Phase transitions in long-range spin models Transitions de phase dans les systèmes de spins en interactions à longue portée

Sylvain Reynal

Laboratoire de Physique Théorique & Modélisation (UMR 8089)

CNRS/Université de Cergy-Pontoise

E.N.S.E.A.

Plan de thèse

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ FSS inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

Modèles : diagramme de phase de systèmes de spins classiques en interaction à longue portée

- Modèle de Potts à Q états (controverses, crossovers)
- Modèle d'Ising à champ aléatoire (première étude numérique)

Méthodes : algorithmes multicanoniques

- Algorithme multicanonique avec mise-à-jour locale (adapté aux potentiels à longue portée)
- Méthode "breathing cluster" (étend considérablement l'intervalle de tailles étudiables)
- Méthode de la spinodale (détection de l'ordre des transitions de phase)

Plan de l'exposé

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ **FSS** inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

- I. Potts à longue portée : controverses, résumé des résultats de la thèse.
- II. Algorithmes multicanoniques.
- III. Méthode de la spinodale et diagramme de phase du modèle de Potts LR.
- IV. Breathing clusters : principe, performances, et résultats.

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ FSS inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

I. Chaîne de Potts à longue portée

Chaîne de Potts à longue portée

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ **FSS** inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

$$H = \sum_{i>j} J(|i-j|)\delta_{s_i,s_j}$$

Potentiel ferromagnétique à décroissance algébrique :

$$J(|i - j|) = \frac{-1}{|i - j|^{1 + \sigma}}$$

• σ fixe le taux de décroissance (~ *dimension effective*).

Phase ordonnée : condensation dans une phase parmi q

Les potentiels à longue portée en modélisation

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ FSS inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

En physique de la matière condensée :

- Forces de Van der Waals forces, effet Casimir.
- Effet Kondo : interactions $1/r^2$.
- Verre de spin : interactions RKKY $r^{-D}\cos(k_0r + \phi)$).
- Films magnétiques.

Dans les disciplines connexes :

- Réseaux de neurones, réseaux small-world.
- Propagation d'épidémies, vols de Lévy.
- Thermodynamique généralisée de Tsallis.

Diagramme de phase : questions ouvertes et controverses

Diagramme de phase : problèmes abordés

Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ FSS inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

I. Chaîne de Potts LR

Diagramme de phase : problèmes abordés

Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en 1 / r^2 FSS inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

I. Chaîne de Potts LR

Bayong : single-histogram Monte Carlo

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en 1 / r^2 FSS inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

Cross-over entre régimes longue et courte portée

Résultats de la thèse

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ **FSS** inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

- Diagramme de phase affiné : précision de deux chiffres significatifs.
- La transition à $\sigma = 1.0$ n'est pas du premier ordre (effet de taille finie inhabituel).
- Crossover SR/LR sur une fenêtre étroite [1.0, 1.2].
- Méthodes : ensemble multicanonique + spinodale.

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ FSS inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

II. Ensemble multicanonique

Chaînes de Markov et bilan détaillé

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ FSS inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

Générer une chaîne de Markov de configurations $\{\sigma_1, \sigma_2, \ldots\}$ en utilisant une probabilité de transitions $W(i \rightarrow f)$ de σ_i vers σ_f

Bilan détaillé pour une distribution d'équilibre w_i :

 $w_i W(i \to f) = w_f W(f \to i)$

Dans l'ensemble canonique : $w_i = w(E_i) = e^{-\beta E_i}$

$$W(i \to f) = \min\left(1, e^{\beta(E_i - E_f)}\right)$$

Limitations des algorithmes canoniques

- Ralentissement supercritique pour les transitions du premier ordre.
- Technique de repondération "lourde".

Ralentissement supercritique

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ FSS inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

Ralentissement supercritique

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ FSS inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

La tension de surface ΔF augmente avec la taille du réseau \rightarrow suppression exponentiellement grande des configurations mixtes.

Poids multicanoniques : algorithme

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ FSS inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

Comment vaincre le ralentissement supercritique ?

- Favoriser les évènements rares ;
- Réduire le temps de "tunneling" de $\tau \sim e^{aL^b}$ à $\tau \sim L^z$ (Berg, Neuhaus).

Algorithme :

Calcul itératif de la densité d'états n(E) : algorithmes de Berg-Neuhaus's, Wang-Landau's ou "transition matrix";

• Fixer $w(E) \sim 1/n(E) = e^{-S(E)}$;

- Distribution énergétique plate : marche aléatoire dans l'espace des niveaux d'énergie ;
- Accepter la mise-à-jour locale avec une probabilité

$$W_{i \to f} = \min(1, e^{S(E_i) - S(E_f)})$$

Poids multicanoniques : algorithme

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ FSS inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

Ε

Poids multicanoniques : marche aléatoire

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique **Poids multicanoniques** III. Spinodales Points spinodaux Interactions en $1/r^2$ FSS inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

Marche aléatoire dans l'espace de l'énergie :

Repondération des moyennes thermodynamiques

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en 1 / r^2 **FSS** inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

But : obtenir les moyennes thermodynamiques comme des fonctions continues de la température. Distribution énergétique :

Repondération : états métastables

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ FSS inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

Calcul de l'énergie libre sur un large intervalle d'énergie et de température →estimation fiable des températures de métastabilité

- Ces températures forment l'ossature de la méthode des spinodales exposée dans la suite;
- En particulier : $T_2 \rightarrow T_1$ lorsque la transition devient continue.

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ FSS inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

III. Détection de l'ordre des transitions de phase : spinodales

Problème : affaiblissement de la transition

Nous avons besoin d'un autre indicateur : quotient des températures de métastabilité

Affaiblissement de la transition

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques **III.** Spinodales Points spinodaux Interactions en $1/r^{2}$ **FSS** inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

- Hypothèse : lois d'échelle en taille finie valides pour les températures de métastabilité $(T_2(L) T_2(\infty) \propto 1/L + O(1/L^2)).$
- Les températures de métastabilité T_1 et T_2 (points spinodaux) tendent vers T_c lorsque $\sigma \to \sigma_c^-$
- Néanmoins, $T_2 T_1$ n'est **pas** un bon estimateur.

Spinodale et ordre de la transition

Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

Approximation polynomiale sur les temperatures $T(\infty)$ $\rightarrow \sigma_c(3) = 0.72(1)$

Le rapport T₂/T_c possède une courbure *négative*.
Pente plus forte à σ_c : meilleure précision.

$\sigma = 1.0$: controverse sur la nature de la transition

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/\eta$ FSS inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

Transition topologique sur la ligne entière (Cardy)

- $\sigma_c(q)$ croise à q = 8 (Bayong)
- Résultats :
- La transition à $\sigma = 1.0$ n'est **pas** du premier ordre, en vertu d'un effet de taille finie inhabituel.

$\sigma = 1.0$: effet de taille finie inhabituel

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques **III.** Spinodales Points spinodaux Interactions en $1/r^2$ **FSS** inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

- La transition apparaît discontinue dés L < 400.
- Analyse en taille finie montre que la transition est continue dans la limite thermodynamique.

$\sigma = 1.0$: effet de taille finie inhabituel

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ **FSS** inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

Interprétation : **troncature** du potentiel à longue portée due à la taille finie du réseau.

- augmente artificiellement la rigidité du réseau de spin à petite taille
- "Déplace" le modèle vers la frontière $\sigma_c(q)$

Conclusion (partie I)

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ **FSS** inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

- Méthode des spinodales : affine considérablement la position de la frontière $\sigma_c(q)$ sur un large intervalle de q et σ
- Analyse en taille finie pour $\sigma = 1.0$: conforte le scénario de Cardy (transition topologique sur la ligne entière).
- Crossover SR/LR sur une fenêtre étroite $\sigma = [1.0, 1.2]$

Horizon :

- Mise-à-jour locale efficace pour résoudre les controverses
- Mais nouvelles questions soulevées concernant les lois d'échelle en taille finie
- Exige un large intervalle de tailles de réseau
- Donc une nouvelle méthode susceptible d'aller au-delà de $L \sim 400$.

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ FSS inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

IV. Breathing clusters

Mise-à-jour locales vs collectives

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ FSS inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

Inconvénient d'une mise-à-jour locale :

- Potentiels à longue portée : O(N²) opérations pour le calcul (obligatoire) de l'énergie à chaque MCS.
- exposant dynamique z non-optimal.

Intérêt de combiner les deux approches?

- Clusters : meilleures performances dynamiques attendues ;
- Réduit la complexité algorithmique à celle d'un modèle à courte portée.

Breathing clusters : complexité algorithmique

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ **FSS** inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

Objectifs : Réduire le nombre d'opérations de $O(N^2)$ à $O(N \log N)$ pour les potentiels à longue portée.

Breathing clusters : complexité algorithmique

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ **FSS** inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

Objectifs : Réduire le nombre d'opérations de $O(N^2)$ à $O(N \log N)$ pour les potentiels à longue portée.

Breathing clusters : propriétés dynamiques

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques **III.** Spinodales Points spinodaux Interactions en $1/r^2$ **FSS** inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

Exposants dynamiques \rightarrow valeur idéale $z \sim D$.

Temps de "tunneling" et exposants dynamiques :

Mise-à-jour collective dans l'ensemble multicanonique

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ FSS inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

Principaux obstables :

- Les algorithmes de type "cluster" exigent la présence (i) de symétries dans l'hamiltonien (ii) d'une température;
- Le poids multicanonique est global : w(E) = 1/n(E)

Notre approche :

- Construction des clusters gouvernée par la température microcanonique $\beta(E) = dS(E)/dE$.
- Réécrire le poids multicanonique comme $w(E) = \phi(E)e^{-\beta(E)E}$.
- Mais taux de réjection $\neq 0$!

Représentation de Fortuin-Kasteleyn généralisée

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ **FSS** inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

_____ $b_{ij} = 1$

 $\cdots \cdots b_{ij} = 0$

Invoquer la représentation de Fortuin-Kasteleyn et réécrire w(E) comme

$$w(E) = \phi(E) \sum_{[b]} \prod_{i < j} p_{ij}(E) \delta_{\sigma_i, \sigma_j} \delta_{b_{ij}, 1} + \delta_{b_{ij}, 0}.$$

avec
$$p_{ij}(E) = e^{\beta(E)J(|i-j|)} - 1.$$

Construction des clusters

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ FSS inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

Algorithme

- 1. Activer un lien avec la probabilité $\pi_a(i,j) = 1 e^{-\beta(E_a)J(|i-j|)}$.
- 2. Identifier les clusters, et tirer une nouvelle valeur aléatoirement pour chaque cluster
- 3. Accepter la mise-à-jour avec la probabilité

$$W_{flip}(a \to b) = \min\left(1, \frac{\phi(E_b)}{\phi(E_a)} \prod_{l>1} \left[\frac{p_l(E_b)}{p_l(E_a)}\right]^{B(l)}\right),$$

où B(l) =nombre de liens de longueur l = |j - i|.

Note : il existe un algorithme canonique en temps O(N) pour construire des clusters efficacement (Luijten-Blöte) : utilisable ici !

Taux de réjection

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ **FSS** inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion Au premier ordre en $\epsilon = E_b - E_a$, nous avons

 $1 - \langle W_{flip} \rangle (E_a) \sim |\beta'(E_a)|\epsilon$

→faible taux de réjection dans la région de coexistence entre phases

Calcul efficace de l'énergie

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ FSS inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

• Calculer E_b exige $O(N^2)$ opérations

Réduit à O(N ln N) en utilisant une implémentation FFT du théorème de convolution

 $H = -\frac{1}{2N} \sum_{k=0}^{k=N-1} \tilde{J}(k) \tilde{\vec{S}}(k) \cdot \tilde{\vec{S}}(-k)$

 Avec une mise-à-jour collective, seules O(N ln N) opérations sont requises pour la mise-à-jour de tout le réseau (contre O(N²) pour une mise-à-jour locale)

Breathing clusters : erreur statistique

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ FSS inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT **Précision** Potts 2D Tension de surface V. Conclusion

Erreur statistique sur le calcul de n(E) considérablement plus faible

Phase transitions in long-range spin mode $\sigma=6, \sigma=0.5, L=512)$

Sylvain Reynal

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ **FSS** inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

Temps de "tunneling" et exposants dynamiques

q	z_{loc}	z_{col}	z_{mubo}
7	2.60(4)	1.82(2)	1.84
10	2.87(4)	2.23(1)	2.1

Températures :

Résultats pour la chaîne de Potts à longue portée

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ FSS inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

•
$$T_c(C_v) = 1.68764(1)$$

• $T_c(\chi) = 1.68765(2)$

Résultats pour la chaîne de Potts à longue portée

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques **III.** Spinodales Points spinodaux Interactions en $1/r^2$ FSS inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

Comportement en taille finie de la tension de surface : fractal ?

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ FSS inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

V. Conclusion

Conclusion

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ FSS inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

Conclusion

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en $1/r^2$ FSS inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

Méthodes :

- Analyse des données de simulation : méthode spinodale \rightarrow suivre la position des point spinodaux vs σ + choisir un indicateur approprié (T_2/T_c) donnant la meilleure précision. Breathing cluster :
 - 1. Etend considérablement l'intervalle de tailles simulables
 - 2. Meilleure qualité statistique
 - 3. Méthode souple (potentiels à courte portée, transition matrix)

Perspectives et travaux en cours

I. Chaîne de Potts LR Modélisation Questions ouvertes Addressed issues Résultas II. Ensemble multicanonique Chaînes de Markov Ralentissement supercritique Poids multicanoniques III. Spinodales Points spinodaux Interactions en 1 / r^2 FSS inhabituel IV. Breathing clusters Single-spin vs clusters Clusters FFT Précision Potts 2D Tension de surface V. Conclusion

Modèles :

- Modèle d'Ising à champ aléatoire avec distribution bimodale : première étude numérique de la controverse (cf. modèle à courte portée) concernant la ligne tricritique.
- Modèle de Potts : étude détaillée des effets de taille finie ; géométrie fractale de l'interface entre les phases.

Méthodes :

Combinaison avec Optimized Ensemble (modèles désordonnés).