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votre cours à l’IHP lors du semestre spécial de statistiques.
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avez peut-être echappé au séminaire trop court sur la vie de couple co-organisé avec Estelle et
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Part 1. Prediction with expert advice 25

Chapter 2. Prediction of individual sequences, mathematical framework 27
1. Sequential prediction of individual sequences 27
2. Weighted average prediction 32
3. Refined bounds on the regret 35
4. Multi-armed bandit prediction 39
5. Minimax orders of magnitude for the regret 42
Appendix: On the pertinence of the notion of regret for smalldecision spaces 45

Chapter 3. Internal regret in prediction with expert advice 47
1. Links between external and internal regret 48
2. Minimax lower bounds on internal regret 57

Chapter 4. Improved second-order bounds in prediction withexpert advice 61
1. Introduction 61
2. A new algorithm for sequential prediction 63
3. Second-order bounds for weighted majority 68
4. Applications 71
5. Discussion and open problems 79
Appendix: Proof of Lemma 4.3 81

Part 2. Prediction with limited feedback 83

Chapter 5. Minimizing regret with label efficient prediction 85
1. Introduction 85
2. Sequential prediction and the label efficient model 86
3. A label efficient forecaster 88
4. Improvements for small losses 93
5. A lower bound for label efficient prediction 100

Chapter 6. Regret minimization under partial monitoring 105
1. A motivating example 105



6 CHAPTER 0. CONTENTS

2. Main definitions 106
3. General upper bounds on the regret 109
4. Other regret-minimizing strategies 115
5. A lower bound on the regret 119
6. Internal regret 122
7. Random feedback 125

Part 3. Internal regret for general convex loss functions 127

Chapter 7. Internal regret in on-line portfolio selection 129
1. Introduction 130
2. Sequential portfolio selection 130
3. Internal regret of investment strategies 133
4. Investment strategies with small internal regret 136
5. Generalizations 139
6. Universal versions ofEG andB1EXP 142
7. On-line investment with transaction costs 145
Appendix: Experimental results 149

Chapter 8. Learning correlated equilibria in games with compact sets of strategies 159
1. Introduction 160
2. Definition of correlated equilibrium 160
3. Regret minimization and convergence in repeated games 164
4. A link with correlated equilibrium of finite games 174
5. Discussion and perspectives 176
Appendix: Computable procedures for convergence to linearcorrelated equilibria 178
Appendix: Technical proofs 183

Part 4. Additional material and bibliography 187

Appendix A. Statistical background 189
1. Hoeffding-Azuma maximal inequality 189
2. Bernstein’s maximal inequality for martingales 190
3. Some elements of information theory 191
4. On Fano’s lemma 192
5. A lemma for solving for the regrets 195

Appendix. Bibliography 197







CHAPITRE 1

Prélude et vue d’ensemble des résultats

Le domaine de recherche dans lequel s’inscrit ce travail de thèse est la théorie de la prédiction
des suites individuelles. Cette dernière considère les problèmes d’apprentissage séquentiel pour
lesquels on ne peut ou ne veut pas modéliser le problème de manière stochastique, et fournit des
stratégies de prédiction très robustes. Elle englobe aussi bien des problèmes issus de la commu-
nauté dumachine learningque de celle de la théorie des jeux répétés. Le but de mes travaux a été
de traiter un certain nombre de ces problèmes avec des méthodes statistiques, incluant par exemple
les techniques de concentration de la mesure ou de l’estimation adaptative. Les résultats obtenus
aboutissent, entre autres, à des stratégies d’ajustement séquentiel des prix de vente (qui correspond
par exemple pour vendre des produits sur Internet), ou d’allocation séquentielle de bande passante.
Des simulations sont proposées pour le problème de l’investissement dans le marché boursier.

Dans ce premier chapitre, on présente à grands traits les fondements de la prédiction des suites
individuelles (section 1), puis on résume les contributions de chacune des trois grandes parties de
ce manuscrit de thèse, respectivement dans les sections 2,3 et 4, et on conclut par l’indication du
plan de la thèse. Une introduction au sujet plus précise, mathématique, et contenant la présentation
d’un cas d’école, est proposée au chapitre 2. Les résultats nouveaux sont décrits en détail dans le
corps de la thèse, à partir du chapitre 3.
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10 CHAPTER 1. PŔELUDE ET VUE D’ENSEMBLE DES ŔESULTATS

1. La théorie de la pŕediction des suites individuelles

L’approche traditionnelle dans les problèmes de prédiction est de supposer que la suite des
données est la réalisation d’un processus stochastique sous-jacent, dont la loi appartient à un
modèle statistique,id est, une famille de lois possibles. Il s’agit ensuite d’étudier la possibilité,
les limitations et les difficultés de la prédiction de telles suites aléatoires. Tout repose donc sur
l’introduction de modèles raisonnables, ce qui dans certaines situations, comme la reconnaissance
vocale, les flux de données sur Internet ou l’investissement dans le marché boursier, est une ga-
geure.

L’objet de la théorie de la prédiction des suites individuelles est de proposer des méthodes
de prédiction robustes. En particulier, on considère l’ensemble de toutes les suites de données
possibles, et on ne met pas de mesure de probabilité sur ce dernier, chacune des suites possibles
est prise en compte. C’est de là que vient le nom de suites individuelles (elles sont considérées
individuellement).

1.1. Un cas d’́ecole : information compl̀ete, regret externe et strat́egie randomiśee. On
peut décrire le cadre de la théorie de la prédiction des suites individuelles dans le cas le plus simple
comme suit (voir, par exemple, le cours de Lugosi [Lug01]). Ce cas est appeléprédiction avec avis
d’experts. On se fixe un ensemble d’observationsY, et on suppose que l’on a accès de manière
séquentielle aux données : la suite des observationsy1, y2, y3, . . . , n’est pas révélée d’emblée,
mais pas à pas. Aut-ième pas du problème, il s’agit ainsi de prédire parp̂t ce que serayt, en
se fondant sur les observations passéesyt−1

1 = (y1, . . . , yt−1). L’ensemble des prédictions,X ,
peut être différent de l’ensembleY des observations. Pour l’aider dans cette tâche, le statisticien
dispose deN experts (par exemple,N estimateurs obtenus à partir deN procédures d’estimation
différentes), qui eux-mêmes se fondent sur le passé observé pour former leur prédictionfj,t =

fj,t(y
t−1
1 ) ∈ X . (La manière dont le jeu se déroule et les notations serontrappelées et mises en

perspective en figure 1.) Les caractéristiques de ce cas d’´ecole, traité au chapitre 2, sont :
– Information compl ète [H1] : Les informations en notre possession à un past donné sont

donc les conseils présents et passés des experts, de mêmeque l’historiqueyt−1
1 . En section

3 ci-dessous et aux chapitres 5 et 6, on affaiblit cette hypothèse.
– Regret externe [H2] : Pour mesurer la qualité de la stratégie, on introduit une fonction de

perteℓ : X × Y → [0, B], B > 0, et le but du jeu est que malgré l’obligation de prédiction
séquentielle, la perte cumulée du statisticien,L̂n, soit la plus proche possible de celle du
meilleur expert,L∗

n, avec

L̂n =

n∑

t=1

ℓ(p̂t, yt) , L∗
n = min

j=1,...,N
Lj,n, où Lj,n =

n∑

t=1

ℓ(fj,t, yt) .

La quantité clé est ainsi la différence entre ces deux pertes cumulées, et on l’appelle le
regret1 (externe) :

(1.1) Rn = L̂n − L∗
n = max

j=1,...,N

n∑

t=1

ℓ(p̂t, yt) −
n∑

t=1

ℓ(fj,t, yt) .

On cherche à borner le regret uniformément en les suites d’observationsy1, y2, . . .. On
considère également en section 2 ci-dessous et au chapitre 3 d’autres mesures de la qualité
d’une stratégie de prédiction.

1Voir l’appendice du chapitre 2 pour des remarques sur cette façon de mesurer la qualité d’une stratégie de prédiction ;
il semble que cette mesure classique de la qualité soit la dernière trace d’un traitement stochastique des observations.
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– Fonction de perte ǵenérale [H3] : La fonction de perteℓ est supposée connue par le sta-
tisticien, mais elle est généralement arbitraire, c’est-à-dire non spécifiée explicitement, au-
quel cas sa stratégie est randomisée. Pour des fonctions de perte disposant de propriétés
supplémentaires, de convexité par exemple, des stratégies de prédiction déterministes peu-
vent être introduites – comme c’est le cas pour l’investissement dans le marché boursier,
voir la section 4.1 ci-dessous et le chapitre 7.

Une stratégie randomisée est donnée par une suite de mesures de probabilité

pt = (p1,t, . . . , pj,t) , t = 1, 2, . . .

sur l’ensemble des experts, calculées en fonction des observations jusqu’au tourt − 1 ; on tire
l’index It d’un expert parmi lesN experts selonpt, c’est-à-dire qu’avec probabilitépi,t, on prédit
au past comme l’expertIt = i. On pose alors

p̂t = fIt,t .

On a ainsi introduit de l’aléatoire par une randomisation auxiliaire, sachant que les observations
elles-mêmesy1, y2, y3, . . . , ne sont pas ou ne peuvent pas être modélisées comme la réalisation
d’un processus stochastique sous-jacent. On peut noterV1, V2, . . . la suite de variables aléatoires
auxiliaires dont on a besoin, et supposer qu’elles sont i.i.d. selon une loi uniforme sur[0, 1]. Cette
introduction de l’aléatoire est rendue nécessaire par lavolonté d’obtenir des bornes uniformes vis-
à-vis des observations, ce qui revient à considérer le pire des cas, c’est-à-dire à supposer que les
observations sont choisies par un adversaire diabolique.

PRÉDICTION SÉQUENTIELLE RANDOMISÉE, AVEC AVIS D ’ EXPERTSÀ DISPOSITION

Paramètres : Un ensemble de prédictionsX , un ensemble d’observationsY, N experts,n
tours de jeu (n = ∞ est une valeur recevable).
A chaque tourt = 1, 2, . . . , n,

(1) l’environnement choisit les prédictionsf1,t, . . . , fN,t ∈ X des experts, et le statisti-
cien peut les consulter ;

(2) le statisticien choisit en secret une mesure de probabilité pt = (p1,t, . . . , pN,t) sur
les experts, tire au hasard l’indiceIt d’un expert selonpt, et forme la prédiction
p̂t = fIt,t ∈ X ;

(3) pendant ce temps, l’environnement choisit en secret l’observationyt ∈ Y ;

(4) l’observationyt et la prédiction̂pt sont portées à la connaissance de tous, et les pertes
sont calculées.

FIG. 1. Description du cadre de prédiction séquentielle randomisée comme un
jeu répété entre le statisticien et l’environnement.

Cet adversaire diabolique est omniscient (il connaı̂t doncnotre stratégie, mais comme il ne
contrôle pas les dés, nous pouvons malgré tout le surprendre, grâce à la randomisation auxiliaire),
de deux manières possibles – le point commun étant qu’il produit toujours une suite d’observa-
tions dont il sait que le statisticien aura du mal à la prédire. Si, comme enmachine learning, toute
la suite est choisie à l’avance, l’adversaire est dit oublieux. Ce cas correspond à toutes les situa-
tions où notre prédiction n’influe pas sur le cours des choses (typiquement, problème de prédiction
météorologique). Mais l’adversaire peut également choisir yt en fonction des prédictions passées
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et de la stratégie du statisticien. Dans ce cas, le problème statistique apparaı̂t comme un jeu
répété entre deux joueurs de capacités différentes, l’adversaire diabolique ayant des informations
supplémentaires sur les méchanismes de pensée du statisticien – c’est bien ce qui oblige d’ailleurs
ce dernier à s’en remettre en partie à une randomisation auxiliaire.

Dans un premier temps, on s’attache souvent à l’étude de l’espéranceRn du regret d’une
stratégie de prédiction donnée, c’est-à-dire aux quantités du type

(1.2) supRn , où Rn = max
j=1,...,N

E

[
L̂n − Lj,n

]
,

et où le supremum porte sur tous les paramètres du problème – id est, la donnée deX et Y, la
fonction de perteℓ : X × Y → [0, 1], les experts – et sur toutes les suitesy1, y2, . . . que peut
choisir l’opposant diabolique. Dans la formule ci-dessus,l’espérance2 est prise par rapport à la
randomisation auxiliaireV1, V2, . . ..

L’algorithme de pondération exponentielle dérivé des travaux de Vovk [Vov90] et de Littles-
tone et Warmuth [LiWa94] garantit une borne supérieure uniforme sur l’espérancedu regret de
l’ordre de

√
n, comme le rappelle le théorème ci-dessous. Cet algorithme repose sur un paramètre

η, et propose de prédire parp1 = (1/N, . . . , 1/N), puis, pourt > 2, parpt défini composante par
composante comme suit,

(1.3) pi,t =
exp

(
−η
∑t−1

s=1 ℓ(fi,s, ys)
)

∑N
j=1 exp

(
−η
∑t−1

s=1 ℓ(fj,s, ys)
) pouri = 1, . . . ,N .

Notons qu’ici, puisque nous connaissons au début du tourt tout le passé, lesfj,s et lesys, s 6 t−1,
nous pouvons calculer toutes les pertes passéesℓ(fj,s, ys), de sorte que le choix dept est autorisé
à dépendre de toutes ces quantités. Ce ne sera plus le cas dans les problèmes dits à information
incomplète étudiés plus loin.

Cet algorithme de pondération exponentielle est efficace quels que soientX , Y, ℓ : X × Y →
[0, 1], et les experts, comme l’indique le théorème ci-dessous,qui est une version affaiblie du
Théorème 2.1.

THÉORÈME 1 (voir Theorem 2.1).L’algorithme de pond́eration exponentielle garantit, pour
tout param̀etreη > 0, que, quelle que soit la fonction de perteℓ : X ×Y → [0, B], quelle que soit
la suite des observations, l’espérance du regret est bornée par

Rn = max
j=1,...,N

E

[
n∑

t=1

ℓ(fIt,t, yt) −
n∑

t=1

ℓ(j, yt)

]
6

lnN

η
+
nη

8
B2 .

En particulier, le choixη = (1/B)
√

8(lnN)/n conduità la borne suṕerieure

Rn 6 B
√

(n/2) lnN .

La mise en œuvre de l’algorithme de prédiction ci-dessus requiert la connaissance deB et de
n, vu le choix optimal pourη. Un des objets des chapitres 2 et 4 sera de rendre adaptatif cechoix
du paramètre, outuning.

Dans un second temps, on déduit généralement des bornes sur le regret (non moyenné)Rn =

L̂n − L∗
n par des inégalités de concentration des martingales, et notamment, dans les cas les plus

2Notons qu’en réalité, nous nous intéresserons dans les chapitres qui suivent au problème plus difficile de borner non
pas simplement une espérance, mais une somme d’espérances conditionnelles, comme expliqué par (2.1) et les com-
mentaires qui suivent cette équation.
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simples, comme le cas présent, par l’inégalité d’Hoeffding-Azuma. Du théorème 1 on déduit
qu’avec probabilité1 − δ (par rapport à la randomisation auxiliaire),Rn est plus petit qu’une
quantité de l’ordre de

√
n ln(N/δ). Cela conclut l’étude des bornes supérieures sur le regret, et on

désire alors obtenir des bornes inférieures ayant les mêmes ordres de grandeur.

Pour une borneB = 1 sur les pertes, Cesa-Bianchi, Freund, Haussler, Helmbold,Schapire
et Warmuth [CeFrHaHeScWa97] prouvent une borne inférieure sur le regret au tourn face àN
experts de l’ordre de

√
n lnN , et résolvent ainsi le problème minimax associé à (1.2). (Dans ce

problème minimax, l’infimum est pris sur toutes les stratégies séquentielles du statisticien.) En
effet, ils exhibent un cadre de prédiction, celui de la prédiction binaireY = X = {0, 1}, ℓ(x, y) =

I[x 6=y], dans lequel aucune stratégie de prédiction séquentielle ne peut uniformément faire mieux

queγ
√
n lnN , pour tousn etN , oùγ est une constante absolue. En réalité, ils obtiennent même

queγ tend vers1/
√

2 lorsquen etN tendent vers l’infini, ce qui montre que même la constante
du théorème ci-dessus est optimale. Cela est redétaill´e et formalisé plus soigneusement à la fin du
chapitre 2, qui est le chapitre d’introduction mathématique formelle au sujet.

1.2. Origines et fondements de la th́eorie. La théorie est à la croisée de deux chemins, celui
de la théorie des jeux répétés (à somme nulle) et à celui de la compression séquentielle de données
en théorie de l’information.

En théorie des jeux, on peut citer les travaux de Hannan [Han57], obtenus en 1956 et publiés
l’année suivante, et ceux de Blackwell [Bla56]. Tous deux obtiennent des bornes supérieures uni-
formes sur le regret eno(n), et en particulier, Hannan obtient une borne en

√
n, donc la bonne

dépendance enn (mais pas en les autres paramètres, commeN ).
En théorie de l’information, le problème considéré estla compression de suites individuelles,

avec pour ensemble (dénombrable) d’experts l’ensemble des automates à nombre fini d’états et
comme fonction de perteℓ = log. Les pionniers sont Lempel et Ziv, avec la série d’articles
[LeZi76, ZiLe77, Ziv78]. Ce sont eux qui pour la première fois parlent de suites individuelles
et d’algorithmes universels, un algorithme universel étant simplement par définition tel que son
regret est uniformément borné eno(n). Feder, Merhav et Gutman [FeMeGu92] améliorent ces
résultats en réduisant les bornes sur le regret et en complexifiant simultanément la classe des ex-
perts, donnée par l’ensemble des experts à nombre fini d’états. Des résultats encore plus forts ont
été obtenus par exemple par les méthodes par arbres de contextes de Willems, Shtarkov et Tjalkens
[WiShTj95, WiShTj96], reprises et revues également par Catoni [Cat01]. La classe des experts
est formée ici par l’ensemble des prédicteurs markoviensà mémoire finie.

La première borne inférieure sur le regret, et partant, lapremière formalisation du problème
minimax associé, a été obtenue par Cover [Cov65], pour le problème de prédiction binaire décrit
ci-dessus, avec deux experts constants, l’un prédisant toujours 0, et l’autre 1. Il montre que le
regret minimax dans ce cadre vaut(1+ o(1))

√
n/(2π). Il obtient la bonne dépendance enn, mais

ici encore, rien n’est dit sur la dépendance enN (dont on verra qu’elle est suffisamment délicate
dans de nombreux cadres de prédiction pour être source de problèmes ouverts).

Les algorithmes randomisés de prédiction et le cadre général de prédiction avec avis d’ex-
perts décrits à la section précédente ont été introduits par Vovk [Vov90] et Littlestone et Warmuth
[LiWa94], et développés par Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire et Warmuth
[CeFrHaHeScWa97] et Vovk [Vov98], bien que certains ingrédients essentiels apparaissentdéjà
dans les travaux de De Santis, Markowski et Wegman [SaMaWe88] et Littlestone [Lit88 ]. Des
survols sont proposés par Foster et Vohra [FoVo99] et Vovk [Vov01].
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2. Regret interne et bornes du second ordre en prédiction avec avis d’experts

Les chapitres 3 et 4 présentent plusieurs résultats techniques utilisés dans les chapitres cen-
traux de la thèse, à savoir les chapitres 5 à 8. Nous les décrivons très brièvement ci-dessous.

2.1. Regret interne. Borner le regret interne d’une stratégie correspond à se comparer à
des modifications simples de la stratégie initiale, et à requérir qu’aucune d’entre elles n’apporte
d’amélioration substantielle. Le critère de comparaison est désormais interne, parce qu’il est défini
en fonction de la stratégie considérée. Le regret (1.1) est appelé regret externe car la classe de com-
paraison est indépendante de l’algorithme de prédiction.

Chacune des modifications simples est paramétrée par une fonction Φ : {1, . . . ,N} →
{1, . . . , N} et prédit comme l’expertΦ(It) lorsque la stratégie principale prédit commeIt. For-
mellement, le regret interne par rapport àΦ vaut

(1.4) Rint,Φ
n =

n∑

t=1

ℓ(fIt,t, yt) −
n∑

t=1

ℓ(fΦ(It),t, yt) .

En particulier, la modificationΦ peut être constante,Φ ≡ j, et cela montre que rendre le regret
interne petit par rapport à toutes les fonctionsΦ possibles est plus difficile que de rendre petit le
regret externe. Dans un premier temps on s’intéresse là encore à l’espérance du regret interne, et
on déduit des résultats sur le regret interne par des méthodes mettant en jeu des martingales.

Le regret interne a été défini en théorie des jeux, par Foster et Vohra [FoVo99], Fudenberg et
Levine [FuLe99], Lehrer [Leh03], et considéré ultérieurement par Hart et Mas-Colell [HaMa00,
HaMa01] et Cesa-Bianchi et Lugosi [CeLu03]. Un résultat important de convergence vers un
ensemble d’équilibres a été prouvé par Foster et Vohra [FoVo99] pour peu que tous les joueurs
d’un jeu minimisent chacun leur regret interne, voir section 4.2 ci-dessous.

Au chapitre 3, nous proposons une méthode générale pour convertir les stratégies encourant un
regret externe sous-linéaire en stratégies encourant unregret interne sous-linéaire. Notre méthode
a vu le jour indépendamment de celle développée par Blum et Mansour [BlMa05]. Les deux
méthodes sont comparées précisément, notamment en fonction de leurs complexités de mise en
œuvre respectives, de leurs bornes théoriques et de leur extension à des situations d’information
incomplète comme celles décrites en section 3. Le chapitre est conclu par une indication de la
vitesse minimax du regret interne enn, qui se trouve être également

√
n, comme pour le regret

externe. Le problème de la vitesse minimax enN n’est résolu quant à lui qu’à un facteur
√

lnN

près.

2.2. Bornes plus fines sur le regret (externe).Au chapitre 4, on considère le cadre très
général de jeu mixte introduit par Allenberg et Neeman [AlNe04], où les fonctions de perteℓ sont
à valeurs dans[−B,B] (et non plus dans[0, B]). On cherche à améliorer le théorème 1 et sa borne
généraleB

√
n lnN dans le sens suivant. On cherche des procédures adaptatives enn etB, c’est-à-

dire qui ne demandent pas la connaissance préalable du nombre de tours de jeun ni de la borneB
sur la valeur absolue des pertes, et qui permettent de remplacerB

√
n par une quantité plus petite.

Cette quantité peut éventuellement dépendre de la suiteindividuelle prédite ; le remplacement
par exemple par

√
BL∗

n forme une amélioration pour les pertes petites, obtenue par Littlestone
et Warmuth [LiWa94], Freund et Schapire [FrSc97], Cesa-Bianchi, Freund, Haussler, Helmbold,
Schapire et Warmuth [CeFrHaHeScWa97], Auer, Cesa-Bianchi, et Gentile [AuCeGe02]. Notons
cependant que ces améliorations pour les pertes petites sont établies pour des fonctions de pertes
positivesℓ : X × Y → [0, B] et demandent la connaissance préalable deB (mais pas toujours
celle den).
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En revanche, nous montrons comment, sans la connaissance préalable ni deB, ni den, B
√
n

peut être remplacé par la quantité

(1.5) max
t=1,...,n

min
j=1,...,N

√√√√
t∑

s=1

ℓ(fj,s, ys)2 ,

comme indiqué au théorème 4.3, grâce à un nouvel algorithme de prédiction. Pour des pertes
positives, il est par ailleurs facile de voir que (1.5) est plus petit que

√
BL∗

n, de sorte que l’on
retrouve en particulier les résultats d’améliorations pour les pertes petites.

Enfin, on montre ensuite comment des bornes supérieures surle regret plus fines que celle
donnée par le théorème 1 et dépendant de quantités du second ordre sont obtenues pour une va-
riante adaptative de l’algorithme de pondération exponentielle (1.3). Ce sont ces derniers résultats
qui sont la clé pour l’analyse d’algorithmes de prédiction en situations d’information incomplète.

3. Contributions à la prédiction en situations d’information incomplète

On parle d’information incomplète dès que le statisticien n’a plus accès à l’observationyt
après avoir formé sa prédiction, mais dispose seulementd’un retour sur prédiction plus limité. Il
ne peut alors plus calculer toutes les pertesℓ(fj,t, yt), et le choix (1.3) n’est plus envisageable.

Un exemple de retour sur prédiction est la seule indicationde la perteℓ(fIt,t, yt), et mène à
une situation dite de prédiction face à des bandits manchots3, décrite en détails en section 4 du
chapitre 2, avec des références aux travaux classiques, et notamment celui d’Auer, Cesa-Bianchi,
Freund et Schapire [AuCeFrSc02]. Notons que l’adversaire ou l’environnement n’est quant `a lui
pas restreint, de sorte que l’on peut interpréter le jeu de prédiction comme un jeu répété avec
manque d’information d’un côté seulement.

Dans cette thèse, nous considérons deux autres situations d’information incomplète : dans la
première, le nombre d’observations est limité, et dans laseconde, le contrôle est réduit, au sens
où le statisticien n’a pas accès aux observations, mais àune version dégradée de ces dernières.
Cette seconde situation est la plus générale, et elle englobe le problème des bandits manchots, et
également, en un certain sens précisé à l’example 6.4, le problème de prédiction avec un nombre
limité d’observations.

3.1. Nombre limité d’observations. Cette situation, appeléelabel-efficientdans le texte, a
été introduite par Helmbold et Panizza [HePa97], qui ne l’ont étudiée que pour un problème de
prédiction binaire,id est, X = Y = {0, 1}, ℓ(x, y) = I[x 6=y], où en outre, l’un des experts ne
commet aucune erreur,L∗

n = 0. Elle est considérée au chapitre 5.

3.1.1. Description du probl̀eme et́etat de l’art. Dans le problème général de prédiction décrit
en section 1.1 du présent chapitre, le statisticien a accès à tout le passé avant de former sa prédic-
tion, aussi bien à l’historique des observationsy1, y2, . . ., qu’à l’historique des conseils des ex-
perts. On peut cependant arguer que dans certains cas (comparaison séquentielle d’algorithmes de
traitement de données sur des bases de données complexes par exemple), voir à chaque tour de
prédiction l’observationyt et calculer les différentes pertesℓ(fj,t, yt) peut être très coûteux, en
temps ou en argent.

On se fixe ainsi un budgetm, qui est une fonction qui au past du problème associe un nombre
maximal d’observationsm(t). Après avoir prédit au tempst, on choisit d’accéder (ou de ne pas
accéder) àyt et, partant, aux pertesℓ(fj,t, yt) des différents experts, sachant que l’on ne peut

3C’est ainsi qu’on appelle en France les machines à poignées des casinos ; quant à savoir pourquoi on se réfère à une
rangée de machines de casino, nous renvoyons le lecteur à l’introduction en anglais.
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demanderyt que si l’on a effectué jusqu’à présentm(t) − 1 observations ou moins. Le problème
de la section 1.1 du présent chapitre correspond au cas oùm(t) = t pour toutt.

La probabilitépt selon laquelle on tireIt ne peut alors dépendre que des observations que l’on
a faites, c’est-à-dire des observationsys associées aux tourss 6 t− 1 auxquels on a précisément
demandé à voir ces observations.

Pour la prédiction binaire, Helmbold et Panizza [HePa97] obtiennent une borne supérieure sur
le regret d’un algorithme randomisé de l’ordre de(n/m) lnN , et montrent une borne inférieure
dans ce cas de l’ordre den/m, en calculant récursivement la valeur exacte du jeu répété associé,
sous l’hypothèse queL∗

n = 0.

3.1.2. Résultats obtenus et techniques mises en œuvre.Nous considérons des cadres de pré-
diction X , Y, ℓ : X × Y → [0, 1] très généraux et évitons toute hypothèse sur les pertes, et
notamment surL∗

n.
Pour un nombre de pasn et un budgetm = m(n) donnés à l’avance, on exhibe un algorithme

construit à partir de (1.3) tel que l’espérance du regret externeRn est bornée par une quantité
de l’ordre den

√
lnN/

√
m, quelque soit le cadre de prédiction (pour toute donnée des experts

et deX , Y, ℓ : X × Y → [0, 1]). De même que l’algorithme principal d’Auer, Cesa-Bianchi,
Freund et Schapire [AuCeFrSc02], cet algorithme emploie la technique de prédiction (1.3)sur
des estimées̃ℓi,t des pertes des experts ; et en outre, il demande à voir les observations de manière
aléatoire, d’après une suite de variables aléatoiresZ1, . . . , Zn i.i.d. de Bernoulli, de paramètre
ε ≈ m/n. LorsqueZt = 1, on accède àyt et on peut calculer toutes les pertes. Pourt = 1, 2, . . .

et i = 1, . . . , N , l’estimée de la perteℓ(fi,t, yt) est alors définie par

ℓ̃i,t =
ℓ(fi,t, yt)

ε
Zt .

C’est bien une estimation (quandZt 6= 0, on connaı̂t par définitionℓ(fi,t, yt)), et elle est sans biais.
Les performances en espérance de cet algorithme sont analysées grâce aux bornes du second ordre
évoquées à la fin de la section précédente.

Par des inégalités de concentration des martingales, à savoir l’inégalité de Bernstein pour des
accroissements de martingales (voir, e.g., Freedman, [Fre75]), on peut même renforcer ce résultat
et obtenir des bornes, non pas en espérance par rapport à larandomisation auxiliaire, c’est-à-
dire surRn, mais directement sur le regretRn. Cela forme le premier théorème d’importance du
chapitre 5.

THÉORÈME 2 (voir Theorem 5.2).Pour un horizon de pŕedictionn, un nombre d’observa-
tionsm, et un niveauδ ∈ (0, 1) donńes, on construit explicitement un algorithme de prédiction
dépendant den,m et δ, tel que, avec probabilité au moins1 − δ, cet algorithme ne demande pas
à voir plus dem observations et encourt un regret borné par

∀ t = 1, . . . , n Rt = L̂t − min
i=1,...,N

Li,t 6 2n

√
lnN

m
+ 6n

√
ln(4N/δ)

m

contre toute strat́egie de l’adversaire diabolique (ou tout comportement de l’environnement).

Une variante simple de l’algorithme du théorème ci-dessus, dont les performances sont ana-
lysées par des techniques de martingales, encourt un regret borné par une quantité de l’ordre de√
nL∗

n ln(Nn)/m+(n/m) lnN , ce qui forme une amélioration pour les pertesL∗
n petites. En par-

ticulier, lorsqueL∗
n = 0, on retrouve le comportement décrit par Helmbold et Panizza [HePa97]

pour le cadre de prédiction binaire.
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On conclut par l’indication d’une borne inférieure sur le regret, qui résout le problème mini-
max associé à la prédiction avec un nombre limité d’observations. Elle est obtenue en utilisant les
techniques de l’estimation adaptative, et notamment une version du lemme de Fano généralisée à
des combinaisons convexes, déduite des travaux de Birgé [Bir05] (voir le lemme A.13). Mais au
lieu d’avoir à utiliser le lemme de Varshamov-Gilbert pourexhiber une famille finie de suites suffi-
samment écartées en distanceℓ1 et suffisamment proches en distance de Kullback-Leibler comme
c’est classiquement le cas, il nous suffit de choisirN mesures de probabilité sur toutes les suites
d’observations possibles, et de minorer le cas le pire par lemaximum des espérances sous ces
N probabilités. (Voir aussi l’utilisation de cette même technique par Auer, Cesa-Bianchi, Freund
et Schapire [AuCeFrSc02].) Après quelques manipulations propres au cas d’un algorithme de
prédiction séquentielle, l’application du lemme de Fanogénéralisé achève la preuve du théorème
suivant.

THÉORÈME 3 (voir Theorem 5.5).Il existe un ensemble d’observationsY, une fonction de
perteℓ : N × Y → [0, 1], et une constante universellec > 0 tels que, pour toutN > 2 et tout
n > m > 20 e

1+e ln(N − 1), l’esṕerance du regret de tout algorithme de prédiction (randomiśe
ou non), n’utilisant que les prédictions constantes indexées par{1, . . . ,N} et ne demandant pas
à voir plus dem observations sur une suite den d’entre elles, soit suṕerieureà

sup
y1,...,yn∈Y

E[Rn] = sup
y1,...,yn∈Y

(
E

[
n∑

t=1

ℓ(It, yt)

]
− min
i=1,...,N

n∑

t=1

ℓ(i, yt)

)
> c n

√
ln(N − 1)

m
.

Nous prouvons en particulier le résultat pourc =

√
e

(1 + e)
√

5(1 + e)
.

3.2. Contrôle réduit (jeux avec signaux).On étudie au chapitre 6 un autre cadre d’infor-
mation incomplète, dit de contrôle réduit (partial monitoring dans le texte). Dans cette situa-
tion, la forme de la fonction de perte importera beaucoup, eton se restreint àX = {1, . . . ,N},
Y = {1, . . . ,M}. On signifie par là que les ensemblesX etY doivent être finis, et que dans ce
cas, on renomme leurs éléments comme indiqué ci-avant. Les experts s’identifient simplement aux
actionsj = 1, . . . , N , au sens où pour toutt, fj,t ≡ j. (On a donc également̂pt = It.) Après avoir
prédityt parIt, le statisticien n’observe pasyt et n’a accès qu’à une variable de contrôleh(It, yt),
ou signal, oùh est une fonction dite de feed-back,h : X × Y → S, etS est un ensemble de si-
gnaux possibles. En particulier, le choix dept se fait en fonction uniquement des retoursh(Is, ys),
s 6 t− 1, et non plus en fonction des pertes passées des experts.

La situation oùh(x, y) = y, quels que soientx ∈ X et y ∈ Y, est celle décrite en section 1.1.
Celle oùh = ℓ correspond au problème des bandits manchots. Mais l’information donnée par la
fonction de feed-back peut être bien plus limitée, et un des buts de l’étude de ce problème est de
caractériser les paires(ℓ, h) pour lesquelles le regret peut être uniformément borné en o(n), et de
voir quelle est la vitesse minimax de convergence du regret sur l’ensemble de ces paires.

3.2.1. Origine du probl̀eme et́etat de l’art. La notion de contrôle réduit prend sa source dans
la théorie des jeux répétés à somme nulle, voir par exemple Mertens, Sorin et Zamir [MeSoZa94]
et Sorin [Sor02] pour des survols et des références aux premières formulations du problème.

Les travaux récents de Rustichini [Rus99] et Mannor et Shimkin [MaSh03] portent sur la
détermination, pour chaque paire(ℓ, h), de la meilleure quantité à laquelle on peut comparer la
perte cumuléêLn du statisticien. En général, ils considèrent donc des mesures de la qualité d’une
stratégie différentes du regretRn.

Les informaticiens que sont Piccolboni et Schindelhauer [PiSc01] et Helmbold, Littlestone
et Long [HeLiLo00] portent bien quant à eux leur attention sur le regret. Helmbold, Littlestone
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et Long [HeLiLo00] étudient le problème dans le cas particulier de la prédiction binaire où l’un
des experts ne commet aucune erreur,L∗

n = 0, pour une fonction de feed-backh définie par
h(x, y) = y si x = 0, eth(x, y) = 1 si x = 1. (Le retour sur prédiction n’est donc informatif que
quand 0 est prédit.)

Piccolboni et Schindelhauer [PiSc01] travaillent avec des fonctions de perteℓ et de feed-back
h générales, et proposent au passage des applications en informatique, au problème d’allocation
séquentielle de bande passante. Ils déterminent les paires (ℓ, h) qui permettent que l’espérance
Rn du regret soit uniformément bornée eno(n), et introduisent un algorithme tel queRn est
uniformément borné par une quantité de l’ordre den3/4 pour chacune de ces paires. Mertens, Sorin
et Zamir [MeSoZa94] exhibent quant à eux un cadre de prédiction(ℓ, h) tel qu’aucun algorithme
de prédiction ne peut encourir un regret plus petit qu’une quantité de l’ordre den2/3.

3.2.2. Résultats obtenus et techniques mises en œuvre.L’objet de nos travaux a été de combler
le fossé entre la borne inférieure et les bornes supérieures, et de déterminer la vitesse minimax de
convergence du regret, à savoirn2/3, en réétudiant l’algorithme général de [PiSc01]. Avec des
techniques similaires à celles du chapitre 5, on prouve l’alternative suivante, qui, au vu de la borne
inférieure proposée par Mertens, Sorin et Zamir [MeSoZa94], résout le problème minimax.

THÉORÈME 4 (voir Corollary 6.2).Pour tout probl̀eme de contr̂ole réduit (ℓ, h), si le regret
peutêtre borńe uniforḿement eno(n), alors la strat́egie de pŕediction de la section 3 du chapitre
6 encourt un regret majoré en esṕerance par une quantité de l’ordre den2/3. De plus, le regret est
également majoré avec probabilit́e 1 − δ par une quantit́e de l’ordre den2/3 ln(1/δ).

Les couples(ℓ, h) tels qu’un regret eno(n) puisse être atteint uniformément sont caractérisés
par [PiSc01] ; ce sont les couples(ℓ, h) tels qu’essentiellement,ℓ peut être reconstruite en un
certain sens à partir deh, ce qui permet de définir des estimateurs des pertesℓ(j, yt), oùj désigne
l’un quelconque des experts, à partir des quantités observées (lesh(It, yt)).

Par ailleurs, on a introduit une nouvelle preuve de la borne inférieure, sur un exemple différent
de celui de [MeSoZa94], en considérant une version modifiée d’un problème de prédiction avec
un nombre limité d’observations comme un problème de prédiction avec contrôle réduit. Avec
les mêmes techniques usuelles d’obtention des bornes inf´erieures en statistique minimax, déjà
utilisées par [AuCeFrSc02], à savoir une randomisation sur les observations et l’utilisation de
l’inégalité de Pinsker, on prouve le théorème suivant.

THÉORÈME 5 (voir Theorem 6.3).Pour le probl̀eme de contr̂ole réduit inspiŕe par la pŕedic-
tion avec un nombre limité d’observations, d́efini parN = 3, M = 2 et des fonctionsℓ et h
correctement choisies, pour toutn > 8 et pour toute strat́egie de pŕediction (randomiśee ou non),

sup
y1,...,yn∈Y

E[Rn] = sup
y1,...,yn∈Y

(
E

[
n∑

t=1

ℓ(It, yt)

]
− min
i=1,2,3

n∑

t=1

ℓ(i, yt)

)
>
n2/3

5
,

où E est l’esṕerance par rapport̀a la randomisation auxiliaire qu’utilise la stratégie.

Enfin, nous motivons le problème de prédiction avec contrˆole réduit par l’exemple suivant, dit
d’ajustement séquentiel du prix de vente, qui est une version modifiée d’un modèle introduit par
Kleinberg et Leighton [KlLe03]. Il permet notamment d’obtenir des stratégies de vente deproduits
sur Internet.

EXEMPLE 1. A chaque past, un client se présente pour acheter un produit donné. Il r´ealise
l’achat si le prix affiché par le commerçant,It ∈ [0, 1], est inférieur au prix seuilyt ∈ [0, 1] qu’il
a, consciemment ou inconsciemment, en tête. Si l’achat esteffectué, le commerçant encourt une
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perte, un manque à gagner, deyt − It (il aurait pu élever son prix et gagner plus). Si le client
ressort sans acheter, la perte du commerçant est fixe et correspond aux frais de stockage,c ∈ [0, 1].
Cependant, pour améliorer sa stratégie de vente, le commerçant n’a pas accès auxyt – que les
clients eux-mêmes seraient bien en difficulté de préciser. Tout ce qu’il voit, c’est si l’achat a eu lieu
(h(It, yt) = 1) ou non (h(It, yt) = 0). Le but du commerçant est de réaliser un chiffre d’affaires
presqu’aussi élevé que le meilleur prix constantp∗ ∈ [0, 1] pour la suite donnée de clients. (Ce
prix est par exemple celui qu’aurait peut-être proposé une étude de marché préalable.)

On explicite un algorithme randomisé tel que le regret,id est, la différence des pertes cu-
mulées entre notre stratégie et celle du meilleur prix constant, croı̂t à la vitesse sous-linéairen4/5,
quelque soit la suite des clients (de sorte que le regret rapporté au nombre de clients tend vers
0). Cet algorithme repose sur celui du théorème 4, coupe l’intervalle des temps en segments de
longueurs exponentiellement croissantes, et prend un nouveau départ au début de chaque segment,
en discrétisant de plus en plus finement l’ensemble des prix[0, 1] dans chaque segment.

4. Importation de la notion de regret interne pour des fonctions de perte ǵenérales

Nous spécifions désormais la fonction de perte, ci-dessous en (1.6), et nous pouvons nous
affranchir de l’hypothèse de prédiction randomisée en exploitant sa structure, et notamment sa
concavité.

4.1. Investissement dans le march́e boursier et regret interne. Le chapitre 7 importe la
notion de regret interne dans le cadre de l’investissement séquentiel dans le marché boursier, en
montre sa pertinence, introduit des algorithmes le minimisant, et discute les résultats financiers
obtenus sur des données réelles.

4.1.1. (Absence de) modélisation du march́e par suites individuelles.Un domaine assez na-
turel d’application des suites individuelles est l’investissement séquentiel dans le marché boursier.
Modéliser les évolutions de ce dernier étant un problème notoirement difficile, on peut être tenté
de simplement décrire ses évolutions par le biais de rapports d’évolution, définis de la sorte. On
considèreN valeurs boursières, indexées par les entiers{1, . . . ,N}. L’évolution de laj-ième
valeur du jourt au jour t + 1 est décrite par le facteur multiplicatifxj,t, qui représente le rap-
port entre le prix d’ouverture dej au jourt + 1 sur son prix d’ouverture de la veille. On définit
xt = (x1,t, . . . , xN,t) ∈ RN

+ , et on l’appelle le vecteur d’évolution du marché au jourt. Cette
modélisation en forme de description, par suites individuelles, qui contraste fortement avec les
modélisations stochastiques (essentiellement par des mouvements browniens), a été proposée par
Cover [Cov91].

Il définit une stratégie d’investissement dans le marchéboursier comme une suite de fonctions ;
la t-ième de ces fonctions associe à un historique de vecteursd’évolutionx1, . . . ,xt−1, un porte-
feuille Bt, c’est-à-dire une distribution de probabilité sur les valeurs boursières, indiquant quelle
proportion, chaque jour, des capitaux totaux est ré-investie dans chacune des valeurs boursières.
Avec ces notations, au début du jourt+ 1, nos capitaux sont

Bt · xt =

N∑

j=1

Bj,txj,t

fois plus importants que ceux de la veille à la même heure.
Formellement, pour retrouver le cadre du début de la section 1.1, on choisit pour ensembleX

de prédictions le simplexe d’ordreN , et pour ensemble d’observationsY l’ensemble de tous les
vecteurs d’évolution envisageables, à savoirY = RN

+ . La qualité des stratégies d’investissement
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est mesurée par une fonction de perte logarithmique

(1.6) (B, x) ∈ X × RN
+ 7→ ℓ(B,x) = − ln(B · x)

et on se compare au meilleur portefeuille constant de placement. Un tel portefeuille ré-investit
invariablement chaque jour selon la même distribution fixeB. Ainsi, le regret est défini par

(1.7) Rn = sup
x1,...,xn∈RN

+

n∑

t=1

ℓ(Bt,xt) − min
B∈X

n∑

t=1

ℓ(B,xt) = sup
x1,...,xn

max
B∈X

n∑

t=1

ln
B · xt
Bt · xt

.

Notons que l’on considère une classe continue de stratégies de comparaison.
Borner ce regret, c’est rendre uniformément petit lelog-rapport entre l’argent gagné par le

meilleur portefeuille constant de placement et celui obtenu par la stratégie d’investissement con-
sidérée ; or, Cover et Thomas [CoTh91] prouvent que les portefeuilles constants de placement
forment une classe de comparaison riche, obtenant de bons r´esultats financiers. Différentes straté-
gies bornant ce regret existent, notamment le portefeuilleuniversel de Cover [Cov91] et la stratégie
EG de Helmbold, Schapire, Singer et Warmuth [HeScSiWa98].

4.1.2. Etat de l’art. Cover et Ordentlich [Cov91, OrCo98] établissent que la vitesse mini-
max de convergence du regret (1.7) est de

√
N lnn. Ils exhibent dans [Cov91, CoOr96] un al-

gorithme réalisant cette vitesse minimax, et ils l’appellent le portefeuille universel. Ce dernier est
construit à partir de moyennes sur les portefeuilles constants de placement, pondérées par les per-
formances de chacun de ces derniers. C’est l’équivalent encontinu de (1.3), et en particulier, la
détermination deBt nécessite de calculer des intégrales portant sur tout le simplexe. Ce dernier
point nécessite un nombre d’opérations élémentaires exponentiel enN , et est donc très gourmand
en temps. Cover et Ordentlich eux-mêmes [Cov91, OrCo98] utilisent une discrétisation du sim-
plexe et remplacent les intégrales par des sommes pour leurs simulations pratiques. Certes, Kalai
et Vempala [KaVe03a] proposent des méthodes stochastiques plus fines et moins coûteuses en
opération pour obtenir une mise en œuvre (d’une approximation stochastique) du portefeuille uni-
versel, mais l’avancée la plus significative semble être l’algorithme EG de Helmbold, Schapire,
Singer et Warmuth [HeScSiWa98].

Ces derniers donnent deux versions deEG, l’une nécessitant que les rapports d’évolution du
marché soient toujours compris entre deux valeurs connuesm > 0 etM et bornant le regret par
une quantité de l’ordre de(M/m)

√
n lnN , et l’autre bornant le regret par rapport àtoutesles

évolutions possibles par une quantité de l’ordre den3/4. Cette seconde version deEG forme ainsi
un algorithme universel d’investissement, et sa complexité de mise en œuvre est linéaire enn et
N2. Blum et Kalai [BlKa99] proposent une extension du portefeuille universel de Cover [Cov91]
au cas d’un marché avec frais de transactions, mais pour l’instant, rien de semblable n’a pu être
prouvé pour un algorithme facile à mettre en œuvre, telEG. On peut aussi citer les travaux de
Singer [Sin97] et Borodin, El-Yaniv et Gogan [BoElGo00], qui se focalisent essentiellement sur
l’obtention de meilleurs résultats pratiques par des méthodes du type de celles utilisées en suites
individuelles.

4.1.3. Résultats obtenus.Un premier travail a consisté à réétudier l’algorithmeEG et à en
proposer une analyse plus fine et plus simple, en lien avec le théorème 1 ci-dessus (voir section
2 du chapitre 7). Dans un deuxième temps, l’analyse a été poussée jusqu’à obtenir une vitesse de
convergence pour le regret améliorée enn2/3 pour une version universelle deEG (voir section 6.1).

Mais le travail a principalement consisté à importer la notion de regret interne, issue de la
théorie des jeux répétés, dans le cadre de l’investissement séquentiel dans le marché boursier.
Le regret interneRint

n d’une stratégie est défini comme la différence entre les résultats financiers
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obtenus par la stratégie et la meilleure de l’ensemble de ses modifications simples (linéaires), i.e.

Rint
n = sup

x1,...,xn

n∑

t=1

ℓ(Bt,xt) − min
L∈L

n∑

t=1

ℓ(L(Bt),xt) = sup
x1,...,xn

max
L∈L

n∑

t=1

ln
L(Bt) · xt

Bt · xt
,

oùL est l’ensemble des applications linéairesX → X . (Remarquer la similarité avec (1.4).) La
notion de regret interne correspond à l’envie du courtier de ne pas voir son travail critiqué par
ses clients : ces derniers, au tourn, considèrent la stratégie d’investissement de leur courtier, et
regardent quels auraient été leurs capitaux, la suite desvecteurs d’évolution étant égale par ailleurs,
au vu de changements simples, comme par exemple oublier la valeur boursièrei, et investir chaque
jour tout ce qu’on avait mis dansi sur la valeur boursièrej. Ceci correspond à un changement
linéaire des portefeuilles d’investissementBt.

Après avoir prouvé que les stratégies existantes n’assuraient pas en général que ce regret in-
terne est petit, on introduit de nouvelles stratégies, quià la fois sont compétitives par rapport aux
portefeuilles constants de placement et encourent un regret interne uniformément borné eno(n).
On obtient, exactement comme pour le regret externe (1.7), des stratégies assurant simultanément
des bornes supérieures uniformes sur les regrets interne et externe, de l’ordre, selon la complexité
de mise en œuvre des algorithmes, deN lnn (pour un algorithme semblable au portefeuille univer-
sel, non implémentable en pratique, notamment de complexité exponentielle enN ) et de

√
n lnN

oun2/3 (pour une famille d’algorithmes simples à mettre en œuvre).
Pour cette dernière, des simulations sur des données réelles ont prouvé que ces nouvelles

stratégies obtenaient de bien meilleurs résultats en pratique que les stratégies pré-existantes, et ce,
pour une complexité en temps similaire (voir l’appendice du chapitre 7).

4.2. Application en théorie des jeux ŕepétés. Le chapitre 8 répond à une question naturelle
survenue lors de la minimisation du regret interne dans le marché boursier, déterminer si la notion
de regret interne nouvellement définie était la bonne généralisation de celle proposée en théorie
des jeux.

Or, une propriété remarquable établie par Foster et Vohra [FoVo97, FoVo99] est que dans
un jeu fini répété àN joueurs, si chaque joueur joue de telle sorte que son regret interne (1.4)
est uno(n), alors la suite des fréquences empiriques des profils d’actions joués converge vers un
ensemble d’équilibres, celui des équilibres corrélés. Or, les résultats de la section 2 ci-dessus et
ceux du chapitre 3 montrent que le regret interne peut être majoré uniformément eno(n). D’autres
procédures garantissant la convergence vers l’ensemble des équilibres corrélés ont été introduites
par Fudenberg et Levine [FuLe99], Hart et Mas–Colell [HaMa00, HaMa01, HaMa02] et Leh-
rer [Leh97, Leh03]. Dans aucune de ces procédures les joueurs n’ont besoin decoordoner leurs
mouvements, chacun se concentre sur son propre regret (interne).

La notion d’équilibre corrélé a été introduite par Aumann [Aum74, Aum87] dans le cadre de
jeux finis, mais Hart et Schmeidler [HaSc89] l’ont étendue aux jeux infinis (à ensembles d’actions
non finis). C’est alors que nous avons voulu prouver que dans un jeu où les joueurs disposent cha-
cun (comme c’est le cas dans le marché financier) d’un ensemble d’actions convexe et compact, il
y a également convergence des fréquences empiriques des profils d’actions joués vers l’ensemble
limite des équilibres corrélés (au sens de [HaSc89]) du jeu originel dès que chaque joueur mini-
mise son regret interne.

Ce résultat et des algorithmes généraux de minimisationdu regret interne dans des jeux à
ensembles d’actions convexes compacts reposent sur des résultats d’analyse fonctionnelle, ainsi
que sur des théorèmes de point fixe de Schauder, et forment une extension au cas des jeux continus
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tant des résultats que, en partie du moins, des méthodes deFoster et Vohra [FoVo99], et Hart et
Mas-Colell [HaMa01].

5. Conclusion, perspectives et plan de la th̀ese

5.1. Conclusion.Un point de vue statistique a permis des avancées récentesen prédiction
des suites individuelles. On peut le retrouver notamment dans les travaux d’Auer, Cesa-Bianchi,
Freund et Schapire [AuCeFrSc02] et de Cesa-Bianchi et Lugosi [Lug01, CeLu05]. Cette thèse
illustre également l’intérêt d’un tel parti pris statistique.

[AuCeFrSc02] a notamment permis de réaliser que des bornes sur l’espérance du regret ne
sont pas suffisantes, et qu’il faut s’intéresser aux déviations à l’espérance, grâce à des inégalités
de concentration des martingales. Si les déviations sont d’un ordre supérieur à l’espérance, alors
l’algorithme de prédiction doit être modifié jusqu’à ceque ce ne soit plus le cas. Pour tous les
algorithmes introduits aux chapitres 5 et 6, nous avons soigneusement traité les déviations à la
moyenne. Au chapitre 4, le critère des déviations est utilisé à la remarque 4.5 pour choisir entre
deux algorithmes de prédiction.

Par ailleurs, [AuCeFrSc02] a introduit une première preuve d’obtention de borne inf´erieure ne
calculant pas récursivement (une borne inférieure sur) la valeur du jeu répété associé au problème
de prédiction, comme c’est le cas par exemple dans Cesa-Bianchi, Freund, Haussler, Helmbold,
Schapire et Warmuth [CeFrHaHeScWa97] (prédiction avec information complète), Mertens, So-
rin et Zamir [MeSoZa94] (prédiction avec contrôle réduit), Helmbold et Panizza [HePa97] (pré-
diction avec un nombre limité d’observations). Ils utilisent au contraire une randomisation sur les
observations et l’inégalité de Pinsker. Ils ne résolvent cependant le problème minimax associé à la
prédiction dans le cadre de bandits manchots qu’à un facteur

√
lnN près. Le théorème 5 semble le

premier cas où les techniques usuelles de l’estimation minimax, et notamment un lemme de Fano
correctement généralisé (voir le lemme A.13), ont permis de résoudre totalement le problème mi-
nimax sans s’intéresser à la valeur du jeu.

Enfin, une contribution essentielle des statisticiens a été de mieux formaliser l’énoncé des
problèmes minimax associés à la prédiction de suites individuelles. Aucune référence classique
n’est encore vraiment disponible, seule la pratique mathématique a parlé pour l’instant et a montré
comment les théoriciens des suites individuelles formalisaient leurs problèmes minimax. Une telle
description précise et explicite est proposée à la fin du chapitre 2.

5.2. Plan de la th̀ese. Voici maintenant le parcours que nous allons suivre. Le plandu ma-
nuscrit est indiqué en figure 2, et il se lit de bas en haut. Un trait plein signifie que le chapitre situé
en haut du trait repose sur les résultats du chapitre situésous le trait. Un trait pointillé signifie que
seuls certains résultats, le plus souvent énoncés à la fin du chapitre, nécessitent la lecture du cha-
pitre où le trait prend sa source. C’est par exemple le cas pour l’étude du regret interne en contrôle
réduit, étudié tout à la fin du chapitre 6, et qui, notons-le, réunit et fait se rencontrer en quelques
pages les deux grands types de résultats considérés, ceux pour la prédiction en situations d’infor-
mation incomplète (partie 2, chapitres 5 et 6) et ceux s’intéressant aux extensions de la définition
du regret interne (partie 3, chapitres 7 et 8). La partie 1 estintroductive, au sens où elle porte sur les
fondements de la théorie des suites individuelles et résume les contributions apportées à la racine
de la théorie. Le chapitre 2 introduit mathématiquement le sujet dans un cadre très formel, puis
les chapitres 3 et 4 présentent respectivement les résultats fondamentaux dont on aura besoin pour
les parties 3 et 2. Le manuscrit de thèse s’achève par un chapitre de rappels et d’extensions de
résultats fondamentaux de statistique et théorie de l’information, et par l’indication des références
bibliographiques.
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FIG. 2. Plan et organisation du manuscrit de thèse

5.3. Perspectives.Tout au long du manuscrit, les questions ouvertes sont soulignées par des
environnements dédiés, de la forme suivante.

OPEN QUESTION 1.1. Avec ici l’énoncé de la question ouverte.

Une quinzaine de telles questions sont soulignées, et les plus importantes portent sur la déter-
mination des ordres de grandeur minimax enN sur le regret interne en information complète et
sur ceux du regret externe dans certains problèmes à information incomplète (bandits manchots,
contrôle réduit). Toutes se situent dans la droite ligne des travaux présentés. On décrit brièvement
ci-dessous deux autres axes de recherche futurs.

Le premier concerne la validation des méthodes de prédiction par suites individuelles. Hor-
mis le cas de l’investissement séquentiel dans le marché boursier du chapitre 7, peu de simula-
tions sur des données réelles ont été effectuées jusqu’à présent. Elles permettraient notamment de
déterminer sur d’autres exemples à quel point il est souhaitable en pratique de tenir compte de tout
le passé, comme le requièrent la plupart des algorithmes de prédiction par suites individuelles, et
pas seulement du passé le plus proche.



24 CHAPTER 1. PŔELUDE ET VUE D’ENSEMBLE DES ŔESULTATS

Par ailleurs, un exemple d’obtention de vitesses de convergence rapides, dans le cadre des
suites individuelles et pour des fonctions de perte arbitraires, est présenté au chapitre 4, en section
4.5. Rappelons que ces vitesses rapides ont été largementau centre de l’attention ces dernières
années dans les problèmes demachine learningconnus sous le nom de classification (ou appren-
tissage statistique). Des liens profonds existent entre classification et prédiction de suites indivi-
duelles. Dans la présentation suivante du problème de la classification, les références sont le livre
de Devroye, Györfi et Lugosi [DeGyLu96], et le récent survol [BoBoLu05] des avancées récentes
dans le domaine, écrit par Boucheron, Bousquet et Lugosi. En classification, on s’intéresse à une
quantité appelée risque empirique, qui est l’équivalent du regret (externe) en prédiction de suites
individuelles. La procédure de minimisation du risque empirique permet d’obtenir une borne en
1/
√
n (oùn est le nombre d’exemples à classer) sur le risque empirique. Mais Mammen et Tsy-

bakov [MaTs99, Tsy02] ont été les premiers à montrer que des vitesses de convergence plus
rapides, entre1/n et 1/

√
n, pouvaient être obtenues, sous des conditions sur la distribution des

exemples. Ses conditions ont été étendues et généralisées, notamment par Massart et Nédélec
[MaNe03]. Récemment, Steinwart et Scovel [StSc05] se sont intéressés avec succès à l’obtention
de vitesses rapides en classification, mais pour des procédures deSVMs [support vector machines],
qui présentent l’avantage de pouvoir être mises en œuvre.(La procédure de minimisation du risque
empirique souffre en général d’une complexité de calcultrop grande, et est essentiellement d’un
intérêt théorique.) L’idée serait alors de transposerces résultats en prédiction de suites indivi-
duelles, et d’obtenir des algorithmes de prédiction qui assurent que le regret croı̂t strictement plus
lentement que

√
n sur une large classe de suites d’observations, la vitesse

√
n étant au moins at-

teinte par l’algorithme de pondération exponentielle (1.3). La section 3.1 du chapitre 2 montre
certes qu’une version de ce dernier atteint une vitesse de l’ordre de

√
L∗
n pour la convergence du

regret, et qu’il y a ainsi convergence rapide dès queL∗
n croı̂t plus lentement quen. Mais une telle

condition ne conduit pas à une classe suffisamment grande desuites d’observations.
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CHAPTER 2

Prediction of individual sequences, mathematical framework

This chapter describes the basics of sequential prediction. With the terminology introduced
in the subsequent chapters, it corresponds to the minimization of external regret in a model with
full information, and is meant to be a toy case for the rest of the thesis. It is partially based on
the lectures [Lug01] that Gábor Lugosi gave atIHP four years ago. Most of the material presented
here is already part of the folklore of prediction with expert advice, except maybe the discussion
about unbounded losses and the concentration of refined expert bounds, but it is presented with a
new viewpoint, allowing us to derive new results, and sometimes with simpler proofs.
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1. Sequential prediction of individual sequences

The problem of sequential prediction may be cast as a repeated game between a decision-
maker – also called below the forecaster, the statistician,the predictor, or even the prediction
algorithm – and an environment – also called below the opponent player. The decision maker
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has to predict an unknown (outcome) sequencey1, y2, . . . of elements from anoutcome spaceY.
His predictionsp̂1, p̂2, . . . belong to aprediction space(also calleddecision space) X . X andY
are usually completely arbitrary spaces, and may even be different. The forecaster computes his
predictions in a sequential fashion.

The traditional approach in statistics to such problems first assumes the existence of a sto-
chastic model for the generating mechanism of the outcome sequence and then investigates the
possibilities, and limitations of the prediction of such random sequences. For example, in many
applications the sequence is assumed to be a realization of some stationary process. This ap-
proach works in many cases when a tractable statistical model reasonably describes the underlying
process. However, there exist situations where any statistical model is doomed to failure and more
robust prediction methods are required. Typical examples of hard-to-model processes emerge, for
instance, in mathematical finance or in the study of internetdata streams.

The purpose of the theory of prediction of individual sequences is to provide some techniques
of robust prediction and discuss their possibilities, limitations and difficulties. The robustness
is in considering all possible sequences of outcomesYN. This is where the name “individual
sequences” comes from.

1.1. Prediction using expert advice.Since we avoid any assumption on the sequence to be
predicted, it is not immediately clear how the problem can bemade meaningful. One popular
possibility is to compare the predictive performance of thedecision-maker to those of a set of
reference forecasters which we callexperts. We assume throughout this chapter that there is a
finite numberN of such experts. The sequential prediction protocol is described in Figure 1.
The experts may be chosen by the opponent player, but withoutloss of generality we may also
assume that their predictions are computed thanks to prior efficient prediction techniques, for
instance, they may be given by some statistical estimators.The experts may be thought of as being
misleading when the decision-maker faces a malicious opponent, or as giving helpful hints on the
sequence to be predicted when they are scientific experts with worthwhile advice. We have such
an open interpretation because we build below forecasting procedures competitive with respect to
all possible strategies of the opponent player.

Formally, at each roundt = 1, 2, . . ., the decision-maker has access to the whole history of
plays that consists in the past outcomesy1, . . . , yt−1 and in the past experts’ predictions, as well
as to the present experts’ predictionsf1,t, . . . , fN,t, the latter depending on the history of plays as
well. (That is, the forecaster’s decision must not depend onany of the future outcomes.)

The goal of the forecaster is to predict almost as well as the best expert. To make this notion
mathematically precise, we introduce below a measure of thequality of the predictions formed by
the decision-maker and the experts. This measure is given bya so-called loss function.

1.2. The regret as a measure of the quality of the predictions. A loss functionis any map-
ping ℓ : X ×Y → R. Note that we often restrict our attention to bounded nonnegative losses, that
is, to loss functionsℓ : X × Y → [0, B], whereB > 0. We define the cumulativeregret of the
decision-maker with respect to thei-th expert of the given class of experts by

Ri,n =

n∑

t=1

ℓ(p̂t, yt) −
n∑

t=1

ℓ(fi,t, yt) = L̂n − Li,n ,

whereL̂n andLi,n denote, respectively, the cumulative loss of the decision-maker and that of
experti,

L̂n =

n∑

t=1

ℓ(p̂t, yt) , Li,n =

n∑

t=1

ℓ(fi,t, yt)
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SEQUENTIAL PREDICTION

Parameters: Prediction spaceX , outcome spaceY, number of expertsN , number of game
roundsn (n = ∞ is allowed).

For each roundt = 1, 2, . . . , n,

(1) the environment publicly chooses the experts’ predictionsf1,t, . . . , fN,t ∈ X , and
the forecaster has an immediate access to them;

(2) the forecaster privately forms its prediction̂pt ∈ X, and simultaneously, the envi-
ronment privately chooses the outcomeyt ∈ Y;

(3) the prediction̂pt and the outcomeyt are made public.

FIGURE 1. Sequential prediction as a repeated game between the forecaster and
the environment.

(with the convention thatLi,0 = 0 for all expertsi). The cumulative regret with respect to the
finite class of experts is simply

Rn = max
j=1,...,N

Rj,n = L̂n − min
i=1,...,N

Li,n .

Throughout the thesis, we make the dependencies in the played actions and chosen predictions
implicit.

The goal of the decision-maker is that his per-round regret goes to zero, so that he asymp-
totically performs almost as well as the best expert. Note that the latter may only be determined
in hindsight whereas the decision-maker has to predict sequentially. We seek on-line forecasting
strategies that perform almost as well as the best of those off-line strategies that correspond to
predicting at each round according to the same expert.

Formally, we want to ensure

1

n

(
L̂n − min

i=1,...,N
Li,n

)
−−−→
n→∞

0 ,

where the convergence is uniform over all strategies of the opponent player, that is, over all out-
come sequences and all sequences of expert advice.

This ambitious goal may be achieved when the loss functionℓ has some special properties,
for instance, when the decision spaceX is convex andℓ is also convex in its first argument, see1

[Lug01].

1.3. Randomized prediction using expert advice.Unless we allow some more power or
some more freedom to the decision-maker, this goal is however unachievable in general. Con-
sider, for instance, the case of 0–1 loss,X = Y = {0, 1} andℓ(x, y) = I[x 6=y], which corresponds
to predicting a binary sequence. Assume that the decision-maker is supplied with two experts, one
of them always predicting 1, and the other one always predicting 0. It is clear that for any determin-
istic strategy of the predictor, there exists an outcome sequence(y1, . . . , yn) = yn1 such that the
predictor errs at every single time instant, that is,L̂n = L̂n(y

n
1 ) = n. On every outcome sequence,

one of the two experts suffers a cumulative loss less thann/2, min{L1,n(y
n
1 ), L2,n(y

n
1 )} 6 n/2.

Therefore, for all deterministic strategies of the decision-maker,

sup
yn
1 ∈Y

n

(
L̂n(y

n
1 ) − min {L1,n(y

n
1 ), L2,n(y

n
1 )}
)

>
n

2
.

1The forecasters built therein rely on the same weighted average techniques as in Section 2.
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RANDOMIZED SEQUENTIAL PREDICTION WITH EXPERT ADVICE

Parameters: Prediction spaceX , outcome spaceY, number of expertsN , number of game
roundsn (n = ∞ is allowed).

For each roundt = 1, 2, . . . , n,

(1) the environment publicly chooses the experts’ predictionsf1,t, . . . , fN,t ∈ X , and
the forecaster has an immediate access to them;

(2) the forecaster privatelya chooses a probability distributionpt = (p1,t, . . . , pN,t) over
the set of experts, draws an expertIt at random according topt, and predicts as
p̂t = fIt,t;

(3) simultaneously, the environment privately chooses theoutcomeyt ∈ Y;
(4) the outcomeyt and the prediction̂pt are made public.

aSection 1.4 indicates that the choice ofpt could be made public, provided thatIt is drawn privately

FIGURE 2. Randomized sequential prediction with expert advice as arepeated
game between the forecaster and the environment.

This is why we allow the decision-maker to randomize, and focus below onrandomized pre-
diction using expert advice. This problem has been studied extensively since Blackwell[Bla56]
and Hannan [Han57], see the numerous references in the sections below and in the next chapters.
From time to time however, we will go back to non-randomized prediction, see, for instance, Sec-
tion 2.2 in Chapter 3, as well as Chapters 7 and 8. But for now, we assume that the predictor is
given an i.i.d. sequenceU1, U2, . . . of random variables with uniform law on[0, 1]. His forecasting
strategy is given by means of probability distributionsp1,p2, . . . computed using the whole past
history and the present experts’ advice. At roundt, he usesUt to draw an expertIt at random
according topt, see Figure 2. Then he predicts as expertIt. His cumulative loss is thus given by

L̂n =
n∑

t=1

ℓ(fIt,t, yt)

and as before, we aim at comparing it to the cumulative lossesLj,n of the expertsj = 1, . . . ,N .
However, as indicated below, we first seek uniform bounds forthe expected regrets, where the
expectation is taken with respect to the auxiliary randomization the forecaster has access to, and
return to the general case of non-expected regret in Section3.3. To define precisely what we mean
by uniform bounds, we first describe in detail how the behavior of the opponent player is modelled.

1.4. Different models for the opponent player.Without loss of generality, we assume that
the opponent player has a deterministic strategy. This we can do since we take first the supremum
of the (expected) regrets over all his possible strategies before considering the infimum over all
forecasting strategies for the decision-maker, see the comments after (2.9).

1.4.1. General (game-theoretic) opponents.Therefore, in general, a strategy for the environ-
ment is denoted by(g, h1, . . . , hN ) and is given by any choice ofN + 1 sequences of functions
g = (g1, g2, . . .) andhj = (hj,1, hj,2, . . .), j = 1, . . . ,N . By convention,X 0 is the empty set. For
t > 1, the functiongt mapsX t−1 into X , and so do also the functionsh1,t, . . . , jN,t. The experts’
predictions at roundt equalfj,t = hj,t(p̂1, . . . , p̂t−1) and the outcome isyt = gj(p̂1, . . . , p̂t−1).
All these quantities are random, since the forecaster’s predictions are random. The outcome
yt and the experts’ advicefj,t are measurable with respect to theσ–algebra generated by the
U1, . . . , Ut−1, and even with respect to the one of theI1, . . . , It−1.
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Till Section 3.3, we focus on theexpected regret

(2.1) Rn = max
i=1,...,N

n∑

t=1

ℓt(pt) −
n∑

t=1

ℓi,t = max
i=1,...,N

n∑

t=1

N∑

j=1

pj,tℓ(fj,t, yt) −
n∑

t=1

ℓ(fi,t, yt) ,

where we denoted for allt = 1, 2, . . . andi = 1, . . . ,N ,

ℓt(pt) =

N∑

j=1

pj,tℓ(fj,t, yt) and ℓi,t = ℓ(fi,t, yt) .

We call this quantity an expected regret, but it is still a random quantity. Actually, it is defined as
a sum of conditional expectations, since for allt > 1,

ℓt(pt) = E [ℓ(p̂t, yt) |U1, . . . , Ut−1] .

Martingales inequalities allow us to deal first with these expected regrets, see Section 3.3 below.
We may now define completely the prediction problem, see Figure 3. Bounds that are uniform

A IM OF THE DECISION-MAKER

We want to design randomized forecasting strategies whose expected regrets are uniformly
bounded as

sup
g, h1,...,hN

Rn 6 ψn ,

whereψn = o(n) is a deterministic sequence of positive numbers, and the supremum is over
all possible strategies(g, h1, . . . , hN ) of the opponent player.

FIGURE 3. The final statement of the problem of randomized prediction with
expert advice

in the behavior of the opponent player correspond to worst-case bounds, that is, we may assume
that our opponent player knows our (randomized) strategy, and reads our mind. But since our
opponent does not control2 the auxiliary randomization we use, we still have a chance tobeat him,
in the sense that we still may complete the plan proposed by Figure 3. This is the purpose of
Section 2.

1.4.2. Oblivious opponents.We sometimes consider a weaker model for the opponent play-
ers, in which neither the experts’ predictions nor the outcomes depend on the decision-maker’s
predictions. Such opponents are calledobliviousand determine seemingly the outcome sequence
and the experts’ predictions before the game starts.

The model of an oblivious opponent is realistic whenever it is reasonable to believe that the
actions of the forecaster do not have an effect on future outcomes of the sequence to be predicted.
This is the case in many applications, such as weather forecasting or predicting a sequence of bits
of a speech signal for encoding purposes. This may even be thecase for sequential investment in
the stock market, as long as we invest only little money and have not too large returns. However
there are important cases when one cannot reasonably assumethat the opponent is oblivious. The
main example is when a player of a game predicts the other players’ next moves and bases his
action on such a prediction. In such cases the other players’future actions may depend on the

2Put differently, our opponent is the devil, but we may still beat him under the assumption that Somebody stronger than
the devil throws the dices in this world.
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action (and therefore on the forecast) of the player in any complicated way. This is the case, for
instance, in the prisoner’s dilemma.

2. Weighted average prediction

In this section we first study the case of the so-calledexponentially weighted average predictor
(or exponentially weighted majority predictor), and then define formally the notion of weighted
average3 prediction by indicating a large class of regret minimizingforecasters built on the same
model.

2.1. The exponentially weighted majority predictor. In this section we derive regret bounds
for a version of the weighted majority forecaster of Littlestone and Warmuth [LiWa94], see also
Vovk [Vov90]. We consider an exponential reweighting. The resulting forecaster relies on a tuning
parameterη > 0, and given this parameter, uses the distributionsp1 = (1/N, . . . , 1/N), andpt,
defined fort > 2 by

(2.2) pi,t =
exp

(
η
∑t−1

s=1 (ℓs(ps) − ℓi,s)
)

∑N
j=1 exp

(
η
∑t−1

s=1 (ℓs(ps) − ℓj,s)
) =

e−ηLi,t−1

∑N
j=1 e

−ηLj,t−1
for i = 1, . . . ,N ,

where we used the notation introduced in the previous section. We note that this forecaster cor-
responds to a smoothed version of fictitious play, see [FuLe98], see also [CeLu03] and the refer-
ences therein.

Versions of the following theorem appear in Cesa-Bianchi [Ces99], and in Cesa-Bianchi and
Lugosi [CeLu99], see also Cesa-Bianchi, Freund, Helmbold, Haussler, Schapire, and Warmuth
[CeFrHaHeScWa97].

THEOREM 2.1. The exponentially weighted average forecaster with fixed tuning parameter
η > 0 achieves, uniformly over all possible values of the lossesℓi,t ∈ [0, B],

n∑

t=1

ℓt(pt) − min
i=1,...,N

Li,n 6
lnN

η
+
nη

8
B2 .

In particular, withη = (1/B)
√

8(lnN)/n, the upper bound becomesB
√

(n/2) lnN .

PROOF. For t > 1 andi = 1, . . . , N , we denotewi,t = e−ηLi,t−1 , andWt = w1,t + . . . wN,t,
so thatpi,t = wi,t/Wt. Thus, on the one hand,
(2.3)

ln
Wn+1

W1
= ln




N∑

j=1

e−ηLj,n


−lnN > ln

(
max

j=1,...,N
e−ηLj,n

)
−lnN = −η min

j=1,...,N
Lj,n−lnN ,

whereas on the other hand, for eacht = 1, . . . , n,

ln
Wt+1

Wt
= ln

∑N
j=1 e

−ηℓj,te−ηLj,t−1

∑N
j=1 e

−ηLj,t−1
= ln




N∑

j=1

pj,te
−ηℓj,t


 6 −η

N∑

j=1

pj,tℓj,t +
η2

8
B2 ,

where we applied Lemma A.1, due to Hoeffding [Hoe63]. Summing overt = 1, . . . , n, we get

ln
Wn+1

W1
6
nη2

8
B2 − η

n∑

t=1

ℓt(pt) .

3In this thesis we do not consider “follow the perturbed leader” techniques, see the seminal result of Hannan [Han57],
and, e.g., the analysis of Kalai and Vempala [KaVe03b], Hutter and Polland [HuPo04].
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Combining this upper bound with the lower bound (2.3) derived above and solving for the cumu-
lative expected loss conclude the proof. �

2.2. The doubling trick, and related on-line tunings. The above forecaster relies on the pre-
vious knowledge of the time horizonn and a boundB on the losses. In this section, we present a
version of the exponentially weighted algorithm which may be computed without previous knowl-
edge of the time lengthn. We deal only later with the knowledge of the boundB, in Section 3.2
and in Chapter 4. The techniques shown here, the doubling trick and the incremental update, are
however the key ingredients there also.

Even if there exist predictors that already in their basic implementations do not require the
knowledge of the horizonn, see Section 2.3 below, it is important to design a time-adaptive version
of the exponentially weighted forecaster, for the latter isa popular method, usually achieving good
results in practical situations (see, for instance, the experimental appendix of Chapter 7), and its
theoretical performances may also be improved in several ways, see Section 3 below, as well as
Sections 3 and 4 in Chapter 4.

2.2.1. The doubling trick.The doubling trick seems to be an old and well-known trick, not
only in the area of on-line learning and computer science, but also, for instance, in game theory. It
is not easy to trace back to the first formal statement of the trick, see perhaps [CeFrHaHeScWa97,
Vov98] and the references therein.

The idea is to partition time into periods of exponentially increasing lengths, indexed byr =

0, 1, . . .. Then in each periodr the exponentially weighted average forecaster is restarted, with a
parameterηr chosen optimally depending onr. In the simplest case presented here,ηr corresponds
to the optimal tuning parameter indicated by Theorem 2.1. Say that the length of periodr is ar

(the popular choicea = 2 explains the name of the trick, since then the periods are of doubling
lengths), so that the corresponding tuning parameters equal ηr = (1/B)

√
8(lnN)/ar, and the

r-th epoch is given by the time roundsar, . . . , ar+1 − 1. We get the following theorem.

THEOREM 2.2. The doubling version of the exponentially weighted averageforecaster, para-
metrized witha > 1, achieves, for alln and uniformly over all possible values of the losses
ℓi,t ∈ [0, B],

n∑

t=1

ℓt(pt) − min
i=1,...,N

Li,n 6 B

√
a(a− 1)√
a− 1

√
n

2
lnN +B (a− 1) .

For a = 2, the bound has a leading constant equal to1/(
√

2 − 1). This is not exactly the
optimal value fora, but is very close to it.

REMARK 2.1. The proof below works simply because, provided that there are at least two
regimes, that is,R > 1, we haven > 1 + a + . . . + aR−1. The factorn can be replaced by
sharper bounds, as long as an inequality of the above type maybe written. Denote the value of
such a bound at roundn byψn = ψn(y

n
1 , pn1 ). An inequality may be written whenever the sharper

bounds are nondecreasing as functions of the time roundsn, see the discussion before Theorem
4.3 in Chapter 4. Depending on their precise forms, we are then able to writeψn > aR−1, see the
proof of Theorem 4.3 in Chapter 4, and even in some cases,ψn > 1 + a+ . . . + aR−1. The latter
may be written for instance whenψn = n, ψn = ℓ1(p1) + . . . + ℓn(pn), orψn = L∗

n (whereL∗
n

is the cumulative loss of the best expert), see also, among others, Section 3.1 below or the proof
of Theorem 4.5 in Chapter 4.
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PROOF. We first use that the sum of minima is less than the minimum of the sums, and in
particular, decomposing time into the above mentioned periods, indexed byr = 0, 1, . . . , R, yields

n∑

t=1

ℓt(pt) − min
i=1,...,N

Li,n

6

R−1∑

r=0



ar+1−1∑

t=ar

ℓt(pt) − min
i=1,...,N

ar+1−1∑

t=ar

ℓi,t


+

(
n∑

t=aR

ℓt(pt) − min
i=1,...,N

n∑

t=aR

ℓi,t

)
.

We then apply Theorem 2.1 in each periodr, and get

(2.4)
n∑

t=1

ℓt(pt) − min
i=1,...,N

Li,n 6

R∑

r=0

√
ar

2
lnN = B

(
(
√
a)R+1 − 1√
a− 1

)√
lnN

2
.

On the other hand, provided thatR > 1,

n >

R−1∑

r=0

ar =
aR − 1

a− 1
, thus, (

√
a)R+1 6

√
a
√

1 + (a− 1)n .

Substituting the latter in (2.4), we get
n∑

t=1

ℓt(pt) − min
i=1,...,N

Li,n 6 B

(√
a
√

1 + (a− 1)n− 1√
a− 1

)√
lnN

2
.

The proof is concluded by using that
√
x+ y 6

√
x +

√
y for x, y > 0, and by noting that the

bound of the theorem is also true whenR = 0, that is, whenn 6 a− 1. �

2.2.2. Incremental updates of the exponentially weighted averageforecaster.The algorithm
is directly inspired by the work of Auer, Cesa-Bianchi, and Gentile [AuCeGe02]. (We indicate
here and in Section 3.1 how their bounds can be re-derived from the more general results presented
in Chapter 4.)

A natural adaptive version of the optimal parameterη determined in the case of known time
length is formed by defining the tuning parameter at roundt > 2, by ηt = B−1

√
8 lnN/(t− 1).

Now, the exponentially weighted average forecaster with time-varying tuning parameter predicts
with p1 = (1/N, . . . , 1/N), and at roundst = 2, 3, . . ., with pt defined by itsi-th components,
i = 1, . . . , N , as

(2.5) pi,t =
exp (−ηtLi,t−1)∑N
j=1 exp (−ηtLj,t−1)

.

A simple modification of the key argument of Auer, Cesa-Bianchi, and Gentile [AuCeGe02]
leads to Lemma 4.3. The latter, combined, for each roundt > 2, with an application of Hoeffding’s
inequality A.1, which shows that with the notation of Chapter 4,

Φ(pt, ηt, (−ℓi,t)i=1,...,N) 6
ηt
8
B2 ,

implies in turn the following theorem.

THEOREM 2.3. The exponentially weighted average forecaster with time-varying tuning pa-
rameter defined above achieves, for alln and uniformly over all possible values of the losses
ℓi,t ∈ [0, B],

n∑

t=1

ℓt(pt) − min
i=1,...,N

Li,n 6 B

(
2

√
n

2
lnN + 1

)
.
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Note that the main term is larger than the one of Theorem 2.1 bya factor of two. This is
the usual factor we get when dealing with the dependency in the time horizon in an incremental
way, see also the comments at then end of Section 3.1 below. Note also that not only the leading
constant is better for the bound of Theorem 2.3 than for the one of Theorem 2.2, but above all,
the forecaster takes no fresh start again and keeps on exploiting the whole past. This may result in
much sharper prediction in practice.

For refined leading constants, we refer to Yaroshinsky, El-Yaniv, and Seiden [YaElSe04], see
also Hutter and Poland [HuPo04].

2.3. Other functions for the reweightings. As we recall below, a whole family of predictors
with performance guarantees similar to those of the exponentially weighted forecaster may be
defined. See, for example, [CeLu03] for the details. The reweighting functions we consider in
this section are often called potential functions. We focusbelow on the class of forecasters based
on polynomial reweightings. These are of the formp1 = (1/N, . . . , 1/N), and, fort > 2,

pi,t =

(∑t−1
s=1 ℓs(ps) − ℓi,s

)p−1

+

∑N
j=1

(∑t−1
s=1 ℓs(ps) − ℓj,s

)p−1

+

.

wherep > 1 and(x)+ = max {x, 0} denotes the nonnegative part of the real numberx. Note the
similarity to (2.2), we simply replaced the exponential reweighting by a polynomial one. When
p = 2, we recover the forecasting strategy introduced by Blackwell [ Bla56].

These forecasters satisfy the following bound, see [CeLu03].

THEOREM 2.4. The polynomial reweighted forecaster withp > 1 achieves, for alln and
uniformly over all possible values of the lossesℓi,t ∈ [0, B],

L̂n − min
i=1,...,N

Li,n 6 B
√

(p− 1)nN2/p .

The upper bound is optimized forp = 2 lnN , and the latter choice leads toB
√

(2 lnN − 1)en.

Note that the forecasters using polynomial potentials do not require the previous knowledge
of the time length, contrary to the basic implementation of the exponentially weighted average
forecaster described above.

3. Refined bounds on the regret

3.1. Improvement for small losses.We recall in this section how the worst-case bound of
Theorem 2.1 may be improved so that it depends on the cumulative lossL∗

n of the best expert rather
than on the simple upper boundBn > L∗

n. This comes at the cost of a worse leading constant,
but results in a major improvement as soon asL∗

n is small, that is, more precisely, as soon asL∗
n

grows slower thanBn/4 – hence the name of the improvement. The first statement of such an
improvement for small losses is due to [LiWa94], see also [CeFrHaHeScWa97], who consider
the absolute loss prediction setting, given byX = [0, 1], Y = {0, 1}, andℓ(x, y) = |x− y|, and
an improved version in [FrSc97].

THEOREM 2.5. The exponentially weighted average forecaster (2.2) with fixed tuning para-
meterη > 0 achieves, for alln and for all possible values of the lossesℓi,t ∈ [0, B],

n∑

t=1

ℓt(pt) 6 B
ηL∗

n + lnN

1 − e−ηB
,
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whereL∗
n = min {L1,n, . . . , LN,n}. In particular, with

η =
1

B
ln

(
1 +

√
2B lnN

L

)
, whereL > 0 ,

the upper bound is less thanL∗
n +

√
2BL lnN for all outcome sequences such thatL∗

n 6 L.

The proof is taken from [FrSc97] and is similar to that of Theorem 2.1, except that it uses
the following lemma instead of Lemma A.1. (The proof of the lemma simply follows from the
convexity inequality

e−ηx 6 1 +
e−ηB − 1

B
x

for x ∈ [0, 1], andln(1 + u) 6 u for all u > −1.)

LEMMA 2.1. For any random variableX withX ∈ [0, B] and for anyη > 0,

E
[
e−ηX

]
6 −1 − e−ηB

B
E[X] .

PROOF (OF THEOREM 2.5). We simply modify the proof of Theorem 2.1, and replace the
call to Hoeffding’s inequality by an application of the above lemma. This leads, with the notation
therein, to the upper bound

ln
Wn+1

W1
6 −1 − e−ηB

B

n∑

t=1

ℓt(pt) ,

so that combining with (2.3), we get
n∑

t=1

ℓt(pt) 6
ηBL∗

n +B lnN

1 − e−ηB
.

We recall that for allx > 0, ex − e−x > 2x, so thatx 6 (1 − e−2x)/(2e−x). With x = ηB, we
get

ηBL∗
n +B lnN

1 − e−ηB
6

B lnN

1 − e−ηB
+

1 + e−ηB

2e−ηB
L∗
n = L∗

n +
B lnN

1 − e−ηB
+

1

2

(
eηB − 1

)
L∗
n

= L∗
n +

1 + α

α
B lnN +

α

2
L∗
n ,

where we defineα by ηB = ln(1 + α). We upper bound the second occurrence ofL∗
n by L and

note that the optimal choice forα is thenα =
√

2B lnN/L. Substituting this value concludes the
proof. �

We note that the bound proposed by Theorem 2.5 is the best one at our knowledge when the
value ofL∗

n is known beforehand. It can be used, in combination with a doubling trick, to get an
on-line algorithm, requiring only the knowledge ofB and ensuring that the regret is bounded by
something of the order of

√
BL∗

n lnN . (See, for instance, the proof of Theorem 4.5, which is
based on such an argument.)

However, to get improved constants, we need to resort to incremental updates. Similarly
to Section 2.2, the best current related adaptive version ofthe above forecaster suffers a loss
bounded, up to some constant terms, by2

√
2BL∗

n lnN – that is, we get again an extra factor
of 2, see the comments after Theorem 2.3. This forecaster is introduced by Auer, Cesa-Bianchi

and Gentile [AuCeGe02], and uses the incremental update (2.5) withηt ∼
√

(lnN)/L∗
t−1.
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We note also that in Chapter 4 we give another forecaster based on the exponentially weighted
average forecaster whose regret is less than4

√
BL∗

n lnN , up to some constant terms, see Corol-
lary 4.3. This forecaster uses an incremental variance-based update, and does not require previous
knowledge neither ofn nor ofB.

3.2. Unbounded losses.One may wonder if the losses need to range between0 and a fixed
constantB, or if they could just be given by any sequence of real numbers. On the negative side, it
is easy to see that there is no4 sequential predictor such that there exists a nondecreasing sequence
ψn, n > 1, such thatψn = o(n), and uniformly over all loss sequencesℓi,t ∈ R+, i = 1, . . . ,N

andt = 1, . . . , n,

Rn =
n∑

t=1

ℓt(pt) − min
i=1,...,N

Li,n 6 ψn .

On the positive side, if the losses are bound to increase not too quickly, and provided that the
rate of increase is known, something can be said. Assume thatat roundt, the lossesℓi,t are within
[0, Bt], whereBt is known and is non-decreasing witht. Define the tuning parameter at roundt
by

(2.6) ηt = B−1
t

√
a lnN/t ,

where the parametera > 0 is determined by the analysis in each particular case. This is a natural
adaptive version of the optimal parameterη determined in the case of known time length and
bounded losses, see Theorems 2.3 and 2.1.

Similarly to the proof of Theorem 2.3, Lemma 4.3 combined with an application of Hoeffd-
ing’s inequality A.1 implies the following theorem.

THEOREM 2.6. Given a nondecreasing sequence(Bt)n>1 of positive numbers, the exponen-
tially weighted average forecaster with time and bound-varying tuning parameter (2.6) achieves,
for all n and uniformly over all possible values of the lossesℓi,t ∈ [0, Bt],

n∑

t=1

ℓt(pt) − min
i=1,...,N

Li,n 6 2
√

lnN

(
Bn+1

√
n+ 1

a

)
+

√
a lnN

8

n∑

t=1

Bt√
t
.

We obtain non-trivial bounds wheneverBt 6 γt1/2−ε, whereγ is a constant andε > 0. We
could have used this theorem in Section 6 of Chapter 7. However, it turns out that in practice, we
rather apply the bound proposed by Theorem 4.4, which is moregeneral and more fundamental
(since the underlying forecaster does not need to know the sequence of theBt).

3.3. Bounds that hold with high probability. We indicated above in Section 1.4 that thanks
to some martingales inequalities, we could focus on expected regrets. We now develop this argu-
ment, and explain precisely why this is so.

Bounds that hold with high probability (also referred to as non-expected bounds below) are
more difficult to get than expected bounds. In fact, obtaining non-expected bounds of a larger order
of magnitude than the one of expected bounds indicates that the forecaster has to be modified. This
is the case, for instance, for the first forecaster describedin the section about multi-armed bandit
problems below, see the concerns about the deviations there. A related argument is also in Section
5 of Chapter 4, where we compare two second order forecasters, one point of comparison being
given by the deviations of the regret with respect to its expectation.

4Whereas this is not true for sequential randomized prediction under expert advice, this may be true in other settings,
like sequential investment, see Theorem 7.6 for instance.
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3.3.1.
√
n-rates of growth for the regret.We denoted byU1, U2, . . . the i.i.d. (according, say,

to a uniform law) sequence of auxiliary randomizations the forecaster has access to. His strategy is
given by the sequence of probability distributionsp1,p2, . . . and by the chosen expertsI1, I2, . . .,
which he both selects depending on the outcomesy1, y2, . . . chosen by the opponent and with the
help ofU1, U2, . . .. We explained in Section 1.4 thatyt is measurable with respect toI1, . . . , It−1,
and thus, with respect toU1, . . . , Ut−1. Hence, we have proved thatℓIt,t = ℓ(fIt,t, yt) is measur-
able with respect toU1, . . . , Ut and has conditional expectation with respect toU1, . . . , Ut−1 equal
to

ℓt(pt) =
N∑

j=1

pj,tℓ(fj,t, yt) .

Therefore, applying the Hoeffding-Azuma inequality, see Lemma A.2, we have that for allδ ∈
]0, 1[, for all n > 1, and with overwhelming probability1 − δ ∈]0, 1[,

∀t = 1, . . . , n,

t∑

s=1

ℓ(fIs,s, ys) 6

t∑

s=1

ℓs(ps) +B

√
n

2
ln

1

δ
,

where the loss functionℓ is bounded between0 andB. The orders of magnitude of the typical
deviations match the orders of magnitude for the expected regret obtained in Theorem 2.3.

3.3.2. Deviations with respect to improved regret bounds.Whenever we have sharper bounds
on the expected regrets than the generalO(

√
n) bound obtained for the exponentially weighted

average predictor, like the one of Theorem 2.5, we also need amore precise concentration argu-
ment. We deal here with the case of Theorem 2.5, and carry overan analysis of the same flavour
in Chapters 4 (Section 5), 5 (Section 4), and 6 (Theorem 6.1).

We introduce the sequenceXs = ℓ(fIs,s, ys) − ℓ(ps), s = 1, . . . , n, which is a martingale
difference sequence with respect to the filtration generated by theUs, s = 1, . . . , n. We denote
U t1 = (U1, . . . , Ut). For alls = 1, . . . , n, we note that

E
[
X2
s |U s−1

1

]
= E

[
(ℓ(fIs,s, ys) − ℓ(ps))

2 | U s−1
1

]
6 E

[
ℓ(ps)

2 | U s−1
1

]
6 Bℓ(ps) ,

so that summing overs, we bounded the conditional variances as

Vt =

t∑

s=1

E
[
X2
s |U s−1

1

]
6 B

t∑

s=1

ℓ(ps)

for all t = 1, . . . , n.
We now apply Corollary A.1, and get that with probability at least1 − δ,

∀t = 1, . . . , n,

t∑

s=1

ℓ(fIs,s, ys) 6 L̄A,n +
√

2 (BL̄A,n +B2) ln(n/δ) + (
√

2/3)B ln(n/δ) ,

where we denoted the (conditional) expected cumulative loss of the forecaster by

L̄A,n =
t∑

s=1

ℓs(ps) .

Substituting the bound of Theorem 2.5 and performing some simple algebra, we have proved
the following corollary of it.

COROLLARY 2.1. The exponentially weighted average forecaster (2.2) with tuning parameter

η =
1

B
ln

(
1 +

√
2B lnN

L

)
, whereL > 0 ,
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achieves, for alln and for all possible values of the lossesℓi,t ∈ [0, B] such thatL∗
n 6 L, and

with probability1 − δ,

∀t = 1, . . . , n,

t∑

s=1

ℓ(fIs,s, ys) − min
i=1,...,N

t∑

s=1

ℓ(fi,s, ys)

6 2
√

2

√
BL ln

nN

δ
+ 2B3/4L1/4 max{1, lnN}1/4

√
ln(n/δ) + 2B ln

n

δ
.

We may drop the conditionL∗
n 6 L and replaceL by L∗

n by applying the above argument to
a doubling version of the forecaster of Theorem 2.5, or to anyforecaster achieving the bound of
Theorem 2.5 without previous knowledge of a bound onL∗

n, like the one of [AuCeGe02] or the
one of Corollary 4.3.

REMARK 2.2. (Improved deviations against oblivious opponents.)In case of an oblivious
opponent, we may drop the extralnn terms, by applying Bernstein’s inequality backwards, see
the techniques used in Section 4.3 of Chapter 5.

3.3.3. Hannan consistency.The notion of Hannan consistency is the non-expected counter-
part of the uniform minimization of the expected regret studied in the previous sections. According
to Hannan [Han57], we define a forecaster to be(Hannan)-consistentif for all strategies of the
opponent player,

lim sup
n→∞

1

n

(
n∑

t=1

ℓ(fIt,t, yt) − min
j=1,...,N

n∑

t=1

ℓ(fj,t, yt)

)
= 0 a.s.,

where the almost sure convergence is with respect to the auxiliary randomization the forecaster
has access to. This property rules out the possibility that the regret is much larger than its expected
value with a significant probability.

The Borel-Cantelli lemma, together with the martingale techniques of Subsection 3.3.1, shows
that the forecaster of Theorem 2.3 is Hannan consistent.

4. Multi-armed bandit prediction

In many prediction problems the forecaster, after forming aprediction, is able to measure his
loss (or reward) but he does not have access to what would havehappened had he chosen another
possible prediction. This is especially important in game theory, when one is forced to play an
unknown game. Such prediction problems have been known asmulti-armed bandit problems. The
name refers to a gambler who plays a pool of slot machines (called “one-armed bandit” in the
U.S.). The gambler places his bet each time on a possibly different slot machine and his goal is to
win almost as much as if he had known in advance which slot machine would have returned the
maximal total reward.

This problem has been widely studied both in a stochastic andin a worst-case setting. The
worst-case or adversarial setting considered in this thesis was first investigated by Baños [Ban68]
(see also Megiddo [Meg80]). Hannan consistent strategies were constructed by Foster and Vohra
[FoVo98], Auer, Cesa-Bianchi, Freund, and Schapire [AuCeFrSc02], and Hart and Mas Colell
[HaMa00, HaMa02] (see also Fudenberg and Levine [FuLe98]). We recall below the strategy
considered in Auer, Cesa-Bianchi, Freund, and Schapire [AuCeFrSc02] and their main result (see
also Auer [Aue02]), but start first with a simple strategy which handles only expected regret.

In almost the whole thesis, we consider loss games, in which forecasters and experts suffer
losses, and do not get payoffs. While this seems only a lexical difference, in some situations,
there may be an asymmetry between loss games and gain games (see Chapter 4 for a more precise
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definition and comparison of the two games). In the bandit setting, the asymmetry appears at
two places. First, it is easy to design simple forecasters, i.e., forecasters using no shifting on the
probability distributions as is the case in step (4) in Figure 4 and that have expected regrets of the
order of

√
n in bandit loss games. On the contrary, it seems that we may exhibit only in bandit

gain games forecasting strategies whose (non-expected) regret is with overwhelming probability
of the order of

√
n. But of course, if one is only interested in bounds dependingon n andN , it

is easy to reduce a gain game to a loss game, and vice versa (seeChapter 4), and thus, Theorem
2.7 below extends to gain games, whereas Theorem 2.8 is proved by a reduction to a gain game.
Problems arise only when one wants bounds that are improvements for small losses, see Section
4.4 in Chapter 4 for more details.

For expected regret in loss games, we consider the incremental update (2.5) of the exponen-
tially weighted average forecaster, run however on the estimated losses given by

ℓ̃i,t =
ℓi,t
pi,t

Zi,t , i = 1, . . . ,N andt = 1, 2, . . . ,

whereZi,t = 1 if It = i and0 otherwise. These are indeed estimators since we observeℓi,t if and
only if It = i. Note that these estimators are unbiased,

E

[
ℓ̃i,t |U t−1

1

]
= ℓi,t .

More precisely, the forecaster draws its prediction at round t at random according to the prob-
ability distributionpt given, fort > 2, by

(2.7) pi,t =
eηt

eLi,t−1

∑N
j=1 e

ηt
eLj,t−1

,

where fort > 1, L̃i,t =
t∑

s=1

ℓ̃i,s andηt =

√
2 lnN

Nt
.

THEOREM 2.7. Assume the loss function is bounded in[0, 1]. The expected regret of the above
forecaster against any opponent player is bounded by

max
j=1,...,N

E

[
n∑

t=1

ℓ(fIt,t, yt) −
n∑

t=1

ℓ(fj,t, yt)

]
6 2

√
2
√

(n+ 1)N lnN .

PROOF. We combine Lemmas 4.3 and 4.5 to get

(2.8)
n∑

t=1

N∑

i=1

pi,tℓ̃i,t − min
j=1,...,N

n∑

t=1

ℓ̃j,t 6
2 lnN

ηn+1
+

1

2

n∑

t=1

ηt

N∑

i=1

pi,t ℓ̃
2
i,t ,

and use the facts that by the definition of theℓ̃i,t,

N∑

i=1

pi,tℓ̃i,t = ℓ(fIt,t, yt) and
N∑

i=1

pi,t ℓ̃
2
i,t =

N∑

i=1

ℓ2i,t
pi,t

Zi,t .

The expectation of the second sum is less thanN , and therefore, taking expectations in both
sides of (2.8) (and using that the expectation of a maximum ismore than the maximum of the
expectations), we get

max
j=1,...,N

E

[
n∑

t=1

ℓ(fIt,t, yt) −
n∑

t=1

ℓ(fj,t, yt)

]
6

2 lnN

ηn+1
+
N

2

n∑

t=1

ηt .

Substituting the proposed values forηt concludes the proof. �
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Algorithm EXP3.P
Parameters: Positive realsβ, η, γ.
Initialization: wi,0 = 1 andpi,1 = 1/N for i = 1, . . . ,N .

For each roundt = 1, 2, . . .

(1) choose expertIt according to the probability distributionpt;
(2) calculate the estimated gains

g̃i,t =
1 − ℓi,t
pi,t

I[It=i] +
β

pi,t
;

(3) update the weightswi,t = wi,t−1e
ηegi,t ;

(4) calculate the updated probability distribution

pi,t+1 = (1 − γ)
wi,t∑N
j=1wj,t

+
γ

N
, i = 1, . . . ,N .

FIGURE 4. Algorithm EXP3.P for prediction in a multi-armed bandit setting
(first introduced in [AuCeFrSc02]).

For the forecaster defined in (2.7), little can be said concerning the deviations of the regret
with respect to its average value, since we have no obvious bound on the estimated lossesℓ̃i,t (as
we ignore how thepi,t behave). In particular, the techniques of Section 3.3 fail to lower bound
with overwhelming probability

∑n
t=1 ℓ̃j,t by its (conditional) expectationLj,n. This is why Auer,

Cesa-Bianchi, Freund and Schapire [AuCeFrSc02] introduce a modified forecaster, whose (non-
expected) regret at roundn may be bounded by a quantity of the order ofO(

√
nN log(nN)).

Their analysis was recently improved by Cesa-Bianchi and Lugosi [CeLu05] and is summarized
in the following theorem.

THEOREM 2.8. Assume the loss function is bounded in[0, 1]. For any δ ∈]0, 1[, for any
n > (1/N) ln(N/δ), if the forecaster of Figure 4 is run with parameters

β =

√
ln(N/δ)

nN
, γ =

6Nβ

4 + β
, η =

γ

3N
,

then with probability1 − δ, its (non-expected) regret is bounded as
n∑

t=1

ℓ(fIt,t, yt) − min
j=1,...,N

n∑

t=1

ℓ(fj,t, yt) 6 6
√
nN ln(N/δ) +

lnN

2
.

The above forecaster may be turned into an on-line algorithmthat does not require previous
knowledge of the time horizonn by applying the techniques of Section 2.2. Auer, Cesa-Bianchi,
Freund and Schapire [AuCeFrSc02] also propose a general lower bound on the regret. (The
simpler model of constant expert predictions considered inthe theorem is discussed in detail in the
appendix of this chapter.)

THEOREM 2.9. There exist an outcome spaceY and a loss functionℓ : N × Y → [0, 1],
such that, for allN > 2 and for alln > 1, the cumulative (expected) regret of any (randomized)
forecaster that gets constant expert predictionsfj,t ≡ j for all j = 1, . . . ,N and t = 1, 2, . . .,
while predicting a sequence ofn outcomes in a bandit setting, satisfies the inequality

sup
y1,...,yn∈Y

(
E

[
n∑

t=1

ℓ(It, yt)

]
− min
i=1,...,N

n∑

t=1

ℓ(i, yt)

)
>

1

20
min

{√
nN, n

}
.
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OPEN QUESTION 2.1. We note here that the minimax orders of magnitude for theregret in a
bandit setting (see Section 5) are not completely known yet.Theorem 2.9 only indicates that the
bound of Theorem 2.8 is optimal up to the logarithmic factor

√
lnN . Though, in view of Section

5.3 below and Theorem 5.5, we conjecture that this factor is necessary, it is still an open question
to prove aΩ(

√
nN lnN) lower bound on the (expected) regret in a bandit setting.

5. Minimax orders of magnitude for the regret

5.1. Formal definition of the minimax value. We described the problem of sequential pre-
diction with expert advice in Figure 1 of Section 1. With the notation therein, aprediction setting
is formed by a prediction spaceX , an outcome spaceY, and a loss functionℓ : X × Y → R. For
given parametersn, N > 1, we define the minimax (expected) regret of a given prediction setting
(X ,Y, ℓ) with N experts and till roundn by

(2.9) V(n,N)
(X ,Y ,ℓ) = inf supE

[
n∑

t=1

ℓ(p̂t, yt) − min
j=1,...,N

n∑

t=1

ℓ(fj,t, yt)

]
,

where the supremum is over all possible (deterministic) strategies of the environment, and the
infimum is over all possible (randomized) strategies of the forecaster. The expectation in the above
expression is with respect to the auxiliary randomization the forecaster uses. Note that the strategy
of the environment consists both in the choice of the experts’ predictions and the outcomes. Since
we take first the supremum, we may assume without loss of generality that the strategies of the
environment are deterministic. Note that the minimax (expected) regret corresponds to the value
of ann stage repeated zero-sum game.

We focus below on minimax expected regrets, but we could havedefined a notion of minimax
1 − δ non-expected regret, where we would have taken the smallestbound on the regret over all
spaces of probability at least1 − δ with respect to the auxiliary randomization (see the comments
after the statement of Theorem 5.5).

In the subsequent chapters, we often consider prediction settings where there are no experts, in
the sense that the forecaster is only supplied withN constant experts and the environment simply
chooses the outcomes. These settings correspond toX = {1, . . . ,N}, and the experts are then
called actions, see the appendix of this chapter for more details. Sometimes we even simplify
further the model by considering oblivious environments, which do not take the forecaster’s pre-
dictions into consideration and apparently choose the outcomes in advance, see Section 1.4. The
minimax expected regret in prediction settings({1, . . . ,N},Y, ℓ) with constant actions, till round
n and against oblivious opponents takes the simple form

U (n,N)
(Y,ℓ) = inf sup

yn
1 ∈Y

n

(
n∑

t=1

N∑

i=1

pi,tℓ(i, yt) − min
j=1,...,N

n∑

t=1

ℓ(j, yt)

)
,

where the infimum is still taken over all feasible (randomized) strategies of the environment, and
where we use the notation of Section 1.3.

In this thesis, we actually work with general loss functions, and are not interested in possible
refinements for specific loss functions, like the square loss, the logarithmic loss or the 0–1 loss,
see [CeFrHaHeScWa97], [Lug01], [CeLu05] for sharper minimax bounds with these losses. The
only restriction we are ready to assume on the class of prediction settings is that they correspond
to bounded loss functions, say in[0, 1]. We focus therefore on the minimax problem given by

V (n,N) = sup
(X ,Y), ℓ:X×Y→[0,1]

V(n,N)
(X ,Y ,ℓ) and U (n,N) = sup

Y , ℓ:X×Y→[0,1]
U (n,N)

(Y ,ℓ) .
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Note that by their definitions,V (n,N) > U (n,N).

REMARK 2.3. We defined above the minimax problem by asup inf sup. This is the only
way if we want to consider all feasible forecasters, since the definition of the latter relies on the
underlying decision and outcome spaces. However, if, as indicated at the beginning of the appendix
of this chapter, we restrict our attention to those forecasters whose update rules are based only on
the experts’ losses, then we may consider the minimax problem given byinf sup sup, where the
first infimum is restricted to the loss based forecasters, thefirst supremum is over all prediction
settings with loss functions taking values in[0, 1], and the second one is over all strategies of
the environment. (The interpretation is that the opponent player also chooses the game.) Since
sup inf sup is less thaninf sup sup, the second problem is actually harder (we need to find a
strategy which is good for all prediction settings). It however turns out that we solvebothminimax
problems in the next section.

5.2. Definition of a solution of the minimax problem. We are interested in the orders of
magnitude inn andN of V (n,N) (andU (n,N)). We say that the minimax rate inn andN is
ψ(n,N), where(ψ(n,N))n>1, N>1 is a sequence of nonnegative numbers, whenever there existstwo
positive constantsu, v such that for alln andN sufficiently large,

uψ(n,N) 6 V (n,N)
6 v ψ(n,N) .

We seek the simplest5 possible expressions forψ.
We say that a forecaster is asolution of the minimax problemif there exists a constantc > 0

such that its expected loss, for all possible prediction settings with bounded losses and against
all strategies of the opponent, is less thancψ(n,N), at least forn andN sufficiently large. (The
forecaster’s prediction rule is loss based, see Remark 2.3.)

The usual methodology is first to get upper bounds on the rateψ(n,N) by exhibiting a general
forecaster. For instance, Theorem 2.3 shows that in the model considered in this chapter,ψ(n,N) 6√
n lnN . Lower bounds onψ(n,N) may be achieved by exhibiting a precise prediction setting

X , Y, ℓ such that in this setting, all forecasters are bound to suffer an expected regret more than
aψ(n,N), wherea > 0 is a universal constant. We often take (see, e.g., Theorem 5.5) X = N and
Y = [0, 1], as well as oblivious opponents, define preciselyℓ depending on the new model, and
restrict the forecaster to use only theN first constant actions. This way, we get a lower bound
for U (n,N) 6 V (n,N), which is enough for our purposes. We prove in the next section that in the
model considered in this chapter,ψ(n,N) >

√
n lnN . This shows that the exponentially weighted

average predictor of Theorem 2.3 is a solution of the minimaxproblem, hence its optimality in a
minimax sense.

5.3. The optimality of the exponentially weighted majoritypredictor. In this section we
prove the following main result.

THEOREM 2.10. The minimax expected regret is asymptotically lower bounded as

lim
N→∞

lim
n→∞

V (n,N)

√
(n/2) lnN

> 1 .

This theorem shows in particular thatψ(n,N) >
√
n lnN , as claimed above, and indicates also

that the leading factor in the bound of Theorem 2.1 is optimal. We thus have not only exhibited the
minimax rates inn andN , but also the asymptotically optimal constant. (Compare toQuestion
5.2.)

5for instance, we preferψ(n,N) =
√
n lnN toψ(n,N) = (1 + 1/n)

√
n lnN
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Usual techniques for computing lower bounds on the minimax values rely on inductive ar-
guments and somewhat tedious exact computations, see, e.g., the computations of (lower bounds
on) the minimax values in Chung [Chu94] (see also [CeFrHaHeScWa97]) who considers the
model of this chapter, and Helmbold and Panizza [HePa97] for the model of Chapter 5, Mertens,
Sorin and Zamir [MeSoZa94] for the model of Chapter 6. These techniques may lead however to
improved leading constants in the lower bounds with respectto the methods we describe next.

Another solution is to consider oblivious opponents, and lower bound the supremum over
all possible outcome sequences by a suitable randomizationon the outcomes, as suggested by
Auer, Cesa-Bianchi, Freund and Schapire [AuCeFrSc02] in a bandit setting, see also [Lug01] and
[CeLu05].

We illustrate this in the model considered in this chapter byconsidering the prediction setting
of on-line classification, whereX = Y = {0, 1} andℓ(x, y) = I[x 6=y], and propose a proof inspired
from [CeFrHaHeScWa97] and [Lug01].

PROOF. We assume the environment chooses both the experts’ predictionsFj,t, j = 1, . . . ,N ,
t = 1, . . . , n, and the outcomesYt, t = 1, . . . , n, all independently at random, according to a
common symmetric Bernoulli law. That is, we consider the setof all possible outcome sequences
(y1, . . . , yn) ∈ {0, 1}n and all possible sequences of experts’ advicesfj,t ∈ {0, 1}, j = 1, . . . ,N ,
t = 1, . . . , n, and put uniform probability weights on the elements of the set thus obtained. In
particular, as a worst-case bound is worse than an average bound, we get

V (n,N)
> inf E

[
n∑

t=1

I[bxt 6=Yt] − min
j=1,...,N

n∑

t=1

I[Fj,t 6=Yt]

]
,

where the expectation is with respect to the uniform probability distribution on the experts’ advices
and on the outcomes, as well as to the forecasters’ auxiliaryrandomization, whereas the infimum is
over all possible forecasting strategies (and thex̂t, t = 1, . . . , n, denote the sequence of predictions
formed by each of these possible forecasters).

For all forecasting strategies, since theYt are i.i.d. according to a Bernoulli distribution,
E[I[bxt 6=Yt]] = 1/2. Since theFj,t are independent of theYt, all of them with common symmetric
Bernoulli law, we may see, by conditioning, that

min
j=1,...,N

n∑

t=1

I[Fj,t 6=Yt]
(d)
= min

j=1,...,N

n∑

t=1

Fj,t ,

where the equality means equality of the distributions. Therefore, we have a simple lower bound
in closed form forV (n,N),

V (n,N)
>
n

2
− E

[
min

j=1,...,N

n∑

t=1

Fj,t

]
=

1

2
E

[
max

j=1,...,N

n∑

t=1

σj,t

]
,

where theσj,t, j = 1, . . . , N , t = 1, 2, . . ., are i.i.d. random variables distributed according to a
symmetric Rademacher law, that is, they take the values−1 and1 with equal probabilities1/2.

We may now open the toolbox of probability, and conclude the proof of Theorem 2.10 by
using that

lim
N→∞

lim
n→∞

1
√
n
√

2 lnN
E

[
max

j=1,...,N

n∑

t=1

σj,t

]
> 1 ,

see [CeFrHaHeScWa97, Lemma 6], see also [Lug01]. �
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Appendix: On the pertinence of the notion of regret for smalldecision spaces

In the subsequent chapters, we often concentrate on prediction settings of the formX =

{1, . . . , N} and where there are no experts. We explain first here why this is not a serious restric-
tion, and then discuss the meaning of the notion of regret in view of some recent criticisms.

The constant expert model.Since we seek forecasting algorithms that make assumptions
neither on the structure of the outcome spaceY nor on the structure of the loss functionℓ, only the
values of the losses of the expertsℓ1,t, . . . , ℓN,t matter. All forecasters introduced below and in the
subsequent chapters rely only on these losses. Thus for all models that do not need assumptions
on the loss function to be dealt with we may concentrate on thesequences of losses rather than
on the sequences of experts’ advice and outcomes. This will be the case for all the models in this
thesis except the one of Chapter 6 (see condition (6.1)), seealso Remark 5.1. Note that this way,
we may also think of loss functions that change with time or that depend on an external state of
Nature, see also Remark 3.3.

Consequently, we henceforth consider a simpler setting where there are no experts, in the sense
that the forecaster is supplied withN constant experts. For allt = 1, 2, . . . and allj = 1, . . . ,N ,
fj,t ≡ j, where the prediction space isX = {1, . . . ,N}, up to a relabelling. The constant experts
may be identified with (constant) actions. We are then interested in performing almost as well as
the best of these constant actions, that is, the regret is defined as

Rn =
n∑

t=1

ℓ(It, yt) − min
j=1,...,N

ℓ(j, yt) .

Interpretation of the regret against constant actions. The only drawback of this reduction
is the interpretation of the regret. Sometimes, it may be just unreasonable or meaningless to
compare the forecaster’s performance to the performance ofa constant action, see for instance
Remark 6.1, and some other times, the comparison is interesting, see, e.g., Example 6.1 or the
problem of sequential investment in the stock market described in Chapter 7.

Another (more serious) criticism is in de Farias and Megiddo[FaMe03]. Recall that in the
simplified model, we compare the decision-maker’s cumulative loss to the smallest of the

Lj,n = ℓ(j, y1) + . . . + ℓ(j, yn) ,

wherej ranges over{1, . . . , N}. [FaMe03] points out that if we had constantly played actionj,
then the outcome sequencey1, y2, . . . would have been different too. Ideally, one would compare,
with the notation of Section 1.4, to

L′
j,n =

n∑

t=1

ℓ (j, gt(j, . . . , j)) ,

but these quantities are not available to the forecaster. (Therefore, [FaMe03] proposes new mea-
sures of the feelings of regret.) Note that this criticism isessentially grounded only in the constant
action model, and to answer it we propose an argument similarto the one used later in Section 2
of Chapter 7. There, we compare the forecaster to the class ofthe optimal strategies for i.i.d. (or
stationary) markets, and the latter is formed by the so-called constantly rebalanced portfolios. In
the same way, we note that in the setting of prediction with expert advice, if the outcomes were re-
alizations of an i.i.d. (or stationary) sequence of random variables, then the optimal strategy would
be given by playing constantly one of theN possible actions. Of course, we avoid such stochastic
assumptions, but interestingly enough it seems that the waywe measure the regret is one of the
last tracks of these widely used stochastic models.





CHAPTER 3

Internal regret in prediction with expert advice

In this chapter, we study internal regret in prediction withexpert advice. The notion of inter-
nal regret plays a key role in game theory and is concerned with consistent modifications of our
forecasting strategy. We show a general conversion trick toderive no-internal-regret forecasters
from no-external-regret ones. This trick is also illustrated on the multi-armed bandit problem, and
is extended to deal with a generalization of internal regretknown as swap regret. We discuss the
optimality and the pertinence of the introduced strategiesby stating lower bounds on the internal
regret in two prediction settings, one of them is predictionwith expert advice and bounded losses,
the other one is sequential probability assignment.
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Though this chapter is partially based on Section 3 of [StLu05], most of its material is pub-
lished here for the first time.

We recall in the introductory chapter that in the on-line prediction problem, the goal is to
minimize the predictor’s cumulative loss with respect to the best cumulative loss in a pool of
experts. In a certain equivalent game-theoretic formulation of the problem, this is the same as
minimizing the predictor’sexternal regret, see [FoVo99]. External regret measures the difference
between the predictor’s cumulative loss and that of the bestexpert. However, another notion
of regret, calledinternal regret in [FoVo99] has also been in the focus of attention mostly in
the theory of playing repeated games, see [FoVo98, FoVo99], [FuLe99], [HaMa00, HaMa01],
[CeLu03]. (Internal regret is often referred to as conditional regret in the game-theory community,
see [Har04].) Roughly speaking, a predictor has a small internal regret if for each pair of experts
(i, j), the predictor does not regret of not having followed experti each time it followed expert
j. It is easy to see that requiring a small internal regret is a more difficult problem since a small
internal regret in the prediction problem implies small external regret as well. In this chapter, we
first define precisely the notions of internal and swap regrets, introduce a general conversion trick
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to design internal regret minimizing forecasters, and finish by stating lower bounds on internal
regret in two prediction settings, one of them is predictionwith expert advice and bounded losses,
the other one is sequential probability assignment.

1. Links between external and internal regret

1.1. Definition of internal regret. We use the notation of Chapter 2. Internal regret is con-
cerned with consistent modifications of a given forecastingstrategy. Each of these possible mod-
ifications is parameterized by a departure functionΦ : {1, . . . ,N} → {1, . . . ,N}. For internal
regret, we restrict our attention to functionsΦ that only differ from identity in one point. That is,
we only consider functions for which there exists a pairi 6= j such thatΦ(i) = j, andΦ(k) = k

for all k 6= i.
After roundn, the cumulative loss of the forecaster is compared to the cumulative loss that

would have been accumulated had the forecaster chosen expert Φ(It) instead of expertIt at all
roundst, t = 1, . . . , n. That is, for a given pair(i, j), one is interested in modifications of the
predictor’s strategy obtained by replacing the action of the forecaster by expertj each time it
chooses experti. If no such consistent modification results in a much smalleraccumulated loss,
then the strategy is said to have small internal regret (or nointernal regret). Formally, we seek
strategies achieving

1

n

n∑

t=1

ℓ (fIt,t, yt) −
1

n
min

Φ

n∑

t=1

ℓ
(
fΦ(It),t, yt

)
= o(1) a.s.,

where the minimization is over all functionsΦ that only differ from identity in one point andfj,t
denotes the prediction of expertj at roundt. Such strategies are said Hannan consistent with
respect to internal regret.

The notion of internal regret has been shown to be useful in the theory of equilibria of re-
peated games. Foster and Vohra [FoVo97, FoVo99] showed that if all players of a finite game
choose a strategy that is Hannan consistent with respect to internal regret, then the joint empirical
frequencies of play converge to the set of correlated equilibria of the game (see also Fudenberg and
Levine [FuLe95], Hart and Mas-Colell [HaMa00]; see also the more general results of Chapter
8).

Now, to get Hannan consistency with respect to internal regret, it is enough to control uni-
formly the expectation of the internal regret with respect to the auxiliary randomization the fore-
casters uses. Martingales inequalities combined with the Borel-Cantelli lemma then show the
desired Hannan consistency, just as this was the case for the(external) regret in Section 3.3 of
Chapter 2. Therefore we concentrate below on expected internal regret.

Recall that the definition of external regret is based on the comparison to an external pool of
strategies, the ones given by each expert, and that in the definition of the (expected) internal regret
one is interested in modifications of the predictor’s strategy obtained by replacing the action of
the forecaster by expertj each time it chooses experti. Because we work in expectation, this is
equivalent to selecting an expert according to the distribution p

i→j
t obtained frompt by putting

probability mass 0 oni andpi,t + pj,t on j. This transformation is called thei → j modified
strategy. Recall also that we require that none of these modified strategies is much better than
the original strategy, that is, we seek strategies such thatthe difference between their (expected)
cumulative loss and that of the best modified strategy is small. Thus,

n∑

t=1

ℓt(pt) − min
i,j∈{1,...,N}

n∑

t=1

ℓt(p
i→j
t ) ,
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Regimes ℓA,t ℓB,t ℓC,t

1 6 t 6 n/3 0 1 5

n/3 + 1 6 t 6 2n/3 1 0 5

2n/3 + 1 6 t 6 n 2 1 0

TABLE 1. The losses for Example 3.1.

where for all probability distributionsq = (q1, . . . , qN ),

ℓt(q) =

N∑

k=1

qkℓk,t =

N∑

k=1

qkℓ(fk,t, yt) ,

should be as small as possible. This quantity is the(expected) internal regretof the forecaster. The
internal regret may be re-written as

max
i,j∈{1,...,N}

n∑

t=1

r(i,j),t

wherer(i,j),t = pi,t(ℓi,t − ℓj,t). Thus,r(i,j),t expresses the predictor’s regret of having put the
probability masspi,t on thei-th expert instead of on thej-th one, and

R(i,j),n =

n∑

t=1

r(i,j),t =

n∑

t=1

pi,t(ℓi,t − ℓj,t)

is the corresponding cumulative regret. Similarly to the case of the external regret, if this quantity
is uniformly o(n) over all possible values of the losses, then the corresponding predictor is said to
exhibit no (expected) internal regret.

Now clearly, the external regret of the predictor equals

(3.1) max
j=1,...,N

N∑

i=1

R(i,j),n 6 N max
i,j∈{1,...,N}

R(i,j),n ,

which shows that any algorithm with a small (i.e., sublinearin n) (expected) internal regret also
has a small (expected) external regret. (And the same can be said to upper bound non-expected
external regret by non-expected internal regret.) On the other hand, it is easy to see that a small
external regret does not imply small internal regret. In fact, as it is shown in the next example, even
the exponentially weighted average algorithm defined abovemay have a linearly growing internal
regret.

EXAMPLE 3.1. (Weighted average predictor has a large internal regret.)Consider the follow-
ing example with three experts,A, B, andC. Letn be a large multiple of3 and assume that time
is divided in three equally long regimes, characterized by aconstant loss for each expert. These
losses are summarized in Table 1. We claim that the regretR(B,C),n of B versusC grows linearly
with n, that is,

lim inf
n→∞

1

n

n∑

t=1

pB,t (ℓB,t − ℓC,t) = γ > 0 ,

where

pB,t =
e−ηLB,t

e−ηLA,t + e−ηLB,t + e−ηLC,t
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denotes the weight assigned by the exponentially weighted average predictor to expertB, where
Li,t =

∑t
s=1 ℓi,s denotes the cumulative loss of experti andη is chosen to minimize the exter-

nal regret, that is,η = (1/5)
√

(8 ln 3)/n = 1/(K
√
n) with K = 5/

√
8 ln 3, see Theorem 2.1.

(Note that the same argument leads to a similar lower bound for η = γ/
√
n, whereγ > 0 is any

constant.) The intuition behind this example is that at the end of the second regime the predictor
quickly switches fromA toB, and the weight of expertC can never recover because of its disas-
trous behavior in the first two regimes. But since expertC behaves much better thanB in the third
regime, the weighted average predictor will regret of not having followed the advice ofC each
time it followedB.

More precisely, we show that during the first two regimes, thenumber of times whenpB,t is
more thanε is of the order of

√
n and that, in the third regime,pB,t is always more than a fixed

constant (1/3, say). This is illustrated in Figure 1. In the first regime, a sufficient condition for
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FIGURE 1. The evolution of the weight assigned toB in Example 3.1 forn = 10000.

pB,t 6 ε is thate−ηLB,t 6 ε. This occurs whenevert > t0 = K (− ln ε)
√
n. For the second

regime, we lower bound the time instantt1 whenpB,t gets larger thanε. To this end, note that
pB,t > ε implies

(1 − ε)e−ηLB,t > ε
(
e−ηLA,t + e−ηLC,t

)
> εe−ηLA,t ,

which leads tot1 > 2n
3 +K

(
ln ε

1−ε

)√
n. Finally, in the third regime, we have at each time instant

LB,t 6 LA,t andLB,t 6 LC,t, so thatpB,t > 1/3. Putting these three steps together, we obtain
the following lower bound for the internal regret ofB versusC:

n∑

t=1

pB,t (ℓB,t − ℓC,t) >
n

9
− 5

(
2n

3
ε+K

(
ln

1 − ε

ε2

)√
n

)
,

which is of the ordern, for a sufficiently smallε > 0.

1.2. A general way to design internal regret minimizing algorithms. The example above
shows that special algorithms need to be designed to guarantee a small internal regret. Indeed,
such predictors exist, as was shown by [FoVo98], see also [FuLe99], [HaMa00, HaMa01]. Here
we briefly give a new insight on predictors studied in [CeLu03] (see the remark at the end of
this section), and based on [HaMa01], as well as a new, simple analysis of their performance
guarantees.

Consider the case of sequential prediction under expert advice, with N experts and losses
bounded between0 andB. We describe now a simple way of converting any no external regret
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forecaster into a no internal regret forecaster, that is, weshow how a Hannan consistent forecaster
can be turned into a Hannan consistent forecaster with respect to internal regret. (Thus, in this
precise sense, we can say, despite of Example 3.1, that smallexternal regret implies small internal
regret.) Such a conversion method may be defined recursivelyas follows.

At time t = 1, let p1 = (1/N, . . . , 1/N) be the uniform distribution over theN actions.
At round t > 2, the forecaster has already chosen and predicted accordingto the probability
distributionsp1, . . . ,pt−1. We defineN(N − 1) fictitious experts, indexed by pairs of integers
i 6= j, by their losses at time instants1 6 s 6 t− 1, which equalℓs(p

i→j
s ), where we re-used the

notation of the previous section.
Define now a probability distribution∆t over the pairsi 6= j by running one of the algorithms

of Section 2 of Chapter 2, on this pool of fictitious experts, and choosept such that the fixed point
equality

(3.2) pt =
∑

(i,j):i6=j

∆(i,j),tp
i→j
t ,

holds. (We say that∆t inducespt.) The existence and the practical computation of such apt is an
application of Lemma 3.1 below.

For instance,∆t = (∆(i,j),t)i6=j may be given by

∆(i,j),t =
exp

(
−η∑t−1

s=1 ℓs(p
i→j
s )

)

∑
(k,l):k 6=l exp

(
−η
∑t−1

s=1 ℓs(p
k→l
s )

) ,

tuned, as suggested by the theory, withη = 4B−1
√

lnN/n in case of known time horizonn.
Indeed, this choice ofη and the application of the bound proposed by Theorem 2.1 (with

N(N − 1) upper bounded byN2) lead to
n∑

t=1

∑

i6=j

∆(i,j),tℓt(p
i→j
t ) 6 min

i6=j

n∑

t=1

ℓt(p
i→j
t ) +B

√
n lnN ,

that is, recalling the fixed point equality (3.2), the cumulative internal regret of the above strategy
is bounded by

max
i6=j

R(i,j),n 6 B
√
n lnN .

Note that this improves the bound given in Corollary 8 of [CeLu03], by a factor of two.
The same analysis can be carried over for the polynomial forecasters or the time-adaptive

version of the exponentially weighted forecaster, using Theorems 2.3 and 2.4, and is summarized
in the following theorem.

THEOREM 3.1. The above exponentially weighted predictor achieves, uniformly over all pos-
sible values of the lossesℓi,t ∈ [0, B],

max
i6=j

R(i,j),n 6 B
√
n lnN.

With a time-adaptive tuning parameter the upper bound becomes

max
i6=j

R(i,j),n 6 B

(
2
√
n lnN +

√
lnN

2

)
.

Finally, with a polynomial predictor of orderp > 1,

max
i6=j

R(i,j),n 6 B
√

(p− 1)nN4/p .
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REMARK 3.1. The conversion trick illustrated above is a general trick which extends to any
weighted average predictor, that is, to any predictor which, at each round, maintains one weight
per expert. More precisely, any weighted average predictorwhose external regret is small may be
converted into a strategy whose internal regret remains small. This will be illustrated extensively
in Chapter 7, first for convex loss functions in Sections 4.1 and 6.2 (see also Chapter 8), for exp-
concave ones in Sections 5.1 and 5.2, and even for a function that is simply continuous, in Section
7. (See also the summary in Table 3 of the cited chapter.)

Note that in the case of randomized prediction under expert advice [BlMa05] propose a differ-
ent conversion trick, with about the same algorithmic complexity, see the next two sections below.
Such tricks are valuable to extend results in an effortless way from the case of external to internal
regret, like the time-adaptive exponentially weighted average predictor suited for the minimization
of internal regret proposed by Theorem 3.1, or the analysis of Section 6 in Chapter 7.

It only remains to see the existence and the way to compute a fixed point of the equality (3.2).
The following lemma proposes a more general result, needed for subsequent analysis in Section
5.1. The meaning of this result is that each probability distribution over the expert pairs induces
naturally a probability distribution over the experts.

LEMMA 3.1. Let q be a probability distribution over theN experts. For all probability dis-
tributions∆ over the pairs of different expertsi 6= j andα ∈ [0, 1], there exists a probability
distributionp over the experts such that

p = (1 − α)
∑

i6=j

∆(i,j)p
i→j + αq .

Moreover,p may be easily computed by a Gaussian elimination over a simpleN ×N matrix.

PROOF. The equality
p = (1 − α)

∑

i6=j

∆(i,j)p
i→j + αq

means that for allm ∈ {1, . . . , N},

pm = (1 − α)
∑

i6=j

∆(i,j)p
i→j
m + αqm




N∑

j=1

pj


 ,

or equivalently,

α (1 − qm) + (1 − α)

∑

j 6=m

∆(m,j)


 pm =

∑

i6=m

(
(1 − α)∆(i,m) + αqm

)
pi ,

that is,p is an element of the kernel of the matrixA defined by

• if i 6= m,Am,i = wm,i,
• Am,m = −∑j 6=m, 16j6N wj,m,

where, fori 6= m,
wm,i = (1 − α)∆(i,m) + αqm .

The elements ofA have a modulus less than 1. An element of the kernel ofA is a fixed point
of the matrixS = A+ IN , whereIN is theN ×N identity matrix. ButS is a column stochastic
matrix (its columns are probability distributions), and thus admits a probability distributionp as a
fixed point.

[FoVo99] suggest a Gaussian elimination method overA for the practical computation ofp.
�
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REMARK 3.2. [CeLu03] show that, writingrt for theN(N − 1)-vector with components
r(i,j),t andRt =

∑t
s=1 rs, any predictor satisfying the so-called “Blackwell condition”

(3.3) ∇Φ(Rt−1) · rt 6 0

for all t > 1, with Φ being either an exponential potential

Φ(u) =
N∑

i=1

exp (ηui) ,

with η possibly depending ont (when time-adaptive versions are considered) or a polynomial
potential

Φ(u) =
N∑

i=1

(ui)
p
+ ,

has the performance guarantees given by Theorem 3.1, see also Section 3.2 of Chapter 8.
But the choice (3.2) ensures that the Blackwell condition issatisfied with an equality, as

∇Φ(Rt−1) · rt

=

N∑

i=1

ℓi,t




∑

j=1,...,N, j 6=i

∇(i,j)Φ(Rt−1)pi,t −
∑

j=1,...,N, j 6=i

∇(j,i)Φ(Rt−1)pj,t




(see, e.g., [CeLu03] for the details), which equals 0 as soon as
∑

j=1,...,N, j 6=i

∇(i,j)Φ(Rt−1)pi,t −
∑

j=1,...,N, j 6=i

∇(j,i)Φ(Rt−1)pj,t = 0

for all i = 1, . . . , N . The latter set of equations may be seen to be equivalent to (3.2), with the
choice

∆(i,j),t =
∇(i,j)Φ(Rt−1)∑
k 6=l∇(k,l)Φ(Rt−1)

,

which was indeed the probability distribution proposed by the conversion trick introduced at the
beginning of this section.

1.3. Swap regret and wide range regret.In this section, we essentially discuss and compare
the conversion trick exposed in the previous section and theone proposed by Blum and Mansour
[BlMa05]. We do this by introducing a generalization of internal regret known as swap regret.

Section 1.1 was concerned with consistent modifications of forecasting strategies parameter-
ized by departure functionsΦ that only differ from identity in one point. We now consider all
possible departure functionsΦ : {1, . . . ,N} → {1, . . . ,N}. Formally, theswap regretof a fore-
casting strategy is defined as

n∑

t=1

ℓ (fIt,t, yt) − min
Φ

n∑

t=1

ℓ
(
fΦ(It),t, yt

)
,

where the minimization is over all functionsΦ : {1, . . . ,N} → {1, . . . ,N} andfj,t denotes the
prediction of expertj at roundt.

As explained above, we may work here with expected quantities. It is easy to see that consid-
ering all departure functionsΦ amounts to considering all linear departuresϕ : p 7→ ϕ(p). The
mappingsp 7→ pi→j introduced in Section 1.1 are special cases of such linear departures. The
(expected) swap regret of a forecasting strategy is then defined as

n∑

t=1

ℓt(pt) − min
ϕ

n∑

t=1

ℓt (ϕ(pt)) ,
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where the minimization is over all linear mappingsϕ from the simplex of orderN , denoted byX ,
into itself. Such linear modifications were already considered by [GrJa03] and [BlMa05].

Now, by Krein-Millman theorem (see, e.g., Berger [Ber90]), the set of all linear mappings
from the simplex into itself is the convex hull of the set of all extremal linear mappings. The
latter are given by theϕ associated to theΦ, and there are thereforeN2 of them. They simply
transport all probability masses from each expert to another. We may apply the conversion trick of
the previous section to this set ofNN fictitious experts, and get a procedure whose swap regret is
bounded by a quantity of the order of

√
n lnNN =

√
nN lnN . However, the resulting procedure

has a computational complexity of the order ofNN , at least in its straightforward implementation,
simply because we have to compute the losses ofNN fictitious experts. (Given the matrix with
the weights computed thanks to the losses of theNN experts, the Gaussian elimination further
needed in the procedure, see Lemma 3.1, has only a computational complexity of the order of
N2.) One way around is to note that swap regret is bounded byN times internal regret, and thus,
the practical forecasting scheme of the previous section (with computational complexity of the
order ofN2) guarantees a bound on its swap regret of the worse order ofN

√
n lnN .

On the other hand, Blum and Mansour’s [BlMa05] procedure yields aO(
√
nN lnN) bound

on swap regret, with a computational complexity only of the order ofN2. The only drawback of
their conversion trick is that it only deals with linear lossfunctions. We recall that loss functions
in prediction with expert advice are linear in some sense, because we consider expected losses,
and these are linear in the probability distributions we use. Therefore the conversion of [BlMa05]
does not extend to general convex losses, contrary to the onewe introduced (see Remark 3.1).

REMARK 3.3. (Wide-range regret.) We close this section by noting, with [BlMa05], that the
departure functionsΦ could depend not only on the forecaster’s played actions, but also on some
side-information, such as the history, an activation function indicating which experts are asleep
and which experts are active, and so on. Doing so, we would consider a finite number of those
functions Lehrer [Leh03] uses in its definition of wide-range regret. As these are in countable
number, it is easy to see that our procedures can be extended to no wide-range regret procedures
thanks to classical adaptive methods like the doubling trick (see Section 2.2 in Chapter 2).

1.4. The case of limited feedback.In this section, we continue the comparison between the
two conversion tricks of Remark 3.1, now from the viewpoint of prediction with limited feedback.
Theorem 3.2 below shows that for multi-armed bandit prediction (see Section 4 in Chapter 2),
our conversion trick yields aO(

√
nN lnN) upper bound on the internal regret of a prediction

scheme based on the one proposed by Auer, Cesa-Bianchi, Freund, and Schapire [AuCeFrSc02].
Using the same methodology, it is easy to design a bandit forecaster ensuring aO(N

√
n lnN)

upper bound on the swap regret of a prediction scheme based onthe one of [AuCeFrSc02]. In
comparison, Blum and Mansour [BlMa05] can only get aO(N

√
nN lnN) upper bound on swap

regret. In addition, they need a very precise assumption on the no external regret algorithm to be
converted (see Lemma 14 therein), and it seems that their conversion only works for a restricted
class of Hannan consistent forecasting schemes. We also note that similar results were obtained
by Hart and Mas-Colell [HaMa02].

In bandit problems, one usually estimates losses, forms weighted prediction with these esti-
mated losses, and shifts the obtained probability distribution, so that all its components are more
than a given threshold. Here, we use the conversion trick to form the weighted prediction, and then
apply similarly a shifting method. To this end, we consider the setting and notation of Section 4
of Chapter 2, that is, a loss multi-armed bandit prediction game, withN experts (or actions), and
losses bounded, say, in[0, 1]. We recall first a popular estimate of the losses in multi-armed bandit
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problems. With the notation therein, we choose the unbiasedestimates given by

(3.4) ℓ̃(i, yt) =
ℓ(i, yt)

pi,t
I[It=i] ,

for all t = 1, 2, . . . andi = 1, . . . , N .
The forecaster we propose to minimize internal regret is formed by a sub-algorithm and a

master algorithm. The parametersηt andγt used below are tuned as

(3.5) ηt = α

√
lnN

Nt
, with α =

√
2/3, and γt = Nηt ,

for t = 1, 2, . . .. At each roundt the sub-algorithm outputs a probability distribution

ut =
(
ui→j
t

)
(i,j) : i6=j

over the set of pairs of different actions; with the help ofut the master algorithm computes a
probability distributionpt over the actions.

Consider the loss estimatesℓ̃(i, yt) defined in (3.4). For a given distributionp over{1, . . . ,N},
denote

ℓ̃(p, y) =

N∑

k=1

pk ℓ̃(k, y) .

Now introduce the cumulative estimated losses

L̃i→j
t−1 =

t−1∑

s=1

ℓ̃(pi→j
s , ys)

wherep
i→j
s denotes as above the probability distribution obtained from ps by moving the proba-

bility masspi,s from i to j; that is, we setpi→j
s,i = 0 andpi→j

s,j = ps,j + ps,i. The distributionut
computed by the sub-algorithm is an exponentially weightedaverage associated to the cumulative
losses̃Li→j

t−1 , that is,

ui→j
t =

exp
(
−ηtL̃i→j

t−1

)

∑
k 6=l exp

(
−ηtL̃k→l

t−1

) .

Now let p̃t be the probability distribution over the set of actions defined by the equation

(3.6)
∑

(i,j) : i6=j

ui→j
t p̃

i→j
t = p̃t .

Such a distribution exists, and can be computed by a simple Gaussian elimination (see Lemma 3.1).
The master algorithm then chooses, at roundt, the actionIt drawn according to the probability
distribution

(3.7) pt = (1 − γt)p̃t +
γt
N

1

where1 = (1, . . . , 1).
To bound internal regret with overwhelming probability, weneed the martingale inequalities

(and the translation over the estimated losses) of [AuCeFrSc02], see also Theorem 2.8. We do not
work out the straightforward details, and simply propose the following theorem.

THEOREM 3.2. In a bandit setting with losses bounded between 0 and 1, the expected internal
regret of the above forecasting scheme is bounded as

max
i6=j

E

[
n∑

t=1

pi,t (ℓ(i, yt) − ℓ(j, yt))

]
6 10

√
(n+ 1)N lnN .
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PROOF. For a givent, the estimated losses̃ℓ(pi→j
t , yt), i 6= j, fall in the interval[0, N/γt].

Sinceγt andηt are tuned as in (3.5),Nηt/γt 6 1, and we may apply Lemmas 4.3 and 4.5 below
to derive

(3.8)
n∑

t=1

∑

i6=j

ui→j
t ℓ̃(pi→j

t , yt) − min
i6=j

n∑

t=1

ℓ̃(pi→j
t , yt)

6
2 lnN(N − 1)

ηn+1
+

n∑

t=1

ηt
∑

i6=j

ui→j
t

(
ℓ̃(pi→j

t , yt)
)2

.

For i 6= j, 1i→j is the vectorv such thatvi = 0, vj = 2, andvk = 1 for all k 6= i andk 6= j. Use
first (3.7) and then (3.6) to rewrite the first term of the left-hand side of (3.8) as

n∑

t=1

∑

i6=j

ui→j
t ℓ̃(pi→j

t , yt) =
n∑

t=1

∑

i6=j

ui→j
t

(
(1 − γt)ℓ̃(p̃

i→j
t , yt) +

γt
N
ℓ̃(1i→j , yt)

)

=

n∑

t=1

(1 − γt)ℓ̃(p̃t, yt) +

n∑

t=1

γt
N

∑

i6=j

ui→j
t ℓ̃(1i→j, yt)

=
n∑

t=1

ℓ̃(pt, yt) +
n∑

t=1

γt
N

∑

i6=j

ui→j
t

(
ℓ̃(1i→j , yt) − ℓ̃(1, yt)

)

=

n∑

t=1

ℓ̃(pt, yt) +

n∑

t=1

γt
N

∑

i6=j

ui→j
t

(
ℓ̃(j, yt) − ℓ̃(i, yt)

)
.

Substituting into (3.8), we have

max
i6=j

n∑

t=1

pi,t

(
ℓ̃(i, yt) − ℓ̃(j, yt)

)
(3.9)

=

n∑

t=1

ℓ̃(pt, yt) − min
i6=j

n∑

t=1

ℓ̃(pi→j
t , yt)(3.10)

6
4 lnN

ηn+1
+

n∑

t=1

ηt
∑

i6=j

ui→j
t

(
ℓ̃(pi→j

t , yt)
)2

+

n∑

t=1

γt
N

∑

i6=j

ui→j
t

(
ℓ̃(i, yt) − ℓ̃(j, yt)

)
.

The crux of the proof is to handle the second sum. This is done by using the precise form (3.4) of
the estimates, as well as the boundedness ofℓ in [0, 1],

E



∑

i6=j

ui→j
t

(
ℓ̃(pi→j

t , yt)
)2


 =

∑

i6=j

ui→j
t

N∑

k=1

pk,t

(
pi→j
k,t

ℓ(k, yt)

pk,t

)2

6
∑

i6=j

ui→j
t

N∑

k=1

pi→j
k,t

ℓ(k, yt)

pk,t
since 0 6 pi→j

k,t ℓ(k, yt) 6 1

=

N∑

k=1


(1 − γt)

∑

i6=j

ui→j
t p̃i→j

k,t


 ℓ(k, yt)

pk,t
+
γt
N

∑

i6=j

ui→j
t

N∑

k=1

1i→j
k

ℓ(k, yt)

pk,t
by (3.7)

6

N∑

k=1

ℓ(k, yt) +N 6 2N by (3.6) and by using thatpk,t > γt/N for all k.
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Taking expectations in (3.9), using that the expectation ofa maximum is more than the maximum
of the expectations, and substituting the above inequality, we get

max
i6=j

E

[
n∑

t=1

pi,t (ℓ(i, yt) − ℓ(j, yt))

]
6

4 lnN

ηn+1
+ 2N

n∑

t=1

ηt +
n∑

t=1

γt
N
.

Recalling now (3.5), and using
∑n

t=1 1/
√
t 6 2

√
n, we conclude to

max
i6=j

E

[
n∑

t=1

pi,t (ℓ(i, yt) − ℓ(j, yt))

]
6

(
4

α
+ 6α

)√
(n+ 1)N lnN ,

whereα =
√

2/3. �

2. Minimax lower bounds on internal regret

2.1. A general lower bound on internal regret in an expert setting. We define the minimax
order of the internal regret in the same way as we defined the minimax order of the external regret
in Section 5 of Chapter 2. Recall that the external regret of aforecaster is bounded byN times
its internal regret, and that the minimax order of the formeris

√
n lnN (see respectively (3.1) and

Section 5 in Chapter 2). From these facts, we know that the minimax order of the internal regret is
at least

√
n lnN/N . But tighter lower bounds may be achieved, as is shown below.

The idea is to reduce to the case of external regret withN = 2 actions. This reduction is
not immediate, and the lower bounds on the external regret inthe caseN = 2 cannot be used
directly, simply because the forecaster maintains more than two weights, and spreads the mass
intoN weights, one for each action. IfN is large, then little can be said. Especially, the “uniform”
forecaster which picks at random an action at each step, thatis, pt = (1/N, . . . , 1.N) for all t,
and suffers an internal regret less thann/N , may achieve a low internal regret. We provide below
a rigorous reduction. The intuition is that the outcomes aresuch that actions 3 toN always suffer
a maximal loss, and therefore are almost never played by any good forecaster. The latter thus
concentrates on actions 1 and 2, which it takes some time to distinguish. The proof techniques
show that then, we are basically back to the problem of lower bounding the external regret of a
forecaster only supplied with two actions.

We denote the set of natural numbers byN = {1, 2, . . .}.

THEOREM 3.3. There exist an outcome spaceY, a loss functionℓ : N × Y → [0, 1], and a
universal constantc > 0 such that for allN > 2 andn such thatN 6 8

√
3
√
n, the cumulative

(expected) internal regret of any (randomized) forecasterthat uses actions in{1, . . . ,N} satisfies
the inequality, against an oblivious opponent,

sup
y1,...,yn∈Y

max
i6=j

n∑

t=1

pi,t (ℓ(i, yt) − ℓ(j, yt)) > c
√
n .

In particular, we prove the theorem forc = 1/(64
√

3).

Note that the technical condition we need onn andN basically ensures that we are not in the
trivial case where the uniform forecaster performs bettersthan the general forecaster introduced in
Section 1.2.

OPEN QUESTION 3.1. We note here that we still lack a factor of
√

lnN in the lower bound,
or, alternatively, the bounds on internal regret derived inSection 1.2 might be improvable. Given
the optimality of the weighted average forecaster with respect to external regret (see Section 5.3
in Chapter 2), and in view of the conversion trick of Section 1.2, we however conjecture that this
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additional
√

lnN factor is necessary. Perhaps this can be done by applying Fano’s lemma to a
family of distributions over the outcomes. This family would be indexed by(i, j)i6=j , and the
proof below introduces a distribution related to the one that would correspond to(1, 2).

A related lower bound on swap regret may be found in [BlMa05]. It is of the order of
Ω(

√
nN), that is, the question of the additional

√
lnN factor is also not answered there, and

holds only under the additional condition thatn be sub-exponential inN .

PROOF. We only sketch the proof and refer for more details to the proof of Theorem 5.5 in
Section 5 of Chapter 5. We may chooseY = [0, 1] and a loss functionℓ : N × Y → [0, 1] such
that there exist a probability space, equipped with three probability distributionsP, Q, R, such
that there exists a sequence of random variablesY1, . . . , Yn defined on it and taking values inY
satisfying the following property. UnderP (resp.,Q, R), the losses

ℓ̃k,t = ℓ(k, Yt) , k = 1, . . . ,N, andt = 1, . . . ,N ,

are independent random variables, equal to 1 ifk > 3, with Bernoulli distribution with parameter
1/2 for k = 1, and with parameter1/2 (resp.,1/2 − ε, 1/2 + ε) for k = 2. Then, denoting byEP

(resp.,EQ, ER) the expectation with respect toP (resp.,Q, R), we note that it suffices to show that

(3.11) Rn = EP

[
max
i6=j

n∑

t=1

pi,t (ℓ(i, Yt) − ℓ(j, Yt))

]
> c

√
n .

Now,

Rn = EP

[
max
i6=j

n∑

t=1

pi,t (ℓ(i, Yt) − ℓ(j, Yt))

]

>
1

2
EQ

[
n∑

t=1

p1,t (ℓ(1, Yt) − ℓ(2, Yt))

]
+

1

2
ER

[
n∑

t=1

p2,t (ℓ(2, Yt) − ℓ(1, Yt))

]

=
ε

2

(
EQ

[
n∑

t=1

p1,t

]
+ ER

[
n∑

t=1

p2,t

])

=
ε

2


2n− EQ

[
n∑

t=1

p2,t

]
− ER

[
n∑

t=1

p1,t

]
− 2

N∑

j=3

EP

[
n∑

t=1

pj,t

]
 .

We may always assume that for allj = 3, . . . ,N ,

1

2
EP

[
n∑

t=1

pj,t

]
=

1

2
EP

[
n∑

t=1

pj,t (ℓ(j, Yt) − ℓ(1, Yt))

]
6 c

√
n

(otherwise (3.11) is true, and the proof is done), so that

(3.12) Rn >
ε

2

(
2n − EQ

[
n∑

t=1

p2,t

]
− ER

[
n∑

t=1

p1,t

]
− 4(N − 2)c

√
n

)
.

We denote byPA the expectation with respect to the auxiliary randomization, and similarly to the
proof of Theorem 5.5, we note that, thanks to Fubini’s theorem,

(3.13) EQ

[
n∑

t=1

p2,t

]
= Q ⊗ PA[It = 2] .

We now use Pinsker’s inequality (see Lemma A.6 in the Appendix) to get

(3.14) Q ⊗ PA[It = 2] 6 P ⊗ PA[It = 2] +

√
1

2
K (P ⊗ PA, Q ⊗ PA) .
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We upper bound the Kullback-Leibler divergence thanks to Lemma A.5 and (A.1),

(3.15) K (P ⊗ PA, Q ⊗ PA) = K
(
B1/2,B1/2−ε

)
6 6 ε2 ,

for all 0 6 ε 6 1/
√

6. We proceed similarly for the expectation underR in (3.12), combine
(3.12)–(3.15), and perform some crude bounding,

Rn >
ε

2

(
2n−

(
n∑

t=1

P ⊗ PA [It ∈ {1, 2}]
)

− 2n
√

3ε2 − 4(N − 2)c
√
n

)

>
nε

2

(
1 − 2

√
3 ε− 4cN√

n

)
>
nε

2

(
1

2
− 2

√
3 ε

)
,

where we used the fact thatN 6 8
√

3
√
n andc = 1/(64

√
3) in the last inequality. We choose

ε = 1/(8
√

3) to conclude the proof. �

2.2. Interpretation of internal regret as an extremum of performance. When a forecast-
ing strategy suffers a small internal regret, this means that it cannot easily be improved, that is,
either it was already very efficient, or it makes so poor predictions that there is no hope to improve
its performances. Hopefully, for (randomized) predictionwith expert advice, (3.1) shows that as
external regret is upper bounded byN times internal regret, the second case of the alternative never
happens. This, unfortunately, is not the case for all prediction settings (see, for instance, Example
7.1 or the example below). In Chapter 7 we derive investment strategies which, at the same time,
suffer small internal and external regret, and the example below shows why we should not focus
only on internal regret in general prediction settings, while the results of Chapter 7 indicate on the
other hand that minimizing both regrets at the same is worthwhile.

Consider the problem ofsequential probability assignment, described as follows (see Lugosi
[Lug01] or Catoni [Cat01] for more references and background). A forecaster repeatedly has
to output a probability distributionpt ∈ X , t = 1, 2, . . ., whereX is the set of all probability
distributions over the finite outcome spaceY. Without loss of generality, we takeY = {1, . . . ,N}
andX is the real simplex of orderN . We denote an elementp ∈ X by p = (p1, . . . , pN ). Now,
the loss functionℓ : X × Y → R+ is defined byℓ(p, y) = − ln p(y). In this setting, in agreement
to the definitions introduced later in Chapters 7 and 8, we define the internal regret of a forecaster
by the difference between the cumulative losses of the original algorithm and of itsi→ j modified
strategy. The latter predicts withpi→j

t instead ofpt at each time stept, where we use again the
notation of Section 1.2.

It is convenient in this framework to emphasize the dependencies on the past, and denote
pt = pt(· |yt−1

1 ), whereyt−1
1 = (y1, . . . , yt−1) (andy0

1 is the empty sequence) is the history up to
time t − 1. We note that there is a one-to-one correspondence between forecasting strategies and
sequences of probability distributions over the(Yn)n>1, given by

pn(y
n
1 ) =

n∏

t=1

pt(yt|yt−1
1 ) .

We similarly denote, fori 6= j, pi→j
n (yn1 ) =

n∏

t=1

p
i→j
t (yt|yt−1

1 ).

Now, the cumulative internal of a forecasting strategy overa sequenceyn1 in the setting of
sequential probability assignment equals

max
i6=j

n∑

t=1

ℓ(pt, yt) − ℓ
(
p
i→j
t , yt

)
= ln

p
i→j
n (yn1 )

pn(y
n
1 )

,
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with the usual convention thatln(0/0) = 0.

PROPOSITION3.1. The minimax value of internal regret in the sequential probability assign-
ment problem equals, for alln > 2 andN > 2,

inf max
yn
1 ∈Y

n
max
i6=j

ln
p
i→j
n (yn1 )

pn(y
n
1 )

= ln 2 ,

where the infimum is taken over all possible forecasters. Moreover, the forecaster usingp1 =

(1/N, . . . , 1/N) andpt = δy1 , whereδj is the Dirac mass onj, achieves this minimax value.

We omit the simple proof, and remark here that the forecasting strategy achieving the minimax
value is a very poor prediction scheme, which suffers a largeexternal regret with respect to most
finite comparison classes, though its internal regret is thesmallest possible. That is, this strategy
suffers a small internal regret because it is already so bad that there is no possibility to improve it.



CHAPTER 4

Improved second-order bounds in prediction with expert advice

This chapter studies external regret in sequential prediction games with arbitrary payoffs (non-
positive or nonnegative). External regret measures the difference between the payoff obtained by
the forecasting strategy and the payoff of the best action. We focus on two important parameters:
M , the largest absolute value of any payoff, andQ∗, the sum of squared payoffs of the best action.
Given these parameters we derive first a simple and new forecasting strategy with regret at most
order of

√
Q∗(lnN) + M lnN , whereN is the number of actions. We extend the results to

the case where the parameters are unknown and derive similarbounds. We then devise a refined
analysis of the weighted majority forecaster, which yieldsbounds of the same flavour. The proof
techniques we develop are finally applied to the adversarialmulti-armed bandit setting, and we
prove bounds on the performance of an online algorithm in thecase where there is no lower bound
on the probability of each action. We close the chapter with apreliminary result about fast rates
of convergence in randomized prediction with expert advice. This wide range of applications
demonstrates the power and generality of our methodology.
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Most of this chapter is based on a joint work with Nicolò Cesa-Bianchi and Yishay Mansour.
An extended abstract of these results [CeMaSt05] is to be presented atCOLT’05.

1. Introduction

The study of online forecasting strategies in adversarial settings has received considerable
attention in the last few years in the computational learning literature and elsewhere. The main
focus has been on deriving simple online algorithms that have low external regret. The external
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regret of an online algorithm is the difference between its expected payoff and the best payoff
achievable using some strategy from a given class. Usually,this class includes a strategy, for each
action, which always plays that action. In a nutshell, one can show that the average external regret
per time step vanishes, and much of the research has been to both improve and refine the bounds.

Ideally, in an adversarial setting one should be able to showthat the regret with respect to any
action only depends on the variance of the observed payoffs for that action. In a stochastic setting
such a result seems like the most natural bound, and derivingits analogue in an adversarial setting
would be a fundamental result. We believe that our results make a significant step toward this goal,
although, unfortunately, fall short of completely achieving it.

In order to describe our results we first set up our model and notation, and relate them to previ-
ous works. In this chapter we consider the following game-theoretic version of the prediction-with-
expert-advice framework [CeFrHaHeScWa97, LiWa94, Vov98], see also Chapter 2. A forecaster
repeatedly assigns probabilities to a fixed set of actions. After each assignment, the real payoff
associated to each action is revealed and new payoffs are setfor the next round. The forecaster’s
reward on each round is the average payoff of actions for thatround, where the average is com-
puted according to the forecaster’s current probability assignment. The goal of the forecaster is
to achieve, on any sequence of payoffs, a cumulative reward close toX∗, the highest cumulative
payoff among all actions. As usual, we call regret the difference betweenX∗ and the cumulative
reward achieved by the forecaster on the same payoff sequence.

The special case of “one-sided games”, when all payoffs havethe same sign (they are either al-
ways non-positive or always nonnegative) has been considered by Freund and Schapire [FrSc97],
and by Auer, Cesa-Bianchi, Freund, and Schapire [AuCeFrSc02] in a related context (see also
the whole Chapter 2, which deals only with losses, that is, with non-positive payoffs). These pa-
pers show that Littlestone and Warmuth’s weighted majorityalgorithm [LiWa94] can be used as
a basic ingredient to construct a forecasting strategy achieving a regret ofO(

√
M |X∗| lnN) in

one-sided games, whereN is the number of actions andM is a known upper bound on the size of
payoffs. (If all payoffs are non-positive, then the absolute value of each payoff is calledlossand
|X∗| is the cumulative loss of the best action.) By a simple rescaling of payoffs, it is possible to
reduce the more general “signed game”, in which each payoff might have an arbitrary sign, to ei-
ther one of the one-sided games (note that this reduction assumes knowledge ofM ). However, the
regret becomesO(M

√
n lnN), wheren is the number of game rounds. Recently, Allenberg and

Neeman [AlNe04] proposed a direct analysis of the signed game avoiding thisreduction. Before
describing their results, we introduce some convenient notation and terminology.

Our forecasting game is played in rounds. At each time stept = 1, 2, . . . the forecaster
computes an assignmentpt = (p1,t, . . . , pN,t) of probabilities over theN actions. Then the payoff
vectorxt = (x1,t, . . . , xN,t) ∈ RN for time t is revealed and the forecaster’s (expected) reward is

x̂t = x1,tp1,t + . . . + xN,tpN,t .

We define the cumulative reward of the forecaster byX̂n = x̂1 + . . . + x̂n and the cumulative
payoff of actioni byXi,n = xi,1 + . . .+ xi,n. For alln, let

X∗
n = max

i=1,...,N
Xi,n

be the cumulative payoff of the best action up to timen. The forecaster’s goal is to keep the
(expected)regretX∗

n − X̂n as small as possible uniformly overn.
The one-sided games, mentioned above, are theloss game, wherexi,t 6 0 for all i and t,

and thegain game, wherexi,t > 0 for all i and t. We call signed gamethe setup in which



2. A NEW ALGORITHM FOR SEQUENTIAL PREDICTION 63

no assumptions are made on the sign of the payoffs. For the signed game, Allenberg and Nee-
man [AlNe04] show that weighted majority (used in conjunction with a doubling trick) achieves
the following: on any sequence of payoffs there exists an action j such that the regret is at most
of order

√
M(lnN)

∑n
t=1 |xj,t|, whereM = maxi,t |xi,t| is a known upper bound on the size of

payoffs. Note that this bound does not relate the regret to the sum|x∗1|+ . . .+ |x∗n| of payoff sizes
for the optimal action (i.e., the one achievingX∗

n). In particular, the boundO(
√
M |X∗

n| lnN) for
the one-sided games is only obtained if an estimate ofX∗

n is available in advance.
In this chapter we show new regret bounds for the signed game.Our analysis has two main

advantages: first, no preliminary knowledge of the payoff sizeM or of the best cumulative payoff
X∗
n is needed; second, our bounds are expressed in terms of sums of squared payoffs, such as

x2
i,1 + . . . + x2

i,n and related forms. These quantities replace the larger termsM(|xi,1| + . . . +

|xi,n|) appearing in the previous bounds. As an application of our results we obtain, without any
preliminary knowledge on the payoff sequence, an improved regret bound for the one-sided games
of the order of

√
M min{Mn− |X∗

n|, |X∗
n|}(lnN) (and even

√
(Mn− |X∗

n|)(|X∗
n|/n)(lnN)).

Expressions involving squared payoffs are at the core of many analyses in the framework of
prediction with expert advice, especially in the presence of limited feedback. (See, for instance,
the bandit problem in Section 4 of Chapter 2 and in [AuCeFrSc02], and more generally prediction
under partial monitoring, see Chapters 5 and 6, as well as [CeLuSt04a, CeLuSt04b, PiSc01]).
However, to the best of our knowledge, our bounds are the firstones to explicitly include second-
order information extracted from the payoff sequence. In particular, our bounds are stable under
many transformations of the payoff sequence, and thereforeare in some sense more “fundamen-
tal”.

Some of our bounds are achieved using forecasters based on weighted majority run with a
dynamic learning rate. However, we are able to obtain second-order bounds of a different flavour
using a new forecaster that does not use the exponential probability assignments of weighted ma-
jority. In particular, unlike virtually all previously known forecasting schemes, the weights of this
forecaster cannot be represented as the gradient of an additive potential, see Section 2.3 in Chapter
2 or [CeLu03].

In bandit problems and, more generally, in all incomplete-information problems like label-
efficient prediction or prediction with partial monitoring, a crucial point is to estimate the unob-
served losses. In such settings, a probability distribution is formed by using weighted averages
of the cumulative estimated losses, and a common practice isto mix this probability distribution,
so that the resulting distribution have all the probabilities above a certain value. Technically, this
is important since it is common to divide by the probabilities (see [AuCeFrSc02, CeLuSt04a,
CeLuSt04b, HaMa02, PiSc01] and the forecasting schemes of Chapters 5 and 6). We show that,
for the algorithm of [AuCeFrSc02] and in bandit loss games,, using our proof technique one can
simply use the original probability distribution, computed with the estimates, without any adjust-
ments and get an expected bound which is an improvement for small losses.

We close the chapter with a preliminary result about fast rates of convergence in randomized
prediction with expert advice.

2. A new algorithm for sequential prediction

We introduce a new forecasting strategy for the signed game.In Theorem 4.3, the main result
of this section, we show that, without any preliminary knowledge of the sequence of payoffs, the
regret of a variant of this strategy is bounded by a quantity defined in terms of the sums

Qi,n = x2
i,1 + . . .+ x2

i,n .
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SinceQi,n 6 M(|xi,1| + . . . + |xi,n|), such second-order bounds are generally better than the
previously known bounds for any of the three (loss, gain, andsigned) games, and in certain cases
the difference can be significant.

Our basic forecasting strategy, which we callPROD(η), has an input parameterη > 0 and
maintains a set ofN weights. At timet = 1 the weights are initialized withwi,1 = 1 for
i = 1, . . . , N . At each timet = 1, 2, . . ., PROD(η) computes the probability assignmentpt =

(p1,t, . . . , pN,t), wherepi,t = wi,t/Wt. After the payoff vectorxt is revealed, the weights are
updated using the rulewi,t+1 = wi,t(1 + ηxi,t). We use the notationWt = w1,t + . . .+ wN,t.

The following simple fact plays a key role in our analysis.

LEMMA 4.1. For all z > −1/2, ln(1 + z) > z − z2.

PROOF. Let f(z) = ln(1 + z) − z + z2. Note that

f ′(z) =
1

1 + z
− 1 + 2z =

z(1 + 2z)

1 + z
,

so thatf ′(z) 6 0 for −1/2 6 z 6 0 andf ′(z) > 0 for z > 0. Hence the minimum off is
achieved in0 and equals0, concluding the proof. �

We are now ready to state a lower bound on the cumulative reward of PROD(η) in terms of the
quantitiesQk,n.

LEMMA 4.2. Assume there existsM > 0 such that the payoffs satisfyxi,t > −M for t =

1, . . . , n and i = 1, . . . , N . For any sequence of payoffs, for any actionk, for anyη 6 1/(2M ),
and for anyn > 1, the cumulative reward ofPROD(η) is lower bounded as

X̂n > Xk,n −
lnN

η
− η Qk,n .

PROOF. For anyk = 1, . . . , N , note thatxk,t > −M andη 6 1/(2M) imply ηxk,t > −1/2.
Hence, we can apply Lemma 4.1 toηxk,t and get

ln
Wn+1

W1
= − lnN + ln

n∏

t=1

(1 + ηxk,t) = − lnN +

n∑

t=1

ln(1 + ηxk,t)

> − lnN +

n∑

t=1

(
ηxk,t − η2x2

k,t

)
= − lnN + ηXk,n − η2Qk,n .(4.1)

On the other hand,

(4.2) ln
Wn+1

W1
=

n∑

t=1

ln
Wt+1

Wt
=

n∑

t=1

ln

(
N∑

i=1

pi,t (1 + ηxi,t)

)
6 ηX̂n

where in the last step we usedln(1 + zt) 6 zt for all zt = η
∑N

i=1 xi,tpi,t > −1/2. Combin-
ing (4.1) and (4.2), and dividing byη > 0, we get

X̂n > − lnN

η
+Xk,n − η Qk,n ,

which completes the proof of the lemma. �

By choosingη appropriately, we can optimize the bound as follows.

THEOREM 4.1. Assume there existsM > 0 such that the payoffs satisfyxi,t > −M for
t = 1, . . . , n andi = 1, . . . , N . For anyQ > 0, if PROD(η) is run with

η = min
{

1/(2M),
√

(lnN)/Q
}
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then for any sequence of payoffs, for any actionk, and for anyn > 1 such thatQk,n 6 Q,

X̂n > Xk,n − max
{

2
√
Q lnN, 4M lnN

}
.

To achieve the bound stated in Theorem 4.1, the parameterη must be tuned using preliminary
knowledge of a lower bound on the payoffs and an upper bound onthe quantitiesQk,n. The next
two results remove these requirements one by one. We start byintroducing a new algorithm that,
using a doubling trick overPROD, avoids any preliminary knowledge of a lower bound on the
payoffs.

Let PROD-M(Q) be the prediction algorithm that receives a numberQ > 0 as input parameter
and repeatedly runsPROD(ηr), whereηr = 1/(2Mr) andMr is defined below. We call epoch
r the sequence of time steps whenPROD-M is runningPROD(ηr). At the beginning,r = 0 and
PROD-M(Q) runsPROD(η0), where

M0 =
√
Q/(4 lnN) and η0 = 1/(2M0) =

√
(lnN)/Q .

The last step of epochr > 0 is the time stept = tr whenmaxi=1,...,N |xi,t| > Mr happens for the
first time. When a new epochr+ 1 begins,PROD is restarted with parameterηr+1 = 1/(2Mr+1),
whereMr+1 = maxi 2

⌈log2 |xi,tr |⌉. Note thatM1 > M0 and, for eachr > 1,Mr+1 > 2Mr.

THEOREM 4.2. For any sequence of payoffs, for any actionk, and for anyn > 1 such that
Qk,n 6 Q, the cumulative reward of algorithmPROD-M(Q) is lower bounded as

X̂n > Xk,n − 2
√
Q lnN − 4M (2 + 3 lnN)

whereM = max16i6N max16t6n |xi,t|.

PROOF. We denote byR the index of the last epoch and lettR = n. If we have only one
epoch, then the theorem follows from Theorem 4.1 applied with a lower bound of−M0 on the
payoffs. Therefore, for the rest of the proof we assumeR > 1. Let

Xr
k =

∑tr−1
s=tr−1+1 xk,s, Qrk =

∑tr−1
s=tr−1+1 x

2
k,s, X̂r =

∑tr−1
s=tr−1+1 x̂s ,

where the sums are over all the time stepst in epochr except the last one,tr. (Here t−1 is
conventionally set to0.) Applying Lemma 4.1 to each epochr = 0, . . . , R we get thatX̂n−Xk,n

is equal to

R∑

r=0

(
X̂r −Xr

k

)
+

R−1∑

r=0

(x̂tr − xk,tr) > −
R∑

r=0

lnN

ηr
−

R∑

r=0

ηrQ
r
k +

R−1∑

r=0

(x̂tr − xk,tr) .

We bound each sum separately. For the first sum note that

R∑

r=0

lnN

ηr
=

R∑

r=0

2MrlnN 6 6MR lnN

sinceMR > 2R−rMr for eachr > 1 andM0 6 MR. For the second sum, using that theηr
decrease, we have

R∑

r=0

ηrQ
r
k 6 η0

R∑

r=0

Qrk 6 η0Qk,n 6

√
lnN

Q
Q =

√
Q lnN .

Finally,
R−1∑

r=0

|x̂tr − xk,tr | 6

R∑

r=1

2Mr 6 4MR .
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The resulting lower bound2MR(2 + 3 lnN) +
√
Q lnN implies the one stated in the theorem by

noting that, whenR > 1,MR 6 2M . �

We now show a regret bound for the case whenM and theQk,n are both unknown. Letk∗t be
the index of the best action up to timet; that is,k∗t ∈ argmaxkXk,t (ties are broken by choosing
the actionk with minimal associatedQk,t). We denote the associated quadratic penalty by

Q∗
t = Q∗

k∗t
=
∑t

s=1 x
2
k∗t ,s

.

Ideally, our final regret bound should depend onQ∗
n. However, note that the sequenceQ∗

1, Q
∗
2, . . .

is not necessarily monotone, asQ∗
t andQ∗

t+1 cannot be possibly related when the actions achiev-
ing the largest cumulative payoffs at roundst andt + 1 are different. Therefore, we cannot use
a straightforward doubling trick, as this only applies to monotone sequences. Our solution is to
express the bound in terms of the smallest nondecreasing sequence that upper bounds the orig-
inal sequence(Q∗

t )t>1. This is a general trick to handle situations where the penalty terms are
not monotone. Allenberg and Neeman [AlNe04] faced a similar situation, and we improve their
results.

We define a new (parameterless) prediction algorithmPROD-MQ in the following way. The
algorithm runs in epochs usingPROD-M(Q) as a subroutine. The last step of epochr is the time
step t = tr whenQ∗

t > 4r happens for the first time. At the beginning of each new epoch
r = 0, 1, . . ., algorithmPROD-M(Q) is restarted with parameterQ = 4r.

THEOREM 4.3. For any sequence of payoffs and for anyn > 1, the cumulative reward of
algorithm PROD-MQ satisfies

X̂n > X∗
n − 8

√
(lnN)max

{
1, max

s6n
Q∗
s

}
− 12M

(
2 + log4 max

s6n
Q∗
s

)
(1 + lnN)

whereM = max16i6N max16t6n |xi,t|.

PROOF. We denote byR the index of the last epoch and lettR = n. Assume thatR > 1

(otherwise the proof is concluded by Theorem 4.2). Similarly to the proof of Theorem 4.2, for all
epochsr and actionsk introduce

Xr
k =

∑tr−1
s=tr−1+1 xk,s , Qrk =

∑tr−1
s=tr−1+1 x

2
k,s , X̂r =

∑tr−1
s=tr−1+1 x̂s

wheret−1 = 0. We also denotekr = k∗tr−1 the index of the best overall expert up to timetr − 1

(one time step before the end of epochr). We have thatQrkr
6 Qkr,tr−1 = Q∗

tr−1. Now, by
definition of the algorithm,Q∗

tr−1 6 4r. Theorem 4.2 (applied to time stepstr−1 + 1, . . . , tr − 1)

shows thatX̂r > Xr
kr

− Φ (M, 4r), whereΦ(M,x) = 2
√
x lnN + 4M(2 + 3 lnN). Summing

overr = 0, . . . , R we get

(4.3) X̂n =

R∑

r=0

X̂r + x̂kr,tr >

R∑

r=0

(
x̂kr,tr +Xr

kr
− Φ (M, 4r)

)
.

Now, sincek1 is the index of the expert with largest payoff up to timet1 − 1, we have that
Xk2,t2−1 = X1

k2
+ xk2,t1 +X2

k2
6 X1

k1
+X2

k2
+M . By a simple induction, we in fact get

(4.4) XkR,tR−1 6

R−1∑

r=0

(
Xr
kr

+M
)

+XR
kR
.
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As, in addition,XkR,tR−1 andXk∗n,n may only differ by at mostM , combining (4.3) and (4.4) we
have indeed proven that

X̂n > Xk∗n,n −
(

2(1 +R)M +
R∑

r=0

Φ (M, 4r)

)
.

The sum overr is now bounded as follows
R∑

r=0

Φ (M, 4r) 6 4M(1 +R) (2 + 3 lnN) + 2R+1
(
2
√

lnN
)
.

The proof is concluded by noting that, asR > 1, sups6nQ
∗
s > 4R−1 by definition of the algo-

rithm. �

As a final remark for this section, note that we may runPROD-MQ using translated payoffs
rk,t = xk,t−µt, whereµt is any quantity possibly based on the past payoffsxi,s, for i = 1, . . . ,N

and s = 1, . . . , t. An interesting application is obtained by consideringµt = x̂t wherex̂t =

x1,tp1,t + . . .+xN,tpN,t is the forecaster’s reward at timet. As the sumŝx1 + . . .+ x̂n cancel out
in the differenceX̂n −Xk,n, we can obtain the following corollary of Theorem 4.3.

COROLLARY 4.1. If algorithm PROD-MQ is run using translated payoffsxk,t − x̂t, then for
any sequence of payoffs and for anyn > 1,

X̂n > X∗
n − 8

√
(lnN)max

{
1, max

s6n
R∗
s

}
− 12M

(
2 + log4 max

s6n
R∗
s

)
(1 + lnN)

whereM = 2max16i6N max16t6n |xi,t| andR∗
t = (xk∗t ,1 − x̂1)

2 + . . . + (xk∗t ,t − x̂t)
2 for k∗t

achieving the best cumulative payoff at roundt (ties broken by choosing the actionk with smallest
associatedRk,t).

REMARK 4.1. In a one-sided game, for instance a gain game, the forecaster always has an
incentive to translate the payoffs by the minimal payoffµt obtained at each roundt,

µt = min
j=1,...,N

xk,t ,

just because for allj andt, (xj,t−µt)
2 6 x2

j,t for a gain game. The matter is not so clear however
for signed games, and it may be a delicate issue to determine beforehand if the payoffs should be
translated, and if so, which translation rule should be used. See Section 4.2 below.

REMARK 4.2. There is one single result that can be deduced from [AlNe04] and which is not
implied by our new forecaster. Their Theorem 3 bounds the regret at roundn as follows. There
exists an actionj such that

X̂n > X∗
n −O

(√
MDj,n lnN

)
,

where

Dj,n =

n∑

t=1

(xj,t − x̂t)+ .

This is achieved by a forecaster using weighted averages, whose basic step of update is given by

wi,t+1 = wi,t (1 − η sign (xi,t − x̂t))
|xi,t−bxt| ,
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wheresignu equals 1 whenu > 0, and−1 otherwise. We can even get, with their Theorem 2 and
the modified doubling trick above, the better bound

X̂n > X∗
n −O

(√
M(lnN) max

16t6n
D∗
t

)
,

whereD∗
t = Dk∗t ,t

. This bound also leads to an improvement for small or large payoffs in one-
sided games, see Section 4.1 for more details on such bounds.Now, in the main term of the bound
proposed by Corollary 4.1, we only have

R∗
t 6 M

n∑

t=1

∣∣xk∗t ,t − x̂t
∣∣ .

The maximum of theD∗
t might be less than the maximum of theR∗

t , and we were not able to get
the former in any bound on aPROD-MQ type algorithm.

3. Second-order bounds for weighted majority

In this section we derive new regret bounds for the weighted majority forecaster of Littlestone
and Warmuth [LiWa94] using a time-varying learning rate. This allows us to avoidthe doubling
trick of Section 2 and keep the assumption that no knowledge on the payoff sequence is available
in advance to the forecaster.

Similarly to the results of Section 2, the main term in the newbounds depends on second-order
quantities associated to the sequence of payoffs. However,the precise definition of these quantities
makes the bounds of this section generally not comparable tothe bounds obtained in Section 2.

The weighted majority forecaster using the sequenceη2, η3, . . . > 0 of learning rates assigns
at timet a probability distributionpt over theN experts defined byp1 = (1/N, . . . , 1/N) and

(4.5) pi,t =
eηtXi,t−1

∑N
j=1 e

ηtXj,t−1
for i = 1, . . . ,N andt > 2 ,

see Section 2 in Chapter 2. Note that the quantitiesηt > 0 may depend on the past payoffsxi,s,
i = 1, . . . , N ands = 1, . . . , t−1. The analysis of Auer, Cesa-Bianchi, and Gentile [AuCeGe02],
for a related variant of weighted majority, is at the core of the proof of the following lemma (proof
in the appendix of this chapter).

LEMMA 4.3. Consider any nonincreasing sequenceη2, η3, . . . of positive learning rates and
any sequencex1,x2, . . . ∈ RN of payoff vectors. Define the nonnegative functionΦ by

Φ(pt, ηt, xt) = −
N∑

i=1

pi,txi,t +
1

ηt
ln

N∑

i=1

pi,te
ηtxi,t =

1

ηt
ln

(
N∑

i=1

pi,te
ηt(xi,t−bxt)

)

Then the weighted majority forecaster (4.5) run with the sequenceη2, η3, . . . satisfies, for any
n > 1 and for anyη1 > η2,

X̂n −X∗
n > −

(
2

ηn+1
− 1

η1

)
lnN −

n∑

t=1

Φ(pt, ηt, xt) .

OPEN QUESTION 4.1. We show below an incremental update for a weighted-majority-based
predictor, using the second-order upper bounds on the quantities Φ(pt, ηt, xt) given by Lemma
4.4. The parametersηt are chosen to minimize the obtained upper bounds. If we had third-order
upper bounds, or even sharper ones of a different form, then the form of theηt would have been
different too. The form of the bounds basically indicates the form of theηt. One may wonder if
there is a general way to define theηt, in terms of theΦ(ps, ηs, xs), for s 6 t − 1, and not in
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terms of some upper bounds on these quantities. That would result in sharper and very general
bounds on the regret.

Let Zt be the random variable with range{x1,t, . . . , xN,t} and lawpt. Note thatEZt is the
expected payoff̂xt of the forecaster using distributionpt at timet. Introduce

VarZt = EZ2
t − E2Zt =

N∑

i=1

pi,tx
2
i,t −

(
N∑

i=1

pi,txi,t

)2

.

HenceVarZt is the variance of the payoffs at timet under the distributionpt and the cumulative
varianceVn = VarZ1 + . . .VarZn is the main second-order quantity used in this section. The
next result boundsΦ(pt, ηt, xt) in terms ofVarZt.

LEMMA 4.4. For all payoff vectorsxt = (x1,t, . . . , xN,t), all probability distributionspt =

(p1,t, . . . , pN,t), and all learning ratesηt > 0, we have

Φ(pt, ηt, xt) 6 2M

whereM is such that|xi,t| 6 M for all i. If, in addition,0 6 ηt |xi,t| 6 1/2 for all i = 1, . . . ,N ,
then

Φ(pt, ηt, xt) 6 (e− 2)ηt VarZt .

PROOF. The first inequality is straightforward. To prove the second one we useea 6 1 + a+

(e − 2) a2 for |a| 6 1. Consequently, noting thatηt |xi,t − x̂t| 6 1 for all i by assumption, we
have that

Φ(pt, ηt, xt) =
1

ηt
ln

(
N∑

i=1

pi,te
ηt(xi,t−bxt)

)

6
1

ηt
ln

(
N∑

i=1

pi,t
(
1 + ηt(xi,t − x̂t) + (e− 2)η2

t (xi,t − x̂t)
2
)
)
.

Using ln(1 + a) 6 a for all a > −1 and some simple algebra concludes the proof of the second
inequality. �

In [AuCeFrSc02] a very similar result is proven, except that there the variance is further
bounded (up to a multiplicative factor) by the expectationx̂t of Zt.

We now introduce a time-varying learning rate based onVn. For any sequence of payoff
vectorsx1,x2, . . . and for all t = 1, 2, . . . let Mt = 2k, wherek is the smallestnonnegative
integer such thatmaxs=1,...,tmaxi=1,...,N |xi,s| 6 2k. Now let the sequenceη2, η3, . . . be defined
as

(4.6) ηt = min

{
1

2Mt−1
, C

√
lnN

Vt−1

}
for t > 2, with C =

√
2

e− 2

(√
2 − 1

)
.

Note thatηt depends on the forecaster’s past predictions. This is in thesame spirit as the self-
confident learning rates considered in [AuCeGe02].

We are now ready to state and prove the main result of this section, which bounds the regret
in terms of the variances of the predictions. We show in the next section how this bound leads to
more intrinsic bounds on the regret.

THEOREM 4.4. Consider the weighted majority forecaster using the time-varying learning
rate (4.6). Then, for all sequences of payoffs and for alln > 1,

X̂n −X∗
n > −4

√
Vn lnN − 16 max{M, 1} lnN − 8 max{M, 1} −M2
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whereM = maxt=1,...,nmaxi=1,...,N |xi,t|.

PROOF. We start by applying Lemma 4.3 using the learning rate (4.6), and settingη1 = η2 for
the analysis,

X̂n −X∗
n > −

(
2

ηn+1
− 1

η1

)
lnN −

n∑

t=1

Φ(pt, ηt, xt)

> −2max
{

2Mn lnN, (1/C)
√
Vn lnN

}
−

n∑

t=1

Φ(pt, ηt, xt)

= −2max
{

2Mn lnN, (1/C)
√
Vn lnN

}

−
∑

t∈T

Φ(pt, ηt, xt) −
∑

t6∈T

Φ(pt, ηt, xt)

whereC is defined in (4.6), andT is the set of times roundst > 2 whenηt |xi,t| 6 1/2 for all
i = 1, . . . , N (note that1 6∈ T by definition).

Using the second bound of Lemma 4.4 ont ∈ T and the first bound of Lemma 4.4 ont 6∈ T ,
which in this case readsΦ(pt, ηt, xt) 6 2Mt, we get

(4.7) X̂n −X∗
n > −2max

{
2Mn lnN, (1/C)

√
Vn lnN

}
− (e− 2)

∑

t∈T

ηt VarZt −
∑

t6∈T

2Mt

(where2M1 appears in the last sum). We first note that

∑

t6∈T

Mt 6

⌈log2 max{M,1}⌉∑

r=0

2r 6 21+⌈log2 max{M,1}⌉
6 4 max{M, 1} .

We now denote byT the first time stept whenVt > M2. Using thatηt 6 1/2 for all t and
VT 6 2M2, we get

(4.8)
∑

t∈T

ηt VarZt 6 M2 +

n∑

t=T+1

ηt VarZt .

We bound the sum usingηt 6 C
√

(lnN)/Vt−1 for t > 2 (note that, fort > T , Vt−1 > VT >

M2 > 0). This yields
n∑

t=T+1

ηt VarZt 6 C
√

lnN

n∑

t=T+1

Vt − Vt−1√
Vt−1

.

Let vt = VarZt = Vt − Vt−1. SinceVt 6 Vt−1 +M2 andVt−1 > M2, we have

(4.9)
vt√
Vt−1

=

√
Vt +

√
Vt−1√

Vt−1

(√
Vt −

√
Vt−1

)
6 (

√
2 + 1)

(√
Vt −

√
Vt−1

)

Therefore, using that
√

2 + 1 = 1/(
√

2 − 1),
n∑

t=T+1

ηt VarZt 6
C
√

lnN√
2 − 1

(√
Vn −

√
VT

)
6

C√
2 − 1

√
Vn lnN .

When
√
Vn > 2CMn

√
lnN , usingMn > M we have thatX̂n −X∗

n is at least

− 2

C

√
Vn lnN − C(e− 2)√

2 − 1

√
Vn lnN − 8 max{M, 1} − (e− 2)M2

> −4
√
Vn lnN − 8 max{M, 1} −M2 ,
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where we substituted the value ofC and obtained a constant for the leading term equal to

2

√
2(e − 2)√√

2 − 1
6 3.75 .

When
√
Vn 6 2CMn

√
lnN , usingMn 6 max{1, 2M} we have thatX̂n −X∗

n is at least

− 8M lnN − C24(e− 2)√
2 − 1

max{1/2, M} lnN − 8 max{M, 1} − (e− 2)M2

> −16 max{M, 1} lnN − 8 max{M, 1} −M2 .

This concludes the proof. �

4. Applications

To demonstrate the usefulness of the bounds proven in Theorems 4.3 and 4.4 we show that
they lead to several improvements or extensions of earlier results.

4.1. Improvements for loss games.Recall the definition of quadratic penaltiesQ∗
t in Sec-

tion 2. In case of a loss game (i.e., all payoffs are non-positive), Q∗
t 6 ML∗

t , whereL∗
t is the

cumulative loss of the best action up to timet. Therefore,maxs6nQ
∗
s 6 ML∗

n and the bound of
Theorem 4.3 is at least as good as the family of bounds called “improvements for small losses”
(see Section 3.1 in Chapter 2), whose main term is of the form

√
ML∗

n lnN .
However, it is easy to exhibit examples where the new bound isfar better by considering

sequences of outcomes where there are some “outliers” amongthexi,t. These outliers may raise
the maximumM significantly, whereas they have only little impact on themaxs6nQ

∗
s.

4.2. Using translations of payoffs.Recall thatZt is the random variable which takes the
valuexi,t with probability pi,t, for i = 1, . . . ,N . The main term of the bound stated in Theo-
rem 4.4 containsVn = VarZ1 + . . . + VarZn. Note thatVn is smaller than all quantities of the
form

n∑

t=1

N∑

i=1

pi,t (xi,t − µt)
2

where(µt)t>1 is any sequence of real numbers which may be chosen inhindsight, as it is not
required for the definition of the forecaster. (The minimal value of the expression is obtained for
µt = x̂t.) This gives us a whole family of upper bounds, and we may choose for the analysis the
most convenient sequence ofµt (see, for instance, Corollary 4.2 and Section 4.5 below).

To provide a concrete example, denote the effective range ofthe payoffs at timet by

Rt = max
i=1,...,N

xi,t − min
j=1,...,N

xj,t

and consider the choiceµt = minj=1,...,N xj,t + Rt/2. The next result improves on a result of
Allenberg and Neeman [AlNe04] who show a regret bound, in terms of the cumulative effective
range, whose main term is5.7

√
2(lnN)M

∑n
t=1Rt, for a given boundM over the payoffs. When

the actual ranges are small, these bounds give a considerable advantage. Such a situation arises,
for instance, in the setting of on-line portfolio selection, when we use a linear upper bound over
the regrets (see, e.g., theEG strategy of Helmbold, Schapire, Singer and Warmuth [HeScSiWa98]
with the viewpoint of Section 2 in Chapter 7).
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COROLLARY 4.2. The regret of the weighted majority forecaster run with variable learning
rate (4.6) satisfies

X̂n −X∗
n > −2

√√√√(lnN)
n∑

t=1

R2
t − 16 max{M, 1} lnN − 8 max{M, 1} −M2 .

REMARK 4.3. (About the leading constant in Corollary 4.2.) The bound proposed by Corol-
lary 4.2 shows that for an effective range ofM , say if the payoffs all fall in[0,M ], the regret is
lower bounded by a quantity equal to−2M

√
n lnN (a closer look at the proof of Theorem 4.4

shows that the constant factor may even be equal to1.9). A careful modification of this proof
would even bring the constant factor in the leading term as close to2

√
(e− 2) as wished. (The

threshold atM2 determiningT by means of theV t−1
1 has been set quite arbitrarily. A value of

aM2, a > 1, would lead to a bound with a smaller constant factor in the leading term, at the cost
of larger constant terms in the remainder constant term.)

The best leading constant for such bounds is, to our knowledge,
√

2 (see [CeLu05]), but the
latter bound only applies to loss games or, with a simple reduction, to signed games for which we
know beforehand the effective interval where the payoffs lie in. This is so because of two reasons.
The first is that we lose a factor of 2 for the same reason that inChapter 2, we lost a factor of 2
in Theorem 2.1 with respect to Theorem 2.5. We lose in addition an extra factor of

√
(e− 2)/2

because of the difference between the bounds of Lemmas 4.4 and 4.5, since the factore − 2 may
be improved into a1/2 in case of a loss game. However, as this factore−2 is optimal (see Lemma
A.3), we note that this second tiny gap is probably intrinsic. We do not know if the first one can
be filled.

In conclusion, this shows nevertheless that the improved dependence in the bound does not
come at a significant increase in the magnitude of the leadingcoefficient (and the same can be said
when comparing the bound proposed by Corollary 4.3 below andthe one of Auer, Cesa-Bianchi,
and Gentile [AuCeGe02]).

We also note that using translations of payoffs for algorithm PROD-MQ, as suggested by Corol-
lary 4.1, may be worthwhile as well, see Corollary 4.4 below.However, unlike the approach
presented here for the weighted majority based forecaster,there the payoffs have to be explicitly
translated by the forecaster, and thus, each translation rule corresponds to a different forecaster.

4.3. Improvements for one-sided games.The main drawback ofVn, used in Theorem 4.4,
is that it is defined directly in terms of the forecaster’s distributionspt. We now show how this
dependence could be removed (see also Section 4.5 for another example). Assume|xi,t| 6 M for
all t andi. The following corollary of Theorem 4.4 reveals that weighted majority suffers a small
regret in one-sided games whenever|X∗

n| orMn−|X∗
n| is small (where|xi,t| 6 M for all t andi);

that is, whenever|X∗
n| is very small or very large. Improvements of the same flavour were obtained

by Auer, Cesa-Bianchi, and Gentile [AuCeGe02] for loss games; however, their result cannot be
converted in a straightforward manner to a corresponding useful result for gain games. Allenberg
and Neeman [AlNe04] proved, in a gain game and for a related algorithm, a bound ofthe order of
11.4

√
M min

{√
X∗
n,
√
Mn−X∗

n

}
. That algorithm was specifically designed to ensure a regret

bound of this form, and is different from the algorithm whoseperformance we discussed before
the statement of Corollary 4.2. Our weighted majority forecaster achieves a better bound, even
though it was not directly constructed to do so.

COROLLARY 4.3 (Improvement for small or large payoffs in one-sided games). Consider the
weighted majority forecaster using the time-varying learning rate (4.6). Then, for all sequences of
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payoffs in a one-sided game (i.e., payoffs are all non-positive or all nonnegative),

X̂n −X∗
n > −4

√
|X∗

n|
(
M − |X∗

n|
n

)
lnN − 65 max {1 ,M}max {1 , lnN} − 5M2

whereM = maxt=1,...,n maxi=1,...,N |xi,t|.

PROOF. It suffices to give the proof for a gain game, as the bound of Theorem 4.4 is invariant
under the changeℓi,t = M −xi,t, that converts bounded losses into bounded nonnegative payoffs.
Since the payoffs are in[0,M ], we can write

Vn 6

n∑

t=1


M

N∑

i=1

pi,txi,t −
(

N∑

i=1

pi,txi,t

)2

 =

n∑

t=1

(M − x̂t)x̂t

6 n


MX̂n

n
−
(
X̂n

n

)2

 = X̂n

(
M − X̂n

n

)

where we used the concavity ofx 7→ Mx − x2. Assume thatX̂n 6 X∗
n (otherwise the result is

trivial). Then, Theorem 4.4 ensures that

X̂n −X∗
n > −4

√√√√X∗
n

(
M − X̂n

n

)
lnN − κ

whereκ = 16 max{M, 1} lnN +8 max{M, 1}+M2. We solve forX̂n by using Lemma A.14,
and obtain

X̂n −X∗
n > −4

√
X∗
n

(
M − X∗

n

n
+
κ

n

)
lnN − κ− 16

X∗
n

n
lnN .

Using the crude upper boundX∗
n/n 6 M and performing some simple algebra, we get the desired

result. �

Quite surprisingly, a bound of the same form as the one shown in Corollary 4.3 can be derived
as a consequence of Corollary 4.1, by using the payoff translation technique we discussed in the
previous section.

COROLLARY 4.4 (Improvement for small or large payoffs in one-sided games). If algorithm
PROD-MQ is run using translated payoffsxk,t− x̂t, then for all sequences of payoffs in a one-sided
game (i.e., payoffs are all non-positive or all nonnegative),

(4.10) X̂n −X∗
n > −8

√
2(lnN)max {1, 2M min {|X∗

n|, 2Mn− |X∗
n|}}

− 144M (2 + log4(2Mn)) (1 + lnN) ,

whereM = maxt=1,...,n maxi=1,...,N |xi,t|.

PROOF. It suffices to give the proof for a gain game, as the bound of Corollary 4.1 is invariant
as well under the changeℓi,t = M − xi,t, that converts bounded losses into bounded nonnegative
payoffs.

We apply the bound of Corollary 4.1, noting that, with the notation therein

(4.11) max
s6n

R∗
s 6 min

{
M
(
X∗
n + X̂n

)
, M

(
Mn−X∗

n − X̂n

)}
.
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Indeed, using that(a− b)2 6 a2 + b2 for a, b > 0, we get on the one hand,

R∗
s 6

s∑

t=1

x2
k∗s ,t

+ x̂2
s 6 M

(
Xk∗s ,s + X̂s

)
6 M

(
X∗
n + X̂n

)
,

whereas on the other hand, the same techniques yield

R∗
s =

s∑

t=1

(
(M − xk∗s ,t) − (M − x̂2

s)
)2

6 M
(
(Ms−X∗

s ) +
(
Ms− X̂s

))
.

Now, we note that for alls,X∗
s+1 6 X∗

s +M , and similarly,X̂s+1 6 X̂s+M . Thus we also have

maxs6nR
∗
s 6 M(Mn−X∗

n − X̂n).
The proof is concluded by noting that we may assume thatX∗

n > X̂n, and therefore Corollary
4.1, combined with (4.11), yields

X̂n > X∗
n − 8

√
(lnN)max

{
1, 2M min

{
X∗
n, Mn− X̂n

}}
− κ

whereκ = 12 (2M) (2 + log4(2Mn)) (1 + lnN). Solving for X̂n by using Lemma A.14, and
performing simple algebra concludes the proof. �

4.4. A simplified algorithm for bandit loss games.We indicate in this section a result that
is not a direct consequence of Theorems 4.3 or 4.4. Rather, wederive it via an extension of
Lemma 4.4, one of our key results at the core of the second-order analysis in Section 3.

Recall that payoffsxi,t in loss games are all non-positive. We useℓi,t = −xi,t to denote the
loss of actioni at timet. Similarly, ℓ̂t = ℓ1,tp1,t + . . .+ ℓN,tpN,t is the loss of the forecaster using
pt as probability assignment at timet. We make the simplifying assumptionℓi,t ∈ [0, 1] for all
i, t.

The bandit loss game (see Section 4 in Chapter 2 or [AuCeFrSc02] and references therein) is a
loss game with the only difference that, at each time stept, the forecaster has no access to the loss
vectorℓt = (ℓ1,t, . . . , ℓN,t). Therefore, the losŝℓt cannot be computed and the individual losses
ℓi,t cannot be used to adjust the probability assignmentpt. The only information the forecaster
receives at the end of each roundt is the lossℓIt,t, whereIt takes valuei with probabilitypi,t for
i = 1, . . . , N .

In bandit problems and, more generally, in all incomplete information problems like label-
efficient prediction or prediction with partial monitoring, a crucial point is to estimate the unob-
served losses. In bandit algorithms based on weighted majority, this is usually done by shifting the
probability distributionpt so that all components are larger than a given threshold (seethe forecast-
ers proposed in Section 4 of Chapter 2, in Chapters 5 and 6, as well as those in Auer, Cesa-Bianchi,
Freund, and Schapire [AuCeFrSc02], Piccolboni and Schindelhauer [PiSc01], Cesa-Bianchi, Lu-
gosi, and Stoltz [CeLuSt04a, CeLuSt04b] and Hart and Mas-Colell [HaMa02]).

Allenberg and Auer [AlAu04] apply the shifting technique to weighted majority obtaining,
in bandit loss games, a regret bound of order

√
NL∗

n lnN +N ln(nN) ln n whereL∗
n is the

cumulative loss of the best action aftern rounds,

L∗
n = min

j=1,...,N
Lj,n, where Lj,n =

n∑

t=1

ℓj,t .

(Note that using the results of [AuCeFrSc02] or Theorem 2.8), derived for gain games, one would
only obtain

√
N(lnN)n.)

We show here thatwithout any shifting, a slight modification of weighted majority achieves
an expected regret of orderN

√
L∗
n lnn+N lnn, a bound which is also an improvement for small
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Algorithm EXP3LIGHT.
Parameters: Realη > 0.
Initialization: wi,1 = 1 for i = 1, . . . ,N .

For t = 1, 2, . . .

(1) draw actionIt according to the distributionpi,t = wi,t/Wt for i = 1, . . . ,N , where
Wt = w1,t + . . .+ wN,t, and incur lossℓIt,t;

(2) let ℓ̃i,t = (ℓi,t/pi,t)Zi,t for i = 1, . . . ,N , whereZi,t = 1 if It = i and0 otherwise;

(3) for eachi = 1, . . . , N perform the updatewi,t+1 = wi,t e
−ηeℓi,t .

FIGURE 1. Algorithm EXP3LIGHT for prediction in a multi-armed bandit setting.

losses. The new bound becomes better than the one by Allenberg and Auer whenL∗
n is so small

thatL∗
n = o((ln n)3). The bandit algorithm, which we call EXP3LIGHT, is described in Figure 1.

We start the analysis of EXP3LIGHT with a variant of Lemma 4.4 for loss games.

LEMMA 4.5. For all lossesℓi,t > 0, for all setsSt ⊆ {1, . . . ,N} and for allη > 0,

Φ(pt, η, −ℓt) 6
η

2

∑

i∈St

pi,t ℓ
2
i,t +

∑

i∈St

pi,t ℓi,t .

PROOF. We use the inequalitiese−x 6 1 − x + x2/2 for x > 0, and ln(1 + u) 6 u for
u > −1, to write

1

ηt
ln

(
N∑

i=1

pi,te
−ηtℓi,t

)
6

1

ηt
ln



∑

i∈St

pi,te
−ηtℓi,t +

∑

i6∈St

pi,t




6
1

ηt
ln



∑

i∈St

pi,t

(
1 − ηtℓi,t +

η2
t

2
ℓ2i,t

)
+
∑

i6∈St

pi,t




6 −
∑

i∈St

ℓi,tpi,t +
ηt
2

∑

i∈St

ℓ2i,tpi,t ,

hence the result, by definition ofΦ. �

Lemma 4.5 is applied as follows.

PROPOSITION4.1. Assume the forecasterEXP3LIGHT plays a bandit loss game, with losses
bounded between 0 and 1. For allη > 0, the cumulative pseudo-loss ofEXP3LIGHT satisfies

L̃n − L̃∗ 6
(lnN) +N(lnn)

η
+
η

2
NL̃∗ +∆n

whereL̃n =
n∑

t=1

N∑

i=1

pi,tℓ̃i,t , L̃k,n =
n∑

t=1

ℓ̃k,t , L̃∗ = min
k=1,...,N

L̃k,n ,

and∆n is a random variable with expectation less than2N .

PROOF. ChooseSt =
{
i : L̃i,t 6 L̃∗

}
. We combine Lemmas 4.3 and 4.5 to get

(4.12) L̃ 6 L̃∗ +
lnN

η
+
η

2

n∑

t=1

∑

i∈St

pi,t ℓ̃
2
i,t +

n∑

t=1

∑

i6∈St

pi,t ℓ̃i,t .
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Now, we note first that, by definition of thẽℓi,t and sinceℓi,t ∈ [0, 1],
n∑

t=1

∑

i∈St

ℓ̃2i,t pi,t =
n∑

t=1

∑

i∈St

ℓi,t ℓ̃i,t 6

n∑

t=1

∑

i∈St

ℓ̃i,t 6 NL̃∗ ,

where the last inequality is true by definition of theSt.
To bound the second double sum of (4.12), note that the setsSt are monotone decreasing; i.e.,

i 6∈ St implies i 6∈ Sr for all r > t. Let Ti = min
{
t : L̃i,t > L̃∗

}
. We determine how larget

can grow beforepi,t becomes negligible. For eachi such thatTi < n and for eacht > Ti + 1, we

have, usingWt > e−η
eL∗

,

pi,t =
wi,t
Wt

6
wi,t

e−ηeL∗
= exp


ηL̃∗ − η


L̃i,Ti

+

t−1∑

s=Ti+1

ℓ̃i,s




 .

Thus,pi,t 6 1/n whenever
∑t−1

s=Ti+1 ℓ̃i,s > (lnn)/η + L̃∗ − L̃i,Ti
. Thus, letT ′

i > Ti be the lastt

such that
∑t

s=Ti+1 ℓi,s < (lnn)/η + L̃∗ − L̃i,Ti
. We have

n∑

t=1

∑

i6∈St

pi,tℓ̃i,t 6

N∑

i=1

pi,Ti
ℓ̃i,Ti

+

N∑

i=1

T ′
i∑

t=Ti+1

pi,tℓ̃i,t +

N∑

i=1

n∑

t=T ′
i
+1

pi,tℓ̃i,t

6

N∑

i=1

pi,Ti
ℓ̃i,Ti

+

N∑

i=1

(
lnn

η
+ L̃∗ − L̃i,Ti

)
+

N∑

i=1

n∑

t=T ′
i +1

ℓ̃i,t
n

6 ∆n +
N lnn

η

where we used̃L∗ − L̃i,Ti
6 0 by definition ofTi, and denoted

∆n =

N∑

i=1

pi,Ti
ℓ̃i,Ti

+

N∑

i=1

n∑

t=T ′
i +1

ℓ̃i,t
n
.

The expectation of∆n is indeed less than2N . �

We are now ready to prove our main bandit result, thanks to a doubling trick (see Section 2.2
in Chapter 2). Note that the quantitiesE[L∗

n] may be replaced by simplyL∗
n in case of an oblivious

opponent, see Section 1.4 in Chapter 2.

THEOREM4.5. Consider the forecaster that runs algorithmEXP3LIGHT in epochs as follows.
In each epochr = 0, 1 . . . the algorithm uses

ηr =

√
2 ((lnN) +N lnn)

N4r

and epochr stops whenever the estimateL̃∗ in this epoch is larger than4r. For any bandit loss
game with losses bounded between 0 and 1, the expected cumulative loss of this forecaster satisfies

max
j=1,...,N

E

[
n∑

t=1

ℓIt,t − ℓj,t

]

6 2

√
2 ((lnN) +N lnn)N

(
1 + 3 min

j=1,...,N
E [Lj,n]

)
+ (2N + 1)(1 + log4(3n+ 1)) .



4. APPLICATIONS 77

REMARK 4.4. Though we only prove bounds in expectation, there mightbe a chance that
the techniques used in [AuCeFrSc02], namely, second-order martingale inequalities and a prior
shifting of the estimated losses, lead to bounds that hold with overwhelming probability for a
variant of EXP3LIGHT which still uses no shifting over the probability distributions.

PROOF. As usual, we denote byR the index of the last epoch and bytr the last time round
of each epochr (tR = n). We also denote bỹL∗,r the smallest cumulative estimated loss among
the estimated losses of the experts. For allr, for all time intervals fromtr−1 to tr − 1, we may
use Proposition 4.1 to bound the regret. We bound the instantaneous regrets at timestr separately.
Using in addition that the sum of minima is less than the minimum of the sums, we get

L̃n 6 L̃∗ +

R∑

r=0

√
2 ((lnN) +N lnn)N 4r +

R∑

r=0

(
ℓ̃tr +∆r

)

6 L̃∗ + 2R+1
√

2 ((lnN) +N lnn)N +

R∑

r=0

(
ℓ̃tr +∆r

)
,

where the∆r are random variables with expectation less than2N . We now use that, whenR > 1,

L̃∗
>

R−1∑

r=0

L̃∗,r
>

4R − 1

3
,

this inequality being still true forR = 0. The proof is concluded by two applications of Jensen’s

inequality, applied first to2R+1 6 2
√

3L̃∗ + 1. Second, we have to boundR. We note that
R 6 log4(1 + 3L̃∗), so thatR is in expectation less thanlog4(3n+ 1). �

4.5. Fast rates in prediction with expert advice.We end this application section by an ex-
ample of fast rates of convergence in (randomized) prediction with expert advice. We call a fast
rate of convergence any convergence rate faster than the general guaranteed1/

√
n convergence

rate for the sequence of per-round regrets. This issue has been under the focus of attention for
several years now in classification, see the discussion at the end of Chapter 1 and the references
therein (above all the survey paper by Boucheron, Bousquet and Lugosi [BoBoLu05], and the
recent paper of Steinvart and Scovel [StSc05], who deal with support vector machines). Further-
more, note that fast rate results are already known in prediction of individual sequences, but only
for some classes of loss functions (among them, the so-called exp-concave ones), see Haussler,
Kivinen and Warmuth [HaKiWa98, KiWa99 ], Vovk [Vov98, Vov01]. We want to deal with arbi-
trary, unspecified, loss functions.

Our derivation illustrates another way to solve for the regrets, and to remove the dependency
of the bound of Theorem 4.4 in the forecaster’s distributions pt. We consider a loss game, for
instance. Condition (4.13) stated below is the equivalent of another one in classification, asserting
that fast rates are achieved as soon as the variances of the (shifted) base classifiers can be upper
bounded their respective expected risks, see [BoBoLu05]. There the key second-order lemma is
Bernstein’s inequality, and we believe that our variance-based tuning (4.6) of the weighted majority
algorithm is the right second-order counterpart.

PROPOSITION4.2. Denote byj∗n the index of the experti = 1, . . . ,N achieving the minimal
cumulative loss, i.e., such thatLj∗n,n = L∗

n. Assume that the loss sequence is such that the fore-
caster behaves on it in a way such that there exists a constantγ and an integern0, such that for
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all n > n0,

(4.13)
n∑

t=1

N∑

i=1

pi,t
(
ℓi,t − ℓj∗n,t

)2
6 γ

(
L̄n − L∗

n

)
,

where

L̄n =

n∑

t=1

ℓt(pt) =

n∑

t=1

N∑

i=1

pi,tℓi,t .

Then, the per-round regret of the forecaster on this sequence is bounded, forn > n0, by

1

n

(
L̄n − L∗

n

)
6

1

n
(16γ + 20

√
γ + 25) max {lnN, 1} .

The proof is a simple combination of (4.13) with Theorem 4.4,together with the results of
Section 4.2 (and the choiceµt = ℓj∗n,t). Solving for the regrets thanks to Lemma A.14 and over-
approximating yields the result.

As we indicated above, condition (4.13) is the counterpart of the usual condition used in clas-
sification to get fast rates (see, e.g., [BoBoLu05, Section 5.2]). To show that (4.13) is indeed
meaningful in an individual sequence setting as well, we consider the following example.

EXAMPLE 4.1. We have two expertsA andB, and they suffer the losses (for integerst > 0)
ℓA,3t+1 = 1, ℓA,3t+2 = ℓA,3t+3 = 0, andℓB,3t+1 = 0, ℓB,3t+2 = ℓB,3t+3 = 1. j∗n is A, and it
is easy to see that condition (4.13) holds for the forecasterof Theorem 4.4, at least for integersn
multiple of 3, withγ = 3. (See the proof below for the details.)

We note here thatL∗
n grows linearly inn in the example above, so that the

√
L∗
n lnN upper

bound for the weighted majority forecaster of Auer, Cesa-Bianchi, and Gentile [AuCeGe02] is
of the order of

√
n. (Even the bounds forPROD-MQ proposed by Theorem 4.1 are of the order

of
√
n, sinceQB,n > QA,n = n/3.) However, direct computations show that the forecaster of

Auer, Cesa-Bianchi, and Gentile [AuCeGe02] suffers a loss bounded by a constant. The main
improvement of the second-order analysis conducted for weighted majority in Section 3 is thus
that the new bounds reflect in a sharper way its behavior than the previous bounds.

PROOF. We first note that for the losses of Example 4.1, (4.13) rewrites (for an integern = 3n′

multiple ofn) as

(4.14)
n′∑

s=1

pB,3s−2 + pB,3s−1 + pB,3s 6 γ

n′∑

s=1

−pB,3s−2 + pB,3s−1 + pB,3s ,

and prove now that it is indeed satisfied, withγ = 3. We take the elements of the sequence of
weights of expertB three by three. Fix a positive integers. We note that these weights are given
by

pB,3s−2 =
e−η3s−2 2(s−1)

e−η3s−2 2(s−1) + e−η3s−2 (s−1)
,

pB,3s−1 =
e−η3s−1 2(s−1)

e−η3s−1 2(s−1) + e−η3s−1 s
,

pB,3s =
e−η3s (2s−1)

e−η3s (2s−1) + e−η3s s
,

where theηs′ are defined in (4.6). In particular, we also recall that the sequence(ηs′) of the tuning
parameters is non-increasing. This shows that bothpB,3s−2 andpB,3s are less thanpB,3s−1, so
thatpB,3s−2 +pB,3s−1 +pB,3s 6 3pB,3s−1. To prove the claim (4.14), it thus suffices to show that
pB,3s−2 6 pB,3s.
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To that end, we note thatpB,3s−2 6 pB,3s is equivalent, by a reduction to the same denomina-
tor, to

e−η3s−2 2(s−1)e−η3s s 6 e−η3s−2 (s−1)e−η3s (2s−1) ,

or simply, η3s−2 (s − 1) > η3s (s − 1). But the latter is true, since the tuning parameters are
non-increasing. �

5. Discussion and open problems

Though the results of Sections 2 and 3 cannot be easily compared in terms of expected re-
gret bounds (see however Remark 4.5 below for a comparison ofthe non-expected regrets), the
underlying algorithms work indifferently for loss games, gain games, and signed games. Note
however that the bounds proposed by Corollary 4.1 and by Theorem 4.4 both lead to improvement
for small or large payoffs in one-sided games, see Corollaries 4.3 and 4.4. In addition, they are
both stable under many transformations, such as translations or changes of signs. Consequently,
and most importantly, they are invariant under the changeℓi,t = M − xi,t, that converts bounded
nonnegative payoffs into bounded losses, and vice versa. However, the occurrence of terms like
max{M, 1} andM2 makes these bounds not stable under rescaling of the payoffs. This means
that if the payoffs are all multiplied by a positive numberα (which may be more or less than 1),
then the bounds on the regret are not necessarily multipliedby the same quantityα.

Modifying the proof of Theorem 4.4 we also obtained a regret bound equal to−4
√
Vn lnN −

16M lnN − 8M − 2M logM2/V1. This bound is indeed stable under rescalings and improves
on Theorem 4.4 for instance whenM much smaller than 1, or even whenM is large andV1 is not
too small. We hope that the unconvenient factor1/V1 could be removed soon.

A practical advantage of the weighted majority forecaster is that its update rule is completely
incremental and never needs to reset the weights. This in contrast to the forecasterPROD-MQ of
Theorem 4.3 that uses a nested doubling trick. On the other hand, the bound proposed in Theo-
rem 4.4 is not in closed form, as it still explicitly depends throughVn on the forecaster’s rewards
x̂t. We therefore need to solve for the regrets, see, for instance, Corollary 4.3 or Section 4.5. Fi-
nally, we also noted in Section 4.2 that the weighted majority forecaster update is invariant under
translations of the payoffs, whereas each translation rulefor the payoffs leads to a different version
of PROD-MQ. In practice, it may be difficult to determine beforehand what a good translation could
be. Corollaries 4.1 and 4.4, as well as Remark 4.1, indicate general efficient translation rules.

OPEN QUESTION 4.2. Several issues are left open. The following list mentions some of them.

– Design and analyze incremental updates for the forecasterPROD(η) of Section 2.
– Obtain second order bounds with updates that are not multiplicative; for instance, updates

based on the polynomial potentials (see Section 2.3 in Chapter 2 or [CeLu03]). These
updates could be used as basic ingredients to get forecasters suited for bandit, label-
efficient or partial monitoring prediction, and achieving the optimal rates. Note that in
Section 4 of Chapter 2, as well as in Chapters 5 and 6, we thus had to use exponentially
weighted averages.

– Extend the analysis ofPROD-MQ to obtain an oracle inequality of the form

X̂n > max
k=1,...,N

(
Xk,n − γ1

√
Qk,n lnN

)
− γ2M lnN

whereγ1 andγ2 are absolute constants. Inequalities of this form can be viewed as game-
theoretic versions of the model selection bounds in statistical learning theory.

– Obtain second-order bounds for weighted majority andPROD-MQ that are stable under
rescaling.
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REMARK 4.5. (Refined bounds for non-expected regret.)In this chapter, we focused on im-
proved bounds for expected regret. However, recall from Chapter 2, Section 3.3.2, that in general,
the non-expected cumulative regret of any forecaster is bounded by the expected cumulative regret
with probability 1 − δ up to deviations of the order of

√
Vn ln(n/δ) + M ln(n/δ), see Corol-

lary A.1. These deviations are of the same order of magnitudeas the bound of Theorem 4.4.
Unless we are able to apply a sharper concentration result than Bernstein’s inequality, no further
refinement of the above bounds is worthwhile. In particular,in view of the deviations from the
expectations, we may prefer the results of Section 3 to thoseof Section 2.
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Appendix: Proof of Lemma 4.3

We first note that Jensen’s inequality implies thatΦ is nonnegative. The proof below is a simple
modification of an argument first proposed in [AuCeGe02]. Note that we consider real-valued (non
necessarily nonnegative) payoffs in what follows. Fort = 1, . . . , n, we rewritepi,t = wi,t/Wt,
wherewi,t = eηtXi,t−1 andWt =

∑N
j=1wj,t (the payoffsXi,0 are understood to equal 0, and

thus,η1 may be any positive number satisfyingη1 > η2). Usew′
i,t = eηt−1Xi,t−1 to denote the

weightwi,t where the parameterηt is replaced byηt−1. The associated normalization factor will
be denoted byW ′

t =
∑N

j=1w
′
j,t. Finally, we usej∗t to denote the expert with the largest cumulative

payoff after the firstt rounds (ties are broken by choosing the expert with smallestindex). That is,
Xj∗t ,t

= maxi6N Xi,t. We also make use of the following technical lemma.

LEMMA 4.6 (Auer, Cesa-Bianchi, and Gentile [AuCeGe02]). For all N > 2, for all β > α >

0, and for alld1, . . . , dN > 0 such that
∑N

i=1 e
−αdi > 1,

ln

∑N
i=1 e

−αdi

∑N
j=1 e

−βdj

6
β − α

α
lnN .

PROOF (OF LEMMA 4.6). We begin by writing

ln

∑N
i=1 e

−αdi

∑N
j=1 e

−βdj

= ln

∑N
i=1 e

−αdi

∑N
j=1 e

(α−β)dje−αdj

= − ln E

[
e(α−β)D

]

6 (β − α)E [D]

where we applied Jensen inequality to the random variableD taking valuedi with probability
e−αdi/

∑N
j=1 e

−αdj for eachj = 1, . . . ,N . SinceD takes at mostN distinct values, its entropy
H(D) is at mostlnN . Therefore

lnN > H(D) =

∑N
i=1 e

−αdi

∑N
j=1 e

−βdj


αdi + ln

N∑

j=1

e−βdj




= αE [D] + ln

N∑

j=1

e−βdj > αE [D]

where the last inequality holds since
∑N

i=1 e
−αdi > 1. HenceE [D] 6 (lnN)/α. As β > α

by hypothesis, we can substitute the bound onE [D] in the upper bound above and conclude the
proof. �

PROOF (OF LEMMA 4.3). As it is usual in the analysis of the exponentially weighted average
predictor, we study the evolution ofln(Wt+1/Wt), see the proof of Theorem 2.1. However, here
we need to couple this term withln(wj∗t−1,t

/wj∗t ,t+1) including in both terms the time-varying
parametersηt, ηt+1. Tracking the currently best expertj∗t is used to lower bound the weight
ln(wj∗t ,t+1/Wt+1). In fact, the weight of the overall best expert (aftern rounds) could get arbitrar-
ily small during the prediction process. We thus obtain the following

1

ηt
ln
wj∗t−1,t

Wt
− 1

ηt+1
ln
wj∗t ,t+1

Wt+1

=

(
1

ηt+1
− 1

ηt

)
ln

Wt+1

wj∗t ,t+1
+

1

ηt
ln
w′
j∗t ,t+1/W

′
t+1

wj∗t ,t+1/Wt+1
+

1

ηt
ln

wj∗t−1,t
/Wt

w′
j∗t ,t+1/W

′
t+1

= (A) + (B) + (C) .
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We now bound separately the three terms on the right-hand side. The term(A) is easily bounded
by usingηt+1 6 ηt and using the fact thatj∗t is the index of the expert with largest payoff after the
first t rounds. Therefore,wj∗t ,t+1/Wt+1 must be at least1/N . Thus we have

(A) =

(
1

ηt+1
− 1

ηt

)
ln

Wt+1

wj∗t ,t+1
6

(
1

ηt+1
− 1

ηt

)
lnN .

We proceed to bounding the term(B) as follows

(B) =
1

ηt
ln
w′
j∗t ,t+1/W

′
t+1

wj∗t ,t+1/Wt+1
=

1

ηt
ln

∑N
i=1 e

−ηt+1(Xj∗
t

,t−Xi,t)

∑N
j=1 e

−ηt(Xj∗
t

,t−Xj,t)

6
ηt − ηt+1

ηtηt+1
lnN =

(
1

ηt+1
− 1

ηt

)
lnN

where the inequality is proven by applying Lemma 4.6 withdi = Xj∗t ,t
−Xi,t. Note thatdi > 0

sincej∗t is the index of the expert with largest payoff after the firstt rounds and
∑N

i=1 e
−ηt+1di > 1

as fori = j∗t we havedi = 0.
The term(C) is first split as follows,

(C) =
1

ηt
ln

wj∗t−1,t
/Wt

w′
j∗t ,t+1/W

′
t+1

=
1

ηt
ln
wj∗t−1,t

w′
j∗t ,t+1

+
1

ηt
ln
W ′
t+1

Wt
.

We bound separately each one of the two terms on the right-hand side. For the first one, we have

1

ηt
ln
wj∗t−1,t

w′
j∗t ,t+1

=
1

ηt
ln
e
ηtXj∗

t−1,t−1

e
ηtXj∗

t
,t

= Xj∗t−1,t−1 −Xj∗t ,t
.

The second term is handled by using the very definition ofΦ,

1

ηt
ln
W ′
t+1

Wt
=

1

ηt
ln

∑N
i=1wi,te

ηtxi,t

Wt
=

1

ηt
ln

N∑

i=1

pi,te
ηtxi,t

=
N∑

i=1

pi,txi,t + Φ(pt, ηt, xt) .

Finally, we substitute in the main equation the bounds on thefirst two terms(A) and(B), and the
bounds on the two parts of the term(C). After rearranging we obtain

0 6

(
Xj∗t−1,t−1 −Xj∗t ,t

)
+

N∑

i=1

pi,txi,t + Φ(pt, ηt, xt)

− 1

ηt+1
ln
wj∗t ,t+1

Wt+1
+

1

ηt
ln
wj∗t−1,t

Wt

+ 2

(
1

ηt+1
− 1

ηt

)
lnN .

We apply the above inequalities to eacht = 1, . . . , n and sum up using
n∑

t=1

Xj∗t−1,t−1 −Xj∗t ,t
= − max

j=1,...,N
Xj,n ,

n∑

t=1

(
− 1

ηt+1
ln
wj∗t ,t+1

Wt+1
+

1

ηt
ln
wj∗t−1,t

Wt

)
6 − 1

η1
ln
wj∗0 ,1

W1
=

lnN

η1

to conclude the proof. �
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Prediction with limited feedback





CHAPTER 5

Minimizing regret with label efficient prediction

We investigate label efficient prediction, a variant, proposed by Helmbold and Panizza, of the
problem of prediction with expert advice. In this variant the forecaster, after guessing the next
element of the sequence to be predicted, does not observe itstrue value unless he asks for it, which
he cannot do too often. We determine matching upper and lowerbounds for the best possible
excess prediction error, with respect to the best possible constant predictor, when the number of
allowed queries is fixed. We also prove that Hannan consistency, a fundamental property in game-
theoretic prediction models, can be achieved by a forecaster issuing a number of queries growing
to infinity at a rate just slightly faster than logarithmic inthe number of prediction rounds.
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This chapter is a joint work with Nicolò Cesa-Bianchi and G´abor Lugosi. It is based on the
article [CeLuSt05], which is to appear inIEEE Transactions on Information Theoryand was first
presented atCOLT’04 in the extended abstract [CeLuSt04a].

1. Introduction

We recall from Chapter 2 that prediction with expert advice,a framework introduced about
fifteen years ago in learning theory, may be viewed as a directgeneralization of the theory of
repeated games, a field pioneered by Blackwell and Hannan in the mid-fifties. At a certain level
of abstraction, the common subject of these studies is the problem of forecasting each element
yt of an unknown “target” sequence given the knowledge of the previous elementsy1, . . . , yt−1.
The forecaster’s goal is to predict the target sequence almost as well as any forecaster forced to
use the same guess all the time. We call this the sequential prediction problem. To provide a
suitable parameterization of the problem, we assume that the set from which the forecaster picks
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LABEL EFFICIENT PREDICTION

Parameters: numberN of actions, outcome spaceY, loss functionℓ, query rateµ : N → N.

For each roundt = 1, 2, . . .

(1) the environment chooses the next outcomeyt ∈ Y without revealing it;
(2) the forecaster chooses an actionIt ∈ {1, . . . ,N};
(3) each actioni incurs lossℓ(i, yt);
(4) if less thanµ(t) queries have been issued so far, the forecaster may issue a new query

to obtain the outcomeyt; if no query is issued thenyt remains unknown.

FIGURE 1. Label efficient prediction as a game between the forecaster and the environment.

its guesses is finite, of sizeN > 1, while the set to which the target sequence elements belong
may be of arbitrary cardinality. A real-valued bounded lossfunction ℓ is then used to quantify
the discrepancy between each outcomeyt and the forecaster’s guess foryt. The pioneering results
of Hannan’s [Han57] and Blackwell [Bla56] showed that randomized forecasters exist whose
excess cumulative loss (or regret), with respect to the lossof any constant forecaster, grows sub-
linearly in the lengthn of the target sequence, and this holds for any individual target sequence.
In particular, both Blackwell and Hannan found the optimal growth rate,Θ(

√
n), of the regret

as a function of the sequence lengthn when no assumption other than boundedness is made on
the lossℓ. Only relatively recently, Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire, and
Warmuth [CeFrHaHeScWa97] have revealed that the correct dependence onN in the minimax
regret rate isΘ(

√
n lnN).

Game theorists, information theorists, and learning theorists, who independently studied the
sequential prediction model, addressed the fundamental question of whether a sub-linear regret rate
is achievable in case the past outcomesy1, . . . , yt−1 are not entirely accessible when computing the
guess foryt. In this work we investigate a variant of sequential prediction known aslabel efficient
prediction. In this model, originally proposed by Helmbold and Panizza[HePa97], after choosing
its guess at timet the forecaster decides whether to query the outcomeyt. However, the forecaster
is limited in the numberµ(n) of queries he can issue within a given time horizonn. In the case
n→ ∞, we prove that Hannan consistency (i.e., regret growing sub-linearly with probability one)
can be achieved under the only conditionµ(n)/(log(n) log log(n)) → ∞. Moreover, in the finite-
horizon case, we show that any forecaster issuing at mostm = µ(n) queries must suffer a regret
of at least ordern

√
(lnN)/m on some outcome sequence of lengthn, and we show a randomized

forecaster achieving this regret to within constant factors.
The problem of label efficient prediction is closely relatedto other frameworks in which the

forecaster has a limited access to the outcomes. Examples include prediction under partial moni-
toring (see Chapter 6, see also, e.g., Mertens, Sorin, and Zamir [MeSoZa94], Rustichini [Rus99],
Piccolboni, and Schindelhauer [PiSc01], Mannor and Shimkin [MaSh03], Cesa-Bianchi, Lugosi,
and Stoltz [CeLuSt04b]), the multi-armed bandit problem (see Section 4 in Chapter2, see also
Baños [Ban68], Megiddo [Meg80], Foster and Vohra [FoVo98], Hart and Mas Colell [HaMa02],
Auer, Cesa-Bianchi, Freund, and Schapire [AuCeFrSc02], and Auer [Aue02]), and the “apple
tasting” problem proposed by Helmbold, Littlestone, and Long [HeLiLo00].

2. Sequential prediction and the label efficient model

We recall here the notation introduced in Chapter 2. The sequential prediction problem is
parameterized by a numberN > 1 of player actions, by a setY of outcomes, and by a loss
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function ℓ. The loss function has domain{1, . . . ,N} × Y and takes values in a bounded real
interval, say[0, 1]. Given an unknown mechanism generating a sequencey1, y2, . . . of elements
from Y, a prediction strategy, or forecaster, chooses an actionIt ∈ {1, . . . ,N} incurring a loss
ℓ(It, yt). A crucial assumption in this model is that the forecaster can chooseIt only based on
information related to the past outcomesy1, . . . , yt−1. That is, the forecaster’s decision must not
depend on any of the future outcomes. In the label efficient model, after choosingIt the forecaster
decides whether to issue a query to accessyt. If no query is issued, thenyt remains unknown. In
other words,It does not depend on all the past outcomesy1, . . . , yt−1, but only on the queried ones.
The label efficient model is best described as a repeated gamebetween the forecaster, choosing
actions, and the environment, choosing outcomes (see Figure 1).

The cumulative loss of the forecaster on a sequencey1, y2, . . . of outcomes is denoted by

L̂n =
n∑

t=1

ℓ(It, yt) for n > 1.

As the forecasting strategies we consider may be randomized, eachIt is viewed as a random
variable. All probabilities and expectations are understood with respect to theσ-algebra of events
generated by the sequence of random choices of the forecaster.

We compare the forecaster’s cumulative lossL̂n with those of theN constant forecasters
Li,n = ℓ(i, y1) + . . .+ ℓ(i, yn), i = 1, . . . ,N .

In this chapter we devise label efficient forecasting strategies whose expected regret

max
i=1,...,N

E

[
L̂n − Li,n

]

grows sub-linearly inn for any sequencey1, y2, . . . of outcomes, that is, for any strategy of the
environment wheneverµ(n) → ∞. Note that the quantitiesL1,n, . . . , LN,n are random. Indeed,
as argued in Section 3 (see also Section 1.4 in Chapter 2), in general the outcomesyt may depend
on the forecaster’s past random choices. Via a more refined analysis, we also prove the stronger
result

(5.1) L̂n − min
i=1,...,N

Li,n = o(n) a.s.

for any sequencey1, y2, . . . of outcomes and wheneverµ(n)/(log(n) log log(n)) → ∞. The
almost sure convergence is with respect to the auxiliary randomization the forecaster has access
to. Property (5.1), known asHannan consistencyin game theory (see Section 3.3 in Chapter 2),
rules out the possibility that the regret is much larger thanits expected value with a significant
probability.

REMARK 5.1. (Prediction with expert advice.)The results of this chapter extend straightfor-
wardly to the case when the forecaster is supplied with expert advice (see the appendix of Chapter
2). The case of actions corresponds to constant experts. This is so because here, all we need
is unbiased estimates of the losses, and the way we build themin the next section does not de-
pend on the actual way the losses are computed. This is in contrast with the results for prediction
with partial monitoring (see Chapter 6). There, the required assumption (6.1) prevents such an
extension.

We could also apply the label efficient methodology to the sequential investment in the stock
market problem described in Chapter 7, and derive label efficient variants of theEG andB1EXP

strategies defined there. This is so because these strategies rely on prediction-with-expert-advice
techniques, see, in particular, (7.2) and the comments after it.
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Parameters: Real numbersη > 0 and0 6 ε 6 1.
Initialization: w1 = (1, . . . , 1).

For each roundt = 1, 2, . . .

(1) draw an actionIt from {1, . . . ,N} according to the distribution

pi,t =
wi,t∑N
j=1wj,t

, i = 1, . . . ,N ;

(2) draw a Bernoulli random variableZt such thatP[Zt = 1] = ε;
(3) if Zt = 1 then obtainyt and compute

wi,t+1 = wi,t e
−η ℓ(i,yt)/ε for eachi = 1, . . . ,N

else, letwt+1 = wt.

FIGURE 2. The label efficient exponentially weighted average forecaster.

3. A label efficient forecaster

We start by considering the finite-horizon case in which the forecaster’s goal is to control the
regret aftern predictions, wheren is fixed in advance. In this restricted setup we also assume
that at mostm = µ(n) queries can be issued, whereµ is the query rate function. However, we
do not impose any further restriction on the distribution ofthesem queries in then time steps,
that is,µ(t) = m for t = 1, . . . , n. We introduce a simple forecaster whose expected regret is
bounded byn

√
2(lnN)/m. We then prove that the regret is indeed of the same order, with high

probability. (Thus, ifm = n, we recover the orders of magnitude inn andN of the optimal bound
for prediction with expert advice under full monitoring, see Section 5 in Chapter 2.)

It is easy to see that in order to achieve a nontrivial performance, a forecaster must use random-
ization in determining whether a label should be revealed ornot. It turns out that a simple biased
coin is sufficient for our purpose. The strategy we propose, sketched in Figure 2, uses an i.i.d.
sequenceZ1, Z2, . . . , Zn of Bernoulli random variables such thatP[Zt = 1] = 1−P[Zt = 0] = ε

and asks the labelyt to be revealed wheneverZt = 1. Hereε > 0 is a parameter of the strategy.
(Typically, we takeε ≈ m/n so that the number of solicited labels duringn rounds is aboutm.
Note that this way the forecaster may ask the value of more thanm labels, but we ignore this detail
as it can be dealt with by a simple adjustment.) Our label efficient forecaster uses theestimated
losses

ℓ̃(i, yt)
def
=

{
ℓ(i, yt)/ε if Zt = 1,

0 otherwise.

Let pt = (p1,t, . . . , pN,t) and denote byvt1 the prefix(v1, . . . , vt) of a given sequence(v1, v2, . . .).
Then

E[ ℓ̃(i, yt) | Zt−1
1 , It−1

1 ] = ℓ(i, yt) ,(5.2)

E[ ℓ̃(pt, yt) | Zt−1
1 , It−1

1 ] = ℓ(pt, yt) = E[ ℓ(It, yt) | Zt−1
1 , It−1

1 ] ,(5.3)

hold for eacht, where

ℓ(pt, yt) =

N∑

i=1

pi,t ℓ(i, yt) and ℓ̃(pt, yt) =

N∑

i=1

pi,t ℓ̃(i, yt) .

Note that the conditioning onZt−1
1 andIt−1

1 is necessary because of the two following reasons:
first, pt depends both on the past realizations of the random choices of the forecasterZt−1

1 (see
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the third step in the algorithm of Figure 2) and on the past outcomesyt−1
1 ; second,yt is a function

of bothZt−1
1 andIt−1

1 , as the environment is allowed to determineyt after playing the game up to
time t − 1 (see Figure 1). For technical reasons, we sometimes consider a weaker model (which
we call theoblivious adversary, see Section 1.4 in Chapter 2) where the sequencey1, y2, . . . of
outcomes chosen by the environment is deterministic and independent of the forecaster random
choices. This is equivalent to a game in which the environment must fix the sequence of outcomes
before the game begins. Recall that the oblivious adversarymodel is reasonable in some scenarios,
in which the forecaster’s predictions have no influence on the environment. Also, any result proven
in the standard model also holds in the oblivious adversary model.

The quantities̃ℓ(i, yt) may be considered as unbiased estimates of the true lossesℓ(i, yt).
The label efficient forecaster of Figure 2 is an exponentially weighted average forecaster using
such estimates instead of the observed losses. The expectedperformance of this strategy may be
bounded as follows.

THEOREM 5.1. Fix a time horizonn and consider the label efficient forecaster of Figure 2 run
with parametersε = m/n andη = (

√
2m lnN)/n. Then, the expected number of revealed labels

equalsm and

max
i=1,...,N

E

[
L̂n − Li,n

]
6 n

√
2 lnN

m
.

In the sequel, for eachi = 1, . . . ,N , we write

L̃i,n =

n∑

t=1

ℓ̃(i, yt) .

PROOF. The proof is a simple adaptation of [AuCeFrSc02, Theorem 3.1]. The starting point
is the second-order inequality below (see also [PiSc01, Theorem 1]). An application of Lemmas
4.3 and 4.5 to the estimated losses yields

n∑

t=1

ℓ̃(pt, yt) − min
i=1,...,N

L̃i,n 6
lnN

η
+
η

2

n∑

t=1

N∑

j=1

pj,tℓ̃(j, yt)
2 .

Sinceℓ̃(j, yt) ∈ [0, 1/ε] for all j andyt, the second term on the right-hand side may be bounded

by
η

2ε

n∑

t=1

N∑

j=1

pj,tℓ̃(j, yt) and therefore we get, for alln,

(5.4)
n∑

t=1

ℓ̃(pt, yt)
(
1 − η

2ε

)
6 L̃i,n +

lnN

η
, i = 1, . . . ,N .

Taking expectations on both sides and substituting the proposed values ofη andε yields the desired
result. �

REMARK 5.2. In the oblivious adversary model, Theorem 5.1 (and similarly Theorems 5.2 and
5.4 below) can be strengthened as follows. Consider the “lazy” forecaster of Figure 3 that keeps
on choosing the same action as long as no new queries are issued. For this forecaster Theorems 5.1
and 5.2 hold with the additional statement that, with probability 1, the number of changes of an
action, that is the number of steps whereIt 6= It+1, is at most the number of queried labels (by
construction of the lazy forecaster). To prove the regret bound, note that we derive the statement
of Theorem 5.1 by taking averages on both sides of (5.4), and then applying (5.2) and (5.3).
Note that (5.4) holds forevery realization of the random variablesI1, . . . , In andZ1, . . . , Zn.
Therefore, as the lazy forecaster differs from the forecaster of Figure 2 only in the distribution of



90 CHAPTER 5. MINIMIZING REGRET WITH LABEL EFFICIENT PREDICTION

Parameters: Real numbersη > 0 and0 6 ε 6 1.
Initialization: w1 = (1, . . . , 1), Z0 = 1.

For each roundt = 1, 2, . . .

(1) if Zt−1 = 1 then draw an actionIt from {1, . . . ,N} according to the distribution

pi,t =
wi,t∑N
j=1wj,t

, i = 1, . . . ,N ;

otherwise, letIt = It−1 ;
(2) draw a Bernoulli random variableZt such thatP[Zt = 1] = ε ;
(3) if Zt = 1 then obtainyt and compute

wi,t+1 = wi,t e
−η ℓ(i,yt)/ε for eachi = 1, . . . ,N

else, letwt+1 = wt.

FIGURE 3. The lazy label efficient exponentially weighted average forecaster
for the oblivious adversary model.

I1, . . . , In, inequality (5.4) holds for the lazy forecaster as well. In the oblivious adversary model
yt does not depend onI1, . . . , It−1; thus, by construction,pt does not depend onI1, . . . , It−1

either. Therefore, we can take averages with respect toI1, . . . , It−1 obtaining the following version
of (5.3) for the lazy forecaster,

E

[
ℓ̃(pt, yt) | Zt−1

1

]
=

N∑

i=1

ℓ(i, yt) pi,t = E
[
ℓ(It, yt) | Zt−1

1

]
.

Since (5.2) holds as well when the conditioning is limited toZ1, . . . , Zt−1, we can derive for the
lazy forecaster the same bounds as in Theorem 5.1 (and Theorem 5.2). Note also that the result
holds even whenyt is allowed to depend onZ1, . . . , Zt−1.

3.1. Bounding the regret with high probability. Theorem 5.1 guarantees that the expected
per-round regret converges to zero wheneverm → ∞ asn → ∞. The next result shows that this
regret is, with overwhelming probability, bounded by a quantity proportional ton

√
(lnN)/m.

THEOREM 5.2. Fix a time horizonn and a numberδ ∈ (0, 1). Consider the label efficient
forecaster of Figure 2 run with parameters

ε = max

{
0,
m−

√
2m ln(4/δ)

n

}
and η =

√
2ε lnN

n
.

Then, with probability at least1 − δ, the number of revealed labels is at mostm and

∀ t = 1, . . . , n L̂t − min
i=1,...,N

Li,t 6 2n

√
lnN

m
+ 6n

√
ln(4N/δ)

m
.

REMARK 5.3. (A label efficient forecaster with small internal regret.)Remark 5.1, the conver-
sion trick described in Section 1.2 of Chapter 3 and Theorem 5.1 lead to a label efficient forecaster
with expected internal regret of the order ofn

√
(lnN)/m. The internal regret of this forecaster

may be bounded with high probability by using the same martingale inequalities as in the proof
of Theorem 5.2. The conversion of a no external regret label efficient forecaster to a no internal
regret label efficient forecaster is thus straightforward,which is not the case for the conversion of
forecasters suited for prediction with partial monitoring(see Section 6 of Chapter 6).
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Before proving Theorem 5.2, note that ifδ 6 4Ne−m/8, then the right-hand side of the
inequality is greater thann and therefore the statement is trivial. Thus, we may assume throughout
the proof thatδ > 4Ne−m/8. This ensures that

(5.5) ε > m/(2n) > 0 .

We need a number of preliminary lemmas. The first is obtained by a simple application of Bern-
stein’s inequality (see Lemma A.4).

LEMMA 5.1. The probability that the strategy asks for more thanm labels is at mostδ/4.

PROOF. Note that the numberM =
∑n

t=1 Zt of labels asked by the algorithm is binomially
distributed with parametersn andε and therefore, writingγ = m/n − ε = n−1

√
2m ln(4/δ), it

satisfies

P[M > m] = P[M − EM > nγ] 6 e−nγ
2/(2ε+2γ/3) 6 e−n

2γ2/2m 6
δ

4

where we used Bernstein’s inequality (see Lemma A.4) in the second step and the definition ofγ
in the last two steps. �

LEMMA 5.2. With probability at least1 − δ/4,

∀ t = 1, . . . , n
t∑

s=1

ℓ(ps, ys) 6

t∑

s=1

ℓ̃(ps, ys) +
4√
3
n

√
ln(4/δ)

m
.

Furthermore, with probability at least1 − δ/4,

∀ i = 1, . . . , N, ∀ t = 1, . . . , n L̃i,t 6 Li,t +
4√
3
n

√
ln(4N/δ)

m
.

PROOF. The proofs of both inequalities rely on the same techniques, namely the application of
Bernstein’s maximal inequality for martingales. We therefore focus on the first one, and indicate
the modifications needed for the second one.

We introduce the sequenceXs = ℓ(ps, ys) − ℓ̃(ps, ys), s = 1, . . . , n, which is a martingale
difference sequence with respect to the filtration generated by the(Zs, Is), s = 1, . . . , n. Defining
u = (4/

√
3)n
√

(1/m) ln(4/δ) and the martingaleMt = X1 + . . .+Xt, our goal is to show that

P

[
max
t=1,...,n

Mt > u

]
6
δ

4
.

For all s = 1, . . . , n, we note that

E
[
X2
s |Zs−1

1 , Is−1
1

]
= E

[
(ℓ(ps, ys) − ℓ̃(ps, ys))

2 | Zs−1
1 , Is−1

1

]

6 E

[
ℓ̃(ps, ys)

2 | Zs−1
1 , Is−1

1

]
6 1/ε ,

so that summing overs, we haveVt 6 n/ε for all t = 1, . . . , n.
We now apply Lemma A.4 withx = u, v = n/ε, andK = 1/ε (since|Xs| 6 1/ε with

probability1 for all s). This yields

P

[
max
t=1,...,n

Mt > x

]
= P

[
max
t=1,...,n

Mt > u andVn 6
n

ε

]
6 exp

(
− u2

2 (n/ε+ u/(3 ε))

)
.

Using ln(4/δ) 6 m/8 implied by the assumptionδ > 4Ne−m/8, we see thatu 6 n, which,
combined with (5.5), shows that

u2

2 (n/ε+ u/(3 ε))
>

u2

(8/3)n/ε
>

3u2m

16n2
= ln

δ

4
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and this proves the first inequality.
To prove the second inequality note that, by the arguments above, for each fixedi we have

P

[
∀ t = 1, . . . , n L̃i,t > Li,t + (4/

√
3)n

√
ln(4N/δ)

m

]
6

δ

4N
.

The proof is concluded by a union-of-events bound. �

PROOF (OF THEOREM 5.2). Whenm 6 lnN , the bound given by the theorem is trivial, so
we only need to consider the case whenm > lnN . Then (5.5) implies that1− η/(2ε) > 0. Thus,
a straightforward combination of Lemmas 5.1 and 5.2 with (5.4) shows that, with probability at
least1 − 3δ/4, the strategy asks for at mostm labels and

∀ t = 1, . . . , n
t∑

s=1

ℓ(ps, ys)
(
1 − η

2ε

)
6 min

i=1,...,N
Li,t +

8√
3
n

√
1

m
ln

4N

δ
+

lnN

η
,

which, since
∑t

s=1 ℓ(ps, ys) 6 n for all t 6 n, implies

∀ t = 1 . . . , n

t∑

s=1

ℓ(ps, ys) − min
i=1,...,N

Li,t 6
nη

2ε
+

8√
3
n

√
1

m
ln

4N

δ
+

lnN

η

= 2n

√
lnN

m
+

8√
3
n

√
1

m
ln

4N

δ

by our choice ofη and using1/(2ε) 6 n/m derived from (5.5). The proof is finished by noting
that the Hoeffding-Azuma maximal inequality (see Lemma A.2) implies that, with probability at
least1 − δ/4,

∀ t = 1, . . . , n L̂t =

t∑

s=1

ℓ(Is, ys) 6

t∑

s=1

ℓ(ps, ys)+

√
n

2
ln

4

δ
6

t∑

s=1

ℓ(ps, ys)+n

√
1

2m
ln

4N

δ

sincem 6 n. �

3.2. Hannan consistency.Theorem 5.1 does not directly imply Hannan consistency of the
associated forecasting strategy because the regret bound does not hold uniformly over the sequence
lengthn. However, using standard dynamical tuning techniques (such as the “doubling trick”
described in [CeFrHaHeScWa97], see also Section 2.2 in Chapter 2) Hannan consistency can be
achieved. The main quantity that arises in the analysis is the query rateµ(n), that is the number
of queries that can be issued up to timen. The next result shows that Hannan consistency is
achievable wheneverµ(n)/(log(n) log log(n)) → ∞.

In this section, we simply exhibit this small query rate forµ achieving Hannan consistency.
We are not concerned with the interesting problem of finding an incremental update for our label
efficient forecaster. Such an incremental update would associate to a query rateµ an on-line
tuning of the weighting parametersηt and of the instantaneous query ratesεt (the parameters of
the Bernoulli variablesZt).

COROLLARY 5.1. Letµ : N → N be any nondecreasing integer-valued function such that

lim
n→∞

µ(n)

log2(n) log2 log2(n)
= ∞ .

Then there exists a Hannan consistent randomized label efficient forecaster that issues at most
µ(n) queries in the firstn predictions, for anyn ∈ N.
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PROOF. The algorithm we consider divides time into consecutive epochs of increasing lengths
nr = 2r for r = 0, 1, 2, . . .. In the r-th epoch (of length2r) the algorithm runs the forecaster
of Theorem 5.2 with parametersn = 2r, m = mr, andδr = 1/(1 + r)2, wheremr will be
determined by the analysis (without loss of generality, we assume the forecaster always asks at
mostmr labels in each epochr). Our choice ofδr and the Borel-Cantelli lemma implies that
the bound of Theorem 5.2 holds for all but finitely many epochs. Denote the (random) index of
the last epoch in which the bound does not hold byR̂. Let L(r) be cumulative loss of the best
action in epochr and letL̂(r) be the cumulative loss of the forecaster in the same epoch. Introduce
R(n) = ⌊log2 n⌋. Then, by Theorem 5.2 (since it proposes a maximal bound) andby definition of
R̂, for eachn and for each realization ofIn1 andZn1 we have

L̂n − L∗
n 6

R(n)−1∑

r=0

(
L̂(r) − L(r)

)
+

n∑

t=2R(n)

ℓ(It, yt) −
n∑

t=2R(n)

min
j=1,...,N

ℓ(j, yt)

6

R̂∑

r=0

2r + 8

R(n)∑

r=R̂+1

2r

√
ln(4N(r + 1)2)

mr
.

This, the finiteness of̂R, and1/n 6 2−R(n), imply that with probability 1,

lim sup
n→∞

L̂n − L∗
n

n
6 8 lim sup

R→∞
2−R

R∑

r=0

2r

√
ln(4N(r + 1)2)

mr
.

Cesaro’s lemma ensures that thelim sup above equals zero as soon asmr/ ln r → +∞. It remains
to see that the latter condition is satisfied under the additional requirement that the forecaster does
not issue more thanµ(n) queries up to timen. This is guaranteed wheneverm0 + m1 + . . . +

mR(n) 6 µ(n) for eachn. Denote byφ the largest nondecreasing function such that

φ(t) 6
µ(t)

(1 + log2 t) log2(1 + log2 t)
for all t = 1, 2, . . .

As µ grows faster thanlog2(n) log2 log2(n), we have thatφ(t) → +∞. Thus, choosingm0 = 0,
andmr = ⌊φ(2r) log2(1 + r)⌋, we indeed ensure thatmr/ ln r → +∞. Furthermore, using that
mr is nondecreasing as a function ofr, and using the monotonicity ofφ,

R(n)∑

r=0

mr 6 (R(n) + 1)φ(2R(n)) log2(1 +R(n))

6 (1 + log2 n)φ(n) log2(1 + log2 n) 6 µ(n)

and this concludes the proof. �

4. Improvements for small losses

We now prove a refined bound in which the factorsn
√

(lnN)/m of Theorem 5.2 are replaced
by quantities of the order of

√
nL∗

n(lnN)/m+(n/m) lnN in case of an oblivious adversary, and√
nL∗

n(ln(Nn))/m+ (n/m) ln(Nn) in case of a non-oblivious one, whereL∗
n is the cumulative

loss of the best action,

L∗
n = L∗

n(y
n
1 ) = min

i=1,...,N

n∑

t=1

ℓ(i, yt) .

In particular, we recover the behavior already observed by Helmbold and Panizza [HePa97] for
oblivious adversaries in the caseL∗

n = 0.
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Parameters: Real number0 6 ε 6 1.

Initialization: t = 1.

For each epochr = 0, 1, 2, . . .,

(1) letKr = 4r(2 lnN)/ε ;
(2) initialize L̃i(r) = 0 for all i = 1, . . . ,N ;
(3) restart the forecaster of Figure 2 choosingε andηr =

√
(2ε lnN)/Kr ;

(4) while mini L̃i(r) 6 Kr − 1/ε do:
(a) denote byIt the action chosen by the forecaster of Figure 2, and letZt = 1 if it

asks for the labelyt, Zt = 0 otherwise;
(b) if Zt = 1, then obtain the outcomeyt and update the estimated losses, for all

i = 1, . . . , N , as

L̃i(r) := L̃i(r) + ℓ(i, yt)/ε ;

(c) t := t+ 1.

FIGURE 4. A doubling version of the label efficient exponentially weighted
average forecaster.

This is done by introducing a modified version of the forecaster of Figure 2, which performs a
doubling trick over the estimated lossesL̃i,t, t = 1, . . . , n (see Figure 4), and whose performance
is studied below through several applications of Bernstein’s lemma.

4.1. A forecaster suited for small losses.Similarly to [AuCeFrSc02, Section 4] and the
algorithm of Theorem 4.5, we propose in Figure 4 a forecasterwhich uses a doubling trick based
on the estimated losses of each actioni = 1, . . . ,N . We denote the estimated accumulated loss of
this algorithm by

L̃A,n =

n∑

t=1

ℓ̃(pt, yt)

and prove the following inequality.

LEMMA 5.3. For any0 6 ε 6 1, the forecaster of Figure 4 achieves, for alln = 1, 2, . . .,

L̃A,n 6 L̃∗
n + 8

√
2

√(
L̃∗
n + 1/ε

) lnN

ε
+

4 lnN

ε

where
L̃∗
n = min

i=1,...,N
L̃i,n .

REMARK 5.4. (Incremental update variant for the forecaster of Figure 4.) Using the incre-
mental update techniques of Auer, Cesa-Bianchi, and Gentile [AuCeGe02] (see also the proof of
Theorem 4.4), we note that instead of using a doubling trick in the definition of the forecaster,
we could have considered an incremental update. The latter is defined by means of a sequence
η1, η2, . . . of tuning parameters, and chooses the weights according to (4.5), computed with the
estimated losses̃ℓi,t. The tuning parameters are of the order of

ηt ∼
√
ε lnN

L̃A,t−1

.

In addition, this self-confident update has the same guarantees as the forecaster of Lemma 5.3, at
least as far as orders of magnitude inL̃∗

n, ε, andN are concerned.
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PROOF. The proof is divided in three steps. We first deal with each epoch, then sum the
estimated losses over the epochs, and finally bound the totalnumberR of different epochs (i.e.,
the final value ofr). LetSr andTr be the first and last time steps completed on epochr (where for
convenience we defineTR = n). Thus, epochr consists of trialsSr, Sr + 1, . . . , Tr. We denote
the estimated cumulative loss of the forecaster at epochr by

L̃A(r) =

Tr∑

t=Sr

ℓ̃(pt, yt)

and the estimated cumulative losses of the actionsi = 1, . . . ,N at epochr by

L̃i(r) =

Tr∑

t=Sr

ℓ̃(i, yt) .

Inequality (5.4) ensures that for epochr, and for alli = 1, . . . ,N ,
(
1 − ηr

2ε

)
L̃A(r) 6 L̃i(r) +

lnN

ηr

so dividing both terms by the quantity1 − ηr/(2ε) (which is more than1/2 due to the choice of
Kr), we get

L̃A(r) 6 L̃i(r) +
ηr
ε
L̃i(r) + 2

lnN

ηr
.

The stopping condition now guarantees thatmini L̃i(r) 6 Kr, hence, substituting the value ofηr,
we have proved that for epochr,

L̃A(r) 6 min
i=1,...,N

L̃i(r) + 2
√

2

√
Kr lnN

ε
.

Summing overr = 0, . . . , R, we get

L̃A,n 6

R∑

r=0

min
i=1,...,N

L̃i(r) +

R∑

r=0

2
√

2

√
Kr lnN

ε

6 min
i=1,...,N

L̃i,n + 2
√

2

√
K0 lnN

ε

(
2R+1 − 1

)
.(5.6)

It remains to bound the numberR of epochs, or alternatively, to bound2R+1 − 1. Assume first
thatR > 1. In particular,

L̃∗
n = min

i=1,...,N
L̃i,n > min

i=1,...,N
L̃i(R − 1)

> KR−1 − 1/ε = 4R−1K0 − 1/ε

so

2R−1
6

√(
L̃∗
n + 1/ε

) 1

K0
.

The above is implied by

2R+1 − 1 6 1 + 4

√(
L̃∗
n + 1/ε

) 1

K0

which also holds forR = 0. Substituting the last inequality into (5.6) concludes theproof. �

4.2. Regret against a general opponent.We now state and prove a bound that holds in the
most general (non-oblivious) adversarial model.
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THEOREM 5.3. Against any (non-oblivious) opponent, the label efficient forecaster of Fig-
ure 4, run with

ε =
m−

√
2m ln(4/δ)

n
ensures that, with probability1 − δ, the algorithm does not ask for more thanm labels and

∀ t = 1, . . . , n L̂t − L∗
t 6 U(L∗

n) +

√
2 (1 + L∗

n + U(L∗
n)) ln

4n

δ
+

1

2
ln

4n

δ

where

U(L∗
n) = 20

√
n

m
L∗
n ln

4Nn

δ
+ 32

(
n

m
ln

4Nn

δ

)3/4

(L∗
n)

1/4

+10

(
n

m
ln

4Nn

δ

)7/8

(L∗
n)

1/8 + 75
n

m
ln

4Nn

δ

6 137 × max

{√
n

m
L∗
n ln

4Nn

δ
,
n

m
ln

4Nn

δ

}
.

We remark here that the bound of the theorem is an improvementover that of Theorem 5.2 as
soon asL∗

n grows slower thann/
√

lnn. (ForL∗
n ∼ n however, these bounds are worse, at least in

the case of non-oblivious adversary, see Theorem 5.4 below for a refined bound for the case of an
oblivious adversary.)

OPEN QUESTION 5.1. It is unclear whether this extra
√

lnn is needed or whether it is an
artifact of our analysis (see also the comments before Corollary A.1).

For the proof of Theorem 5.3, we first relateL̃∗
n toL∗

n, andL̃A,n to L̄A,n, where

L̄A,n =
n∑

t=1

ℓ(pt, yt)

is the sum of the conditional expectations of the instantaneous losses, and then substitute the
obtained inequalities in the bound of Lemma 5.3.

LEMMA 5.4. With probability1 − δ/2, the following2n inequalities hold simultaneously,

∀ t = 1, . . . , n L̃∗
t 6 L∗

t + 2

√
n

m
L∗
n ln

4Nn

δ
+ 4

n

m
ln

4Nn

δ
,

∀ t = 1, . . . , n L̃A,t > L̄A,t −
(

2

√
n

m
L̄A,n ln

4n

δ
+ 4

n

m
ln

4n

δ

)
.

PROOF. We prove that each of both lines holds with probability at least1−δ/4. As the proofs
are similar, we concentrate on the first one only. For alli = 1, . . . ,N , we apply Corollary A.1
with Xt = ℓ̃(i, yt) − ℓ(i, yt), t = 1, . . . , n, which forms a martingale difference sequence (with
respect to the filtration generated by(It, Zt), t = 1, . . . , n). With the notation of the corollary,
K = 1/ε, andVn is smaller thanLi,n/ε, which shows that (for a giveni), with probability at least
1 − δ/(4N),

max
t=1,...,n

(
L̃i,t − Li,t

)
6

√
2

(
1

ε2
+
Li,n
ε

)
ln

4Nn

δ
+

√
2

3ε
ln

4Nn

δ
.

The proof is concluded by using
√
x+ y 6

√
x +

√
y for x, y > 0, 1/ε 6 2n/m (derived from

(5.5)), ln(4Nn/δ) > 1 and the union-of-events bound. �
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LEMMA 5.5. With probability at least1 − δ/2,

∀ t = 1, . . . , n L̄A,t − L∗
t 6 U(L∗

n) ,

whereU(L∗
n) is as in Theorem 5.3.

PROOF. We combine the inequalities of Lemma 5.4 with Lemma 5.3, andperform some trivial
upper bounding, to get that, with probability1 − δ/2, for all t = 1, . . . , n,

L̄A,t 6 L∗
t + 2

√
n

m
L̄A,n ln

4Nn

δ
+ 18

√
n

m
L∗
n ln

4Nn

δ

+23 (L∗
n)

1/4

(
n

m
ln

4Nn

δ

)3/4

+ 56
n

m
ln

4Nn

δ
.

An application of Lemma A.14 concludes the proof. �

PROOF (OF THEOREM5.3). Lemma 5.1 shows that with probability at least1 − δ/4, the
number of queried labels is less thanm. Using the notation of Corollary A.1, we consider the
martingale difference sequence formed byXt = ℓ(It, yt) − ℓ(pt, yt), with associated sum of
conditional variancesVn 6 L̄A,n and increments bounded by 1. Corollary A.1 then shows that
with probability1 − δ/4,

max
t=1,...,n

(
L̂t − L̄A,t

)
6

√
2
(
1 + L̄A,n

)
ln

4n

δ
+

√
2

3
ln

4n

δ
.

We conclude the proof by applying Lemma 5.5 and a union-of-events bound. �

4.3. A refined bound for the oblivious adversary model.In the oblivious adversary model,
the bound of Theorem 5.3 can be strengthened as follows.

THEOREM 5.4. In the oblivious adversary model, the label efficient forecaster of Figure 4,
run with

ε =
m−

√
2m ln(4/δ)

n
ensures that with probability1 − δ, the algorithm does not ask for more thanm labels and that

∀ t = 1, . . . , n L̂t − L∗
t 6 B(L∗

n) + 2

√
(L∗

n +B(L∗
n)) ln

4

δ

where

B(L∗
n) = 21

√
n

m
L∗
n ln

4N

δ
+ 39

(
n

m
ln

4N

δ

)3/4

(L∗
n)

1/4

+15

(
n

m
ln

4N

δ

)7/8

(L∗
n)

1/8 + 59
n

m
ln

4N

δ

6 134 max

(√
n

m
L∗
n ln

4N

δ
,
n

m
ln

4N

δ

)
.

Observe that the order of magnitude of the bound of Theorem 5.4 is always at least as good as
that of Theorem 5.2 and is better as soon asL∗

n grows slower thann.
The proof of Theorem 5.4 is based on combining Lemma 5.3 with two applications of Bern-

stein’s inequality, but here, one of these applications is abackwards call to Bernstein’s inequality:
usually, one can handle the predictable quadratic variation of the studied martingale, and Bern-
stein’s inequality is then a useful concentration result for the martingale. In the case of the second
step below we know the deviations of the martingale (formed by L̃A,n), but we are interested in
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the behavior of its predictable quadratic variation (equalto L̄A,n). The two quantities are related
by a “backwards” use of Bernstein’s lemma.

4.3.1. Relating estimated losses to the cumulative loss of the bestaction. We relateL̃∗
n and

L̃A,n to L∗
n by using Bernstein’s inequality (Lemma A.4). First we pointout the difference be-

tween oblivious and non-oblivious adversaries. More precisely, to apply Lemma A.4 rather than
Corollary A.1, we need upper boundsKi for all Li,n = Li,n(y

n
1 ) (we exceptionally make the

dependence on the played outcomes explicit) which are independent ofIn1 andZn1 . In case of
an oblivious adversaries, the outcome sequenceyn1 is chosen in advance, andKi = Li,n(y

n
1 ) is a

suitable choice. This is not the case for non-oblivious adversaries whose behavior may take the
actions of the forecaster into account (see the previous section).

Observe the similarity of the first statement of the following lemma to Lemmas 5.2 and 5.4.
In particular, this first statement is an improvement on the first inequality of Lemma 5.4 in case of
an oblivious opponent.

LEMMA 5.6. When facing an oblivious adversary, with probability1 − δ/4,

∀ t = 1, . . . , n, L̃∗
t 6 L∗

t + 2

√
n

m
L∗
n ln

4N

δ
+
n

m
ln

4N

δ
.

Consequently, with probability1 − δ/4,

(5.7) ∀ t = 1, . . . , n, L̃A,t 6 L∗
t +A(L∗

n) ,

where

A(L∗
n) = 18

√
n

m
L∗
n ln

4N

δ
+ 23

(
n

m
ln

4N

δ

)3/4

(L∗
n)

1/4 + 37
n

m
ln

4N

δ
.

PROOF. For all i = 1, . . . , N , we may apply Lemma A.4 withXt = ℓ̃(i, yt) − ℓ(i, yt),
t = 1, . . . , n, which forms a martingale difference sequence with respectto the filtration generated
byZt, t = 1, . . . , n. With the notation of Lemma A.4,Vn 6 Li,n/ε 6 2nLi,n/m, which is indeed
independent of theZt, and simple algebra and the union-of-events bound concludethe proof of the
first statement. The second one follows from a combination ofthe first one with Lemma 5.3. �

4.3.2. Bernstein’s inequality used backwards.Next we relateL̄A,n to L̃A,n (and thus toL∗
n,

via Lemma 5.6). This is done by using Bernstein’s lemma (Lemma A.4) once again, but back-
wards. Here again, we want to improve on the bounds yielded byCorollary A.1, which involve
extra

√
lnn factors.

RelatingL̃i,n andLi,n as we did in Lemma 5.6 was straightforward, for in an oblivious setting,
Li,n is a constant. Here, we consider the martingaleL̄A,n − L̃A,n. It hasL̄A,n as an upper bound
over its predictable quadratic variation, but this upper bound is not independent of theZt, due
to the presence of thept. Hence, Bernstein’s lemma (Lemma A.4) does not apply in a direct
way (and recall that we want to avoid any call to Corollary A.1). This is why we use Bernstein’s
lemma in a backwards sense, and get some information on the predictable quadratic variation of
the martingale thanks to what we already know about its deviations.

LEMMA 5.7. For oblivious adversaries, with probability at least1 − δ/2,

∀ t = 1, . . . , n L̄A,t − L∗
t 6 B(L∗

n) ,

whereB(L∗
n) is as in Theorem 5.4.

PROOF. ConsiderA(L∗
n) as in Lemma 5.6 and fix a real numberx0 > A(L∗

n). Consider the
functionφK defined in the statement of Lemma A.4. Then (5.7) and the union-of-events bound
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imply that, forλ > 0 such thatλ− φ1(λ)/ε > 0,

P

[
max
t=1,...,n

(
L̄A,t − L∗

t

)
> x0

]

6
δ

4
+ P

[
max
t=1,...,n

(
L̄A,t − L∗

t

)
> x0 and max

t=1,...,n

(
L̃A,t − L∗

t

)
6 A(L∗

n)

]

6
δ

4
+ P

[
max
t=1,...,n

exp

((
λ− φ1(λ)

ε

)(
L̄A,t − L∗

t

)
− λ

(
L̃A,t − L∗

t

))

> exp

((
λ− φ1(λ)

ε

)
x0 − λA(L∗

n)

)]

6
δ

4
+ P

[
max
t=1,...,n

exp

(
λ
(
L̄A,t − L̃A,t

)
− φ1(λ)

ε
L̄A,t

)

> exp

((
λ− φ1(λ)

ε

)
x0 − λA(L∗

n) −
φ1(λ)

ε
L∗
n

)]
(5.8)

We introduce the martingale difference sequence (with increments bounded by 1)Xt = ℓ(pt, yt)−
ℓ̃(pt, yt). The conditional variances satisfy

E
[
X2
t |Zt−1

1

]
6 E

[
ℓ̃(pt, yt)

2 |Zt−1
1

]
6
ℓ(pt, yt)

ε

so that, using the notation of Lemma A.4,Vn 6 L̄A,n/ε.
By Lemma A.4,exp

(
λ
(
L̄A,t − L̃A,t

)
− φ1(λ)Vt

)
for t = 1, 2, . . . is a nonnegative super-

martingale. Hence, using Doob’s maximal inequality, we get

P

[
max
t=1,...,n

exp

(
λ
(
L̄A,t − L̃A,n

)
− φ1(λ)

ε
L̄A,t

)

> exp

((
λ− φ1(λ)

ε

)
x0 − λA(L∗

n) −
φ1(λ)

ε
L∗
n

)]

6 P

[
max
t=1,...,n

exp
(
λ
(
L̄A,t − L̃A,t

)
− φ1(λ)Vt

)

> exp

(
λ (x0 −A(L∗

n)) −
φ1(λ)

ε
(x0 + L∗

n)

)]

6 exp

(
λ (A(L∗

n) − x0) +
φ1(λ)

ε
(x0 + L∗

n)

)
.(5.9)

Now, choose

λ =
x0 −A(L∗

n)

2 (x0 + L∗
n)
ε .

λ 6 ε/2 6 1, and therefore, usingφ1(t) 6 t2 for t 6 1, we have proved thatλ − φ1(λ)/ε > 0.
Thus, (5.8) and (5.9) imply

P

[
max
t=1,...,n

(
L̄A,t − L∗

t

)
> x0

]
6

δ

4
+ exp

(
λ (A(L∗

n) − x0) +
λ2

ε
(x0 + L∗

n)

)

=
δ

4
+ exp

(
−(A(L∗

n) − x0)
2

4 (x0 + L∗
n)

ε

)
.

It suffices to find ax0 > A(L∗
n) such that

(A(L∗
n) − x0)

2

4 (x0 + L∗
n)

ε = ln
δ

4
.
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One such choice is

x0 = A(L∗
n) +

2 ln δ
4

ε
+ 2

√
ln δ

4

ε

√

L∗
n +A(L∗

n) +
ln δ

4

ε
.

Substituting the value ofA(L∗
n) yields the statement of the lemma. �

4.3.3. Conclusion of the proof of Theorem 5.4.Lemma 5.1 shows that, with probability at
least1 − δ/4, the number of queried labels is less thanm. We then consider the martingale
difference sequence formed byXt = ℓ(It, yt) − ℓ(pt, yt), with associated sum of conditional
variancesVn 6 L̄A,n and increments bounded by 1. Lemma A.4 yields

P

[
max
t=1,...,n

(
L̂t − L̄A,t

)
> u andL̄A,n 6 L∗

n +B(L∗
n)

]
6 exp

(
− u2

4 (L∗
n +B(L∗

n))

)

provided thatu 6 3(L∗
n + B(L∗

n)). Lemma 5.7 together with a union-of-events bound and the
choice

u = 2

√
(L∗

n +B(L∗
n)) ln

4

δ
concludes the proof.

5. A lower bound for label efficient prediction

Here we show that the performance bounds proved in Section 3 for the label efficient exponen-
tially weighted average forecaster are essentially unimprovable in the strong sense that no other
label efficient forecasting strategy can have a better performance for all problems, in terms of the
orders of magnitude in the parametersn,N andm.

OPEN QUESTION 5.2. (Minimax constants.)Theorem 5.5 solves the minimax problem (see
Section 5 in Chapter 2) for the orders of magnitude in all parameters. We may now think of the
best leading constant. In view of the results for predictionwith expert advice with full monitoring
stated in Chapter 2, see Section 5 therein, the best leading constant we may expect in Theorem 5.1
is 1/

√
2, instead of the current

√
2. This gap of a factor of 2 is similar to the one between the two

analyses of the no internal regret forecaster of Theorem 3.1, and is due to the two possible analysis
of the performances of the exponentially weighted average algorithm. We may either use Taylor
expansions (the potential approach), or Hoeffding’s inequality, which is sharper. For more details
on this gap, we refer to [CeLu03] and [CeLu05]. For the time being, as far as Theorem 5.1 is
concerned, we do not see how to improve the constant.

Denote the set of natural numbers byN = {1, 2, . . .}.

THEOREM 5.5. There exist an outcome spaceY, a loss functionℓ : N × Y → [0, 1], and
a universal constantc > 0 such that, for allN > 2 and for all n > m > 20 e

1+e ln(N − 1),
the cumulative (expected) loss of any (randomized) forecaster that uses actions in{1, . . . ,N} and
asks for at mostm labels while predicting a sequence ofn outcomes satisfies the inequality

sup
y1,...,yn∈Y

(
E

[
n∑

t=1

ℓ(It, yt)

]
− min
i=1,...,N

n∑

t=1

ℓ(i, yt)

)
> c n

√
ln(N − 1)

m
.

In particular, we prove the theorem forc =

√
e

(1 + e)
√

5(1 + e)
.

Note that in the above theorem, we may take the same loss function for all N , we simply
restrict the set of all possible actions to the firstN ones. We also note that since the proof shows
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that the opponent may be oblivious, the Hoeffding-Azuma inequality (for i.i.d. random variables,
see Lemma A.2 in the Appendix) leads to a stronger result. Forall forecasters using an auxiliary
randomization formed by a sequence of i.i.d. variables, thelower bound also holds with high prob-
ability 1 − δ with respect to the auxiliary randomization (with deviations toc n

√
(ln(N − 1))/m

upper bounded by something of the order of
√
n ln(1/δ)). (For general opponents, the techniques

of Devroye, Györfi, and Lugosi [DeGyLu96, Chapter 14] may lead to the same result.)

PROOF. First, we defineY = [0, 1] andℓ. Giveny ∈ [0, 1], we denote by(y1, y2, . . .) its
dyadic expansion, that is, the unique sequence not ending with infinitely many zeros such that

y =
∑

k>1

yk 2−k .

Now, the loss function is defined asℓ(k, y) = yk for all y ∈ Y andk ∈ N.
We construct a random outcome sequence and show that the expected value of the regret (with

respect both to the random choice of the outcome sequence andto the forecaster’s possibly random
choices) for any possibly randomized forecaster is boundedfrom below by the claimed quantity.

More precisely, we denote byU1, . . . , Un the auxiliary randomization which the forecaster has
access to. Without loss of generality, this sequence can be taken as an i.i.d. sequence of uniformly
distributed random variables over[0, 1]. Our underlying probability space is equipped with theσ-
algebra of events generated by the random outcome sequenceY1, . . . , Yn and by the randomization
U1, . . . , Un. As the random outcome sequence is independent of the auxiliary randomization, we
defineN different probability distributions,Pi ⊗ PA, i = 1, . . . ,N , formed by the product of the
auxiliary randomization (whose associated probability distribution is denoted byPA) and one of
theN different probability distributionsP1, . . . ,PN over the outcome sequence defined as follows.

For i = 1, . . . , N , Qi is defined as the distribution (over[0, 1]) of

Z∗2−i +
∑

k=1,...,N, k 6=i

Zk2
−k + 2−(N+1)U ,

whereU , Z∗, Z1, . . . , ZN are independent random variables such thatU has uniform distribution,
andZ∗ and theZk have Bernoulli distribution with parameter1/2 − ε for Z∗ and1/2 for the
Zk. Now, the randomization is such that underPi, the outcome sequenceY1, . . . , Yn is i.i.d. with
common distributionQi.

Then, under eachPi (for i = 1, . . . ,N ), the lossesℓ(k, Yt), k = 1, . . . ,N , t = 1, . . . , n, are
independent Bernoulli random variables with the followingparameters. For allt, ℓ(i, Yt) = 1 with
probability 1/2 − ε andℓ(k, Yt) = 1 with probability 1/2 for eachk 6= i, whereε is a positive
number specified below.

We have

max
y1,...,yn

(
EAL̂n − min

i=1,...,N
Li,n

)
= max

y1,...,yn

max
i=1,...,N

(
EAL̂n − Li,n

)

> max
i=1,...,N

Ei

[
EAL̂n − Li,n

]
,

whereEi (resp.EA) denotes expectation with respect toPi (resp.PA).
Now, we use the following decomposition lemma, which statesthat a randomized algorithm

performs, on the average, just as a convex combination of deterministic algorithms. The simple
proof is omitted.

LEMMA 5.8. For any randomized forecaster, there exists an integerD, a pointα ∈ RD in the
probability simplex,α = (α1, . . . , αD), andD deterministic algorithms (indexed by a superscript
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d = 1, . . . ,D) such that, for everyt and every possible outcome sequenceyt−1
1 = (y1, . . . , yt−1),

PA
[
It = i | yt−1

1

]
=

D∑

d=1

αd I[Id
t =i | yt−1

1 ] ,

whereI[Id
t =i | yt−1

1 ] is the indicator function that thed-th deterministic algorithm chooses actioni

when the sequence of past outcomes is formed byyt−1
1 .

Using this lemma, we have that there existD, α andD deterministic sub-algorithms such that

max
i=1,...,N

Ei

[
EAL̂n − Li,n

]
= max

i=1,...,N
Ei

[
n∑

t=1

D∑

d=1

αd

N∑

k=1

I[Id
t =k |Y t−1

1 ]ℓ(k, Yt) − Li,n

]

= max
i=1,...,N

D∑

d=1

αd Ei

[
n∑

t=1

N∑

k=1

I[Id
t =k |Y t−1

1 ]ℓ(k, Yt) − Li,n

]

Now, underPi the regret grows byε whenever an action different fromi is chosen and remains the
same otherwise. Hence,

max
i=1,...,N

Ei

[
EAL̂n − Li,n

]
= max

i=1,...,N

D∑

d=1

αd Ei

[
n∑

t=1

N∑

k=1

I[Id
t =k |Y t−1

1 ]ℓ(k, Yt) − Li,n

]

= ε max
i=1,...,N

D∑

d=1

αd

n∑

t=1

Pi

[
Idt 6= i

]

= ε n

(
1 − min

i=1,...,N

D∑

d=1

n∑

t=1

αd
n

Pi[I
d
t = i]

)
.

For thed-th deterministic subalgorithm, let1 6 T d1 < . . . < T dm 6 n be the times when them
queries were issued. ThenT d1 , . . . , T

d
m are finite stopping times with respect to the i.i.d. process

Y1, . . . , Yn. Hence, by a well-known fact in probability theory (see, e.g., [ChTe88, Lemma 2, page
138]), the revealed outcomesYT d

1
, . . . , YT d

m
are independent and identically distributed asY1.

Let Rdt be the number of revealed outcomes at timet and note thatRdt is measurable with
respect to the random outcome sequence. Now, as the subalgorithm we consider is deterministic,
Rdt is fully determined byYT d

1
, . . . , YT d

m
. Hence,Idt may be seen as a function ofYT d

1
, . . . , YT d

m

rather than a function ofYT d
1
, . . . , YT d

Rd
t

only. As the joint distribution ofYT d
1
, . . . , YT d

m
underPi is

Qm
i , we have proved that

Pi[I
d
t = i] = Qm

i [Idt = i] .

Consequently, the lower bound rewrites as

max
i=1,...,N

Ei

[
EAL̂n − Li,n

]
= ε n

(
1 − min

i=1,...,N

D∑

d=1

n∑

t=1

αd
n

Qm
i [Idt = i]

)
.

By Fano’s inequality for convex combinations (see Lemma A.13 in the Appendix), it is guaranteed
that

min
i=1,...,N

D∑

d=1

n∑

t=1

αd
n

Qm
i [Idt = i] 6 max

{
e

1 + e
,

K̄

ln(N − 1)

}
,

where

K̄ =

n∑

t=1

D∑

d=1

N∑

i=2

αd
n(N − 1)

K(Qm
i ,Q

m
1 ) =

1

N − 1

N∑

i=2

K(Qm
i ,Q

m
1 ) ,
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andK is the Kullback-Leibler divergence (or relative entropy) between two probability distribu-
tions. Moreover,Bp denoting the Bernoulli distribution with parameterp,

K(Qm
i ,Q

m
1 ) = mK(Qi,Q1) 6 m

(
K
(
B1/2−ε,B1/2

)
+ K

(
B1/2,B1/2−ε

))
6 5mε2

for 0 6 ε 6 1/10, where the first equality holds by (A.1). For the second one, we note
that the definition of theQi and Lemma A.7 imply that the considered Kullback-Leibler diver-
gence is upper bounded by the Kullback-Leibler divergence between(Z1, . . . , Z

∗, . . . , Zn, U),
whereZ∗ is in the i-th position, and(Z∗, Z2 . . . , Zn, U). (A.1) then shows thatK(Qi,Q1) 6

K
(
B1/2−ε,B1/2

)
+ K

(
B1/2,B1/2−ε

)
, and Lemma A.5 concludes.

Therefore,

max
y1,...,yn

(
EAL̂n − min

i=1,...,N
Li,n

)
> ε n

(
1 − max

{
e

1 + e
,

5mε2

ln(N − 1)

})
.

The choice

ε =

√
e ln(N − 1)

5(1 + e)m
(ε 6 1/10)

yields the claimed bound. �





CHAPTER 6

Regret minimization under partial monitoring

We consider repeated games in which the player, instead of observing the action chosen by
the opponent in each game round, receives a feedback generated by the combined choice of the
two players. We study Hannan consistent players for these games; that is, randomized playing
strategies whose per-round regret vanishes with probability one as the numbern of game rounds
goes to infinity. We prove a general lower bound ofΩ(n−1/3) for the convergence rate of the regret,
and exhibit a specific strategy that attains this rate for anygame for which a Hannan consistent
player exists.
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This chapter is based on the submitted paper [CeLuSt04b] and is a joint work with Nicolò
Cesa-Bianchi and Gábor Lugosi.

1. A motivating example

A simple yet nontrivial example of partial monitoring is thefollowing dynamic pricing prob-
lem. A vendor sells a product to a sequence of customers whom he attends one by one. To each
customer, the seller offers the product at a price he selects, say, from the interval[0, 1]. The cus-
tomer then decides to buy the product or not. No bargaining ispossible and no other information
is exchanged between buyer and seller. The goal of the selleris to achieve an income almost as
large as if he knew the maximal price each customer is willingto pay for the product. Thus, if
the price offered to thet-th customer ispt and the highest price this customer is willing to pay is
yt ∈ [0, 1], then the loss of the seller isyt − pt if the product is sold and (say) a constantc > 0 if
the product is not sold. The first case corresponds to a loss ofearnings and the second case to the
fixed charges. Formally, the loss of the vendor at timet is

ℓ(pt, yt) = (yt − pt)Ipt6yt + c Ipt>yt
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PREDICTION WITH PARTIAL MONITORING

Parameters:number of actionsN , number of outcomesM , loss functionℓ, feedback function
h.

For each roundt = 1, 2 . . .,

(1) the environment chooses the next outcomeyt ∈ {1, . . . ,M} without revealing it;
(2) the forecaster chooses a probability distributionpt over the set ofN actions and

draws an actionIt ∈ {1, . . . , N} according to this distribution;
(3) the forecaster incurs lossℓ(It, yt) and each actioni incurs lossℓ(i, yt), where none

of these values is revealed to the forecaster;
(4) the feedbackh(It, yt) is revealed to the forecaster.

wherec ∈ [0, 1]. (In another version1 of the problem the constantc may be replaced byyt. We
can even think ofyt + c, to take into account the loss of earnings plus the fixed charges, or of
any measure of the loss.) In either case, if the seller knew inadvance the empirical distribution of
theyt’s then he could set a constant priceq ∈ [0, 1] which minimizes his overall loss. A natural
question is whether there exists a randomized strategy for the seller such that his average regret

1

n

n∑

t=1

ℓ(pt, yt) − min
q∈[0,1]

1

n

n∑

t=1

ℓ(q, yt)

is guaranteed to converge to zero asn → ∞ regardless of the sequencey1, y2, . . . of prices. The
difficulty in this problem is that the only information the seller (i.e., the forecaster) has access to
is whetherpt > yt but neitheryt nor ℓ(pt, yt) are revealed. One of the main results of this chapter
describes a simple strategy such that the average regret defined above is of the order ofn−1/5.

We treat such limited-feedback (orpartial monitoring) prediction problems in a more gen-
eral framework which we describe next. The dynamic pricing problem described above, which
is a special case of this more general framework, has been also investigated by Kleinberg and
Leighton [KlLe03] in a simpler setting where the reward of the seller is definedasρ(pt, yt) =

pt Ipt6yt . Note that, by using the feedback information (i.e., whether the customer bought the
product or not), here the seller can compute the value ofρ(pt, yt). Therefore, their game reduces
to an instance of the multi-armed bandit game (see Example 6.1 below) with a continuous action
space.

2. Main definitions

We adopt a learning-theoretic viewpoint and describe partial monitoring as a repeated pre-
diction game between aforecaster(the player) and theenvironment(the opponent). In the same
spirit, we calloutcomesthe actions taken by the environment. At each roundt = 1, 2 . . . of the
game, the forecaster chooses an actionIt from the set{1, . . . ,N}, and the environment chooses an
actionyt from the set{1, . . . ,M}. The losses of the forecaster are summarized in theloss matrix
L = [ℓ(i, j)]N×M . (This matrix is assumed to be known by the forecaster.) Without loss of gener-
ality, we rescale the losses so that they all lie in[0, 1]. If, at timet, the forecaster chooses an action
It ∈ {1, . . . , N} and the outcome isyt ∈ {1, . . . ,M}, then the forecaster’s suffers lossℓ(It, yt).
However, instead of the outcomeyt, the forecaster only observes the feedbackh(It, yt), whereh is
a knownfeedback functionthat assigns, to each action/outcome pair in{1, . . . ,N} × {1, . . . ,M}

1In this case it is easy to see that all terms depending onyt cancel out when considering the regret, and we obtain the
bandit setting analyzed by Kleinberg and Leighton [KlLe03]—see how the functionρ is defined below.
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an element of a finite setS = {s1, . . . , sm} of signals. The values ofh are collected in afeedback
matrixH = [h(i, j)]N×M .

Note that we do not make any restrictive assumption on the power of the opponent. The
environment may choose actionyt at time t by considering the whole past, that is, the whole
sequence of action/outcome pairs(Is, ys), s = 1, . . . , t−1. Without loss of generality, we assume
that the opponent uses a deterministic strategy, so that thevalue ofyt is fixed by the sequence
(I1, . . . , It−1). In comparison, the forecaster has access to significantly less information, since he
only knows the sequence of past feedbacks,(h(I1, y1), . . . , h(It−1, yt−1)).

We note here that some authors consider a more general setup in which the feedback may be
random. For the sake of clarity we treat the simpler model described above and return to the more
general case in Section 7.

It is an interesting and complex problem to investigate the possibilities of a predictor only
supplied with the limited information of the feedback. In this chapter we focus on the average
regret

1

n

n∑

t=1

ℓ(It, yt) − min
i=1,...,N

1

n

n∑

t=1

ℓ(i, yt) ,

that is, the difference between the average (per-round) loss of the forecaster and the average (per-
round) loss of the best action. Forecasting strategies guaranteeing that the average regret converges
to zero almost surely for all possible strategies of the environment are calledHannan consistent
after James Hannan, who first proved the existence of a Hannanconsistent strategy in thefull in-
formationcase [Han57] whenh(i, j) = j for all i, j (i.e., when the true outcomeyt is revealed
to the forecaster after taking an action). The full information case has been studied extensively in
the theory of repeated games, and in the fields of learning theory and information theory. A few
key references and surveys include Blackwell [Bla56], Cesa-Bianchi, Freund, Haussler, Helm-
bold, Schapire, and Warmuth [CeFrHaHeScWa97], Cesa-Bianchi and Lugosi [CeLu99], Feder,
Merhav, and Gutman [FeMeGu92], Foster and Vohra [FoVo99], Hart and Mas-Colell [HaMa01],
Littlestone and Warmuth [LiWa94], Merhav and Feder [MeFe98], and Vovk [Vov90, Vov01].

A natural question one may ask is under what conditions on theloss and feedback matrices it
is possible to achieve Hannan consistency, that is, to guarantee that, asymptotically, the cumulative
loss of the forecaster is not larger than that of the best constant action with probability one. Natu-
rally, this depends on the relationship between the loss andfeedback functions. An initial answer
to this question has been provided by the work of Piccolboni and Schindelhauer [PiSc01]. How-
ever, since they are only concerned with expected performance, their results do not imply Hannan
consistency. In addition, their bounds have suboptimal rates of convergence. Below, we extend
those results by showing a forecaster that achieves Hannan consistency with optimal convergence
rates.

Note that the forecaster is free to encode the valuesh(i, j) of the feedback function by real
numbers. The only restriction is that ifh(i, j) = h(i, j′) then the corresponding real numbers
should also coincide. To avoid ambiguities by trivial rescaling, we assume that|h(i, j)| 6 1

for all pairs (i, j). Thus, in the sequel we assume thatH = [h(i, j)]N×M is a matrix of real
numbers between−1 and1 and keep in mind that the forecaster may replace this matrix by Hφ =

[φi(h(i, j))]N×M for arbitrary functionsφi : [−1, 1] → [−1, 1], i = 1, . . . ,N . Note that the setS
of signals may be chosen such that it hasm 6 M elements, though after numerical encoding the
matrix may have as many asMN distinct elements.

The problem of partial monitoring was considered by Mertens, Sorin, and Zamir [MeSoZa94],
Rustichini [Rus99], Piccolboni, and Schindelhauer [PiSc01], and Mannor and Shimkin [MaSh03].
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The forecaster strategy studied in Section 3 is first introduced in [PiSc01], where its expected re-
gret is shown to have a sub-linear growth. Rustichini [Rus99] and Mannor and Shimkin [MaSh03]
consider a more general setup in which the feedback is not necessarily a deterministic function of
the pair outcome and forecaster’s action, but it may be random with a distribution indexed by
this pair. Based on Blackwell’s approachability theorem, Rustichini [Rus99] establishes a gen-
eral existence result for strategies with asymptotically optimal performance in this more general
framework. In this chapter we answer Rustichini’s questionabout the fastest achievable rate of
convergence in the case when Hannan consistent strategies exist. Mannor and Shimkin also con-
sider cases when Hannan consistency may not be achieved, give a partial solution, and point out
important difficulties in such cases.

Before introducing a general prediction strategy and sufficient conditions for its Hannan con-
sistency, we describe a few concrete examples of partial monitoring problems.

EXAMPLE 6.1. (Multi-armed bandit problem.) A well-studied special case of the partial mon-
itoring prediction problem is the so-called multi-armed bandit problem. Recall from Chapter 2,
Section 4, that here the forecaster, after taking an action,is able to measure his loss (or reward) but
does not have access to what would have happened had he chosenanother possible action. Here
H = L, that is, the feedback received by the forecaster is just hisown loss.

EXAMPLE 6.2. (Dynamic pricing.) Consider the dynamic pricing problem described in the
introduction of the section under the additional restriction that all prices take their values from
the finite set{0, 1/N, . . . , (N − 1)/N} whereN is a positive integer (see Example 6.6 for a
non-discretized version). Clearly, ifN is sufficiently large, this discrete version approximates
arbitrarily the original problem. Now one may takeM = N and the loss matrix is

L = [ℓ(i, j)]N×N where ℓ(i, j) =
j − i

N
Ii6j + c Ii>j .

The information the forecaster (i.e., the vendor) receivesis simply whether the predicted valueIt
is greater than the outcomeyt or not. Thus, the entries of the feedback matrixH may be taken to
beh(i, j) = Ii>j or, after an appropriate re-encoding,

h(i, j) = a Ii6j + b Ii>j i, j = 1, . . . ,N

wherea andb are constants chosen by the forecaster satisfyinga, b ∈ [−1, 1].

EXAMPLE 6.3. (Apple tasting.) This problem was considered by Helmbold, Littlestone, and
Long [HeLiLo00] in a somewhat more restrictive setting. In this exampleN = M = 2 and the
loss and feedback matrices are given by

L =

[
0 1

1 0

]
and H =

[
a a

b c

]
.

Thus, the forecaster only receives feedback about the outcomeyt when he chooses the first action.
(Imagine that apples are to be classified as “good for sale” or“rotten”. An apple classified as
“rotten” may be opened to check whether its classification was correct. On the other hand, since
apples that have been checked cannot be put on sale, an apple classified “good for sale” is never
checked.)

REMARK 6.1. (On the pertinence of the regret.)The previous example points out the limita-
tions of the pertinence of the regret. It is not very interesting to only perform almost as well as
the two strategies which consist, on the one hand, in sellingall apples, and on the other hand, in
throwing all apples out. However, this example may be considered as a toy example. Meaningful
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situations for the regret are given, for instance, by the dynamic pricing problem stated in the intro-
duction, or by the dynamic bandwidth allocation problem that motivated the work of Piccolboni
and Schindelhauer [PiSc01].

EXAMPLE 6.4. (Label efficient prediction.) In label efficient prediction (see Helmbold and
Panizza [HePa97], and also Cesa-Bianchi, Lugosi, and Stoltz [CeLuSt05] or Chapter 5) the fore-
caster, after choosing its prediction for roundt, decides whether to query the outcomeyt, which
he can only do for a limited number of times. In Chapter 5 matching upper and lower bounds
are given for the regret in terms of the number of available labels, total number of rounds, and
number of actions. A variant of the label efficient prediction problem may also be cast as a partial
monitoring problem. LetN = 3,M = 2, and consider loss and feedback matrices of the form

L =




1 1

1 0

0 1


 and H =



a b

c c

c c


 .

In this example the only times useful feedback is received are when the first action is played but
in this case a maximal loss is incurred regardless of the outcome. Thus, just like in the problem of
label efficient prediction, playing the “informative” action has to be limited, otherwise there is no
hope for Hannan consistency.

3. General upper bounds on the regret

The purpose of this section is to derive general upper boundsfor the rate of convergence
of the regret achievable under partial monitoring. This will be done by analyzing a forecasting
strategy inspired by Piccolboni and Schindelhauer [PiSc01]. This strategy is based on the expo-
nentially weighted average forecaster, a thoroughly studied predictor in the full information case,
see, for example, Auer, Cesa-Bianchi, and Gentile [AuCeGe02], Cesa-Bianchi, Freund, Haussler,
Helmbold, Schapire, and Warmuth [CeFrHaHeScWa97], Littlestone and Warmuth [LiWa94],
Vovk [Vov90, Vov01]. In the special case of the multi-armed bandit problem, theforecaster re-
duces to the strategy of Auer, Cesa-Bianchi, Freund, and Schapire [AuCeFrSc02] (see also Hart
and Mas-Colell [HaMa02] and Section 4 of Chapter 2 for closely related methods).

The crucial assumption under which the strategy is defined isthat there exists anN×N matrix
K = [k(i, j)]N×N such that

L = K H ,

that is,

H and

[
H

L

]

have the same rank. In other words we may write, for alli ∈ {1, . . . ,N} andj ∈ {1, . . . ,M},

(6.1) ℓ(i, j) =
N∑

l=1

k(i, l)h(l, j) .

In this case one may define the estimated lossesℓ̃ by

(6.2) ℓ̃(i, yt) =
k(i, It)h(It, yt)

pIt,t
, i = 1, . . . ,N .

(Note that, contrary to the estimates used in Chapter 5, the ones proposed above are real-valued,
and may be negative.) We denote the cumulative estimated losses at roundt and for actioni by
L̃i,t =

∑t
s=1 ℓ̃(i, yt).
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Parameters: matrixL of losses, feedback matrixH , matrixK such thatL = K H

Initialization: L̃1,0 = · · · = L̃N,0 = 0.

For each roundt = 1, 2, . . .

(1) letηt = (k∗)−2/3((lnN)/N)2/3t−2/3 andγt = (k∗)2/3N2/3(lnN)1/3t−1/3;
(2) choose an actionIt from the set of actions{1, . . . ,N} at random, according to the

distributionpt defined by

pi,t = (1 − γt)
e−ηt

eLi,t−1

∑N
k=1 e

−ηt
eLk,t−1

+
γt
N

;

(3) let L̃i,t = L̃i,t−1 + ℓ̃(i, yt) for all i = 1, . . . ,N .

FIGURE 1. The randomized forecaster for prediction under partial monitoring.

Consider the forecaster defined in Figure 1. Roughly speaking, the two terms in the expres-
sion ofpi,t correspond to “exploitation” and “exploration”. The first term assigns exponentially
decreasing weights to the actions depending on their estimated cumulative losses, while the second
term ensures sufficient exploration to guarantee accurate estimates of the losses.

A key property of the loss estimates is their unbiasedness inthe following sense. Denoting
by Et the conditional expectation givenI1, . . . , It−1 (i.e., the expectation with respect to the dis-
tribution pt of the random variableIt), observe that this conditioning fixes the value ofyt, and
thus,

Etℓ̃(i, yt) =

N∑

k=1

k(i, k)h(k, yt)

pk,t
pk,t

=
N∑

k=1

k(i, k)h(k, yt) = ℓ(i, yt) , i = 1, . . . ,N ,

and thereforẽℓ(i, yt) is an unbiased estimate of the lossℓ(i, yt).
The main performance bound of this section is summarized in the next theorem. Note that the

average regret
1

n

(
n∑

t=1

ℓ(It, yt) − min
i=1,...,N

n∑

t=1

ℓ(i, yt)

)

decreases to zero at a raten−1/3. This is significantly slower than the best raten−1/2 obtained
in the “full information” case. In the next section we show that this rate cannot be improved
in general. Thus, the price paid for having access only to some feedback except for the actual
outcomes is the deterioration in the rate of convergence. However, Hannan consistency is still
achievable whenever the conditions of the theorem are satisfied.

THEOREM 6.1. Consider any partial monitoring problem such that the loss and feedback
matrices satisfyL = K H for someN ×N matrix K with k∗ = max{1, maxi,j |k(i, j)|}, and
consider the forecaster of Figure 1. Letδ ∈ (0, 1). Then, for all strategies of the opponent, for all
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n, with probability at least1 − δ,

1

n

n∑

t=1

ℓ(It, yt) − min
i=1,...,N

1

n

n∑

t=1

ℓ(i, yt)

6 5

(
(k∗N)2 lnN

n

)1/3
(

1 +

√
3

2

ln((N + 4)/δ)

lnN

)

+

√
1

2n
ln
N + 4

δ
+ 5(k∗N)4/3n−2/3(lnN)−1/3 ln

N + 4

δ

+
1

n

(
1 + ((k∗N)2 lnN)1/3 + k∗N

)
ln
N + 4

δ
.

The main term in the performance bound has the order of magnituden−1/3(k∗N)2/3(lnN)1/3.
Observe that this theorem directly implies Hannan consistency, by a simple application of the
Borel-Cantelli lemma. We also remark that the bound proposed by the theorem could be strength-
ened in a maximal version of the same flavor as the statement ofTheorem 5.2 by a more careful
way of writing the proof, by exploiting the fact that we applya maximal version of Bernstein’s
inequality (see Lemma A.4). We do not do so for the sake of simplicity and readability.

REMARK 6.2. (Improvement for small losses.)We may design a forecaster suited for small
losses under partial monitoring, in the same spirit as we didfor the label efficient prediction setting
in Section 4 of Chapter 5. Denoting bȳLA,n the (conditional) expected cumulative loss of the
forecaster, and byL∗

n the cumulative loss of the best action, we may prove that

L̄A,n 6 L∗
n + γ(nL̄A,n)

1/3
,

for an absolute constantγ. Solving shows that the (expected) regretL̄A,n − L∗
n is bounded by a

quantity of the order of(nL∗
n)

1/3, and using the same martingale inequalities as in Section 4 of
Chapter 5, we may prove that this is still the order of magnitude of the non-expected regret. This
improves on the generaln2/3 upper bound on the regret proposed by Theorem 6.1. We do not
work out the tedious details.

PROOF (OF THEOREM 6.1). The starting point of the proof of the theorem is an application
of Lemmas 4.3 and 4.5 to the estimated losses (see also the proof of Theorem 5.1). Sincẽℓi,t lies
between−Bt andBt, whereBt = k∗N/γt, the proposed values ofγt andηt imply thatηtBt 6 1

if and only if t > (lnN)/(Nk∗), that is, for allt > 1. Therefore, defining fort = 1, . . . , n, the
probability vector̃pt by its components

p̃i,t =
e−ηt

eLi,t−1

∑N
k=1 e

−ηt
eLk,t−1

i = 1, . . . ,N ,

we may apply Lemmas 4.3 and 4.5 (and usee− 2 6 1) to obtain

n∑

t=1

N∑

i=1

p̃i,tℓ̃(i, yt) − min
j=1,...,N

L̃j,n 6
2 lnN

ηn+1
+

n∑

t=1

ηt

N∑

i=1

p̃i,tℓ̃(i, yt)
2 .

Sincepi,t = (1 − γt)p̃i,t + γt/N , the inequality above yields, after some simple bounding,
(6.3)

n∑

t=1

N∑

i=1

pi,tℓ̃(i, yt) − min
j=1,...,N

L̃j,n 6
2 lnN

ηn+1
+

n∑

t=1

ηt

N∑

i=1

p̃i,tℓ̃(i, yt)
2 +

n∑

t=1

γt

N∑

i=1

1

N
ℓ̃(i, yt) .
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Introduce the notation

L̂n =
n∑

t=1

ℓ(It, yt) and Lj,n =
n∑

t=1

ℓ(j, yt), j = 1, . . . ,N .

Next we show that, with an overwhelming probability, the right-hand side of the inequality (6.3)
is less than something of the ordern2/3, and that the left-hand side is close to the actual regret

n∑

t=1

ℓ(It, yt) − min
j=1,...,N

Lj,n .

Our main tool is Bernstein’s inequality for martingales, see Lemma A.4 in the Appendix. This
inequality implies the following four lemmas, whose proofsare similar, so we omit some of them.

LEMMA 6.1. With probability at least1 − δ/(N + 4),

n∑

t=1

N∑

i=1

pi,tℓ(i, yt) 6

n∑

t=1

N∑

i=1

pi,tℓ̃(i, yt)

+

√√√√2(k∗N)2

(
n∑

t=1

1

γt

)
ln
N + 4

δ
+

√
2

3

(
1 +

k∗N

γn

)
ln
N + 4

δ
.

PROOF. DefineZt = −∑N
i=1 pi,tℓ̃(i, yt) so thatEt[Zt] = −∑N

i=1 pi,tℓ(i, yt), and consider
Xt = Zt − Et[Zt]. We note that

Et[X
2
t ] 6 Et[Z

2
t ] =

∑

i,j

pi,tpj,tEt

[
ℓ̃(i, yt)ℓ̃(j, yt)

]

=
∑

i,j

pi,tpj,t

N∑

k=1

pk,t
k(i, k)k(j, k)h(k, yt)

2

p2
k,t

6
(k∗N)2

γt
,

and therefore,

Vn =
n∑

t=1

Et[X
2
t ] 6 (k∗N)2

n∑

t=1

1

γt
.

On the other hand,|Xt| is bounded byK = 1+(k∗N)/γn. Bernstein’s inequality (see Lemma A.4)
thus concludes the proof. �

LEMMA 6.2. For each fixedj, with probability at least1 − δ/(N + 4),

L̃j,n 6 Lj,n + +

√√√√2(k∗N)2

(
n∑

t=1

1

γt

)
ln
N + 4

δ
+

√
2

3

(
1 +

k∗N

γn

)
ln
N + 4

δ
.

LEMMA 6.3. With probability at least1 − δ/(N + 4),

n∑

t=1

ηt

N∑

i=1

p̃i,tℓ̃(i, yt)
2

6

n∑

t=1

ηt
(k∗N)2

γt
+

√√√√2(k∗N)4

(
n∑

t=1

η2
t

γ3
t

)
ln
N + 4

δ
+

√
2

3
ln
N + 4

δ
.

PROOF. LetZt = ηt
∑N

i=1 p̃i,tℓ̃(i, yt)
2, andXt = Zt − Et[Zt]. All |Xt| are bounded by

K = max
t=1,...,n

ηt
(k∗N)2

γ2
t

= 1 .

On the other hand,

Vn =

n∑

t=1

Et[X
2
t ] 6 (k∗N)4

n∑

t=1

η2
t

γ3
t

.
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Lemma A.4 now concludes the proof, together with the inequality

Et[Zt] 6 ηt
(k∗N)2

γt
.

�

LEMMA 6.4. With probability at least1 − δ/(N + 4),

n∑

t=1

γt

N∑

i=1

1

N
ℓ̃(i, yt) 6

n∑

t=1

γt +

√√√√2(k∗N)2

(
n∑

t=1

γt

)
ln
N + 4

δ
+

√
2

3
(k∗N + γ1) ln

N + 4

δ
.

The next lemma is an easy consequence of the Hoeffding-Azumainequality for sums of
bounded martingale differences (see Lemma A.2 in the Appendix).

LEMMA 6.5. With probability at least1 − δ/(N + 3),

n∑

t=1

ℓ(It, yt) 6

n∑

t=1

N∑

i=1

pi,tℓ(i, yt) +

√
n

2
ln
N + 4

δ
.

The proof of the main result follows now from a combination ofLemmas 6.1 to 6.5 with
(6.3) (where Lemma 6.2 is appliedN times). Using a union-of-event bound, we see that, with
probability1 − δ,

n∑

t=1

ℓ(It, yt) − min
j=1,...,N

Lj,n

6
2 lnN

ηn+1

+ 2




√√√√2(k∗N)2

(
n∑

t=1

1

γt

)
ln
N + 4

δ
+

√
2

3

(
1 +

k∗N

γn

)
ln
N + 4

δ




+

n∑

t=1

ηt
(k∗N)2

γt
+

√√√√2(k∗N)4

(
n∑

t=1

η2
t

γ3
t

)
ln
N + 4

δ
+

√
2

3
ln
N + 4

δ

+
n∑

t=1

γt +

√√√√2(k∗N)2

(
n∑

t=1

γt

)
ln
N + 4

δ
+

√
2

3
(k∗N + γ1) ln

N + 4

δ

+

√
n

2
ln
N + 4

δ
.

Substituting the proposed values ofγt andηt, and using that for−1 < α 6 0
n∑

t=1

tα 6
1

α+ 1
nα+1 ,

we obtain the claimed result with a simple calculation. �

We close this section by considering the implications of Theorem 6.1 to the special cases
mentioned in the introduction.

EXAMPLE 6.5. (Multi-armed bandit problem.) Recall that in the case of the multi-armed
bandit problemH = L and the condition of the theorem is trivially satisfied. Indeed, one may
take K to be the identity matrix so thatk∗ = 1. Thus, Theorem 6.1 implies a bound of the
order of ((N2 lnN)/n)1/3. Even though, as it is shown in the next section, the rateO(n−1/3)
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cannot be improved in general, faster rates of convergence are achievable for the special case of
the bandit problem. Indeed, for the bandit problem Cesa-Bianchi and Lugosi [CeLu05] describe
careful modifications of the forecaster of Theorem 6.1 that achieve an upper bound of the order
of
√
N(lnN)/n, see Theorem 2.8. It remains a challenging problem to characterize the class of

problems that admit rates of convergence faster thanO(n−1/3), see Question 6.3.

EXAMPLE 6.6. (Dynamic pricing.) In the discretized version of the dynamic pricing problem
(i.e., when all prices are restricted to the set{0, 1/N, . . . , (N − 1)/N}), the feedback matrix is
given byh(i, j) = a Ii6j + b Ii>j for some arbitrarily chosen values ofa andb. By choosing, for
example,a = 1 andb = 0, it is clear thatH is an invertible matrix and therefore one may choose
K = L H−1 and obtain a Hannan-consistent strategy with average regret of the order ofn−1/3.
Thus, the seller has a way of selecting the pricesIt such that his loss is not much larger than what
he could have achieved had he known the valuesyt of all costumers and offered the best constant
price. Note that with this choice ofa andb, the value ofk∗ equals1 (i.e., does not depend onN )
and therefore the upper bound has the formC((N2 logN)/n)1/3

√
ln(1/δ) for some constantC.

By choosingN ≈ n1/5 and running the forecaster into stages of doubling lengths the effect of
discretization sums up ton/N and decreases at about the same rate as the average regret, sothat
for the original problem with unrestricted price range one may obtain a regret bound of the form

1

n

n∑

t=1

ℓ(pt, yt) − min
q∈[0,1]

1

n

n∑

t=1

ℓ(q, yt) = O(n−1/5 lnn) .

We leave out the simple but tedious details of the proof, except the precise way we should dis-
cretize. We show below that the discretizationYN (yt) = ⌊Nyt⌋/N ensures that

ℓ(p, y) − ℓ (p, YN (y)) 6
1

N

for all p andy in [0, 1]. To this end, we note that only three cases may happen,p > y (in which
case,p > YN (y)), p 6 YN (y) (in which case,p 6 y), andYN (y) < p 6 y. In these cases,
ℓ(p, y)− ℓ (p, YN (y)) respectively equals0, y − YN (y) 6 1/N and(y − p)− c 6 y− p 6 1/N .
Thus, the cumulated effect of the discretization in one stage may be bounded byn/N as claimed,
provided2 that the discretization is given byYN (yt) = ⌊Nyt⌋/N .

EXAMPLE 6.7. (Apple tasting.) In the apple tasting problem described above, one may choose
the feedback valuesa = b = 1 andc = 0. Then, the feedback matrix is invertible and, once again,
Theorem 6.1 applies.

EXAMPLE 6.8. (Label efficient prediction.) Recall next the variant of the label efficient pre-
diction problem described in the previous section. Here therank ofL equals two, so it is necessary
(and sufficient) to encode the feedback matrix such that its rank equals two. One possibility is to
choosea = 1, b = 1/2, andc = 1/4. Then we haveL = K H for

K =




0 2 2

2 −2 −2

−2 4 4


 .

The obtained rate of convergenceO(n−1/3) may be shown to be optimal. In fact, it is this example
that we use in Section 5 to show that this rate of convergence cannot be improved in general.

REMARK 6.3. It is interesting to point out that the bound of Theorem 6.1 does not depend
explicitly on the value of the cardinalityM of the set of outcomes. Of course, in some problems

2Other choices for the discretization may only lead to a worsemax{1/N, c} upper bound.
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the valuek∗ may depend onM . However, in some important special cases, such as the multi-
armed bandit problem for whichk∗ = 1, this value is independent ofM . In such cases the result
extends easily to an infinite set of outcomes. In particular,the case when the loss matrix may
change with time can be encoded this way.

4. Other regret-minimizing strategies

In the previous section we saw a forecasting strategy that guarantees that the average regret
is of the order ofn−1/3 whenever the loss matrixL can be expressed asK H for some matrix
K. In this section we discuss some alternative strategies that yield small regret under different
conditions.

First note that it is not true that the existence of a Hannan consistent predictor is guaranteed
if and only the loss matrixL can be expressed asK H . The following example describes such a
situation.

EXAMPLE 6.9. LetN = M = 3,

L =




1 0 0

0 1 0

0 0 1


 and H =



a b c

d d d

e e e


 .

Clearly, for all choices of the numbersa, b, c, d, e, the rank of the feedback matrix is at most two
and therefore there is no matrixK for which L = K H. However, note that whenever the first
action is played, the forecaster has full information aboutthe outcomeyt. Formally, an action
i ∈ {1, . . . , N} is said to berevealingfor a feedback matrixH if all entries in thei-th row of H
are different. Below we prove the existence of a Hannan consistent forecaster for all problems in
which there exists a revealing action.

THEOREM 6.2. Consider an arbitrary partial monitoring problem(L,H) such thatL has a
revealing action. Letδ ∈ (0, 1). If the randomized forecasting strategy of Figure 2 is run with
parameters

ε = max

{
0,
m−

√
2m ln(4/δ)

n

}
and η =

√
2ε lnN

n

wherem = (4n)2/3(ln(4N/δ))1/3 , then

1

n

(
n∑

t=1

ℓ(It, yt) − min
i=1,...,N

L1,n

)
6 8n−1/3

(
ln

4N

δ

)1/3

holds with probability at least1 − δ for any strategy of the opponent.

PROOF. The forecaster of Figure 2 chooses at each round a revealingaction with a small
probabilityε ≈ m/n (of the order ofn−1/3). At thesem stages where a revealing action is chosen,
the forecaster suffers a total loss of aboutm = O(n2/3) but gets full information about the outcome
yt. This situation is a modification of the problem oflabel efficient predictionstudied in Helmbold
and Panizza [HePa97], and in Chapter 5 (see also Cesa-Bianchi, Lugosi, and Stoltz [CeLuSt05]).
In particular, the algorithm proposed in Figure 2 coincideswith that of of Theorem 5.2 –except
maybe at those rounds whenZt = 1. Indeed, Theorem 5.2 ensures that, with probability at least
1 − δ, not more thanm among theZt have value 1, and that

n∑

t=1

ℓ(Jt, yt) − min
j=1,...,N

n∑

t=1

ℓ(j, yt) 6 8n

√
ln(4N/δ)

m
.
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Parameters: 0 6 ε 6 1 andη > 0. Action r is revealing.
Initialization: w1,0 = · · · = wN,0 = 1.

For each roundt = 1, 2, . . .

(1) draw an actionJt from {1, . . . ,N} according to the distribution

pi,t =
wi,t−1∑N
j=1wj,t−1

, i = 1, . . . ,N ,

(2) draw a Bernoulli random variableZt such thatP[Zt = 1] = ε;
(3) if Zt = 1 then play a revealing action,It = r, observeyt, and compute

wi,t = wi,t−1e
−η ℓ(i,yt)/ε for eachi = 1, . . . ,N ;

(4) otherwise, ifZt = 0, playIt = Jt and letwi,t = wi,t−i for eachi = 1, . . . ,N .

FIGURE 2. The randomized forecaster for feedback matrices with a revealing action.

This in turn implies that
n∑

t=1

ℓ(It, yt) − min
j=1,...,N

n∑

t=1

ℓ(j, yt) 6 m+ 8n

√
ln(4N/δ)

m
,

and substituting the proposed value for the parameterm concludes the proof. �

REMARK 6.4. (Dependence onN .) Observe that, even when the condition of Theorem 6.1 is
satisfied, the bound of Theorem 6.2 is considerably tighter.Indeed, even though the dependence
on the time horizonn is identical in both bounds (of the order ofn−1/3), the bound of Theorem 6.2
depends on the number of actionsN in a logarithmic way only. As an example, consider the case of
the multi-armed bandit problem. Recall that hereH = L and there is a revealing action if and only
if the loss matrix has a row whose elements are all different.In such a case Theorem 6.2 provides
a bound of the order of((lnN)/n)1/3. On the other hand, there exist bandit problems for which,
if N 6 n, it is impossible to achieve a regret smaller than(1/20)(N/n)1/2 (see [AuCeFrSc02]).
If N is large, the logarithmic dependence of Theorem 6.2 gives a considerable advantage.

Interestingly, even ifL cannot be expressed asK H , if a revealing action exists, the strategy
of Section 3 may be used to achieve a small regret. This may be done by using a trick of Piccolboni
and Schindelhauer [PiSc01] to first convert the problem into another partial-monitoring problem
for which the strategy of Section 3 can be used. The basic stepof this conversion is to replace the
pair ofN ×M matrices(L,H) by a pair ofmN ×M matrices(L′,H ′) wherem 6 M denotes
the cardinality of the setS = {s1, . . . , sm} of signals (i.e., the number of distinct elements of
the matrixH). In the obtained prediction problem the forecaster chooses amongmN actions at
each time instance. The converted loss matrixL′ is obtained simply by repeating each row of the
original loss matrixm times. The new feedback matrixH ′ is binary and is defined by

H ′(m(i− 1) + k, j) = Ih(i,j)=sk
, i = 1, . . . ,N, k = 1, . . . ,m, j = 1, . . . ,M .

Note that this way we get rid of the inconvenient problem of how to encode in a natural way the
feedback symbols. We also propose the following interpretation for this first step. Before taking
an action, the forecaster has a belief about the nature of thefeedback he will get. He then is only
interested in knowing whether he was right or not. If the matrices

H ′ and

[
H ′

L′

]
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have the same rank, then there exists a matrixK ′ such thatL′ = K ′ H ′ and the forecaster of
Section 3 may be applied to obtain a forecaster that has an average regret of the order ofn−1/3

for the converted problem. However, it is easy to see that anyforecasterA with such a bounded
regret for the converted problem may be trivially transformed into a forecasterA′ for the original
problem with the same regret bound:A′ simply takes an actioni wheneverA takes an action of
the formm(i− 1) + k for anyk = 1, . . . ,m.

The above conversion procedure guarantees Hannan consistency for a large class of partial
monitoring problems. For example, if the original problem has a revealing actioni, thenm = M

and theM × M sub-matrix formed by the rowsM(i − 1) + 1, . . . ,Mi of H ′ is the identity
matrix (up to some permutations over the rows), and therefore has full rank. Then obviously a
matrixK ′ with the desired property exists and the procedure described above leads to a forecaster
with an average regret of the order ofn−1/3. This forecaster is similar to the one considered in
Theorem 6.2 in the sense that it may build its predictions only on feedbacks received when playing
the (original) revealing actioni. This is so because the matrixK ′ may be taken equal to[0 L′ 0],
whereL′ lies in the columnsM(i− 1) + 1, . . . ,Mi of K ′.

This last statement may be generalized, in a straightforward way, to an even larger class of
problems as follows.

COROLLARY 6.1 (Distinguishing actions).Assume that the feedback matrixH is such that
for each outcomej = 1, . . . ,M there exists an actioni ∈ {1, . . . ,N} such that for all outcomes
j′ 6= j, h(i, j) 6= h(i, j′). Then the conversion procedure described above leads to a Hannan
consistent forecaster with an average regret of the order ofn−1/3.

The rank ofH ′ may be considered as a measure of the information provided bythe feedback.
The highest possible value is achieved by matricesH ′ with rankM . For such feedback matrices,
Hannan consistency may be achieved for all associated loss matricesL′.

Even though the above conversion strategy applies to a largeclass of problems, the associated
condition fails to characterize the set of pairs(L,H) for which a Hannan consistent forecaster
exists. Thus, for matricesH ′ with rank strictly less thenM , the precise form ofL′ matters. Con-
sider the following two examples, which we already encoded (and simplified by deleting redundant
lines).

EXAMPLE 6.10. Consider an example proposed by Piccolboni and Schindelhauer [PiSc01],
with N = M = 4,

L =




0 1 0 0

1 0 0 0

1 1 0 1

1 1 1 0


 and H =




1 1 1 1

1 1 1 1

1 0 0 0

0 1 0 0


 .

They also consider the modified version given by

Lh =




0 1 0 0

1 0 0 0

1 1 1 1

1 1 1 1


 and Hh =




1 1 1 1

1 1 1 1

1 0 0 0

0 1 0 0


 .

The problem with(Lh,Hh) is more difficult than the one with(L,H) in the following sense.
The losses of actions 3 and 4 increased, but since these are dominated by actions 1 and 2, none
of them will achieve the argmin in the cumulative losses of the constant actions. Therefore, for
all sequences of played actionsI1, I2, . . . and obtained outcomesy1, y2, . . ., the regret of any
forecasting strategy is larger for the problem with(Lh,Hh) than for the problem with(L,H).
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Consequently, any Hannan-consistent strategy for(Lh,Hh) is a Hannan-consistent strategy for
(L,H). Now,

Hh and

[
Hh

Lh

]

have the same rank, and we may therefore construct explicitly a Hannan-consistent strategy with
the above techniques. Note that on the contrary

H and

[
H

L

]

do not have the same ranks.

EXAMPLE 6.11. Consider a case withN = M = 3,

L =




1 0 0

0 1 0

0 0 1


 and H =




1 0 0

1 0 0

1 0 0


 .

In this example, when the second and third actions are chosen, the feedback is identical, inde-
pendently of the outcome, so Hannan consistency is impossible to achieve in this case. (This is
because in this example all three actions may achieve the argmin in the cumulative losses of the
constant actions, for suitable outcome sequences.) However, it is easy to construct a strategy for
which

1

n

(
n∑

t=1

ℓ(It, yt) − min

(
L1,n,

L2,n + L3,n

2

))
= o(1)

with probability 1. Rustichini [Rus99] and Mannor and Shimkin [MaSh03] determine more gen-
erally the asymptotically optimal performance that a strategy can get given the matricesL and
H. This may be in some cases much worse than what the best constant action achieves, that is,
Hannan consistency is not always achievable.

Following the techniques used in Example 6.10, Piccolboni and Schindelhauer [PiSc01] show
a second simple conversion of the pair(L′,H ′) that can be applied in situations when there is
no matrixK′ with the propertyL′ = K ′ L′. This second conversion step basically deals with
some actions which they define as “non-exploitable” and which correspond to Pareto-dominated
actions. These actions are not erased, for they may be associated with worthwhile feedbacks, but
their losses are set to 1 on all outcomes. A third conversion step shifting in a certain sense the
losses associated to exploitable actions follows, and endsup with a matrix pair(L′′,H ′′) such
that any Hannan-consistent forecaster for the problem with(L′′,H ′′) is also Hannan-consistent
for the problem with(L,H). Now, a Hannan consistent procedure may be constructed based on
the forecaster of Section 3, provided thatL′′ may be expressed asL′′ = K ′′H ′′.

In addition, Piccolboni and Schindelhauer show that if thiscondition is not satisfied, then
there exists an external randomization over the sequences of outcomes such that the sequence of
expected regrets grows at least asn, where the expectations are understood with respect to the
forecaster’s auxiliary randomization and the external randomization. (An external randomization
over the outcomes corresponds to the case of an oblivious adversary.) Thus, a proof by contradic-
tion using the dominated-convergence theorem (thanks to the boundedness of the losses) shows
that Hannan consistency is impossible to achieve in these cases. This result combined with Theo-
rem 6.1 implies the following gap theorem (see also Theorem 3of [PiSc01] for a similar, though
weaker, statement, for expected regrets).
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COROLLARY 6.2. Consider a partial monitoring forecasting problem with loss and feedback
matricesL andH . If Hannan consistency can be achieved for this problem, then there exists a
Hannan consistent forecaster based on the results of Section 3 whose average regret vanishes at
raten−1/3.

Thus, whenever it is possible to force the average regret to converge to zero, a convergence
rate of the order ofn−1/3 is also possible. In some special cases, such as the multi-armed bandit
problem, even faster rates of the order ofn−1/2 may be achieved (see Auer, Cesa-Bianchi, Freund,
and Schapire [AuCeFrSc02] and Auer [Aue02]). However, as it is shown in Section 5 below, for
certain problems in which Hannan consistency is achievable, it can only be achieved with rate of
convergence not faster thann−1/3.

OPEN QUESTION 6.1. We still lack a concise (and more intrinsic) characterization of the
problems(L,H) for which an Hannan-consistent forecaster may be constructed. Furthermore,
we also lack a characterization of the problems(L,H) for which convergence rates faster than
n−1/3 may be achieved.

5. A lower bound on the regret

Next we show that the order of magnitude (in terms of the length of the playn) of the bound
of Theorem 6.1 is, in general, not improvable. A closely related idea in a somewhat different
context appears in Mertens, Sorin and Zamir [MeSoZa94, page 290]. They introduce a zero-sum
game, whose first player has full monitoring and whose secondplayer has only partial monitoring.
They compute by induction a lower bound on the minimax value of the game, and are able to
further lower bound it by a quantity of the order ofn−1/3 thanks to repeated applications of the
game-theoretic minimax theorem.

THEOREM 6.3. Consider the partial monitoring problem of label efficient prediction intro-
duced in Example 6.4 and defined by the pair of loss and feedback matrices

L =




1 1

1 0

0 1


 and H =



a b

c c

c c


 .

Then, for anyn > 8 and for any (randomized) forecasting strategy there existsa sequence
y1, . . . , yn of outcomes such that

E

[
1

n

n∑

t=1

ℓ(It, yt)

]
− min
i=1,2,3

1

n

n∑

t=1

ℓ(i, yt) >
n−1/3

5
,

whereE denotes the expectation with respect to the auxiliary randomization of the forecaster.

The proof is inspired by the proof techniques of Section 5 of Chapter 5. Here however, we need
to take into account that the number of asked labels, that is,the number of times when the infor-
mative action is played, may not be limited a priori by a fixed integer. Rather, different outcome
sequences may lead to different numbers of asked labels. We also note, similarly to the com-
ments after the statement of Theorem 5.5, that the proof shows, thanks to the Hoeffding-Azuma
inequality, that the lower bound also holds with high probability with respect to the auxiliary ran-
domization for all forecasters using an auxiliary i.i.d. sequence of random variables to draw their
predictions.

OPEN QUESTION 6.2. (Minimax orders inN andM .) We consider here the minimax problem
restricted to the prediction settings(L,H) where Hannan-consistency is achievable. Theorems 6.3



120 CHAPTER 6. REGRET MINIMIZATION UNDER PARTIAL MONITORING

and Corollary 6.2 show that our general forecaster solves the minimax problem as for the orders
of magnitude inn.

Using the techniques of Section 5 of Chapter 5 (namely Fano’sinequality, see Lemma A.13),
it is easy to extend the theorem above to get a lower bound of the order ofn−1/3(lnN)1/3, by
considering suitable(N + 1) ×N matricesL andH . The latter is the best possible lower bound
for label efficient prediction as a special case of prediction with partial monitoring, in view of the
upper bound obtained in Theorem 6.2. However, the order of magnitude inN of this lower bound
still does not match the one of the bound proposed by Theorem 6.1, as we still lack at least a
factor ofN2/3. We do not know yet if this is because Theorem 6.1 has to be improved, or because
somewhat harder examples have to be found (perhaps by considering some general examples of
prediction with distinguishing actions). However, we favor the second option and conjecture that
in many cases significantly larger lower bounds (as a function ofN ) hold.

In addition, the dependencies ofk∗ onN andM should be studied and made more explicit.
In conclusion, we solve in this section the problem of the minimax order inn but leave open the
delicate issue of the minimax orders inN andM .

OPEN QUESTION 6.3. (Optimal order inn for a given prediction setting.)We recalled in
Sections 4 and 5 of Chapter 2 that the optimal orders of magnitude inn for the regret are

√
n with

full information, and even in a bandit setting. Theorem 6.3 shows that this optimal order isn2/3

for the setting of label efficient prediction. We do not know if there exist orders in between that
are optimal for a certain prediction setting, i.e., for a certain pair(L,H). (See also Question 6.1.)

PROOF. The proof proceeds by constructing a random sequence of outcomes and showing
that, for any (possibly randomized) forecaster, the expected value of the regret with respect both
to the random choice of the outcome sequence and to the forecaster’s random choices is bounded
from below by the claimed quantity.

More precisely, fixn > 8 and denote byU1, . . . , Un the auxiliary randomization which the
forecaster has access to. Without loss of generality, it canbe taken as an i.i.d. sequence of uni-
form random variables in[0, 1]. The underlying probability space is equipped with theσ-algebra
of events generated by the random sequence of outcomesY1, . . . , Yn and by the randomization
U1, . . . , Un. The random sequence of outcomes is independent of the auxiliary randomization,
whose associated probability distribution is denoted byPA.

We define three different probability distributions,P⊗PA, Q⊗PA, andR⊗PA, formed by the
product of the auxiliary randomization and one of the three probability distributionsP, Q, andR

over the sequence of outcomes defined as follows. UnderP the sequenceY1, Y2, . . . , Yn is formed
by independent, identically distributed{1, 2}-valued random variables with parameter1/2. Under
Q (respectivelyR) theYi are also i.i.d. and{1, 2}-valued but with parameter1/2− ε (respectively
1/2 + ε), whereε > 0 is chosen below.

We denote byEA (respectively,EP, EQ, ER, EP⊗PA
, EQ⊗PA

, ER⊗PA
) the expectation with

respect toPA (respectively,P, Q, R, P ⊗ PA, Q ⊗ PA, R ⊗ PA). Obviously,

(6.4) sup
yn
1

(
EA

[
L̂n

]
− min
j=1,2,3

Lj,n

)
> EP

[
EA

[
L̂n

]
− min
j=1,2,3

Lj,n

]
.

Now,

EQ

[
min
j=1,2,3

Lj,n

]
6 min

j=1,2,3
EQ [Lj,n] =

n

2
− nε ,

whereas

EQ

[
L̂n

]
=
n

2
+

1

2
EQ [N1] + εEQ [N3] − εEQ [N2] ,
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whereNj is the random variable denoting the number of times the forecaster chooses the action
j over the sequenceY1, . . . , Yn, given the stateU1, . . . , Un of the auxiliary randomization, for
j = 1, 2, 3. Thus, using Fubini’s theorem,

EQ

[
EA

[
L̂n

]
− min
j=1,2,3

Lj,n

]
>

1

2
EQ⊗PA

[N1] + ε (n− EQ⊗PA
[N2]) .

A similar argument shows that

ER

[
EA

[
L̂n

]
− min
j=1,2,3

Lj,n

]
>

1

2
ER⊗PA

[N1] + ε (n− ER⊗PA
[N3]) .

Averaging the two inequalities we get
(6.5)

EP

[
EA

[
L̂n

]
− min
j=1,2,3

Lj,n

]
>

1

2
EP⊗PA

[N1] + ε

(
n− 1

2
(EQ⊗PA

[N2] + ER⊗PA
[N3])

)
.

Consider first adeterministicforecaster. Denote byT1, . . . , TN1 ∈ {1, . . . , n} the times when the
forecaster chose action1. Since action 1 is revealing, we know the outcomes at these times, and
denote them byZn+1 = (YT1 , . . . , YTN1

). Denote byKt the (random) index of the largest integer
j such thatTj 6 t − 1. Each actionIt of the forecaster is determined by the random vector (of

random length)Zt =
(
Y1, . . . , YTKt

)
. Since the forecaster we consider is deterministic,Kt is

fully determined byZn+1. Hence,It may be seen as a function ofZn+1 rather than a function
of Zt only. This implies that, denoting byPn (respectivelyQn) the distribution ofZn+1 under
P (respectivelyQ), we haveQ [It = 2] = Qn [It = 2] andP [It = 2] = Pn [It = 2]. Pinsker’s
inequality (see Lemma A.6 in the Appendix) then ensures that, for all t,

(6.6) Q [It = 2] 6 P [It = 2] +

√
1

2
K (Pn,Qn) ,

whereK denotes the Kullback-Leibler divergence. The right-hand side may be further bounded
using the following lemma.

LEMMA 6.6. Consider a deterministic forecaster. For0 6 ε 6 1/
√

6,

K (Pn,Qn) 6 6EP [N1] ε
2 .

PROOF. We note thatZn+1 = Zn, except whenIn = 1. In this case,Zn+1 = (Zn, Yn).
Therefore, using the chain rule for relative entropy (see Lemma A.8 in the Appendix), as well as
the first bound of Lemma A.5, we get

K (Pn,Qn) 6 K (Pn−1,Qn−1) + P [In = 1]K
(
B1/2,B1/2−ε

)

6 K (Pn−1,Qn−1) + 6 P [In = 1] ε2 ,

whereBp denotes the Bernoulli distribution with parameterp. We conclude by iterating the argu-
ment. �

Summing (6.6) overt = 1, . . . , n, we have proved that

EQ [N2] 6 EP [N2] + nε
√

3EP [N1] ,

and this holds for any deterministic strategy. (Note that considering a deterministic strategy
amounts to conditioning on the auxiliary randomizationU1, . . . , Un.)

Consider now an arbitrary (possibly randomized) forecaster. Using Fubini’s theorem and
Jensen’s inequality, we get

(6.7) EQ⊗PA
[N2] 6 EP⊗PA

[N2] + nε
√

3EP⊗PA
[N1] .
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Symmetrically,

(6.8) ER⊗PA
[N3] 6 EP⊗PA

[N3] + nε
√

3EP⊗PA
[N1] .

UsingEP⊗PA
[N2] + EP⊗PA

[N3] 6 n, and substituting (6.7) and (6.8) into (6.5) yield

(6.9) EP

[
EA

[
L̂n

]
− min
j=1,2,3

Lj,n

]
>

1

2
m0 + nε

(
1

2
− ε

√
3m0

)
,

wherem0 denotesEP⊗PA
[N1]. If m0 6 1/8 then forε = 1/

√
6 the right-hand side of (6.9)

is at leastn/10, which is greater thann2/3/5 for n > 8. Otherwise, ifm0 > 1/8, we set
ε =

(
4
√

3m0

)−1
, which still satisfies0 6 ε 6 1/

√
6. The lower bound then becomes

EP

[
EA

[
L̂n

]
− min
j=1,2,3

Lj,n

]
>

1

2
m0 +

n

16
√

3m0

and the right-hand side may be seen to be always bigger thann2/3/5. An application of (6.4)
concludes the proof. �

6. Internal regret

In this section we deal with the stronger notion of swap regret, see Chapter 3. For simplic-
ity, we no longer distinguish between swap and internal regret, and refer to the former by the
latter. We briefly recall that internal regret is concerned with consistent modifications of the fore-
casting strategy. Each of these possible modifications is parameterized by a departure function
Φ : {1, . . . , N} → {1, . . . , N}. After roundn, the cumulative loss of the forecaster is compared
to the cumulative loss that would have been accumulated had the forecaster chosen actionΦ(It)

instead of actionIt at roundt, t = 1, . . . , n. If such a consistent modification does not result in
a much smaller accumulated loss, then the strategy is said tohave small internal regret. Formally,
we seek strategies achieving

1

n

n∑

t=1

ℓ(It, yt) −
1

n
min

Φ

n∑

t=1

ℓ(Φ(It), yt) = o(1) with probability1 ,

where the minimization is over all possible functionsΦ. Such strategies are called Hannan consis-
tent for the internal regret.

We recalled in Chapter 3 some internal regret minimizing strategies for the full-information
case, and indicated how to extend them to the multi-armed bandit setting. We design here such
a procedure in the setting of partial monitoring. The key tool is the conversion trick described
in Sections 1.2 and 1.4 of Chapter 3 (see also Blum and Mansour[BlMa05], for a related proce-
dure, which is however by far less convenient in an incomplete information setting). This trick
converts external regret minimizing strategies into internal regret minimizing strategies, under full
information, as well as in multi-armed bandit settings.

We extend it here to prediction under partial monitoring as follows. The forecaster we use is
the one of Section 1.4, run however with new parametersγt, ηt, and new estimates of the losses.
The parametersηt andγt used below are tuned as in Section 3, and we consider the loss estimates
ℓ̃(i, yt) defined in (6.2).

REMARK 6.5. Just like for the multi-armed bandit setting, the conversion trick of Section 1.2
of Chapter 3 does not apply directly to prediction under partial monitoring and has to be extended
because of the shifting we perform on the probability distribution computed with the estimated
losses (see step (2) in Figure 1, and similarly, (3.7)). We did not need such a shifting when
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designing our label efficient forecasters, and consequently, the conversion was straightforward in
that setting, see Remark 5.3.

THEOREM 6.4. Consider any partial monitoring problem such that the loss and feedback
matrices satisfyL = K H for someN ×N matrix K with k∗ = max{1, maxi,j |k(i, j)|}, and
consider the forecaster described above. Letδ ∈ (0, 1). Then, for alln, with probability at least
1 − δ, the cumulative internal regret is bounded as

1

n

n∑

t=1

ℓ(It, yt) − min
Φ

1

n

n∑

t=1

ℓ(Φ(It), yt)

6 9

(
(k∗)2N5 lnN

n

)1/3
(

1 +

√
3

2

ln(2N2)/δ)

lnN

)

+N

√
1

2n
ln

2N2

δ
+ 4(k∗N)4/3n−2/3(lnN)−1/3 ln

2N2

δ

+
1

n

(
2N + ((k∗N)2 lnN)1/3 + k∗N

)
ln

2N2

δ

where the minimum is taken over all functionsΦ : {1, . . . ,N} → {1, . . . ,N}.

Note that with the help of Borel-Cantelli lemma, Theorem 6.4shows that, under the same
conditions onL andH , the forecaster decribed above achieves Hannan consistency with respect
to internal regret. Consequently, recalling that a small internal regret also implies a small external
regret, we may see that the discussion before Corollary 6.2 indicates that for a given prediction
problem(L,H), Hannan-consistency with respect to external regret can beachieved if and only
if it can be achieved with respect to internal regret.

PROOF. First observe that it suffices to consider departure functions Φ that differ from the
identity function in only one point of their domain. This follows simply from

n∑

t=1

ℓ(It, yt) − min
Φ

n∑

t=1

ℓ(Φ(It), yt) 6 N

(
max
i6=j

n∑

t=1

IIt=i (ℓ(i, yt) − ℓ(j, yt))

)
.

We now bound the right-hand side of the latter inequality.
For a givent, the estimated losses̃ℓ(pi→j

t , yt), i 6= j, fall in the interval[−k∗N/γt, k∗N/γt].
Sinceγt andηt are tuned as in Theorem 6.1,k∗Nηt/γt 6 1, and we may apply Lemmas 4.3 and
4.5 to derive

n∑

t=1

∑

i6=j

ui→j
t ℓ̃(pi→j

t , yt) − min
i6=j

n∑

t=1

ℓ̃(pi→j
t , yt)

6
2 lnN(N − 1)

ηn+1
+

n∑

t=1

ηt
∑

i6=j

ui→j
t

(
ℓ̃(pi→j

t , yt)
)2

.

We then proceed as in the proof of Theorem 3.2, and get exactly(3.9),

max
i6=j

n∑

t=1

pi,t

(
ℓ̃(i, yt) − ℓ̃(j, yt)

)
(6.10)

6
4 lnN

ηn+1
+

n∑

t=1

ηt
∑

i6=j

ui→j
t

(
ℓ̃(pi→j

t , yt)
)2

+

n∑

t=1

γt
N

∑

i6=j

ui→j
t

(
ℓ̃(i, yt) − ℓ̃(j, yt)

)
.



124 CHAPTER 6. REGRET MINIMIZATION UNDER PARTIAL MONITORING

Now, we apply Bernstein’s inequality (Lemma A.4) several times again and mimic the proofs of
Lemmas 6.1 and 6.2. For all pairsi 6= j, with probability at least1 − δ/(2N(N − 1) + 2),

(6.11)
n∑

t=1

pi,t

(
ℓ̃(i, yt) − ℓ̃(j, yt)

)
>

n∑

t=1

pi,t (ℓ(i, yt) − ℓ(j, yt))

−




√√√√4(k∗N)2

(
n∑

t=1

1

γt

)
ln

2N(N − 1) + 2

δ
+

2
√

2

3

(
1 +

k∗N

γn

)
ln

2N(N − 1) + 2

δ


 .

Similarly to Lemma 6.3, we also have, with probability at least 1 − δ/(2N(N − 1) + 2),

(6.12)
n∑

t=1

ηt
∑

i6=j

ui→j
t

(
ℓ̃(pi→j

t , yt)
)2

6

n∑

t=1

ηt
(k∗N)2

γt

+

√√√√2(k∗N)4

(
n∑

t=1

η2
t

γ3
t

)
ln

2N(N − 1) + 2

δ
+

√
2

3
ln

2N(N − 1) + 2

δ

whereas, similarly to Lemma 6.4, with probability at least1 − δ/(2N(N − 1) + 2),

(6.13)
n∑

t=1

γt
N

∑

i6=j

ui→j
t

(
ℓ̃(i, yt) − ℓ̃(j, yt)

)
6

1

N

n∑

t=1

γt

+

√√√√4(k∗)2

(
n∑

t=1

γt

)
ln

2N(N − 1) + 2

δ
+

√
2

3

(
k∗ +

γ1

N

)
ln

2N(N − 1) + 2

δ
.

We then use the Hoeffding-Azuma inequality (see Lemma A.2)N(N − 1) times to show that for
every pairi 6= j, with probability at least1 − δ/(2N(N − 1) + 2),

(6.14)
n∑

t=1

pi,t (ℓ(i, yt) − ℓ(j, yt)) >

n∑

t=1

IIt=i (ℓ(i, yt) − ℓ(j, yt)) −
√

2n ln
N(N − 1) + 3

δ
.

Finally, we substitute inequalities (6.11)–(6.14) into (6.10) and use a union-of-event bound to
obtain that, with probability at least1 − δ,

max
i6=j

n∑

t=1

IIt=i (ℓ(i, yt) − ℓ(j, yt))

6
4 lnN

ηn+1

+

√√√√4(k∗N)2

(
n∑

t=1

1

γt

)
ln

1

δ′
+

2
√

2

3

(
1 +

k∗N

γn

)
ln

1

δ′

+

n∑

t=1

ηt
(k∗N)2

γt
+

√√√√2(k∗N)4

(
n∑

t=1

η2
t

γ3
t

)
ln

1

δ′
+

√
2

3
ln

1

δ′

+
1

N

n∑

t=1

γt +

√√√√4(k∗)2

(
n∑

t=1

γt

)
ln

1

δ′
+

√
2

3

(
k∗ +

γ1

N

)
ln

1

δ′

+

√
2n ln

1

δ′
,
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where we used the notationδ′ = δ/(2N(N − 1) + 2), with δ′ > δ/(2N2) whenN > 2. The
proof is now concluded as that of Theorem 6.1. �

7. Random feedback

Several authors consider an extended setup in which the feedbacks are random variables. See
Rustichini [Rus99], Mannor and Shimkin [MaSh03], Weissman and Merhav [WeMe01], Weiss-
man, Merhav and Somekh-Baruch [WeMeSo01] for examples. In this section we briefly point out
that most of the results of this chapter extend effortlesslyto this more general case.

To describe the model, denote by∆(S) the set of all probability distributions over the set of
signalsS. The signaling structure is formed by a collection ofNM probability distributionsµ(i,j)

overS, for i = 1, . . . , N andj = 1, . . . ,M . At each round, the forecaster now observes a random
variableH(It, yt), drawn independently from all the other random variables, with distribution
µ(It,yt). More precisely, we assume without loss of generality thatH(It, yt) is a function ofµ(It,yt)

andVt, where(V1, V2, . . .) is an i.i.d. sequence of random variables with uniform law over [0, 1],
independent of all the other random variables. This sequence is called the external randomization.
All expectations and probabilities here are understood with respect to the probability space formed
by the product of the external randomization and the forecaster’s randomization.

We may easily generalize the results of Theorems 6.1 and 6.4 to the case of random feedbacks.
As above, each element ofS is encoded by a real number in[−1, 1]. Let E be theN ×M matrix
whose elements are given by the expectations of the random variablesH(i, j). Theorems 6.1
and 6.4 remain true under the condition that there exists a matrix K such thatL = K E. The
only necessary modification is how the losses are estimated.Here the forecaster uses the estimates

ℓ̆(i, yt) =
k(i, It)H(It, yt)

pIt,t
i = 1, . . . ,N

instead of the estimates defined in Section 3. Conditioned onI1, . . . , It−1, the expectation of
ℓ̆(i, yt) is the lossℓ(i, yt). Since this, together with boundedness, are the only conditions that were
needed in the proofs, the extension of the results to this more general framework is immediate.

The results of Section 4 may be generalized to the case of random feedbacks as well. For
example, to constructH ′ whenH is a matrix of probability distributions overS, we proceed as
follows: for 1 6 i 6 N ands ∈ S, denote byH(i,s) the row vector of elements in[0, 1], such that
thek-th element ofH(i,s) is µ(i,k)(s). Now, the((k1 − 1)m + k2)-th row of H ′, 1 6 k1 6 N ,
1 6 k2 6 m, isH(k1,sk2

). All the other details of the construction and the proofs go through.
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CHAPTER 7

Internal regret in on-line portfolio selection

This chapter extends the game-theoretic notion of internalregret to the case of on-line potfolio
selection problems. New sequential investment strategiesare designed to minimize the cumulative
internal regret for all possible market behaviors. Some of the introduced strategies, apart from
achieving a small internal regret, achieve an accumulated wealth almost as large as that of the
best constantly rebalanced portfolio. It is argued that thelow-internal-regret property is related to
stability and experiments on real stock exchange data demonstrate that the new strategies achieve
better returns compared to some known algorithms.
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1. Introduction

The problem of sequential portfolio allocation is well-known to be closely related to the on-
line prediction of individual sequences under expert advice, see, for example, [Cov91], [CoOr96],
[HeScSiWa98], [OrCo98], [BlKa99], [CeLu00]. The goal in the sequential investment problem
is to distribute one’s capital in each trading period among acertain number of stocks such that the
total achieved wealth is almost as large as the wealth of the largest in a certain class of investment
strategies. This problem, known as the minimization of the worst-case logarithmic wealth ratio,
is easily seen to be the generalization of an external regretminimization problem in the “expert”
setting under the logarithmic loss function. The main purpose of this chapter is to extend the notion
of internal regret to the sequential investment problem, understand its relationship to the worst-case
logarithmic wealth ratio, and design investment strategies minimizing this new notion of regret.
The definition of internal regret given here has a natural interpretation and the investment strategies
designed to minimize it have several desirable properties both in theory and in the experimental
study described in the Appendix.

This chapter is organized as follows. In Section 2 the sequential portfolio selection problem is
described, and basic properties of Cover’s universal portfolio and theEG investment strategy are
discussed. In Section 3 we introduce the notion of internal regret for sequential portfolio selection,
and describe some basic properties. In Section 4 new investment strategies are presented aiming
at the minimization of the internal regret (and these strategies are further investigated in Section
6). In Section 5 the notion of internal regret is generalizedfor an uncountable class of investment
strategies and an algorithm inspired by Cover’s universal portfolio is proposed which minimizes
the new notion of internal regret. Section 7 explains the modifications needed for the algorithms
of Section 5 to be competitive in a market with transaction costs.

2. Sequential portfolio selection

In this section we describe the problem of sequential portfolio selection, recall some previous
results, and take a new look at theEG strategy of [HeScSiWa98].

A market vectorx = (x1, . . . , xN ) for N assets is a vector of nonnegative numbers repre-
senting price relatives for a given trading period. In otherwords, the quantityxi > 0 denotes
the ratio of closing to opening price of thei-th asset for that period. Hence, an initial wealth
invested in theN assets according to fractionsQ1, . . . , QN multiplies by a factor of

∑N
i=1 xiQi

at the end of period. The market behavior duringn trading periods is represented by a sequence
xn1 = (x1, . . . ,xn) of market vectors.xj,t, thej-th component ofxt, denotes the factor by which
the wealth invested in assetj increases in thet-th period. We denote the probability simplex in
RN by X .

An investment strategyQ for n trading periods consists in a sequenceQ1, . . . ,Qn of vector-
valued functionsQt : (RN

+ )t−1 → X , where thei-th componentQi,t(x
t−1
1 ) of the vectorQt(x

t−1
1 )

denotes the fraction of the current wealth invested in thei-th asset at the beginning of thet-th pe-
riod based on the past market behaviorxt−1

1 . We use

Sn(Q,x
n
1 ) =

n∏

t=1

(
N∑

i=1

xi,tQi,t(x
t−1
1 )

)

to denote the wealth factor of strategyQ aftern trading periods, and often omit the dependency in
Q andxn1 whenever both are understood. In this case, we simply writeSn to refer toSn(Q,xn1 ).

The simplest examples of investment strategies are the so called buy-and-holdstrategies. A
buy-and-hold strategy simply distributes its initial wealth among theN assets according to some
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distributionQ1 ∈ X before the first trading period, and does not trade anymore, which amounts
to investing, at dayt and for1 6 i 6 N , as

Qi,t(x
t−1
1 ) =

Qi,1
∏t−1
s=1 xi,s∑N

k=1Qk,1
∏t−1
s=1 xk,s

.

The wealth factor of such a strategy, aftern periods, is simply

Sn(Q,x
n
1 ) =

N∑

j=1

Qj,1Sn(j) ,

where

Sn(j) =
n∏

t=1

xj,t

is the accumulated wealth of stockj. Clearly, the wealth factor of any buy-and-hold strategy is
at most as large as the gainmaxj=1,...,N Sn(j) of the best stock over the investment period, and
achieves this maximal wealth ifQ1 concentrates on the best stock.

Another simple and important class of investment strategies is the class ofconstantly rebal-
anced portfolios. Such a strategyB is parametrized by a probability vectorB = (B1, . . . , BN ) ∈
X , and simplyQt(x

t−1
1 ) = B regardless oft and the past market behaviorxt−1

1 . Thus, an investor
following such a strategy rebalances, at every trading period, his current wealth according to the
distributionB by investing a proportionB1 of his wealth in the first stock, a proportionB2 in the
second stock, etc. The wealth factor achieved aftern trading periods is

Sn(B,xn1 ) =

n∏

t=1

(
N∑

i=1

xi,tBi

)
.

In [CoTh91], it is shown that the constantly rebalanced portfolios arethe optimal investment
strategies in an i.i.d. market.

Now given a classQ of investment strategies, we define theworst-case logarithmic wealth
ratio of strategyP by

Wn(P,Q) = sup
xn

1

sup
Q∈Q

ln
Sn(Q,x

n
1 )

Sn(P,xn1 )
.

The worst-case logarithmic wealth ratio is the analog of theexternal regret in the sequential portfo-
lio selection problem.Wn(P,Q) = o(n) means that the investment strategyP achieves the same
exponent of growth as the best reference strategy in the classQ for all possible market behaviors.

For example, it is immediate to see that ifQ is the class of all buy-and-hold strategies, then ifP

is chosen to be the buy-and-hold strategy based on the uniform distributionQ1, thenWn(P,Q) 6

lnN .
The class of constantly rebalanced portfolios is significantly richer and achieving a small

worst-case logarithmic wealth ratio is a greater challenge. Cover’suniversal portfolio[Cov91]
was the first example to achieve this goal. The universal portfolio strategyP is defined by

Pj,t(x
t−1
1 ) =

∫
X BjSt−1(B,xt−1

1 )φ(B) dB∫
X St−1(B,xt−1

1 )φ(B) dB
, j = 1, . . . ,N, t = 1, . . . , n

whereφ is a density function onX . In the simplest caseφ is the uniform density overX . In
that case, the worst-case logarithmic wealth ratio ofP with respect to the classQ of all universal
portfolios satisfies

Wn(P,Q) 6 (N − 1) ln(n+ 1) .
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If the universal portfolio is defined using the Dirichlet(1/2, . . . , 1/2) densityφ, then the bound
improves to

Wn(P,Q) 6
N − 1

2
lnn+ ln

Γ(1/2)N

Γ(N/2)
+
N − 1

2
ln 2 + o(1) ,

see [CoOr96]. The worst-case performance of the universal portfolio isbasically unimprovable
(see [OrCo98]) but it has some practical disadvantages, including computational difficulties for
not very small values ofN . [HeScSiWa98] suggest theirEG strategy to overcome these difficul-
ties.

TheEG strategy is defined by

(7.1) Pi,t+1 =
Pi,t exp (ηxi,t/P t · xt)∑N
j=1 Pj,t exp (ηxj,t/P t · xt)

.

[HeScSiWa98] prove that if the market valuesxi,t all fall between the positive constantsm and
M , then the worst-case logarithmic wealth ratio of theEG investment strategy is bounded by

lnN

η
+
nη

8

M2

m2
=
M

m

√
n

2
lnN ,

where the equality holds for the choiceη = (m/M)
√

(8 lnN)/n. Here we give a simple new
proof of this result, mostly because the main idea is at the basis of other arguments that follow.
Recall that the worst-case logarithmic wealth ratio is

max
xn

1

max
B∈X

ln

∏n
t=1 B · xt∏n
t=1 P t · xt

where in this case the first maximum is taken over market sequences satisfying the boundedness
assumption. By using the elementary inequalityln(1 + u) 6 u, we obtain

ln

∏n
t=1 B · xt∏n
t=1 P t · xt

=

n∑

t=1

ln

(
1 +

(B − P t) · xt
P t · xt

)

6

n∑

t=1

N∑

i=1

(Bi − Pi,t)xi,t
P t · xt

=
n∑

t=1




N∑

j=1

N∑

i=1

Pi,t
Bjxj,t
P t · xt

−
N∑

i=1

N∑

j=1

Bj
Pi,txi,t
P t · xt




=
N∑

j=1

Bj

(
n∑

t=1

N∑

i=1

Pi,t

(
xj,t

P t · xt
− xi,t

P t · xt

))
.(7.2)

Under the boundedness assumption0 < m 6 xi,t 6 M , the quantities

ℓi,t = M/m− xi,t/(P t · xt)
are within [0,M/m] and can therefore be interpreted as bounded loss functions.Thus, the min-
imization of the above upper bound on the worst-case logarithmic wealth ratio may be cast as a
sequential prediction problem as described in Chapter 2. Observing that theEG investment algo-
rithm is just the exponentially weighted average predictorfor this prediction problem, and using
the performance bound of Theorem 2.1 we obtain the cited inequality of [HeScSiWa98].

Note that in (7.1), we could replace the fixedη by a time-adaptiveηt = (m/M)
√

(8 lnN)/t.
Applying Theorem 2.3 to the linear upper bound (7.2), we may prove that this still leads to a
worst-case logarithmic wealth ratio less than something ofthe order of(M/m)

√
n lnN .
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REMARK 7.1. (Sub-optimality of theEG investment strategy.)Using the approach of bounding
the worst-case logarithmic wealth ratio linearly as above is inevitably suboptimal. Indeed, the
right-hand side of the linear upper bounding

N∑

j=1

Bj

(
n∑

t=1

(
N∑

i=1

Pi,tℓi,t

)
− ℓj,t

)
=

N∑

j=1

Bj

N∑

i=1

(
n∑

t=1

Pi,t (ℓi,t − ℓj,t)

)

is maximized for a constantly rebalanced portfolioB lying in a corner of the simplexX , whereas
the left-hand side is concave inB and therefore is possibly maximized in the interior of the sim-
plex. Thus, no algorithm trying to minimize (in a worst-casesense) the linear upper bound on the
external regret can be minimax optimal. However, as it is shown in [HeScSiWa98], on real data
good performance may be achieved.

Note also that the bound obtained for the worst-case logarithmic wealth ratio of theEG strat-
egy grows as

√
n whereas that of Cover’s universal portfolio has only a logarithmic growth. In

[HeScSiWa98] it is asked whether the suboptimal bound for theEG strategy is an artifact of the
analysis or it is inherent in the algorithm. The next simple example shows that no bound of a
smaller order than

√
n holds. Consider a market with two assets and market vectorsxt = (1, 1−ε),

for all t. Then every wealth allocationP t satisfies1 − ε 6 P t · xt 6 1. Now, the best constantly
rebalanced portfolio is clearly(1, 0), and the worst-case logarithmic wealth ratio is simply

n∑

t=1

ln
1

1 − P2,tε
>

n∑

t=1

P2,tε .

In the case of theEG strategy,

P2,t =
exp

(
η
∑t−1

s=1
(1−ε)
P s·xs

)

exp
(
η
∑t−1

s=1
1

P s·xs

)
+ exp

(
η
∑t−1

s=1
(1−ε)
P s·xs

)

=
exp

(
−ηε

∑t−1
s=1

1
P s·xs

)

1 + exp
(
−ηε∑t−1

s=1
1

P s·xs

)

>
exp (−η (ε/(1 − ε)) (t− 1))

2
.

Thus, the logarithmic wealth ratio of theEG algorithm is lower bounded by
n∑

t=1

ε
exp (−η (ε/(1 − ε)) (t− 1))

2
=

ε

2

1 − exp (−η (ε/(1 − ε))n)

1 − exp (−η (ε/(1 − ε)))

=
1

2

√
n

8 lnN
+ o(

√
n) .

3. Internal regret of investment strategies

The aim of this section is to introduce the notion of internalregret to the sequential investment
problem. In the latter, the loss function we consider is defined byℓ′(Q,x) = − ln (Q · x) for a
portfolio Q and a market vectorx. This is no longer a linear function ofQ (as this was the case,
for instance, in Chapters 2 and 4 for the expected loss of the predictor in the setting of randomized
prediction under expert advice).

Recall that in the framework of sequential prediction described in Chapter 3, the cumulative
internal regretR(i,j),n for the pair of experts(i, j) may be interpreted as how much the predictor
would have gained, had he replaced all valuesPi,t (t 6 n) by zero and all valuesPj,t byPi,t+Pj,t.
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Analogously, given an investment strategyP = (P 1,P 2, . . .), we may define theinternal regret
of P with respect to the pair of assets(i, j) at dayt (where1 6 i, j 6 N ) by

r̃(i,j),t = ℓ′(P t,xt) − ℓ′(P i→j
t ,xt) = ln

P
i→j
t · xt
P t · xt

where the probability vectorP i→j
t is defined such that itsi-th component equals zero, itsj-th

component equalsPj,t + Pi,t, and all other components are equal to those ofP t. r̃(i,j),t expresses
the regret the investor using strategyP suffers after trading dayt of not having invested all the
capital he invested in stocki in stockj instead. Thecumulative internal regret ofP with respect
to the pair(i, j) aftern trading periods is simply

R̃(i,j),n =

n∑

t=1

r̃(i,j),n .

This notion of internal regret in on-line portfolio selection may be seen as a special case of the
definition of internal regret for general loss functions proposed in Chapter 8, with the class of de-
parture functions given by those functions that move all probability mass from a given component
to another one. In Section 5.2, we study internal regret withrespect to a much larger class, whose
size is of the power of the continuum. It is a desirable property of an investment strategy that its
cumulative internal regret grows sub-linearly for all possible pairs of assets, independently of the
market outcomes. Indeed, otherwise the owners of the portfolio could exhibit simple1 modifica-
tions of the betting strategy which would have led to exponentially larger wealth. In this sense, the
notion of internal regret is a measure of the efficiency of thestrategy: the aim of the broker is not
that the owner of the portfolio gets rich, but that he cannot criticize easily the chosen strategy. Note
that the worst-case logarithmic wealth ratio corresponds to the case when the owner compares his
achieved wealths to those obtained by others who have different brokers. Based on this, we define
the internal regretof the investment strategyP by

R̃n = max
16i,j6N

R̃(i,j),n

and ask whether it is possible to guarantee thatR̃n = o(n) for all possible market sequences.
Thus, an investor using a strategy with a small internal regret is guaranteed that for any pair of
stocks the total regret of not investing in one stock insteadof the other becomes negligible. (Note
that in Section 5.2 we introduce a richer class of possible departures from the original investment
strategies.)

The next two examples show that it is not trivial to achieve a small internal regret. Indeed,
the buy-and-hold andEG investment strategies have linearly increasing internal regret for some
bounded market sequences. (We do not know whether Cover’s [Cov91] universal portfolio suffers
from this drawback or not, but guess it does so.)

EXAMPLE 7.1. (Buy-and-hold strategies may have large internal regret.)Consider a market
with N = 3 assets which evolves according to the following repeated scheme:

(1 − ε, ε, ε), (ε, 1 − ε, 1 − ε), (1 − ε, ε, ε), (ε, 1 − ε, 1 − ε), . . .

whereε < 1 is a fixed positive number.

1We assume here that the broker’s customers only think of simple modifications, such as putting all the wealth from
one stock to another one.
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The buy-and-hold strategy, which distributes its initial wealth uniformly among the assets invests,
at oddt’s, with

P t =

(
1

3
,
1

3
,
1

3

)
, so thatP 2→1

t =

(
2

3
, 0,

1

3

)
,

and at event’s, with

P t =

(
1 − ε

1 + ε
,

ε

1 + ε
,

ε

1 + ε

)
, so thatP 2→1

t =

(
1

1 + ε
, 0,

ε

1 + ε

)
.

Straightforward calculation now shows that for an evenn, the cumulative internal regret̃R(2,1),n

of this strategy equals
n

2

(
ln

(2 − ε)2

3(1 − ε)(1 + ε)

)
,

showing that even for bounded markets, the naive buy-and-hold strategy may incur a large internal
regret. Later we will see a generalization of buy-and-hold with small internal regret.

EXAMPLE 7.2. (TheEG strategy may have large internal regret.)The next example, showing
that for some market sequence theEG algorithm of [HeScSiWa98] has a linearly growing internal
regret, is inspired by Example 3.1 above. Consider a market of three stocksA, B, andC. Divide
then trading periods into three different regimes of lengthsn1, n2, andn3. The wealth ratios
(which are constant in each regime) are summarized in Table 1. We show that it is possible to set

Regimes xA,t xB,t xC,t

1 6 t 6 T1 = n1 2 1 0.5

T1 + 1 6 t 6 T2 = n1 + n2 1 2 0.5

T2 + 1 6 t 6 T3 = n 1 2 2.05

TABLE 1. The market vectors for Example 7.2.

n1, n2, andn3 in such a way that the cumulative internal regretR(B,C),n is lower bounded by a
positive constant timesn for n sufficiently large.

The internal regret ofB versusC can be lower bounded by using the inequalityln(1+u) 6 u:
n∑

t=1

ln
QB→C
t · xt
Qt · xt

>

n∑

t=1

QB,t

(
xC,t

QB→C
t · xt

− xB,t

QB→C
t · xt

)
,

where the difference in the parenthesis is larger than−1 in the first regime,−3 in the second one
and0.05/2.05 in the third one. It suffices now to estimateQB,t:

(7.3) QB,t =
eηGB,t

eηGA,t + eηGB,t + eηGC,t
,

where

η = 4.1

√
8 ln 3

n
=̂

1

Cη
√
n

and GB,t =
t∑

s=1

xB,s
Qs · xs

(and similarly for the two other stocks).
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We taken1 = dn, whered > 0 will be determined later. In the first regime, a sufficient
condition forQB,t 6 ε is thateηGB,t/eηGA,t 6 ε, which can be ensured by

GA,t −GB,t =
t∑

s=1

1

Qs · xs
>

− ln ε

η
,

which is implied, sinceQs · xs 6 2, by

t > t0 = 2Cη (− ln ε)
√
n.

In the second regime, theQB,t’s increase. LetT2 denote the first time instantt whenQB,t >

1/2, and denote byn2 = T2 − T1 the length of this second regime. Now, it is easy to see that
n2 > n1/4 andn2 6 4n1 + (2 ln 2)Cη

√
n 6 5dn, for n sufficiently large. Moreover, the number

of times thatQB,t is larger thanε in this regime is less than

Cη

(
ln

(
2
1 − ε

ε

))√
n.

At the beginning of the third regime, we then haveQB,t > 1/2, which means thatGA,t 6 GB,t
andGC,t 6 GB,t. The first inequality remains true during the whole regime and we setn3 such
that the second one also remains true. This will imply thatQB,t > 1/3 during the third regime.
Now by the bounds onQs · xs in the different regimes, a sufficient condition onn3 is

0.05n3 6
n1

4
+

3n2

4
,

which, recalling the lower boundn2 > n1/4, is implied by

n3 6
35

4
dn.

It remains to set the value ofd. We have to ensure thatn3 is not larger than35dn/4 and that
it is larger thanγn, whereγ is a universal constant denoting the fraction of time spent in the third
regime. That is, we have to findd andγ such that

{
d+ 5d+ γ 6 1

d+ 1
4d+ 35

4 d > 1 ,

where we usedn1/n+n2/n+n3/n = 1 and the various bounds and constraints described above.
γ = 1/7 andd = 1/7 are adequate choices.

Summarizing, we have proved the following lower bound on theinternal regret
n∑

t=1

ln
QB→C
t · xt
Qt · xt

>
1

3
γ

0.05

2.05
n− ε (3(1 − γ))n+ Ω

(
(− ln ε)

√
n
)
,

and the proof that theEG strategy has a large internal regret is concluded by choosing ε > 0 small
enough (for instance,ε = 1/5000).

REMARK 7.2. A mixture in the buy-and-hold sense of no-internal-regret investment strategies
is still a no-internal-regret minimizing strategy. Its internal regret is less than the maximum of the
internal regrets of the original strategies.

4. Investment strategies with small internal regret

The investment algorithm introduced in the next section hasthe surprising property that, apart
from a guaranteed sublinear internal regret, it also achieves a sublinear worst-case logarithmic
wealth ratio not only with respect to the class of buy-and-hold strategies, but also with respect to
the class of all constantly rebalanced portfolios.
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4.1. A strategy with small internal and external regrets. The investment strategy intro-
duced in this section – which we callB1EXP – is based on the same kind of linear upper bound on
the internal regret as the one that was used in our proof of theperformance of theEG strategy in
Section 2. This strategy may be seen as the algorithm that results from an application of the con-
version trick explained in Section 1.2 of Chapter 3 to theEG strategy. However, this only proves
the no-internal-regret property. Since the worst-case logarithmic wealth ratio is also minimized,
we provide a detailed analysis below.

The same argument as for theEG strategy may be used to upper bound the cumulative internal
regret as

R̃(i,j),n =

n∑

t=1

ln
(
P
i→j
t · xt

)
− ln (P t · xt)

6

n∑

t=1

Pi,t

(
xj,t

P t · xt
− xi,t

P t · xt

)
.

Introducing again

ℓi,t = − xi,t
P t · xt

,

we may use the internal-regret minimizing prediction algorithm of Section 1.2 of Chapter 3. For
simplicity, we use exponential weighting. This definition,of course, requires the boundedness of
the values ofℓi,t. This may be guaranteed by the same assumption as in the analysis of theEG

investment strategy, that is, by assuming that the returnsxi,t all fall in the interval[m,M ] where
m < M are positive constants. Then the internal regret of the algorithm B1EXP may be bounded
by the result of Theorem 3.1. An important additional property of the algorithm is that its worst-
case logarithmic wealth ratio, with respect to the class of all constantly rebalanced portfolios, may
be bounded similarly as that of theEG algorithm. These main properties are summarized in the
following theorem.

THEOREM 7.1. Assume thatm 6 xi,t 6 M for all 1 6 i 6 N and 1 6 t 6 n. Then the
cumulative internal regret of theB1EXP strategyP over such bounded market evolutions is less
than

R̃n 6
lnN(N − 1)

η
+
nη

8

M2

m2
=
M

m

√
n lnN ,

where we setη = 4(m/M)
√

(lnN)/n. In addition, ifQ denotes the class of all constantly rebal-
anced portfolios, then the worst-case logarithmic wealth ratio (restricted to all those sequences of
market vectors bounded betweenm andM ) of P is less than

Wn(P,Q) 6 N
M

m

√
n lnN .

PROOF. The bound for the internal regret̃Rn follows from the linear upper bound described
above and Theorem 3.1.

To bound the worst-case logarithmic wealth ratioWn(P,Q), recall that by inequality (7.2),
for any constantly rebalanced portfolioB,

Wn(P,Q) 6

N∑

j=1

Bj

N∑

i=1

(
n∑

t=1

Pi,t (ℓi,t − ℓj,t)

)

6 N max
16i,j6N

n∑

t=1

Pi,t

(
xj,t

P t · xt
− xi,t

P t · xt

)
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which is not larger thanN times the upper bound obtained on the cumulative internal regret R̃n
which completes the proof. �

REMARK 7.3. The computation of the investment strategy requires the inversion of anN ×N
matrix at each trading period (see Lemma 3.1). This is quite feasible even for large markets in
whichN may be as large as about100.

REMARK 7.4. Recalling Section 1.2 of Chapter 3 we observe that theB1EXP strategy may be
considered as an instance of the exponentially weighted average predictor, which uses the fictitious
strategiesP i→j

t as experts. Thus, instead of considering single stocks, asEG, B1EXP considers
pairs of stocks and their relative behaviors. This may explain the greater stability observed on real
data (see the Appendix).

REMARK 7.5. Just like in the case of the sequential prediction problem, exponential weighting
may be replaced by others such as polynomial weighting. In that case Theorem 3.1 shows that the
cumulative internal regret is bounded byMm

√
n(p− 1)N2/p which is approximately optimized by

the choicep = 4 lnN . We call this investment strategyB1POL. Even though this strategy has
comparable theoretical guarantees to those ofB1EXP, our experiments show a clear superiority of
the use of exponential weighting. This and other practical issues are discussed in the Appendix.

REMARK 7.6. Similarly toEG, the strategyB1EXP requires the knowledge of the time horizon
n and the ratioM/m of the bounds assumed on the market. This first disadvantage may be avoided
by either using the well-known “doubling trick” or considering a time-varying value ofη and
applying the second bound of Theorem 3.1. Both methods lead to internal regret and worst-case
logarithmic wealth ratios bounded by quantities of the order of

√
n. To deal with the boundedness

assumption however, we need more sophisticated techniquesintroduced in [HeScSiWa98], see
Section 6.2.

4.2. Another strategy with small internal regret. In this section we introduce a new algo-
rithm, calledB2POL. We use polynomial weighting and assume bounded market evolutions. The
Blackwell condition (3.3) is sufficient to ensure the property of small internal regret. It may be
written as ∑

i6=j

∆(i,j),tr̃(i,j),t 6 0 ,

where

∆(i,j),t =

(
R̃(i,j),t−1

)p−1

+

∑
a6=b

(
R̃(a,b),t−1

)p−1

+

.

Note that the∆(i,j),t’s are nonnegative and sum up to one. The concavity of the logarithm and the
definition of r̃(i,j),t lead to

∑

i6=j

∆(i,j),tr̃(i,j),t =



∑

i6=j

∆(i,j),t ln
(
P
i→j
t · xt

)

− ln (P t · xt)

6 ln



∑

i6=j

∆(i,j),tP
i→j
t · xt


− ln (P t · xt) .

It is now obvious that the Blackwell condition (3.3) is satisfied whenever

(7.4) P t =
∑

i6=j

∆(i,j),tP
i→j
t .
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Lemma 3.1 shows that such a portfolioP t indeed exists for allt. This defines a strategy which
we call B2POL. The following theorem is an immediate consequence of Corollary 1 of [CeLu03]
(see also Section 3.2 of Chapter 8).

THEOREM 7.2. Assume thatm 6 xi,t 6 M for all 1 6 i 6 N and 1 6 t 6 n. Then the
cumulative internal regret of theB2POL strategyP is bounded by

R̃n 6

(
ln
M

m

)√
n(p− 1)N2/p .

The above bound is approximately minimized forp = 4 lnN . Note also that it only differs
from the bound on the cumulative internal regret of theB1POL strategy by a constant factor which
is smaller here (ln(M/m) instead ofM/m).

5. Generalizations

5.1. Generalized buy-and-hold strategy.The GBH strategy performs buy-and-hold on the
N(N − 1) fictitious modified strategies, using the conversion trick explained in Section 1.2 of
Chapter 3 (and, in the particular case ofN = 2 assets, it reduces to the simple buy-and-hold
strategy–hence its name). The main property of this investment strategy is that its internal regret
is bounded by a constant, as stated by the theorem below.

More precisely, theGBH strategy is defined such that at each roundt, we have the fixed point
equality

(7.5) P t =
∑

i6=j

Si→j
t−1∑

k 6=l S
k→l
t−1

P
i→j
t ,

whereSt =
∏t
s=1 P s · xs is the wealth achieved by the investment strategy we consider and

Si→j
t =

∏t
s=1 P i→j

s ·xs is the fictitious wealth obtained by thei→ j modified version of it. The
existence and the practical computation of such a portfolioP t are given by Lemma 3.1.

We note here the similarity of (7.5) to (7.4). In these two fixed point equalities, only the poten-
tial functions differ (see Section 2.3 in Chapter 2). (7.5) corresponds to an exponential potential,
tuned withη = 1. TheGBH strategy could thus have been calledB2EXP, in reference toB2POL.
We used this similarity to prove the following theorem in [StLu03]. But as indicated below, the
latter may be proved in a much simpler way.

THEOREM 7.3. For all n and all sequences of market vectors, theGBH investment strategy
incurs a cumulative internal regret̃Rn 6 lnN(N − 1).

PROOF. The proof is done by a simple telescoping argument:

Sn =

n∏

t=1

Pt · xt =

n∏

t=1

∑

i6=j

Si→j
t−1 P

i→j
t · xt∑

k 6=l S
k→l
t−1

=

∑
i6=j S

i→j
n

N(N − 1)
.

�

The advantage of this algorithm is that its performance bounds do not depend on the market.
We also note that the proof indicates that the internal regret of the GBH strategy is always non-
negative,R̃n > 0.

REMARK 7.7. (The worst-case logarithmic wealth ratio is not linked to the internal regret of
an investment strategy.)Unlike in the sequential prediction problem described in Section 1.2 of
Chapter 3, a small internal regret in the problem of sequential portfolio selection does not neces-
sarily imply a small worst-case logarithmic wealth ratio, not even with respect to the class of all
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buy-and-hold strategies. This may be seen by considering the following numerical counterexam-
ple. Let the market be formed by three stocks and let it be cyclic such that at odd-indexed rounds
the wealth ratios are respectively1/2, 1, 2 and at even ones they equal2, 1.1, 1/2. The accumu-
lated wealth of the best stock increases exponentially fastwhereas the one of theGBH strategy is
bounded.

The reason is that the loss functionℓ′ associated to this problem is no longer linear, and there-
fore, the argument of Equation (3.1) does not extend to it.

However, there is a simple modification of theGBH strategy leading to internal regret less than
2 lnN and external regret with respect to buy-and-hold strategies less than2 lnN . We call this
modification theGBH2 algorithm.

Instead of (7.5), theGBH2 strategy is such that

(7.6) P t =

∑
16k6N St−1(k)ek +

∑
i6=j S

i→j
t−1 P

i→j
t∑

16k6N St−1(k) +
∑

i6=j S
i→j
t−1

,

for every t, whereek denotes the portfolio that invests all its wealth in thek-th stock. Now a
telescoping argument similar to that of the proof of Theorem7.3 shows that the final wealth equals

Sn =
1

N2



∑

16k6N

Sn(k) +
∑

i6=j

Si→j
n


 ,

thus ensuring that both regrets are less than the claimed upper bound2 lnN . Lemma 3.1 shows
that (7.6) can be satisfied and how the portfoliosP t are computed.

The next section is an extension ofGBH and GBH2 strategies to a continuum of fictitious
experts.

5.2. A generalized universal portfolio. Next we extend the notion of internal regret for in-
vestment strategies, similarly to what we did for internal regret in prediction with expert advice
in Section 1.3 of Chapter 3. Recall that the definition of internal regretR̃n considers the regret
suffered by not moving one’s capital from one stock to another. Moving the capital from one stock
to another may be considered as a simple linear function fromthe probability simplexX to X . A
more exigent definition is obtained by considering all linear functionsg : X → X . Clearly, any
such function may be written asg(P t) = AP t whereA is a column-stochastic matrix. Denote the
set of all column-stochastic matrices of orderN by A and let the linear modificationsAP t of the
master strategy be denoted byP A

t . The generalized internal regret (or swap regret for investment
strategies, see Section 1.3 of Chapter 3) is defined as

max
A∈A

ln
SA
n

Sn

whereSA
n =

∏n
t=1

∑N
i=1 P

A
i,txi,t.

Linear modifications were already considered (in finite number) by [GrJa03] in the case of
sequential prediction. In that case, due to the linearity ofthe loss functionℓ(P t), it is not more
difficult to have a low generalized internal regret than the usual internal regret, see Section 1.3 of
Chapter 3. On the contrary here, due to the concavity of the logarithm, minimizing the generalized
internal regret turns out to be a greater challenge. Since the algorithmsB1EXP and B1POL are
based on a linear upper bounding of the internal regret, it iseasy to see that their generalized
internal regret is bounded byN times the bounds derived for the internal regret in Sections4.1,
leading to upper bounds both of the order ofN

√
n lnN .
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THEOREM 7.4. The generalized internal regret of theB1EXP strategyQ over sequences of
market vectors bounded betweenm andM is less than

max
A∈A

ln
SA
n

Sn
6
M

m
N
√
n lnN ,

where the strategy is tuned withη = 4(m/M)
√

(lnN)/n.

The main result of this section is that there exist investment strategies that achieve a much
smaller generalized internal regret. The proof below is inspired by Theorem 7.3 and uses some
techniques introduced by [BlKa99]. The investment strategy presented above may be seen as
a modification of Cover’s universal portfolio [Cov91] through a conversion trick to deal with
generalized internal regret of the same flavor as the one explained in Section 1.2 of Chapter 3.

THEOREM 7.5. There exists an investment strategyP such that for all sequences of market
vectorsx1,x2, . . . in RN

+ ,

max
A∈A

ln
SA
n

Sn
6 N(N − 1) ln(n+ 1) + 1 .

REMARK 7.8. The algorithm given in the proof has a computational complexity exponential
in the number of stocks (at least in its straightforward implementation). However, it provides a
theoretical bound which is likely to be of the best achievable order. The techniques of Kalai and
Vempala [KaVe03a] may be used to implement it more efficiently.

The algorithm could also be easily modified, using the techniques of Section 5.1, to be compet-
itive with respect to the best constantly rebalanced portfolio as well as to suffer a low generalized
internal regret, with associated performance bounds for both of the orderN2 lnn.

PROOF. Denote a column-stochastic matrixA by [a1, . . . ,aN ], where theaj ’s are the co-
lumns ofA. Letµ be the uniform measure over the simplex and letν be the measure overA given
by the product ofN independent instances ofµ:

ν(A) =

N∏

j=1

µ(aj) .

If the investment strategy, at each time instantt, satisfied the equality

(7.7) P t =

∫
A∈A S

A
t−1P

A
t dν(A)∫

A∈A S
A
t−1 dν(A)

,

then the final wealth would be given by an average over all modified strategies, that is,

(7.8) Sn =

∫

A∈A
SA

n dν(A).

Fix a matrixA and consider the setχα,A of column-stochastic matrices of the form(1−α)A+

αz, z ∈ A. Similarly, denote byχα,aj
the set of probability vectors of the form(1− α)aj + αzj ,

zj ∈ X . It is easy to see that (with a slight abuse of notation)

(7.9) χα,A =

N∏

j=1

χα,aj
.

Any elementA′ of χα,A may be seen to satisfy (component-wise)

PA
′

t > (1 − α)PA

t ,

for all t and therefore
SA

′

n > (1 − α)nSA

n .
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Finally, using equality (7.9), we have

ν (χα,A) =

N∏

j=1

µ
(
χα,aj

)
=
(
αN−1

)N
,

implying ∫

A′∈χα,A

SA′

n dν(A′) > (1 − α)n αN(N−1)SA

n .

Takingα = 1/(n + 1), recalling that

(1 − α)n αN(N−1) >
e−1

(n+ 1)N(N−1)
,

and combining this with 7.8, we obtain the theorem.
Thus, it suffices to see that one may satisfy the set of linear equations (7.7). We denote an

elementA ∈ A by A = [A(i,j)]. Writing only the equality for theith components of both sides,
(∫

A∈A
SA

t−1 dν(A)

)
Pi,t

=

∫

A∈A
SA

t−1

(
N∑

k=1

A(i,k)Pk,t

)
dν(A) ,

we see thatP t has to be an element of the kernel of the matrixT defined by

• if i 6= k, Ti,k = wi,k,
• Ti,i = −∑j 6=i, 16j6N wj,i,

where

wi,k =

∫

A∈A
SA

t−1A(i,k) dν(A).

The same argument as in the proof of Lemma 3.1 shows that such avector exists (and the com-
putability of the latter depends on how easy it is to compute the elements of the matrixT ). �

6. Universal versions ofEG and B1EXP

The EG and B1EXP strategies rely on the prior knowledge of the total numbern of trading
periods, and also on the boundsm andM on the market values. Since these values may not
be known in advance in practice or since the market evolutions may be unbounded, appropriate
modifications are required. The purpose of this section is tointroduce “universal” variants of
these two strategies which do not assume the prior knowledgeof any of these parameters. The
proposed adaptive strategies are based on a combination of Lemmas 4.3 and 4.4 with an argument
of Helmbold, Schapire, Singer, and Warmuth [HeScSiWa98].

6.1. A universal version for the EG strategy. Observe first that all regrets are defined in
terms of ratios, so that the investment strategy may always renormalize the past market vectors
xt so thatmaxi6N xi,t = 1. Our “universal” version of theEG strategy is then defined in Figure
1, and is calledEG-UNIV . It is competitive with respect to the class of all constantly rebalanced
portfolios, as revealed by the following result.

THEOREM 7.6. Consider a market withN > 2 assets. IfQ denotes the class of all constantly
rebalanced portfolios, then the worst-case logarithmic wealth ratio of EG-UNIV strategyP (for all
possible behaviors of the market) is bounded by

Wn(P,Q) 6 10Nn2/3 .
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Algorithm EG-UNIV

Initialization: P 1 = (1/N, . . . , 1/N), andL̃i,0 = 0 for all i = 1, . . . ,N .

For each roundt = 1, 2, . . .,

(1) invest in the stock market with portfolioP t, and get the market vectorxt of day t;
renormalizext so thatmaxi6N xi,t = 1;

(2) letαt = t−1/3/2 andx̃t = (1 − αt/N)xt + (αt/N)1, where1 = (1, . . . , 1) ;
(3) for i = 1, . . . , N , let

ℓ̃i,t = − x̃i,t

P̃ t · x̃t
,

andL̃i,t = L̃i,t−1 + ℓ̃i,t;
(4) letηt = t−2/3/4, and define the portfoliõP t+1 by its components, fori = 1, . . . ,N ,

P̃i,t+1 = − e−ηt
eLi,t

∑N
j=1 e

−ηt
eLj,t

;

(5) let the next round portfolio be

P t+1 = (1 − αt)P̃ t+1 + (αt/N)1 .

FIGURE 1. A universal version of theEG algorithm.

REMARK 7.9. Helmbold, Schapire, Singer, and Warmuth [HeScSiWa98] were the first to
define a universal version of theEG strategy, based on a “doubling trick” which requires to period-
ically reset the algorithm by forgetting everything learntup to that point. We feel that modifying
the parameterη “smoothly” as in the version introduced above is more natural. Moreover, the
bound obtained for the new algorithmEG-UNIV is of the order ofn2/3, whereas the one for the
universal investment strategy of [HeScSiWa98] is of the worse order ofn3/4.

The proof below is a straightforward extension of the methodology originally proposed in
[HeScSiWa98], and we first recall a lemma proved therein.

LEMMA 7.1. Wheneverαt ∈ [0, 1/2],

ln (P t · xt) > ln
(
P̃ t · x̃t

)
− 2αt .

PROOF (OF THEOREM 7.6). We decompose the quantity of interest into three sums,
n∑

t=1

(ln (B · xt) − ln (P t · xt)) 6

n∑

t=1

(ln (B · xt) − ln (B · x̃t))

+
n∑

t=1

(
ln (B · x̃t) − ln

(
P̃ t · x̃t

))

+

n∑

t=1

(
ln
(
P̃ t · x̃t

)
− ln (P t · xt)

)
.

The first sum in the right-hand side is non-positive, as thext are renormalized such that all their
components are less than 1, and thusxt 6 x̃t pointwise. The third sum is less than2(α1+. . .+αn)

by Lemma 7.1. We simply have to deal with the second sum.
We note that the portfolios̃P t correspond to exponential reweighting over the lossesℓ̃i,t. The

analysis of Section 2 leads to the linear upper bound, for allconstantly rebalanced portfolioB,
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and all market sequences,

n∑

t=1

(
ln (B · x̃t) − ln

(
P̃ t · x̃t

))
6

N∑

j=1

Bj

(
n∑

t=1

N∑

i=1

P̃i,tℓ̃i,t − ℓ̃j,t

)
.

As theηt are non-increasing, Lemma 4.3, combined with the definitionof theP̃ t, then guarantees
that, with the notation of this lemma,

n∑

t=1

(
ln (B · x̃t) − ln

(
P̃ t · x̃t

))
6

(
2

ηn+1
− 1

η1

)
lnN +

n∑

t=1

Φ(P̃ t, ηt, −ℓ̃t) .

The definition ofx̃t ensures that̃P t · x̃t > αt/N , and thus that all̃ℓj,t lie in [−N/αt, 0]. The
choice ofηt, combined with Lemma 4.4, leads toNηt/αt 6 1, and

n∑

t=1

(
ln (B · x̃t) − ln

(
P̃ t · x̃t

))
6

(
2

ηn+1
− 1

η1

)
lnN + (e− 2)

n∑

t=1

ηt

N∑

i=1

P̃i,t
x̃2
i,t(

P̃ t · x̃t
)2 .

The renormalization of thext is such that allxi,t 6 1, and this is thus also the case for thex̃i,t.
Using in addition that̃P t · x̃t > αt/N , we get

n∑

t=1

(
ln (B · x̃t) − ln

(
P̃ t · x̃t

))
6

(
2

ηn+1
− 1

η1

)
lnN + (e− 2)N

n∑

t=1

ηt
αt

.

In conclusion, we have shown that
n∑

t=1

(ln (B · xt) − ln (P t · xt)) 6

(
2

ηn+1
− 1

η1

)
lnN + (e− 2)N

n∑

t=1

ηt
αt

+ 2

n∑

t=1

αt ,

provided that for allt, αt 6 1/2 andNηt/αt 6 1. Substituting the proposed values forηt
andαt and performing simple algebra conclude the proof. (We note that these values do not
optimize the order of magnitude in terms ofN : the choicesηt ∼ N−1/3(lnN)2/3t−2/3 and
αt ∼ (N lnN)1/3t−1/3 would lead to a(1 + o(1))(N lnN)1/3n2/3 upper bound.) �

6.2. A universal version for theB1EXP strategy. The universal variant of theB1EXP strat-
egy is designed by applying the conversion trick described in Remark 3.1 to theEG-UNIV strategy
introduced above. Here however, asEG-UNIV does not simply minimize a linearized upper bound
over the regrets, we need to apply the conversion trick to a set of N2 fictitious assets,N(N − 1)

given by thei → j modified strategies of the master strategy, and theN other given by the single
stocks. (See also how we defined theGBH2 strategy, due to the lack of linearity noted in Remark
7.7, we had to use theseN2 fictitious assets as well.)

More precisely, consider the sequence of market vectorsyt, t = 1, 2, . . ., withN2 components
given by

yt =

(
xt,

(
P
i→j
t · xt

)

i6=j

)
,

and denote byQ1,Q2, . . . the sequence of portfolios associated to it byEG-UNIV . DefineP t as
the portfolio (over theN initial assets) such that the fixed-point equalityQt · yt = P t · xt is
satisfied. Existence and practical computation ofP t are indicated by Lemma 3.1.

Theorem 7.6 guarantees that for all fixed probability distributionsB′ from the simplex of order
N2, and for alln, we have

(7.10) sup
xn

1∈(RN
+ )n

n∑

t=1

ln
(
B′ · yt

)
− ln (P t · xt) 6 10N2n2/3 .
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Choosing a probability distributionB′ concentrated on the firstN components, or putting proba-
bility mass 1 over thek-th component,k > N , we get the following result.

THEOREM 7.7. The cumulative internal regret of theB1EXP-UNIV strategyP is bounded by

R̃n 6 10N2n2/3 .

In addition, if Q denotes the class of all constantly rebalanced portfolios,then the worst-case
logarithmic wealth ratio ofP is bounded by

Wn(P,Q) 6 10N2n2/3 .

REMARK 7.10. As indicated by (7.10), theB1EXP-UNIV strategy minimizes its internal regret
with respect to a class of deviations larger than simply the ones of the formi → j. This class is
the convex hull formed by the Dirac massesek introduced in Section 5.1, and the applications
which associate to a portfolioP its modificationP i→j. This yields a class which, on the one
hand, contains the simpleN(N − 1) modifications, and on the other hand, is strictly contained in
the class of all linear departures introduced in Section 5.2. (This is the class considered in Section
7 of [StLu03].)

To get a version of theB1EXP strategy minimizing its generalized internal regret, we would
need to apply the conversion trick toEG-UNIV run on a set ofNN fictitious strategies, correspond-
ing to theNN extremal points of the convex hull of all linear departures from the simplex into
itself. These extremal points are given by the column-stochastic matrices with 0 and 1 only, and
generate all linear departures, according to the Krein-Millman (see, e.g., Berger [Ber90]) theo-
rem. Unfortunately, this version suited for the minimization of the generalized internal regret has
a computational complexity of the order ofNN , that is, more than exponential in the number of
stocksN . In comparison, the complexity ofB1EXP-UNIV is of the order ofN2.

7. On-line investment with transaction costs

We indicate how some of the investment strategies introduced above, namely those defined
only by means of fixed-point equalities, may be modified to be competitive in presence of transac-
tion costs. We recall below the model considered by Blum and Kalai [BlKa99] in which, without
loss of generality, transaction fees are paid at purchase only. The model is best described by a
function TC(P ,Q), which indicates the cost of rebalancing the investor’s wealth distributed ac-
cording toP to Q. To perform such a rebalancing, the investor first has to sella certain amount
of some assets to be able to pay for the transaction fees when purchasing the needed quantities of
the other assets. To buy a quantityw of a given asset, he has to pay(1 + c)w, wherec is called the
commission rate. TC indicates that 1 euro distributed according toP leads toα = TC(P ,Q) euros
distributed according toQ. (That is,TC is a multiplicative factor.) The precise way of rebalancing
optimally, as well as an implicit formula forTC, is indicated in [BlKa99]. We denote by

P (x) =

(
Pk,txk,t
P t · xt

)

k=1,...,N

the distribution of the investor’s wealth, when the latter was originally distributed according toP
and the market evolved according to the wealth ratiox. In particular, the investment strategy has
to rebalance at the beginning of each dayt + 1 from P t(xt) to P t+1, and has to pay a fraction
TC(P t(xt),P t+1) of the wealth it owned at the end of dayt to do so.
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More precisely, Blum and Kalai [BlKa99] show thatTC(P ,Q) is the numberα satisfying the
equation

α = 1 − c
∑

j=1,...,N

(αQj > Pj)+ ,

and list some basic properties ofTC. One of them is that joint rebalancing is more efficient than
the weighted combination of the separate rebalancings: investors may occasionally save in com-
mission cost by trading among themselves without commission instead of trading in the stock
exchange. Formally, this means that for any convex combination α1, . . . , αm, anym portfolio
couples(P r,Qr), r = 1, . . . ,m, and any market vectorx, we have

(7.11)
m∑

r=1

αr (P r · x) TC (P r(x),Qr) 6

((
m∑

r=1

αrP r

)
· x
)

TC

(
m∑

r=1

αrP r(x),Q′

)
,

where

Q′ =

∑m
r=1 αr (P r · x) TC (P r(x),Qr) Qr∑m
r=1 αr (P r · x) TC (P r(x),Qr)

is the final distribution of the separate rebalancings. (A related, though different, property is that
TC, as a function of the couple(P ,Q), is concave. This may seen by direct computation with the
implicit definition of TC.) Furthermore, we note here that the implicit definition ofTC shows that,
for a fixedP , the mapQ 7→ TC(P ,Q) is continuous.

7.1. The extension of theGBH strategy to a market with commission rates.We now de-
scribe the variantGBHc of theGBH strategy suited for a market with a commission ratec. The idea
is to divide (fictitiously) the capital at the beginning of day t among thei → j modified strate-
gies and to force them to rebalance (separately) fromP

i→j
t (xt) to P

i→j
t+1 at the beginning of day

t+1. The trick is to obtain the wealth allocationP t+1 once each fictitious strategy has rebalanced
to P

i→j
t+1 .

Formally, denote bySn,c (respectively,Si→j
n,c ) the wealth obtained by theGBHc strategy (re-

spectively, by the fictitiousi → j modified strategy) at the end of dayn, after rebalancing to the
distribution prescribed for dayn+ 1,

Sn,c =
n∏

t=1

(P t · xt) TC (P t(xt),P t+1) ,

Si→j
n,c =

n∏

t=1

(
P
i→j
t · xt

)
TC
(
P
i→j
t (xt),P

i→j
t+1

)
.

Now, we chooseP 1 as the uniform wealth allocation, and fort = 1, 2, . . ., P t+1 is chosen such
that the fixed point equality

(7.12) P t+1 =

∑
i6=j S

i→j
t−1,c

(
P
i→j
t · xt

)
TC
(
P
i→j
t (xt),P

i→j
t+1

)
P
i→j
t+1

∑
i6=j S

i→j
t−1,c

(
P
i→j
t · xt

)
TC
(
P
i→j
t (xt),P

i→j
t+1

) =

∑
i6=j S

i→j
t,c P

i→j
t+1∑

i6=j S
i→j
t,c

is satisfied. Such a portfolioP t+1 indeed exists by Brouwer’s theorem, as the middle term of
(7.12) is a continuous function ofP t+1, and thus theGBHc strategy is well-defined.

THEOREM 7.8. The GBHc investment strategy incurs a cumulative internal regretR̃n 6

lnN(N − 1) for all n.
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PROOF. The defining expression (7.12) and property (7.11) directly show that, fort > 1,

(P t · xt) TC (P t(xt),P t+1) >

∑
i6=j S

i→j
t−1,c

(
P
i→j
t · xt

)
TC
(
P
i→j
t (xt),P

i→j
t+1

)

∑
i6=j S

i→j
t−1,c

.

A telescoping argument finally yields

Sn,c >
1

N(N − 1)

∑

i6=j

Si→j
n,c .

�

The extensionGBH2c of GBH2 to a market with transaction costs is defined is a similar way,
and still ensures that both the internal regret and the external regret with respect to the class of
all buy-and-hold strategies are less than2 lnN . We omit the details and concentrate rather on
the extension of the generalized universal portfolio described in Section 5.2. This is done by
combining the argument of the present section with those of Section 5.2.

7.2. A modification of the generalized universal portfolio. We extend the notation of Sec-
tion 5.2. For any column-stochastic matrixA, we denote by

SA

n,c =

n∏

t=1

(
P A

t · xt
)

TC
(
P A

t (xt),P
A

t+1

)

the wealth achieved by consistent modifications of the master strategy according toA in a market
with a transaction commissionc.

We chooseP 1 as the uniform wealth allocation, and fort = 1, 2, . . ., P t+1 is chosen such
that the fixed point equality
(7.13)

P t+1 =

∫
A S

A
t−1,c

(
P A
t · xt

)
TC
(
P A
t (xt),P

A
t+1

)
P A
t+1 dν(A)

∫
A S

A
t−1,c

(
P A
t · xt

)
TC
(
P A
t (xt),P

A
t+1

)
dν(A)

=

∫
A S

A
t,c P A

t+1 dν(A)∫
A S

A
t,c dν(A)

is satisfied. This defining expression is the exact counterpart of (7.12) for a continuum of devia-
tions, and is valid thanks to Brouwer’s theorem.

THEOREM 7.9. The investment strategy defined above ensures that in a market with a com-
mission ratec, for all n and all market sequences,

max
A∈A

ln
SA
n,c

Sn,c
6 N(N − 1) ln ((1 + c)n + 1) + 1 .

Note that the orders of magnitude of the above upper bound in terms ofc, n, andN are the
same as those for the worst-case logarithmic wealth ratio ofBlum and Kalai’s [BlKa99] general-
ization of Cover’s [Cov91] universal portfolio.

PROOF. Property (7.11) extends to a continuous weighted average,and thus, similarly to the
analysis ofGBHc, we get that

Sn,c >

∫

A
SA

n,c dν(A) .

We conclude the proof by the same kind of argument as in the proof of Theorem 7.5, and use
the notation introduced there. We fix a matrixA and a numberα ∈]0, 1[, and consider their
associated setχα,A. The elementsA′ of χα,A are such that there existsz ∈ A with P A

′

t =

(1 − α)P A
t + αP z

t , and

(7.14)
(
P A

′

t · xt
)

TC
(
P A

′

t (xt),P
A

′

t+1

)
> (1 − α)1+c

(
P A

t · xt
)

TC
(
P A

t (xt),P
A

t+1

)
.
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To see this, we lower bound the left-hand side by

(1 − α)
(
P A

t · xt
)

TC
(
P A

t (xt),P
A

′

t+1

)
,

by ignoring the fractionα of the wealth not distributed according toP A
t in P A

′

t . Now,

TC
(
P A

t (xt),P
A

′

t+1

)
> TC

(
P A

t (xt),P
A

t+1

)
TC
(
P A

t+1,P
A

′

t+1

)
,

and since rebalancing fromP A
t+1 to P A

′

t+1 involves moving at most a fractionα of the wealth,

TC
(
P A

t+1,P
A

′

t+1

)
> 1 − α+

α

1 + c
= 1 − α

c

1 + c
> 1 − αc > (1 − α)c ,

where the last inequality is recalled in [BlKa99].
The proof is concluded by multiplying (7.14) overt = 1, . . . , n and using the same argument

as in the end of the proof of Theorem 7.5, withn replaced by(1 + c)n. �

OPEN QUESTION 7.1. We extended above all the algorithms which do not use thelinearized
upper bounds and only rely on fixed point theorems. The obtained generalizations are of theoret-
ical interest, as the different calls to Brouwer’s theorem do not provide any practical method to
implement the investment strategies. We do not mention any extension forEG nor B1EXP. This is
because even ifTC is (jointly) concave, the functionψ that maps(P ,Q,x) to

ψ(P ,Q,x) = − ln ((P · x) TC (P (x),Q))

is not necessarily convex in(P ,Q) for a fixedx (essentially, becauseP 7→ P (x) is not linear).
The proofs above show that in presence of transaction costs,ψ is the loss function of interest, and
we may only linearize convex losses. (See the appendix of Chapter 8.)

In particular, even finding an equivalent ofEG, easily computable and competitive in presence
of transaction costs, is still an open question. Blum and Kalai’s [BlKa99] extension of Cover’s
[Cov91] universal portfolio has indeed the same computational drawbacks as the latter.
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Appendix: Experimental results

In this appendix we present an experimental comparison of the performance of the new al-
gorithms with existing ones. In the experiments we used a data set of daily wealth ratios of 36
stocks of the New York Stock Exchange that has been used by various authors including [Cov91],
[CoOr96], [HeScSiWa98], [BlKa99], [Sin97], and [BoElGo00]. The data set is formed by 5651
daily prices covering the 22-year period from July 3rd, 1962, to December 31st, 1984. The be-
haviors of some selected stocks is plotted in Figure 2. We also considered monthly wealth ratios
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FIGURE 2. Evolution of some selected stocks over the 22-year period ofstudy.

(taking 20 trading days for a month).
Of course, as all these stocks survived during this period, they performed well. There is

therefore a “survivor bias”, which implies that any investment strategy using these stocks will do
fine. However, we compare below our investment strategies toother ones, and both the new and
the existing ones benefit from the bias.

We begin this appendix with an overview of the strategies introduced in this chapter.

Overview of the investment strategies.We give two overviews of the methodology we used
to derive our investment algorithms.

A strategy is given by the choice of a measure of the regretrt and of a potential functionΦ
(see Section 2.3 in Chapter 2). We consider three ways of measuring the regrets:

(1) Linear approximation to the instantaneous external regret (see Section 2):

ri,t = − xi,t
P t · xt

,

(2) Instantaneous internal regret (see Sections 4.2 and 5.1):

r̃(i,j),t =
(
P
i→j
t · xt

)
− ln (P t · xt) ,

(3) Linear approximation to the instantaneous external regret (see Section 4.1):

r(i,j),t = Pi,t

(
xj,t

P t · xt
− xi,t

P t · xt

)
.
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Also, both the exponential and the polynomial potentials are used. Each combination ofrt andΦ

induces an investment strategy as summarized in Table 2.

Φ ri,t er(i,j),t r(i,j),t

Exp EG GBH B1EXP

Pol – B2POL B1POL

TABLE 2. A first summary of the investment strategies.

The second overview indicates the external–internal regret minimizing pairs we used. For
instance, the algorithm of Section 5.2 is the no internal regret counterpart of Cover’s [Cov91]
universal portfolio, and the algorithm of Section 7.2 is theno-internal-regret counterpart of the
algorithm proposed in [BlKa99]. The other pairs are indicated in Table 3. The uniform buy-and-
hold strategy of Section 2 is denoted byUBH.

external EG EG-UNIV UBH

internal B1EXP B1EXP-UNIV GBH

TABLE 3. A second summary of the investment strategies: the bottom line corresponds
to the no internal regret counterparts of the algorithms of the top line.

The tuning of the EG and B1EXP strategies. The first experiment compares the behavior of
the B1EXP andEG strategies whose results are summarized in Tables 4 and 5 andFigure 3. We
compared the strategiesEG andB1EXP for various choices of the tuning parameterη. We used the
parameters suggested by theoryη∗ = α

√
8 lnN/n andη∗ = 4α

√
lnN/n, respectively, in case of

known time horizonn, and also the time varying versionsη∗t = α
√

8 lnN/t andη∗t = 4α
√

lnN/t

where the ratioα = m/M is taken to be0.5 for daily rebalancing and0.3 for monthly rebalancing.
(These values are estimated on the data.)

Tables 4 and 5 show the arithmetic averages of the wealths achieved on random samples of
size100. For example, the numbers in the columns “ten stocks” have been obtained by choosing
ten of the36 stocks randomly to form a market ofN = 10 assets. This experiment was repeated
100 times and the averages of the achieved wealth factors appearin the table. The column “Freq.”
contains the number of timesB1EXP outperformedEG of these100 experiments. The average
wealth ratios for both strategies were calculated for different fixed and time varying parameters.
One of the interesting conclusions is that time varying updating never affects the performance of
B1EXP while that of EG drops in case of monthly rebalancing or when the number of stocks is
large.

In the rest of this experimental study both algorithms are used with their respective time vary-
ing theoretical optimal parameterη∗t . It is also seen in Tables 4 and 5 thatEG is less robust against
a bad choice ofη. Its performance degrades faster whenη or ηt is increased.

Interestingly, the increase of the external regret when thetuning parameter is increased cor-
responds to an increase in the internal regret, as shown in Figure 3. The increase of the internal
regret is far larger for theEG strategy. This suggests that minimizing internal regret results in more
stability.
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η Monthly rebalancing

(para- Three stocks Ten stocks

meter) EG B1EXP Freq. EG B1EXP Freq.

2 14.7 15.5 73 12.8 19.2 95

1.5 15.1 16.0 76 14.0 19.9 96

1 15.9 16.7 80 16.0 20.6 97

0.5 17.3 18.0 84 18.8 21.3 97

0.2 18.7 19.0 84 20.7 21.6 97

0.15 18.9 19.2 84 21.0 21.7 95

0.1 19.2 19.4 84 21.3 21.8 94

0.05 19.5 19.6 82 21.6 21.8 94

0.03 19.6 19.7 82 21.7 21.8 94

0.02 19.7 19.7 82 21.8 21.9 94

0.01 19.7 19.7 82 21.8 21.9 94

η∗ 19.5 19.5 80 21.4 21.8 94

η∗t 19.3 19.4 80 21.2 21.7 95

0.1 η∗t 19.7 19.7 81 21.8 21.9 95

0.2 η∗t 19.7 19.7 80 21.7 21.8 95

0.5 η∗t 19.6 19.6 79 21.5 21.8 95

2 η∗t 18.9 19.0 81 20.5 21.5 95

5 η∗t 17.8 17.9 77 18.7 20.8 97

10 η∗t 16.5 16.7 71 16.1 19.8 94

25 η∗t 14.7 15.4 61 12.5 17.8 92

TABLE 4. Evolution of the achieved wealths according to the tuning parameter ofEG

and B1EXP both for fixed and time varying parameters. Computations arerealized on
random samples of size 100, arithmetic means are displayed.Monthly rebalancing.

Tuning of B1POL and B2POL. Table 6 shows that forB1POL and B2POL the theoretically
(almost) optimal parameterp = 4 lnN performs quite poorly in our experiments, for it leads to
too fast wealth reallocations. The values ofp with better numerical performance are usually far
smaller than the ones prescribed by theory. Thus, for the rest of this experimental study and the
subsequent simulations, we choosep = 2, as it was originally suggested by [Bla56]. (Note that
in Table 6 we show the geometric averages instead of the arithmetic ones, to take into account the
huge dispersion of the wealths achieved by these two investment strategies – see also Table 9 and
the related comments.)

Global comparison. In the next experiment various different investment strategies are com-
pared, which we denominate byEG, B1EXP, B1POL, GBH, GBH2, B2POL, Cover’s,UBH, B-CRP,
andU-CRP. For the first six strategies we have already described how totune (some of them do
not require any tuning). The algorithm “Cover’s” stands forCover’s universal portfolio based on
the uniform density. To compute the universal portfolio, wedrew at random103 different con-
stantly rebalanced portfolios and took the average on the wealth ratio sequences to compute each
instance of Cover’s algorithm. (The value103 may seem to be too small in view of the108 used in
[HeScSiWa98] but calculations using the Chebyshev bound of [BlKa99] indicate that this value
is sufficient to have a good idea of the order of the wealth achieved by the universal portfolio.) To
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η Daily rebalancing

(para- Three stocks Ten stocks

meter) EG B1EXP Freq. EG B1EXP Freq.

2 13.2 14.5 77 12.4 21.7 93

1.5 14.1 15.6 80 14.0 23.2 95

1 15.7 17.4 86 17.0 24.7 95

0.5 18.8 20.4 89 22.0 25.8 94

0.2 22.1 23.1 89 25.2 26.3 92

0.15 22.8 23.6 89 25.6 26.3 91

0.1 23.6 24.2 89 26.0 26.4 88

0.05 24.5 24.8 88 26.3 26.4 83

0.03 24.8 25.0 88 26.4 26.5 82

0.02 25.0 25.1 88 26.4 26.5 82

0.01 25.2 25.3 88 26.4 26.5 82

η∗ 25.0 25.0 89 26.4 26.5 82

η∗t 24.8 24.8 86 26.2 26.4 94

0.1 η∗t 25.3 25.3 88 26.5 26.5 91

0.2 η∗t 25.3 25.3 88 26.4 26.5 91

0.5 η∗t 25.1 25.1 87 26.3 26.4 92

2 η∗t 24.2 24.3 86 25.8 26.3 94

5 η∗t 22.6 22.7 85 24.5 26.0 98

10 η∗t 20.4 20.5 82 22.0 25.2 98

25 η∗t 16.2 16.4 72 15.2 22.3 99

TABLE 5. Evolution of the achieved wealths according to the tuning parameter ofEG

and B1EXP both for fixed and time varying parameters. Computations arerealized on
random samples of size 100, arithmetic means are displayed.Daily rebalancing.

compute the best constantly rebalanced portfolio (calledB-CRP) we used a technique described in
[Cov84], with (according to the notation therein)ε = 10−4 for daily rebalancing andε = 10−5

for monthly rebalancing. This guarantees an estimate within a multiplicative factor of1.0028 of
the wealth achieved by the best constantly rebalanced portfolio in case of a monthly rebalancing
and1.7596 in case of a daily rebalancing. Nevertheless, the values thus obtained are often even
closer to the optimal, despite the weak guarantees in case ofdaily rebalancing. We also consid-
ered the uniform buy-and-hold strategyUBH and, following [BoElGo00], the uniform constantly
rebalanced portfolio (U-CRP).

Transaction costs were also taken into account (whose amount is indicated in the columnTC of
the tables) according to the model defined in [BlKa99], and recalled in Section 7. We implemented
Blum and Kalai’s optimal rebalancing algorithm, using different transaction costs. To be fair, we
considered all algorithms in their no-transaction-cost definition – that is, we considerGBH and
GBH2 instead ofGBHc andGBH2c. Here, we summarize the results for zero transaction cost and a
heavy2% at-purchase transaction cost in case of monthly rebalancing and a milder1% transaction
cost when the rebalancing occurs daily.

All these algorithms were run on randomly chosen sets of stocks. The number of selected
stocks is shown in the first column of Tables 7 and 8. These tables indicate the arithmetic aver-
ages of the wealths achieved. In each line, the results of thealgorithm which outperformed its
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FIGURE 3. Evolution of both external and internal regrets for the optimal time vary-
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Chemical, Coke,GTE, Mei Corp., Gulf, Iroquois, Kin Arc, Amer Brands, Fischbach,
Lukens.

p Monthly rebalancing Daily rebalancing

(para- Three stocks Ten stocks Three stocks Ten stocks

meter) B1POL B2POL B1POL B2POL B1POL B2POL B1POL B2POL

p∗ 11.5 9.5 15.7 12.4 9.1 7.3 11.1 9.7

1.1 13.3 10.9 16.2 13.5 12.7 9.5 16.5 13.5

1.2 13.1 10.9 16.0 13.9 12.3 9.5 16.4 13.5

1.3 13.0 10.9 16.0 13.8 12.1 9.3 16.4 13.8

1.5 12.9 11.0 16.5 14.1 11.5 8.9 16.5 13.5

2 12.3 10.4 16.9 13.5 10.7 8.5 15.9 13.5

2.5 12.0 10.1 16.1 14.4 10.3 8.1 15.6 13.2

3 11.8 9.9 16.9 15.4 9.9 7.8 15.4 12.9

3.5 11.7 9.8 17.0 15.2 9.5 7.5 15.0 12.6

4 11.5 9.7 17.8 14.3 9.3 7.4 14.8 12.5

4.5 11.5 9.5 17.1 14.5 9.1 7.3 14.7 12.0

5 11.5 9.4 17.1 14.6 9.1 7.3 14.5 11.7

6 11.5 9.4 16.2 14.0 8.6 7.1 13.8 11.8

8 11.2 9.4 14.5 11.9 8.1 7.0 12.3 9.8

10 10.4 9.0 14.3 11.9 7.8 6.8 10.7 8.4

TABLE 6. Evolution of the achieved wealths according to the tuning parameter of
B1POL andB2POL. Computations are realized on random samples of size 100, geometric
means are displayed.

competitors the more often are set in bold face. Globally,B1EXP seems to have the best results
in terms of accumulated wealth, but there are some fine variations which should be mentioned.
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ST. EG B1EXP B1POL GBH GBH2 B2POL Cover’s UBH B-CRP

2 16.2 16.2 12.4 13.6 13.6 12.0 15.5 13.6 21.0

3 19.3 19.4 15.6 16.1 15.5 13.8 18.4 14.9 30.2

5 20.0 20.3 16.6 18.0 16.3 13.2 19.6 14.9 39.6

8 21.3 21.7 20.9 20.2 17.6 17.4 21.2 15.4 53.9

10 21.2 21.7 19.3 20.6 17.7 15.3 21.3 15.2 61.2

12 20.9 21.5 18.1 20.5 17.3 16.0 21.1 14.6 62.4

15 21.9 22.5 20.4 21.8 18.3 17.6 22.2 15.3 72.3

18 21.0 21.6 17.8 21.1 17.9 16.0 21.4 15.0 76.3

20 21.3 21.9 19.7 21.5 18.1 17.5 21.8 15.2 80.3

25 21.4 22.0 20.5 21.6 18.2 17.1 21.9 15.2 85.9

2 14.9 14.9 10.6 13.7 13.7 10.6 14.5 13.7 20.2

3 16.8 16.8 11.1 14.9 14.5 9.9 16.2 14.2 26.9

5 18.5 18.6 11.5 17.2 16.1 9.6 18.1 15.0 36.3

8 17.8 17.9 9.6 17.2 15.9 9.3 17.6 14.7 46.1

10 18.9 19.1 10.3 18.3 16.5 8.6 18.8 14.9 51.2

12 19.0 19.2 10.4 18.7 17.0 9.4 19.0 15.4 57.4

15 19.9 20.1 10.2 19.7 17.6 9.0 19.9 15.7 65.1

18 19.1 19.3 8.9 19.0 17.0 7.7 19.2 15.1 67.3

20 18.5 18.7 9.2 18.5 16.6 7.7 18.6 14.9 68.1

25 19.1 19.3 10.0 19.2 17.2 7.7 19.3 15.3 75.8

TABLE 7. Arithmetic means of the wealths achieved on randomly selected sets of
stocks, repeated 100 times. Monthly rebalancing. A different sample was drawn for
each line of this table. Top lines correspond to a no transaction cost setting, whereas the
bottom lines consider the case of2% transaction costs.

First, EG is better thanB1EXP when the portfolio is reduced to two stocks only. The reason that
in this case the internal regret is nothing else than the external regret and the exponential weighted
algorithm on whichEG is based is known to be optimal for the minimization of the external regret.
Second, in the presence of transaction costs and for a daily rebalancing,GBH performs well. This
is due to its closeness to buy-and-hold. Interestingly enough, it performs considerably better than
buy-and-hold, which is known to be valuable in the presence of such heavy transaction costs. Sur-
prisingly enough,GBH2, which was designed to be a modification ofGBH suffering a low external
regret with respect to buy-and-hold, performs quite poorlycompared toGBH. Actually, the wealths
achieved byGBH2 seem to interpolate those ofGBH and the uniform buy-and-hold strategy. Fi-
nally, the at first sight naiveU-CRP strategy seems to have interesting results, as already noted in
[BoElGo00], even though there are no theoretical guarantees for its universality (see for instance
Table 12).

Finer comparison. After this global comparison, we compareB1EXP more carefully with the
best opponents in case of no transaction costs, which areEG andB1POL. The comparison toEG

is done in Table 10 which shows the geometric and arithmetic averages obtained, as well as the
number of timesB1EXP won and also by how much each algorithm outperformed the other. The
value of∆+ indicates the maximal gap betweenB1EXP andEG (in the favour of the former) on the
100 elements of the randomly selected sample and∆− is in favour of the latter. We conclude from
this table that (in case of no transaction costs)B1EXP is quite often better thanEG, and even when it
is outperformed byEG, the wealth then achieved byEG is just a bit smaller. The difference between
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ST. EG B1EXP B1POL GBH GBH2 B2POL Cover’s UBH B-CRP

2 19.3 19.2 11.4 13.6 13.6 10.3 17.2 13.6 20.4

3 24.8 24.8 13.0 16.2 15.1 10.8 21.6 13.9 28.8

5 31.6 32.0 16.5 23.6 19.4 11.9 29.1 15.6 47.9

8 28.2 28.5 16.7 25.2 19.6 13.9 27.4 15.1 59.5

10 26.2 26.4 17.5 24.7 19.1 15.2 25.8 14.5 67.3

12 29.0 29.3 18.5 27.8 20.4 15.5 28.7 14.6 87.1

15 27.6 27.8 18.0 27.2 20.2 15.3 27.7 14.7 98.6

18 29.3 29.5 19.1 29.0 21.2 16.2 29.3 15.1 121.8

20 28.1 28.4 18.3 28.0 20.8 16.4 28.3 15.0 120.3

25 28.9 29.0 19.1 28.9 21.2 17.3 29.0 15.1 153.9

2 18.4 18.3 9.7 15.9 15.9 8.3 17.5 15.9 19.0

3 17.4 17.4 8.0 15.3 14.9 6.8 16.6 14.4 21.1

5 18.6 18.6 5.7 17.0 15.8 4.4 18.0 14.5 28.2

8 18.9 18.9 5.0 18.0 15.9 3.9 18.5 13.7 36.7

10 20.3 20.3 5.2 19.9 17.5 3.7 20.1 15.1 43.5

12 20.9 20.9 5.3 20.5 17.4 4.0 20.7 14.5 51.3

15 19.7 19.6 4.6 19.8 17.0 3.7 19.6 14.5 55.3

18 20.7 20.6 4.8 20.8 17.8 3.9 20.6 14.9 66.3

20 20.3 20.2 4.2 20.4 17.4 3.4 20.2 14.7 71.6

25 20.5 20.3 4.5 20.6 17.7 3.6 20.4 15.0 83.7

TABLE 8. Arithmetic means of the wealths achieved on randomly selected sets of
stocks, repeated 100 times. Daily rebalancing. A differentsample was drawn for each
line of this table. Top lines correspond to a no transaction cost setting, whereas the bot-
tom lines consider the case of1% transaction costs.

Stat. EG B1EXP B1POL GBH GBH2 B2POL Cover’s UBH

Min. 13.2 13.6 6.6 13.0 11.5 4.7 13.4 8.8

Ar. av. 20.9 21.5 18.1 20.5 17.3 16.0 21.1 14.6

Geo. av. 20.5 21.0 16.1 20.1 17.0 13.8 20.7 14.4

Max. 32.9 34.6 56.3 31.7 24.9 60.9 33.7 20.9

St. dev. 4.6 4.9 9.3 4.3 3.2 9.5 4.7 2.8

TABLE 9. Statistical characterization of the wealths achieved on the random sample
corresponding to12 stocks without transaction costs and monthly rebalancing.The
minimum, arithmetic and geometric averages, maximum, and standard deviation of the
achieved wealths are shown.

the two algorithms seems to be especially large whenη is large, that is, for monthly rebalancing
and/or many stocks. Table 9 reveals thatB1POL andB2POL are not serious contenders because of
their huge standard deviation and the extreme values. This is also illustrated by the catastrophic
results of these algorithms in the presence of transaction costs and for a daily rebalancing, see
Table 8. The reason is thatB1POL andB2POL reallocate just too quickly, which can be good or
bad. (See Figure 4.) This happens because of the property of the polynomial potential that only
the nonnegative internal regrets count in the computation of the wealth allocation, and therefore
when one stock dominates, almost all the weight is put on it, which is of course dangerous.
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Geom. Avg. Arith. Avg. Max.

ST. TC EG B1EXP EG B1EXP Freq. ∆− ∆+

2 0 % 14.0 13.9 16.2 16.2 12 0.47 0.19

3 0 % 17.0 17.0 19.3 19.4 80 0.02 0.17

5 0 % 18.5 18.6 20.0 20.3 82 0.12 2.23

8 0 % 20.4 20.8 21.3 21.7 92 0.17 2.30

10 0 % 20.6 21.1 21.2 21.7 95 0.21 1.53

12 0 % 20.5 21.0 20.9 21.5 99 0.05 1.66

15 0 % 21.5 22.1 21.9 22.5 98 0.08 1.45

18 0 % 20.7 21.3 21.0 21.6 100 1.65

20 0 % 21.2 21.7 21.3 21.9 100 1.74

25 0 % 21.3 21.9 21.4 22.0 100 1.18

2 2 % 13.0 12.9 14.9 14.9 27 0.30 0.22

3 2 % 15.0 15.0 16.8 16.8 65 0.05 0.09

5 2 % 17.4 17.5 18.5 18.6 72 0.20 1.42

8 2 % 17.2 17.3 17.8 17.9 72 0.42 1.36

10 2 % 18.2 18.4 18.9 19.1 82 0.19 1.46

12 2 % 18.6 18.8 19.0 19.2 73 0.27 1.30

15 2 % 19.6 19.8 19.9 20.1 84 0.18 0.85

18 2 % 18.8 19.0 19.1 19.3 81 0.19 1.20

20 2 % 18.3 18.5 18.5 18.7 84 0.30 0.70

25 2 % 19.1 19.3 19.1 19.3 88 0.23 0.50

TABLE 10. Extensive comparison between the performances ofEG andB1EXP on the
samples of Table 7.

Ptf. EG B1EXP B1POL GBH GBH2 B2POL Cover’s UBH U-CRP

L12 4.20 4.20 4.61 4.21 4.25 4.64 4.20 4.31 4.20

M12 4.68 4.67 6.32 4.68 4.77 6.71 4.68 4.93 4.67

H12 6.79 6.74 8.12 6.78 6.89 8.32 6.77 7.13 6.73

L24 4.32 4.30 5.66 4.31 4.40 5.84 4.31 4.55 4.30

H24 5.40 5.35 7.40 5.37 5.44 7.94 5.35 5.61 5.35

A36 4.87 4.81 6.94 4.83 4.94 7.21 4.81 5.13 4.81

L12 0.83 0.83 0.88 0.83 0.84 0.89 0.83 0.85 0.83

M12 0.88 0.88 1.11 0.88 0.90 1.14 0.88 0.93 0.88

H12 1.17 1.16 1.82 1.20 1.20 1.96 1.17 1.28 1.15

L24 0.82 0.82 1.01 0.83 0.84 1.03 0.82 0.86 0.82

H24 0.92 0.91 1.45 0.93 0.96 1.54 0.92 1.03 0.91

A36 0.85 0.85 1.25 0.85 0.88 1.28 0.85 0.94 0.85

TABLE 11. Volatilities (multiplied by 100) for portfolios chosen according to their
volatilities, for monthly rebalancing (top lines) as well as for daily rebalancing (bottom
lines).



Ptf. EG B1EXP B1POL GBH GBH2 B2POL Cover’s UBH U-CRP

L12 10.9 11.1 7.6 10.8 10.1 7.7 11.0 9.4 11.2

M12 17.2 17.1 22.9 17.1 16.9 21.9 17.0 16.7 17.1

H12 36.3 39.0 12.8 34.6 25.3 10.2 37.8 17.6 39.8

L24 13.9 14.0 19.8 14.0 13.5 15.7 14.1 13.1 14.1

H24 26.7 27.8 41.3 27.1 21.8 21.7 27.6 17.2 28.0

A36 20.5 21.1 30.9 20.8 17.5 22.5 20.7 14.5 21.1

L12 12.3 12.4 6.7 12.0 11.1 6.5 12.2 10.1 12.4

M12 16.1 16.2 9.9 15.8 14.8 9.4 16.0 13.9 16.2

H12 78.1 81.0 40.8 67.9 40.2 21.9 76.0 19.5 81.9

L24 14.3 14.4 9.3 14.2 13.1 9.0 14.4 12.0 14.4

H24 38.2 38.7 25.6 38.1 26.1 21.9 38.6 16.7 38.8

A36 26.9 27.1 20.2 27.1 20.2 17.4 27.0 14.5 27.1

TABLE 12. Wealths achieved by the portfolios of Table 11. In each line,the wealth
obtained by the best adaptive algorithm is set in bold face.
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FIGURE 4. Evolution of the achieved wealths and of the wealth allocations on two typ-
ical examples. Stocks used for top graphs: Sher Will, Texaco, AHP, Espey, Helwett
Packard. For bottom graphs: Gulf,JNJ, Mei Corp., Pillsbury, Schlum.

Tables 11 and 12 are given for sake of completeness as well as to allow comparison with
[HeScSiWa98]. The algorithms are run on portfolios chosen according to the volatilities of the
stocks. (See Remark 8.3 for a formal definition of the volatility.) Three groups were formed by
putting the 12 lowest volatility stocks in the first group (L12), then the 12 highest in the second
(H12) and the 12 remaining in the third group (M12). The groupformed by L12 and M12 is called
L24, the one of M12 and H12 is denoted by H24. Finally, the set of all 36 stocks is referred to as
A36. Note that theB1EXP strategy has almost always the lowest volatilities. Thanksto its aggres-
sive rebalancing, theB1POL strategy has interesting achieved wealths for monthly rebalancing.
Nevertheless, theB1EXP investment scheme has globally the higher returns.





CHAPTER 8

Learning correlated equilibria in games with compact sets of
strategies

In this final chapter, we study Hart and Schmeidler’s extension of correlated equilibrium to
games with infinite sets of strategies. General properties of the set of correlated equilibria are
described. It is shown that, just like for finite games, if allplayers play according to an appropriate
regret–minimizing strategy then the empirical frequencies of play converge to the set of correlated
equilibria whenever the strategy sets are convex and compact.
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Most of this chapter is based on the submitted paper [StLu04]. The section about convergence
to linear correlated equilibria is however published here for the first time.
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1. Introduction

Correlated equilibrium, introduced by Aumann [Aum74, Aum87] is arguably one of the most
natural notions of equilibrium. Put simply, a correlated equilibrium is a joint distributionπ over
the set of strategies of the players that has the property that if, before taking an action, each player
receives a recommendation such that the recommendations are drawn randomly according to the
joint distribution ofπ, then, in an average sense, no player has an incentive to divert from the
recommendation, provided that all other players follow theirs. The distinguishing feature of the
notion is that, unlike in the definition of Nash equilibria, the recommendations do not need to be
independent. Indeed, ifπ is a product measure, it becomes a Nash equilibrium.

A remarkable property of correlated equilibrium, pointed out by Foster and Vohra [FoVo97],
is that if the game is repeated infinitely many times such thatevery player plays according to a
certain regret–minimization strategy, then the empiricalfrequencies of play converge to the set of
correlated equilibria. (See also Fudenberg and Levine [FuLe99], Hart and Mas–Colell [HaMa00,
HaMa01, HaMa02].) No coordination is necessary between the players, and the players don’t
even need to know the others’ payoff functions. Hart and Mas–Colell [HaMa03] show that Nash
equilibrium does not share this property unless the game hasquite special properties, see however
Section 5.

The definition of correlated equilibrium was extended to infinite games by Hart and Schmei-
dler [HaSc89]. The purpose of this chapter is to study the correlated equilibria of a large class
of infinite games. In Section 2 we recall Hart and Schmeidler’s extended definition, and propose
some equivalent formulations. One of them may be given by discretizing the sets of strategies,
considering correlated equilibria of the discretized (finite) games, and taking appropriate limits as
the discretization becomes finer (see Theorem 8.2). Some basic properties of correlated equilibria
are described. In particular, under general conditions, the set of correlated equilibria is a compact
convex set (see Theorem 8.1).

The main result of the chapter (Theorems 8.3 and 8.4) generalizes the above–mentioned result
of Foster and Vohra to the case when the sets of strategies arecompact and convex subsets of a
normed space, and the payoff function of playerk is continuous. It is shown that convergence of
the empirical frequencies of play to the set of correlated equilibria can also be achieved in this
case, by playing internal regret–minimizing strategies, where the notion of internal regret has to
be generalized to the case of games with infinite strategy sets. The proof of the main theorem is
given by a sequence of results, by broadening the class of departure functions in each step.

We then indicate a connection between the correlated equilibria of a finite game and those of
its mixed extension. We show that in some sense, these are equivalent.

We conclude the chapter with a note about the computability of the offered procedures. We
focus especially on on-line linear regression, and provideefficient internal and external regret
minimizing forecasting schemes.

2. Definition of correlated equilibrium

2.1. Refined definition. The notion of correlated equilibrium was introduced by Aumann
[Aum74, Aum87] who assumed that the sets of strategies are finite, and extended later by Hart
and Schmeidler [HaSc89] to infinite games.

Formally, consider anN–person game in strategic (normal) form

Γ =
(
{1, . . . , N}, (Si)16i6N , (h

i)16i6N )
)
,
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where{1, . . . , N} is the finite set of players, playeri is given a (non necessarily finite) set of
strategiesSi and a payoff functionhi : S → R. The set ofN–tuples of strategies is denoted by
S = S1 × S2 × . . .× SN . We use the notations = (s−i, si), where

s−i = (s1, . . . , si−1, si+1, . . . , sN )

denotes the strategies played by everyone but playeri. We write s−i ∈ S−i, whereS−i =∏
j 6=i S

j .

Some assumptions on the topology of theSk are required. More precisely, assume that theSk

are topological spaces, equipped with their Borelσ–algebra (that is, theσ–algebra generated by
the open sets). ThenS is naturally equipped with a (product) topology and a (product) σ–algebra.
We can now consider (Borel) probability measures overS.

Hart and Schmeidler’s original definition1 [HaSc89] states that a correlated equilibriumπ of
the gameΓ is a (joint) probability distribution overS such that the extended gameΓ′ defined below
admits theN–tuple of identity functionsSk → Sk as a Nash equilibrium. The strategy sets ofΓ′

are given, for playerk, by the setFk of all measurable mapsSk → Sk, and the game is played as
follows: each playerk chooses his actionψk ∈ Fk, a signal (sometimes called recommendation)
I = (I1, . . . , IN ) ∈ S is drawn randomly according toπ, playerk is told thek–th component of
the signal,Ik, and he finally playsψk(Ik).

We remark here that the setFk of allowed departures for playerk may actually be taken as
a (sometimes proper) subset of the setL0(Sk) of all measurable departuresSk → Sk, with the
only restriction that it should contain the identity map. Wethen define a(Fk)16k6N–correlated
equilibrium similarly as above except that we consider departure functionsψk only from the class
Fk, k = 1, . . . , N . In the simplest casesFk may be a finite set, but we also consider larger classes
Fk given by the set of all linear functions, all continuous functions, or all measurable functions.

A more formal statement is the following one. We restrict ourattention to real–valued,
bounded, and measurable or, alternatively, nonnegative and measurable, payoff functionshk.

DEFINITION 8.1. A (Fk)16k6N–correlated equilibriumis a (joint) distributionπ overS such
that for all playersk and all departure functionsψk ∈ Fk, one has

(8.1) Eπ

[
hk(I−k, Ik)

]
> Eπ

[
hk(I−k, ψk(I

k))
]
,

where the random vectorI = (Ik)16k6N , taking values inS, is distributed2 according toπ.
π is a (Fk)16k6N–correlatedε–equilibrium if for all k and allψk ∈ Fk,

Eπ

[
hk(I−k, Ik)

]
> Eπ

[
hk(I−k, ψk(I

k))
]
− ε .

A correlated equilibrium may be interpreted as follows. In an average sense (the average
being given by the randomization associated with the signal), no player has an incentive to divert
from the recommendation, provided that all other players follow theirs. The distinguishing feature
of this notion is that, unlike in the definition of Nash equilibria, the random variablesIk do not
need to be independent. Indeed, ifπ is a product measure, it becomes a Nash equilibrium. This
also means that correlated equilibria always exist as soon as Nash equilibria do, which is ensured
under minimal assumptions (see Remark 8.1). Their existence may however also be seen without
underlying fixed point results, see Hart and Schmeidler [HaSc89].

1Note that we only consider games with finitely many players, and therefore avoid some of the difficulties arising in
games with an infinite number of players.
2Note that one can always take forI the identity map overS, thought of as a random vector defined on the probability
space(S, π).
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REMARK 8.1. In the definition of correlated equilibria we consider an extension of the original
game. But note that under minimal assumptions (e.g., if the sets of strategiesSk are convex
compact subsets of topological vector spaces and the payoffshk are continuous and concave in the
k–th variable) there exists a Nash equilibrium in pure strategies (see, e.g., [Aub79]). Each pure
Nash equilibrium corresponds to a(L0(Sk))16k6N–correlated equilibriumπ given by a Dirac
measure overS. Clearly,π is a mixed Nash equilibrium if and only if it is a(L0(Sk))16k6N–
correlated equilibrium equal to the product of its marginals.

EXAMPLE 8.1. Assume that eachSk is a convex and compact subset of a normed vector
space, and that each payoff functionhk is continuous. In Section 3.6 we show that the set of
(L0(Sk))16k6N–correlated equilibria coincides with the set of(C(Sk))16k6N–correlated equi-
libria (whereC(Sk) is the set of all continuous functions mappingSk in Sk). This set is convex,
compact, and contains the non–empty set of (pure and mixed) Nash equilibria.

For the sake of completeness, we give an analog of the conditional definition which is usually
proposed as a definition for correlated equilibria in the case of finite games: provided that theSk

are finite sets, acorrelated equilibrium is a (joint) distributionπ overS such that for all playersk
and all functionsψk : Sk → Sk, one has

∑

s∈S

π(s−k | sk)
(
hk(s−k, sk) − hk(s−k, ψk(s

k))
)

> 0 ,

whereπ( · | sk) is the conditional distribution ofS−k given that playerk is advised to playsk.
Now, recalling that we denote byL0(Sk) the set of all measurable functions overSk, we have the
following conditional definition in the general case where the game may be finite or infinite. The
proof is immediate.

PROPOSITION8.1. Under the above measurability assumptions, a distributionπ overS is a
(L0(Sk))16k6N–correlated equilibrium if and only if for all playersk and all measurable depar-
ture mapsψk : Sk → Sk,

Eπ

[
hk(I−k, Ik) | Ik

]
> Eπ

[
hk(I−k, ψk(I

k)) | Ik
]
,

where the random vectorI = (Ik)16k6N is distributed according toπ.

Finally, a last link between the usual definition for finite games and the one for infinite games
is given in Section 5.

2.2. Basic properties of(Fk)16k6N–correlated equilibria. Fix the set of allowed depar-
turesFk, 1 6 k 6 N , and denote byΠ the set of all(Fk)16k6N–correlated equilibria. It is
immediate from the definition thatΠ is a convex set, and that it contains the set of Nash equilibria
(which is known to be non–empty under minimal assumptions, see Remark 8.1 above).

For the subsequent analysis we need to establish a topological property ofΠ, namely its com-
pactness. To this end, we assume that eachSk is a Polish space, that is,Sk is a complete and
separable metric space. Then the productS is also Polish, and it is well–known that Borel proba-
bility measures overS are regular. Denote byC(S,R) the set of bounded continuous real–valued
functions overS. The set of Borel probability measures overS, denoted byP(S), (and more pre-
cisely, the set of all nonnegative and finite Borel measures overS) is equipped with theC–weak–∗
topology. This is the weakest topology such that, for eachf ∈ C(S,R), the linear mapµ → µ[f ]

defined forµ ∈ P(S) is continuous, whereµ [f ] =
∫
S fdµ. That is, the open sets of this topology

are generated by the sets
{µ ∈ P(S) : µ [f ] < α} ,
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wheref is any element ofC(S,R) andα any real number.
Assume furthermore3 that theSk are compact. ThenS is also a compact set (andC(S,R)

is simply the set of all continuous real valued functions over S). Recall the following simple
statement of Prohorov’s theorem, see [EtKu86]:

PROPOSITION8.2 (Prohorov’s theorem).If S is a compact metric space, then the spaceP(S)

is compact. Its topology is equivalent to the topology of theso–called Prohorov metric. In par-
ticular, P(S) is sequentially compact, that is, every sequence of elements fromP(S) contains a
convergent subsequence.

The next result summarizes some of the basic properties of the setΠ. Recall that by Example
8.1, under some mild conditions, the set of correlated equilibria with respect to all measurable
departures equals the set of correlated equilibria with respect to all continuous departures. Thus,
the assumption in the following theorem that departure functions are continuous may be weakened
in some important cases.

THEOREM 8.1. Assume that the strategy spacesSk are compact metric spaces. The setΠ of
(Fk)16k6N–correlated equilibria is non–empty whenever the payoff functionshk are continuous
over S. Moreover,Π is a convex set, which contains the convex hull of Nash equilibria. If, in
addition, for all k, the payoff functionshk are continuous andFk ⊂ C(Sk), whereC(Sk) is the
set of all continuous functions mappingSk into Sk, thenΠ is compact.

PROOF. The non–emptiness ofΠ under the assumption of continuity of the payoff functions
follows either from Theorem 3 of Hart and Schmeidler [HaSc89] or, alternatively, from the ex-
istence of a mixed Nash equilibrium. (The latter may be shownby checking the hypotheses of a
version of Nash’s theorem stated in Remark 8.1, which follows easily by an application of Pro-
horov’s and Stone–Weierstrass theorems.)

It remains to prove the compactness ofΠ under the given assumptions. By Prohorov’s theo-
rem,Π is included in a compact set, therefore it is enough to prove thatΠ is a closed set. To this
end, consider the continuous real–valued function overS defined by

fk,ψk
(s) = hk(s−k, sk) − hk(s−k, ψk(s

k)) ,

where1 6 k 6 N andψk ∈ Fk ⊂ C(Sk). Eachfk,ψk
is a continuous real–valued function overS

andΠ is the intersection of the closed half–spaces

{µ ∈ P(S) : µ [fk,ψk
] > 0} .

�

REMARK 8.2. Note that in general, contrary to the finite case, the setof correlated equilibria
of a non-finite game, though given by an intersection of closed halfspaces, is not necessarily a
convex polyhedron, as the intersection may be infinite. Nevertheless, if theFk are finite sets
and theSk are subsets of finite dimensional spaces, then the above proof shows that the set of
(Fk)16k6N–correlated equilibria is a convex polyhedron.

2.3. Discretized games.An alternative natural definition of correlated equilibrium in games
with infinite strategy spaces is obtained by discretization. The idea is to “discretize” the sets of
strategies and consider the set of correlated equilibria ofthe obtained finite game. Now appropriate
“limits” may be taken as the discretization gets finer. In this section we make this definition precise
and show that the obtained definition coincides, under general conditions, with the definition given
above when one allows all measurable departure functions.

3Note that a compact metric space is always Polish.
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A (P,D) discretization of the gameΓ =
(
{1, . . . ,N}, (Si)16i6N , (h

i)16i6N )
)

is given
by a product partitionP, a grid D and induced payoffshkd, 1 6 k 6 N . More precisely, a
product partition is anN–tuple(P1, . . . ,PN ), where eachPk is a finite measurable partition of
the corresponding strategy setSk, which we denote byPk = {V k

1 , . . . , V
k
Nk

}. In every setV k
i ,

1 6 k 6 N , 1 6 i 6 Nk, we pick an arbitrary elementtki ∈ V k
i . These points form agrid

Dk = {tk1 , . . . , tkNk
}. We writeD = D1 × . . .×DN . The induced payoffshkd are obtained simply

by restricting the original payoff functions to the gridD.
Now, for a given discretization(P,D), a distributionπ overS induces a discrete distribution

πd over the gridD by

πd
(
t1i1 × . . .× tNiN

)
= π

(
V 1
i1 × . . . × V N

iN

)
.

The sizer of a discretization(P,D) is the maximal diameter of the setsV k
i , 1 6 k 6 N ,

1 6 i 6 Nk. If eachSk is compact, then every discretization has a finite size. Thenwe have the
following characterization of correlated equilibria withrespect to all measurable departures. (The
fairly straightforward proof is postponed to the end of thischapter.)

THEOREM 8.2. Assume that all strategy spacesSk are convex and compact subsets of a
normed space and that thehk are continuous functions overS. Then a probability distribution
over S is a (L0(Sk))16k6N–correlated equilibrium of the gameΓ if and only if there exists a
functionε with limr→0 ε(r) = 0 such that for all discretizations(P,D) of sizer, π induces an
ε(r)–correlated equilibrium.

Note that the above result is more precise than the results contained in the proofs of Theorems
2 and 3 of Hart and Schmeidler [HaSc89], where a correlated equilibrium of a given game with
infinite strategy sets was only seen as a cluster point of the set of correlated equilibria of the
discretized games.

3. Regret minimization and convergence in repeated games

One of the remarkable properties of correlated equilibriumin finite games is that if the game is
played repeatedly many times such that every player plays according to a certain regret–minimiza-
tion strategy then the empirical frequencies of play converge to the set of correlated equilibria.
No coordination is necessary between the players, the player don’t even need to know the oth-
ers’ payoff functions. This property was first proved by Foster and Vohra [FoVo97], see also
Fudenberg and Levine [FuLe99], Hart and Mas–Colell [HaMa00, HaMa01, HaMa02], Lehrer
[Leh97, Leh03].

The purpose of this section is to investigate to what extent the above–mentioned convergence
result can be extended to games with possibly infinite strategy spaces.

We consider a situation in which the gameΓ is played repeatedly at time instancest = 1, 2, . . ..
The players are assumed to know their own payoff function andthe sequence of strategies played
by all players up to timet− 1. (This is known as the uncoupledness property in the literature, see
Hart [Har04].)

The main result of the chapter, summarized in the following theorem, shows that under general
conditions, if all players follow a certain regret–minimizing strategy, the empirical frequencies of
play converge to the set of correlated equilibria. Thus, on the average, a correlated equilibrium is
achieved without requiring any cooperation among the players.

THEOREM 8.3 (Main result).Assume that all the strategy spacesSk are convex and compact
subsets of a normed space and all payoff functionshk are continuous overS and concave in the
k–th strategy. Then there exists a regret minimizing strategy such that, if every player follows such
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a strategy, then joint convergence of the sequence of empirical plays to the set of(L0(Sk))16k6N–
correlated equilibria is achieved.

Thus, the convergence result extends, under quite general assumptions, even if all possible
measurable departure functions are allowed in the definition of correlated equilibrium. The only
restrictive assumption is the concavity of the payoffs. This condition may be removed by allowing
the players to use randomized strategies. The next theorem asserts that almost sure convergence
of the empirical frequencies of play to the set of correlatedequilibria is achieved under the only
assumption that the payoff functions are continuous.

THEOREM 8.4 (Main result, randomized version).Assume that all strategy spacesSk are
convex and compact subsets of a normed space and all payoff functionshk are continuous overS.
If the players are allowed to randomize, then there exists a regret minimizing strategy such that,
if every player follows such a strategy, then (almost surelywith respect to the auxiliary random-
izations used) joint convergence of the sequence of empirical plays to the set of(L0(Sk))16k6N–
correlated equilibria is achieved almost surely.

Of course, under the assumptions of Theorem 8.3 (or 8.4), there exist Nash equilibria in pure
(or mixed) strategies, see Remark 8.1. But we note that the mentioned theorems lead to the inter-
esting by-product that the set of correlated equilibria arenon-empty (the latter property is indeed
not required for their proofs). They provide a constructiveand in this chapter self–contained proof
of the following existence result.

COROLLARY 8.1. Under the assumptions of Theorem 8.4, and with its notation,the set of
(L0(Sk))16k6N–correlated equilibria is non–empty.

Note that our internal regret minimizing procedures below use the same kind of argument that
those used in the direct existence proofs for correlated equilibria proposed by [HaSc89] – where a
direct proof means a proof that does not make use of the argument that Nash equilibria are special
cases of correlated equilibria.

REMARK 8.3. Even though players played independently, there is correlation in the limiting
distributions, since these are given by correlated equilibria of the one-shot game. This is due to the
minimal form of coordination that lies in all players’ decisions to play internal regret minimizing
strategies.

Theorems 8.3 and 8.4 are proved below by a series of results, some of which may be of
independent interest. In particular, we define a notion of internal regret in the case of games with
infinite strategy sets. Moreover, we give precise upper bounds for this internal regret in some
cases, see Theorems 8.7 and 8.8, as well as Section 3.8.

REMARK 8.4. The regret minimizing strategies considered in Theorem 8.3 are deterministic
in the sense that players do not need to randomize. This is made possible because of the concavity
assumption on the payoffs. An example is the mixed extensionof a finite game, which may be
seen to satisfy the assumptions of Theorem 8.3. This means that if the game is played in the mixed
extension (i.e., in each round the players output a probability distribution over the set of actions,
and get as payoffs the expectations of their original payofffunctions under these distributions),
then joint convergence to the set of correlated equilibria (with respect to all measurable departures
or just linear departures) may be achieved in the mixed extension, in a non-randomized way. It
is easy to see that any of these sets of correlated equilibriaof the mixed extension induces, in a
natural way, the set of correlated equilibria of the underlying finite game. Thus, our algorithm
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generalizes the (randomized) algorithms designed for the case of finite games. See Section 4 for
more details.

3.1. Internal regret. The notion of correlated equilibrium is intimately tied to that of internal
(or conditional) regret. Intuitively, internal regret is concerned with the increase of a player’s
payoff gained by simple modifications of the played strategy. If a simple modification results in a
substantial improvement then a large internal regret is suffered.

The formal definition of internal regret (see, e.g., [FoVo99]) may be extended to general games
in a straightforward manner as follows: letFk be a class of functionsψk : Sk → Sk. As the
gameΓ is repeated, at each roundt, playerk could play consistentlyψk(skt ) whenever his strategy
prescribes him to playskt ∈ Sk. This results in a different strategy, called theψk–modified strategy.
The maximal cumulative difference in the obtained payoffs for playerk, for n rounds of play,
equals

Rk
ψk,n

= max
s−k
1 ,...,s−k

n

(
n∑

t=1

hk(s−kt , ψk(s
k
t )) −

n∑

t=1

hk(s−kt , skt )

)
,

where the maximum is taken over all possible sequences of opponent players’ actions. We call
Rk
ψk,n

the internal regret of playerk with respect to the departureψk at roundn. The intuition is

that ifRk
ψk,n

is not too large, then the original strategy cannot be improved in a simple way.
We say that a strategy for playerk suffers no internal regret (or minimizes his internal regret)

with respect to a classFk of departureswhenever

lim sup
n→∞

1

n
Rk
ψk,n

6 0 ,

for all ψk ∈ Fk. The departure functions play a similar role as in the general definition of cor-
related equilibria. As in the finite case, if all players minimize their internal regrets, then joint
convergence of the sequence of empirical distribution of plays to the set of correlated equilibria is
achieved. Denote bys1, . . . , sn the played strategies up to timen. We denote byπn the empirical
distribution of plays up to timen:

πn =
1

n

n∑

t=1

δst ,

whereδs is the Dirac mass ons ∈ S. More precisely, we have the following convergence result
generalizing the corresponding statement of Foster and Vohra [FoVo97] for finite games.

THEOREM 8.5. If each playerk minimizes his internal regret with respect to a departure class
Fk, then, provided that theSk are compact metric spaces, thehk are continuous, andFk ⊂ C(Sk)

for all k, the empirical distribution of plays(πn)n∈N converges to the set of(Fk)16k6N–correlated
equilibria.

PROOF. The assumption on the internal regrets may be rewritten as

(8.2) lim sup
n→∞

Eπn

[
hk(I−k, ψk(I

k))
]
− Eπn

[
hk(I−k, Ik)

]
6 0

for all k and allψk ∈ Fk, whereI = (Ik)16k6N is the identity map overS, defined on the prob-
ability space(S, πn) (Eπn simply denotes expectation with respect to this probability measureπn
overS). By Prohorov’s theorem, the sequence(πn)n∈N lies in a compact metric space. Thus, if the
whole sequence did not converge to the set of(Fk)16k6N–correlated equilibria, we could extract
from it a subsequence(πφ(n))n∈N, whereφ is an increasing functionN → N, such that(πφ(n))n∈N

converges to a probability measureπ which is not a(Fk)16k6N–correlated equilibrium. That is,
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there exists a playerk, 1 6 k 6 N , and a departureψk ∈ Fk such that

(8.3) Eπ

[
hk(I−k, Ik)

]
< Eπ

[
hk(I−k, ψk(I

k))
]
.

But (8.2) ensures that

lim sup
n→∞

Eπφ(n)

[
hk(I−k, ψk(I

k))
]
− Eπφ(n)

[
hk(I−k, Ik)

]
6 0 .

By continuity of the functionfk,ψk
defined by

fk,ψk
(s) = hk(s−k, sk) − hk(s−k, ψk(s

k)) , s ∈ S

and by the definition of the weak–∗ topology overP(S), we have

lim
n→∞

Eπφ(n)

[
hk(I−k, ψk(I

k))
]
− Eπφ(n)

[
hk(I−k, Ik)

]

= Eπ

[
hk(I−k, ψk(I

k))
]
− Eπ

[
hk(I−k, Ik)

]
6 0 ,

which contradicts (8.3), thus proving the desired convergence. �

REMARK 8.5. The above proof shows that the uniformity over the opponents’ plays required
in the definition of internal regret is not needed to get the convergence result of Theorem 8.5.
A kind of Hannan consistency with respect to the departures indexed by the class is enough.
However, for all the algorithms introduced below, we are able to prove uniform bounds.

Theorem 8.5 shows that in order to guarantee convergence of the empirical frequencies of
play to the set of correlated equilibria, it suffices that allplayers use a strategy that minimizes
their internal regret. Note that the main issues in designing such a strategy concern the size of
the set of allowed departuresFk. For finites games, the measurable departuresSk → Sk are
given by all functionsSk → Sk, which are in finite numbermmk

k , wheremk is the cardinality of
Sk. If Sk is infinite (countably or continuously infinite), there isa priori an infinite number of
departures. In particular, a simple procedure allocating aweight per each departure function, as
was proposed in the finite case in Foster and Vohra [FoVo99] and Hart and Mas–Colell [HaMa01],
would probably be impossible if the set of allowed departures was too large. Thus, previous
learning algorithms cannot be generalized as easily as the definition could be carried over to the
infinite case. Designing new learning algorithms for some general classes of infinite games will
be the point of the subsequent sections.

3.2. Blackwell’s condition. Regret–minimization strategies have been often derived from
Blackwell’s approachability theorem [Bla56]. Here however, we do not need the full power of
Blackwell’s theory, only a few simple inequalities derivedin Cesa–Bianchi and Lugosi [CeLu03]
which we briefly recall (see also Remark 3.2 and Section 4.2 ofChapter 7).

Consider a sequential decision problem parameterized by adecision spaceX , by anoutcome
space Y. At each stept = 1, 2, . . ., the decision maker selects an elementx̂t from the decision
spaceX . In return, an outcomeyt ∈ Y is received, and the decision maker suffers a vector
rt = rt(x̂t, yt) ∈ RN of regret. The cumulative regret aftert rounds of play isRt =

∑t
s=1 rs.

The goal of the decision maker is to minimizemaxi=1,...,N Ri,n, that is, the largest component of
the cumulative regret vector aftern rounds of play.

Similarly to Hart and Mas–Colell [HaMa01], we consider potential–based decision–making
strategies, based on a convex and twice differentiablepotential functionΦ : RN → R+. Even
though most of the theory works for a general class of potential functions, for concreteness and to
get the best bounds, we restrict our attention to the specialcase of the exponential potential given
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by

Φ(u) =

N∑

i=1

exp (ηui) ,

where the parameterη > 0 will be tuned by the analysis below.
We recall the following bound, proved in [CeLu03].

PROPOSITION8.3. Assume that the decision–maker plays such that in each roundt of play,
the regret vectorrt satisfies the so–called “Blackwell condition”

(8.4) ∇Φ(Rt−1) · rt 6 0 .

If ‖rt‖∞ 6 M for all t then in the case of an exponential potential and for the choice η =

1/M
√

2 lnN/n,
max

16i6N
Ri,n 6 M

√
2n lnN .

Observe that the value of the parameterη requires the knowledge of the number of rounds
n. We remark here that similar bounds hold if, instead of the exponential potential function, the
polynomial potential

Φ(u) =

N∑

i=1

(ui)
p
+

is used (withp = 2 lnN ), see Remark 3.2 and [CeLu03].

3.3. Finite classes of departure functions.As a first step assume that the setFk of allowed
departures for playerk is finite, with cardinalitymk. For anys ∈ S and departureψk ∈ Fk,
denote by

rkψk
(s) = hk(s−k, ψk(s

k)) − hk(s−k, sk)

the associated instantaneous internal regret, and by

rk(s) =
(
rkψk

(s)
)
ψk∈Fk

the regret vector formed by considering all departures. Fora given sequences1, . . . , sn ∈ S of
plays, the cumulative internal regrets are given by the vector

Rk(sn1 ) =

n∑

t=1

rk(st) ,

wheresn1 denotes the sequence(s1, . . . , sn).
Consider the following algorithm for playerk. For t = 1, 2, . . ., at roundt, playerk chooses

anyskt ∈ Sk such that

(8.5) skt =
∑

ψk∈Fk

∆k
ψk,t−1ψk(s

k
t ) ,

with

∆k
ψk,t−1 =

φ
(
Rkψk

(st−1
1 )

)

∑
g∈Fk

φ
(
Rkg(s

t−1
1 )

) , t > 2

whereφ(x) = exp(ηx). For t = 1 we set∆k
ψk,0

= 1/mk. (The parameterη will be tuned by the
analysis below.)

Thus, each player is assumed to choose his action by solving the fixed–point equation (8.5).
The existence of such a fixed point (under the assumptions of Theorem 8.7) follows easily by the
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Schauder–Cauty fixed–point theorem [Cau01], which we recall below. (This is currently the most
general version of Schauder’s orignal theorem.)

THEOREM 8.6 (Schauder–Cauty fixed–point theorem).Let C be a non–empty convex and
compact subset of a topological Hausdorff vector space. Then each continuous mapT : C → C

has a fixed point.

Note that if several fixed points of (8.5) exist, then the player is free to choose any of them.

THEOREM 8.7. Assume thatSk is a convex and compact subset of a topological Hausdorff
vector space, and that the payoff functionhk is bounded overS byMk ∈ R and is concave in
thek–th strategy. Then, wheneverFk is a finite subset ofC(Sk) with cardinalitymk, the above
algorithm guarantees that the cumulative internal regret satisfies

max
ψk∈Fk

Rk
ψk,n

6 Mk

√
2n lnmk ,

if the exponential potential is used withη = 1/Mk

√
2 lnmk/n.

REMARK 8.6. (Rates of convergence.)The above theorem implies that if allFk are finite, and
all players play according to the above procedure, then, at roundn, the empirical distribution is a
(Fk)16k6N–correlatedεn–equilibrium, withεn of the order1/

√
n.

REMARK 8.7. (About the practical computation of the fixed-points.)Note that an approximate
solution of (8.5) is sufficient for our purposes. Provided that Sk is included in a normed vector
space andhk is a Lipschitz function, a simple modification of the proof ofCesa–Bianchi and
Lugosi [CeLu03, Theorem 1] shows that the internal regret would still beo(n) had we used a
strategyskt such that wwwwww

skt −
∑

ψk∈Fk

∆k
ψk,t−1ψk(s

k
t )

wwwwww
6 εn ,

where εn decreases quickly enough to0. In particular, when theSk are included in finite–
dimensional vector spaces, an algorithm partitioningSk into a thin grid is able to find a suitable
approximate fixed–point.

PROOF (OF THEOREM 8.7). The statement follows easily by Theorem 8.3. It suffices to
prove that our choice ofskt satisfies the Blackwell condition

∇Φ(Rk(st−1
1 )) · rk(st) 6 0

or equivalently ∑

ψk∈Fk

∆k
ψk,t−1h

k(s−kt , ψk(s
k
t )) 6 hk(s−kt , skt ) ,

which is implied by the equality

hk


s−kt ,

∑

ψk∈Fk

∆k
ψk,t−1ψk(s

k
t )


 = hk(s−kt , skt )

and by the concavity ofhk in its k–th argument. This equality ensured by the choice (8.5).�

3.4. Countably infinite classes of departure functions.The next step is to extend the result
of the previous section to countably infinite classes of departure functions. In this section we
design an internal–regret minimizing procedure in the casewhen the set of allowed departures for
playerk is countably infinite. Denote by

Fk = {ψk,q, q ∈ N}
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the set of departure functions of playerk.

THEOREM 8.8. Assume thatSk is a convex and compact subset of a topological Hausdorff
vector space and that the payoff functionhk is bounded byMk and is concave in thek–th strategy.
If Fk is a countable subset ofC(Sk), there exists a procedure such that for allq ∈ N andn,

Rk
ψk,q,n

6 Mk

(
2(ln q)2 + 4.2n3/4

)
.

Consequently, this procedure suffers no internal regret.

PROOF. We use a standard doubling trick (see Section 2.2 in Chapter2) to extend the proce-
dure of Theorem 8.7. Time is divided into blocks of increasing lengths such that thet–th block is
|[2t−1, 2t− 1]|. At the beginning of thet–th block, the algorithm for playerk takes a fresh start and
uses the method presented in Section 3.3, with the departures indexed by the integers between 1
andmt and withη = ηt tuned as

ηt =
1

Mk

√
2
lnmt

2t−1
.

We take, for instance,mt = ⌊exp
√

2t⌋.
Denoten̄ = 2⌊log2 n⌋+1. Define

Hk(sn1 ) =

n∑

t=1

hk(s−kt , skt ) and Hk
ψk,q

(sn1 ) =

n∑

t=1

hk(s−kt , ψk,q(s
k
t )) .

Now, Theorem 8.7 ensures that

Hk(sn1 ) =

⌊log2 n⌋∑

t=1

Hk(s2
t−1

2t−1 ) +Hk(snn̄/2)

>

⌊log2 n⌋∑

t=1

(
max

16q6mt

Hk
ψk,q

(s2
t−1

2t−1 ) −Mk

√
2t lnmt

)

+

(
max

16q6m⌊log2 n⌋+1

Hk
ψk,q

(snn̄/2) −Mk

√
n̄ lnm⌊log2 n⌋+1

)
.

The departure functionψk,q is considered from the time segment indexed bytq, wheretq is the
smallest integer such thatq 6 mtq , that is,2tq−1 < (ln q)2 6 2tq . Observe that the total length of
the previous time segments is2tq − 1 6 2(ln q)2. Thus, we obtain, for anyq ∈ N,

Hk(sn1 ) > Hk
ψk,q

(sn1 ) −Mk


2(ln q)2 +

⌊log2 n⌋+1∑

t=1

√
2t ln(exp

√
2t)




> Hk
ψk,q

(sn1 ) −Mk


2(ln q)2 +

⌊log2 n⌋+1∑

t=1

(
23/4

)t



> Hk
ψk,q

(sn1 ) −Mk

(
2(ln q)2 +

23/2

23/4 − 1
n3/4

)
,

which concludes the proof. �

REMARK 8.8. Theorem 8.8 does not provide any uniform bound for the internal regrets (where
uniformity is understood with respect to the elements of theclass of allowed departuresFk),
contrary to the case of finitely many departure functions of Theorem 8.7 (see Remark 8.6). In fact,
in general, no non–trivial rate of convergence can be given for the convergence of the empirical
distribution of plays to the set of(Fk)16k6n–correlated equilibria. However, in some special
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cases, rates of convergence may be established, for instance for linear departures (see the end of
this chapter) or for totally bounded classes of departures.In the latter case, the rates depend on the
size of the classes, see Section 3.8. This means that the choice of the departure classes may be an
important issue in practical situations.

3.5. Separable sets of departure functions.The extension to separable sets of departure
function is now quite straightforward. Recall that compactor totally bounded spaces are special
cases of separable spaces so the next result covers quite general situations.

THEOREM 8.9. Assume that all strategy spacesSk are convex and compact subsets of normed
vector spaces. Let the payoff functionshk be continuous overS and concave in thek–th strategy
and assume that theFk are separable subsets ofC(Sk) (equipped with the supremum norm). Then
there exist regret minimizing strategies such that, if every player follows such a strategy, then joint
convergence of the sequence of empirical plays to the set of(Fk)16k6N–correlated equilibria is
achieved.

The proof is based on the following lemma that can be shown by asimple dominated–conver-
gence argument.

LEMMA 8.1. Assume that thehk are continuous, and let(Gk), 1 6 k 6 N , be classes of
departure functions. Letπ be a(Gk)16k6N–correlated equilibrium. If for everyk, Fk denotes
the set of functions that may be obtained asπ–almost sure limits of elements fromGk, thenπ is a
(Fk)16k6N–correlated equilibrium.

PROOF (OF THEOREM 8.9). For each playerk, consider a countable dense subsetGk of Fk
and apply the algorithm given in the proof of Theorem 8.8. Then Theorems 8.8 and 8.5 show
that the empirical distribution of plays converges to the set of (Gk)16k6N–correlated equilibria.
By Lemma 8.1 the set of(Gk)16k6N–correlated equilibria coincides with the set of(Fk)16k6N–
correlated equilibria. �

3.6. Proof of Theorem 8.3.To prove Theorem 8.3, we need two intermediate results. The
first establishes separability needed to apply Theorem 8.9.

LEMMA 8.2. If X is a convex and compact subset of a normed vector space, then the setC(X)

of the continuous functionsX → X is separable (for the supremum norm).

The proof is an extension of Hirsch and Lacombe [HiLa97, Proposition 1.1]. Second we need
a characterization of correlated equilibria with respect to all measurable departures. The proofs of
both results are postponed to the end of this chapter.

LEMMA 8.3. Assume that the strategy spacesSk are convex and compact subsets of a normed
vector space and that thehk are continuous functions overS. Then the set of correlated equilibria
with respect to all continuous departures(C(Sk))16k6N equals the set of correlated equilibria
with respect to all measurable departures(L0(Sk))16k6N .

PROOF OF THEMAIN THEOREM. By the separability property stated in Lemma 8.2, The-
orem 8.9 applies and gives an algorithm leading to convergence to the set of(C(Sk))16k6N–
correlated equilibria. In view of Lemma 8.3, this is equivalent to convergence to the set of
(L0(Sk))16k6N–correlated equilibria, thus concluding the proof. �
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3.7. Proof of Theorem 8.4.Sections 3.4, 3.5 and 3.6 only rely on the results of Section 3.3,
and therefore it suffices to extend the results of Section 3.3to the case of non–concave payoffs.

We assume that the strategy setsSk are convex and compact subsets of normed vector spaces,
and the payoff functionshk are continuous overSk. The players are allowed to randomize (which
they do independently of each other). More, precisely, player k chooses his actionskt at roundt
according to the probability distributionµkt ∈ P(Sk), whereP(Sk) denotes the set of probability
distributions overSk. We also assume that the departure classFk is a finite subset ofC(Sk), with
cardinalitymk.

For anyµk ∈ P(Sk), s−k ∈ S−k and any departureψk ∈ Fk, we denote

hk(s−k, µk) =

∫

Sk

hk(s−k, sk) dµk(sk) ,

and by(µk)ψk the image measure ofµk by ψk, which means, in particular, that

hk
(
s−k, (µk)ψk

)
=

∫

Sk

hk
(
s−k, ψk(s

k)
)

dµk(sk) .

Below we design a procedure for playerk such that for all possible sequences of opponents’ plays,
s−k1 , s−k2 , . . .,

(8.6)
n∑

t=1

(
hk
(
s−kt , (µkt )

ψk

)
− hk

(
s−kt , µkt

))
= o(n) .

Then, thanks to the boundedness of the payoff functionhk, we may use a simple martingale conver-
gence result such as the Hoeffding–Azuma inequality [Azu67, Hoe63], as well as Borel–Cantelli
lemma, to show that (8.6) implies, almost surely (with respect to the auxiliary randomizations
used),

n∑

t=1

(
hk
(
s−kt , ψk(s

k
t )
)
− hk

(
s−kt , skt

))
= o(n) a.s..

The latter is enough to apply Theorem 8.5, and prove the desired almost sure convergence.
It thus only remains to see how to design a procedure for player k guaranteeing (8.6). The

techniques of Section 3.3 extend easily to this case. For anyµk ∈ P(Sk), s−k ∈ S−k and any
departureψk ∈ Fk, denote by

rkψk
(s−k, µk) = hk

(
s−k, (µk)ψk

)
− hk(s−k, µk)

the associated instantaneous internal regret, and by

rk(s−k, µk) =
(
rkψk

(s−k, µk)
)
ψk∈Fk

the regret vector formed by considering all departures. Fora given sequences−k1 , . . . , s−kn of
opponents’ plays, and the sequence of probability distributionsµk1 , . . . , µ

k
n, the cumulative internal

regrets are given by the vector

Rk
(
(s−k)n1 , (µ

k)n1

)
=

n∑

t=1

rk(s−kt , µkt ) ,

where(s−k)n1 denotes the sequence(s−k1 , . . . , s−kn ), and(µk)n1 is (µk1 , . . . , µ
k
n). Now, assume that

playerk can select his distributionµkt at timet as a solutionµ ∈ P(Sk) of the equation

(8.7) µ =
∑

ψk∈Fk

∆k
ψk,t−1 µ

ψk ,
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where

∆k
ψk,t−1 =

φ
(
Rkψk

((s−k)t−1
1 , (µk)t−1

1 )
)

∑
g∈Fk

φ
(
Rkg((s

−k)t−1
1 , (µk)t−1

1 ))
) , t > 2 ,

with φ(x) = exp(ηx), ∆k
ψk,0

= 1/mk, and the parameterη is tuned as in Section 3.3. Under this
assumption, we may obtain an upper bound of the order of

√
n on the right–hand side of (8.6), by

mimicking the argument of the proof of Theorem 8.7.
But the existence of such a distributionµkt follows by the Schauder–Cauty fixed–point theo-

rem. Recall that the weak–∗ topology put onP(Sk) is such that, for allψ ∈ C(Sk), the map that
assigns the elementµψ to µ ∈ P(sk) is continuous. Thus, on the right–hand side of (8.7), we
have a continuous function ofµ. The existence ofµkt follows by the application of the claimed
fixed–point theorem to the convex and compact subsetP(Sk) of the vector space of all Borel,
finite, real–valued and regular measures overSk, equipped with its weak–∗ topology.

3.8. A note on rates of convergence.Up to this point we have only focused on asymptotic
statements and have not payed attention to rates of convergence. In particular, in Sections 3.4 and
3.5, we did not consider the way the elements of the countableclasses were ordered, and we set
up some parameters quite arbitrarily. However, under some assumptions, precise non–asymptotic
bounds may be derived for the internal regret. (See also the first section of the appendix below.)

Recall that in the case of finite classes of departure functions, the internal regret can be made
of the order ofn1/2. For richer classes of departure functions this may become larger, depending
on the richness of the class. In this short remark we point outthis phenomenon by considering
totally bounded classes of departures.

Here we assume that the strategy setsSk are convex and compact subsets of normed vector
spaces, that the payoff functionshk are Lipschitz functions concave in thek-th strategy, and that
all classes of departuresFk are totally bounded sets under the corresponding supremum norms.

Recall that a metric spaceX is said to betotally boundedif for all ε > 0, there exists a finite
cover ofX by balls of radiusε. For a givenε, the minimal number of such balls is called the
ε–covering number ofX, and is denoted byN(ε). Any cover ofX of sizeN(ε) will be referred
to as anε–cover ofX.

Denote byNk(ε) theε–covering number ofFk and letδk be a Lipschitz constant ofhk, and
Mk an upper bound for|hk|. For anyα > 0, introduce4

εk(α) = inf
{
ε : αδ2kε

2
> 4M2

k lnNk(ε)
}
.

Clearly,εk(α) is decreasing. Moreover,εk(α) tends to 0 asα→ ∞.
To obtain a bound on the cumulative regret with respect to a totally bounded class of departure

functions, we use the doubling trick similarly to Section 3.4. Time is divided again in segments
such that ther–th segment (r > 1) corresponds to the time instancest between2r−1 and2r − 1.
In the r–th segment, the procedure for playerk is the one of Section 3.3, with a departure class
given by the centers of the balls which form an(εk(2

r) + 2−r)–cover ofFk. Denotingε′k(2
r) =

εk(2
r) + 2−r, this implies, using the uniform continuity ofhk that for all sequences of opponents’

plays,s−k1 , s−k2 , . . ., and for all departure functionsψk ∈ Fk,

Hk(sn1 ) > Hk
ψk

(sn1 ) −
⌊log2 n⌋+1∑

r=1

(
Mk

√
2r lnNk

(
ε′k(2

r)
)

+ 2r−1δk ε
′
k(2

r)

)
,

4Note thatεk(α) is defined as the infimum of an interval, so that allε > εk(α) satisfy the defining condition.
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thus proving that

(8.8) max
ψk∈Fk

Rk
ψk,n

6 δk

⌊log2 n⌋+1∑

r=1

2rε′k(2
r) = δk


1 + log2 n+

⌊log2 n⌋+1∑

r=1

2rεk(2
r)


 .

Observe that the quantity on the right–hand side is alwayso(n) by an application of Cesaro’s
lemma and the fact thatεk(2r) → 0 asr → ∞.

EXAMPLE 8.2. As a concrete example, consider the case when the strategy set of playerk is
thed–dimensional cubeSk = [0, 1]d and the classFk of departures is the class of all Lipschitz
functions[0, 1]d → [0, 1]d with Lipschitz constant less than a given valueLk. It is equipped with
the metric associated to the supremum norm. Kolmogorov and Tihomirov [KoTi61, TheoremXIV ]
show that the metric entropylogNk(ε) of this class of functions is of the order ofε−d, that is5,
logNk(ε) = Θ(ε−d). It follows thatεk(α) = Θ(α−1/(d+2)), and (8.8) implies that

max
ψk∈Fk

Rk
ψk,n

6 c n
d+1
d+2

for a constantc (depending only onδk,Mk, andLk).

Other examples of totally bounded classes of departure functions, with the indication of the
orders of magnitude of their metric entropieslogNk(ε), may be found in Kolmogorov and Ti-
homirov [KoTi61, Sections 5–9], see also Devroye, Györfi, and Lugosi [DeGyLu96, Section
28.2].

4. A link with correlated equilibrium of finite games

In this final section we assume thatΓ is a finite game, with strategy sets given by finite sets
Sk. Assume that the players play in the mixed extension, that is, at roundt, each playerk chooses
privately a probability distributionpkt overSk, all probability distributionspt = (p1

t , . . . , p
N
t ) are

made public, and playerk gets the payoffhk(pt), where we still denote byhk the linear extension
of hk,

hk(pt) =
∑

s∈S




N∏

j=1

pjt (s
j)


hk(s) .

The results of the previous sections show that the players can ensure that the empirical fre-
quencies of play in the mixed extension,

µn =
1

n

n∑

t=1

δ(p1t ,...,pN
t ) ,

converge to some set of correlated equilibria of the mixed extension ofΓ, for instance, the set
EL0 of correlated equilibria with respect to all measurable departures, or the setEL of correlated
equilibria with respect to all linear departures. The convergence toEL0 may be achieved by
Theorem 8.3, whereas the convergence toEL is given by Theorem 8.7, since the set of all linear
mappingsP(Sk) → P(Sk) is the convex hull of a finite number of mappings.

Recall that this is done by minimizing the internal regrets,that is, by ensuring that for all
playersk and allφk ∈ Fk,

(8.9)
n∑

t=1

hk(p−kt , φk(p
k
t )) −

n∑

t=1

hk(p−kt , pkt ) = o(n) ,

5The notationxε = Θ(yε) means that the ratioxε/yε is bounded above and below by positive numbers asε tends to 0.
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whereFk is either a countable dense subset of the set of all continuous functionsP(Sk) → P(Sk),
or the finite set of the mappings generating all linear functionsP(Sk) → P(Sk).

We are actually interested in playing in the original finite game, and to do so6, we assume that
at each roundt = 1, 2, . . ., each playerk draws finally an actionskt ∈ Sk according topkt . We
denote by(π̂n)n∈N∗ the sequence of joint empirical frequencies of play,

π̂n =
1

n

n∑

t=1

δ(s1t ,...,sN
t ) ,

and study its convergence properties. One may wonder whether it may converge almost surely to
a set strictly smaller than the setEΓ of correlated equilibria of the finite gameΓ.

Here we point out that the results of this chapter do not implyconvergence of the empirical
frequencies to a set smaller than the set of correlated equilibria of the finite game. More precisely,
we show that the set of correlated equilibria of the mixed extension and that of the original finite
game are the same in a natural sense.

For any distributionµ overP(S1) × · · · × P(SN ), denote byπ = ψ(µ) the distribution over
S1 × · · · × SN defined, for allik ∈ Sk, by

(8.10) π(i1, . . . , iN ) =

∫

P(S1)×···×P(SN )
p1(i1) . . . pN (iN )dµ(p1, . . . , pN ) .

By this definition and by considering the linear extension ofhk, we have thatEψ(µ)h
k = Eµh

k for
all k andµ. (The definition ofψ indicates that we get back to the original finite game by taking
averages.)

Denoteπn = ψ(µn) and note that‖πn − π̂n‖ → 0 by martingale convergence.(π̂n)n∈N∗

and (πn)n∈N∗ have therefore the same convergence properties. But sinceψ is continuous, the
πn = ψ(µn) converge to the setψ(EM), and therefore, so do thêπn.

Remark 8.4 alludes to the inclusionψ(EL0) ⊆ EΓ. Below we show that, in fact,ψ(EL0) =

ψ(EL) = EΓ. In this sense, the sets of correlated equilibria of the mixed extension and of the
original finite game are the same. There are not fewer correlated equilibria in the mixed extension,
and therefore, one cannot hope tighter convergence resultsby minimizing the internal regret in the
mixed extension of the game.

LEMMA 8.4. ψ(E0
L) = ψ(EL) = EΓ.

PROOF. The equality betweenEΓ andψ(EL) is immediate, by linearity and in view of (8.10).
We now prove that each correlated equilibriumπ of Γ may be written asψ(µ), whereµ ∈ E0

L,
that is,µ is a probability distribution overP(S1) × · · · × P(SN ) that is a correlated equilibrium
with respect to all measurable departures.

For a given correlated equilibriumπ ∈ EΓ, we choose

µ =
∑

i1,...,iN

π(i1, . . . , iN ) δ(δ
i1 ,...,δiN ) ,

6Note that by martingale convergence, (8.9) is ensured almost surely whenever for all playersk and allφk ∈ Fk,Pn

t=1 h
k(s−k

t , φk(pk
t )) −Pn

t=1 h
k(s−k

t , pk
t ) = o(n). This can be done in the finite game by using the fixed–point

techniques of Section 3.4, in the sense that it can be achieved in the game where only the chosen action profiles
(s1t , . . . , s

N
t ) (and not the probability distributions(p1

t , . . . , p
N
t )) are made public.
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whereδij is the probability distribution overSj that puts probability mass 1 onij . We have to
prove that for all playersk, for all measurable departuresφk,
∫

P(S1)×···×P(SN )
hk(p−k, pk)dµ(p1, . . . , pN )

>

∫

P(S1)×···×P(SN )
hk(p−k, φk(p

k))dµ(p1, . . . , pN ) .

In view of the form ofµ, only the valuespk of the formδik whereik ∈ Sk matter in the above
integrals. Define a linear mappingLk fromP(Sk) toP(Sk) byLk(δik) = φk(δik), for all ik ∈ Sk.
Then,
∫

P(S1)×···×P(SN )
hk(p−k, φk(p

k))dµ(p1, . . . , pN )

=

∫

P(S1)×···×P(SN )
hk(p−k, Lk(p

k))dµ(p1, . . . , pN ) .

This concludes the proof in view of the first equality noted above. �

REMARK 8.9. Though we do not get convergence to a smaller set of equilibria by playing in
the mixed extension, it is worth noting that we may however get a deterministic convergence to
correlated equilibria of the original game by doing so. The left-hand side of (8.9) is of the order of√
n when the sets of departures are given by the linear departures, so that the players achieve with

πn a1/
√
n–correlated equilibrium in a deterministic way aftern rounds of play (instead of simply

achieving a
√

ln(1/δ)/
√
n–correlated equilibrium with high probability1 − δ, thanks tôπn). A

careful implementation of procedure in the mixed extensioncan be shown to have a computational
complexity not higher than its usual randomized counterpart. It simply requires that players show
the ones to the others the probability distribution they choose.

We conclude this section by pointing out that the minimization proposed by (8.9) is, using
the terminology of Greenwald and Jafari [GrJa03], a matter ofΦ–no regret, withΦ including all
(extremal) linear functions as well as many other continuous maps. This solves the first half of
the question posed in the conclusion of [GrJa03]. The second part of the question is to determine
if, by performing the regret minimization (8.9), one could achieve convergence to tighter solution
concepts than simply the set of all correlated equilibria. We showed strong evidence that this is
not so.

5. Discussion and perspectives

5.1. Bandit strategies. In game theory, games with bandit prediction settings are often re-
ferred to as unknown games, since the players ignore the gamethey take part in, they do not even
need to know that they are playing a game. For finite games, internal regret can be minimized in a
bandit setting (in expectation, see Section 1.4 of Chapter 3, or with overwhelming probability, see
Section 6 of Chapter 6). Consequently, all players of an unknown game may minimize their inter-
nal regrets simultaneously, and achieve joint convergenceof the empirical frequencies of plays to
the set of correlated equilibria. (See also a related procedure in [HaMa02].) This, however, is not
easy to extend to general infinite games, even with concave payoffs.

OPEN QUESTION 8.1. Find internal-regret-minimizing strategies for a large class of infinite
games, in a bandit setting.

Actually, for infinite games, we do not even know in general how to minimize the external
regret with respect to all constant actions in a bandit setting. The problem is to get good estimators
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for the unobserved payoffs, which correspond to all the actions but the played one. For infinite
games, there are usually an uncountable number of them, and the probability distributions the
players use are generally non-discrete (they may charge subsets, not only points), and we cannot
simply get estimators by dividing the observed payoffs by the probability densities (when the latter
exist).

5.2. Convergence to Nash equilibria.In this chapter, we get convergence to the set of corre-
lated equilibria, and prove no convergence result to the theset of Nash equilibria. It turns out that
for finite games, such results have been obtained recently, see Fosterand Young [FoYo03], Ger-
mano and Lugosi [GeLu04], Hart and Mas-Colell [HaMa04]. We describe below these results,
by pointing out their main limits. There is, above all, a concern about the convergence rates.

Note that we introduced strategies that only needed to keep track of the regrets to achieve
convergence to correlated equilibria, so these strategiesdid not need to have a long memory. The
story is different however when studying convergence to Nash equilibria. In this setting, Hart
and Mas-Colell [HaMa04] are mainly concerned with bounded memory assumptions, where a
strategy is said to have a memory bounded byR if the action it prescribes at each round may not
rely on more than theR past played strategy profiles. They show on the negative sidethat for any
integerR and anyε > 0 sufficiently small there does not exist a strategy with memory bounded
byR ensuring that for all games, the sequence(st)t>1 of the played strategy profiles converges to
the set ofε-Nash equilibria. On the positive side, for allε > 0, they can find an integerR and a
general randomized strategy, with memory bounded byR, ensuring that for all games the sequence
(πn)n>1 of the empirical distributions of plays converges to anε-Nash equilibrium, provided that
all players use the general (uncoupled) strategy.

Germano and Lugosi [GeLu04] do not restrict their attention to bounded memory strategies,
and construct strategies using the entire past. They exhibit a general randomized strategy (and
some variants of it), such that, provided that it is used by all players,

– for all games, the sequence(πn)n>1 of the empirical distributions of plays converges
almost surely to the set ofε-Nash equilibria,

– for all games, the sequence(µn)n>1 of the played mixed profiles converges almost surely
to anε-Nash equilibrium,

– for Lebesgue-almost all games, the sequence(µn)n>1 of the played mixed profiles con-
verges almost surely to a Nash equilibrium.

The first drawback of these strategies is their very slow rateof convergence, see [GeLu04]
for a discussion. The other concern is that these strategiesrely on (Markov) random searches, and
that they try, in some sense, all possible mixed strategy profiles. They find an approximate Nash
equilibrium only by chance, and then stick to it for some time.

OPEN QUESTION 8.2. The above-mentioned results of convergence to Nash equilibria are
for finite games. We believe that this chapter introduced allthe mathematical techniques needed
to extend them to the case of infinite games, similarly to whatwe did for Foster and Vohra’s
[FoVo97, FoVo99] convergence results in Section 3.
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Appendix: Computable procedures for convergence to linearcorrelated equilibria

The general procedure described in Section 3 needs to compute, at each iteration, a fixed point,
see (8.5). Whereas the existence of the latter is ensured by Schauder’s theorem, there is in general
no effective way to compute it. A first solution is provided bycomputing only an approximate fixed
point, see Remark 8.7, but the resulting strategy has still aprohibitive computational complexity
(exponential inn andN ).

The aim of this appendix is to design algorithms, suffering no internal regret with respect to
the set of all linear departures, which are first, easy to implement (with a complexity linear inn
andN2), and second, whose convergence rate to the set of linear correlated equilibria can be made
precise, in the sense of Remark 8.6. We first consider the caseof games with strategy sets given
by simplexes, and then, in the special case of the square loss, deal with more general strategy sets.

Games with strategy sets given by simplexes.The following is a simple generalization of
the results of Chapter 7 to general concave payoffs. (In Chapter 7 we actually considered convex
losses, but they correspond to concave payoffs.)

We first describe the class of games we consider. We assume, ina first time, that the strategy
sets are all given by simplexes (of possibly different orders) Sk = Xdk

, wheredk ∈ N∗ and for
everyd ∈ N∗, Xd denotes the simplex ofRd. For each playerk, the set of allowed departuresFk is
formed by the linear mapsXdk

→ Xdk
. (It may be seen easily that allFk are non-empty. Actually,

for d ∈ N∗, each linear mapXd → Xd may be represented by a row-stochastic matrix, see Section
5.2 in Chapter 7.) We refer to(Fk)16k6N -correlated equilibria as thelinear correlated equilibria
of the game.

The strategy of playerk proceeds from a simple prior linearization of the instantaneous internal
regrets. Assume that for all fixed opponent playss−k, the payoff functionhk is differentiable as
a functiontk ∈ Xdk

7→ hk(s−k, tk) of the k-th variable, with a gradient atsk ∈ Xdk
denoted

by gk(s) = ∇k h
k(s−k, sk). At roundt, once all the players have output their strategiesst ∈ S,

consider the instantaneous regret vectorrk(st) given by, for1 6 i, j 6 dk, i 6= j:

rk(i,j)(st) = ski,t

(
gkj (st) − gki (st)

)
,

wheregki (st) (respectivelyski,t) denotes thei-th component ofgk(st) (respectivelyskt ).
For a given historys1, . . . , sn, the cumulative internal regrets are given by the vector

Rk(sn1 ) =
n∑

t=1

rk(st) ,

wheresn1 simply denotes the sequence of actions(s1, . . . , sn). (The proof below shows indeed
that these regrets are linear upper bounds on the original regrets.)

Denote byLk(i,j) the linear functionXdk
→ Xdk

that maps an elementsk ∈ Xdk
to uk ∈ Xdk

given byuki = 0, ukj = ski + skj , andukm = skm if m 6= i,m 6= j.

Now, for t = 1, 2, . . ., if the sequence of played profiles is given byst−1
1 , then playerk

chooses, at roundt, an elementskt ∈ Xdk
such that the fixed point equality

(8.11) skt =
∑

i6=j

∆k
(i,j),t−1L

k
(i,j)(s

k
t )

holds, where the summation is over all pairs(i, j), i 6= j, and where fort > 2,

∆k
(i,j),t−1 =

φ
(
Rk(i,j)(s

t−1
1 )

)

∑
l 6=m φ

(
Rk(l,m)(s

t−1
1 )

) ,
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with φ(x) = (x)p−1
+ , and fort = 1, the∆k

(i,j),0 are taken equal to1/(dk(dk − 1)). (The parameter
p will be tuned by the analysis below.) The existence and an efficient method to compute such a
fixed pointskt are detailed by Lemma 3.1.

THEOREM 8.10. Assume thatSk is Xdk
, the simplex of orderdk ∈ N∗. Provided that for all

fixed opponents’ playss−k ∈ S−k, the payoff functionsk ∈ Sk 7→ hk(s−k, sk) is concave and
differentiable, with a gradient uniformly bounded in norm byMk, the above algorithm suffers no
internal regret, with the uniform bound

max
Lk∈Lk

Rk
Lk,n

6 dkMk

√
(4 ln dk − 1) en ,

whereLk denotes the class of all linear mapsXdk
→ Xdk

andp is chosen asp = 4 ln dk.

COROLLARY 8.2. If the assumptions of Theorem 8.10 are satisfied for all players k, and if
all of them minimize their linear internal regrets with the general procedure described above,
then at roundn, the empirical distribution of played profilesπn defines anεn-linear correlated
equilibrium, where

εn =

(
max

16k6N
dkMk

√
4 ln dk − 1

) √
e

n
.

PROOF. The proof is a simple generalization of the proof techniques used in Section 4.1 of
Chapter 7. By the assumption of concavity and differentiability, we have, for alls ∈ S and all
Lk ∈ Lk, the linear upper bounding

(8.12) hk
(
s−k, Lk(s

k)
)
− hk(s−k, sk) 6 ∇kh

k(s−k, sk) ·
(
Lk(s

k) − sk
)
,

where · is the standard inner product inRdk .
By the representation of linear maps from simplexes into themselves by row-stochastic matri-

ces, it may be seen that for allu ∈ Rdk , sk ∈ Sk andLk ∈ Lk,

u ·
(
Lk(s

k) − sk
)

6 dk max
i6=j

ski (uj − ui) ,

thus leading (with the above notation for the gradient) to

hk
(
s−k, Lk(s

k)
)
− hk(s−k, sk) 6 dk max

i6=j
ski

(
gkj (s) − gki (s)

)
.

We thus have shown that the algorithm for playerk satisfies

max
Lk∈Lk

Rk
Lk,n

6 dk max
s−k
1 ,...,s−k

n

max
i6=j

Rk(i,j)(s
n
1 ) .

The argument is concluded by noting that the definition of thealgorithm, Theorem 3.1, as well as
the boundedness assumption on the gradient function, show that the maximum on the right-hand
side is upper bounded by

Mk

√
(p − 1)d

4/p
k n = Mk

√
(4 ln dk − 1) en

for the proposed choicep = 4 ln dk. �

REMARK 8.10. Label-efficient settings (see Chapter 5) may also be considered in games
where all players have concave payoff functions. Due to the linearization of the regrets, it is
easy to extend the procedures of Chapter 5, and to still get convergence to correlated equilibria,
thanks to Corollary 5.1 and Remark 5.3.

EXAMPLE 8.3. (Penalizing the volatility in on-line investment.)Consider the setting and the
notation of Chapter 7. Thevolatility V of an investment strategy is defined as follows. Assume that
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on the sequence of market vectorsx1, . . . ,xn, the investment strategy was given by the sequence
of portfolios P 1, . . . ,P n over theN assets. Then, the volatilityV equals the variance of the
log-wealth ratios,

V =

(
1

n

n∑

t=1

(ln (P t · xt))2
)

−
(

1

n

n∑

t=1

ln (P t · xt)
)2

.

V is invariant under rescalings of the market vectors, and so is the worst-case logarithmic wealth
ratio (see the beginning of Section 6.1 in Chapter 7). Under aboundedness assumption over
the market, we may renormalize the market vectors (only for the definition of the investment
algorithm), such that they all lie in, say,[1/e, e]N . We upper boundV by the first sum appearing
in its definition, and consider the penalized log-returns given byh(P 1,x1) + . . . + h(P n,xn),
where

h(P ,x) = ln (P · x) − α (ln (P · x))2 .

For any (fixed) renormalized market vectorx ∈ [1/e, e]N , the functionh(·,x) is concave, as a
sum of two concave functions, and has bounded gradient. Consequently, the above procedures
apply, and we may minimize internal and external regrets with respect to this new loss (or payoff)
function, similarly to what we did in Chapter 7. Doing so, we are not only interested in the
returns, but we want to trade off between high returns and lowvolatility. This should result in
stable investment strategies, with large returns.

REMARK 8.11. The results of Section 5 of Chapter 7 may be extended as well, to the so-called
exp-concave payoff functions, see Kivinen and Warmuth [KiWa99]: a payoff functionhk is exp-
concave (in itsk-th variable) if there exists a constantη > 0 such thatexp(ηhk) is concave (in its
k-th variable). For such payoff functions, the (fast) rates of convergence to correlated equilibria are
of the order of(lnN)/n. However, the resulting procedures suffer from the same computational
drawbacks as in Remark 7.8.

More general parametric strategy sets, and application to on-line linear regression. We
indicate now how convergence to linear correlated equilibria may be obtained in games with more
general strategy sets than simplexes. These strategy sets are parametric, that is, they are included
in finite-dimensional vector spaces.

Whenever the parametric strategy set of playerk contains a simplex and his payoff function is
concave, he may restrict this set to the smaller strategy setgiven by the included simplex. Then,
the results of the previous section indicate him a possible no-linear-internal-regret strategy. This
strategy minimizes in particular the external regret with respect to the class of constant strategies
indexed by this simplex.

This restriction is not necessary in some special cases, like in on-line regression, and more
satisfactory procedures can be designed. This is the point of the present section.

EXAMPLE 8.4. (On-line linear or polynomial regression.)On-line linear regression is a pre-
diction game that corresponds to a repeated zero-sum game between a forecaster and an envi-
ronment. It is played as follows (see, among many others, [KiWa97, Ces99]). At round t, the
environment chooses an input variablext = (x1,t, . . . , xd,t) ∈ Rd, and the forecaster is asked
to form a prediction of the form̂yt = ut · xt, whereut = (u1,t, . . . , ud,t) ∈ Rd. The en-
vironment then reveals the true outcomeyt ∈ R. The loss of the forecaster is measured by
ℓ(u, (x, y)) = (u ·x− y)2, or, alternatively, its payoff is given byh(u, (x, y)) = −(u ·x− y)2.
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We note that on-linem–polynomial regression,m ∈ N∗, is a straightforward extension of
on-line linear regression. It corresponds to predictions of the form

ŷt =
m∑

p=0

d∑

i=1

ui,(p,t) x
p
i,t ,

where the forecaster outputsm+ 1 weight vectorsu(p,t) ∈ Rd, p = 0, . . . ,m. This more general
problem can be encompassed in the previous one, by considering as an input variable at roundt
the (m + 1)d–dimensional vector(1,xt,x2

t , . . . ,x
p
t ), where we used obvious notation. This is

why we concentrate below on linear regression.

In on-line linear regression, the aim of the forecaster is tominimize his external regret,
n∑

t=1

(ut · xt − yt)
2 − min

v∈V

n∑

t=1

(v · xt − yt)
2 ,

whereV is an (often strict) subset ofRd, and his linear internal regret,
n∑

t=1

(ut · xt − yt)
2 − min

L∈L

n∑

t=1

(L (ut) · xt − yt)
2 ,

whereL denotes the set of all linear functionsRd → Rd, or a large class of such linear functions.
(Note that in this section, we state the results in terms of losses, rather than payoffs.) The results of
the previous section (including those of Remark 8.11, withη = 1/2) apply, and yield a prediction
scheme for the forecaster such that both the external regretwith respect toV = Xd and the linear
internal regret are minimized. This scheme only outputs weight vectors from the simplex.

However, in on-line linear regression, the notion of external regret is usually meaningful only if
it is defined with respect to a larger class that also containsvectors with non-positive components.
The classes of interest are typically of the form

VU =
{

u ∈ Rd : ‖u‖ 6 U
}
,

where‖·‖ is some norm onRd, for instance, theℓ1, Euclidian, or supremum norms. We concen-
trate on theℓ1 norm, defined by

‖u‖ =
d∑

i=1

|ui| ,

and study the forecaster introduced in Figure 1.

THEOREM 8.11. We assume that the input values and the outcomes all satisfy|yt| 6 M ,
|xi,t| 6 M , for someM > 0 and for all i andt. The forecaster of Figure 1 outputs weight vectors
in VU , and suffers both no linear internal regret and no external regret with respect toVU , with
the upper bounds

n∑

t=1

(ut · xt − yt)
2 − min

v∈VU

n∑

t=1

(v · xt − yt)
2

6 4 dUM2
√

(4 ln(2d) − 1)en ,

n∑

t=1

(ut · xt − yt)
2 − min

L∈L

n∑

t=1

(L (ut) · xt − yt)
2

6 4 dUM2
√

(4 ln(2d) − 1)en ,

whereL denotes the set of all linear mappingsRd → Rd satisfyingL(Xd) ⊆ Xd.
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Parameters:U > 0, a bound on the weight vectors.

For each roundt = 1, 2, . . .,

(1) get the input valuext, and denote

x′
t = (Ux1,t, . . . , Uxd,t,−Ux1,t, . . . ,−Uxd,t) ∈ R2d ;

(2) at roundt, denote, fors 6 t− 1 andi = 1, . . . ,N ,

ℓi,s = 2(u′
s · x′

s − ys)x
′
i,s ,

and get the probability distributionu′
t ∈ X2d chosen by the forecaster of Section 1.2

of Chapter 3, with a polynomial potential of orderp = 4 ln(2d);
(3) predict withut given byui,t = U(u′i,t − u′i+d,t), i = 1, . . . , d.

FIGURE 1. A forecasting scheme for on-line linear regression.

We used polynomial reweightings in Figure 1 simply to avoid tuning issues. Of course, in
view of the standard adaptive techniques, like Lemma 4.3, exponential potentials may be used as
well.

The forecaster of Figure 1 relies on a trick introduced by Kivinen and Warmuth [KiWa97].
They faced the same situation as here, that is, they first introduced a forecasting scheme suffering
no external regret with respect to all weight vectors of the simplex, and then extended it thanks to
this trick to a forecasting scheme suffering no external regret with respect toVU . (The boundU
has to be known beforehand by the forecaster.)

This trick consists in noting that, with the notation of Figure 1,

(8.13) ut · xt = u′
t · x′

t ,

whereut ∈ VU , whereasu′
t is a probability distribution. Thus, it is enough to computea weight

vector lying in the simplex, which we know how to do. For the sake of readability, we indicated
the values of the gradient of the losses (these are theℓi,s) and referred for the sub-algorithm to
Chapter 3. That is, we exactly apply the procedure of the previous section and simply write
explicitly the gradients here.

PROOF. In view of step (2) in the definition of the forecaster, by Theorems 3.1 or 8.10, and
by the linear upper bounding (8.12) (see also (7.2)),

(8.14)
n∑

t=1

(
u′
t · x′

t − yt
)2 − min

L′∈L′

n∑

t=1

(
L′
(
u′
t

)
· x′

t − yt
)2

6 4 dUM2
√

(4 ln(2d) − 1)en ,

whereL′ is the set of all linear functionsX2d → X2d, since the gradients2(u′
s · x′

s − ys)x
′
i,s

are bounded by4UM2. Now, to any linear mappingL : Rd → Rd preserving the simplex,
we may associate a linear functionL′ : X2d → X2d such that, with the notation of Figure 1,
L(ut) ·xt = L′(u′

t) ·x′
t for all t. This function is defined, with obvious notation, byL′(u1,u2) =

(L(u1), L(u2)). The proof is therefore concluded for the internal regret.
The bound for the external regret is almost a special case of the one for the internal regret. Let

v be any element ofVU . Provided that we can findv′ ∈ X2d such thatv · xt = v′ · x′
t for all

t, the first bound of the theorem follows from (8.14), used withthe constant, thus linear, function
L′ ≡ v′. But [KiWa97] explains precisely how to do this. We denote respectively by v+ andv−



5. APPENDIX: TECHNICAL PROOFS 183

the nonnegative and non-positive parts of any real numberv, and simply let

v′ =
1

U

(
(v+

1 , . . . , v
+
d , v

+
1 , . . . , v

+
d ) +

U − ‖v‖
2d

(1, . . . , 1)

)
.

�

REMARK 8.12. We note here that, up to the multiplicative factord, we recovered the same
orders of magnitude in all parameters for the bound on external regret as [KiWa97], see also
[Ces99]. (But the bound on internal regret is new.) In both papers, the bounds are derived by using
a more general method, based on Bregman divergences, which in this case reduce to Kullback-
Leibler divergences. Interestingly enough, this was the same for the first derivation of theEG

strategy in [HeScSiWa98]. In Chapter 7 we showed how a simple linear upper bound and the
usual techniques used prediction with expert advice yield instead a simple analysis of theEG

strategy, and even lead to no internal regret algorithms of the same flavour. This is exactly what
we did for on-line linear regression with the square loss in this section.

Appendix: Technical proofs

Proof of Theorem 8.2. Fors = (s1, . . . , sN ) ∈ S, we write‖s‖∞ = maxi=1,...,N ‖si‖ where
‖si‖ is the norm ofsi in Si.

First, we prove the direct implication. Fixπ, a(L0(Sk))16k6N–correlated equilibrium of the
continuous gameΓ. Choose any numberε > 0. It suffices to show that there exists ar0 such that
for every discretization of sizer < r0, π induces a2ε–correlated equilibrium.

Eachhk is uniformly continuous, so we may chooser0 such that for allk 6 N , s, t ∈ S,
‖s− t‖∞ 6 r0 implies

hk(s) − hk(t)
 6 ε. Fix a discretization(P,D) of sizer less thanr0.

Fix a playerk and a departuregk : Dk → Dk. We need to prove that

(8.15)
∑

t∈D

πd(t)h
k(t) + 2ε >

∑

t∈D

πd(t)h
k(t−k, gk(t

k)) .

Defineψk : S → S by ψk(sk) = gk(t
k
j ) for all sk ∈ V k

j . ψk is a measurable function. Now,
for all s ∈ V 1

i1
× . . .× V N

iN
,

www(s−k, ψk(s
k)) − (t1i1 , . . . , gk(t

k
ik

), . . . , tNiN )
www

∞
6 r .

Therefore, due to the uniform continuity of thehk, we have for allk,


∫

S
hk(s−k, ψk(s

k))dπ(s) −
∑

t∈D

πd(t)h
k(t−k, gk(t

k))

 6 ε .

It is even easier to see that

∫

S
hk(s−k, sk)dπ(s) −

∑

t∈D

πd(t)h
k(t−k, tk)

 6 ε .

Now, asπ is a correlated equilibrium of the original game,
∫

S
hk(s−k, sk)dπ(s) >

∫

S
hk(s−k, ψk(s

k))dπ(s) .
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Combining the last three inequalities leads to (8.15), thusconcluding the direct part.
The converse implication is proved in a similar way. First, note that thanks to Lemma 8.3,

we can restrict our attention to continuous departures. Assume that there exists a functionε with
limr→0 ε(r) = 0 such that for all discretizations(P,D) of sizer, π induces anε(r)–correlated
equilibrium.

Fix an arbitraryη > 0. We show that for allk and all continuous functionsψk : Sk → Sk,

(8.16)
∫

S
hk(s−k, sk)dπ(s) + η >

∫

S
hk(s−k, ψk(s

k))dπ(s) .

(The conclusion will follow by lettingη decrease to 0.)
Fix a playerk and a continuous departureψk. As hk is uniformly continuous, we can choose

δ > 0 such that for alls, t ∈ S, ‖s− t‖∞ 6 δ implies
hk(s) − hk(t)

 6 η/3. Now,ψk is also
uniformly continuous, so that there existsδ′ > 0 such that for alls, t ∈ S, ‖s− t‖∞ 6 δ′ implies
|ψk(s) − ψk(t)| 6 δ/2. Finally, taker0 > 0 sufficiently small so that for allr 6 r0, ε(r) 6 η/3.
We considerr = min(r0, δ, δ

′).
There exists a finite cover of eachSj by open balls of radiusr, denoted byB(xji , r), 1 6 j 6

N , 1 6 i 6 Nj. Each open cover is converted into a measurable partition inthe following way.
For1 6 j 6 N , 1 6 i 6 Nj ,

V j
i = B(xji , r)\

(
∪i−1
m=1B(xjm, r)

)
.

We take the grid given by the centers, that is, with the above notation, tji = xji , 1 6 j 6 N ,
1 6 i 6 Nj . We thus have obtained a discretization of size less thanr, and denote byπd the
probability measure induced byπ.

We definegk : Dk → Dk as follows. For1 6 j 6 Nk, gk(xkj ) = xkm where1 6 m 6 Nk is

the index such thatψk(xkj ) ∈ V k
m. Note that in particular,

wwwgk(xkj ) − ψk(x
k
j )
www 6 r 6 δ/2.

But if sk ∈ V k
ik

,
wwsk − xkik

ww 6 r 6 δ′, so that
wwψk(sk) − ψk(x

k
ik

)
ww 6 δ/2. Finally,wwψk(sk) − gk(x

k
ik

)
ww 6 δ. Thus, ifs ∈ V 1

i1
× . . .× V N

iN
,

www(s−k, ψk(s
k)) − (x1

i1 , . . . , gk(x
k
ik

), . . . , xNiN )
www

∞
6 δ .

Therefore, by uniform continuity ofhk,


∫

S
hk(s−k, ψk(s

k))dπ(s) −
∑

x∈D

πd(x)h
k(x−k, gk(x

k))

 6
η

3
.

Again, it is even easier to see that


∫

S
hk(s−k, sk)dπ(s) −

∑

x∈D

πd(x)h
k(x−k, xk)

 6
η

3
.

Sinceπ is anε(r)–correlated equilibrium (and sinceε(r) 6 η/3), it is true that
∑

x∈D

πd(x)h
k(x) +

η

3
>
∑

x∈D

πd(x)h
k(x−k, gk(x

k)) .

Combining these last three inequalities, we get (8.16), concluding the proof.

Proof of Lemma 8.2. Hirsch and Lacombe [HiLa97] consider the set of continuous functions
defined on a compact metric setX into R and show that this set is separable (Proposition 1.1). But
it turns out that this proof easily extends to the case of Lemma 8.2, giving, in addition, an example
of a dense countable subset ofC(X). We simply need the following well–known lemma, see for
instance Rudin [Rud74].
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LEMMA 8.5 (Partition of unity). If X is a locally compact Hausdorff space, then, given a
finite number of open setsV1, . . . , VN and a compactK ⊂ ∪i=1,...,NVi, there existN nonnegative
continuous functionsh1, . . . , hN summing to 1 overK, such thathi vanishes outsideVi.

PROOF (OF LEMMA 8.2). AsX is a compact set, for a givenn ∈ N∗, there exist finitely many
xjn, j = 1, . . . , Nn, such that the collection of open balls of common radius1/n and centered in
thesexjn forms a finite cover ofX,

X = ∪Nn

j=1B(xjn, 1/n) .

We denote the set formed by thesexjn by Xn. By Lemma 8.5 (withK = X), denote byφnj ,
j = 1, . . . , Nn, a partition of unity constructed over this open cover ofX. We denote byAn the
set formed by

An =





Nn∑

j=1

yjnφ
n
j , (yjn)j=1,...,Nn ∈ (Xn)

Nn



 .

An is a finite set. By convexity ofX, each element ofAn mapsX into X. By continuity of the
φnj ,An is finally seen as a subset ofC(X).

We consider the countable subsetA formed by the union of theAn,A = ∪n∈N∗An, and claim
thatA is dense inC(X). To see this, fix a continuous functionf ∈ C(X). As f maps the compact
metric spaceX into itself, f is uniformly continuous overX. Fix ε > 0 and chooseδ > 0 small
enough to ensure that‖x− y‖ < δ implies‖f(x) − f(y)‖ < ε, where‖·‖ denotes the norm of
the underlying normed space that containsX. Now, fix a sufficiently large integern such that

1/n < min(δ, ε). For everyj = 1, . . . ,Nn, chooseyjn such that
wwwyjn − f(xjn)

www 6 ε. Introduce

the functions

g =

Nn∑

j=1

f(xjn)φ
n
j , h =

Nn∑

j=1

yjnφ
n
j .

It is clear thath ∈ A, and we prove that‖f − h‖∞ 6 2ε.
For a givenx ∈ X,

‖f(x) − g(x)‖ =

wwwwww

Nn∑

j=1

(
f(x) − f(xjn)

)
φjn(x)

wwwwww

6

Nn∑

j=1

wwf(x) − f(xjn)
ww φjn(x) .

Now,
wwwf(x) − f(xjn)

wwwφjn(x) 6 εφjn(x), simply becauseφjn vanishes outsideB(xjn, 1/n) (which

is included inB(xjn, δ)), whereas, thanks to uniform continuity, the norm of the differencef(x)−
f(xjn) is less thanε over this ball. Finally, recalling that theφnj sum to 1, we get‖f − g‖∞ 6 ε.

A similar argument, using the fact that for everyj,
wwwyjn − f(xjn)

www 6 ε, indicates that

‖g − h‖∞ 6 ε, thus concluding the proof. �

Proof of Lemma 8.3. The proof is a combination of Lemma 8.1 and Corollary 8.3, which is
derived from the following version of Lusin’s theorem tailored for our needs.

PROPOSITION 8.4. If X is a convex and compact subset of a normed space, equipped with
a probability measureµ (defined over the Borelσ–algebra), then for every measurable function
f : X → X and for everyδ, ε > 0, there exists a continuous functiong : X → X such that

µ {‖f − g‖ > δ} 6 ε .
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PROOF. We use the notation (and the techniques) of the proof of Lemma 8.2. First note thatµ
is regular, since it is a finite measure over the Borelσ–algebra of a Polish space (compact metric
spaces are Polish).

Fix n large enough such that1/n < δ. Consider theNn measurable sets

Mn
j = f−1

(
B(xnj , 1/n)

)
.

By regularity ofµ, one can find compact setsKn
j and open setsV n

j such that, for allj,

Kj
n ⊂Mn

j ⊂ V n
j , µ(V n

j \Kn
j ) 6

ε

Nn
.

By construction, theMn
j form a cover ofX. Therefore, theV n

j form an open cover ofX. By
Lemma 8.5 (withK = X), fix a partition of unity based on this open over, which we denote by
ξn1 , . . . , ξ

n
Nn

. Consider the continuous functiong given by

g =

Nn∑

j=1

xnj ξ
n
j .

By convexity ofX, g mapsX intoX. Now, as above, for allx ∈ X,

‖f(x) − g(x)‖ 6

Nn∑

j=1

wwf(x) − xjn
ww ξjn(x) .

By construction,
wwwf(x) − xjn

www ξjn(x) 6 ξjn(x)/n provided thatx ∈ Mn
j ∪ (V n

j )c. Therefore,

‖f(x) − g(x)‖ 6 1/n < δ, except, possibly, on the measurable subset∆ defined by

∆ = ∪Nn

j=1V
n
j \Mn

j ,

whoseµ–measure is seen to be less thanε by subadditivity of the measure. �

Now, settingδn = εn = 1/2n, and using Borel–Cantelli lemma, one easily gets the following
corollary.

COROLLARY 8.3. If X is a convex and compact subset of a normed space, equipped with a
probability measureµ (over the Borelσ–algebra), then every measurable functionf : X → X

may be obtained as aµ–almost sure limit of continuous functions(gn)n∈N∗ mappingX intoX.
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1. Hoeffding-Azuma maximal inequality

We recall in this section the maximal version of the Hoeffding-Azuma inequality (see Hoeffd-
ing [Hoe63], Azuma [Azu67], see also McDiarmid [McD89]).

A sequence of random variablesX1,X2, . . . is a martingale difference sequence with respect
to the filtrationF0,F1,F2, . . . if for every t > 1,Xt isFt−1-measurable and a.s.,

E [Xt |Ft−1] = 0 .

The following lemma is the key step in the proof of the Hoeffding-Azuma maximal inequality.

LEMMA A.1. Let (X1, . . . ,Xn) be a martingale difference sequence with respect to the fil-
tration F = (Ft)06t6n, such that for allt = 1, . . . , n, there exists aFt−1-measurable random
variable Vt and a nonnegative constantct with Vt 6 Xt 6 Vt + ct a.s. Then, denoting by
Mn = X1 + . . .+Xn the associated martingale, for anyx > 0,

log E
[
esMn

]
6
s2

8

n∑

t=1

c2t .

Now, Doob’s maximal inequality and simple algebra imply thefollowing.

LEMMA A.2 (Hoeffding-Azuma maximal inequality).Let (X1, . . . ,Xn) be a martingale dif-
ference sequence with respect to the filtrationF = (Ft)06t6n, such that for allt = 1, . . . , n, there
exists aFt−1-measurable random variableVt and a nonnegative constantct with Vt 6 Xt 6

Vt + ct a.s. Denote by(M1, . . . ,Mn) the associated martingale, whereMt =
∑t

s=1Xs for all t.
Then, for anyx > 0,

P

[
max
t=1,...,n

Mt > x

]
6 exp

(
− 2x2

∑n
t=1 c

2
t

)
,
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or, equivalently,

P


 max
t=1,...,n

Mt >

√√√√x

2

n∑

t=1

c2t


 6 e−x .

2. Bernstein’s maximal inequality for martingales

The Hoeffding-Azuma inequality is in a sense not sharp enough for most of our purposes, for
it does not involve the variances of the martingale differences, which turn out to be in practice far
smaller than the simple sum of the squared conditional ranges. Bernstein’s inequality fixes this,
and offers a bound where the variances replace the squared ranges. The crux of the proof is the
following classical inequality for random variables bounded from above, see e.g. [Fre75, Section
3]. The previous chapters showed that it was also of independent interest.

LEMMA A.3. LetZ be any random variable, bounded from above by 1 and with nonpositive
expectation,

Z 6 1 a.s. and E[Z] 6 0 .

Then, for allλ > 0,

ln E

[
eλZ
]

6

(
eλ − 1 − λ

)
VarZ .

Moreover, the factoreλ − 1 − λ in the inequality above is optimal.

We state now a version of Bernstein’s inequality suited for maxima of martingale difference
sequences (see, e.g. [Fre75] or [DaDu83]), and prove a corollary tailored to the needs of Section 4
of Chapter 5.

LEMMA A.4 (Bernstein’s maximal inequality for martingales).Let (X1, . . . ,Xn) be a mar-
tingale difference sequence with respect to the filtrationF = (Ft)06t6n and with increments
bounded by a constantK > 0: for all t, |Xt| 6 K a.s. Consider the associated martingale
(M1, . . . ,Mn), whereMt =

∑t
s=1Xs for all t. Denote the sum of the conditional variances by

Vn =

n∑

t=1

E
[
X2
t | Ft−1

]
.

Then, for allλ > 0,
(exp (λMn − φK(λ)Vn))n>0

is a supermartingale (with respect to the same filtrationF), where

φK(λ) =
1

K2

(
eλK − 1 − λK

)
.

In particular, for all constantsx, v > 0,

P

[
max
t=1,...,n

Mt > x andVn 6 v

]
6 exp

(
− x2

2 (v +Kx/3)

)

and therefore,

P

[
max
t=1,...,n

Mt >
√

2vx+ (
√

2/3)Kx and Vn 6 v

]
6 e−x .

Simple calculations yield the following corollary, in which the bounds involve directly the sum
of the conditional variances rather than a constant upper boundv on it. We do not know whether
this issue had already been considered, and in particular, whether the extra

√
lnn which appears

below is necessary.
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COROLLARY A.1. Under the assumptions of Lemma A.4, for allδ ∈ (0, 1), with probability
at least1 − δ,

max
t=1,...,n

Mt 6
√

2(Vn +K2) ln(n/δ) + (
√

2/3)K ln(n/δ) .

PROOF. Denote
M = max

t=1,...,n
Mt .

We apply the previous lemman times and use a union-of-events bound. Fort = 1, . . . , n,

P

[
M >

√
2(Vn +K2) ln(n/δ) + (

√
2/3)K ln(n/δ) and Vn ∈ K2 [t− 1, t]

]

6 P

[
M >

√
2K2t ln(n/δ) + (

√
2/3)K ln(n/δ) and Vn 6 K2t

]

6 δ/n ,

where we used Lemma A.4 in the last step. By boundedness of theXt, Vn lies between 0 and
K2 n, and therefore a union-of-events bound overt = 1, . . . , n concludes the proof. �

3. Some elements of information theory

We essentially deal with the Kullback-Leibler divergence (or relative entropy) in this section.
A good reference is the monography by Cover and Thomas [CoTh91, Chapter 2]. TheKullback-
Leibler divergencebetween two probability distributionsP andQ, with common dominating mea-
sureµ, and with densitiesdP = p dµ anddQ = q dµ, equals

K(P,Q) =

∫
p ln

p

q
dµ .

The definition does not depend on the choice ofµ, so that the only case whenK(P,Q) is not
defined yet is whenP is not absolutely continuous with respect toQ. In this case, we simply let
K(P,Q) = +∞.

To illustrate the definition, we show simple upper bounds on the Kullback-Leibler divergences
between two Bernoulli distributionsB(p) andB(q), the one with parameterp = 1/2, and the other
with parameterq = 1/2 − ε. (The dominating measureµ is for instance the sum of the Dirac
measures at 0 and 1.)

LEMMA A.5. For all 0 6 ε 6 1/
√

6,

K
(
B1/2,B1/2−ε

)
6 6 ε2 .

For all 0 6 ε 6 1/10,

K
(
B1/2−ε,B1/2

)
+ K

(
B1/2,B1/2−ε

)
6 5 ε2 .

PROOF. We simply use the definition ofK,

K
(
B1/2,B1/2−ε

)
=

1

2

(
ln

1

1 − 2ε
+ ln

1

1 + 2ε

)
=

1

2

(
ln

1

1 − 4ε2

)
=

1

2
ln

(
1 +

4ε2

1 − 4ε2

)

6
2ε2

1 − 4ε2
,

where we used at the last stepln(1 + u) 6 u. The proof of the first inequality is now concluded
by using0 6 ε 6 1/

√
6.
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As for the second one, the same techniques yield

K
(
B1/2,B1/2−ε

)
+ K

(
B1/2−ε,B1/2

)

=

(
−1

2
+

(
1

2
− ε

))
ln(1 − 2ε) +

(
−1

2
+

(
1

2
+ ε

))
ln(1 + 2ε)

= ε ln

(
1 + 2ε

1 − 2ε

)
= ε ln

(
1 +

4ε

1 − 2ε

)
6

4ε2

1 − 2ε
,

and the proof is concluded by lower bounding the denominatorthanks to0 6 ε 6 1/10. �

We now motivate the computation of the Kullback-Leibler divergence between two probability
distributions by Pinsker’s equality (see, e.g., [Tsy04]).

LEMMA A.6 (Pinsker’s inequality).For all measurable setsA,

P[A] − Q[A] 6

√
1

2
K(P,Q) .

(The supremum over all measurable setsA in the left-hand side is called the variational distance
betweenP andQ.)

We end this section by indicating two useful ways of computing or upper bounding Kullback-
Leibler divergences.

LEMMA A.7 (Convexity ofK). The map(P,Q) 7→ K(P,Q) is a convex function (in the pair).
Consequently, for any given random variableX, denoting byPX andQX the laws ofX under the
distributionsP andQ, we have

K
(
PX ,QX

)
6 K(P,Q) .

The definition of the Kullback-Leibler divergence shows that whenP = P1 ⊗ P2 andQ =

Q1 ⊗ Q2 are given by product measures, then

(A.1) K (P1 ⊗ P2, Q1 ⊗ Q2) = K (P1, Q1) + K (P2, Q2) .

We extend this to general probability distributions over (discrete) product spaces as follows (by
stating a “chain rule”). We consider probability distributions P and Q over a discrete product
image setA×B, and denote respectively byp(a, b) andq(a, b) their densities with respect to the
counting measure overA×B. We also denote byPB the second marginal ofP, and byp(· | b) the
conditional density ofP given{b} with respect to the counting measure overA, and use analogous
notation forQ. We define theconditional Kullback-Leibler divergencebetweenP andQ as

K
(
PA |B , QA |B

)
=
∑

b∈B

p(b)
∑

a∈A

p(a | b) ln
p(a | b)
q(a | b) .

LEMMA A.8 (“Chain rule”). With the notation above,

K(P,Q) = K(PB , QB) + K
(
PA |B, QA |B

)
.

4. On Fano’s lemma

Fano’s lemma often yields sharper lower bounds than Pinsker’s inequality, with an additional
lnN factor. We illustrated this general fact in Section 5 of Chapter 5 and in Remark 6.2. Let us
briefly sketch a (high-level) picture of why this is so. To this end, we first state a possible version
of Fano’s lemma. This version is a corollary of an information theoretic result (see, e.g., Cover
and Thomas [CoTh91, Chapter 2]).
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LEMMA A.9 (Fano’s lemma).Consider a probability spaceΩ, equipped withN probability
measuresP1, . . . ,PN . For all partitionsA1, . . . , AN of Ω,

1

N

N∑

j=1

Pj[Aj ] 6
K + ln 2

ln (N − 1)

where

K =
1

N

N∑

j=1

K
(
Pj, P̄

)
, with P̄ =

1

N

N∑

j=1

Pj .

It turns out that in our lower bound proofs, the problem is quite symmetric, by construction.
The setsAj are of the form{I = j}, whereI is the action taken by the forecaster, and the
probability distributionPj only favors actionj. The corresponding average distributionP̄ is often
the uniform distribution over the outcomes, so thatP̄[Aj ] = 1/N for all j. Due to the symmetry
of the problem and of the “good” forecasters, (these are usually invariant under a relabelling of the
experts), all quantitiesK(Pj , P̄) are equal, with common value denoted byK, and the same holds
even for thePj[Aj ]. Thus, we have the following bounds, respectively by Pinsker’s inequality (see
Lemma A.6) and Fano’s lemma,

min
j=1,...,N

Pj[Aj ] 6
1

N
+

√
1

2
K (Pinsker’s inequality),

min
j=1,...,N

Pj[Aj ] 6
K + ln 2

ln (N − 1)
(Fano’s lemma).

As K is often small (of the order ofε2, whereε is a small parameter), the second bound is an
important improvement, at least from an asymptotical viewpoint, due to the extraln (N −1) in the
denominator. (Compare the proofs of Theorems 3.3, 5.5, and 6.3.)

Our goal is now to have Fano-like bounds which are interesting for moderate values ofN .
The bound proposed by Lemma A.9 is useless forN 6 3, and more generally speaking, the extra
ln 2 factor is very unconvenient for non-asymptotic purposes. The solution is offered by a recent
paper of Birgé [Bir05], and is presented in the following lemma. (The second half of the Lemma
is actually stated in Massart [Mas05] and is an easy consequence of the proof given in [Bir05].
The interest is to get a cleanlnN factor, instead of simply aln (N − 1).)

LEMMA A.10 (Birgé’s version of Fano’s lemma).Consider a probability spaceΩ, equipped
withN probability measuresP1, . . . ,PN . For all partitionsA1, . . . , AN of Ω,

min
j=1,...,N

Pj[Aj ] 6 max

{
e

1 + e
,

K̄

ln (N − 1)

}
,

where

K̄ =
1

N − 1

N∑

j=2

K(Pj ,P1) .

Another valid upper bound is

min
j=1,...,N

Pj[Aj ] 6 max

{
2e

1 + 2e
,
K̄

lnN

}
,

Now, the crucial point in the proof of Theorem 5.5 is an extension of Birgé’s version of
Fano’s lemma to a convex combination of probability masses.This extension, stated in Lemma
A.13 below is proved thanks to a straightforward modification of the proofs techniques used in
Birgé [Bir05] (see also Massart [Mas05]). Below, we state and use their main lemmas. Recall
first a consequence of the variational formula for entropy.
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LEMMA A.11. For arbitrary probability distributionsP,Q and for eachλ > 0,

λP[A] − ψQ[A](λ) 6 K(P,Q)

whereψp(λ) = ln
(
p (eλ − 1) + 1

)
.

We now need to know the behavior of the Cramer transform of this functionψp. This is
indicated in the following lemma (see [Mas05, Section 2.3.4]).

LEMMA A.12. For all p > 0, the Cramer transformψp ofψp satisfies, atp 6 a 6 1,

ψ∗
p(a) = sup

λ>0
(λa− ψp(λ)) = a ln

(
a

p

)
+ (1 − a) ln

(
1 − a

1 − p

)
> a ln

(
a

e p

)
.

Next we are ready to extend Lemma A.10 to the case of convex combinations of probability
distributions. This extension does not follow from Birgé’s lemma, but may be obtained by a simple
modification of its proof, for the latter already deals with convex combinations.

LEMMA A.13 (Fano’s lemma for convex combinations).Let

{As,j : s = 1, . . . , S, j = 1, . . . ,N}
be a family of subsets of a setΩ such thatAs,1, . . . , As,N form a partition ofΩ for each fixeds.
Letα1, . . . , αs be such thatαs > 0 for s = 1, . . . , S andα1 + . . . + αS = 1. Then, for all sets
{Ps,1, . . . ,Ps,N}, s = 1, . . . , S, of probability distributions onΩ,

min
j=1,...,N

S∑

s=1

αs Ps,j[As,j] 6 max

{
e

1 + e
,

K̄

ln (N − 1)

}
,

where

K̄ =

S∑

s=1

N∑

j=2

αs
N − 1

K(Ps,j ,Ps,1) .

PROOF. Using Lemma A.11, we have that

S∑

s=1

N∑

j=2

αs
N − 1

λPs,j[As,j ] −
S∑

s=1

N∑

j=2

αs
N − 1

ψPs,1[As,j ](λ)

6

S∑

s=1

N∑

j=2

αs
N − 1

K(Ps,j,Ps,1) = K̄ .

Now, for each fixedλ > 0, the function that mapsp to−ψp(λ) is convex. Hence, letting

p1 =

S∑

s=1

N∑

j=2

αs
N − 1

Ps,1[As,j] =
1

N − 1

(
1 −

S∑

s=1

αsPs,1[As,1]

)
,

by Jensen’s inequality we get

S∑

s=1

N∑

j=2

αs
N − 1

λPs,j[As,j ] − ψp1(λ)

6

S∑

s=1

N∑

j=2

αs
N − 1

λPs,j[As,j ] −
S∑

s=1

N∑

j=2

αs
N − 1

ψPs,1[As,j ](λ) .
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Recalling that the right-hand side of the above inequality above is less than̄K, and introducing the
quantities

aj =

S∑

s=1

αsPs,j[As,j ] for j = 1, . . . ,N ,

we conclude

λ min
j=1,...,N

aj − ψ 1−a1
N−1

(λ) 6 λ
1

N − 1

N∑

j=2

aj − ψ 1−a1
N−1

(λ) 6 K̄ .

Denote bya the minimum of theaj ’s and letp∗ = (1 − a)/(N − 1) > p1. We only have to deal
with the case whena > e/(1+e). As for allλ > 0, the function that mapsp to−ψp is decreasing,
we have

K̄ > sup
λ>0

(λa− ψp∗(λ)) > a ln
a

e p∗
> a ln

a (N − 1)

(1 − a) e
> a ln (N − 1) ,

wheneverp∗ 6 a 6 1 for the second inequality to hold (thanks to Lemma A.12), andby using
a > e/(1+ e) for the last one. Asp∗ 6 1/(N −1) 6 e/(1+ e) wheneverN > 3, the casea < p∗

may only happen whenN = 2, but then the result is trivial. �

REMARK A.1. We simply remark here that in some situations, such as the symmetric toy
situation described at the beginning of this section,twoprobability distributions are enough to get
an extralnN factor. Assume we introduced two probability distributions P1 andP̄ and an event
A1 such thatP1[A1] > P̄[A1] = 1/N . (This was the case in the toy situation.) Then, thanks to
Lemmas A.11 and A.12, we may write

K
(
P1, P̄

)
> sup

λ>0

(
λP1[A1] − ψP̄[A1](λ)

)
> P1[A1] ln

(
P1[A1]

e P̄[A1]

)
> P1[A1] ln

N

4
,

provided (for the last step) thatP1[A1] > e/4. Thus, we have that

P1[A1] 6 max

{
e

4
,
K
(
P1, P̄

)

ln (N/4)

}
.

5. A lemma for solving for the regrets

At various points in the previous chapters (see, e.g., the proof of Corollary or Section 4 of
Chapter 5), we had to solve an inequality for the regrets or for the cumulative (expected) losses.
The lemma below offers a straightforward upper bound over the solution, which is all we need.

LEMMA A.14. If xt, yt > 0, andb > 0, are such that for allt = 1, . . . , n,

(A.2) xt 6 yt + b
√
xn ,

then
∀t = 1, . . . , n, xt 6 yt + b

√
yn + b2 .

PROOF. We obtain a bound over
√
xn and substitute it into (A.2) to conclude. The inequality

xn 6 yn + b
√
xn

rewrites as (√
xn −

b

2

)2

6 yn +
b2

4
,
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that is, either
√
xn 6 b/2 or

√
xn −

b

2
=


√
xn −

b

2

 6

√
yn +

b2

4
6

√
yn +

b

2
.

In both cases, √
xn 6 b+

√
yn

concluding the proof. �
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[MaTs99] E.J. Mammen and A. Tsybakov. Smooth discrimination analysis. Annals of Statistics,
27:1808–1829, 1999.

[MaSh03] S. Mannor and N. Shimkin. On-line learning with imperfect monitoring. In
B. Schölkopf and M. Warmuth, editors,Proceedings of the 16th Annual Conference on Com-
putational Learning Theory and 7th Kernel Workshop, pages 552–567. Springer, 2003.

[Mas05] P. Massart.Concentration inequalities and model selection. Saint-Flour summer school
lecture notes, Springer, New-York, 2005. To appear.
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Information incompl ète et regret interne en pŕediction de suites individuelles

Résuḿe : Le domaine de recherche dans lequel s’inscrit ce travail de thèse est la théorie de
la prédiction des suites individuelles. Cette dernière considère les problèmes d’apprentissage
séquentiel pour lesquels on ne peut ou ne veut pas modéliser le problème de manière stochastique,
et fournit des stratégies de prédiction très robustes. Elle englobe aussi bien des problèmes issus
de la communauté dumachine learningque de celle de la théorie des jeux répétés, et ces derniers
sont traités avec des méthodes statistiques, incluant par exemple les techniques de concentration
de la mesure ou de l’estimation adaptative. Les résultats obtenus aboutissent, entre autres, à des
stratégies de minimisation des regrets externe et internedans les jeux à information incomplète,
notamment les jeux répétés avec signaux. Ces stratégies s’appliquent au problème d’ajustement
séquentiel des prix de vente, ou d’allocation séquentielle de bande passante. Le regret interne
est ensuite plus spécifiquement étudié, d’abord dans le cadre de l’investissement séquentiel dans
le marché boursier, pour lequel des simulations sur des données historiques sont proposées, puis
pour l’apprentissage des équilibres corrélés des jeux infinis à ensembles de stratégies convexes et
compacts.

Mots-clés :Suites individuelles, prédiction séquentielle, prédiction avec avis d’experts, regret ex-
terne, regret interne, jeux répétés avec signaux, sélection séquentielle de portefeuilles, equilibres
corrélés des jeux infinis.

—————————————-

Incomplete Information and Internal Regret in Prediction of Individual Sequences

Abstract: This thesis takes place within the theory of prediction of individual sequences. The
latter avoids any modelling of the data and aims at providingsome techniques of robust prediction
and discuss their possibilities, limitations, and difficulties. It considers issues arising from the
machine learning as well as from the game-theory communities, and these are dealt with thanks to
statistical techniques, including martingale concentration inequalities and minimax lower bound
techniques. The obtained results consist, among others, inexternal and internal regret minimizing
strategies for label efficient prediction or in games with partial monitoring. Such strategies are
valuable for the on-line pricing problem or for on-line bandwidth allocation. We then focus on in-
ternal regret for general convex losses. We consider first the case of on-line portfolio selection, for
which simulations on real data are provided, and generalizelater the results to show how players
can learn correlated equilibria in games with compact sets of strategies.

Keywords: On-line learning, individual sequences, sequential prediction, prediction with expert
advice, external regret, internal regret, repeated games,prediction with partial monitoring, on-line
portfolio selection, correlated equilibrium of infinite games, game-theoretic learning.
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