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Structure and Evolution of Soap-Like
Foams

e 2D and 3D Foams at Equilibrium

* Contact with a solid Boundary

* Coarsening of 2D Foams

e Star-Triangle equivalence and T2(3) continuity

* Non-Standard Foams and Decoration

e Star-Triangle equivalence for 3D spherical Foams

¢ Conclusions



Equilibrated Dry Foams

e Films are two-dimensional surfaces of constant
mean curvature H :
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AP=2yH,_ Laplace's law
Pressure drop Constant surface :
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* The films meet 3 by 3 at the borders.
The angles between the films
are 120° (Plateau's law)

* 4 borders meet in a symmetrical tetrahedral vertex Maraldi angle



Equilibrated Dry Foams

e Different films can have different values of surface tension
[Adler 1995,2000]

3
* Equilibrium equations El y:b;=0 [ b; 1s the co-normal
can be rewritten as: 3 Y. 1s the Surface
Z y. H,;=0 tension
= border

In two Dimensions
3
e Equilibrium equations are: El yiTi=0 A standard experiment
3
2.y k=0
i=1

The films are
circular arcs

()™ (Hele-Shaw cell)




Foams 1n Contact with a Solid Boundary

Dry Plateau border in contact with a rigid \ F: \ F {
1 2

(curved) wall
e Equilibrium
* => Normal incidence of the films
* Clean surface %



Foams 1n Contact with a Solid Boundary

Dry Plateau border in contact with a rigid \ F: \ F {
1 2

(curved) wall
e Equilibrium
e —> Normal incidence of the films

* Clean surface 5
The 3D equilibrium 1mplies that on the surface -
the equilibrium equations at a vertex are: > y.T,=0
i=1
3
2‘1 ylkg((l)i’ S):O

Y;1s surface tension

k,(p;,S) is the geodesic
curvature of ¢;in S

The equilibrium eqs. are invariant
under conformal transformations



Detormed Hele-Shaw Cell and Conformal Foams

Exp.:
A monodisperse foam in

special deformed chambers
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The 2D pattern can be related to 4 _ | ’

the hexagonal foam (honeycomb

by a conformal transformation

Observed f o= Hexagonal [Drenckhan et al. (2004)]
pattern —<2 X Reference



Detormed Hele-Shaw Cell and Conformal Foams

Exp.: 88!
A monodisperse foam in
special deformed chambers
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[Dréhckhan ét al. (2004

Observed f + Hexagonal
pattern X ==X Reference

The bubbles' volume i1s conserved

h=hy|| £ I




Detormed Hele-Shaw Cell and Conformal Foams

Can the shape of the film be related to the conformal map?

Yes. Imposing the 3D Laplace's law and considering
the film curvature 1in the third vertical direction £



Detormed Hele-Shaw Cell and Conformal Foams

Can the shape of the film be related to the conformal map? ,
Vertical

Yes. Imposing the 3D Laplace's law and considering curvature
the film curvature 1in the third vertical direction £
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Detormed Hele-Shaw Cell and Conformal Foams

Can the shape of the film be related to the conformal map?

Vertical
Yes. Imposing the 3D Laplace's law and considering curvature
the film curvature 1in the third vertical direction £
Laplace's law s AP—2yHFt—/y$k+kV)
Geodesic curvature Normal to
(horizontal) the film
Y ——— : i
| | —n-Vh

hand VAl smal] —— i, = p




Detormed Hele-Shaw Cell and Conformal Foams

Can the shape of the film be related to the conformal map?

Vertical
Yes. Imposing the 3D Laplace's law and considering curvature
the film curvature 1in the third vertical direction £
Laplace's law =~ (- AP=2yHF7k+kV)
Geodesic curvature Normal to
(horizontal) the film
Y ——— : i
| | —n-Vh

hand VAl smal] —— i, = p

- The geodesic curvature transforms as:

X=1(X) o k=| £ lk+R (n(in £7)")

Combining these 3 equations:



Deformed Hele-Shaw Cell and Conformal Foams

Ay—P=||f'||1}+9z[n(1nf'—21nh)']




Detormed Hele-Shaw Cell and Conformal Foams

Conformal Height
transformation function
» N

bressure w1 A2 ) o it R[n(ln £1—2InA)]
difference Yy S

Geodesic curvature
in the reference foam
k=0 for X Hexagonal




Detormed Hele-Shaw Cell and Conformal Foams

Pressure
difference

Different set-ups:

Conformal Height
transformation function
AP » N

=l IR i g =210 )

\

Geodesic curvature
1n the reference foam

k=0 for X Hexagonal

Constant Pressure

h=h| f'|

Constant Volume

h=hy|l £ I




Deformed Hele-Shaw Cell and Conformal Foams

Conformal Height
transformation function

AP » A

Pressure TR , ,
difference T_Hf ||k<r92[n(lnf 2Inh)'|

Geodesic curvature
in the reference foam
k=0 for X Hexagonal

Different set-ups: Constant Pressure Constant Volume
h=hy|lf"| h=hyll £ I
1 x
f(Z>:C7€XP(a z) hocexp(a-z) hocexp(2a-z)
f(z)oc=, (a=ml6, mEN) hoc|z||*! hoc||z| P




Detormed Hele-Shaw Cell and Conformal Foams

hocl 2|

Spherical vessel

Example:
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Deformed Hele-Shaw Cell and Conformal Foams

The volume constraint h=h|| f'|° implies that k,=—2k

Laplace's equation gy 5 =k+k,=~—k

Pressure decreases

.‘.'..,....'..."".......' moving up
eSESqsgesegesesagaceseg
O A A S A S S g1l bubbles

eteteletatelatetodstels
SR e e have smaller
agelulalelalalefululnle pressure



Slow Evolution by Gas Diffusion of 2D Fomas

A 2D dry foam embedded in a 2-dim manifold S
* Equilibration time << time diffusion

* Incompressibility of the gas

e Validity of the Fick's law ZTA:_" S LAP,

* No liquid/solid friction force



Slow Evolution by Gas Diffusion of 2D Fomas

A 2D dry foam embedded in a 2-dim manifold S
* Equilibration time << time diffusion

* Incompressibility of the gas

» Validity of the Fick's law ZTA:_“ S ILAP
[Avron, Levine (1992)] 1o y

* No liquid/solid friction force i 3
dA 3k
Then the area of a n-sided bubble — —f P (”_6)+? f o
Topologié( Gaussian

charge g, curvature of S



Slow Evolution by Gas Diffusion of 2D Fomas

A 2D dry foam embedded in a 2-dim manifold S
* Equilibration time << time diffusion

* Incompressibility of the gas

» Validity of the Fick's law ZTA:_“ S ILAP
[Avron, Levine (1992)] 1o y

* No liquid/solid friction force i 3
dA 3k
Then the area of a n-sided bubble — —f P (n=6)+ T f o
Topologid Gaussian
charge g, curvature of S
: dA
If S is flat (G=0) then —— dtn =k(n—=6) (von Neumann)

(depends only on the topology of the bubble)



von Neumann — q(¢)={t,~t,t,—t} = k(¢)

)

Example:2-Bubble cluster

Evolution of k(t)

&2

o_15

K(0)=0.6

k(0)=0.6




von Neumann — a(t)={t,—¢t,t,—t| =9 k(t) 2

Example:2-Bubble cluster

Limit case a,=a,=a

L(t) o Va(t)=Vi—t L(t)—2VmdAa ~ Vi,
w/3—0 ~ \t,—t for k#]
013/

k(D)
1

e

Close to extinction (T2, t—1,)

Evolution of k(t)

al=0

k(n)nﬁ\\

L(t)

Cluster Perimeter

k(0)=0.6




Star-Triangle Equivalence in 2D Foams (y=cs?)

For any three-sided bubble (triangle) in an equilibrated foam:
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For any three-sided bubble (triangle) in an equilibrated foam:

Exists a virtual equilibrated vertex inside the bubble given
by the prologation of the external films



Star-Triangle Equivalence in 2D Foams (y=cs?)

For any three-sided bubble (triangle) in an equilibrated foam: /

Exists a virtual equilibrated vertex inside the bubble given
by the prologation of the external films

Replacing any triangle by the virtual vertex and its legs

(and “viceversa” / \

The new foam 1s still equilibrated

Consequences:

* T2 continuity
* Possible Simplification (“Reduction”)

in computation of equilibrium patterns



Star-Triangle Equivalence in 2D Foams

Continuity at T2

During the gas diffusion ) The star vertex becomes
When a 3-sided bubble shrinks a real vertex and the foam
T2(3) doesn't go out of equilibrium
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Continuity at T2

During the gas diffusion ) The star vertex becomes
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Star-Triangle Equivalence in 2D Foams

Continuity at T2

During the gas diffusion ) The star vertex becomes
When a 3-sided bubble shrinks a real vertex and the foam
T2(3) doesn't go out of equilibrium

Reduction
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Star-Triangle Equivalence in 2D Foams

Continuity at T2

During the gas diffusion ) The star vertex becomes
When a 3-sided bubble shrinks a real vertex and the foam
T2(3) doesn't go out of equilibrium

Reduction

t,=B/(3k)
A Area=B/3— A4,




Star-Triangle Equivalence in Non-Standard 2D Foams

SMVP [Moukarzel, 1997] Sources: (Pl-,zi,ai)

P)+z <d(x, Pj)z—l—zi.
a.

i aj

(
cells —» Q,:LxEHZ:d(x’ Y j#i

f d(x,P)+z; d(x,P,)+z. d(x,P)+z;
edges — > I ={xe[].: b Ptz _dlx, P)+z; dix, P)+z Y k#i, j
y Z
\ a; a, a
x Source projected on the plane z=0

Intensity



Star-Triangle Equivalence in Non-Standard 2D Foams

SMVP [Moukarzel, 1997]

Sources: (Pl-, z;, al-)

d(x,Pj)z—I-Zi.

1

(
cells ——> Qi: L'XEH Zfd(x,

P42
a.

< YV j#i
a;

_d(x,Pj)z—l—Zi. d(x,P,)+z;

r d(x,
edges — > I ,=ixe|]

l

Circular partition &
1s a SMVP

P42
a.

= < ‘v’k;«éi,j]
a, a,
* It 1s aligned

e [t admits an oriented reciprocal figure 7*




Star-Triangle Equivalence in Non-Standard 2D Foams

SMVP [Moukarzel, 1997] Sources: (P;,z;, a;)
( d(x,P)+z> d(x,P)+z

cells — » Qi: JCEH . <X, 1) Z, - ()C, ]> Z; Vj;él
L i o a;
f P)+z? P )Y+ 24 72

edges —> Fz'j: erZ.,d(x: 1) +Zz :d(x’ ]) +Z] <d(x:Pk) +Zk ’ Vk?fi,j]
| a, a, a,

Circular partition * [t 1s aligned
is a SMVP —> e [t admits an oriented reciprocal figure 7*

Aligned

The centres of the edges
-~ meeting at a vertex are
- on a line




Star-Triangle Equivalence in Non-Standard 2D Foams

SMVP [Moukarzel, 1997] Sources: (Pl-,zi,ai)

( d P. 2—|— 2 d P. 2_|_ 2
CGHS — > Qi: L'XEHZ'. <x’ l) Z; < (x; ]> Z]
a.

i aj

, VY j#i

f d(x,P)V+z d(x,P)+z d(x,P)V+z
edges — > I ,=ixe|] . P4z _dix.P) % < 2, Py =5 YV k#i,
| a, a, a,
Circular partition * [t 1s aligned

-

1sa SMVP

e [t admits an oriented reciprocal figure 7*

Oriented reciprocal (or dual) figure

e 7 1s a triangulation

* A Source P;for any cell
* P,P, 1 edge
 (P,,P; C;) ordered




Star-Triangle Equivalence in Non-Standard 2D Foams

Moukarzel's Theorem

A circular partition of the plane, with 3-connectivity,
represents an equilibrated 2D foam ¥ (non-standard)

If and only 1if there 1s an oriented dual figure 7*




Star-Triangle Equivalence in Non-Standard 2D Foams

Moukarzel's Theorem

A circular partition of the plane, with 3-connectivity,
represents an equilibrated 2D foam 7 (non-standard)

If and only if there 1s an oriented dual figure 7*

Then, Star-Triangle Equivalence 1s simply proved:




Star-Triangle Equivalence in Non-Standard 2D Foams

Consequences
Consequences 1:
The Decoration Theorem
[Weaire, 1992]
Little liquid - Ideal dry

at the vertices



Star-Triangle Equivalence in Non-Standard 2D Foams

Consequences
Consequences 1:
The Decoration Theorem
[Weaire, 1992]
Little liquid - Ideal dry

at the vertices

Consequences 2:

Star-Triangle and
decoration at
a flat boundary




Star-Triangle Equivalence for Spherical Foams

Spherical Foams are a subcase of 3D (dry) Foams
* Equilibrium Laws (Plateau+Laplace)

* The Films are spherical caps
The films of vanishing tetrahedral

, , bubbles are approximately spherical
Star-Triangle Equivalence =g cup [Doornum, Hilgenfeldt , 2003]

then T2 1s a continuous process

Proof: (Moebius Invariance of spherical foams)

* Existence of a conjugate vertex
* [nversion map toward a symmetrical figure
* Proof of the existence of a virtual equilibrated vertex

¢ Inverse transformation



Conclusions

* We have derived the equilibrium equation for 2D Foam at the contact with
solid boundaries.

e [nvariance under conformal transformations.

* Found an equation linking the conformal transformation to the profile of a
deformed Hele-Shaw cell.

* Pressure predicted under constant volume constraints differs from “pure 2D
physics.

e Star-Triangle equivalence in standard and non-standard 2D foams

* New proof and extension of the Decoration theorem

e Similar results along flat boundaries (in 2D)

* T2(3) continuity

e Exact solution 1n the case of 2-bubbles (2D and 3D)

e Star-Triangle equivalence for 3D spherical bubbles, continuity in
tetrahedral bubbles disappearing



Perspective and Projects

Is the star-triangle equivalence verified by 2D foams embedded in
two-dimensional manifold?

Is there a generalization of the star-triangle equivalence for 3D foams?
Develop a program which, given the pressures and the topology of a

bubble cluster, would construct the exact equilibrated cluster
(example: Flower problem).

Given a random cluster of N bubbles, how many different star-triangle
reductions can one do?



Example:2-Bubble cluster. Minimization and Diffusion

* Hp: circular films, 3-connectivity, mono-contact
e Indipendent Variables: y={R;;, Ry, R, )

e Enthalpy  G[Clyl,A;al=yLlyl+A-(a—s|y])

V\ -'2

Surface Cell
tension areas vector
Lagrange's Constant
Perimeter multipliers areas vector
Equilibrium
Minimization: . 913:;—912,- 923=;1+912 < Plateau
Minimal parimeter —» 0, G=0
. P g — . L1 < Laplace
Fix the areas ———» aA_GZO Ry Ry; Ry
® E=yL=2Aa = Energy

/16 % 1t doesn't depend
sin2(9) ony

rea of a circular
sector of radius = 1

a:yz{g(_elz)’g<912)}
f(21T \ 41 Ts scale invariant; f(x)Z;—(Zx—sin(Zx))
y

4




Example:2-Bubble cluster

t,=a;(0)

Rescaled (“*“/“
von Neumann

013/

k(0)=0.6

L(t)

Cluster Perimeter

Limit case ¢t—1, (T2)

k(0)=0.6

L(t)—2VmAa ~ \t,—t
¢ w/3—-0,, ~ \t,—t




Example:2-Bubble cluster

Rescaled (f*“ég;
i:ai
von Neumann
013/
n.;s L kI:EI:I=D.ﬁ

0.

0_15F

o.1f

o_o5

a(t):{‘ﬁ(t)’az(t)}:{tl_t:tz_t} —» k(1)

k(D)

Limit case a,=a,=a

L(#) oc Va(t)=\i—t
R(t) o Va(t)=Vi—t

/V |

L(t)

Cluster Perimeter

k(0)=0.6

h

az(t)_

a,(t)

3D 2-Bubble Cluster

E(t):yA(t):%A-V

E(t)=A-V

Limit case ¢—¢, (T2)

L(t)—2VmAa ~ \t,—t
w/3—-0,, ~ \t,—t




Star-Triangle Equivalence in 2D Foams (y=cs?)

For any three-sided bubble (triangle) inside an equilibrated foam: /

Exists a virtual equilibrated vertex inside the bubble gived
by the prologations of the external films joining the bubble

Replacing any triangle by the virtual vertex and its legs

(and “viceversa”) / \

The new foam 1s still equilibrated
Proof:

Taking
a vertex v of the bubble




Star-Triangle Equivalence in 2D Foams (y=cs?)

For any three-sided bubble (triangle) inside an equilibrated foam: /

Exists a virtual equilibrated vertex inside the bubble gived
by the prologations of the external films joining the bubble

Replacing any triangle by the virtual vertex and its legs

(and “‘viceversa” / \

The new foam 1s still equilibrated

Proof:

Taking

a vertex v of the bubble Applying an Inversion

Transformation

It exists an associate to the foam centred 1in v*

conjugate v* z—>§=1/(z—v*)
(equilibrated) vertex

w3V We obtain:



Star-Triangle Equivalence in 2D Foams

..Proof 5
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Star-Triangle Equivalence in 2D Foams

Using the reflexion :
symmetry N e S
on the 2 flat edges i

__\___.|-_f___
Eyz 1 C3



Star-Triangle Equivalence in 2D Foams

The centres are an
equilateral triangle

Using the reflexion :
symmetry N e S
on the 2 flat edges i
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Star-Triangle Equivalence in 2D Foams

The centres are an
equilateral triangle

Then the prolongation of
the external edges meet
at an equilibrated vertex v,

Using the reflexion :
symmetry N e S
on the 2 flat edges - i

_____;__d___.
Rz 1 '3



Star-Triangle Equivalence in 2D Foams

..Proof 5

Then the prolongation of
the external edges meet

Applying the inverse transformation at an equilibrated vertex ¥,

Zoz=(1+zv")/z



Star-Triangle Equivalence in 2D Foams

..Proof 5

Applying the inverse transformation

Zoz=(1+zv")/z



Star-Triangle Equivalence in 2D Foams

..Proof 5

Applying the inverse transformation

Zoz=(1+zv")/z

Consequences:

* T2 continuity

* Equilibration Reduction



Star-Triangle Equivalence for Spherical Foams

Spherical Foams are a subcase of 3D (dry) Foams
* Equilibrium Laws (Plateau+Laplace)
* The Films are spherical caps

The vanishing bubbles are

Star-Triangle Equivalence == approximately tetrahedral and then
T2 1s a continuous process

Proof: (Moebius Invariance of spherical foams) The centres of the

6 films meeting at

e Existence of a CONjUZALE VEITEX < umm— 3 VETTEX are on the
. . same plane
* [nversion map toward a symmetrical figure

* Proof of the existence of a virtual equilibrated vertex Tlhis 1S a symmetry
. plane
* [nverse transformation for the vertex



Star-Triangle Equivalence for Spherical Foams

Spherical Foams are a subcase of 3D (dry) Foams
* Equilibrium Laws (Plateau+Laplace)
* The Films are spherical caps

The vanishing bubbles are

Star-Triangle Equivalence == approximately tetrahedral and then
T2 1s a continuous process

Proof: (Moebius Invariance of spherical foams)
* Existence of a conjugate vertex
* [nversion map toward a symmetrical figure -~

* Proof of the existence of a virtual equilibrated vertex

¢ Inverse transformation
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Spherical Foams are a subcase of 3D (dry) Foams
* Equilibrium Laws (Plateau+Laplace)
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Star-Triangle Equivalence for Spherical Foams

Spherical Foams are a subcase of 3D (dry) Foams
* Equilibrium Laws (Plateau+Laplace)
* The Films are spherical caps

The vanishing bubbles are

Star-Triangle Equivalence == approximately tetrahedral and then
T2 1s a continuous process

Proof: (Moebius Invariance of spherical foams)
* Existence of a conjugate vertex
* [nversion map toward a symmetrical figure

* Proof of the existence of a virtual equilibrated vertex

* [nverse transformation —




