Université Joseph Fourier Grenoble 1

THESE

présentée par

Bénédicte DUFFAIT - CHAMPEL

pour obtenir le grade de

DOCTEUR

Discipline : Sciences de la Terre

Interactions entre tectonique et érosion à différentes échelles spatio-temporelles en Himalaya : Apport de la modélisation numérique

Soutenue le 23 janvier 2004

Jury :

Dr. Jean-Louis MUGNIER	Président
Pr. Bernard DELCAILLAU	Rapporteur
Dr. William SASSI	Rapporteur
Dr. Jean BRAUN	Examinateur
Dr. Djordje GRUJIC	Examinateur
Pr. Arnaud PECHER	Directeur de thèse
Dr. Peter VAN DER BEEK	Directeur de thèse

Remerciements

A l'issue de ces cinq années passées à Grenoble, je tiens à remercier tous ceux et celles sans qui cette thèse n'aurait pas vu le jour :

- Georges Mascle pour m'avoir fait découvrir le LGCA au moment où je cherchais un stage à la fin de mes études à l'Ecole Polytechnique,
- Peter van der Beek, Jean-Louis Mugnier et Arnaud Pecher pour m'avoir proposé ce sujet de thèse aussi alléchant après mon DEA, et pour la grande autonomie qu'ils m'ont laissée,
- Jean Braun pour m'avoir accueillie à RSES à Canberra et m'avoir initiée à toutes les subtilités de DLR, mais surtout pour sa grande écoute, sa disponibilité, ainsi que son enthousiasme,
- Bernard Delcaillau et William Sassi pour avoir accepté de rapporter sur le manuscrit, et pour avoir réussi à le lire malgré toutes les coquilles qu'il comprenait,
- Djordje Grujic pour être venu du Canada pour assister à ma soutenance,
- toutes les personnes que j'ai pu côtoyer à Canberra : en premier lieu Thomas et Charisse, mais aussi Tony, Susanne, Anya et Nick,
- toutes les personnes du LGCA avec qui j'ai pu parler de géologie, mais aussi de sujets divers (je ne me lance pas dans une énumération, qui risquerait de ne pas être exhaustive),
- enfin, tous les thésards et assimilés de Grenoble (et leur moitié le cas échéant), pour leur bonne humeur et leur soutien : Mikael pour son moral résistant à toute épreuve, Jean-Christophe pour toute l'aide qu'il m'a apportée, Gilles pour son enthousiasme, mais aussi Ananta, Bardhyl, Bruno, Chaker, Clarisse, Crelia, les Fran{ccois, Jean-Philippe, Jérôme, Julien, Magali, Marianne, Marion, Muriel, Olivier, Philippe, Thomas, Vincent.

Je n'oublie pas mes parents et mes frères et soeurs, qui ont supporté pendant des années mon envie de faire de la géologie.

Mais surtout, je remercie Thierry, pour son soutien et ses encouragements pendant toutes ces années, et pour le bonheur qu'il m'a permis de connaître avec Alexis et Chloé.

4

Quand les plus savants des hommes m'auront appris que la lumière est une vibration, qu'ils m'en auront calculé la longueur d'onde, quel que soit le fruit de leurs travaux raisonnables, ils ne m'auront pas rendu compte de ce qui m'importe dans la lumière, de ce que m'apprennent un peu d'elle chaque jour mes yeux, de ce qui me fait différent de l'aveugle, et qui est matière à miracle, et non objet de raison

Aragon, Le paysan de Paris

Les savants sont des enfants qui s'amusent. Ils ouvrent les choses pour voir ce qu'il y a dedans, ils envoient des cailloux dans le ciel, et ils se créent un vocabulaire à eux, pour que personne ne les comprenne, pour fermer le clan, la petite bande

Barjavel, Colomb de la lune

Table des matières

Ir	Introduction 2			25	
Ι	I Echelle du pli 39				
1	Intr	oducti	on	41	
2	Le	modèle	e Cascade	45	
	2.1	Algori	thme général	46	
	2.2	Proces	ssus d'érosion	47	
		2.2.1	L'incision fluviatile \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	48	
			2.2.1.1 Le modèle utilisé \ldots \ldots \ldots \ldots \ldots \ldots	50	
			2.2.1.2 Justification du modèle utilisé	51	
		2.2.2	L'érosion diffusive	51	
3	Mo	dificati	ions au modèle	55	
	3.1	Modél	isation tectonique	55	
		3.1.1	Les plis par propagation de faille	55	
			3.1.1.1 Description géométrique	58	
			3.1.1.2 Description cinématique	62	
		3.1.2	Les plis de rampe passifs	63	
			3.1.2.1 Description géométrique	63	
			3.1.2.2 Description cinématique	64	
		3.1.3	Propagation latérale des plis	64	
		3.1.4	Validité du modèle	65	
	3.2	Glisser	ments de terrain \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	66	
		3.2.1	Rappel bibliographique	66	
		3.2.2	Description du modèle développé	68	
		3.2.3	L'aspect stochastique	70	
			3.2.3.1 Sensibilité au paramètre k_0	71	

			3.2.3.2	Sensibilité au paramètre $k_1 \ldots \ldots \ldots \ldots \ldots$	71
		3.2.4	Etude de	e pentes sur des systèmes réels	71
			3.2.4.1	Front himalayen	71
			3.2.4.2	Anticlinal de Pakuashan (Taïwan)	73
4	\mathbf{Etu}	de du	modèle	de glissements de terrains	75
	4.1	Locali	sation des	glissements de terrains	75
	4.2	Influe	nce des pr	opriétés mécaniques	75
	4.3	Influe	nce de k_0	et k_1	79
5	Infl	uence	du penda	age du décollement sur le comportement des rivière	es 83
6	Etu	de des	s Siwalik	au Népal	89
C	onclu	ision			100
Ŭ	onen	151011			103
II	Ec	helle	du svst	ème chevauchant	111
7	Inti	roduct	ion		113
	7.1	Les pi	rismes d'a	ccrétion	113
	7.2	Le fro	nt Himala	yen	115
	7.3	But d	e l'étude		119
8	Mo	dèle n	umérique	2	121
	8.1	Modè	le tectonic	que	121
		8.1.1	Géométi	rie du système	121
		8.1.2	Détermi	nation du chevauchement actif	122
			8.1.2.1	Force de pesanteur	123
			8.1.2.2	Force de frottement	124
			8.1.2.3	Déformation interne	124
		8.1.3	Détermi	nation du chevauchement actif	125
	8.2	Modè	le d'érosio	n	126
	8.3	Espac	ement des	chevauchements	126
9	Rés	ultats	des mod	lélisations	131
	9.1	Evolu	tion d'un	système chevauchant	131
	9.2	Influe	nce de la :	rhéologie sur la propagation frontale d'un prisme \ldots .	134
	9.3	Influe	nce de la	géométrie sur la propagation frontale d'un prisme	137

9.4	1 Influer	nce des processus érosifs sur la propagation frontale d'un prisme . 13	37
	9.4.1	Influence des différents processus de surface 13	37
		9.4.1.1 Glissements de terrains	38
		9.4.1.2 Incision fluviatile $\ldots \ldots \ldots$	10
	9.4.2	Influence de la pente critique des glissements de terrain 14	12
	9.4.3	Influence du coefficient d'incision fluviatile	42
10 Di	scussion	14	1 7
10	.1 Espace	ement des chevauchements	17
10	.2 Géome	étrie d'équilibre du prisme	19
10	.3 Propag	gation frontale d'un système chevauchant	51
10	.4 Applie	ation au cas Himalayen	52
Conc	lusion	15	5
III F	Echelle	de la chaine de montagnes 15	7
Intro	duction	15	6 9
11 Le	es donné	es 16	61
11	.1 Donné	es topographiques $\ldots \ldots 16$	31
11	.2 Donné	es pression-température-temps $\ldots \ldots \ldots$	38
	11.2.1	Coupe du Garhwal $\ldots \ldots 16$	38
	11.2.2	Coupe du Langtang	73
	11.2.3	Coupe de l'Everest	77
	11.2.4	Coupe du Bhutan $\ldots \ldots 18$	30
	11.2.5	Récapitulatif	30
		11.2.5.1 Variations Nord-Sud des données	30
		11.2.5.2 Variations latérales des données	33
11	.3 Donné	es climatiques $\ldots \ldots 18$	34
	11.3.1	Les données	34
	11.3.2	Modélisation	38
12 Pr	résentati	on de DLR 19)7
12	.1 Modèl	e général) 8
	12.1.1	Modèle mécanique) 8
	12.1.2	Modèle d'érosion)9

		12.1.3	Modèle thermique	200
	12.2	Résolu	tion des équations	201
	12.3	Param	ètres d'entrée	201
	12.4	Param	ètres de sortie	202
		12.4.1	Visualisation des trajectoires et référentiel	205
13	Form	nation	d'un plateau	207
	13.1	Introd	uction	207
		13.1.1	Théorie	207
		13.1.2	Le plateau du Tibet \ldots	209
			13.1.2.1 Phase 1 : L'épaississement crustal	209
			13.1.2.2 Phase $2:$ L'extension	211
	13.2	Présen	tation du modèle utilisé	211
	13.3	Résult	ats	212
		13.3.1	Modèle 1	212
		13.3.2	Modèles 2,3,4 \ldots	213
		13.3.3	Modèle 5	214
	13.4	Discus	sion	217
		13.4.1	Asymétrie de la déformation	217
		13.4.2	Evolution de l'épaisseur crustale	218
		13.4.3	Effet du remplacement de la lithosphère par l'asthénosphère sur	
			l'altitude du plateau Tibétain	220
		13.4.4	Comment former un plateau?	222
14	Géo	métrie	e et flux de matière dans un modèle à croûte épaissie	225
	14.1	Introd	uction	225
		14.1.1	Modèle de départ	225
		14.1.2	Démarche	226
	14.2	Influer	nce de la géometrie du modèle	227
		14.2.1	Localisation de la singularité	227
		14.2.2	Largeur de la transition	232
		14.2.3	Epaisseur du Tibet	235
	14.3	Influer	nce de l'érosion et de la sédimentation	238
		14.3.1	Localisation de l'érosion	238
		14.3.2	Intensité de l'érosion	243
		14.3.3	Présence de sédimentation	246
	14.4	Discus	sion	246

14.4.1	Le mode	de déformation dans le modèle	246
14.4.2	Le rôle d	e l'Energie Potentielle gravitationnelle (EPG)	250
14.4.3	Compara	ison avec les données de terrain	251
	14.4.3.1	Topographie et localisation de l'érosion	251
	14.4.3.2	Les chemins Pression - Température - Temps	252
	14.4.3.3	Quel modèle pour quelle région Himalayenne à l'actuel ?	253
14.4.4	Faiblesse	s du modèle	254

Conclusion

Bibliographie

265

257

Table des figures

1	Influence de la localisation des précipitations sur la localisation de l'érosion	
	et de la déformation. De haut en bas : modèle utilisé, prédictions des zones de déformation pour des précipitations symétriques des précipitations	2
	restreintes au côté pro (gauche de l'image) et des précipitations res-	,
	treintes au côté retro (droite de l'image). D'après [Willett, 1999a] $\ $	29
2	En haut : précipitations dans la région de l'Himalaya (données IPCC) ; en bas : topographie (données GTopo30)	31
3	Grandes zones structurales de l'Himalaya. D'après [Galy, 1999]	32
4	Coupe de l'Himalaya au niveau de Katmandou (d'après [Lavé, 1997]) .	34
1.1	Le cours de la rivière Rapti dans l'Ouest du Népal. La rivière est déviée sur plus de 100 km par le relief frontal des Siwalik. Mosaïque d'images SPOT (taille de chaque image : 60x60 km)	42
1.2	L'apparition au cours du temps d'un espacement caractéristique des cours d'eau au passage d'une structure tectonique en croissance. L'espa- cement initial des cours d'eau est r_0 . Lors de la croissance de la structure tectonique, et de sa propagation latérale, les cours d'eau sont détournés et se regroupent. Certains des cours d'eau ainsi formés peuvent inciser le pli : l'espacement final r_1 reflète l'importance relative de la tectonique et de l'incision fluviatile	44
2.1	Réseaux de drainage obtenus avec une grille régulière (à gauche) et irrégulière (à droite). La grille régulière induit des géométries de drainage qui sont des artefacts (d'après [Braun et Sambridge, 1997])	46
2.2	Relation pente / aire drainée pour le modèle limité par le détachement (en trait plein) et limité par le transport (en trait pointillé). D'après	40
	[whipple et Tucker, 2002]	49

2.3	Relation entre la pente et l'aire drainée pour des rivières de mes modèles (échelle logarithmique). La couleur utilisée pour les symboles de la figure	
	de droite permet de situer la rivière sur la figure de gauche	52
3.1	Comparaison entre le pli de rampe passif (fault bend folding) et le pli de propagation (fault-propagation folding) (d'après [Jamison, 1987])	56
3.2	Migration de la matière au niveau des charnières dans un pli de propa- gation (d'après [Mitra, 1990])	57
3.3	Les trois modèles géométriques de plis de propagation et leurs effets sur des couches prétectoniques (en gris) et syntectoniques (en blanc). Les figures supérieures montrent l'ensemble de la structure, celles du bas un détail du flanc avant. De gauche à droite, les modèles sont le modèle à épaisseur constante, le modèle à plan axial fixe, et le modèle de trishear	
2.4	(d'après [Ford <i>et al.</i> , 1997])	57
3.4	1999b]) . <td< td=""><td>59</td></td<>	59
3.5	Les angles utilisés pour la modélisation du pli de propagation. D'après [Suppe et Medwedeff, 1990]	59
3.6	Localisation des points utilisés pour caractériser la géométrie du pli de propagation. Les points P'2, P'3 et P'4 sont les points charnières du pli	
~ -	pour le raccourcissement $r + \Delta r$	61
3.7	Les différentes zones de vitesse dans le modèle cinématique de pli de rampe. D'après [Poblet et Hardy, 1996]	65
3.8	Pli de propagation en trois dimensions (d'après [Leturmy, 1997])	66
3.9	Relation fréquence / magnitude pour les glissements de terrains dans les Alpes du Sud de Nouvelle Zélande (d'après [Hovius <i>et al.</i> , 1997])	67
3.10	Géométrie utilisée pour calculer la cohésion effective dans cette étude. La force de pesanteur F est décomposée en Fn la force normale et Ft la force tangentielle au plan de glissement	68
3.11	Modèle de glissements de terrains développé dans cette étude	70
3.12	Modèle Numérique de Terrain du front Himalayen au Sud de Katman-	
	dou. A gauche, topographie, à droite, pentes calculées	72
3.13	Histogramme des pentes de la Figure 3.12 pour différentes résolutions .	73
3.14	Modèle Numérique de Terrain de l'anticlinal de Pakuashan (Taïwan) et histogramme des pentes pour différentes résolutions	74

TABLE DES FIGURES

4.1	Localisation des glissements de terrains sur un modèle de croissance de pli. Les axes sont gradués en kilomètres à partir de l'origine du pli. Ce pli croît simultanément vers le haut et le bas de l'image	76
4.2	Topographie finale pour le matériau tendre (à gauche) et pour le matériau compétent (à droite).	77
4.3	Histogramme des pentes pour les matériaux tendre (noir) et compétent (gris)	78
4.4	Volumes des glissements de terrain.	79
4.5	Influence de k_1 sur le nombre de glissements de terrain, le volume total et le volume moyen déplacés	80
4.6	Influence de k_0 sur le nombre de glissements de terrain, le volume total et le volume moyen déplacés	80
4.7	Evolution du rapport entre les volumes totaux déplacés pour un k_1 élevé et pour un k_1 faible.	81
4.8	Glissements au cours du temps	81
7.1	Exemples naturels de prismes, dans un contexte de collision (en haut : Salt Range au Pakistan) ou de subduction (en bas : Makran). D'après [Davis et Lillie, 1994]	14
7.2	Modélisation analogique d'un prisme, réalisée avec du sable quartzique. Les horizons colorés initialement horizontaux permettent de suivre la déformation et d'observer la formation d'écailles chevauchantes. D'après [Gutscher <i>et al.</i> , 1998] 11	14
7.3	Modélisation numérique d'un prisme, réalisée en modélisant le matériel entrant dans la composition du prisme par des sphères. Les différentes nuances de gris indiquent des horizons initialement horizontaux. D'après [Burbidge et Braun, 2002]	14
7.4	Reconstitution de l'évolution morphostructurale et tectonosédimentaire de la chaîne de l'Himalaya au Népal. Modifié à partir de [Delcaillau, 1986]11	16
7.5	Carte schématique du Front Himalayen au Népal occidental. D'après [Chalaron <i>et al.</i> , 1995]	17
7.6	Carte schématique du Front Himalayen au Népal oriental. D'après [Cha- laron <i>et al.</i> , 1995]	18
7.7	Carte schématique du Front Himalayen au Bhutan. D'après [Chalaron et al., 1995], tiré de [Gansser, 1983]	18

7.8	Coupe schématique du prisme. La partie grisée + blanche représente le prisme au début de la modélisation. La partie noire + blanche représente le prisme à la fin de la modélisation. Le matériel n'ayant pas quitté le système, on en déduit que la partie grisée est égale à la partie noire, donc que le temps nécessaire pour amener le prisme à l'équilibre est proportionnel à la pente topographique d'équilibre	120
8.1	Géométrie d'une rampe. Chaque rampe est discrétisée en segments de	
	longueur Δx et de pente locale θ . L'épaisseur du matériel au-dessus de	
	la rampe est Δh , et le taux de raccourcissement à l'arrière est V_t	123
8.2	Géométrie du pli de rampe. Les paramètres initiaux sont le pendage du décollement ϕ , le pendage de la rampe θ_0 et la pente topographique α . Les angles des surfaces axiales γ_1 et γ_2 sont calculés en fonction des paramètres initiaux. Les vitesses sont alors fonction de la vitesse de	
	raccourcissement et de ces angles γ_1 et γ_2	125
8.3	Géométrie initiale du modèle pour déterminer l'espacement optimal des	
8.4	chevauchements	127
	8.3 pour l'échelle	128
8.5	Numéro du premier chevauchement activé (proportionnel à l'espacement moyen des chevauchements) en fonction du coefficient de frottement in- terne (μ), du coefficient de frottement basal (μ_b), et du pendage de la surface de décollement (β)	129
9.1	Rampe active à chaque pas de temps	133
9.2	Topographie du prisme au moment où le glissement se produit sur le chevauchement le plus externe.	133
9.3	Topographie du prisme à différents instants de son évolution. On re- marque l'évolution vers l'avant de la déformation.	134
9.4	Temps écoulé avant que le glissement ne se produise sur le chevau- chement le plus externe, en fonction du frottement à la base et pour différents frottements internes	135
9.5	Pente topographique du prisme à la fin de la modélisation, en fonction	
	du frottement à la base et pour différents frottements internes $\ . \ . \ .$	136

TABLE DES FIGURES

9.6	Proportion de chevauchements hors séquence en fonction du frottement	
	à la base	136
9.7	Temps nécessaire à la propagation de la déformation jusqu'au chevauche- ment le plus externe en fonction du pendage de la surface de décollement,	
	tous les autres paramètres étant ceux de la Table 9.1	137
9.8	Topographie finale du système chevauchant dans un modèle sans érosion	138
9.9	Séquence d'activation des chevauchements dans un modèle sans érosion	139
9.10	Topographie finale du système chevauchant dans un modèle avec uni- quement des glissements de terrains	139
9.11	Séquence d'activation des chevauchements dans un modèle avec uniquement des glissements de terrains. P = 69 $\%$	140
9.12	Topographie finale du système chevauchant dans un modèle avec glisse- ments de terrains et érosion fluviatile	141
9.13	Profils à travers le prisme : en gris, altitude des rivières; en noir fin, altitude maximale du prisme; en noir épais : altitude moyenne du prisme	141
9.14	Séquence d'activation des chevauchements dans un modèle avec glissements de terrains et érosion fluviatile. P = 70 $\%$	142
9.15	Temps nécessaire à la propagation du prisme jusqu'à la dernière rampe, et proportion de chevauchements hors-séquence, en fonction de la pente critique des glissements de terrains (pour un coefficient d'incision fluvia- tile de 10^{-3} km/an)	143
9.16	Temps nécessaire à la propagation du prisme jusqu'à la dernière rampe, et proportion de chevauchements hors-séquence, en fonction de la constante d'incision fluviatile (pour une pente critique des glissements de terrains de 20°)	145
10.1	Géometrie simplifiée du prisme. La partie activée du prisme a une lon- gueur a et une hauteur h_0 , la partie non activée a une hauteur h_1 . Le pendage des chevauchements est de 30°. Le nouveau chevauchement se créé à une distance b du chevauchement précédent. D'après [Schott et Kovi, 2001].	148
10.2	Espacement des chevauchements prédit par le modèle de [Schott et Koyi, 2001] et comparaison aux prédictions du modèle en fonction du coeffi- cient de frottement à la base du prisme, pour différentes valeurs du coefficient de frottement interne	149

10.3 Pente topographique finale du prisme en fonction du frottement basal,
(gris) pour différents frottements internes
(gris), pour unierents nottements internes
tense Voir le texte nour les explications
10.5 Schéma représentant le cas d'un prisme en contexte d'érosion très in-
tense Voir le texte nour les explications
10.6 Variations latérales possibles du produit $k_x v$ Cas 1 : toujours inférieur à
la valeur seuil, cas 2 : supérieur à la valeur seuil dans la partie orientale
de la chaîne. Cas 3 : toujours supérieur à la valeur seuil
11.1 Topographie de l'Himalaya et du Tibet (Données GTopo30). Les cadres
correspondent aux extraits montrés dans les figures suivantes. D'Ouest
en Est le Garhwal, le Langtang, la zone de l'Everest et le Bhutan 162
11.2 Topographie du Garhwal et profils topographiques : en bas, altitudes
moyenne et extrémales calculées sur une fenêtre glissant le long du pro-
fil; en haut, pente moyenne calculée à partir des données d'altitude
moyenne, et différence d'altitude entre l'altitude maximale et l'altitude
$\begin{array}{c} \text{minimale.} \\ 11 \text{ or } \\ \end{array}$
11.3 Topographie du Langtang et profils topographiques (même légende qu'en
Figure 11.2) \ldots 165
11.4 Topographie de la région de l'Everest et profils topographiques (même
legende qu'en Figure 11.2) \ldots 166
11.5 Topographie du Bhutan et profils topographiques (meme legende qu'en
Figure 11.2) \ldots 107
11.6 Localisation des differentes zones etudiees. 11.7 D(1.17 D(1.17 D(1.17 D) 1.17 D(1.17 D) 1.17 D(1.17 D) 1.17 D(1.17 D) 1
11.7 Repartition des donnees au Garhwal (carte d'apres [Jain <i>et al</i> , 2000]. Le
cadre situe la carte plus detainée pour la région de la Bhagirathi (Fig.
11.8)
11.0 Variation des données thermoharométriques à travers le HHC au Carbwal 172
11.9 Variation des donnees thermochronologiques à travers le HHC au Garhwal 172
11.10 variation des ages thermoentonologiques à travers le fiffe au Gariwar 172
1000])
11 12Bépartition des données PTt au Langtang (carte d'après [Rai 1998])
Le cadre situe la carte plus détaillée pour la région de la Trisuli (Fig
11.13)
11.10).

11.13Données PTt utilisées pour caractériser le métamorphisme au Langtang 1	175
11.14Variation des âges thermochronologiques à travers le HHC au Langtang 1	176
11.15 Variation des données thermobarométriques à travers le HHC au Langtang 1	176
11.16 Chemin PT t général pour le HHC au Langtang (d'après [Guillot $et\ al.,$	
$1999]) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	177
11.17 Répartition des données PT t dans la region de l'Everest (carte d'après $% \mathcal{A}$	
[Hubbard $et al, 1991$])	178
11.18 Variation des âges thermochronologiques à travers le HHC dans la région	
de l'Everest $\ldots \ldots \ldots$	179
11.19 Variation des données thermobarométriques à travers le HHC dans la	
région de l'Everest (d'après [Hubbard et Harrison, 1989]) 1	179
11.20Chemin PTt général pour le HHC dans la région de l'Everest (d'après	
$[Guillot et al., 1999]) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	180
11.21Chemin PTt général pour le HHC au Bhutan (d'après [Guillot <i>et al.</i> ,	
$1999]) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	181
11.22Courbes âge / température obtenues en prenant en compte le terme	
d'advection dans l'équation de la chaleur. t^* : temps adimensionnalisé,	
T^* : température adimensionnalisée. D'après [Moore et England, 2001]. 1	182
11.23Données thermochronologiques au Garhwal. Pour la localisation des	
données, voir la FIG. 6.2 (triangles rouges). D'après [Jain $et al., 2000$] . 1	182
11.24Pluviométrie en Himalaya (données IPCC)	185
11.25Répartition des précipitations en Himalaya, d'après Chris Duncan (données	
des atlas du WMO) \ldots \ldots \ldots \ldots \ldots \ldots \ldots 1	185
11.26Profil pluviométrique et topographique au Garhwal	186
11.27Profil pluviométrique et topographique au Langtang	186
11.28Profil pluviométrique et topographique dans la région de l'Everest 1	187
11.29Profil pluviométrique et topographique au Bhutan	187
11.30 Transition eau liquide / vapeur d'eau $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	188
$11.31 \ensuremath{\mathrm{Quantit\acute{e}}}$ d'eau condensée par unité d'ascension en fonction de l'altitude,	
et relation linéaire utilisée dans le modèle 1	193
11.32 Quantité d'eau initiale précipitée depuis le Golfe du Bengale $\ .\ .\ .\ .$ 1	194
11.33 Quantité d'eau condensée par unité d'ascension dans la masse d'air $\ . \ . \ 1$	194
11.34Coefficient appliqué aux quantités d'eau initialement contenues dans les	
masses d'air. Cette distribution suppose qu'il y a une quantité maximale	
d'eau variable selon les masses d'air	195

11.3	5Précipitations calculées en supposant la répartition initiale des masses d'air donnée Figure 11.34	196
12.1	Modèle général. Voir le texte pour les explications	202
12.2	Visualisation des résultats de DLR. De haut en bas, 1) les chemins Pression-Temps-Température (pression en ordonnée, température en abs- cisse, les différents points sont espacés en temps de 1 million d'années), 2) la Topographie (en trait plein) et l'érosion (en tireté), 3) les trajets des particules dans un référentiel fixe par rapport à la bordure gauche du modèle, 4) le champ de température (du bleu : froid au rouge : chaud), 5) le champ de déformation instantanée (du vert : déformation nulle au rouge : déformation importante) et 6) le maillage (non représenté dans les figures qui vont suivre)	204
12.3	Visualisation des trajets de roches avec un référentiel fixe par rapport au Tibet (en haut) ou à l'Inde (en bas)	205
13.1	Les différentes théories généralement proposées pour expliquer l'épaississer de la croûte Tibétaine. a) sous-placage de l'Inde, b) sous-placage retardé, c) injection continentale et d) raccourcissement distribué	nent 210
13.2	Modèle utilisé dans le chapitre 13. Voir le texte pour les explications	212
13.3	Topographie et déformation prédites au cours du temps (de haut en bas après 1, 4 et 10 millions d'années de convergence) pour le premier modèle. C'est le côté droit (pro) qui se déplace par rapport au point S. On observe une migration de la déformation vers le côté pro	213
13.4	Initiation de la déformation pour le modèle 2 (après 5 millions d'années de convergence). On observe les zones de cisaillement de chaque côté de la singularité	215
13.5	Champ de déformation incrémental pour le modèle 2 après 45 millions d'années de convergence	215
13.6	Epaississement maximal du relief formé dans les modèles 2, 3 et 4 \ldots	215
13.7	Comparaison des résultats obtenus pour la même convergence totale, avec une vitesse faible (à gauche, modèle 5) ou forte (à droite, modèle 2)	216
13.8	Epaississement maximal du relief formé dans les modèles 2 et 5 \ldots	217
13.9	Evolution théorique des altitudes maximale (en pointillé) et réelle (en trait plein) du relief pour une vitesse de convergence élevée	218

13.10Modèle utilisé pour calculer la contribution de l'isostasie lors du rempla- cement de la lithosphère par de l'asthénosphère. Les paramètres sont h_C l'épaisseur crustale, h_L l'épaisseur lithosphérique, ρ_C la masse volumique crustale, ρ_L la masse volumique lithosphérique, ρ_A la masse volumique asthénosphérique, ϵ_F l'altitude dans le cas 'Froid' et ϵ_C l'altitude dans le cas 'Chaud'.	221
13.11Modèle utilisé pour calculer la diminution d'épaisseur crustale lors du remplacement de la lithosphère par de l'asthénosphère. D'après [Vande- rhaeghe <i>et al.</i> , subm.] Les paramètres sont ρ_c la masse volumique de la croûte, ρ_m la masse volumique du manteau, $\Phi = 1 - \frac{\rho_c}{\rho_m}$ le coefficient d'amplification isostatique, <i>g</i> l'accélération de la gravité, h_{max} l'épaisseur crustale maximale, h_0 l'épaisseur crustale standard, η_c la viscosité nor- male de la croûte, V_c la vitesse en base de croûte, z^* la profondeur à laquelle se produit le changement de rhéologie (passage à une rhéologie très peu visqueuse), λ_c la largeur du plateau et λ_b la largeur de la zone peu visqueuse.	223
14.1 Géométrie initiale utilisée dans DLR	226
14.2 Coupes géologiques simplifiées dans la partie Ouest (A) et dans la partie centrale (B) de la chaîne, et leur interprétation en terme de géométrie	
initiale du modèle. D'après [Mattauer, 1986]	228
gularité	229
14.4 Topographie, érosion et trajets des points pour une singularité en S_1 . De bas en haut sont représentés : la déformation instantanée (vert : faible à rouge : importante), les trajectoires des points sélectionnés, la topographie (trait plein) et les taux d'érosion moyens (trait tireté) et les trajets PTt pour les 3 points sélectionnés	229
14.5 Topographie, érosion et trajets des points pour une singularité en S_2 . Voir Figure 14.4 pour la légende	230
14.6 Topographie, érosion et trajets des points pour une singularité en S_3 . Voir Figure 14.4 pour la légende	231
14.7 Topographie, érosion et trajets des points pour une largeur de transition faible. Voir Figure 14.4 pour la légende	233
14.8 Topographie, érosion et trajets des points pour une largeur de transition élevée. Voir Figure 14.4 pour la légende	234

14.9 Topographie, érosion et trajets des points pour un Tibet peu épais. Voir	
Figure 14.4 pour la légende	236
14.10Topographie, érosion et trajets des points pour un Tibet épais. Voir	
Figure 14.4 pour la légende	237
14.11 Topographie, érosion et trajets des points pour des précipitations constante	es.
Voir Figure 14.4 pour la légende	239
14.12Topographie, érosion et trajets des points pour des précipitations dans	
la moitié Indienne. Voir Figure 14.4 pour la légende	240
14.13Topographie, érosion et trajets des points pour des précipitations dans	
une petite moitié Indienne. Voir Figure 14.4 pour la légende \ldots	241
14.14Topographie, érosion et trajets des points pour des précipitations dans	
une grande moitié Indienne. Voir Figure 14.4 pour la légende	242
14.15Topographie, érosion et trajets des points sans sédimentation et avec des	
précipitations simples. Voir Figure 14.4 pour la légende	244
14.16Topographie, érosion et trajets des points sans sédimentation et avec des	
précipitations doubles. Voir Figure 14.4 pour la légende	245
14.17Topographie, érosion et trajets des points avec sédimentation et des	
précipitations doubles. Voir Figure 14.4 pour la légende	247
14.18 Topographie, érosion et trajets des points avec 20 pour cent de sédimentation	on
et avec des précipitations doubles. Voir Figure 14.4 pour la légende $\ $	248
14.19Topographie, érosion et trajets des points sans sédimentation et avec des	
précipitations doubles. Voir Figure 14.4 pour la légende	249
14.20Energie potentielle gravitationnelle en Himalaya calculée à partir des	
données topographiques GTopo	252
$14.21 \mbox{Evolution}$ topographique du modèle présenté dans la Figure 14.19. La	
topographie initiale comprend bien un plateau, une haute chaîne, un	
front topographique et une plaine, mais le plateau se vide petit à petit	
et la plaine s'enfonce	255
14.22 Les contrôles climatiques / érosifs sur la déformation Himalayenne. 1)	
Le mode d'exhumation du Haut Himalaya. 2) Le stade atteint par le	
système chevauchant lors de sa propagation frontale. 3) L'espacement	
entre les cluses.	263

Liste des tableaux

2.1	Valeurs de la diffusivité topographique pour différents environnements et échelles	53
4.1	Propriétés mécaniques de matériaux obéissant au critère de Coulomb, déterminés sur le terrain (sauf le dernier). D'après [Schmidt et Montgo-	
4.2	mery, 1995]	77 70
9.1	Paramètres utilisés dans le modèle d'évolution d'un système chevauchant 1	78 132
11.1	Températures de fermeture pour les différents systèmes thermochrono- logiques. D'après [McDougall et Harrison, 1998] et [Wagner et Vanden- haute, 1992]	169
12.1	Paramètres utilisés dans le modèle	203
13.1	Paramètres utilisés pour les différentes modélisations	215

INTRODUCTION

Interactions entre climat, tectonique et érosion

Les reliefs sont liés à l'effet de compétition entre deux processus antagonistes : la tectonique qui est à l'origine du soulèvement des massifs, et l'érosion qui ablate peu à peu le matériel exhumé. Les flux de matière tectoniques sont contrôlés par les vitesses relatives des plaques à l'origine de la chaîne, ainsi que la structure et la composition interne de celles-ci. L'érosion, quant à elle, dépend du relief, des facteurs climatiques (température, précipitations), et de la résistance à l'érosion des matériaux.

Jusqu'à récemment, la tectonique était considérée comme le processus dominant contrôlant l'exhumation, la structure et le métamorphisme des chaînes de montagne. Récemment, de nombreuses études [Burbank, 1992; Avouac et Burov, 1996; Willett, 1999a; Willett, 1999b; Finlayson *et al.*, 2002] ont montré l'influence de l'érosion sur ces aspects et l'existence d'un couplage très étroit entre tectonique et érosion [Burbank et Pinter, 1999]. L'émergence de modèles numériques capables de représenter de manière réaliste les processus tectoniques et érosifs a joué un rôle très important dans cette réévaluation des rôles des différents processus.

Il peut sembler assez intuitif que l'érosion influence la géomorphologie des chaînes de montagne : dans les Andes, par exemple, des variations climatiques à grande échelle sont répercutées dans les caractéristiques topographiques [Montgomery *et al.*, 2001]. Cependant, de nombreuses études ont montré que les interactions entre tectonique et érosion influencent aussi les déformations à l'intérieur de l'orogène : par exemple, [Finlayson *et al.*, 2002] ont montré que les zones d'érosion intense en Himalaya (caractérisées par de fortes pentes et des précipitations importantes) coïncidaient avec les zones d'exhumation rapide. De nombreuses inter- et rétroactions existent en effet entre les processus tectoniques et les processus superficiels. Ces derniers, en redistribuant les masses en surface, entraînent des variations des contraintes gravitationnelles et modulent ainsi les flux de matière en profondeur [Beaumont *et al.*, 1992; Avouac et Burov, 1996; Beaumont *et al.*, 1994]. D'autre part, l'incision de vallées profondes a pour effet de réduire la masse d'une chaîne de montagnes et ainsi, par compensation isostatique, d'élever les plus hauts sommets [Burbank, 1992; Fielding *et al.*, 1994; Masek *et al.*, 1994b], ce qui peut perturber le système climatique et donc modifier l'érosion [Molnar et England, 1990; Brozovic *et al.*, 1997]. De plus, l'évolution thermique et métamorphique de la croûte est liée à l'intensité de la dénudation : une forte dénudation, en exhumant rapidement des niveaux profonds d'un orogène, amène à la surface des roches ayant subi un métamorphisme de haut degré, mais aussi, en érodant du matériel crustal froid et en le remplaçant par du matériel plus chaud et moins rigide, engendre une anomalie thermique [Winslow *et al.*, 1994], ce qui peut modifier le style de déformation [Willett, 1999a; Willett, 1999b; Zeitler *et al.*, 2001].

L'une des prédictions de modèles les plus importantes de ces dernières années est la mise en évidence de l'influence de la direction des vents dominants. Généralement, le versant d'une chaîne de montagnes orienté du côté du vent est arrosé, alors que l'autre versant est sec. Ces différences de précipitations semblent être à l'origine de variations topographiques majeures. En Amérique du Nord, [Hoffman et Grotzinger, 1993] ont montré que des orogènes de contexte tectonique similaire, mais dont la répartition des précipitations était très différentes, avaient développé des structures très différentes. Des modélisations numériques [Willett, 1999a] ont permis d'étudier différents contextes et ont mis en évidence les mêmes caractéristiques (Figure 1).

Cette interaction est complexe, puisque la croissance des chaînes de montagnes peut à son tour influencer le climat, et donc l'érosion, comme l'ont montré des études géochimiques et numériques.

En utilisant des modèles de circulation atmosphérique, [Ruddiman et Kutzbach, 1989] ont en effet mis en évidence que le soulèvement d'un plateau pouvait avoir des conséquences majeures sur le climat. En particulier, [Prell et Kutzbach, 1992] ont montré que la mousson était fortement influencée par le soulèvement du plateau Tibétain, même si d'autres auteurs ont aussi invoqué le rôle majeur joué par le retrait de la Paratéthys dans la mise en place de la mousson Indienne moderne [Ramstein *et al.*, 1997; Fluteau *et al.*, 2000].

D'autre part, la formation de l'Himalaya et l'érosion qui en a résulté ont fortement augmenté les quantités de Strontium, Carbone et Phosphore rejetés dans l'océan [Raymo et Ruddiman, 1992; Richter *et al.*, 1992] et l'enfouissement de carbone organique dans les sédiments marins [France-Lanord et Derry, 1997], et ont diminué la quantité de dioxyde de carbone présent dans l'atmosphère [Raymo et Ruddiman, 1992], ce qui est probablement en partie à l'origine du refroidissement global observé au Cénozoïque.

Fig. 1 – Influence de la localisation des précipitations sur la localisation de l'érosion et de la déformation. De haut en bas : modèle utilisé, prédictions des zones de déformation pour des précipitations symétriques, des précipitations restreintes au côté pro (gauche de l'image) et des précipitations restreintes au côté retro (droite de l'image). D'après [Willett, 1999a]

Il est toutefois nécessaire de rester prudent quant à la relation de cause à effet liant le soulèvement général des chaînes de montagnes et le changement climatique global observés au Cénozoïque [Molnar et England, 1990] : les rétroactions entre ces deux phénomènes sont nombreuses et complexes, ce qui implique de ne tirer des interprétations qu'avec précaution.

L'orogène 'Himalayo-Tibétain' est actuellement un orogène important, par sa surface et son altitude inégalée sur Terre. Cet orogène, relativement cylindrique dans sa partie centrale, a été soumis à des variations climatiques dans le temps [Fluteau *et al.*, 2000] et l'espace [Duncan *et al.*, 2003]. A ce titre, il représente un objet particulièrement intéressant dans l'étude de ces interactions entre climat, tectonique et érosion.

Présentation de l'Himalaya

L'orogène himalayen a été créé par la collision entre les continents Asiatique et Indien. D'une surface comparable à celle de la péninsule ibérique, le plateau Tibétain est caractérisé par un bassin endoréïque de relief très faible et d'une altitude moyenne supérieure à 5000 mètres [Fielding *et al.*, 1994]. Le front topographique Sud de ce plateau est représenté par la chaîne himalayenne, un arc montagneux de 2500 kilomètres de long s'étirant entre les deux syntaxes structurales du Namche Barwa (7782m) à l'Est et du Nanga Parbat (8125m) à l'Ouest. L'orogène forme une large transition entre le plateau Tibétain aride et élevé et le piémont Indien chaud, humide et bas. Il est composé de systèmes de chevauchements d'échelle crustale, grossièrement parallèles, séparant différentes unités lithologiques.

Le Tibet et l'Himalaya exercent une influence importante sur le climat regional (Figure 2). Pendant l'été, les masses d'air de la mousson Indienne provenant de la Baie du Bengale frappent fortement la partie Est de la chaîne. Lors de leur déviation vers l'Ouest, elles perdent progressivement de l'énergie. Le climat du piémont Himalayen varie donc progressivement d'un climat tropical humide à l'Est vers un climat semiaride à l'Ouest. Les sommets de la haute chaîne forment dans l'ensemble une barrière efficace aux pluies (sauf dans la partie Est du Népal). La majeure partie du Tibet est donc un semi-désert d'altitude.

Précipitations (mm/an) - Données IPCC

Fig. 2 – En haut : précipitations dans la région de l'Himalaya (données IPCC) ; en bas : topographie (données GTopo30)

Fig. 3 – Grandes zones structurales de l'Himalaya. D'après [Galy, 1999]

Géologie himalayenne

Le contact entre les sous-continents Indien et Asiatique est la zone de suture de l'Indus-Tsangpo. Les formations qui constituent la chaîne himalayenne se trouvent au Sud de cette structure. On peut diviser cette partie d'affinité Indienne en quatre zones orientées Est-Ouest, qui sont du Nord au Sud (Figures 3 et 4) :

- Les séries sédimentaires téthysiennes (TSS). Elles sont présentes dans la partie Sud du plateau Tibétain, entre la suture de l'Indus-Tsangpo et les hauts sommets himalayens (qu'elles forment en partie). Elles sont formées de roches sédimentaires fossilifères d'âge allant du Cambrien à l'Éocène, ayant été déposées sur la marge Indienne. On a pu observer un métamorphisme léger de la base de cette formation.

Le détachement Sud Tibétain (STDS) ou Faille Nord Himalayenne, grande faille normale à pendage vers le Nord, sépare cette formation de

 La zone du Haut Himalaya (HHC). Cette zone de degré de métamorphisme moyen à élevé, formant une partie des hauts sommets de l'Himalaya, est composeé de métasédiments, dont la plupart sont d'âge Protérozoïque Supérieur à Cambrien [Gansser, 1983; Pognante *et al.*, 1990]. Ces métasédiments sont fréquemment intrudés par des granites. Certains de ces granites sont d'âge Ordovicien (500 Ma). Une autre série regroupe des granites dont les âges de cristallisation se situent entre 26 et 11 millions d'années [Ferrarra *et al.*, 1983].

Le Main Central Thrust (MCT) sépare cette formation de

– La zone du Moyen Pays Himalayen (LH). Elle est formée de roches sédimentaires déposées sur la marge continentale Indienne, avec probablement une interruption à la fin du Précambrien [Stocklin, 1980]. Il en résulte une inconformité séparant 12 kilomètres de sédiments non-fossilifères d'une couche supérieure de plus de 3 kilomètres de sédiments fossilifères d'âge Permo-Carbonifère à Eocène inférieur. Les sédiments fluviaux d'âge Oligocène supérieur-Miocène inférieur permettent de dater l'émersion de la chaîne.

Le Main Boundary Thrust (MBT) sépare ces formations de

 La zone des Siwalik. Elle est composée de dépôts de bassins d'avant-pays d'âge Miocène à Quaternaire, qui ont été plissés lors de la propagation frontale de la déformation. Au Népal central, on rencontre un chevauchement intra-Siwalik : le MDT ou Main Dun Thrust.

Le Main Frontal Thrust (MFT) est un chevauchement actif qui sépare cette zone de la plaine du Gange.

Les MCT, MBT, MDT et MFT sont des chevauchements d'échelle crustale, qui semblent se brancher [Jackson et Bilham, 1994; Lavé et Avouac, 2000] sur un décollement unique en profondeur : le Main Himalayan Thrust (MHT) (Figure 4).

Histoire de la collision

La plaque Indienne s'est séparée du Gondwana il y a 120-130 millions d'années [Metcalfe, 1996]. Après sa séparation de Madagascar il y a 84 millions d'années, son déplacement vers le Nord à une vitesse d'environ 15 cm/an a causé la fermeture progressive d'un vaste domaine océanique situé au Nord du continent Indien, la Téthys, qui a disparu en subduction [Dercourt *et al.*, 1993]. Ce processus a fonctionné jusqu'à

Fig. 4 – Coupe de l'Himalaya au niveau de Katmandou (d'après [Lavé, 1997])

ce que la marge continentale de l'Inde arrive au contact de l'Asie. La vitesse a probablement été ralentie progressivement, du fait de collisions mineures impliquant des fragments continentaux isolés ou des arcs insulaires, dont on retrouve des vestiges dans les granites du batholite du Ladakh [Rolland, 2001].

Après le contact entre les marges continentales Indienne et Asiatique a débuté la collision proprement dite. Le moment précis de cette collision est sujet à controverse, principalement en raison de désaccords portant sur la définition exacte du terme de collision. De plus, cette collision n'a pas débuté simultanément dans les différentes parties de la chaîne. La transition de sédimentation marine à non-marine dans la zone de suture est datée entre 55 et 50 millions d'années dans la partie occidentale de la chaine et après 50 millions d'années plus à l'Est [Yin et Harrison, 2000]. A partir du début de la collision, la vitesse de convergence entre l'Inde et l'Asie s'est stabilisée à 5 cm/an environ [Guillot *et al.*, 2003].

L'initiation du STDS est encore mal contrainte, en revanche, de nombreuses données thermochronologiques [Noble et Searle, 1995; Searle *et al.*, 1997; Edwards et Harrison, 1997; Hodges *et al.*, 1998] indiquent qu'il était actif il y a 17 millions d'années. La présence de failles normales recoupant le STDS et datées de 8-9 millions d'années permettent de donner une limite à cette activité, même si des datations de terrasses fluviales surélevées dans le graben de Thakkola semblent indiquer qu'il ait été actif récemment [Hurtado *et al.*, 2001].

Des arguments géochronologiques [Coleman et Parrish, 1995; Hodges *et al.*, 1996; Parrish et Hodges, 1996] indiquent que le MCT était actif il y a 22 ± 1 millions d'années. En outre, des études thermochronologiques indiquent qu'au Miocène Moyen, la déformation était terminée [Hubbard et Harrison, 1989; Copeland *et al.*, 1991]. D'autres données géochronologiques en revanche indiquent que le MCT a été réactivé de 8 millions d'années à 3-4 millions d'années [Harrison *et al.*, 1997], ce qui pourrait

INTRODUCTION

expliquer le knickpoint observé dans de nombreux cours d'eau au niveau de cette structure [Seeber et Gornitz, 1983]. Toutefois, la géométrie en profondeur du MHT pourrait être à l'origine de ces dernières observations, comme le suggèrent [Avouac *et al.*, 2001]. Des données thermochronologiques [Meigs *et al.*, 1995] indiquent une initiation du déplacement sur le MBT aux alentours de 10 millions d'années. Les données sédimentologiques dans le bassin d'avant-pays semblent indiquer que le déplacement sur le MBT a débuté il y a 11 millions d'années, et a perduré pendant le Pléistocène [Burbank *et al.*, 1996; Huyghe *et al.*, 2001]. Rien ne permet de conclure quant à son activité durant la réactivation supposée du MCT.

En ce qui concerne les chevauchements frontaux Himalayens, très peu de données contraignent leur initiation. Au Népal oriental, l'initiation du MDT est estimée par [Delcaillau, 1997] à environ 3 millions d'années et celle du MFT à environ 1 million d'années. Au Népal occidental, l'initiation du MDT est estimée à 3 - 2,4 millions d'années et celle du MFT à 1,8 - 2,4 millions d'années sur la base de relations discordantes entre les différentes unités des Siwalik [Mugnier *et al.*, in press].

Variations latérales le long de la chaîne Himalayenne

Le flanc Sud de la chaîne himalayenne constitue une région idéale pour étudier les interactions entre tectonique et érosion. En effet, cette chaîne s'étend latéralement sur plus de deux mille kilomètres et présente un fort contraste climatique Est-Ouest dû à la mousson moderne. Les bassins de l'Indus, du Gange et du Brahmapoutre présentent des conditions de précipitations très différentes : la mousson est très forte dans le bassin du Brahmapoutre, le plus oriental, mais est beaucoup moins marquée dans le bassin du Gange et quasi-inexistante dans le bassin de l'Indus. On peut donc s'attendre à ce que l'intensité de l'érosion diminue de l'Est vers l'Ouest de la chaîne, comme semblent le montrer des études de flux chimiques dans les rivières himalayennes [Galy, 1999]. Cette dissymétrie climatique pourrait exister depuis plusieurs millions d'années [Fluteau *et al.*, 2000] et ainsi avoir des conséquences géodynamiques majeures.

En effet, l'étude de la chaîne himalayenne met en évidence des contrastes marqués entre les parties orientale et occidentale de la chaîne. D'un point de vue structural, la largeur de la chaîne est plus faible dans sa partie Ouest, et des études effectuées au Népal dans les Siwalik montrent que le front de déformation s'est propagé plus loin à l'Ouest qu'à l'Est [Chalaron *et al.*, 1995].

D'autre part, les études métamorphiques et géochronologiques montrent des chemins

pression-température variables le long de la chaîne ainsi qu'une diminution des âges de refroidissement (${}^{40}\text{Ar}/{}^{39}\text{Ar}$) vers l'Est [Pognante, 1993; Guillot *et al.*, 1999]. Les âges de refroidissement ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ correspondent au passage sous un isotherme donné (350 \pm 50pour les micas) : de faibles âges de refroidissement indiquent donc un fort gradient géothermique et/ou une vitesse de dénudation élevée.

Enfin, la comparaison de profils topographiques entre le Centre Népal et le Bhutan réalisés par [Duncan *et al.*, 2003] montre une géomorphologie contrastée entre ces deux parties de la chaîne.

Objectifs de ce travail et démarche

Il est possible que les contrastes topographiques et tectoniques présentés ci-dessus soient dus à des conditions climatiques différentes le long de la chaîne.

Afin de tester cette hypothèse, mon travail de doctorat s'est concentré sur l'étude de la croissance tectonique de la chaîne himalayenne à l'aide de modèles numériques couplant processus tectoniques et processus de surface. La modélisation numérique représente en effet un outil puissant, puisqu'elle permet l'étude de phénomènes se produisant à de grandes échelles spatiales et/ou temporelles. De plus, elle permet d'isoler les différents processus impliqués dans l'évolution morphologique et thermique d'une chaîne de montagnes, et donc de simplifier les systèmes étudiés. En revanche, la comparaison entre les prédictions des modèles et les observations naturelles n'est pas toujours évidente : il faut en effet identifier des sorties du modèle comparables aux observations de terrain, et déterminer un critère d'accord entre ces deux données, ce qui est souvent discutable. J'ai choisi d'étudier les interactions entre climat, tectonique et érosion à trois échelles spatio-temporelles différentes. Le plan de ce mémoire suit ce découpage et comporte donc trois parties.

La première échelle étudiée est celle du pli unitaire avec une durée caractéristique de l'ordre du million d'années. Le modèle que j'ai développé couple la description cinématique d'un pli de propagation à un ensemble de processus érosifs (incision fluviatile, diffusion, glissements de terrain). Il permet d'étudier en détail les processus impliqués dans l'évolution d'un pli, ainsi que l'expression morphologique de leurs interactions dans le contexte Himalayen en utilisant comme élément de comparaison les collines des Siwaliks au Front Himalayen.

La deuxième échelle étudiée est celle du système chevauchant avec une durée caractéristique de l'ordre de quelques millions d'années. J'ai développé le modèle utilisé en première partie en y incluant plusieurs chevauchements et en utilisant un critère de travail minimal pour déterminer le chevauchement actif. Le modèle permet donc d'étudier l'évolution temporelle d'un système chevauchant, en y incorporant une rétroaction entre la tectonique et l'érosion. Le front Himalayen représente ici-encore un analogue de terrain permettant de mettre en perspective les différentes modélisations effectuées.

La troisième échelle étudiée est celle de la croûte avec une durée caractéristique de l'ordre de quelques dizaines de millions d'années. J'ai travaillé avec un modèle thermomécanique utilisant la méthode des éléments finis. Il permet d'étudier les déformations de la croûte en traitant cette dernière comme un corps visco-élasto-plastique soumis à des contraintes tectoniques, et à l'érosion. L'objectif de cette partie est d'étudier l'évolution morphologique et thermique d'une croûte placée dans un contexte Himalayen. La comparaison des prédictions du modèle aux données de terrain peut apporter des informations sur le rôle du climat dans l'évolution de la chaîne Himalayenne et plus généralement d'une chaîne de montagnes.