Effet de l'ancrage sur les propriétés d'un cristal liquide antiferroélectrique confiné en cellule mince

Par Julien Da Sylva

Laboratoire de **P**hysique de la **M**atière **C**ondensée Amiens

Laboratoire **ELIS**

Gent

Sommaire

- Introduction
- Analyse de l'énergie d'ancrage
- Mesures de courant de dépolarisation
- Mesures électro-optiques de balayage
- Mesures de courant pyroélectrique
- Conclusion et perspectives

MHPOBC

$$H(CH_2)_8O-\langle O \rangle -\langle O \rangle -COO-\langle O \rangle -COO-CH^*-C_6H_{13}$$

Phase isotrope

Phase SmA

Phase SmC^{*}

Phase SmC^{*}_A

Introduction par capillarité en phase isotrope

Mesures préliminaires

Saut de la constante diélectrique réelle 🛛 🛶 modification de la structur

Modification de **l'ancrage** ?

Introduction

- Analyse de l'énergie d'ancrage
- Mesures de courant de dépolarisation
- Mesures électro-optiques de balayage
- Mesures de courant pyroélectrique
- Conclusion et perspectives

$$F_{s} = -g_{2}(\vec{P}.\vec{n}) - g_{3}(\vec{A}.\vec{n})^{2}$$

$$F_{s} = -g_{2}(\vec{P}.\vec{n}) - g_{3}(\vec{A}.\vec{n})^{2} - \vec{P}.\vec{E}$$

Minimisation de $F_s \longrightarrow$ maximisation de $\vec{P}.\vec{E}$ \longrightarrow alignement de \vec{P} avec \vec{E}

Modification des ancrages à l'équilibre

Bilan à champ nul E = 0

Prédiction des états mixtes AF-FE et FE-AF par analyse de l'énergie d'ancrage

Mécanisme de transition vers l'état mixte

- Etats AF-AF et FE-FE obtenus par action sur T
- Etats AF-FE et FE-AF obtenus par action sur E

Prise en compte des surfaces

Prédiction d'une large hystérésis à la transition ferro-antiferro

- Introduction
- Analyse de l'énergie d'ancrage
- Mesures de courant de dépolarisation
- Mesures électro-optiques de balayage
- Mesures de courant pyroélectrique
- Conclusion et perspectives

Objectifs

• Différentiation des états mixtes

• Étude de la réponse électrique sous champ \vec{E}

$$I(t) = C \frac{d(V)}{dt} + S \frac{dP}{dt} + \frac{V}{R_{CL}}$$

$C \frac{d(V)}{dt}$: Charge du condensateur équivalent

$S \frac{dP}{dt}$: Basculement moléculaire

 $\frac{V}{R_{CL}}$: Contribution ohmique

 $\mathbf{DP} = -\mathbf{P}_{\mathrm{S}}/2$

Contribution ohmique : étude des ions

Charge ionique ~ polarisation spontanée P_s

Ecrantage total possible

Mécessité d'une prise en compte des ions

- Introduction
- Analyse de l'énergie d'ancrage
- Mesures de courant de dépolarisation
- Mesures électro-optiques de balayage
- Mesures de courant pyroélectrique
- Conclusion et perspectives

Faisceau continu de lumière blanche

$$I = I_0 \sin^2(2\boldsymbol{a}) \sin^2(\frac{\boldsymbol{p} d n_a}{\boldsymbol{l}})$$

$\frac{\Delta I}{I_0} = [2\sin(4\boldsymbol{a}_0)\sin^2(\boldsymbol{b}n_a)]\Delta \boldsymbol{a} + [\boldsymbol{b}\sin^2(2\boldsymbol{a}_0)\sin(2\boldsymbol{b}n_a)]\Delta n_a$

Une contribution en phase FE et AF: mode de Goldstone

Impulsion \vec{E} : transition vers l'état mixte *E* < 0 E > 00,010 0,010 Etat mixte -0,005 Etat mixte + **D** ^{optical} (a.u) 000 000 000 000 **(a.u**) 0,000 **(a.u)** 0,000 **(a.u)** 0,005 **(a.u)** 0,010 -0,010 -0,005 -0,015 100 0 20 40 60 80 0 20 60 80 100 40 Angle \mathbf{a}_{0} (°) Angle $\mathbf{a}_{0}(^{\circ})$ $\frac{\Delta I}{I_0} = [a_g \sin(4\boldsymbol{a}_0 - \boldsymbol{q})] \Delta \boldsymbol{a} - [\frac{a_s}{2} \cos(4\boldsymbol{a}_0) + \frac{a_s}{2}] \Delta n_a$ $f_1 \approx 7400 Hz$ $f_2 \approx 150 Hz$

Passage vers l'état mixte

- Apparition d'une contribution en biréfringence basse fréquence (150Hz) en première harmonique
 - Brisure de symétrie du système sans champ appliqué
 - Mise en évidence du mouvement de la paroi séparant les états FE et AF

-Comportement en Sin($4\alpha_0$) de TRES faible amplitude

-Contribution optique en biréfringence (Sin²($2\alpha_0$))

- Introduction
- Analyse de l'énergie d'ancrage
- Mesures de courant de dépolarisation
- Mesures électro-optiques de balayage
- Mesures de courant pyroélectrique
- Conclusion et perspectives

$$P_{UP} + P_{DOWN} = 0$$

 $\sum P = 0 \text{ en l'absence de déformation de l'hélice ferroélectrique}$

Présence de deux maximums (i.e deux transitions)

Transition de volume + transition de surface ?

Mesures pyroélectriques :

• A champ nul

 Mise en évidence de l'effet des surfaces UP/DOWN
Mise en évidence de la transition de surface en phase SmA : effet électroclinique de surface

Mesures pyroélectriques :

• A champ non nul

Corrélation avec la théorie Landau - de Gennes à la transition SmA-SmC*

- Introduction
- Analyse de l'énergie d'ancrage
- Mesures de courant de dépolarisation
- Mesures électro-optiques de balayage
- Mesures de courant pyroélectrique
- Conclusion et perspectives

Conclusion

- Mesures de courant de dépolarisation : quantification précise des proportions FE-AF
- Mesures de la réponse électro-optique : mise en évidence du mouvement de la paroi FE-AF
- Mesures de courant pyroélectrique : influence de la surface à la transition SmA-SmC^{*}

Validation du modèle théorique

Perspectives - Technologie AFLC

- Contrôle extrême de la stabilité des afficheurs par la prise en compte de tous les états accessibles
- Passage possible entre différents états par action simultanée sur les variables thermodynamiques E et T
- Choix des couleurs par modification de la biréfringence optique (i.e action sur la paroi FE-AF)