
HAL Id: tel-00010369
https://theses.hal.science/tel-00010369

Submitted on 3 Oct 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Type-based static analysis of structural properties in
programming languages

Francisco Alberti

To cite this version:
Francisco Alberti. Type-based static analysis of structural properties in programming languages.
Software Engineering [cs.SE]. Université Paris-Diderot - Paris VII, 2005. English. �NNT : �. �tel-
00010369�

https://theses.hal.science/tel-00010369
https://hal.archives-ouvertes.fr

Université Paris 7 — Denis Diderot

UFR d’Informatique

Doctorat

Programmation : Sémantique, Preuves et Langages

Analyse Statique Typée

des Propriétés Structurelles des Programmes

Francisco ALBERTI

Thèse dirigée par

Pierre-Louis CURIEN

Soutenue le

27 mai 2005

Jury

Gavin BIERMAN Rapporteur

Charles CONSEL

Guy COUSINEAU Président

Vincent DANOS

Flemming NIELSON Rapporteur

ii

iii

Résumé

Des optimisations pratiques, comme l’inlining ou l’évaluation stricte, peuvent être jus-
tifiées lorsque l’on découvre comment une valeur est ‘utilisée’ dans un contexte donné. Cette
idée semble maintenant relativement acceptée.

Dans cette thèse, on présente un cadre théorique général d’analyse statique pour l’inférence
de propriétés d’‘usage’, que nous préfèrons appeler propriétés structurelles, des programmes
fonctionnels. Le terme ‘structurel’, qui est emprunté à la théorie de la démonstration, est
utilisé ici pour suggérer un rapport étroit avec la logique linéaire, où les règles structurelles
de contraction et affaiblissement jouent un rôle important.

Ce cadre théorique est formulé sous la forme d’un système de typage à la Church pour un
langage intermédiaire, ce dernier étant une version légerement modifiée d’un langage fonction-
nel source, dans le style de PCF, mais comportant des annotations structurelles. Le problème
de l’analyse statique consiste alors à trouver une traduction du langage source vers le langage
intermédiaire. Etant donné qu’il peut y avoir plus d’une seule traduction, on montre que l’on
peut voir toutes les traductions possibles comme les solutions d’un ensemble d’inéquations
appropriées. De cet ensemble d’inéquations, on s’intéresse en particulier à la plus petite solu-
tion, qui correspond à la traduction la plus précise ou optimale. Comme le prouve le prototype
que nous avons implémenté, l’inférence des propriétés structurelles pour un langage réel est
rélativement simple et efficace à mettre en œuvre.

La plus grande partie de ce manuscrit de thèse est dédiée à un seul cas d’étude, l’analyse
linéaire, dont l’objectif est de déterminer les valeurs qui sont utilisées une seule fois. Les
raisons de cette démarche sont que l’analyse linéaire a une base théorique très solide (la
logique linéaire elle même) et est simple à comprendre. Pour commencer, on décrit une version
de l’analyse linéaire très simplifiée, cependant intéressante parce qu’elle aborde d’un nouveau
point de vue, celui de l’analyse statique, le problème de trouver la meilleure décoration linéaire
pour une preuve intuitioniste.

Des analyses plus puissantes sont ensuite introduites en tant qu’extensions de cette analyse
simplifiée. C’est le cas du sous-typage et du polymorphisme d’annotations. Ce dernier, qui
est un mécanisme d’abstraction sur des annotations, est une extension clé dans la pratique,
car il permet à l’analyse de garder son pouvoir expressif en présence de modules compilés
séparement.

On montre finalement comment généraliser l’analyse linéaire à un cadre plus abstrait
permettant d’exprimer d’autres types d’analyse structurelle, comme l’analyse affine, relevante,
ou bien non-relevante.

On prouve plusieurs propriétés standards pour l’ensemble des systèmes de typage, ainsi
que leur correction sémantique par rapport à la sémantique opérationnelle du langage source.

iv

v

Abstract

It is relatively well-known that many useful optimisations, including inlining and strict
evaluation, can be validated if we can determine how a value is ‘used’ in a given evaluation
context.

In this thesis, we introduce a general static analysis framework for inferring ‘usage’ or, as
we prefer to call them, structural properties of functional programs. The term ‘structural’ is
borrowed from proof theory, and is intended to suggest a strong connection with linear logic,
for which the structural rules of weakening and contraction play an important role.

The framework is formulated as a Church-style type system for an intermediate language,
which is a slightly modified version of a PCF-like source functional language, but with struc-
tural annotations in it. We present the problem of static analysis in this context as that of
finding a translation from the source into the intermediate language. As there may be more
than one possible translation, we show how the set of all possible translations can be com-
pactly characterised as a set of inequations over a suitable algebraic ordered set of annotations.
In particular, we are interested in the least solution of this set of inequations, corresponding
to the most accurate, or optimal, translation. As our prototype implementation showed us,
inferring structural properties for a realistic language is not only simple to put into practice,
but also computationally cheap.

Most of this thesis dissertation is concerned with the detailed presentation of a case study,
linearity analysis, aimed at determining when values are used exactly once. The reason for
such a choice is that linearity analysis has a solid theoretical background, linear logic itself,
and is simple to understand. We begin by describing a very simplistic version of linearity
analysis, which is interesting in itself as it embodies a new characterisation of the problem of
finding the best linear decoration for an intuitionistic proof.

More practically useful analyses are then introduced as extensions to this simpler analysis.
These include a notion of subtyping and a mechanism for abstracting over annotation values,
known as annotation polymorphism. Annotation polymorphism turns out to be a key feature
in practice, as it also allows the analysis to retain its expressive power across separately
compiled modules.

We finally show how the framework for linearity analysis can be modified to cope with
other interesting types of structural analysis, including affine, relevance (neededness) and
non-relevance (dead-code or absence) analysis.

We prove a number of standard type-theoretic properties for the type systems presented,
and show their semantic correctness with respect to the operational semantics of the source
language.

vi

à Annick et Jacques

viii

Remerciements

Tout d’abord, je voudrais remercier mon directeur, Pierre-Louis Curien, qui a fait preuve
d’une patience presque illimitée, et surtout, qui m’a empêché d’abandonner ce projet en
m’apportant son aide, non seulement sur un plan financier, mais aussi sur un plan humain.
Ses encouragements perpétuels, ainsi que ses nombreux et précieux conseils, m’ont sans doute
permis d’aboutir.

Je remercie Valeria de Paiva et Eike Ritter, avec qui j’ai fait mes premiers pas en théorie
des langages et, en particulier, en logique linéaire. Deux ans de projets de collaboration avec
eux m’ont permis de mettre au point les idées de base qui font la matière primordiale de cette
thèse. Je remercie Martin Hyland pour m’avoir accueilli pendant trois mois au Département
de Mathématiques de l’Université de Cambridge et pour les quelques discussions que nous
avons eues au sujet de la logique de Belnap.

Merci à tous ceux avec qui j’ai eu l’opportunité de discuter. En particulier, je voudrais
remercier Gavin Bierman, Vincent Danos, Hugo Herbelin, Achim Jung, Matthias Kegelmann,
Ian Mackie et Paul-André Melliès, ainsi que mes anciens compagnons de bureau à l’Ecole
Normale Supérieure, Jean-Vincent Loddo et Vincent Balat. Je remercie également Emmanuel
Chailloux pour ses bons conseils et ses encouragements.

Je remercie Jerôme Kodjabachian et Olivier Trullier, mes chefs chez Mathématiques Ap-
pliquées S.A. (MASA), qui ont été très compréhensifs pendant les phases de correction et de
mise au point du manuscrit.

Je dédie cette thèse à Annick et Jacques Novak, qui m’ont apporté leur soutien incon-
ditionnel durant de longues années, en particulier pendant les années les plus difficiles. Je
remercie tout spécialement Grégori Novak, ainsi que Giselle et Jacques Bouchegnies, qui ont
été aussi d’un énorme soutien.

Mes amis Isabel Pons, Marc Parant, Chris Linney ont été à mes côtés, surtout pendant
la phase finale de rédaction. Anne-Gwenn Bosser m’a donné le coup de pouce dont j’avais
besoin, et elle m’a honoré de son amitié.

Enfin, je remercie ma famille qui veille sur moi de loin, de très loin. Je n’en serais pas
arrivé là sans eux.

ix

x

Contents

French summary: L’analyse structurelle linéaire 1

1 Introduction . 1

2 L’analyse linéaire générale . 2

2.1 Le langage source . 2

2.2 Le langage intermédiaire . 2

2.3 Le sous-typage d’annotations . 7

2.4 Le polymorphisme d’annotations . 8

3 Propriétés de l’analyse linéaire . 9

3.1 Propriétés élémentaires . 9

3.2 La correction de l’analyse ĺınéaire . 10

3.3 La décoration optimale . 11

4 L’inlining comme application . 12

5 Inférence des annotations . 13

5.1 Inférence des contraintes . 13

5.2 Correction de l’inférence des contraintes 16

5.3 Solution optimale d’un système de contraintes 16

5.4 Inférence des annotations pour l’analyse contextuelle 18

6 Analyse structurelle abstraite . 19

6.1 La notion de structure d’annotations 19

6.2 Quelques exemples familiers . 21

7 Conclusion . 21

1 Introduction 25

1.1 Motivations . 25

1.1.1 Structural properties . 26

1.1.2 Applications . 26

1.2 Annotated type systems . 27

1.3 Linearity analysis . 27

1.4 Annotation polymorphism . 28

1.4.1 The poisoning problem . 29

1.4.2 Contextual analysis . 29

1.4.3 Modular static analysis . 30

1.5 Contributions . 30

1.6 Plan of the thesis . 31

1.7 Prerequisites . 31

xi

xii CONTENTS

2 Preliminaries 33

2.1 The source language . 33
2.1.1 Syntax . 33

2.1.2 Static semantics . 34

2.1.3 Operational semantics . 36

2.2 Partial orders . 37

3 Linearity analysis 41
3.0.1 An intermediate linear language . 41

3.0.2 An application to inlining . 42

3.0.3 Organisation . 42

3.1 A brief review of DILL . 43
3.1.1 Syntax and typing rules . 43

3.1.2 Reduction . 45

3.1.3 Substitution . 45

3.1.4 Girard’s translation . 45
3.2 The type system NLL . 46

3.2.1 Annotation set . 47

3.2.2 Annotated types . 47

3.2.3 Annotated preterms . 48
3.2.4 Typing contexts . 48

3.2.5 Typing rules . 49

3.2.6 A remark on primitive operators . 51

3.2.7 Examples . 51

3.2.8 Reduction . 53
3.3 Decorations . 53

3.3.1 The problem of static analysis . 54

3.4 Towards syntax-directedness . 55

3.4.1 Contraction revisited . 55
3.4.2 A syntax-directed version of NLL . 56

3.5 Type-theoretic properties . 59

3.5.1 Some elementary properties . 59

3.5.2 Embedding FPL into NLL . 60
3.5.3 Substitution . 61

3.5.4 Semantic correctness . 62

3.5.5 Considering η-reduction . 64

3.6 Optimal typings . 64
3.7 Applications . 67

3.7.1 Inlining . 67

3.7.2 Limitations . 69

3.7.3 Sharing and single-threading . 70

4 Annotation subtyping 71
4.0.4 Organisation . 71

4.1 The Subsumption rule . 72

4.1.1 Inlining revisited . 73

4.1.2 An illustrative example . 74

CONTENTS xiii

4.1.3 Digression: context narrowing . 75

4.2 Soundness . 77
4.3 Minimum typing . 78

4.4 Semantic correctness . 81

4.4.1 Subject reduction for η-reduction . 82

5 Annotation polymorphism 83

5.0.2 Organisation . 83
5.1 Separate compilation and optimality . 84

5.2 The type system . 86

5.2.1 Types . 86

5.2.2 Preterms . 88
5.2.3 Set of free annotation parameters . 88

5.2.4 Annotation substitution . 89

5.2.5 Constraint set satisfaction . 91

5.2.6 Constraint implication . 92
5.2.7 The typing rules . 93

5.2.8 Introducing and eliminating generalised types 93

5.2.9 A ‘most general’ example decoration 96

5.2.10 Reduction . 96
5.3 Subtyping annotation polymorphism . 98

5.3.1 Soundness . 98

5.4 Type-theoretic properties . 100

5.4.1 Minimum typings . 102

5.4.2 Semantic correctness . 103
5.4.3 A word on contextual analysis . 104

5.4.4 Inlining revisited again . 105

5.5 Towards modular linearity analysis . 106

5.5.1 Let-based annotation polymorphism 106
5.5.2 Retricted quantification rules . 106

5.6 Emulating the Subsumption rule . 108

5.7 Adding type-parametric polymorphism . 113

5.7.1 Syntax and typing rules . 113
5.7.2 Correctness . 114

6 Annotation inference 115

6.0.3 A two-stage process . 115

6.0.4 Organisation . 116

6.1 Simple annotation inference . 116
6.1.1 Relaxing the conditional rule . 121

6.1.2 Correctness . 122

6.1.3 Avoiding splitting contexts . 125

6.2 Solving constraint inequations . 128
6.2.1 Characterising the least solution . 128

6.2.2 Digression: decorations as closures . 129

6.2.3 A graph-based algorithm for computing the least solution 129

6.2.4 Putting it all together . 131

xiv CONTENTS

6.3 Let-based annotation inference . 131
6.3.1 Preliminary remarks . 131
6.3.2 Extending the simple inference algorithm 132
6.3.3 Correctness . 133
6.3.4 Growing constraint sets . 134

6.4 Modular linearity analysis . 135

7 Abstract structural analysis 137
7.0.1 Organisation . 137

7.1 Structural analysis . 138
7.1.1 Basic definitions . 138

7.2 Type-theoretic properties . 141
7.2.1 A non-distributive counter-example . 142
7.2.2 Correctness . 143
7.2.3 Annotation inference . 144

7.3 Some interesting examples . 146
7.3.1 Affine analysis . 146
7.3.2 Relevance analysis . 148
7.3.3 Combined analyses . 149

7.4 Dead-code elimination . 149
7.4.1 A simple dead-code elimination transformation 150

7.5 Strictness analysis . 151
7.5.1 Approximating strictness properties 152
7.5.2 Some remarks on lazy evaluation . 152
7.5.3 Related work . 153

8 Conclusions 155
8.1 Summary . 155
8.2 Further directions . 156

8.2.1 A generic toolkit . 156
8.2.2 Computational structural analysis . 157
8.2.3 Expressivity and comparison . 157

A An alternative presentation 159
A.1 The simple case . 159
A.2 The annotation polymorphic case . 161

List of Figures

1 La syntaxe de FPL . 3

2 La sémantique opérationnelle de FPL . 3

3 Les règles de typage de FPL . 4

4 La syntaxe de NLL∀≤ . 5

5 La sémantique opérationnelle de NLL∀≤ . 5

6 Les règles de typage de NLL∀≤ . 6

7 Définition de la relation ≤ de sous-typage . 8

8 Les règles de tranformation de l’inlining . 12

9 Algorithme d’ińference d’inéquations de contrainte 14

10 Algorithme d’ińference d’inéquations de contrainte (suite) 15

11 Définition de la fonction auxiliaire (− ≤ −) 16

12 Définition de la fonction auxiliaire split(−,−,−) 17

13 Règles de typage modifiées de NLL∀ν≤ . 17

14 Trois exemples familiers des analyses structurelles 22

2.1 Inductive definition of preterm substitution 34

2.2 The typing rules of FPL . 36

3.1 DILL typing rules . 44

3.2 Girard’s translation . 46

3.3 NLL structural rules . 49

3.4 NLL typing rules . 50

3.5 The ‘functional programming’ fragment of DILL 50

3.6 Example NLL type derivation . 52

3.7 Typing examples of some familiar terms . 53

3.8 Modified syntax-directed typing rules for NLL⊎ 57

3.9 Decoration space for the apply function . 67

3.10 The inlining optimisation relation . 68

4.1 Subtyping relation on types . 72

4.2 The revised inlining relation . 74

4.3 Optimal decoration for (fst p) . 76

4.4 Modified rules for NLLµ≤ . 78

4.5 The typing rules of NLLµ≤⊎ . 81

5.1 Annotation substitution . 90

5.2 The type system NLL∀ . 94

xv

xvi LIST OF FIGURES

5.3 An example NLL∀ type derivation . 97
5.4 Subtyping relation for NLL∀≤ . 98
5.5 Modified rules for NLL∀µ≤ . 102
5.6 Final version of the inlining relation . 105
5.7 Restricted quantification rules for NLL∀let≤ 107
5.8 Definition of σ♯ and σ♭ . 109
5.9 Definition of (−†) translation . 111
5.10 Definition of (−†) translation (continued) . 112

6.1 Generating subtyping constraints . 118
6.2 A general definition of split(−,−,−) . 118
6.3 Inferring constraint inequations for simple linearity analysis 119
6.4 Inferring constraint inequations for simple linearity analysis (continued) . . . 120
6.5 Inferring constraint inequations for simple linearity analysis without context

splitting . 126
6.6 Inferring constraint inequations for simple linearity analysis without context

splitting (continued) . 127
6.7 Annotation inference algorithm for linearity analysis 131
6.8 Extra rules for let-based annotation inference 132

7.1 The abstract typing rules of structural analysis 139
7.2 Modified rules for inferring constraint inequations in structural analysis. . . . 144
7.3 Example critical step in the proof of the substitution property 145
7.4 Definition of the occurs(−,−) function . 147
7.5 An annotation structure for sharing and absence analysis 149
7.6 The simple dead-code optimisation relation 151

A.1 NLL⊔ typing rules . 160
A.2 NLL∀⊔ typing rules . 162

French summary: L’analyse

structurelle linéaire

1 Introduction

Dans ce résumé, nous présentons l’analyse linéaire, une théorie d’analyse statique dont l’objec-
tif est de déterminer, pour un programme donné, l’ensemble des valeurs qui sont utilisées
une seule fois. L’analyse statique linéaire s’inscrit dans la tradition des analyses statiques
des propriétés d’usage, dont nous pouvons distinguer deux grandes familles : celles basées
sur une description dénotationnelle du langage source, et celles basées sur la théorie de la
démonstration de la logique linéaire.

L’analyse linéaire que nous présentons ici peut se voir comme une instance d’un cadre
théorique d’analyse statique de propriétés structurelles abstrait, permettant d’exprimer d’au-
tres types d’analyse structurelle, comme l’analyse affine, relevante (relevance analysis), ou
bien non-relevante (non-relevance ou absence analysis) [4, 21, 69]. Nous employons le terme
‘structurel’, emprunté à la théorie de la démonstration, pour suggérer un rapport étroit avec
la logique linéaire de Girard [30], où les règles structurelles de contraction et d’affaiblissement
jouent un rôle important, et ainsi nous différencier d’autres analyses d’usage introduites par
d’autres auteurs, comme l’analyse affine de Wansborough et Peyton-Jones [68, 67], où le lien
avec la logique linéaire (ou même la logique affine) est plus vague.

La théorie de l’analyse linéaire est formulée sous la forme d’un système de typage annotaté,
c’est-à-dire, un système de typage à la Church pour un langage intermédiaire, ce dernier étant
une version légerement modifiée d’un langage fonctionnel source, dans le style du langage
fonctionnel PCF de Plotkin [55], mais comportant des annotations structurelles. Le problème
de l’analyse statique linéaire consiste alors à trouver une traduction du langage source vers le
langage intermédiaire. Etant donné qu’il peut y avoir plus d’une seule traduction, nous allons
voir qu’il est possible de caractériser toutes les traductions possibles comme des solutions d’un
ensemble d’inéquations appropriées. De cet ensemble d’inéquations, nous nous intéressons
en particulier à la plus petite solution, qui correspond à la traduction la plus précise ou
optimale. Du point de vue de la théorie de la démonstration, cette traduction optimale est en
correspondance avec la meilleure décoration linéaire pour une preuve intuitionniste, étudiée
par Danos, Joinet et Schellinx [26].

En présence de modules compilés séparément, l’analyse linéaire consistant à trouver la
traduction optimale s’avère insuffisante. En effet, nous ne pouvons pas typer les définitions
des modules avec des types correspondants aux traductions optimales, car ces définitions
pourraient être utilisées dans des contextes qui ont besoin de types moins précis pour être

1

2 L’ANALYSE STRUCTURELLE LINÉAIRE

typable. La version de l’analyse linéaire que nous présentons correspond alors à l’analyse
linéaire que nous appelons générale, car il est possible de typer une définition avec un type
annoté polyvariant qui, d’une certaine manière, correspond à une définition compacte de
l’espace de toutes les traductions, ou décorations, dont la décoration optimale n’est qu’un
élément parmi d’autres. Le mécanisme qui nous permet d’augmenter ainsi l’expressivité de
l’analyse linéaire est connu sous le nom de polymorphisme d’annotations. (Nous avons aussi
enrichi l’analyse avec une notion de sous-typage sur les annotations, notion dont nous verrons
qu’elle est clairement ‘latente’ dans la formulation annoté de l’analyse linéaire.) Nous allons
montrer qu’il est toujours possible de caractériser l’espace des décorations d’un terme du
langage source avec un type annoté polymorphe approprié du langage intermédiaire, de façon
constructive, à travers la formulation d’un algorithme d’inférénce des annotations.

Nous présentons l’inlining, c’est-à-dire la transformation qui consiste à substituer l’utilisa-
tion d’une définition par la définition elle-même in situ, comme exemple trivial d’application
didactique de l’analyse linéaire.

2 L’analyse linéaire générale

2.1 Le langage source

Le langage source que nous adoptons ici est une variante du langage fonctionnel PCF de
Plotkin [55]. La syntaxe et la sémantique opérationnelle du langage, que nous appelerons
FPL, sont définies dans les Figures 1 et 21.

La méta-variable G dénote un type de base, tel que les entiers et les booléens, notés int

et bool respectivement. Dans les règles, Σ(π) fait référence au type associé à la constante ou
opérateur π dans la théorie, dont on suppose un certain nombre. (En particulier, nous avons
au moins Σ(false) = Σ(true) = bool.) Nous écrivons M [x/N] pour la substitution d’un terme
N par une variable x dans un terme M .

Les assertions de typage ou séquents bien formés de FPL sont ceux qui peuvent être
dérivés en utilisant les règles de typage de la Figure 3.

2.2 Le langage intermédiaire

Le but de l’analyse statique linéaire consiste à trouver, pour un séquent d’un langage source,
un séquent du langage intermédiaire, comportant des annotations structurelles.

Le langage intermédiaire correspondant à l’analyse linéaire générale, que nous appelons
NLL∀≤, est un système de types avec des annotations (annotated type system)2. Le pre-
mier pas dans sa définition consiste à spécifier un ensemble d’annotations A comportant les
propriétés suivantes, nous permettant de classer les occurrences des variables en deux sortes :

1 Linéaire
⊤ Intuitionniste

1FPL est un acronyme de Functional Programming Language. Pour être consistant avec la nomenclature
adoptée dans la thèse, nous avons décidé de conserver les noms en anglais des règles.

2NLL est un acronyme de Non-linear Linear Language. La thèse présente l’analyse linéaire de façon progres-
sive, en introduisant d’abord l’analyse linéaire simple (ou monomorphe), en passant par une analyse étendue
avec une notion de sous-typage sur les annotations, pour en finir ensuite avec l’analyse linéaire générale (ou
polymorphe) qui inclut une notion supplémentaire de polymorphisme sur les annotations. La thèse présente
aussi des formulations ‘dirigées par la syntaxe’ des différentes théories, permettant de prouver plus facilement
certains des résultats.

2. L’ANALYSE LINÉAIRE GÉNÉRALE 3

Types σ ::= G Type de base
| σ → σ Espace des fonctions
| σ × σ Produit cartesian

Termes M ::= π Fonction primitive
| x Variable
| λx:σ.M Abstraction fonctionnelle
| MM Application
| 〈M,M〉 Paire
| let 〈x, x〉 = M in M Projection
| if M then M else M Conditionnel
| fix x:σ.M Récursion

Contextes Γ ::= x1 : σ1, . . . , xn : σn

Séquents J ::= Γ ⊢M : σ

Figure 1: La syntaxe de FPL

(λx:σ.M)N →M [N/x]

let 〈x1, x2〉 = 〈M1,M2〉 in N → N [M1/x1,M2/x2]

if true then N1 else N2 → N1

if false then N1 else N2 → N2

fix x:σ.M →M [fix x:σ.M/x]

Figure 2: La sémantique opérationnelle de FPL

4 L’ANALYSE STRUCTURELLE LINÉAIRE

Σ(π) = σ
Primitive

− ⊢ π : σ
Identity

x : σ ⊢ x : σ

Γ, x : σ ⊢M : τ
→I

Γ ⊢ λx:σ.M : σ → τ

Γ1 ⊢M : σ → τ Γ2 ⊢ N : σ
→E

Γ1,Γ2 ⊢MN : τ

Γ1 ⊢M1 : σ1 Γ2 ⊢M2 : σ2
×I

Γ1,Γ2 ⊢ 〈M1,M2〉 : σ1 × σ2

Γ1 ⊢M : σ1 × σ2 Γ2, x1 : σ1, x2 : σ2 ⊢ N : τ
×E

Γ1,Γ2 ⊢ let 〈x1, x2〉 = M in N : τ

Γ1 ⊢M : bool Γ2 ⊢ N1 : σ Γ2 ⊢ N2 : σ
Conditional

Γ1,Γ2 ⊢ if M then N1 else N2 : σ

Γ, x : σ ⊢M : σ
Fixpoint

Γ ⊢ fix x:σ.M : σ

Γ ⊢M : τ
Weakening

Γ, x : σ ⊢M : τ

Γ, x : σ ⊢M : τ
Contraction

Γ, x1 : σ, x2 : σ ⊢M [x1/x, x2/x] : τ

Figure 3: Les règles de typage de FPL

Du point de vue de l’analyse statique, l’assertion 1 ⊑ ⊤ exprime le fait que 1 est une
propriété plus précise en terme d’information exploitable que ⊤, et donc préférable dans nos
analyses. Du point vue de la sémantique du langage, cette assertion exprime la relation
d’inclusion d’un contexte linéaire dans un contexte intuitionniste (du même type). Une fois
de plus, du point de vue de la logique, cette assertion est à la base de la définition de la
rélation de sous-décoration de Girard proposé par Danos, Joinet et Schellinx, nécessaire dans
la définition de décoration linéaire optimale3.

La syntaxe et la sémantique opérationnelle du langage sont résumés dans les Figures 4
et 5, et les règles de typage dans la Figure 6. Nous écrivons φt ⊸ ψ pour le type d’une
fonction prenant un argument de type φ et renvoyant un résultat de type ψ. L’annotation
structurelle t nous donne l’usage de l’argument dans le corps de la fonction : si t = ⊤, il s’agit
d’une fonction intuitionniste ; si t = 1, il s’agit d’une fonction linéaire. Pour les paires, les
annotations structurelles nous renseignent sur l’usage que l’on impose à chaque composante.

Il faut remarquer que t pourrait contenir des paramètres d’annotation. Ainsi, φp ⊸ ψ
dénote le type d’une fonction qui peut être considérée ou bien comme une fonction linéaire
ou bien comme une fonction intuitionniste. Plus généralement, un terme de type généralisé
∀pi |Θ.φ, où Θ est un ensemble de contraintes de la forme pi ⊒ ti, est un terme qui peut
être considéré comme ayant plusieurs types de la forme φ[ϑ], où chaque type est obtenu en
substituant les paramètres pi par d’autres termes d’annotation t′i. Les substitutions sont
notés ϑ : P ⇀ T ::= 〈t′1/p1, . . . , t

′
n/pn〉. Nous parlerons de substitution close lorsque les

termes t′i sont des simples constantes d’annotation ai, c’est-à-dire lorsque FA(ti) = ∅. Dans
ce cas-là nous écrirons toujours θ à la place de ϑ. La notation FA(−) est utilisée pour dénoter

3La décoration linéaire optimale est une traduction d’une preuve de la logique intuitionniste en une preuve de
la logique linéaire intuitionniste, très similaire en structure á la preuve de départ, et tel que chaque occurrence
d’un exponentiel ‘!’ dans la preuve est inévitable, car l’hypothèse affectée est ou bien affaiblie ou bien contractée
directement ou indirectement. En fait, le fragment monomorphe de NLL∀≤ n’est ni plus ni moins que le langage
des dćorations auquel Danos, Joinet et Schellinx font référence [26].

2. L’ANALYSE LINÉAIRE GÉNÉRALE 5

Annotations A ≡ 〈{1,⊤},⊑〉

Relation d’ordre a ⊑ a 1 ⊑ ⊤

Types φ ::= G Type de base
| φt⊸ φ Espace des fonctions
| φt ⊗ φt Produit tensoriel
| ∀pi |Θ.φ Type généralisé

Termes d’annotation t ∈ T ::= a ∈ A Constante d’annotation
| p ∈ P Paramètre d’annotation
| t+ t Contraction des annotations

Termes M ::= π Fonction primitive
| x Variable
| λx:φt.M Abstraction fonctionnelle
| MM Application

| 〈M,M〉t,t Paire
| let 〈x, x〉t,t = M in M Projection
| if M then M else M Conditionnel
| fix x:φ.M Récursion
| Λpi |Θ.M Terme généralisé
| M ϑ Terme spécialisé

Contraintes Θ ::= t1 ⊒ t′1, . . . , tn ⊒ t′n

Contextes Γ ::= x1 : φ1
t1 , . . . , xn : φn

t1

Séquents J ::= Θ ; Γ ⊢M : φ

Figure 4: La syntaxe de NLL∀≤

(λx:φt.M)N →M [N/x]

let 〈x1, x2〉
t1,t2 = 〈M1,M2〉

t′1,t
′
2 in N → N [M1/x1,M2/x2]

if true then N1 else N2 → N1

if false then N1 else N2 → N2

fix x:φ.M →M [fix x:φ.M/x]

(Λpi |Θ.M) ϑ→M [ϑ]

Figure 5: La sémantique opérationnelle de NLL∀≤

6 L’ANALYSE STRUCTURELLE LINÉAIRE

Identity
Θ ;x : φt ⊢ x : φ

Σ(π) = σ
Primitive

Θ ;− ⊢ π : σ

Θ ; Γ, x : φt ⊢M : ψ
⊸I

Θ ; Γ ⊢ λx:φt.M : φt⊸ ψ

Θ ; Γ1 ⊢M : φt⊸ ψ Θ ; Γ2 ⊢ N : φ Θ ⊲ |Γ2| ⊒ t
⊸E

Θ ; Γ1,Γ2 ⊢MN : ψ

Θ ; Γ1 ⊢M1 : φ1 Θ ; Γ2 ⊢M2 : φ2 Θ ⊲ |Γ1| ⊒ t1 Θ ⊲ |Γ2| ⊒ t2
⊗I

Θ ; Γ1,Γ2 ⊢ 〈M1,M2〉
t1,t2 : φ1

t1 ⊗ φ2
t2

Θ ; Γ1 ⊢M : φ1
t1 ⊗ φ2

t2 Θ ; Γ2, x1 : φ1
t1 , x2 : φ2

t2 ⊢ N : ψ
⊗E

Θ ; Γ1,Γ2 ⊢ let 〈x1, x2〉
t1,t2 = M in N : ψ

Θ ; Γ1 ⊢M : bool Θ ; Γ2 ⊢ N1 : φ Θ ; Γ2 ⊢ N2 : φ
Conditional

Θ ; Γ1,Γ2 ⊢ if M then N1 else N2 : φ

Θ ; Γ, x : φt ⊢M : φ Θ ⊲ |Γ, x : φt| ⊒ ⊤
Fixpoint

Θ ; Γ ⊢ fix x:φ.M : φ

Θ,Θ′ ; Γ ⊢M : φ pi 6⊆ FA(Θ ; Γ) Θ′\pi = ∅
∀I

Θ ; Γ ⊢ Λpi |Θ
′.M : ∀pi |Θ

′.φ

Θ ; Γ ⊢M : ∀pi |Θ
′.φ Θ ⊲Θ′[ϑ] dom(ϑ) = pi

∀E
Θ ; Γ ⊢M ϑ : φ[ϑ]

Θ ; Γ ⊢M : φ Θ ⊢ φ ≤ ψ
Subsumption

Θ ; Γ ⊢M : ψ

Θ ; Γ ⊢M : ψ Θ ⊲ t ⊒ ⊤
Weakening

Θ ; Γ, x : φt ⊢M : ψ

Θ ; Γ, x1 : φt1 , x2 : φt2 ⊢M : ψ Θ ⊲ t ⊒ t1 + t2
Contraction

Θ ; Γ, x : φt ⊢M [x/x1, x/x2] : ψ

Figure 6: Les règles de typage de NLL∀≤

2. L’ANALYSE LINÉAIRE GÉNÉRALE 7

l’ensemble de paramètres d’annotation d’un élément syntaxique de la théorie.
En présence de plusieurs paramètres d’annotation, l’ensemble de contraintes Θ d’un type

généralisé nous renseigne sur des éventuels dépendences structurelles entre paramètres. Pour
que toute substitution soit considérée comme valide, elle doit respecter ces dépendences. Par
exemple, pour le type ∀p, q | p ⊒ q.φp ⊸ ψq ⊸ φ nous avons que θ ≡ 〈1 + ⊤/p, 1/q〉 est
une substitution valide, car θ(p) ⊒ θ(q) ≡ ⊤ ⊒ 1 est consistent avec l’ordre choisi pour les
annotations de NLL∀≤.

En général, nous écrivons θ |= Θ lorsque nous voulons exprimer le fait qu’une substitution
θ satisfâıt un ensemble de contraintes Θ, c’est-à-dire lorsque θ(Θ) ≡ θ(pi) ⊒ θ(ti) est vrai.
D’une certaine manière, si nous interprétons Θ comme un prédicat logique, θ nous donne
le moyen de transformer ce prédicat en proposition, et ainsi pouvoir affirmer sa consistance
ou inconsistance. Parfois, et de façon équivalente, lorsque nous affirmerons que θ est une
solution de Θ, nous serons en train d’exprimer le fait que θ ∈ [Θ], où [Θ] = {θ | θ |= Θ}
dénote l’espaces des solutions de Θ.

Nous écrirons Θ ⊲ P pour exprimer le fait que si θ(Θ) est vrai comme proposition, alors
θ(P) est vrai aussi, pour toute substitution θ appropriée. (Lorsque P est un ensemble de
contraintes, cette forme d’implication logique reçoit le nom d’implication de contraintes.)
Pour que la substitution θ(Θ) ait un sens, θ doit recouvrir Θ ou, en d’autres termes, FA(Θ) ⊆
dom(θ). Il est aussi nécessaire que θ soit plus qu’une simple substitution, c’est-à-dire qu’elle
évalue les contractions, en remplaçant θ(t′ + t′′) par ⊤. Lorsque nous voulons obtenir le
résultat d’une simple substitution, nous écrirons Θ[θ]. Ainsi, (t′ + t′′)[θ] ≡ t′[θ] + t′′[θ], ce
dernier étant un terme d’annotation très différent de θ(t′ + t′′) = ⊤.

La correction de la logique linéaire tient à la contrainte structurelle éxigeant qu’aucun
terme contenant des variables linéaires ne puisse être utilisé dans un contexte intuitionniste.
Dans NLL∀≤, la condition Θ ⊲ |Γ| ⊒ t joue ce rôle bien spéficique. Par exemple, la règle ⊸E

éxige que pour que toute application d’une fonction de type φt⊸ ψ soit valide, les annotations
des variables libres de son argument, disons t′i (declarées dans Γ2), doivent vérifier la contrainte
|Γ2| = t′i ⊒ t. Pour la récursion, nous éxigeons carrément que toutes les annotations soient
⊤, car la réduction d’un terme récursif dépend de la création d’une copie du terme.

2.3 Le sous-typage d’annotations

Même si l’ordre des annotations suggère l’inclusion entre contextes, cette information ne
devient exploitable concrètement qu’à partir du moment où l’inclusion est explicitement in-
troduite en tant que relation de sous-typage sur les annotations. La règle de Subsumption
nous assure qu’il est toujours possible de substituer un terme de type φ par un type ψ qui
l’inclut, c’est-à-dire par un type ψ tel que

Θ ⊢ φ ≤ ψ

est dérivable en utilisant les règles de la Figure 7.
Il faut noter que φ et ψ peuvent contenir des paramètres d’annotations, donc Θ spécifie

l’ensemble de valeurs des annotations pour lesquelles il est possible d’affirmer φ ≤ ψ. (Nous
éviterons de l’écrire lorsque la validité de l’inclusion ne dépend pas de Θ.) Par exemple,

φ1 ⊸ ψ ≤ φ⊤⊸ ψ

manifeste directement de l’inclusion d’un contexte linéaire dans son contexte intuitionniste
correspondant, et donc, par le biais de Subsumption, de la possibilité d’utiliser une fonc-

8 L’ANALYSE STRUCTURELLE LINÉAIRE

G ≤ G

σ2 ≤ σ1 τ1 ≤ τ2 a1 ⊑ a2

σ1
a1 ⊸ τ1 ≤ σ2

a2 ⊸ τ2

σ1 ≤ σ2 τ1 ≤ τ2 a2 ⊑ a1 b2 ⊑ b1

σ1
a1 ⊗ τ1

b1 ≤ σ2
a2 ⊗ τ2

b2

Figure 7: Définition de la relation ≤ de sous-typage

tion linéaire à la place d’une fonction non-linéaire. L’analyse linéaire devient alors moins
dépendente du contexte, donc plus expressive, car un terme peut maintenant avoir plusieurs
types (celui suggéré directement par ses annotations ainsi que tous ses super-types). Grâce
au sous-typage, l’argument de correction de NLL∀≤ peut être étendu aussi à la η-réduction
(Proposition 3.13).

Le sous-typage ne suffit malheureusement pas pour rendre l’analyse exploitable en présence
des modules compilés séparément. Pour celà, nous avons besoin du polymorphisme d’annota-
tions4.

2.4 Le polymorphisme d’annotations

Le polymorphisme d’annotations rend l’analyse linéaire indépendente du contexte, car il per-
met d’isoler l’analyse d’un terme de l’analyse des contextes qui l’utilisent. Cette propriété de
modularité est importante, car elle permet de donner une solution satisfaisante au problème
de l’analyse structurelle en présence de modules compilés séparément. Si un terme M est
utilisé dans plusieurs contextes, l’idée de base consiste à typer M avec un type généralisé
de la forme ∀pi |Θ

′.φ, ayant comme instances les types requis par les différents contextes qui
l’utilisent. Nous verrons plus tard qu’il n’est pas difficile de trouver le type généralisé qui rend
compte de tout l’espace des décorations de M . Dans la théorie, celà nécessite deux règles, ∀I
et ∀E . Elles permettent, respectivement, d’introduire un type généralisé et de l’éliminer ; et
dans ce dernier cas de le remplacer par une spécialisation adaptée à un contexte donné.

La règle ∀I détermine qu’un terme généralisé de la forme Λpi |Θ
′.M est de type ∀pi |Θ

′.φ
si M est de type φ, en tenant compte des contraintes structurelles dans Θ′. La condition
pi 6⊆ FA(Θ ; Γ) est standard en logique, interdisant les paramètres d’annotation pi d’avoir
une incidence à l’extérieur du terme. La condition Θ′\pi = ∅ est là pour nous assurer que,
dans la construction de Λpi |Θ

′.M , nous n’allons pas former Θ′ à partir des contraintes qui
ne relèvent pas des paramètres pi. Ces deux conditions permettent une lecture déterministe
de la règle, car le choix de Θ′ est déterminé par le choix de pi.

La règle ∀E détermine que si M est de type généralisé ∀pi |Θ
′.φ, pour toute substitution

ϑ ayant pour domaine pi, la spécialisation M ϑ est bien formée, et de type φ[ϑ], à la condi-
tion toutefois que les contraintes spécialisées Θ′[ϑ] ne rentrent pas en contradition avec les
contraintes structurelles Θ que nous avions déjà.

4Au moins que les types des définitions dans les interfaces des modules soient de la forme G1×· · ·×Gn → G.

3. PROPRIÉTÉS DE L’ANALYSE LINÉAIRE 9

3 Propriétés de l’analyse linéaire

Dans cette section nous énumérons quelques propriétés fondamentales de l’analyse linéaire
générale.

3.1 Propriétés élémentaires

D’abord, commençons par déceler ce que nous voulons dire par ‘linéaire’, en terme d’occu-
rrence syntaxique des variables.

Proposition 3.1
Si Θ ; Γ, x : φ1 ⊢M : ψ, alors x a une seule occurrence dans M5. �

Une propriété syntaxique importante et celle qui suggère que les séquents de l’analyse
linéaire peuvent être vus comme des séquents du langage source ‘décorés’ avec des annotations.
En d’autres termes, si nous oublions les annotations, avec l’aide d’un foncteur d’effacement
(◦), nous retrouvons les séquents du langage source. La définition de (◦) est celle attendue.
(En particulier, nous avons (∀pi |Θ

′.φ)◦ = φ◦.)

Proposition 3.2
Si Θ ; Γ ⊢

NLL∀≤
M : φ, alors Γ◦ ⊢

FPL
M◦ : φ◦. �

La proposition suivante établit que toute transformation d’un terme du langage intermé-
diaire, qui implique une réduction, est aussi, après effacement, une transformation valide du
langage source. D’un point de vue théorique, celà veut dire que pour prouver la correction
d’une transformation définie au niveau du langage intermédiaire, comme l’inlining, il suffit de
prouver qu’elle préserve les types de l’analyse linéaire.

Proposition 3.3
Si M → N , alors M◦ → N◦. �

La correction du sous-typage d’annotations, tel que nous l’avons présentée, tient à l’exis-
tence d’une propriété de ‘transférence’ des annotations, propriété plus élémentaire qui incarne
déjà une forme rudimentaire de sous-typage6.

Proposition 3.4
La règle suivante est prouvable dans NLL∀≤.

Θ ; Γ, x : φ1 ⊢M : ψ
Transfer

Θ ; Γ, x : φ⊤ ⊢M : ψ

�

5La Figure7.4 de la page 147 définit précisement ce que nous voulons dire par ‘occurrences’ d’une variable
dans un terme.

6Le nom de Transfer est tiré de DILL, la logique linéaire intuitionniste duale de Barber et Plotkin [5]. Nous
retrouvons cette propriété dans la logique linéaire, car φ⊸ !φ. Dans l’analyse statique cette propriété reçoit
le nom de propriété de sub-effecting.

10 L’ANALYSE STRUCTURELLE LINÉAIRE

Aucune théorie de types annotés peut être considérée comme une théorie d’analyse statique
si, pour tout terme du langage source, elle n’est pas capable de fournir une analyse correcte,
quoique pratiquement inutile. Pour l’analyse linéaire, l’analyse la plus ‘modeste’, notée ci-
dessous (•), et consistant à décorer un terme donné du langage source avec ⊤, est toujours
une analyse valide de NLL∀≤. D’un point de vue logique, ce fait n’est pas surprenant, car
cette analyse correspond à une des traductions données par Girard, la plus célèbre, faisant
plonger la logique intuitionniste dans le fragment intuitionniste de la logique linéaire.

Proposition 3.5
Si Γ ⊢

FPL
M : φ, alors − ; Γ• ⊢

NLL∀≤
M• : φ•. �

Soit J un séquent du langage source. Alors, nous pouvons exprimer le lien étroit existant
entre le langage source et le langage intermédiare par l’affirmation J ≡ (J•)◦7.

Proposition 3.6
Si Θ ; Γ ⊢

NLL∀≤
M : φ, alors il existe ψ tel que Θ ; Γ ⊢

NLL∀≤
M : ψ et ψ ≤ ψ′ pour pour tout

autre ψ′ pour lequel Θ ; Γ ⊢
NLL∀≤

M : ψ′.

Démonstration. Voir le Théorème 5.4.14. �

Les propriétés suivantes concernent le polymorphisme d’annotations.

Proposition 3.7
Si Θ ; Γ ⊢M : φ, alors Θ[ϑ] ; Γ[ϑ] ⊢M [ϑ] : φ[ϑ].

Proposition 3.8
Si Θ ; Γ ⊢M : φ and Θ′ ⊲Θ, alors Θ′ ; Γ ⊢M : φ.

Démonstration. La validité de cette assertion dépend du fait que si Θ ⊲ P est vrai pour
un prédicat P et Θ′ ⊲Θ, alors Θ′ ⊲ P . �

Proposition 3.9
Si Θ ; Γ ⊢M : φ, alors Θ,Θ′ ; Γ ⊢M : φ.

Démonstration. Immédiat à partir du Lemme 3.8 et du fait que Θ,Θ′ ⊲Θ. �

3.2 La correction de l’analyse ĺınéaire

Notre argument sur la correction de l’analyse linéaire prend la forme d’un théorème de subject
reduction pour la théorie générale NLL∀≤. Pour prouver la correction de l’analyse linéaire,
nous avons besoin de deux lemmes importants. Le premier est au cœur de la correction du
polymorphisme d’annotations, tandis que le deuxième montre que la substitution des termes
est bien typée, sous certaines conditions de bon sens ‘structurelle’ (c’est-à-dire, tant que
nous n’essayons pas de substituer un terme qui contient des variables libres linéaires dans un
contexte qui pourrait effacer ou dupliquer son argument.).

7Cette affirmation restera valide pour toute traduction que nous pourrions définir dans le cadre de l’analyse
linéaire, à part celle de Girard.

3. PROPRIÉTÉS DE L’ANALYSE LINÉAIRE 11

Lemme 3.10 (Substitution des annotations)
La règle suivante est prouvable dans NLL∀≤.

Θ,Θ′ ; Γ ⊢M : φ Θ ⊲Θ′[ϑ] dom(ϑ) = FA(Θ′)\FA(Θ)
ϑ-Substitution

Θ ; Γ[ϑ] ⊢M [ϑ] : φ[ϑ]

Démonstration. Voir la démonstration du Lemme 5.4.8. �

Lemme 3.11 (Substitution des termes)
La règle suivante est prouvable dans NLL∀≤.

Θ ; Γ1, x : φ1
t ⊢M : ψ Θ ; Γ2 ⊢ N : φ2 |Γ2| ⊒ t φ2 ≤ φ1

Substitution
Θ ; Γ1,Γ2 ⊢M [N/x] : ψ

Démonstration. Voir les démonstrations des Lemmes 5.4.16 et 3.5.6, ce dernier étant une
extension du premier à l’analyse polymorphe. �

Théorème 3.12 (Correction)
Si Θ ; Γ ⊢

NLL∀≤
M : φ et M → N , alors Θ ; Γ ⊢

NLL∀≤
N : φ.

Démonstration. Voir les démonstrations des Théorèmes 5.4.17 et 3.5.7, ce dernier étant
une extension du premier à l’analyse polymorphe. �

La correction de NLL∀≤ peut-être étendue, grace au sous-type des annotations, pour tenir
compte de la η-reduction.

λx:φt.M x→M if x 6∈ FV(M) (η)

Proposition 3.13 (Correction pour η)
Si Θ ; Γ ⊢

NLL∀≤
λx:φt.M x : φt⊸ ψ et x 6∈ FV(M), alors Γ ⊢

NLL∀≤
M : φt⊸ ψ.

Démonstration. Voir la démonstration de la Proposition 4.4.4. �

3.3 La décoration optimale

Nous ne pouvons pas parler d’analyse statique linéaire, sans parler d’analyse optimale. L’ana-
lyse (ou décoration) optimale n’est ni plus ni moins que l’analyse la plus précise en terme
d’information structurelle. De tous les séquents annotés J∗, correspondants à un séquent du
langage source donné J , nous nous intéressons aux séquents annotés ne contenant que des
occurrences de ⊤ qui sont inévitables. Une remarque importante concernant les décorations
s’impose. Lorsque nous parlons de décorations, nous faisons référence aux séquents J∗ sim-
ples, où toutes les annotations sont des constantes et les types intervenants sont des types
monovariants8.

Dans le cadre de NLL∀≤, l’analyse optimale peut être caracterisée de manière très élégante,
comme l’élément le plus petit de l’espace de toutes les décorations d’un séquent du langage
source J .

DNLL(J)
def
= {J∗ | (J∗)◦ = J et J∗ est simple}.

8Dans la thèse, le fragment monovariant de l’analyse linéaire générale correspond au système appellé NLL≤,
qui n’est ni plus ni moins que le langage de types standards de Wadler [65] étendu avec une notion de sous-
typage.

12 L’ANALYSE STRUCTURELLE LINÉAIRE

(λx:φ1.M)N
inl
 M [N/x]

let 〈x1, x2〉
1,1 = 〈M1,M2〉

t1,t2 in N
inl
 N [M1/x1][M2/x2]

let 〈x1, x2〉
1,t = 〈M1,M2〉

t1,t2 in N
inl
 let x2 = M2 in N [M1/x1]

let 〈x1, x2〉
t,1 = 〈M1,M2〉

t1,t2 in N
inl
 let x1 = M1 in N [M2/x2]

let x:φ1 = M in N
inl
 N [M/x]

(Λpi |Θ.M) ϑ
inl
 M [ϑ]

Figure 8: Les règles de tranformation de l’inlining

En effet, si nous considérons que pour deux décorations J1
∗ et J2

∗, J1
∗ ⊑ J2

∗ précisement
quand toute annotation dans J1

∗ est plus petite que son annotation correspondante dans J1
∗,

alors il n’est pas difficile de démontrer que l’espace des décorations de J forme un treillis
complet.

Théorème 3.14 (Treillis complet de décorations)
〈DNLL(J);⊑〉 est un treillis complet non-vide.

Démonstration. Voir la démonstration du Théorème 3.6.4. �

La décoration optimale est l’élément le plus petit de DNLL(J). En d’autres termes,

Jopt = ⊓DNLL(J).

4 L’inlining comme application

Un exemple didactique de l’analyse linéaire générale, que nous pouvons formaliser très simple-
ment, c’est l’inlining, une technique d’optimisation assez répandue qui consiste à substituer in
situ les références à une définition par le corps de la définition elle-même. L’analyse linéaire
offre un critère infaillible permettant de savoir si une définition donnée est utilisée une seule
fois. Dans ce cas-là, le remplacement de la référence par le corps de la définition est une
transformation toujours profitable, car elle ne risque pas d’entrâıner ni une augmentation de
la taille du programme (car elle a lieu une seule fois), ni une perte de temps de calcul.

Nous définissons la relation de transformation d’inlining, s’applicant à des termes annotés
du langage intermédiaire, comme la clôture contextuelle des règles de réécriture de base
énumérées dans la Figure 8.

Il est intéressant d’observer que
inl
 ⊆→, ainsi la correction de la transformation d’inlining

est un simple corollaire du théorème de correction de NLL∀≤.

Proposition 4.1 (Correction de
inl
)

Si Θ ; Γ ⊢
NLL∀≤

M : φ et M
inl
 N , alors Θ ; Γ ⊢

NLL∀≤
N : φ. �

5. INFÉRENCE DES ANNOTATIONS 13

5 Inférence des annotations

Une fois posées les bases théoriques de l’analyse linéaire, nous pouvons maintenant nous
concentrer sur le problème pratique de l’inférence des annotations, c’est-à-dire sur le calcul
effectif de la décoration optimale d’un séquent du langage source.

Nous allons procéder, comme c’est le cas généralement, en deux étapes. Soit Γ ⊢ M : σ
un séquent de FPL. La première étape, celle de l’inférence des contraintes, consiste à calculer
l’ensemble d’inéquations Θ permettant de caractériser toutes les décorations de NLL≤, c’est-
à-dire que l’on demande que

{∆[θ] ⊢ X[θ] : φ[θ] | θ |= Θ où FA(X) ∪ FA(∆) ⊆ dom(θ)}

soit précisement
DNLL≤(Γ ⊢M : σ).

Celui-ci constitue le critère de correction de cette première étape. Ici, ∆, X et φ ne contiennent
que des paramètres d’annotation.

La deuxième étape consistera à trouver la solution optimale θopt qui donne lieu à la
décoration optimale ∆[θopt] ⊢ X[θopt] : φ[θopt].

5.1 Inférence des contraintes

L’algorithme d’inférence des contraintes prend comme entrée une paire 〈Γ,M〉, composée
d’un contexte Γ et d’un terme M du langage source, et fourni en sortie un triplet 〈Θ, X, φ〉,
formé d’un ensemble de contraintes Θ, un terme X et un type φ contenant uniquement des
paramètres d’annotation. La notation qu’on utilise pour les configurations de l’algorithme (à
chaque étape de son éxécution) est

Θ ; ∆ ⊢M ⇒ X : φ,

où ∆ correspond au contexte d’entrèe Γ, mais contenant uniquement des paramètres d’annota-
tion.

Les Figures 9 et 10 présentent une définition inductive, sur la structure des termes du
langage source, de l’algorithme d’inférence des contraintes.

L’algorithme fait référence à plusieurs fonctions auxiliaires. La notation φ = fresh(σ)
définit φ en étant une version décorée de σ uniquement avec des paramètres d’annotation
n’ayant aucune occurrence ailleurs dans la règle. L’appel à la fonction split(∆,M,N), définie
dans la Figure 12, renvoit un triplet (∆1,∆2,Θ1), où ∆1 et ∆2 constituent une séparation
des déclarations de ∆, tel que ∆1 et ∆2 contiendront les déclarations des variables libres dans
M et N , respectivement. Si x:φp est une déclaration partagée, l’ensemble Θ1 contiendra en
plus l’inéquation p ⊒ q1 + q2, où x:φq1 et x:φq2 sont les déclarations à employer pour ∆1 et
∆2, respectivement. L’appel (φ ≤ ψ) = Θ renvoit, pour deux types φ et ψ, l’ensemble des
contraintes Θ pour lequel il se vérifie que Θ ⊢ φ ≤ ψ. Nous avons inclu sa définition dans la
Figure 11.

1
4

L
’A

N
A

L
Y

S
E

S
T

R
U

C
T

U
R

E
L
L
E

L
IN

É
A

IR
E

∆ ≡ xi : φi
pi

pi ⊒ ⊤ ; ∆, x : φp ⊢ x⇒ x : φ

Σ(π) = φ ∆ ≡ xi : φi
pi

pi ⊒ ⊤ ;∆ ⊢ π ⇒ π : φ

Θ ; ∆, x : φp ⊢M ⇒ X : ψ φ = fresh(σ) p fresh

Θ ; ∆ ⊢ λx:σ.M ⇒ λx:φp.X : φp ⊸ ψ

Θ2 ; ∆1 ⊢M ⇒ X : φ1
p ⊸ ψ Θ3 ;∆2 ⊢ N ⇒ Y : φ2 split(∆,M,N) = (∆1,∆2,Θ1)

∆2 ≡ xi : φi
qi

(φ2 ≤ φ1) = Θ4

Θ1,Θ2,Θ3,Θ4, qi ⊒ p ; ∆ ⊢MN ⇒ XY : ψ

Θ2 ; ∆1 ⊢M1 ⇒ X1 : φ1 Θ3 ; ∆2 ⊢M2 ⇒ X2 : φ2 split(∆,M,N) = (∆1,∆2,Θ1)

∆1 ≡ x1,i : φ1,i
q1,i

∆2 ≡ x2,i : φ2,i
q2,i

Θ1,Θ2,Θ3, q1,i ⊒ p1, q2,i ⊒ p2 ; ∆ ⊢ 〈M1,M2〉 ⇒ 〈X1, X2〉
p1,p2 : φ1

p1 ⊗ φ2
p2

Figure 9: Algorithme d’ińference d’inéquations de contrainte

5
.

IN
F
É

R
E

N
C

E
D

E
S

A
N

N
O

T
A
T

IO
N

S
1
5

Θ2 ; ∆1 ⊢M ⇒ X : bool Θ3 ; ∆2 ⊢ N1 ⇒ Y1 : φ1 Θ4 ; ∆2 ⊢ N2 ⇒ Y2 : φ2

φ = fresh(φ1
◦)

(φ1 ≤ φ) = Θ5

(φ2 ≤ φ) = Θ6

split(M, 〈N1, N2〉) = (∆1,∆2,Θ1)

Θ1,Θ2,Θ3,Θ4,Θ5,Θ6 ;∆ ⊢ if M then N1 else N2 ⇒ if X then Y1 else Y2 : φ

Θ1 ; ∆, x : φ1
p ⊢M ⇒ X : φ2 (φ1 ≤ φ2) = Θ2 ∆ ≡ xi : ψqi

i φ1 = fresh(σ) p fresh

Θ1,Θ2, qi ⊒ ⊤, p ⊒ ⊤ ; ∆ ⊢ fix x:σ.M ⇒ fix x:φ1.X : φ2

Θ2 ;∆1 ⊢M ⇒ X : φ1
p1 ⊗ φ2

p2 Θ3 ; ∆2, x1 : φ3
p3 , x2 : φ4

p4 ⊢ N ⇒ Y : ψ

p3, p4 fresh

(φ1
p1 ⊗ φ2

p2 ≤ φ3
p3 ⊗ φ4

p4) = Θ4

split(∆,M,N) = (∆1,∆2,Θ1)

Θ1,Θ2,Θ3,Θ4 ;∆ ⊢ let 〈x1, x2〉 = M in N ⇒ let 〈x1, x2〉
p3,p4 = X in Y : ψ

Figure 10: Algorithme d’ińference d’inéquations de contrainte (suite)

16 L’ANALYSE STRUCTURELLE LINÉAIRE

(G ≤ G) = ∅

(φ2 ≤ φ1) = Θ1 (ψ1 ≤ ψ2) = Θ2

(φ1
p1 ⊸ ψ1 ≤ φ2

p2 ⊸ ψ2) = Θ1,Θ2, p2 ⊒ p1

(φ1 ≤ φ2) = Θ1 (ψ1 ≤ ψ2) = Θ2

(φ1
p1 ⊗ ψ1

q1 ≤ φ2
p2 ⊗ ψ2

q2) = Θ1,Θ2, p1 ⊒ p2, q1,⊒ q2

Figure 11: Définition de la fonction auxiliaire (− ≤ −)

5.2 Correction de l’inférence des contraintes

La clé de la preuve de correction de l’algorithme d’inférence des contraintes se trouve dans la
relation entre les configurations correspondantes à chaque étape de l’algorithme et les séquents
d’un fragment de NLL∀≤, le système NLL∀ν≤ de types minimums. Les règles de NLL∀ν≤ qui
doivent être modifiées, par rapport aux celles de NLL∀≤, sont réunies dans la Figure 13.

Lemme 5.1 (Correction pour NLL∀ν≤)
Si Θ ; ∆ ⊢M ⇒ X : φ, alors Θ ; ∆ ⊢

NLL∀ν≤
X : φ.

Démonstration. Voir la démonstration du Théorème 6.1.9. �

L’inclusion dans l’espace des décorations du séquent source ∆◦ ⊢ X◦ : φ◦ suit en tant que
corollaire du lemme ci-dessus et des propriétés de NLL∀≤.

Théorème 5.2 (Correction)
Si Θ ; ∆ ⊢M ⇒ X : φ, alors ∆[θ] ⊢

NLLν≤
X[θ] : φ[θ], pour tout θ |= Θ.

Démonstration. Voir la démonstration du Théorème 6.1.10. �

La preuve complémentaire de complétude, c’est-à-dire d’inclusion de l’espace des décora-
tions dans l’ensemble de substitutions obtenue à partir de Θ, constitue une preuve constructive
sur l’expressivité du polymorphisme général d’annotations, notamment sur le fait que pour
chaque séquent du language source il existe un séquent du langage intermédiare (celui trouvé
par notre algorithme) qui peut être interpreté comme une description compacte de l’espace
des décorations du séquent du language source sous-jacent.

Théorème 5.3 (Complétude)
Si Θ ; ∆ ⊢M ⇒ X : φ et − ; Γ ⊢ N : ψ et une décoration dans NLLν≤ de ∆◦ ⊢ X◦ : φ◦, alors
il existe une solution θ |= Θ, tel que Γ ≡ ∆[θ], N ≡ X[θ] et ψ ≡ φ[θ].

Démonstration. Voir la démonstration du Théorème 6.1.11. �

5.3 Solution optimale d’un système de contraintes

Une fois que nous avons complété la première étape avec succès, nous pouvons nous con-
centrer sur le calcul de la solution optimale, la plus petite solution θ qui vérifie l’ensemble

5. INFÉRENCE DES ANNOTATIONS 17

split(−,M1,M2) = (−,−, ∅)

split((∆, x:φp),M1,M2) =

((∆′
1, x:φ

p),∆′
2,Θ),

si x ∈ FV(M1), mais x 6∈ FV(M2);

(∆′
1, (∆

′
2, x:φ

p),Θ),

si x ∈ FV(M2), mais x 6∈ FV(M1);

((∆′
1, x:φ

p1), (∆′
2, x:φ

p2), (Θ, p ⊒ p1 + p2)),

sinon;

et où split(∆,M1,M2) = (∆′
1,∆

′
2,Θ).

Figure 12: Définition de la fonction auxiliaire split(−,−,−)

Θ ; Γ1 ⊢M : φ1
t⊸ ψ Θ ; Γ2 ⊢ N : φ2 Θ ⊲ |Γ2| ⊒ t Θ ⊢ φ2 ≤ φ1

⊸E
Θ ; Γ1,Γ2 ⊢MN : ψ

Θ ; Γ1 ⊢M : φ1
t1 ⊗ φ2

t2 Θ ; Γ2, x1 : ψ1
t′1 , x2 : ψ2

t′2 ⊢ N : ψ

Θ ⊲ ti ⊒ t′i

Θ ⊢ φi ≤ ψi

(i = 1, 2)
⊗E

Θ ; Γ1,Γ2 ⊢ let 〈x1, x2〉
t′1,t

′
2 = M in N : ψ

Γ1 ⊢M : bool Γ2 ⊢ N1 : σ1 Γ2 ⊢ N2 : σ2

σ1 ≤ σ

σ2 ≤ σ
Conditional

Γ1,Γ2 ⊢ if M then N1 else N2 : σ

Figure 13: Règles de typage modifiées de NLL∀ν≤

18 L’ANALYSE STRUCTURELLE LINÉAIRE

d’inéquations Θ que nous avons obtenu en sortie. Lorsque nous parlons de plus ‘petite’ solu-
tion, nous faisons référence a la substitution close θopt de l’espace des solutions de Θ,

[Θ]
def
= {θ | θ |= Θ},

tel que θopt ⊑ θ pour tout autre θ ∈ [Θ], et où

θ1 ⊑ θ2
def
= θ1(p) ⊑ θ2(p), pour tout p ∈ dom(θ1).

Il faut noter que la relation d’ordre que nous avons choisie est compatible avec l’ordre
entre séquents décorés, c’ést-à-dire que si θ1 ⊑ θ2, nous pouvons aussi affirmer X[θ1] ⊑ X[θ2]
(en considérant uniquement les solutions θ1 et θ2 qui recouvrent X).

L’algorithme d’inférence des annotations n’opère qu’avec des ensembles des contraintes de
la forme p ⊒ t où t est bien un paramètre d’annotation ou bien ⊤. Il n’est pas difficile de voir
que tout ensemble de contraintes de cette forme-là forme un treillis complet.

Proposition 5.4
Pour tout Θ ≡ pi ⊒ ti, 〈[Θ];⊑〉 forme un treillis complet non-vide.

Démonstration. Voir la démonstration de la Proposition 6.2.1 �

La solution optimale θopt est le plus petit élément du treillis ⊓[Θ]. Une façon standard,
mais aussi très élégante, de suggérer un algorithme général de calcul effectif de ⊓[Θ], consiste
à montrer qu’il est possible de caracteriser la solution optimale comme le plus petit point fixe
d’une fonction continue

FΘ : (P → A) → (P → A) où P = FA(Θ),

définie sur l’espace élargi de toutes les substitutions closes ayant comme domaine FA(Θ). En
effet, les points fixes de la fonction

FΘ(θ)(p)
def
=

⊔

{θ(t) | p ⊒ t est dans Θ}

forment l’ensemble de toutes les substitutions closes qui vérifient Θ. Etant donné que FΘ est
une fonction continue, nous pouvons calculer le plus petit point fixe µ(FΘ) par approximation,
en utilisant un résultat bien connu de la théorie d’ordres. Ainsi, si pi = FA(Θ),

µ(FΘ) =
⊔

i≥0

FΘ
i(〈⊥/pi〉).

5.4 Inférence des annotations pour l’analyse contextuelle

En utilisant la stratégie qui consiste à trouver la décoration optimale, nous pouvons, très
brièvement, enoncer une règle de typage pour les définitions, adaptée à la compilation séparée.
Une possibilité, consistante avec ∀I , est la règle suivante.

Θ1 ; ∆ ⊢M ⇒ X : φ pi = FA(φ) Θ2 = Θ1↾pi Θ3 = Θ1\Θ2

Θ3 ;∆ ⊢ let x = M ⇒ let x = Λpi |Θ2.X : ∀pi |Θ2.φ

6. ANALYSE STRUCTURELLE ABSTRAITE 19

Etant donnée une définition let x = M dans un module, nous allons calculer X, la tra-
duction de M dans le langage intermédiaire, et l’ensemble de contraintes Θ. Le type que
nous allons sauvegarder dans l’interface du module est ∀pi |Θ2[θ

opt].φ[θopt], où Θ2 contient
les inéquations de Θ1 qui ont des paramètres d’annotation libres dans φ, car ce sont les seules
qui peuvent rentrer en interaction avec les utilisations de la définition. La substitution opti-
male θopt est calculée à partir de Θ3, le reste des inéquations de Θ1 qui ne font pas référence
à des paramètres de φ. Celà nous permet d’affirmer que le type dans l’interface ne contiendra
que des paramètres dans pi. Pour optimiser la définition elle-même nous pouvons utiliser
l’analyse fournie par la décoration partielle M [θopt].

Nous supposons que ∆ contient les déclarations externes qui nous permettent de typer M
correctement et qui sont donc de la forme

∆ ::= x1 : (∀p1,i |Θ1.φ1)
q1 , . . . , xn : (∀pn,i |Θn.φn)

qn .

Nous ne pouvons pas toutefois utiliser l’algorithme d’inférence des contraintes tel quel,
car, maintenant, les déclarations externes font référence à des types généralisés. Nous allons
donc remplacer la première règle de la Figure 9 par la règle suivante :

ϑ ≡ 〈p′i/pi〉 p′i fresh ∆ ≡ xi : φi
qi

Θ[ϑ], qi ⊒ ⊤ ; ∆, x : (∀pi |Θ.φ)p ⊢ x⇒ x ϑ : φ[ϑ]

Il est évident que la nouvelle règle génère tout simplement une instance φ[ϑ] (un type
monovariant) en remplaçant chaque paramètre pi par un nouveau paramètre p′i. L’ensemble
d’inéquations Θ[ϑ] est ensuite rajouté à l’ensemble existant pour préserver, tout au long de
l’inférence, les contraintes que les annotations de φ[ϑ] doivent respecter à fin que l’analyse
finale soit consistante avec les analyses des définitions dans d’autres modules.

6 Analyse structurelle abstraite

Dans cette section, nous présentons un cadre d’analyse statique plus général, un cadre donc
abstrait, dans lequel l’analyse linéaire n’est qu’un cas particulier. Notre proposition de cadre
abstrait permet de formuler d’autres types d’analyse, dites d’usage ou ‘structurelles’, en in-
troduisant des ensembles d’annotations différents, où chaque annotation fait référence à un
schéma d’usage de ressources différent. Notre motivation a été de montrer qu’il est possi-
ble d’exprimer des analyses statiques d’usage, tel que l’analyse affine, d’utilisation effective
(neededness) ou bien de partage et d’absence (sharing and absence), dans un même cadre
théorique, et d’en dégager quelques principes de base. D’un point de vue purement logique,
les systèmes issues des instances du cadre abstrait sont toutes des logiques dites à de modalités
multiples [39, 43, 14].

6.1 La notion de structure d’annotations

Le cadre abstrait repose sur la notion de structure d’annotations, définie comme un quintuple

A ≡ 〈A,⊑,0,1,+〉,

où

20 L’ANALYSE STRUCTURELLE LINÉAIRE

• 〈A,⊑〉 dénote un ensemble ordonné avec un élément maximum ⊤ et où a⊔b doit exister
pour toute paire d’éléments a et b.

• Les annotations abstraites 0,1 ∈ A sont deux éléments de l’ensemble, que nous utili-
serons pour annoter les annotations des règles d’affaiblissement et d’identité, respec-
tivement.

• L’operateur binaire de contraction + : A × A → A, utilisé alors pour annoter la règle
homonyme, doit satisfaire les propriétés de commutativité, d’associativité et de distribu-
tivité énnoncées ci-dessous.

a+ b = b+ a

(a+ b) + c = a+ (b+ c)

a ⊔ (b+ c) = (a ⊔ b) + (a ⊔ c)

Une analyse structurelle donnée est ainsi déterminée par une structure d’annotations A

adéquate en plus des règles de la théorie de types de l’analyse linéaire, à l’exception des règles
structurelles, que nous devons remplacer par un jeu de règles comportant les annotations
abstraites9 :

Θ ⊲ t ⊒ 1
Identity

Θ ;x : φt ⊢ x : φ

Θ ; Γ ⊢M : ψ Θ ⊲ t ⊒ 0
Weakening

Θ ; Γ, x : φt ⊢M : ψ

Θ ; Γ, x1 : φt1 , x2 : φt2 ⊢M : ψ Θ ⊲ t ⊒ t1 + t2
Contraction

Θ ; Γ, x : φt ⊢M [x/x1, x/x2] : ψ

Les règles structurelles ci-dessus nous permettent d’avoir une idée sur la rélation struc-
turelle que chaque élément abstrait est sensé exprimer, et que nous pourrions résumer, de
façon informelle, comme ceci (où x:φa est une déclaration arbitraire) :

si alors
a ⊒ 0 x:φa peut être effacée
a ⊒ 1 x:φa peut être utilisée au moins une fois
a ⊒ b1 + b2 x:φa peut être dupliquée

Les propriétés qu’une structure d’annotations A doit observer sont là pour nous assurer
que les propriétés étudiées dans les sections précédentes restent toujours valides dans le cadre
abstrait, notamment le lemme de la substitution, qui est au cœur de la correction de l’analyse
statique linéaire. Aussi, nous avons voulu conserver d’autres propriétés, comme la propriété
de passage (incarné par la règle Transfer), que nous aurions pu rajouter en tant que règle
supplémentaire de facto.

L’éxistence d’un élément maximum ⊤ est nécessaire pour pouvoir annoter correctement
un terme récursif et pour nous assurer de l’existence d’au moins une solution à l’analyse

9Voir la Figure 7.1.

7. CONCLUSION 21

(correspondante au fragment intuitionniste de la logique sous-jacente)10. La commutativité
et associativité de + ne font qu’exprimer le fait que l’ordre d’application de la règle de
contraction à des variables au sein d’un contexte ne doit pas être important. La propriété de
distributivité joue un rôle fondamental dans la preuve de l’admissibilité de la règle Transfer
(de passage) et dans la preuve du lemme de la substitution.

6.2 Quelques exemples familiers

Pour motiver les observations des paragraphes précédants, la Figure 14 réunit trois exem-
ples connus : l’analyse affine, d’utilisation effective, et de partage et d’absence. L’analyse
d’utilisation effective n’est ni plus ni moins que la version structurelle de l’analyse de fonctions
strictes (strictness analysis), traditionnellement formulée dans le cadre de l’interprétation ab-
straite.

Il faut noter que beaucoup d’ensembles d’annotations, comme ceux qui visent à des anal-
yses plus fines, sont basés sur le nombre de fois qu’une variable est utilisée dans un contexte
(c’est-à-dire, qui comptent le nombre d’occurrences d’une variable). En général ces analyses
sont non-distibutifs et, par la suite, ne vérifient pas le lemme de la substitution. Un exemple
trivial est celui qui consiste à prendre comme ensemble d’annotations

A ≡ 〈N ∪ {⊤},⊑, 0, 1,+〉

où n ∈ N dénote la propriété “utilisé n fois”, c’est-à-dire que + dénoterait la somme des
naturels (plus un élément ⊤), ordonnés comme suit :

⊤

1

oooooooooooooo
2

�������
3 . . . n

PPPPPPPPPPPPPPP

En effet, A n’est pas distributif, car n 6⊑ n+ n pour tout n 6= 0.

7 Conclusion

Nous venons de présenter l’analyse linéaire générale, une théorie d’analyse statique consacrée
à la détéction des valeurs qui sont utilisées une seule fois dans un contexte donné. La notion
d’usage de l’analyse linéaire est celle héritée de la logique linéaire de Girard : une définition
annotée linéairement ne sera jamais ni dupliquée ni ignorée par aucune stratégie d’évaluation.
Cela donne à l’analyse linéaire une portée plus importante que celle d’autres analyses de
compléxité comparable [67, 35], mais, en même temps, elle est plus conservative et, par
conséquent, moins utile dans certains cas pratiques. Nous avons également montré le lien
entre l’analyse linéaire optimale et la notion de décoration optimale, issue de la théorie de la
démonstration de la logique linéaire intuitionniste [26].

La notion de décoration semble idéale pour donner une idée sur l’expressivité de l’analyse
linéaire générale et, en particulier, du polymorphisme d’annotations. En effet, il nous a été

10En effet, nous avons 0 ⊑ ⊤ et 1 ⊑ ⊤ par définition, et ⊤ + ⊤ = ⊤ par distributivité. Il faut noter que
nous n’exigeons pas que A ait dans tous les cas un élément plus petit. Si celui-ci n’existe pas, il faudra le
rajouter artificiellement (en prenant comme structure des annotations A⊥) si nous voulons calculer la décoration
optimale tel que nous l’avions décrite précédemment.

22 L’ANALYSE STRUCTURELLE LINÉAIRE

L’analyse affine

A
def
= 〈{⊤,≤1},⊑,≤1,≤1,+〉

où
≤1 ⊑ ⊤

et
≤1 + ≤1 = ⊤
≤1 + ⊤ = ⊤
⊤ + ≤1 = ⊤
⊤ + ⊤ = ⊤

L’analyse d’utilisation effective

A
def
= 〈{⊤,≥1},⊑,⊤,≥1,+〉,

où
≥1 ⊑ ⊤

et
≥1 + ≥1 = ≥1
≥1 + ⊤ = ⊤
⊤ + ≥1 = ⊤
⊤ + ⊤ = ⊤

L’analyse de partage et d’absence

A
def
= 〈{⊤, 0,≥1},⊑, 0,≥1,+〉,

où
0 ⊑ ⊤ ≥1 ⊑ ⊤

et
0 + 0 = 0
0 + ≥1 = ⊤
0 + ⊤ = ⊤
≥1 + 0 = ⊤
≥1 + ≥1 = ≥1
≥1 + ⊤ = ⊤
⊤ + 0 = ⊤
⊤ + ≥1 = ⊤
⊤ + ⊤ = ⊤

Figure 14: Trois exemples familiers des analyses structurelles

7. CONCLUSION 23

possible de construire un type généralisé très particulier, pouvant être interprété comme une
description compacte de l’espace de toutes les décorations d’un terme donné du langage source.
Nous avons également suggéré une stratégie d’analyse statique qui utilise le polymorphisme
d’annotations pour donner une solution satisfaisante au problème de l’analyse statique en
présence de modules compilés séparément.

24 L’ANALYSE STRUCTURELLE LINÉAIRE

Chapter 1

Introduction

1.1 Motivations

As compiler technology has grown in maturity and sophistication, the need for non-trivial
static analysis techniques has become more pressing. This is especially true for those lan-
guages not based upon the ‘classical’ von Neumann evaluation model of current computers.
Functional and logic-based languages are both good examples of such languages. The informa-
tion obtained through static analysis allows modern optimising compilers for these languages
to perform more aggressive optimisations, approaching in some cases the overall performance
profiles of their imperative counterparts. The ever-growing acceptance of functional and logic-
based languages is due not only to the availability of more computational power, but also to
the fact that, thanks to modern compiling technology, they can now be regarded as serious
alternatives to the more popular imperative and object-oriented languages.

Intuitively, given an input program, the goal of static analysis is to determine at compile-
time various properties about the program’s run-time behaviour that the compiler may later
use to validate the application of particular optimisations. Many properties of interest, es-
pecially those about the dynamic behaviour of programs, are undecidable, so the properties
computed by static analysers are usually conservative approximations. The literature on
static analysis has grown huge over the years, so it would be impossible to provide the reader
with a fair survey. The interested reader is referred to Nielson and Hankin’s book for an
introduction [48].

The properties we shall be studying in this thesis belong to the family of properties
known in the literature under the name of usage properties. There seems to be as many
notions of usage in existence as there are usage static analyses, or almost. We may classify
usage analyses into two broad families: those based on a denotational description of the
source language, and the more recent analyses, themselves based on ideas inpired by Girard’s
linear logic [30], which include the usage type systems we study here. The latter began
their existence first as usage logics, of which there are many interesting examples in the
literature [65, 13, 14, 39, 70, 4, 20, 43]1.

1Johnsson’s early system of ‘sharing and absence’ analysis [41] provides an example of analysis for which
the notion of usage adopts a more denotational flavour.

25

26 CHAPTER 1. INTRODUCTION

1.1.1 Structural properties

Linear logic divides values into two sorts: linear and non-linear (or intuitionistic). Non-linear
values may be used any number of times, whereas linear values may only be used exactly
once. All values are, unless explicitly stated, linear by default, which means that functions
are not allowed to use their arguments more than once, nor to completely ignore them. The
type of such functions is conventionally written σ⊸ τ , where σ is the type of the argument
and τ is the type of the result. Functions that are permitted to use their arguments any
number of times, or none at all, have type !σ ⊸ τ , where !σ is the notation for the type of
non-linear values. The linear restriction on function arguments is traditionally formulated
by introducing explicit rules, called structural rules, that allow only variables of non-linear
type to be either duplicated or discarded. The familiar logical formulation of the structural
rules is shown below, where the restrictions on variables, according to the Curry-Howard
correspondance, take the form of restrictions on context formulae.

Γ ⊢ τ
Weakening

Γ, !σ ⊢ τ

Γ, !σ, !σ ⊢ τ
Contraction

Γ, !σ ⊢ τ

The theories of static analysis we study here use the structural rules in a fundamental way to
distinguish between properties, hence our preference to call them structural usage analysis,
and the properties they capture, structural properties.

Many useful well-known usage static analyses take inspiration from linear logic, but are
not formally based on linear logic. There is a good reason for not being too close to linear
logic, especially if one is interested in notions of usage that would be useful, for instance,
to model sharing. It is simply not true that ‘linear’ can be taken to mean ‘not shared’ for
any given implementation [18]. These two notions can be seen to coincide, or at least to be
compatible, in restricted contexts [65, 18, 61], so their practical usefulness has been seriously
compromised2. As our usage type systems are well-behaved with respect to any reduction
strategy, they must necessarily be less expressive than static analyses especially designed for
a particular reduction strategy, so this is another good reason for sometimes not trying to be
too close to the notion of usage suggested by linear logic.

1.1.2 Applications

A practical example of a usage analysis that has been applied with a reasonable success is a
variation on the theme of affine analysis, which is applied in the Glasgow Haskell Compiler to
avoid updating environment closures that are accessed at most once [62, 68, 67, 66]. Wright,
among others, realised that relevance analysis (which is aimed at detecting values that are
used once or more than once) could be used to approximate strictness properties [69, 4, 20].

As a way of illustration, we shall show how linearity analysis can be used to justify a
simple inlining transformation. Informally, inlining consists in replacing a reference to a
definition by the definition body itself. We slightly generalise this situation to bindings in
general. Transformations like this one are extremely important in compilers (of any language),
especially functional language compilers. An interesting case is when a definition is used
exactly once, in which case we can safely inline the definition, without risking any undesirable
recomputations (or bloating the code with duplicated definitions). Some compilers already

2This explains the subsequent lack of interest in the subject. We discuss this problem further in Subsec-
tion 3.7.3

1.2. ANNOTATED TYPE SYSTEMS 27

have some sort of ‘occurrence analyser’ which uses variable occurrence information to help
in the detection of some trivial cases of inlining, but a more accurate analysis would be
preferable [51]. Another interesting case is when bindings are not used at all, a situation that
can be easily detected by applying a simple non-occurrence analysis.

Perhaps, the most interesting feature of structural analysis is that many properties captur-
ing different usage patterns can be uniformly described in the same logical framework [70, 14].

1.2 Annotated type systems

The different theories of structural analysis we introduce in this work are formulated as
annotated type systems, which themselves belong to the (ever larger) class of type-based
static analysis techniques. Type-based static analyses are formulated in terms of a typing
relation assigning properties (types) to terms; the static analysis method itself, therefore,
takes the form of a type inference algorithm, which generally consists of an extension of
Hindley-Milner’s type inference techniques [24]. Kuo and Mishra’s type system of strictness
types seems to have been the first such system [60].

The properties in a type-based analysis need not have any relation to the types of the
source language; in fact, it is not even necessary that the source language be typed at all.
Annotated type systems, on the other hand, are formulated in terms of an existing typed
source language. The types inferred are commonly called annotated types, because they
correspond to types of the source language annotated with static information. It is in this
sense that the annotated type system is understood as a refinement of the base type system,
as it is also capable of inferring base type information.

Annotated type systems share many of the advantages and the disadvantages of the type-
based approach. Types and terms are ideal places for saving the result of the analysis. The
annotations in terms are useful to guide and enable compiler optimisations, whereas the
annotations in types are useful to convey static information, both internally and externally
(to client modules, for instance). Type inference can usually be implemented more efficiently
(than traditional semantics-based methods like abstract interpretation [22]) and can save
much work when combined with the underlying source language type inference algorithm.
However, annotated type systems have been known to be less expressive than their semantics-
based counterparts, like abstract interpretation, and recovering some of the expressive power
is not only non-trivial, but may sometimes result in algorithms that are as inefficient as other
competing semantics-based methods.

We have chosen a Church-style formulation, so our type system infers annotated types
for a slightly modified version of the source language whose annotated terms also carry static
information, and that we call the intermediate or target language3. The type systems of both
the source and target languages are related in the sense that typings in the target language
correspond to typings of the source language, provided that we erase all static information.

1.3 Linearity analysis

Most of this thesis is concerned with the detailed study of linearity analysis, which is the
simplest of all structural analyses. The reason for such a choice is that linearity analysis

3A Curry-style version can be easily obtained by erasing all type information from the terms.

28 CHAPTER 1. INTRODUCTION

has a solid theoretical background, linear logic itself, is simple to understand, and can be
implemented efficiently. Linearity analysis seemed therefore ideal to give a, hopefully gentle,
introduction to the theory and techniques behind structural analysis.

Linearity analysis distinguishes between linear and non-linear values, as linear logic does,
except that these are encoded using annotations, which play the role of syntactic markers,
indicating the presence or absence of the exponential ‘!’ in types and terms [65]. The choice of
having an annotated language was a natural one in this case, since the terms of the annotated
target language of linearity analysis correspond, through the Curry-Howard correspondance,
to the family of intuitionistic linear logic proofs that allow exponentials only in those places
where Girard’s classical translation of intuitionistic logic formulae into intuitionistic linear
logic formulae would allow them (see Subsection 3.1.4). In other words, the terms of the
target linear language encode the ‘sub-girardian’ proofs of Danos, Joinet and Schellinx [26].
Linearity analysis provides the static analysis view of finding the optimal decoration, or
optimal translation, for intuitionistic proofs. In our case, we are interested in finding the best
annotation conveying the most accurate information.

A standard way of finding the optimal or best linearity analysis for a given source language
term consists in using constraint sets to register the dependencies existing between annotations
in the target term. Roughly speaking, the inequations in the constraint set not only specify
how the exponentials should propagate in the target term, but also point at those places
where they are unavoidable. Solving the constraint set to find the smallest solution amounts
to propagating the exponentials from where they are unavoidable to the required annotations
in the target term. There is an elegant way to formalise this process as a fixpoint iteration in
a space of solutions, which is an ordered structure of some sort. In fact, the annotated type
systems of structural analysis are fundamentally constructed around the notion of annotation
structure, which orders annotations in terms of their information content. For the case of
linearity analysis, we use a 2-point annotation lattice specifying the absence of an exponential
to be preferred over its presence. This order is not artificial; it is directly suggested by linear
logic, as it corresponds to the inclusion of linear contexts into intuitionistic contexts.

An important property of all our annotated languages is that structural information is not
corrupted by transformations that preserve the operational semantics of the source language.
The operational semantics of our source language is formalised in terms of the usual notion
of βη-reduction, which means that structural analysis may apply uniformly to many flavours
of functional languages (although, as we have previously remarked, this fact may also be
taken as one of its main limitations.) There is an exception to this observation. In fact,
for our simple linearity analysis, typing information is not preserved across η-reductions of
intuitionistic functions. This has motivated the extension of linearity analysis with a notion
of annotation subtyping. Annotation subtyping is also useful in other contexts, as we shall
later see.

1.4 Annotation polymorphism

For a given source term, finding the optimal annotated term for a given source term works
reasonably well for self-contained programs, but cannot be easily adapted to realistic pro-
grams consisting of several separately compiled modules. The term ‘self-contained’ is applied
here to those programs that do not use any definitions other than the ones provided in the
program itself. Most clearly, even the simplest programs that programmers write contain

1.4. ANNOTATION POLYMORPHISM 29

free variables that refer to definitions existing in exported modules (libraries), so assuming
self-containedness is rather unrealistic.

The problem is that the annotations of a definition generally depend upon the annotations
of the use site (i.e., the context that uses the definition), and the other way round. Assigning
the optimal type to a definition would be wrong in some cases, as some use sites may require a
weaker type to be typeable. Optimal types for definitions are therefore too restrictive. When
compiling a library definition, the compiler has, as one usually expects, no information about
the definition’s use sites, so the only reasonable solution is to assume the worst, and assign the
weakest possible type that would be compatible with all imaginable use sites. (This weakest
type always exist and corresponds to Girard’s translation.)

1.4.1 The poisoning problem

This observation also points at a weakeness of the analysis that has been identified by Wans-
brough and Peyton-Jones as the ‘poisoning problem’ [68]. Different use sites for a definition
may require distinct annotated types, but since a definition can only be assigned a single type,
this type must necessarily be the weakest type compatible with all the use sites. But now the
annotations of the different use sites must also be weakened, to level up with the weakened
annotations of their corresponding definition, and so on. This information loss en avalanche
is precisely a consequence of the fact that, in simple type systems, variables must assume a
unique type inside typing contexts. Kuo and Mishra’s simple type system of strictness types
was also weak due to this same restriction.

For the case of strictness analysis, the solution to this lack of ‘information locality’ con-
sisted in adding intersection types [19] of a particular sort, known as conjunctive types. A
definition was then allowed to have different (but compatible) types for different use sites
(contexts), thus augmenting significantly the accuracy of the analysis.

1.4.2 Contextual analysis

The solution we propose here is similar in spirit, although it adopts a slightly different form.
It adds to our original structural analysis the possibility of assigning polymorphic annotated
types to terms. We refer to the improved analysis allowing definitions to be assigned a set
of annotated types as contextual analysis. In the context of usage type systems, annota-
tion polymorphism is relatively new, and has been implemented only recently, but only in
a restricted form [67]. What we call here contextual analysis is known under the name of
‘polyvariant’ analysis (as opposed to ‘monovariant’ analysis) in the flow-based static analysis
community. Our approach is close in spirit to Gustavsson and Svenningsson’s bounded us-
age polymorphism [35]. We sometimes use the term constrained annotation polymorphism,
because of the fundamental use of constraint sets to restrict the values of bound annotation
parameters. Both terms refer to the same entity, for exactly the same application in mind,
that of describing families of annotated types. These should not be confused with ‘bounded
type polymorphism’ and ‘constrained type polymorphism’, which denote distinct type disci-
plines4. The notation we use of typing judgments coupled with constraint sets is closer to
constrained type polymorphism, though [1, 23, 49].

4After hesitating some time, the author preferred to employ the term general annotation polymorphism to
refer to the type assignment scheme that allows for complete decoration sets to be compactly characterised
using a single annotation-polymorphic term. The fact that we can always describe the set of all possible
decorations of a given source language term using an annotation-polymorphic term of the extended theory is

30 CHAPTER 1. INTRODUCTION

1.4.3 Modular static analysis

Using annotation polymorphism, a term can be assigned different types for different use
types, thus augmenting the accuracy of the analysis dramatically. We use constrained poly-
morphic types to give a satisfactory solution to the problem of analysing programs composed
of several separately compiled modules. The idea is to assign polymorphic annotated types
to definitions in modules. In particular, we are interested in the most general annotated
type that has as instances all the annotated types that arise as annotation-monomorphic
(monovariant) translations of the definition, and which necessarily constitute all the possi-
ble annotation-monomorphic typings. We refer to this set as the decoration space of the
definition. This strategy is similar to the one used to infer principal polymorphic types for
languages like ML (among others) [44]. We shall be concentrating on a restricted form of
annotation polymorphism, called let-based annotation polymorphism, that will provide the
foundations necessary to prove the correctness of the more accurate annotation inference al-
gorithm. The static analysis strategy that treats definitions in modules in this special way
will be referred to as modular static analysis, and can be understood as an extension of our
simple optimal analysis strategy for stand-alone programs.

1.5 Contributions

The main contribution of this thesis comprises the detailed study, from first principles, of
a general framework for the static analysis of structural properties for a realistic language5,
including both annotation subtyping and polymorphism. We can summarise our contributions
as follows:

• We prove a number of standard type-theoretic properties for various versions of linear-
ity analysis, with and without annotation polymorphism. In particular, we prove the
analysis correct with respect to the operational semantics of the source language and
motivate the existence of optimal solutions.

• We introduce constrained annotation polymorphism in a general way and prove its
correctness, and consider a restricted form of annotation polymorphism we shall use to
derive a strategy of static analysis for modular programs.

• We derive two type inference algorithms, for which we prove syntactic soundness and
completeness results.

• We introduce structural analysis in the form of an abstract framework that generalises
all our previous results and apply it to a few case studies, including non-occurrence,
affine and neededness analysis.

Although the approach is not new, we are not aware of the existence of any detailed pre-
sentation, from first principles, of a theory for the static analysis of structural properties.
At the time of writing, however, two doctoral dissertations have been written on usage type

a corollary of the proof of soundness and completeness of the annotation inference algorithm we introduce in
Section 6.1, and our intended meaning of the word ‘general’ in this context.

5We have not addressed explicitly the annotation of data type structures constructed from sums and
products, but these are hardly problematic in our framework. An annotation rule for sums can be easily
generalised from the rule given for annotating the conditional construct.

1.6. PLAN OF THE THESIS 31

systems for affine analysis, involving similar ideas and developments [66, 33]. The difference
is that the affine analyses proposed are specifically designed to provide best results for call-
by-need languages only, compared to our version of affine analysis, which has a wider range
of applicability, but which has been known to provide poor results.

The aim of the author was to bring some results on early work in the study of linear
logic proof theory (most notably, on linear decorations) and mutiple modalities logics, into
the realm of static analysis, extending the analyses on the way with annotation subtyping
and polymorphism to augment their usefulness without invalidating their strong theoretical
foundations.

1.6 Plan of the thesis

The thesis is logically organised into two parts. The first part, composed of Chapters 3 to 6,
is concerned with linearity analysis, in all its flavours. The second part, comprising only
Chapter 7, concerns the analysis of structural properties in a more abstract framework.

The following is a brief summary of the contents of each chapter:

Chapter 2 introduces the source language FPL and recalls some basic standard
definitions from order theory that we shall be needing in later chapters.

Chapter 3 presents NLL, a simple annotated type system for the analysis of lin-
earity properties, and shows how it relates to the more standard work
in linear type theory. We illustrate how the result of the analysis could
be exploited by formalising a simple inlining transformation. Also, we
discuss the existence of optimal analyses.

Chapter 4 presents NLL≤, an extended linearity analysis with a notion of annota-
tion subtyping, which we prove correct.

Chapter 5 presents NLL∀ and NLL∀≤, which extend the previous type systems of
linearity analysis with a notion of annotation polymorphism. We con-
sider a subset of NLL∀≤, called NLL∀let≤, that will play an important
role in the derivation of a type inference algorithm for constrained poly-
morphic definitions.

Chapter 6 discusses annotation inference, and describes two annotation inference
algorithms for suitable fragments of NLL≤ and NLL∀let≤, respectively.

Chapter 7 presents a type system for the static analysis of structural properties as
a generalisation of the type systems studied in the previous chapters.
We discuss relevance analysis as an application to the analysis strictness
properties.

Chapter 8 concludes and discusses further work.

The appendices provide the following complementary information:

Appendix A presents an alternative presentation of NLL, with an without anno-
tation polymorphism, which we only briefly sketch.

1.7 Prerequisites

We assume basic knowledge on functional programming, type theory and logic, especially
linear logic. We use very little knowledge from order theory, so the definitions given in the

32 CHAPTER 1. INTRODUCTION

preliminaries chapter should be enough.
A good knowledge on linear logic is recommended, but is otherwise not compulsory. In

fact, even if linear logic is behind every single bit of type theory shown here (or almost), many
key ideas can be grasped with no difficulty through NLL directly.

Chapter 2

Preliminaries

The main purpose of this short chapter is to introduce some of the notation we shall be using
throughout, and to recall some standard definitions and results before setting straight into
the matter of this thesis.

2.1 The source language

The prototypical simply-typed functional programming language we shall be using as our
source language is a variant of Plotkin’s PCF [55], comprising terms of different types (integer,
boolean, function, and pair types). We coin this language FPL, an acronym for ‘Functional
Programming Language’.

2.1.1 Syntax

The notation is mostly standard. The set ΛFPL of FPL preterms, ranged over by M and N ,
is inductively defined by the following grammar rules:

M ::= π Primitive constant or operator
| x Variable
| λx:σ.M Function abstraction
| MM Function application
| 〈M,M〉 Pairing
| let 〈x, x〉 = M in M Unpairing
| if M then M else M Conditional
| fix x:σ.M Fixpoint

In general, if L is any language, we shall write ΛL for the set of its preterms. We assume
similar conventions for other notations that involve explicit language names.

We assume our source language comes equipped with a predefined set of primitive contants
and operators, collectively ranged over by π, which must contain the integers, the booleans,
as well as a few standard arithmetic and relational operators:

π ::= n ∈ N Integer
| true | false Booleans
| + | − | < | = · · · Primitive operators

33

34 CHAPTER 2. PRELIMINARIES

π[ρ] = π

x[ρ] = ρ(x)

y[ρ] = y if y 6∈ dom(ρ))

(λx:σ.M)[ρ] = λx:σ.M [ρ\{x}]

(MN)[ρ] = M [ρ]N [ρ]

(〈M1,M2〉)[ρ] = 〈M1[ρ],M2[ρ]〉

(let 〈x1, x2〉 = M in N)[ρ] = let 〈x1, x2〉 = M [ρ] in N [ρ\{x1, x2}]

(if M then N1 else N2)[ρ] = if M [ρ] then N1[ρ] else N2[ρ]

(fix x:σ.M)[ρ] = fix x:σ.M [ρ\{x}]

(ρ\{x1, . . . , xn} is the restriction of ρ to the domain dom(ρ)\{x1, . . . , xn}.)

Figure 2.1: Inductive definition of preterm substitution

Function abstraction, fixpoint and unpairing are variable-binding constructs. Any occur-
rences of x in λx:σ.M and fix x:σ.M are considered bound; any occurrences of x1 and x2 in N
are bound in let 〈x1, x2〉 = M in N . Any other occurrences of variables are, conversely, free.
We shall write FV(M) for the set of free variables in M .

As usual, two preterms M and N that differ only on the names of their bound variables
will be considered as syntactically equivalent. When this is necessary, we shall explicitly note
this fact M ≡α N .

If ρ is a finite function mapping variables into preterms, the notation M [ρ] will be used to
stand for the ‘simultaneous’ substitution of ρ(xi) for the free occurrences of xi in M , where
xi ∈ dom(ρ). Substitution is inductively defined on the structure of preterms in Figure 2.1.

We use the term renaming substitution for the special case of substitutions mapping
variables into variables, and M [N/x] as abbreviation for M [ρ], where dom(ρ) = {x} and
ρ(x) = N . As usual, we must be careful to avoid the capture of any of the free variables in
the image of ρ, so we assume that, whenever this problem may arise, we shall use instead a
suitable α-equivalent representative of M .

2.1.2 Static semantics

Our source language is a typed language, in the sense that we shall only be interested in
those preterms that are well-typed, in the sense that they can be assigned a type (for a given
type-assignment of its free variables).

The set of FPL types, ranged over by σ and τ , is defined inductively by the following
grammar rules:

σ ::= G Ground type
| σ → σ Function space
| σ × σ Cartesian product

The metavariable G ranges over the predefined ground-type constants

G ::= int | bool,

2.1. THE SOURCE LANGUAGE 35

standing for the type of integer and boolean values, respectively. We assume that each
primitive π has an associated predefined type in the type theory, called its signature, and
written Σ(π). These are summarised by the following table:

Primitive Σ(π)
false, true bool

n int

+,− int → int → int

<,= int → int → bool

and so on. . .

In order to give a static semantics to FPL, we shall consider typing judgments, which are
typing assertions of the form

Γ ⊢M : σ,

stating that preterm M has type σ in the typing context Γ.
A typing context is a finite partial function mapping variables to types, and that we shall

write (following Prawitz notation) as a sequence of variable typing declarations:

Γ ::= x1 : σ1, . . . , xn : σn.

We shall write Γ1,Γ2 for the union of the two partial maps Γ1 and Γ2. We assume the union
to be well-formed, in the sense that their domains are required to be disjoint. Thus, in writing
Γ, x : σ, we are implicitly assuming x 6∈ dom(Γ).

A type system is a collection of rules comprising an inductive definition of the set of valid
typing judgments. The type system of FPL is shown in Figure 2.21.

If J stands for a valid typing judgment, we shall write Π(J) to refer to a type derivation
or proof of J ; that is, a type derivation Π with J as its conclusion.

The typing assertion M : σ should be understood as an abbreviation for − ⊢ M : σ,
where ‘−’ stands for the empty typing context. In this case, we must have that M is closed
(Proposition 2.1.1a).

A preterm M is typeable if there exists Γ and σ for which Γ ⊢M : σ is valid according to
the typing rules of FPL. A preterm M is a term if it is typeable.

Proposition 2.1.1
Typings satisfy the following list of basic properties.

• If Γ ⊢M : σ, then FV(M) ⊆ dom(Γ).

• If Γ, x : σ ⊢M : τ and x 6∈ FV(M), then Γ ⊢M : τ .

• If Γ ⊢M : σ and Γ ⊢M : τ , then σ ≡ τ .

Proof. Easy induction on the derivation of Γ ⊢M : σ for the first and last properties, and
of Γ, x : σ ⊢M : τ for the second one. �

Part of the correctness of our static semantics is given by the following important Substi-
tution Lemma, which states that substitution is well-behaved under certain reasonable typing
conditions.

1We have preferred to formulate the type system of our source language using explicit structural rules, so
that the rules visually match up with those of linearity analysis.

36 CHAPTER 2. PRELIMINARIES

Σ(π) = σ
Primitive

− ⊢ π : σ
Identity

x : σ ⊢ x : σ

Γ, x : σ ⊢M : τ
→I

Γ ⊢ λx:σ.M : σ → τ

Γ1 ⊢M : σ → τ Γ2 ⊢ N : σ
→E

Γ1,Γ2 ⊢MN : τ

Γ1 ⊢M1 : σ1 Γ2 ⊢M2 : σ2
×I

Γ1,Γ2 ⊢ 〈M1,M2〉 : σ1 × σ2

Γ1 ⊢M : σ1 × σ2 Γ2, x1 : σ1, x2 : σ2 ⊢ N : τ
×E

Γ1,Γ2 ⊢ let 〈x1, x2〉 = M in N : τ

Γ1 ⊢M : bool Γ2 ⊢ N1 : σ Γ2 ⊢ N2 : σ
Conditional

Γ1,Γ2 ⊢ if M then N1 else N2 : σ

Γ, x : σ ⊢M : σ
Fixpoint

Γ ⊢ fix x:σ.M : σ

Γ ⊢M : τ
Weakening

Γ, x : σ ⊢M : τ

Γ, x : σ ⊢M : τ
Contraction

Γ, x1 : σ, x2 : σ ⊢M [x1/x, x2/x] : τ

Figure 2.2: The typing rules of FPL

Lemma 2.1.2 (Substitution)
The following typing rule is admissible.

Γ1 ⊢M : σ Γ2, x : σ ⊢ N : τ
Substitution

Γ1,Γ2 ⊢M [N/x] : τ

Proof. Easy induction on the derivation of Γ1 ⊢M : σ. �

2.1.3 Operational semantics

We formalise the operational behaviour of our simple source language by giving a notion of β-
reduction. Let → ⊆ ΛFPL×ΛFPL be the reduction relation obtained by taking the contextual
closure of the following axioms:

(λx:σ.M)N →M [N/x]

let 〈x1, x2〉 = 〈M1,M2〉 in N → N [M1/x1,M2/x2]

if true then N1 else N2 → N1

if false then N1 else N2 → N2

fix x:σ.M →M [fix x:σ.M/x]

We also assume the existence of a number of δ-rules, specifying the behaviour of primitive
operators; they all have the following general form:

πop π1, . . . , πn → π, where [[π]]([[π1]], . . . , [[πn]]) = [[π]],

2.2. PARTIAL ORDERS 37

where πop denotes a primitive operator of arity n, and π1, . . . , πn are primitive constants. The
right-hand side of the reduction rule must be interpreted as the application of the semantic
function [[π]] to the arguments [[π1]], . . . , [[πn]], which correspond to the semantic elements
of some predefined domain. The result of such an application is a constant π. All the
intermediate languages we shall be studying are assumed to inherit these reduction rules
from the source language, so we shall omit them in the future.

By contextual closure, we mean the reduction relation obtained by closing the above
axioms with respect to the rule

M → N

C[M] → C[N]

where C is an evaluation context. Roughly speaking, an evaluation context is a preterm
with a single distinguished hole ‘−’ in it. (For instance, the evaluation context C[−] ≡
if − then N1 else N2 allows the test of the conditional to be reduced.)

As expected, we shall write ։ for the reflexive and transitive closure of our reduction
relation →.

The operational and static semantics of our source language are related by the following
Subject reduction result, stating that typing information is preserved across reductions.

Theorem 2.1.3 (Subject reduction)
If Γ ⊢M : σ and M → N , then Γ ⊢ N : σ

Proof. By induction on →-derivations and the Substitution Lemma 2.1.2. �

2.2 Partial orders

In this section, we review the necessary basic notions of order theory we shall be needing
throughout. The reader is referred to Davey and Priestley’s book [27] for a comprehensive
introduction to the topic.

Definition 2.2.1 (Partial ordered set)
Let ⊑ ⊆ A × A be a binary relation on a given set A. We say that ⊑ is a partial order if it
reflexive, antisymmetric and transitive; that is, if for all a, b, c ∈ A:

(a) a ⊑ a

(b) a ⊑ b and b ⊑ a imply a = b

(c) a ⊑ b and b ⊑ c imply a ⊑ c

A partially ordered set (or simply a poset) is a set A with an associated partial order relation
⊑. When it is necessary to explicit this association, we shall write 〈A;⊑〉. �

A common example of a partially ordered set is ℘(A) ordered by set inclusion ⊆. As
another example, if A1, A2,. . . , An is a family of ordered sets, the cartesian product A1 ×
A2 × · · · ×An forms an ordered set under the pointwise order, defined by

(a1, . . . , an) ⊑ (b1, . . . , bn) if and only if ai ⊑ bi for all 1 ≤ i ≤ n.

Quite predictably, we shall freely write a ⊒ b as an alternative to a ⊑ b and a 6⊑ b to mean
that a ⊑ b does not hold.

38 CHAPTER 2. PRELIMINARIES

Definition 2.2.2 (Induced order)
If B ⊆ A and A is partially ordered, there is a natural order that B inherits from A, called
the induced order from A, setting a ⊑ b, for all a, b ∈ B, if and only if a ⊑ b in A. �

Definition 2.2.3 (Special elements)
Let A be a partially ordered set and let B ⊆ A. An element a ∈ B is a maximal element of B
if b ⊒ a implies b = a, for any b ∈ B. If a ⊒ b, for every b ∈ B, we say that a is the maximum
or greatest element of B, and write a = maxB. The dual notions of minimal and minimum
or smallest elements are defined likewise, but with the order reversed.

The greatest element of A, if it exists, is called top and written ⊤. Likewise, the smallest
element, in case it exists, is called bottom of written ⊥. �

For the case of ℘(A), for instance, we naturally have ⊤ = A and ⊥ = ∅.
We shall be considering partially ordered sets that have a top element, but not necessarily

a bottom element. When a bottom element is needed, we shall generally add it artificially by
‘lifting’ the ordered set we started with.

Definition 2.2.4 (Lifting)
Given a partially ordered set A, the lift of A, written A⊥ has elements taken from A ∪ {⊥},
where ⊥ 6∈ A, and ordered as follows:

a ⊑ b in A⊥ if and only if a = ⊥ or a ⊑ b in A.

�

Definition 2.2.5 (Lower and upper bounds)
Let A be a partially ordered set and let B ⊆ A. An element a ∈ A is an upper bound of B
if a ⊒ b for all b ∈ B. Dually, an element a ∈ A is a lower bound of B if a ⊑ b for all b ∈ B.
The least upper bound or join of B (if it exists), and written ⊔B, is the smallest of all the
upper bounds of B:

⊔B = min {a ∈ A | a ⊒ b for all b ∈ B}.

Likewise, we define the greatest lower bound or meet dually:

⊓B = max {a ∈ A | a ⊑ b for all b ∈ B}.

�

Notice that if B = ∅, then ⊔B = ⊥ if A has a bottom element; and, dually, ⊓B = ⊤, if B
has a top element. If, on the other hand, B = A, we have that ⊔B = ⊤, in case B has a top
element, and ⊓B = ⊥, in case B has a bottom element.

We shall use a special notation for the case where B has two elements. We shall write
a⊔b and a⊓b for ⊔{a, b} and ⊓{a, b}, respectively. According to the definitions of least upper
bound and greatest lower bound, note that a ⊔ b = b and a ⊓ b = a if a ⊑ b.

We shall mainly be interested in those structures for which a ⊔ b and a ⊓ b exist for all
pair of elements a, b ∈ A.

Definition 2.2.6 (Semilattices and lattices)
Let A be a non-empty partially ordered set. We call A a ⊔-semilattice (“join-semilattice”),
if a ⊔ b exist for all pair of elements a, b ∈ A. Dually, we call A a ⊓-semilattice (“meet-
semilattice”), if a ⊓ b exist for all a, b ∈ A. The partially ordered set A is a lattice if it is

2.2. PARTIAL ORDERS 39

simultaneously a ⊔-semilatice and a ⊓-semilattice. It is not difficult to see that if A is a finite
lattice, it has top and bottom elements.

If ⊔B and ⊓B exist for any subset B ⊆ A (and not only for pairs of elements), then A is
called a complete lattice. �

Notice that 〈℘(A);⊆〉 is a complette lattice, where joins are realised by unions and meets
by intersections.

It is worth noting that finite lattices are also complete lattices: If B is a (necessarily finite)
subset of A, and so B = {b1, b2, . . . , bn}, then we have ⊔B = (· · · (b1 ⊔ b2) ⊔ · · ·) ⊔ bn. We
proceed dually for ⊓B.

Definition 2.2.7 (Properties of maps)
Let A be a partially ordered set. We call a map f : A → A monotone (on A) if f preserves
the underlying order; formally, for all a, b ∈ A, we must have that

a ⊑ b implies f(a) ⊑ f(b).

If 〈ai〉n denotes the ascending chain

a1 ⊑ · · · ⊑ an,

then a map is said to preserve joins of chains if and only if

f(
⊔

i≥n

ai) =
⊔

i≥n

f(ai).

�

We shall be interested in expressing the solutions of sets of constraints as particular
elements arising as solutions of fixpoint equations.

Definition 2.2.8 (Fixpoint)
Let f : A→ A be a function. An element a ∈ A is called a fixpoint of f , if

f(a) = a.

�

In particular, we shall be looking for the smallest fixpoint (solution), which always exists for
monotone maps defined on complete lattices.

Theorem 2.2.9 (Knaster-Tarski Fixpoint Theorem)
Let A be a complete lattice and f : A→ A a monotone map. Then,

h = ⊓{a ∈ A | f(a) ⊑ a}

is a least fixpoint of f .

Proof. Let H = {a ∈ A | f(a) ⊑ a}, and so h = ⊓H. We shall prove that h = f(h) by
showing that f(h) ⊑ h and h ⊑ f(h) respectively. Note that for all a ∈ H, we have h ⊑ a. It
follows that f(h) ⊑ f(a) ⊑ a by monotonicity of f . Therefore, f(h) is a lower bound of H, so
f(h) ⊑ h. Because f is monotone, we have that f(f(h)) ⊑ f(h), so f(h) ∈ H by definition,
and hence, h ⊑ f(h), as required. �

40 CHAPTER 2. PRELIMINARIES

There is a simple iterative method to compute least fixpoints of monotone maps that also
preserve joins of chains. This method is suggested in the following theorem.

Theorem 2.2.10
Let A be a complete lattice and f : A→ A a monotone map preserving joins of chains. Then,

µ(f) =
⊔

n≥0

fn(⊥)

is the least fixpoint of f .

Proof. We first observe that h = ⊔n≥0f
n(⊥) always exists and is the limit of the ascending

chain
⊥ ⊑ f(⊥) ⊑ . . . ⊑ fn(⊥) ⊑ fn+1(⊥)

It is not difficult to see that h is a fixpoint. Indeed,

f(
⊔

n≥0

fn(⊥)) =
⊔

i≥0

f(fn(⊥)) (since f preserves joins of chains)

=
⊔

i≥1

fn(⊥)

=
⊔

i≥0

fn(⊥) (since ⊥ ⊑ fn(⊥) for all n).

To prove that h is indeed the least fixpoint, let h′ be any fixpoint of f . Then, by induction,
fn(h′) = h′ for all n. By monotonicity, since ⊥ ⊑ h′, we have fn(⊥) ⊑ fn(h′) = h′ for all n.
Therefore, by construction of h,we must have that h ⊑ h′, so h is the least fixpoint. �

Chapter 3

Linearity analysis

We begin our study of annotated type systems for the static analysis of structural properties by
first presenting a simple version of linearity analysis. Linearity analysis is aimed at discovering
when values are used exactly once, or in a linear fashion, as opposed to any number of times,
or in an intuitionistic or non-linear fashion.

3.0.1 An intermediate linear language

The intermediate language of linearity analysis we present here arises quite naturally as
a reformulation of a suitable fragment of Barber and Plotkin’s DILL [5] (Dual Intuitinistic
Linear Logic) in terms of an annotated type system. The annotations play the role of syntactic
markers, indicating the presence or absence of the exponential ‘!’ in types and terms. This
encoding of linear types using annotations seems to have been first proposed by Wadler [65].
The fragment we study here corresponds to his type system of ‘standard types’, which allows
the exponential to appear in the places where Girard’s standard translation from intuitionistic
types into linear types would allow an exponential. We refer to this fragment as the ‘functional
programming’ fragment of linear logic, since it allows the encoding of both intuitionistic and
linear functions without the need for explicit promotion and dereliction terms, using the
familiar syntax of typed functional languages extended with annotations. Proof-theoretically,
the terms of the functional programming fragment may be viewed as encoding intuitionistic
linear logic proofs that have the same structure as the intuitionistic proofs we would have
obtained if we erased the annotations from the terms. These proofs, and their suggested
translations, which are known under the name of decorations, have been independently studied
by Danos, Joinet and Schellinx [26]. We show here the view of static analysis, which is aimed
at finding the optimal set of annotations for an intuitionistic term, in the sense that if an
exponential can be avoided in a translation, it does not belong to the optimal set. We shall
first show that this optimal, or best, set exists by considering the space of all decorations of
a source language (intuitionistic) term, and proving that it forms a structure that admits a
smallest decoration.

We differ from Wadler in that we use side-conditions to encode the context restrictions
required by linear logic, instead of explicit constraint set in the rules. We shall encounter
constraint sets when we discuss annotation quantification and annnotation inference. Our
formulation is closely related to the linear fragment of Bierman’s usage type system [13],
especially in the fact that we consider a set of more or less abstract typing rules, whose
concrete semantics is completed by specifying an external domain of annotations; in the case of

41

42 CHAPTER 3. LINEARITY ANALYSIS

linearity analysis, this domain is a 2-point annotation lattice. The given order on annotations
encodes the inclusion relationship existing between linear and intuitionistic contexts1. We
shall exploit this relationship to the advantage of static analysis in the next chapter, when
we shall discuss an extension of linearity analysis with subtyping.

3.0.2 An application to inlining

As we pointed out in the introduction, a candidate application for this sort of analysis is
the compiler optimisation technique known as inlining. Informally, in a functional language
compiler, inlining consists in replacing a reference to a definition by the definition body itself2.
An interesting case is when a definition is known to be used exactly once, in which case it can
safely be inlined without risking code inflation or the unnecessary recomputation of its body3.
Many compilers perform some sort of occurrence analysis to attempt to discover obvious cases
of single use. Linearity analysis may therefore be helpul to also uncover the less obvious cases,
thus allowing for a more aggressive inlining strategy. It is important to remark that we are
not suggesting that linearity should be used as the single inlining criterion. Indeed, most of
the benefit of inlining comes from giving a priority to, for instance, small functions that are
called from several call sites [63]. We shall use the annotations provided explicitly in our
intermediate linear language to formalise a very simple inlining transformation. Our main
purpose is to give support to our claim that structural analysis may be used to reason about
some interesting source language transformations, so our formalisation does not cover many
important aspects of inlining that should be considered in a real implementation [51].

As we shall later see, because our theory is proved sound independently of the reduction
strategy chosen, it is therefore very conservative, especially for lazy evaluation strategies.
Theories better suited for optimising lazy languages, for instance, have been described in [62,
68, 35].

3.0.3 Organisation

This chapter is organised as follows:

• Section 3.1 reviews intuitionistic linear logic. The aim of this section is to introduce the
syntax and static semantics of DILL as the underlying foundations of linearity analysis.

• Section 3.2 introduces NLL, our simplest annotated type system of linearity analysis,
and provides some examples.

• Section 3.3 informally comments on the relationship existing between NLL terms and
linear decorations.

• Section 3.4 introduces a syntax-directed version of NLL. We first consider a slightly
modified version of the contraction rule and introduce some new notation (whose rele-
vance will become evident in the context of the more general framework).

• Section 3.5 studies some important type-theoretic properties and establishes the seman-
tic correctness of the analysis.

1A context is simply a term with a hole, like an evaluation context.
2The definition can later be removed altogether if it is not used anywhere else. We shall be able to discover

some trivial cases of non-usage using non-occurrence analysis, covered in Section 7.4 on page 149.
3In the literature, definitions that are referenced from a single call site are usually referred to as ‘singletons’.

3.1. A BRIEF REVIEW OF DILL 43

• Section 3.6 proves the existence of an optimal analysis, thus concluding our discussion
on the correctness of linearity analysis.

• Section 3.7 formalises a very simple inlining optimisation as an immediate application
of linearity analysis.

We shall leave the problem of how to devise an algorithm for inferring linearity properties,
as well as other related pragmatic issues, to Chapter 6.

3.1 A brief review of DILL

In this section we review the type theory obtained by assigning terms to the intuitionistic
fragment of Barber and Plotkin’s own formulation of linear logic and known as DILL [5]. Other
equivalent formulations exist, with different motivations and historical background [10, 12].

3.1.1 Syntax and typing rules

The grammar for types, ranged over by σ and τ , is shown below:

σ ::= G Ground type
| σ⊸ σ Linear function space
| σ ⊗ σ Tensor product
| !σ Exponential type

Intuitively, σ⊸ τ stands for the type of linear functions with domain σ and codomain τ ;
and σ ⊗ τ is the type of linear pairs with first component of type σ and second component
of type τ . The “banged” or “shrieked” type !σ is reserved for intuitionistic values, which can
be freely duplicated or erased. Intuitionistic functions have type !σ⊸ τ , making explicit the
fact that the argument of the function may be used several times, or none at all. Intuitionistic
pairs have, therefore, type !σ ⊗ !τ .

The set ΛDILL of preterms, again ranged over by M and N , is defined by the following
grammar rules:

M ::= π Primitive
| x Variable
| λx:σ.M Function abstraction
| MM Function application
| 〈M,M〉 Pairing
| let 〈x, x〉 = M in M Unpairing
| if M then M else M Conditional
| fix x:σ.M Fixpoint
| !M Promotion
| let !x = M in M Dereliction

The elementary syntactic notion of substitution M [ρ] can be defined in the usual way.
Note that the dereliction term let !x = M in N binds x in N , much like a common let.

Unlike other formulations of linear logic, the particular characteristic of DILL is that
it distinguishes between linear and intuitionistic variables explicitly by introducing separate
typing contexts (hence the term ‘dual’). Typing judgments have the form

Γ ;∆ ⊢M : σ,

44 CHAPTER 3. LINEARITY ANALYSIS

IdentityI
Γ, x : σ ;− ⊢ x : σ

IdentityL
Γ ;x : σ ⊢ x : σ

Σ(π) = σ
Primitive

Γ ;− ⊢ π : σ

Γ ; ∆, x : σ ⊢M : τ
⊸I

Γ ; ∆ ⊢ λx:σ.M : σ⊸ τ

Γ ; ∆1 ⊢M : σ⊸ τ Γ ; ∆2 ⊢ N : σ
⊸E

Γ ;∆1,∆2 ⊢MN : τ

Γ ; ∆1 ⊢M1 : σ1 Γ ; ∆2 ⊢M2 : σ2
⊗I

Γ ; ∆1,∆2 ⊢ 〈M1,M2〉 : σ1 ⊗ σ2

Γ ; ∆1 ⊢M : σ1 ⊗ σ2 Γ ; ∆2, x1 : σ1, x2 : σ2 ⊢ N : τ
⊗E

Γ ; ∆1,∆2 ⊢ let 〈x1, x2〉 = M in N : τ

Γ ; ∆1 ⊢M : bool Γ ; ∆2 ⊢ N1 : σ Γ ; ∆2 ⊢ N2 : σ
Conditional

Γ ; ∆1,∆2 ⊢ if M then N1 else N2 : σ

Γ, x : σ ;− ⊢M : σ
Fixpoint

Γ ;− ⊢ fix x:σ.M : σ

Γ ;− ⊢M : σ
!I

Γ ;− ⊢ !M : !σ

Γ ; ∆1 ⊢M : !σ Γ, x : σ ; ∆2 ⊢ N : τ
!E

Γ ; ∆1,∆2 ⊢ let !x = M in N : τ

Figure 3.1: DILL typing rules

where Γ conventionally contains declarations for intuitionistic variables and ∆ contain decla-
rations for linear variables. We assume that variables in either context are pairwise distinct.
The typing rules of DILL are summarised in Figure 3.1.

Except for the Conditional and Fixpoint rules, the other rules are standard from [5]. The
Conditional rule is a special case of the rule for sums, whereas the Fixpoint rule is standard
from Brauner’s work [15]. As before, Σ contains the signatures for constants and primitive
operators. We assume all signatures to be linear; so, for instance, Σ(+) = int⊸ int⊸ int.

A further interesting characteristic of DILL is that the structural rules are implicit,
as is clear from the way intuitionistic contexts are handled by the rules. Weakening and
Contraction are therefore admissible rules:

Γ ; ∆ ⊢M : τ
Weakening

Γ, x : σ ; ∆ ⊢M : τ

Γ, x1 : σ, x2 : σ ; ∆ ⊢M : τ
Contraction

Γ, x : σ ; ∆ ⊢M [x1/x, x2/x] : τ

There are two versions of the Identity rule, one for each variable sort. The linear context
in the IdentityI rule is constrained to be empty, since no linear variables may be discarded.
The same remark applies for the Constant rule. This restriction should not apply to the
intuitionistic variables in Γ, which are allowed to be both contracted and weakened.

Functions are by default linear, so ⊸I extends the linear context with the function’s
declared binding, which is constrained to be used exactly once in the function’s body.

3.1. A BRIEF REVIEW OF DILL 45

Pairs are typed using the rule ⊗I , which partitions the linear context into two sub-contexts
to ensure that pair components do actually use distinct linear variables. A similar remark
applies to the rules ⊸E , ⊗E , !E and Conditional. Notice that in the Conditional rule, both
branches of the conditional share the same linear variables. This is perfectly safe in this case,
since only one of the branches will be selected for evaluation.

Intuitionistic values, of the form !M , are introduced with the !I rule. Because intuition-
istic variables may be freely duplicated or erased, linear variables are not allowed to occur
inside such terms. Intuitionistic values can be deconstructed using the pattern-matching form
let !x = M in N . The !E rule is the only rule that introduces intuitionistic variable declara-
tions, so x is allowed to be used in a non-linear fashion inside N . For this reason, the rule
also ensures that M is a non-linear value by verifying that it has a matching non-linear type.

3.1.2 Reduction

A notion of β-reduction for linear terms is defined in a similar way as we did for our source
language. The rewrite rules are the following:

(λx:σ.M)N →M [N/x]

let 〈x1, x2〉 = 〈M1,M2〉 in N → N [M1/x1,M2/x2]

let !x = !M in N → N [M/x]

if true then N1 else N2 → N1

if false then N1 else N2 → N2

fix x:σ.M →M [fix x:σ.M/x]

Notice that unfolding a fixpoint term results in the duplication of its body on the right-hand
side. This explains why the linear context in the Fixpoint rule is constrained to be empty.
Once again, we assume the existence of a number of δ-rules, that we shall here not explicitly
address.

3.1.3 Substitution

Because of the split contexts, DILL admits two different sorts of substitution (cut), depending
on the sort of variable that is substituted for:

Γ ; ∆1, x : σ ⊢M : τ Γ ; ∆2 ⊢ N : σ

Γ ; ∆1,∆2 ⊢M [N/x] : τ

Γ, x : σ ; ∆ ⊢M : τ Γ ;− ⊢ N : σ

Γ ;∆ ⊢M [N/x] : τ

Notice that substituting a term for the free occurrences of an intuitionistic variable may
result in the duplication or deletion of the substituted term; this is the reason why the
intuitionistic substitution rule (right) does not allow any linear variables in its context. The
linear substitution rule (left), on the other hand, need not impose any restrictions.

The restriction on the linear context imposed by the intuitionistic substitution is impor-
tant, and lies at the heart of the operational correctness of the calculus. We shall study
reduction later, in the context of a our annotated linear theory.

3.1.4 Girard’s translation

Figure 3.2 provides a definition for the well-known Girard’s translation [30], mapping FPL
terms into the intuitionistic fragment of DILL.

46 CHAPTER 3. LINEARITY ANALYSIS

G
• = G

(σ → τ)• = !σ•⊸ τ•

(σ1 × σ2)
• = !σ1

• ⊗ !σ2
•

x• = x

π• =

λx1:!G1 . . . λxn:!Gn.

(let !y1 = x1 and · · · and !yn = xn in π y1 · · · yn),

if Σ(π) = G1 ⊸ · · ·⊸ Gn⊸ G;

π, otherwise

(λx:σ.M)• = λx:!σ•.let !y = x in M [y/x]•

(MN)• = M• !N•

〈M1,M2〉
• = 〈!M1

•, !M2
•〉

(let 〈x1, x2〉 = M in N)• = let 〈x1, x2〉 = M• in

(let !y1 = x1 and !y2 = x2 in

N [y1/x1, y2/x2]
•)

(if M then N1 else N2)
• = if M• then N1

• else N2
•

(fix x:σ.M)• = fix x:σ•.M•

where y,y1 and y2 are fresh variables.

Figure 3.2: Girard’s translation

For contexts, let Γ• ≡ (x1 : σ1, . . . , xn : σn)
• = x1 : σ1

•, . . . , xn : σn
•.

(The notation let !x1 = M1 and · · · and !xn = Mn in N is used, as expected, as an abbre-
viation for a series of nested derelictions.)

The reader may have noticed that the translation of primitives π• requires the construction
of a ‘wrapper’ function as a result of the fact that we have assumed type signatures to be
linear.

Proposition 3.1.1 (Soundness)
Γ ⊢

FPL
M : σ implies Γ• ;− ⊢

DILL
M• : σ•.

Proof. By induction on the derivation of Γ ⊢
FPL

M : σ. �

3.2 The type system NLL

We are now ready to present the syntax and typing rules of NLL, our intermediate linear lan-
guage. NLL is what we call the ‘functional programming’ subset of DILL, the minimal setting
to discuss translations from our source language into our intermediate linear language. In this
minimal fragment, both the linear and intuitionistic logical connectives appear as primitive.

3.2. THE TYPE SYSTEM NLL 47

(The intuitionistic implication, for instance, is not definable in terms of the exponential and
linear implication.)

3.2.1 Annotation set

Annotated type systems are usually formulated in terms of an ordered annotation set. For
the case of linearity analysis, we define the 2-point partially ordered set of annotations

A ≡ 〈{1,⊤},⊑〉.

The elements 1 and ⊤, collectively ranged over by a, b and c, are called annotation constants
or values. They are intended as notation for the following structural properties:

1 Linear
⊤ Intuitionistic

For convenience, we shall write A for both the annotation poset and the underlying anno-
tation set. When confusion may arise, we shall also qualify our notation with the conventional
name of the typed theory as a subscript (as in ⊑NLL, for instance).

Informally, the order relation ⊑ explicitly encodes the fact that linear resources are special
sorts of intuitionistic resources. Hence, we adopt the order relation given by

a ⊑ a 1 ⊑ ⊤

From a static analysis viewpoint, the order relation can be interpreted as specifying that linear
annotations should be preferred over intuitionistic annotations in terms of their information
content. (The order relation will play a valuable role in the definition of the ‘best’ analysis.)

3.2.2 Annotated types

The set of annotated types, ranged over by σ and τ , is generated by the following grammar
rules:

σ ::= G Ground type
| σa⊸ σ Function space
| σa ⊗ σa Product

where G is, as before, one of the ground types int or bool.
An annotated type σ provides an alternative notation for a particular DILL type, whose

meaning [[σ]] is given by the following equations.

[[G]] = G (3.1)

[[σa⊸ τ]] = ([[σ]])pa ⊸ [[τ]] (3.2)

[[σa ⊗ τ b]] = ([[σ]])pa ⊗ ([[τ]])pb (3.3)

where

(σ)p1 = σ (3.4)

(σ)p⊤ = !σ (3.5)

So, in syntactic terms, an annotation marks the existence or absence of an exponential.

48 CHAPTER 3. LINEARITY ANALYSIS

If σ is an NLL type, we shall write σ◦ for its underlying type, obtained by erasing all
annotations:

G
◦ = G (3.6)

(σa⊸ τ)◦ = σ◦ → τ◦ (3.7)

(σa ⊗ τ b)
◦

= σ◦ × τ◦ (3.8)

3.2.3 Annotated preterms

The set ΛNLL of annotated preterms, ranged over by M and N , is generated by the following
grammar rules:

M ::= π Primitive
| x Variable
| λx:σa.M Function abstraction
| MM Function application
| 〈M,M〉a,a Pairing
| let 〈x, x〉 = M in M Unpairing
| if M then M else M Conditional
| fix x:σ.M Fixpoint

The syntax of preterms is almost identical to that of FPL, except for the annotations on
λ-bound variables and pairs.

As for types, if M is a NLL preterm, we shall write M◦ for the underlying preterm,
obtained by erasing all the annotations. In particular, we have (λx:σa.M)◦ = λx:σ◦.M◦ and
(〈M,N〉a,a)◦ = 〈M◦, N◦〉.

3.2.4 Typing contexts

As usual, typing assertions in linearity analysis are contextual, and take the form of annotated
typing judgments

Γ ⊢M : σ,

where Γ ranges over annotated typing contexts of the form

Γ ::= x1 : σ1
a1 , . . . , xn : σn

an

As usual, we consider only well-formed contexts.

If Γ ≡ Γ′, x : σa, then Γ(x) stands for the pair of base type and annotation associated to
x in Γ, written σa. We write |Γ(x)| = a to obtain the annotation component of the pair, and
Γ(x)◦ for the base type component.

Let Γ◦ stand for the underlying typing context, obtained by dropping all annotations:

(−)◦ = − and (Γ, x : σa)◦ = Γ◦, x : σ◦ (3.9)

Annotated typing contexts are just a syntactic alternative to DILL contexts in which
annotations provide the information necessary to discriminate between linear and non-linear

3.2. THE TYPE SYSTEM NLL 49

Γ ⊢M : τ
Weakening

Γ, x : σ⊤ ⊢M : τ

Γ, x1 : σ⊤, x2 : σ⊤ ⊢M : τ
Contraction

Γ, x : σ⊤ ⊢M [x/x1, x/x2] : τ

Figure 3.3: NLL structural rules

variables. To be more precise, the semantics of an NLL context is the DILL context [[Γ]]
defined by the equations below.

[[−]] = − ;− (3.10)

[[Γ, x : σa]] =

{

Γ′ ; ∆′, x : [[σ]] if a ≡ 1

Γ′, x : [[σ]] ; ∆′ if a ≡ ⊤
where [[Γ]] = Γ′ ; ∆′ (3.11)

3.2.5 Typing rules

Because we only have a single context for both linear and intuitionistic assumptions (labelled
1 and ⊤, respectively) we need to reintroduce the structural rules as shown in Figure 3.3.
Notice that, as expected, the structural rules only apply to intuitionistic assumptions. The
remaining typing rules for the core language constructs are given in Figure 3.4.

In the ⊸E , ⊗I and Fixpoint rules, the side-condition |Γ| ⊒ a is an abbreviation for the
predicate

|Γ| ⊒ a
def
= |Γ(x)| ⊒ a, for all x ∈ dom(Γ). (3.12)

There is a single rule to introduce both the linear and intuitionistic function types; and
a single rule to eliminate them. These connectives would have required separate rules if we
had used split contexts instead of annotations. Actually, we would have needed two rules for
σ ⊸ τ , and two for !σ ⊸ τ . For pairs, eight rules would have been necessary, two for each
case of tensor product, σ ⊗ τ , σ ⊗ !τ , !σ ⊗ τ and !σ ⊗ !τ .

In fact, each rule defined on arbitrary annotation values may be understood as giving
rise to a family of DILL-like rules, where each rule in the family corresponds to a given
assignment of annotation values. The resulting system is what we have earlier referred to as
the ‘functional programming’ fragment of DILL. For completeness, we have summarised the
implicational subset of this fragment in Figure 3.5.

Notice that we do not distinguish between linear and intuitionistic function applications,
and still, terms correctly encode proofs: The type of the function gives the information
necessary to know which version of the application rule should apply at each point.

The only difference between the⊸EL and⊸E I rules for typing an application term MN
is the restriction establishing that the argument N to an intuitionistic function should not
contain any linear variables. The justification for this restriction becomes clear once we
consider how a typical intuitionistic function application looks like in DILL:

Γ1 ;∆ ⊢M : !σ⊸ τ

Γ2 ;− ⊢ N : σ
!I

Γ2 ;− ⊢ !N : !σ
⊸E

Γ1,Γ2 ; ∆ ⊢M !N : τ

50 CHAPTER 3. LINEARITY ANALYSIS

Identity
x : σa ⊢ x : σ

Σ(π) = σ
Primitive

⊢ π : σ

Γ, x : σa ⊢M : τ
⊸I

Γ ⊢ λx:σa.M : σa⊸ τ

Γ1 ⊢M : σa⊸ τ Γ2 ⊢ N : σ |Γ2| ⊒ a
⊸E

Γ1,Γ2 ⊢MN : τ

Γ1 ⊢M1 : σ1 Γ2 ⊢M2 : σ2 |Γ1| ⊒ a1 |Γ2| ⊒ a2
⊗I

Γ1,Γ2 ⊢ 〈M1,M2〉
a1,a2 : σ1

a1 ⊗ σ2
a2

Γ1 ⊢M : σ1
a1 ⊗ σ2

a2 Γ2, x1 : σ1
a1 , x2 : σ2

a2 ⊢ N : τ
⊗E

Γ1,Γ2 ⊢ let 〈x1, x2〉 = M in N : τ

Γ1 ⊢M : bool Γ2 ⊢ N1 : σ Γ2 ⊢ N2 : σ
Conditional

Γ1,Γ2 ⊢ if M then N1 else N2 : σ

Γ, x : σ⊤ ⊢M : σ |Γ| ⊒ ⊤
Fixpoint

Γ ⊢ fix x:σ.M : σ

Figure 3.4: NLL typing rules

Types σ ::= G | σ⊸ σ | !σ⊸ σ

Terms M ::= x | λx:σ.M |MM

IdentityL
Γ ;x : σ ⊢ x : σ

IdentityI
Γ, x : σ ;− ⊢ x : σ

Γ ; ∆, x : σ ⊢M : τ
⊸IL

Γ ; ∆ ⊢ λx:σ.M : σ⊸ τ

Γ ; ∆1 ⊢M : σ⊸ τ Γ ; ∆2 ⊢ N : σ
⊸EL

Γ ;∆1,∆2 ⊢MN : τ

Γ, x : σ ; ∆ ⊢M : τ
⊸I I

Γ ; ∆ ⊢ λx:!σ.M : !σ⊸ τ

Γ ; ∆ ⊢M : !σ⊸ τ Γ ;− ⊢ N : σ
⊸E I

Γ ; ∆ ⊢MN : τ

Figure 3.5: The ‘functional programming’ fragment of DILL

3.2. THE TYPE SYSTEM NLL 51

In the case of NLL, this context restriction is formulated a bit differently in terms of the
underlying order relation on annotations. The elimination rule for σ⊤⊸ τ ,

Γ1 ⊢M : σ⊤⊸ τ Γ2 ⊢ N : σ |Γ2| ⊒ ⊤

Γ1,Γ2 ⊢MN : τ

requires that all annotations in Γ2 be precisely ⊤, thus forbiding any 1-annotated variables.
(We naturally have the same restriction for the Fixpoint rule, as expected.) If we consider
the elimination rule for σ1 ⊸ τ , the side-condition |Γ2| ⊒ 1 translates into no restriction at
all, so we retrieve the standard application rule for linear functions.

3.2.6 A remark on primitive operators

We have remained silent regarding the nature of the type Σ(π) of a primitive operator π.
Assuming linear signatures is not entirely satisfying for our intermediate linear language,
since we may sometimes need to use an operator in an intuitionistic context. Using wrapper
functions to coerce the types of primitive operators, as we have done in Figure 3.2, is a
solution that works; but for the moment, it seems best to assume that, for each operator of
the source language, there is a host of related operators in the intermediate language differing
only on their annotations. We therefore have, for example, Σ(+a,b) = inta ⊸ intb ⊸ int,
for all combinations of a and b. As we would like terms to have unique types, the explicit
annotation of operators is necessary, but we shall not be very formal about this; in particular,
we omit any operator annotations in the examples. The reason is that a more satisfactory
solution will come in the form of annotation subtyping.

3.2.7 Examples

For clarity, we may sometimes use in future examples the following let construct, that should
be parsed in the standard way as a function application:

let x:σa = M in N
def
= (λx:σa.N) M.

As a first illustrative example, we show in Figure 3.6 a (generic) type derivation for the
function

twicea,b
def
= λf :(σa⊸ σ)⊤.λx:σa⊔b.f(fx) : (σa⊸ σ)⊤⊸ σa⊔b⊸ σ,

where a and b may take arbitrary annotation values. (The reader may like to verify that any
other choice of annotations would violate the conditions imposed by the typing rules.)

5
2

C
H

A
P

T
E

R
3
.

L
IN

E
A

R
IT

Y
A

N
A

L
Y

S
IS

Identity
f1 : (σa⊸ σ)⊤ ⊢ f1 : σa⊸ σ

Identity
f2 : (σa⊸ σ)⊤ ⊢ f2 : σa⊸ σ

Identity
x : σa⊔b ⊢ x : σ

⊸E
f2 : (σa⊸ σ)⊤, x : σa⊔b ⊢ f2 x : σ

⊸E
f1 : (σa⊸ σ)⊤, f2 : (σa⊸ σ)⊤, x : σa⊔b ⊢ f1 (f2 x) : σ

Contraction
f : (σa⊸ σ)⊤, x : σa⊔b ⊢ f (f x) : σ

⊸I
f : (σa⊸ σ)⊤ ⊢ λx:σa⊔b.f (f x) : σa⊔b⊸ σ

⊸I
− ⊢ λf :(σa⊸ σ)⊤.λx:σa⊔b.f(fx) : (σa⊸ σ)⊤⊸ σa⊔b⊸ σ

Figure 3.6: Example NLL type derivation

3.3. DECORATIONS 53

id ≡ λx:σa.x : σa⊸ σ
inc ≡ λx:inta.x+ 1 : inta⊸ int

dup ≡ λx:int⊤.x+ x : int⊤⊸ int

pair ≡ λx1:σ1
a1⊔b1 .λx2:σ2

a2⊔b2 .〈x1, x2〉
b1,b2 : σ1

a1⊔b1 ⊸ σ2
a2⊔b2 ⊸ σ1

b1 ⊗ σ2
b2

fst ≡ λx:(σ1
a ⊗ σ2

⊤)b.let 〈y1, y2〉 = x in y1 : (σ1
a ⊗ σ2

⊤)b⊸ σ1

snd ≡ λx:(σ1
⊤ ⊗ σ2

a)b.let 〈y1, y2〉 = x in y2 : (σ1
⊤ ⊗ σ2

a)b⊸ σ2

apply ≡ λf :(σa⊸ τ)b.λx:σc⊔a.f x : (σa⊸ τ)b⊸ σc⊔a⊸ τ

Figure 3.7: Typing examples of some familiar terms

Notice that the bound variable f is annotated with ⊤ because it is used twice in the body
of the function. Also, as required by the ⊸E rule, any annotation chosen for x, say b, must
be greater than a, the annotation of the argument to f . The choice of a ⊔ b is explained
by the fact that the inequation b ⊒ a can be substituted by the equation b = a ⊔ b. The
interest in using the join operator in the examples is that we are not obliged to place any
extra side-conditions. In the example, any choice of a and b would result in a valid type
derivation4.

Figure 3.7 provide example typings for some familiar terms.

3.2.8 Reduction

We may conclude the presentation of our linear intermediate language by considering the
β-reduction relation induced by FPL, which can be directly defined as the contextual closure
of the relation generated by the following axioms:

(λx:σa.M)N →M [N/x]

let 〈x1, x2〉 = 〈M1,M2〉
a1,a2 in N → N [M1/x1,M2/x2]

if true then N1 else N2 → N1

if false then N1 else N2 → N2

fix x:σ.M →M [fix x:σ.M/x]

The following is a straightforward consequence of the above definition.

Proposition 3.2.1
For any two preterms M and N , M → N implies M◦ → N◦. �

We shall later prove a subject reduction result stating that reducing a well-typed term
does always result in another well-typed term.

3.3 Decorations

The most important syntactic characteristic of our own presentation of this fragment of
intuitionistic linear logic is perhaps that NLL typings can effectively be regarded as FPL

4In Appendix A we provide an alternative formulation of NLL that exploits this idea.

54 CHAPTER 3. LINEARITY ANALYSIS

typings ‘decorated’ with extra structural information. This is also true of type derivations in
general.

Let the erasure of an NLL typing judgment Γ ⊢M : σ be defined by

(Γ ⊢M : σ)◦ = Γ◦ ⊢M◦ : σ◦. (3.13)

Then, for each NLL typing rule

J1, . . . , Jn ⊢ J

there is a counterpart FPL typing rule

J1
◦, . . . , Jn

◦ ⊢ J◦,

obtained by erasing the annotations everywhere.

The following proposition is a straightforward corollary of this observation.

Proposition 3.3.1
If Γ ⊢

NLL
M : σ, then Γ◦ ⊢

FPL
M◦ : σ◦. �

A word on notation and terminology. We shall sometimes write J∗ to emphasize that J∗

is the annotated version of a FPL typing judgment that has been introduced in the context
of the discussion, and which is syntactically equivalent to (J∗)◦ ≡ J . Instead of ‘annotated’,
we shall feel free to use the words ‘decorated’ or ‘enriched’. The same conventions apply to
other syntactic categories, including terms, types and contexts.

We may sometimes use the term decoration, borrowed from the work of Danos, Joinet
and Shellinx [26], to refer to decorated type derivations. To be more precise, what they call
‘decoration’ is a translation mapping intuitionistic proofs into intuitionistic linear logic proofs
with the provision that the translation should preserve the overall structure of the proof. If
Π(J) is a type derivation of a source language typing judgment J , we may think of a possible
decorated typing judgment Π(J∗) as determining a translation

θ∗ : Π(J) → Π(J∗).

By our previous observation, it is clear that Π(J∗)◦ ≡ Π(J), so θ∗ has the obvious property
of preserving the structure of the type derivation.

If terms correspond to proofs under the looking glass of the Curry-Howard correspondence,
then NLL is nothing else but the language of linear logic decorations5.

3.3.1 The problem of static analysis

We are now in a position to give a more precise idea of what we mean by “static analysis of
linearity properties”.

Linearity analysis consists in finding an optimal decorated typing judgment Jopt,
for an input typing judgment J of the source language, such that (Jopt)

◦
≡ J .

5Note, however, that since there is no explicit syntax for the structural rules, an NLL term actually stands
for a whole class of decorations, that are equivalent modulo certain commuting conversions.

3.4. TOWARDS SYNTAX-DIRECTEDNESS 55

By optimal decorated typing judgment we mean a decorated typing judgment J∗ that is
the conclusion of an optimal decoration Π(J∗)opt, in the sense of [26]. Informally, an optimal
decoration is a decoration where each occurrence of a ⊤-annotated assumption is unavoidable,
as there is an instance of a structural rule somewhere in the derivation that either duplicates
or deletes the assumption; or the assumption appears in an intuitionistic context (i.e., a
context restricted to have only ⊤-annotated assumptions.)

For our illustrative example, the optimal decoration for twice∗a,b is clearly

twice∗1,1 ≡ λf :(σ1 ⊸ σ)⊤.λx:σ1.f(fx) : (σ1 ⊸ σ)⊤⊸ σ1 ⊸ σ.

The annotation for f is an example of an unavoidable annotation.

In Section 3.6 we shall provide a formal definition of optimality; and later, in Section 6.1,
we shall look at a simple ‘type reconstruction’ algorithm for finding the optimal decorated
typing judgment Jopt.

3.4 Towards syntax-directedness

Some important results, like semantic correctness, are very cumbersome to prove for a type
system that is not syntax-directed. For this reason, we shall consider an alternative version
of NLL without explicit structural rules.

3.4.1 Contraction revisited

In order for our formulation to be as general as possible, we shall first consider a slightly
modified version of the contraction rule, the nature of which will become clear in the context
of the more general framework discussed in Chapter 7. The syntax-directed version we give
next uses the following rule, instead of the one given in Figure 3.3.

Γ, x1 : σa1 , x2 : σa2 ⊢M : τ
Contraction+

Γ, x : σa1+a2 ⊢M [x/x1, x/x2] : τ
(3.14)

The new rule is defined in terms of a binary operator + : A × A → A, called contraction
operator, and defined by

a1 + a2 = ⊤ for all a1, a2 ∈ A. (3.15)

We should first note that the four distinct instance contraction rules obtained by assigning
values to a1 and a2 are all admissible in NLL. To see this, let us first note that the following
rule, which is nothing more than our version of the Transfer rule of DILL, is also admissible6:

Γ, x : σ1 ⊢M : τ
Transfer

Γ, x : σ⊤ ⊢M : τ

The case setting a1 = a2 = ⊤ corresponds to our previous contraction rule. The other
cases follow directly from the admissibility of the Transfer rule. For instance, the case where

6In static analysis, this property is known as subeffecting, since it allows annotations to be replaced by less
precise ones. Actually, linearity analysis in an instance of what is known as a subeffecting analysis, since the
subeffecting rule need not be explicitly introduced in the type sytem to ensure conservativity.

56 CHAPTER 3. LINEARITY ANALYSIS

a1 = a2 = 1 is derivable as follows:

Γ, x1 : σ1, x2 : σ1 ⊢M : τ
Transfer

Γ, x1 : σ⊤, x2 : σ1 ⊢M : τ
Transfer

Γ, x1 : σ⊤, x2 : σ⊤ ⊢M : τ
Contraction

Γ, x : σ⊤ ⊢M [x/x1, x/x2] : τ

Because the new contraction rule does not modify the set of derivable typing judgments,
it does not add any expressive power to the static analysis either, although it does allow for
more ‘informative’ type derivations. As an illustrative example, we show below two enriched
type derivations for the FPL term λx:σ.〈x, x〉 : σ → σ × σ. With the less general contraction
rule, we obtain the type derivation

Identity
x1 : σ⊤ ⊢ x1 : σ

Identity
x2 : σ⊤ ⊢ x2 : σ

⊗I
x1 : σ⊤, x2 : σ⊤ ⊢ 〈x1, x2〉

1,1 : σ1 ⊗ σ1

Contraction
x : σ⊤ ⊢ 〈x, x〉1,1 : σ1 ⊗ σ1

⊸I
− ⊢ λx:σ⊤.〈x, x〉1,1 : σ⊤⊸ σ1 ⊗ σ1

With the new contraction rule we obtain a more informative type derivation:

Identity
x1 : σ1 ⊢ x1 : σ

Identity
x2 : σ1 ⊢ x2 : σ

⊗I
x1 : σ1, x2 : σ1 ⊢ 〈x1, x2〉

1,1 : σ1 ⊗ σ1

Contraction+

x : σ⊤ ⊢ 〈x, x〉1,1 : σ1 ⊗ σ1

⊸I
− ⊢ λx:σ⊤.〈x, x〉1,1 : σ⊤⊸ σ1 ⊗ σ1

Notice that we could use the linear instances of the Identity rule in the last derivation. In both
cases, the analyses obtained (conclusions) are the same, which is clearly the only important
consideration to have in mind.

3.4.2 A syntax-directed version of NLL

We are now ready to provide a syntax-oriented version of the typing rules. Figure 3.8 gives
a summary of the rules that have to be modified to obtain this new version. We call this
system NLL⊎.

Weakening is implicit in the new Identity and Constant rules. Likewise, Contraction is
implicit in the rules with two premises in the operator ⊎ for merging two contexts, discussed
below. The rules with only a single premise remain unchanged.

Definition 3.4.1 (Context merge)
If Γ1 and Γ2 are two contexts, then Γ1 ⊎ Γ2 is defined as the map

(Γ1 ⊎ Γ2)(x) =

Γ1(x), if x ∈ dom(Γ1), but x 6∈ dom(Γ2)

Γ2(x), if x ∈ dom(Γ2), but x 6∈ dom(Γ1)

σa1+a2 , if Γ1(x) = σa1 and Γ1(x) = σa2

for all x ∈ dom(Γ1) ∪ dom(Γ2). �

3.4. TOWARDS SYNTAX-DIRECTEDNESS 57

|Γ| ⊒ ⊤
Identity

Γ, x : σa ⊢ x : σ

|Γ| ⊒ ⊤ Σ(π) = σ
Primitive

Γ ⊢ π : σ

Γ1 ⊢M : σa⊸ τ Γ2 ⊢ N : σ |Γ2| ⊒ a
⊸E

Γ1 ⊎ Γ2 ⊢MN : τ

Γ1 ⊢M1 : σ1 Γ2 ⊢M2 : σ2 |Γ1| ⊒ a1 |Γ2| ⊒ a2
⊗I

Γ1 ⊎ Γ2 ⊢ 〈M1,M2〉
a1,a2 : σ1

a1 ⊗ σ2
a2

Γ1 ⊢M : σ1
a1 ⊗ σ2

a2 Γ2, x1 : σ1
a1 , x2 : σ2

a2 ⊢ N : τ
⊗E

Γ1 ⊎ Γ2 ⊢ let 〈x1, x2〉 = M in N : τ

Γ1 ⊢M : bool Γ2 ⊢ N1 : σ Γ2 ⊢ N2 : σ
Conditional

Γ1 ⊎ Γ2 ⊢ if M then N1 else N2 : σ

Figure 3.8: Modified syntax-directed typing rules for NLL⊎

Intuitively, the merge operator behaves like context union, except that duplicate variables
have their annotations combined using the contraction operator. In particular, we have that
Γ1 ⊎ Γ2 behaves like Γ1,Γ2 whenever Γ1 and Γ2 are disjoint.

The merge is clearly undefined if both contexts map the same variable to different base
types. Therefore, the rules that have a combined context Γ1 ⊎ Γ2 in the conclusion (i.e.,
with more than two premises), are assumed to implicitly verify that Γ1(x) = Γ2(x) for all
x ∈ dom(Γ1) ∩ dom(Γ2).

It is useful to define an order relation on contexts differing only on their respective anno-
tations, as follows:

Γ1 ⊑ Γ2
def
= Γ1

◦ ⊆ Γ2
◦ and |Γ1(x)| ⊑ |Γ2(x)| for all x ∈ dom(Γ1).

Proposition 3.4.2 (Properties of ⊎)
The merge operator satisfies the properties enumerated below, for suitable contexts Γ1, Γ2

and Γ3.

a. Γ1 ⊎ Γ2 = Γ2 ⊎ Γ1

b. (Γ1 ⊎ Γ2) ⊎ Γ3 = Γ1 ⊎ (Γ2 ⊎ Γ3)

c. Γ1 ⊑ Γ1 ⊎ Γ2 and Γ2 ⊑ Γ1 ⊎ Γ2

�

The commutativity and associativity of ⊎ (Properties 3.4.2a and 3.4.2b) are direct conse-
quences of the commutativity and associativity of +. Property 3.4.2c clearly points at the
fact that the merge of two contexts results in a context that is less precise in terms of static
information.

In order to convince the reader that NLL and NLL⊎ are indeed equivalent, we shall prove
the following lemmas.

58 CHAPTER 3. LINEARITY ANALYSIS

Lemma 3.4.3
Γ ⊢

NLL
M : σ implies Γ ⊢

NLL⊎
M : σ.

Proof. Most clearly, the core rules of NLL are special cases of those of NLL⊎. In particular,
for the typing rules with two premises, we have that Γ1,Γ2 is well-formed if Γ1 and Γ2 are
disjoint, and therefore equivalent to Γ1 ⊎ Γ2.

We are left to prove that Weakening and Contraction are admissible in NLL⊎. This is
obtained easily by induction on the derivation of Γ ⊢

NLL
M : σ. �

To prove the other direction of the implication, we need the following syntactic lemma.

Lemma 3.4.4
If Γ ⊢ M : σ, then Γ[ρ] ⊢ M [ρ] : σ, where ρ is a renaming substitution verifying dom(ρ) 6⊆
FV(M).

Proof. Easy induction on the derivation of Γ ⊢M : σ. �

Lemma 3.4.5
Γ ⊢

NLL⊎
M : σ implies Γ ⊢

NLL
M : σ.

Proof. By induction on the derivation of Γ ⊢
NLL⊎

M : σ.

We consider only two prototypical cases: the Identity rule and the ⊗I rule; the arguments
for the other cases fit the same pattern.

• The Identity rule
|Γ| ⊒ ⊤

Γ, x : σa ⊢ x : σ

is derivable in NLL by repeatedly weakening all variables in Γ:

Identity
x : σa ⊢ x : σ

============ Weakening
Γ, x : σa ⊢ x : σ

The condition |Γ| ⊒ ⊤ is there to ensure that Weakening in indeed applicable.

• For the ⊗I rule

Γ1 ⊢M1 : σ1 Γ2 ⊢M2 : σ2 |Γ1| ⊒ a1 |Γ2| ⊒ a2

Γ1 ⊎ Γ2 ⊢ 〈M1,M2〉
a1,a2 : σ1

a1 ⊗ σ2
a2

we have that Γ1 ⊎ Γ2 = Γ1,Γ2 whenever Γ1 and Γ2 are disjoint, so the only interesting
case is when both contexts have some variables in common. Therefore, we show that
the above rule is provable in NLL assuming that dom(Γ1) ∩ dom(Γ2) 6= ∅.

Let Γ1 = Γ′
1,Γ

′′
1 and Γ2 = Γ′

2,Γ
′′
2, where Γ′′

1 and Γ′′
2 share all the common variables

(and so Γ′
1 and Γ′

2 are disjoint). By definition of context merge, Γ1 ⊎ Γ2 = Γ′
1,Γ

′
2,Γ

′′

with Γ′′(x) = σa1+a2 if and only if Γ′′
1(x) = σa1 and Γ′′

2(x) = σa2 . (In other words, Γ′′

combines the annotations of the common variables in Γ1 and Γ2.)

By the induction hypothesis and Lemma 3.4.4, we have in NLL that Γ′
1,Γ

′′
1[ρ1] ⊢M1[ρ1] :

σ1 and Γ′
2,Γ

′′
2[ρ2] ⊢ M2[ρ2] : σ2, where ρ1 and ρ2 are renaming substitutions, with

3.5. TYPE-THEORETIC PROPERTIES 59

ρ1(x) = x1 and ρ2(x) = x2, for all x ∈ dom(Γ′′) and fresh variables x1 and x2. The
renamings ensure that Γ′′

1[ρ1] and Γ′′
2[ρ2] are disjoint in order to apply the ⊗I rule of

NLL. We then recover the original names together with the combined annotations in
Γ′′ by carefully applying Contraction several times. Each application contracts x1 ∈
dom(Γ′′

1[ρ1]) and x2 ∈ dom(Γ′′
2[ρ2]) into x ∈ dom(Γ′′), as expected. The type derivation

(omitting the intermediate steps) would look like this:

Γ′
1,Γ

′′
1[ρ1] ⊢M1[ρ1] : σ1 Γ′

2,Γ
′′
2[ρ2] ⊢M2[ρ2] : σ2

⊗I
Γ′

1,Γ
′
2,Γ

′′
1[ρ1],Γ

′′
2[ρ2] ⊢ 〈M1[ρ1],M2[ρ2]〉

a1,a2 : σ1
a1 ⊗ σ2

a2

== Contraction
Γ′

1,Γ
′
2,Γ

′′ ⊢ 〈M1,M2〉
a1,a2 : σ1

a1 ⊗ σ2
a2

The same argument applies to all the other rules with two premises.

�

We have seen how to transform a type system containing explicit structural rules into
an equivalent one where the Contraction rule is implicit in the rules involving two premises
and the Weakening rule is implicit in the axiom rules. Because this transformation does only
depend on the way contexts are used and not on the nature of the type rules themselves, we
shall implicitly assume its validity for other type systems. In general, if L is an intermediate
language, we shall write L⊎ to refer to its syntax-directed version.

3.5 Type-theoretic properties

In this section, we study some basic typing properties of NLL, the most important of which will
imply the semantic correctness of linearity analysis with respect to the operational semantics
of the source language.

3.5.1 Some elementary properties

We start by observing that in NLL, every term that is typeable has a unique type. This
property, as well as the remaining properties in this subsection, are easily proved by induction
on derivations.

Proposition 3.5.1 (Unique Typing)
If Γ ⊢M : σ and Γ ⊢M : τ , then σ ≡ τ .

The Typing Uniqueness property is not preserved if we decide to omit any of the lin-
earity annotations on functions or pairs. However, we may decide for practical reasons to
consider terms with redundant annotations (and base type information) in order to simplify
the definition of the compiler optimisations. An example is provided by the let construct,
used extensively throughout in several examples.

Proposition 3.5.2 (Single Occurrence)
If Γ, x : σ1 ⊢M : τ , then x occurs exactly once in M7. �

7For a precise definition of what we mean by ‘occurs exactly once’, refer to Figure 7.4 on page 147.

60 CHAPTER 3. LINEARITY ANALYSIS

The following Annotation Weakening property provides an interesting interpretation of
the order relation as the inclusion of annotated term contexts. (As we shall see in the following
chapter, Annotation Weakening may be understood as a ‘rudimentary’ form of subtyping.)

Proposition 3.5.3 (Annotation Weakening)
The following rule is admissible in NLL:

Γ, x : σ1 ⊢M : τ
Transfer

Γ, x : σ⊤ ⊢M : τ

�

We may also encounter the Transfer rule written in a slightly different, but equivalent, form:

Γ1 ⊢M : σ Γ1 ⊑ Γ2
Transfer

Γ2 ⊢M : σ

3.5.2 Embedding FPL into NLL

A theory of static analysis should be expressive enough to provide an analysis, no matter how
approximate it may be, for every input term of the source language.

This is rather obvious in our case, as there is always a ‘worst’ analysis corresponding to
the annotated version of Girard’s translation. We write (−•) for this translation, and define
it on FPL types as follows:

G
• = G (3.16)

(σ → τ)• = (σ•)⊤⊸ τ• (3.17)

(σ × τ)• = (σ•)⊤ ⊗ (τ•)⊤ (3.18)

For typing contexts, we let

(−)• = − and (Γ, x : σ)• = Γ•, x : (σ•)⊤. (3.19)

Terms are translated in the obvious way, and in particular we have that (λx:σ.M)• =
λx:(σ•)⊤.M•, 〈M1,M2〉

• = 〈M1
•,M2

•〉⊤,⊤ and π• = π⊤,...,⊤ if π is an operator.
We formalise the completeness of the analysis by stating the following proposition.

Proposition 3.5.4 (Completeness)
Γ ⊢

FPL
M : σ implies Γ• ⊢

NLL
M• : σ•.

Proof. Obvious, from the fact that the typing rules of NLL, restricted to intuitionistic
annotations only, are in clear correspondence with the typing rules of FPL. �

The following statement establishes a rather immediate relationship existing between the
erasing and embedding functors.

Proposition 3.5.5
Let J be any valid FPL typing judgment. Then, J ≡ (J•)◦. �

This last observation applies to type derivations as well.

3.5. TYPE-THEORETIC PROPERTIES 61

3.5.3 Substitution

We now show that substitution is well-behaved with respect to typing under certain reasonable
restrictions. This property will play a fundamental role in the proof of the semantic correctness
of our intermediate language, as we shall see next.

Lemma 3.5.6 (Substitution)
The following rule is admissible in NLL.

Γ1, x : σa ⊢M : τ Γ2 ⊢ N : σ |Γ2| ⊒ a
Substitution

Γ1,Γ2 ⊢M [N/x] : τ

Proof. We shall actually prove a more general property for NLL⊎:

Γ1, x : σa ⊢M : τ Γ2 ⊢ N : σ |Γ2| ⊒ a

Γ1 ⊎ Γ2 ⊢M [N/x] : τ

We proceed by induction on the structure of M . We assume Γ2 ⊢ N : σ.

• M ≡ x.

Immediate, because of the fact that x[N/x] ≡ N and, by the Identity rule, τ ≡ σ.

• M ≡ y and y 6≡ x.

In this case, we must have that Γ1, x : σ⊤ ⊢ y : τ where Γ1(y) = τ b for some b. The
result follows from the fact that y[N/x] ≡ y. This same reasoning applies when M ≡ k
as well.

• M ≡ λy:τ b1 .M
′.

Suppose Γ1, x : σa ⊢ λy:τ b1 .M
′ : τ b1 ⊸ τ2, with τ ≡ τ b1 ⊸ τ2, because Γ1, x : σa, y : τ b1 ⊢

M ′ : τ2. Applying the induction hypothesis to the latter and the assumption Γ2 ⊢ N : σ,
we obtain (Γ1, y : τ b1)⊎Γ2 ⊢M ′[N/x] : τ2. Assuming that y 6∈ dom(Γ2) by α-equivalence,
we can now apply the⊸I rule to obtain Γ1⊎Γ2 ⊢ λy:τ b1 .M

′[N/x] : τ b1 ⊸ τ2. The desired
result follows from the fact that, in this case, λy:τ b1 .M

′[N/x] ≡ (λy:τ b1 .M
′)[N/x].

This same reasoning applies to the fixpoint construct.

• M ≡M ′N ′.

Suppose Γ1, x : σa ⊢M ′N ′ : τ because Γ′
1 ⊢M ′ : τ b1 ⊸ τ and Γ′′

1 ⊢ N ′ : τ1 and |Γ′′
1| ⊒ b,

with Γ1, x : σa = Γ′
1 ⊎ Γ′′

1. There are three sub-cases to consider, corresponding to
whether x appears free in Γ′

1, Γ′′
1, or both.

– x ∈ dom(Γ′
1), but x 6∈ dom(Γ′′

1).

We can now apply the induction hypothesis to Γ′
1 ⊢ M ′ : τ b1 ⊸ τ and the as-

sumption Γ2 ⊢ N : σ to conclude Γ′
1 ⊎ Γ2 ⊢ M ′[N/x] : τ b1 ⊸ τ . By the ⊸E rule,

we have that (Γ′
1 ⊎ Γ2) ⊎ Γ′′

1 ⊢ (M ′[N/x])N ′ : τ from our previous conclusion and
the sequent Γ′′

1 ⊢ N ′ : τ1. The desired result, Γ′
1 ⊎ Γ′′

1 ⊎ Γ2 ⊢ (M ′N ′)[N/x] : τ ,
follows from commutativity and associativity of ⊎, and the fact that in our case
(M ′[N/x])N ′ ≡ (M ′N ′)[N/x].

62 CHAPTER 3. LINEARITY ANALYSIS

– x ∈ dom(Γ′′
1), but x 6∈ dom(Γ′

1).

Similarly, we can obtain Γ′′
1 ⊎ Γ2 ⊢ N ′[N/x] : τ1 by applying the induction hy-

pothesis to Γ′′
1 ⊢ N ′ : τ1 and Γ2 ⊢ N : σ. Since we have |Γ′′

1 ⊎ Γ2| ⊒ b from the
fact that, by assumption |Γ2| ⊒ a and |Γ′′

1, x : σa| ⊒ b (hence, |Γ2| ⊒ b), we can
apply the ⊸E rule to our previous conclusion and Γ′

1 ⊢ M ′ : τ b1 ⊸ τ to derive
Γ′

1 ⊎ (Γ′′
1 ⊎ Γ2) ⊢M

′(N ′[N/x]) : τ , which implies the desired conclusion.

– x ∈ dom(Γ′
1) and x ∈ dom(Γ′′

1).

In this case, we must have that Γ1(x) = σa1+a2 where Γ′
1(x) = σa1 and Γ′′

1(x) = σa2,
for some a1 and a2, with a ≡ a1 + a2 = ⊤, in our linear theory. Since |Γ2| ⊒ a1

and |Γ2| ⊒ a2, because of the assumption |Γ2| ⊒ a, we can apply the induction
hypothesis twice, as we did in our previous two sub-cases, to obtain Γ′

1 ⊎ Γ2 ⊢
M ′[N/x] : τ b1 ⊸ τ and Γ′′

1 ⊎Γ2 ⊢ N ′[N/x] : τ1. From |Γ2| ⊒ a2 and the assumption
|Γ′′

1, x : σa2 | ⊒ b, we deduce that |Γ′′
1 ⊎ Γ2| ⊒ b, and so we can apply the⊸E rule to

our previous two conclusions to obtain (Γ′
1 ⊎ Γ2) ⊎ (Γ′′

1 ⊎ Γ2) ⊢ M
′[N/x]N ′[N/x] :

τ . The desired conclusion follows from the properties of ⊎ and substitution. In
particular, note that Γ2 ⊎ Γ2 = Γ2, since |Γ2| ⊒ ⊤.

The same reasoning applies to the other typing rules with more than two premises.

�

3.5.4 Semantic correctness

Having proved the Substitution Lemma, we are now in a position to establish the correct-
ness of our analysis with respect to the notion of reduction induced by the source language.
The correctness argument states that reducing an annotated program can never result in an
annotated program that is ill-typed, thus ensuring the validity of the analysis throughout
evaluation.

Theorem 3.5.7 (Subject Reduction)
Whenever Γ ⊢

NLL
M : σ and M → N , then Γ ⊢

NLL
N : σ.

Proof. We show this for NLL⊎ by induction on →-derivations.

• M ≡ (λx:τa.M ′)N ′ and N ≡M ′[N ′/x].

Suppose Γ ⊢ (λx:τa.M ′)N ′ : σ because Γ′ ⊢ λx:τa.M ′ : τa ⊸ σ and Γ′′ ⊢ N ′ : τ
with Γ ≡ Γ′ ⊎ Γ′′, since a derivation for M must necessarily end with an application
of ⊸E . We also have that |Γ′′| ⊒ a. By ⊸I , we have that Γ′, x : τa ⊢ M ′ : σ must
justify Γ′ ⊢ λx:τa.M ′ : τa ⊸ σ. The annotation restrictions on Γ′′ ensure that the
Substitution Lemma is indeed applicable to Γ′, x : τa ⊢ M ′ : σ and Γ′′ ⊢ N ′ : τ to
obtain Γ′ ⊎ Γ′′ ⊢M ′[x/N ′] : σ.

• M ≡ let 〈x1, x2〉 = 〈M ′
1,M

′
2〉
a1,a2 in N ′ and N ≡ N ′[M ′

1/x1][M
′
2/x2].

A derivation for M must necessarily end with an application of the ⊗E rule. Suppose
Γ ⊢ let 〈x1, x2〉 = 〈M ′

1,M
′
2〉
a1,a2 in N ′ : σ because Γ′ ⊢ 〈M ′

1,M
′
2〉
a1,a2 : τa1

1 ⊗ τa2

2 and
Γ′′, x1 : τa1

1 , x2 : τa2

2 ⊢ N ′ : σ with Γ ≡ Γ′ ⊎ Γ′′. We also know that the first premise can
only be justified with an application of ⊗I to the premises Γ′

1 ⊢M ′
1 : τ1 and Γ′

2 ⊢M ′
2 : τ2

with Γ′ ≡ Γ′
1 ⊎Γ′

2. Because the rule requires that |Γ′
1| ⊒ a1 and |Γ′

2| ⊒ a2, we can apply

3.5. TYPE-THEORETIC PROPERTIES 63

the Substitution Lemma to Γ′′, x1 : τa1

1 , x2 : τa2

2 ⊢ N ′ : σ and Γ′
1 ⊢ M ′

1 : τ1 to obtain
Γ′

1 ⊎ (Γ′′, x2 : τa2

2) ⊢ N ′[M ′
1/x1] : σ and again to the latter and Γ′

2 ⊢ M ′
2 : τ2 to obtain

Γ′
1 ⊎ Γ′

2 ⊎ Γ′′ ⊢ N ′[M ′
1/x1][M

′
2/x2] : σ.

• M ≡ if k then N ′
1 else N ′

2 and either N ≡ N ′
1 or N ≡ N ′

2.

Immediate from the fact that N ′
1 and N ′

2 have type σ under the Conditional rule.

• M ≡ fix x:σ.M ′ and N ≡M ′[fix x:σ.M ′/x].

By the Fixpoint rule, suppose that Γ ⊢ fix x:σ.M ′ : σ because Γ, x : σ⊤ ⊢ M ′ : σ with
|Γ| ⊒ ⊤. We can now apply the Substitution Lemma to premise and conclusion to
obtain Γ ⊎ Γ ⊢ M ′[fix x:σ.M ′/x] : σ, as required. (Note that Γ ⊎ Γ = Γ, in this case
where |Γ| ⊒ ⊤.)

• M ≡ C[M ′] and N ≡ C[N ′] with M ′ → N ′.

Suppose Γ ⊢ C[M ′] : σ because Γ′, x : τa ⊢ C[x] : σ and Γ′′ ⊢ M ′ : τ with Γ ≡ Γ′ ⊎ Γ′′

and |Γ′′| ⊒ a. By the induction hypothesis, we have that Γ′′ ⊢ N ′ : τ . The required
conclusion Γ ⊢ C[N ′] : σ easily follows from the Substitution Lemma.

�

Using the results of Theorem 3.5.7 and Proposition 3.5.2, we can attempt a contextual
natural language definition of the notion of usage implied by linearity analysis.

Definition 3.5.8 (Linear usage)
Let P [x:σ] be a well-typed program with a distinguished ‘hole’ x:σ. We may say that x has
linear usage in P if no reduction strategy exists that may duplicate or erase x. �

Because we have not committed ourselves to a particular evaluation strategy, Theo-
rem 3.5.7 implies that the static information provided by linearity analysis is correct for
any reduction strategy, so we can in principle apply the analysis to both call-by-value and
call-by-need languages. The price to pay for this level of generality is a certain loss in the
expressivity of the analysis, as we are not allowed to use any information specific to a given
evaluation strategy.

More concretely, consider the following simple annotated program:

let x:int⊤ = 1 + 2 in fst 〈x, x〉1,⊤

Because x occurs twice, Contraction forces a ⊤ annotation for x. We also have that the pair
is non-linear on its second component because fst discards it. This analysis is compatible
with our intuitive understanding of ‘usage’ in a call-by-value language: Before applying fst,
the variable x is evaluated twice as part of the evaluation of the pair8. In contrast to this, x
is evaluated only once in a call-by-need language, after fst returns it as result. Assigning a
linear annotation to x could be more profitable in this case, although it would be completely
wrong from a ‘logical’ viewpoint. Actually, it would allow us to suggest the inlining of x to
obtain

fst 〈1 + 2, 1 + 2〉1,⊤,

8If you think in terms of transitions in an abstract machine like Krivine’s, each evaluation of x corresponds
to accessing the closure associated to x in the environment. The ⊤ annotation for x is compatible with the
fact that x is accessed twice.

64 CHAPTER 3. LINEARITY ANALYSIS

although it would perhaps not be a good idea to allow inlining in this case to avoid duplicating
code; but that is a different story. For call-by-need languages, observations like this one have
triggered some interesting research. A good example is the usage analyser used by the Glasgow
Haskell Compiler [68, 67].

3.5.5 Considering η-reduction

If we were interested in having a reduction system that includes a notion of η-reduction, we
should notice that adding the rule

λx:σa.M x→M if x 6∈ FV(M) (3.20)

to NLL results in a system that is operationally unsound, in the sense that Theorem 3.5.7 is
no longer valid. Indeed, taking M ≡ λy:σ1.y and a ≡ ⊤, we see that

λx:σ⊤.(λy:σ1.y) x : σ⊤⊸ σ, but λy:σ1.y : σ1 ⊸ σ;

so redex and reduct do not have equivalent types9.

There is no trouble, however, in allowing a restricted linear instance of the rule above:

λx:σ1.M x→M if x 6∈ FV(M) (3.21)

The more generic η-rule is nonetheless desirable in our intermediate language if we would
like transformations in the source language to remain valid in the intermediate language. A
solution to this problem will be provided by subtyping in the next chapter.

3.6 Optimal typings

In Subsection 3.5.2, we have shown that for each source language term M there is always a
worst analysis, noted M•, which corresponds to the (not very useful) decoration providing no
structural information at all. Linearity analysis has, therefore, at least one solution.

In this section, we shall show that there is also a best or optimal analysis. A standard
method to prove the existence of an optimal analysis consists in showing that the set of all
decorated typings forms an ordered set that admits a smallest element [48]. As we shall see,
for the case of our simple linearity analysis, the space of all analyses (decorations) forms a
complete lattice. The order relation used is analogous to the sub-decoration relation consid-
ered by Danos and Schellinx [26].

We begin by defining an order relation on typing judgments that we shall use to compare
analyses in terms of their information contents. Intuitively, if J1

∗ and J2
∗ are two decorated

typing judgments,

J1
∗ ⊑ J2

∗

should somehow express the fact that linearity information in J1
∗ must be more precise than

that in J2
∗. The order relation that compares corresponding annotations on both typing

judgments seems to be a good candidate.

9This should not come as a surprise if we understand NLL reductions as ‘syntactic sugar’ of more verbose
DILL reductions. With this in mind, it is clear that the intuitionistic instance of the above η-rule does not
correspond to any legal reduction sequence in DILL.

3.6. OPTIMAL TYPINGS 65

Definition 3.6.1 (Sub-decoration order)
If J1

∗ ≡ Γ1 ⊢ M1 : σ1 and J2
∗ ≡ Γ2 ⊢ M2 : σ2 are two enriched typing judgments, then let

J1
∗ ⊑ J2

∗ be the reflexive and transitive closure of the relation generated by the rule

Γ1 ⊑ Γ2 M1 ⊑M2 σ1 ⊑ σ2

(Γ1 ⊢M1 : σ1) ⊑ (Γ2 ⊢M2 : σ2)
(3.22)

For any two decorated types, terms or contexts, the relation is defined by simply comparing an-
notations at corresponding positions. Below, we show the rules that define the sub-decoration
order on types.

G ⊑ G
(3.23)

σ1 ⊑ τ1 σ2 ⊑ τ2 a1 ⊑ a2

σ1
a1 ⊸ τ1 ⊑ σ2

a2 ⊸ τ2
(3.24)

σ1 ⊑ τ1 σ2 ⊑ τ2 a1 ⊑ a2 b1 ⊑ b2

σ1
a1 ⊗ τ1

b1 ⊑ σ2
a2 ⊗ τ2

b2
(3.25)

�

The purpose of showing the above rules is simply to note that, unlike the subtyping
relation of Section 4.1, ⊑ is covariant everywhere, including function domains.

Definition 3.6.2 (Decoration space)
The decoration space associated to a source language typing J is written DNLL(J) and defined
to be the set of NLL typings J∗ that are decorated versions of J :

DNLL(J)
def
= {J∗ | (J∗)◦ = J}. (3.26)

�

It is not difficult to prove that the decoration space forms a complete lattice under the sub-
decoration order. The proof is somewhat tedious, so we shall only cover some representative
cases. We shall find a more convenient (and interesting) way of proving the existence of
solutions in the context of annotation inference.

We should first remark that the set of all the decorated types of a given underlying type
also forms a complete lattice.

Lemma 3.6.3
Given a source type σ, the set of all decorated types

{τ | (τ)◦ ≡ σ}

ordered with ⊑ forms a complete lattice. The same can be said of the set of all decorated
terms and contexts.

Proof. Note that ANLL is itself a complete lattice, and that ⊑, if we abstract over the
underlying syntactic structure of a type or context, is morally an extension of ⊑ to products
of annotations. �

66 CHAPTER 3. LINEARITY ANALYSIS

Theorem 3.6.4 (Complete decoration lattice)
For any give source typing judgment J , the structure 〈DNLL(J);⊑〉 forms a complete lattice.

Proof. It is clear that by Lemma 3.5.4, J• ∈ DNLL(J), and J∗ ⊑ J• for every J∗ ∈ DNLL(J),
so J• always exists and is the top element of our set of decorated typings.

It only remains to prove that meets exist for arbitrary non-empty subsets. We shall
prove this by induction on the derivations of J in the source type system. In any case,
let D = {Ji

∗ | i ∈ I} be a non-empty subset of DNLL(J) indexed by elements of I, with
Ji

∗ ≡ Γi ⊢ Mi : σi. We shall prove that ⊓D exists for some representative cases only; the
other cases can be proved similarly.

• J ≡ Γi
◦, x : σi

◦ ⊢ x : σi
◦.

Each element of D in this case has the form Γi, x : σai

i ⊢ x : σi, where |Γi| = ⊤.
Lemma 3.6.3 guarantees the existence of ⊓σi and ⊓Γi, and so that of ⊓D = ⊓Γi, x :
⊓σi

a ⊢ x : ⊓σi, where a ≡ ⊓ai. (We should note that |⊓Γi| = ⊤.)

• J ≡ Γi
◦ ⊢ λx:σi

◦.Mi
◦ : σi

◦ → τi
◦.

Suppose Γi ⊢ λx:σi
ai .Mi : σi

ai ⊸ τi because Γi, x : σi
ai ⊢ Mi : τi. Clearly, the latter

is an element of DNLL(Γi
◦, x : σi

◦ ⊢Mi
◦ : τi

◦); therefore, by the induction hypothesis,
a meet exists for D and is defined component-wise as ⊓Γi, x : ⊓σi

a ⊢ ⊓Mi : ⊓τi, where
a ≡ ⊓ai. Applying⊸I to the meet, we can conclude ⊓Γi ⊢ λx:⊓σi

a.⊓Mi : ⊓σi
a⊸ ⊓τi,

which by definition equals ⊓D.

• J ≡ Γi
◦ ⊢Mi

◦Ni
◦ : τi

◦.

Suppose Γi ⊢ Mi Ni : τi because Γ′
i ⊢ Mi : σi

ai ⊸ τi and Γ′′
i ⊢ Ni : σi where

Γi = Γ′
i,Γ

′′
i and |Γ′′| ⊒ ai. Clearly, both premises are, respectively, elements of

DNLL(Γ′
i
◦ ⊢Mi

◦ : σi
◦ → τi

◦) and DNLL(Γ′
i
◦ ⊢ Ni

◦ : σi
◦). By the induction hypothe-

sis, twice, we have that ⊓Γ′
i ⊢ ⊓Mi : ⊓σi

⊓ai ⊸ ⊓τi and ⊓Γ′′
i ⊢ ⊓Ni : ⊓σi must define

the meets of these decoration spaces. Because the annotation set of linearity analysis
is a lattice, we have |Γ′′| ⊒ ai implies |⊓Γ′′

i| ⊒ ⊓ai; hence, by ⊸E , we can conclude
⊓Γ′

i,⊓Γ′′
i ⊢ ⊓Mi ⊓Ni : τi.

�

We are now able to simply characterise the optimal typing as the meet of the whole
decoration space:

Jopt def
= ⊓(DNLL(J)). (3.27)

The proof of the above theorem relies heavily on the fact that ANLL must itself be a
complete lattice; or, in other words, that there is a natural choice in the form of a ‘best’
annotation. This condition is necessary to prove Lemma 3.6.3, which guarantees the existence
of a ‘best’ type among an arbitrary subset of decorated types. This will not be true for
more complex posets of structural properties, where there is not one (canonical) smallest
annotation, but many possible minimal annotations from which to choose. We can still prove
a weaker theorem by relaxing our definition of ⊑; but we shall come back to this problem later,
where our motivations will also be made clearer. The stronger result, though, will remain true
for all theories based on 2-point posets, like the theories for affine and neededness analysis of
Section 7.3.

3.7. APPLICATIONS 67

apply⊤,⊤,⊤

apply⊤,1,⊤

ppppppppppp

apply1,⊤,⊤

apply1,1,⊤

NNNNNNNNNNN

apply1,⊤,1

<<<<<<<<<<<<<<<<<<

NNNNNNNNNNN

apply1,1,1

===================

ppppppppppp

Figure 3.9: Decoration space for the apply function

As an example, Figure 3.9 provides a pictorial representation of the space of solutions for
the apply function. Each solution is abbreviated

applya,b,c ≡ λf :(σa⊸ τ)b.λx:σc.f x.

Recall that applya,b,c is a valid decoration for all a, b, c such that a ⊑ c. The worst
decorated term is precisely apply⊤,⊤,⊤; the best is, quite luckily, apply1,1,1.

3.7 Applications

Many variants of intuitionistic linear logic (or some suitable fragment of it) have been pro-
posed, with the hope of coming up with more efficient implementation techniques for func-
tional languages. All the techniques proposed rely on the fact that linear logic can be used to
faithfully distinguish between shared and non-shared resources. The idea is that the property
‘linear’ can be used as an approximation of the property ‘non-shared’. As it turns out, this ap-
proximation is unsafe for most functional language implementations. The reasons depend on
the details of what ‘sharing’ is supposed to mean for a given implementation, so the problems
encountered, even if they present some similarities, may differ in many respects.

As a sound application of linear logic, inlining does not suffer from the semantical gap
mentioned above, as it is formulated at a fairly high-level of abstraction, depending only on
properties of the intermediate language like the Substitution Lemma.

After formalising and discussing the inlining optimisation, we shall briefly comment on
some related work concerning some applications to sharing and single-threading.

3.7.1 Inlining

It is straightforward to formalise inlining as a single-step reduction relation on annotated
terms that substitutes linear uses of definitions by their corresponding definition bodies.

Let
inl
 stand for this relation, defined as the contextual closure of the rewrite rules of

Figure 3.10.
Inlining a whole program corresponds to the process of iteratively applying the rewrite

rules in any order until no more linear redexes are found. It is not difficult to see that

68 CHAPTER 3. LINEARITY ANALYSIS

(λx:σ1.M)N
inl
 M [N/x]

let 〈x1, x2〉 = 〈M1,M2〉
1,1 in N

inl
 N [M1/x1][M2/x2]

let 〈x1, x2〉 = 〈M1,M2〉
1,⊤ in N

inl
 let x2 = M2 in N [M1/x1]

let 〈x1, x2〉 = 〈M1,M2〉
⊤,1 in N

inl
 let x1 = M1 in N [M2/x2]

let x:σ1 = M in N
inl
 N [M/x]

Figure 3.10: The inlining optimisation relation

the inlining relation is confluent and strongly normalising, so the process must eventually
terminate with the same completely inlined program.

Note that
inl
 ⊆ →, hence the correctness of the inlining transformation follows as a

corollary of subject reduction.

Proposition 3.7.1 (Correctness of
inl
)

If Γ ⊢
NLL

M : σ and M
inl
 N , then Γ ⊢

NLL
N : σ. �

By the Single Occurrence property (Proposition 3.5.2), we know that the substitutions on
the right-hand side of the rules will not (syntactically) duplicate any terms.

As an example, we apply inlining to optimise the following input FPL program. (For
reasons of clarity, we have omitted any base type information.)

let uncurry = λf.λx.let 〈x1, x2〉 = x in f x1 x2 in

let sum = λy1.λy2.y1 + y2 in

let n = 1 + 2 in

uncurry sum 〈3, sum n 1〉

Applying our analysis to the example will output the decorated version shown below. We have
decided to omit any base type information, leaving only the annotations on bound variables
and pairs. (The reader may like to find the decoration corresponding to the annotations
shown.)

let uncurry:1 = λf :1.λx:1.let 〈x1, x2〉 = x in f x1 x2 in

let sum:⊤ = λy1:1.λy2:1.y1 + y2 in

let n:1 = 1 + 2 in

uncurry sum 〈3, sum n 1〉1,1

Except for the sum function which is used twice in the body of the innermost let, all other
variables are linear.

As a strategy to apply the inlining transformation, we choose to always reduce the leftmost-
outermost redex first (and inside functions, as well). Therefore, we start reducing the first

3.7. APPLICATIONS 69

and third let to obtain

let sum:⊤ = λy1.λy2.y1 + y2 in

(λf :1.λx:1.let 〈x1, x2〉 = x in f x1 x2) sum 〈3, sum (1 + 2) 1〉1,1

The transformation proceeds inside the body of the let, with the following reduction sequence:

(λf :1.λx:1.let 〈x1, x2〉 = x in f x1 x2) sum 〈3, sum (1 + 2) 1〉1,1

inl
 (λx:1.let 〈x1, x2〉 = x in sumx1 x2) 〈3, sum (1 + 2) 1〉1,1

inl
 let 〈x1, x2〉 = 〈3, sum (1 + 2) 1〉1,1 in sumx1 x2

inl
 sum 3 (sum (1 + 2) 1)

We are left after inlining with a much shorter program:

let sum:⊤ = λy1.λy2.y1 + y2 in sum 3 (sum (1 + 2) 1).

We should remark that many opportunities for inlining would be lost if we restricted
ourselves to the rewrite rules of Figure 3.10. For instance, the following rule turns a binary
function call into a unary function call, with the second argument inlined in the function
body:

(λx1:σ
⊤
1 .λx2:σ

1
2.M)N1N2

inl
 (λx1:σ

⊤
1 .M [N2/x2])N1

Many other rules, not necessarily related to inlining, would indeed be important in order to
actually reveal redexes that might otherwise be hidden10. We shall here content ourselves with
the study of the properties that enable the different optimisations, leaving out any details
concerning how this optimisations may actually be performed in an actual compiler.

3.7.2 Limitations

As soon as we begin to try out our linearity analysis on realistic examples, we quickly find
out that it is not as good as we thought, even in a call-by-value setting. For example, our
analysis forbids the inlining of the outer let-definition of the following example term:

let x:int = M in

let y:int = x+ 1 in y + y

Because y is non-linear, the Substitution rule requires that x be non-linear too, as it appears
in the context needed to type x+1. It is however not difficult to see that applying the inlining
transformation to obtain

let y:int = x+ 1 in y + y

would not risk the duplication of the (possibly expensive) computation of M : the term M +1
would first be reduced to an integer value before the substitution in the body of the let takes
place.

10These and other practical issues related to the art of compiler design have been successfully treated
elsewhere; [58], for instace, discusses optimising translations for the Haskell language at length, and provides
many practical examples.

70 CHAPTER 3. LINEARITY ANALYSIS

It is clear that a more accurate analysis that would detect cases like the one shown would
not only have to be able to distinguish between computations and values, but also know when
computations are transformed into values—in other words, the reduction strategy chosen.

An elegant solution to this problem would consist in translating our ideas into a more
general framework, like Moggi’s computational calculus, and derive better analyses specifically
tailored for particular reduction strategies by studying translations into this calculus. This is
a matter of further work, as discussed in Subsection 8.2.2.

3.7.3 Sharing and single-threading

Barendsen and Smetsers considered a typing system of ‘uniqueness types’, which allows them
to infer single-threaded uses of values [29]. Implementations can ‘reuse’ single-threaded cells
by destructively updating their contents once used. Altering the contents of a single-threaded
array, for instance, can be implemented more efficiently by destructively updating its contents
in-place; it is not necessary to duplicate the array first, since we can be sure it is not shared.

As we remarked in the introduction, it is relatively well-known now that the notion of
usage provided by linear logic does not correctly scale down to lower-level notions, like that
of sharing values in a particular implementation of the reduction strategy of the calculus.
Depending on the details of the implementation, ‘used only once’ may not necessarily imply
‘not shared’ [18, 61]. We stumbled upon this same semantical gap ourselves when designing
an abstract machine for an intermediate language based on DILL [2]. The abstract machine
handled intuitionistic and linear resources differently, using two separate environments and
two separate sorts of substitution (linear and intuitionistic). Since it was formulated at a
sufficiently higher-level of abstraction, it was easily proved correct with respect to the reduc-
tion rules of linear logic. We then considered the problem of implementing linear substitution
using destructive updating of linear variables in-place. It did not took us long to find a simple
first-order counter-example showing how linear variables would become ‘indirectly’ shared in
our implementation. What we needed was a single-threaded analyser, but we were so eager
to find an application for linear logic. . .

To motivate the nature of this mismatch in intuitive terms, suppose we have a function
of type (σ1

1 ⊗ σ2
1)⊤ ⊸ τ . The annotations tell us already that the function may use its

argument, which is a pair, an unknown number of times, possibly many. In other words,
the function may share its argument. However, how this may be compatible with the linear
annotations on the pair components? A pair is just an aggregate structure, so if the whole
structure is shared, then each component must also be shared. The existence of such a type
is already problematic according to this interpretation. Wadler [65], for example, already
recognised this problem and corrected it by actually forbiding such types in typings, observing
that the resulting system is probably too weak to be of any practical use. Indeed, his type
system would give the function the weaker type (σ1

⊤ ⊗ σ2
⊤)⊤⊸ τ .

A number of people have worked on annotated type systems based on ideas coming from
linear logic, but the actual relationship with linear logic is only superficial: Their systems
cannot be in general understood as a term-assignment system for linear logic, or some suitable
fragment of it. A successful attempt at crafting a less conservative and, hence, more useful
single-usage type system for the call-by-need Haskell language has been published in a series
of papers [62, 68, 67]. The application intended was to avoid the updating linear closures in
their graph-reduction implementation of Haskell. (Mogensen [45], proposed some refinements
to the early analysis of Turner et al. [62], although he did not prove his analysis correct.)

Chapter 4

Annotation subtyping

In this chapter, we study an extension of linearity analysis with a notion of subsumption that
is induced by a subtype relation between annotated types.

Subsumption allows an intuitionistic context to be used where a linear context is expected.
In particular, because functions are instances of contexts, subsumption allows a linear function
to be given a non-linear functional type, and therefore to be used in a context that expects a
non-linear function. Formally, we write this fact

σ1 ⊸ τ ≤ σ⊤⊸ τ,

for any two types σ and τ . Likewise, a context that expects a linear pair can be fed with a
pair that is non-linear in one or both components.

Subsumption is important as it increases the expressive power of the type system. For
instance, suppose that a context expects a function of type σ⊤ ⊸ τ . Without subsumption,
only functions having ⊤-annotated bound variables (i.e., of the form λx:σ⊤.M) can be used in
such a context. This dependency between the type of the context and that of the candidate
function is alleviated with subsumption: The bound variable of a candidate function can
retain its linear annotation, and still be given the (less precise) type σ⊤ ⊸ τ , in order to
conform to the type of the including context. Notice that inlining inspects the annotations
on bound variables, so subtyping clearly opens the door for better optimised programs.

Annotation subtyping can be regarded as providing a partial solution to the ‘poisoning
problem’, informally discussed in Subsection 1.4.1, as it allows terms of non-ground type to be
assigned distinct annotated types. It also provides a simple criterion for assigning annotated
types to definitions in modules, with the aim of augmenting the accuracy of the analysis
across separately compiled modules. We shall discuss these two related problems in more
detail in Section 5.1.

Many modern annotated type systems include a notion of subsumption in one way or the
other. Annotation subtyping for usage type systems is an idea that seems to have sprung into
existence only recently. A pratical example of a static analysis of affine properties including
a notion of subsumption in the same spirit as the one we consider here may be found in [68].

4.0.4 Organisation

We have organised the contents on this chapter as follows:

• Section 4.1 considers NLL≤, our extension of NLL with subtyping. We also motivate
the usefulness of the extensions by means of an example.

71

72 CHAPTER 4. ANNOTATION SUBTYPING

G ≤ G

σ2 ≤ σ1 τ1 ≤ τ2 a1 ⊑ a2

σ1
a1 ⊸ τ1 ≤ σ2

a2 ⊸ τ2

σ1 ≤ σ2 τ1 ≤ τ2 a2 ⊑ a1 b2 ⊑ b1

σ1
a1 ⊗ τ1

b1 ≤ σ2
a2 ⊗ τ2

b2

Figure 4.1: Subtyping relation on types

• Section 4.2 shows that the extension is sound.

• Section 4.3 introduces NLLµ≤, a restriction of NLL≤ to its minimum typings. This
variant will play an important role when we consider type inference algorithms for
linearity analysis with subtyping.

• Section 4.4 proves the semantic correctness of NLL≤ with respect to reduction by stating
the corresponding Substitution Lemma and Subject Reduction Theorem.

4.1 The Subsumption rule

Let NLL≤ refer to the linear theory NLL extended with the following subsumption rule.

Γ ⊢M : σ σ ≤ τ
Subsumption

Γ ⊢M : τ

Subsumption states that if a term has type σ, it also has supertype τ . A type σ is a
subtype of type τ (and, conversely, τ is a supertype of type σ) if σ ≤ τ is derivable using the
inference rules of Figure 4.1.

The rules are standard. The subtyping relation is contravariant on function domains and
covariant on function codomains, whereas, for pairs types, it is covariant on both component
types. For annotations this situation is reversed: the relation is covariant on function domain
annotations, whereas, for pair types, it is contravariant on both component type annotations.

From a type-theoretic viewpoint, the notion of subtyping we have just introduced is known
as shape conformant subtyping, since the relation is invariant on the ‘shape’ of the underlying
types1.

Proposition 4.1.1 (Shape conformance)
If σ ≤ τ , then σ◦ = τ◦. �

1Gustavsson defines his analysis as an extension of an underlying type system able to accomodate recursive
types, general subtyping as well as type-parametric polymorphism [35]. His extension is based on a formulation
based on constrained types, which is ideal for type inference. The author thought such a formulation would
obscure the presentation of structural analysis, and preferred a ‘minimal’ approach, so that the reader can
better appreciate how the intermediate language relates to the source language using the notion of (structural)
decoration.

4.1. THE SUBSUMPTION RULE 73

The orientation of the relation on annotations may seem unnatural to the reader, but note
that annotation subtyping derives from the inclusion of contexts, and so the relation appears
reversed on annotations. As we have seen in the previous chapter, the inclusion of contexts
appears in the formulation of the Transfer rule, which can be understood as a ‘rudimentary’
form of subtyping, taking place at the left of the turnstile2.

4.1.1 Inlining revisited

If we look at the axioms of the inlining relation of Figure 3.10, it is easy to see that any inlining
decisions ultimately depend on the annotations given to the bound variables. The binder
let 〈x1, x2〉 = M in N does not explicitly carry any annotations on its bound variables: these
seem unnecessary to define the inlining relation, as they can be deduced from the annotations
of the matching pair, as in the axiom

let 〈x1, x2〉 = 〈M1,M2〉
1,1 in N

inl
 N [M1/x1,M2/x2].

The correctness of this observation derives from the ⊗E rule. However, with subtyping, it
is possible for the bound variables to have annotations in the typing context different from
those of the matching pair, as the following example derivation shows:

− ⊢ 0 : int − ⊢ 1 : int

− ⊢ 〈0, 1〉⊤,⊤ : int⊤ ⊗ int⊤

Subsumption
− ⊢ 〈0, 1〉⊤,⊤ : int1 ⊗ int⊤

x1 : int1 ⊢ x1 : int

x1 : int1, x2 : int⊤ ⊢ x1 : int
⊗E

− ⊢ let 〈x1, x2〉 = 〈0, 1〉⊤,⊤ in x1 : int

The analysis clearly discovers that x1 is used once inside the let, but this information is not
reflected in the final annotated term. For this reason, we shall henceforth annotate all bound
variables explicitly.

We first change the syntax of the unpairing construct as follows:

M ::= as defined in Section 3.2, except for
let 〈x, x〉a,a = M in M Unpairing

The modified construct is typed in the obvious way, according to the following rule:

Γ1 ⊢M : σ1
a1 ⊗ σ2

a2 Γ2, x1 : σ1
a1 , x2 : σ2

a2 ⊢ N : τ
⊗E

Γ1,Γ2 ⊢ let 〈x1, x2〉
a1,a2 = M in N : τ

The inlining relation is corrected accordingly to inspect the annotations of the bound
variables, as shown in Figure 4.2.

2Wansbrough seems to have preferred the more ‘natural’ reading by letting ⊤ ⊑ 1 [66]. We prefer 1 ⊑ ⊤
as this is also the order suggested by the sub-decoration order relation we somehow inherited from early work
on linear decorations.

74 CHAPTER 4. ANNOTATION SUBTYPING

(λx:σ1.M)N
inl
 M [N/x]

let 〈x1, x2〉
1,1 = 〈M1,M2〉

a,b in N
inl
 N [M1/x1,M2/x2]

let 〈x1, x2〉
1,⊤ = 〈M1,M2〉

a,b in N
inl
 let x2 = M2 in N [M1/x1]

let 〈x1, x2〉
⊤,1 = 〈M1,M2〉

a,b in N
inl
 let x1 = M1 in N [M2/x2]

let x:σ1 = M in N
inl
 N [M/x]

Figure 4.2: The revised inlining relation

4.1.2 An illustrative example

To illustrate the use of subtyping, we shall compare two optimal analyses, with and without
subtyping, of the following input program:

let p = 〈0, 1〉 in

let fst = λx:int × int.let 〈x1, x2〉 = x in x1 in

let snd = λx:int × int.let 〈x1, x2〉 = x in x2 in

(fst p) + (snd p)

Without subsumption, we obtain the following optimal analysis:

let p:⊤ = 〈0, 1〉⊤,⊤ in

let fst:1 = λx:(int⊤ ⊗ int⊤)1.let 〈x1, x2〉 = x in x1 in

let snd:1 = λx:(int⊤ ⊗ int⊤)1.let 〈x1, x2〉 = x in x2 in

(fst p) + (snd p)

(Once again, we have omitted any base type information for let-bound variables.) Notice
that p has ⊤ as its annotation since it is used twice. The components of 〈0, 1〉 must also be
annotated with ⊤ since the first component is discarded in (snd p) and the second component
is discarded in (fst p). The optimal typings for fst and snd are

fst : (int1 ⊗ int⊤)1 ⊸ int

snd : (int⊤ ⊗ int1)1 ⊸ int

but since p must necessarily have type int⊤ ⊗ int⊤, then fst and snd must have domain types
matching the type of p, that is (int⊤ ⊗ int⊤)1 ⊸ int.

With subtyping, we can make use of the following relationships

int⊤ ⊗ int⊤ ≤ int1 ⊗ int⊤

int⊤ ⊗ int⊤ ≤ int⊤ ⊗ int1

4.1. THE SUBSUMPTION RULE 75

to obtain a more accurate analysis, as shown below.

let p:⊤ = 〈0, 1〉⊤,⊤ in

let fst:1 = λx:(int1 ⊗ int⊤)1.let 〈x1, x2〉
1,⊤ = x in x1 in

let snd:1 = λx:(int⊤ ⊗ int1)1.let 〈x1, x2〉
⊤,1 = x in x2 in

(fst p) + (snd p)

The analysis is able to detect that x1 is used once in the body of fst. This is reflected in the
annotation of the pair pattern 〈x1, x2〉

1,⊤. A similar remark applies to snd. Figure 4.3 shows
two possible derivations of (fst p) that show how this becomes possible.

Notice that if we had decided to inline one occurrence of p, as in for instance (fst 〈0, 1〉⊤,⊤),
the revised inlining relation would have allowed us to rewrite the expression completely. The
last step is the more interesting one:

let 〈x1, x2〉
1,⊤ = 〈0, 1〉⊤,⊤ in x1

inl
 0.

4.1.3 Digression: context narrowing

We could have chosen an alternative presentation of NLL≤ where the Subsumption rule would
have been replaced by the following Context Narrowing rule3, that we introduce here as a
property that will prove useful in the sequel.

Lemma 4.1.2 (Context Narrowing)
The following rule is admissible in NLL≤.

Γ, x : σ1
a ⊢M : τ σ2 ≤ σ1

Γ, x : σ2
a ⊢M : τ

Proof. Easy induction on the derivations of Γ, x : σ1
a ⊢M : τ . The key case is provided by

a derivation consisting of a single application of the Identity rule:

Identity
x : σ1

a ⊢ x : σ1

The conclusion follows from subsumption as shown by the following derivation:

Identity
x : σ2

a ⊢ x : σ2 σ2 ≤ σ1
Subsumption

x : σ2
a ⊢ x : σ1

�

3Some authors prefer the name ‘Bound Weakening’ for this rule. The name comes from the duality that
exists between the Context Narrowing rule and the Subsumption rule, which has the effect of ‘widening’ the
type of the premise.

7
6

C
H

A
P

T
E

R
4
.

A
N

N
O

T
A
T

IO
N

S
U

B
T

Y
P

IN
G

Derivation 1:

Identity
fst : ((int1 ⊗ int⊤)1 ⊸ int)1 ⊢ fst : (int1 ⊗ int⊤)1 ⊸ int

Identity
p : (int⊤ ⊗ int⊤)⊤ ⊢ p : int⊤ ⊗ int⊤

Subsumption
p : (int⊤ ⊗ int⊤)⊤ ⊢ p : int1 ⊗ int⊤

⊸E
fst : ((int1 ⊗ int⊤)1 ⊸ int)1, p : (int⊤ ⊗ int⊤)⊤ ⊢ fst p : int

Derivation 2:

Identity
fst : ((int1 ⊗ int⊤)1 ⊸ int)1 ⊢ fst : (int1 ⊗ int⊤)1 ⊸ int

Subsumption
fst : ((int1 ⊗ int⊤)1 ⊸ int)1 ⊢ fst : (int⊤ ⊗ int⊤)1 ⊸ int

Identity
p : (int⊤ ⊗ int⊤)⊤ ⊢ p : int⊤ ⊗ int⊤

⊸E
fst : ((int1 ⊗ int⊤)1 ⊸ int)1, p : (int⊤ ⊗ int⊤)⊤ ⊢ fst p : int

Figure 4.3: Optimal decoration for (fst p)

4.2. SOUNDNESS 77

4.2 Soundness

A first obvious observation is that NLL≤ is a conservative extension of NLL.

Proposition 4.2.1 (Conservativity)
Γ ⊢

NLL
M : σ implies Γ ⊢

NLL≤
M : σ. �

To prove the correctness of the extended type system with subtyping, we shall take the
standard approach and, at the end of the chapter, prove a Substitution Lemma. In this
section, we shall briefly motivate the correctness of the theory in a different way, by providing
a translation from NLL≤ terms into NLL terms, and showing that this translation is invariant
with respect to reduction4.

We begin by giving an operational interpretation of subtyping as a ‘retyping’ or coercion
function

[[σ ≤ τ]] : σ1 ⊸ τ,

mapping terms of type σ into terms of type τ , for every σ that is a subtype of τ5. This
retyping function is easily defined by induction on the definition of the subtype relation, as
follows:

[[G ≤ G]]
def
= λx:G1.x

[[σ1
a1 ⊸ τ1 ≤ σ2

a2 ⊸ τ2]]
def
= λf :(σ1

a1 ⊸ τ1)
1.

λx:σ2
a2 .[[τ1 ≤ τ2]] (f ([[σ2 ≤ σ1]] x))

[[σ1
a1 ⊗ τ1

b1 ≤ σ2
a2 ⊗ τ2

b2]]
def
= λx:(σ1

a1 ⊗ τ1
b1)1.let 〈x1, x2〉

a1,b1 = x in

〈[[σ1 ≤ σ2]] x1, [[τ1 ≤ τ2]] x2〉
a2,b2

The following two propositions state, respectively, that the coercion function has the
expected type, and that its erasure behaves like the identity on source language terms of the
appropriate type. (We note that if σ ≤ τ , then σ◦ ≡ τ◦, so [[σ ≤ τ]]◦ has at least the type of
the identity.)

Proposition 4.2.2
If Γ ⊢

NLL
M : σ and σ ≤ τ for some τ , then Γ ⊢

NLL
[[σ ≤ τ]] M : τ .

Proof. It suffices to check that − ⊢ [[σ ≤ τ]] : σ1 ⊸ τ . The proposition follows by a simple
application of⊸E . �

Proposition 4.2.3
If Γ ⊢

NLL
M : σ, then [[σ ≤ τ]]◦ M◦ ։M◦ for any τ . �

Using the above coercion function, we now provide a translation [[−]] mapping NLL≤ type
derivations into NLL type derivations.

We define [[Π(Γ ⊢M : σ)]] by induction on the structure of Π. We recursively translate
subderivations, replacing the subterms in the conclusion of the translation by the correspond-
ing subterms appearing in the conclusion of the subderivations just translated. The only

4This translation could be the basis of a straightforward semantics of NLL≤ in terms of DILL.
5We could have equally chosen σ⊤ ⊸ τ to be the type of the retyping function.

78 CHAPTER 4. ANNOTATION SUBTYPING

Γ1 ⊢M : σ1
a⊸ τ Γ2 ⊢ N : σ2 σ2 ≤ σ1 |Γ2| ⊒ a

⊸E
Γ1,Γ2 ⊢MN : τ

Γ1 ⊢M : σ1
a1 ⊗ σ2

a2 Γ2, x1 : τ1
b1 , x2 : τ2

b2 ⊢ N : τ ai ⊒ bi σi ≤ τi (i = 1, 2)
⊗E

Γ1,Γ2 ⊢ let 〈x1, x2〉
b1,b2 = M in N : τ

Γ1 ⊢M : bool Γ2 ⊢ N1 : σ1 Γ2 ⊢ N2 : σ2
Conditional

Γ1,Γ2 ⊢ if M then N1 else N2 : σ1 ⊔ σ2

Figure 4.4: Modified rules for NLLµ≤

interesting case is the translation of a derivation ending in an application of the Subsumption
rule:

[[

Π(Γ ⊢M : σ)

Γ ⊢M : τ

]]

=
Π(Γ ⊢M ′ : σ)

Γ ⊢ [[σ ≤ τ]] M ′ : τ
(4.1)

where [[Π(Γ ⊢M : σ)]] = Π(Γ ⊢M ′ : σ).

Notice that a NLL≤ term M may have different possible translations, corresponding to
the different possibilities that exist of applying the Subsumption rule in their associated type
derivations. So, let [[M]]Γ stand for any translation M ′ of a term M typeable in context Γ:

[[M]]Γ
def
= M ′ if [[Π(Γ ⊢

NLL≤
M : σ)]] = Γ ⊢

NLL
M ′ : σ,

for some type derivation Π.

The following statement can be easily proved by induction and Proposition 4.2.3.

Proposition 4.2.4 (Soundness)
For suitable Γ and M , if [[M]]Γ = M ′, then M ′◦ ։M◦. �

4.3 Minimum typing

The Unique Typing property is obviously not verified in the presence of subtyping. However,
a related Minimum Typing property can be proved for this system. This property states that
every term of NLL≤ that has a type, has also a minimum type.

This property is important as it provides a criterion for choosing among the set of enriched
types available for a term. As a matter of fact, we shall consider a subset of NLL≤, that we
call NLLµ≤, having unique types and such that if a term has a type in this system, it has the
same type in NLL≤ and, moreover, it is the smallest such type. The type system NLLµ≤ is
obtained from NLL≤ by dropping the subsumption rule and replacing the elimination rules
with the rules shown in Figure 4.46.

6Following the notation adopted for constraint sets in Chapter 6, any restrictions on annotations will be
written as inequations of the form a ⊒ b.

4.3. MINIMUM TYPING 79

The notation σ1 ⊔ σ2, used in the Conditional rule, stands for the join of σ1 and σ2 with
respect to the subtyping order. Notice that in the⊸E rule, the conditions ai ⊒ bi and σi ≤ τi
(for i = 1, 2) imply σa1

1 ⊗ σa2

2 ≤ τ b11 ⊗ τ2
b2 .

The following three lemmas prove some basic results about NLLµ≤. We begin by showing
that NLLµ≤ typings are also NLL≤ typings.

Lemma 4.3.1
If Γ ⊢

NLLµ≤
M : σ, then Γ ⊢

NLL≤
M : σ.

Proof. It is straightforward to show that the modified rules of NLLµ≤ are derivable in
NLL≤. We show the derivations for the elimination rules below.

• For the⊸E rule:

Γ1 ⊢M : σ1
a⊸ τ

Γ2 ⊢ N : σ2
Subsumption

Γ2 ⊢ N : σ1

Γ1,Γ2 ⊢MN : τ

• For the ⊗E rule:

Γ1 ⊢M : σ1
a1 ⊗ σ2

a2

Subsumption
Γ1 ⊢M : τ1

b1 ⊗ τ2
b2 Γ2, x1 : τ1

b1 , x2 : τ2
b2 ⊢ N : τ

Γ1,Γ2 ⊢ let 〈x1, x2〉
b1,b2 = M in N : τ

• For the Conditional rule:

Γ1 ⊢M : bool

Γ2 ⊢ N1 : σ1
Subsumption

Γ2 ⊢ N1 : σ1 ⊔ σ2

Γ2 ⊢ N1 : σ2
Subsumption

Γ2 ⊢ N1 : σ1 ⊔ σ2

Γ1,Γ2 ⊢ if M then N1 else N2 : σ1 ⊔ σ2

�

The remaining two lemmas state that typings in NLLµ≤ are unique and smaller, respec-
tively, than typings in NLL≤.

Lemma 4.3.2 (Unique Typing)
If Γ ⊢

NLLµ≤
M : σ and Γ ⊢

NLLµ≤
M : τ , then σ ≡ τ .

Proof. Easy induction on the derivations of Γ ⊢M : σ. �

Lemma 4.3.3 (Smaller Typing)
If Γ ⊢

NLL≤
M : σ, then Γ ⊢

NLLµ≤
M : τ for some τ ≤ σ.

Proof. We proceed by induction on NLL≤ derivations of Γ ⊢M : σ. Only the key cases are
shown.

•
x : σa ⊢ x : σ
This case is obvious; we just let τ ≡ σ.

80 CHAPTER 4. ANNOTATION SUBTYPING

•
Γ, x : σa ⊢M : τ1

Γ ⊢ λx:σa.M : σa⊸ τ1

By the induction hypothesis, we have that Γ, x : σa ⊢ M : τ0 is derivable for some
τ0 ≤ τ1. Therefore, applying the ⊸I rule, we can obtain λx:σa.M : σa ⊸ τ0; and,
because ≤ is covariant on function codomains, we have σa⊸ τ0 ≤ σa⊸ τ1, as expected.

•
Γ1 ⊢M : σ1

a1 ⊸ τ1 Γ2 ⊢ N : σ1

Γ1,Γ2 ⊢MN : τ1

Applying the induction hypothesis twice, we obtain Γ1 ⊢ M : σ0
a0 ⊸ τ0 and Γ2 ⊢ N :

σ′0, with σ0
a0 ⊸ τ0 ≤ σ1

a1 ⊸ τ1 and σ′0 ≤ σ1. Because subtyping is contravariant on
function domains, we have that σ1 ≤ σ0, and hence σ′0 ≤ σ0. Also, since it must be the
case that |Γ2| ⊒ a1, from a1 ⊒ a0, we deduce that |Γ2| ⊒ a0. Therefore, we can apply
the⊸E rule to conclude Γ1,Γ2 ⊢MN : τ0, and τ0 ≤ τ1.

•
Γ1 ⊢M : bool Γ2 ⊢ N1 : σ1 Γ2 ⊢ N2 : σ1

Γ1,Γ2 ⊢ if M then N1 else N2 : σ1

By the induction hypothesis, twice, we have that Γ2 ⊢ N1 : σ′0 and Γ2 ⊢ N2 : σ′′0 ,
with σ′0 ≤ σ1 and σ′′0 ≤ σ1. We can therefore apply the Conditional rule to conclude
Γ1,Γ2 ⊢ if M then N1 else N2 : σ′0 ⊔ σ

′′
0 , and σ′0 ⊔ σ

′′
0 ≤ σ1 by definition.

•
Γ, x : σ1

⊤ ⊢M : σ1

Γ ⊢ fix x:σ1.M : σ1

Applying the induction hypothesis, we obtain Γ, x : σ1
⊤ ⊢ M : σ0 with σ0 ≤ σ1. By

Context Narrowing (Lemma 4.1.2), we have that Γ, x : σ0
⊤ ⊢M : σ0. We can therefore

apply the Fixpoint rule and conclude Γ ⊢ fix x:σ0.M : σ0.

•
Γ ⊢M : σ1

Γ ⊢M : τ1

By the induction hypothesis, we know that Γ ⊢M : σ0 for some σ0 ≤ σ1. Since σ1 ≤ τ1
by Subsumption, we may conclude σ0 ≤ τ1, as desired.

�

Using these lemmas, we are now ready to prove the following Minimum Typing property
for NLL≤.

Theorem 4.3.4 (Minimum Typing)
If Γ ⊢

NLL≤
M : σ, then there exists τ such that Γ ⊢

NLL≤
M : τ , and, for every other σ′ for

which Γ ⊢
NLL≤

M : σ′, then τ ≤ σ′.

Proof. Suppose that Γ ⊢ M : σ in NLL≤. By Lemma 4.3.3, we know that Γ ⊢ M : τ
for some τ ≤ σ is derivable in NLLµ≤. From Lemma 4.3.1, it follows that Γ ⊢ M : τ must
also derivable in NLL≤. Again, by Lemma 4.3.3, if Γ ⊢ M : σ′ is derivable in NLL≤, then
Γ ⊢ M : τ ′ is derivable in NLLµ≤ with τ ′ ≤ σ′. By Lemma 4.3.2, we must have that τ ≡ τ ′,
and hence τ ≤ σ′. �

4.4. SEMANTIC CORRECTNESS 81

|Γ| ⊒ ⊤
Identity

Γ, x : σa ⊢ x : σ

|Γ| ⊒ ⊤ Σ(π) = σ
Primitive

Γ ⊢ π : σ

Γ, x : σa ⊢M : τ
⊸I

Γ ⊢ λx:σa.M : σa⊸ τ

Γ1 ⊢M : σ1
a⊸ τ Γ2 ⊢ N : σ2 σ2 ≤ σ1 |Γ2| ⊒ a

⊸E
Γ1 ⊎ Γ2 ⊢MN : τ

Γ1 ⊢M1 : σ1 Γ2 ⊢M2 : σ2 |Γ1| ⊒ a1 |Γ2| ⊒ a2
⊗I

Γ1 ⊎ Γ2 ⊢ 〈M1,M2〉
a1,a2 : σ1

a1 ⊗ σ2
a2

Γ1 ⊢M : σ1
a1 ⊗ σ2

a2 Γ2, x1 : τ1
b1 , x2 : τ2

b2 ⊢ N : τ ai ⊒ bi σi ≤ τi (i = 1, 2)
⊗E

Γ1 ⊎ Γ2 ⊢ let 〈x1, x2〉
b1,b2 = M in N : τ

Γ1 ⊢M : bool Γ2 ⊢ N1 : σ1 Γ2 ⊢ N2 : σ2
Conditional

Γ1 ⊎ Γ2 ⊢ if M then N1 else N2 : σ1 ⊔ σ2

Γ, x : σ⊤ ⊢M : σ |Γ| ⊒ ⊤
Fixpoint

Γ ⊢ fix x:σ.M : σ

Figure 4.5: The typing rules of NLLµ≤⊎

The system NLLµ≤ will be the basis of the annotation inference algorithm studied in the
following chapter. Actually, the development of the following chapter is directly based on
a syntax-directed version of it. Figure 4.5 summarises the typing rules of this system, that
we call NLLµ≤⊎. Lemmas 3.4.3 and 3.4.5 provide the template proofs for the equivalence to
NLLµ≤.

4.4 Semantic correctness

Like NLL, typings in NLL≤ are preserved by the reduction rules. It is easier to state the
corresponding Substitution Lemma and Subject Reduction Theorem for NLLµ≤ first. For
NLL≤, these properties follow as corollaries, as we shall soon explain.

Lemma 4.4.1 (Substitution for NLLµ≤)
The following rule is admissible.

Γ1, x : σ1
a ⊢M : τ Γ2 ⊢ N : σ2 |Γ2| ⊒ a σ2 ≤ σ1

Substitution
Γ1,Γ2 ⊢M [N/x] : τ

Proof. Basically, a trivial modification of Lemma 3.5.6. �

82 CHAPTER 4. ANNOTATION SUBTYPING

Theorem 4.4.2 (Subject Reduction for NLLµ≤)
If Γ ⊢

NLLµ≤
M : σ and M → N , then Γ ⊢

NLLµ≤
N : σ.

Proof. Basically, a trivial modification of Theorem 3.5.7. �

Theorem 4.4.3 (Subject Reduction for NLL≤)
If Γ ⊢

NLL≤
M : σ and M → N , then Γ ⊢

NLL≤
N : σ.

Proof. Assume Γ ⊢ M : σ holds in NLL≤. By Lemma 4.3.3, we know Γ ⊢ M : τ holds
in NLLµ≤ for some τ ≤ σ. Assuming M → N , by Subject Reduction for NLLµ≤ and
Lemma 4.3.1, we know Γ ⊢ N : τ must be the case in NLLµ≤. The required conclusion
Γ ⊢ N : σ follows by Subsumption. �

We can use a similar argument to prove the admissibility of the Substitution for NLL≤.

4.4.1 Subject reduction for η-reduction

As we argued in Subsection 3.5.5, extending our notion of reduction with the η-reduction
axiom

λx:σa.M x→M if x 6∈ FV(M) (η)

compromises NLL’s Subject Reduction property. Fortunately, this property can be recov-
ered for η-reduction for our linear type theory with subtyping, as stated by the following
proposition.

Proposition 4.4.4 (Subject Reduction for η)
If Γ ⊢

NLL≤
λx:σa.M x : σa⊸ τ with x 6∈ FV(M), then Γ ⊢

NLL≤
M : σa⊸ τ .

Proof. A derivation for the left-hand side of the implication must be as shown:

Π(Γ ⊢M : σb⊸ τ)
Identity

x : σa ⊢ x : σ a ⊒ b
⊸E

Γ, x : σa ⊢M x : τ
⊸I

Γ ⊢ λx:σa.M x : σa⊸ τ

Clearly, the critical case is when a and b have distinct values. In this case, subsumption is
needed to obtain the required type:

Π(Γ ⊢M : σb⊸ τ) σb⊸ τ ≤ σa⊸ τ
Subsumption

Γ ⊢M : σa⊸ τ

�

Chapter 5

Annotation polymorphism

In the previous chapter, we have looked at an extension of linearity analysis with a notion
of subsumption over annotated types. As we have observed, the resulting analysis is more
expressive from a static analysis viewpoint, as it allows terms of non-ground type to be as-
signed many distinct annotated types. The annotations in terms are not required to match
the annotations in types precisely. Indeed, the usage of subsumption implies that the anno-
tations of bound variables are necessarily more accurate. An interesting question is whether
this ‘degree of independence’ gained can be carried farther.

In this chapter, we extend the analysis of our previous chapter with general annotation
polymorphism. Roughly speaking, with general annotation polymorphism, a term cannot only
be assigned the types in its subtyping family, but also all the types in its decoration family1.
What this suggests is that the analysis of a term and the analysis of the contexts where that
term is used can be approached separately. This was not possible with our previous versions
of linearity analysis, because of the strong interplay between the annotations of a term and
its uses.

Annotation polymorphism provides a satisfactory solution to the ‘poisoning problem’,
informally discussed in Subsection 1.4.1. As we pointed out in the introduction, this is
nothing more than the consequence of the fact that linearity analysis, as described so far, is
monomorphic on annotations.

The main motivation for having annotation polymorphism is to serve as basis for the
accurate static analysis of linearity properties across module boundaries, so we shall begin by
looking at this problem in more detail.

Our approach is more general compared to other similar systems, in the sense that we are
interested in having general rules for introducing and eliminating quantified types, and not
just specific rules that match our type inference algorithm. In the following chapter, we shall
derive a type inference algorithm that assigns quantified types to definitions as a restriction
of the more general system we introduce here.

5.0.2 Organisation

The contents of this chapter are organised as follows:

1We use the term ‘general annotation polymorphism’ instead of simply ‘annotation polymorphism’, as
restricted versions of general annotation polymorphism exist in the literature. An example is Wansbrough’s
simple usage polymorphism [67].

83

84 CHAPTER 5. ANNOTATION POLYMORPHISM

• Section 5.1 explains in more detail why annotation polymorphism is necessary for those
languages supporting separately compiled modules.

• Section 5.2 introduces the syntax and typing rules of NLL∀, our version of NLL with
annotation polymorphism.

• Section 5.3 introduces NLL∀≤, a system that mixes both annotation subtyping and
annotation polymorphism.

• Section 5.4 lists some type-theoretic properties of NLL∀≤ and establishes its semantical
correctness.

• Section 5.5 introduces NLL∀let≤, a subset of NLL∀≤ that restricts annotation polymor-
phism to let-definitions only. This system will provide the minimal setting needed to
discuss modular linearity analysis.

• Section 5.6 argues that annotation polymorphism is powerful enough to emulate sub-
typing.

• Section 5.7 finally shows the semantic correctness of an extended version of NLL∀≤ that
includes type-parametric polymorphism in the style of System F.

5.1 Separate compilation and optimality

Terms in modular languages may contain free variables that refer to definitions in either the
same module, or in separately compiled (external) modules, and for which only the types are
known at compilation time. When compiling a program, the bodies of any external definitions
used are usually not available to the static analyser, so unless the properties inferred for these
definitions are saved, the static analyser has no other possibility other than assuming the
worst. ‘Assuming the worst’ refers here to adopting the worst decoration for the type of an
external definition as the only safe strategy to fill in the missing information. Formally, if σ is
the type of an external definition bound to the identifier x, and M [x] is a term containing x,
the static analyser must assume x : σ• in the analysis of M . Without any knowledge on the
structure of the definition bound to x, any other structural assumptions would necessarily be
unsound. The result is an analysis that has degraded to the point of uselessness.

It seems then that saving the inferred properties of definitions (in the module interface,
for instance2) is compulsory. However, saving precomputed optimal types, or any other type
for that matter, does not work. A trivial counter-example is all that is needed to motivate
the problem.

Assume there is a module containing the following simple definition:

let origin = 〈0, 0〉.

(We suppose that modules are simply lists of bindings, associating a variable name to a term.
We leave any details for later.)

The optimal decoration for such a definition is

− ⊢ 〈0, 0〉1,1 : int1 ⊗ int1.

2Note that this means that client modules must be recompiled if the annotated type of the module has
changed with respect to the annotated type in the interface, even if the underlying types remain the same.

5.1. SEPARATE COMPILATION AND OPTIMALITY 85

Now, suppose the compiler comes across the expression

let 〈x1, x2〉 = origin in x1.

The variable origin occurs in a context of (at best) type int1 ⊗ int⊤ (because x2 is discarded
in the body of the let). However, this type is incompatible with the optimal type int1 ⊗ int1

precomputed for origin. Notice that subsumption cannot help to alleviate the problem, since

int1 ⊗ int⊤ ≤ int1 ⊗ int1,

not the reverse. The static analyser has then got stuck.
As the example above shows, the optimal property of a definition may be too restrictive,

so it cannot be generally used in practice. The problem here is that we do not have any
contextual information regarding the use of a definition, at least not at compilation time. An
accurate analysis certainly depends on the availability of this information. (We assume that
we are not interested in deferring compilation until the whole application has been assembled,
so we are inevitably left at a point where some important information is missing.)

We should remark that accuracy is not always compromised. Suppose our compiler takes
a safe decision and decorates origin as follows:

− ⊢ 〈0, 0〉⊤,⊤ : int⊤ ⊗ int⊤.

Thanks to subsumption, origin could be used in a context of type int1⊗ int1, possibly allowing
some interesting inlining optimisations to take place.

Instead of the optimal property of a definition, what we should be really be looking for
is the property that is sufficiently general as to not compromise typeability, and sufficiently
precise as to not compromise accuracy. Notice that the worst decoration for origin works
because of subsumption, but this is generally not the case if we consider other examples
where higher-order functions are involved3. (Notice that for first-order languages, both the
decoration and subtyping families coincide, so the strategy that assigns the smallest type in
the subtyping family is enough to ensure typeability.)

As another example, consider the following decorated module definition:

let apply = λf :(int⊤⊸ int)1.λx:int⊤.f x.

We clearly cannot assign f the more accurate type int1 ⊸ int, because it would incorrectly
constrain the applications of apply to only linear functions. But we have lost the information
necessary to fully inline programs like

let inc = λy:int1.y + 1 in

apply inc 3

where apply is used in the context of a linear function. Indeed, after two steps of inlining (and
renaming of bound variables), we are left with

(λx:int⊤.(λy:int1.y) x) 3.

3The Substitution Lemma of our simple linearity analysis (Lemma 3.5.6) states that the types of both the
context hole and the substituted term have to be equivalent, so the only gain must necessarily come from the
side of the Subsumption rule, that relaxes this restriction by imposing that the types should be in the subtype
relation.

86 CHAPTER 5. ANNOTATION POLYMORPHISM

Even if x is morally linear, as witnessed by the annotation of y, inlining cannot proceed
because we have been forced to give x an annotation that is compatible with that given to
the domain of f . The same loss of accuracy would be observed if apply appeared as a local
definition, but used in different contexts:

let apply = λf :(int⊤⊸ int)⊤.λx:int⊤.f x in

let inc = λx:int1.x in

let dup = λx:int⊤.x+ x in

apply inc (apply dup 4).

Here, apply is used in both a linear and an intuitionistic context, and because the type system
of linearity analysis does not allow apply to have more than one type, we must content ourselves
with assigning to its definition the weakest of the types. A solution to this problem might
consist in adding intersection types to the type system of linearity analysis, thus allowing
apply to be assigned ‘simultaneously’ the two types

(int⊤⊸ int)⊤⊸ int⊤⊸ int and (int1 ⊸ int)⊤⊸ int1 ⊸ int.

However, this would hardly help in providing a solution to the problem we started with, for
which no contextual information is available.

Annotation polymorphism provides a more satisfactory solution to modular static analysis,
as we see next. It would allow, for instance, the definition module of apply above to be
decorated as shown:

let apply = Λp1, p2 | p2 ⊒ p1.λf :(intp1 ⊸ int)⊤.λx:intp2 .f x.

The compiler would also need to save the type of such a function in the module interface,
that we could write using a similar notation:

apply : ∀p1, p2 | p2 ⊒ p1.(intp1 ⊸ int)⊤⊸ intp2 ⊸ int.

It is clear that the two substitution instances required to accurately analyse the examples
above arise as substitution instances of this polymorphic type.

5.2 The type system

Having discussed our motivations, we are now ready to describe an extension of our interme-
diate linear language with a notion of annotation polymorphism.

5.2.1 Types

The types of the new language, ranged over by φ and ψ, extend the types of NLL (Section 3.2),
as the following grammar rules show.

φ ::= G Ground type
| φt⊸ φ Linear function space
| φt ⊗ φt Tensor product
| ∀pi |Θ.φ Generalised type

t ::= a Annotation value
| p Annotation parameter
| t+ t Contraction of annotations

5.2. THE TYPE SYSTEM 87

Types carry annotations drawn from a set T of annotation terms, which include not only
annotation values as before, but also annotation parameters, or any explicit combination
of annotation terms using the contraction operator +. We assume an infinite supply P of
annotation parameters.

A type that contains only annotation values, as before, will be called a simple type, and
we shall use σ and τ to range over them.

The new type construct, written

∀pi |Θ.φ,

stands for a generalised type4, and consists of a set of quantified annotation parameters pi,
a constraint set Θ, and a type φ. Annotation generalisation, or quantification, relies on a
mechanism for providing a range of values for the quantified annotation parameters, which
in our case takes the form of a set of constraint inequations. The notation pi is used here to
stand for the indexed set {pi}i≤n, for some n. We shall abbreviate indexed sets similarly for
other syntactic elements. Also, whenever we see fit, we shall write sets as comma-separated
sequences, as we have done for contexts.

A constraint set Θ is a (possibly empty) finite set of inequations of the following form:

Θ ::= t1 ⊒ t′1, . . . , tn ⊒ t′n.

No restrictions whatsoever are placed on constraint sets; in particular, constraint sets are
allowed to be inconsistent.

Intuitively speaking, a generalised type may be understood as a compact description
for a family, or set, of types. For instance, the family denoted by the generalised type
∀p | p ⊒ 1.intp ⊸ bool, involves two types, int1 ⊸ bool and int⊤ ⊸ bool, each of which could
stand for the type required by two uses of the same function in two different contexts.

The notation ‘pi | Θ’, which is usually found in definitions of sets by comprehension,
suggests that Θ should not only be understood as a ‘system’ of constraints (for which a
‘solution’ must be found), but also as a logical predicate. In fact, even if we have established
here the general form of this predicate, it is perhaps interesting to point out that its internal
structure is not very important, as long as it denotes a logical predicate. We have been careful
to remain as general as possible in this sense, so all the properties of the extended type system
do not actually depend on the precise nature of Θ. We shall feel free to write ∀pi.φ as an
abbreviation for ∀pi | ∅.φ, to recall the syntax of universal quantification.

4The term ’qualified type’ may also have been appropriate in this context, since generalised types describe
families of types, however we have preferred to use the term that is familiar in context analysis.

88 CHAPTER 5. ANNOTATION POLYMORPHISM

5.2.2 Preterms

The set of preterms ΛNLL∀ , ranged over by M and N , extends the preterms of NLL as follows:

M ::= π Primitive
| x Variable
| λx:φt.M Function abstraction
| MM Function application

| 〈M,M〉t,t Pairing
| let 〈x, x〉t,t = M in M Unpairing
| if M then M else M Conditional
| fix x:φ.M Fixpoint
| Λpi |Θ.M Generalised (pre)term
| M ϑ Specialised (pre)term

As for types, preterms also carry annotation terms. We also extend the syntax of the
language with two new language constructs, Λpi |Θ.M and Mϑ, corresponding to a notion
of functional abstraction over a set of named annotation parameters pi, together with its
matching notion of application. In fact, we shall also refer to these as Λ-abstraction and
Λ-application, respectively. The operand of the application ϑ denotes an annotation substi-
tution, defined below.

We may write M [p1, . . . , pn] to explicitly indicate that p1, . . . , pn actually occur (free) in
the preterm M (see Subsection 5.2.3).

We assume Λ-application to be left-associative, so

M ϑ1 ϑ2 . . . ϑn
def
= (. . . ((M ϑ1) ϑ2) . . .) ϑn.

We must not forget to specify how term-substitution M [ρ] should behave for the new
constructs, so we define

(Λpi |Θ.M)[ρ]
def
= Λp |Θ.M [ρ] if pi 6⊆ ∪x∈dom(ρ)FA(ρ(x)) (5.1)

(M ϑ)[ρ]
def
= (M [ρ]) ϑ (5.2)

Before showing the reader the rules of the type system per se, it seems wise to first give a
detailed definition of the basic syntactic notions of set of free variables and substitution when
these involve annotation parameters. These definitions, although boring, are important as
they expose quite clearly the binding role of generalised types, and may help the reader to
correctly ‘parse’ the rest of the chapter.

5.2.3 Set of free annotation parameters

If Θ ≡ ti ⊒ t′i is a constraint set, we define the set of free annotation parameters of Θ, as
follows5:

FA(ti ⊒ t′i)
def
=

⋃

i

(FA(ti) ∪ FA(t′i)),

5Actually, the language of annotation terms does not include any binding constructs, so all annotation
parameters are free. We might think of extensions where this would not be the case [34].

5.2. THE TYPE SYSTEM 89

where FA(t) denotes the set of free annotation parameters in t, inductively defined by

FA(a)
def
= ∅

FA(p)
def
= {p}

FA(t1 + t2)
def
= FA(t1) ∪ FA(t2).

Likewise, the set FA(φ) of free annotation parameters in a type φ stands for all the annotation
parameters occurring in φ. The only special case to consider is

FA(∀pi |Θ.φ)
def
= (FA(Θ) ∪ FA(φ))\{pi}.

Similarly, for the set of free annotation parameters of a preterm M , FA(M), we have that
FA(Λp |Θ.M) = (FA(Θ) ∪ FA(M))\{p}.

In a generalised type, as is the case for other binding constructs in the language, the
name given to the quantified annotation parameters should not be important, so we shall
regard ∀pi |Θ.φ and ∀qi |Θ[qi/pi].φ[qi/pi] as syntactically equivalent, where qi are fresh an-
notation parameters not occurring anywhere else in the type. We shall therefore work with
α-equivalence classes of types, and preterms as well, and assume that annotation parameters
are implicitly renamed as necessary.

5.2.4 Annotation substitution

An annotation substitution is any partial function

ϑ : P ⇀ T

assigning annotation terms to annotation parameters. We shall use the notation

〈t1/p1, . . . , tn/pn〉

to stand for the (finite) annotation substitution ϑ mapping pi into ϑ(pi) = ti, as expected.
The special empty annotation substitution will be written 〈〉.

We write t[ϑ], Θ[ϑ], φ[ϑ] and M [ϑ] for the ‘simultaneous’ substitution of ϑ(p) for the (free)
occurrences of p ∈ dom(ϑ) in t, Θ, φ and M , respectively. Their definitions are detailed in
Figure 5.1.

The notation ϑ\pi is used to refer to the map that is the same as ϑ, but restricted to the
domain dom(ϑ)\pi (hence, pi[ϑ\pi] = pi according to the definition above). The condition
pi 6⊆ img(ϑ) is standard; it ensures that no pi becomes incorrectly bound by a ∀ or Λ during
substitution. In the last equation, ϑ◦ϑ′ stands for the composition of the substitutions ϑ and
ϑ′, defined by

(ϑ ◦ ϑ′)(p)
def
= (p[ϑ′])[ϑ].

We shall feel free to write φ[t/p] as an abbreviation for φ[ϑ], where ϑ is such that dom(ϑ) =
{p} and ϑ(p) = t.

An annotation substitution θ mapping annotation parameters into annotation values,

θ : P ⇀ A,

will be called a ground substitution. The terms valuation and annotation assignment will be
used as synonyms.

90 CHAPTER 5. ANNOTATION POLYMORPHISM

a[ϑ]
def
= a

p[ϑ]
def
=

{

ϑ(p) if p ∈ dom(ϑ)

p otherwise

(t1 + t2)[ϑ]
def
= t1[ϑ] + t2[ϑ]

(ti ⊒ t′i)[ϑ]
def
= ti[ϑ] ⊒ t′i[ϑ]

G[ϑ]
def
= G

(φt⊸ ψ)[ϑ]
def
= φ[ϑ]t[ϑ] ⊸ ψ[ϑ]

(φt ⊗ ψt
′

)[ϑ]
def
= φ[ϑ]t[ϑ] ⊗ ψ[ϑ]t

′[ϑ]

(∀pi |Θ.φ)[ϑ]
def
= ∀pi |Θ[ϑ\pi].φ[ϑ\pi], if pi 6⊆ img(ϑ)

π[ϑ]
def
= π

x[ϑ]
def
= x

(λx:φt.M)[ϑ]
def
= λx:φ[ϑ]t[ϑ].M [ϑ]

(MN)[ϑ]
def
= (M [ϑ]) (N [ϑ])

(〈M1,M2〉
t1,t2)[ϑ]

def
= 〈M1[ϑ],M2[ϑ]〉t1[ϑ],t2[ϑ]

(let 〈x1, x2〉
t1,t2 = M in N)[ϑ]

def
= let 〈x1, x2〉

t1[ϑ],t2[ϑ] = M [ϑ] in N [ϑ]

(if M then N1 else N2)[ϑ]
def
= if M [ϑ] then N1[ϑ] else N2[ϑ]

(fix x:φ.M)[ϑ]
def
= fix x:φ[ϑ].M [ϑ]

(Λp |Θ.M)[ϑ]
def
= Λpi |Θ[ϑ\pi].M [ϑ\pi] if pi 6⊆ img(ϑ)

(M ϑ′)[ϑ]
def
= (M [ϑ]) (ϑ ◦ ϑ′)

Figure 5.1: Annotation substitution

5.2. THE TYPE SYSTEM 91

Definition 5.2.1 (Annotation term evaluation)
We shall write θ∗(t) for the evaluation of t under θ, defined by

θ∗(a)
def
= a

θ∗(p)
def
= θ(p)

θ∗(t1 + t2)
def
= θ∗(t1) + θ∗(t2).

Alternatively, we can define θ∗(t) as the extension of θ to annotation terms. For this reason,
we shall drop the distinction and generally write θ(t) to mean θ∗(t) when necessary. �

Notice the difference existing between θ∗(t) and t[θ]; if t ≡ p + q and θ ≡ 〈1/p,⊤/q〉,
whereas θ∗(t) = ⊤, we have t[θ] = 1 + ⊤. It would perhaps have been wiser to distinguish
explicitly between the two uses of + in the syntax, however the use of the contraction operator
as a function will only be relevant in connection with the evaluation of terms.

5.2.5 Constraint set satisfaction

We shall mostly be interested in valuations that are solutions to the inequations in a given
constraint set.

Definition 5.2.2 (Solution, satisfaction)
A valuation θ is a solution of a constraint set Θ, if each constraint is independently verified
with respect to the assignments in θ. Formally, we define the predicate

θ |= Θ
def
= θ(p) ⊒ θ(t), for all p ⊒ t in Θ,

and equivalently say that θ satisfies Θ. �

According to the above definition,

θ |= ∅,

for any θ. Also, if we write Θ,Θ′ for the union (disjunction) of the constraint sets Θ and Θ′,
then

θ |= Θ,Θ′ whenever θ |= Θ and θ |= Θ′,

for all suitable θ (i.e., for all θ such that FA(Θ) ∪ FA(Θ′) ⊆ dom(θ)).

It is implicit in the definition of satisfaction that for θ |= Θ to be properly defined,
FA(Θ) ⊆ dom(θ); otherwise, the substitutions θ(p) and θ(t) would be meaningless. We shall
say in this case that θ covers Θ. The same terminology will be employed for other constructs
of the language, including types, terms, typing contexts, and even whole typing judgments.

We shall write [Θ] for the solution space of Θ (i.e., the set of valuations that satisfy Θ).
That is,

[Θ]
def
= {θ | θ |= Θ}.

92 CHAPTER 5. ANNOTATION POLYMORPHISM

5.2.6 Constraint implication

If P is any predicate on annotation terms (which may perhaps contain some free annotation
parameters), we define

Θ ⊲ P
def
= for all θ, if θ |= Θ then θ(P) holds,

where θ(P) is defined by replacing the occurrences of t in P by θ(t), as expected. The assertion
Θ ⊲ P should be read “P is valid in the context of Θ”. In our case, P will more commonly
stand for a structural assertion, so Θ will effectively give the possible set of annotation values
for which the structural assertion is valid.

We have admitted two readings of Θ: as a set of constraints, and as a predicate (i.e.,
comprising the conjunction of constraint inequalities). As a predicate, we note that θ(Θ) is
just a synonym for θ |= Θ (since θ(Θ) ≡ θ(t′i ⊒ t′′i) = θ(t′i) ⊒ θ(t′′i)). Therefore,

Θ ⊲Θ′ is equivalent to θ |= Θ implies θ |= Θ′ for all θ.

It is this use of ‘⊲’ that has deserved in the literature the name of constraint implication.
Notice that Θ ⊲ Θ′ actually implies [Θ] ⊆ [Θ′], which establishes the semantics of constraint
implication when constraint sets are interpreted as solution sets.

We shall end here our discussion on constraint sets by giving a list of properties that will
prove useful for the sequel.

Proposition 5.2.3 (Some properties of ⊲)
The following properties hold for any constraint sets Θ, Θ′ and Θ′′:

a. Θ ⊲Θ.

b. Θ ⊲Θ′ and Θ′ ⊲Θ′′ imply Θ ⊲Θ′′.

c. Θ,Θ′ ⊲Θ.

d. Θ ⊲ P ′ and Θ ⊲ P ′′ imply Θ ⊲ P ′, P ′′.

e. Θ ⊲ P implies Θ[ϑ] ⊲ P [ϑ].

f. Θ,Θ′ ⊲ P and Θ ⊲ Θ′[ϑ] implies Θ ⊲ P [ϑ], where the annotation substitution ϑ is such
that dom(ϑ) = FA(Θ′) \ FA(Θ).

Proof. Notice how ⊲ behaves precisely like logical implication, so we could think of many
more interesting properties other than the ones given. (The comma ‘,’ in P ′, P ′′ is supposed
to denote disjunction.)

We give a proof of property (f), which is the only non-obvious property. From Θ,Θ′⊲P and
(e) we deduce Θ[ϑ],Θ′[ϑ]⊲P [ϑ]. Also, Θ⊲Θ[ϑ],Θ′[ϑ], since Θ[ϑ] ≡ Θ (as FA(Θ)∩dom(ϑ) = ∅
because dom(ϑ) = FA(Θ′)\FA(Θ)) and Θ⊲Θ′[ϑ] by assumption; hence, from (b), we conclude
Θ ⊲ P [ϑ]. �

5.2. THE TYPE SYSTEM 93

5.2.7 The typing rules

We know of at least two different approaches for introducing annotation quantification into a
type system of structural properties like NLL. The approach we fully discuss in this chapter
is the first approach, based on the presentation of NLL where the context restrictions appear
explicitly as rule side-conditions, and which is also the one we have been dealing with until
now. A second approach is based on the presentation of Appendix A, which is closer in spirit
to Bierman’s monomorphic type system [13], albeit less expressive. The second approach is
more elegant from a logical viewpoint, as it is more compact; the first one is closer to the
algorithms of annotation inference we shall investigate in the following chapter.

We call NLL∀ the type system that extends NLL with annotation polymorphism. The
new system can be easily recognised because of the form of its typing judgments:

Θ ; Γ ⊢M : φ.

Any typing declarations in Γ are allowed to be annotated with arbitrary annotation terms:

Γ ::= x1 : φ1
t1 , . . . , xn : φn

tn .

It will be useful to have a notation for the free annotation variables in a typing context.
Therefore, we define

FA(−)
def
= ∅ and FA(Γ, x : φt)

def
= FA(Γ) ∪ FA(φ) ∪ FA(t). (5.3)

The typing rules of the new system are shown in Figure 5.2.

The basic idea is that the set of constraints Θ specifies the range of annotation values for
the annotation parameters occurring free in the rest of the typing judgment, and for which
it is assumed to be valid. As such, it provides an ‘interpretation’ against which it is possible
to verify the side-conditions. This explains our adoption of the notation Θ ⊲ |Γ| ⊒ t, which
generalises our old notation for side-conditions in an obvious way:

Θ ⊲ |Γ| ⊒ t
def
= Θ ⊲ |Γ(x)| ⊒ t, for all x ∈ dom(Γ). (5.4)

We should remark that the side-condition Θ ⊲ t ⊒ ⊤ in the Weakening rule is not really
necessary; we could as well have replaced t by ⊤ directly in the conclusion of the rule. However,
we would like to be able to write sequents like

p ⊒ ⊤ ; x : φp ⊢ 0 : int,

which would be forbidden if we did not allow annotation parameters in discardable typing
declarations. The same remark applies to the Fixpoint and Contraction rules. The use of
inequations in the side-conditions of the structural rules is convenient to our discussion of
annotation inference, in the next chapter.

5.2.8 Introducing and eliminating generalised types

Except for ∀I and ∀E , it is not difficult to see that the remaining typing rules adapt the typing
rules of NLL to typing judgments containing free annotation parameters.

94 CHAPTER 5. ANNOTATION POLYMORPHISM

Identity
Θ ;x : φt ⊢ x : φ

Σ(π) = σ
Primitive

Θ ;− ⊢ π : σ

Θ ; Γ, x : φt ⊢M : ψ
⊸I

Θ ; Γ ⊢ λx:φt.M : φt⊸ ψ

Θ ; Γ1 ⊢M : φt⊸ ψ Θ ; Γ2 ⊢ N : φ Θ ⊲ |Γ2| ⊒ t
⊸E

Θ ; Γ1,Γ2 ⊢MN : ψ

Θ ; Γ1 ⊢M1 : φ1 Θ ; Γ2 ⊢M2 : φ2 Θ ⊲ |Γ1| ⊒ t1 Θ ⊲ |Γ2| ⊒ t2
⊗I

Θ ; Γ1,Γ2 ⊢ 〈M1,M2〉
t1,t2 : φ1

t1 ⊗ φ2
t2

Θ ; Γ1 ⊢M : φ1
t1 ⊗ φ2

t2 Θ ; Γ2, x1 : φ1
t1 , x2 : φ2

t2 ⊢ N : ψ
⊗E

Θ ; Γ1,Γ2 ⊢ let 〈x1, x2〉
t1,t2 = M in N : ψ

Θ ; Γ1 ⊢M : bool Θ ; Γ2 ⊢ N1 : φ Θ ; Γ2 ⊢ N2 : φ
Conditional

Θ ; Γ1,Γ2 ⊢ if M then N1 else N2 : φ

Θ ; Γ, x : φt ⊢M : φ Θ ⊲ |Γ, x : φt| ⊒ ⊤
Fixpoint

Θ ; Γ ⊢ fix x:φ.M : φ

Θ,Θ′ ; Γ ⊢M : φ pi 6⊆ FA(Θ ; Γ) Θ′\pi = ∅
∀I

Θ ; Γ ⊢ Λpi |Θ
′.M : ∀pi |Θ

′.φ

Θ ; Γ ⊢M : ∀pi |Θ
′.φ Θ ⊲Θ′[ϑ] dom(ϑ) = pi

∀E
Θ ; Γ ⊢M ϑ : φ[ϑ]

Θ ; Γ ⊢M : ψ Θ ⊲ t ⊒ ⊤
Weakening

Θ ; Γ, x : φt ⊢M : ψ

Θ ; Γ, x1 : φt1 , x2 : φt2 ⊢M : ψ Θ ⊲ t ⊒ t1 + t2
Contraction

Θ ; Γ, x : φt ⊢M [x/x1, x/x2] : ψ

Figure 5.2: The type system NLL∀

5.2. THE TYPE SYSTEM 95

There are two typing rules that deal with quantification per se. Generalised types are
introduced in type derivations with the following rule:

Θ,Θ′ ; Γ ⊢M : φ pi 6⊆ FA(Θ ; Γ) Θ′\pi = ∅
∀I

Θ ; Γ ⊢ Λpi |Θ
′.M : ∀pi |Θ

′.φ

Its meaning is fairly intuitive, although its side-conditions deserve to be briefly explained.
A generalised term Λpi |Θ

′.M has type ∀pi |Θ
′.φ, if M has type φ under the interpretation

given by considering all the inequations in both Θ and Θ′. The condition pi 6⊆ FA(Θ ; Γ) is
standard in logic, and means that none of the quantified annotation parameters may appear
outside the scope of the Λ-binder. The condition

Θ′\pi = ∅

states that all inequations in Θ′ must involve a quantified annotation parameter, which is a
simple way of guaranteeing that no inequations involving only unbound annotation parameters
wrongly leave the scope of Θ. If this was allowed to happen, we would have a mechanism for
relaxing the restrictions on some of the free annotation parameters, by moving inequations
inside the scope of Λ-binders.

The notation Θ\P, where P is any set of annotation parameters, denotes the set of inequa-
tions in Θ that do not involve any annotation parameter p ∈ P. If we define Θ↾P to stand for
the inequations in Θ that do involve some p ∈ P, as detailed in the following equations, then
Θ\P can be simply defined as its complement.

∅↾P = ∅

(Θ, p ⊒ t)↾P =

{

(Θ↾P), p ⊒ t, if, for some p′ ∈ P, p′ ∈ FA(p ⊒ t);

(Θ↾P) otherwise.

Taken together, both side-conditions imply that Θ′ is uniquely determined by the choice
of pi: it suffices to take, from the available set of inequations, those inequations involving all
p ∈ pi. For this reason, we may sometimes refer to these as the ‘separation conditions’ of the
∀E rule6.

Using this rule, we can assign to our example apply function of Section 5.1, an annotated
polymorphic type, from which the two types required to accurately analyse the example arise
as type instances. The type derivation that supports this claim is shown below.

Identity
− ; f :(intp ⊸ int)⊤ ⊢ f :intp ⊸ int

Identity
− ;x:intp ⊢ x:int

⊸E
− ; f :(intp ⊸ int)⊤, x:intp ⊢ f x : int

===⊸I
− ;− ⊢ λf :(intp ⊸ int)⊤.λx:intp.f x : (intp ⊸ int)⊤⊸ intp ⊸ int

∀I
− ;− ⊢ Λp | ∅.λf :(intp ⊸ int)⊤.λx:intp.f x : ∀p | ∅.(intp ⊸ int)⊤⊸ intp ⊸ int

6There seem to be many possible ways of presenting the side-conditions of the ∀I rule; our choice admits
a ‘deterministic’ reading that is appropriate for the annotation inference algorithms of the next chapter.
Alternatively, we might have chosen to remove the side-condition Θ\pi = ∅ and replace Θ in the conclusion
of the rule by Θ,Θ′\pi. This modification ensures that inequations not involving any pi do effectively go out
of scope, while ‘hiding out’ all inequations involving pi from the conclusion constraints, as necessary. In [59],
for instance, the conclusion constraints would have read Θ,∃pi.Θ

′, where ∃ is introduced as an existential
quantification operator for constraint sets (predicates). In either case, the set of relevant free annotation
parameters and constraint inequations for a given typing judgment are the same.

96 CHAPTER 5. ANNOTATION POLYMORPHISM

(The side-condition of the application of the⊸E rule, not shown, should read ∅ ⊲ p ⊒ p.)
The application of a Λ-abstraction (specialisation) is typed using the following rule:

Θ ; Γ ⊢M : ∀pi |Θ
′.φ Θ ⊲Θ′[ϑ] dom(ϑ) = pi

∀E
Θ ; Γ ⊢M ϑ : φ[ϑ]

The rule states that if M has generalised type ∀pi |Θ
′.φ and ϑ is a given annotation substi-

tution with domain pi, then M ϑ has type φ[ϑ], provided that the constraint set obtained by
applying ϑ to the inequations in Θ′, is valid under the interpretation given by Θ.

Using the ∀E rule, for instance, if we wanted to use apply in the context of a non-linear
function, we would first need to obtain a non-linear type instance, as follows:

·
·
·

− ;− ⊢ apply : ∀p | ∅.(intp ⊸ int)⊤⊸ intp ⊸ int ∅ ⊲ ∅
∀E

− ;− ⊢ apply 〈⊤/p〉 : (int⊤⊸ int)⊤⊸ int⊤⊸ int

5.2.9 A ‘most general’ example decoration

As an example, Figure 5.3 shows an annotated-polymorphic decoration for the FPL function

curry
def
= λf :((σ1 × σ2) → τ).λx1:σ1.λx2:σ2.f 〈x1, x2〉,

of type ((σ1 × σ2) → τ)⊸ σ1 → σ2 → τ .
The applications of⊸E and ⊗I impose, respectively, the following side-conditions:

Θ ⊲ p5 ⊒ p1, p6 ⊒ p2 and Θ ⊲ p5 ⊒ p3, p6 ⊒ p3.

These are clearly verified by Θ, since Θ literally includes them all as part of its definition.
The reader may have noticed that the NLL∀ decoration of curry carries in it all the infor-

mation necessary to ‘generate’ all the corresponding NLL decorations of the same function,
which arise as particular instances of it. This observation lies at the heart of the strategy we
shall develop in the following chapter to design ‘complete’ annotation inference algorithms.

5.2.10 Reduction

As we have changed the syntax to allow annotation parameters in the types and terms of the
intermediate language, we must update our definition of β-reduction accordingly. We define
the reduction relation on NLL∀ terms as the contextual closure of the following rewrite rules:

(λx:φt.M)N →M [N/x]

let 〈x1, x2〉 = 〈M1,M2〉
t1,t2 in N → N [M1/x1,M2/x2]

if true then N1 else N2 → N1

if false then N1 else N2 → N2

fix x:φ.M →M [fix x:φ.M/x]

(Λpi |Θ.M) ϑ→M [ϑ]

The last rewrite rule takes care of reducing the explicit application of Λ-abstractions, a stan-
dard rule as may be found in other calculi having explicit syntactic quantification constructs.

5
.2

.
T

H
E

T
Y

P
E

S
Y

S
T

E
M

9
7

Identity
Θ ; f :φf

p4 ⊢ f :φf

Identity
Θ ; x1:φ1

p5 ⊢ x1:φ1

Identity
Θ ;x2:φ1

p6 ⊢ x2:φ2
⊗I

Θ ;x1:φ1
p5 , x2:φ2

p6 ⊢ 〈x1, x2〉
p1,p2 : φ1

p1 ⊗ φ2
p2

⊸E
Θ ; f :φf

p4 , x1:φ1
p5 , x2:φ2

p6 ⊢ f 〈x1, x2〉
p1,p2 : ψ

===⊸I
Θ ;− ⊢ λf :φf

p4 .λx1:φ1
p5 .λx2:φ2

p6 .f 〈x1, x2〉
p1,p2 : φf

p4 ⊸ φ1
p5 ⊸ φ2

p6 ⊸ ψ
∀I

− ;− ⊢ Λpi |Θ.λf :φf
p4 .λx1:φ1

p5 .λx2:φ2
p6 .f 〈x1, x2〉

p1,p2 : ∀pi |Θ.φf
p4 ⊸ φ1

p5 ⊸ φ2
p6 ⊸ ψ

For the derivation above, we have

φf ≡ (φ1
p1 ⊗ φ2

p2)p3 ⊸ ψ

pi ≡ p1, p2, p3, p4, p5, p6

Θ ≡ p5 ⊒ p1, p6 ⊒ p2, p5 ⊒ p3, p6 ⊒ p3.

Figure 5.3: An example NLL∀ type derivation

98 CHAPTER 5. ANNOTATION POLYMORPHISM

Θ ⊢ G ≤ G

Θ ⊢ φ2 ≤ φ1 Θ ⊢ ψ1 ≤ ψ2 Θ ⊲ t1 ⊑ t2

Θ ⊢ φ1
t1 ⊸ ψ1 ≤ φ2

t2 ⊸ ψ2

Θ ⊢ φ1 ≤ φ2 Θ ⊢ ψ1 ≤ ψ2 Θ ⊲ t2 ⊑ t1 Θ ⊲ t′2 ⊑ t′1

Θ ⊢ φ1
t1 ⊗ ψ1

t′1 ≤ φ2
t2 ⊗ ψ2

t′2

Θ,Θ′ ⊢ φ1 ≤ φ2 p 6⊆ FA(Θ)

Θ′ ⊢ ∀p |Θ′.φ1 ≤ ∀p |Θ′.φ2

Figure 5.4: Subtyping relation for NLL∀≤

5.3 Subtyping annotation polymorphism

Until now, we have discussed annotation polymorphism in the context of NLL without sub-
typing. In this section, we consider the theory to its full extent, therefore including both a
notion of annotation subtyping and quantification.

Let NLL∀≤ refer to the typing system NLL∀ extended with the following Subsumption
rule:

Θ ; Γ ⊢M : φ Θ ⊢ φ ≤ ψ
Subsumption

Θ ; Γ ⊢M : ψ

Because φ and ψ may contain free annotation parameters, we have adopted a ‘contextual’
definition of the subtyping relation. The fact that φ ≤ ψ hold with respect to the set of
constraints Θ is written in the form of a subtyping judgment

Θ ⊢ φ ≤ ψ.

The set of valid subtyping judgments is inductively defined by the inference rules of Figure 5.4.
Notice how the new inference rules generalise the rules of Figure 4.1 to accomodate the fact
that types may now contain free annotation parameters.

The meaning of the subtyping rule for generalised types is quite intuitive: A term of type
∀p |Θ′.φ1 may be used in a context with a hole of type ∀p |Θ′.φ2, if any term specialisation
of type φ1[ϑ] may be used in any context specialisation of type φ2[ϑ], for suitable ϑ.

To reduce the notational clutter, we may sometimes choose to write φ ≤ ψ as an abbre-
viation for − ⊢ φ ≤ ψ.

5.3.1 Soundness

Following the development of Section 4.2, it is easy to provide an interpretation for Θ ⊢ φ ≤ ψ
in terms of a coercion function of type φ1 ⊸ ψ in context Θ. It suffices to upgrade the
definition of this function by replacing σ and τ by φ and ψ, respectively, and introduce distinct

5.3. SUBTYPING ANNOTATION POLYMORPHISM 99

annotation parameters for the annotations. The equation that deals with quantification is
given as follows:

[[∀p |Θ.φ1 ≤ ∀p |Θ.φ2]]
def
= λx:(Λp |Θ)1.Λp |Θ.[[φ1 ≤ φ2]] (x 〈〉).

(We recall that 〈〉 is the identity with respect to syntactic annotation substitution.)

Proposition 5.3.1
Θ ;− ⊢ [[φ ≤ ψ]] : φ1 ⊸ ψ.

Proof. Easy induction on the definition of [[φ ≤ ψ]]. �

The subtyping relation is related to constraint implication and annotation substitution
as shown by the following propositions. These are required to prove Lemma 5.3.4, which
states that annotation substitution is well-behaved with respect to the subtyping relation, a
property that will be useful to prove a similar result for typings in NLL∀≤.

Proposition 5.3.2
If Θ ⊢ φ ≤ ψ and Θ′ ⊲Θ, then Θ′ ⊢ φ ≤ ψ

Proof. Easy induction on the structure of φ. �

Proposition 5.3.3
If Θ ⊢ φ ≤ ψ, then Θ[ϑ] ⊢ φ[ϑ] ≤ ψ[ϑ].

Proof. Easy induction on the structure of φ. �

Lemma 5.3.4
If Θ,Θ′ ⊢ φ ≤ ψ and Θ ⊲Θ′[ϑ], then Θ ⊢ φ[ϑ] ≤ ψ[ϑ], where dom(ϑ) = FA(Θ′)\FA(Θ).

Proof. By induction on the structure of φ.

• φ ≡ G.

The result follows trivially by the definition of subtyping, since G[ϑ] = G.

• φ ≡ φ1
t1 ⊸ φ2.

We must have Θ,Θ′ ⊢ φ1
t1 ⊸ ψ1 ≤ φ2

t2 ⊸ ψ2 because Θ,Θ′ ⊢ φ2 ≤ φ1, Θ,Θ′ ⊢ ψ1 ≤
ψ2 and Θ,Θ′ ⊲ t1 ⊑ t2.

Assuming Θ⊲Θ′[ϑ], by the induction hypothesis, twice, it follows that Θ ⊢ φ2[ϑ] ≤ φ1[ϑ]
and Θ ⊢ ψ1[ϑ] ≤ ψ2[ϑ] must hold. Also, Θ ⊲ t1[ϑ] ⊑ t2[ϑ] can be deduced from the fact
that if Θ,Θ′ ⊲ P holds, for any predicate P , Θ′ ⊲ P [ϑ] must also hold, provided that
Θ⊲Θ′[ϑ] and dom(ϑ) = FA(Θ′)\FA(Θ). The required conclusion, Θ ⊢ (φ1

t1 ⊸ ψ1)[ϑ] ≤
(φ2

t2 ⊸ ψ2)[ϑ], clearly follows from the definition of annotation substitution.

• φ ≡ ∀p |Θ′′.φ1.

In this case, we must have Θ,Θ′ ⊢ ∀p |Θ′′.φ1 ≤ ∀p |Θ′′.φ2 because Θ,Θ′,Θ′′ ⊢ φ1 ≤ φ2,
where p 6⊆ FA(Θ,Θ′).

By Proposition 5.3.3, we have Θ[ϑ],Θ′[ϑ],Θ′′[ϑ] ⊢ φ1[ϑ] ≤ φ2[ϑ] must hold. From the
fact that Θ[ϑ] = Θ (since dom(ϑ) 6⊆ FA(Θ)) and assuming Θ⊲Θ′[ϑ], we deduce Θ,Θ′′[ϑ]⊲
Θ[ϑ],Θ′[ϑ],Θ′′[ϑ]. Then, by constraint strenghening (Proposition 5.3.2), Θ,Θ′′[ϑ] ⊢
φ1[ϑ] ≤ φ2[ϑ] must also hold. Because p 6⊆ FA(Θ,Θ′) is a condition hypothesis, we can
conclude, by definition of subtyping, that Θ ⊢ (∀p |Θ′′.φ1)[ϑ] ≤ (∀p |Θ′′.φ2)[ϑ].

100 CHAPTER 5. ANNOTATION POLYMORPHISM

5.4 Type-theoretic properties

We shall now list some type-theoretic properties of interest. First of all, we extend the erasure
(◦) mapping of Section 3.2 to the new types in the obvious way. In particular, we should have

(∀pi |Θ.φ)◦
def
= φ◦ (Λpi |Θ.M)◦

def
= (M ϑ)◦

def
= M◦.

The following typing soundness proposition states that well-typed typing judgments cor-
respond to well-typed typing judgments in the source language.

Proposition 5.4.1
If Θ ; Γ ⊢

NLL∀≤
M : φ, then Γ◦ ⊢

FPL
M◦ : φ◦. �

Also, any reductions in the extended intermediate language correspond to legal reductions
in the source language.

Proposition 5.4.2
For any two preterms M and N , M → N implies M◦ → N◦ or M◦ = N◦. �

The special case M◦ = N◦ arises whenever a Λ-redex is reduced, since ((Λpi |Θ.M) ϑ)◦ =
M [ϑ]◦ = M◦.

As far as typings are concerned, it is clear that NLL∀≤ is a conservative extension of
NLL≤.

Proposition 5.4.3
If Γ ⊢

NLL≤
M : σ, then − ; Γ ⊢

NLL∀≤
M : σ. �

Moreover, the fragment of NLL∀≤ restricted to NLL≤ terms and contexts (i.e., without free
annotation parameters and quantification) proves the same typings as NLL≤ does.

Lemma 5.4.4
For simple Γ and M , if − ; Γ ⊢

NLL∀≤
M : σ, then Γ ⊢

NLL≤
M : σ. �

As it was the case for the constrained subtyping relation we introduced earlier, the con-
strained typing judgments of the generalised theory relate to constraint strengthening and
substitution as stated below.

Proposition 5.4.5
If Θ ; Γ ⊢M : φ, then Θ[ϑ] ; Γ[ϑ] ⊢M [ϑ] : φ[ϑ]

Proof. Easy induction on the derivation of Θ ; Γ ⊢M : φ. �

Lemma 5.4.6 (Constraint Strengthening)
If Θ ; Γ ⊢M : φ and Θ′ ⊲Θ, then Θ′ ; Γ ⊢M : φ.

Proof. By induction on the derivation of Θ ; Γ ⊢M : φ. Its proofs depends on the fact that
if Θ ⊲ P holds for a predicate P , and Θ′ ⊲Θ, then Θ′ ⊲ P also holds. �

For the correctness proofs of the annotation inference algorithms we shall be looking at in
the next chapter, we shall repeatedly make use of the following trivial corollary of the above
lemma.

5.4. TYPE-THEORETIC PROPERTIES 101

Proposition 5.4.7
If Θ ; Γ ⊢M : φ, then Θ,Θ′ ; Γ ⊢M : φ.

Proof. From Lemma 5.4.6 and the fact that Θ,Θ′ ⊲Θ. �

The correctness of NLL∀≤ also depends on the following important property of annotation
substitutions, which we have already encountered as a property of subtyping judgments in the
form of Lemma 5.3.4, and which says that any valid typing judgments obtained by replacing
the annotation parameters with a set of annotation values that satisfy the requirements in Θ
are also valid.

Lemma 5.4.8 (Annotation Substitution)
The following is an admissible rule.

Θ,Θ′ ; Γ ⊢M : φ Θ ⊲Θ′[ϑ] dom(ϑ) = FA(Θ′)\FA(Θ)
ϑ-Substitution

Θ ; Γ[ϑ] ⊢M [ϑ] : φ[ϑ]

Proof. By induction on the derivation of Θ,Θ′ ; Γ ⊢ M : φ. We prove the lemma for the
the base case, including the less obvious inductive cases. Assume in each case that Θ ⊲Θ′[ϑ].

•
Θ,Θ′ ;x : φt ⊢ x : φ

Trivial, since Θ ;x : φ[ϑ]t[ϑ] ⊢ x : φ[ϑ] is a valid typing judgment.

•
Θ,Θ′,Θ′′ ; Γ ⊢M : φ pi 6⊆ FA(Θ,Θ′ ; Γ) Θ′′\pi = ∅

Θ ; Γ ⊢ Λpi |Θ
′′.M : ∀pi |Θ

′′.φ

From Θ,Θ′,Θ′′ ; Γ ⊢ M : φ, it follows that Θ[ϑ],Θ′[ϑ],Θ′′[ϑ] ; Γ[ϑ] ⊢ M [ϑ] : φ[ϑ]
by Proposition 5.4.5. From the fact that Θ = Θ[ϑ], since dom(ϑ) does not include
FA(Θ) by assumption and Θ ⊲ Θ′[ϑ], we can deduce Θ[ϑ],Θ′′[ϑ] ⊲ Θ[ϑ],Θ′[ϑ],Θ′′[ϑ], so
Θ,Θ′′[ϑ] ; Γ[ϑ] ⊢M [ϑ] : φ[ϑ] must hold by constraint strengthening (Lemma 5.4.6). Ap-
plying ∀I , we may finally conclude Θ ; Γ[ϑ] ⊢ Λpi |Θ

′′[ϑ].M [ϑ] : ∀pi |Θ
′′[ϑ].φ[ϑ]. Notice

that we have Λpi |Θ
′′[ϑ].M [ϑ] = (Λpi |Θ

′′.M)[ϑ] and ∀pi |Θ
′′[ϑ].φ[ϑ] = (∀pi |Θ

′′.φ)[ϑ] as
required, since ϑ ↾ pi = ϑ. (We have also implicitly assumed, without loss of generality,
that pi 6∈ img(ϑ), by α-equivalence.)

•
Θ,Θ′,Θ′′ ; Γ ⊢M : ∀pi |Θ

′′.φ Θ,Θ′ ⊲Θ′′[ϑ′] dom(ϑ′) = pi

Θ,Θ′ ; Γ ⊢M ϑ′ : φ[ϑ′]

By the induction hypothesis, we must have Θ,Θ′,Θ′′ ; Γ[ϑ] ⊢ M [ϑ] : (∀pi |Θ
′′.φ)[ϑ].

Assuming by α-equivalence that pi do not occur anywhere outside ∀pi |Θ
′′.φ, we can

safely suppose that (∀pi |Θ
′′.φ)[ϑ] = ∀pi |Θ

′′[ϑ].φ[ϑ]. Notice that from the assumption
Θ,Θ′ ⊲Θ′′[ϑ′] it must follow that Θ[ϑ],Θ′[ϑ] ⊲Θ′′[ϑ′ ◦ ϑ], and so Θ ⊲Θ′′[ϑ′ ◦ ϑ] must be
the case by constraint strengthening, since Θ = Θ[ϑ] (as shown above) and Θ ⊲Θ′[ϑ] by
assumption. Applying ∀E , we obtain the required conclusion, Θ ; Γ[ϑ] ⊢ M [ϑ] (ϑ′ ◦ ϑ) :
φ[ϑ′ ◦ ϑ]. We note that, by definition of substitution, M [ϑ] (ϑ′ ◦ ϑ) = (M ϑ′)[ϑ] and
= φ[ϑ′ ◦ ϑ] = (φ[ϑ′])[ϑ].

�

102 CHAPTER 5. ANNOTATION POLYMORPHISM

Θ ; Γ1 ⊢M : φ1
t⊸ ψ Θ ; Γ2 ⊢ N : φ2 Θ ⊲ |Γ2| ⊒ t Θ ⊢ φ2 ≤ φ1

⊸E
Θ ; Γ1,Γ2 ⊢MN : ψ

Θ ; Γ1 ⊢M : φ1
t1 ⊗ φ2

t2 Θ ; Γ2, x1 : ψ1
t′1 , x2 : ψ2

t′2 ⊢ N : ψ

Θ ⊲ ti ⊒ t′i

Θ ⊢ φi ≤ ψi

(i = 1, 2)
⊗E

Θ ; Γ1,Γ2 ⊢ let 〈x1, x2〉
t′1,t

′
2 = M in N : ψ

Θ ; Γ1 ⊢M : bool Θ ; Γ2 ⊢ N1 : φ1 Θ ; Γ2 ⊢ N2 : φ2 Θ ⊲ φ = φ1 ⊔ φ2
Conditional

Θ ⊲ Γ1,Γ2 ⊢ if M then N1 else N2 : φ

Figure 5.5: Modified rules for NLL∀µ≤

We note that if Γ[ϑ] and M [ϑ] are simple, then Γ[ϑ] ⊢ M [ϑ] : φ[ϑ] is, by Lemma 5.4.4,
also valid in NLL≤.

The following proposition generalises the Annotation Weakening property to typing judg-
ments containing arbitrary annotation terms.

Proposition 5.4.9 (Annotation Weakening)
The following rule is admissible.

Θ ; Γ, x : φt ⊢M : ψ Θ ⊲ t ⊑ t′

Transfer
Θ ; Γ, x : φt

′

⊢M : ψ

�

5.4.1 Minimum typings

The new syntax introduced to deal with (general) annotation polymorphism ensures that
typings remain unique for the system without subtyping.

Proposition 5.4.10 (Unique Typing)
If Θ ; Γ ⊢

NLL∀
M : φ and Θ ; Γ ⊢

NLL∀
M : ψ, then φ ≡α ψ. �

For the system with subtyping, we can prove a Minimum Typing property, as we did for our
monomorphic linearity analysis in Section 4.3. We therefore introduce a related type system
of minimum types, called NLL∀µ≤, and state the following three basic lemmas, following our
previous presentation for NLLµ≤.

As before, NLL∀µ≤ is obtained from NLL∀≤ by dropping the Subsumption rule and by
replacing the elimination rules by the ones in Figure 5.5.

Lemma 5.4.11
If Θ ; Γ ⊢

NLL∀µ≤
M : φ, then Θ ; Γ ⊢

NLL∀≤
M : φ.

Proof. A straightforward adaptation of Lemma 4.3.1. �

5.4. TYPE-THEORETIC PROPERTIES 103

Lemma 5.4.12 (Unique Typing)
If Θ ; Γ ⊢

NLL∀µ≤
M : φ and Θ ; Γ ⊢

NLL∀µ≤
M : ψ, then φ ≡α ψ.

Proof. Easy induction on the derivations of Θ ; Γ ⊢
NLL∀µ≤

M : φ. �

Lemma 5.4.13 (Smaller Typing)
If Θ ; Γ ⊢

NLL∀≤
M : φ, then Θ ; Γ ⊢

NLL∀µ≤
M : ψ for some ψ with Θ ⊢ ψ ≤ φ.

Proof. By induction on NLL∀≤ derivations of Θ ; Γ ⊢ M : φ and a straightforward adapta-
tion of Lemma 4.3.3. We show the cases corresponding to the quantification rules.

•
Θ,Θ′ ; Γ ⊢M : φ pi 6⊆ FA(Θ ; Γ) Θ′\pi = ∅

∀I
Θ ; Γ ⊢ Λpi |Θ

′.M : ∀pi |Θ
′.φ

By the induction hypothesis, we have Θ,Θ′ ; Γ ⊢ M : φ0 for some φ0 satisfying Θ,Θ′ ⊢
φ0 ≤ φ. Since pi 6⊆ FA(Θ), we may conclude from ∀I and the subtyping rule for quan-
tified types that Θ ; Γ ⊢ Λpi |Θ

′.M : ∀pi |Θ
′.φ0 and ∀p |Θ′.φ0 ≤ ∀p |Θ′.φ, as required.

•
Θ ; Γ ⊢M : ∀pi |Θ

′.φ Θ ⊲Θ′[ϑ] dom(ϑ) = pi
∀E

Θ ; Γ ⊢M ϑ : φ[ϑ]

By the induction hypothesis, we have Θ ; Γ ⊢ M : ψ with Θ ⊢ ψ ≤ ∀pi |Θ
′.φ. By the

definition of subtyping, we must have ψ ≡ ∀pi |Θ
′.φ0, where Θ,Θ′ ⊢ φ0 ≤ φ. Since

Θ ⊲Θ′[ϑ], we can apply Lemma 5.4.8 in order to conclude Θ ⊢ φ0[ϑ] ≤ φ[ϑ], as needed.
Note that Θ ; Γ ⊢M ϑ : φ0[ϑ] easily follows by ∀E .

�

Using these lemmas, we can prove the following Minimum Typing property, reasoning
along the same lines of the proof of Theorem 4.3.4.

Theorem 5.4.14 (Minimum Typing)
If Θ ; Γ ⊢

NLL∀≤
M : φ, then there exists ψ such that Θ ; Γ ⊢

NLL∀≤
M : ψ, and, for every other φ′

for which Γ ⊢
NLL∀≤

M : φ′, then ψ ≤ φ′. �

5.4.2 Semantic correctness

As is the case for NLL≤, the static information in terms is preserved across reductions.
We shall follow the development of Section 4.4, so it suffices to prove the corresponding
Substitution Lemma and Subject Reduction for NLL∀µ≤.

As before, the proofs use NLL∀µ≤⊎, the syntax-directed version of NLL∀µ≤. We have
defined the merge operator ⊎ for simple types only—in Definition 3.4.1. We can easily update
its definition to types with more complex annotations as follows.

Definition 5.4.15 (Context merge)
If Γ1 and Γ2 are two contexts, then Γ1 ⊎ Γ2 is defined as the map

(Γ1 ⊎ Γ2)(x) =

Γ1(x), if x ∈ dom(Γ1), but x 6∈ dom(Γ2)

Γ2(x), if x ∈ dom(Γ2), but x 6∈ dom(Γ1)

φt1+t2 , if Γ1(x) = φt1 and Γ1(x) = φt2

104 CHAPTER 5. ANNOTATION POLYMORPHISM

for all x ∈ dom(Γ1) ∪ dom(Γ2). �

All the properties of the context merge operator of Proposition 3.4.2 hold, as these only
depend on the general properties of the contraction operator +, not on what it actually does
on annotation values.

We are now ready to state the following Substitution Lemma.

Lemma 5.4.16 (Substitution for NLL∀µ≤⊎)
The following rule is admissible.

Θ ; Γ1, x : φ1
t ⊢M : ψ Θ ; Γ2 ⊢ N : φ2 Θ ⊲ |Γ2| ⊒ t Θ ⊢ φ2 ≤ φ1

Substitution
Θ ; Γ1 ⊎ Γ2 ⊢M [N/x] : ψ

Proof. By induction on the structure of M . This lemma is basically an adaptation of
Lemma 3.5.6. �

Theorem 5.4.17 (Subject Reduction for NLL∀µ≤)
If Θ ; Γ ⊢

NLL∀µ≤
M : φ and M → N , then Θ ; Γ ⊢

NLL∀µ≤
N : φ.

Proof. Easy induction on →-derivations, and basically an adaptation of Theorem 3.5.7.
The interesting case consists in showing how Λ-redex reductions preserve typings.

• M ≡ (Λpi |Θ
′.M ′) ϑ and N ≡M ′[ϑ].

A derivation for M must have the following structure:

Θ,Θ′ ; Γ ⊢M ′ : φ′ pi 6⊆ FA(Θ ; Γ) Θ′\pi = ∅
∀I

Θ ; Γ ⊢ Λpi |Θ
′.M ′ : ∀pi |Θ

′.φ′
Θ ⊲Θ′[ϑ]

dom(ϑ) = pi
∀E

Θ ; Γ ⊢ (Λpi |Θ
′.M) ϑ : φ′[ϑ]

From Θ,Θ′ ; Γ ⊢M ′ : φ′ and Θ ⊲Θ′[ϑ], it follows by Lemma 5.4.8 that Θ ; Γ[ϑ] ⊢M ′[ϑ] :
φ′[ϑ]. We can finally deduce Θ ; Γ ⊢ M ′[ϑ] : φ′[ϑ] from the fact that Γ[ϑ] = Γ since
dom(ϑ) = pi and pi 6⊆ FA(Γ).

�

5.4.3 A word on contextual analysis

Much like type polymorphism, annotation polymorphism allows a term to be assigned different
types for different contexts. These types are related to one another in the sense that they
all belong to the same type family. Each type in the family corresponds to a structural
assertion—a valid statement about the structural behaviour of the term. As we argued in the
introduction, without annotation polymorphism, we would be obliged to choose the weakest
of the structural assertions (structural properties) that is compatible with all the contexts in
which the term is used. In the worst case, the weakest property is the property that gives no
information at all (i.e., decorated with ⊤ everywhere).

It would not therefore be wrong to say that a polymorphic static analysis is, in some degree,
context-independent. It is useful to think of a context as having the active role of picking,
from the properties available, the one that best suits its purposes (or, in technical terms, the

5.4. TYPE-THEORETIC PROPERTIES 105

(λx:φ1.M)N
inl
 M [N/x]

let 〈x1, x2〉
1,1 = 〈M1,M2〉

t1,t2 in N
inl
 N [M1/x1][M2/x2]

let 〈x1, x2〉
1,t = 〈M1,M2〉

t1,t2 in N
inl
 let x2 = M2 in N [M1/x1]

let 〈x1, x2〉
t,1 = 〈M1,M2〉

t1,t2 in N
inl
 let x1 = M1 in N [M2/x2]

let x:φ1 = M in N
inl
 N [M/x]

(Λpi |Θ.M) ϑ
inl
 M [ϑ]

Figure 5.6: Final version of the inlining relation

strongest structural assertion that satisfies the annotation restrictions). In the sequel, we use
the term contextual analysis to refer to a static analysis of structural properties that uses
annotation polymorphism to achieve the degree of independence needed. Otherwise, we shall
employ the term non-contextual analysis.

5.4.4 Inlining revisited again

We shall complete the specification of the rewrite rules for the inlining transformation we
introduced in Subsection 3.7.1 for the case involving Λ-redexes, which may contain important
static information for the optimiser, but in an ‘indirect’ form.

As a simple illustrative example, consider the following inlining sequence:

(λx:(int1 ⊗ int1)1.let 〈y1, y2〉
1,1 = x in y1 + y2) (Λp1, p2.〈2, 5〉

p1,p2) 1 1)

inl
 let 〈y1, y2〉

1,1 = (Λp1, p2.〈2, 5〉
p1,p2) 1 1) in y1 + y2.

It is easy to see that inlining cannot proceed unless we reduce the polymorphic pair (shown
underlined) first. This observation calls for an update of the inlining transformation of Fig-
ure 4.2, by adopting Λ-redex reduction as a rewrite rule. The final version of the rewrite
rules is shown in Figure 5.6. Its correctness should be clear for the reasons outlined in Sub-
section 3.7.1.

Applying the new rewrite rules, inlining can proceed as expected:

let 〈y1, y2〉
1,1 = (Λp1, p2.〈2, 5〉

p1,p2) 1 1) in y1 + y2

inl
 let 〈y1, y2〉

1,1 = 〈2, 5〉1,1 in y1 + y2

inl
 2 + 5.

As the example shows, the extra expressivity gained does not come completely for free.
There is a price to pay in the form of a more expensive inlining algorithm that constructs
instances of generalised terms ‘on the fly’7.

7The example shows that augmenting the accuracy of the analysis leads to a more complex instrumented

106 CHAPTER 5. ANNOTATION POLYMORPHISM

5.5 Towards modular linearity analysis

The first prototype of linearity analysis we have been experimenting with implements a re-
stricted form of annotation polymorphism, that we coined let-based annotation polymor-
phism. This restricted form of annotation polymorphism provides a simple (and elegant)
framework we can use to derive appropriate annotation inference algorithms for modular
languages, a problem that we discussed in some detail in the introduction.

5.5.1 Let-based annotation polymorphism

Much like ML-style type-parametric polymorphism [44], let-based annotation polymorphism
is so called because it allows only local definitions, introduced using a construct similar to
the let construct of ML, to be assigned generalised types. By our previous discussion, this
enables each occurrence of a let-bound variable to have a different annotated type. We shall
refer to the type system that introduces annotation polymorphism in this way as NLL∀let≤.

A system like NLL∀let≤ is useful to discuss at this stage, for many reasons.

• First of all, the strategy for inferring annotated types we shall describe for this restricted
language will be the same as for modular languages: Both local and module definitions
may be treated likewise.

• Secondly, as we shall later see, let-based annotation polymorphism can be implemented,
surprisingly, as a simple extension of the annotation inference algorithm for NLL≤. Also,
it is the ideal setting on which to base an extension of the traditional Hindley/Milner
type inference algorithm, used by many modern functional languages, of which ML is
only an example. (The interested reader is referred to [36] for a detailed description of
the algorithm, as well as for any related historical background.)

• Finally, let-based polymporphism seems to constitute a good trade-off between the
expressivity gained by introducing contextual analysis into the picture (although in a
rather ‘controlled’ way) and the complexity needed to deal with the extra syntax, as
well as the size of the constraint sets involved8.

5.5.2 Retricted quantification rules

As far as the syntax is concerned, NLL∀let≤ distinguishes between ‘standard’ types, ranged
over by ϕ and ̺, and which may not contain any quantifiers, and generalised types, which
are considered separately and called in this context annotated type schemes. The syntax of
types is summarised as follows:

Types ϕ ::= G | ϕt⊸ ϕ | ϕt ⊗ ϕt

Annotated type schemes ∀pi |Θ.ϕ

In an annotated type scheme, Θ stands, as usual, for a set of constraints.

(intermediate) language. To obtain the structural information it needs, the optimiser must partially reduce
intermediate terms at compile time, which is what static analysis by type inference is supposed to avoid
(besides the computation of fixpoints). Ultimately, if we are not careful enough, we may end up with an
instrumentation complexity comparable to that obtained through abstract interpretation.

8The author does not personally think that type systems enabling the full power of annotation polymorphism
would prove useful in practice, although, naturally, this still remains to be seen.

5.5. TOWARDS MODULAR LINEARITY ANALYSIS 107

Θ ⊲Θ′[ϑ] dom(ϑ) = pi
Identity∀

Θ ; x : (∀pi |Θ
′.ϕ)t ⊢ x ϑ : ϕ[ϑ]

Θ,Θ′ ; Γ1 ⊢M : ϕ Θ ; Γ2, x : (∀pi |Θ
′.ϕ)t ⊢ N : ̺

pi 6⊆ FA(Θ ; Γ1)

Θ′\pi = ∅

Θ ⊲ |Γ1| ⊒ t
Let

Θ ; Γ1,Γ2 ⊢ let x:(∀pi |Θ
′.ϕ)t = Λpi |Θ

′.M in N : ̺

Figure 5.7: Restricted quantification rules for NLL∀let≤

The syntax of preterms and typing rules are those of NLL∀≤ (where we should be careful
to replace φ and ψ by ϕ and ̺, respectively), except that general annotation polymorphism is
introduced using the following constructs, which must be typed according to the rules shown
in Figure 5.7:

let x:(∀pi |Θ.ϕ)t = Λpi |Θ.M in N (Generalised) let
x ϑ Let-bound variable specialisation

Although we have not made the distinction syntactically, only let-bound variables may be
applied to annotation substitutions. Notice that we have written Λpi |Θ.M for the defini-
tion bound to x in the let construct, to suggest that definitions may be given annotated
polymorphic types.

The correctness of the type system follows from the fact that, by construction, NLL∀let≤

is a conservative extension of NLL∀≤, and the following proposition, which shows that the
Identity∀ and Let rules are derivable in NLL∀≤.

Proposition 5.5.1 (Soundness of NLL∀let≤)
Θ ; Γ ⊢

NLL∀let≤
M : ϕ implies Θ ; Γ ⊢

NLL∀≤
M : ϕ.

Proof. Immediate from consideration of the following derivations:

Identity
Θ ; x : (∀pi |Θ

′.ϕ)t ⊢ x : ∀pi |Θ
′.ϕ Θ ⊲Θ′[ϑ] dom(ϑ) = pi

∀E
Θ ; x : (∀pi |Θ

′.ϕ)t ⊢ x ϑ : ϕ[ϑ]

Θ ; Γ2, x : (∀pi |Θ
′.ϕ)t ⊢ N : ̺

⊸I
Θ ; Γ2 ⊢ λx:(∀pi |Θ

′.ϕ)t.N : (∀pi |Θ
′.ϕ)t⊸ ̺

Θ,Θ′ ; Γ1 ⊢M : ϕ
∀E

Θ ; Γ1 ⊢ Λpi |Θ
′.M : ∀pi |Θ

′.ϕ
⊸E

Θ ; Γ1,Γ2 ⊢ (λx:(∀pi |Θ
′.ϕ)t.N) (Λpi |Θ

′.M)

For the last derivation, we have used the fact that let x = M in N is interpreted in NLL∀ as
an abbreviation for (λx:φt.M) N , for suitable φ and t. Also, notice that the side-conditions
of the Let rule (omitted in the derivation for reasons of space), ensure the applicability of the
⊸E and ∀E rules. �

108 CHAPTER 5. ANNOTATION POLYMORPHISM

As an example, the following is a decoration of the example we discussed in Section 5.1:

let apply = Λp1, p2, p3 | p3 ⊒ p1.λf :(intp1 ⊸ int)p2 .λx:intp3 .f x in

let inc = Λp4.λx:intp4 .x in

let dup = Λ∅.λx:int⊤.x+ x in

apply1,1,1 inc1 (apply⊤,1,⊤ dup∅ 4),

where we have used the following abbreviations:

applya,b,c
def
= apply 〈a/p1, b/p2, c/p3〉

inca
def
= inc 〈a/p4〉

dup∅
def
= dup 〈〉

The decoration shown is not any decoration, but the optimal decoration, in the sense that
all ⊤ annotations in the specialised terms are unavoidable.

Because annotation quantification is introduced in definitions only, a complete inlining
strategy must be able to generate the necessary specialisations. This is easily achieved by
replacing the general specialisation rule of Figure 5.6, by the following rewrite rule:

let x:(∀pi |Θ
′.ϕ)1 = Λpi |Θ

′.M in N [x ϑ]
inl
 N [M [ϑ]],

where N [x ϑ] stands for the term N containing a single occurrence of the subterm x ϑ, which
gets replaced in the right-hand side by the specialised term M [ϑ].

5.6 Emulating the Subsumption rule

Another hint on the expressive power of general annotation polymorphism is given by the fact
that any decoration of a source language term that requires the use of Subsumption can be
substituted by an alternative decoration that does not require it, but that instead ‘emulates’
it using the tools provided by general annotation polymorphism.

From the point of view of static analysis, for the two decorations to have the same ‘value’,
it is necessary that they convey (in the terms) the same static information. The basic idea
will consist in showing that for any decoration M1 in NLL≤, say of type σ, it is possible to
construct a NLL∀ decoration M2 of type φ, where σ arises as an instance of φ. (Therefore, φ
contains the static information necessary to ‘generate’ σ.)

To be more precise about what we mean by ‘instance’, we shall use the notation φ ≺ ψ
to indicate that φ is a type instance of ψ. The relation ≺ can be defined as the reflexive
contextual closure of the axiom rule9:

b ⊒ a

φ[b/p] ≺ ∀p ⊒ a.φ

We begin by defining, in Figure 5.8, two functions on simple types, (−)♯ and (−)♭, that
we shall be needing for our main construction. Intuitively, if σ is a simple type (that is not a
ground type), σ♯ translates to a generalised type that has all supertypes of σ as its instances;
and, conversely, σ♭ has all subtypes of σ as its instances.

9If [[φ]] stands for the obvious interpretation of a type φ as a family (set) of simple types, the predicate
σ ≺ φ is nothing more but a synonym for σ ∈ [[φ]].

5.6. EMULATING THE SUBSUMPTION RULE 109

G
♯ def

= G
♭ def

= G

(σa⊸ τ)♯
def
= ∀p.(σ♭)t⊸ τ ♯,

where t ≡

{

p, if a ≡ 1;

⊤, if a ≡ ⊤

(σa⊸ τ)♭
def
= ∀p.(σ♯)t⊸ τ ♭,

where t ≡

{

1, if a ≡ 1;

p, if a ≡ ⊤

(σ1
a1 ⊗ σ2

a2)♯
def
= ∀p1, p2.(σ1

♯)t1 ⊗ (σ2
♯)t2 ,

where ti ≡

{

1, if ai ≡ 1;

pi, if ai ≡ ⊤
for i = 1, 2

(σ1
a1 ⊗ σ2

a2)♭
def
= ∀p1, p2.(σ1

♭)t1 ⊗ (σ2
♭)t2 ,

where ti ≡

{

pi, if ai ≡ 1;

⊤, if ai ≡ ⊤
for i = 1, 2

Figure 5.8: Definition of σ♯ and σ♭

110 CHAPTER 5. ANNOTATION POLYMORPHISM

The following proposition formally states the relationship between subtyping and the
translations just defined.

Proposition 5.6.1
If σ ≤ τ , then τ ≺ σ♯ and σ ≺ τ ♭.

Proof. By induction on the structure of the derivation of σ ≤ τ . �

We define in Figures 5.9 and 5.10 a translation (−)† transforming NLL≤ type derivations
into NLL∀ type derivations. We only cover the cases for the {⊸,⊗}-fragment of the language.
The other cases follow a similar pattern.

The correctness of the translation can be easily established by induction on the structure
of an NLL≤ derivation.

Lemma 5.6.2 (Correctness)
Π(Γ1 ⊢

NLL≤
M1 : σ)† = Π(− ; Γ2 ⊢

NLL∀
M2 : σ♯).

Moreover, it is clear by construction that Γ1
◦ ≡ Γ2

◦ and M1
◦ ≡M2

◦. �

The above lemma, and the fact that σ ≺ σ♯ by Proposition 5.6.1, justify the following
statement.

Theorem 5.6.3 (Subsumption emulation)
If Γ1 ⊢

NLL≤
M1 : σ, then there exists Γ2, M2 and φ, such that Γ1

◦ ≡ Γ2
◦ and M1

◦ ≡M2
◦ and

σ ≺ φ, for which Γ2 ⊢
NLL∀

M2 : φ. �

It is important to remark that the above theorem should not be taken to imply that
subtyping is not useful. Not only it is quite helpful in practice, as it can be used to reduce
the number of inequations and annotation parameters to be considered during annotation
inference [67], but also because, without subtyping, any source language transformations
based on η-reduction—as implied by Proposition 4.4.4—would be unsound!

5
.6

.
E

M
U

L
A
T

IN
G

T
H

E
S
U

B
S
U

M
P

T
IO

N
R

U
L
E

1
1
1

(

x : σa ⊢ x : σ

)†
def
=

− ;x : (σ♯)a ⊢ x : σ♯

(

Π(Γ, x : σa ⊢M : τ)

Γ ⊢ λx:σa.M : σa ⊸ τ

)†
def
=

Π(− ; Γ′, x : φa ⊢M ′ : ψ)
(∗)

p ⊒ 1 ; Γ′, x : φt ⊢M ′ : ψ

p ⊒ 1 ; Γ′ ⊢ λx:φt.M ′ : φt ⊸ ψ

− ; Γ′ ⊢ Λp.λx:φt.M ′ : ∀p.φt ⊸ ψ

where Π(Γ, x : σa ⊢M : τ)† = Π(− ; Γ′, x : φa ⊢M ′ : ψ) and t =

{

p, if a ≡ 1;

⊤, if a ≡ ⊤.
. The step marked (*) is justified by Lemma 5.4.6 and Transfer.

(Π(Γ1 ⊢M : σa ⊸ τ) Π(Γ2 ⊢ N : σ)

Γ1,Γ2 ⊢MN : τ

)†

def
=

Π(− ; Γ′
1 ⊢M ′ : ∀p.φt ⊸ ψ)

− ; Γ′
1 ⊢M ′ a : φa ⊸ ψ Π(− ; Γ′

2 ⊢ N ′ : φ)

− ; Γ′
1
,Γ′

2
⊢ (M ′ a) N : ψ

where Π(Γ1 ⊢M : σa ⊸ τ)
†

= Π(− ; Γ′
1 ⊢M ′ : ∀p.φt ⊸ ψ) and Π(Γ2 ⊢ N : σ)

†
= Π(− ; Γ′

2 ⊢ N ′ : φ).

Figure 5.9: Definition of (−†) translation

1
1
2

C
H

A
P

T
E

R
5
.

A
N

N
O

T
A
T

IO
N

P
O

L
Y

M
O

R
P

H
IS

M

(Π(Γ1 ⊢M1 : σ1) Π(Γ2 ⊢M2 : σ2)

Γ1,Γ2 ⊢ 〈M1,M2〉
a1,a2 : σ1

a1 ⊗ σ2
a2

)†

def
=

Π(− ; Γ′
1 ⊢M ′

1 : φ1)
(∗)

p1 ⊒ 1, p2 ⊒ 1 ; Γ′
1 ⊢M ′

1 : φ1

Π(− ; Γ′
2 ⊢M ′

2 : φ2)
(∗)

p1 ⊒ 1, p2 ⊒ 1 ; Γ′
2 ⊢M ′

2 : φ2

p1 ⊒ 1, p2 ⊒ 1 ; Γ′
1,Γ

′
2 ⊢ 〈M ′

1,M
′
2〉

t1,t2 : φ1
t1 ⊗ φ2

t2

− ; Γ′
1,Γ

′
2 ⊢ Λp1, p2.〈M

′
1,M

′
2〉

t1,t2 : ∀p1, p2.φ1
t1 ⊗ φ2

t2

where Π(Γi ⊢Mi : σi)
†

= Π(− ; Γ′
i ⊢M

′
i : φi) and ti =

{

1, if ai ≡ 1;

pi, if ai ≡ ⊤,
for i = 1, 2. The steps marked (*) are justified by Lemma 5.4.6.

(Π(Γ1 ⊢M : σ1
a1 ⊗ σ2

a2) Π(Γ2, x1 : σ1
a1 , x2 : σ2

a2 ⊢ N : τ)

Γ1,Γ2 ⊢ let 〈x1, x2〉 = M in N : τ

)†

def
=

Π(− ; Γ′
1
⊢M ′ : ∀p1, p2.φ1

t1 ⊗ φ2
t2)

− ; Γ′
1 ⊢M ′ a1 a2 : φ1

a1 ⊗ φ2
a2 Π(− ; Γ′

2, x1 : φ1
a1 , x2 : φ2

a2 ⊢ N ′ : ψ)

− ; Γ′
1,Γ

′
2 ⊢ let 〈x1, x2〉 = M ′ in N ′ : ψ

where Π(Γ1 ⊢M : σ1
a1 ⊗ σ2

a2)
†

= Π(− ; Γ′
1 ⊢ M ′ : ∀p1, p2.φ1

t1 ⊗ φ2
t2) and Π(Γ2, x1 : σ1

a1 , x2 : σ2
a2 ⊢ N : τ)

†
= Π(− ; Γ′

2, x1 : φ1
a1 , x2 : φ2

a2 ⊢
N ′ : ψ).

(

Π(Γ ⊢M : σ)

Γ ⊢M : τ

)†
def
= Π(− ; Γ′ ⊢M ′ : φ) if σ ≤ τ ,

where Π(Γ ⊢M : σ)
†

= Π(− ; Γ′ ⊢M ′ : φ).

Figure 5.10: Definition of (−†) translation (continued)

5.7. ADDING TYPE-PARAMETRIC POLYMORPHISM 113

5.7 Adding type-parametric polymorphism

The language we have been using so far is monomorphic on base types. We shall now consider
a type-parametric polymorphic version of the language, and prove the semantic correctness
of the obtained intermediate language. The extension is standard, based on Girard’s second
order λ-calculus System F. (A detailed introduction may be found in [53, Part V].)

The correctness argument depends on proving a key syntactic lemma stating that dec-
orations are invariant with respect to type substitution. This means that the problem of
analysing the structural properties of type-parametric polymorphic is equivalent to (the sim-
pler) problem of analysing the structural properties of any of its monomorphic instances.

5.7.1 Syntax and typing rules

For the discussion that follows, let φ and ψ range over the set of extended types, possibly
containing some type parameters, collectively ranged over by α. Some of these parameters
may be bound by a universal type quantifier, written as shown below:

φ ::= (same as Subsection 5.2.1)
| ∀α.φ Type quantification

Likewise, we extend the syntax of terms, ranged over by M and N , with two new constructs
corresponding to the mechanisms of type abstraction and application:

M ::= (same as Subsection 5.2.2)
| Λα.M Type abstraction
| M φ Type application

The new constructs are typed according to the following introduction and elimination
rules:

Γ ⊢M : φ α 6∈ FTP(Γ)
∀I

Γ ⊢ Λα.M : ∀α.φ

Γ ⊢M : ∀α.φ
∀E

Γ ⊢M ψ : φ[ψ/α]

The set-valued function FTP(Γ) returns the free type parameters occurring in the types in
Γ. Let

FTP(Γ) = FTP(Γ◦),

where the latter is defined by

FTP(−) = ∅ and FTP(Γ, x : σ) = FTP(Γ) ∪ FTP(σ)

The set of free type parameters of a source type σ is inductively defined by the following
equations:

FTP(G) = ∅

FTP(σ → τ) = FTP(σ × τ) = FTP(σ) ∪ FTP(τ)

FTP(∀α.σ) = FTP(σ)\{α}

In order to take subtyping into account, we need to extend the subtyping relation with
the following two rules:

α ≤ α

φ ≤ ψ

∀α.φ ≤ ∀α.ψ
(5.5)

114 CHAPTER 5. ANNOTATION POLYMORPHISM

We should also add the following reduction axiom, that takes care of type applications:

(Λα.M) φ→M [φ/α] (5.6)

5.7.2 Correctness

Having introduced the syntax, we are now ready to state the following Type-substitution
Invariance property.

Lemma 5.7.1 (Type-substitution Invariance)
If Θ ; Γ ⊢M : φ, then Θ ; Γ[ψ/α] ⊢M [ψ/α] : φ[ψ/α], for any ψ.

Proof. Easy induction on the derivation of Θ ; Γ ⊢M : φ. �

It is then straightforward to prove that our extended intermediate language is semantically
correct.

Theorem 5.7.2 (Subject Reduction)
If Θ ; Γ ⊢M : φ and M → N , then Θ ; Γ ⊢ N : φ.

Proof. We only consider the following case:

• M ≡ (Λα.M ′) φ and N ≡M ′[φ/α].

A derivation for (Λα.M ′) φ must necessarily have the following structure:

Π(Θ ; Γ ⊢M ′ : ψ′)
∀I

Θ ; Γ ⊢ Λα.M ′ : ∀α.ψ′

∀E
Θ ; Γ ⊢ (Λα.M ′) φ : ψ′[φ/α]

Applying Lemma 5.7.1 to Θ ; Γ ⊢M ′ : ψ′, it immediately follows that Θ ; Γ ⊢M ′[φ/α] :
ψ′[φ/α], as required. (Note that α 6∈ FTP(Γ).)

�

Chapter 6

Annotation inference

A key element in the formulation of any type-based static analysis is, undoubtedly, the type
system itself. We have ensured that the different type theories of linearity analysis we have
proposed in the previous chapters have the ‘right’ properties, thus setting the scene for the
matter of discussion of the present chapter: annotation inference algorithms.

For the simple case of linearity analysis, an annotation inference algorithm is a computer
program that takes as input a pair 〈Γ,M〉, comprising a source language context and term,
and outputs another pair 〈Γ∗,M∗〉, where − ; Γ∗ ⊢M∗ : φ is the NLL≤ optimal decoration of
the source typing Γ ⊢ M : φ◦ (and recalling that, in this case, (M∗)◦ = M and (Γ∗)◦ = Γ).
Notice that we do not refer to this algorithm as a ‘type inference’ algorithm, for the simple
reason that we shall not be interested in algorithms that infer decorated types from terms
carrying no type information at all, and which may possibly be ill-typed. We therefore assume
that our algorithm takes as input a well-typed term, and that this term already carries base
type information, as is the case for our prototypical functional language. Our algorithms
therefore concentrate on the (simpler) task of inferring optimal annotations, leaving the task
of inferring base type information to an early stage of the compilation process1.

We shall have a look at two annotation inference algorithms, which we shall prove sound
and complete with respect to their associated type theories. We begin by describing an
annotation inference algorithm for NLL≤, the theory of simple linearity analysis. We could
have addressed this issue earlier, but the reason why we have waited until now has to do with
the fact that we shall be ‘reusing’ some of the tools (and results) of part of the framework
belonging to the type theory of annotation polymorphism. Using these same tools, we shall
describe a second annotation inference algorithm, but this time based on NLL∀let≤, to be able
to assign families of annotated types to local definitions.

Based on the annotation inference algorithm for NLL∀let≤, we shall describe a strategy of
linearity analysis for definitions in modules.

6.0.3 A two-stage process

The annotation inference algorithms we discuss in this chapter are based on the idea that all
the decorations of a source typing Γ ⊢ M : σ can be represented within our linear language
extended with annotation polymorphism, as a typing Θ ; Γ∗ ⊢M∗ : φ, where

1During the optimisation phase, it might be useful to perform several passes of annotation inference, so
having a separate annotation inference algorithm is always handy.

115

116 CHAPTER 6. ANNOTATION INFERENCE

• M∗ and Γ∗ contain only annotation parameters, and

• Θ contains the context restrictions guaranteeing that each substitution instance Γ∗[θ] ⊢
M∗[θ] : φ[θ] is a valid decoration.

In Subsection 5.2.7, we have provided a hint of this idea through the example of Figure 5.3:
The context restrictions give rise to a number of inequations on annotation parameters, which,
all together, trivially determine the ‘minimum’ set of inequations required to satisfy the
context restrictions.

Therefore, annotation inference will be formulated as a two-stage process:

• Firstly, we infer the constraint inequations Θ necessary to find a type φ for an input
well-typed context-term pair 〈Γ,M〉. The algorithm basically reconstructs the type
derivation for a ‘template’ of M , M∗, containing only annotation parameters. The
algorithm is driven by the structure of M∗, so this is where the syntax-directed version
of NLL∀≤ comes into play.

• Secondly, we find the optimal solution of the obtained constraint set. As we shall see,
this optimal solution always exists, and the substitution instance obtained is the meet
of the decoration space of the input pair.

The process just described is how traditionally annotation inference is handled for anno-
tated type systems [48, Chapter 5]. The only difference with other presentations is in the fact
that we reason about NLL≤ decorations and annotation inference using the tools of NLL∀≤.

6.0.4 Organisation

The contents of this chapter are organised as follows:

• Section 6.1 presents an algorithm for inferring constraint inequations for our simple
linearity analysis. We prove the correctness of the algorithm by establishing soundness
and completness results with respect to the decoration space of a given input typing.

• Section 6.2 discusses the possibility of finding the least solution of a constraint set using
fixpoints. We shall also describe a simple graph-based algorithm for finding the optimal
solution of a constraint set over our 2-point lattice of linearity properties.

• Section 6.3 presents an extension of the algorithm of Section 6.1 with let-based anno-
tation polymorphism, and proves soundness and completeness.

• Section 6.4 applies the techniques developed in Section 6.3 to propose a strategy for
modular linearity analysis.

6.1 Simple annotation inference

The notation we use to specify the legal runs (or executions) of the algorithm for inferring
constraint inequations is the following:

Θ ; ∆ ⊢M ⇒ X : φ,

6.1. SIMPLE ANNOTATION INFERENCE 117

where the context ∆ and source language term M are the inputs of the algorithm, and the
constraint set Θ, the intermediate language term X and type φ are the outputs. We introduce
here the use of ∆ and X to range over contexts and terms, respectively, that are allowed to
contain only annotation parameters.

The basic idea is that if Θ ; ∆ ⊢M ⇒ X : φ is a legal run of the algorithm, Θ ; ∆ ⊢ X : φ is
a valid NLL∀≤ typing judgment (Lemma 6.1.9). Moreover, all suitable substitution instances
∆[θ] ⊢ X[θ] : φ[θ], for all θ |= Θ denote all the valid decorations of Γ ⊢M : σ, where ∆◦ = Γ
and X◦ = M , for some σ = φ◦2. Thus, our correctness criteria is given by the following two
conditions:

{∆[θ] ⊢ X[θ] : φ[θ] | θ |= Θ and FA(X) ∪ FA(∆) ⊆ dom(θ)}

= DNLL≤(∆◦ ⊢
FPL

X◦ : φ◦)
(6.1)

and
X◦ = M. (6.2)

Conditions (6.1) and (6.2) constitute our correctness criteria, which will be the matter of
Subsection 6.1.2 (Theorems 6.1.10 and 6.1.11).

The arrow ‘⇒’ naturally suggests the translation of the source language term M into an
intermediate language term X of type φ. It would perhaps have been better to write Θ to
the right of the arrow, and not to the left, but we have preferred a notation that recalls the
typing judgments of our linear theory extended with annotation polymorphism, to remind
the reader that they are both intimately related.

Definition 6.1.1 (Well-formed run)
An assertion Θ ; ∆ ⊢ M ⇒ X : φ determines a well-formed run if there is a proof of it, using
the rules of Figures 6.3 and 6.4 on pages 119 and 120. �

As usual, the requirement ‘p fresh’ states that the annotation parameter p should not
appear free anywhere else in the rule. Similarly, by φ = fresh(σ), we mean that φ corresponds
to a type containing only annotation parameters, where each annotation parameter is fresh,
and such that φ◦ ≡ σ.

The notation (φ1 ≤ φ2) = Θ should be understood as stating that Θ is the result of a
function taking two arguments, φ1 and φ2, comprising the inequations needed to make φ1

a subtype of φ2. Figure 6.1 provides a recursive definition of this function, following the
structure of the types.

We state its correctness in a slightly more general fashion in the following proposition.

Proposition 6.1.2 (Correctness of (− ≤ −))
If (φ1 ≤ φ2) = Θ, then Θ ⊢ φ1 ≤ φ2. Moreover, if σ1 and σ2 are any two types, where σ1 ≤ σ2

with σ1
◦ ≡ φ1

◦ and σ2
◦ ≡ φ2

◦, then there exists θ |= Θ, such that σ1 ≡ ψ1[θ] and σ2 ≡ ψ2[θ].
�

An algorithm for inferring constraints suitable for NLL (i.e., without subtyping) can be
easily obtained by modifying the definition of (− ≤ −); it suffices to add the ‘mirror’ inequa-
tion q ⊒ p along side each occurrence of p ⊒ q, thus making the types equal.3.

2Thus, the inferred constraint set Θ effectively contains the information necessary to generate the whole
decoration space.

3In fact, this is precisely what our prototype implementation of linearity analysis does when the ‘subtyping
option’ is disabled.

118 CHAPTER 6. ANNOTATION INFERENCE

(G ≤ G) = ∅

(φ2 ≤ φ1) = Θ1 (ψ1 ≤ ψ2) = Θ2

(φ1
p1 ⊸ ψ1 ≤ φ2

p2 ⊸ ψ2) = Θ1,Θ2, p2 ⊒ p1

(φ1 ≤ φ2) = Θ1 (ψ1 ≤ ψ2) = Θ2

(φ1
p1 ⊗ ψ1

q1 ≤ φ2
p2 ⊗ ψ2

q2) = Θ1,Θ2, p1 ⊒ p2, q1,⊒ q2

Figure 6.1: Generating subtyping constraints

split(−,M1,M2) = (−,−, ∅)

split((∆, x:φp),M1,M2) =

((∆′
1, x:φ

p),∆′
2,Θ),

if x ∈ FV(M1), but x 6∈ FV(M2);

(∆′
1, (∆

′
2, x:φ

p),Θ),

if x ∈ FV(M2), but x 6∈ FV(M1);

((∆′
1, x:φ

p1), (∆′
2, x:φ

p2), (Θ, p ⊒ p1 + p2)),

otherwise;

and where split(∆,M1,M2) = (∆′
1,∆

′
2,Θ).

Figure 6.2: A general definition of split(−,−,−)

The split function does the opposite of context merge; it takes as input a typing context
∆ and two terms M1 and M2, and produces a triple (∆1,∆2,Θ) as output, where Θ contains
the inequations needed to ensure that ∆ is the merge of ∆1 and ∆2 (Definition 5.4.15). The
typing contexts ∆1 and ∆2 are then used by our inference algorithm to reconstruct the type
derivations of M1 and M2, respectively; so we must also ensure that each ∆i contains, at
least, the typing assertions for the free variables in its corresponding Mi.

The following definition states the properties that any definition of context splitting must
satisfy.

Definition 6.1.3 (Properties of split(−,−,−))
If split(∆,M1,M2) = (∆1,∆2,Θ), then

• Θ ⊲∆ ⊒ ∆1 ⊎ ∆2; and

• FV(M1) ⊆ dom(∆1) and FV(M2) ⊆ dom(∆2).

It is not necessary to require that ∆ be precisely ∆1 ⊎ ∆2, although this will be true for
the definition of split we shall be using for linearity analysis.

6
.1

.
S
IM

P
L
E

A
N

N
O

T
A
T

IO
N

IN
F
E

R
E

N
C

E
1
1
9

∆ ≡ xi : φi
pi

pi ⊒ ⊤ ; ∆, x : φp ⊢ x⇒ x : φ

Σ(π) = φ ∆ ≡ xi : φi
pi

pi ⊒ ⊤ ;∆ ⊢ π ⇒ π : φ

Θ ; ∆, x : φp ⊢M ⇒ X : ψ φ = fresh(σ) p fresh

Θ ; ∆ ⊢ λx:σ.M ⇒ λx:φp.X : φp ⊸ ψ

Θ2 ; ∆1 ⊢M ⇒ X : φ1
p ⊸ ψ Θ3 ;∆2 ⊢ N ⇒ Y : φ2 split(∆,M,N) = (∆1,∆2,Θ1)

∆2 ≡ xi : φi
qi

(φ2 ≤ φ1) = Θ4

Θ1,Θ2,Θ3,Θ4, qi ⊒ p ; ∆ ⊢MN ⇒ XY : ψ

Θ2 ; ∆1 ⊢M1 ⇒ X1 : φ1 Θ3 ; ∆2 ⊢M2 ⇒ X2 : φ2 split(∆,M,N) = (∆1,∆2,Θ1)

∆1 ≡ x1,i : φ1,i
q1,i

∆2 ≡ x2,i : φ2,i
q2,i

Θ1,Θ2,Θ3, q1,i ⊒ p1, q2,i ⊒ p2 ; ∆ ⊢ 〈M1,M2〉 ⇒ 〈X1, X2〉
p1,p2 : φ1

p1 ⊗ φ2
p2

Figure 6.3: Inferring constraint inequations for simple linearity analysis

1
2
0

C
H

A
P

T
E

R
6
.

A
N

N
O

T
A
T

IO
N

IN
F
E

R
E

N
C

E

Θ2 ; ∆1 ⊢M ⇒ X : bool Θ3 ; ∆2 ⊢ N1 ⇒ Y1 : φ1 Θ4 ; ∆2 ⊢ N2 ⇒ Y2 : φ2

φ = fresh(φ1
◦)

(φ1 ≤ φ) = Θ5

(φ2 ≤ φ) = Θ6

split(M, 〈N1, N2〉) = (∆1,∆2,Θ1)

Θ1,Θ2,Θ3,Θ4,Θ5,Θ6 ;∆ ⊢ if M then N1 else N2 ⇒ if X then Y1 else Y2 : φ

Θ1 ; ∆, x : φ1
p ⊢M ⇒ X : φ2 (φ1 ≤ φ2) = Θ2 ∆ ≡ xi : ψqi

i φ1 = fresh(σ) p fresh

Θ1,Θ2, qi ⊒ ⊤, p ⊒ ⊤ ; ∆ ⊢ fix x:σ.M ⇒ fix x:φ1.X : φ2

Θ2 ;∆1 ⊢M ⇒ X : φ1
p1 ⊗ φ2

p2 Θ3 ; ∆2, x1 : φ3
p3 , x2 : φ4

p4 ⊢ N ⇒ Y : ψ

p3, p4 fresh

(φ1
p1 ⊗ φ2

p2 ≤ φ3
p3 ⊗ φ4

p4) = Θ4

split(∆,M,N) = (∆1,∆2,Θ1)

Θ1,Θ2,Θ3,Θ4 ;∆ ⊢ let 〈x1, x2〉 = M in N ⇒ let 〈x1, x2〉
p3,p4 = X in Y : ψ

Figure 6.4: Inferring constraint inequations for simple linearity analysis (continued)

6.1. SIMPLE ANNOTATION INFERENCE 121

An inductive definition of context splitting satisfying the properties of Definition 6.1.3 is
shown in Figure 6.2.

Notice that, in the last equation, it is possible to simplify p ⊒ p1 + p2 to p ⊒ ⊤. However,
the definition above is more general, so it will work as well for other structural analyses.

We shall now turn to the properties satisfied by our inference algorithm. We begin by
observing that each run of the algorithm is unique for a given input 〈∆,M〉.

Proposition 6.1.4 (Determinacy)
If Θ ; ∆ ⊢M ⇒ X : φ and Θ′ ; ∆ ⊢M ⇒ X ′ : φ′, then X ≡ X ′, φ ≡ φ′ and Θ ≡ Θ′ �

Notice that, whenever Θ ; ∆ ⊢ M ⇒ X : φ, then ∆◦ ⊢ M : φ◦ is true in FPL, so the
algorithm of Figure 6.3 can be understood as an extension of a simple type reconstruction
algorithm for FPL4. Which constraints should be considered at each stage, is dictated by a
slightly modified syntax-directed version of NLL∀µ≤, as we explain below.

6.1.1 Relaxing the conditional rule

We shall now establish the correctness of our algorithm for inferring constraint inequations.
Essentially, this amounts to showing that Conditions 6.1 and 6.2, stated at the beginning
of this section, are verified. Actually, we shall show soundness with respect to a slightly
modified version of NLLµ≤, called NLLν≤. This intermediate type system has the same rules
as its sibling, except for the conditional rule, shown below:

Γ1 ⊢M : bool Γ2 ⊢ N1 : σ1 Γ2 ⊢ N2 : σ2

σ1 ≤ σ

σ2 ≤ σ
Conditional

Γ1,Γ2 ⊢ if M then N1 else N2 : σ

It is clear that this rule generalises that of NLL∀µ≤, since σ1 ≤ σ1 ⊔σ2 and σ2 ≤ σ1 ⊔σ2. The
intermediate system is also a type system of minimum types with respect to NLL≤, except
that it does not have unique types.

Proposition 6.1.5
If Γ ⊢

NLL≤
M : σ, then Γ ⊢

NLLν≤
M : τ for some τ with τ ≤ σ. �

By the above observation, we see clearly that the three type systems of interest verify
NLLµ≤ ⊆ NLLν≤ ⊆ NLL≤.

The reason for introducing an intermediate type system is to avoid complicating our lan-
guage of annotation terms with a ⊔ operator to handle least upper bounds of annotations.
Note that this precision is not necessary in practice; we are interested in the smallest anno-
tation assignment with respect to the sub-decoration order, not the subtyping order, which
is necessarily less interesting for applying optimisations.

As suggested in a previous discussion, the proof of soundness will relate the well-formed
runs of the algorithm to the set of typings of the corresponding polymorphic version, in our
case NLL∀ν≤, which can similarly be defined in terms of NLL∀µ≤, by modifying the conditions

4Indeed, if we erase Θ and X from the runs, and substitute all occurrences of φ by their respective erasures
φ◦, the result is (not surprisingly) the traditional type-checking algorithm of the simply-typed λ-calculus.

122 CHAPTER 6. ANNOTATION INFERENCE

on the types of the branches of the conditional rule, as shown:

Θ ; Γ1 ⊢M : bool Θ ; Γ2 ⊢ N1 : σ1 Θ ; Γ2 ⊢ N2 : σ2

Θ ⊲ φ1 ≤ φ

Θ ⊲ φ2 ≤ φ
Conditional

Θ ; Γ1,Γ2 ⊢ if M then N1 else N2 : φ

As expected, the following proposition states the relationship between the intermediate poly-
morphic version and NLL∀≤.

Proposition 6.1.6
If Θ ; Γ ⊢

NLL∀≤
M : φ, then Θ ; Γ ⊢

NLL∀ν≤
M : ψ for some ψ with ψ ≤ φ. �

6.1.2 Correctness

By looking at the inference rules of Figure 6.3, it is quite easy to see that if we erase the
annotations in the translated intermediate language term, we retrieve the original source
language term we started from. This settles Condition 6.2.

Proposition 6.1.7
If Θ ; ∆ ⊢M ⇒ X : φ, then X◦ = M . �

The following proposition states three simple syntactic invariants regarding annotation
parameters.

Proposition 6.1.8
If Θ ; ∆ ⊢M ⇒ X : φ, then

a. FA(φ) ⊆ FA(∆) ∪ FA(X),

b. FA(∆) ∩ FA(X) = ∅, and

c. neither ∆ nor X contain duplicate annotation parameters.

Proof. Easy induction on the structure of M . �

We shall prove Condition 6.1 by stating soundness and completeness with respect to
NLLν≤ typings.

To prove soundness, we have to show that if Θ ; ∆ ⊢ M ⇒ X : φ is a well-formed run of
the algorithm, then ∆[θ] ⊢ X[θ] : φ[θ] is a valid NLLν≤ typing, for all covering solutions θ of
Θ. By covering solution we mean that θ must cover the components of the typing judgment,
namely ∆, X and φ.

We first show how the runs of the algorithm are related to NLL∀ν≤ typings.

Lemma 6.1.9 (Soundness for NLL∀ν≤)
If Θ ; ∆ ⊢M ⇒ X : φ, then Θ ; ∆ ⊢

NLL∀ν≤
X : φ.

Proof. By induction on the structure of M . As usual, we reason in terms of the syntax-
directed version of NLL∀ν≤. We prove the lemma for some prototypical cases only. In each
case, we assume the premises of the matching rule.

6.1. SIMPLE ANNOTATION INFERENCE 123

• M ≡ x.

Note that Θ ; ∆, x : φp ⊢ x : φ since Θ is defined as pi ⊒ ⊤ so that the structural
condition Θ ⊲ |∆| ⊒ ⊤, which equals Θ ⊲ |xi : φi

pi | ⊒ ⊤, trivially holds.

• M ≡ λx:σ.M ′.

In this case, we have Θ ; ∆ ⊢ λx:σ.M ′ ⇒ λx:φp.X ′ : φp ⊸ ψ because Θ ; ∆, x : φp ⊢
M ′ ⇒ X ′ : ψ where φ = fresh(σ). From the latter, we may conclude Θ ; ∆ ⊢ X ′ : ψ by
the induction hypothesis. The required conclusion Θ ; ∆ ⊢ λx:φp.X ′ : φp ⊸ ψ directly
follows by⊸I .

• M ≡M ′N ′.

We have Θ ; ∆ ⊢ M ′N ′ ⇒ X ′Y ′ : ψ because Θ2 ; ∆1 ⊢ M ′ ⇒ X ′ : φ1
p ⊸ ψ and

Θ3 ; ∆2 ⊢ N ′ ⇒ Y ′ : φ2, where split(∆,M ′, N ′) = (∆1,∆2,Θ1) and (φ2 ≤ φ1) = Θ4,
with ∆2 ≡ xi : φi

qi and Θ ≡ Θ1,Θ2,Θ3,Θ4, qi ⊒ p. By the induction hypothesis and
constraint strengthening, we may conclude Θ ; ∆1 ⊢ X ′ : φ1

p ⊸ ψ and Θ ; ∆1 ⊢ Y ′ : φ2.
Note that the following conditions hold:

Θ ⊢ φ2 ≤ φ1, by Proposition 6.1.2 and constraint strengthening;

∆ = ∆1 ⊎ ∆2, by the definition of ⊎ of Figure 6.2; and

Θ ⊲ |∆2| ⊒ p, since Θ contains qi ⊒ p.

These conditions are sufficient to apply ⊸E in order to derive Θ ; ∆ ⊢ X ′Y ′ : ψ as
needed.

• M ≡ if M ′ then N ′ else N ′′.

The proof is similar to that for the application. Notice that the steps required to prove
this case require the modified conditional rule of the intermediate system NLL∀ν≤.

�

Using the above lemma, inclusion into the decoration space follows as a corollary of Lem-
mas 6.1.9, 5.4.4 and 5.4.8.

Theorem 6.1.10 (Soundness)
If Θ ; ∆ ⊢M ⇒ X : φ, then ∆[θ] ⊢

NLLν≤
X[θ] : φ[θ], for all covering θ |= Θ.

Proof. Indeed, by Lemma 6.1.9, Θ ; ∆ ⊢ M ⇒ X : φ implies that Θ ; ∆ ⊢ X : φ holds in
NLL∀ν≤. According to Lemma 5.4.8, − ; ∆[θ] ⊢ X[θ] : φ[θ] must also be true, for all θ |= Θ.
Therefore, by Lemma 5.4.4, and the fact that ∆[θ] and X[θ] are simple by construction, it
follows that ∆[θ] ⊢ X[θ] : φ[θ] is valid in NLLν≤. �

To prove completeness, we must show that if Θ ; ∆ ⊢ M ⇒ X : φ is a well-formed run,
then any alternative decoration of ∆◦ ⊢ X◦ : φ◦ can be rewritten as ∆[θ] ⊢ X[θ] : φ[θ], for
some suitable solution θ of Θ.

Theorem 6.1.11 (Completeness)
If Θ ; ∆ ⊢ M ⇒ X : φ and Γ ⊢ N : σ is any NLLν≤ decoration of ∆◦ ⊢ X◦ : φ◦, then there
exists a covering solution θ |= Θ, such that Γ ≡ ∆[θ], N ≡ X[θ] and σ ≡ φ[θ].

Proof. By induction on the structure of M . Again, we consider some prototypical cases
only, and reason with respect to the syntax-directed version of the theory.

124 CHAPTER 6. ANNOTATION INFERENCE

• M ≡ x.

We have Θ ; ∆, x : φp ⊢ x ⇒ x : φ where Θ ≡ pi ⊒ ⊤ and ∆ ≡ xi : φi
pi . A decoration

must have the form Γ, x : σa ⊢ x : σ, subject to the condition that |Γ| ⊒ ⊤.

By construction of the algorithm (Proposition 6.1.8), ∆ and φ contain distinct anno-
tation parameters at all positions, and share none, so there trivially exists a suitable
covering θ, making Γ ≡ ∆[θ] and σ ≡ φ[θ]. We require θ |= Θ, so θ(pi) ⊒ ⊤ for all pi,
but this is already the case, since |Γ| ⊒ ⊤ implies θ(pi) = ⊤.

• M ≡ λx:σ.M ′.

In this case, we have Θ ; ∆ ⊢ λx:σ.M ′ ⇒ λx:φp

1.X
′ : φp

1 ⊸ φ2 because Θ ; ∆, x : φ1
p ⊢

M ′ ⇒ X ′ : φ2, where φ1 = fresh(σ).

Any decoration has the form Γ ⊢ λx:τ1
a.N ′ : τ1

a⊸ τ2, provided that Γ, x : τ1
a ⊢ N ′ : τ2.

From the induction hypothesis applied to the latter, we know there exists θ |= Θ, such
that Γ, x : τ1

a ≡ (∆, x : φp)[θ], N ′ ≡ X ′[θ] and τ2 ≡ φ2[θ]. By the definition of
annotation substitution, it clearly follows that Γ ≡ ∆[θ], λx:τ1

a.N ′ ≡ (λx:φp

1.X
′)[θ] and

τ1
a⊸ τ2 ≡ (φp

1 ⊸ φ2)[θ].

• M ≡M ′M ′′.

We have Θ ; ∆ ⊢ M ′M ′′ ⇒ X ′X ′′ : ψ because Θ2 ; ∆1 ⊢ M ′ ⇒ X ′ : φ1
p ⊸ ψ and

Θ3 ; ∆2 ⊢ M ′′ ⇒ X ′′ : φ2, where split(∆,M ′,M ′′) = (∆1,∆2,Θ1), (φ2 ≤ φ1) = Θ4,
∆2 ≡ xi : φi

qi and Θ ≡ Θ1,Θ2,Θ3,Θ4, qi ⊒ p.

A decoration must have the form Γ1 ⊎ Γ2 ⊢ N ′N ′′ : τ , provided that Γ1 ⊢ N ′ : σ1
a⊸ τ

and Γ1 ⊢ N ′′ : σ2, subject to the conditions that σ2 ≤ σ1 and |Γ2| ⊒ a. By the induction
hypothesis, twice, applied to the decoration premises, it is clear there exist θ2 |= Θ2 and
θ3 |= Θ3, such that

Γ1 ≡ ∆1[θ2], N ′ ≡ X ′[θ2], σ1
a⊸ τ ≡ (φ1

p ⊸ ψ)[θ2]; (6.3)

Γ2 ≡ ∆2[θ3], N ′′ ≡ X ′′[θ3], σ2 ≡ φ2[θ3]. (6.4)

Take θ = θ′1 ∪ θ
′
2 ∪ θ

′
3, where θ′2 = θ2 ↾ (FA(X ′)∪FA(∆1)), θ

′
3 = θ3 ↾ (FA(X ′′)∪FA(∆2))

and θ′1 is such that θ′1(p) = ⊤, for all p such that p ⊒ p1 + p2 is in Θ1. The union
is here meant to stand for the union of annotation substitutions as relation sets, so
dom(θ) = dom(θ′1)∪ dom(θ′2)∪ dom(θ′3). (The restrictions on the domains of θ′1 and θ′2,
the definition of split and Proposition 6.1.8 ensure that the union is well-defined.)

It is clear that the syntactic equivalences (6.3) and (6.4) also apply to θ. We therefore
have M ′M ′′ ≡ (X ′X ′′)[θ] and τ ≡ ψ[θ]. Also, Γ1⊎Γ2 ≡ (∆1⊎∆2)[θ], since the definition
of split ensures that ∆[θ] = ∆1[θ] ⊎ ∆2[θ] for all θ |= Θ1, which follows by definition
of θ. Notice that, in general, θ |= Θ, as required. We know that θ |= Θ1,Θ2,Θ3

by construction. The fact that θ |= Θ4, qi ⊒ p is a consequence of the subtyping and
structural condition hypotheses on decorations and Proposition 6.1.2.

�

Notice that what syntactic completeness really asserts is that Θ ; ∆ ⊢ X : φ is ‘principal’,
although in a slightly different sense.

6.1. SIMPLE ANNOTATION INFERENCE 125

6.1.3 Avoiding splitting contexts

Splitting contexts as shown would be rather too time-consuming; the annotation inference
algorithm would undoubtedly spend most its time computing variable-occurrence predicates.
There are at least two well-known ‘tricks’ to avoid splitting contexts. The first one was pro-
posed for the implementation of the type-checking algorithm of the linear language Lilac [42],
and is also the one we have used in our implementation of linearity analysis. We shall how-
ever briefly illustrate the second approach [62], which assumes that pre-computed occurrence
information is available for bound variables—roughly, as an integer recording the number of
times a variable occurs in its scope5.

An alternative definition, not requiring the splitting of contexts, is given without proof in
Figures 6.5 and 6.6.

Notice that the contexts ∆ in the conclusions of the rules are now shared. We use the
occurrence count associated to the bound variables (when they are introduced) to generate
the proper constraints; in particular, if a variable occurs any number of times, excluding one,
it must be annotated as non-linear, which explains the use of the inequation p ⊒ |n|. The
notation |n| stands for the ‘meaning’ of an occurrence count in terms of our annotation lattice:

|n| =

{

⊤, if n 6= 1;

1, otherwise.

Naturally, we avoid adding any restrictions for the case of variables and constants. A precise
definition of the occurs function can be found in Figure 7.4, on page 147.

5Actually, both approaches rely on precisely the same information, except that, in the case of Lilac, this
information is computed incrementally during type inference.

1
2
6

C
H

A
P

T
E

R
6
.

A
N

N
O

T
A
T

IO
N

IN
F
E

R
E

N
C

E

∅ ; ∆, x : φp ⊢ x⇒ x : φ

Σ(π) = φ

∅ ; ∆ ⊢ π ⇒ π : φ

Θ ; ∆, x : φp ⊢M ⇒ X : ψ φ = fresh(σ) p fresh n = occurs(x,X)

Θ, p ⊒ |n| ; ∆ ⊢ λx:σ.M ⇒ λx:φp.X : φp ⊸ ψ

Θ1 ;∆ ⊢M ⇒ X : φ1
p ⊸ ψ Θ2 ; ∆ ⊢ N ⇒ Y : φ2

∆2↾FA(Y) = xi : φi
qi

(φ2 ≤ φ1) = Θ3

Θ1,Θ2,Θ3, qi ⊒ p ; ∆ ⊢MN ⇒ XY : ψ

Θ1 ; ∆ ⊢M1 ⇒ X1 : φ1 Θ2 ;∆ ⊢M2 ⇒ X2 : φ2

∆↾FA(X1) = x1,i : φ1,i
q1,i

∆↾FA(X2) = x2,i : φ2,i
q2,i

Θ1,Θ2, q1,i ⊒ p1, q2,i ⊒ p2 ; ∆ ⊢ 〈M1,M2〉 ⇒ 〈X1, X2〉
p1,p2 : φ1

p1 ⊗ φ2
p2

Figure 6.5: Inferring constraint inequations for simple linearity analysis without context splitting

6
.1

.
S
IM

P
L
E

A
N

N
O

T
A
T

IO
N

IN
F
E

R
E

N
C

E
1
2
7

Θ1 ; ∆ ⊢M ⇒ X : bool Θ2 ;∆ ⊢ N1 ⇒ Y1 : φ1 Θ3 ; ∆ ⊢ N2 ⇒ Y2 : φ2

φ = fresh(φ1
◦)

(φ1 ≤ φ) = Θ4

(φ2 ≤ φ) = Θ5

Θ1,Θ2,Θ3,Θ4,Θ5 ; ∆ ⊢ if M then N1 else N2 ⇒ if X then Y1 else Y2 : φ

Θ1 ; ∆, x : φ1
p ⊢M ⇒ X : φ2 (φ1 ≤ φ2) = Θ2 ∆ ≡ xi : ψqi

i φ1 = fresh(σ) p fresh

Θ1,Θ2, qi ⊒ ⊤, p ⊒ ⊤ ; ∆ ⊢ fix x:σ.M ⇒ fix x:φ1.X : φ2

Θ1 ;∆1 ⊢M ⇒ X : φ1
p1 ⊗ φ2

p2 Θ2 ; ∆2, x1 : φ3
p3 , x2 : φ4

p4 ⊢ N ⇒ Y : ψ

p3, p4 fresh

(φ1
p1 ⊗ φ2

p2 ≤ φ3
p3 ⊗ φ4

p4) = Θ3

n1 = occurs(x1, Y)

n2 = occurs(x2, Y)

Θ1,Θ2,Θ3, p3 ⊒ |n1|, p4 ⊒ |n2| ; ∆ ⊢ let 〈x1, x2〉 = M in N ⇒ let 〈x1, x2〉
p3,p4 = X in Y : ψ

Figure 6.6: Inferring constraint inequations for simple linearity analysis without context splitting (continued)

128 CHAPTER 6. ANNOTATION INFERENCE

6.2 Solving constraint inequations

We have given an algorithm for computing the set of constrains that characterises the decora-
tion space of an input typing judgment. We are now left with the task of showing the reader
how to solve the constraint inequations to find the optimal solution.

6.2.1 Characterising the least solution

We should first remark that the algorithm for inferring constraint inequations only generates
inequations of the form p ⊒ t, where t is either ⊤ or an annotation parameter q 6≡ p (provided
that we replace all occurrences of terms of the form p1 +p2 by ⊤). A constraint set Θ formed
from inequations of this particular form is not only always consistent, but, in fact, the space
of all its solutions, [Θ] = {θ | θ |= Θ}, forms a complete lattice with respect to the ‘natural’
order, defined by

θ1 ⊑ θ2
def
= θ1(p) ⊑ θ2(p), for all p ∈ dom(θ1).

This fact is stated in the following proposition.

Proposition 6.2.1 (Complete solution lattice)
For all constraint sets Θ ≡ pi ⊒ ti, 〈[Θ];⊑〉 forms a non-empty complete lattice.

Proof. It is obvious that ⊤[Θ] = 〈⊤/pi〉i≥n, for all pi ∈ P, is the greatest element of the
solution set. Clearly, ⊤[Θ] |= Θ and θ ⊑ ⊤[Θ], for any θ in the solution set.

Let Σ = {θi | i ∈ I} be a non-empty subset of the solution set, indexed by elements in I.
We show that the meet, defined element-wise,

θ(p)
def
= ⊓i∈Iθi(p),

satifies Θ. Indeed, for each inequation p ⊒ t and θi ∈ Σ, since θi |= Θ, we have θi(p) ⊒ θi(t),
and so ⊓i∈Iθi(p) ⊒ ⊓i∈Iθi(t). Therefore, θ(p) ⊒ ⊓i∈Iθi(t); and, because θi(t) ⊒ θ(t) implies
⊓i∈Iθi(t) ⊒ θ(t), we deduce θ(p) ⊒ θ(t). �

Much like Theorem 3.6.4, the proof of the above statement depends fundamentally on the
fact that the 2-point annotation set we started with is itself complete.

Since the solution space of a constraint set Θ forms a complete lattice, we are interested
in an effetive procedure for computing its meet

θopt def
= ⊓[Θ].

A standard way to proceed, in cases like this, consists in showing how θopt may be alternatively
characterised as the least solution of a fixpoint equation for some suitable map

FΘ : (P → A) → (P → A) where P = FA(Θ),

defined over the complete lattice 〈[P → A];⊑〉 of ground annotation substitutions ordered
according to the sub-decoration order, which must satisfy the monotonicity and ascending
chain conditions. These conditions ensure that least fixpoint exist and that they can be
computed using the iterative method of Theorem 2.2.10.

If Θ is a given constraint set, it is not difficult to see that the fixpoints of the map

FΘ(θ)(p)
def
=

⊔

{θ(t) | p ⊒ t is in Θ} (6.5)

6.2. SOLVING CONSTRAINT INEQUATIONS 129

are indeed all the ground substitutions θ satisfying Θ. As required, FΘ is monotone. Indeed,

θ1 ⊑ θ2 ⇔ ∀p.θ1(p) ⊑ θ2(p)

⇒ ∀p.
⊔

{θ1(t) | p ⊒ t is in Θ} ⊑
⊔

{θ2(t) | p ⊒ t is in Θ}

⇔ ∀p.FΘ(θ1)(p) ⊑ FΘ(θ2)(p)

⇔ FΘ(θ1) ⊑ FΘ(θ2).

The fact that our map preserves the joins of ascending chains follows from the fact FΘ is
defined on a finite lattice and monotonicity.

Hence, by Theorem 2.2.10, the least solution can be constructed as follows:

µ(FΘ) =
⊔

i≥0

FΘ
i(〈⊥/pi〉), (6.6)

where pi = FA(Θ).
The following table depicts the fixpoint approximations θi ≡ FΘ

i(θ0) for 0 ≤ i ≤ 3, where

Θ ≡ p5 ⊒ p1, p6 ⊒ p2, p5 ⊒ p3, p6 ⊒ p3, p3 ⊒ ⊤, (6.7)

which is the constraint set associated to all the decorations of the example of Figure 5.3,
except for the added constraint p3 ⊒ ⊤. We start with θ0(p) = 1 ≡ ⊥ for all p ∈ dom(Θ) =
{p1, p2, p3, p5, p6}.

p1 p2 p3 p5 p6

θ0 1 1 1 1 1
θ1 1 1 ⊤ 1 1
θ2 1 1 ⊤ ⊤ ⊤
θ3 1 1 ⊤ ⊤ ⊤

Notice that θi+1 = θi for all i ≥ 2, so µ(FΘ) = θ2 is our desired least solution.

6.2.2 Digression: decorations as closures

It is not difficult to see that the following functional

F◦
Θ(θ) =

⊔

i≥0

FΘ
i(θ), (6.8)

defines a closure operator that maps any ground substitution θ to the smallest substitution
θ′ ⊒ θ satisfying Θ. For this reason, we refer to F◦

Θ(θ) as the Θ-closure of θ. We therefore
have a mechanism that allows us to obtain the least solution compatible with both an initial
set of assignments (i.e., those in θ) and the constraint set Θ6.

6.2.3 A graph-based algorithm for computing the least solution

There are general algorithms, varying in their degree of efficiency, for computing the least
solution of a set of constraints. We shall not be studying any of them here, as well-documented
versions can be found elsewhere in the literature (for instance, [48] provides a survey of

6This fact was suggested to the author in a private communication with Paul-André Melliès.

130 CHAPTER 6. ANNOTATION INFERENCE

some of them.) Another reason is that computing the optimal solution for the linear case is
straightforward, due to the simple form of the inequations.

Notice that, in all the inference algorithms, the inequations used are of the general form
p ⊒ ⊤ or p ⊒ q. A simple algorithm would use a directed graph as a representation of Θ,
having annotation parameters as nodes. Each time the algorithm generates a new constraint,
the graph is updated as follows:

• For p ⊒ ⊤, label the node associated to p with ⊤.

• For p ⊒ q , add an edge going from q to p.

In both cases, if the nodes did not already appear in the graph, they must be created.
Once the inference algorithm terminates successfully with a complete Θ as result, we can

compute the optimal solution in the following way:

• We must first ‘close’ the graph of Θ, by labeling with ⊤ all the nodes that are reachable
from a ⊤-labeled node. (We could have alternatively modified our updating process
above, propagating labels as required, each time we add a new label or an edge.)

• The optimal solution can now be defined by letting

θopt(p)
def
=

{

⊤, if p has ⊤ as label;

1, otherwise

for all p free for Θ7.

For our sample constraint set (6.7) above, the first part of the algorithm would generate
the graph shown below on the left. The graph on the right corresponds to its closure.

p5 p6

p1

OO

p3⊤

aaDDDDDDDD

==zzzzzzzz
p2

OO

p5⊤ p6⊤

p1

OO

p3⊤

bbFFFFFFFF

<<xxxxxxxx
p2

OO

The correctness of our simple graph-based algorithm is easily established upon consider-
ation of the following two facts:

• The ⊤-labeled nodes of the generated graph, after the first stage of the algorithm,
correspond to the assignments in θ1, provided that we interpret the unlabeled nodes as
being implicitly labeled 1.

• A single propagation step consists in labeling ⊤ all nodes p, such that p ⊒ q is an
inequation of Θ, if q was so labeled in a previous single propagation step. This is
precisely what happens to the assignments in θi when we compute θi+1 = FΘ(θi).

7Because our implementation of linearity analysis was intended for experimental purposes, we provided
a mechanism so that programmers could suggest some initial annotation values. Therefore, we start with a
dependency graph where some of the nodes are already labeled, with either 1 or ⊤. When we ‘close’ the graph,
we must also label with 1 all the nodes from which a 1-labeled node is reachable. The implementation signals
an ‘annotation clash’ error, whenever the algorithm attempts to label a node that already been labeled with
a different annotation. This may happen, since the initial annotation-assignment given by the programmer,
say θ0, may be inconsistent with the constraints inferred. Equivalently, we might choose to detect this sort of
inconsistency after annotation inference by checking that there is no p ∈ dom(θ0), for which θopt(p) ⊐ θ0(p).

6.3. LET-BASED ANNOTATION INFERENCE 131

Input 〈Γ,M〉
Output 〈Γ′,M ′〉

Step 1 From Θ ; ∆ ⊢ M ⇒ X : φ, obtain the constraint set Θ and the translation X. The
input context ∆ is obtained from ∆ = fresh(Γ).

Step 2 Find the optimal solution θopt of Θ by computing θopt = µ(FΘ).

Step 3 Extend θopt to cover ∆ and X by letting

θopt′(p) =

{

θopt(p), if p ∈ dom(θopt);

1, otherwise,

for all p ∈ FA(∆) ∪ FA(X).

Step 4 Output Γ′ = ∆[θopt′] and M ′ = X[θopt′].

Figure 6.7: Annotation inference algorithm for linearity analysis

6.2.4 Putting it all together

Now that we have both an algorithm for inferring constraint inequations, and a generic method
for finding the least solution, we can sum up the whole process of annotation inference into a
single algorithm. This is done in Figure 6.7.

The extension θopt′ of θopt is necessary to cover all free annotation parameters in ∆ and
X that are not mentioned in Θ (otherwise, Lemma 6.1.10 would fail to be true). It is clear
that θopt′ is the smallest such extension.

6.3 Let-based annotation inference

It is now about time to tell the reader how our ideas concerning annotation polymorphism
might be put into practice, by showing a more powerful annotation inference algorithm ca-
pable of inferring qualified types for language definitions. As we have already discussed in
Section 5.1, our motivations are driven by the need to have a ‘compositional’ static analysis
strategy that does not limit itself to stand-alone programs.

6.3.1 Preliminary remarks

Our annotation algorithm will translate source terms into the intermediate language terms
of NLL∀let≤, introduced in Section 5.5. We recall that, in NLL∀let≤, only local let-definitions
are allowed to have qualified types, and that, as a consequence, only let-bound variables need
ever be specialised. This restriction, which is defined at the level of the syntax of terms, is
helpful as it tell us where we should find Λ-abstractions and applications in the translated
term, and gives us an idea of the general shape of the decorations we shall be dealing with.
Giving a general definition of the decoration space is less obvious in the case of annotation
polymorphism, because of the occurrence of constraint sets inside the terms. Instead, we

132 CHAPTER 6. ANNOTATION INFERENCE

ϑ ≡ 〈p′i/pi〉 p′i fresh ∆ ≡ xi : φi
qi

Θ[ϑ], qi ⊒ ⊤ ; ∆, x : (∀pi |Θ.φ)p ⊢ x⇒ x ϑ : φ[ϑ]

Θ2 ; ∆1 ⊢M ⇒ X : φ Θ3 ;∆2, x : (∀pi |Θ4.φ)p ⊢ N ⇒ Y : ψ

Θ1,Θ3,Θ5, qi ⊒ p ; ∆ ⊢ let x = M in N ⇒ let x:∀pi |Θ4.φ = Λpi |Θ4.X in Y : ψ

where

split(∆,M,N) = (∆1,∆2,Θ1)

∆1 ≡ xi : φi
qi

pi = FA(φ)\FA(∆1)

Θ4 = Θ2↾pi

Θ5 = Θ2\Θ4

and p fresh

Figure 6.8: Extra rules for let-based annotation inference

shall content ourselves with proving syntactic soundness and completeness with respect to
NLL∀letν≤ typings having no free annotation parameters, which is the only natural condition
we shall impose on decorations.

6.3.2 Extending the simple inference algorithm

An algorithm for inferring constraint inequations suitable for NLL∀let≤ need not be defined
from scratch. As we show next, it suffices to extend the algorithm for simple linearity analysis
of Figure 6.3, with the two extra rules shown in Figure 6.8.

The rule that handles let-bound variables translates a bound variable x, of type ∀pi |Θ.φ,
into a specialisation x ϑ, where ϑ is a renaming annotation substitution 〈p′1/p1, . . . , p

′
n/pn〉

for the free parameters p1, . . . , pn of φ. The idea is to let each use of x have its own type
φ[ϑ], so we introduce fresh annotation parameters at each use. Naturally, any constraints
acting on some of the pi’s must also be reflected on their corresponding p′i’s; this explains the
introduction of the ‘raw’ substitution Θ[ϑ]. (It is easy to see that pi[ϑ] ⊒ ti[ϑ] will result in a
constraint set of the same form if θ(p) = p′, for every p ∈ pi.) The rule will also ensure that
all typing declarations in ∆ get ⊤-annotated, as expected from a rule that handles variables.

A local definition let x = M in N is translated into

let x:∀pi |Θ4.φ = Λpi |Θ4.X in Y ,

where X and Y are obtained from M and N , respectively. The translation of N is considered
in a context where x has generalised type ∀pi |Θ4.φ. The rule is fairly standard, and can be
easily understood in terms of the Let rule of NLL∀let≤. The only point that may not be clear
is how Θ4 is built from the inequations in Θ2 of X.

If our algorithm is sound, the translation ofX should imply the validity of Θ2 ; ∆1 ⊢ X : φ.
By ∀I , we can conclude Θ5 ; ∆1 ⊢ X : ∀pi |Θ4.φ, if we are able to express Θ2 as a union Θ4,Θ5,

6.3. LET-BASED ANNOTATION INFERENCE 133

where Θ4 does not bind any parameters free in ∆, and Θ4 and Θ5 satisfy the separation
condition. Hence, we take Θ2 and split it into two: we form Θ4 by taking all the inequations
in Θ2 that bind any free parameters in φ, but which are not free in ∆1 (namely, pi), and leave
the remaining inequations in Θ5.

It is easy to see that, for the extension of our simple algorithm, all runs are unique.

Proposition 6.3.1 (Determinacy)
If Θ ; ∆ ⊢M ⇒ X : φ and Θ′ ; ∆ ⊢M ⇒ X ′ : φ′, then X ≡ X ′, φ ≡ φ′ and Θ ≡ Θ′. �

6.3.3 Correctness

Following the development of Subsection 6.1.2, we shall now prove soundness and complete-
ness. We begin by observing that the erasure of the translated terms gives us back the input
term.

Proposition 6.3.2
If Θ ; ∆ ⊢M ⇒ X : φ, then X◦ = M . �

To prove soundness, we first show how the runs of the algorithm are related to typings in
the intermediate type theory NLL∀letν≤.

Lemma 6.3.3
If Θ ; ∆ ⊢M ⇒ X : φ, then Θ ; ∆ ⊢

NLL∀letν≤
X : φ.

Proof. By induction on the structure of M . This proof is basically an extension of the proof
of Lemma 6.1.9, so we only show the cases where annotation polymorphism is involved. As
always, we reason with respect to the syntax-directed version of the theory.

• M ≡ x.

There are two cases to consider. We have already considered the case not involving
annotation polymorphism in the proof of Lemma 6.1.9, on page 122; we consider the
polymorphic case here.

Assume Θ ; ∆, x : (∀pi |Θ.φ)p ⊢ x ⇒ x ϑ : φ[ϑ], where Θ ≡ Θ[ϑ], qi ⊒ ⊤, ϑ ≡ 〈p′i/pi〉,

for p′i fresh, and ∆ ≡ xi : φi
qi .

For this run to be sound, Θ ; ∆, x : (∀pi |Θ.φ)p ⊢ x ϑ : φ[ϑ] must be valid. The necessary
conditions are given by the Identity∀ rule of NLL∀let≤, and trivially verified in our case.
Indeed, we have dom(ϑ) = dom(〈p′i/pi〉) = pi and Θ ≡ Θ[ϑ], qi ⊒ ⊤ ⊲ Θ[ϑ]. (The
inequations qi ⊒ ⊤ account for the structural condition Θ ⊲ |∆| ⊒ ⊤, which is required
by the syntax-directed version.)

• M ≡ let x = M ′ in N ′.

In this case, we must have

Θ ; ∆ ⊢ let x = M in N ⇒ let x:∀pi |Θ4.φ = Λpi |Θ4.X in Y : ψ,

because Θ2 ; ∆1 ⊢ M ⇒ X : φ and Θ3 ;∆2, x : (∀pi |Θ4.φ)p ⊢ N ⇒ Y : ψ, where Θ ≡
(Θ1,Θ3,Θ5, qi ⊒ p), split(∆,M,N) = (∆1,∆2,Θ1), pi = FA(φ)\FA(∆1), Θ4 = Θ2↾pi,
Θ5 = Θ2\Θ4 and ∆1 ≡ xi : φi

qi .

134 CHAPTER 6. ANNOTATION INFERENCE

By the induction hypothesis and constraint strengthening, twice, we can deduce

Θ ; ∆2, x : (∀pi |Θ4.φ)p ⊢ Y : ψ and Θ,Θ4 ;∆1 ⊢ X : φ.

The latter depends on the observation that Θ2 = Θ4,Θ5 (since Θ4 = Θ2↾pi and Θ5 =
Θ2\Θ4 by construction). The desired conclusion,

Θ ; ∆ ⊢ let x:∀pi |Θ4.φ = Λpi |Θ4.X in Y : ψ,

follows from the Let rule if the conditions pi 6⊆ FA(Θ ; ∆1), Θ4\pi = ∅, Θ ⊲ |∆1| ⊒ p

and ∆ = ∆1 ⊎ ∆2 hold true. Except for the first condition, the others follow by
consideration of the definitions of Θ4, Θ and split, respectively. We are left to prove
that pi 6⊆ FA(Θ ; ∆1).

We know pi 6⊆ FA(∆1) and pi 6⊆ FA(qi ⊒ p), since pi = FA(φ)\FA(∆1) and qi ⊆ FA(∆1)
by definition. From Θ5 = Θ2\Θ4, we also deduce that pi 6⊆ FA(Θ5). Note that pi 6⊆
FA(Θ1) if pi 6⊆ FA(∆1,∆2) according to the definition of split. By Proposition 6.1.8 we
know φ cannot have any free parameters in common with neither Y nor ∆2, and since
pi ⊆ FA(φ), it must be the case that pi 6⊆ FA(∆2). The fact that pi 6⊆ FA(Θ3) also
follows from Proposition 6.1.8 and the fact that a constraint set may only refer to the
annotation parameters of the sequent where it belongs.

�

Theorem 6.3.4 (Soundness)
If Θ ; ∆ ⊢M ⇒ X : φ, then − ; ∆[θ] ⊢

NLL∀letν≤
X[θ] : φ[θ], for all θ |= Θ.

Proof. Follows as a corollary of Lemmas 6.3.3, 5.4.8 and 5.4.4, applied in that order. �

The proof of completeness is a simple extension of that for simple annotation inference.

Theorem 6.3.5 (Completeness)
If Θ ; ∆ ⊢ M ⇒ X : φ and − ; Γ ⊢ N : ϕ is any NLL∀letν≤ decoration of ∆◦ ⊢ X◦ : φ◦, then
there exists θ |= Θ, such that Γ ≡ ∆[θ], N ≡ X[θ] and ϕ ≡ φ[θ]. �

6.3.4 Growing constraint sets

The rule that treats let-bound variables in Figure 6.8 generates, for each use of the definition
in its context, at least as many constraints as there are constraints in the qualified type ∀Θ.φ.
With nested definitions, it is clear that the size of constraint sets may grow exponentially.
For linearity analysis, this could hardly be problematic in terms of computing time (although
perhaps not in terms of space!). The simple graph-based algorithm we have sketched in
Subsection 6.2.3 requires only a single linear traversal of the graph, to both propagate the
node labels and generate the optimal substitution.

The exponential growth of constraint sets might become a problem for more complex
structural analyses, for which clever representations of constraint sets are not enough. One
(mostly general) solution to this problem has been proposed by Gustavsson and Svenningsson,
which relies on considering an extended term annotation language with, what they call,
‘constraint abstractions’ and applications [34]. They suggest a constraint solving algorithm
for computing least fixpoints in polynomial time.

6.4. MODULAR LINEARITY ANALYSIS 135

Another approach would consist in reducing the number of constraints needed by re-
stricting type families to constraints of the form p ⊒ ⊥, so that general annotation poly-
morphism can be replaced with simple annotation polymorphism, which is more efficient to
implement [67]. Naturally, simple annotation polymorphism is less powerful that general an-
notation polymorphism, but Wansbrough and Peyton-Jones seem to have obtained reasonable
results with this simpler approach.

Yet another approach would consist in exploiting the fact that, instead of reasoning with
inequations of the form p ⊒ t, we can equivalently reason with equations of the form p = p⊔ t
(which would imply an extension of our term language). This would actually eliminate con-
straint sets altogether, so all complexity-related problems instantly vanish. We have presented
an equivalent formulation of linearity analysis with annotation polymorphism in Section A.2,
page 161. No inference algorithm is described there, but it would not be difficult to derive
one from a syntax-directed version of the type system8.

6.4 Modular linearity analysis

The annotation inference strategies we have discussed until now concern stand-alone pro-
grams only. Adapting our ideas to programs composed of several modules is not difficult in
our case, using our knowledge on how to handle local definitions using general annotation
polymorphism.

It is not necessary to define a language of modules to illustrate our annotation inference
strategy; it suffices to specify how a module definition should be analysed, and what type
should finally appear in the module interface.

We begin by showing the rule we may use to infer constraint inequations for a module
definition, which has been derived from the inference rule for the let of Figure 6.8:

Θ1 ; ∆ ⊢M ⇒ X : φ pi = FA(φ) Θ2 = Θ1↾pi Θ3 = Θ1\Θ2

Θ3 ;∆ ⊢ let x = M ⇒ let x = Λpi |Θ2.X : ∀pi |Θ2.φ

According to this rule, if let x = M is a module definition, we compute Θ1 and the trans-
lation X as usual, using the rules for inferring contraint inequations we described in the
previous sections. We assume ∆ contains the typing declarations necessary to type M , where
each typing declaration binds a variable to a closed qualified type, as follows:

∆ ::= x1 : (∀p1,i |Θ1.φ1)
q1 , . . . , xn : (∀pn,i |Θn.φn)

qn .

The annotation parameters q1, . . . , qn are fresh annotation parameters, provided for the sole
purpose of running the inference algorithm. Each generalised type ∀pi,k |Θi.φi is supposed
to have been saved by the compiler from previous analyses (perhaps as part of the module
interfaces).

We build the translation of M , Λpi |Θ2.X, by restricting Θ1 to the free annotation param-
eters in φ. The restriction of Θ2 has been simplified from Θ1↾(FA(φ)\FA(∆)) to Θ1↾FA(φ),
because FA(φ) and FA(∆) cannot have any annotation parameters in common. (We note
that all the types in ∆ are closed, which leaves us with FA(∆) = {p1, . . . , pn}.)

8We should remark, however, that the alternative type system presented in Section A.2 is less expressive
than NLL∀.

136 CHAPTER 6. ANNOTATION INFERENCE

Finally, we take the optimal decoration of the definition to be

let x = Λpi |Θ2[θ
opt′].X[θopt′] : ∀pi |Θ2[θ

opt′].φ[θopt′],

where θopt′ is the extension of the optimal solution of Θ3 necessary to cover X, as shown in
Figure 6.7. The qualified type obtained is the type that should go in the module interface of
the definition.

Notice that X[θopt′] may offer some opportunities for inlining; and many more may be
‘revealed’, if the compiler chooses to inline any uses of x. But that is a different story.

Chapter 7

Abstract structural analysis

In the previous chapters, we have concentrated on the static analysis of linearity properties.
In this chapter, we show how the full type theory of linearity analysis can be generalised into
a more abstract static analysis framework.

The generalisation is based on the observation that most of the important type-theoretic
properties of linearity analysis can still be proved correct for other annotation lattices, besides
the concrete 2-point annotation lattice of linearity analysis. The idea is to be able to define
properties (annotations) that stand for different usage patterns for the structural rules. The
abstract framework provides the basic laws that a given set of properties must obey to validate
the type-theoretic properties of interest; in particular, we would like all structural properties
to be preserved by source language reductions.

From a proof-theoretic viewpoint, the logics that can be derived from the abstract frame-
work we introduce here, are all logics of multiple modalities, of which Bierman has provided
various formulations [14]. Naturally, we are interested in a static analysis framework, so our
formulation is different in many respects, and it includes annotation subtyping and polymor-
phism1. Jacobs seems to have been the first to seriously discuss the possibility of using two
separate modalities for the structural rules of Weakening and Contraction (instead of the
usual single ! modality of linear logic) [39], although other people seem to have had the same
idea, inspired by different background motivations [69, 70, 4, 21, 43].

We shall also be commenting on some interesting instances of the abstract framework;
these include both affine and relevance analyses. Affine analysis is slightly more interesting
for inlining than linearity analysis, and relevance analysis is the ‘structural’ counterpart of
strictness analysis, an important part of optimising compilers for call-by-need languages.

7.0.1 Organisation

The contents of this last chapter are organised as follows:

• Section 7.1 introduces the abstract framework for structural analysis through the notion
of abstract annotation structure.

• Section 7.2 provides a summary of the typing properties satisfied by the general frame-
work.

1It would not be difficult to formalise the correspondence between structural analysis and a suitable frame-
work of multiple modalities.

137

138 CHAPTER 7. ABSTRACT STRUCTURAL ANALYSIS

• Section 7.3 discusses a number of interesting instances of the general framework, includ-
ing affine and relevance analysis.

• Section 7.4 discusses dead-code elimination, a very simple optimisation that is enabled
by applying a simple non-occurrence analysis.

• Section 7.5 argues that intuitionistic relevance logic can be used in practice to approxi-
mate strictness properties.

7.1 Structural analysis

7.1.1 Basic definitions

The formulation of our abstract framework is dependent on the notion of annotation structure,
defined below.

Definition 7.1.1 (Annotation structure)
An annotation structure consists of a 5-tuple

A ≡ 〈A,⊑,0,1,+〉,

where

• 〈A,⊑〉 is a non-empty ⊔-semilattice of annotations;

• 0,1 ∈ A are two (not necessarily distinct) distinguished elements, used to annotate the
Weakening and Identity rules, respectively;

• + : A × A → A is a binary contraction operator, used in the Contraction rule to
combine annotations, and which must satisfy the following commutative, associative
and distributive properties2:

a+ b = b+ a (7.1)

(a+ b) + c = a+ (b+ c) (7.2)

a ⊔ (b+ c) = (a ⊔ b) + (a ⊔ c) (7.3)

�

An annotation structure alone is all that is needed to define a structural analysis.

Definition 7.1.2 (Structural analysis)
A structural analysis is fully determined by giving an annotation structure A ≡ 〈A,⊑,0,1,+〉,
together with the typing rules of Figure 7.1. �

The typing rules are those of linearity analysis (Figure 5.2), except for the Identity and
Weakening rules, which have been modified.

By looking at the typing rules, we can have an approximate idea of the intended meaning
of the abstract annotations 0 and 1, as well as the intended role of the general contraction
operator. An informal explanation is given by the table shown below. (Let x : φa stand for
any typing hypothesis.)

2We note that these properties are those of a commutative ring without identity or inverse, where + stands
for addition and ⊔ for multiplication.

7.1. STRUCTURAL ANALYSIS 139

Θ ⊲ t ⊒ 1
Identity

Θ ;x : φt ⊢ x : φ

Σ(π) = σ
Primitive

Θ ;− ⊢ π : σ

Θ ; Γ, x : φt ⊢M : ψ
⊸I

Θ ; Γ ⊢ λx:φt.M : φt⊸ ψ

Θ ; Γ1 ⊢M : φt⊸ ψ Θ ; Γ2 ⊢ N : φ Θ ⊲ |Γ2| ⊒ t
⊸E

Θ ; Γ1,Γ2 ⊢MN : ψ

Θ ; Γ1 ⊢M1 : φ1 Θ ; Γ2 ⊢M2 : φ2 Θ ⊲ |Γ1| ⊒ t1 Θ ⊲ |Γ2| ⊒ t2
⊗I

Θ ; Γ1,Γ2 ⊢ 〈M1,M2〉
t1,t2 : φ1

t1 ⊗ φ2
t2

Θ ; Γ1 ⊢M : φ1
t1 ⊗ φ2

t2 Θ ; Γ2, x1 : φ1
t1 , x2 : φ2

t2 ⊢ N : ψ
⊗E

Θ ; Γ1,Γ2 ⊢ let 〈x1, x2〉
t1,t2 = M in N : ψ

Θ ; Γ1 ⊢M : bool Θ ; Γ2 ⊢ N1 : φ Θ ; Γ2 ⊢ N2 : φ
Conditional

Θ ; Γ1,Γ2 ⊢ if M then N1 else N2 : φ

Θ ; Γ, x : φt ⊢M : φ Θ ⊲ |Γ, x : φ⊤| ⊒ ⊤
Fixpoint

Θ ; Γ ⊢ fix x:φ.M : φ

Θ,Θ′ ; Γ ⊢M : φ pi 6⊆ FA(Θ ; Γ) Θ′\pi = ∅
∀I

Θ ; Γ ⊢ Λpi |Θ
′.M : ∀pi |Θ

′.φ

Θ ; Γ ⊢M : ∀pi |Θ
′.φ Θ ⊲Θ′[ϑ] dom(ϑ) = pi

∀E
Θ ; Γ ⊢M ϑ : φ[ϑ]

Θ ; Γ ⊢M : φ Θ ⊢ φ ≤ ψ
Subsumption

Θ ; Γ ⊢M : ψ

Θ ; Γ ⊢M : ψ Θ ⊲ t ⊒ 0
Weakening

Θ ; Γ, x : φt ⊢M : ψ

Θ ; Γ, x1 : φt1 , x2 : φt2 ⊢M : ψ Θ ⊲ t ⊒ t1 + t2
Contraction

Θ ; Γ, x : φt ⊢M [x/x1, x/x2] : ψ

Figure 7.1: The abstract typing rules of structural analysis

140 CHAPTER 7. ABSTRACT STRUCTURAL ANALYSIS

if then
a ⊒ 0 x : φa can be discarded
a ⊒ 1 x : φa can be used at least once
a ⊒ b1 + b2 x : φa can be duplicated

The requirement that 〈A,⊑〉 must be a ⊔-semilattice ensures that A has a top element ⊤,
and that well-defined approximations a ⊔ b exist for any pair of annotations a, b.

The top element plays a fundamental role in the typing of the fixpoint construct. Notice
that reduction is handled by duplicating the body of fixpoint abstractions, which has the
effect of duplicating any ⊤-annotated variables. A requirement is therefore that

⊤ = ⊤ + ⊤

be true in all annotation structures, which follows from the fact that ⊤ ⊑ ⊤ + ⊤. Moreover,
both Weakening and Identity are available for the top element, since ⊤ ⊒ 0 and ⊤ ⊒ 1, so
all structural analyses contain an intuitionistic fragment, and, therefore, a worst analysis.

Proposition 7.1.3 (Worst analysis)
If Γ ⊢

FPL
M : σ, then − ; Γ• ⊢M• : σ•. �

The commutativity and associativity properties of + stand as ‘common sense’ properties;
whereas commutativity is consistent with the fact that typing contexts are sets (and so the
order used to contract annotations should not be relevant), associativity is consistent with the
fact that the annotation of a variable resulting from several applications of the Contraction
rule should as well be independent of the order chosen.

As we shall soon see, the distributivity property is critical to prove the analysis well-
behaved with respect to term substitution, a fundamental property needed to ensure correct-
ness. The distributivity property is also responsible for the admissibility of the Transfer rule,
as shown by Proposition 7.2.2.

As a trivial example, the simplest annotation structure is based on the singleton annota-
tion set consisting of only ⊤,

〈{⊤},⊑,⊤,⊤,+〉,

where ⊤ ⊑ ⊤ and ⊤+⊤ = ⊤, as required. There is not much we can do with such an analysis.
A more interesting annotation structure is the one needed to capture linearity analysis.

Definition 7.1.4 (Linearity analysis)
The annotation structure of linearity analysis is given by

ANLL ≡ 〈{1,⊤},⊑,⊤, 1,+〉,

with
1 ⊑ ⊤,

and
1 + 1 = ⊤
1 + ⊤ = ⊤
⊤ + 1 = ⊤
⊤ + ⊤ = ⊤

�

7.2. TYPE-THEORETIC PROPERTIES 141

7.2 Type-theoretic properties

The following is a list of some elementary properties involving typing contexts, which support
our intuition on the meaning of the special abstract elements 0 and 1.

Proposition 7.2.1
The following basic properties are satisfied by the abstract framework.

a. If Θ ; Γ, x : φ1 ⊢M : ψ, and 0 6⊒ 1 then x ∈ FV(M).

b. If Θ ; Γ, x : φ0 ⊢M : ψ and 0 6⊒ 1, then x 6∈ FV(M).

c. If Θ ; Γ, x : φa ⊢M : ψ and x ∈ FV(M), then a ⊒ 1.

d. If Θ ; Γ, x : φa ⊢M : ψ and x 6∈ FV(M), then a ⊒ 0.

As usual, the underlying order on annotations is implied in the admissibility of the Transfer
rule.

Proposition 7.2.2 (Transfer)
The following rule is admissible for structural analysis.

Θ ; Γ, x : φt ⊢M : ψ Θ ⊲ t′ ⊒ t
Transfer

Θ ; Γ, x : φt
′

⊢M : ψ

Proof. By induction on the derivation of Θ ; Γ, x : φt ⊢ M : ψ. Alternatively, one can
show how type derivations containing applications of the Transfer rule can be transformed
into equivalent type derivations (i.e., having the same conclusion) that do not contain them
by moving the applications of Transfer upwards in the type derivation.

The critical case is when the typing hypothesis x:φt interacts when any of the structural
rules, in particular the Contraction rule. The distributivity property is necessary to justify
how

Θ ; Γ, x1 : φt1 , x2 : φt2 ⊢M : ψ
Contraction

Θ ; Γ, x : φt1+t2 ⊢M [x/x1, x/x2] : ψ
Transfer

Θ ; Γ, x : φ(t1+t2)⊔t′ ⊢M [x/x1, x/x2] : ψ

may be transformed into

Θ ; Γ, x1 : φt1 , x2 : φt2 ⊢M : ψ
============================= Transfer
Θ ; Γ, x1 : φ(t1⊔t′), x2 : φ(t2⊔t′) ⊢M : ψ

Contraction
Θ ; Γ, x : φ(t1⊔t′)+(t2⊔t′) ⊢M [x/x1, x/x2] : ψ

(We have naturally relaxed our notation to enhance clarity. We have used the fact that t = t⊔t′

is logically equivalent to t ⊒ t′, and we have allowed to have more complex annotations, which
can be replaced by equivalent side conditions involving a fresh annotation parameter.) �

142 CHAPTER 7. ABSTRACT STRUCTURAL ANALYSIS

It is straightforward to adapt the different results obtained for linearity analysis to our
abstract framework. Some properties, like Unique Typing (for the theory without subtyping),
do not depend on the nature of the annotations used. The same can be said regarding the
construction of the syntax-directed versions of the type theories, but we must not forget to
first adapt the Identity and Primitive rules to use abstract annotations, as follows:

Θ ⊲ t ⊒ 1 Θ ⊲ |Γ| ⊒ 0
Identity

Θ ; Γ, x : φt ⊢ x : φ

Σ(π) = σ Θ ⊲ |Γ| ⊒ 0
Primitive

Θ ; Γ ⊢ π : σ

The modified Identity rule is clearly derivable in our abstract framework, a fact needed to
adapt Lemma 3.4.5:

Θ ⊲ t ⊒ 1
Identity

Θ ; Γ, x : φt ⊢ x : φ Θ ⊲ |Γ| ⊒ 0
================================ Weakening

Θ ;x : φt ⊢ x : φ

(We proceed similarly for the Primitive rule.)

7.2.1 A non-distributive counter-example

A key property of annotation structures needed to prove the Substitution Lemma is distribu-
tivity. Many ‘common sense’ annotation structures, especially those that rely on precisely
counting the occurrences of variables inside terms, are non-distributive and generally violate
the substitution property. As a simple example, suppose

A ≡ 〈N ∪ {⊤},⊑, 0, 1,+〉

was allowed as an annotation structure, where N is the set of natural numbers and n ∈
N stands for the structural property “occurs exactly n times”. We would naturally order
properties as shown

⊤

1

oooooooooooooo
2

�������
3 . . . n

PPPPPPPPPPPPPPP

and let + stand for the sum of natural numbers, extended cover the case where ⊤ appears as
one of the annotations, in which case we would let a+ ⊤ = ⊤ + a = ⊤, as expected.

If A were an annotation lattice, a ⊑ a+a would hold for all annotations a3. By the above
definition, it is clearly the case that n 6⊑ n+ n for all n > 0, a fact that leads to the violation
of the term substitution property.

If we are given the two typings

x : (int1 ⊗ int1)2 ⊢ 〈x, x〉1,1 : (int1 ⊗ int1)1 ⊗ (int1 ⊗ int1)1

y : int2 ⊢ 〈y, y〉1,1 : int1 ⊗ int1

3This simple fact about annotations poses an intrinsic limit to the ‘precision’ that can be achieved with
structural analysis. We must content ourselves to clearly loose information whenever two annotations are
contracted.

7.2. TYPE-THEORETIC PROPERTIES 143

the substitution principle states that we can substitute 〈y, y〉1,1 for x in 〈x, x〉1,1 if |y : int2| ⊒ 2
holds, and so is the case. However, the resulting typing judgment

y : int2 ⊢ 〈〈y, y〉, 〈y, y〉〉1,1 : (int1 ⊗ int1)1 ⊗ (int1 ⊗ int1)1

is not provable in the system, since y has retained its original annotation count of 2, but it
actually end up having 4 occurrences in the substituted term4!

7.2.2 Correctness

We shall now prove that our abstract framework is well-behaved with respect to substitution.

Lemma 7.2.3 (Substitution)
The following rule is admissible for structural analysis.

Θ ; Γ1, x : φ1
t ⊢M : ψ Θ ; Γ2 ⊢ N : φ2 Θ ⊲ |Γ2| ⊒ t Θ ⊢ φ2 ≤ φ1

Substitution
Θ ; Γ1 ⊎ Γ2 ⊢M [N/x] : ψ

Proof. By induction on the structure of M . We only show one prototypical critical case,
which takes place for the rules involving two contexts when the typing hypothesis x:φ1 occurs
in both contexts (so the Contraction rule is implicitly involved).

• M ≡M ′M ′′.

In this case, consider proof Π1 in Figure 7.3 on page 145. (We have omitted the side-
condition Θ ⊢ φ2 ≤ φ1.)

We show that distributivity allows us to rewrite Π1 as Π2, where the applications
of Substitution are justified by the induction hypothesis. The key step consists in
weakening the annotations of Γ2 using the Transfer rule, by forming Γ2 ⊔ t1 and Γ2 ⊔ t2.
The notation Γ ⊔ t denotes the replacement of each annotation t′ = |Γ(x)|, for all
x ∈ dom(Γ), by t′ ⊔ t (by slightly relaxing the notation, as we have done for the
proof of the admissibility of Transfer). The idea is to make the structural conditions
Θ ⊲ |Γ2 ⊔ t1| ⊒ t1 and Θ ⊲ |Γ2 ⊔ t2| ⊒ t2, needed to apply the induction hypothesis to
the sub-proofs of M ′[N/x] and M ′′[N/x], trivially hold.

Also, from Θ ⊲ |Γ′′
1, x : φ1

t2 | ⊒ t′ and Θ ⊲ |Γ′
2| ⊒ t2, where Γ′

2 = Γ2 ⊔ t2, we deduce
Θ ⊲ |Γ′′

1| ⊒ t′ and Θ ⊲ |Γ′
2| ⊒ t′. (The latter follows from the fact that |Γ′

2| ⊒ t2 ⊒
t′.) Therefore, by distributivity, it follows that Θ ⊲ |Γ′′

1 ⊎ Γ′
2| ⊒ t′, which justifies the

structural validity of the application of⊸E .

It remains to show why (Γ′
1 ⊎Γ′′

1)⊎Γ2 and (Γ′
1 ⊎ (Γ2 ⊔ t1))⊎ (Γ′′

1 ⊎ (Γ2 ⊔ t2)) are actually
the same context. Indeed, by distributivity and the fact that Θ ⊲ |Γ2| ⊒ t, we have
Γ2 = Γ2 ⊔ t = Γ2 ⊔ (t1 + t2) = (Γ2 ⊔ t1) ⊎ (Γ2 ⊔ t2). The required equivalence follows
from the associativity of ⊎.

4It would not be difficult to define a type system for occurrence analysis where the intuitive semantics of
+ as the sum of resource counts would give a sound type theory (with respect to the reduction semantics
of the underlying language). This requires us to introduce a different notion of substitution. For instance,
consider the rule that defines Θ ; Γ1, t · Γ2 ⊢ M [x/N] : ψ from Θ ;Γ1, x : φt ⊢ N : ψ and Θ ; Γ2, x : φt ⊢ M : φ.
Here t · Γ2 results in a new context where each original annotation t′ = |Γ2(x)|, for all x, is multiplied by
t. However, notice that this notion of substitution suggests updating the annotations as reduction proceeds,
so the resulting type theory does not have the same properties as structural analysis does. In particular, its
structural annotations would not be invariant with respect to reduction.

144 CHAPTER 7. ABSTRACT STRUCTURAL ANALYSIS

∆ ≡ xi : φi
pi

pi ⊒ 0, p ⊒ 1 ;∆, x : φp ⊢ x⇒ x : φ

Σ(π) = φ ∆ ≡ xi : φi
pi

pi ⊒ 0 ; ∆ ⊢ π ⇒ π : φ

ϑ ≡ 〈p′i/pi〉 p′i fresh ∆ ≡ xi : φi
qi

Θ[ϑ], qi ⊒ 0, p ⊒ 1 ; ∆, x : (∀Θ.φ)p ⊢ x⇒ x ϑ : φ[ϑ]

Figure 7.2: Modified rules for inferring constraint inequations in structural analysis.

�

It is straightforward now to prove that our abstract theory is correct.

Theorem 7.2.4 (Subject Reduction)
If Θ ; Γ ⊢M : φ and M → N , then Θ ; Γ ⊢ N : φ.

Proof. The proof is essentially that of Theorem 5.4.17. �

7.2.3 Annotation inference

Inferring annotations for structural analysis only requires a simple adaptation of the algo-
rithms for inferring constraint inequations for linearity analysis. We therefore replace the
rules for inferring constraint inequations for variables and primitives in Figures 6.3 and 6.8
by the rules shown in Figure 7.2. The modifications match up those required to obtain syntax-
directed versions of structural analysis. The resulting annotation inference algorithms can be
proved syntactically sound and complete through a simple adaptation of the corresponding
theorems for linearity analysis.

The definition of annotation structure we have given in Subsection 7.1.1 does not require
that concrete annotation structures have bottom elements. A structural analysis based on an
a bottomless annotation structure does not have a unique optimal decoration, but a family of
minimum decorations. We also assume the existence of bottom elements when we compute
the least solution of a constraint set, so it seems bottom elements have a role to play in
the second stage of annotation inference. We therefore assume that, for the second stage
of annotation inference, and only if our starting annotation structure A is not a lattice, we
compute solutions with respect to a lifted annotation structure A⊥, having an artificial ⊥
element. This affects Steps 2 and 3 of the annotation algorithm of Figure 6.7. The extension
θopt′ or θopt must therefore be computed as shown:

θopt′(p) =

{

θopt(p), if p ∈ dom(θopt);

⊥, otherwise.

The reader may like to think of ⊥ as a structural property conveying incomplete, or even
inconsistent, structural information. In particular, this must mean that it should not be
possible to construct a function of type φ⊥ ⊸ ψ. In fact, this is the case, and is a simple
corollary of Propositions 7.2.1c and 7.2.1d: For any well-typed context M [x:φa] : ψ, we must
have either a ⊒ 0 or a ⊒ 1, and so a 6= ⊥5.

5It is however possible to construct a pair of type φ⊥ ⊗ ψ⊥, although there is nothing one can do with it.

7
.2

.
T

Y
P

E
-T

H
E

O
R

E
T

IC
P

R
O

P
E

R
T

IE
S

1
4
5

The laws of annotation structures justify the transformation of the proof

Π1 ≡
Θ ; Γ′

1, x : φ1
t1 ⊢M ′ : ψ1

t′
⊸ ψ

Θ ⊲ |Γ′′
1 , x : φ1

t2 | ⊒ t′

Θ ;Γ′′
1 , x : φ1

t2 ⊢M ′′ : ψ1

⊸E
Θ ;(Γ′

1 ⊎ Γ′′
1), x : φ1

t ⊢M ′M ′′ : ψ

Θ ⊲ |Γ2| ⊒ t

Θ ; Γ2 ⊢ N : φ2

Substitution
Θ ;(Γ′

1 ⊎ Γ′′
1) ⊎ Γ2 ⊢ (M ′M ′′)[N/x] : ψ

into the proof

Π2 ≡
Θ ; Γ′

1, x : φ1
t1 ⊢M ′ : ψ1

t′
⊸ ψ

Θ ; Γ2 ⊢ N : φ2

Transfer
Θ ; Γ2 ⊔ t1 ⊢ N : φ2

Substitution
Θ ; Γ′

1 ⊎ (Γ2 ⊔ t1) ⊢M
′[N/x] : ψ1

t′
⊸ ψ

Θ ; Γ′′
1 , x : φ1

t2 ⊢M ′′ : ψ1

Θ ;Γ2 ⊢ N : φ2

Transfer
Θ ; Γ2 ⊔ t2 ⊢ N : φ2

Substitution
Θ ;Γ′′

1 ⊎ (Γ2 ⊔ t2) ⊢M
′′[N/x] : ψ1

⊸E
Θ ;(Γ′

1 ⊎ (Γ2 ⊔ t1)) ⊎ (Γ′′
1 ⊎ (Γ2 ⊔ t2)) ⊢ (M ′[N/x])(M ′′[N/x]) : ψ

where t = t1 + t2, and, in the last proof, Θ ⊲ |Γ2 ⊔ t1| ⊒ t1, Θ ⊲ |Γ2 ⊔ t2| ⊒ t2 and Θ ⊲ |Γ′′
1 ⊎ Γ2| ⊒ t′.

Figure 7.3: Example critical step in the proof of the substitution property

146 CHAPTER 7. ABSTRACT STRUCTURAL ANALYSIS

7.3 Some interesting examples

There are many interesting instances of the abstract framework that may have some practical
significance. We briefly review some of these in the following subsections.

7.3.1 Affine analysis

Affine analysis may be understood as a slight variation of linearity analysis aimed at dis-
covering when values are used at most once, instead of precisely once. Affine analysis can
be defined in terms of the type system of linearity analysis by allowing Weakening on linear
annotations.

Definition 7.3.1 (Affine analysis)
The annotation structure of affine analysis is given by

AIAL
def
= 〈{⊤,≤1},⊑,≤1,≤1,+〉,

with

≤1 ⊑ ⊤,

and
≤1 + ≤1 = ⊤
≤1 + ⊤ = ⊤
⊤ + ≤1 = ⊤
⊤ + ⊤ = ⊤

�

The name of the system, IAL, stands for Intuitionistic Affine Logic.

Notice that the only difference with linearity analysis is that affine analysis sets 0 ≡ ≤1,
instead of ⊤. The logic underlying the ≤1-fragment of IAL is known in the literature under
the name of BCK or affine logic; and the calculus that results from such a logic is known
under the name of BCK-calculus. (The BCK-calculus can be defined by simply dropping the
Contraction rule in the definition of the type system of our source language.)

Affine Logic is an example of a sub-structural logic, because it forbids either one of the
structural rules. It is a logic of non-reusable information, and its interest dates back to the
mid-thirties, and was apparently re-discovered several times by many different people.

Because affine values are, by definition, used at most once, they are good candidates for
inlining. This claim is supported by the semantic correctness of the abstract framework,
together with the following syntactic property of affine variables.

Proposition 7.3.2 (Affine uses)
If Θ ; Γ, x : φ≤1 ⊢M : ψ, then occurs(x,M) ≤ 1.

Proof. Easy induction on the derivation of Θ ; Γ, x : φ≤1 ⊢M : ψ. �

The function occurs(x,M) computes the number of times x occurs in M . It is defined
inductively on the structure of M in Figure 7.4. Notice that occurs(x, if then x else x) = 1,
and not 2, so our notion of ‘occurrence’ is slightly more semantical in nature, as we do consider
the fact that the conditional will evaluate only one of its branches.

7.3. SOME INTERESTING EXAMPLES 147

occurs(x, π)
def
= 0

occurs(x, x)
def
= 1

occurs(x, y)
def
= 0, if x 6≡ y

occurs(x, λx:φt.M)
def
= 0

occurs(x, λy:φt.M)
def
= occurs(x,M), if x 6≡ y

occurs(x,M N)
def
= occurs(x,M) + occurs(x,N)

occurs(x, 〈M1,M2〉
t1,t2)

def
= occurs(x,M1) + occurs(x,M2)

occurs(x, let 〈x, y〉 = M in N)
def
= occurs(x,M)

occurs(x, let 〈y, x〉 = M in N)
def
= occurs(x,M)

occurs(x, let 〈y, z〉 = M in N)
def
= occurs(x,M) + occurs(x,N), if x 6≡ y and x 6≡ z

occurs(x, if M then N1 else N2)
def
= occurs(x,M) + max {occurs(x,N1), occurs(x,N2)}

occurs(x, fix x:φ.M)
def
= 0

occurs(x, fix y:φ.M)
def
= occurs(x,M), if x 6≡ y

occurs(x,Λpi |Θ.M)
def
= occurs(x,M)

occurs(x,M ϑ)
def
= occurs(x,M)

Figure 7.4: Definition of the occurs(−,−) function

148 CHAPTER 7. ABSTRACT STRUCTURAL ANALYSIS

A practical algorithm for inferring constraint inequations for affine analysis (without split-
ting contexts) can be derived from Figure 6.5 simply by modifying the definition of |n|, which
should read as follows:

|n| =

{

⊤, if n > 1;

≤1, otherwise.

7.3.2 Relevance analysis

Another interesting example of an analysis based on a sub-structural logic is relevance anal-
ysis, which is defined as follows.

Definition 7.3.3 (Relevance analysis)
The annotation structure of relevance analysis is given by:

AIRL
def
= 〈{⊤,≥1},⊑,⊤,≥1,+〉,

with

≥1 ⊑ ⊤

and
≥1 + ≥1 = ≥1
≥1 + ⊤ = ≥1
⊤ + ≥1 = ≥1
⊤ + ⊤ = ⊤

�

The name of the system, IRL, stands for Intuitionistic Relevance Logic6.

The annotation structures of affine and relevance analysis are almost dual, because the
purpose of relevance analysis is to detect values that are used at least once.

Proposition 7.3.4 (Relevance uses)
If Θ ; Γ, x : φ≥1 ⊢M : ψ, then occurs(x,M) ≥ 1.

Proof. Easy induction on the derivation of Θ ; Γ, x : φ≥1 ⊢M : ψ. �

The logic underlying the ≥1-fragment of IRL is known in the literature under the name of
relevance logic [3, 28]; and the calculus that results from such a logic is known under the name
of λI-calculus [7]. (The λI-calculus is originally untyped; a typed version can be obtained
by simply dropping the Weakening rule in the definition of the type system of our source
language.)

The type system of IRL may have some interesting applications in the domain of strictness
analysis, as suggested by Wright [69]. Some research has been done on usage systems based on
relevance logic (or some variants of it), but none of them are refined enough to be practically
useful [70, 4, 20, 21]. We shall further discuss strictness analysis in Section 7.5.

6The definition of + is actually that of the meet of two annotations, which makes IRL an interesting case
from the viewpoint of structural analysis. The obtained structure is clearly a distributive lattice.

7.4. DEAD-CODE ELIMINATION 149

⊤

0
def
= 0

zzzzzzzz

1
def
= ≥1

FFFFFFFFF

0 + 0 = 0
0 + ≥1 = ⊤
0 + ⊤ = ⊤
≥1 + 0 = ⊤
≥1 + ≥1 = ≥1
≥1 + ⊤ = ≥1
⊤ + 0 = ⊤
⊤ + ≥1 = ≥1
⊤ + ⊤ = ⊤

Figure 7.5: An annotation structure for sharing and absence analysis

7.3.3 Combined analyses

There is no reason why we would not be able to combine both affine and strictness analysis
into one single combined analysis, or even try out more interesting variations of these two
analyses.

Figure 7.5 gives an example of a ‘sharing and absence’ analysis, suitable for detecting used
and unused variables.

There are many possible ways of defining +, but one must always be careful not to violate
the upper bound and distributivity properties. The definition we have chosen is consistent
with Propositions 7.2.1b and 7.3.4, so φ≥1 ⊸ ψ is effectively the type of relevant functions
and φ0 ⊸ ψ is the type of constant functions. (The reader may have noticed that the best
we can do in this case is to let + be precisely the least upper bound.) Another well-known
annotation lattice is Bierman’s lattice, shown below.

⊤

≤1

{{{{{{{{

6=1 ≥1

CCCCCCCC

0

{{{{{{{{
1

CCCCCCCC

{{{{{{{{
>1

CCCCCCCC

⊥

zzzzzzzz

DDDDDDDDD

Giving a definition of + for this lattice would be a bit long. The only purpose of showing
such an interesting lattice is simply to motivate the fact that combined lattices may involve
the interaction of many structural properties.

7.4 Dead-code elimination

Eliminating dead code is a simple optimisation that consists in removing those program
fragments that will never be evaluated. As a simple illustrative example, consider the following
program:

let 〈x1, x2〉 = 〈0, 1 + 2〉 in x1 + 1.

150 CHAPTER 7. ABSTRACT STRUCTURAL ANALYSIS

Adopting a call-by-need strategy, it is easy to see that the computation ‘1+2’, corresponding
to the second component of the pair, will never be evaluated, so a clever compiler may choose
to leave it out from the final compiled code. The correctness of this observation comes from
the fact that x2 does not occur free in ‘x1 + 1’ and that pair components are substituted for
the pair variables unevaluated.

Eliminating the unnecessary computation can be easily achieved for the example above
simply by transforming it into the following more compact version:

let x1 = 0 in x1 + 1.

The transformation is very similar to the inlining transformation on Figure 3.10 in Subsec-
tion 3.7.1, except that the substitution need not be performed.

Notice that the above transformation is semantically sound with respect to a call-by-value
strategy. In this case, we would be saving not only space, but also computing time, since
the value of the computation of ‘1+2’ serves no purpose in the example. For this reason, we
use the term dead-code elimination to refer to the optimisation that not only takes care of
unevaluated code, but also ‘unneeded’ code. (Some care must be taken, though, in the case of
call-by-value: Eliminating unneeded code as we have done above is unsound in the presence
of side-effects7.)

The criterion we choose to detect those cases where dead-code elimination can be applied
will be based on non-occurrence analysis, which is a rather trivial application of structural
analysis.

By Proposition 7.2.1b, 0-annotated variables, where 0 6⊑ 1, do not occur in their scope of
definition, so context applications can be simplified as we show next. We note that detecting
unneeded code must have more to it than non-occurrence analysis; but unfortunately, this is
the best we can do in the arena of structural analysis. (If the variable is found to occur in
its context, by Proposition 7.2.1c, its usage must be some a ⊒ 1, so it is at least affine. This
annotation is consistent with the fact that we may choose to evaluate the variable, even if it
will be subsequently discarded.)

7.4.1 A simple dead-code elimination transformation

To formalise the dead-code elimination transformation, we shall assume we are given an
annotation structure having a null property 0 6⊑ 1, for instance, the annotation structure of
sharing and absence analysis of Figure 7.5.

We shall write
dce
 for the dead-code elimination transformation relation, defined as the

contextual closure of the rewrite rules in Figure 7.6.

Proposition 7.4.1 (Correctness)
If Θ ; Γ ⊢M : φ and M

dce
 N , then Θ ; Γ ⊢M : φ.

Proof. Follows from Theorem 7.2.4 and the fact that
dce
 ⊆ →. �

It should be better to apply this optimisation before any other optimisations [58]. To see
why, consider the following program:

let x:int⊤ = 1 + 2 in x+ ((λy:int0.0) x).

7To see this, replace ‘1+2’ above by some input-output statement. The difference would then be noticeable.

7.5. STRICTNESS ANALYSIS 151

(λx:φ0.M)N
dce
 M

let 〈x1, x2〉
0,0 = 〈M1,M2〉

t1,t2 in N
dce
 N

let 〈x1, x2〉
0,t = 〈M1,M2〉

t1,t2 in N
dce
 let x2 = M2 in N, if t 6≡ 0

let 〈x1, x2〉
t,0 = 〈M1,M2〉

t1,t2 in N
dce
 let x1 = M1 in N, if t 6≡ 0

let x:φ0 = M in N
dce
 N

(Λpi |Θ.M) ϑ
dce
 M [ϑ]

Figure 7.6: The simple dead-code optimisation relation

Applying the dead-code optimisation to our example would eliminate the ‘vacuous’ redex,
thus eliminating one occurrence of x:

let x:int⊤ = 1 + 2 in x+ 0.

The compiler would then be able to assign (after some amount of re-decorating) a linear
type to the transformed function, and apply the inlining transformation, as shown:

let x:int1 = 1 + 2 in x+ 0
inl
 (1 + 2) + 0.

An obvious improvement in the developement of an actual compiler would consist in reduc-
ing the number of re-decoration passes needed to update the structural information of the
program. This might be easily implemented by letting each variable occurrence have its own
individual annotation, so that the annotation of the variable in the whole context can be com-
puted on-the-fly as the contraction (sum) of all the individual annotations. We may write out
this information for our simple example above as shown below. (The notation used should
be intuitively clear.)

let x:int|x1|+|x2| = 1 + 2 in x1
1 + ((λy:int0.0) x2

⊤)

Notice how the second occurrence of x, x2, is given a ⊤ annotation instead of a null
annotation. As we have previously discussed, even if x2 is not needed in its context, in the
sense that the information it carries is not required semantically to compute the value of
the application, it is however identified as used. This is because there exists a strategy (for
instance, call-by-value) that would attempt to evaluate x before computing the application.

7.5 Strictness analysis

As we briefly discussed in Subsection 7.3.2, relevance analysis may be used to detect effective
uses of values. Predicting whether functions use their arguments turns out to be important for
call-by-need implementations. Evaluated function arguments are handled more efficiently in
graph-based implementations than unevaluated ones, so an interesting optimisation consists
in evaluating any function arguments that are known to be used before functions are called.

152 CHAPTER 7. ABSTRACT STRUCTURAL ANALYSIS

Statistics show that, in practice, most functions written by programmers actually use their
arguments8, so this optimisation plays an important role in the construction of optimising
compilers for this family of languages [58].

Knowing whether functions use their arguments has been the main application arena of
strictness analysis [47, 17, 8], which has now a very long history. Both strictness and relevance
analysis propose two distinct, but related, notions of usage. The notion of usage proposed by
relevance analysis is more syntactical in nature than that of strictness analysis, which comes
directly from a denotational description of the language.

7.5.1 Approximating strictness properties

Let Ωσ
def
= fix x:σ.x denote a divergent term; that is, a term for which no reduction exists that

leads to a normal form. We say that a source language context M [x:σ] : τ is strict (on x) if
the evaluation of M [Ωσ/x] diverges.

It is clear that divergence is inevitable if, all reduction sequences of M [x], depend on what
is substituted for x. This ‘material dependence’ is precisely what relevance analysis is able to
detect. By Theorem 7.2.4 and Proposition 7.3.4, if M∗[x:φ≥1] : ψ is a valid IRL decoration
of M [x], then there is no reduction sequence that erases x.

The following theorem, that we state here without proof, states that the intuitionistic
extension of Belnap’s relevance logic [3] provides a sound logical basis for strictness analysis.

Proposition 7.5.1 (Relevance implies strictness)
If Θ ; x : φ≥1 ⊢M : ψ, then M [Ωφ/x] diverges.

�

(For the above, take fix x:φ⊤.x as the definition of Ωφ.)

We should however note that, if relevance implies strictness, the converse is not generally
true. (It would be surprising if it were.) Whereas

F Ωφ → Ωψ where F
def
= λx:φ.Ωψ,

showing that F is clearly strict, it is however not relevant, since x does not occur free in its
body. Moreover, by considering a more refined annotation structure having a zero annotation,
we might conclude the ‘irrelevance’ of x in the computation of the body of the function.

7.5.2 Some remarks on lazy evaluation

There is a problem, though, when trying to apply relevance analysis to optimise call-by-need
language implementations, as discussed at the beginning of the section.

Proposition 7.5.1 is valid as long as we consider strategies that fully reduce context ar-
guments to normal form. However, both call-by-value and call-by-need strategies do never
fully reduce contexts of functional type. Both strategies are thus defined in terms the weaker
notion of weak-head normal form (WHNF).

Neededness analysis would find the following function ‘strict’ on its first argument:

H
def
= λf :(φ≥1 ⊸ ψ)≥1.λx:φ≥1.fx;

8Actually, what statistics have shown is that most functions are strict.

7.5. STRICTNESS ANALYSIS 153

but H is clearly non-strict, because

H Ω → λx:φ≥1.Ω x

is a terminating reduction sequence.

The same happens if we consider “lazy pairs”. The following is a valid typing assertion of
pair type:

x : φ≥1 ⊢ 〈x, x〉≥1,≥1 : φ≥1 ⊗ φ≥1;

but, once again, plugging-in Ω yields the lazy value 〈Ω,Ω〉≥1,≥1.

We should note that Proposition 7.5.1 remains valid for contexts with arguments of ground
type, also including pair types having components of ground type. We can therefore apply
any strictness-based optimisations provided that we are careful not to do it for functional or
pair contexts, for the reasons outlined. How this restriction may affect the performance of
generated code is clearly a question that we are not able to answer.

7.5.3 Related work

Baker-Finch has considered a type system for relevance analysis, not different ‘in spirit’ from
ours, inspired from relevance logic [4]. Actually, his system of “strictness types” is closely
related to the implicational fragment of a simple version of IRL (without annotation subtyping
and polymorphism). He also considers a logic where formulae are annotated using three
distinct labels, corresponding to our annotations 0, ≥1 and ⊤, and ordered as shown:

⊤

0

��������
≥1

AAAAAAAA

His Contraction rule combines these annotations in a non-distributive fashion.

Static analysis methods that are aimed at separating neededness and non-neededness
are usually referred to as “sharing and absence” static analyses. The earliest such system
can perhaps be attributed to Johnsson [41]. His theory is actually more directly connected
to abstract interpretation (of contexts) rather than to logic, but there are some interesting
similarities. An important difference, though, is in the treatment of recursion.

Jacobs [39] studied a logic with two separate modalities, written here !0 and !≥1, for
controlling weakening and contraction, respectively. (We would also need to consider a third
modality !, allowing both weakening and contraction9.) A type system based on Jacob’s logic
would have two Weakening and two Contraction rules, as follows:

Γ ⊢M : ψ

Γ, !0φ ⊢M : ψ

Γ ⊢M : ψ

Γ, !φ ⊢M : ψ

Γ, x1 : !≥1φ, x2 : !≥1φ ⊢M : ψ

Γ, x : !≥1φ ⊢M [x/x1, x/x2] : ψ

Γ, x1 : !φ, x2 : !φ ⊢M : ψ

Γ, x : !φ ⊢M [x/x1, x/x2] : ψ

Unsurprisingly, this rules match our definition of + for IRL.

9The interested reader is referred to Bierman’s paper [14] for further details.

154 CHAPTER 7. ABSTRACT STRUCTURAL ANALYSIS

Benton [11] proposed a simple strictness analyser based on relevance logic where both the
analysis and the translation are taken care of within the same typed framework. His typing
judgments have the form J ⊲ J∗, where J is a typing judgment of the source language and
J∗ is a typing judgment of an intermediate language corresponding to a variant of Moggi’s
computational λ-calculus [46]. The subset of intutionistic relevance logic he uses is different
from ours, especially tailored to match the corresponding translations into Moggi’s language.

Chapter 8

Conclusions

8.1 Summary

We have introduced structural analysis as a form of static analysis for inferring usage infor-
mation for higher-order typed functional programs. We have formulated our framework in
terms of an annotated type system for a target (or intermediate) language, whose terms carry
explicit type and usage information. All structural analyses have linear logic as starting point,
so most of this thesis concerns the detailed presentation of a case study, linearity analysis,
which is aimed at detecting when values are used exactly once. The property ‘used exactly
once’ applies to those values for which no reduction strategy exists that may syntactically
erase or duplicate them. Structural properties are therefore not dependent on any reduction
strategy, and can effectively be used to enable a number of beneficial source language trans-
formations, for which information about the structural behaviour of programs is needed. To
illustrate this possibility, we have seen how the annotations carried by the target terms of
linearity analysis could be exploited to formalise a simple inlining transformation. However,
since structural analysis can only detect properties that are consistent with all reduction
strategies, its range of applicability must somewhat be limited.

Because the target language carries explicit usage information and, although closely re-
lated, is different from the source language, inferring structural properties for a source term
implies finding its optimal translation into the target language. For linearity analysis, this
optimal translation has a parallel in linear proof theory, since it corresponds, by the Curry-
Howard correspondence, to the well-studied optimal translation of proofs from intuitionistic
into linear logic. Linearity analysis embodies a different characterisation of the same problem,
but on the side of functional programming instead of proof theory.

We have extended our basic type theory of linearity analysis with notions of annotation
subtyping and annotation polymorphism. Annotation subtyping augments the expressive
power of the analysis, as it allows terms to be assigned many different types (of the same
subtype family), depending on their use contexts. For first-order type signatures, subtyping
suffices to derive all the types necessary by all use contexts. For higher-order type signa-
tures, constrained annotation polymorphism is needed. We have shown that, from a pure
static analysis viewpoint, annotation subtyping is subsumed by annotation polymorphism,
so there seems to be no reason to use it in practice, other than the fact that it helps to
reduce the number of inequations that annotation inference algorithms must consider. From
a type-theoretic viewpoint, subtyping corrects a problem introduced by restricting ourselves

155

156 CHAPTER 8. CONCLUSIONS

to a particular fragment of intuitionistic linear logic; namely, it allows typing information
to be preserved across η-reductions of intuitionistic functions. The main motivation for the
extension of linearity analysis with annotation polymorphism was to support languages with
separately compiled modules. With annotation polymorphism, linearity analysis becomes
‘compositional’, in the sense that, it becomes possible to analyse a set of definitions, and a
program (context) that uses these definitions, separately, without compromising the accuracy
of the result. In other words, the resulting analysis provides the same static information as
if all the elements had been analysed simultaneously. To do this, we did not require the
full power of annotation polymorphism, even though we did propose a theory that is able to
accomodate more powerful analyses.

Our strategy for modular linearity analysis was based on a restricted version of our full type
theory that allowed constrained annotation polymorphism to be introduced for definitions
only, which we called let-based annotation polymorphism. We have shown that the theory
accomodates terms that encode the decoration spaces of all source language terms. We have
supported this claim constructively, by providing an annotation inference algorithm for which
we proved syntactic soundness and completeness results. We based the problem of inferring
the simple decoration space of a source language term in terms of the similar problem of
inferring the principal type of a term in the theory with annotation polymorphism containing
only annotation parameters. We showed that a simple extension of this algorithm suffices to
compute principal types of terms drawn from our let-based annotation-polymorphic theory.

Finally, we have shown that only some minor modifications to the original framework of
linearity analysis are required to obtain other sorts of structural analysis, including absence,
relevance (strictness or sharing), and affine analyses. We have defined a structural analysis in
terms of a few properties that ensure its correctness with respect to the underlying reduction
semantics. An important correctness criterion is the admissibility of the Substitution rule,
which, as we have observed, is easily invalidated by many practical examples. A key property
necessary to ensure correctness is the distributivity property, which is also responsible for the
admissibility of the Transfer rule. Distributivity is a rather strong property, as it implies that
the usage of a variable having multiple occurrences must approximate the information of any
of its occurrences.

8.2 Further directions

8.2.1 A generic toolkit

The obvious next step is to generalise our prototype implementation of linearity analysis to
support other annotation structures.This would allow us to experiment with other forms of
structural analysis, like relevance analysis, to have a first approximate idea of its expressivity
and, perhaps, overall performance.

Also, the existing type inference algorithm implements the restricted form of annotation
polymorphism we introduced in Section 5.5, so it would be really interesting to extend this
algorithm to implement more expressive analyses that would recover the full power of anno-
tation polymorphism1.

1This is indeed possible, although we must always keep in mind that annotation inference must remain
within reasonable bounds of complexity.

8.2. FURTHER DIRECTIONS 157

8.2.2 Computational structural analysis

An interesting question is whether we could obtain more expressive analyses by considering,
for instance, a linear version of Moggi’s computational meta-language [46]. A source language
with a given reduction strategy would give rise to a particular translation into the intermediate
language, making the order of evaluation explicit in the syntax.

We might hopefully establish some interesting connections with the typing systems specif-
ically designed with particular reduction strategies in mind, by studying how the annotations
are affected by the different translations, with the aim of ‘feeding’ this information back into
the typing rules of the source language. If this works, we could have the best of both worlds,
a linear intermediate language verifying subject reduction, and a simple method to derive
better analyses for specific reduction strategies.

We must not forget, though, that we would still remain in the realm of structural analysis,
so we should not expect the properties obtained to be useful to enable optimisations based
on the low-level details of the implementation.

8.2.3 Expressivity and comparison

Expressivity is a rather disturbing issue, as one never knows how it should be addressed
on the first place. More expressive analyses generally evolve from simpler analyses, usually
because someone has observed that an ‘interesting’ example is not correctly handled by the
existing analysis, or that the analysis does not perform as it was supposed to, compared
to other analyses. Examples abound in the literature. We have addressed expressivity by
pointing out to some simple results involving decorations. We have shown, for instance, that
annotation polymorphism is powerful enough to subsume annotation subtyping (although this
may not be desirable for both theoretical and practical reasons), and proved that annotation
polymorphism could be successfully used to reason about decoration spaces.

Another way to address expressivity is to compare our work against other existing analyses.
This can be quite problematic in our case, as the structural notion of usage is rather different
from other notions of usage, especially those that are based upon a denotational description
of the source language. A typical example is strictness versus relevance. Strictness contains
relevance, but relevance is closer to the intuition one has of usage, which is the property
we are actually interested in. The classical counter-example λx:σ.Ω of the function that
is clearly strict but not relevant is rather pathological in itself; the body of the function
clearly diverges, so it is really not important if our relevance analyser fails to see this. But
realistic counter-examples that do argue in terms of divergence can be found and refer to the
intrinsic difference existing between abstract interpretation and structural analysis, which
is in the treatment of recursion and sums. At a certain level, relevance analysis may be
understood as a sort of context-centered abstract interpretation (or backwards analysis, to
use a relatively forgotten term), where the qualified terms of annotation polymorphism play
the role of context-functions, akin to the abstract functions. We have stumbled upon some
early work by Johnsson on a static ‘sharing and absence’ analyser [41]. Even if it was targeted
for first-order languages, it has many points of convergence with structural analysis. An exact
comparison would need annotation polymorphism in order to emulate the context-functions
that are typical of formulations based on abstract interpretation.

158 CHAPTER 8. CONCLUSIONS

Appendix A

An alternative presentation

In this appendix, we draw the attention of the reader to an equivalent presentation of NLL that
does not require separate side-conditions for the structural constraints. As such, the system
we introduce here is formally more pleasing and slightly more compact. This is especially
true of annotation polymorphism.

A.1 The simple case

We begin by showing, in Figure A.1, the typing rules of NLL⊔, which corresponds to the
alternative formulation of NLL.

This formulation is based on the idea that an inequation a ⊒ b can be rewritten as the
equation a = a⊔b, so that the trivial way to force a to be at least as small as b is to substitute
it, everywhere it occurs, by a ⊔ b.

Only the rules that have side-conditions in our presentation are modified. These appear
implicitly in the conclusion in the form of ‘weakened’ contexts, of the form Γa. This notation
is defined as follows:

(xa1

1 , . . . , x
an
n)b

def
= xa1⊔b

1 , . . . , xan⊔b
n (A.1)

Proposition A.1.1
Γ ⊢

NLL
M : σ ⇐⇒ Γ ⊢

NLL⊔
M : σ.

Proof. Easy. As an example, the ⊸E of NLL⊔ is admissible in NLL as the following
derivation shows:

Γ1 ⊢M : σa⊸ τ

Γ2 ⊢ N : σ
========= Transfer
Γ2

a ⊢ N : σ
⊸E

Γ1,Γ2
a ⊢MN : τ

The side-condition required by the application rule |Γ2
a| ⊒ a trivially holds, for any choice

of Γ2 and a. To prove the other direction of the implication, notice that the application rule
of NLL⊔ coincides with the application rule of NLL precisely when |Γ2| ⊒ a, in which case
Γ2

a = Γ2. �

This presentation corresponds closely to the one originally proposed by Bierman [13], with
only a few minor notational changes. At first sight, one distinctive difference between our

159

160 APPENDIX A. AN ALTERNATIVE PRESENTATION

Identity
x : σa ⊢ x : σ

Σ(π) = σ
Primitive

− ⊢ π : σ

Γ, x : σa ⊢M : τ
⊸I

Γ ⊢ λx:σa.M : σa⊸ τ

Γ1 ⊢M : σa⊸ τ Γ2 ⊢ N : σ
⊸E

Γ1,Γ2
a ⊢MN : τ

Γ1 ⊢M1 : σ1 Γ2 ⊢M2 : σ2
⊗I

Γ1
a1 ,Γ2

a2 ⊢ 〈M1,M2〉
a1,a2 : σ1

a1 ⊗ σ2
a2

Γ1 ⊢M : σ1
a1 ⊗ σ2

a2 Γ2, x1 : σ1
a1 , x2 : σ2

a2 ⊢ N : τ
⊗E

Γ1,Γ2 ⊢ let 〈x1, x2〉 = M in N : τ

Γ1 ⊢M : bool Γ2 ⊢ N1 : σ Γ2 ⊢ N2 : σ
Conditional

Γ1,Γ2 ⊢ if M then N1 else N2 : σ

Γ, x : σ⊤ ⊢M : σ
Fixpoint

Γ⊤ ⊢ fix x:σ.M : σ

Γ ⊢M : τ
Weakening

Γ, x : σ⊤ ⊢M : τ

Γ, x1 : σa1 , x2 : σa2 ⊢M : τ
Contraction

Γ, x : σa1+a2 ⊢M [x/x1, x/x2] : τ

Figure A.1: NLL⊔ typing rules

A.2. THE ANNOTATION POLYMORPHIC CASE 161

type system and Bierman’s is in the formulation of the Conditional rule:

Γ1 ⊢M : bool Γ′
2 ⊢ N1 : σ Γ′′

2 ⊢ N2 : σ
Conditional⊔

Γ1,Γ
′
2 ⊔ Γ′′

2 ⊢ if M then N1 else N2 : σ

where Γ′
2 ⊔ Γ′′

2 stands for the join of the two contexts Γ′
2 and Γ′′

2, defined by

(xa1

1 , . . . , x
an
n) ⊔ (xb11 , . . . , x

bn
n)

def
= (xa1⊔b1

1 , . . . , xan⊔b1
n).

(Therefore, the join of two contexts is defined if both contexts are equal modulo the context
annotations.)

It is not difficult to see that the above rule is admissible as a result of the admissibility of
the Transfer rule1:

Γ1 ⊢M : bool

Γ′
2 ⊢ N1 : σ

============= Transfer
Γ′

2 ⊔ Γ′′
2 ⊢ N1 : σ

Γ′′
2 ⊢ N2 : σ

============= Transfer
Γ′

2 ⊔ Γ′′
2 ⊢ N2 : σ

Conditional
Γ1,Γ

′
2 ⊔ Γ′′

2 ⊢ if M then N1 else N2 : σ

A.2 The annotation polymorphic case

For the alternative version of NLL that includes annotation polymorphism, we can also exploit
the idea that an inequation of the form t ⊒ t′ can be replaced by an annotation term of the
form t⊔ t′. The interesting case is when t or t′ contain annotation parameters, in which case
they are assumed to be universally quantified.

Universal quantification is simpler to deal with than constrained quantification, so the
typing rules of NLL∀⊔ are simpler, as they can be formulated without the need of the notion
of constrained set. These are shown in Figure A.2.

The typing rules of NLL∀⊔ differ from those of NLL⊔ in the form of the annotation terms,
which we may inductively define as follows:

t ::= a | p | t+ t | t ⊔ t.

Notice that qualified types can now be more compactly written as ∀p.φ, and similarly for
qualified terms.

There are two rules two deal with quantification per se, ∀I and ∀E , and we have also
added a (right) equality rule, EqualityR, useful to be able to reason with types having more
complex annotations.

Two types, φ and ψ, are regarded as equal if, roughly speaking, they are structurally
equivalent under all interpretations of their free parameters2:

φ = ψ implies φ[θ] ≡α ψ[θ], for all θ covering both φ and ψ. (A.2)

The notation Γt introduces annotated terms of the form t ⊔ t′ into type derivations:

(x1 : φ1
t1 , . . . , x1 : φn

tn)t
′ def

= x1 : φ1
t1⊔t′ , . . . , x1 : φn

tn⊔t′ . (A.3)

1This would not be true of some of the type theories of occurrence analysis in the last chapter—the ones
based on what we referred to as non-distributive annotation lattices. Like us, Bierman was careful enough to
explicitly include the Transfer rule into his system, so in principle he could have used our own version of the
conditional.

2Equality would be necessary to compare both versions of linearity analysis.

162 APPENDIX A. AN ALTERNATIVE PRESENTATION

Identity
x : φt ⊢ x : φ

Σ(π) = φ
Primitive

− ⊢ π : φ

Γ, x : φt ⊢M : ψ
⊸I

Γ ⊢ λx:φt.M : φt⊸ ψ

Γ1 ⊢M : φt⊸ ψ Γ2 ⊢ N : φ
⊸E

Γ1,Γ2
t ⊢MN : ψ

Γ1 ⊢M1 : φ1 Γ2 ⊢M2 : φ2
⊗I

Γ1
t1 ,Γ2

t2 ⊢ 〈M1,M2〉
t1,t2 : φ1

t1 ⊗ φ2
t2

Γ1 ⊢M : φ1
t1 ⊗ φ2

t2 Γ2, x1 : φ1
t1 , x2 : φ2

t2 ⊢ N : ψ
⊗E

Γ1,Γ2 ⊢ let 〈x1, x2〉 = M in N : ψ

Γ1 ⊢M : bool Γ2 ⊢ N1 : φ Γ2 ⊢ N2 : φ
Conditional

Γ1,Γ2 ⊢ if M then N1 else N2 : φ

Γ, x : φ⊤ ⊢M : φ
Fixpoint

Γ⊤ ⊢ fix x:φ.M : φ

Γ ⊢M : φ p 6∈ FA(Γ)
∀I

Γ ⊢ Λp.M : ∀p.φ

Γ ⊢M : ∀p.φ
∀E

Γ ⊢M t : φ[t/p]

Γ ⊢M : φ φ = ψ
EqualityR

Γ ⊢M : ψ

Γ ⊢M : ψ
Weakening

Γ, x : φ⊤ ⊢M : ψ

Γ, x1 : φt1 , x2 : φt2 ⊢M : ψ
Contraction

Γ, x : φt1+t2 ⊢M [x/x1, x/x2] : ψ

Figure A.2: NLL∀⊔ typing rules

A.2. THE ANNOTATION POLYMORPHIC CASE 163

The simplicity of NLL∀⊔ does come at a price, though. Indeed, NLL∀ is apparently more
expressive. The notations we use for quantified types and terms are different in both theories,
so we should first define how to interpret the types and terms in one theory with respect
to the other theory. We shall not be formal about this, because the translations are rather
cumbersome to define. We only show an example NLL∀ typing judgment that does not have
a counterpart in NLL∀⊔. So, consider the following NLL∀ type derivation:

Identity
q ⊒ p ; f : (intp ⊸ bool)1 ⊢ f : intp ⊸ bool

Identity
q ⊒ p ;x : intq ⊢ x : int

⊸E
q ⊒ p ; f : (intp ⊸ bool)1, x : intq ⊢ f x : bool

⊸I
q ⊒ p ;x : intq ⊢ λf :(intp ⊸ bool)1.f x : (intp ⊸ bool)1 ⊸ bool

∀I
− ;x : intq ⊢ Λp | q ⊒ p.λf :(intp ⊸ bool)1.f x : ∀p | q ⊒ p.(intp ⊸ bool)1 ⊸ bool

Using the typing rules of NLL∀⊔, the condition q ⊒ p must be replaced by an annotation q⊔p

on the typing declaration of x, as required by ⊸E . But we cannot apply the ∀I rule after
abstracting over f , since both p and q appear free in the typing context:

Identity
f : (intp ⊸ bool)1 ⊢ f : intp ⊸ bool

Identity
x : intq ⊢ x : int

⊸E
f : (intp ⊸ bool)1, x : intq⊔p ⊢ f x : bool

⊸I
x : intq⊔p ⊢ λf :(intp ⊸ bool)1.f x : (intp ⊸ bool)1 ⊸ bool

So, choosing the annotations to encode the context restrictions of structural analysis may not
be a good idea after all3.

3In the derivation shown, notice that we could instead encode the condition q ⊒ p in the type of f , as
f : intp⊓q ⊸ bool, assuming that we enrich the annotation language appropriately. This would imply the need
for another version of the ⊸E rule, as both would be necessary, introducing meets of annotations instead of
joins.

164 APPENDIX A. AN ALTERNATIVE PRESENTATION

Bibliography

[1] Aiken, A., and Wimmers, E. L. Type inclusion constraints and type inference. In
Proceedings of the 7th ACM Conference on Functional Programming and Computer
Architecture, Copenhagen, Denmark. ACM Press, 1993, pp. 31–41.

[2] Alberti, F. J. An abstract machine based on linear logic and explicit substitutions.
Master’s thesis, School of Computer Science, University of Birmingham, December 1997.

[3] Anderson, A. R., and Belnap, N. D. Entailment, vol. I. Princeton University Press,
1975.

[4] Baker-Finch, C. A. Relevance and contraction: A logical basis for strictness and
sharing analysis.

[5] Barber, A., and Plotkin, G. Dual intuitionistic linear logic. Tech. Rep. ECS-
LFCS-96-347, Laboratory for Foundations of Computer Science, University of Edinburgh,
October 1997.

[6] Barendregt, H. P. Lambda calculi with types. In Handbook of Logic in Computer
Science, S. e. a. Abramsky, Ed., vol. 2. Clarendon Press, United Kingdom, 1992, pp. 117–
309.

[7] Barendregt, H. P. The Lambda Calculus: Its Syntax and Semantics, vol. 104 of
Studies in Logic and the Foundations of Mathematics. North-Holland, 1994. Revised
edition.

[8] Benton, N. Strictness Analysis of Lazy Functional Programs. PhD thesis, Computer
Laboratory, December 1992.

[9] Benton, N. Strictness logic and polymorphic invariance. In Proceedings of the Sec-
ond International Symposium on Logical Foundations of Computer Science, vol. 620 of
Lecture Notes in Computer Science. Springer-Verlag, 1992.

[10] Benton, N. A mixed linear and non-linear logic: Proofs, terms and models. In Pro-
ceedings of Computer Science Logic, Kazimierz, Poland, vol. 933 of Lecture Notes in
Computer Science. Springer-Verlag, 1995, pp. 121–135.

[11] Benton, N. A Unified Approach to Strictness Analysis and Optimising Transforma-
tions. Tech. Rep. 388, Computer Laboratory, University of Cambridge, February 1996.

[12] Benton, N., Bierman, G., de Paiva, V., and Hyland, M. A term calculus for
intuitionistic linear logic. In Proceedings of the International Conference on Typed

165

166 BIBLIOGRAPHY

Lambda Calculi and Applications, Utrecht, The Netherlands, M. Bezem and J. F. Groote,
Eds., vol. 664 of Lecture Notes in Computer Science. Springer-Verlag, 1993, pp. 75–90.

[13] Bierman, G. M. Type systems, linearity and functional languages, December 1991.
Paper given at the Second Montréal Workshop on Programming Language Theory.

[14] Bierman, G. M. Multiple modalities. Tech. Rep. 455, Computer Laboratory, University
of Cambridge, 1998.

[15] Braüner, T. The girard translation extended with recursion. In Computer Science
Logic, L. Pacholski and J. Tiuryn, Eds. Springer-Verlag, 1994, pp. 31–45.

[16] Burn, G. L. A logical framework for program analysis. In Proceedings of the 1992
Glasgow Functional Programming Workshop (July 1992), J. Launchbury and P. Sansom,
Eds., Springer-Verlag Workshops in Computer Science series, pp. 30–42.

[17] Burn, G. L., Hankin, C. L., and Abramsky, S. The theory of strictness analysis
for higher order functions. In Programs as Data Objects, H. Ganzinger and N. D. Jones,
Eds., vol. 217 of Lecture Notes in Computer Science. Springer-Verlag, October 1986,
pp. 42–62.

[18] Chirimar, J., Gunter, C. A., and Riecke, J. G. Proving memory management in-
variants for a language based on linear logic. In ACM Conference on Lisp and Functional
Programming (April 1992), ACM Press.

[19] Coppo, M., and Dezani-Ciancaglini, M. A new type-assignment for lambda terms.
Archiv für Mathematische Logik 19 (1978), 139–156.

[20] Courtenage, S. A. The Analysis of Resource Use in the λ-calculus by Type Inference.
PhD thesis, Department of Computer Science, London, September 1995.

[21] Courtenage, S. A., and Clack, C. D. Analysing resource use in the λ-calculus by
type inference. In ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based
Program Manipulation (1994).

[22] Cousot, P., and Cousot, R. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings of
the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages
(January 1977), pp. 238–252.

[23] Curtis, P. Constrained quantification in polymorphic type analysis. Tech. Rep. CSL-
90-1, Xerox Palo Alto Research Center, February 1990.

[24] Damas, L., and Milner, R. Principal type schemes for functional programs. In
Proceedings of the 9’th ACM Symposium on Principles of Programming Languages (Al-
buquerque, New Mexico, January 1982).

[25] Danos, V., Joinet, J.-B., and Schellinx, H. The structure of exponentials: un-
codering the dynamics of linear logic proofs. In Computational Logic and Proof Theory,
G. Gottlob, L. A., and M. D., Eds. Springer-Verlag, August 1993, pp. 159–171.

BIBLIOGRAPHY 167

[26] Danos, V., Joinet, J.-B., and Schellinx, H. On the linear decoration of intuition-
istic derivations. Archive for Mathematical Logic 33 (1995), 387–412. Slightly revised
and condensed version of the 1993 technical report with the same title.

[27] Davey, B. A., and Priestley, H. A. Introduction to Lattices and Order. Cambridge
University Press, 1990.

[28] Dunn, J. M. Relevance logic and entailment. In Handbook of Philosophical Logic:
Alternatives in Classical Logic, D. Gabbay and F. Guenthner, Eds., vol. III. Reidel,
Dordrecht, 1986, ch. 3, pp. 117–225.

[29] Erik, B., and Sjaak, S. Uniqueness typing for functional languages with graph rewrit-
ing semantics. Mathematical Structures in Computer Science, 6 (1996), 579–612.

[30] Girard, J.-Y. Linear logic. Theoretical Computer Science 50, 1 (1987), 1–101.

[31] Girard, J.-Y. On the unity of logic. Annals of Pure and Applied Logic 59 (1993),
201–217.

[32] Girard, J.-Y., Scedrov, A., and Scott, P. J. Bounded linear logic: A modular
approach to polynomial time computability. Theoretical Computer Science 97 (1992),
1–66.

[33] Gustavsson, J. Space-Safe Transformations and Usage Analysis for Call-by-Need Lan-
guages. PhD thesis, Göteborg Unniversity, 2001.

[34] Gustavsson, J., and Svenningsson, J. Constraint abstractions. In Proceedings of
the Symposium on Programs and Data Objects II (May 2001), vol. 2053 of Lecture Notes
in Computer Science, Springer-Verlag.

[35] Gustavsson, J., and Svenningsson, J. A usage analysis with bounded usage poly-
morphism and subtyping. Lecture Notes in Computer Science 2011 (2001).

[36] Hindley, J. R. Basic Type Theory, vol. 42 of Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press, 1997.

[37] Hughes, J. Compile-time Analysis of Functional Programs. In Research Topics in
Functional Programming (1990), D. Turner, Ed., Addison Wesley.

[38] Igarashi, A., and Kobayashi, N. Resource usage analysis. In Proceedings of the 29th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (2002),
ACM Press, pp. 331–342.

[39] Jacobs, B. Semantics of weakening and contraction. Annals of Pure and Applied Logic
69 (1994), 73–106.

[40] Jensen, T. P. Strictness analysis in logical form. In Functional Programming Lan-
guages and Computer Architecture (Harvard, Massachusetts, USA, 1991), J. Hughes,
Ed., vol. 523 of Lecture Notes in Computer Science, Springer-Verlag, pp. 352–366.

[41] Johnsson, T. Detecting when call-by-value can be used instead of call-by-need. Tech.
Rep. PMG-14, Institutionen för Informations behandling, Chalmers Tekniska Högskola,
Göteborg, 1981.

168 BIBLIOGRAPHY

[42] Mackie, I. Lilac: A functional programming language based on linear logic. Master’s
thesis, Department of Computing, Imperial College, London, 1991.

[43] Maraist, J. Separating weakening and contraction in a linear lambda calculus.
Tech. Rep. iratr-1996-25, Universität Karlsruhe, Institut für Programmstrukturen und
Datenorganisation, 1996.

[44] Milner, R., Tofte, M., Harper, R., and MacQueen, D. The Definition of Stan-
dard ML (Revised). The MIT Press, 1997.

[45] Mogensen, T. Æ. Types for 0, 1, or many uses. In Proceedings of the Workshop on
Implementation of Functional Languages (September 1997), pp. 157–165.

[46] Moggi, E. Computational lambda-calculus and monads. In Proceedings of the 4th
Annual Symposium on Logic in Computer Science (1989), pp. 14–23.

[47] Mycroft, A. Abstract Interpretation and Optimising Transformations for Applicative
Programs. PhD thesis, Department of Computer Science, December 1981.

[48] Nielson, F., R., N. H., and Hankin, C. Principles of Program Analysis. Springer-
Verlag, 1999.

[49] Palsberg, J., and Smith, S. Constrained types and their expressiveness. ACM
Transactions on Programming Languages and Systems 18, 5 (1996), 519–527.

[50] Peyton Jones, S. L. Compiling Haskell by program transformation: a report from
the trenches. In Proceedings of the European Symposium on Programming (ESOP’96),
Linkping, Sweden, vol. 1058 of Lecture Notes in Computer Science. Springer-Verlag,
January 1996.

[51] Peyton-Jones, S. L., and Marlow, S. Secrets of the Glasgow Haskell Compiler
inliner. Journal of Functional Programming 12, 4&5 (July 2002), 393–433.

[52] Peyton Jones, S. L., and Santos, A. A transformation-based optimiser for Haskell.
Science of Computer Programming 32, 1:3 (September 1998), 3–47.

[53] Pierce, B. C. Types and Programming Languages. MIT Press, 2002.

[54] Pitts, A. M. Operationally-based theories of program equivalence. In Semantics and
Logics of Computation, P. Dybjer and A. M. Pitts, Eds., Publications of the Newton
Institute. Cambridge University Press, 1997, pp. 241–298.

[55] Plotkin, G. D. A structural approach to operational semantics. Tech. Rep. DAIMI
FN-19, University of Aarhus, 1981.

[56] Pravato, A., and Roversi, L. λ! considered both as a paradigmatic language and as
a meta-language. In Fifth Italian Conference on Theoretical Computer Science (Salerno,
Italy, 1995).

[57] Roversi, L. A compiler from Curry-typed λ-terms to linear-λ-terms. In Theoreti-
cal Computer Science: Proceedings of the Fourth Italian Conference (L’Aquila, Italy,
October 1992), World Scientific, pp. 330–344.

BIBLIOGRAPHY 169

[58] Santos, A. Compilation by transformation in non-strict functional languages. PhD
thesis, Department of Computer Science, University of Glasgow, September 1995.

[59] Sulzmann, M., Müller, M., and Christoph, Z. Hindley/Milner style type systems
in constraint form. Tech. Rep. ACRC-99-009, University of South Australia, 1999.

[60] Tsung-Min, K., and Mishra, P. Strictness analysis: A new perspective based on type
inference. In FPCA ’89, Functional Programming Languages and Computer Architecture
(London, United Kingdom, September 11–13, September 1989), ACM Press, New York,
USA, pp. 260–272.

[61] Turner, D. N., and Wadler, P. Operational interpretations of linear logic. Theo-
retical Computer Science 227, 1–2 (1999), 231–248.

[62] Turner, D. N., Wadler, P., and Mossin, C. Once upon a type. In 7’th Interna-
tional Conference on Functional Programming and Computer Architecture (San Diego,
California, June 1995).

[63] Vaughan, R. To inline or not to inline. Dr. Dobbs Journal (May 2004).

[64] Wadler, P. Linear types can change the world! In Programming Concepts and Methods
(Sea of Galilee, Israel, April 1990), M. Broy and C. Jones, Eds., North Holland.

[65] Wadler, P. Is there a use for linear logic? In Proceedings of the Symposium on Par-
tial Evaluations and Semantics-Based Program Manipulation (New Haven, Connecticut,
June 1991), pp. 255–273.

[66] Wansbrough, K. Simple Polymorphic Usage Analysis. PhD thesis, Computer Labora-
tory, University of Cambridge, 2002.

[67] Wansbrough, K., and Peyton-Jones, S. L. Simple usage polymorphism. In ACM
SIGPLAN Workshop on Types in Compilation (Montreal, Canada, September 2000).

[68] Wansworth, K., and Peyton-Jones, S. L. Once upon a polymorphic type. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Antonio,
Texas, January 1999).

[69] Wright, D. A. A new technique for strictness analysis. In TAPSOFT ’91, vol. 494 of
Lecture Notes in Computer Science. Springer-Verlag, New York, 1991.

[70] Wright, D. A. Linear, strictness and usage logics. In CATS ’96 (January 1996).

