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CHAPITRE 1

Prelude et vue d’ensemble desasultats

Le domaine de recherche dans lequel s’inscrit ce travaihéset est la théorie de la prédiction
des suites individuelles. Cette derniere considere lesl@mes d’apprentissage séquentiel pour
lesquels on ne peut ou ne veut pas modéliser le problemeadi&re stochastique, et fournit des
stratégies de prédiction tres robustes. Elle englolssidiien des problemes issus de la commu-
nauté dumachine learningjue de celle de la théorie des jeux répétés. Le but denmesix a été
de traiter un certain nombre de ces problemes avec desdelistatistiques, incluant par exemple
les techniques de concentration de la mesure ou de I'estimatlaptative. Les résultats obtenus
aboutissent, entre autres, a des stratégies d’'ajustedguentiel des prix de vente (qui correspond
par exemple pour vendre des produits sur Internet), owdation séquentielle de bande passante.
Des simulations sont proposées pour le probleme de iils&ement dans le marché boursier.

Dans ce premier chapitre, on présente a grands traitoteements de la prédiction des suites
individuelles (section 1), puis on résume les contrigide chacune des trois grandes parties de
ce manuscrit de thése, respectivement dans les secti@nst 2, et on conclut par I'indication du
plan de la thése. Une introduction au sujet plus précisghématique, et contenant la présentation
d’'un cas d’école, est proposée au chapitre 2. Les résultauveaux sont décrits en détail dans le
corps de la these, a partir du chapitre 3.
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10 CHAPTER 1. PRLUDE ET VUE D’ENSEMBLE DES FESULTATS

1. Lathéorie de la prédiction des suites individuelles

L'approche traditionnelle dans les problemes de prémicest de supposer que la suite des
données est la réalisation d'un processus stochastiougjacent, dont la loi appartient a un
modele statistiqued est une famille de lois possibles. Il s’agit ensuite d'étudee possibilité,
les limitations et les difficultés de la prédiction de ¢sllsuites aléatoires. Tout repose donc sur
I'introduction de modeles raisonnables, ce qui dans itersssituations, comme la reconnaissance
vocale, les flux de données sur Internet ou l'investissérdans le marché boursier, est une ga-
geure.

L'objet de la théorie de la prédiction des suites indiéllies est de proposer des méthodes
de prédiction robustes. En particulier, on considéred&mble de toutes les suites de données
possibles, et on ne met pas de mesure de probabilité surmeriehacune des suites possibles
est prise en compte. C’est de la que vient le nom de suitégidodlles (elles sont considérées
individuellement).

1.1. Un cas décole : information complete, regret externe et straggie randomige. On
peut décrire le cadre de la théorie de la prédiction diéssindividuelles dans le cas le plus simple
comme suit (voir, par exemple, le cours de Lugtsid01]). Ce cas est appefirédiction avec avis
d’'experts On se fixe un ensemble d'observatigyiset on suppose que I'on a acceés de maniere
séquentielle aux données : la suite des observatjpng,, ys, ..., n'est pas révélee d’'emblée,
mais pas a pas. Atrieme pas du probleme, il s'agit ainsi de prédire pace que seray, en
se fondant sur les observations pasgﬁéé = (y1, ..., y+—1). L'ensemble des prédictions;,
peut étre different de I'ensemb]g des observations. Pour I'aider dans cette tache, le tatais
dispose deV experts (par exempléy estimateurs obtenus a partir deprocédures d’estimation
differentes), qui eux-mémes se fondent sur le passénagbg®ur former leur prédictiorf; ; =
fit(yi™1) € X. (La maniére dont le jeu se déroule et les notations seapuelées et mises en
perspective en figure 1.) Les caractéristiques de ce easld’, traité au chapitre 2, sont :

— Information compl ete [H1] : Les informations en notre possession a untpasnné sont

donc les conseils présents et passés des experts, deqnérhleistoriqueyi‘l. En section
3 ci-dessous et aux chapitres 5 et 6, on affaiblit cette Mgsat.

— Regret externe [H2] : Pour mesurer la qualité de la stratégie, on introduit umetion de
perte/ : X x Y — [0, B], B > 0, et le but du jeu est que malgré I'obligation de prédiction
séquentielle, la perte cumulée du statisticiép, soit la plus proche possible de celle du
meilleur expert.L;, avec

n n
L, = Zé(ﬁt,yt) , L = j:nlninN Ljn, ouLj, = Zf(fm,yt) .
t=1 t=1

La quantité clé est ainsi la difference entre ces deuxepetumulées, et on I'appelle le
regret (externe) :

n n
(2.) Ry =Ln— Ly = max ;E(@, u) — ;afj,t, u) -
On cherche a borner le regret uniformément en les suitessdrvationsyy, y2,.... On

considére également en section 2 ci-dessous et au @&agaitautres mesures de la qualité
d’'une stratégie de prédiction.

Wvoir I'appendice du chapitre 2 pour des remarques sur catiatde mesurer la qualité d’'une stratégie de prédictio
il semble que cette mesure classique de la qualité soitrlaéde trace d’'un traitement stochastique des obsenatio



1. LA THEORIE DE LA PREDICTION DES SUITES INDIVIDUELLES 11

— Fonction de perte gnérale [H3] : La fonction de perté est supposée connue par le sta-
tisticien, mais elle est généralement arbitraire, ezedire non spécifiee explicitement, au-
quel cas sa stratégie est randomisée. Pour des fonct@perte disposant de propriétés
supplémentaires, de convexité par exemple, des sigatég prédiction déterministes peu-
vent étre introduites — comme c’est le cas pour l'investissnt dans le marché boursier,
voir la section 4.1 ci-dessous et le chapitre 7.

Une stratégie randomisée est donnée par une suite deenakiprobabilité

pt:(pl,ty"ij,t)? t:1727
sur I'ensemble des experts, calculées en fonction des\aigms jusqu’au tout — 1; on tire
I'index I; d’un expert parmi lesV experts selomp,, c’est-a-dire qu’avec probabilit& ;, on prédit
au pag comme I'expert/; = i. On pose alors

ﬁt = fIt,t .
On a ainsi introduit de I'aléatoire par une randomisatiaril@ire, sachant que les observations
elles-mémeg, y2, y3, ..., N€ sont pas ou ne peuvent pas étre modélisees commdisatioa

d’un processus stochastique sous-jacent. On peut Wpiéh, . . . la suite de variables aléatoires
auxiliaires dont on a besoin, et supposer qu’elles sodt selon une loi uniforme sue, 1]. Cette
introduction de 'aléatoire est rendue nécessaire pasltanté d’obtenir des bornes uniformes vis-
a-vis des observations, ce qui revient a considérerriedqes cas, c'est-a-dire a supposer que les
observations sont choisies par un adversaire diabolique.

PREDICTION SEQUENTIELLE RANDOMISEE, AVEC AVIS D’ EXPERTSA DISPOSITION

Parametres : Un ensemble de prédiction®, un ensemble d'observatiods, N experts,n
tours de jeun = oo est une valeur recevable).
A chaque tout = 1,2, ...,n,
(1) 'environnement choisit les prédictiorfs,, ..., fn: € X des experts, et le statisti
cien peut les consulter ;

(2) le statisticien choisit en secret une mesure de prat@pil = (pi+,...,pn) SUr
les experts, tire au hasard l'indide d’'un expert selorp,, et forme la prédiction
pr=frni€X;

(3) pendant ce temps, I'environnement choisit en secrbséovationy, € ) ;

(4) I'observationy; et la prédictiorp; sont portées a la connaissance de tous, et les pertes
sont calculées.

Fic. 1. Description du cadre de prédiction séquentielle oamdée comme un
jeu répété entre le statisticien et I'environnement.

Cet adversaire diabolique est omniscient (il connait dumite stratégie, mais comme il ne
contrdle pas les dés, nous pouvons malgré tout le sutgEegrace a la randomisation auxiliaire),
de deux manieres possibles — le point commun étant gyt toujours une suite d'observa-
tions dont il sait que le statisticien aura du mal a la peedsi, comme emachine learningtoute
la suite est choisie a I'avance, I'adversaire est dit aubli Ce cas correspond a toutes les situa-
tions ou notre prédiction n’influe pas sur le cours des ebdtypiquement, probleme de prédiction
météorologique). Mais I'adversaire peut égalemenisihg; en fonction des prédictions passées
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et de la stratégie du statisticien. Dans ce cas, le prablstatistique apparait comme un jeu
répété entre deux joueurs de capacités differeriasdydrsaire diabolique ayant des informations
supplémentaires sur les méchanismes de pensée dtigtatis c’est bien ce qui oblige d’ailleurs
ce dernier a s’en remettre en partie a une randomisatixitizare.

Dans un premier temps, on s’attache souvent a I'étudeedpéranceR, du regret d’'une
stratégie de prédiction donnée, c’'est-a-dire aux titésndu type
(1.2) supR,, , ou R, = j_I?aXNE [En — Lj,n] )
et ou le supremum porte sur tous les parametres du prebiahest la donnée det et ), la
fonction de perte : X x Y — [0, 1], les experts — et sur toutes les suitgSys, ... que peut
choisir I'opposant diabolique. Dans la formule ci-desdigspérance est prise par rapport a la
randomisation auxiliairé?, V5, . . ..

L'algorithme de pondération exponentielle dérivé daesdux de Vovk Yov9(Q] et de Littles-
tone et Warmuthl[iwa94] garantit une borne supérieure uniforme sur I'espérahceegret de
I'ordre de/n, comme le rappelle le theoréme ci-dessous. Cet algogitt@pose sur un parametre
7, et propose de prédire par = (1/N,...,1/N), puis, pourt > 2, parp, défini composante par
composante comme suit,

exp (—77 Sz U fis, ys)>
S e (<0 S e we)

Notons qu’ici, puisque nous connaissons au début dut timuit le passé, leg; ; et lesy,, s < t—1,
nous pouvons calculer toutes les pertes pas&ées, y,), de sorte que le choix de, est autorisé
a dépendre de toutes ces quantités. Ce ne sera plus lamtaded problemes dits a information
incomplete étudiés plus loin.

Cet algorithme de pondération exponentielle est efficaeéscque soient’, Y,/ : X x Y —
[0,1], et les experts, comme l'indique le théoreme ci-dessqusgst une version affaiblie du
Théoreme 2.1.

(1.3) Pit = pouri=1,...,N .

THEOREME 1 (voir Theorem 2.1).L’algorithme de pondration exponentielle garantit, pour
tout paranetren > 0, que, quelle que soit la fonction de pefteX x ) — [0, B], quelle que soit
la suite des observations, I'es@nce du regret est boee par

1 n - . In N n
B max B D frewe) = 2 LG | < I —87732 .
=Ly t=1 —1

En particulier, le choix) = (1/B) 1/8(In N') /n conduita la borne sugrieure
R, < By(n/2)InN .

La mise en ceuvre de 'algorithme de prédiction ci-dessgsiegt la connaissance dg et de
n, vu le choix optimal pour. Un des objets des chapitres 2 et 4 sera de rendre adaptatiboe
du parametre, otuning

Dans un second temps, on déduit généralement des bamkesregret (non moyenné&j,, =
L, — L} par des inégalités de concentration des martingalegtatmment, dans les cas les plus

2Notons gu’en réalité, nous nous intéresserons danshigsitees qui suivent au probléme plus difficile de bornem no
pas simplement une espérance, mais une somme d’espeEtionnelles, comme expliqué par (2.1) et les com-
mentaires qui suivent cette équation.
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simples, comme le cas présent, par I'inégalité d’'HaeffdAzuma. Du théoreme 1 on déduit
gu’avec probabilitel — ¢ (par rapport a la randomisation auxiliairdy},, est plus petit qu'une
quantité de I'ordre dg/n In(/N/d). Cela conclut I'etude des bornes supérieures sur letegren
désire alors obtenir des bornes inférieures ayant leses@®rdres de grandeur.

Pour une borneB = 1 sur les pertes, Cesa-Bianchi, Freund, Haussler, HelmSaldapire
et Warmuth CeFrHaHeScWa97 prouvent une borne inférieure sur le regret au todiace aN
experts de l'ordre d&/n1n NV, et résolvent ainsi le probleme minimax associé a (1R2ans ce
probleme minimax, l'infimum est pris sur toutes les sga&é séquentielles du statisticien.) En
effet, ils exhibent un cadre de prédiction, celui de ladpréon binairey = X = {0, 1}, {(z,y) =
l[;,), dans lequel aucune stratégie de préediction séquientielpeut uniformément faire mieux
que~vyvnln N, pour tousn et N, ou~ est une constante absolue. En réalité, ils obtiennentené
que~ tend versl /v/2 lorsquen et N tendent vers l'infini, ce qui montre que méme la constante
du théoreme ci-dessus est optimale. Cela est redeifbrmalisé plus soigneusement a la fin du
chapitre 2, qui est le chapitre d’introduction mathémadidormelle au sujet.

1.2. Origines et fondements de la taorie. La théorie est a la croisée de deux chemins, celui
de la théorie des jeux répétés (a somme nulle) et adella compression séquentielle de données
en théorie de I'information.

En théorie des jeux, on peut citer les travaux de Hankam$7], obtenus en 1956 et publiés
I'année suivante, et ceux de Blackwelll§56]. Tous deux obtiennent des bornes supérieures uni-
formes sur le regret en(n), et en particulier, Hannan obtient une borne\g¢n, donc la bonne
dépendance em (mais pas en les autres parametres, comie

En théorie de l'information, le probleme considérélastompression de suites individuelles,
avec pour ensemble (dénombrable) d’'experts I'ensemtdeadomates a nombre fini d’états et
comme fonction de perté = log. Les pionniers sont Lempel et Ziv, avec la série d'articles
[LeZi76, ZiLe77, Ziv78]. Ce sont eux qui pour la premiére fois parlent de suitessiddelles
et d'algorithmes universels, un algorithme universeh&smplement par définition tel que son
regret est uniformément borné efn). Feder, Merhav et Gutmar-¢MeGu93 améliorent ces
résultats en réduisant les bornes sur le regret et en eaifipht simultanément la classe des ex-
perts, donnée par I'ensemble des experts a nombre fitgitd:@es résultats encore plus forts ont
été obtenus par exemple par les méthodes par arbres @aismde Willems, Shtarkov et Tjalkens
[WiShTj95, WiShTj96], reprises et revues également par Cat@atpl]. La classe des experts
est formée ici par I'ensemble des prédicteurs markovéem&moire finie.

La premiere borne inférieure sur le regret, et partanpréamiere formalisation du probléme
minimax associé, a été obtenue par Cow@m\f65), pour le probleme de prédiction binaire décrit
ci-dessus, avec deux experts constants, I'un prédisafius 0, et I'autre 1. Il montre que le
regret minimax dans ce cadre vaut- o(1))+/n/(2x). Il obtient la bonne dépendance #pmais
ici encore, rien n'est dit sur la dépendancelérfdont on verra gu’elle est suffisamment délicate
dans de nombreux cadres de prédiction pour étre sourceod®mes ouverts).

Les algorithmes randomisés de prédiction et le cadré&mgémle prédiction avec avis d'ex-
perts décrits a la section précédente ont &té inttegar Vovk [Vovo(] et Littlestone et Warmuth
[LiWa94], et développés par Cesa-Bianchi, Freund, Hausslembiad, Schapire et Warmuth
[CeFrHaHeScWa971 et Vovk [Vov9g], bien que certains ingrédients essentiels apparaiskagt
dans les travaux de De Santis, Markowski et Wegn&aiMaWe89 et Littlestone Lit88]. Des
survols sont proposés par Foster et Volira\jo99 et Vovk [Vov01].
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2. Regret interne et bornes du second ordre en j@diction avec avis d’experts

Les chapitres 3 et 4 présentent plusieurs résultats igodm utilises dans les chapitres cen-
traux de la these, a savoir les chapitres 5 a 8. Nous lgsvdas trés brievement ci-dessous.

2.1. Regret interne. Borner le regret interne d’'une stratégie correspond acseparer a
des moadifications simples de la stratégie initiale, etcuéegir gu'aucune d'entre elles n'apporte
d’amélioration substantielle. Le critere de comparnaisst désormais interne, parce qu'il est défini
en fonction de la stratégie considérée. Le regret (ktla@pelé regret externe car la classe de com-
paraison est indépendante de I'algorithme de prédiction

Chacune des modifications simples est paramétrée paramstidn ¢ : {1,...,N} —
{1,..., N} et prédit comme I'exper®(1;) lorsque la stratégie principale prédit comieFor-
mellement, le regret interne par rappoi® &aut

(1.4) R ="l frm0) = Ao vt) -
t=1 t=1

En particulier, la modificatior® peut étre constant&® = j, et cela montre que rendre le regret
interne petit par rapport a toutes les fonctidnpossibles est plus difficile que de rendre petit le
regret externe. Dans un premier temps on s'intéresseclarer I'espérance du regret interne, et
on déduit des résultats sur le regret interne par desadéthmettant en jeu des martingales.

Le regret interne a été défini en théorie des jeux, pargFaet Vohra FoVo99], Fudenberg et
Levine [FuLe99], Lehrer Leh03], et considéré ultérieurement par Hart et Mas-Coldkl1a00,
HaMa01] et Cesa-Bianchi et LugosideLu03]. Un résultat important de convergence vers un
ensemble d’équilibres a été prouvé par Foster et VORoA/$99 pour peu que tous les joueurs
d’un jeu minimisent chacun leur regret interne, voir satda? ci-dessous.

Au chapitre 3, nous proposons une méthode générale pauerir les stratégies encourant un
regret externe sous-linéaire en stratégies encourarggrat interne sous-linéaire. Notre méthode
a vu le jour indépendamment de celle développée par BluMansour BIMa05]. Les deux
méthodes sont comparées précisément, notamment etioforde leurs complexités de mise en
ceuvre respectives, de leurs bornes théoriques et de lmmsein a des situations d’'information
incomplete comme celles décrites en section 3. Le cleapit conclu par une indication de la
vitesse minimax du regret interne enqui se trouve étre égalemegt:, comme pour le regret
externe. Le probléme de la vitesse minimaxém’est résolu quant & lui qu’a un facteyfin N
pres.

2.2. Bornes plus fines sur le regret (externe)Au chapitre 4, on considere le cadre tres
général de jeu mixte introduit par Allenberg et NeemaliNg04], ou les fonctions de pertésont
avaleurs dank- B, B] (et non plus danf), B]). On cherche & améliorer le theoreme 1 et sa borne
généraleBv/nIn N dans le sens suivant. On cherche des procédures adaptativet B, c’est-a-
dire qui ne demandent pas la connaissance préalable du@akmlours de jeu ni de la borneB
sur la valeur absolue des pertes, et qui permettent de reem$a/n par une quantité plus petite.

Cette quantité peut éventuellement dépendre de laisditgduelle prédite ; le remplacement
par exemple pak/BL} forme une amélioration pour les pertes petites, obtenud.ifilestone
et Warmuth Liwa94], Freund et SchapirdfSc97], Cesa-Bianchi, Freund, Haussler, Helmbold,
Schapire et WarmutiJeFrHaHeScWa971, Auer, Cesa-Bianchi, et Gentil&iCeGe03. Notons
cependant que ces améliorations pour les pertes petitegtadblies pour des fonctions de pertes
positives? : X x ) — [0, B] et demandent la connaissance préalablédenais pas toujours
celle den).



3. CONTRIBUTIONSA LA PREDICTION EN SITUATIONS D'INFORMATION INCOMPLETE 15

En revanche, nous montrons comment, sans la connaiss&aiahpe ni deB, ni den, B\/n
peut étre remplacé par la quantité

(1.5) max  min
t=1,....,n j=1,..,.N

t
Z g(fj,m ys)2 ;
s=1

comme indiqué au théoreme 4.3, grace a un nouvel dfgoe de prédiction. Pour des pertes
positives, il est par ailleurs facile de voir que (1.5) estspbetit que,/BL}, de sorte que I'on
retrouve en particulier les résultats d’améliorationsides pertes petites.

Enfin, on montre ensuite comment des bornes supérieurds segret plus fines que celle
donnée par le théoreme 1 et dépendant de quantitéescduaderdre sont obtenues pour une va-
riante adaptative de I'algorithme de pondération exptiaks (1.3). Ce sont ces derniers résultats
qui sont la clé pour I'analyse d'algorithmes de prédictenm situations d'information incomplete.

3. Contributions a la prédiction en situations d’information incomplete

On parle d’information incompléte dés que le statisticiéa plus accés a I'observatian
apres avoir formé sa prédiction, mais dispose seuleniantretour sur prédiction plus limité. II
ne peut alors plus calculer toutes les pefigfs, y:), et le choix (1.3) nest plus envisageable.

Un exemple de retour sur prédiction est la seule indicatiera perte/( fr, +, y:), €t méne a
une situation dite de prédiction face a des bandits masthtecrite en détails en section 4 du
chapitre 2, avec des références aux travaux classiguestaanment celui d’Auer, Cesa-Bianchi,
Freund et SchapireAuCeFrSc09. Notons que I'adversaire ou I'environnement n’est quahii’
pas restreint, de sorte que I'on peut interpréter le jeur@eigtion comme un jeu répété avec
manque d’information d’'un codté seulement.

Dans cette thése, nous considérons deux autres sitsiatimformation incompléte : dans la
premiére, le nombre d’'observations est limité, et darselzonde, le contrdle est réduit, au sens
ou le statisticien n’a pas acces aux observations, maiseaversion dégradée de ces dernieres.
Cette seconde situation est la plus générale, et ell@badé probleme des bandits manchots, et
également, en un certain sens précisé a I'example &grobleme de prédiction avec un nombre
limité d’observations.

3.1. Nombre limité d’'observations. Cette situation, appel@abel-efficientdans le texte, a
été introduite par Helmbold et PanizadgPa97, qui ne I'ont étudiée que pour un probléme de
prédiction binairejd est X = Y = {0,1}, {(z,y) = ljzy)s ou en outre, I'un des experts ne
commet aucune erreuk,” = 0. Elle est considérée au chapitre 5.

3.1.1. Description du proltme ektat de I'art. Dans le probleme général de prédiction décrit
en section 1.1 du présent chapitre, le statisticien asa&deut le passé avant de former sa prédic-
tion, aussi bien a I'historique des observatiansys, ..., qu'a I'historique des conseils des ex-
perts. On peut cependant arguer que dans certains cas (esopaséquentielle d’algorithmes de
traitement de données sur des bases de données compdex@semple), voir a chaque tour de
prédiction I'observationy, et calculer les differentes pertégf;,,y;) peut étre trés colteux, en
temps ou en argent.

On se fixe ainsi un budget, qui est une fonction qui au paslu probleme associe un nombre
maximal d’observationsn(t). Apres avoir prédit au temps on choisit d’accéder (ou de ne pas
accéder) &, et, partant, aux perte§ f;.,vy;) des differents experts, sachant que I'on ne peut

SC'est ainsi gu’on appelle en France les machines a pogydés casinos ; quant a savoir pourquoi on se réfere a une
rangée de machines de casino, nous renvoyons le lectétraduction en anglais.
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demandery; que si I'on a effectué jusqu’a présent(t) — 1 observations ou moins. Le probléeme
de la section 1.1 du présent chapitre correspond au cag U= ¢ pour toutt.

La probabilitép, selon lagquelle on tiré; ne peut alors dépendre que des observations que I'on
a faites, c'est-a-dire des observatignsassociées aux touss< ¢ — 1 auxquels on a précisément
demandé a voir ces observations.

Pour la prédiction binaire, Helmbold et Paniz#gePa97 obtiennent une borne supérieure sur
le regret d’un algorithme randomisé de I'ordre @'m) In N, et montrent une borne inférieure
dans ce cas de I'ordre de/m, en calculant réecursivement la valeur exacte du jeutéépgsocié,
sous I'hypothese qug;, = 0.

3.1.2. Résultats obtenus et techniques mises en celNwes considérons des cadres de pré-
diction X, Y, ¢ : X x Y — [0,1] trés généraux et évitons toute hypothése sur les feste
notamment surt.; .

Pour un nombre de paset un budgein = m(n) donnés a I'avance, on exhibe un algorithme
construit a partir de (1.3) tel que I'espérance du regrétrae R,, est bornée par une quantité
de l'ordre denvIn N//m, quelque soit le cadre de prédiction (pour toute donné&eedperts
etdeX, ), ¢ : X xY — [0,1]). De méme que I'algorithme principal d’Auer, Cesa-Bianch
Freund et SchapireAuCeFrSc03, cet algorithme emploie la technique de prédiction (E3)
des estimée@t des pertes des experts ; et en outre, il demande a voir lesvaltions de maniére
aléatoire, d'aprés une suite de variables aléataftes. ., Z,, i.i.d. de Bernoulli, de parametre
e ~ m/n. LorsqueZ, = 1, on accede g et on peut calculer toutes les pertes. Pour1,2,. ..
eti=1,...,N, 'estimée de la perté(f; ;, y;) est alors définie par
V. — e(fi,tayt)

1,t — f

)

Zy .

C’est bien une estimation (quaul # 0, on connait par définitiof( f; +, y;)), et elle est sans biais.
Les performances en espérance de cet algorithme sonsaralgrace aux bornes du second ordre
évoquées a la fin de la section précédente.

Par des inégalités de concentration des martingalesard’inégalité de Bernstein pour des
accroissements de martingales (voir, e.g., Freednkaa7¥}]), on peut méme renforcer ce résultat
et obtenir des bornes, non pas en espérance par rapporaadamisation auxiliaire, c’'est-a-
dire surR,,, mais directement sur le regr&t,. Cela forme le premier théoréme d’importance du
chapitre 5.

THEOREME 2 (voir Theorem 5.2).Pour un horizon de idictionn, un nombre d’observa-
tionsm, et un niveaw < (0, 1) donrés, on construit explicitement un algorithme dédiction
dépendant de, m etJ, tel que, avec probabilit au moinsl — §, cet algorithme ne demande pas
a voir plus dem observations et encourt un regret bérpar

Vt=1,...,n Rt:Et— min Li,t<2n*llnN—|—6n lln(4N/5)
i=1,....IN m m

contre toute stratgie de I'adversaire diabolique (ou tout comportement davironnement).

Une variante simple de I'algorithme du théoreme ci-desdont les performances sont ana-
lysées par des technigues de martingales, encourt urt lEgree par une quantité de I'ordre de
nL# In(Nn)/m-+(n/m)In N, ce qui forme une amélioration pour les petiéspetites. En par-
ticulier, lorsqueL; = 0, on retrouve le comportement décrit par Helmbold et PanjeePa97

pour le cadre de prédiction binaire.
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On conclut par l'indication d'une borne inférieure sur égret, qui résout le probleme mini-
max associé a la prédiction avec un nombre limité d’okseons. Elle est obtenue en utilisant les
techniques de I'estimation adaptative, et notamment urgoredu lemme de Fano généralisée a
des combinaisons convexes, déduite des travaux de Bigg5] (voir le lemme A.13). Mais au
lieu d’avoir a utiliser le lemme de Varshamov-Gilbert pexhiber une famille finie de suites suffi-
samment écartées en distaritet suffisamment proches en distance de Kullback-Leiblemeem
c'est classiqguement le cas, il nous suffit de chaléimesures de probabilité sur toutes les suites
d’'observations possibles, et de minorer le cas le pire pandeimum des espérances sous ces
N probabilités. (Moir aussi l'utilisation de cette mémehaique par Auer, Cesa-Bianchi, Freund
et Schapire AuCeFrSc0d.) Apres quelques manipulations propres au cas d'un iifgoe de
prédiction séquentielle, I'application du lemme de Fgéaéralisé acheve la preuve du théoreme
suivant.

THEOREME 3 (voir Theorem 5.5).1l existe un ensemble d’observatiops une fonction de
perte/ : N x Y — [0, 1], et une constante universelle> 0 tels que, pour toufV > 2 et tout
n > m > 2075 In(V — 1), I'espérance du regret de tout algorithme degpliction (randomié
ou non), n'utilisant que les @dictions constantes indegs par{1,..., N} et ne demandant pas
a voir plus dem observations sur une suite ded’entre elles, soit sugrieurea

ZE(Ibyt)] -
=1

Nous prouvons en particulier l&sultat pourc =

R In(N —1)

,-:IE?EN;“W) i
Ve
(14+e)y/5(1+e)

3.2. Contrdle réduit (jeux avec signaux).On étudie au chapitre 6 un autre cadre d’infor-
mation incompléte, dit de contrble rédupaftial monitoring dans le texte). Dans cette situa-
tion, la forme de la fonction de perte importera beaucoupnete restreint & = {1,..., N},

Y ={1,...,M}. On signifie par la que les ensembl&set ) doivent &tre finis, et que dans ce
cas, on renomme leurs éléments comme indigué ci-avastekperts s'identifient simplement aux
actionsj = 1,..., N, au sens ou pour totf f; ; = j. (On a donc égalemept = I;.) Apres avoir
prédity, par Iy, le statisticien n'observe pag et n'a acces qu’a une variable de contrd(é,, v;),

ou signal, oth est une fonction dite de feed-badk: X x ) — S, etS est un ensemble de si-
gnaux possibles. En particulier, le choixplese fait en fonction uniquement des retol(g;, ys),

s <t — 1, et non plus en fonction des pertes passées des experts.

La situation oth(z,y) = y, quels que soient € X ety € ), est celle décrite en section 1.1.
Celle ouh = £ correspond au probleme des bandits manchots. Mais lfimdition donnée par la
fonction de feed-back peut &tre bien plus limitée, et unlgs de I'eétude de ce probleme est de
caractériser les pairdg, h) pour lesquelles le regret peut étre uniformément bom& =), et de
voir quelle est la vitesse minimax de convergence du regrdtesisemble de ces paires.

sup E[R,]= sup E
Y1,--Yn €Y Y1, Yn €Y

3.2.1. Origine du probéme egtat de I'art. La notion de contrdle réduit prend sa source dans
la théorie des jeux répétés a somme nulle, voir par @keMertens, Sorin et ZamiMeSoZa94
et Sorin Bor02 pour des survols et des références aux premiéres fatiang du probleme.

Les travaux récents de RustichiRilis99 et Mannor et Shimkin MaSh03 portent sur la
détermination, pour chaque paifé %), de la meilleure quantité & laquelle on peut comparer la
perte cumuléd.,, du statisticien. En général, ils considérent donc desumgs de la qualité d’'une
stratégie differentes du regray,.

Les informaticiens que sont Piccolboni et Schindelha&®¢0] et Helmbold, Littlestone
et Long HeLiLo00] portent bien quant a eux leur attention sur le regret. Hbeliah, Littlestone
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et Long HeLiLo0O0] étudient le probleme dans le cas particulier de la téah binaire ou I'un
des experts ne commet aucune errdyy, = 0, pour une fonction de feed-badk définie par
h(z,y) =ysix =0, eth(z,y) = 1 siz = 1. (Le retour sur prédiction n’est donc informatif que
quand O est prédit.)

Piccolboni et SchindelhaueP{Sc0] travaillent avec des fonctions de peftet de feed-back
h générales, et proposent au passage des applicationfoematique, au probleme d’allocation
séquentielle de bande passante. lls déterminent lessddirh) qui permettent que I'espérance
R, du regret soit uniformément bornée e), et introduisent un algorithme tel que, est
uniformément borné par une quantité de I'ordrexd€" pour chacune de ces paires. Mertens, Sorin
et Zamir MeSo0Za94 exhibent quant & eux un cadre de prédictiém) tel qu'aucun algorithme
de prédiction ne peut encourir un regret plus petit qu’umengjté de I'ordre de?/3.

3.2.2. Resultats obtenus et techniques mises en celiabjet de nos travaux a été de combler
le fossé entre la borne inférieure et les bornes sup@seet de déterminer la vitesse minimax de
convergence du regret, a saveit’?, en réétudiant I'algorithme général dei$c0]. Avec des
techniques similaires a celles du chapitre 5, on prouVietigative suivante, qui, au vu de la borne
inférieure proposée par Mertens, Sorin et Zarkief50Za94, résout le probleme minimax.

THEOREME 4 (voir Corollary 6.2). Pour tout probéme de confile réduit (¢, 1), si le regret
peutétre borré unifornément er(n), alors la straégie de pédiction de la section 3 du chapitre
6 encourt un regret majéren esprance par une quanétde I'ordre den?/3. De plus, le regret est
également majdr avec probabilié 1 — § par une quanti de I'ordre den?/3In(1/4).

Les coupleg?, h) tels qu’un regret en(n) puisse étre atteint uniformément sont caractérisés
par [PiSc0]; ce sont les coupleé/, h) tels qu’essentiellement, peut étre reconstruite en un
certain sens a partir de ce qui permet de définir des estimateurs des pé(es; ), ouj désigne
I'un quelconque des experts, a partir des quantites véssrn(lesi(1;, y;)).

Par ailleurs, on a introduit une nouvelle preuve de la banfégieure, sur un exemple difféerent
de celui de MeSo0Za94, en considérant une version modifiee d'un probleme éeliption avec
un nombre limité d’'observations comme un probléme deliptien avec contrdle réduit. Avec
les mémes techniques usuelles d’obtention des borneseunfes en statistique minimax, déja
utilisees par puCeFrSc0d, a savoir une randomisation sur les observations etisation de
I'inégalité de Pinsker, on prouve le theoréme suivant.

THEOREME 5 (voir Theorem 6.3).Pour le probeme de confile réduit inspie par la péedic-
tion avec un nombre limét d'observations, &fini par N = 3, M = 2 et des fonctiond et h
correctement choisies, pour tout> 8 et pour toute stratgie de pediction (randomiée ou non),

2/3

n - z
— 1 ) > 5
;E(It,yt)] ig}g’g;«?(z,yto Z 75

ou E est I'esggrance par rapport la randomisation auxiliaire qu'utilise la stragie.

sup E[R,]= sup E
y17"'7yn€y y17"'7yn€y

Enfin, nous motivons le probleme de prédiction avec abatréduit par I'exemple suivant, dit
d’ajustement séquentiel du prix de vente, qui est une mensiodifiee d’'un modeéle introduit par
Kleinberg et LeightonKILe03]. Il permet notamment d’obtenir des stratégies de venfeaguits
sur Internet.

EXeEMPLE 1. A chaque pas, un client se présente pour acheter un produit donneallsé
I'achat si le prix affiché par le commercadt, € [0, 1], est inférieur au prix seug); € [0, 1] qu'il
a, consciemment ou inconsciemment, en téte. Si 'achatffesttué, le commercant encourt une
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perte, un manque a gagner, gie— I; (il aurait pu élever son prix et gagner plus). Si le client
ressort sans acheter, la perte du commercant est fixe esporrd aux frais de stockages [0, 1].
Cependant, pour améliorer sa stratégie de vente, le copamten’a pas acces aux — que les
clients eux-mémes seraient bien en difficulté de précigeit ce qu'il voit, c’est sil'achat a eu lieu
(h(It,y:) = 1) ou non (I, y:) = 0). Le but du commercant est de réaliser un chiffre d’agir
presgu’aussi élevé que le meilleur prix constghte [0, 1] pour la suite donnée de clients. (Ce
prix est par exemple celui qu’aurait peut-étre propose étde de marché préalable.)

On explicite un algorithme randomisé tel que le regigtest la difference des pertes cu-
mulées entre notre stratégie et celle du meilleur prixstamt, croit & la vitesse sous-linéair&®,
quelque soit la suite des clients (de sorte que le regreori#ppu nombre de clients tend vers
0). Cet algorithme repose sur celui du théoreme 4, coupieifvalle des temps en segments de
longueurs exponentiellement croissantes, et prend ureaoudépart au début de chaque segment,
en discrétisant de plus en plus finement 'ensemble ded(prix dans chague segment.

4. Importation de la notion de regret interne pour des fonctons de perte @nérales

Nous spécifions désormais la fonction de perte, ci-dessou(1.6), et nous pouvons nous
affranchir de I'hypothése de prédiction randomisée plcitant sa structure, et notamment sa
concavité.

4.1. Investissement dans le mardh boursier et regret interne. Le chapitre 7 importe la
notion de regret interne dans le cadre de l'investissenfaientiel dans le marché boursier, en
montre sa pertinence, introduit des algorithmes le mirantiset discute les résultats financiers
obtenus sur des données réelles.

4.1.1. (Absence de) métisation du marck par suites individuellesUn domaine assez na-
turel d’application des suites individuelles est I'inissement séquentiel dans le marché boursier.
Modéliser les évolutions de ce dernier étant un prokl@mtoirement difficile, on peut étre tenté
de simplement décrire ses évolutions par le biais de mppevolution, définis de la sorte. On
considéreN valeurs boursiéres, indexées par les ent{drs.., N}. L'évolution de laj-ieme
valeur du jourt au jourt + 1 est décrite par le facteur multiplicatif; ;, qui représente le rap-
port entre le prix d’ouverture dg¢ au jourt 4+ 1 sur son prix d’ouverture de la veille. On définit
x = (T14,...,ZN) € }Rf, et on I'appelle le vecteur d'évolution du marché au jouCette
modeélisation en forme de description, par suites indiilds, qui contraste fortement avec les
modeélisations stochastiques (essentiellement par dasenents browniens), a été proposée par

Cover [Cov9l].
Il définit une stratégie d’investissement dans le makehésier comme une suite de fonctions ;
la t-ieme de ces fonctions associe a un historique de veatéwslutionx, ..., x; 1, un porte-

feuille B, c’est-a-dire une distribution de probabilité sur lefeuas boursiéres, indiquant quelle
proportion, chaque jour, des capitaux totaux est ré-tiwekns chacune des valeurs boursiéres.
Avec ces notations, au début du jauf 1, nos capitaux sont

N
B a; =Y Bjj,
j=1

fois plus importants que ceux de la veille a la méme heure.

Formellement, pour retrouver le cadre du début de la sedtib, on choisit pour ensemhlg
de prédictions le simplexe d’ord®¥, et pour ensemble d'observatiopsl’'ensemble de tous les
vecteurs d'évolution envisageables, a sagdie= Rﬁ . La qualité des stratégies d'investissement
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est mesurée par une fonction de perte logarithmique

(1.6) (B,z) € X xRY — ((B,z)=-In(B x)

et on se compare au meilleur portefeuille constant de planentn tel portefeuille ré-investit
invariablement chaque jour selon la méme distribution feAinsi, le regret est défini par

n n n B .
a7y R,= sup ZE(Bt,mt) — min {(B,xz;) = sup max » In Tt

w17--~,wneRf t=1 Bex t=1 x1,...,ey, BEX i— Bz

Notons que I'on considére une classe continue de stest@g comparaison.

Borner ce regret, c’est rendre uniformément petitole-rapport entre I'argent gagné par le
meilleur portefeuille constant de placement et celui abtear la stratégie d'investissement con-
sidérée ; or, Cover et Thoma€¢Th91] prouvent que les portefeuilles constants de placement
forment une classe de comparaison riche, obtenant de bsnlats financiers. Differentes straté-
gies bornant ce regret existent, notamment le portefawilleersel de CovelGov9]] et la stratégie
EG de Helmbold, Schapire, Singer et WarmutteBScSiWwa9$.

4.1.2. Etat de l'art. Cover et OrdentlichCov91, OrCo99 établissent que la vitesse mini-
max de convergence du regret (1.7) estd¥ In n. lls exhibent dansGov91, CoOr9§ un al-
gorithme réalisant cette vitesse minimax, et ils I'apgmtlle portefeuille universel. Ce dernier est
construit a partir de moyennes sur les portefeuilles emstde placement, pondérées par les per-
formances de chacun de ces derniers. C’est I'équivalegbetinu de (1.3), et en particulier, la
détermination deB; nécessite de calculer des intégrales portant sur toumniglexe. Ce dernier
point nécessite un nombre d’'opérations éléementakpsrentiel enV, et est donc trés gourmand
en temps. Cover et Ordentlich eux-mém€sy91, OrCo99 utilisent une discrétisation du sim-
plexe et remplacent les intégrales par des sommes posrdauulations pratiques. Certes, Kalai
et Vempala KaVe03g proposent des méthodes stochastiques plus fines et maiisuses en
opération pour obtenir une mise en ceuvre (d’'une approiematochastique) du portefeuille uni-
versel, mais I'avancée la plus significative semble 8aigdrithme EG de Helmbold, Schapire,
Singer et WarmuthHeScSiWa9$.

Ces derniers donnent deux versionsede I'une nécessitant que les rapports d'évolution du
marché soient toujours compris entre deux valeurs conmues(0 et M et bornant le regret par
une quantité de l'ordre déM//m)v/nlIn N, et 'autre bornant le regret par rapportautesles
évolutions possibles par une quantité de I'ordre:élé. Cette seconde version ée forme ainsi
un algorithme universel d’investissement, et sa comex@& mise en ceuvre est linéairereet
N?. Blum et Kalai BIKa99] proposent une extension du portefeuille universel de €vev91]
au cas d'un marché avec frais de transactions, mais postdint, rien de semblable n’a pu étre
prouvé pour un algorithme facile & mettre en ceuvregtelOn peut aussi citer les travaux de
Singer Bin97] et Borodin, El-Yaniv et GogandoEIG0o00Q], qui se focalisent essentiellement sur
I'obtention de meilleurs résultats pratiques par deshodds du type de celles utilisées en suites
individuelles.

4.1.3. Resultats obtenusUn premier travail a consisté a réétudier I'algorithme et a en
proposer une analyse plus fine et plus simple, en lien avd@etméme 1 ci-dessus (voir section
2 du chapitre 7). Dans un deuxieme temps, I'analyse ad@iégge jusqu’a obtenir une vitesse de
convergence pour le regret améliorée@f? pour une version universelle @ (voir section 6.1).

Mais le travail a principalement consisté a importer léiov de regret interne, issue de la
théorie des jeux répétés, dans le cadre de l'investisae séquentiel dans le marché boursier.
Le regret interneR™™ d’une stratégie est défini comme la difféerence entre éssitats financiers
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obtenus par la stratégie et la meilleure de I'ensemble slienselifications simples (linéaires), i.e.

n n n

= o 33P0 ~pigd (B0 = e g3 ST

ou L est 'ensemble des applications linéairés— X. (Remarquer la similarité avec (1.4).) La
notion de regret interne correspond a I'envie du courteemd pas voir son travail critiqué par
ses clients : ces derniers, au toyrconsiderent la stratégie d'investissement de leurt@myuet
regardent quels auraient été leurs capitaux, la suiteatgsurs d’évolution étant égale par ailleurs,
au vu de changements simples, comme par exemple oublidela @oursiere, et investir chaque
jour tout ce qu’on avait mis danssur la valeur boursiérg. Ceci correspond a un changement
lingaire des portefeuilles d’investissemdsy.

Apres avoir prouvé que les stratégies existantes rfagsu pas en général que ce regret in-
terne est petit, on introduit de nouvelles stratégies adaifois sont compétitives par rapport aux
portefeuilles constants de placement et encourent untriegeene uniformément borné erin).

On obtient, exactement comme pour le regret externe (leg)stlatégies assurant simultanément
des bornes supérieures uniformes sur les regrets inteaxteene, de I'ordre, selon la complexité
de mise en ceuvre des algorithmes\dia n (pour un algorithme semblable au portefeuille univer-
sel, non implémentable en pratiqgue, notamment de coniplexponentielle eV) et devnin N
oun?/3 (pour une famille d’algorithmes simples & mettre en ceuvre)

Pour cette derniere, des simulations sur des donnédssr@mt prouvé que ces nouvelles
stratégies obtenaient de bien meilleurs résultats digpeaque les stratégies pré-existantes, et ce,
pour une complexité en temps similaire (voir I'appendicectapitre 7).

4.2. Application en théorie des jeux Epétés. Le chapitre 8 réepond a une question naturelle
survenue lors de la minimisation du regret interne dans kelnésboursier, déterminer si la notion
de regret interne nouvellement définie était la bonneegdisation de celle proposée en théorie
des jeux.

Or, une propriété remarquable établie par Foster eta/firoVo97, FoVo99 est que dans
un jeu fini répété av joueurs, si chaque joueur joue de telle sorte que son regerne (1.4)
est uno(n), alors la suite des frequences empiriques des profilsidiecfoués converge vers un
ensemble d'équilibres, celui des équilibres corré@s les résultats de la section 2 ci-dessus et
ceux du chapitre 3 montrent que le regret interne peut &jemuniformément ea(n). D’autres
procédures garantissant la convergence vers I'enserablédlilibres corrélés ont été introduites
par Fudenberg et Leviné-iLe99], Hart et Mas—Colell HaMa00, HaMa01, HaMa0Z et Leh-
rer [Leh97, Leh03. Dans aucune de ces procédures les joueurs n’ont besaaaddoner leurs
mouvements, chacun se concentre sur son propre regreh@nte

La notion d’équilibre corrélé a été introduite par Aanm [Aum74, Aum87] dans le cadre de
jeux finis, mais Hart et SchmeidlgdpSc89 I'ont étendue aux jeux infinis (a ensembles d'actions
non finis). C’'est alors que nous avons voulu prouver que dafswou les joueurs disposent cha-
cun (comme c’est le cas dans le marché financier) d’un erlsaditdrtions convexe et compact, il
y a également convergence des frequences empiriquesafis g¢'actions joués vers I'ensemble
limite des équilibres corrélés (au sens Ha$c89) du jeu originel dés que chaque joueur mini-
mise son regret interne.

Ce résultat et des algorithmes généraux de minimisatiomegret interne dans des jeux a
ensembles d'actions convexes compacts reposent sur sidmté d’analyse fonctionnelle, ainsi
que sur des théoremes de point fixe de Schauder, et formemtension au cas des jeux continus
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tant des résultats que, en partie du moins, des méthodeestier et VohraFoVo99, et Hart et
Mas-Colell HaMaO01].

5. Conclusion, perspectives et plan de la tfse

5.1. Conclusion. Un point de vue statistique a permis des avancées récentpgediction
des suites individuelles. On peut le retrouver notammens diss travaux d’Auer, Cesa-Bianchi,
Freund et SchapireAlCeFrSc0g et de Cesa-Bianchi et Lugodifig0l, CeLu0j. Cette thése
illustre également l'intérét d’un tel parti pris stdiigie.

[AuCeFrSc07 a notamment permis de réaliser que des bornes sur lasperdu regret ne
sont pas suffisantes, et qu'il faut s'intéresser aux diewia a I'espérance, grace a des inégalités
de concentration des martingales. Si les déviations santatdre supérieur a I'espérance, alors
I'algorithme de prédiction doit étre modifié jusqu’a qae ce ne soit plus le cas. Pour tous les
algorithmes introduits aux chapitres 5 et 6, nous avonsngoigement traité les déviations a la
moyenne. Au chapitre 4, le critere des déviations esséta la remarque 4.5 pour choisir entre
deux algorithmes de prédiction.

Par ailleurs, AuCeFrSc02 a introduit une premiére preuve d’'obtention de borneriefire ne
calculant pas récursivement (une borne inférieure suraleur du jeu répété associé au probleme
de prédiction, comme c’est le cas par exemple dans Ceseidja-reund, Haussler, Helmbold,
Schapire et WarmutiJeFrHaHeScWa97 (prédiction avec information complete), Mertens, So-
rin et Zamir MeSoZa94 (prédiction avec contrdle réduit), Helmbold et PamifAePa97 (pré-
diction avec un nombre limité d’observations). lls uslig au contraire une randomisation sur les
observations et I'inégalité de Pinsker. lls ne résaivmpendant le probleme minimax associé a la
prédiction dans le cadre de bandits manchots qu’a undegtn N prés. Le théoréme 5 semble le
premier cas ou les techniques usuelles de I'estimatiofinmaixy et notamment un lemme de Fano
correctement généralisé (voir le lemme A.13), ont psrda résoudre totalement le probleme mi-
nimax sans s'intéresser a la valeur du jeu.

Enfin, une contribution essentielle des statisticienséadet mieux formaliser I'énoncé des
problemes minimax associés a la prédiction de suitéwituelles. Aucune référence classique
n'est encore vraiment disponible, seule la pratique nmagtigue a parlé pour l'instant et a montré
comment les théoriciens des suites individuelles forsa#nt leurs problemes minimax. Une telle
description précise et explicite est proposée a la finkdpitre 2.

5.2. Plan de la these. Voici maintenant le parcours que nous allons suivre. Le plama-
nuscrit est indiqué en figure 2, et il se lit de bas en hautraibglein signifie que le chapitre situé
en haut du trait repose sur les résultats du chapitre sd@ug le trait. Un trait pointillé signifie que
seuls certains résultats, le plus souvent énoncés a thufchapitre, nécessitent la lecture du cha-
pitre ou le trait prend sa source. C'est par exemple le caslfgaude du regret interne en contrble
réduit, étudié tout a la fin du chapitre 6, et qui, notémsreunit et fait se rencontrer en quelques
pages les deux grands types de résultats considéréspoatla prédiction en situations d'infor-
mation incomplete (partie 2, chapitres 5 et 6) et ceux &agsant aux extensions de la définition
du regret interne (partie 3, chapitres 7 et 8). La partie Ingstductive, au sens ou elle porte sur les
fondements de la théorie des suites individuelles etmedes contributions apportées a la racine
de la théorie. Le chapitre 2 introduit mathématiquemergujet dans un cadre trés formel, puis
les chapitres 3 et 4 présentent respectivement les aéstdindamentaux dont on aura besoin pour
les parties 3 et 2. Le manuscrit de thése s’achéve par yithae rappels et d’extensions de
résultats fondamentaux de statistique et théorie distination, et par I'indication des références
bibliographiques.
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5.3. Perspectives.Tout au long du manuscrit, les questions ouvertes sontgsués par des
environnements dediés, de la forme suivante.

OPEN QUESTION 1.1. Avec ici I'énoncé de la question ouverte.

Une quinzaine de telles questions sont soulignées, etuesmportantes portent sur la déter-
mination des ordres de grandeur minimax/érsur le regret interne en information compléte et
sur ceux du regret externe dans certains problémes ariafam incompléte (bandits manchots,
contrdle réduit). Toutes se situent dans la droite lige® tlavaux présentés. On décrit brievement
ci-dessous deux autres axes de recherche futurs.

Le premier concerne la validation des méthodes de piédigiar suites individuelles. Hor-
mis le cas de l'investissement séquentiel dans le marohésier du chapitre 7, peu de simula-
tions sur des données réelles ont été effectuées’fupgesent. Elles permettraient notamment de
déterminer sur d’autres exemples a quel point il est staltle en pratique de tenir compte de tout
le passé, comme le requierent la plupart des algorithraggé&Hiction par suites individuelles, et
pas seulement du passé le plus proche.
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Par ailleurs, un exemple d’obtention de vitesses de coeweryrapides, dans le cadre des
suites individuelles et pour des fonctions de perte aibgtsaest présenté au chapitre 4, en section
4.5. Rappelons que ces vitesses rapides ont été largemargntre de 'attention ces derniéres
années dans les problemesndachine learningconnus sous le nom de classification (ou appren-
tissage statistique). Des liens profonds existent enaégsification et prédiction de suites indivi-
duelles. Dans la présentation suivante du probleme dadaification, les réferences sont le livre
de Devroye, Gyorfi et LugosHeGyLu96], et le récent survolBoBoLu05] des avancées récentes
dans le domaine, écrit par Boucheron, Bousquet et Lugoscl&sification, on s’intéresse a une
guantité appelée risque empirique, qui est I'equiviathnregret (externe) en prédiction de suites
individuelles. La procédure de minimisation du risque gigpe permet d’obtenir une borne en
1/4/n (oun est le nombre d’exemples a classer) sur le risque empirldaés Mammen et Tsy-
bakov MaTs99, Tsy03 ont &té les premiers a montrer que des vitesses de amne plus
rapides, entrd /n et 1/,/n, pouvaient &tre obtenues, sous des conditions sur labdistn des
exemples. Ses conditions ont été étendues et gé&stali notamment par Massart et Nédélec
[MaNe03. Récemment, Steinwart et Scov8itEc03 se sont intéressés avec succes a I'obtention
de vitesses rapides en classification, mais pour des proeeedesvms [support vector machings
qui présentent I'avantage de pouvoir &tre mises en cefha@rocédure de minimisation du risque
empirique souffre en général d'une complexité de cai@mp grande, et est essentiellement d’'un
intérét théorique.) L'idée serait alors de transpases résultats en prédiction de suites indivi-
duelles, et d’obtenir des algorithmes de prédiction gsusant que le regret croit strictement plus
lentement que/n sur une large classe de suites d’observations, la vitgesétant au moins at-
teinte par 'algorithme de pondération exponentiell8Y1La section 3.1 du chapitre 2 montre
certes qu’une version de ce dernier atteint une vitesseoddré de\/f; pour la convergence du
regret, et qu’il y a ainsi convergence rapide des fifjeroit plus lentement que. Mais une telle
condition ne conduit pas a une classe suffisamment gransleités d’observations.
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Prediction with expert advice






CHAPTER 2

Prediction of individual sequences, mathematical framewdk

This chapter describes the basics of sequential predicifdgith the terminology introduced
in the subsequent chapters, it corresponds to the miniimizaf external regret in a model with
full information, and is meant to be a toy case for the reshefthesis. It is partially based on
the lectureslfug01] that Gabor Lugosi gave atip four years ago. Most of the material presented
here is already part of the folklore of prediction with expedvice, except maybe the discussion
about unbounded losses and the concentration of refinedtdaqends, but it is presented with a
new viewpoint, allowing us to derive new results, and somes with simpler proofs.
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1. Sequential prediction of individual sequences

The problem of sequential prediction may be cast as a repegtiee between a decision-
maker — also called below the forecaster, the statistidiag,predictor, or even the prediction
algorithm — and an environment — also called below the oppopkyer. The decision maker
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has to predict an unknown (outcome) sequences, . . . of elements from aoutcome spacg’.
His predictionspy, po, . .. belong to gprediction spacdalso calleddecision spaceX. X and)
are usually completely arbitrary spaces, and may even erafit. The forecaster computes his
predictions in a sequential fashion.

The traditional approach in statistics to such problems &issumes the existence of a sto-
chastic model for the generating mechanism of the outcomeesee and then investigates the
possibilities, and limitations of the prediction of sucimdam sequences. For example, in many
applications the sequence is assumed to be a realizatioonud stationary process. This ap-
proach works in many cases when a tractable statistical ineagonably describes the underlying
process. However, there exist situations where any stalishodel is doomed to failure and more
robust prediction methods are required. Typical exampidsua-to-model processes emerge, for
instance, in mathematical finance or in the study of intetia¢d streams.

The purpose of the theory of prediction of individual sequemnis to provide some techniques
of robust prediction and discuss their possibilities, fations and difficulties. The robustness
is in considering all possible sequences of outcodiEs This is where the name “individual
sequences” comes from.

1.1. Prediction using expert advice.Since we avoid any assumption on the sequence to be
predicted, it is not immediately clear how the problem cami@e meaningful. One popular
possibility is to compare the predictive performance of deeision-maker to those of a set of
reference forecasters which we callperts We assume throughout this chapter that there is a
finite numberN of such experts. The sequential prediction protocol is rilesd in Figure 1.
The experts may be chosen by the opponent player, but withssitof generality we may also
assume that their predictions are computed thanks to pfficie@t prediction techniques, for
instance, they may be given by some statistical estimaidrs . experts may be thought of as being
misleading when the decision-maker faces a malicious agqtor as giving helpful hints on the
sequence to be predicted when they are scientific expefiswaiithwhile advice. We have such
an open interpretation because we build below forecastiaggplures competitive with respect to
all possible strategies of the opponent player.

Formally, at each round = 1,2, ..., the decision-maker has access to the whole history of
plays that consists in the past outcomes. .., y;_1 and in the past experts’ predictions, as well
as to the present experts’ predictiofis, . . ., fv+, the latter depending on the history of plays as

well. (That is, the forecaster’s decision must not dependrgnof the future outcomes.)

The goal of the forecaster is to predict almost as well as #%t é&xpert. To make this notion
mathematically precise, we introduce below a measure ajuléty of the predictions formed by
the decision-maker and the experts. This measure is givarsbycalled loss function.

1.2. Theregret as a measure of the quality of the predictionsA loss functioris any map-
ping/: X x Y — R. Note that we often restrict our attention to bounded noatreg losses, that
is, to loss functiong : X x Y — [0, B], whereB > 0. We define the cumulativeegret of the
decision-maker with respect to thi¢h expert of the given class of experts by

Rin = Zf(ﬁt,yt) - Zf(fi,t,yt) =Ly —Lin
t=1 t=1

Wherefn and L; ,, denote, respectively, the cumulative loss of the decisiaker and that of
expert:,

En = Ze(ﬁuyt) ) Lipn = Zg(fi,uyt)
t=1 t=1
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SEQUENTIAL PREDICTION

Parameters: Prediction spaceé’, outcome spac@’, number of expertsV, number of game
roundsn (n = oo is allowed).
Foreachround =1,2,...,n,
(1) the environment publicly chooses the experts’ preoitif ¢, ..., fy: € X, and
the forecaster has an immediate access to them;
(2) the forecaster privately forms its predictipp € X, and simultaneously, the envi
ronment privately chooses the outcomec ),
(3) the predictiorp; and the outcome; are made public.

FIGURE 1. Sequential prediction as a repeated game between tlwasbee and
the environment.

(with the convention thaL; o = 0 for all expertsi). The cumulative regret with respect to the
finite class of experts is simply

Fn = jznfﬁ)fzv Rjn = Ln = z:qlmzv Lim -
Throughout the thesis, we make the dependencies in thethksteons and chosen predictions
implicit.

The goal of the decision-maker is that his per-round regoesgo zero, so that he asymp-
totically performs almost as well as the best expert. Node the latter may only be determined
in hindsight whereas the decision-maker has to predictesgplly. We seek on-line forecasting
strategies that perform almost as well as the best of thddemefstrategies that correspond to
predicting at each round according to the same expert.

Formally, we want to ensure

l (Zn — min Li,n> —0,

n i=1,..., n—oo
where the convergence is uniform over all strategies of tqgooent player, that is, over all out-
come sequences and all sequences of expert advice.

This ambitious goal may be achieved when the loss funatibas some special properties,
for instance, when the decision spatds convex and is also convex in its first argument, dee
[LugO1].

1.3. Randomized prediction using expert adviceUnless we allow some more power or
some more freedom to the decision-maker, this goal is hawavachievable in general. Con-
sider, for instance, the case of 0-1 la&s= ) = {0,1} and/(z,y) = Ljzy)s which corresponds
to predicting a binary sequence. Assume that the decisakemns supplied with two experts, one
of them always predicting 1, and the other one always priadi€t. Itis clear that for any determin-
istic strategy of the predictor, there exists an outcomei®ece(y, ..., y,) = y} such that the
predictor errs at every single time instant, thatlis,= En(y{‘) = n. On every outcome sequence,
one of the two experts suffers a cumulative loss less thy@ymin{L; ,(y7"), Lo (y7)} < n/2.
Therefore, for all deterministic strategies of the decisioaker,

~ . n
sup (Ln(yt) = min{Lin(yt), Lonwi)}) > 5 -
y'iLeyn 2

1The forecasters built therein rely on the same weightedageetechniques as in Section 2.
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RANDOMIZED SEQUENTIAL PREDICTION WITH EXPERT ADVICE

Parameters: Prediction spaceél, outcome spac@’, number of expertsV, number of game
roundsn (n = oo is allowed).
Foreachround =1,2,...,n,
(1) the environment publicly chooses the experts’ preoitif ¢, ..., fy: € X, and
the forecaster has an immediate access to them;
(2) the forecaster privatetychooses a probability distributign, = (p14, ..., pn ) Over
the set of experts, draws an expértat random according tp,, and predicts as
Dt = flt,t;
(3) simultaneously, the environment privately choosestiteomey, € Y,
(4) the outcomey; and the predictiop; are made public.

8section 1.4 indicates that the choicepgfcould be made public, provided thatis drawn privately

FIGURE 2. Randomized sequential prediction with expert advice eepaated
game between the forecaster and the environment.

This is why we allow the decision-maker to randomize, andi$doelow orrandomized pre-
diction using expert adviceThis problem has been studied extensively since Blackigéd56]
and HannanHan57], see the numerous references in the sections below and imettt chapters.
From time to time however, we will go back to non-randomizeedgction, see, for instance, Sec-
tion 2.2 in Chapter 3, as well as Chapters 7 and 8. But for navassume that the predictor is
given an i.i.d. sequendg;, Us, . . . of random variables with uniform law df, 1]. His forecasting
strategy is given by means of probability distributigms p,, ... computed using the whole past
history and the present experts’ advice. At roundie used/; to draw an experf; at random
according tap,, see Figure 2. Then he predicts as expertis cumulative loss is thus given by

Lo =Y "t 100
t=1

and as before, we aim at comparing it to the cumulative logsgsof the experts = 1,..., V.
However, as indicated below, we first seek uniform boundgHerexpected regrets, where the
expectation is taken with respect to the auxiliary randatiin the forecaster has access to, and
return to the general case of non-expected regret in Segtbrmo define precisely what we mean
by uniform bounds, we first describe in detail how the behavithe opponent player is modelled.

1.4. Different models for the opponent player. Without loss of generality, we assume that
the opponent player has a deterministic strategy. This wealoasince we take first the supremum
of the (expected) regrets over all his possible strategiésré considering the infimum over all
forecasting strategies for the decision-maker, see themmmts after (2.9).

1.4.1. General (game-theoretic) opponentBherefore, in general, a strategy for the environ-
ment is denoted byg, hq,...,hy) and is given by any choice df + 1 sequences of functions
g=1(91,92,...)andh; = (hj1,hj2,...),j =1,...,N. By convention X" is the empty set. For
t > 1, the functiong; mapsx*~! into X, and so do also the functiors ¢, . .., jy . The experts’
predictions at round equal f;; = h;(p1,-..,p—1) and the outcome ig; = g;(D1,...,Di—1)-

All these quantities are random, since the forecaster'digiiens are random. The outcome
y; and the experts’ advicg;; are measurable with respect to thealgebra generated by the
Uy,...,U;_1, and even with respect to the one of the. .., I; .
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Till Section 3.3, we focus on thexpected regret
n n n N n
1) R.= [ Jpax ;Et(pt) - ;&,t = Z,:IIE%XNZ ij,tg(fj,b Yt) — Z;E(fi,t, Yt)

o T =1 j=1 t=

where we denoted forall=1,2,...andi=1,..., N,

N
t(p) =D piil(fiey)  and  Lig=L(fir ).

7=1
We call this quantity an expected regret, but it is still ad@am quantity. Actually, it is defined as
a sum of conditional expectations, since fortal 1,

et(pt) =K [g(ﬁta yt) ’ U17 ey Ut—l] .

Martingales inequalities allow us to deal first with thespasted regrets, see Section 3.3 below.
We may now define completely the prediction problem, seerEi§uBounds that are uniform

AIM OF THE DECISION-MAKER

We want to design randomized forecasting strategies whasected regrets are uniformly

bounded as

sup R, <,
g7h1,...,hN

wherew,, = o(n) is a deterministic sequence of positive numbers, and theesupn is over
all possible strategiegy, h1, ..., hx) of the opponent player.

FIGURE 3. The final statement of the problem of randomized predictigth
expert advice

in the behavior of the opponent player correspond to wasedounds, that is, we may assume
that our opponent player knows our (randomized) strategd, raads our mind. But since our
opponent does not contfahe auxiliary randomization we use, we still have a chandzesa him,

in the sense that we still may complete the plan proposed tpyr&i3. This is the purpose of
Section 2.

1.4.2. Oblivious opponentsWe sometimes consider a weaker model for the opponent play-
ers, in which neither the experts’ predictions nor the omes depend on the decision-maker’s
predictions. Such opponents are caltddiviousand determine seemingly the outcome sequence
and the experts’ predictions before the game starts.

The model of an oblivious opponent is realistic wheneves igasonable to believe that the
actions of the forecaster do not have an effect on futureoous of the sequence to be predicted.
This is the case in many applications, such as weather fetiegeor predicting a sequence of bits
of a speech signal for encoding purposes. This may even hEa#eefor sequential investment in
the stock market, as long as we invest only little money an mat too large returns. However
there are important cases when one cannot reasonably afisaintige opponent is oblivious. The
main example is when a player of a game predicts the otheepdagext moves and bases his
action on such a prediction. In such cases the other plafgig’e actions may depend on the

2put differently, our opponent is the devil, but we may stabhim under the assumption that Somebody stronger than
the devil throws the dices in this world.
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action (and therefore on the forecast) of the player in amgptwated way. This is the case, for
instance, in the prisoner’s dilemma.

2. Weighted average prediction

In this section we first study the case of the so-cadbgoonentially weighted average predictor
(or exponentially weighted majority predictor), and thexfide formally the notion of weighted
average@ prediction by indicating a large class of regret minimizfogecasters built on the same
model.

2.1. The exponentially weighted majority predictor. In this section we derive regret bounds
for a version of the weighted majority forecaster of Litttese and WarmuthLiWa94], see also
Vovk [Vov90]. We consider an exponential reweighting. The resultirgdaster relies on a tuning
parameter; > 0, and given this parameter, uses the distributipps= (1/N,...,1/N), andp,,
defined fort > 2 by

€xXp (77 Zi;ll (gs(ps) - gi,s)) e—nLi,t71

(22) pir= = —% fori=1,...,N,

S exp (77 Sl (s(py) — ﬁj,s)> > jm €
where we used the notation introduced in the previous geclide note that this forecaster cor-
responds to a smoothed version of fictitious play, $ag £98], see alsoCelLu03] and the refer-
ences therein.
Versions of the following theorem appear in Cesa-Bian€dd99, and in Cesa-Bianchi and
Lugosi [CeLu99], see also Cesa-Bianchi, Freund, Helmbold, Haussler, gaehaand Warmuth
[CeFrHaHeScWa91.

THEOREM 2.1. The exponentially weighted average forecaster with fixethtuparameter
n > 0 achieves, uniformly over all possible values of the logses [0, B],

InN n
Zﬁtpt Z'mln Lipn < — . +§nB2.

In particular, withn = (1/B) \/8(In N)/n, the upper bound becomés,/(n/2) In N.

PrROOF Fort > 1andi=1,..., N, we denotew; ; = e i1 andW, = Wi+ .. WN,
so thatp; ; = w; +/W;. Thus, on the one hand,
(2.3)
1 "*1: “nLin | _In N >1 “nLin ) _InN = — Lin—InN
n Z (& n n j:I?f-L-}fNe n nj_rlnm in 5
whereas on the other hand, foredch 1,...,n,
N 7 L, N N 9
Wit dojmr e TateT Mt vy N 5o
In =In =In (> pje ™t | <0 pislis+ =B
N _ . 75 = VR ’
Wt zj:le nLjt—1 = = 8
where we applied Lemma A.1, due to Hoeffdingde63. Summing over = 1,...,n, we get
Wit _ nn? -
1 < —B* - L .
n W, 3 772: t(Pr)

3In this thesis we do not consider “follow the perturbed ledtechniques, see the seminal result of Hanrtdar{57],
and, e.g., the analysis of Kalai and Vempd{@Y/e03b], Hutter and PollandfluPo04].
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Combining this upper bound with the lower bound (2.3) detimbove and solving for the cumu-
lative expected loss conclude the proof. d

2.2. The doubling trick, and related on-line tunings. The above forecaster relies on the pre-
vious knowledge of the time horizanand a bound3 on the losses. In this section, we present a
version of the exponentially weighted algorithm which maydemputed without previous knowl-
edge of the time length. We deal only later with the knowledge of the bouBdin Section 3.2
and in Chapter 4. The techniques shown here, the doublicigdnd the incremental update, are
however the key ingredients there also.

Even if there exist predictors that already in their basiplamentations do not require the
knowledge of the horizon, see Section 2.3 below, it is important to design a time-adapersion
of the exponentially weighted forecaster, for the lattex opular method, usually achieving good
results in practical situations (see, for instance, theegrpental appendix of Chapter 7), and its
theoretical performances may also be improved in severgéwsee Section 3 below, as well as
Sections 3 and 4 in Chapter 4.

2.2.1. The doubling trick. The doubling trick seems to be an old and well-known trick, no
only in the area of on-line learning and computer sciencealso, for instance, in game theory. It
is not easy to trace back to the first formal statement of tble, tsee perhap<JeFrHaHeScWa97,
Vov98] and the references therein.

The idea is to partition time into periods of exponentiatigreasing lengths, indexed by=
0,1,.... Then in each period the exponentially weighted average forecaster is restanwéh a
parameter;,. chosen optimally depending enIn the simplest case presented hefe;orresponds
to the optimal tuning parameter indicated by Theorem 2.3 tBat the length of period is a”
(the popular choice. = 2 explains the name of the trick, since then the periods areoblihg
lengths), so that the corresponding tuning parameters egua (1/B) 1/8(In N)/a", and the
r-th epoch is given by the time rounds, ... ,a" T — 1. We get the following theorem.

THEOREM 2.2. The doubling version of the exponentially weighted avefagecaster, para-
metrized witha > 1, achieves, for alln and uniformly over all possible values of the losses
f@t S [0, B],

Zetpt min Li, < B pyae—b —1 N+B(a—1).

i=1,...N Va—1

Fora = 2, the bound has a leading constant equal t6/2 — 1). This is not exactly the
optimal value fora, but is very close to it.

REMARK 2.1. The proof below works simply because, provided thatetlzee at least two
regimes, that isR > 1, we haven > 1+ a + ... + 1. The factorn can be replaced by
sharper bounds, as long as an inequality of the above typebeayritten. Denote the value of
such a bound at roundby vy, = ¢, (y7, p}'). Aninequality may be written whenever the sharper
bounds are nondecreasing as functions of the time roundse the discussion before Theorem
4.3 in Chapter 4. Depending on their precise forms, we are ahée to writey,, > a1, see the
proof of Theorem 4.3 in Chapter 4, and even in some cases; 1 + a + ... + a*~L. The latter
may be written for instance whef, = n, ¥, = ¢1(p;) + ... + n(p,), Or ¢, = L (WhereL}
is the cumulative loss of the best expert), see also, amdragxntSection 3.1 below or the proof
of Theorem 4.5 in Chapter 4.
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PrRooOFE We first use that the sum of minima is less than the minimunhefsums, and in
particular, decomposing time into the above mentionecbgsriindexed by = 0, 1,..., R, yields

th pt . IIllIl LG

7 7

R—-1 fat1-1 a™t1l-1 n
gz Z l(py) — imln Z Uiy —|—<Z l(p,) — Z'mm Z&t> .

r=0 t=a” t=a” t=aR t=aR

We then apply Theorem 2.1 in each periodand get

Va)Ft -1 In N
(2.4) thpt i?u} Lm\z,/ TN = B( — > -

On the other hand, provided th&t> 1,

R_1

R—1
n>Y a=1 . thus, (Va)® <vay/1+(a—Dn.
= a—1

Substituting the latter in (2.4), we get

Vay/14+(a—1)n—-1\ /InN
Zﬁtpt mln L, <B ( ) 5

i=1,....N Va—1
The proof is concluded by using thafr +y < /= + /y for 2, y > 0, and by noting that the
bound of the theorem is also true whBn= 0, that is, whem < a — 1. O

2.2.2. Incremental updates of the exponentially weighted avefaggeaster. The algorithm
is directly inspired by the work of Auer, Cesa-Bianchi, anednBile [AuCeGe03. (We indicate
here and in Section 3.1 how their bounds can be re-derivedtine more general results presented
in Chapter 4.)

A natural adaptive version of the optimal parametatetermined in the case of known time
length is formed by defining the tuning parameter at roupd2, by n, = B~1/8In N/(t — 1).
Now, the exponentially weighted average forecaster wittetivarying tuning parameter predicts
with p; = (1/N,...,1/N), and at rounds$ = 2,3, ..., with p, defined by its-th components,
i=1,...,N,as
(2.5) Pt = ;Xp (—mLit-1)

> =1 exp (—mLji—1)
A simple modification of the key argument of Auer, Cesa-Bianand Gentile fuCeGe03

leads to Lemma 4.3. The latter, combined, for each raun®, with an application of Hoeffding’s
inequality A.1, which shows that with the notation of Chapte

(I)(pta U (_eivt)izl,...,N) < %B2 )

implies in turn the following theorem.

THEOREM 2.3. The exponentially weighted average forecaster with tiamgiag tuning pa-
rameter defined above achieves, for alland uniformly over all possible values of the losses

Ei,t S [O,B],
Zﬁtpt 'mm Lm\B<2,/glnN—|—1> .
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Note that the main term is larger than the one of Theorem 2.& factor of two. This is
the usual factor we get when dealing with the dependencyadriithe horizon in an incremental
way, see also the comments at then end of Section 3.1 belote @& that not only the leading
constant is better for the bound of Theorem 2.3 than for treeairiTheorem 2.2, but above all,
the forecaster takes no fresh start again and keeps on tixgltiie whole past. This may result in
much sharper prediction in practice.

For refined leading constants, we refer to Yaroshinsky, &ii, and SeidenaElSe04, see
also Hutter and PolandHuPo04).

2.3. Other functions for the reweightings. As we recall below, a whole family of predictors
with performance guarantees similar to those of the expgaignweighted forecaster may be
defined. See, for exampleCgLuO3] for the details. The reweighting functions we consider in
this section are often called potential functions. We fdoei®w on the class of forecasters based
on polynomial reweightings. These are of the fgogpn= (1/N,...,1/N), and, fort > 2,

(S tp) — i) |
Y (Zi;ll ts(ps) — Ej,si_l

wherep > 1 and(z);+ = max {z, 0} denotes the nonnegative part of the real numbeyote the
similarity to (2.2), we simply replaced the exponential egghting by a polynomial one. When
p = 2, we recover the forecasting strategy introduced by BladKviaa56.

These forecasters satisfy the following bound, €&l u03].

DPit =

THEOREM 2.4. The polynomial reweighted forecaster wijth> 1 achieves, for alln and
uniformly over all possible values of the losggs € [0, B],

L,— __IlninN Lin < By/(p—1)nN2/P .
The upper bound is optimized fpr= 21n N, and the latter choice leads 8+/(2In N — 1)en.

Note that the forecasters using polynomial potentials dareguire the previous knowledge
of the time length, contrary to the basic implementationhaf €xponentially weighted average
forecaster described above.

3. Refined bounds on the regret

3.1. Improvement for small losses.We recall in this section how the worst-case bound of
Theorem 2.1 may be improved so that it depends on the cuweilasL; of the best expert rather
than on the simple upper bourgi. > L). This comes at the cost of a worse leading constant,
but results in a major improvement as soon/gsis small, that is, more precisely, as soon/gs
grows slower thamBn /4 — hence the name of the improvement. The first statement &f aac
improvement for small losses is due ta\\Va94], see also CeFrHaHeScWa971, who consider
the absolute loss prediction setting, giveny= [0,1], Y = {0,1}, and{(z,y) = |z — y|, and
an improved version inqrSc97.

THEOREM 2.5. The exponentially weighted average forecaster (2.2) witkdfituning para-
metern > 0 achieves, for alk and for all possible values of the lossgs € [0, B],

- nLy +In N
;ft(m) SBT— 5
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whereL} = min{Li ,...,Lny}. In particular, with
1 2BIn N
=—In|(1 whereL
n 5 n ( + i ) , >0,

the upper bound is less thdlj, + vV2BL In N for all outcome sequences such thigt < L.

The proof is taken fromHrSc97] and is similar to that of Theorem 2.1, except that it uses
the following lemma instead of Lemma A.1. (The proof of thentea simply follows from the

convexity inequality
—ne 1+e_"B—1
e < —=
B

forz € [0,1], andIln(1 + v) < u forallu > —1.)

LEMMA 2.1. For any random variableX with X € [0, B] and for anyn > 0,
1—e B

E[e7"¥] < =—E[X].

PrROOF (OF THEOREM 2.5). We simply modify the proof of Theorem 2.1, and replduoe t
call to Hoeffding’s inequality by an application of the aledemma. This leads, with the notation
therein, to the upper bound

Wn+1 1-— 6—773 -
] < - 14 ;
n A B ; t(pt)

so that combining with (2.3), we get
- nBL} + BlnN
;@(Pt) < 1 _—oB -

We recall that for all: > 0, e* — e™® > 2z, so thatr < (1 — e72%)/(2¢e7%). With z = B, we
get

nBL: +BInN _ BInN 1+4+e 8 | . BInN
< L, = Ly+——=+

1—enB 1 —enB 2e—nB " " l—emB
. 1+a o,

% (e"® —1) L,

where we definex by nB = In(1 + «). We upper bound the second occurrencd.piby L and
note that the optimal choice feris thena = /2B In N/ L. Substituting this value concludes the
proof. a

We note that the bound proposed by Theorem 2.5 is the besttang knowledge when the
value of L} is known beforehand. It can be used, in combination with &btilog trick, to get an
on-line algorithm, requiring only the knowledge Bfand ensuring that the regret is bounded by
something of the order of/BL;,In N. (See, for instance, the proof of Theorem 4.5, which is
based on such an argument.)

However, to get improved constants, we need to resort tefental updates. Similarly
to Section 2.2, the best current related adaptive versiothefabove forecaster suffers a loss
bounded, up to some constant terms,Ry2B LY In N — that is, we get again an extra factor
of 2, see the comments after Theorem 2.3. This forecastetrizduced by Auer, Cesa-Bianchi

and Gentile AuCeGe03, and uses the incremental update (2.5) with- |/ (In V) /L;_,.



3. REFINED BOUNDS ON THE REGRET 37

We note also that in Chapter 4 we give another forecastedlmasthe exponentially weighted
average forecaster whose regret is less thaiB L, In N, up to some constant terms, see Corol-
lary 4.3. This forecaster uses an incremental varianceebagdate, and does not require previous
knowledge neither of nor of B.

3.2. Unbounded lossesOne may wonder if the losses need to range betvweamd a fixed
constantB, or if they could just be given by any sequence of real numk@nsthe negative side, it
is easy to see that there is‘sequential predictor such that there exists a nondecgpasijuence
¢, n > 1, such thatp,, = o(n), and uniformly over all loss sequencgs € Ry,i=1,...,N
andt=1,...,n

n—zetpt imln LG wn

sy

On the positive side, if the Iosses are bound to increaseonajuickly, and provided that the
rate of increase is known, something can be said. Assumatthatindt, the losseg; ; are within
[0, B¢], where B, is known and is non-decreasing with Define the tuning parameter at round

by
(2.6) ne = By 'W/aln N/t

where the parameter > 0 is determined by the analysis in each particular case. Stasiatural
adaptive version of the optimal parametedetermined in the case of known time length and
bounded losses, see Theorems 2.3 and 2.1.

Similarly to the proof of Theorem 2.3, Lemma 4.3 combinechvéih application of Hoeffd-
ing’s inequality A.1 implies the following theorem.

THEOREM 2.6. Given a nondecreasing sequends;),>; of positive numbers, the exponen-
tially weighted average forecaster with time and boundyirag tuning parameter (2.6) achieves,
for all n and uniformly over all possible values of the loségse [0, B,],

In+1 Valn N
Zet pt i_Hl71117 LG\2V1nN (Bn-l-l 0 > 3 Z

We obtain non-trivial bounds whenevs; < +t!/2~¢, wherey is a constant and > 0. We
could have used this theorem in Section 6 of Chapter 7. Hawiarns out that in practice, we
rather apply the bound proposed by Theorem 4.4, which is meneral and more fundamental
(since the underlying forecaster does not need to know tgesee of thes,).

3.3. Bounds that hold with high probability. We indicated above in Section 1.4 that thanks
to some martingales inequalities, we could focus on exdeegrets. We now develop this argu-
ment, and explain precisely why this is so.

Bounds that hold with high probability (also referred to as+expected bounds below) are
more difficult to get than expected bounds. In fact, obtgjmian-expected bounds of a larger order
of magnitude than the one of expected bounds indicatesitbébtecaster has to be modified. This
is the case, for instance, for the first forecaster desciibéige section about multi-armed bandit
problems below, see the concerns about the deviations theatated argument is also in Section
5 of Chapter 4, where we compare two second order forecasteespoint of comparison being
given by the deviations of the regret with respect to its etqtéon.

“Whereas this is not true for sequential randomized prexdiatihder expert advice, this may be true in other settings,
like sequential investment, see Theorem 7.6 for instance.
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3.3.1. \/n-rates of growth for the regretWe denoted by/, Us, ... the i.i.d. (according, say,
to a uniform law) sequence of auxiliary randomizations tire¢aster has access to. His strategy is
given by the sequence of probability distributigms ps, . . . and by the chosen expeits, I, . . .,
which he both selects depending on the outcogies,, . . . chosen by the opponent and with the
help of Uy, Us, .. .. We explained in Section 1.4 thgtis measurable with respectfo, ..., I; 1,

and thus, with respect @, ..., U;_;. Hence, we have proved th&t ; = ¢(f1, +,y:) is measur-
able with respect té/, . . ., U; and has conditional expectation with respedt/io. .., U;_; equal
to

N
L(pe) =D pial(fia ) -
=1

Therefore, applying the Hoeffding-Azuma inequality, sesrima A.2, we have that for afl €
10, 1[, for all » > 1, and with overwhelming probability — ¢ €]0, 1],

t t
In. 1
Vtzlv"'7n> Zg(ffmsvys)gzgs(ps)—i_B Elngv
s=1 s=1

where the loss functiod is bounded betweet and B. The orders of magnitude of the typical
deviations match the orders of magnitude for the expecigetebtained in Theorem 2.3.

3.3.2. Deviations with respect to improved regret boundfghenever we have sharper bounds
on the expected regrets than the genéré|/n) bound obtained for the exponentially weighted
average predictor, like the one of Theorem 2.5, we also naadra precise concentration argu-
ment. We deal here with the case of Theorem 2.5, and carryasvanalysis of the same flavour
in Chapters 4 (Section 5), 5 (Section 4), and 6 (Theorem 6.1).

We introduce the sequencé; = ¢(fr,s,ys) — ¢(ps), s = 1,...,n, which is a martingale
difference sequence with respect to the filtration gendrhiethelUs, s = 1,...,n. We denote
Ul = (Uy,...,U;). Foralls = 1,...,n, we note that

E[X2|U7™) =B [(0(fr.005) — €p)* | UF7] < E[e(p)? | UF7Y] < Bl(p,),

so that summing ovet, we bounded the conditional variances as

t t
Vi=> E[XZ|U;' < B> Up,)
s=1 s=1
forallt=1,...,n.
We now apply Corollary A.1, and get that with probability @astl — 6,

t
Vi=1,..n S U(freus) < Lan+\/2(BLan + B)In(n/) + (V2/3)BIn(n/s) |
s=1

where we denoted the (conditional) expected cumulative dbshe forecaster by

t
Z/A,n = Zes(ps) .
s=1

Substituting the bound of Theorem 2.5 and performing somelsi algebra, we have proved
the following corollary of it.

COROLLARY 2.1. The exponentially weighted average forecaster (2.2) witing parameter

n:%ln <1+ QBEHN> ) whereL > 0,
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achieves, for all» and for all possible values of the lossgs € [0, B] such thatL} < L, and
with probability 1 — 6,
t t
Vt=1,...,n, ;afzs,s,ys) - iz@;gNgﬂ(fi,s,ys>

2
5

We may drop the conditiod; < L and replace. by L} by applying the above argument to
a doubling version of the forecaster of Theorem 2.5, or tofargcaster achieving the bound of
Theorem 2.5 without previous knowledge of a boundign like the one of AuCeGe0] or the
one of Corollary 4.3.

N
<2v2y/BLIn "T +2BY4 LY max{1,In NYY4\/In(n/6) + 2B In

REMARK 2.2. (Improved deviations against oblivious opponentBl)case of an oblivious
opponent, we may drop the exthan terms, by applying Bernstein's inequality backwards, see
the techniques used in Section 4.3 of Chapter 5.

3.3.3. Hannan consistencyThe notion of Hannan consistency is the non-expected counte
part of the uniform minimization of the expected regret &ddn the previous sections. According
to Hannan Han57], we define a forecaster to lfelannan)-consistenif for all strategies of the
opponent player,

. 1< R
lim sup — (Z C(frtsyt) —j_qunNZK(fj,uyt)> =0 as,
t=1 T =1

n—oo N

where the almost sure convergence is with respect to thdiamyxiandomization the forecaster
has access to. This property rules out the possibility tiateégret is much larger than its expected
value with a significant probability.

The Borel-Cantelli lemma, together with the martingaléntéques of Subsection 3.3.1, shows
that the forecaster of Theorem 2.3 is Hannan consistent.

4. Multi-armed bandit prediction

In many prediction problems the forecaster, after formimyeadiction, is able to measure his
loss (or reward) but he does not have access to what wouldhzgogened had he chosen another
possible prediction. This is especially important in gaimeoty, when one is forced to play an
unknown game. Such prediction problems have been knowruisarmed bandit problemshe
name refers to a gambler who plays a pool of slot machinete¢cabne-armed bandit” in the
U.S.). The gambler places his bet each time on a possiblgrdiit slot machine and his goal is to
win almost as much as if he had known in advance which slot maakould have returned the
maximal total reward.

This problem has been widely studied both in a stochasticimmadworst-case setting. The
worst-case or adversarial setting considered in thisghess first investigated by Baid3dn69
(see also Megiddaleg8()). Hannan consistent strategies were constructed by fFasteVohra
[FoVo9g, Auer, Cesa-Bianchi, Freund, and SchapieCeFrSc04, and Hart and Mas Colell
[HaMa00, HaMa0Z] (see also Fudenberg and LevirfeuLe98]). We recall below the strategy
considered in Auer, Cesa-Bianchi, Freund, and Schapit€gFrSc04 and their main result (see
also Auer Pue02), but start first with a simple strategy which handles onpected regret.

In almost the whole thesis, we consider loss games, in whicdcsters and experts suffer
losses, and do not get payoffs. While this seems only a legifference, in some situations,
there may be an asymmetry between loss games and gain gae&dh@pter 4 for a more precise
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definition and comparison of the two games). In the bandtinggtthe asymmetry appears at
two places. First, it is easy to design simple forecastegs, forecasters using no shifting on the
probability distributions as is the case in step (4) in Fegdirand that have expected regrets of the
order of/n in bandit loss games. On the contrary, it seems that we mapiexinly in bandit
gain games forecasting strategies whose (hon-expectgat is with overwhelming probability
of the order of,/n. But of course, if one is only interested in bounds dependimg and V, it
is easy to reduce a gain game to a loss game, and vice vers@tiapeer 4), and thus, Theorem
2.7 below extends to gain games, whereas Theorem 2.8 iscoliyva reduction to a gain game.
Problems arise only when one wants bounds that are improwsre small losses, see Section
4.4 in Chapter 4 for more details.

For expected regret in loss games, we consider the incramgpdate (2.5) of the exponen-
tially weighted average forecaster, run however on thenegéid losses given by

lip=—"Z,, i=1,...,Nandt=12,...,

whereZ; ; = 1if I; = i and0 otherwise. These are indeed estimators since we obégrifeand
only if I; = i. Note that these estimators are unbiased,

E |G| U = b

More precisely, the forecaster draws its prediction at douait random according to the prob-
ability distributionp, given, fort > 2, by

Utf/i t—1
2.7 it = N . .
( ) Pit Zjv—l emLJt 1
t
~ ~ 2In N
where fort > 1, L; ; = Zﬁm andn; = Nt

s=1
THEOREM2.7. Assume the loss function is boundedbini]. The expected regret of the above
forecaster against any opponent player is bounded by

Zﬁ J1t5Yt) Zg(fj,tayt)] <2v2y/(n+1)NInN .
=1

max E
j_

PROOF We combine Lemmas 4.3 and 4.5 to get

n n

(28) Zzpzt&t— mln Z ]t\2lnN lzntzpzt&t7

t=1 i=1

and use the facts that by the definition of ﬂa@,
N 52

N
~ 14

Zpi,t&;t = U(fr.t,yt) and szt it = Z pz—t it -

i=1 i=1 Lt
The expectation of the second sum is less thé,nand therefore, taking expectations in both
sides of (2.8) (and using that the expectation of a maximumase than the maximum of the
expectations), we get
2InN N &

+ = Nt -
M+t 2

j=1,.,N

max | Zg(f[t,t,yt)_zg(fj,tayt) <
t=1 t=1

Substituting the proposed values fgrconcludes the proof. O
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Algorithm Exp3.P

Parameters: Positive reals3, n, ~.

Initialization: w;o =1andp;; =1/Nfori=1,...,N.
Foreachround=1,2,...

(1) choose expett, according to the probability distributiop,;
(2) calculate the estimated gains
1 — 4y B
— L=+ ——
2t 7t
(3) update the weights; ; = w; ;_1€"9;
(4) calculate the updated probability distribution

Wit Y .
Pi,t+1=(1—7)N7’+—, i=1,...,N.
Zj:le,t N

git =

FIGURE 4. Algorithm ExP3.P for prediction in a multi-armed bandit setting
(first introduced in AuCeFrSc03).

For the forecaster defined in (2.7), little can be said caringrthe deviations of the regret
with respect to its average value, since we have no obviousdon the estimated Iosség (as
we ignore how thep; ; behave). In particular, the techniques of Section 3.3 éalbwer bound
with overwhelming probabilityy";" Zj,t by its (conditional) expectation; ,. This is why Auer,
Cesa-Bianchi, Freund and SchapifeiCeFrSc03 introduce a modified forecaster, whose (non-
expected) regret at round may be bounded by a quantity of the order@f,/nN log(nN)).
Their analysis was recently improved by Cesa-Bianchi angbku[CeLu05] and is summarized
in the following theorem.

THEOREM 2.8. Assume the loss function is bounded[inl]. For anyd €]0, 1], for any
n > (1/N)In(N/¢), if the forecaster of Figure 4 is run with parameters

In(N/6 6N
/8 = ( / ) ) 7= —ﬁ ) n= i )
nN 4+ 0 3N
then with probabilityl — 4, its (non-expected) regret is bounded as

- R In N
;e(fft,tayt) - j:T?EN;K(fj,tayt) < 64/ nN IH(N/5) + R

The above forecaster may be turned into an on-line algorttrahdoes not require previous
knowledge of the time horizon by applying the techniques of Section 2.2. Auer, Cesa-Bianc
Freund and SchapireAiCeFrSc03 also propose a general lower bound on the regret. (The
simpler model of constant expert predictions consideredartheorem is discussed in detail in the
appendix of this chapter.)

THEOREM 2.9. There exist an outcome spageand a loss functior? : N x ) — [0, 1],
such that, for allvV > 2 and for alln > 1, the cumulative (expected) regret of any (randomized)
forecaster that gets constant expert predictigis = j forall j = 1,..., N andt = 1,2,...,
while predicting a sequence afoutcomes in a bandit setting, satisfies the inequality

- N Loy
sup (E [;E(Ibyt)] _Z:IEIH’N;E(Z?yt)> = 2—0H11D{ an TL} .

y17"')yn€y
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OPEN QUESTION 2.1. We note here that the minimax orders of magnitude fordgeet in a
bandit setting (see Section 5) are not completely known Jeeorem 2.9 only indicates that the
bound of Theorem 2.8 is optimal up to the logarithmic fagfdn N. Though, in view of Section
5.3 below and Theorem 5.5, we conjecture that this factoecessary, it is still an open question
to prove &(vnN In N) lower bound on the (expected) regret in a bandit setting.

5. Minimax orders of magnitude for the regret

5.1. Formal definition of the minimax value. We described the problem of sequential pre-
diction with expert advice in Figure 1 of Section 1. With th&ation therein, grediction setting
is formed by a prediction spacg, an outcome spac®, and a loss functiod : X x ) — R. For
given parameters, N > 1, we define the minimax (expected) regret of a given predictietting
(X, ), ¢) with N experts and till roundk by

n n
(2.9) V¥ )y = infsupE ;a@,y» —j:rgigN;afj,t,yt) :
where the supremum is over all possible (deterministigteagies of the environment, and the
infimum is over all possible (randomized) strategies of tred¢aster. The expectation in the above
expression is with respect to the auxiliary randomizathmnforecaster uses. Note that the strategy
of the environment consists both in the choice of the experéslictions and the outcomes. Since
we take first the supremum, we may assume without loss of giyethat the strategies of the
environment are deterministic. Note that the minimax (expd) regret corresponds to the value
of ann stage repeated zero-sum game.

We focus below on minimax expected regrets, but we could tafiaed a notion of minimax
1 — § non-expected regret, where we would have taken the smhalhestd on the regret over all
spaces of probability at least— ¢ with respect to the auxiliary randomization (see the contmen
after the statement of Theorem 5.5).

In the subsequent chapters, we often consider predictiingewhere there are no experts, in
the sense that the forecaster is only supplied Withonstant experts and the environment simply
chooses the outcomes. These settings correspoAtd#o{1,..., N}, and the experts are then
called actions, see the appendix of this chapter for moraildetSometimes we even simplify
further the model by considering oblivious environmentkjolr do not take the forecaster’s pre-
dictions into consideration and apparently choose theoows in advance, see Section 1.4. The
minimax expected regret in prediction settings, ..., N}, ), ¢) with constant actions, till round
n and against oblivious opponents takes the simple form

n N n

U((;:g) = inf sup <Z meﬁ(z’,yt) —u inNZE(j, yt)> ,
vrEY" \1=1 i=1 I=h

where the infimum is still taken over all feasible (randordizstrategies of the environment, and

where we use the notation of Section 1.3.

In this thesis, we actually work with general loss functioasd are not interested in possible
refinements for specific loss functions, like the square, ltves logarithmic loss or the 0-1 loss,
see CeFrHaHeScWa971, [Lug01], [CeLu05] for sharper minimax bounds with these losses. The
only restriction we are ready to assume on the class of giedisettings is that they correspond
to bounded loss functions, say|[ih 1]. We focus therefore on the minimax problem given by

V(n,N) _ sup V(n,N) and U(n,N) _ sup u(n,N) .
(X,9),£:XxY—[0,1] (X..8) Y, 0:XxY—[0,1] (2,
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Note that by their definitiongy ) > (N,

REMARK 2.3. We defined above the minimax problem byua inf sup. This is the only
way if we want to consider all feasible forecasters, sinedéfinition of the latter relies on the
underlying decision and outcome spaces. However, if, asdtet] at the beginning of the appendix
of this chapter, we restrict our attention to those foresrasivhose update rules are based only on
the experts’ losses, then we may consider the minimax pmolgigen byinf sup sup, where the
first infimum is restricted to the loss based forecastersfithesupremum is over all prediction
settings with loss functions taking values[ih 1], and the second one is over all strategies of
the environment. (The interpretation is that the oppondeygr also chooses the game.) Since
supinfsup is less thaninf sup sup, the second problem is actually harder (we need to find a
strategy which is good for all prediction settings). It heeeturns out that we solMaothminimax
problems in the next section.

5.2. Definition of a solution of the minimax problem. We are interested in the orders of
magnitude inn and N of V(") (and U(™")). We say that the minimax rate im and N is
Yn, ) Where(y, ny)n>1, N1 IS @ sequence of nonnegative numbers, whenever there exists
positive constants, v such that for allh and NV sufficiently large,

Uhp,N)y < VN < VY(n,N) -

We seek the simplespossible expressions faor.

We say that a forecaster issalution of the minimax probleifithere exists a constamt> 0
such that its expected loss, for all possible predictiotirggt with bounded losses and against
all strategies of the opponent, is less thap,, ), at least forn and N sufficiently large. (The
forecaster’s prediction rule is loss based, see Remark 2.3.

The usual methodology is first to get upper bounds on theyrate) by exhibiting a general
forecaster. For instance, Theorem 2.3 shows that in the lodsidered in this chaptet;,, y) <
VnInN. Lower bounds ony, ny may be achieved by exhibiting a precise prediction setting
X, Y, £ such that in this setting, all forecasters are bound to saffieexpected regret more than
an, Ny, Wherea > 0 is a universal constant. We often take (see, e.g., Theorgt5= N and
Y = [0, 1], as well as oblivious opponents, define precigetiepending on the new model, and
restrict the forecaster to use only théfirst constant actions. This way, we get a lower bound
for U(N) < V(N "which is enough for our purposes. We prove in the next sedtiat in the
model considered in this chapter,, yy > vnIn N. This shows that the exponentially weighted
average predictor of Theorem 2.3 is a solution of the minipr@blem, hence its optimality in a
minimax sense.

5.3. The optimality of the exponentially weighted majority predictor. In this section we
prove the following main result.

THEOREM 2.10. The minimax expected regret is asymptotically lower bodrate
Vv (n.N)
lim lim ———— >
N—oon—00  /(n/2)In N

This theorem shows in particular that, 5y > vnIn N, as claimed above, and indicates also
that the leading factor in the bound of Theorem 2.1 is optitid thus have not only exhibited the
minimax rates inn and NV, but also the asymptotically optimal constant. (Compar@uestion
5.2)

Stor instance, we prefep,, ny = vnIn N to ¢, vy = (1+1/n) vVnin N
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Usual techniques for computing lower bounds on the minimalyes rely on inductive ar-
guments and somewhat tedious exact computations, seethe.gomputations of (lower bounds
on) the minimax values in ChungChu94] (see also CeFrHaHeScWa91) who considers the
model of this chapter, and Helmbold and PanizdaRPa97 for the model of Chapter 5, Mertens,
Sorin and ZamirlleSoZa94 for the model of Chapter 6. These techniques may lead haweve
improved leading constants in the lower bounds with resjettte methods we describe next.

Another solution is to consider oblivious opponents, andlelobound the supremum over
all possible outcome sequences by a suitable randomizaticine outcomes, as suggested by
Auer, Cesa-Bianchi, Freund and Schap&aCeFrSc0d in a bandit setting, see alsbyg01] and
[CeLu0yg].

We illustrate this in the model considered in this chaptecdnysidering the prediction setting
of on-line classification, wher& = Y = {0, 1} and/(z,y) = I|,,, and propose a proof inspired
from [CeFrHaHeScWa97 and [Lug01].

PROOF We assume the environment chooses both the experts’ poedi¢}; ;, j = 1,..., NV,
t = 1,...,n, and the outcome¥;, t = 1,...,n, all independently at random, according to a
common symmetric Bernoulli law. That is, we consider theo$etll possible outcome sequences
(y1,-..,yn) € {0,1}™ and all possible sequences of experts’ advitgss {0,1}, j =1,..., N,
t = 1,...,n, and put uniform probability weights on the elements of tbethus obtained. In
particular, as a worst-case bound is worse than an averame bae get

veN) > infE Z]Ixﬁéyt] mln Z]I (Fj2Yi] |
t=1 N

where the expectation is with respect to the uniform prdb;alnilstrlbutlon on the experts’ advices
and on the outcomes, as well as to the forecasters’ auxiiergomization, whereas the infimum is
over all possible forecasting strategies (andithe = 1,. .., n, denote the sequence of predictions
formed by each of these possible forecasters).

For all forecasting strategies, since thg are i.i.d. according to a Bernoulli distribution,
E[liz,v,] = 1/2. Since theF;; are independent of thg,, all of them with common symmetric
Bernoulli law, we may see, by conditioning, that

nin ZH B & min ZFm

where the equality means equallty of the distributions. r@fme, we have a simple lower bound
in closed form forl/ (%),

2

n 1 n
E i Fi.|==-E ;
j:l{lmN; 7t 2 L:Hllaxzv; Uj’t] ’
where theo;;, j = 1,...,N,t = 1,2,..., are i.i.d. random variables distributed according to a
symmetric Rademacher law, that is, they take the vakieand1 with equal probabilitied /2.
We may now open the toolbox of probability, and conclude tr@pof Theorem 2.10 by

using that

n
lim lim ———— max oit| =1,
N — 00 Nn—00 \/_\/2111 [ tz:; j’t]
see CeFrHaHeScWa97 Lemma 6], see alsd.[ig01]. O
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Appendix: On the pertinence of the notion of regret for smalldecision spaces

In the subsequent chapters, we often concentrate on poedmettings of the form¥ =
{1,..., N} and where there are no experts. We explain first here whydfetia serious restric-
tion, and then discuss the meaning of the notion of regreiew @of some recent criticisms.

The constant expert model. Since we seek forecasting algorithms that make assumptions
neither on the structure of the outcome spXagor on the structure of the loss functiéronly the
values of the losses of the expefts, . . ., £, matter. All forecasters introduced below and in the
subsequent chapters rely only on these losses. Thus fodkisithat do not need assumptions
on the loss function to be dealt with we may concentrate orsflyeiences of losses rather than
on the sequences of experts’ advice and outcomes. Thisevilido case for all the models in this
thesis except the one of Chapter 6 (see condition (6.1))alseeRemark 5.1. Note that this way,
we may also think of loss functions that change with time at thepend on an external state of
Nature, see also Remark 3.3.

Consequently, we henceforth consider a simpler settingenthere are no experts, in the sense
that the forecaster is supplied witth constant experts. Forall=1,2,...andallj =1,..., N,
fj+ = j, where the prediction spaced$= {1,..., N}, up to a relabelling. The constant experts
may be identified with (constant) actions. We are then isteckin performing almost as well as
the best of these constant actions, that is, the regret isedkéis

R, = ;E(Imyt) ~ ?iENE(j’ Yt) -

Interpretation of the regret against constant actions. The only drawback of this reduction
is the interpretation of the regret. Sometimes, it may b¢ juseasonable or meaningless to
compare the forecaster’s performance to the performaneecoistant action, see for instance
Remark 6.1, and some other times, the comparison is inegestee, e.g., Example 6.1 or the
problem of sequential investment in the stock market deedrin Chapter 7.

Another (more serious) criticism is in de Farias and Megiflé@Me03. Recall that in the
simplified model, we compare the decision-maker's cumeddbiss to the smallest of the

wherej ranges ovef1,..., N}. [FaMe03 points out that if we had constantly played actifn
then the outcome sequengg -, . . . would have been different too. Ideally, one would compare,
with the notation of Section 1.4, to

L;7n = Zg(,%gt(,% 7])) )
t=1

but these quantities are not available to the forecastérer€fore, FaMe03] proposes new mea-
sures of the feelings of regret.) Note that this criticismegsentially grounded only in the constant
action model, and to answer it we propose an argument sitoildre one used later in Section 2
of Chapter 7. There, we compare the forecaster to the clabe aptimal strategies for i.i.d. (or
stationary) markets, and the latter is formed by the sedatbnstantly rebalanced portfolios. In
the same way, we note that in the setting of prediction witteeixadvice, if the outcomes were re-
alizations of an i.i.d. (or stationary) sequence of randamables, then the optimal strategy would
be given by playing constantly one of tiepossible actions. Of course, we avoid such stochastic
assumptions, but interestingly enough it seems that theweagneasure the regret is one of the
last tracks of these widely used stochastic models.






CHAPTER 3

Internal regret in prediction with expert advice

In this chapter, we study internal regret in prediction véikpert advice. The notion of inter-
nal regret plays a key role in game theory and is concerndd awihsistent modifications of our
forecasting strategy. We show a general conversion tridketove no-internal-regret forecasters
from no-external-regret ones. This trick is also illustchbn the multi-armed bandit problem, and
is extended to deal with a generalization of internal regnetwn as swap regret. We discuss the
optimality and the pertinence of the introduced stratefiestating lower bounds on the internal
regret in two prediction settings, one of them is predictidth expert advice and bounded losses,
the other one is sequential probability assignment.

Contents
1. Links between external and internal regret 48
1.1. Definition of internal regret 48
1.2. Ageneral way to design internal regret minimizing aidpons 50
1.3. Swap regret and wide range regret 53
1.4. The case of limited feedback 54
2.  Minimax lower bounds on internal regret 57
2.1. A general lower bound on internal regret in an expetirggt 57
2.2. Interpretation of internal regret as an extremum ofgrerance 59

Though this chapter is partially based on Section 33t£ (105], most of its material is pub-
lished here for the first time.

We recall in the introductory chapter that in the on-linedicéon problem, the goal is to
minimize the predictor's cumulative loss with respect te thest cumulative loss in a pool of
experts. In a certain equivalent game-theoretic formutadf the problem, this is the same as
minimizing the predictor'sxternal regretsee FoVo99. External regret measures the difference
between the predictor's cumulative loss and that of the brgert. However, another notion
of regret, callednternal regretin [FoVo99 has also been in the focus of attention mostly in
the theory of playing repeated games, deeMo98, FoVo99, [FuLe99], [HaMa00, HaMa01],
[CeLu03]. (Internal regret is often referred to as conditional e¢gn the game-theory community,
see Har04].) Roughly speaking, a predictor has a small internal reififer each pair of experts
(i,7), the predictor does not regret of not having followed expezach time it followed expert
j. Itis easy to see that requiring a small internal regret isogendifficult problem since a small
internal regret in the prediction problem implies smallegrl regret as well. In this chapter, we
first define precisely the notions of internal and swap regietroduce a general conversion trick
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to design internal regret minimizing forecasters, and Hirby stating lower bounds on internal
regret in two prediction settings, one of them is predictidth expert advice and bounded losses,
the other one is sequential probability assignment.

1. Links between external and internal regret

1.1. Definition of internal regret. We use the notation of Chapter 2. Internal regret is con-
cerned with consistent modifications of a given forecassimgtegy. Each of these possible mod-
ifications is parameterized by a departure function {1,..., N} — {1,...,N}. Forinternal
regret we restrict our attention to functiors that only differ from identity in one point. That is,
we only consider functions for which there exists a pai j such thatb(i) = j, and®(k) = k
for all k # 1.

After roundn, the cumulative loss of the forecaster is compared to theutative loss that
would have been accumulated had the forecaster chosent @xey instead of experf; at all
roundst, t = 1,...,n. Thatis, for a given paifi, j), one is interested in modifications of the
predictor’'s strategy obtained by replacing the action @&f fibrecaster by expert each time it
chooses expelt If no such consistent modification results in a much smaltmumulated loss,
then the strategy is said to have small internal regret (ointewnal regret). Formally, we seek
strategies achieving

1< 1 &
E ZE (f[t,t7 yt) - E mqinz 14 (fq)(lt),t? yt) = 0(1) a.s.,
t=1 t=1

where the minimization is over all functiors that only differ from identity in one point ang; ;
denotes the prediction of expeitat roundt. Such strategies are said Hannan consistent with
respect to internal regret.

The notion of internal regret has been shown to be usefuléarthkory of equilibria of re-
peated games. Foster and VohF@Y097, FoVo99 showed that if all players of a finite game
choose a strategy that is Hannan consistent with respeataimal regret, then the joint empirical
frequencies of play converge to the set of correlated duyiglof the game (see also Fudenberg and
Levine [FuLe95], Hart and Mas-ColellfHaMa00]; see also the more general results of Chapter
8).

Now, to get Hannan consistency with respect to internaletegdtr is enough to control uni-
formly the expectation of the internal regret with respecthie auxiliary randomization the fore-
casters uses. Martingales inequalities combined with theelBCantelli lemma then show the
desired Hannan consistency, just as this was the case fdetternal) regret in Section 3.3 of
Chapter 2. Therefore we concentrate below on expectedhaitezgret.

Recall that the definition of external regret is based on traparison to an external pool of
strategies, the ones given by each expert, and that in thataefiof the (expected) internal regret
one is interested in modifications of the predictor's strgtebtained by replacing the action of
the forecaster by expejteach time it chooses expert Because we work in expectation, this is
equivalent to selecting an expert according to the disﬂthpi_’j obtained fromp, by putting
probability mass 0 or andp;; + p;; on j. This transformation is called the — j modified
strategy Recall also that we require that none of these modifiedegfied is much better than
the original strategy, that is, we seek strategies suchthieadlifference between their (expected)
cumulative loss and that of the best modified strategy islsilis,

n n ) )
. i
;&(pt) e > upi™),

t=1
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Regimes lag Iy Loy
1<t<n/3 o 1 5
n/3+1<t<2n/3 1 0 5
2n/3+1<t<n 2 1 0

TABLE 1. The losses for Example 3.1.

where for all probability distributiong = (¢1,...,qn),

N N
0(q) = arles = aul(fre )
k=1 k=1

should be as small as possible. This quantity igé&xpected) internal regredf the forecaster. The
internal regret may be re-written as
n
ma. T(iq
el N} ; e
wherer(; ;). = pit(lit — L) Thus,r( ;) , expresses the predictor’s regret of having put the
probability masg; ; on thei-th expert instead of on thgeth one, and

R(i,j),n = Zr(m)ﬂt = Zpi,t(fz‘,t - ej,t)
t=1 t=1

is the corresponding cumulative regret. Similarly to theecaf the external regret, if this quantity
is uniformly o(n) over all possible values of the losses, then the correspgratiedictor is said to
exhibit no (expected) internal regret.

Now clearly, the external regret of the predictor equals

N
(3.1) j:HllaXN; R jyn < Ni,jeIﬁE}.?.(,N} R jym s

which shows that any algorithm with a small (i.e., sublinean) (expected) internal regret also
has a small (expected) external regret. (And the same caaith¢osupper bound non-expected
external regret by non-expected internal regret.) On therdband, it is easy to see that a small
external regret does not imply small internal regret. In,fas it is shown in the next example, even
the exponentially weighted average algorithm defined albwag have a linearly growing internal

regret.

ExAMPLE 3.1. (Weighted average predictor has a large internal regr&onsider the follow-
ing example with three expertd, B, andC. Letn be a large multiple 03 and assume that time
is divided in three equally long regimes, characterized lbprastant loss for each expert. These
losses are summarized in Table 1. We claim that the régjigt) ,, of B versusC' grows linearly
with n, that is,

n—oo 1,

T
lim inf — g pBt (Ut —Llot) =7 >0,
t=1

where
e_nLB,t

pB’t - e_nLA,t _|_ e_nLB,t _|_ e_nLC,t
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denotes the weight assigned by the exponentially weightethge predictor to expeR, where
Liy = ng:l ¢; s denotes the cumulative loss of expedndn is chosen to minimize the exter-
nal regret, that isy = (1/5)y/(8ln3)/n = 1/(K+/n) with K = 5/v/81n3, see Theorem 2.1.
(Note that the same argument leads to a similar lower boung fo v/\/n, wherey > 0 is any
constant.) The intuition behind this example is that at the @ the second regime the predictor
quickly switches fromA to B, and the weight of experf' can never recover because of its disas-
trous behavior in the first two regimes. But since expgéliehaves much better tha@hin the third
regime, the weighted average predictor will regret of notitg followed the advice of” each
time it followed B.

More precisely, we show that during the first two regimes,rthmber of times whepg ; is
more thare is of the order of,/n and that, in the third regime)s ; is always more than a fixed
constant {/3, say). This is illustrated in Figure 1. In the first regime,uffisient condition for

1
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FIGURE 1. The evolution of the weight assignedon Example 3.1 fom = 10000.

Pt < €18 thate— "B+ < e. This occurs whenever > t, = K (—Ine) y/n. For the second
regime, we lower bound the time instantwhenpp ; gets larger thams. To this end, note that
pB+ = € implies

(1 — 5)6—77L3,t >e (e—nLA,t + e—ﬁLc,t) > 56—77LA¢

9

which leads ta; > %"JrK <ln ﬁ) /n. Finally, in the third regime, we have at each time instant

Lpt < LayandLp: < Lcy, so thatpp; > 1/3. Putting these three steps together, we obtain
the following lower bound for the internal regret BfversusC:

Y ppi(le—Log) > 25 <—ns + K <ln . E) \/ﬁ> ;
=1 9 3 €

which is of the ordenr, for a sufficiently smalk > 0.

1.2. A general way to design internal regret minimizing algathms. The example above
shows that special algorithms need to be designed to gearansmall internal regret. Indeed,
such predictors exist, as was shown BpY098, see alsoffuLe99], [HaMa00, HaMaO01]. Here
we briefly give a new insight on predictors studied @elLu03] (see the remark at the end of
this section), and based oHl4gMa01], as well as a new, simple analysis of their performance
guarantees.

Consider the case of sequential prediction under expeit@adwith N experts and losses
bounded betweef and B. We describe now a simple way of converting any no exterrgtete
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forecaster into a no internal regret forecaster, that isshaev how a Hannan consistent forecaster
can be turned into a Hannan consistent forecaster with cespénternal regret. (Thus, in this
precise sense, we can say, despite of Example 3.1, thatexaihal regret implies small internal
regret.) Such a conversion method may be defined recursigeigliows.

Attimet = 1, letp; = (1/N,...,1/N) be the uniform distribution over tha&" actions.
Atroundt > 2, the forecaster has already chosen and predicted accawitige probability
distributionsp,, ...,p,_;. We defineN(N — 1) fictitious experts, indexed by pairs of integers
i # j, by their losses at time instants< s < ¢t — 1, which equals(p 2_’3) where we re-used the
notation of the previous section.

Define now a probability distribution\; over the pairg £ j by running one of the algorithms
of Section 2 of Chapter 2, on this pool of fictitious experts] ahoosep, such that the fixed point
equality
(3.2) = Y. Aujup

(1,9):i#]
holds. (We say that\; inducesp,.) The existence and the practical computation of suphia an

application of Lemma 3.1 below.
For instanceA; = (A ;) )i May be given by

exp (—n 0] L(pL))
Z(k,z);k;ﬁl exp (—77 Zi;ll fs(pé’,_’l)> ’

tuned, as suggested by the theory, wjta 4B~!,/In N/n in case of known time horizon.
Indeed, this choice ofi and the application of the bound proposed by Theorem 2.1 (wit
N(N — 1) upper bounded byv?) lead to

ZZA(%J L (p <m1nZ€t +Bann
t=1 i#j
that is, recalling the fixed point equality (3.2), the cuntiviinternal regret of the above strategy

is bounded by
mjx R jyn < BVnln N
J

Note that this improves the bound given in Corollary 8@©€[Lu03], by a factor of two.

The same analysis can be carried over for the polynomiacésters or the time-adaptive
version of the exponentially weighted forecaster, usingdrems 2.3 and 2.4, and is summarized
in the following theorem.

AG gyt =

THEOREM 3.1. The above exponentially weighted predictor achievesotmify over all pos-
sible values of the lossés,; € [0, B],

mij <BvnIn N

(¥

With a time-adaptive tuning parameter the upper bound besom

max R ;) n <2ann + hle).

i#j

Finally, with a polynomial predictor of ordep > 1,

ijR(”) < By/(p—1)nN4/p .
]
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REMARK 3.1. The conversion trick illustrated above is a generaktwhich extends to any
weighted average predictor, that is, to any predictor whidhkeach round, maintains one weight
per expert. More precisely, any weighted average predwhmse external regret is small may be
converted into a strategy whose internal regret remaindl.sfrtas will be illustrated extensively
in Chapter 7, first for convex loss functions in Sections fd @.2 (see also Chapter 8), for exp-
concave ones in Sections 5.1 and 5.2, and even for a funtimstsimply continuous, in Section
7. (See also the summary in Table 3 of the cited chapter.)

Note that in the case of randomized prediction under expiita [BIMa05] propose a differ-
ent conversion trick, with about the same algorithmic canxity, see the next two sections below.
Such tricks are valuable to extend results in an effortlemg finom the case of external to internal
regret, like the time-adaptive exponentially weightedrage predictor suited for the minimization
of internal regret proposed by Theorem 3.1, or the analysBeotion 6 in Chapter 7.

It only remains to see the existence and the way to computea ficint of the equality (3.2).
The following lemma proposes a more general result, neaatesubsequent analysis in Section
5.1. The meaning of this result is that each probabilityritistion over the expert pairs induces
naturally a probability distribution over the experts.

LEMMA 3.1. Let g be a probability distribution over thé&/ experts. For all probability dis-
tributions A over the pairs of different experis# j anda € [0, 1], there exists a probability
distribution p over the experts such that

p=(1-0q) Z A(i,j)pi—d +aq.
i#j
Moreover,p may be easily computed by a Gaussian elimination over a siffipk N matrix.
PROOF The equality
p=(1-a) Z AP 7 +ag
i#]
means that for alin € {1,..., N},

N
pm=(1—0a)> Ao +agm | Y pi]|
i =1

or equivalently,

@ (1 - Qm) + (1 - a) Z A(m,j) Pm = Z ((1 - CY)A(z,m) + CYQm) pi,
j#m i#m
that is,p is an element of the kernel of the matrixdefined by
o ifi£m, Ap i =wpn,
® Amm = = Xjsm, 15N Wi
where, fori # m,
Wi = (1 — @) Agm) + agm -

The elements ol have a modulus less than 1. An element of the kernel & a fixed point
of the matrixS = A + Iy, wherely is the N x N identity matrix. ButS is a column stochastic
matrix (its columns are probability distributions), andshadmits a probability distributiop as a
fixed point.

[FoVo99 suggest a Gaussian elimination method adeior the practical computation gj.

O
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REMARK 3.2. [CeLu03] show that, writingr; for the N(N — 1)-vector with components
T(ij),t aNdRy = ng:l rs, any predictor satisfying the so-called “Blackwell coiafit’
(3.3) VO(R;—1) -1, <0

forallt > 1, with ® being either an exponential potential

N
O(u) = " exp (nu;)
i=1

with n possibly depending oh (when time-adaptive versions are considered) or a polyalomi

potential
N

O(u) = (w)
=1
has the performance guarantees given by Theorem 3.1, seSedtion 3.2 of Chapter 8.
But the choice (3.2) ensures that the Blackwell conditiosaissfied with an equality, as

V<I>(Rt_1) Ty

N
= Z iy Z Vi) ®Ri-1)pit — Z Vi @Re-1)pjie
i=1

j=1,....N, j#i J=1,..,N, j#i
(see, e.g.,CeLu03] for the details), which equals 0 as soon as
Z Vi ®Ri-1)pie — Z Vi) @Re—1)pje =0
j=1,..,N, j#i j=1,..,N, j#i
foralli = 1,...,N. The latter set of equations may be seen to be equivalent2} (8ith the
choice Vi @(Rs)
(i,9) t—1
4

Bt = >kt Ve @Re-1)
which was indeed the probability distribution proposed Iy tonversion trick introduced at the
beginning of this section.

1.3. Swap regret and wide range regret.In this section, we essentially discuss and compare
the conversion trick exposed in the previous section anatigeproposed by Blum and Mansour
[BIMa05]. We do this by introducing a generalization of internalregcknown as swap regret.

Section 1.1 was concerned with consistent modification®mafchsting strategies parameter-
ized by departure function® that only differ from identity in one point. We now considdl a
possible departure functiords: {1,..., N} — {1,..., N}. Formally, theswap regrebf a fore-
casting strategy is defined as

> Frey) —mind 2 (Foryem)
t=1 t=1

where the minimization is over all functions : {1,..., N} — {1,...,N} and f;; denotes the
prediction of experyj at roundt.

As explained above, we may work here with expected quasitittds easy to see that consid-
ering all departure functioné amounts to considering all linear departuges p — ¢(p). The
mappingsp — p‘—7 introduced in Section 1.1 are special cases of such lingaartiees. The
(expected) swap regret of a forecasting strategy is thenatbfis

> t(p) —min Yl (p(py) -
t=1 t=1
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where the minimization is over all linear mapping$rom the simplex of ordefV, denoted by,
into itself. Such linear modifications were already consdeby [GrJa03] and [BIMa05].

Now, by Krein-Millman theorem (see, e.g., Berg&eF90Q)), the set of all linear mappings
from the simplex into itself is the convex hull of the set of extremal linear mappings. The
latter are given by the associated to thé@, and there are therefo¥? of them. They simply
transport all probability masses from each expert to amotife may apply the conversion trick of
the previous section to this set " fictitious experts, and get a procedure whose swap regret is
bounded by a quantity of the order ¢fnIn NV = /nN In N. However, the resulting procedure
has a computational complexity of the ordeéf', at least in its straightforward implementation,
simply because we have to compute the losse¥ Sffictitious experts. (Given the matrix with
the weights computed thanks to the losses of A€ experts, the Gaussian elimination further
needed in the procedure, see Lemma 3.1, has only a commatatomplexity of the order of
N?2.)) One way around is to note that swap regret is bounded tynes internal regret, and thus,
the practical forecasting scheme of the previous sectidth (@omputational complexity of the
order of N2) guarantees a bound on its swap regret of the worse ord¥r4fIn N.

On the other hand, Blum and Mansourl1a05] procedure yields & (v/nN In N') bound
on swap regret, with a computational complexity only of theen of N2. The only drawback of
their conversion trick is that it only deals with linear Idsmctions. We recall that loss functions
in prediction with expert advice are linear in some senseallge we consider expected losses,
and these are linear in the probability distributions we T$erefore the conversion aB[Ma05]
does not extend to general convex losses, contrary to thevematroduced (see Remark 3.1).

REMARK 3.3. (Wide-range regre}. We close this section by noting, witB[Ma05], that the
departure function® could depend not only on the forecaster’s played actiorisalso on some
side-information, such as the history, an activation fiamcindicating which experts are asleep
and which experts are active, and so on. Doing so, we wouldidena finite number of those
functions Lehrer ILeh03] uses in its definition of wide-range regret. As these areountable
number, it is easy to see that our procedures can be exteodedwide-range regret procedures
thanks to classical adaptive methods like the doublinds {see Section 2.2 in Chapter 2).

1.4. The case of limited feedbackln this section, we continue the comparison between the
two conversion tricks of Remark 3.1, now from the viewpoihprediction with limited feedback.
Theorem 3.2 below shows that for multi-armed bandit préatic{see Section 4 in Chapter 2),
our conversion trick yields &(vnN In N) upper bound on the internal regret of a prediction
scheme based on the one proposed by Auer, Cesa-Bianchind;i@ud SchapirejuCeFrSc03.
Using the same methodology, it is easy to design a banditdster ensuring &(N+v/nIn N)
upper bound on the swap regret of a prediction scheme bast#te@ne of PuCeFrSc0d. In
comparison, Blum and MansouBlMa05] can only get &D(N+v/nN In N) upper bound on swap
regret. In addition, they need a very precise assumptiotn@meo external regret algorithm to be
converted (see Lemma 14 therein), and it seems that thekecsian only works for a restricted
class of Hannan consistent forecasting schemes. We alsahmadtsimilar results were obtained
by Hart and Mas-ColellflaMa02].

In bandit problems, one usually estimates losses, formghtad prediction with these esti-
mated losses, and shifts the obtained probability dididhuso that all its components are more
than a given threshold. Here, we use the conversion triokrta the weighted prediction, and then
apply similarly a shifting method. To this end, we consider setting and notation of Section 4
of Chapter 2, that is, a loss multi-armed bandit predictiamg, withN experts (or actions), and
losses bounded, say, iy 1]. We recall first a popular estimate of the losses in multiedibandit
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problems. With the notation therein, we choose the unbiaséthates given by

(3.4) Bi, ) = o0
Dit
forallt=1,2,...andi=1,...,N.
The forecaster we propose to minimize internal regret imémt by a sub-algorithm and a
master algorithm. The parametexsand~; used below are tuned as

In N .
(3.5) nt:a\/%, with o = 1/2/3, and v = Nn,

fort =1,2,.... At each round the sub-algorithm outputs a probability distribution

Lir=q

I
w = (o ><zuj>:z¢j
over the set of pairs of different actions; with the helpwgfthe master algorithm computes a
probability distributionp, over the actions.
Consider the loss estimatés, y; ) defined in (3.4). For a given distributignover{1, ..., N},

denote
N ~
k=1

Now introduce the cumulative estimated Iosses
i = Ze P, )

wherep’ ™/ denotes as above the probability distribution obtainethfpg by moving the proba-
bility massp; s fromi to j; that is, we sep’_’] =0 andp’ I = = ps,j + psi. The distributionu,
computed by the sub-algorithm is an exponentlally Welglalmfage associated to the cumulative
lossesL. 7, that i,

exp ( mL "} )

>kt €XP <—Uthj1l)

Now let p, be the probability distribution over the set of actions dediy the equation

(3.6) Yo owUp T =y

(i,3) 1#]
Such a distribution exists, and can be computed by a simple<ian elimination (see Lemma 3.1).
The master algorithm then chooses, at rounthe action/; drawn according to the probability
distribution

(3.7) pr=(1—v)p; + g}

N
wherel = (1,...,1).
To bound internal regret with overwhelming probability, need the martingale inequalities
(and the translation over the estimated losseshoCeFrSc02, see also Theorem 2.8. We do not
work out the straightforward details, and simply proposeftilowing theorem.

i—j _
Uy =

THEOREM3.2. In a bandit setting with losses bounded between 0 and 1, fiected internal
regret of the above forecasting scheme is bounded as

maXE Zp,t (4, yt) —L(J,yr)) | <10/ (n+1)NInN .
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PROOF. For a givent, the estimated losse$p. 7, y;), i # j, fall in the interval[0, N/v].
Since~; andn, are tuned as in (3.5)Vn;/v: < 1, and we may apply Lemmas 4.3 and 4.5 below
to derive

(3.8) ZZU’_)JE m1nZ€ T )
t=1 i#j

21I1N .NZ.. 2
SELLLEE N (D)
1

n+1 - Py

Fori # j, 1'7 is the vectomw such that; = 0, v; = 2, andv;, = 1 for all k # ¢ andk # j. Use
first (3.7) and then (3.6) to rewrite the first term of the ledtad side of (3.8) as

n
o B AV
SN = 3 Y e (1 i + i)
t=1 i#j t=1 i#j

n

= > (1= By 1) +Z&Z up O y)

t=1 = 1#£]
= Ze pt7yt + Z i Z 7 ( 1Z_’] yt) - z(layt)>
t=1 i#]
= Zf Py Yt) +Z ZuH’( Jsyt) f(i,yt)) -
t=1 i#]
Substituting into (3.8), we have
(3.9) maXme( i,ye) — €, yt))

(3.10) = Zz(pt,yt mmZﬁ ,yt

< 4IHN+Zn:mZut '(~piﬁj,yt> +Z%ZUHJ< i) = 0. w)) -

Mn+1 t=1 i#£] t=1 1#£]

The crux of the proof is to handle the second sum. This is dgnesing the precise form (3.4) of
the estimates, as well as the boundednegsiofo, 1],

S i (f(piﬂ,y»f =SS (pz?“k’y“)

i#£] i#j k—1 Pkt
< Zui_)j Zp’_)] since 0 < pz_t)jﬁ(k,yt) <1
it el Pkt
N
1—] ~—] 14 ka z—> —
= Z (1—) Uy ]pkﬂgj St ) 7 Z 1 it by (3.7)
k=1 i#j Pt 2753 k=1 Pkt
N
< > l(k,y)+N<2N by (3.6)and by using that,; > v,/N for all k.
k=1
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Taking expectations in (3.9), using that the expectatioa wlaximum is more than the maximum
of the expectations, and substituting the above inequaligyget

) 4In N . S v
szt i Yt) E(J,yt))] < +OANY Y
Tn+1 —1 —1 N

Recalling now (3.5), and using}_, 1/v/t < 2v/n, we conclude to

max E

max E

4
szt (4, ye) — £(J, yt))] < <E + 6a> (n+1)NIn N ,
wherea = /2/3. O

2. Minimax lower bounds on internal regret

2.1. Ageneral lower bound on internal regret in an expert sding. We define the minimax
order of the internal regret in the same way as we defined themak order of the external regret
in Section 5 of Chapter 2. Recall that the external regret forecaster is bounded by times
its internal regret, and that the minimax order of the forisern In IV (see respectively (3.1) and
Section 5 in Chapter 2). From these facts, we know that thémaixorder of the internal regret is
at leastynIn N /N. But tighter lower bounds may be achieved, as is shown below.

The idea is to reduce to the case of external regret with= 2 actions. This reduction is
not immediate, and the lower bounds on the external regréiercaseN = 2 cannot be used
directly, simply because the forecaster maintains more the weights, and spreads the mass
into N weights, one for each action. N is large, then little can be said. Especially, the “uniform”
forecaster which picks at random an action at each stepjshat = (1/N,...,1.N) for all ¢,
and suffers an internal regret less thahV, may achieve a low internal regret. We provide below
a rigorous reduction. The intuition is that the outcomessaigh that actions 3 t¥ always suffer
a maximal loss, and therefore are almost never played by aog fprecaster. The latter thus
concentrates on actions 1 and 2, which it takes some timestmglilish. The proof techniques
show that then, we are basically back to the problem of loveemiding the external regret of a
forecaster only supplied with two actions.

We denote the set of natural numbershby {1,2,...}.

THEOREM 3.3. There exist an outcome spagk a loss functiory : N x Y — [0,1], and a
universal constant > 0 such that for allN > 2 andn such thatN < 8v/3 3y/n, the cumulative
(expected) internal regret of any (randomized) forecatitat uses actions ifl, ..., N} satisfies
the inequality, against an oblivious opponent,

sup maxzpm (i) — €)= ev/i .

Y1, 7yney ;é

In particular, we prove the theorem for= 1/(64+/3).

Note that the technical condition we needmoand N basically ensures that we are not in the
trivial case where the uniform forecaster performs bettean the general forecaster introduced in
Section 1.2.

OPEN QUESTION 3.1. We note here that we still lack a factorfn N in the lower bound,
or, alternatively, the bounds on internal regret derive8eation 1.2 might be improvable. Given
the optimality of the weighted average forecaster with eespo external regret (see Section 5.3
in Chapter 2), and in view of the conversion trick of Sectio, ive however conjecture that this
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additionalv/In N factor is necessary. Perhaps this can be done by applyingisH@mma to a
family of distributions over the outcomes. This family wdube indexed by(i, j);+;, and the
proof below introduces a distribution related to the oné wwuld correspond t¢l1, 2).

A related lower bound on swap regret may be found BtiMa05]. It is of the order of
Q(v/nN), that is, the question of the additiongfln N factor is also not answered there, and
holds only under the additional condition thabe sub-exponential ifV.

PrRooOF We only sketch the proof and refer for more details to theopod Theorem 5.5 in
Section 5 of Chapter 5. We may chogge= [0, 1] and a loss functiod : N x )} — [0, 1] such
that there exist a probability space, equipped with threxdogility distributionsP, Q, R, such
that there exists a sequence of random variables. . , Y,, defined on it and taking values %
satisfying the following property. Undé¥ (resp.,Q, R), the losses

lpy=L(k,Y:), k=1,...,N,andt=1,...,N,

are independent random variables, equal tokL 3 3, with Bernoulli distribution with parameter
1/2 for k = 1, and with parametet/2 (resp.,1/2 — ¢, 1/2 + ¢) for k = 2. Then, denoting b¥Ep
(resp. Eq, Er) the expectation with respect Bo(resp.,Q, R), we note that it suffices to show that

(3.11) R, =Ep [mgxzp,t (1, V) = £(3,Yy)) | = ev/n.
t=1
Now,
R, = Ep Iglgxzpu(ﬁ(i%)—ﬁ(j%))
> Zplt (1,Y) —£(2,Y2)) | + ER th (2,Y3) — £(1,Y3))

+ Er

n
= % (EQ Zpl,t ZP%])
t=1 t=1
c n n N n
= 3 (2n —Eg sz,t Zpl,t] - 2ZEP [Z pj,t]) .
t=1 j=3 t=1

t=1
We may always assume that for al=3,..., N,

ij t] = _E]P [ijt j,YZ) —E(l n))

(otherwise (3.11) is true, and the proof is done), so that

szt Zpl,t] —4(N — 2)c\/ﬁ> )
t=1

t=1
We denote by 4 the expectation with respect to the auxiliary randomizgtamd similarly to the
proof of Theorem 5.5, we note that, thanks to Fubini’s thegre

_E]R

—EP <evn

(3.12) R, > % <2n ~Eg ~Eg

(3.13) Eq sz,t] =Q®Pall; =2].
t=1

We now use Pinsker’s inequality (see Lemma A.6 in the Appdrtdiget

(3.14) QP =2 < PRPy[; =2]+ \/%/C PPy, QuPy).
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We upper bound the Kullback-Leibler divergence thanks tmira A.5 and (A.1),
(3.15) KP@Ps, QRPA) =K (Byj2,Bija—.) < 6%,

forall 0 < ¢ < 1/v/6. We proceed similarly for the expectation undeiin (3.12), combine
(3.12)—(3.15), and perform some crude bounding,

R, > g <2n— (ip@@m 1, € {1, 2}]) — 2nV3e2 — A(N — 2)c\/5>

t=1

ne 4cN ne (1
> —(1- — )= (==
)
where we used the fact thaf < 8/3\/n andc = 1/(64v/3) in the last inequality. We choose
e = 1/(8/3) to conclude the proof. O

2.2. Interpretation of internal regret as an extremum of performance. When a forecast-
ing strategy suffers a small internal regret, this meansitl@nnot easily be improved, that is,
either it was already very efficient, or it makes so poor préalis that there is no hope to improve
its performances. Hopefully, for (randomized) predictieith expert advice, (3.1) shows that as
external regret is upper bounded Nytimes internal regret, the second case of the alternativerne
happens. This, unfortunately, is not the case for all ptiEgicsettings (see, for instance, Example
7.1 or the example below). In Chapter 7 we derive investmigategjies which, at the same time,
suffer small internal and external regret, and the examelewshows why we should not focus
only on internal regret in general prediction settings,lavthe results of Chapter 7 indicate on the
other hand that minimizing both regrets at the same is wdrilew

Consider the problem afequential probability assignmertescribed as follows (see Lugosi
[Lug01] or Catoni [CatO1] for more references and background). A forecaster refbateas
to output a probability distributiop, € X, t = 1,2,..., whereX is the set of all probability
distributions over the finite outcome spageWithout loss of generality, we takeé = {1,..., N}
andX is the real simplex of ordeN. We denote an elemepte X by p = (p1,...,pn). Now,
the loss functior? : X x Y — R, is defined by!(p,y) = —Inp(y). In this setting, in agreement
to the definitions introduced later in Chapters 7 and 8, wenddfie internal regret of a forecaster
by the difference between the cumulative losses of theraigilgorithm and of its — ;7 modified
strategy. The latter predicts wiybﬁ*j instead ofp, at each time step, where we use again the
notation of Section 1.2.

It is convenient in this framework to emphasize the depetidsnon the past, and denote
p, = p,(- [yi), wherey! ™ = (y1,...,y:—1) (andy{ is the empty sequence) is the history up to
timet¢ — 1. We note that there is a one-to-one correspondence betwesgagting strategies and
sequences of probability distributions over t3&"),,>1, given by

) = Hpt(yt\yi_l)

We similarly denote, foi  j, p%( Hpt (yelyt™
Now, the cumulative internal of a forecastlng strategy awvesequence in the setting of
sequential probability assignment equals

Iggx;apt, ye) — L (piﬁj,yt) =1In

Z_U (y7)

pn(yl)

)
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with the usual convention that(0/0) = 0.

PropPosITION3.1. The minimax value of internal regret in the sequential piubiy assign-
ment problem equals, forall > 2 and NV > 2,
i
inf max max lmM
eyt i#  pu(t)
where the infimum is taken over all possible forecasters. eld\gr, the forecaster using, =
(1/N,...,1/N) andp, = é,,, whered; is the Dirac mass orj, achieves this minimax value.

=1In2,

We omit the simple proof, and remark here that the forecgstirategy achieving the minimax
value is a very poor prediction scheme, which suffers a lasgernal regret with respect to most
finite comparison classes, though its internal regret isthallest possible. That is, this strategy
suffers a small internal regret because it is already solmtdhere is no possibility to improve it.



CHAPTER 4

Improved second-order bounds in prediction with expert advce

This chapter studies external regret in sequential piedigames with arbitrary payoffs (non-
positive or nonnegative). External regret measures tlierdiice between the payoff obtained by
the forecasting strategy and the payoff of the best actiomfadus on two important parameters:
M, the largest absolute value of any payoff, &pid the sum of squared payoffs of the best action.
Given these parameters we derive first a simple and new fetiegastrategy with regret at most
order of \/Q*(InN) + M In N, whereN is the number of actions. We extend the results to
the case where the parameters are unknown and derive sbuilads. We then devise a refined
analysis of the weighted majority forecaster, which yidddsinds of the same flavour. The proof
techniques we develop are finally applied to the adversaridti-armed bandit setting, and we
prove bounds on the performance of an online algorithm ircése where there is no lower bound
on the probability of each action. We close the chapter withediminary result about fast rates
of convergence in randomized prediction with expert adviddis wide range of applications
demonstrates the power and generality of our methodology.

Contents

1. Introduction 61
2. A new algorithm for sequential prediction 63
3. Second-order bounds for weighted majority 68
4. Applications 71
4.1. Improvements for loss games 71
4.2. Using translations of payoffs 71
4.3. Improvements for one-sided games 72
4.4. A simplified algorithm for bandit loss games 74
4.5. Fastrates in prediction with expert advice 77
5. Discussion and open problems 79
Appendix: Proof of Lemma 4.3 81

Most of this chapter is based on a joint work with Nicoldo G&anchi and Yishay Mansour.
An extended abstract of these resufeMaSt0] is to be presented aoLT'05.

1. Introduction

The study of online forecasting strategies in adversag#ings has received considerable
attention in the last few years in the computational leayditerature and elsewhere. The main
focus has been on deriving simple online algorithms thaeHew external regret. The external
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regret of an online algorithm is the difference between xgeeted payoff and the best payoff
achievable using some strategy from a given class. Ustilaidyclass includes a strategy, for each
action, which always plays that action. In a nutshell, omesteow that the average external regret
per time step vanishes, and much of the research has beethtoriprove and refine the bounds.

Ideally, in an adversarial setting one should be able to ghawthe regret with respect to any
action only depends on the variance of the observed paymfthét action. In a stochastic setting
such a result seems like the most natural bound, and deiigiagalogue in an adversarial setting
would be a fundamental result. We believe that our resulteerassignificant step toward this goal,
although, unfortunately, fall short of completely achreyit.

In order to describe our results we first set up our model atatino, and relate them to previ-
ous works. In this chapter we consider the following ganmesthtic version of the prediction-with-
expert-advice frameworkJeFrHaHeScWa97, LiWa94, Vov9§ see also Chapter 2. A forecaster
repeatedly assigns probabilities to a fixed set of actionserfach assignment, the real payoff
associated to each action is revealed and new payoffs afergbe next round. The forecaster’s
reward on each round is the average payoff of actions forrthatd, where the average is com-
puted according to the forecaster’s current probabilisigaenent. The goal of the forecaster is
to achieve, on any sequence of payoffs, a cumulative rewasa ¢o X *, the highest cumulative
payoff among all actions. As usual, we call regret the dififee betweerX ™ and the cumulative
reward achieved by the forecaster on the same payoff seguenc

The special case of “one-sided games”, when all payoffs the/eame sign (they are either al-
ways non-positive or always nonnegative) has been corsidgr Freund and Schapirersc97),
and by Auer, Cesa-Bianchi, Freund, and SchapiedeFrSc0 in a related context (see also
the whole Chapter 2, which deals only with losses, that ith wbn-positive payoffs). These pa-
pers show that Littlestone and Warmuth’s weighted majaligorithm [Liwa94] can be used as
a basic ingredient to construct a forecasting strategyesiy a regret o0 (/M| X*|In N) in
one-sided games, whereé is the number of actions and’ is a known upper bound on the size of
payoffs. (If all payoffs are non-positive, then the abseluélue of each payoff is callddssand
| X*| is the cumulative loss of the best action.) By a simple résgaif payoffs, it is possible to
reduce the more general “signed game”, in which each payigfiinhhave an arbitrary sign, to ei-
ther one of the one-sided games (note that this reductiamessknowledge af/). However, the
regret become® (M +/nln N), wheren is the number of game rounds. Recently, Allenberg and
Neeman AINe04] proposed a direct analysis of the signed game avoidingréaisction. Before
describing their results, we introduce some convenieratimst and terminology.

Our forecasting game is played in rounds. At each time step 1,2,... the forecaster
computes an assignmept = (p14, . . ., pn,) Of probabilities over théV actions. Then the payoff
vectorz; = (14, ...,7n,) € RY for timet is revealed and the forecaster’s (expected) reward is

Tt =21tP1t+ ... TINPN -

We define the cumulative reward of the forecaster)?by: 71 + ...+ 7, and the cumulative
payoff of actioni by X; , = z;1 + ... + x;,. For alln, let
Xn = z':nllfi..),(N Xin
be the cumulative payoff of the best action up to time The forecaster’s goal is to keep the
(expectedyegret X* — X,, as small as possible uniformly over
The one-sided games, mentioned above, ardas®e gamewherez; ; < 0 for all ¢ andt,
and thegain game wherez;, > 0 for all ¢ and¢. We call signed gamehe setup in which
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no assumptions are made on the sign of the payoffs. For timedigame, Allenberg and Nee-
man [AINe04] show that weighted majority (used in conjunction with a bling trick) achieves
the following: on any sequence of payoffs there exists aimgtsuch that the regret is at most
of order\/M(In N) >, |2, whereM = max;|z;,| is @ known upper bound on the size of
payoffs. Note that this bound does not relate the regretetetim|z;| + . .. + |x}| of payoff sizes
for the optimal action (i.e., the one achievig). In particular, the boun® (/M| X|In N) for
the one-sided games is only obtained if an estimat¥ pfs available in advance.

In this chapter we show new regret bounds for the signed g#&doe.analysis has two main
advantages: first, no preliminary knowledge of the paya# 8if or of the best cumulative payoff
X is needed; second, our bounds are expressed in terms of §usgeaved payoffs, such as
x?, + ...+ «7, and related forms. These quantities replace the largerstéfiiz; | + ... +
|z; »|) appearing in the previous bounds. As an application of cswlte we obtain, without any
preliminary knowledge on the payoff sequence, an improegdeat bound for the one-sided games
of the order ofy/ M min{Mn — | X;|,|X;|}(In N) (and eveny/(Mn — | X:)(| X;|/n)(In N)).

Expressions involving squared payoffs are at the core ofynamalyses in the framework of
prediction with expert advice, especially in the preserfcimited feedback. (See, for instance,
the bandit problem in Section 4 of Chapter 2 anddnCeFrSc02, and more generally prediction
under partial monitoring, see Chapters 5 and 6, as welCat iISt04a, CeLuSt04b, PiScql.
However, to the best of our knowledge, our bounds are thediirss to explicitly include second-
order information extracted from the payoff sequence. Ini@adar, our bounds are stable under
many transformations of the payoff sequence, and theref@én some sense more “fundamen-
tal”.

Some of our bounds are achieved using forecasters basedight&emajority run with a
dynamic learning rate. However, we are able to obtain secodéer bounds of a different flavour
using a new forecaster that does not use the exponentialpilityy assignments of weighted ma-
jority. In particular, unlike virtually all previously knen forecasting schemes, the weights of this
forecaster cannot be represented as the gradient of aivadutitential, see Section 2.3 in Chapter
2 or [CeLu0g3].

In bandit problems and, more generally, in all incompleteimation problems like label-
efficient prediction or prediction with partial monitoring crucial point is to estimate the unob-
served losses. In such settings, a probability distrilouisoformed by using weighted averages
of the cumulative estimated losses, and a common practicenmsx this probability distribution,
so that the resulting distribution have all the probalgiitabove a certain value. Technically, this
is important since it is common to divide by the probabititisee AuCeFrSc02, CeLuSt04a,
CelLuSt04b, HaMa02, PiScOlLand the forecasting schemes of Chapters 5 and 6). We show tha
for the algorithm of PuCeFrSc09 and in bandit loss games,, using our proof technique one can
simply use the original probability distribution, compdteith the estimates, without any adjust-
ments and get an expected bound which is an improvement fall krsses.

We close the chapter with a preliminary result about fagtsraf convergence in randomized
prediction with expert advice.

2. A new algorithm for sequential prediction

We introduce a new forecasting strategy for the signed gémieheorem 4.3, the main result
of this section, we show that, without any preliminary kneglde of the sequence of payoffs, the
regret of a variant of this strategy is bounded by a quantfinéd in terms of the sums

2 2
Qi,n — :E’i71 + —|—l’i’n .



64 CHAPTER 4. IMPROVED SECOND-ORDER BOUNDS IN PREDICTION WA EXPERT ADVICE

SinceQ;,, < M(|zia| + ... ), such second-order bounds are generally better than the
previously known bounds for any of the three (loss, gain, sigded) games, and in certain cases
the difference can be significant.

Our basic forecasting strategy, which we aafloDb(n), has an input parameter > 0 and
maintains a set ofV weights. At timet = 1 the weights are initialized withw; ; = 1 for
i=1,...,N. At each timet = 1,2,..., PROD(n) computes the probability assignmemjt =
(p1t,--.,PNt), Wherep;, = w; +/W;. After the payoff vectorr; is revealed, the weights are
updated using the rule; ;1 = w; ¢(1 + nz;.). We use the notatioV, = w1 ¢ + ... + wy .

The following simple fact plays a key role in our analysis.

LEMMA 4.1. Forall z > —1/2,In(1 + 2) > z — 22.
PROOF. Let f(z) =In(1 + 2) — z + 2z2. Note that

1 z(1+4 22)
'(2) = —1+22=
PR =~ 2=
so thatf/(z) < 0for —1/2 < z < 0and f’(z) > 0 for z > 0. Hence the minimum of is
achieved i) and equal$, concluding the proof. O

We are now ready to state a lower bound on the cumulative teef@roD(n) in terms of the
quantitiesQ)y, ,,.

LEMMA 4.2. Assume there exist®/ > 0 such that the payoffs satisfy;, > —M for ¢t =
1,...,nandi = 1,..., N. For any sequence of payoffs, for any actigrfor anyn < 1/(2M),
and for anyn > 1, the cumulat|ve reward a¢fRoOD(n) is lower bounded as

In N
X an_T_ann-

PROOF Foranyk =1,..., N, note thatr;, , > —M andn < 1/(2M) imply nxy, > —1/2.
Hence, we can apply Lemma 4.11o;, , and get
Wn+1

= = N+ 1n£[1(1 +nrpy) = —InN + ;m{l + Nk t)

n
4.1 > —InN+ Z (n:nk,t — 7723:%» =—InN+nXy, — 772Qk,n .
t=1

On the other hand,

n

N

W, |14 ~

(4.2) T 2;1 s 2;1 (}jpi,mumi,t)) <X,
t= =1

where in the last step we uséd(1 + z;) < z forall z, = n 3N | z;piy > —1/2. Combin-
ing (4.1) and (4.2), and dividing by > 0, we get

PN In N
Xn>_nT+an anJ“

which completes the proof of the lemma. O
By choosingy appropriately, we can optimize the bound as follows.

THEOREM 4.1. Assume there exist/ > 0 such that the payoffs satisfy;; > —M for
t=1,...,nandi=1,...,N. Forany@ > 0, if PROD(n) is run with

n= min{l/(ZM), (lnN)/Q}
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then for any sequence of payoffs, for any acipand for anyn > 1 such thatQ;, ,, < Q,
Xn > Xjpn — max {2\/62111 N, 4M 1nN} .

To achieve the bound stated in Theorem 4.1, the parametrrst be tuned using preliminary
knowledge of a lower bound on the payoffs and an upper bourti@guantities);, ,,. The next
two results remove these requirements one by one. We stamtrbgucing a new algorithm that,
using a doubling trick ovePrROD, avoids any preliminary knowledge of a lower bound on the
payoffs.

Let PROD-M(Q) be the prediction algorithm that receives a numBer 0 as input parameter
and repeatedly runsroD(7,.), wheren, = 1/(2M,) and M,. is defined below. We call epoch
r the sequence of time steps wheROD-M is runningPROD(7,.). At the beginning, = 0 and
PROD-M(Q) runsPrROD(7)), where

Mo=+Q/(AInN)  andn =1/(2Mp) = /(InN)/Q .

The last step of epoch > 0 is the time step = ¢, whenmax;—; .y |z;¢| > M, happens for the
first time. When a new epoch+ 1 begins,PRODIs restarted with parametey.; = 1/(2M,+1),
whereM, 1 = max; 2/1°821%i[1 Note thath/; > M, and, for eachr > 1, M, > 2M,.

THEOREM 4.2. For any sequence of payoffs, for any actionand for anyn > 1 such that
Qrn < Q, the cumulative reward of algorithmrRoD-M () is lower bounded as

X > Xpn—2v/QInN —4M (24 31In N)

whereM = max; i<y Max<i<n |Titl-

ProOOFR We denote byR the index of the last epoch and gt = n. If we have only one
epoch, then the theorem follows from Theorem 4.1 applieth witower bound of- M, on the
payoffs. Therefore, for the rest of the proof we assuing 1. Let

s tr_l T _ tr_l AT’ t'r_l
Xk - ZS tr—1+1 Lk »S) Qk - ZS tr—1+1 ':L'k‘ ,87 X' = ZS =tr—1+1 ':L'S ’

where the sums are over all the time stega epochr except the last ong,.. (Heret_q is
conventionally set t0.) Applying Lemma 4.1 to each epoch= 0,. .., R we get thatX,, — X}, ,,
is equal to

R, . Rl In N & =
S (X -32) 3@ - > - S 0 Y )
r=0 r=0 r=0 M r=0 r=0

We bound each sum separately. For the first sum note that

R In N R

Z :Z2MrlnN<6MRlnN

r=0 MIr r=0
since Mg > 287" M, for eachr > 1 and M, < Mpg. For the second sum, using that the
decrease, we have

lnN

anQk UOZQk\Uoan\ =/QInN .

Finally,
R—

1 R
’f —wktr ZQM,»§4MR.
0 r=1
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The resulting lower boundMg(2 4+ 31n V) + /@ In N implies the one stated in the theorem by
noting that, wherR > 1, Mr < 2M. O

We now show a regret bound for the case wiiérand the(),, ,, are both unknown. Let; be
the index of the best action up to timgthat is,k} € argmax, X}, (ties are broken by choosing
the actionk with minimal associated);, ;). We denote the associated quadratic penalty by

Qf = Q. = > x%;‘,s :
Ideally, our final regret bound should depend@j However, note that the sequen@g, ()3, . ..
is not necessarily monotone, @ andQ;, ; cannot be possibly related when the actions achiev-
ing the largest cumulative payoffs at roundandt¢ + 1 are different. Therefore, we cannot use
a straightforward doubling trick, as this only applies tonotmne sequences. Our solution is to
express the bound in terms of the smallest nondecreasingseg that upper bounds the orig-
inal sequencéQ;);>1. This is a general trick to handle situations where the pgriatrms are
not monotone. Allenberg and Neemakifle04] faced a similar situation, and we improve their
results.

We define a new (parameterless) prediction algoritmoD-MQ in the following way. The
algorithm runs in epochs usirRROD-M(()) as a subroutine. The last step of epeds the time
stept = t, when@; > 4" happens for the first time. At the beginning of each new epoch
r=0,1,..., algorithmPrROD-M(Q) is restarted with parametéf = 4".

THEOREM 4.3. For any sequence of payoffs and for amy> 1, the cumulative reward of
algorithm PROD-MQ satisfies

X, > X - 8\/(111N)maux{17 m<aXQ§} —12M <2+log4m<axQ:> (I1+InN)

X

whereM = max; i<y maxi<i<n |Ti tl-

PROOF We denote byR the index of the last epoch and et = n. Assume thatR > 1
(otherwise the proof is concluded by Theorem 4.2). Simltolthe proof of Theorem 4.2, for all
epochg- and actionsk introduce

ro__ tr—1 ro__ tr—1 2 vro_ tr—1 oy
Xp = Zs:t7.,1+1 Ths, Q= Zs:t,.,lﬂ Lh.s X" = Zs:t,.,lﬂ s

wheret_; = 0. We also denoté, = k; _, the index of the best overall expert up to time- 1
(one time step before the end of epagh We have that); < Q-1 = Qf _;. Now, by
definition of the algorithm@; ; < 4". Theorem 4.2 (applied to time stefgs 1 + 1,...,t,. — 1)
shows thatX” > X —®(M, 47"), where®(M,z) = 2v/zIn N + 4M (2 + 3In N). Summing
overr =0,..., R we get
R R R R
(4.3) Xo =Y X' +8hp, 2 ) (Bhp, + Xf, — ® (M, 4)) .
r=0 r=0
Now, sincek; is the index of the expert with largest payoff up to time— 1, we have that
Xy to—1 = X}, + Ty, + X7, < X} + X2 + M. By asimple induction, we in fact get
R-1
(4.4) Xppin—1 < > (Xp, + M) + X5 .
r=0
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As, in addition, X}, ;.1 and Xy ,, may only differ by at mosf/, combining (4.3) and (4.4) we
have indeed proven that

R
X'n 2= Xpsn — (2(1 + R)M + Z o (M, 47")> .
r=0
The sum over is now bounded as follows

R
S @ (M, 47) <4M(1+ R) (2 + 3In N) + 2+ (2\/111 N) .
r=0

The proof is concluded by noting that, &> 1, sup,,, Q% > 4F=1 py definition of the algo-
rithm. d

As a final remark for this section, note that we may RROD-MQ using translated payoffs
Tkt = Tt — e, Wherep, is any quantity possibly based on the past payeffs fori =1,..., N
ands = 1,...,t. An interesting application is obtained by considerjng= z; wherez; =
r14p14+ ...+ NP, IS the forecaster’s reward at timeAs the sumg, + ... + 7, cancel out
in the difference)?n — X}, We can obtain the following corollary of Theorem 4.3.

COROLLARY 4.1. If algorithm PROD-MQ is run using translated payofts;, ; — z;, then for
any sequence of payoffs and for any 1,

X, > X; - 8\/(lnN) max {1, mngﬁ} —12M <2 + log4m<aXR:> (I+1InN)
SN s

whereM = 2max1<,—<N maxi<¢<n ]w,—ﬂ and Rzk = (wk;,l — f1)2 4+ ...+ (xk;‘,t — ft)2 for kf

achieving the best cumulative payoff at rour(ties broken by choosing the actiérwith smallest

associated?y, ;).

REMARK 4.1. In a one-sided game, for instance a gain game, the &isFcalways has an
incentive to translate the payoffs by the minimal payafbobtained at each rourtd
Mt = j:fﬁ}_liN Tkt
just because for ajl andt, (z;+ — pt)? < w?,t for a gain game. The matter is not so clear however
for signed games, and it may be a delicate issue to determafioedihand if the payoffs should be
translated, and if so, which translation rule should be uSe@ Section 4.2 below.

REMARK 4.2. There is one single result that can be deduced fAdig04] and which is not
implied by our new forecaster. Their Theorem 3 bounds theestesy roundn as follows. There
exists an actiorj such that

%0 > X~ 0(YMDjlnN) |

Djm = Z (wj,t - ft)_’_ .
t=1
This is achieved by a forecaster using weighted averagessevbasic step of update is given by

where

Wip1 = Wit (1 —msign (x;; — ft))‘xi’t_xtl ,
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wheresign u equals 1 whem > 0, and—1 otherwise. We can even get, with their Theorem 2 and
the modified doubling trick above, the better bound

X <\/M (In N) max D*) ,

where Di = Dy ;. This bound also leads to an improvement for small or largeff&in one-
sided games, see Section 4.1 for more details on such bodods.in the main term of the bound
proposed by Corollary 4.1, we only have

n
Ri S MY ai e — %l -
t=1

The maximum of theD; might be less than the maximum of th&, and we were not able to get
the former in any bound onRROD-MQ type algorithm.

3. Second-order bounds for weighted majority

In this section we derive new regret bounds for the weightapbrity forecaster of Littlestone
and Warmuth [iWa94] using a time-varying learning rate. This allows us to avbiel doubling
trick of Section 2 and keep the assumption that no knowledgih® payoff sequence is available
in advance to the forecaster.

Similarly to the results of Section 2, the main term in the m®ands depends on second-order
quantities associated to the sequence of payoffs. Howtxgprecise definition of these quantities
makes the bounds of this section generally not comparatifetbounds obtained in Section 2.

The weighted majority forecaster using the sequepces, ... > 0 of learning rates assigns
at timet a probability distributiorp, over theN experts defined by, = (1/N,...,1/N) and

et Xit—1 _
(4.5) th—W fori=1,...,N andt > 2
see Section 2 in Chapter 2. Note that the quantifies 0 may depend on the past payoffs,,
i1=1,...,Nands =1,...,t—1. The analysis of Auer, Cesa-Bianchi, and Gen#leCeGe03,
for a related variant of weighted majority, is at the corehaf proof of the following lemma (proof
in the appendix of this chapter).

LEMMA 4.3. Consider any nonincreasing sequengens, . .. of positive learning rates and
any sequence, T, ... € RY of payoff vectors. Define the nonnegative functiony

N
b(py. 1. 20 zpztxm 1nzp e~ Ly (zp<>
M i=1

Then the weighted majonty forecaster (4.5) run with theusegens, ns, ... satisfies, for any
n > 1 and for anyn; > 1.,

~ 2 1
X, — X' >— —— )InN - ®(p, n,
2 (Gl ) et

OPEN QUESTION 4.1. We show below an incremental update for a weighted-rtgjoased
predictor, using the second-order upper bounds on the itjear(p,, 7;, ;) given by Lemma
4.4. The parameteng are chosen to minimize the obtained upper bounds. If we Hedidnder
upper bounds, or even sharper ones of a different form, tmeform of ther; would have been
different too. The form of the bounds basically indicates filrm of thern,. One may wonder if
there is a general way to define thg in terms of the®(p,, ns, ;), for s < ¢t — 1, and not in
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terms of some upper bounds on these quantities. That wosildt i@ sharper and very general
bounds on the regret.

Let Z; be the random variable with rande ,...,zn,} and lawp,. Note thatEZ, is the
expected payoft; of the forecaster using distributigy at timet. Introduce

N N 2
Var Z; = IElth2 — EzZt = Zpi,tmit — <Z pi,téﬁz’,t) .
i=1 =1

HenceVar Z, is the variance of the payoffs at timeinder the distributionp, and the cumulative
varianceV,, = Var Z; + ... Var Z,, is the main second-order quantity used in this section. The
next result bound®(p,, n;, x;) in terms ofVar Z,.

LEMMA 4.4. For all payoff vectorse; = (z1,,...,2n,), all probability distributionsp, =
(prss .-, pn.), and all learning rates), > 0, we have

S(py, e, ) <2M

where)M is such thafz; ;| < M for all 4. If, in addition,0 < 7 |x;,| < 1/2foralli=1,..., N,
then
O (p;, mt, ) < (€ —2)n Var Z; .

PrROOFE The first inequality is straightforward. To prove the setone we use® < 1+ a +
(e — 2) a? for |a| < 1. Consequently, noting tha |z;; — 7;| < 1 for all i by assumption, we
have that

N
1 -
(I)(pt7 Uiz wt) - —1In <Zpi,t€m(x“t t))

"t i=1

N

1 ~ ~

< p” In (sz‘,t (1 +ne(zip — o) + (e — 207 (ziy — xt)2)> .
=1

Usingln(1l 4+ a) < a for all a > —1 and some simple algebra concludes the proof of the second

inequality. d

In [AuCeFrSc03 a very similar result is proven, except that there the vengais further
bounded (up to a multiplicative factor) by the expectatipf Z;.

We now introduce a time-varying learning rate basedifgn For any sequence of payoff
vectorszy, x,... and for allt = 1,2,... let M; = 2*, wherek is the smalleshonnegative
integer such thamax,—; . ; max;—1, . n|Zis| < 2k Now let the sequence, 7s, . . . be defined
as

(4.6) nt:min{ ! C th} for ¢t > 2, with C:\/i(\/i—1>.

2Mi ' Vie1 e—2

Note thatr; depends on the forecaster's past predictions. This is irséinge spirit as the self-
confident learning rates considered AufCeGe03.

We are now ready to state and prove the main result of thisoseathich bounds the regret
in terms of the variances of the predictions. We show in thé section how this bound leads to
more intrinsic bounds on the regret.

THEOREM 4.4. Consider the weighted majority forecaster using the timgsng learning
rate (4.6). Then, for all sequences of payoffs and fonalt 1,

Xn— X > —4y/V,In N — 16 max{M, 1}In N — 8 max{M, 1} — M?
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whereM = max;—1, . ,max;—1, . N \xzt!

PROOF We start by applying Lemma 4.3 using the learning rate (&)l setting;; = 7. for
the analysis,

X, — X}

WV

2 1
—( - —) In N — Zcb Pe: > )

T+1 M

n

> —2max{2MnlnN, (1/0)\/annN} > " @(py, e, )
t=1

= —2max{2Mn1nN, (1/C)\/annN}
o Z(I)(pt’ Mt wt) - Z(I)(pta U2 wt)

teT T

where('is defined in (4.6), and" is the set of times rounds > 2 whenmn, |z; .| < 1/2 for all
1=1,...,N (note thatl ¢ 7 by definition).

Using the second bound of Lemma 4.4#0a 7 and the first bound of Lemma 4.4 o 7,
which in this case readB(p,, n:, ;) < 2M;, we get

@.7) X, — X! > —2max {2 M,In N, (1/C)\/V, 1nN} —(e-2)Y mVarz, - 2,
teT tgT
(where2M; appears in the last sum). We first note that

[logy max{M,1}]
d M < > or ol Mlogo max{M M g max{M, 1} .
tgT r=0
We now denote byl the first time steg whenV; > M?2. Using thaty; < 1/2 for all ¢+ and
Vr < 2M?, we get

(4.8) > myVar Z, < M? + Z me Var Z .
teT t=T+1

We bound the sum using < C/(In N)/V,_; for t > 2 (note that, fort > T, V,_; > Vp >
M? > 0). This yields

. S Vi—Via
Z n Var Z; < CvVIn N Z .
t=T+1 t=T+1 v ‘/t

Letv, = Var Z, = V; — V;_1. SinceV; < Vi1 + M? andV,_; > M?, we have
ve  VVi+VVia e T
Therefore, using thay2 + 1 = 1/(v/2 — 1),

" CvIn N
t;rlntVath\ \/, (\/7 \/77“) \/,_ —/V,InN .

When/V,, > 2CM,vIn N, using)M,, > M we have thatX,, — X is at least

- %\/Vn N — %\/Vn In N — 8 max{M, 1} — (e — 2)M?>
—4\/V,In N — 8 max{M, 1} — M?,
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where we substituted the value ©fand obtained a constant for the leading term equal to
2(e —2)
Vv2 -1

Wheny/V,, < 2CM,,v/In N, usingM,, < max{1, 2M} we have thafX,, — X is at least

2 <3.75.

24(e —2
—8MInN — %ma}({l/z M}In N — 8 max{M, 1} — (e — 2)M?
> —16 max{M, 1} In N — 8 max{M, 1} — M?.
This concludes the proof. O

4. Applications

To demonstrate the usefulness of the bounds proven in Timso#e3 and 4.4 we show that
they lead to several improvements or extensions of eadirlts.

4.1. Improvements for loss gamesRecall the definition of quadratic penalti€y in Sec-
tion 2. In case of a loss game (i.e., all payoffs are non-pe3itQ); < ML;, whereL; is the
cumulative loss of the best action up to timeThereforemax,<, Q% < M L;, and the bound of
Theorem 4.3 is at least as good as the family of bounds caltedrovements for small losses”
(see Section 3.1 in Chapter 2), whose main term is of the foffd L}, In V.

However, it is easy to exhibit examples where the new bourfdridetter by considering
sequences of outcomes where there are some “outliers” atheng,. These outliers may raise
the maximum) significantly, whereas they have only little impact on thex,<, Q5.

4.2. Using translations of payoffs.Recall thatZ; is the random variable which takes the
value z; ; with probability p; ;, for i = 1,..., N. The main term of the bound stated in Theo-
rem 4.4 containd/, = Var Z; + ... + Var Z,,. Note thatV,, is smaller than all quantities of the

form
n N
Z Zpi,t (it — ,Ut)2
t=1 i=1
where (1 ):>1 is any sequence of real numbers which may be chosémnufsight as it is not
required for the definition of the forecaster. (The minimalue of the expression is obtained for
ur = Z¢.) This gives us a whole family of upper bounds, and we may sbdor the analysis the

most convenient sequencegf(see, for instance, Corollary 4.2 and Section 4.5 below).

To provide a concrete example, denote the effective rantfeegiayoffs at time by

Ry = max z;; — min =z,
=1, N =1N T

and consider the choige, = minj—; .~ ;¢ + R:/2. The next result improves on a result of
Allenberg and NeemarmAINe04] who show a regret bound, in terms of the cumulative effectiv
range, whose main termis7./2(In N)M "}, Ry, for a given bound\/ over the payoffs. When
the actual ranges are small, these bounds give a considexdizhntage. Such a situation arises,
for instance, in the setting of on-line portfolio selectiovhen we use a linear upper bound over
the regrets (see, e.g., the strategy of Helmbold, Schapire, Singer and Warmttb$cSiwaog
with the viewpoint of Section 2 in Chapter 7).
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COROLLARY 4.2. The regret of the weighted majority forecaster run with ghte learning
rate (4.6) satisfies

Xn— X5 >-2,|(InN)> R} — 16 max{M, 1}In N — 8 max{M, 1} — M?.

n
t=1

REMARK 4.3. (About the leading constant in Corollary 4)2T'he bound proposed by Corol-
lary 4.2 shows that for an effective range o, say if the payoffs all fall in0, M], the regret is
lower bounded by a quantity equal t&2M+/nIn N (a closer look at the proof of Theorem 4.4
shows that the constant factor may even be equaldp A careful modification of this proof
would even bring the constant factor in the leading term asecto2/(e — 2) as wished. (The
threshold atV/? determiningZ’ by means of thé/’f‘1 has been set quite arbitrarily. A value of
aM?,a > 1, would lead to a bound with a smaller constant factor in taeliley term, at the cost
of larger constant terms in the remainder constant term.)

The best leading constant for such bounds is, to our knowledd (see CeLu035]), but the
latter bound only applies to loss games or, with a simplectdin, to signed games for which we
know beforehand the effective interval where the payoéfsrii This is so because of two reasons.
The first is that we lose a factor of 2 for the same reason th&hipter 2, we lost a factor of 2
in Theorem 2.1 with respect to Theorem 2.5. We lose in add#io extra factor of /(e — 2)/2
because of the difference between the bounds of Lemmas d.4.8nsince the factar — 2 may
be improved into d /2 in case of a loss game. However, as this faeter is optimal (see Lemma
A.3), we note that this second tiny gap is probably intrindde do not know if the first one can
be filled.

In conclusion, this shows nevertheless that the improvedmidgence in the bound does not
come at a significant increase in the magnitude of the leatbieficient (and the same can be said
when comparing the bound proposed by Corollary 4.3 belowth@dne of Auer, Cesa-Bianchi,
and Gentile puCeGe03).

We also note that using translations of payoffs for alganitRoD-MQ, as suggested by Corol-
lary 4.1, may be worthwhile as well, see Corollary 4.4 belddowever, unlike the approach
presented here for the weighted majority based forecahtme the payoffs have to be explicitly
translated by the forecaster, and thus, each translatiercouresponds to a different forecaster.

4.3. Improvements for one-sided gamesThe main drawback of;,, used in Theorem 4.4,
is that it is defined directly in terms of the forecaster’strilisitions p,. We now show how this
dependence could be removed (see also Section 4.5 for arot@ple). Assumer; ;| < M for
all t andi. The following corollary of Theorem 4.4 reveals that wegghmajority suffers a small
regret in one-sided games whenep&f;| or Mn— | X | is small (wherdz; ;| < M for all ¢ andi);
that is, whenevelX | is very small or very large. Improvements of the same flavaenevebtained
by Auer, Cesa-Bianchi, and GentilayCeGe03 for loss games; however, their result cannot be
converted in a straightforward manner to a correspondirfuuisesult for gain games. Allenberg
and NeemanAINe04] proved, in a gain game and for a related algorithm, a bouriteobrder of
11.4v/M min{ /X7, \/Mn — X} }. That algorithm was specifically designed to ensure a regret
bound of this form, and is different from the algorithm whgmeformance we discussed before
the statement of Corollary 4.2. Our weighted majority faster achieves a better bound, even
though it was not directly constructed to do so.

COROLLARY 4.3 (Improvement for small or large payoffs in one-sided gemConsider the
weighted majority forecaster using the time-varying léagrate (4.6). Then, for all sequences of
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payoffs in a one-sided game (i.e., payoffs are all non-p@sir all nonnegative),

~ X*
X, - X'> —4\/\X;§\ (M - %) In N — 65 max {1, M} max{l,In N} — 5 M?>
whereM = max;—1, . ,max;=1 N |Tit|

PrROOEF It suffices to give the proof for a gain game, as the bound efofém 4.4 is invariant
under the changg ; = M — z; ;, that converts bounded losses into bounded nonnegatiwéfpay
Since the payoffs are i), M/], we can write

N N 2 n
Vi < Z szi,twi,t - (Zpi,txi,t> = Z(M — Z) Ty
=1

t=1 =1

~ ~ 2 ~
<oy MXn_<&> :5(”<M_&>
n n n

where we used the concavity of— Mz — z2. Assume thatX,, < X (otherwise the result is
trivial). Then, Theorem 4.4 ensures that

X, — X5 >—4,|Xx (M—%)lnN—n

wherex = 16 max{}M, 1}In N + 8 max{M, 1} + M2. We solve forX,, by using Lemma A.14,
and obtain

Xp— XE > —4%)(;; <M _Xa 5) N -k — 162210 N .
n n n
Using the crude upper bounki’ /n < M and performing some simple algebra, we get the desired
result. 0

Quite surprisingly, a bound of the same form as the one shov@oiollary 4.3 can be derived
as a consequence of Corollary 4.1, by using the payoff @#nsl technique we discussed in the
previous section.

COROLLARY 4.4 (Improvement for small or large payoffs in one-sided gamif algorithm
PROD-MQ is run using translated payoffs, . — z;, then for all sequences of payoffs in a one-sided
game (i.e., payoffs are all non-positive or all nonnegagtive

(4.10) X, — X > —8y/2(In N)max {1, 2M min {| X} |, 2Mn — |X;[}}
—144M (2 +log,(2Mn)) (1 +1InN)

whereM = max;—1,  ,max;=1 N |Tit|

PrROOEF It suffices to give the proof for a gain game, as the bound oblGoy 4.1 is invariant
as well under the changg; = M — z;, that converts bounded losses into bounded nonnegative
payoffs.

We apply the bound of Corollary 4.1, noting that, with theatian therein
(4.11) max R? < min {M (X;j + )?n) M (Mn X )?n)} .

s<n
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Indeed, using thata — b)? < a® + b? for a, b > 0, we get on the one hand,
Ry <Y ads, + B2 <M (Xeg o+ %) <M (X5 + X))
t=1

whereas on the other hand, the same techniques yield
Ry =3 (M =) = (M = 72)" < M ((Ms = X3) + (Ms - X)) -
t=1
Now, we note that for al}, X7, ; < X7+ M, and similarly,)?sﬂ < X’S + M. Thus we also have
max,c, R < M(Mn — X7 — X,,).
The proof is concluded by noting that we may assumeMjat- X,,, and therefore Corollary
4.1, combined with (4.11), yields

~

Xn ZX;;—S\/(IHN)H]&X{L 2Mmin{X;§, Mn—)?n}} - K

wherer = 12 (2M) (2 +log,(2Mn)) (1 +In N). Solving for X,, by using Lemma A.14, and
performing simple algebra concludes the proof. O

4.4. A simplified algorithm for bandit loss games. We indicate in this section a result that
is not a direct consequence of Theorems 4.3 or 4.4. Rathedenee it via an extension of
Lemma 4.4, one of our key results at the core of the secongk-amhalysis in Section 3.

Recall that payoffs; ; in loss games are all non-positive. We dse = —z; ; to denote the
loss of actiony at timet. Similarly, E =lip1t+ ...+ Inpn,e IS the loss of the forecaster using
p, as probability assignment at tinte We make the simplifying assumptidh, € [0, 1] for all
it.

The bandit loss game (see Section 4 in Chapter 2w€CeFrSc0d and references therein) is a
loss game with the only difference that, at each time stépe forecaster has no access to the loss
vectorl; = (14,...,4n+). Therefore, the Iosgt cannot be computed and the individual losses
¢; + cannot be used to adjust the probability assignmentThe only information the forecaster
receives at the end of each rounis the loss/;, ;, wherel; takes valug with probability p; ; for
i=1,...,N.

In bandit problems and, more generally, in all incomplet®rimation problems like label-
efficient prediction or prediction with partial monitoring crucial point is to estimate the unob-
served losses. In bandit algorithms based on weighted ityajiis is usually done by shifting the
probability distributionp, so that all components are larger than a given thresholdt{ederecast-
ers proposed in Section 4 of Chapter 2, in Chapters 5 and &lhasthose in Auer, Cesa-Bianchi,
Freund, and SchapirdiCeFrSc03, Piccolboni and SchindelhauePiSc0], Cesa-Bianchi, Lu-
gosi, and StoltzCelLuSt04a, CeLuSt04hand Hart and Mas-ColelHaMa02)).

Allenberg and Auer AlAu04] apply the shifting technique to weighted majority obtaui
in bandit loss games, a regret bound of orgéN L In N + N In(n N)Inn where L% is the
cumulative loss of the best action afterounds,

n
L, = j:I{linN Ljn, where L; , = E Uiy
t=1

(Note that using the results cAliICeFrSc0 or Theorem 2.8), derived for gain games, one would

only obtain/N (In N)n.)
We show here thatithout any shifting a slight modification of weighted majority achieves
an expected regret of ordéf,/ L} Inn+ N Ilnn, a bound which is also an improvement for small
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Algorithm EXP3LIGHT.

Parameters: Realn > 0.

Initialization: w;; =1fori=1,..., N.

Fort=1,2,...
(1) draw action/; according to the distributiop; ; = w; /W, fori =1,..., N, where

Wiy =wis+ ... +wny, and incur losgy, ¢,

(2 IetE,t = (lit/pit)Zisfori=1,...,N,whereZ;; = 1if I, = ¢ and0 otherwise;
(3) foreachi =1,..., N perform the updatey; ;1 = w; e,

FIGURE 1. Algorithm ExP3LIGHT for prediction in a multi-armed bandit setting.

losses. The new bound becomes better than the one by AleeabdrAuer wherl; is so small
that L = o((Inn)?). The bandit algorithm, which we call¥@3LIGHT, is described in Figure 1.
We start the analysis of ®3LIGHT with a variant of Lemma 4.4 for loss games.

LEMMA 4.5. For all lossest; ; > 0, for all setsS; C {1,..., N} and foralln > 0,

(I)(pt7777 sztgzt'i‘zpztezt

ZESt 1€Sy

PROOF We use the inequalites ™ < 1 — x + 22/2 for 2 > 0, andIn(1 + u) < u for
u > —1, to write

N

1
Ly, (zp) < LSt Y
Nt =1 1€St 1ZSt

< L In Pit | 1 —niliy + I ,t Dit

Ul ‘ 2
1€St ZQSt
g _Zéztpzt"i' Zgztpzta
1€St 1€St
hence the result, by definition df. O

Lemma 4.5 is applied as follows.

PropPOsITION4.1. Assume the forecast&xP3LIGHT plays a bandit loss game, with losses
bounded between 0 and 1. For glt> 0, the cumulative pseudo-loss BXKP3LIGHT satisfies

(InN) + N(lnn)
n

WhereLn—ZZPzt&t, Lkn—zgkta L _kr?ln Lkn7
t=1 i=1 t=1 elV

and 4, is a random variable with expectation less tha.

L, —L*<

+ gNZ* + A,

PROOF ChooseS; = {z : Liy < Z*}. We combine Lemmas 4.3 and 4.5 to get

In N

(4.12) L< L*—i-——l-nZZp,t@t—i-ZZp,t&t

t=1 ZESt t=1 ngt
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Now, we note first that, by definition of tr@t and since; ; € [0, 1],

Zzzﬁtpi,t = szi,tzit ZZEH < NL*,

t=1i€S; t=11i€S; t=11i€S;
where the last inequality is true by definition of tBg
To bound the second double sum of (4.12), note that theSsetile monotone decreasing; i.e.,
i & S, impliesi ¢ S, forallr > t. LetT; = min {t c Liy > Z*}. We determine how large
can grow beforg; ; becomes negligible. For eaclsuch thatl; < »n and for eacht > T; + 1, we
have, usingV, > %",

t—1

—exp [nL* =17 LT+ Z
s=T;+1

wit< w; ¢

)

Wt e 77L

Pit =

Thus,p;; < 1/n whenevery'Z} Tt lis > (Inn)/n + L* — L;7,. Thus, letI} > T; be the last
suchthafy"! ., lis < (Inn)/n+ I -1, .. We have

Zzpi,tzi,t < szngT +Z Z pztgzt“‘z Z pztgzt

t=1 igS; i=1 t=T;+1 i=1 t=T/+1
_ N n €
< szTezT +Z<—+L* ’T>+Z Z 7
i=1t=T!+1
< An+N1nn
n

where we used.* — Em < 0 by definition ofT;, and denoted

n—zpzngT +Z Z %

i=1t=T/+1

The expectation of\,, is indeed less thah V. O

We are now ready to prove our main bandit result, thanks taubldw trick (see Section 2.2
in Chapter 2). Note that the quantitiBsL; ] may be replaced by simply;, in case of an oblivious
opponent, see Section 1.4 in Chapter 2.

THEOREM4.5. Consider the forecaster that runs algoritiBxP3LIGHT in epochs as follows.
In each epochr = 0, 1. .. the algorithm uses

~ /2((InN)+ Nlnn)
77’”_\/ N

and epochr stops whenever the estimaté in this epoch is larger thad”. For any bandit loss
game with losses bounded between 0 and 1, the expected tivenldas of this forecaster satisfies

n
max [E E Eft t — Ejt
j=1,.,.N =1 ’ ’

< 2\/2 (InN)+ Nlnn) N <1 +3 min F [ij]) + (2N 4+ 1)(1 +logy(3n+1)) .

j=1,.,N
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REMARK 4.4. Though we only prove bounds in expectation, there nigh& chance that
the techniques used IM[ICeFrSc07, namely, second-order martingale inequalities and ar prio
shifting of the estimated losses, lead to bounds that hotd e#erwhelming probability for a
variant of EXP3LIGHT which still uses no shifting over the probability distritmnts.

PROOF As usual, we denote bk the index of the last epoch and bythe last time round
of each epochr (tg = n). We also denote bi*v’“ the smallest cumulative estimated loss among
the estimated losses of the experts. Forafor all time intervals fromt,_; to ¢, — 1, we may
use Proposition 4.1 to bound the regret. We bound the irstants regrets at timesseparately.
Using in addition that the sum of minima is less than the mimimof the sums, we get
R R
Lo < I+ V2N + N N+ (£, +4,)
r=0 r=0

R
< L+2"/2(InN)+ Nlnn) N + > (E,. + Ar> :
r=0
where theA, are random variables with expectation less thah We now use that, wheR > 1,

. R—1 ~ 4R _1
L* > Z L*,T 2 ,
r=0

3

this inequality being still true foR = 0. The proof is concluded by two applications of Jensen’s

inequality, applied first t@fi+! < 2v/3L* + 1. Second, we have to boun. We note that
R < log,(1+3L*), so thatR is in expectation less thdng,(3n + 1). O

4.5. Fast rates in prediction with expert advice.We end this application section by an ex-
ample of fast rates of convergence in (randomized) prediotiith expert advice. We call a fast
rate of convergence any convergence rate faster than tleeadguaranteed/./n convergence
rate for the sequence of per-round regrets. This issue teas Unader the focus of attention for
several years now in classification, see the discussioreatrid of Chapter 1 and the references
therein (above all the survey paper by Boucheron, BousquitLaigosi BoBoLu05], and the
recent paper of Steinvart and Scov8t$c03, who deal with support vector machines). Further-
more, note that fast rate results are already known in pirediof individual sequences, but only
for some classes of loss functions (among them, the sodcakp-concave ones), see Haussler,
Kivinen and WarmuthaKiwa98, Kiwa99], Vovk [Vov98, Vov0]. We want to deal with arbi-
trary, unspecified, loss functions.

Our derivation illustrates another way to solve for the e¢grand to remove the dependency
of the bound of Theorem 4.4 in the forecaster’s distribugipp We consider a loss game, for
instance. Condition (4.13) stated below is the equivaléanother one in classification, asserting
that fast rates are achieved as soon as the variances ohtfiedsbase classifiers can be upper
bounded their respective expected risks, &mBloLu05]. There the key second-order lemma is
Bernstein’s inequality, and we believe that our varianasdl tuning (4.6) of the weighted majority
algorithm is the right second-order counterpart.

PrRoOPOSITION4.2. Denote byj;: the index of the expeit= 1,..., N achieving the minimal
cumulative loss, i.e., such that. , = L;;. Assume that the loss sequence is such that the fore-
caster behaves on it in a way such that there exists a constantl an integem, such that for
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all n > ny,

(4.13) pit (i — gj;‘“t)2 <v(Ln—L3)
=1 i—1

n n N
En = Z@(Pt) = Z Zpi,tei,t .
t=1 t=1 i=1
Then, the per-round regret of the forecaster on this seqai&bounded, for. > ng, by

where

1, 1
— (Ln — L) < = (167 4+ 20/ + 25) max {In N, 1} .
n n

The proof is a simple combination of (4.13) with Theorem 4cgether with the results of
Section 4.2 (and the choige = /; ;). Solving for the regrets thanks to Lemma A.14 and over-
approximating yields the result.

As we indicated above, condition (4.13) is the counterphtth@® usual condition used in clas-
sification to get fast rates (see, e.dpoBoLu05, Section 5.2]). To show that (4.13) is indeed
meaningful in an individual sequence setting as well, wesiar the following example.

EXAMPLE 4.1. We have two expertd and B, and they suffer the losses (for integers 0)
lagier = 1, lasiro = bagips = 0, andlp 311 = 0, £ 3o = 343 = 1. j; is A, and it
is easy to see that condition (4.13) holds for the forecast&heorem 4.4, at least for integets
multiple of 3, withy = 3. (See the proof below for the details.)

We note here thak;, grows linearly inn in the example above, so that théL; In N upper
bound for the weighted majority forecaster of Auer, CesarBhi, and GentileAuCeGe03 is
of the order of\/n. (Even the bounds foPROD-MQ proposed by Theorem 4.1 are of the order
of v/n, sinceQp, > Qa, = n/3.) However, direct computations show that the forecaster of
Auer, Cesa-Bianchi, and GentilddCeGe0] suffers a loss bounded by a constant. The main
improvement of the second-order analysis conducted foghted majority in Section 3 is thus
that the new bounds reflect in a sharper way its behavior ti@previous bounds.

PROOF. We first note that for the losses of Example 4.1, (4.13) esifor an integen = 3n’
multiple ofn) as

n’ n’
(4.14) > P2+ PB3c1+PB3 <V —PB3s—2 T PB3s 1+ PB3s

s=1 s=1
and prove now that it is indeed satisfied, with= 3. We take the elements of the sequence of
weights of experB three by three. Fix a positive integer We note that these weights are given
by

6_773372 2(3_1)

PB,3s—2 e—Ms—22(s—1) 4 e—m3s—2 (s—1) ’
e~ Ms—12(s—1)
PB,3s—1 e—3s—12(s—1) 4 p—m3s—18’
e~ M3s (2s—1)
PB3s = ’

e M3s (2s—1) + e MBs S
where they, are defined in (4.6). In particular, we also recall that thepusace(n,) of the tuning

parameters is non-increasing. This shows that bgth,_> andpp 3, are less thamp 35_1, SO
thatpp 3s—2+pB3s—1+PB,3s < 3pB3s—1. 10 prove the claim (4.14), it thus suffices to show that

PB,3s—2 < PB,3s-
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To that end, we note thaiz 3,2 < pp 3 IS equivalent, by a reduction to the same denomina-
tor, to
e M3s—2 2(s—1)e—n33 5 L e M2 (5—1)6—773S (2s—1) ’
or simply, n3s—2 (s — 1) > n3s (s — 1). But the latter is true, since the tuning parameters are
non-increasing. O

5. Discussion and open problems

Though the results of Sections 2 and 3 cannot be easily cadparterms of expected re-
gret bounds (see however Remark 4.5 below for a comparistimeafion-expected regrets), the
underlying algorithms work indifferently for loss gamesig games, and signed games. Note
however that the bounds proposed by Corollary 4.1 and byrEned.4 both lead to improvement
for small or large payoffs in one-sided games, see Coreia4i3 and 4.4. In addition, they are
both stable under many transformations, such as transtatio changes of signs. Consequently,
and most importantly, they are invariant under the chaige= M — z;,, that converts bounded
nonnegative payoffs into bounded losses, and vice versaetAm, the occurrence of terms like
max{M, 1} and M? makes these bounds not stable under rescaling of the payfiiffs means
that if the payoffs are all multiplied by a positive numbkefwhich may be more or less than 1),
then the bounds on the regret are not necessarily multipleitie same quantity.

Modifying the proof of Theorem 4.4 we also obtained a regoetrigl equal to-4/V,, In N —

16 MIn N — 8 M — 2M log M?/V;. This bound is indeed stable under rescalings and improves
on Theorem 4.4 for instance whéih much smaller than 1, or even whéth is large and/; is not
too small. We hope that the unconvenient fadtov; could be removed soon.

A practical advantage of the weighted majority forecasteéhat its update rule is completely
incremental and never needs to reset the weights. This imasirio the forecastefROD-MQ of
Theorem 4.3 that uses a nested doubling trick. On the othet, Hhe bound proposed in Theo-
rem 4.4 is not in closed form, as it still explicitly dependsaughV/, on the forecaster’s rewards
z¢. We therefore need to solve for the regrets, see, for instdborollary 4.3 or Section 4.5. Fi-
nally, we also noted in Section 4.2 that the weighted majdaitecaster update is invariant under
translations of the payoffs, whereas each translationfonléne payoffs leads to a different version
of PROD-MQ. In practice, it may be difficult to determine beforehand tahgood translation could
be. Corollaries 4.1 and 4.4, as well as Remark 4.1, indicateml efficient translation rules.

OPENQUESTION4.2. Severalissues are left open. The following list mergtisome of them.

— Design and analyze incremental updates for the forecarten(r) of Section 2.

— Obtain second order bounds with updates that are not icgtiipe; for instance, updates
based on the polynomial potentials (see Section 2.3 in @h&pbr [CeLu03]). These
updates could be used as basic ingredients to get forezastited for bandit, label-
efficient or partial monitoring prediction, and achievirige toptimal rates. Note that in
Section 4 of Chapter 2, as well as in Chapters 5 and 6, we thiugohase exponentially
weighted averages.

— Extend the analysis #fROD-MQ to obtain an oracle inequality of the form

X'n > k—maXN <Xk,n — Y1V Qkyn lnN) —yoMIn N
wherevy; and~y, are absolute constants. Inequalities of this form can heedeas game-
theoretic versions of the model selection bounds in sigisiearning theory.

— Obtain second-order bounds for weighted majority BROD-MQ that are stable under
rescaling.
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REMARK 4.5. (Refined bounds for non-expected regrét this chapter, we focused on im-
proved bounds for expected regret. However, recall fromp@&h2, Section 3.3.2, that in general,
the non-expected cumulative regret of any forecaster iaded by the expected cumulative regret
with probability 1 — ¢ up to deviations of the order of/V,, In(n/§) + M In(n/J), see Corol-
lary A.1. These deviations are of the same order of magniagiéhe bound of Theorem 4.4.
Unless we are able to apply a sharper concentration resultBlernstein’s inequality, no further
refinement of the above bounds is worthwhile. In particulariew of the deviations from the
expectations, we may prefer the results of Section 3 to tbbSection 2.
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Appendix: Proof of Lemma 4.3

We first note that Jensen’s inequality implies tfdas nonnegative. The proof below is a simple
modification of an argument first proposed MuCeGe0J. Note that we consider real-valued (non
necessarily nonnegative) payoffs in what follows. Fet 1,...,n, we rewritep; ; = w; /W4,
wherew; ; = e Xit-1 and W, = Zj\f:l wj; (the payoffsX;, are understood to equal 0, and
thus,n; may be any positive number satisfyimg > 79). Usewgvt = eM—1Xit-1 to denote the
weightw; ; where the parametey; is replaced by),_;. The associated normalization factor will
be denoted byV} = Z;-Vzl w}t. Finally, we usg; to denote the expert with the largest cumulative
payoff after the first rounds (ties are broken by choosing the expert with smalidsix). That is,
Xj» 1 = max;y X; . We also make use of the following technical lemma.

LEMMA 4.6 (Auer, Cesa-Bianchi, and GentileCeGe03). Forall N > 2,forall 6 > a >
0,and foralldy, ...,dy > 0suchthaty ¥ e=od > 1,
N - o—ad; —_
In zi:le <5 alnN.
Zj-vzl ePds a

PROOF (OF LEMMA 4.6). We begin by writing

N  —ad; N —ad;
In 212\7:1 ¢ — I sz:1 ¢
> i e—Pd; St ela=B)d; g—ad;
= —InE [e(o‘_ﬁ)D}
< (B-a)E[D]
where we applied Jensen inequality to the random varidblaking valued; with probability
e‘adi/Zf:1 e~ for eachj = 1,..., N. SinceD takes at mosiV distinct values, its entropy
H (D) is at mosfin N. Therefore
YL e i Ad
IWN>HD) = =ZF— |aditln) e 7%
> e j=1

N
= oE D]+ ane_ﬁdj > oE [D]
j=1
where the last inequality holds sin@ﬁil e~®% > 1. HenceE [D] < (InN)/a. Asf3 > «
by hypothesis, we can substitute the boundfd] in the upper bound above and conclude the
proof. d

PrROOF(OF LEMMA 4.3). Asitis usual in the analysis of the exponentially vindégl average
predictor, we study the evolution af(W;,,/W;), see the proof of Theorem 2.1. However, here
we need to couple this term withu(w;»  ;/w;s ¢+1) including in both terms the time-varying
parametersy, n.4+1. Tracking the currently best expejt is used to lower bound the weight
In(w;x ++1/Wiy1). In fact, the weight of the overall best expert (afterounds) could get arbitrar-
ily small during the prediction process. We thus obtain thkowing

Ly Biet L, it
ur Wi ner1 Win
11 Wir 1. Weon/Wipn 1 wiz of/Wh
hn——+—-I—++———+4+—In——"———
( ) wirepr M Wirert/Wier - m w;’;‘,t—i—l/Wt/—i-l
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We now bound separately the three terms on the right-hard $ite term(A) is easily bounded
by usingn;+1 < 7 and using the fact thai is the index of the expert with largest payoff after the
first¢ rounds. Thereforey;- ;11/W;11 must be at least/N. Thus we have

1 1 W, 1 1
(A)z(———)ln A << ——>1nN.
N+1 T Wy t+1 M+1 Mt

We proceed to bounding the terif®) as follows

! / N e (Xjr  —Xie)
L W/ Wi _ iln dim1€ S

B) = —In =
(B) ne o wizer1/Wepr e Z;VZI e M X = Xist)
— 1 1
< MLy, N = <———> In N
NeMt+1 Ne+1 e
where the inequality is proven by applying Lemma 4.6 with= X~ ; — X, ;. Note thatd; > 0
sincej; is the index of the expert with largest payoff after the finsiunds andgﬁil e~ Mrrdi >
as fori = j; we haved; = 0.
The term(C) is first split as follows,
1 wis /Wi 1. wyx ¢ 1. W/
(C)=—In—F——"—— iyt — =—1n /Jt*l + —1In —21L
Ue wj;,t+1/Wt+1 N Wixyiq t
We bound separately each one of the two terms on the rightt-bide. For the first one, we have
X‘*
1 Wi p 1 nt Jt717t71
—In ,JH = _ln% =X 01— Xjrg
e Wirepr T et o

The second term is handled by using the very definitiof® of

1 / 1 N ;e - .
LW 1, Dy wiee™™ 1 3" py e
Mt Wi Ui Wi U —
N
= Zpi,thgt + ©(py, My @) -
i=1

Finally, we substitute in the main equation the bounds orithetwo terms(A) and(B), and the
bounds on the two parts of the teli@). After rearranging we obtain

N
0 < (Xj;:l,t—l - Xj;,t) + Zpi,thyt + O (py, M, 1)
=1

Lo Wkt N 1, Wit
N1 Wi me Wi

+ 2 (L — i) InN .
M+1 ui

We apply the above inequalities to edch 1, ..., n and sum up using
n
;Xﬁl,t—l ~ Xjpp == max Xjn,

n ik W,* W ;%
Z (_ 1 I Wi 141 i iln jtl,t> < —iln isl In N
=\ M Wi Wi

to conclude the proof. O
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CHAPTER 5

Minimizing regret with label efficient prediction

We investigate label efficient prediction, a variant, pregm by Helmbold and Panizza, of the
problem of prediction with expert advice. In this variané tforecaster, after guessing the next
element of the sequence to be predicted, does not obsetigeitgalue unless he asks for it, which
he cannot do too often. We determine matching upper and lbeends for the best possible
excess prediction error, with respect to the best possilshstant predictor, when the number of
allowed queries is fixed. We also prove that Hannan consigterfundamental property in game-
theoretic prediction models, can be achieved by a forecasteing a number of queries growing
to infinity at a rate just slightly faster than logarithmictive number of prediction rounds.
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This chapter is a joint work with Nicoldo Cesa-Bianchi andl®f Lugosi. It is based on the
article [CeLuSt05, which is to appear ilEEE Transactions on Information Theoand was first
presented atoLT'04 in the extended abstradCgLuSt044.

1. Introduction

We recall from Chapter 2 that prediction with expert adviadramework introduced about
fifteen years ago in learning theory, may be viewed as a dgeoeralization of the theory of
repeated games, a field pioneered by Blackwell and Hanndreimtd-fifties. At a certain level
of abstraction, the common subject of these studies is thielgmn of forecasting each element
y; Of an unknown “target” sequence given the knowledge of tlewipus elementg,, ..., y;_1.
The forecaster’s goal is to predict the target sequencestlawwell as any forecaster forced to
use the same guess all the time. We call this the sequenédiction problem. To provide a
suitable parameterization of the problem, we assume tleagghfrom which the forecaster picks
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LABEL EFFICIENT PREDICTION

Parameters: numberN of actions, outcome spag@g loss function?, query rateu : N — N.
Foreachround =1,2,...

(1) the environment chooses the next outcame ) without revealing it;

(2) the forecaster chooses an actipre {1,...,N};

(3) each action incurs los<(i, v );

(4) ifless thanu(t) queries have been issued so far, the forecaster may isswecupey

to obtain the outcomg;; if no query is issued thep, remains unknown.

FIGURE 1. Label efficient prediction as a game between the forecantéthe environment.

its guesses is finite, of siz& > 1, while the set to which the target sequence elements belong
may be of arbitrary cardinality. A real-valued bounded lassction ¢ is then used to quantify
the discrepancy between each outcamand the forecaster’s guess figt The pioneering results

of Hannan’s Han57] and Blackwell Bla56] showed that randomized forecasters exist whose
excess cumulative loss (or regret), with respect to thedbssy constant forecaster, grows sub-
linearly in the lengthn of the target sequence, and this holds for any individugletasequence.

In particular, both Blackwell and Hannan found the optimadvgh rate,©(y/n), of the regret

as a function of the sequence lengtlhwhen no assumption other than boundedness is made on
the loss¢. Only relatively recently, Cesa-Bianchi, Freund, Hausdielmbold, Schapire, and
Warmuth CeFrHaHeScWa971 have revealed that the correct dependencévoim the minimax
regret rate i9(vnlIn N).

Game theorists, information theorists, and learning iseyrwho independently studied the
sequential prediction model, addressed the fundamengstign of whether a sub-linear regret rate
is achievable in case the past outcomes. . , y;_1 are not entirely accessible when computing the
guess fory. In this work we investigate a variant of sequential prédicknown adabel efficient
prediction In this model, originally proposed by Helmbold and PanizzaPa97, after choosing
its guess at timethe forecaster decides whether to query the outcgmiowever, the forecaster
is limited in the numbey:(n) of queries he can issue within a given time horizonin the case
n — oo, we prove that Hannan consistency (i.e., regret growinglisglarly with probability one)
can be achieved under the only conditjofn) /(log(n) log log(n)) — oo. Moreover, in the finite-
horizon case, we show that any forecaster issuing at most ;(n) queries must suffer a regret
of at least orden/(In N')/m on some outcome sequence of lengtland we show a randomized
forecaster achieving this regret to within constant factor

The problem of label efficient prediction is closely relatedbther frameworks in which the
forecaster has a limited access to the outcomes. Exampulesiénprediction under partial moni-
toring (see Chapter 6, see also, e.g., Mertens, Sorin, amit IsleS0Za94, Rustichini [Rus99,
Piccolboni, and SchindelhaudPisc0, Mannor and ShimkinfaSh03, Cesa-Bianchi, Lugosi,
and Stoltz CelLuSt04h)), the multi-armed bandit problem (see Section 4 in Chapiesee also
Bafios Ban6§], Megiddo [Meg8(], Foster and VohraHoVo9g, Hart and Mas ColellffaMa02],
Auer, Cesa-Bianchi, Freund, and SchapieiCeFrSc0d, and Auer Pue02), and the “apple
tasting” problem proposed by Helmbold, Littlestone, andd.¢HeLiLo0O].

2. Sequential prediction and the label efficient model

We recall here the notation introduced in Chapter 2. The esgtipl prediction problem is
parameterized by a numbé&f > 1 of player actions, by a se¥ of outcomes, and by a loss
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function £. The loss function has domaif,..., N} x ) and takes values in a bounded real
interval, say|0,1]. Given an unknown mechanism generating a sequenag, . . . of elements
from ), a prediction strategy, or forecaster, chooses an adtian {1, ..., N} incurring a loss
£(Iy,y¢). A crucial assumption in this model is that the forecaster daoosel; only based on
information related to the past outcomgs. .., y;_1. That is, the forecaster’s decision must not
depend on any of the future outcomes. In the label efficierdeh@fter choosingd; the forecaster
decides whether to issue a query to acggs#f no query is issued, theg remains unknown. In
other words/; does not depend on all the past outcomes. . , y;_1, but only on the queried ones.
The label efficient model is best described as a repeated batmeen the forecaster, choosing
actions, and the environment, choosing outcomes (seed-igur

The cumulative loss of the forecaster on a sequence,, . . . of outcomes is denoted by

En = Zg(,[t,yt) forn > 1.
t=1

As the forecasting strategies we consider may be randomiath; is viewed as a random
variable. All probabilities and expectations are underdtwith respect to the-algebra of events
generated by the sequence of random choices of the forecaste

We compare the forecaster's cumulative I(fs,s with those of theN constant forecasters
Lin=£(i,y1) + ... +L(i,yn),i =1,...,N.

In this chapter we devise label efficient forecasting stjigewhose expected regret
E [E ~ L ]
Z:H{a)’(N n i,n

grows sub-linearly im for any sequenceg, -, ... of outcomes, that is, for any strategy of the
environment whenever(n) — oo. Note that the quantitieg, ,,, ..., Ly, are random. Indeed,
as argued in Section 3 (see also Section 1.4 in Chapter 2¢niergl the outcomeg may depend
on the forecaster’s past random choices. Via a more refinalysis, we also prove the stronger
result

(5.1) L, - 4 minN L;yn =o(n) a.s.

i=1,...,

for any sequence,ys, ... of outcomes and whenevet(n)/(log(n) loglog(n)) — oo. The
almost sure convergence is with respect to the auxiliardoarzation the forecaster has access
to. Property (5.1), known a@dannan consistencin game theory (see Section 3.3 in Chapter 2),
rules out the possibility that the regret is much larger tharexpected value with a significant
probability.

REMARK 5.1. (Prediction with expert advice.Jhe results of this chapter extend straightfor-
wardly to the case when the forecaster is supplied with éxgaimice (see the appendix of Chapter
2). The case of actions corresponds to constant experts iglsio because here, all we need
is unbiased estimates of the losses, and the way we build itn¢he next section does not de-
pend on the actual way the losses are computed. This is inasbntith the results for prediction
with partial monitoring (see Chapter 6). There, the reguassumption (6.1) prevents such an
extension.

We could also apply the label efficient methodology to theusetjal investment in the stock
market problem described in Chapter 7, and derive labeli&fticvariants of theeG andB1ExP
strategies defined there. This is so because these stmateljieon prediction-with-expert-advice
techniques, see, in particular, (7.2) and the commentsiafte
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Parameters: Real numberg > 0 and0 < € < 1.

Initialization: w; = (1,...,1).
Foreachround =1,2,...
(1) draw an actiorf; from {1, ..., N} according to the distribution
pi,tzij\g}i’t , i=1,...,N;
D1 Wit

(2) draw a Bernoulli random variablg, such that?[Z;, = 1] = ¢;
(3) if Z; = 1 then obtainy, and compute

Wi t+1 = Wit e Mt/ foreachi =1,...,N
else, letw; 1 = wy

FIGURE 2. The label efficient exponentially weighted average faséer.

3. A label efficient forecaster

We start by considering the finite-horizon case in which tredaster’s goal is to control the
regret aftem predictions, where: is fixed in advance. In this restricted setup we also assume
that at mostn = p(n) queries can be issued, wherds the query rate function. However, we
do not impose any further restriction on the distributionttedsem queries in then time steps,
that is,u(t) = m fort = 1,...,n. We introduce a simple forecaster whose expected regret is
bounded byn/2(In N)/m. We then prove that the regret is indeed of the same ordér,high
probability. (Thus, ifm = n, we recover the orders of magnituderimnd N of the optimal bound
for prediction with expert advice under full monitoring.esBection 5 in Chapter 2.)

Itis easy to see that in order to achieve a nontrivial peréoroe, a forecaster must use random-
ization in determining whether a label should be revealedodr It turns out that a simple biased
coin is sufficient for our purpose. The strategy we propoketched in Figure 2, uses an i.i.d.
sequence, Zs, .. ., Z, of Bernoulli random variables such tfatz; = 1] =1-P[Z;, =0] = ¢
and asks the labe); to be revealed whenevef, = 1. Heree > 0 is a parameter of the strategy.
(Typically, we take=s ~ m/n so that the number of solicited labels duringounds is aboutn.

Note that this way the forecaster may ask the value of morerthkabels, but we ignore this detail
as it can be dealt with by a simple adjustment.) Our labeliefiicforecaster uses tlestimated
losses

Z(%yt) déf { g(zayt)/g if Zt - 11

0 otherwise.
Letp, = (p1t,--.,pn,t) and denote by! the prefix(vy, ..., v;) of a given sequenc@, v, . . .).
Then
(5.2) E[ly) | 27 = i),
(53) E[e(pt’yt) ’ Z{—l’]’{—l] = e(ptayt) - E[E(Ihyt) ’ Zf_l7[f_l] 9

hold for eacht, where

U(py, ye) szthyt and £(p,,u) = me@zyt

Note that the conditioning oﬁf‘l and I{‘l is necessary because of the two following reasons:
first, p, depends both on the past realizations of the random chofdbe cI'Jorecastelzf‘1 (see
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the third step in the algorithm of Figure 2) and on the pasd:comESyi‘l; secondy; is a function
of both Z!~! and ™, as the environment is allowed to determipetfter playing the game up to
timet — 1 (see Figure 1). For technical reasons, we sometimes corsideaker model (which
we call theoblivious adversarysee Section 1.4 in Chapter 2) where the sequence,, ... of
outcomes chosen by the environment is deterministic anebieiddent of the forecaster random
choices. This is equivalent to a game in which the envirorimmarst fix the sequence of outcomes
before the game begins. Recall that the oblivious adversanel is reasonable in some scenarios,
in which the forecaster’s predictions have no influence erethvironment. Also, any result proven
in the standard model also holds in the oblivious adversargiah

The quantities/(i, ;) may be considered as unbiased estimates of the true l6&5eg).
The label efficient forecaster of Figure 2 is an exponentialeighted average forecaster using
such estimates instead of the observed losses. The exgeatednance of this strategy may be
bounded as follows.

THEOREMS.1. Fix a time horizom and consider the label efficient forecaster of Figure 2 run
with parameters = m/n andn = (vV2mIn N)/n. Then, the expected number of revealed labels
equalsm and
2Iln N

m

max E [En —Lin} <n
i=1,..,.N ’

In the sequel, foreach=1, ..., N, we write

zi,n = Zz(iayt) :
t=1

PrRoOOFE The proof is a simple adaptation #JCeFrSc02 Theorem 3.1]. The starting point
is the second-order inequality below (see aBiGE01 Theorem 1]). An application of Lemmas
4.3 and 4.5 to the estimated losses yields

Zﬁpt,yt _mnin fzn\M+nZZpgt€Jyt

t=1 j=1

SinceZ(j, yt) € [0,1/¢] for all 5 andy,, the second term on the right-hand side may be bounded
n N

n ~
by - ; ;pﬁé(], y;) and therefore we get, for all,

In N
)\LG+—n 3 ’LZI,,N
n

(5.4) > ey (1- 5
t=1

Taking expectations on both sides and substituting theqsexbvalues of ande yields the desired
result. d

REMARK 5.2. In the oblivious adversary model, Theorem 5.1 (andlangiTheorems 5.2 and
5.4 below) can be strengthened as follows. Consider thg™lfmzecaster of Figure 3 that keeps
on choosing the same action as long as no new queries ard.i$3urehis forecaster Theorems 5.1
and 5.2 hold with the additional statement that, with prdliigtl, the number of changes of an
action, that is the number of steps whédye£ 1,4, is at most the number of queried labels (by
construction of the lazy forecaster). To prove the regremnbo note that we derive the statement
of Theorem 5.1 by taking averages on both sides of (5.4), hed &applying (5.2) and (5.3).
Note that (5.4) holds foeveryrealization of the random variablds,...,I, and Zy,..., Z,.
Therefore, as the lazy forecaster differs from the forexasit Figure 2 only in the distribution of
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Parameters: Real numberg > 0 and0 < € < 1.
Initialization: wy, = (1,...,1), Zp = 1.
Foreachround =1,2,...

(1) if Z;—1 = 1 then draw an actiod, from {1, ..., N} according to the distribution
Wit .
pi,tzi’a ’LZI,...,N;
Zj-vzl Wit
otherwise, letl; = I;_1 ;
(2) draw a Bernoulli random variablg; such thatP[Z; = 1] = ¢ ;
(3) if Z; = 1 then obtainy, and compute

Wi t+1 = Wit et/ foreachi =1,...,N

else, Iet'wt+1 = W

FIGURE 3. The lazy label efficient exponentially weighted averagedaster
for the oblivious adversary model.

Ii,...,1I,, inequality (5.4) holds for the lazy forecaster as well.Ha bblivious adversary model
y; does not depend ohy, ..., I;_; thus, by constructionp, does not depend oh, ..., I;_;
either. Therefore, we can take averages with respdgt to. , I;_; obtaining the following version
of (5.3) for the lazy forecaster,

E[K(pt,yt )| 21~ } Zﬁzyt )pii =E [0(T, ) | Z17']

Since (5.2) holds as well when the condltlonlng is limited4iQ. . ., Z;_1, we can derive for the
lazy forecaster the same bounds as in Theorem 5.1 (and Théo®. Note also that the result
holds even wheuy; is allowed to depend o#+, ..., Z;_;.

3.1. Bounding the regret with high probability. Theorem 5.1 guarantees that the expected
per-round regret converges to zero whenexer» co asn — oo. The next result shows that this
regret is, with overwhelming probability, bounded by a ditgmproportional ton./(In N)/m.

THEOREM 5.2. Fix a time horizonn and a numbe® < (0,1). Consider the label efficient
forecaster of Figure 2 run with parameters

5:max{0,m_ 2m1n(4/5)} and 5= 251nN.

n n

Then, with probability at least — ¢, the number of revealed labels is at mosand

Vt=1,...,n Et—,qnn Lii < /lnN /1n(4N/5)'
= m

REMARK 5.3. (A label efficient forecaster with small internal regréRgmark 5.1, the conver-
sion trick described in Section 1.2 of Chapter 3 and Theordntead to a label efficient forecaster
with expected internal regret of the ordero{/(In N)/m. The internal regret of this forecaster
may be bounded with high probability by using the same mgatim inequalities as in the proof
of Theorem 5.2. The conversion of a no external regret laffieient forecaster to a no internal
regret label efficient forecaster is thus straightforwavtich is not the case for the conversion of
forecasters suited for prediction with partial monitorisge Section 6 of Chapter 6).



3. ALABEL EFFICIENT FORECASTER 91

Before proving Theorem 5.2, note thatdif < 4Ne ™/8, then the right-hand side of the
inequality is greater tham and therefore the statement is trivial. Thus, we may asshroaghout
the proof that > 4Ne~™/8. This ensures that
(5.5) e>m/(2n) >0.

We need a number of preliminary lemmas. The first is obtairned fimple application of Bern-
stein’s inequality (see Lemma A.4).
LEMMA 5.1. The probability that the strategy asks for more tharabels is at most /4.

PROOF Note that the numbek/ = >} | Z, of labels asked by the algorithm is binomially
distributed with parameterns ande and therefore, writingy = m/n — ¢ = n=1\/2m1In(4/6), it
satisfies

P[M > m| =PM —EM > ny] < e/ 2e+2v/3) gy /2m %
where we used Bernstein’s inequality (see Lemma A.4) in doersd step and the definition of
in the last two steps. O

LEMMA 5.2. With probability at leastl — 4/4,
t t

~ 4 In(4/9)
Vi=1,...,n U(pg,ys) < Upg,ys) + —=n .
; (Ps»Ys) ; (Ps>Ys) 7 —
Furthermore, with probability at least — §/4,
Vi=1,...,N,Vt=1,...,n Ei7t<Li7t+in In(4N/o)
V3 m

ProOFE The proofs of both inequalities rely on the same techniguasely the application of
Bernstein’s maximal inequality for martingales. We thereffocus on the first one, and indicate
the madifications needed for the second one.

We introduce the sequencé; = {(p,,ys) — Z(ps,ys), s = 1,...,n, which is a martingale
difference sequence with respect to the filtration gendrayethe(Z;, I5), s = 1, ..., n. Defining

u = (4/v/3)n+/(1/m)1In(4/6) and the martingaldf; = X; + ... + Xy, our goal is to show that

0
]P[max Mt>u] < -
t=1,...,n 4
Foralls =1,...,n, we note that
E[X2Z7N 7Y = E[(Upays) — Upaus))? | 207 17
< E|lpyy)? | 27 7 <1/
so that summing over, we havel, < n/eforallt =1,... n.

We now apply Lemma A.4 witr = u, v = n/e, and K = 1/¢ (since|X| < 1/e with
probability 1 for all s). This yields

n u?
= <—| <L — .
]P)|:ti1117£?(7th>x:| P|:ti111?2(’th>uanan\ 5] \exp< 2(n/5+u/(36))>

UsingIn(4/6) < m/8 implied by the assumption > 4Ne~ "/, we see that, < n, which,

combined with (5.5), shows that

u? u? 3uim 1)

2(n/e+u/(3¢)) > (8/3)n/e > 16 n? :hlZ
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and this proves the first inequality.
To prove the second inequality note that, by the argumergegtior each fixed we have

~ In(4N/96) )
P|Vt=1,....,n  Liy> L+ (4/V3)n - ] N
The proof is concluded by a union-of-events bound. O

PROOF (OF THEOREM5.2). Whenm < In NV, the bound given by the theorem is trivial, so
we only need to consider the case whern> In N. Then (5.5) implies that — n/(2¢) > 0. Thus,
a straightforward combination of Lemmas 5.1 and 5.2 witd)(Shows that, with probability at
leastl — 34/4, the strategy asks for at mastlabels and

t
Ui . 8 1. 4N InN
Vi=1,..., Up., (1__)< Looa S gy 2 ,
n ; (Ps Ys) 52) S nin Z,t+\/§n —In— ;
which, since>%_, (ps,ys) n for all t < n, implies
n 8 1, 4N InN
Vi=1...,n Zﬁps,ys )— min Ly < 77 A

Z_v )

f m
In N
= 2ny/— —|—— ln

by our choice ofy and usingl /(2¢) < n/m derived from (5.5). The proof is finished by noting
that the Hoeffding-Azuma maximal inequality (see Lemma)An2plies that, with probability at
leastl — §/4,

sincem < n. O

3.2. Hannan consistency.Theorem 5.1 does not directly imply Hannan consistency ef th
associated forecasting strategy because the regret boesadt hold uniformly over the sequence
lengthn. However, using standard dynamical tuning techniquesh(stscthe “doubling trick”
described inCeFrHaHeScWa91, see also Section 2.2 in Chapter 2) Hannan consistencye&an b
achieved. The main quantity that arises in the analysiseigjtrery rate.(n), that is the number
of queries that can be issued up to time The next result shows that Hannan consistency is
achievable whenever(n)/(log(n) loglog(n)) — oo.

In this section, we simply exhibit this small query rate foachieving Hannan consistency.
We are not concerned with the interesting problem of findimgnaremental update for our label
efficient forecaster. Such an incremental update wouldcéssoto a query ratg: an on-line
tuning of the weighting parameterg and of the instantaneous query ratggthe parameters of
the Bernoulli variables,).

COROLLARY 5.1. Leti : N — N be any nondecreasing integer-valued function such that
lim p(n) _
n—o0 logy(n) log, logy (1)

Then there exists a Hannan consistent randomized labeleeffiforecaster that issues at most
wu(n) queries in the first predictions, for any: € N.




4. IMPROVEMENTS FOR SMALL LOSSES 93

PrRoOOF The algorithm we consider divides time into consecutivechg of increasing lengths
n, = 2" forr = 0,1,2,.... In ther-th epoch (of lengtl2") the algorithm runs the forecaster
of Theorem 5.2 with parameters = 2", m = m,, andé, = 1/(1 + r)?, wherem,. will be
determined by the analysis (without loss of generality, w&uane the forecaster always asks at
mostm,. labels in each epoch). Our choice ofs,. and the Borel-Cantelli lemma implies that
the bound of Theorem 5.2 holds for all but finitely many epoddenote the (random) index of
the last epoch in which the bound does not holdibyLet (") be cumulative loss of the best
action in epoch and letZ(") be the cumulative loss of the forecaster in the same epotriodlice
R(n) = |logy n]. Then, by Theorem 5.2 (since it proposes a maximal boundpwgufinition of
R, for eachn and for each realization df* andZ!* we have

R(n)—1

L,—L; < (L(r Lv)) + Z (I, ye) — Z _1{171n7 (7, ye)
r=0 t=2R(n) t=2R(n)
R R(n)
, In(4N(r + 1)?)
< Sres 3 g [HONCI)
r=0 r=R+1

This, the finiteness ok, and1/n < 2~ imply that with probability 1,

lim sup 7L" —In < 8 limsup 2™ R Z 2r\/—ln(4N(r +1)%) .
n—oo n R—o0 —0 my

Cesaro’s lemma ensures that the sup above equals zero as soorvas/ Inr — +oo. It remains

to see that the latter condition is satisfied under the amfgitirequirement that the forecaster does

not issue more thap(n) queries up to time:. This is guaranteed whenevery + m; + ... +

mpm) < u(n) for eachn. Denote byp the largest nondecreasing function such that

pu(t)
t) <
o(t) (1 4+ logy t) logy (1 + logy t)
As 1 grows faster thatog, (n) log, log,(n), we have that(t) — +oo. Thus, choosingny = 0,

andm, = |¢(2")logy(1 + r)], we indeed ensure that, /Inr — +o0o. Furthermore, using that
m, IS nondecreasing as a functiongfand using the monotonicity af,

forallt=1,2,...

S me < (R(n) + 16270 logy(1+ R(n))

< (1+logyn)e(n)logy(1 + logy n) < p(n)
and this concludes the proof. d

4. Improvements for small losses

We now prove a refined bound in which the factorg' (In V') /m of Theorem 5.2 are replaced
by quantities of the order of/nL} (In N)/m+ (n/m)In N in case of an oblivious adversary, and
V/nLx(In(Nn))/m + (n/m)In(Nn) in case of a non-oblivious one, whekg is the cumulative
loss of the best action,

Ly =L (y?) —'mln Zﬁzyt

1=

In particular, we recover the behavior already observed éyrHold and PanizzaHePa97 for
oblivious adversaries in the casé = 0.
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Parameters: Real numbef) < € < 1.
Initialization: ¢ = 1.
For each epoch=10,1,2,...,

(1) letK, =4"(2InN)/e;
(2) initialize L;(r) = 0foralli =1,...,N ;
(3) restart the forecaster of Figure 2 choosirandn, = \/(2¢In N)/K, ;
(4) while min; L;(r) < K, — 1/¢ do:
(a) denote by, the action chosen by the forecaster of Figure 2, andjet 1 if it
asks for the labe};, Z; = 0 otherwise;
(b) if Z; = 1, then obtain the outcomg and update the estimated losses, for all
i=1,...,N,as

LZ(’I") = LZ(’I") —|—€(i,yt)/z—: ;
() t:=t+1.

FIGURE 4. A doubling version of the label efficient exponentially igiged
average forecaster.

This is done by introducing a modﬂ‘ied version of the foreemef Figure 2, which performs a
doubling trick over the estimated losskg;, t = 1,...,n (see Figure 4), and whose performance
is studied below through several applications of Berngdémma.

4.1. A forecaster suited for small lossesSimilarly to [AuCeFrSc02 Section 4] and the
algorithm of Theorem 4.5, we propose in Figure 4 a forecaglich uses a doubling trick based
on the estimated losses of each actiea 1,..., N. We denote the estimated accumulated loss of
this algorithm by

ZAJl = Z Z(1)t7 yt)
t=1
and prove the following inequality.

LEMMA 5.3. For any0 < ¢ < 1, the forecaster of Figure 4 achieves, foral= 1,2, .. .,

L N N 4N
LA,n<L2+8x/§\/(L;+1/a)n?+ =

9
where _ _
L= zpin Lin

REMARK 5.4. (Incremental update variant for the forecaster of Figurg Wsing the incre-
mental update techniques of Auer, Cesa-Bianchi, and @dMilCeGe03] (see also the proof of
Theorem 4.4), we note that instead of using a doubling tmickhe definition of the forecaster,
we could have considered an incremental update. The latidefined by means of a sequence
m, N2, - .. Of tuning parameters, and chooses the weights accordind 59 computed with the

estimated losses ;. The tuning parameters are of the order of

eln N
Ne ™~y = .
Lagt

In addition, this self-confident update has the same guseards the forecaster of Lemma 5.3, at
least as far as orders of magnitudelif, ¢, andN are concerned.
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PrROOF The proof is divided in three steps. We first deal with eacbchp then sum the
estimated losses over the epochs, and finally bound thertotaberR of different epochs (i.e.,
the final value of-). Let S, andT,. be the first and last time steps completed on epagthere for

convenience we definEz = n). Thus, epochr consists of trialsS,., S, + 1,...,T,.. We denote
the estimated cumulative loss of the forecaster at epdmh
~ TT ~
La(r) =Y Up, )
t=S,
and the estimated cumulative losses of the actioadl, . .., NV at epoch- by

~ TT ~
Li(r) =Y _ i) .

t=5y
Inequality (5.4) ensures that for epochand foralli = 1,..., N,
e\ ~ ~ In N

_ 2 < L.
(1-35) Latr) < Litr) + -

so dividing both terms by the quantity— 7, /(2¢) (which is more tharl /2 due to the choice of

K,), we get

- - o~ In N
La(r) < Lifr) + T Lir) +27 =

The stopping condition now guarantees thi; Ei(r) < K, hence, substituting the value gf,
we have proved that for epocth

_ - K, In N
La(r) < _min Li(r) +2v2) | ==—.

Summing over =0, ..., R, we get

~ il - R K, InN
Lan < Y min L(r) + > vy [ ;
r=0 =R r=0

(5.6)

N

min Zi,n +2v2 M (2R+1 — 1) .
€

1=1,..

It remains to bound the numbét of epochs, or alternatively, to bourdd*t! — 1. Assume first
thatR > 1. In particular,

L} = min L;, > min Ei(R—l)
i=1,..,N i=1,...N

> Kp_1—1/e=4a8"1K)—1/e

271 \/(Zn + 1/5) KLO .

- 1
fitl _ 1+4\/<L;;+1/s) —
Ky

which also holds folR = 0. Substituting the last inequality into (5.6) concludes pheof. d

SO

The above is implied by

4.2. Regret against a general opponentWe now state and prove a bound that holds in the
most general (non-oblivious) adversarial model.
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THEOREM 5.3. Against any (non-oblivious) opponent, the label efficiem¢daster of Fig-
ure 4, run with

o 2mIn(4/9)
n
ensures that, with probability — ¢, the algorithm does not ask for more thanlabels and
~ 4 1. 4
Vt=1,...,n  L—L; <U(L})+ \/2(1+L,’§+U(L:L))ln7n +§ln7n

where

3/4
ULy = 20\/—1;*1 —4]§”+32<E1 —4]:57”) (L)

7/8
102 n, AN (L8 y 75 n g 2Vn
m ) m 0

137 x max 4 |- L o 2N 0, AL
m 5 m 1)

We remark here that the bound of the theorem is an improveoventthat of Theorem 5.2 as
soon asl’ grows slower tham/+/Inn. (For L¥ ~ n however, these bounds are worse, at least in
the case of non-oblivious adversary, see Theorem 5.4 beloe ifefined bound for the case of an
oblivious adversary.)

N

OPEN QUESTION 5.1. It is unclear whether this extrdlnn is needed or whether it is an
artifact of our analysis (see also the comments before @Goyoh.1).

For the proof of Theorem 5.3, we first relaig to L}, andEA,n to EA,n, where

EA,n = Z g(pn yt)
t=1

is the sum of the conditional expectations of the instariasdosses, and then substitute the
obtained inequalities in the bound of Lemma 5.3.

LEMMA 5.4. With probability1 — 4/2, the following2n inequalities hold simultaneously,

- AN AN
Vi=1,....n L’{<L’§+2\/ L:In T”+4—1 T"

Vt=1,....n  Lay>Las— <2 L S L 1n4—"> .
m 1) 1)

PROOF We prove that each of both lines holds with probability asté — 6 /4. As the proofs
are similar, we concentrate on the first one only. Foriall 1,..., N, we apply Corollary A.1
with X; = Z(z‘,yt) — l(i,y), t = 1,...,n, which forms a martingale difference sequence (with
respect to the filtration generated b, Z;), t = 1,...,n). With the notation of the corollary,
K =1/¢, andV,, is smaller tharL; ,, /e, which shows that (for a givei), with probability at least
1—0/(4N),

t=1,...,n 1) 3e 1)

The proof is concluded by usingz +y < /x + \/y forz,y > 0, 1/e < 2n/m (derived from
(5.5)),In(4Nn/0) > 1 and the union-of-events bound. O

. 1 Lin\. 4Nn 2 4N
max (Li,t—Li,t><\/2<€—2+ : )1 ANn | V2 ANn
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LEMMA 5.5. With probability at leastl — 4/2,
Vt=1,...,n  La;—Li <U(L}),
whereU (L) is as in Theorem 5.3.

PrROOFE We combine the inequalities of Lemma 5.4 with Lemma 5.3,@artbrm some trivial
upper bounding, to get that, with probability- §/2, forallt =1,....n

_ ANn AN
La: < L§+2\/ Z LanIn —2 + 18/ =L In ——
’ 1) m )

3/4
+23(L;)1/4< 1‘“%") +5631 4NT".

An application of Lemma A.14 concludes the proof. O

PROOF (OF THEOREM5.3). Lemma 5.1 shows that with probability at ledst §/4, the
number of queried labels is less than Using the notation of Corollary A.1, we consider the
martingale difference sequence formed Ky = ¢(I:,y:) — ¢(p;, y:), with associated sum of
conditional variance¥,, < EA,n and increments bounded by 1. Corollary A.1 then shows that
with probability 1 — §/4,

: V2
tiﬁliﬁf(ﬂ(l}t—LAi) < \/ 9(1+ Lan)ln 22 : +?1 7
We conclude the proof by applying Lemma 5.5 and a union-efiesrbound. O

4.3. Arefined bound for the oblivious adversary model.In the oblivious adversary model,
the bound of Theorem 5.3 can be strengthened as follows.

THEOREM 5.4. In the oblivious adversary model, the label efficient fostea of Figure 4,
run with
2mIn(4/9)
n
ensures that with probability — §, the algorithm does not ask for more thanlabels and that

E =

~ 4
Vt=1,...,n L,—L} <B(L;;)+2\/(L;g+B(L;;))1n5

B(LY) = 21\/%@111% (31117) (L)Y

7/8
+15<31 g) (L3)/3 4592 1%

< 134max () Lrim 21 AN
m 1) 1)

Observe that the order of magnitude of the bound of Theordris&lways at least as good as
that of Theorem 5.2 and is better as soorLagyrows slower tham.

The proof of Theorem 5.4 is based on combining Lemma 5.3 withapplications of Bern-
stein’s inequality, but here, one of these applicationstiackwards call to Bernstein’s inequality:
usually, one can handle the predictable quadratic vanaticthe studied martingale, and Bern-
stein’s inequality is then a useful concentration resultle martingale. In the case of the second
step below we know the deviations of the martingale (formyecfh,n), but we are interested in

where
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the behavior of its predictable quadratic variation (edodl 4 ,). The two quantities are related
by a “backwards” use of Bernstein’s lemma.

4.3.1. Relating estimated losses to the cumulative loss of thedotisin. We relatef/; and
INJAm to L} by using Bernstein's inequality (Lemma A.4). First we pamit the difference be-
tween oblivious and non-oblivious adversaries. More gedgj to apply Lemma A.4 rather than
Corollary A.1, we need upper bounds; for all L;,, = L;,(y}') (we exceptionally make the
dependence on the played outcomes explicit) which are ewbgnt of/* and Z7'. In case of
an oblivious adversaries, the outcome sequeyfcis chosen in advance, add; = L; ,,(y7) is a
suitable choice. This is not the case for non-oblivious esbmes whose behavior may take the
actions of the forecaster into account (see the previousosgc

Observe the similarity of the first statement of the follogvlemma to Lemmas 5.2 and 5.4.
In particular, this first statement is an improvement on tist finequality of Lemma 5.4 in case of
an oblivious opponent.

LEMMA 5.6. When facing an oblivious adversary, with probability- §/4,

AN AN
Vi=1,...,n, LI<Li+2\/—Liln—+ —In—.
m 1) m 1)

Consequently, with probability — ¢/4,
(5.7) Vi=1,...,n, Las<Li+AL),

where ”
AN AN AN
A(Ly) = 18\/%7 vo3(tm =) )it lm Tl
m 1) m ) m 5

PrRoOOF For alli = 1,..., N, we may apply Lemma A.4 wittkX; = £(i,y:) — (i, yt),
t =1,...,n,which forms a martingale difference sequence with redpdtie filtration generated
by Z;,t =1,...,n. With the notation of Lemma A.4/, < L; /¢ < 2n L; ,/m, which is indeed
independent of th&, and simple algebra and the union-of-events bound cont¢hederoof of the
first statement. The second one follows from a combinatiahefirst one with Lemma 5.3. [

4.3.2. Bernstein's inequality used backwardsext we relatel An tO L An (and thus tal;,,
via Lemma 5.6). This is done by using Bernstein's lemma (LenAm) once again, but back-
wards. Here again, we want to improve on the bounds yieldeGdypllary A.1, which involve
extray/In n factors.

Relatingfi,n andLZ; , as we did in Lemma 5.6 was straightforward, for in an obligisetting,
L; , is a constant. Here, we consider the martingfa,l;en — EA,,L. It hasI_/Avn as an upper bound
over its predictable quadratic variation, but this uppeunrizbis not independent of thg;, due
to the presence of thp,. Hence, Bernstein’s lemma (Lemma A.4) does not apply in actlir
way (and recall that we want to avoid any call to Corollary )A.This is why we use Bernstein’s
lemma in a backwards sense, and get some information on d¢aictable quadratic variation of
the martingale thanks to what we already know about its tievis.

LEMMA 5.7. For oblivious adversaries, with probability at leakt- §/2,

Vi=1,...,n Las— Ly <B(LY),
whereB(L}) is as in Theorem 5.4.

PROOF ConsiderA(L}) as in Lemma 5.6 and fix a real numbey > A(L?). Consider the
function ¢ defined in the statement of Lemma A.4. Then (5.7) and the woi@vents bound
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imply that, for\ > 0 such that\ — ¢;()\)/e > 0,

e | o, (Eas 1) > )

t=1,....n t=1,....n

+P [ max exp <<)\ - @) (Lag = L7) = A (Lay —LI))

t=1,....,n

> exp <<>\ - ¢1£A)> T — AA(L;)ﬂ

5 o A -
< —-+P [ max exp </\ <LA¢ — LA,t) - il )LA,t>
t=1,....,n 9

(5.8) > exp <<>\ - @) z0 — MA(LE) — ¢1£)\)L:>]

We introduce the martingale difference sequence (witreimemts bounded by B; = ¢(p;, y) —

{(p,, y:). The conditional variances satisfy

+P [_max (Lag— L) > zoand max (EA,t - Lf) < A(L;kl)]

~ /(p,,
E (X712 <E [lp.)?| 217" < (P2

so that, using the notation of Lemma AY, < EA,n/s.
By Lemma A.4,exp(A(Las — Lays) — ¢1(A\)Vi) for ¢ = 1,2,... is a nonnegative super-
martingale. Hence, using Doob’s maximal inequality, we get

P [ max exp <)\ (EA,t — EA,n) — QSI(A)EAJ)
t=1,....,n £

> exp (()\ — @) z0 — NA(LY) — ¢1£A) L;;)]

< P L:Hf,a__’fn exp (/\ (Z/A,t - ZA,t) - ¢1(A)Vt>
> exp (Ao = A7) - 22 o+ 1) )
(5.9) < e (A - o)+ 2 (4 17))
Now, choose
_ wo —A(Ly)

=
2(wo + L*) ©

A < g/2 < 1, and therefore, using; (t) < ¢ for t < 1, we have proved that — ¢1()\)/e > 0.
Thus, (5.8) and (5.9) imply
4

— ) )\2
P| max (La;s—Lj) > xo} < —+exp <)\ (A(L}) — xo) + = (zo + L:))

t=1,...,n
_ 9 (A(L}) = x0)?
= 4—|—exp< 4(330+LZ) el .

It suffices to find ary > A(L};) such that

(A(Ly,) = m0)* el
4 (xo + L3,) 4



100 CHAPTER 5. MINIMIZING REGRET WITH LABEL EFFICIENT PRECZTION

One such choice is

2In 8 In? In 2
xo = A(L)) + :4+2\/%\/L;;+A(L;;)+%.

Substituting the value ofl(L?) yields the statement of the lemma. O

4.3.3. Conclusion of the proof of Theorem 5.8emma 5.1 shows that, with probability at
leastl — 6/4, the number of queried labels is less than We then consider the martingale
difference sequence formed by, = ¢(I;,y:) — ¢(p;, y:), With associated sum of conditional
varianced/,, < IZAm and increments bounded by 1. Lemma A.4 yields

~ — - u2
_ < L* * < _
P |:tirllaxn (Lt LA7t) >wandLa, < L), + B(Ln)] <exp ( = B(L;)))
provided thatu < 3(L} + B(L})). Lemma 5.7 together with a union-of-events bound and the
choice

u= 2\/(L,*1 + B(Ly)) ln%
concludes the proof.

5. Alower bound for label efficient prediction

Here we show that the performance bounds proved in SectiontBd label efficient exponen-
tially weighted average forecaster are essentially uriwadsle in the strong sense that no other
label efficient forecasting strategy can have a better padace for all problems, in terms of the
orders of magnitude in the parametersV andm.

OPEN QUESTION 5.2. (Minimax constants.)Theorem 5.5 solves the minimax problem (see
Section 5 in Chapter 2) for the orders of magnitude in all peirs. We may now think of the
best leading constant. In view of the results for predictidttn expert advice with full monitoring
stated in Chapter 2, see Section 5 therein, the best leaditegant we may expect in Theorem 5.1
is 1/\/5, instead of the curreny2. This gap of a factor of 2 is similar to the one between the two
analyses of the no internal regret forecaster of TheorerraBd.is due to the two possible analysis
of the performances of the exponentially weighted averdgarithm. We may either use Taylor
expansions (the potential approach), or Hoeffding's iaditgy which is sharper. For more details
on this gap, we refer taJeLu03] and [CeLu0Q5]. For the time being, as far as Theorem 5.1 is
concerned, we do not see how to improve the constant.

Denote the set of natural numbersiBy= {1,2,...}.

THEOREM 5.5. There exist an outcome spagg a loss functior? : N x Y — [0,1], and
a universal constant > 0 such that, forallNV > 2and foralln > m > 201—; In(N — 1),
the cumulative (expected) loss of any (randomized) fotec#zat uses actions ifil, ..., N} and

asks for at mostn labels while predicting a sequencerobutcomes satisfies the inequality
n n
) ) In(N —1)
sup E (I, y:)| — min Liyye) | = eny| ——= .

- Ve
In particular, we prove the theorem for= .
(I14+e)y/5(1+e)
Note that in the above theorem, we may take the same lossdarfor all vV, we simply
restrict the set of all possible actions to the filksiones. We also note that since the proof shows
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that the opponent may be oblivious, the Hoeffding-Azumauadity (for i.i.d. random variables,
see Lemma A.2 in the Appendix) leads to a stronger resultaklFéorecasters using an auxiliary
randomization formed by a sequence of i.i.d. variableslaier bound also holds with high prob-
ability 1 — ¢ with respect to the auxiliary randomization (with deviasaocn/(In(N —1))/m
upper bounded by something of the orderdf In(1/4)). (For general opponents, the techniques
of Devroye, Gyorfi, and LugosjeGyLu96, Chapter 14] may lead to the same result.)

PrROOF First, we definey = [0,1] and/. Giveny € [0, 1], we denote by(yi,y2,...) its
dyadic expansion, that is, the unique sequence not endiignfinitely many zeros such that

y=> 2",
k>1
Now, the loss function is defined &&:,y) = y; forally € Y andk € N.

We construct a random outcome sequence and show that thetexpalue of the regret (with
respect both to the random choice of the outcome sequende gralforecaster’s possibly random
choices) for any possibly randomized forecaster is boufficed below by the claimed quantity.

More precisely, we denote liy,, . . . , U, the auxiliary randomization which the forecaster has
access to. Without loss of generality, this sequence caakemtas an i.i.d. sequence of uniformly
distributed random variables ovg, 1]. Our underlying probability space is equipped with the
algebra of events generated by the random outcome segignce, Y,, and by the randomization
Uy,...,U,. As the random outcome sequence is independent of theayxiindomization, we
define N different probability distributionsP; @ P4,¢ = 1,..., N, formed by the product of the
auxiliary randomization (whose associated probabilistriiution is denoted b 4) and one of
the N different probability distribution®1, . . . , Py over the outcome sequence defined as follows.

Fori=1,...,N, Q; is defined as the distribution (ovg, 1]) of

Z*o—i 4 Z 7,27k 4 o-(N+ 7
k=1,...,N, ki

whereU, Z*, 71, ..., Zy are independent random variables such thaas uniform distribution,

and Z* and theZ; have Bernoulli distribution with parametéy2 — ¢ for Z* and1/2 for the

Z. Now, the randomization is such that undgr the outcome sequendg, ..., Y, isi.i.d. with

common distributior();.

Then, under eacR; (fori = 1,...,N), the lossed(k,Y;), k=1,...,N,t =1,...,n, are
independent Bernoulli random variables with the followpagameters. For all £(i,Y;) = 1 with
probability 1/2 — ¢ and/(k,Y;) = 1 with probability 1/2 for eachk # i, wheree is a positive
number specified below.

We have

max |EsL, — min L;, = max max <IEALn—Li,n)
Y1,--Yn i=1,....N Y1,--Yn 1=1,...,N

> max [ [EAEn —Li,n} )
i=1,....N
whereE; (resp.E 4) denotes expectation with respectfto(resp.lP ).
Now, we use the following decomposition lemma, which sttibes a randomized algorithm
performs, on the average, just as a convex combination efrétistic algorithms. The simple
proof is omitted.

LEMMA 5.8. For any randomized forecaster, there exists an intdgea pointa. € R” in the
probability simplexq = (a, ..., ap), and D deterministic algorithms (indexed by a superscript
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d=1,...,D)such that, for every and every possible outcome sequeyfp‘é = (Y1, Yt—1),

D
P4 [[t = 1| yi_l] = dz:ad H[1f=i\y§71] ’
=1

wherel[;a_; 1, is the indicator function that the-th deterministic algorithm chooses action
when the sequence of past outcomes is formegd dy

Using this lemma, we have that there exista and D deterministic sub-algorithms such that

‘maXNEi EaL, — L = maX E[ZZO&dZHFI kYY) 0k, Y;) — ]

7':17“~7
t=1 d=1 k=1

ZZH[Id wiye-ylk, Ye) — ]

maX ZadE
t=1 k=1

Now, underP; the regret grows by Whenever an action different froims chosen and remains the
same otherwise. Hence,

N
max EEaLy —Lin| = _max_ ZadE[ZZHId vy 00k, Vi) = Ly ]

7':17“~7
t=1 k=1

= € max ZadZ]P’Z [I #* z]
D n a
= — mi Y rd _
= en <1 ZZI{}II}NZ - P;[I; z]) .

For thed-th deterministic subalgorithm, lét < Tld < ... < T;,i < n be the times when the:
queries were issued. Théli’f, ..., T2 are finite stopping times with respect to the i.i.d. process
Y1,...,Y,. Hence, by a well-known fact in probability theory (see, §QhTe88 Lemma 2, page
138]), the revealed outcomé@{i, ..., Ypa are independent and identically distributedvas

Let R{ be the number of revealed outcomes at titrend note that?{ is measurable with
respect to the random outcome sequence. Now, as the subialyeve consider is deterministic,
R{ is fully determined bYW, ..., Yy Hence,If may be seen as a function Bfa, ..., Yra
rather than a function df’Tld, ... ,Yng only. As the joint distribution OYTld7 s Ypa underP; is

t

', we have proved that
Bl =i = QI =1).
Consequently, the lower bound rewrites as

E[EL—L]_ 1— mipd — 4]
[ 1] =on (1 i, 35 2 =1)

LV d=1 t=1
By Fano's inequality for convex combinations (see Lemma3Anlthe Appendix), it is guaranteed

that
mln E E ad —2QM[If = i] < max ¢ K
] l1+e’In(N—-1)] "

d 1t=1

_ D N 0y 1 N
K= 3000 oy @ o) = g K@),

where
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and K is the Kullback-Leibler divergence (or relative entropiween two probability distribu-
tions. MoreoverB, denoting the Bernoulli distribution with parameter

K(@Q, Q") =mK(Qi, Q1) <m (K (Byjo—c,Bi/2) + K (Byjo,Bijo—c)) < 5me”

for 0 < e < 1/10, where the first equality holds by (A.1). For the second one, nete
that the definition of th&); and Lemma A.7 imply that the considered Kullback-Leibleredi
gence is upper bounded by the Kullback-Leibler divergeresvéen(Zy,...,2*%, ..., Z,,U),
where Z* is in thei-th position, and Z*, Z; ..., Z,,U). (A.1) then shows thakl(Q;,Q;) <
K (B1/2—c,B1/2) + K (By/2,B1/2_.), and Lemma A.5 concludes.

Therefore,

~ e 5m g2
EuL, — min Li, | > 1— , .
y?i}y{n ( Atm Z:I{llnN Z’”) = ( fax { 1+e In(N—-1) })

The choice

eln(N —1)
5(1+e)m
yields the claimed bound. O

(e < 1/10)






CHAPTER 6

Regret minimization under partial monitoring

We consider repeated games in which the player, insteadsafraing the action chosen by
the opponent in each game round, receives a feedback gethdmathe combined choice of the
two players. We study Hannan consistent players for theseegathat is, randomized playing
strategies whose per-round regret vanishes with probabifie as the numbet of game rounds
goes to infinity. We prove a general lower boundkﬁh‘l/?’) for the convergence rate of the regret,
and exhibit a specific strategy that attains this rate for gamye for which a Hannan consistent
player exists.
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This chapter is based on the submitted pa@elLuSto4h and is a joint work with Nicolo
Cesa-Bianchi and Gabor Lugosi.

1. A motivating example

A simple yet nontrivial example of partial monitoring is tfalowing dynamic pricing prob-
lem. A vendor sells a product to a sequence of customers wigoatténds one by one. To each
customer, the seller offers the product at a price he selsajs from the interval0, 1]. The cus-
tomer then decides to buy the product or not. No bargainimpssible and no other information
is exchanged between buyer and seller. The goal of the sellerachieve an income almost as
large as if he knew the maximal price each customer is willingay for the product. Thus, if
the price offered to the-th customer ig; and the highest price this customer is willing to pay is
y¢ € [0,1], then the loss of the seller is — p; if the product is sold and (say) a constant 0 if
the product is not sold. The first case corresponds to a losarafngs and the second case to the
fixed charges. Formally, the loss of the vendor at tinee

K(Puyt) = (yt - pt)Hptéyt + CHpt>yt
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PREDICTION WITH PARTIAL MONITORING

Parameters: number of actiongV, number of outcomes/, loss functiory, feedback function
h.

Foreachround =1,2...,

(1) the environment chooses the next outcame {1, ..., M} without revealing it;

(2) the forecaster chooses a probability distributignover the set ofV actions and
draws an actiord; € {1,..., N} according to this distribution;

(3) the forecaster incurs log$l;, y;) and each actionincurs loss/(i, y;), where none
of these values is revealed to the forecaster;

(4) the feedback(I;, y;) is revealed to the forecaster.

wherec € [0,1]. (In another versiohof the problem the constantmay be replaced by,. We
can even think of; + ¢, to take into account the loss of earnings plus the fixed @sargr of
any measure of the loss.) In either case, if the seller kneaxduance the empirical distribution of
the y;’s then he could set a constant priges [0, 1] which minimizes his overall loss. A natural
question is whether there exists a randomized strategyhéoséller such that his average regret

n

1< 1

- ;E(pt,yt) min ;E(q,yt)
is guaranteed to converge to zeroras~» oo regardless of the sequengg i, ... of prices. The
difficulty in this problem is that the only information thellge (i.e., the forecaster) has access to
is whetherp; > y; but neithery, nor ¢(p, y;) are revealed. One of the main results of this chapter
describes a simple strategy such that the average regneédefbove is of the order af 1/°.

We treat such limited-feedback (partial monitoring prediction problems in a more gen-
eral framework which we describe next. The dynamic pricingbfem described above, which
is a special case of this more general framework, has beenralestigated by Kleinberg and
Leighton KILe03] in a simpler setting where the reward of the seller is defiasd(p;, y:) =
vt Ip,<y,- Note that, by using the feedback information (i.e., whethe customer bought the
product or not), here the seller can compute the valygof v;). Therefore, their game reduces
to an instance of the multi-armed bandit game (see Examplbedow) with a continuous action
space.

2. Main definitions

We adopt a learning-theoretic viewpoint and describe glantionitoring as a repeated pre-
diction game between farecaster(the player) and thenvironmenithe opponent). In the same
spirit, we calloutcomeghe actions taken by the environment. At each rotird 1,2... of the
game, the forecaster chooses an acfidrom the sef{1, ..., N}, and the environment chooses an
actiony, from the set{1,..., M }. The losses of the forecaster are summarized ithobe matrix
L = [¢(i,5)|nx - (This matrix is assumed to be known by the forecaster.) dMithoss of gener-
ality, we rescale the losses so that they all ligirl]. If, at timet¢, the forecaster chooses an action
I, € {1,...,N} and the outcome ig; € {1,..., M}, then the forecaster’s suffers lo&d;, y;).
However, instead of the outcomg the forecaster only observes the feedblagck, v, ), whereh is
a knownfeedback functiothat assigns, to each action/outcome paiflin..., N} x {1,..., M}

Lin this case it is easy to see that all terms depending:@ancel out when considering the regret, and we obtain the
bandit setting analyzed by Kleinberg and Leight#iiLe03]—see how the functiom is defined below.
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an element of a finite s& = {s1, ..., s,,} of signals The values of. are collected in &eedback
matrix H = [h(z,j)]NXM

Note that we do not make any restrictive assumption on theepaf/the opponent. The
environment may choose actigp at timet by considering the whole past, that is, the whole
sequence of action/outcome paifs, ys), s = 1,...,t— 1. Without loss of generality, we assume
that the opponent uses a deterministic strategy, so thataloe ofy, is fixed by the sequence
(I1,...,1;—1). In comparison, the forecaster has access to significagglyihformation, since he
only knows the sequence of past feedba€kél1, y1), ..., h(l—1,y1—1))-

We note here that some authors consider a more general settlpah the feedback may be
random. For the sake of clarity we treat the simpler modetritesd above and return to the more
general case in Section 7.

It is an interesting and complex problem to investigate tbsspbilities of a predictor only
supplied with the limited information of the feedback. Instichapter we focus on the average
regret

1 — 1<

- ;5(5, Yt) — e ;5(% Yt)
that is, the difference between the average (per-roungd)dbthe forecaster and the average (per-
round) loss of the best action. Forecasting strategiesagteging that the average regret converges
to zero almost surely for all possible strategies of theremvnent are calletHannan consistent
after James Hannan, who first proved the existence of a Haooragistent strategy in tHfell in-
formationcase Han57] when (i, j) = j for all 4,5 (i.e., when the true outcomg is revealed
to the forecaster after taking an action). The full inforimatcase has been studied extensively in
the theory of repeated games, and in the fields of learningryhend information theory. A few
key references and surveys include BlackwBllab6], Cesa-Bianchi, Freund, Haussler, Helm-
bold, Schapire, and WarmutiCgFrHaHeScWa971, Cesa-Bianchi and LugosCeLu99], Feder,
Merhav, and GutmarHeMeGu93, Foster and VohraHoVo99, Hart and Mas-ColellffaMa01],
Littlestone and WarmuthLjWwa94], Merhav and FedeMleFe99, and Vovk [Vov90, Vov01.

A natural question one may ask is under what conditions ofoweand feedback matrices it
is possible to achieve Hannan consistency, that is, to gteeahat, asymptotically, the cumulative
loss of the forecaster is not larger than that of the besttanhaction with probability one. Natu-
rally, this depends on the relationship between the losdemaback functions. An initial answer
to this question has been provided by the work of Piccolbadi &chindelhaueHiSc0]. How-
ever, since they are only concerned with expected perfaceaheir results do not imply Hannan
consistency. In addition, their bounds have suboptima&sraf convergence. Below, we extend
those results by showing a forecaster that achieves Harmoreistency with optimal convergence
rates.

Note that the forecaster is free to encode the vah(esj) of the feedback function by real
numbers. The only restriction is that/f(i, j) = h(i, ;') then the corresponding real numbers
should also coincide. To avoid ambiguities by trivial rdsza we assume thati(i, 7)| < 1
for all pairs (i,7). Thus, in the sequel we assume ttdt = [h(i,j)]nvxas IS @ matrix of real
numbers between 1 and1 and keep in mind that the forecaster may replace this magrildhy =
[0i(h(i, 7)) nx s for arbitrary functionsp; : [-1,1] — [-1,1],7 = 1,..., N. Note that the sef
of signals may be chosen such that it has< M elements, though after numerical encoding the
matrix may have as many ag¢ N distinct elements.

The problem of partial monitoring was considered by Mert&win, and ZamirlfleSoZa9%4,
Rustichini Rus99, Piccolboni, and Schindelhaud?isc01, and Mannor and ShimkinflaSh03.
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The forecaster strategy studied in Section 3 is first intcedun [PiSc01, where its expected re-
gret is shown to have a sub-linear growth. Rustichiti$99 and Mannor and ShimkirlaSh03
consider a more general setup in which the feedback is natssadly a deterministic function of
the pair outcome and forecaster’s action, but it may be nanddth a distribution indexed by
this pair. Based on Blackwell’'s approachability theoremistthini [Rus99 establishes a gen-
eral existence result for strategies with asymptoticapitimal performance in this more general
framework. In this chapter we answer Rustichini’s questbiout the fastest achievable rate of
convergence in the case when Hannan consistent strateggesMannor and Shimkin also con-
sider cases when Hannan consistency may not be achieveda giartial solution, and point out
important difficulties in such cases.

Before introducing a general prediction strategy and dafitocconditions for its Hannan con-
sistency, we describe a few concrete examples of partialtorory problems.

EXAMPLE 6.1. (Multi-armed bandit problen.A well-studied special case of the partial mon-
itoring prediction problem is the so-called multi-armeddi problem. Recall from Chapter 2,
Section 4, that here the forecaster, after taking an adgs@ble to measure his loss (or reward) but
does not have access to what would have happened had he @mbar possible action. Here
H = L, that is, the feedback received by the forecaster is justaisloss.

EXAMPLE 6.2. Dynamic pricing) Consider the dynamic pricing problem described in the
introduction of the section under the additional restictthat all prices take their values from
the finite set{0,1/N,...,(N — 1)/N} where N is a positive integer (see Example 6.6 for a
non-discretized version). Clearly, ¥ is sufficiently large, this discrete version approximates
arbitrarily the original problem. Now one may také = N and the loss matrix is

L=1[(i,j)nxy  Where  £(i,j) = ‘%Higj +els; .

The information the forecaster (i.e., the vendor) receisesmply whether the predicted valdg

is greater than the outcome or not. Thus, the entries of the feedback ma#ixmay be taken to
beh(i,j) = I;~; or, after an appropriate re-encoding,

h(i,j) = aligj +blis; i,5=1,...,N

wherea andb are constants chosen by the forecaster satisfyings [—1, 1].

ExXAMPLE 6.3. (Apple tasting. This problem was considered by Helmbold, Littlestone, and
Long [HeLiLo0O] in a somewhat more restrictive setting. In this example= M = 2 and the
loss and feedback matrices are given by

0 1 a a
L_{lo] and H_[bc}.
Thus, the forecaster only receives feedback about the mgtgowhen he chooses the first action.
(Imagine that apples are to be classified as “good for salétatten”. An apple classified as
“rotten” may be opened to check whether its classificatios e@rect. On the other hand, since
apples that have been checked cannot be put on sale, an &gdiied “good for sale” is never
checked.)

REMARK 6.1. (On the pertinence of the regrefhDhe previous example points out the limita-
tions of the pertinence of the regret. It is not very intdaregto only perform almost as well as
the two strategies which consist, on the one hand, in sedlihgpples, and on the other hand, in
throwing all apples out. However, this example may be carsidl as a toy example. Meaningful
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situations for the regret are given, for instance, by theadyis pricing problem stated in the intro-
duction, or by the dynamic bandwidth allocation problent thativated the work of Piccolboni
and SchindelhauePjScO0].

EXAMPLE 6.4. (Label efficient predictiof. In label efficient prediction (see Helmbold and
Panizza HePa91, and also Cesa-Bianchi, Lugosi, and StolEe[uSt05 or Chapter 5) the fore-
caster, after choosing its prediction for routydlecides whether to query the outcomewhich
he can only do for a limited number of times. In Chapter 5 matglupper and lower bounds
are given for the regret in terms of the number of availablels total number of rounds, and
number of actions. A variant of the label efficient prediotroblem may also be cast as a partial
monitoring problem. LefV = 3, M = 2, and consider loss and feedback matrices of the form

1 1 a b
L=1]11 0 and H=|c¢ ¢
0 1 c c

In this example the only times useful feedback is receivedndren the first action is played but
in this case a maximal loss is incurred regardless of theoouc Thus, just like in the problem of

label efficient prediction, playing the “informative” agti has to be limited, otherwise there is no
hope for Hannan consistency.

3. General upper bounds on the regret

The purpose of this section is to derive general upper botordthe rate of convergence
of the regret achievable under partial monitoring. Thid Wwé done by analyzing a forecasting
strategy inspired by Piccolboni and Schindelhal®d6£0]. This strategy is based on the expo-
nentially weighted average forecaster, a thoroughly stigredictor in the full information case,
see, for example, Auer, Cesa-Bianchi, and GenflgdeGe03, Cesa-Bianchi, Freund, Haussler,
Helmbold, Schapire, and Warmut@¢FrHaHeScWa91, Littlestone and WarmuthLiWa94],
Vovk [Vov90, Vov0]. In the special case of the multi-armed bandit problem,ftecaster re-
duces to the strategy of Auer, Cesa-Bianchi, Freund, andfeh]AuCeFrSc0g (see also Hart
and Mas-Colell HaMa02] and Section 4 of Chapter 2 for closely related methods).

The crucial assumption under which the strategy is defingthithere exists afv x N matrix
K = [k(i,7)]nxn such that

L=KH,
that is,
H
H and [ I ]

have the same rank. In other words we may write, fof @l{1,..., N} andj € {1,..., M},

N
(6.1) 0, 5) = k(1) k(L 5) -

=1

In this case one may define the estimated logsss

. k(i, I,) h(I
(6.2) Wi,y) = RGL) ATy
p[t,t

(Note that, contrary to the estimates used in Chapter 5, e proposed above are real-valued,
and may be negative.) We denote the cumulative estimateddaa round and for actioni by

Liy =301 i, ).
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Parameters: mgtrixL of Ios§es, feedback matrid, matrix K such that = K H
Initialization: Lo =---= Ly =0.
Foreachround=1,2,...
(1) letn, = (k*)~2/3((In N)/N)?/3t=2/3 andy, = (k*)*3N?/3(In N)Y/3¢=1/3;
(2) choose an actiof, from the set of actiong1, ..., N} at random, according to the
distributionp, defined by

e~ Mtlit—1 Ve

o= (1 — _ Ly
Pit ( %) Z]va—l e~ MLk -1 N

(3) letLi; = Liy 1 + £(i,y;) foralli=1,...,N.

FIGURE 1. The randomized forecaster for prediction under partihibtoring.

Consider the forecaster defined in Figure 1. Roughly spgakire two terms in the expres-
sion of p; ; correspond to “exploitation” and “exploration”. The firgtrin assigns exponentially
decreasing weights to the actions depending on their estihtaimulative losses, while the second
term ensures sufficient exploration to guarantee accustr@aes of the losses.

A key property of the loss estimates is their unbiasednesiseiriollowing sense. Denoting
by E; the conditional expectation giveR, ..., ;1 (i.e., the expectation with respect to the dis-
tribution p, of the random variabld,), observe that this conditioning fixes the valueypf and
thus,

By~ oK)

Pkt

WE

Pkt

e
I
—_

I
M=

k(z,k)h(k,yt)zﬁ(z,yt), izl,...,N7

B
Il
—

and thereforé(i, y,) is an unbiased estimate of the 10%s, y;).
The main performance bound of this section is summarizeldeméxt theorem. Note that the

average regret
1 [ N
(St - yin, 3t

decreases to zero at a rate!/3. This is significantly slower than the best rate!/2 obtained
in the “full information” case. In the next section we shovatthis rate cannot be improved
in general. Thus, the price paid for having access only toestaadback except for the actual
outcomes is the deterioration in the rate of convergenceweader, Hannan consistency is still
achievable whenever the conditions of the theorem ardfisdtis

THEOREM 6.1. Consider any partial monitoring problem such that the lossl deedback
matrices satisfyf, = K H for someN x N matrix K with £* = max{1, max; ; |k(z,7)|}, and
consider the forecaster of Figure 1. L&t (0,1). Then, for all strategies of the opponent, for all
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n, with probability at leastl — ¢,

1 n
;;aft’yt) _min Zﬁ i Yt)

1=

* 1/3
. 5<@J?JnN> <L+¢gm«ﬁ;fy®>

+ ilnu + 5(k*N)Y3p=23(In N)~/3 1

2n 1)
1 £ N2 1/3 | 1 N+4
+n@+«kN)mN) +kNﬁ-jTﬁ

N +4
0

The main term in the performance bound has the order of magnit 1/ (k* N)2/3(In N)/3.
Observe that this theorem directly implies Hannan conststeby a simple application of the
Borel-Cantelli lemma. We also remark that the bound progdisethe theorem could be strength-
ened in a maximal version of the same flavor as the stateméltiedfrem 5.2 by a more careful
way of writing the proof, by exploiting the fact that we ap@Eymaximal version of Bernstein’s
inequality (see Lemma A.4). We do not do so for the sake of kiitypand readability.

REMARK 6.2. (Improvement for small lossesWWe may design a forecaster suited for small
losses under partial monitoring, in the same spirit as wéatithe label efficient prediction setting
in Section 4 of Chapter 5. Denoting by, ,, the (conditional) expected cumulative loss of the
forecaster, and by} the cumulative loss of the best action, we may prove that

Lan < L% +~v(nLan)'?

for an absolute constant Solving shows that the (expected) regfet,, — L} is bounded by a
quantity of the order ofnL*)'/3, and using the same martingale inequalities as in Sectidn 4 o
Chapter 5, we may prove that this is still the order of magldtaf the non-expected regret. This
improves on the general®/? upper bound on the regret proposed by Theorem 6.1. We do not
work out the tedious details.

)

PROOF (OF THEOREM 6.1). The starting point of the proof of the theorem is an @pfibn
of Lemmas 4.3 and 4.5 to the estimated losses (see also thegirbheorem 5.1). Sincé; ; lies
between- B, and B;, whereB; = k*N/~;, the proposed values of andn; imply thatn; B; < 1
if and only ift > (In N)/(Nk*), that is, for allt > 1. Therefore, defining fot = 1, ..., n, the
probability vectorp, by its components

_ e_ntzi,t—l ) ] N
Pit = zi\; A 1=1,...,N,

we may apply Lemmas 4.3 and 4.5 (and use 2 < 1) to obtain

n

Zzpztglyt 'Hlln Ejn\2lnN+Z77tzpzt£Zyt) .

=1 i=1 1 S

Sincep; + = (1 — v¢)pi.t + /N, the inequality above yields, after some simple bounding,
(6. 3)

n
ZZPMEZ% mlnNZ]n\2lnN+Znthlt€2yt +Z%Z Zyt)-
1= 1=

t=1 i=1 n+1
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Introduce the notation

En:ZE(Itayt) and ijzzg(j,yt), j=1,...,N.
— t=1

Next we show that, with an overwhelming probability, thehtitpand side of the inequality (6.3)
is less than something of the orde?/3, and that the left-hand side is close to the actual regret

ZE I, y) — IHlIl Ljn.

7 7

Our main tool is Bernstein's inequahty for martingalese 4¢&amma A.4 in the Appendix. This
inequality implies the following four lemmas, whose proafg similar, so we omit some of them.

LEMMA 6.1. With probability at leastt — 6/(N + 4),

n N n N
Zzpat@(i’yt) < ZZP@J(%%)

t=1 i=1 t=1 i=1

+\l2(k:*N)2 (Zi>lnN;4+g<l+kN>lnN;4.

=1 )t Tn
PrOOF. DefineZ, = — -~ | p; (i, y;) so thatl,[Z;] = — 2N p;.4£(i, ), and consider
X, = Zy — E[Z;]. We note that
B X7 < EfZ7] = sz D5t { i yt)g(jayt)]

k(i, k)k : ik 2 (*N)?
= sztpytzpkt LG <( ) )

pk )t Yt
and therefore,

Ve
t=1 t=1
Onthe other hand X;| is bounded by = 1+(k*N)/~,. Bernstein’s inequality (see LemmaA.4)
thus concludes the proof. O

LEMMA 6.2. For each fixedj, with probability at leastl — §/(N + 4),

~ "1 N +4 2 k*N N +4
LjvnéijJrJrJz(k*N)?(Z )1 T++£<1+ >ln ey

LEMMA 6.3. With probability at leastt — /(N + 4),
n N n n
= G0 k*N)? 2\ N+44 N+4
Zﬁt Zpi,tﬁ(z,yt)2 < Zm( + J 2(k*N)* ( 77_t> In + £ In )
t=1 i=1 t=1 t

1) 3 0
PROOF LetZ; = n, o | i sl(i, y¢)?, andX; = Z; — E4[Z;]. All | X;| are bounded by

k*N)?
K = max 77t( 2)
t=1,....n Vi

=1.

On the other hand,

n 2
Vo= Y EJXP] < (K*N Z”—%

t=1
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Lemma A.4 now concludes the proof, together with the inatual
(k*N)?

E¢[Z] < me
Yt

LEMMA 6.4. With probability at leastt — 6/(N + 4),

n N
Sy < S e (S 2t Fnpn T2
t=1 =1

The next lemma is an easy consequence of the Hoeffding-Azneguality for sums of
bounded martingale differences (see Lemma A.2 in the Apggend

LEMMA 6.5. With probability at leastt — 6/(N + 3),

D I y) < ZZPMEZ Yt) 1 N;L4
t=1

t=1 i=1

The proof of the main result follows now from a combinationLemmas 6.1 to 6.5 with
(6.3) (where Lemma 6.2 is applied times). Using a union-of-event bound, we see that, with
probability 1 —

ZE (It,y) — mln L]n

2In N
<
Mn+1
"1 N+4 2 k*N N +4
2 2(k*N)2 n—— +~=(1 1
" J( )<tz_;%> 5+3<+%>n5
" (k*N)?2 "2 N +4 N +4
+ m( L 2(k* N )4 i ln—++£1n—+
— Ve 1 i J 3 J
" " N +4 2 N +4
T Z’YtJF\IQ(k*N)Z (Z’Yt)l —;_ +§(/€*N+ 1)In ;—
t=1 t=1
n. N+4
+ 51117

Substituting the proposed values-gfandr;, and using that for-1 < o < 0

n

Yoit < et
pt a+1

we obtain the claimed result with a simple calculation. O

We close this section by considering the implications of drken 6.1 to the special cases
mentioned in the introduction.

ExAMPLE 6.5. (Multi-armed bandit problen). Recall that in the case of the multi-armed
bandit problemH = L and the condition of the theorem is trivially satisfied. ladeone may
take K to be the identity matrix so that* = 1. Thus, Theorem 6.1 implies a bound of the
order of (N21In N)/n)'/3. Even though, as it is shown in the next section, the €xte—'/3)
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cannot be improved in general, faster rates of convergerecachievable for the special case of
the bandit problem. Indeed, for the bandit problem Cesadinand Lugosi CeLu05 describe
careful modifications of the forecaster of Theorem 6.1 tlchieve an upper bound of the order
of \/N(In N)/n, see Theorem 2.8. It remains a challenging problem to cteaiae the class of
problems that admit rates of convergence faster tham'/3), see Question 6.3.

EXAMPLE 6.6. Dynamic pricing) In the discretized version of the dynamic pricing problem
(i.e., when all prices are restricted to the §et1/N,..., (N — 1)/N}), the feedback matrix is
given byh(i, j) = al;<; + b1, ; for some arbitrarily chosen values @&ndb. By choosing, for
exampleg = 1 andb = 0, it is clear thatH is an invertible matrix and therefore one may choose
K = L H ' and obtain a Hannan-consistent strategy with averagetrefjtiee order ofn~1/3.
Thus, the seller has a way of selecting the prifesuch that his loss is not much larger than what
he could have achieved had he known the valyed all costumers and offered the best constant
price. Note that with this choice ef andb, the value oft* equalsl (i.e., does not depend aW)
and therefore the upper bound has the f@iit N2 log N)/n)'/3/In(1/§) for some constant'.

By choosingN ~ n!/® and running the forecaster into stages of doubling lendtasetfect of
discretization sums up to/N and decreases at about the same rate as the average regiiat, so
for the original problem with unrestricted price range orgyrabtain a regret bound of the form

1 Zn Ll s
- B 1 _ 1 |
P U(pt, yt) qlen[(lflu - ;E(q,yt) O(n nn)

We leave out the simple but tedious details of the proof, gixtiee precise way we should dis-
cretize. We show below that the discretizatior(y;) = [ Ny;|/N ensures that

1
for all p andy in [0, 1]. To this end, we note that only three cases may happen,y (in which
case,p > Yn(y)), p < Yn(y) (in which casep < y), andYn(y) < p < y. In these cases,
U(p,y) — £ (p, Yn(y)) respectively equal8, y — Yn(y) < 1/N and(y —p) —c<y—p < 1/N.
Thus, the cumulated effect of the discretization in oneestagy be bounded by/N as claimed,
provided that the discretization is given By (1;) = | Ny, |/N.

ExXAMPLE 6.7. (Apple tasting. In the apple tasting problem described above, one may ehoos
the feedback values= b = 1 andc = 0. Then, the feedback matrix is invertible and, once again,
Theorem 6.1 applies.

ExAMPLE 6.8. (Label efficient predictiol. Recall next the variant of the label efficient pre-
diction problem described in the previous section. Heredh& of L equals two, so it is necessary
(and sufficient) to encode the feedback matrix such thaaik equals two. One possibility is to
choosex = 1, b = 1/2, andec = 1/4. Then we havd, = K H for

0 2 2
K = 2 -2 =2
-2 4 4

The obtained rate of convergen®gn—'/3) may be shown to be optimal. In fact, it is this example
that we use in Section 5 to show that this rate of convergeaoeat be improved in general.

REMARK 6.3. It is interesting to point out that the bound of Theorerm does not depend
explicitly on the value of the cardinalityy/ of the set of outcomes. Of course, in some problems

20ther choices for the discretization may only lead to a watse{1/N, c} upper bound.
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the valuek™ may depend or/. However, in some important special cases, such as the-multi
armed bandit problem for whick® = 1, this value is independent éf/. In such cases the result
extends easily to an infinite set of outcomes. In particulae, case when the loss matrix may
change with time can be encoded this way.

4. Other regret-minimizing strategies

In the previous section we saw a forecasting strategy thatagtees that the average regret
is of the order ofn~!/3 whenever the loss matrik can be expressed & H for some matrix
K. In this section we discuss some alternative strategidsytbll small regret under different
conditions.

First note that it is not true that the existence of a Hannarsistent predictor is guaranteed
if and only the loss matrix can be expressed & H. The following example describes such a
situation.

EXAMPLE 6.9. LetN = M = 3,
1 0 O a b ¢
L=]10 1 0 and H=|d d d
0 0 1 e e e

Clearly, for all choices of the numbeuisd, ¢, d, e, the rank of the feedback matrix is at most two
and therefore there is no matri for which L = K H. However, note that whenever the first
action is played, the forecaster has full information akivat outcomey,. Formally, an action

i € {1,..., N} is said to baevealingfor a feedback matrix if all entries in thei-th row of H
are different. Below we prove the existence of a Hannan sterdi forecaster for all problems in
which there exists a revealing action.

THEOREM 6.2. Consider an arbitrary partial monitoring problerfiL, H) such thatL has a
revealing action. Let € (0,1). If the randomized forecasting strategy of Figure 2 is ruthwi

V4 2 1]1 4 (5 /26 n /v

wherem = (4n)?/3(In(4N/6))"/3, then

1 ﬁi , s [ ANYYP
— — < R
n (t:l €Ty z:qllnN Ll’") < 8n <ln )

holds with probability at least — § for any strategy of the opponent.

PrROOF The forecaster of Figure 2 chooses at each round a reveaditign with a small
probabilitye ~ m /n (of the order of»~1/3). At thesem stages where a revealing action is chosen,
the forecaster suffers a total loss of abeut= O(n?/?) but gets full information about the outcome
y¢. This situation is a modification of the problemlabel efficient predictiostudied in Helmbold
and PanizzaHePa97, and in Chapter 5 (see also Cesa-Bianchi, Lugosi, andz3to#LuSt05).

In particular, the algorithm proposed in Figure 2 coincidgth that of of Theorem 5.2 —except
maybe at those rounds whefy = 1. Indeed, Theorem 5.2 ensures that, with probability at leas
1 — 4, not more thamm among theZ; have value 1, and that

- o= In(4N/0o)
;K(Juyt) - jzl{l’_l_f_l’N;E(Lyt) < 8ny/ ——— .

m
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Parameters: 0 < ¢ < 1 andn > 0. Action r is revealing.
Initialization: wyo=---=wno = 1.
Foreachround =1,2,...

(1) draw an action/; from {1, ..., N} according to the distribution
Pi,tzij\?]i’t_l , i=1,...,N,
D1 Wit—1

(2) draw a Bernoulli random variablg, such thaf?[Z, = 1] = ¢;
(3) if Z; = 1 then play a revealing actiod; = r, observey;, and compute

wip = wis1e” ¥/ foreachi =1,...,N ;

(4) otherwise, ifZ; = 0, play I; = J; and letw; ; = w; ;—; foreachi =1,..., N.

FIGURE 2. The randomized forecaster for feedback matrices witlveatang action.

This in turn implies that

% =, In(4N/3)
tz_;g([hyt)_]:?ln,N;E(]’yt) <m+8n T )

and substituting the proposed value for the paramateoncludes the proof. O

REMARK 6.4. Dependence oV.) Observe that, even when the condition of Theorem 6.1 is
satisfied, the bound of Theorem 6.2 is considerably tighteteed, even though the dependence
on the time horizom is identical in both bounds (of the orderf!/3), the bound of Theorem 6.2
depends on the number of actiaNgn a logarithmic way only. As an example, consider the case of
the multi-armed bandit problem. Recall that hé&fe= L and there is a revealing action if and only
if the loss matrix has a row whose elements are all differenguch a case Theorem 6.2 provides
a bound of the order of(ln ) /n)'/3. On the other hand, there exist bandit problems for which,
if N < n, itis impossible to achieve a regret smaller tfayi20)(N/n)"/? (see BuCeFrSc02).

If NV is large, the logarithmic dependence of Theorem 6.2 givemaiderable advantage.

Interestingly, even ifl. cannot be expressed & H, if a revealing action exists, the strategy
of Section 3 may be used to achieve a small regret. This mage oy using a trick of Piccolboni
and SchindelhauePjSc0] to first convert the problem into another partial-monibgriproblem
for which the strategy of Section 3 can be used. The basiocddtiyis conversion is to replace the
pair of N x M matrices(L, H) by a pair ofmN x M matrices(L’, H') wherem < M denotes
the cardinality of the sef = {s1,..., s} of signals (i.e., the number of distinct elements of
the matrix H). In the obtained prediction problem the forecaster ch®a@seongn N actions at
each time instance. The converted loss makfixs obtained simply by repeating each row of the
original loss matrixn times. The new feedback matrBf’ is binary and is defined by

H(m(i—1)+k,j) =lyijmsy» i=1...,Nk=1,...,m j=1...,M.

Note that this way we get rid of the inconvenient problem offio encode in a natural way the
feedback symbols. We also propose the following interpiggigfor this first step. Before taking
an action, the forecaster has a belief about the nature dééuback he will get. He then is only
interested in knowing whether he was right or not. If the imal

H’ }

H' and [L’
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have the same rank, then there exists a mdifixsuch thatL’ = K’ H' and the forecaster of
Section 3 may be applied to obtain a forecaster that has aage/eegret of the order of /3
for the converted problem. However, it is easy to see thatfamcasterd with such a bounded
regret for the converted problem may be trivially transfechinto a forecasted’ for the original
problem with the same regret bound! simply takes an action wheneverA takes an action of
the formm(i — 1) + kforanyk = 1,...,m.

The above conversion procedure guarantees Hannan cowgiste a large class of partial
monitoring problems. For example, if the original probleasta revealing actiof) thenm = M
and theM x M sub-matrix formed by the rows/(i — 1) + 1,..., Mi of H' is the identity
matrix (up to some permutations over the rows), and thezefias full rank. Then obviously a
matrix K’ with the desired property exists and the procedure destebeve leads to a forecaster
with an average regret of the orderf!/3. This forecaster is similar to the one considered in
Theorem 6.2 in the sense that it may build its predictiong onlfeedbacks received when playing
the (original) revealing action This is so because the matid’ may be taken equal {0 L’ 0],
whereL' lies in the columnsV/ (i — 1) + 1,..., Mi of K'.

This last statement may be generalized, in a straightfarwaay, to an even larger class of
problems as follows.

COROLLARY 6.1 (Distinguishing actions)Assume that the feedback mat#k is such that
for each outcomg = 1,..., M there exists an actione {1, ..., N} such that for all outcomes
j" # j, h(i,j) # h(i,5'). Then the conversion procedure described above leads torméta
consistent forecaster with an average regret of the order df .

The rank ofH’ may be considered as a measure of the information providédedfeedback.
The highest possible value is achieved by matrieEswith rank M. For such feedback matrices,
Hannan consistency may be achieved for all associated lasscesL’.

Even though the above conversion strategy applies to a tdage of problems, the associated
condition fails to characterize the set of paiis, H) for which a Hannan consistent forecaster
exists. Thus, for matriceBl’ with rank strictly less thed/, the precise form of.’ matters. Con-
sider the following two examples, which we already encoded Gimplified by deleting redundant
lines).

EXAMPLE 6.10. Consider an example proposed by Piccolboni and Seliader PiSc0],
with N = M = 4,

[0 1 0 07 11 1 1
1 0 0 O 1 1 1 1
=11 101 and  H=\, 4 ¢ g
L1 1 1 0 01 0 0
They also consider the modified version given by
0 1 0 07 1 1 1 1
1 0 0 O 1 1 1 1
In=117 111 and Hi=1 9 ¢ o
1 1 1 1| 01 0 0
The problem with(Lj, H},) is more difficult than the one withL, H) in the following sense.

The losses of actions 3 and 4 increased, but since these mniaated by actions 1 and 2, none
of them will achieve the argmin in the cumulative losses @&f tbnstant actions. Therefore, for
all sequences of played actiods, I, ... and obtained outcomes , ys, ..., the regret of any
forecasting strategy is larger for the problem wity,, H;,) than for the problem witi L, H ).
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Consequently, any Hannan-consistent strategy(fgy, H ) is a Hannan-consistent strategy for
(L, H). Now,
H)
H; and
" [ Ly ]
have the same rank, and we may therefore construct explicilannan-consistent strategy with
the above techniques. Note that on the contrary

H
H and {L]
do not have the same ranks.

ExAMPLE 6.11. Consider a case wifil = M = 3,

1 0 0 1 0 0
L=]0 1 0 and H=|1 0 0
0 0 1 1 0 0

In this example, when the second and third actions are chderfeedback is identical, inde-
pendently of the outcome, so Hannan consistency is impestitachieve in this case. (This is
because in this example all three actions may achieve tmaimig the cumulative losses of the
constant actions, for suitable outcome sequences.) Howieigeasy to construct a strategy for

which
- Lyn+ Lan
: (Z At 31) = min (L, %)) ~o(1)
t=1

with probability 1. Rustichini[Rus99 and Mannor and ShimkinMaSh03 determine more gen-
erally the asymptotically optimal performance that a sggtcan get given the matricds and
H. This may be in some cases much worse than what the best gbasten achieves, that is,
Hannan consistency is not always achievable.

Following the techniques used in Example 6.10, Piccolbodi$chindelhaueHiSc0] show
a second simple conversion of the pali’, H') that can be applied in situations when there is
no matrix K’ with the propertylL’ = K’ L’. This second conversion step basically deals with
some actions which they define as “non-exploitable” and twigizrrespond to Pareto-dominated
actions. These actions are not erased, for they may be assbevith worthwhile feedbacks, but
their losses are set to 1 on all outcomes. A third converdiep shifting in a certain sense the
losses associated to exploitable actions follows, and apdsith a matrix pair(L”, H") such
that any Hannan-consistent forecaster for the problem @ith H”) is also Hannan-consistent
for the problem with(L, ). Now, a Hannan consistent procedure may be constructed base
the forecaster of Section 3, provided tidt may be expressed ds' = K" H".

In addition, Piccolboni and Schindelhauer show that if tasdition is not satisfied, then
there exists an external randomization over the sequeraagapmes such that the sequence of
expected regrets grows at leastrgswhere the expectations are understood with respect to the
forecaster’s auxiliary randomization and the externatcemization. (An external randomization
over the outcomes corresponds to the case of an obliviowersaty.) Thus, a proof by contradic-
tion using the dominated-convergence theorem (thanksetddlundedness of the losses) shows
that Hannan consistency is impossible to achieve in thesescd his result combined with Theo-
rem 6.1 implies the following gap theorem (see also Theorafi[BiSc0] for a similar, though
weaker, statement, for expected regrets).
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COROLLARY 6.2. Consider a partial monitoring forecasting problem withd$asnd feedback
matricesL and H. If Hannan consistency can be achieved for this problemrm there exists a
Hannan consistent forecaster based on the results of $e8tishose average regret vanishes at
rate n~1/3.

Thus, whenever it is possible to force the average regrebtwarge to zero, a convergence
rate of the order of,~!/3 is also possible. In some special cases, such as the mukidabandit
problem, even faster rates of the orderof/2 may be achieved (see Auer, Cesa-Bianchi, Freund,
and SchapireAuCeFrSc0g and Auer Aue02Z)). However, as it is shown in Section 5 below, for
certain problems in which Hannan consistency is achieydbtan only be achieved with rate of
convergence not faster thar /3.

OPEN QUESTION 6.1. We still lack a concise (and more intrinsic) charagztdron of the
problems(L, H) for which an Hannan-consistent forecaster may be consttudturthermore,
we also lack a characterization of the probleflis H') for which convergence rates faster than
n~1/3 may be achieved.

5. Alower bound on the regret

Next we show that the order of magnitude (in terms of the lendthe playn) of the bound
of Theorem 6.1 is, in general, not improvable. A closely terlaidea in a somewhat different
context appears in Mertens, Sorin and ZarMefo0Za94 page 290]. They introduce a zero-sum
game, whose first player has full monitoring and whose septmatr has only partial monitoring.
They compute by induction a lower bound on the minimax valithe game, and are able to
further lower bound it by a quantity of the order of '/ thanks to repeated applications of the
game-theoretic minimax theorem.

THEOREM 6.3. Consider the partial monitoring problem of label efficiemegiction intro-
duced in Example 6.4 and defined by the pair of loss and fe&dbatrices

1 1 a b
L=]1 0 and H=|c¢ ¢
0 1 c c

Then, for anyn > 8 and for any (randomized) forecasting strategy there exdstequence
Y1, .., Yn Of oUtcomes such that

1 — 1 — n-1/3
- E (1 — min — E 01 > ;
n ( uyt)] 1:1}?,3 n L (4, y¢) 5

wherelk denotes the expectation with respect to the auxiliary ramdation of the forecaster.

E

The proof is inspired by the proof techniques of Section Stidi@er 5. Here however, we need
to take into account that the number of asked labels, thétespumber of times when the infor-
mative action is played, may not be limited a priori by a fixeteger. Rather, different outcome
sequences may lead to different numbers of asked labels. |3%enate, similarly to the com-
ments after the statement of Theorem 5.5, that the proof shilmanks to the Hoeffding-Azuma
inequality, that the lower bound also holds with high praligbwith respect to the auxiliary ran-
domization for all forecasters using an auxiliary i.i.dggence of random variables to draw their
predictions.

OPENQUESTION6.2. (Minimax orders inV and M.) We consider here the minimax problem
restricted to the prediction settingk, H ) where Hannan-consistency is achievable. Theorems 6.3
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and Corollary 6.2 show that our general forecaster solvesrtimimax problem as for the orders
of magnitude im.

Using the techniques of Section 5 of Chapter 5 (namely Faneguality, see Lemma A.13),
it is easy to extend the theorem above to get a lower boundeobttier ofn,~'/3(In N)'/3, by
considering suitabléN + 1) x N matricesL and H. The latter is the best possible lower bound
for label efficient prediction as a special case of predictath partial monitoring, in view of the
upper bound obtained in Theorem 6.2. However, the order ghitiade in/V of this lower bound
still does not match the one of the bound proposed by Theoréma8 we still lack at least a
factor of N2/3. We do not know yet if this is because Theorem 6.1 has to beaveg; or because
somewhat harder examples have to be found (perhaps by edngiddcome general examples of
prediction with distinguishing actions). However, we fatloe second option and conjecture that
in many cases significantly larger lower bounds (as a funafaV) hold.

In addition, the dependencies ©f on N and M should be studied and made more explicit.
In conclusion, we solve in this section the problem of theimax order inn but leave open the
delicate issue of the minimax ordersiMand M .

OPEN QUESTION 6.3. (Optimal order inn for a given prediction setting.We recalled in
Sections 4 and 5 of Chapter 2 that the optimal orders of madmiin» for the regret arg/n with
full information, and even in a bandit setting. Theorem 618ves that this optimal order is?/?
for the setting of label efficient prediction. We do not kndwhiere exist orders in between that
are optimal for a certain prediction setting, i.e., for aaierpair(L, H). (See also Question 6.1.)

PROOF The proof proceeds by constructing a random sequence obmoets and showing
that, for any (possibly randomized) forecaster, the exgzbutilue of the regret with respect both
to the random choice of the outcome sequence and to the fdegsarandom choices is bounded
from below by the claimed quantity.

More precisely, fixn > 8 and denote by/y, ..., U, the auxiliary randomization which the
forecaster has access to. Without loss of generality, itbsataken as an i.i.d. sequence of uni-
form random variables if0, 1]. The underlying probability space is equipped with thalgebra
of events generated by the random sequence of outcéines.,Y,, and by the randomization
Uy,...,U,. The random sequence of outcomes is independent of thaamyxiandomization,
whose associated probability distribution is denoted@®hy

We define three different probability distributio®®p P4, Q®P 4, andR® P 4, formed by the
product of the auxiliary randomization and one of the thresbability distributionsP, Q, andR
over the sequence of outcomes defined as follows. URdee sequenc#i, Ys,...,Y,, is formed
by independent, identically distribut€d, 2}-valued random variables with paramet¢g. Under
Q (respectivelyR) theY; are also i.i.d. and1, 2}-valued but with parametdr/2 — ¢ (respectively
1/2 4 ¢), wheree > 0 is chosen below.

We denote byE, (respectivelyEp, Eg, Er, Epgpr,, Eqoer,, Erer,) the expectation with
respect tdP, (respectivelyP, Q, R,P @ P4, Q ® P4, R ® P4). Obviously,

(6.4) S;l?p (EA [Zn} - Jimng Lj,n> > Ep {EA [En] — Jinlnzlg Lj,n} .

Now,

n
E min L; < min Egl|L;,| = = —ne

¢ Lzm,s J’"} < 2 Eollinl =3 ’
whereas

~ n 1
EQ [Ln:| = 5 + §EQ [Nl] + €EQ [Ng] — €EQ [NQ] ,
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whereN; is the random variable denoting the number of times the &stec chooses the action
j over the sequenc#,...,Y,, given the statd/;,..., U, of the auxiliary randomization, for
j =1, 2, 3. Thus, using Fubini’s theorem,

o TR,
Eq |Ex |Lo| — min Lin| > 5Eqse, [Ni] +¢ (n —Egse, [Na)) -

A similar argument shows that

o D
Er |Ea |Ln| - min Liy| > 5Brer, [Ni] + (0 — Bror, [Na)) -

Averaging the two inequalities we get
(6.5)

Ep {EA {En] — i, Lj,n} > %Emm [N1] + € <n - % (Eqep, [V2] + Ergr [NS])> -
Consider first aleterministicforecaster. Denote B¥,...,Tn, € {1,...,n} the times when the
forecaster chose actidn Since action 1 is revealing, we know the outcomes at thesestiand
denote them by, .1 = (Yp,... ,YTNl). Denote byK; the (random) index of the largest integer
J such thatl; < ¢ — 1. Each action/; of the forecaster is determined by the random vector (of
random length)z, = (Yl, .. ,YTKt). Since the forecaster we consider is determiniski¢,is
fully determined byZ,,.1. Hence,I; may be seen as a function 4§, ; rather than a function
of Z; only. This implies that, denoting b¥,, (respectivelyQ,,) the distribution ofZ, ., under
P (respectivelyQ), we haveQ [I; = 2] = Q, [I; = 2] andP[[; = 2] = P, [I; = 2]. Pinsker’s
inequality (see Lemma A.6 in the Appendix) then ensures foaall ¢,

©6) QL =2 < PIh =2+ /3K (B, Qn)

whereC denotes the Kullback-Leibler divergence. The right-haide snay be further bounded
using the following lemma.

LEMMA 6.6. Consider a deterministic forecaster. For< ¢ < 1/+/6,
K (Pr, Qn) < 6Ep [N1] ” .

PROOF We note thatZ,,,; = Z,, except when/,, = 1. In this caseZ,+1 = (Z,,Yn).
Therefore, using the chain rule for relative entropy (semiina A.8 in the Appendix), as well as
the first bound of Lemma A.5, we get

K (Pm Qn) < K (Pn—la Qn—l) +P [In = 1] K (81/271831/2—5)
< K(Ppe1,Quo1) +6P[I, = 1]€2,
whereB, denotes the Bernoulli distribution with paramepeiWe conclude by iterating the argu-
ment. g

Summing (6.6) ovet = 1,...,n, we have proved that

EQ [NQ] < EP [Ng] —+ neq/ 3E1p> [Nl] s

and this holds for any deterministic strategy. (Note thatstering a deterministic strategy
amounts to conditioning on the auxiliary randomization . . ., U,.)

Consider now an arbitrary (possibly randomized) forecastdsing Fubini’s theorem and
Jensen’s inequality, we get

(6.7) Eqge, [V2] < Epge, [V2] + ney/3Epge, [N1] -
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Symmetrically,

(6.8) Ergp, [V3] < Epgp, [N3] + ney/3Epgp, [V1] -

UsingEpgp, [N2] + Epgp, [IV3] < n, and substituting (6.7) and (6.8) into (6.5) yield
~ 1 1
— 1 . > _ N
(6.9) Ep {EA [Ln] jinl{ggLJ,n} > Smo +ne ( . 6\/3m0> ,

wheremg denotesEpgp, [V1]. If mo < 1/8 then fore = 1//6 the right-hand side of (6.9)
is at leastn/10, which is greater tham?/?/5 for n > 8. Otherwise, ifmg > 1/8, we set
€= (4\/3m0)_1, which still satisfie®) < ¢ < 1/1/6. The lower bound then becomes

and the right-hand side may be seen to be always biggerﬁ?{érﬁa An application of (6.4)
concludes the proof. O

R 1
Ep [EA [Ln} — min Lm] > Zmo + ——

6. Internal regret

In this section we deal with the stronger notion of swap regee Chapter 3. For simplic-
ity, we no longer distinguish between swap and internalaegand refer to the former by the
latter. We briefly recall that internal regret is concerndthwonsistent modifications of the fore-
casting strategy. Each of these possible modifications rsnpeterized by a departure function
®:{1,...,N} — {1,..., N}. After roundn, the cumulative loss of the forecaster is compared
to the cumulative loss that would have been accumulated Heatbtecaster chosen actidr(/;)
instead of actionl; at roundt, t = 1,...,n. If such a consistent modification does not result in
a much smaller accumulated loss, then the strategy is sh@vtosmall internal regret. Formally,
we seek strategies achieving

1 « . | )
E ;E(Ibyt) - E méntz_;ﬁ(@([t),yt) = 0(1) with prObab”ltyl ’

where the minimization is over all possible functichsSuch strategies are called Hannan consis-
tent for the internal regret.

We recalled in Chapter 3 some internal regret minimizingtsgies for the full-information
case, and indicated how to extend them to the multi-armedibaetting. We design here such
a procedure in the setting of partial monitoring. The keyl fedhe conversion trick described
in Sections 1.2 and 1.4 of Chapter 3 (see also Blum and MarnBtMia05], for a related proce-
dure, which is however by far less convenient in an inconmgpiletormation setting). This trick
converts external regret minimizing strategies into imdtregret minimizing strategies, under full
information, as well as in multi-armed bandit settings.

We extend it here to prediction under partial monitoring @ktvs. The forecaster we use is
the one of Section 1.4, run however with new parametgrg;, and new estimates of the losses.
The parameters; and~; used below are tuned as in Section 3, and we consider thedbsses

((i,y;) defined in (6.2).

REMARK 6.5. Just like for the multi-armed bandit setting, the cosian trick of Section 1.2
of Chapter 3 does not apply directly to prediction underigbmonitoring and has to be extended
because of the shifting we perform on the probability disiion computed with the estimated
losses (see step (2) in Figure 1, and similarly, (3.7)). Wk rdit need such a shifting when
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designing our label efficient forecasters, and conseqyedh# conversion was straightforward in
that setting, see Remark 5.3.

THEOREM 6.4. Consider any partial monitoring problem such that the lossl deedback
matrices satisfyf, = K H for someN x N matrix K with &* = max{1, max; ; |k(¢, j)
consider the forecaster described above. d.et (0,1). Then, for alln, with probability at least
1 — 4, the cumulative internal regret is bounded as

LS ) —min S 0@ (7))
t=1 t=1
(K*)2N3In N\ /° 31n(2N?)/6)
<9 <—> Ve Ty

n In N
\/ 2NV * N)A/3,-2/3 /3y, 2N?
+N %IHT—HI(k N)*°n=*/°(In N) lnT
1 £ AP\ 2 1/3 | g% 2N?
+= (2N+ (K*N)2In N)Y3 4+ k N) In =
where the minimum is taken over all functiobs {1,...,N} — {1,...,N}.

Note that with the help of Borel-Cantelli lemma, Theorem shéws that, under the same
conditions onL and H, the forecaster decribed above achieves Hannan consistgticrespect
to internal regret. Consequently, recalling that a smadirimal regret also implies a small external
regret, we may see that the discussion before Corollaryrlizates that for a given prediction
problem(L, H), Hannan-consistency with respect to external regret caachieved if and only
if it can be achieved with respect to internal regret.

PROOF First observe that it suffices to consider departure fonet® that differ from the
identity function in only one point of their domain. This li@lvs simply from

ZE(It,yt)—r%nZE@(It),y (maxZHh =i (£(i, 1) £(j>yt))> :
t=1 t=1

We now bound the right-hand side of the latter inequality.

For a givert, the estimated lossé¢p. 7, 1), i # j, fall in the interval[—k* N /v;, k*N/~].
Since~; andn, are tuned as in Theorem 65N, /~ < 1, and we may apply Lemmas 4.3 and
4.5 to derive

n
ZZuiﬁjz(pi_’j,yt mmZ€ ,yt
t=1 i)
n
\% Zntzut < i jayt))z-

Tn+1 =1 iy
We then proceed as in the proof of Theorem 3.2, and get ex@cy,

(6.10) maXszt( iy Yt) E(]} yt))

41nN+Zn:77tZut ( pi—d,yt> _|_Z%Zul_’]< (4, y¢) é(j,yt))-

It S i t=1"" i#j

N
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Now, we apply Bernstein’s inequality (Lemma A.4) severalds again and mimic the proofs of
Lemmas 6.1 and 6.2. For all pairs# j, with probability at least — §/(2N (N — 1) + 2),

(6.11) szt( (i, ) — €03, ) ) szt (i, y1) — £(j, yr))

- (Jél(k*N)? (Z%) 1n2N(Ngl)+2+2\3/§ <1+k:;N>1n2N(N61)+2) |
t=1 n

Similarly to Lemma 6.3, we also have, with probability atdeh— § /(2N (N — 1) + 2),
- i (7 N2 = (FN)?
6.12) > > u? (f(pt J,yt)> < Zm( - )
t=1

t=1  i#j
2 (ke N Znt N—1)+2+QIH2N(N—1)+2
t1% 0 3 0

whereas, similarly to Lemma 6.4, with probability at least §/(2N (N — 1) + 2),

(6.13) Z%ZHJ<Z% ]Z/t>\ Z%

=1 i

—1)+2 V2 /o, 2N(N —1)+2
J (Z%> In—— —I—? (k‘ N)lnf.

We then use the Hoeffding-Azuma inequality (see Lemma AN — 1) times to show that for
every pairi # j, with probability at least — §/(2N(N — 1) + 2),

- . N(N —1)+3
(6.14) Zpi,t i) — L(J, yt)) Z]Ilt =i (006, y) — €(J ye)) — \/2”“1(% :
t=1

Finally, we substitute inequalities (6.11)—(6.14) intol® and use a union-of-event bound to
obtain that, with probability at leagt— 9,

maxz}lh —i (C(i,ye) — (4, y))

"1 1 2v2 k*N 1
t=1 n

" (k*N)? "2 1 V2,1
+> 7 + [ 2(k*N)4 L) ln- +—In—
; Ve p o o’ 3 o
" " \/5 Y1 1
- *)2 _ r - * z _
+NZH%+J4(’“) <Zt:1%> g+ (K4 §)hg
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where we used the notatigh = §/(2N (N — 1) + 2), with & > J/(2N?) whenN > 2. The
proof is now concluded as that of Theorem 6.1. d

7. Random feedback

Several authors consider an extended setup in which thédeksd are random variables. See
Rustichini [Rus99, Mannor and ShimkinflaSh03, Weissman and MerhaweMeO01], Weiss-
man, Merhav and Somekh-BarudW¢MeSo01] for examples. In this section we briefly point out
that most of the results of this chapter extend effortlegskhis more general case.

To describe the model, denote kY(S) the set of all probability distributions over the set of
signalsS. The signaling structure is formed by a collection'vft/ probability distributionsu; ;)
overS,fori=1,...,Nandj =1,..., M. Ateach round, the forecaster now observes a random
variable H (I;,y;), drawn independently from all the other random variableih wistribution
I(1.,y,)- More precisely, we assume without loss of generality thef;, y;) is a function ofu (s,
andV;, where(V;, V4, ...) is an i.i.d. sequence of random variables with uniform lawrd®, 1],
independent of all the other random variables. This sequiancalled the external randomization.
All expectations and probabilities here are understootl veispect to the probability space formed
by the product of the external randomization and the fotecasandomization.

We may easily generalize the results of Theorems 6.1 ana & ttase of random feedbacks.
As above, each element &fis encoded by a real number|inl, 1. Let E be theN x M matrix
whose elements are given by the expectations of the randoiables H (i, j). Theorems 6.1
and 6.4 remain true under the condition that there existstaxn& such thatl. = K E. The
only necessary modification is how the losses are estimbtexk the forecaster uses the estimates

v k(i, I;)H (I,
g(l,yt) — (27 t})}[ E tayt)
ty

instead of the estimates defined in Section 3. Conditioned;,pon ., I;_;, the expectation of
Z(z’, y¢) is the los<(i, ;). Since this, together with boundedness, are the only dondithat were
needed in the proofs, the extension of the results to thiegeneral framework is immediate.
The results of Section 4 may be generalized to the case obnaridedbacks as well. For
example, to construckl’ when H is a matrix of probability distributions ove$, we proceed as
follows: for 1 <i < N ands € S, denote byH ; ) the row vector of elements i, 1], such that
the k-th element ofH ; ;) is 1i(; 1) (s). Now, the((k1 — 1)m + kz)-throw of H', 1 < k1 < N,
1<ky<m,is H(kh%). All the other details of the construction and the proofsigough.

=1,...,N
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CHAPTER 7

Internal regret in on-line portfolio selection

This chapter extends the game-theoretic notion of intesgakt to the case of on-line potfolio
selection problems. New sequential investment strategeedesigned to minimize the cumulative
internal regret for all possible market behaviors. Somehefittroduced strategies, apart from
achieving a small internal regret, achieve an accumulatealttv almost as large as that of the
best constantly rebalanced portfolio. It is argued thatdieinternal-regret property is related to
stability and experiments on real stock exchange data dsinaba that the new strategies achieve
better returns compared to some known algorithms.
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This chapter is based on the artic&l[u05], invited by Machine Learningafter the extended
abstract $tLu03] was awarded atoLT'03. Sections 6 and 7 are however published here for the
first time.
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1. Introduction

The problem of sequential portfolio allocation is well-knmoto be closely related to the on-
line prediction of individual sequences under expert ag\dee, for exampleClov91], [CoOr96],
[HeScSiWwa9§, [OrCo98], [BIKa99], [CeLu0Q]. The goal in the sequential investment problem
is to distribute one’s capital in each trading period amowgréain number of stocks such that the
total achieved wealth is almost as large as the wealth ofttgest in a certain class of investment
strategies. This problem, known as the minimization of tlwestvcase logarithmic wealth ratio,
is easily seen to be the generalization of an external regirdmization problem in the “expert”
setting under the logarithmic loss function. The main psgoof this chapter is to extend the notion
of internal regret to the sequential investment problerdeustand its relationship to the worst-case
logarithmic wealth ratio, and design investment strateginimizing this new notion of regret.
The definition of internal regret given here has a naturakpretation and the investment strategies
designed to minimize it have several desirable propertik im theory and in the experimental
study described in the Appendix.

This chapter is organized as follows. In Section 2 the seitplgrortfolio selection problem is
described, and basic properties of Cover's universal pliothnd theeG investment strategy are
discussed. In Section 3 we introduce the notion of interegiat for sequential portfolio selection,
and describe some basic properties. In Section 4 new ineaststrategies are presented aiming
at the minimization of the internal regret (and these Sgiateare further investigated in Section
6). In Section 5 the notion of internal regret is generaliftgdan uncountable class of investment
strategies and an algorithm inspired by Cover’s universatfqio is proposed which minimizes
the new notion of internal regret. Section 7 explains theifitadions needed for the algorithms
of Section 5 to be competitive in a market with transactiost€o

2. Sequential portfolio selection

In this section we describe the problem of sequential plastielection, recall some previous
results, and take a new look at the strategy of HeScSiwa9§.

A market vectorr = (z1,...,xy) for N assets is a vector of nhonnegative numbers repre-
senting price relatives for a given trading period. In othverds, the quantity;; > 0 denotes
the ratio of closing to opening price of theh asset for that period. Hence, an initial wealth
invested in theV assets according to fractiodg, . . . , Q@ multiplies by a factor oiZfil ;i Q;
at the end of period. The market behavior duringrading periods is represented by a sequence
x! = (x1,...,z,) of market vectorsz; ;, the j-th component ofc,, denotes the factor by which
the wealth invested in assgtincreases in theé-th period. We denote the probability simplex in
RY by X.

An investment strateg§) for n trading periods consists in a sequeli@g, . . . , Q,, of vector-
valued functiongd, : (RY)!~' — X', where the-th componeng); ,(z! ') of the vectorQ, (=} ")
denotes the fraction of the current wealth invested inittieasset at the beginning of théh pe-
riod based on the past market behavidr . We use

n N
Sn(Q, x7) = H ( lEz’,tQi,t(iBtl_l)>
t=1 \i=1
to denote the wealth factor of strate@yaftern trading periods, and often omit the dependency in
@ andz!} whenever both are understood. In this case, we simply Wyjte refer toS,,(Q, 7).
The simplest examples of investment strategies are thellsa tay-and-holdstrategies. A

buy-and-hold strategy simply distributes its initial widehmong theV assets according to some
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distribution @, € X before the first trading period, and does not trade anymadn&haamounts
to investing, at day and forl <i¢ < N, as

QZIHS 1$zs
Zk; 1Qk’1Hs l'mk’s

The wealth factor of such a strategy, aﬁtﬁpenods is simply

Qir(zi™!) =

Sn(Q, @) ZQNS

where

n

) =Tz

t=1
is the accumulated wealth of stogk Clearly, the wealth factor of any buy-and-hold strategy is
at most as large as the gaimx;—; .~ S,(j) of the best stock over the investment period, and
achieves this maximal wealth@, concentrates on the best stock.

Another simple and important class of investment stratefighe class ofonstantly rebal-

anced portfolios Such a strategy is parametrized by a probability vect® = (By,...,By) €
X, and simpIyQt(a:tl‘l) = B regardless of and the past market behav'm’{‘l. Thus, an investor
following such a strategy rebalances, at every tradingodetiis current wealth according to the

distribution B by investing a proportiorB; of his wealth in the first stock, a proportidsy, in the
second stock, etc. The wealth factor achieved afteading periods is

Sn(B,x}) H(Zw,tB> :

t=1
In [CoTh91], it is shown that the constantly rebalanced portfolios e optimal investment
strategies in an i.i.d. market.

Now given a clasg of investment strategies, we define terst-case logarithmic wealth
ratio of strategyP by : )

Sn(Q, 7
Well Q) =50 S 0 S, (Pay)

The worst-case logarithmic wealth ratio is the analog oftkternal regret in the sequential portfo-
lio selection problemW,, (P, Q) = o(n) means that the investment strategyachieves the same
exponent of growth as the best reference strategy in the @dar all possible market behaviors.

For example, itis immediate to see tha@)is the class of all buy-and-hold strategies, theh if
is chosen to be the buy-and-hold strategy based on the omdistribution@,, thenW,, (P, Q) <
In N.

The class of constantly rebalanced portfolios is signifigaricher and achieving a small
worst-case logarithmic wealth ratio is a greater challengGever’'suniversal portfolio[Cov9]]
was the first example to achieve this goal. The universafgaristrategyP is defined by

Jx BiSi-1(B, 2" )¢(B) dB
Ju Se-1(B,xy)o(B)dB
where ¢ is a density function orX’. In the simplest case is the uniform density ove#’. In

that case, the worst-case logarithmic wealth ratid’afith respect to the clasg of all universal
portfolios satisfies

Pjy(axi") = Nt=1,...,n

Wo(P,Q) < (N—-1)In(n+1).
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If the universal portfolio is defined using the Dirichléet2,...,1/2) density¢, then the bound
improves to N
N -1 I'(1/2) N -1

Wn(P,Q)ngnn—l—ln T(N/2) t— In2+o(1),
see LCoOr96]. The worst-case performance of the universal portfolibdsically unimprovable
(see PrCo98]) but it has some practical disadvantages, including caatfmnal difficulties for
not very small values oN. [HeScSiWa98 suggest theieG strategy to overcome these difficul-
ties.

TheEG strategy is defined by

Pi,t €xp (Uxi,t/Pt : iI?t)
S Pisexp (nzj /Py my)
[HeScSiwa9§ prove that if the market values; ; all fall between the positive constants and
M, then the worst-case logarithmic wealth ratio of H@investment strategy is bounded by

1 2
N A
n 8 m2 m\ 2
where the equality holds for the choige= (m/M)+/(81n N)/n. Here we give a simple new
proof of this result, mostly because the main idea is at thséshaf other arguments that follow.

Recall that the worst-case logarithmic wealth ratio is

[[/-; B =z
maxmaxln ==———
] BeX Ht:l Pt - Tt

(7.1) Pit1 =

where in this case the first maximum is taken over market semsesatisfying the boundedness
assumption. By using the elementary inequdlityl + «) < u, we obtain

Ht 1B L < B Pt) >
In=———- = In{l4+-—7—F——
Ht 1Pt Ty Z P, x
Zn:iv:(Bi_Pi,t)mi,t

Pt'$t

t=1 i=1

N

(7.2) -

Under the boundedness assumption m < x;; < M, the quantities

big=M/m —x;/(Py- )

are within [0, M /m| and can therefore be interpreted as bounded loss functimss, the min-
imization of the above upper bound on the worst-case Idgaiit wealth ratio may be cast as a
sequential prediction problem as described in Chapter 2ef@ing that the&c investment algo-
rithm is just the exponentially weighted average prediéborthis prediction problem, and using
the performance bound of Theorem 2.1 we obtain the citeclmlég of [HeScSiwa9§.

Note that in (7.1), we could replace the fixgthy a time-adaptivey, = (m/M)+/(81n N)/t.
Applying Theorem 2.3 to the linear upper bound (7.2), we meyve that this still leads to a
worst-case logarithmic wealth ratio less than somethinth@brder of M /m)vnln N.
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REMARK 7.1. (Sub-optimality of th&G investment strategylJsing the approach of bounding
the worst-case logarithmic wealth ratio linearly as aba/éevitably suboptimal. Indeed, the
right-hand side of the linear upper bounding

N n N N N n
S5, (z (z m) . ej,t> Y8y (z Pt (s - m)
j=1 t=1 \i=1 j=1 =1 \t=1
is maximized for a constantly rebalanced portfdBdying in a corner of the simpleX’, whereas
the left-hand side is concave B and therefore is possibly maximized in the interior of tha-si
plex. Thus, no algorithm trying to minimize (in a worst-casmnse) the linear upper bound on the
external regret can be minimax optimal. However, as it issshim [HeScSiWa98, on real data
good performance may be achieved.

Note also that the bound obtained for the worst-case Idgarit wealth ratio of theeG strat-
egy grows as/n whereas that of Cover’s universal portfolio has only a l@baric growth. In
[HeScSiWa9§ it is asked whether the suboptimal bound for #e strategy is an artifact of the
analysis or it is inherent in the algorithm. The next simptarmaple shows that no bound of a
smaller order thag/n holds. Consider a market with two assets and market vegiots (1, 1—¢),
for all . Then every wealth allocatioP; satisfiesl — ¢ < P; - 2; < 1. Now, the best constantly
rebalanced portfolio is clearlfi, 0), and the worst-case logarithmic wealth ratio is simply

Zlnl—PQtE ZPth

t=1
In the case of theG strategy,

—

(1
exp (7723 1P, ;)
11
exp (7725 1P5mé>+eXp (7722 1P5a2)
exp (—ne o0 1p5mé)

1+exp< 77528 1 P ms)

exp (—n(e/(1 —¢)) (t — 1))
5 .
Thus, the logarithmic wealth ratio of thes algorithm is lower bounded by

z":gexp (n(e/=-e)(t=1) _ el-exp(=n(/(-¢e)n)

Py =

)

>

— 2 2 1—exp(—n(e/(1—¢))
N % S oV

3. Internal regret of investment strategies

The aim of this section is to introduce the notion of intemegret to the sequential investment
problem. In the latter, the loss function we consider is defihy /' (Q,z) = —In (Q - x) for a
portfolio @ and a market vectae. This is no longer a linear function @ (as this was the case,
for instance, in Chapters 2 and 4 for the expected loss ofritigior in the setting of randomized
prediction under expert advice).

Recall that in the framework of sequential prediction diéset in Chapter 3, the cumulative
internal regretR; ;) ,, for the pair of expertgi, j) may be interpreted as how much the predictor
would have gained, had he replaced all valies(t < n) by zero and all value®; ; by P, ; + P; ;.
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Analogously, given an investment strategy= (P, Po,...), we may define thénternal regret
of P with respect to the pair of assets j) at dayt (wherel <i,7 < N) by
Pi—m + T
Pt i 2
where the probability vectoP! ™ is defined such that itsth component equals zero, ijsth
component equal®; ; + F; ¢, and all other components are equal to thos®pfr; ;) ; expresses
the regret the investor using stratefysuffers after trading day of not having invested all the
capital he invested in stockin stockj instead. Theumulative internal regret oP with respect
to the pair(s, j) aftern trading periods is simply
n
R jyn = Z;'fa,j),n :
t=
This notion of internal regret in on-line portfolio selemtimay be seen as a special case of the
definition of internal regret for general loss functionsgweed in Chapter 8, with the class of de-
parture functions given by those functions that move albphility mass from a given component
to another one. In Section 5.2, we study internal regret veipect to a much larger class, whose
size is of the power of the continuum. It is a desirable priypef an investment strategy that its
cumulative internal regret grows sub-linearly for all pbks pairs of assets, independently of the
market outcomes. Indeed, otherwise the owners of the giorfould exhibit simplé modifica-
tions of the betting strategy which would have led to expoiaéiy larger wealth. In this sense, the
notion of internal regret is a measure of the efficiency ofdinategy: the aim of the broker is not
that the owner of the portfolio gets rich, but that he cannititze easily the chosen strategy. Note
that the worst-case logarithmic wealth ratio correspondbé case when the owner compares his
achieved wealths to those obtained by others who have diffdrrokers. Based on this, we define
theinternal regretof the investment strategy by

Tigye = (Pray) — (P77 ) =In

Fn = max R jn

and ask whether it is possible to guarantee tRat= o(n) for all possible market sequences.
Thus, an investor using a strategy with a small internalategr guaranteed that for any pair of
stocks the total regret of not investing in one stock instefatie other becomes negligible. (Note
that in Section 5.2 we introduce a richer class of possibpardares from the original investment
strategies.)

The next two examples show that it is not trivial to achieveralt internal regret. Indeed,
the buy-and-hold andG investment strategies have linearly increasing interaegtat for some
bounded market sequences. (We do not know whether Co@mgd[l] universal portfolio suffers
from this drawback or not, but guess it does so0.)

ExamPLE 7.1. (Buy-and-hold strategies may have large internal regr&gnsider a market
with N = 3 assets which evolves according to the following repeatbdrse:
(1—¢,e,8), (5,1 —¢,1—¢), (1—¢,¢,¢), (e,1—e,1—¢), ...

wheree < 1 is a fixed positive number.

Iwe assume here that the broker's customers only think oflsimpdifications, such as putting all the wealth from
one stock to another one.
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The buy-and-hold strategy, which distributes its initiaaith uniformly among the assets invests,
at oddt’s, with
111 2 1
P=(= == sothatP?~! = ( 2.0, =
t <37373> ) t <37Oa3> ’
and at evert’s, with

1—¢ ¢ € 1 €
P, = so thatP?~1 = 0, .

! <1+51+51+a>’ <1+a 1+e
Straightforward calculation now shows that for an ewetthe cumulative internal regreﬁ(m)m
of this strategy equals

Y
" (1 —(2 ) ,
2 3(1—e)(1+¢)

showing that even for bounded markets, the naive buy-afdigtategy may incur a large internal
regret. Later we will see a generalization of buy-and-hoitthwmall internal regret.

ExXAMPLE 7.2. (TheEG strategy may have large internal regrefhe next example, showing
that for some market sequence thealgorithm of HeScSiWa98 has a linearly growing internal
regret, is inspired by Example 3.1 above. Consider a mafidbree stocks4, B, andC'. Divide
the n trading periods into three different regimes of lengths ns, andns. The wealth ratios
(which are constant in each regime) are summarized in Tabléelshow that it is possible to set

Regimes TAt TBt TCp
1 <t < Tl = N1 2 1 0.5
Th+1<t<Ty=n1+n9 1 2 0.5
Th+1<t<I3=n 1 2 2.05

TABLE 1. The market vectors for Example 7.2.

n1,ng2, andng in such a way that the cumulative internal regigt; ¢y ,, is lower bounded by a
positive constant times for n sufficiently large.
The internal regret oB versusC' can be lower bounded by using the inequalityl + «) < wu:

B—»C

TCOt TRt
1 i _ )
Zn Q; - x¢ ZQBt(QtB_)C' QtB_’C'Xt>’

Xt

where the difference in the parenthesis is larger tharnn the first regime—3 in the second one
and0.05/2.05 in the third one. It suffices now to estimaf; ;:

enGB,t

(7.3) QB =

where

eMGat 4 NGBt 4 enGo’

83 . 1 LA
=41 = and Gp; =) ——
l n Cn\/ﬁ ot Z::I Qs * Xsg

(and similarly for the two other stocks).
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We taken; = dn, whered > 0 will be determined later. In the first regime, a sufficient
condition forQp ; < ¢ is thate“s:t /en%a.t < ¢, which can be ensured by

—Ine

t
1
Gar— Gy = P ,
SZ::I Qs * Xs n

which is implied, sincdd; - x, < 2, by

t >ty =2C,(—Ine)y/n.

In the second regime, th@p ;s increase. Lef, denote the first time instantwhenQp ; >
1/2, and denote by, = T, — T3 the length of this second regime. Now, it is easy to see that
ng = n1/4 andng < 4ng + (21n2)C,\/n < 5dn, for n sufficiently large. Moreover, the number
of times thatQ) 5 ; is larger thare in this regime is less than

o (25) ) ve

At the beginning of the third regime, we then haye ; > 1/2, which means thatr 4+ < G+
andG¢c,; < Gpy. The first inequality remains true during the whole regimé am setn; such
that the second one also remains true. This will imply tat, > 1/3 during the third regime.
Now by the bounds of); - x, in the different regimes, a sufficient condition ogis

3
0.05n3 < % n %

which, recalling the lower bounds > n;/4, is implied by
ng < zdn.

It remains to set the value @f We have to ensure thag is not larger thar35dn /4 and that
it is larger tharmyn, wherev is a universal constant denoting the fraction of time spefié third
regime. That is, we have to finland~ such that

d+5d+~v < 1
d+id+2d > 1,
where we used; /n+ng/n+n3/n = 1 and the various bounds and constraints described above.

~v=1/7andd = 1/7 are adequate choices.
Summarizing, we have proved the following lower bound onitiernal regret

B—»C
Zln O L> lfy%n —e(3(1—=7)n+Q((—ne)yn),

and the proof that thec strategy has a large internal regret is concluded by chgasin 0 small
enough (for instance, = 1,/5000).

REMARK 7.2. A mixture in the buy-and-hold sense of no-internakeegvestment strategies
is still a no-internal-regret minimizing strategy. Itsémal regret is less than the maximum of the
internal regrets of the original strategies.

4. Investment strategies with small internal regret

The investment algorithm introduced in the next sectionthasurprising property that, apart
from a guaranteed sublinear internal regret, it also aelsiev sublinear worst-case logarithmic
wealth ratio not only with respect to the class of buy-anttitstrategies, but also with respect to
the class of all constantly rebalanced portfolios.
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4.1. A strategy with small internal and external regrets. The investment strategy intro-
duced in this section — which we callLExp — is based on the same kind of linear upper bound on
the internal regret as the one that was used in our proof gh¢nrmance of thec strategy in
Section 2. This strategy may be seen as the algorithm thaltsésom an application of the con-
version trick explained in Section 1.2 of Chapter 3 to Heestrategy. However, this only proves
the no-internal-regret property. Since the worst-casaritgnic wealth ratio is also minimized,
we provide a detailed analysis below.

The same argument as for the strategy may be used to upper bound the cumulative internal
regret as

n
Rijm = D In <Pi_)] 'mt) —In (P - x¢)
t=1
" X ;5 Z;
< P st 2,0 > )
; ot (Pt'-’Et P, x;
Introducing again
0, — Lt
Lt — T 5
‘ Pt + T

we may use the internal-regret minimizing prediction alfpon of Section 1.2 of Chapter 3. For
simplicity, we use exponential weighting. This definitiarfi,course, requires the boundedness of
the values off; ;. This may be guaranteed by the same assumption as in thessnafytheec
investment strategy, that is, by assuming that the returpsll fall in the interval[m, AM] where

m < M are positive constants. Then the internal regret of theritifign 81ExP may be bounded

by the result of Theorem 3.1. An important additional properf the algorithm is that its worst-
case logarithmic wealth ratio, with respect to the clasdl@omstantly rebalanced portfolios, may
be bounded similarly as that of thss algorithm. These main properties are summarized in the
following theorem.

THEOREM 7.1. Assume thatn < z;; < M forall 1 < ¢ < Nandl < ¢ < n. Then the
cumulative internal regret of the1EXP strategy P over such bounded market evolutions is less
than )

R, < hNN 1) + g M- _ M nln N,
n 8 m2 m
where we sef = 4(m/M)+/(In N')/n. In addition, if Q denotes the class of all constantly rebal-
anced portfolios, then the worst-case logarithmic weadthor (restricted to all those sequences of

market vectors bounded betweerand M) of P is less than

Wh(P, Q) < N%\/nlnN .
m

ProoOF The bound for the internal regr&n follows from the linear upper bound described
above and Theorem 3.1.

To bound the worst-case logarithmic wealth rati, (P, Q), recall that by inequality (7.2),
for any constantly rebalanced portfolis,

N N n
Wa(P,Q) < > BjY, (Z P (liy — 5j,t)>
i=1

i=1 \t=1
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which is not larger thanV times the upper bound obtained on the cumulative interrgibtén
which completes the proof. O

REMARK 7.3. The computation of the investment strategy requiregniversion of anV x NV
matrix at each trading period (see Lemma 3.1). This is q@issible even for large markets in
which N may be as large as aboli0.

REMARK 7.4. Recalling Section 1.2 of Chapter 3 we observe thasflexp strategy may be
considered as an instance of the exponentially weighteshgegredictor, which uses the fictitious
strategiesPi_’j as experts. Thus, instead of considering single stockeGags1ExP considers
pairs of stocks and their relative behaviors. This may érpte greater stability observed on real
data (see the Appendix).

REMARK 7.5. Just like in the case of the sequential prediction grmbkexponential weighting
may be replaced by others such as polynomial weighting.dhdase Theorem 3.1 shows that the
cumulative internal regret is bounded %/\ /n(p — 1)N2/f” which is approximately optimized by
the choicep = 41n N. We call this investment strate@glPoL. Even though this strategy has
comparable theoretical guarantees to thosglefxp, our experiments show a clear superiority of
the use of exponential weighting. This and other practeslés are discussed in the Appendix.

REMARK 7.6. Similarly toEG, the strategy 1EXP requires the knowledge of the time horizon
n and the ratial//m of the bounds assumed on the market. This first disadvantagéeavoided
by either using the well-known “doubling trick” or considleg a time-varying value of; and
applying the second bound of Theorem 3.1. Both methods teaddrnal regret and worst-case
logarithmic wealth ratios bounded by quantities of the oafe/n. To deal with the boundedness
assumption however, we need more sophisticated technigtresluced in HeScSiWa98, see
Section 6.2.

4.2. Another strategy with small internal regret. In this section we introduce a new algo-
rithm, calleds2pPoL. We use polynomial weighting and assume bounded marketitemos. The
Blackwell condition (3.3) is sufficient to ensure the prdapesf small internal regret. It may be
written as

Y AT <0,

i#£]
(i)

~ p—1 -
> astb (R(a,b),t—l) N
Note that theAd; ;) ;'s are nonnegative and sum up to one. The concavity of theitbgaand the
definition ofr; ;) , lead to

where

(27J)7t -

Z A(i,j),t?(i,j),t = Z A(i,j),t In (Pi_}j 'wt) —In(Py - )
i#] i#]
< In Z A(i7j)7tPi—>j - Lt —In (Pt . mt) .
i#]
It is now obvious that the Blackwell condition (3.3) is saéd whenever
(7.4) Py=Y " Auj.Pr

i#]
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Lemma 3.1 shows that such a portfoll®y indeed exists for ali. This defines a strategy which
we callB2rPoL. The following theorem is an immediate consequence of Goxoll of [CeLu03]
(see also Section 3.2 of Chapter 8).

THEOREM 7.2. Assume thatn < z;; < M forall1 < ¢ < Nandl <t < n. Then the
cumulative internal regret of the2PoL strategyP is bounded by

R, < <ln %> n(p—1)N?7.
m

The above bound is approximately minimized foe= 4In N. Note also that it only differs
from the bound on the cumulative internal regret of i@ oL strategy by a constant factor which
is smaller herel( (M /m) instead ofM /m).

5. Generalizations

5.1. Generalized buy-and-hold strategy.The GBH strategy performs buy-and-hold on the
N(N — 1) fictitious modified strategies, using the conversion trigklained in Section 1.2 of
Chapter 3 (and, in the particular case®f = 2 assets, it reduces to the simple buy-and-hold
strategy—hence its name). The main property of this investraetrategy is that its internal regret
is bounded by a constant, as stated by the theorem below.

More precisely, thesBH strategy is defined such that at each rounge have the fixed point
equality

SZ_)]
Zk;ﬁl Sk—>l

where S; = HZ . Ps -z, is the wealth achieved by the investment strategy we conside
877 =T1._, Pi7 - x, is the fictitious wealth obtained by thie— j modified version of it. The
existence and the practical computation of such a portiBli@re given by Lemma 3.1.

We note here the similarity of (7.5) to (7.4). In these twodixmint equalities, only the poten-
tial functions differ (see Section 2.3 in Chapter 2). (7.6)responds to an exponential potential,
tuned withn = 1. The GBH strategy could thus have been callE2ExP, in reference t@2pPoOL.
We used this similarity to prove the following theorem 8tlLu03]. But as indicated below, the
latter may be proved in a much simpler way.

(7.5) P, = PZ_)] )

THEOREM 7.3. For all n and all sequences of market vectors, theH investment strategy
incurs a cumulative internal regreR,, < In N(N — 1).

PrRoOFE The proof is done by a simple telescoping argument:

S, { P, B Z#-Sﬁ_}j
n_HPt Xt_HZ >kt SE a N(]\jf—l) '

t=1i#£j

0

The advantage of this algorithm is that its performance dewto not depend on the market.
We also note that the proof indicates that the internal tegfréhe GBH strategy is always non-
negative,R,, > 0

REMARK 7.7. (The worst-case logarithmic wealth ratio is not linked te ihternal regret of
an investment strategynlike in the sequential prediction problem described iotea 1.2 of
Chapter 3, a small internal regret in the problem of seqakptrtfolio selection does not neces-
sarily imply a small worst-case logarithmic wealth ratiot even with respect to the class of all
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buy-and-hold strategies. This may be seen by considermdptlowing numerical counterexam-
ple. Let the market be formed by three stocks and let it begcich that at odd-indexed rounds
the wealth ratios are respectively2, 1, 2 and at even ones they eqall.1, 1/2. The accumu-
lated wealth of the best stock increases exponentiallwiasteas the one of theBH strategy is
bounded.

The reason is that the loss functiérassociated to this problem is no longer linear, and there-
fore, the argument of Equation (3.1) does not extend to it.

However, there is a simple modification of theH strategy leading to internal regret less than
21n N and external regret with respect to buy-and-hold stragelgies thar2In N. We call this
modification thecBH2 algorithm.

Instead of (7.5), th&BH2 strategy is such that

_ > ichen St—1(k)er + 30, S P
D oicken St—1(k) + 22 Sy~

for everyt, wheree, denotes the portfolio that invests all its wealth in théh stock. Now a
telescoping argument similar to that of the proof of Theoegshows that the final wealth equals

1<k<N i#]

(7.6) P,

thus ensuring that both regrets are less than the claimest lggund2In N. Lemma 3.1 shows
that (7.6) can be satisfied and how the portfolldsare computed.

The next section is an extension 6BH and GBH2 strategies to a continuum of fictitious
experts.

5.2. A generalized universal portfolio. Next we extend the notion of internal regret for in-
vestment strategies, similarly to what we did for interregret in prediction with expert advice
in Section 1.3 of Chapter 3. Recall that the definition of riné regretﬁn considers the regret
suffered by not moving one’s capital from one stock to anotleving the capital from one stock
to another may be considered as a simple linear function frenprobability simplexX’ to X'. A
more exigent definition is obtained by considering all linkactionsg : X — X. Clearly, any
such function may be written g$P,) = AP, whereA is a column-stochastic matrix. Denote the
set of all column-stochastic matrices of ordérby A and let the linear modificationd P; of the
master strategy be denoted 55(4 The generalized internal regret (or swap regret for imaesit
strategies, see Section 1.3 of Chapter 3) is defined as

A
max In 2
AcA S,

wheres = T[;_; 3.1, Piwis.

Linear modifications were already considered (in finite namy [GrJa03] in the case of
sequential prediction. In that case, due to the linearitthefloss functior?(P;), it is not more
difficult to have a low generalized internal regret than theal internal regret, see Section 1.3 of
Chapter 3. On the contrary here, due to the concavity of ti@rithm, minimizing the generalized
internal regret turns out to be a greater challenge. Sinealdorithmsslexp andBlPOL are
based on a linear upper bounding of the internal regret, éasy to see that their generalized
internal regret is bounded by times the bounds derived for the internal regret in Sectibas
leading to upper bounds both of the ordet™{/n In V.
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THEOREM 7.4. The generalized internal regret of tleelEXP strategy@ over sequences of
market vectors bounded betweerand M is less than

SA M
maxln — < — NvnlnN ,
AcA S, m

where the strategy is tuned with= 4(m/M)+/(In N)/n.

The main result of this section is that there exist investnstrategies that achieve a much
smaller generalized internal regret. The proof below ipimesl by Theorem 7.3 and uses some
techniques introduced byB[Ka99]. The investment strategy presented above may be seen as
a modification of Cover’s universal portfolicCpv9]] through a conversion trick to deal with
generalized internal regret of the same flavor as the onaieeal in Section 1.2 of Chapter 3.

THEOREM 7.5. There exists an investment stratefysuch that for all sequences of market
vectorszy, xa, ... in RY,

SA
In =+~ < N(N -1)1 1)+1.
A, SN U

REMARK 7.8. The algorithm given in the proof has a computational glexity exponential
in the number of stocks (at least in its straightforward iempéntation). However, it provides a
theoretical bound which is likely to be of the best achiegatnider. The techniques of Kalai and
Vempala KaVe03d may be used to implement it more efficiently.

The algorithm could also be easily modified, using the tamimes of Section 5.1, to be compet-
itive with respect to the best constantly rebalanced plastés well as to suffer a low generalized
internal regret, with associated performance bounds ftr bbthe orderNV2 In n.

PrROOF Denote a column-stochastic mattk by [a1, ..., an], where thea;'s are the co-
lumns of A. Let y be the uniform measure over the simplex and/lbe the measure ovet given
by the product ofV independent instances pf

N
v(A) = [ niay).
j=1

If the investment strategy, at each time instgrdatisfied the equality

SA PAdv(A
(7.7) p, - Jaca i Pidv(a)
fAeA S, dv(A)
then the final wealth would be given by an average over all framtistrategies, that is,
(7.8) S, = / SAdv(A).
AcA

Fix a matrixA and consider the sgt, 4 of column-stochastic matrices of the fofi—«) A+
az, z € A. Similarly, denote by, o, the set of probability vectors of the fortd — a)a; + az;,
z; € X. Itis easy to see that (with a slight abuse of notation)

N
(79) Xo,A = H Xev,a; -
j=1

Any elementA’ of y,, 4 may be seen to satisfy (component-wise)
PtA, > (l_a)PtA7

for all t and therefore
SA > (1—a)"SA.
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Finally, using equality (7.9), we have
N
v (xa,a) = [[ # (Xaa,) = ()7,
7=1
implying
/ SA du(A) > (1— a) VN1 gA |
A'€xa,a

Takinga = 1/(n + 1), recalling that
N(N-1) et
— o\ -y -
and combining this with 7.8, we obtain the theorem.
Thus, it suffices to see that one may satisfy the set of lingaatéoons (7.7). We denote an

elementA € Aby A = [A; ;]. Writing only the equality for théth components of both sides,

(], tn)

N
= sA Ay Prs | dv(A),
[t (3 aewme)

k=1
we see thaf?; has to be an element of the kernel of the malfidefined by
o if i £k, T; 1 = wip,
o Tii = = 2 ji, 1N Wi
where
Wi k :/ StélA(i,k) dv(A).
AcA

The same argument as in the proof of Lemma 3.1 shows that suebttar exists (and the com-
putability of the latter depends on how easy it is to complgeeiements of the matrik). O

6. Universal versions ofeG and B1EXP

The EG and B1EXP strategies rely on the prior knowledge of the total numbef trading
periods, and also on the boungs and M on the market values. Since these values may not
be known in advance in practice or since the market evolstinay be unbounded, appropriate
modifications are required. The purpose of this section imtitmduce “universal” variants of
these two strategies which do not assume the prior knowletigay of these parameters. The
proposed adaptive strategies are based on a combinaticanuhlas 4.3 and 4.4 with an argument
of Helmbold, Schapire, Singer, and WarmuteScSiWa9$.

6.1. A universal version for the EG strategy. Observe first that all regrets are defined in
terms of ratios, so that the investment strategy may alwagsrmalize the past market vectors
x; SO thatmax;<y x;+ = 1. Our “universal” version of th&a strategy is then defined in Figure
1, and is callecEG-UNIV. It is competitive with respect to the class of all constamébalanced
portfolios, as revealed by the following result.

THEOREM 7.6. Consider a market wittv > 2 assets. Q0 denotes the class of all constantly
rebalanced portfolios, then the worst-case logarithmi@lireratio of EG-UNIV strategyP (for all
possible behaviors of the market) is bounded by

W,(P, Q) < 10Nn?/3 .
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Algorithm EG-UNIV
Initialization: P; = (1/N,...,1/N),andL;o = 0foralli=1,..., N.
Foreachround =1,2,...,
(1) invest in the stock market with portfoli®;, and get the market vectar, of dayt;
renormalizex; so thatmax;<y z;; = 1,
2) letoy = t~1/3/2 and@; = (1 — ay/N)x; + (o /N)1, wherel = (1,...,1) ;
3) fori=1,...,N,let N
v, — Tt
’ Pt * it ’
andL;; = Lis1 + 4, N
(4) letn, = t—%/3/4, and define the portfolid®,_ ; by its components, far=1,..., N,
~ e_ntzi,t
P, =
1,t+1 zév:1 - )
(5) let the next round portfolio be

Pt+1 = (1 — at)ﬁt—i—l + (Oét/N)]. .

FIGURE 1. A universal version of theG algorithm.

REMARK 7.9. Helmbold, Schapire, Singer, and WarmuteHcSiWwa98 were the first to
define a universal version of ths strategy, based on a “doubling trick” which requires to @ei
ically reset the algorithm by forgetting everything leamptto that point. We feel that modifying
the parameter “smoothly” as in the version introduced above is more natukéoreover, the
bound obtained for the new algorithes-uNIv is of the order ofz2/3, whereas the one for the
universal investment strategy ¢i¢ScSiwa9§ s of the worse order ofi3/4.

The proof below is a straightforward extension of the methaogly originally proposed in
[HeScSiWa98, and we first recall a lemma proved therein.

LEMMA 7.1. Whenevery; € [0,1/2],
ln(Pt-a:t) 2111 (ﬁtit) —204t .

PROOF (OF THEOREM 7.6). We decompose the quantity of interest into three sums,

n n

> (In(B-x)—In(P;-x)) < > (In(B-a;)—In(B-&))
t=1 t=1

n

+ Z <ln(B-5t) —1In <1~3t%t))

t=1

+ Z <ln (INDt . :Et> —In(Py- a:t)> .
t=1
The first sum in the right-hand side is non-positive, asathare renormalized such that all their
components are less than 1, and thus< x; pointwise. The third sum s less thatw; +. . .4+a,)
by Lemma 7.1. We simply have to deal with the second sum.
We note that the portfolio?t correspond to exponential reweighting over the Io§§gsThe
analysis of Section 2 leads to the linear upper bound, focaktantly rebalanced portfoliB,



144 CHAPTER 7. INTERNAL REGRET IN ON-LINE PORTFOLIO SELECDN

and all market sequences,

f: (n(B-z) - (P, &) < iBj (Z 3 Pl —Zj,t> .
t=1 =

t=1 i=1

3

As then; are non-increasing, Lemma 4.3, combined with the definiitthe P, then guarantees
that, with the notation of this lemma,

zn:(ln(B.%t)—ln(IBt.%t))<< 2 __>1nN+ZQ>Pt,77t, —0) .

Mn+1 m

The definition of%, ensures thaP; - ; > at/N, and thus that au?ﬁ lie in [-N/ay,0]. The
choice ofr,, combined with Lemma 4.4, leads ¥, /o, < 1, and

zn:(ln(B.it)—ln<1~3t-5t)) << ——>lnN—|— (e—2) Znt;m(Pt wt)

The renormalization of the; is such that alle; ; < 1, and this is thus also the case for thg.
Using in addition thatP; - z; > «;/N, we get

Zn:(ln(B'it)_ln(ﬁt’it>)<< 2 >lnN+(e—2 Zztt

Mn+1 ﬁl

Tn+1

In conclusion, we have shown that

& 2 1 Ui
In(B-x;)) —In(Py-x;)) < —— |)InN+(e—2)N — +2 oy,
S () < (P < (= N 2N Y 22
provided that for allt, oy < 1/2 and Nn;/a; < 1. Substituting the proposed values fgr
and «; and performing simple algebra conclude the proof. (We nio#t these values do not
optimize the order of magnitude in terms af. the choices);, ~ N~1/3(In N)?/3¢t=2/3 and
ot ~ (N 1In N)Y/3t=1/3 would lead to 1 + o(1))(N In N)'/3n2/3 upper bound.) O

6.2. A universal version for theB1EXP strategy. The universal variant of thB1EXP strat-
egy is designed by applying the conversion trick describeReamark 3.1 to theG-uNIv strategy
introduced above. Here however,BsUNIV does not simply minimize a linearized upper bound
over the regrets, we need to apply the conversion trick td afs®? fictitious assetsN(N — 1)
given by thei — j modified strategies of the master strategy, andXhather given by the single
stocks. (See also how we defined theH2 strategy, due to the lack of linearity noted in Remark
7.7, we had to use thegé? fictitious assets as well.)

More precisely, consider the sequence of market vegigrs= 1,2, . .., with N2 components

given by
Y = (Jf‘t, <Pt fEt)i#) ;

and denote b¥),, Q,, . .. the sequence of portfolios associated to iHsrUNIV. Define P, as
the portfolio (over theN initial assets) such that the fixed-point equalipy - y, = Py - x; isS
satisfied. Existence and practical computatiorPgfare indicated by Lemma 3.1.

Theorem 7.6 guarantees that for all fixed probability distiions B’ from the simplex of order
NZ2, and for alln, we have

(7.10) sup Zln (B y;) —In (P - ;) < 10N2n2/3
zpe®Y)" 121
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Choosing a probability distributiof3’ concentrated on the firéf components, or putting proba-
bility mass 1 over thé&-th componentk > N, we get the following result.

THEOREM 7.7. The cumulative internal regret of thELEXP-UNIV strategyP is bounded by
R, <10N%n?/3 .

In addition, if @ denotes the class of all constantly rebalanced portfoltben the worst-case
logarithmic wealth ratio ofP is bounded by

Wi (P, Q) < 10N2n?/3 .

REMARK 7.10. As indicated by (7.10), trEELEXP-UNIV strategy minimizes its internal regret
with respect to a class of deviations larger than simply thesaf the form — j. This class is
the convex hull formed by the Dirac massgsintroduced in Section 5.1, and the applications
which associate to a portfoli@ its modification P*~7. This yields a class which, on the one
hand, contains the simpl¥ (N — 1) modifications, and on the other hand, is strictly contaimed i
the class of all linear departures introduced in Section @.Ris is the class considered in Section
7 of [StLu03].)

To get a version of the 1lExP strategy minimizing its generalized internal regret, weuldo
need to apply the conversion trick@-UNIV run on a set ofV¥ fictitious strategies, correspond-
ing to the N extremal points of the convex hull of all linear departuresif the simplex into
itself. These extremal points are given by the column-sisttb matrices with 0 and 1 only, and
generate all linear departures, according to the Kreinna\ih (see, e.g., BergeBgroqQ)) theo-
rem. Unfortunately, this version suited for the minimipatiof the generalized internal regret has
a computational complexity of the order BfY, that is, more than exponential in the number of
stocksNN. In comparison, the complexity @&1ExP-UNIV is of the order of V2.

7. On-line investment with transaction costs

We indicate how some of the investment strategies intratlamve, namely those defined
only by means of fixed-point equalities, may be modified todmapetitive in presence of transac-
tion costs. We recall below the model considered by Blum aalhi{BIKa99] in which, without
loss of generality, transaction fees are paid at purchale dime model is best described by a
function Tc(P, Q), which indicates the cost of rebalancing the investor’slthedistributed ac-
cording toP to Q. To perform such a rebalancing, the investor first has toasedirtain amount
of some assets to be able to pay for the transaction fees whrehgsing the needed quantities of
the other assets. To buy a quantityof a given asset, he has to pay+ c¢)w, wherec is called the
commission ratetc indicates that 1 euro distributed accordingRdeads tox = TC(P, Q) euros
distributed according t@). (That is,TC is a multiplicative factor.) The precise way of rebalancing
optimally, as well as an implicit formula farc, is indicated in BIKa99]. We denote by

P(a:) _ Pk:Jxk,t
Py -z )y~

the distribution of the investor’'s wealth, when the lattersvoriginally distributed according B8
and the market evolved according to the wealth ratidn particular, the investment strategy has
to rebalance at the beginning of each day 1 from P;(x;) to P;,;, and has to pay a fraction
TC(Py(x¢), P.+1) of the wealth it owned at the end of dajo do so.



146 CHAPTER 7. INTERNAL REGRET IN ON-LINE PORTFOLIO SELECDN

More precisely, Blum and KalaBIKa99] show thatrc(P, Q) is the numbery satisfying the
equation
a=1-c Z (an>Pj)+a
j=1,...,.N
and list some basic properties of. One of them is that joint rebalancing is more efficient than
the weighted combination of the separate rebalancingsstovs may occasionally save in com-
mission cost by trading among themselves without commmsgistead of trading in the stock

exchange. Formally, this means that for any convex comibimat,, ..., «,,, any m portfolio

couples(P,,Q,),r =1,...,m, and any market vectar, we have

(7.11) D (P x)TC(Py(2),Q,) < ((Z arPr> m) TC <Z arPr(m),Q/> :
r=1 r=1 r=1

where

Q/ _ Z:«nzl Qy (Pr : w) TC (Pr(w)7 QT) Qr

Z:«n:l Qe (Pr : w) TC (Pr(w)7 Qr)
is the final distribution of the separate rebalancings. (Ateel, though different, property is that
TC, as a function of the coupleP, Q), is concave. This may seen by direct computation with the
implicit definition of TC.) Furthermore, we note here that the implicit definitiorrafshows that,
for a fixed P, the mapQ — TC(P, Q) is continuous.

7.1. The extension of thesBH strategy to a market with commission rates.We now de-
scribe the varianteH, of the GBH strategy suited for a market with a commission rat€he idea
is to divide (fictitiously) the capital at the beginning ofydaamong thei — j modified strate-
gies and to force them to rebalance (separately) ffjm’ (x;) to P;, ] at the beginning of day
t+1. The trick is to obtain the wealth allocatid?;.; once each fictitious strategy has rebalanced
to P, 7.

Formally, denote bys,, . (respectively,S,,.’) the wealth obtained by thesH,. strategy (re-
spectively, by the fictitious — j modified strategy) at the end of day after rebalancing to the

distribution prescribed for day + 1,

n
Spe = H(Pt'-’ﬂt) TC (Py(x¢), Piy1) »
t=1
s = TL(P77 @) 1o (P, PL)
t=1
Now, we choosdP; as the uniform wealth allocation, and foe 1,2, ..., P:,1 is chosen such

that the fixed point equality

(712) Py - > it St ie (P;—v ) wt) TC (Pi—u (wt),P;:D P Y SZ?JPi:ly

. t+1 — P A . . — i
D it Sie (Pi 7 mt) TC <Pi J(act)»PiH]) 2iti Sie’

is satisfied. Such a portfoli®;, 1 indeed exists by Brouwer’s theorem, as the middle term of

(7.12) is a continuous function @?, 1, and thus theseH, strategy is well-defined.

THEOREM 7.8. The GBH, investment strategy incurs a cumulative internal reg?e; <
In N(N — 1) for all n.
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PrROOF The defining expression (7.12) and property (7.11) diyestibw that, fort > 1
D it S’_’J ( i a:t) TC (Pi_’ (), P;:f)

(Pt'$t)TC(Pt($t),Pt+1) > —
Zi;ﬁj SZ—IJ,C

A telescoping argument finally yields

Suc > =Ty e
Z#J

0

The extensiorgBH2. of GBH2 to a market with transaction costs is defined is a similar, way
and still ensures that both the internal regret and the matteegret with respect to the class of
all buy-and-hold strategies are less thiam N. We omit the details and concentrate rather on
the extension of the generalized universal portfolio dbscrin Section 5.2. This is done by
combining the argument of the present section with thosesofié 5.2.

7.2. A modification of the generalized universal portfolio. We extend the notation of Sec-

tion 5.2. For any column-stochastic matex we denote by
S =T (P*-2) 1c(Pi=), Pf)
t=1

the wealth achieved by consistent modifications of the mastategy according tel in a market
with a transaction commissian

We chooseP; as the uniform wealth allocation, and for= 1,2,..., P,y is chosen such
that the fixed point equality
(7.13)
fAStAlc(PA ’ "Et) TC (PA(mt) Pt+1) t+1 dv(A) _ fASuAcPZil dv(A)

JuSA (PP @) Tc(PA=y), PAY) dv(A) [ S dv(A)

is satisfied. This defining expression is the exact countegid7.12) for a continuum of devia-
tions, and is valid thanks to Brouwer’s theorem.

Py =

THEOREM 7.9. The investment strategy defined above ensures that in a tnaitkea com-
mission rater, for all n and all market sequences,

A

1 C<N(N-1)In((1 1)+1.
paxing ( JIn((1+c)n+1) +

Note that the orders of magnitude of the above upper bounering ofc, n, and N are the
same as those for the worst-case logarithmic wealth ratiglloh and Kalai's BIKa99] general-
ization of Cover’s Cov91] universal portfolio.

PROOFE Property (7.11) extends to a continuous weighted avesgkihus, similarly to the
analysis ofGBH,., we get that
Sh.c / SA dv(A

We conclude the proof by the same kind of argument as in thef mbTheorem 7.5, and use
the notation introduced there. We fix a maték and a numbery €]0,1[, and consider their
associated sef,,a. The elementsA’ of x, 4 are such that there exists € A with P;“' =
(1 —a)PA + aP?, and

(714) (P ) 1e (P (@), PAL) > (11— o)t (PR @) Te (PA(2), PAL) -
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To see this, we lower bound the left-hand side by
(1-a) (Pf"wt) TC (P?(wt)’Pt—i-ll) )
by ignoring the fractior of the wealth not distributed accordingfb;“ in P;“’. Now,
TC <P£4(mt),P2i/1) > 1 (P (my), PAy) TC <P£1>P24+/1) ;

and since rebalancing from7},; to P;¥, involves moving at most a fractiam of the wealth,

Tc(Pgl,Pg?;l) > 1—a+li+c =1-ay - >1-ac>(1-a),
where the last inequality is recalled iBIKa99].
The proof is concluded by multiplying (7.14) ovee 1, ...,n and using the same argument
as in the end of the proof of Theorem 7.5, witheplaced by(1 + ¢)n. O

OPEN QUESTION 7.1. We extended above all the algorithms which do not usértbarized
upper bounds and only rely on fixed point theorems. The obtlgeneralizations are of theoret-
ical interest, as the different calls to Brouwer’s theoremndt provide any practical method to
implement the investment strategies. We do not mention gignsion foreG nor B1Exp. This is
because even ifc is (jointly) concave, the functiogh that mapg P, Q, x) to

Y(P,Q,x) = —In((P-z)TC(P(x),Q))

is not necessarily convex P, Q) for a fixedx (essentially, because — P(x) is not linear).
The proofs above show that in presence of transaction epststhe loss function of interest, and
we may only linearize convex losses. (See the appendix gbt€h8.)

In particular, even finding an equivalent g, easily computable and competitive in presence
of transaction costs, is still an open question. Blum andhka[BIKa99] extension of Cover’s
[Cov9]] universal portfolio has indeed the same computationaldezks as the latter.
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Appendix: Experimental results

In this appendix we present an experimental comparisonep#rformance of the new al-
gorithms with existing ones. In the experiments we used a slat of daily wealth ratios of 36
stocks of the New York Stock Exchange that has been used mugaaiuthors includinggov91],
[CoOr96], [HeScSiwag, [BIKa99], [Sin97], and BOEIG00(J. The data set is formed by 5651
daily prices covering the 22-year period from July 3rd, 1982December 31st, 1984. The be-
haviors of some selected stocks is plotted in Figure 2. Wee @sisidered monthly wealth ratios

Gulf Mei Corp.
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10

10

0 2000 4000 6000
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2000 4000 6000
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15 60

50

10 40
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10
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FIGURE 2. Evolution of some selected stocks over the 22-year perictuofy.

(taking 20 trading days for a month).

Of course, as all these stocks survived during this peribdy pperformed well. There is
therefore a “survivor bias”, which implies that any investm strategy using these stocks will do
fine. However, we compare below our investment strategieshter ones, and both the new and
the existing ones benefit from the bias.

We begin this appendix with an overview of the strategieodauced in this chapter.

Overview of the investment strategies.We give two overviews of the methodology we used
to derive our investment algorithms.

A strategy is given by the choice of a measure of the regrend of a potential functio®
(see Section 2.3 in Chapter 2). We consider three ways ofuriagshe regrets:

(1) Linear approximation to the instantaneous externaktggee Section 2):
o= Tit
7,t Pt X 9
(2) Instantaneous internal regret (see Sections 4.2 apd 5.1
Tig)t = (Pi_)j : -’Et) —In(Py-xy) ,

(3) Linear approximation to the instantaneous externaktggee Section 4.1):

Tit Tt

J7 Z7

T = Pit — .
(0.3, P, -z, Py x
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Also, both the exponential and the polynomial potentiaésiesed. Each combination of and ®
induces an investment strategy as summarized in Table 2.

Qi Tagne Tt

Exp EG GBH BLEXP
Pol — B2POL BIlPOL

TABLE 2. A first summary of the investment strategies.

The second overview indicates the external-internal tagirimizing pairs we used. For
instance, the algorithm of Section 5.2 is the no internateegounterpart of Cover'sqov9l
universal portfolio, and the algorithm of Section 7.2 is tieinternal-regret counterpart of the
algorithm proposed ingIKa99]. The other pairs are indicated in Table 3. The uniform bogi-a
hold strategy of Section 2 is denoted bgH.

external EG EG-UNIV UBH
internal B1EXP BlEXP-UNIV GBH

TABLE 3. A second summary of the investment strategies: the bottoenclorresponds
to the no internal regret counterparts of the algorithméeftop line.

The tuning of the EG and B1EXP strategies. The first experiment compares the behavior of
the BIEXP and EG strategies whose results are summarized in Tables 4 and Bigak 3. We
compared the strategies andB1eExp for various choices of the tuning parameteiWe used the
parameters suggested by thegty= a\/81n N/n andn* = 4ay/In N/n, respectively, in case of
known time horizom, and also the time varying versions = a/81n N/t andn; = 4a+/In N/t
where the ratiex = m /M is taken to bé).5 for daily rebalancing an€l.3 for monthly rebalancing.
(These values are estimated on the data.)

Tables 4 and 5 show the arithmetic averages of the wealthiev@chon random samples of
size100. For example, the numbers in the columns “ten stocks” haea lbbtained by choosing
ten of the36 stocks randomly to form a market &f = 10 assets. This experiment was repeated
100 times and the averages of the achieved wealth factors ajpptr table. The column “Freq.”
contains the number of timesleExP outperformedeG of thesel00 experiments. The average
wealth ratios for both strategies were calculated for ciifieé fixed and time varying parameters.
One of the interesting conclusions is that time varying tipdanever affects the performance of
B1exP while that of EG drops in case of monthly rebalancing or when the number aksts
large.

In the rest of this experimental study both algorithms aexlugith their respective time vary-
ing theoretical optimal parametgf. Itis also seen in Tables 4 and 5 tig&t is less robust against
a bad choice ofy. Its performance degrades faster wheor 7, is increased.

Interestingly, the increase of the external regret whertiuhang parameter is increased cor-
responds to an increase in the internal regret, as showrgurd-B. The increase of the internal
regret is far larger for thec strategy. This suggests that minimizing internal regretits in more
stability.
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n Monthly rebalancing
(para- Three stocks Ten stocks
meter) EG BlExP Freq. EG BIlEXP Freq.
2 14.7 155 73 12.8 19.2 95
15 15.1 16.0 76 140 199 96
1 15.9 16.7 80 16.0 20.6 97
0.5 17.3 180 84 188 21.3 97
0.2 18.7 19.0 84 207 216 97
0.15 189 19.2 84 21.0 217 95
0.1 19.2 19.4 84 213 218 94
0.05 195 196 82 216 218 94
0.03 196 197 82 217 218 94
0.02 19.7 197 82 21.8 219 94
0.01 19.7 197 82 21.8 219 94
n* 19.5 19.5 80 214 218 94
n: 19.3 19.4 80 212 217 95
0.1n; 19.7 19.7 81 218 21.9 95
0.2n; 19.7 19.7 80 217 218 95
0.57n; 19.6 19.6 79 215 218 95
2n; 18.9 19.0 81 205 215 95
5n; 17.8 17.9 77 18.7 20.8 97
10n; 16.5 16.7 71 16.1 19.8 94
25n; 147 15.4 61 125 17.8 92

TABLE 4. Evolution of the achieved wealths according to the tuningpeeter ofec
andB1EXxp both for fixed and time varying parameters. Computations@aézed on

random samples of size 100, arithmetic means are displ&§enthly rebalancing.

Tuning of B1PoL and B2PoOL. Table 6 shows that foe1PoL and B2PoOL the theoretically
(almost) optimal parameter = 41n N performs quite poorly in our experiments, for it leads to
too fast wealth reallocations. The valuespolvith better numerical performance are usually far
smaller than the ones prescribed by theory. Thus, for theofdhis experimental study and the
subsequent simulations, we chogse- 2, as it was originally suggested bBIp56]. (Note that
in Table 6 we show the geometric averages instead of tharatth ones, to take into account the
huge dispersion of the wealths achieved by these two inegtsirategies — see also Table 9 and
the related comments.)

Global comparison. In the next experiment various different investment syjige are com-
pared, which we denominate le, B1EXP, B1POL, GBH, GBHZ2, B2POL, Cover's,UBH, B-CRP,
andu-crpr. For the first six strategies we have already described hawni® (some of them do
not require any tuning). The algorithm “Cover’s” stands @wver’s universal portfolio based on
the uniform density. To compute the universal portfolio, avew at random0? different con-
stantly rebalanced portfolios and took the average on ttatlveatio sequences to compute each
instance of Cover’s algorithm. (The valté* may seem to be too small in view of the® used in
[HeScSiWa98 but calculations using the Chebyshev boundBiKa99] indicate that this value
is sufficient to have a good idea of the order of the wealtheag by the universal portfolio.) To



152

CHAPTER 7. INTERNAL REGRET IN ON-LINE PORTFOLIO SELECDN

n Daily rebalancing
(para- Three stocks Ten stocks
meter) EG BlExP Freq. EG BIlExP Freq.
2 13.2 145 77 124 217 93
15 14.1 15.6 80 140 232 95
1 15.7 17.4 86 17.0 247 95
0.5 188 204 89 220 258 94
0.2 221 231 89 252 263 92
0.15 228 236 89 256  26.3 91
0.1 236 242 89 260 264 88
0.05 245 248 88 26.3 264 83
0.03 248 25.0 88 264 265 82
0.02 250 251 88 264 265 82
0.01 252 253 88 264 265 82
n* 250 25.0 89 264  26.5 82
n: 248 248 86 26.2 264 94
0.1p; 253 253 88 265 26.5 91
0.2n; 253 253 88 26.4  26.5 91
057 251 25.1 87 26.3 26.4 92
2n; 242 243 86 258 26.3 94
5ny 226 227 85 245  26.0 98
10m; 204 205 82 220 25.2 98
25n; 16.2 16.4 72 152 223 99

TABLE 5. Evolution of the achieved wealths according to the tuningpeeter ofeG
and B1ExP both for fixed and time varying parameters. Computationsreaézed on
random samples of size 100, arithmetic means are displ®&gly. rebalancing.

compute the best constantly rebalanced portfolio (callerkp) we used a technique described in
[Cov84, with (according to the notation thereia)= 10~ for daily rebalancing and = 10~°
for monthly rebalancing. This guarantees an estimate mihinultiplicative factor ofl.0028 of
the wealth achieved by the best constantly rebalancedofiorth case of a monthly rebalancing
and1.7596 in case of a daily rebalancing. Nevertheless, the values dbtained are often even
closer to the optimal, despite the weak guarantees in cadailgfrebalancing. We also consid-
ered the uniform buy-and-hold strateggH and, following BoEIG00(, the uniform constantly
rebalanced portfoliol-CRP).

Transaction costs were also taken into account (whose arisandicated in the colummc of
the tables) according to the model definedBi{a99], and recalled in Section 7. We implemented
Blum and Kalai’s optimal rebalancing algorithm, using €itnt transaction costs. To be fair, we
considered all algorithms in their no-transaction-codiniteon — that is, we considegBH and
GBHZ2 instead ofcBH, andGBH2,.. Here, we summarize the results for zero transaction cashan
heavy2% at-purchase transaction cost in case of monthly rebalgrasid a mildei % transaction
cost when the rebalancing occurs daily.

All these algorithms were run on randomly chosen sets ofkstod he number of selected
stocks is shown in the first column of Tables 7 and 8. ThesegahbUicate the arithmetic aver-
ages of the wealths achieved. In each line, the results oélti@ithm which outperformed its



7. APPENDIX: EXPERIMENTAL RESULTS 153
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FIGURE 3. Evolution of both external and internal regrets for the wyati time vary-
ing tuning parameter (top) and a 25 times too large one (bgttdStocks used: Dow
Chemical, CokeGTE, Mei Corp., Gulf, Iroquois, Kin Arc, Amer Brands, Fischbach

Lukens.
P Monthly rebalancing Daily rebalancing
(para- Three stocks Ten stocks Three stocks Ten stocks

meter) B1POL B2POL BlPOL B2POL BIPOL B2POL BlPOL B2POL

p* 115 9.5 15.7 12.4 9.1 7.3 111 9.7

11 13.3 10.9 16.2 135 12.7 9.5 16.5 135
12 13.1 10.9 16.0 13.9 12.3 9.5 16.4 13.5
1.3 13.0 10.9 16.0 13.8 12.1 9.3 16.4 13.8
15 12.9 11.0 16.5 141 115 8.9 16.5 13.5

2 12.3 10.4 16.9 135 10.7 8.5 15.9 135
25 12.0 10.1 16.1 14.4 10.3 8.1 15.6 13.2
3 11.8 9.9 16.9 15.4 9.9 7.8 15.4 12.9
3.5 11.7 9.8 17.0 15.2 9.5 7.5 15.0 12.6
4 115 9.7 17.8 14.3 9.3 7.4 14.8 12.5
4.5 11.5 9.5 171 145 9.1 7.3 14.7 12.0
5 115 9.4 171 14.6 9.1 7.3 145 11.7
6 115 9.4 16.2 14.0 8.6 7.1 13.8 11.8
8 11.2 9.4 145 11.9 8.1 7.0 12.3 9.8
10 10.4 9.0 14.3 11.9 7.8 6.8 10.7 8.4

TABLE 6. Evolution of the achieved wealths according to the tuningapeeter of
BlPoL andB2rPoL. Computations are realized on random samples of size 10&efeic
means are displayed.

competitors the more often are set in bold face. Globallgxp seems to have the best results
in terms of accumulated wealth, but there are some fine w@mgmtvhich should be mentioned.
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ST. EG BlExP BlPOL GBH GBH2 B2POL Covers UBH B-CRP

2 162 16.2 12.4 13.6 136 12.0 155 13.6 21.0
3 193 194 15.6 16.1 155 13.8 18.4 149 302
5 20.0 203 16.6 18.0 16.3 13.2 19.6 149 39.6
8 213 217 20.9 20.2 176 17.4 21.2 154 53.9
10 212 217 19.3 206 17.7 15.3 213 15.2 61.2
12 209 215 18.1 205 173 16.0 211 14.6 62.4
15 219 225 20.4 218 183 17.6 22.2 15.3 72.3
18 210 216 17.8 211 179 16.0 214 15.0 76.3
20 213 219 19.7 215 181 175 218 15.2 80.3
25 214 220 20.5 216 182 171 21.9 15.2 85.9

2 149 149 10.6 13.7 137 10.6 14.5 13.7 20.2
3 168 16.8 111 149 145 9.9 16.2 14.2 26.9
5 185 186 115 17.2 161 9.6 18.1 150 36.3
8§ 178 179 9.6 17.2 159 9.3 17.6 147 46.1
10 189 191 10.3 18.3 16.5 8.6 18.8 14.9 51.2
12 190 19.2 10.4 18.7 170 9.4 19.0 154 574
15 199 201 10.2 19.7 176 9.0 19.9 15.7 65.1
18 191 193 8.9 19.0 17.0 7.7 19.2 151 67.3
20 185 18.7 9.2 185 16.6 7.7 18.6 14.9 68.1
25 191 193 10.0 19.2 17.2 7.7 19.3 15.3 75.8

TABLE 7. Arithmetic means of the wealths achieved on randomly setesets of
stocks, repeated 100 times. Monthly rebalancing. A diffesample was drawn for
each line of this table. Top lines correspond to a no traf@acbst setting, whereas the
bottom lines consider the case2¥ transaction costs.

First, EG is better tharB 1Exp when the portfolio is reduced to two stocks only. The reasan t
in this case the internal regret is nothing else than themxteegret and the exponential weighted
algorithm on whiclea is based is known to be optimal for the minimization of theeexal regret.
Second, in the presence of transaction costs and for a @diélancingGeH performs well. This

is due to its closeness to buy-and-hold. Interestingly ghpii performs considerably better than
buy-and-hold, which is known to be valuable in the presericeich heavy transaction costs. Sur-
prisingly enoughGgBH2, which was designed to be a modificationa@H suffering a low external
regret with respect to buy-and-hold, performs quite poocosnpared taBH. Actually, the wealths
achieved byGBH2 seem to interpolate those 6BH and the uniform buy-and-hold strategy. Fi-
nally, the at first sight naive-CcRP strategy seems to have interesting results, as alreadgl mote
[BOEIG00(], even though there are no theoretical guarantees for itergality (see for instance
Table 12).

Finer comparison. After this global comparison, we compas&exp more carefully with the
best opponents in case of no transaction costs, whice@ands1lpoL. The comparison t&G
is done in Table 10 which shows the geometric and arithmetcages obtained, as well as the
number of times1ExpP won and also by how much each algorithm outperformed the.offfe
value of AT indicates the maximal gap betweshexp andeG (in the favour of the former) on the
100 elements of the randomly selected sample Andis in favour of the latter. We conclude from
this table that (in case of no transaction costkixp is quite often better thab, and even when it
is outperformed b¥G, the wealth then achieved & is just a bit smaller. The difference between
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ST. EG BlExP BlPOL GBH GBH2 B2POL Covers UBH B-CRP

2 193 192 11.4 13.6 136 10.3 17.2 13.6 20.4
3 248 248 13.0 16.2 15.1 10.8 21.6 13.9 28.8
5 316 320 16.5 236 194 11.9 29.1 156 479
8 282 285 16.7 252 196 13.9 27.4 151 59.5
10 26.2 264 175 247 191 15.2 258 145 67.3
12 29.0 293 185 278 204 155 28.7 14.6 87.1
15 276 278 18.0 272 20.2 15.3 27.7 14.7 98.6
18 293 295 19.1 29.0 21.2 16.2 29.3 151 1218
20 281 284 18.3 28.0 20.8 16.4 28.3 150 1203
25 289 290 191 2819 212 17.3 29.0 151 153.9

2 184 183 9.7 159 159 8.3 175 15.9 19.0
3 174 174 8.0 153 149 6.8 16.6 14.4 211
5 186 186 57 170 1538 4.4 18.0 145 28.2
8§ 189 189 5.0 18.0 159 3.9 185 13.7  36.7
10 203 203 5.2 199 175 3.7 20.1 151 435
12 20.9 20.9 53 205 174 4.0 20.7 145 51.3
15 19.7 19.6 46 198 170 3.7 19.6 145 556.3
18 20.7 20.6 48 208 1738 3.9 20.6 14.9 66.3
20 203 20.2 42 204 174 3.4 20.2 14.7 71.6
25 205 20.3 45 206 177 3.6 20.4 15.0 83.7

TABLE 8. Arithmetic means of the wealths achieved on randomly setesets of
stocks, repeated 100 times. Daily rebalancing. A diffesambple was drawn for each
line of this table. Top lines correspond to a no transactmst setting, whereas the bot-
tom lines consider the case 0¥ transaction costs.

Stat. EG Bl1EXP BlPOL GBH GBH2 B2pPoL Cover’s UBH

Min. 13.2 13.6 6.6 13.0 115 4.7 13.4 8.8
Ar.av.  20.9 215 18.1 205 173 16.0 211 14.6
Geo. av. 205 21.0 16.1 20.1  17.0 13.8 20.7 14.4

Max. 32.9 34.6 56.3 317 249 60.9 33.7 20.9
St. dev. 4.6 4.9 9.3 4.3 3.2 9.5 4.7 2.8

TABLE 9. Statistical characterization of the wealths achieved enrtindom sample
corresponding tal2 stocks without transaction costs and monthly rebalanciige
minimum, arithmetic and geometric averages, maximum, &uudard deviation of the
achieved wealths are shown.

the two algorithms seems to be especially large whénlarge, that is, for monthly rebalancing
and/or many stocks. Table 9 reveals thabPoL andB2POL are not serious contenders because of
their huge standard deviation and the extreme values. $takso illustrated by the catastrophic
results of these algorithms in the presence of transactisis@nd for a daily rebalancing, see
Table 8. The reason is thatlPoL andB2POL reallocate just too quickly, which can be good or
bad. (See Figure 4.) This happens because of the propeitye @idiynomial potential that only
the nonnegative internal regrets count in the computatfdheowealth allocation, and therefore
when one stock dominates, almost all the weight is put onhtclvis of course dangerous.
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Geom. Avg. Arith. Avg. Max.
ST. TC EG BIEXP EG BIEXP Freq. A~ AT

2 0% 140 13.9 16.2 16.2 12 0.47 0.19
3 0% 17.0 17.0 19.3 19.4 80 0.02 0.17
5 0% 185 18.6 20.0 20.3 82 0.12 2.23
8 0% 204 20.8 213 21.7 92 0.17 2.30
10 0% 20.6 211 21.2 217 95 0.21 1.583
12 0% 205 21.0 20.9 21.5 99 0.05 1.66
15 0% 215 22.1 21.9 22.5 98 0.08 1.45

18 0% 20.7 21.3 21.0 216 100 1.65
20 0% 21.2 21.7 213 219 100 1.74
25 0% 213 21.9 21.4 22.0 100 1.18

2 2% 130 12.9 14.9 14.9 27 0.30 0.22
3 2% 150 15.0 16.8 16.8 65 0.05 0.09
5 2% 174 175 185 18.6 72 0.20 142
8 2% 17.2 17.3 17.8 17.9 72 0.42 1.36
10 2% 18.2 18.4 18.9 19.1 82 0.19 1.46
12 2% 18.6 18.8 19.0 19.2 73 0.27 1.30
15 2% 19.6 19.8 19.9 20.1 84 0.18 0.85
18 2% 18.8 19.0 19.1 19.3 81 0.19 1.20
20 2% 183 18.5 18.5 18.7 84 0.30 0.70
25 2% 191 19.3 19.1 19.3 88 0.23 0.50

TABLE 10. Extensive comparison between the performancasadndB1lEXP on the
samples of Table 7.

Ptf. EG Bl1EXP BlPOL GBH GBH2 B2POL Cover's UBH U-CRP

L12 4.20 4.20 4.61 421 4.25 4.64 4.20 431 4.20
M12 4.68 4.67 6.32 468 4.77 6.71 4.68 493 4.67
H12 6.79 6.74 8.12 6.78 6.89 8.32 6.77 7.13 6.73
L24 4.32 4.30 5.66 431 4.40 5.84 4.31 455 4.30
H24 5.40 5.35 7.40 5.37 5.44 7.94 5.35 5.61 5.35
A36 4.87 4.81 6.94 483 494 7.21 4.81 513 4.81

L12 0.83 0.83 0.88 0.83 0.84 0.89 0.83 0.85 0.83
M12 0.88 0.88 111 0.88 0.90 1.14 0.88 0.93 0.88
H12 1.17 1.16 1.82 120 1.20 1.96 1.17 1.28 1.15
L24 0.82 0.82 1.01 0.83 0.84 1.03 0.82 0.86 0.82
H24 0.92 0.91 1.45 0.93 0.96 1.54 0.92 1.03 0.91
A36 0.85 0.85 1.25 0.85 0.88 1.28 0.85 0.94 0.85

TABLE 11. Volatilities (multiplied by 100) for portfolios chosen amtling to their
volatilities, for monthly rebalancing (top lines) as wedl #or daily rebalancing (bottom
lines).



Ptf. EG BlExXP BlPOL GBH GBH2 B2POL Covers UBH U-CRP

L12 109 111 7.6 10.8 101 7.7 11.0 9.4 11.2
M12 17.2 171 229 171 16.9 21.9 17.0 16.7 171
H12 36.3 39.0 12.8 346 253 10.2 37.8 17.6 39.8
L24 139 14.0 198 140 135 15.7 141 131 141
H24 26.7 27.8 413 271 218 217 27.6 17.2 28.0
A36 205 211 309 208 175 225 20.7 145 211

L12 123 124 6.7 120 111 6.5 12.2 10.1 12.4
M12 16.1 16.2 9.9 158 148 9.4 16.0 13.9 16.2
H12 781 81.0 40.8 67.9 40.2 21.9 76.0 195 81.9
L24 143 144 9.3 142 131 9.0 14.4 12.0 14.4
H24 38.2 38.7 25.6 381 261 21.9 38.6 16.7 38.8
A36 269 271 20.2 271 202 17.4 27.0 145 27.1

TABLE 12. Wealths achieved by the portfolios of Table 11. In each lihe, wealth
obtained by the best adaptive algorithm is set in bold face.

Achieved Wealths Wealth Allocation of BLExp Wealth Allocation of B1Pol
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FIGURE 4. Evolution of the achieved wealths and of the wealth allaration two typ-
ical examples. Stocks used for top graphs: Sher Will, Texae®, Espey, Helwett
Packard. For bottom graphs: Guifyj Mei Corp., Pillsbury, Schlum.

Tables 11 and 12 are given for sake of completeness as weall alfotv comparison with
[HeScSiWwa98. The algorithms are run on portfolios chosen accordinghowolatilities of the
stocks. (See Remark 8.3 for a formal definition of the vatgdjl Three groups were formed by
putting the 12 lowest volatility stocks in the first group @)1then the 12 highest in the second
(H12) and the 12 remaining in the third group (M12). The gréarmed by L12 and M12 is called
L24, the one of M12 and H12 is denoted by H24. Finally, the $ell®6 stocks is referred to as
A36. Note that thes 1EXP strategy has almost always the lowest volatilities. Thaokis aggres-
sive rebalancing, thelpoL strategy has interesting achieved wealths for monthlylagioang.
Nevertheless, thB1EXP investment scheme has globally the higher returns.






CHAPTER 8

Learning correlated equilibria in games with compact sets b

strategies

In this final chapter, we study Hart and Schmeidler's extamsif correlated equilibrium to
games with infinite sets of strategies. General propertighenset of correlated equilibria are
described. Itis shown that, just like for finite games, if@#lyers play according to an appropriate
regret—minimizing strategy then the empirical frequesciEplay converge to the set of correlated
equilibria whenever the strategy sets are convex and cdmpac
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1. Introduction

Correlated equilibrium, introduced by Aumaniim74, Aum87] is arguably one of the most
natural notions of equilibrium. Put simply, a correlatediiérium is a joint distributionz over
the set of strategies of the players that has the propertyftih&fore taking an action, each player
receives a recommendation such that the recommendatierdyawn randomly according to the
joint distribution of 7, then, in an average sense, no player has an incentive td five the
recommendation, provided that all other players followirheThe distinguishing feature of the
notion is that, unlike in the definition of Nash equilibriigtrecommendations do not need to be
independent. Indeed, if is a product measure, it becomes a Nash equilibrium.

A remarkable property of correlated equilibrium, pointad by Foster and VohraHoVo97),
is that if the game is repeated infinitely many times such évaty player plays according to a
certain regret—-minimization strategy, then the empirigauencies of play converge to the set of
correlated equilibria. (See also Fudenberg and LeVkoe§99], Hart and Mas—ColellflaMa00,
HaMaO01l, HaMa02].) No coordination is necessary between the players, amgldyers don't
even need to know the others’ payoff functions. Hart and Madell [HaMaO03] show that Nash
equilibrium does not share this property unless the gametiss special properties, see however
Section 5.

The definition of correlated equilibrium was extended tonitéi games by Hart and Schmei-
dler [HaSc89. The purpose of this chapter is to study the correlatedlibgiai of a large class
of infinite games. In Section 2 we recall Hart and Schmeisllektended definition, and propose
some equivalent formulations. One of them may be given bgrelizing the sets of strategies,
considering correlated equilibria of the discretized {Ehgames, and taking appropriate limits as
the discretization becomes finer (see Theorem 8.2). Sonefraperties of correlated equilibria
are described. In particular, under general conditioresstt of correlated equilibria is a compact
convex set (see Theorem 8.1).

The main result of the chapter (Theorems 8.3 and 8.4) génesahe above—mentioned result
of Foster and Vohra to the case when the sets of strategiearmgact and convex subsets of a
normed space, and the payoff function of plaigds continuous. It is shown that convergence of
the empirical frequencies of play to the set of correlatedildgia can also be achieved in this
case, by playing internal regret—minimizing strategiebese the notion of internal regret has to
be generalized to the case of games with infinite strategy Jéte proof of the main theorem is
given by a sequence of results, by broadening the class afep functions in each step.

We then indicate a connection between the correlated brjailof a finite game and those of
its mixed extension. We show that in some sense, these ainaksmd.

We conclude the chapter with a note about the computabifithe offered procedures. We
focus especially on on-line linear regression, and prosflieient internal and external regret
minimizing forecasting schemes.

2. Definition of correlated equilibrium

2.1. Refined definition. The notion of correlated equilibrium was introduced by Aumma
[Aum74, Aum87] who assumed that the sets of strategies are finite, anddeddater by Hart
and SchmeidlerjaSc89 to infinite games.

Formally, consider atN—person game in strategic (normal) form

I'=({1,....,N} (S)i<i<n, (W) i<i<n))
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where{1,..., N} is the finite set of players, playéris given a (non necessarily finite) set of
strategiesS’ and a payoff functiorh! : S — R. The set ofN—tuples of strategies is denoted by
S =81 x8%x...x SN, We use the notation = (s—%, s%), where

sTh= (st s s sY)

denotes the strategies played by everyone but playewe write s=* € S~¢, where S~ =
H#i S7.

Some assumptions on the topology of Bfeare required. More precisely, assume thatSte
are topological spaces, equipped with their Berehlgebra (that is, the—algebra generated by
the open sets). Thetis naturally equipped with a (product) topology and a (patpla—algebra.
We can now consider (Borel) probability measures @ver

Hart and Schmeidler’s original definitibfiHaSc89 states that a correlated equilibriumof
the gamd’ is a (joint) probability distribution ove$ such that the extended gariedefined below
admits theN—tuple of identity functionsS®* — S* as a Nash equilibrium. The strategy setd'6f
are given, for playek, by the setF;, of all measurable map$*® — S*, and the game is played as
follows: each playefk: chooses his actiott, € F, a signal (sometimes called recommendation)
I=(I',...,IV) € Sis drawn randomly according to, playerk is told thek—th component of
the signal,/*, and he finally plays);, (I%).

We remark here that the s, of allowed departures for playér may actually be taken as
a (sometimes proper) subset of the £8{S*) of all measurable departureé® — S*, with the
only restriction that it should contain the identity map. Wen define &), <x<n—correlated
equilibrium similarly as above except that we consider degpa functionsy, only from the class
Fr, k =1,..., N. Inthe simplest cases, may be a finite set, but we also consider larger classes
Fi. given by the set of all linear functions, all continuous ftioes, or all measurable functions.

A more formal statement is the following one. We restrict atiiention to real—valued,
bounded, and measurable or, alternatively, nonnegatideraasurable, payoff functionté.

DEFINITION 8.1. A (Fi )1<k<n—correlated equilibriumis a (joint) distributionr over S such
that for all playersk and all departure functiong;, € F;, one has

(8.1) E, [hk(f—k,lk)] >E, {hk(f_k7¢k(fk))} :

where the random vectdr = (Ik)1<k<N1 taking values irf, is distributed according tor.
wis a(Fi) 1<k v—correlatede—equilibrium if for all £ and allyy, € F,

E, [h’f([‘k,f’f)} >E, [h’f([‘k,wk(f’f))] —e.

A correlated equilibrium may be interpreted as follows. maverage sense (the average
being given by the randomization associated with the sjgnalplayer has an incentive to divert
from the recommendation, provided that all other playelisviotheirs. The distinguishing feature
of this notion is that, unlike in the definition of Nash edoiila, the random variableg® do not
need to be independent. Indeedsyifs a product measure, it becomes a Nash equilibrium. This
also means that correlated equilibria always exist as sedfaah equilibria do, which is ensured
under minimal assumptions (see Remark 8.1). Their existary however also be seen without
underlying fixed point results, see Hart and Schmeid#agc89.

INote that we only consider games with finitely many players| therefore avoid some of the difficulties arising in
games with an infinite number of players.

2Note that one can always take fbithe identity map oves, thought of as a random vector defined on the probability
space(S, ).
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REMARK 8.1. Inthe definition of correlated equilibria we consideeatension of the original
game. But note that under minimal assumptions (e.g., if #ie ef strategiess* are convex
compact subsets of topological vector spaces and the gayo#fre continuous and concave in the
k—th variable) there exists a Nash equilibrium in pure sgiate (see, e.g.Aub79]). Each pure
Nash equilibrium corresponds to(a‘,o(S’“))lgng—correlated equilibriumr given by a Dirac
measure ovef. Clearly, 7 is a mixed Nash equilibrium if and only if it is 6£°(S*))1 <k <n—
correlated equilibrium equal to the product of its margsnal

EXAMPLE 8.1. Assume that each” is a convex and compact subset of a normed vector
space, and that each payoff functibfi is continuous. In Section 3.6 we show that the set of
(L2(S*))1<k<n—correlated equilibria coincides with the set(61(S*)); <x<n—correlated equi-
libria (whereC(S*) is the set of all continuous functions mappif§ in S*). This set is convex,
compact, and contains the non—empty set of (pure and mixash Mquilibria.

For the sake of completeness, we give an analog of the conditdefinition which is usually
proposed as a definition for correlated equilibria in theeaafsfinite games: provided that th
are finite sets, aorrelated equilibriumis a (joint) distributionr over S such that for all players
and all functions/, : S¥ — S*, one has

Zﬂ_(s—k | 5% (hkz(s—kz73kz) _ hk(s—k’wk(sk))> >0,

seS
where(-|s*) is the conditional distribution o§~* given that playerk is advised to plays*.
Now, recalling that we denote b§°(S*) the set of all measurable functions o\#, we have the
following conditional definition in the general case where game may be finite or infinite. The
proof is immediate.

PrRopPOsITIONS8.1. Under the above measurability assumptions, a distributiawer S is a
(EO(S’f))lgng—correlated equilibrium if and only if for all playerk and all measurable depar-
ture mapsyy, : Sk — Sk,

B [WER 19 | 1) = By [WE, (1) 1 14]
where the random vectdr = (Ik)lgng is distributed according tar.

Finally, a last link between the usual definition for finitenggs and the one for infinite games
is given in Section 5.

2.2. Basic properties of(Fj)1<k<n—correlated equilibria. Fix the set of allowed depar-
turesF, 1 < k < N, and denote byl the set of all(F;);<x<n—correlated equilibria. It is
immediate from the definition that is a convex set, and that it contains the set of Nash equilibri
(which is known to be non—empty under minimal assumptioas,Remark 8.1 above).

For the subsequent analysis we need to establish a topalggaperty oflI, namely its com-
pactness. To this end, we assume that esftlis a Polish space, that i$}* is a complete and
separable metric space. Then the produet also Polish, and it is well-known that Borel proba-
bility measures ovef are regular. Denote hy(S, R) the set of bounded continuous real-valued
functions overS. The set of Borel probability measures ogrdenoted byP(.S), (and more pre-
cisely, the set of all nonnegative and finite Borel measuves.®) is equipped with th€—weak-«
topology. This is the weakest topology such that, for eAchC(S, R), the linear map: — u[f]
defined foru € P(S) is continuous, wherg [f] = fs fdu. That is, the open sets of this topology
are generated by the sets

{neP(S):plfl<a},
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wheref is any element of (S, R) anda any real number.

Assume furthermorethat theS* are compact. The# is also a compact set (art S, R)
is simply the set of all continuous real valued functionsras® Recall the following simple
statement of Prohorov’s theorem, séqu86]:

ProPOSITION8.2 (Prohorov’s theorem)if S is a compact metric space, then the sp&ge&)
is compact. Its topology is equivalent to the topology ofdgbecalled Prohorov metric. In par-
ticular, P(S) is sequentially compact, that is, every sequence of elenfiemh 7(S) contains a
convergent subsequence.

The next result summarizes some of the basic propertiesedfdtil. Recall that by Example
8.1, under some mild conditions, the set of correlated dxjial with respect to all measurable
departures equals the set of correlated equilibria witheetsto all continuous departures. Thus,
the assumption in the following theorem that departuretions are continuous may be weakened
in some important cases.

THEOREM 8.1. Assume that the strategy spac®sare compact metric spaces. The Beof
(Fi)1<k<n—correlated equilibria is non—empty whenever the payoftfionsh” are continuous
over S. Moreoverll is a convex set, which contains the convex hull of Nash égaili If, in
addition, for all k, the payoff functiong” are continuous and, C C(S*), whereC(S*) is the
set of all continuous functions mappisg into S*, thenII is compact.

PrROOF The non—emptiness @f under the assumption of continuity of the payoff functions
follows either from Theorem 3 of Hart and SchmeidleiaSc89 or, alternatively, from the ex-
istence of a mixed Nash equilibrium. (The latter may be shbwihecking the hypotheses of a
version of Nash’s theorem stated in Remark 8.1, which fal@asily by an application of Pro-
horov’s and Stone—Weierstrass theorems.)

It remains to prove the compactnessibtinder the given assumptions. By Prohorov’s theo-
rem,II is included in a compact set, therefore it is enough to prbeéll is a closed set. To this
end, consider the continuous real-valued function évdefined by

fk’,wk (8) = hk(s_k7 Sk) - hk(s_kvwk(sk)) )

wherel < k < N andyy, € Fi, C C(S’“). Eachf; ,, is a continuous real-valued function over
andlII is the intersection of the closed half—spaces

{neP(S): plfrw] =0} .
O

REMARK 8.2. Note that in general, contrary to the finite case, thefsebrrelated equilibria
of a non-finite game, though given by an intersection of dadsalfspaces, is not necessarily a
convex polyhedron, as the intersection may be infinite. Nbetess, if theF; are finite sets
and theS* are subsets of finite dimensional spaces, then the abové giows that the set of
(Fi)1<k<n—correlated equilibria is a convex polyhedron.

2.3. Discretized gamesAn alternative natural definition of correlated equilibriin games
with infinite strategy spaces is obtained by discretizatidhe idea is to “discretize” the sets of
strategies and consider the set of correlated equilibribeobbtained finite game. Now appropriate
“limits” may be taken as the discretization gets finer. Iisggction we make this definition precise
and show that the obtained definition coincides, under géoenditions, with the definition given
above when one allows all measurable departure functions.

SNote that a compact metric space is always Polish.
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A (P, D) discretization of the gamel' = ({1,..., N}, (S")1<i<n, (h)1<i<n)) is given
by a product partitiori?, a grid D and induced payoff:&’;z’, 1 < k < N. More precisely, a
product partition is anlN—tuple (P, ..., PY), where eaclP* is a finite measurable partition of
the corresponding strategy s&f, which we denote byp* = {V/F,... v }. In every set/F,
1 <k < N,1 < i< N, we pick an arbitrary elementtC S V;-"f. These points form grid
DF = {tf,..., 1§, }. WewriteD = D' x ... x DV, The induced payoffs’; are obtained simply
by restricting the original payoff functions to the gt

Now, for a given discretizatio(iP, D), a distributionr over S induces a discrete distribution
w4 over the gridD by

ma (t, % ... xth ) =7 (Vi x...x V).

The sizer of a discretizationP, D) is the maximal diameter of the sewsk, 1 < k<N,
1 <i < Ng. IfeachSk is compact, then every discretization has a finite size. Tehave the
following characterization of correlated equilibria witlspect to all measurable departures. (The
fairly straightforward proof is postponed to the end of thspter.)

THEOREM 8.2. Assume that all strategy spacé$ are convex and compact subsets of a
normed space and that the are continuous functions ove¥. Then a probability distribution
over S is a (£°(S*))1<x<y—correlated equilibrium of the gami if and only if there exists a
functione with lim, o e(r) = 0 such that for all discretization§P, D) of sizer, = induces an
e(r)—correlated equilibrium.

Note that the above result is more precise than the resuitaioed in the proofs of Theorems
2 and 3 of Hart and SchmeidledfSc89, where a correlated equilibrium of a given game with
infinite strategy sets was only seen as a cluster point of ¢hefscorrelated equilibria of the
discretized games.

3. Regret minimization and convergence in repeated games

One of the remarkable properties of correlated equilibrinifinite games is that if the game is
played repeatedly many times such that every player play@dinig to a certain regret—minimiza-
tion strategy then the empirical frequencies of play cogwep the set of correlated equilibria.
No coordination is necessary between the players, the ptiy@t even need to know the oth-
ers’ payoff functions. This property was first proved by [eosind Vohra [FoVo97], see also
Fudenberg and Levind-[ILe99], Hart and Mas—ColellflaMa00, HaMa01, HaMa03, Lehrer
[Leh97, Leh03.

The purpose of this section is to investigate to what extemtibove—mentioned convergence
result can be extended to games with possibly infinite gfyadpaces.

We consider a situation in which the gaines played repeatedly attime instances 1,2, .. ..
The players are assumed to know their own payoff functionthagequence of strategies played
by all players up to time — 1. (This is known as the uncoupledness property in the liteeatsee
Hart [Har04].)

The main result of the chapter, summarized in the followhptem, shows that under general
conditions, if all players follow a certain regret—-mininmg strategy, the empirical frequencies of
play converge to the set of correlated equilibria. Thus,henaverage, a correlated equilibrium is
achieved without requiring any cooperation among the ptaye

THEOREM 8.3 (Main result). Assume that all the strategy spac#sare convex and compact
subsets of a normed space and all payoff functibhsre continuous ove$ and concave in the
k—th strategy. Then there exists a regret minimizing strategh that, if every player follows such
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a strategy, then joint convergence of the sequence of ezsappiays to the set c(fC%S’“))KK N—
correlated equilibria is achieved.

Thus, the convergence result extends, under quite gersesahgptions, even if all possible
measurable departure functions are allowed in the defindfocorrelated equilibrium. The only
restrictive assumption is the concavity of the payoffs.sldondition may be removed by allowing
the players to use randomized strategies. The next thecgsemts that almost sure convergence
of the empirical frequencies of play to the set of correlagdilibria is achieved under the only
assumption that the payoff functions are continuous.

THEOREM 8.4 (Main result, randomized versionpssume that all strategy spac&$ are
convex and compact subsets of a normed space and all pagoffdusk” are continuous oves.
If the players are allowed to randomize, then there existegaet minimizing strategy such that,
if every player follows such a strategy, then (almost suvéth respect to the auxiliary random-
izations used) joint convergence of the sequence of erappiays to the set o(fEO(Sk))lgng—
correlated equilibria is achieved almost surely.

Of course, under the assumptions of Theorem 8.3 (or 8.4k tiaast Nash equilibria in pure
(or mixed) strategies, see Remark 8.1. But we note that theiomed theorems lead to the inter-
esting by-product that the set of correlated equilibriarame-empty (the latter property is indeed
not required for their proofs). They provide a constructivel in this chapter self-contained proof
of the following existence result.

COROLLARY 8.1. Under the assumptions of Theorem 8.4, and with its notatiom,set of
(L£2(S*))1 <k <n—correlated equilibria is non—empty.

Note that our internal regret minimizing procedures bele® the same kind of argument that
those used in the direct existence proofs for correlatedileda proposed bylHaSc89 — where a
direct proof means a proof that does not make use of the argutheg Nash equilibria are special
cases of correlated equilibria.

REMARK 8.3. Even though players played independently, there i®ledion in the limiting
distributions, since these are given by correlated eqialitf the one-shot game. This is due to the
minimal form of coordination that lies in all players’ deiciss to play internal regret minimizing
strategies.

Theorems 8.3 and 8.4 are proved below by a series of resoltse ®f which may be of
independent interest. In particular, we define a notion w&frimal regret in the case of games with
infinite strategy sets. Moreover, we give precise upper tdsuor this internal regret in some
cases, see Theorems 8.7 and 8.8, as well as Section 3.8.

REMARK 8.4. The regret minimizing strategies considered in ThedBe3 are deterministic
in the sense that players do not need to randomize. This is p@skible because of the concavity
assumption on the payoffs. An example is the mixed extensfanfinite game, which may be
seen to satisfy the assumptions of Theorem 8.3. This means the game is played in the mixed
extension (i.e., in each round the players output a proibablistribution over the set of actions,
and get as payoffs the expectations of their original pafuittions under these distributions),
then joint convergence to the set of correlated equilibwidgh(respect to all measurable departures
or just linear departures) may be achieved in the mixed sianin a non-randomized way. It
is easy to see that any of these sets of correlated equitibtiae mixed extension induces, in a
natural way, the set of correlated equilibria of the undegyfinite game. Thus, our algorithm
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generalizes the (randomized) algorithms designed for dise of finite games. See Section 4 for
more details.

3.1. Internal regret. The notion of correlated equilibrium is intimately tied tat of internal
(or conditional) regret. Intuitively, internal regret isrcerned with the increase of a player’s
payoff gained by simple modifications of the played stratéfg simple modification results in a
substantial improvement then a large internal regret iesed.

The formal definition of internal regret (see, e.§0Y099) may be extended to general games
in a straightforward manner as follows: &, be a class of functiong;, : S* — S*. As the
gamel is repeated, at each rouhdolayerk could play consistently,.(s¥) whenever his strategy
prescribes him to play? € S*. This results in a different strategy, called the-modified strategy.
The maximal cumulative difference in the obtained payofis glayerk, for n rounds of play,
equals

n n
R\ = s (2 WE (s %, () — 2 s sf>> ,
where the maximum is taken over all possible sequences aingpp players’ actions. We call
RZM theinternal regret of playelk with respect to the departurg, at roundn. The intuition is
that if Rikn is not too large, then the original strategy cannot be imgddn a simple way.

We say that a strategy for playkrsuffers no internal regret (or minimizes his internal reyre

with respect to a clasg;, of departureswhenever

) 1.
lim sup Eka,n <0,

for all ¢, € Fj. The departure functions play a similar role as in the gerdefnition of cor-
related equilibria. As in the finite case, if all players mmize their internal regrets, then joint
convergence of the sequence of empirical distribution @aypko the set of correlated equilibria is
achieved. Denote by, ..., s, the played strategies up to tinne We denote byr,, the empirical
distribution of plays up to time::
1 n
Tp = E ;58t s

whered; is the Dirac mass om € S. More precisely, we have the following convergence result
generalizing the corresponding statement of Foster anda\Jelo\Vo97] for finite games.

THEOREMS8.5. If each playerk minimizes his internal regret with respect to a departuissl
Fi, then, provided that th6* are compact metric spaces, thé are continuous, andr, C C(S*)
for all &, the empirical distribution of playgr,, ),en converges to the set @f, ), << y—correlated
equilibria.

PrROOFE The assumption on the internal regrets may be rewritten as

(8.2) lim sup Ey, [hk(rk,zpk(f’f))] ~E,, [h’f([‘k,f’f)} <0
for all k and allyy, € Fj,, wherel = (Ik)lgng is the identity map ovef, defined on the prob-
ability space(S, m,) (E,, simply denotes expectation with respect to this probghitieasurer,,
overS). By Prohorov’s theorem, the sequeries ), < lies in a compact metric space. Thus, if the
whole sequence did not converge to the s€tf); << y—correlated equilibria, we could extract
from it a subsequender,) )nen, Wheres is an increasing functioll — N, such tha(my ) )nen
converges to a probability measurevhich is not a(F,); <x<y—correlated equilibrium. That is,
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there exists a playét, 1 < k£ < N, and a departurg;, € F;. such that
(8.3) Ex WA, 1] < B [R5, 9 (19))]
But (8.2) ensures that
lim sup Er () [hk(r’f,zpk(f’f))} . O [hk(l_k,lk)] <0.

n—oo

By continuity of the functionf;, ,, defined by
fk,wk(s) = hk(s_k7sk) - hk(s_k7wk(sk)) , s€S
and by the definition of the weak-topology overP(.S), we have

Tim By [REF, (1)) = By [R5, 19)]
= B [WFIF u(1)] - B [RE(F, 1) <0,
which contradicts (8.3), thus proving the desired converge d

REMARK 8.5. The above proof shows that the uniformity over the opptsi plays required
in the definition of internal regret is not needed to get thaveogence result of Theorem 8.5.
A kind of Hannan consistency with respect to the departundgxed by the class is enough.
However, for all the algorithms introduced below, we areeablprove uniform bounds.

Theorem 8.5 shows that in order to guarantee convergendeedadrpirical frequencies of
play to the set of correlated equilibria, it suffices thatm#lyers use a strategy that minimizes
their internal regret. Note that the main issues in des@sinch a strategy concern the size of
the set of allowed departures,. For finites games, the measurable departdfes— S* are
given by all functionsS* — S*, which are in finite numbem, ™, wherem,, is the cardinality of
Sk, If S* is infinite (countably or continuously infinite), theredspriori an infinite number of
departures. In particular, a simple procedure allocatimgegght per each departure function, as
was proposed in the finite case in Foster and VoRod/p99 and Hart and Mas—ColelHaMa01],
would probably be impossible if the set of allowed depagun@s too large. Thus, previous
learning algorithms cannot be generalized as easily asdfieititbn could be carried over to the
infinite case. Designing new learning algorithms for someegal classes of infinite games will
be the point of the subsequent sections.

3.2. Blackwell's condition. Regret—minimization strategies have been often deriveoh fr
Blackwell's approachability theorenB[a56]. Here however, we do not need the full power of
Blackwell’'s theory, only a few simple inequalities deriviedCesa—Bianchi and LugosCeLu03]
which we briefly recall (see also Remark 3.2 and Section 4@haipter 7).

Consider a sequential decision problem parameterizeddegiaion spacet’, by anoutcome
space ). At each stepg = 1,2,..., the decision maker selects an elemenfrom the decision
spaceX’. In return, an outcome; < ) is received, and the decision maker suffers a vector
ry = ri(Z¢,y;) € RY of regret. The cumulative regret afterounds of play isR; = 2221 rs.
The goal of the decision maker is to minimigexx;— . n R; ,, that is, the largest component of
the cumulative regret vector afterrounds of play.

Similarly to Hart and Mas—ColellHaMaO01], we consider potential-based decision—making
strategies, based on a convex and twice differentigbtential function® : RV — R*. Even
though most of the theory works for a general class of pakhtnctions, for concreteness and to
get the best bounds, we restrict our attention to the speasa of the exponential potential given
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by

N
= Z exp (nu;)

where the parameter > 0 will be tuned by the analysis below.
We recall the following bound, proved ipLu03].

PrRoOPOSITIONS8.3. Assume that the decision—maker plays such that in each roohglay,
the regret vector; satisfies the so—called “Blackwell condition”

(84) V(I)(Rt_l) -1y < 0.

If ||lr¢]|,, < M for all ¢ then in the case of an exponential potential and for the ehgic=
1/M+/2In N/n,
max R;, < MV2nInN .
1<i<N
Observe that the value of the paramegerequires the knowledge of the number of rounds
n. We remark here that similar bounds hold if, instead of theoeential potential function, the

polynomial potential
N

b(u) = (w)h
i=1
is used (withp = 21n ), see Remark 3.2 an€gLu03].

3.3. Finite classes of departure functionsAs a first step assume that the g&tof allowed
departures for playet is finite, with cardinalitym;. For anys € S and departure), € Fy,
denote by

P (s) = B (s, (%)) — hF(s7F, %)

the associated instantaneous internal regret, and by

rk(s) = (r{zk(s)>¢k€fk

the regret vector formed by considering all departures. &given sequence,...,s, € S of
plays, the cumulative internal regrets are given by theorect

= Z Tk(st) )
t=1

wheres!’ denotes the sequence, . .., s,).
Consider the following algorithm for playér. Fort = 1,2,..., at roundt, playerk chooses
anys¥ € S* such that

(8.5) Z A b t— 1Pk St)
YR €EFy
with
o (RS, (s57)

>
A = @)
where¢(z) = exp(nz). Fort = 1 we setAilwO = 1/my. (The parameten will be tuned by the
analysis below.)
Thus, each player is assumed to choose his action by solifxed—point equation (8.5).
The existence of such a fixed point (under the assumptionfi@drem 8.7) follows easily by the
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Schauder—Cauty fixed—point theore@eu01], which we recall below. (This is currently the most
general version of Schauder’s orignal theorem.)

THEOREM 8.6 (Schauder—Cauty fixed—point theorerhpet C' be a non—empty convex and
compact subset of a topological Hausdorff vector spacen®aeh continuous map : C — C
has a fixed point.

Note that if several fixed points of (8.5) exist, then the plag free to choose any of them.

THEOREM 8.7. Assume thab” is a convex and compact subset of a topological Hausdorff
vector space, and that the payoff functibh is bounded overS by M;, € R and is concave in
the k—th strategy. Then, whenevéi, is a finite subset of (S*) with cardinality my, the above
algorithm guarantees that the cumulative internal regaisies

max Rikm < Mg/ 2nInmy ,

YR EFy

if the exponential potential is used with= 1/Mj.\/21In my /n.

REMARK 8.6. (Rates of convergencelhe above theorem implies that if &, are finite, and
all players play according to the above procedure, themguatdr, the empirical distribution is a
(Fr)1<k<n—correlatedt,—equilibrium, withe,, of the orderl /\/n.

REMARK 8.7. (About the practical computation of the fixed-pointdgte that an approximate
solution of (8.5) is sulfficient for our purposes. Providedtts* is included in a normed vector
space andi* is a Lipschitz function, a simple modification of the proof @&sa—Bianchi and
Lugosi [CeLu03, Theorem 1] shows that the internal regret would stilldje) had we used a
strategysf such that

s 3 ab || <
YR €T
where¢,, decreases quickly enough @ In particular, when theS* are included in finite—
dimensional vector spaces, an algorithm partitionfifginto a thin grid is able to find a suitable
approximate fixed—point.

PROOF(OF THEOREM 8.7). The statement follows easily by Theorem 8.3. It sudfite
prove that our choice off satisfies the Blackwell condition
VO(RF(si7Y) - 77 (s) <0
or equivalently
DAYt h (s (sr) < hR(s R st)
Y €Tk
which is implied by the equality

WL sh >0 AR k(sE) | = RR(s R sf)
YR EFy

and by the concavity of* in its k—th argument. This equality ensured by the choice (8.5).00

3.4. Countably infinite classes of departure functions.The next step is to extend the result
of the previous section to countably infinite classes of depa functions. In this section we
design an internal-regret minimizing procedure in the gasen the set of allowed departures for
playerk is countably infinite. Denote by

fk:{wk,qa qu}
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the set of departure functions of player

THEOREM 8.8. Assume thaf” is a convex and compact subset of a topological Hausdorff
vector space and that the payoff functiohis bounded by\f;, and is concave in the—th strategy.
If 7}, is a countable subset df(Sk), there exists a procedure such that foralE N andn,

ka n S My <2(ln q)* + 4.2n3/4> .
Consequently, this procedure suffers no internal regret.

PROOF We use a standard doubling trick (see Section 2.2 in Ch@pteer extend the proce-
dure of Theorem 8.7. Time is divided into blocks of incregdiengths such that thie-th block is
[211, 2t —1]. At the beginning of the—th block, the algorithm for player takes a fresh start and
uses the method presented in Section 3.3, with the departiexed by the integers between 1

andm; and withn = n; tuned as
1 2ln my
= M, \/ “9r—1 -

We take, for instancen; = |exp v/2¢|.
Denoten = 2l°g2nI+1 Define

Zh’“ JFosf) and  Hf, (s7) th R rq(sF)) .

Now, Theorem 8.7 ensures that
[logy n |
HY ) =N HREIY + HR(sE )
t=1
[logy 1] .
> Z < max H{Z (s gt 11)—Mk\/2tlnmt>

1<gsme

max  HJ, (%) = My /Al mjiog, 41 ) -
i <1<q<leo§2nJ+1 wk’q( n/2) b UOg?nJ'“)

The departure function, , is considered from the time segment indexed:hywheret, is the
smallest integer such that< m,,, that is,2ta—1 < (In q)2 < 2%, Observe that the total length of
the previous time segments3s — 1 < 2(Ing)2. Thus, we obtain, for any € N,

[logy n|+1

H*(sT) > H{ZM(S?)—Mk 2(Inq)% + Z \/ 2t In(exp V2t

[logy n]+1

> om0 - M 2mg? Y (2
t=1

k 2 23/2 3/4
=z Hy, (st)— M| 2(Ing)”+ 1" ;
which concludes the proof. O

REMARK 8.8. Theorem 8.8 does not provide any uniform bound for ttermal regrets (where
uniformity is understood with respect to the elements of dless of allowed departuresy),
contrary to the case of finitely many departure functionsiudrem 8.7 (see Remark 8.6). In fact,
in general, no non-trivial rate of convergence can be gieernhe convergence of the empirical
distribution of plays to the set ofFy);<kx<n—Correlated equilibria. However, in some special
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cases, rates of convergence may be established, for irstantnear departures (see the end of
this chapter) or for totally bounded classes of departurethe latter case, the rates depend on the
size of the classes, see Section 3.8. This means that theeabfdihe departure classes may be an
important issue in practical situations.

3.5. Separable sets of departure functionsThe extension to separable sets of departure
function is now quite straightforward. Recall that compaictotally bounded spaces are special
cases of separable spaces so the next result covers quebgituations.

THEOREM8.9. Assume that all strategy spacg$ are convex and compact subsets of normed
vector spaces. Let the payoff functidifsbe continuous ove$ and concave in thé—th strategy
and assume that th&;, are separable subsets 6fS*) (equipped with the supremum norm). Then
there exist regret minimizing strategies such that, if gydayer follows such a strategy, then joint
convergence of the sequence of empirical plays to the &%.0f << —correlated equilibria is
achieved.

The proof is based on the following lemma that can be showndisnple dominated—conver-
gence argument.

LEMMA 8.1. Assume that thé* are continuous, and letGr), 1 < k < N, be classes of
departure functions. Let be a(G)i<r<ny—correlated equilibrium. If for every, F;, denotes
the set of functions that may be obtainedraslmost sure limits of elements frafp, thenr is a
(Fi)1<k<n—correlated equilibrium.

PrRoOF(OoF THEOREM 8.9). For each playek, consider a countable dense suligeof F;,
and apply the algorithm given in the proof of Theorem 8.8. mhi&eorems 8.8 and 8.5 show
that the empirical distribution of plays converges to thed&Gy,)1<,<n—correlated equilibria.
By Lemma 8.1 the set dfGy, )1 <x<n—correlated equilibria coincides with the set(#, )1 <x<n—
correlated equilibria. d

3.6. Proof of Theorem 8.3.To prove Theorem 8.3, we need two intermediate results. The
first establishes separability needed to apply Theorem 8.9.

LEMMA 8.2. If X is a convex and compact subset of a normed vector space hset (X)
of the continuous function¥ — X is separable (for the supremum norm).

The proof is an extension of Hirsch and Lacomb@_g97, Proposition 1.1]. Second we need
a characterization of correlated equilibria with respedtlt measurable departures. The proofs of
both results are postponed to the end of this chapter.

LEMMA 8.3. Assume that the strategy spac¥sare convex and compact subsets of a normed
vector space and that tHe* are continuous functions ovéf. Then the set of correlated equilibria
with respect to all continuous departuré§(S*)),<x<n equals the set of correlated equilibria
with respect to all measurable departure®’(S*));<r<n-

PROOF OF THEMAIN THEOREM. By the separability property stated in Lemma 8.2, The-
orem 8.9 applies and gives an algorithm leading to convemea the set o(C(S’“))lgng—
correlated equilibria. In view of Lemma 8.3, this is equérl to convergence to the set of
(L2(S*))1<k<n—correlated equilibria, thus concluding the proof. O
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3.7. Proof of Theorem 8.4.Sections 3.4, 3.5 and 3.6 only rely on the results of Secti@n 3
and therefore it suffices to extend the results of SectiondtBe case of non—concave payoffs.

We assume that the strategy séfsare convex and compact subsets of normed vector spaces,
and the payoff functions” are continuous ove$”. The players are allowed to randomize (which
they do independently of each other). More, precisely, galéychooses his actiog at roundt
according to the probability distribution} € P(S*), whereP(S*) denotes the set of probability
distributions overS*. We also assume that the departure clgsss a finite subset of (S*), with
cardinalitymy.

For anyu” € P(S*), s=* € S~* and any departure;, € F;, we denote

WE(s™ Ry = [ RP(sTE sR) dp(sh)
Sk

and by(u*)¥* the image measure af* by v, which means, in particular, that

Bk (S—k’ (Mk)wk> _ /Sk Bk (S—k7¢k(sk)) (") .

Below we design a procedure for playesuch that for all possible sequences of opponents’ plays,

k-
51,89 5 n

(8.6) i(h’“(s{’i(u)) W (s k) = o(n)

Then, thanks to the boundedness of the payoff fundtfgrve may use a simple martingale conver-
gence result such as the Hoeffding—Azuma inequalizue7, Hoe63, as well as Borel-Cantelli
lemma, to show that (8.6) implies, almost surely (with resge the auxiliary randomizations

used), .
Z (hk (st_k,wk(sf)) — hk ( ok k)) =o(n) a.s.

The latter is enough to apply Theorem 8.5, and prove theatkalmost sure convergence.

It thus only remains to see how to design a procedure for playguaranteeing (8.6). The
techniques of Section 3.3 extend easily to this case. Fopény P(S*), s* € S~* and any
departure), € Fi, denote by

b (78 k) = b (575, (b)) = BR(s7 t)
the associated instantaneous internal regret, and by
k(.—k  k k (—k  k
re(s °, =|(ry (s 7,
(™) = (b))
~k of

the regret vector formed by considering all departures. &given sequencel‘k,..., S
opponents’ plays, and the sequence of probability digidha ¥, . .., 4, the cumulative internal
regrets are given by the vector

R* <(8 ) Zr LT

where(s—*)? denotes the sequen¢e ™, ..., s, %), and(u*)7 is (¥, . . ., u¥). Now, assume that
playerk can select his distributiop? at timet as a solution: € P(S*) of the equation

Y €Fp
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where
o o (R (MTLGRTY)
T e o (BT GATY) T
with ¢(z) = exp(nx), Aik,o = 1/my, and the parameteris tuned as in Section 3.3. Under this
assumption, we may obtain an upper bound of the ordefrobn the right—-hand side of (8.6), by
mimicking the argument of the proof of Theorem 8.7.

But the existence of such a distributigdi follows by the Schauder—Cauty fixed—point theo-
rem. Recall that the weak-topology put orP(S*) is such that, for alt) € C(S*), the map that
assigns the element’ to ;. € P(s*) is continuous. Thus, on the right-hand side of (8.7), we
have a continuous function gf. The existence ofi} follows by the application of the claimed
fixed—point theorem to the convex and compact sulXet*) of the vector space of all Borel,
finite, real-valued and regular measures &/&requipped with its weak-topology.

3.8. A note on rates of convergenceUp to this point we have only focused on asymptotic
statements and have not payed attention to rates of comgrgi particular, in Sections 3.4 and
3.5, we did not consider the way the elements of the countahses were ordered, and we set
up some parameters quite arbitrarily. However, under s@semaptions, precise non—-asymptotic
bounds may be derived for the internal regret. (See alsorteséction of the appendix below.)

Recall that in the case of finite classes of departure funstithe internal regret can be made
of the order ofn!/2. For richer classes of departure functions this may becamget, depending
on the richness of the class. In this short remark we pointtaatphenomenon by considering
totally bounded classes of departures.

Here we assume that the strategy s#tsare convex and compact subsets of normed vector
spaces, that the payoff functiohd are Lipschitz functions concave in tleth strategy, and that
all classes of departures, are totally bounded sets under the corresponding suprenoumsn
Recall that a metric spack is said to beotally boundedif for all £ > 0, there exists a finite
cover of X by balls of radiuss. For a givens, the minimal number of such balls is called the
e—covering number o, and is denoted by (¢). Any cover of X of size N (¢) will be referred
to as are—cover ofX.
Denote byN(¢) the e—covering number off;, and lets; be a Lipschitz constant df*, and
M;, an upper bound fo*|. For anya > 0, introducé

er(@) = inf {e : adpe® > AMZ In Ny(e)} .

Clearly,ex (o) is decreasing. Moreoves («) tends to 0 asx — oo.

To obtain a bound on the cumulative regret with respect téedlydounded class of departure
functions, we use the doubling trick similarly to Sectiod.3Time is divided again in segments
such that the—th segment,( > 1) corresponds to the time instanagsetweer2” ! and2” — 1.

In the r—th segment, the procedure for playeis the one of Section 3.3, with a departure class
given by the centers of the balls which form @n (2") + 2=")—cover of 7*. Denotinge} (2") =
£x(27) + 277, this implies, using the uniform continuity &f that for all sequences of opponents’

plays,s;*, 55, ..., and for all departure functiong;, € Fy,
llogy n)+1
H*(s7) > Hj, (s1) — Y (Mk\/? In N, (£},(27)) + 2715 E;(z’“)> :
r=1

“Note thate, () is defined as the infimum of an interval, so thatait € () satisfy the defining condition.
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thus proving that

[logy ) +1 [logy ) +1
(88  max RE, n <O Y. 2e(2) =06 [1+logon+ D> 27er(2)
k=Sk r=1 r=1

Observe that the quantity on the right—hand side is alwdyg by an application of Cesaro’s
lemma and the fact thag,(2") — 0 asr — oc.

EXAMPLE 8.2. As a concrete example, consider the case when thegstisgeof player: is
the d—dimensional cub&® = [0, 1]¢ and the class}, of departures is the class of all Lipschitz
functions|0, 1] — [0, 1] with Lipschitz constant less than a given valug It is equipped with
the metric associated to the supremum norm. Kolmogorov d@mahdirov [KoTi61, Theorenxiv]
show that the metric entropyg Ny () of this class of functions is of the order of, that is,
log Ny () = ©(¢~%). It follows thatey (o) = ©(a~1/(¢+2)), and (8.8) implies that

Jnag R < e
for a constant (depending only ory, My, andLy).

Other examples of totally bounded classes of departurdifuns; with the indication of the
orders of magnitude of their metric entropileg Ny (¢), may be found in Kolmogorov and Ti-
homirov [KoTi61l, Sections 5-9], see also Devroye, Gyorfi, and Lug@=GyLu96, Section
28.2].

4. Alink with correlated equilibrium of finite games

In this final section we assume thatis a finite game, with strategy sets given by finite sets
S*. Assume that the players play in the mixed extension, that imundt, each playek chooses
privately a probability distributiop} over S*, all probability distributiong; = (p;,...,p}) are
made public, and playér gets the payoff* (p;), where we still denote bi* the linear extension
of hF¥,

N
o L
0 => | []ri(s)) | B¥(s) .
seS \j=1
The results of the previous sections show that the playersnaure that the empirical fre-
quencies of play in the mixed extension,

1 n
~ Zé(piv---vp?’) ’
=1

converge to some set of correlated equilibria of the mixa@resion ofl", for instance, the set
E o of correlated equilibria with respect to all measurableadepes, or the set, of correlated
equilibria with respect to all linear departures. The cogeace toE .o may be achieved by
Theorem 8.3, whereas the convergencéstois given by Theorem 8.7, since the set of all linear
mappingsP(S*) — P(S*) is the convex hull of a finite number of mappings.

Recall that this is done by minimizing the internal regrétst is, by ensuring that for all
playersk and all¢;, € Fy,

(8.9) th ", k() th *.pf) =o(n),

The notationz. = O(y.) means that the ratio. /y. is bounded above and below by positive numberstaads to 0.
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whereF;. is either a countable dense subset of the set of all contsfumetionsP(S*) — P(S*),
or the finite set of the mappings generating all linear funiP(S*) — P(S*).

We are actually interested in playing in the original finitenge, and to do $owe assume that
at each round = 1,2,..., each playei draws finally an actios? ¢ S* according top?. We
denote by(7,, ).cn+ the sequence of joint empirical frequencies of play,

n
~ 1 5
Tn = — E
n= (st,esN) o
t=1

and study its convergence properties. One may wonder whietin@y converge almost surely to
a set strictly smaller than the sEt of correlated equilibria of the finite ganie

Here we point out that the results of this chapter do not ingalgvergence of the empirical
frequencies to a set smaller than the set of correlatediledaibf the finite game. More precisely,
we show that the set of correlated equilibria of the mixeeesion and that of the original finite
game are the same in a natural sense.

For any distributiory overP(S!) x --- x P(SY), denote byr = () the distribution over
St x ... x SN defined, for alli* € S*, by

(8.10) m(it, ... i) = prEY) . pN M) dp(pt, .. pN)

/73(Sl)><~~~><P(SN)
By this definition and by considering the linear extension/afwe have thak,,h* = E,h* for

all k andp. (The definition ofy indicates that we get back to the original finite game by @gkin
averages.)

Denoter,, = ¢(u,) and note thaf|r, — 7,|| — 0 by martingale convergencéz,,),cn-
and (7, ),en+ have therefore the same convergence properties. But girisecontinuous, the
™ = ¥ (u,) converge to the set(E ), and therefore, so do ths,.

Remark 8.4 alludes to the inclusiaf( E,0) C Er. Below we show that, in fact)(E o) =
¥(EL) = Ep. In this sense, the sets of correlated equilibria of the thietension and of the
original finite game are the same. There are not fewer coekzquilibria in the mixed extension,
and therefore, one cannot hope tighter convergence rdsulténimizing the internal regret in the
mixed extension of the game.

LEMMA 8.4. (E%) = ¢(EL) = Er.

PROOF The equality betweeRr and«(E, ) is immediate, by linearity and in view of (8.10).
We now prove that each correlated equilibrigrof I" may be written ag(u), whereu € Eg
that is, . is a probability distribution oveP(S!) x --- x P(SV) that is a correlated equilibrium
with respect to all measurable departures.
For a given correlated equilibrium € Er, we choose
w= Z ﬂ-(ilv s 7ZN) 5(51'17"'75 N)

3

il,...iN

6Note that by martingale convergence, (8.9) is ensured almogly whenever for all players and all ¢, € F,
S RE(s T ok (F)) — o7 R (s ¥, pF) = o(n). This can be done in the finite game by using the fixed—point
techniques of Section 3.4, in the sense that it can be achievéhe game where only the chosen action profiles
(st,...,s) (and not the probability distributiorn®;, . .., pi¥)) are made public.
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whered;; is the probability distribution oves’ that puts probability mass 1 ai. We have to
prove that for all players, for all measurable departuréeg,

/ P ) ")
P(SL)x--xP(SN)

> / R, e du( .. pY)
P(S1)x--xP(SN)

In view of the form ofy, only the valueg” of the formd;, wherei;, € S* matter in the above
integrals. Define a linear mappirg, from P(S*) to P(S*) by Li(6,x) = ¢x(5;), for all i* € S*.
Then,

/ P NG )
P(SH)x--xP(SN)

W (p™", Le (") du(p', ..., p") .

/P(Sl)x---xP(SN)
This concludes the proof in view of the first equality noted\adh O

REMARK 8.9. Though we do not get convergence to a smaller set ofiledaiby playing in
the mixed extension, it is worth noting that we may howeveragdeterministic convergence to
correlated equilibria of the original game by doing so. Téféhand side of (8.9) is of the order of
v/n when the sets of departures are given by the linear depsysmeahat the players achieve with
m, al/y/n—correlated equilibrium in a deterministic way afterounds of play (instead of simply
achieving a\/In(1/4)/+/n—correlated equilibrium with high probability — ¢, thanks tor,,). A
careful implementation of procedure in the mixed extensi&mbe shown to have a computational
complexity not higher than its usual randomized counterpesimply requires that players show
the ones to the others the probability distribution theyosso

We conclude this section by pointing out that the minimimatproposed by (8.9) is, using
the terminology of Greenwald and JafaBrJa03], a matter ofd—no regret, with® including all
(extremal) linear functions as well as many other contisumaps. This solves the first half of
the question posed in the conclusion GfJa03]. The second part of the question is to determine
if, by performing the regret minimization (8.9), one coutthgeve convergence to tighter solution
concepts than simply the set of all correlated equilibrice $hlowed strong evidence that this is
not so.

5. Discussion and perspectives

5.1. Bandit strategies. In game theory, games with bandit prediction settings atenafe-
ferred to as unknown games, since the players ignore the tmypéake part in, they do not even
need to know that they are playing a game. For finite gamesyniak regret can be minimized in a
bandit setting (in expectation, see Section 1.4 of Chapter ®&ith overwhelming probability, see
Section 6 of Chapter 6). Consequently, all players of an ankngame may minimize their inter-
nal regrets simultaneously, and achieve joint convergehtee empirical frequencies of plays to
the set of correlated equilibria. (See also a related pruresith [HaMa02].) This, however, is not
easy to extend to general infinite games, even with concayeffsa

OPEN QUESTION 8.1. Find internal-regret-minimizing strategies for aglaclass of infinite
games, in a bandit setting.

Actually, for infinite games, we do not even know in generalvito minimize the external
regret with respect to all constant actions in a banditregt{l he problem is to get good estimators
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for the unobserved payoffs, which correspond to all theoastibut the played one. For infinite
games, there are usually an uncountable number of them,hendrobability distributions the
players use are generally non-discrete (they may chargeetsjmot only points), and we cannot
simply get estimators by dividing the observed payoffs leygiobability densities (when the latter
exist).

5.2. Convergence to Nash equilibria.In this chapter, we get convergence to the set of corre-
lated equilibria, and prove no convergence result to thed¢bhef Nash equilibria. It turns out that
for finite games, such results have been obtained recently, see Bodt&oung FoYo03, Ger-
mano and LugosiGelu04], Hart and Mas-Colell lHaMa04]. We describe below these results,
by pointing out their main limits. There is, above all, a ceimcabout the convergence rates.

Note that we introduced strategies that only needed to kel bf the regrets to achieve
convergence to correlated equilibria, so these stratetjiesot need to have a long memory. The
story is different however when studying convergence tohNaguilibria. In this setting, Hart
and Mas-Colell HaMa04] are mainly concerned with bounded memory assumptionsyevhe
strategy is said to have a memory boundedrbiy the action it prescribes at each round may not
rely on more than thé& past played strategy profiles. They show on the negativetisatdor any
integer R and any= > 0 sufficiently small there does not exist a strategy with mgntmunded
by R ensuring that for all games, the sequefgg,>; of the played strategy profiles converges to
the set ofs-Nash equilibria. On the positive side, for alt> 0, they can find an integeR and a
general randomized strategy, with memory bounde®pgnsuring that for all games the sequence
(mn)n>1 Of the empirical distributions of plays converges tocaNash equilibrium, provided that
all players use the general (uncoupled) strategy.

Germano and LugosidelLu04] do not restrict their attention to bounded memory straggi
and construct strategies using the entire past. They dxhigeneral randomized strategy (and
some variants of it), such that, provided that it is used bplayers,

— for all games, the sequen¢e,, ), > of the empirical distributions of plays converges
almost surely to the set efNash equilibria,
— for all games, the sequenge, ),, > of the played mixed profiles converges almost surely
to ane-Nash equilibrium,
— for Lebesgue-almost all games, the sequépge,,>; of the played mixed profiles con-
verges almost surely to a Nash equilibrium.
The first drawback of these strategies is their very slow ofteonvergence, seéselLu04]
for a discussion. The other concern is that these strategjigen (Markov) random searches, and
that they try, in some sense, all possible mixed strategiflgso They find an approximate Nash
equilibrium only by chance, and then stick to it for some time

OPEN QUESTION 8.2. The above-mentioned results of convergence to Nashbeguare
for finite games. We believe that this chapter introducedha&lmathematical techniques needed
to extend them to the case of infinite games, similarly to wiatdid for Foster and Vohra’s
[FoVo97, FoVo99 convergence results in Section 3.
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Appendix: Computable procedures for convergence to lineacorrelated equilibria

The general procedure described in Section 3 needs to cengiwach iteration, a fixed point,
see (8.5). Whereas the existence of the latter is ensurediauier’'s theorem, there is in general
no effective way to compute it. A first solution is provideddmmputing only an approximate fixed
point, see Remark 8.7, but the resulting strategy has spitbhibitive computational complexity
(exponential imn andN).

The aim of this appendix is to design algorithms, sufferilmgmiernal regret with respect to
the set of all linear departures, which are first, easy to @mgnt (with a complexity linear in
andN?), and second, whose convergence rate to the set of linealated equilibria can be made
precise, in the sense of Remark 8.6. We first consider theafagmmes with strategy sets given
by simplexes, and then, in the special case of the squaredeabwith more general strategy sets.

Games with strategy sets given by simplexesThe following is a simple generalization of
the results of Chapter 7 to general concave payoffs. (In n&pwe actually considered convex
losses, but they correspond to concave payoffs.)

We first describe the class of games we consider. We assuradirgt time, that the strategy
sets are all given by simplexes (of possibly different csjléf = Xg,., Wwhered;, € N* and for
everyd € N*, X, denotes the simplex @?. For each playek, the set of allowed departures, is
formed by the linear map¥,;, — A}, . (It may be seen easily that &}, are non-empty. Actually,
for d € N*, each linear mag; — X; may be represented by a row-stochastic matrix, see Section
5.2 in Chapter 7.) We refer 10F;, )1 <x<n-correlated equilibria as thmear correlated equilibria
of the game.

The strategy of playét proceeds from a simple prior linearization of the instaatars internal
regrets. Assume that for all fixed opponent play$, the payoff function:” is differentiable as
a functiont® € X, +— h¥(s7*t*) of the k-th variable, with a gradient at® € A,, denoted
by ¢*(s) = V. h*(s7*, s*). At roundt, once all the players have output their strategies S,
consider the instantaneous regret veett(s;) given by, forl <i,j < dy, i #

gy (se) = sty (g5 s0) — b (s0))

whereg! (s;) (respectivelys}’,) denotes thé-th component of* (s;) (respectivelysy).
For a given history1, . . ., s,, the cumulative internal regrets are given by the vector

= Z rk(st) )
t=1

wheres! simply denotes the sequence of actigss, ..., s,). (The proof below shows indeed
that these regrets are linear upper bounds on the origigedtse)

Denote byL{; , the linear function¥y, — X, that maps an elemest € A, tou" € X,
given byu? = 0, ué“ = sk + sé‘?, andu®, = sk if m #i,m # j.

Now, fort = 1,2,..., if the sequence of played profiles is given k@Tl, then playerk
chooses, at rount an element} ¢ Xdk such that the fixed point equality

(811) ZA(Z,] t— IL(ZJ( )
i#j

holds, where the summation is over all pdiisj), i # j, and where fot > 2

Ak ¢ (Bl (17)
Gt D it @ ( lm)(STl)) 7
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with ¢(z) = (z)8~ ! and fort = 1, theA’(‘C 7,0 are taken equal td/(di(d, — 1)). (The parameter
p will be tuned by the analysis below.) The existence and anieffi method to compute such a
fixed pointsf are detailed by Lemma 3.1.

THEOREM 8.10. Assume thaf* is Xg,, the simplex of orde#/;, € N*. Provided that for all
fixed opponents’ plays™* ¢ S, the payoff functions* ¢ S* — h¥(s7*, s*) is concave and
differentiable, with a gradient uniformly bounded in norm &}, the above algorithm suffers no
internal regret, with the uniform bound

< dpMi+/(4Indg — 1) en

max RF
Lyely

where.;, denotes the class of all linear mag§, — &, andpis chosen ap = 41n dj..

Li,n X

COROLLARY 8.2. If the assumptions of Theorem 8.10 are satisfied for all ptaye and if
all of them minimize their linear internal regrets with thergeral procedure described above,
then at roundn, the empirical distribution of played profiles, defines are,-linear correlated
equilibrium, where

En = < max dkMk\/élhldk — 1) % .

1<k<N
PrROOFE The proof is a simple generalization of the proof technéqused in Section 4.1 of

Chapter 7. By the assumption of concavity and differeniitgbiwe have, for alls € S and all
Ly € Ly, the linear upper bounding

8.12) &k (s_k,Lk(sk)) — RF(s7F, sF) < ViphF(sTH, sF) - (Lk(sk) . sk) ,

where - is the standard inner product Rf*.
By the representation of linear maps from simplexes intonfedves by row-stochastic matri-
ces, it may be seen that for alle R%, s* € S* andL;, € Ly,

u - (Lk(sk) — sk> < dy, rgﬁajx st (uj — ;)
thus leading (with the above notation for the gradient) to
k( —k B — RE(sF k) < k
W (578 Lo(sh) = (s ) < dymancst (0(5) — b (9))
We thus have shown that the algorithm for plagesatisfies

max RLkn dj, _max maxR( MCHE

Liely 51 . ,Sﬁk i#£j

The argument is concluded by noting that the definition ofaigerithm, Theorem 3.1, as well as
the boundedness assumption on the gradient function, draivite maximum on the right-hand
side is upper bounded by

M/ (p — 1)di/pn = Mp+/(4Ind, — 1) en

for the proposed choice = 41n dy. O

REMARK 8.10. Label-efficient settings (see Chapter 5) may also sidered in games
where all players have concave payoff functions. Due to ithealization of the regrets, it is
easy to extend the procedures of Chapter 5, and to still getecgence to correlated equilibria,
thanks to Corollary 5.1 and Remark 5.3.

ExAamPLE 8.3. (Penalizing the volatility in on-line investmenonsider the setting and the
notation of Chapter 7. Theolatility V' of an investment strategy is defined as follows. Assume that
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on the sequence of market vectars . . ., x,, the investment strategy was given by the sequence
of portfolios P4,..., P, over theN assets. Then, the volatility’ equals the variance of the
log-wealth ratios,

n n 2
1 9 1
V=|- In Pt'mt — | — In Pt'$t .
(n;( ( ))) (n; ( ))
V' is invariant under rescalings of the market vectors, and sled worst-case logarithmic wealth
ratio (see the beginning of Section 6.1 in Chapter 7). Undbowundedness assumption over
the market, we may renormalize the market vectors (only tier definition of the investment
algorithm), such that they all lie in, salj,/e, e]. We upper bound” by the first sum appearing
in its definition, and consider the penalized log-returnegiby h(P1,x1) + ... + h(Py, x,),
where

WP,z)=In(P-z)—a(n(P-xz))?.
For any (fixed) renormalized market vecterc [1/e,e]", the functionh(-, z) is concave, as a
sum of two concave functions, and has bounded gradient. égaestly, the above procedures
apply, and we may minimize internal and external regreth végpect to this new loss (or payoff)
function, similarly to what we did in Chapter 7. Doing so, wie aot only interested in the
returns, but we want to trade off between high returns andvolatility. This should result in
stable investment strategies, with large returns.

REMARK 8.11. The results of Section 5 of Chapter 7 may be extende@khgothe so-called
exp-concave payoff functions, see Kivinen and Warmiiwa99]: a payoff functioni* is exp-
concave (in itsc-th variable) if there exists a constapt> 0 such thaexp(nh*) is concave (in its
k-th variable). For such payoff functions, the (fast) ratbsomvergence to correlated equilibria are
of the order of(In V) /n. However, the resulting procedures suffer from the samepctational
drawbacks as in Remark 7.8.

More general parametric strategy sets, and application to p-line linear regression. We
indicate now how convergence to linear correlated equalibray be obtained in games with more
general strategy sets than simplexes. These strategyregiarametric, that is, they are included
in finite-dimensional vector spaces.

Whenever the parametric strategy set of pldyeontains a simplex and his payoff function is
concave, he may restrict this set to the smaller strateggigen by the included simplex. Then,
the results of the previous section indicate him a possiblénear-internal-regret strategy. This
strategy minimizes in particular the external regret wébpect to the class of constant strategies
indexed by this simplex.

This restriction is not necessary in some special cases,dilon-line regression, and more
satisfactory procedures can be designed. This is the pbihe@resent section.

ExAMPLE 8.4. (On-line linear or polynomial regression®n-line linear regression is a pre-
diction game that corresponds to a repeated zero-sum gatwedrea forecaster and an envi-
ronment. It is played as follows (see, among many othé&®&V97, Ces99). At roundt, the
environment chooses an input variablge = (z14,...,2q¢) € R?, and the forecaster is asked
to form a prediction of the formjy = w; - ;, whereu; = (uiy,...,uq¢) € R?. The en-
vironment then reveals the true outcome € R. The loss of the forecaster is measured by
l(u, (z,y)) = (u-x —y)?, or, alternatively, its payoff is given by(u, (z,y)) = —(u -z —y)?.
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We note that on-linen—polynomial regressionn € N*, is a straightforward extension of
on-line linear regression. It corresponds to predictidithe form

m d
b= Z Z Ui, (p,t) Tt
p=0 i=1
where the forecaster outputs + 1 weight vectorsy, ;) € R?, p = 0,...,m. This more general
problem can be encompassed in the previous one, by comgjdesian input variable at rourid
the (m + 1)d—-dimensional vectof1, z;, z7,...,z), where we used obvious notation. This is
why we concentrate below on linear regression.

In on-line linear regression, the aim of the forecaster imtmimize his external regret,
n n
2 . 2
Z(Ut'wt—yt) —ml{}z('v'wt—yt) )
=1 v ia
whereV is an (often strict) subset &?, and his linear internal regret,

n n

Z (Ut c XLy — yt)2 — min (L (Ut) c Ly — yt)2 )
t=1 LeL t=1

where£ denotes the set of all linear functioR§ — R¢, or a large class of such linear functions.
(Note that in this section, we state the results in termssddsg, rather than payoffs.) The results of
the previous section (including those of Remark 8.11, with 1/2) apply, and yield a prediction
scheme for the forecaster such that both the external regffetespect to) = X; and the linear
internal regret are minimized. This scheme only outputgyhieiectors from the simplex.

However, in on-line linear regression, the notion of exaéragret is usually meaningful only if
it is defined with respect to a larger class that also contantors with hon-positive components.
The classes of interest are typically of the form

VU:{ueRd:Hu|y<U},

where||-|| is some norm ofR?, for instance, thé!, Euclidian, or supremum norms. We concen-
trate on the’! norm, defined by

d
lall = Juil
i=1

and study the forecaster introduced in Figure 1.

THEOREM 8.11. We assume that the input values and the outcomes all s&jisfy< M,
|z; | < M, for someM > 0 and for all: andt. The forecaster of Figure 1 outputs weight vectors
in Vy, and suffers both no linear internal regret and no exterregjret with respect td/;;, with
the upper bounds

n n

Z (wg -y — ) — m]i;n (v-x—y)? < 4dUM?\/(4In(2d) — 1)en ,
=1 veEVU T

t=1
g (wg - @y — ) — annﬁl g (L (w)-x;—y)? < 4dUM?\/(4In(2d) — 1)en ,
€
t=1 t=1

whereL denotes the set of all linear mapping¢ — R? satisfyingL(X;) C X.
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Parameters: U > 0, a bound on the weight vectors.
Foreachround =1,2,...,
(1) getthe input value:;, and denote
xy = Ux1t,...,Uzqs,—Uzi4,...,—Uzgy) € R .
(2) atroundt, denote, fos <t—1andi=1,..., N,
lis = 2(uy - Ty — Ys) 75 5
and get the probability distribution; € X4 chosen by the forecaster of Section 1.2
of Chapter 3, with a polynomial potential of order= 4 1n(2d);
(3) predict withu; given byw; ; = U(u;, — uj,,,), i =1,....d.

FIGURE 1. A forecasting scheme for on-line linear regression.

We used polynomial reweightings in Figure 1 simply to avaiding issues. Of course, in
view of the standard adaptive techniques, like Lemma 4 8oeantial potentials may be used as
well.

The forecaster of Figure 1 relies on a trick introduced byikén and WarmuthKiWa97].
They faced the same situation as here, that is, they firstdatred a forecasting scheme suffering
no external regret with respect to all weight vectors of fihgptex, and then extended it thanks to
this trick to a forecasting scheme suffering no externataegith respect td/;. (The boundl
has to be known beforehand by the forecaster.)

This trick consists in noting that, with the notation of FHigu.,

(8.13) up Ty = Uy T

whereu; € Vi, whereau, is a probability distribution. Thus, it is enough to compate/eight
vector lying in the simplex, which we know how to do. For th&esaf readability, we indicated
the values of the gradient of the losses (these aré;thleand referred for the sub-algorithm to
Chapter 3. That is, we exactly apply the procedure of theipusvsection and simply write
explicitly the gradients here.

PROOEF In view of step (2) in the definition of the forecaster, by ®rems 3.1 or 8.10, and
by the linear upper bounding (8.12) (see also (7.2)),

n

8.14) > (up-a; )’ — min (L (u) - - yi)? < 4dUM?\/(4In(2d) — )en
t=1

where £ is the set of all linear functiond; — Xa4, since the gradientd(u - =, — ys) 7]
are bounded byUM?2. Now, to any linear mappind. : R¢ — R? preserving the simplex,
we may associate a linear functidrl : X5; — X5, such that, with the notation of Figure 1,
L(uy)-xy = L'(u}) -2} for all t. This function is defined, with obvious notation, b{(u1,us) =
(L(uq), L(us)). The proof is therefore concluded for the internal regret.

The bound for the external regret is almost a special cageaidrie for the internal regret. Let
v be any element o¥;. Provided that we can find’ € A5, such thatv - x; = v’ - ;} for all
t, the first bound of the theorem follows from (8.14), used wlith constant, thus linear, function
L’ = v'. But [Kiwa97] explains precisely how to do this. We denote respectivgly b andv—
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the nonnegative and non-positive parts of any real numpand simply let

1 U— v
. <(U1+,...,v;,vl+,...,vj)+7(1,...,1) .
]

REMARK 8.12. We note here that, up to the multiplicative facipwe recovered the same
orders of magnitude in all parameters for the bound on eateegret as Kiwa97], see also
[Ces99. (But the bound on internal regret is new.) In both papdrs khiounds are derived by using
a more general method, based on Bregman divergences, whibisicase reduce to Kullback-
Leibler divergences. Interestingly enough, this was thmesfor the first derivation of thec
strategy in HeScSiWa9§. In Chapter 7 we showed how a simple linear upper bound aad th
usual techniques used prediction with expert advice yiefleiad a simple analysis of thms
strategy, and even lead to no internal regret algorithmé&®fame flavour. This is exactly what
we did for on-line linear regression with the square loshis section.

Appendix: Technical proofs

Proof of Theorem 8.2. Fors = (s!,...,s") € S, we write||s||c = max;—;__n |s?|| where
||s%|| is the norm ofs? in S*.

First, we prove the direct implication. Fix a(£°%(S*));<k<n—correlated equilibrium of the
continuous gameé&'. Choose any number> 0. It suffices to show that there exists@such that
for every discretization of size < ry, m induces &c—correlated equilibrium.

Eachh* is uniformly continuous, so we may choosgsuch that for allk < N, s,t € S,

||s — t[|o < roimplies | r*(s) — h¥(t) | < e. Fix a discretizatior(P, D) of sizer less thanr.
Fix a playerk and a departurgk : D¥ — DF. We need to prove that
(8.15) > wathF () + 26 =) ()R, ge(th)) |
teD teD

Defineyy, : S — S by ¢y (s") = gi(th) for all s* € V. yy, is a measurable function. Now,
foralls e VI x ... x V¥

N
-k k 1
H<s () = (th gt ) | <

Therefore, due to the uniform continuity of th&, we have for all,

/h’“ (57, Pr(s))dm(s) — 3 ma(OR (", g(#)) | < e
teD
It is even easier to see that
/hk( —* sF)dn(s Zﬂ'd HhEEF Y| <e.
S teD

Now, asr is a correlated equilibrium of the original game,

/ B (57, s (s) > / B (5%, e (s))dm(s)
S S
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Combining the last three inequalities leads to (8.15), ttarscluding the direct part.

The converse implication is proved in a similar way. Firgitenthat thanks to Lemma 8.3,
we can restrict our attention to continuous departuresurssthat there exists a functierwith
lim,_.oe(r) = 0 such that for all discretizationsP, D) of sizer, = induces are(r)—correlated
equilibrium.

Fix an arbitraryy > 0. We show that for alk and all continuous functions;, : S* — S*,

(8.16) /5 BE (s, sF)dm(s) + 1 > /S BE (5% (57 dre(s)

(The conclusion will follow by letting; decrease to 0.)

Fix a playerk and a continuous departure. As h* is uniformly continuous, we can choose
§ > 0 such that for alls, ¢ € S, ||s — t||, < & implies | h¥(s) — h*(t) | < n/3. Now, ¢y is also
s —t||,, < ¢ implies
[Yr(s) — Yr(t)] < 6/2. Finally, takery > 0 sufficiently small so that for alt < ro, e(r) < 1/3.
We consider = min(ro, d,d").

There exists a finite cover of eadf by open balls of radius, denoted byB (z] I r),1 <j<
N,1 <1< N;. Each open cover is converted into a measurable partltlmhelriollowmg way.
Forl <j < N,1<i< Ny,

V/ = B(z],r)\ (U2 B(ad,,r)) .

)

We take the grid given by the centers, that is, with the abaation,#/ = 27,1 < j < N,
1 <4 < N;. We thus have obtained a discretization of size less thand denote byr; the
probability measure induced by

We defineg,, : D* — DF as follows. Forl < j < Ny, gr(z ) zk wherel < m < Ny is
the index such thapy (« ) € V. Note that in parUcuIang;C ) Y (x )H <r < /2.
But if s* € V’“ Fll<r < ¥, so that ||y (s%) — gr(af )| < 6/2. Finally,
| ¥k (s*) — gr(af, || <. Thus ifs € Vﬁ X VA,
| ) — @l ,gkmk),...,xﬁx) | <.

Therefore, by uniform continuity df*,

[ s )ants) - 3wt e e | <3
s 3
z€D
Again, it is even easier to see that
/ R*(s7F, sF)dm(s) — Z mq(z)hF (z7F, 2%) | < o
S €D 3

Sincer is ane(r)—correlated equilibrium (and sineér) < n/3), itis true that

Z mq(x)hF(x) + g > Z ma(x)hF (x7F, g (zF)) .

z€D ze€D
Combining these last three inequalities, we get (8.16)¢lcmiing the proof.

Proof of Lemma 8.2. Hirsch and LacombeHiLa97] consider the set of continuous functions
defined on a compact metric s€tinto R and show that this set is separable (Proposition 1.1). But
it turns out that this proof easily extends to the case of Larit2, giving, in addition, an example
of a dense countable subset®fX'). We simply need the following well-known lemma, see for
instance RudinRud74).
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LEMMA 8.5 (Partition of unity).If X is a locally compact Hausdorff space, then, given a
finite number of open set§, ..., Viy and a compack C U;—;,._nV;, there existV nonnegative
continuous functiong, ..., hy summing to 1 ovek’, such thath; vanishes outsid&;.

- PROOF(OF LEMMA 8.2). AsX is acompact set, for a givene N*, there exist finitely many
Th, J = 1,..., Ny, such that the collection of open balls of common radigs and centered in
theser?, forms a finite cover ofX,

)(::lJﬁgrB(x%,l/n).

We denote the set formed by thesk by X,,. By Lemma 8.5 (withK = X), denote byg”,
j=1,...,N,, apartition of unity constructed over this open coverXaf We denote by4,, the

set formed by
N7L

Zy ) 1,.,Ny € (Xn)Nn

A, is afinite set. By conveX|ty oX, each element ofi,, mapsX into X. By continuity of the
", Ay is finally seen as a subset (X ).

We consider the countable subgetormed by the union of thel,;, A = U,,cn+ Ay, and claim
that A is dense irC(X). To see this, fix a continuous functighe C(X). As f maps the compact
metric spaceX into itself, f is uniformly continuous oveX. Fix e > 0 and choosé > 0 small
enough to ensure thiitr — y|| < d implies|| f(z) — f(y)|| < e, where||-|| denotes the norm of
the underlying normed space that contaXis Now, fix a sufficiently large integen such that

1/n < min(d,). For everyj = 1,..., N,, choosey, such that‘ yh — f(ah) ‘ < e. Introduce

the functions
Np, ' Np, '
g=>_f@h)ef, h=> vy},
j=1 j=1

It is clear thath € A, and we prove thatf — bl < 2¢
For a givenr € X,

N7L

If@) —g@)l = | (f) - f(=))) dh(x)

v o
SO £(@) = fad) || 6(x)
j=1

Now, H f(@) — f(zh) ‘ ol (z) < el (x), simply because?, vanishes outsid@ (7, 1/n) (which

is included inB (7, d)), whereas, thanks to uniform continuity, the norm of théedéncef (x) —

f(z1,) is less thar over this ball. Finally, recalling that the! sumto 1, we gellf — gl <e
A similar argument, using the fact that for evejy ‘ v — f(xh)

llg — ||, < e,thus concluding the proof.

‘ < ¢, indicates that

Proof of Lemma 8.3. The proof is a combination of Lemma 8.1 and Corollary 8.3,chlis
derived from the following version of Lusin’s theorem taéd for our needs.

PrROPOSITION8.4. If X is a convex and compact subset of a normed space, equipped wit
a probability measure; (defined over the Boret—algebra), then for every measurable function
f:+ X — X and for every, e > 0, there exists a continuous functign X — X such that

pillf =gl = 0} <
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PROOF We use the notation (and the techniques) of the proof of Lai®s. First note that
is regular, since it is a finite measure over the Berehlgebra of a Polish space (compact metric
spaces are Polish).

Fix n large enough such thayn < 6. Consider theV,, measurable sets

MJ” = f! (B(ac;”,l/n)) .
By regularity ofy., one can find compact setS!" and open set¥ such that, for allj,
9
o
By construction, thel/;* form a cover ofX. Therefore, thé/;* form an open cover k. By
Lemma 8.5 (withK' = X), fix a partition of unity based on this open over, which weaterby
Y-, &N, - Consider the continuous functigngiven by

N

— nen

9= i
=1

By convexity of X, g mapsX into X. Now, as above, for alt € X,

Kj c M cVP, u(VP\KT) <

Ny,
1f () = 9@l <D || @) = 2 || € (x) -
j=1

By construction, Hf(m) - m%‘ &(x) < &i(x)/n provided thatr € M U (V). Therefore,
Ilf(z) —g(x)]| < 1/n < 0, except, possibly, on the measurable subseefined by
Nn yn n
A=U;n ViM;

whosep—measure is seen to be less thary subadditivity of the measure. (]

Now, settingd,, = ¢,, = 1/2", and using Borel-Cantelli lemma, one easily gets the fatigw
corollary.

COROLLARY 8.3. If X is a convex and compact subset of a normed space, equipdee wit
probability measureg: (over the Boreb—algebra), then every measurable functipn X — X
may be obtained as @g—almost sure limit of continuous functiofig, ),,cn+ MmappingX into X.
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1. Hoeffding-Azuma maximal inequality

We recall in this section the maximal version of the Hoeffddzuma inequality (see Hoeffd-
ing [Hoe63, Azuma JAzu67], see also McDiarmidNicD89)).

A sequence of random variablég , X», ... is a martingale difference sequence with respect
to the filtrationFy, F1, Fo, . .. if for everyt > 1, X; is F;_-measurable and a.s.,
E [Xt ‘ft_l] — O .

The following lemma is the key step in the proof of the HoeaffgiAzuma maximal inequality.

LEmMmMA A.l. Let(Xy,...,X,) be a martingale difference sequence with respect to the fil-
tration F = (F;)o<t<n, Such that for allt = 1, ..., n, there exists &;_;-measurable random
variable V; and a nonnegative constant with V; < X; < V; + ¢ a.s. Then, denoting by
M, = X1 + ...+ X, the associated martingale, for any> 0,

2 N
logE [esMn] < % thz .
t=1

Now, Doob’s maximal inequality and simple algebra imply fokowing.

LEMMA A.2 (Hoeffding-Azuma maximal inequality)Let (X7, ..., X,,) be a martingale dif-
ference sequence with respect to the filtratr= (F;)o<i<n, Suchthatforalk = 1,...,n, there
exists afF;_i-measurable random variabl& and a nonnegative constant with V; < X; <
Vi + ¢ a.s. Denote byMy, ..., M,) the associated martingale, whekd;, = 2221 X, for all ¢t.

Then, for anyx > 0,
P{ma M>w]<ep< 227 )
X t X €X -<n 9 ) >
t=1,...,n > ¢
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or, equivalently,

2. Bernstein’s maximal inequality for martingales

The Hoeffding-Azuma inequality is in a sense not sharp endagmost of our purposes, for
it does not involve the variances of the martingale diffeesx; which turn out to be in practice far
smaller than the simple sum of the squared conditional nBernstein’s inequality fixes this,
and offers a bound where the variances replace the squargdstaThe crux of the proof is the
following classical inequality for random variables boeddrom above, see e.d=1e75, Section
3]. The previous chapters showed that it was also of indep@rdterest.

LEMMA A.3. Let Z be any random variable, bounded from above by 1 and with reitipe
expectation,
Z<1las. and E[Z]<0.

Then, for allx > 0,
InE [e)‘z] < (e)‘ —1- )\) Var 7 .

Moreover, the factoe* — 1 — X in the inequality above is optimal.

We state now a version of Bernstein’s inequality suited fexina of martingale difference
sequences (see, e.gré¢75] or [DaDu83), and prove a corollary tailored to the needs of Section 4
of Chapter 5.

LEMMA A.4 (Bernstein’s maximal inequality for martingaled)et (X1, ..., X,,) be a mar-
tingale difference sequence with respect to the filtration= (F;)o<;<, and with increments
bounded by a constarit’ > 0: for all ¢, |X;| < K a.s. Consider the associated martingale
(My, ..., M,), whereM,; = 22:1 X, for all t. Denote the sum of the conditional variances by

Vo= E[X7|F] .
t=1
Then, for allA > 0,
(exp (AMyp, — dx (M)Va)) >0
is a supermartingale (with respect to the same filtratib)) where
1
In particular, for all constantse, v > 0,
x2
<ol < -
P Lirllangt >z andV,, < v] < exp < 2(v+Kx/3)>
and therefore,
P [ max
t= EARAS]

1,...,n

M; > V2vz + (V2/3)Kz and V,, < v] <e *.

Simple calculations yield the following corollary, in whithe bounds involve directly the sum
of the conditional variances rather than a constant uppandbo on it. We do not know whether
this issue had already been considered, and in particutether the extra/In n which appears
below is necessary.
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COROLLARY A.1l. Under the assumptions of Lemma A.4, for&al (0, 1), with probability
at leastl — ¢,

 max M, < 2V, + K2)In(n/d) + (V2/3)K In(n/é) .
PrRooF Denote
M = max M,;.

t=1,....n

We apply the previous lemmatimes and use a union-of-events bound. Ferl,..., n,

P [M > /2(Vy, + K2 In(n/d) + (V2/3)K In(n/5) and V,, € K2[t — 1, t]]

< P [M > /2K2tIn(n/d) + (v2/3)K In(n/5) and V,, < K%}

< d/n,
where we used Lemma A.4 in the last step. By boundedness ofth&,, lies between 0 and
K?n, and therefore a union-of-events bound aver 1, ..., n concludes the proof. O

3. Some elements of information theory

We essentially deal with the Kullback-Leibler divergenoe relative entropy) in this section.
A good reference is the monography by Cover and Thor@a3 h91, Chapter 2]. Thé&ullback-
Leibler divergencdetween two probability distributiori® andQ, with common dominating mea-
sureu, and with densitiedP = p dp anddQ = ¢ du, equals

KP®,Q) = /plngdﬂ-

The definition does not depend on the choiceupfo that the only case wheG(P, Q) is not
defined yet is whei? is not absolutely continuous with respect@o In this case, we simply let
K(P,Q) = +o0.

To illustrate the definition, we show simple upper boundsherullback-Leibler divergences
between two Bernoulli distributiorB(p) andB(q), the one with parameter= 1/2, and the other
with paramete; = 1/2 — . (The dominating measure is for instance the sum of the Dirac
measures at 0 and 1.)

LEMMA A.5. Forall 0 < e < 1/6,
K (By)2,B1/p_.) < 6.
Forall 0 < & < 1/10,
K (B1/2—c,B12) + K (By/2,Byja—c) < 5.

PROOF We simply use the definition df,

1 1 1 1 1 1 4e?
K (By /2, By ja_c) = = (1 1 = 5! =5mn(1
(Bi/2:B1j2) 2<“1_25+“1+25> 2<”1—4g2> 2 n( +1—4a2>

< 2¢2

1 —4e2’
where we used at the last stef1 + u) < w. The proof of the first inequality is now concluded
by using0 < ¢ < 1/v/6.
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As for the second one, the same techniques yield
K (B2, B1jo—c) + K (B1ja—c, Bis2)

— <_% + <% —g>> In(1 — 2¢) + <—% + (% +6>> In(1 + 2¢)

1+ 2¢ 4e 4
= el —cln(1 < ,
€n<1—25> €n< +1—25> 1— 2

and the proof is concluded by lower bounding the denomirtatmks to) < ¢ < 1/10. O

We now motivate the computation of the Kullback-Leibleradiyence between two probability
distributions by Pinsker’s equality (see, e.g.sy04).

LEMMA A.6 (Pinsker’s inequality).For all measurable setd,

Pl4] - Q4] < 1/ 3K(P,Q)

(The supremum over all measurable sétm the left-hand side is called the variational distance
betweer? andQ.)

We end this section by indicating two useful ways of commytnupper bounding Kullback-
Leibler divergences.

LEMMA A.7 (Convexity of). The mapP,Q) — K(P,Q) is a convex function (in the pair).
Consequently, for any given random variable denoting byPX andQX the laws ofX under the
distributionsP and QQ, we have

K (PX,Q%) < K(P,Q) .

The definition of the Kullback-Leibler divergence showstthdienP = Py ® P, andQ =
Q1 ® Q4 are given by product measures, then

(A.1) K(P1 ®@P2, Q1 ® Q) = K (P, Q1) + K (P2, Q2) .

We extend this to general probability distributions ovasdcete) product spaces as follows (by
stating a “chain rule”). We consider probability distrilmrts P and Q over a discrete product
image setd x B, and denote respectively pya, b) andg(a, b) their densities with respect to the
counting measure ovet x B. We also denote bl 5 the second marginal &, and byp(- | b) the
conditional density oP given{b} with respect to the counting measure odefand use analogous
notation forQ. We define theonditional Kullback-Leibler divergendeetweernP andQ as

K (Pajs Qajm) = 3 00) Y plal i) n 222

beB acA q(a ‘ b)

LEMMA A.8 (“Chain rule™). With the notation above,
K(P,Q) = K(Ps, Q) + K (Pa 5, Qa|B) -

4. On Fano’s lemma

Fano’s lemma often yields sharper lower bounds than Pisskequality, with an additional
In NV factor. We illustrated this general fact in Section 5 of Gka and in Remark 6.2. Let us
briefly sketch a (high-level) picture of why this is so. Tostleind, we first state a possible version
of Fano’s lemma. This version is a corollary of an informatiheoretic result (see, e.g., Cover
and ThomasQoTh91, Chapter 2]).
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LEMMA A.9 (Fano’s lemma).Consider a probability spac@, equipped withV probability

measure®;, ..., Py. Forall partitionsAl, ..., Ay of Q,
1 K +1n2
N Z:: n(N-1)
where

=

N
1 _ oo
K:NZIC(]P’J-,IP), WlthP:N;Pj.

It turns out that in our lower bound proofs, the problem ise@iymmetric, by construction.
The setsA; are of the form{I = j}, whereI is the action taken by the forecaster, and the
probability distributionP; only favors actionj. The corresponding average distributiBiis often
the uniform distribution over the outcomes, so tRat;] = 1/N for all j. Due to the symmetry
of the problem and of the “good” forecasters, (these arellysnaariant under a relabelling of the
experts), all quantitie& (P, P) are equal, with common value denoted &y and the same holds
even for theP;[A;]. Thus, we have the following bounds, respectively by Piriskeequality (see
Lemma A.6) and Fano’s lemma,

1 1 . . .
min P;[4;] < N+\/§K (Pinsker’s inequality)

j=1,...,.N
) K +1n2
A B < gy
As K is often small (of the order of?, wheree is a small parameter), the second bound is an
important improvement, at least from an asymptotical viewp due to the extrin (N — 1) in the
denominator. (Compare the proofs of Theorems 3.3, 5.5, &hjyl 6
Our goal is now to have Fano-like bounds which are intergstim moderate values a¥V.
The bound proposed by Lemma A.9 is uselessNog 3, and more generally speaking, the extra
In 2 factor is very unconvenient for non-asymptotic purposese 3olution is offered by a recent
paper of Birgé Bir05], and is presented in the following lemma. (The second Hati® Lemma
is actually stated in Massamjas05 and is an easy consequence of the proof giverBinob].
The interest is to get a cledn NV factor, instead of simply b (N — 1).)

(Fano’s lemma)

LEMMA A.10 (Birgé’s version of Fano’s lemma)Consider a probability spac@, equipped
with N probability measure®., ..., Py. For all partitions A4, ..., Ay of Q,

e K
e
jnin ;4] \maX{Heqn(N_l)} )

where

N

7 2 K(P;,P).

j=2
Another valid upper bound is

2e K
i P; A < T, a6 01 AT )
jin BilAj] maX{1+2e mN}
Now, the crucial point in the proof of Theorem 5.5 is an eximmf Birgé’s version of

Fano’s lemma to a convex combination of probability masgéss extension, stated in Lemma
A.13 below is proved thanks to a straightforward modifiaatad the proofs techniques used in

Birgé [Bir05] (see also MassartMas05]). Below, we state and use their main lemmas. Recall
first a consequence of the variational formula for entropy.
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LEMMA A.11. For arbitrary probability distributionsP, Q and for each\ > 0,
AP[A] = gra)(A) < K(P,Q)
wherey,(A) =1In (p(e* — 1) + 1).

We now need to know the behavior of the Cramer transform & filmnction,. This is
indicated in the following lemma (se&lps05, Section 2.3.4]).

LEMMA A.12. For all p > 0, the Cramer transformy,, of 1, satisfies, ap < a < 1,

@) = s 5,00 =atn () + 0= (124) zam (L)

Next we are ready to extend Lemma A.10 to the case of convedications of probability
distributions. This extension does not follow from Birg&mma, but may be obtained by a simple
modification of its proof, for the latter already deals withheex combinations.

LEMMA A.13 (Fano’s lemma for convex combinationg)et
{As; :s=1,...,58,j=1,...,N}

)

be a family of subsets of a setsuch that4, i, ..., A, x form a partition of2 for each fixeds.
Letas,...,as be suchthaty, > 0fors =1,...,5Sanda; + ... + ag = 1. Then, for all sets
{Ps1,...,Psn}, s =1,...,5, of probability distributions orf2,

where

S N
> AP A = XY e V)
s=1 j=2 s=1 j=2
S N o
< ZZN_SllC(]P’ 5Ps1) =K
s=1 j=2

S N o 1 s
P = Z Z m]P’s,l[As,j] =~N_1 (1 - Z:lasPS,I[AS,l]> ;
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Recalling that the right-hand side of the above inequalityva is less thai’, and introducing the
quantities

S
a;j = Zasps,j[As,j] forj=1,...,N,
s=1

we conclude
T
i ) —a < 1 S —a < 2 .
Ao e () AT 2w~ i (N < K
Denote bya the minimum of they;'s and letp* = (1 — a)/(N — 1) > p;. We only have to deal
with the case when > e/(1+e¢). As for all A > 0, the function that mapsto —, is decreasing,
we have
- a a(N—1)
K >2sup(Aa—Yy«(N) 2 aln >aln——=~
,\>0( (V) ep* (I-a)e
whenevern* < a < 1 for the second inequality to hold (thanks to Lemma A.12), byndising
a > e/(1+e) for the last one. Ap* < 1/(N —1) < e¢/(1+e) wheneverN > 3, the case < p*
may only happen whefv = 2, but then the result is trivial. O

>aln(N-1),

REMARK A.1l. We simply remark here that in some situations, such assyimmetric toy
situation described at the beginning of this sectiarm probability distributions are enough to get
an extraln N factor. Assume we introduced two probability distribugd? andP and an event
Ay such thatPi[A,] > P[A;] = 1/N. (This was the case in the toy situation.) Then, thanks to
Lemmas A.11 and A.12, we may write
P1[A;]
6]?’[141]

provided (for the last step) th& [A;] > e/4. Thus, we have that

e ]C (]P’l, ]F)
]P)l[Al] < max{z, W} .

K (Py, P) > sup (wl [A] - %[Aﬂ(x)) > Py[41]In < > > Py [A4]1

nz,

5. Alemma for solving for the regrets

At various points in the previous chapters (see, e.g., thefmf Corollary or Section 4 of
Chapter 5), we had to solve an inequality for the regrets othfe cumulative (expected) losses.
The lemma below offers a straightforward upper bound oweistiution, which is all we need.

LEMMA A.14. If 24,4 > 0, andb > 0, are such thatforalt =1, ... ,n,
(A.2) e <y + by,
then

Vt=1,...,n, zy < yp + by/yn + b2 .

PROOF We obtain a bound ovey'z,, and substitute it into (A.2) to conclude. The inequality

Ty < Yn + by
rewrites as

b\ b2
— — < —
<\/5L'n 2) < Yn + 4
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that is, either,/z,, < b/2 or

b b b2
\/ﬁ—iz ‘M_i‘ <\/yn+1<\/y_n+

In both cases,

concluding the proof.
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Information incompl ete et regret interne en pédiction de suites individuelles

Résune : Le domaine de recherche dans lequel s’inscrit ce travailhdset est la théorie de
la prédiction des suites individuelles. Cette dernicpasidere les problemes d’apprentissage
séquentiel pour lesquels on ne peut ou ne veut pas madelismbléme de maniére stochastique,
et fournit des stratégies de prédiction trés robustédle dhglobe aussi bien des problemes issus
de la communauté dmachine learningjue de celle de la théorie des jeux répétés, et ces dernie
sont traités avec des méthodes statistiques, incluargxgsmple les techniques de concentration
de la mesure ou de I'estimation adaptative. Les résultaiisnos aboutissent, entre autres, a des
stratégies de minimisation des regrets externe et in@d#nes les jeux a information incompléte,
notamment les jeux répétés avec signaux. Ces stratg8iippliquent au probleme d’'ajustement
séquentiel des prix de vente, ou d'allocation séqudatidge bande passante. Le regret interne
est ensuite plus spécifiguement étudié, d’abord danadeeade I'investissement séquentiel dans
le marché boursier, pour lequel des simulations sur des@nhistoriques sont proposées, puis
pour I'apprentissage des équilibres corrélés des jefimis a ensembles de stratégies convexes et
compacts.

Mots-clés : Suites individuelles, prédiction séquentielle, potidn avec avis d’experts, regret ex-
terne, regret interne, jeux répétés avec signauxcti@eséquentielle de portefeuilles, equilibres
corrélés des jeux infinis.

Incomplete Information and Internal Regret in Prediction of Individual Sequences

Abstract: This thesis takes place within the theory of prediction afiwidual sequences. The

latter avoids any modelling of the data and aims at providimge techniques of robust prediction
and discuss their possibilities, limitations, and difft@g. It considers issues arising from the
machine learning as well as from the game-theory communiied these are dealt with thanks to
statistical techniques, including martingale conceitrainequalities and minimax lower bound

techniques. The obtained results consist, among otheesténnal and internal regret minimizing

strategies for label efficient prediction or in games withtiph monitoring. Such strategies are
valuable for the on-line pricing problem or for on-line bandth allocation. We then focus on in-

ternal regret for general convex losses. We consider fiestéise of on-line portfolio selection, for

which simulations on real data are provided, and generidiee the results to show how players
can learn correlated equilibria in games with compact dettrategies.

Keywords: On-line learning, individual sequences, sequential ptadi, prediction with expert
advice, external regret, internal regret, repeated gapnediction with partial monitoring, on-line
portfolio selection, correlated equilibrium of infiniterpas, game-theoretic learning.
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