stretching vibration

marked as (1) on Figure 2.4; the TBP might have a different effect on this bond than

crown ether and its peak might have shifted and became superposed on a stronger

peak from which it could not be distinguished.

At higher TBP concentration, an additional peak appears at 2560 cm−1. This



2.1 Interaction of Tributyl Phosphate with Water 107

 0.00

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 2500 2550 2600 2650 2700 2750 2800

A
bs

or
ba

nc
e 

(a
u)

wavenumber (cm-1)

0 mol.L-1

0.04 mol.L-1

0.08 mol.L-1

0.16 mol.L-1

Figure 2.3: FT-IR spectra of free and bonded D2O at different TBP concentrations
(0-0.16 mol·L−1) and at one fixed D2O concentration (0.054 mol·L−1) in supercritical
CO2 (40 ◦C, 20 MPa).

Figure 2.4: Possible configurations of the hydrogen bond between a D2O and a TBP
molecule.
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Figure 2.5: Possible configurations of the hydrogen bond between a D2O and two
TBP molecules.

peak is at the same wavenumber as the double hydrogen bond in the crown ether-

water study. I therefore believe that it is due to the formation of a complex between

2 TBP molecules and one water molecule as represented in Figure 2.5.

Theoretical Calculations

The equilibrium between water and TBP can be described as the equilibrium between

water and crown ether detailed in the paper “An FT-IR study of crown ether-water

complexation in supercritical CO2,” reproduced as appendix F page 183. At low TBP

concentration, where there is no significant amount of a 2:1 complex between TBP

and water, the equilibrium is:

TBP + D2O 
 TBP·D2O (2.1)

From this equilibrium, the equilibrium constant K can be defined from

K =
[TBP·D2O]

[D2O][TBP]
· (2.2)

The molar fraction of the TBP complexed to water, k, is defined as:
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k =
[TBP·D2O]

[TBP·D2O] + [TBP]
· (2.3)

The molar enthalpy of the hydrogen bond (∆H) can be determined from the

measurements of the equilibrium constant at different temperatures and at constant

pressure via the well-known thermodynamic relations

(
∂∆G

∂T

)
P

= −∆S =
∆G−∆H

T
, (2.4)

∆G0 = −RT ln K, (2.5)

and (
∂ ln K

∂(1/T )

)
P

= −∆H

R
· (2.6)

T is the absolute temperature in K, ∆S is the entropy in J·mol−1·K−1, ∆G is the

Gibbs free energy in J·mol−1 and R is the molar gas constant in J·K−1·mol−1.

Equilibrium Parameters

The results of this study are summarized in Table 2.1. These results show that

the changes in the values of the equilibrium constant K, the molar fraction of water

bonded to the TBP (k), and the amount of free water are small when the temperature

and pressure of the CO2 change. Nevertheless, the changes are sufficient to observe

trends, as the different graphs show.

In Figure 2.6, the density effect on the equilibrium constant K at constant tem-

perature and at constant pressure is shown. When the pressure increases from 20 to

40 MPa, K decreases from 12 to 10 L·mol−1. On the other hand when the tempera-

ture decreases from 70 to 31 ◦C, K increases from 9 to 14 L·mol−1 and drops to 12

at 25 ◦C. This unexpected change is certainly due to the change of phase. Indeed,

CO2 is no more supercritical at 25 ◦C but it is liquid.

In the same way, the dependence of the molar fraction of TBP bonded to water,

k, on the density is shown on Figure 2.7. It is evident that k increases with density at
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Table 2.1: Equilibrium parameters for water-TBP interaction in supercritical CO2.

Pressure temp density K [D2O]free k
MPa ◦C g·L−1 L·mol−1 mol·L−1 %

20.0 70 659 9 0.025 18
20.0 60 724 10 0.024 19
20.0 50 784 12 0.022 20
20.0 40 840 12 0.021 21
20.0 35 866 13 0.021 21
20.0 31 886 14 0.020 21
20.0 25 913 12 0.021 21
35.0 40 935 10 0.024 19
40.0 40 956 10 0.024 19
40.0 25 1004 12 0.022 20

Typical statistical errors: Pressure ± 0.1 MPa, Temperature ± 1 ◦C, K± 5%,
[D2O]free± 5% and k± 2%
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Figure 2.6: Density effect on the equilibrium constant K at constant temperature (N,
40 ◦C) and at constant pressure (H, 20 MPa).
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constant pressure (20 MPa) from 18 to 21% and decreases with density at constant

temperature (40 ◦C) from 21 to 19%
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Figure 2.7: Molar fraction of TBP bonded to water k versus density at constant
temperature (N, 40 ◦C) and at constant pressure (H, 20 MPa).

Figure 2.8 shows the increase of the free D2O concentration from 20 to 25 mmol·L−1

when the temperature increases from 31 to 70 ◦C. In the same way, the free D2O con-

centration dependence on the density is shown on Figure 2.9. the concentration [D2O]

increases from 21 to 24 mmol·L−1 when the density increases at constant tempera-

ture and decreases from 25 to 20 mmol·L−1 when the density increases at constant

pressure.

From this set of data, the molar enthalpy of the hydrogen bond between TBP

and water can be determined using equation (2.6) and the linear regression of the

plot of ln K versus the inverse of the temperature in Kelvin (Figure 2.10). The

slope is 1.11 × 103 K and ∆H is equal to -9.2 ± 0.6 kJ·mol−1 at 20 MPa with R =

8.3144 J·K−1·mol−1. This result implies that the process is exothermic as expected

for hydrogen binding. Furthermore, since the species are more entropically ordered,
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it explains the decrease of the K values wi7th the increase of temperature. In other

respects, it is important to remember that for this calculation I needed to assume that

∆H is independent of density. This result is in accordance with the enthalpies values

for hydrogen bonding in supercritical fluids that are found in the literature.35,38,57
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Figure 2.10: Dependence of ln K on 1000/T (T in K) at 20 MPa.

Figure 2.11 shows the dependence of [D2O] on the equilibrium constant K. The

amount of free water in CO2 decreases when K increases. The dependence appears

to be linear, only because the range of the water concentration data is too narrow to

see the curvature as predicted by equation (2.2).

The Antisolvent Effect

TBP and water make a one-to-one complex when mixed together with the molar

fraction of water bonded to the TBP almost at 100%; it was determined by NMR to

be equal to 97 ± 2%. When this 1:1 complex is mixed with an organic solvent (like

dodecane, chloroform, kerozene, CO2 etc.), some micro-droplets of water precipitate

out of the organic phase because of the antisolvent effect. When the micro-droplets
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Figure 2.11: Dependence of the free water concentration, [D2O], on the equilibrium
constant K.

are formed, a clouding of the solution is observed. Subsequently, the droplets grow

in size and agglomerate on the wall of the container. The volume of these droplets

can be quantified knowing the molar fraction of TBP bonded to the water and the

solubility of water in the solvent. In the preceding experiments, the molar fraction

of water bonded to the TBP dropped from nearly 100% to approximatly 20%. Some

of the resulting unbonded water will dissolve in the organic solvent. This amount of

free water is equal to the solubility limit of water in the solvent. The remaining water

will precipitate out of the organic phase. In this scenario, there is a reservoir of water

unlike in the preceding experiments where the amount of water was fixed at a value

below the solubility limit of water in the supercritical fluid. Therefore the values of

the free water found before are not equal to the solubility limit of the water in the

fluid and these values were only used to determined the equilibrium parameters that

are the same in both cases.

The solubility of water in CO2 for different temperatures and pressures is reported
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in table 2.2. Some values were found in the literature6,7 whereas others were extrap-

olated from the values in the literature according to the linear regression shown in

Figure 2.12. The amount of water droplets was determined using the following set of

equations: The water and TBP material balance in number of moles is:

nD2Otot = nD2Oorg + nD2Oaq + nTBP ·D2Oorg (2.7)

nTBPtot = nTBPorg + nTBPaq + nTBP ·D2Oorg (2.8)

(2.9)

The suffixes “tot”, “org” and “aq” refer to the total, the organic, and the aqueous

phase, respectively. The solubility of TBP in water is very low, therefore, nTBPaq is

equal to zero and equation (2.3) can be written as:

nTBP ·D2Oorg = k · nTBPtot (2.10)

Knowing the solubility of water in the organic phase ([D2O]), the value of nD2Oorg is

found and the volume of the water droplets can finally be found from the number of

mole of water in the aqueous phase which is given by

nD2Oaq = nD2Otot − nD2Oorg − k · nTBPtot · (2.11)

Table 2.2 shows for different pressure and temperatures, the solubility of water, the

molar fraction of water bonded to TBP k and the amount of micro-droplets formed

when 0.5 mL of the water saturated TBP is mixed with CO2 in a 10 mL cell. For

the two pressure values used (20 and 40 MPa), the amount of droplets was found to

increase when the density increases. This is shown in Figure 2.13 for the pressure

of 20 MPa. On the other hand, at constant temperature, the amount of droplets

decreases when the density increases.

Conclusion

I successfully used the FT-IR technique to determine the equilibrium constant and the

molar fraction of water complexed to TBP in CO2 as function of temperature and the
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Table 2.2: Antisolvent effect for a water saturated TBP mixed with CO2 at different
densities.

Pressure temp densitya [D2O]max
free k water dropletsd

MPa ◦C mol.L−1 mol·L−1 % µL

20.0 70 16.444 0.152c 18 -1e

20.0 60 16.444 0.136c 19 2
20.0 50 17.821 0.121b 20 4
20.0 40 19.082 0.102c 21 7
20.0 35 19.671 0.094c 21 9
20.0 31 20.123 0.085b 21 10
20.0 25 20.773 0.078b 21 11
40.0 40 21.724 0.136c 19 1
40.0 25 22.818 0.092b 20 10

a. values from NIST Chemistry WebBook.56

b. values from R. Wiebe6

c. values extrapolate from R. Wiebe,6 cf. Figure 2.12
d. 0.5 mL of water saturated TBP mixed with CO2 in a 10 mL cell
e. no water droplet formed
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Figure 2.12: linear regression of the molar solubility of water6,7 in CO2 versus the
temperature at constant pressure (20 (N) and 40 (H) MPa).
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Figure 2.13: Volume of water droplets when 500µL of water saturated TBP is mixed
with CO2 in a 10 mL cell versus the temperature at constant pressure (20 MPa).

pressure of the supercritical fluid. I also found the value of the molar enthalpy for the

hydrogen bond between TBP and water (∆H = -9.2 kJ·mol−1). Most importantly,

the FT-IR technique can be used to predict the amount of water droplets produced

by the antisolvent effect when the TBP-water complex is mixed with CO2. This

technique should be used to determine the amount of nitric acid droplets when the

TBP-water-nitric acid complex is added to a solvent. Unfortunately, nitric acid is

very corrosive and I could not achieve this with the equipment available. In order

to overcome this problem, the interactions between water, TBP, and nitric acid are

studied in chloroform using the NMR spectroscopy. This study will be presented later

in section 2.2.
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2.1.2 Interaction of Tributyl Phosphate with Water in Sol-
vent Analyzed by Nuclear Magnetic Resonance Spec-
troscopy

In this section, the TBP-water interaction is detailed using the Nuclear Magnetic

Resonance spectroscopy (NMR) in a conventional solvent like chloroform. The results

obtained are compared to the one of the previous section, where the same interaction

was studied in CO2 using the Fourier Transform Infra-Red spectroscopy (FT-IR).

Experimental Work

TBP (98% purity) was purchased from Avocado Research Chemicals, Ltd. (ordered

through Alpha Aesar Co.) and used with no further purification. Chloroform was used

in the deuterated form (99.9 atom % D), and was purchased from Aldrich Chemical

Company.

The TBP·H2O adduct was prepared by mixing TBP with water in a glass tube

with a stopper. The mixture of TBP and water was manually shaken vigorously for

4 minutes, followed by centrifuging for an hour. When the remaining organic phase

is mixed with a solvent like CDCl3 some water droplets appear. In order to quantify

this phenomenon, a study of the interaction between TBP and water in CDCl3 was

carried out using different dilutions of TBP in CDCl3. These solutions were mixed

with an equal volume of water, shaken for 3 hours and centrifuged for another hour.

The remaining organic phase was taken for analysis. Longer mixing and centrifuging

times were tried without any significant changes in the data.

Proton NMR (PNMR) measurements were carried out using a 300 and a 500

MHz Bruker spectrometer. The pulse interval was set to 5 sec (acquisition time 3 sec,

relaxation delay 2 sec) and 32 scans were taken. Chemical shifts were calibrated by

using an insert filled with benzene-d6 (purchased from Aldrich Chemical Company)

as an external standard. Benzene-d6 chemical shift was settled to 7.15 ppm. A typical

PNMR spectrum of TBP·H2O dissolved in CDCl3 can be seen in Figures 2.14. The
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Figure 2.14: 300MHz 1H-NMR spectra of TBP·H2O in CDCl3.
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total water concentration in the organic phase, [H2O]0org, can be determined directly

from the integrated intensity of the water peak observed in these spectra. These

intensities are calibrated on the TBP and CHCl3 peaks for which the concentrations

are known. The nonlinear regression and curve fitting analysis were performed using

the NRLEG ( Phillip H. Sherrod) program.

Theoretical Calculations

Chemical Shifts. It is well known that the observed chemical shift, δH2O, of a fast

exchange between various sites forming n different species is given by:

δH2O =
n∑

i=1

δiχi (2.12)

where δi is the chemical shift of the specie i and χi is its molecular fraction.

TBP/Water Interaction in an Organic Phase. A binary system composed of

a ligand (TBP) and water forming an one-to-one hydrate in the organic phase can be

modeled by the following chemical equations:

H2Oaq 
 H2Oorg (2.13)

TBPorg 
 TBPaq (2.14)

H2Oorg + TBPorg 
 TBP·H2Oorg (2.15)

where the subscript “org” defines the organic phase that contains water, TBP and

CDCl3, and the subscript “aq” defines the aqueous phase. The partition coefficient

for TBP can be determined from equation (2.14) by the following relation:

D1 =
[TBP]aq
[TBP]org

(2.16)

The solubility of TBP in water is very low (1.5 × 10−3 mol·L−1) compared to the

solubility in CDCl3 (0.24 mol·L−1). For this reason, the D1 value was considered as
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nil in all our experiments. The equilibrium constant K is defined by:

K =
[TBP·H2O]org

[TBP]org[H2O]org
(2.17)

In addition, k, the molar fraction of ligand molecules complexed to water is written

as:

k =
[TBP·H2O]org

[TBP]org + [TBP·H2O]org
=

K[H2O]org
1 + K[H2O]org

(2.18)

There are two ways to determine the initial ligand concentration [TBP]0ini. First the

total amount introduced during the sample preparation can be calculated and second

by material balance at equilibrium:

[TBP]0ini = [TBP]org + [TBP·H2O]org + [TBP]aq (2.19)

The term [TBP]aq is negligible considering that the TPB solubility in water is very

low. Therefore,

[TBP]0org = [TBP]org + [TBP·H2O]org· (2.20)

The water concentration in the organic phase [H2O]0org can also be defined by material

balance at equilibrium:

[H2O]0org = [H2O]org + [TBP·H2O]org (2.21)

Combining the material balance relations (2.19) and (2.20) with equation (2.17) the

linear relation

[H2O]0org = k [TBP]0org + [H2O]org (2.22)

can be derived. According to equation (2.22), it is easy to determine the free water

concentration [H2O]org and the k value by a plot of [H2O]0org versus [TBP]0org. From

these data and equation (2.18), the equilibrium constant K is obtained.

Results and Discussion

Peak Assignment. Different concentrations of TBP (up to 1.8 mol·L−1) in CDCl3

were mixed in equal volume with H2O and analyzed by NMR. A typical proton
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Table 2.3: intensities and coupling constants of the TBP multiplets.

multiplet δ (ppm) Intensities Coupling constants

quartet 3.97 1.1 2.9 3.0 1.1 6.71 6.71 6.71
quintet 1.56 1.3 3.8 6.0 4.3 1.2 6.72 7.32 7.33 6.71
sextet 1.31 1.3 5.4 10.0 9.6 5.2 1.2 7.31 7.32 7.94 7.32 7.33
triplet 0.83 1.2 2.0 1.2 7.32 7.33

NMR spectrum, taken at 300 MHz, of TBP·H2O dissolved in CDCl3 can be seen in

Figure 2.14. The CHCl3 peak is a singlet that was calibrated at 7.24 ppm. The water

droplets should appear at 4.7 ppm because it corresponds to the chemical shift of

water in water. Unfortunately, the peak is not visible on this spectrum. The total

water in oil peak varies from 1.52 to 3.10 ppm depending on H2O concentration in

the organic phase; in Figure 2.14, it is at 2.16 ppm. Finally, the TBP peaks are at

0.84, 1.32, 1.60 and 3.93 ppm. An enlargement of these TBP peaks taken from a

500MHz spectrum is shown in Figure 2.15 and the intensities and coupling of each

multiplet is shown in Table 2.3. The three butyl ether groups are equivalent in the

TBP molecule. For this reason and to simplify the peak assignment, I will describe

only the branches numbered in Figure 2.16.

The triplet at 0.8 ppm has an intensity environ 50% larger than the other peaks

which indicates that it is associated with the hydrogens of the methyl group (carbon

4 in Figure 2.16). The quartet at 4.0 ppm is at higher ppm certainly because it

is partially deshielded by the oxygen. However, there is no hydrogen coupled to

three other hydrogens in the TBP molecule, and for this reason no quartet should

appear. However, the phosphorus (31P) has the same spin quantum number than the

hydrogens (1/2) and a heteronuclear coupling is possible between the proton and the

phosphorus. This quartet corresponds therefore to the hydrogens of the carbon 1 in

Figure 2.16. Finally, there is a quintet and a sextet at 1.6 and 1.3 ppm). The protons

associated with the the quintet can “see” four hydrogens, whereas the ones associated
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Figure 2.15: Enlargement of a 500MHz 1H-NMR spectra of TBP·HNO3·H2O in
CDCl3.
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Figure 2.16: Possible configuration for the TBP hydrate.

with the sextet can “see” 5 protons. Consequently, the protons of the quintet belong

to the carbon 2 and the ones of the sextet belong to the carbon 3 in Figure 2.16.

Water Chemical Shift. The water in the system studied is in fast exchange be-

tween its free state and the state where it is bonded to TBP. Because a NMR spectrum

needs several seconds to be recorded, the spectrum shows the average value of the

two states instead of each of them separately. Therefore, the H20 and the TBP·H2O

peaks are combined in one peak and its chemical shift δH2O follows the equation

δH2O = δ0χH2O + δ1χTBP ·H2O (2.23)

which is derived from equation (2.12), where δH2O is the observed chemical shift for

water, and δ0 and δ1 are the water chemical shift in 100% CDCl3 and 100% TBP

respectively. The molar fractions χH2O and χTBP ·H2O are defined as follows:
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Figure 2.17: Chemical shift observed of water in CDCl3 and in TBP, versus the
molecular fractions of free water (H) and of bonded water (N). The dashed lines
corresponds to their linear regression fits.

χH2O =
[H2O]org

[H2O]0org
(2.24)

and

χTBP ·H2O =
[H2O]0org − [H2O]org

[H2O]0org
(2.25)

In Figure 2.17, the plot of the observed water chemical shift, δH2O, versus the molar

fraction of free water, χH2O, is shown for different water and TBP concentrations in

CDCl3. This plot shows that δH2O increases linearly when the molar fraction of free

water rises. The linear regression on this plot allows the determination of δ0 = 1.51 ±

0.04 ppm which corresponds to where the fitted line intersects with the ordinate. In

the same figure, the plot of δH2O versus the molar fraction of bonded water, χTBP ·H2O,

is shown for the same set of data. Similarly, the fitted line intersects with the ordinate

at 3.51 ± 0.04 ppm which corresponds to the value of δ1.

In Figure 2.18 the observed chemical shift, δH2O, is plotted versus the total water
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Figure 2.18: Chemical shift observed (black points) and calculated (thin line) of water
in CDCl3 and in TBP versus total water concentration in the organic phase.

concentration in the organic phase, [H2O]0org. The shift δH2O increases rapidly until

the total water concentration in the organic reaches 0.13 mol·L−1. At higher water

concentration, the increase slows down and plateaus to an asymptotic value below 3.6

ppm. The dependency of δH2O on [H2O]0org can be obtained using equations (2.23),

(2.24) and (2.21), which are combined to give the following:

δH2O =
δ0[H2O] + δ1([H2O]0org − [H2O]org)

[H2O]0org
, (2.26)

where δ0 and δ1 are the constants previously determined and [H2O]org = 0.07 ± 0.02

mol·L−1as demonstrated in the paragraph describing the chemical equilibrium later

in this section (page 128). The plot of the calculated values of δH2O versus [H2O]0org

as given by equation (2.26) is shown in Figure 2.18.

Chloroform Chemical Shift. There is some weak hydrogen bonds between TBP

and CDCl3 and for the same reasons as the ones explained previously, the chemical

shift between pure chloroform and chloroform mixed with TBP varies slightly de-
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Figure 2.19: Chemical shift observed of CHCl3 in TBP and in CDCl3 versus the TBP
concentration in the organic phase.

pending on the TBP concentration.66 The dependency of the chloroform chemical

shift, δCHCl3 , on the TBP concentration was studied using the same set of spectra as

previously. A plot of these results is represented in Figure 2.19. The chemical shift

is shown to increase slowly when the TBP concentration in CDCl3 increases.

From this same set of results, the chemical shift of pure chloroform, δ2, and the

one of chloroform dissolved in TBP with 1:1 ratio, δ3, can be found using the relation:

δCHCl3 = δ2χCHCl3 + δ3χCHCl3·TBP (2.27)

which is derived from equation (2.12). The δ2 value was calculated at 7.27 ± 0.03

ppm as expected, because it corresponds to the chemical shift of CHCl3 in CHCl3.

On the other hand, δ3 is equal to 9.20 ± 0.03 ppm. This is an obvious but important

result. Indeed, one can set the CHCl3 chemical shift at its right value depending on

TBP concentrations in CDCl3 and use it as a chemical shift reference without having

to use any additives like TetraMethylSilane (TMS).
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Figure 2.20: Total water ([H2O]0org) versus total TBP ([TBP]0org) in the organic phase.

Chemical Equilibrium. The plot of total water concentration, [H2O]0org, versus

the total TBP concentration, [TBP]0org, is represented in Figure 2.20. The total water

concentration is shown to increase as the total TBP concentration increases. This was

expected because TBP forms a strong hydrogen bond with water, therefore increasing

the total water solubility in the organic phase when the TBP concentration increases.

The free water concentration in CDCl3, [H2O]org , can be determined using equation

(2.22). According to this equation, the linear regression of the plot of [H2O]org versus

the total TBP concentration intersects with the ordinate at the value of the free

water concentration [H2O]org = 0.07 ± 0.02 mol·L−1. This result is consistent with

the value of the solubility of water in CHCl3 found in the previous study of the crown

ether-water interaction in CDCl3 detailed in section 1.2.1, page 75 and section 1.3.3,

page 94.

The molar fraction of TBP complexed to water in CDCl3 , k, can also be obtained

from equation (2.22). It corresponds to the slope of the linear regression of [H2O]0org
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versus the total TBP concentration (Figure 2.20). In this study, k was found equal

to 0.15 ± 0.01. The remaining water, which amounts to 85% of the total is released

in the form of fine droplets when the water-saturated TBP solution is dissolved in

CDCl3. The amount of micro-droplets of water formed because of the antisolvent

effect can be calculated from the value of k, knowing that the water solubility in

pure CDCl3 , [H2O]org, is 0.07 ± 0.02 mol·L−1. For this calculation, equations (2.7)

to (2.11) described in section 2.1.1 on page 115 are needed. If 0.5mL of the water

saturated TBP is mixed with chloroform in a 10 mL volumetric viol, the volume of

micro-droplets will be 14 ± 1 µL.

Last the equilibrium constant (K) can be deduced from the value of k by using

equation (2.18). Its value is K = 2.7 ± 0.2 L·mol−1.

Conclusion

This section describes the analysis of the water-TBP equilibrium in supercritical

CO2 using the FT-IR spectroscopy. This equilibrium was also analyzed in chloroform

using the NMR spectroscopy. The two analytical methods complement each other to

give a complete picture of the equilibrium. Significant results include obtaining the

molar fraction of water bonded to TBP, k, and the equilibrium constants in the oil

phase. In CDCl3, k was found equal to 0.15 ± 0.01 which is lower than the lowest

value obtained in supercritical CO2 (i.e. 0.18 ± 0.01 at 70 ◦C and 20 MPa). This

result shows that there is more water bonded to TBP in the supercritical fluid at the

conditions of my experiments. In pure CDCl3, the amount of free water, [H2O]org,

is 0.07 ± 0.02 mol·L−1and the standardized amount of micro-droplets was found

equal to 14 ± 1 µL. The amount of micro-droplets formed is at least 3 µL lower in

CO2 considering the experimental conditions used.

NMR also gave information on the chemical shift of water and chloroform in the

TBP-water-CDCl3 system. They can both be determined theoretically knowing the

TBP concentration.
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The analysis of the experiments discussed in this section is not complete with-

out consideration of adding nitric acid, which is essential to the supercritical fluid

extraction of uranium. This part will be presented in the next section.



2.2 Interactions with Nitric Acid Analyzed by Nu-

clear Magnetic Resonance

Introduction

The study of TBP·(HNO3)x·(H2O)y adducts comprise an essential step to the under-

standing of the supercritical fluid extraction of uranium. Therefore, I will describe

first in this section various TBP-water-nitric acid adducts using the Nuclear Magnetic

Resonance (NMR) as a spectroscopic tool.

An interesting observation was made when these adducts are mixed with an or-

ganic solvent, some micro-droplets of nitric acid immediately appear in the oil due to

the so-called antisolvent effect. Throughout this work I came to believe that the acid-

ity and quantity of these micro-droplets enhance the extraction of uranium. To have a

better understanding of the formation of these micro-droplets, I will describe later in

this section the interactions between TBP·(HNO3)x·(H2O)y adducts and chloroform.

Chloroform was selected as a solvent because of its physical properties, which are

comparable to supercritical CO2, and because of its non-interference with the NMR

data collection.

2.2.1 Experimental Work

The experimental work for this section is similar to the one in the study of the TBP-

water interaction by NMR, section 2.1.2, page 118.

TBP (98% purity) was purchased from Avocado Research Chemicals, Ltd (ordered

through Alpha Aesar Co.) and used with no further purification and chloroform

was used in the deuterated form (99.9 atom % D), and was purchased from Aldrich

Chemical Company. Nitric acid (69.4% (w/w) ) was obtained from Fisher Chemical

(New Jersey), and was diluted to 15.5 mol·L−1 with deionized water.

The TBP·(HNO3)x·(H2O)y complexes were prepared by mixing TBP with a 15.5

mol·L−1 solution of nitric acid in a glass tube with a stopper. Different volume ratio

of nitric acid and TBP (from 1:10 to 6:1 nitric acid to TBP volume ratio) were
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prepared. Thereafter, the mixture was manually shaken vigorously for 4 minutes,

followed by centrifuging for an hour. The organic phase was then extracted with a

pipette and analyzed. When the remaining organic phase is mixed with a solvent like

CDCl3 some water droplets appear. In order to quantify this phenomenon, a study

of the interaction between TBP and water in CDCl3 was carried out using different

dilutions of TBP in CDCl3. These solutions were mixed with an equal volume of

nitric acid (15.5 mol·L−1), shaken for 3 hours and centrifuged for another hour. The

remaining organic phase was taken for analysis. Longer mixing and centrifuging times

were tried out with no significant change in the data.
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Figure 2.21: Chemical shift of nitric acid observed from the droplets (H) and from
nitric acid solutions in water (N) and calculated (dashed line) using equation (2.29)
versus total nitric acid concentration.

The concentration of H2O in the organic phase was measured by Karl-Fischer

titration (Aquacounter AQ-7, Hiranuma, Japan). The concentration of HNO3 in the

organic phase was measured with an automatic titrator (COM-450, Hiranum, Japan)

with 0.1 mol·L−1 NaOH solution after adding large excess amount of deionized water.

The concentration of HNO3 in the water droplets was determined by comparison of the
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chemical shift of different concentrations of nitric acid in water as shown on Figure

(2.21), and confirmed by titration methods. Proton NMR (PNMR) measurements

were carried out using a 500 MHz Bruker DX500 spectrometer. The pulse interval

was set to 5 sec (acquisition time 3 sec, relaxation delay 2 sec) and 32 scans were taken.

Chemical shifts were calibrated by using an insert filled with benzene-d6 (purchased

from Aldrich Chemical Company) as an external standard. Benzene-d6 chemical

shift was settled to 7.15 ppm. A typical PNMR spectrum of TBP·(HNO3)x·(H2O)y

dissolved in CDCl3 can be seen in Figures 2.22. In this spectrum, the four groups of

peaks between 1 and 5 ppm belong to the butyl ether groups of the TBP molecule

as describe in detail in section 2.1.2, page 121. The peak at 11.80 ppm belong to the

nitric acid and the water. These two compounds are bonded in different ways to the

TBP and because of the fast equilibrium in between them, only one peak shows as

an average of all.

 0.0 2.0 4.0 6.0 8.0 10.0 12.0

ppm

Figure 2.22: A typical proton NMR spectrum of TBP·(HNO3)x·(H2O)y with a
benzene-d6 insert. The sample was prepared by mixing 1.0 mL of 15.5M HNO3 with
4.0 mL of 98% TBP.

Finally, the nonlinear regression and curve fitting analysis were performed using
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the NRLEG ( c© Phillip H. Sherrod) program.

2.2.2 Results and Discussion

In this part, I will describe first the trivial relationship between the chemical shift

of nitric acid in water and its concentration. This result allow the determination of

the acid concentration in the micro-droplets formed when TBP complexes are mixed

with a solvent. Second, I will describe the TBP·(HNO3)x·(H2O)y complex without

solvent. In these adducts, the values of x and y represent the number of nitric acid and

water molecules per TBP molecule, respectively. Last, I will describe the interaction

between TBP, water and nitric acid in chloroform.

Chemical Shift of HNO3 in Water

Before studying a more complex system, equation (2.12) on page 120 was used to

determine the chemical shift of the HNO3/H2O peak in water depending on nitric

acid concentration. For this system,

δobs = δ4χHNO3 + δ5χH2O (2.28)

where δ4 is the chemical shift for pure H3O
+ ion and δ5 is the chemical shift for pure

water. The water concentration in water was taken at 55.6 mol·L−1. Equation (2.28)

can also be written as:

δobs = δ4χHNO3 + δ5(1− χHNO3) = (δ4 − δ5)χHNO3 + δ5 (2.29)

where

χHNO3 =
[H3O

+]

[H3O
+] + 55.6

· (2.30)

According to equation (2.29), the plot of the linear relationship between δobs and

the nitric acid molecular fraction gives directly the values of δ5 = 4.76 ± 0.03 ppm

and δ4 = 24.6 ± 0.2 ppm. Figure 2.21 shows the plot of the chemical shift of nitric

acid in water and the calculated fit using equation (2.29) versus the total nitric acid

concentration. Combining equations (2.29) and (2.30), with the calculated values of
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δ4 and δ5, the acid concentration can be expressed in terms of the observed chemical

shift, δobs, using the following equation:

[H3O
+] = 55.6× 4.76− δobs

δobs − 24.6
· (2.31)

This equation can be used to calculate concentration of the acid droplets resulting of

the antisolvent effect, with the simple knowledge of their chemical shift.

TBP·((HNO3)x·((H2O)y System without Solvent

The values of x and y in the TBP·(HNO3)x·(H2O)y adduct represent the number of

nitric acid and water molecules per TBP molecule, respectively. The value of x is

calculated by dividing the concentration of nitric acid in the organic phase by the

concentration of TBP. In the same way, the value of y is calculated by dividing the

water concentration by the TBP concentration.

Different concentrations of HNO3 or water in TBP influence the dissolution of

uranium oxides.29 For this reason, it is important to determine the exact composition

of the TBP complex. Figure 2.23 shows the combined chemical shift of H2O and HNO3

versus the number of molecules of nitric acid per molecule of TBP, x. The chemical

shift increases rapidly from 8.9 to 12.6 ppm when the nitric acid to water mole ratio

increases. When this ratio reaches unity, the chemical shift reaches its maximum and

starts to decrease slowly to 12.0 ppm, which corresponds to a ratio of 2.4 molecules

of nitric acid for each molecule of water.

Table 2.4 summarizes the different experiments performed and gives the corre-

sponding values of the nitric acid and water ratio in TBP. These values were obtained

using NMR spectra in both organic and aqueous phases in addition to titration meth-

ods.

The number of molecules of HNO3 per molecule of TBP, x, versus the initial

volume ratio of HNO3 (at 15.5 mol/L in water) to TBP is shown in Figure 2.24. When

the initial volume ratio is under unity, the value of x increases rapidly as the volume

ratio increases. The curve is shown to level at a maximum of 2.4, corresponding to
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Figure 2.23: Chemical shift observed of nitric acid and water in TBP versus the mole
ratio of nitric acid on TBP in the organic phase.

a concentration of 6.2 mol·L−1in nitric acid. This concentration correspond to the

maximum solubility of HNO3 in TBP. These results indicate that TBP, as a Lewis

base, can carry acids in an organic phase. This property can be used to perform

chemical reactions with acids in sub- or supercritical CO2, because acids are generally

not very soluble in CO2.

From the same set of data, the partition coefficient of HNO3 between the aque-

ous phase and the TBP phase (DHNO3) can be found by plotting [HNO3]aq versus

[HNO3]org according to the following equation:

DHNO3 =
[HNO3]aq
[HNO3]org

· (2.32)

The linear regression analysis performed on the data of the nitric acid concentrations

in the aqueous and in the organic phase gives DHNO3 = 2.4± 0.8. This result implies

that there is nearly 2.4 times more nitric acid in the aqueous phase than in the organic

phase when the equilibrium is achieved for an initial concentration of 15.5 mol·L−1 in

nitric acid.
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Table 2.4: Composition of TBP·(HNO3)x·(H2O)y complexes.

Vol* Vol* x = y = Molecular ratio for
HNO3 TBP [HNO3]/[TBP]org [H2O]/[TBP]org TBP:HNO3:H2O

0 5 0 1.06 1 : 0 : 1.1
0.5 5 0.42 0.83 1 : 0.4 : 0.8
1 10 0.42 0.74 1 : 0.4 : 0.7
1 6 0.71 0.73 1 : 0.7 : 0.7
1 5 0.81 0.42 1 : 0.8 : 0.4
1 4.5 0.88 0.46 1 : 0.9 : 0.5
1 4 0.97 0.41 1 : 1.0 : 0.4
1 3 1.13 0.36 1 : 1.1 : 0.4
1 2 1.38 0.40 1 : 1.4 : 0.4
1 1 1.80 0.44 1 : 1.8 : 0.4
2 1 2.13 0.54 1 : 2.1 : 0.5
3 1 2.29 0.48 1 : 2.3 : 0.5
6 1 2.37 0.53 1 : 2.4 : 0.7

* Initial volume (mL) used for complex preparation with TBP at 98% and HNO3 at
15.5 mol·L−1.

Figure 2.25 shows the mole ratio of HNO3/H2O, x/y, in the TBP phase at equi-

librium versus the initial volume ratio of HNO3 to TBP. First, the x/y ratio increases

rapidly when the amount of nitric acid in the organic phase increases, then it flattens

out under 5. In the condition of my experiment, the mole ratio of nitric acid to water

can not exceed 5 in the TBP phase. This maximum ratio is reached rapidly when the

volume ratio of HNO3/TBP exceeds unity.

When the TBP·(HNO3)x·(H2O)y complex is diluted in an organic solvent, the

excess water and nitric acid precipitate out of the organic phase as micro-droplets,

due to the antisolvent effect. The acidity of these micro-droplets is important because

it is related to the efficiency of extraction of uranium, as an example. I will therefore

describe next the properties of the TBP complex when it is mixed with chloroform.
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Figure 2.24: Number of moles of HNO3 in the TBP phase at equilibrium (or x) versus
the initial volume ratio of HNO3 (at 15.5 mol·L−1 in water) on TBP.

 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6  7

x/
y 

=
 [H

N
O

3]
or

g/
[H

2O
] o

rg

initial volume ratio of HNO3 (15.5 mol/L in water) on TBP

Figure 2.25: Mole ratio of HNO3/H2O in the TBP phase at equilibrium (or x/y)
versus the initial volume ratio of HNO3 (at 15.5 mol·L−1 in water) on TBP.



2.2 Interactions with Nitric Acid Analyzed by NMR 139

 0.0 2.0 4.0 6.0 8.0 10.0 12.0

ppm

Figure 2.26: Proton NMR spectrum of TBP·(HNO3)x·(H2O)y in CDCl3. The complex
was prepared by mixing 4 mL of TBP and 1 mL of 15.5 mol·L−1 HNO3; volume ratio
of TBP·(HNO3)x·(H2O)y to CDCl3 = 1:1.
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Figure 2.27: Proton NMR spectrum of TBP·(HNO3)x·(H2O)y in CDCl3 . The com-
plex was prepared by mixing 2 mL of TBP and 2 mL of 15.5 mol·L−1 HNO3; volume
ratio of TBP·(HNO3)x·(H2O)y to CDCl3 = 1:1.
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TBP·(HNO3)x·(H2O)y System in a Solvent

Figures 2.26 and 2.27 are two proton NMR spectra of TBP·(HNO3)x·(H2O)y in CDCl3.

The first one, shown in Figure 2.26, was recorded after mixing the 1:1.0:0.4 complex

at equal volume with CDCl3. The complex (1:1.0:0.4) was formed by adding 4 mL of

TBP to 1 mL of nitric acid following the experimental procedure explained in detail in

section 2.2.1 (page 131). The second spectrum, shown in Figure 2.27, was made after

mixing the 1:1.8:0.4 complex at equal volume with CDCl3. Using the same procedure

as previously, the 1:1.8:0.4 complex was formed by adding 2 mL of TBP to 2 mL of

nitric acid.

In both spectra, the peaks of the butyl ether groups belonging to the TBP molecule

are shown between 0 and 5 ppm. The singlet peak of nitric acid and water in the

organic phase is the average resonance of bonded to TBP water, free water, and nitric

acid. This peak is observed at 12.48 ppm as shown in Figure 2.26. In Figure 2.27,

the same peak is observed at 12.08 ppm. This result demonstrates that the chemical

shift of nitric acid and water is shifted upfield when the total concentration in nitric

acid increases in the organic phase.

In both spectra, two other singlet peaks appear at 6.48 ppm in Figure 2.26 and

at 8.12 ppm in Figure 2.27. These peaks are due to the micro-droplets of nitric acid

in water that are formed when the TBP complex is mixed with chloroform. The

concentration in acid of these droplets can be determined using equation (2.31). For

the 1:1.0:0.4 complex, the concentration [HNO3]aq = 5.2 mol·L−1 whereas for the

1:1.8:0.4 complex, the concentration [HNO3]aq = 11.3 mol·L−1. These results show

that the concentration of the nitric acid in the droplets increases when the ratio of

nitric acid to water increases in the TBP complex.

Another experiment was performed to study the micro-droplet formation phe-

nomenon in more details. For this experiment, solutions of TBP at different concen-

trations in chloroform where mixed at equal volume with nitric acid (15.5 mol·L−1).

NMR spectra of the remaining organic phase were taken and the pH of the aqueous
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phase was determined using titration methods.
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Figure 2.28: Chemical shift of the nitric acid and the water versus total water and
nitric acid concentration in the organic phase.

In Figure 2.28, the chemical shift of the nitric acid and the water is plotted versus

the total water and nitric acid concentration in CDCl3. The chemical shift is shown

to increase rapidly until the total concentration reaches 0.5 mol·L−1. When the

total concentration in acid and water exceeds 0.5 mol·L−1, the chemical shift increase

flattens out and approaches a plateau at 11.5 ppm.

The plot of the concentration of nitric acid in the aqueous phase, [HNO3]aq, ver-

sus initial TBP concentration in the organic phase, [TBP]ini, is shown in Figure 2.29.

The overall trend is for the nitric acid concentration in water to decrease as [TBP]ini

increases. However, this trend is not monotonic as three stages can be recognized.

First, [HNO3]aq decrease fast until [TBPini reaches approximately 0.5 mol·L−1. Sec-

ond, the nitric acid concentration in the water stays constant (or increases slightly)

as the TBP concentration increases up to ∼1 mol·L−1. Last, the [HNO3]aq starts to

decrease again for TBP concentrations higher than unity.

The total water and nitric acid concentration in the organic phase is shown to
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Figure 2.29: Concentration of nitric acid in the aqueous phase versus initial TBP
concentration in the organic phase.
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Figure 2.30: Total water and nitric acid concentration in CDCl3 versus initial TBP
concentration.
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increase linearly with the initial concentration of TBP according to the plot in Figure

2.30. This kind of linear plot was obtained before where the two values were not linear.

An example of it has been given in section 2.1.1, page 113, where the dependence of

[D2O] on the equilibrium constant K is plotted. In this example, the data range was

too narrow to see the curvature predicted by the theoretical equations. Therefore, I

can not be sure of the linearity of the plot in Figure 2.30.

In the absence of TBP, the concentration of water and nitric acid in the organic

phase is the one of free water and nitric acid. This free concentration corresponds

to the solubility limit of nitric acid and water in chloroform. This value is given

by the y-axis intercept of the plot of the total water and nitric acid in the organic

phase versus the initial concentration of TBP. If the relationship in between this two

variables is properly represented as linear, the regression of the data shown in Figure

2.30 gives [HNO3]free + [H2O]free = 0.01± 0.08 mol·L−1.

Conclusion

In this section, the different TBP·(HNO3)x·(H2O)y complexes were first studied with-

out solvent. Their composition was determined depending on the initial volume ratio

of TBP and nitric acid at 15.5 mol·L−1 in water. Later, the complexes were studied

in chloroform as solvent. The formation of micro-droplets of acid due to the antisol-

vent effect was demonstrated using NMR when the TBP complexes were mixed with

chloroform. The utility of these complexes will be shown by means of spectroscopy in

the next section (section 2.3, page 144), for which TBP-water-nitric acid complexes

were used to extract uranium in supercritical CO2.



2.3 Practical Application: Uranium Extraction

from Solid Matrices

Introduction

This section describes a practical extension of the present experimental and theoretical

achievements. The objectives of this applied research cover not only demonstrating

but also optimizing uranium extraction from ash using supercritical CO2. The differ-

ent uranium-containing ash types that were used originated from the incineration of

byproducts generated in the course of nuclear fuel pellet manufacturing at AREVA

(Framatome-ANP) facilities in Richland and Lynchburg, USA. My work to develop

and optimize the extraction process was successful to prove the feasibility of a pilot

plant in Richland, which is currently under construction.

The TBP-nitric acid-water complexes described in detail in the previous sections

were used to oxidize the uranium and as chelating agent. The apparatus I constructed

and the different conditions tested to optimize the extraction process will be described

in detail along with the gamma spectroscopy used to quantify the extraction efficiency.

The gamma spectroscopy was the main spectroscopic tool used for the experiments

described in this section. Gamma rays come from the radiation of nucleus when they

transit from a high energy state to a lower one.

A gamma spectrometer is generally composed of a scintillation counter probe

connected to a computer. The scintillation probe has a phosphor (generally a sodium

iodide crystal for gamma detection) that emits a flash of light when struck by a

radiation. The emitted light is directed to a photo-cathode that produce electrons by

photoelectric effect. The electronic signal is then amplified and send to a computer

for analysis. The resulting spectrum gives the number of count, i.e. the number of

radiations that hits the probe window, versus the energy of the transition that is

responsible for the radiation. The energy and magnitude of peaks provide the means

for identifying the presence of certain isotopes and and a measure of their quantity.
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Numerous experiments have been done to inquire whether Supercritical Fluid Ex-

traction (SFE) of uranium with CO2 using a PUREX-like process is possible.27–30,67

However, published research reported no significant progress beyond simple theoreti-

cal treatment or discussion of idealized conditions. Some experiments were reported,

but these were performed with lab-synthesized matrices containing uranium.68,69

It appears that unpublished work in Japan points to more progress in this area as

suggested by a pilot project under construction utilizing the so-called Super-DIREX

process. This project appears to deal with similar issues as treated in this thesis

research, however there are no detailed results available in the open literature that

can be used as a starting point.

The next section is devoted to demonstrating that it is possible to recover uranium

from real matrices including incineration ash generated as byproduct of nuclear fuel

manufacturing.

2.3.1 Experimental Work

Chemicals

Tributyl phosphate (97% pure) was purchased from Sigma-Aldrich Chemical Co. and

used without further purification. Utra pure water was obtained using the Milli-Q

water purification system from millipore Company. Nitric acid (63-64% w/w) was

purchased from VWR international and was diluted to 15.5 mol·L−1 with ultra pure

water. Carbon dioxide (purity ≥99.99%, Coleman grade) was obtained from Polar

cryogenics. AREVA provided 3 different matrices from where the uranium was to

be extracted. The composition of those matrices is shown in table 2.5. L and R are

inceniration ashes from the Lynchburg and Richland sites and Y is a yellow residu

from classical purex extraction. For the titration, Sodium hydroxide was purchased

from Fisher chemicals and was diluted with ultra pure water to 0.1 mol·L−1 or lower.

Potassium oxalate was purchased from Fisher chemical and was dissolved in water up

to saturation and neutralized to a pH 7 with nitric acid. Phenolphthalein was added
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Table 2.5: Composition of the different matrices used for extraction determined by
mass spectroscopy.

Name Symbol L(mg/g) R(mg/g) Y(mg/g)

Antimony Sb 1630 988 60.9
Barium Ba 825 1020 913
Calcium Ca 10500 9500 5900
Chromium Cr 1790 2690 130
Copper Cu 2380 9920 461
Gadolinium Gd 8.9 154 11.5
Iron Fe 86100 103000 132000
Lead Pb 66.5 2180 109
Manganese Mn 1040 768 88.6
Molybdenum Mo 687 1090 10500
Nickel Ni 5120 1550 74.8
Phosphorous P 17900 32800 14100
Tin Sn 1560 1050 769
Titanium Ti 73200 44600 223000
Uranium U 55700 126000 563000
Zinc Zn 9810 31100 350
Zirconium Zr 6370 5630 38400

Enrichment %235U 3.69 3.27 2.94

to the potassium oxalate solution to be used as a titration indicator.

Experimental Setup

The TBP·(HNO3)x·(H2O)y complexes were prepared by mixing TBP with a 15.5

mol·L−1 solution of nitric acid in a glass tube with a stopper. Different volume ratios

of TBP to nitric acid were prepared according to table 2.4 on page 137. Thereafter,

the mixture was manually shaken vigorously for 5 minutes, followed by centrifuging

for an hour. The organic phase was then extracted with a pipette and stored.

The experimental setup is shown in Figure (2.31). It consists of a syringe pump

(ISCO, model 260D) that pressurizes, regulates and delivers CO2 to the system. The

entire setup is rated up to 30 MPa. The mixing cell (MC) is a 3 mL cylinder with

an entry and an exit for the fluid at each end. The two high pressure extraction cells
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Figure 2.31: UO2 extraction: experimental setup.
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(EC1 and EC2) were especially designed for these experiments. They are composed

of a filter that is shaped like a beaker and fits inside the cells. The flow goes into the

cell from the top through the filter and goes out under the filter on the lower side of

the cell. The internal volume of each extraction cell is 9 mL. The stripping cell (SC)

has a 15 mL internal volume. The fluid goes in from the top. The outputs are at

the top or at the bottom of the cell to retrieve the CO2 phase or the water phase,

respectively. All cells are insulated and heated by a hot plate. Thermocouples were

used to monitor the temperature with a tolerance of ± 1 ◦C. For practical reasons,

the thermocouples were installed inside the cell for EC1 or between the cell and the

insulation for EC2 and SC. A magnetic stirrer was used to mechanically stir the

solutions in SC. Several valves were used to control the flow at the entrance and exits

of each cell.

Before the first extraction, 0.5 to 3 mL of the TBP/HNO3 solution was injected

into the mixing cell and 0.2 to 2 g of ashes were introduced in each filter before placing

them in the extraction cells. The stripping cell was filled with 2 to 5 mL of water.

The system and all the valves were then closed and the pump was turned on. The

heaters were turned on for each cell. The mixing cell was then pressurized and the

TBP/HNO3 complex was left with CO2 to be dissolved for ∼30 min or until the other

cells reached an equilibrium temperature. The valve between the mixing cell and the

first extraction cell was then open. The system was left for a static extraction for 1

hour or more. After the static extraction period, the valve between EC1 and EC2

was slightly open to allow a dynamic extraction from EC1 to EC2. The flowrate was

set at 5 mL/min or lower. After EC2 was filled, the same protocol as the one used

for EC1 was followed.

After the extraction was finished, the organic phase was directed into SC by

opening slightly the valve between them. When SC become full, the magnet stirrer

was turned one and the two phases were mixed for at least one hour. The valve

between EC2 and SC was then closed and the water phase was extracted from the
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lower part, and the TBP phase was extracted along with CO2 from the upper part

of the stripping cell. The remaining ash and both solutions were then analyzed.

To improve the stripping efficiency, known amount of uranium nitrate and nitric

acid were dissolved in water and extracted with TBP in CO2 under various conditions.

Most experiments were done at 20 MPa and 50 ◦C with a TBP to water volume ratio

of 1:1.9. The water and the TBP solutions were thereafter analyzed with gamma

spectroscopy and the nitric acid content was determined by titration.

Some stripping experiments were performed at ambient pressure (without CO2)

were also experimented. The organic phase was composed of TBP with a concentra-

tion of 535 g·L−1 of uranium and 5 mol·L−1 of nitric acid. For these experiments,

the organic phase was stripped with an equal volume of warm water (50 ◦C). The

two phases were then separated. The aqueous phase was analyzed and the remaining

organic phase was stripped again with an equal volume of warm water. This process

was repeated several times.

Analysis

The analysis of the samples was performed using different techniques. The content

in uranium was determine using the gamma spectroscopy and important results were

confirmed using Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The ICP-

MS analysis was performed by an external lab facility, which was arranged by AREVA.

The pH of the different solutions was measured using titration methods.

Gamma Spectroscopy. The gamma spectrometer used (Canberra Industries) was

composed of a scintillation counter (NaI phosphor) connected to a computer running

the Genie 2000 software, which manages data collection and performed spectral anal-

ysis. The gamma probe was protected from the outside radiations with a cylindrical

lead shield with a lead cover. A specially designed plastic tray was placed over the

gamma probe. The tray restrained the sample glass tube to be sure it is in the exact

same position relative to the probe for all measurements.
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Before the acquisition, the sample glass tubes were filled with 0.5 mL of the liquid

sample or 0.5 g of solid sample and placed over the probe. The lead cover was put over

the sample and the probe to shield them. The gamma radiations were counted for

2000 seconds. The gamma spectrum (count versus energy) was then plotted. After

each spectrum acquisition, the sample was rotated. Five spectral measurements were

taken and averaged out.

Typical gamma spectra are shown in Figure 2.32 for the background radiation

and for the UO2+
2 ion radiations in an aqueous solution and in a TBP solution. The

background spectrum is flat demonstrating that the sample is well shielded. For both

uranyl solutions, four major peaks can be seen at 63.3, 92.6, 143.8, and 185.7 keV.

The peaks at 63.3 and 92.6, keV correspond to the energy of radiation emitted by

thorium-234. The peaks at 143.8 and 185.7 keV correspond to the gamma radiations

emitted by uranium-235. Thorium-234 comes from the alpha decay of uranium-238.

In appendix B, the disintegrations of 235U and 238U are detailed in two tables.
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Figure 2.32: Gamma spectra of the background, and of uranyl ion enriched at 3.1%
in 235U and at 8.7 g·L−1 of uranium in water, and of the UO2+

2 ion (2.9% 235U) at 24
g·L−1 in TBP.
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The gamma energies were calibrated using a solution at high concentration of

uranium nitrate in water. For each energy (peak position), the number of counts

is proportional to the concentration of the isotope that emits the gamma radiation

at that energy. The ratio between the number of counts and the concentration was

calculated by using standard solutions in TBP and water or by using a standard

amount of ash before extraction. For a better accuracy, the area of the peak was

used to determine the concentrations. Figure 2.33 shows the calibration curves for

the uranyl ion in TBP and water. For both calibration and measurements, only the

235U peak at 185.7 keV was used because it has the highest abundance (53%). The

other 235U peak, at 143.8 keV, is to small and if chosen (abundance of 10%), the area

measurements would have been less accurate. The thorium peaks are overlapping

with peaks from other decay isotopes and can therefore not be used for analysis. The

dectection limit, with maintained accuracy, of this experimental setup was 0.03 g·L−1

of 235U, which corresponds to 1.5 gU·L−1 or to 750 µg of total uranium.
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Figure 2.33: Calibration curves for UO2+
2 ion in water (H, 3.1% 235U) and in TBP

(N, 2.9% in 235U).
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pH Analysis. Uranyl nitrate (also called uranium nitrate, UO2(NO3)2) can react

with hydroxide ions to form uranyl hydroxide according to the following chemical

equation:

UO2(NO3)2 + 2NaOH → UO2(OH)2 + 2NaNO3 (2.33)

To avoid the formation of uranyl hydroxide, 5 mL of a potassium oxalate solution at

pH 7 was added to 0.2 mL of the aqueous solutions prior to titration. The potassium

oxalate is added in excess to react with the uranium nitrate and therefore it makes it

impossible for the uranium nitrate to react with sodium hydroxide. This procedure

allows the determination of the free acid concentration. The pH indicator used was

phenolphthaleine and it was dissolved in the potassium oxalate solution before its

neutralization. The solutions were thereafter titrated with sodium hydroxide at 0.1

mol·L−1 or lower, depending on the acid concentration.

To titrate the organic phase, the acid was first stripped out from the organic

phase using a large quantity of water. This water was thereafter titrated with the

same protocol as the one used to directly titrate the aqueous phase with the exception

that the sodium hydroxide concentration was lower.

2.3.2 Extraction of UO2 from Different Matrices

During the extraction, the uranium(IV) dioxide (UO2) is oxidized into uranium(IV)

nitrate with the help of nitric acid, which is the oxidizing agent. This oxidation

follows the chemical reaction:

3 UO2 + 8 HNO3 → 3 UO2(NO3)2 + 2 NO + 4 H2O (2.34)

When TBP is used, one uranium nitrate bonds to two TBP molecules according to

this chemical equation:

UO2(NO3)2 + 2 TBP + 2 H2O → UO2(NO3)2·2TBP·2H2O (2.35)

The supercritical fluid extraction of uranium for any TBP·(HNO3)x·(H2O)y com-

plexes can be described using two equations, Equations (2.36) and (2.37). When the
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molecular ratio of nitric acid to TBP, x, is greater than or equal to 4/3, and the

molecular ratio of water to TBP, y, is greater than or equal to 1/3, the extraction

follows the chemical reaction of equation (2.36).

UO2 + 2 TBP·(HNO3)x·(H2O)y →

UO2(NO3)2·2TBP·2H2O +
2

3
NO +

6y − 2

3
H2O +

6x− 8

3
HNO3 (2.36)

Independently of the value of x, equation 2.37 describes in a general way the

extraction of uranium.

3 UO2 + (6 + z) TBP·(HNO3)x·(H2O)y →

3 UO2(NO3)2 · 2TBP·2H2O + 2 NO + (6y− 2 + z) H2O + (6x− 8 + z) HNO3 (2.37)

where z is equal of greater than 6x− 8.

In the following part, I will first describe the different parameters that can influence

the extraction efficiency and then I will summarize the optimized parameters obtained

for the system studied.

Extraction Efficiency Improvement

Different parameters were adjusted to obtain the best extraction efficiency with an

acceptable protocol. Such protocol needed to be conservative regarding safety and

should be cost and energy efficient.

The gamma spectroscopy was used to determine the yield of the extraction by

analyzing the matrices before and after extraction. These results were confirmed

by the analyze of the amount of uranium extracted in the TBP phase using gamma

spectroscopy. Mass Spectroscopy was also used to confirm the gamma data. In Figure

2.34 the gamma spectrum of the three types of matrices used for uranium extraction

are shown.

The different parameters that were adjusted are the TBP complex composition,

the temperature and pressure, the TBP/matrix ratio, the static extraction time and

the flowrate, and the number of successive extractions.
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Figure 2.34: gamma spectra of the background and of the three kind of matrices (R,
L and Y) used for extraction.

TBP Complex Composition. Different TBP complexes can be prepared by mix-

ing TBP with nitric acid at different volume ratios, as detailed in section 2.2.2, page

135. The ideal composition is the one that has a sufficient amount of nitric acid

to oxidize uranium dioxide into uranium nitrate (UO2(NO3)2) at a reasonable rate.

The quantity of TBP should also be enough to carry the uranium nitrate into the

CO2 phase.

Theoretically, TBP·(HNO3)1.8·(H2O)0.4 is the best composition. Indeed, it has the

highest nitric acid to water molecular ratio with a sufficient amount of TBP according

to Table 2.4 on page 137. Furthermore, Wai et al.29 have shown that this complex

is the most efficient to dissolve UO2. For these reasons, the TBP·(HNO3)1.8·(H2O)0.4

complex was chosen for the extraction of uranium.

Several other complexes were briefly tried out. The one with a lower nitric acid

to water molecular ratio lowered the amount of uranium extracted from the ash,

which is not acceptable. On the other hand, the one with higher nitric acid to TBP
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molecular ratio did not improve the extraction efficiency significantly and would make

the stripping of the uranium from TBP into water more difficult.

Temperature and Pressure. Higher temperatures generally improve the rate of

any reaction, but in supercritical CO2 it also lower the density of the supercritical

fluid. At lower density, CO2 is less able to dissolve species such as the TBP-water-

nitric acid or the TBP-uranium nitrate complexes. To counteract the effect of the

higher temperature on the density, the pressure can be increased. Unfortunately, for

safety reasons the pressure needed to be kept at a reasonable level (i.e. under 40

MPa).

It is known that the dissolution of UO2 in supercritical CO2 depends on the density

of the fluid. Samsonov et al.28 have shown that the best condition for the dissolution

of UO2 is 65 ◦C and 250 atm, which correspond to a density of 765.6 g.L−1. This

was therefore the starting condition that I used. Higher pressures and temperatures

(up to 125 ◦C and 40 MPa) were tried out without a significant improvement in the

extraction. On the other hand, by lowering the pressure and temperature to 20 MPa

and 60 ◦C , for a density of 723.7 g.L−1, the recovery yield was unchanged. Further

lowering in the temperature and pressure were tried out, but the efficiency was greatly

affected. Therefore a temperature and pressure of 60 ◦C and 20 MPa were selected

for the extraction as optimum values.

TBP/Matrix Ratio. For a good extraction efficiency, an excess of nitric acid

and therefore an excess of TBP-water-nitric acid complex is needed. On the other

hand, a large excess will lower the concentration of uranium nitrate and increase

the concentration of nitric acid. Both of these consequences decrease the stripping

efficiency. The best yield was obtained with 2 mL of TBP·(HNO3)1.8·(H2O)0.4 per

gram of ash.
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Static Extraction Time and Flowrate. The static extraction time allows the

reaction between nitric acid and UO2 to be completed. No change in the extraction

efficiency was observed after one hour of static extraction, therefore the extraction

time was set to one hour.

After the static extraction is finished, the dynamic extraction is initiated and the

fluid goes first to the second extraction cell and then goes to the stripping cell. The

flowrate of the dynamic extraction had to be adjusted to be as fast as possible without

compromising the extraction. High flowrates result in depressurizing CO2 and thus

reducing its density, and consequently reducing its ability to is to dissolve the uranium

nitrate-TBP complex that needs to be extracted. No changes were observed in the

amount of uranium recovered when the flowrate was kept under 0.5 mL per minute.

Number of Extractions. After the optimization of the other parameters (i.e.

temperature, pressure, complex composition, static extraction time, flowrate and

TBP/matrix ratio), the number of successive extractions did not improve the extrac-

tion efficiency any further. I believe that the remaining uranium is strongly bonded

to the matrix and is not removable with supercritical fluid extraction process used in

these experiments.

Nevertheless, two extraction vessels were used in series (Figure 2.31) to improve

the concentration of uranium in the TBP phase and therefore enhance the stripping

of uranium into water.

Optimal Parameters for the Extraction

The optimized parameters used are shown in Table 2.6. Table 2.7 summarized the

optimum recovery efficiencies, which I obtained for the three types of matrices used

in the experiments.

The efficiency of supercritical fluid extraction is well beyond the one of the tra-

ditional Purex process. For this application, the supercritical fluid extraction has

another advantage over the Purex process, the ashes are dry after extraction and the
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Table 2.6: Optimal parameters for the supercritical CO2 extraction.

Parameters unit Optimal Values

Pressure MPa 20.0
Temperature ◦C 60
Density g·L−1 723.7
TBP·NO3)x·(H2O)y complex molecular ratio 1:1.8:0.4
TBP complex:matrix ratio mL:g 2:1
Static extraction time hour 1
flowrate mL/min ≤ 0.5
Number of extractions 1

Table 2.7: Optimum uranium recovery efficiencies.

Matrix % extracted %U before %U after optimized

R 85 10.4 1.6 yes
L 90 6.2 0.6 yes
Y 25 35 26 no

extra water and nitric acid do not need to be evaporated.

2.3.3 Stripping of the Uranium from TBP Media to Water

After the extraction, the cell had to be slowly depressurized inside a sample glass

tube in which the CO2 deposits the TBP·UO2·(NO3)2 complex with excess of nitric

acid and TBP. It is important to recover the uranium from the TBP solution into

water because it will allow the recycling of the TBP and an easy reprocessing of

the enriched UO2. This is called stripping and it was carried out with water at

atmospheric pressure or with CO2 and water, continuously with the extraction as

shown on Figure 2.31.

After the stripping, gamma analysis of the water and TBP phases were carried

out to determine the efficiency of the stripping. In Figure 2.35, an example of the

spectrum of the TBP stripped solution and the aqueous solution is shown.
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Figure 2.35: gamma spectra of the background and of the uranyl ion (2.9% U) in the
TBP stripped solution at and in the aqueous solution.

Stripping at Atmospheric Pressure

In this section the efficiency of the stripping with water at atmospheric pressure was

evaluated. The conditions were optimized to maximize the stripping efficiency, i.e.

the concentration in the organic phase was high in uranium and low in acid and the

water temperature was elevated to 50 ◦C. Figure 2.36 is shows the results of this

experiment. The total mass of uranium stripped is plotted versus the total amount

of water used. A total of 15 ± 1% of uranium was stripped from the TBP phase with

a 5:1 volume ratio of the aqueous phase to the organic phase. The total uranium

concentration in the organic phase was 14 ± 1 g·L−1.

Stripping under Pressure, Continuous with the Extraction

Some experiments were performed to improve the stripping efficiency of uranium

from the TBP phase to the aqueous phase. Standard solutions of uranium nitrate

and nitric acid in water were extracted with TBP and CO2. The remaining phases
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Figure 2.36: Total mass of uranium stripped versus total volume of water used. The
line is a guide for the eyes and does not have any theoretical or analytical value.

were titrated and analyzed with gamma spectroscopy.

Figure 2.37 shows the partition of the nitric acid between the two phases. The

initial amount of acid or uranium in the aqueous phase does not influence the acid

partition. The partition coefficient, D, is obtained from equation (2.38) and Figure

2.37.

D = [HNO3]aq/[HNO3]org (2.38)

D was found equal to 1.4 ± 0.4 when the extraction occurred at 50 ◦C and 20 MPa,

and with a volume ratio of 1:1.9 between the organic and the aqueous phases. This

result implies that 60% of the acid is in the aqueous phase whereas 40% goes in the

organic phase.

In Figure 2.38, the partition of uranium between the organic and the aqueous

phases is shown for three initial nitric acid concentrations (1.6, 3.3, and 7 mol·L−1)

with the same conditions as above. It is shown that the continuous stripping of

uranium into the aqueous phase is less efficient when the initial amount of nitric acid
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Figure 2.37: Partition of HNO3 between the organic and the aqueous phases at 50
◦C, 20 MPa and with a TBP:water volume ratio of 1:1.9.

is greater.

Table 2.8 provides detailed results of the stripping experiments. It shows the ef-

ficiency of the uranium stripping at 50◦C, 20 MPa, and with a 1:1.9 TBP to water

volume ratio. As shown in Figure 2.38, an increase in the initial acidic concentration

lowers the stripping efficiency. On the other hand, at higher concentrations of nitric

acid, the initial uranium concentration greatly influence the efficiency. Indeed, the

percentage of uranium in the aqueous phase drops from 39 to 5% when the initial

uranium concentration decreases from 219 to 58 g·L. This phenomenum is not ob-

served at lower acidic concentration where the efficiency is the same regardless of the

initial uranium concentration and considering the experimental errors.

The preceding data were all collected at the same conditions, i.e. 50 ◦C, 20 MPa

and a volume ratio of 1:1.9 of the organic to the aqueous phase. Next I will show

the changes when other conditions were used. In Figure 2.39, the percentage loss of

extraction efficiency is plotted versus the initial nitric acid concentration. The loss of
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Table 2.8: Results of the stripping experiments at 50◦C, 20 MPa, and with a 1:1.9
TBP to water volume ratio.a

[U]ini [HNO3]ini stripping [U]org [U]aq [HNO3]aq [HNO3]org

(g·L−1) (mol·L−1) efficiency (%) (g·L−1) (g·L−1) (mol·L−1) (mol·L−1)

219 8.3 39 133 86 5.0 6.3
162 6.7 31 112 50 4.8 3.6
108 7.1 18 88 19 5.4 3.2
59 7.4 5 56 3 5.9 2.8

174 4.8 31 120 54 3.7 2.1
110 4.7 28 79 31 3.3 2.7
34 4.3 23 26 8 2.4 3.5

182 3.3 47 97 85 2.4 1.8
130 3.3 40 77 52 2.3 2.0
91 3.3 31 63 28 2.1 2.3

187 2.7 35 121 66 1.9 1.7
65 2.8 32 44 21 1.9 1.8

205 1.9 56 90 115 1.3 1.1
147 1.5 53 69 78 1.0 1.1
112 1.9 49 58 54 1.3 1.2
106 1.7 57 46 60 1.4 0.6
75 1.8 54 35 41 1.3 1.1

205 1.2 62 79 126 1.0 0.5
205 1.2 61 81 124 1.0 0.4
103 0.7 91 9 94 0.6 0.1

a. Typical statistic errors are less than 5% for the uranium concentrations and
are less than 10% for the nitric acid concentrations and the stripping efficiency.
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efficiency is the most important (up to 68%) when the volume of the aqueous phase

is reduced. The decrease in the stripping temperature to 24 ◦C has a lesser impact

on the efficiency (≤ 32%). However, a general tendency is observed independently

of the condition changed. At high acidic concentration, the loss of efficiency is more

important than at low nitric acid concentration. An increase in the efficiency is even

shown at 24 ◦C, for initial concentrations in nitric acid below 2 mol·L−1.

Conclusion

During this research work, the extraction of uranium from ash and other matrices

has been proven possible with a very good yield. The stripping stage performed

continuously with the extraction has also been shown to be feasible. Continuous

stripping was shown to be more efficient than the separate process at atmospheric

pressure. Supercritical fluid extraction allows the recovery of dry processed ashes
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Figure 2.39: Lost of efficiency when the volume ratio is 1:1 between the two phases
(H) and when the temperature is 24 ◦C (N).

with a low radioactive content. These two advantages are very important, because

the ashes can be disposed of as low-level waste without further cleaning or processing.

Nevertheless, there is still room for further improvement before using this process

in a large-scale plant, which is outside the scope of this work. For example, the

extraction efficiency could be potentially enhanced with the use of an ultra-sonic

bath. Other suggestions to improve the stripping efficiency include the use of pulse

columns, electrolysis, and osmosis.
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Conclusion

This chapter was dedicated to the study of the supercritical fluid extraction of ura-

nium from different matrices such as incineration ash coming from the byproducts of

nuclear fuel production. For this project, I used a mixture of the TriButyl Phosphate

(TPB), as a complexing agent, and nitric acid, as an oxidizing agent. As part of

this research, the interaction TBP and water was studied in supercritical CO2 and in

chloroform using the Fourier Transform Infra-Red (FT-IR) and the Nuclear Magnetic

Resonance (NMR) spectroscopies. It was found that TBP and water make a one–

to–one complex when mixed with an excess of water. When this complex is mixed

with another solvent such as chloroform, or supercritical CO2, some microdroplets of

water appear in the oil due to the antisolvent effect. The amount of these droplets

was calculated for a ∼1:19 volume ratio of TBP complex to solvent. When chloroform

was chosen as a solvent, 14 ± 1µL of microdroplets of water were formed. In sub-

and supercritical CO2, the amount of microdroplets varies between none to ∼11 µL

when the temperature decreases from 70 to 25 ◦C at a constant pressure of 200 bar.

This amount decreases from ∼7 to ∼1 µL when the pressure increases from 200 to

400 bar at 40 ◦C. Chloroform is therefore comparable to CO2 at low temperature and

pressure, regarding the amount of microdroplets formed.

Next, the composition of different TBP–water–nitric acid complexes was deter-

mined without a solvent using the NMR spectroscopy. In the condition of my ex-

periments, the maximum number of nitric acid molecules per water molecule in the

TBP·(HNO3)x·(H2O)y adducts does not exceed five. Thereafter I studied the forma-

tion of microdroplets when these TBP adducts are mixed with a solvent (chloroform).

The acidic concentration in the droplets depends on the composition of the TBP–

water–nitric acid complex. The amount of nitric acid in the microdroplets increases

greatly when the molecular ratio of nitric acid to water increases.

To bring the topic of this chapter to closure, the feasibility of extracting UO2
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from different matrices was demonstrated. Some of these matrices are incineration

ash coming from the byproducts of the nuclear fuel pellet fabrication. The conditions

of the extraction, i.e. temperature, pressure, TBP–water–nitric acid complex used,

extraction time, flow-rate, etc. were optimized. At least 85% of the enriched uranium

was recovered from the ash at these optimized conditions. After the extraction,

CO2 can be released in the air and the extracted uranium is recovered as a TBP

complex with an excess of TBP and nitric acid. Uranium can not be recycled in the

fuel fabrication proces in this form. It needs to be stripped into an aqueous phase.

The simple stripping at atmospheric pressure with warm water is not efficient enough.

This stripping would need a great amount of water that would have to be evaporated.

A better way of stripping the uranium out of the organic phase is to do it continuously

with the extraction. The efficiency of this stripping method was optimized using

standard solutions. A smaler amount of water was needed for the continuous stripping

compared to the normal stripping at atmospheric pressure. Based on this research

work, a pilot plant is now operational at the AREVA (Framatome-ANP) facility in

Richland, Washington.

Some improvements are suggested for the experimental setup to make the extrac-

tion and the stripping more efficient. For example, the extraction cells can be put in

an ultra-sonic bath. This technique might enhance the extraction efficiency by liber-

ating the uranium strongly bonded to the matrix. On the other hand, the stripping

can also be enhanced by using a pulse column or replaced for electrolysis, which could

be used to precipitate out UO2. Osmosis can be also a good alternative, where the

process has been already optimized on large scale for desalting sea water.
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This research work was devoted to the understanding of the supercritical fluid ex-

traction of cesium and uranium. These two elements were especially chosen because

of their abundance in various types of nuclear waste and because of their importance

in the reprocessing and recycling of such waste. Original contributions were made

to the understanding of the phenomena and interactions involved, which further the

advance of the extraction chemistry and technology.

In the following paragraphs, I will give a synopsis of the different parts of my work

and mention the findings and contributions from each part.

Supercritical fluid extraction of metal ions requires the use of a chelating agent.

Crown ethers have been chosen as ligand in the extraction of cesium where often

water plays a important role. Therefore, the interaction between crown ethers and

water was first described in chapter 1. This interaction was studied in sub- and

supercritical CO2 using FT-IR. The differentiation between three water–crown ether

configurations (i.e. the bridge, the single, and the sandwich forms) was made with the

help of this analytical technique. The sandwich configuration in the organic phase

between two crown ethers and a water molecule was first discovered through this

work. The equilibrium parameters (i.e. the equilibrium constant, the molar fraction

of crown ether bonded to water, and the amount of free water) were determined for the

bridge and single configurations at different pressures and temperatures. The value

of these parameters were also determined for the global study that lumps together

the equilibria of the bridge and the single configuration in one equilibrium. This last

set of results was compared with the one in organic solvent found using NMR as a
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method of analysis.

The study of the water–crown ether interaction in organic solvents shows that the

interaction depends strongly on the crown ether used and on the nature of solvents.

The main factor of this dependence is the polarity of the solvent. As the polarity

increases, the molar fraction (k) of crown ether complexed with water increases from

61 to 97% for 18-crown-6. These values can be compared to the ones in supercritical

fluids, where k varied from 33 to 54% as the temperature decreases at constant

pressure (∼20 MPa). These results show that at least 46% of the water is free in

CO2, where less than 39% is free in CDCl3 and CCl4 mixtures.

The role of water in the cesium extraction equilibrium was discussed at the closure

of Chapter 1. The cesium extraction was described using four equilibrium reactions.

The calculation of the equilibrium constants leads to three conclusions.

1. The sandwich configuration between two crown ethers and one cesium picrate

is not possible if water is part of it.

2. The one-to-one complex of the cesium picrate with the crown ether is preferred

with water than without water.

3. The “sandwich” configuration is preferred to the one-to-one complex when water

is involved.

It was also observed that the amount of water in oil decreases with the increase

of the cesium picrate concentration. It seems that the water is competing with crown

ether to be carried out of the water phase. The efficiency of the extraction might be

enhanced in a “water-free” extraction.

The second chapter of this thesis work is focused on the supercritical fluid ex-

traction of uranium. TBP-nitric acid-water complexes were used as chelating agent.

When TBP-water or TBP-nitric acid-water complexes are mixed with a solvent char-

acterized with a low dielectric constant, some micro-droplets appear due to the anti-

solvent effect. Therefore the first part of the chapter was devoted to the understand-
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ing of the TBP-water and the TBP-nitric acid-water interactions in various solvents.

FT-IR technique was successfully used to describe the TBP-water complex in sub-

and supercritical CO2. The equilibrium constant and the molar fraction of water

complexed to TBP in CO2 as function of temperature and pressure were determined.

Most importantly, the FT-IR technique was used to predict the amount of water

droplets produced by the antisolvent effect when the TBP-water complex is mixed

with CO2. These results where compared with the measurement obtained in chloro-

form using NMR as an analytical tool. These two analytical methods complement

each other to give a complete picture of the equilibrium. The analysis of the molar

fraction of TBP bonded to water shows that there is more water bonded to TBP in

the supercritical fluid. Consequently, the amount of free water is larger in the organic

phase when CDCl3 is chosen as a solvent. In pure CDCl3 the standardized amount

of micro-droplets was found equal to 14 ± 1 µL. This is 3 µL more than the highest

volume obtain in CO2 , where the pressure and temperature were at the lowest setting

studied (i.e. 20 MPa and 25 ◦C).

A further understanding of the interactions was acquired when the TBP-water

equilibrium was studied with the addition of nitric acid, which is essential to the

supercritical fluid extraction of uranium. Different TBP(HNO3)x(H2O)y complexes

were studied without solvent to determine their composition depending on the initial

volume ratio of TBP and nitric acid. The formation of micro-droplets of acid due to

the antisolvent effect was demonstrated using NMR when the TBP complexes were

mixed with chloroform. It was found that the pH of these micro-droplets decreases

when the nitric acid to water molecular ratio increases in the TBP complex.

Finally, a practical application for the TBP-nitric acid-water adducts was demon-

strated when they were used to extract uranium from nuclear fuel manufacturing

incineration ash and other solid matrices into supercritical CO2. The extraction of

uranium has been proven possible with a very good yield. The stripping stage per-

formed continuously with the extraction has also been shown to be feasible and more



General Conclusions 170

efficient than the separate process at atmospheric pressure. The uranium extraction

process developed and optimized through this work has been received well in the

nuclear industry, where a pilot plant applying this new process has been recently

commissioned at the AREVA Framatome-ANP fuel manufacturing facility in Rich-

land USA.

To sum up, this research work has successfully demonstrated that supercritical

fluid extraction could be used to recover uranium and cesium. These and other ele-

ments can be extracted from high level radioactive waste on a large scale. Gradually

and in a controlled manner, each element could be removed from the main waste al-

lowing a specific waste management solution for each element. In particular, extracted

plutonium and uranium could be reused as fuel for power-plants. Other isotopes could

be used for research or medical purposes, whereas low level waste could be easily for-

gotten underground. Even if no practical use were found for certain isotopes, their

recycling and/or storage would be much easier when separated from the bulk. The

remaining high level waste could be processed as traditionally envisioned, i.e. using

short term storage, long term storage, and neutron transmutation, that is of course

when such technology matures eventually. It would be necessary to monitor the wa-

ter and hydrogen level in such plant. Indeed, due to radiolysis effects, potentially

explosive hydrogen gas is generated from water in these materials.

For future consideration and extension of my work, I suggest that other important

elements that were not included in this experimental work such as plutonium, neptu-

nium, and americium should be also studied. If shown to be successful, the benefits

of a supercritical fluid extraction plant would be greatly expanded.
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Mass Yield of the Fission Element
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Table A.1: Mass (g) and radioactivity (Ci) of elements (150 days after discharge from
a PWR) per ton (Mg) of uranium (freshly loaded in the reactor) for all elements.

Element Symbol Atomic number Mass (g/Mg) Radioactivity (Ci/Mg)

Uranium U 92 9.54E+05 4.05E+00
Neptunium Np 93 7.49E+02 1.81E+01
Plutonium Pu 94 9.03E+03 1.08E+05
Americium Am 95 1.40E+02 1.88E+02
Curium Cm 96 4.70E+01 1.89E+04

Selenium Se 34 4.87E+01 3.96E-01
Bromine Br 35 1.38E+01 0.00E+00
Krypton Kr 36 3.60E+02 1.10E+04
Rubidium Rb 37 3.23E+02 1.90E+02
Strontium Sr 38 8.68E+02 1.74E+05
Yttrium Y 39 4.53E+02 2.38E+05
Zirconium Zr 40 3.42E+03 2.77E+05
Niobium Nb 41 1.16E+01 5.21E+05
Molybdenum Mo 42 3.09E+03 0.00E+00
Technetium Tc 43 7.52E+02 1.43E+01
Ruthenium Ru 44 1.90E+03 4.99E+05
Rhodium Rh 45 3.19E+02 4.99E+05
Palladium Pd 46 8.49E+02 0.00E+00
Silver Ag 47 4.21E+01 2.75E+03
Cadmium Cd 48 4.75E+01 5.95E+01
Indium In 49 1.09E+00 3.57E-01
Tin Sn 50 3.28E+01 3.85E+04
Antimony Sb 51 1.36E+01 7.96E+03
Tellurium Te 52 4.85E+02 1.34E+04
Iodine I 53 2.12E+02 2.22E+00
Xenon Xe 54 4.87E+03 3.12E+00
Cesium Cs 55 2.40E+03 3.21E+05
Barium Ba 56 1.20E+03 1.00E+05
Lanthanum La 57 1.14E+03 4.92E+02
Cerium Ce 58 2.47E+03 8.27E+05
Praseodymium Pr 59 1.09E+03 7.71E+05
Neodymium Nd 60 3.51E+03 9.47E+01
Promethium Pm 61 1.10E+02 1.00E+05
Samarium Sm 62 6.96E+02 1.25E+03
Europium Eu 63 1.26E+02 1.35E+04
Gadolinium Gd 64 6.29E+01 2.32E+01
Terbium Tb 65 1.25E+00 3.02E+02
Dysprosium Dy 66 6.28E-01 0.00E+00
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Table B.1: Main decay energies for 238-Uranium.

Isotope Atomic
Mass

Half-life* Decay
Mode**

Decay
Energy
(MeV)

Gamma
Energy***
(keV)

Gamma
Ray
Intensity
(%)

238
92U 238.0508 4.46x109 y α 49.55 0.07

234
90Th 234.0436 24.10 d β−1 0.270 63.29 3.8

92.35 2.7
92.78 2.7
112.80 0.24

234m
91 Pa 1.17 min 99.9% β−1 2.29 766.41 .21

0.13% I.T. 1001.00 .65
234
91Pa 234.0433 6.70 h β−1 2.199 131.2 20

569.5 11
883.24 12

234
92U 234.0409 2.45x105 y α 4.856 53.23 .12

230
90Th 230.0331 7.54x104 y α 4.771

226
88Ra 226.0254 1600 y α 4.870 186.1 3.30

222
86Rn 222.0176 3.82 d α 5.590 510 0.07

218
84Po 3.11 min α 6.114

214
82Pb 213.9998 26.8 min β−1 1.032 241.92 7.5

295.09 19.2
351.87 37
785.82 1.1

214
83Bi 213.9987 19.9 min β−1 3.27 609.31 46.1

768.35 4.9
1120.27 15
1238.10 5.96
1764.49 15.9

214
84Po 213.9952 164 µsec α 7.833

210
82Pb 209.9842 22.3 y β−1 .063

210
83Bi 209.4841 5.01 d β−1 1.16

210
84Po 209.9828 138.4 d α 5.407 803.13 0.001

206
82Pb 205.9744 stable

* y = year(s); d = day(s); h = hour(s); min = minute(s); s = second(s)
** α = alpha particle emission; β−1 = negative beta emission; I.T. Isomeric transition
*** uncertainties ≤ 0.4 %
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Table B.2: Main decay energies for 235-Uranium.

Isotope Atomic
Mass

Half-life* Decay
Mode**

Decay
Energy
(MeV)

Gamma
Energy***
(keV)

Gamma
Ray
Intensity
(%)

235
92U 235.0439 7.04x108 y α 4.6793 109.17 1.5

143.78 10.5
163.38 4.7
185.74 53
202.13 1.5
205.33 4.7

231
90Th 231.0363 25.2 d β−1 0.389 25.64 15

84.203 6.6
231
91Pa 231.0359 3.27x104 y α 5.148 27.396 9.3

300.07 2.4
227
89Ac 227.0278 21.6 y 98.6% β−1 0.041

1.4% α 5.148
227
90Th 227.0277 18.72 d α 6.146 50.14 8.5

235.97 11.2
256.24 6.7

223
87Fr 223.0197 21.8 min β−1 1.147 50.14 33

79.72 8.9
223
88Ra 223.0185 11.43 d α 5.979 154.18 5.6

269.39 14
219
86Rn 219.0095 3.96 sec α 6.946 271.13 9.9

401.70 6.6
215
84Po 214.9994 1.78 msec α 7.526

211
82Pb 210.9887 36.1 min β−1 1.379 404.86 3.8

427.00 1.7
83.06 3.8

211
83Bi 210.9873 2.14 min 0.3% β−1 0.584 350.1 12.8

99.7% α
211
84Po 210.9866 0.52 sec α 7.594 569.5

897.23 0.52
207
82Tl 206.9774 4.77 min β−1 1.427 897.23 0.24

207
82Pb 206.9759 stable

* y = year(s); d = day(s); h = hour(s); min = minute(s); s = second(s)
** α = alpha particle emission; β−1 = negative beta emission; I.T. Isomeric transition
*** uncertainties ≤ 0.1 %
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Acronyms

ATW Accelerator Transmutation of Waste

DOE Department Of Energy

FID Free Induction Decay

FT-IR Fourrier Transform Infra Red

HLW High level Waste

IASR Industrial Accident Safety Rate

ICP-MS Inductively Coupled Plasma Mass Spectroscopy

ILW Intermediate level Waste

INSC International Nuclear Safety Center

LLW Low level Waste

LMFBR Liquid Metal Fast Breeder Reactors

MCT Mercury-Cadmium-Telluride

MRI Magnetic Resonance Imaging

MS Mass Spectroscopy

NIST National Institute of standards and Technology

NMR Nuclear Magnetic Resonance

NRC Nuclear Regulatory Commission

PNMR Proton Nuclear Magnetic Resonance

PUREX Plutonium Uranium Recovery by Extraction
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PWR Pressurized Water Reactors

RF Radio Frequency

SFC Supercritical Fluid Chromatography

SF-CO2 Supercritical Fluid Extraction using CO2

SFE Supercritical Fluid Extraction

SNF Spent Nuclear Fuel

TBP Tri-nButyl Phosphate

TMS TetraMethylSilane

UV Ultra Violet
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Abstract

Supercritical Fluid Extraction: Spectroscopic Study of Inter-
actions Comparison to Solvent Extraction

Supercritical fluid carbon dioxide (SF-CO2) was chosen to study Supercritical Fluid

Extraction (SFE) of cesium and uranium. At first, crown ethers were considered

as chelating agents for the SFE of cesium. The role of water and its interaction

with crown ethers were especially studied using Fourier-Transform Infra-Red (FT-

IR) spectroscopy in SF-CO2. A sandwich configuration between two crown ethers

and a water molecule was observed in the SF-CO2 phase for the first time. The equi-

librium between the single and the bridge configurations was defined. The enthalpy of

the hydrogen bond formation was also calculated. These results were then compared

to the one in different mixtures of chloroform and carbon tetrachloride using Nuclear

Magnetic Resonance (NMR). To conclude this first part and in order to understand

the whole picture of the recovery of cesium, I studied the role of water in the equi-

librium between the cesium and the dicyclohexano18-crown-6.

In a second part, the supercritical fluid extraction of uranium was studied in SF-CO2.

For this purpose, different complexes of TriButyl Phosphate (TBP), nitric acid and

water were used as chelating and oxidizing agents. I first used FT-IR to study the

TBP-water interaction in SF-CO2. These results were then compared to the one

obtained with NMR in chloroform. NMR spectroscopy was also used to understand

the TBP-nitric acid-water interaction first alone and then in chloroform. To conclude
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my research work, I succeeded to improve the efficiency of uranium extraction and

stripping into water for a pilot-plant where enriched uranium is extracted from incin-

erated waste coming from nuclear fuel fabrication. TBP-nitric acid complexes were

used in SF-CO2 for the extraction of uranium from ash.

Keywords: Reprocessing – Nuclear waste – NMR – FT-IR – Extraction – SFE –

Supercritical fluids – Solvents – Water – Uranium – Cesium – Crown ethers – Carbon

dioxide – CO2 – TBP – TriButyl Phosphate – Nitric acid – Antisolvent effect – Uranyl

– Hydrogen bond
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An FT-IR Study of Crown Ether -Water Complexation in Supercritical CO2

Anne Rustenholtz,† John L. Fulton,‡ and Chien M. Wai* ,†

Department of Chemistry, UniVersity of Idaho, Moscow, Idaho 83844-2343, and Fundamental Science DiVision,
Pacific Northwest National Laboratory, P.O. Box 999, MS P8-19, Richland, Washington 99352

ReceiVed: June 24, 2003; In Final Form: September 25, 2003

In the presence of 18-crown-6, D2O forms a 1:1 complex with the macrocyclic molecule in supercritical fluid
CO2 with two different configurations. The D2O molecule can be bonded to two oxygen atoms of the crown
cavity in a bridged configuration that is characterized by a broad peak at 2590 cm-1. The D2O molecule can
also form one hydrogen bond with an oxygen atom of the crown cavity that can be characterized by two
peaks at 2679 and 2733 cm-1, with the former assigned to the hydrogen-bonded O-D stretching and the
latter the unbonded O-D stretching. The equilibrium constants of the two configurations in supercritical
CO2 have been calculated. The enthalpy of formation is-12 ( 2 kJ mol-1 for the single-hydrogen-bond
complex and-38 ( 3 kJ mol-1 for the bridged configuration complex. At high 18-crown-6 to D2O ratios,
the formation of another complex in supercritical CO2 that involves one D2O molecule hydrogen bonded to
two 18-crown-6 molecules becomes possible.

Introduction

Supercritical fluids have unique properties that make them
highly attractive for extraction of metal ions from liquid and
solid materials.1-3 Carbon dioxide is most widely used for
supercritical fluid applications because of a number of advan-
tages including (i) low toxicity, (ii) environmentally benignity,
(iii) low cost, (iv) moderate critical constants (Tc ) 31 °C and
Pc ) 73.7 bar), and (v) tunable solvation strength that varies
with density. Selective extraction of metal species using a
nonpolar solvent such as CO2 requires special chelating agents
that should possess ion recognition ability and be soluble in
supercritical fluid carbon dioxide (SF-CO2).1-3 Crown ethers
have been extensively used for extraction of alkali-metal and
alkaline-earth-metal cations from aqueous solutions into organic
solvents.4-9 The relatively high solubility of crown ethers in
liquid and supercritical CO2 and their selectivity for the alkali-
metal and the alkaline-earth-metal ions make them attractive
for environmental applications such as CO2-based nuclear waste
management technology that would result in minimum liquid
waste generation.

For the extraction of metal ions from aqueous solutions using
ligands dissolved in SF-CO2, the fluid phase will be saturated
with water. Thus, water interaction with the ligand in the fluid
phase plays an integral role in the extraction process.2,9 It has
been reported that the extraction efficiency of alkali-metal ions
in conventional solvent processes depends on the solubility of
water in the organic phase using macrocyclic polyethers as a
complexing agent.9 With crown ethers, both computational
simulation10 and spectroscopic studies11,12show that, in organic
solvents, the water can bond to a macrocyclic host molecule
by two different types of hydrogen bonding. The first type is
composed of a single hydrogen bond between one hydrogen
atom of a water molecule and one oxygen atom of the crown

ether cavity. In this case, the water molecule is mostly located
outside the cavity. The second type occurs inside the cavity
and is composed of a water molecule bridging between two
different oxygen atoms of the crown cavity.

FT-IR is a sensitive and qualitative technique that has been
used during the past few years to study hydrogen bonding in
different solvents.12-16 For example, Fulton et al.13 used this
technique to explore hydrogen bonding of methanol dissolved
in supercritical carbon dioxide and found that a weak interaction
between carbon dioxide and methanol significantly reduced the
amount of methanol-methanol hydrogen bonding. Johnston et
al. used it to understand the solvent effect on hydrogen bonding
in supercritical fluids.14 They were able to determine, with a
good accuracy, the equilibrium constants and other thermody-
namics data for the hydrogen bond between methanol and
triethylamine. The FT-IR technique has also been used by Moyer
et al.12 to determine how water is bonded to crown ethers in
carbon tetrachloride. These authors assigned vibrational bands
to free water and to two different kinds of hydrogen bonds
mentioned above. In this paper we examine the interactions of
water and 18-crown-6 in liquid and supercritical CO2 for the
purpose of establishing a basis for using this green solvent in
extraction processes utilizing crown ethers as extractants.

Experimental Section

A specially designed high-pressure IR cell capable of
operation to 500 bar was used for this study. The 9.2 mL internal
volume cell is built in stainless steel block. The infrared beam
is focused along two conical holes and passes through two small
diamond windows providing a path length of 100µm. The cell
has one observation window (sapphire) sealed with a gold-plated
metal V-ring seal, which allows visual determination of the
number of phases present inside the cell. For quantitative
analysis it is essential to avoid formation of a second aqueous
phase on the beam path windows, which would interfere with
data collection. A Teflon-coated magnetic stirring bar was
introduced into the cell, allowing stirring of the solution while
the cell was placed inside an FT-IR spectrometer.

* To whom correspondence should be addressed. E-mail: cwai@
uidaho.edu.

† University of Idaho.
‡ Pacific Northwest Laboratory.
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A syringe pump (ISC0, model 100DX) was used to supply
liquid CO2 to the cell that was preloaded with the starting
chemicals. The pressure was measured using an electronic
transducer (Precise Sensor Inc., model D451-10) with a(1 bar
accuracy. The cell was placed on a lightweight ceramic stand,
thermally isolated with an insulation coat, and heated using four
electric cartridge heaters. The temperature was controlled with
a controller (Watlow) having a(1 °C accuracy. A Bruker IFS
66v FT-IR spectrometer with a mercury-cadmium-telluride
(MCT) detector (Kolmar Technologies) was used to acquire all
IR spectra. To obtain a good signal-to-noise ratio, the acquisition
time was set at 5 min (corresponding to approximately 2350
scans), the scanner velocity was 80 kHz set for 4 cm-1

resolution. A background spectrum of the empty cell (with
diamond windows) was subtracted from each sample spectrum.
Deuterated water (D2O) was used rather than H2O to avoid
overlapping of water and intense CO2 absorption bands between
3500 and 3800 cm-1. The existence of weak 18-crown-6 bands
between 2760 and 2680 cm-1 (C-H stretch) which overlap with
the D2O signal required a spectrum of the pure crown ether in
CO2, at the same temperature and pressure, to be subtracted
from the sample spectrum for background correction.

D2O (100% D, 99.96% pure), 18-crown-6 (99.5% pure),
dicyclohexano-18-crown-6 (98% pure), methanol-d (99.5+ atom
% D), and carbon tetrachloride (99.9% pure) were purchased
from Aldrich Chemical Co. and used without further purifica-
tion. Carbon dioxide was obtained as supercritical fluid chro-
matography (SFC) grade (purity>99.99%) from Scott Specialty
Gases Inc. The pure CO2 density varies in this study between
0.66 and 1.04 g mL-1 by tuning the temperature between 25
and 70°C and the pressure between 200 and 400 bar. The pure
CO2 density was determined using a reported table from the
NIST (National Institute of Standards and Technology) Chem-
istry WebBook.

To avoid water contamination from the atmosphere, the cell
was purged with nitrogen and the chemicals were handled and
introduced using a glovebox purged with nitrogen. The solutions
were stirred for 20-30 min to reach equilibrium after each
density or concentration change. Longer equilibrium times were
briefly explored, but no significant change in the IR spectra
was observed. Curve fitting and other spectrum analysis and
corrections have been performed with standard spectral software
(OPUS, Bruker Optiks).

Results and Discussion

To study the nature of crown-water hydrogen bonding in
liquid and SF-CO2, we examined FTIR spectra of a series of
mixtures with 18-crown-6 concentrations varied from 0 to 0.25

mol L-1 and the total D2O concentration fixed at 49 mmol L-1.
The D2O concentration was below the known solubility of water
in pure CO2

18 under our experimental conditions. This fact was
supported by the observation of a single phase for all the CO2

experiments conducted in this study.
Peak Assignment. FT-IR spectra for different crown ether

concentrations (0-0.25 mol L-1) and a fixed D2O concentration
(0.049 mol L-1) are shown in parts a and b of Figure 2 for
liquid and SF-CO2, respectively. Peaks for the free D2O, i.e.,
D2O dissolved in SF-CO2 without the crown ether (O-D
stretching, asymmetric at 2761 cm-1 and symmetric at 2654
cm-1), can be easily discerned, and their positions are in
agreement with those reported for D2O molecules in the vapor
(i.e., 2789 and 2666 cm-1 for the D2O vapor).19 The shifts of
the D2O vibrational stretchings to lower wavenumbers in SF-
CO2 relative to those of single molecules in the vapor phase
reflect the interactions of D2O molecules with CO2 in the fluid
phase. When 18-crown-6 was added to the CO2 solution, three
other peaks at 2733, 2679, and 2590 cm-1 appeared. According
to the order of peak assignment of H2O-18-crown-6 complex
in carbon tetrachloride,12 the broad peak at 2590 cm-1 should
correspond to the symmetrical stretch of the O-D bond involved
in the two-hydrogen-bond bridge as illustrated in Figure 1a. The
D2O molecule with one hydrogen bond to the cavity oxygen is
expected to have two stretching bands. The sharp O-D band
at 2733 cm-1 should be the unbonded O-D stretching marked
as 2 in Figure 1b. The bonded O-D stretching band (marked
as 1 in Figure 1b) was assigned to the 2679 cm-1 peak, located
between the symmetrical and the asymmetrical stretching bands
of free water. In the FT-IR spectra of the H2O-18-crown-6
complex in CCl4, the bonded O-H stretching band was found
at a lower energy than the symmetrical stretch band of free
water. We confirmed our assignment of this bonded O-D band
by completing two secondary experiments. One experiment was
a comparison of the FTIR spectra of 18-crown-6-H2O and 18-
crown-6-D2O complexes in CCl4. We confirmed the peak
assignment of the former as reported in the literature, and the
D2O isotopic effect altered the peak order of the latter as shown
in Figure 2. In another experiment, we confirmed that the order
and assignment of the various O-D bands in the 18-crown-
6-D2O complex in SF-CO2 were the same in both CCl4 and
liquid CO2.

We also obtained the FT-IR spectra of methanol-d mixed with
the crown ether in supercritical CO2 (Figure 3a). The peaks
between 2860 and 3100 cm-1 correspond to the stretching of
the C-H bonds belonging to the methanol-d molecule. Due to
a different O-D bond energy for methanol-d vs D2O, the peak
maximum of the O-D stretching mode for methanol-d is shifted

Figure 1. Scheme of the three possible bondings between D2O and 18-crown-6: (a) bridge bonding; (b) single bonding; (c) 1:2 complex in a
sandwich configuration.
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to a higher energy. Nevertheless, both asymmetric and sym-
metric free O-D stretching peaks (respectively at 2841 and 2701
cm-1) were observed in the spectra shown in Figure 3a.
Moreover, only the bonded O-D stretching band (similar to 1
in Figure 1b) appeared at the expected position (i.e., 2609 cm-1).
These observations provided further support for our peak
assignment.

Recent molecular dynamic simulation studies performed by
Wipff et al.20 for 18-crown-6 and water in SF-CO2 suggest that
most of the water molecules were bridge bonded to crown ether
in the D3d conformation. The observation of a singly bonded
water to a crown complex in our experiments could be due to
the flexibility of the macrocyclic molecule; 18-crown-6 can be
in various conformations that may favor a singly or a doubly

bonded water molecule. The 18-crown-6 cavity in dicyclo-
hexano-18-crown-6 is forced by its geometry into theD3d

conformation and is supposed to be rigid. The FT-IR spectra
of D2O with and without dicyclohexano-18-crown-6 in SF-CO2

are shown in Figure 3b. The spectrum shows that the free D2O
stretching bands are observed at 2761 (asymmetric) and 2653
(symmetric) cm-1. For the D2O with crown solution both single
hydrogen bonding (at 2701 (bonded) and 2732 (unbonded)
cm-1) and double hydrogen bonding (at 2591 cm-1) with the
oxygen atoms of the macrocyclic cavity, similar to that found
in 18-crown-6, are observed. The difference between our
spectroscopic study and Wipff’s molecular dynamic simulation
may be due to differences in species concentrations and CO2

densities used in the simulation study.

Figure 2. FT-IR spectra of free and bonded D2O at different 18-crown-6 concentrations (0-0.25 mol L-1) and at one fixed D2O concentration
(0.049 mol L-1) in liquid (a, 25°C and 400 bar) and supercritical (b, 40°C and 400 bar) CO2.

Figure 3. (a) Free methanol-d (0.17 mol L-1) and methanol-d (0.17 mol L-1) complexed to 18-crown-6 (0.02 mol L-1) in CO2 (40 °C and 200
bar). (b) Free D2O (49 mmol L-1) and D2O (49 mmol L-1) complexed to dicyclo-18-crown-6 (0.06 mol L-1) in CO2 (40 °C and 300 bar). (c) D2O
(respectively 17 and 49 mmol L-1) complexed to 18-crown-6 (respectively at 0.40 mol L-1 (s), 0.041 (- - -), and 0.123 (---) mol L-1) in CO2

at, respectively, 40°C and 200 bar and 40°C and 400 bar.

Crown Ether-Water Complexation in Supercritical CO2 J. Phys. Chem. A, Vol. 107, No. 50, 200311241



1:2 Complex Formation. When the 18-crown-6 concentra-
tion exceeds 0.4 mol L-1 with a lower water concentration (less
than 17 mmol L-1), only one absorption band at 2590 cm-1 is
observed (Figure 3c). All the D2O molecules seem to be bridge
bonded to the crown ether. This observation may be explained
by the formation of a 1:2 complex between D2O and 18-crown-6
as illustrated in Figure 1c. The O-D stretching band for this
kind of complex should appear at the same frequency as that
of the bridged form of D2O (Figure 1a configuration). Our
suggestion of 1:2 complex formation is based on the assumption
that, by increasing the crown ether to water ratio in SF-CO2,
we do not change the equilibrium between D2O molecules
bonded to one oxygen atom (configuration 1b) or to two oxygen
atoms (configuration 1a) of the cavity. As the concentration of
18-crown-6 in the system increases, it is conceivable that the
singly bonded D2O molecule (configuration 1b) would form a
hydrogen bond with another crown molecule via the unbonded
O-D, thus leading to the formation of a 1:2 complex. The law
of mass action should favor the shifting of equilibrium from a
1:1 complex to a 1:2 complex between water and 18-crown-6
in SF-CO2. Also in Figure 3c, we show, for comparison, spectra
of the double bond area of 18-crown-6 (at 0.041 and 0.123 M)
and D2O (0.049 M) at 400 bar and 40°C. Peaks occur at the
same position for both the dimer and the monomer forms.

The sandwich form (configuration 1c) is a probable confor-
mation for the 1:2 complex, but other configurations (e.g., from
offset to perpendicular) can be envisaged. Formation of 1:2
complexes has been reported for crown ether extraction of metal
ions from aqueous solutions where a metal ion can bind to two
crown cavities to form a sandwich complex. We are not aware
of any previous report regarding 1:2 complex formation between
water and crown molecules. Our experimental data indicate that,
with increasing crown to D2O ratios in the SF-CO2 system, the
intensities of the single-hydrogen-bond D2O stretching peaks
(2733 and 2679 cm-1) decreases and that of the peak at 2590
cm-1 increases. Although the 1:2 complex forms at high crown
to D2O ratios, we cannot distinguish the bridging 1:1 complex
(configuration 1a) and the 1:2 complex (configuration 1c) from
the FT-IR spectra.

Molar Absorptivity Calculation . A number of experimental
parameters (e.g., path length change, radiation of the cell, etc.)
can influence molar absorptivity values in addition to pressure
and temperature effects in SF-CO2 as reported in the literature.22

Therefore, for quantitative discussion of FT-IR data, molar
absorptivity should be evaluated for each SF-CO2 condition.21

The molar absorptivities for free D2O dissolved in CO2 (Table
1 and Figure 4) were determined by the analysis of FT-IR
spectra with pure D2O of known concentrations. The apparent
molar absorptivity of D2O, in liquid and supercritical CO2,
increases with the fluid density. This behavior is similar to that
reported for pyrene and anthracene21 in CO2 solutions. In our
system, the molar absorptivity for the asymmetric stretching
band of the free D2O at 2761 cm-1 is more than doubled for an

increase in CO2 density from 0.66 to 1.04 g mL-1. The molar
absorptivities of the C-H stretching vibrations of pure 18-
crown-6 dissolved in CO2 at its maximum intensity (2872 cm-1)
and at 2947 cm-1 are also given in Figure 4. A 20% decrease
in molar absorptivity is observed for both wavenumbers when
the CO2 density varies from 0.65 to 1.0 g mL-1. Because of
the stability of those C-H stretches, this decrease might reflect
changes in molecular absorptivities due to experimental param-
eters and needs to be considered to determine true molecular
absorptivities. Molar absorptivity changes for free D2O stretch-
ing vibrations might be caused by a change in solute-solvent
interaction and in solvent refractive index.

The molar absorptivity of the bridging 1:1 complex was
determined in the following way. We assumed that the molar
absorptivities of the 1:1 bridge complex and the 1:2 complex
were similar. Thus, the molar absorptivity of the bridged 1:1
complex could be obtained from the region with high 18-
crown-6 to D2O ratios in SF-CO2. Its value (Table 1 and Figure
4) at 2593 cm-1 does not seem to be affected by the change in
density. However, the weak solubility limit of 18-crown-6 at
low CO2 density did not permit this calculation for a density
below 0.8 g mL-1.

Equilibrium Constants and Enthalpy Calculations. The
formation of a 1:1 complex between 18-crown-6 and D2O in

TABLE 1: Apparent Molar Absorptivity at Different CO 2 Densitiesa

pressure (bar) 199 199 200 199 200 200 199 199 301 352 403 403
temperature (°C) 70 60 50 40 35 33 31 25 40 40 40 25
density (g mL-1) 0.659 0.723 0.784 0.840 0.860 0.870 0.888 0.914 0.911 0.930 0.957 1.035
ε1 (L mol-1 cm-1) 10 11 13 16 17 18 20 20 18 19 20 24
ε2 (L mol-1 cm-1) 45 52 60 68 73 74 80 79 74 78 81 93
ε3 (L mol-1 cm-1) 42 41 41 42 44 44 39 37 35 39
ε4 (L mol-1 cm-1) 527 517 504 489 484 480 477 469 481 482 481 463
ε5 (L mol-1 cm-1) 296 288 278 269 264 262 260 254 266 268 268 255

a ε1, free D2O asymmetric (2761 cm-1) stretching band;ε2, free D2O symmetric (2654 cm-1) stretching band;ε3, doubly bonded D2O to crown
band (at 2593 cm-1); ε4 andε5, C-H stretch band of 18-crown-6 at 2872 and 2947 cm-1, respectely.

Figure 4. Apparent molar absoptivity at different CO2 densities: (9)
free D2O asymmetric (ε1 at 2761 cm-1) stretching bands; (0) free D2O
symmetric (ε2 at 2654 cm-1) stretching bands; (2) doubly bonded D2O
to crown (at 2593 cm-1); ([, ]) C-H stretch band of 18-crown-6 at
2872 and 2947 cm-1, respectively.

11242 J. Phys. Chem. A, Vol. 107, No. 50, 2003 Rustenholtz et al.



the CO2 phase at a lower crown to D2O molecular ratio was
evaluated by the analysis of the FT-IR data and the equilibrium
relations of the following equations:

whereKs andKb represent the equilibrium constants for the 1:1
complex with a single hydrogen bond and double hydrogen
bonds, respectively. The total bonded water concentration for
equilibrium constant calculations was calculated from the free
water concentration (deduct from its molar absortivity) and the
total concentration introduced in the cell. TheK values vary
considerably with CO2 density. At a constant pressure (200 bar),
theKs value decreases from 21( 2 to 13( 1 L mol-1 with an
increase in temperature from 25 to 60°C. The variation ofKb

with temperature is even greater for the same pressure; its value
varies from 14( 2 to 2( 1 L mol-1 from 25 to 60°C. These
K values are comparable to the one reported by Moyer et al.
(i.e., 15.6(1.2) L mol-1) for the 18-crown-6-H2O complex in
carbon tetrachloride. This implies that, in terms of hydrogen
bonding between water and 18-crown-6, liquid CO2 and
supercritical CO2 behave as nonpolar solvents such as CCl4 and
not chloroform. TheK value of the 18-crown-6-H2O complex
in chloroform was reported to be 20 times larger than that in
CCl4.

The influence of density (increase in pressure from 200 to
400 bar) at a constant temperature (i.e., 40°C) on the two
equilibrium constantsKs and Kb is shown in Figure 5. An
increase in density causes a decrease in theKs andKb values.

The molar enthalpy of a hydrogen bond (∆Hi) can be
determined from the equilibrium constant at constant pressure
by eq 4 from well-known thermodynamic relations (eq 3),17

whereT is the absolute temperature in (K) andR the ideal gas
constant.

Using a linear regression on the plot of lnK versus 1/T (Figure
6), and assuming that∆H is independent of temperature and

density, the∆Hs (for a single hydrogen bond, configuration 1b)
was found to be-12( 2 kJ mol-1 and∆Hb (for bridge bonding,
configuration 1a) to be-38 ( 3 kJ mol-1, both at 200 bar.
The complexation process is exothermic as expected for
hydrogen bonding, and its value is similar to the literature values
for hydrogen-bonding processes in both liquid solvents and
supercritical fluids. The facts that the hydrogen-bonding process
is exothermic and that the bonded species are more entropically
ordered explain the decrease ofK values with the increase of
temperature.

Isomeric Ratio of the Crown-Water Complex. The relative
concentrations of the singly bonded and the doubly bonded
water-crown complexes change with temperature as shown in
Figure 7. At a low crown to water mole ratio (about 0.8), the
trend is similar for both isomers. When the temperature is
increased from 25 to 50°C at 200 bar, the concentrations of
both the singly bonded and the doubly bonded complexes tend
to decrease (Figure 7). The decrease for the doubly bonded
complex is perhaps slightly faster than the decrease for the singly
bonded complex. This can be explained by an entropy effect;
i.e., at higher temperatures the more disordered form should be
favored.

At a high crown to water mole ratio (i.e., superior to 1.7),
the concentration of the bridged species decreases whereas the
concentration of the single-bond species increases when the
temperature increases from 25 to 50°C at a fixed pressure of
200 bar (Figure 8). This observation also appears to support
the formation of a 1:2 complex. As expected in terms of entropy,
at higher temperatures the 1:2 complex form probably would
break down to form a singly bonded 1:1 crown-D2O complex
and unbonded crown ether. Thus, even if the singly bonded
species dissociate with rising temperature, the total amount still
increases due to the breakdown of the 1:2 complex form.

Figure 5. Density effect on equilibrium constantsKs (b) andKb (2).
The pressure varies from 200 to 400 bar at constant temperature (40
°C). [18C6] ) 41 mmol.L-1. [D2O] ) 49 mmol L-1.

18C6+ D2O / 18C6‚D2O
single (1)

Ks) ([18C6‚D2O
single])/([18C6][D2O])

18C6+ D2O / 18C6‚D2O
bridge (2)

Kb ) ([18C6‚D2O
bridge])/([18C6][D2O])

(∂(∆Gi)

∂T )
P

) -∆Si )
∆Gi - ∆Hi

T
and ∆Gi° ) -RT ln Ki

(3)

(∂(ln Ki)

∂(1/T) )
P

) -
∆Hi

R
(4)

Figure 6. Dependence of lnKs (b) and lnKb (2) on 1000/T at 200
bar for [18C6]) 41 mmol L-1 and [D2O] ) 49 mmol L-1.

Figure 7. Concentration of the two isomers (i.e., single bond (b) and
double bond (2)) between D2O (49 mmol L-1 total concentration in
CO2) and the 18-crown-6 (83 mmol L-1 total concentration in CO2)
versus temperature (°C).
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Conclusions

FT-IR is a sensitive technique for studying crown ether and
water interactions in SF-CO2. The O-D stretching vibrations
for D2O dissolved in SF-CO2 show slight shifts to lower
wavenumbers relative to those found for D2O in its vapor phase,
indicating interactions (salvation) of CO2 with D2O molecules
in the supercritical fluid phase. In the presence of 18-crown-6,
D2O forms a 1:1 complex with the macrocyclic molecule with
two different configurations. The D2O molecule can form one
hydrogen bond with an oxygen atom of the crown cavity, or it
can be bonded to two oxygen atoms of the cavity in a bridged
configuration. The equilibrium constant of the single-hydrogen-
bond configuration is slightly greater than the two-hydrogen-
bond configuration, and both equilibrium constants decrease
with increasing temperature. The enthalpy of the complex
formation is-12 ( 2 kJ mol-1 for the former and-38 ( 3 kJ
mol-1 for the latter. These values are within the range of
hydrogen bonds reported in liquid solvents. At high 18-crown-6
to D2O ratios, formation of a 1:2 complex in SF-CO2 that
involves one D2O molecule hydrogen bonded to two crown ether
molecules becomes possible.
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Partition Coefficients and Equilibrium Constants of Crown Ethers
between Water and Organic Solvents Determined by Proton Nuclear
Magnetic Resonance
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The extraction of water by several crown ethers into chloroform + carbon tetrachloride mixtures has
been investigated using a proton NMR technique. The equilibrium is well described by formation of a 1:1
water-crown complex in rapid exchange with uncomplexed ligand and water. The fraction (k) of crown
ether complexed with water increases with crown cavity size, varying from (15 (1)% for 12-crown-4 to
(97 ( 5)% for 18-crown-6. Addition of carbon tetrachloride to chloroform lowers the k value for all crown
ethers in equilibrium with water, and the value is close to zero in pure CCl4. The partition coefficient
follows the opposite trend: the amount of crown ether in the organic phase increases with the percentage
of CCl4 in this phase. The chemical shifts of free and complexed water also vary with solvent composition.
Interaction of water with crown ether depends on solvation environment and may play a significant role
in liquid-liquid extraction of metal ions using macrocyclic polyethers as extractants.

Introduction

Solvent extraction processes for the removal or separa-
tion of metal ions from aqueous solutions have been
extensively studied using a variety of acidic, anionic, or
neutral extractants.1-6 Macrocyclic compounds, such as
crown ethers and calixarene-crowns, are excellent neutral
extractants with high efficiency and selectivity for a
number of metal cations, including the alkali metal ions.1,7-9

We are interested in the equilibria involved in the extrac-
tion of cesium ions from aqueous solution into a super-
critical CO2 phase, using crown ethers and calixarene-
crowns. As part of this project, we are studying extraction
of cesium salts into solvents of low dielectric constant, with
solubility parameters in the range of possible solubility
parameters for supercritical CO2.3 The equilibria of cesium
salts with the above ligands have been studied extensively
in organic solvents, usually with relatively high relative
permittivity (>10).10 In these studies, the specific role of
the water which is dissolved in the organic solvents is
generally not discussed in detail. In one study, it was noted
that the description of the resulting equilibria must take
into account the fact that the organic phase is saturated
with water.11 In a second study, it was found that the
extraction efficiency of alkali metal ions increases with the
solubility of water in the organic phase.12 This is ascribed
to increased solubility of the counteranion in the water-
saturated organic phase. In another study,13 the equilib-
rium constant between water and 18-crown-6 (18C6) has
been determined in CCl4 by FTIR. The effects of solvent
polarity or crown ether cavity size have not been discussed.
Neither was the partition coefficient.

For organic solvents with a high relative permittivity,
equilibration of the solvent with water yields a water
concentration in the solvent which is high compared to the
typical concentrations of the extracting agents and the
extracted ions. Therefore, the water concentration is
relatively independent of the concentrations of these other

components. By contrast, the solubility of water in chlo-
roform (relative permittivity 4.8 at 20 °C) is about 0.06
mol‚L-1 at normal ambient temperature, which is more
comparable to the concentrations of other species extracted
from a water phase. Water solubility varies from 0.02 to
0.2 mol‚L-1 in supercritical CO2, depending on the tem-
perature and the pressure applied.

Proton nuclear magnetic resonance (NMR) is a very
precise analytical technique for measuring the amount and
chemical environment of water in organic solvents. Early
NMR studies by de Jong et al.14 and Golovkova et al.15 have
shown that various crown ethers interact with water to
form 1:1 complexes in CHCl3. An IR study by Moyer et al.
has likewise demonstrated formation of a 1:1 water-crown
ether complex in CCl4.13 A compilation of data for com-
plexes of crown ethers with neutral molecules has been
carried out by Izatt et al.16

The purpose of this paper is to determine the influence
of solvent (mixtures of CHCl3 and CCl4) on those interac-
tions using NMR techniques. These solvent mixtures cover
a wide range of solvent parameters which are comparable
to those of liquid and supercritical CO2 at different densi-
ties. Some of the crown ethers used in this study are
appreciably soluble in water, leading to their partitioning
between the water and organic phases. NMR measure-
ments also enable us to obtain partition coefficients of
crown ethers between water and organic phases.

Experimental Section

The crown ethers dibenzyl-24-crown-8 (DB24C8), dicy-
clohexano-24-crown-8 (DCH24C8), dicyclohexano-18-crown-6
(DCH18C6), 12-crown-4 (12C4), 15-crown-5 (15C5), and 18-
crown-6 (18C6) were purchased from Aldrich Chemical Co.
and used without further purification. To carry out the
NMR measurement, chloroform was used in its deuterated
form (99.5% CDCl3). The water phase contained 5% D2O
by volume.

Solutions of the crown ethers, in the concentration range
(0.02 to 0.2) mol‚L-1, in the CDCl3 + CCl4 mixtures were* E-mail: cwai@uidaho.edu.
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equilibrated with an equal volume of the D2O-enriched
water by shaking with a wrist-type shaker for 2 h or more.
The mixtures were then centrifuged for 1 h. The studies
involving 15C5, 18C6, and DCH18C6 in solvents containing
high percentages of CCl4 required longer shaking time to
get consistent data. Several shaking times (from 2 h to 24
h) were tested; after 12 h no change was observed. These
procedures were conducted at ambient temperatures which
were within the range (25 ( 1) °C.

NMR measurements for the solvent experiments were
carried out using a 500 MHz Bruker DRX500 spectrometer.
To obtain quantitative results, the pulse interval was set
to 11.3 s (acquisition time 3.3 s, relaxation delay 8 s) and
the pulse width was 30° (corresponding to a 2 µs relation
time) in all systems (organic, aqueous, with or without
chelator agent). Chemical shifts in the organic phase were
calibrated by setting the chloroform chemical shift to 7.24
ppm. For the solvent mixtures containing CCl4, the chlo-
roform resonance shifts upfield (lower ppm) as CCl4 is
added. The magnitude of this effect was measured by
comparing the solvent mixtures at constant field, that is,
with the field lock turned off. The shift between 100%
CHCl3 and 25% CHCl3 was 0.14 ppm. Therefore, an upfield
correction was added for the mixed solvent samples run
with a CDCl3 field lock. The intensity (based on integrated
area calculations for all data) of the water peaks in the
NMR spectra was corrected for the 5% D2O (by volume)
present in the water phase. For the 100% CCl4 mixture,
an insert filled up with benzene-d6 has been used as a
reference for the intensity and the chemical shift, which
was set at 7.15 ppm.

Typical NMR spectra for 18C6 in the CDCl3 phase are
shown in Figure 1. For the unsubstituted crown ethers,
there is only a single resonance for the ring protons,
generally in the region between (3 and 4) ppm. A singlet
resonance for water appears at a chemical shift which
moves downfield as the ligand concentration is increased.
As noted above, the observed water and ligand resonances
are averages which result from the rapid equilibrium
between uncomplexed ligand and water and the complex
L‚H2O(org). Figure 1 shows the trend of the chemical shift
for the water resonance associated with 18C6 concentration
in CDCl3. The concentration of the ligand in the organic
phase has been corrected for its solubility in the aqueous
phase on the basis of NMR measurements of its partition
between the two phases.

The purities of the substituted crown ethers were as-
sessed by determining the relative areas of the various
resonances of the crown ethers, under conditions such that
there is no overlap with the water peak. The ratios agreed

with the theoretical values to better than 1%. All spectra
were relatively free of artifacts, indicating a purity of crown
ethers of 99% or better.

Calculations

The equilibrium model for the extraction is straightfor-
ward. Representing the crown ether ligand by L and the
organic phase by (org), we have

where L‚H2O(org) represents a ligand-water complex. We
define

to be the equilibrium constant corresponding to eq 3 on
the basis of concentrations ([ ], in mol‚L-1). Because of
equilibrium 1, the concentration [H2O(org)] is independent
of the ligand concentration. Therefore, the ratio [L‚H2O(org)]/
[L(org)] is independent of the ligand concentration. Likewise,
k, the fraction of ligand molecules complexed to water as
defined in eq 5 is independent of the ligand concentration.

When [L‚H2O(org)] is expressed in terms of K[L(org)][H2O(org)],
the constant k is related to K by

The initial total ligand concentration [L(init)]° is calculated
from the total mass of ligand dissolved in a known volume
of the organic phase during the preparation of the solutions.
By material balance, at equilibrium

For the crown ethers containing additional organic groups
(benzyl and cyclohexyl), the term [L(aq)], representing
extraction of the ligand into the aqueous phase, is negli-
gible. Because of the rapid exchange of complexed and
uncomplexed water in the organic phase, only the totals

and

can be measured directly, where [H2O(org)]° and [L(org)]° are
the total concentrations of water (uncomplexed and com-
plexed water) and ligand (free and complexed ligand)
present in the organic phase, respectively.

When the material balance relations (eqs 8 and 9) are
combined with eq 5, the linear relation

can be derived. According to eq 10, a plot of [H2O(org)]°
versus [L(org)]° should yield a straight line and the slope
gives the value k. From k and [H2O(org)], the equilibrium
constant K can be obtained from eq 6.

As noted above, the equilibrium between H2O(org) and L‚
H2O(org) determines the observed NMR chemical shift δ of

Figure 1. Typical NMR spectra of 18-crown-6 in the CDCl3 phase.
The concentrations of 18-crown-6 after equilibration with water
are 0.00 M, 0.002 M, 0.075 M, and 0.153 M (from top to bottom)
for the water peaks at (1.565, 1.874, 2.393, and 2.668) ppm,
respectively.

H2O(aq) S H2O(org) (1)

L(aq) S L(org) (2)

H2O(org) + L(org) S L‚H2O(org) (3)

K ) [L‚H2O(org)]/{[L(org)][H2O(org)]} (4)

k ) [L‚H2O(org)]/{[L(org)] + [L‚H2O(org)]} (5)

k ) K[H2O(org)]/{1 + K[H2O(org)]} (6)

[Linit]° ) [L(aq)] + [L(org)] + [L‚H2O(org)] (7)

[L(org)]° ) [L(org)] + [L‚H2O(org)] (8)

[H2O(org)]° ) [H2O(org)] + [L‚H2O(org)] (9)

[H2O(org)]° ) k[L(org)]° + [H2O(org)] (10)
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water in chloroform. Denoting δ0 ) the chemical shift of
pure water in the organic solvent and δ1 ) the chemical
shift of complexed water, we have

Combining eq 11 with eqs 6 and 8 and rearranging
produces the linear relation between δ and [L(org)]°/
[H2O(org)]°

According to eq 12, δ0 and δ1 can be determined by linear
regression once k is known.

The NMR data required for obtaining equilibrium (k and
K) and chemical shift parameters (δ0 and δ1) are the
intensities of the water and the ligand peaks ([H2O(org)]°
and [L(org)]°) and the chemical shift (δ) of the water peak
in the organic phase. For the NMR intensity measure-
ments, the water peak in the aqueous phase or the CHCl3

peak in the organic phase can be used as the reference. At
25 °C, the density of water is known and the concentration
of 95% water by volume is 52.8 mol‚L-1. Using the CHCl3

peak as the reference, the amount of CHCl3 in CDCl3 must
be known. The results represented in Table 1 were obtained
using the water peak as the reference. A few experiments
were done by adding a known amount of CHCl3 to CDCl3

as the reference. The results are consistent with those
obtained using the water peak as the reference within the
experimental uncertainty. The intensities of the ligand
peaks in the aqueous phase were also measured to evaluate
their partition coefficients (D) and for correction of ligand
concentrations in the organic phase.

It should be noted that eq 12 differs from the classic
complex equilibrium equations derived from the work of
Benesi and Hildebrand20 and Deranleau,21 which are
derived for a single-phase system containing two interact-
ing components. As pointed out in the Calculations section,
because of equilibrium 1, [H2O(org)] is constant. As an
incidental consequence, [H2O(org)]° cannot go to zero. This
enables an extrapolation of eq 12 to zero ligand concentra-
tion to get the value of δ0. Also, two separate quantities
[H2O(org)]° and [L(org)]° appear which vary together, since
increasing [H2O(org)]° increases [L(org)]°. Unlike the case in
the previous work, none of the individual species can be
measured.

Results and Discussion

Parts a and b of Figure 2 show plots based on eqs 10
and 12, respectively, for 18C6 in CDCl3. Results for the
other ligands are similar. The linear relations obtained in
every case verify that the water-ligand equilibrium is well
described by formation of a 1:1 complex. Figure 2a yields
a slope of 0.970 ( 0.04 (corresponding to k) and an intercept

Table 1. Equilibrium and Chemical Shift Parameters of Various Crown Ethersa

crown % vol CDCl3
b k K (L‚mol-1) [H2O]org

c D δ0/ppm δ1/ppm

12C4 100 0.15 2.78 0.065 0.25 1.55 3.0
75 0.10 2.79 0.039 0.34 1.43 3.0

15C5 100 0.54 25.6 0.045 0.18 1.49 2.8
75 0.35 19.9 0.027 0.29 1.40 2.7
50 0.25 14.2 0.024 0.71 1.29 2.8
25 0.21 35 0.008 2.13 1.11 2.0
0 0.00d 2.450 1.36

18C6 100 0.97 545 0.060 0.25 1.52 3.1
75 0.79 102 0.037 0.42 1.40 2.8
50 0.63 97 0.017 1.16 1.28 2.6
25 0.61 141 0.011 3.83 1.08 2.2
0 0.00d 48.04 1.31

DCH18C6 100 0.70 32 0.072 0.00 1.52 3.3
50 0.58 81 0.017 0.00d 1.25 2.6
25 0.40 36 0.018 0.00d 1.13 2.6

DCH24C8 100 0.850 93 0.060 0.00d 1.57 3.2
DB24C8 100 0.37 9.03 0.064 0.00d 1.57 2.7

a Typical statistical errors (based on linear regressions): k, (5%; K, (10%; [H2O]org, (0.003 mol‚L-1; D, (5%; δ0, (0.04 ppm; δ1, (0.3
ppm. b Volume percentage of CDCl3 in CCl4. c Concentration in moles per liter. d <0.01 for the ligand concentration range 0.02-0.2 mol‚L-1.

(δ - δ0)/(δ1 - δ0) ) [L‚H2O(org)]/[H2O(org)]° (11)

δ ) δ0 + k(δ1 - δ0)[L(org)]°/[H2O(org)]° (12)

Figure 2. Linear relationship between (a) the total water and
18-crown-6 concentrations in chloroform ([H2O(org)]° ) 0.9704-
[L(org)]° + 0.0601; correlation coefficient r ) 0.9955) and between
(b) the observed chemical shift of water and the ratio [L(org)]°/
[H2O(org)]° in chloroform (eq 7) (δ ) 1.5015[L(org)]°/[H2O(org)]° +
1.5611; r ) 0.9982).
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of 0.060 ( 0.003 (corresponding to [H2O]org) based on our
regression analysis (R2 ) 0.991) and according to eq 10.
The free (uncomplexed) water dissolved in chloroform is
about 0.06 mol‚L-1 for the H2O + CDCl3 + 18C6 system
at room temperature (25 ( 1) °C. This value is confirmed
by the analysis of a solution of water saturated chloroform-
d. The concentration of the total water in the organic phase,
[H2O]org + L‚[H2O]org, depends on the ligand concentration
as shown in Figure 2a. About 97% of the ligands in the
organic phase are complexed with water. The intercept of
Figure 2b gives the chemical shift of uncomplexed water
in chloroform δ0 ) (1.56 ( 0.02) ppm. From the slope of
Figure 2b, the chemical shift of the water complexed with
18C6 in CDCl3, δ1, was calculated to be (3.1 ( 0.3) ppm.

Results for the equilibrium and NMR chemical shift
parameters for the six crown ethers studied by this work
are summarized in Table 1. In CDCl3, the k values for
unsubstituted crown ethers 12C4, 15C5, and 18C6 are 0.15,
0.54, and 0.97, respectively. This trend shows strong
binding of water for 18C6 relative to the smaller rings.
Substitution in crown ethers tends to lower the k value.
Thus, for DCH18C6, the k value in chloroform is lowered
to 0.70 compared with a value of 0.97 for the unsubstituted
18C6. In the case of DCH24C8 and DB24C8, benzyl
substitution further lowers the k value compared with
cyclohexyl substitution in 24C8. The equilibrium constant
(K) defined by eq 4 varies from 2.78 for 12C4 to 545 for
18C6 in chloroform. The K value for the substituted
(DCH18C6) crown is much lower than that of the unsub-
stituted (18C6) one (32 versus 545). The δ0 values for the
three unsubstituted crown ethers are approximately con-
stant (in the range 1.53 ( 0.04 ppm), as expected. Consid-
ering the experimental error, the δ1 value is stable.

For the individual ligands, there are several clear trends
with respect to the variation of solvent composition (CDCl3

+ CCl4). First, the amount of free water dissolved in the
organic phase decreases with increasing CCl4 fraction in
the solvent. This is expected, since decreasing the solvent
polarity should result in lower solubility of water in the
organic phase. In all cases, the parameter k representing
the fraction of ligand bound to water also decreases
monotonically as the proportion of CCl4 increases. Thus,
decreasing solvent polarity also reduces water-crown
complexation [L‚H2O(org)], leading to lower k values. This
is probably caused by the combination of a lower solubility
of free water in the organic phase and intrinsic solvation
effects on the crown-water complex. The equilibrium
constant K, which includes the concentration of unbound
water and the ligand in the mixed organic phase, changes
less and in an irregular fashion. Because both [H2O]org and
[L]org vary drastically with the solvent composition, the K
values defined by eq 4 are not as useful as the k values for
discussion in the CHCl3 + CCl4 system. In the binary
solvent systems, [H2O]org decreases with increasing CCl4

fraction whereas [L]org changes independently in the op-
posite direction, resulting in irregular trends for the K
values.

From the crown ether NMR peak intensities in the
organic and in the aqueous phases, we also calculated the
partition coefficients D ) [L(aq)]°/[L(org)]° as shown in Table
1. The D values for 12C4 and 18C6 between water and
chloroform are around 0.25, and that for 15C5 is somewhat
lower. For the crown ethers that are appreciably soluble
in water, the partition coefficients show that extraction into
the aqueous phase increases exponentially as the organic
solvent polarity decreases. In the case of 18C6, the D value
starts at 0.25 in 100% CHCl3, becomes 1.16 with a 50:50

mixture of CHCl3 and CCl4, and rises up to 48 for a 100%
CCl4 solution (Figure 3). For the substituted crown ethers
DCH18C6, DCH24C8, and DB24C8, the D values are below
detection (<0.01) in the concentration range (0.06 to 0.2)
mol‚L-1. Partitioning of 18-crown-6 between water and
various organic solvents has been determined by several
different methods including gravimetric and conductivity
measurements.17-19 NMR actually provides a simple and
rapid method for determination of crown ether partition
coefficients between water and organic solvents. The D
values given in Table 1 represent the first systematic
measurements of such data using a NMR technique.

The NMR studies performed by Golovkova et al.15 in
CDCl3 investigated several compounds also covered in our
work (15C5, 18C6, and DCH18C6). In their work, single-
phase measurements were made with a constant water
concentration and varying ligand concentrations. Analysis
was based on the chemical shift employing eq 11. The
chemical shift δ1 for the pure complex L‚H2O was deter-
mined by extrapolation to infinite ligand concentration.
Their results for K deviate widely from ours, sometimes
by an order of magnitude. We feel that their extrapolation
method is subject to considerable error because (1) the
dependence of the chemical shift on ligand concentration
is nonlinear and, (2) on the basis of the δ1 values we
obtained, the range of concentrations they employed was
insufficient. Our calculational method involved only the use
of linear regression analysis; thus, it is more accurate.

The chemical shifts δ0, representing isolated water
molecules in the organic solvent, can be measured by
equilibrating the organic solvent with pure water. For
18C6, the δ0 values decrease from 1.56 ppm in pure
chloroform to 1.08 ppm in the CHCl3 + CCl4 mixture with
25% CHCl3 by volume. Similar trends are observed for the
other crown ether systems. For 15C5 and DCH18C6, the
δ0 values decrease, respectively, from 1.49 ppm to 1.52 ppm
in pure chloroform and from 1.11 ppm to 1.08 ppm in the
CHCl3 + CCl4 mixture with 25% CHCl3 by volume. Those
results follow the general trend of an upfield shift for water
in solvents of decreasing polarity. The values of δ0 and δ1

in Table 1 were found using a linear regression plot of δ
versus [L(org)]°/[H2O(org)]° according to eq 12 and using the
k values predetermined. Those results agree well with
preceding measurements involving no crown ethers.

Figure 3. Determination of the partition coefficient for 18-crown-6
in (b) CDCl3, (2) 50% CDCl3 + CCl4, and (9) CCl4.
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δ1 represents the chemical shift of water in the crown-
water complex. The error on δ1 values includes the error
on k; therefore, the δ1 value is less accurate than the δ0

one. In the 18C6 series, δ1 decreases monotonically with
decreasing solvent polarity from 3.1 ppm in pure chloro-
form to 2.2 ppm in the CHCl3 + CCl4 mixture with 25%
CHCl3 by volume. The trends of δ1 for the other crown
ethers are less clear. Generally, there is an upfield shift
as the solvent polarity decreases. This does not seem
obvious, however, for the weakly binding ligands 12C4 and
15C5.

Complexation of water with crown ether depends strongly
on the nature of the solvents. The difference in solvation
environment of chloroform and carbon tetrachloride is
reflected in the degree of crown-water complexation and
the chemical shifts of free water and the crown-water
complex described in this NMR study. Interaction between
water and crown ether is likely to affect complex formation
of the crown ether with metal ions during liquid-liquid
extraction. Crown ethers have been extensively investi-
gated for selective extraction of the alkali metal and the
alkaline earth metal ions from aqueous solutions. The
solvation effects of water and solvent molecules on metal-
crown complexation are not well understood. NMR studies
may provide very useful information for understanding
such interactions. Solvation effects can be studied using
different conventional solvents. Conventional solvents offer
discontinued changes in solvation environment and often
involve other variables that are difficult to control experi-
mentally. Further studies of water-crown interactions in
a system with a tunable solvation environment, supercriti-
cal fluid carbon dioxide, are currently in progress in our
laboratory.

Literature Cited
(1) Izatt, R. M.; Pawlak, K.; Bradshaw, J. S. Thermodynamic and

Kinetic Data for Macrocycle Interaction with Cations and Anions.
Chem. Rev. 1991, 91, 1721-2085.

(2) Dietz, M. L.; Bond, A. H.; Hay, B. P.; Chiarizia, R.; Huber, V. J.;
Herlinger, A. W. Ligand Reorganization Energies as a Basis for
the Design of Synergistic Metal Ion Extraction Systems. Chem.
Commun. 1999, 13, 1177-78.

(3) Phelps, C. L.; Smart, N. G.; Wai, C. M. Past, Present, and Possible
Future Applications of Supercritical Fluid Extraction Technology.
J. Chem. Educ. 1996, 12, 1163-1168.

(4) Steed, J. W.; Junk, P. C. Stabilisation of Sodium Complexes of
18-Crown-6 by Intramolecular Hydrogen Bonding. J. Chem. Soc.,
Dalton Trans. 1999, 13, 2141-2146.

(5) Horwitz, E. P.; Schulz, W. W. In Metal-Ion Separation and
Preconcentration; Bond, A. H., Dietz, M. L., Rogers, R. D., Eds.;
ACS Symposium Series 716; American Chemical Society: Wash-
ington, DC; Chapter 2, pp 20-50.

(6) Yakshin, V. V.; Vilkova, O. M. Extraction of Metals from Nitrate-
Chloride Mixed Solutions Using Crown Ethers. Russ. J. Inorg.
Chem. (Engl. Transl.) 1998, 43 (10), 1629-1632; Zh. Neorg. Khim.
1998, 43 (10), 1753-1755.

(7) Muzet, N.; Engler, E.; Wipff, W. Demixing of Binary Water-
Chloroform Mixtures Containing Ionophoric Solutes and Ion
Recognition at a Liquid-Liquid Interface: A Molecular Dynamics
Study. J. Phys. Chem. B 1998, 102 (52), 10772-10788.

(8) Marchand, A. P.; McKim, A. S.; Kumar, K. A. Synthesis and Alkali
Metal Ppicrate Extraction Capabilities of Novel, Cage-Function-
alized Diazacrown Ethers. Effects of Host Preorganization on
Avidity and Selectivity Toward Alkali Metal Picrates in Solution.
Tetrahedron 1998, 54 (44), 13421-13426.

(9) Barakat, N.; Burgard, M.; Asfari, Z.; Vicens, J.; Montavon, G.;
Duplatre, G. Solvent Extraction of Alkaline-Earth Ions by Dicar-
boxylated Calix[4]arenas. Polyhedron 1998, 17 (20), 3649-3656.

(10) Mei, E.; Dye, J. L.; Popov, A. I. Cesium-133 Nuclear Magnetic
Resonance Study of Crown and Cryptate Complexes of Cesium-
(1+) Ion in Nonaqueous Solvents. J. Am. Chem. Soc. 1976, 98,
1619-20. (b) Mei, E.; Popov, A. I.; Dye, J. L. Cesium-133 Nuclear
Magnetic Resonance Study of Complexation by Cryptand C222
in Various Solvents: Evidence for Exclusive and Inclusive
Complexes. J. Am. Chem. Soc. 1977, 99, 6532-6536. (c) Thuéry,
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Tri-n-butyl phosphate (TBP) reacts with nitric acid to form a hydrogen-bonded complex TBP-
(HNO3)x(H2O)y that is highly soluble in supercritical fluid carbon dioxide (SF-CO2). The value of
x can be up to 2.5, whereas the value of y varies between 0.4 and 0.8 determined by acid-base
and Karl Fischer titrations. The protons of HNO3 and H2O in the complex undergo rapid exchange
and exhibit a singlet resonance peak in NMR spectra. When the complex is dissolved in a low
dielectric constant solvent, small droplets of nitric acid are formed that can be detected by NMR.
Phase behavior studies indicate that the complex forms a single phase with SF-CO2 above a
certain pressure for a given temperature. This CO2-soluble Lewis acid-base complex provides
a method of introducing nitric acid in SF-CO2 for effective dissolution of uranium dioxide,
lanthanide oxides, and perhaps other metal oxides.

Introduction
Recent reports show that tri-n-butyl phosphate (TBP)

forms a solution with nitric acid that is soluble in
supercritical fluid carbon dioxide (SF-CO2) and capable
of dissolving lanthanide oxides and uranium oxides.1-5

The ability of this CO2-philic TBP-nitric acid solu-
tion to dissolve solid uranium dioxide (UO2) directly in
SF-CO2 suggests a potential new technique for repro-
cessing of spent nuclear fuels and for treatment of
nuclear wastes. The UO2 dissolution process in SF-CO2
probably involves oxidation of the tetravalent U in
UO2 to the hexavalent (UO2)2+ by nitric acid followed
by formation of UO2(NO3)2‚2TBP.4 The product
UO2(NO3)2‚2TBP identified from the supercritical fluid
dissolution process is known to have a very high
solubility in CO2.6,7

In the conventional Purex (plutonium-uranium ex-
traction) process, aqueous nitric acid (3-6 M) is used
to dissolve and oxidize UO2 in the spent fuel to uranyl
ions (UO2)2+. The acid solution is then extracted with
TBP in an organic solvent such as dodecane to remove
uranium as UO2(NO3)2‚2TBP into the organic phase.8
Direct dissolution of solid UO2 in SF-CO2 with a TBP-
nitric acid complex obviously has an advantage over the
conventional Purex process because it would combine
dissolution and extraction steps into one with a mini-
mum waste generation. Demonstration of this super-
DIREX process (supercritical fluid direct extraction
process) is currently underway in Japan involving
Mitsubichi Heavy Industries, Japan Nuclear Cycle
Corp., and Nagoya University. The project is aimed at
extracting uranium and plutonium from the mixed oxide
fuel as well as the irradiated nuclear fuel using a TBP-
nitric acid complex in SF-CO2.

The chemical nature of the TBP-nitric acid com-
plex and the mechanisms of UO2 dissolution in SF-CO2
with the TBP-nitric acid solution are not well-known.
The TBP-nitric acid complex is prepared by shaking
TBP with a concentrated nitric acid solution. Because
water is present in the nitric acid solution, the com-
plex is expected to have a general formula of TBP-
(HNO3)x(H2O)y, where x and y can vary depending on
the relative amounts of TBP and nitric acid used in
the preparation. Two types of the complexes, one with
x ) 0.7 and the other with x ) 1.8, were reported in
the literature for direct dissolution of uranium dioxide
in SF-CO2.3-5 In the former case with a HNO3/TBP
ratio of 0.7, the complex was found to cause cloudi-
ness of the supercritical fluid phase, indicating forma-
tion of small acid water droplets released from the
complex probably as a result of an antisolvent effect of
SF-CO2.4

The solubility of water in pure TBP at room tem-
perature is about 64 g/L of the solution, which is close
to a 1:1 molar ratio of TBP/H2O. In the TBP-H2O
binary system, water is most likely bound to TBP
through hydrogen bonding with phosphoryl oxygen,
forming a 1:1 complex. The bonding between TBP and
H2O in the presence of HNO3 is unknown. Recent
molecular dynamics investigations suggest that hydro-
nium ions or hydrogen from HNO3 or H2O are bonded
to the oxygen of the PdO bond in TBP.9,10 Knowledge
on the equilibrium compositions of the TBP(HNO3)x-
(H2O)y complex prepared by different proportions of
the initial TBP and nitric acid is essential for under-
standing the nature and mechanisms of UO2 dissolution
in SF-CO2.

In this paper, we report our initial results of charac-
terizing the TBP(HNO3)x(H2O)y complex using several
different methods including the Karl Fischer method for
water determination, conventional acid-base titration
for measurement of HNO3, nuclear magnetic resonance
(NMR) spectroscopy to evaluate chemical environments
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of protons, and visual observation of the phase behavior
of the complex in SF-CO2.

Experimental Section

TBP was purchased from Avocado (ordered through
Alfa Aesar, Ward Hill, MA). Nitric acid [69.5% (w/w)]
was obtained from Fisher Chemical (Fair Lawn, NJ) and
was diluted to 15.5 M by deionized water. The TBP-
(HNO3)x(H2O)y complex was prepared by mixing 98%
TBP with 15.5 M nitric acid at a chosen ratio in a glass
tube with a stopper. The mixture of TBP and nitric acid
was manually shaken vigorously for 4 min, followed by
centrifuging for 1 h. After phase separation, portions
of the TBP phase and the aqueous phase were removed
with pipets for characterization experiments.

The concentration of H2O in the TBP phase was
measured by Karl Fischer titration using an Aqua-
counter AQ-7 instrument (Hiranuma, Japan). The con-
centration of HNO3 in the TBP phase was measured
with an automatic titrator (COM-450, Hiranuma, Ja-
pan) with a 0.1 M NaOH solution after adding an excess
amount of deionized water to the organic phase. A
typical procedure is by shaking 1 mL of the TBP phase
with 50 mL of water. After phase separation, the
amount of nitric acid in the aqueous phase was deter-
mined by NaOH titration. A 500 MHz NMR spectrom-
eter (Bruker Advance 500) was used for proton NMR
(PNMR) measurements. The phase behavior was stud-
ied using a high-pressure view-cell system purchased
from Taiatsu Techno Co. (Tokyo, Japan) and a video
camera.

Results and Discussion

1. Characterization of the TBP(HNO3)x(H2O)y
Complex by Titration Methods. The amount of
HNO3 in the complex was evaluated by the acid-base
titration method described in the Experimental Section.
Figure 1 shows the acidity of the TBP phase (organic
phase) with respect to the initial nitric acid/TBP ratio.
The organic phase acidity (closed circles) and the acidity
of the equilibrated aqueous phase (open circles) are
shown in Figure 1. A significant fraction of the HNO3
in the initial acid solution can be incorporated into the
TBP phase, resulting in an acidity of the organic phase
greater than 3 M for all of the cases shown in Figure 1.
If the initial volume ratio of nitric acid/TBP is unity or

higher, the acidity of the TBP phase exceeds 6 M. The
high acidity carried by the TBP phase is important for
dissolving uranium dioxide, lanthanide oxides, and
perhaps other metal oxides in SF-CO2.

When the molar ratio of HNO3/TBP in the organic
phase is plotted against the molar ratio of HNO3/H2O
in the equilibrated aqueous phase, the experimental
data appear to show two regions with a breaking point
of around unity for the HNO3/TBP ratio (Figure 2). The
data seem to suggest that there are two types of the
TBP(HNO3)x(H2O)y complex. The type I complex would
incorporate HNO3 rapidly into the TBP phase until a
1:1 ratio of HNO3/TBP is reached. Beyond that point,
there is another region where incorporation of HNO3
into TBP becomes slow. According to Figure 2, more
than two molecules of HNO3 can be associated with each
TBP molecule in the complex if the organic phase is
equilibriated with a concentrated nitric acid. TBP is a
highly CO2-soluble Lewis base. Inorganic acids such as
nitric acid which are usually insoluble in CO2 can be
made soluble by complexation with a CO2-soluble Lewis
base such as TBP. This Lewis acid-base complex
approach may provide a method of dispersing various
CO2-insoluble acids in the SF-CO2 phase for chemical
reactions.

The amount of water in the TBP(HNO3)x(H2O)y com-
plex determined by the Karl Fischer method also
shows two distinct regions. When the molar ratio of
HNO3/H2O in the TBP phase is plotted against the
molar ratio of HNO3/H2O in the equilibrated aqueous
phase, it clearly shows two different types of the TBP-
(HNO3)x(H2O)y complex (Figure 3). In region I, the ratio
of HNO3/H2O in the TBP phase tends to increase with
increasing HNO3/H2O ratio in the aqueous phase. In
region II, the ratio of HNO3/H2O in the TBP phase
maintains a constant value of about 3 with increasing
HNO3/H2O ratio in the equilibrated aqueous phase. The
ratio of HNO3/TBP in the organic phase continues to
increase with increasing HNO3/H2O ratio in the aqueous
phase as shown in Figure 2, but the ratio of HNO3/H2O
in the organic phase remains a constant. It appears that,
for the type II complex, the nitric acid incorporated into
the TBP phase is in a form with a general formula of
3HNO3‚H2O.

2. Characterization of the Complex by PNMR
Spectroscopy. PNMR spectra of the TBP(HNO3)x-
(H2O)y complex at room temperature were taken using
an insert technique. Deuterated water (D2O) was placed

Figure 1. Acidities of the aqueous and organic phases. The x axis
is the initial volume ratios of 15.5 M HNO3 to 98% TBP. (O)
Aqueous acidity is defined as moles of H+ per liter of aqueous
solution. (b) Organic acidity is defined as moles of H+ per liter of
organic solution.

Figure 2. Plot of the [HNO3]/[TBP] ratio in the TBP phase
against the [HNO3]/[H2O] ratio in the equilibrated aqueous
phase.
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in an insert and fitted into an NMR tube containing a
TBP(HNO3)x(H2O)y solution. The purpose of the D2O
insert was to lock the NMR. A trace amount of HDO
present in the deuterated water also allows calibration
of the instrument. Other deuterated solvents can also
be used for this insert technique. The objective of the
NMR study is to investigate the chemical shift of the
protons of HNO3 and H2O in the TBP(HNO3)x(H2O)y
complex as a probe for the chemical environment of the
system.

A typical PNMR spectrum of TBP(HNO3)x(H2O)y with
a D2O insert is shown in Figure 4. The singlet peak at
11.80 ppm corresponds to the protons of HNO3 and
water in the TBP phase. H2O in a TBP-H2O complex
sample shows a singlet resonance peak at 3.85 ppm. In
the TBP(HNO3)x(H2O)y system, this singlet peak shifts
upfield with increasing HNO3 in the system. The NMR
shift is attributed to a rapid exchange between the
protons of H2O and those of HNO3 in the complex. A
series of TBP(HNO3)x(H2O)y samples prepared from a
different volume ratio of TBP/HNO3 (15.5 M) were
studied. All NMR spectra in this series of samples
showed a singlet peak for the protons corresponding to
HNO3 and H2O. The PNMR shift of the HNO3-H2O
singlet peak with respect to the molar ratio of HNO3/
TBP in the complex is shown in Figure 5. The chemical
shift increases rapidly as the fraction of HNO3 in the
TBP phase increases in the region where the molar ratio
of HNO3/TBP is less than unity. The chemical shift of
this peak approaches a constant when the HNO3/TBP
ratio in the complex is greater than 1. The two regions

of the chemical shift observed from the PNMR spectra
support the titration results shown in Figure 3; i.e.,
there are probably two types of TBP(HNO3)x(H2O)y
depending on the HNO3/TBP ratio in the complex.

NMR experiments to study the antisolvent effect of
SF-CO2 on the TBP(HNO3)x(H2O)y complex are difficult
to carry out at the present time because of the corrosive
nature of the solute and the lack of a safe high-pressure
NMR device in our laboratory. We chose to use chloro-
form (CDCl3) to evaluate the antisolvent effect because
chloroform has a small dielectric constant at room
temperature (ε ) 4.81 at 20 °C). Two TBP(HNO3)x(H2O)y
complexes were prepared with the following mixtures:
(i) 4 mL of TBP and 1 mL of 15.5 M HNO3 and (ii) 2 mL
of TBP and 2 mL of 15.5 M HNO3. The PNMR spectra
of these two TBP(HNO3)x(H2O)y complexes in CDCl3 are
given in Figures 6 and 7. Both PNMR spectra show two
peaks in addition to the protons in the butyl group of
TBP. The peak at 6.49 ppm in Figure 6 and the peak at
8.13 ppm in Figure 7 are the peaks belonging to the
nitric acid droplets formed in the system. The nitric acid
droplets are not dissolved in the CDCl3 solution. These
peaks were identified by a separate NMR study using
different concentrations of nitric acid mixed with CDCl3.
The nitric acid peak in CDCl3 tends to shift upfield with
increasing HNO3 concentration in the acid solution. The
peak at 12.49 ppm in Figure 6 and the peak at 12.09
ppm in Figure 7 are the peaks representing the aver-
aged protons of HNO3 and H2O in the complex. The
NMR results obtained from the CDCl3-TBP(HNO3)x-
(H2O)y system, though qualitative in nature, demon-
strate the formation of nitric acid droplets from the

Figure 3. Molecular ratio of [HNO3]/[H2O] in the TBP phase
versus that in the equilibrated aqueous phase.

Figure 4. Typical PNMR spectrum of TBP(HNO3)x(H2O)y with a
D2O insert. The sample was prepared by mixing 1.0 mL of 15.5 M
HNO3 with 4.0 mL of 98% TBP.

Figure 5. Chemical shift of the H2O proton peak (in ppm) with
respect to the molar ratio of HNO3/TBP in TBP(HNO3)x(H2O)y.

Figure 6. PNMR spectrum of TBP(HNO3)x(H2O)y in CDCl3. The
complex was prepared by mixing 4 mL of TBP and 1 mL of 15.5
M HNO3; volume ratio of TBP(HNO3)x(H2O)y to CDCl3 ) 1:1.
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complex when dissolved in a low dielectric constant
solvent as a result of an antisolvent effect. The acid
droplets probably started with very small particles and
aggregated to certain sizes that would make the solution
cloudy. Future experiments to evaluate nitric acid
formation from the complex due to the antisolvent effect
of SF-CO2 are currently in planning.

3. Phase Behavior of TBP(HNO3)x(H2O)y in SF-
CO2. The phase behavior of a TBP(HNO3)x(H2O)y com-
plex in SF-CO2 was also evaluated by visual observation
of the solution using a high-pressure view cell. Figure
8 shows the phase boundaries of the TBP(HNO3)1.8-
(H2O)0.6 complex in SF-CO2 at three different temper-
atures with respect to pressure and the mole fraction
of the solute. The isothermal phase boundaries given
in Figure 8 represent the transition pressures from a
two-phase region into a single-phase solution for the
complex with mole fractions greater than 10-4. At each
temperature investigated, there exists a maximum
transition temperature above which the complex and
CO2 are miscible. For example, at 323.15 K the complex
becomes miscible with SF-CO2 at 14 MPa with any mole
fractions. This implies that a large amount of the
complex can be dissolved in SF-CO2 above this specific
pressure for the given temperature. The maximum
phase transition temperature for the complex increases

with the temperature of the system varying from 11
MPa at 313.15 K to 17 MPa at 333.15 K.

A similar phase behavior was reported for the TBP-
CO2 system.11 The maximum transition pressure re-
ported for the mixed TBP-CO2 system at 323.15 K was
11 MPa, lower than that of the mixed TBP(HNO3)1.8-
(H2O)0.6-CO2 system observed in this study. A critical
opalescence was also observed in our system, suggesting
the presence of a pseudocritical point for the mixture.
The correlated curves plotted in Figure 8 were obtained
by using the same approach as that described in the
literature.11

Conclusions

Some properties of a CO2-soluble Lewis acid-base
complex composed of TBP and nitric acid are described
in this paper. The complex with a general formula of
TBP(HNO3)x(H2O)y is miscible with SF-CO2 above a
certain pressure and allows dispersing of high concen-
trations of nitric acid in the supercritical fluid phase
for chemical reactions. Chemical analysis and NMR
spectroscopic data suggest that there are two types of
this complex, one with a [HNO3]/[TBP] ratio of less than
1 and the other greater than 1. When the complex was
dissolved in a low dielectric constant solvent (chloro-
form), nitric acid was observed in the solution according
to PNMR measurements. Both types of the TBP-nitric
acid complex are capable of dissolving uranium dioxide
and lanthanide oxides in SF-CO2. This method of
dispersing inorganic acids in SF-CO2 for dissolution of
metal oxides may have a wide range of applications for
chemical processing in SF-CO2 with minimum liquid
waste generation.
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Le dioxyde de carbone supercritique (SF-CO2) a été choisi afin d’étudier l’extraction en
milieu supercritique d’ions métalliques tels que le césium et l’uranium. Un intérêt parti-
culier a été porté au rôle de l’eau lors de ces extractions ainsi qu’à son interaction avec
des agents chélateurs (AC). En première partie, les éthers couronne ont été choisis comme
AC du césium et leur interaction avec l’eau a été étudiée dans le SF-CO2 en utilisant la
spectroscopie InfraRouge à Transformée de Fourier (IR-TF). Une configuration sandwich
entre deux éthers couronne et une molécule d’eau a été observée dans le SF-CO2. Pour les
configurations simple et pontée, l’équilibre a été défini et l’enthalpie de formation de la liai-
son hydrogène a été calculée. Ces résultats ont ensuite été comparés à ceux obtenus dans
des mélanges de CHCl3 et de CCl4 en utilisant la spectroscopie à Résonance Magnétique
Nucléaire (RMN). Pour conclure cette première partie, le rôle de l’eau a été étudié lors
de l’extraction du picrate de césium par le DCH18C6 et les constantes d’équilibre ont été
déterminées.
Dans une deuxième partie, l’extraction de l’uranium a été étudiée dans le SF-CO2. Des
complexes de Phosphate de TriButyle (TBP), d’eau et d’acide nitrique ont été utilisés
comme AC et oxydants. L’IR-TF a été utilisée pour étudier l’interaction entre le TBP et
l’eau dans le SF-CO2. Ces résultats ont été comparés à ceux trouvés dans le CHCl3 en
utilisant la RMN. Cette même spectroscopie a été utilisée pour comprendre les inter-
actions entre l’acide nitrique, le TBP et l’eau, seuls puis dissous dans du CHCl3. La
formation de microgouttelettes d’acide et d’eau dues à l’effet anti-solvant a été observée
et quantifiée. Pour conclure ce travail de thèse j’ai réussi à optimiser l’extraction et la
récupération d’uranium enrichi provenant de cendres d’incinération de déchets de fabri-
cation de combustible nucléaire. Un complexe de TBP, d’eau et d’acide nitrique dissous
dans du SF-CO2 a été utilisé à cette fin.
Mots clefs : Retraitement – Déchets nucléaires – RMN – IR – Extraction – Fluides su-
percritiques – CO2 – Dioxyde de carbone – Solvants – Acide nitrique – Uranium – Césium
– Eau – Ethers couronne – TBP – Uranyle – Liaison hydrogène – Effet anti-solvant
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