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Structure and Evolution of Soap-Like 
Foams

● 2D and 3D Foams at Equilibrium  

● Contact with a solid Boundary

● Coarsening of 2D Foams 

● Star-Triangle equivalence and T2(3) continuity

● Non-Standard Foams and Decoration

● Star-Triangle equivalence for 3D spherical Foams

● Conclusions



Equilibrated Dry Foams
Dry

Wet

P=2H F Laplace's law

● The films meet 3 by 3 at the borders.  
   The angles  between the films             
         are 120° (Plateau's law)

Pressure drop Constant surface
 tension

● Films are two-dimensional surfaces of constant
  mean curvature       :H F

120°

● 4 borders meet in a symmetrical tetrahedral vertex 
M=cos−1−1/3

Maraldi angle



Equilibrated Dry Foams
● Different films  can have different values of  surface tension   

(Hele-Shaw  cell)

● Equilibrium equations 
can be rewritten as: i         is the Surface 

    tension 

        is the co-normalbi∑
i=1

3
i bi=0

∑
i=1

3
i H i=0

In two Dimensions

∑
i=1

3
ii=0

∑
i=1

3
i k i=0

● Equilibrium equations are:

The films are
circular arcs

 A standard experiment

border

[Adler 1995,2000]



Foams in Contact with a Solid Boundary

Dry Plateau border in contact with a rigid 
(curved) wall

● Equilibrium
● => Normal incidence of the films
● Clean surface 

F 1
F 2

S

F 3



2

31
3

2

1

nS

S

Foams in Contact with a Solid Boundary

The 3D equilibrium  implies that on the surface
the  equilibrium equations at a vertex are:

    is  surface tension ii

k g i , S                 is the geodesic 
curvature of      in Si

The equilibrium eqs. are invariant 
under conformal transformations

F 1
F 2

S

F 3
Dry Plateau border in contact with a rigid 

(curved) wall
● Equilibrium
● => Normal incidence of the films
● Clean surface 

∑
i=1

3
ii=0

∑
i=1

3
i k g i , S =0



Deformed Hele-Shaw Cell and Conformal Foams 

ExperimentsSimulations

[Drenckhan et al. (2004)]

Exp.:
A monodisperse foam in 
special deformed chambers 

Obs.:
The 2D pattern can be related to
the hexagonal foam (honeycomb)
by a conformal transformation  

X−− XfObserved
pattern

Hexagonal
Reference



Deformed Hele-Shaw Cell and Conformal Foams 

The bubbles'  volume is conserved

h≃h0∥ f '∥2
∥∇ h∥h  and  

small

ExperimentsSimulations
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A monodisperse foam in 
special deformed chambers 

Obs.:
The 2D pattern can be related to
the hexagonal foam (honeycomb)
by a conformal transformation  

X−− XfObserved
pattern

Hexagonal
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Deformed Hele-Shaw Cell and Conformal Foams 

Can the shape of the film be related to the conformal map?

Yes. Imposing the 3D Laplace's law  and considering 
the film curvature  in the third  vertical direction k v



Deformed Hele-Shaw Cell and Conformal Foams 

P=2H F=kk vLaplace's law  

Geodesic curvature 
(horizontal)

Vertical 
curvature

Can the shape of the film be related to the conformal map?

Yes. Imposing the 3D Laplace's law  and considering 
the film curvature  in the third  vertical direction k v



Deformed Hele-Shaw Cell and Conformal Foams 

Normal to 
the film

P=2H F=kk vLaplace's law  

Geodesic curvature 
(horizontal)

Vertical 
curvature

Can the shape of the film be related to the conformal map?

Yes. Imposing the 3D Laplace's law  and considering 
the film curvature  in the third  vertical direction k v

∥∇ h∥  h and            small k v≃
−n⋅∇ h

h



Deformed Hele-Shaw Cell and Conformal Foams 

X= f X 
k=∥ f '∥kℜ {nln f '  ' }

The geodesic curvature transforms as:

Combining these 3 equations: 

∥∇ h∥  h and            small k v≃
−n⋅∇ h

h

Normal to 
the film

P=2H F=kk vLaplace's law  

Geodesic curvature 
(horizontal)

Vertical 
curvature

Can the shape of the film be related to the conformal map?

Yes. Imposing the 3D Laplace's law  and considering 
the film curvature  in the third  vertical direction k v



Deformed Hele-Shaw Cell and Conformal Foams 

P

=∥ f '∥kℜ [nln f '−2 ln h ' ]



P

=∥ f '∥kℜ [nln f '−2 ln h ' ]

Deformed Hele-Shaw Cell and Conformal Foams 

Pressure 
difference

Geodesic curvature 
in the reference foam

           for      Hexagonalk=0 X

Conformal 
transformation

Height 
function



Deformed Hele-Shaw Cell and Conformal Foams 

P

=∥ f '∥kℜ [nln f '−2 ln h ' ]Pressure 

difference

Geodesic curvature 
in the reference foam

           for      Hexagonalk=0 X

Conformal 
transformation

Height 
function

Different set-ups: Constant Pressure Constant Volume

h≃h0∥ f '∥2h≃h0∥ f '∥



Deformed Hele-Shaw Cell and Conformal Foams 

Different set-ups: Constant Pressure Constant Volume

h≃h0∥ f '∥2h≃h0∥ f '∥

f  z = 1
a∗

exp a∗ z  h∝exp a⋅z  h∝exp2 a⋅z 

f  z ∝ z


, =m/6, m∈ℕ h∝∥z∥−1 h∝∥z∥2−2

P

=∥ f '∥kℜ [nln f '−2 ln h ' ]Pressure 

difference

Geodesic curvature 
in the reference foam

           for      Hexagonalk=0 X

Conformal 
transformation

Height 
function



h∝∥z∥2Example:     Spherical vessel

Deformed Hele-Shaw Cell and Conformal Foams 

f ∝ z3 f ∝ z2 f ∝ z2 /3

Constant 
Pressure
m=18

Experimental
m=9

Constant 
Volume
m=12

(?)



Deformed Hele-Shaw Cell and Conformal Foams 

P

=kk v≃−k

The  volume constraint h≃h0∥ f '∥2  implies that k v=−2 k

 Laplace's equation 

Pressure decreases
moving up

Small bubbles 
have smaller

pressure
P

X X

F  z = f −1 z = 1
a∗

ln a∗ z Example:



Slow Evolution by Gas Diffusion of 2D Fomas

A 2D dry foam embedded in a 2-dim manifold S

● Equilibration time <<  time diffusion 

● Incompressibility of the gas

● Validity of the Fick's law 

● No liquid/solid  friction force

dA
dt
=−∑ l iP i



Slow Evolution by Gas Diffusion of 2D Fomas

A 2D dry foam embedded in a 2-dim manifold S

● Equilibration time <<  time diffusion 

● Incompressibility of the gas

● Validity of the Fick's law 

● No liquid/solid  friction force

 Then the area of a n-sided bubble 
dAn

dt
=n−6

3
∫An

G dA

Gaussian 
curvature of S


3

Topological 
charge qn

dA
dt
=−∑ l iP i

[Avron, Levine (1992)]



Slow Evolution by Gas Diffusion of 2D Fomas

If S is flat (G=0) then dAn

dt
=n−6 (von Neumann)

 (depends only on the topology of the bubble)

A 2D dry foam embedded in a 2-dim manifold S

● Equilibration time <<  time diffusion 

● Incompressibility of the gas

● Validity of the Fick's law 

● No liquid/solid  friction force

 Then the area of a n-sided bubble 
dAn

dt
=n−6

3
∫An

G dA

Gaussian 
curvature of S


3

Topological 
charge qn

dA
dt
=−∑ l iP i

[Avron, Levine (1992)]



Evolution of k(t)

Example:2-Bubble cluster 

von Neumann a t ={t1−t , t2−t } k t ≡
a2t 
a1t 

=
g 

g −

L t = 2

⋅a t 

L̇ t = 1

⋅ȧ t 

Cluster Perimeter



Evolution of k(t)

Example:2-Bubble cluster 

von Neumann a t ={t1−t , t2−t } k t ≡
a2t 
a1t 

=
g 

g −

L t = 2

⋅a t 

L̇ t = 1

⋅ȧ t 

Limit case          
L t  ∝  a t = t−t

a1=a2=a

Cluster Perimeter

Close to extinction (T2,         )t t2

L t −2a ~  t2−t
/ 3− ~ t2−t for k≠1



For any three-sided bubble (triangle) in an equilibrated  foam: 

Star-Triangle Equivalence in 2D Foams           =cst Star-Triangle Equivalence in 2D Foams           =cst Star-Triangle Equivalence in 2D Foams           =cst 



For any three-sided bubble (triangle) in an equilibrated  foam: 

Exists a virtual equilibrated vertex inside the bubble given 
by the prologation of the external films 

Star-Triangle Equivalence in 2D Foams           =cst Star-Triangle Equivalence in 2D Foams           =cst Star-Triangle Equivalence in 2D Foams           =cst 



For any three-sided bubble (triangle) in an equilibrated  foam: 

Exists a virtual equilibrated vertex inside the bubble given 
by the prologation of the external films 

Replacing any triangle by the virtual vertex and its legs
(and “viceversa”)

The new foam is still equilibrated

Star-Triangle Equivalence in 2D Foams           =cst Star-Triangle Equivalence in 2D Foams           =cst Star-Triangle Equivalence in 2D Foams           =cst 

Consequences:

● T2 continuity
● Possible Simplification (“Reduction”)

    in computation of equilibrium patterns



Star-Triangle Equivalence in 2D Foams

During the gas diffusion
When a 3-sided bubble shrinks

T2(3)

The star vertex becomes 
a real vertex and the foam 

doesn't go out of equilibrium 

Continuity at  T2
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Star-Triangle Equivalence in 2D Foams

During the gas diffusion
When a 3-sided bubble shrinks

T2(3)

The star vertex becomes 
a real vertex and the foam 

doesn't go out of equilibrium 

Continuity at  T2

Reduction



Star-Triangle Equivalence in 2D Foams

t0=B /3
 Area=B /3−A0

During the gas diffusion
When a 3-sided bubble shrinks

T2(3)

The star vertex becomes 
a real vertex and the foam 

doesn't go out of equilibrium 

Continuity at  T2

Reduction



Star-Triangle Equivalence in Non-Standard 2D Foams

SMVP [Moukarzel, 1997]                                 Sources: 

i={x∈∏ z :
d  x , P i

2z i
2

ai


d  x , P j
2z j

2

a j
, ∀ j≠i}

 ij={x∈∏ z :
d  x , P i

2z i
2

ai
=

d  x , P j
2z j

2

a j


d  x , P k 
2z k

2

ak
, ∀ k≠i , j}

cells

edges

Intensity
Source projected on the plane z=0

P i , z i , ai 



Star-Triangle Equivalence in Non-Standard 2D Foams

Circular partition F 
is a SMVP 

● It is aligned 
● It admits an oriented reciprocal figure F*

i={x∈∏ z :
d  x , P i

2z i
2

ai


d  x , P j
2z j

2

a j
, ∀ j≠i}

 ij={x∈∏ z :
d  x , P i

2z i
2

ai
=

d  x , P j
2z j

2

a j


d  x , P k 
2z k

2

ak
, ∀ k≠i , j}

cells

edges

P i , z i , ai SMVP [Moukarzel, 1997]                                 Sources: 



Star-Triangle Equivalence in Non-Standard 2D Foams

Aligned
The centres of the edges
meeting at a vertex are

on a line

Circular partition F 
is a SMVP 

● It is aligned 
● It admits an oriented reciprocal figure F*

i={x∈∏ z :
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2z i
2
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=

d  x , P j
2z j

2
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

d  x , P k 
2z k

2

ak
, ∀ k≠i , j}

cells

edges

P i , z i , ai SMVP [Moukarzel, 1997]                                 Sources: 



Star-Triangle Equivalence in Non-Standard 2D Foams

P1

P 2

P 3P 4

P 5

●  F* is a triangulation

● A Source      for any cell
●                  edge
●                      ordered

P i

P i P j ⊥

P i ,P j ,C ij 

Oriented reciprocal (or dual) figure

Circular partition F 
is a SMVP 

● It is aligned 
● It admits an oriented reciprocal figure F*

i={x∈∏ z :
d  x , P i

2z i
2

ai


d  x , P j
2z j

2

a j
, ∀ j≠i}

 ij={x∈∏ z :
d  x , P i

2z i
2
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=

d  x , P j
2z j

2

a j


d  x , P k 
2z k

2

ak
, ∀ k≠i , j}

cells

edges

P i , z i , ai SMVP [Moukarzel, 1997]                                 Sources: 



Star-Triangle Equivalence in Non-Standard 2D Foams

Moukarzel's Theorem

A circular partition of the plane, with 3-connectivity,
 represents an equilibrated 2D foam F (non-standard)

If and only if there is an oriented dual figure F*



Star-Triangle Equivalence in Non-Standard 2D Foams

1

4

3
2

P 3

P1

P 4

P 2

4

3
2

P 3

P 4

P 2

Then, Star-Triangle Equivalence is simply proved:

Moukarzel's Theorem

A circular partition of the plane, with 3-connectivity,
 represents an equilibrated 2D foam F (non-standard)

If and only if there is an oriented dual figure F*

Moukarzel's Theorem

A circular partition of the plane, with 3-connectivity,
 represents an equilibrated 2D foam F (non-standard)

If and only if there is an oriented dual figure F*



Star-Triangle Equivalence in Non-Standard 2D Foams

Consequences 1:

Little liquid
at the vertices

Ideal dry

Consequences

The Decoration Theorem 
[Weaire, 1992] 



Star-Triangle Equivalence in Non-Standard 2D Foams
Consequences

Little liquid
at the vertices

Ideal dry

Star-Triangle  and 
decoration at   
a flat boundary 

Consequences 1:Consequences 1:

The Decoration Theorem 
[Weaire, 1992] 

Consequences 2:



Star-Triangle Equivalence for Spherical Foams

Spherical Foams are a subcase of 3D (dry) Foams
● Equilibrium Laws (Plateau+Laplace)
● The Films are spherical caps 

Star-Triangle Equivalence 

The films of vanishing tetrahedral 
bubbles are approximately spherical 
cup  [Doornum, Hilgenfeldt , 2003] 
 then T2 is a continuous process

Proof: (Moebius Invariance of spherical foams)

● Existence of a conjugate vertex
● Inversion map toward a symmetrical figure
● Proof of the existence of a virtual equilibrated vertex
● Inverse transformation 



Conclusions
●  We have derived the equilibrium equation for 2D Foam  at the contact with 
   solid boundaries. 
●  Invariance under conformal transformations.
●  Found an equation linking  the conformal transformation to the profile of a 
   deformed  Hele-Shaw cell.
●  Pressure  predicted under constant volume constraints differs from “pure 2D” 
   physics.
 
●  Star-Triangle equivalence in standard and non-standard 2D foams
●  New proof and extension of the Decoration theorem
●  Similar results along flat boundaries (in 2D)
●  T2(3) continuity
●  Exact solution in the case of 2-bubbles (2D and 3D)
●  Star-Triangle equivalence for 3D spherical bubbles, continuity in 
    tetrahedral bubbles disappearing



Perspective and Projects
●  Is the star-triangle equivalence verified by 2D foams embedded in 
    two-dimensional manifold?

●  Is there a generalization of the star-triangle equivalence  for 3D foams?

●  Develop a program which, given the pressures and the topology of a 
    bubble cluster, would construct   the exact equilibrated cluster 
    (example:  Flower problem).

●   Given a random cluster  of  N bubbles, how many different star-triangle    
     reductions can one do?

    

 



● Hp:  circular films, 3-connectivity, mono-contact
● Indipendent Variables:    y=
● Enthalpy    

Example:2-Bubble cluster. Minimization and Diffusion

{R13 , R23 , R21 , y}

G [C [ y ] , ;a ]= L [ y ]⋅a− s [ y ]

Perimeter

Surface 
tension

Lagrange's 
multipliers

Cell 
areas vector
Constant 

areas vector

Minimization: 
∂ yi

G=0
∂i

G=0

●       
●    
●

13=

3
−12 ; 23=


3
12

1
R21

 1
R13
− 1

R23
=0

E= L=2⋅a

Fix the areas
Minimal parimeter

Equilibrium 

a= y2{g −12 , g 12}

g =
f 23 −

sin223 −


f 
sin2 

f x=1
2
2 x−sin 2 x 

 Plateau

 Laplace

 Energy

Area of  a circular
 sector of radius = 1 

a1

a2

Is scale invariant:
it doesn't depend 
         on y



Evolution of k(t)

Example:2-Bubble cluster 

Rescaled
von Neumann a t ={a1t  , a2t }={t1−t , t2−t } k t ≡

a2t 
a1t 

=
t2−t
t1−t

=
g 12

g −12

L t = 2

⋅a t 

L̇t = 1

⋅ȧ t 

aa /4
t i=ai 0 

Limit case          
L t  ∝  a t = t−t
R t  ∝  at = t−t

a1=a2=a

t t2Limit case           (T2)
L t −2a ~ t2−t
/ 3−12 ~ t2−t

Cluster Perimeter



Evolution of k(t)

Rescaled
von Neumann a t ={a1t  , a2t }={t1−t , t2−t } k t ≡

a2t 
a1t 

=
t2−t
t1−t

=
g 12

g −12

L t = 2

⋅a t 

L̇t = 1

⋅ȧ t 

aa /4
t i=ai 0 

3D 2-Bubble Cluster
E t = At =3

2
⋅V

Ė t =⋅V̇

Limit case          
L t  ∝  a t = t−t
R t  ∝  at = t−t

a1=a2=a

t t2Limit case           (T2)
L t −2a ~ t2−t
/ 3−12 ~ t2−t

Cluster Perimeter

Example:2-Bubble cluster 



For any three-sided bubble (triangle) inside an equilibrated  foam: 

Exists a virtual equilibrated vertex inside the bubble gived 
by the prologations of the external films joining the bubble 

Replacing any triangle by the virtual vertex and its legs
(and “viceversa”)

The new foam is still equilibrated

Star-Triangle Equivalence in 2D Foams           =cst 

Proof:

Taking
a vertex v of the bubble

Star-Triangle Equivalence in 2D Foams           =cst Star-Triangle Equivalence in 2D Foams           =cst 

v



For any three-sided bubble (triangle) inside an equilibrated  foam: 

Exists a virtual equilibrated vertex inside the bubble gived 
by the prologations of the external films joining the bubble 

Replacing any triangle by the virtual vertex and its legs
(and “viceversa”)

The new foam is still equilibrated

Star-Triangle Equivalence in 2D Foams           =cst 

Proof:

Taking
a vertex v of the bubble

It exists an associate 
conjugate v*

(equilibrated) vertex
v*

Star-Triangle Equivalence in 2D Foams           =cst Star-Triangle Equivalence in 2D Foams           =cst 

v Applying an Inversion 
Transformation

to the foam centred in v*
z z=1/ z−v∗

We obtain:
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Then the prolongation of
the external edges meet 
at an equilibrated vertex

v0

v0
Applying the inverse transformation

z z=1z v∗/ z



Star-Triangle Equivalence in 2D Foams
..Proof v

v0

Applying the inverse transformation

z z=1z v∗/ z

v0



Star-Triangle Equivalence in 2D Foams
..Proof v

v0

Applying the inverse transformation

z z=1z v∗/ z

v0

Consequences:

● T2 continuity
● Equilibration Reduction



Star-Triangle Equivalence for Spherical Foams

The centres of the 
 6 films meeting at
a vertex are on the 
same plane

This is a symmetry 
plane
for the vertex

Spherical Foams are a subcase of 3D (dry) Foams
● Equilibrium Laws (Plateau+Laplace)
● The Films are spherical caps 

Star-Triangle Equivalence 
The vanishing bubbles are
approximately tetrahedral and then 
T2 is a continuous process

Proof: (Moebius Invariance of spherical foams)

● Existence of a conjugate vertex
● Inversion map toward a symmetrical figure
● Proof of the existence of a virtual equilibrated vertex
● Inverse transformation 
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