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Short abstract/Résume

English version

This thesis uses generalized ensembles Monte Carlo methods to explorgithe cr
cal behavior of spin chains with algebraically decaying interactions. Tétepfart

of this thesis investigates the phase diagram of a long-range Potts chagnausin
multicanonical algorithm. A new method based on spinodal points is proposed to
detect the order of phase transitions. The boundary between firsteandd-order
transitions is located with unprecedented accuracy using this method, avg a n
unusual finite-sizeféect is observed. The second part of this thesis formulates a
new, versatile multicanonical method that includes cluster updates, caisdigder
extending the range of attainable lattice sizes. The method is shown to be &ar mor
accurate than standard multicanonical methods. It is applied to the investightion
finite-size dfects at first-order transitions, where strong evidence suggests that the
mixed-phase configuration has a fractal dimension depending on thy juieen-

eter of the interaction. Finally, a long-range Ising chain with bimodal ranfizlds

is studied. The existence of a tricritical point for slowly decaying interastisn
demonstrated.

Version frangaise

Dans cette thése, nous explorons le comportement critiques de chaipassde s
gouvernées par des interactions a décroissance algébrique. apieoniére par-
tie, nous étudions le diagramme de phase d’une chaine de Potts en utilisént un a
gorithme multicanonique. Nous proposons une nouvelle méthode de déteetion d
I'ordre des transitions de phase exploitant les points spinodaux. A I'adete
méthode, nous localisons la ligne séparant les transitions du premier etahdse
ordre avec une précision sans précédent, et mettons en éviderféet e ¢aille fi-
nie inhabituel. Dans une deuxieme partie, nous introduisons une nouvelledaéth
multicanonique intégrant un algorithme de mise-a-jour collective des spitte. Ce
méthode, extrémement souple, étend considérablement I'intervalle de tailles si-
mulables, et s’avere bien plus précise que les méthodes multicanonigedssisu
Nous appliguons cette méthode a I'étudefits de taille finie dans le cadre de
transitions du premier ordre : les résultats suggérent fortement quenfigua-
tions correspondant a des phases en coexistence sont carastgaiséae dimen-
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sion fractale dépendent du taux de décroissance de l'interaction.Ubaghesrnier
chapitre, nous étudions une chaine d’Ising régie par des interactiamgiglportée
en présence de champs aléatoires a distribution bimodale, et prouvdateher
d’un point tricritique pour des interactions a décroissance lente.
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This thesis addresses the fundamental question that pertains to spin models go
erned by algebraically decaying interactions: the influence of the intemaetime
on their critical behavior. Two of the most challenging issues when inveistipa
these models by means of Monte Carlo methods are (i) the onset of a diversity
of phase transitions as the decay parameter is varied, and (ii) a largetatgor
complexity stemming from the huge number of interactions between spins. The
purpose of this thesis is to show that methods operating in generalized desemb
present, to date, the modtfieient and versatile means of meeting these challenges.

We begin this thesis with a review of the considerable literature that the study
of long-range models has produced during the last three decadeswikgllan
overview of the wide variety of Monte Carlo methods available to date, thendeco
part of the thesis presents a broad study of the phase diagram gistage Potts
chain by means of a local-update version of Berg’s multicanonical method. Se
eral improvements tailored to long-range models are proposed. The utilitg of th
method for the simulation of medium-sized long-range models is demonstrated by
extensive tests of performance and accuracy over a large range®j garame-
ters.

Then, a new method for the detection of the order of a phase transition is de-
veloped: by following the position of spinodal points, the boundary sdivay
first- and second-order transitions is located with unprecedentedsagc@n the
line of inverse square interactions, a very unusual finite-sieeeis found: while
the transition seems to be first order at finite lattice size, it becomes a corginuou
transition in the thermodynamic limit. This settles a long-standing controversy sur-
rounding the nature of the phase transition on this line, and suggests iteatine
scaling at first-order transitions is in general highly atypical in long-eamgdels.
Beyond this line, the behavior of the model is shown to turn into a short-ramge
within a narrow window, lending clear support to a long-suggested neglaation
group scenario.

With the aim of scrutinizing finite-size scalingfects, the second part of this
thesis introduces a novel multicanonical method that drastically extendsifpe ra
of attainable lattice sizes. The method builds on the ability of cluster algorithms
to rapidly reduce temporal correlations, and relies upon the microcahdama
perature to bridge the gap between multicanonical ensembles and randsier-clu
representations. Owing to its straightforward formulation, it can be usedidn a
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riety of multicanonical implementations, including the Wang-Landau algorithm
and the Transition Matrix method. Systematic tests demonstrate the superiority
of this method over standard multicanonical methods: the numerical acdsracy
drastically improved, and the reduction of the algorithm complexity to that of a
short-range model of the same linear size ensures remarkable scalability.

Application to long-range chains at very large size2{® spins) delivers the
best numerical estimates to date. The investigation of finite-¢ieete shows im-
portant finite-size corrections, and suggests that the mixed-phasewgatdrds a
fractal dimension depending on the decay parameter of the interactionstAn e
mate of the correlation length is provided, that is consistent with this picture. Th
benefits of the method extend far beyond the realm of long-range modelsstik
mate of the surface tension for the two-dimensional nearest-neighbomfrumdts
(up to 256x 256 spins) matches the exact value to an accuracy never attained with
Monte Carlo methods, although modest statistics were used.

A later chapter centers on extensions to disordered models. A long-range
Ising chain with bimodal random fields is studied, and the onset of a diseontin
uous transition is demonstrated at large fields for slowly decaying interaction
This is consistent with a similar scenario reported in the nearest-neightsioive
of this model. The limitations of the method for this class of model are exam-
ined; improvements and possible combinations with other generalized ensembles
are suggested.

Some of the work presented in this thesis has been published or submitted for
publication. The references are:

e S. Reynal and H. T. Diep, Reexamination of the long-range Potts model: A
multicanonical approact®hys. Rev. B9, 026109 (2004), 17 pages.

e S. Reynal and H. T. Diep, Q-state Potts model with power-law decaying
interactions: Along the tricritical line]). Appl. Phys.95, 6968 (2004), 4
pages.

e S. Reynal and H. T. Diep, Hybrid multicanonical cluster algorithm fiéir e
cient simulations of long-range spin modexmp. Phys. Comni.69, 243
(2005), 4 pages.

e S. Reynal and H. T. Diep, Simulation of spin models in multicanonical
ensemble with collective updates, submitted to Phys. Rev. Lett. (cond-
may0409529).

e S. Reynal and H. T. Diep, Fast flat-histogram method for generalized sp
models, submitted to Phys. Rev. E. (cond-0504367).
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Introduction and motivations

This thesis narrates two distinct, and yet tightly related stories: the investigation
with the concepts and tools of statistical physics, of the critical behavioclafss

of spin models governed by long-range interactions, and the develomheetv
methods dedicated to their investigation. The former focuses og-$it@te Potts
model, and, to a lesser extent, on the Random Field Ising model. The latter re-
volves aroundyeneralized ensembl@sethods. This introduction is aimed at out-
lining the scientific motivations behind this thesis, and in particular, at explaining
— although partiall§y — (i) why long-range spin models, and specifically the two
models mentioned above, are appealing from the viewpoint of equilibriumtitatis
cal physics, and (ii) why Monte Carlo simulations in generalized ensembles migh
be an dicient approach to the exploration of these models.

Long-range spin models

The model-systems investigated in this thesis are discrete spin models living on a
lattice. For instance, thg-state Potts model | will be considering from Chap. 4 to
Chap. 7 is described by the following Hamiltonidt{oi}] = - 3. Jijo(ci, o)),
where theo’s represent discrete spin variables taking on integer values between
1 andg, and the sum runs over every pair of spir. is a long-range coupling
constant of the fornii — j|"°~7, i.e., decaying algebraically with the interspin dis-
tance, that favors ferromagnetic ordering at low temperature. Themafidld
Ising chain that will be studied in Chap. 8 is governed by a similar Hamiltonian,
Hl{oi}] = - Xixj Jijoioj— X hioy, whereo = +1, and the second term represents
the interaction between spins and external random flé|¢lsThe equilibrium ther-
modynamic properties of thestassicalspin model2 at a given temperatufg are
described by the usual Boltzmann distribution, the probability of occurehee
given configuration of spingd}] being proportional tae /KT - An approx-
imate treatment through mean-field theory will be provided for both models in
Chap. 4 and Chap. 8, respectively.

Though seemingly simple in their construction, these models are in fact en-

4Chap. 1 and 2 provide more detailed material in this respect.
5Quantum fluctuations are assumed to be negligible with respect to therntabfions, and only
thermal phase transitions are considered in this work.
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Introduction and motivations

dowed with a built-in complexity that stems from the fundamental role played by
the decay parameterin shaping their critical behavior, akin to afiective dimen-
sion. Their phase diagram is in general richer than that of their neseagdtbor
counterpart: as theffective dimension is varied, from the geometric dimension
(where the behavior is that of a nearest-neighbor model) to infinity (wtherbe-
havior is mean-field-like), they go through a variety of universality cla$a25].

In this respect, they may be regarded as a powerful paradigm foristuithe influ-
ence of dimensionality in the physics of critical phenomena: crossoversée
universality classes and tests of renormalization greegpansions, for instance,
have been extensively studied in the past [40].

Yet long-range models are also of fundamental interest in the microscopic mo
eling of a variety of systems, from the Kondffext in the physics of high tem-
perature superconductivity [11] to the fast-growing technological fieldtoathin
magnetic films [45, 66], from autoassociative memaries [268] to small-wotld ne
works [193]. This means that investigating these models is not merely a matter of
academic interest.

Inside the realm of long-range spin models, thstate Potts model is perhaps
the most exciting, owing to its parameter space comprising three parameters: the
temperature, the number of stagsand the decay parameter In fact, its ap-
pealing character might be already expected from the rich behavior cfatest-
neighbor counterpart. This last model undergoes a phase transitidortsfrom
a continuous into a first-order one as the number of st@iesncreased beyond
a threshold valug(d) depending on the dimensionality of the lattice. Therefore,
the connection between the decay parameter andfibetige dimension suggests
that a similar behavior might occur in the long-range version.

The Potts model is in fact one of the less studied long-range models, with only
a rough estimate of its phase diagram available; it is also one of the most intrigu-
ing, with numerous controversies and conjectures surrounding it, e.gnatbee
of the phase transition on the line of inverse square interactions (topdlegica
first-order), the exact position of the boundary separating first- andngl-order
transitions, or the crossover from the long-range to the short-ramgmes. Fi-
nally, and as opposed to its nearest-neighbor counterpart, no rigoeaiment
(e.g., based on duality) has been proposed thus far. It is one of the fiims o
thesis to investigate this model from a new perspective.

The Random Field Ising chain is the second model that is studied in this thesis,
though to a far lesser extent than the previous model. Here again, thagiara
space is three-dimensional, owing to the presence of disorder. Whilswesyan-
tial literature has been produced on thearest-neighbowersion of this model,
its long-range version has been much less investigated [52, 343]. Qhe wiost
intriguing questions regarding the nearest-neighbor model witmadalfield dis-
tribution is the possible onset of a first-order transitionfdfisiently large fields
[2]. This has been predicted in the mean-field case, yet the issue seeras to b
somewhat challenging in the three-dimensional nearest-neighbor modgl| gie
might thus expect that in a long-range version of this model with interactiens d
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Introduction and motivations

caying at a sfiiciently slow pace (i.e., low decay parametgr the onset of such a
transition, if at all, may be more clearly visible. The aim of Chap. 8 is to examine
this feature.

Overall, and wherdoth models are concerned, the fundamental issues exam-
ined in this thesis revolve around the two following questions:

e In what respect is the critical behavior of long-range models, and ticpar
ular the order of their phase transitions, influenced by the decay paramete
of the interaction? What is the nature of the crossovgces that occur
between the regimes exhibited?

e To what extent may a long-range model serve as a guide in the investiga-
tion of its nearest-neighbor counterpart, where thieat of dimensionality
is concerned?

A significant part of this thesis has been devoted to obtaining a compreéens
view of the current state of knowledge regarding long-range modetdstcakeep
up with the steady production of new results. This is presented in Chap. 1. A
background in condensed matter physics is assumed there. The plgrsendid
the g-state Potts chairl) = 1) is investigated in Chap. 4 and 5. An atypical finite-
size dfect will be found out on the line of inverse square interactions: (1), that
will trigger a reexamination at much larger lattice sizes in Chap. 7. Finally, the
phase diagram of the long-range Random Field Ising chain is explorelidp. G.

Monte Carlo simulations in generalized ensembles

There are, broadly speaking, two means of studying the thermodynanpierfies
of a model from the viewpoint of equilibrium statistical physiestalytically, us-
ing rigorous methods, e.g., contour expansions or inequalities on comefiatio-
tions, or approximation-based methods, e.g., series expansions, itraasfices
or renormalization group methods; mumerically by means of Monte Carlo (i.e.,
stochastic) or Molecular Dynamics (i.e., deterministic) methods. The latter have
turned into a powerful tool to investigate complex models where no rigoreast tr
ment is available. Monte Carlo methods, and specifically, theireralized en-
sembledlavor, play a central role in this thesis, and will be reviewed in Chap. 2.
Other methods, specifically analytical methods dedicated to long-range nmamels
outlined in the core of the manuscript when deemed necessary.

Basically, Monte Carlo methods (inside and outside the realm of physics) are
a tool to compute a multi-dimensional integral using random sampling; in statis-
tical physics, the role of the multi-dimensional integral is played byptition
function of the model and the statistical moments that are generated from it by
differentiation. The most common implementation of this method in statistical
physics ismportance samplingylonte Carlo, whereby a Markov chain generates a

5Methods based on transfer matrices may be exact or approximate.
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sequence of (properly distributed) configurations of the system thairg subset

of all microscopic configurations. The first implementation of this method was in-
troduced by Metropolis et al. [246] in 1953: configurations are sampledrding

to the Boltzmann distributioe /T (this method is therefore sometimes referred
to as “canonical sampling”), and statistical averages of thermodynamitites

at temperatur@ are directly computed from the sequence of configurations.

The achievements of this algorithm span more than five decades, and ihgas lo
been regarded as the paradigm for Monte Carlo simulations in statisticatghys
Fifteen years of Monte Carlo simulations of long-range spin models bastison
algorithm (or close variants thereof) attest that, in this field also, strategiest
depart from custom. Yet this method faces some severe drawbacksititupa
lar when simulating systems at first-order transitions or with complicated energy
landscapes: both behaviors are present in the models explored in thss Hreb
suggest that the issue be met from fiedent perspective using new algorithms.

New methods that seem promising candidates in this respect are methods op-
erating ingeneralized ensembl§25], and in particular, in thenulticanonicalen-
semble. Introduced in the early 90’s, these relynom-Boltzmanrsampling, and
simulate the model over a large range of energy with no explicit referentteto
temperature. Theyfter several benefits with respect to the Metropolis algorithm:
statistical averages of thermodynamic quantities can be obtained from asingle
ulation, by resorting to a so-calladweightingprocedure; the presence loftcal
minimain the free energy landscape, which leads to repetitive dynamics and ther-
malization problems when using the Metropolis algorithm ficiently tackled in
generalized ensembles. Therefore, investigating long-range spin niydalsans
of these new methods seems an exciting way of meeting the various congevers
that surround these models.

A substantial part of this thesis was devoted to learning how to use the sariou
Monte Carlo methods that have been made available to date, including (i) the mul-
ticanonical method, the Wang-Landau algorithm, the transition matrix method and
methods operating in other generalized ensembles, and (ii) a large cldss-of ¢
ter algorithms (Chap. 2). The former, and specifically the multicanonical method
form the core of the numerical methods used in this thesis; the latter will turn out
to be an essential ingredient of the breathing cluster method developedjn Th

On themethodsside, one of my first items of business (Chap. 3) will be to
test the usability of these methods in the context of long-range models, eig., the
performance, reliability and ease of implementation. In this regard, thesdiyver
of phase transitions exhibited by thestate Potts model will make it a perfect test
case. The multicanonical method — in its pristine formulation by Berg [30] — will
play a central role here, and the phase diagram of the long-range Raitis(Part
II) will be investigated by means of an improved version of this method tailored to
long-range models.

In spite of its éficency at medium lattice sizes, the multicanonical method will
turn out to exhibit severe scalability issues. This pertains, among othesthing
the largealgorithmic complexityorought about by the long-range potential (with
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respect to nearest-neighbor models): since each particle interacts wlitbtbar, a

huge number of interparticle interactions must be taken into account aleath

Carlo step. The need to investigate finite-sifie@s at large lattice sizes will
prompt the development of a new method (Chap. 4), that considerabhydextiee
range of attainable lattice sizes by lumping together the benefits of generalized
ensembles and those of cluster algorithms.

Beyond the design of new simulation methods (or the improvement of existing
methods), this thesis will also introduce a new method to detect the orders# pha
transitions. This will prove particularly stringent when investigating the pasifo
the boundary separating first- and second-order transitions. Titweikbe shown
that traditional techniques fail, owing to the weakening of the first-ordasttian
as the boundary is approached. The proposed methodfiicilemtly capitalize on
the information provided by the multicanonical method.

From the viewpoint of the methods, this thesis is therefore aimed at answering
the two following questions:

e To what extent do generalized ensembles provide better, nfisceet and
reliable methods for the investigation of phase transitions in long-range spin
models? As a corollary, can they help in settling (some of) the various con-
troversies that surround them?

¢ Inwhat respect can long-range models constitute an ideal case fostimg te
of new numerical methods?

Organization of the Thesis

Both themodelsand themethodsare central to this thesis, and will thus be treated
on an equal footing. As a result, both stories are markedly interwovenydirbe
presented according to this picture.

Part | of this thesis (Chap. 1 and 2) is devoted to a review of the models and
the numerical methods that will be considered in the remainder of this work. It
is aimed at providing the necessary background to understand the vesgnped
in Part Il and Ill, yet also at shedding deeper light on the motivatiomsnldethis
thesis.

Models governed by long-range interactions are reviewed in Chapplica-
tions of these models to various fields of physics are considered, butihieasis
is markedly on lattice spin models, including — but not restricted to — ferromag-
netic models. In particular, disordered and frustrated models are alsaeocsd,
inasmuch as several pending questions regarding these models are ctunmosih
long-range spin models. The key point in this review will be the notiogffettive
dimension and the role played by the decay parameter of the long-range interac-
tion in shaping the critical properties of the models. As far as the long-rdotie
model is concerned, this chapter is intentionally succinct: most results wié-be r
examined in the second part of this thesis, and further detailed explanatioes,
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needed, will be provided in the corresponding chapters.

Chap. 2 is dedicated to stochastic (Monte Carlo) methods. This Chapter con-
centrates not only on simulations in generalized ensembles (including the multi-
canonical ensemble), but also on cluster algorithms: most methods presente
this chapter will be referred to, at some point or another, in this thesisy éithe
the mere purpose of comparisons, or because they are directly usechémicai
simulations, or because they comprise a large proportion of the ingredieats o
novel method.

Part 1l (Chap. 3 to 5) concerns itself with the multicanonical simulation of a
one-dimensional Potts model with power-law decaying interactions.

Chap. 3 centers on the implementation of the multicanonical algorithm in the
context of long-range models: it comprises an introduction to the methodpade
part dedicated to the improvements that must be carried out in order to make the
multicanonical recursion scheme suitable for long-range models, andyecstilng
performance of the algorithms in terms of dynamic exponents.

Chap. 4 focuses on the location of the boundary separating the firsthand
second-order regime of the model, and on the estimation of critical couplirags in
large part of the phase diagram. Results from other methods, e.g., rdizatioa
group or transfer matrices, are extensively reviewed there. A noviiauddo
detect the order of phase transitions is introduced. The results obtaitiethis
method, combined with a careful finite-size scaling analysis, shed new ligat o
long-standing controversy concerning the asymptotic behavior of thedaowy

Chap. 5 specializes in the critical behavior of the model in the second-orde
regime, and the crossover from the long-range to the short-range redirde-
tailed review of controversial results is provided, and a novel apprisgaresented
to investigate the onset of the short-range regime. An intermediate conclgsion
provided at the end of this part.

Part Il (Chap. 6 to 8) puts forward a novel method to simulate long-range
models in the multicanonical ensemble, which is able to considerably extend the
range of attainable lattice sizes.

In Chap. 6, the limitations of standard multicanonical methods are discussed,
first from a general perspective, and then in the context of longeranodels.
Existing schemes aimed at improving the performance of multicanonical methods
are reviewed, and | dicuss the main impediments to their extension to long-range
models. A later section highlights the main issues that must be overcome in order
to improve the multicanonical method in this context, and outlines an original,
innovative strategy.

Chap. 7 describes the methods in extensive detail. It comprises an article tha
was submitted to Phys. Rev. E. and is currently being refereed. Two optiomza
schemes dedicated to long-range models are presented. Extensivéttestaeth-
ods are performed, which demonstrate the superiority of the method withctesp
to standard implementations in terms of accuracy and scalability. The method is
used to test several finite-siz&exts in long-range models.

An extension of the method to disordered models is presented in Chap 8. A
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long-range Ising chain with bimodal random fields is investigated, and sepha
diagram is provided. Possible improvements of the method in this context are
discussed.

Developments and perspectives are discussed at the end of eatdr.chbpy
are summarized in the conclusion, both from the perspective of the modktkean
methods.






Part |

Models and methods: review






Chapter 1

Spin models with long-range
Interactions: review and pending
guestions

Long-range spatial interactions are ubiquitous in nature. At all lenglesdhaey
contribute to shape our Universe, from the electromagnetic force at thesoapic
level to the gravitational force in astrophysical structures. While theitgtanal
force makes its genuine long-range nature felt everywhere, this is igerddhe
case of the electromagnetic force. The existence of electric chargesiaedts

of opposite sign gives rise, among other things, to screerttegte and multipolar
interactions, that tend to reduce its range. In some cases, the reductionasked
that the interaction becomeffectively short ranged, i.e., restricted to “neighbor-
ing” particles.

Looking back on more than a century of condensed matter physics, aimese
thateffectiveshort-range interactions have in fact played a greater role in shaping
this field than have long-range interactions. The pivotal role played byaheest-
neighbor Ising model in various subfields of physics undoubtedly adsdar this.

In recent decades, however, long-range interactions have staaigohd unabated
interest in microscopic modeling, spanning an ever increasing numbestehsy.
The goal of the present chapter is to give an overview of these systgthsan
emphasis on the topic apin modelsvhich is central to this thesis.

The distinction between short and long ranged force probably desanvere
rigorous definition than the sketchy account given above. This will be rsiyitem
of business in this chapter. Then, | will give an overview of the variaidgiwhere
long-range interactions hold a prominent role. Moving in to the more spealtfic s
ject of long-range spin models, | will review the main results that have beele ma
hitherto available, from ferromagnetic chains to long-range spin glasdesvto
flights. One of the purposes of that part will be to highlight the many similarities
regarding the (pending) questions that surround seemingly végreit models.

Finally, the long-range Potts model will be singled out as a possible paradigm
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of phase transitions in long-range spin systems, owing to its particularly hiaep
diagram and the abundance of pending questions and controverdigsrttzn
attached to it. These will be given special attention, inasmuch as they constitute
one of the central motivations of this thesis.

1.1 Long-range vs short-range interaction: semantic is-
sues

Locating the frontier between long- and short-range interaction in a urfiicpie

ion is not trivial, as many (sometimes controversial) definitions have coexisted
the literature of the past three decades. Since the early work of RueOg ¢29
ferromagnetic chains with interactions decaying as a power law of the intietpa
distancer, the accepted lore in the framework of critical phenomena has been to
distinguish between long ranged and short ranged interactions frometavibr

of the moments of the interaction potential, i.e., the integfr‘d(?)r”dDr defining
thenth moment.

In the one-dimensional Ising model, for instance, there is no phase trareitio
finite temperature whenever the first moment is finite [290, 107], whichesigg
that the interaction is short ranged here for> 1. Looking back on the early
work of Fisher, Ma and Nickel on the critical behavior of long-rangedi@magnetic
spin systems [115], the suggested situation is that, Drdamensional lattice, any
interaction between two spins separated by an interparticle distdacaid to be
short rangedf it assumes, either an exponential deeay®, or a power-law decay
1/rP+7 providedo > 2. This definition relies on the critical behavior of the model,
inasmuch as a critical behavior is said to be long ranged if the correspperitinal
exponents match those of the same model with nearest-neighbor interactiens. T
situation is in fact dramatically more intricate, as is genuinely certified by more
than two decades of vivid debate [292, 142, 2‘32]1d for a large class of modé)s
the case is far from being closed.

Dantchev and Rudnick [91] recently reexamined the issue under amgedlar
perspective encompassing short-range, long-rangesaidadingong-range in-
teractions. An interaction is said to be of the long-range type if the moment of
nth order of the interaction potentid(r) diverges for a sfliciently largen. This
in effect rules outvithout ambiguityinteractions that follow an exponential decay,
e'/"o, In Fourier space, the expansion d{fj) gives rise to so-called anomalies,
i.e., it can no longer be expressed in terms of powerg?ainly. In this respect,

a criterion for short-range interactions is a finite second momend(gr This
means that thg-dependent term in the Ginzburg-Landau functional may be writ-
ten asr + vok? + R(K), with R(k) asymptotically smaller than the first two terms.
Systems wittsubleadingong-range interactions (for instance, Van der Waals in-
teractions) belong to this class: heR{k) contains a term of the forrk”, with

1The whole picture is described at length in Sec. 5.3.
2Wwith a negative Fisher exponent.
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o > 2 (o non-even); in other words, all moments are finite up todtteorder (or
the largest integer smaller tha).

Looking at the issue from a totally fiérent perspective, physicists working
in the field of non-extensive thermodynamics and Tsallis’s generalizedpgntr
[322, 68, 294, 89, 92] connect the long-range character of arattten to its non-
integrability, i.e., the interaction is long ranged as soon as the zeroth-order mo
ment diverges, which implies that the thermodynamic limit becomes ill-defined,
and an appropriate redefinition of thermodynamic variables is required6B8
312, 89, 136]. Incidentally, the contrasting definitions emanating fronettes
(sub)communities have raised gentle disputes at times, e.g., when both communi-
ties went to investigating the crossover between extensive (i.e., shge-varmong-
range) and non-extensive systems (i.e., long-range vs non-integjiakile 332].

In this thesis, | will exclusively consider long-range interactions in thesef
integrable interactions, where the thermodynamic limit always exists. | will also
merely concentrate on power-law decaying interactions, i.e., of the forRi,
focusing on the change of qualitative and quantitative behavior iasvaried. In
this respect, it is worth underlining thatis not strictly speaking eangeparameter,
since a power-law interaction has no intrinsic length-scale. This paramidtinus
be termediecay parametein this work.

As alast point in this section, itis also important to mention that, whenever they
are investigated by means of numerical methods — as will mostly be the case in
this thesis — long-range models exhibit a distinctive feature with respectito the
nearest-neighbor counterparts. Indeed, most numerical methods eificaily
Monte Carlo methods — impose that systems be investigated at finite geometry: in
a long-range model, every particle sees the boundaries, and as will lesséthin
several parts of this work, this feature will give rise to interesting, ualufuoite-
size dfects that do not show up in nearest-neighbor models.

1.2 From Van der Waals forces to neural networks

This section mostly centers on microscopic models in condensed matter physics
and related fields, since this is where integrable interactions have had tiggsto
record of promising applications. In particular, applications to astropalysiac-

tures will be left out, as the gravitational force is indeed non-integrabkhduld

be mentioned, however, that this field has been extensively studied dadagt
decades, and is still a matter of intense debate [203].

Microscopic models with long-range interactions decaying as a power law, i.e
as ¥rP*7, have aroused renewed interest during the last decade. Beyond their
relevance to the understanding of fundamental issues in the physiésaz @he-
nomena, which | will review in the next section, they have also started playing
a seminal role in the modeling of a large class of physical, chemical or biologi-
cal models where electrostatic interactions, polarization, or van der Waakssf
play a central role. Thus long-range interactions do not simply reprassase of
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academic interest.

Applications to condensed matter include systems undergoing phase-separa
tion, e.qg., liquid-liquid phase separation in a highly ionic system [278], pbage
regation in a lattice gas model binary alloy governed by Kawasaki exehdyg
namics [125], and naturally systems governed by Van der Waals interacian
regards critical phenomena, the Van der Waals interaction leads to siniglézuh-
range behavior, i.e., short-range-like, yet giving rise to non-triviigats in terms
of critical behavior; this has been extensively studied in [91, 90]. ThsirGir
effect, initially discovered in the context of quantum electrodynamics — where it
stems from vacuum fluctuations of the electromagnetic field — has also been ob
served in fluids composed of neutral particles near the critical point, widtayd
exponent being far below that of van der Waals interactions [60].

In the physics of lattice spin models, long-range Hamiltonians appear in con-
nection with a variety of exciting contemporary problems, in particular the Kond
effect, which is central to the investigation of high temperature superconiyctiv
e.g., in Josephson junctions [77, 78]. An equivalence between thai@ebs-
state Potts chain with inverse square interactionisjland the Kondo problem
was proposed by Anderson [11], who showed that the path-integedsentation
of the spin—% Kondo problem could be mapped onto a classical Ising chain, with
successive spins on the chain representing the time history of the singlatimpur
along imaginary time. Classical Ising models with long-range, RRK\erac-
tions of the form 1rP coskor + ¢) also appear in a quite natural way in the study
of spin glasses [121]. More recently, models with competing short-rargamag-
netic interactions and long-range antiferromagnetic dipolar forces liafaeed in
the fast-growing technological field of ultrathin magnetic films [45, 66]. €hes
models are of fundamental importance to the understanding of the geometric an
dynamic properties of magnetic domains, e.g., in metal-on-metal thin films [239],
which exhibit complex patterns (for instance, “striped”, i.e., lamellar phelsas
acterized by modulated patterns [329]). They are therefore vital to thebajement
of new data storage devices [8] (see, for instance, [99] for a teegiew), €.9.,
permanent random-access memories. In higher dimensions, these medsar
of interest in the modeling of a variety of related problems in soft-matter physics
(see references in [138]).

In the fringe of the customary physicist’s turf, lattice models with long-range
interactions also turned out to play an important role in the modeling of the brain
[10], where neurons far apart interact through an action potentiedétays slowly
along the axon, in the context of pattern recognition (as an alternative to ryeitila
neural networks) [302, 135] and auto-associative memories with dilugerimge
connections [268], in neural network learning processes [128]irathe modeling
of visual perception and orientation [313]. Ising models on small-world oedsy
with interactions decaying as a power law of the euclidian distance betwees no
were also studied in [193].

SRuderman-Kittel-Kasuya-Yosida.
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Power-law decaying interactions also appeared in self-organized litytithe
Bak-Sneppen model withyiP+7 interactions, which is claimed to represent a sim-
ple, yet realistic model of coevolutionary species, with the “distance” lerwe
species decaying as a power law, was investigated in [126], and als@]iin[1
connection with Tsallis's generalized thermodynamics. A model of spreaging
demics with a long-range probability of infection, in which the spreading tagen
perform Lévy flight4, was studied by Hinrichsen and Howard [157] by means of
anomalous directed percolation. The equivalence between Lévy fligtitoag-
range ferromagnetic spin models was also explored in [32, 352] in thextaite
nonequilibrium steady states, by means of a kinetic Ising model in which sssthnd
(thermal) spin-flip dynamics competes with random Lévy-flight spin-exgban
Long-range forces also emerged in non-linear wave theory: an éxteokthe
Klein-Gordon equation whose solutions are long-range interacting sqlitees
proposed by Guerrero and Gonzales [140].

Finally, long-range interactions have also attracted much attention in the frame-
work of nonextensive thermodynamics and Tsallis generalized statistiesevah
possible equivalence with short-range models is under consideratiah [$@nethe-
less, most of the work dedicated to Tsallis’s statistics centensoorintegrable
long-range interactions, and as stated above, will not be considered he

1.3 Spin models governed by long-range interactions: rais-
ing the efective dimension

I now turn to a review of the equilibrium properties of long-range spin modtels
particular models governed by algebraically decaying interactigris"1. Some

of the results reviewed here have been the subject of intense, lonmguebate,
and are reexamined in several parts of this thesis. More detailed exptenafib

be given when needed. Therefore, this paragraph only aims to givecinst
description of the most “distinguished” results, in a way that may help thesread
get a quick grasp of the subject.

Since the seminal work of Joyce on the spherical model [195], theselsnede
beyond their relevance in microscopic modeling — have also turned into an idea
testing ground for the physics of critical phenomena: the key point hetteats
the decay parameter influences the universal properties of the modekthn thn
same way as the dimension does in a nearest-neighbor model. In a sedseahe
parameter- plays the role of anféective dimension which, in the framework of
the field-theoretic renormalization group, allows the validityeadxpansion to be
checked in a very flexible way by means of numerical methods, since piae
rameter can now beontinuouslyaried (as against, e.@ = 4 — D in ¢* theories).
Long-range models are therefore a powerful paradigm for studyadependence
of critical properties on dimensionality, e.g., in systems above their uppeatritic

4A random walk that is steered by a so-called “supudive” motion, and in which the lengths
of the (random) steps are distributed according to a power law.
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dimension [228]. In the context of the long-range Ising chain, this weensiely
investigated by Luijten et al. [40] by means of Monte Carlo methods, with a partic
ular focus on crossover exponents describing the crossover fmmean-field to
the non-mean-field regime [39, 41]. On the numerical side, the initial spaigthw
ignited the investigation of crossover functions between universalityadassay
certainly be traced back to the work of Luijten and Bl6te on the nearestima@igh
Ising model inD > 4 [228, 229] or with constant interactions of variable (finite)
range [230, 233].

1.3.1 Results for ferromagneticO, models

Rigorous studies of the Ising chain & 1) with 1/rP+ (D = 1) interactions can

be traced back to the seminal works of Ruelle [290] and Dyson [107, W®ich

(i) ruled out long-range order at finite temperaturedor- 1, and (ii) proved the
existence of a phase transition at a non-zero critical temperaturefer @ 1, re-
spectively. This rigorous result, which is in strong contrast to the nearest-neighbor
case where no phase transition exists at finite temperature, was laterezktend

o = 1.0 [300, 124]. Its generalization t©-dimensional models was proposed in
[6, 55], showing thaD, = o is the lower critical dimension of the model.

For one- and two-dimensional Heisenberg models, similar rigorous reseriés w
obtained by Mermin and Wagner [245], ruling out long-range ferral amtiferro-
magnetic order whenever the second-order moment of the interaction isifite
o > 2 where power-law decaying interactions are concerned. In one dimensio
Simon and Sokal [300] proved that no long-range order at finite ternperaxists
on theo = 1 line, in contrast with Ising chains (although essential singularities
may show up irrespective of the number of components of the order pemaryet
with different behavior depending on whettmes 1 orn > 1 [208]). Heisenberg
models were reexamined by means of spin wave theory in [74, 75], shdevigg
range order at finite temperature fokQr < D in one and two dimensions, and all
o > 0 (i.e., in the extensive regime) in higher dimensions. The two-dimensional
XY model with dipolar (¥r) interactions was also investigated very recently [240]
by means of renormalization theory, and shown to display a phase transhitar s
to the Kosterlitz-Thouless transition [207].

Early works based on Wilson'’s version of the renormalization group imére
ated by Fisher, Ma and Nickel [115] on gene®almodel$. This work concerned
itself with the universality classes of the model, with two regimes identified: for
0 < o < 0.5, the critical exponents are classical (i.e., mean-field-like, with the
exception ofy = 1/0), whereas the region®< o < 1 displays non-trivial critical
exponents; naturally, these results assume that the phase transition isi@ogtin
These surmises were partially confirmed for the Ising chain by the eargsset

SRuelle’s result is in fact more general and makes no assumption #@aixact form of the
interaction: there is no phase transition if the zeroth- and first-order misnoé the interaction are
finite. See a related discussion in Sec. 1.1.

5An outline of the derivation is provided in Sec. 5.1.

16



1.3. Spin models governed by long-range interactions: raisingftéetige
dimension

pansions of Nagle and Bonner [254], and by later (extensive) inagtits based
on transfer matrices [323] or Monte Carlo simulations [228, 231, 225, 233
Overall, these results confirmed that long-range model#atiego through a va-
riety of universality classes asis varied within the non-classical range, thus ex-
hibiting rich critical behavior. | will turn to them again in greater detail in CHap.
in the context of the long-range to short-range crossover.

In [115], Fisher and coworkers also addressed the crossover tfie long-
range to the short-range regime. The argued valuecgf= 2 as the crossover
decay exponent raised several inconsistencies, however, in peartidth regard
to the one-dimensional case where no phase transition exists for this Adhter
work by Sak [292] on the same issue arguing that= 2 — nsr, Wherensris the
Fisher exponent of the nearest-neighbor model, only added fuel towhevhich
then turned into a long-standing controversy still unresolved in someaissjsee
Sec. 5.4 for more on this).

The o = 1 case corresponding to the line of inverse square interactions, and
for which possible connections with the Kondo problem were mentioned in the
previous section, was first elucidated by Kosterlitz [208] by means okparesion
in e = 1 - o, and later revisited by Imbrie [171]. There it was claimed that this
line may be the locus of an infinite-order phase transition similar in many respects
to the Kosterlitz-Thouless transition occurring in the two-dimensional XY model.
The result was confirmed by Cardy [72] for a discrgtstate model, by mapping
the model to a gas of kinks interacting logarithmically, yet some authors also ar-
gued that the line might not correspond to the onset of a Kosterlitz-Theolikes
transition for some values @f[19]. Controversies regarding inverse square inter-
actions will be discussed in much more detail in Sec. 4.3.6, in the context of the
g-state Potts chain.

1.3.2 Antiferromagnetic, frustrated and disordered mode$

The discussion below is aimed at giving a cursory look at some prominauitse
including a handful of conjectures, that emerged in the field of longeamngdels
with antiferromagnetic, competing or random interactions. Several featasavill
be witnessed, are shared by a large class of long-range models, igdioeipstate
Potts chain which | investigate in this thesis: here again, the decay pararheter o
the interaction plays a central role, and most debates revolve arounklahgecin
critical behavior as this parameter is varied.

Models with oscillatory long-range interactions, i.e., of the fon™ cosor +
¢) whereky = 0 corresponds to ferromagnetic couplings, were rigorously inves-
tigated by Bruno [58]. The aim was to generalize the rigorous result afriite
and Wagner [245], which rules out long-range order in Heisenbedgtavhen-
ever the second-order moment of the interaction is finite. One of the maiuigor
results of [58] in one dimension is that long-range order cannot exi€iand
O3 chains (yet the result does not applyQ@@ models) with long-range oscillatory
interactions of the kind given above andQlkg| < &, whenevero > 0. This, in
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particular, forbids long-range order for systems governed by tru&\RiKterac-
tions ( = 0 here). In two dimensions, the result is somewhat more intricate, since
it involves the phase of the oscillatory potential.

On the side of purely antiferromagnetic (i.e., staggered) interactions, which
not induce any frustration, most works targeted tfiea of quantumfluctuations
on the destruction of the Néel ordert= 0. By considering Heisenberg chains
with pair interactions of the fornvj; = —(-1)"-Il/|i — ji*7S; - S}, where theS;
are quantum spins whose coordinates satisfy the usual commutation relatidns
§2 = g(s+ 1), Parreira et al. proved on rigorous grounds that the ground state
exhibits Néel order, stable against quantum fluctuations-fer2 and stficiently
large value ofs. The same model was studied in [361] by means of spin wave
theory, and led to the conclusion that Néel order is also stable at finite taetapeer
for o < 1. As a side-note, quantum fluctuations were also studied in a variety of
long-range quantum models, including a quantum flavor of the classicahdel
(the so-called “quantum rotator” model) [106], a quantum spin glass, [104],
and diluted models [105]. As quantum phase transitions are somewhagantdo
to the core subject of this thesis, | will not comment on them further.

While frustration in short-range models is usually induced by a particulaceho
of the lattice geometry, long-range models can become frustrated undetdlie-s
fluence of the long-range interaction. Two classes of long-rang&dtad models
have been considered in the recent past: completely frustrated modelssithea
frustrating long-range interaction, and weakly frustrated models whesédition
is induced by competing short- and (weak) long-range interactions. lcotitext
of long-range interactiongompletefrustration can be induced by “repulsive” in-
teractions betweeall spins. This can be carried out by taking a pair interaction of
the formVij = +1/i — j|°*PS; - S;. Completely frustrate®, andOz models were
explored by Romano [288] using spin-wave theory and Monte Carlo simngatio
The system ground state corresponds to a staggered configurationithespins
pointing alternatively up and down. Spin wave theory predicts no longerandger
at finite temperature, although Monte Carlo simulations suggest residual aird
finite temperature that waneff avhenever lattice size is increased.

Much more attention has been given to weakly-frustrated models (asaxppos
to complete frustration), however. As mentioned in the previous section, two-
dimensional Ising models with competing short- and long-range interactiens ar
indeed of fundamental interest for the understanding of the physicalepies
of magnetic ultrathin films, while their three-dimensional counterparts ardesf re
vance for the modeling of a variety of systems in soft-matter physics (ssreneks
in Sec. 1.2 above). In addition, the phase diagram of these models is mueh mor
interesting than that of completely frustrated models, because weak fimsgap-
presses the usual long-range ferromagnetic order of the shosd-taimg model
and produces complex mesophases characterized by lamellar pattezmaodeél
Hamiltonian comprises two parts: an exchange interaction yiel@irngmagnetic
coupling between nearest-neighbor spins, and a weak, long-ratige,dpolar or
Coulombiarantiferromagnetiénteraction. The Coulomb frustrated Ising model in
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D = 3 was explored in [329, 137, 138], while the two-dimensional version with
dipolar, /r2 interactions is reviewed in [66]. Note that the first model corresponds
to the non-extensive regime, which requires that the total magnetizatiorele dix
zero for the thermodynamic limit to be properly defined [138].

For both models, the ground state of the system corresponds to a sthggere
configuration for large frustration (as in the completely frustrated moddiexiu
by Romano [288]), whereas at low frustration it exhibits anti-aligned stnyeose
width grows exponentially with the relative strength of the (short-rangejrigag-
netic interaction with respect to the long-range part [239]. As for theldipar-
sion in two dimensions, it has been suggested by means of Monte Carlo simula-
tions, that the presence of many striped phases geometrically close to thme gro
state generate a complex structure of interwoven metastable states in the vicinity
of the ground state energy [127], a feature which on the numerical skdeven to
induce long thermalization time. Incidentally, the transition between striped phase
of increasing width was reported to be of the first order.

The phase diagram of the Coulomb frustrated modeD(ia 3) is even more
elaborate: at zero temperature, lamellar phases turn into so-taliethr phases
and then orthorhombic phases as the frustration is increased, a fe@gimating in
successive translational symmetry breaking in the second and third dirgc3ig].

As temperature is increased, and for low frustration, lamellar phaseateelhe
transform into more and more complex modulated phases, with the phasendiagra
showing an infinite-tree-like structure, until an infinite number of incommexisur
modulated phases eventually appears at the order-disorder transitiozradung.
Noteworthy enough, and as mentioned by the authors [138], the intricateege

try of these phases renders numerical investigation particularly demaradirfg

the presence of long-range interactions imposes a very low limit on the maximum
attainable size, and (ii) finite geometry restrains the number of modulatedsphase
that can be observed. The algorithm used in this study is an interestingiexten

of the geometric cluster algorithm, and is briefly detailed in Sec. 2.3.

As a last point in this section, | briefly turn to disordered systems governed
by long-range interactions. As far as random-field models are cord;eanaore
detailed discussion in the context of bimodal fields will be provided in Chap. 8

The random-field Ising model was investigated by Bray [52] in the context
of the long- to short-range crossover (the point is reexamined in Sg¢.sh@v-
ing a crossover to take place @at= 2 — nsr wherensris the Fisher exponent
of the nearest-neighbor model, in compliance with the result previously elotain
by Sak [292]. One of the most interesting results was established in [343] u
ing a renormalization-group approach applied to an Ising chain with uzleted,
gaussian distributed random fields. By generalizing the Imry-Ma dimensional
gument to long-range models [173], i.e., by analyzing the stability of the edder
state against an arbitrarily weak random field, a critical value-of 1/2 was
reported [343], above which no phase transition occurs at finite temoperaAn
expansion was then carried out around 1/2, a value which seems to play the
same role for the random-field model@as= 1 for the pure long-range model. As
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in the short-range version of this model, the critical behavior is goverpediged
point at zero-temperature and fixed (non-zero) randomness, ytitiadly gaus-
sian distribution is shown to become strongly non-gaussian under rencatializ

It was then suggested by the authors in [343] that this may signal a fitet-wan-
sition driven by fluctuations. This point will be reexamined in Chap. 8 in tlse ca
of a long-range Ising chain with bimodal random fields.

As regards spin glasses, few studies of the Ising chain with randomypawe
interactions 1r1*> have been made available in the last fifteen years. Kotliar ex-
plored the case of gaussian-distributed random couplings using a &skigdel
and the standard replica symmetry-breaking theory [209], and fouhdsegran-
sition’ to occur at finite temperature ferl/2 < o < 0, with critical exponents tak-
ing on their mean-field value fer < —1/3. By pondering on possible equivalence
with short-range models, it was also suggested that the lower critical dinmensio
of the corresponding short-range spin glass may be 3. Noteworthykn8ak’s
scenario seems to hold also for spin glasses, provided in Sak’s relatiggtles-
ponent is replaced by the (domain-wall)fBtess exponertts g of the short-range
spin glass, which means that long-range behavior becomes dominan¢wehen
OLr > Osr(= —1 for D = 1, which yieldso¢, = 1 for the crossover value, since
0 = 1- 0 [116, 53], see also Sec. 5.3). More recently, extensive Monte Carlo
simulations [200] were conducted on the same model for linear sizes up to 256
sping, with emphasis on the values of thefistess exponent(s), still a matter
of debate [215, 163, 271]. The issue revolves around the questiwhether the
stifftness exponent, which characterizes the scaling of the energy of eleynexta
citations with respect to size, is the same for domain walls at zero temperatlre an
for droplet-like excitations. Results confirm the replica-symmetry-bregkictgre
with regard to the shape of the overlap parameter, and droplet theorgdsaut
by monitoring the behavior of the minimum of the overlap parameter distribution
(i.e. atits zero value). The filhiess exponent obtained for droplet-like excitation is
~ 0, in compliance with both the replica-symmetry-breaking theory of Parisi and
the trivial-non-trivial scheme [215, 271].

1.4 Long-Range Potts model: conjectures and controver-
sies

The long-range flavor of thg-state Potts model will play a central role in this
thesis, and as such deserves particular attention in this review. Yeakeoptro-
versies related to this model are somewhat intricate, and | deemed it mout usef
to describe them at length in the core of this manuscript rather than here.

Owing partly to a higher ground state degeneracy, this model revealssa pha

"It turns out that, owing to the gaussian distribution of random couplindensivity is ensured
even for-0.5 < o < 0 (in D = 1). This would not be the case for a ferromagnetic model.

8Note that an original scheme for the implementation of periodic boundangitions is used in
this work, see Sec. 4.2.1.
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diagram markedly richer than that of the Ising chain, for instance, asda@dsmay
perhaps be regarded aparadigmof model systems. This diagram is reminiscent,
though only incompletely, of the phase diagram of its nearest-neighbotarpart,
with the order-disorder transition turning from a continuous to a firstrasde as
the number of stateg is increased beyond a threshold vatyéd) depending on
the dimensionality of the model. For instangg(2) = 4 andqgc(4) = 2 [4, 17], and
there is strong evidence in favor gf(3) ~ 3 [350].

It turns out that one of the most recurrently intriguing questions in the long-
range case is the possible existence of a so-called “tricritical’diftg separating
a first- and a second-order regime (and, as a corollary, the locatia@ofherhere
are other intriguing questions though: the behavior orvthe 1 boundary, where
a dispute recently emerged over the topological nature of the transition and the
range of values off where it may set in; the location of the long- to short-range
crossover, which in the case of one-dimensional modes;take place also on
the lineo = 1, the crossover from the extensive to the non-extensive regime, in
connection with Tsallis’s conjecture, which aspires to unify these two regimees
single framework. These questions are briefly reviewed below.

Boundary between first- and second-order regimes On the numerical side, a
clue for the existence of a “tricritical” line was first provided by Glumac azeldc
[131] using Monte Carlo simulation based on the Luijten-Bl6te cluster algorithm
(see Sec. 2.3.2). The investigation performed in this work targets the statee-
Potts model, and suggests that there is indeed a valog loélow which the tran-
sition is of the first order. Thigualitativepicture was later reinforced in [19] for
gq= 35709, and in [213] forg = 3, both relying on Monte Carlo studies, and
simultaneously in [132] using an approach based on the random-clugtesea-
tation of the model, which made it possible to handle non-integer valugstfen

S0, the exact location of the tricritical line separating both regions is still fadnhy
troversial. While forg = 3, oc was claimed to lie between®and 07 [131], Krech

and Luijten pointed out that = 0.7 still belongs to the first-order regime, and that
the second-order regime may set in for= 0.75 only [213]. The situation with

g = 5 turns out to be even worse, with numerical estimates available only within
fairly large ranges: a lower boundary value 08 @vas reported in [131], whereas
0.7 < 0¢(5) < 1.0 according to [19]. Overall, the only reliable assertion is that
o¢(q) increases withy.

On the analytical side, studies specifically dedicated to the Potts model have
been equally scarce. Whether based on real-space procedufeer[84ilson’s
momentum-shell method [279, 315], these studies essentially target the txétical
havior of the model (irrespective of the order of the transition), and iremeon-
clusive, where distinguishing between first- and second-order tramsiisocon-
cerned. The first enlightening step in this direction emerged very recendy in
work by Biskup, Chayes, and Crawford [42], that attempts to draw general
conclusions for models with interactions that (i) satisfy the reflection-pdagitiv
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condition, and (ii) are dficiently “spread out” (in practice, with an exponential
or a power-law decay). In one-dimension, the authors prove that,eveemean-
field theory signals a (thermally-driven) first-order transition, then tis¢esy has
a similar transition forr € [0, 1]. This result would imply that, fog > 3, the long-
range Potts chain would exhibit a transition alreadydfat 1. Several remarks are
in order:

e this fixes an upper bound t@.(q) which lies above that given in some nu-
merical studies [213];

e and yet the derivation of Biskup et al. also means that, irrespective of the
exact value otr¢(q), o¢(q) > 1is ruled out.

e reflection-positivity conditions pose strong constraints on the decayrpara
eter, which in practice reduces the validity of the derivatioo-te 1;

To recap, no utterly convincinguantitativepicture has been made available
with regard to the location of the line;(q), and a refinement of the phase diagram
seems compulsory in this respect.

The line of inverse square interactions The behavior on the line of inverse
square interactions raises another set of thorny questions. The wd@aidly
[72] on theo = 1 boundary shows the onset, for gJlof a Kosterlitz-Thouless-
like transition exhibiting singularities of the essential type. While this confirms
the previous result of Kosterlitz [208], it was also argued in [19] thatphase
transition changes from a second-order to a first-order ong for9. While the
recent work of Luijten and Messingfeld on the Ising chain [235] lendthé&r sup-
port to Cardy'’s assertion, the upper bound obtained by Biskup et @hcis again
inconsistent with the result of Cardy, and it seems that we are back tcesgue.
Overall, the controversy still appears unsettléthw can these contradictory
scenarios be reconciled, if at all®ne of myobjectivesin this thesis will be to
“broker” a scenario that gives a convincing picture of the phenomeatatitur on
this borderline. With this in mind, a prerequisite might very well be the inspection
of the asymptotic behavior ef.(q) asq — 0. In this respect, it is interesting to
note — in anticipation of Chap. 4 — that the rigorous result of Biskup et ailewh
no precise estimation of the phase diagram is given, does not contradécihario
that will be suggested in Chap. 4, according to whigkg) — 1 asymptotically as

q—)OO_

The long-range to short-range crossover Here again, few analyses concerned
themselves with thg-state Potts model, and yet — as mentioned in an early sec-
tion of this chapter — the location of the crossover has been the matter dedeba
Renormalization group analyses resorted to a continuum version of therioated
[279, 315], and did not clearly settle the controversy. In the one-diimealscase,
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no numerical simulations have addressed the issue thus far, and the siteation r
mains unclear. If Sak’s scenario proves reliable for this model as wel, tte
crossover should take placeat= 1, where an infinite-order transition majso
occur. From the viewpoint of numerical simulations, settling the controvaight

be challenging, owing to the presence of essential singularities.

Critical couplings and the mean-field regime Most numerical investigations
that concerned themselves with the Potts model focused on the estimation of crit-
ical couplings (irrespective, in terms of the estimators utilized, of the orfler o
the transition — with the exception of [213]). These include the transfer matrix
approach of Glumac and Uzelac [130], the coherent anomaly methofl g%l
Monte Carlo simulations [131, 132, 19, 325, 213]. The last, howevertlynad-
dressed the case= 3, and led to numerical estimates of critical temperatures (and,
in some respects, critical exponents) showing severe discrepamcakdition, the
behavior in the vicinity of the non-extensive regime £ 0) is inconsistent with
Tsallis’s conjecture AT ~ o, except in a cluster mean-field approach provided by
Monroe [251]. In this respect, it is important to emphasize that the periadiod

ary conditions implemented in these numerical studies sometirffes aiarkedly
from one work to the otherto what extent do they influence the finite-size scaling
behavior? Do the observed discrepancies presage the failure of Tsalbsijec-
ture?

Outlook Asis all too apparent from the review given above, the long-range Potts
model is still a fertile ground for the investigation of critical phenomena. Para
doxical though this may seem, specific studies are markedly less numerbus an
in any case rather recent, whilst significant emphasis has long beenl pladke
investigation ofO, models. Every part of the phase diagram of this model is preg-
nant with intriguing, indeed unsettled questions: these are the main motivations
behind the second part of this thesis. Prior to going over this subjectveowe

will review the methods that will be used in Part Il to scrutinize these questions
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Chapter 2

From Metropolis to the
Wang-Landau algorithm and
beyond: what can we learn from
generalized ensembles methods?

In this thesis, | will mostly use Monte Carlo methods to investigate the physics of
long-range spin models; | will resort to analytical methods on some rassmts
as a guide (Sec. 4.1.1 and 5.4.1 in particular). Since the seminal work afpdetr
lis et al. [246] on the eponymous algorithm, more than five decades hasedbas
a wealth of methods of astonishing diversity have been born, all moreirles
heriting from the Metropolis algorithm, yet adding to it an ever increased leve
of complexity. Unraveling ever more complex physical phenomena imposes that
new algorithms be continuously designed, becauseftraesmcy of numerical ap-
proaches is not simply a matter of available computer resources. Everdfthes
exponentially soared during the last three decades, thestilaphysical problems
that just cannot be tackled with the Metropolis algorithm.

This chapter is thus devoted exclusively to Monte Carlo methods, with a marked
emphasis on:

e methods that were specifically tailored to long-range models, e.g., dedicated
cluster algorithms;

e methods that weraot specifically tailored to long-range models, and yet
might help in investigating a particular class of problems encountered in
long-range models: methods operatinggeneralized ensemblese exam-
ples of these.

However, this chapter is not aimed at giving a comprehensive reviall bfonte
Carlo methods, or at providing extensive detail on the theory of finitessiakng
and other data analysis schemes. With regards to these, more detailed metgrial
be found, e.g., in[216] or [259], where progress in the field is desdriip to 2001.
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The layout of this chapter is as follows. First, | will briefly review some fun-
damentals, i.e., Markov chains and detailed balance, the Metropolis algoritdm, a
error calculation. The Monte Carlo method is primarilgtachastionethod, and
the amount of statistical error on generated data hinges on the choice wfithe
derlying algorithm. | will describe a class of algorithms in widespread usstariu
algorithms, that lead to a drastic lowering of this error. All the algorithms | will
have presented up to that point operate in the canonical ensemble, iendeng
a Boltzmann distribution. In a variety of situations, including the investigation of
first-order phase transitions or the physics of disordered systems, iiethiods
behave poorly and become of little use. | will describe a category of algusith
that dficiently tackle such situations by operating in other ensembles: general-
ized ensembles algorithms. The multicanonical method will be singled out as the
paradigm of simulations in generalized ensembles; it will also be my method of
choice for the investigation of long-range systems, and as such will lea giar-
ticular attention in this chapter.

2.1 Markov chains and the Metropolis algorithm

Irrespective of the particular scientific field considered, the Monte Gadssen-
tially a method that computes (multidimensional) integrals in an approximate fash-
ion. It does so by relying on a stochastic scheme, i.e., by drassimdpmnumbers;
hence its name. .

In statistical physics, the multidimensional integral to be (stochastically) com-
puted is the partition function. In a numerical implementation, the integral is actu-
ally a discrete sum over all the configurations of the sys®@m, Y ,; e /KT, and
the Monte Carlo method aims to produce an estimate of it by means of a stochastic
sampling scheme. In short, we have two sampling schemes at our disposal.

“Simple sampling” samples the partition function by generating configurations
at random. Since there are astronomical numbers of configurations okhigh
ergy in comparison with those of lower energy, this sampling scheme is particu-
larly inefficient, because in the temperature range we are usually interested in, a
vast majority of these configurations do not contribute significantly to thigipar
function.

“Importance sampling”, on the contrary, isbéasedsampling scheme, which
concentrates much of itdfert on the configurations that are dominant in the ex-
pression oZ. It does so by generating configurations that are distributed according
to the Boltzmann distribution at a given temperature: thus this sampling scheme (at
least in its initial formulation termed the Metropolis algorithm [246]) is essentially
a single-temperature method.

Importance sampling relies on a Markov chain of configurations (or states, o
microstates) to engender the proper distribution: starting from a givefigooa-
tion o, the chain chooses a new configuratienaccording to a transition proba-
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bility W(i — f) which must satisfy the so-calletetailed balance equation
WW(i — f) =wiW(f — i), (2.1)

wherew; andws refer to the probability of occurrence (often termedwregh) of

stated and f in the engendered distribution. For quite some time, only Boltzmann

distributions have been considered, whereby= e &/kT (whereE; is the energy

of statei). Section 2.5 will show that other, sometimes wiser choices are possible.
The previous equation can be derived from many sources. One mayeim-

ple, start from thenaster equation

dws (t)
dt

Z[Wi(t)W(i - ) —wW(f = i)], (2.2)

which governs the dynamics of the weighi(t). There is actually one such equa-
tion for each configurational weight, with the sum ritiew;(t) = 1 holding at all
times. At equilibrium, the rate of change of any weight is down to zero, vidyere
detailed balance is readily recovered: a Markov chain thus ideally geseaa
equilibrium distribution. As we will withess below, however, things are thai
simple.

2.1.1 The Metropolis algorithm

Replacing the weights in Eq. (2.1) by their actual Boltzmann value, one obtains
elE-B)/KT — W(f — i)/W(i — f), and transition probabilities must be designed
which satisfy this equation. Metropolis’s prescription, known asNtetropolis
acceptance ratf246], reads

w
W(i - f) = min(l, —f) = min (1, e®-EVKT), (2.3)

Wi
It is straightforward to show that this acceptance rate is in fact valid fpdastri-

butionw. Basically, for a discrete spin model, the Metropolis algorithm works as
follows:

1. pick a spin at random in the lattice (this operation is what will be referred to
later on as “a priori” choice [211], or “proposed update”);

2. flip the spin (i.e.attempta moveupdats);

3. compute the energy change—E;, and then the transition probabiliy(i —
f) (this is also termed thacceptance rafe

4. draw a number at random between 0 and 1 and,

e accept the attempted move ik W(i — f), i.e., the next configuration
in the Markov chain is the states;
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e otherwise reject the move, i.e., the next configuration in the Markov
chain is the same as the current configuratign,

The previous set of operations is termeiante Carlo step A Monte Carlo
sweepgMCS) corresponds thl spins being updated on a lattice containkhgpins.
Other choices of acceptance rate are possible, e.ghgidebathalgorithm,

e—Ef/kT

As opposed to the Metropolis transition rate, the acceptance rate dependso

the final stater¢. This may speed up the dynamics for (nearest-neighbor) Potts
model, and this is also the acceptance rate generally used to update béigd-con
rations in the Swendsen-Wang cluster algorithm (Sec. 2.3.3).

Once a Markov chain of sficient length has been generated, thermodynamic
averages can be readily computed from direct averages,(&g.= 1/N >; E;
where{Ey, E», ...} denotes a set of measurements taken along the Markov chain
(as we will see below, not every configuration generated should gignenter the
average).

2.1.2 Detailed balance for moves that are not micro-reverbie

In some situations (and particularly those reviewed below, and in Pait I§)nore
efficient to implemenmove updatethat are not micro-reversible, i.e., for which
the proposed update is not symmetric when going fréonf and back. We need to
generalize Eq. 2.3 for this purpose. Proceeding along the line of [fiGhstance,
the transition probability is split into two termgy(i — f) = P(i — f)A(i — f),
where

e P(i — f) denotes groposed-update probability.e., associated with the
choiceof a particular move among the set of every possible move;

e andA(i — f)is simply theacceptance probabilitfor the proposed update.

It is trivial to show that

(2.4)

Al — )= min{l MW(Ef)}

"P@i — f) w(E)

is a valid acceptance probability which satisfies the detailed balance equitien.
will be referred to in the rest of this thesis as generalized Metropolis acceptance
rate. For a reversible move like the one implemented in the original Metropolis
algorithm, Eq. (2.3) is recovered, of course, seeing Bfat—> f) = P(f — i) =

1/N whereN is the number of spins in the lattice.
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2.1.3 Random numbers generators

Random numbers are a fundamental ingredients of Monte Carlo method¥ieand
reliability of the results obtained from a Monte Carlo simulation depends heavily
on the quality of the random numbers used by the Markov chain. Monte Carlo
simulations generally rely ongseudaandom numbers generator (PRNG), i.e., a
deterministic algorithm that generates random numbers in a way that emulates
random numbets usually according to a uniform distribution. It is not the goal
of the present work to go into the archanes of random numbers gerseranal |

will hereafter only provide some information regarding the generators lruthe
simulations performed in this thesis.

The quality of a PRNG depends on several parameters: the distributioa of th
random numbers it generates must be as close as possible to the unifaim dis
bution (or any other distribution it is assumed to engender), correlatidnebe
successive random numbers must be as low as possible, and it shoeddbeably
efficient since a great deal of random numbers are usually requiredratznte
Carlo sweep. Itis also important that the range of random values allotegeach
all the sites of a (large) lattice, which implies that the words must have a width of
at least 32 bits.

The general scheme used by a PRNG is to generate a sedugrodgseudo-
random numbers from the recurrence equatipr= f(in-1,in-2,...,in-x). The
algorithm is initialized with an array df numbers that is computed from a seed,
and diterent seeds will produce distinct sequences. A feature common to these
generators is that they will produce cycles: a good generator rfigsteolarge pe-
riod, preferably far larger than the total amount of random numberssthequired
by the simulation (of the order df® x M, whereLP is the volume of the lattice,
andM is the number of MCS in the simulation). Otherwise, systematic errors may
arise [270].

Several classes of generators have been devised in the last datadese
based on the previous recurrence equation. Linear congruentedagers (LCG)
rely on the equation, = (ain-1 + ¢) mod m, with a, c and m set to some “magic”
values in order to achieve the longest cycle. Improved LCG’s combine & linea
congruential method with a sfiling scheme, i.e., the humbers generated by the
LCG are shffled using a distinct generator. This reduces the correlation between
numbers, and increases the cycle. More recently, a new class ohgmsdermed
“shift register” generators has surfaced: being based solely onalogfft and
XOR operations (both are available in assembly language), they are utssady
than LCG's [205]. These generators have been subsequenthadjzedrtolagged
Fibonaccigenerators (also termagkneralized feedback shift-registewhere the
XOR operation is replaced by additions or multiplications, afférovery long
periods (of the order of 18 for the RANMAR generator). In this respect, it has
recently been shown [270] that all these generators can cause sijstemars

For instance, those generated by a hardware device, such as thecatiptifof the Schottky
noise a diode
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using the Swendsen-Algorithm (see Sec. 2.3), if the lattice size is a multiple of
a very large powers of 2 and one random number is used per bond.stEhis
from the synchronization between the periodicity of bond updates and e la
yet finite periodicity of the random number generator. Ossola and SaKkal [
proposed a work-around that consists in breaking the synchronizatiopdating
bonds either in a random order, or in an aperiodic manner.

TheMersenne-Twistegenerator [243], the generator used in this thesis, uses a
twisted generalized feedback shift-register algorithm which has a Meggaime
period of 299371, or about 16, This period is orders of magnitude larger than
shift-register algorithms of the previous generation (for instance, the [RAN
generator [176, 236], which throws away numbers to destroy correfatitas a
period of 137Y), and makes it one of the strongest uniform generator to date. It
generates numbers in batches of 624 numbers at a time, thefieisnly utilizing
the caching mechanism of modern CPU'’s, and is extremely fast since ot 32
additions and logical bit operations are used. It also passed many enj@sisa
including the diehard test of Marsaglia [242], and Kadistribution test (everk-
dimensional vector made up of successive numbers appears the samer miimb
times over the period length, for eakthx 623). In order to check for the presence
of possible hidden correlations, | performed sevpeaking lottests [216]: a plane
is filled with points of coordinated{,in.x) (for several values oK), and hidden
correlations will show up through striped patterns. For instance, thenedsd
such patterns fok = 10 is illustrated in Fig. 2.1. In order to check for possible
systematic errors, | also performed some tests by simulating the two-dimensional
short-range Potts modetj (= 2 andg = 3, up to 128x 128 spins), using the
Swendsen-Wang cluster algorithm and two distinct generators (Mersemister
with the default parameters given in [243], and RANLUX with the largestityx
level), and did not find discrepancies between the generators.

Allthese generators are available from the package . jet.random. engine
of the Java COLT library released by the CERN. As most Java objectsctrey
store and retrieve their state through the serialization mechanism introdulzain
1.1, which makes it possible to stop and restart a simulation at any point. As far
efficiency is concerned, the Mersenne-Twister generator is only slightheskhan
the RANLUX and the RANMAR generators (approximatel$ 1o 1 when RAN-
LUX is set to the highest luxury level), although its initialization time is markedly
longer. With regards to the benefit brought about by the very largeg&ngth
offered by this generator, this overhead is negligible.

2.2 Dynamic characteristics and statistical fliciency

2.2.1 Autocorrelation times

Markov chains do usually not engender statistically independent coafigns.
The amount of correlation between successive values of a givenvabieA(o)
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Figure 2.1: Parking lot test ovét = 10* numbersi,} for the Mersenne Twister
generator: the graph is built from points of coordinaigsi{:10), and displays no
stripe that would be characteristic of hidden correlations.
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along a chain of lengtM is measured by a time-displaced correlation function

M-t
XA®D) = ) (AnPnat — (AY) (2.5)
n=1

where A, is the nth record of the value of the observatde and (A) is the ex-
pectation value oA at equilibrium (see thermalization, Sec. 2.2.4). This function
tells us to what extent measurementsfoseparated by MCS are correlated. A
convenient (though somewhat approximate) indicator of the average timhe (&
any) between independent measurements isitiv@correlation time This can be
obtained, either from the long-time exponentially decaying behax(ipre eV,
or by integration, i.e.t = Zt'\io)((t)/,y(O). Both definitions lead to the so-called
exponentialand integrated autocorrelation timese and 7, respectively. These
generally do not exactly coincide, owing to the fact that the exponentiahier is
a simplified view of the real correlation mechanism, i.e., there are actually as many
correlation times as there are states in the systems (one for each mastemequatio
2.2), and whatr represents is actually tHargestcorrelation time (whereby all
other modes have diedfan the long-time limit, see, for instance, [216]). As a rule
of thumb, measurements should be taken at intervals aféhg the chain to form
a sequence ahdependenmeasurements (see Appendix C).

From a practical point of view(t) may be diciently estimated by relying on
a Fast Fourier Transform (FFT) algorithm [259], which reduces trddn from
O(M?) to O(M In M) operations. Denoting a&(w) the Fourier transform of the
sequencéA;}, we havey{w) = |A(w) — A(0)? (i.e., the zero-mode is set to zero, or,
in other wordsy{w) is the discrete Fourier transform &f — (A)). From there on,
x(t) is obtained by taking the inverse Fourier transforny @b)-

2.2.2 Statistical dficiency

There is an innate source of error in every Monte Carlo simulation, that $tems
the random nature of the Markov chain. Specifically, the source of @rrthe
estimation ok A) by means of thestimatorA = 1/M }; A;, is the fluctuation ofy
from one step of the chain to the other. For a set of measurements astaatate
an autocorrelation time, the squared statistical errei on the estimated meah
is giver? by [252]

1+2r = 2T, —
ST ENA2 A LS p2 A2
M—l(A A7) M(A A%) (2.6)

& =
whereA2 — A2 is the variance oA within a single chain (or Monte Carlo runyj
designates thtotal number of measurements, and the second form applies when
T > 1andM > 1. Forr = 0, i.e., perfectly uncorrelated measurements, this
reduces to the well-known formula of elementary statistics.7/Fe10, the number

2j.e., it is the variance of the mean from one Markov chain to the other.
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of independent measurements is reduced by a factr with respect to the total
number of samples: this reduction factor is called skaistical gficiencyof the
simulation, the lower the better.

Equation 2.6 yields another way to estimate autocorrelation times: by com-
puting the error oA from multiple, independent runs, or by means of a blocking
or resampling method (Appendix C); inverting the previous equation thensllow
one to retriever. The corresponding time is termed tggectiveautocorrelation
time, and is practically the sole autocorrelation time that makes sense in the con-
text of multicanonical simulations [179]. This point will be reexamined in Set. 7
There are other ways to estimatdor example, by combining the blocking method
(Appendix C) with a renormalization group transform [12@jr by explicitly ana-
lyzing autocorrelation functions [85].

2.2.3 Dynamic exponents for correlation times and criticalslowing
down

Critical and supercritical slowing down effects As we have seen in the previ-
ous paragraph, autocorrelation times are directly linked to the statisfia¢ecy

of a Monte Carlo simulation. One of the core issues in the numerical studyaséph
transitions is related to the fact that autocorrelation times generally become ver
large in the vicinity of the transition temperature, and as a result make the simula-
tion less accurate (or alternatively, require longer simulation runs). Efawor

has two distinct origins, depending on whether we are investigating sexdedor
discontinuous phase transitions, and is respectively termed “critical galoiwn”

and “supercritical slowing down”. Overall, it is an innate (dynamic) featfrthe
model under investigation, in the sense that it is a direct consequenceeifitkics
being studied, not of the algorithms in hand (although wise algorithm desims ¢
significantly reduce it). Critical slowing down has incidentally been obskive
many physical systems [158]. Supercritical slowing down is probably evere
common, since its physical significance is directly related to the very existénce
supercooled or superheated states in systems at first-order transitions.

The amount of critical slowing down depends on the actual algorithm being
used, and it is the goal of a large class of algorithms introduced in the tesrfif
years, and called “cluster algorithms”, to reduce tlie@ as much as possible. As
for supercritical slowing down, the benefit of cluster algorithms is less clear-cut
[134], and other strategies must be used. Simulatiorgemeralized ensembles
represent such a strategy, and are considered in deeper detail axtrezation.

Dynamic exponent and critical fluctuations Common to both types of transi-
tion is the fact that, beyond (and somehow correlated with) the sharp secofa
correlation times at the transition, autocorrelation times also increase with the lat-
tice size. In the context of second order transitions, a convenient todtbat gives

3This works only for a certain class of Hamiltonians, however.
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a way of quantifying this fect is the dynamic exponeant As far as simulations

of finite size systems are concerned, this exponent controls the bebéwaoto-
correlation times with respect to the system size, in much the same way as critical
exponents control the divergence of (among other things) respansgdns at a
critical transition. Here, it is perhaps interesting to mention that dynamic exjen

can be associated with so-calldgnamic universality classés the same fashion

as critical exponents determine static universality classes; this was esdlilish

the context of dynamic critical phenomena [158].

Critical slowing down is here largely reminiscent of the diverging fluctuation
that show up at a critical point, where in systems of finite size, fluctuatioms ar
actually bounded by the large but finite correlation length. At a critical phras-
sition, large domains of predominantly up- or down- pointing spins tend to form
as the temperature approaches the critical temperature from abovee thefk
domains, we can identify one or more subsets of highly correlated spinsrreder
clusters— which, as they flip, generate large fluctuations in the energy and the
magnetization. Since these fluctuations are linked to response functiongltthro
the fluctuation-dissipation theorem, we expect divergences in thestoiumalso.
Critical slowing down results from the fact that, in very much the same way as
the characteristic length scale diverges at the critical temperature, trectdres-
tic time scalealso diverges. The determining role played by the spins belonging
to the spanning cluster was clearly demonstrated, because these spiederty
correlated in the thermodynamic limit [282]. Note that, in the vicinity of a critical
transition, the correlation lengthbehaves a$ ~ |t|™, wheret = (T —T¢)/T¢ is the
reduced temperature, ahé O at the transition. In some cases, we may witness a
logarithmic behaviorr ~ In|t| instead, yet this does not represent the majority of
cases. To describe the divergence of the autocorrelation time, a newesxpis
defined so that ~ || in the vicinity of the transition, where is usually mea-
sured in MCS. Now, we also have that [t| ™, thusT ~ &% Whence for finite-size
systems and sficiently close to the critical temperature, we obtain L* because
the divergence is cutbin the region for whickf > L.

Dynamic exponents as a powerful indicator of scalability Loosely speaking,

z thus tells us what we may expect in terms of simulation accuracy whenewxer, fo
example, we double the size of the lattice. Since autocorrelation times determine,
in the first place, the amount of CPU resources needed to reach aagiwaracy,

the knowledge of the dynamic exponent is thus crucial to a proper estimétiosm o
scalability of a given algorithm. It must be mentioned that, as opposed to critical
exponentszis not a universal quantity, since its hinges heavily on what algorithm
is being used. For instance, cluster algorithms generally yield lave&ponents
than their Metropolis counterpart [153, 309], and are thus méteient in this
respect. To be specific, one of the most precise estimaian tie case of the two-
dimensional Ising model simulated with a Metropolis algorithra 52.1665(12)
[264], while cluster algorithms yield ~ 0.25 for the same model [83].
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In terms of total CPU load; clearly enters the overall scaling of CPU resources
with the system size. For Metropolis implementations and models with finite-range
interactions, we must perform the orderldt operations per MCS (i.e., updating
the whole lattice), hence the total CPU load behavek?48. For models with
long-range interactions, the situation looks even worse, bedausperations are
needed to compute the energy change when a single spin is updated,nsed co
quently L2P operations are now required to update the whole lattice. This means
that the total CPU load needed to reach a given accuracy scalé8‘&sWhether
short- or long-range models are concerned, this shows that the Mitragpoer-
tainly not the best algorithm when investigating critical phase transitions.

2.2.4 Scaling of relaxation times and the non-linear dynangi expo-
nent

Autocorrelation times are not the only dynamic quantities that become very large
at a critical transition. Relaxation timfgsvhich inform us about the rate at which
the Markov chain reaches the equilibrium distribution, are also known tibiéxh
the same scaling behavior (sometimes termed “critical relaxation”). Sincewehat
aim at sampling in the first place is the equilibrium distribution, relaxation times
thus clearly impinge on the accuracy of the simulation and, as a result, on the
scalability of the algorithm. It turns out that algorithms that can reduce critical
slowing down, e.g., cluster algorithms, are — on the same grounds — also better
candidates with regard to relaxation behavior.

The approach to equilibrium of a given sampled quaniityan be described
by the following non-linear relaxation function [216]

(A() = Al))
(A(0) — A(e0))

where(-) stands for ensemble averages, i.e., averages over multiple, sepagate run
Similar to (time-displaced) autocorrelation functions, this relaxation function dis
plays a rough exponential decay with an associated (exponential)ctérastc
time scaler, i.e., ®a(t) ~ €Y7; T may also be defined as an integrated relaxation
(or equilibrium) time from the equation = fooo ®(t). In practice, one may per-
form a single simulation, and then estimatby replacingA(co) with an average
over a subset of samples such that 7, that is, in a self-consistent fashion. As a
side note, let me mention that, as an exception to the exponential decay just men-
tioned, glassy systems and diluted models display a relaxation function that must
be described by a more complex relation.

Relaxation times exhibit a scaling behavior similar to that experienced by au-
tocorrelation times, yet with a filerent (non-linear) dynamic exponegjt. It has
been established, however, that the dynamic exponant its non-linear coun-
terpartz, are not independent. Instead, they are related to each other and to other

Dp(t) = (2.7)

4Also termedequilibration times thermalization timgsand sometimes evesguilibrium times
[139]
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(static) exponents through an equation similar in spirit to the hyperscalirigrela
[119] z = z, + B/v, where both dynamic exponents are computed from measure-
ments of the magnetization, agandy refer to the usual critical exponents.

The non-linear dynamic exponent defined above retains its significansier-
ulations based on cluster algorithms; these, as already mentioned, lead imelea
provements over the Metropolis algorithm also in this area. However, anillas
be observed in Chap. 7, non-linear dynamic exponents defined in thisridse-
come ill-defined where simulations in the multicanonical ensemble are concerned
first, the underlying dynamics of the Markov chain is all toffetient from the quite
realistic dynamics engendered by canonical algorithms for the expondatiay
behavior to remain valid; second, what we are interested in is no longeesags
over raw samples, but @weightedaverage. In this respect, | will show that it
becomes necessary to define relaxation times with respect bodhdequilibrium
distribution rather than to single averages, and that it is under this assurti@ton
power-law scaling behaviors may be recovered.

2.3 Cluster algorithms

How do single-spin updates cope with critical slowing down? We have just
seen in the previous paragraph that correlations between succsti®e gen-
erated by the Markov chain become large at a critical point, and thus Bevere
endanger the scalability of the Metropolis algorithm. Indeed, for a giveirete
accuracy, this would imply running the simulation for a much longer time. It is
above all in the critical region that the Metropolis algorithm is less accurate, b
cause update moves based on single-spin flips are no longer physiéalgntan

this region. As | have mentioned, large clusters of correlated spins temadng f
with all spins lined up in the same direction, or, for Potts models, belonging to the
same subphase. However, single-spin updates cannot flip a large dbezanse

in order to achieve this, they would have to flip a great deal of correlgied sne

at a time, and this is associated with a tremendously low acceptance probability.
Indeed, trying to flip a down-pointing spin in a sea of up-pointing spins @sts
energy interface, e.g., ofMfor the two-dimensional Potts model, which leads to
an acceptance probability ef*/KT, i.e., around two per cent for the three-state
version of this model at its transition temperatdie = J/In[1 + +/(3)]. For a
cluster comprisindN spins, the joint probability of shrinking the whole cluster is
approximately given by *NVKT g quantity which scales in a quite unfortunate
way indeed with the system size. Rewordeffatently, critical slowing down is
particularly stark in the context of Metropolis algorithms owing to the drastically
low pace at which the Markov chain explores the whole phase space twioen
successive statesftiir by at most one spin value. As will be witnessed in Chap. 7,
multicanonical algorithms also experience critical slowing down: the wideghas
space explored by the chain encompasses a “critical” energy range wdreela-
tions become large and — for the same reason as in the canonical casele— sing

36



2.3. Cluster algorithms

spin updates deliver non-optimal dynamic performance.

Flipping clusters in one shot A solution to the previous problem consists in
flipping groups of correlated spins in a single Monte Carlo step. Algorithms re
sorting to this principle are dubbed cluster-flipping algorithms, or simply cluster
algorithms. Broadly speaking, such algorithms first inspect the lattice intséar
groups of similarly orienteénd correlated spins, and then flip them in one shot.
These algorithms nearly entirely remove the critical slowing down at secoiet-
phase transitions, and have thus proved extremely popular in the last fiftaes.
This is, however, at the expense of an increased complexity, whicthdshepitted
against the benefits brought in by the algorithm in terms of accuracy. gssdse
long-range models, it will become clear (see section 2.3.2) that naivesptpaimg

to long-range models cluster algorithms designed for short-range modelg tipig
the balance in favor of the Metropolis algorithm, or to say the least, make the issu
unclear.

2.3.1 WoH algorithm

Wolff algorithm for models with nearest-neighbor interactions The simplest
strategy is to pick a spin at random, and then to look for neighboring spihs tha
point in the same direction, and eventually flip the entire cluster. Since we want
to restrict the group of spins to correlated spins only (i.e., tduater, which is
a subset of @lomair), and because these correlations depend on the temperature,
there must be a temperature-dependent way to limit the addition of spins to the
group. In other words, the cluster size must depend on the temperatuhéghA
temperatures, for example, correlations between spins are scarck mdans that
small clusters must be flipped. On the contrary, below the critical tempefBfure
the tendency of the system is to create clusters of spins spanning the dtitieg la
and the algorithm should update large groups of spins in a row. The sototion
this problem is to add a spin to the group with a probability depending on the tem-
perature, in such a way that this probability increases with the inverse tataper
This is the rationale behind Wk cluster algorithm [347], otherwise termed the
single-cluster algorithm, and to some extent, behind the retgrdralized cluster
algorithmintroduced by Niedermayer [261].

To set the stage, let us see how the algorithm works for a Potts model with
nearest-neighbor interactions, i.e., governed by the following Hamiltonian

H= —JZ5(O’i,O'j)
()
where the sum runs over pairs of nearest-neighbor spins. | shalidesrthe ex-
tension to long-range Potts models in a later section, because such arnoexiens
not trivial and deserves special scrutiny. As a first step, the algotihmoses a
cluster seed at random, that is, one spin amhing LP possible spins on the lat-
tice, and assigns it a new value drawn at random; in what follows, the salue v
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Figure 2.2: Construction of a Wiblcluster for a nearest-neighbor model, from state
(a) and from state (b), where configurations (a) and (b) are relgtacthuster flip.
The solid lines correspond to activated (or satisfied) bo@'gs:(C‘b =7), and the
dotted lines to non-satisfied bonds. In (a), there are two non-satesligebonds
(Cg = 2, see explanation in text).

will be assigned to each spin being successfully added to the cluster, dden
nearest neighbor of the seed is considered in turn for addition to therclvgtea
probability p = 1 — e#J, whereg is the inverse temperature addstands for the
coupling constant of the model. From the viewpoint of practical implementation,
each spiractuallyadded to the cluster is concurrently pushed on top of a stack, for
instance a first-in-first-out kifer. Once every nearest neighbor has been considered
for addition, a new “seed” is popped from the stack and the algorithmspdsc
with further spin addition until the stack is empty.

The cluster construction process is illustrated in Fig. 2.2 in the case of the two-
dimensional Ising model. Whenever a spin is actually added to the clusteaywe s
that the correspondinigond has beeractivated whereas in the contrary the bond
is saidinactive In the following, | will denote asB the set of active bonds. As
can be witnessed in the figurB,is actually a subset of the set of spin interactions
belonging to the cluster. This simply means that some spins were added to the
cluster after a first rejected attempt, although throughtemint path.

Detailed balance and cluster flip acceptance rate As has to be the case for
any valid Monte Carlo algorithm, the Wiblcluster algorithm must satisfy detailed
balance, or equivalently, the acceptance probability associated with gterdlip
must be constructed from Eq. (2.4). The proof is as follows. The troepdance
probability actually comprises two parts: a proposed-update probalfiljsy,—

b) and an acceptance probability for the proposed upd@afqpp(a — b). The
proposed-update probability is the probability to choose a new btatem an
existing statea, or equivalently the probability to construct a given cluster from a
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seed drawn at random. This probability reads

Aa—b)=[]m©)[]a-meE)

leB I¢B

wherel designates a bon, is the associated spin pair, apdS) is zero whenever
both spins dier, 1— e’ otherwise. In Wadf’s single-cluster approach, the first
product runs over all pair of interacting spins until the construction stogsce
the second product runs over adjacent bonds to the cluster only.gharacluster
configuration constructed from staael now write C., for the number of satisfied
bonds, andC§ for the number of non-satisfieedgebonds among pair of spins
having identical values. The proposed-update probability may then bétesw
as: .

A@— b) = p(1-p=

| actually omitted a leading factar/Ng, wheren is the number of spins in the
cluster,N is the number of spins in the lattice agds the number of states of the
model: this represents the probability to pick a particular seed inside the cluster
yet this term cancels out with that of the reverse move. Let me now corthieler
reverse move: as illustrated in Fig. 2.2, the proposed-update probabilijetia

from an initial configuratiorb writes

A(b — a) = p%(1 - p)

It is obvious thatCl, = C| = C' (although the distribution of active bonds over
available bonds may fier in both configuration), and thus the ratio of proposed-
update probabilities can be written as

Ab—a)

)G
Aasp) LT

On the other hand)(C§ - C;) represents exactly the energy change when going
from ato b. Plugging the last equation into Eq. (2.4), we are led to the conclusion
that cluster flips are always accepted. In other word, it is the choice-o&#’

as the bond activation probability which ensures that an appropriate digiritof
cluster sizes is engendered, so that in the end the equilibrium distributionefor th
energy matches the Boltzmann weight.

It is crucial to note here that thigerfectacceptance rate does no longer hold
in the presence of an external field (or random-fields), except wheexternal
field is an integral part of the cluster construction, as is the case in thé-gpios
algorithm.

Generalization to long-range models At first glance, the generalization of the
above algorithm to long-range Hamiltonians is straightforward. Considexing
long-range Potts model with interactiodg depending on the spin positionand

i, the construction is illustrated in Fig. 2.3, and the only change is that:
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Figure 2.3: Construction of a Widlcluster for a one-dimensional model with long-
range interactions (this applies to abydimensional lattice, since the underlying
graph is a complete graph in any case). Solid lines denote active botids] lites
represent non-satisfieetlgebonds, while the dashed line corresponds to a non-
satisfied inner bond which as such does not explicitly enteptbposed-update
probability.

e Bond activation is considered for any pair of spins, irrespective of being
neighbors. The underlying graph is now@mpletegraph.

e Bond probabilities now depend on the coupling constant thrqughk 1 -
e P,

e A given cluster is no longer a block of contiguous spins with identical value,
and may now span the entire lattice. In this regard, thermal clustffes di
drastically from geometrical clusters in long-range models (in the figure,
three geometrical clusters can be identified, although two of them belong to
the same thermal cluster).

Algorithm complexity of the cluster construction for long-range models From
a practical point of view, a seed is drawn at random, and then eaclngpia lat-
ticeis considered for addition to the cluster. The construction process tkesogo
along the same line as with nearest-neighbor models, until the stack is empty, ex-
cept that for each new seed,N bonds have to be checked. Thus it becomes clear
that the cluster construction takes the ordeNéfoperations for a lattice contain-
ing N spins. This represents an algorithm complexity substantially larger than that
of nearest-neighbor cluster algorithms, and is incidentally reminiscent aidgioe
rithm complexity associated with the computation of the energy in the long-range
model.

The issue becomes particularly stringent for interactions which decay weith th
distance between spin, which is the case generally considered. Hepeobzdil-
ity of adding a bond between two spins fall§ quite rapidly as the distance be-
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tween them increases. A significant amount of time during the constructitwe of
cluster is thus wasted because an overwhelming number of bonds aréeceds

for activation which have only a negligible probability to be activated. Evdhen
case of interactions decaying ai 1 j|**“ with o close to 0, does the bond count
never exceed a few percent of the whole number of available bonds. r&gidind

to this, switching from a single-spin update algorithm to a cluster algorithm might
well be an ill-fated choice, as the gain in terms of autocorrelation time is spoiled
by the exceedingly time-consuming construction of the cluster. A workrartw

this issue is considered in the next section.

2.3.2 Luijten-Bl6te algorithm: efficient cluster construction

In this section, | describe arffcient construction method introduced by Luijten
and Blote [227, 226, 234], which works for Hamiltonian with any number t&rin
actions between spins, and whose demand in terms of computer resaaless s
roughly as the volume of the lattice. The sole constraint of the method is that inter
actions should be invariant by translation along the lattieey.,Jij = J(i — j) for a
one-dimensional lattice. In Part Ill, | will show how this method can be sttéog
wardly combined with a multicanonical algorithm, and the material exposed below
is therefore quite detailed.

The rationale behind Luijten-Blote’s method is to rely@mulativeprobabil-
ities, in the spirit of the N-fold-way algorithm [50, 212]. Instead of coesiig
each spin in turn for addition to a given cluster and thereby experiencimgrous
rejected attempts, it is thiedex of the next spin to be added which is drawn at
random, either from a look-up table, or, as was proposed by Luijten incihiext
of Ising chains, by direct calculation.

First of all, the probability to add a bond is split up into two parts: (i) a provi-
sional probabilityp; depending on the distante- |i — j| between spins, and (ii) a
factor f (o, oj) controlled by the spin values, e.g., a Kronecker delta symbol in the
case of a Potts model, or a function of the angle between spins in the cas¥¥f a
model. If 0 designates the index of the current spin to which we are addimadsb
(i.e., spin indices are considered to be relative to the current spin, se8.#g
then the provisional probability of skippirkg- 1 spins and binding the current spin
with a spin at positiok > 0 is given by

k-1
Pok) = | ]2 - pm)px
m=1

From there on, one builds a table of cumulative probabilities

1
Coliz) = ) Po(K),
k=1

5Although the method workim theoryalso for non-invariant interactions, yet with a far higher
demand in terms of memory resources, see the issue discussedfagtdmreling look-up tables.
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jiL=-2 0 jR=2 2=8

Figure 2.4: Construction of a Widlcluster for a one-dimensional model with long-
range interactions using cumulative probabilit®s(j.+1). The cluster seed, i.e.,
the “current” spin to which bonds are added is denoted as 0. The firspapi-
sionally added to the right is at relative positiq’ﬁi = 2, i.e., the random number
r is such thatCy(1) < r < Cp(2). This spin isactually not added to the cluster
(dashed line) since it does not have the correct sign (i(e-, 02) = 0, see ex-
planation in text). A second random number such @g¥) < r < C,(8) yields
j§ = 8. The corresponding spin has the correct sign, so that it can bel anlde
the cluster (solid line). Alternatively, the random numibenay be transformed
tor’ =r[1 - Cy(2)] + Co(2) andj§ obtained fromCqy(7) < r < Cp(8). Then, the
same procedure is performed for spins having negative relative indigeyields

j1 =2, l.e., j& = —2. Finally, one proceeds further with the addition of spins to,
e.g., spinj'l- = —2, which becomes the new “current” spin O (dotted line).
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for all j1 > 0, andCy(0) = 0, so that the index; of the spin to be bound with the
current spin 0 is obtained by first drawing a random numberi0< 1 and then
reading outj; from the table. In other word$; is such tha€Cp(j1—1) < r < Co(j1).
Last, a bond is activated between spins 0 gngith a probability f (oo, o, ).

One proceeds further with the computation of the inglex- j; of the next
spin to be bound with current spin 0. The corresponding provisioruddgtnility
thus becomes

k-1
PL =[] @-pwpe

m:j1+1

and the cumulative probabilities read

i2
Ci(in) = D, PuK.

k:j1+1

The same procedure is repeated{f j4, ...} until an indexj, > L is drawr?, in
which case we jump to the next current spin, which in a one-dimensionallisode
the nearest-neighbor of the previous current spin.

The dficiency of the algorithm is greatly improved by using two formulas
which make it easier to compute cumulative probabilities. First, it can be shown
that the cumulative probabilit€q(j) may dficiently be computed from

i
Coj) = 1- eXpl—BZ J(|k|)] ,
k=1

Second, the cumulative probabiliti€}, (j.+1) can be straightforwardly derived
from theCy(j) codficients through the relation

CO(ja+1) - CO(ja)
1-Co(ja)

It follows from the last relation that, instead of building a look-up table farhea
Cj.(je+1), one may as well draw a random numbexOr < 1, transform it to
r' =r[1-Co(j.)] + Co(ja), and choose the next spin to be added from the relation
Co(je+1 — 1) <1 < Co(ja+1)- In practice, one thus simply needs to compute a
single look-up tabIeZIJ(:1 J(IK)) for 0 < j < L at the beginning of the simulation,
from where theCy(j) codficients are immediately derived.

In the case of Ir® interactions, Luijten proposed affieient way to get around
the (somewhat tedious) task of looking up a precomputed tableich consists

Cja(ja+l) =

5This conditions implies that infinite-image periodic boundary conditions ateded in the cou-
pling constant, see Sec. 4.2.1; otherwise, the actual spin indexmod L, i.e., periodic boundary
conditions are taken into account in the course of the cluster construclioa.former approach
is more dficient in one-dimension, because an exact calculation of the “renoedalpupling is
possible. The latter, however, proves useful in higher dimensions.

"There are fiicient binary-search algorithms for this purpose, yet even so this takaputer
resources.
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in replacing the discrete sumlj(=1 J(lk|) by an integral and carrying out a direct
calculation of the spin index. It was safely argued that this does noigehtne
universalproperties of the model, yet only non-universal quantities like critical
couplings. This entails, however, that this kind of optimization is intractable for
models experiencing first-order transitions.

2.3.3 Swendsen-Wang algorithm

As opposed to the single-cluster algorithm, Swendsen-Wang's algoritfsi [3
looks forall clusters, including those reduced to a single site, and then flips them
all independently at random, that is, assigning a new value to each clisger.
torically, this so-called multi-cluster algorithm was introduced beforefi/gohl-
gorithm, and the latter algorithm may actually be viewed as a particular case of
the multi-cluster algorithm. The single-cluster algorithm, however, was raptuote
work better in higher dimensions, at least for nearest-neighbor intenad@82];

for the Ising model irD = 4, for instance, Coddington and Baillie [83] reported

z = 0.25(1) for Wolt’s algorithm vsz = 0.86 for Swendsen-Wang’s algorithm.
The Swendsen-Wang algorithm can be best envisioned in the contexindf b
percolation, which | review hereafter.

Fortuijn-Kasteleyn random-cluster mapping for long-range models In the
early 70’s, Fortuijn and Kasteleyn [122] showed that spin models with sym-
metry can be mapped onto a bond-percolation model, the so-calddm-cluster
model In its first flavor, termed thepin-bondrepresentation, this model is made up
of thermally fluctuating bonds and spins, whereas in its second versi@ppao-
priate integration over spin degrees of freedom yielgsi@ bondrepresentation.
Both representations form the basis core of multi-cluster algorithms, thoegh th
are definitely not on an equal footing where concrete implementation is cwtte

The random-cluster mapping was initially contrived with nearest-neighbor mod
els in view. However, since taking long-range interactions into accousd dot
pose any major dliculties with respect to the original line of arguments, | will
readily consider in the following a long-range potential. To be specific, | will
take a generalizeferromagneticPotts model with a coupling constady de-
pending on positions and j on the lattice®, i.e., with an Hamiltonian reading
H = -3i<j Jijdo.o;- At agiven inverse temperatygethe partition function of the

model reads
Z — Z ngj Jij(s(ri,(rj
[o]

where the sum runs over all spin configurations dnd- 0, Y(i, j) € 7. The key
idea consists in reexpressi#gin terms of a trace over bonds, where each bond
lives on an edge of theompletegraphG engendered by the set of all possible

8Note that, as opposed to the Luijten-Bléte cluster construction, translatisaaiance is not a
prerequisite here.
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Figure 2.5: Tree-like (left) and flattened (right) representations of a txmgraph
G for a two-state Potts model (i.e., the Ising model) with long-rakgeteractions
andL = 6 spins. Solid and dotted lines correspond to active (1) and inactive
(b = 0) bonds, respectively. The corresponding bond configuratioereteys
three connected components, each being associated wiffeeedt cluster in the
Swendsen-Wang algorithnf0, 3}, {1, 2, 5} and{4}.

interactions, that is, such that the graph vertices are in a one-to-aesgondence
with the lattice cells?.

Let bjj be a binary variable associated with the edge joining veriicesl |,
such thaty;; = 1 if a bond is active on this edge, abg = O otherwise. Let also
pij = €®Jdi — 1. Then the partition function may be reexpressed as

Zrk = Z Z l_l (i} 8y Oy 1 + Oy 0) (2.8)

[o] [b] i<]

where the second sum runs overshkalhd configurations. In order to show that
both expressions of the partition match, it is enough to limit ourselves, to set the
stage, to a graph reduced to a single bond, may the trace over bonds yields
Po1dvoo, + 1, that is,é¥%w0e1 = BH Coming back to the general case, it is
clear that, since the argument of the producZix depends on a single bond, the
same line of argument as above can be carried out by first swappingadtiecp

®The engendered graph is complete if and only;jif+ 0, Vi, j. This is the case for power-law
decaying interactions, yet not for interactions restricted to nearedhbmig or for medium-range
interactions.
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over pairs and the sum over bond configurations, and then tracingeaghrbond
independently. Clearly, there is no requirement as for the explicit fordy af the
argument above.

The representation of the partition function in terms of both traces over spin
and bond configuration underlies the spin-bond representation of a Pottsl mode
with long-range interactions. This is the basis of the Swendsen-Wang atgorith
presented in the next section. This will also be an important ingredient o¥el n
Monte Carlo method, the breathing cluster method. This method represents a
salient part of this thesis, and is described in detail in Part IlI.

By integrating over spin degrees of freedom, one may derive anothezstitey
representation of the partition function in terms of trace over bonds only,

Zec= Y [ | o) d™, (2.9)

(bl i<j

whereq is the number of states of the model ddgdstands for the number of con-
nected subgraphs (i.e., the number of clusters in Swendsen-Warlgisqegr This
last expression may be readily obtained by first swapping the tracesouds
and spins, and then observing that, for a given bond configurationrabe over
spin configurations amounts to assigning to each connected componespione
state amongj distinct values in turn. Indeed, it should be noted that spin configu-
rations that are incompatible with a given bond configuration do not coieriou
the trace.

Application to the Swendsen-Wang algorithm Swendsen-Wang's algorithm con-
sists in simulating the system in an extended phase space comprising the original
spin degrees of freedoand the bond degrees of freedom. The weight of a given
[b, o] configuration in this extended phase space is simply given by

wW([b, ) = [ | (ij0cr.cr,0by.1 + O, 0) -

i<j
The original implementation of the authors puts these degrees of freed@mn on
equal footing, that is, each Monte Carlo step comprises two stagesbfirstsare
updated from the current spin configuration, and tlspinsare updated under the
constraint imposed by the current bond configuration. The second stagther
straightforward, and actually amounts to assigning a new value to eachrcluste
(i.e., connected subgraph) separately. The associated accept@nseagual to
one, since the weight of a giveb, ] configuration and the weight of the same
configuration with any cluster being assigned a new value, are identicébr fs
bond configuration update, we have two schemes at our disposal.

First, we may rely on the Metropolis acceptance rate, Eq. (2.4), i.e., the prob
ability to activate an initially open bond is given B(bj; : 0 — 1) = min(1, p;j),
whereas the reverse move probabilityAd; : 1 — 0) = min(1, pﬁl). For a
nearest-neighbor model whepg = € — 1, where thei( j) edge is restricted to
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(a) (b)

Figure 2.6: An illustration of a bond update in the flattened representatiore of th
complete graplg, for the Swendsen-Wang algorithm applied to a two-state Potts
model with long-range);; interactions. The vertical dashed arrow shows the order
in which bonds are considered for activation, starting from an empty ben(.e.,

all bonds inactive). The bond between spins 2 and 4 may be left inactthe w
probability %4 (a) or activated with probability + e#2¢ (b), see Eq. (2.10).
The procedure continues until every bond has been considerectifaatin.

nearest neighbors, bonds are thus always activated whegevdn 2, and con-
versely, deactivated fg8 < In2. The smaller probability associated with the re-
verse move clearly yields the correct weighting. By construction, thisoaopr
implies that bond configurations be kept in memory between each spin update.

Another scheme, which proves particularly useful whenever onensrés re-
build the clustefrom scratchafter every spin update, is the heat-bath algorithm
depicted in Fig. 2.6. The implementation is particularly straightforward here, be
cause we have only two possible final stateg:= O (state A), andyj; = 1 (state
B). In the heat-bath algorithm, the probability associated with each final siate is
dependent of the initial state, and is simply made proportional to the weighe of th
final state, i.e.P(bjj = 1) o« p;j andP(bjj = 0) oc 1. After proper normalization,
this yields

oy P —Bij
P(bij —1)—rpij—1—e ! (2.10)

which is analog to Wdl’s bond probability.
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Long-range interactions In the case of power-law decaying interactions, the ac-
tivation probability rapidly becomes negligible as the distance increaseshand
same optimization scheme as in the Luijten-Blote algorithm must be performed.
The main change with respect to Luijten-Bl6te’s formulation is that the construc
tion of the cluster now consists in (i) choosing a “current” spin amlond possible
spinsin turn, e.g. starting from the leftmost one, and then (ii) activating bonds be-
tween the current spin and other spins located to its right (in one dimensjon) b
drawing a random number, scaling it, and selecting the bond indices frooka lo
up table containing th€y(j) codficients at energf. Once each spin has been
considered as a “current” spin, a cluster multiple labeling technique cantualy

be used to identify every set of spins actually belonging to the same clutdr [1

In dimensions greater than one, care must be taken to consider eveoy ggiins
only once in two dimensions, for instance, the look-up table must exclusively
contain indices of spins located in a half-plahe] — n, 7).

2.3.4 Extensions to other models

Cluster algorithms have been generalized to a broad class of models, ygawith
ied success. In his seminal paper [347], Walonsidered the extension @,
models with continuous symmetry breaking, e.g., the XY model, by implementing
a so-calledembedding trickwhereby XY spins are embedded in Ising variables
through a projection onto a direction chosen at random at each Monie sZep.
A further generalization t¢* field-theoretic models was presented by Brower [57],
and too-nonlinear models by Carracciolo et al. [70]. Antiferromagnetic models
can also be handled by cluster methods, provided bonds are activatezbhespin
of opposite signs. The antiferromagnetic Potts model, in particular, wakleoed
in [340], using a “freezing” mechanism, whereby fog-atate modelg — 2 phases
are (temporarily) frozen and the cluster is built from the remaining two ghase
Cluster algorithms in their initial formulation were claimed to work rather
poorly for disordered systems, and there have been numerous attempddstth
decade at designing novel cluster algorithms that are (more or lessjicablc
tailored to this class of systems. The random-field Ising model, for instance, wa
considered in [258]: here, the “pinning” of large domains due to theaaniields
is circumvented by flipping clusters of limited radius, with a distribution of radius
following a power law. Extensions of the multi-cluster algorithm to simple frus-
trated models were considered in [197, 198, 84], although these wamoded to
work only poorly for spin glasses. In this regard, a promising directiametiout to
be hybridation e.g., a combination of cluster algorithms with methods working in
expanded or generalized ensembles. The two-replica cluster metho@833@&nd
further extensions thereof [162, 194] is an example in this class, whitiioes
the replica exchange method [308] with a cluster algorithm that activatedsbon
between two distinct replicas as a function of their mutual overlap. The method
bears resemblance to simulated tempering (Sec. 2.5.6), yet what is swspiped
magnetization instead of the temperature.
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Cluster algorithms have also been applied to non-magnetic systems, e.g., to
hard sphere mixtures [103] where “clutches” of spheres are groem stvapped
through a geometric transform (e.qg., a reflection) in a cluster-flip like fasAibe
algorithm was extended to nearest-neighbor spin systems by Herringlé@ted
[155], whereby two clusters of opposite sign are grown then swappedgh a
geometric transform, instead of being flipped through a symmetry opetation
the presence of long-range interactions competing with short-rangerfagnetic
couplings, a generalization was proposed in [138], whereby clustergrawn
as if the model were governed by the short-range part only, yet witllacesl
bond probability that in #ect limits the cluster size (for this purpose, the author
makes use of a so-calleffective temperature that is tweaked in order to yield the
highest acceptance ratio); the presence of long-range interactiomssisggiently
taken care of by accepting the cluster-swap with a probability lower thamiote
depending on the long-range part.

Finally, it is worth mentioning the invaded cluster algorithm [317, 267], which
is able to find out the critical temperature by tuning the cluster probability (¢irou
a feedback mechanism) until cluster percolate (this implies that the algorithis wor
for models where the percolation threshold and the critical point coincide).

2.3.5 Niedermayer’s construct, improved estimators and cister dis-
tributions

Approximately at the same period where Wahtroduced his single-cluster algo-
rithm, Niedermayer presented a very general formalism for cluster algwijttine
general cluster updating method [261, 262], which in a sense unifieadSemr-
Wang’s and Wdt’'s formulations. Niedermayer showed that, provided a global
(either discrete or continuous) symmetry underlies the model Hamiltonian, the
original system of spin variables can be mapped onto a new system ofdmacr
spin” variables; each macro-spin represents a cluster, and interactshevitther
macro-spins through an interaction which is directly related to the bond lpifeba
ity, in a way that ensures detailed balance. The key point is that there is some
degree of freedom in the choice of the bond probabitityhich was not present

in Wolff’s original formulation, and which allows the average cluster sizes to be
altered. The prescription, if one requires that every macro-spin flipytir the
underlying symmetry operation) ladwayssuccessful, writes

pij(O'i,O'j) -1- eEij(U'iao'j)—Qij’

whereE;j (o, o) is the interaction between sping andoj, andQ;; must be cho-
sen greater than the maximum Bf; over all possible symmetry operations in-
volved in the macro-spins flipping; for the Ising model, for instance, ortailo®
Qij > Jij, where Woff’s algorithm is recovered fo@j;j = J;j, and larger values

1%This is akin to the two-replica cluster algorithm [238], yet with exchange tpglaceinsidethe
same system.
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increase the average cluster size by explicitly allowing bonds betweendps
posite sign. The previous condition @); ensures that flipping macro-spins is
always associated with a unit probability; other choices (which would leagd,

to a larger bond probability for identical spins, but to a null probability foins

of opposite sign) are perfectly possible, yet they impose that a correfetibor
enters the Metropolis acceptance rate [222]. A correction term is alstedéer

the presence of an external field, e.g, in the random-field Ising modelubedthe
field breaks the symmetry of the Hamiltonian (and it is no longer possible to find
an “optimum?” value ofQ which yields a unit flipping probability).

Niedermayer's formulation also makes it straightforward to consinuotoved
estimatorgrom the macro-spin variabl&s namely, estimators with the same mean
but reducedvariance. For aj-state Potts model, the two-point correlation func-
tion'2 is (46, -, — 1) /(q - 1), and(6s, - ) May be (better) estimated from

; PB) (0010 5

where 8 is a given bond distribution yielding particular macro-spin variables,
and occurring with a probability?(8), and the macro-spin correlation function
<6m,(,j >B is an average over thgc possible macro-spins configurations (fog-a
state model). By symmetry, the latter quantity reduces to 1 if both spins belong to
the same cluster, andd otherwise. In practice, one just has to implement a data
structure that memorizes at each Monte Carlo step and for eg¢ipéir whether

the corresponding spins belong to the same cluster or not.

Other improved estimators can be constructed fromidtgest cluster distri-
bution Denoting ad the size of the largest cluster in a given bond configuration,
andPy () the distribution of the largest cluster of sizeone may define improved
estimators for the moments of the order parameter from the momeRigIdfi.e.,
™ = 3, 1"P.(l) is an improved estimator fgm"). In particular, the largest cluster
distribution has an associated (modified) Binder cumuBint= (I4) / <I2>2 such
thatBy (t) = f(LYt), wheret = (T — T¢)/T. is the reduced deviation to the critical
temperature andis the critical exponent of the correlation length. Sifgeis in-
variant under a renormalization group transform [35], the critical teatpes can
be located by monitoring the crossing point of these cumulants at increattiog la
sizes.

In two recent Monte-Carlo studies focusing tipstate long-range Potts mod-
els [326, 325], improved estimators were ingeniously exploited to yield informa
tion regarding the Kosterlitz-Thouless-like transition that occurs fof dlecaying
interactions, a transition which is notablyfttult to investigate owing to the pres-
ence of essential singularities in the correlation length and the susceptibility.

Any cluster construction actually allows one to construct these estimatdrtyiy was first put
into words by Niedermayer.
23anke and Kappler use another normalization factor [181, 184].
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Finally, it is worthy of mention that the entire cluster size distribution (as op-
posed to théargestcluster distribution) may provide useful insight into the critical
properties of a model. Here, a connection with fractal geometry wastheqgeo-
posed [13, 190, 188, 189]. This distribution was also suggested to bciant
way of estimating the correlation length of the ordered phase in a first-treder
sition [277], by monitoring the cluster size above which the power-law biehaf/
the distribution'® breaks down.

2.4 Reweighting methods: single- and multi-histograms

As already stated in the introduction, canonical simulations rely on a Markov
chain weighted by a Boltzmann facter/XT, and thermodynamic averages can be
straightforwardly estimated by averaging over the engendered sexjoéntates.
Naturally, this implies that these averages are obtained sihg@le temperature
point. Reweighting methods aim at getting around this limitation by providing
a way to obtain averages at other temperature points, acdraisuousunctions

of the temperature. In this respect, reweighting methods are not speciéindaie

cal simulations, and simulations in generalized ensembles (see next section) a
ally constitute their favorite playground. Thegalistic application to the study of
critical phenomena first appeared, however, in the context of histograthods
[113, 114], which | briefly review hereaftéf.

The idea behind the single-histogram method [113] is that the sampled distri-
bution of the energy provides in fact much more than mere thermodynamic av-
erages: it alsofiers a way to estimate the density of states, yet as we shall see,
in a narrow energy window. Indeed, the energy distribution (which is etdina
through anhistogramof the energy; hence the name of the method) is given by
N(E) « n(E)e?E, wherefy is the simulation temperature. Inverting this rela-
tion yields (an estimate of) the density of statég) « N(E)e*°E. From there on,
any moment of the energy may (in theory) be computed at any temperatute poin
KT = 1/B through the reweighting equation

n 0E—BE
<En> (ﬂ) — ZE E N(E)EBE_ —,
2 N(E)ePoE+
where the denominator is, as a by-product, an estimate of the partition function
Z, and the free energy may be obtained (up to an additive constant from
F = —kTInZ. This equation can be generalized to any thermodynamic variable
A whose microcanonical averag8)g is known (which just entails recording
during the simulation),

(2.11)

Y (A)e N(E)ehE#E
Y N(E)ehE+E

3This power-law behavior can be thought of as stemming from the scaieiance “felt” by
droplets when their size is smaller than the finite correlation length.

14See, also, [180] for an extensive review that also encompassésadipps to multicanonical
and tempering methods.

(A (B) = (2.12)
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In terms of sums over measurements, this can be reexpressed as

> AieBOEi—ﬂEi
e N(E)ePoE+E’

(A (B) = (2.13)
whereA; andE; refer to theith measurement ok andE, respectively.

In the context of long-range models, the method was used to studydteste
Potts model [19]. While it is ideal for locating peaks of response functains
a critical point, it sdfers from flawed reweighting far from/kTy, because the
histogram has too few entries far from the energy region sampled by shalfy
gaussian) canonical distribution. This point will be further discussedaméxt
section in the context of generalized ensembles simulations introduced irrlhe ea
90’s, and which represent verffigient techniques to get around the issue.

In the meantime, an extension of the previous single-histogram method was
proposed, that aims to improve the reliability of reweighting over a larger tem-
perature range. Theulti-histogrammethod [114] relies on a set of simulations
at distinct yet nearby temperatures points, so that energy distributiotap\end
the resulting “compound” histogram spans a larger energy range.eWaghting
equation now involves all histogram data, and in order to minimize errors on the
estimation of the density of states, histograms should appear in the equation with a
weight that is proportional to the numberinfiependenmeasurements from which
they were filled, or alternatively, to the inverse of the variance of the atrt@lation
time of the corresponding data bag (if, say, raw, non-independenadatased).

The procedure proposed by Ferrenberg and Swendsen is in fdutyshigore in-
volved: the previous rule is used only as a starting guess, and weightfiae

in a self-consistent manner until the minimum error is reached. Even so, thhile
multi-histogram was shown to improve the accuracy of reweighted avenages
dramatic way with respect to single histogramming, it will be seen below that it is
no longer the best method wher@aently sampling a large energy window is the
goal.

2.5 Simulation in generalized ensembles

2.5.1 From rare-events sampling to flat-histogram algoritims

As was argued in the previous section, the canonical distribwt{@) = e”F is
definitely not the best choice where estimating the average of certaintoseisa
concerned, including (but not limited to) measurements of free enefigyatices.
This can be traced back to the fact that, in general, configurations tivandte in
reweighted thermodynamic averages are generated with negligible probakmlity
be specific, if we consider the reweighted average of an opefa&dra given in-
verse temperatugg and from a set of measuremefs} generated from a canon-
ical distribution, i.e.,

Si AW H(Er)eFoF

W= S wiEens
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Figure 2.7: Histogram of the energy filled with the samples produced byanean
ical simulation at inverse temperatygdsolid line), and what the same histogram
shouldlook like at inverse temperatui®. Both histograms overlap only poorly,

and the resulting accuracy of reweighted averaggs stthus very low.

then the measurements that contribute predominantly to the sum in the numerator
are actually those associated with an endggy (E) (Bp). If B differs too much
from By, then the tail of the Boltzmann distribution is very unlikely to produce the
appropriate samples, at the expense of poor accuracy (see Fig.Thig)is all
the more stringent at large lattice sizes, that the Boltzmann distribution becomes
narrower, seeing that its width scales with the inverse of the specific hadti- M
histogram methods [114] are of little help for that matter, because the iimgeas
narrowness of the energy window that is sampled requires that more amd mo
simulations are performed at ever closer temperattires

As mentioned in the introduction of this chapter, the Metropolis algorithm may,
in theory, sample any distribution. By choosing a distribution that gives|égqua
portance to each energy windows that enter the sum in the reweightedaseone
may clearly increase the accuracy of the averages over a much wideraottem-
perature. This is the key idea underlying what was first coined as Bodzzmann
sampling” (in the context of umbrella sampling) [318], and later disseminated to
the community as "generalized ensembles Monte C&flaSeneralized ensembles
methods currently cover a variety of algorithms, from transition matrices| fg41
multicanonical sampling [25] and variants thereof [335] to the recently intved
optimized ensemble method [319, 351]. | will give a survey of these algorithms
in subsequent parts of this section, yet before moving in to more techmeitzl, d

15The same pitfall occurs in simulated tempering, although the last algorittendesgned with a
different purpose in mind.

160ne may also encounter the terminology "exteriegoanded ensembles Monte Carlo” now and
often, see for instance [166], although this usage is generally resttzt@éthods related to sim-
ulated tempering, i.e., with an enlarged configuration space (henceuhe) rcontaining additional
dynamic variables like the temperature.
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would like to address another thorny issue that is tightly related to the coatept
generalized ensembles: rare events sampling.

In recent past, as a matter of fact, the attention of the community gradually
shifted from the problem of samplirioad energy windows to the subject of sam-
pling rare events. This subject slowly surfaced as a result of unalvaezdst for
a variety of physical systems exhibiting rugged free energy landscapzisd-
ing heteropolymers and protein folding [147], random field models or dpssgs
[26, 29, 156, 27], yet also (and in spite of their apparent simplicity as agtia
previous models) models exhibiting a discontinuous phase transition [3dgnca
ical methods face some severe drawbacks here as well, this time owing to a so-
calledsupercritical slowing doweffect [31] which manifests itself through highly
repetitive dynamics.

When the free energy landscapes comprises metastable states, the dynamics
produced by the Markov chain can easily be trapped in a local minimum of the
free energy, especially at low temperature where the correspondinghggejec-
tion ratio makes it dficult for the system to climb up even small energy barriers
“uphill”. This leads to quasi-ergodicity breaking, and as a consequemadiable
statistics. What generalized ensembles bring about here is a fficrers dynam-
ics, whereby the Markov chain is able to wade across free energietsaim a
nearly transparent way, and thus can sample the phase space faficoetky.

From a practical point of view, this is carried out by feeding the Markuaic
with an appropriate distributiom(E), in such as way that unlikely events corre-
sponding to local maxima in the free energy are firmly enhanced. It tutrthatu
this is precisely what generalized ensembles algorithms do when they leag the d
namics to explore a much wider energy window than in canonical simulations: the
assign equal importance to a large set of macrostates with distinct enarglegt
some of these macrostateaycontain the infrequent events we wish to sample. In
a large class of algorithms termed “flat histogram algorithms”, for instamee; s
pling a wide energy range is carried out by setiv{&) to the inverse of the density
of states (or, since it is generally unknown, to an estimate of it obtained ip-an a
propriate way), so that the resulting energy histogram is indeed (appately)
flat over some range of energy values. As a result, the correspoeidargy levels
are sampled with equal frequency, including those which have an atesb s
density of states and represent occasional events.

"Highly repetitive dynamics may also béieiently overcome, for some models, by continuous
time algorithms — also termed N-fold-way, or faster-than-the-clock @lyos — [50, 212]. Ba-
sically, such algorithms compute the number of Monte Carlo steps one Iskftbefore a move
update is accepted; this clearly turns out to be vefigient at low acceptance rates. Combination
with multicanonical ensembles simulations were also considered [29}F, 310
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Figure 2.8: A schematic illustration of the surface tension phenomenon that re-
sults from phase coexistence at a first-order transition in, e.g., a two-siomah
Potts model withg > 4. The two types of hatches represent the ordered and disor-
dered phases. The dimension of the interfade is1 for a D-dimensional model

with nearest-neighbor interactions. The size of a droplet (indicated witkvay is
roughly given by the correlation length of the corresponding phase.

2.5.2 Supercritical slowing down and surface tension at fitsorder
transitions

At a first-order phase transition, the presence of two stable phasesxistemce
manifests itself through a double-peak structure in the histogram of thgyefuer
alternatively, of the order parameter). When the model is simulated by méans o
a Boltzmann weight, configurations near or at the maximum of the free energy
are strongly suppressed. This suppression is termed supercriticihgldewn

and was first investigated in the context of the multicanonical method [31k Th
behavior is linked to the excess free enerdy that is associated with the inter-
face between the two coexisting phases (Fig. 2.8), in such a way that nfizsd p
configurations are reduced by a factoe®™ with respect to pure phase states. As
illustrated in Fig. 2.9, this surface tension increases with the lattice size. Faisnod
with nearest-neighbor interactions, it is actually expected to growLké (up to
finite-size corrections of higher order [220, 219]) wherandD are the linear size

and the dimension of the lattice, because the dimension of the interface igdeduc
by one with respect to the lattice dimension. This was proven on rigorousdso

in [46] for the two-dimensional Potts model using arguments based on complete
wetting. As for models with long-range interactions, the situation is less clear; a
though some authors claimed that one should expect the same sort abbelsam
short-range models [131], yet with stronger finite-size correctionael marked
evidence in Sec. 7.6 that the interface actually has a non-integer dimenisign ly
betweerD — 1 andD.

Metropolis algorithms do not cope well with thisfect: the reason is that,
when going from one phase to the other, the Markov chain has to go th@ug
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Figure 2.9: Canonical distribution of the energy at a first-order tranditiowari-
ous lattice sizek (data from multicanonical simulations of a three-state long-range
Potts chain with 1r® interactions, see Chap. 7).

series of mixed-phase configurations associated with large rejection 1Sithage-

spin updates work all the more ffficiently in this respect that they do this at a
drastically low pace by updating one spin at a time. This means that the dynamics
might stay an exceedingly long time in one of the two phases before the algorithm
gets a chance to switch to the other one. Incidentally, cluster algorithms work
only slightly better here; it was shown in [134] that their relaxation time grows
in general exponentially with the system size, a signature of supercrikivahg

down.

Irrespective of the underlying move update, canonical simulations obfidstr
transitions are severely hampered by the suppression of mixed-phafsguca-
tions, since this suppression grows exponentially with the system size. With the
exception of weak-first order transitions, i.e. with a large correlationtteagd
a correlatively low surface tension (see [46], where it is shown thatdtleced
surface tension, i.eAF/L, is given by the inverse of the correlation length of the
ordered phase), one must rely on other schemes in order to obtain retetidécs.

2.5.3 Multicanonical ensemble

From the overlapping distribution method to umbrella sampling The multi-
canonical method stems indirectly from the idea of the “overlapping distribution
method” [22], which later inspired thembrella samplingnethod [318]. All these
methods more or less revolve around enlarging the sampled energy wiifolows
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any other parameter of physical interest), and were initially designed witBurea
ment of free energy flierences in mind. In the overlapping distribution method,
two identical systems with their Hamiltonianfidiring in some respects are con-
sidered at the same temperature; one simulates one of the two systems while ac-
cumulating a histogram of theftitrence between the energy of the system being
simulated, and the energy of the second system in the same microscopfiogd con
uration. The free energy flierence between the two systems is then reconstructed
from this histogrartf. This method sfiers from poor accuracy in the estimation

of the free energy, however, because the physically relevant coafigns of the
second system are only poorly sampled by the simulation of the first systisris(th
reminiscent of the issue encountered with single histogramming). Umbrella sam-
pling [318] aspires to alleviate this problem by altering the weight of the Marko
chain in such a way that both distributions overlap appreciably.

Multicanonical weights Simulations in the multicanonical ensemble [30, 31]
(also [25] for a concise review targeting comparison with other genedatineem-
bles) extends this idea by setting the weight of the Markov chain to the ingérse
the density of states, i.an(E) =« 1/n(E), or equivalentlyw(E) « e S(E) where
S(E) is the microcanonical entropy. This particular choice leads to a histogram
of the energy that is ideally flat over the whole energy axis. In prach€E) is
often truncated to the energy range of interest for the problem in haad tiee
interval spanning the two peaks of the energy histogram at a first-tvedesition.
There may be some situation, however, where one seeks to explorg stetes

in the vicinity of the ground states, e.g. investigations of spin glass groutes sta
or native protein conformations. In any case, imposing a flat energyghésto
means that the dynamics iiffect performs aandom walkin the energy space. It
turns out, however, that single-spin updates do not lead to an idealmawalk,

i.e., one drifting along the energy axis at a pace given by the squar®frtio
number of Monte Carlo steps. In particular, it was suggested in [24] thay'8
recursion scheme creates an additional slowing down, so that the distarered

by the random walker along the energy axis actually scalé¢’*asnstead ofN?,
whereN is the number of single-spin updates (in units of lattice sweeps, this would
amount toN%>2 andN respectively). It is the goal of several improved schemes
introduced in the last ten years to optimize the random walk dynamics in the sense
mentioned above, either by combining simulation in the multicanonical ensembles
with collective updates [183, 291, 353, 285], or by moving to féedént ensem-

ble [319]. A substantial part of this thesis is devoted to the developmenheiva
method which, among other thinggfieiently tackles this issue; this is presented
in Part 111,

18In some respect, it seems to me that this very ancient and bright idea Inaigh inspired the
recently introduced Adaptative Integration Method [111]
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Multicanonical recursions Still and all, one of the sticking points of multi-
canonical simulations is the estimation of the density of states: naturally, it is ini-
tially unknown, for if we knew it, a major part of the problem would have been
solved in the first place. A variety of schemes of varifiiteency have thus been
devised in the last decade in this purpose. The first scheme was madbélavajla
Berg in [23]: it is an iterative scheme which aims to estimate the density of states
in a recursive way by accumulating a histogram of the energy and moditigeng
current estimate of the density of states from it. Starting from an initial caabnic
guessv(E) = e#F the algorithm progressively refines the estimate by performing
several iterations, updating(E) from the histogram of the energy obtained in the
previous iteration, until the histogram has eventually becorfieegntly flat. Once
accurately estimated, the resulting density of states is fed into an ultimate, long
(production) run during which measurements are recorded. A reweigbtimeme
similar to that explained in Sec. 2.4 is then used to obtain averages of thermody-
namic data at any temperature beloggd. | will comment more on this method in
Chap. 3, with special focus on (i) the improvements that must be perforrhed w
applying the method to long-range models; (ii) the dynamic characteristics of the
algorithm. Another approach proposed by Wang and Landau a fews agaris
discussed in a subsequent paragraph.

Entropic sampling This method was formulated by Lee [218] short after Berg’s
multicanonical recursions. It more or less boils down to a rewording of'Ber
method in terms of the microcanonical entropy, the latter quantity being related
to the density of states throu@(E) = Inn(E). The microcanonical entropy is
estimated in a recursive way, starting fré&(E) = 0,VE. Then a histogram of
the energyH(E) is accumulated during an iteration run, a8¢E) is eventually
updated according t8(E) «— S(E) + H(E), except at empty bins whe®E) is

left unchanged. As in Berg’s recursion, several iterations must erpeed until

the histogram becomes flat to a good approximation. It is perhaps interésting
notice that this methothightcontain the gerdfof Wang-Landau’s method [335],
whereS(E) is updated in nearly the same way (up to an “attenuation” factor that
gradually dies ff to zero as the simulation goes on), but at each MCS rather than
at the end of each iteration run.

Applications and extensions of the multicanonical method The multicanoni-

cal method of Berg has been applied to a variety of situations since the ealy w
of Berg [25], including first-order transitions driven by the temperafBfe 30]

or by a magnetic field [28], spin glasses [27, 29] and the helix-coil transitio
proteins [145]. The first application of the multicanonical method was theystud
of the temperature-driven transition in the two-dimensional ten-state Pottd mode
[31], i.e., in its strong first-order regime. The authors focused hereamadtima-

tion of the surface tension of this model, and obtained numerical values énat w

®That is not to say that the metheehlly inspired the authors, though.
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found to be in very good agreement (within three per cent) with the exhotya
obtained slightly later by Borgs and Janke [46].

The multimagnetic method [28] represents an interesting extension of the method
to random walks in the space of the order parameter, i.e., with the corckspomn
E « M andB < H whereM denotes the magnetization aktithe external
field. This approach implies that the model Hamiltonian contains a term that lin-
early couples the order parameter with some external source, wherelagas
of thermodynamic data are obtained as continuous functions of the exfietdal
The method was shown to completely suppress the supercritical slowingafewn
fect observed in the field-driven first-order transition in the two-dimeraitaing
model below its critical temperature.

A related approach is the so-calletlltioverlapextension [29] that was suc-
cessfully applied to the simulation of the three-dimensianaspin glass — the
Edward-Anderson model [110]—, one of the simplest and most investigate
proximates to realistic spin glasses. In this model, the free energy landdisape
plays a complex tree-like structure comprising numerous energy basins arin p
ticular at low energy —, owing to the presence of disorder, and frustratiat
might arise from it. This feature is actually shared by a large class of dismtd
systems, including random-field models. The presence of local minima manifests
itself through energy barriers in the space of the order parameter, i.&Ratis
overlap parameter (this represents the overlap — or, broadly spe#kéngsem-
blance — between two replicas of the same system, where a “system” refiesstto
of random couplings). The purpose of the multioverlap method is thus tapecl
random walk in the space of this overlap parameter, so that the corresgdaa-
riers can be @ectively overcome. The same approach was reconsidered recently
in the framework of the Wang-Landau algorithm [334], where it was oieskthat
the algorithm, as a by-product, could ve§jigently find the ground states of the
model.

The multicanonical ensemble can easily be extended to multi-parameter Hamil-
tonians, provided they are made up of a sum of linear cougitnigsolving a
pair of intensive and extensive variables, eg§x E or M x H. In this case,
the multicanonical weight is set to, e.gqW(E, M) = 1/n(E, M) wheren(E, M)
is ajoint density of states, so that a random walk is ffeet performed on a hy-
persurface underlaid by the (intensive) variables axes. This weasdsyed, for
instance, in the context of lattice polymers [167], protein folding [82] and-f
trated systems [168], and also in combination with the replica-exchange method
(REM) [303]. Noteworthy enough, Guerra and Mufioz recently ssigge[139]
that multi-dimensional random walks might experience stronger relaxafiecte
than their unidimensional counterparts, as a result of the higher dimerisiba o
hypersurface explored. The multibond method [183], which simulates spielso
in their bond representation and yields a random walk in the space of theggave

20Although slightly diferent in its spirit, the Adaptative Integration Method [111] alleviates this
limitation by directly computing the free energy with respect to some physiczlityant parameter.
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bond number, may also be viewed as a multi-dimension random walk as soon as
next-nearest neighbor interactions are taken into account. Althoughpthieach

was suggested in [353] as a possible extension of the method in the cdifext o
Wang-Landau algorithm, no numeric study based on this extension hasnaeken
available thus far, to the best of my knowledge.

Finally, let me mention that simulations in the multicanonical ensemble were
also hybridized with Langevin algorithms and molecular dynamics [152]. ,Here
the potential energy entering the Hamiltonian is modified (in a way involving, here
again, the microcanonical entropy) so that the resulting dynamics iféntea
random walk in the space of the potential energy.

2.5.4 Wang-Landau’s random walker

As already mentioned above, one of the biggest challenges in multicansimcal
ulations is the estimation of the density of states that is required to perform the
multicanonical production run (if any). In this respect, Berg’s multicaramicur-
sion scheme [23] sters from two deficiencies of distinct magnitude: it is poorly
scalable, i.e., its performance in terms of convergence to the true valus awane
large lattice sizes; perhaps less importantly, it may have been deeffiedltio
implement.

Meeting the problem from a slightly fierent angle, Wang and Landau re-
cently proposed a so-called “acceleration method” [335, 334] for ttimaton of
the density of states, which — as it turns out — swiftly caught on in the commu-
nity, and prompted a flurry of papers concentrating on improvements [293
304, 355] or generalizations [320, 353, 267] of the method. Indeeds¢heme
is simple, somewhat more straightforward to implement than Berg’s one (atthoug
one may delude oneself into thinking that the scheme is childlike on the grounds
that the equation does not look as sophisticated as Berg's one: the reaksy lo
somewhat harsher, see implementation issues in Chap. 7).

Wang and Landau’s method updates the multicanonical wei(fg} = eS(E)
in real-time during the course of the simulation. Each time an energy |Bvel
is visited, the microcanonical entropy is updated according(®) < S(E) +
In f, where Inf > 0 is a modification factor that is kept constant during a given
iteration. Thus energy levels which correspond to occasional evenitsdinectly
enhanced because those that are visited most often will rapidly gain a &igfe
or equivalently a lower weight. Since modifying the weight of the Markovirtha
during a simulation is known to break detailed balance, the amount by \8(Eh
is modified during a given iteration is decreased from one iteration to theuntkier
it reaches a negligible value, so that detailed balance is restored in theejasf s
the iteration scheme. Initially [334], the suggested prescription to switch dren
iteration to the other was to monitor the histogram “flatness” until it reaches an
acceptably low value, in much the same way as in Berg’s recursions. Histogr
flathess can be estimated in many ways, i.e., one may simply want to compute the
percentage of histogram bins that departs from the baseline by more tgana
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amount, or one may estimate it from the standard deviation dbtfeithmof the
histogram (this scheme is used in Chap. 3 and | suggest that this is a moiwd natur
choice, on the grounds that the quantity entering the reweighting equatioa is th
logarithm of the histogram entries). Incidentally, estimation of histogram #atne
is a feature shared by all estimators working in an iterative manner.

The convergence of the algorithm towards the flat energy distributionmeso
what tedious to prove on rigorous grounds [362], yet the intuitive pécisithat,
as soon as the energy distribution has become flat, each energy leved adth
the same frequency and thus —for a Markov chain of infinite length—ftketas
just to translate the whole cun8E) vertically by a global amount. If the energy
distribution is flat in the last step, we also have tB&E) is an estimator for the
density of state, with a relative uncertainty which ideally amountg/m [362].

The situation is actually somewhat more intricate, because other parameters im-
pinge on the global uncertainty, including the number of entries in the histogra

at the end of each iteration, and correlations between successivereraasts.

In addition, the maximum accuracytaerdable with the method was also reported

to be limited byconstruction irrespective of the number of MCS performed as a
whole [358, 339], yet in the meantime it was also suggested that subtle sludice
parameters may greatly help in taming several sources of error [36@%eToints

will be discussed in detail in Chap. 6.

Another improvement over Berg’'s scheme that was proposed by Wahg an
Landau, consists in performing independent random walks in distinojgrenges,
possibly in a parallel way, and then to “stitch” the separate estimates togEfier.
was suggested to markedly cut down the total amount of computer time required
[335, 353], on the grounds that each random walk in a given enetgyai of
width AE takes a times< AE? to correctly explore the available phase space,
whereby dividing the energy range Y yields an improvement of N2. Here
again, things are not that simple, and it was argued again by Zhou arnid 8612
that starting from a good initial guess 8{E) might be as fficient as perform-
ing multiple random walks from an initially “flatS(E). Some insight into the
issue is provided in Chap. 6, where | show that relying onfanient predictor for
S(E) during the first iterations indeed drastically reduces the burden in terms of
computer load.

The “stitching” operation may also give rise to systematic errors at righgssdg
owing to the fact that updates which move the system outside the permitted range
of energy are systematically rejected, and thus incr&4E® at right edges by an
unwanted excessive amount [297]. This must be taken into accounvaner
the other, otherwise the seams may show: the easiest way to skirt the problem
is to leaveS(E) unchanged whenever a move update attempts to take the system
outside the energy range; another trick, which | put to use in Chap. 7 hiske
the energy ranges slightly overlamd to ensure a “soft” rejection at right edges
by continuingS(E) alongside its tangent (hence the algorithm behaves locally as a
canonical one).

Another pitfall which was apparently left unnoticed in recent literature-s re
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lated to the time needed by the Markov chain to thermalize, which — whenever,
say, the simulation kicksfbfrom a disordered state— artificially enhan&&) in

the upper energy range. Proper estimation of thermalization times is thusaaquir
so that the corresponding events in the Markov chain may be safely gkippe
problem, as expected, does surface not only on start-upJs@each time the sys-
tem is re-thermalized. Indeed, it is necessary to “jar” the system nowféaedia

the course of an iteration — which entails re-thermalizing right afterwardfor—,

the following reasons:

o first, this lowers the statistical error &E), inasmuch as the procedure
is equivalent to performing several, independent runs (with the sant fixe
In f), and averagin&(E) over these [362];

e and then, this helps getting rid of potential ergodicity breaking for those
energy ranges that lie on the lower side, i.e., near the ground statetheere,
system may stick to the same energy basin for a long time (for much the same
reason as occurs in canonical simulations at low temperature), and ghakin
the system is anficient way of thrusting it into another basin [334].

Again, these points are considered in greater detail in Chap. 6 in the tohtae
breathing cluster method.

2.5.5 Transition matrices and the Broad Histogram Equation

That one may rely on transition probabilities between energy levels to estimate the
density of states was considered as early as in 1995 by Smith and Brd¢eT&@e
idea was revisited sometime later by Wang, Tay and Swendsen [341] in tlexton
of thetransition matrixmethod [339, 338, 337], and separately by De Oliveira et
al. [98, 96, 97], although the initial formulation of the latter was deemed somiewh
flawed [95, 336] (see, also, extension to other models [253, 224] @amgarison
with Berg’s multicanonical method [223]).

A common feature to both methods is the notiorpofential moveswhereby
everypotential move conveys its own piece of information to the simulation, not
just accepted moves. This is expressed through the so-called Broadjidisto
Equation,

NE)Tw(E - E") = n(E")T(E" — E) (2.14)

whereT.(E — E’) is the (infinite temperature) transition matrix element between

energy level€ andE’ (also denoted adN(o, E’ — E))g in [98]). This quantity is
defined as

1
To(E > E)=—— P(o — o)
) e e

whereS(oc — ¢”) is theproposed-updatprobability’! to reach the state’ from

21See Sec. 2.1.
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the stater through asingle spin flig%. In other words, this matrix element rep-
resents the microcanonical average at en&g@y the number of potential single-
spin moves from a state of energyE to a stater’ of energyE’. From a practical
point of view, this average is estimated by accumulating a double-entry rastogr
h(E, AE) containing the number of potential moves frdrto E + AE each time
the energy leveE is visited. This implies that, at each Monte Carlo step, a non-
negligible amount of time will be spent computing this number by moving spins
one by one and monitoring the change in enétgyt is interesting to mention at
this point that an extension of the Broad Histogram equation to other vagjabtg,
the number of bonds in the graph representation of the Potts model, waslyece
proposed [354]; it was argued by the authors, in particular, that thatiesp may
actually be generalized to any number of variables, i.e., in the same spirit as the
multicanonical method applied to multiparameter Hamiltonians (see Sec. 2.5.3).
Although the definition off.(E — E’) is very general, the Broad Histogram
Equation applies only if move updates satisfy a so-called microreversibility hy-
pothesis, e.g., are local (see previous footnote). Yet provided this isatbe
the density of states can be readily estimated by computing, e.g., the quantity
Inn(E’)/n(E) = S(E’) — S(E) from T(E —» E’) andT(E’ — E), and inte-
grating overE to yield S(E) over the whole energy axis. Other, more reliable
schemes based on least-square optimization were proposed in [33%heRmr-
pose of multicanonical simulations, i.e., yielding a flat energy distribution, one is
only interested in the ratio(E")/n(E) which enters the Metropolis acceptance rate
of Eq. (2.4), so that integrating is not necessary at this stage. Additipaallgrk-
ing estimate off .(E — E’) is already available in the first steps of a simulation;
it is simply estimated from the number of potential moves from the current state at
energyE, and seeing that for $liciently close energy levelE andE + AE, one
may also approximafté.(E+AE — E) by T(E — E - AE), the acceptance ratio
can be well approximated even in the very first stage of the simulation.
Finally, a useful quantity related to the transition matrix method is the so-called
TTT identity, which directly stems from thieistogram detailed balanceéerived
in [339], and yields useful information regarding the degree of detaiéddnioe
violation in a given simulation. For single-spin updabedy, this degree reads

To(E > ENTw(E’ = E")Tw(E” — E)
Tw(E > E")Tw(E” > E)Tw(E’ — E)

andv = 0 for a perfect simulation with zero detailed-balance violation. A similar
eqguation also holds for cluster updates, yet in a clearly more complex fooa s

v=|1-

22Wang's initial formulation relied on this acceptance rate to derive a detadkhbe equation
in the energy space, yet it was established that, provided all movesysatisfcro-reversibility
hypothesis, the corresponding (finite temperature) transition mafix— E’) can be factorized
into a term involving the usual acceptance rate — e.g., Metropolis-like —aamafinite temperature
transition matrixT..(E — E’). The formulation does not apply as is to cluster updates, however.

2For nearest-neighbor models, this can be readily calculated from tHeslodeonment of each
spin using “classes” as in the heat-bath algorithm. The task is much mor@ndéng, however, for
long-range models.
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cluster updates do not satisfy the micro-reversibility condition.

Transition matrices generally yield more accurate estimates of the density of
state, although at a higher cost in terms of computer resources. As weitnidios
in several parts of this thesis, the method can fieiently and straightforwardly
combined with other algorithms to improve their accuracy: this will be considered
first in Sec. 4.3 in the context of the spinodal method to estimate the order of a
phase transition, and then in Chap. 6 in combination with the breathing cluster
method.

2.5.6 Other generalized ensembles

Simulated tempering Although simulated tempering methods do not, strictly
speaking, operate in a generalized ensemble, it is worth mentioning them here
because they represent a class of methods that has provéitiendy overcome
quasi-ergodicity breaking — in particular in the investigation of spin glaskg3, [
194, 221] and protein folding [146] —, in spite of their being somewhat limited in
some other respects. Simulated tempering actually exists in many flavorsif237],
cluding a parallel version termegmarallel tempering241]. The idea is to engender

a random walk in the temperature, yet over a discrete set of variablest-thign

is where the method fiers in an essential way from generalized ensembles meth-
ods“. This is carried out by performing several simulations (possibly in parallel)
of the same system, yet afidirent temperatures, and exchanging the temperatures
(or equivalently, the configurations) between the two systems now and @ie-
viously, this exchange operation is subject to some acceptance probabitgier

for detailed balance to be satisfied. The method d&niently overcome quasi-
ergodicity breaking, because the high-temperature simulation assists tib@ $ys
crossing free energy barriers which it would not have been able §3 andhe low-
temperature phase. Thermodynamic averages are eventually computedithenuc
same way as with the multi-histogram method [114].

1/kensemble As opposed to simulated tempering, th& &nsemble [156] clearly
belongs to the family of generalized ensembles. flieds from the multicanonical
ensemble, however, in that it does not engender a flat energy histogearather

a random walk in the space of the microcanonical entropy. Since (i) the micro
canonical entrop(E) is a monotonous increasing function of the energy, and (ii)
the microcanonical temperatys€éE) decreases with increasing energy (except at
a first-order transitions in the region of phase coexistence), this ensémbhs
low-energy states and thus targets mainly optimization problems and seasches f
ground states. It can be established that the appropriate weight fomigsne

ble can be easily related to the multicanonical weight(E), and thus it can be
indirectly estimated by relying upon a multicanonical iteration scheme.

24In fact, the energy axis is also a discrete set in any numerical implemerstayieteveryenergy
level — at least inside a given range — needs to be sampled, wherepsrggotes can be spaced
with more freedom in simulated tempering.
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Generalized ensemble with Tsallis weights A somewhat related approach was
formulated by Hansmann and Okamoto [148] with the protein-folding problem in
view. This ensemble is somehow related to Tsallis statistics, in that the weight
used by the author mimics the generalized distribution proposed by Tsallip [321
The Markov weight is made of two parts: a low-energy part given by l&gBmann
weight, and a high-energy part following a power-law behavior [191e latter
choice is shown to ensure that free energy barriers cartiiméeatly overcome,
while simplifying the estimation of the optimal distribution [149]. This approach
was also reconsidered in the context of molecular dynamics [150], alergpthe
line of arguments as those used in [152] for the multicanonical-MD hybrid-algo
rithm.

Optimized ensemble: increasing dfusion currents A complementary approach
based on the maximization offtlision rates was very freshly introduced in [319,
351]: in this so-calledptimal ensemblethe engendered histogram is still broad,
but no longer flat. Rather, it is peaked around the critical régjomhere thediffu-
sivity codficient of the random walker is claimed by the authors to experience its
lower value (akin to critical slowing down; this was already alluded to by @Guer
and Mufioz in the context of equilibrating properties of multicanonical simula-
tions [139]). The so-calledptimal weight WE) of the new ensemble is computed
through a feedback procedure, wheret{§) is increased in the region where the
diffusivity is smaller. This method seems very promising, with applications to a
simple frustrated model proving very convincing.

2.6 Outlook

In this chapter, two classes of Monte Carlo algorithms have been reviahesd:

ter algorithms rapidly reduce temporal correlations by flipping blocks ofssipin

a collective way, resulting in an increased accuracy in the estimation of thermo
dynamic averages; algorithms operating in generalized ensenthtasrely over-
come repetitive dynamics originating from rugged free energy landsdastis-
ordered models or surface tensions at discontinuous transitions. Xhpareof

this thesis investigates a long-range Potts chain by relying on the last approa
Yet as was mentioned above, there have been several attempts in thepestext
combining both approaches in order to deliver better dynamic performainee.

ses methods, among which the multibond method [183], are reviewed in Part Il
(Chap. 6), where | will describe the main impediments to their usability in the
context of long-range models. These will be the main motivations behind the de
velopement of a new method (Chap. 7) that will indeéttrently combines both
approaches using an innovative strategy.

2This is the energy interval that would be sampled by a canonical simulétibe aritical tem-
perature.
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Part Il

A multicanonical study of the
long-range Potts model
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Chapter 3

A multicanonical algorithm for
long-range spin models

In this chapter, | will present the multicanonical method that will be used durin
the first part of this work, Chap. 4 and 5. The purpose of this chaptberesfold:

e itmay be regarded as an introduction to the method in its pristine formulation
(Berg, [31]), in particular as far as implementation details are concerned;

e itintroduces several improvements over Berg’s initial recursion schafe [
31], that make the algorithm suitable for long-range models; in this respect,
it will be shown that the presence of unequally spaced energy levelssa the
models requires a modification of the recursion equation (with regard to the
last point, long-rangéliscretespin models are somewhat peculiar indeed);
the choice of anféicient predictor and a reliable convergence criterion for
the recursion scheme is also discussed;

e it contains a study of the dynamic characteristics of the algorithm in the con-
text of long-range spin models, in particular in terms of dynamic exponents.

The model being investigated in this thesis part is a long-range generalization
of theg-state Potts model, i.e., with interaction§ —° decaying as a power law of
the interparticle distance. More detailed material regardingribdelis exposed
in the next two chapters, which are dedicated to its numerical investigation. On
the contrary, this chapter is exclusively devoted toriethod so that it may be
skipped by a reader only interested in the results regarding the criticaviog fof
the model.

The main features of the multicanonical method are presented in Sec. 3.1: itis
explained why this approach &priori suitable for the investigation of the long-
range Potts chain. Multicanonical weighting is presented in Sec. 3.2; thieupar
lar role played by the microcanonical temperature in the dynamics is singled out.
The recursion scheme used to determine the multicanonical weights is ddscribe
in Sec. 3.3: taking guidance from the initial formulation of Berg and Neuhlaus
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Chapter 3. A multicanonical algorithm for long-range spin models

propose several improvements regarding the convergence of thétaigormhe
reweighting procedure is discussed in Sec. 3.4, with emphasis on the estiofation
free energies. In Sec. 3.5, the choice of fitient predictor is discussed, that in-
creases the robustness of the algorithm in terms of convergence to tlestieste

of the density of states. Finally, the performance of the algorithm is measured
Sec. 3.6 for the long-range Potts chain with power-law decaying interactbyme-
lying on the estimation of various characteristic times of the simulation. Dynamic
exponents are compared with several other existing schemes.

3.1 Canonical vs multicanonical ensembles and long-range
models

As was seen in Chap. 2, the Metropolis algorithm (hereafter denoted@sgbe
ing to the class ofanonicalalgorithms, i.e., operating in the canonical ensemble)
has long been considered the paradigm for Monte Carlo simulations in statistical
physics. However, the method faces some severe drawbacks in situatiens
the sequence of states created by the Markovian chain leads to vetiyive k-
namics, i.e., dramatically low acceptance rates. On the dynamic side, this implies
exponentially diverging autocorrelation times (or tunneling times, to be defined
below), and fewer independent samples for a given simulation time. AsuH,res
reaching a given accuracy requires that the system be simulated @esoéaxgly
long runs in order to obtain good statistics and reliable estimates of thermodynamic
averages.

Repetitive dynamics are encountered in canonical simulations of first-order
phase transitions (the so-called supercritical slowing down [31]). ,Harmel-
ing time between coexisting phases grows exponentially with the system size, du
to the increasingly high free energy barrier to be overcome. This is omleeof
reasons that prompted me to focus on the class of multicanonical algorithms to
investigate the phase diagram of the long-range Potts chain. As will beirseen
the next two chapters, a multicanonical approach is indeed an approgr@Ete
for the determination of the location of the boundary separating the firstthend
second-order regimes of this model, and for the estimation of its critical cgsplin
in the first-order regime. The present purpose is therefore to adagtileene ini-
tially formulated for nearest-neighbor models so as to make it suitable fore larg
class of long-range models.

In order to circumvent repetitive dynamics, multicanonical methods perform
a random walk in the energy space. It is important to note that this scherse doe
not make any assumption about the particular move update utilized (this may be a
single-spin flip or a collective update, as we shall consider in Chap h#§.rdndom
walk engenders in turnféat energy distribution. The benefits of the algorithm are
in fact twofold:

e This results in the algorithm quickly sampling a much wider phase space
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3.2. Multicanonical weights

than in the canonical case, by allowing the system to cross any freeyenerg
barrier.

e This allows the density of states to be computed over the whole energy axis,
thus extending the reliability of reweighting procedures over a much wider
range of temperature than in the case of standard histogram methods. An
example of such calculation is illustrated in Fig. 3.4.

As a corollary, and as opposed to multihistogramming [114], a single run is
needed to cover the energy range of intéresbnce a reliable estimate of the
density of states has been obtained, it is then straightforward to computgother
dynamic functions otherwise hardly within reach of canonical simulations, e.g
entropies and free energies. The last functions will be extensivetyinsseveral
parts of this thesis, e.g., to accurately determine the order of the phasédrens
exhibited by the long-range Potts chain.

The first point mentioned above, that is, much wider afiidient phase sam-
pling, is illustrated in Fig. 3.1: here, ttkat histogram engendered by the random
walk is depicted along with theanonicalhistogram, i.e., the histogram that would
— ideally — be obtained from a canonical simulation at the transition temperature.
This canonical histogram was actually obtained by a reweighting proeddae
Sec. 3.4 below): a canonical simulation would have hardly produceddirect
energy distribution, owing to the presence of the free-energy bathisrroughly
corresponds t&/L = —1.5 in the figure). As is depicted in the figure, the dynam-
ics of an equivalent “canonical” walker would be fairly fiieient, with the walker
“bumping” into the free-energy barrier a huge number of times beforinba
chance to go across the barrier and reach the ordered phase.

3.2 Multicanonical weights

The rationale behind the multicanonical algorithm is the generation of a Miarkov

chain of statego}, whose weightsvm(E(ci)) are adjusted so that one eventually
gets a flat energy histogram. DenotingRs,(E) the energy distribution and as

n(E) the density of states, we want

Pmu(E) o N(E)Wmu(E) = const.

Sincen(E) usually increases drastically with energy, low-energy states are thus
sampled much more often than high-energy ones. One ofdheissues in the
multicanonical method is to determine these weights, since these are not known
prior to starting the simulation.

1This is a somewhat idealized picture though, because many iterativareimeeded to obtain
the correct weights. One usually speaks of a sipgbeluctionrun, i.e., the run from which thermo-
dynamic averages are produced.
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1.2 Canonical histogram @ kI2.065 —— -
Multicanonical histogram- - - - -

N(E)
o
(o))

04F

0.2

-4 -0.5

Figure 3.1: Flat energy distribution engendered by the multicanonicalitlgor
(multicanonical histogram) vs the reweighted histogram at the “equal hétgdns

sition temperature (denoted as “canonical” histogram in the figure). Thegstr
suppressing of mixed-phase configurations that would occur in a Tah@mu-
lation, is clearly visible: the dash line illustrates (in a very sketchy manner) wha
would be the dynamics of a canonical simulation in this case. The model parame-
ters areq = 5,0 = 0.3,L = 400. E/L designates the energy per spin.
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The following outline takes guidance from Berg’s recursion scheme [P3&
weightswmy(E) are computed through an iterative procedure, starting from an ini-
tial canonical simulation at inverse temperatgse So indirectly sets the energy
below which the energy histogram is to be flat, Enax = (E)g, (in Fig. 3.1, this
roughly corresponds t&/L ~ —0.8 for the energy per spin). ThukTg = 1/80
must be chosen high enough to ensure that the final energy histogaasapuit-
ably large energy range upward, e.g., reaches the energy of thdatisdmphase
in the case of a first-order transition, and extends even further awane ifvants
to observe with satisfying accuracy the free energy plateaus signalinignihef
metastability (see Fig. 3.3, and also the application of metastability plateaus to the
detection of the order of phase transitions in Chap. 4).

For convenience, one may define dfeetive HamiltoniarH(E), so that

Wmu(E, Bo) = g BoHmu(E) — o=S(E)

whereS(E) plays the role of a microcanonical entropy (and is an estimate for it if
the recursion scheme converges to the true value). The second formuiétibe
relied on in Chap. 6, in the context of the breathing cluster method. Hewkowf

the initial formulation of Berg and Neuhaus. Multicanonical simulations can thus
be envisioned as a canonical simulation at inverse tempergéuséth the usual
Boltzmann weight, provided the original Hamiltonian is replaced by féectve
Hamiltonian to be determined iteratively.

As a side note, a cluster implementation in the framework of the multicanon-
ical algorithm is clearly less straightforward, since thigeetive Hamiltonian has
fundamentally a global nature, whereas canonical simulations explicithgwess
the locality of the original Hamiltonian: this point will be reexamined in detail in
Chap. 6.

DenotingHp,(E) as the true estimate of théfective Hamiltonian, one may
thus write

n(E) o efoHm(E),

The microcanonical inverse temperatg(€&€) may be easily related td;, (E), as
one has (assumirig= 1)

dl dH5(E
O

Since the dynamics of the Markovian chain is governed by the transition rate
W(a — b) = min(1, exp{Bo[Hmu(Ea) — Hmu(Eb)1}),
one may write, for two states infinitely close in energy, i.e., whenByer E;+6E,

W(a — b) = min(1, exp[-B(Ea)dE]).

Hence it is thenicrocanonical temperatusghich is the relevant quantity where the
dynamics (e.g., the acceptance rate) of the multicanonical algorithm is oewlcer
This observation will be main thrust of the breathing cluster method developed
Chap. 7.
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Chapter 3. A multicanonical algorithm for long-range spin models

3.3 Recursion scheme

The dfective Hamiltonian is initially set t¢1%,(E) = E, or equivalentlys®(E) =

Bo, as this indeed corresponds to a canonical simulation at temperdByg.e At

stepi, a simulation is performed using a Boltzmann weight wifeetive Hamil-
tonianH!, (E); then an energy histograhd'(E) is eventually computed using in-
dependent samples. Incidentally, taking truly independent samplesspusesul
during the late stages of the iteration scheme only, where the aim is then to refine
a nearly flat histogram. During early iteration steps, histograms may be cainpute
using nonindependent samples without significanfiigcting the convergence.

| now denoteE! . as the lowest energy level that was reached throughout the
previous runs, including stdp this is the energy level below whidH@ﬁL}(E) will

have to be predicted, since no histogram data are available inside thiy earggg.
Issues regarding adequate predictor choice will be considered laitettia chap-

ter. The rules for updatingl*! at stepi + 1 from H!,, at stepi are based on the
following equations. FOE > Emax H1(E) = E, i.e., the dynamics is canonical-
like at inverse temperatupy for all iteration steps. FoIEimin < E < Emax

1oy _ i Q_i) N'(E + 6E)
BB =FE+ eI —g5

where :
i Y

0= ——

° She1 9§

and g('g is araw inverse damping factor proportional to the reliability of tki&
histogram. It has been established in [23], following an error calculatgumaent,

that
N(E)N(E + 6E)
Jo =

" N(E) + N(E + 6E)

provides an estimator proportional to the inverse of the variange HE).
Onceg*1(E) is known,H*1(E) is derived by a mere integration scheme start-

ing from the initial conditiortHmy(Emax) = Emax. Finally, for E < E};, Hinl(E)

will have to be computed using a suitably chosen predictor, until aBgstbe-

comes equal to the ground state energy. A cubic spline is then fittdg ) at

every bin center, and this curve is used to compute acceptance probatiitieg

the next run. It can be seen that Eq. (3.1) leads to a steady state wwhBI{EY is

constant over the energy range of interest.

3.3.1 Accidental vs non-accidental histogram entries

Writing a recursion equation involving(E) instead ofHmy(E), together with the
inclusion of a damping factor, allows one to handle the situation where some bins
have null entries, a case which otherwise leads to a fairly spiky grapH{Q(E)

and inconsistent dynamicAccidentahull entries at energy valuésor E+6E will
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3.3. Recursion scheme

simply leave3(E) unchanged, and the corresponding partsqf(E) thus move as
a block. Since acceptance rates hinge on the microcanonical tempethisiia,
effect drastically reduces bias on the dynamics.

Considering a small set of histogram bins that are copiously filled for tie fir
time during a given iteration run (e.g., high-energy bins during the earltitera
runs whenever one starts with a canonical simulation), one realizes thed-the
lated cumulativeinverse damping factor first soars and produces a great amount
of change inB(E) in the couple of runs that follow, and then decays progressively
to zero as these bins continue to be filled. By taking into account all the data tha
have been sampled up to stephis modified recursion both clearly stabilizes the
algorithm and reduces relative errors due to poor histogram sampling.

3.3.2 Optimal histogram bin width

Choosing the most appropriate value of the histogram bin width results from a
trade-df between resolution and computation time. A higher resolution on the one
hand guarantees good histogram flatness, and is especially crucial ahévgy
levels, where the density of states displays a rugged graph. On the atirih
impose a fixed number of independent samples per histogram bin, so &s theyi
histogram variance an acceptably low value. This means thatédamposes that
more simulation steps be performed per iteration. The present approadis i®th
choose a fairly higldE, e.g., one yielding around 20 bins, during the early stages
of the iteration process in order to obtain a rough picture of the density tefssta
and then to progressively redusE once the ground state has been reached. As
will become clear in Sec. 4.3, the ultimate values& deeply dfects the attain-
able precision on the computation of spinodal points, since the latter is based o
a precise location of free energy plateaus, and this indeed entails haongte

bins belonging to a given plateau. As a rule of thumb, the best compromiseis the
to obtain between 100 and 300 histogram bins in the final stage, with the num-
ber of bins increasing as thevalue corresponding to the second-order regime is
approached.

3.3.3 Unequal spacing of energy levels

The unequal spacing of energy levels in long-range spin models @éssgpecific
attention. As witnessed in Fig. 3.2, large energy gaps separate isolatgy ene
levels or tiny groups thereof in the vicinity of the ground state, whereasithe d
tribution gradually turns into a near continuum abdve- —1025. Setting a low
6E value leads in turn tmonaccidentahull entries in those bins located inside
energy gaps, wherelB(E) never gets updated at isolated energy levelsgand
always zero. Since the graph of the density of states looks indeed fairliled
near the ground state, and the dynamics there is noticeably sensitive ttheven
smallest departure dfi,(E) from the ideal line, one would then observe a sharp
steady peak in the lowest part of the energy histogram, which the presension
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-1025

)
-1035
-1040
1045 | Groundstate

Figure 3.2: Lowest energy levels fqr= 5, o = 0.5, N = 400, computed by sorting
energy samples from a long simulation run. Each level is drawn as a htaizon
line.

would not be able to suppress. One could trivially think of working this gut b
implementing variable-width bins that would span energy gaps. This is, leowev
impracticable since the distribution of energy levels is not known prior to sgartin
the iteration process (for this is precisely what one intends to compute witlethe d
sity of states). To circumvent this limitation, | have modified the previous remurs
so that null entries are always skipped, however accidental or noleetal they
may be. Denoting bye; and Ep, with E; < Ep, the centers of histogram bins
located on each side of a set of contiguous empty bins, one has

ey o Go(Ea) . Ni(Ep)
B (Ea) =B (Ea) + E, - E, In N'(En)’

whereB(Ea) = Bo{Hmu(Eb) — Hmu(Ea)} and | now impose

(3.2)

N(Ea)N(Ep) .

9o(Ea) = m.

hencegp can never be zero.

In order to avoid losing details of the shapetlyfy(E) for E5 < E < Ejp, that
were possibly collected during previous rukk,y(E) is updated through a linear
difference scheme,

5Hmu(Eb) - 6Hmu(Ea)
Eb - Ea

6Hmu(E) = (E - Ea) + 6Hmu(Ea),
wheresHm(E) = HiFY(E) - H!(E). While this has obviously noféect where
nonaccidental null entries are concerned, this favors quicker ogenwee during
the early runs where the inadequate shapélgf(E) is more likely to produce
empty bins.
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3.3.4 Convergence criterion

The iteration process stops whenever the energy histogram has badtabbydlat

over the energy range of interest: between the ground state energy,affor the
present purpose. This property is evaluated by computing the stanelaedioin

of histogram entries, as well as the same quantity for the logarithm of histogra
entries restricted to nonempty bins. The latter seems to be a better indicatat since
is sensitive to both poorly populated bins and histogram peaks, wheecfasrter
increases only with rather spiky histograms. Furthermore, it is this quantighwh
enters the reweighting formula for the estimation of free energies.

The degree of convergence of the algorithm is eventually estimated by tompu
ing the mean square distance betwetn(E) andH+1(E) after the ground state
has been reached. Then, a threshold value is computed for each intigatiad
and error, based on a couple of short runs for various lattice sizelsianvidths.

3.4 Reweighting procedure

OnceHnyy(E) has been satisfactorily computed, a long production run is performed
using this &ective Hamiltonian in place of the original one, and then estimates of
thermodynamic quantities of interest at inverse tempergare computed using

a reweighting scheme, i.e., formally,

Aye n(E)ePE
<A>ﬁ=ZE< )e N(E) ’
Z(B)
where(A)g is the microcanonical average Afat energyg, and the partition func-
tion is given byZ = 3¢ n(E)e PE.
The best estimate for the density of stat€s) is provided by

n(E) o« N(E)ePoHmu(E),

whereN(E) stands for the number of bin entries at eneEggomputed from the
production run. In order to avoid numerical overflows, as well as tpgs bias
resulting from possibly strong variance on microcanonical averagesnibre ap-
propriate to computéA); from a sum running over samples instead of energy bins,
i.e., (A = X AW(E;)/ X W(E;), wherew(E;) = ePoHmi{E)-AE-K K is then deter-
mined so as to avoid both numerator and denominator overflows. Howeeer, th
downside of this approach is a marked memory overhead for large sedtaof d
Provided the histogram sampled during the production run is flat to a good
approximation, the maximum igfoHmu(®)-E js reached wheneveiHny(E)/dE ~
B/Bo, which yields the energy value at whi¢his to be computed. In addition,
since the reweighting scheme involves an exponential contributibh,gfE), the
resulting curves®oHnu(E)-AE is strongly peaked around the maximum. Therefore,
it is clear that only histogram points in the vicinity of this maximum contribute
to (A)s. In effect, the existence of two distinct maxima, or equivalently of two

77



Chapter 3. A multicanonical algorithm for long-range spin models

energy values for whichB(E) has the same value, coincides with the occurrence of
a first-order phase transitién

3.4.1 Free energies

Following the same reweighting procedure, one computes “partial” (orticarad)
free energy functions, i.ek;(8, m) wheremis the order parameter, and reweighted
histograms of the energy, i.\, (3, E). The partial partition function is straight-
forwardly derived from a sum over samples having the prescribeat pattameter,

Z(,m) = Z gBoHmu(Ei)—BEi Smm. (3.3)
i

which then yieldd=(8, m) = —InZ(B8, m)/8. Similarly, a reweighted histogram of
the energy is obtained from

Nrw (B, E) = N(E)eoHmu(E)-BE (3.4)

from where on a (variational) free energy function with respect to tleeggrmay
be derived,

Fe(8, E) = —In Nw(B, E). (3.5)

This is illustrated in Fig. 3.3 for the five-state long-range Potts chain with31
interactions and. = 400 spins.

3.5 Predictor choice

I now address some issues related to the choice offaieat predictor forE <
Emin. At small lattice sizes, the algorithm is initially fed with affective Hamil-
tonianHn(E) = E, and the goal is then to find an appropriate tra@fdaetween
speeding up the convergencel:Ehf]in toward the ground state and avoiding algo-
rithm instability. While the former demands thidt, (E) have a sfficiently high
slope beIowE‘min, the latter still requires that the algorithm remain ergodic to a
suitable extent.

The present implementation relies on a first-order prediétgy(E) = a + bE,
and continuity is imposed oRlmy(E) at Emin. The simplest approach is then to
choose a predictor slope so that continuity l8fy (E) is enforced aE = Epip,
i.e., b = B(Emin)/Bo- While Emin reaches the ground state rather quickly using
this predictor, the dynamics often gets locked in very low energy levels dine to
particularly steep slope dfiny(E) in the vicinity of the ground state. The time
needed by the iteration scheme to get over from this deadlock and obtain a fla
histogram thus becomes prohibitive. On the other hand, chotisind. leads to
the smoothest yet slowest convergence, and avoids deadlock igsuesficient

2This observation will be relied on in Sec. 4.3.4, where it will be demotesirthat the transition
matrix method [337] can produce useful information with respect to termf phase transitions.
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Figure 3.3: lllustration of the reweighting procedure for (variationag aergies.
The graph sketches the variational free energy with respect to thgyener the
logarithm of the reweighted histogram of the energy (up to a change df $ign
three distinct temperature$; andT, correspond to limits of metastabilityy; is
one possible definition of the (finite-size) transition temperature.
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compromise is thus to ensure a “weak” continuityEatn, i.e., by computing the
slope of the predictor using a least-square scheme based, e.g., ontttenfjyer
cent of points abov&m;n.

Reusing predictors - finite size scaling At large lattice sizes, where reaching the
ground state energy can become time consuming, one has to resort tdigg‘sca
trick” wherebyHn,(E) is initially guessed from the density of states obtained at a
smaller lattice size. This approach was initially mentioned by Berg and Neuhaus
[31], and claimed to work perfectly within the framework of a study of the two-
dimensional ten-state Potts model witbarest-neighbointeractions, where the
energy is additive to a perfect extent. The presence of long-rangegtitars,
however, slightly worsens the case, especially at fawThe scaled density of
states is computed as follows. Let me consider, for the sake of simplicity, two
system< andX with respective lattice sizds= N andL = 2N. The latter is split

up into two subsystems; andX, of equal sizel. SinceHny(E) = kToInn(E),
wheren(E) stands for the density of states, one has to comp{E for  as a
function of n(E) for X. Neglecting the interaction between subsysteéinsand

%o, and denoting byE; the energy ofZq, the density of states fat just reads
N(E) = X g, N(E1)n(E - E1), which yields

ﬂol'Tmu(E) ~In Z PolHmu(E1)+Hmu(E-E1)]
=]

= f A E PolHmuED +Hnu(E-E0)]
SE ’

wheredE is the energy histogram bin width. Providing thgE) is a monotonic
and rapidly increasing function &, one may use a saddle-point approximation
to evaluate the former sum. The maximumHyfy(E1) + Hmu(E — E4) is reached
whenevelE; = E/2. Whence

m/|Hru(E/2) |

JoE

This expression may be readily extended to lattice sizes that are any multiple
of the original size. Figure 3.4 sketches results obtained for the followirgdeo
parametel?s g = 5ando = 0.3,0.5, and Q9. A series of iteration runs is first
conducted withL = 200 spins in order to obtain an estimateH(E) for this
lattice size, then this estimate was scaled using Eq. (3.6), and then used #gathe in
guessl—Tmu(E) for the next series of iteration runslat 400. Equation (3.6) yields
a very acceptable guess for= 0.9, and the two curves are hardly distinguishable
from each other. Asillustrated in Fig. 3.5, the energy histogram becorady flat
within five iterations. Forr = 0.3 and 05, the agreement remains quite satisfying,
yet the initial guess falls slightly below the true estimate at low energy levels, and
the lowest-energy bins are exceedingly enhanced during the first iteratics.

- E
Himu(E) = 2Hmu(§) +KToln (3.6)

3The Hamiltonian of the long-range Potts chain is defined in Eq. 4.1.
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X0=03,

-160 -1200 -800
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Figure 3.4: Dots indicate the initial guess&@rﬁu(E) that were fed into the iteration
scheme at. = 400,q = 5, ando- = 0.3(¢),0.5(+),0.9(0). Each initial guess is
computed using Eq. (3.6), i.e., by scaling a true estimate obtairned &00. Solid
lines show true estimatdd,(E) as obtained after the whole iteration scheme at
L = 400 converged. The straight dashed line sketches the original Hamiltonian
i.e., Hn(E) = E.

100 ' ' 1st iteration - - - -
I Hth iteration ===+ ]
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Figure 3.5: Energy histogram as computed after indicated rungy for5, o =
0.9,L = 400 spins, using Eq. (3.6) to compute the initiffleetive Hamiltonian
Hmu(E) from a previous run dt = 200 spins. Labeling opaxis indicates normal-
ized probabilities.
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More iteration runs are thus required to obtain a perfectly flat histogramias
decreased, and the benefit of this approaciffecebecomes negligible for < 0.3.
Indeed, the algorithm then spends a great number of iteration steps lzgipgdrin

low energy levels, seeking to rectify the shape of the density of states imtnigye
region until convergence is obtained: starting from an initial canonifattve
Hamiltonian actually yields better performance. Since for systems with lorggran
interactions, the computation time behaves at least fkesing this “scaling trick”
thus greatly reduces the time needed for proper convergence, doleast 0.3;

this partially makes up for the lack of a hybrid multicanonical-cluster algorithm
dedicated to long-range modéls

3.6 Algorithm performance

In order to measure the performance of the present implementation, a dynamic
exponentz is computed, which is defined as the scaling exponent of a relevant
characteristic timer of the simulation, i.e.x « L% wherel is the lattice size:
while at second-order transitions, the integrated autocorrelation timesesyge
such arelevant time (see Chap. 2), at first-order transitiomeelingtimes through

the energy barrierr{,,) prove to be a more meaningful indicator [183].

3.6.1 Tunneling times

Tunneling times are defined as one quarter of the average number of Marite
steps per spin (MCS) needed to travel from one peak of the reweightrdye
histogram N, (8, E)) to the other and back, with the temperature being set to the
transition temperature. Tunneling times are expected to grow exponentially with
for canonical algorithms, and to scale as a power law fofr multicanonical algo-
rithms [31] (see Sec. 2.2.3). In both cases, it appears that the chus@tieristic
time is a good indicator of how quickly the demands in CPU time should grow
with increasing lattice size: for second-order transitions, this is the time deede
generate truly independent samples, while for first-order transitiongettgsis at
what rate the dynamics spreads out over the energy barrier and thhst@xtent
samples getféciently picked from the two phases in coexistence.

3.6.2 Autocorrelation times

The integrated autocorrelation time is computed by using the time-displaced corre
lation function presented in Sec. 2.2.1. This function displays an expohkkeia
short-time behavior eV7; 7 is then derived from a simple integration scheme.
Since the latter function makes sense within equilibrium onlyhermalization
steps are first discarded, whemds obtained by using the nonlinear relaxation

4Such an hybrid algorithm will be introduced in Chap. 6

82



3.6. Algorithm performance

1000

7(MCS)

100

50 100 L 400

Figure 3.6: Integrated autocorrelation timers lattice sizel for q = 7 ando =
0.2,0.4,0.6,0.8. Dynamic exponents computed from a fitltbarez = 1.09(1),
1.15(1), 138(1), 155(1), respectively.

function that describes the approach to equilibrium [216] and averayiegsev-
eral dry runs. An interesting point regarding multicanonical simulations is tha
since they are random walks in energy space, “thermalization” (althougtetm

is no longer appropriate as far as generalized ensembles algorithmsaesrced)
always occurs rather rapidly; simulations based on a nearly flat histogin@w
that a value of 1000 MCS is indeed appropriate on avétage

3.6.3 Results

Results forq = 7 ando lying between @ and 08 are shown in Fig. 3.6 for
integrated autocorrelation times, and in Fig. 3.7 for tunneling times. The slight
dispersion in the power-law fits arises from the fact that simulations afrlaizgs

are conducted with a higher number of MCS between measurements in order to
reduce memory overhead. Where computing tunneling times is concerned, this
results in some tunneling events being possibly skipped and the averagérignn
time being overestimated. Both figures show, however, that a power-lzavioe is
perfectly plausible. In the case of first-order transitions, the reductisimalation

costs is thus drastic in comparison with standard canonical algorithms.

5In this regard, a much moreffieient scheme based onyd regression will be presented in
Chap. 7.
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Figure 3.7: Tunneling timey,n, Vs lattice size. for g = 7 ando- =0.2, 0.4, 0.6, and
0.8. Dynamic exponents computed from a fitfoare z=1.25(1), 1.30(2), 1.37(1),
1.53(1), respectively.

3.6.4 Discussion and conclusion

For both indicators, an averagsslightly above 10 is obtained fow- = 0.2, yetz
increases smoothly with decreasing range of interaction. This may berdedou
for by the fact that spatial and time correlations grow as one departdtimmean-
field regime and approaches the short-range regime. As for tunneling tinges,
prefactor turns out to be slightly higher near the mean-field regimez enmdeases
at a lower rate with increasing than is the case for autocorrelation times.

Since there are no other numerical studies of long-range spin modeld base
on multicanonical algorithnfs comparison is limited to estimates obtained for
nearest-neighbor models. For the three-state Potts model, canonical sinwlatio
using local updates led to = 2.7 [344], while Swendsen and Wang obtained
z ~ 0.6 using the eponymous cluster algorithm [309]. For further comparisen, th
Metropolis algorithm applied to the (nearest-neighbor) Ising moddl #n 2 and
d = 3yielded a value of slightly above 2 [342], whereas WBE cluster algorithm
led toz ~ 0.27 [348].

To conclude, and in view of these results, two remarks are in order:

e first, the dynamic exponents of the long-range Potts chain are moderate,
even at large decay parameter; it turns out, however, that prefactoesse
rapidly with o-; with regard to this, the fact that first-order transitions occur

5To the best of my knowledge.
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for a value ofo belowa given threshold makes the method an appropriate
choice for the investigation of the model.

owing to the first-order nature of the transitions, a comparison with a canon-
ical algorithm (even using Luijten-Bléte cluster algorithm, Sec. 2.3.2) would
not make sense here (except perhaps at largbere the transition is weakly
first order); as can be witnessed in Fig. 3.1, the suppression of mhaskp
configurations is quite large already for= 400 spins, so that the method
seems, here again, an adequate choice as against a Metropolis-igased a
rithm;

In view of the marked reduction in dynamic exponents brought about by
cluster methods, one may ponder on the benefit of these methods in the con-
text of multicanonical simulations. As mentioned in this chapter, however,
combining both schemes is not straightforward: this will be the purpose of
the second part of this thesis. In this regard, and in anticipation of Chap. 7
it is perhaps worthy of mention that the breathing cluster method developed
in the second part of this thesis wifldeedlead to a clear reduction of both
dynamic exponents and prefactors for long-range models.
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Chapter 4

From mean-field to thetricritical
line

As was discussed in Chap 2, one of the main problentsiobnical Monte Carlo
simulations of phase transitions is the need to perform a large number of sim-
ulations at distinct temperatures in order to obtagliable reweighted averages
of thermodynamic data over affigiently large range of temperature. A second
problem surfaces in the context of first-order phase transitions engugrercritical
slowing down leads to very repetitive dynamics and unreliable statistics. The mu
ticanonical method presented in the previous chapter represenficaanéway to
tackle both problems “at one whack”.

In the present chapter, | will show how one can take advantage of thiotheth
to investigate the phase diagram of a Potts chain governed by power-tawig
interactions. The investigations will center around:

¢ the strong first-order regime, i.e., at low decay parameter,
e the tricriticaf line separating the first- and second-order regimes.

The chapter begins with a review of the prominent features of the nearest-
neighbor model, as well as some important mean-field results. Previouigaves
tions of the phase diagram of the long-range model are described id.$&tand
4.1.3. Results from previous Monte Carlo methods are reviewed in Sec. #itz3
critical behavior of the model in the second-order regime is examined in ttie ne
chapter.

!In the canonical ensemble.

2The term “tricritical” might have something of a misnomer, since in the Girgdiandau func-
tional of the model, the decay parameters at the same time a conjugated — or non-ordering —
field andan exponent of the wave-vecti(see Sec. 5.1.1). | will stick to this terminology prag-
maticgrounds, however, owing to the fact that (i) it evokes the picture —llysassociated with this
term — of a point separating a first- and a second-order line of transitiovs(ii) there are other
“boundaries” in the phase diagram of the model investigated here, afekent terminology might
help reducing confusion.
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In Sec. 4.2, it will be demonstrated that, in spite of the modest lattice sizes
investigated, the multicanonical method yields very precise estimates of transition
temperatures, in far better agreement with mean-field predictions whaneved
than in previous Monte Carlo studies (Sec. 4.2.3). This pertains to thei@tigyer
of the method at first-order transitions, yet also to the implementation of infinite-
image periodic boundary conditions (Sec. 4.2.1). Indicators base@eefrergies
will also prove to play an important role in a reliable estimation of transition tem-
peratures.

As regards the second point, i.e., the location of the tricritical line, the weak-
ening of the first-order transition as the line is approached presentdieufzar
challenge. Several other approaches are reviewed (Sec. 4.3)phtbstn incon-
clusive in this respect. With this in mind, a novel method is introduced for the
detection of the order of phase transitions, which relies on the locationroicsd
points. The multicanonical method makes it possible to reweight over a large ra
of temperatures, and to reliably determine the position of metastable states: its ver
satility in this respect will thus prove essential here. | will illustrate the method fo
g= 3,579, and prove that the position of the tricritical line can be determined to
an unprecedented two-digit precision.

Finally, the controversial nature of the phase transition onsthe 1 line is
considered in Sec. 4.3.6. | will point out that the asymptotic behavior of itré-tr
ical line is crucial in this respect, since it might confirm or rule out one oremor
scenarios suggested in recent time. By carrying out a careful finikessizling
analysis, a new, unusual finite-siz€eet is found out, with a first-order transition
gradually waning into a second-order one in the thermodynamic limit (Sec)4.3.7
This behavior, | claim, clearly washes out some previous claims, and lapgerd
to one of the suggested scenarios on this line: 1 is a line of topological phase
transitions [72]. A discussion of this atypical finite-sizeet is provided: it is
suggested that several causes enter thiesg including — but not restricted to —
boundaries #ect.

4.1 Model, existing results and unsettled controversies

Throughout this chapter and the next chapter, | will consider a onerdiioral
ferromagnetic Potts model incorporating power-law decaying interactidhgs
model is derived from a generalizgestate Potts Hamiltonian, i.e.,

H= —% Z ‘]ij(SO'i,O'j - Z hi(so’i,o'o’ (41)

i#] i

where the Potts spia; at sitei can take on the values 1., q, and the first sum
runs over all pairs of sitesh; is an external aligning field favoring condensation
in stateo, yet numerical investigations in what follows are conducted with no
external magnetic field. Incorporation of power-law interactions is choig by
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4.1. Model, existing results and unsettled controversies

setting

3y =i 1) = (42)

whereD = 1 throughout this work except when otherwise specified, amslan
adjustable parameter that — broadly speaking — “alters” the interactioe ré&og
o < 0, the interaction is no longer integrable; this corresponds to ratfferet
— though interesting — physigsand | shall not consider this case in the present
work. Rather, | will concentrate on the so-called “integrable” redimenere the
phase diagram of the model exhibits not less appealing behavior, includitg fi
and second- order transitions, Kosterlitz-Thouless like transitions, arguimg
crossover ffects.

It is perhaps interesting to recall that, @dalls off to —1, this model tends
to the exact mean-field regime where all interactions have equal strengtiats
onemightexpect to recover, for a fliciently low value ofo, the features of the
mean-field modé&l Conversely, the limiting case — co corresponds to a pure
short-range model with nearest-neighbor interactions, and the absépbase
transition at finite temperature for > 1 has been rigorously proven [107, 108,
300, 124]. The issue related to the crossover between the long-radglesashort-
range regime has been the matter of long-running debate, and is reexamined
Chap. 5.

The critical behavior of this model is studied by way of the following order
parameter,
_gmaxypn-1

m q-1

, (4.3)
(hereafter termed “magnetization”) wheme= 1,...,q, andp, is the density of
Potts spins in phase The last quantity varies betweeydlat infinite temperature
and 1 in the ground state, so tmat= 1 in the ordered phase, and 0 otherwise.

The Potts model can be mapped ontaGyn;-like vector model (though with
stronger constraints on the degrees of freedom). Thieyothe benefit of trans-
forming the Kronecker delta symbol into a sometimes more tractable dot product,
e.g., for field-theoretic renormalization purpose, or as will be witnessedap 7,
whenever the algorithmfigciency requests so (see [279, 333] for two possible
formulations, and also Sec. 7.3.1 where | introduce a slightigdint mapping,
better suited for numerical evaluation). Another useful representatitraisof
Mittag and Stephen [247], where the set of spin statesdis mapped onto the
set 1w, w?, ..., w9, wherew = €7/ is aqth root of unity.

3See references given in Chap. 1 for connections with Tsallis’s themamiics

4See a note on a semantic row in this respect in Sec. 1.1.

SAfter proper normalization of the coupling constant so that the thermardimlimit is not ill-
defined

8In this regard, it has been suggested in a recent paper that, if méhthéery predicts a first-
order transition for any long-range interaction that satisfies the so-aafkttion-positivity con-
dition, then — as a dficient and necessary condition — there is a first-order transition for some
suficiently spread out interactions [42].
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Chapter 4. From mean-field to tkrécritical line

Nearest-neighbor model The nearest-neighbor Potts has been extensively stud-
ied since its “discovery” by Domb and Potts in 1952 (and independently bgriih

in 1954). Its critical properties and its applications to microscopic modeling in
physics were extensively reviewed in [350]. For instance, the lgmi 0 and

g = 1 describe the resistor-network problem and percolation, respectiMely-
integer values are also of interest in the modeling of dilute spin glagse4/2) or
branched polymers (8 g < 1). Using duality arguments, Baxter obtained the crit-
ical temperature of the two-dimensional model= 1/ In(1+ /), q > 2[17]. The
critical temperature is not known exactly in three dimensions. The model is also
expected to undergo a first-order transition foffisiently high values ofy. For
instance, it was proven that this is the casedgar 4 in two dimensionsg > 3 in
three dimensions (not known exactly), am@ 2 in four dimensions, [4, 17, 350],

so that the threshold valug above which the transition changes from second- to
first-order is expected to decrease continuously all the way Ip-to .

4.1.1 Mean-field theory

Mean-field theory for the Potts model was initially formulated by Kihara et al.
using Bragg-Williams theory (see, e.g., [350]). The most prominent resoiean-
field theory is that the model undergoes a first-order transitioq fo2.

Mean-field behavior can also be obtained quite straightforwardly by ulséng
variational mean-field method, which relies on the minimization of the free energy
expressed as a functional of a trial density matrix, whereby the Boltzmamsityl
matrix is recovered at the minimum. The variational method is very geherad
its mean-field formulation simply consists in factorizing the trial density matrix
in terms of independent one-site density matrices, as in standard moleeldar-fi
theory. This is roughly equivalent to neglecting fluctuations to secoderan
Bragg-William’s theory, although a treatment of the Potts model with 2 is
somewhat less tractable with the latter appréach

A detailed calculation is presented in Appendix A. | will here only review the
main results. In particular, | will focus on the location of spinodal pointssehe
form the core of a novel method to detect the order of phase transitidrish w
| introduce in Sec 4.3. In the presence of power-law decaying interacttbe
mean-field free energy per spin is expressed with respect to the aadEneter
(up to an additive constant) as

% =—hm-¢(1+ )P + kT{(1 - m)In(1 - m)
. 1+mg-1)

T In[1+m(@- 1)) (4.4)

wherel(1 + o) is the Riemann zeta function aindan external aligning field (see
Eqg. A.2). The graph of (m) is depicted in Fig. 4.1 fog = 9 ando- = 0.5. Equilib-

See, for instance, [76] for an introduction to the method.
8This requires mapping the model to @q_; model.
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4.1. Model, existing results and unsettled controversies

rium values of the magnetization are located at minima of the free energy. At the
transition temperatur&, two minima are clearly visible, which in the thermody-
namic limit signals a first-order transition associated with a jump in the magneti-
zation and a latent heat. This is always true whengver2, where the transition
temperature is given by

q-2
(@-1) In@@-1)
For g = 2 (the Ising model), a second-order transition occurs (i.e., with critical
fluctuations induced bi”’(0) = 0 at the transitio?), and

KTe = (1 + o). (4.6)

which is also recovered by taking the lingit— 2 in Eqg. (4.5).

The zeta function expands agolaroundo = 0, thus transition temperatures
are expected to vary agad in the vicinity of the mean-field regime. Conversely,
limy,_ e £(1+0) = 1> 0, which confirms — as expected — that mean-field theory
is a very poor approximation in the short-range regime.

Metastable states are defined from the condition that either one of the two min-
ima disappears, i.e., both the first and the second derivative of thenfeegyemust
be zero (this is indicated with horizontal arrows in Fig. 4.1). This yields

2(1+0)

KTe = (1 + o) (4.5)

kT, =

corresponding to the extremumrat= 0 becoming unstable. The temperatkiie

at which the second extremum vanishes is unfortunately not available iedclos
form (see Appendix A). Thus there are two temperatures of metastabiliand

T, on each side of, that physically correspond to the limit of stability of each
subphase. These are depicted in Fig. 4.2 for 21 < 10. Inside the interval
[T1, T2], there exists two values of the order parameter corresponding to aunull ¢
vature of the free energy. This is known to induce a long-range (i.e., lavew
number) instability that can trigger a phase transition through the spinodatde
position mechanism [141]. In the following, | may dendieand T, asspinodal
temperaturesand the corresponding values for the order parameter at the inflexion
point asspinodal points Alternatively, one may also express the free energy as a
function of the mean-field enerdy = —Z(1 + o)n? and obtain the same spinodal
temperatures from the joint conditiofi(E) = f””(E) = 0. Obviously, the two
expressions of do not have the same shape.

An important point that will be invoked later in this chapter is that the width of
the spinodal curvé@, — T4 shrinks to zero ag — 2. This indeed accounts for the
second-order nature of the transitiongat 2, since in this limit the two minima
merge into a single large minimum responsible for the well-known divergeice o
fluctuations at a continuous transition.

9For the same reason, spurious critical behavior may also occur atyfeat-order transitions
in the vicinity of a local minimum of the free energy; this may show up in reradization group
scenarios.
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Figure 4.1: Free energy per spin in the mean-field approximation for thestane
Potts model in zero external field, and witjird/? interactions. T, and T refer

to the temperatures of metastability, whilgdesignates the transition temperature
corresponding to the two minima having the same magnitudeis the surface
tension (theeducedsurface tension is usually defined fraxf/LP-* for nearest-
neighbor models).
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Figure 4.2: Spinodal temperaturésandT,, along with the transition temperature
kT¢, as a function ofg in the mean-field approximation. Shown are quantities
normalized with respect (1 + o).

4.1.2 Finite range scaling and cluster mean-field approacise

Apart from Monte Carlo simulations (which are reviewed in Sec. 4.2.3 below)
long-range chains were studied by means of two distinct numerical agygeafi-

nite range scaling (FRS) combined with an extension of the transfer matrix dhetho
to long-range interactions [130], and the cluster-mean field method [25dih
methods mainly targeted the estimation of critical temperatures, although the for-
mer also addressed possible crossover issues by relying on the fimgegealing
behavior of the correlation length exponent. However, none of theseodseton-
cerned itself with the order of the transition. | hereafter briefly review tiem
some detail; Section 4.2.3 contains a comparison of the numerical results that we
obtained with these methods [130, 251] with the estimates | obtain with the mul-
ticanonical method; Section 5.3 in the next chapter deals more specifically with
crossover issues.

Finite range scaling combined with transfer matrices

This method was initially introduced by Glumac and Uzelac [323, 129] in the con-
text of Ising chains with power-law decaying interactions, and extendee t@otts
model in an ensuing study [130]. More recently, it was applied tdthel/2 spin
chain [16] and to a two-sited (i.e., AB model) Ising chain [15]. The method targe
the estimation of critical exponents, transition temperatures and correlatgthsen
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Figure 4.3: Transfer matrix method for finite-range interactions: the zg-za
scheme brings the problem back to a conventional transfer matrix problgm, w
each column interacting with its nearest-neighbor only.

in the critical regime; yet it has remained rather inconclusive where dissihigg
between first- and second-order transitions is concerned.

The method comprises two essential ingredients. First, it generalizes to long-
range chains the transfer matrix method in its variable strip-width flavor, e.g.,
the (numerical) approach used for two-dimensional Potts models with neares
neighbor interactions. However, the technique cannot be used as is fiikein
range interactions, as will be witnessed below, and prerequisite is to teuthea
power-law decaying interaction below some finite cfitddl. It was suggested
[129] that response functions should behavg @) ~ v« (t) f(M/és), Whereé,
is the infinite cut-d& correlation length, and (u) denotes a dimensionless finite-
range scaling function that prevents critical divergences at finite fEtf-oSev-
eral numerical calculations are performed at increasingly large f€sitand (this
the second ingredient) a finite-range scaling scheme is carried out witbctes
M: for two distinct cut-dfs M and M’, the correlation length scales according to
Ew(t) = (M /M)ém[(M’/M)Y1]. Critical exponents are thus estimated from an
extrapolation to the infinite cutfblimit.

In order to transform the finite-range problem into a nearest-neigkitsoprob-
lem that may become tractable with conventional transfer matrix methods, spins
are grouped by blocks d¥l subsequent spins, where each block represents a ma-
trix column; the chain is treated in the thermodynamic limit, and the strip count
increases with the interaction cuffo Interactions between spins are handled in
a zig-zag fashion, as illustrated in Fig. 4.3 fdr = 4. This makes it possible to
restrict the interactions to neighboring columns only, so that the partitionifunc

101t was claimed by the authors that this scaling behavior should hold alsoringhe-field regime,
contrary to what occurs for finite-size scaling.
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of the system is simply given by the trace of the nth power of the transfer matrix
overgM possible states of the column vectors. The correlation length is obtained
in the standard way from the two largest eigenvalireand, of the transfer ma-

trix, i.e., ém = M/In(11/42), and the correlation length exponent follows from a
finite-range scaling extrapolation based gm  In[&},,/&,,]/ In(M’/M). Here,&
refers to the derivative of the correlation length with respect to the crigcaper-
ature, estimated at the critical point. Interestingly enough, it was proveithia
long-range nature of interactions allows one to decompose the transféer imiatr
much simpler matrices, so that the complexity of the calculation could be drasti-
cally reduced. The method was also successfully extended tpgtege Potts with

a non-integeq value [130], by relying on a bond representation of this model, and
tracing over bond configurations instead of spin configurations.

In [130], Glumac and Uzelac applied this method to thstate Potts chain
with interactions decaying agr*“, with ¢ ranging from 01 to 10 andg chosen
between 1 and 64 for the integer case, ayitbland X2 for the non-integer case.
Estimates of critical temperatures are claimed to support a precision of one pe
cent, which is clearly less accurate than the coherent anomaly method $£264¢
the transfer matrix is @V x g matrix, however, extrapolations are in practice
restricted to modest cutfovalues, i.e., around 20 fag not too large. It should
be mentioned, however, that the results obtained recently by Barati andZaai
[16] for theS > 1/2 Ising chain are somewhat more accurate, which suggests that
the choice of a dferent extrapolation procedure might help in this respect; yet the
last approach also relied on an extrapolation based on the exactly kradbuwenof
the correlation length exponent in the classical regime, and this was naisaéc
[130].

In spite of the limitations of the method in terms of transfer matrix sizes, the
authors in [130] were able to shed partial light on some controversiegelying
on the non-monotonic behavior of the critical temperature with respeet smd
observing that the correlation length exponeincreases as- — 1, they argued
that the change of regime from short-range to long-range behavioe(orothis
in Sec. 5.3) should take place at= 1.0, but overall failed to (i) reproduce the
essential singularity at = 1.0 predicted in [208, 72] (see Sec. 4.3.6 below), and
(i) bring clear evidence as for the order of the transition, with a notablensise
tency between the behavior pfat largeq (suggesting a change of order) and the
absence of crossing of the largest and the third largest eigenvalties wansfer
matrix [169].

Cluster mean-field

A second approach, the so-callellister mean-fieldnethod was developed by

Monroe and applied to the Ising agestate Potts chains [250, 251]. This method is
a close relative of the coherent anomaly method (CAM) proposed byk&iR05]

in the mid 80’s. It is also somewhat reminiscent of recursive methods lmsed
Bethe lattice approximations [248, 249], and might be traced back to K&&ano
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decimation scheme in its spirit.

In this approach, interactions between spins in the same cluster are haxdled
actly, while interactions between a given spin and spins belonging to ottsterdu
are treated in a mean-field manner. The resultisgie Hamiltonian (wherais the
cluster size) involves a mean field term, which can be obtained self-conkisEyn
construction, the (improved) mean-field nature of the approximation resuhe in
method yielding upper bounds of critical couplings. By carrying out rseveal-
culations at increasingly large clusters (i.e., containing between 1 and Q sitds
making use of an extrapolation scheme (the Vanden-Broeck-Schwarstaraa-
tions, which is generalization of the Padé approximant method), Monroebias a
to obtain very precise estimates of transition temperatures supporting eigpr-
precision, at least for interaction decaying slowly enough with the intécjeadis-
tance (a feature which is indeed consistent with the mean-field approximagion th
underlies the method). It turns out that, fpr> 2, these are the most precise es-
timates to date along with those | will obtain with the breathing cluster method
(see Sec. 7.6 for a deepened comparison). In the Ising case, clusteffigld
and Monte Carlo calculations performed by Luijten and Blote [231] yield similarly
accurate results.

4.1.3 Results from real-space renormalization

Several results for the Ising and Potts chains with power-law decayingatitens
were obtained by means of a real-space renormalization group apg6sad4].
This methods is based on three ingredients: (i) Kaéianblocking method; (ii) a
non-linear transform using a (modified) majority rule, the so-cafigdally prob-
able tie-breakingwhereby subgroups of similar spins representing the majority in
a given block are equally weighted in case of conflict; (iii) the cumulant esipa
method of Niemeijer and van Leeuwénwhereby the Hamiltonian is first split up
into a termHg involving intra-block interactions and a tethcorresponding to the
interactions between spins in distinct blocks, and then the renormalized Hamilto-
nian is obtained from a cumulant expansion of the average (i.e., intra-péotil
traces) ofe”V with respect to the HamiltoniaHlg; in [64], an expansion to first
order is considered.

In the context of long-range interactions, the generalization of Katfarmon-
struct introduced in [63, 64] consists in building blocks of spins of &izand
extrapolating the results to the linit— co. Since the terms in the cumulant ex-
pansion behave aghil*?, the authors expect this extrapolation to give good results
in the long-range case.

From their recurrence equation (Eq. (17) in [64]), the authors olftaiajl g >
2 and in the limitb — oo, a trivial unstable fixed-point at infinite temperature for
o — 0 and at zero temperature fer> 1 (recovering the exact result in [108]), and
a non-trivial unstable fixed-point at finite temperature between these two lgmitin

1A very explanatory introduction can be found in [21] in the context of #re@rmalization of the
Ising model on the triangular lattice.
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values. From the analysis of the change of curvaturé.Gf), they assess a non-
zero transition temperatui®& = 72/12 on the line of inverse square interactions,
and suggest that this temperature is independent of the number of stdtes of
model (thus yielding a discontinuity ifi, that should be independentaf While

the authors claim that this assumption is supported by previous works initige Is
case, it contradicts the results obtained in [130], wherefdy. increases withg.
Along the same lines, the authors obtain a correlation length expenent2(1 -

o) aso — 1 forallq > 2, aresult which reproduces the expected divergence on
the line of inverse square interactions, yet contrasts with the expreds@ined by
Kosterlitz using a momentum-shell renormalization method [208]. It is mentioned
by the authors, however, that their extrapolation proceture o should not be
expected to yield reliable results near 1.

In the regiono — 0, i.e., when the model approaches the regime of non-
integrable interactions, the authors report (under the assumption oftiawms
transition) the following scaling behavior for the critical temperatdige 1/0,
and claim that this behavior underpins Tsallis’s conjecture [322] pexpasthe
context of non-extensive thermodynamic. As will witnessed later in thistehap
(Sec. 4.2), the estimates | obtained with a multicanonical approach lend afear s
port to this conjecture, yetrespectiveof the order of the transition.

Incidentally, and as the authors hasten to recall, these results are batbed 0
assumption of a continuous phase transition. Yet in the lgryait, mean-field
theory was proven to become exact [276], and a first-order transhimndthere-
fore be expected for either affigiently large value o€ or a small enough power-
law exponentr. This behavior is indeed consistent with the observation of a first-
order transition folr- < 0.6 in the three-state model, that was reported in a later
numerical work based on standard Monte Carlo simulations [131, 13B].also
consistent with the phase diagram | obtained for this model using a multicahonic
method (see Sec. 4.3.5). It is worth stressing here that real-spacengdization
methods based on such majority rules hardly enable one to distinguish between
first- and second-order transition, and a generalization to a lattice-gasl imed
corporating vacancies [263] should indeed be used for this purppodbe best of
my knowledge, such a generalization has never been performed in ttexicoh
long-range spin models.

4.2 Estimates of transition temperatures from multicanon-
ical simulations

In this section, | present an extensive investigation of the transition tempesaf

the long-range Potts chain. Multicanonical simulations are performed faga la
range of decay parameters and valuesg|,afising the algorithm presented in the
previous chapter. To set the stage, | will briefly discuss the influenpeddic
boundary conditions in the presence of a long-range interaction. | witl ¢ttee
scribe the method employed for the estimation of transition temperatures. A last
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Chapter 4. From mean-field to tkrécritical line

paragraph provides a discussion regarding the comparison of my neghltaean-
field predictions and other methods.

4.2.1 Periodic boundary conditions

In numerical simulations, systems fiite geometry are simulated, and it is vital
that eficient boundary conditions be implemented, since these generally influence
the rate at which thermodynamic quantities reach the infinite-size limit as size is
increased. Periodic boundary conditions are the most widespreack clirds-
much as the (initially broken) translational invariance of the system is restore
and convergence toward the thermodynamic limit is improved. The general pr
scription for spin models with nearest-neighbor ferromagnetic interaéfiggmso
usefirst-imageconditions, i.e., the lattice is simply wrapped around itself (from a
topological viewpoint, this yields ®-dimensional torus), so that each spin feels
the same local environment, irrespective of its position on the lattice.

In the presence of long-range interactions, the choice is no longerainiqu

e one may impose some cuff@n the interaction range, so that first-image
conditions may be used as in any model with a finite-range interaction; in a
previous Monte Carlo study of ttepstate Potts chain [19], for instance, the
cut-of was set td_/2, whereL is the size of the chain;

e Or one may use so-calladfinite-imageboundary conditions, whereby the
lattice is wrapped aimnfinite number of time around itself, and each spin
interacts in &ect with an infinite number of replicas of the original lattice.
For a one-dimensional lattice of site this consists in connecting the two
end-points of the chain in a ring-like fashion, and computing the interaction
between two given spins at a relative positidoy walking along the ring an
infinite number of time and adding up every interaction at distaneelL,
nez.

A comparative study of these two choices in terms of finite-stkects was
carried out in [67]. For models exhibiting a phase transition at finite tempera-
ture, it was established that infinite-image conditions are much ntiicgeat than
single-image conditions in wiping out finite-siz&exts, especially at medium lat-
tice sizes. In any case, using the former conditions is no more costly in terms of
computational resource than first-image conditions: the long-range cquyaeds
just be “renormalized” in order to take all possible interactions into accaunat,
from the viewpoint of numerical implementation, only interactions between spins
of theoriginal lattice must then be considered.

For a one-dimensional lattice and power-law decaying interactions, the™ba
coupling constand(r) = 1/r}*“ has to be replaced hj(r) = >+ _ J(r + nL). For

N=—c0

2And generally, any finite-range interaction whose support is smallerthizalattice linear size.
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4.2. Estimates of transition temperatures from multicanonical simulations

the purpose of numerical evaluation, this sum may be reexpressed as

j(r):rliw+|_l—lw[{(1+a’,1+£)+{(1+(7,1—£)], 4.7)

where((s, ) denotes the generalized Hurwitz-Riemann zeta fun&tiofhe self-
energy corresponding to the interaction of each spin with itself in each aeiplic
obviously omitted since it is just an additive constant to the total energy.

Slightly distinct conditions were used in [200] in the context of a long-range
spin glass, whereby instead of considering the topological distancethlecgain,
the authors made use of the euclidian distance: for the one-dimensional chain
this amounts to setting the distancentering the coupling constad{r) tor =
sinxli — j|/L whereli — j| is the distancealongthe chain. In this case, infinite-
image conditions just make no sense.

4.2.2 Methodology

The multicanonical simulations presented hereafter were performep§s, 9],
using for each value af an appropriate set ef parameters between3and 09,

so that a variety of transition strengths could be observed. As will bergdse
in Sec. 4.3.5, though, the shape of the line separating the first- and thedseco
order regimes is such that the second-order regime is reduced to a tiigynpor
of the phase diagram (except perhapgiat 3). This means that most values
of o investigated here correspond to first-order transition temperatures. aCritic
exponents in the second-order regime will be investigated in the next clvatie
context of the long-range to short-range crossover.

Once the density of states has been determined using the iteration process de
scribed in the previous chapter, a production run is performed forlattate size
betweenL = 50 andL = 400. The number of MC sweeps needed for each pro-
duction run is computed so as to yield approximately 50* truly independent
samples. Owing to the combination of rapidly soaring autocorrelation times — es-
pecially at larger — and a computer load increasing with the square of the lattice
size, | had to refrain from investigating larger lattice sizes, i.e., ahovel00. As
regards the estimation of transition temperatures, this entails extrapolating infinite-
size temperatures from linear sizes that all lie within one decade, e.g. x&ppro
mately [40- 400], and in this respect it was rather good surprise that the preci-
sion of the estimates could attain three digits. As is discussed in the next section
(Sec. 4.3.5), this limitation creates a serious hindrance, however, whenniis
nating between first- and second- order transition is concerned, aralitiveill
prove mandatory to meet the challenge fromféedent angle.

3This function is available from many software packages, e.g., the Geingfic Library (GSL)
(http://www.gnu.org/software/gsl/). Recently, a port to the Java language was also made
available http://sourceforge.net/projects/gsl-java).
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Finite size scaling at first-order transitions

At second-order transitions in finite geometry, the correlation length isdexin

by the finite lattice size, so that response functions which diverge in thenther
dynamic limit, actually experience a finite maximum: this maximum scales as a
power law of the lattice size, with an exponent depending solely on the critical
exponents of the model (see Sec. 5.2). At first-order transition, a sim teav e
takes place, although it is now tldémensiorof the lattice which plays the role of

a critical exponent. In finite geometry, the discontinuity, e.g., in the enemy- (c
nected to the latent heat), is rounded proportionally to the inverse latticessize,
that peaks of response functions are subject to finite-size scaling intmeishme
way as in continuous transitions.

Several theories of finite-size scaling at discontinuous transitions rese b
proposed (see, for instance, the seminal works of Fisher [117 hBE&d on renor-
malization group arguments). In the following, | will mostly rely on theuble-
gaussiantheory of finite-size scaling — the most useful from the viewpoint of
numerical simulations — initially introduced by Binder and Landau [38] in the
context of the field-driven transition in the Ising model beldy and extended
to thermally-driven transition [79]. | will also briefly review the results yielde
by the more rigorous treatment provided later by Borgs and Kotecky pt&he
nearest-neighbor model.

The double-gaussian theory is purely phenomenological, very geaathp-
plies a priori to any first-order transition exhibited by a model withort-range
interactions (the case of long-range interactions will be considered lateAb a
first-order transition, the free energy displays two minima of equal magnitoide
responding to the ordered and the disordered phases, respediivétg vicinity
of each minimum, the phenomenological theory of Challa and Landau consists in
approximating the free energy by its Taylor expansion limited to the second or-
der; as a result, the histogram of the energy (or the magnetization in thefcase
a field-driven transition [38]) is approximated by the sum of two gaussiaves.
Such an approximation is useful for deriving finite-size scaling behsaorther-
modynamic quantities related to the energy, e.g., the specific heat or the Binder
cumulant; it fails, however, to describe the scaling behavior of the sutéaxsion,
since a two-gaussian scheme alone is clearly not suitable to describe rixse-p
configurations.

For a temperature-driven transition, as is the case fogtbtate Potts model,
the gaussian curves are centereBat Co(T —T¢) andEq+Cqy(T —Tc) respectively,
whereT; denotes the temperature equal weight448, 49], i.e., when the area
under both gaussian curves are the same (this amounts to imposing that the mean
energy be the arithmetic mean of the energy of the ordered and disopterses).

Co andCy refer to the specific heat (in the thermodynamic limit) of the ordered and
disordered phases, and the relations given above for the positionafreimply

that they are assumed constant in the vicinity of the transition. The width of each
gaussian curve grows with the square root of the correspondingfispgesat (per
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Cq (T - Tc)

—

> E/LD
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Figure 4.4: Sketchy illustration of the two-gaussian phenomenologicalytioéor
finite-size scaling at a first-order transition. The dashed curve repiethetrue
distribution.

spin). Finally,E, andEq refer to the location of the peaks in the thermodynamic
limit, so thatEy — E, is the latent heat associated with the transition. A sketchy
illustration is given in Fig. 4.4.

In Fig. 4.5, it is illustrated how the parameters may be retrieved through a
non-linear least-square fit to a reweighted histogram of the energy.isThagdly
a very convenient way to estimate specific heats, however, as non-itseare
notoriously dificult to cope with, especially when one wishes to automate the pro-
cess through a piece of software. As a result, reweighted averagies sécond
moment of the energy usually yield far more reliable results; see, for irestanc
Fig. 4.9, where the mean energy and the specific heat are estimatedelggdara
each subphase by reweighting over a subset of samples whose bakrngy to the
appropriate subphase. Additionally, it is clear from the figure that, ascted, the
surface tension is not well described by the theory.

Still and all, the theory provides essentially what we are seeking, i.e., scaling
laws for the statistical moments of the energy and the associated finite-sigie tran
tion temperatures. By computing these moments with respect to the two-gaussian
approximation of the distribution of the energy, one obtains that all quantii#zes s
with the volume of the system [79], i.e., for instance,

Te(L) ~ Te(eo) +al™,
Eq-Eo
(EY(L) ~ =5 +b(T = Te(L®,

and
Co + Cd

CMaY(L) ~ +clP
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Figure 4.5: Dotted cuve: reweighted histogram of the energy for the-giate
Potts model with 1r'? interactions [ = 1000), at a temperature corresponding
to the equal-weights conditiokT = 3.9599(2)). The superimposed solid curves
indicate a non-linear least-square fit to the two-gaussian theory.

where the cofficientsa, b andc depend, among other things, on the latent heat,
so that this quantity may as well be estimated from the finite-size dependence of
the three quantities aboVe The last relation shows that, in the linhit— oo, one
hasC,/LP # 0 in contrast with a second-order transition; this criterion was used in
[131] as a possible discriminator for the order of the transition.

For theg-state Potts model with nearest-neighbor interactions, Borgs and Kotecky
developed a more rigorous theory of these finite-sifects [49], by expressing
the patrtition function of the model (in a periodic box) in terms of contours tjinou
a Fortuin-Kastelein random-cluster mappitig The derivation is valid only for
large g, but the authors suggest that it should actually hold for the whole first-
order regime (this was confirmed numerically in [191] for the three-dimeakion
model). It is not the goal of the present work to dwell upon the technietdild
involved in the derivation, and | will simply consider the most prominent results:
there exist estimators for the (pseudo-)transition temperature which déwaate
the thermodynamic limit by terms fallingioexponentiallywith the lattice size; in
particular, these include (i) the crossing point of the mean energy derssityev
temperature for two distinct lattice sizes, and (ii) the crossing point of thesratio
W, /Wy at distinct sizes, wherd/, (Wy) designhates the area under the peak of the

¥ Another way to compute the latent heat that relies on Borgs and Kotectsyttsee below) was
proposed by Janke in [177].
15See Sec. 2.3.3.
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ordered (disordered) phase, aMg/Wy — q in the thermodynamic limif. These

two criteria require simulating the lattice at two distinct sizes. On the contrary, the
so-callednumber-of-phasesriterion, i.e., Wy /Wy = q, directly yields an estimate

of the transition temperature from a single lattice size, yet its validity is, as it turns
out, restricted to the short-range flavor of tiietate Potts model. Interestingly, as
far as the long-range model is concerned, it was suggested by Knelchugjten
[213] that an &ective number of stateg s may be defined from the asymptotic
behavior of the rati®V,/Wy asL — oo, with gef ~ 1.67 reported fog = 3 (since,
howeverges is initially unknown, the criterion cannot be used to loc&tex-)).

An extension of the two previous theories to long-range interactions isivtot tr
ial. As regards the long-range Potts chain in its first-order regime, theereagy
gested thus far [131] is to consider that the volume term should be simply set to
L (i.e., with finite-size scaling involving corrections iriLl), yet (in the same ar-
ticle) it is also claimed that the interface tension shoalkb scale proportional
to L. My approach in the following will be to consider two possible schemes:
1/L correctionsexplicitly allowing for second-order terms, andL¥ corrections
with an unknown exponent, yatithout correction terms. As will be discussed in
Chap. 7, however, the second definition, along with-dependent exponent, is by
far the most reliable (and | will also argue that is is the most physically pettinen
definition).

Estimators

In order to estimate the transition temperatures, | relied on (i) free eneagie$ii)
moments of the magnetization. The specific heat exhibits a less pronouraded pe
and is usually less suited for this purpose. The (variational) free erwdrtye
magnetization, hereunder denoted~agkT, m), is computed from the reweighting
equation, Eq. (3.3), which amounts to computing the distribution of the first (mi-
crocanonical) moment of the order parameter, and reweighting at temgefatu
As regards the free energy associated with the energy distribution, lieensds
even simpler, since this is just (minus) the logarithm of the reweighted histagfram
the energy, i.e Fe(kT, E) = — In Now (KT, E). Here and in the following\Nrw (KT, E)
designates the reweighted histogram of the energy and is given by

Nrw(KT, E) = N(E)e>(®#E,

wheree®®) s the estimated density of states (i.e-S() is the multicanonical
weight). N(E) denotes theaw (expectedly flat) histogram of the energy accumu-
lated during the production run, yet filled withdependensamples taken every
two tunneling times. In practice, this means that the total number of MC sweeps
may reach 10 indeed 18 in some cases (especially when closerte= 1.0). It

is important to note that both free energy functions play the same role, i.e., that

18In [47], it is also suggested to use aplase separatothe mean energy of the system at the
temperature where the specific heat is maximum.
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of a thermodynamic potential, although with respect tofedent parameter. As
far as estimating transition temperatures is concerned, choosing one théhéso
really a matter of attainable precisioRg, turned out to yield more reliable results
at largeg owing to its higher symmetry (too sharp wells make the estimation of the
equal-height condition cumbersome).

Two conditions for the estimation df; were used:

e the equal-height condition is defined as the temperature where histogram
peaks have the same height, i.e., where minima&T, E) (or F(KT, m))
have the same value;

¢ the equal-weight condition, introduced by Lee and Kosterlitz in [219]e her
the transition temperatufg(L) is obtained by imposing that the number of
bin entries inN,(E) be the same below and above the energy corresponding
to the maximum ofF¢(kT, E) (i.e., the mixed-phase configuration). This is
equivalent to the condition that the average energy be the arithmetic mean of
the energy of each phase, yet this condition cannot always be useakcin p
tice, especially at larggvalue where the free energy is strongly asymmetric.

Both definition should yield the same result in the infinite-size limit [79]. In
[131], it must be noted, only the first condition was invoked.

For the sake of completeness, | also compute transition temperatures by relyin
on two other estimators: the magnetic susceptibility, and a Binder cumulant of
the magnetization. From the fluctuation-dissipation theorem, the susceptibility is
readily obtained from the second moment of the magnetization. Binder cumulants
of the magnetization are defined as

(i)

u®=1- 1
3(mP)?

Owing toits invariance under a renormalization group transform, this cumslant
very convenient estimator of the critical point, because the associatedrgence

is really high. In the thermodynamic limit, cumulants cross at a critical fixed point
u® defining the true critical temperature. In practice (i.e. at finite-lattice size), |
found the crossing points to drift smoothly over the range of lattice sizdbw-0

ing Binder [35], | assumed a power law of the foltf{ for the crossing point of
[U@(L), UM(L")], with an unknown exponent [35].

4.2.3 Results

Results forq = 3,5,7,9 are summarized in Table 4.1 and sketched in Fig. 4.6.
In the second-order regime (indicated by an asterisk in the table), | cothfhde
critical temperatures frong andU® only, since free energies exhibit no double-
peak structure here (see Sec. 4.3 for details on how the order of tis@itranvas
ascertained). As expected according to finite-size scaling theory, kftfitibns
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1/0

Figure 4.6: Critical couplings fogq = 3,5,7,9, from top to bottom (solid lines).
Mean-field predictions are shown for comparison (dotted lines).

of the transition temperature, i.e., using equal peak weights vs equal piggitd)

lead within error bars to the same estimates at infinite lattice size. Other quantities
Te(v) andTe(U®™) yield very similar results, with a discrepancy never exceeding
1%.

Comparison with exact mean-field predictions

For all values ofg, transition temperatures progressively depart from the mean-
field line aso- is increased. Fay = 5, for instance, the ratio betwed@g(y) and the
mean-field value ranges from 8% ato- = 0.3 to 839% ato = 0.8. For a given
range of interaction, the adequacy of mean-field results is also markedIlgvetbr

at largeq, as in the nearest-neighbor model; this is consistent with the large-q
expansion of Pearce and @iths [276] showing that mean-field theory becomes
exact in this limit. In anticipation of the next section, and as illustrated in Fig. 4.7
forq = 9,0 = 0.3, andL = 400, this agreement also holds, even at finite lattice
sizes, for the shape of the free enefgy(kT, m) and the position of metastability
plateaus related to spinodal points.

Comparison with other methods

Forg = 3 andq = 5, several results have been made available from previous Monte
Carlo simulations. Results obtained in [131] using either Luijten-Blote’s cluster
algorithm @ = 3) or a standard Metropolis algorithmg & 5) are in fairly good
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q o Tc (MF) | Te(x) To(U®W)  Te(egh) Te(eqw) | Tc[131] Tc[251] T [130]
3 0.2 [4.034 [397(1) 3.98(1) 3.94(1) 3.97(1) 3.7C¢ 3.7023
0.3 [2.836 |272(1) 272(1) 271(1) 2.71(1) 2.7¢* 2.71669 2.5893
0.4 |2.240 | 2.086(4) 2.089(6) 2.075(5) 2.074(4)2.08 2.0247
0.5 |1.884 | 1.691(3) 1.685(3) 1.686(4) 1.684(2)01.7C% 1.68542 1.6631
0.6 | 1.649 | 1.44(1) 1.43(1) 1.43(1) 1.43(1) 1.4» 1.4000
0.7 | 1.482 | 1.196(3) 1.19(1) 1.18(1) 1.19 1.1968  1.1942
0.8 | 1.358 | 1.019(4) 1.03(1) 1.01° 1.0231
0.9° | 1.262 | 0.876 0.875 0.8¢ 0.8785 0.874
5 0.3 ]2127 |207(1) 2.07(1) 2.072(6) 2.070(4)2.03% 2.06900 1.736
0.5 | 1.413 | 1.321(3) 1.319(4) 1.319(3) 1.319(2)01.297  1.31638 1.245
0.7 | 1.111 | 0.973(1) 0.973(2) 0.970(3) 0.970(20.98F  0.96963 0.956
0.8 | 1.018 | 0.854(1) 0.853(1) 0.857(1) 0.857(1) 0.844
0.9° | 0.947 | 0.743(2) 0.739(4) 0.74673 0.745
7 0.2 [ 2600 |258(1) 2.58(2) 2578(2) 2.577(1)
0.4 |1.444 | 1.395(5) 1.394(4) 1.394(1) 1.393(1)
0.6 | 1.063 | 0.986(2) 0.985(3) 0.984(1) 0.986(1)
0.8 | 0.875 | 0.764(1) 0.763(1) 0.764(1) 0.764(L)
0.9 | 0.814 | 0.677(1) 0.676(1)
9 0.2 2353 [233(1) 2.33(1) 2.33(1) 2.32(1)
0.3 | 1.655 | 1.626(3) 1.625(4) 1.627(3) 1.626(1)
0.5 [ 1.099 | 1.052(2) 1.051(2) 1.050(3) 1.052(1)
0.7 | 0.864 | 0.793(2) 0.792(2) 0.794(2) 0.794(1)
0.8 | 0.792 | 0.705(2) 0.704(1) 0.704(1) 0.704(1)
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Table 4.1: Estimates of the critical temperature in the first- and second+egieres (the latter is indicated by an asterisk): MF, mean-
field predictions;y, using peaks of the susceptibility}® using crossing points of Binder cumulants of the magnetization; eqw,egh,

using the free energy, whefig corresponds to equal peak weights and heights, respectively; R¥f], Monte Carlo study based on
multihistogramming and the Luijten-Bl6te cluster algorithon= 3) and a standard metropolis algorithm £ 5), where (a) refers to
1/Ke(AF), and (b) to 1Ke(U™): Ref. [251]), cluster mean-field method combined with an extrapolatiomiqol based on the VBS
(Vanden Broeck and Schwartz) algorithm; Ref. [130]), transfer matethod combined with finite-range scaling.
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Figure 4.7: Free energym(kT,m) for g = 9,0 = 0.3,L = 400 (solid line), along
with the mean-field prediction (dashed line) as given by Eq. (4.4).

agreement with multicanonical ones. The discrepancy does not exégeazkdept
in the caser = 0.2, where multicanonical estimates lie much closer to the mean-
field prediction. This might certainly be (partially) attributed to the use fiedi
ent periodic boundary conditions, since | found Infinite Image PeriodierBary
Conditions tadrastically speed up the convergence to the thermodynamic limit, as
against the first image conditions used in [131, 19].

| further compare these estimates with those obtained by Monroe with the
cluster mean-field method [251], and by Glumac and Uzelac using a tranafer
trix approach [130]. As illustrated in Table 4.1, results obtained using trsteciu
mean-field approach combined with the Vanden-Broeck-Schwartz elatam al-
gorithm (Sec. 4.1.2) yield a very satisfying match, with a deviation as low as 0.1%
on average over the whole rangecotalues. The discrepancy with estimates ob-
tained using the transfer matrix method is slightly higher and amounts to 2% on
average, except for low values ofwhere the agreement of my results with the
mean-field prediction is, here again, far better. Since implementing Infinite Im-
age Periodic Boundary Conditions in the finite-range scaling approacémsys
intractable, this undoubtedly accounts for the discrepancy.

4.3 Spinodals: a novel approach to assess the order of
phase transitions

As already stated in the introduction of this chapter, a precise determinatiba of
tricritical value o¢(q) is a real challenge, due to the weakening of the first-order
transition asr¢ is approached from below. This makes traditional indicators, e.g.,
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latent heats or energy jumisfairly inefficient, since observing clear jumps in the
vicinity of the tricritical value entails simulating huge lattices.

Glumac and Uzelac in [131] used three less traditional estimators: the imterfac
free energy, the specific heat, and the reduced fourth-order Bindaulant, which
all turned out to be less sensitive to this weakening: in particular, the lastigu
defined adJ, = <E4> / <E2> is expected to reach a nontrivial constaht # 1 as
L — oo at a first-order transition only [79]; by extrapolating to the thermodynamic
limit from measures taken atfiierent lattice sizes, they foun, to fall between
0.6 and 07 for the three-state model. Still and all, this approach imposes simu-
lating fairly large lattices (arountl = 3000) for the extrapolation procedure to
be reliable, let alone the fact that Binder cumulants may experience ualtabie
crossover ffects [219].

Another crucial point, which will developed in Sec. 4.3.5, is the fact that all
these indicators do not allow the location of the tricritical line to be determined
accurately, because they tesmhoothlyto their second-order value as— o¢(q).

As will be seen in the remainder of this chapter, this is not the case of the method
developed hereatfter.

4.3.1 Outline of the method

The present approach is based on the location of spinodal points, wizsigtbe
accurately determined already for medium lattice sizes. In marked contrast-to
tihistogram techniques, the multicanonical method indeed allows one to ob&in fre
energy functions (or, equally, reweighted histograms of the energy)arange of
temperature which extends fairly far away from the transition temperature, with
remarkably modest numericafert.

The basis of this method relies on the fact that the temperattferatice be-
tween both spinodal points will tend to zero@gis approached, since there are
no metastable states in the case of continuous transitions. Stéeemlly, the
conditions under which metastability occurs, i.e., both first and secondhtieeis
of the free energy are zero, are met only at the critical point for a aooti tran-
sition: hence metastable states merge into a single large minimum as the first-order
transition turns into a second-order one. Such behavior has indeadiigely
observed, e.qg., for liquid-vapor transitions near the critical point, andrisebout
by the mean-field calculation of Sec. 4.1.1.

For a given set ofd, o) parameters, the location of spinodal points is deter-
mined by first computing the (variational) free energy function of the qodeam-
eter [Fm(KT, m), see Eq. 3.3] over a large temperature range. Alternatively, one
can make use of a similar function of the energy, F(kT, E) = — In Nrw (KT, E),
where Ny (KT, E) designates the reweighted histogram of the energy. While the
latter function plays the same role as the free energy of the magnetizatiomsit tur
out to yield a higher precision at log, as we will withess in a moment. The

"Energy jumps tend to zero as— o.
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Figure 4.8: Graphs dfe(kT, E) = — In Nrw (KT, E) for g = 5,0 = 0.3, N = 400, at
four characteristic temperaturesi, To, Tegn, andTeqw = Tc denote the tempera-
tures of the two metastable states, and the temperature of equal peak raights,
that of equal peak weights, respectivdly.L stands for the energy per spin.

limit of metastability at finite lattice size is then defined by the joint condition
dFe/dE = d?F¢/dE? = 0, or alternativehdF/dm = d?F/dn? = 0: for a first-order
transition, this condition is met at two temperatuigsand T, which satisfy the
inequality T, < T¢ < T, whereT denotes the transition temperature.

4.3.2 Obtaining reliable information from (variational) f ree energies

The previous free energy functions usually have rather ruggecgyrapving to
statistical fluctuations that occur on the corresponding histograms, &owe lzey
reliable estimation can be carried out, rapid oscillations must be filtered out by
means of a linear smoothing filter. The order of this filter is computed so that we
end up with at most three extrema over the whole temperature range oftinByes
continuously varyindT within this range, one determines the temperature of each
metastable state by monitoring the change in the number of minima (see Fig. 4.8).
An alternative approach that builds on the transition matrix method [341] is-intro
duced in the next section.

Graphs of the free enerdy.(kT, E) in Fig. 4.8 illustrate that the peak and the
plateau corresponding to the disordered phase are much narrowethtisgnof
the ordered phase. As a result, the precision in the determination of the &emper
ture T1 of the lowest metastable state is substantially lower than that of the upper
metastable stat€l§). This asymmetry increases with increasimgirrespective
of the power-law decay parameter), and ffeet precludes the use of reweighted
histograms for the estimation of spinodal pointgjat 7.
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(E)/L

KT

Figure 4.9: Average energy per spin fpe= 3,0 = 0.2, L = 400, computed over
both phases (solid line), ordered phase only (lower dashed line), iaoiered

phase only (upper dashed line). Vertical dotted lines indicate the fouacies-

istic temperatures: from left to right, lower limit of metastabililgT(), transition

temperatures (equal heighkSeqn, then equal weightkTeqy), and upper limit of
metastability KT>).

For g = 9, one has thus to rely on the extrema of the “other” free energy,
Fm(KT, m), since this function then becomes nearly symmetric and displays two
peaks that are well separated. Incidentally, the asymmetric shapg(loF, E)
can be accounted for by the fact that specific heats haveeatit magnitude in
the disordered and ordered phases, since this thermodynamic quantity ig simp
proportional to the standard deviation of the associated gaussian akrfis
may be readily confirmed by reweighting thermodynamic averages over la sing
subphase at a time, once the maximurk gk T, E) which separates the two phases
has been located. Figure 4.9 illustrates how this procedure was applied to the
computation of the mean energy per spin of each subphasg f08,0 = 0.2,
andL = 400 spins. A simple visual inspection allows one to assess a much lower
specific heat for the disordered phase than for the ordered phase.

4.3.3 Finite size scaling for spinodal temperatures

At finite lattice size, transition temperatures are known to experience a shift p
portional to the distance to the thermodynamic limit. As can be easily suspected,
the same feature applies to spinodal temperatures as well. Assuming thaitéhe fin
size scaling theory developed in [79] for first-order transitions is alkd {igin the

case of long-range Hamiltonians, and (ii) not only for transition temperstore

also for spinodal temperatures, | therefore compute temperatures #eitditice
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size by assuming power-law corrections ifL11 take it for granted that tempera-
tures defining the limit of metastability do indeed obey the same scaling behavior,
although the phenomenological theory proposed in [79] does not explicitigle
them. The inclusion of a second-order term proves necessary in toraétain
satisfying fits, due to the presence of small lattice sizes in the set of data. VYet,
interestingly enough, fitting finite-size temperatures to a power law of the form
T(L) = T(e0) + alLP yields very similar extrapolated values, with discrepancies
smaller than %, i.e., within the range of uncertainty. In additiéry(kT, E) and
Fm(KT, m) lead to distinct finite-size shifts, with the latter function easily allowing
one to drop second-order corrections without mutbaiing the final result, yet |

did not find any convincing explanation for this feature.

4.3.4 Adigression: gleaning information from transition matrices

Anticipating the introduction of a new multicanonical algorithm in Chap. 6, | would
like to briefly discuss at this point a possible combination of the spinodal method
presented above with the transition matrix apprééctAs will be witnessed in
Chap. 6, the algorithm needs a vital ingredient to work: tfierocanonical tem-
peratureB(E). The transition matrix method [339] will prove afffieient way of
obtaining a reliable estimate S{E) (although at the expense of increased compu-
tation cost). | show hereafter that the microcanonical temperature, etexerdned
by means of the transition matrix method, can also readily yield estimates of spin-
odal temperatures.
The point of departure is the so-called Broad Histogram Equation [339, 9
which reads
To(E—E) nE)
To(E' > E) n(E)’

wheren(E) = e5B) is the density of states, afd,(E — E’) is the transition ma-
trix element between energy levelsandE’. The last quantity is estimated by
accumulating a double-entry histogrdnfiE, AE) containing the number of poten-
tial moves? from E to E + AE each time the energy levElis visited. In terms of
the microcanonical entrogy(E), the previous equation writes

(4.8)

To(E = E')

S(E') - S(E) = In £~ EoD

(4.9)

I will now denote ag/(E, E’) thenumerical estimatef the ratioT.(E — E’)/To(E" —
E). Writing e = E’ — E, and performing an expansion on both sides to second order
in €, and then identifying order by order & we thus have

dS(E) .. dIny(E)
dE ~ dE
18The method was described in Sec. 2.5.5.

Actually, the microreversibility hypothesis that underlies the Broad Histogrguation imposes
that only single-spin updates be used for the estimation of the numbeteoftjad moves.

B(E) = (4.10)
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and
d’S(E) - d?Iny(E)

dE2 ~  dE?
Alternatively, one may fetch the two previous quantities by performing a pelyn
mial fit of Iny(E, E”) with respectta = E’ — E, i.e.

Iny(E, E’) = B(E)e + %%62 + O(e%)

For long-range potentials, this is all the more appropriate that the discretizdtio
the energy axis can usually be chosen very small, so that the polynomiah fittec
carried out over many points.

Now, the main thrust of the argument somewhat takes after Maxwell’s con-
struction: the free enerdye(kT, E), which defines the locus of spinodal points, is
obtained through the reweighting equatkes{kT, E) = E—kT S(E)?°(Sec. 3.4). At
a given temperaturkT, equilibrium values for the energy are thus obtained from
dFe(KT, E)/dE = 0 andd?F¢(kT, E)/dE? > 0, i.e?},

ds(E)
dE

(4.11)

<0.

B(E) = 1/kT and

While inflexion points are given bg?F¢(kT, E)/dE? = 0; whence spinodal points
follow from
dB(E)

ﬁ =0 andkT = 1/ﬁ(E)

An example of such calculation is depicted in Fig. 4.10 for the following model
parametersg = 6,00 = 0.9,L = 256 (i.e., these correspond to a weakly first-
order transition). The following temperature were obtaired: = 0.72525(5) and
kT, = 0.72224(4). The error is approximately two orders of magnitude smaller
than when using a reweighted histogram, as illustrated in the figure.

To wind up, spinodal points are obtained directly from numerical estimates of
transition matrices, and it is no longer necessary to resort to energyraistsgnor
to a production run, becaugéE) is estimatedlirectly in the course of the iteration
procedure. It can be argued ti#{E) and its derivative might as well be obtained
from the estimated density of states, by relying on a discréfierdntiation scheme.
This is not always practicable, however, because (i) in the multicanappabach,
the need to perform a production run stems from the fact that the estimated de
sity of statesmay notyield a perfectly flat histogram, and the production run in a
sensecorrectsfor this, and (i) a discrete ffierentiation scheme produces a lot of
noise (although this may be compensated for by applying a low-pass filtey, or
relying to a spline interpolation). Additionally, transition matriceslayeonstruc-
tion more reliable in the previous respect, inasmuch as they contain much more
information than the density of states (for one thing becawseypotential move

20k = 1 is implicit in the definition ofS(E) invoked here.
2Yn fact, this conditions along with the negative curvature condition yields thst probable
value, which coincides with the mean value in the thermodynamic limit only.
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Figure 4.10: An example of calculation of spinodal points from the information
provided by transition matrices. Model parametersaare 6,0 = 0.9,L = 256,

and the simulation was performed with the breathing cluster method presented in
Chap. 6. Dotted and dashed lines refer to the first and the second dpooata,
respectively (the error on the spinodal temperatures lies around®® and is
therefore not indicated on the graph). The inset shows the freeyeRrefkT, E)

at the second spinodal temperatifie, beforefiltering was applied, and the large
vertical error bars indicate the error on the spinodal temperatures etthaiom
Fe(KT, E).
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brings its own piece of information, not just accepted moves), and thesenaf

tion are éfectively utilized in the estimation g#(E)?%; this was already realized

by the authors of the method themselves, and some variants of the multicanonical
method incidentally capitalized on this, see, for instance, [299, 358].

4.3.5 Application to the phase diagram of the long-range Ptd chain

The present section is devoted to the application of the spinodal method to the in-
vestigation of the phase diagram of the long-range Potts chain. Henecécwate

on the location of the so-called “tricritical” linec(q) where the transition changes
from first to second order. The outline is as follows: first, spinodal teatpezsT,

andT; are determined from finite-size scaling for severaklues in the first-order
regime; then it is demonstrated that, by relying on the raior., whereT, is the
upper spinodal temperature aiid the transition temperature, one can devise an
efficient method to determine the location of the border line with markedly higher
precision than with other indicators.

Spinodals As can be viewed in Fig. 4.11, spinodal points merge slightly above
o ~ 0.8 for g = 5, and according to the spinodal method developed above, this
indeed signals a change of the nature of the transition. A plok®f, = kT, — kT,
against Yo indicates that, for all values @f, the points fit quite well on a straight
line for low enougho, and the slope of this line tends toward that of the mean-field
curve. Theq = 7 case is sketched in Fig. 4.12, where it is clear that the point at
o = 0.6 (/o ~ 1.67) marks the border between the linear and nonlinear behavior,
illustrating the weakening of the first-order transitiorvass approached.

Since both transition and spinodal temperatures appear to scaje-és the
vicinity of the mean-field regime, it is more appropriate to work with the ratios
T1/Tc and T,/ T, for the scaling factors will then cancel out neatlxceptwhen
approachingr¢(q). As previously mentioned, the second ratio, which is sketched
in Fig. 4.13, dfers a higher precision owing to a larger free energy plateau in the
ordered phase. As falls off to the mean-field regime, this ratio tends, within error
bars, to the value predicted by mean-field theory, Te/ T, =1.01, 1.037, 1.059,
1.077 forq = 3,5, 7,9, respectively.

On the leftmost side of the graph in the figure, a sudden sharp decfegsd g
can be witnessed as — o. This suggests a quite interesting way of determining
o¢(q) without much ambiguity, as opposed to, e.g., methods using the interfacial
free energy or Binder cumulants. In view of the shape of the graphmgdhe
most reliable method is a fit of data points to a polynomial. The lowest error was
reached with a polynomial of degree 2 fpr= 5, 7,9, and of degree 3 fay = 3.

22There is one pitfall, however, because it is practically impossible to estimateattifidence
interval onB(E) other than by performing multiple independent simulations. This is notdke c
when one has performed a production run, where standard jackkeifeods can be used.
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Figure 4.11: Spinodal curve for®< o < 0.8 (Q = 5). The limits of metastabil-

ity T, andT> (i.e., defining spinodal temperatures) are indicated as triangles and
diamonds, respectively. The transition temperafilyés reminded as dotted line.
Errors are smaller than the size of symbols.
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Figure 4.12: Diterence between temperatures of metastatikfy,, = kT, — kT
vs 1/o for q = 7 (circles connected by solid lines). Errors are smaller than the size
of symbols. Mean-field prediction are shown for comparison (dashed line)
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Figure 4.13:T,/T. vs 1/o for q = 3,5,7,9. Solid lines indicate polynomial fits.
Dotted lines are guides to the eyes. Error bars are smaller than the sizespf do
except where explicitly indicated.

The following numerical estimates are obtained:

0.72(1)
0.88(2)
0.94(2)
0.965(20)

O N o1t wo

The graph ofr¢(q) is sketched in Fig. 4.14, along with two other estimations ob-
tained from Monte Carlo simulations and the Luijten-Bl6te cluster algorithm:

e o €[0.6,0.7] forg = 3 ando > 0.8 for g = 5 [131]; the authors resorted
to three distinct indicators, i.e., Binder cumulants of the energy, peaks of the
specific heat, and surface tensions (Lee’s criterion [219]);

e 0 €[0.7,0.8] for g = 3 [213] (it was suggested by the authors, however, that
o = 0.75mayalready belong to the second-order regime); this estimation is
based on the standard double-peak structure of the histogram, yethbesau
investigated sizes up to= 21° spins.

Discussion The crucial point that ensures the superiority of the above method as
against other approaches is that the quantifies T, andT,/T. do not reach 0

in the same fashion. This &pparentlyso because the first-order ¢beient in the
expansion ofl»/T; — 1 in terms ofe = o — o¢ has a large value, which is not the
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Figure 4.14: Phase diagram computed using finite-size scaling propdrtipme
odal points, folo- < 1.0. Dotted lines are guides to the eyes.

case forT, — T;. This means that the error on the determination of the value of
o for which To/T. — 1, is smallef® than that associated with the condition that
Tp,-T1—>0.

| deem it important to stress, at this point, that the previous discussiomdbes
outlawa null first-order cofficient: in the very vicinity ofo, the graph oflf2/T1
may very well be smoother than expected, but this cannot be ascertaomad f
available numerical data; if this is the case, however, then (i) higher tedas
might rapidly compensate for this behavior, so that the graph looks neaebyr lat
a coarser grain, and (ii) overall, the error on the estimatiomdé probably very
low, leading to an underestimation of.(q) (as will be discussed in Sec. 4.3.7,
there is compelling evidence indeed tha{q) is bounded by D).

As a side note, this suggests that, from an analytical point of view, it waald b
quite interesting indeed to derive such an expansion, and to check fealtre of
the first order caofficient. Whether the real-space renormalization group approach
of Cannas and Magalhdes [64] would be suited for this purpmssedilution has
been included in the mod¥] is an appealing question indeed.

Comparison with other indicators Noteworthy enough, Lee’s criterion [219]
sufers from the same shortcoming as does the quahity T1. In [131], this cri-
terion was used (along with the Binder cumulant of the energy and the syt

230r equally,T, /T, even if the ratidl,/ T is endowed with a lower uncertainty.
24See Sec. 4.1.3 for a discussion on this issue
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to discuss the change of regime for the three-state model. While the behiavier o
reduced surface tensiax/L as a function obr andL qualitativelydemonstrates
the weakening of the transition asis increased, more quantitative information
can hardly be drawn from the graph&F /L vs . For the sake of completeness,
| performed the calculation fay = 9 ando = 1.0: the value ofAF,/L extrapo-
lated in the thermodynamic limit is depicted in Fig. 4.18; it is blatant that, although
AF/L tends smoothly to zero as— 1, thus signaling a change of regime in this
region, the shape of the curve @s— 1 does not allow one to draw convincing
conclusion regarding the location @f.

The specific heat does not represent a better estimator for that mattézdtiss
to a lower bound of ®5 for o¢(3)). Incidentally, it is by relying on Binder cumu-
lants of the energy extrapolated to the thermodynamic limit that the authors in
[131] were able to suggest a change of regime in the interv@|(Q(¥], and yet the
graph of the extrapolated value (Fig. 3 in the article) is extremely smooth agwell
the interval [065, 0.8] so that a more precise estimation seems in fact out of reach
(let alone the strong crossovefexts that Binder cumulants may experience [34];
| shall further examine this point in Sec. 7.6.

4.3.6 Asymptoticq — oo behavior and the1/r? line

In view of the phase diagram just obtained (Fig. 4.14), one may readilggram
the asymptotic behavior of the;(q) line in the limitqg — . Indeed, this behavior
lies at the core of a controversy surrounding the nature of the phassitima on
the line of inverse square interactions. Before reexamining the congsoirethe
light of the previous results, | will therefore provide a blow-by-blowaaat of the
current state of the battleground.

Topological phase transition in models with inverse square interactins For
one-dimensional models, the line of inverse square interaction is speca,isin
was rigorously proven that no phase transition at finite temperature can foc
o > 1[55, 107, 124, 290, 316]. This marginal case, as it turns out, mamarcgly
be an “upper critical range” of interaction: it has been claimed [11, 33208] that
it is also the locus of a topological phase transition, similar in several resfmec
the Kosterlitz-Thouless transition governed by topological defects thangitels
exhibit in two dimensions [207]. This class of transitions of “infinite orddsba
covers phase transitions in superfluid helium and superconductatsnating
transitions in two dimensions [257].

Indeed, it has been found that the correlation function displays a plewer
decay with an exponent depending on the temper&t(88, 171], leading to a line
of critical points below a critical temperatufig. At T, however, correlations die
off logarithmically with the distance (specifically, agldr, [33, 235]), yet forT

2Though with an exponent  4+/(T. — T)/T, so that correlations dropffomore rapidly with
decreasing temperature than in the XY model.
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aboveT, it was established from renormalization group arguments that the corre-
lation length follows an essential singular behavior again like the XY model, i.e., of
the forme®™ wheret is the reduced deviation froffi, (recalling thate = —1/2 for

the XY model). Kosterlitz also reported a scaling of the form erp{()/27°T]

for the correlation length of th®, model withn > 1 [208]. Noteworthy enough,

T = 0 in the latter case.

Early Monte Carlo simulation [33] suggested that the specific heat increase
aboveT. with a finite-size scaling behavior that rules out a second-order transition
although it was pointed out by the authors that the saturation — which isehara
teristic of the XY model — was not reached for the sizes investigated in their nu
merical study; a recent investigation based on much larger lattice sizeswedfi
the saturation at a temperature slightly above the critical temperature [235].

Cardy [72] extended the investigation dgestate Potts models by means of a
kink-gas representation. Here, kinks represent elementary excitatiaghs sys-
tem (akin to domain walls in nearest-neighbor models), that is to say, with spins
lined-up in the same direction over large domains separated by walls, and their
density is adjustable through a chemical potential (which emerges fronxa ree
pression of the Hamiltonian in terms of kinks). It was established that thegta-ex
tions interact logarithmically with the distance, and in this respect they candndee
be viewed as “topological defects” resembling (anti)vortex in XY models,esinc
vortexanti-vortex pairs interact in the same fashion (the same behavior is found
in the two-dimensional Coulomb gas, where the electrostatic potential decpys lo
arithmically [143, 144]). Renormalization of the kink-gas Hamiltonian yields an
essential divergence for the correlation lengtlz, bt~ asT, is approached from
above, with an exponemtdepending on the number of states of the model.

Recently, an extensive Monte Carlo investigation based on the Luijten-Blote
cluster algorithm was carried out for the Ising and three-state Potts di2aiBs
The authors focus on the scaled order paran(ehé)/kT, and show that this quan-
tity undergoes a universal jump at the transition temperalyr@gogether with a
superposed “singularity” which vanishes &t and is governed by the same ex-
ponents as the correlation length). Lower bounds for this jump were gimen
rigorous grounds in [5], but its universal character for systems wiibrge square
interactions was first suggested in [235]. From the finite-size scalingvimahof
the scaled order parameter, and by performing simulations uptb02 spins, the
authors were able to estimate the magnitude of the critical jump to lieta{d),
the transition temperature around®4 (in units of the Potts model) and the lead-
ing critical exponent of the superposed singularity near 0.54, the latter being
in very good agreement with the value gf2ifound by Cardy (i.e. Aq + 2) with
g = 2 for the Ising chain) [72]. Similar agreement is observed for the thisge-s
Potts chain, with for instanc&; = 0.7089(2). As a by-product, this study thus
rules out, at least fog = 2 andq = 3, the invariance of the critical temperature
with respect to the number of statgsas suggested from real-space renormaliza-
tion [64] (Sec. 4.1.3). These results were backed up by another nainstucly
of the same model based on the largest cluster distribution [325] (where¢hals
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Luijten-Bl6te cluster algorithm was used, yet in its Swendsen-Wang flavdnmg
authors propose to determine the critical exponent of the superpospdasity
from the quantityL(0T/oL)y ~ —(T - To)™" [289], wherey denotes a reduced
susceptibilityy /L7, andy is computed through an improved estimatdrased on
the largest cluster distribution.

So, where does the tricritical linereally terminate? Overall, the previous find-
ings (mostly based on renormalization techniques, yet also including athafdf
Monte Carlo simulations) give a picture of models with inverse square intemactio
that seems to mimic the vertex-unbinding transition of the XY model. However,
several numerical works contradict this picture to some extent. Both thefdéran
matrix method of Glumac and Uzelac [130] and the real-space renormalization a
proach of Cannas and Magalh&es [64] failed to reproduce the e$samgialarity
ato = 1.0. Incidentally, the issue was not addressed in the work of Monrog,[251
although the coherent anomaly method, being essentiatigan-fieldmethod, is
certainly not the best method in this respect.

Most importantly, a recent work by Bayong, Diep and Dotsenko [19] @n th
g-state Potts model cast real doubt upon the issue, by arguing that the.(me
crosses the line of inverse square interactiorgs-aB, i.e., ato- = 1, the transition
is of the first order fog > 8. The method used by the authors is basically a single-
histogram Monte Carlo technique [113] with a truncated long-range potersial,
periodic boundary conditions are limited to the first image only (see Sec. 412.1 f
an extensive discussion of this topic). The first-order nature of theitiam was
asserted by the authors on the grounds that the histogram of the ensatayed
a clearly visible double-peak structure abaye= 8. From a purely numerical
viewpoint, the result does not contradict previous numerical studiés B2%], in
so far as the last studies demonstrated the topological nature of the trafmition
g = 2 andq = 3 only. However, the assumption that the “tricritical” line crosses
theo = 1.0 line raises a handful of markedly intriguing questions:

e First, this would imply that Cardy’s scenario [72] is somewhat flawed, since
aboveq = 8, the transition can definitely not la¢ the same timef the first
order and of infinite order; this entails considering that Cardy’s devedop
based on a diluted kink-gas might not be valid at laggé is appealing to
note at this point that several models, which normally exhibit a Kosterlitz-
Thouless phase transition, have been found to undergo a first-cadsition
for suficiently non-linear interactions between spins [100, 101, 328], so that
the scenario mentioned above may not be deemed totally atypical;

e Although it is not stated in the article of Bayong et al. whettver 1.0 is
indeed a “termination” point or if the tricritical line gets across it, the former
hypothesis would give the point-(= 1.0,q ~ 8) a very prominent status in
the field of critical phenomena, i.e., a point terminating a line of topological

26See Sec. 2.3.5.
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Figure 4.15: Phase diagram of Fig. 4.14, along with the disputed line ofsaver
square interactions. The open circle shows wherestl{g) line was claimed to
terminate in [19]. According to Cardy’s scenario [72], on the contrdmywhole
line is the locus of topological transitions; grayed disks refer to a numesiicey

by Luijten and Messingfeld [235] reporting the onset of a topologicakitam for
g=2andq=3.

transitions, a region of second-order transitions, and a domain of diiscon
uous transitions; conversely, the latter hypothesis would prompt a reexam-
ination of the (as yet debate-prone) long- to short-range crossogansgo

(see Sec. 5.4 where the controversy is described at length, and wihe
multicanonical simulations).

The phase diagram obtained in the previous section is reminded in Fig. 4.15
along with the controversial areas. In what respect can this phasewdizhed
light on this controversy? Clearly, if Cardy’s scenario proves relidhn we must
have limy—. o¢(q) < 1. Although a numerical simulation may hardly bring about
rigorous evidence with regard to an asymptotic behavior, the shape affw®
line in Fig. 4.14 lends strong support to such a behavior. Still, the doulale-pe
structure ab- = 1.0 and largeg remains intriguing and must be resolved in some
way or another for the whole picture to be convincing. The purpose oféhe
section is to scrutinize again into this issue, yet with a markedfgrmdint approach
involving (i) the spinodal method developed in Sec. 4.3, and (ii) a finite-s&iéng
analysis.
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Figure 4.16: Linear fit of finite size temperatures y& for q = 9, o = 1.0. Dotted,
solid, and dashed lines correspondia, kTeqn, andkT>, respectively. Error bars
are smaller than the size of symbols, except where explicitly indicated. In the limit
L — oo, the diference between temperatures of metastability tendsO@1a@.
Within error bars, the transition is thus clearly not of the first order.

4.3.7 Unexpected finite-size scaling behavior at = 1.0: case closed?

To set the stage, | will briefly inspect the cage 9,0 = 1.0, that is, just above
the change of regime claimed in [19]. | performed a series of simulations at
L = 50,100 150 200, 300, and 400 for this set of model parameters, and then |
computed the corresponding (finite-size) spinodal temperafr@ and To(L)

by relying on the free enerdym(KT, m). First, a naive analysis based on the shape
of the free energy at a given lattice size might be markedly misleading, $ecau
the histogram indeed displays a double-peak struclready at sizes as low as

L = 100.

As may be noticed in Fig. 4.16, a striking feature of this limiting case is the
existence of metastable states at all finite lattice sizes, with a first-ordercehara
ter strongly enhanced at low sizes, despite the fact that finite-size sgédiicly
T, — T = 0 in the thermodynamic limit. It turns out that, as opposed to the claim
in [19], the transition is clearly not of the first order in the thermodynamic limit.
Thisunusual(for reasons explained below) finite-size scaling behavior is also con-
firmed, though in a less marked way, fgr= 6,7, and &’. The latter case is

27pfter the completion of this thesis, | recently reexamined the situatign=at 2 by means of the
breathing cluster method and in the two-dimensional Potts model with medinge interactions,
where | witnessed the same finite-sifeet.
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Figure 4.17: Metastability temperatureffdrenceskT,(L) — kT1(L) on the line

o = 1.0forq = 8 andq = 9, along with the corresponding linear fits (solid lines).
For the sake of clarity, the size of the error for each lattice size is showrbas,
the error shown corresponds to the largest of both errors computed=<@ and
q=09.

depicted in Fig. 4.17 along with = 9. It is apparent that the strength of the first-
order transition at small sizes increases wgthConversely, folg < 6, a precise
location of metastable states become impracticable at the medium lattice sizes that
are under investigation, so that it seeatdirst blushthat the distance between the
line of inverse square interactions and the lingq) plays a prominent role in the
issue.

To wind up, there are two remarkable points in the issue:

e First, simply relying on the double-peak structure of the histogram (or on
the temperature fierenceT, — T1) at the transition temperature is clearly
misleading; it is crucial that a finite-size scaling analysis should be carried
out. This indeed rules out a first-order transition in the thermodynamic limit.

e Second, the observed finite-sizeet is somewhat atypical, as against the
usual picture where transitions turn from second- into first-order dattiee
size is increased. This point is discussed in greater detail hereafter.

Comparison with Lee’s criterion

Before going over a more detailed interpretation of the previdiece however,
it is perhaps interesting to compare the prediction given by the spinodal dhetho
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Chapter 4. From mean-field to tkrécritical line

with those yielded by morestablishedndicators. Lee’s criterion [219] relies on
the behavior of the reduced surface tensidtiL in the thermodynamic limit. Fig-
ure 4.18 depicts a plot of the reduced “surface” tension with respecetiattice
size forqg = 9 and various values af between @ and 10. First, it is noticed
that the tension indeed decreasesras 1, confirming the change of regime near
o = 1. An extrapolation to the thermodynamic limit is depicted in Fig. 4.19, where
a scaling law of the formaF,/L ~ a+ b/L was assumed, i.e., by considering that
the long-range nature of the potential implies that the dimension of the intésface
the same as that of the lattice, and restricting the fit to first-order correctims
witnessed in Fig. 4.18 (top)), two regimes may be easily distinguished:

e Foro = 1.0,AF(L)/L behaves as/1 and, according to Lee’s criterion, this
signals acontinuoudransition. It should be noted, however, that this scaling
behavior is diferent from the one observed for “true” continuous transitions,
e.g., forg = 3 ando = 0.9, where | foundAF (L) = O at all sizes within error
bars;

e For lower values ofr, the above quantity now behavesas b/L, and the
transition is of the first order. This is in agreement with the results obtained
using spinodal curves. Contrary to the case of first-order transiticstsoirt-
range models, however, the tension scales in first approximatiot ether
thanLP~1. The figure also clearly indicates that correction terms are non-
negligible (i.e.b is non-null).

As will be discussed in Chap. 7, the “surface” tension does actually geafte
nicely asL®, wherea is a non-integer exponent that will be interpreted as being
reminiscent of the fractal structure of the interface. It is somewhat andkwo
ascertain such scaling behavior from the small set of data points availabléhe
this intriguing scaling behavior will be clearly visible when carrying investigatio
over several orders of magnitude in terms of linear size, as will done in7Sec

4.3.8 Outlook: boundary efects and fractal geometry

At first glance, this unusual finite-siz&ect substantially contradicts the expected
picture, whereby at first-order transitions, the correlation length is findeaughly
independent of the lattice size (providédc L), and is roughly connected to the
size of clusters. As a result, first-order transitions appear as if they e@ttin-
uous until the lattice size overtakes the correlation length. With regard to- shor
range models, this has been the standard scenario thus far: the betieaored

on the line of inverse square interaction suggests, however, that thiargcenay

be somewhat pondered about in the case of long-range models. Thisfiomet
three distinct perspectives in what follows.

The crucial observation that will underly the arguments laid down hereafte
that, in a long-range system, each patrticle sees the boundaries, itrespéthe
lattice size, although as size is increased, particles in the bulk become more and
more “blind” in this respect.
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Figure 4.18: Reduced surface tenskien(kT, m)/L for g = 9 and various values of
o (top), and a detailed view far = 1.0 (bottom).
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Figure 4.19: Extrapolated value of the reduced surface temsigf(L)/L in the
thermodynamic limit forg = 9. A linear scaling law of the formAFq(L)/L ~
a+ b/L was assumed.

Truncation of the long-range potential One way to examine the issue is to con-
sider the influence of the truncation of the long-range potential in finite gepme
In this regard, it is crucial to note that this truncation ocaamsspectiveof the
periodic boundary conditions utilized: relying on infinite-image periodic loauy
conditions simply speeds up the convergence towards the thermodynamic limit.
On a lattice of sizd. with periodic boundary conditions, the largest allowed
distance between any two spinsLig2, and this also corresponds to the smallest
interacting potentialffiordable on a given lattice. It is manifest that these spins ex-
perience a stronger interacting potential whendvisrsmall, and hence the whole
array of spins may be rigidly tied to an adequate extent for an orderegistan-
sition to occur through metastability. When increasing the lattice size, on the con-
trary, spins being a distantg2 apart now experience weaker interaction, and this
results in a softening of the transition. Still and all, whether this softening might
be suficient to yield a change of nature of the transition at some (either finite or
infinite) lattice size, so that the transition may be continuous in the thermodynamic
limit, is an unsettled question; this assumption is borne out at leasj fer9
ando = 1.0, as witnessed by the present results. Alternatively, one may say that
the truncation of the long-range potential at small lattice size artificially shifts the
model toward the mean-field regime, since the interacting potential now varies
smoothly over the available distance of interaction. This “shift” should oatal
lattice sizes, although it will make its influence felt preferably at small sizesaa
lower values of the decay parameter. The fact that the “shift” is partigulaible
here, on the line of inverse square interactions, pertains to the factithtnélies
very close to the change of regime. Overall, this feature certainly accedrats
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least partially — for non-trivial finite size scaling.

Correlation lengths The usual physical meaning attributed to the correlation
length in the case of short-range models, i.e., loosely speaking the awzage

of a cluster of contiguous spins having the same value, may no longer hold in th
case of long-range potentials: since all the spins of the lattice, howetantisey

may be, are tied together through an interacting potential, there is basicalyedo n

of a long-range order for two distant spins to already have slightly letect fluc-
tuations. At continuous transitions, it has been shown that the correlatiatidn
comprises two parts: a long-range part reminiscent of the power-lasyherin-
teraction, and #&ue correlation function [231] (see, also, Sec. 5.1). In the context
of first-order transitions, this means that either clusters may extend welhtéke

size permitted by the value of thrie correlation length (i.e., once the long-range
potential has been removed), or the correlation length itself may become infinite
in the thermodynamic limit. This behavior has indeed already been reported in
models of DNA thermal denaturation [314] as well as in the context of wetting
[280].

Finite Size Scaling for long-range models revisited As was mentioned above,
it is clear that finite-sizeféects must play a non-trivial role in the observedisual
behavior.

The key issue here, however, does not revolve around the finitessae
ing behavior of critical couplings, but that of free energies, surteosions and
metastable temperatures. In the previous section, it was shown that tie=i®o
underpins this unusual finite-size scaling: this suggests that the theraraiyn
guantities that are influenced by thifext are connected to the concepts of do-
main walls, surface tensions, and correlation lengths (in the nearest-oeRbits
model, we know that the last two are connected [46]). To what extenthase
quantities influenced by the boundaries in the case of long-range modal#is a
triguing question: in other words, what we lack for is a theory of finite-stading
of surface tensiongnd metastable states at first-order transitions in long-range
models.

In view of this, one may readily ponder on the topology of the mixed-phase
configuration in long-range models, and its influence on finite-size scalimigg
to the long-range potential, the geometry of the interface is probably fatriess
than it is in nearest-neighbor models, and might exHibies viz. a fractal (or
“spongy”) structure.

127






Chapter 5

From long-range to short-range
behavior

The present chapter focuses on the critical behavior of the longiats chain
beyondthe boundary¢(g). The investigations concentrate on the second-order
regime of the model and on the crossover from the long-range to the reimgye-
regime.

To set the stage, the main results from functional renormalization theory are
reviewed in Sec. 5.1, and an outline of the derivation of a perturbatpareiton
aroundo = 1/2 is given. It is important to underline, however, that these results
correspond either to th®, model, or to a continuum version of the Potts model
with q < 3, whileq > 3 in the model investigated here.

With this in mind, critical exponents are estimated €pre 2 using the mul-
ticanonical method outlined in Chap. 3. The focal point is the comparison of
these exponents with (i) theoretical predictions and (ii) previous numesiad}
ies (Sec. 5.2). The aim is to evaluate to what extent critical exponentssféatis
chain withq > 3 depart from those obtained from functional theory. A second
objective is to estimate the precision of the multicanonical algorithm at modest
lattice sizes, in particular as regards the peaks of response functibich (are
obtained from a reweighting procedure), since these enter the estimatiotiaai
exponents through finite-size scaling relations.

The second part of this chapter is devoted to the long- to short-rangsower.
First, an extensive account of the controversies surrounding this isggiven in
Sec. 5.3. Then, a novel approach is introduced to investigate the drisetshort-
range regime: an exact transfer matrix is carried out foptireshort-range model,
and compared with the temperature dependence of some carefully chesan-th
dynamic quantities (Sec. 5.4). The multicanonical method will turn out to play a
pivotal role in this approach.
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Chapter 5. From long-range to short-range behavior

5.1 Universality and critical properties for long-range Hamil-
tonians: conjectures

As already stated in Chap. 1, the interaction ranfiecés the universal critical
properties of a long-range spin models in much the same way as the dimension fo
their nearest-neighbor counterparts. As for interactions decayinp@asex law of

the interparticle distance, this role is played by the decay parameterd in this
respect, Ising chains represent perfect candidates since theiidrelsacritical
along the wholer line [40] (with even essential singularities inside some inter-
vals). Although it has been demonstrated in the previous chapter thastastidl
part of the phase diagram of the long-range Potts model correspodidstmtin-
uous transitions, i.e., the transition is first orderdok o(q), the situation is not
less interesting here far > o.(q) for the three following reasons: first, there is
still a small region under the tricritical linec(q) where the model exhibits a crit-
ical behavior, and estimates of critical exponents reported in sever&kwbow
significant discrepancies in this respect; second, several rigaesuks have long
been made available in the casegdfmodels, and it is tempting to pit them against
models with aZq symmetry; third, critical exponents are connected in some way
to the long-range to short-range crossover problem, a long-disputed iBse last
point is considered in greater detail in a subsequent section of this chapie
first two points are discussed hereafter, and to set the stage | will bétbim dis-
cussion of available results from functional theory regarding criticabagnts for
1/rP+ interactions.

5.1.1 Ginzburg-Landau functional

In Fourier space, the corresponding Ginzburg-Landau functiodlita, in the
smallk limit and for ann-component fields(k), the following expansion,

H= f dPk(r + vok? + vok?)@(K) - F(—K) (5.1)
+ [ PladPled®lag @) - d)@k) - H-k - o - ko)

where the mass termvaries linearly with the temperatdreearT.. The only dif-
ference with standarg* theory resides in the presence daterm in the gaussian
part of the Hamiltonian, which is non-analytical fer¢ N. At o = 2, logarithmic
terms must enter the previous expression, k&.is replaced byk?Ink. From a
dimensional argument, it is easy to see thatktherm (which is reminiscent of the
“gradient” term in short-range models) is irrelevant ok 2, i.e., vanishes under
successive renormalization transforms. Therefore, the (bare)saweppagator

That is,r « t, wheret is the reduced temperature deviation with respect to the critical tempera-
ture of the gaussian model.
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5.1. Universality and critical properties for long-range Hamiltonians jeminres

actually reads- (r + k%) in this regior It is interesting to note that, far > 2,

it is now thek” term which is irrelevant and the model belongs to the short-range
universality class. However, the (now subleading) long-range irtteregives rise

to non-trivial finite-size scalingfeects [80, 91, 90].

5.1.2 Upper critical dimension

The upper critical dimension can be readily estimated by relying on the Gopzbur
criterion (see for instance [76]), which sets the limit of validity of the meald-fie
approximation from the ratio of field fluctuations to field averages. Takind-gu
ance from standard mean-field theory applied to short-range functjonelsorre-
lation function in the mean-field approximation writes

KT_ &
Vo 1+ (k&)

where the correlation length is given by

el
\r +u@)?

and(¢) is the order parameter in this approximation, w§#) = —3r/u in the
ordered phase. The Ginzburg criterion regdSG(k = 0) < (¢)?, i.e. (in the
ordered phase)>P/” > 1; whenceD. = 20 is the upper critical dimension.
Alternatively, this result can be established from renormalization tieand has
also been proven on rigorous grounds in [6].

G(K) =

5.1.3 Momentum-shell renormalization

The first calculation of the critical exponents for a gen@almodel with long-
range interactions/tP+7 can be traced back to the seminal works by Fisher, Ma
and Nickel [115] and Suzuki, Yamazaki and Igarashi [306] in théyed’s. Both

are based on the momentum-shell renormalization group method introduced by
Wilson [345, 346]. Basically, Wilson’s approach is a Fourier-spaasioe of
Kadandi’s decimation scheme, where a renormalization transform of scaling
consists in integrating over field fluctuations of large moméntaA /b, where the
integral cut-df is defined byA = 2r/a with a the (current) lattice spacing. For-
malizing this a little, 1 writeg(k) = ¢<(K) + ¢~ (K), i.e., the original field is split up
into low- and high-momentum terms having supportg\b[ and [A /b, A[ respec-
tively. The renormalized Hamiltoniad’ is formally obtained through a functional

2This would indeed correspond tomai(+ k™)~ bare propagator in field theory parlance, and thus
m? + k7 + Z(k) is the inverse two-point correlation function whéeenotes the proper energy as
usual. Apart from the non-analyticity &, which has non-trivial consequences, the same line of
arguments as int* theory applies.

3This corresponds to the gaussian fixed point becoming unstable.
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integration ove” (Kk),
e_H/[¢/<(k’)] — f@¢>(k)e—H[¢<(k)+¢>(k)]

where primes indicate rescaled quantiti&s:= kb (this follows from¢ — &/b

in real-space) and’(k’) = {¢(k), where( is thefield rescaling factar The latter

is generally fixed by imposing that the amplitudes of correlation functions be lef
unchanged under rescaling at the critical point, £&.= bP~7-2. The exponent

n enters the expression of the correlation function in Fourier-spaceitjaality)
throughG(k) ~ k72, and is termed theorrelation function exponerdr Fisher's
exponent

5.1.4 Gaussian model with long-range interactions

For a gaussian model withra+ k” inverse propagatorg = 0), the derivation is as
straightforward as in the standard gaussian model (i.e. rwith), since the Hamil-
tonianH can be separated into a low-momentum pértand high-momentum part
H~>, and the integration over higher momenta trivially yields the following recur-
sion relations,

r’ = b2y

2_pn—
V., = Vb

After imposing that, be kept constant (i.eZ,is imposed by the most stable fixed
point), one obtaing = 2—¢ andv = 1/0; the standard gaussian model is recovered
wheno = 2, i.e.,7 = 0 andv = 1/2. The last results follow from the scaling
behavior of the correlation lengthi~ |r|™"; whencer’/r = b/,

5.1.5 Perturbative expansion ine = 20 — D

Whenv, # 0, the derivation is less trivial, since the Hamiltonian is no longer
separable into low- and high-momentum terms, and a (diagrammatic) pertarbativ
expansion inv, must be carried out. This expansion shows in particular that the
upper critical dimension of the model & = 20~ (wherebyD. = 4 is recovered
for the short-rang@* theory?). It is not the aim of this thesis to describe the
method in detail; numerous writings have been published on the subjectpsee, f
instance, [76, 21] for an introductory course, and [174, 363] forenspecialized
monographies. Therefore, my goal in the following will be to discuss thdtses
more than their derivation.

As in conventional field-theoretic renormalization applied to short-range mod
els, the derivation in [115] is asexpansion around the upper critical dimension
D¢ = 20, i.e.,e = 20 — D. ltis valid for anyD-dimensionalO,, model provided

4And yet, as will be seen below, this that not entail thrat 2 is the boundary between the short-
and long-range regimes.
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o # 2; | recall that the last case induces &elient form for the Ginzburg-Landau
functional due to the presence of a logarithmic term in the gaussian parsphke
ical model can be recovered in the limit»> c. Renormalization group equations
yield two fixed points: the standard gaussian fixed paift£ u* = 0), and a
non-classical (Heisenberg-like) fixed point of ordeu* = ev2/(n + 8), unstable
direction). The main findings of [115] are as follows:

e o < D/2 defines the so-called “classical” regime where the gaussian fixed
point is stable (i.e., mean-field like where critical exponents are concdgrned
where the correlation function exponept= 2 — o, the correlation length
exponent = 1/0- and the susceptibility exponent= 1,

e on the boundary- = D/2, logarithmic corrections to scaling apply;

e for D/2 < o < 2, the “non-classical” region (where the gaussian fixed point
loses its stability)y is still given byn = 2— o (with no correction to orde#?
ande® at least), i.e.y retains its classical value, whereafter reexpressing
the e-expansion in terms oo = o — D/2) is given to first order ir\o- by
1+ %%Aa; the expression of follows from the standard scaling relation
v=y/2-n)=vy/0;

e for o > 2, the exponents take their short-range value. Note that, in one-
dimension, this picture is somewhat incomplete, since the absence of a phase
transition at finite temperature was rigorously provendsfor 1 [107]; this is
discussed in greater detail in Sec. 5.3; another interesting remark is the fac
that, at least foD > 4, the system is in its mean-field regime whatewer
(although this condition is $ficient, yet not necessary).

From the expression of, the correlation function thus behaves according to
G(r) ~ 1/rP= (to be compared witld(r) = 1/rP* for the interaction), which
means that the correlation function die more slowly than the iteration, as ex-
pected from the intuitive picture. This behavior was confirmed at shdetrdis by
means of simulations in the classical regime [231].

As a last point in this section, | would like to mention how startling it seems
at first that more than two decades have separated the seminal derofati@se
results through analytical perturbation methods and their verification byswfan
Monte Carlo studies (see, for instance, [230], which — historically — gesh
represents the first really extensive study in this respect). This sheutairdy
be seen as another evidence of the challenge that long-range intesaepoasent
from the viewpoint of numerical simulations.

5.2 Critical exponents forq > 2: multicanonical simula-
tions

This section reports results obtained by multicanonical simulations regarding th
critical properties of thay-state Potts chain in theontinuousregime, i.e., for
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oc(0) < o < 1.0. Theo > 1.0 case will considered in a subsequent part of
this chapter in connection with the crossover from long- to short-ranigamvia.

As far as theor = 1 boundary is concerned, a few remarks are in order. As
mentioned in Sec. 4.3.6, the line of inverse square interactions,1, has been
claimed by some authors to be the locus of a Kosterlitz-Thouless-like transition
exhibiting essentiakingularities. The work of Cardy [72] is enlightening in this
respect, since thg-state Potts model should exhibit this kind of transition for all
g. Although several other authors also reported results in contradictionthigh
assumption, claiming power-law singularities and a finite correlation length expo
nenty [19, 64, 129, 130], a recent Monte Carlo study tipped the balance ar fav
of Cardy'’s scenario, at least fgr= 2 andg = 3. A work by Glumac and Uzelac
[325] on the three-state model, based on the largest cluster probabilitpralsed
consistent with this scenario, with exponents of the essential singularitg foery
close to the values predicted by Cardy. This scenario is also supportbd bgd-
ings of the previous chapter (Sec. 4.3.7), where | suggestiligf — 1 asymp-
totically in theq — oo limit. It is not the purpose of the present work, however, to
(try to) resolve the issue on the line of inverse square interactiorg $0B8. The
presence of essential singularities renders the endeavor particliatigrging,
for this imposes performing exceedingly long runs and to investigate hugelattic
sizes, and a multicanonical method with single-spin updates is certainly not the
most suited approach in this respect.

Itis perhaps interesting to mention, however, that | found finite-size schilin
on this line to be particularly poor; in particular for those regarding the estiofate
the correlation length exponenthi log-log fits depart strongly from the straight
line expected from a power-law fit. In addition, autocorrelation times deverg
startlingly rapid manner with the lattice sizesat= 1. Although these observations
do not yield anyguantitativeinformation concerning essential singularities, it lends
at least some support to the onset of a topological phase transitign-f@

I will concentrate in the following on the estimates of critical exponents for
g = 3,4, 5, excluding the correlation length exponentat 1 (although exponent
ratiosy/v andB/v will be considered, as they are still well-defined in the case
of essential singularities). Higher valuesmére not investigated, for the region
corresponding to a continuous transition is then too narrow.

5.2.1 Objectives

In the previous section, the estimates of critical exponents from functibaaty
were reviewed. For th®, model, an interesting finding in the non-classical regime
isy = 2 — o, which should hold up to ordef (e = 20- — D) for all n.

Since critical exponents are otherwise related by standard scaling relation
e.g.,y/v = 2—n, one also expect the simple relatipfw = o. This can easily
be checked in numerical simulations, singe is directly related to the finite-size
scaling behavior of the susceptibility through?* ~ LY/, wherey™2* designates
the peak of the susceptibility.
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5.2. Critical exponents fag > 2: multicanonical simulations

Because the previous relation was derived, however, for model with- an
component order parameter and a continuous symmetm (fat), it is interesting
to check if the same relation holds also for a discrete spin model Vigrsgmme-
try, g > 2, and in particular, to monitor the validity ¢f/v = o for several values
of g. To the best of my knowledge, this has never been investigated numerically
for the g-state Potts chaimj > 2; on the analytical side, the renormalization group
derivations by Priest and Lubensky [279] and Theumann and Gus3dabpthrget
g < 3 (non-integer), and particularly the percolation limit> 1.

A similarly interesting question naturally arises for the correlation length expo-
nent, since the derivation for tl®, models indicates that it dependsoto order
€. This was already investigated in the context of real-space renormalizéipn
(see also Sec. 4.1.3 where an extensive description of the method ij gihene it
emerged that v should not depend on the number of states of the model. A work
by Glumac and Uzelac based on transfer matrices [130] showed, howetehis
might not be true, with Av increasing withg for a given decay parameter. This
was confirmed by the same authors using Monte Carlo simulations and thd larges
cluster probability [3259. Both issues are looked upon fpr> 2 in the remainder
of this section.

5.2.2 Critical exponents: method

As mentioned in [231], “standard” finite-size scaling theory is valid for loagge
systems provided theffective upper critical dimensiod* = 20 is greater than
the geometrical dimensioth = 1, i.e.,o > 0.5 (this is similar to the short-range
case, where standard scaling relations hold below the upper critical donesse
[228]). Thus it is assumed here that “standard” finite-size scalingtiemsaare
also valid forg > 3.

The critical exponent is determined usingth-order cumulants of the magne-
tization, i.e.,
_din¢m")
alr T

which have minima obeying the scaling 1aj™" o« LY [112]. The approach
consists in computing two numerical estimates by fitting reweighted averages
of Vi‘"” andvgﬂin to a power law of the lattice size, and then to average over both
values. Other critical exponents, i.8.andy, are computed using similar scaling
laws, i.e.,M(Tc(c0)) oc LY, andy™@* o LY/,

Figures 5.1 and 5.2 depict a power-law fit of peaks/ef V., and y against
the lattice size obtained fay = 5,00 = 0.9. Points lie neatly on a straight line
when using a log-log scale, and give the following estimatgs; E 0.668(2),
1/vo = 0.669(2)y/v = 0.940(4). Error bars were computed using a bootstrap
procedure, see Appendix C.

0

5See Sec. 2.3.5 for more details on this approach.
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Chapter 5. From long-range to short-range behavior

Oncev has been estimated, finite-size temperatli€k) defined from peaks
of the magnetic susceptibility are fitted to a power law of the form

Te(L) = Te(eo) + ALY,

and yield an estimate of the infinite-size critical temperature. With regard to tritica
couplings obtained from Binder cumulants of the magnetization, | follow the same
procedure as in the first-order regime (Sec. 4.2.2).

Finally, the critical exponerg of the magnetization is determined by perform-
ing a fit of the magnetization estimated at the infinite-size critical temperature,
M(T¢(e0)), to a power law of the lattice size. In order to improve the accuracy of
the estimation, the (reweighting) temperature at wiitis to be sampled is slowly
varied around ¢(co) until the best fit is obtained. In the example considered above,
this leads tg@/v = 0.103(2).

5.2.3 Discussion

Results for several pairs af,(o) values are summarized in Table 5.1 for the critical
exponents, and Table 5.2 for the critical couplings. Orvthe 1.0 boundary, only
exponent ratios are shown. It can be seen that these estimates matakighinith
those obtained from a previous Monte Carlo study based on the singlg+aisto
method and sizes up 1o = 900 spins [19], and that the discrepancy with results
obtained from a transfer matrix approach in [130] never exceeds 8%.

As opposed to the conjecture made in [64], the exponeloes clearly depend
ong. This feature was also recently reported dox 2 andq = 3 in a numerical
study exploring the largest cluster probability [326, 325]. It is interestiingote
that the “criticality” of the model decreases with increasmépr a given range
of interaction, in compliance with the convex shape of the tricritical bnéq)
(Fig. 4.14) obtained in Chap. 4.

If the relationo- = 2 —n derived in [115] for theD, model, and in [315] for the
continuum version of the Potts model (yebvided g< 3), holds also fog > 3, the
simple behavioy/v = 2 — n = o should be observed in the second-order regime.
As depicted in the sixth column of Table 5.1, the qualitative behavior follows the
conjecture, yet clearly- < 2 — 5, and the discrepancy is remarkably higher for
g = 5 than forqg = 3. Moreover, whiley/v appearstotendto 1l as — 1, itis
unclear whether this ratio varies linearly with considering the small number of
data points available.

5.3 Long-range to short-range crossover: three decades
of controversies

As already mentioned in this chapter, one showdivelyexpect a short-range be-
havior wheneves- > 2, for thek” term has then the same exponent akétterm in
Eg. 5.1, and the latter corresponds to the squared gradient term (speea) that
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Figure 5.1: The graph shows the peaks of the cross-cumulants of thestinagn
zation,V{nin and Vg"” with respect to the lattice size on a log-log scale, for

L = 50,100,150 200,400. The model parameters aje= 5 ando = 0.9. The
power-law fit yields 1v = 0.6675(1) and v = 0.669(2) forV, andV,, respec-
tively. Errors were computed from a bootstrap method; they are smallettiban
size of symbols.

100 L v T T T T
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Figure 5.2: Maximum of the susceptibiligy"?* plotted against the lattice siie
for L = 50,100, 150,200,400, and the following model parameter= 5,0 = 0.9.
A fit of the data points tg™® « L?/" yieldedy/v = 0.940(4). Errors are smaller
than the size of symbols.
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Chapter 5. From long-range to short-range behavior

q o v1 v 1[325] v 1[130] y/v Blv

3 038 0.624(6) 0.61(2) 0.574 0.842(5) 0.101(5)
0.9 0.54(1) 0.48(2) 0.491 0.908(5) 0.053(5)
1.0 0.96(1) 0.025(8)

4 0.8 0.71(1) 0.67 0.882(3) 0.122(4)
0.9 0.610(5) 0.56 0.920(4) 0.050(3)
1.0 0.96(1) 0.022(9)

5 09 0.668(2) 0.62 0.940(4) 0.103(2)
1.0 0.97(1) 0.04(1)
1.0[19] 0.966 0.017

Table 5.1: Critical exponents in the second-order regimeo(q), andqg = 3,4, 5.
Shown for comparison are results from Ref. [130] (transfer matrix nogtHomm
Ref. [325] (largest cluster probability, with sizes uplie- 20000 spins), and from
Ref. [19] using a Monte Carlo single-histogram method.

q o Tc(MF) Tcy) T(U®) T,[325] Tc[131] Tc[251] Tc[130]

3 0.8 1358  1.019(4) 1.03(1) 1.026(1) 1.01 1.0231
09 1.262 0876 0.875  0.8735(10) 0.88 0.8785 0.874
5 09 0947  0.743(2) 0.739(4) 0.74673 0.745

Table 5.2: Estimates of the critical couplings in the second-order regime. MF,
mean-field predictionsy, using peaks of the susceptibility)® using crossing
points of Binder cumulants of the magnetization; Ref. [325], Monte Carloystud
relying on the largest cluster probability, with sizes up_-te= 20000 spins, Ref.
[131], Monte Carlo study based on histogramming and the Luijten-Bléte cluster
algorithm @ = 3) and a standard metropolis algorithgq= 5); Ref. [251]), cluster
mean-field method combined with an extrapolation technique based on the VBS
(Vanden Broeck and Schwartz) algorithm; Ref. [130]), transfer mairgthod
combined with finite-range scaling.
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5.3. Long-range to short-range crossover: three decades obvergies

stems from smalk expansions in short-range models. Yet the situation, as it turns
out, is notthat trivial, and has raised much controversy indeed during the last two
decades. A first contradition in this approach emerges for one-dimehsiaalels,
where a phase transition at finite temperature occurs ferl only [108, 124], so
that a crossover to short-range behavior can definitely not take place-&2. A
second issue is related to theritical exponent, since we hawggr = 2 — o, and
thusn g = 0 ato- = 2, whereas the short-range expongst # 0, with for instance
nsr = 1 for all values ofg in the one-dimensional Potts chain (See appendix B)
andnsr= 1/4 for the two-dimensional Ising model. This would imply a disconti-
nuity inn ato = 2. From a very general viewpoint, there are at least two possible
scenarios:

e eithero = 2 determines the locus of the crossover, and there is a jump in
n; following thermodynamic stability arguments, one must simply ensure
thatn < 2 + o, so that this scenario, though somewhat unsual in the theory
of critical phenomena, is perfectly allowed; still, one-dimensional models
would not fit into this scheme;

e or the crossover occurs at another valuerof.e.,o¢o = 2 — nsr in which
case there is no longer a discontinuity; this would imply, = 1 for the
Potts chain, in accordance with Dyson'’s prediction of the absence afseph
transition foro- > 1; for model with negative Fisher exponent (e.g., Yang-Lee
Hamiltonians with imaginary couplings), however, this is in contradiction
with the onset of the short-range universality class at 2.

The best way to try to treat this problem from an analytical viewpoint is te con
sider changes in universality classes, i.e., to be specific, to monitor théiaaria
of critical exponents witho- and to look for a change of regime at some cross-
over valueoc,. In the language of Wilson’s renormalization theory, this question
reduces (alghough not trivially) to the investigation of the competition between
long- and short-range fixed points. Numerous works based on relipechper-
turbation theory or on Wilson’s recursion relations have been perfoiméuis
respect [292, 356, 357, 142, 315, 160, 159, 349], includingipé&uwestigations
in finite geometry [91, 80]; the main picture that seems to emerge today is the
prominent role played by the sign of Fisher's exponent in the short-resgime
nsrWith respect to the locus of the crossover.

The second scenario mentioned above, along whigh= 2 — nsr was first
proposed by Sak [292], on the grounds that higher order terms igtéftpansion
(Eq. 5.1), which were not taken into account in [115], influence the editiqgn
between long-range and short-range fixed points. To be specific, thissntleat
the full functionalv,k? + v,k must be considered in recursion relations, with the
short-range pait? explicitly taken into account. By carrying out an expansion to
ordere? (wheree = 20 — D), Sak established that at the (Heisenberg-like) fixed
point, thev, term is not zero to ordes® (whereas it is zero to ordej. In other
words, starting fronv, = 0, the short-range term increases under renormalization
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Chapter 5. From long-range to short-range behavior

(because the recursion relation fgrinvolvesy,, to ordere?), and starts to compete
with the long-range term. On the grounds that the choice of the field rescaling
factor / must depend on the sign gf- nsr Sak established that this leads to a
special region of weak long-range interactions dor- 2 — nsgwheren = nsg,
which corresponds tg and €2 having the same magnitude. In this region, the
fixed point is given by, = 0, and the universality class is short-range. On the
other hand, ifo- is suficiently small (i.e., below 2- nsg), then the long-range
term wins out over the short-range one under renormalization ang teem can

be safely ignored. The scenario of Yamazaki [356] draws more ortihessame
conclusions. These findings were later reassed to all orders of tlamsrp by
means of renormalized perturbation theory [160], and rederived &rahdom-

field Ising model with long-range interactions [52]. However, Van En827]
pointed out that this scenario may be somewhat flawed with regard to models with
rotational symmetry breaking in their short-range regime (i.e., XY modds in

3 dimensions in the case considered in [327]), since symmetry breakinddsho
be destabilized by the presence of an irrelevant long-range perturpatiich
according to the above scenario corresponds+tg & o < 2.

Another expansion parameters: 30—D, was considered by Priest and Luben-
sky [279] in the context of a (short-range) continuum version of thiekiks Teller-
Potts model. Here the authors suggested in their conclusion, as an extehsion o
their results to power-law decaying interactions, that the long-range fixied i
again stable with respect to the short-range one as long<a — nsr They also
pointed out that the casgr < 0, which along the previous lines of arguments
should yield inconsistent behavior with a crossover taking place at2, might
actually be straightforwardly resolved by observing that the long-réirge point
no longer exists forr > 2, implying that long-range behavior is dominant up to
o = 2 only. The same conclusion appeared again in [315] (from an expansio
to second order ir). Systems withysr < 0 (corresponding t@® theories, or
¢* theories withD > 4) were then reconsidered recently by Janssen [192], who
claimed that the boundary is given by-2o¢, = nsralsowhennsgr < 0, owing
to the pivotal role played by nonquadratic terms of higher-order in thelBngz
Landau functional (in particular the’ Ink term that, incidentally, shows ugdso
when expanding the Fourier transform of the interaction exactly-at2).

Finally, it is worth mentioning the contribution to this debate by Wragg and
Gehring [349], who proposed an extension of the variational methodlahashi
[311] to an Ising model with power-law decaying interactions (i.e. the lamge
part of the interaction is considered as a perturbation of the nearesiboeigo-
tential, and the minimization of the free-energy is carried out with respect to the
last potential). In particular, the long-distance behavior of the correl&tinctions
was carefully examined, and it was established in this respect that thedogg-
contribution to the correlation function is dominated by the short-range cantrib
tion for o > 2 — nsgr(including the one-dimensional case). No mention was made
here, however, of the influence of the signgk
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For systems with negative Fisher exponents, therefore, the situation seéms
rather unsettled, and numerical investigations onBhdimensional long-range
Ising model withD > 4 would probably be enlightening in this respect. In two
dimensions#{sgr > 0), however, compelling evidence in favor of Sak’s scenario
was produced in a recent numerical study by Luijten [232]; it was claimatl th

the modified Binder cumular® = (n? 2/ mt*) takes its short-range value around
o = 175, and similarly thay exhibits a (clearly visible) kink at the same value of
o, in accordance witlre, = 2 — nsr = 7/4 for the two-dimensional Ising model.
In one dimension, on the contrary, the transfer matrix approach of Glundhc a
Uzelac was quite unconvincing in this respect [130].

Still, the situation remains unclear in the one-dimensional case, where only ap-
proximate renormalization group results are available, and no numerical §onula
has adressed the issue thus far. It is interesting to note here that theryalael
predicted by Sak’s scenario is also the locus of the Kosterlitz-Thoulassitiom
suggested in [208, 72] (see, also, Sec. 4.3.6 for more material on thé$,isseuhat
the phase diagram of the long-range Potts chain wouldf@tecontain a region of
essential singularities for ait > 1, seeing that the nearest-neighbor model exhibits
this kind of divergences as well. From the viewpoint of numerical simulatites
endeavor in one dimension is thus markedly challenging, since the presferse
sential singularities priori requires covering a large range in linear system size
for finite-size scaling to be reliable. It is the goal of the next section to tigate
these questions by means of a multicanonical approach; | will show, in ylartic
that by relying on properly chosen indicators, it is perfectly possible oy a#f
the investigation without having to resort to huge simulation sizes.

5.4 Crossover in the three-state Potts chain: multicanoni-
cal simulations vs exact transfer matrix

In this section, | investigate the crossover from short-range to longerbahavior
in the three-state Potts chain with power-law decaying interactions. | malaf use
the multicanonical method outlined in Chap. 3, and concentrate above the
boundary valuer, = 1, where a crossover is expected to take place along the line
of Sak’s scenario [292] (recalling thatv = 1 for all values ofg in the short-range
casensr = 1, and this indeed leads te,, = 1). The choice off = 3 as the
particular value under investigation here is merely a matter of coherence with th
rest of this work, since the investigations (in particular in Chap. 4) targéteed
phase diagram fag > 2. Investigating the Ising chain would not have made sense
in this respect.

As described above, the definition initially proposed by Sak in [292] on-theo
retical grounds, as well as the exact locatiowrgf within the interval [10, 2.0], is
still somewhat controversial. Signs that the crossover takes place dtmightbe
seen from the dependence)gfs on o, as shown in Table 5.1/v indeed appears
to reach its short-range value as— 17, yet this ratio proves no longer reliable
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Chapter 5. From long-range to short-range behavior

abovethe boundary value, as we will witness below, and it will become necessary
to meet the problem from a completely new angle.

One of the key points in the present approach, indeed, is that | will be able
to glean crucial information over the change of regime from a careful eosgn
of the temperature-dependence of (some carefully chosen) reweitjetecody-
namic quantities with the exactly known results in the nearest-neighbor daise. T
is where the multicanonical method turns out to play a pivotal role, becayistis
reweighted averages over a large range of temperature and makesnih&rison
pertinent. My first item of business will be to derive exact results in thetshage
case. This is most easily done using transfer matrices.

5.4.1 Exact results for the short-range chain: transfer matix deriva-
tion

| first briefly review some exact results concerning thstate Potts chain with
nearest-neighbor interactions. Detailed calculations can be found iméppB.
Forq = 3, the transfer matrix is a8 3 matrix having three eigenvalues, which in
zero external field reagh = 3 coshB/2)—-sinh(3/2), 12 = A3 = 2sinhB3/2), where

B = 1/KT. By retaining the largest eigenvalug only, and taking the limit. — co,
one successively obtains the free energy per spin

In@2+¢)

P = -

and the specific heat

2ﬁ2
- (sinhB/2 — 3 coshB/2)?

Cv(B)

From there on, the correlation length is then computed using the standamaldor
[279] € = 1/In(A1/22), which then yields

-1
£(8) = [In 3 cothg/z - 1]

Finally, the magnetic susceptibility is obtained using the fluctuation-dissipation
relation, which gives

8
X(B) = 5=B(L+ 2¢/)
It is then straightforward to prove that, at the zero-temperature critiagat,tbe
ratioy/v is given by limg_,., Inx(8)/ Iné(B) = y/v = 1.

Numerical signs for exponential divergences In numerical simulations, the cor-
relation length is bounded by the finite lattice size. In the previous calculatisn, th
is equivalent to evaluating the ratig'v at a finite (i.e., positive) temperature, as

142



5.4. Crossover in the three-state Potts chain: multicanonical simulationsats exa
transfer matrix

given by Eqg. (B.1). This yields, however, a substancially overestimasdtr for
instance, | obtairy/v ~ 1.3 instead ofy/v = 1 for L = 400.

The important point is that this picture is perfectly supported by the simula-
tions, with for instancey/v = 1.02(1), 114(1), and 123(1) foro- = 1.1, 15, and
4.0, respectively. Since the last two values are clearly overestimated (witlin e
bars), this in &ect indicates the presence of exponential divergences characteris-
tic of the short-range regime. As a by-product, this also means drastically slo
convergence of finite-size scaling.

| would like to mention at this point that far = 1.1, the topological transition
ato = 1.0 may very well make its influence (moderately) felt, owing to the fact
that the finite geometry induces a truncation of the long-range potentig2gthis
point was already addressed in Sec. 4.3.7 in the context of the unusitexksize
effect observed on the line of inverse square interaction). This point istbogon
in greater detail below by means of other indicators.

5.4.2 Pertinent crossover indicators and discussion

Specific heat Investigating the shape of the specific heat turns out to provide the
most tractable approach at medium lattice sizes where distinguishing betweeen th
short-range and the long-range regime is concerned. This investigasiovill be
witnessed, corroborates the previous analysis.

In the thermodynamic limit, the specific he@{(8) of the nearest-neighbor
model admits a maximur@®* = 0.7618 atkT, = 0.3767. It is enlightening to
examine the nonmonotonic behavior of this maximum at fibitéhis can be car-
ried out by computing-(8, L) and therCy(8, L) while retaining all three eigenval-
ues. Since the calculation is fairly involved, and the final result admits no simple
expression, | shall hereafter simply refer to the corresponding cketched in
Fig. 5.3. Detailed calculations are reported in Appendix B, Eq. (B.2).

WhenL is increased, the peak of the specific heat first increases to a maximum,
and then graphs df, collapse and merge gently as the thermodynamic limit is
approached. Whenever it is witnessed in graphs obtained from simulattan d
this feature thus signals a short-range-like behavior.

Simulations were performed ford< o < 4.0 for various lattice sizes between
L = 50 andL = 400, and | fixed the initial canonical temperaturekip = 1.0 so
that the maximum ofC, would be clearly visible within the whole range >
1.0. C, was computed using the fluctuation-dissipation relatiyn= ((E?) —
(E)?)/(KTL).

As appears obvious from a glance at Fig. 5.3, the casesl.0 ando = 1.1,
on the one hand, and > 1.2, on the other hand, display fairly distinct qualitative
behaviors:

e Foro = 1.0, the specific heat reaches its maximum monotically, at least for
the lattice sizes that were investigated. The slowing down in the increase rate
as YL — 0 allows one to assess a finite maximum in the thermodynamic
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2.5+ -

Figure 5.3: Specific heat for various lattice sizes anéd 1.0,1.1,1.2,1.7, along
with the exact nearest-neighbor case, from right to left. Data for otlees ofo
have been omitted in order to preserve the clarity of the figure. Solid, dadbe
ted and long-dashed styles referlic= 50, 100, 200, and 400 respectively, except
for the short-range case where they refekte 5, 10, 100 200.

limit, and this shows tha€, is a nondivergent quantity. Since this is the
expected behavior if the line of inverse square interactions is indeed a line
of topological transitions (Sec. 4.3.6), this feature brings support tdyGar
scenario. The same behavior is observedfer 1.1, although in a smoother
way.

e On the contrary, the qualitative behavior is clearlffatient foro > 1.2,
where the maximum o€, first decreases with increasing lattice size, and
then quickly reaches a plateau reminiscent of the exact short-rangeibeh
investigated above. While this plateau only slowly reaches the exact short-
range value as — 4.0 (see Fig. 5.4), it can be concluded, however, that the
behavior is already short-range-like.

First, what we observe may boil down to the same finite-stteceas was
observed on the/t? line at high values off (Sec. 4.3.7): there, | suggested that the
truncation of the long-range potential resulting from the finite lattice sizet@viea
the periodic boundary conditions) artificially shifted the decay parameteartbw
the mean-field regime; here, this would correspond to bringing the modelrclos
to the line of topological transitions at = 1, although it is diicult to say in a
more quantitative way what is the exact amount of “drift” that the Hamiltonian
experiences. Overall, since the truncation is all the more important that Snesll s
are considered, the whole picture presented here is certainly consistierihe
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Figure 5.4: Maximum of the specific heat vs inverse lattice sizerfer1.0, 1.1,
1.2,1.3,15,1.7, 2.0, 3.0, and 4.0, from top to bottom. The solid line is a reminder
for the (exact) short-range case in the thermodynamic limit. Other lines areguid
to the eyes.

fact that the sizes investigated in the present work are rather modesh{pacison
with the sizes attainable with the breathing cluster method introduced in Chap. 6).
Second, the renormalization scenario of Sak (and related works, seb.3g
implies that the crossover actually results from a competition between shdrt- an
long-range fixed points. This competition, as seems manifest to me, may not re-
solve instantly whenever crosses ther = 1.0 line, and may thus smear the
boundary over some finite region. Incidentally, the same kindffgfce was ob-
served by Luijten and Blote in the two-dimensional long-range Ising modé][23
Additionally, it is hard to tell to what extent the subleading short-range ictiera
(wheno > 1) influences the finite-size scaling behavior in the interval,fiL2].
Here, it would be interesting to make use of exact finite-size scaling relations
the spirit of the work of Chamati and Dantchev [80], and then to perfotensive
checks at large lattice sizes.

Magnetization and Binder cumulant The previous picture can be confirmed
by monitoring the behavior of critical temperatures with respect.torhe mag-
netization is depicted in Fig. 5.5: graphs merge slightly alddve= 0, whenever

o > 1.2, which means that there is no transition at finite temperature. While for
o = 1.1 there remains some ambiguity due to statistical errorsgfer 1.0 the
curves now clearly intersect aroukd ~ 0.7; this, at least, confirms that the be-
havior is no longer short-range. Incidentally, this temperature is conssiiérthe
value of 07089(2) obtained by Luijten and Messinfeld in [235], yet by monitor-
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Figure 5.5: Magnetization &T for o = 1.0,1.1,1.2, and 17 from right to left.
Solid, dashed, dotted and long-dashed styles refér to 50, 100, 200, and 400
respectively.

ing the finite-size scaling behavior of the universal critical 1u¢n§> /KT over far
larger lattice sizes.

| also computed critical temperatures from the crossing points of Binder cu-
mulants of the magnetization. This yields = 3.3, 6.5, and 19 foro- = 1.1, 13,
and 15. Concerningr = 1.7 ando = 2.0, cumulants no longer cross except at
KT = 0 within statistical error (the latter case giviggbetween 150 and 200, yet
with excessive dispersion). While the crossover appears to take pltioe wery
vicinity of the o = 1.0 boundary, the critical temperature actually digsquite
slowly to 0 aso increases.

Overall, these results lend support to Sak’s scenaria-for 1.0: a crossover
from long- to short-range behavior occurs whenewgr= 2—nsr Nonetheless, it
is worth stressing that | found this crossover to occur within the finite, ggow
range 10 < o < 1.2, and the pure short-range case to be reached in the limit
o — oo only. This is particularly apparent from the behavior of the specific heat.

Whether this results from the truncation of the long-range potential, fram no
trivial finite size dfects due to the subleading short-range part of the interaction,
from a competition between fixed-points that does not resolve instantligasses
the 1/r? line, or (to all probabilities) from a combination thereof, is still an open
question.
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Conclusion of Part Il

In the second part of this thesis, the phase diagram of a long-rangePRaitisvas
extensively studied using a generalized-ensemble algorithm operating nmuthe
ticanonical ensemble. In Chap. 3, a single-spin update version of thigtaigo
was presented, and several improvements tailored to long-range modelprae
posed. An improved recursion scheme was proposed that is ablédiergly
tackle the instability raised by the presence of unequally spaced low elegaly,

a peculiarity of long-range spin models. The choice of fiitient predictor and

a reliable convergence criterion was discussed, and shown to yield nuickteq
convergence than with Berg’s original algorithm. The utility of a multicanonical
approach for the simulation of medium-sized long-range models was dentedstra
by tests of performance and accuracy over a large range of decay@i@rs: the
method diciently circumvents the slowing down traditionally experienced at first-
order transitions, delivers an accurate estimate of the density of states lavge
energy range, and allows one to monitor thermodynamic quantities over a large
range of temperature with strikingly modest numeridédb.

In Chap. 4, the multicanonical algorithm was applied to the estimation of the
transition temperatures of@state Potts chain with power-law decaying interac-
tions. This study significantly extends the range of available estimates; ingte fir
order regime of the model, the agreement with mean-field predictions is exteptio
ally good. In particular, results are perfectly consistent with Tsallis'geztare
Te ~ 1/0 in the limito — 0.

In order to locate the boundary separating the first- and second+aegleres,

a new method was proposed that detects the order of the phase transitn by f
lowing the position of spinodal temperatures as the decay parameter of the inte
action is varied. The applicability of the method is not restricted to long-range
models, and it may represent afligent, alternative way to other methods, e.g.,
Lee-Kosterlitz criterion or Binder cumulants of the energy. The multicanbnica
method was shown to play a pivotal role in this method, owing to its ability to pro-
duce accurate estimates of the position of metastable states, as opposed tismetho
based on multihistogramming. Arfificient combination with the transition matrix
method was also proposed, yielding even more precise estimates, yetqi¢hee

of an overhead in computation time.

The application of the method to thpstate long-range Potts chain yielded
highly precise estimates of the boundary vadugq), the accuracy attaining two
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digits. In particular, the value(3) = 0.72(1) is perfectly consistent with the
lower bound of 07 proposed by Krech and Luijten [213]: however, the precision
is markedly higher by an order of magnitude, although the simulations were per
formed on lattices having fewer than 400 spins. On the line of inverse square
interactions, a new, unusual finite-sizeets was observed. A detailed finite-size
scaling analysis showed that, while the transition seems to be first ordeitat fin
lattice size, it becomes continuous in the thermodynamic limit. First, tfies<
convincing numerical evidence supportimg(q) < 1.0 for all g, and settles a long-
standing controversy surrounding the nature of the phase transitior on=tH..0
line. This result is one of the most surprising findings of this thesis partggessts
that finite-size scaling at first-order transitions is highly atypical in longgeamod-
els. | proposed several interpretations: first, every particle “seedidhndaries in
a long-range system, and the truncation of the long-range potential magialiifi
pull the decay parameter of the interaction towards the mean-field regime; sec
ond, the usual physical meaning attributed to the correlation length in theotase
nearest-neighbor models should be markedly challenged; third, the ggahitte
interface separating phases in coexistence is certainly far less trivialgrrénge
models than in their nearest-neighbor counterpart. This suggests|seteresting
directions for future works, in particular the developement of a theofinivé-size
scaling at first-order transition for long-range models, that takes melastalies
explicitly into account.

Finally, Chap. 5 explored the second-order regime of the model, anddssoster
from the long- to the short-range regimes. In the second-order regimeelttion
n = 2 — o, conjectured to be exact for= 2, was shown to yield an increasingly
high discrepancy whegq is increased, and its validity may just be reinforced in
the vicinity of o = 1.0. By comparing the behavior of several reweighted ther-
modynamic quantities with a transfer matrix calculation carried out in the pure
short-range case, the crossover between the long-range andaigetregimes
was demonstrated to occur inside a narrow window 4 o < 1.2. This lends
strong support to a long-suggested renormalization group scenariotekpreta-
tion of the finite narrowness of the window inside which the crossover felles
was provided in terms of the competition between short-range and long-fiaag
points.

To sum up, several controversies were reexamined and successitlgd in
the second part of this thesis. Yet this also raised new, exciting questigasimg
the finite-size scaling behavior of long-range models at discontinuousittcans.
In order to investigate this questions, far larger linear sizes must be attéine
out of reach of the present multicanonical implementation. It is the goal ofdkie
part of this thesis to introduce a new multicanonical method tfi@iently tackles
this issue.
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Breathing clusters: a novel
approach to simulate long-range
models in generalized ensembles
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Chapter 6

Limitations of standard
multicanonical methods, and
beyond

In this and the following chapter, | introduce a new Monte Carlo method, the
breathing cluster method, that lumps together a cluster-update scheme aikd a mu
ticanonical approach. The purpose of this method is twofold:

o first, it is aimed at improving the statisticafficiency of the Markov chain
by reducing correlations between successive measurements;

e second, it addresses the problem of scalability in simulations of long-range
models, by drastically reducing the algorithm complexity associated with the
computation of the lattice energy.

In the following chapter, | will show that this method draws within computa-
tion reach one of the challenging issues that was suggested at the ehdpf4C
the investigation of finite-sizefkects at first-order transitions in long-range spin
models. Yet prior to describing the method, and addressing the last issile, |
examine the main limitations of standard multicanonical methods (i.e., relying on
single-spin updates), in a general context to begin with (Sec. 6.1), and thea in th
context of long-range models (Sec. 6.2), and then | will describe thedigmts
that are required in order to carry out significant improvements overxisérey
single-spin-flip scheme. Concurrent approaches will be describeekines3, with
an emphasis on their limitation as regards long-range models. Finally, the main
outlines of the method will be given in Sec. 6.4. The method is then described in
deeper detail in the next chapter.

When implemented through single-spin updates (Chap. 3), the multicanonical
method is subject to two serious drawbacks. One drawback is tightly relatieel to
dynamic characteristics of move updates based on single-spin flips, amhés s
what independent of the particular model Hamiltonian under study; the atleds
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specific to long-range models, and stems from the huge number of interatctions
be taken into account when one has to compute the energy of a longmarmigs

6.1 Non-optimal dynamic scaling

Let me first examine the dynamic aspect. It was shown by Berg that siijpaic
slowing down is totally suppressed by a simulation with a multicanonical weight.
Specifically, tunneling times are reduced from an exponential-law to a pawer

7e ~ L? of the lattice size, as a result of the ability of the multicanonical weight
to assist the Markov chain in jumping across free energy barriers. Vowie
dynamic exponent is still substantially higher than the ideal valae~ D that
should be expected from a perfect random walk dynamics [183, 93].

This ideal value can be obtained from the following line of argument. For the
sake of simplicity, | consider a Potts model with nearest-neighbor interactibn an
an interaction constant = 1, on aD-dimensional lattice containinyl = LD
spins. Assuming that each single-spin update ideally changes the lattigg ener
by an amoun&AE, and considering that a lattice sweep (that is, one Monte Carlo
sweep) consists dfl single-spin updates, one may conclude that the random walk
has drifted by about/NAE along the energy axis after one MC sweep. After
lattice sweeps, the drift thus amountsN&AE. Up to a multiplicative constant,
this is the energy interval between the energy pdakand E4 associated with
the ordered and disordered phases (up to yet another constant, thisenthg
interval between the ground state and the upper energy level). As aquaTee,

a perfect random walker requir®s lattice sweeps to drift from one peak of the
energy histogram to the other peak. This means that tunneling times shollg idea
scale as\ = LP, andzgeq = D.

For long-range models, it is relevant to mention that the distdace E,
the random walker must travel does not scale linearly with the number of.spin
This feature is especially apparent for interactions decaying as a fewexhere
Eq — Eo grows all the more faster with increasing lattice size thabmes closer to
0. As a result, the power lawg ~ L? yields dynamic exponents which are underes-
timated with respect to the value given by a power law of the fagm (Eq — Eo)*

As a result, the ideal value afmight be lower tharD in this case. Where the per-
formance in terms of CPU load is concerned (and in particular if one is itégres
in how tunneling times grow with the size of the system), | think that the traditional
definition e ~ L? is more meaningful: the crucial point is the reductiorzithat
may be brought about when using other move updates.

It is crucial at this point to mention that all indicators of statisticiilceency
are subject to the same non-optimal scaling behavior, €lgGtve autocorrela-
tion times [178] and equilibrium times [139]. This is very similar to the behavior
observed in canonical simulations, and on exactly the same grounds, isithéhu
scalability of the algorithm as a whole which is at stake. | will scrutinize more
deeply into this issue in Sec. 7.4.2, and will show that the breathing clusteranetho
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engenders an optimal random walk also with respect to the indicators just men
tioned.

It is equally important to mention that correlations between successive mea-
surements not only have an impact on the statistiffadiency of multicanonical
production runs, yet also represent a source of systematic erandreg the esti-
mation of the density of states [362].

One of the possible ways to get around these limitations is clearly to consider
a combination with a cluster algorithm. As was seen in Chap. 2, these algorithms
offer fast decorrelating capabilities, lead to drastically reduced dynamicerps)
and thus improved accuracy forgavenrun length; this pertains to their ability to
get rid of spatial correlations by updating spins in a collective way. Yetrwh
expressed in terms of computer load, the situation is less clear-cut, forrcliste
gorithms may also pose huge demand in this respect. Overall, the formevabser
tion clearly acts as a spur to the development of multicanonical method including
cluster updates; the latter, however, implies that care must be taken edsrdga
efficiency of the implementation, so that the gain in autocorrelation time is not
scuppered by the computationdfat required to construct the clusters. This is
vital indeed in the context of long-range models. In this respect, the magakbr
through that was recently initiated by the introduction of a cluster method whose
algorithm complexity scales roughly like the size of the lattice [227] (see, also,
Sec. 2.3.2), will play a pivotal role in the design of such a method.

6.2 Algorithm complexity and long-range models

The core issue in the simulation of long-range systems resides in the need to tak
a huge number of interactions into account when computing the systemyenerg
For potentials restricted to two-body interactions, this task requires theafrtié
operations, wher8l is the number of particles in the system.

However, computing the energy of the system is a crucial ingredient in a multi-
canonical simulation, for the random walk is controlled by a Markov weigficiv
hinges on the energy. On the contrary, canonical cluster algorithmstadequre
such a step In the context of multicanonical simulations, the multimagnetic en-
semble [28] probably represents the only exception to the rule.

When single-spin updates are used, each attempted spin flip actually sequire
the order ofN operations, since it is generally not necessary to recompute the
total lattice energy from scratch, yet this also means that a complete latticp swee
requiresN? operations as whole. Overall, this represented the main impediment to
the scalability of the multicanonical implementation used in Chap. 3, where | was
in practice limited to lattice sizes of around several hundred spins.

These observations suggest that, in order to improve the scalability of multi-
canonical algorithms (irrespective of the dynamic characteristics of toeithim),

1Except if an estimate of the energy is explicitly needed.
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one must find a way to reduce the algorithmic complexity stemming from the com-
putation of the energy. For potentials that are invariants by translationng tur,
however, that there is a veryfeient way of reducing this complexity, which con-
sists in computing theotal lattice energy through a Fast Fourier Transform (FFT)
algorithm, since the complexity of these algorithms scales roughi/la$N. This
approach, which pertains to the use of the convolution theorem (incideirtally
widespread use, for nearly the same reasons, in the implementation oifyitadt d
filters in signal processing), was already suggested by Krech etld], et in the
context ofcanonicalsimulations. In the case of interest here, this would reduce the
number of operations required to compute tibial energy of the lattice to that of

a nearest-neighbor model (up to a logarithmic factor).

However, meeting the problem from this new perspective requires in tatn th
we are able to flip several spins at once: if this is not the case, that is hidweeto
compute the energy after each single-spin flip, the total burden for a Wdtote
sweep will now amount to roughli}?In N, which proves even worse than our
genuine single-spin flip algorithm (which, recalling, scale®Nds There is, here
again, a perfect way to lump all these requirements together in a single mfgthod,
cluster updateprovide what we are seeking: they “know” how to update several
spins at once in the mosfieient way. If an éicient cluster algorithm can be
devised, then the benefit of such a method would be twofold:

e with respect to the computation of the energy, this would cut down the algo-
rithm complexity to that of a short-range model;

¢ on the dynamic side, one might expect — as a by-product — a gain with
regard to the dynamic exponents.

Noteworthy enough, the san@®N?) complexity a priori arises when clus-
ter algorithms are implemented in the context of long-range models, seeing that
roughly N2 bonds have to be considered for activation, and (to crown it all) a vast
majority of these bonds only have a negligible probability to be activated. In the
framework ofcanonicalsimulations of long-range models, the problem was ele-
gantly solved by Luijten and Bléte [227], who introduced dfiogent algorithm
that is able to build clusters with a CPU load that is roughly independent of the
number of interactions per spin.

To recap, we have two ingredients in hand which, once combined, may cut
down the burden of computing the energy to that of a short-range modatngt
out, however, that there is yet another item of business to be carriedralthis
one is perhaps the central subject of this thesis part. how catesaicallyin-
clude cluster-updates in a multicanonical algorithm? Broadly speaking, the iss
amounts to plugging two schemes into one another, which are seemingly incom-
patible:

e on the one hand, cluster algorithms rely on a (canonteafjperaturen or-
der to create blocks of spins with the correct bond probability, i.e., one that
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ensures not only that detailed balance holds, yet also thatffilceerecy of
the algorithm is maximized (this implies, in general, that the critical point
and the percolation threshold coincide);

e on the other hand, multicanonical algorithms rely on dessity of states
to meet their goals, namely, producing a flat histogram; the multicanonical
weight w(E) has a fundamentallpon-local nature, that loses track of the
symmetries of the model Hamiltonian; and yet these symmetries are crucial
to thetechnicalimplementation of a cluster algorithm.

It is the purpose of the next chapter to develop such a program, iffieieet
way (in particular wherease of implementatios concerned) and with wide ap-
plicability in mind (i.e., we would not like to restrict the method tgpaculiar
multicanonical scheme).

Prior to going over this subject, however, | will briefly review a method pro-
posed in the mid-90's by Janke and Kappler [182]: thaltibondmethod com-
bines — from a clearly dierent perspective — cluster updates and generalized
ensembles weighting; | will explain why this approach is not suited for |@amge
models.

6.3 The multibond algorithm and other concurrent ap-
proaches

As regards short-range spin models, the issue presented in the prpaiagsaph
was met by the multibond algorithm [182, 183, 178] (or variants theref3][3
including a combination with the transition matrix method [354]) and, although
with a somewhat diierent approach, by the hybrid daemon-cluster approach [291].
The common denominator to both methods is the fact that they combjieeemal-

ized ensembleeighting of the Markov chain with a global, i.e., cluster-like update
scheme, and inftect yield nearly ideal tunneling-time dynamic exponents. These
two methods, however, do not lend themselves to fanient implementation in
the case of long-range interactions, since in particular they precludeé¢hef the
previously mentioned optimizations dedicated to long-range models.

The hybrid daemon-cluster algorithm [291] comprises two sub-algorithms: a
microcanonical cluster [87, 86], which simulates the system at a constargye
using demons (these act as energffdns, allowing the energy to slightly fluctu-
ate); and a so-called multicanonical demon refresh, which moves the sfystem
one energy level to another by “refreshing” the demons. One the main imped
ment to the application of this method to long-range model is the very presence
of a long-range potential: the hybrid approach in [291] relies explicitly @ th
presence oequally spaceddiscrete) energy levels to connect the microcanoni-
cal daemon and the multicanonical heat bath, while energy levels areallyequ
spaced in long-range models (Chap. 3). In addition, assuming that eaizaon
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of this approach to long-range modefsghtbe tractable, no microcanonical clus-
ter algorithm exists for these potentials, and in this respect an extensioawtzs
algorithm [86] is not trivial. Overall, the method introduced in the next chapte
will prove much more straightforward in its implementation, by relying on a single
update scheme.

The multibond method simulates the (nearest-neighbor) Potts model in a so-
called multibondic ensemble, where the role of the energy varilidgaken over
by that of the number of active bonBs To be specific, the method resorts tmad-
ified partition function of the model in its spin-bond representation (see Sec),2.3.3

Zrk = Z Z l_[ (PO cry Oy 1 + O13;.0) WinubB)
[o] [b] <i.j)

where(i, j) means that only pairs of nearest-neighbor spins are considgred,
2i.jy bij is the total number of active bondp,= €% — 1 is the bond probability
(which, in the case of a nearest-neighbor model, is unique)wapgyB) is a so-
called multibond weight which aims to enhance rare events. In this context, rar
events correspond 8pin-bondconfigurations which are strongly suppressed, e.g.,
by a free energy barrier. The prescription of the authors is t@stt the transi-
tion temperature (which, incidentally, requires that this last quantity be kmown
advance, even to a moderate accuracy).

The rationale behind this approach is the equivalence between the @egrag
ergy and the average number of active bonds,+€E) = (1 + 1/p) (B). This can
be readily derived by dlierentiating the (logarithm of the) partition function of the
model in its pure-bond representation, i£zc (Eq. 2.9), with respect t@, and
equating the result with (E). Then it is assumed th& andB roughly satisfy the
same proportionality relation &&) and(B}), i.e., up to thermal fluctuations in the
number of bonds for a given energy (and vice-versa). From theremme possi-
ble implementation of the method consists in estimating the multicanonical weight
w(E), and then obtainin@mund B) from —E ~ (1+ 1/p)B. Of course, this requires
knowingw(E) beforehand, but the authors in [182] argue that this can be carried
out by rescalingv(E) from an estimate obtained at a lower iz€his also requires
that the proportionality relation betwe&mandB holds to a sfficient extent, so that
a flat histogram in thebond landscape indeed yields an equally flat histogram in
the energy landscape. In this respect, it is shown that this is the casastafde
the sizes investigated by the author.

A variant was recently proposed by Yamaguchi and Kawashima [3%3da
on the Wang-Landau algorithm, whereby the method directly estimates the density
of states in the bond spaa®B), and a correspondence betwa¥B) andn(E) is
derived analytically, so that thermodynamic averages (with respde€} toay be
obtained in the first place. This correspondence is intractable for lmgerpoten-
tials. Turning back to the original multibond approach, an extension to langer
spin models would involve, however, mapping the spin model to a spin-b@ad re
resentation, with bond probabilitigs; now depending on the interaction strength

2For long-range models, thinaybe tractable forr large enough.
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Jij between spinsand j: the proportionality relation between the average energy
(E) and the average number of bor@ does no longer hold. Instead, it has to be
replaced with a proportionality relation involviqg) and a linear combination of
<bij> codficients, wherdy;; = 1 whenever the bond between spirasd j is active,
andbjj = 0 otherwise. From a technical point of view, this approach is somewhat
intractable as soon as the number of interactions between spins becorsegd\karg
aresult, it does not proveieient in the long-range case either.

In addition, there are two further impediments to the usability of the method
in the context of long-range models. First, analyzing first-order transitiomges
on computing energy-related quantities, e.g., specific heats, Binder cusatan
interfacial free energies, and we are still left with BEN?) issue mentioned in the
previous section. Second, there is an additigd@?) cost related to the cluster
building operations: there ai¢? possible bonds to test for activation, and further-
more most of these bonds only have a negligible probability of being activated
The mechanism used in the multibondic method to build the cluster step by step,
i.e., broadly speaking, by computing the probability to activate a new bomd fro
the current number of active bonds, renders the implementation of Luijten-Blote
cluster algorithm clearly intractable (in particular where resorting to cumalativ
probabilities is concerned).

Finally, let me mention another approach based on multigrid methods [133].
These methods update blocks of spins offiedént length scales according to a
given sequence (rather straightforward in timégrid approach; possibly involving
a renormalization scheme in theie multigrid approach). They have proven re-
markably éficient at reducing dynamic exponents to a nearly zero value [199]. A
combination with multicanonical weighting was presented by Janke and Sauer in
[186, 178] for the simulation of thg* field theory, and indeed multigrids methods
have focused (thus far) on systems with continuous degrees of freedp., lattice
field theories. In this respect, a connection with the Path Integral Monte @as
also considered [187]. These methods will thus not be considered here

6.4 A novel approach: breathing clusters and the micro-
canonical temperature

The key point of the method introduced in the next chapter is the contrat afiis-
ter construction process by a so-called instantaneous temperature \epiehds
on the lattice energy. This quantity is estimated in a such way that, at eacly energ
level visited by the multicanonical random walk, clusters are built as if theesys
were canonicallysimulated at this temperature: | show that the microcanonical
temperature is the best candidate in this respect, in that it guarantees thsthigh
decorrelating performance.

The choice of the microcanonical temperature as the temperature thatttieve
cluster construction results in cluster bond probabilities changing contilyuasis
the available energy range is walked along by the random-walker: sma#idase
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built in the upper energy range (where the microcanonical temperaturgésdad
the bond probability is low), and conversely large clusters are grown ifotter

energy range. From a physical point of view, the average clustepstiktates at
the rhythm of the random walker, evoking the picture of “breathing” chgste

With regards to long-range models, and more generally spin models having
any number of interaction, | will explain how the method straightforwardly com-
bines with the #icient Luijten-Blote cluster construction algorithm, and yield a
reduction of the algorithm complexity to that of a short-range model with the same
number of spins.

This new method is general and versatile in the sense that it can hosttg varie
of modern multicanonical algorithms dedicated to the estimation of the density
of states, whether iterative or not. In particular, | will consider its combinatio
with the recently proposed Wang-Landau method, which has proven tcedtgark
overcome the drawbacks encountered with Berg’s approach in terrabudtness
and scalability. | will also address its integration into the transition matrix method,
which turns out to provide, at the expense of a slight overhead, a ffezignt way
of estimating the information required to properly steer the cluster construction

The superiority of the method over concurrent multicanonical schemeseawill b
illustrated ong-state long-range Potts chains witranging from 3 to 12. | will
investigate chains containing up tdXpins, otherwise largely out or reach of
other multicanonical methods, and show that this draws precise tests offirgte-
scaling within computation range (Sec. 7.6). These tests will be enlightening as
regards the finite-size scaling behavior of long-range models at fulst-@hase
transitions (this was one of the developments suggested at the end ofAThap.

The emphasis will be clearly given to indicators of performance, includidig in
cators that were introduced only very recently, e.g., the estimation of eatiitibr
times fromy? regression [139]. | feel strongly, indeed, that a new Monte Carlo
method may demonstrate its superiority only after being intensively pitted against
the large variety of performance indicators available to date, notwithstaitding
ease of implementation. | will show that, in terms of computer load, the method al-
ready outperforms conventional local-update algorithms for sizes abbuadred
spins in one-dimensional models

The next chapter contains a version of an article that was recently submitted
and describes the method and the results in a very detailed way.
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Chapter 7

Fast Flat-Histogram Method for
Generalized Spin Models

With minor changes, this chapter reproduces a preprint submitted for ptibiic
in Phys. Rev. E. In Sec.7.6.2, in particular, a paragraph dedicated tmiteesize
scaling behavior of the surface tension was added.

[cond-mat0504367]
Abstract

We present a Monte Carlo method théli@ently computes the density of states for
spin models having any number of interaction per spin. Bylwoimg a random-walk
in the energy space with collective updates controlled lyntiicrocanonical temper-
ature, our method yields dynamic exponents close to thealichndom-walk values,
reduced equilibrium times, and very low statistical errortioe density of states. The
method can host any density of states estimation schemeding the Wang-Landau
algorithm and the transition matrix method. Our approacives remarkably pow-
erful in the numerical study of models governed by long-eimjeractions, where it
is shown to reduce the algorithm complexity to that of a shange model with the
same number of spins. We apply the method tocHstate Potts chains (8 g < 12)
with power-law decaying interactions in their first-ordegime; we find that conven-
tional local-update algorithms are outperformed alreadgizes above a few hundred
spins. By considering chains containing up t6 &pins, which we simulated in fairly
reasonable time, we obtain estimates of transition tenyes correct to five-figure
accuracy. Finally, we propose severéi@ent schemes aimed at estimating the mi-
crocanonical temperature.

7.1 Introduction

Long-range spin models have drawn increasing interest in the lasteldmatth in
the microscopic modeling of a variety of systems ranging from model alloy [12
to spin glasses [121] to neural networks [10], and as powerful tbor frame

to investigate fundamental issues in the physics of critical phenomenae Trires
clude, e.g., theféect of dimensionality [225], the crossover from short-range to
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long-range behavior [315, 232, 284], mean-field driven phassitrans [42], and
possible connections with Tsallis’s non-extensive thermodynamics [68,6332
Monte Carlo (MC) methods have now gained a prominent role in the investigation
of phase transitions in these models [227, 324, 19, 39, 41, 40, 326&rlicular, a
major breakthrough was recently initiated by the introduction of a (canorices)

ter algorithm able to overcome the algorithm complexity inherent to long-range
(LR) models, namely, the need to take a huge number of interactions intoreccou
at each Monte Carlo step (MCS) [227]. In a recent article, we prapasgener-
alization of this algorithm to simulations in the multicanonical ensemble [285]. It
is the goal of the present work to introduce a general and versatile maiimed

at embedding any cluster update scheme in a flat histogram algorithm, withlspec
emphasis given to LR spin models.

Whether short- or long-range interactions are considered, candi€aim-
ulations of long-range spin modelsfier indeed from severe shortcomings, the
use of cluster updates notwithstanding. First and foremost, models exhifising
order phase transitions or complicated energy landscapes expernigrerergical
slowing down [31]: the time needed for the dynamics to tunnel through fiee e
ergy barriers grows exponentially with the lattice size, leading to quasdiigo
breaking and unreliable statistics. Second, the computation of free enargiee-
lated thermodynamic quantities is highly involved, and a precise determination of
the order of the transition is often intractable. In practice, these shortcerpieg
clude the use of canonical MC algorithms at first-order transitions extepddest
lattice sizes and in the case of weakly first-order transitions.

An efficient approach aimed at overcoming this limitation is the simulation
in generalized ensembles [166, 25], in particular its multicanonical flavorllpitia
proposed by Berg [30, 31], reconsidered in the context of transitiomixray-
namics [341, 301] and recently revisited by Wang and Landau [335, 334e
key-idea here is to artificially enhance rare events corresponding tort@edina
in the free energy, by feeding the Markov chain with an appropriate disiitp
wW(E). In themulticanonical ensemblev(E) is set to the inverse of the density of
states, so that the resulting dynamics is a random walk in the energy space tha
yields a flat histogram of the energy. Other ensembles have been pinathe
last decade, including the/ ensemble, which enhances low-energy states [156],
and very recently, the optimal ensemble, which aims to optimize the distribution
W(E) with respect to the local dusivity of the random walker, so that tunneling
times are minimized [319, 351]. While still broad, histograms engendered bg the
last ensembles are no longer flat; in the optimal ensemble for instance, the his-
togram is slightly peaked around the critical region, so that the larger tinmt kpe
the random walker inside the critical region makes up for the low@asivity in
this region.

When implemented through local (i.e., single-spin) updates [284], simulations
in the multicanonical ensemble f8er, however, from two serious hurdles. First,
while tunneling times — measured in Monte Carlo steps (MCS) — are reduced
from an exponential to a power law ~ LZ? of the lattice size, the dynamic ex-
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ponentsz are still substantially higher than the ideal valwe D that should be
expected from the dynamics of a random walker [183, 93]. This ohten; as we

will witness in this article, applies equally well tdfective autocorrelation times

and to equilibrium times; this represents a serious hindrance in terms ofifitalab

in particular whenever a higher precision is desired and large amountcof-d
related data need to be gathered. In this respect, it is important to mention that
correlations between successive measurements do not only have ah amplae
statistical éiciency of multicanonical production runs, yet also represent a source
of systematic error regarding the estimation of the density of states [362cdhd
impediment to the scalability of local-update implementations specifically relates
to long-range models. Here, the very presence of long-range intaractiakes

the computation of the energy — an essential ingredient of multicanonical meth-
ods — a very time consuming operation, namely, one associated will{L&R)
algorithm complexity. As a result, the demand on CPU time needed to generate
perfectly decorrelated statistics growsl&§°, with z > D.

In this article, we present a Monte Carlo method which successfully tackles
these issues by performing simulations in the multicanonical ensemble using col-
lective updates. Our methods combines the fast-decorrelating capabilitksof
ter algorithms with the versatility of flat-histogram methods in #iicient and
straightforward way, and with wide applicability in view. In particular, it can b
readily combined with any iteration scheme dedicated to the estimation of the den-
sity of states, e.g., Wang-Landau’s method [335] or transition matrix algorithms
[341]. Additionally, while our method is presented here in the context of-long
range spin models, where it gives drastic improvements over commonly used me
ods, it is perfectly applicable to any class of models for which a clusteritigor
exists in the canonical ensemble.

Noteworthy enough, embedding a collective update scheme in a multicanonical
algorithm is not straightforward, however, due to the fundamentalty-localna-
ture of the multicanonical weight(E). Indeed, cluster algorithms depend heavily
upon particular symmetries of the model Hamiltonian, whi€k) does not keep
track of; in particular, there is no longer a canonical temperature. With sionsga
of spin models with nearest-neighbors interactions in view, several attesys h
been made at combining cluster updates with multicanonical methods in some way
or another during the last decade: the multibond algorithm [182, 183, 7138,
or variants thereof targeting Wang-Landau’s algorithm [353, 351] sitattze
model in its spin-bond representation; Rummukainen’s hybrid-like two-dtgp a
rithm lumps together a microcanonical cluster algorithm and a multicanonical dae
mon refresh [291]. As opposed to these, however, our method reliacluster-
building process which simply depends on the microcanonical temperattie of
current configuration — a quantity that may be readily derived from ttimated
density of states — in order to determine appropriate bond probabilitiesrtin-pa
ular, it does not require prior knowledge of the transition temperatuis ths case
in the multibond method. We further show that our approach makes it particular
straightforward to incorporate two optimization schemes dedicated to LR models
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[227, 213], which cut down the algorithm complexity fra®fL2P) to O(LP In LP).

As a result, the total demand on CPU time with respect to uncorrelated data is
reduced to approximately?® In LP, since cluster updates also loweto around

D; where LR models are concerned, the benefit of cluster updates isléauly c
twofold. Let us also mention that, as a by-product, using cluster updaiesies
improved estimators for the statistical moments of the order parameter [325] and
for spin-spin correlation functions; for instance, the last quantity caelier es-
timated by counting the fraction of time two given sites belong to the same cluster
[261, 262]. Further interesting information, including information conrebetih
fractal geometry, may also be gleaned from cluster statistics [13, 189].

Overall, the sharp reduction of the computer load brought about by dinoche
allowed us to study-state Potts chains with/@** interactions containing up to
216 spins in a few days on a modern Intel-based computer. It must be noted that,
with standard multicanonical methods based on single-spin updates, sgeh hu
sizes are simply intractable, since the largest size'®fr®estigated in this work
would demand several months of computation. As regards dynamic perfoema
we obtain a substantial reduction in the dynamic exponent, fromz-g1.35(3)
toz~ 1.05(1) forq = 6 ando- = 0.7. We also show that our method produces faster
equilibration, lower &ective autocorrelation times, and — where implementations
based on the Wang-Landau algorithm are concerned — lower statistioed en
the estimate of the density of states, e.g., of nearly an order of magnitugle:féy
o =09 andL = 512 spins. As a result, we obtain estimates of transition tempera-
tures that have a noticeably higher precision than those obtained usihgpgdetes
[284] or standard canonical methods [324, 19]. Finally, in order telchieat our
method did not produce systematic errors, we performed several simalafitre
two-dimensional seven- and ten-state Potts models with nearest-neighlac-inte
tions and sizes up th = 256x 256. We obtain dynamic exponents close to the
ideal random-walk value ~ 2. Although computed from rather modest statistics,
our estimate of the interfacial free energy for the largest size reaghresiaion of
four digits. In this respect, our method compares perfectly well with other-meth
ods operating in the multicanonical ensemble, and represents an altemmayive
for short-range spin models.

The layout of this article is as follows. In Sec. 7.2, after briefly reviewing
some prominent features of multicanonical methods, we explain how we combine
a multicanonical weighting with collective updates, with special emphasis given
to the detailed balance equation. Section 7.3 addresses optimizations detticated
long-range models. Numerical results regarding the dynamic characteaktar
method are presented in Sec. 7.4. In Sec. 7.5, we compare our restitts fao-
dimensional Potts model with nearest-neighbor interactions, with exactlyrknow
results, and section 7.6 is devoted to the investigation of the precision of thuane
in the context of the long-range Potts chain with power-law decaying iritenac
Overall, we pay particular attention to comparison with other algorithms operating
in the multicanonical ensemble, especially in terms of tunneling rates, dynamic
exponents and estimates of thermodynamic averages. Finally, we diseass se
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procedures aimed at estimating the microcanonical temperature, and inlparticu
how we can #iciently combine our method with the transition matrix approach.

7.2 A method to embed cluster updates in a flat histogram
algorithm

Monte Carlo simulations are based on the generation of a Markov chaimfifco
urations{o}, where each configuration is assigned a wewjlt(c-;)] correspond-

ing to the probability distribution one wishes to sample. In canonical simulations,
i.e., carried out at a fixed inverse temperaigrene chooses a Boltzmann weight

W E(ci)] = e B, thus thermodynamic averages are straightforwardly obtained
by computing the appropriate moments of the data accumulated at the given tem-
perature. On the other hand, reweighting methods based on multihistogramming
[114] are hampered at large lattice sizes by the narrowness of theyemiadpw

that is sampled, let alone additional supercritical slowing down. In the multicano
ical ensemble, one allows the dynamics to jump across free energy bamakrs
from a more general standpoint, to sample wide energy windows, by girafa

flat energy distribution over the energy range of interest for the pnoklliehand.

This is formally carried out by setting(E) = e S®) « 1/n(E), wheren(E) is the
density of states an8(E) is the microcanonical entropy. This iffect leads to

N(E) « n(E)w(E) = const. for the number of visits to ener@y Since the den-

sity of states is a priori unknowny(E) is estimated using an iterative procedure
initially fed from, e.g., a canonical guesg§E) = e #°F at a carefully chosen in-
verse temperatuigy, a flat guessv(E) = 1, or — whenever feasible — a properly
scaled estimate obtained at a smaller lattice size. Thermodynamic quantities that
depend solely on the energy, like the specific heat or Binder cumulanttheabe
computed directly from the estimated density of states. Other quantities, e.g., thos
depending on the order parameter, are obtained through a reweighticedpre
based on data gathered during an additional production run.

Historically, Berg’s recursion scheme [23, 24] was the first iteratiocgualare
specifically dedicated to multicanonical simulations. It consists in accumulating
histogram entries of the energy during each iteration run, and updatiEgfrom
the histogram of the energy obtained in a previous iteration run, until esdgntu
the histogram becomes flat up to a given tolerance. Entropic samplingrf&ir@]
or less boils down to the same key principle. Both methodieglthowever, from
poor scalability. Looking at this issue from a slightlyfférent angle, the recently
proposed Wang-Landau acceleration method [335, 334] upddéESsn real-time
during the course of the simulation, performing independent random \vatks-
tinct energy ranges. Since modifying the weight of the Markov chain duain
simulation breaks detailed balance, the amount by wiM@E) is modified during
a given iteration is decreased from one iteration to the other until it reacheg-
ligible value. As a result, detailed balance is approximately restored in the last
step of the iteration scheme. In this regard, an original approach aimeduatimg
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the statistical error on the estimate of the density of states was recently @dopos
by Yan and de Pablo [358], whereby the density of states is obtained lgyatite

ing an instantaneous temperature computed from configurational information
from a so-called multimicrocanonical ensemble. Finally, a large class of iteratio
schemes have been proposed that are based on matrices of transitiahilgires
[301, 81, 341, 337, 339] or a combination thereof with Wang-Landalgsrithm
[299, 304]. Here, the density of states is computed through a so-catied bis-
togram equation involving infinite temperature transition matrices, where transi-
tion matrices keep track of the microcanonical average of the number aft@bte
moves from one energy levels to another (Sec. 7.7 gives more detailsioouno
method can #iciently capitalize on transition matrices). Historically, procedures
based on transition matrices were termlatlhistogram methods order to distin-
guish them from Berg’s multicanonical method, although both approaclegeat

yield a flat, broad histogram. To sum up, the main benefit of multicanonical meth-
ods is twofold: first, a wide energy range is sampled, irrespective ofrdsepce

of free energy barriers; second, the methods yield a direct estimate détisity

of states.

A local-update implementation of a multicanonical algorithm may consist in
updating a single spin at a time and accepting the attempted move fronastate
to stateb with a probability given byw(a — b) = min[1, e3(Ea-S(E)]. We now
show that the microcanonical temperatg(g&) defined asiS(E)/dE is a relevant
gquantity for the acceptance rate of this process. Dendding E; + €, we expand
the probabilityW(a — b) for small e, and obtainW(a — b) ~ min[1, e #(Ea)e],

This shows that, for small enough energy changes, the dynamics isakniito

that of a canonical simulation at an inverse tempergg(i. Our departure point

for a collective-update implementation in the multicanonical ensemble is thus to
build clusters of spins with the same bond probabilities as would be given by a
canonical simulation at inverse temperatgfg).

Although our algorithm may be equally well applied to other spin models, e.g.,
models incorporating disorder or exhibiting a continuous symmetry, we naw co
sider, for the sake of clarity, a generalized ferromagnetic spin model with a
symmetry, whose Hamiltonian reatts = — 3;.j Jijos, »- HereJjj > 0 and the
o variables can take on integer values between lanidlaking guidance from
Swendsen-Wang's cluster algorithm [309], we start from an empty ketyccon-
sider each pair of spingrj, o} in turn, and activate a bond between them with
a bond probability given btij(Ez) = 6, |1 - € %AE)], whereE, is the cur-
rent lattice energy ang(E,) the inverse microcanonical temperature at enéigy
Efficient ways of estimating(E) are considered later on in Sec. 7.7. Then, we
identify clusters of connected spins using, e.g., a multiple-labeling scherhg [16
draw a new spin value at random for each cluster, and accept the attemgve
with an acceptance probabilit(a — b) which ensures that detailed balance is
satisfied. The derivation of this probability may be carried out in the following
way. First, the total acceptance probabilif{a — b), i.e., the quantity that enters
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detailed balance in such a way tafEW(a — b) = e SEIW(b — a), is split
into two termsP(a — b) andAﬂip(a — b) representing @roposed update prob-
ability and anacceptance probabilitjor the proposed update, respectively. It is
straightforward to show that the choiégj, (a — b) = min| 1, E(g_’a) eS(Ea)-S(E)|
satisfies the detailed balance equation. Let us defithe set of actlve bonds over
the complete grap§ engendered by all possible interactions: pngposed update
probability is given by the probability to construct a given gfrom an empty

bond set, i.e.,

P@a—b) =[] miE) [] [2-mjEal:

bijeB bijeG\8
After simplification, we obtain fonﬁ%,
JiiB(Ep) _
B(Ev)Eb—B(Ea)Ea l_l W) - 1,
eliB(Ea) _ 1’

bije8

whence

e(Fa) Pij (Ep)

1’ b
e | i Pii(Ep)

Aﬂip(a — b) = min (7.2)

wherea(E) = S(E)-B(E)E andpjj(E) = e#® —1. This expression can be further
simplified if we consider long-range models whose coupling constant dejerty
on the distance between spins, i.&;, = J(I), wherel = dist(, j). We have for
Aﬂip(a — h):

z(Ea) p (E ) B(I)
Aflip (@ — b) = mln[ e l_[ [ p:(E:)} (7.2)

whereB(l) stands for the number of bonds of lengtht is worthy of mention that,
if one looks at this equation from the standpoint of canonical simulationsetise
temperaturgo, we havew(E) = e°F; whences(E) = 8o anda(E) does no longer
depend ort. As a result, the acceptance rmm (a— b)isequalto 1 and we are
back to the original Swendsen-Wang algorlthm

It is also crucial to underline that it is the microcanonical temperature, i.e., the
lattice energy in the first place, which entirely governs the constructiolusfers;
indeed, for a given lattice configuration at enefigybonds are placed as if the
model were simulated at its microcanonical temperature using a Swendsgn-Wa
algorithm. As a result, cluster bond probabilities change continuously adtice la
configuration walks along the available energy range of the random salkat,
e.g., small clusters are built in the upper energy range and converg\clasters
in the lower energy range.
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7.3 Optimization for long-range models

7.3.1 Computing the lattice energy through FFT acceleratio

As is apparent in Eg. (7.1), determining the acceptance rate of a clusteeflip
mands that we compute the energy of the new (attempted) lattice configuration,
which for long-range models is &(L?°) operation. This is similar to the local-
update case, where performing one MC step, i.e., updaffingpins subsequently,
takes a CPU time proportional to the square of the number of spins, seeing'tha
operations are needed after each single spin update to compute the tialxepar
ergy between the updated spin and the rest of the lattice. Recently, Krddthua

jten proposed an algorithm that is able to compute the energy of a modehgadver
by translation invariant interactions ®(LP In LP) operations [213]. This method
leans on the convolution theorem and the Fast Fourier Transform (FFT)hich
numerous fiicient radix-based implementations are available. As a result, updat-
ing the lattice configuratioglobally rather than a single spin at a time allows us
to cut theO(L?P) complexity down to arO(LP In LP) one. A crucial point to be
noted here is that this reduction is absolutely intractable with single-spin gpdate
owing to the very reason that the energy would have to be computed atgin af
each single-spin update; this requitésoperations, and an FFT algorithm would
output no gain at all.

Let us assume that we can write down the model Hamiltonian as a sum of dot
products, i.e.H = -3 3i.,; 3;S(i) - S(j), with Jjj invariant by translation. This is
straightforwardly done wheq = 2, since in this case the dot product reduces to
a product of scalar Ising spins. As we will witness in a moment, the pressnce
a delta Kronecker symbol in the Hamiltonian wheneger 2 requires, however,

a minor transformation of the Hamiltonian. For simplicity, we consider hereafter
a one-dimensional lattice with an interactidfl) depending on the distantéde-
tween spins. The line argument is similar in higher dimensions, with the sole ex-
ception that multidimensional Fourier transforms are then performed. Tloedbas
Fourier Transform (DFT) of the spin sequer{éél)h:l._,L reads

I=L-1

é(k) — Z §(|)e—i2ﬂk|/L’
=0

and reciprocally,
k=L-1

S,
k=0
Similarly, we define the DFT of the sequence of coupling constai(ty as

S() =

e

I=L-1
3K = > Jpcle L,
1=0

where Jpn(l) incorporates thefect of Infinite Image Periodic Boundary Condi-
tions (IIPBC) [67], that isJpbc(l) = Xime-o0 J(I + mL); for algebraically decaying
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interactions, this sum can be exactly expressed in terms of Hurwitz fun{2ig#k
We diagonalize the original Hamiltonidt by rewriting it in terms of theJ(k) and
S(K),

TR .

H=-> (S(K) - S(-K),
2L
k=0

where it should be emphasized t&{t-k) andS(k) are complex conjugates, since
the original vectorS(I) have real coordinates. By relying on an FFT radix-2 algo-
rithm, the task of computing the lattice energy is consequently reduceLtm L)
operations.

Forq > 2, the Kronecker delta symbol in the Hamiltonian unfortunately rules
out the previous diagonalization. One way to resolve this issue is to magp the
state Potts model onto g ¢ 1)-dimensional vector model, so that the Kronecker
delta function in the original Hamiltonian is turned into a dot product. We define
a one-to-one mapping between each Pottsgpinl... g and a unit-length vector
S©) pelonging to aq — 1)-dimensional hypersphere, so t4f) - () = %

It is straightforward to prove that,, S(©) = 0, and that

g-1 L \R(o -y 1 .
H= 2—q;3(|—1)§( ). &l J)+a;J(l - ).

In the case of the three-state model, this transformation is equivalent to rgappin
Potts variables onto the complex plane, iee..> S = (=13 and writing
the dot producs“? - S(i) asReS)S)#}. In this case, the teri@(k) - S(—k) be-
comegS(k)|?, whereS(K) is the DFT of the sequence of (complex) varialf8§)}.
This reduces by one the number@(fL) operations required, since computing a dot
product is no longer required.

Forq > 3, spin vectors on they(- 1)-dimensional hypersphere may be deter-
mined by using hyperspherical coordinatein= q — 1 dimensions, i.e., for the
ith vectorS® (with 1 < i < q),

xg) = sinag) sinag) e sinagz3 sinegzz
(i) _ cing® cing® ing® (i)
Xy’ =sing;’ sind,’ ... sing,” ;oSO
xg) = sineg) sinag) e cosegz3
i) _ qing® (i)

X2 = sing;’ cosy,

(i) _ (i)
X1 = cost;

We initially setei(i) =0forl<i<qg- 2,9?) =cajforj<i<qgandl<j<q-3,
and@é‘l‘zl) = —Qéq_)g = qq_z. There remaing — 2 anglesy; to be determined from
- 2 equationS® - S0+ = _1/(q - 1) with 1< i < q- 2, from where we obtain
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and thus by induction ceg = . After a

= arccos=Lt, cosai,y = el =
@1 = o-1° j+1 = Ticose;’ o]

bit of algebra, we find® = (0,...,0,1), and

0 _ q(q - i)
Sh=(0...0 ’\/(q—l)(q—i+1)’
g-1-i terms

(i) o1
{Xq_l_i+j}l<j<l, qu)

for1<i < q,wheretheq— 1—i+ j)th coordinate reads

(i) q

Xo-1-i+j = @-D@-1-i+j)g-i+j)

8@ andS(@-1 differ only in the sign of their first coordinate. Once these vectors
have been computed for a givgnwhich may bez done on start-up, determining the
lattice energy requires, first computing the DE]i(k) of each sequence of coordi-

nategS(1)-SM}i_y . 1, and then evaluating the double {5 21 IWIS; (2.
As a result, the whole operation is associated with(qL In L) complexity — or

in generalO(gLP InLP) —, provided the implementation relies on a FFT radix
algorithm. As a by-product, it should be noted that once the Fourier compo-
nents have been computed, it is straightforward to derive the Fouriesfdram

of the spin-spin correlation functions at any inverse tempergturem gg(k) =

1/L (Z‘J?'zl |§j(k)|2>ﬁ, where the mean value is obtained from a reweighting proce-

dure. At large lattice sizes, the requirement thatourier components be stored

at each MCS may constitute a significant challenge in terms of computer memory;
in this case, a practical work-around consists in computing microcanamiegl

ages for each energy level visited during the simulation, and then to petfar
reweighting procedure directly from these microcanonical averagakelcase of
long-range interactions, careful attention must be paid, however, to floenoe

of the discretization of the energy axis in terms of systematic error.

7.3.2 Htficient cluster construction for long-range interactions deay-
ing with the distance

For long-range spin models, building a new cluster at each MCS takesdéeair

L2P operations, sinceP(LP - 1)/2 pairs of spins are considered in turn for bond
activation. When interactions decay with distance, the probability of addiogd
between two spins fallstbquite rapidly as the distance between them increases. A
significant amount of time during the construction of the cluster is thus wasted b
cause an overwhelming number of bonds are considered for activatich Wave

only a negligible probability to be activated. Even in the case of interactiaresde

ing as ¥i — j|** with o close to 0, does the bond count never exceed a few percent
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of the whole number of available bonds. In this respect, switching fromai-loc

to a global- update scheme might well be an ill-fated choice as the gain in terms
of autocorrelation time is spoiled by the exceedingly time consuming construction
of the cluster. However, arfiicient construction method was proposed by Luijten
and Blote in the recent past [227], with affieiency that is independent of the
number of interactions per spin, and a CPU demand that scales roudtly ke
rationale behind this method is to use cumulative probabilities, whereby indtead o
considering each spin in turn for addition to a given cluster, it is the indeReof
next spin to be added which is drawn at random. We now give a sketdliyeoof

the method in the context of long-range chains. Extensive details may atkeerw
be found in [227, 226]. First of all, the probability to add a bond is split up in
two parts, namely, (i) a provisional probability(E) (hereafter simply denoted)
depending on the distante: |i — j| between spins and on the lattice enekgyand

(i) a factor f (o, o7j) controlled by the spin values, e.g., a Kronecker delta symbol
in the case of a Potts model. If O designates the index of the current spiridb wh
we are adding bonds (i.e., spin indices are considered to be relative tortkatc
spin), then the provisional probability of skippikg- 1 spins and bonding the cur-
rent spin with a spin at positiok > 0 is given byPy(k) = H (1 m)mk. From
there, one builds a table of cumulative probabilitigsgj1) = Z w1 Po(K) for all

j1 > 0, so that the index; of the spin to be bound with current spin 0 is obtained
by first drawing a random number<Or < 1 and then reading oui from the table,

i.e., j1 is such thaCy(j1 — 1) < r < Cp(j1). Standard binary-search algorithms
may be used for this purpose. Last, a bond is activated between spidg Qvaith

a probability f (oo, oj,), and we proceed further with the computation of the index
j2 > j1 of the next spin to be bound with current spin 0. The corresponding-pro
sional probability thus becomés (K) = H Jl+1(l m)7k, and the cumulative

probabilities readCj, (j2) = k—11+1 Pj, (k). The same procedure is repeated for
{i3, ja, ...} until we draw aj, > L, in which case we jump to the next current spin,
which in a one-dimensional model is the nearest-neighbor of the previorentu
spin. In addition, there are two formulas which make it easier to compute cumula-
tive probabilities: first, one can show th@§(j) = 1—exp[-B(E) Zl‘(zl J(K)], where

E is the energy of the current configuration, and second, the cumulaitibalpili-
tiesCj, (jo+1) can be straightforwardly derived from tkig(j) codficients through
the relatiorCj, (jo+1) = %(JC‘;(’) It follows from the last relation that, instead
of building a look-up table for eaddj, (jo+1), we may as well draw a random num-
ber O<r < 1, transform it ta’ = r[1 — Co(j.)] + Co(j.), and choose the next spin
to be added from the relatid@o(jo+1 — 1) < 1’ < Co(jo+1)- In practice, we thus
simply need to compute a single look-up table filled v@;b:l J(K) for eachj at
the beginning of the simulation, from where we will derive g j) codficients

at each new MCS corresponding to a lattice configuration with a givemygker
This last task requires the order I0f operations. To sum up, the construction of
each cluster thus consists in choosing a “current” spin anhond. possible spins
in turn, e.g., starting from the leftmost one, and then activating bonds betivee
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current spin and other spins located to its right by drawing a random nmsuzaé-

ing it, and selecting the bond indices from a look-up table containindC#(@
codficients at energf. Once each spin has been considered as a current spin, a
cluster multiple labeling technique can eventually be used to identify every set o
spins actually belonging to the same cluster [161].

7.4 Numerical tests of algorithm performance

In this section, we address the performance of our algorithm in terms afnaign
behavior. Since our work focuses mainly on long-range spin modelsewidet] to
perform intensive numerical tests on the one-dimensigisthte Potts chain with
LR interactions 1ji — j|**“ decaying as a power law of the distance between spins.
The rich phase diagram of this model, and the fact that several numstuckés
have been carried out on this model in the recent past, makes it a gedechase.
For the sake of comparison with other numerical methods, and in order woeens
that our algorithm did not produce systematic errors, we also perforewadas
tests on the two-dimensional model with nearest-neighbor (NN) interacfians,
which exact results are known (see [46, 59]; also references 8])[1Both mod-
els are known to exhibit a first-order transition for an appropriate qeai@meters,
namely,q > 4 for the NN model [350], and- < o¢(q) for the LR one, with for
instances(3) = 0.72(1) [284]. We chose a set of parameters that would allow us
to observe both weak and strong first-order transitions, and contahtra sev-
eral indicators of performance, reliability, and scalability: these includeeiimg,
equilibrium and &ective autocorrelation times, and mean acceptance rates. These
indicators inform us about thdfeciency with which the Markov chain reaches the
equilibrium distribution and explores the phase space. They also tell ubadt w
rate successive measurements decorrelate from each other, calegiyvwhat
amount of resources is needed to obtain reliable statistics. Overall, thdeaee
fore good indicators of whether CPU resources diieiently utilized or not. As
regards scalability, we also computed the dynamic exponents associatedrwith tu
neling and equilibrium times; these indicate how fast needs in CPU time grow with
the lattice size.

All densities of states were calculated by means of the Wang-Landau aigprith
whereby, starting from an initial guess of the density of sta{E3, we updaten(E)
after each visit to energy levél according to the rule In(E) < Inn(E) + In f,
where Inf is hereafter termetdlVang-Landau modification factorn the case of
LR models, the unequal spacing of energy levels and the existencerglayaps
in the vicinity of the ground state required that we introduced a few chamggs
the original version. In particular, using an interpolator fon(g) turned out to be
mandatory in order to compensate for the finite width of histogram bins — aslwou
also be required for models having a continuous symmetry; indeed, wevetise
that using large bins tends to strongly reduce the acceptance rate if pmiater
is used. Bezier splines provide good interpolators, although a linear atdign
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Figure 7.1: Mean acceptance rate as a function of the energy per spirefsix-
state long-range Potts chain with= 0.7, andL = 1024 spins. The dashed line
shows the estimated inverse microcanonical temperature. The vertical liloded
indicate the position of the histogram peaks corresponding to the ordededis
ordered phases.

with a slope given by the microcanonical temperajg(t€) also proved to be par-
ticularly efficient whenever this last quantity was made available by other means,
e.g., the transition matrix.

For small and medium lattice sizes, we systematically performed all simula-
tions twice, first with standard single-spin updates (SSU) and then with dhodhe
embedding cluster updates (CU). We give an estimate of the error on thigydsh
states obtained from both types of update scheme. For the largest latteevsize
studied, however, the SSU implementation simply turned out to be impracticable,
due to either exceedingly high tunneling times, and — for LR models — exeessiv
CPU demands, and we present results for the CU algorithm only.

7.4.1 Phase space exploration and mean acceptance rates

As opposed to the (canonical) Swendsen-Wang cluster algorithm, thptacce
rate of our algorithm — Eq. (7.1) — is not trivially equal to unity. Still, it is tightly
related to the ficiency with which the Markov chain wanders about the phase
space, since a low acceptance rate would lead to very repetitive dynanesw

of this, it is instructive to compute an approximate analytical expression of this
acceptance rate when the initial and the final energigand Ey, differ only by a
small amount. Writingep = E4 + €, and carrying out a series development to first
order ine, one obtaindVji, = min(1, 1+ A(Ea)dE), where

1+ pii(Ea
ME) = pE)| 3 9y 1 PuED

—|Eal|,
e Pi(Ea)

with the same notation as in Sec. 7.2. We wish to obtain an estimate of the first sta-
tistical moments oA(E). We hereafter consider the case of a model with nearest-
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neighbor interactions)(= 1), for which we can carry out an exact derivation. The
last expression simplifies to

A(Eq) = B/ (Ea) (B“Tp - |Ea|),

whereB stands for the total number of bonds gné p(Ez). From the distribution
of bond counts at a given energy,

|Ea|) p®

o3 e

we can derive the average bond coum) = |Ea|%). This allows us to rewrite

A(Ej) as

1+p
p

hence(A(E,)) = 0. The variance oA(E,) is thus proportional to the variance of
the bond count distribution, i.¢(B?) — (B)? = [Eal iz, which yields

(A(E2)?) = 6A(Ea) = 15'(Ea) \/%

For a givere > 0, one half of all attempted cluster flips thus leads to an acceptance
rate which is lower than 1, the other half saturating at unity. Assuming aigauss
distribution forA(E), with the standard deviation computed above (which is valid
for large enough lattice sizes), the mean acceptance rate is readily olftaimed
the mean value of a gaussian distribution centered at unity and truncatesl Bbo
which yields

A(Ea) = B'(Ea) (B-<(B));

5A(Ea)6

2V2r

In the case of interactions depending on the distdroetween spins, one may
observe that the average energy is related to the average number sfdfdenth

[ by —(E) = Y1s0 J(I)% (B(I)), which shows thatA(E)) = 0 also in this case.

At a first-order transitiong(E) varies smoothly between the energy peaks of
the ordered and disordered phases, which ensurea(Btremains small. The
mean acceptance rate for the six-state LR Potts chainowith0.7 andL = 1024
spins is sketched in Fig. 7.1. While the acceptance rate is close to 1 inside the
range of phase coexistence, the varianc&(&) increases whekh lies outside the
range of phase coexistence, and therefore leads to a reduction incttatce
rate. We observe that this diminution is less marked at low-energy leveldeor
energy cost associated with flipping a small number of big clusters is lower tha
that associated with randomly updating a great deal of small clustergparit, is
consequently lower in the last case. It is worth stressing, howeverthiaanergy
range of interest in the analysis of first-order phase transitions spainseaval

(Whiip ) (Ea) = 1~
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6 8 10 12 14
IOgQ(L)

Figure 7.2: Tunneling times for the long-range Potts chain with 3, o = 0.4
(dashed lines) and.® (dotted lines), and = 6, o = 0.7 (solid lines). Triangles
refer to the SSU implementation, while squares indicates estimates for our method
(CU). Dynamic exponentswere determined from a fit to the power law~ L*.

which is only moderately larger than that corresponding to phase coeestie
only requirement being that metastability plateaus [284] and histogram peadts
be clearly visible. As a result, the fact that the mean acceptance rate $berclu
flips remains well above 90% inside this range of energy representslyalaea
improvement of a factor 3 with respect to the standard multicanonical agiproa
where we obtained acceptance rates oscillating around 30%.

7.4.2 Dynamic properties

Where performance measurements at first-order transitions are ncedcarnnel-
ing times have thus far been regarded as one of the most meaningful sreastir

Table 7.1: Dynamic exponenisfor the g-state Potts chain with power-law de-
caying interactions (a) and its two-dimensional counterpart with neaeggtmor
interactions (b).2(SS U andz(CU) refer to single-spin and cluster updates re-
spectively, whilez,so andzmuciusmake reference to the multibond method [183]
and Rummukainen’s multi-microcanonical cluster method [291] applied to the NN

model.
q o ZSSY ZCU) Znugo ZmuClus

62 0.7 1.35(3) 1.05(1)

3@ 06 1.48(2) 1.11(1)

3 04 1.13(2) 0.89(1)

7P 2.60(4) 1.82(2) 1.84 1.82(3)
10° 2.87(4) 2.23(1) 2.1
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parameters [186, 179, 183]. They are defined as one half of thagez@umber
of MCS needed for the walk to travel from one peak of the energy hiatodgo
the other — where peaks are defined with respect to the finite-size trarteiton
perature — and turn out to represent a fairly good indicator of the intberaveen
roughly independent samples.

Results for the LR chain witq = 3 and 6 are shown in Fig. 7.2. Dynamic ex-
ponentsz were determined from a fit to the power law~ L% and are summarized
in Table 7.1. We can witness a substantial reduction for both the LR and the NN
models, with exponents close to and sometimes even below the ideal random-walk
valuez = D. As regards the NN model, our values compare extremely well with
those obtained with the multibond method [183] and with Rummukainen’s hybrid-
like two-step algorithm [291], although these approaches and oflies diarkedly
in the way clusters are constructed.

It should be mentioned that the distarkfe- E, the random walker must travel,
i.e., the energy gap between the peaks of the histogram, does not scalg Wita
the number of spins. This feature is especially apparent for long-iategactions,
whereEqy — E, grows all the more faster with increasing lattice size thabmes
closer to 0. As a result, the power law ~ L? yields dynamic exponents which
are underestimated with respect to the value given by a power law of tire for
e ~ (Eq — Eo)? (up to a dimensional factor 2 for the NN model). For instance,
we would obtainz = 1.40(3) instead oz = 1.35(3) forqg = 6 ando = 0.7,
andz = 1.10(1) instead o = 1.05(1). Where the performance in terms of CPU
demands is concerned (and in particular if one is interested in how it gratvs w
the size of the system), we think, however, that the traditional definitionL? is
more meaningful.

While tunneling times represent a practical way to estimateftim@ency with
which the random walker drifts along the energy landscape, they ajectub
two limitations. First, they cannot be properly defined in the case of secated-
phase transitions, since the histogram of the energy does no longeit éxiaoib
peaks. Second, there is no direct connection between tunneling timeatacdra
relation times, which makes it filicult to estimate the optimum interval between
measurements that will yield perfectly uncorrelated data, and thus minimum sta-
tistical error on estimates of thermodynamic data. It is worth mentioning here that
computing integrated autocorrelation times naively from the set of measutgmen
i.e., just as is usually done in the canonical case, simply makes no senssimhen
ulating in the multicanonical ensemble, because the quantities we are interested in
are, in the first place, reweighted averages of thermodynamic data [179]

Therefore, alternate definitions have been proposed, which try tonovet
these limitations. One approach is to compute the so-cadleald-trip times[7],
which are computed from the number of MCS needed to get across the whole
energy axis, that is, from the ground state to the upper energy level. ugjitho
round-trip times may be determined for any order of phase transition, teegmr
unfortunately no more connection with statistical errors than do tunneling times.
On the contrary, multicanonicafective autocorrelation timesvhich were first
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Figure 7.3: Hective autocorrelation timeyg for g = 6,0 = 0.9 andL = 512 with
(a) cluster updates (b) single-spin updates. Thiectve transition temperature

defined from the peak of the specific heal{$Cy) = 0.7163(2).

introduced in the framework of the multibond algorithm [183feo a direct com-
parison with exponential or integrated autocorrelation times traditionally used in
canonical simulations. Mimicking the canonical case, tfiective autocorrelation
time g can be defined for any thermodynamic variadlg inverting the standard
error formulaeg = UgZTeff/N, whereN stands for the total number of (possibly
correlated) measurementsg denotes the variance of the (reweighted) thermody-
namic variabled, e.g.,<E2> - <E>2, andee2 is the squared statistical error on the
same variable. The error may be estimated either from resampling or (jagkknif
blocking procedures, or by performing multiple independent runs. Siottlethe
variance and the error depend on the reweighting temperature, theys e\dbni-
tion obviously yields an féective autocorrelation time which also depends on the
temperature.

We now discuss our results foffective autocorrelation times obtained for the
six-state LR Potts chain wittr = 0.9 and 128< L < 1024 spins. For this value
of o, the model exhibits a very weak first-order transitions with no clearly vis-
ible histogram peaks for sizes beldw~ 2000. The choice of medium lattice
sizes was dictated by the fact that we computed the error from multiple indepen
dent runs (around 20 runs of AMCS each), which we found a more reliable
way of computing the statistical error than using a blocking procedurerd-iga
shows the dependence gfg on the temperature fdr = 512. For both algo-
rithms, 7o exhibits a peak in the vicinity of theffective transition temperature
Te(Cy) = 0.7163(2). As expected, the reduction brought about by cluster update
in terms of correlation between measurements is marked, especially in the tran-
sition region, where single-spin update lead to a critical slowing down similar to
the one encountered in canonical simulations. This behavior is consistarihes
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Table 7.2: Hfective autocorrelation times at the transition temperature defined
from the location of the peak of the specific heat, for the six-state LR Padis ch

with o = 0.9
L Tof(SSUY  7o4(CU)
128 475 155
256 1390 310
512 3960 635
1024 12700 1370
z 1.6(1) 1.0(1)
107E (a)
N
S
T 10}
lz\? -
2 L L L L L PR |
10700 1000

L

Figure 7.4: Fit of &ective autocorrelation timesyg to the power lawrgg oc L?
for the six-state Potts chairw-(= 0.9 andL = 512) with (a) cluster updates (b)
single-spin updates.

very general observation reported recently in [319] in the framewfitkeocoptimal
ensemble, and also in [139] in the context of equilibration time for multicanonical
algorithms (see also the next paragraph for more details on this issuegbytibe
random walker dtuses at a slower pace in the critical region. In this regard, cluster
updates optimize the filusive current of the random walker in the critical region in
much the same way as do the optimal ensemble weighting proposed in [319], yet
with a different strategy: in the latter, the error is reduced by allowing the walker
to spend more time in the critical region than in the rest of the energy axis; in our
approach, it is the decorrelating capability of the move update itself whicltesd
the statistical error in the transition region. As is well known, howevertetug-
dates are especiallyfcient at the percolating threshold, and the reduction in terms
of correlation is largdecausdond probabilities are governed by the microcanon-
ical temperature. This interpretation is clearly underpinned by our invéistigaf
the dfect of poor estimates @ E) on tunneling times, presented later in Sec. 7.7.
Finally, we focus on the scaling behavior of autocorrelation times. Tablee?.2 r
ports our results fot ranging from 128 to 1024 spins, whergg is evaluated at
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the dfective transition temperature determined from the peak of the specific heat.
Our method gives smaller autocorrelation times already._fer 128 spins. From
these values, we also determined the associated scaling exponents bythdit to
power lawrgg o L* (Fig. 7.4), and obtained a highly satisfying valuezoef 1.0(1)

with cluster updates.

We conclude the discussion on the dynamic characteristics of our algorithm
with an investigation of equilibrating properties. As opposed to canonicalaimu
tion, estimating equilibrium times has been much less common in the context of
multicanonical simulations; the non-linear relaxation function, while very infor
mative when the equilibrium distribution is driven by a Boltzmann weight [216],
is of limited use indeed if the engendered distribution is flat. Recently, however
an dficient procedure aimed at estimating equilibrium times for any equilibrium
distribution was proposed by Guerra and Mufioz [139]. This proeedklies on
a x? regression with respect to the (expected) flat equilibrium distribugi¢E).
Starting from the same initial lattice configuratiaomMarkov processes are run
with distinct random seeds, and at each MC gtep histogram of the energy
Vi(E) is filled with the value of the energy of each process. Asymptoticslj({)
should approximate the expected flat distribut®(E) o« n(E)w(E). In order
to estimate the equilibrium time in a more quantitative way?é) deviation of
V(E) with respect to the flat distribution is carried out at each MC ${ape.,
Y2(t) = Se(V(E) — nP(E))?/(nP(E)), where the sum runs over histogram bins.
For largen, and provided equilibrium has been reached, the distributiop? @
overm experiments obeys g law with a number of degrees of freedom given
by the number of histogram bins minus one, that is, with a mean equand a
standard deviation given by2r/m. Due to the intensive demand in CPU required
by this procedure, we restricted our estimation of equilibrium times to the single
caseq = 6 ando = 0.9. We performech = 1000 Markov processes for sizes
betweenL = 128 andL = 512, and estimated the equilibrium time from a single
experiment (that istn = 1) by simply monitoring the time needed fef(t)/r to
reach unity and then stay within the interval{220-/r, 1 + 20-/r]. As illustrated
in Fig. 7.5, relying on a single experiment leads to quite large error barshige
is suficient for our purpose. From the graphsyé{t) we readreq = 4500+ 500
MCS andreq = 23000+ 2000 MCS for the cluster- and single-spin updates respec-
tively; in spite of the large uncertainty, the reduction in terms of equilibrium time
brought about by our method is clearly visible. Results for other lattice aizes
summarized in Table 7.3. A fit to the power lawg o Lg, (see Fig. 7.6) yields
the scaling exponentgq = 1.96(5) andzeq = 1.21(3) for the single-spin and the
cluster updates respectively. Here again, we think that lowfBrsion currents in
the latest case account for the higher pace at which the random wedldras the
equilibrium distribution.
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10 — T T T T

15 20 25 30 35
t(MCS x 10%)

Figure 7.5: Plot of?(t)/r for the six-state Potts chainr(= 0.9, L = 512) using (a)
cluster updates and (b) single-spin updates. The regression wiggl@art over a
histogram containing 20 bins populated from 1000 runs, all starting imgrrstate
configuration but with distinct random seeds.

Table 7.3: Equilibrium times for the six-state LR Potts chain witk 0.9 obtained
by monitoring the graph of?(t)/r.

L Teq(SSUY Teg(CU)

128 1700(100) 800(120)

256  6000(750) 2000(200)

512  23000(2000)  4500(500)

1024 101000(8000) 10000(800)

2 1
10 100 1000

L

Figure 7.6: Fit of equilibrium times to the power lamyg o< L for the six-state
Potts chaing = 0.9). (a) cluster updates and (b) single-spin updates.
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Figure 7.7: CPU time per MCS and per spin for the long-range Potts chaam-Tr
gles indicate typical CPU times for the local-update algorithm (SSU), irr¢ispec
of gando. Squares refer to our algorithm (CU) with LR specific optimizations
included; forg = 3 andq = 6, estimates were determined by averaging over the
indicatedo values.

7.4.3 Overall CPU demand for LR models

We now discuss CPU demand in the case of LR models, and concentrategairthe

in CPU resources brought about by the optimization schemes proposed.i.S.
Assuming a decentlyfgcient algorithm implementation, this indicator yields a
rough account of the real algorithm complexity, although it should be mestdion
that it is usually an elaborate task to estimate this quantity rigorously, partly be-
cause its value hinges heavily on a variety of implementation, CPU architecture
and compiler dependent properties. We decided to measure CPU timessaser a
ries of one-hour long simulation runs on a handful of distinct CPU architestu
including Intel Pentium and Xeon at 2.4 and 3.2GHz. Figure 7.7 sketcleeagas

of the CPU (user) time per MCS and per spin, where small fluctuations might be
attributed to the #ect of varying CPU cache sizes amidst our clutch of CPU’s.
While for the local-update implementation the demand in CPU per spin grows lin-
early with the number of spin, it is roughly constant over a fairly large eamig
lattice sizes in the case of our cluster-update algorithm. Moreover, our chatho
ready outperforms the local-update scheme starting from severalddmspins,
with nonetheless an increased footprint for highealues which is accounted for

by the correspondingly higher number of FFT’s to be computed. Thiseheny
clearly demonstrates the breakthrough that our method brings abougfetuithy

of long-range models, paving the way for precise tests of finite-size gcalin
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7.5 Two-dimensional NN Potts model: comparison with
exact results

In order to check that our algorithm did not produce systematic errars;om-
puted transition temperatures and interface tensions between coexistes b

the two-dimensionad}-state Potts modelh(= 7, 10) with nearest-neighbor (NN)
interactions and helical boundary conditions. Results regarding therdychar-
acteristics of our algorithm for this model were reported in Sec. 7.4; we wiill c
centrate here on precision matters. Kot 10, we obtained¢(L) = 0.70699(5),
0.70491(5), 070300(2), 070278(1), 070164(1), 0701328(4) and J01249(2) for

L = 16, 20, 30, 32, 64, 128, and 256, whéiewas determined from the location

of peaks of the specific hedaf, was computed directly from the estimated density
of states, and then refined from an additional production run of lengthMiTs.

The error was estimated by means of the jackknife method. Following standard
FSS theory at first-order phase transitions, we colla@gd)/L? vs (T — T¢)L?

over the five highest lattice sizes and found an infinite size tempera{(se® =
0.701236(3) in very good agreement with the exact valu®@123157 .. The same
procedure applied tg= 7 andL = 64, 128, and 256 yieldeli;(c0) = 0.773059(1)
which again matches perfectly the exact valug/80589 .. We estimated the in-
terface tensiort from the histogram of the energy, reweighted at a temperature
where energy peaks have the same height, namely, 2L~ In Ppin. Here,Ppin
designates the minimum of the histogram between the two energy peaks and the
peak heights are normalized to unity. We comp®eadirectly from the density of
states, and estimated the error from the additional production run. In gjaiedrat
should be noted that estimating interface tensions directly from the densibtes s
generally yields values that lie below those computed from histograms collected
during production runs. Our algorithm allowed us to determimngth a four-digit
precision for sizes up tb = 256 and nonetheless rather modest statistics. For
the seven-state model, we obtainetl 2 0.0336(6), 00294(1), 002631(8), and
0.02384(9) forL = 32, 64, 128, and 256; a linear fit of the foln~ X(c0) + c/L
[220] performed over the three largest sizes (i.e. Lfabove the disordered phase
correlation lengthé ~ 48 [59]) yielded the infinite size value@®230(11), still
above the exact value@®0792, yet closer to it than estimates reported in several
previous studies [291, 183, 179].

7.6 LR Potts chain: error estimates and tests of finite-size
scaling

In this section, we discuss the precision of our results forgtseate Potts chain
with algebraically decaying interactions, i.&(t) = 1/r**“. Our purpose is twofold.
First, we estimate the error in the density of staifs) obtained from the Wang-
Landau algorithm, so that we can obtain a better insight into the benefit of our
method with regard to the iterative calculatiomgE). Second, we determine con-
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fidence intervals on reweighted averages computed from an additimthlgiion

run. Since computing thermodynamic quantities from a production run ddes no
require that the histogram be perfectly flat, nor that the estimate of the density
of states be perfectly accurate, this amounts to estimating the gain in precision
brought about by lower autocorrelation times.

7.6.1 Statistical error of the density of states

In order to compare the error on the density of states produced by tHe-sipig
update implementation and our method, we performed for each method a series
of 12 independent simulations with the Wang-Landau algorithm, all starting with
the same initial guess of the density of states. The model parameters wtre set
g = 6,0 =09 andL = 512. This choice of parameters guarantees that, in spite
of the modest lattice size we consider, autocorrelation tim@srdiy a stficient
amount between the single-spin updates method and our method, so thatdfie be
may be clearly interpreted in terms of decorrelating capabilities. The initiabgues
of S(E) was scaled up from an estimate obtained. at 256, and the updating
factor of the Wang-Landau algorithm was initially set tofln= 5. We did not
make use of all improvements to the original Wang-Landau algorithm, asggdpo
by Zhou and Bhatt in [362], since these would have partly overshaditiveegain
produced solely by lower autocorrelation times. Indeed, we mainly focusd¢ide
systematic error (rather than the whole statistical error) that may showrumgdu
the first iterations. It was established in [362] that this systematic erroitsdsom

the combination of a large Ih codfticient with the presence of strong correlations
between adjacent binning. We thus simply relied on the original histogram flat-
ness criterion to switch from one iteration to another, and dividdddy the same
amount (namely, 5) after each iteration which passed the flatness chedhuid

out, however, that using the criterion in [362] instead, that is, averagfiByon
multiple independent runs after each iteration, and switching to the next iteratio
only after a given number of entries was recorded in the histogram Ge@ B

in [362]), led to markedly lower statistical errors. As illustrated in Fig. 7.8, the
statistical error on the density of states is clearly improved by our methodrin pa
ticular, cluster updates lead to a spread of the error over the wholeyespasy In

this respect, and as already mentioned in Sec. 7.4, the lofiasidn rates associ-
ated with collective updates in the critical energy regidiieioa clear benefit. As
expected from the arguments of Zhou and Bhatt, the reduction is also mdtednar
for In f = 0.04 than for Inf = 1077, and the systematic error brought about by
correlation between successive binning is indeed partly tamed by a lowsy-Wa
Landau madification factor. Finally, we show in Fig. 7.9 the resulting statistical
error on the specific heat, since thermodynamic averages are the tejeaatities

in the first place.C, was computed directly from the estimated density of states
n(E), i.e., according to the formulg,(kT) = (<E2>kT — (E)2;)/(L kT?), where
(E™ = (Zg E"(E)e F/KT) /(e n(E)e®/XT). For long-range models, energy lev-
els are not equally spaced, and it should be noted that too large histbgramay
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Figure 7.8: Statistical error on the density of states of the six-state Pottsfohain
two distinct modification factors I of the Wang-Landau algorithm. The statisti-
cal errors were obtained from 12 independent runs. The paranuétérs model
areo = 0.9 andL = 512. (a) and (b) correspond to our method and the local-update

algorithm respectively.
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Figure 7.9: Graph of the specific heat for the six-state Potts clai 0.9 and
L = 512) obtained directly from the final estimate of the density of states with (a)
our method and (b) the local-update algorithm. The inset shows the relatre e
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Figure 7.10: Specific heat for the three-state Potts chainawith0.5 as obtained
with our method.

cause a systematic deviation on the averages as well. We paid attention to this by
comparing our results for several bin widths, and made sure that themsjgte
deviation engendered was always lower than the statistical error itsetfe gisted

in the inset of Fig. 7.9, the accuracy on the estimatio@.ois larger by nearly an
order of magnitude at the transition temperature. Incidentally, we obsawthtb

is comparable to the gain in terms of autocorrelation times, as already presented
Fig. 7.3.

7.6.2 Tests of finite-size scaling: transition temperature and surface
tensions

We now discuss some of our results for the three-state Potts chain, fdn wkic
performed extensive simulations for sizes ranging flom 128 toL = 65536. As
opposed to higher values gf there exists indeed a large set of numerical studies
for g = 3, so that comparison with previous estimates is easier. Table 7.4 reports
our values for transition temperatures and peaks of response funictians- 0.5.

Both C, andy were computed from a production run whose length varied between
10° and 16 MCS depending on the lattice size, and error bars were computed
by means of the jackknife blocking method. We performed these productien r
twice, first using single-spin updates, and then using our method, yethirchses

with the same estimate of the density of states. Figure 7.10 shows the gr@ph of
as obtained with cluster updates. We mention thatl_for 4096, the local-update
implementation was simply intractable as a result of excessive computation times.
For all sizes, our results match within error bars for both methods, andutdh

be noticed that, for the two largest sizes, we obtain estimates of transition temper-
atures accurate up to the fifth digit. A fit @(L), as given by the location of the
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Table 7.4: Estimates of peaks of the specific i&aand the susceptibility, and
corresponding féective transition temperatures for the three-state LR Potts chain
with o~ = 0.5. Error calculations were carried out by means of the jackknife method
applied to a single production run. The number of MCS per production rtieis
same for both methods, yet varies betweeh 40d 10 from the smaller to the

larger lattice sizes.

L TGy ca

(CU) (SSU) (CU) (SSU)
128 1.6450(18)  1.645(3) 3.55(2)  3.55(3)
256  1.6607(2) 1.6607(13) 4.86(2)  4.88(5)
512  1.6741(9) 1.675(1)  6.54(3)  6.47(6)
1024  1.6815(2) 1.6815(17) 9.14(8)  9.10(24)
2048  1.6856(3) 1.685(1)  13.63(15) 13.73(80)
4096 1.68742(9)  1.6875(10) 22.21(34) 21.9(2.2)
8192  1.68801(7) 40.28(44)
16384 1.688031(34) 79.46(35)
32768 1.687851(12) 164.1(4)
65536 1.687749(09) 332.8(6)
L Tely) max

(CU) (SSU) (CU) (SSU)
128 1.6793(14) 1.679(4) 3.44(3)  3.46(3)
256  1.6837(2) 1.6837(15) 6.09(3)  6.13(5)
512  1.6864(8) 1.6877(15) 10.81(7)  10.86(13)
1024  1.6882(3) 1.688(2)  19.73(28) 19.8(5)
2048  1.6887(2) 1.6882(15) 37.6(5)  37.5(1.8)
4096 1.68869(9)  1.6887(11) 75.4(1.2) 74.6(6.7)
8192  1.68842(7) 165.2(1.8)
16384 1.688148(35) 369.8(1.1)
32768 1.687870(20) 827(2)
65536 1.687773(16) 1754(3)
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Figure 7.11: Peak of the cumulant of the enetgy= (E*) / (E2)” as a function
of the lattice size for the three-state LR Potts chain with 0.2 ando- = 0.5. The
inset shows a magnification near the origindo& 0.5.

peaks ofC,, to the power lawT¢(L) = T¢(c0) + a/L yielded T¢(c0) = 1.68764(1)

for our method, and¢(c0) = 1.6888(8) for the local-update implementation. The
same fit performed ofic(y) gaveTc(c0) = 1.68765(2) andl¢(0) = 1.6892(6) re-
spectively. These values compare very well with each other. Howaweimfinite
size transition temperature is slightly larger than the best estimate determined so
far (to the best of our knowledge) with a numerical approach, namelygtie of

T. = 1.68542 obtained in [251] with the cluster mean-field method. An important
effect we noticed is the presence of a crossover arbua®2768 forT¢(C,), where

the finite-size transition temperature starts to decrease slightly. This meangthat
had to restrict our fits to the largest lattice sizes. We think that this crosstaser
be attributed to the large correlation lengtlrat 0.5. In Fig. 7.11, we observe in-
deed that the lattice size at which the crossover occurs is the same as mlaeaziee
the peak of the reduced Binder cumulant of the energy, natdely; (E*) / (E?)",
experiences a minimum. For = 0.2, the sameféect is withessed by our results,
with the change of slope dfi, taking place around = 2048, and a change of
behavior forT(C,) occurring neal. = 4096. We also note in passing that, for
o = 0.5, relying on the Binder cumulant to assess the first-order nature of the tra
sition requires simulating the system up to sizes that are far beyond thelitagzab
of single-spin update implementations. In particular, carrying a power-taoy fi
U, restricted to sizes below ~ 3000 would yield underestimated values. Our
results in Fig. 7.11 show that the infinite size value lies arou@3, and thus that
the transition is stronger than suggested for instance in [131].

FSS behavior of the surface tension and evidence for fractal dinmsion Al-
though a precise determination of correlation lengths for the long-rarttgedhain
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Figure 7.12: Graph of the free ener§yT, E) = —In N(T, E) for the three-state
LR Potts chain withr = 0.5. N(T, E) is the reweighted histogram at a transition
temperature defined by equal peak heights. For the four lattice sizes $tere;,
lattice configurations corresponding to phase coexistence are ssggi®sa factor
ranging from 01 to 10°® with respect to pure phase configurations; for the three
largest sizes, we note that a canonical simulation is clearly intractable.
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Figure 7.13: Fit of the interface free enerd¥ to a power law of the lattice size
for the three-state LR Potts chain with= 0.5. All estimates ofAF were obtained

with our method.
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Figure 7.14: Fit of the interface free energ¥ to a power law of the lattice size
for the six-state LR Potts chain wiith =0.5, 0.7, and 0.9. All estimates afF
were obtained with our method.

is beyond the scope of this work, we tried to obtain a rough estimate of it frem th
finite-size behavior of the interface free energly (akin to a “surface tension”,
although this term is certainly no longer appropriate for long-range modets},

we computed a reweighted histogradiT, E) of the energy at the transition tem-
peratureTeqn Where both peaks of the histogram have equal height (see Fig 7.12).
Then we measuretdlF from InPpax — IN Pmin, WherePmax and Pnin stand for the
height of the peaks, and the minimum of the histogram between the two energy
peaks, respectively.

By fitting the interface free energy to the power lakF o L%, we obtain a
very good fit for sizes ranging from = 256 toL = 65536, yieldinge = 0.91(2)
andAF/LY = 0.0004 in the thermodynamic limit. This is illustrated in Fig. 7.13.

In view of the expected behavior for short-range models, namdiyscales to
leading order as a power of the lattice size with an exponent given by thasiiome

of the interface [219], this suggests that tHEeetive dimension of the interface
lies between 0 and 1 for long-range chains, evoking a fractal geomdtnyaw
Hausdoff dimension given by this exponent. This assumption is also supported
by the fact that the fits oAF/L in [131] exhibit important finite-size corrections,
while our fit with a non-integer exponent is exceptionally good over monettha
ordersof magnitude in linear size, and does not suggest such corrections.

Fig. 7.14 shows the same fits performed for the six-state model. The corre-
sponding exponents ate=0.89(1), 0.77(1), and 0.28(2) fer =0.5, 0.7 and 0.9
respectively. This behavior suggests that the fractal dimension of théairde if
any, increases and tends to the geometric dimerBienl asoc — 0. In addition,
the fact that exponents for = 0.5 and g=3 and 5 match within error bars seems to
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indicate that the dimension of the interface does not deperg] pet only on the
decay parameter of the interaction.

Finally, if we mimic the largeq arguments proposed in [46] for the nearest-
neighbor Potts model, namely, that the correlation leggihthe disordered phase
is given by AF/L)™1, we obtain after changing the unit exponentt@n estimate
of & ~ 2500 for the LR chain at = 0.5. In this respect, we would like to mention
that: (i) the topology of the interface between the ordered and disorqéeskes
is certainly far more complex than in short-range models, and (ii) we make use
of Infinite Image Periodic Boundary Conditions. Therefore, this estimaialdh
be taken as very rough one, since for instance the factor 2 in the definition
the interface tension (see Eq. (7) in [46]) might be questionable in LR models.
Nonetheless, our estimate seems at least consistent with the fact thatrige olha
slope ofU_ sets in for sizes slightly above this size, ile+ 5000.

7.7 Combination with the transition matrix method

In this section, we examine how our method can theiently combined with the
transition matrix method [341]. We show in particular that transition matrices rep-
resent a veryféicient way of estimating the microcanonical temperag{Eee) used

to compute cluster bond probabilities when nothing is known initially about the
density of states. We also discuss how the estima{Egl can then be used as an
efficient predictor to speed up the convergence towards the ground stizig tthe
early iterations of the Wang-Landau algorithm.

7.7.1 Hficient estimation of 3(E) and bootstrapping

As seems manifest from the scheme presented in Sec. 7.2, one of thesbagie-r
ments of our algorithm is to have an estimat@() at our disposal over the whole
energy axis in order to compute cluster bond probabilities. One rather siragle w
of estimating3(E) is to compute it from the current estimate of the density of states
n(E) using a finite-diference scheme, i.e., in real-time in the course of the itera-
tion scheme. This is the most tractable approach if one decides to rely solely on
Wang-Landau’s algorithm to estimatéE). During early iterations, however, the
estimate oh(E) is somewhat rough and it is necessary to resort to a spline interpo-
lation in order to obtain a sficiently smooth estimate @gf(E). Since the unequal
spacing of energy levels in long-range models renders an interpolatiemscfor

n(E) absolutely mandatory [284K(E) is already available to us for free. Fig-
ure 7.15 shows estimates obtained with this approach for the three-statataye-
chain with various interaction ranges, computed after ten iteration step90010
measurements each. We note in passing that the presence of a clearlyruinible
imum in the three cases results from the first-order nature of the transitmn. F
suficiently short-range interactions, and when no random disorder isntreke
microcanonical entrop$(E) scales quite gently with the lattice size, and it is also
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Figure 7.15: Microcanonical inverse temperatg(€) = dS(E)/dE computed
from the estimated density of states using a spline interpolation, for the tfatee-s
long-range chain witle- = 0.4, 0.5, and 06 from bottom to top.

perfectly feasible to use the value gfE) obtained at a smaller lattice size as an
initial guess.

In any case, it is crucial for the performance of our algorithm that voulgh
computep(E) to suficient accuracy. Indeed, we have found that any departure
from the ideal line results in poorer performance, as illustrated in Fig. 7 hé.
curve (a) in the figure shows the mean acceptance rate as a functionesfetfug/
for an estimate oB(E) obtained after the ultimate Wang-Landau iteration and a
modification factor Inf = 10°7. Curves (b) and (c) show the same quantity for mi-
crocanonical temperatures that were under- and overestimated byTHa#4oor
estimate of3(E) causes a marked decrease of the acceptance rate in the transition
region (arounce/L ~ —1.5), from around 100% to nearly 40%. Tunneling times
clearly experience a corresponding increase, from 243 for theebtstate, to 737
and 1150 for the under- and overestimated temperatures, respeclivisyan be
easily explained, if one considers that thiféagency of cluster updates reaches a
maximum at the percolation threshold. Any departure of the estima#gdfrom
the ideal line results in a shift between the temperature at which clusters- perc
late (which depends o8(E)) and theeffectivetemperature of the system (which
is given bydS(E)/dE). This behavior has been observed in the context of canon-
ical simulations of disordered systems, e.g., the Random Field Ising modéJ [258
where the presence of randomness depresses the critical tempdrathie case,
using the (canonical) simulation temperature to compute the bond probabilities
simply results in a growing shift between the critical temperature and thelperco
tion threshold as the randomness is increased.

In view of the previously mentioned requirements on the estimatigs(©Y,
it is clear that, if one does not have a reliable guesg(&f) at hand before the
simulation starts, anficient scheme must be devised in order to comp( in
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Figure 7.16: Mean acceptance rate as a function of the energy pepsfiire fsix-
state long-range Potts chain with= 0.5, andL = 512 spins (strong first-order
regime) for three dierent estimates g#(E). (a) best estimate, as given by the
ultimate iteration of the Wang-Landau algorithm; @A¢E) scaled by ®; (c) 3(E)
scaled by 11.
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Figure 7.17: Symbols show the microcanonical inverse temperg{iecom-
puted from the transition matrix accumulated over 2000 MCS, for the six-sRate L
model - = 0.5) containing 512 spins. The estimate obtained from an interpolation
scheme after the ultimate iteration is shown as a solid line for comparison.
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the early stage of the Wang-Landau algorithm. This is vital at this stageuseca
the exceedingly noisy estimate of the density of states makes it more likely to ob-
tain under- or over-estimated values 8§E). An efficient approach in this regards
relies on transition matrices [341, 307]. This method produces highly presis
mates of3(E), although it has an inherently higher cost in term of computer load.
The starting point is the Broad Histogram equation [339, 98]:

N(E)Tw(E - E’) = n(E")T(E" — E),

whereT.(E — E’) is the transition matrix element between energy letetnd

E’ (also denoted agdN(o, E’ — E))g in [98]). This quantity contains the micro-
canonical average at energyof the number of potential single-spin moves from
a stateo of energyE to a states’ of energyE’. It is estimated by accumulating
a double-entry histogramE, AE) containing the number of potential moves from
E to E + AE each time the energy levElis visited. Long-range interactions lead
to energy levels which are irregularly spaced, with in particular a few gafige
vicinity of the ground state [284], and it is necessary to choose an axsnwf
enough to minimize discretization errors, and at the same tiffieisutly large to
contain at least a handful of entries. In this cakg(E — E’) varies sifficiently
smoothly for the following approximation scheme to be valid:

To(E — E + AE)
To(E > E— AE’

1
BE) = =In

where the actual estimate is obtained by weighted-averaging over seakra$

of AE. As illustrated in Fig. 7.17 for the six-state LR chain, the estimation of
B(E) from the transition matrix elements is reliable already after 2000 MCS, which
roughly corresponds to 50 round-trips between the upper and the kEwesgy
range. For long-range models, each estimation of the number of potentiasmov
requires the order of?P operations (as opposed I® for nearest-neighbor in-
teractions). However, we have shown in Sec. 7.3 that a single clustateupan
demand as little a®(LP In LP) operations when long-range specific optimizations
are carried out. This means that estimation schemes based on transition matrices
partly scupper the benefits of the last optimizations, and should therefam-be
ployed only as a bootstrap procedure when nothing is known yet ab®utittro-
canonical temperature. Conversely, models with nearest-neighborcinesado

not undergo such a drawback, and make the transition matrix appro&cfeatfy
transparent one from the viewpoint of algorithm complexity.

7.7.2 Hficient predictors for the Wang-Landau algorithm

Finally, we discuss how(E) can be used as affieient predictor during the early
stage of the Wang-Landau algorithm when nothing is known about thetylens
states. In the original implementation of this algorithm, we start \8itg) = 0
for all energy levels, and simply increme8&{E) by the modification factor It
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Figure 7.18: The graph shows the number of MCS needed to reach tinedgro

state (dashed horizontal line) of the six-state Potts chaig (0.5 andL = 512)

for an initially unknown density of states, using three distinct schemesn¢ajte

predictor based oA(E), local- and collective-update algorithms respectively; (c)

no predictor §(E) = 0, YE), local-update algorithm.

each time the corresponding energy level is visited. One of the main drisvbac
this approach is that the Markov chain tends to wander around a fairlytimey

in the upper energy range, until eventually enough visits have beerdestmn

the histogram for the system to start exploring low-energy levels. Thig pam
already been mentioned in [362], where it was suggested that starting gathda
initial guess ofS(E) was more #icient in terms of the number of histogram en-
tries required to reach the final estimate, than performing a multi-range run with
no initial guess at all. To circumvent this drawback when no initial guessai$-av
able, we therefore propose to Ys) to predictS(E) for energy levels that are
visited for the first time, and thus for whic®E) is not available (i.e., it is set to
S(E) = 0 in the original implementation of the Wang-Landau algorithm). A linear
prediction scheme turned out tofBaiently ficient for our purpose. As illustrated

in Fig. 7.18, using a predictor brings about a gain of three orders of ioagnin

the time needed to reach the ground state. Our method and the single-spim upda
method lead similar performance, with nonetheless a slightly better behaviar whe
cluster updates are used. We note that the Markov chain stays initially s@newh
longer in the upper energy range when cluster updates are usedagjnod esti-
mate ofB(E) is needed to build the clusters with the correct bond probabilities. We
think that this approach would prove particularly useful when the cheriatics of

the model makes it impossible to obtain an initial guesS(@&) from simulations

at smaller lattice sizes, e.g., in the presence of disorder or when the logg-ra
interaction experience a slow decay.
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7.8 Conclusion

In conclusion, we have developed a new Monte Carlo method which comhbines
an dficient and straightforward way the benefits of flat histogram algorithms with
the ability of cluster algorithms to rapidly reduce temporal correlations. Itiiscu

for spin models with any number of interaction between spins. Our formulation is
versatile, and the method can be applied to a variety of density of states estimation
schemes, including the Wang-Landau algorithm, Berg’s recursion schethe
transition matrix method. We have shown that using the microcanonical temper-
ature to compute cluster bond probabilities leads to a drastic reductidfeirt e
tive autocorrelation times, tunneling times and equilibration times. In the context
of the Wang-Landau implementation, the reduced correlation betweernssiwee
binning of the energy histogram yields a lower error in the estimation of thatglen

of states, and as a result more reliable estimates of thermodynamic ave3ages.
eral schemes for the estimation of the microcanonical temperature wei@sprhp
among which an ficient procedure which harnesses the power of the transition
matrix method, and allows us to bootstrap the algorithm even if nothing is known
initially about the density of states. Finally, we carefully examined the precision
of our method in the case of spin models with power-law decaying interactions.
Here, our method proves all the more powerful that it is able to reduceldbe a
rithm complexity to that of a short-range model having the same number of spins
This allowed us to study several finite-siz€eets at large lattice sizes, otherwise
largely out of reach of conventional local-update implementations. In péatic

we found out that the interface free energy scales perfectly well wittmaepof

the lattice size, yet with a non-integer exponent which lies between 0 anidig,. T
we think, is accounted for by the complex topology of the phases in coezésten
in long-range models. A more detailed study, including a deeper insight into the
topological properties of the generated clusters and the estimation ofatimme
lengths at large lattice sizes, would be very promising. We think that our method
clearly draws this challenge within computation range.
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Chapter 8

Long-range Ising chain with
bimodal random fields:
first-order transitions induced by
disorder

In this Chapter, a preliminary investigation of the critical behavior of the sand
field Ising (RFI) model with power-law decaying is proposed. This model, in its
nearest-neighbor flavor, has been the subject of intense scrutimgdbe last
thirty years, with numerous controversies still surrounding its critical\dehaOn

the contrary, its long-range counterpart has been much less studikfoy &xactly

the same reasons as for other long-range models, the ability to varyftiotive
dimension of the model — from mean-field behavior to short-range behavior
makes it a perfect laboratory framework that might help shedding new dight
these controversies.

This model would probably deserve a whole thesis on its own, and it is clearly
not the purpose of the present chapter to investigate its behavior in ded#tilerR
my goal in the following will be to capitalize on the methods developed in the
previous parts in order to scrutinize one specific question regarding thislntbe
possible existence of a tricritical point separating first- and secorettrahsitions
when random fields are generated by a bimodal distribution. The quesisdrelen
mooted several times for the nearest-neighbor model, mean-field thealigtpre
such a behavior, and it is obviously exciting to check if the long-range hadsie
exhibits this behavior, at least when the interaction ti@ently close to the mean-
field regime.

To what extent does such a study make sense with the remainder of this the-
sis? First, disordered models exhibit complicated energy landscapeas aoudh
they may be regarded as systems of choice for Monte Carlo methods ogeratin
in generalized ensembles. In this respect, | will naturally examine fii@eaicy
of single-spin updates vs collective updates in the context of disordgstdms.
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Second, the detection of the order of the phase transition in the Potts clsain ha
been central to the first part of this thesis: a dedicated method based odalpin
points has been introduced in this purpose in Chap. 4, and it is thergfpeala

ing to check the &iciency of this method on a fierent model where a first-order
transition is expected to occur.

The layout of this Chapter is as follows. The main results and points of con-
troversy regarding the nearest-neighbor are recalled in Sec. 8.hrtinypar, the
influence of the shape of the field distribution on the phase diagram is @Ediew
in Sec. 8.2. Then, a derivation of mean-field results using the replica fisrma
is provided in Sec. 8.3: these results are expected to become exact faciioes
that decay sfiiciently slowly*, and will thus serve as a guide. The upper criti-
cal range of the model is calculated in Sec. 8.4 by relying on a generalization
power-law decaying interactions of the dimensional argument of Imry aandiiie
algorithms are described in Sec. 8.5. Results, including a preliminary estimétion o
the phase diagram for two decay parameters, are presented in S&oBséstency
with results obtained for the nearest-neighbor model, and possible improteme
of the method, are discussed in Sec. 8.7.

8.1 Model and existing results

The random-field Ising model is a generalization of the Ising model in a umifor
external field to the case of non-uniform, randomly distributed fields. Thaeino
Hamiltonian, in its most generic formulation, writes

H= —% ZJijO'iO'j - ZO’|h|

i#] |

whereo; = +1 are usual Ising variables adq is a generalized coupling constant.
The seth;} represents external fields coupling linearly with the spin variables, and
randomly distributed according to some given law of probability, e.g., gaussia
multimodal (e.g., made up of Dirac “functions”). As far as modelingeatl sys-
tems is concerned, random fields are assumed to evolve on a time scateajrder
magnitude larger than the usual time scale associated with thermal fluctuations of
the spin variables, so that they represeguanchedlisorder. In particular, thermo-
dynamic averages are computed by assuming constant random fields:tthieis
distinguished from the notion a@onfigurationalaverages, i.e., averages over sev-
eral realizations of disorder. An important point in this respect isétieaveraging
property of the free energy with respect to configurational averagesreby the
free energy (per spin) for a given set of quenched fields tendsrdewts con-
figurational average in the thermodynamic limit, so that averaging over @isord
realizations — if this is technically feasible — proves diicgent way of obtaining

1Although the exactness of the mean-field regime fdfisiently slowly decaying interactions
has been proven for non-disordered models only [65, 68, 196, 331
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the critical properties foany given set of quenched fields. This clearly plays a
crucial role also in numerical simulations.

In its nearest-neighbor formulation, i.e., willj taking non-null values for in-
teractions between neighboring spins only, the RFI model has been tleetsoib
unabated interest during the last three decades, particularly for fislidated
according to a gaussian law. Beyond its importance in the microscopic modeling
of a variety of magnetic or ferroelectric materials, e.g., diluted antiferromagne
(see [20] for a review addressing experimental realizations), it hasb&some
— along with the Edwards-Anderson model of spin glasses [110] — aljggma
for the investigation of critical phenomena in disordered systems. Therstitir
several controversial issues surrounding the critical behavior ohtbidel. One
is the value of the lower critical dimension: the answer oscillates betbeen2
andD, = 3 depending on the line of arguments invoked [3, 56, 71, 170, 173, 274]
although strong evidence tips the balance in favdDof 2. Another thorny ques-
tion is the possible existence of a tricritical point for some distributions ofaand
fields [2, 94, 54, 69, 154, 164, 238, 266, 275]. For a gaussiaritdison of fields,
it was shown by Schneider [295] that mean-field theory (which becomees &or
the infinite-range model) predicts a second-order phase transition atdimijper-
ature with T decreasing with increasing field strength. On the contrary, it was
argued on the grounds of renormalization-group arguments [2] that mubkimod
distributions lead to a first-order transition atfiently large fields, provided the
distribution has a minimum at zero field (which is the case for the bimodal dis-
tribution). Finally, the need for a third, independent critical exponetgrerg a
so-called modified hyperscaling relation — with respect to the pure Ising Imode
— and the question of which universality class the model belongs has aso be
the matter of intense debate [69, 258, 260, 266, 275]. More detailed nhateria
these questions may be found, for instance, in two reviews by Nattermaain et
[256, 255].

Long-range interactions The model studied hereafter is a generalization of a
one-dimensional, nearest-neighbor RFI model to pair interactions decagia
power law of the distance between spins, i.e., with the following Hamilténian

1

i<j
| will restrict the present study tol@imodaldistribution of fields, i.e.,
1
Ph) = 5[6(h| —h) +6(h + h)], (8.2)

and assumancorrelatedfields, i.e., such thath;] = 6;; where the brackets refer
to a configurational average, i.e., an average over quenched disorde

2A factor% has been included in numerical simulations for the sake of comparistime irero
field limit, with the temperatures of the Potts model watk: 2.
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As opposed to the nearest-neighbor model, specific studies of the Ingg-ra
model have been scarce: critical exponents have been calculated by ofieenor-
malization group methods in [52, 343] (Bray also studied the problem of limng-
short-range crossover [52]), and a rigorous work by Klein andddasan [206]
recently addressed the long-distance behavior of correlation fundtipmseans
of high temperatuyéield expansions. Vojta investigated a spherical version of this
model [330] using the replica method, with special attention given to the lower
critical dimension.

Since the decay parameter of the interaction influencedibetige dimension
of long-range models, it is clear, however, that the controversiesisuiing the
nearest-neighbor model may be worthy of reexamination in the case of{mwe
decaying interactions. In particular, since mean-field behavior becoxaes fer
o — -1, one may expect some of the predictions of mean-field theory, e.g., the
existence of a tricritical point for bimodal distributions, to show up forfasiently
low decay parameter. On the other side of the phase diagram, i.e., for rapidly
decaying interactions, the ability to continously vary tfieetive dimension may
prove a very #ficient way to compute the upper critical range (i.e., the analog of
the lower critical dimension), and to check for the validity of the variousraignts
invoked to estimate it.

In the following, | will only address the nature of the phase transition in the co
text of long-range interactions and with bimodal distributions. In additiorgesin
no study, whether analytical or based on numeric simulations, has beeravzalde
able — to the best of my knowledge — on this subject in the past, the emphasis in
what follows will be given to a qualitative estimation of the phase diagrammrathe
than on precise estimates of critical couplings or critical exponents.

8.2 Gaussian vs bimodal distributions: what's the point?

As already mentioned in the introduction, mean-field theory predicts that the tra

sition remains continuous for all field strengths for a gaussian distributitialdé

[295, 244]. Conversely, the existence of a tricritical point has beguear when

fields are engendered by a bimodal distribution [244], or more genergligniy

symmetric distribution with a minimum at zero field [2]: the transition turns from

second- to first-order at fliciently large field amplitude. With an eye to future use

for comparison with numerical results, mean-field results will be deriveddatgr

detail in Sec. 8.3 using aftierent line of argument based on the replica method.
Predictions based on mean-field approximations [201, 298] or combination

thereof with renormalization-group schemes [94], confirm that, for a trahdid-

tribution of the form®(h) = pé(h) + %(1 — p)é(hy = h) + 6(hy + h)], there is

a tricritical point whenevep < 1/4, and a first-order transition is ruled out for

p > 1/4 [69]. The latter case is thus expected to exhibit the same behavior as the

gaussian distribution, yet the low value of the magnetization expghegported

in some studies of the latter distribution [266] may be indeed misleading in this re-
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spect, since this would suggest either a weak first-order transition, enyaskarp
second-order transition. This behavior was also reported in Monte &adées of
the bimodal case [360, 287]: while the transition may indeed be first-ataeay
also have unusual attributes, namely, no latent heat but a jump in the matjoetiza
[287, 286].

By monitoring the behavior of the critical exponent of the connected and dis
connected correlation functions, Young and Nauenberg [360] stegj¢he onset
a first-order transition driven bffuctuationsfor a bimodal distribution (a feature
which is in contrast with the mean-field mechanism, yet was also mentioned in
[343] for the long-range model with a gaussian distribution). In a rebtorite
Carlo study, a tricritical point at large field was also asserted from theepoe
of an hysteresis loop in the field-coolifigld-heating cycle [154]. However, a
high-temperature expansion predicted a fluctuation-driven first-qtuEse transi-
tion also for a gaussian distribution (providdd < 4) [164], a feature that was
subsequently borne out by field-theoretic renormalization-group atens [54];
the onset of a first-order transition was also confirmed for this distributjoa b
Monte Carlo study based on the replica-exchange algorithm [238], ilithfmr
some, but not all realizations of disorder. Finally, Gofman et al. predittedn-
set of a first-order transition fdyothtypes of distribution, so thaiverall the issue
is still somewhat unclear as far as the influence of the shape of the distniisitio
concerned.

8.3 Mean-field theory

In this Section, | give a brief outline of the derivation of the free enemgytlie
RFI model with a bimodal field distribution, in the mean-field approximation. The
point of departure is the infinite-range Hamiltonian, ild.,= —ﬁ Dizj SiSj —
> hS;, whereJ will be replaced by (1 + o) in the last step in order to recover
the free energy of a long-range chain witfr*“ interactions in the mean-field
approximation (see Chap. 4). | will take guidance from the derivatioriethout
in [265] for the Sherrington-Kirkpatrick (infinite-range) spin glass.

The free energ¥ for a fixed set of quenched fields rede$h;}) = —kT In Z({h;}),
which we rewrite a$ ({hj}) = —kT lim,_o %})n‘l by resorting to the usual replica
trick ([110], see also, for instance, [265)" actually stands far,Zg . .. Z,, where
each partition function corresponds to a replica of the original system withwits
set of spin variable§S"}i-1..n. The configurational average then reads

[Z"-1
—

[F] = ~kTlIn Z] = lim

and the derivation of the mean-field free energy thus involves first cingpu
[1>_, Z., averaging over the distribution of random fields, taking the limit> 0
and eventually taking the thermodynamic lilit— co. The “replicated” partition
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functionZ" writes (withB = 1/kT)

z"= Trexp{% PIPSEETDIY h|S|"}
I

a  i#] 1%

where the trace operation is over all sets of replica’s variaf§&$i-1. n}o=1..n-
The configurational average over fields generated by a bimodal distrl{&g. 8.2)

yields
n _ BJ Qe (3
[Z" = Trexp{ﬁZ:ZSi S +Z:Incosh@h218i }
@ i#] i a
In order to carry out the trace independently over each spin variatdeijrst “lin-
earizes” theS{'SY term by resorting to an (inverse) gaussian integral (akin to a
Hubbard-Stratanovitch transform) over auxiliary varialbies It can be shown
[265] that these variabla®g, also represent the order parameter of each replica
Whence, after tracing over all spin variables,

[Z7] =(’B‘J%)n/zfﬂdmle—ﬂmnﬁ/zmlm

where 1 1
L= > l:[ 2 coshB(dm, + h) + > 1:[ 2 coshp(Im, — h)

Equilibrium solutions correspond to the maxima @f']. Since the argument of
the exponential function in the integral above is proportional tit is possible to
evaluate F] through a saddle-point approximation, i.&"] o« e #Flo where F]o

is the argument of the exponential function evaluated at its minimum. Assuming
replica symmetry [272], i.em, = mfor all @, wherem now denotes the order pa-
rameter of the “original” system, and considering that 0, equilibrium solutions

are given by the minima N Jn?/2—N In L (whereL is now a function ofnonly),
which we identity with the free energy of the system (up to a fantstemming
from the presence afidentical replica in the expression &']J). Whence the free
energy per spin (and per replica) is given, up to an irrelevant additimstant, by

Jm? KT Jm-h Jm+h
fm =2~ {Iog cosh— —— + log cosh?} (8.3)

whereJ = 2{(1 + o). The order parameten is a solution of the equation of state
df(m)/dm= 0, i.e., in implicit form,

m= 1 tatherh +tanh‘]m_h
) KT KT

The free energy is depicted in Fig. 8.1 for several field strengths ateeper-
ature. Two minima are exhibited, which correspond to a so-called spin @&ss (
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0.2 T T T T

0.15} SG phase F phase

0.05

F(KT, m h)

-0.15

Figure 8.1: Free energy(kT,m,h) at T = O for several values of the field ampli-
tude. The ferromagnetic phase (F) is stable up/tg = 1 (this defines the critical

field amplitude). The spin-glass phase (SG) is metastable at small field amplitudes
This feature is a peculiarity of the bimodal distribution: for a trimodal distribytion
this phase becomes unstable dfisiently low fields.
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Figure 8.2: Free enerdy(kT, m, h) for h/h; = 0.3. The metastable staterat= 0
corresponds to the spin glass phase, with spins aligned with their localdredd,
vanishes abové, = 0.205 < T.. Temperatures are normalized with respect to the
transition temperature at zero field.

phase — oindependenspin phase — and a ferromagnetic phase (F) respectively.
In the SG phase, spins align with their local field independently of their neighb
which leads tan = 0 since the distribution of fields is symmetric. This phase is
metastable foh below a critical strengtth. = /(1 + o), ; for h > h, it is the
ferromagnetic phase which becomes metastable.

Graphs of f(m) at several temperatures are shown in Fig. 8.2 and 8.3 for
h/he = 0.3 andh/h; = 0.9, respectively. These two field strengths define two
qualitatively distinct regimes: fan/h. = 0.3, the metastable state mt= 0 van-
ishes for a temperatuig, lower than the transition temperature, and the transition
is continuous, whereas foyh. = 0.9 the metastable state exists up to the transition
temperature and the transition is first order.

The value of the field at which this change of regime occurs can be computed
by performing a Landau expansion Bfm), and monitoring the change of sign in
the second derivative df(m). Expandingf(m) to fourth order irmyields

f(m) = ant + bnf* + O(MP)

with

J h
a= ﬁ{—J+kT+Jtanr?ﬁ}

and
J* cosh(d/kT) -2

TAXT T sirf(h/kT)
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Figure 8.3: Free energy(kT, m, h) for h/h; = 0.9. The metastable state rat=
0 exists fromT = 0 up to the transition temperature, where it becomes stable.
Temperatures are normalized with respect to the transition temperature figler

In the low-m limit, the transition temperaturé. is defined bya = 0 (provided
b > 0), i.e., by the implicit equatiokT./J = 1 —tantf(h/kTc)). This yields a good
estimate ofT; in the second-order regime only; in the first-order regime, | will rely
on the exact expression of the free energy, Eqg. 8.3.

The metastable state mt= 0 (SG phase) disappears above a temper&iliye
such thaf"(m = 0) changes sign (it is positive beldly). This corresponds to the
condition that

J2
—— =0
KT sir?(h/kT)

This equation has two solutions ftwh, < « = 0.8955: the first temperature
corresponds to the vanishing of the metastable stan( Fig. 8.2), while the
second solution corresponds to the transition temperdigreln this case, the
transition is continuous since the SG phase has lost its statélirethe transition
occurs. Foh above the previous value, the equation has no solution, which means
that the metastable state exists at all temperatures up to the transition temperature,
where it eventually becomes stable. As a result, the transition is of first ovitle
a coexistence between the SG and the ferromagnetic (F) phases; timedgnetic
phase becomes unstable at a metastability temperatuse T, corresponding to
the fading away of the associated local minimum.

At h/he = «, therefore, there is a tricritical point where the transition changes
from second to first order. The associated mean-field transition tempeiatur

F’(m=0,kTah)=J-
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Te/{(1 + o) = 0.6238 (Landau expansion leadsTg/{(1 + o) = 0.5949). Itis
important to note at this point that foyh; > «, the histogram of the energy shows
two spinodal points contrary tb(m) which is associated with a single temperature
of metastabilityT.

8.4 Dimensional argument in the present of long-range in-
teractions

Although the present chapter does not explicitly center on the estimation @bthe
per critical ranger™ of the model (i.e., there is no phase transition at finite temper-
ature foro- > o, irrespective of the field amplitude), it is nonetheless interesting to
calculate it since this sets the rangesobalues that should be priori explored in
numerical investigations. In addition, the shape of the phase diagram loglew
(Fig. 8.8) may certainly shed some light on this question, at least qualitatively to
begin with.

The most straightforward way to calculai€ is by generalizing the dimen-
sional argument proposed by Imry and Ma [173] for the nearest-hergimodel.
This argument relies on the stability of the ferromagnetic phade-at0 against
localized excitations made up of isolated domains of, e.g., up-pointing spins in a
sea of down-pointing spins. The main lines of the original argument amdlaw$.
As a domainD of sizeR s flipped, the energy of the system changes as a result of
(i) the onset of a domain wall located on the domain boundary, and (ii) agehan
in the interaction of the spins belonging to the domain with their local fields. In a
nearest-neighbor model of dimensibnthe energy change reads

AE = AEpw + AEz ~RP1+ 3 h
ieD

where the first term denotes the increase in energy due to a domain wakwho
length behaves &8P, and the second term isv@lumeterm (~ RP) correspond-
ing to the change in Zeeman energy of the domain. Whether fields are disiribute
according to a gaussian or a bimodal distribution, the contribution of the volume
term is zero on average, and one must therefore consider the secomehinaf
the distribution: in the larg® limit, and provided fields are not correlated, the
central-limit theorem states that the quanfity., h; converges to a gaussian law
with a standard deviation given yVRP. As a result, the change in energy reads
AE ~ RP~1 + RP/2 where the minus sign corresponds to a fluctuation of the ran-
dom field inside the domaif that would lead to a negative change in the Zeeman
energy; hence to a competition with the domain wall energy (it is always possi-
ble to find such a domain in the thermodynamic limit). The ferromagnetic phase
remains stable as long a& > 0, i.e.,D > 2; in this case, onlgmall domains
may show up (up to a siZey depending on the field amplitude), that are indeed
unable to destabilize the whole ordered phase. This dimensional argumoarg s
that the lower critical dimension of the nearest-neighbor modél is 2. Itis
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8.4. Dimensional argument in the present of long-range interactions

worth to briefly mention at this point that this argument has been the subject of

much criticism, in particular as regards the shape of the domain boundavgs It

argued by Binder [37], for instance, that the domain boundary hasirafemnuch

more complex, possibly fractal structure, owing to the tendency of thedawyn

to “steer” around spins pinned by a large local field — in the case of asgaus

distribution of fields — in order to minimize the total energy of the interface.
Turning to the long-range model, itis clear that the change in Zeeman esergy

still given by hRP/2. The main change with respect to the nearest-neighbor model

is thus related to the domain-wall energy. The argument given hereafiemas

that the domairp is compact, i.e., made up ebntiguousspins; in the presence

of long-range interactions, this assumption is markedly questionable, inyjartic

in view of the fractal structure of the interface argued in Chap. 7 in the oés

first-order transitions (let alone the argument of Binder [37] regarttiegractal

structure of the domain wall that was already argued for the nearegdtbaogimodel

and might also hold here). For the sake of simplicity, however, | will stick to this

hypothesis in what follows; | will also restrict the discussionto= 1, i.e., the

model under investigation in this chapter. Considering a domain of viRdéee

Fig. 8.4), the change in domain-wall energy is given by

) 1 R-1 1
r=1 r=1

where the first sum corresponds to the change in energy Rispins are flipped,
and the second sum compensates for interactions between spins insidmtie.d
By transforming sums into integrals, one obtains

Rl—cr
ABpw ~ o(l-0)
whereby the upper critical range is givendosy = 1/2 (this value was also reported
in [343]). So far, it has been assumed tRat= N, whereN is the number of
spins inside the domain. However, if the domain has indeed a fractal sguctur
with a Hausdaoff dimension lower than 1, theN < R, Ez would still behave as
N2, yet one might expect thatEpw scales more rapidly wittN (because the
second sum iM\Epw would grow more slowly), so that one would end up with a
largero™*. However, the domains also tend to modify their shape (at fixgdh
order to minimize their energy with respect to the random fields, and this would
converselydepressr*; this is similar to the domaimugheningargument and, to
some extent, the domain-within-domain argument invoked in the nearest-oeighb
case [37, 214]. Itis interesting to note at this point that the dimensionattied
argument [3, 273, 359], wherelly — D — 2 in the presence of random fields,
would yieldo* = 0, sinceD* = 20 (see Sec. 5.1) and* = 1 for the pure Ising
model.
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Figure 8.4: lllustration of Imry-Ma dimensional argument for a long-racigain

with a bimodal distribution of fields: the stability of an elementary excitation con-
sisting ofR contiguous spins is monitored against the decay parameter of the long-
range interaction.

8.5 Method

8.5.1 Algorithm

The main objective of the numerical study presented in the next paragrapé
investigation of the order of the phase transition for a long-range RFI inottea
bimodaldistribution of fields. As in the remainder of this thesis, the model is stud-
ied numerically by means of a Monte Carlo method operating in the multicanonical
ensemble: as far as the RFI model is concerned, it is expected to deahtidite

the complex free energy landscape exhibited by the model — in particular, the
presence of a metastable state at all temperafuresT. wheneveth/h; > xk —

than canonical methods. The model is studied for two decay parameter§,1

and 04, and field amplitudes ranging from= 0 to h = h;, by means of the two
following algorithms:

e a single-spin update version of the Wang-Landau algorithm (Sec. 2.5.4),
adapted to long-range models (i.e., following the prescriptions presented in
Chap. 3 regarding the presence of unequally spaced energy lerelgom-
bined with the transition matrix method; the last method is used to estimate
the temperatures of metastability (if at all), see Sec. 4.3.4 and Sec. 7.7.

¢ a cluster-update version along the line of the breathing cluster method pre-
sented in Chap. 7.

As far as the single-spin update algorithm is concerned, the implementation
does not dier markedly from that presented in Chap. 7. The onl§edénce
amounts to the use of Zhou and Bhatt's prescription [362] instead of the orig
nal prescription [334] for estimating the minimum number of histogram entfies
per iteration, and for decreasing the modification factor. These présospvere
claimed — and indeed observed in Chap. 7 — to yield improved accuracy on the
estimate of the density of states. The modification fagter In f is initially set
to around 20, and divided by a number oscillating between 5 and 10 atdhef en
each iteration: this choice is clearly empirical, and values are obtained bgnidal
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error, based on a couple of short runs for various realizations ofdés The mini-
mum number of histogram entries per bin is’¢etl/ /y, and the transition matrix
method is used during the first iteration tii@ently predict a (rough) estimate of
the density of states (see Sec. 7.7.2).

As regards the cluster-update version, the goal of the present statbaity
modest, and | simply considered a straightforward generalization of tia¢himg
cluster method introduced in the previous chapter. Devisingfiarient cluster
algorithm specifically tailored to disordered models and which may easily combine
with the breathing cluster method is beyond the scope of the present wark. T
cluster schemes may be considered:

e clusters can be constructed as if the model were a pure ferromagneti€ mode
(algorithm 1)

¢ or random fields may be included in the cluster construction process as well,
i.e., by considering random fields as discrefespins and a coupling con-
stant given by the strength of the field; in this case, clusters “pinnedt by a
least one random field are not flipped (algorithm II).

In the first scheme, the construction of the cluster thus proceeds alosarttee
lines as given in Chap. 7 for the Potts chain, and clusters are (virtuallg®dipvith
an adjustable probabilitpsip (see below). However, since random fields are not
included in the random-cluster representation of the model, the acceptaederr
the cluster-flips from stateto stateb (Eq. 7.2) must be modified as follows:

_ e(Ea) oB(En)Hrr(b) o1(Ep) B0
Aflip(a — h) = mln{l, e(Ev) gB(Ea)HrF () 2 [pl(Ea)] , (8.4)

Hrr denotes the random-field part of the Hamiltonian, Hgg = — X, ohy. This
term is easily evaluated in both stateandb by computing the number of spins
that werevirtually flipped and the total field in each cluster: both operations are
O(N).

This construction scheme is the multicanonical analog of the (canonical) clus-
ter algorithm of Dotsenko [102]. The pitfall is clear: as was already atlutden
[258] in the context of canonical simulations, the presence of disorejemredses
the transition temperature below that of the pure model. As a result, clusters
constructed using the inverse microcanonical temperg{iEy = dS(E)/dE are
markedly too large for the same reason as in the canonical implementation: for in
stance, considering the system at a given enErggrresponding to a microcanon-
ical temperaturd (E) ~ T¢(h), with T¢(h) denoting the transition temperature of
the disordered model at field amplitudethe pure model at the same temperature
is already in its ordered phase becalligéh) < T¢(0). Since clusters percolate at

3The “original” prescription in [362], i.e.M ~ 1/y, turns out to be exceedingly demanding,
especially in view of numerous simulations that need to be performeddorditred models.
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the critical temperature for the pure model, this can no longer be the cagesfor
disordered model, and thdfset between the optimal cluster size and that given
by the microcanonical temperature obviously increases with the field strerajth
there is more to be fathomed out in the context multicanonical simulations: the
acceptance rate — hence, in some respect, the autocorrelation time — of a multi-
canonical update scheme is optimal if the proposal-move scheme pickseats e
and non-rare events with equal chance, i.e., according to the randtkerpac-

ture, picks left- and rightwards moves (on the energy axis) with equahiveldpis

is clearly what the cluster-update scheme of the breathing cluster methedodoe

a ferromagnetic model: turning back to the RFI model, if clusters are too large,
low energy states will be picked more often than high energy ones, anddhib/c
reduces the acceptance rate. Similarly, the acceptance rate is alsadrédius-

ters are too small (this can be easily explained by considering cluster# sfam
where we are back to simple Monte Carlo sampling).

One way to get around the issue is to decrease the bond probability, i.e., to
decrease the inverse temperatgfg) that governs the cluster construction, since
this lowers the average cluster sizelowever, this must be done empirically — in
the absence to date of asynarterscheme —, by scaling(E) globally until the
minimum effectiveautocorrelation time is reachd_et alone the fact that scaling
B(E) globally does certainly not yield theptimal bond probability ai@ll energy
levels, this approach is clearly tedious: it turns out that the proceduf&dgent
at modest lattice sizes and low field strengths (up/tg, ~ 0.3), because the ef-
ficiency of the algorithm is only moderatelyfected by a value g#(E) departing
from the ideal value; this becomes clearly cumbersome, however, dbew00.

At medium field, the performance is illustrated in Table 8.1, whefectve au-
tocorrelation times (at the transition temperature) are indicated for secelalgs
values: as can be seen, the maximum attainable acceptance fate 856 hardly
exceeds 10%, which clearly shows that scaliif) is not enough to obtain an
optimal move-proposal scheme, at least at medium and large field strengths

At medium and large lattice sizes (and medium field strengths), algorithm II
proves more ficient. Here, bonds are activated not only between spins, but also
between spins and random fields (akin to “ghost-spins”), using a biaixhbpility
given by

Pij (E) = 60,0, (1 - e#EM)

for the former type of bonds, and

Pi(E) = 65 yn (1 — €PN

4Another similar method consists in shifting the funct@(k) toward the left of the energy axis.
5The same procedure was proposed, although in the context of aicalnduster algorithm, in a
numerical study of the frustrated Coulomb model [138].
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Table 8.1: Hective autocorrelation times at the transition temperature-fer0.4
andh/h. = 0.3, andL = 128, 256 and 512. (SSU) refers to the single-spin update
algorithm. (I) indicate estimates obtained with algorithm | for several scalinng fa
tors s applied to the microcanonical temperatg(€&) entering bond probabilities.
(I1) refers to the ghost-spin algorithm. A and B indicate the acceptancamdtthe
fraction of the lattice occupied by the largest cluster, respectively.

L SSU I:s=11 s10 09 s08 I
128 71esf 20 32 21 16 40 30
A(%) 35 12 15 14 7 58
B(%) 68 63 57 47 64
256 T1eif 55 800 670 590 1000 90
A(%) 35 8 10 8.5 5 55
B(%) 56 52 48 41 60
512 Tett 150 205

for the lattef. In this case, the acceptance rate is simply given by Eq.y&e,
taking bonds between spins and random fields into account, i.e.

B(l) c
%] } (8.5)

: g5 pi(Ep)
Aflip(a — b) = mln{l, e(Ep) [o[ [pI(Ea) Oa
whereg, = € — 1, andC is the number of bonds that have been activated
between spins and random fields. Clusters that have at least onetaritvavith a
random field are said “frozen”, and are not flipped.

It turns out that constructing clusters by taking the disorder into acgoeiats
substantially larger acceptance rates than with algorithm [: clusters areostill ¢
structed using the microcanonical tempera{g{€), yet large clusters are never
flipped because they most often end up pinned by a random field. Toeb#isp
the probability that a cluster of siZ® be frozen is given by + e #®H where
H = Yicg hi is the total field felt by the cluster, and this quantity increases expo-
nentially with the square root of the cluster size. As a result, only small ctuater
flipped, which is exactly what we were seeking when decreg¥iByin algorithm
I. As shown in Table 8.1, however, the scaling is not markedly better thanawith
single-spin update (SSU) implementation for the fields considered: the dynamic
exponents amount to= 1.4 andz = 1.39 for the SSU and the cluster-update al-
gorithms, respectively. Overall, and although cluster updates turn ot todoe
efficient at lower field amplitudes, | found the balance to be clearly tipped in fa-
vor of the SSU algorithm at larger fields. Nonetheless, it should be remdhiat
canonical algorithms behave poorly in this region, so that the power |laavimrh
obtained for both move updates represents in any case a clear improvement.

5These probabilities take into account a fac%drhat has been included in the definition of the
Hamiltonian, i.e., pair interactions are actually Kronecker delta functions.
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1000¢

tror

Y00 ] 1000
Figure 8.5: Total CPU time needed to perform a Monte Carlo simulation delgerin
the samenumber of uncorrelated measurements, with respect to the lattice size.
Single-spin update: dashed line; cluster-update: solid line. Units on thiealer
axis are arbitrary.

While dynamic characteristics are more or less similar for both move updates,
it must be reminded, however, that the benefits of cluster algorithms areltivof
when simulating long-range models: there is also an associated reduction in the
number of operations required to compute the energy, &rto NIn N. In view
of the prefactors, the cluster-update version becomes nfibcgeat above. ~ 200
(see Fig. 8.5), although the boundary clearly depends on the type toF&aser
Transform implementation used to compute the energy. To sum up, clustgespd
represent anfecient update scheme up to medium field strengths, yet essentially
as a result of the reduction of the algorithm complexity rather than in terms of
dynamic behavior.

8.5.2 Influence of periodic boundary conditions

An appropriate choice of periodic boundary conditions proves crt@ialestigate
the model at large fields. Indeed, as the amplitude of the random field sesiea
the transition temperature dieff @ zero; on the linel = 0, there is a critical
valueh; above which the ferromagnetic ground state becomes unstable, and spins
reduce their energy by aligning with their local random field. While in models
with nearest-neighbor interactions, the critical vahgedoes not depend on the
lattice sizel, but merely on the coordinence of the lattice, this is no longer the case
for long-range models: the (long-range) ferromagnetic part of theaictien that
keep all spins lined up in the same direction, increases with the lattice size, and
as a result the smallest field amplitude needed to flip a spin pointing in a direction
opposed to its local random field increases as well.

Formalizing this a little, the critical field amplitud® for a chain of sizd. is
given byhe(L) = er':l J(r), with lim_ he(L) = (1 + o). If first-image periodic
boundary conditions (FIPBC) are being used, tdén) = 1/r*" (truncated to
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Figure 8.6: Graph of the critical fieltd;(L) with respect to the lattice size for
o = 0.1 and two choices of periodic boundary conditions: infinite image peri-
odic boundary conditions (IIPBC), and first-image periodic boundandiions
(FIPBC).

r < L/2) andh¢(L) increases at a drastically low pace with the lattice size; this is
clearly visible in Fig. 8.6 forr- = 0.1. As a result, investigating the region near

T = 0imposes that chains of huge sizes should be simulated lest no phase mansitio
occurs. In this respect, using infinite image periodic boundary condititPBC),

as described in Sec. 4.2.1 dramatically improves the convergence. In $eis ca
each spin interacts with an infinite number of periodic replica of the chain, and
J(r) is replaced by anfective interaction)(r) given by Eq. 4.7. As can be seen

in Fig. 8.6,hc(L) converges much more rapidly to the infinite-size value, so that
investigations of the regiorh(~ he, T ~ 0) are clearly feasible for sizes below

L ~ 1000.

8.6 Phase diagram of the long-range RFI model

Simulations were carried out far = 0.1 ando = 0.4, i.e., near the expected
onset of the mean-field regime, and in the vicinity of the upper critical ramge,
spectively. In order to ensure that every realization of disorder éshabphase
transition, the zero total field constraint was enforcBfl,, hi = 0. Lattice sizes
betweenL = 64 andL = 1024 were investigated, and between 20 and 50 realiza-
tions of disorder (i.e., samples) were generated, depending on the latBcatiz
large fields, | had to rely on more samples owing to a larger dispersion in the da
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Figure 8.7: Fit of finite-size temperaturdsg (L) to the power lawTc, (L) -
T, (00) o LYX for o = 0.1 andh = 1.0.

points — as expected. Algorithm Il was used for fields: < 0.3, and the single-
spin update algorithm at larger fields. Equilibrium time was checked by rebjing
the y?-regression scheme described in Sec. 7.4.

Transition temperatures In order to determine the transition temperatures, | rely
on the scaling behavior of peaks of the specific heat, the susceptibilitgrass-
cumulantsvy andVs of the magnetization (see Chap. 4), and estimate the infinite
size temperature by performing a fitalf data points (i.e., for each realization of
disorder) to a power law of the forifie(L) — T¢(c0) o« L=, wherex is adjusted

so as to yield the lowest error: it turns out that, in the second-order regéttang

X = v, wherev is the correlation length exponent given by the finite-size scaling
behavior ofV; and V5, leads to slightly underestimated temperatures and poorer
fits. A fit to the peaks of the susceptibility is illustrated in Fig. 8.7d0& 0.1 and

h/h; = 0.0945: the sample-to-sample dispersion is small; this is no longer the case
at large fields, and the fact that fits are performed over four to five |agties,

and with a rather modest number of realizations of disorder, produdeslaxge
error bars. The corresponding estimates of transition temperaturesgcted in

Fig. 8.8.

Order of the phase transition The method used to detect the order of the phase
transition is the spinodal method presented in Sec. 4.3. The microcanomizal te
perature3(E) is computed using the transition matrix method, and temperatures of
metastability, if any, are determined from the extremA(&) in the critical region.

This is depicted in Fig. 8.9 far = 0.1 andh/h; = 0.945 . = (1 + o)): while
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12 I I I I I

Figure 8.8: Phase diagram of the random-field Ising chain with*T interactions,

for o = 0.1 and 04. Open symbols indicate a first-order transition, while filled
symbols refer to a second-order transition (lines are guides to the egesrans

are smaller than the size of symbols except were explicitly shown). The thick,
dotted and solid lines show the mean-field predictions in the first- and second-
order regime, respectively. The thick dashed line shows the boundameén

both regime in the mean-field approximation.
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Figure 8.9: Fit of the temperatures of metastabilifyL) andT»(L) to a power law
of the lattice size, forr = 0.1 andh = 10.0. In spite of the strong dispersion of the
data points, the transition is clearly of the first order.

the sample-to-sample variation is large, the finite-size scaling behavior of the tw
temperature of metastability clearly indicates that the transition is first-order. The
nature of the phase transition for the field amplitudes investigated in the presen
work is indicated in Fig. 8.8 as open and filled symbols for first- and secoter
transitions, respectively. In view of the modest lattice sizes investigateanthe
set of a first-order transitidrcannot be definitely ruled out, even if the transition is
marked as being continuous in the phase diagram: this is particularly trudirega

the points that lie on the boundary between the two regimes.

The coexistence between the two phases is illustrated in Fig 8.10: the bottom
part of the figure depicts the two-peak structure characteristic of gloeséstence,
while the top part shows the joint distribution of the random-field part of the in-
teraction,Erg, with respect to the lattice energy. In the upper energy range, both
Err and the order parameter (not shown) are close to zero, showing thatsp
have paramagnetically. As the critical energy range is approach, tdemafield
part of the interaction increases, signaling a tendency of spins to align with th
local random field (the independent spin phase): this tendency is reemhist
the metastable state existingmat= 0 in the mean-field approximation. Simulta-
neously, neaE/L ~ —14.3, the ferromagnetic phase develops, characterized by a
large magnetization and a low value Bkr. The interface tension that is clearly
visible on the reweighted histogram of the energy nedr ~ —14.3 corresponds

"In particular if it happens to be driven by fluctuations
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to the coexistence between these two phases.

8.7 Discussion and perspectives

Phase diagram Mean-field results are indicated along with the other estimates
in the phase diagram shown in Fig. 8.8. In particular, the thick dashed line is a
reminder of the boundary between first- and second-order transitioobtained
from the mean-field approximation.

For o = 0.1, estimates of transition temperatures match well the mean-field
estimates, although the discrepancy is slightly larger at medium field amplitudes;
the same behavior is observed in a slightly more marked way fo0.4, where the
curvature ofT¢(h) is smaller than for- = 0.1. This behavior may very well signal
the approach of the upper critical range, sincerat= 0.5, Tc(h = 0) ~ 2.182
andh. = 2.612, so that the curvé.(h) must in any case terminate at these two
points: one may expect that the curvature does not change abruptiyatitfie
upper critical range, but rather gradually changes sign. This cleaggests to
further investigate the behavior of the model fot @ o < 0.5.

As regards the position of the tricritical point, the large error bars do lrot a
low to draw more than mere qualitative conclusions. &oe 0.1, the position
of the boundary is consistent with the mean-field prediction;ofoe 0.4, how-
ever, the continuous nature of the transitiontice 2.5 suggests that the tricritical
point shifts towards the low temperature region. This is in contrast with the find
ings of Khurana et al. [202] obtained from a high-temperature expartithe
nearest-neighbor model, showing that, while the tricritical point persists iarlow
dimensions, it also appears at weaker fields (with respect to the criticehfili-
tude): this means that the boundary is pulled towards the large temperafiome re
a feature also suggested by Monte Carlo Renormalization Group studigs [28
Although a fluctuation-driven first-order transition cannot be totally raetfor
o = 0.4 andh = 2.5, seeing that the investigation were restricted.te: 1000,
this could also imply that the nearest-neighbor and the long-range modetst do n
behaveguantitativelythe same way in this respect. Finally, and as regards the ade-
guacy with mean-field results, it would be very appealing to check (i) thesvafiu
o at which a classical critical behavior sets in, if at all, and (ii) the exactoietbe
mean-field behavior far < O.

Dynamics of the algorithm at large fields and possible improvements For the

two largest fields considered for= 0.1, namelyh = 10 andh = 10.5, the transi-

tion is first-order except for a few samples which do not exhibit a transiticdl:

the magnetization remains close to zero, with a smooth, light bump instead of the
usual jump observed for other samples. The same behavior occursféx4 and

h = 3. Sinceh < h; and the zero total field condition ensures that there must be a
phase transition, such a behavior must be attributed to the poor phasecspés
ration performed by the algorithm at low energy for some realizations ofabso
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8.8. Conclusion

For field amplitudes very close to the critical amplitugethe two phases coexist
down to the vicinity of the ground state (see Fig. 8.11), and the algorithm some-
times fails to sample the ferromagnetic phafiiciently: as the random walker
travels down the energy axis, the system remains in the independent-gisie@ ph
although the ferromagnetic phase is more stable. In this respect, a multicnonic
weighting is indeed of little help, since the two phases have the very close ener
gies; the behavior is a sort of critical slowing down, yet in the space oEgie
variable. The “faulty” behavior must therefore be attributed (i) to the tyfprave
updates utilized (although both types of move fail in this respect), and (iigitte f
that the path “connecting” the two phases (arolidl ~ —14.5 in the figure) is

not suficiently given weight. This suggests several possible improvements:

e First, one may rely on the recently proposed optimal ensemble [319, 351]
to increase the weight in the region connecting the two phases; this indeed
would increase the ffusion current of the random walker in this region; yet
an adequate optimal weight remains to be found that takes into account the
particular dynamics engendered by cluster updates: these are mgdessa
reach larger sizes owing to the recurrent algorithm complexity problem. In
this respect, optimizing(E) as well as the weight(E), in the spirit of the
optimal ensemble algorithm, would certainly be very promising.

e Second, and perhaps in connection with the previous point, one mayrmerfo
a bidimensional random-walk, where the first axis would correspond to the
ferromagnetic energy and the second axis to the random-field interadion; a
a by-product, and provided the phase spacéiisiently sampled, this would
make it possible to obtain reweighted averages for any field strengthrAs fa
as cluster updates are concerned, it remains to be seen how an &ipropr
bond probability may be devised, e.g., since the presence of two dimensions
in the density of states makes this point highly non-trivial. Along the same
line, an extension of the transition matrix method to a bidimensional space
may also be of interest, in the same spirit as the extension proposed by Ya-
maguchi et al. [354].

8.8 Conclusion

In this chapter, multicanonical algorithms were used to investigate the phase dia
gram of a long-range random-field Ising chain with a bimodal distributioretddi

The prominent result of this study is the existence of a tricritical point fotwlwe
decay parameters investigated £ 0.1 and 04), with a first-order transition oc-
curing for field amplitudes larger than a threshold value depending on tiegy de
parameterr. This is in qualitative agreement with mean-field predictions and
with the behavior reported in a few studies of the nearest-neighbor motlekia
dimensions. While at- = 0.1, the transition lind ¢(h) separating ordered and dis-
ordered phases is in very gogdantitativeagreement with mean-field predictions,
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8.8. Conclusion

this is no longer the case for = 0.4: the area under this line is markedly reduced,
and the curvature is weaker. The weakening of the curvature suglgestgproach
of the critical upper range™ = 0.5 obtained from a generalization of Imry-Ma
argument.

Two multicanonical algorithms were used in this study: a single-spin update
version of the Wang-Landau algorithm adapted to long-range modelsyraag-
tension of the breathing cluster method to disordered models. Both algorithms
efficiently explore the phase space in spite of the rugged energy landsctge o
model: this represents a major improvements over canonical methods, that are
known to produce very repetitive dynamics — especially at large field gtiten
—for this class of models. However, the benefit brought about by clugte
dates only amounts to the reduction of the algorithm complexity connected with
the computation of the energy: no marked gain was observed regardimty-the
namic characteristics, and prefactors favor the cluster-update versipfor sizes
above 500 spins. In view of this, a combination of the breathing cluster method
with a cluster-update scheme specifically tailored to disordered models, with the
optimized ensemble [319, 351], or with a two-dimensional random walk, waeild
worthy of investigation.
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General conclusion and
developments

The essential message that has guided this work is perhaps central totabamnal
physics: the interplay between models and methods is a two-way trade.

For a given model, it is crucial that the most appropriate method should be
chosen to investigate its physical behavior. If such a method does ngttéris
an existing one may be adapted (Berg’s multicanonical recursions, Chap. &
new method devised from scratch (the “spinodal” method, Chap. 4), oe mad
by combining existing methods, if necessary by creating a bridge between the
(clusters, Chap. 7). It turns out that long-range models, becaugeataehighly
demanding in many respects, may be regarded as a ffarget spur to the devel-
opment of new methods. Conversely, they may also be considered ateistbald
for existinggeneralmethods: the ability of the multicanonical method to tackle a
variety of phase transitions with equal ease (Chap. 4 and 5) is clearyiging in
this respect.

On the other hand, methods that are initially devised to resolve a specific issue
for a given model may provefigcient at tackling other models from a new per-
spective: the detection of the order of phase transitions (Chap. 4) arigtdiath-
ing Cluster method (Chap. 7, yielding better estimates of the surface tension of
the nearest-neighbor Potts model) are examples of this. Here, a promising line
of research is the investigation of the Potts models defined on a fractal3attice
where the Hausdérdimension — among other fractal parameters — is expected
to influence the order of the phase transition in a way similar to the decay param-
eter in long-range models. Extensions to disordered models (Chap.vi&yéo
show that the interplay between models and methods is an unfinished story: the
Breathing Cluster method must be improved at large fields. A possible way is the
combination with the optimized ensemble. Since there is no objection in principle
to using a diferent temperature than the microcanonical temperature for the bond
probabilities, optimizing this temperature to obtain the best performance would be

8Collaboration with P. Monceau, Pdéle Matiére et Systémes Complexes, U 7
CNRSParis 7.
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an interesting way to improve the method.

The second message conveyed by this thesis is perhaps of fundaneéatal r
vance to the physics of critical phenomena: the ability to continuously vary the
gffectivedimension of long-range models by means of the decay parameter makes
them perfect tools for the investigation of crossovéfiees. Theg-state Potts
model is enlightening in this respect, exhibiting numerous crossovers, tfrem
non-extensive to the extensive regime (Sec. 4.2), from the first- to twnde
order regime (Sec. 4.3), from continuous to topological transitions (&8®),
and from long-range to short-range behavior (Chap. 5). The aves$rom the
first- to the second-order regime that was investigated in the Random Fiedd Is
model (Chap. 8) shows that long-range models may also serve as a gtige in
investigation of their short-range counterpart.

However, the connection between both classes of model seems to be merely
qualitative. First, no quantitative relation has yet been found betweerfféatiee
dimension and the decay parameter that may enable a direct transpositiontto sh
range models of the results obtained in long-range models. Second,aticlen
a long-range model interacts with the entire system, including the boundahiiss.
leads to startling, unusual finite-sizfiexts (Sec. 4.3.7), suggesting that fractal ge-
ometry may also play an important role in shaping the behavior of these models at
a discontinuous transition (Chap. 7). This evokes several excitingageuents:
if indeed the mixed-phase interface is characterized by a fractal steyeibat are
its Hausdoft dimension, its lacunarity and its connectivity? The investigation of
the cluster distribution and the estimation of correlation lengths would certainly be
useful to glean more information in this respect; this is perfectly within reach of
the method introduced in Chap. 7. On the analytical side, this also suggests the
need to develop a rigorous theory of finite-size scaling at first-ordesitrans for
the long-range Potts model: with this in mind, the two-dimensional Potts model
with long, butfinite, range interactions is currently being investigated, both numer-
ically and analytically (by means of a contour-based methdeipally, beyond the
equilibrium properties of these models, out-of-equilibrium properties panticu-
larly nucleation, might be worthy of deep scrutiny, as mixed-phase intsfalay
a crucial role in this mechanism.

9Collaboration with T. Gobron, LPTM.
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Appendix A

Mean-field theory for the
long-range Potts chain

The model is described by the following Hamiltonian,

H= _% Z ‘]ijéo'i,o'j - Z hi(so'i,o'()’
i#] i
whereJ;; = |i — j|™*, the spino at sitei can take on the values 1.,q, the first
sum runs over all pairs of sites on a chain of dizendh; is an external aligning
field favoring condensation in state.
The derivation in what follows is based on the variational mean-field méthod
which relies on the minimization of the following functional

Flo] = U[p] = TS[p] = TrpH + kT Trplnp (A1)

with respect to a trial distribution depending on the spin configuratiom][ The
trace operation means a sum over all spin configurations, and the dewenaf
H andp on the spin configuration is implied in the notation above. By relying on
Lagrange multipliers, it is easy to show tHafp] reaches a minimum whenever
p = e H/kT7 ie. in the case of a Boltzmann distribution. This minimum yields
the free energy of the system.

The mean-field approximation consists in expressing the trial distribgtam
a product of one-site distributiops which depend only on the spin variable at site
i,l.e.,

L
plol = | | pile)
i=1

The trace operation may be rearranged as a sum involving traces on Siigle
variables, namely,

L L
1
Fle] = kTZTri pilnpi — Z hi Tri pide oo — > ZTH pi TripjJdijdo; .o
i=1 i=1

i#]

1See, for instance, [76].
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Appendix A. Mean-field theory for the long-range Potts chain

where Tr = 3,1 _q- The local order parameter is given by

q60'i,0'0 B 1>
m=(Paesl)
q-1 pi

where the average is weighted by the trial density matridt is straightforward
to check tham; = 1 whenever the spin; has “condensated” in phasg, while
m, = 0 if it fluctuates at random (whenevex = m, Vi, the usualglobal order
parameter used, e.g., in numerical simulations, is thus recovered).

Seeing that all states but statg are equivalent, the constraintdir= 1 yields

1-m
pi =

+ MO og-

which leads to a re-parametrizatififio] in terms of themy. The entropic term in
F[p] writes

TripiInp; = Z pi(oi) Inpi(o)
oi=1...q

= pi(oo) Inpi(co) + (4 = L)pi(o1) In pi(o1)
=%[(1—Q)(m—1)lnl_m 1+(@-1m

+(1+(g-1)m)In
The external field term reduces to

1+(g-1)m
Tri pidoy.o0 = pi(00) = %
while the “coupling” term writes
Tr; pj Tl’jijijégi,gj = Z Z Pi(U'i)Pj(U'j)Jijéffiﬁj
oi=l.qoj=1.q

pi(00)pj(c0)dij + (- Lpi(o1)pj(or1)Jij

J..
= g1+ @-1mmj]
The mean-field free energy thus writes

1-m 1+(q—1)m}
q

L
FLm)] =kT > é [(1— a)(m - 1)In +(1+(@=-1m)In
i=1

Lole(g-Dm 1w 3
—;hiT - E;E’[u(q—l)mmj].

Considering a uniform external field = h, we havem; = m for all sites. In the

thermodynamic limit, this yields for the free energy per spin,

F(m) 1-m 1+(q—1)m]
q

f(m) = I = kTE_qL [(1 —q)(m-=1)In +(1+(g-1m)in

1+(q-1m 1+(q-21)n? 1
—h - -
q q Z .

r>0
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Dropping terms which are constantrim so thatf (0) = 0, this leads to

D _ (2 - myin(L-m + %ql_l)

q-1 In[1 +m(g-1)]}
— hm- ¢(a)n?, (A.2)

whered(a) = 3724 r% is the Riemann zeta function. The equilibrium order param-
eter is obtained from the equation of state

q df(m _ 1+m(g-1)
g-1 dm = KT In 1-m

In the following, we are interested in the zero-field solutions. Equilibrium
values of the order parameter are located at minima of the free energy,camd
be seen from the Landau-expansion

af(m _(kTgq kT(9-2)q 4

a-1 |\ 2 {L+0)|n? 5 m° + O(n)
thatm = 0 is a stable minimum fokT > 2{(1 + 0)/g. Forq = 2, there is no
third-order term: a second-order transition occurs at

KTe = (1 + o).

—2m¢{(1+0)-h=0

For g > 3, the negative cdBcient in the third-order term creates a second mini-
mum, which corresponds to a first-order transition. At the transition temperatu
the free energy has the same value at both minima. The exact transition temper-
aturekT. may be computed by simultaneously solvifgmn) = f’(m) = 0 and
yields
q-2

(@-1) In@@-1)

Metastable states (i.e., spinodal points) are computed by jointly sof¥{ng =
f”(m) = 0, giving temperature points at which either one of the two minima van-
ishes,

KTe = (1 + 0)

1-m  (1-m@+m@-1)) kT

These equations possess one trivial solution, nark@ly= 2/(1 + o) /q cor-
responding to the extremaiay = O becoming unstable, and a nontrivial solution
kT, which may be obtained numerically by solving the following equation,

KgsS-2 Kq
Zq_l_n{s 2], (A3)

1,1+ma-1) q 20(1+0)
m

whereS = 1+ /1+2(1-0q)/(Kqg) andK = £(1 + 0)/kT,. The corresponding
value of the order parameter at which the metastable state vanishes is
_9-2+ 0@+ (K=2)g/K
2@-1) '
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Appendix B

Tranfer matrix derivation of
critical exponents for the
short-range Potts chain

The model is defined on a one-dimensional lattice of lehgtind is governed by
the following Hamiltonian,

The sping; at sitei can take on the values.l1.,q, hj is an external aligning field
favoring condensation in statey, and periodic boundary conditions are implied,
i.e., o+1 = o1. The transfer matrix approach consists in expressifij as a
product of transfer matrices coupling two neighboring spins, and ez =
Tre#H atinverse temperatugefrom the trace of this product.

In order to give a symmetric role to the spimsandoi,1, | now write—gH as

—pH = Z K(Z(Sa'i,oml -1+ L((SO'i,O'o + Ois1,00 — 1)= Z a(oi, ois1)
i
where
K =pBJ/2, L =ph/2,

and the energy has been shifted by an irrelevant constant. The tramastiex
T is defined in such a way that, in the bagis = 1...q}, the matrix element
(o[Tlo”’y = €77 Whence

e =] e =] [wilTloin)

i i

= (ofTlo2Xo2lTlo3) . . {oL-alTloL oL Tlo),

253



Appendix B. Tranfer matrix derivation of critical exponents for the sange
Potts chain

whereby the partition functio# at finite lattice size and inverse temperatgris
given by

Z=TreM
= > (@lTHop)

o1=1.q

:Z/li'-

i=1...q
where{1;} is the spectrum of eigenvaluesf In the thermodynamic limit,
ymzw¢nf=1
whereA; is the largest eigenvalue (provided it is not degenerate); whenceeihe fr

energy per spin
f =—-kTInA;.

Kl gK oK
T=| eX KL gXk-L

e—K e—K—L eK—L

Forqg =3, T writes

Its eigenvalues are in descending order

g K-t (1+62K + 2 (Keb) 4 \/e4(K+L> +(1+e2K)2 _2e2L (-4 + 2K +e4K))

A1 = >

gkt (1+e2K +e2(K+h) \/e4(K+L> +(1+e2K)P 2@l (~4+ €K 4+ e4K))
Ao = >
and

A3 = 26 - sinhK

In the thermodynamic limit, the free energy per spin is thus given by

f K + L +log(2) - log(1+ 2K + 2(K+L) 4 \/e4(K+'-) +(1+€2K)2 22l (—4 + 2K + AK))
= 7 .
The magnetic susceptilibity in zero field is obtained from= —d?f/dR? atL =
ph=0,
8 (1+2e?X) K
27

and exhibits an essential singularitykdt = O (in particular,y — o). The inverse
correlation length is given by the standard formgita = In(11/15),

N 3cothkK -1
2

X:

&=l
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Fromy o« &7, we obtain
. Iny
= lim = =1
’)//V K—oo |n§
In Chap. 5, we are also interested in finite size quantities. In order to take the
finite lattice size into account, we first express the susceptibility as a fundtion o

the correlation length:

@ = oot (11255 ) cor - | )

At finite lattice sizel, the saturation of the correlation length- L whenkT is suf-
ficiently close to zero leads to the susceptibility saturatingat = y(L). The ratio
v/v computed frond In y™*/dIn L, i.e., by fitting the peaks of the susceptibility to
the power law™®* o« LY/ over nearby lattice sizes, is always overestimated with
respect to the infinite size value:

d In ymax _ el/t (3 (1 + el/") +4 (2 + el/") COth_l(—l+23e1/L))
dinL 2 (1+et) (-2+ eVt +ef) Lcoth (128

This is even worse if one considersfi?*/ In L instead.
A second quantity that is needed in Chap. 5 is the expression of the spegcific
C,. This entails explicitly taking all eigenvalues into account in the expressign of
In what follows, | seth = 0. The partition function admits a simplified expression
in this case,
Z. = (3 coshK) - sinhK))" + 21N sinhK)"

The mean energy per spin is given i) /L = —L*dInZ_/dB. Recalling that
K =BJ/2, this leads to

(E) _

S =~ coth()+ 3/ sinh)

3 coshK) — sinh(K) + 23+L (3 coshK) — sinhK))*t sinh(K)-

whence the specific heat for a chain of lengthvrites

K2 . 9L (3 coshK — sinhK)2(-1)
v = T B
SINFPK | ((3 costK - sinhK)" + 21+t sinhK ‘)
9 (L + cosh(2)) — 3 sinh(2K)

+ - - -
21+L (3 coshK — sinhK)? ™t sinhK" + (3 coshK — sinhK)?

) (B.2)
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Appendix C

Error calculation from Monte
Carlo data

Autocorrelation time and statistical error

We consideiQ2 simulation runs, each containiig measurementgA;} of the ob-
servableA. We are interested in the error e&j(on the estimatoA of the quantity

(A), where
o1 N
A=A
i=1
for a given run. The squared error is the variancé,of

2

er?(A) = (A~ (W)?) = <

1 N
< Aa—<A>>

where(-) refers to an average overruns, andA) is estimated byA). errz(AT) can
be reexpressed in term of the characteristic tirgef the time-displaced autocor-
relation function®a(t), where the latter is defined as

_ (AP — (A

20 =00 a2

and the former is obtained fromp = Z'S' Da(t) (Sec. 2.2.1 gives more details on

how to estimaterp). Expanding the previous definition @A2>, and assuming
time invariance, i.e.<Ain+j> = <AOAj>,Vi,
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Appendix C. Error calculation from Monte Carlo data

where the last line assumes thaklra < N, which is usually the case because (i)
one wants to have a substancial amount of independent samples, andhi)rae
ments are carried out at intervalditiently small with respect toa, so thatra can

be reliably estimated. The last equation also shows that the number of indepen
samples from where thermodynamic averages must be computed is given by

N
Ning = 5—
ind 2TA

so that the usual formula of elementary statistics is recovered, i.e.,

(#) - (#%)

er’(A) ~ N

(biased and unbiased estimators coincide whenBygr — o0). This equation
yields a convenient way of computing andN;,g, by separately estimatir(g\2> -

<A2> and er?(A_\). The former is readily obtained from the set of measurements,

whereerr?(A) may be estimated, either by performing multiple, independent runs,
or by relying on a procedure based on a single run. Three methodsesenped
hereafter: the bootstrap, the jackknife, and the blogkimging methods.

The bootstrap

This is a resampling method, whereby several estimato¢é)ofre computed on
resampled sets of measurements, and the bias on the original estimator is €dbmpute
from the deviation of these “resampling” estimators. The bootstrap method relie
on a Random Sample With Replacement (RSWR) scheme, i.e., a freshet of
measurements is built from the original set by explicitly allowing each measure-
ment in the original set to be picked more than once (usually twice). As far as
implementations in Java are concerned, several random samplers ifablava
the packageern. jet.random.sampling of the COLT libray.

Denoting ash the estimator computed from the original set of measurements,
and asA; that computed from thigh resampled set (whefe= 1... pandp is the

Ihttp://hoschek.home.cern.ch/hoschek/colt/

258



number of resampled sets), the bootstrapped estimator is given by

The bias of the estimatdkis Ag — A, whereby thainbiasedestimator is given by
Au = Ao— (Ag — Ao) = 2A0 - Ag (C.1)

The error, i.e., theonfidence intervalon A is eventually obtained from the vari-
ance

p — —
erP(A) = = ) (A~ Aoy
i=1

whereN is the number of measurements! For instance, a 95% confidence interval
corresponds ta-1.960. For this confidence interval to be reliable, at least 100

to 200 bootstrapped estimators have to be computed. This is the most accurate
method to estimate errors on statistical averages, yet this method is also markedly
demanding in terms of CPU and memory consumption when performed over large
sets of measurements.

The Jackknife
This is also a resampling method, yet now resampled sets are constructeqblyy s
deleting one or more measurements from the original set (hence the narke “jac

knifed” sets). Denoting ag\}, i =1... J, the set of jackknifed estimators, aAgd
the mean of these estimators, the erro*ds given by

-1, - —o
er?(A) = 5 Z(Ai -A))
, _|=1_
~ (A= AP
i=1

providedJ > 1. Usually one takes ~ N, whereN is the number of measure-
ments, so that this methodfBers from the same issues as the bootstrap method
when large sets are considered.

The blocking method

The original set of measurements is split up iBteontiguous blocks of lengtk,
i.e., withN = kB. Denoting a4A;}, i = 1... B, the set of block estimators, dg
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Appendix C. Error calculation from Monte Carlo data

the mean of these estimators, and a4@)g their variance, the error ohis given
by

er(A)g

B

I & — -
=BT ;(A - Ag)

This method is fficient in terms of CPU load (the number of operations is constant
whatever the number of blocks), yet itfeers from a stark dependence on the
number of blocks. Several estimations must therefore be carried olustatct
block lengths, until a plateau is observed.

er?(A) =
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