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Short abstract/Résumé

English version

This thesis uses generalized ensembles Monte Carlo methods to explore the criti-
cal behavior of spin chains with algebraically decaying interactions. The first part
of this thesis investigates the phase diagram of a long-range Potts chain using a
multicanonical algorithm. A new method based on spinodal points is proposed to
detect the order of phase transitions. The boundary between first- andsecond-order
transitions is located with unprecedented accuracy using this method, and a new,
unusual finite-size effect is observed. The second part of this thesis formulates a
new, versatile multicanonical method that includes cluster updates, considerably
extending the range of attainable lattice sizes. The method is shown to be far more
accurate than standard multicanonical methods. It is applied to the investigationof
finite-size effects at first-order transitions, where strong evidence suggests that the
mixed-phase configuration has a fractal dimension depending on the decay param-
eter of the interaction. Finally, a long-range Ising chain with bimodal randomfields
is studied. The existence of a tricritical point for slowly decaying interactions is
demonstrated.

Version française

Dans cette thèse, nous explorons le comportement critiques de chaînes de spins
gouvernées par des interactions à décroissance algébrique. Dans une première par-
tie, nous étudions le diagramme de phase d’une chaîne de Potts en utilisant un al-
gorithme multicanonique. Nous proposons une nouvelle méthode de détection de
l’ordre des transitions de phase exploitant les points spinodaux. A l’aide de cette
méthode, nous localisons la ligne séparant les transitions du premier et du second
ordre avec une précision sans précédent, et mettons en évidence un effet de taille fi-
nie inhabituel. Dans une deuxième partie, nous introduisons une nouvelle méthode
multicanonique intégrant un algorithme de mise-à-jour collective des spins. Cette
méthode, extrêmement souple, étend considérablement l’intervalle de tailles si-
mulables, et s’avère bien plus précise que les méthodes multicanoniques usuelles.
Nous appliquons cette méthode à l’étude d’effets de taille finie dans le cadre de
transitions du premier ordre : les résultats suggèrent fortement que les configura-
tions correspondant à des phases en coexistence sont caractérisées par une dimen-
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Short abstract

sion fractale dépendent du taux de décroissance de l’interaction. Dansun dernier
chapitre, nous étudions une chaîne d’Ising régie par des interactions à longue portée
en présence de champs aléatoires à distribution bimodale, et prouvons l’existence
d’un point tricritique pour des interactions à décroissance lente.

ii



Abstract

This thesis addresses the fundamental question that pertains to spin models gov-
erned by algebraically decaying interactions: the influence of the interaction range
on their critical behavior. Two of the most challenging issues when investigating
these models by means of Monte Carlo methods are (i) the onset of a diversity
of phase transitions as the decay parameter is varied, and (ii) a large algorithmic
complexity stemming from the huge number of interactions between spins. The
purpose of this thesis is to show that methods operating in generalized ensembles
present, to date, the most efficient and versatile means of meeting these challenges.

We begin this thesis with a review of the considerable literature that the study
of long-range models has produced during the last three decades. Following an
overview of the wide variety of Monte Carlo methods available to date, the second
part of the thesis presents a broad study of the phase diagram of theq-state Potts
chain by means of a local-update version of Berg’s multicanonical method. Sev-
eral improvements tailored to long-range models are proposed. The utility of the
method for the simulation of medium-sized long-range models is demonstrated by
extensive tests of performance and accuracy over a large range of decay parame-
ters.

Then, a new method for the detection of the order of a phase transition is de-
veloped: by following the position of spinodal points, the boundary separating
first- and second-order transitions is located with unprecedented accuracy. On the
line of inverse square interactions, a very unusual finite-size effect is found: while
the transition seems to be first order at finite lattice size, it becomes a continuous
transition in the thermodynamic limit. This settles a long-standing controversy sur-
rounding the nature of the phase transition on this line, and suggests that finite-size
scaling at first-order transitions is in general highly atypical in long-range models.
Beyond this line, the behavior of the model is shown to turn into a short-rangeone
within a narrow window, lending clear support to a long-suggested renormalization
group scenario.

With the aim of scrutinizing finite-size scaling effects, the second part of this
thesis introduces a novel multicanonical method that drastically extends the range
of attainable lattice sizes. The method builds on the ability of cluster algorithms
to rapidly reduce temporal correlations, and relies upon the microcanonical tem-
perature to bridge the gap between multicanonical ensembles and random-cluster
representations. Owing to its straightforward formulation, it can be used in ava-
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riety of multicanonical implementations, including the Wang-Landau algorithm
and the Transition Matrix method. Systematic tests demonstrate the superiority
of this method over standard multicanonical methods: the numerical accuracyis
drastically improved, and the reduction of the algorithm complexity to that of a
short-range model of the same linear size ensures remarkable scalability.

Application to long-range chains at very large sizes (∼ 216 spins) delivers the
best numerical estimates to date. The investigation of finite-size effects shows im-
portant finite-size corrections, and suggests that the mixed-phase interface has a
fractal dimension depending on the decay parameter of the interaction. An esti-
mate of the correlation length is provided, that is consistent with this picture. The
benefits of the method extend far beyond the realm of long-range models: the esti-
mate of the surface tension for the two-dimensional nearest-neighbor Pottsmodel
(up to 256× 256 spins) matches the exact value to an accuracy never attained with
Monte Carlo methods, although modest statistics were used.

A later chapter centers on extensions to disordered models. A long-range
Ising chain with bimodal random fields is studied, and the onset of a discontin-
uous transition is demonstrated at large fields for slowly decaying interactions.
This is consistent with a similar scenario reported in the nearest-neighbor version
of this model. The limitations of the method for this class of model are exam-
ined; improvements and possible combinations with other generalized ensembles
are suggested.

Some of the work presented in this thesis has been published or submitted for
publication. The references are:

• S. Reynal and H. T. Diep, Reexamination of the long-range Potts model: A
multicanonical approach,Phys. Rev. E69, 026109 (2004), 17 pages.

• S. Reynal and H. T. Diep, Q-state Potts model with power-law decaying
interactions: Along the tricritical line,J. Appl. Phys.95, 6968 (2004), 4
pages.

• S. Reynal and H. T. Diep, Hybrid multicanonical cluster algorithm for effi-
cient simulations of long-range spin models,Comp. Phys. Comm.169, 243
(2005), 4 pages.

• S. Reynal and H. T. Diep, Simulation of spin models in multicanonical
ensemble with collective updates, submitted to Phys. Rev. Lett. (cond-
mat/0409529).

• S. Reynal and H. T. Diep, Fast flat-histogram method for generalized spin
models, submitted to Phys. Rev. E. (cond-mat/0504367).
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explanation in text). . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Construction of a Wolff cluster for a one-dimensional model with

long-range interactions (this applies to anyD-dimensional lattice,
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2.4 Construction of a Wolff cluster for a one-dimensional model with

long-range interactions using cumulative probabilitiesC jα( jα+1).
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proceeds further with the addition of spins to, e.g., spinjL1 = −2,
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2.5 Tree-like (left) and flattened (right) representations of a complete

graphG for a two-state Potts model (i.e., the Ising model) with
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2.6 An illustration of a bond update in the flattened representation of

the complete graphG, for the Swendsen-Wang algorithm applied

to a two-state Potts model with long-rangeJi j interactions. The

vertical dashed arrow shows the order in which bonds are consid-

ered for activation, starting from an empty bond set (i.e., all bonds

inactive). The bond between spins 2 and 4 may be left inactive

with probabilitye−βJ24 (a) or activated with probability 1− e−βJ24

(b), see Eq. (2.10). The procedure continues until every bond has

been considered for activation. . . . . . . . . . . . . . . . . . . . 47
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2.7 Histogram of the energy filled with the samples produced by a

canonical simulation at inverse temperatureβ (solid line), and what

the same histogram shouldlook like at inverse temperatureβ0.

Both histograms overlap only poorly, and the resulting accuracy
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3.4 Dots indicate the initial guesses̄Hmu(E) that were fed into the it-

eration scheme atL = 400,q = 5, andσ = 0.3(̂ ),0.5(+),0.9(�).

Each initial guess is computed using Eq. (3.6), i.e., by scaling a
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4.5 Dotted cuve: reweighted histogram of the energy for the three-state
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Introduction and motivations

This thesis narrates two distinct, and yet tightly related stories: the investigation,
with the concepts and tools of statistical physics, of the critical behavior of aclass
of spin models governed by long-range interactions, and the developmentof new
methods dedicated to their investigation. The former focuses on theq-state Potts
model, and, to a lesser extent, on the Random Field Ising model. The latter re-
volves aroundgeneralized ensemblesmethods. This introduction is aimed at out-
lining the scientific motivations behind this thesis, and in particular, at explaining
— although partially4 — (i) why long-range spin models, and specifically the two
models mentioned above, are appealing from the viewpoint of equilibrium statisti-
cal physics, and (ii) why Monte Carlo simulations in generalized ensembles might
be an efficient approach to the exploration of these models.

Long-range spin models

The model-systems investigated in this thesis are discrete spin models living on a
lattice. For instance, theq-state Potts model I will be considering from Chap. 4 to
Chap. 7 is described by the following Hamiltonian,H[{σi}] = −

∑

i, j Ji jδ(σi , σ j),
where theσi ’s represent discrete spin variables taking on integer values between
1 andq, and the sum runs over every pair of spins.Ji j is a long-range coupling
constant of the form|i − j|−D−σ, i.e., decaying algebraically with the interspin dis-
tance, that favors ferromagnetic ordering at low temperature. The random-field
Ising chain that will be studied in Chap. 8 is governed by a similar Hamiltonian,
H[{σi}] = −

∑

i, j Ji jσiσ j −
∑

l hlσl , whereσi = ±1, and the second term represents
the interaction between spins and external random fields{hi}. The equilibrium ther-
modynamic properties of theseclassicalspin models5 at a given temperatureT are
described by the usual Boltzmann distribution, the probability of occurenceof a
given configuration of spins [{σi}] being proportional toe−H[{σi }]/kT. An approx-
imate treatment through mean-field theory will be provided for both models in
Chap. 4 and Chap. 8, respectively.

Though seemingly simple in their construction, these models are in fact en-

4Chap. 1 and 2 provide more detailed material in this respect.
5Quantum fluctuations are assumed to be negligible with respect to thermal fluctuations, and only

thermal phase transitions are considered in this work.
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Introduction and motivations

dowed with a built-in complexity that stems from the fundamental role played by
the decay parameterσ in shaping their critical behavior, akin to an effective dimen-
sion. Their phase diagram is in general richer than that of their nearest-neighbor
counterpart: as the effective dimension is varied, from the geometric dimension
(where the behavior is that of a nearest-neighbor model) to infinity (wherethe be-
havior is mean-field-like), they go through a variety of universality classes [225].
In this respect, they may be regarded as a powerful paradigm for studying the influ-
ence of dimensionality in the physics of critical phenomena: crossovers between
universality classes and tests of renormalization groupǫ-expansions, for instance,
have been extensively studied in the past [40].

Yet long-range models are also of fundamental interest in the microscopic mod-
eling of a variety of systems, from the Kondo effect in the physics of high tem-
perature superconductivity [11] to the fast-growing technological field of ultrathin
magnetic films [45, 66], from autoassociative memories [268] to small-world net-
works [193]. This means that investigating these models is not merely a matter of
academic interest.

Inside the realm of long-range spin models, theq-state Potts model is perhaps
the most exciting, owing to its parameter space comprising three parameters: the
temperature, the number of statesq, and the decay parameterσ. In fact, its ap-
pealing character might be already expected from the rich behavior of its nearest-
neighbor counterpart. This last model undergoes a phase transition thatturns from
a continuous into a first-order one as the number of statesq is increased beyond
a threshold valueqc(d) depending on the dimensionality of the lattice. Therefore,
the connection between the decay parameter and the effective dimension suggests
that a similar behavior might occur in the long-range version.

The Potts model is in fact one of the less studied long-range models, with only
a rough estimate of its phase diagram available; it is also one of the most intrigu-
ing, with numerous controversies and conjectures surrounding it, e.g., thenature
of the phase transition on the line of inverse square interactions (topological vs
first-order), the exact position of the boundary separating first- and second-order
transitions, or the crossover from the long-range to the short-range regimes. Fi-
nally, and as opposed to its nearest-neighbor counterpart, no rigoroustreatment
(e.g., based on duality) has been proposed thus far. It is one of the aims of this
thesis to investigate this model from a new perspective.

The Random Field Ising chain is the second model that is studied in this thesis,
though to a far lesser extent than the previous model. Here again, the parameter
space is three-dimensional, owing to the presence of disorder. While verysubstan-
tial literature has been produced on thenearest-neighborversion of this model,
its long-range version has been much less investigated [52, 343]. One ofthe most
intriguing questions regarding the nearest-neighbor model with abimodalfield dis-
tribution is the possible onset of a first-order transitionfor sufficiently large fields
[2]. This has been predicted in the mean-field case, yet the issue seems to be
somewhat challenging in the three-dimensional nearest-neighbor model [154]: one
might thus expect that in a long-range version of this model with interactions de-
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Introduction and motivations

caying at a sufficiently slow pace (i.e., low decay parameterσ), the onset of such a
transition, if at all, may be more clearly visible. The aim of Chap. 8 is to examine
this feature.

Overall, and wherebothmodels are concerned, the fundamental issues exam-
ined in this thesis revolve around the two following questions:

• In what respect is the critical behavior of long-range models, and in partic-
ular the order of their phase transitions, influenced by the decay parameter
of the interaction? What is the nature of the crossover effects that occur
between the regimes exhibited?

• To what extent may a long-range model serve as a guide in the investiga-
tion of its nearest-neighbor counterpart, where the effect of dimensionality
is concerned?

A significant part of this thesis has been devoted to obtaining a comprehensive
view of the current state of knowledge regarding long-range models, and to keep
up with the steady production of new results. This is presented in Chap. 1. A
background in condensed matter physics is assumed there. The phase diagram of
theq-state Potts chain (D = 1) is investigated in Chap. 4 and 5. An atypical finite-
size effect will be found out on the line of inverse square interactions (σ = 1), that
will trigger a reexamination at much larger lattice sizes in Chap. 7. Finally, the
phase diagram of the long-range Random Field Ising chain is explored in Chap. 8.

Monte Carlo simulations in generalized ensembles

There are, broadly speaking, two means of studying the thermodynamic properties
of a model from the viewpoint of equilibrium statistical physics:analytically, us-
ing rigorous methods, e.g., contour expansions or inequalities on correlation func-
tions, or approximation-based methods, e.g., series expansions, transfer matrices6

or renormalization group methods; ornumerically, by means of Monte Carlo (i.e.,
stochastic) or Molecular Dynamics (i.e., deterministic) methods. The latter have
turned into a powerful tool to investigate complex models where no rigorous treat-
ment is available. Monte Carlo methods, and specifically, theirgeneralized en-
semblesflavor, play a central role in this thesis, and will be reviewed in Chap. 2.
Other methods, specifically analytical methods dedicated to long-range models, are
outlined in the core of the manuscript when deemed necessary.

Basically, Monte Carlo methods (inside and outside the realm of physics) are
a tool to compute a multi-dimensional integral using random sampling; in statis-
tical physics, the role of the multi-dimensional integral is played by thepartition
function of the model and the statistical moments that are generated from it by
differentiation. The most common implementation of this method in statistical
physics isimportance samplingMonte Carlo, whereby a Markov chain generates a

6Methods based on transfer matrices may be exact or approximate.
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sequence of (properly distributed) configurations of the system that is atiny subset
of all microscopic configurations. The first implementation of this method was in-
troduced by Metropolis et al. [246] in 1953: configurations are sampled according
to the Boltzmann distributione−E/kT (this method is therefore sometimes referred
to as “canonical sampling”), and statistical averages of thermodynamic quantities
at temperatureT are directly computed from the sequence of configurations.

The achievements of this algorithm span more than five decades, and it has long
been regarded as the paradigm for Monte Carlo simulations in statistical physics.
Fifteen years of Monte Carlo simulations of long-range spin models based onthis
algorithm (or close variants thereof) attest that, in this field also, strategies did not
depart from custom. Yet this method faces some severe drawbacks, in particu-
lar when simulating systems at first-order transitions or with complicated energy
landscapes: both behaviors are present in the models explored in this thesis, and
suggest that the issue be met from a different perspective using new algorithms.

New methods that seem promising candidates in this respect are methods op-
erating ingeneralized ensembles[25], and in particular, in themulticanonicalen-
semble. Introduced in the early 90’s, these rely onnon-Boltzmannsampling, and
simulate the model over a large range of energy with no explicit reference tothe
temperature. They offer several benefits with respect to the Metropolis algorithm:
statistical averages of thermodynamic quantities can be obtained from a singlesim-
ulation, by resorting to a so-calledreweightingprocedure; the presence oflocal
minimain the free energy landscape, which leads to repetitive dynamics and ther-
malization problems when using the Metropolis algorithm, is efficiently tackled in
generalized ensembles. Therefore, investigating long-range spin modelsby means
of these new methods seems an exciting way of meeting the various controversies
that surround these models.

A substantial part of this thesis was devoted to learning how to use the various
Monte Carlo methods that have been made available to date, including (i) the mul-
ticanonical method, the Wang-Landau algorithm, the transition matrix method and
methods operating in other generalized ensembles, and (ii) a large class of clus-
ter algorithms (Chap. 2). The former, and specifically the multicanonical method,
form the core of the numerical methods used in this thesis; the latter will turn out
to be an essential ingredient of the breathing cluster method developed in Chap. 7.

On themethodsside, one of my first items of business (Chap. 3) will be to
test the usability of these methods in the context of long-range models, e.g., their
performance, reliability and ease of implementation. In this regard, the diversity
of phase transitions exhibited by theq-state Potts model will make it a perfect test
case. The multicanonical method — in its pristine formulation by Berg [30] — will
play a central role here, and the phase diagram of the long-range Potts chain (Part
II) will be investigated by means of an improved version of this method tailored to
long-range models.

In spite of its efficency at medium lattice sizes, the multicanonical method will
turn out to exhibit severe scalability issues. This pertains, among other things, to
the largealgorithmic complexitybrought about by the long-range potential (with
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respect to nearest-neighbor models): since each particle interacts with each other, a
huge number of interparticle interactions must be taken into account at eachMonte
Carlo step. The need to investigate finite-size effects at large lattice sizes will
prompt the development of a new method (Chap. 4), that considerably extends the
range of attainable lattice sizes by lumping together the benefits of generalized
ensembles and those of cluster algorithms.

Beyond the design of new simulation methods (or the improvement of existing
methods), this thesis will also introduce a new method to detect the order of phase
transitions. This will prove particularly stringent when investigating the position of
the boundary separating first- and second-order transitions. There,it will be shown
that traditional techniques fail, owing to the weakening of the first-order transition
as the boundary is approached. The proposed method will efficiently capitalize on
the information provided by the multicanonical method.

From the viewpoint of the methods, this thesis is therefore aimed at answering
the two following questions:

• To what extent do generalized ensembles provide better, more efficient and
reliable methods for the investigation of phase transitions in long-range spin
models? As a corollary, can they help in settling (some of) the various con-
troversies that surround them?

• In what respect can long-range models constitute an ideal case for the testing
of new numerical methods?

Organization of the Thesis

Both themodelsand themethodsare central to this thesis, and will thus be treated
on an equal footing. As a result, both stories are markedly interwoven, and will be
presented according to this picture.

Part I of this thesis (Chap. 1 and 2) is devoted to a review of the models and
the numerical methods that will be considered in the remainder of this work. It
is aimed at providing the necessary background to understand the work presented
in Part II and III, yet also at shedding deeper light on the motivations behind this
thesis.

Models governed by long-range interactions are reviewed in Chap. 1: applica-
tions of these models to various fields of physics are considered, but the emphasis
is markedly on lattice spin models, including — but not restricted to — ferromag-
netic models. In particular, disordered and frustrated models are also considered,
inasmuch as several pending questions regarding these models are commonto most
long-range spin models. The key point in this review will be the notion ofeffective
dimension, and the role played by the decay parameter of the long-range interac-
tion in shaping the critical properties of the models. As far as the long-rangePotts
model is concerned, this chapter is intentionally succinct: most results will be re-
examined in the second part of this thesis, and further detailed explanations,when
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needed, will be provided in the corresponding chapters.
Chap. 2 is dedicated to stochastic (Monte Carlo) methods. This Chapter con-

centrates not only on simulations in generalized ensembles (including the multi-
canonical ensemble), but also on cluster algorithms: most methods presented in
this chapter will be referred to, at some point or another, in this thesis, either for
the mere purpose of comparisons, or because they are directly used in numerical
simulations, or because they comprise a large proportion of the ingredients of a
novel method.

Part II (Chap. 3 to 5) concerns itself with the multicanonical simulation of a
one-dimensional Potts model with power-law decaying interactions.

Chap. 3 centers on the implementation of the multicanonical algorithm in the
context of long-range models: it comprises an introduction to the method, a second
part dedicated to the improvements that must be carried out in order to make the
multicanonical recursion scheme suitable for long-range models, and a study of the
performance of the algorithms in terms of dynamic exponents.

Chap. 4 focuses on the location of the boundary separating the first- andthe
second-order regime of the model, and on the estimation of critical couplings ina
large part of the phase diagram. Results from other methods, e.g., renormalization
group or transfer matrices, are extensively reviewed there. A novel method to
detect the order of phase transitions is introduced. The results obtained with this
method, combined with a careful finite-size scaling analysis, shed new light on a
long-standing controversy concerning the asymptotic behavior of the boundary.

Chap. 5 specializes in the critical behavior of the model in the second-order
regime, and the crossover from the long-range to the short-range regime. A de-
tailed review of controversial results is provided, and a novel approach is presented
to investigate the onset of the short-range regime. An intermediate conclusionis
provided at the end of this part.

Part III (Chap. 6 to 8) puts forward a novel method to simulate long-range
models in the multicanonical ensemble, which is able to considerably extend the
range of attainable lattice sizes.

In Chap. 6, the limitations of standard multicanonical methods are discussed,
first from a general perspective, and then in the context of long-range models.
Existing schemes aimed at improving the performance of multicanonical methods
are reviewed, and I dicuss the main impediments to their extension to long-range
models. A later section highlights the main issues that must be overcome in order
to improve the multicanonical method in this context, and outlines an original,
innovative strategy.

Chap. 7 describes the methods in extensive detail. It comprises an article that
was submitted to Phys. Rev. E. and is currently being refereed. Two optimization
schemes dedicated to long-range models are presented. Extensive tests of the meth-
ods are performed, which demonstrate the superiority of the method with respect
to standard implementations in terms of accuracy and scalability. The method is
used to test several finite-size effects in long-range models.

An extension of the method to disordered models is presented in Chap 8. A
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long-range Ising chain with bimodal random fields is investigated, and a phase
diagram is provided. Possible improvements of the method in this context are
discussed.

Developments and perspectives are discussed at the end of each chapter. They
are summarized in the conclusion, both from the perspective of the models and the
methods.

7





Part I

Models and methods: review
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Chapter 1

Spin models with long-range
interactions: review and pending
questions

Long-range spatial interactions are ubiquitous in nature. At all length scales, they
contribute to shape our Universe, from the electromagnetic force at the microscopic
level to the gravitational force in astrophysical structures. While the gravitational
force makes its genuine long-range nature felt everywhere, this is no longer the
case of the electromagnetic force. The existence of electric charges andcurrents
of opposite sign gives rise, among other things, to screening effects and multipolar
interactions, that tend to reduce its range. In some cases, the reduction is so marked
that the interaction becomes effectively short ranged, i.e., restricted to “neighbor-
ing” particles.

Looking back on more than a century of condensed matter physics, one realizes
thateffectiveshort-range interactions have in fact played a greater role in shaping
this field than have long-range interactions. The pivotal role played by thenearest-
neighbor Ising model in various subfields of physics undoubtedly accounts for this.
In recent decades, however, long-range interactions have started drawing unabated
interest in microscopic modeling, spanning an ever increasing number of systems.
The goal of the present chapter is to give an overview of these systems,with an
emphasis on the topic ofspin modelswhich is central to this thesis.

The distinction between short and long ranged force probably deserves a more
rigorous definition than the sketchy account given above. This will be my first item
of business in this chapter. Then, I will give an overview of the various fields where
long-range interactions hold a prominent role. Moving in to the more specific sub-
ject of long-range spin models, I will review the main results that have been made
hitherto available, from ferromagnetic chains to long-range spin glasses toLévy
flights. One of the purposes of that part will be to highlight the many similarities
regarding the (pending) questions that surround seemingly very different models.

Finally, the long-range Potts model will be singled out as a possible paradigm
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of phase transitions in long-range spin systems, owing to its particularly rich phase
diagram and the abundance of pending questions and controversies that remain
attached to it. These will be given special attention, inasmuch as they constitute
one of the central motivations of this thesis.

1.1 Long-range vs short-range interaction: semantic is-
sues

Locating the frontier between long- and short-range interaction in a uniquefash-
ion is not trivial, as many (sometimes controversial) definitions have coexistedin
the literature of the past three decades. Since the early work of Ruelle [290] on
ferromagnetic chains with interactions decaying as a power law of the interparticle
distancer, the accepted lore in the framework of critical phenomena has been to
distinguish between long ranged and short ranged interactions from the behavior
of the moments of the interaction potential, i.e., the integral

∫

V(~r)rndDr defining
thenth moment.

In the one-dimensional Ising model, for instance, there is no phase transition at
finite temperature whenever the first moment is finite [290, 107], which suggests
that the interaction is short ranged here forσ > 1. Looking back on the early
work of Fisher, Ma and Nickel on the critical behavior of long-range ferromagnetic
spin systems [115], the suggested situation is that, on aD-dimensional lattice, any
interaction between two spins separated by an interparticle distancer is said to be
short rangedif it assumes, either an exponential decaye−r/b, or a power-law decay
1/rD+σ providedσ > 2. This definition relies on the critical behavior of the model,
inasmuch as a critical behavior is said to be long ranged if the corresponding critical
exponents match those of the same model with nearest-neighbor interactions. The
situation is in fact dramatically more intricate, as is genuinely certified by more
than two decades of vivid debate [292, 142, 232]1; and for a large class of models2,
the case is far from being closed.

Dantchev and Rudnick [91] recently reexamined the issue under an enlarged
perspective encompassing short-range, long-range, andsubleadinglong-range in-
teractions. An interaction is said to be of the long-range type if the moment of
nth order of the interaction potentialJ(r) diverges for a sufficiently largen. This
in effect rules outwithout ambiguityinteractions that follow an exponential decay,
e−r/r0. In Fourier space, the expansion ofJ(q) gives rise to so-called anomalies,
i.e., it can no longer be expressed in terms of powers ofq2 only. In this respect,
a criterion for short-range interactions is a finite second moment forJ(r). This
means that theq-dependent term in the Ginzburg-Landau functional may be writ-
ten asr + v2k2 + R(k), with R(k) asymptotically smaller than the first two terms.
Systems withsubleadinglong-range interactions (for instance, Van der Waals in-
teractions) belong to this class: here,R(k) contains a term of the formkσ, with

1The whole picture is described at length in Sec. 5.3.
2With a negative Fisher exponent.
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σ > 2 (σ non-even); in other words, all moments are finite up to theσth order (or
the largest integer smaller thanσ).

Looking at the issue from a totally different perspective, physicists working
in the field of non-extensive thermodynamics and Tsallis’s generalized entropy
[322, 68, 294, 89, 92] connect the long-range character of an interaction to its non-
integrability, i.e., the interaction is long ranged as soon as the zeroth-order mo-
ment diverges, which implies that the thermodynamic limit becomes ill-defined,
and an appropriate redefinition of thermodynamic variables is required [68, 65,
312, 89, 136]. Incidentally, the contrasting definitions emanating from these two
(sub)communities have raised gentle disputes at times, e.g., when both communi-
ties went to investigating the crossover between extensive (i.e., short-range vs long-
range) and non-extensive systems (i.e., long-range vs non-integrable) [331, 332].

In this thesis, I will exclusively consider long-range interactions in the sense of
integrable interactions, where the thermodynamic limit always exists. I will also
merely concentrate on power-law decaying interactions, i.e., of the form 1/rD+σ,
focusing on the change of qualitative and quantitative behavior asσ is varied. In
this respect, it is worth underlining thatσ is not strictly speaking arangeparameter,
since a power-law interaction has no intrinsic length-scale. This parameter will thus
be termeddecay parameterin this work.

As a last point in this section, it is also important to mention that, whenever they
are investigated by means of numerical methods — as will mostly be the case in
this thesis — long-range models exhibit a distinctive feature with respect to their
nearest-neighbor counterparts. Indeed, most numerical methods — specifically
Monte Carlo methods — impose that systems be investigated at finite geometry: in
a long-range model, every particle sees the boundaries, and as will be witnessed in
several parts of this work, this feature will give rise to interesting, unusual finite-
size effects that do not show up in nearest-neighbor models.

1.2 From Van der Waals forces to neural networks

This section mostly centers on microscopic models in condensed matter physics
and related fields, since this is where integrable interactions have had their longest
record of promising applications. In particular, applications to astrophysical struc-
tures will be left out, as the gravitational force is indeed non-integrable. It should
be mentioned, however, that this field has been extensively studied duringrecent
decades, and is still a matter of intense debate [203].

Microscopic models with long-range interactions decaying as a power law, i.e.,
as 1/rD+σ, have aroused renewed interest during the last decade. Beyond their
relevance to the understanding of fundamental issues in the physics of critical phe-
nomena, which I will review in the next section, they have also started playing
a seminal role in the modeling of a large class of physical, chemical or biologi-
cal models where electrostatic interactions, polarization, or van der Waals forces
play a central role. Thus long-range interactions do not simply represent a case of
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academic interest.
Applications to condensed matter include systems undergoing phase separa-

tion, e.g., liquid-liquid phase separation in a highly ionic system [278], phaseseg-
regation in a lattice gas model binary alloy governed by Kawasaki exchange dy-
namics [125], and naturally systems governed by Van der Waals interactions. As
regards critical phenomena, the Van der Waals interaction leads to subleading long-
range behavior, i.e., short-range-like, yet giving rise to non-trivial effects in terms
of critical behavior; this has been extensively studied in [91, 90]. The Casimir
effect, initially discovered in the context of quantum electrodynamics — where it
stems from vacuum fluctuations of the electromagnetic field — has also been ob-
served in fluids composed of neutral particles near the critical point, with a decay
exponent being far below that of van der Waals interactions [60].

In the physics of lattice spin models, long-range Hamiltonians appear in con-
nection with a variety of exciting contemporary problems, in particular the Kondo
effect, which is central to the investigation of high temperature superconductivity,
e.g., in Josephson junctions [77, 78]. An equivalence between the (classical) q-
state Potts chain with inverse square interactions (1/r2) and the Kondo problem
was proposed by Anderson [11], who showed that the path-integral representation
of the spin-12 Kondo problem could be mapped onto a classical Ising chain, with
successive spins on the chain representing the time history of the single impurity
along imaginary time. Classical Ising models with long-range, RKKY3 interac-
tions of the form 1/rD cos(k0r + φ) also appear in a quite natural way in the study
of spin glasses [121]. More recently, models with competing short-range ferromag-
netic interactions and long-range antiferromagnetic dipolar forces have surfaced in
the fast-growing technological field of ultrathin magnetic films [45, 66]. These
models are of fundamental importance to the understanding of the geometric and
dynamic properties of magnetic domains, e.g., in metal-on-metal thin films [239],
which exhibit complex patterns (for instance, “striped”, i.e., lamellar phaseschar-
acterized by modulated patterns [329]). They are therefore vital to the development
of new data storage devices [8] (see, for instance, [99] for a recent review), e.g.,
permanent random-access memories. In higher dimensions, these models are also
of interest in the modeling of a variety of related problems in soft-matter physics
(see references in [138]).

In the fringe of the customary physicist’s turf, lattice models with long-range
interactions also turned out to play an important role in the modeling of the brain
[10], where neurons far apart interact through an action potential that decays slowly
along the axon, in the context of pattern recognition (as an alternative to multilayer
neural networks) [302, 135] and auto-associative memories with dilute long-range
connections [268], in neural network learning processes [123], and in the modeling
of visual perception and orientation [313]. Ising models on small-world networks
with interactions decaying as a power law of the euclidian distance between nodes
were also studied in [193].

3Ruderman-Kittel-Kasuya-Yosida.
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Power-law decaying interactions also appeared in self-organized criticality: the
Bak-Sneppen model with 1/rD+σ interactions, which is claimed to represent a sim-
ple, yet realistic model of coevolutionary species, with the “distance” between
species decaying as a power law, was investigated in [126], and also in [12] in
connection with Tsallis’s generalized thermodynamics. A model of spreadingepi-
demics with a long-range probability of infection, in which the spreading agents
perform Lévy flights4, was studied by Hinrichsen and Howard [157] by means of
anomalous directed percolation. The equivalence between Lévy flights and long-
range ferromagnetic spin models was also explored in [32, 352] in the context of
nonequilibrium steady states, by means of a kinetic Ising model in which a standard
(thermal) spin-flip dynamics competes with random Lévy-flight spin-exchanges.
Long-range forces also emerged in non-linear wave theory: an extension of the
Klein-Gordon equation whose solutions are long-range interacting solitons, was
proposed by Guerrero and Gonzáles [140].

Finally, long-range interactions have also attracted much attention in the frame-
work of nonextensive thermodynamics and Tsallis generalized statistics, where a
possible equivalence with short-range models is under consideration [322]. Nonethe-
less, most of the work dedicated to Tsallis’s statistics centers onnon-integrable
long-range interactions, and as stated above, will not be considered here.

1.3 Spin models governed by long-range interactions: rais-
ing the effective dimension

I now turn to a review of the equilibrium properties of long-range spin models, in
particular models governed by algebraically decaying interactions 1/rD+σ. Some
of the results reviewed here have been the subject of intense, long-running debate,
and are reexamined in several parts of this thesis. More detailed explanations will
be given when needed. Therefore, this paragraph only aims to give a succinct
description of the most “distinguished” results, in a way that may help the reader
get a quick grasp of the subject.

Since the seminal work of Joyce on the spherical model [195], these models —
beyond their relevance in microscopic modeling — have also turned into an ideal
testing ground for the physics of critical phenomena: the key point here isthat
the decay parameter influences the universal properties of the model in much the
same way as the dimension does in a nearest-neighbor model. In a sense, thedecay
parameterσ plays the role of an effective dimension which, in the framework of
the field-theoretic renormalization group, allows the validity ofǫ-expansion to be
checked in a very flexible way by means of numerical methods, since theǫ pa-
rameter can now becontinuouslyvaried (as against, e.g.,ǫ = 4−D in φ4 theories).
Long-range models are therefore a powerful paradigm for studying the dependence
of critical properties on dimensionality, e.g., in systems above their upper critical

4A random walk that is steered by a so-called “superdiffusive” motion, and in which the lengths
of the (random) steps are distributed according to a power law.
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dimension [228]. In the context of the long-range Ising chain, this was extensively
investigated by Luijten et al. [40] by means of Monte Carlo methods, with a partic-
ular focus on crossover exponents describing the crossover from the mean-field to
the non-mean-field regime [39, 41]. On the numerical side, the initial spark which
ignited the investigation of crossover functions between universality classes may
certainly be traced back to the work of Luijten and Blöte on the nearest-neighbor
Ising model inD ≥ 4 [228, 229] or with constant interactions of variable (finite)
range [230, 233].

1.3.1 Results for ferromagneticOn models

Rigorous studies of the Ising chain (n = 1) with 1/rD+σ (D = 1) interactions can
be traced back to the seminal works of Ruelle [290] and Dyson [107, 108], which
(i) ruled out long-range order at finite temperature forσ > 1, and (ii) proved the
existence of a phase transition at a non-zero critical temperature for 0< σ < 1, re-
spectively5. This rigorous result, which is in strong contrast to the nearest-neighbor
case where no phase transition exists at finite temperature, was later extended to
σ = 1.0 [300, 124]. Its generalization toD-dimensional models was proposed in
[6, 55], showing thatDl = σ is the lower critical dimension of the model.

For one- and two-dimensional Heisenberg models, similar rigorous results were
obtained by Mermin and Wagner [245], ruling out long-range ferro- and antiferro-
magnetic order whenever the second-order moment of the interaction is finite, i.e.,
σ > 2 where power-law decaying interactions are concerned. In one dimension,
Simon and Sokal [300] proved that no long-range order at finite temperature exists
on theσ = 1 line, in contrast with Ising chains (although essential singularities
may show up irrespective of the number of components of the order parameter, yet
with different behavior depending on whethern = 1 or n > 1 [208]). Heisenberg
models were reexamined by means of spin wave theory in [74, 75], showinglong-
range order at finite temperature for 0< σ < D in one and two dimensions, and all
σ > 0 (i.e., in the extensive regime) in higher dimensions. The two-dimensional
XY model with dipolar (1/r) interactions was also investigated very recently [240]
by means of renormalization theory, and shown to display a phase transition similar
to the Kosterlitz-Thouless transition [207].

Early works based on Wilson’s version of the renormalization group wereiniti-
ated by Fisher, Ma and Nickel [115] on generalOn models6. This work concerned
itself with the universality classes of the model, with two regimes identified: for
0 < σ < 0.5, the critical exponents are classical (i.e., mean-field-like, with the
exception ofν = 1/σ), whereas the region 0.5 < σ < 1 displays non-trivial critical
exponents; naturally, these results assume that the phase transition is continuous.
These surmises were partially confirmed for the Ising chain by the early series ex-

5Ruelle’s result is in fact more general and makes no assumption aboutthe exact form of the
interaction: there is no phase transition if the zeroth- and first-order moments of the interaction are
finite. See a related discussion in Sec. 1.1.

6An outline of the derivation is provided in Sec. 5.1.
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pansions of Nagle and Bonner [254], and by later (extensive) investigations based
on transfer matrices [323] or Monte Carlo simulations [228, 231, 225, 213, 43].
Overall, these results confirmed that long-range models in effect go through a va-
riety of universality classes asσ is varied within the non-classical range, thus ex-
hibiting rich critical behavior. I will turn to them again in greater detail in Chap.5,
in the context of the long-range to short-range crossover.

In [115], Fisher and coworkers also addressed the crossover from the long-
range to the short-range regime. The argued value ofσco = 2 as the crossover
decay exponent raised several inconsistencies, however, in particular with regard
to the one-dimensional case where no phase transition exists for this value.A later
work by Sak [292] on the same issue arguing thatσco = 2− ηS R, whereηS R is the
Fisher exponent of the nearest-neighbor model, only added fuel to the row, which
then turned into a long-standing controversy still unresolved in some respects (see
Sec. 5.4 for more on this).

Theσ = 1 case corresponding to the line of inverse square interactions, and
for which possible connections with the Kondo problem were mentioned in the
previous section, was first elucidated by Kosterlitz [208] by means of an expansion
in ǫ = 1 − σ, and later revisited by Imbrie [171]. There it was claimed that this
line may be the locus of an infinite-order phase transition similar in many respects
to the Kosterlitz-Thouless transition occurring in the two-dimensional XY model.
The result was confirmed by Cardy [72] for a discreteq-state model, by mapping
the model to a gas of kinks interacting logarithmically, yet some authors also ar-
gued that the line might not correspond to the onset of a Kosterlitz-Thouless-like
transition for some values ofq [19]. Controversies regarding inverse square inter-
actions will be discussed in much more detail in Sec. 4.3.6, in the context of the
q-state Potts chain.

1.3.2 Antiferromagnetic, frustrated and disordered models

The discussion below is aimed at giving a cursory look at some prominent results,
including a handful of conjectures, that emerged in the field of long-range models
with antiferromagnetic, competing or random interactions. Several features, as will
be witnessed, are shared by a large class of long-range models, including theq-state
Potts chain which I investigate in this thesis: here again, the decay parameter of
the interaction plays a central role, and most debates revolve around the change in
critical behavior as this parameter is varied.

Models with oscillatory long-range interactions, i.e., of the formr−D−σ cos(k0r+
φ) wherek0 = 0 corresponds to ferromagnetic couplings, were rigorously inves-
tigated by Bruno [58]. The aim was to generalize the rigorous result of Mermin
and Wagner [245], which rules out long-range order in Heisenberg models when-
ever the second-order moment of the interaction is finite. One of the main rigorous
results of [58] in one dimension is that long-range order cannot exist inO2 and
O3 chains (yet the result does not apply toO1 models) with long-range oscillatory
interactions of the kind given above and 0< |k0| ≤ π, wheneverσ ≥ 0. This, in
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particular, forbids long-range order for systems governed by true RKKY interac-
tions (σ = 0 here). In two dimensions, the result is somewhat more intricate, since
it involves the phase of the oscillatory potential.

On the side of purely antiferromagnetic (i.e., staggered) interactions, whichdo
not induce any frustration, most works targeted the effect ofquantumfluctuations
on the destruction of the Néel order atT = 0. By considering Heisenberg chains
with pair interactions of the formVi j = −(−1)|i− j|/|i − j|1+σ ~Si · ~S j , where the~Si

are quantum spins whose coordinates satisfy the usual commutation relations, and
~S2 = s(s+ 1), Parreira et al. proved on rigorous grounds that the ground state
exhibits Néel order, stable against quantum fluctuations forσ < 2 and sufficiently
large value ofs. The same model was studied in [361] by means of spin wave
theory, and led to the conclusion that Néel order is also stable at finite temperature
for σ < 1. As a side-note, quantum fluctuations were also studied in a variety of
long-range quantum models, including a quantum flavor of the classical XYmodel
(the so-called “quantum rotator” model) [106], a quantum spin glass [104, 105],
and diluted models [105]. As quantum phase transitions are somewhat orthogonal
to the core subject of this thesis, I will not comment on them further.

While frustration in short-range models is usually induced by a particular choice
of the lattice geometry, long-range models can become frustrated under the sole in-
fluence of the long-range interaction. Two classes of long-range frustrated models
have been considered in the recent past: completely frustrated models with asingle,
frustrating long-range interaction, and weakly frustrated models where frustration
is induced by competing short- and (weak) long-range interactions. In thecontext
of long-range interactions,completefrustration can be induced by “repulsive” in-
teractions betweenall spins. This can be carried out by taking a pair interaction of
the formVi j = +1/|i − j|σ+D ~Si · ~S j . Completely frustratedO2 andO3 models were
explored by Romano [288] using spin-wave theory and Monte Carlo simulations.
The system ground state corresponds to a staggered configuration, i.e.,with spins
pointing alternatively up and down. Spin wave theory predicts no long range order
at finite temperature, although Monte Carlo simulations suggest residual order at
finite temperature that wanes off whenever lattice size is increased.

Much more attention has been given to weakly-frustrated models (as opposed
to complete frustration), however. As mentioned in the previous section, two-
dimensional Ising models with competing short- and long-range interactions are
indeed of fundamental interest for the understanding of the physical properties
of magnetic ultrathin films, while their three-dimensional counterparts are of rele-
vance for the modeling of a variety of systems in soft-matter physics (see references
in Sec. 1.2 above). In addition, the phase diagram of these models is much more
interesting than that of completely frustrated models, because weak frustration sup-
presses the usual long-range ferromagnetic order of the short-range Ising model
and produces complex mesophases characterized by lamellar patterns. The model
Hamiltonian comprises two parts: an exchange interaction yieldingferromagnetic
coupling between nearest-neighbor spins, and a weak, long-range, either dipolar or
Coulombianantiferromagneticinteraction. The Coulomb frustrated Ising model in
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D = 3 was explored in [329, 137, 138], while the two-dimensional version with
dipolar, 1/r3 interactions is reviewed in [66]. Note that the first model corresponds
to the non-extensive regime, which requires that the total magnetization be fixed to
zero for the thermodynamic limit to be properly defined [138].

For both models, the ground state of the system corresponds to a staggered
configuration for large frustration (as in the completely frustrated model studied
by Romano [288]), whereas at low frustration it exhibits anti-aligned stripes whose
width grows exponentially with the relative strength of the (short-range) ferromag-
netic interaction with respect to the long-range part [239]. As for the dipolar ver-
sion in two dimensions, it has been suggested by means of Monte Carlo simula-
tions, that the presence of many striped phases geometrically close to the ground
state generate a complex structure of interwoven metastable states in the vicinity
of the ground state energy [127], a feature which on the numerical side isknown to
induce long thermalization time. Incidentally, the transition between striped phases
of increasing width was reported to be of the first order.

The phase diagram of the Coulomb frustrated model (inD = 3) is even more
elaborate: at zero temperature, lamellar phases turn into so-calledtubular phases
and then orthorhombic phases as the frustration is increased, a feature originating in
successive translational symmetry breaking in the second and third direction [137].
As temperature is increased, and for low frustration, lamellar phases repeatedly
transform into more and more complex modulated phases, with the phase diagram
showing an infinite-tree-like structure, until an infinite number of incommensurate
modulated phases eventually appears at the order-disorder transition temperature.
Noteworthy enough, and as mentioned by the authors [138], the intricate geome-
try of these phases renders numerical investigation particularly demanding, as (i)
the presence of long-range interactions imposes a very low limit on the maximum
attainable size, and (ii) finite geometry restrains the number of modulated phases
that can be observed. The algorithm used in this study is an interesting extension
of the geometric cluster algorithm, and is briefly detailed in Sec. 2.3.

As a last point in this section, I briefly turn to disordered systems governed
by long-range interactions. As far as random-field models are concerned, a more
detailed discussion in the context of bimodal fields will be provided in Chap. 8.

The random-field Ising model was investigated by Bray [52] in the context
of the long- to short-range crossover (the point is reexamined in Sec. 5.3), show-
ing a crossover to take place atσ = 2 − ηS R, whereηS R is the Fisher exponent
of the nearest-neighbor model, in compliance with the result previously obtained
by Sak [292]. One of the most interesting results was established in [343] us-
ing a renormalization-group approach applied to an Ising chain with uncorrelated,
gaussian distributed random fields. By generalizing the Imry-Ma dimensionalar-
gument to long-range models [173], i.e., by analyzing the stability of the ordered
state against an arbitrarily weak random field, a critical value ofσ = 1/2 was
reported [343], above which no phase transition occurs at finite temperature. An
expansion was then carried out aroundσ = 1/2, a value which seems to play the
same role for the random-field model asσ = 1 for the pure long-range model. As
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in the short-range version of this model, the critical behavior is governed by a fixed
point at zero-temperature and fixed (non-zero) randomness, yet theinitially gaus-
sian distribution is shown to become strongly non-gaussian under renormalization.
It was then suggested by the authors in [343] that this may signal a first-order tran-
sition driven by fluctuations. This point will be reexamined in Chap. 8 in the case
of a long-range Ising chain with bimodal random fields.

As regards spin glasses, few studies of the Ising chain with random, power-law
interactions 1/r1+σ have been made available in the last fifteen years. Kotliar ex-
plored the case of gaussian-distributed random couplings using a kink-gas model
and the standard replica symmetry-breaking theory [209], and found a phase tran-
sition7 to occur at finite temperature for−1/2 < σ < 0, with critical exponents tak-
ing on their mean-field value forσ < −1/3. By pondering on possible equivalence
with short-range models, it was also suggested that the lower critical dimension
of the corresponding short-range spin glass may be 3. Noteworthy enough, Sak’s
scenario seems to hold also for spin glasses, provided in Sak’s relation theηS Rex-
ponent is replaced by the (domain-wall) stiffness exponentθS R of the short-range
spin glass, which means that long-range behavior becomes dominant whenever
θLR > θS R (= −1 for D = 1, which yieldsσco = 1 for the crossover value, since
θ = 1 − σ [116, 53], see also Sec. 5.3). More recently, extensive Monte Carlo
simulations [200] were conducted on the same model for linear sizes up to 256
spins8, with emphasis on the values of the stiffness exponent(s)θ, still a matter
of debate [215, 163, 271]. The issue revolves around the question ofwhether the
stiffness exponent, which characterizes the scaling of the energy of elementary ex-
citations with respect to size, is the same for domain walls at zero temperature and
for droplet-like excitations. Results confirm the replica-symmetry-breakingpicture
with regard to the shape of the overlap parameter, and droplet theory is ruled out
by monitoring the behavior of the minimum of the overlap parameter distribution
(i.e. at its zero value). The stiffness exponent obtained for droplet-like excitation is
∼ 0, in compliance with both the replica-symmetry-breaking theory of Parisi and
the trivial-non-trivial scheme [215, 271].

1.4 Long-Range Potts model: conjectures and controver-
sies

The long-range flavor of theq-state Potts model will play a central role in this
thesis, and as such deserves particular attention in this review. Yet several contro-
versies related to this model are somewhat intricate, and I deemed it more useful
to describe them at length in the core of this manuscript rather than here.

Owing partly to a higher ground state degeneracy, this model reveals a phase

7It turns out that, owing to the gaussian distribution of random couplings, extensivity is ensured
even for−0.5 < σ < 0 (in D = 1). This would not be the case for a ferromagnetic model.

8Note that an original scheme for the implementation of periodic boundary conditions is used in
this work, see Sec. 4.2.1.
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diagram markedly richer than that of the Ising chain, for instance, and assuch may
perhaps be regarded as aparadigmof model systems. This diagram is reminiscent,
though only incompletely, of the phase diagram of its nearest-neighbor counterpart,
with the order-disorder transition turning from a continuous to a first-order one as
the number of statesq is increased beyond a threshold valueqc(d) depending on
the dimensionality of the model. For instance,qc(2) = 4 andqc(4) = 2 [4, 17], and
there is strong evidence in favor ofqc(3) ∼ 3 [350].

It turns out that one of the most recurrently intriguing questions in the long-
range case is the possible existence of a so-called “tricritical” lineσ(q) separating
a first- and a second-order regime (and, as a corollary, the location thereof). There
are other intriguing questions though: the behavior on theσ = 1 boundary, where
a dispute recently emerged over the topological nature of the transition and the
range of values ofq where it may set in; the location of the long- to short-range
crossover, which in the case of one-dimensional models,may take place also on
the lineσ = 1; the crossover from the extensive to the non-extensive regime, in
connection with Tsallis’s conjecture, which aspires to unify these two regimesin a
single framework. These questions are briefly reviewed below.

Boundary between first- and second-order regimes On the numerical side, a
clue for the existence of a “tricritical” line was first provided by Glumac and Uzelac
[131] using Monte Carlo simulation based on the Luijten-Blöte cluster algorithm
(see Sec. 2.3.2). The investigation performed in this work targets the three-state
Potts model, and suggests that there is indeed a value ofσc below which the tran-
sition is of the first order. Thisqualitativepicture was later reinforced in [19] for
q = 3,5,7,9, and in [213] forq = 3, both relying on Monte Carlo studies, and
simultaneously in [132] using an approach based on the random-cluster represen-
tation of the model, which made it possible to handle non-integer values ofq. Even
so, the exact location of the tricritical line separating both regions is still fairlycon-
troversial. While forq = 3,σc was claimed to lie between 0.6 and 0.7 [131], Krech
and Luijten pointed out thatσ = 0.7 still belongs to the first-order regime, and that
the second-order regime may set in forσ = 0.75 only [213]. The situation with
q = 5 turns out to be even worse, with numerical estimates available only within
fairly large ranges: a lower boundary value of 0.8 was reported in [131], whereas
0.7 < σc(5) < 1.0 according to [19]. Overall, the only reliable assertion is that
σc(q) increases withq.

On the analytical side, studies specifically dedicated to the Potts model have
been equally scarce. Whether based on real-space procedures [64], or Wilson’s
momentum-shell method [279, 315], these studies essentially target the criticalbe-
havior of the model (irrespective of the order of the transition), and remain incon-
clusive, where distinguishing between first- and second-order transitions is con-
cerned. The first enlightening step in this direction emerged very recently ina
work by Biskup, Chayes, and Crawford [42], that attempts to draw verygeneral
conclusions for models with interactions that (i) satisfy the reflection-positivity
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condition, and (ii) are sufficiently “spread out” (in practice, with an exponential
or a power-law decay). In one-dimension, the authors prove that, whenever mean-
field theory signals a (thermally-driven) first-order transition, then the system has
a similar transition forσ ∈ [0,1]. This result would imply that, forq ≥ 3, the long-
range Potts chain would exhibit a transition already forσ ≤ 1. Several remarks are
in order:

• this fixes an upper bound toσc(q) which lies above that given in some nu-
merical studies [213];

• and yet the derivation of Biskup et al. also means that, irrespective of the
exact value ofσc(q), σc(q) > 1 is ruled out.

• reflection-positivity conditions pose strong constraints on the decay param-
eter, which in practice reduces the validity of the derivation toσ ∼ 1;

To recap, no utterly convincingquantitativepicture has been made available
with regard to the location of the lineσc(q), and a refinement of the phase diagram
seems compulsory in this respect.

The line of inverse square interactions The behavior on the line of inverse
square interactions raises another set of thorny questions. The work by Cardy
[72] on theσ = 1 boundary shows the onset, for allq, of a Kosterlitz-Thouless-
like transition exhibiting singularities of the essential type. While this confirms
the previous result of Kosterlitz [208], it was also argued in [19] that thephase
transition changes from a second-order to a first-order one forq ≥ 9. While the
recent work of Luijten and Messingfeld on the Ising chain [235] lends further sup-
port to Cardy’s assertion, the upper bound obtained by Biskup et al. isonce again
inconsistent with the result of Cardy, and it seems that we are back to square one.

Overall, the controversy still appears unsettled.How can these contradictory
scenarios be reconciled, if at all?One of myobjectivesin this thesis will be to
“broker” a scenario that gives a convincing picture of the phenomena that occur on
this borderline. With this in mind, a prerequisite might very well be the inspection
of the asymptotic behavior ofσc(q) asq → ∞. In this respect, it is interesting to
note — in anticipation of Chap. 4 — that the rigorous result of Biskup et al., while
no precise estimation of the phase diagram is given, does not contradict the scenario
that will be suggested in Chap. 4, according to whichσc(q)→ 1 asymptotically as
q→ ∞.

The long-range to short-range crossover Here again, few analyses concerned
themselves with theq-state Potts model, and yet — as mentioned in an early sec-
tion of this chapter — the location of the crossover has been the matter of debate.
Renormalization group analyses resorted to a continuum version of the Pottsmodel
[279, 315], and did not clearly settle the controversy. In the one-dimensional case,
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no numerical simulations have addressed the issue thus far, and the situation re-
mains unclear. If Sak’s scenario proves reliable for this model as well, then the
crossover should take place atσ = 1, where an infinite-order transition mayalso
occur. From the viewpoint of numerical simulations, settling the controversymight
be challenging, owing to the presence of essential singularities.

Critical couplings and the mean-field regime Most numerical investigations
that concerned themselves with the Potts model focused on the estimation of crit-
ical couplings (irrespective, in terms of the estimators utilized, of the order of
the transition — with the exception of [213]). These include the transfer matrix
approach of Glumac and Uzelac [130], the coherent anomaly method [251], and
Monte Carlo simulations [131, 132, 19, 325, 213]. The last, however, mostly ad-
dressed the caseq = 3, and led to numerical estimates of critical temperatures (and,
in some respects, critical exponents) showing severe discrepancies. In addition, the
behavior in the vicinity of the non-extensive regime (σ → 0) is inconsistent with
Tsallis’s conjecture 1/Tc ∼ σ, except in a cluster mean-field approach provided by
Monroe [251]. In this respect, it is important to emphasize that the periodic bound-
ary conditions implemented in these numerical studies sometimes differ markedly
from one work to the other:to what extent do they influence the finite-size scaling
behavior? Do the observed discrepancies presage the failure of Tsallis’s conjec-
ture?

Outlook As is all too apparent from the review given above, the long-range Potts
model is still a fertile ground for the investigation of critical phenomena. Para-
doxical though this may seem, specific studies are markedly less numerous and
in any case rather recent, whilst significant emphasis has long been placed on the
investigation ofOn models. Every part of the phase diagram of this model is preg-
nant with intriguing, indeed unsettled questions: these are the main motivations
behind the second part of this thesis. Prior to going over this subject, however, I
will review the methods that will be used in Part II to scrutinize these questions.
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Chapter 2

From Metropolis to the
Wang-Landau algorithm and
beyond: what can we learn from
generalized ensembles methods?

In this thesis, I will mostly use Monte Carlo methods to investigate the physics of
long-range spin models; I will resort to analytical methods on some rare occasions
as a guide (Sec. 4.1.1 and 5.4.1 in particular). Since the seminal work of Metropo-
lis et al. [246] on the eponymous algorithm, more than five decades have passed:
a wealth of methods of astonishing diversity have been born, all more or less in-
heriting from the Metropolis algorithm, yet adding to it an ever increased level
of complexity. Unraveling ever more complex physical phenomena imposes that
new algorithms be continuously designed, because the efficiency of numerical ap-
proaches is not simply a matter of available computer resources. Even if these have
exponentially soared during the last three decades, there arestill physical problems
that just cannot be tackled with the Metropolis algorithm.

This chapter is thus devoted exclusively to Monte Carlo methods, with a marked
emphasis on:

• methods that were specifically tailored to long-range models, e.g., dedicated
cluster algorithms;

• methods that werenot specifically tailored to long-range models, and yet
might help in investigating a particular class of problems encountered in
long-range models: methods operating ingeneralized ensemblesare exam-
ples of these.

However, this chapter is not aimed at giving a comprehensive review ofall Monte
Carlo methods, or at providing extensive detail on the theory of finite-sizescaling
and other data analysis schemes. With regards to these, more detailed materialmay
be found, e.g., in [216] or [259], where progress in the field is described up to 2001.
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The layout of this chapter is as follows. First, I will briefly review some fun-
damentals, i.e., Markov chains and detailed balance, the Metropolis algorithm, and
error calculation. The Monte Carlo method is primarily astochasticmethod, and
the amount of statistical error on generated data hinges on the choice of theun-
derlying algorithm. I will describe a class of algorithms in widespread use, cluster
algorithms, that lead to a drastic lowering of this error. All the algorithms I will
have presented up to that point operate in the canonical ensemble, i.e., engender
a Boltzmann distribution. In a variety of situations, including the investigation of
first-order phase transitions or the physics of disordered systems, these methods
behave poorly and become of little use. I will describe a category of algorithms
that efficiently tackle such situations by operating in other ensembles: general-
ized ensembles algorithms. The multicanonical method will be singled out as the
paradigm of simulations in generalized ensembles; it will also be my method of
choice for the investigation of long-range systems, and as such will be given par-
ticular attention in this chapter.

2.1 Markov chains and the Metropolis algorithm

Irrespective of the particular scientific field considered, the Monte Carlois essen-
tially a method that computes (multidimensional) integrals in an approximate fash-
ion. It does so by relying on a stochastic scheme, i.e., by drawingrandomnumbers;
hence its name. .

In statistical physics, the multidimensional integral to be (stochastically) com-
puted is the partition function. In a numerical implementation, the integral is actu-
ally a discrete sum over all the configurations of the system,Z =

∑

[σ] e−E/kT, and
the Monte Carlo method aims to produce an estimate of it by means of a stochastic
sampling scheme. In short, we have two sampling schemes at our disposal.

“Simple sampling” samples the partition function by generating configurations
at random. Since there are astronomical numbers of configurations of highen-
ergy in comparison with those of lower energy, this sampling scheme is particu-
larly inefficient, because in the temperature range we are usually interested in, a
vast majority of these configurations do not contribute significantly to the partition
function.

“Importance sampling”, on the contrary, is abiasedsampling scheme, which
concentrates much of its effort on the configurations that are dominant in the ex-
pression ofZ. It does so by generating configurations that are distributed according
to the Boltzmann distribution at a given temperature: thus this sampling scheme (at
least in its initial formulation termed the Metropolis algorithm [246]) is essentially
a single-temperature method.

Importance sampling relies on a Markov chain of configurations (or states, or
microstates) to engender the proper distribution: starting from a given configura-
tion σi , the chain chooses a new configurationσ f according to a transition proba-
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bility W(i → f ) which must satisfy the so-calleddetailed balance equation

wiW(i → f ) = wf W( f → i), (2.1)

wherewi andwf refer to the probability of occurrence (often termed theweight) of
statesi and f in the engendered distribution. For quite some time, only Boltzmann
distributions have been considered, wherebywi = e−Ei/kT (whereEi is the energy
of statei). Section 2.5 will show that other, sometimes wiser choices are possible.

The previous equation can be derived from many sources. One may, for exam-
ple, start from themaster equation

dwf (t)

dt
=

∑

i

[wi(t)W(i → f ) − wf W( f → i)], (2.2)

which governs the dynamics of the weightwf (t). There is actually one such equa-
tion for each configurational weight, with the sum rule

∑

i wi(t) = 1 holding at all
times. At equilibrium, the rate of change of any weight is down to zero, whereby
detailed balance is readily recovered: a Markov chain thus ideally generates an
equilibrium distribution. As we will witness below, however, things are notthat
simple.

2.1.1 The Metropolis algorithm

Replacing the weights in Eq. (2.1) by their actual Boltzmann value, one obtains
e(E f−Ei )/kT = W( f → i)/W(i → f ), and transition probabilities must be designed
which satisfy this equation. Metropolis’s prescription, known as theMetropolis
acceptance rate[246], reads

W(i → f ) = min

(

1,
wf

wi

)

= min
(

1,e(E f−Ei )/kT
)

, (2.3)

It is straightforward to show that this acceptance rate is in fact valid for any distri-
butionw. Basically, for a discrete spin model, the Metropolis algorithm works as
follows:

1. pick a spin at random in the lattice (this operation is what will be referred to
later on as “a priori” choice [211], or “proposed update”);

2. flip the spin (i.e.,attempta moveupdate);

3. compute the energy changeE f−Ei , and then the transition probabilityW(i →
f ) (this is also termed theacceptance rate);

4. draw a numberr at random between 0 and 1 and,

• accept the attempted move ifr <W(i → f ), i.e., the next configuration
in the Markov chain is the stateσ f ;
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• otherwise reject the move, i.e., the next configuration in the Markov
chain is the same as the current configuration,σi .

The previous set of operations is termed aMonte Carlo step. A Monte Carlo
sweep(MCS) corresponds toN spins being updated on a lattice containingN spins.

Other choices of acceptance rate are possible, e.g., theheat-bathalgorithm,

W(i → f ) =
e−E f /kT

∑

j e−E j/kT
.

As opposed to the Metropolis transition rate, the acceptance rate depends only on
the final stateσ f . This may speed up the dynamics for (nearest-neighbor) Potts
model, and this is also the acceptance rate generally used to update bond configu-
rations in the Swendsen-Wang cluster algorithm (Sec. 2.3.3).

Once a Markov chain of sufficient length has been generated, thermodynamic
averages can be readily computed from direct averages, e.g.〈E〉 = 1/N

∑

i Ei

where{E1,E2, . . .} denotes a set of measurements taken along the Markov chain
(as we will see below, not every configuration generated should generally enter the
average).

2.1.2 Detailed balance for moves that are not micro-reversible

In some situations (and particularly those reviewed below, and in Part III), it is more
efficient to implementmove updatesthat are not micro-reversible, i.e., for which
the proposed update is not symmetric when going fromi to f and back. We need to
generalize Eq. 2.3 for this purpose. Proceeding along the line of [210],for instance,
the transition probability is split into two terms,W(i → f ) = P(i → f )A(i → f ),
where

• P(i → f ) denotes aproposed-update probability, i.e., associated with the
choiceof a particular move among the set of every possible move;

• andA(i → f ) is simply theacceptance probabilityfor the proposed update.

It is trivial to show that

A(i → f ) = min

{

1,
P( f → i)
P(i → f )

w(E f )

w(Ei)

}

(2.4)

is a valid acceptance probability which satisfies the detailed balance equation.This
will be referred to in the rest of this thesis as thegeneralized Metropolis acceptance
rate. For a reversible move like the one implemented in the original Metropolis
algorithm, Eq. (2.3) is recovered, of course, seeing thatP(i → f ) = P( f → i) =
1/N whereN is the number of spins in the lattice.
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2.1.3 Random numbers generators

Random numbers are a fundamental ingredients of Monte Carlo methods, andthe
reliability of the results obtained from a Monte Carlo simulation depends heavily
on the quality of the random numbers used by the Markov chain. Monte Carlo
simulations generally rely on apseudorandom numbers generator (PRNG), i.e., a
deterministic algorithm that generates random numbers in a way that emulatestrue
random numbers1, usually according to a uniform distribution. It is not the goal
of the present work to go into the archanes of random numbers generators, and I
will hereafter only provide some information regarding the generators I use in the
simulations performed in this thesis.

The quality of a PRNG depends on several parameters: the distribution of the
random numbers it generates must be as close as possible to the uniform distri-
bution (or any other distribution it is assumed to engender), correlations between
successive random numbers must be as low as possible, and it should bereasonably
efficient since a great deal of random numbers are usually required at each Monte
Carlo sweep. It is also important that the range of random values allows usto reach
all the sites of a (large) lattice, which implies that the words must have a width of
at least 32 bits.

The general scheme used by a PRNG is to generate a sequence{in} of pseudo-
random numbers from the recurrence equationin = f (in−1, in−2, . . . , in−k). The
algorithm is initialized with an array ofk numbers that is computed from a seed,
and different seeds will produce distinct sequences. A feature common to these
generators is that they will produce cycles: a good generator must offer a large pe-
riod, preferably far larger than the total amount of random numbers thatis required
by the simulation (of the order ofLD × M, whereLD is the volume of the lattice,
andM is the number of MCS in the simulation). Otherwise, systematic errors may
arise [270].

Several classes of generators have been devised in the last decades, that are
based on the previous recurrence equation. Linear congruential generators (LCG)
rely on the equationin = (ain−1 + c) mod m, with a, c and m set to some “magic”
values in order to achieve the longest cycle. Improved LCG’s combine a linear
congruential method with a shuffling scheme, i.e., the numbers generated by the
LCG are shuffled using a distinct generator. This reduces the correlation between
numbers, and increases the cycle. More recently, a new class of generators termed
“shift register” generators has surfaced: being based solely on logical shift and
XOR operations (both are available in assembly language), they are usuallyfaster
than LCG’s [205]. These generators have been subsequently generalized tolagged
Fibonaccigenerators (also termedgeneralized feedback shift-register), where the
XOR operation is replaced by additions or multiplications, and offer very long
periods (of the order of 1043 for the RANMAR generator). In this respect, it has
recently been shown [270] that all these generators can cause systematic errors

1For instance, those generated by a hardware device, such as the amplification of the Schottky
noise a diode
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using the Swendsen-Algorithm (see Sec. 2.3), if the lattice size is a multiple of
a very large powers of 2 and one random number is used per bond. Thisstems
from the synchronization between the periodicity of bond updates and the large,
yet finite periodicity of the random number generator. Ossola and Sokal [270]
proposed a work-around that consists in breaking the synchronizationby updating
bonds either in a random order, or in an aperiodic manner.

TheMersenne-Twistergenerator [243], the generator used in this thesis, uses a
twisted generalized feedback shift-register algorithm which has a Mersenne prime
period of 219937−1, or about 106000. This period is orders of magnitude larger than
shift-register algorithms of the previous generation (for instance, the RANLUX
generator [176, 236], which throws away numbers to destroy correlations, has a
period of 10171), and makes it one of the strongest uniform generator to date. It
generates numbers in batches of 624 numbers at a time, thereby efficiently utilizing
the caching mechanism of modern CPU’s, and is extremely fast since only 32-bit
additions and logical bit operations are used. It also passed many empirical tests,
including the diehard test of Marsaglia [242], and thek-distribution test (everyk-
dimensional vector made up of successive numbers appears the same number of
times over the period length, for eachk ≤ 623). In order to check for the presence
of possible hidden correlations, I performed severalparking lottests [216]: a plane
is filled with points of coordinates (in, in+k) (for several values ofk), and hidden
correlations will show up through striped patterns. For instance, the absence of
such patterns fork = 10 is illustrated in Fig. 2.1. In order to check for possible
systematic errors, I also performed some tests by simulating the two-dimensional
short-range Potts model (q = 2 andq = 3, up to 128× 128 spins), using the
Swendsen-Wang cluster algorithm and two distinct generators (Mersenne-Twister
with the default parameters given in [243], and RANLUX with the largest luxury
level), and did not find discrepancies between the generators.

All these generators are available from the packagecern.jet.random.engine

of the Java COLT library released by the CERN. As most Java objects, theycan
store and retrieve their state through the serialization mechanism introduced inJava
1.1, which makes it possible to stop and restart a simulation at any point. As faras
efficiency is concerned, the Mersenne-Twister generator is only slightly slower than
the RANLUX and the RANMAR generators (approximately 1.8 to 1 when RAN-
LUX is set to the highest luxury level), although its initialization time is markedly
longer. With regards to the benefit brought about by the very large period length
offered by this generator, this overhead is negligible.

2.2 Dynamic characteristics and statistical efficiency

2.2.1 Autocorrelation times

Markov chains do usually not engender statistically independent configurations.
The amount of correlation between successive values of a given observableA(σ)
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Figure 2.1: Parking lot test overN = 104 numbers{in} for the Mersenne Twister
generator: the graph is built from points of coordinates (in, in+10), and displays no
stripe that would be characteristic of hidden correlations.
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along a chain of lengthM is measured by a time-displaced correlation function

χA(t) =
M−t∑

n=1

{AnAn+t − 〈A〉2} (2.5)

whereAn is the nth record of the value of the observableA, and 〈A〉 is the ex-
pectation value ofA at equilibrium (see thermalization, Sec. 2.2.4). This function
tells us to what extent measurements ofA separated byt MCS are correlated. A
convenient (though somewhat approximate) indicator of the average time-scale (if
any) between independent measurements is theautocorrelation time. This can be
obtained, either from the long-time exponentially decaying behaviorχ(t) ∝ e−t/τ,
or by integration, i.e.,τ =

∑M
t=0 χ(t)/χ(0). Both definitions lead to the so-called

exponentialand integratedautocorrelation timesτe and τi , respectively. These
generally do not exactly coincide, owing to the fact that the exponential behavior is
a simplified view of the real correlation mechanism, i.e., there are actually as many
correlation times as there are states in the systems (one for each master equation
2.2), and whatτ represents is actually thelargest correlation time (whereby all
other modes have died off in the long-time limit, see, for instance, [216]). As a rule
of thumb, measurements should be taken at intervals of 2τ along the chain to form
a sequence ofindependentmeasurements (see Appendix C).

From a practical point of view,χ(t) may be efficiently estimated by relying on
a Fast Fourier Transform (FFT) algorithm [259], which reduces the burden from
O(M2) to O(M ln M) operations. Denoting as̃A(ω) the Fourier transform of the
sequence{Ai}, we have ˜χ(ω) = |Ã(ω)− Ã(0)|2 (i.e., the zero-mode is set to zero, or,
in other words, ˜χ(ω) is the discrete Fourier transform ofAi − 〈A〉). From there on,
χ(t) is obtained by taking the inverse Fourier transform of ˜χ(ω).

2.2.2 Statistical efficiency

There is an innate source of error in every Monte Carlo simulation, that stemsfrom
the random nature of the Markov chain. Specifically, the source of error in the
estimation of〈A〉 by means of theestimatorĀ = 1/M

∑

i Ai , is the fluctuation ofAi

from one step of the chain to the other. For a set of measurements associated with
an autocorrelation timeτ, the squared statistical errorǫ2A on the estimated mean̄A
is given2 by [252]

ǫ2A =
1+ 2τ
M − 1

(Ā2 − Ā2) ∼ 2τ
M

(Ā2 − Ā2) (2.6)

whereĀ2 − Ā2 is the variance ofA within a single chain (or Monte Carlo run),M
designates thetotal number of measurements, and the second form applies when
τ ≫ 1 andM ≫ 1. For τ = 0, i.e., perfectly uncorrelated measurements, this
reduces to the well-known formula of elementary statistics. Forτ > 0, the number

2i.e., it is the variance of the mean from one Markov chain to the other.
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of independent measurements is reduced by a factor∼ 2τ with respect to the total
number of samples: this reduction factor is called thestatistical efficiencyof the
simulation, the lower the better.

Equation 2.6 yields another way to estimate autocorrelation times: by com-
puting the error onĀ from multiple, independent runs, or by means of a blocking
or resampling method (Appendix C); inverting the previous equation then allows
one to retrieveτ. The corresponding time is termed theeffectiveautocorrelation
time, and is practically the sole autocorrelation time that makes sense in the con-
text of multicanonical simulations [179]. This point will be reexamined in Sec. 7.4.
There are other ways to estimateτ, for example, by combining the blocking method
(Appendix C) with a renormalization group transform [120]3, or by explicitly ana-
lyzing autocorrelation functions [85].

2.2.3 Dynamic exponents for correlation times and criticalslowing
down

Critical and supercritical slowing down effects As we have seen in the previ-
ous paragraph, autocorrelation times are directly linked to the statistical efficiency
of a Monte Carlo simulation. One of the core issues in the numerical study of phase
transitions is related to the fact that autocorrelation times generally become very
large in the vicinity of the transition temperature, and as a result make the simula-
tion less accurate (or alternatively, require longer simulation runs). This behavior
has two distinct origins, depending on whether we are investigating second-order or
discontinuous phase transitions, and is respectively termed “critical slowing down”
and “supercritical slowing down”. Overall, it is an innate (dynamic) feature of the
model under investigation, in the sense that it is a direct consequence of the physics
being studied, not of the algorithms in hand (although wise algorithm designs can
significantly reduce it). Critical slowing down has incidentally been observed in
many physical systems [158]. Supercritical slowing down is probably even more
common, since its physical significance is directly related to the very existenceof
supercooled or superheated states in systems at first-order transitions.

The amount of critical slowing down depends on the actual algorithm being
used, and it is the goal of a large class of algorithms introduced in the last fifteen
years, and called “cluster algorithms”, to reduce this effect as much as possible. As
for supercritical slowing down, the benefit of cluster algorithms is less clear-cut
[134], and other strategies must be used. Simulations ingeneralized ensembles
represent such a strategy, and are considered in deeper detail in the next section.

Dynamic exponent and critical fluctuations Common to both types of transi-
tion is the fact that, beyond (and somehow correlated with) the sharp increase of
correlation times at the transition, autocorrelation times also increase with the lat-
tice size. In the context of second order transitions, a convenient indicator that gives

3This works only for a certain class of Hamiltonians, however.
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a way of quantifying this effect is the dynamic exponentz. As far as simulations
of finite size systems are concerned, this exponent controls the behaviorof auto-
correlation times with respect to the system size, in much the same way as critical
exponents control the divergence of (among other things) response functions at a
critical transition. Here, it is perhaps interesting to mention that dynamic exponents
can be associated with so-calleddynamic universality classesin the same fashion
as critical exponents determine static universality classes; this was established in
the context of dynamic critical phenomena [158].

Critical slowing down is here largely reminiscent of the diverging fluctuations
that show up at a critical point, where in systems of finite size, fluctuations are
actually bounded by the large but finite correlation length. At a critical phase tran-
sition, large domains of predominantly up- or down- pointing spins tend to form
as the temperature approaches the critical temperature from above. Inside these
domains, we can identify one or more subsets of highly correlated spins — termed
clusters— which, as they flip, generate large fluctuations in the energy and the
magnetization. Since these fluctuations are linked to response functions through
the fluctuation-dissipation theorem, we expect divergences in these functions also.
Critical slowing down results from the fact that, in very much the same way as
the characteristic length scale diverges at the critical temperature, the characteris-
tic time scalealso diverges. The determining role played by the spins belonging
to the spanning cluster was clearly demonstrated, because these spins areperfectly
correlated in the thermodynamic limit [282]. Note that, in the vicinity of a critical
transition, the correlation lengthξ behaves asξ ∼ |t|−ν, wheret = (T−Tc)/Tc is the
reduced temperature, andt ∼ 0 at the transition. In some cases, we may witness a
logarithmic behaviorτ ∼ ln |t| instead, yet this does not represent the majority of
cases. To describe the divergence of the autocorrelation time, a new exponentz is
defined so thatτ ∼ |t|−νz in the vicinity of the transition, whereτ is usually mea-
sured in MCS. Now, we also have thatξ ∼ |t|−ν, thusτ ∼ ξz. Whence for finite-size
systems and sufficiently close to the critical temperature, we obtainτ ∼ Lz because
the divergence is cut off in the region for whichξ > L.

Dynamic exponents as a powerful indicator of scalability Loosely speaking,
z thus tells us what we may expect in terms of simulation accuracy whenever, for
example, we double the size of the lattice. Since autocorrelation times determine,
in the first place, the amount of CPU resources needed to reach a givenaccuracy,
the knowledge of the dynamic exponent is thus crucial to a proper estimation of the
scalability of a given algorithm. It must be mentioned that, as opposed to critical
exponents,z is not a universal quantity, since its hinges heavily on what algorithm
is being used. For instance, cluster algorithms generally yield lowerz exponents
than their Metropolis counterpart [153, 309], and are thus more efficient in this
respect. To be specific, one of the most precise estimates ofz in the case of the two-
dimensional Ising model simulated with a Metropolis algorithm isz = 2.1665(12)
[264], while cluster algorithms yieldz∼ 0.25 for the same model [83].
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In terms of total CPU load,zclearly enters the overall scaling of CPU resources
with the system size. For Metropolis implementations and models with finite-range
interactions, we must perform the order ofLD operations per MCS (i.e., updating
the whole lattice), hence the total CPU load behaves asLz+D. For models with
long-range interactions, the situation looks even worse, becauseLD operations are
needed to compute the energy change when a single spin is updated, and conse-
quentlyL2D operations are now required to update the whole lattice. This means
that the total CPU load needed to reach a given accuracy scales asL2D+z. Whether
short- or long-range models are concerned, this shows that the Metropolis is cer-
tainly not the best algorithm when investigating critical phase transitions.

2.2.4 Scaling of relaxation times and the non-linear dynamic expo-
nent

Autocorrelation times are not the only dynamic quantities that become very large
at a critical transition. Relaxation times4, which inform us about the rate at which
the Markov chain reaches the equilibrium distribution, are also known to exhibit
the same scaling behavior (sometimes termed “critical relaxation”). Since whatwe
aim at sampling in the first place is the equilibrium distribution, relaxation times
thus clearly impinge on the accuracy of the simulation and, as a result, on the
scalability of the algorithm. It turns out that algorithms that can reduce critical
slowing down, e.g., cluster algorithms, are — on the same grounds — also better
candidates with regard to relaxation behavior.

The approach to equilibrium of a given sampled quantityA can be described
by the following non-linear relaxation function [216]

ΦA(t) =
〈A(t) − A(∞)〉
〈A(0)− A(∞)〉

(2.7)

where〈·〉 stands for ensemble averages, i.e., averages over multiple, separate runs.
Similar to (time-displaced) autocorrelation functions, this relaxation function dis-
plays a rough exponential decay with an associated (exponential) characteristic
time scaleτ, i.e.,ΦA(t) ∼ e−t/τ; τ may also be defined as an integrated relaxation
(or equilibrium) time from the equationτ =

∫ ∞
0
ΦA(t). In practice, one may per-

form a single simulation, and then estimateτ by replacingA(∞) with an average
over a subset of samples such thatt > τ, that is, in a self-consistent fashion. As a
side note, let me mention that, as an exception to the exponential decay just men-
tioned, glassy systems and diluted models display a relaxation function that must
be described by a more complex relation.

Relaxation times exhibit a scaling behavior similar to that experienced by au-
tocorrelation times, yet with a different (non-linear) dynamic exponentznl. It has
been established, however, that the dynamic exponentz and its non-linear coun-
terpartznl are not independent. Instead, they are related to each other and to other

4Also termedequilibration times, thermalization times, and sometimes evenequilibrium times
[139]
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(static) exponents through an equation similar in spirit to the hyperscaling relation
[119] z = znl + β/ν, where both dynamic exponents are computed from measure-
ments of the magnetization, andβ andν refer to the usual critical exponents.

The non-linear dynamic exponent defined above retains its significance for sim-
ulations based on cluster algorithms; these, as already mentioned, lead to clear im-
provements over the Metropolis algorithm also in this area. However, and aswill
be observed in Chap. 7, non-linear dynamic exponents defined in this fashion be-
come ill-defined where simulations in the multicanonical ensemble are concerned:
first, the underlying dynamics of the Markov chain is all too different from the quite
realistic dynamics engendered by canonical algorithms for the exponentialdecay
behavior to remain valid; second, what we are interested in is no longer an average
over raw samples, but areweightedaverage. In this respect, I will show that it
becomes necessary to define relaxation times with respect to thebroadequilibrium
distribution rather than to single averages, and that it is under this assumptionthat
power-law scaling behaviors may be recovered.

2.3 Cluster algorithms

How do single-spin updates cope with critical slowing down? We have just
seen in the previous paragraph that correlations between successivestates gen-
erated by the Markov chain become large at a critical point, and thus severely
endanger the scalability of the Metropolis algorithm. Indeed, for a given desired
accuracy, this would imply running the simulation for a much longer time. It is
above all in the critical region that the Metropolis algorithm is less accurate, be-
cause update moves based on single-spin flips are no longer physically relevant in
this region. As I have mentioned, large clusters of correlated spins tend to form,
with all spins lined up in the same direction, or, for Potts models, belonging to the
same subphase. However, single-spin updates cannot flip a large domain, because
in order to achieve this, they would have to flip a great deal of correlated spins one
at a time, and this is associated with a tremendously low acceptance probability.
Indeed, trying to flip a down-pointing spin in a sea of up-pointing spins costsan
energy interface, e.g., of 4J for the two-dimensional Potts model, which leads to
an acceptance probability ofe−4J/kT, i.e., around two per cent for the three-state
version of this model at its transition temperatureTc = J/ ln[1 +

√
(3)]. For a

cluster comprisingN spins, the joint probability of shrinking the whole cluster is
approximately given bye−4NJ/kT, a quantity which scales in a quite unfortunate
way indeed with the system size. Reworded differently, critical slowing down is
particularly stark in the context of Metropolis algorithms owing to the drastically
low pace at which the Markov chain explores the whole phase space whentwo
successive states differ by at most one spin value. As will be witnessed in Chap. 7,
multicanonical algorithms also experience critical slowing down: the wide phase
space explored by the chain encompasses a “critical” energy range where correla-
tions become large and — for the same reason as in the canonical case — single-
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spin updates deliver non-optimal dynamic performance.

Flipping clusters in one shot A solution to the previous problem consists in
flipping groups of correlated spins in a single Monte Carlo step. Algorithms re-
sorting to this principle are dubbed cluster-flipping algorithms, or simply cluster
algorithms. Broadly speaking, such algorithms first inspect the lattice in search for
groups of similarly orientedand correlated spins, and then flip them in one shot.
These algorithms nearly entirely remove the critical slowing down at second-order
phase transitions, and have thus proved extremely popular in the last fifteen years.
This is, however, at the expense of an increased complexity, which should be pitted
against the benefits brought in by the algorithm in terms of accuracy. As regards
long-range models, it will become clear (see section 2.3.2) that naively transposing
to long-range models cluster algorithms designed for short-range models, might tip
the balance in favor of the Metropolis algorithm, or to say the least, make the issue
unclear.

2.3.1 Wolff algorithm

Wolff algorithm for models with nearest-neighbor interactions The simplest
strategy is to pick a spin at random, and then to look for neighboring spins that
point in the same direction, and eventually flip the entire cluster. Since we want
to restrict the group of spins to correlated spins only (i.e., to acluster, which is
a subset of adomain), and because these correlations depend on the temperature,
there must be a temperature-dependent way to limit the addition of spins to the
group. In other words, the cluster size must depend on the temperature. At high
temperatures, for example, correlations between spins are scarce, which means that
small clusters must be flipped. On the contrary, below the critical temperatureTc,
the tendency of the system is to create clusters of spins spanning the entire lattice,
and the algorithm should update large groups of spins in a row. The solutionto
this problem is to add a spin to the group with a probability depending on the tem-
perature, in such a way that this probability increases with the inverse temperature.
This is the rationale behind Wolff’s cluster algorithm [347], otherwise termed the
single-cluster algorithm, and to some extent, behind the relatedgeneralized cluster
algorithm introduced by Niedermayer [261].

To set the stage, let us see how the algorithm works for a Potts model with
nearest-neighbor interactions, i.e., governed by the following Hamiltonian

H = −J
∑

〈i, j〉
δ(σi , σ j)

where the sum runs over pairs of nearest-neighbor spins. I shall consider the ex-
tension to long-range Potts models in a later section, because such an extension is
not trivial and deserves special scrutiny. As a first step, the algorithmchooses a
cluster seed at random, that is, one spin amongN = LD possible spins on the lat-
tice, and assigns it a new value drawn at random; in what follows, the same value
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(a) (b)

Figure 2.2: Construction of a Wolff cluster for a nearest-neighbor model, from state
(a) and from state (b), where configurations (a) and (b) are related by a cluster flip.
The solid lines correspond to activated (or satisfied) bonds (Ci

a = Ci
b = 7), and the

dotted lines to non-satisfied bonds. In (a), there are two non-satisfiededge-bonds
(Ce

a = 2, see explanation in text).

will be assigned to each spin being successfully added to the cluster. Then, each
nearest neighbor of the seed is considered in turn for addition to the cluster, with a
probability p = 1 − e−βJ, whereβ is the inverse temperature andJ stands for the
coupling constant of the model. From the viewpoint of practical implementation,
each spinactuallyadded to the cluster is concurrently pushed on top of a stack, for
instance a first-in-first-out buffer. Once every nearest neighbor has been considered
for addition, a new “seed” is popped from the stack and the algorithms proceeds
with further spin addition until the stack is empty.

The cluster construction process is illustrated in Fig. 2.2 in the case of the two-
dimensional Ising model. Whenever a spin is actually added to the cluster, we say
that the correspondingbondhas beenactivated, whereas in the contrary the bond
is saidinactive. In the following, I will denote asB the set of active bonds. As
can be witnessed in the figure,B is actually a subset of the set of spin interactions
belonging to the cluster. This simply means that some spins were added to the
cluster after a first rejected attempt, although through a different path.

Detailed balance and cluster flip acceptance rate As has to be the case for
any valid Monte Carlo algorithm, the Wolff cluster algorithm must satisfy detailed
balance, or equivalently, the acceptance probability associated with the cluster flip
must be constructed from Eq. (2.4). The proof is as follows. The true acceptance
probability actually comprises two parts: a proposed-update probability,P(a →
b) and an acceptance probability for the proposed update,Aflip(a → b). The
proposed-update probability is the probability to choose a new stateb from an
existing statea, or equivalently the probability to construct a given cluster from a
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seed drawn at random. This probability reads

A(a→ b) =
∏

l∈B
pl(S)

∏

l<B

(1− pl(S))

wherel designates a bond,S is the associated spin pair, andpl(S) is zero whenever
both spins differ, 1− e−βJ otherwise. In Wolff’s single-cluster approach, the first
product runs over all pair of interacting spins until the construction stops, hence
the second product runs over adjacent bonds to the cluster only. For agiven cluster
configuration constructed from statea, I now writeCi

a for the number of satisfied
bonds, andCe

a for the number of non-satisfiededge-bonds among pair of spins
having identical values. The proposed-update probability may then be rewritten
as:

A(a→ b) = pCi
a(1− p)C

e
a

I actually omitted a leading factorn/Nq, wheren is the number of spins in the
cluster,N is the number of spins in the lattice andq is the number of states of the
model: this represents the probability to pick a particular seed inside the cluster,
yet this term cancels out with that of the reverse move. Let me now considerthe
reverse move: as illustrated in Fig. 2.2, the proposed-update probability to selecta
from an initial configurationb writes

A(b→ a) = pCi
b(1− p)C

e
b

It is obvious thatCi
a = Ci

b = Ci (although the distribution of active bonds over
available bonds may differ in both configuration), and thus the ratio of proposed-
update probabilities can be written as

A(b→ a)
A(a→ b)

= (1− p)C
e
b−Ce

a

On the other hand,J(Ce
a − Ce

b) represents exactly the energy change when going
from a to b. Plugging the last equation into Eq. (2.4), we are led to the conclusion
that cluster flips are always accepted. In other word, it is the choice of 1− e−βJ

as the bond activation probability which ensures that an appropriate distribution of
cluster sizes is engendered, so that in the end the equilibrium distribution for the
energy matches the Boltzmann weight.

It is crucial to note here that thisperfectacceptance rate does no longer hold
in the presence of an external field (or random-fields), except when the external
field is an integral part of the cluster construction, as is the case in the ghost-spin
algorithm.

Generalization to long-range models At first glance, the generalization of the
above algorithm to long-range Hamiltonians is straightforward. Consideringa
long-range Potts model with interactionsJi j depending on the spin positionsi and
j, the construction is illustrated in Fig. 2.3, and the only change is that:
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Figure 2.3: Construction of a Wolff cluster for a one-dimensional model with long-
range interactions (this applies to anyD-dimensional lattice, since the underlying
graph is a complete graph in any case). Solid lines denote active bonds, dotted lines
represent non-satisfiededge-bonds, while the dashed line corresponds to a non-
satisfied inner bond which as such does not explicitly enter theproposed-update
probability.

• Bond activation is considered for any pair of spins, irrespective of theirbeing
neighbors. The underlying graph is now acompletegraph.

• Bond probabilities now depend on the coupling constant throughpi j = 1 −
e−βJi j .

• A given cluster is no longer a block of contiguous spins with identical value,
and may now span the entire lattice. In this regard, thermal clusters differ
drastically from geometrical clusters in long-range models (in the figure,
three geometrical clusters can be identified, although two of them belong to
the same thermal cluster).

Algorithm complexity of the cluster construction for long-range models From
a practical point of view, a seed is drawn at random, and then each spinin the lat-
tice is considered for addition to the cluster. The construction process then goes on
along the same line as with nearest-neighbor models, until the stack is empty, ex-
cept that for each new seed,∼ N bonds have to be checked. Thus it becomes clear
that the cluster construction takes the order ofN2 operations for a lattice contain-
ing N spins. This represents an algorithm complexity substantially larger than that
of nearest-neighbor cluster algorithms, and is incidentally reminiscent of thealgo-
rithm complexity associated with the computation of the energy in the long-range
model.

The issue becomes particularly stringent for interactions which decay with the
distance between spin, which is the case generally considered. Here, theprobabil-
ity of adding a bond between two spins falls off quite rapidly as the distance be-
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tween them increases. A significant amount of time during the construction ofthe
cluster is thus wasted because an overwhelming number of bonds are considered
for activation which have only a negligible probability to be activated. Even inthe
case of interactions decaying as 1/|i − j|1+σ with σ close to 0, does the bond count
never exceed a few percent of the whole number of available bonds. Withregard
to this, switching from a single-spin update algorithm to a cluster algorithm might
well be an ill-fated choice, as the gain in terms of autocorrelation time is spoiled
by the exceedingly time-consuming construction of the cluster. A work-around to
this issue is considered in the next section.

2.3.2 Luijten-Blöte algorithm: efficient cluster construction

In this section, I describe an efficient construction method introduced by Luijten
and Blöte [227, 226, 234], which works for Hamiltonian with any number of inter-
actions between spins, and whose demand in terms of computer resources scales
roughly as the volume of the lattice. The sole constraint of the method is that inter-
actions should be invariant by translation along the lattice5, e.g.,Ji j = J(i − j) for a
one-dimensional lattice. In Part III, I will show how this method can be straightfor-
wardly combined with a multicanonical algorithm, and the material exposed below
is therefore quite detailed.

The rationale behind Luijten-Blöte’s method is to rely oncumulativeprobabil-
ities, in the spirit of the N-fold-way algorithm [50, 212]. Instead of considering
each spin in turn for addition to a given cluster and thereby experiencing numerous
rejected attempts, it is theindexof the next spin to be added which is drawn at
random, either from a look-up table, or, as was proposed by Luijten in the context
of Ising chains, by direct calculation.

First of all, the probability to add a bond is split up into two parts: (i) a provi-
sional probabilitypl depending on the distancel = |i − j| between spins, and (ii) a
factor f (σi , σ j) controlled by the spin values, e.g., a Kronecker delta symbol in the
case of a Potts model, or a function of the angle between spins in the case of an XY
model. If 0 designates the index of the current spin to which we are adding bonds
(i.e., spin indices are considered to be relative to the current spin, see Fig. 2.4),
then the provisional probability of skippingk−1 spins and binding the current spin
with a spin at positionk > 0 is given by

P0(k) =
k−1∏

m=1

(1− pm)pk.

From there on, one builds a table of cumulative probabilities

C0( j1) =
j1∑

k=1

P0(k),

5Although the method worksin theoryalso for non-invariant interactions, yet with a far higher
demand in terms of memory resources, see the issue discussed farther regarding look-up tables.
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0 jR2 = 8jR1 = 2jL1 = −2

Figure 2.4: Construction of a Wolff cluster for a one-dimensional model with long-
range interactions using cumulative probabilitiesC jα( jα+1). The cluster seed, i.e.,
the “current” spin to which bonds are added is denoted as 0. The first spin provi-
sionallyadded to the right is at relative positionjR1 = 2, i.e., the random number
r is such thatC0(1) ≤ r < C0(2). This spin isactually not added to the cluster
(dashed line) since it does not have the correct sign (i.e.,f (σ0, σ2) = 0, see ex-
planation in text). A second random number such thatC2(7) ≤ r < C2(8) yields
jR2 = 8. The corresponding spin has the correct sign, so that it can be added to
the cluster (solid line). Alternatively, the random numberr may be transformed
to r ′ = r[1 − C0(2)] + C0(2) and jR2 obtained fromC0(7) ≤ r < C0(8). Then, the
same procedure is performed for spins having negative relative indices: this yields
j1 = 2, i.e., jL1 = −2. Finally, one proceeds further with the addition of spins to,
e.g., spinjL1 = −2, which becomes the new “current” spin 0 (dotted line).
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for all j1 > 0, andC0(0) = 0, so that the indexj1 of the spin to be bound with the
current spin 0 is obtained by first drawing a random number 0≤ r < 1 and then
reading outj1 from the table. In other words,j1 is such thatC0( j1−1) ≤ r < C0( j1).
Last, a bond is activated between spins 0 andj1 with a probability f (σ0, σ j1).

One proceeds further with the computation of the indexj2 > j1 of the next
spin to be bound with current spin 0. The corresponding provisional probability
thus becomes

P j1(k) =
k−1∏

m= j1+1

(1− pm)pk,

and the cumulative probabilities read

C j1( j2) =
j2∑

k= j1+1

P j1(k).

The same procedure is repeated for{ j3, j4, . . .} until an index jα > L is drawn6, in
which case we jump to the next current spin, which in a one-dimensional model is
the nearest-neighbor of the previous current spin.

The efficiency of the algorithm is greatly improved by using two formulas
which make it easier to compute cumulative probabilities. First, it can be shown
that the cumulative probabilityC0( j) may efficiently be computed from

C0( j) = 1− exp




−β

j∑

k=1

J(|k|)



,

Second, the cumulative probabilitiesC jα( jα+1) can be straightforwardly derived
from theC0( j) coefficients through the relation

C jα( jα+1) =
C0( jα+1) −C0( jα)

1−C0( jα)
.

It follows from the last relation that, instead of building a look-up table for each
C jα( jα+1), one may as well draw a random number 0≤ r < 1, transform it to
r ′ = r[1−C0( jα)] +C0( jα), and choose the next spin to be added from the relation
C0( jα+1 − 1) ≤ r < C0( jα+1). In practice, one thus simply needs to compute a
single look-up table

∑ j
k=1 J(|k|) for 0 < j < L at the beginning of the simulation,

from where theC0( j) coefficients are immediately derived.
In the case of 1/rα interactions, Luijten proposed an efficient way to get around

the (somewhat tedious) task of looking up a precomputed table7, which consists

6This conditions implies that infinite-image periodic boundary conditions are included in the cou-
pling constant, see Sec. 4.2.1; otherwise, the actual spin index isjα mod L, i.e., periodic boundary
conditions are taken into account in the course of the cluster construction.The former approach
is more efficient in one-dimension, because an exact calculation of the “renormalized” coupling is
possible. The latter, however, proves useful in higher dimensions.

7There are efficient binary-search algorithms for this purpose, yet even so this takescomputer
resources.
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in replacing the discrete sum
∑ j

k=1 J(|k|) by an integral and carrying out a direct
calculation of the spin index. It was safely argued that this does not change the
universalproperties of the model, yet only non-universal quantities like critical
couplings. This entails, however, that this kind of optimization is intractable for
models experiencing first-order transitions.

2.3.3 Swendsen-Wang algorithm

As opposed to the single-cluster algorithm, Swendsen-Wang’s algorithm [309]
looks forall clusters, including those reduced to a single site, and then flips them
all independently at random, that is, assigning a new value to each cluster.His-
torically, this so-called multi-cluster algorithm was introduced before Wolff’s al-
gorithm, and the latter algorithm may actually be viewed as a particular case of
the multi-cluster algorithm. The single-cluster algorithm, however, was reported to
work better in higher dimensions, at least for nearest-neighbor interactions [282];
for the Ising model inD = 4, for instance, Coddington and Baillie [83] reported
z = 0.25(1) for Wolff’s algorithm vsz = 0.86 for Swendsen-Wang’s algorithm.
The Swendsen-Wang algorithm can be best envisioned in the context of bond-
percolation, which I review hereafter.

Fortuijn-Kasteleyn random-cluster mapping for long-range models In the
early 70’s, Fortuijn and Kasteleyn [122] showed that spin models with aZn sym-
metry can be mapped onto a bond-percolation model, the so-calledrandom-cluster
model. In its first flavor, termed thespin-bondrepresentation, this model is made up
of thermally fluctuating bonds and spins, whereas in its second version, anappro-
priate integration over spin degrees of freedom yields apure bondrepresentation.
Both representations form the basis core of multi-cluster algorithms, though they
are definitely not on an equal footing where concrete implementation is concerned.

The random-cluster mapping was initially contrived with nearest-neighbor mod-
els in view. However, since taking long-range interactions into account does not
pose any major difficulties with respect to the original line of arguments, I will
readily consider in the following a long-range potential. To be specific, I will
take a generalizedferromagneticPotts model with a coupling constantJi j de-
pending on positionsi and j on the lattice8, i.e., with an Hamiltonian reading
H = −

∑

i< j Ji jδσi ,σ j . At a given inverse temperatureβ, the partition function of the
model reads

Z =
∑

[σ]

eβ
∑

i< j Ji j δσi ,σ j

where the sum runs over all spin configurations andJi j > 0,∀(i, j) ∈ Z2. The key
idea consists in reexpressingZ in terms of a trace over bonds, where each bond
lives on an edge of thecompletegraphG engendered by the set of all possible

8Note that, as opposed to the Luijten-Blöte cluster construction, translational invariance is not a
prerequisite here.
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Figure 2.5: Tree-like (left) and flattened (right) representations of a complete graph
G for a two-state Potts model (i.e., the Ising model) with long-rangeJi j interactions
andL = 6 spins. Solid and dotted lines correspond to active (b = 1) and inactive
(b = 0) bonds, respectively. The corresponding bond configuration engenders
three connected components, each being associated with a different cluster in the
Swendsen-Wang algorithm:{0,3}, {1,2,5} and{4}.

interactions, that is, such that the graph vertices are in a one-to-one correspondence
with the lattice cells.9.

Let bi j be a binary variable associated with the edge joining verticesi and j,
such thatbi j = 1 if a bond is active on this edge, andbi j = 0 otherwise. Let also
pi j = eβJi j − 1. Then the partition function may be reexpressed as

ZFK =
∑

[σ]

∑

[b]

∏

i< j

(

pi jδσi ,σ jδbi j ,1 + δbi j ,0

)

(2.8)

where the second sum runs overs allbondconfigurations. In order to show that
both expressions of the partition match, it is enough to limit ourselves, to set the
stage, to a graph reduced to a single bond, sayp01: the trace over bonds yields
p01δσ0,σ1 + 1, that is,eβJ01δσ0,σ1 = e−βH. Coming back to the general case, it is
clear that, since the argument of the product inZFK depends on a single bond, the
same line of argument as above can be carried out by first swapping the product

9The engendered graph is complete if and only ifJi j , 0,∀i, j. This is the case for power-law
decaying interactions, yet not for interactions restricted to nearest neighbors or for medium-range
interactions.
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over pairs and the sum over bond configurations, and then tracing overeach bond
independently. Clearly, there is no requirement as for the explicit form ofJi j in the
argument above.

The representation of the partition function in terms of both traces over spin
and bond configuration underlies the spin-bond representation of a Potts model
with long-range interactions. This is the basis of the Swendsen-Wang algorithm
presented in the next section. This will also be an important ingredient of a novel
Monte Carlo method, the breathing cluster method. This method represents a
salient part of this thesis, and is described in detail in Part III.

By integrating over spin degrees of freedom, one may derive another interesting
representation of the partition function in terms of trace over bonds only,

ZRC =
∑

[b]

∏

i< j

p
bi j

i j qNc, (2.9)

whereq is the number of states of the model andNc stands for the number of con-
nected subgraphs (i.e., the number of clusters in Swendsen-Wang’s parlance). This
last expression may be readily obtained by first swapping the traces overbonds
and spins, and then observing that, for a given bond configuration, thetrace over
spin configurations amounts to assigning to each connected component onespin
state amongq distinct values in turn. Indeed, it should be noted that spin configu-
rations that are incompatible with a given bond configuration do not contribute to
the trace.

Application to the Swendsen-Wang algorithm Swendsen-Wang’s algorithm con-
sists in simulating the system in an extended phase space comprising the original
spin degrees of freedomand the bond degrees of freedom. The weight of a given
[b, σ] configuration in this extended phase space is simply given by

w([b, σ]) =
∏

i< j

(

pi jδσi ,σ jδbi j ,1 + δbi j ,0

)

.

The original implementation of the authors puts these degrees of freedom onan
equal footing, that is, each Monte Carlo step comprises two stages: first,bondsare
updated from the current spin configuration, and then,spinsare updated under the
constraint imposed by the current bond configuration. The second stage is rather
straightforward, and actually amounts to assigning a new value to each cluster
(i.e., connected subgraph) separately. The associated acceptance rate is equal to
one, since the weight of a given [b, σ] configuration and the weight of the same
configuration with any cluster being assigned a new value, are identical. Asfor the
bond configuration update, we have two schemes at our disposal.

First, we may rely on the Metropolis acceptance rate, Eq. (2.4), i.e., the prob-
ability to activate an initially open bond is given byP(bi j : 0→ 1) = min(1, pi j ),
whereas the reverse move probability isP(bi j : 1 → 0) = min(1, p−1

i j ). For a

nearest-neighbor model wherepi j = eβ − 1, where the (i, j) edge is restricted to
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(a) (b)

0 1 2 3 4 5 0 1 2 3 4 5

Figure 2.6: An illustration of a bond update in the flattened representation of the
complete graphG, for the Swendsen-Wang algorithm applied to a two-state Potts
model with long-rangeJi j interactions. The vertical dashed arrow shows the order
in which bonds are considered for activation, starting from an empty bondset (i.e.,
all bonds inactive). The bond between spins 2 and 4 may be left inactive with
probability e−βJ24 (a) or activated with probability 1− e−βJ24 (b), see Eq. (2.10).
The procedure continues until every bond has been considered for activation.

nearest neighbors, bonds are thus always activated wheneverβ > ln 2, and con-
versely, deactivated forβ < ln 2. The smaller probability associated with the re-
verse move clearly yields the correct weighting. By construction, this approach
implies that bond configurations be kept in memory between each spin update.

Another scheme, which proves particularly useful whenever one prefers to re-
build the clusterfrom scratchafter every spin update, is the heat-bath algorithm
depicted in Fig. 2.6. The implementation is particularly straightforward here, be-
cause we have only two possible final states:bi j = 0 (state A), andbi j = 1 (state
B). In the heat-bath algorithm, the probability associated with each final state isin-
dependent of the initial state, and is simply made proportional to the weight of the
final state, i.e.,P(bi j = 1) ∝ pi j andP(bi j = 0) ∝ 1. After proper normalization,
this yields

P(bi j = 1) =
pi j

1+ pi j
= 1− e−βJi j (2.10)

which is analog to Wolff’s bond probability.
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Long-range interactions In the case of power-law decaying interactions, the ac-
tivation probability rapidly becomes negligible as the distance increases, andthe
same optimization scheme as in the Luijten-Blöte algorithm must be performed.
The main change with respect to Luijten-Blöte’s formulation is that the construc-
tion of the cluster now consists in (i) choosing a “current” spin amongL−1 possible
spinsin turn, e.g. starting from the leftmost one, and then (ii) activating bonds be-
tween the current spin and other spins located to its right (in one dimension) by
drawing a random number, scaling it, and selecting the bond indices from a look-
up table containing theC0( j) coefficients at energyE. Once each spin has been
considered as a “current” spin, a cluster multiple labeling technique can eventually
be used to identify every set of spins actually belonging to the same cluster [161].
In dimensions greater than one, care must be taken to consider every pairof spins
only once: in two dimensions, for instance, the look-up table must exclusively
contain indices of spins located in a half-planeθ ∈] − π, π].

2.3.4 Extensions to other models

Cluster algorithms have been generalized to a broad class of models, yet withvar-
ied success. In his seminal paper [347], Wolff considered the extension toOn

models with continuous symmetry breaking, e.g., the XY model, by implementing
a so-calledembedding trick, whereby XY spins are embedded in Ising variables
through a projection onto a direction chosen at random at each Monte Carlo step.
A further generalization toφ4 field-theoretic models was presented by Brower [57],
and toσ-nonlinear models by Carracciolo et al. [70]. Antiferromagnetic models
can also be handled by cluster methods, provided bonds are activated between spin
of opposite signs. The antiferromagnetic Potts model, in particular, was considered
in [340], using a “freezing” mechanism, whereby for aq-state model,q− 2 phases
are (temporarily) frozen and the cluster is built from the remaining two phases.

Cluster algorithms in their initial formulation were claimed to work rather
poorly for disordered systems, and there have been numerous attempts in the last
decade at designing novel cluster algorithms that are (more or less) specifically
tailored to this class of systems. The random-field Ising model, for instance, was
considered in [258]: here, the “pinning” of large domains due to the random fields
is circumvented by flipping clusters of limited radius, with a distribution of radius
following a power law. Extensions of the multi-cluster algorithm to simple frus-
trated models were considered in [197, 198, 84], although these were reported to
work only poorly for spin glasses. In this regard, a promising direction turned out to
behybridation, e.g., a combination of cluster algorithms with methods working in
expanded or generalized ensembles. The two-replica cluster method [238, 283] and
further extensions thereof [162, 194] is an example in this class, which combines
the replica exchange method [308] with a cluster algorithm that activates bonds
between two distinct replicas as a function of their mutual overlap. The method
bears resemblance to simulated tempering (Sec. 2.5.6), yet what is swappedis the
magnetization instead of the temperature.
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Cluster algorithms have also been applied to non-magnetic systems, e.g., to
hard sphere mixtures [103] where “clutches” of spheres are grown then swapped
through a geometric transform (e.g., a reflection) in a cluster-flip like fashion. The
algorithm was extended to nearest-neighbor spin systems by Herringa andBlöte
[155], whereby two clusters of opposite sign are grown then swapped through a
geometric transform, instead of being flipped through a symmetry operation10. In
the presence of long-range interactions competing with short-range ferromagnetic
couplings, a generalization was proposed in [138], whereby clusters are grown
as if the model were governed by the short-range part only, yet with a reduced
bond probability that in effect limits the cluster size (for this purpose, the author
makes use of a so-called effective temperature that is tweaked in order to yield the
highest acceptance ratio); the presence of long-range interactions is subsequently
taken care of by accepting the cluster-swap with a probability lower than oneand
depending on the long-range part.

Finally, it is worth mentioning the invaded cluster algorithm [317, 267], which
is able to find out the critical temperature by tuning the cluster probability (through
a feedback mechanism) until cluster percolate (this implies that the algorithm works
for models where the percolation threshold and the critical point coincide).

2.3.5 Niedermayer’s construct, improved estimators and cluster dis-
tributions

Approximately at the same period where Wolff introduced his single-cluster algo-
rithm, Niedermayer presented a very general formalism for cluster algorithms, the
general cluster updating method [261, 262], which in a sense unifies Swendsen-
Wang’s and Wolff’s formulations. Niedermayer showed that, provided a global
(either discrete or continuous) symmetry underlies the model Hamiltonian, the
original system of spin variables can be mapped onto a new system of “macro-
spin” variables; each macro-spin represents a cluster, and interacts withthe other
macro-spins through an interaction which is directly related to the bond probabil-
ity, in a way that ensures detailed balance. The key point is that there is some
degree of freedom in the choice of the bond probabilityp which was not present
in Wolff’s original formulation, and which allows the average cluster sizes to be
altered. The prescription, if one requires that every macro-spin flip (through the
underlying symmetry operation) bealwayssuccessful, writes

pi j (σi , σ j) = 1− eEi j (σi ,σ j )−Qi j ,

whereEi j (σi , σ j) is the interaction between spinsσi andσ j , andQi j must be cho-
sen greater than the maximum ofEi j over all possible symmetry operations in-
volved in the macro-spins flipping; for the Ising model, for instance, one obtains
Qi j ≥ Ji j , where Wolff’s algorithm is recovered forQi j = Ji j , and larger values

10This is akin to the two-replica cluster algorithm [238], yet with exchange taking placeinsidethe
same system.
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increase the average cluster size by explicitly allowing bonds between spinsof op-
posite sign. The previous condition onQi j ensures that flipping macro-spins is
always associated with a unit probability; other choices (which would lead,e.g.,
to a larger bond probability for identical spins, but to a null probability for spins
of opposite sign) are perfectly possible, yet they impose that a correctionfactor
enters the Metropolis acceptance rate [222]. A correction term is also needed in
the presence of an external field, e.g, in the random-field Ising model, because the
field breaks the symmetry of the Hamiltonian (and it is no longer possible to find
an “optimum” value ofQ which yields a unit flipping probability).

Niedermayer’s formulation also makes it straightforward to constructimproved
estimatorsfrom the macro-spin variables11, namely, estimators with the same mean
but reducedvariance. For aq-state Potts model, the two-point correlation func-
tion12 is

〈

qδσi ,σ j − 1
〉

/(q− 1), and
〈

δσi ,σ j

〉

may be (better) estimated from

∑

B
P(B)

〈

δσi ,σ j

〉

B
,

whereB is a given bond distribution yielding particular macro-spin variables,
and occurring with a probabilityP(B), and the macro-spin correlation function
〈

δσi ,σ j

〉

B
is an average over theqNc possible macro-spins configurations (for aq-

state model). By symmetry, the latter quantity reduces to 1 if both spins belong to
the same cluster, and 1/q otherwise. In practice, one just has to implement a data
structure that memorizes at each Monte Carlo step and for each (i, j) pair whether
the corresponding spins belong to the same cluster or not.

Other improved estimators can be constructed from thelargest cluster distri-
bution. Denoting asl the size of the largest cluster in a given bond configuration,
andPL(l) the distribution of the largest cluster of sizel, one may define improved
estimators for the moments of the order parameter from the moments ofPL(l), i.e.,
〈ln〉 =

∑

l lnPL(l) is an improved estimator for〈mn〉. In particular, the largest cluster

distribution has an associated (modified) Binder cumulantBL =
〈

l4
〉

/
〈

l2
〉2

such

thatBL(t) = f (L1/νt), wheret = (T − Tc)/Tc is the reduced deviation to the critical
temperature andν is the critical exponent of the correlation length. SinceBL is in-
variant under a renormalization group transform [35], the critical temperature can
be located by monitoring the crossing point of these cumulants at increasing lattice
sizes.

In two recent Monte-Carlo studies focusing theq-state long-range Potts mod-
els [326, 325], improved estimators were ingeniously exploited to yield informa-
tion regarding the Kosterlitz-Thouless-like transition that occurs for 1/r2 decaying
interactions, a transition which is notably difficult to investigate owing to the pres-
ence of essential singularities in the correlation length and the susceptibility.

11Any cluster construction actually allows one to construct these estimators, yet this was first put
into words by Niedermayer.

12Janke and Kappler use another normalization factor [181, 184].
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Finally, it is worthy of mention that the entire cluster size distribution (as op-
posed to thelargestcluster distribution) may provide useful insight into the critical
properties of a model. Here, a connection with fractal geometry was recently pro-
posed [13, 190, 188, 189]. This distribution was also suggested to be anefficient
way of estimating the correlation length of the ordered phase in a first-ordertran-
sition [277], by monitoring the cluster size above which the power-law behavior of
the distribution13 breaks down.

2.4 Reweighting methods: single- and multi-histograms

As already stated in the introduction, canonical simulations rely on a Markov
chain weighted by a Boltzmann factore−E/kT, and thermodynamic averages can be
straightforwardly estimated by averaging over the engendered sequence of states.
Naturally, this implies that these averages are obtained at asingle temperature
point. Reweighting methods aim at getting around this limitation by providing
a way to obtain averages at other temperature points, and ascontinuousfunctions
of the temperature. In this respect, reweighting methods are not specific to canoni-
cal simulations, and simulations in generalized ensembles (see next section) actu-
ally constitute their favorite playground. Theirrealistic application to the study of
critical phenomena first appeared, however, in the context of histogram methods
[113, 114], which I briefly review hereafter14.

The idea behind the single-histogram method [113] is that the sampled distri-
bution of the energy provides in fact much more than mere thermodynamic av-
erages: it also offers a way to estimate the density of states, yet as we shall see,
in a narrow energy window. Indeed, the energy distribution (which is estimated
through anhistogramof the energy; hence the name of the method) is given by
N(E) ∝ n(E)e−β0E, whereβ0 is the simulation temperature. Inverting this rela-
tion yields (an estimate of) the density of statesn(E) ∝ N(E)eβ0E. From there on,
any moment of the energy may (in theory) be computed at any temperature point
kT = 1/β through the reweighting equation

〈

En〉 (β) =
∑

E EnN(E)eβ0E−βE
∑

E N(E)eβ0E−βE , (2.11)

where the denominator is, as a by-product, an estimate of the partition function
Z, and the free energy may be obtained (up to an additive constant∝ T) from
F = −kT ln Z. This equation can be generalized to any thermodynamic variable
A whose microcanonical average〈A〉E is known (which just entails recordingA
during the simulation),

〈A〉 (β) =
∑

E 〈A〉E N(E)eβ0E−βE
∑

E N(E)eβ0E−βE . (2.12)

13This power-law behavior can be thought of as stemming from the scale invariance “felt” by
droplets when their size is smaller than the finite correlation length.

14See, also, [180] for an extensive review that also encompasses applications to multicanonical
and tempering methods.
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In terms of sums over measurements, this can be reexpressed as

〈A〉 (β) =
∑

i Aieβ0Ei−βEi

∑

E N(E)eβ0E−βE , (2.13)

whereAi andEi refer to theith measurement ofA andE, respectively.
In the context of long-range models, the method was used to study theq-state

Potts model [19]. While it is ideal for locating peaks of response functionsat
a critical point, it suffers from flawed reweighting far from 1/kT0, because the
histogram has too few entries far from the energy region sampled by the (usually
gaussian) canonical distribution. This point will be further discussed in the next
section in the context of generalized ensembles simulations introduced in the early
90’s, and which represent very efficient techniques to get around the issue.

In the meantime, an extension of the previous single-histogram method was
proposed, that aims to improve the reliability of reweighting over a larger tem-
perature range. Themulti-histogrammethod [114] relies on a set of simulations
at distinct yet nearby temperatures points, so that energy distribution overlap and
the resulting “compound” histogram spans a larger energy range. The reweighting
equation now involves all histogram data, and in order to minimize errors on the
estimation of the density of states, histograms should appear in the equation with a
weight that is proportional to the number ofindependentmeasurements from which
they were filled, or alternatively, to the inverse of the variance of the autocorrelation
time of the corresponding data bag (if, say, raw, non-independent dataare used).
The procedure proposed by Ferrenberg and Swendsen is in fact slightly more in-
volved: the previous rule is used only as a starting guess, and weights arerefined
in a self-consistent manner until the minimum error is reached. Even so, whilethe
multi-histogram was shown to improve the accuracy of reweighted averagesin a
dramatic way with respect to single histogramming, it will be seen below that it is
no longer the best method where efficiently sampling a large energy window is the
goal.

2.5 Simulation in generalized ensembles

2.5.1 From rare-events sampling to flat-histogram algorithms

As was argued in the previous section, the canonical distributionw(E) = e−βE is
definitely not the best choice where estimating the average of certain operators is
concerned, including (but not limited to) measurements of free energy differences.
This can be traced back to the fact that, in general, configurations that dominate in
reweighted thermodynamic averages are generated with negligible probability. To
be specific, if we consider the reweighted average of an operatorA at a given in-
verse temperatureβ0 and from a set of measurements{Ai} generated from a canon-
ical distribution, i.e.,

〈A〉 (β0) =
∑

i Aiw−1(Ei)e−β0Ei

∑

i w−1(Ei)e−β0Ei
,
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Figure 2.7: Histogram of the energy filled with the samples produced by a canon-
ical simulation at inverse temperatureβ (solid line), and what the same histogram
shouldlook like at inverse temperatureβ0. Both histograms overlap only poorly,
and the resulting accuracy of reweighted averages atβ0 is thus very low.

then the measurements that contribute predominantly to the sum in the numerator
are actually those associated with an energyEi ∼ 〈E〉 (β0). If β differs too much
from β0, then the tail of the Boltzmann distribution is very unlikely to produce the
appropriate samples, at the expense of poor accuracy (see Fig. 2.7).This is all
the more stringent at large lattice sizes, that the Boltzmann distribution becomes
narrower, seeing that its width scales with the inverse of the specific heat. Multi-
histogram methods [114] are of little help for that matter, because the increasing
narrowness of the energy window that is sampled requires that more and more
simulations are performed at ever closer temperatures15.

As mentioned in the introduction of this chapter, the Metropolis algorithm may,
in theory, sample any distribution. By choosing a distribution that gives equal im-
portance to each energy windows that enter the sum in the reweighted averages, one
may clearly increase the accuracy of the averages over a much wider range of tem-
perature. This is the key idea underlying what was first coined as "non-Boltzmann
sampling" (in the context of umbrella sampling) [318], and later disseminated to
the community as "generalized ensembles Monte Carlo"16. Generalized ensembles
methods currently cover a variety of algorithms, from transition matrices [341] to
multicanonical sampling [25] and variants thereof [335] to the recently introduced
optimized ensemble method [319, 351]. I will give a survey of these algorithms
in subsequent parts of this section, yet before moving in to more technical detail, I

15The same pitfall occurs in simulated tempering, although the last algorithm was designed with a
different purpose in mind.

16One may also encounter the terminology "extended/expanded ensembles Monte Carlo" now and
often, see for instance [166], although this usage is generally restrictedto methods related to sim-
ulated tempering, i.e., with an enlarged configuration space (hence the name) containing additional
dynamic variables like the temperature.
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would like to address another thorny issue that is tightly related to the conceptof
generalized ensembles: rare events sampling.

In recent past, as a matter of fact, the attention of the community gradually
shifted from the problem of samplingbroadenergy windows to the subject of sam-
pling rare events. This subject slowly surfaced as a result of unabatedinterest for
a variety of physical systems exhibiting rugged free energy landscapes, includ-
ing heteropolymers and protein folding [147], random field models or spin glasses
[26, 29, 156, 27], yet also (and in spite of their apparent simplicity as against the
previous models) models exhibiting a discontinuous phase transition [31]. Canon-
ical methods face some severe drawbacks here as well, this time owing to a so-
calledsupercritical slowing downeffect [31] which manifests itself through highly
repetitive dynamics17.

When the free energy landscapes comprises metastable states, the dynamics
produced by the Markov chain can easily be trapped in a local minimum of the
free energy, especially at low temperature where the correspondingly strong rejec-
tion ratio makes it difficult for the system to climb up even small energy barriers
“uphill”. This leads to quasi-ergodicity breaking, and as a consequenceunreliable
statistics. What generalized ensembles bring about here is a more efficient dynam-
ics, whereby the Markov chain is able to wade across free energy barriers in a
nearly transparent way, and thus can sample the phase space far more efficiently.

From a practical point of view, this is carried out by feeding the Markov chain
with an appropriate distributionw(E), in such as way that unlikely events corre-
sponding to local maxima in the free energy are firmly enhanced. It turns out that
this is precisely what generalized ensembles algorithms do when they lead the dy-
namics to explore a much wider energy window than in canonical simulations: they
assign equal importance to a large set of macrostates with distinct energies,and yet
some of these macrostatesmaycontain the infrequent events we wish to sample. In
a large class of algorithms termed “flat histogram algorithms”, for instance, sam-
pling a wide energy range is carried out by settingw(E) to the inverse of the density
of states (or, since it is generally unknown, to an estimate of it obtained in an ap-
propriate way), so that the resulting energy histogram is indeed (approximately)
flat over some range of energy values. As a result, the correspondingenergy levels
are sampled with equal frequency, including those which have an associated low
density of states and represent occasional events.

17Highly repetitive dynamics may also be efficiently overcome, for some models, by continuous
time algorithms — also termed N-fold-way, or faster-than-the-clock algorithms — [50, 212]. Ba-
sically, such algorithms compute the number of Monte Carlo steps one has toskip before a move
update is accepted; this clearly turns out to be very efficient at low acceptance rates. Combination
with multicanonical ensembles simulations were also considered [297, 310].
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ξ

Figure 2.8: A schematic illustration of the surface tension phenomenon that re-
sults from phase coexistence at a first-order transition in, e.g., a two-dimensional
Potts model withq > 4. The two types of hatches represent the ordered and disor-
dered phases. The dimension of the interface isD − 1 for aD-dimensional model
with nearest-neighbor interactions. The size of a droplet (indicated with arrows) is
roughly given by the correlation length of the corresponding phase.

2.5.2 Supercritical slowing down and surface tension at first-order
transitions

At a first-order phase transition, the presence of two stable phases in coexistence
manifests itself through a double-peak structure in the histogram of the energy (or,
alternatively, of the order parameter). When the model is simulated by means of
a Boltzmann weight, configurations near or at the maximum of the free energy
are strongly suppressed. This suppression is termed supercritical slowing down
and was first investigated in the context of the multicanonical method [31]. This
behavior is linked to the excess free energy∆F that is associated with the inter-
face between the two coexisting phases (Fig. 2.8), in such a way that mixed phase
configurations are reduced by a factor∼ e∆F with respect to pure phase states. As
illustrated in Fig. 2.9, this surface tension increases with the lattice size. For models
with nearest-neighbor interactions, it is actually expected to grow likeLD−1 (up to
finite-size corrections of higher order [220, 219]) whereL andD are the linear size
and the dimension of the lattice, because the dimension of the interface is reduced
by one with respect to the lattice dimension. This was proven on rigorous grounds
in [46] for the two-dimensional Potts model using arguments based on complete
wetting. As for models with long-range interactions, the situation is less clear; al-
though some authors claimed that one should expect the same sort of behavior as in
short-range models [131], yet with stronger finite-size corrections, I give marked
evidence in Sec. 7.6 that the interface actually has a non-integer dimension lying
betweenD − 1 andD.

Metropolis algorithms do not cope well with this effect: the reason is that,
when going from one phase to the other, the Markov chain has to go through a
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Figure 2.9: Canonical distribution of the energy at a first-order transitionfor vari-
ous lattice sizesL (data from multicanonical simulations of a three-state long-range
Potts chain with 1/r1.5 interactions, see Chap. 7).

series of mixed-phase configurations associated with large rejection ratios. Single-
spin updates work all the more inefficiently in this respect that they do this at a
drastically low pace by updating one spin at a time. This means that the dynamics
might stay an exceedingly long time in one of the two phases before the algorithm
gets a chance to switch to the other one. Incidentally, cluster algorithms work
only slightly better here; it was shown in [134] that their relaxation time grows
in general exponentially with the system size, a signature of supercritical slowing
down.

Irrespective of the underlying move update, canonical simulations of first-order
transitions are severely hampered by the suppression of mixed-phase configura-
tions, since this suppression grows exponentially with the system size. With the
exception of weak-first order transitions, i.e. with a large correlation length and
a correlatively low surface tension (see [46], where it is shown that thereduced
surface tension, i.e.,∆F/L, is given by the inverse of the correlation length of the
ordered phase), one must rely on other schemes in order to obtain reliablestatistics.

2.5.3 Multicanonical ensemble

From the overlapping distribution method to umbrella sampling The multi-
canonical method stems indirectly from the idea of the “overlapping distribution
method” [22], which later inspired theumbrella samplingmethod [318]. All these
methods more or less revolve around enlarging the sampled energy windows(or

56



2.5. Simulation in generalized ensembles

any other parameter of physical interest), and were initially designed with measure-
ment of free energy differences in mind. In the overlapping distribution method,
two identical systems with their Hamiltonian differing in some respects are con-
sidered at the same temperature; one simulates one of the two systems while ac-
cumulating a histogram of the difference between the energy of the system being
simulated, and the energy of the second system in the same microscopical config-
uration. The free energy difference between the two systems is then reconstructed
from this histogram18. This method suffers from poor accuracy in the estimation
of the free energy, however, because the physically relevant configurations of the
second system are only poorly sampled by the simulation of the first system (this is
reminiscent of the issue encountered with single histogramming). Umbrella sam-
pling [318] aspires to alleviate this problem by altering the weight of the Markov
chain in such a way that both distributions overlap appreciably.

Multicanonical weights Simulations in the multicanonical ensemble [30, 31]
(also [25] for a concise review targeting comparison with other generalized ensem-
bles) extends this idea by setting the weight of the Markov chain to the inverseof
the density of states, i.e.,w(E) =∝ 1/n(E), or equivalently,w(E) ∝ e−S(E) where
S(E) is the microcanonical entropy. This particular choice leads to a histogram
of the energy that is ideally flat over the whole energy axis. In practice,w(E) is
often truncated to the energy range of interest for the problem in hand, e.g., the
interval spanning the two peaks of the energy histogram at a first-ordertransition.
There may be some situation, however, where one seeks to explore energy states
in the vicinity of the ground states, e.g. investigations of spin glass ground states
or native protein conformations. In any case, imposing a flat energy histogram
means that the dynamics in effect performs arandom walkin the energy space. It
turns out, however, that single-spin updates do not lead to an ideal random walk,
i.e., one drifting along the energy axis at a pace given by the square rootof the
number of Monte Carlo steps. In particular, it was suggested in [24] that Berg’s
recursion scheme creates an additional slowing down, so that the distancecovered
by the random walker along the energy axis actually scales asN2.5 instead ofN2,
whereN is the number of single-spin updates (in units of lattice sweeps, this would
amount toN2.5/2 andN respectively). It is the goal of several improved schemes
introduced in the last ten years to optimize the random walk dynamics in the sense
mentioned above, either by combining simulation in the multicanonical ensembles
with collective updates [183, 291, 353, 285], or by moving to a different ensem-
ble [319]. A substantial part of this thesis is devoted to the development of anew
method which, among other things, efficiently tackles this issue; this is presented
in Part III.

18In some respect, it seems to me that this very ancient and bright idea might have inspired the
recently introduced Adaptative Integration Method [111]
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Multicanonical recursions Still and all, one of the sticking points of multi-
canonical simulations is the estimation of the density of states: naturally, it is ini-
tially unknown, for if we knew it, a major part of the problem would have been
solved in the first place. A variety of schemes of varied efficiency have thus been
devised in the last decade in this purpose. The first scheme was made available by
Berg in [23]: it is an iterative scheme which aims to estimate the density of states
in a recursive way by accumulating a histogram of the energy and modifyingthe
current estimate of the density of states from it. Starting from an initial canonical
guessw(E) = e−β0E, the algorithm progressively refines the estimate by performing
several iterations, updatingw(E) from the histogram of the energy obtained in the
previous iteration, until the histogram has eventually become sufficiently flat. Once
accurately estimated, the resulting density of states is fed into an ultimate, long
(production) run during which measurements are recorded. A reweighting scheme
similar to that explained in Sec. 2.4 is then used to obtain averages of thermody-
namic data at any temperature below 1/β0. I will comment more on this method in
Chap. 3, with special focus on (i) the improvements that must be performed when
applying the method to long-range models; (ii) the dynamic characteristics of the
algorithm. Another approach proposed by Wang and Landau a few years ago is
discussed in a subsequent paragraph.

Entropic sampling This method was formulated by Lee [218] short after Berg’s
multicanonical recursions. It more or less boils down to a rewording of Berg’s
method in terms of the microcanonical entropy, the latter quantity being related
to the density of states throughS(E) = ln n(E). The microcanonical entropy is
estimated in a recursive way, starting fromS(E) = 0,∀E. Then a histogram of
the energyH(E) is accumulated during an iteration run, andS(E) is eventually
updated according toS(E) ← S(E) + H(E), except at empty bins whereS(E) is
left unchanged. As in Berg’s recursion, several iterations must be performed until
the histogram becomes flat to a good approximation. It is perhaps interestingto
notice that this methodmightcontain the germ19of Wang-Landau’s method [335],
whereS(E) is updated in nearly the same way (up to an “attenuation” factor that
gradually dies off to zero as the simulation goes on), but at each MCS rather than
at the end of each iteration run.

Applications and extensions of the multicanonical method The multicanoni-
cal method of Berg has been applied to a variety of situations since the early work
of Berg [25], including first-order transitions driven by the temperature[31, 30]
or by a magnetic field [28], spin glasses [27, 29] and the helix-coil transition in
proteins [145]. The first application of the multicanonical method was the study
of the temperature-driven transition in the two-dimensional ten-state Potts model
[31], i.e., in its strong first-order regime. The authors focused here on the estima-
tion of the surface tension of this model, and obtained numerical values that were

19That is not to say that the methodreally inspired the authors, though.
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found to be in very good agreement (within three per cent) with the exact values
obtained slightly later by Borgs and Janke [46].

The multimagnetic method [28] represents an interesting extension of the method
to random walks in the space of the order parameter, i.e., with the correspondence
E ↔ M and β ↔ H where M denotes the magnetization andH the external
field. This approach implies that the model Hamiltonian contains a term that lin-
early couples the order parameter with some external source, whereby averages
of thermodynamic data are obtained as continuous functions of the externalfield.
The method was shown to completely suppress the supercritical slowing downef-
fect observed in the field-driven first-order transition in the two-dimensional Ising
model below its critical temperature.

A related approach is the so-calledmultioverlapextension [29] that was suc-
cessfully applied to the simulation of the three-dimensional±J spin glass — the
Edward-Anderson model [110]—, one of the simplest and most investigated ap-
proximates to realistic spin glasses. In this model, the free energy landscapedis-
plays a complex tree-like structure comprising numerous energy basins — in par-
ticular at low energy —, owing to the presence of disorder, and frustration that
might arise from it. This feature is actually shared by a large class of disordered
systems, including random-field models. The presence of local minima manifests
itself through energy barriers in the space of the order parameter, i.e., theParisi
overlap parameter (this represents the overlap — or, broadly speaking,the resem-
blance — between two replicas of the same system, where a “system” refers toa set
of random couplings). The purpose of the multioverlap method is thus to produce a
random walk in the space of this overlap parameter, so that the corresponding bar-
riers can be effectively overcome. The same approach was reconsidered recently
in the framework of the Wang-Landau algorithm [334], where it was observed that
the algorithm, as a by-product, could very efficiently find the ground states of the
model.

The multicanonical ensemble can easily be extended to multi-parameter Hamil-
tonians, provided they are made up of a sum of linear couplings20 involving a
pair of intensive and extensive variables, e.g.β × E or M × H. In this case,
the multicanonical weight is set to, e.g.,w(E,M) = 1/n(E,M) wheren(E,M)
is a joint density of states, so that a random walk is in effect performed on a hy-
persurface underlaid by the (intensive) variables axes. This was considered, for
instance, in the context of lattice polymers [167], protein folding [82] and frus-
trated systems [168], and also in combination with the replica-exchange method
(REM) [303]. Noteworthy enough, Guerra and Muñoz recently suggested [139]
that multi-dimensional random walks might experience stronger relaxation effects
than their unidimensional counterparts, as a result of the higher dimension of the
hypersurface explored. The multibond method [183], which simulates spin models
in their bond representation and yields a random walk in the space of the average

20Although slightly different in its spirit, the Adaptative Integration Method [111] alleviates this
limitation by directly computing the free energy with respect to some physicallyrelevant parameter.
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bond number, may also be viewed as a multi-dimension random walk as soon as
next-nearest neighbor interactions are taken into account. Although this approach
was suggested in [353] as a possible extension of the method in the context of the
Wang-Landau algorithm, no numeric study based on this extension has beenmade
available thus far, to the best of my knowledge.

Finally, let me mention that simulations in the multicanonical ensemble were
also hybridized with Langevin algorithms and molecular dynamics [152]. Here,
the potential energy entering the Hamiltonian is modified (in a way involving, here
again, the microcanonical entropy) so that the resulting dynamics is in effect a
random walk in the space of the potential energy.

2.5.4 Wang-Landau’s random walker

As already mentioned above, one of the biggest challenges in multicanonicalsim-
ulations is the estimation of the density of states that is required to perform the
multicanonical production run (if any). In this respect, Berg’s multicanonical recur-
sion scheme [23] suffers from two deficiencies of distinct magnitude: it is poorly
scalable, i.e., its performance in terms of convergence to the true value wanes at
large lattice sizes; perhaps less importantly, it may have been deemed difficult to
implement.

Meeting the problem from a slightly different angle, Wang and Landau re-
cently proposed a so-called “acceleration method” [335, 334] for the estimation of
the density of states, which — as it turns out — swiftly caught on in the commu-
nity, and prompted a flurry of papers concentrating on improvements [7, 93, 297,
304, 355] or generalizations [320, 353, 267] of the method. Indeed, the scheme
is simple, somewhat more straightforward to implement than Berg’s one (although
one may delude oneself into thinking that the scheme is childlike on the grounds
that the equation does not look as sophisticated as Berg’s one: the reality looks
somewhat harsher, see implementation issues in Chap. 7).

Wang and Landau’s method updates the multicanonical weightw(E) = e−S(E)

in real-time during the course of the simulation. Each time an energy levelE
is visited, the microcanonical entropy is updated according toS(E) ← S(E) +
ln f , where lnf > 0 is a modification factor that is kept constant during a given
iteration. Thus energy levels which correspond to occasional events are indirectly
enhanced because those that are visited most often will rapidly gain a higher S(E),
or equivalently a lower weight. Since modifying the weight of the Markov chain
during a simulation is known to break detailed balance, the amount by whichS(E)
is modified during a given iteration is decreased from one iteration to the otheruntil
it reaches a negligible value, so that detailed balance is restored in the last step of
the iteration scheme. Initially [334], the suggested prescription to switch fromone
iteration to the other was to monitor the histogram “flatness” until it reaches an
acceptably low value, in much the same way as in Berg’s recursions. Histogram
flatness can be estimated in many ways, i.e., one may simply want to compute the
percentage of histogram bins that departs from the baseline by more than agiven
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amount, or one may estimate it from the standard deviation of thelogarithmof the
histogram (this scheme is used in Chap. 3 and I suggest that this is a more natural
choice, on the grounds that the quantity entering the reweighting equation is the
logarithm of the histogram entries). Incidentally, estimation of histogram flatness
is a feature shared by all estimators working in an iterative manner.

The convergence of the algorithm towards the flat energy distribution is some-
what tedious to prove on rigorous grounds [362], yet the intuitive picture is that,
as soon as the energy distribution has become flat, each energy level occurs with
the same frequency and thus –for a Markov chain of infinite length– the effect is
just to translate the whole curveS(E) vertically by a global amount. If the energy
distribution is flat in the last step, we also have thatS(E) is an estimator for the
density of state, with a relative uncertainty which ideally amounts to

√

ln f [362].
The situation is actually somewhat more intricate, because other parameters im-
pinge on the global uncertainty, including the number of entries in the histogram
at the end of each iteration, and correlations between successive measurements.
In addition, the maximum accuracy affordable with the method was also reported
to be limited byconstruction, irrespective of the number of MCS performed as a
whole [358, 339], yet in the meantime it was also suggested that subtle choices of
parameters may greatly help in taming several sources of error [362]. These points
will be discussed in detail in Chap. 6.

Another improvement over Berg’s scheme that was proposed by Wang and
Landau, consists in performing independent random walks in distinct energy ranges,
possibly in a parallel way, and then to “stitch” the separate estimates together.This
was suggested to markedly cut down the total amount of computer time required
[335, 353], on the grounds that each random walk in a given energy interval of
width ∆E takes a times∝ ∆E2 to correctly explore the available phase space,
whereby dividing the energy range byN yields an improvement of∼ N2. Here
again, things are not that simple, and it was argued again by Zhou and Bhatt [362]
that starting from a good initial guess ofS(E) might be as efficient as perform-
ing multiple random walks from an initially “flat”S(E). Some insight into the
issue is provided in Chap. 6, where I show that relying on an efficient predictor for
S(E) during the first iterations indeed drastically reduces the burden in terms of
computer load.

The “stitching” operation may also give rise to systematic errors at right edges,
owing to the fact that updates which move the system outside the permitted range
of energy are systematically rejected, and thus increaseS(E) at right edges by an
unwanted excessive amount [297]. This must be taken into account oneway or
the other, otherwise the seams may show: the easiest way to skirt the problem
is to leaveS(E) unchanged whenever a move update attempts to take the system
outside the energy range; another trick, which I put to use in Chap. 7, is tomake
the energy ranges slightly overlapand to ensure a “soft” rejection at right edges
by continuingS(E) alongside its tangent (hence the algorithm behaves locally as a
canonical one).

Another pitfall which was apparently left unnoticed in recent literature is re-
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lated to the time needed by the Markov chain to thermalize, which — whenever,
say, the simulation kicks off from a disordered state— artificially enhancesS(E) in
the upper energy range. Proper estimation of thermalization times is thus required,
so that the corresponding events in the Markov chain may be safely skipped. The
problem, as expected, does surface not only on start-up, yetalsoeach time the sys-
tem is re-thermalized. Indeed, it is necessary to “jar” the system now and often in
the course of an iteration — which entails re-thermalizing right afterwards —,for
the following reasons:

• first, this lowers the statistical error onS(E), inasmuch as the procedure
is equivalent to performing several, independent runs (with the same fixed
ln f ), and averagingS(E) over these [362];

• and then, this helps getting rid of potential ergodicity breaking for those
energy ranges that lie on the lower side, i.e., near the ground state; here,the
system may stick to the same energy basin for a long time (for much the same
reason as occurs in canonical simulations at low temperature), and shaking
the system is an efficient way of thrusting it into another basin [334].

Again, these points are considered in greater detail in Chap. 6 in the context of the
breathing cluster method.

2.5.5 Transition matrices and the Broad Histogram Equation

That one may rely on transition probabilities between energy levels to estimate the
density of states was considered as early as in 1995 by Smith and Bruce [301]. The
idea was revisited sometime later by Wang, Tay and Swendsen [341] in the context
of the transition matrixmethod [339, 338, 337], and separately by De Oliveira et
al. [98, 96, 97], although the initial formulation of the latter was deemed somewhat
flawed [95, 336] (see, also, extension to other models [253, 224] and comparison
with Berg’s multicanonical method [223]).

A common feature to both methods is the notion ofpotential moves, whereby
everypotential move conveys its own piece of information to the simulation, not
just accepted moves. This is expressed through the so-called Broad Histogram
Equation,

n(E)T∞(E→ E′) = n(E′)T∞(E′ → E) (2.14)

whereT∞(E→ E′) is the (infinite temperature) transition matrix element between
energy levelsE andE′ (also denoted as〈N(σ,E′ − E)〉E in [98]). This quantity is
defined as

T∞(E→ E′) =
1

n(E)

∑

E(σ)=E

∑

E(σ′)=E′
P(σ→ σ′)

whereS(σ → σ′) is theproposed-updateprobability21 to reach the stateσ′ from

21See Sec. 2.1.
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the stateσ through asingle spin flip22. In other words, this matrix element rep-
resents the microcanonical average at energyE of the number of potential single-
spin moves from a stateσ of energyE to a stateσ′ of energyE′. From a practical
point of view, this average is estimated by accumulating a double-entry histogram
h(E,∆E) containing the number of potential moves fromE to E + ∆E each time
the energy levelE is visited. This implies that, at each Monte Carlo step, a non-
negligible amount of time will be spent computing this number by moving spins
one by one and monitoring the change in energy23. It is interesting to mention at
this point that an extension of the Broad Histogram equation to other variables, e.g.,
the number of bonds in the graph representation of the Potts model, was recently
proposed [354]; it was argued by the authors, in particular, that the equation may
actually be generalized to any number of variables, i.e., in the same spirit as the
multicanonical method applied to multiparameter Hamiltonians (see Sec. 2.5.3).

Although the definition ofT∞(E → E′) is very general, the Broad Histogram
Equation applies only if move updates satisfy a so-called microreversibility hy-
pothesis, e.g., are local (see previous footnote). Yet provided this is thecase,
the density of states can be readily estimated by computing, e.g., the quantity
ln n(E′)/n(E) = S(E′) − S(E) from T∞(E → E′) and T∞(E′ → E), and inte-
grating overE to yield S(E) over the whole energy axis. Other, more reliable
schemes based on least-square optimization were proposed in [339]. Forthe pur-
pose of multicanonical simulations, i.e., yielding a flat energy distribution, one is
only interested in the ration(E′)/n(E) which enters the Metropolis acceptance rate
of Eq. (2.4), so that integrating is not necessary at this stage. Additionally, a work-
ing estimate ofT∞(E → E′) is already available in the first steps of a simulation;
it is simply estimated from the number of potential moves from the current state at
energyE, and seeing that for sufficiently close energy levelsE andE + ∆E, one
may also approximateT∞(E+∆E→ E) by T∞(E→ E−∆E), the acceptance ratio
can be well approximated even in the very first stage of the simulation.

Finally, a useful quantity related to the transition matrix method is the so-called
TTT identity, which directly stems from thehistogram detailed balancederived
in [339], and yields useful information regarding the degree of detailed balance
violation in a given simulation. For single-spin updatesonly, this degree reads

v =
∣
∣
∣
∣
∣
1− T∞(E→ E′)T∞(E′ → E′′)T∞(E′′ → E)

T∞(E→ E′′)T∞(E′′ → E′)T∞(E′ → E)

∣
∣
∣
∣
∣

andv = 0 for a perfect simulation with zero detailed-balance violation. A similar
equation also holds for cluster updates, yet in a clearly more complex form since

22Wang’s initial formulation relied on this acceptance rate to derive a detailed balance equation
in the energy space, yet it was established that, provided all moves satisfy a micro-reversibility
hypothesis, the corresponding (finite temperature) transition matrixT(E → E′) can be factorized
into a term involving the usual acceptance rate — e.g., Metropolis-like — andan infinite temperature
transition matrixT∞(E→ E′). The formulation does not apply as is to cluster updates, however.

23For nearest-neighbor models, this can be readily calculated from the local environment of each
spin using “classes” as in the heat-bath algorithm. The task is much more demanding, however, for
long-range models.
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Chapter 2. From Metropolis to the Wang-Landau algorithm and beyond: what
can we learn from generalized ensembles methods?

cluster updates do not satisfy the micro-reversibility condition.
Transition matrices generally yield more accurate estimates of the density of

state, although at a higher cost in terms of computer resources. As we will witness
in several parts of this thesis, the method can be efficiently and straightforwardly
combined with other algorithms to improve their accuracy: this will be considered
first in Sec. 4.3 in the context of the spinodal method to estimate the order of a
phase transition, and then in Chap. 6 in combination with the breathing cluster
method.

2.5.6 Other generalized ensembles

Simulated tempering Although simulated tempering methods do not, strictly
speaking, operate in a generalized ensemble, it is worth mentioning them here,
because they represent a class of methods that has proven to efficiently overcome
quasi-ergodicity breaking — in particular in the investigation of spin glasses [162,
194, 221] and protein folding [146] —, in spite of their being somewhat limited in
some other respects. Simulated tempering actually exists in many flavors [237],in-
cluding a parallel version termedparallel tempering[241]. The idea is to engender
a random walk in the temperature, yet over a discrete set of variables — and this
is where the method differs in an essential way from generalized ensembles meth-
ods24. This is carried out by performing several simulations (possibly in parallel)
of the same system, yet at different temperatures, and exchanging the temperatures
(or equivalently, the configurations) between the two systems now and often. Ob-
viously, this exchange operation is subject to some acceptance probability,in order
for detailed balance to be satisfied. The method can efficiently overcome quasi-
ergodicity breaking, because the high-temperature simulation assists the system in
crossing free energy barriers which it would not have been able to cross in the low-
temperature phase. Thermodynamic averages are eventually computed in much the
same way as with the multi-histogram method [114].

1/k ensemble As opposed to simulated tempering, the 1/k ensemble [156] clearly
belongs to the family of generalized ensembles. It differs from the multicanonical
ensemble, however, in that it does not engender a flat energy histogram, yet rather
a random walk in the space of the microcanonical entropy. Since (i) the micro-
canonical entropyS(E) is a monotonous increasing function of the energy, and (ii)
the microcanonical temperatureβ(E) decreases with increasing energy (except at
a first-order transitions in the region of phase coexistence), this ensemblefavors
low-energy states and thus targets mainly optimization problems and searches for
ground states. It can be established that the appropriate weight for this ensem-
ble can be easily related to the multicanonical weight 1/n(E), and thus it can be
indirectly estimated by relying upon a multicanonical iteration scheme.

24In fact, the energy axis is also a discrete set in any numerical implementations, yeteveryenergy
level — at least inside a given range — needs to be sampled, whereas temperatures can be spaced
with more freedom in simulated tempering.
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Generalized ensemble with Tsallis weights A somewhat related approach was
formulated by Hansmann and Okamoto [148] with the protein-folding problem in
view. This ensemble is somehow related to Tsallis statistics, in that the weight
used by the author mimics the generalized distribution proposed by Tsallis [321].
The Markov weight is made of two parts: a low-energy part given by a Boltzmann
weight, and a high-energy part following a power-law behavior [151].The latter
choice is shown to ensure that free energy barriers can be efficiently overcome,
while simplifying the estimation of the optimal distribution [149]. This approach
was also reconsidered in the context of molecular dynamics [150], along the same
line of arguments as those used in [152] for the multicanonical-MD hybrid algo-
rithm.

Optimized ensemble: increasing diffusion currents A complementary approach
based on the maximization of diffusion rates was very freshly introduced in [319,
351]: in this so-calledoptimal ensemble, the engendered histogram is still broad,
but no longer flat. Rather, it is peaked around the critical region25, where thediffu-
sivity coefficient of the random walker is claimed by the authors to experience its
lower value (akin to critical slowing down; this was already alluded to by Guerra
and Muñoz in the context of equilibrating properties of multicanonical simula-
tions [139]). The so-calledoptimal weight w(E) of the new ensemble is computed
through a feedback procedure, wherebyw(E) is increased in the region where the
diffusivity is smaller. This method seems very promising, with applications to a
simple frustrated model proving very convincing.

2.6 Outlook

In this chapter, two classes of Monte Carlo algorithms have been reviewed:clus-
ter algorithms rapidly reduce temporal correlations by flipping blocks of spins in
a collective way, resulting in an increased accuracy in the estimation of thermo-
dynamic averages; algorithms operating in generalized ensembles efficiently over-
come repetitive dynamics originating from rugged free energy landscapes in dis-
ordered models or surface tensions at discontinuous transitions. The next part of
this thesis investigates a long-range Potts chain by relying on the last approach.
Yet as was mentioned above, there have been several attempts in the recent past at
combining both approaches in order to deliver better dynamic performance.The-
ses methods, among which the multibond method [183], are reviewed in Part III
(Chap. 6), where I will describe the main impediments to their usability in the
context of long-range models. These will be the main motivations behind the de-
velopement of a new method (Chap. 7) that will indeed efficiently combines both
approaches using an innovative strategy.

25This is the energy interval that would be sampled by a canonical simulation at the critical tem-
perature.
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Part II

A multicanonical study of the
long-range Potts model
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Chapter 3

A multicanonical algorithm for
long-range spin models

In this chapter, I will present the multicanonical method that will be used during
the first part of this work, Chap. 4 and 5. The purpose of this chapter isthreefold:

• it may be regarded as an introduction to the method in its pristine formulation
(Berg, [31]), in particular as far as implementation details are concerned;

• it introduces several improvements over Berg’s initial recursion scheme [30,
31], that make the algorithm suitable for long-range models; in this respect,
it will be shown that the presence of unequally spaced energy levels in these
models requires a modification of the recursion equation (with regard to the
last point, long-rangediscretespin models are somewhat peculiar indeed);
the choice of an efficient predictor and a reliable convergence criterion for
the recursion scheme is also discussed;

• it contains a study of the dynamic characteristics of the algorithm in the con-
text of long-range spin models, in particular in terms of dynamic exponents.

The model being investigated in this thesis part is a long-range generalization
of theq-state Potts model, i.e., with interactionsr−σ−D decaying as a power law of
the interparticle distance. More detailed material regarding themodelis exposed
in the next two chapters, which are dedicated to its numerical investigation. On
the contrary, this chapter is exclusively devoted to themethod, so that it may be
skipped by a reader only interested in the results regarding the critical behavior of
the model.

The main features of the multicanonical method are presented in Sec. 3.1: it is
explained why this approach isa priori suitable for the investigation of the long-
range Potts chain. Multicanonical weighting is presented in Sec. 3.2; the particu-
lar role played by the microcanonical temperature in the dynamics is singled out.
The recursion scheme used to determine the multicanonical weights is described
in Sec. 3.3: taking guidance from the initial formulation of Berg and Neuhaus, I
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Chapter 3. A multicanonical algorithm for long-range spin models

propose several improvements regarding the convergence of the algorithm. The
reweighting procedure is discussed in Sec. 3.4, with emphasis on the estimationof
free energies. In Sec. 3.5, the choice of an efficient predictor is discussed, that in-
creases the robustness of the algorithm in terms of convergence to the best estimate
of the density of states. Finally, the performance of the algorithm is measuredin
Sec. 3.6 for the long-range Potts chain with power-law decaying interactions, by re-
lying on the estimation of various characteristic times of the simulation. Dynamic
exponents are compared with several other existing schemes.

3.1 Canonical vs multicanonical ensembles and long-range
models

As was seen in Chap. 2, the Metropolis algorithm (hereafter denoted as belong-
ing to the class ofcanonicalalgorithms, i.e., operating in the canonical ensemble)
has long been considered the paradigm for Monte Carlo simulations in statistical
physics. However, the method faces some severe drawbacks in situationswhere
the sequence of states created by the Markovian chain leads to very repetitive dy-
namics, i.e., dramatically low acceptance rates. On the dynamic side, this implies
exponentially diverging autocorrelation times (or tunneling times, to be defined
below), and fewer independent samples for a given simulation time. As a result,
reaching a given accuracy requires that the system be simulated over exceedingly
long runs in order to obtain good statistics and reliable estimates of thermodynamic
averages.

Repetitive dynamics are encountered in canonical simulations of first-order
phase transitions (the so-called supercritical slowing down [31]). Here, tunnel-
ing time between coexisting phases grows exponentially with the system size, due
to the increasingly high free energy barrier to be overcome. This is one ofthe
reasons that prompted me to focus on the class of multicanonical algorithms to
investigate the phase diagram of the long-range Potts chain. As will be seenin
the next two chapters, a multicanonical approach is indeed an appropriatechoice
for the determination of the location of the boundary separating the first- andthe
second-order regimes of this model, and for the estimation of its critical couplings
in the first-order regime. The present purpose is therefore to adapt thescheme ini-
tially formulated for nearest-neighbor models so as to make it suitable for a large
class of long-range models.

In order to circumvent repetitive dynamics, multicanonical methods perform
a random walk in the energy space. It is important to note that this scheme does
not make any assumption about the particular move update utilized (this may be a
single-spin flip or a collective update, as we shall consider in Chap. 6). This random
walk engenders in turn aflat energy distribution. The benefits of the algorithm are
in fact twofold:

• This results in the algorithm quickly sampling a much wider phase space
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3.2. Multicanonical weights

than in the canonical case, by allowing the system to cross any free energy
barrier.

• This allows the density of states to be computed over the whole energy axis,
thus extending the reliability of reweighting procedures over a much wider
range of temperature than in the case of standard histogram methods. An
example of such calculation is illustrated in Fig. 3.4.

As a corollary, and as opposed to multihistogramming [114], a single run is
needed to cover the energy range of interest1. Once a reliable estimate of the
density of states has been obtained, it is then straightforward to compute thermo-
dynamic functions otherwise hardly within reach of canonical simulations, e.g.,
entropies and free energies. The last functions will be extensively used in several
parts of this thesis, e.g., to accurately determine the order of the phase transitions
exhibited by the long-range Potts chain.

The first point mentioned above, that is, much wider and efficient phase sam-
pling, is illustrated in Fig. 3.1: here, theflat histogram engendered by the random
walk is depicted along with thecanonicalhistogram, i.e., the histogram that would
— ideally — be obtained from a canonical simulation at the transition temperature.
This canonical histogram was actually obtained by a reweighting procedure (see
Sec. 3.4 below): a canonical simulation would have hardly produced thecorrect
energy distribution, owing to the presence of the free-energy barrier (this roughly
corresponds toE/L = −1.5 in the figure). As is depicted in the figure, the dynam-
ics of an equivalent “canonical” walker would be fairly inefficient, with the walker
“bumping” into the free-energy barrier a huge number of times before having a
chance to go across the barrier and reach the ordered phase.

3.2 Multicanonical weights

The rationale behind the multicanonical algorithm is the generation of a Markovian
chain of states{σi}, whose weightswmu(E(σi)) are adjusted so that one eventually
gets a flat energy histogram. Denoting asPmu(E) the energy distribution and as
n(E) the density of states, we want

Pmu(E) ∝ n(E)wmu(E) = const.

Sincen(E) usually increases drastically with energy, low-energy states are thus
sampled much more often than high-energy ones. One of thecore issues in the
multicanonical method is to determine these weights, since these are not known
prior to starting the simulation.

1This is a somewhat idealized picture though, because many iterative runsare needed to obtain
the correct weights. One usually speaks of a singleproductionrun, i.e., the run from which thermo-
dynamic averages are produced.
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Figure 3.1: Flat energy distribution engendered by the multicanonical algorithm
(multicanonical histogram) vs the reweighted histogram at the “equal heights” tran-
sition temperature (denoted as “canonical” histogram in the figure). The strong
suppressing of mixed-phase configurations that would occur in a canonical simu-
lation, is clearly visible: the dash line illustrates (in a very sketchy manner) what
would be the dynamics of a canonical simulation in this case. The model parame-
ters are:q = 5, σ = 0.3, L = 400.E/L designates the energy per spin.
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The following outline takes guidance from Berg’s recursion scheme [23]. The
weightswmu(E) are computed through an iterative procedure, starting from an ini-
tial canonical simulation at inverse temperatureβ0. β0 indirectly sets the energy
below which the energy histogram is to be flat, i.e.Emax = 〈E〉β0 (in Fig. 3.1, this
roughly corresponds toE/L ∼ −0.8 for the energy per spin). Thus,kT0 = 1/β0

must be chosen high enough to ensure that the final energy histogram spans a suit-
ably large energy range upward, e.g., reaches the energy of the disordered phase
in the case of a first-order transition, and extends even further away if one wants
to observe with satisfying accuracy the free energy plateaus signaling thelimit of
metastability (see Fig. 3.3, and also the application of metastability plateaus to the
detection of the order of phase transitions in Chap. 4).

For convenience, one may define an effective HamiltonianHmu(E), so that

wmu(E, β0) = e−β0Hmu(E) = e−S(E)

whereS(E) plays the role of a microcanonical entropy (and is an estimate for it if
the recursion scheme converges to the true value). The second formulation will be
relied on in Chap. 6, in the context of the breathing cluster method. Here, I follow
the initial formulation of Berg and Neuhaus. Multicanonical simulations can thus
be envisioned as a canonical simulation at inverse temperatureβ0 with the usual
Boltzmann weight, provided the original Hamiltonian is replaced by an effective
Hamiltonian to be determined iteratively.

As a side note, a cluster implementation in the framework of the multicanon-
ical algorithm is clearly less straightforward, since this effective Hamiltonian has
fundamentally a global nature, whereas canonical simulations explicitly preserve
the locality of the original Hamiltonian: this point will be reexamined in detail in
Chap. 6.

DenotingH∞mu(E) as the true estimate of the effective Hamiltonian, one may
thus write

n(E) ∝ eβ0H∞mu(E).

The microcanonical inverse temperatureβ(E) may be easily related toH∞mu(E), as
one has (assumingk = 1)

β(E) =
d ln n(E)

dE
= β0

dH∞mu(E)
dE

Since the dynamics of the Markovian chain is governed by the transition rate

W(a→ b) = min(1,exp{β0[Hmu(Ea) − Hmu(Eb)]}),

one may write, for two states infinitely close in energy, i.e., wheneverEb = Ea+δE,

W(a→ b) = min(1,exp[−β(Ea)δE]).

Hence it is themicrocanonical temperaturewhich is the relevant quantity where the
dynamics (e.g., the acceptance rate) of the multicanonical algorithm is concerned.
This observation will be main thrust of the breathing cluster method developedin
Chap. 7.
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3.3 Recursion scheme

The effective Hamiltonian is initially set toH0
mu(E) = E, or equivalentlyβ0(E) =

β0, as this indeed corresponds to a canonical simulation at temperature 1/β0. At
stepi, a simulation is performed using a Boltzmann weight with effective Hamil-
tonianHi

mu(E); then an energy histogramNi(E) is eventually computed using in-
dependent samples. Incidentally, taking truly independent samples proves useful
during the late stages of the iteration scheme only, where the aim is then to refine
a nearly flat histogram. During early iteration steps, histograms may be computed
using nonindependent samples without significantly affecting the convergence.

I now denoteEi
min as the lowest energy level that was reached throughout the

previous runs, including stepi: this is the energy level below whichHi+1
mu (E) will

have to be predicted, since no histogram data are available inside this energy range.
Issues regarding adequate predictor choice will be considered later onin this chap-
ter. The rules for updatingHi+1

mu at stepi + 1 from Hi
mu at stepi are based on the

following equations. ForE ≥ Emax, Hi+1
mu (E) = E, i.e., the dynamics is canonical-

like at inverse temperatureβ0 for all iteration steps. ForEi
min ≤ E < Emax,

βi+1(E) = βi(E) +
ĝi

0

δE
ln

Ni(E + δE)
Ni(E)

, (3.1)

where

ĝi
0 =

gi
0

∑i
k=1 gk

0

and gk
0 is a raw inverse damping factor proportional to the reliability of thekth

histogram. It has been established in [23], following an error calculation argument,
that

g0 =
N(E)N(E + δE)

N(E) + N(E + δE)

provides an estimator proportional to the inverse of the variance ofβi+1(E).
Onceβi+1(E) is known,Hi+1

mu (E) is derived by a mere integration scheme start-
ing from the initial conditionHmu(Emax) = Emax. Finally, for E < Ei

min, Hi+1
mu (E)

will have to be computed using a suitably chosen predictor, until at lastEi
min be-

comes equal to the ground state energy. A cubic spline is then fitted toHmu(E) at
every bin center, and this curve is used to compute acceptance probabilitiesduring
the next run. It can be seen that Eq. (3.1) leads to a steady state whenever N(E) is
constant over the energy range of interest.

3.3.1 Accidental vs non-accidental histogram entries

Writing a recursion equation involvingβ(E) instead ofHmu(E), together with the
inclusion of a damping factor, allows one to handle the situation where some bins
have null entries, a case which otherwise leads to a fairly spiky graph forHmu(E)
and inconsistent dynamics.Accidentalnull entries at energy valuesE or E+δE will
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3.3. Recursion scheme

simply leaveβ(E) unchanged, and the corresponding parts ofHmu(E) thus move as
a block. Since acceptance rates hinge on the microcanonical temperature,this in
effect drastically reduces bias on the dynamics.

Considering a small set of histogram bins that are copiously filled for the first
time during a given iteration run (e.g., high-energy bins during the early iteration
runs whenever one starts with a canonical simulation), one realizes that there-
latedcumulativeinverse damping factor first soars and produces a great amount
of change inβ(E) in the couple of runs that follow, and then decays progressively
to zero as these bins continue to be filled. By taking into account all the data that
have been sampled up to stepi, this modified recursion both clearly stabilizes the
algorithm and reduces relative errors due to poor histogram sampling.

3.3.2 Optimal histogram bin width

Choosing the most appropriate value of the histogram bin width results from a
trade-off between resolution and computation time. A higher resolution on the one
hand guarantees good histogram flatness, and is especially crucial at low energy
levels, where the density of states displays a rugged graph. On the other hand, I
impose a fixed number of independent samples per histogram bin, so as to give the
histogram variance an acceptably low value. This means that a lowδE imposes that
more simulation steps be performed per iteration. The present approach is thus to
choose a fairly highδE, e.g., one yielding around 20 bins, during the early stages
of the iteration process in order to obtain a rough picture of the density of states,
and then to progressively reduceδE once the ground state has been reached. As
will become clear in Sec. 4.3, the ultimate value ofδE deeply affects the attain-
able precision on the computation of spinodal points, since the latter is based on
a precise location of free energy plateaus, and this indeed entails having enough
bins belonging to a given plateau. As a rule of thumb, the best compromise is then
to obtain between 100 and 300 histogram bins in the final stage, with the num-
ber of bins increasing as theσ value corresponding to the second-order regime is
approached.

3.3.3 Unequal spacing of energy levels

The unequal spacing of energy levels in long-range spin models deserves specific
attention. As witnessed in Fig. 3.2, large energy gaps separate isolated energy
levels or tiny groups thereof in the vicinity of the ground state, whereas the dis-
tribution gradually turns into a near continuum aboveE ∼ −1025. Setting a low
δE value leads in turn tononaccidentalnull entries in those bins located inside
energy gaps, wherebyβ(E) never gets updated at isolated energy levels andg0 is
always zero. Since the graph of the density of states looks indeed fairly wrinkled
near the ground state, and the dynamics there is noticeably sensitive to eventhe
smallest departure ofHmu(E) from the ideal line, one would then observe a sharp
steady peak in the lowest part of the energy histogram, which the presentrecursion
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Figure 3.2: Lowest energy levels forq = 5, σ = 0.5,N = 400, computed by sorting
energy samples from a long simulation run. Each level is drawn as a horizontal
line.

would not be able to suppress. One could trivially think of working this out by
implementing variable-width bins that would span energy gaps. This is, however,
impracticable since the distribution of energy levels is not known prior to starting
the iteration process (for this is precisely what one intends to compute with the den-
sity of states). To circumvent this limitation, I have modified the previous recursion
so that null entries are always skipped, however accidental or nonaccidental they
may be. Denoting byEa and Eb, with Ea < Eb, the centers of histogram bins
located on each side of a set of contiguous empty bins, one has

βi+1(Ea) = βi(Ea) +
ĝi

0(Ea)

Eb − Ea
ln

Ni(Eb)
Ni(Ea)

, (3.2)

whereβ(Ea) = β0{Hmu(Eb) − Hmu(Ea)} and I now impose

g0(Ea) =
N(Ea)N(Eb)

N(Ea) + N(Eb)
;

henceg0 can never be zero.
In order to avoid losing details of the shape ofHmu(E) for Ea < E < Eb that

were possibly collected during previous runs,Hmu(E) is updated through a linear
difference scheme,

δHmu(E) =
δHmu(Eb) − δHmu(Ea)

Eb − Ea
(E − Ea) + δHmu(Ea),

whereδHmu(E) = Hi+1
mu (E) − Hi

mu(E). While this has obviously no effect where
nonaccidental null entries are concerned, this favors quicker convergence during
the early runs where the inadequate shape ofHmu(E) is more likely to produce
empty bins.
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3.3.4 Convergence criterion

The iteration process stops whenever the energy histogram has become suitably flat
over the energy range of interest: between the ground state energy andEmax for the
present purpose. This property is evaluated by computing the standard deviation
of histogram entries, as well as the same quantity for the logarithm of histogram
entries restricted to nonempty bins. The latter seems to be a better indicator sinceit
is sensitive to both poorly populated bins and histogram peaks, whereas the former
increases only with rather spiky histograms. Furthermore, it is this quantity which
enters the reweighting formula for the estimation of free energies.

The degree of convergence of the algorithm is eventually estimated by comput-
ing the mean square distance betweenHi

mu(E) andHi+1
mu (E) after the ground state

has been reached. Then, a threshold value is computed for each indicatorby trial
and error, based on a couple of short runs for various lattice sizes and bin widths.

3.4 Reweighting procedure

OnceHmu(E) has been satisfactorily computed, a long production run is performed
using this effective Hamiltonian in place of the original one, and then estimates of
thermodynamic quantities of interest at inverse temperatureβ are computed using
a reweighting scheme, i.e., formally,

〈A〉β =
∑

E 〈A〉E n(E)e−βE

Z(β)
,

where〈A〉E is the microcanonical average ofA at energyE, and the partition func-
tion is given byZ =

∑

E n(E)e−βE.
The best estimate for the density of statesn(E) is provided by

n(E) ∝ N(E)eβ0Hmu(E),

whereN(E) stands for the number of bin entries at energyE computed from the
production run. In order to avoid numerical overflows, as well as to suppress bias
resulting from possibly strong variance on microcanonical averages, itis more ap-
propriate to compute〈A〉β from a sum running over samples instead of energy bins,
i.e., 〈A〉β =

∑

i Aiw(Ei)/
∑

i w(Ei), wherew(Ei) = eβ0Hmu(Ei )−βEi−K . K is then deter-
mined so as to avoid both numerator and denominator overflows. However, the
downside of this approach is a marked memory overhead for large sets of data.

Provided the histogram sampled during the production run is flat to a good
approximation, the maximum ineβ0Hmu(E)−βE is reached wheneverdHmu(E)/dE ∼
β/β0, which yields the energy value at whichK is to be computed. In addition,
since the reweighting scheme involves an exponential contribution ofHmu(E), the
resulting curveeβ0Hmu(E)−βE is strongly peaked around the maximum. Therefore,
it is clear that only histogram points in the vicinity of this maximum contribute
to 〈A〉β. In effect, the existence of two distinct maxima, or equivalently of two
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energy values for whichβ(E) has the same value, coincides with the occurrence of
a first-order phase transition2

3.4.1 Free energies

Following the same reweighting procedure, one computes “partial” (or variational)
free energy functions, i.e.,F(β,m) wherem is the order parameter, and reweighted
histograms of the energy, i.e.,Nrw(β,E). The partial partition function is straight-
forwardly derived from a sum over samples having the prescribed order parameter,

Z(β,m) =
∑

i

eβ0Hmu(Ei )−βEiδm,mi , (3.3)

which then yieldsF(β,m) = − ln Z(β,m)/β. Similarly, a reweighted histogram of
the energy is obtained from

Nrw(β,E) = N(E)eβ0Hmu(E)−βE, (3.4)

from where on a (variational) free energy function with respect to the energy may
be derived,

Fe(β,E) = − ln Nrw(β,E). (3.5)

This is illustrated in Fig. 3.3 for the five-state long-range Potts chain with 1/r1.3

interactions andL = 400 spins.

3.5 Predictor choice

I now address some issues related to the choice of an efficient predictor forE <
Emin. At small lattice sizes, the algorithm is initially fed with an effective Hamil-
tonianHmu(E) = E, and the goal is then to find an appropriate trade-off between
speeding up the convergence ofEi

min toward the ground state and avoiding algo-
rithm instability. While the former demands thatHi

mu(E) have a sufficiently high
slope belowEi

min, the latter still requires that the algorithm remain ergodic to a
suitable extent.

The present implementation relies on a first-order predictor,Hmu(E) = a+ bE,
and continuity is imposed onHmu(E) at Emin. The simplest approach is then to
choose a predictor slope so that continuity onH′mu(E) is enforced atE = Emin,
i.e., b = β(Emin)/β0. While Emin reaches the ground state rather quickly using
this predictor, the dynamics often gets locked in very low energy levels due tothe
particularly steep slope ofHmu(E) in the vicinity of the ground state. The time
needed by the iteration scheme to get over from this deadlock and obtain a flat
histogram thus becomes prohibitive. On the other hand, choosingb = 1 leads to
the smoothest yet slowest convergence, and avoids deadlock issues.An efficient

2This observation will be relied on in Sec. 4.3.4, where it will be demonstrated that the transition
matrix method [337] can produce useful information with respect to the order of phase transitions.
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Figure 3.3: Illustration of the reweighting procedure for (variational) free energies.
The graph sketches the variational free energy with respect to the energy, i.e. the
logarithm of the reweighted histogram of the energy (up to a change of sign), for
three distinct temperatures:T1 andT2 correspond to limits of metastability;Tc is
one possible definition of the (finite-size) transition temperature.
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compromise is thus to ensure a “weak” continuity atEmin, i.e., by computing the
slope of the predictor using a least-square scheme based, e.g., on the first ten per
cent of points aboveEmin.

Reusing predictors - finite size scaling At large lattice sizes, where reaching the
ground state energy can become time consuming, one has to resort to a “scaling
trick” wherebyHmu(E) is initially guessed from the density of states obtained at a
smaller lattice size. This approach was initially mentioned by Berg and Neuhaus
[31], and claimed to work perfectly within the framework of a study of the two-
dimensional ten-state Potts model withnearest-neighborinteractions, where the
energy is additive to a perfect extent. The presence of long-range interactions,
however, slightly worsens the case, especially at lowσ. The scaled density of
states is computed as follows. Let me consider, for the sake of simplicity, two
systemsΣ andΣ̄ with respective lattice sizesL = N andL̄ = 2N. The latter is split
up into two subsystemsΣ1 andΣ2 of equal sizeL. SinceHmu(E) = kT0 ln n(E),
wheren(E) stands for the density of states, one has to compute ¯n(E) for Σ̄ as a
function of n(E) for Σ. Neglecting the interaction between subsystemsΣ1 and
Σ2, and denoting byE1 the energy ofΣ1, the density of states for̄Σ just reads
n̄(E) ≃

∑

E1
n(E1)n(E − E1), which yields

β0H̄mu(E) ≃ ln
∑

E1

eβ0[Hmu(E1)+Hmu(E−E1)]

∼ ln
1
δE

∫

dE1eβ0[Hmu(E1)+Hmu(E−E1)] ,

whereδE is the energy histogram bin width. Providing thatn(E) is a monotonic
and rapidly increasing function ofE, one may use a saddle-point approximation
to evaluate the former sum. The maximum ofHmu(E1) + Hmu(E − E1) is reached
wheneverE1 = E/2. Whence

H̄mu(E) ≃ 2Hmu

(E
2

)

+ kT0 ln

√

π/|H′′mu(E/2) |
δE

(3.6)

This expression may be readily extended to lattice sizes that are any multiple
of the original size. Figure 3.4 sketches results obtained for the following model
parameters3: q = 5 andσ = 0.3,0.5, and 0.9. A series of iteration runs is first
conducted withL = 200 spins in order to obtain an estimate ofHmu(E) for this
lattice size, then this estimate was scaled using Eq. (3.6), and then used as the initial
guessH̄mu(E) for the next series of iteration runs atL = 400. Equation (3.6) yields
a very acceptable guess forσ = 0.9, and the two curves are hardly distinguishable
from each other. As illustrated in Fig. 3.5, the energy histogram becomes nearly flat
within five iterations. Forσ = 0.3 and 0.5, the agreement remains quite satisfying,
yet the initial guess falls slightly below the true estimate at low energy levels, and
the lowest-energy bins are exceedingly enhanced during the first iteration runs.

3The Hamiltonian of the long-range Potts chain is defined in Eq. 4.1.
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Chapter 3. A multicanonical algorithm for long-range spin models

More iteration runs are thus required to obtain a perfectly flat histogram asσ is
decreased, and the benefit of this approach in effect becomes negligible forσ ≤ 0.3.
Indeed, the algorithm then spends a great number of iteration steps being trapped in
low energy levels, seeking to rectify the shape of the density of states in this energy
region until convergence is obtained: starting from an initial canonical effective
Hamiltonian actually yields better performance. Since for systems with long-range
interactions, the computation time behaves at least likeL2, using this “scaling trick”
thus greatly reduces the time needed for proper convergence, at leastfor σ > 0.3;
this partially makes up for the lack of a hybrid multicanonical-cluster algorithm
dedicated to long-range models4.

3.6 Algorithm performance

In order to measure the performance of the present implementation, a dynamic
exponentz is computed, which is defined as the scaling exponent of a relevant
characteristic timeτ of the simulation, i.e.,τ ∝ Lz, whereL is the lattice size:
while at second-order transitions, the integrated autocorrelation time represents
such a relevant time (see Chap. 2), at first-order transitionstunnelingtimes through
the energy barrier (τtun) prove to be a more meaningful indicator [183].

3.6.1 Tunneling times

Tunneling times are defined as one quarter of the average number of MonteCarlo
steps per spin (MCS) needed to travel from one peak of the reweighted energy
histogram (Nrw(β,E)) to the other and back, with the temperature being set to the
transition temperature. Tunneling times are expected to grow exponentially withL
for canonical algorithms, and to scale as a power law ofL for multicanonical algo-
rithms [31] (see Sec. 2.2.3). In both cases, it appears that the chosen characteristic
time is a good indicator of how quickly the demands in CPU time should grow
with increasing lattice size: for second-order transitions, this is the time needed to
generate truly independent samples, while for first-order transitions, thistells us at
what rate the dynamics spreads out over the energy barrier and thus to what extent
samples get efficiently picked from the two phases in coexistence.

3.6.2 Autocorrelation times

The integrated autocorrelation time is computed by using the time-displaced corre-
lation function presented in Sec. 2.2.1. This function displays an exponential-like
short-time behavior∼ e−t/τ; τ is then derived from a simple integration scheme.
Since the latter function makes sense within equilibrium only,n thermalization
steps are first discarded, wheren is obtained by using the nonlinear relaxation

4Such an hybrid algorithm will be introduced in Chap. 6
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Figure 3.6: Integrated autocorrelation timeτ vs lattice sizeL for q = 7 andσ =
0.2,0.4,0.6,0.8. Dynamic exponents computed from a fit toLz arez = 1.09(1),
1.15(1), 1.38(1), 1.55(1), respectively.

function that describes the approach to equilibrium [216] and averagingover sev-
eral dry runs. An interesting point regarding multicanonical simulations is that,
since they are random walks in energy space, “thermalization” (although this term
is no longer appropriate as far as generalized ensembles algorithms are concerned)
always occurs rather rapidly; simulations based on a nearly flat histogram show
that a value of 1000 MCS is indeed appropriate on average5.

3.6.3 Results

Results forq = 7 andσ lying between 0.2 and 0.8 are shown in Fig. 3.6 for
integrated autocorrelation times, and in Fig. 3.7 for tunneling times. The slight
dispersion in the power-law fits arises from the fact that simulations at larger sizes
are conducted with a higher number of MCS between measurements in order to
reduce memory overhead. Where computing tunneling times is concerned, this
results in some tunneling events being possibly skipped and the average tunneling
time being overestimated. Both figures show, however, that a power-law behavior is
perfectly plausible. In the case of first-order transitions, the reduction insimulation
costs is thus drastic in comparison with standard canonical algorithms.

5In this regard, a much more efficient scheme based on aχ2 regression will be presented in
Chap. 7.
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3.6.4 Discussion and conclusion

For both indicators, an averagez slightly above 1.0 is obtained forσ = 0.2, yetz
increases smoothly with decreasing range of interaction. This may be accounted
for by the fact that spatial and time correlations grow as one departs fromthe mean-
field regime and approaches the short-range regime. As for tunneling times,the
prefactor turns out to be slightly higher near the mean-field regime, andz increases
at a lower rate with increasingσ than is the case for autocorrelation times.

Since there are no other numerical studies of long-range spin models based
on multicanonical algorithms6, comparison is limited to estimates obtained for
nearest-neighbor models. For the three-state Potts model, canonical simulations
using local updates led toz = 2.7 [344], while Swendsen and Wang obtained
z ∼ 0.6 using the eponymous cluster algorithm [309]. For further comparison, the
Metropolis algorithm applied to the (nearest-neighbor) Ising model ind = 2 and
d = 3 yielded a value ofzslightly above 2 [342], whereas Wolff’s cluster algorithm
led toz∼ 0.27 [348].

To conclude, and in view of these results, two remarks are in order:

• first, the dynamic exponents of the long-range Potts chain are moderate,
even at large decay parameter; it turns out, however, that prefactorsincrease
rapidly withσ; with regard to this, the fact that first-order transitions occur

6To the best of my knowledge.
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for a value ofσ belowa given threshold makes the method an appropriate
choice for the investigation of the model.

• owing to the first-order nature of the transitions, a comparison with a canon-
ical algorithm (even using Luijten-Blöte cluster algorithm, Sec. 2.3.2) would
not make sense here (except perhaps at largeσwhere the transition is weakly
first order); as can be witnessed in Fig. 3.1, the suppression of mixed-phase
configurations is quite large already forL = 400 spins, so that the method
seems, here again, an adequate choice as against a Metropolis-based algo-
rithm;

• In view of the marked reduction in dynamic exponents brought about by
cluster methods, one may ponder on the benefit of these methods in the con-
text of multicanonical simulations. As mentioned in this chapter, however,
combining both schemes is not straightforward: this will be the purpose of
the second part of this thesis. In this regard, and in anticipation of Chap. 7,
it is perhaps worthy of mention that the breathing cluster method developed
in the second part of this thesis willindeedlead to a clear reduction of both
dynamic exponents and prefactors for long-range models.
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Chapter 4

From mean-field to thetricritical
line

As was discussed in Chap 2, one of the main problems ofcanonical1 Monte Carlo
simulations of phase transitions is the need to perform a large number of sim-
ulations at distinct temperatures in order to obtainreliable reweighted averages
of thermodynamic data over a sufficiently large range of temperature. A second
problem surfaces in the context of first-order phase transitions, where supercritical
slowing down leads to very repetitive dynamics and unreliable statistics. The mul-
ticanonical method presented in the previous chapter represents an efficient way to
tackle both problems “at one whack”.

In the present chapter, I will show how one can take advantage of this method
to investigate the phase diagram of a Potts chain governed by power-law decaying
interactions. The investigations will center around:

• the strong first-order regime, i.e., at low decay parameter,

• the tricritical2 line separating the first- and second-order regimes.

The chapter begins with a review of the prominent features of the nearest-
neighbor model, as well as some important mean-field results. Previous investiga-
tions of the phase diagram of the long-range model are described in Sec.4.1.2 and
4.1.3. Results from previous Monte Carlo methods are reviewed in Sec. 4.2.3. The
critical behavior of the model in the second-order regime is examined in the next
chapter.

1In the canonical ensemble.
2The term “tricritical” might have something of a misnomer, since in the Ginzgurg-Landau func-

tional of the model, the decay parameterσ is at the same time a conjugated — or non-ordering —
field andan exponent of the wave-vectork (see Sec. 5.1.1). I will stick to this terminology onprag-
maticgrounds, however, owing to the fact that (i) it evokes the picture — usually associated with this
term — of a point separating a first- and a second-order line of transitions, and (ii) there are other
“boundaries” in the phase diagram of the model investigated here, and the present terminology might
help reducing confusion.

87



Chapter 4. From mean-field to thetricritical line

In Sec. 4.2, it will be demonstrated that, in spite of the modest lattice sizes
investigated, the multicanonical method yields very precise estimates of transition
temperatures, in far better agreement with mean-field predictions wheneverσ→ 0
than in previous Monte Carlo studies (Sec. 4.2.3). This pertains to the superiority
of the method at first-order transitions, yet also to the implementation of infinite-
image periodic boundary conditions (Sec. 4.2.1). Indicators based on free energies
will also prove to play an important role in a reliable estimation of transition tem-
peratures.

As regards the second point, i.e., the location of the tricritical line, the weak-
ening of the first-order transition as the line is approached presents a particular
challenge. Several other approaches are reviewed (Sec. 4.3), mostof them incon-
clusive in this respect. With this in mind, a novel method is introduced for the
detection of the order of phase transitions, which relies on the location of spinodal
points. The multicanonical method makes it possible to reweight over a large range
of temperatures, and to reliably determine the position of metastable states: its ver-
satility in this respect will thus prove essential here. I will illustrate the method for
q = 3,5,7,9, and prove that the position of the tricritical line can be determined to
an unprecedented two-digit precision.

Finally, the controversial nature of the phase transition on theσ = 1 line is
considered in Sec. 4.3.6. I will point out that the asymptotic behavior of the tricrit-
ical line is crucial in this respect, since it might confirm or rule out one or more
scenarios suggested in recent time. By carrying out a careful finite-size scaling
analysis, a new, unusual finite-size effect is found out, with a first-order transition
gradually waning into a second-order one in the thermodynamic limit (Sec. 4.3.7).
This behavior, I claim, clearly washes out some previous claims, and lends support
to one of the suggested scenarios on this line:σ = 1 is a line of topological phase
transitions [72]. A discussion of this atypical finite-size effect is provided: it is
suggested that several causes enter this effect, including — but not restricted to —
boundaries effect.

4.1 Model, existing results and unsettled controversies

Throughout this chapter and the next chapter, I will consider a one-dimensional
ferromagnetic Potts model incorporating power-law decaying interactions.This
model is derived from a generalizedq-state Potts Hamiltonian, i.e.,

H = −1
2

∑

i, j

Ji jδσi ,σ j −
∑

i

hiδσi ,σ0, (4.1)

where the Potts spinσi at sitei can take on the values 1, . . . ,q, and the first sum
runs over all pairs of sites.hi is an external aligning field favoring condensation
in stateσ0, yet numerical investigations in what follows are conducted with no
external magnetic field. Incorporation of power-law interactions is carried out by
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setting

Ji j = J(|i − j|) = 1
|i − j|D+σ

, (4.2)

whereD = 1 throughout this work except when otherwise specified, andσ is an
adjustable parameter that — broadly speaking — “alters” the interaction range. For
σ ≤ 0, the interaction is no longer integrable; this corresponds to rather different
— though interesting — physics3, and I shall not consider this case in the present
work. Rather, I will concentrate on the so-called “integrable” regime4, where the
phase diagram of the model exhibits not less appealing behavior, including first-
and second- order transitions, Kosterlitz-Thouless like transitions, and intriguing
crossover effects.

It is perhaps interesting to recall that, asσ falls off to −1, this model tends5

to the exact mean-field regime where all interactions have equal strength, so that
onemight expect to recover, for a sufficiently low value ofσ, the features of the
mean-field model6. Conversely, the limiting caseσ → ∞ corresponds to a pure
short-range model with nearest-neighbor interactions, and the absenceof phase
transition at finite temperature forσ > 1 has been rigorously proven [107, 108,
300, 124]. The issue related to the crossover between the long-range and the short-
range regime has been the matter of long-running debate, and is reexaminedin
Chap. 5.

The critical behavior of this model is studied by way of the following order
parameter,

m=
qmaxn ρn − 1

q− 1
, (4.3)

(hereafter termed “magnetization”) wheren = 1, . . . ,q, andρn is the density of
Potts spins in phasen. The last quantity varies between 1/q at infinite temperature
and 1 in the ground state, so thatm= 1 in the ordered phase, and 0 otherwise.

The Potts model can be mapped onto anOq−1-like vector model (though with
stronger constraints on the degrees of freedom). This offers the benefit of trans-
forming the Kronecker delta symbol into a sometimes more tractable dot product,
e.g., for field-theoretic renormalization purpose, or as will be witnessed in Chap. 7,
whenever the algorithm efficiency requests so (see [279, 333] for two possible
formulations, and also Sec. 7.3.1 where I introduce a slightly different mapping,
better suited for numerical evaluation). Another useful representation isthat of
Mittag and Stephen [247], where the set of spin states 1. . .q is mapped onto the
set 1, ω, ω2, . . . , ωq−1, whereω = e2iπ/q is aqth root of unity.

3See references given in Chap. 1 for connections with Tsallis’s thermodynamics
4See a note on a semantic row in this respect in Sec. 1.1.
5After proper normalization of the coupling constant so that the thermodynamic limit is not ill-

defined
6In this regard, it has been suggested in a recent paper that, if mean-field theory predicts a first-

order transition for any long-range interaction that satisfies the so-calledreflection-positivity con-
dition, then — as a sufficient and necessary condition — there is a first-order transition for some
sufficiently spread out interactions [42].
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Nearest-neighbor model The nearest-neighbor Potts has been extensively stud-
ied since its “discovery” by Domb and Potts in 1952 (and independently by Kihara
in 1954). Its critical properties and its applications to microscopic modeling in
physics were extensively reviewed in [350]. For instance, the limitq = 0 and
q = 1 describe the resistor-network problem and percolation, respectively. Non-
integer values are also of interest in the modeling of dilute spin glasses (q = 1/2) or
branched polymers (0≤ q ≤ 1). Using duality arguments, Baxter obtained the crit-
ical temperature of the two-dimensional model,Tc = 1/ ln(1+

√
q),q > 2 [17]. The

critical temperature is not known exactly in three dimensions. The model is also
expected to undergo a first-order transition for sufficiently high values ofq. For
instance, it was proven that this is the case forq ≥ 4 in two dimensions,q > 3 in
three dimensions (not known exactly), andq ≥ 2 in four dimensions, [4, 17, 350],
so that the threshold valueqc above which the transition changes from second- to
first-order is expected to decrease continuously all the way up toD→ ∞.

4.1.1 Mean-field theory

Mean-field theory for the Potts model was initially formulated by Kihara et al.
using Bragg-Williams theory (see, e.g., [350]). The most prominent resultof mean-
field theory is that the model undergoes a first-order transition forq > 2.

Mean-field behavior can also be obtained quite straightforwardly by usingthe
variational mean-field method, which relies on the minimization of the free energy
expressed as a functional of a trial density matrix, whereby the Boltzmann density
matrix is recovered at the minimum. The variational method is very general7, and
its mean-field formulation simply consists in factorizing the trial density matrix
in terms of independent one-site density matrices, as in standard molecular-field
theory. This is roughly equivalent to neglecting fluctuations to second-order in
Bragg-William’s theory, although a treatment of the Potts model withq > 2 is
somewhat less tractable with the latter approach8.

A detailed calculation is presented in Appendix A. I will here only review the
main results. In particular, I will focus on the location of spinodal points: these
form the core of a novel method to detect the order of phase transitions, which
I introduce in Sec 4.3. In the presence of power-law decaying interactions, the
mean-field free energy per spin is expressed with respect to the order parameter
(up to an additive constant) as

q f(m)
q− 1

= − hm− ζ(1+ σ)m2 + kT{(1−m) ln(1−m)

+
1+m(q− 1)

q− 1
ln[1 +m(q− 1)]}, (4.4)

whereζ(1 + σ) is the Riemann zeta function andh an external aligning field (see
Eq. A.2). The graph off (m) is depicted in Fig. 4.1 forq = 9 andσ = 0.5. Equilib-

7See, for instance, [76] for an introduction to the method.
8This requires mapping the model to anOq−1 model.

90



4.1. Model, existing results and unsettled controversies

rium values of the magnetization are located at minima of the free energy. At the
transition temperatureTc, two minima are clearly visible, which in the thermody-
namic limit signals a first-order transition associated with a jump in the magneti-
zation and a latent heat. This is always true wheneverq > 2, where the transition
temperature is given by

kTc = ζ(1+ σ)
q− 2

(q− 1) ln(q− 1)
. (4.5)

For q = 2 (the Ising model), a second-order transition occurs (i.e., with critical
fluctuations induced byF′′(0) = 0 at the transition9), and

kTc = ζ(1+ σ). (4.6)

which is also recovered by taking the limitq→ 2 in Eq. (4.5).
The zeta function expands as 1/σ aroundσ = 0, thus transition temperatures

are expected to vary as 1/σ in the vicinity of the mean-field regime. Conversely,
limσ→∞ ζ(1+σ) = 1 > 0, which confirms — as expected — that mean-field theory
is a very poor approximation in the short-range regime.

Metastable states are defined from the condition that either one of the two min-
ima disappears, i.e., both the first and the second derivative of the free energy must
be zero (this is indicated with horizontal arrows in Fig. 4.1). This yields

kT1 =
2ζ(1+ σ)

q

corresponding to the extremum atm= 0 becoming unstable. The temperaturekT2

at which the second extremum vanishes is unfortunately not available in closed
form (see Appendix A). Thus there are two temperatures of metastabilityT1 and
T2 on each side ofTc, that physically correspond to the limit of stability of each
subphase. These are depicted in Fig. 4.2 for 2≤ q ≤ 10. Inside the interval
[T1,T2], there exists two values of the order parameter corresponding to a null cur-
vature of the free energy. This is known to induce a long-range (i.e., low wave
number) instability that can trigger a phase transition through the spinodal decom-
position mechanism [141]. In the following, I may denoteT1 andT2 asspinodal
temperatures, and the corresponding values for the order parameter at the inflexion
point asspinodal points. Alternatively, one may also express the free energy as a
function of the mean-field energyE = −ζ(1+ σ)m2 and obtain the same spinodal
temperatures from the joint conditionf ′(E) = f ′′(E) = 0. Obviously, the two
expressions off do not have the same shape.

An important point that will be invoked later in this chapter is that the width of
the spinodal curveT2 − T1 shrinks to zero asq→ 2. This indeed accounts for the
second-order nature of the transition atq = 2, since in this limit the two minima
merge into a single large minimum responsible for the well-known divergence of
fluctuations at a continuous transition.

9For the same reason, spurious critical behavior may also occur at weakly first-order transitions
in the vicinity of a local minimum of the free energy; this may show up in renormalization group
scenarios.
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corresponding to the two minima having the same magnitude.∆F is the surface
tension (thereducedsurface tension is usually defined from∆F/LD−1 for nearest-
neighbor models).
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Figure 4.2: Spinodal temperaturesT1 andT2, along with the transition temperature
kTc, as a function ofq in the mean-field approximation. Shown are quantities
normalized with respect toζ(1+ σ).

4.1.2 Finite range scaling and cluster mean-field approaches

Apart from Monte Carlo simulations (which are reviewed in Sec. 4.2.3 below),
long-range chains were studied by means of two distinct numerical approaches: fi-
nite range scaling (FRS) combined with an extension of the transfer matrix method
to long-range interactions [130], and the cluster-mean field method [251].Both
methods mainly targeted the estimation of critical temperatures, although the for-
mer also addressed possible crossover issues by relying on the finite-range scaling
behavior of the correlation length exponent. However, none of these methods con-
cerned itself with the order of the transition. I hereafter briefly review themin
some detail; Section 4.2.3 contains a comparison of the numerical results that were
obtained with these methods [130, 251] with the estimates I obtain with the mul-
ticanonical method; Section 5.3 in the next chapter deals more specifically with
crossover issues.

Finite range scaling combined with transfer matrices

This method was initially introduced by Glumac and Uzelac [323, 129] in the con-
text of Ising chains with power-law decaying interactions, and extended tothe Potts
model in an ensuing study [130]. More recently, it was applied to theS ≥ 1/2 spin
chain [16] and to a two-sited (i.e., AB model) Ising chain [15]. The method targets
the estimation of critical exponents, transition temperatures and correlation lengths
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Figure 4.3: Transfer matrix method for finite-range interactions: the zig-zag
scheme brings the problem back to a conventional transfer matrix problem, with
each column interacting with its nearest-neighbor only.

in the critical regime; yet it has remained rather inconclusive where distinguishing
between first- and second-order transitions is concerned.

The method comprises two essential ingredients. First, it generalizes to long-
range chains the transfer matrix method in its variable strip-width flavor, e.g.,
the (numerical) approach used for two-dimensional Potts models with nearest-
neighbor interactions. However, the technique cannot be used as is with infinite
range interactions, as will be witnessed below, and prerequisite is to truncate the
power-law decaying interaction below some finite cut-off M. It was suggested
[129] that response functions should behave asχM(t) ∼ χ∞(t) f (M/ξ∞), whereξ∞
is the infinite cut-off correlation length, andf (u) denotes a dimensionless finite-
range scaling function that prevents critical divergences at finite cut-off10. Sev-
eral numerical calculations are performed at increasingly large cut-offs, and (this
the second ingredient) a finite-range scaling scheme is carried out with respect to
M: for two distinct cut-offs M andM′, the correlation length scales according to
ξM′(t) = (M′/M)ξM[(M′/M)1/νt]. Critical exponents are thus estimated from an
extrapolation to the infinite cut-off limit.

In order to transform the finite-range problem into a nearest-neighbor-like prob-
lem that may become tractable with conventional transfer matrix methods, spins
are grouped by blocks ofM subsequent spins, where each block represents a ma-
trix column; the chain is treated in the thermodynamic limit, and the strip count
increases with the interaction cut-off. Interactions between spins are handled in
a zig-zag fashion, as illustrated in Fig. 4.3 forM = 4. This makes it possible to
restrict the interactions to neighboring columns only, so that the partition function

10It was claimed by the authors that this scaling behavior should hold also in themean-field regime,
contrary to what occurs for finite-size scaling.
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of the system is simply given by the trace of the nth power of the transfer matrix
overqM possible states of the column vectors. The correlation length is obtained
in the standard way from the two largest eigenvaluesλ1 andλ2 of the transfer ma-
trix, i.e., ξM = M/ ln(λ1/λ2), and the correlation length exponent follows from a
finite-range scaling extrapolation based on 1/ν = ln[ξ′M′/ξ

′
M]/ ln(M′/M). Here,ξ′

refers to the derivative of the correlation length with respect to the criticaltemper-
ature, estimated at the critical point. Interestingly enough, it was proven that the
long-range nature of interactions allows one to decompose the transfer matrix into
much simpler matrices, so that the complexity of the calculation could be drasti-
cally reduced. The method was also successfully extended to theq-state Potts with
a non-integerq value [130], by relying on a bond representation of this model, and
tracing over bond configurations instead of spin configurations.

In [130], Glumac and Uzelac applied this method to theq-state Potts chain
with interactions decaying as 1/r1+σ, with σ ranging from 0.1 to 1.0 andq chosen
between 1 and 64 for the integer case, and 1/16 and 1/2 for the non-integer case.
Estimates of critical temperatures are claimed to support a precision of one per
cent, which is clearly less accurate than the coherent anomaly method [251]. Since
the transfer matrix is aqM × qM matrix, however, extrapolations are in practice
restricted to modest cut-off values, i.e., around 20 forq not too large. It should
be mentioned, however, that the results obtained recently by Barati and Ramazani
[16] for theS ≥ 1/2 Ising chain are somewhat more accurate, which suggests that
the choice of a different extrapolation procedure might help in this respect; yet the
last approach also relied on an extrapolation based on the exactly known value of
the correlation length exponent in the classical regime, and this was not the case in
[130].

In spite of the limitations of the method in terms of transfer matrix sizes, the
authors in [130] were able to shed partial light on some controversies: byrelying
on the non-monotonic behavior of the critical temperature with respect toσ, and
observing that the correlation length exponentν increases asσ → 1, they argued
that the change of regime from short-range to long-range behavior (more on this
in Sec. 5.3) should take place atσ = 1.0, but overall failed to (i) reproduce the
essential singularity atσ = 1.0 predicted in [208, 72] (see Sec. 4.3.6 below), and
(ii) bring clear evidence as for the order of the transition, with a notable inconsis-
tency between the behavior ofν at largeq (suggesting a change of order) and the
absence of crossing of the largest and the third largest eigenvalues ofthe transfer
matrix [169].

Cluster mean-field

A second approach, the so-calledcluster mean-fieldmethod was developed by
Monroe and applied to the Ising andq-state Potts chains [250, 251]. This method is
a close relative of the coherent anomaly method (CAM) proposed by Suzuki [305]
in the mid 80’s. It is also somewhat reminiscent of recursive methods basedon
Bethe lattice approximations [248, 249], and might be traced back to Kadanoff’s
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decimation scheme in its spirit.
In this approach, interactions between spins in the same cluster are handledex-

actly, while interactions between a given spin and spins belonging to other clusters
are treated in a mean-field manner. The resultingn-site Hamiltonian (wheren is the
cluster size) involves a mean field term, which can be obtained self-consistently. By
construction, the (improved) mean-field nature of the approximation results inthe
method yielding upper bounds of critical couplings. By carrying out several cal-
culations at increasingly large clusters (i.e., containing between 1 and 9 sites), and
making use of an extrapolation scheme (the Vanden-Broeck-Schwartz transforma-
tions, which is generalization of the Padé approximant method), Monroe was able
to obtain very precise estimates of transition temperatures supporting a four-digit
precision, at least for interaction decaying slowly enough with the interparticle dis-
tance (a feature which is indeed consistent with the mean-field approximation that
underlies the method). It turns out that, forq > 2, these are the most precise es-
timates to date along with those I will obtain with the breathing cluster method
(see Sec. 7.6 for a deepened comparison). In the Ising case, cluster mean-field
and Monte Carlo calculations performed by Luijten and Blöte [231] yield similarly
accurate results.

4.1.3 Results from real-space renormalization

Several results for the Ising and Potts chains with power-law decaying interactions
were obtained by means of a real-space renormalization group approach[63, 64].
This methods is based on three ingredients: (i) Kadanoff’s blocking method; (ii) a
non-linear transform using a (modified) majority rule, the so-calledequally prob-
able tie-breaking, whereby subgroups of similar spins representing the majority in
a given block are equally weighted in case of conflict; (iii) the cumulant expansion
method of Niemeijer and van Leeuwen11, whereby the Hamiltonian is first split up
into a termH0 involving intra-block interactions and a termV corresponding to the
interactions between spins in distinct blocks, and then the renormalized Hamilto-
nian is obtained from a cumulant expansion of the average (i.e., intra-blockpartial
traces) ofe−V with respect to the HamiltonianH0; in [64], an expansion to first
order is considered.

In the context of long-range interactions, the generalization of Kadanoff’s con-
struct introduced in [63, 64] consists in building blocks of spins of sizeb, and
extrapolating the results to the limitb → ∞. Since the terms in the cumulant ex-
pansion behave as 1/b1+σ, the authors expect this extrapolation to give good results
in the long-range case.

From their recurrence equation (Eq. (17) in [64]), the authors obtain,for all q ≥
2 and in the limitb → ∞, a trivial unstable fixed-point at infinite temperature for
σ→ 0 and at zero temperature forσ > 1 (recovering the exact result in [108]), and
a non-trivial unstable fixed-point at finite temperature between these two limiting

11A very explanatory introduction can be found in [21] in the context of the renormalization of the
Ising model on the triangular lattice.
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values. From the analysis of the change of curvature ofTc(σ), they assess a non-
zero transition temperatureTc = π

2/12 on the line of inverse square interactions,
and suggest that this temperature is independent of the number of states ofthe
model (thus yielding a discontinuity inTc that should be independent ofq). While
the authors claim that this assumption is supported by previous works in the Ising
case, it contradicts the results obtained in [130], whereby 1/Tc increases withq.
Along the same lines, the authors obtain a correlation length exponentν−1 ∼ 2(1−
σ) asσ → 1 for all q ≥ 2, a result which reproduces the expected divergence on
the line of inverse square interactions, yet contrasts with the expression obtained by
Kosterlitz using a momentum-shell renormalization method [208]. It is mentioned
by the authors, however, that their extrapolation procedureb → ∞ should not be
expected to yield reliable results nearσ ∼ 1.

In the regionσ → 0, i.e., when the model approaches the regime of non-
integrable interactions, the authors report (under the assumption of a continuous
transition) the following scaling behavior for the critical temperature,Tc ∝ 1/σ,
and claim that this behavior underpins Tsallis’s conjecture [322] proposed in the
context of non-extensive thermodynamic. As will witnessed later in this chapter
(Sec. 4.2), the estimates I obtained with a multicanonical approach lend clear sup-
port to this conjecture, yetirrespectiveof the order of the transition.

Incidentally, and as the authors hasten to recall, these results are based on the
assumption of a continuous phase transition. Yet in the largeq limit, mean-field
theory was proven to become exact [276], and a first-order transition should there-
fore be expected for either a sufficiently large value ofq or a small enough power-
law exponentσ. This behavior is indeed consistent with the observation of a first-
order transition forσ ≤ 0.6 in the three-state model, that was reported in a later
numerical work based on standard Monte Carlo simulations [131, 132]. Itis also
consistent with the phase diagram I obtained for this model using a multicanonical
method (see Sec. 4.3.5). It is worth stressing here that real-space renormalization
methods based on such majority rules hardly enable one to distinguish between
first- and second-order transition, and a generalization to a lattice-gas model in-
corporating vacancies [263] should indeed be used for this purpose.To the best of
my knowledge, such a generalization has never been performed in the context of
long-range spin models.

4.2 Estimates of transition temperatures from multicanon-
ical simulations

In this section, I present an extensive investigation of the transition temperatures of
the long-range Potts chain. Multicanonical simulations are performed for a large
range of decay parameters and values ofq, using the algorithm presented in the
previous chapter. To set the stage, I will briefly discuss the influence ofperiodic
boundary conditions in the presence of a long-range interaction. I will then de-
scribe the method employed for the estimation of transition temperatures. A last
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paragraph provides a discussion regarding the comparison of my resultswith mean-
field predictions and other methods.

4.2.1 Periodic boundary conditions

In numerical simulations, systems offinite geometry are simulated, and it is vital
that efficient boundary conditions be implemented, since these generally influence
the rate at which thermodynamic quantities reach the infinite-size limit as size is
increased. Periodic boundary conditions are the most widespread choice, inas-
much as the (initially broken) translational invariance of the system is restored,
and convergence toward the thermodynamic limit is improved. The general pre-
scription for spin models with nearest-neighbor ferromagnetic interactions12 is to
usefirst-imageconditions, i.e., the lattice is simply wrapped around itself (from a
topological viewpoint, this yields aD-dimensional torus), so that each spin feels
the same local environment, irrespective of its position on the lattice.

In the presence of long-range interactions, the choice is no longer unique:

• one may impose some cut-off on the interaction range, so that first-image
conditions may be used as in any model with a finite-range interaction; in a
previous Monte Carlo study of theq-state Potts chain [19], for instance, the
cut-off was set toL/2, whereL is the size of the chain;

• or one may use so-calledinfinite-imageboundary conditions, whereby the
lattice is wrapped aninfinite number of time around itself, and each spin
interacts in effect with an infinite number of replicas of the original lattice.
For a one-dimensional lattice of sizeL, this consists in connecting the two
end-points of the chain in a ring-like fashion, and computing the interaction
between two given spins at a relative positionr by walking along the ring an
infinite number of time and adding up every interaction at distancer + nL,
n ∈ Z.

A comparative study of these two choices in terms of finite-size effects was
carried out in [67]. For models exhibiting a phase transition at finite tempera-
ture, it was established that infinite-image conditions are much more efficient than
single-image conditions in wiping out finite-size effects, especially at medium lat-
tice sizes. In any case, using the former conditions is no more costly in terms of
computational resource than first-image conditions: the long-range coupling needs
just be “renormalized” in order to take all possible interactions into account,and
from the viewpoint of numerical implementation, only interactions between spins
of theoriginal lattice must then be considered.

For a one-dimensional lattice and power-law decaying interactions, the “bare”
coupling constantJ(r) = 1/r1+σ has to be replaced bỹJ(r) =

∑+∞
n=−∞ J(r +nL). For

12And generally, any finite-range interaction whose support is smaller thanthe lattice linear size.
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the purpose of numerical evaluation, this sum may be reexpressed as

J̃(r) =
1

r1+σ
+

1
L1+σ

[

ζ
(

1+ σ,1+
r
L

)

+ ζ
(

1+ σ,1− r
L

)]

, (4.7)

whereζ(s, α) denotes the generalized Hurwitz-Riemann zeta function13. The self-
energy corresponding to the interaction of each spin with itself in each replica is
obviously omitted since it is just an additive constant to the total energy.

Slightly distinct conditions were used in [200] in the context of a long-range
spin glass, whereby instead of considering the topological distance alongthe chain,
the authors made use of the euclidian distance: for the one-dimensional chain,
this amounts to setting the distancer entering the coupling constantJ(r) to r =
sinπ|i − j|/L where |i − j| is the distancealong the chain. In this case, infinite-
image conditions just make no sense.

4.2.2 Methodology

The multicanonical simulations presented hereafter were performed forq ∈ [3,9],
using for each value ofq an appropriate set ofσ parameters between 0.3 and 0.9,
so that a variety of transition strengths could be observed. As will be observed
in Sec. 4.3.5, though, the shape of the line separating the first- and the second-
order regimes is such that the second-order regime is reduced to a tiny portion
of the phase diagram (except perhaps atq = 3). This means that most values
of σ investigated here correspond to first-order transition temperatures. Critical
exponents in the second-order regime will be investigated in the next chapter in the
context of the long-range to short-range crossover.

Once the density of states has been determined using the iteration process de-
scribed in the previous chapter, a production run is performed for eachlattice size
betweenL = 50 andL = 400. The number of MC sweeps needed for each pro-
duction run is computed so as to yield approximately 5× 104 truly independent
samples. Owing to the combination of rapidly soaring autocorrelation times — es-
pecially at largeσ— and a computer load increasing with the square of the lattice
size, I had to refrain from investigating larger lattice sizes, i.e., aboveL ∼ 400. As
regards the estimation of transition temperatures, this entails extrapolating infinite-
size temperatures from linear sizes that all lie within one decade, e.g. approxi-
mately [40− 400], and in this respect it was rather good surprise that the preci-
sion of the estimates could attain three digits. As is discussed in the next section
(Sec. 4.3.5), this limitation creates a serious hindrance, however, when discrimi-
nating between first- and second- order transition is concerned, and there it will
prove mandatory to meet the challenge from a different angle.

13This function is available from many software packages, e.g., the GNU Scientific Library (GSL)
(http://www.gnu.org/software/gsl/). Recently, a port to the Java language was also made
available (http://sourceforge.net/projects/gsl-java).
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Finite size scaling at first-order transitions

At second-order transitions in finite geometry, the correlation length is bounded
by the finite lattice size, so that response functions which diverge in the thermo-
dynamic limit, actually experience a finite maximum: this maximum scales as a
power law of the lattice size, with an exponent depending solely on the critical
exponents of the model (see Sec. 5.2). At first-order transition, a similar behavior
takes place, although it is now thedimensionof the lattice which plays the role of
a critical exponent. In finite geometry, the discontinuity, e.g., in the energy (con-
nected to the latent heat), is rounded proportionally to the inverse lattice size,so
that peaks of response functions are subject to finite-size scaling in muchthe same
way as in continuous transitions.

Several theories of finite-size scaling at discontinuous transitions have been
proposed (see, for instance, the seminal works of Fisher [117, 118]based on renor-
malization group arguments). In the following, I will mostly rely on thedouble-
gaussiantheory of finite-size scaling — the most useful from the viewpoint of
numerical simulations — initially introduced by Binder and Landau [38] in the
context of the field-driven transition in the Ising model belowTc, and extended
to thermally-driven transition [79]. I will also briefly review the results yielded
by the more rigorous treatment provided later by Borgs and Kotecký [48] for the
nearest-neighbor model.

The double-gaussian theory is purely phenomenological, very general,and ap-
plies a priori to any first-order transition exhibited by a model withshort-range
interactions (the case of long-range interactions will be considered later on). At a
first-order transition, the free energy displays two minima of equal magnitudecor-
responding to the ordered and the disordered phases, respectively.In the vicinity
of each minimum, the phenomenological theory of Challa and Landau consists in
approximating the free energy by its Taylor expansion limited to the second or-
der; as a result, the histogram of the energy (or the magnetization in the caseof
a field-driven transition [38]) is approximated by the sum of two gaussian curves.
Such an approximation is useful for deriving finite-size scaling behaviors for ther-
modynamic quantities related to the energy, e.g., the specific heat or the Binder
cumulant; it fails, however, to describe the scaling behavior of the surface tension,
since a two-gaussian scheme alone is clearly not suitable to describe mixed-phase
configurations.

For a temperature-driven transition, as is the case for theq-state Potts model,
the gaussian curves are centered atEo+Co(T−Tc) andEd+Cd(T−Tc) respectively,
whereTc denotes the temperature atequal weights[48, 49], i.e., when the area
under both gaussian curves are the same (this amounts to imposing that the mean
energy be the arithmetic mean of the energy of the ordered and disorderedphases).
Co andCd refer to the specific heat (in the thermodynamic limit) of the ordered and
disordered phases, and the relations given above for the position of thecurve imply
that they are assumed constant in the vicinity of the transition. The width of each
gaussian curve grows with the square root of the corresponding specific heat (per
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Figure 4.4: Sketchy illustration of the two-gaussian phenomenological theory of
finite-size scaling at a first-order transition. The dashed curve represents thetrue
distribution.

spin). Finally,Eo andEd refer to the location of the peaks in the thermodynamic
limit, so thatEd − Eo is the latent heat associated with the transition. A sketchy
illustration is given in Fig. 4.4.

In Fig. 4.5, it is illustrated how the parameters may be retrieved through a
non-linear least-square fit to a reweighted histogram of the energy. Thisis hardly
a very convenient way to estimate specific heats, however, as non-linearfits are
notoriously difficult to cope with, especially when one wishes to automate the pro-
cess through a piece of software. As a result, reweighted averages ofthe second
moment of the energy usually yield far more reliable results; see, for instance,
Fig. 4.9, where the mean energy and the specific heat are estimated separately for
each subphase by reweighting over a subset of samples whose energybelong to the
appropriate subphase. Additionally, it is clear from the figure that, as expected, the
surface tension is not well described by the theory.

Still and all, the theory provides essentially what we are seeking, i.e., scaling
laws for the statistical moments of the energy and the associated finite-size transi-
tion temperatures. By computing these moments with respect to the two-gaussian
approximation of the distribution of the energy, one obtains that all quantities scale
with the volume of the system [79], i.e., for instance,

Tc(L) ∼ Tc(∞) + aL−D,

〈E〉 (L) ∼ Ed − Eo

2
+ b(T − Tc(L))LD,

and

Cmax
v (L) ∼ Co +Cd

2
+ cLD
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Figure 4.5: Dotted cuve: reweighted histogram of the energy for the three-state
Potts model with 1/r1.2 interactions (L = 1000), at a temperature corresponding
to the equal-weights condition (kT = 3.9599(2)). The superimposed solid curves
indicate a non-linear least-square fit to the two-gaussian theory.

where the coefficientsa, b andc depend, among other things, on the latent heat,
so that this quantity may as well be estimated from the finite-size dependence of
the three quantities above14. The last relation shows that, in the limitL → ∞, one
hasCv/LD

, 0 in contrast with a second-order transition; this criterion was used in
[131] as a possible discriminator for the order of the transition.

For theq-state Potts model with nearest-neighbor interactions, Borgs and Kotecký
developed a more rigorous theory of these finite-size effects [49], by expressing
the partition function of the model (in a periodic box) in terms of contours through
a Fortuin-Kastelein random-cluster mapping15. The derivation is valid only for
large q, but the authors suggest that it should actually hold for the whole first-
order regime (this was confirmed numerically in [191] for the three-dimensional
model). It is not the goal of the present work to dwell upon the technical details
involved in the derivation, and I will simply consider the most prominent results:
there exist estimators for the (pseudo-)transition temperature which deviatefrom
the thermodynamic limit by terms falling off exponentiallywith the lattice size; in
particular, these include (i) the crossing point of the mean energy density vs the
temperature for two distinct lattice sizes, and (ii) the crossing point of the ratios
Wo/Wd at distinct sizes, whereWo (Wd) designates the area under the peak of the

14Another way to compute the latent heat that relies on Borgs and Kotecký theory (see below) was
proposed by Janke in [177].

15See Sec. 2.3.3.
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ordered (disordered) phase, andWo/Wd → q in the thermodynamic limit16. These
two criteria require simulating the lattice at two distinct sizes. On the contrary, the
so-callednumber-of-phasescriterion, i.e.,Wo/Wd = q, directly yields an estimate
of the transition temperature from a single lattice size, yet its validity is, as it turns
out, restricted to the short-range flavor of theq-state Potts model. Interestingly, as
far as the long-range model is concerned, it was suggested by Krech and Luijten
[213] that an effective number of statesqe f f may be defined from the asymptotic
behavior of the ratioWo/Wd asL→ ∞, with qe f f ∼ 1.67 reported forq = 3 (since,
however,qe f f is initially unknown, the criterion cannot be used to locateTc(∞)).

An extension of the two previous theories to long-range interactions is not triv-
ial. As regards the long-range Potts chain in its first-order regime, the recipe sug-
gested thus far [131] is to consider that the volume term should be simply set to
L (i.e., with finite-size scaling involving corrections in 1/L), yet (in the same ar-
ticle) it is also claimed that the interface tension shouldalso scale proportional
to L. My approach in the following will be to consider two possible schemes:
1/L correctionsexplicitly allowing for second-order terms, and 1/Lx corrections
with an unknown exponent, yetwithoutcorrection terms. As will be discussed in
Chap. 7, however, the second definition, along with aσ-dependent exponent, is by
far the most reliable (and I will also argue that is is the most physically pertinent
definition).

Estimators

In order to estimate the transition temperatures, I relied on (i) free energies,and (ii)
moments of the magnetization. The specific heat exhibits a less pronounced peak,
and is usually less suited for this purpose. The (variational) free energyof the
magnetization, hereunder denoted asFm(kT,m), is computed from the reweighting
equation, Eq. (3.3), which amounts to computing the distribution of the first (mi-
crocanonical) moment of the order parameter, and reweighting at temperature T.
As regards the free energy associated with the energy distribution, the scheme is
even simpler, since this is just (minus) the logarithm of the reweighted histogramof
the energy, i.e.,Fe(kT,E) = − ln Nrw(kT,E). Here and in the following,Nrw(kT,E)
designates the reweighted histogram of the energy and is given by

Nrw(kT,E) = N(E)eS(E)−βE,

whereeS(E) is the estimated density of states (i.e.e−S(E) is the multicanonical
weight). N(E) denotes theraw (expectedly flat) histogram of the energy accumu-
lated during the production run, yet filled withindependentsamples taken every
two tunneling times. In practice, this means that the total number of MC sweeps
may reach 107, indeed 108 in some cases (especially when close toσ = 1.0). It
is important to note that both free energy functions play the same role, i.e., that

16In [47], it is also suggested to use as aphase separatorthe mean energy of the system at the
temperature where the specific heat is maximum.
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of a thermodynamic potential, although with respect to a different parameter. As
far as estimating transition temperatures is concerned, choosing one or the other is
really a matter of attainable precision.Fm turned out to yield more reliable results
at largeq owing to its higher symmetry (too sharp wells make the estimation of the
equal-height condition cumbersome).

Two conditions for the estimation ofTc were used:

• the equal-height condition is defined as the temperature where histogram
peaks have the same height, i.e., where minima ofFe(kT,E) (or Fm(kT,m))
have the same value;

• the equal-weight condition, introduced by Lee and Kosterlitz in [219]: here,
the transition temperatureTc(L) is obtained by imposing that the number of
bin entries inNrw(E) be the same below and above the energy corresponding
to the maximum ofFe(kT,E) (i.e., the mixed-phase configuration). This is
equivalent to the condition that the average energy be the arithmetic mean of
the energy of each phase, yet this condition cannot always be used in prac-
tice, especially at largeq value where the free energy is strongly asymmetric.

Both definition should yield the same result in the infinite-size limit [79]. In
[131], it must be noted, only the first condition was invoked.

For the sake of completeness, I also compute transition temperatures by relying
on two other estimators: the magnetic susceptibility, and a Binder cumulant of
the magnetization. From the fluctuation-dissipation theorem, the susceptibility is
readily obtained from the second moment of the magnetization. Binder cumulants
of the magnetization are defined as

U(4) = 1−

〈

m4
〉

3
〈

m2〉2
.

Owing to its invariance under a renormalization group transform, this cumulantis a
very convenient estimator of the critical point, because the associated convergence
is really high. In the thermodynamic limit, cumulants cross at a critical fixed point
U(4)
∗ defining the true critical temperature. In practice (i.e. at finite-lattice size), I

found the crossing points to drift smoothly over the range of lattice sizes. Follow-
ing Binder [35], I assumed a power law of the formLw for the crossing point of
[U(4)(L),U(4)(L′)], with an unknown exponentw [35].

4.2.3 Results

Results forq = 3,5,7,9 are summarized in Table 4.1 and sketched in Fig. 4.6.
In the second-order regime (indicated by an asterisk in the table), I computed the
critical temperatures fromχ andU(4) only, since free energies exhibit no double-
peak structure here (see Sec. 4.3 for details on how the order of the transition was
ascertained). As expected according to finite-size scaling theory, both definitions
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Figure 4.6: Critical couplings forq = 3,5,7,9, from top to bottom (solid lines).
Mean-field predictions are shown for comparison (dotted lines).

of the transition temperature, i.e., using equal peak weights vs equal peak heights,
lead within error bars to the same estimates at infinite lattice size. Other quantities
Tc(χ) andTc(U(4)) yield very similar results, with a discrepancy never exceeding
1%.

Comparison with exact mean-field predictions

For all values ofq, transition temperatures progressively depart from the mean-
field line asσ is increased. Forq = 5, for instance, the ratio betweenTc(χ) and the
mean-field value ranges from 97.3% atσ = 0.3 to 83.9% atσ = 0.8. For a given
range of interaction, the adequacy of mean-field results is also markedly improved
at largeq, as in the nearest-neighbor model; this is consistent with the large-q
expansion of Pearce and Griffiths [276] showing that mean-field theory becomes
exact in this limit. In anticipation of the next section, and as illustrated in Fig. 4.7
for q = 9, σ = 0.3, andL = 400, this agreement also holds, even at finite lattice
sizes, for the shape of the free energyFm(kT,m) and the position of metastability
plateaus related to spinodal points.

Comparison with other methods

Forq = 3 andq = 5, several results have been made available from previous Monte
Carlo simulations. Results obtained in [131] using either Luijten-Blöte’s cluster
algorithm (q = 3) or a standard Metropolis algorithm (q = 5) are in fairly good
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q σ Tc (MF) Tc(χ) Tc(U(4)) Tc(eqh) Tc(eqw) Tc [131] Tc [251] Tc [130]
3 0.2 4.034 3.97(1) 3.98(1) 3.94(1) 3.97(1) 3.70a 3.7023

0.3 2.836 2.72(1) 2.72(1) 2.71(1) 2.71(1) 2.70a 2.71669 2.5893
0.4 2.240 2.086(4) 2.089(6) 2.075(5) 2.074(4)2.08a 2.0247
0.5 1.884 1.691(3) 1.685(3) 1.686(4) 1.684(2)1.70a 1.68542 1.6631
0.6 1.649 1.44(1) 1.43(1) 1.43(1) 1.43(1) 1.41a 1.4000
0.7 1.482 1.196(3) 1.19(1) 1.18(1) 1.19b 1.1968 1.1942
0.8∗ 1.358 1.019(4) 1.03(1) 1.01b 1.0231
0.9∗ 1.262 0.876 0.875 0.88b 0.8785 0.874

5 0.3 2.127 2.07(1) 2.07(1) 2.072(6) 2.070(4)2.033a 2.06900 1.736
0.5 1.413 1.321(3) 1.319(4) 1.319(3) 1.319(2)1.297a 1.31638 1.245
0.7 1.111 0.973(1) 0.973(2) 0.970(3) 0.970(2)0.981a 0.96963 0.956
0.8 1.018 0.854(1) 0.853(1) 0.857(1) 0.857(1) 0.844
0.9∗ 0.947 0.743(2) 0.739(4) 0.74673 0.745

7 0.2 2.600 2.58(1) 2.58(2) 2.578(2) 2.577(1)
0.4 1.444 1.395(5) 1.394(4) 1.394(1) 1.393(1)
0.6 1.063 0.986(2) 0.985(3) 0.984(1) 0.986(1)
0.8 0.875 0.764(1) 0.763(1) 0.764(1) 0.764(1)
0.9 0.814 0.677(1) 0.676(1)

9 0.2 2.353 2.33(1) 2.33(1) 2.33(1) 2.32(1)
0.3 1.655 1.626(3) 1.625(4) 1.627(3) 1.626(1)
0.5 1.099 1.052(2) 1.051(2) 1.050(3) 1.052(1)
0.7 0.864 0.793(2) 0.792(2) 0.794(2) 0.794(1)
0.8 0.792 0.705(2) 0.704(1) 0.704(1) 0.704(1)

Table 4.1: Estimates of the critical temperature in the first- and second-orderregimes (the latter is indicated by an asterisk): MF, mean-
field predictions;χ, using peaks of the susceptibility;U(4) using crossing points of Binder cumulants of the magnetization; eqw,eqh,
using the free energy, whereTc corresponds to equal peak weights and heights, respectively; Ref. [131], Monte Carlo study based on
multihistogramming and the Luijten-Blöte cluster algorithm (q = 3) and a standard metropolis algorithm (q = 5), where (a) refers to
1/Ke(∆F), and (b) to 1/Ke(U(4)); Ref. [251]), cluster mean-field method combined with an extrapolation technique based on the VBS
(Vanden Broeck and Schwartz) algorithm; Ref. [130]), transfer matrixmethod combined with finite-range scaling.
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Figure 4.7: Free energyFm(kT,m) for q = 9, σ = 0.3, L = 400 (solid line), along
with the mean-field prediction (dashed line) as given by Eq. (4.4).

agreement with multicanonical ones. The discrepancy does not exceed 1%, except
in the caseσ = 0.2, where multicanonical estimates lie much closer to the mean-
field prediction. This might certainly be (partially) attributed to the use of differ-
ent periodic boundary conditions, since I found Infinite Image Periodic Boundary
Conditions todrasticallyspeed up the convergence to the thermodynamic limit, as
against the first image conditions used in [131, 19].

I further compare these estimates with those obtained by Monroe with the
cluster mean-field method [251], and by Glumac and Uzelac using a transferma-
trix approach [130]. As illustrated in Table 4.1, results obtained using the cluster
mean-field approach combined with the Vanden-Broeck-Schwartz extrapolation al-
gorithm (Sec. 4.1.2) yield a very satisfying match, with a deviation as low as 0.1%
on average over the whole range ofσ values. The discrepancy with estimates ob-
tained using the transfer matrix method is slightly higher and amounts to 2% on
average, except for low values ofσ where the agreement of my results with the
mean-field prediction is, here again, far better. Since implementing Infinite Im-
age Periodic Boundary Conditions in the finite-range scaling approach is simply
intractable, this undoubtedly accounts for the discrepancy.

4.3 Spinodals: a novel approach to assess the order of
phase transitions

As already stated in the introduction of this chapter, a precise determination ofthe
tricritical valueσc(q) is a real challenge, due to the weakening of the first-order
transition asσc is approached from below. This makes traditional indicators, e.g.,
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Chapter 4. From mean-field to thetricritical line

latent heats or energy jumps17, fairly inefficient, since observing clear jumps in the
vicinity of the tricritical value entails simulating huge lattices.

Glumac and Uzelac in [131] used three less traditional estimators: the interface
free energy, the specific heat, and the reduced fourth-order Bindercumulant, which
all turned out to be less sensitive to this weakening: in particular, the last quantity
defined asUL =

〈

E4
〉

/
〈

E2
〉

is expected to reach a nontrivial constantU∞ , 1 as
L→ ∞ at a first-order transition only [79]; by extrapolating to the thermodynamic
limit from measures taken at different lattice sizes, they foundσc to fall between
0.6 and 0.7 for the three-state model. Still and all, this approach imposes simu-
lating fairly large lattices (aroundL = 3000) for the extrapolation procedure to
be reliable, let alone the fact that Binder cumulants may experience uncontrollable
crossover effects [219].

Another crucial point, which will developed in Sec. 4.3.5, is the fact that all
these indicators do not allow the location of the tricritical line to be determined
accurately, because they tendsmoothlyto their second-order value asσ → σc(q).
As will be seen in the remainder of this chapter, this is not the case of the method
developed hereafter.

4.3.1 Outline of the method

The present approach is based on the location of spinodal points, whichmay be
accurately determined already for medium lattice sizes. In marked contrast tomul-
tihistogram techniques, the multicanonical method indeed allows one to obtain free
energy functions (or, equally, reweighted histograms of the energy) over a range of
temperature which extends fairly far away from the transition temperature, with
remarkably modest numerical effort.

The basis of this method relies on the fact that the temperature difference be-
tween both spinodal points will tend to zero asσc is approached, since there are
no metastable states in the case of continuous transitions. Stated differently, the
conditions under which metastability occurs, i.e., both first and second derivatives
of the free energy are zero, are met only at the critical point for a continuous tran-
sition: hence metastable states merge into a single large minimum as the first-order
transition turns into a second-order one. Such behavior has indeed been widely
observed, e.g., for liquid-vapor transitions near the critical point, and is borne out
by the mean-field calculation of Sec. 4.1.1.

For a given set of (q, σ) parameters, the location of spinodal points is deter-
mined by first computing the (variational) free energy function of the orderparam-
eter [Fm(kT,m), see Eq. 3.3] over a large temperature range. Alternatively, one
can make use of a similar function of the energy, i.e.,Fe(kT,E) = − ln Nrw(kT,E),
whereNrw(kT,E) designates the reweighted histogram of the energy. While the
latter function plays the same role as the free energy of the magnetization, it turns
out to yield a higher precision at lowq, as we will witness in a moment. The

17Energy jumps tend to zero asσ→ σ−c .
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Figure 4.8: Graphs ofFe(kT,E) = − ln Nrw(kT,E) for q = 5, σ = 0.3,N = 400, at
four characteristic temperatures:T1,T2,Teqh, andTeqw = Tc denote the tempera-
tures of the two metastable states, and the temperature of equal peak heights,and
that of equal peak weights, respectively.E/L stands for the energy per spin.

limit of metastability at finite lattice size is then defined by the joint condition
dFe/dE = d2Fe/dE2 = 0, or alternativelydF/dm= d2F/dm2 = 0: for a first-order
transition, this condition is met at two temperaturesT1 andT2 which satisfy the
inequalityT1 < Tc < T2, whereTc denotes the transition temperature.

4.3.2 Obtaining reliable information from (variational) f ree energies

The previous free energy functions usually have rather rugged graphs, owing to
statistical fluctuations that occur on the corresponding histograms, and before any
reliable estimation can be carried out, rapid oscillations must be filtered out by
means of a linear smoothing filter. The order of this filter is computed so that we
end up with at most three extrema over the whole temperature range of interest. By
continuously varyingkT within this range, one determines the temperature of each
metastable state by monitoring the change in the number of minima (see Fig. 4.8).
An alternative approach that builds on the transition matrix method [341] is intro-
duced in the next section.

Graphs of the free energyFe(kT,E) in Fig. 4.8 illustrate that the peak and the
plateau corresponding to the disordered phase are much narrower thanthose of
the ordered phase. As a result, the precision in the determination of the tempera-
tureT1 of the lowest metastable state is substantially lower than that of the upper
metastable state (T2). This asymmetry increases with increasingq (irrespective
of the power-law decay parameter), and in effect precludes the use of reweighted
histograms for the estimation of spinodal points atq > 7.
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For q = 9, one has thus to rely on the extrema of the “other” free energy,
Fm(kT,m), since this function then becomes nearly symmetric and displays two
peaks that are well separated. Incidentally, the asymmetric shape ofFe(kT,E)
can be accounted for by the fact that specific heats have a different magnitude in
the disordered and ordered phases, since this thermodynamic quantity is simply
proportional to the standard deviation of the associated gaussian peak [79]. This
may be readily confirmed by reweighting thermodynamic averages over a single
subphase at a time, once the maximum ofFe(kT,E) which separates the two phases
has been located. Figure 4.9 illustrates how this procedure was applied to the
computation of the mean energy per spin of each subphase forq = 3, σ = 0.2,
andL = 400 spins. A simple visual inspection allows one to assess a much lower
specific heat for the disordered phase than for the ordered phase.

4.3.3 Finite size scaling for spinodal temperatures

At finite lattice size, transition temperatures are known to experience a shift pro-
portional to the distance to the thermodynamic limit. As can be easily suspected,
the same feature applies to spinodal temperatures as well. Assuming that the finite-
size scaling theory developed in [79] for first-order transitions is also valid (i) in the
case of long-range Hamiltonians, and (ii) not only for transition temperatures, but
also for spinodal temperatures, I therefore compute temperatures at infinite lattice
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size by assuming power-law corrections in 1/L. I take it for granted that tempera-
tures defining the limit of metastability do indeed obey the same scaling behavior,
although the phenomenological theory proposed in [79] does not explicitlyhandle
them. The inclusion of a second-order term proves necessary in orderto obtain
satisfying fits, due to the presence of small lattice sizes in the set of data. Yet,
interestingly enough, fitting finite-size temperatures to a power law of the form
T(L) = T(∞) + aLb yields very similar extrapolated values, with discrepancies
smaller than 0.1%, i.e., within the range of uncertainty. In addition,Fe(kT,E) and
Fm(kT,m) lead to distinct finite-size shifts, with the latter function easily allowing
one to drop second-order corrections without much affecting the final result, yet I
did not find any convincing explanation for this feature.

4.3.4 A digression: gleaning information from transition matrices

Anticipating the introduction of a new multicanonical algorithm in Chap. 6, I would
like to briefly discuss at this point a possible combination of the spinodal method
presented above with the transition matrix approach18. As will be witnessed in
Chap. 6, the algorithm needs a vital ingredient to work: themicrocanonical tem-
peratureβ(E). The transition matrix method [339] will prove an efficient way of
obtaining a reliable estimate ofβ(E) (although at the expense of increased compu-
tation cost). I show hereafter that the microcanonical temperature, once determined
by means of the transition matrix method, can also readily yield estimates of spin-
odal temperatures.

The point of departure is the so-called Broad Histogram Equation [339, 98]
which reads

T∞(E→ E′)
T∞(E′ → E)

=
n(E′)
n(E)

, (4.8)

wheren(E) = eS(E) is the density of states, andT∞(E → E′) is the transition ma-
trix element between energy levelsE and E′. The last quantity is estimated by
accumulating a double-entry histogramh(E,∆E) containing the number of poten-
tial moves19 from E to E + ∆E each time the energy levelE is visited. In terms of
the microcanonical entropyS(E), the previous equation writes

S(E′) − S(E) = ln
T∞(E→ E′)
T∞(E′ → E)

. (4.9)

I will now denote asγ(E,E′) thenumerical estimateof the ratioT∞(E→ E′)/T∞(E′ →
E). Writing ǫ = E′−E, and performing an expansion on both sides to second order
in ǫ, and then identifying order by order inǫ, we thus have

β(E) =
dS(E)

dE
=̂

d ln γ(E)
dE

(4.10)

18The method was described in Sec. 2.5.5.
19Actually, the microreversibility hypothesis that underlies the Broad Histogram equation imposes

that only single-spin updates be used for the estimation of the number of potential moves.
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and
d2S(E)

dE2
=̂

d2 ln γ(E)
dE2

(4.11)

Alternatively, one may fetch the two previous quantities by performing a polyno-
mial fit of ln γ(E,E′) with respect toǫ = E′ − E, i.e.

ln γ(E,E′) = β(E)ǫ +
1
2

dβ(E)
dE
ǫ2 +O(ǫ3)

For long-range potentials, this is all the more appropriate that the discretization of
the energy axis can usually be chosen very small, so that the polynomial fit can be
carried out over many points.

Now, the main thrust of the argument somewhat takes after Maxwell’s con-
struction: the free energyFe(kT,E), which defines the locus of spinodal points, is
obtained through the reweighting equationFe(kT,E) = E−kTS(E)20(Sec. 3.4). At
a given temperaturekT, equilibrium values for the energy are thus obtained from
dFe(kT,E)/dE = 0 andd2Fe(kT,E)/dE2 > 0, i.e.21,

β(E) = 1/kT and
dβ(E)

dE
< 0.

While inflexion points are given byd2Fe(kT,E)/dE2 = 0; whence spinodal points
follow from

dβ(E)
dE

= 0 andkT = 1/β(E)

An example of such calculation is depicted in Fig. 4.10 for the following model
parameters:q = 6, σ = 0.9, L = 256 (i.e., these correspond to a weakly first-
order transition). The following temperature were obtained:kT1 = 0.72525(5) and
kT2 = 0.72224(4). The error is approximately two orders of magnitude smaller
than when using a reweighted histogram, as illustrated in the figure.

To wind up, spinodal points are obtained directly from numerical estimates of
transition matrices, and it is no longer necessary to resort to energy histograms, nor
to a production run, becauseβ(E) is estimateddirectly in the course of the iteration
procedure. It can be argued thatβ(E) and its derivative might as well be obtained
from the estimated density of states, by relying on a discrete differentiation scheme.
This is not always practicable, however, because (i) in the multicanonicalapproach,
the need to perform a production run stems from the fact that the estimated den-
sity of statesmay notyield a perfectly flat histogram, and the production run in a
sensecorrectsfor this, and (ii) a discrete differentiation scheme produces a lot of
noise (although this may be compensated for by applying a low-pass filter, orby
relying to a spline interpolation). Additionally, transition matrices areby construc-
tion more reliable in the previous respect, inasmuch as they contain much more
information than the density of states (for one thing becauseeverypotential move

20k = 1 is implicit in the definition ofS(E) invoked here.
21In fact, this conditions along with the negative curvature condition yields the most probable

value, which coincides with the mean value in the thermodynamic limit only.
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Figure 4.10: An example of calculation of spinodal points from the information
provided by transition matrices. Model parameters areq = 6, σ = 0.9, L = 256,
and the simulation was performed with the breathing cluster method presented in
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Fe(kT,E).
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brings its own piece of information, not just accepted moves), and these informa-
tion are effectively utilized in the estimation ofβ(E)22; this was already realized
by the authors of the method themselves, and some variants of the multicanonical
method incidentally capitalized on this, see, for instance, [299, 358].

4.3.5 Application to the phase diagram of the long-range Potts chain

The present section is devoted to the application of the spinodal method to the in-
vestigation of the phase diagram of the long-range Potts chain. Here, I concentrate
on the location of the so-called “tricritical” lineσc(q) where the transition changes
from first to second order. The outline is as follows: first, spinodal temperaturesT1

andT2 are determined from finite-size scaling for severalσ values in the first-order
regime; then it is demonstrated that, by relying on the ratioT2/Tc, whereT2 is the
upper spinodal temperature andTc the transition temperature, one can devise an
efficient method to determine the location of the border line with markedly higher
precision than with other indicators.

Spinodals As can be viewed in Fig. 4.11, spinodal points merge slightly above
σ ∼ 0.8 for q = 5, and according to the spinodal method developed above, this
indeed signals a change of the nature of the transition. A plot ofdkTm = kT2− kT1

against 1/σ indicates that, for all values ofq, the points fit quite well on a straight
line for low enoughσ, and the slope of this line tends toward that of the mean-field
curve. Theq = 7 case is sketched in Fig. 4.12, where it is clear that the point at
σ = 0.6 (1/σ ∼ 1.67) marks the border between the linear and nonlinear behavior,
illustrating the weakening of the first-order transition asσc is approached.

Since both transition and spinodal temperatures appear to scale as 1/σ in the
vicinity of the mean-field regime, it is more appropriate to work with the ratios
T1/Tc andT2/Tc, for the scaling factors will then cancel out neatly,exceptwhen
approachingσc(q). As previously mentioned, the second ratio, which is sketched
in Fig. 4.13, offers a higher precision owing to a larger free energy plateau in the
ordered phase. Asσ falls off to the mean-field regime, this ratio tends, within error
bars, to the value predicted by mean-field theory, i.e.,T2/Tc =1.01, 1.037, 1.059,
1.077 forq = 3,5,7,9, respectively.

On the leftmost side of the graph in the figure, a sudden sharp decrease of T2/Tc

can be witnessed asσ→ σc. This suggests a quite interesting way of determining
σc(q) without much ambiguity, as opposed to, e.g., methods using the interfacial
free energy or Binder cumulants. In view of the shape of the graph nearσc, the
most reliable method is a fit of data points to a polynomial. The lowest error was
reached with a polynomial of degree 2 forq = 5,7,9, and of degree 3 forq = 3.

22There is one pitfall, however, because it is practically impossible to estimate the confidence
interval onβ(E) other than by performing multiple independent simulations. This is not the case
when one has performed a production run, where standard jackknifemethods can be used.

114



4.3. Spinodals: a novel approach to assess the order of phase transitions

kT

0.8

1

1.2

1.4

1.6

1.8

2

2.2

1 1.5 2 2.5 3 3.5
1/σ

kT2
rs

rs

rs

rs

rs

kT1
ut

ut

ut

ut

ut

kTc
r

r

r

r

r

Figure 4.11: Spinodal curve for 0.3 ≤ σ ≤ 0.8 (q = 5). The limits of metastabil-
ity T1 andT2 (i.e., defining spinodal temperatures) are indicated as triangles and
diamonds, respectively. The transition temperatureTc is reminded as dotted line.
Errors are smaller than the size of symbols.

0

0.2

0.4

0.6

0.8

1

1.2

1 1.5 2 2.5 3 3.5 4 4.5 5

kT
2
−

kT
1

1/σ

b

b

b

b

Figure 4.12: Difference between temperatures of metastabilitydkTm = kT2 − kT1

vs 1/σ for q = 7 (circles connected by solid lines). Errors are smaller than the size
of symbols. Mean-field prediction are shown for comparison (dashed line).

115



Chapter 4. From mean-field to thetricritical line

1

1.02

1.04

1.06

1.08

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

T
2
/T

c

1/σ

q = 3
bb

b

b

b
b

q = 5b

b

b

b

q = 7 b

b

b

b

q = 9 b

b

b

b

b

Figure 4.13:T2/Tc vs 1/σ for q = 3,5,7,9. Solid lines indicate polynomial fits.
Dotted lines are guides to the eyes. Error bars are smaller than the size of dots,
except where explicitly indicated.

The following numerical estimates are obtained:

q σc

3 0.72(1)
5 0.88(2)
7 0.94(2)
9 0.965(20)

The graph ofσc(q) is sketched in Fig. 4.14, along with two other estimations ob-
tained from Monte Carlo simulations and the Luijten-Blöte cluster algorithm:

• σ ∈ [0.6,0.7] for q = 3 andσ > 0.8 for q = 5 [131]; the authors resorted
to three distinct indicators, i.e., Binder cumulants of the energy, peaks of the
specific heat, and surface tensions (Lee’s criterion [219]);

• σ ∈ [0.7,0.8] for q = 3 [213] (it was suggested by the authors, however, that
σ = 0.75 mayalready belong to the second-order regime); this estimation is
based on the standard double-peak structure of the histogram, yet the authors
investigated sizes up toL = 219 spins.

Discussion The crucial point that ensures the superiority of the above method as
against other approaches is that the quantitiesT2 − T1 andT2/Tc do not reach 0
in the same fashion. This isapparentlyso because the first-order coefficient in the
expansion ofT2/Tc − 1 in terms ofǫ = σ − σc has a large value, which is not the
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Figure 4.14: Phase diagram computed using finite-size scaling properties of spin-
odal points, forσ < 1.0. Dotted lines are guides to the eyes.

case forT2 − T1. This means that the error on the determination of the value of
σ for which T2/Tc → 1, is smaller23 than that associated with the condition that
T2 − T1→ 0.

I deem it important to stress, at this point, that the previous discussion doesnot
outlawa null first-order coefficient: in the very vicinity ofσc, the graph ofT2/T1

may very well be smoother than expected, but this cannot be ascertained from
available numerical data; if this is the case, however, then (i) higher orderterms
might rapidly compensate for this behavior, so that the graph looks nearly linear at
a coarser grain, and (ii) overall, the error on the estimation ofσc is probably very
low, leading to an underestimation ofσc(q) (as will be discussed in Sec. 4.3.7,
there is compelling evidence indeed thatσc(q) is bounded by 1.0).

As a side note, this suggests that, from an analytical point of view, it would be
quite interesting indeed to derive such an expansion, and to check for thevalue of
the first order coefficient. Whether the real-space renormalization group approach
of Cannas and Magalhães [64] would be suited for this purpose,oncedilution has
been included in the model24, is an appealing question indeed.

Comparison with other indicators Noteworthy enough, Lee’s criterion [219]
suffers from the same shortcoming as does the quantityT2 − T1. In [131], this cri-
terion was used (along with the Binder cumulant of the energy and the specific heat)

23Or equally,T1/Tc, even if the ratioT2/Tc is endowed with a lower uncertainty.
24See Sec. 4.1.3 for a discussion on this issue
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to discuss the change of regime for the three-state model. While the behavior of the
reduced surface tension∆F/L as a function ofσ andL qualitativelydemonstrates
the weakening of the transition asσ is increased, more quantitative information
can hardly be drawn from the graph of∆F/L vsσ. For the sake of completeness,
I performed the calculation forq = 9 andσ = 1.0: the value of∆Fm/L extrapo-
lated in the thermodynamic limit is depicted in Fig. 4.18; it is blatant that, although
∆Fm/L tends smoothly to zero asσ→ 1, thus signaling a change of regime in this
region, the shape of the curve asσ → 1 does not allow one to draw convincing
conclusion regarding the location ofσc.

The specific heat does not represent a better estimator for that matter (thisleads
to a lower bound of 0.65 forσc(3)). Incidentally, it is by relying on Binder cumu-
lants of the energy extrapolated to the thermodynamic limit that the authors in
[131] were able to suggest a change of regime in the interval [0.6,0.7], and yet the
graph of the extrapolated value (Fig. 3 in the article) is extremely smooth as wellin
the interval [0.65,0.8] so that a more precise estimation seems in fact out of reach
(let alone the strong crossover effects that Binder cumulants may experience [34];
I shall further examine this point in Sec. 7.6.

4.3.6 Asymptoticq→ ∞ behavior and the1/r2 line

In view of the phase diagram just obtained (Fig. 4.14), one may readily ponder on
the asymptotic behavior of theσc(q) line in the limitq→ ∞. Indeed, this behavior
lies at the core of a controversy surrounding the nature of the phase transition on
the line of inverse square interactions. Before reexamining the controversy in the
light of the previous results, I will therefore provide a blow-by-blow account of the
current state of the battleground.

Topological phase transition in models with inverse square interactions For
one-dimensional models, the line of inverse square interaction is special, since it
was rigorously proven that no phase transition at finite temperature can occur for
σ > 1 [55, 107, 124, 290, 316]. This marginal case, as it turns out, may notmerely
be an “upper critical range” of interaction: it has been claimed [11, 33, 72, 208] that
it is also the locus of a topological phase transition, similar in several respects to
the Kosterlitz-Thouless transition governed by topological defects that XYmodels
exhibit in two dimensions [207]. This class of transitions of “infinite order” also
covers phase transitions in superfluid helium and superconductors, and melting
transitions in two dimensions [257].

Indeed, it has been found that the correlation function displays a powerlaw
decay with an exponent depending on the temperature25 [33, 171], leading to a line
of critical points below a critical temperatureTc. At Tc, however, correlations die
off logarithmically with the distance (specifically, as 1/ ln r, [33, 235]), yet forT

25Though with an exponent 1+ 4
√

(Tc − T)/T, so that correlations drop off more rapidly with
decreasing temperature than in the XY model.
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aboveTc, it was established from renormalization group arguments that the corre-
lation length follows an essential singular behavior again like the XY model, i.e., of
the formebtα wheret is the reduced deviation fromTc (recalling thatα = −1/2 for
the XY model). Kosterlitz also reported a scaling of the form exp [(n− 1)/2π2T]
for the correlation length of theOn model withn > 1 [208]. Noteworthy enough,
Tc = 0 in the latter case.

Early Monte Carlo simulation [33] suggested that the specific heat increases
aboveTc with a finite-size scaling behavior that rules out a second-order transition,
although it was pointed out by the authors that the saturation — which is charac-
teristic of the XY model — was not reached for the sizes investigated in their nu-
merical study; a recent investigation based on much larger lattice sizes confirmed
the saturation at a temperature slightly above the critical temperature [235].

Cardy [72] extended the investigation toq-state Potts models by means of a
kink-gas representation. Here, kinks represent elementary excitationsof the sys-
tem (akin to domain walls in nearest-neighbor models), that is to say, with spins
lined-up in the same direction over large domains separated by walls, and their
density is adjustable through a chemical potential (which emerges from a reex-
pression of the Hamiltonian in terms of kinks). It was established that these excita-
tions interact logarithmically with the distance, and in this respect they can indeed
be viewed as “topological defects” resembling (anti)vortex in XY models, since
vortex/anti-vortex pairs interact in the same fashion (the same behavior is found
in the two-dimensional Coulomb gas, where the electrostatic potential decays log-
arithmically [143, 144]). Renormalization of the kink-gas Hamiltonian yields an
essential divergence for the correlation length, lnξ ∼ bt−ν̃ asTc is approached from
above, with an exponent ˜ν depending on the number of states of the model.

Recently, an extensive Monte Carlo investigation based on the Luijten-Blöte
cluster algorithm was carried out for the Ising and three-state Potts chains[235].
The authors focus on the scaled order parameter

〈

m2
〉

/kT, and show that this quan-
tity undergoes a universal jump at the transition temperatureTc (together with a
superposed “singularity” which vanishes atTc and is governed by the same ex-
ponents as the correlation length). Lower bounds for this jump were givenon
rigorous grounds in [5], but its universal character for systems with inverse square
interactions was first suggested in [235]. From the finite-size scaling behavior of
the scaled order parameter, and by performing simulations up to 4× 105 spins, the
authors were able to estimate the magnitude of the critical jump to lie at 0.49(2),
the transition temperature around 0.764 (in units of the Potts model) and the lead-
ing critical exponent of the superposed singularity near ˜ν = 0.54, the latter being
in very good agreement with the value of 1/2 found by Cardy (i.e. 2/(q+ 2) with
q = 2 for the Ising chain) [72]. Similar agreement is observed for the three-state
Potts chain, with for instanceTc = 0.7089(2). As a by-product, this study thus
rules out, at least forq = 2 andq = 3, the invariance of the critical temperature
with respect to the number of statesq, as suggested from real-space renormaliza-
tion [64] (Sec. 4.1.3). These results were backed up by another numerical study
of the same model based on the largest cluster distribution [325] (where also the
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Luijten-Blöte cluster algorithm was used, yet in its Swendsen-Wang flavor). The
authors propose to determine the critical exponent of the superposed singularity
from the quantityL(∂T/∂L)χ̄ ∼ −(T − Tc)1−ν̃ [289], where ¯χ denotes a reduced
susceptibilityχ/Lσ, andχ is computed through an improved estimator26 based on
the largest cluster distribution.

So, where does the tricritical linereally terminate? Overall, the previous find-
ings (mostly based on renormalization techniques, yet also including a handful of
Monte Carlo simulations) give a picture of models with inverse square interactions
that seems to mimic the vertex-unbinding transition of the XY model. However,
several numerical works contradict this picture to some extent. Both the transfer
matrix method of Glumac and Uzelac [130] and the real-space renormalization ap-
proach of Cannas and Magalhães [64] failed to reproduce the essential singularity
atσ = 1.0. Incidentally, the issue was not addressed in the work of Monroe [251],
although the coherent anomaly method, being essentially amean-fieldmethod, is
certainly not the best method in this respect.

Most importantly, a recent work by Bayong, Diep and Dotsenko [19] on the
q-state Potts model cast real doubt upon the issue, by arguing that the lineσc(q)
crosses the line of inverse square interactions atq ∼ 8, i.e., atσ = 1, the transition
is of the first order forq > 8. The method used by the authors is basically a single-
histogram Monte Carlo technique [113] with a truncated long-range potential,i.e.,
periodic boundary conditions are limited to the first image only (see Sec. 4.2.1 for
an extensive discussion of this topic). The first-order nature of the transition was
asserted by the authors on the grounds that the histogram of the energy displayed
a clearly visible double-peak structure aboveq = 8. From a purely numerical
viewpoint, the result does not contradict previous numerical studies [235, 325], in
so far as the last studies demonstrated the topological nature of the transitionfor
q = 2 andq = 3 only. However, the assumption that the “tricritical” line crosses
theσ = 1.0 line raises a handful of markedly intriguing questions:

• First, this would imply that Cardy’s scenario [72] is somewhat flawed, since
aboveq = 8, the transition can definitely not beat the same timeof the first
order and of infinite order; this entails considering that Cardy’s development
based on a diluted kink-gas might not be valid at largeq; it is appealing to
note at this point that several models, which normally exhibit a Kosterlitz-
Thouless phase transition, have been found to undergo a first-order transition
for sufficiently non-linear interactions between spins [100, 101, 328], so that
the scenario mentioned above may not be deemed totally atypical;

• Although it is not stated in the article of Bayong et al. whetherσ = 1.0 is
indeed a “termination” point or if the tricritical line gets across it, the former
hypothesis would give the point (σ = 1.0,q ∼ 8) a very prominent status in
the field of critical phenomena, i.e., a point terminating a line of topological

26See Sec. 2.3.5.

120



4.3. Spinodals: a novel approach to assess the order of phase transitions

Cardy [72] Bayong et al. [19]

0.6

0.7

0.8

0.9

1

3 5 7 9q

1st order

2nd order

σ

Luijten et al. [235]

Figure 4.15: Phase diagram of Fig. 4.14, along with the disputed line of inverse
square interactions. The open circle shows where theσc(q) line was claimed to
terminate in [19]. According to Cardy’s scenario [72], on the contrary,thewhole
line is the locus of topological transitions; grayed disks refer to a numericalstudy
by Luijten and Messingfeld [235] reporting the onset of a topological transition for
q = 2 andq = 3.

transitions, a region of second-order transitions, and a domain of discontin-
uous transitions; conversely, the latter hypothesis would prompt a reexam-
ination of the (as yet debate-prone) long- to short-range crossover scenario
(see Sec. 5.4 where the controversy is described at length, and revisited with
multicanonical simulations).

The phase diagram obtained in the previous section is reminded in Fig. 4.15
along with the controversial areas. In what respect can this phase diagram shed
light on this controversy? Clearly, if Cardy’s scenario proves reliable,then we must
have limq→∞ σc(q) ≤ 1. Although a numerical simulation may hardly bring about
rigorous evidence with regard to an asymptotic behavior, the shape of theσc(q)
line in Fig. 4.14 lends strong support to such a behavior. Still, the double-peak
structure atσ = 1.0 and largeq remains intriguing and must be resolved in some
way or another for the whole picture to be convincing. The purpose of thenext
section is to scrutinize again into this issue, yet with a markedly different approach
involving (i) the spinodal method developed in Sec. 4.3, and (ii) a finite-size scaling
analysis.
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Figure 4.16: Linear fit of finite size temperatures vs 1/L for q = 9, σ = 1.0. Dotted,
solid, and dashed lines correspond tokT1, kTeqh, andkT2, respectively. Error bars
are smaller than the size of symbols, except where explicitly indicated. In the limit
L → ∞, the difference between temperatures of metastability tends to 0.0012.
Within error bars, the transition is thus clearly not of the first order.

4.3.7 Unexpected finite-size scaling behavior atσ = 1.0: case closed?

To set the stage, I will briefly inspect the caseq = 9, σ = 1.0, that is, just above
the change of regime claimed in [19]. I performed a series of simulations at
L = 50,100,150,200,300, and 400 for this set of model parameters, and then I
computed the corresponding (finite-size) spinodal temperaturesT1(L) andT2(L)
by relying on the free energyFm(kT,m). First, a naive analysis based on the shape
of the free energy at a given lattice size might be markedly misleading, because
the histogram indeed displays a double-peak structurealreadyat sizes as low as
L = 100.

As may be noticed in Fig. 4.16, a striking feature of this limiting case is the
existence of metastable states at all finite lattice sizes, with a first-order charac-
ter strongly enhanced at low sizes, despite the fact that finite-size scalingyields
T2 − T1 = 0 in the thermodynamic limit. It turns out that, as opposed to the claim
in [19], the transition is clearly not of the first order in the thermodynamic limit.
Thisunusual(for reasons explained below) finite-size scaling behavior is also con-
firmed, though in a less marked way, forq = 6,7, and 827. The latter case is

27After the completion of this thesis, I recently reexamined the situation atq = 12 by means of the
breathing cluster method and in the two-dimensional Potts model with medium-range interactions,
where I witnessed the same finite-size effect.
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Figure 4.17: Metastability temperature differenceskT2(L) − kT1(L) on the line
σ = 1.0 for q = 8 andq = 9, along with the corresponding linear fits (solid lines).
For the sake of clarity, the size of the error for each lattice size is shown asa bar;
the error shown corresponds to the largest of both errors computed for q = 8 and
q = 9.

depicted in Fig. 4.17 along withq = 9. It is apparent that the strength of the first-
order transition at small sizes increases withq. Conversely, forq < 6, a precise
location of metastable states become impracticable at the medium lattice sizes that
are under investigation, so that it seemsat first blushthat the distance between the
line of inverse square interactions and the lineσc(q) plays a prominent role in the
issue.

To wind up, there are two remarkable points in the issue:

• First, simply relying on the double-peak structure of the histogram (or on
the temperature differenceT2 − T1) at the transition temperature is clearly
misleading; it is crucial that a finite-size scaling analysis should be carried
out. This indeed rules out a first-order transition in the thermodynamic limit.

• Second, the observed finite-size effect is somewhat atypical, as against the
usual picture where transitions turn from second- into first-order as thelattice
size is increased. This point is discussed in greater detail hereafter.

Comparison with Lee’s criterion

Before going over a more detailed interpretation of the previous effect, however,
it is perhaps interesting to compare the prediction given by the spinodal method
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with those yielded by moreestablishedindicators. Lee’s criterion [219] relies on
the behavior of the reduced surface tension∆F/L in the thermodynamic limit. Fig-
ure 4.18 depicts a plot of the reduced “surface” tension with respect to the lattice
size forq = 9 and various values ofσ between 0.2 and 1.0. First, it is noticed
that the tension indeed decreases asσ → 1, confirming the change of regime near
σ = 1. An extrapolation to the thermodynamic limit is depicted in Fig. 4.19, where
a scaling law of the form∆Fm/L ∼ a+ b/L was assumed, i.e., by considering that
the long-range nature of the potential implies that the dimension of the interfaceis
the same as that of the lattice, and restricting the fit to first-order corrections. As
witnessed in Fig. 4.18 (top)), two regimes may be easily distinguished:

• Forσ = 1.0,∆F(L)/L behaves as 1/L and, according to Lee’s criterion, this
signals acontinuoustransition. It should be noted, however, that this scaling
behavior is different from the one observed for “true” continuous transitions,
e.g., forq = 3 andσ = 0.9, where I found∆F(L) = 0 at all sizes within error
bars;

• For lower values ofσ, the above quantity now behaves asa + b/L, and the
transition is of the first order. This is in agreement with the results obtained
using spinodal curves. Contrary to the case of first-order transitions inshort-
range models, however, the tension scales in first approximation asLD rather
thanLD−1. The figure also clearly indicates that correction terms are non-
negligible (i.e.b is non-null).

As will be discussed in Chap. 7, the “surface” tension does actually scalevery
nicely asLα, whereα is a non-integer exponent that will be interpreted as being
reminiscent of the fractal structure of the interface. It is somewhat awkward to
ascertain such scaling behavior from the small set of data points available here, but
this intriguing scaling behavior will be clearly visible when carrying investigation
over several orders of magnitude in terms of linear size, as will done in Sec. 7.6

4.3.8 Outlook: boundary effects and fractal geometry

At first glance, this unusual finite-size effect substantially contradicts the expected
picture, whereby at first-order transitions, the correlation length is finite and roughly
independent of the lattice size (providedξ < L), and is roughly connected to the
size of clusters. As a result, first-order transitions appear as if they were contin-
uous until the lattice size overtakes the correlation length. With regard to short-
range models, this has been the standard scenario thus far: the behaviorobserved
on the line of inverse square interaction suggests, however, that this scenario may
be somewhat pondered about in the case of long-range models. This is metfrom
three distinct perspectives in what follows.

The crucial observation that will underly the arguments laid down hereafter is
that, in a long-range system, each particle sees the boundaries, irrespective of the
lattice size, although as size is increased, particles in the bulk become more and
more “blind” in this respect.
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Figure 4.19: Extrapolated value of the reduced surface tension∆Fm(L)/L in the
thermodynamic limit forq = 9. A linear scaling law of the form∆Fm(L)/L ∼
a+ b/L was assumed.

Truncation of the long-range potential One way to examine the issue is to con-
sider the influence of the truncation of the long-range potential in finite geometry.
In this regard, it is crucial to note that this truncation occursirrespectiveof the
periodic boundary conditions utilized: relying on infinite-image periodic boundary
conditions simply speeds up the convergence towards the thermodynamic limit.

On a lattice of sizeL with periodic boundary conditions, the largest allowed
distance between any two spins isL/2, and this also corresponds to the smallest
interacting potential affordable on a given lattice. It is manifest that these spins ex-
perience a stronger interacting potential wheneverL is small, and hence the whole
array of spins may be rigidly tied to an adequate extent for an order-disorder tran-
sition to occur through metastability. When increasing the lattice size, on the con-
trary, spins being a distanceL/2 apart now experience weaker interaction, and this
results in a softening of the transition. Still and all, whether this softening might
be sufficient to yield a change of nature of the transition at some (either finite or
infinite) lattice size, so that the transition may be continuous in the thermodynamic
limit, is an unsettled question; this assumption is borne out at least forq = 9
andσ = 1.0, as witnessed by the present results. Alternatively, one may say that
the truncation of the long-range potential at small lattice size artificially shifts the
model toward the mean-field regime, since the interacting potential now varies
smoothly over the available distance of interaction. This “shift” should occurat all
lattice sizes, although it will make its influence felt preferably at small sizes, and at
lower values of the decay parameter. The fact that the “shift” is particularly visible
here, on the line of inverse square interactions, pertains to the fact that this line lies
very close to the change of regime. Overall, this feature certainly accounts— at
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least partially — for non-trivial finite size scaling.

Correlation lengths The usual physical meaning attributed to the correlation
length in the case of short-range models, i.e., loosely speaking the averagesize
of a cluster of contiguous spins having the same value, may no longer hold in the
case of long-range potentials: since all the spins of the lattice, however distant they
may be, are tied together through an interacting potential, there is basically no need
of a long-range order for two distant spins to already have slightly correlated fluc-
tuations. At continuous transitions, it has been shown that the correlation function
comprises two parts: a long-range part reminiscent of the power-law decaying in-
teraction, and atrue correlation function [231] (see, also, Sec. 5.1). In the context
of first-order transitions, this means that either clusters may extend well beyond the
size permitted by the value of thetrue correlation length (i.e., once the long-range
potential has been removed), or the correlation length itself may become infinite
in the thermodynamic limit. This behavior has indeed already been reported in
models of DNA thermal denaturation [314] as well as in the context of wetting
[280].

Finite Size Scaling for long-range models revisited As was mentioned above,
it is clear that finite-size effects must play a non-trivial role in the observedunusual
behavior.

The key issue here, however, does not revolve around the finite-sizescal-
ing behavior of critical couplings, but that of free energies, surfacetensions and
metastable temperatures. In the previous section, it was shown that Lee’s criterion
underpins this unusual finite-size scaling: this suggests that the thermodynamic
quantities that are influenced by this effect are connected to the concepts of do-
main walls, surface tensions, and correlation lengths (in the nearest-neighbor Potts
model, we know that the last two are connected [46]). To what extent arethese
quantities influenced by the boundaries in the case of long-range models is an in-
triguing question: in other words, what we lack for is a theory of finite-sizescaling
of surface tensionsand metastable states at first-order transitions in long-range
models.

In view of this, one may readily ponder on the topology of the mixed-phase
configuration in long-range models, and its influence on finite-size scaling:owing
to the long-range potential, the geometry of the interface is probably far lesstrivial
than it is in nearest-neighbor models, and might exhibitholes, viz. a fractal (or
“spongy”) structure.
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Chapter 5

From long-range to short-range
behavior

The present chapter focuses on the critical behavior of the long-range Potts chain
beyondthe boundaryσc(q). The investigations concentrate on the second-order
regime of the model and on the crossover from the long-range to the short-range
regime.

To set the stage, the main results from functional renormalization theory are
reviewed in Sec. 5.1, and an outline of the derivation of a perturbative expansion
aroundσ = 1/2 is given. It is important to underline, however, that these results
correspond either to theOn model, or to a continuum version of the Potts model
with q < 3, whileq ≥ 3 in the model investigated here.

With this in mind, critical exponents are estimated forq > 2 using the mul-
ticanonical method outlined in Chap. 3. The focal point is the comparison of
these exponents with (i) theoretical predictions and (ii) previous numericalstud-
ies (Sec. 5.2). The aim is to evaluate to what extent critical exponents for the Potts
chain withq ≥ 3 depart from those obtained from functional theory. A second
objective is to estimate the precision of the multicanonical algorithm at modest
lattice sizes, in particular as regards the peaks of response functions (which are
obtained from a reweighting procedure), since these enter the estimation ofcritical
exponents through finite-size scaling relations.

The second part of this chapter is devoted to the long- to short-range crossover.
First, an extensive account of the controversies surrounding this issue is given in
Sec. 5.3. Then, a novel approach is introduced to investigate the onset of the short-
range regime: an exact transfer matrix is carried out for thepureshort-range model,
and compared with the temperature dependence of some carefully chosen thermo-
dynamic quantities (Sec. 5.4). The multicanonical method will turn out to play a
pivotal role in this approach.
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5.1 Universality and critical properties for long-range Hamil-
tonians: conjectures

As already stated in Chap. 1, the interaction range affects the universal critical
properties of a long-range spin models in much the same way as the dimension for
their nearest-neighbor counterparts. As for interactions decaying as apower law of
the interparticle distance, this role is played by the decay parameterσ, and in this
respect, Ising chains represent perfect candidates since their behavior is critical
along the wholeσ line [40] (with even essential singularities inside some inter-
vals). Although it has been demonstrated in the previous chapter that a substantial
part of the phase diagram of the long-range Potts model corresponds todiscontin-
uous transitions, i.e., the transition is first order forσ < σc(q), the situation is not
less interesting here forσ > σc(q) for the three following reasons: first, there is
still a small region under the tricritical lineσc(q) where the model exhibits a crit-
ical behavior, and estimates of critical exponents reported in several works show
significant discrepancies in this respect; second, several rigorous results have long
been made available in the case ofOn models, and it is tempting to pit them against
models with aZq symmetry; third, critical exponents are connected in some way
to the long-range to short-range crossover problem, a long-disputed issue. The last
point is considered in greater detail in a subsequent section of this chapter. The
first two points are discussed hereafter, and to set the stage I will begin with a dis-
cussion of available results from functional theory regarding critical exponents for
1/rD+σ interactions.

5.1.1 Ginzburg-Landau functional

In Fourier space, the corresponding Ginzburg-Landau functional admits, in the
small-k limit and for ann-component field~φ(k), the following expansion,

H =
∫

dDk(r + v2k2 + vσkσ)~φ(k) · ~φ(−k) (5.1)

+

∫

dDk1dDk2dDk3
u
6

(~φ(k1) · ~φ(k2))(~φ(k3) · ~φ(−k1 − k2 − k3))

where the mass termr varies linearly with the temperature1 nearTc. The only dif-
ference with standardφ4 theory resides in the presence of akσ term in the gaussian
part of the Hamiltonian, which is non-analytical forσ < N. At σ = 2, logarithmic
terms must enter the previous expression, i.e.kσ is replaced byk2 ln k. From a
dimensional argument, it is easy to see that thek2 term (which is reminiscent of the
“gradient” term in short-range models) is irrelevant forσ < 2, i.e., vanishes under
successive renormalization transforms. Therefore, the (bare) inverse propagator

1That is,r ∝ t, wheret is the reduced temperature deviation with respect to the critical tempera-
ture of the gaussian model.
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actually reads∼ (r + kσ) in this region2 It is interesting to note that, forσ > 2,
it is now thekσ term which is irrelevant and the model belongs to the short-range
universality class. However, the (now subleading) long-range interaction gives rise
to non-trivial finite-size scaling effects [80, 91, 90].

5.1.2 Upper critical dimension

The upper critical dimension can be readily estimated by relying on the Ginzburg
criterion (see for instance [76]), which sets the limit of validity of the mean-field
approximation from the ratio of field fluctuations to field averages. Taking guid-
ance from standard mean-field theory applied to short-range functionals, the corre-
lation function in the mean-field approximation writes

G(k) =
kT
vσ

ξσ

1+ (kξ)σ

where the correlation length is given by

ξ =

(

vσ
r + u 〈φ〉2

)1/σ

and 〈φ〉 is the order parameter in this approximation, with〈φ〉 = −3r/u in the
ordered phase. The Ginzburg criterion readsξ−DG(k = 0) ≪ 〈φ〉2, i.e. (in the
ordered phase),r2−D/σ ≫ 1; whenceDc = 2σ is the upper critical dimension.
Alternatively, this result can be established from renormalization theory3, and has
also been proven on rigorous grounds in [6].

5.1.3 Momentum-shell renormalization

The first calculation of the critical exponents for a generalOn model with long-
range interactions 1/rD+σ can be traced back to the seminal works by Fisher, Ma
and Nickel [115] and Suzuki, Yamazaki and Igarashi [306] in the early 70’s. Both
are based on the momentum-shell renormalization group method introduced by
Wilson [345, 346]. Basically, Wilson’s approach is a Fourier-space version of
Kadanoff’s decimation scheme, where a renormalization transform of scalingb
consists in integrating over field fluctuations of large momentak > Λ/b, where the
integral cut-off is defined byΛ = 2π/a with a the (current) lattice spacing. For-
malizing this a little, I writeφ(k) = φ<(k) + φ>(k), i.e., the original field is split up
into low- and high-momentum terms having supports [0,Λ/b[ and [Λ/b,Λ[ respec-
tively. The renormalized HamiltonianH′ is formally obtained through a functional

2This would indeed correspond to a (m2+kσ)−1 bare propagator in field theory parlance, and thus
m2 + kσ + Σ(k) is the inverse two-point correlation function whereΣ denotes the proper energy as
usual. Apart from the non-analyticity ofkσ, which has non-trivial consequences, the same line of
arguments as inφ4 theory applies.

3This corresponds to the gaussian fixed point becoming unstable.
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Chapter 5. From long-range to short-range behavior

integration overφ>(k),

e−H′[φ′<(k′)] =

∫

Dφ>(k)e−H[φ<(k)+φ>(k)]

where primes indicate rescaled quantities:k′ = kb (this follows fromξ → ξ/b
in real-space) andφ′(k′) = ζφ(k), whereζ is thefield rescaling factor. The latter
is generally fixed by imposing that the amplitudes of correlation functions be left
unchanged under rescaling at the critical point, i.e.,ζ2 = bD−η−2. The exponent
η enters the expression of the correlation function in Fourier-space (at criticality)
throughG(k) ∼ kη−2, and is termed thecorrelation function exponentor Fisher’s
exponent.

5.1.4 Gaussian model with long-range interactions

For a gaussian model with ar + kσ inverse propagator (vσ = 0), the derivation is as
straightforward as in the standard gaussian model (i.e., withr+k2), since the Hamil-
tonianH can be separated into a low-momentum partH< and high-momentum part
H>, and the integration over higher momenta trivially yields the following recur-
sion relations,

r ′ = b2−ηr

v′σ = vσb2−η−σ

After imposing thatvσ be kept constant (i.e.,ζ is imposed by the most stable fixed
point), one obtainsη = 2−σ andν = 1/σ; the standard gaussian model is recovered
whenσ = 2, i.e.,η = 0 andν = 1/2. The last results follow from the scaling
behavior of the correlation length,ξ ∼ |r |−ν; whencer ′/r = b1/ν.

5.1.5 Perturbative expansion inǫ = 2σ − D

When vσ , 0, the derivation is less trivial, since the Hamiltonian is no longer
separable into low- and high-momentum terms, and a (diagrammatic) perturbative
expansion invσ must be carried out. This expansion shows in particular that the
upper critical dimension of the model isDc = 2σ (wherebyDc = 4 is recovered
for the short-rangeφ4 theory4). It is not the aim of this thesis to describe the
method in detail; numerous writings have been published on the subject, see, for
instance, [76, 21] for an introductory course, and [174, 363] for more specialized
monographies. Therefore, my goal in the following will be to discuss the results
more than their derivation.

As in conventional field-theoretic renormalization applied to short-range mod-
els, the derivation in [115] is anǫ-expansion around the upper critical dimension
Dc = 2σ, i.e., ǫ = 2σ − D. It is valid for anyD-dimensionalOn model provided

4And yet, as will be seen below, this that not entail thatσ = 2 is the boundary between the short-
and long-range regimes.
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σ , 2; I recall that the last case induces a different form for the Ginzburg-Landau
functional due to the presence of a logarithmic term in the gaussian part. Thespher-
ical model can be recovered in the limitn→ ∞. Renormalization group equations
yield two fixed points: the standard gaussian fixed point (r∗ = u∗ = 0), and a
non-classical (Heisenberg-like) fixed point of orderǫ (u∗ = ǫv2

σ/(n + 8), unstable
direction). The main findings of [115] are as follows:

• σ < D/2 defines the so-called “classical” regime where the gaussian fixed
point is stable (i.e., mean-field like where critical exponents are concerned),
where the correlation function exponentη = 2 − σ, the correlation length
exponentν = 1/σ and the susceptibility exponentγ = 1;

• on the boundaryσ = D/2, logarithmic corrections to scaling apply;

• for D/2 < σ < 2, the “non-classical” region (where the gaussian fixed point
loses its stability),η is still given byη = 2−σ (with no correction to orderǫ2

andǫ3 at least), i.e.,η retains its classical value, whereasγ (after reexpressing
theǫ-expansion in terms of∆σ = σ − D/2) is given to first order in∆σ by
1+ 4

D
n+2
n+8∆σ; the expression ofν follows from the standard scaling relation

ν = γ/(2− η) = γ/σ;

• for σ > 2, the exponents take their short-range value. Note that, in one-
dimension, this picture is somewhat incomplete, since the absence of a phase
transition at finite temperature was rigorously proven forσ > 1 [107]; this is
discussed in greater detail in Sec. 5.3; another interesting remark is the fact
that, at least forD > 4, the system is in its mean-field regime whateverσ
(although this condition is sufficient, yet not necessary).

From the expression ofη, the correlation function thus behaves according to
G(r) ∼ 1/rD−σ (to be compared withJ(r) = 1/rD+σ for the interaction), which
means that the correlation function dies off more slowly than the iteration, as ex-
pected from the intuitive picture. This behavior was confirmed at short distance by
means of simulations in the classical regime [231].

As a last point in this section, I would like to mention how startling it seems
at first that more than two decades have separated the seminal derivationof these
results through analytical perturbation methods and their verification by means of
Monte Carlo studies (see, for instance, [230], which — historically — perhaps
represents the first really extensive study in this respect). This should certainly
be seen as another evidence of the challenge that long-range interactions represent
from the viewpoint of numerical simulations.

5.2 Critical exponents for q > 2: multicanonical simula-
tions

This section reports results obtained by multicanonical simulations regarding the
critical properties of theq-state Potts chain in thecontinuousregime, i.e., for
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Chapter 5. From long-range to short-range behavior

σc(q) < σ ≤ 1.0. Theσ > 1.0 case will considered in a subsequent part of
this chapter in connection with the crossover from long- to short-range behavior.

As far as theσ = 1 boundary is concerned, a few remarks are in order. As
mentioned in Sec. 4.3.6, the line of inverse square interactions,σ = 1, has been
claimed by some authors to be the locus of a Kosterlitz-Thouless-like transition
exhibiting essentialsingularities. The work of Cardy [72] is enlightening in this
respect, since theq-state Potts model should exhibit this kind of transition for all
q. Although several other authors also reported results in contradiction withthis
assumption, claiming power-law singularities and a finite correlation length expo-
nentν [19, 64, 129, 130], a recent Monte Carlo study tipped the balance in favor
of Cardy’s scenario, at least forq = 2 andq = 3. A work by Glumac and Uzelac
[325] on the three-state model, based on the largest cluster probability, also proved
consistent with this scenario, with exponents of the essential singularity found very
close to the values predicted by Cardy. This scenario is also supported bythe find-
ings of the previous chapter (Sec. 4.3.7), where I suggest thatσc(q) → 1 asymp-
totically in theq→ ∞ limit. It is not the purpose of the present work, however, to
(try to) resolve the issue on the line of inverse square interactions forq > 3. The
presence of essential singularities renders the endeavor particularly challenging,
for this imposes performing exceedingly long runs and to investigate huge lattice
sizes, and a multicanonical method with single-spin updates is certainly not the
most suited approach in this respect.

It is perhaps interesting to mention, however, that I found finite-size scaling fits
on this line to be particularly poor; in particular for those regarding the estimateof
the correlation length exponent 1/ν, log-log fits depart strongly from the straight
line expected from a power-law fit. In addition, autocorrelation times diverge in a
startlingly rapid manner with the lattice size atσ = 1. Although these observations
do not yield anyquantitativeinformation concerning essential singularities, it lends
at least some support to the onset of a topological phase transition forq > 3.

I will concentrate in the following on the estimates of critical exponents for
q = 3,4,5, excluding the correlation length exponent atσ = 1 (although exponent
ratiosγ/ν andβ/ν will be considered, as they are still well-defined in the case
of essential singularities). Higher values ofq are not investigated, for the region
corresponding to a continuous transition is then too narrow.

5.2.1 Objectives

In the previous section, the estimates of critical exponents from functionaltheory
were reviewed. For theOn model, an interesting finding in the non-classical regime
is η = 2− σ, which should hold up to orderǫ3 (ǫ = 2σ − D) for all n.

Since critical exponents are otherwise related by standard scaling relations,
e.g.,γ/ν = 2 − η, one also expect the simple relationγ/ν = σ. This can easily
be checked in numerical simulations, sinceγ/ν is directly related to the finite-size
scaling behavior of the susceptibility throughχmax ∼ Lγ/ν, whereχmax designates
the peak of the susceptibility.
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5.2. Critical exponents forq > 2: multicanonical simulations

Because the previous relation was derived, however, for model with ann-
component order parameter and a continuous symmetry (forn > 1), it is interesting
to check if the same relation holds also for a discrete spin model with aZq symme-
try, q > 2, and in particular, to monitor the validity ofγ/ν = σ for several values
of q. To the best of my knowledge, this has never been investigated numerically
for theq-state Potts chain,q > 2; on the analytical side, the renormalization group
derivations by Priest and Lubensky [279] and Theumann and Gusmão [315] target
q < 3 (non-integer), and particularly the percolation limitq→ 1.

A similarly interesting question naturally arises for the correlation length expo-
nent, since the derivation for theOn models indicates that it depends onn to order
ǫ. This was already investigated in the context of real-space renormalization[64]
(see also Sec. 4.1.3 where an extensive description of the method is given), where it
emerged that 1/ν should not depend on the number of states of the model. A work
by Glumac and Uzelac based on transfer matrices [130] showed, however, that this
might not be true, with 1/ν increasing withq for a given decay parameter. This
was confirmed by the same authors using Monte Carlo simulations and the largest
cluster probability [325]5. Both issues are looked upon forq > 2 in the remainder
of this section.

5.2.2 Critical exponents: method

As mentioned in [231], “standard” finite-size scaling theory is valid for long-range
systems provided the effective upper critical dimensiond∗ = 2σ is greater than
the geometrical dimensiond = 1, i.e.,σ > 0.5 (this is similar to the short-range
case, where standard scaling relations hold below the upper critical dimension, see
[228]). Thus it is assumed here that “standard” finite-size scaling equations are
also valid forq ≥ 3.

The critical exponentν is determined usingnth-order cumulants of the magne-
tization, i.e.,

Vn =
d ln 〈mn〉

dβ
,

which have minima obeying the scaling lawVmin
n ∝ L1/ν [112]. The approach

consists in computing two numerical estimates ofν by fitting reweighted averages
of Vmin

1 andVmin
2 to a power law of the lattice size, and then to average over both

values. Other critical exponents, i.e.,β andγ, are computed using similar scaling
laws, i.e.,M(Tc(∞)) ∝ L−β/ν, andχmax∝ Lγ/ν.

Figures 5.1 and 5.2 depict a power-law fit of peaks ofV1, V2 andχ against
the lattice size obtained forq = 5, σ = 0.9. Points lie neatly on a straight line
when using a log-log scale, and give the following estimates: 1/ν1 = 0.668(2),
1/ν2 = 0.669(2), γ/ν = 0.940(4). Error bars were computed using a bootstrap
procedure, see Appendix C.

5See Sec. 2.3.5 for more details on this approach.
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Chapter 5. From long-range to short-range behavior

Onceν has been estimated, finite-size temperaturesTc(L) defined from peaks
of the magnetic susceptibility are fitted to a power law of the form

Tc(L) = Tc(∞) + λL−1/ν,

and yield an estimate of the infinite-size critical temperature. With regard to critical
couplings obtained from Binder cumulants of the magnetization, I follow the same
procedure as in the first-order regime (Sec. 4.2.2).

Finally, the critical exponentβ of the magnetization is determined by perform-
ing a fit of the magnetization estimated at the infinite-size critical temperature,
M(Tc(∞)), to a power law of the lattice size. In order to improve the accuracy of
the estimation, the (reweighting) temperature at whichM is to be sampled is slowly
varied aroundTc(∞) until the best fit is obtained. In the example considered above,
this leads toβ/ν = 0.103(2).

5.2.3 Discussion

Results for several pairs of (q, σ) values are summarized in Table 5.1 for the critical
exponents, and Table 5.2 for the critical couplings. On theσ = 1.0 boundary, only
exponent ratios are shown. It can be seen that these estimates match fairlywell with
those obtained from a previous Monte Carlo study based on the single-histogram
method and sizes up toL = 900 spins [19], and that the discrepancy with results
obtained from a transfer matrix approach in [130] never exceeds 8%.

As opposed to the conjecture made in [64], the exponentν does clearly depend
on q. This feature was also recently reported forq = 2 andq = 3 in a numerical
study exploring the largest cluster probability [326, 325]. It is interestingto note
that the “criticality” of the model decreases with increasingq for a given range
of interaction, in compliance with the convex shape of the tricritical lineσc(q)
(Fig. 4.14) obtained in Chap. 4.

If the relationσ = 2− η derived in [115] for theOn model, and in [315] for the
continuum version of the Potts model (yetprovided q< 3), holds also forq ≥ 3, the
simple behaviorγ/ν = 2− η = σ should be observed in the second-order regime.
As depicted in the sixth column of Table 5.1, the qualitative behavior follows the
conjecture, yet clearlyσ < 2 − η, and the discrepancy is remarkably higher for
q = 5 than forq = 3. Moreover, whileγ/ν appears to tend to 1 asσ → 1, it is
unclear whether this ratio varies linearly withσ, considering the small number of
data points available.

5.3 Long-range to short-range crossover: three decades
of controversies

As already mentioned in this chapter, one shouldnaivelyexpect a short-range be-
havior wheneverσ > 2, for thekσ term has then the same exponent as thek2 term in
Eq. 5.1, and the latter corresponds to the squared gradient term (in realspace) that
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Figure 5.1: The graph shows the peaks of the cross-cumulants of the magneti-
zation, Vmin

1 and Vmin
2 with respect to the lattice sizeL on a log-log scale, for

L = 50,100,150,200,400. The model parameters areq = 5 andσ = 0.9. The
power-law fit yields 1/ν = 0.6675(1) and 1/ν = 0.669(2) forV1 andV2, respec-
tively. Errors were computed from a bootstrap method; they are smaller thanthe
size of symbols.
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Figure 5.2: Maximum of the susceptibilityχmax plotted against the lattice sizeL,
for L = 50,100,150,200,400, and the following model parameter:q = 5, σ = 0.9.
A fit of the data points toχmax ∝ Lγ/ν yieldedγ/ν = 0.940(4). Errors are smaller
than the size of symbols.
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q σ ν−1 ν−1 [325] ν−1 [130] γ/ν β/ν

3 0.8 0.624(6) 0.61(2) 0.574 0.842(5) 0.101(5)
0.9 0.54(1) 0.48(1) 0.491 0.908(5) 0.053(5)
1.0 0.96(1) 0.025(8)

4 0.8 0.71(1) 0.67 0.882(3) 0.122(4)
0.9 0.610(5) 0.56 0.920(4) 0.050(3)
1.0 0.96(1) 0.022(9)

5 0.9 0.668(2) 0.62 0.940(4) 0.103(2)
1.0 0.97(1) 0.04(1)
1.0 [19] 0.966 0.017

Table 5.1: Critical exponents in the second-order regimeσ > σc(q), andq = 3,4,5.
Shown for comparison are results from Ref. [130] (transfer matrix method), from
Ref. [325] (largest cluster probability, with sizes up toL = 20000 spins), and from
Ref. [19] using a Monte Carlo single-histogram method.

q σ Tc (MF) Tc(χ) Tc(U(4)) Tc[325] Tc [131] Tc [251] Tc [130]
3 0.8 1.358 1.019(4) 1.03(1) 1.026(1) 1.01 1.0231

0.9 1.262 0.876 0.875 0.8735(10) 0.88 0.8785 0.874
5 0.9 0.947 0.743(2) 0.739(4) 0.74673 0.745

Table 5.2: Estimates of the critical couplings in the second-order regime. MF,
mean-field predictions;χ, using peaks of the susceptibility;U(4) using crossing
points of Binder cumulants of the magnetization; Ref. [325], Monte Carlo study
relying on the largest cluster probability, with sizes up toL = 20000 spins, Ref.
[131], Monte Carlo study based on histogramming and the Luijten-Blöte cluster
algorithm (q = 3) and a standard metropolis algorithm (q = 5); Ref. [251]), cluster
mean-field method combined with an extrapolation technique based on the VBS
(Vanden Broeck and Schwartz) algorithm; Ref. [130]), transfer matrixmethod
combined with finite-range scaling.
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stems from small-k expansions in short-range models. Yet the situation, as it turns
out, is notthat trivial, and has raised much controversy indeed during the last two
decades. A first contradition in this approach emerges for one-dimensional models,
where a phase transition at finite temperature occurs forσ ≤ 1 only [108, 124], so
that a crossover to short-range behavior can definitely not take place at σ = 2. A
second issue is related to theη critical exponent, since we haveηLR = 2 − σ, and
thusηLR = 0 atσ = 2, whereas the short-range exponentηS R, 0, with for instance
ηS R = 1 for all values ofq in the one-dimensional Potts chain (See appendix B)
andηS R= 1/4 for the two-dimensional Ising model. This would imply a disconti-
nuity in η atσ = 2. From a very general viewpoint, there are at least two possible
scenarios:

• eitherσ = 2 determines the locus of the crossover, and there is a jump in
η; following thermodynamic stability arguments, one must simply ensure
thatη ≤ 2+ σ, so that this scenario, though somewhat unsual in the theory
of critical phenomena, is perfectly allowed; still, one-dimensional models
would not fit into this scheme;

• or the crossover occurs at another value ofσ, i.e.,σco = 2 − ηS R, in which
case there is no longer a discontinuity; this would implyσco = 1 for the
Potts chain, in accordance with Dyson’s prediction of the absence of a phase
transition forσ > 1; for model with negative Fisher exponent (e.g., Yang-Lee
Hamiltonians with imaginary couplings), however, this is in contradiction
with the onset of the short-range universality class atσ > 2.

The best way to try to treat this problem from an analytical viewpoint is to con-
sider changes in universality classes, i.e., to be specific, to monitor the variation
of critical exponents withσ and to look for a change of regime at some cross-
over valueσco. In the language of Wilson’s renormalization theory, this question
reduces (alghough not trivially) to the investigation of the competition between
long- and short-range fixed points. Numerous works based on renormalized per-
turbation theory or on Wilson’s recursion relations have been performedin this
respect [292, 356, 357, 142, 315, 160, 159, 349], including specific investigations
in finite geometry [91, 80]; the main picture that seems to emerge today is the
prominent role played by the sign of Fisher’s exponent in the short-rangeregime
ηS Rwith respect to the locus of the crossover.

The second scenario mentioned above, along whichσco = 2 − ηS R, was first
proposed by Sak [292], on the grounds that higher order terms in theǫ-expansion
(Eq. 5.1), which were not taken into account in [115], influence the competition
between long-range and short-range fixed points. To be specific, this means that
the full functionalv2k2 + vσkσ must be considered in recursion relations, with the
short-range partk2 explicitly taken into account. By carrying out an expansion to
orderǫ2 (whereǫ = 2σ − D), Sak established that at the (Heisenberg-like) fixed
point, thev2 term is not zero to orderǫ2 (whereas it is zero to orderǫ). In other
words, starting fromv2 = 0, the short-range term increases under renormalization
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(because the recursion relation forv2 involvesvσ to orderǫ2), and starts to compete
with the long-range term. On the grounds that the choice of the field rescaling
factor ζ must depend on the sign ofη − ηS R, Sak established that this leads to a
special region of weak long-range interactions forσ > 2 − ηS R whereη = ηS R,
which corresponds toη and ǫ2 having the same magnitude. In this region, the
fixed point is given byv∗σ = 0, and the universality class is short-range. On the
other hand, ifσ is sufficiently small (i.e., below 2− ηS R), then the long-range
term wins out over the short-range one under renormalization and thev2 term can
be safely ignored. The scenario of Yamazaki [356] draws more or lessthe same
conclusions. These findings were later reassed to all orders of the expansion by
means of renormalized perturbation theory [160], and rederived for the random-
field Ising model with long-range interactions [52]. However, Van Enter [327]
pointed out that this scenario may be somewhat flawed with regard to models with
rotational symmetry breaking in their short-range regime (i.e., XY models inD ≥
3 dimensions in the case considered in [327]), since symmetry breaking should
be destabilized by the presence of an irrelevant long-range perturbation, which
according to the above scenario corresponds to 2− η < σ < 2.

Another expansion parameter,ǫ = 3σ−D, was considered by Priest and Luben-
sky [279] in the context of a (short-range) continuum version of the Ashkin-Teller-
Potts model. Here the authors suggested in their conclusion, as an extension of
their results to power-law decaying interactions, that the long-range fixed point is
again stable with respect to the short-range one as long asσ < 2− ηS R. They also
pointed out that the caseηS R < 0, which along the previous lines of arguments
should yield inconsistent behavior with a crossover taking place atσ > 2, might
actually be straightforwardly resolved by observing that the long-rangefixed point
no longer exists forσ > 2, implying that long-range behavior is dominant up to
σ = 2 only. The same conclusion appeared again in [315] (from an expansion
to second order inǫ). Systems withηS R < 0 (corresponding toφ3 theories, or
φ4 theories withD ≥ 4) were then reconsidered recently by Janssen [192], who
claimed that the boundary is given by 2− σco = ηS R also whenηS R < 0, owing
to the pivotal role played by nonquadratic terms of higher-order in the Ginzburg-
Landau functional (in particular thek2 ln k term that, incidentally, shows upalso
when expanding the Fourier transform of the interaction exactly atσ = 2).

Finally, it is worth mentioning the contribution to this debate by Wragg and
Gehring [349], who proposed an extension of the variational method of Takahashi
[311] to an Ising model with power-law decaying interactions (i.e. the long-range
part of the interaction is considered as a perturbation of the nearest-neighbor po-
tential, and the minimization of the free-energy is carried out with respect to the
last potential). In particular, the long-distance behavior of the correlationfunctions
was carefully examined, and it was established in this respect that the long-range
contribution to the correlation function is dominated by the short-range contribu-
tion forσ > 2− ηS R (including the one-dimensional case). No mention was made
here, however, of the influence of the sign ofηS R.
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5.4. Crossover in the three-state Potts chain: multicanonical simulations vs exact
transfer matrix

For systems with negative Fisher exponents, therefore, the situation seemsstill
rather unsettled, and numerical investigations on theD-dimensional long-range
Ising model withD > 4 would probably be enlightening in this respect. In two
dimensions (ηS R > 0), however, compelling evidence in favor of Sak’s scenario
was produced in a recent numerical study by Luijten [232]; it was claimed that

the modified Binder cumulantQ =
〈

m2
〉2
/
〈

m4
〉

takes its short-range value around
σ = 1.75, and similarly thatη exhibits a (clearly visible) kink at the same value of
σ, in accordance withσco = 2− ηS R= 7/4 for the two-dimensional Ising model.
In one dimension, on the contrary, the transfer matrix approach of Glumac and
Uzelac was quite unconvincing in this respect [130].

Still, the situation remains unclear in the one-dimensional case, where only ap-
proximate renormalization group results are available, and no numerical simulation
has adressed the issue thus far. It is interesting to note here that the valueσco = 1
predicted by Sak’s scenario is also the locus of the Kosterlitz-Thouless transition
suggested in [208, 72] (see, also, Sec. 4.3.6 for more material on this issue), so that
the phase diagram of the long-range Potts chain would in effect contain a region of
essential singularities for allσ ≥ 1, seeing that the nearest-neighbor model exhibits
this kind of divergences as well. From the viewpoint of numerical simulations, the
endeavor in one dimension is thus markedly challenging, since the presenceof es-
sential singularitiesa priori requires covering a large range in linear system size
for finite-size scaling to be reliable. It is the goal of the next section to investigate
these questions by means of a multicanonical approach; I will show, in particular,
that by relying on properly chosen indicators, it is perfectly possible to carry off
the investigation without having to resort to huge simulation sizes.

5.4 Crossover in the three-state Potts chain: multicanoni-
cal simulations vs exact transfer matrix

In this section, I investigate the crossover from short-range to long-range behavior
in the three-state Potts chain with power-law decaying interactions. I make useof
the multicanonical method outlined in Chap. 3, and concentrate onσ above the
boundary valueσco = 1, where a crossover is expected to take place along the line
of Sak’s scenario [292] (recalling thatγ/ν = 1 for all values ofq in the short-range
case,ηS R = 1, and this indeed leads toσco = 1). The choice ofq = 3 as the
particular value under investigation here is merely a matter of coherence with the
rest of this work, since the investigations (in particular in Chap. 4) targettedthe
phase diagram forq > 2. Investigating the Ising chain would not have made sense
in this respect.

As described above, the definition initially proposed by Sak in [292] on theo-
retical grounds, as well as the exact location ofσco within the interval [1.0,2.0], is
still somewhat controversial. Signs that the crossover takes place atσ ∼ 1 mightbe
seen from the dependence ofγ/ν onσ, as shown in Table 5.1:γ/ν indeed appears
to reach its short-range value asσ → 1−, yet this ratio proves no longer reliable
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abovethe boundary value, as we will witness below, and it will become necessary
to meet the problem from a completely new angle.

One of the key points in the present approach, indeed, is that I will be able
to glean crucial information over the change of regime from a careful comparison
of the temperature-dependence of (some carefully chosen) reweightedthermody-
namic quantities with the exactly known results in the nearest-neighbor case. This
is where the multicanonical method turns out to play a pivotal role, because ityields
reweighted averages over a large range of temperature and makes the comparison
pertinent. My first item of business will be to derive exact results in the short-range
case. This is most easily done using transfer matrices.

5.4.1 Exact results for the short-range chain: transfer matrix deriva-
tion

I first briefly review some exact results concerning theq-state Potts chain with
nearest-neighbor interactions. Detailed calculations can be found in Appendix B.
For q = 3, the transfer matrix is a 3× 3 matrix having three eigenvalues, which in
zero external field readλ1 = 3 cosh(β/2)−sinh(β/2),λ2 = λ3 = 2 sinh(β/2), where
β = 1/kT. By retaining the largest eigenvalueλ1 only, and taking the limitL→ ∞,
one successively obtains the free energy per spin

F(β) = − ln(2+ eβ)
β

and the specific heat

Cv(β) =
2β2

(sinhβ/2− 3 coshβ/2)2

From there on, the correlation length is then computed using the standard formula
[279] ξ = 1/ ln(λ1/λ2), which then yields

ξ(β) =

[

ln
3 cothβ/2− 1

2

]−1

Finally, the magnetic susceptibility is obtained using the fluctuation-dissipation
relation, which gives

χ(β) =
8
27
β(1+ 2eβ)

It is then straightforward to prove that, at the zero-temperature critical point, the
ratioγ/ν is given by limβ→∞ lnχ(β)/ ln ξ(β) = γ/ν = 1.

Numerical signs for exponential divergences In numerical simulations, the cor-
relation length is bounded by the finite lattice size. In the previous calculation, this
is equivalent to evaluating the ratioγ/ν at a finite (i.e., positive) temperature, as
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given by Eq. (B.1). This yields, however, a substancially overestimated result: for
instance, I obtainγ/ν ∼ 1.3 instead ofγ/ν = 1 for L = 400.

The important point is that this picture is perfectly supported by the simula-
tions, with for instance,γ/ν = 1.02(1), 1.14(1), and 1.23(1) forσ = 1.1, 1.5, and
4.0, respectively. Since the last two values are clearly overestimated (within error
bars), this in effect indicates the presence of exponential divergences characteris-
tic of the short-range regime. As a by-product, this also means drastically slow
convergence of finite-size scaling.

I would like to mention at this point that forσ = 1.1, the topological transition
atσ = 1.0 may very well make its influence (moderately) felt, owing to the fact
that the finite geometry induces a truncation of the long-range potential atL/2 (this
point was already addressed in Sec. 4.3.7 in the context of the unusual finite-size
effect observed on the line of inverse square interaction). This point is looked upon
in greater detail below by means of other indicators.

5.4.2 Pertinent crossover indicators and discussion

Specific heat Investigating the shape of the specific heat turns out to provide the
most tractable approach at medium lattice sizes where distinguishing between the
short-range and the long-range regime is concerned. This investigation,as will be
witnessed, corroborates the previous analysis.

In the thermodynamic limit, the specific heatCv(β) of the nearest-neighbor
model admits a maximumCmax

v = 0.7618 atkTm = 0.3767. It is enlightening to
examine the nonmonotonic behavior of this maximum at finiteL: this can be car-
ried out by computingF(β, L) and thenCv(β, L) while retaining all three eigenval-
ues. Since the calculation is fairly involved, and the final result admits no simple
expression, I shall hereafter simply refer to the corresponding curvesketched in
Fig. 5.3. Detailed calculations are reported in Appendix B, Eq. (B.2).

WhenL is increased, the peak of the specific heat first increases to a maximum,
and then graphs ofCv collapse and merge gently as the thermodynamic limit is
approached. Whenever it is witnessed in graphs obtained from simulation data,
this feature thus signals a short-range-like behavior.

Simulations were performed for 1.0 ≤ σ ≤ 4.0 for various lattice sizes between
L = 50 andL = 400, and I fixed the initial canonical temperature tokT0 = 1.0 so
that the maximum ofCv would be clearly visible within the whole rangeσ ≥
1.0. Cv was computed using the fluctuation-dissipation relationCv = (〈E2〉 −
〈E〉2)/(kT2L).

As appears obvious from a glance at Fig. 5.3, the casesσ = 1.0 andσ = 1.1,
on the one hand, andσ ≥ 1.2, on the other hand, display fairly distinct qualitative
behaviors:

• Forσ = 1.0, the specific heat reaches its maximum monotically, at least for
the lattice sizes that were investigated. The slowing down in the increase rate
as 1/L → 0 allows one to assess a finite maximum in the thermodynamic
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Figure 5.3: Specific heat for various lattice sizes andσ = 1.0,1.1,1.2,1.7, along
with the exact nearest-neighbor case, from right to left. Data for other values ofσ
have been omitted in order to preserve the clarity of the figure. Solid, dashed, dot-
ted and long-dashed styles refer toL = 50,100,200, and 400 respectively, except
for the short-range case where they refer toL = 5,10,100,200.

limit, and this shows thatCv is a nondivergent quantity. Since this is the
expected behavior if the line of inverse square interactions is indeed a line
of topological transitions (Sec. 4.3.6), this feature brings support to Cardy’s
scenario. The same behavior is observed forσ = 1.1, although in a smoother
way.

• On the contrary, the qualitative behavior is clearly different forσ ≥ 1.2,
where the maximum ofCv first decreases with increasing lattice size, and
then quickly reaches a plateau reminiscent of the exact short-range behavior
investigated above. While this plateau only slowly reaches the exact short-
range value asσ→ 4.0 (see Fig. 5.4), it can be concluded, however, that the
behavior is already short-range-like.

First, what we observe may boil down to the same finite-size effect as was
observed on the 1/r2 line at high values ofq (Sec. 4.3.7): there, I suggested that the
truncation of the long-range potential resulting from the finite lattice size (whatever
the periodic boundary conditions) artificially shifted the decay parameter toward
the mean-field regime; here, this would correspond to bringing the model closer
to the line of topological transitions atσ = 1, although it is difficult to say in a
more quantitative way what is the exact amount of “drift” that the Hamiltonian
experiences. Overall, since the truncation is all the more important that small sizes
are considered, the whole picture presented here is certainly consistentwith the
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Figure 5.4: Maximum of the specific heat vs inverse lattice size forσ =1.0, 1.1,
1.2, 1.3, 1.5, 1.7, 2.0, 3.0, and 4.0, from top to bottom. The solid line is a reminder
for the (exact) short-range case in the thermodynamic limit. Other lines are guides
to the eyes.

fact that the sizes investigated in the present work are rather modest (in comparison
with the sizes attainable with the breathing cluster method introduced in Chap. 6).

Second, the renormalization scenario of Sak (and related works, see Sec. 5.3)
implies that the crossover actually results from a competition between short- and
long-range fixed points. This competition, as seems manifest to me, may not re-
solve instantly wheneverσ crosses theσ = 1.0 line, and may thus smear the
boundary over some finite region. Incidentally, the same kind of effect was ob-
served by Luijten and Blöte in the two-dimensional long-range Ising model [232].
Additionally, it is hard to tell to what extent the subleading short-range interaction
(whenσ > 1) influences the finite-size scaling behavior in the interval [1.0,1.2].
Here, it would be interesting to make use of exact finite-size scaling relationsin
the spirit of the work of Chamati and Dantchev [80], and then to perform extensive
checks at large lattice sizes.

Magnetization and Binder cumulant The previous picture can be confirmed
by monitoring the behavior of critical temperatures with respect toσ. The mag-
netization is depicted in Fig. 5.5: graphs merge slightly abovekT = 0, whenever
σ ≥ 1.2, which means that there is no transition at finite temperature. While for
σ = 1.1 there remains some ambiguity due to statistical errors, forσ = 1.0 the
curves now clearly intersect aroundkT ∼ 0.7; this, at least, confirms that the be-
havior is no longer short-range. Incidentally, this temperature is consistent with the
value of 0.7089(2) obtained by Luijten and Messinfeld in [235], yet by monitor-
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Figure 5.5: Magnetization vskT for σ = 1.0,1.1,1.2, and 1.7 from right to left.
Solid, dashed, dotted and long-dashed styles refer toL = 50,100,200, and 400
respectively.

ing the finite-size scaling behavior of the universal critical jump
〈

m2
〉

/kT over far
larger lattice sizes.

I also computed critical temperatures from the crossing points of Binder cu-
mulants of the magnetization. This yieldsβc = 3.3, 6.5, and 19 forσ = 1.1, 1.3,
and 1.5. Concerningσ = 1.7 andσ = 2.0, cumulants no longer cross except at
kT = 0 within statistical error (the latter case givingβc between 150 and 200, yet
with excessive dispersion). While the crossover appears to take place inthe very
vicinity of the σ = 1.0 boundary, the critical temperature actually dies off quite
slowly to 0 asσ increases.

Overall, these results lend support to Sak’s scenario forσ > 1.0: a crossover
from long- to short-range behavior occurs wheneverσco = 2−ηS R. Nonetheless, it
is worth stressing that I found this crossover to occur within the finite, yet narrow
range 1.0 < σ < 1.2, and the pure short-range case to be reached in the limit
σ→ ∞ only. This is particularly apparent from the behavior of the specific heat.

Whether this results from the truncation of the long-range potential, from non-
trivial finite size effects due to the subleading short-range part of the interaction,
from a competition between fixed-points that does not resolve instantly asσ crosses
the 1/r2 line, or (to all probabilities) from a combination thereof, is still an open
question.
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Conclusion of Part II

In the second part of this thesis, the phase diagram of a long-range Pottschain was
extensively studied using a generalized-ensemble algorithm operating in themul-
ticanonical ensemble. In Chap. 3, a single-spin update version of this algorithm
was presented, and several improvements tailored to long-range models were pro-
posed. An improved recursion scheme was proposed that is able to efficiently
tackle the instability raised by the presence of unequally spaced low energylevels,
a peculiarity of long-range spin models. The choice of an efficient predictor and
a reliable convergence criterion was discussed, and shown to yield much quicker
convergence than with Berg’s original algorithm. The utility of a multicanonical
approach for the simulation of medium-sized long-range models was demonstrated
by tests of performance and accuracy over a large range of decay parameters: the
method efficiently circumvents the slowing down traditionally experienced at first-
order transitions, delivers an accurate estimate of the density of states over a large
energy range, and allows one to monitor thermodynamic quantities over a large
range of temperature with strikingly modest numerical effort.

In Chap. 4, the multicanonical algorithm was applied to the estimation of the
transition temperatures of aq-state Potts chain with power-law decaying interac-
tions. This study significantly extends the range of available estimates; in the first-
order regime of the model, the agreement with mean-field predictions is exception-
ally good. In particular, results are perfectly consistent with Tsallis’s conjecture
Tc ∼ 1/σ in the limitσ→ 0.

In order to locate the boundary separating the first- and second-orderregimes,
a new method was proposed that detects the order of the phase transition by fol-
lowing the position of spinodal temperatures as the decay parameter of the inter-
action is varied. The applicability of the method is not restricted to long-range
models, and it may represent an efficient, alternative way to other methods, e.g.,
Lee-Kosterlitz criterion or Binder cumulants of the energy. The multicanonical
method was shown to play a pivotal role in this method, owing to its ability to pro-
duce accurate estimates of the position of metastable states, as opposed to methods
based on multihistogramming. An efficient combination with the transition matrix
method was also proposed, yielding even more precise estimates, yet at the expense
of an overhead in computation time.

The application of the method to theq-state long-range Potts chain yielded
highly precise estimates of the boundary valueσc(q), the accuracy attaining two
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digits. In particular, the valueσc(3) = 0.72(1) is perfectly consistent with the
lower bound of 0.7 proposed by Krech and Luijten [213]: however, the precision
is markedly higher by an order of magnitude, although the simulations were per-
formed on lattices having fewer than 400 spins. On the line of inverse square
interactions, a new, unusual finite-size effects was observed. A detailed finite-size
scaling analysis showed that, while the transition seems to be first order at finite
lattice size, it becomes continuous in the thermodynamic limit. First, this offers
convincing numerical evidence supportingσc(q) < 1.0 for all q, and settles a long-
standing controversy surrounding the nature of the phase transition on theσ = 1.0
line. This result is one of the most surprising findings of this thesis part: it suggests
that finite-size scaling at first-order transitions is highly atypical in long-range mod-
els. I proposed several interpretations: first, every particle “sees” the boundaries in
a long-range system, and the truncation of the long-range potential may artificially
pull the decay parameter of the interaction towards the mean-field regime; sec-
ond, the usual physical meaning attributed to the correlation length in the caseof
nearest-neighbor models should be markedly challenged; third, the geometry of the
interface separating phases in coexistence is certainly far less trivial in long-range
models than in their nearest-neighbor counterpart. This suggests several interesting
directions for future works, in particular the developement of a theory offinite-size
scaling at first-order transition for long-range models, that takes metastable states
explicitly into account.

Finally, Chap. 5 explored the second-order regime of the model, and the crossover
from the long- to the short-range regimes. In the second-order regime, the relation
η = 2 − σ, conjectured to be exact forq = 2, was shown to yield an increasingly
high discrepancy whenq is increased, and its validity may just be reinforced in
the vicinity of σ = 1.0. By comparing the behavior of several reweighted ther-
modynamic quantities with a transfer matrix calculation carried out in the pure
short-range case, the crossover between the long-range and short-range regimes
was demonstrated to occur inside a narrow window 1.0 < σ < 1.2. This lends
strong support to a long-suggested renormalization group scenario. Aninterpreta-
tion of the finite narrowness of the window inside which the crossover takesplace
was provided in terms of the competition between short-range and long-range fixed
points.

To sum up, several controversies were reexamined and successfullysettled in
the second part of this thesis. Yet this also raised new, exciting questions regarding
the finite-size scaling behavior of long-range models at discontinuous transitions.
In order to investigate this questions, far larger linear sizes must be attained:this is
out of reach of the present multicanonical implementation. It is the goal of thenext
part of this thesis to introduce a new multicanonical method that efficiently tackles
this issue.
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Part III

Breathing clusters: a novel
approach to simulate long-range
models in generalized ensembles
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Chapter 6

Limitations of standard
multicanonical methods, and
beyond

In this and the following chapter, I introduce a new Monte Carlo method, the
breathing cluster method, that lumps together a cluster-update scheme and a mul-
ticanonical approach. The purpose of this method is twofold:

• first, it is aimed at improving the statistical efficiency of the Markov chain
by reducing correlations between successive measurements;

• second, it addresses the problem of scalability in simulations of long-range
models, by drastically reducing the algorithm complexity associated with the
computation of the lattice energy.

In the following chapter, I will show that this method draws within computa-
tion reach one of the challenging issues that was suggested at the end of Chap. 4:
the investigation of finite-size effects at first-order transitions in long-range spin
models. Yet prior to describing the method, and addressing the last issue, Iwill
examine the main limitations of standard multicanonical methods (i.e., relying on
single-spin updates), in a general context to begin with (Sec. 6.1), and then in the
context of long-range models (Sec. 6.2), and then I will describe the ingredients
that are required in order to carry out significant improvements over the existing
single-spin-flip scheme. Concurrent approaches will be described in Sec. 6.3, with
an emphasis on their limitation as regards long-range models. Finally, the main
outlines of the method will be given in Sec. 6.4. The method is then described in
deeper detail in the next chapter.

When implemented through single-spin updates (Chap. 3), the multicanonical
method is subject to two serious drawbacks. One drawback is tightly related tothe
dynamic characteristics of move updates based on single-spin flips, and is some-
what independent of the particular model Hamiltonian under study; the otherone is
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specific to long-range models, and stems from the huge number of interactionsto
be taken into account when one has to compute the energy of a long-rangemodel.

6.1 Non-optimal dynamic scaling

Let me first examine the dynamic aspect. It was shown by Berg that supercritical
slowing down is totally suppressed by a simulation with a multicanonical weight.
Specifically, tunneling times are reduced from an exponential-law to a power-law
τe ∼ Lz of the lattice size, as a result of the ability of the multicanonical weight
to assist the Markov chain in jumping across free energy barriers. However, the
dynamic exponentz is still substantially higher than the ideal valuez ∼ D that
should be expected from a perfect random walk dynamics [183, 93].

This ideal value can be obtained from the following line of argument. For the
sake of simplicity, I consider a Potts model with nearest-neighbor interaction and
an interaction constantJ = 1, on aD−dimensional lattice containingN = LD

spins. Assuming that each single-spin update ideally changes the lattice energy
by an amount±∆E, and considering that a lattice sweep (that is, one Monte Carlo
sweep) consists ofN single-spin updates, one may conclude that the random walk
has drifted by about

√
N∆E along the energy axis after one MC sweep. AfterN

lattice sweeps, the drift thus amounts toN∆E. Up to a multiplicative constant,
this is the energy interval between the energy peaksEo and Ed associated with
the ordered and disordered phases (up to yet another constant, this maybe the
interval between the ground state and the upper energy level). As a consequence,
a perfect random walker requiresN lattice sweeps to drift from one peak of the
energy histogram to the other peak. This means that tunneling times should ideally
scale asN = LD, andzideal = D.

For long-range models, it is relevant to mention that the distanceEd − Eo

the random walker must travel does not scale linearly with the number of spins.
This feature is especially apparent for interactions decaying as a powerlaw, where
Ed−Eo grows all the more faster with increasing lattice size thatσ comes closer to
0. As a result, the power lawτe ∼ Lz yields dynamic exponents which are underes-
timated with respect to the value given by a power law of the formτe ∼ (Ed−Eo)z.
As a result, the ideal value ofz might be lower thanD in this case. Where the per-
formance in terms of CPU load is concerned (and in particular if one is interested
in how tunneling times grow with the size of the system), I think that the traditional
definitionτe ∼ Lz is more meaningful: the crucial point is the reduction inz that
may be brought about when using other move updates.

It is crucial at this point to mention that all indicators of statistical efficiency
are subject to the same non-optimal scaling behavior, e.g., effective autocorrela-
tion times [178] and equilibrium times [139]. This is very similar to the behavior
observed in canonical simulations, and on exactly the same grounds, it is thus the
scalability of the algorithm as a whole which is at stake. I will scrutinize more
deeply into this issue in Sec. 7.4.2, and will show that the breathing cluster method
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engenders an optimal random walk also with respect to the indicators just men-
tioned.

It is equally important to mention that correlations between successive mea-
surements not only have an impact on the statistical efficiency of multicanonical
production runs, yet also represent a source of systematic error regarding the esti-
mation of the density of states [362].

One of the possible ways to get around these limitations is clearly to consider
a combination with a cluster algorithm. As was seen in Chap. 2, these algorithms
offer fast decorrelating capabilities, lead to drastically reduced dynamic exponents,
and thus improved accuracy for agivenrun length; this pertains to their ability to
get rid of spatial correlations by updating spins in a collective way. Yet, when
expressed in terms of computer load, the situation is less clear-cut, for cluster al-
gorithms may also pose huge demand in this respect. Overall, the former observa-
tion clearly acts as a spur to the development of multicanonical method including
cluster updates; the latter, however, implies that care must be taken as regards the
efficiency of the implementation, so that the gain in autocorrelation time is not
scuppered by the computational effort required to construct the clusters. This is
vital indeed in the context of long-range models. In this respect, the major break-
through that was recently initiated by the introduction of a cluster method whose
algorithm complexity scales roughly like the size of the lattice [227] (see, also,
Sec. 2.3.2), will play a pivotal role in the design of such a method.

6.2 Algorithm complexity and long-range models

The core issue in the simulation of long-range systems resides in the need to take
a huge number of interactions into account when computing the system energy.
For potentials restricted to two-body interactions, this task requires the order of N2

operations, whereN is the number of particles in the system.
However, computing the energy of the system is a crucial ingredient in a multi-

canonical simulation, for the random walk is controlled by a Markov weight which
hinges on the energy. On the contrary, canonical cluster algorithms do not require
such a step1. In the context of multicanonical simulations, the multimagnetic en-
semble [28] probably represents the only exception to the rule.

When single-spin updates are used, each attempted spin flip actually requires
the order ofN operations, since it is generally not necessary to recompute the
total lattice energy from scratch, yet this also means that a complete lattice sweep
requiresN2 operations as whole. Overall, this represented the main impediment to
the scalability of the multicanonical implementation used in Chap. 3, where I was
in practice limited to lattice sizes of around several hundred spins.

These observations suggest that, in order to improve the scalability of multi-
canonical algorithms (irrespective of the dynamic characteristics of the algorithm),

1Except if an estimate of the energy is explicitly needed.
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one must find a way to reduce the algorithmic complexity stemming from the com-
putation of the energy. For potentials that are invariants by translation, it turns out,
however, that there is a very efficient way of reducing this complexity, which con-
sists in computing thetotal lattice energy through a Fast Fourier Transform (FFT)
algorithm, since the complexity of these algorithms scales roughly asN ln N. This
approach, which pertains to the use of the convolution theorem (incidentallyin
widespread use, for nearly the same reasons, in the implementation of fast digital
filters in signal processing), was already suggested by Krech et al. [213], yet in the
context ofcanonicalsimulations. In the case of interest here, this would reduce the
number of operations required to compute thetotal energy of the lattice to that of
a nearest-neighbor model (up to a logarithmic factor).

However, meeting the problem from this new perspective requires in turn that
we are able to flip several spins at once: if this is not the case, that is, if wehave to
compute the energy after each single-spin flip, the total burden for a wholelattice
sweep will now amount to roughlyN2 ln N, which proves even worse than our
genuine single-spin flip algorithm (which, recalling, scales asN2). There is, here
again, a perfect way to lump all these requirements together in a single method,for
cluster updatesprovide what we are seeking: they “know” how to update several
spins at once in the most efficient way. If an efficient cluster algorithm can be
devised, then the benefit of such a method would be twofold:

• with respect to the computation of the energy, this would cut down the algo-
rithm complexity to that of a short-range model;

• on the dynamic side, one might expect — as a by-product — a gain with
regard to the dynamic exponents.

Noteworthy enough, the sameO(N2) complexity a priori arises when clus-
ter algorithms are implemented in the context of long-range models, seeing that
roughlyN2 bonds have to be considered for activation, and (to crown it all) a vast
majority of these bonds only have a negligible probability to be activated. In the
framework ofcanonicalsimulations of long-range models, the problem was ele-
gantly solved by Luijten and Blöte [227], who introduced an efficient algorithm
that is able to build clusters with a CPU load that is roughly independent of the
number of interactions per spin.

To recap, we have two ingredients in hand which, once combined, may cut
down the burden of computing the energy to that of a short-range model. Itturns
out, however, that there is yet another item of business to be carried out,and this
one is perhaps the central subject of this thesis part: how can wetechnicallyin-
clude cluster-updates in a multicanonical algorithm? Broadly speaking, the issue
amounts to plugging two schemes into one another, which are seemingly incom-
patible:

• on the one hand, cluster algorithms rely on a (canonical)temperaturein or-
der to create blocks of spins with the correct bond probability, i.e., one that
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ensures not only that detailed balance holds, yet also that the efficiency of
the algorithm is maximized (this implies, in general, that the critical point
and the percolation threshold coincide);

• on the other hand, multicanonical algorithms rely on thedensity of states
to meet their goals, namely, producing a flat histogram; the multicanonical
weight w(E) has a fundamentallynon-localnature, that loses track of the
symmetries of the model Hamiltonian; and yet these symmetries are crucial
to thetechnicalimplementation of a cluster algorithm.

It is the purpose of the next chapter to develop such a program, in an efficient
way (in particular whereease of implementationis concerned) and with wide ap-
plicability in mind (i.e., we would not like to restrict the method to apeculiar
multicanonical scheme).

Prior to going over this subject, however, I will briefly review a method pro-
posed in the mid-90’s by Janke and Kappler [182]: themultibondmethod com-
bines — from a clearly different perspective — cluster updates and generalized
ensembles weighting; I will explain why this approach is not suited for long-range
models.

6.3 The multibond algorithm and other concurrent ap-
proaches

As regards short-range spin models, the issue presented in the previousparagraph
was met by the multibond algorithm [182, 183, 178] (or variants thereof, [353],
including a combination with the transition matrix method [354]) and, although
with a somewhat different approach, by the hybrid daemon-cluster approach [291].
The common denominator to both methods is the fact that they combine ageneral-
ized ensembleweighting of the Markov chain with a global, i.e., cluster-like update
scheme, and in effect yield nearly ideal tunneling-time dynamic exponents. These
two methods, however, do not lend themselves to an efficient implementation in
the case of long-range interactions, since in particular they preclude the use of the
previously mentioned optimizations dedicated to long-range models.

The hybrid daemon-cluster algorithm [291] comprises two sub-algorithms: a
microcanonical cluster [87, 86], which simulates the system at a constant energy
using demons (these act as energy buffers, allowing the energy to slightly fluctu-
ate); and a so-called multicanonical demon refresh, which moves the systemfrom
one energy level to another by “refreshing” the demons. One the main impedi-
ment to the application of this method to long-range model is the very presence
of a long-range potential: the hybrid approach in [291] relies explicitly on the
presence ofequally spaced(discrete) energy levels to connect the microcanoni-
cal daemon and the multicanonical heat bath, while energy levels are unequally
spaced in long-range models (Chap. 3). In addition, assuming that a generalization
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of this approach to long-range modelsmightbe tractable, no microcanonical clus-
ter algorithm exists for these potentials, and in this respect an extension of Creutz’s
algorithm [86] is not trivial. Overall, the method introduced in the next chapter
will prove much more straightforward in its implementation, by relying on a single
update scheme.

The multibond method simulates the (nearest-neighbor) Potts model in a so-
called multibondic ensemble, where the role of the energy variableE is taken over
by that of the number of active bondsB. To be specific, the method resorts to amod-
ifiedpartition function of the model in its spin-bond representation (see Sec. 2.3.3),

ZFK =
∑

[σ]

∑

[b]

∏

〈i, j〉

(

pδσi ,σ jδbi j ,1 + δbi j ,0

)

wmubo(B)

where〈i, j〉 means that only pairs of nearest-neighbor spins are considered,B =
∑

〈i, j〉 bi j is the total number of active bonds,p = eβc − 1 is the bond probability
(which, in the case of a nearest-neighbor model, is unique), andwmubo(B) is a so-
called multibond weight which aims to enhance rare events. In this context, rare
events correspond tospin-bondconfigurations which are strongly suppressed, e.g.,
by a free energy barrier. The prescription of the authors is to setβc to the transi-
tion temperature (which, incidentally, requires that this last quantity be knownin
advance, even to a moderate accuracy).

The rationale behind this approach is the equivalence between the average en-
ergy and the average number of active bonds, i.e.,− 〈E〉 = (1+ 1/p) 〈B〉. This can
be readily derived by differentiating the (logarithm of the) partition function of the
model in its pure-bond representation, i.e.,ZRC (Eq. 2.9), with respect toβ, and
equating the result with− 〈E〉. Then it is assumed thatE andB roughly satisfy the
same proportionality relation as〈E〉 and〈B〉, i.e., up to thermal fluctuations in the
number of bonds for a given energy (and vice-versa). From there on, one possi-
ble implementation of the method consists in estimating the multicanonical weight
w(E), and then obtainingwmubo(B) from−E ∼ (1+ 1/p)B. Of course, this requires
knowingw(E) beforehand, but the authors in [182] argue that this can be carried
out by rescalingw(E) from an estimate obtained at a lower size2. This also requires
that the proportionality relation betweenE andB holds to a sufficient extent, so that
a flat histogram in thebond landscape indeed yields an equally flat histogram in
the energy landscape. In this respect, it is shown that this is the case, at least for
the sizes investigated by the author.

A variant was recently proposed by Yamaguchi and Kawashima [353] based
on the Wang-Landau algorithm, whereby the method directly estimates the density
of states in the bond space,n(B), and a correspondence betweenn(B) andn(E) is
derived analytically, so that thermodynamic averages (with respect toE) may be
obtained in the first place. This correspondence is intractable for long-range poten-
tials. Turning back to the original multibond approach, an extension to long-range
spin models would involve, however, mapping the spin model to a spin-bond rep-
resentation, with bond probabilitiespi j now depending on the interaction strength

2For long-range models, thismaybe tractable forσ large enough.
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Ji j between spinsi and j: the proportionality relation between the average energy
〈E〉 and the average number of bonds〈B〉 does no longer hold. Instead, it has to be
replaced with a proportionality relation involving〈E〉 and a linear combination of
〈

bi j

〉

coefficients, wherebi j = 1 whenever the bond between spinsi and j is active,
andbi j = 0 otherwise. From a technical point of view, this approach is somewhat
intractable as soon as the number of interactions between spins becomes large. As
a result, it does not prove efficient in the long-range case either.

In addition, there are two further impediments to the usability of the method
in the context of long-range models. First, analyzing first-order transitionshinges
on computing energy-related quantities, e.g., specific heats, Binder cumulants or
interfacial free energies, and we are still left with theO(N2) issue mentioned in the
previous section. Second, there is an additionalO(N2) cost related to the cluster
building operations: there areN2 possible bonds to test for activation, and further-
more most of these bonds only have a negligible probability of being activated.
The mechanism used in the multibondic method to build the cluster step by step,
i.e., broadly speaking, by computing the probability to activate a new bond from
the current number of active bonds, renders the implementation of Luijten-Blöte
cluster algorithm clearly intractable (in particular where resorting to cumulative
probabilities is concerned).

Finally, let me mention another approach based on multigrid methods [133].
These methods update blocks of spins on different length scales according to a
given sequence (rather straightforward in theunigrid approach; possibly involving
a renormalization scheme in thetrue multigrid approach). They have proven re-
markably efficient at reducing dynamic exponents to a nearly zero value [199]. A
combination with multicanonical weighting was presented by Janke and Sauer in
[186, 178] for the simulation of theφ4 field theory, and indeed multigrids methods
have focused (thus far) on systems with continuous degrees of freedom, e.g., lattice
field theories. In this respect, a connection with the Path Integral Monte Carlo was
also considered [187]. These methods will thus not be considered here.

6.4 A novel approach: breathing clusters and the micro-
canonical temperature

The key point of the method introduced in the next chapter is the control of the clus-
ter construction process by a so-called instantaneous temperature which depends
on the lattice energy. This quantity is estimated in a such way that, at each energy
level visited by the multicanonical random walk, clusters are built as if the system
were canonicallysimulated at this temperature: I show that the microcanonical
temperature is the best candidate in this respect, in that it guarantees the highest
decorrelating performance.

The choice of the microcanonical temperature as the temperature that drives the
cluster construction results in cluster bond probabilities changing continuously as
the available energy range is walked along by the random-walker: small clusters are
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built in the upper energy range (where the microcanonical temperature is large and
the bond probability is low), and conversely large clusters are grown in thelower
energy range. From a physical point of view, the average cluster sizeoscillates at
the rhythm of the random walker, evoking the picture of “breathing” clusters.

With regards to long-range models, and more generally spin models having
any number of interaction, I will explain how the method straightforwardly com-
bines with the efficient Luijten-Blöte cluster construction algorithm, and yield a
reduction of the algorithm complexity to that of a short-range model with the same
number of spins.

This new method is general and versatile in the sense that it can host a variety
of modern multicanonical algorithms dedicated to the estimation of the density
of states, whether iterative or not. In particular, I will consider its combination
with the recently proposed Wang-Landau method, which has proven to markedly
overcome the drawbacks encountered with Berg’s approach in terms of robustness
and scalability. I will also address its integration into the transition matrix method,
which turns out to provide, at the expense of a slight overhead, a very efficient way
of estimating the information required to properly steer the cluster construction.

The superiority of the method over concurrent multicanonical schemes will be
illustrated onq-state long-range Potts chains withq ranging from 3 to 12. I will
investigate chains containing up to 216 spins, otherwise largely out or reach of
other multicanonical methods, and show that this draws precise tests of finite-size
scaling within computation range (Sec. 7.6). These tests will be enlightening as
regards the finite-size scaling behavior of long-range models at first-order phase
transitions (this was one of the developments suggested at the end of Chap.4).

The emphasis will be clearly given to indicators of performance, including indi-
cators that were introduced only very recently, e.g., the estimation of equilibration
times fromχ2 regression [139]. I feel strongly, indeed, that a new Monte Carlo
method may demonstrate its superiority only after being intensively pitted against
the large variety of performance indicators available to date, notwithstandingits
ease of implementation. I will show that, in terms of computer load, the method al-
ready outperforms conventional local-update algorithms for sizes abovea hundred
spins in one-dimensional models

The next chapter contains a version of an article that was recently submitted,
and describes the method and the results in a very detailed way.
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Chapter 7

Fast Flat-Histogram Method for
Generalized Spin Models

With minor changes, this chapter reproduces a preprint submitted for publication
in Phys. Rev. E. In Sec.7.6.2, in particular, a paragraph dedicated to the finite-size
scaling behavior of the surface tension was added.

[cond-mat/0504367]
Abstract

We present a Monte Carlo method that efficiently computes the density of states for
spin models having any number of interaction per spin. By combining a random-walk
in the energy space with collective updates controlled by the microcanonical temper-
ature, our method yields dynamic exponents close to their ideal random-walk values,
reduced equilibrium times, and very low statistical error on the density of states. The
method can host any density of states estimation scheme, including the Wang-Landau
algorithm and the transition matrix method. Our approach proves remarkably pow-
erful in the numerical study of models governed by long-range interactions, where it
is shown to reduce the algorithm complexity to that of a short-range model with the
same number of spins. We apply the method to theq-state Potts chains (3≤ q ≤ 12)
with power-law decaying interactions in their first-order regime; we find that conven-
tional local-update algorithms are outperformed already for sizes above a few hundred
spins. By considering chains containing up to 216 spins, which we simulated in fairly
reasonable time, we obtain estimates of transition temperatures correct to five-figure
accuracy. Finally, we propose several efficient schemes aimed at estimating the mi-
crocanonical temperature.

7.1 Introduction

Long-range spin models have drawn increasing interest in the last decade, both in
the microscopic modeling of a variety of systems ranging from model alloys [125]
to spin glasses [121] to neural networks [10], and as powerful laboratory frame
to investigate fundamental issues in the physics of critical phenomena. These in-
clude, e.g., the effect of dimensionality [225], the crossover from short-range to
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long-range behavior [315, 232, 284], mean-field driven phase transitions [42], and
possible connections with Tsallis’s non-extensive thermodynamics [68, 332, 67].
Monte Carlo (MC) methods have now gained a prominent role in the investigation
of phase transitions in these models [227, 324, 19, 39, 41, 40, 326]. Inparticular, a
major breakthrough was recently initiated by the introduction of a (canonical)clus-
ter algorithm able to overcome the algorithm complexity inherent to long-range
(LR) models, namely, the need to take a huge number of interactions into account
at each Monte Carlo step (MCS) [227]. In a recent article, we proposed a gener-
alization of this algorithm to simulations in the multicanonical ensemble [285]. It
is the goal of the present work to introduce a general and versatile methodaimed
at embedding any cluster update scheme in a flat histogram algorithm, with special
emphasis given to LR spin models.

Whether short- or long-range interactions are considered, canonicalMC sim-
ulations of long-range spin models suffer indeed from severe shortcomings, the
use of cluster updates notwithstanding. First and foremost, models exhibitingfirst
order phase transitions or complicated energy landscapes experience supercritical
slowing down [31]: the time needed for the dynamics to tunnel through free en-
ergy barriers grows exponentially with the lattice size, leading to quasi ergodicity
breaking and unreliable statistics. Second, the computation of free energies and re-
lated thermodynamic quantities is highly involved, and a precise determination of
the order of the transition is often intractable. In practice, these shortcomings pre-
clude the use of canonical MC algorithms at first-order transitions exceptat modest
lattice sizes and in the case of weakly first-order transitions.

An efficient approach aimed at overcoming this limitation is the simulation
in generalized ensembles [166, 25], in particular its multicanonical flavor initially
proposed by Berg [30, 31], reconsidered in the context of transition matrix dy-
namics [341, 301] and recently revisited by Wang and Landau [335, 334]. The
key-idea here is to artificially enhance rare events corresponding to localmaxima
in the free energy, by feeding the Markov chain with an appropriate distribution
w(E). In themulticanonical ensemble, w(E) is set to the inverse of the density of
states, so that the resulting dynamics is a random walk in the energy space that
yields a flat histogram of the energy. Other ensembles have been proposed in the
last decade, including the 1/k ensemble, which enhances low-energy states [156],
and very recently, the optimal ensemble, which aims to optimize the distribution
w(E) with respect to the local diffusivity of the random walker, so that tunneling
times are minimized [319, 351]. While still broad, histograms engendered by these
last ensembles are no longer flat; in the optimal ensemble for instance, the his-
togram is slightly peaked around the critical region, so that the larger time spent by
the random walker inside the critical region makes up for the lower diffusivity in
this region.

When implemented through local (i.e., single-spin) updates [284], simulations
in the multicanonical ensemble suffer, however, from two serious hurdles. First,
while tunneling times — measured in Monte Carlo steps (MCS) — are reduced
from an exponential to a power lawτ ∼ Lz of the lattice size, the dynamic ex-
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ponentsz are still substantially higher than the ideal valuez ∼ D that should be
expected from the dynamics of a random walker [183, 93]. This observation, as we
will witness in this article, applies equally well to effective autocorrelation times
and to equilibrium times; this represents a serious hindrance in terms of scalability,
in particular whenever a higher precision is desired and large amounts of decor-
related data need to be gathered. In this respect, it is important to mention that
correlations between successive measurements do not only have an impact on the
statistical efficiency of multicanonical production runs, yet also represent a source
of systematic error regarding the estimation of the density of states [362]. A second
impediment to the scalability of local-update implementations specifically relates
to long-range models. Here, the very presence of long-range interactions makes
the computation of the energy — an essential ingredient of multicanonical meth-
ods — a very time consuming operation, namely, one associated with anO(L2D)
algorithm complexity. As a result, the demand on CPU time needed to generate
perfectly decorrelated statistics grows asLz+2D, with z> D.

In this article, we present a Monte Carlo method which successfully tackles
these issues by performing simulations in the multicanonical ensemble using col-
lective updates. Our methods combines the fast-decorrelating capabilities ofclus-
ter algorithms with the versatility of flat-histogram methods in an efficient and
straightforward way, and with wide applicability in view. In particular, it can be
readily combined with any iteration scheme dedicated to the estimation of the den-
sity of states, e.g., Wang-Landau’s method [335] or transition matrix algorithms
[341]. Additionally, while our method is presented here in the context of long-
range spin models, where it gives drastic improvements over commonly used meth-
ods, it is perfectly applicable to any class of models for which a cluster algorithm
exists in the canonical ensemble.

Noteworthy enough, embedding a collective update scheme in a multicanonical
algorithm is not straightforward, however, due to the fundamentallynon-localna-
ture of the multicanonical weightw(E). Indeed, cluster algorithms depend heavily
upon particular symmetries of the model Hamiltonian, whichw(E) does not keep
track of; in particular, there is no longer a canonical temperature. With simulations
of spin models with nearest-neighbors interactions in view, several attempts have
been made at combining cluster updates with multicanonical methods in some way
or another during the last decade: the multibond algorithm [182, 183, 178,73]
or variants thereof targeting Wang-Landau’s algorithm [353, 351] simulate the
model in its spin-bond representation; Rummukainen’s hybrid-like two-step algo-
rithm lumps together a microcanonical cluster algorithm and a multicanonical dae-
mon refresh [291]. As opposed to these, however, our method relies ona cluster-
building process which simply depends on the microcanonical temperature ofthe
current configuration — a quantity that may be readily derived from the estimated
density of states — in order to determine appropriate bond probabilities. In partic-
ular, it does not require prior knowledge of the transition temperature, asis the case
in the multibond method. We further show that our approach makes it particularly
straightforward to incorporate two optimization schemes dedicated to LR models
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[227, 213], which cut down the algorithm complexity fromO(L2D) to O(LD ln LD).
As a result, the total demand on CPU time with respect to uncorrelated data is
reduced to approximatelyL2D ln LD, since cluster updates also lowerz to around
D; where LR models are concerned, the benefit of cluster updates is thus clearly
twofold. Let us also mention that, as a by-product, using cluster updates provides
improved estimators for the statistical moments of the order parameter [325] and
for spin-spin correlation functions; for instance, the last quantity can bebetter es-
timated by counting the fraction of time two given sites belong to the same cluster
[261, 262]. Further interesting information, including information connected with
fractal geometry, may also be gleaned from cluster statistics [13, 189].

Overall, the sharp reduction of the computer load brought about by our method
allowed us to studyq-state Potts chains with 1/r1+σ interactions containing up to
216 spins in a few days on a modern Intel-based computer. It must be noted that,
with standard multicanonical methods based on single-spin updates, such huge
sizes are simply intractable, since the largest size of 216 investigated in this work
would demand several months of computation. As regards dynamic performance,
we obtain a substantial reduction in the dynamic exponent, from e.g.,z ∼ 1.35(3)
to z∼ 1.05(1) forq = 6 andσ = 0.7. We also show that our method produces faster
equilibration, lower effective autocorrelation times, and — where implementations
based on the Wang-Landau algorithm are concerned — lower statistical errors on
the estimate of the density of states, e.g., of nearly an order of magnitude forq = 6,
σ = 0.9 andL = 512 spins. As a result, we obtain estimates of transition tempera-
tures that have a noticeably higher precision than those obtained using local updates
[284] or standard canonical methods [324, 19]. Finally, in order to check that our
method did not produce systematic errors, we performed several simulations of the
two-dimensional seven- and ten-state Potts models with nearest-neighbor interac-
tions and sizes up toL = 256× 256. We obtain dynamic exponents close to the
ideal random-walk valuez ∼ 2. Although computed from rather modest statistics,
our estimate of the interfacial free energy for the largest size reaches aprecision of
four digits. In this respect, our method compares perfectly well with other meth-
ods operating in the multicanonical ensemble, and represents an alternativeway
for short-range spin models.

The layout of this article is as follows. In Sec. 7.2, after briefly reviewing
some prominent features of multicanonical methods, we explain how we combine
a multicanonical weighting with collective updates, with special emphasis given
to the detailed balance equation. Section 7.3 addresses optimizations dedicatedto
long-range models. Numerical results regarding the dynamic characteristics of our
method are presented in Sec. 7.4. In Sec. 7.5, we compare our results forthe two-
dimensional Potts model with nearest-neighbor interactions, with exactly known
results, and section 7.6 is devoted to the investigation of the precision of our method
in the context of the long-range Potts chain with power-law decaying interactions.
Overall, we pay particular attention to comparison with other algorithms operating
in the multicanonical ensemble, especially in terms of tunneling rates, dynamic
exponents and estimates of thermodynamic averages. Finally, we discuss several
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procedures aimed at estimating the microcanonical temperature, and in particular,
how we can efficiently combine our method with the transition matrix approach.

7.2 A method to embed cluster updates in a flat histogram
algorithm

Monte Carlo simulations are based on the generation of a Markov chain of config-
urations{σi}, where each configuration is assigned a weightw[E(σi)] correspond-
ing to the probability distribution one wishes to sample. In canonical simulations,
i.e., carried out at a fixed inverse temperatureβ, one chooses a Boltzmann weight
w[E(σi)] = e−βE(σi ), thus thermodynamic averages are straightforwardly obtained
by computing the appropriate moments of the data accumulated at the given tem-
perature. On the other hand, reweighting methods based on multihistogramming
[114] are hampered at large lattice sizes by the narrowness of the energy window
that is sampled, let alone additional supercritical slowing down. In the multicanon-
ical ensemble, one allows the dynamics to jump across free energy barriersand,
from a more general standpoint, to sample wide energy windows, by producing a
flat energy distribution over the energy range of interest for the problem at hand.
This is formally carried out by settingw(E) = e−S(E) ∝ 1/n(E), wheren(E) is the
density of states andS(E) is the microcanonical entropy. This in effect leads to
N(E) ∝ n(E)w(E) = const. for the number of visits to energyE. Since the den-
sity of states is a priori unknown,w(E) is estimated using an iterative procedure
initially fed from, e.g., a canonical guessw(E) = e−β0E at a carefully chosen in-
verse temperatureβ0, a flat guessw(E) = 1, or — whenever feasible — a properly
scaled estimate obtained at a smaller lattice size. Thermodynamic quantities that
depend solely on the energy, like the specific heat or Binder cumulants, can then be
computed directly from the estimated density of states. Other quantities, e.g., those
depending on the order parameter, are obtained through a reweighting procedure
based on data gathered during an additional production run.

Historically, Berg’s recursion scheme [23, 24] was the first iteration procedure
specifically dedicated to multicanonical simulations. It consists in accumulating
histogram entries of the energy during each iteration run, and updatingw(E) from
the histogram of the energy obtained in a previous iteration run, until eventually
the histogram becomes flat up to a given tolerance. Entropic sampling [218]more
or less boils down to the same key principle. Both methods suffer, however, from
poor scalability. Looking at this issue from a slightly different angle, the recently
proposed Wang-Landau acceleration method [335, 334] updatesw(E) in real-time
during the course of the simulation, performing independent random walksin dis-
tinct energy ranges. Since modifying the weight of the Markov chain during a
simulation breaks detailed balance, the amount by whichw(E) is modified during
a given iteration is decreased from one iteration to the other until it reachesa neg-
ligible value. As a result, detailed balance is approximately restored in the last
step of the iteration scheme. In this regard, an original approach aimed at reducing
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the statistical error on the estimate of the density of states was recently proposed
by Yan and de Pablo [358], whereby the density of states is obtained by integrat-
ing an instantaneous temperature computed from configurational informationor
from a so-called multimicrocanonical ensemble. Finally, a large class of iteration
schemes have been proposed that are based on matrices of transition probabilities
[301, 81, 341, 337, 339] or a combination thereof with Wang-Landau’salgorithm
[299, 304]. Here, the density of states is computed through a so-called broad his-
togram equation involving infinite temperature transition matrices, where transi-
tion matrices keep track of the microcanonical average of the number of potential
moves from one energy levels to another (Sec. 7.7 gives more details on how our
method can efficiently capitalize on transition matrices). Historically, procedures
based on transition matrices were termedflat histogram methodsin order to distin-
guish them from Berg’s multicanonical method, although both approaches ineffect
yield a flat, broad histogram. To sum up, the main benefit of multicanonical meth-
ods is twofold: first, a wide energy range is sampled, irrespective of the presence
of free energy barriers; second, the methods yield a direct estimate of thedensity
of states.

A local-update implementation of a multicanonical algorithm may consist in
updating a single spin at a time and accepting the attempted move from statea
to stateb with a probability given byW(a → b) = min[1,eS(Ea)−S(Eb)]. We now
show that the microcanonical temperatureβ(E) defined asdS(E)/dE is a relevant
quantity for the acceptance rate of this process. DenotingEb = Ea + ǫ, we expand
the probabilityW(a → b) for small ǫ, and obtainW(a → b) ∼ min[1,e−β(Ea)ǫ ].
This shows that, for small enough energy changes, the dynamics is equivalent to
that of a canonical simulation at an inverse temperatureβ(E). Our departure point
for a collective-update implementation in the multicanonical ensemble is thus to
build clusters of spins with the same bond probabilities as would be given by a
canonical simulation at inverse temperatureβ(E).

Although our algorithm may be equally well applied to other spin models, e.g.,
models incorporating disorder or exhibiting a continuous symmetry, we now con-
sider, for the sake of clarity, a generalized ferromagnetic spin model with aZq

symmetry, whose Hamiltonian readsH = −
∑

i< j Ji jδσi ,σ j . HereJi j > 0 and the
σi variables can take on integer values between 1 andq. Taking guidance from
Swendsen-Wang’s cluster algorithm [309], we start from an empty bondset, con-
sider each pair of spins{σi , σ j} in turn, and activate a bond between them with
a bond probability given byπi j (Ea) = δσi ,σ j

[

1− e−Ji jβ(Ea)
]

, whereEa is the cur-
rent lattice energy andβ(Ea) the inverse microcanonical temperature at energyEa.
Efficient ways of estimatingβ(E) are considered later on in Sec. 7.7. Then, we
identify clusters of connected spins using, e.g., a multiple-labeling scheme [161],
draw a new spin value at random for each cluster, and accept the attempted move
with an acceptance probabilityA(a → b) which ensures that detailed balance is
satisfied. The derivation of this probability may be carried out in the following
way. First, the total acceptance probabilityW(a→ b), i.e., the quantity that enters
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detailed balance in such a way thate−S(Ea)W(a→ b) = e−S(Eb)W(b→ a), is split
into two termsP(a → b) andAflip(a → b) representing aproposed update prob-
ability and anacceptance probabilityfor the proposed update, respectively. It is
straightforward to show that the choiceAflip(a→ b) = min

[

1, P(b→a)
P(a→b)e

S(Ea)−S(Eb)
]

satisfies the detailed balance equation. Let us denoteB the set of active bonds over
the complete graphG engendered by all possible interactions: theproposed update
probability is given by the probability to construct a given setB from an empty
bond set, i.e.,

P(a→ b) =
∏

bi j∈B
πi j (Ea)

∏

bi j∈G\B
[1 − πi j (Ea)].

After simplification, we obtain forP(b→a)
P(a→b) ,

eβ(Eb)Eb−β(Ea)Ea
∏

bi j∈B

eJi jβ(Eb) − 1

eJi jβ(Ea) − 1
;

whence

Aflip(a→ b) = min




1,

eα(Ea)

eα(Eb)

∏

bi j∈B

pi j (Eb)

pi j (Eb)




, (7.1)

whereα(E) = S(E)−β(E)E andpi j (E) = eJi jβ(E)−1. This expression can be further
simplified if we consider long-range models whose coupling constant depends only
on the distance between spins, i.e.,Ji j = J(l), wherel = dist(i, j). We have for
Aflip(a→ b):

Aflip(a→ b) = min




1,

eα(Ea)

eα(Eb)

∏

l>0

[

pl(Eb)
pl(Ea)

]B(l)



, (7.2)

whereB(l) stands for the number of bonds of lengthl. It is worthy of mention that,
if one looks at this equation from the standpoint of canonical simulations at inverse
temperatureβ0, we havew(E) = e−β0E; whenceβ(E) = β0 andα(E) does no longer
depend onE. As a result, the acceptance rateAflip(a→ b) is equal to 1 and we are
back to the original Swendsen-Wang algorithm.

It is also crucial to underline that it is the microcanonical temperature, i.e., the
lattice energy in the first place, which entirely governs the construction of clusters;
indeed, for a given lattice configuration at energyE, bonds are placed as if the
model were simulated at its microcanonical temperature using a Swendsen-Wang
algorithm. As a result, cluster bond probabilities change continuously as the lattice
configuration walks along the available energy range of the random walk,so that,
e.g., small clusters are built in the upper energy range and conversely large clusters
in the lower energy range.
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7.3 Optimization for long-range models

7.3.1 Computing the lattice energy through FFT acceleration

As is apparent in Eq. (7.1), determining the acceptance rate of a cluster flipde-
mands that we compute the energy of the new (attempted) lattice configuration,
which for long-range models is anO(L2D) operation. This is similar to the local-
update case, where performing one MC step, i.e., updatingLD spins subsequently,
takes a CPU time proportional to the square of the number of spins, seeing that LD

operations are needed after each single spin update to compute the new partial en-
ergy between the updated spin and the rest of the lattice. Recently, Krech and Lui-
jten proposed an algorithm that is able to compute the energy of a model governed
by translation invariant interactions inO(LD ln LD) operations [213]. This method
leans on the convolution theorem and the Fast Fourier Transform (FFT),for which
numerous efficient radix-based implementations are available. As a result, updat-
ing the lattice configurationglobally rather than a single spin at a time allows us
to cut theO(L2D) complexity down to anO(LD ln LD) one. A crucial point to be
noted here is that this reduction is absolutely intractable with single-spin updates,
owing to the very reason that the energy would have to be computed again after
each single-spin update; this requiresLD operations, and an FFT algorithm would
output no gain at all.

Let us assume that we can write down the model Hamiltonian as a sum of dot
products, i.e.,H = −1

2

∑

i, j Ji j ~S(i) · ~S( j), with Ji j invariant by translation. This is
straightforwardly done whenq = 2, since in this case the dot product reduces to
a product of scalar Ising spins. As we will witness in a moment, the presenceof
a delta Kronecker symbol in the Hamiltonian wheneverq > 2 requires, however,
a minor transformation of the Hamiltonian. For simplicity, we consider hereafter
a one-dimensional lattice with an interactionJ(l) depending on the distancel be-
tween spins. The line argument is similar in higher dimensions, with the sole ex-
ception that multidimensional Fourier transforms are then performed. The Discrete
Fourier Transform (DFT) of the spin sequence{~S(l)}l=1...L reads

~̃S(k) =
l=L−1∑

l=0

~S(l)e−i2πkl/L,

and reciprocally,

~S(l) =
1
L

k=L−1∑

k=0

~̃S(k)ei2πkl/L.

Similarly, we define the DFT of the sequence of coupling constants{J(l)} as

J̃(k) =
l=L−1∑

l=0

Jpbc(l)e
−i2πkl/L,

whereJpbc(l) incorporates the effect of Infinite Image Periodic Boundary Condi-
tions (IIPBC) [67], that is,Jpbc(l) =

∑+∞
m=−∞ J(l +mL); for algebraically decaying
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interactions, this sum can be exactly expressed in terms of Hurwitz functions[284].
We diagonalize the original HamiltonianH by rewriting it in terms of theJ̃(k) and
~̃S(k),

H = − 1
2L

k=L−1∑

k=0

J̃(k)~̃S(k) · ~̃S(−k),

where it should be emphasized that~̃S(−k) and ~̃S(k) are complex conjugates, since
the original vectors~S(l) have real coordinates. By relying on an FFT radix-2 algo-
rithm, the task of computing the lattice energy is consequently reduced toO(L ln L)
operations.

For q > 2, the Kronecker delta symbol in the Hamiltonian unfortunately rules
out the previous diagonalization. One way to resolve this issue is to map theq-
state Potts model onto a (q− 1)−dimensional vector model, so that the Kronecker
delta function in the original Hamiltonian is turned into a dot product. We define
a one-to-one mapping between each Potts spinσ = 1 . . .q and a unit-length vector
~S(σ) belonging to a (q− 1)-dimensional hypersphere, so that~S(σ) · ~S(σ′) =

qδσ,σ′−1
q−1 .

It is straightforward to prove that
∑

σ
~S(σ) = 0, and that

H =
q− 1
2q

∑

i, j

J(i − j)~S(σi ) · ~S(σ j ) +
1
q

∑

i< j

J(i − j).

In the case of the three-state model, this transformation is equivalent to mapping
Potts variables onto the complex plane, i.e.,σ → S(σ) = ei2π(σ−1)/3, and writing

the dot product~S(σi ) · ~S(σ j ) asRe{S(σi )S(σ j )∗}. In this case, the term̃~S(k) · ~̃S(−k) be-
comes|S(k)|2, whereS(k) is the DFT of the sequence of (complex) variables{S(σ)}.
This reduces by one the number ofO(L) operations required, since computing a dot
product is no longer required.

For q > 3, spin vectors on the (q− 1)−dimensional hypersphere may be deter-
mined by using hyperspherical coordinates inD = q − 1 dimensions, i.e., for the
ith vector~S(i) (with 1 ≤ i ≤ q),

x(i)
1 = sinθ(i)1 sinθ(i)2 . . . sinθ(i)q−3 sinθ(i)q−2

x(i)
2 = sinθ(i)1 sinθ(i)2 . . . sinθ(i)q−3 cosθ(i)q−2

x(i)
3 = sinθ(i)1 sinθ(i)2 . . . cosθ(i)q−3

. . .

x(i)
q−2 = sinθ(i)1 cosθ(i)2

x(i)
q−1 = cosθ(i)1

We initially setθ(i)i = 0 for 1≤ i ≤ q− 2, θ(i)j = α j for j < i ≤ q and 1≤ j ≤ q− 3,

andθ(q−1)
q−2 = −θ

(q)
q−2 = αq−2. There remainsq− 2 anglesα j to be determined from

q− 2 equations~S(i) · ~S(i+1) = −1/(q− 1) with 1≤ i ≤ q− 2, from where we obtain
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α1 = arccos−1
q−1, cosα j+1 =

cosα j

1+cosα j
, and thus by induction cosα j =

−1
q− j . After a

bit of algebra, we find~S(1) = (0, . . . ,0,1), and

~S(i) = ( 0, . . . ,0
︸  ︷︷  ︸

q−1−i terms

,

√

q(q− i)
(q− 1)(q− i + 1)

,

{x(i)
q−1−i+ j}1< j<i ,

−1
q− 1

)

for 1 < i < q, where the (q− 1− i + j)th coordinate reads

x(i)
q−1−i+ j = −

√

q
(q− 1)(q− 1− i + j)(q− i + j)

.

~S(q) and~S(q−1) differ only in the sign of their first coordinatex1. Once these vectors
have been computed for a givenq, which may be done on start-up, determining the
lattice energy requires, first computing the DFTS̃ j(k) of each sequence of coordi-
nates{~S(l)·~S( j)}l=1,...,L, and then evaluating the double sum

∑k=L−1
k=0

∑q
j=1 J̃(k)|S̃ j(k)|2.

As a result, the whole operation is associated with aO(qL ln L) complexity — or
in generalO(qLD ln LD) —, provided the implementation relies on a FFT radix
algorithm. As a by-product, it should be noted that once the Fourier compo-
nents have been computed, it is straightforward to derive the Fourier transform
of the spin-spin correlation functions at any inverse temperatureβ from g̃β(k) =
1/L

〈∑q
j=1 |S̃ j(k)|2

〉

β
, where the mean value is obtained from a reweighting proce-

dure. At large lattice sizes, the requirement thatL Fourier components be stored
at each MCS may constitute a significant challenge in terms of computer memory;
in this case, a practical work-around consists in computing microcanonicalaver-
ages for each energy level visited during the simulation, and then to perform the
reweighting procedure directly from these microcanonical averages. In the case of
long-range interactions, careful attention must be paid, however, to the influence
of the discretization of the energy axis in terms of systematic error.

7.3.2 Efficient cluster construction for long-range interactions decay-
ing with the distance

For long-range spin models, building a new cluster at each MCS takes the order of
L2D operations, sinceLD(LD − 1)/2 pairs of spins are considered in turn for bond
activation. When interactions decay with distance, the probability of adding abond
between two spins falls off quite rapidly as the distance between them increases. A
significant amount of time during the construction of the cluster is thus wasted be-
cause an overwhelming number of bonds are considered for activation which have
only a negligible probability to be activated. Even in the case of interactions decay-
ing as 1/|i− j|1+σ with σ close to 0, does the bond count never exceed a few percent
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of the whole number of available bonds. In this respect, switching from a local-
to a global- update scheme might well be an ill-fated choice as the gain in terms
of autocorrelation time is spoiled by the exceedingly time consuming construction
of the cluster. However, an efficient construction method was proposed by Luijten
and Blöte in the recent past [227], with an efficiency that is independent of the
number of interactions per spin, and a CPU demand that scales roughly asLD. The
rationale behind this method is to use cumulative probabilities, whereby instead of
considering each spin in turn for addition to a given cluster, it is the index ofthe
next spin to be added which is drawn at random. We now give a sketchy outline of
the method in the context of long-range chains. Extensive details may otherwise
be found in [227, 226]. First of all, the probability to add a bond is split up into
two parts, namely, (i) a provisional probabilityπl(E) (hereafter simply denotedπl)
depending on the distancel = |i − j| between spins and on the lattice energyE, and
(ii) a factor f (σi , σ j) controlled by the spin values, e.g., a Kronecker delta symbol
in the case of a Potts model. If 0 designates the index of the current spin to which
we are adding bonds (i.e., spin indices are considered to be relative to the current
spin), then the provisional probability of skippingk− 1 spins and bonding the cur-
rent spin with a spin at positionk > 0 is given byP0(k) =

∏k−1
m=1(1− πm)πk. From

there, one builds a table of cumulative probabilitiesC0( j1) =
∑ j1

k=1 P0(k) for all
j1 > 0, so that the indexj1 of the spin to be bound with current spin 0 is obtained
by first drawing a random number 0< r < 1 and then reading outj1 from the table,
i.e., j1 is such thatC0( j1 − 1) < r < C0( j1). Standard binary-search algorithms
may be used for this purpose. Last, a bond is activated between spins 0 and j1 with
a probability f (σ0, σ j1), and we proceed further with the computation of the index
j2 > j1 of the next spin to be bound with current spin 0. The corresponding provi-
sional probability thus becomesP j1(k) =

∏k−1
m= j1+1(1 − πm)πk, and the cumulative

probabilities readC j1( j2) =
∑ j2

k= j1+1 P j1(k). The same procedure is repeated for
{ j3, j4, . . .} until we draw ajα > L, in which case we jump to the next current spin,
which in a one-dimensional model is the nearest-neighbor of the previous current
spin. In addition, there are two formulas which make it easier to compute cumula-
tive probabilities: first, one can show thatC0( j) = 1−exp[−β(E)

∑ j
k=1 J(k)], where

E is the energy of the current configuration, and second, the cumulative probabili-
tiesC jα( jα+1) can be straightforwardly derived from theC0( j) coefficients through
the relationC jα( jα+1) = C0( jα+1)−C0( jα)

1−C0( jα)
. It follows from the last relation that, instead

of building a look-up table for eachC jα( jα+1), we may as well draw a random num-
ber 0< r < 1, transform it tor ′ = r[1 −C0( jα)] +C0( jα), and choose the next spin
to be added from the relationC0( jα+1 − 1) < r ′ < C0( jα+1). In practice, we thus
simply need to compute a single look-up table filled with

∑ j
k=1 J(k) for each j at

the beginning of the simulation, from where we will derive theC0( j) coefficients
at each new MCS corresponding to a lattice configuration with a given energy E.
This last task requires the order ofLD operations. To sum up, the construction of
each cluster thus consists in choosing a “current” spin amongL − 1 possible spins
in turn, e.g., starting from the leftmost one, and then activating bonds between the
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current spin and other spins located to its right by drawing a random number, scal-
ing it, and selecting the bond indices from a look-up table containing theC0( j)
coefficients at energyE. Once each spin has been considered as a current spin, a
cluster multiple labeling technique can eventually be used to identify every set of
spins actually belonging to the same cluster [161].

7.4 Numerical tests of algorithm performance

In this section, we address the performance of our algorithm in terms of dynamic
behavior. Since our work focuses mainly on long-range spin models, we decided to
perform intensive numerical tests on the one-dimensionalq-state Potts chain with
LR interactions 1/|i − j|1+σ decaying as a power law of the distance between spins.
The rich phase diagram of this model, and the fact that several numericalstudies
have been carried out on this model in the recent past, makes it a perfecttest-case.
For the sake of comparison with other numerical methods, and in order to ensure
that our algorithm did not produce systematic errors, we also performed several
tests on the two-dimensional model with nearest-neighbor (NN) interactions,for
which exact results are known (see [46, 59]; also references in [179]). Both mod-
els are known to exhibit a first-order transition for an appropriate set ofparameters,
namely,q > 4 for the NN model [350], andσ < σc(q) for the LR one, with for
instanceσ(3) = 0.72(1) [284]. We chose a set of parameters that would allow us
to observe both weak and strong first-order transitions, and concentrated on sev-
eral indicators of performance, reliability, and scalability: these include tunneling,
equilibrium and effective autocorrelation times, and mean acceptance rates. These
indicators inform us about the efficiency with which the Markov chain reaches the
equilibrium distribution and explores the phase space. They also tell us at what
rate successive measurements decorrelate from each other, or equivalently what
amount of resources is needed to obtain reliable statistics. Overall, they arethere-
fore good indicators of whether CPU resources are efficiently utilized or not. As
regards scalability, we also computed the dynamic exponents associated with tun-
neling and equilibrium times; these indicate how fast needs in CPU time grow with
the lattice size.

All densities of states were calculated by means of the Wang-Landau algorithm,
whereby, starting from an initial guess of the density of statesn(E), we updaten(E)
after each visit to energy levelE according to the rule lnn(E) ← ln n(E) + ln f ,
where lnf is hereafter termedWang-Landau modification factor. In the case of
LR models, the unequal spacing of energy levels and the existence of energy gaps
in the vicinity of the ground state required that we introduced a few changesover
the original version. In particular, using an interpolator for lnn(E) turned out to be
mandatory in order to compensate for the finite width of histogram bins — as would
also be required for models having a continuous symmetry; indeed, we observed
that using large bins tends to strongly reduce the acceptance rate if no interpolator
is used. Bezier splines provide good interpolators, although a linear interpolation
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Figure 7.1: Mean acceptance rate as a function of the energy per spin for the six-
state long-range Potts chain withσ = 0.7, andL = 1024 spins. The dashed line
shows the estimated inverse microcanonical temperature. The vertical dottedlines
indicate the position of the histogram peaks corresponding to the ordered and dis-
ordered phases.

with a slope given by the microcanonical temperatureβ(E) also proved to be par-
ticularly efficient whenever this last quantity was made available by other means,
e.g., the transition matrix.

For small and medium lattice sizes, we systematically performed all simula-
tions twice, first with standard single-spin updates (SSU) and then with our method
embedding cluster updates (CU). We give an estimate of the error on the density of
states obtained from both types of update scheme. For the largest lattice sizes we
studied, however, the SSU implementation simply turned out to be impracticable,
due to either exceedingly high tunneling times, and — for LR models — excessive
CPU demands, and we present results for the CU algorithm only.

7.4.1 Phase space exploration and mean acceptance rates

As opposed to the (canonical) Swendsen-Wang cluster algorithm, the acceptance
rate of our algorithm — Eq. (7.1) — is not trivially equal to unity. Still, it is tightly
related to the efficiency with which the Markov chain wanders about the phase
space, since a low acceptance rate would lead to very repetitive dynamics.In view
of this, it is instructive to compute an approximate analytical expression of this
acceptance rate when the initial and the final energiesEa andEb differ only by a
small amount. WritingEb = Ea + ǫ, and carrying out a series development to first
order inǫ, one obtainsWflip = min(1,1+ ∆(Ea)dE), where

∆(Ea) = β′(Ea)





∑

bi j∈B
Ji j

1+ pi j (Ea)

pi j (Ea)
− |Ea|




,

with the same notation as in Sec. 7.2. We wish to obtain an estimate of the first sta-
tistical moments of∆(E). We hereafter consider the case of a model with nearest-
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neighbor interactions (J = 1), for which we can carry out an exact derivation. The
last expression simplifies to

∆(Ea) = β′(Ea)

(

B
1+ p

p
− |Ea|

)

,

whereB stands for the total number of bonds andp = p(Ea). From the distribution
of bond counts at a given energyEa,

P(B) =

(

|Ea|
B

)

pB

(1+ p)|Ea|
,

we can derive the average bond count,〈B〉 = |Ea| p
1+p. This allows us to rewrite

∆(Ea) as

∆(Ea) = β′(Ea)
1+ p

p
(B− 〈B〉);

hence〈∆(Ea)〉 = 0. The variance of∆(Ea) is thus proportional to the variance of
the bond count distribution, i.e.,

〈

B2
〉

− 〈B〉2 = |Ea| p
(1+p)2 , which yields

√
〈

∆(Ea)2〉 = δ∆(Ea) = |β′(Ea)|

√

|Ea|
expβ(Ea) − 1

For a givenǫ > 0, one half of all attempted cluster flips thus leads to an acceptance
rate which is lower than 1, the other half saturating at unity. Assuming a gaussian
distribution for∆(E), with the standard deviation computed above (which is valid
for large enough lattice sizes), the mean acceptance rate is readily obtainedfrom
the mean value of a gaussian distribution centered at unity and truncated above 1,
which yields

〈

Wflip
〉

(Ea) = 1− δ∆(Ea)

2
√

2π
ǫ

In the case of interactions depending on the distancel between spins, one may
observe that the average energy is related to the average number of bonds of length
l by − 〈E〉 =

∑

l>0 J(l)1+pl
pl
〈B(l)〉, which shows that〈∆(E)〉 = 0 also in this case.

At a first-order transition,β(E) varies smoothly between the energy peaks of
the ordered and disordered phases, which ensures that∆(E) remains small. The
mean acceptance rate for the six-state LR Potts chain withσ = 0.7 andL = 1024
spins is sketched in Fig. 7.1. While the acceptance rate is close to 1 inside the
range of phase coexistence, the variance of∆(E) increases whenE lies outside the
range of phase coexistence, and therefore leads to a reduction in the acceptance
rate. We observe that this diminution is less marked at low-energy levels, forthe
energy cost associated with flipping a small number of big clusters is lower than
that associated with randomly updating a great deal of small clusters, andEb−Ea is
consequently lower in the last case. It is worth stressing, however, thatthe energy
range of interest in the analysis of first-order phase transitions spans aninterval
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Figure 7.2: Tunneling times for the long-range Potts chain withq = 3, σ = 0.4
(dashed lines) and 0.6 (dotted lines), andq = 6, σ = 0.7 (solid lines). Triangles
refer to the SSU implementation, while squares indicates estimates for our method
(CU). Dynamic exponentszwere determined from a fit to the power lawτe ∼ Lz.

which is only moderately larger than that corresponding to phase coexistence, the
only requirement being that metastability plateaus [284] and histogram peaksmust
be clearly visible. As a result, the fact that the mean acceptance rate for cluster
flips remains well above 90% inside this range of energy represents already an
improvement of a factor 3 with respect to the standard multicanonical approach,
where we obtained acceptance rates oscillating around 30%.

7.4.2 Dynamic properties

Where performance measurements at first-order transitions are concerned, tunnel-
ing times have thus far been regarded as one of the most meaningful measurement

Table 7.1: Dynamic exponentsz for the q-state Potts chain with power-law de-
caying interactions (a) and its two-dimensional counterpart with nearest-neighbor
interactions (b).z(S S U) and z(CU) refer to single-spin and cluster updates re-
spectively, whilezmuBoandzmuClusmake reference to the multibond method [183]
and Rummukainen’s multi-microcanonical cluster method [291] applied to the NN
model.

q σ z(S S U) z(CU) zmuBo zmuClus

6a 0.7 1.35(3) 1.05(1)
3a 0.6 1.48(2) 1.11(1)
3a 0.4 1.13(2) 0.89(1)
7b 2.60(4) 1.82(2) 1.84 1.82(3)
10b 2.87(4) 2.23(1) 2.1
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parameters [186, 179, 183]. They are defined as one half of the average number
of MCS needed for the walk to travel from one peak of the energy histogram to
the other – where peaks are defined with respect to the finite-size transitiontem-
perature – and turn out to represent a fairly good indicator of the interval between
roughly independent samples.

Results for the LR chain withq = 3 and 6 are shown in Fig. 7.2. Dynamic ex-
ponentszwere determined from a fit to the power lawτe ∼ Lz, and are summarized
in Table 7.1. We can witness a substantial reduction for both the LR and the NN
models, with exponents close to and sometimes even below the ideal random-walk
valuez = D. As regards the NN model, our values compare extremely well with
those obtained with the multibond method [183] and with Rummukainen’s hybrid-
like two-step algorithm [291], although these approaches and ours differ markedly
in the way clusters are constructed.

It should be mentioned that the distanceEd−Eo the random walker must travel,
i.e., the energy gap between the peaks of the histogram, does not scale linearly with
the number of spins. This feature is especially apparent for long-rangeinteractions,
whereEd − Eo grows all the more faster with increasing lattice size thatσ comes
closer to 0. As a result, the power lawτe ∼ Lz yields dynamic exponents which
are underestimated with respect to the value given by a power law of the form
τe ∼ (Ed − Eo)z (up to a dimensional factor 2 for the NN model). For instance,
we would obtainz = 1.40(3) instead ofz = 1.35(3) for q = 6 andσ = 0.7,
andz = 1.10(1) instead ofz = 1.05(1). Where the performance in terms of CPU
demands is concerned (and in particular if one is interested in how it grows with
the size of the system), we think, however, that the traditional definitionτe ∼ Lz is
more meaningful.

While tunneling times represent a practical way to estimate the efficiency with
which the random walker drifts along the energy landscape, they are subject to
two limitations. First, they cannot be properly defined in the case of second-order
phase transitions, since the histogram of the energy does no longer exhibit two
peaks. Second, there is no direct connection between tunneling times and autocor-
relation times, which makes it difficult to estimate the optimum interval between
measurements that will yield perfectly uncorrelated data, and thus minimum sta-
tistical error on estimates of thermodynamic data. It is worth mentioning here that
computing integrated autocorrelation times naively from the set of measurements,
i.e., just as is usually done in the canonical case, simply makes no sense whensim-
ulating in the multicanonical ensemble, because the quantities we are interested in
are, in the first place, reweighted averages of thermodynamic data [179].

Therefore, alternate definitions have been proposed, which try to circumvent
these limitations. One approach is to compute the so-calledround-trip times[7],
which are computed from the number of MCS needed to get across the whole
energy axis, that is, from the ground state to the upper energy level. Although
round-trip times may be determined for any order of phase transition, they present
unfortunately no more connection with statistical errors than do tunneling times.
On the contrary, multicanonicaleffective autocorrelation times, which were first
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Figure 7.3: Effective autocorrelation timeτeff for q = 6,σ = 0.9 andL = 512 with
(a) cluster updates (b) single-spin updates. The effective transition temperature
defined from the peak of the specific heat isTc(Cv) = 0.7163(2).

introduced in the framework of the multibond algorithm [183], offer a direct com-
parison with exponential or integrated autocorrelation times traditionally used in
canonical simulations. Mimicking the canonical case, the effective autocorrelation
timeτeff can be defined for any thermodynamic variableθ by inverting the standard
error formulaǫ2θ = σ

2
θ2τeff/N, whereN stands for the total number of (possibly

correlated) measurements,σ2
θ denotes the variance of the (reweighted) thermody-

namic variableθ, e.g.,
〈

E2
〉

− 〈E〉2, andǫ2θ is the squared statistical error on the
same variable. The error may be estimated either from resampling or (jackknife)
blocking procedures, or by performing multiple independent runs. Sinceboth the
variance and the error depend on the reweighting temperature, the previous defini-
tion obviously yields an effective autocorrelation time which also depends on the
temperature.

We now discuss our results for effective autocorrelation times obtained for the
six-state LR Potts chain withσ = 0.9 and 128≤ L ≤ 1024 spins. For this value
of σ, the model exhibits a very weak first-order transitions with no clearly vis-
ible histogram peaks for sizes belowL ∼ 2000. The choice of medium lattice
sizes was dictated by the fact that we computed the error from multiple indepen-
dent runs (around 20 runs of 106 MCS each), which we found a more reliable
way of computing the statistical error than using a blocking procedure. Figure 7.3
shows the dependence ofτeff on the temperature forL = 512. For both algo-
rithms, τeff exhibits a peak in the vicinity of the effective transition temperature
Tc(Cv) = 0.7163(2). As expected, the reduction brought about by cluster updates
in terms of correlation between measurements is marked, especially in the tran-
sition region, where single-spin update lead to a critical slowing down similar to
the one encountered in canonical simulations. This behavior is consistent with the
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Table 7.2: Effective autocorrelation times at the transition temperature defined
from the location of the peak of the specific heat, for the six-state LR Potts chain
with σ = 0.9

L τeff(S S U) τeff(CU)
128 475 155
256 1390 310
512 3960 635
1024 12700 1370
z 1.6(1) 1.0(1)
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Figure 7.4: Fit of effective autocorrelation timesτeff to the power lawτeff ∝ Lα

for the six-state Potts chain (σ = 0.9 andL = 512) with (a) cluster updates (b)
single-spin updates.

very general observation reported recently in [319] in the framework of the optimal
ensemble, and also in [139] in the context of equilibration time for multicanonical
algorithms (see also the next paragraph for more details on this issue), whereby the
random walker diffuses at a slower pace in the critical region. In this regard, cluster
updates optimize the diffusive current of the random walker in the critical region in
much the same way as do the optimal ensemble weighting proposed in [319], yet
with a different strategy: in the latter, the error is reduced by allowing the walker
to spend more time in the critical region than in the rest of the energy axis; in our
approach, it is the decorrelating capability of the move update itself which reduces
the statistical error in the transition region. As is well known, however, cluster up-
dates are especially efficient at the percolating threshold, and the reduction in terms
of correlation is largebecausebond probabilities are governed by the microcanon-
ical temperature. This interpretation is clearly underpinned by our investigation of
the effect of poor estimates ofβ(E) on tunneling times, presented later in Sec. 7.7.
Finally, we focus on the scaling behavior of autocorrelation times. Table 7.2 re-

ports our results forL ranging from 128 to 1024 spins, whereτeff is evaluated at
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the effective transition temperature determined from the peak of the specific heat.
Our method gives smaller autocorrelation times already forL = 128 spins. From
these values, we also determined the associated scaling exponents by a fit tothe
power lawτeff ∝ Lz (Fig. 7.4), and obtained a highly satisfying value ofz∼ 1.0(1)
with cluster updates.

We conclude the discussion on the dynamic characteristics of our algorithm
with an investigation of equilibrating properties. As opposed to canonical simula-
tion, estimating equilibrium times has been much less common in the context of
multicanonical simulations; the non-linear relaxation function, while very infor-
mative when the equilibrium distribution is driven by a Boltzmann weight [216],
is of limited use indeed if the engendered distribution is flat. Recently, however,
an efficient procedure aimed at estimating equilibrium times for any equilibrium
distribution was proposed by Guerra and Muñoz [139]. This procedure relies on
a χ2 regression with respect to the (expected) flat equilibrium distributionP(E).
Starting from the same initial lattice configuration,n Markov processes are run
with distinct random seeds, and at each MC stept, a histogram of the energy
Vt(E) is filled with the value of the energy of each process. Asymptotically,Vt(E)
should approximate the expected flat distributionP(E) ∝ n(E)w(E). In order
to estimate the equilibrium time in a more quantitative way, aχ2(t) deviation of
Vt(E) with respect to the flat distribution is carried out at each MC stept, i.e.,
χ2(t) =

∑

E(Vt(E) − nP(E))2/(nP(E)), where the sum runs over histogram bins.
For largen, and provided equilibrium has been reached, the distribution ofχ2(t)
overm experiments obeys aχ2 law with a numberr of degrees of freedom given
by the number of histogram bins minus one, that is, with a mean equal tor and a
standard deviation given by

√
2r/m. Due to the intensive demand in CPU required

by this procedure, we restricted our estimation of equilibrium times to the single
caseq = 6 andσ = 0.9. We performedn = 1000 Markov processes for sizes
betweenL = 128 andL = 512, and estimated the equilibrium time from a single
experiment (that is,m = 1) by simply monitoring the time needed forχ2(t)/r to
reach unity and then stay within the interval [1− 2σ/r,1 + 2σ/r]. As illustrated
in Fig. 7.5, relying on a single experiment leads to quite large error bars, yet this
is sufficient for our purpose. From the graphs ofχ2(t) we readτeq = 4500± 500
MCS andτeq = 23000±2000 MCS for the cluster- and single-spin updates respec-
tively; in spite of the large uncertainty, the reduction in terms of equilibrium time
brought about by our method is clearly visible. Results for other lattice sizesare
summarized in Table 7.3. A fit to the power lawτeq ∝ Lz

eq (see Fig. 7.6) yields
the scaling exponentszeq = 1.96(5) andzeq = 1.21(3) for the single-spin and the
cluster updates respectively. Here again, we think that lower diffusion currents in
the latest case account for the higher pace at which the random walker reaches the
equilibrium distribution.
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Figure 7.5: Plot ofχ2(t)/r for the six-state Potts chain (σ = 0.9, L = 512) using (a)
cluster updates and (b) single-spin updates. The regression was carried out over a
histogram containing 20 bins populated from 1000 runs, all starting in ground state
configuration but with distinct random seeds.

Table 7.3: Equilibrium times for the six-state LR Potts chain withσ = 0.9 obtained
by monitoring the graph ofχ2(t)/r.

L τeq(S S U) τeq(CU)
128 1700(100) 800(120)
256 6000(750) 2000(200)
512 23000(2000) 4500(500)
1024 101000(8000) 10000(800)
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Figure 7.6: Fit of equilibrium times to the power lawτeq ∝ Lα for the six-state
Potts chain (σ = 0.9). (a) cluster updates and (b) single-spin updates.
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of q andσ. Squares refer to our algorithm (CU) with LR specific optimizations
included; forq = 3 andq = 6, estimates were determined by averaging over the
indicatedσ values.

7.4.3 Overall CPU demand for LR models

We now discuss CPU demand in the case of LR models, and concentrate on thegain
in CPU resources brought about by the optimization schemes proposed in Sec. 7.3.
Assuming a decently efficient algorithm implementation, this indicator yields a
rough account of the real algorithm complexity, although it should be mentioned
that it is usually an elaborate task to estimate this quantity rigorously, partly be-
cause its value hinges heavily on a variety of implementation, CPU architecture
and compiler dependent properties. We decided to measure CPU times over ase-
ries of one-hour long simulation runs on a handful of distinct CPU architectures,
including Intel Pentium and Xeon at 2.4 and 3.2GHz. Figure 7.7 sketches averages
of the CPU (user) time per MCS and per spin, where small fluctuations might be
attributed to the effect of varying CPU cache sizes amidst our clutch of CPU’s.
While for the local-update implementation the demand in CPU per spin grows lin-
early with the number of spin, it is roughly constant over a fairly large range of
lattice sizes in the case of our cluster-update algorithm. Moreover, our method al-
ready outperforms the local-update scheme starting from several hundreds spins,
with nonetheless an increased footprint for higherq values which is accounted for
by the correspondingly higher number of FFT’s to be computed. This, however,
clearly demonstrates the breakthrough that our method brings about for the study
of long-range models, paving the way for precise tests of finite-size scaling.
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7.5 Two-dimensional NN Potts model: comparison with
exact results

In order to check that our algorithm did not produce systematic errors, we com-
puted transition temperatures and interface tensions between coexisting phases for
the two-dimensionalq-state Potts model (q = 7,10) with nearest-neighbor (NN)
interactions and helical boundary conditions. Results regarding the dynamic char-
acteristics of our algorithm for this model were reported in Sec. 7.4; we will con-
centrate here on precision matters. Forq = 10, we obtainedTc(L) = 0.70699(5),
0.70491(5), 0.70300(2), 0.70278(1), 0.70164(1), 0.701328(4) and 0.701249(2) for
L = 16, 20, 30, 32, 64, 128, and 256, whereTc was determined from the location
of peaks of the specific heat.Cv was computed directly from the estimated density
of states, and then refined from an additional production run of length 107 MCS.
The error was estimated by means of the jackknife method. Following standard
FSS theory at first-order phase transitions, we collapsedCv(T)/L2 vs (T − Tc)L2

over the five highest lattice sizes and found an infinite size temperatureTc(∞) =
0.701236(3) in very good agreement with the exact value 0.70123157. . . The same
procedure applied toq = 7 andL = 64, 128, and 256 yieldedTc(∞) = 0.773059(1)
which again matches perfectly the exact value 0.7730589. . .We estimated the in-
terface tensionΣ from the histogram of the energy, reweighted at a temperature
where energy peaks have the same height, namely, 2Σ = −L−1 ln Pmin. Here,Pmin

designates the minimum of the histogram between the two energy peaks and the
peak heights are normalized to unity. We computedΣ directly from the density of
states, and estimated the error from the additional production run. In this regard, it
should be noted that estimating interface tensions directly from the density of states
generally yields values that lie below those computed from histograms collected
during production runs. Our algorithm allowed us to determineΣ with a four-digit
precision for sizes up toL = 256 and nonetheless rather modest statistics. For
the seven-state model, we obtained 2Σ = 0.0336(6), 0.0294(1), 0.02631(8), and
0.02384(9) forL = 32, 64, 128, and 256; a linear fit of the formΣ ∼ Σ(∞) + c/L
[220] performed over the three largest sizes (i.e., forL above the disordered phase
correlation lengthξ ∼ 48 [59]) yielded the infinite size value 0.02230(11), still
above the exact value 0.020792, yet closer to it than estimates reported in several
previous studies [291, 183, 179].

7.6 LR Potts chain: error estimates and tests of finite-size
scaling

In this section, we discuss the precision of our results for theq-state Potts chain
with algebraically decaying interactions, i.e.,J(r) = 1/r1+σ. Our purpose is twofold.
First, we estimate the error in the density of statesn(E) obtained from the Wang-
Landau algorithm, so that we can obtain a better insight into the benefit of our
method with regard to the iterative calculation ofn(E). Second, we determine con-
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fidence intervals on reweighted averages computed from an additional production
run. Since computing thermodynamic quantities from a production run does not
require that the histogram be perfectly flat, nor that the estimate of the density
of states be perfectly accurate, this amounts to estimating the gain in precision
brought about by lower autocorrelation times.

7.6.1 Statistical error of the density of states

In order to compare the error on the density of states produced by the single-spin
update implementation and our method, we performed for each method a series
of 12 independent simulations with the Wang-Landau algorithm, all starting with
the same initial guess of the density of states. The model parameters were setto
q = 6, σ = 0.9 andL = 512. This choice of parameters guarantees that, in spite
of the modest lattice size we consider, autocorrelation times differ by a sufficient
amount between the single-spin updates method and our method, so that the benefit
may be clearly interpreted in terms of decorrelating capabilities. The initial guess
of S(E) was scaled up from an estimate obtained atL = 256, and the updating
factor of the Wang-Landau algorithm was initially set to lnf = 5. We did not
make use of all improvements to the original Wang-Landau algorithm, as proposed
by Zhou and Bhatt in [362], since these would have partly overshadowed the gain
produced solely by lower autocorrelation times. Indeed, we mainly focusedon the
systematic error (rather than the whole statistical error) that may show up during
the first iterations. It was established in [362] that this systematic error results from
the combination of a large lnf coefficient with the presence of strong correlations
between adjacent binning. We thus simply relied on the original histogram flat-
ness criterion to switch from one iteration to another, and divided lnf by the same
amount (namely, 5) after each iteration which passed the flatness check. We found
out, however, that using the criterion in [362] instead, that is, averagingn(E) on
multiple independent runs after each iteration, and switching to the next iteration
only after a given number of entries was recorded in the histogram (see Eq. (12)
in [362]), led to markedly lower statistical errors. As illustrated in Fig. 7.8, the
statistical error on the density of states is clearly improved by our method. In par-
ticular, cluster updates lead to a spread of the error over the whole energy axis. In
this respect, and as already mentioned in Sec. 7.4, the lower diffusion rates associ-
ated with collective updates in the critical energy region offer a clear benefit. As
expected from the arguments of Zhou and Bhatt, the reduction is also more marked
for ln f = 0.04 than for lnf = 10−7, and the systematic error brought about by
correlation between successive binning is indeed partly tamed by a lower Wang-
Landau modification factor. Finally, we show in Fig. 7.9 the resulting statistical
error on the specific heat, since thermodynamic averages are the relevant quantities
in the first place.Cv was computed directly from the estimated density of states
n(E), i.e., according to the formulaCv(kT) = (

〈

E2
〉

kT
− 〈E〉2kT)/(L kT2), where

〈En〉 = (
∑

E Enn(E)e−E/kT)/(
∑

E n(E)e−E/kT). For long-range models, energy lev-
els are not equally spaced, and it should be noted that too large histogrambins may
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Figure 7.9: Graph of the specific heat for the six-state Potts chain (σ = 0.9 and
L = 512) obtained directly from the final estimate of the density of states with (a)
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Figure 7.10: Specific heat for the three-state Potts chain withσ = 0.5 as obtained
with our method.

cause a systematic deviation on the averages as well. We paid attention to this by
comparing our results for several bin widths, and made sure that the systematic
deviation engendered was always lower than the statistical error itself. Asdepicted
in the inset of Fig. 7.9, the accuracy on the estimation ofCv is larger by nearly an
order of magnitude at the transition temperature. Incidentally, we observe that this
is comparable to the gain in terms of autocorrelation times, as already presentedin
Fig. 7.3.

7.6.2 Tests of finite-size scaling: transition temperatures and surface
tensions

We now discuss some of our results for the three-state Potts chain, for which we
performed extensive simulations for sizes ranging fromL = 128 toL = 65536. As
opposed to higher values ofq, there exists indeed a large set of numerical studies
for q = 3, so that comparison with previous estimates is easier. Table 7.4 reports
our values for transition temperatures and peaks of response functionsfor σ = 0.5.
BothCv andχ were computed from a production run whose length varied between
106 and 107 MCS depending on the lattice size, and error bars were computed
by means of the jackknife blocking method. We performed these production runs
twice, first using single-spin updates, and then using our method, yet in both cases
with the same estimate of the density of states. Figure 7.10 shows the graph ofCv

as obtained with cluster updates. We mention that, forL > 4096, the local-update
implementation was simply intractable as a result of excessive computation times.
For all sizes, our results match within error bars for both methods, and it should
be noticed that, for the two largest sizes, we obtain estimates of transition temper-
atures accurate up to the fifth digit. A fit ofTc(L), as given by the location of the
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Table 7.4: Estimates of peaks of the specific heatCv and the susceptibilityχ, and
corresponding effective transition temperatures for the three-state LR Potts chain
withσ = 0.5. Error calculations were carried out by means of the jackknife method
applied to a single production run. The number of MCS per production run isthe
same for both methods, yet varies between 106 and 107 from the smaller to the
larger lattice sizes.

.

L Tc(Cv) Cmax
v

(CU) (SSU) (CU) (SSU)
128 1.6450(18) 1.645(3) 3.55(2) 3.55(3)
256 1.6607(2) 1.6607(13) 4.86(2) 4.88(5)
512 1.6741(9) 1.675(1) 6.54(3) 6.47(6)
1024 1.6815(2) 1.6815(17) 9.14(8) 9.10(24)
2048 1.6856(3) 1.685(1) 13.63(15) 13.73(80)
4096 1.68742(9) 1.6875(10) 22.21(34) 21.9(2.2)
8192 1.68801(7) 40.28(44)
16384 1.688031(34) 79.46(35)
32768 1.687851(12) 164.1(4)
65536 1.687749(09) 332.8(6)
L Tc(χ) χmax

(CU) (SSU) (CU) (SSU)
128 1.6793(14) 1.679(4) 3.44(3) 3.46(3)
256 1.6837(2) 1.6837(15) 6.09(3) 6.13(5)
512 1.6864(8) 1.6877(15) 10.81(7) 10.86(13)
1024 1.6882(3) 1.688(2) 19.73(28) 19.8(5)
2048 1.6887(2) 1.6882(15) 37.6(5) 37.5(1.8)
4096 1.68869(9) 1.6887(11) 75.4(1.2) 74.6(6.7)
8192 1.68842(7) 165.2(1.8)
16384 1.688148(35) 369.8(1.1)
32768 1.687870(20) 827(2)
65536 1.687773(16) 1754(3)
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inset shows a magnification near the origin forσ = 0.5.

peaks ofCv, to the power lawTc(L) = Tc(∞) + a/L yieldedTc(∞) = 1.68764(1)
for our method, andTc(∞) = 1.6888(8) for the local-update implementation. The
same fit performed onTc(χ) gaveTc(∞) = 1.68765(2) andTc(∞) = 1.6892(6) re-
spectively. These values compare very well with each other. However,our infinite
size transition temperature is slightly larger than the best estimate determined so
far (to the best of our knowledge) with a numerical approach, namely, thevalue of
Tc = 1.68542 obtained in [251] with the cluster mean-field method. An important
effect we noticed is the presence of a crossover aroundL = 32768 forTc(Cv), where
the finite-size transition temperature starts to decrease slightly. This means thatwe
had to restrict our fits to the largest lattice sizes. We think that this crossovermay
be attributed to the large correlation length atσ = 0.5. In Fig. 7.11, we observe in-
deed that the lattice size at which the crossover occurs is the same as the sizewhere
the peak of the reduced Binder cumulant of the energy, namely,UL =

〈

E4
〉

/
〈

E2
〉2

,
experiences a minimum. Forσ = 0.2, the same effect is witnessed by our results,
with the change of slope ofUL taking place aroundL = 2048, and a change of
behavior forTc(Cv) occurring nearL = 4096. We also note in passing that, for
σ = 0.5, relying on the Binder cumulant to assess the first-order nature of the tran-
sition requires simulating the system up to sizes that are far beyond the capabilities
of single-spin update implementations. In particular, carrying a power-law fit of
UL restricted to sizes belowL ∼ 3000 would yield underestimated values. Our
results in Fig. 7.11 show that the infinite size value lies around 1.033, and thus that
the transition is stronger than suggested for instance in [131].

FSS behavior of the surface tension and evidence for fractal dimension Al-
though a precise determination of correlation lengths for the long-range Potts chain
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for the six-state LR Potts chain withσ =0.5, 0.7, and 0.9. All estimates of∆F
were obtained with our method.

is beyond the scope of this work, we tried to obtain a rough estimate of it from the
finite-size behavior of the interface free energy∆F (akin to a “surface tension”,
although this term is certainly no longer appropriate for long-range models). First,
we computed a reweighted histogramN(T,E) of the energy at the transition tem-
peratureTeqh where both peaks of the histogram have equal height (see Fig 7.12).
Then we measured∆F from lnPmax− ln Pmin, wherePmax andPmin stand for the
height of the peaks, and the minimum of the histogram between the two energy
peaks, respectively.

By fitting the interface free energy to the power law∆F ∝ Lα, we obtain a
very good fit for sizes ranging fromL = 256 toL = 65536, yieldingα = 0.91(2)
and∆F/Lα = 0.0004 in the thermodynamic limit. This is illustrated in Fig. 7.13.
In view of the expected behavior for short-range models, namely,∆F scales to
leading order as a power of the lattice size with an exponent given by the dimension
of the interface [219], this suggests that the effective dimension of the interface
lies between 0 and 1 for long-range chains, evoking a fractal geometry with an
Hausdorff dimension given by this exponent. This assumption is also supported
by the fact that the fits of∆F/L in [131] exhibit important finite-size corrections,
while our fit with a non-integer exponent is exceptionally good over more than two
ordersof magnitude in linear size, and does not suggest such corrections.

Fig. 7.14 shows the same fits performed for the six-state model. The corre-
sponding exponents areα =0.89(1), 0.77(1), and 0.28(2) forσ =0.5, 0.7 and 0.9
respectively. This behavior suggests that the fractal dimension of the interface, if
any, increases and tends to the geometric dimensionD = 1 asσ → 0. In addition,
the fact that exponents forσ = 0.5 and q=3 and 5 match within error bars seems to
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indicate that the dimension of the interface does not depend onq, yet only on the
decay parameter of the interaction.

Finally, if we mimic the largeq arguments proposed in [46] for the nearest-
neighbor Potts model, namely, that the correlation lengthξ of the disordered phase
is given by (∆F/L)−1, we obtain after changing the unit exponent toα, an estimate
of ξ ∼ 2500 for the LR chain atσ = 0.5. In this respect, we would like to mention
that: (i) the topology of the interface between the ordered and disorderedphases
is certainly far more complex than in short-range models, and (ii) we make use
of Infinite Image Periodic Boundary Conditions. Therefore, this estimate should
be taken as very rough one, since for instance the factor 2 in the definitionof
the interface tension (see Eq. (7) in [46]) might be questionable in LR models.
Nonetheless, our estimate seems at least consistent with the fact that the change of
slope ofUL sets in for sizes slightly above this size, i.e.,L ∼ 5000.

7.7 Combination with the transition matrix method

In this section, we examine how our method can be efficiently combined with the
transition matrix method [341]. We show in particular that transition matrices rep-
resent a very efficient way of estimating the microcanonical temperatureβ(E) used
to compute cluster bond probabilities when nothing is known initially about the
density of states. We also discuss how the estimatedβ(E) can then be used as an
efficient predictor to speed up the convergence towards the ground state during the
early iterations of the Wang-Landau algorithm.

7.7.1 Efficient estimation ofβ(E) and bootstrapping

As seems manifest from the scheme presented in Sec. 7.2, one of the basic require-
ments of our algorithm is to have an estimate ofβ(E) at our disposal over the whole
energy axis in order to compute cluster bond probabilities. One rather simple way
of estimatingβ(E) is to compute it from the current estimate of the density of states
n(E) using a finite-difference scheme, i.e., in real-time in the course of the itera-
tion scheme. This is the most tractable approach if one decides to rely solely on
Wang-Landau’s algorithm to estimaten(E). During early iterations, however, the
estimate ofn(E) is somewhat rough and it is necessary to resort to a spline interpo-
lation in order to obtain a sufficiently smooth estimate ofβ(E). Since the unequal
spacing of energy levels in long-range models renders an interpolation scheme for
n(E) absolutely mandatory [284],β(E) is already available to us for free. Fig-
ure 7.15 shows estimates obtained with this approach for the three-state long-range
chain with various interaction ranges, computed after ten iteration steps of 10000
measurements each. We note in passing that the presence of a clearly visiblemin-
imum in the three cases results from the first-order nature of the transition. For
sufficiently short-range interactions, and when no random disorder is present, the
microcanonical entropyS(E) scales quite gently with the lattice size, and it is also
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Figure 7.15: Microcanonical inverse temperatureβ(E) = dS(E)/dE computed
from the estimated density of states using a spline interpolation, for the three-state
long-range chain withσ = 0.4, 0.5, and 0.6 from bottom to top.

perfectly feasible to use the value ofβ(E) obtained at a smaller lattice size as an
initial guess.

In any case, it is crucial for the performance of our algorithm that we should
computeβ(E) to sufficient accuracy. Indeed, we have found that any departure
from the ideal line results in poorer performance, as illustrated in Fig. 7.16.The
curve (a) in the figure shows the mean acceptance rate as a function of theenergy
for an estimate ofβ(E) obtained after the ultimate Wang-Landau iteration and a
modification factor lnf = 10−7. Curves (b) and (c) show the same quantity for mi-
crocanonical temperatures that were under- and overestimated by 10%.The poor
estimate ofβ(E) causes a marked decrease of the acceptance rate in the transition
region (aroundE/L ∼ −1.5), from around 100% to nearly 40%. Tunneling times
clearly experience a corresponding increase, from 243 for the bestestimate, to 737
and 1150 for the under- and overestimated temperatures, respectively.This can be
easily explained, if one considers that the efficiency of cluster updates reaches a
maximum at the percolation threshold. Any departure of the estimate ofβ(E) from
the ideal line results in a shift between the temperature at which clusters perco-
late (which depends onβ(E)) and theeffectivetemperature of the system (which
is given bydS(E)/dE). This behavior has been observed in the context of canon-
ical simulations of disordered systems, e.g., the Random Field Ising model [258],
where the presence of randomness depresses the critical temperature.In this case,
using the (canonical) simulation temperature to compute the bond probabilities
simply results in a growing shift between the critical temperature and the percola-
tion threshold as the randomness is increased.

In view of the previously mentioned requirements on the estimation ofβ(E),
it is clear that, if one does not have a reliable guess ofβ(E) at hand before the
simulation starts, an efficient scheme must be devised in order to computeβ(E) in
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Figure 7.16: Mean acceptance rate as a function of the energy per spin for the six-
state long-range Potts chain withσ = 0.5, andL = 512 spins (strong first-order
regime) for three different estimates ofβ(E). (a) best estimate, as given by the
ultimate iteration of the Wang-Landau algorithm; (b)β(E) scaled by 0.9; (c) β(E)
scaled by 1.1.
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Figure 7.17: Symbols show the microcanonical inverse temperatureβ(E) com-
puted from the transition matrix accumulated over 2000 MCS, for the six-state LR
model (σ = 0.5) containing 512 spins. The estimate obtained from an interpolation
scheme after the ultimate iteration is shown as a solid line for comparison.
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the early stage of the Wang-Landau algorithm. This is vital at this stage, because
the exceedingly noisy estimate of the density of states makes it more likely to ob-
tain under- or over-estimated values forβ(E). An efficient approach in this regards
relies on transition matrices [341, 307]. This method produces highly precise esti-
mates ofβ(E), although it has an inherently higher cost in term of computer load.
The starting point is the Broad Histogram equation [339, 98]:

n(E)T∞(E→ E′) = n(E′)T∞(E′ → E),

whereT∞(E → E′) is the transition matrix element between energy levelsE and
E′ (also denoted as〈N(σ,E′ − E)〉E in [98]). This quantity contains the micro-
canonical average at energyE of the number of potential single-spin moves from
a stateσ of energyE to a stateσ′ of energyE′. It is estimated by accumulating
a double-entry histogramh(E,∆E) containing the number of potential moves from
E to E + ∆E each time the energy levelE is visited. Long-range interactions lead
to energy levels which are irregularly spaced, with in particular a few gapsin the
vicinity of the ground state [284], and it is necessary to choose an axis binsmall
enough to minimize discretization errors, and at the same time sufficiently large to
contain at least a handful of entries. In this case,T∞(E → E′) varies sufficiently
smoothly for the following approximation scheme to be valid:

β(E) =
1
∆E

ln
T∞(E→ E + ∆E)
T∞(E→ E − ∆E

,

where the actual estimate is obtained by weighted-averaging over severalvalues
of ∆E. As illustrated in Fig. 7.17 for the six-state LR chain, the estimation of
β(E) from the transition matrix elements is reliable already after 2000 MCS, which
roughly corresponds to 50 round-trips between the upper and the lowerenergy
range. For long-range models, each estimation of the number of potential moves
requires the order ofL2D operations (as opposed toLD for nearest-neighbor in-
teractions). However, we have shown in Sec. 7.3 that a single cluster update can
demand as little asO(LD ln LD) operations when long-range specific optimizations
are carried out. This means that estimation schemes based on transition matrices
partly scupper the benefits of the last optimizations, and should therefore beem-
ployed only as a bootstrap procedure when nothing is known yet about the micro-
canonical temperature. Conversely, models with nearest-neighbor interactions do
not undergo such a drawback, and make the transition matrix approach a perfectly
transparent one from the viewpoint of algorithm complexity.

7.7.2 Efficient predictors for the Wang-Landau algorithm

Finally, we discuss howβ(E) can be used as an efficient predictor during the early
stage of the Wang-Landau algorithm when nothing is known about the density of
states. In the original implementation of this algorithm, we start withS(E) = 0
for all energy levels, and simply incrementS(E) by the modification factor lnf
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Figure 7.18: The graph shows the number of MCS needed to reach the ground-
state (dashed horizontal line) of the six-state Potts chain (σ = 0.5 andL = 512)
for an initially unknown density of states, using three distinct schemes: (a) and (b)
predictor based onβ(E), local- and collective-update algorithms respectively; (c)
no predictor (S(E) = 0, ∀E), local-update algorithm.

each time the corresponding energy level is visited. One of the main drawbacks of
this approach is that the Markov chain tends to wander around a fairly longtime
in the upper energy range, until eventually enough visits have been recorded in
the histogram for the system to start exploring low-energy levels. This point has
already been mentioned in [362], where it was suggested that starting with agood
initial guess ofS(E) was more efficient in terms of the number of histogram en-
tries required to reach the final estimate, than performing a multi-range run with
no initial guess at all. To circumvent this drawback when no initial guess is avail-
able, we therefore propose to useβ(E) to predictS(E) for energy levels that are
visited for the first time, and thus for whichS(E) is not available (i.e., it is set to
S(E) = 0 in the original implementation of the Wang-Landau algorithm). A linear
prediction scheme turned out to sufficiently efficient for our purpose. As illustrated
in Fig. 7.18, using a predictor brings about a gain of three orders of magnitude in
the time needed to reach the ground state. Our method and the single-spin update
method lead similar performance, with nonetheless a slightly better behavior when
cluster updates are used. We note that the Markov chain stays initially somewhat
longer in the upper energy range when cluster updates are used, sincea good esti-
mate ofβ(E) is needed to build the clusters with the correct bond probabilities. We
think that this approach would prove particularly useful when the characteristics of
the model makes it impossible to obtain an initial guess ofS(E) from simulations
at smaller lattice sizes, e.g., in the presence of disorder or when the long-range
interaction experience a slow decay.
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7.8 Conclusion

In conclusion, we have developed a new Monte Carlo method which combinesin
an efficient and straightforward way the benefits of flat histogram algorithms with
the ability of cluster algorithms to rapidly reduce temporal correlations. It is suited
for spin models with any number of interaction between spins. Our formulation is
versatile, and the method can be applied to a variety of density of states estimation
schemes, including the Wang-Landau algorithm, Berg’s recursion schemeor the
transition matrix method. We have shown that using the microcanonical temper-
ature to compute cluster bond probabilities leads to a drastic reduction in effec-
tive autocorrelation times, tunneling times and equilibration times. In the context
of the Wang-Landau implementation, the reduced correlation between successive
binning of the energy histogram yields a lower error in the estimation of the density
of states, and as a result more reliable estimates of thermodynamic averages.Sev-
eral schemes for the estimation of the microcanonical temperature were proposed,
among which an efficient procedure which harnesses the power of the transition
matrix method, and allows us to bootstrap the algorithm even if nothing is known
initially about the density of states. Finally, we carefully examined the precision
of our method in the case of spin models with power-law decaying interactions.
Here, our method proves all the more powerful that it is able to reduce the algo-
rithm complexity to that of a short-range model having the same number of spins.
This allowed us to study several finite-size effects at large lattice sizes, otherwise
largely out of reach of conventional local-update implementations. In particular,
we found out that the interface free energy scales perfectly well with a power of
the lattice size, yet with a non-integer exponent which lies between 0 and 1. This,
we think, is accounted for by the complex topology of the phases in coexistence
in long-range models. A more detailed study, including a deeper insight into the
topological properties of the generated clusters and the estimation of correlation
lengths at large lattice sizes, would be very promising. We think that our method
clearly draws this challenge within computation range.
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Chapter 8

Long-range Ising chain with
bimodal random fields:
first-order transitions induced by
disorder

In this Chapter, a preliminary investigation of the critical behavior of the random
field Ising (RFI) model with power-law decaying is proposed. This model, in its
nearest-neighbor flavor, has been the subject of intense scrutiny during the last
thirty years, with numerous controversies still surrounding its critical behavior. On
the contrary, its long-range counterpart has been much less studied, and for exactly
the same reasons as for other long-range models, the ability to vary the effective
dimension of the model — from mean-field behavior to short-range behavior—
makes it a perfect laboratory framework that might help shedding new lighton
these controversies.

This model would probably deserve a whole thesis on its own, and it is clearly
not the purpose of the present chapter to investigate its behavior in detail. Rather,
my goal in the following will be to capitalize on the methods developed in the
previous parts in order to scrutinize one specific question regarding this model: the
possible existence of a tricritical point separating first- and second-order transitions
when random fields are generated by a bimodal distribution. The question has been
mooted several times for the nearest-neighbor model, mean-field theory predicts
such a behavior, and it is obviously exciting to check if the long-range model also
exhibits this behavior, at least when the interaction is sufficiently close to the mean-
field regime.

To what extent does such a study make sense with the remainder of this the-
sis? First, disordered models exhibit complicated energy landscapes, andas such
they may be regarded as systems of choice for Monte Carlo methods operating
in generalized ensembles. In this respect, I will naturally examine the efficiency
of single-spin updates vs collective updates in the context of disorderedsystems.
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Second, the detection of the order of the phase transition in the Potts chain has
been central to the first part of this thesis: a dedicated method based on spinodal
points has been introduced in this purpose in Chap. 4, and it is therefore appeal-
ing to check the efficiency of this method on a different model where a first-order
transition is expected to occur.

The layout of this Chapter is as follows. The main results and points of con-
troversy regarding the nearest-neighbor are recalled in Sec. 8.1. In particular, the
influence of the shape of the field distribution on the phase diagram is reviewed
in Sec. 8.2. Then, a derivation of mean-field results using the replica formalism
is provided in Sec. 8.3: these results are expected to become exact for interactions
that decay sufficiently slowly1, and will thus serve as a guide. The upper criti-
cal range of the model is calculated in Sec. 8.4 by relying on a generalizationto
power-law decaying interactions of the dimensional argument of Imry and Ma. The
algorithms are described in Sec. 8.5. Results, including a preliminary estimation of
the phase diagram for two decay parameters, are presented in Sec. 8.6.Consistency
with results obtained for the nearest-neighbor model, and possible improvements
of the method, are discussed in Sec. 8.7.

8.1 Model and existing results

The random-field Ising model is a generalization of the Ising model in a uniform
external field to the case of non-uniform, randomly distributed fields. The model
Hamiltonian, in its most generic formulation, writes

H = −1
2

∑

i, j

Ji jσiσ j −
∑

l

σlhl

whereσi = ±1 are usual Ising variables andJi j is a generalized coupling constant.
The set{hl} represents external fields coupling linearly with the spin variables, and
randomly distributed according to some given law of probability, e.g., gaussian, or
multimodal (e.g., made up of Dirac “functions”). As far as modeling ofreal sys-
tems is concerned, random fields are assumed to evolve on a time scale orders of
magnitude larger than the usual time scale associated with thermal fluctuations of
the spin variables, so that they represent aquencheddisorder. In particular, thermo-
dynamic averages are computed by assuming constant random fields: this isto be
distinguished from the notion ofconfigurationalaverages, i.e., averages over sev-
eral realizations of disorder. An important point in this respect is theself-averaging
property of the free energy with respect to configurational averages, whereby the
free energy (per spin) for a given set of quenched fields tends towards its con-
figurational average in the thermodynamic limit, so that averaging over disorder
realizations — if this is technically feasible — proves an efficient way of obtaining

1Although the exactness of the mean-field regime for sufficiently slowly decaying interactions
has been proven for non-disordered models only [65, 68, 196, 331].
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the critical properties forany given set of quenched fields. This clearly plays a
crucial role also in numerical simulations.

In its nearest-neighbor formulation, i.e., withJi j taking non-null values for in-
teractions between neighboring spins only, the RFI model has been the subject of
unabated interest during the last three decades, particularly for fields distributed
according to a gaussian law. Beyond its importance in the microscopic modeling
of a variety of magnetic or ferroelectric materials, e.g., diluted antiferromagnets
(see [20] for a review addressing experimental realizations), it has also become
— along with the Edwards-Anderson model of spin glasses [110] — a paradigm
for the investigation of critical phenomena in disordered systems. There are still
several controversial issues surrounding the critical behavior of thismodel. One
is the value of the lower critical dimension: the answer oscillates betweenDl = 2
andDl = 3 depending on the line of arguments invoked [3, 56, 71, 170, 173, 274],
although strong evidence tips the balance in favor ofDl = 2. Another thorny ques-
tion is the possible existence of a tricritical point for some distributions of random
fields [2, 94, 54, 69, 154, 164, 238, 266, 275]. For a gaussian distribution of fields,
it was shown by Schneider [295] that mean-field theory (which becomes exact for
the infinite-range model) predicts a second-order phase transition at finitetemper-
ature withTc decreasing with increasing field strength. On the contrary, it was
argued on the grounds of renormalization-group arguments [2] that multimodal
distributions lead to a first-order transition at sufficiently large fields, provided the
distribution has a minimum at zero field (which is the case for the bimodal dis-
tribution). Finally, the need for a third, independent critical exponent entering a
so-called modified hyperscaling relation — with respect to the pure Ising model
— and the question of which universality class the model belongs has also been
the matter of intense debate [69, 258, 260, 266, 275]. More detailed material on
these questions may be found, for instance, in two reviews by Nattermann etal.
[256, 255].

Long-range interactions The model studied hereafter is a generalization of a
one-dimensional, nearest-neighbor RFI model to pair interactions decaying as a
power law of the distance between spins, i.e., with the following Hamiltonian2

H = −
∑

i< j

1
|i − j|1+σ

σiσ j −
∑

l

σlhl (8.1)

I will restrict the present study to abimodaldistribution of fields, i.e.,

P(hl) =
1
2

[δ(hl − h) + δ(hl + h)], (8.2)

and assumeuncorrelatedfields, i.e., such that [hih j ] = δi j where the brackets refer
to a configurational average, i.e., an average over quenched disorder.

2A factor 1
2 has been included in numerical simulations for the sake of comparison, inthe zero

field limit, with the temperatures of the Potts model withq = 2.
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As opposed to the nearest-neighbor model, specific studies of the long-range
model have been scarce: critical exponents have been calculated by means of renor-
malization group methods in [52, 343] (Bray also studied the problem of long-to
short-range crossover [52]), and a rigorous work by Klein and Massooman [206]
recently addressed the long-distance behavior of correlation functionsby means
of high temperature/field expansions. Vojta investigated a spherical version of this
model [330] using the replica method, with special attention given to the lower
critical dimension.

Since the decay parameter of the interaction influences the effective dimension
of long-range models, it is clear, however, that the controversies surrounding the
nearest-neighbor model may be worthy of reexamination in the case of power-law
decaying interactions. In particular, since mean-field behavior becomes exact for
σ → −1, one may expect some of the predictions of mean-field theory, e.g., the
existence of a tricritical point for bimodal distributions, to show up for a sufficiently
low decay parameter. On the other side of the phase diagram, i.e., for rapidly
decaying interactions, the ability to continously vary the effective dimension may
prove a very efficient way to compute the upper critical range (i.e., the analog of
the lower critical dimension), and to check for the validity of the various arguments
invoked to estimate it.

In the following, I will only address the nature of the phase transition in the con-
text of long-range interactions and with bimodal distributions. In addition, since
no study, whether analytical or based on numeric simulations, has been madeavail-
able — to the best of my knowledge — on this subject in the past, the emphasis in
what follows will be given to a qualitative estimation of the phase diagram rather
than on precise estimates of critical couplings or critical exponents.

8.2 Gaussian vs bimodal distributions: what’s the point?

As already mentioned in the introduction, mean-field theory predicts that the tran-
sition remains continuous for all field strengths for a gaussian distribution offields
[295, 244]. Conversely, the existence of a tricritical point has been argued when
fields are engendered by a bimodal distribution [244], or more generally, by any
symmetric distribution with a minimum at zero field [2]: the transition turns from
second- to first-order at sufficiently large field amplitude. With an eye to future use
for comparison with numerical results, mean-field results will be derived in greater
detail in Sec. 8.3 using a different line of argument based on the replica method.

Predictions based on mean-field approximations [201, 298] or combination
thereof with renormalization-group schemes [94], confirm that, for a trimodal dis-
tribution of the formP(hl) = pδ(hl) + 1

2(1 − p)[δ(hl − h) + δ(hl + h)], there is
a tricritical point wheneverp ≤ 1/4, and a first-order transition is ruled out for
p > 1/4 [69]. The latter case is thus expected to exhibit the same behavior as the
gaussian distribution, yet the low value of the magnetization exponentβ reported
in some studies of the latter distribution [266] may be indeed misleading in this re-
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spect, since this would suggest either a weak first-order transition, or a very sharp
second-order transition. This behavior was also reported in Monte Carlostudies of
the bimodal case [360, 287]: while the transition may indeed be first-order,it may
also have unusual attributes, namely, no latent heat but a jump in the magnetization
[287, 286].

By monitoring the behavior of the critical exponent of the connected and dis-
connected correlation functions, Young and Nauenberg [360] suggested the onset
a first-order transition driven byfluctuationsfor a bimodal distribution (a feature
which is in contrast with the mean-field mechanism, yet was also mentioned in
[343] for the long-range model with a gaussian distribution). In a recentMonte
Carlo study, a tricritical point at large field was also asserted from the presence
of an hysteresis loop in the field-cooling/field-heating cycle [154]. However, a
high-temperature expansion predicted a fluctuation-driven first-orderphase transi-
tion also for a gaussian distribution (providedD < 4) [164], a feature that was
subsequently borne out by field-theoretic renormalization-group derivations [54];
the onset of a first-order transition was also confirmed for this distribution by a
Monte Carlo study based on the replica-exchange algorithm [238], although for
some, but not all realizations of disorder. Finally, Gofman et al. predictedthe on-
set of a first-order transition forboth types of distribution, so thatoverall the issue
is still somewhat unclear as far as the influence of the shape of the distribution is
concerned.

8.3 Mean-field theory

In this Section, I give a brief outline of the derivation of the free energy for the
RFI model with a bimodal field distribution, in the mean-field approximation. The
point of departure is the infinite-range Hamiltonian, i.e.,H = − J

2N

∑

i, j SiS j −
∑

l hlSl , whereJ will be replaced byζ(1 + σ) in the last step in order to recover
the free energy of a long-range chain with 1/r1+σ interactions in the mean-field
approximation (see Chap. 4). I will take guidance from the derivation carried out
in [265] for the Sherrington-Kirkpatrick (infinite-range) spin glass.

The free energyF for a fixed set of quenched fields readsF({hi}) = −kT ln Z({hi}),
which we rewrite asF({hi}) = −kT limn→0

Z({hi })n−1
n by resorting to the usual replica

trick ([110], see also, for instance, [265]):Zn actually stands forZαZβ . . .Zω, where
each partition function corresponds to a replica of the original system with itsown
set of spin variables{Sαi }i=1...N. The configurational average then reads

[F] = −kT[ln Z] = lim
n→0

[Zn] − 1
n
,

and the derivation of the mean-field free energy thus involves first computing
∏n
α=1 Zα, averaging over the distribution of random fields, taking the limitn→ 0

and eventually taking the thermodynamic limitN→ ∞. The “replicated” partition
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functionZn writes (withβ = 1/kT)

Zn = Tr exp






βJ
2N

∑

α

∑

i, j

Sαi Sαj + β
∑

α

∑

l

hlS
α
l






where the trace operation is over all sets of replica’s variables{{Sαi }i=1...N}α=1...n.
The configurational average over fields generated by a bimodal distribution (Eq. 8.2)
yields

[Zn] = Tr exp






βJ
2N

∑

α

∑

i, j

Sαi Sαj +
∑

i

ln coshβh
∑

α

Sαi






.

In order to carry out the trace independently over each spin variable, one first “lin-
earizes” theSαi Sαj term by resorting to an (inverse) gaussian integral (akin to a
Hubbard-Stratanovitch transform) over auxiliary variablesmα. It can be shown
[265] that these variablesmα also represent the order parameter of each replicaα.
Whence, after tracing over all spin variables,

[Zn] =
(
βJN
2π

)n/2 ∫
∏

α

dmαe
−βNJm2

α/2+N ln L

where

L =
1
2

∏

α

2 coshβ(Jmα + h) +
1
2

∏

α

2 coshβ(Jmα − h)

Equilibrium solutions correspond to the maxima of [Zn]. Since the argument of
the exponential function in the integral above is proportional toN, it is possible to
evaluate [F] through a saddle-point approximation, i.e., [Zn] ∝ e−β[F]0, where [F]0

is the argument of the exponential function evaluated at its minimum. Assuming
replica symmetry [272], i.e.,mα = m for all α, wherem now denotes the order pa-
rameter of the “original” system, and considering thatn ∼ 0, equilibrium solutions
are given by the minima ofβNJm2/2−N ln L (whereL is now a function ofmonly),
which we identity with the free energy of the system (up to a factorn stemming
from the presence ofn identical replica in the expression of [Zn]). Whence the free
energy per spin (and per replica) is given, up to an irrelevant additiveconstant, by

f (m) =
J m2

2
− kT

2

{

log cosh
Jm− h

kT
+ log cosh

Jm+ h
kT

}

(8.3)

whereJ = 2ζ(1+ σ). The order parameterm is a solution of the equation of state
d f(m)/dm= 0, i.e., in implicit form,

m=
1
2

{

tanh
Jm+ h

kT
+ tanh

Jm− h
kT

}

The free energy is depicted in Fig. 8.1 for several field strengths at zero temper-
ature. Two minima are exhibited, which correspond to a so-called spin glass (SG)

200



8.3. Mean-field theory

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 0.2 0.4 0.6 0.8 1

F
(k

T
,m
,h

)

m

h/hc = 0.8

h/hc = 1

h/hc = 1.2

SG phase F phase

Figure 8.1: Free energyF(kT,m,h) at T = 0 for several values of the field ampli-
tude. The ferromagnetic phase (F) is stable up toh/hc = 1 (this defines the critical
field amplitude). The spin-glass phase (SG) is metastable at small field amplitudes.
This feature is a peculiarity of the bimodal distribution: for a trimodal distribution,
this phase becomes unstable at sufficiently low fields.
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Figure 8.2: Free energyF(kT,m,h) for h/hc = 0.3. The metastable state atm = 0
corresponds to the spin glass phase, with spins aligned with their local field,and
vanishes aboveTa = 0.205< Tc. Temperatures are normalized with respect to the
transition temperature at zero field.

phase — orindependentspin phase — and a ferromagnetic phase (F) respectively.
In the SG phase, spins align with their local field independently of their neighbors,
which leads tom = 0 since the distribution of fields is symmetric. This phase is
metastable forh below a critical strengthhc = ζ(1 + σ), ; for h > hc, it is the
ferromagnetic phase which becomes metastable.

Graphs of f (m) at several temperatures are shown in Fig. 8.2 and 8.3 for
h/hc = 0.3 andh/hc = 0.9, respectively. These two field strengths define two
qualitatively distinct regimes: forh/hc = 0.3, the metastable state atm = 0 van-
ishes for a temperatureTa lower than the transition temperature, and the transition
is continuous, whereas forh/hc = 0.9 the metastable state exists up to the transition
temperature and the transition is first order.

The value of the field at which this change of regime occurs can be computed
by performing a Landau expansion off (m), and monitoring the change of sign in
the second derivative off (m). Expandingf (m) to fourth order inm yields

f (m) = am2 + bm4 +O(m5)

with

a =
J

2kT

{

−J + kT + J tanh2 h
kT

}

and

b =
J4

12kT3

cosh(2h/kT) − 2

sin4(h/kT)
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Figure 8.3: Free energyF(kT,m,h) for h/hc = 0.9. The metastable state atm =
0 exists fromT = 0 up to the transition temperature, where it becomes stable.
Temperatures are normalized with respect to the transition temperature at zero field.

In the low-m limit, the transition temperatureTc is defined bya = 0 (provided
b > 0), i.e., by the implicit equationkTc/J = 1− tanh2(h/kTc)). This yields a good
estimate ofTc in the second-order regime only; in the first-order regime, I will rely
on the exact expression of the free energy, Eq. 8.3.

The metastable state atm = 0 (SG phase) disappears above a temperaturekTa

such thatF′′(m= 0) changes sign (it is positive belowTa). This corresponds to the
condition that

F′′(m= 0, kTa,h) = J − J2

kT sin2(h/kT)
= 0.

This equation has two solutions forh/hc < κ = 0.8955: the first temperature
corresponds to the vanishing of the metastable state (Ta in Fig. 8.2), while the
second solution corresponds to the transition temperatureTc. In this case, the
transition is continuous since the SG phase has lost its stabilitybeforethe transition
occurs. Forh above the previous value, the equation has no solution, which means
that the metastable state exists at all temperatures up to the transition temperature,
where it eventually becomes stable. As a result, the transition is of first order, with
a coexistence between the SG and the ferromagnetic (F) phases; the ferromagnetic
phase becomes unstable at a metastability temperatureT2 > Tc corresponding to
the fading away of the associated local minimum.

At h/hc = κ, therefore, there is a tricritical point where the transition changes
from second to first order. The associated mean-field transition temperature is

203



Chapter 8. Long-range Ising chain with bimodal random fields: first-order
transitions induced by disorder

Tc/ζ(1 + σ) = 0.6238 (Landau expansion leads toTc/ζ(1 + σ) = 0.5949). It is
important to note at this point that forh/hc > κ, the histogram of the energy shows
two spinodal points contrary tof (m) which is associated with a single temperature
of metastabilityT2.

8.4 Dimensional argument in the present of long-range in-
teractions

Although the present chapter does not explicitly center on the estimation of theup-
per critical rangeσ∗ of the model (i.e., there is no phase transition at finite temper-
ature forσ > σ∗, irrespective of the field amplitude), it is nonetheless interesting to
calculate it since this sets the range ofσ values that should bea priori explored in
numerical investigations. In addition, the shape of the phase diagram given below
(Fig. 8.8) may certainly shed some light on this question, at least qualitatively to
begin with.

The most straightforward way to calculateσ∗ is by generalizing the dimen-
sional argument proposed by Imry and Ma [173] for the nearest-neighbor model.
This argument relies on the stability of the ferromagnetic phase atT = 0 against
localized excitations made up of isolated domains of, e.g., up-pointing spins in a
sea of down-pointing spins. The main lines of the original argument are as follows.
As a domainD of sizeR is flipped, the energy of the system changes as a result of
(i) the onset of a domain wall located on the domain boundary, and (ii) a change
in the interaction of the spins belonging to the domain with their local fields. In a
nearest-neighbor model of dimensionD, the energy change reads

∆E = ∆EDW + ∆EZ ∼ RD−1 +
∑

i∈D
hi

where the first term denotes the increase in energy due to a domain wall whose
length behaves asRD−1, and the second term is avolumeterm (∼ RD) correspond-
ing to the change in Zeeman energy of the domain. Whether fields are distributed
according to a gaussian or a bimodal distribution, the contribution of the volume
term is zero on average, and one must therefore consider the second moment of
the distribution: in the largeR limit, and provided fields are not correlated, the
central-limit theorem states that the quantity

∑

i∈D hi converges to a gaussian law
with a standard deviation given byh

√
RD. As a result, the change in energy reads

∆E ∼ RD−1 ± RD/2, where the minus sign corresponds to a fluctuation of the ran-
dom field inside the domainD that would lead to a negative change in the Zeeman
energy; hence to a competition with the domain wall energy (it is always possi-
ble to find such a domain in the thermodynamic limit). The ferromagnetic phase
remains stable as long as∆E > 0, i.e., D > 2; in this case, onlysmall domains
may show up (up to a sizeRM depending on the field amplitude), that are indeed
unable to destabilize the whole ordered phase. This dimensional argument shows
that the lower critical dimension of the nearest-neighbor model isD = 2. It is
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8.4. Dimensional argument in the present of long-range interactions

worth to briefly mention at this point that this argument has been the subject of
much criticism, in particular as regards the shape of the domain boundary. Itwas
argued by Binder [37], for instance, that the domain boundary has in fact a much
more complex, possibly fractal structure, owing to the tendency of the boundary
to “steer” around spins pinned by a large local field — in the case of a gaussian
distribution of fields — in order to minimize the total energy of the interface.

Turning to the long-range model, it is clear that the change in Zeeman energyis
still given byhRD/2. The main change with respect to the nearest-neighbor model
is thus related to the domain-wall energy. The argument given hereafter assumes
that the domainD is compact, i.e., made up ofcontiguousspins; in the presence
of long-range interactions, this assumption is markedly questionable, in particular
in view of the fractal structure of the interface argued in Chap. 7 in the case of
first-order transitions (let alone the argument of Binder [37] regardingthe fractal
structure of the domain wall that was already argued for the nearest-neighbor model
and might also hold here). For the sake of simplicity, however, I will stick to this
hypothesis in what follows; I will also restrict the discussion toD = 1, i.e., the
model under investigation in this chapter. Considering a domain of widthR (see
Fig. 8.4), the change in domain-wall energy is given by

∆EDW ∼ R
∞∑

r=1

1
r1+σ

−
R−1∑

r=1

(R− r)
1

r1+σ

where the first sum corresponds to the change in energy whenR spins are flipped,
and the second sum compensates for interactions between spins inside the domain.
By transforming sums into integrals, one obtains

∆EDW ∼
R1−σ

σ(1− σ)

whereby the upper critical range is given byσ∗ = 1/2 (this value was also reported
in [343]). So far, it has been assumed thatR = N, whereN is the number of
spins inside the domain. However, if the domain has indeed a fractal structure
with a Hausdorff dimension lower than 1, thenN < R, EZ would still behave as
N1/2, yet one might expect that∆EDW scales more rapidly withN (because the
second sum in∆EDW would grow more slowly), so that one would end up with a
largerσ∗. However, the domains also tend to modify their shape (at fixedN) in
order to minimize their energy with respect to the random fields, and this would
converselydepressσ∗; this is similar to the domain-rougheningargument and, to
some extent, the domain-within-domain argument invoked in the nearest-neighbor
case [37, 214]. It is interesting to note at this point that the dimensional-reduction
argument [3, 273, 359], wherebyD → D − 2 in the presence of random fields,
would yieldσ∗ = 0, sinceD∗ = 2σ (see Sec. 5.1) andσ∗ = 1 for the pure Ising
model.
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Figure 8.4: Illustration of Imry-Ma dimensional argument for a long-rangechain
with a bimodal distribution of fields: the stability of an elementary excitation con-
sisting ofRcontiguous spins is monitored against the decay parameter of the long-
range interaction.

8.5 Method

8.5.1 Algorithm

The main objective of the numerical study presented in the next paragraphis the
investigation of the order of the phase transition for a long-range RFI model with a
bimodaldistribution of fields. As in the remainder of this thesis, the model is stud-
ied numerically by means of a Monte Carlo method operating in the multicanonical
ensemble: as far as the RFI model is concerned, it is expected to deal better with
the complex free energy landscape exhibited by the model — in particular, the
presence of a metastable state at all temperaturesT < Tc wheneverh/hc > κ —
than canonical methods. The model is studied for two decay parameters,σ = 0.1
and 0.4, and field amplitudes ranging fromh = 0 to h = hc, by means of the two
following algorithms:

• a single-spin update version of the Wang-Landau algorithm (Sec. 2.5.4),
adapted to long-range models (i.e., following the prescriptions presented in
Chap. 3 regarding the presence of unequally spaced energy levels),and com-
bined with the transition matrix method; the last method is used to estimate
the temperatures of metastability (if at all), see Sec. 4.3.4 and Sec. 7.7.

• a cluster-update version along the line of the breathing cluster method pre-
sented in Chap. 7.

As far as the single-spin update algorithm is concerned, the implementation
does not differ markedly from that presented in Chap. 7. The only difference
amounts to the use of Zhou and Bhatt’s prescription [362] instead of the origi-
nal prescription [334] for estimating the minimum number of histogram entriesM
per iteration, and for decreasing the modification factor. These prescriptions were
claimed — and indeed observed in Chap. 7 — to yield improved accuracy on the
estimate of the density of states. The modification factorγ = ln f is initially set
to around 20, and divided by a number oscillating between 5 and 10 at the end of
each iteration: this choice is clearly empirical, and values are obtained by trialand
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error, based on a couple of short runs for various realizations of disorder. The mini-
mum number of histogram entries per bin is set3 to 1/

√
γ, and the transition matrix

method is used during the first iteration to efficiently predict a (rough) estimate of
the density of states (see Sec. 7.7.2).

As regards the cluster-update version, the goal of the present study isclearly
modest, and I simply considered a straightforward generalization of the breathing
cluster method introduced in the previous chapter. Devising an efficient cluster
algorithm specifically tailored to disordered models and which may easily combine
with the breathing cluster method is beyond the scope of the present work. Two
cluster schemes may be considered:

• clusters can be constructed as if the model were a pure ferromagnetic model
(algorithm I)

• or random fields may be included in the cluster construction process as well,
i.e., by considering random fields as discrete±1 spins and a coupling con-
stant given by the strength of the field; in this case, clusters “pinned” by at
least one random field are not flipped (algorithm II).

In the first scheme, the construction of the cluster thus proceeds along thesame
lines as given in Chap. 7 for the Potts chain, and clusters are (virtually) flipped with
an adjustable probabilitypf lip (see below). However, since random fields are not
included in the random-cluster representation of the model, the acceptance rate for
the cluster-flips from statea to stateb (Eq. 7.2) must be modified as follows:

Aflip(a→ b) = min





1,

eα(Ea)

eα(Eb)

e−β(Eb)HRF(b)

e−β(Ea)HRF(a)

∏

l>0

[

pl(Eb)
pl(Ea)

]B(l)




, (8.4)

HRF denotes the random-field part of the Hamiltonian, i.e.,HRF = −
∑

l σlhl . This
term is easily evaluated in both statesa andb by computing the number of spins
that werevirtually flipped and the total field in each cluster: both operations are
O(N).

This construction scheme is the multicanonical analog of the (canonical) clus-
ter algorithm of Dotsenko [102]. The pitfall is clear: as was already alluded to in
[258] in the context of canonical simulations, the presence of disorder depresses
the transition temperature below that of the pure model. As a result, clusters
constructed using the inverse microcanonical temperatureβ(E) = dS(E)/dE are
markedly too large for the same reason as in the canonical implementation: for in-
stance, considering the system at a given energyE corresponding to a microcanon-
ical temperatureT(E) ∼ Tc(h), with Tc(h) denoting the transition temperature of
the disordered model at field amplitudeh, thepuremodel at the same temperature
is already in its ordered phase becauseTc(h) < Tc(0). Since clusters percolate at

3The “original” prescription in [362], i.e.,M ∼ 1/γ, turns out to be exceedingly demanding,
especially in view of numerous simulations that need to be performed for disordered models.
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the critical temperature for the pure model, this can no longer be the case forthe
disordered model, and the offset between the optimal cluster size and that given
by the microcanonical temperature obviously increases with the field strength. Yet
there is more to be fathomed out in the context multicanonical simulations: the
acceptance rate — hence, in some respect, the autocorrelation time — of a multi-
canonical update scheme is optimal if the proposal-move scheme picks rare events
and non-rare events with equal chance, i.e., according to the random walker pic-
ture, picks left- and rightwards moves (on the energy axis) with equal weight. This
is clearly what the cluster-update scheme of the breathing cluster method does for
a ferromagnetic model: turning back to the RFI model, if clusters are too large,
low energy states will be picked more often than high energy ones, and this clearly
reduces the acceptance rate. Similarly, the acceptance rate is also reduced if clus-
ters are too small (this can be easily explained by considering clusters of unit size,
where we are back to simple Monte Carlo sampling).

One way to get around the issue is to decrease the bond probability, i.e., to
decrease the inverse temperatureβ(E) that governs the cluster construction, since
this lowers the average cluster size4. However, this must be done empirically — in
the absence to date of anysmarterscheme —, by scalingβ(E) globally until the
minimumeffectiveautocorrelation time is reached5. Let alone the fact that scaling
β(E) globally does certainly not yield theoptimal bond probability atall energy
levels, this approach is clearly tedious: it turns out that the procedure is efficient
at modest lattice sizes and low field strengths (up toh/hc ∼ 0.3), because the ef-
ficiency of the algorithm is only moderately affected by a value ofβ(E) departing
from the ideal value; this becomes clearly cumbersome, however, aboveL ∼ 400.
At medium field, the performance is illustrated in Table 8.1, where effective au-
tocorrelation times (at the transition temperature) are indicated for several scaling
values: as can be seen, the maximum attainable acceptance rate forL = 256 hardly
exceeds 10%, which clearly shows that scalingβ(E) is not enough to obtain an
optimal move-proposal scheme, at least at medium and large field strengths.

At medium and large lattice sizes (and medium field strengths), algorithm II
proves more efficient. Here, bonds are activated not only between spins, but also
between spins and random fields (akin to “ghost-spins”), using a bond probability
given by

pi j (E) = δσi ,σ j

(

1− e−β(E)|Ji j |
)

for the former type of bonds, and

pi(E) = δσi ,hl/h

(

1− e−β(E)h
)

4Another similar method consists in shifting the functionβ(E) toward the left of the energy axis.
5The same procedure was proposed, although in the context of a canonical cluster algorithm, in a

numerical study of the frustrated Coulomb model [138].
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Table 8.1: Effective autocorrelation times at the transition temperature forσ = 0.4
andh/hc = 0.3, andL = 128, 256 and 512. (SSU) refers to the single-spin update
algorithm. (I) indicate estimates obtained with algorithm I for several scaling fac-
tors s applied to the microcanonical temperatureβ(E) entering bond probabilities.
(II) refers to the ghost-spin algorithm. A and B indicate the acceptance rateand the
fraction of the lattice occupied by the largest cluster, respectively.

L SSU I: s=1.1 s=1.0 s=0.9 s=0.8 II:
128 τe f f 20 32 21 16 40 30

A(%) 35 12 15 14 7 58
B(%) 68 63 57 47 64

256 τe f f 55 800 670 590 1000 90
A(%) 35 8 10 8.5 5 55
B(%) 56 52 48 41 60

512 τe f f 150 205

for the latter6. In this case, the acceptance rate is simply given by Eq. 7.2,yet
taking bonds between spins and random fields into account, i.e.

Aflip(a→ b) = min





1,

eα(Ea)

eα(Eb)

∏

l>0

[

pl(Eb)
pl(Ea)

]B(l) [qb

qa

]C




(8.5)

whereqa = eβ(Ea)h − 1, andC is the number of bonds that have been activated
between spins and random fields. Clusters that have at least one activebond with a
random field are said “frozen”, and are not flipped.

It turns out that constructing clusters by taking the disorder into accountyields
substantially larger acceptance rates than with algorithm I: clusters are still con-
structed using the microcanonical temperatureβ(E), yet large clusters are never
flipped because they most often end up pinned by a random field. To be specific,
the probability that a cluster of sizeB be frozen is given by 1− e−β(E)H, where
H =

∑

i∈B hi is the total field felt by the cluster, and this quantity increases expo-
nentially with the square root of the cluster size. As a result, only small clusters are
flipped, which is exactly what we were seeking when decreasingβ(E) in algorithm
I. As shown in Table 8.1, however, the scaling is not markedly better than witha
single-spin update (SSU) implementation for the fields considered: the dynamic
exponents amount toz = 1.4 andz = 1.39 for the SSU and the cluster-update al-
gorithms, respectively. Overall, and although cluster updates turn out to be more
efficient at lower field amplitudes, I found the balance to be clearly tipped in fa-
vor of the SSU algorithm at larger fields. Nonetheless, it should be remarked that
canonical algorithms behave poorly in this region, so that the power law behavior
obtained for both move updates represents in any case a clear improvement.

6These probabilities take into account a factor1
2 that has been included in the definition of the

Hamiltonian, i.e., pair interactions are actually Kronecker delta functions.
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Figure 8.5: Total CPU time needed to perform a Monte Carlo simulation delivering
the samenumber of uncorrelated measurements, with respect to the lattice size.
Single-spin update: dashed line; cluster-update: solid line. Units on the vertical
axis are arbitrary.

While dynamic characteristics are more or less similar for both move updates,
it must be reminded, however, that the benefits of cluster algorithms are twofold
when simulating long-range models: there is also an associated reduction in the
number of operations required to compute the energy, fromN2 to N ln N. In view
of the prefactors, the cluster-update version becomes more efficient aboveL ∼ 200
(see Fig. 8.5), although the boundary clearly depends on the type of Fast Fourier
Transform implementation used to compute the energy. To sum up, cluster updates
represent an efficient update scheme up to medium field strengths, yet essentially
as a result of the reduction of the algorithm complexity rather than in terms of
dynamic behavior.

8.5.2 Influence of periodic boundary conditions

An appropriate choice of periodic boundary conditions proves crucialto investigate
the model at large fields. Indeed, as the amplitude of the random field increases,
the transition temperature dies off to zero; on the lineT = 0, there is a critical
valuehc above which the ferromagnetic ground state becomes unstable, and spins
reduce their energy by aligning with their local random field. While in models
with nearest-neighbor interactions, the critical valuehc does not depend on the
lattice sizeL, but merely on the coordinence of the lattice, this is no longer the case
for long-range models: the (long-range) ferromagnetic part of the interaction that
keep all spins lined up in the same direction, increases with the lattice size, and
as a result the smallest field amplitude needed to flip a spin pointing in a direction
opposed to its local random field increases as well.

Formalizing this a little, the critical field amplitudehc for a chain of sizeL is
given byhc(L) =

∑L
r=1 J(r), with limL∞ hc(L) = ζ(1 + σ). If first-image periodic

boundary conditions (FIPBC) are being used, thenJ(r) = 1/r1+σ (truncated to
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Figure 8.6: Graph of the critical fieldhc(L) with respect to the lattice size for
σ = 0.1 and two choices of periodic boundary conditions: infinite image peri-
odic boundary conditions (IIPBC), and first-image periodic boundary conditions
(FIPBC).

r < L/2) andhc(L) increases at a drastically low pace with the lattice size; this is
clearly visible in Fig. 8.6 forσ = 0.1. As a result, investigating the region near
T = 0 imposes that chains of huge sizes should be simulated lest no phase transition
occurs. In this respect, using infinite image periodic boundary conditions (IIPBC),
as described in Sec. 4.2.1 dramatically improves the convergence. In this case,
each spin interacts with an infinite number of periodic replica of the chain, and
J(r) is replaced by an effective interactionJ̃(r) given by Eq. 4.7. As can be seen
in Fig. 8.6,hc(L) converges much more rapidly to the infinite-size value, so that
investigations of the region (h ∼ hc,T ∼ 0) are clearly feasible for sizes below
L ∼ 1000.

8.6 Phase diagram of the long-range RFI model

Simulations were carried out forσ = 0.1 andσ = 0.4, i.e., near the expected
onset of the mean-field regime, and in the vicinity of the upper critical range,re-
spectively. In order to ensure that every realization of disorder exhibits a phase
transition, the zero total field constraint was enforced,

∑L
i=1 hi = 0. Lattice sizes

betweenL = 64 andL = 1024 were investigated, and between 20 and 50 realiza-
tions of disorder (i.e., samples) were generated, depending on the lattice size; at
large fields, I had to rely on more samples owing to a larger dispersion in the data
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Figure 8.7: Fit of finite-size temperaturesTc,χ(L) to the power lawTc,χ(L) −
Tc,χ(∞) ∝ L−1/x, for σ = 0.1 andh = 1.0.

points — as expected. Algorithm II was used for fieldsh/hc < 0.3, and the single-
spin update algorithm at larger fields. Equilibrium time was checked by relyingon
theχ2-regression scheme described in Sec. 7.4.

Transition temperatures In order to determine the transition temperatures, I rely
on the scaling behavior of peaks of the specific heat, the susceptibility, andcross-
cumulantsV1 andV2 of the magnetization (see Chap. 4), and estimate the infinite
size temperature by performing a fit ofall data points (i.e., for each realization of
disorder) to a power law of the formTc(L) − Tc(∞) ∝ L−1/x, wherex is adjusted
so as to yield the lowest error: it turns out that, in the second-order regime, setting
x = ν, whereν is the correlation length exponent given by the finite-size scaling
behavior ofV1 andV2, leads to slightly underestimated temperatures and poorer
fits. A fit to the peaks of the susceptibility is illustrated in Fig. 8.7 forσ = 0.1 and
h/hc = 0.0945: the sample-to-sample dispersion is small; this is no longer the case
at large fields, and the fact that fits are performed over four to five latticesizes,
and with a rather modest number of realizations of disorder, produces quite large
error bars. The corresponding estimates of transition temperatures are depicted in
Fig. 8.8.

Order of the phase transition The method used to detect the order of the phase
transition is the spinodal method presented in Sec. 4.3. The microcanonical tem-
peratureβ(E) is computed using the transition matrix method, and temperatures of
metastability, if any, are determined from the extrema ofβ(E) in the critical region.
This is depicted in Fig. 8.9 forσ = 0.1 andh/hc = 0.945 (hc = ζ(1 + σ)): while
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Figure 8.8: Phase diagram of the random-field Ising chain with 1/r1+σ interactions,
for σ = 0.1 and 0.4. Open symbols indicate a first-order transition, while filled
symbols refer to a second-order transition (lines are guides to the eyes and errors
are smaller than the size of symbols except were explicitly shown). The thick,
dotted and solid lines show the mean-field predictions in the first- and second-
order regime, respectively. The thick dashed line shows the boundary between
both regime in the mean-field approximation.

213



Chapter 8. Long-range Ising chain with bimodal random fields: first-order
transitions induced by disorder

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

0 0.001 0.002 0.003 0.004

T
1
(L

),
T

2
(L

)

1/L

T1

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

T2

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut
ut

ut

ut

ut

ut

rs

rs

rs

rs

rs

rs

rs

ut

ut

ut

ut

ut

ut

ut

rs
rs

rs

rs

rs

rs

rs

ut

ut

ut

ut

ut

ut

ut

Figure 8.9: Fit of the temperatures of metastabilityT1(L) andT2(L) to a power law
of the lattice size, forσ = 0.1 andh = 10.0. In spite of the strong dispersion of the
data points, the transition is clearly of the first order.

the sample-to-sample variation is large, the finite-size scaling behavior of the two
temperature of metastability clearly indicates that the transition is first-order. The
nature of the phase transition for the field amplitudes investigated in the present
work is indicated in Fig. 8.8 as open and filled symbols for first- and second-order
transitions, respectively. In view of the modest lattice sizes investigated, theon-
set of a first-order transition7 cannot be definitely ruled out, even if the transition is
marked as being continuous in the phase diagram: this is particularly true regarding
the points that lie on the boundary between the two regimes.

The coexistence between the two phases is illustrated in Fig 8.10: the bottom
part of the figure depicts the two-peak structure characteristic of phasecoexistence,
while the top part shows the joint distribution of the random-field part of the in-
teraction,ERF, with respect to the lattice energy. In the upper energy range, both
ERF and the order parameter (not shown) are close to zero, showing that spins be-
have paramagnetically. As the critical energy range is approach, the random-field
part of the interaction increases, signaling a tendency of spins to align with their
local random field (the independent spin phase): this tendency is reminiscent of
the metastable state existing atm = 0 in the mean-field approximation. Simulta-
neously, nearE/L ∼ −14.3, the ferromagnetic phase develops, characterized by a
large magnetization and a low value ofERF. The interface tension that is clearly
visible on the reweighted histogram of the energy nearE/L ∼ −14.3 corresponds

7In particular if it happens to be driven by fluctuations
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to the coexistence between these two phases.

8.7 Discussion and perspectives

Phase diagram Mean-field results are indicated along with the other estimates
in the phase diagram shown in Fig. 8.8. In particular, the thick dashed line is a
reminder of the boundary between first- and second-order transitions as obtained
from the mean-field approximation.

For σ = 0.1, estimates of transition temperatures match well the mean-field
estimates, although the discrepancy is slightly larger at medium field amplitudes;
the same behavior is observed in a slightly more marked way forσ = 0.4, where the
curvature ofTc(h) is smaller than forσ = 0.1. This behavior may very well signal
the approach of the upper critical range, since atσ∗ = 0.5, Tc(h = 0) ∼ 2.182
andhc = 2.612, so that the curveTc(h) must in any case terminate at these two
points: one may expect that the curvature does not change abruptly right at the
upper critical range, but rather gradually changes sign. This clearly suggests to
further investigate the behavior of the model for 0.4 < σ < 0.5.

As regards the position of the tricritical point, the large error bars do not al-
low to draw more than mere qualitative conclusions. Forσ = 0.1, the position
of the boundary is consistent with the mean-field prediction; forσ = 0.4, how-
ever, the continuous nature of the transition forh = 2.5 suggests that the tricritical
point shifts towards the low temperature region. This is in contrast with the find-
ings of Khurana et al. [202] obtained from a high-temperature expansion of the
nearest-neighbor model, showing that, while the tricritical point persists in lower
dimensions, it also appears at weaker fields (with respect to the critical field ampli-
tude): this means that the boundary is pulled towards the large temperature region,
a feature also suggested by Monte Carlo Renormalization Group studies [281].
Although a fluctuation-driven first-order transition cannot be totally ruledout for
σ = 0.4 andh = 2.5, seeing that the investigation were restricted toL < 1000,
this could also imply that the nearest-neighbor and the long-range models do not
behavequantitativelythe same way in this respect. Finally, and as regards the ade-
quacy with mean-field results, it would be very appealing to check (i) the value of
σ at which a classical critical behavior sets in, if at all, and (ii) the exactnessof the
mean-field behavior forσ < 0.

Dynamics of the algorithm at large fields and possible improvements For the
two largest fields considered forσ = 0.1, namely,h = 10 andh = 10.5, the transi-
tion is first-order except for a few samples which do not exhibit a transitionat all:
the magnetization remains close to zero, with a smooth, light bump instead of the
usual jump observed for other samples. The same behavior occurs forσ = 0.4 and
h = 3. Sinceh < hc and the zero total field condition ensures that there must be a
phase transition, such a behavior must be attributed to the poor phase space explo-
ration performed by the algorithm at low energy for some realizations of disorder.
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8.8. Conclusion

For field amplitudes very close to the critical amplitudehc, the two phases coexist
down to the vicinity of the ground state (see Fig. 8.11), and the algorithm some-
times fails to sample the ferromagnetic phase efficiently: as the random walker
travels down the energy axis, the system remains in the independent-spin phase
although the ferromagnetic phase is more stable. In this respect, a multicanonical
weighting is indeed of little help, since the two phases have the very close ener-
gies; the behavior is a sort of critical slowing down, yet in the space of theERF

variable. The “faulty” behavior must therefore be attributed (i) to the type of move
updates utilized (although both types of move fail in this respect), and (ii) the fact
that the path “connecting” the two phases (aroundE/L ∼ −14.5 in the figure) is
not sufficiently given weight. This suggests several possible improvements:

• First, one may rely on the recently proposed optimal ensemble [319, 351]
to increase the weight in the region connecting the two phases; this indeed
would increase the diffusion current of the random walker in this region; yet
an adequate optimal weight remains to be found that takes into account the
particular dynamics engendered by cluster updates: these are necessary to
reach larger sizes owing to the recurrent algorithm complexity problem. In
this respect, optimizingβ(E) as well as the weightw(E), in the spirit of the
optimal ensemble algorithm, would certainly be very promising.

• Second, and perhaps in connection with the previous point, one may perform
a bidimensional random-walk, where the first axis would correspond to the
ferromagnetic energy and the second axis to the random-field interaction; as
a by-product, and provided the phase space is efficiently sampled, this would
make it possible to obtain reweighted averages for any field strength. As far
as cluster updates are concerned, it remains to be seen how an appropriate
bond probability may be devised, e.g., since the presence of two dimensions
in the density of states makes this point highly non-trivial. Along the same
line, an extension of the transition matrix method to a bidimensional space
may also be of interest, in the same spirit as the extension proposed by Ya-
maguchi et al. [354].

8.8 Conclusion

In this chapter, multicanonical algorithms were used to investigate the phase dia-
gram of a long-range random-field Ising chain with a bimodal distribution of fields.
The prominent result of this study is the existence of a tricritical point for thetwo
decay parameters investigated (σ = 0.1 and 0.4), with a first-order transition oc-
curing for field amplitudes larger than a threshold value depending on the decay
parameterσ. This is in qualitative agreement with mean-field predictions and
with the behavior reported in a few studies of the nearest-neighbor model inthree
dimensions. While atσ = 0.1, the transition lineTc(h) separating ordered and dis-
ordered phases is in very goodquantitativeagreement with mean-field predictions,
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this is no longer the case forσ = 0.4: the area under this line is markedly reduced,
and the curvature is weaker. The weakening of the curvature suggeststhe approach
of the critical upper rangeσ∗ = 0.5 obtained from a generalization of Imry-Ma
argument.

Two multicanonical algorithms were used in this study: a single-spin update
version of the Wang-Landau algorithm adapted to long-range models, andan ex-
tension of the breathing cluster method to disordered models. Both algorithms
efficiently explore the phase space in spite of the rugged energy landscape of the
model: this represents a major improvements over canonical methods, that are
known to produce very repetitive dynamics — especially at large field strenghts
—for this class of models. However, the benefit brought about by cluster up-
dates only amounts to the reduction of the algorithm complexity connected with
the computation of the energy: no marked gain was observed regarding thedy-
namic characteristics, and prefactors favor the cluster-update versiononly for sizes
above 500 spins. In view of this, a combination of the breathing cluster method
with a cluster-update scheme specifically tailored to disordered models, with the
optimized ensemble [319, 351], or with a two-dimensional random walk, wouldbe
worthy of investigation.
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General conclusion and
developments

The essential message that has guided this work is perhaps central to computational
physics: the interplay between models and methods is a two-way trade.

For a given model, it is crucial that the most appropriate method should be
chosen to investigate its physical behavior. If such a method does not exist, then
an existing one may be adapted (Berg’s multicanonical recursions, Chap. 3), or a
new method devised from scratch (the “spinodal” method, Chap. 4), or made up
by combining existing methods, if necessary by creating a bridge between them
(clusters, Chap. 7). It turns out that long-range models, because they are highly
demanding in many respects, may be regarded as a very efficient spur to the devel-
opment of new methods. Conversely, they may also be considered an idealtestbed
for existinggeneralmethods: the ability of the multicanonical method to tackle a
variety of phase transitions with equal ease (Chap. 4 and 5) is clearly promising in
this respect.

On the other hand, methods that are initially devised to resolve a specific issue
for a given model may prove efficient at tackling other models from a new per-
spective: the detection of the order of phase transitions (Chap. 4) and the Breath-
ing Cluster method (Chap. 7, yielding better estimates of the surface tension of
the nearest-neighbor Potts model) are examples of this. Here, a promising line
of research is the investigation of the Potts models defined on a fractal lattice8,
where the Hausdorff dimension — among other fractal parameters — is expected
to influence the order of the phase transition in a way similar to the decay param-
eter in long-range models. Extensions to disordered models (Chap. 8), however,
show that the interplay between models and methods is an unfinished story: the
Breathing Cluster method must be improved at large fields. A possible way is the
combination with the optimized ensemble. Since there is no objection in principle
to using a different temperature than the microcanonical temperature for the bond
probabilities, optimizing this temperature to obtain the best performance would be

8Collaboration with P. Monceau, Pôle Matière et Systèmes Complexes, UMR 7057
CNRS/Paris 7.
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an interesting way to improve the method.

The second message conveyed by this thesis is perhaps of fundamental rele-
vance to the physics of critical phenomena: the ability to continuously vary the
effectivedimension of long-range models by means of the decay parameter makes
them perfect tools for the investigation of crossover effects. Theq-state Potts
model is enlightening in this respect, exhibiting numerous crossovers, fromthe
non-extensive to the extensive regime (Sec. 4.2), from the first- to the second-
order regime (Sec. 4.3), from continuous to topological transitions (Sec.4.3.6),
and from long-range to short-range behavior (Chap. 5). The crossover from the
first- to the second-order regime that was investigated in the Random Field Ising
model (Chap. 8) shows that long-range models may also serve as a guide inthe
investigation of their short-range counterpart.

However, the connection between both classes of model seems to be merely
qualitative. First, no quantitative relation has yet been found between the effective
dimension and the decay parameter that may enable a direct transposition to short-
range models of the results obtained in long-range models. Second, each particle in
a long-range model interacts with the entire system, including the boundaries.This
leads to startling, unusual finite-size effects (Sec. 4.3.7), suggesting that fractal ge-
ometry may also play an important role in shaping the behavior of these models at
a discontinuous transition (Chap. 7). This evokes several exciting developments:
if indeed the mixed-phase interface is characterized by a fractal structure, what are
its Hausdorff dimension, its lacunarity and its connectivity? The investigation of
the cluster distribution and the estimation of correlation lengths would certainly be
useful to glean more information in this respect; this is perfectly within reach of
the method introduced in Chap. 7. On the analytical side, this also suggests the
need to develop a rigorous theory of finite-size scaling at first-order transitions for
the long-range Potts model: with this in mind, the two-dimensional Potts model
with long, butfinite, range interactions is currently being investigated, both numer-
ically and analytically (by means of a contour-based method)9. Finally, beyond the
equilibrium properties of these models, out-of-equilibrium properties, andparticu-
larly nucleation, might be worthy of deep scrutiny, as mixed-phase interfaces play
a crucial role in this mechanism.

9Collaboration with T. Gobron, LPTM.
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Appendix A

Mean-field theory for the
long-range Potts chain

The model is described by the following Hamiltonian,

H = −1
2

∑

i, j

Ji jδσi ,σ j −
∑

i

hiδσi ,σ0,

whereJi j = |i − j|−α, the spinσi at sitei can take on the values 1, . . . ,q, the first
sum runs over all pairs of sites on a chain of sizeL, andhi is an external aligning
field favoring condensation in stateσ0.

The derivation in what follows is based on the variational mean-field method1,
which relies on the minimization of the following functional

F[ρ] = U[ρ] − TS[ρ] = Tr ρH + kT Tr ρ ln ρ (A.1)

with respect to a trial distributionρ depending on the spin configuration [σ]. The
trace operation means a sum over all spin configurations, and the dependence of
H andρ on the spin configuration is implied in the notation above. By relying on
Lagrange multipliers, it is easy to show thatF[ρ] reaches a minimum whenever
ρ = e−H/kT/Z, i.e., in the case of a Boltzmann distribution. This minimum yields
the free energy of the system.

The mean-field approximation consists in expressing the trial distributionρ as
a product of one-site distributionsρi which depend only on the spin variable at site
i, i.e.,

ρ[σ] =
L∏

i=1

ρi(σi)

The trace operation may be rearranged as a sum involving traces on singlespin
variables, namely,

F[ρ] = kT
L∑

i=1

Tri ρi ln ρi −
L∑

i=1

hi Tri ρiδσi ,σ0 −
1
2

∑

i, j

Tri ρi Tr j ρ j Ji jδσi ,σ j .

1See, for instance, [76].
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Appendix A. Mean-field theory for the long-range Potts chain

where Tri =
∑

σi=1...q. The local order parameter is given by

mi =

〈

qδσi ,σ0 − 1

q− 1

〉

ρi

,

where the average is weighted by the trial density matrixρi . It is straightforward
to check thatmi = 1 whenever the spinσi has “condensated” in phaseσ0, while
mi = 0 if it fluctuates at random (whenevermi = m,∀i, the usualglobal order
parameter used, e.g., in numerical simulations, is thus recovered).

Seeing that all states but stateσ0 are equivalent, the constraint Trρi = 1 yields

ρi =
1−mi

q
+miδσi ,σ0.

which leads to a re-parametrizationF[ρ] in terms of themi . The entropic term in
F[ρ] writes

Tri ρi ln ρi =
∑

σi=1...q

ρi(σi) ln ρi(σi)

= ρi(σ0) ln ρi(σ0) + (q− 1)ρi(σ1) ln ρi(σ1)

=
1
q

[

(1− q)(mi − 1) ln
1−mi

q
+ (1+ (q− 1)mi) ln

1+ (q− 1)mi

q

]

The external field term reduces to

Tri ρiδσi ,σ0 = ρi(σ0) =
1+ (q− 1)mi

q
,

while the “coupling” term writes

Tri ρi Tr j ρ j Ji jδσi ,σ j =
∑

σi=1...q

∑

σ j=1...q

ρi(σi)ρ j(σ j)Ji jδσi ,σ j

= ρi(σ0)ρ j(σ0)Ji j + (q− 1)ρi(σ1)ρ j(σ1)Ji j

=
Ji j

q
[1 + (q− 1)mimj ]

The mean-field free energy thus writes

F[{mi}] = kT
L∑

i=1

1
q

[

(1− q)(mi − 1) ln
1−mi

q
+ (1+ (q− 1)mi) ln

1+ (q− 1)mi

q

]

−
L∑

i=1

hi
1+ (q− 1)mi

q
− 1

2

∑

j,i

Ji j

q
[1 + (q− 1)mimj ].

Considering a uniform external fieldhi = h, we havemi = m for all sites. In the
thermodynamic limit, this yields for the free energy per spin,

f (m) =
F(m)

L
= kT

1
q

[

(1− q)(m− 1) ln
1−m

q
+ (1+ (q− 1)m) ln

1+ (q− 1)m
q

]

− h
1+ (q− 1)m

q
− 1+ (q− 1)m2

q

∑

r>0

1
rα
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Dropping terms which are constant inm, so thatf (0) = 0, this leads to

q f(m)
q− 1

= kT{(1−m) ln(1−m) +
1+m(q− 1)

q− 1
ln[1 +m(q− 1)]}

− hm− ζ(α)m2, (A.2)

whereζ(α) =
∑∞

r=1
1
rα is the Riemann zeta function. The equilibrium order param-

eter is obtained from the equation of state

q
q− 1

d f(m)
dm

= kT ln
1+m(q− 1)

1−m
− 2mζ(1+ σ) − h = 0

In the following, we are interested in the zero-field solutions. Equilibrium
values of the order parameter are located at minima of the free energy, andit can
be seen from the Landau-expansion

q f(m)
q− 1

=

(

kT q
2
− ζ(1+ σ)

)

m2 − kT (q− 2)q
6

m3 +O(m4)

that m = 0 is a stable minimum forkT ≥ 2ζ(1 + σ)/q. For q = 2, there is no
third-order term: a second-order transition occurs at

kTc = ζ(1+ σ).

For q ≥ 3, the negative coefficient in the third-order term creates a second mini-
mum, which corresponds to a first-order transition. At the transition temperature,
the free energy has the same value at both minima. The exact transition temper-
aturekTc may be computed by simultaneously solvingf (m) = f ′(m) = 0 and
yields

kTc = ζ(1+ σ)
q− 2

(q− 1) ln(q− 1)
.

Metastable states (i.e., spinodal points) are computed by jointly solvingf ′(m) =
f ′′(m) = 0, giving temperature points at which either one of the two minima van-
ishes,

1
m

ln
1+m(q− 1)

1−m
=

q
(1−m) (1+m (q− 1))

=
2ζ(1+ σ)

kT

These equations possess one trivial solution, namely,kT1 = 2ζ(1 + σ)/q cor-
responding to the extrema atm1 = 0 becoming unstable, and a nontrivial solution
kT2 which may be obtained numerically by solving the following equation,

K
2

qS− 2
q− 1

= ln



S

√

Kq
2



 , (A.3)

whereS = 1 +
√

1+ 2(1− q)/(Kq) andK = ζ(1 + σ)/kT2. The corresponding
value of the order parameter at which the metastable state vanishes is

m2 =
q− 2+

√

q(2+ (K − 2)q)/K

2(q− 1)
.
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Appendix B

Tranfer matrix derivation of
critical exponents for the
short-range Potts chain

The model is defined on a one-dimensional lattice of lengthL, and is governed by
the following Hamiltonian,

H = −
L∑

i=1

Jδσi ,σi+1 −
∑

i

hiδσi ,σ0,

The spinσi at sitei can take on the values 1, . . . ,q, hi is an external aligning field
favoring condensation in stateσ0, and periodic boundary conditions are implied,
i.e., σL+1 = σ1. The transfer matrix approach consists in expressinge−βH as a
product of transfer matrices coupling two neighboring spins, and evaluating Z =
Tre−βH at inverse temperatureβ from the trace of this product.

In order to give a symmetric role to the spinsσi andσi+1, I now write−βH as

−βH =
∑

i

K(2δσi ,σi+1 − 1)+ L(δσi ,σ0 + δσi+1,σ0 − 1) =
∑

i

α(σi , σi+1)

where

K = βJ/2, L = βh/2,

and the energy has been shifted by an irrelevant constant. The transfer matrix
T is defined in such a way that, in the basis{σ = 1 . . .q}, the matrix element
〈σ|T |σ′〉 = eα(σ,σ

′). Whence

e−βH =
∏

i

eα(σi ,σi+1) =
∏

i

〈σi |T |σi+1〉

= 〈σ1|T |σ2〉〈σ2|T |σ3〉 . . . 〈σL−1|T |σL〉〈σL|T |σ1〉,
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Potts chain

whereby the partition functionZ at finite lattice size and inverse temperatureβ is
given by

Z = Tr e−βH

=
∑

σ1=1...q

〈σ1|TL|σ1〉

=
∑

i=1...q

λL
i

where{λi} is the spectrum of eigenvalues ofT. In the thermodynamic limit,

lim
L→∞

Z(β, L)λ−L
1 = 1

whereλ1 is the largest eigenvalue (provided it is not degenerate); whence the free
energy per spin

f = −kT ln λ1.

Forq = 3, T writes

T =





eK+L e−K e−K

e−K eK−L e−K−L

e−K e−K−L eK−L





Its eigenvalues are in descending order

λ1 =

e−K−L

(

1+ e2K + e2(K+L) +

√

e4(K+L) +
(

1+ e2K)2 − 2e2L (

−4+ e2K + e4K)

)

2

λ2 =

e−K−L

(

1+ e2K + e2(K+L) −
√

e4(K+L) +
(

1+ e2K)2 − 2e2L (

−4+ e2K + e4K)

)

2
and

λ3 = 2e−L sinhK

In the thermodynamic limit, the free energy per spin is thus given by

f =
K + L + log(2)− log(1+ e2K + e2(K+L) +

√

e4(K+L) +
(

1+ e2K)2 − 2e2L (

−4+ e2K + e4K)

)

K
.

The magnetic susceptilibity in zero field is obtained fromχ = −d2 f /dh2 at L =
βh = 0,

χ =
8

(

1+ 2e2K
)

K

27
and exhibits an essential singularity atkT = 0 (in particular,ν → ∞). The inverse
correlation length is given by the standard formulaξ−1 = ln(λ1/λ2),

ξ−1 = ln
3 cothK − 1

2
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Fromχ ∝ ξγ/ν, we obtain

γ/ν = lim
K→∞

lnχ
ln ξ
= 1

In Chap. 5, we are also interested in finite size quantities. In order to take the
finite lattice size into account, we first express the susceptibility as a function of
the correlation length:

χ(ξ) =
8
9

coth−1
(

1+ 2e1/ξ

3

)

coth

(

1
2ξ

)

(B.1)

At finite lattice sizeL, the saturation of the correlation lengthξ ∼ L whenkT is suf-
ficiently close to zero leads to the susceptibility saturating atχmax= χ(L). The ratio
γ/ν computed fromd lnχmax/d ln L, i.e., by fitting the peaks of the susceptibility to
the power lawχmax ∝ Lγ/ν over nearby lattice sizes, is always overestimated with
respect to the infinite size value:

d lnχmax

d ln L
=

e1/L
(

3
(

1+ e1/L
)

+ 4
(

2+ e1/L
)

coth−1(1+2e1/L

3 )
)

2
(

1+ e1/L)
(

−2+ e1/L + e
2
L

)

L coth−1(1+2e1/L

3 )

This is even worse if one considers lnχmax/ ln L instead.
A second quantity that is needed in Chap. 5 is the expression of the specificheat

Cv. This entails explicitly taking all eigenvalues into account in the expression ofZ.
In what follows, I seth = 0. The partition function admits a simplified expression
in this case,

ZL = (3 cosh(K) − sinh(K))L + 21+N sinh(K)L

The mean energy per spin is given by〈E〉 /L = −L−1 d ln ZL/dβ. Recalling that
K = βJ/2, this leads to

〈E〉
L
= − coth(K)+

3/ sinh(K)

3 cosh(K) − sinh(K) + 21+L (3 cosh(K) − sinh(K))1−L sinh(K)L

whence the specific heat for a chain of lengthL writes

Cv =
K2

sinh2 K




−1− 9L (3 coshK − sinhK)2 (L−1)

(

(3 coshK − sinhK)L + 21+L sinhKL
)2

+
9 (L + cosh(2K)) − 3 sinh(2K)

21+L (3 coshK − sinhK)2−L sinhKL + (3 coshK − sinhK)2

)

(B.2)
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Appendix C

Error calculation from Monte
Carlo data

Autocorrelation time and statistical error

We considerΩ simulation runs, each containingN measurements{Ai} of the ob-
servableA. We are interested in the error err(Ā) on the estimator̄A of the quantity
〈A〉, where

Ā =
1
N

N∑

i=1

Ai

for a given run. The squared error is the variance ofĀ,

err2(Ā) =
〈

(Ā− 〈A〉)2
〉

=

〈




1
N

N∑

i=1

Ai − 〈A〉




2〉

where〈·〉 refers to an average overΩ runs, and〈A〉 is estimated by
〈

Ā
〉

. err2(Ā) can
be reexpressed in term of the characteristic timeτA of the time-displaced autocor-
relation functionΦA(t), where the latter is defined as

ΦA(t) =
〈A0At〉 − 〈A〉2
〈

A2〉 − 〈A〉2

and the former is obtained fromτA =
∑N

0 ΦA(t) (Sec. 2.2.1 gives more details on

how to estimateτA). Expanding the previous definition of
〈

δA2
〉

, and assuming

time invariance, i.e.,
〈

AiAi+ j

〉

=
〈

A0A j

〉

,∀i,
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err2(Ā) =
1

N2

N∑

i=1

〈

(Ai −
〈

A2
〉〉

+
2

N2

N∑

i=1

N−i∑

j=1

〈

A0A j

〉

=
1
N

[〈

A2
〉

−
〈

A2
〉] [

1+ 2τA
(

1− τA
N

)]

∼ 2 τA
N

[〈

A2
〉

−
〈

A2
〉]

where the last line assumes that 1≪ τA ≪ N, which is usually the case because (i)
one wants to have a substancial amount of independent samples, and (ii) measure-
ments are carried out at intervals sufficiently small with respect toτA, so thatτA can
be reliably estimated. The last equation also shows that the number of independent
samples from where thermodynamic averages must be computed is given by

Nind =
N

2τA

so that the usual formula of elementary statistics is recovered, i.e.,

err2(Ā) ∼

〈

A2
〉

−
〈

A2
〉

Nind

(biased and unbiased estimators coincide wheneverNind → ∞). This equation
yields a convenient way of computingτA andNind, by separately estimating

〈

A2
〉

−
〈

A2
〉

and err2(Ā). The former is readily obtained from the set of measurements,

whereerr2(Ā) may be estimated, either by performing multiple, independent runs,
or by relying on a procedure based on a single run. Three methods are presented
hereafter: the bootstrap, the jackknife, and the blocking/binning methods.

The bootstrap

This is a resampling method, whereby several estimators of〈A〉 are computed on
resampled sets of measurements, and the bias on the original estimator is computed
from the deviation of these “resampling” estimators. The bootstrap method relies
on a Random Sample With Replacement (RSWR) scheme, i.e., a fresh set ofN
measurements is built from the original set by explicitly allowing each measure-
ment in the original set to be picked more than once (usually twice). As far as
implementations in Java are concerned, several random samplers are available in
the packagecern.jet.random.sampling of the COLT libray1.

Denoting asĀ0 the estimator computed from the original set of measurements,
and asĀi that computed from theith resampled set (wherei = 1 . . . p andp is the

1http://hoschek.home.cern.ch/hoschek/colt/
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number of resampled sets), the bootstrapped estimator is given by

ĀB =
1
p

p∑

i=1

Āi

The bias of the estimator̄A is ĀB− Ā0, whereby theunbiasedestimator is given by

Āu = Ā0 − (ĀB − Ā0) = 2Ā0 − ĀB (C.1)

The error, i.e., theconfidence intervalon Ā is eventually obtained from the vari-
ance

err2(A) =
1

N − 1

p∑

i=1

(Āi − ĀB)2

whereN is the number of measurements! For instance, a 95% confidence interval
corresponds to±1.96σ. For this confidence interval to be reliable, at least 100
to 200 bootstrapped estimators have to be computed. This is the most accurate
method to estimate errors on statistical averages, yet this method is also markedly
demanding in terms of CPU and memory consumption when performed over large
sets of measurements.

The Jackknife

This is also a resampling method, yet now resampled sets are constructed by simply
deleting one or more measurements from the original set (hence the name “jack-
knifed” sets). Denoting as{Āi}, i = 1 . . . J, the set of jackknifed estimators, and̄AJ

the mean of these estimators, the error onĀ is given by

err2(A) =
J − 1

J

J∑

i=1

(Āi − ĀJ)2

∼
J∑

i=1

(Āi − ĀJ)2

providedJ ≫ 1. Usually one takesJ ∼ N, whereN is the number of measure-
ments, so that this method suffers from the same issues as the bootstrap method
when large sets are considered.

The blocking method

The original set of measurements is split up intoB contiguous blocks of lengthk,
i.e., with N = kB. Denoting as{Āi}, i = 1 . . . B, the set of block estimators, as̄AB
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the mean of these estimators, and as err2(A)B their variance, the error on̄A is given
by

err2(A) =
err2(A)B

B

=
1

B(B− 1)

B∑

i=1

(Āi − ĀB)2

This method is efficient in terms of CPU load (the number of operations is constant
whatever the number of blocks), yet it suffers from a stark dependence on the
number of blocks. Several estimations must therefore be carried out at distinct
block lengths, until a plateau is observed.

260


