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Résumé de la these

Nous étudions plusieurs propriétés fonctionnelles d’inconditionnalité
en les exprimant a l'aide de multiplicateurs. La premiere partie est
consacrée a 1’étude de phénomenes d’inconditionnalité isométrique et
presqu’isométrique dans les espaces de Banach séparables. Parmi ceux-
ci, la notion la plus générale est celle de “propriété d’approximation
inconditionnelle métrique”. Nous la caractérisons parmi les espaces de
Banach de cotype fini par une propriété simple d’“inconditionnalité
par blocs”. En nous ramenant a des multiplicateurs de Fourier, nous
étudions cette propriété dans les sous-espaces des espaces de Banach
de fonctions sur le cercle qui sont engendrés par une suite de carac-
teres e™. Nous étudions aussi les suites basiques inconditionnelles
isométriques et presqu’isométriques de caracteres, en particulier les
ensembles de Sidon de constante asymptotiquement 1. Nous obtenons
dans chaque cas des propriétés combinatoires sur la suite. La propriété
suivante des normes L est Crlgi\ale pour notre étude: si p est un entier
pair, [ |fP = [ 172" = S 1P )

en les coefficients de Fourier de f et f. Nous proposons d’ailleurs

est une expression polynomiale
une estimation précise de la constante de Sidon des ensembles a la
Hadamard. La deuxiéme partie étudie les multiplicateurs de Schur:
nous caractérisons les suites basiques inconditionnelles isométriques
d’entrées de matrice ¢;; dans la classe de Schatten SP. Les propriétés
combinatoires que nous obtenons portent sur les chemins dans le réseau
N x N a sommets dans cet ensemble. La troisieme partie étudie le
rapport entre la croissance d’une suite d’entiers et les propriétés har-
moniques et fonctionnelles de la suite de caracteres associée. Nous
montrons en particulier que toute suite polynémiale, ainsi que la suite
des nombres premiers, contient un ensemble A(p) pour tout p qui n’est
pas de Rosenthal.



Zusammenfassung der Dissertation

Verschiedene funktionalanalytische Unbedingtheitseigenschaften wer-
den mittels Multiplikatoren untersucht. Teil I beschreibt die Begriffe
isometrischer und fast isometrischer Unbedingtheit in separablen Ba-
nachrdumen. Am allgemeinsten ist die metrische unbedingte Approx-
imationseigenschaft gefasst. Wir charakterisieren diese fiir Banach-
rdume mit endlichem Kotyp durch eine einfache “blockweise” Unbe-
dingtheit. Darauthin betrachten wir genauer den Fall von Funktio-
nenrdumen auf dem Einheitskreis, die durch eine Folge von Frequen-
zen e aufgespannt werden. Wir untersuchen isometrisch und fast
isometrisch unbedingte Basisfolgen von Frequenzen, unter anderem
Sidonmengen mit einer Konstante asymptotisch zu 1. Fiir jeden Fall
erhalten wir kombinatorische Eigenschaften der Folge. Die folgende
Eigenschaft der L? Normen ist entscheidend fiir diese Arbeit: Ist p eine
gerade Zahl, so ist [ |f|P = [ |fp/2|2 =3 |ﬁ’/\2(n)|2

Ausdruck der Fourierkoeffizienten von f und f. Des weiteren erhalten

ein polynomialer

wir eine genaue Abschéatzung der Sidonkonstante von Hadamardfol-
gen. Teil IT untersucht Schurmultiplikatoren: Wir kennzeichnen die
isometrisch unbedingten Basisfolgen von Matrixkoeflizienten e;; in der
Schattenklasse SP durch die Wege auf dem Gitter N x N mit Eck-
punkten in dieser Folge. Teil III befasst sich mit dem Zusammenhang
zwischen dem Wachstum einer Folge von ganzen Zahlen und den har-
monischen und funktionalanalytischen Eigenschaften der zugehdrigen
Folge von Frequenzen. Wir zeigen insbesondere, dass jede polynomi-
ale Folge, sowie die Primzahlenfolge, eine Unterfolge enthélt, die zwar
A(p) fiir jedes p aber keine Rosenthalmenge ist.



Abstract of the thesis

We study several functional properties of unconditionality and state
them as a property of families of multipliers. This Thesis has three
parts. Part I is devoted to the study of several notions of isome-
tric and almost isometric unconditionality in separable Banach spaces.
The most general such notion is that of “metric unconditional ap-
proximation property”. We characterize this “(umap)” by a simple
property of “block unconditionality” for spaces with nontrivial cotype.
We focus on subspaces of Banach spaces of functions on the circle
spanned by a sequence of characters et. There (umap) may be stated
in terms of Fourier multipliers. We express (umap) as a simple combi-
natorial property of this sequence. We obtain a corresponding result
for isometric and almost isometric basic sequences of characters. Our
study uses the following c/r_tg:ial property of the LP norm for even p:
FIgE = [172) = SIprm)

Fourier coefficients of f and f. As a byproduct, we get a sharp esti-

is a polynomial expression in the

mate of the Sidon constant of sets a la Hadamard. Part II studies Schur
multipliers: we characterize isometric unconditional basic sequences of
matrix entries e;; in the Schatten class SP. The combinatorial proper-
ties that we obtain concern paths on the lattice N x N with vertices in
this set. Part III studies the relationship between the growth rate of
an integer sequence and harmonic and functional properties of the cor-
responding sequence of characters. We show in particular that every
polynomial sequence contains a set that is A(p) for all p but is not a
Rosenthal set. This holds also for the sequence of primes.






Chapitre 1

Introduction

1 Position du probleme

Cette these se situe au croisement de ’analyse fonctionnelle et de l'analyse har-
monique. Nous allons donner des éléments de réponse a la question générale sui-
vante.

Question 1.1 Quelle est la validité de la représentation

[~ Z 0q¢" e (1)

de la fonction f comme série de fréquences ¢, d’intensité g, et de phase ¥, ?
Les réponses seront donnés en termes de I’espace de fonctions X 3 f et du spectre
ED{q:0,>0}.

1.1 Chapitre 11

Considérons par exemple les deux questions classiques suivantes dans le cadre des
espaces de Banach homogenes de fonctions sur le tore T, des fréquences de Fourier

eq(t) = €l et des coefficients de Fourier

Qqeiﬂq = /equ = f(q).
Question 1.1.1 Est-ce que pour les fonctions f € X a spectre dans F

TS SYRC p—r
X
lg|<n e

Cela revient & demander: est-ce que la suite {e;},cr rangée par valeur absolue |g|
croissante est une base de Xg 7 En d’autres termes, la suite des multiplicateurs

idempotents relatifs T}, : Xp — X g définie par

_f e, silgl<n
Tneq _{ 0 sinon

est-elle uniformément bornée sur n 7 Soit £ = Z. Un élément de réponse classique

est le suivant.
||Tn||L2(T)HL2('J1‘) =1, ||TnHL1(T)HL1(1r) = ||Tn\|e(11~)ﬂe(ql-) = logn.

11



12 CHAPITRE I. INTRODUCTION

On sait de plus que les T), sont aussi uniformément bornés sur LP(T), 1 < p < oo.

Question 1.1.2 Est-ce que la somme de la série ) g, el ¢4 dépend de 'ordre dans
lequel on somme les fréquences ? Cette question est équivalente a la suivante: la
nature de _ g, €!”s e, dépend-elle des phases 9, ? En termes fonctionnels, {e,},ecr
forme-t-elle une suite basique inconditionnelle dans X ? Cette question s’énonce

aussi en termes de multiplicateurs relatifs: la famille des T, : X — X avec
Teeq =¢€q€q et €g = £1

est-elle uniformément bornée sur les choix de signes ¢ 7 Un élément de réponse

classique est le suivant. Soit F = Z. Alors

1Tellz (my—r2(my = 1;

si p # 2, il existe un choix de signes € tel que T, n’est pas borné sur LP(T).
Question 1.1.3 Peut-on améliorer ce phénomene en restreignant le spectre E 7
Cette question mene a ’étude des sous-ensembles lacunaires de Z, et a été traitée
en détail par Walter Rudin.

Nous choisissons la notion de multiplicateur relatif comme dictionnaire entre I’ana-
lyse harmonique et I’analyse fonctionnelle. Nous développons une technique pour le
calcul de la norme de familles {T.} de multiplicateurs relatifs. Celle-ci nous permet
de traiter les questions suivantes.

Question 1.1.4 Est-ce que la norme de f € X dépend seulement de 'intensité
0q de ses fréquences e,, et non pas de leur phase ¥, 7 Cela revient & demander si
{€q}qcE est une suite basique 1-inconditionnelle complexe dans X.

Question 1.1.5 Est-ce que I'on a pour tout choix de signes “réel” +
5 sn, =[S
q€EE q€EE

En d’autres mots, est-ce que {e,}4cr est une suite basique 1-inconditionnelle réelle
dans X 7

La réponse est décevante dans le cas des espaces LP(T), p non entier pair: seules les

?
X

fonctions dont le spectre a au plus deux éléments vérifient ces deux propriétés. Pour
mieux cerner le phénomene, nous proposons d’introduire la question presqu’isomé-
trique suivante.

Question 1.1.6 Est-ce que la norme de f € Xp dépend arbitrairement peu de la
phase ¥, de ses fréquences e, ? De maniere précise, dans quel cas existe-t-il, pour

chaque € > 0, un sous-ensemble F' C F fini tel que

| > eeie| <o) X e

qEE\F gEE\F

?

X

Dans le cas X = C(T), cela signifiera que E est un ensemble de constante de Sidon
“asymptotiquement 1”. De méme, peut-on choisir pour chaque £ > 0 un ensemble

fini F tel que pour tout choix de signe “réel” +

|5 sl <080 5w,

qEE\F gEE\F
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Toutes ces questions s’agregent autour d’un fait bien connu: sommer la série de
Fourier de f est une tres mauvaise maniere d’approcher la fonction f des que
I'erreur considérée n’est pas quadratique. On sait qu’il est alors utile de rechercher
des méthodes de sommation plus lisses, c’est-a-dire d’autres suites approximantes
plus régulieres. Il s’agit la de suites d’opérateurs de rang fini sur Xg qui ap-
prochent ponctuellement 'identité de Xg. Nous pourrons toujours supposer que
ces opérateurs sont des multiplicateurs. Une premiere question est la suivante.
Question 1.1.7 Existe-t-il une suite approximante {7}, } de multiplicateurs idem-
potents 7 Cela revient a demander: existe-t-il une décomposition de Xg en sous-
espaces X, de dimension finie avec

e, sige€ Ey
0 sinon

XE:@XEk et Ak:XEg’XEkaeq'—){ (2)

telle que la suite des T,, = A7 + ... + A,, est uniformément bornée sur n 7 Soit
E =7. Alors la réponse est identique a la réponse de la question 1.1.1.

Mais nous pouvons produire dans ce cadre plus général des décompositions incon-
ditionnelles de X g en réponse a la question suivante.

Question 1.1.8 Pour quels espaces X et spectres E existe-t-il une décomposition

comme ci-dessus telle que la famille des multiplicateurs

n
Z%Ak avecn > 1et e, =+1 (3)
k=1

est uniformément bornée 7 Littlewood et Paley ont montré que la partition de Z en

Z =\JEy avec Eg = {0} et By, = {j : 2¥71 < |j| < 2%} donne une décomposition

inconditionnelle des espaces LP(T) avec 1 < p < co. D’aprés la réponse & la question

1.1.7, ce n'est pas le cas a fortiori des espaces L'(T) et C(T). Une étude fine de

telles partitions a été entreprise par Kathryn Hare et Ivo Klemes.

Notre technique permet de traiter la question suivante.

Question 1.1.9 Pour quels espaces X et spectres E existe-t-il une décomposition

du type (2) telle que

HZ EkAkaX = ||f|lx pour tout choix de signes € ?

La réponse dépendra de la nature du choix de signes, qui peut étre réel ou complexe.
Il est instructif de noter que I’espace de Hardy H*(T) n’admet pas de décomposition
du type (2). H'(T) admet néanmoins des suites approximantes de multiplicateurs
et il existe méme des suites approximantes de multiplicateurs inconditionnelles au
sens ol la famille (3) est uniformémemt bornée. Cela motive la question suivante,
qui est la plus générale dans notre contexte.

Question 1.1.10 Quels sont les espaces X et spectres E tels que pour chaque € > 0
il existe une suite approximante {7}, } sur X telle que

sup
signes €,

’Z 6n(T‘n - Tnfl)HX S 1+e¢

En termes fonctionnels, Xg a-t-il la propriété d’approximation inconditionnelle

métrique ? Il faudra distinguer le cas des signes complexes et réels.
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1.2 Chapitre III

Nous montrons que notre technique de calcul s’applique mutatis mutandis aux mul-
tiplicateurs de Schur. La représentation (1) est alors la représentation matricielle:
on note e, = e, 'entrée de matrice en ¢ = (r,¢) € N x N, c’est-a-dire 'opérateur
sur /5 qui envoie son ciéme vecteur de base sur son rieme vecteur de base et de

matrice (0507)k,1>0. On considere donc la validité de

9

i . e : o aiP gk
T~ E 04 €77 €, avec les coefficients de matrice zy = g, €' = tre  x

pour x opérateur sur £5. Soit p > 1 et I C N x N. Notre étude se fera en termes de
la classe de Schatten S? de x et du support I de la matrice (z,) associée & x. Nous
dirons que z est & entrées dans I si I O {q: x4 # 0}.

Question 1.2.1 Est-ce que la norme de x € SP a entrées dans I dépend seulement
du module g4 de ses coefficients de matrice et non pas de leur argument 9, ? Cela
revient a demander: quelles sont les suites basiques d’entrées 1l-inconditionnelles
dans SP 7 En termes de multiplicateurs de Schur, la question se pose ainsi. Pour

quels ensembles d’entrées I les
. QP P _
T.: 57— ST, eg—eqe, avec g =1

sont-ils tous des isométries ?

1.3 Chapitre IV

Nous étudions le rapport entre la croissance d’une suite {n;} = E C Z et deux de
ses propriétés harmoniques et fonctionnelles éventuelles, 1. e.

m toute fonction intégrable a spectre dans E est en fait p-intégrable pour tout p < oo:
E est un ensemble A(p) pour tout p;

m toute fonction mesurable bornée a spectre dans E est en fait continue a un en-
semble de mesure nulle pres: E est un ensemble de Rosenthal.

Nous sommes en mesure de dresser le tableau suivant selon la croissance

= polynémiale: ny < k¢ pour un d < oo,

m surpolynomiale: ny > k¢ pour tout d > 1,

m sous-exponentielle: logn; < k,

m géométrique: liminf [ngyq1/ng| > 1.

croissance || polynémiale | surpolynomiale&sous-exponentielle | géométrique

E A(p) Vp non presque toujours oui

FE Rosenthal presque jamais oui
Tableau 1.3.1

Li montre qu’effectivement il existe un ensemble A(p) pour tout p qui n’est pas de
Rosenthal. Nous traitons les deux questions suivantes.

Question 1.3.2 Le schéma ci-dessus reste-t-il valable si on considere a la place de
I’ensemble des sous-ensembles E de Z ’ensemble des sous-ensembles E d’une suite
a croissance polynomiale ?

Question 1.3.3 Si E n’est pas un ensemble de Rosenthal, E contient-il un ensemble

a la fois A(p) pour tout p et non Rosenthal ?
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2 Inconditionnalité métrique en analyse de Fourier

Nous répondons dans ce chapitre aux questions 1.1.4, 1.1.5, 1.1.6, 1.1.9 et 1.1.10.
Comme ces questions distinguent les choix de signe réel et complexe, nous proposons
pour la fluidité de 'exposé de fixer un choix de signes S qui sera S=T = {e € C:

le] = 1} dans le cas complexe et S =D = {—1,1} dans le cas réel.

2.1 Propriété d’approximation inconditionnelle métrique

Seule la question 1.1.10 n’impose pas au préalable de forme particuliere a la suite
de multiplicateurs qui est censée réaliser la propriété considérée. Afin d’établir un
lien entre la (umap) et la structure du spectre E, nous faisons le détour par une

étude générale de cette propriété dans le cadre des espaces de Banach séparables.

2.1.1 Amorce et queue d’un espace de Banach

Peter G. Casazza et Nigel J. Kalton ont découvert le critere suivant:

Proposition 2.1.1 Soit X un espace de Banach séparable. X a la (umap) si et

seulement s’il existe une suite approzimante {T}} telle que

SUIS)HTk"‘ﬁ(Id—Tk)HL(X)—’k 1.
= — 00

Ceci exprime que la constante d’inconditionnalité entre I’amorce T X et la queue
(Id — Tx)X de Vespace X s’améliore asymptotiquement jusqu’a 'optimum pour
k — oo.

La (umap) s’exprime de maniere plus élémentaire encore si l'on choisit d’autres
notions adaptées d’amorce et de queue. Nous proposons en particulier la définition

suivante.

Définition 2.1.2 Soit T une topologie d’espace vectoriel topologique sur X. X a la
propriété (u(T)) de T-inconditionnalité si pour chaque x € X et toute suite bornée

{y;} T-nulle Uoscillation
osg llo + eyjllx = sup (Ilz + eyl = llz + oy, )
eeS 5.e€S

forme elle-méme une suite nulle.
Nous avons alors le théoréme suivant.

Théoréme 2.1.3 Soit X un espace de Banach séparable de cotype fini avec la pro-
priété (u(r)). Si X admet une suite approzimante {T}} inconditionnelle et commu-
tative telle que Tiyx = x uniformément sur la boule unité By, alors des combinaisons

convezxes successives {U;} de {T}} réalisent la (umap).

Esquisse de preuve. On construit ces combinaisons convexes successives par le biais
de décompositions skipped blocking. En effet, la propriété (u(7)) a leffet suivant

sur {T;}. Pour chaque € > 0, il existe une sous-suite {Sy = T}, } telle que toute
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suite de blocs Sy, — Ss, obtenue en sautant les blocs S — S, se somme de

Akt
maniere (1 + ¢)-inconditionnelle.

Soit n > 1. Pour chaque j, 1 < j < n, la suite de blocs obtenue en sautant
Skn+j — Skn+j—1 pour k > 0 est (1 + €)-inconditionnelle. Il s’agit alors d’estimer
la moyenne sur j de ces suites de blocs. On obtient une suite approximante et
I’hypothese de cotype fini permet de controler ’apport des blocs sautés.

Alors X a la (umap) parce que n et € sont arbitraires. |

2.1.2 Amorce et queue en termes de spectre de Fourier

Lorsqu’on considere ’espace invariant par translation X g, une amorce et une queue
naturelle sont les espaces X et Xp\ ¢ pour F' et G des sous-ensembles finis de E.

Nous avons concretement le lemme suivant.

Lemme 2.1.4 Xg a (u(15)), ot 75 est la topologie
fa 20 = Yk fulk) =0

de convergence simple des coefficients de Fourier, si et seulement si E est bloc-
inconditionnel dans X au sens suivant: quels que soient € > 0 et F' C E fini, il

eziste G C E fini tel que pour f € Bx, et g € Bx,,

osc £ + egllx = sup (1f +egll - I +gl]) <=

5,e€S

Le théoreme 2.1.3 s’énonce donc ainsi dans ce contexte particulier.

Théoréme 2.1.5 Soit E C Z et X un espace de Banach homogéne de fonctions sur
le tore T. Si Xg ala (umap), alors E est bloc-inconditionnel dans X. Inversement,
st E est bloc-inconditionnel dans X et de plus Xg a la propriété d’approximation
inconditionnelle et un cotype fini, alors Xg a la (umap). En particulier, on a

(i) Soit 1 < p < oo. LE(T) a la (wmap) si et seulement si E est bloc-inconditionnel
dans LP(T).

(if) LL(T) a la (umap) si et seulement si LL(T) a la propriété d’approzimation
inconditionnelle et E est bloc-inconditionnel dans L*(T).

(iii) Si E est bloc-inconditionnel dans C(T) et E est un ensemble de Sidon, alors
Cr(T) a la (umap).

Donnons une application de ce théoreme.

Proposition 2.1.6 Soit E = {ni} C Z. Singy1/ni est un entier impair pour tout

k, alors Cg(T) a la (umap) réelle.

Preuve. Comme FE est nécessairement un ensemble de Sidon, il suffit de vérifier que
E est bloc-inconditionnel. Soient € > 0 et FF C EN[—n,n|. Soit [ tel que |n;| > 7n/e
et G = {n1,...,m-1}. Soit f € Be, et g € Bey, - Alors g(t +7/n;) = —g(t) par
hypothese et

[f(t+m/m) = fO < 7/l -1 |0 < 7n/lmi] < e
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par l'inégalité de Bernstein. Alors, pour un certain u € T

1f=gllc = [f(u)+g(u+m/n)l
< f(u+m/m) +g(u+ /)| + ¢
< f +9lloe e
Donc E est bloc-inconditionnel au sens réel. [ |

En particulier, soit la suite géométrique G' = {3*}. Alors C(T) et Cou_g(T) ont
la (umap) réelle.
Question 2.1.7 Qu’en est-il de la (umap) complexe et qu’en est-il de la suite

géométrique G = {2*} ?

2.2 Norme de multiplicateurs et conditions combinatoires

Nous proposons ici une méthode uniforme pour répondre aux questions 1.1.4, 1.1.5,
1.1.6, 1.1.9 et 1.1.10. En effet, les questions 1.1.4, 1.1.5 et 1.1.6 reviennent a évaluer

Poscillation de la norme
O(e,a) = |lepagerg + .- - + €mamer,, || x-
La question 1.1.9 revient & évaluer 'oscillation de la norme
J m—j

Ule,a) = O((1,...,1,e...,€),a)

X

Tm

= |lager, +... +aje,, +eaj1e,, , +... Feapye

Par le théoreme 2.1.5, la question 1.1.10 revient a étudier cette méme expression
dans le cas particulier ol on fait un saut de grandeur arbitraire entre r; et r;;.
Dans le cas des espaces X = LP(T), p entier pair, ces normes sont des polynémes

! a et a. Dans le cas des espaces X = LP(T), p non entier pair, elles

en €, €
s’expriment comme des séries. Il n’y a pas moyen d’exprimer ces normes comme
fonction €*° pour X = C(T).

Soit X = LP(T). Développons O(e,a). Posons ¢; = r; — ro. On peut supposer

€9 = 1 et ag = 1. Nous utilisons la notation suivante:

<x> _a(z—1)(z-n+1)

pour a € N™ tel que Zai =n

« arlasg!. ..
Alors, si a1l ..., |am| < 1/m lorsque p n’est pas un entier pair et sans restriction
sinon,
m n|2
/2
O(e,a) = / Z (n ) (Zeiaie‘h)
n>0 i=1

2

B2 Q)

n>0 QAT ey Oy, >0
a1+...+oapm=n

J1200) e ez

acN™

2
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- [ ()|

ReR'aeR
2\ 2 2 2
SN (S NTERES SN G T (A R
aenm \ & atgenm \ & p
anp3

oll R est la partition de N™ induite par la relation d’équivalence

an~Be Y ag=Y Big
Nous pouvons répondre immédiatement aux questions 1.1.4 et 1.1.5 pour X =
LP(T).
2.2.1 Question 1.1.4: suites basiques l-inconditionnelles complexes

Soient rg, . ..7,, sont choisis dans F, alors (4) doit étre constante pour a € {|z| <
1/m}™ et e € T™. Cela veut dire que pour tous « # 3 € N,

> aiai £ Y G ou (Pf) (%2):0.

m Si p n’est pas un entier pair, alors (%2) (%2) = 0 pour tous «, 3 € N™ et on a les

relations arithmétiques suivantes sur ¢, gz, 0:

lgz2| lq1]

Gt .t =@+...+q si q1g2 > 0;
lg2] lq1]

Q+...+tat+e+...+qp=0 sinon.

11 suffit donc de prendre o = (|g2|,0,...), 8 = (|¢1],0,...) et @ = (g2}, |q1],0,...),
B =(0,...) respectivement pour conclure que {rg,r1, 72} n’est pas une suite basique
1-inconditionnelle complexe dans L?(T) si p n’est pas un entier pair.

m Si p est un entier pair, (pf) (péz) = 0 si et seulement si

Zai>p/2 ou Zﬁq>p/2

On obtient que E est une suite basique 1-inconditionnelle dans LP(T) si et seulement
si E est “p-indépendant”, c’est-a-dire que > a;(r; — o) # > B:(ri — r9) pour tous
T0y---yTm € E et @« £ € N™ tels que > ay, Y. ;i < p/2. Cette condition est
équivalente a: tout entier n € Z s’écrit de manieére au plus unique comme somme
de p/2 éléments de E.

2.2.2 Question 1.1.5: suites basiques 1-inconditionnelles réelles

Les suites basiques 1-inconditionnelles réelles et complexes coincident et la réponse
a la question 1.1.5 est identique & la réponse & la question 1.1.4. En effet, des
qu’une relation arithmétique > (a; — 5;)¢; pese sur E, on peut supposer que «; — (3;
est impair pour au moins un 4 en simplifiant la relation par le plus grand diviseur
commun des «; — ;. Mais alors (4) n’est pas une fonction constante pour €; réel.

Cette propriété est propre au tore T. En effet, par exemple la suite des fonctions
de Rademacher est 1l-inconditionnelle réelle dans C(ID°), alors que sa constante

d’inconditionnalité complexe est 7/2.
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2.2.3 Question 1.1.6: suites basiques inconditionnelles métriques

On peut méme tirer des conséquences utiles du calcul de (4) dans le cas presqu’iso-
métrique. Il faut pour cela prendre la précaution suivante qui permet un passage a
la limite. Soit 0 < ¢ < 1/m. Alors

{0:8" x{|z| <o}™ =R  :qu,...,qm € Z™}

est un sous-ensemble relativement compact de €°°(S™ x {|z| < 0}™). Il en découle
que si E est une suite basique inconditionnelle métrique, alors certains coefficients
de (4) deviennent arbitrairement petits lorsque ¢1, ..., ¢, sont choisis grands.

Donnons deux conséquences de ce raisonnement.

Proposition 2.2.1 Soit £ C Z.

(i) Soit p un entier pair. Si E est une suite basique inconditionnelle métrique réelle,
alors E est en fait une suite basique 1-inconditionnelle complexe a un ensemble fini
pres.

(ii) Si E est un ensemble de Sidon de constante asymptotiquement 1, alors

((,E)y = sup inf{|§1p1 + .o+ Cnpml i1, om € E\NG distz'ncts} >0
GCE fini

pour tout m > 1 et ¢ € Z*™.

On peut exprimer cette derniere propriété en disant que la relation arithmétique ¢

ne persiste pas sur F.

2.2.4 Question 1.1.10: propriété d’approximation inconditionnelle mé-
trique

On peut appliquer la technique du paragraphe précédent en observant que si Xg a

la (umap), alors

osc (e, a)
eesS Tjt1yeey"m EE—00

Définition 2.2.2 F a la propriété (J,) de bloc-indépendance si pour tout FF C E
fini il existe G C E fini tel que si un k € Z admet deux représentations comme
somme de n éléments de F U (E \ G)

prt...tpp=k=p+...+0,
alors
G :p €F) et |{j: 4, € FY
sont égauz (choix de signes complexe S = T) ou de méme parité (choiz de signes

réel S = D).

Théoréme 2.2.3 Soit E C 7Z.
(i) 8i X = LP(T), p entier pair, alors L4,(T) a la (wmap) si et seulement si E
satisfait (J,/2).
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(ii) Si X = LP(T), p non entier pair, ou X = C(T), alors Xg a la (umap) seulement
si E satisfait
((,E)y = sup inf{|§1p1 + ...+ Cnpml| 01, Dm € ENG distincts} >0
GCE fini

pour tout m > 1 et ¢ € Z*™ tel que > (; est non nul (cas complexe) ou impair (cas

réel).

On obtient la hiérarchie suivante.

Col)n B0 s o)., L) L 1ED 150
(umap) p non entier pair a (umap) (umap) (umap).
Nous pouvons répondre & la question 2.1.7. Soit G = {j*} avec j € Z\ {—1,0,1} et
considérons ¢ = (j, —1). Alors (¢,G) = 0. Donc Cx(T) n’a pas la (umap) complexe.

Ca(T) n’a pas la (umap) réelle si j est pair.

2.2.5 Deux exemples

A l'aide de nos conditions arithmétiques, nous sommes & méme de prouver la propo-

sition suivante.

Proposition 2.2.4 Soit 0 > 1 et E la suite des parties entiéres de 0. Alors les
assertions suivantes sont équivalentes.

(i) o est un nombre transcendant.

(ii) LY%(T) a la (wmap) complexe pour tout p entier pair.

(iii) E est une suite basique inconditionnelle métrique dans chaque LP(T), p entier
pair.

(iv) Pour chaque m donné, la constante de Sidon des sous-ensembles a m éléments

de queues de E est asymptotiquement 1.
Nous obtenons aussi la proposition suivante.

Proposition 2.2.5 Soit E la suite des bicarrés. LE,(T) a la (wmap) réelle seule-

ment sip =2 ou p =4.

Preuve. FE ne satisfait pas la propriété de bloc-indépendance (J3) réelle. En effet,

Ramanujan a découvert 1’égalité suivante pour tout n:
(4n° —5n)* + (6n* = 3)* + (dn* + 1)* = (4n® +n)* + (2n* = 1)* +3*. =

2.3 Impact de la croissance du spectre

Nous démontrons de maniere directe le résultat positif suivant.

Théoréme 2.3.1 Soit E = {ng} C Z tel que ngi11/np — oo. Alors la suite des
projections associée o E réalise la (umap) complexe dans Cg(T) et E est un ensem-
ble de Sidon de constante asymptotiquement 1. Dans l'hypothése ou les rapports

ng+1/ng sont tous entiers, la réciproque vaut.
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Corollaire 2.3.2 Alors E est une suite basique inconditionnelle métrique dans tout
espace de Banach homogéne X de fonctions sur T. De plus, Xg a la (umap) com-

plexe.

Esquisse de preuve. Nous prouvons concrétement que si ngy1/ni — 00, alors quel

que soit € > 0 il existe [ > 1 tel que pour toute fonction f = > axe,,
1lloo = (1 =) ([P aren]| +D laxl). (4)
k<l k>l

Cela revient & dire que la suite {7} de projections associée & la base E réalise

la 1/(1 — €)-(uap). Pour obtenir I'inégalité (4), on utilise une récurrence basée sur
I'idée suivante.

Soit u € T tel que ||7g flloo = |mif(w)]. 11 existe alors v € T tel que

lu—o|l <7/lnga] et [mef(u) + anprn,, (V)] = (178 flloo + lartal.

De plus, dans ce cas,

| f () = me f ()] < = vl |7 f oo < wlr/mperr | 0 f o

En résumé, agq e a le méme argument que 7y, f trés pres du maximum de |7y f],

MNk+1

et 7 f varie peu.

Mais alors
17k f (@) + arpren iy loo = [Tk (V) + arga enyy, (V)]
Z 1Tk flloo + lars| = mlnw/mra |7 flloo
= (U =mlng/neprlmeflloo + lan1l.
On obtient (4) en réitérant cet argument. |

Notre technique donne d’ailleurs ’estimation suivante de la constante de Sidon des

ensembles de Hadamard.

Corollaire 2.3.3 Soit E = {ny} CZ et ¢ > /7?/2+ 1. Si |ngs1] > q|nk|, alors

la constante de Sidon de E est inférieure ou égale a 1+ n%/(2¢% — 2 — m?).

Nous prouvons que cette estimation est optimale au sens olt 'ensemble F = {0,1, ¢},

q > 2, a pour constante d’inconditionnalité réelle dans C(T)

(cos(7r/(2q))71 >1+7%/8¢ %

3 Suites basiques l-inconditionnelles d’entrées de
matrice

Dans ce chapitre, nous cherchons a répondre a la question 1.2.1. Nous fournissons
une réponse complete dans le cas particulier des classes de Schatten S? avec p entier
pair. En effet, la technique présentée dans la section 2.2 peut étre transférée du
cadre des multiplicateurs de Fourier au cadre des multiplicateurs de Schur. Nous
interprétons la condition combinatoire obtenue a ’aide d’objets combinatoires in-

troduits ad hoc. Notre analyse aboutit au théoréme suivant.
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Théoréme 3.1 Soit I C N x N.

(i) {epe : (r,c) € I} est une suite basique 1-inconditionnelle réelle dans SP exac-
tement quand elle est 1-inconditionnelle complexe et méme c.b. 1-inconditionnelle
complexe.

(ii) I satisfait ces trois propriétés exactement lorsque I est “matriciellement p/2-
indépendant”: deuz points q,q' € I sont reliés par au plus un seul chemin sans

retour sur le réseau N x N dont les au plus p/2 sommets sont dans I.

4 Constructions aléatoires a l’intérieur de suites
lacunaires

Dans ce chapitre, nous fournissons une preuve nouvelle pour une construction
aléatoire d’ensembles lacunaires par Yitzhak Katznelson qui appartient au folk-
lore de I’analyse harmonique. Nous analysons et généralisons aussi la construction
aléatoire d’ensembles équidistribués par Jean Bourgain.

Cela nous permet d’établir le tableau 1.3.1 qui classe les propriétés de Rosenthal
et A(p) pour tout p selon la croissance du spectre. Nous montrons alors que la
démarche probabiliste suivie par Katznelson et Bourgain pour construire ces sous-
ensembles de Z utilise seulement la croissance “arithmétique” et 1’équidistribution
de la suite des entiers Z. En fait, ces sous-ensembles peuvent étre construits
a lintérieur de suites équidistribuées a croissance polynomiale. En particulier,
le tableau 1.3.1 reste valable pour I’ensemble des sous-ensembles E d’une suite
polyndmiale, ainsi que de la suite des nombres premiers.

Nous fournissons une réponse partielle & la question 1.3.3.

Théoréme 4.1 Soit P une suite polynémiale ou la suite des nombres premiers.
Alors il existe une sous-suite E de P qui est A(p) pour tout p alors qu’elle ne forme

pas un ensemble de Rosenthal.

Le chapitre IT correspond & larticle [73] publié dans Studia Mathematica sauf la
section I1.10.1, soumise au Bulletin of the London Mathematical Society. Le chapitre
IV a été soumis aux Annales de l’Institut Fourier. Le chapitre III fait partie d’une

recherche en cours.



Chapitre 11

Metric unconditionality and
Fourier analysis

1 Introduction

We study isometric and almost isometric counterparts to the following two proper-

ties of a separable Banach space Y:
(ubs) Y is the closed span of an unconditional basic sequence;
(uap) Y admits an unconditional finite dimensional expansion of the identity.

We focus on the case of translation invariant spaces of functions on the torus group
T, which will provide us with a bunch of natural examples. Namely, let E be a
subset of Z and X be one of the spaces LP(T) (1 < p < o) or C(T). If {e"'},cp is
an unconditional basic sequence ((ubs) for short) in X, then E is known to satisfy
strong conditions of lacunarity: E must be in Rudin’s class A(q), ¢ = pV 2, and a
Sidon set respectively. We raise the following question: what kind of lacunarity is

needed to get the following stronger property:

(umbs) FE is a metric unconditional basic sequence in X: for any € > 0, one may

lower its unconditionality constant to 1 4+ ¢ by removing a finite set from it.

In the case of €(T), E is a (umbs) exactly when E is a Sidon set with constant
asymptotically 1.

In the same way, call {T;} an approximating sequence (a.s. for short) for Y if
the T}’s are finite rank operators that tend strongly to the identity on Y; if such
a sequence exists, then Y has the bounded approximation property. Denote by
ATy = Ty, — Ty—1 the difference sequence of Ty. Following Rosenthal (see [27, §1]),
we then say that Y has the unconditional approximation property ((uap) for short)

if it admits an a.s. {T}} such that for some C'

n

Z EkATk

k=1

<C for all n and scalar € with |ex| = 1. (1)
L(Y)

23
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By the uniform boundedness principle, (1) means exactly that Y ATy converges
unconditionally for all y € Y. We now ask the following question: which conditions
on E do yield the corresponding almost isometric (metric for short) property, first
introduced by Casazza and Kalton [12, §3] ?

(umap) The span Y = Xp of F in X has the metric unconditional approximation
property: for any £ > 0, one may lower the constant C' in (1) to 1 + ¢ by choosing
an adequate a.s. {T}}.

Several kinds of metric, i. e. almost isometric properties have been investigated
in the last decade (see [38]). There is a common feature to these notions since
Kalton’s [47]: they can be reconstructed from a corresponding interaction between
some break and some tail of the space. We prove that (umap) is characterized by
almost 1-unconditionality between a specific break and tail, that we coin “block

unconditionality”.

Property (umap) has been studied by Li [58] for X = C(T). He obtains remarkably
large examples of such sets F, in particular Hilbert sets. Thus, the second property
seems to be much weaker than the first (although we do not know whether Cg(T)
has (umap) for all (umbs) E in C(T): for sets of the latter kind, the natural sequence

of projections realizes (uap) in Cg(T), but we do not know whether it achieves

(umap)).

In fact, both problems lead to strong arithmetical conditions on E that are some-
what complementary to the property of quasi-independence (see [77, §3]). In order
to obtain them, we apply Forelli’s [28, Prop. 2] and Plotkin’s [79, Th. 1.4] techniques
in the study of isometric operators on L?: see Theorem 2.4.2 and Lemma 7.1.4. This
may be done at once for the projections associated to basic sequences of characters.
In the case of general metric unconditional approximating sequences, however, we
need a more thorough knowledge of their connection with the structure of E: this
is the duty of Theorem 6.2.3. As in Forelli’s and Plotkin’s results, we obtain that
the spaces X = LP(T) with p an even integer play a special role. For instance, they
are the only spaces which admit 1-unconditional basic sequences E C Z with more

than two elements: see Proposition 2.2.1.

There is another fruitful point of view: we may consider elements of F¥ as random
variables on the probability space (T,dm). They have uniform distribution and if
they were independent, then our questions would have trivial answers. In fact, they

are strongly dependent: for any k,l € Z, Rosenblatt’s [83] strong mixing coefficient
sup{|m[A N B] — m[Alm[B]| : A € o(e*t) and B € J(Qilt)}

has its maximum value, 1/4. But lacunarity of E enhances their independence in
several weaker senses (see [3]). Properties (umap) and (umbs) can be seen as an

expression of almost independence of elements of E in the “additive sense”, i. e.
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when appearing in sums. We show their relationship to the notions of pseudo-

independence (see [72, §4.2]) and almost i.i.d. sequences (see [2]).

The gist of our results is the following: almost isometric properties for spaces Xg in
“little” Fourier analysis may be read as a smallness property of E. They rely in an
essential way on the arithmetical structure of E and distinguish between real and
complex properties. In the case of L2*(T), n integer, these arithmetical conditions
are in finite number and turn out to be sufficient, because the norm of trigonometric
polynomials is a polynomial expression in these spaces. Furthermore, the number
of conditions increases with n in that case. In the remaining cases of L?(T), p not
an even integer, and C(T), these arithmetical conditions are infinitely many and
become much more coercive. In particular, if our properties are satisfied in C(T),

then they are satisfied in all spaces LP(T), 1 < p < oc.

We now turn to a detailed discussion of our results: in Section 2, we first characterize
the sets E and values p such that E is a 1-unconditional basic sequence in LP(T)
(Prop. 2.2.1). Then we show how to treat similarly the almost isometric case and
obtain a range of arithmetical conditions (J,,) on F (Th. 2.4.2). These conditions
turn out to be identical whether one considers real or complex unconditionality:
this is surprising and in sharp contrast to what happens when T is replaced by the
Cantor group. They also do not distinguish amongst LP(T) spaces with p not an
even integer and C(T), but single out LP(T) with p an even integer: this property
does not “interpolate”. This is similar to the phenomena of equimeasurability (see
[55, introduction]) and C*°-smoothness of norms (see [14, Chapter V]). These facts
may also be appreciated from the point of view of natural renormings of the Hilbert
space L% (T).

In Section 3, of purely arithmetical nature, we give many examples of 1-uncon-
ditional and metric unconditional basic sequences through an investigation of pro-
perty (J,,). As expected with lacunary series, number theoretic conditions show up

(see especially Prop. 3.3.1).

In Section 4, we first return to the general case of a separable Banach space Y
and show how to connect the metric unconditional approximation property with
a simple property of “block unconditionality”. Then a skipped blocking technique
invented by Bourgain and Rosenthal [10] gives a canonical way to construct an a.s.
that realizes (umap) (Th. 4.3.1).

In Section 5, we introduce the p-additive approximation property ¢,-(ap) and its
metric counterpart, £,-(map). It may be described as simply as (umap). Then we
connect £,-(map) with the work of Godefroy, Kalton, Li and Werner [48, 32] on

subspaces of LP which are almost isometric to £,,.

Section 6 focusses on (uap) and (umap) in the case of translation invariant subspaces
Xpg. The property of block unconditionality may then be expressed in terms of
“break” and “tail” of F: see Theorem 6.2.3.
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In Section 7, we proceed as in Section 2 to obtain a range of arithmetical conditions
(Jn) for (umap) and metric unconditional (fdd) (Th. 7.2.1 and Prop. 7.2.4). These
conditions are similar to (J,), but are decidedly weaker: see Proposition 8.1.2(%).
This time, real and complex unconditionality differ; again spaces LP(T) with even

p are singled out.

In Section 8, we continue the arithmetical investigation begun in Section 3 with
property (J,) and obtain many examples for the 1-unconditional and the metric

unconditional approximation property.

However, the main result of Section 9, Theorem 9.3.1, shows how a rapid (and opti-
mal) growth condition on E allows avoiding number theory in any case considered.
We therefore get a new class of examples for (umbs), in particular Sidon sets of con-
stant asymptotically 1, and (umap). We also prove that Cygxy(T) has real (umap)
and that this is due to the oddness of 3 (Prop. 9.1.1). A sharp estimate of the Sidon
constant of Hadamard sets is obtained as a byproduct (Cor. 10.2.1). We compute
the Sidon constant of sets with three elements (Th. 10.1.5).

Section 11 uses combinatorial tools to give some rough information about the size of
sets F that satisfy our arithmetical conditions. In particular, we answer a question
of Li [58]: for X = €(T) and for X = L?(T), p # 2,4, the maximal density d* of
E is zero if Xg has (umap) (Prop. 11.2). For X = L*(T), our technique falls short
of the expected result: we just know that if L, | (a}(T) has (umap) for every a € Z,
then d*(E) = 0.

Section 12 is an attempt to describe the relationship between these notions and
probabilistic independence. Specifically the Rademacher and Steinhaus sequences
show the way to a connection between metric unconditionality and the almost i.i.d.
sequences of [2]. We note further that the arithmetical property (Jo) of Section 2
is equivalent to Murai’s [72, §4.2] property of pseudo-independence.

In Section 13, we collect our results on metric unconditional basic sequences of
characters and (umap) in translation invariant spaces. We conclude with open ques-

tions.

Notation and definitions Sections 2, 6, 7 and 9 will take place in the following
framework. (T, dm) denotes the compact abelian group {z € C : |z| = 1} endowed
with its Haar measure dm; m[A] is the measure of a subset A C T. Let D = {—1,1}.
S will denote either the complex (S = T) or real (S = D) choice of signs. For a real
function f on S, the oscillation of f is

osc f(e) = Sup F(e) — inf f(e).

We shall study homogeneous Banach spaces X of functions on T [50, Chapter 1.2],
and especially the peculiar behaviour of the following ones: LP(T) (1 < p < o0), the
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space of p-integrable functions with the norm ||f||, = ([ | f[Pdm)'/?, and €(T), the
space of continuous functions with the norm || f||cc = max{|f(¢)| : ¢ € T}. M(T) is
the dual of C(T) realized as Radon measures on T.
The dual group {e,: 2z +— 2" : n € Z} of T is identified with Z. We write |B| for the
cardinal of a set B. For a not necessarily increasing sequence E = {ny}x>1 C Z, let
PE(T) be the space of trigonometric polynomials spanned by [the characters in] E.
Let Xg be the translation invariant subspace of those elements in X whose Fourier
transform vanishes off E: for all f € Xg andn ¢ E, f(n) = [ f(t)e_n(t)dm(t) = 0.
Xpg is also the closure of Pg(T) in homogeneous X [50, Th. 2.12]. Denote by
7, : Xp — Xg the orthogonal projection onto Xy, 3. It is given by

T (f) = (1) en, + ...+ f(ng) en, -
Then the 7, commute. They form an a.s. for X if and only if F is a basic sequence.
For a finite or cofinite F' C F, wp is similarly the orthogonal projection of X onto
Xp.
Sections 4 and 5 consider the general case of a separable Banach space X. By is
the unit ball of X and Id denotes the identity operator on X. For a given sequence
{Uy}, its difference sequence is AUy = Uy, — Ux—1 (where Uy = 0).
The functional notions of (ubs), (umbs) are defined in 2.1.1. The functional notions
of a.s., (uap) and (umap) are defined in 4.1.1. Properties ¢,-(ap) and £,-(map) are
defined in 5.1.1. The functional property (U) of block unconditionality is defined in
6.2.1. The sets of arithmetical relations Z" and Z;' are defined before 2.2.1. The
arithmetical properties (J,,) of almost independence and (g,,) of block independence
are defined in 2.4.1 and 7.1.2 respectively. The pairing ((, E) is defined before 3.1.1.

2 Metric unconditional basic sequences of charac-
ters (umbs)

2.1 Definitions. Isomorphic case

We start with the definition of metric unconditional basic sequences ((umbs) for
short). S=T={ce€ C: || =1} (vs. S =D = {—1,1}) is the complex (vs. real)

choice of signs.

Definition 2.1.1 Let E C Z and X be a homogeneous Banach space on T.

(i) [49] E is an unconditional basic sequence (ubs) in X if there is a constant C

such that
Z €qlq €q Z g €q

qeC qeG
for all finite subsets G C E, coefficients a, € C and signs e¢; € T (vs. ¢, € D). The
infimum of such C is the complex (vs. real) unconditionality constant of E in X.
If C =1 works, then E is a complex (vs. real) 1-(ubs) in X.

(ii) E is a complex (vs. real) metric unconditional basic sequence (umbs) in X if for

(2)

<C
X

X

each & > 0 there is a finite set F' such that the complex (vs. real) unconditionality
constant of E\ F is less than 1+ €.
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Note that Z itself is an (ubs) in LP(T) if and only if p = 2 by Khinchin’s inequality.
The same holds in the framework of the Cantor group D*° and its dual group
of Walsh functions: their common feature with the e, is that their modulus is
everywhere equal to 1 (see [54]).

The following facts are folklore.

Proposition 2.1.2 Let Y be a Banach space.
(i) If HZekkaY <X kaY for all e, € T (vs. e, € D), then this holds automat-
ically for all complex (vs. real) ey with |eg| < 1.

(ii) Real and complex unconditionality are isomorphically 7 /2-equivalent.

Proof. (i) follows by convexity. (i7) Let us use the fact that the complex uncondi-

tionality constant of the Rademacher sequence is 7/2 [89]:

supH 5kka = sup sup sup ‘ k(Y™ Yk €k’
O €T Z Y y*€Y* €T ep==%1 Z ( >
< w/2 sup sup ‘ v Yk ek’ =m/2 sup H kakH .
/ y*eY* ep,==%1 Z< > / ep==x1 Z Y
Taking the Rademacher sequence in C(ID>), we see that 7/2 is optimal. ]

In fact, if (2) holds, then E is a basis of its span in X, which is Xg [50, Th. 2.12].
We have the following relationship between the unconditionality constants of F in

C(T) and in a homogeneous Banach space X on T.

Proposition 2.1.3 Let E C Z and X be a homogeneous Banach space on T.

(i) The complex (vs. real) unconditionality constant of E in X is at most the complex
(vs. real) unconditionality constant of E in C(T).

(ii) If E is a (ubs) (vs. 1-(ubs), (umbs)) in C(T), then E is a (ubs) (vs. 1-(ubs),
(umbs)) in X.

This follows from the well-known (see e.g. [39])

Lemma 2.1.4 Let E CZ and X be a homogeneous Banach space on T. Let T be

a multiplier on Cg(T). Then T is also a multiplier on Xg and

1T exe) < I1Te(ers)-

Proof. The linear functional f +— T f(0) on Cg(T) extends to a measure pu € M(T)
such that [|ullae = [|T||le(er). Let a(t) = p(—t). Then Tf = i« f for f € Pp(T)
and

1Tlexe) < Al = 1T e (er)- =
Question 2.1.5 There is no interpolation theorem for such relative multipliers.
The forthcoming Theorem 2.4.2 shows that there can be no metric interpolation. Is

it possible that one cannot interpolate multipliers at all between LY, (T) and L%(T) ?

Note that conversely, [29] furnishes the example of an E C Z such that the 7, are
uniformly bounded on L1 (T) but not on Cg(T).

It is known that F is an (ubs) in C(T) (vs. in LP(T)) if and only if it is a Sidon (wvs.
A(2V p)) set. To see this, let us recall the relevant definitions.
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Definition 2.1.6 Let £ C Z.
(i) [44] E is a Sidon set if there is a constant C' such that

Z‘aq| <C Zaqeq

qeG e

Jor all finite G C E and aq € C.

oo

The infimum of such C is E’s Sidon constant.

(ii) /86, Def. 1.5] Let p > 1. E is a A(p) set if there is a constant C' such that
£l < Cllfllx for f € Pr(T).

In fact, the Sidon constant of E is the complex unconditionality constant of E in
C(T). Thus E is a complex (umbs) in C(T) if and only if tails of F have their
Sidon constant arbitrarily close to 1. We may also say: E’s Sidon constant is
asymptotically 1.

Furthermore, F is a A(2V p) set if and only if L%, (T) = L%(T). Therefore A(2V p)
sets are (ubs) in LP(T). Conversely, if E is an (ubs) in LP(T), then by Khinchin’s

inequality

E :aqeq

qeG

p

Z +aqeq

qeG

E:aqeq

qeG

/R average

p p/2
~ (Z |aq‘2) =
p

qeG

P
p 2

for all finite G C E (see [86, proof of Th. 3.1]). This shows also that the A(p) set
constant and the unconditionality constant in LP(T) are connected via the constants
in Khinchin’s inequality; whereas Sidon sets have their unconditionality constant in
LP(T) uniformly bounded, the A(p) set constant of infinite sets grows at least like

/P [86, Th. 3.4].

2.2 Isometric case: 1-unconditional basic sequences of cha-
racters

The corresponding isometric question: when is E a complex 1-(ubs) ? admits a
rather easy answer. To this end, introduce the following notation for arithmetical
relations: let A,, = {a ={aplp>1:0p e N& g +ag+...= n} IfaeA,, all

but a finite number of the «,, vanish and the multinomial number

n n!
« arlas! ...

is well defined. Let A7 = {a € A,, : ap, = 0 for p > m}. Note that AT is finite.
We call E n-independent if every integer admits at most one representation as the
sum of n elements of E, up to a permutation. In terms of arithmetical relations,

this yields
Zoz,»pi = Zﬁipi = a = for o, € A7 and distinct py,...,pm € E.

This notion is studied in [17] where it is called birelation. In Rudin’s [86, §1.6(b)]

notation, the number r,,(E; k) of representations of k € Z as a sum of n elements
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of E is at most n! for all k if E is n-independent (the converse if false). This may

also be expressed in the framework of arithmetical relations

M ={ el :(+...4Cn=0} & ZIF={CeZ™:|G|+...+|Cn| <2n}.

Note that Z]" is finite, and void if m > 2n. Then FE is n-independent if and only if
Zg}pz- #0 for all ¢ € Z)" and distinct p1,...,pm € E.

We shall prefer to treat arithmetical relations in terms of Z]" rather than A"

Proposition 2.2.1 Let E C Z.

(i) E is a complex 1-(ubs) in LP(T), p not an even integer, or in C(T), if and only
if E has at most two elements.

(ii) If p is an even integer, then E is a complex 1-(ubs) in LP(T) if and only if E is
p/2-independent. There is a constant Cp, > 1 depending only on p, such that either
E is a complex 1-(ubs) in LP(T) or the complex unconditionality constant of E in
LP(T) is at least C,,.

Proof. (i) By Proposition 2.1.3(i%), if F is not a complex 1-(ubs) in some LP(T),
then neither in C(T). Let p be not an even integer. We may suppose 0 € E; let
{0,k,1} C E. If we had || 1+paeg +vbe ||, = [|[1+ae, +be ||, for all u, v € T, then

/ |1+ aex+be [Pdm / |1+ paeg +vbe |Pdm(u)dm(v)dm

/ |1+ pa + vb|Pdm(p)dm(v).

Denoting by 6;: (e1,€2) — ¢€; the projections of T? onto T, this would mean that
11+ aex+ber |, = [|1+ abh + 00|y (12 for all a,b € C. By [87, Th. I], (ex,e;)
and (61, 602) would have the same distribution. This is false, since 6; and 6y are
independent random variables while e; and e; are not.

(i) Let q1,...,qn € E be distinct and €, ..., ¢, € T. By the multinomial formula

for the power p/2 and Bessel-Parseval’s formula, we get

I ) .|

P OLGA:)"/2 =1

> (%) [T

m

E €;0; €q,;

i=1

= )

dm

2

AeR lacA i=1
2 m m
D/2 . P/2\ (p/2 i—Bi o —
= % () e X ()P
a€AT, i=1 a#BEAT, i=1
a~f3

where R, is the partition of A;’;Q induced by the equivalence relation o ~ 3 &
S aq; =Y. Bigi. If E is p/2-independent, the second sum in (3) is void and F is
a 1-(ubs).
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Furthermore, suppose F is not p/2-independent and let ¢, ..., ¢, € E be a minimal
set of distinct elements of E such that there are o, 3 € AZ’/Q with @ ~ . Then
m < p. Take a; = 1 in the former computation: then the clearly nonzero oscillation
of (3) for €1,...,€, € T does only depend on R, and thus is finitely valued. This
yields C),. ]

Example 2.2.2 Let us treat explicitly the case p = 4. If F is not 2-independent,

then one of the two following arithmetic relations occurs on E:
21 =q2+q3 or q1+q=q+q.
In the first case, we may assume ¢ < g1 < g3 and thus
20 <q1 +q2 <21 =q2+ g3 < 1 + g3 < 2g3.
Let 0 > 0. Then
/ |eq +oeq, +eoeq, |4dm =1+ 60" +40%(2 + Re).

Taking e = —1 and € = 1, 0 = 6~'/4, we see that E’s real unconditionality constant
is at least the fourth root of 2v/6 — 3. In fact, E’s real and complex unconditionality
constants coincide with this value.

In the second case, we may assume ¢ < q3 < ¢4 < ¢2 and thus

21 < q1+q3 <q1+q4,2g3 < q1+q2 = g3+ q4 < g2 + q3,2q4 < g2 + q4 < 2¢2.

We may further assume ¢q1 + g4 # 2q3 and g2 + g3 # 2q4: otherwise the first case
occurs. Then

/ |el}1 +€q, +€¢5 T€€q, |4dm = 28 + 8Re.

Thus E’s real unconditionality constant must be at least (9/5)*/4. In fact, E’s real
and complex unconditionality constants coincide with this value.
From these two cases we conclude that Co = (9/5)'/4 ~ 1.16 is the optimal choice

for the constant in Proposition 2.2.1(i4).

Remark 2.2.3 We shall compute explicitly the Sidon constant of sets with three
elements and show that it is equal to the real unconditionality constant in that case.

This provides an alternative proof and a generalization of Prop. 2.2.1 (i) for €(T).

Remark 2.2.4 In fact the conclusion in (i) holds also if we assume that F is just
a real 1-(ubs). If we have some arithmetical relation a ~ 3, we may assume that
«; — [3; is odd for one i at least. Indeed, we may simplify all o; — 3; by their greatest
common divisor and this yields another arithmetical relation (o} — 3})¢; = 0. But

then the oscillation of (3) is again clearly nonzero for €y, ..., €, € D.

Remark 2.2.5 We shall see in Remark 2.3.3 that (¢) also holds in the real setting.
This is a property of T and fails for the Cantor group D*°: the Rademacher sequence
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forms a real 1-(ubs) in €(ID>°) but is clearly not complex 1-unconditional in any space
LP(D>), p # 2: see Section 12 and [89).

Question 2.2.6 There are nevertheless subspaces of LP(T), p not an even integer,
and C(T) with 1-unconditional bases, like sequences of functions with disjoint sup-
port. What about spaces L% (T) and Cg(T), in particular when E is finite ? Are

there 1-unconditional bases that do not consist of characters ?

Remark 2.2.7 For each even integer p > 4, there are p/2-independent sets that

are not A(p + ¢) for any € > 0: such maximal A(p) sets are constructed in [86].

2.3 Almost isometric case. A computation

As 1-(ubs) are thus a quite exceptional phenomenon and distinguish so harshly
between even integers and all other reals, one may wonder what kind of behaviour its
almost isometric counterpart will bring about. In the proof of Proposition 2.2.1(4),
we used the fact that the e,,, seen as random variables, are dependent: the LP? norm
for even integer p is just somewhat blind to this because it keeps the interaction
of the random variables down to a finite number of arithmetical relations. The
contrast with the other LP? norms becomes clear when we try to compute explicitly
an expression of type HZ €q0q €q Hp for any p € [1,00[. This sort of seemingly brutal
computation has been applied successfully in [28, Prop. 2] and [79, Th. 1.4] to study
isometric operators on L”, p not an even integer.

We now undertake this tedious computation as preparatory work for Theorem 2.4.2,

Lemma 7.1.4 and Proposition 7.2.4. Let us fix some more notation: for x € R and

()=C)C)

This generalized multinomial number is nonzero if and only if > n or = ¢ N.

a € A, put

Computational lemma 2.3.1 Let S =T or S = D in the complex and real case

respectively. Let 1 < p < oo and m > 1. Put

, o Dyle, 2) :/gpq(e,z,t) dm(t)

m
wq€,2,t) = ‘1 + Z €i%i €q, ()
i=1

fora=1(q1,--.,qm) EZ™, e = (e1,...,€m) ES™ and z = (z1,..., zm) € D™, where
D is the disc {Jw| < o} C C for some 0 < o < 1/m. Define the equivalence relation
an~ ey aig =3 Biq. Then

2\ 2 2 2 4 s
wied = 3 (W) e 3 () ()
a€ENm a;ﬁ,@fglm

Furthermore, {®, : ¢ € Z™} is a relatively compact subset of C(S™ x D™).

Proof. The function ®, is infinitely differentiable on the compact set S™ x D™.
Furthermore the family {®, : ¢1,...,¢m € Z} is bounded in C*(S™ x D™) and
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henceforth relatively compact by Montel’s theorem. Let us compute ¢,. By the
expansion of the function (1+w)P/2, analytic on the unit disc, and the multinomial

formula, we have

pale,2) = ;}(pf) (ieizieqi>a

i=1

S0 5 (Meoron.

a>0 aEAm™

= |3 (D) e ex

aeN™

2

2

2

Let R, be the partition of N™ induced by ~. Then, by Bessel-Parseval’s formula

v = 3|5 () e

AR, acA

2

and this gives (3) by expanding the modulus. [ |

Remark 2.3.2 If m > 2, this expansion has a finite number of terms if and only
if p is an even integer: then and only then (pé2) = 0 for > a; > p/2, whereas
R, contains clearly some class with two elements and thus an infinity thereof. For

example, we have the following arithmetical relation on ¢, g2 or q1, g2, 0 respectively:

lg2] lq1]

QL+ ...+t =q@+...+q if sgnq; = sgngqo;
lgz| lq1]
a+...+ta+e+...+q¢ =0 if not.

Remark 2.3.3 This shows that Proposition 2.2.1(7) holds also in the real setting:
we may suppose that 0 € E; take m = 2 and choose ¢q1,q2 € E. One of the two
relations in Remark 2.3.2 yields an arithmetical relation on E with at least one odd
coefficient, as done in Remark 2.2.4. But then (3) contains terms nonconstant in
€1 € D or in €3 € D and thus F cannot be a real 1-unconditional basic sequence in
LP(T).

We return to our computation.

Computational lemma 2.3.4 Let 7 = (rq,...,ry) € E™ and put ¢; = 7, — 1o
(1 <i<m). Define

m P
O,(e,2) = / e+ 3 zien| = B(e,2) 3)
i=1
Let (o, ...,Cm €Z" and
(7i,0) = (=G VO, VO)  (1<i<m) (4)
If the arithmetical relation
Coro+ oo+ Cnrm =0 while o+...+¢m =0 (5)

holds, then the coefficient of [] z)"Z% €)% in (3) is (%2) (%2) and thus indepen-

dent of r. If > |¢i| < p or p is not an even integer, this coefficient is nonzero.
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Proof. We have 6; —v; =G, . vi— .0 =Cand > vi+>.0; = |G| +...+]|nl, s0
that Z’YZ‘ V 261 = %Z |<z| Moreover Z(CS, —'yi)qi e ZCiTi =0,sothat y ~4. &

2.4 Almost independent sets of integers. Main theorem

The Computational lemmas suggest the following definition.

Definition 2.4.1 Let £ C Z.

(i) E enjoys the property (3,,) of almost n-independence provided there is a finite
subset G C E such that E \ G is n-independent, i.e. (171 + ... 4+ Gurm # 0 for all
CezZr™ andry,...,tm € E\G.

(ii) E enjoys exactly (J,,) if furthermore it fails (Jp41).

(iii) E enjoys (Joo) if it enjoys (Iy,) for all m, i.e. for any ¢ € Z™ there is a finite
set G such that (1r1 + ...+ (i 0 forry,...,rm € E\G.

Note that property (J1) is void and that (J,,+1) = (J,,). This property is also stable

under unions with a finite set. The preceding computations yield

Theorem 2.4.2 Let E={n;} CZ and 1 < p < co.

(i) Suppose p is an even integer. Then E is a real, and at the same times complex,
(umbs) in LP(T) if and only if E enjoys (3,2). If (J,/2) holds, there is in fact a
finite G C E such that E\ G is a 1-(ubs) in LP(T).

(ii) If p is not an even integer and E is a real or complex (umbs) in LP(T), then E

enjoys (Joo).

Proof. Sufficiency in (i) follows directly from Proposition 2.2.1: if £\ G is p/2-
independent, then E \ G is a real and complex 1-(ubs).
Let us prove the necessity of the arithmetical property. We keep the notation of
Computational lemmas 2.3.1 and 2.3.4. Assume E fails (J,,) and let (o,...,(n €
Z* with > ¢ = 0 and > || < 2n such that for each [ > 1 there are distinct
rh,orl, € BN\ {ny,...,n} with {orl + ... + ¢url, = 0. One may furthermore
assume that at least one of the (; is not even.
Assume E is a (umbs) in LP(T). Then the oscillation of O, in (3) satisfies

osc ©,.:(¢,z2) ——0 (6)

ecs™ l—o0

for each z € D™. We may assume that the sequence of functions ©,: converges
in C*(S™ x D™) to a function ©. Then by (6), ©(¢, z) is constant in € for each
2 € D™: in particular, its coefficient of []27Z%€)" ™% is zero. (Note that at least
one of the v; — 0; is not even). This is impossible by Computational lemma 2.3.4 if

p is either not an even integer or if p > 2n. |

Corollary 2.4.3 Let E C Z. If E is a (umbs) in C(T), that is E’s Sidon constant
is asymptotically 1, then E enjoys (Jo). The converse does not hold.
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Proof. Necessity follows from Theorem 2.4.2 and Proposition 2.1.3(é¢). There is a
counterexample to the converse in [86, Th. 4.11]: Rudin constructs a set E that

enjoys (J) while E is not even a Sidon set. [ |

For p an even integer, Sections 3 and 11 will provide various examples of (umbs) in
LP(T). Proposition 9.2.1 gives a general growth condition on F under which it is
an (umbs).

As we do not know any partial converse to Theorem 2.4.2(i7) and Corollary 2.4.3, the
sole known examples of (umbs) in LP(T), p not an even integer, and C(T) are those
given by Theorem 9.3.1. This theorem will therefore provide us with Sidon sets of
constant asymptotically 1. Note, however, that Li [568, Th. 4] already constructed

implicitly such a Sidon set by using Kronecker’s theorem.

3 Examples of metric unconditional basic sequen-
ces

After a general study of the arithmetical property of almost independence (J,,), we
shall investigate three classes of subsets of Z: integer geometric sequences, more

generally integer parts of real geometric sequences, and polynomial sequences.

3.1 General considerations

The quantity
(¢, E) = sup  inf{|Cip1 + ... + CuPm| i P1, ..., Pm € B\ G distinct }
GCE finite

= llir& inf{|C1p1 + oo+ CnPml i P1y - m € {0y myga, .} distinct}7
where {n;} = F, plays a key role. We have

Proposition 3.1.1 Let E = {n;} C Z.

(i) E enjoys (3,,) if and only if ((,E) # 0 for all { € ZI'™. If (¢, FE) < oo for some
Cly -y Cm € Z7, then E fails (Ji¢,1+..+i¢c,n|)- Thus E enjoys (Joo) if and only if
(¢, E) =00 for all (1,...,(m €Z".

(ii) Suppose E is an increasing sequence. If E enjoys (J2), then the pace ngy1 — ng
of E tends to infinity.

(iii) Suppose jF + s,kF +t C E for an infinite F, j # k € Z* and s,t € Z. Then
E fails (354 )

(iv) Let E' = {ng + my} with {my} bounded. Then ((,E) = oo if and only if
(¢, E") = 0. Thus (Js) is stable under bounded perturbations of E.

Proof. (i) Suppose ((,F) < oo. Then there is an h € Z such that there are
sequences ph,...,ph, € {npyes with S2¢Gpt = hoand {pi™, ... pht!Y is disjoint
from {pt,...,p},} for all I > 1. As 3.¢pt — S Gpi™ = 0 for | > 1, F fails
Ticalet1¢ml)-

(#i) Indeed, ((1,—1), E) = co.

(#i1) Put ¢ = (4, —k). Then (¢, FE) < oco. [ |
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3.2 Geometric sequences

Let G = {j*};>0 with j € Z\ {-1,0,1}. Then G,jG C G: so G fails (Jj4+1). In
order to check (Jj;) for G, let us study more carefully the following Diophantine

equation:
> Gt =0 with ¢eN"xZ" & Y |Gl <20l & k<. <k (7)
=1 =1

Suppose (7) holds. Then necessarily m > 2 and ¢; + Y vy Gij* % = 0. Hence
J1Gand G = il As G < 20jl, G = ljl. Then sgnj + Sy Gijb bt = 0.
Hence ko = k1 + 1 and j | sgnj + (2. As |(2| < |jl, (2 € {—sgnj,j —sgnj}. If
(o=j—sgnj,then m=3, k3 =k +2and (3 =—1. If (o = —sgnj, then m = 2:
otherwise, j | (3 as before and [(1| + |C2] + |¢3] > 2|j]. Thus (7) has exactly two

solutions:
gl %+ (—sgnj) - j* T =0 & |4 - 5% + (5 —sgnj) - j* T+ (—1) - 52 =0. (8)

If j is positive, this shows that G enjoys (J;): both solutions yield )" ¢; # 0. If j is
negative, G enjoys (J|;/—1), but the second solution of (7) shows that G fails (J);).

3.3 Algebraic and transcendental numbers

An interesting feature of property (Joo) is that it distinguishes between algebraic
and transcendental numbers. A similar fact has already been noticed by Murai [72,
Prop. 26, Cor. 28].

Proposition 3.3.1 Let E = {ny} C Z.

(i) If ngt1/nk — o where o > 1 is transcendental, then ((,E) = oo for any
Cly -y Cm €EZF. Thus E enjoys (Joo).

(ii) Write [z] for the integer part of a real x. Let ny, = [o*] with ¢ > 1 algebraic.
Let P(x) = (o +. ..+ Cqx? be the corresponding polynomial of minimal degree. Then
(¢, E) < o0 and E fails (J)¢y|+..+1cq])-

Note that part (i7) is very restrictive on the speed of convergence of ngy1/ng to o:

even if we take into account Proposition 3.1.1(iv), it requires that

[ngs1/ng —o| < o

Proof. (i) Suppose on the contrary that we have ¢ and sequences p} < ... < pl, in
E that tend to infinity such that (;p} +. ..+ (mpl, = 0. As the sequences {p!/pl,};
(1 <i < m) are bounded, we may assume they are converging — and by hypothesis,
they converge either to 0, say for i < j, or to 0~% for d; € N and i > j. But then
chfdf +...4 (o % =0 and o is algebraic.

(#4) Apply Proposition 3.1.1(¢) with (:

[Golo*] + -+ Calo™ ] = [Go([0*] = o*) + ..+ Ga([" T = o™ < D16 -
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3.4 Polynomial sequences

Let us first give some numerical evidence for the classical case of sets of dth powers.
The table below reads as follows: “the set E = {k%} for d the value in the first
column fails the property in the second column by the counterexample given in
the third column.” Indeed, each such counterexample to n-independence yields

arbitrarily large counterexamples.

{k?} | fails | by counterexample

(J5) [ 72 +12 =252 (or 182 + 12 = 152 + 102 [16, book II, problem 9])
(J2) [123 + 13 = 103 + 92 [11, due to Frénicle]

(J2) | 158% 4 59% = 134* 4 133* (or 12231* + 2903* = 103814 + 10203* [25])
(J3) [ 675 + 28% + 24° = 62° + 54° + 35 (another first in [70])

(J3) | 235 + 15% 4+ 106 = 226 + 195 4 36 [82]
(J4)
(J5)
(J)
(J7)

1497 + 1237 4+ 147 + 107 = 1467 + 1297 + 907 + 157 [18§]
438 +20% + 118 4 10% + 18 = 418 4 35% + 328 + 285 + 5% (see [19])
239 + 187 + 149 + 2139 + 19 = 229 + 219 + 15% + 10° + 99 + 5% [56)
3810 43310 + 2. 2610 4 1510 4- 810 4 110 =

3610 + 3510 4 3210 4+ 2910 4 2410 4 2310 4 2210 (another first in [70])

Table 3.4.1

Note that a positive answer to Euler’s conjecture — for k > 5 a¥ + b* = ¢* + d*
has only trivial solutions in integers — would imply that the set of kth powers has
(J2). This conjecture has been neither proved nor disproved for any value of k > 5
(see [91] and [19]).

Now let E = {ni} C Z be a set of polynomial growth: |nz| < k¢ for some d > 1.
Then |E N [-n,n]| = n'/? and by [86, Th. 3.6], F fails the A(p) property for p > 2d
and F fails a fortiori (Jg4+1). In the special case E = {P(k)} for a polynomial P of

degree d, we can exhibit a huge explicit arithmetical relation. Recall that

AT P(k) = zjj (Z)(_1)fp(k —4), z]: (‘Z)(—l)i —0, ZJ: (Z) —92i. ()

i=0 =0 =0

As AY1P(k) = 0, this makes E fail (Jy4), which is coarse.

Conclusion By Theorem 2.4.2, property (J,,) yields directly (umbs) in the spaces
L2P(T), p < n integer. But we do not know whether (J.,) ensures (umbs) in spaces

LP(T), p not an even integer.

4 Metric unconditional approximation property

As we investigate simultaneously real and complex (umap), it is convenient to in-
troduce a subgroup S of T corresponding to each case. Thus, if S=D = {-1,1},
then the following applies to real (umap). If S=T = {e € C: |¢| = 1}, it applies to

complex (umap).
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He who is first and foremost interested in the application to harmonic analysis may
concentrate on the equivalence (ii) < (iv) in Theorem 4.3.1 and then pass on to

Section 6.

4.1 Definition

We start with defining the metric unconditional approximation property ((umap)
for short). Recall that ATy, = Ty, — Tr—1 (where Ty = 0).

Definition 4.1.1 Let X be a separable Banach space.

(i) A sequence {Ty} of operators on X is an approximating sequence (a.s. for short)
if each Ty, has finite rank and ||Tyx — x| — O for every x € X. If X admits an a.s.,
it has the bounded approximation property. An a.s. of commuting projections is a
finite-dimensional decomposition ((fdd) for short).

(ii) /27] X has the unconditional approximation property (uap) if there are an a.s.
{T:} and a constant C' such that

n

Z EkATk

k=1

< C foralln and € € S. (10)

The (uap) constant is the least such C.
(iii) /12, §3] X has the metric unconditional approximation property (umap) if it
has (uap) with constant 1+ ¢ for any € > 0.

Property (ii) is the approximation property which most appropriately generalizes
the unconditional basis property. It has first been introduced by Pelczynski and
Wojtaszezyk [75]. They showed that it holds if and only if X is a complemented
subspace of a space with an unconditional (fdd). By [60, Th. 1.g.5], this implies
that X is subspace of a space with an unconditional basis. Thus, neither L!([0, 1])
nor C([0,1]) share (uap).

Property (7i¢) has been introduced by Casazza and Kalton as an extreme form of
metric approximation. It has been studied in [12, §3], [33, §8,9], [32] and [31, §IV].

There is a simple and very useful criterion for (umap):

Proposition 4.1.2 ([12, Th. 3.8] and [33, Lemma 8.1]) Let X be a separable
Banach space. X has (umap) if and only if there is an a.s. {T}} such that

sup [(1d = T) + T ——1. (11)
eeS —00

If (11) holds, we say that {T}} realizes (umap). A careful reading of the above
mentioned proof also gives the following results for a.s. that satisfy 15,417, = T),.

Proposition 4.1.3 Let X be a separable Banach space.
(i) Let {Ty} be an a.s. for X such that T, 11T, = T,. A subsequence {T}} of {T}
realizes 1-(uap) in X if and only if for allk > 1 and e € S

[1d — (1 +e)T}| = 1.

(ii) X has metric unconditional (fdd) if and only if there is an (fdd) {T}} such that
(11) holds.
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4.2 Characterization of (umap). Block unconditionality

We want to characterize (umap) in an even simpler way than Proposition 4.1.2.
Relation (11) and the method of [48, Th. 4.2], suggest considering some unconditio-
nality condition between a certain “break” and a certain “tail” of X. We propose

two such notions.

Definition 4.2.1 Let X be a separable Banach space.
(i) Let T be a vector space topology on X. Then X has the property (u(7)) of 7-
unconditionality if for all w € X and norm bounded sequences {v;} C X such that
v 50

os¢ [leu + v — 0. (12)
(ii) Let {Ty} be a commuting a.s. X has the property (u(Ty)) of commuting block
unconditionality if for all e > 0 and n > 1 we may choose m > n such that for all
x€T,Bx andy € (Id — T,,)Bx

<e. 1
oscllez +y|l < e (13)

Thus, given a commuting a.s. {Ty}, T, X is the “break” and (Id — T,,) X the “tail”
of X. We have

Lemma 4.2.2 Let X be a separable Banach space and {Ty} a commuting a.s. for
X. The following are equivalent.

(i) X enjoys (u(T)) for some vector space topology T such that Tpa = x uniformly
forx € Bx;

(ii) X enjoys (u(Ty)).

Proof. (i) = (4i). Suppose that (i7) fails: there are n > 1 and ¢ > 0 such that for
each m > n, there are z,, € T,,Bx and y,, € (Id — T,,,) Bx such that

osc||€xm + Ym|| > €.
e€sS

As T,, Bx is compact, we may suppose by extracting a convergent subsequence that
Ty, = x. Let 7 be as in (4): then g, -0 and (u(7)) must fail.
(i) = (7). Let us define a vector space topology T by

T, 0 <= Vk [Tz, — 0.

Then T,z =  uniformly on Bx. Indeed, T}, (Thx —x) = (T, — Id)Tkx and T,, — Id
converges uniformly to 0 on T Bx which is norm compact.

Let us check (u(7)). Let u € Bx and {v;} C Bx be such that v; 0. Let ¢ > 0.
There is n > 1 such that ||T,u — u| < e. Choose m such that (13) holds for
z € T,Bx and y € (Id — T,,,) Bx. Then choose k > 1 such that ||T,,v;|| < € for
j > k. We have, for any € € S,

leu+vill < eThu+ (Id = Ton)vsl| + [ Tou — ull + [ Tvy|
< | Thu+ (Id — Thn)vj]| + 3e < |lu+ vj|| + 5e.

Thus we have (12). [
In order to obtain (umap) from block independence, we shall have to construct

unconditional skipped blocking decompositions.
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Definition 4.2.3 Let X be a separable Banach space. X admits unconditional
skipped blocking decompositions if for each € > 0, there is an unconditional a.s.
{Sk} such that for all 0 < a1 < by < as < by < ... andxp € (Sp, — Sa,)X

a5 e <0 0 .

€L €S

4.3 Main theorem: convex combinations of multipliers

We have

Theorem 4.3.1 Consider the following properties for a separable Banach space X .
(i) There are an unconditional commuting a.s. {Ty} and a vector space topology T
such that X enjoys (u(t)) and Tyx = x uniformly for x € Bx;

(ii) X enjoys (u(Ty)) for an unconditional commuting a.s. {Ty};

(iii) X admits unconditional skipped blocking decompositions;

(iv) X has (umap).

Then (iv) = (i) < (ii) = (i4i). If X has finite cotype, then (iii) = (iv).

Proof. (i) < (i7) holds by Lemma 4.2.2.
(iv) = (i1). By Godefroy—Kalton’s [31, Th. IV.1], there is in fact an a.s. {T}} that
satisfies (11) such that 7T} = Trnin(k,) if & # 1.
Let C be a uniform bound for ||T;||. Let € > 0 and n > 1. There is m > n+ 2 such
that

sup [|€Ty—1 + (Id = Thp1)|| < 1+ ¢/2C.

e€S
Let x € T,Bx and y € (Id — T,,)Bx. As  — T,_12 =0 and T,,, 1y = 0,
ex+y=elp1(z+y)+ (1d—Th1)(z +y),
and, for all € € S,

ez +yll < (A +/20)lz +yll < llz +yll +e.

(#4) = (i4i). By a perturbation [90, proof of Lemma II1.9.2], we may suppose that
TyTi = Twink,y if B # 1. Let € > 0 and choose a sequence of n; > 0 such that
1+¢e; =]lic;(1+n:;) <1+e¢forall j. By (ii), there is a subsequence {S; = Tk, }
such that kg = 0 and thus Sy = 0, and

SuIS>||517+6y|| < (14 n5)llz +yll (14)
€ec

for z € (Id—S;)X and y € S;_1X. Let us show that it is an unconditional skipped

blocking decomposition: we shall prove by induction that
sup

n n
x + Z €T T+ Z X;
() €i€8 i=1 i=1

andxie(tqbi—Sai)X 0<ar<by<...<ap,<b,<j—1).

< (1+¢y) for z € (Id — 5;)X

» (H;) trivially holds.
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» Assume (H;) holds for ¢ < j. Let  and x; as in (H;). Let ¢; € S. Then

Hac + Zelxl

by (14). Note that « + z,, € (Id — S, )X an application of (H,, ) yields (H;).
(#i1) = (iv). Let € > 0, n > 1. There is an unconditional skipped blocking
decomposition {S;}. Let Cy be the (uap) constant of {Si}. Let

(1 +77j Hx—i—eanxl

(1 +77])Hx + x, + Z €n€iL;

i=1

V;',j = Si'n,—',—j—l - S(i—l)n+j for 1 S ] S n and ¢ Z 0.

The jth skipped blocks are
Uj =1Id - Z‘/i’j = ZASZ”'+J’

then ZJ 1 U; =1d. Let

then R; has finite rank and
Roy+Ri+...= (nId—Id)/(n— 1) = Id.

Thus Wj = >, ; R; defines an a.s. We may bound its (uap) constant. First, since
{Sk} is a skipped blocking decomposition,

1
Vax € B supH eiRiw‘ < SUPH Ei‘/i,'xH
* ﬁesz ”_1;@63; ’
146w
< Y e Usal
j=1
1+¢ -
< (vt Ivsal).

Let us bound Y7 ||U;z||. Let ¢ < oo be the cotype of X and C. its cotype constant.
Then by Hoélder’s inequality we have for all z € By

/
Sl < (3 jugel)

n'~Yac, . averageHZ :l:ijH <np'Vic.c,. (15)
+

IN

IN

Thus the (uap) constant of {W;} is at most (1+¢)(n + C.C,yn'~1/9)/(n —1). As ¢
is arbitrarily little and n arbitrarily large, X has (umap). [ ]

Remark 4.3.2 How does Theorem 4.3.1 look in the special cases where 7 is the
weak or the weak™ topology ? They correspond to the classical cases where the a.s.

is shrinking vs. boundedly complete.

We may remove the cotype assumption in Theorem 4.3.1 (i4i) = (iv) if the space has
the properties of commuting ¢1-(ap) or £4-(fdd) for ¢ < oo, which will be introduced

in Section 5:
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Theorem 4.3.3 Consider the following properties for a separable Banach space X .
(i) There are a commuting {1-a.s. or an £y-(fdd) {Tx}, g < 0o, and a vector space
topology T such that X enjoys (u(7)) and Tpx = x uniformly for x € Bx;

(ii) X enjoys (u(Tx)) for a commmuting ¢1-a.s. or an Ly-(fdd) {Ty}, ¢ < oo;

(iii) X admits unconditional skipped blocking decompositions and one may in fact
take an ly-a.s. or an Ly-(fdd) {Tx}, ¢ < oo, in its definition 4.2.3;

(iv) X has (umap).

Then (i) & (1) = (i41) = (iv).

Proof. Part (i) < (i1) = (iit) goes as before. To prove (iii) = (iv), note that in
the proof of Theorem 4.3.1 (4i7) = (iv), one may replace the estimate in (15) by

1/q
Voe By 3 [0l <tV Usel7) T <nii0C,

where Cy is the ¢1-(ap) or the £,-(fdd) constant. [ |

5 The p-additive approximation property ¢,-(ap)
5.1 Definition

Definition 5.1.1 Let X be a separable Banach space.
(i) X has the p-additive approzimation property £,-(ap) if there are an a.s. {Tj}

and a constant C such that
_ 1/p
CYall < (3 IaTal?) " < Clal (16)

for all x € X. The £,-(ap) constant is the least such C.
(ii) X has the metric p-additive approximation property C,-(map) if it has €,-(ap)
with constant 1 + ¢ for any € > 0.

Note that £,-(ap) implies (uap) and £,-(map) implies (umap). Note also that in (16),
the left inequality is trivial with C' = 1 if p = 1; the right inequality is always
achieved for some C' if p = co.

Property (i¢) is implicit in Kalton-Werner’s [48] investigation of subspaces of LP
that are almost isometric to subspaces of £,,: see Section 5.4.

The proof of Proposition 4.1.2 can be adapted to yield

Proposition 5.1.2 Let X be a separable Banach space.
(i) If there is an a.s. {Tx} such that

1/p
(e = Tl + 1 Te]?) " ——1 (17)

— 00

uniformly on the unit sphere, then X has l,-(map). The converse holds if p = 1.
(ii) X has a metric €,-(fdd) if and only if there is an (fdd) {Ty} such that (17)
holds.
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We shall say that {T}} realizes £,-(map) if it satisfies (17).

Proof. Let {T;} be an a.s. that satisfies (17) and € > 0. By a perturbation [42,
Lemma 2.4], we may suppose that Ty11T; = T}. Choose a sequence of 1; > 0
such that 1+ ¢ = [[;<,(1 +n;) <1+ ¢ for each k. We may assume by taking a
subsequence of the Tj’s that for all k and x € X,

1/p
() el < (o = Teal? + | Tiall?) < (L mlell. (18)
We then prove by induction the hypothesis (Hy)

k 1/p
veeX (1+e)al < (o - Thall? + Y IAT]?) < (1 +20)a]l.

j=1
m (Hy) is true.
m Suppose (Hj_1) is true. Let € X. Note that

x—Tkx = (Id—Tk)(a:—Tk_lx) s ATk$=Tk(JJ—Tk_1JJ).
By (18), we get
1
(Il — Tiall? + AT |P)? < (14 )|l — T

Hence, by (Hy_1),

b 1/p
(le = Tzl + 3 AT5al?) " <

j=1
k—1 1/p

< (@t m) (e = Tioaall? + D IAT ) ™ < (1+ 202l
j=1

m We obtain the lower bound in the same way. Thus the induction is complete.
Hence {T}} realizes £,-(ap) with constant 1 +e. As ¢ is arbitrary, X has £,-(map).
If X has ¢1-(map), then for each £ > 0, there is a sequence {Sy} such that

lzll < llz = Sez|l + [Suzll <D I ASkal| < (1+¢)|]

for all z € X. By a diagonal argument, this gives an a.s. {T}} satisfying (17).
(#44) If X has a metric £,-(fdd), then for each £ > 0 there is a (fdd) {T}} such that
(16) holds with C' =1+ e. Then, for all k > 1,

k 1/p
(1 —&)[[Th < <Z IIAzjII”) < (1+ )| Tz

j=1

o0 1/p
(1 - )lle - T < ( 3 ||Azj||P) < (1+ o)l - Thal.

j=k+1
Thus
P PP
(1—e)/A+e)llzll < (HI = Ty ||” + | Dol ) <(1+e)/A—-e)lzl.
By a diagonal argument, this gives an (fdd) {T}} satisfying (17). [ |

Question 5.1.3 What about the converse in Proposition 5.1.2(¢) for p > 1 ?



44 CHAPITRE II. METRIC UNCONDITIONALITY AND FOURIER ANALYSIS

5.2 Some consequences of {,-(ap)

We start with the simple

Proposition 5.2.1 Let X be a separable Banach space.

(i) If X has £,-(ap) with constant C, then X is C-isomorphic to a subspace of an
Ly-sum of finite dimensional subspaces of X.

(ii) If furthermore X is a subspace of LL, then X is (C+¢)-isomorphic to a subspace
of (D ¥y)p for any given e > 0.

(iii) In particular, if a subspace of LP has £,-(ap) with constant C, then it is (C +¢)-
isomorphic to a subspace of £, for any given e > 0. If a subspace of L? has £,-(map),

then it is almost isometric to subspaces of £.

Proof. (i) Indeed, ®: X — (PimAT;),, 2 — {AT;x}i>1 is an embedding: for all
reX "
P
O el x < @zl = (X 1aTal% ) " < Cllellx.

(i & iii) Recall that, given £ > 0, a finite dimensional subspace of L? is (1 + ¢)-

isomorphic to a subspace of £ for some n > 1. [ |

We have in particular (see [41, §VIII, Def. 7] for the definition of Hilbert sets)

Corollary 5.2.2 Let E C Z be infinite.
(i) No L%L(T) (1 < g < 00) has £y-(ap) for p # 2.
(ii) No Cg(T) has £4-(ap) for g # 1. If E is a Hilbert set, then Cg(T) fails £1-(ap).

Proof. This is a consequence of Proposition 5.2.1(i): every infinite E contains a
Sidon set and thus a A(2V p) set. So L¥(T) contains ¢5. Also, if F is a Hilbert set,
then Cg(T) contains ¢y by [57, Th. 2]. [ |

However, there is a Hilbert set E such that Cg(T) has complex (umap): see [58, Th.
10]. The class of sets E such that Cg(T) has ¢1-(ap) contains the Sidon sets and
Blei’s sup-norm-partitioned sets [7].

5.3 Characterization of /,-(map)

Recall [48, Def. 4.1]:

Definition 5.3.1 Let X be a separable Banach space.
(i) Let T be a vector space topology on X. X enjoys property (my(7)) if for all

x € X and norm bounded sequences {y;} such that y; — 0
p p\1/P
[l + 3l = (I[P + s [P) | — 0.

(ii) X enjoys the property (m,(T)) for a commuting a.s. {Ty} if for all e > 0 and

n > 1 we may choose m > n such that for all x € Bx

1/
1T + (1d = T)al| — (| Taz|” + [|(1d — T )2]|?) /7] < e
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Then [48, Th. 4.2] may be read as follows

Theorem 5.3.2 Let 1 < p < co and consider the following properties for a sepa-
rable Banach space X .

(i) There are an unconditional commuting a.s. {Ty} and a vector space topology T
such that X enjoys (m,(7)) and Tyx = x uniformly for x € Bx;

(ii) X enjoys the property (m,(Tx)) for an unconditional commuting a.s. {Ty}.
(iii) X has £,-(map).

Then (i) < (i4). If X has finite cotype, then (ii) = (iii).

As for Theorem 4.3.1, we may remove the cotype assumption if X has commuting
l1-(ap) or £,-(fdd), p < occ:

Theorem 5.3.3 Let 1 < p < co. Consider the following properties for a separable
Banach space X.

(i) There are an €,-(fdd) (or just a commuting ¢1-a.s. in the case p = 1) {T}} and
a vector space topology T such that X enjoys (m,(7)) and Thx 5 x uniformly for
T € Bx;

(ii) X enjoys (my,(Ty)) for an £,-(fdd) (or just a commuting ¢1-a.s. in the case
p=1) {Tk}.

(iii) X has £,-(map).

Then (i) < (i) = (ii1).

5.4 Subspaces of L? with /,-(map)

Although no translation invariant subspace of L?(T) has £,-(ap) for p # 2, Proposi-
tion 5.2.1 (444) is not void. By the work of Godefroy, Kalton, Li and Werner [48, 32],
we get examples of subspaces of LP with £,-(map) and even a characterization of
such spaces.

Let us treat the case p = 1. Recall first that a space X has the 1-strong Schur
property when, given ¢ € ]0,2] and ¢ > 0, any normalized d-separated sequence in
X contains a subsequence that is (2/d + ¢)-equivalent to the unit vector basis of ¢;
(see [85]). In particular, a gliding hump argument shows that any subspace of ¢;
shares this property. By Proposition 5.2.1(iii), a space X with ¢1-(map) also does.

Now recall the main theorem of [32]:

Theorem Let X be a subspace of L' with the approzimation property. Then the
following properties are equivalent:

(1) The unit ball of X is compact and locally convez in measure;

(#3) X has (umap) and the 1-strong Schur property;

(#i1) X is (1 + €)-isomorphic to a w*-closed subspace X, of {1 for any e > 0.

We may then add to these three the fourth equivalent property

(iv) X has ¢1-(map).
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Proof. We just showed that (i) holds when X has ¢;-(map). Now suppose we
have (ii3) and let € > 0. Thus there is a quotient Z of ¢y such that Z* has the
approximation property and Z* is (1 + &)-isomorphic to X.

Let us show that any such Z* has ¢1-(map). Z has beforehand the metric approxi-
mation property, with say {R,}, because Z* has it as a dual separable space. By
[34, Th. 2.2], {R’} is a metric a.s. in Z*. Let @ be the canonical quotient map
from ¢ onto Z. Let {P,} be the sequence of projections associated to the natural

basis of ¢g. Then {P*} is also an a.s. in ¢;. Thus
I1PrQ*z* — Q" Rz, — O for any x* € Z*.

By Lebesgue’s dominated convergence theorem (see [46, Th. 1)), QP, — R,Q — 0
weakly in the space K(co, Z) of compact operators from ¢y to Z. By Mazur’s
theorem, there are convex combinations {C,} of {P,} and {D,} of {R,} such that
1QCy — DnQll(co,z) — 0. Thus

1CLQ" = Q" Dylle(z+ ) — 0. (19)

Furthermore C : ¢; — {1 has the form C}(z1,x9,...) = (t121,t2x2,...) with
0 <t; < 1. Therefore, defining Q*a = (ay,as,...),

1CRQ ally + Q7 a — CLQ%all, =
= ||(tra1,t2az,.. )1 + [|((1 = t1)as, (1 — t2)az,...)|1
= Y (il + 1= t:Dlail = Jai| = [|Q"alls. (20)
As {D;} is still an a.s. for Z*, {D}} realizes ¢1-(map) in Z* by (20), (19) and
Proposition 5.1.2(¢).
Thus X has ¢1-(ap) with constant 1 + 2e. As ¢ is arbitrary, X has ¢1-(map). |

For 1 < p < oo, we have similarly by [48, Th. 4.2]
Proposition 5.4.1 Let 1 < p < oo and X be a subspace of LP with the approxima-

tion property. The following are equivalent:

(i) X is (14 ¢)-isomorphic to a subspace X, of £, for any e > 0.

(ii) X has ly-(map).

Proof. (ii) = (i) is in Proposition 5.2.1. For (i) = (i), it suffices to prove that any
subspace Z of ¢, with the approximation property has ¢,-(map).

As Z is reflexive, Z admits a commuting shrinking a.s. {R,}. Let ¢ be the injection
of Z into ¢,,. Let {P,} be the sequence of projections associated to the natural basis

of £,. It is also an a.s. for £,,. Thus
li*Pya* — Ryi*x™||z« — 0 for any «* € £p.

As before, there are convex combinations {C,} of {P,} and {D,} of {R,} such
that |Cyi —iDy]|| — 0. The convex combinations are finite and may be chosen not

to overlap, so that for each n > 1 there is m > n such that
1/
|G + (1d = Co)a]| = (ICo|” + |(1d = C)a]7) /7
for x € ¢,. Thus Z satisfies the property (m,(D,)). Following the lines of [27,

Lemma 1], we observe that {D,} is a commuting unconditional a.s. since {P,} is.
By Theorem 5.3.2, Z has £,-(map). [ |
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6 (uap) and (umap) in translation invariant spaces

Recall that S is a subgroup of T. If S =D = {—1, 1}, the following applies to real
(umap). If S=T = {e € C: |¢| = 1}, it applies to complex (umap).

6.1 General properties. Isomorphic case

LP(T) spaces (1 < p < 00) are known to have an unconditional basis; furthermore,
they have an unconditional (fdd) in translation invariant subspaces L7, (T): this
is a corollary of Littlewood—Paley theory [61]. One may choose Iy = {0} and
I, = ]—2F, =21y [2k=1 2], Thus any LE(T) (1 < p < o) has an unconditional
(fdd) in translation invariant subspaces LY., (T). The spaces L'(T) and €(T),

however, do not even have (uap).

Proposition 6.1.1 (see [58, Lemma 5, Cor. 6, Th. 7]) Let E C Z and X be
a homogeneous Banach space on T.

(i) If Xg has (umap) (vs. (uap), €1-(ap) or £1-(map)), then some a.s. of multipliers
realizes it.

(ii) Let F C E. If Xg has (umap) (vs. (uap), £1-(ap) or €1-(map)), then so does Xp.
(iii) If Cg(T) has (umap) (vs. (uap)), then so does Xp.

Note the important property that a.s. of multipliers commute and commute with
one another.

Whereas (uap) is always satisfied for LY, (T) (1 < p < oo), we have the following
generalization of [58, remark after Th. 7, Prop. 9] for the spaces LL(T) and Cx(T).
By the method of [31],

Lemma 6.1.2 If X has (uap) with a commuting a.s. and X 2 co, then X is a dual

space.

Proof. Suppose {T},} is a commuting a.s. such that (10) holds. As X 2 ¢y, Pz** =
lim T¥*2** is well defined for each «** € X**. As {T,} is an a.s., P is a projection
onto X. Let us show that ker P is w*-closed. Indeed, if ** € ker P, then

1T 2™ || = lim || T, T2 || = 1im [T, T3 2™ = 0
m m

and T;*z** = 0. Thus
ker P = ﬂ ker 7.

Let M = (ker P);. Then M* = X. [ ]

Corollary 6.1.3 Let E C Z.
(i) If LL(T) has (uap), then E is a Riesz set.
(ii) If Cg(T) has (uap) and Cg(T) 2 co, then E is a Rosenthal set.
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Proof. In both cases, Lemma 6.1.2 shows that the two spaces are separable dual
spaces and thus have the Radon-Nikodym property. We may now apply Lust-

Piquard’s characterization [63]. [ |

There are Riesz sets E such that LL(T) fails (uap): indeed, the family of Riesz sets
is coanalytic [95] while the second condition is in fact analytic. There are Rosenthal
sets that cannot be sup-norm-partitioned [7].

The converse of Proposition 6.1.1(iii) does not hold: LL(T) may have (uap) while
Cg(T) fails this property. We have

Proposition 6.1.4 Let E C Z.

(i) The Hardy space H'(T) = L(T) has (uap).

(ii) The disc algebra A(T) = Cn(T) fails (uap). More generally, if Z \ E is a Riesz
set, then Cg(T) fails (uap).

Proof. (i) Indeed, H'(T) has an unconditional basis [66]. Note that the first un-
conditional a.s. for H*(T) appears in [67, §II, introduction] with the help of Stein’s
[92, 93] multiplier theorem (see also [99]).

(i7) Let A C T be the Cantor set. By Bishop’s improvement [6] of Rudin—Carleson’s
interpolation theorem, every function in C(A) extends to a function in Cg(T) if Z\ E
is a Riesz set. By [74, main theorem], this implies that C(A) embeds in Cg(T).
Then Cg(T) cannot have (uap); otherwise C(A) would embed in a space with an

unconditional basis, which is false. [ |

Remark 6.1.5 Recent studies of the Daugavet Property by Kadets and Werner
generalize Proposition 6.1.4(i4). This property of a Banach space X states that for
every finite rank operator T on X |[Id + T|| = 1+ ||T||. By [43, Th. 2.1], such an
X cannot have (uap). Further, by [97, Th. 3.7], Cg(T) has the Daugavet Property
if Z\ E is a so-called semi-Riesz set, that is if all measures with Fourier spectrum
in Z\ E are diffuse.

Question 6.1.6 Is there some characterization of sets E C Z such that Cg(T) has
(uap) ? Ounly a few classes of such sets are known: Sidon sets and sup-norm-
partitioned sets, for which Cg(T) even has ¢1-(ap); certain Hilbert sets. We conjec-

ture that Cg(T) fails (uap) if E contains an infinite parallelepiped.

6.2 Characterization of (umap) and ¢,-(map)

Let us introduce

Definition 6.2.1 Let E C Z and X be a homogeneous Banach space on T.
E enjoys the Fourier block unconditionality property (U) in X whenever, for any
e > 0 and finite FF C E, there is a finite G C E such that for f € Bx, and
g e BXE\G

oscllef +gllx <e. (21)
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Lemma 6.2.2 Let E C7Z and X be a homogeneous Banach space on T. The fol-
lowing are equivalent.
(i) Xg has (u(7y)), where Ty is the topology of pointwise convergence of the Fourier
coefficients:

Tn 50 < Vkz,(k)—O0.

(ii) E enjoys (U) in X.
(iii) Xg enjoys the property of block unconditionality for any, or equivalently for

some, a.s. of multipliers {T}.

Proof. (i) = (i7). Suppose that (i7) fails: there are £ > 0 and a finite F' such that
for each finite G, there are x¢ € Bx, and yg € Bxp o such that

oscllexa + ya| > e.
ecS

As By, is compact, we may suppose g = z. As yg E»(), (u(Ty)) fails.

(#9) = (uwii). Let C be a uniform bound for ||Ty|. Let n > 1 and € > 0. Let
F be the finite spectrum of T,,. Let G be such that (21) holds for all f € Bx,
and g € Bx, .. Now there is a term V' in de la Vallée-Poussin’s a.s. such that
Vlxe = ld|x, and ||V||lg(x,) < 3. As V has finite rank, we may choose m > n
such that ||(Id —T5,) Ve (xp) = IVId = Tn)llo(x4) < €. Let then x € T;, Bx,, and
y € (Id — T,,) Bx,,. We have

(21)
lex+yl < Jlex+Id—=V)y|l+e < |la+(Id—=V)y|| +4(C+1)e+¢
< lz+y| + (4C + 6)e.

(#4i) = () is proved as Lemma 4.2.2 (i7) = (4): note that if y; 70, then | Ty;|| — O
for any finite rank multiplier T'. [ |

We may now prove the main result of this section.

Theorem 6.2.3 Let E C Z and X be a homogeneous Banach space on T. If Xg has
(umap), then E enjoys (W) in X. Conversely, if E enjoys (W) in X and furthermore
XE has (uap) and finite cotype, or simply ¢1-(ap), then X g has (wmap). In particular,
(i) For 1 < p < oo, LE(T) has (umap) if and only if E enjoys (U) in LP(T).

(i) LL(T) has (umap) if and only if E enjoys (W) in L*(T) and LL(T) has (uap).
(iii) If E enjoys (U) in C(T) and Cg(T) has £1-(ap), in particular if E is a Sidon
set, then Cg(T) has (umap).

Proof. Notice first that (wmap) implies (U) by Lemma 6.2.2 (ii3) = (ii).
(i) Notice that L%, (T) (1 < p < 0o) has an unconditional (fdd) of multipliers {mgnr, }
and cotype 2V p. Thus (U) implies (umap) by Theorem 4.3.3(ii) = (iv).
By Lemma 6.2.2, part (i) and (4¢) follow from Theorem 4.3.1(4i) = (iv) and
Theorem 4.3.3(ii) = (iv) respectively. [
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Remark 6.2.4 Consider the special case E = {0} U {j*}r>0, |j| > 2, and suppose
Xg has complex (umap). By Theorem 6.2.3,

osc ||ea + be;x +-cejrsr || —— 0.
ecT k

— 00

Let us show that then {0,1,j} is a 1-unconditional basic sequence in X. Indeed,

for any €, u,v € T, and choosing x such that pux = vk,

lea + pber +veej|| = |lea+ prbes +vrice; ||
= |lepra +bey +ce; || = ||€nRa + bejx +cejur ||

whose oscillation tends to 0 with k. By Proposition 2.2.1(i), Xg fails complex
(umap) if X is LP(T), p not an even integer, or C(T). By Proposition 2.2.1(i7),
LZ(T), n > 1 integer, fails complex (umap) if j is positive and n > j, or if j is

negative and n > |j| + 1.

The study of £,-(map) in X reduces to the trivial case p = 2, X = L?(T), and to
the case p = 1, X = C(T). To see this, note that we have by a repetition of the

arguments of Lemma 6.2.2

Lemma 6.2.5 Let E C7Z and X be a homogeneous Banach space. The following
properties are equivalent.

(i) Xg has my(7y).

(ii) E enjoys the following property My, in X: for any € > 0 and finite F C E,
there is a finite G C F' such that for f € Bx, and g € Bx,, .

[I1f +gllx = (FI% + Ngl%) VP < e
(iii) Xg enjoys m,(Ty) for any, or equivalently for some, a.s. of multipliers.

Proposition 6.2.6 Let E C Z and X be a homogeneous Banach space.

(i) If Xg has £,-(map), then E enjoys M,, in X.

(ii) LE(T) has €,-(map) if and only if p=q = 2.

(iii) Cg(T) has ¢1-(map) if and only if it has ¢1-(ap) and E enjoys My in C(T): for
all € > 0 and finite F C E, there is a finite G C E such that

VfeCr(T) Vg € Cp\a(T)  [[fllec +lglloc < (A +)If + glloo-

Proof. (i) Let € > 0. Let {T}} be an a.s. of multipliers that satisfies (16) with
C < 1+ e. By the argument of [58, Lemma 5], we may assume that the T}’s
have their range in Pg(T). Let n > 1 be such that (3, ||Aka||§()1/p < ¢ for
J € Bx,. Let G be such that Tg =0 for K <n and g € Xp\g. Then successively

(S an+ o) " - (Ziansy) | <=

k<n

\ (Z AT (f + g)Hﬂ’()w = (Z HATkgH’)’()l/p‘ <e,

k>n



7. PROPERTY (umap) AND ARITHMETICAL BLOCK INDEPENDENCE ol

(18t + %)~ (S IATAIE + 3 [aTigly )| < 2177

and
£+ gllx = (A% + lglZ) 7] < 26(1+2/7).

(it) By Corollary 5.2.2, we necessarily have p = 2. Furthermore, if L%(T) has
lo-(map), then by property Mo

|||en+em ||q_\/§|—’0'

m—00
Now || en + € [lg = ||1 + €1 ||, is constant and differs from [|1 + e; || = v/2 unless
g = 2: otherwise the only case of equality of the norms || - ||; and || - ||2 occurs for

almost everywhere constant functions.
(#91) Use Theorem 5.3.3. u

7 Property (umap) and arithmetical block indepen-
dence

We may now apply the technique used in the investigation of (umbs) in order to ob-
tain arithmetical conditions analogous to (J,,) (see Def. 2.4.1) for (umap). According
to Theorem 6.2.3, it suffices to investigate property (U) of block unconditionality:
we have to compute an expression of type || f + €g||,, where the spectra of f and
g are far apart and € € S. As before, S = T (vs. S = D) is the complex (vs. real)

choice of signs.

7.1 Property of block independence

To this end, we return to the notation of Computational lemmas 2.3.1 and 2.3.4.
Define

J 7TL7j
NN ——
U.(e,2) = O.((1,...,1,¢...,€),2)
J m P
= / e () + > zien(t)+€ > zie,(t)| dm(t)
i=1 1=j+1
2
_ p/2 20 p/2 p/2 pI¥ jai—Bi ai—Pi
= % () meke+ X (2 (F) S Tt
OLENTn a#ﬂggﬁn

As in Computational lemma 2.3.4, we make the following observation:

Computational lemma 7.1.1 Let (y,...,(n € Z* and 7,5 be as in (4). If the
arithmetic relation (5) holds, then the coefficient of the term eXZi>i%=% [] 27 7%
in (22) is (%2) (pé2) and thus independent of r. If Y || < p or p is not an even
integer, this coefficient is nonzero. If (o + ...+ (; is nonzero (vs. odd), then this

term is nonconstant in € € S.

Thus the following arithmetical property shows up. It is similar to property (J,) of

almost independence.
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Definition 7.1.2 Let E CZ and n > 1.

(i) E enjoys the complex (vs. real) property (J,) of block independence if for any
¢ €7 with (1 + ...+ (; nonzero (vs. odd) and given p1,...,p; € E, there is a
finite G C E such that (1p1 + ... 4+ Cmbm # 0 for all pjsa, ..., pm € E\G.

(ii) E enjoys exactly complex (vs. real) (J,) if furthermore it fails complex (vs. real)
(n+1)-

(iii) E enjoys complex (vs. real) (Joo) if it enjoys complex (vs. real) (dy) for all
n > 1.

The complex (vs. real) property (J,) means precisely the following. “For every
finite F' C E there is a finite G C E such that for any two representations of any
k € Z as a sum of n elements of F U (E\ G)

prt...+pp=k=p+...+0p,
one necessarily has
Hj:pj e FYl=H{j:p; € F}|in Z (vs. in Z/27).”

Thus property (J,) has, unlike (J,,), a complex and a real version. Real (J,) is
strictly weaker than complex (J,): see Section 8. Notice that (J;) is void and
(dn+1) = (Jn) in both complex and real cases. Also (J,) # (J,): we shall see
in the following section that E = {0} U {n*};>0 provides a counterexample. The

property (Jz2) of real block independence appears implicitly in [58, Lemma 12].

Remark 7.1.3 In spite of the intricate form of this arithmetical property, (J,) is
the “simplest” candidate, in some sense, that reflects the features of (U):

m it must hold for a set E if and only if it holds for a translate E + k of this set:
this explains Y ¢; = 0 in Definition 7.1.2(4);

m as for the property (U) of block independence, it must connect the break of E
with its tail;

m Li gives an example of a set E whose pace does not tend to infinity while Cg(T)
has ¢1-(map). Thus no property (J,) should forbid parallelogram relations of the
type p2 — p1 = ps — p3, Where py, po are in the break of E and p3, p4 in its tail. This
explains the condition that {3 + ...+ ¢; be nonzero (vs. odd) in Definition 7.1.2(3).

We now repeat the argument of Theorem 2.4.2 to obtain an analogous statement

which relates property (U) of Definition 6.2.1 with our new arithmetical conditions

Lemma 7.1.4 Let E = {ny} CZ and 1 < p < 0.

(i) Suppose p is an even integer. Then E enjoys the complex (vs. real) Fourier block
unconditionality property (U) in LP(T) if and only if E enjoys complex (vs. real)
(3p/2)-

(ii) If p is not an even integer and E enjoys complex (vs. real) (W) in LP(T), then

E enjoys complex (vs. real) (Joo)-
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Proof. Let us first prove the necessity of the arithmetical property and assume

E fails (J,): then there are (p,...,(m € Z* with > ¢ = 0, |G| < 2n and

Co+...+¢; nonzero (vs. odd); there are ro, ...,r; € E and sequences T§'+17 ke

E\ {n1,...,n;} such that
<0T0+...+§j7“j—|-€-j+17’§+1 +...—|—<m’/‘£n =0.
Assume E enjoys (U) in LP(T). Then the oscillation of ¥, in (22) satisfies

osc U, (e, 2) T 0 (23)
for each z € D™. The argument is now exactly the same as in Theorem 2.4.2:
we may assume that the sequence of functions ¥,. converges in C*(S x D™) to
a function ¥. Then by (23), ¥(e, 2z) is constant in € for each z € D™, and this
is impossible by Computational lemma 7.1.1 if p is either not an even integer or
p > 2n.

Let us now prove the sufficiency of (d,/2) when p is an even integer. First, let
ARl =fa €A, :a; =0fork <i <1} (A, is defined before Prop. 2.2.1), and

convince yourself that (d,/2) is equivalent to

Vk 3l > kVa,B € A];’/lz Zami = Zﬁmi = Zai = Zﬂi (vs. mod 2). (24)

i<k i<k

Let f =Y a;e,, € Pr(T). Let K > 1 and € € S. By the multinomial formula,

||€7ka +(f - Wlf)"g = / ’ Z (p22> 62”9“0” (H a?i> €Y ain;

aeAk!

p/2
(24) now signifies that we may choose | > k such that the terms of the above sum

2
dm

2
dm.

0w ()

acAk!

/2
ar+...tag=j

over j (vs. the terms with j odd and those with j even) have disjoint spectrum. But
then ||emy f + (f — mf)|lp is constant for € € S and E enjoys (U) in LP(T). [ |

Note that for even p, we have as in Proposition 2.2.1 a constant C,, > 1 such that
either (21) holds for € = 0 or fails for any € < C,. We thus get

Corollary 7.1.5 Let E CZ and p be an even integer. If E enjoys complex (vs.
real) (W) in LP(T), then there is a partition E = |J Ey into finite sets such that for

any coarser partition E = |J E},
KESCRIN- DOLCN Il

Among other consequences, £ = E; U Ey where the LY, (T) have a complex (vs.
real) 1-unconditional (fdd).

Question 7.1.6 Is this rigidity proper to translation invariant subspaces of L?(T)

with p an even integer, or generic for all its subspaces (see [13]) ?
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7.2 Main result

Lemma 7.1.4 and Theorem 6.2.3 yield the main result of this section.

Theorem 7.2.1 Let ECZ and 1 < p < o0.

(i) Suppose p is an even integer. Then LE,(T) has complex (vs. real) (umap) if and
only if E enjoys complex (vs. real) (3,/2)-

(i) If p is not an even integer and L4(T) has complex (vs. real) (wmap), then E

enjoys complex (vs. real) (Joo)-

Corollary 7.2.2 Let F C Z.
(i) If Cg(T) has complex (vs. real) (umap), then E enjoys complex (vs. real) (Joo)-
(ii) If any L% (T), p not an even integer, has complex (vs. real) (wmap), then all

LE(T) with p an even integer have complex (vs. real) (umap).

Suppose p is an even integer. Then Section 8 gives various examples of sets such
that L%,(T) has complex or real (umap). Proposition 9.2.1 gives a general growth
condition that ensures (umap).

For X = LP(T), p not an even integer, and X = C(T), however, we encounter the
same obstacle as for (umbs). Section 8 only gives sets E such that X fails (umap).
Thus, we have to prove this property by direct means. This yields four types of
examples of sets E such that the space €g(T) — and thus by [58, Th. 7] all L}, (T)
(1 <p < o0) as well — have (umap).

m Sets found by Li [58]: Kronecker’s theorem is used to construct a set containing
arbitrarily long arithmetic sequences and a set whose pace does not tend to infinity.
Meyer’s [68, VIII] techniques are used to construct a Hilbert set.

m The sets that satisfy the growth condition of Theorem 9.3.1;

m Sequences E = {n;} C Z such that nyy1/ni is an odd integer: see Proposition
9.1.1.

Question 7.2.3 We know no example of a set E such that some LY, (T), p not an

even integer, has (umap) while Cg(T) fails it.

There is also a good arithmetical description of the case where {7} or a subsequence

thereof realizes (umap).

Proposition 7.2.4 Let E = {n}i>1 C Z. Consider a partition E = |J,~, Ex into
finite sets. -

(i) Suppose p is an even integer. The series Y mg, realizes complex (vs. real) (umap)
in LI(T) if and only if there is an 1 > 1 such that

Py, Pm €EFE _ .

{ Pt ot Copn = 0 = Vk>I Z ¢; =0 (vs. is even) (25)
;€

Jor all ¢ € Z7),. Then L% (T) admits the series Tu,_, B, + )y TE, as 1-uncondi-

tional (fdd). In particular, choose Ey = {ny}. The sequence {m} realizes complex

and real (umap) in LY,(T) if and only if there is a finite G such that for ¢ € Z;’;Q

{ P1,---5Pm € = p1,...,Ppm € G. (26)

Clpl + ...+ CnPm =0



8. EXAMPLES FOR (umap): BLOCK INDEPENDENT SETS OF CHARACTERS %)

Then E\ G is a 1-(ubs) and E enjoys (J,/2).

(ii) Suppose p is not an even integer. If > 7g, realizes complex (vs. real) (umap) in
LY.(T), then for each ( € Z™ there is an | > 1 such that (25) holds. In particular,
if {mi} realizes either complex or real (umap) in LE(T), then for all ¢ € Z™ there
is a finite G such that (26) holds. This is equivalent to (Joo).

Proof. It is analogous to the proof of Lemma 7.1.4: suppose we have ( € Z*
such that (25) fails for any I > 1. Then there are (,...,(n € Z* with Y. ¢ =0,
> 1G] < 2nand (o + ... + ¢ nonzero (vs. odd) for some j; for each [, there are
7“6, ... ,ré- € Ug<1 Ex and ré-H, ... ,Tﬁn € Ug>1 E such that Coré +...+ CmTfn =0.
But then Y 7p, cannot realize complex (vs. real) (umap): the function ¥, in (22)
would satisfy (23) and we would obtain a contradiction as in Theorem 2.4.2.

Sufficiency in (i) and (i') is proved exactly as in Lemma 7.1.4(7). [ |

In particular, suppose that the cardinal |Ey| is uniformly bounded by M and {7 g, }
realizes (umap) in LI (T). If p # 2 is an even integer, then F is a A(p) set as union
of a finite set and M p/2-independent sets (see Prop. 2.2.1 and [86, Th. 4.5(b)]). If

p is not an even integer, then F is a A(q) set for all ¢ by the same argument.

8 Examples for (umap): block independent sets of
characters

8.1 General properties

The pairing (¢, E') underlines the asymptotic nature of property (J,). It has been
defined before Proposition 3.1.1, whose proof adapts to

Proposition 8.1.1 Let E = {n;} C Z.

(i) If ((,E) < oo for (1,...,Cm € Z% with > (; nonzero (vs. odd), then E fails
complex (vs. real) (Ji¢,|+..+|c,|). Conversely, if E fails complex (vs. real) (3n),
then there are (1, ...,Cm € Z% with Y, ¢; nonzero (vs. odd) and Y |G| < 2n—1 such
that (¢, E) < co.

(ii) Thus E enjoys complex (vs. real) (doo) if and only if ((,E) = oo for all
Cly- -y Cm € ZF with Y. (; nonzero (vs. odd).

Proof of the converse in (i). If E fails complex (vs. real) (d,,), then there are ( € Z
with ¢; + ...+ ¢; nonzero (vs. odd), p1,...,p; € E and sequences pé»H, ook, €

{nr}i>1 such that 3, Gpl = — > i<y Gipie Let ¢ = (Gj41, .-+, Gn). Then 37|¢| <
2n — 1 and (¢', F) < occ. [

An immediate application is, as in Proposition 3.1.1,

Proposition 8.1.2 Let F = {n;} C Z.
(i) Suppose E enjoys (Jon—1). Then E enjoys complex (3,) and actually there is a
finite set G such that (26) holds for ¢ € Z7.
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(ii) Suppose E enjoys (Joo). Then E enjoys compler (Joo) and actually for all
¢ € Z™ there is a finite G such that (26) holds.

(iii) Complex and real (Joo) are stable under bounded perturbations of E.

(iv) Suppose there is h € Z such that E U {h} fails complex (vs. real) (dn). Then
E fails complex (vs. real) (Jon—1). Thus the complex and real properties (Joo) are
stable under unions with an element: if E enjoys it, then so does E'U {h}.

(v) Suppose jF + s,kF +t € E for an infinite F, j # k € Z* and s,t € Z. Then E
fails complex (3|j|+ k), and also real (3|51 x)) if 7 and k have different parity.

We now turn to an arithmetical investigation of various sets E.

8.2 Geometric sequences

Let G = {j*}x>0 with j € Z\ {-1,0,1}. We resume Remark 6.2.4.

(1) AsG,jG C G, G fails complex (J|j|+1), and also real (J);|41) if j is even. The
solutions (8) to the Diophantine equation (7) show at once that G enjoys complex
(d151), since there is no arithmetical relation ¢ € Z|”j?| between the break and the tail
of G. If j is odd, then G enjoys in fact real (Jo ). Indeed, let (i,...,(n € Z* and
ki < ... < km: then > (% € j¥17Z and either |3 (5% | > j* or 3 ¢i% = 0.
Thus, if ((, E) < oo then (¢, E) = 0 and Y (; is even since j is odd. Now apply
Proposition 8.1.1(4i7). The same argument yields that even G U —G U {0} enjoys

real (Joo). Actually much more is true: see Proposition 9.1.1.

(2) GU{0} may behave differently than G with respect to (J,): thus this property
is not stable under unions with an element. Indeed, the first solution in (8) may be
written as (—j+1)-0+7-5%+(—1)-55+1 = 0. If j is positive, (—j+1)+j+(—1) < 25
and G U {0} fails complex (J;). A look at (8) shows that it nevertheless enjoys
complex (J;_1). On the other hand, G U {0} still enjoys complex (J);) if j is
negative. In the real setting, our arguments yield the same if j is even, but we
already saw that G U {0} still enjoys real (Jo) if j is odd.

8.3 Symmetric sets

By Proposition 3.1.1(##4) and 8.1.2(vi), they do enjoy neither (Jo) nor complex
(d2). They may nevertheless enjoy real (J,). Introduce property (J3™) for E: it
holds if for all py,...,p; € E and n € Z*™ with > 7" n; even, >_|" |n;| < 2n and
M + ...+ n; odd, there is a finite set G' such that n1p1 + ... + Nmpm # 0 for any
Dj+1s---,Pm € E'\ G. Then we obtain

Proposition 8.3.1 EU—FE has real (3,,) if and only if E has (J3™).

Proof. By definition, £ U —F has real (J,) if and only if for all p1,...,p; € E
and ¢',¢* € Z™ with ¢* + (% € Zy" and odd Y, ¢} — (7, there is a finite set

G such that > (¢! — ¢?)pi # 0 for any pji1,...,pm € E\ G — and thus if and

only if F enjoys (J2™): just consider the mappings between arithmetical relations
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(¢1,¢?) = 5= ¢1 = 2 and +— (¢1,¢2) such that n = ¢' — ¢2, where ¢} = 1,/2 if n;
is even and, noting that the number of odd 7;’s must be even, ¢} = (n; —1)/2 and
¢! = (n; +1)/2 respectively for each half of them. [
Consider again a geometric sequence G = {j*} with j > 2. If j is odd, we saw
before that G U —G and GU —G U {0} enjoy real (J). If j is even, then GU -G
fails real (J;11) since G does. G U —G U {0} fails real (J;/241) by the arithmetical
relation 10+ j - % + (=1) - T = 0 and Proposition 8.3.1. G U —G enjoys real
(d;) and G U —G U {0} enjoys real (J;/2) as the solutions in (8) show by a simple
checking.

8.4 Algebraic and transcendental numbers
The proof of Proposition 3.3.1 adapts to

Proposition 8.4.1 Let E = {ny} C Z.

(i) If ng41/nk — o where o > 1 is transcendental, then E enjoys complex (Joo ).
(ii) Let ny = [o*] with o > 1 algebraic. Let P(x) = (g+ ...+ qx? be the correspon-
ding polynomial of minimal degree. Then E fails compler (J¢o|+...+|c,)s and also
real (3\¢ol+...+1ca)) if P(1) is odd.

8.5 Polynomial sequences

Let E = {P(k)} for a polynomial P of degree d. The arithmetical relation (9) does
not adapt to property (d,). Notice, though, that {AJ P}?:1 is a basis for the space
of polynomials of degree less than d and that 2¢P(k) — P(2k) is a polynomial of
degree at most d — 1. Writing it in the basis {A7 P}¢ yields an arithmetical relation
29. P(k) — 1+ P(2k) + Y°7_y ¢ - P(k — j) = 0 such that 24 — 1+ Y ¢; is odd. By
Proposition 8.1.1 (i¢), E fails real (J,) for a certain n. This n may be bounded in
certain cases:

m The set of squares fails real (J2): let F, be the Fibonacci sequence defined by
Fo=F =1and F,42 = Fp41+ F,. As {F,11/F,} is the sequence of convergents
of the continued fraction associated to an irrational (the golden ratio), F,, — oo
and F,Fp40 — F2_ = (—1)" (see [26]). Inspired by [71, p. 15], we observe that

(FnFn+2 + F3+1)2 + (F3+1)2 - (FnFn—i-l + Fn+1Fn+2)2 + 12

m The set of cubes fails real (J2): starting from Binet’s [5] simplified solution of
Euler’s equation [24], we observe that p, = 9n?, ¢, = 1 4+ 93, r, = 3n(1 + 3n?)
satisfy p2 + ¢2 = r2 4+ 12 and tend to infinity.

m The set of biquadrates fails real (J3): by an equality of Ramanujan (see [81, p.
386]),

(4n° — 5n)* + (6n* — 3)* + (4n* + 1)* = (4n° +n)* + (2n* — 1)* + 3%

As for (J,), a positive answer to Euler’s conjecture would imply that the set of kth

powers has complex (J2) for k > 5.
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Conclusion By Theorem 7.2.1, property (J,) yields directly (umap) in the space
L2P(T), p < n integer. But we do not know whether (J..) ensures (umap) in spaces
LP(T), p not an even integer, or C(T).

Nevertheless, the study of property (J3) permits us to determine the density of
sets such that X enjoys (umap) for some X # L2(T),L*(T): see Proposition 11.2.

Other applications are given in Section 13.

9 Positive results: parity and a sufficient growth
condition

9.1 Cy3(T) has real (umap) because 3 is odd

In the real case, parity plays an unexpected role.

Proposition 9.1.1 Let E = {n;} C Z and suppose that ni11/ny is an odd integer
for all sufficiently large k. Then Cg(T) has real (umap).

Then Xg also has real (umap) for every homogeneous Banach space X on T.

Proof. Let us verify that real (U) holds. Let € > 0 and F C EN[—n,n]. Let [, to be
chosen later, such that ngy1/ng is an odd integer for k > I. Take G D {ny,...,n;}
finite. Let f € Be, and g € Be, . Then g(uexpir/n;) = —g(u) and

|f(wexpim/mi) = f(u)l < 7/lml - [ f]loo < 7nflma] < &

by Bernstein’s inequality and for [ large enough. Thus, for some u € T,

If =9glle = [f(u)+g(uexpin/ni)
< |f(uexpin/ny) + gluexpin/n)| + ¢
S Hf"’_g”oo +e.
As F is a Sidon set, we may apply Theorem 6.2.3(i1). ]

Furthermore, if E satisfies the hypothesis of Proposition 9.1.1, so does F U —F =
{n1,—n1,n2,—na,...}. But FU —F fails even complex (J2) and no Xp,_p #
L% ,_(T) has complex (umap). On the other hand, if there is an even integer h
such that ngi1/nx = h infinitely often, then E fails real (J)5+1) by Proposition
8.1.2(vi).

Remark 9.1.2 Note that if ng1/n is furthermore uniformly bounded, then the
a.s. that realizes (umap) cannot be too simple. In particular, it cannot be a (fdd) in
translation invariant spaces Cpg, (T): let k be such that nj and ny4q are in distinct
E;; then ngy1 4+ (—ngy1/nk) - nx = 0 and we may apply Proposition 7.2.4(i7). This
justifies the use of Theorem 6.2.3(4i).
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9.2 Growth conditions: the case L?(T), p an even integer

For X = LP(T) with p an even integer, a look at (J,,) and (d,,) gives by Theorems
2.4.2 and 7.2.1 the following general growth condition:

Proposition 9.2.1 Let E = {n,} CZ and p > 1 an integer. If
liminf |ngyq1/nk| > p+1, (27)

then {m} realizes the complex (umap) in LI (T) and there is a finite G C E such

that E\ G is a 1-unconditional basic sequence in L?P(T).

Proof. Suppose we have an arithmetical relation

Cingy + .o+ Cung,, =0 with (€ Z7" and |ng, | < ... < |ng (28)

Then |(mng,, | < [Gink, |+ .- 4 [Gn-17k,,_,|- The left hand side is smallest when
ICm| = 1. As |G1] + ... 4 |G| < 2p and necessarily |¢;] < p, the right hand side
is largest when |(n—1| = p and |(m—2| = p — 1. Furthermore, it is largest when
km = km—1+ 1= kp—2+ 2. Thus, if (28) holds, then

7, | < plrk, o[+ (p = D)0y, |-

By (27), this is impossible as soon as m is chosen sufficiently large, because p+1 >
p+p-1)/(p+1). u

Note that Proposition 9.2.1 is best possible: if j is negative, then {;*} fails (J;).
If j is positive, then {j*} U {0} fails complex (J;).

9.3 A general growth condition

Although we could prove that E enjoys (J) and (Joo) when ngyq1/ne — oo, we
need a direct argument in order to get the corresponding functional properties: we

have

Theorem 9.3.1 Let E = {n;} C Z such that ngy1/nr — oo. Then Cx(T) has ¢;-
(map) with {m.} and E is a Sidon set with constant asymptotically 1. If the ratios

ng11/ny are all integers, then the converse holds.

Note that by Proposition 2.1.3(i7), E is a metric unconditional basic sequence in
every homogeneous Banach space X on T. Further Xg has complex (umap) since
Cp(T) does.

Proof. Suppose |nj+1/n;| > ¢ for j > [ and some ¢ > 1 to be fixed later. Let
f=> aje,; € Pp(T)and k > [. We show by induction that for all p > k

721 — g2U-p)

21 _ p2(k—p)
sl = (1- 5 it > (1- T Yl o)

j=k+1
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m There is nothing to show for p = k.
® By Bernstein’s inequality applied to 7y, f” and separately to each a;e; , j >k,

P
7" oo < millmiflloo + D m3layl- (30)
j=k+1

Furthermore, by Lemmas 1 and 2 of [68, §VIII.4.2],

[7p+1flloe = [T flloo + lap+1] — 772/(2n127+1)H7Tpr||00~ (31)

(31) together with (29) and (30) yield (29) with p replaced by p + 1. Therefore

72 1 =
oo = i Il > (1= 5 ) (It + D ) @2

j=k+1

Thus {7;},;>x realizes ¢1-(ap) with constant 1 + 72/(2¢> — 2 — 7?). As ¢ may be
chosen arbitrarily large, E has ¢i-(map) with {m;}. Additionally (32) shows by
choosing 7 f = 0 that E is a (umbs) in C(T).

Finally, the converse holds by Proposition 8.1.2(vi): if ng41/ni does not tend to
infinity while being integer, then there are h € Z\ {0, 1} and an infinite F' such that
F,hF C E. -

Remark 9.3.2 The technique of Riesz products as exposed in [45, Appendix V,
§1.IT] would have sufficed to prove Theorem 9.3.1.

Remark 9.3.3 Suppose still that E = {n;} C Z with ng1/n; — oco. A variation
of the above argument yields that the space of real functions with spectrum in
E U —F has {;-(ap).

Remark 9.3.4 Note however that there are sets E that satisfy ngi1/ny — 1 and
nevertheless enjoy (Jo) (see end of Section 11): they might be (umbs) in C(T), but

this is unknown.

10 An excursion: estimation of the Sidon constant

The proof of Theorem 9.3.1 furnishes also an estimation of the Sidon constant of
Hadamard sets. In order to show that this estimate is optimal, we undertake first

the exact computation of the Sidon constant of sets with three elements.

10.1 Sidon constant of sets with three elements

We can compute explicitly the Sidon constant of {ny,ns,ns}. It is equal to

k:ng—’fbl

l=n3 —n;. (33)

T75§3§€T(1+T+5)/H1+7’ek +Use||oo  with {

This follows from translation invariance: let f = a1 e,, +aze,, +ase,,; write a; =
rit; with r; > 0 and ¢; € T. Then || f||l« is equal to
1+ T e eny g FOTT 3 €0y iy [loo Where O = #)thts and

t) s any (n3 — ng)/(n2 — ny)-th power of t; (34)
th is any (ny — ng)/(n2 — ny)-th power of ts.

Let us first establish
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Lemma 10.1.1 Let (a;;) € R* x R® and o, 3 € R. Consider

{ a1 sin o + ai12 Sinﬁ + a3 sin(ﬂ - Oé) =0 (35)

az1 sin o + agg sin B + agg sin(f — ) = 0.
Let dy = a11022 —a12a21, d2 = a11a23 —a13a21, d3 = a12a23 —a13azz. If didads # 0,
then the solutions to (S) are a = =0 mod. m and, if furthermore |dy| < |da|+|ds|,
|da| <'[da] +|ds| and |ds| < |di] + |da],

dj — di — d3 dj — di — d3 di —dj —dj
=7 == —a)=—"-"">= (36
cos Sd.d, , cos 3 5d.d; , cos(f — a) dody (36)
where the signs of a and 3 satisfy ds sin o + d3 sin 8 = 0.
Proof. Suppose that o 2 0 or 8 £ 0 mod. w. As (35) is equivalent to
(ain — a;zcos B)sina + (ajz + a;zcosa)sin@ =0 : i=1,2, (37)
(CLll — 13 COS ,6)) (a22 —+ Q923 COS Oz) = (a21 — 13 COS ,6)) (a12 —+ a13 COS Oz).
This simplifies to
dy +dycosa+dzcos3=0 (38)
and by (37),
(d2 sin o + d3 sinﬁ)(aig + a;3 COSOZ) =0 S =12
(dasina + dssin ) (a1 — a;zcosa) =0 ° PThe
Therefore
dosina+ dssinf3=0: (39)
otherwise d; = ds = d3 = 0. Equations (38) and (39) yield solution (36). [

Lemma 10.1.2 Let r,s > 0, k,l € Z* distinct and coprime. Let

O(t,9) = [1+re eV selt?
1+ 72 4+ 5% 4+ 2r cos(kt) + 2s cos(It + 9) + 2rscos((l — k)t + 9).

Let ®*(9) = max ®(t,0). Then 0%%2112W<I> (9) = ®*(n/k).

0<t<2m

Proof. Let us first locate the extremal points of ®. V®(¢,9) = 0 is Equation (35)

with ( )
rk sl rs(l—k a=kt
(aij)_<0 s rs ) and {let—&—ﬁ.

In the notation of Lemma 10.1.1, d; = rsk # 0, do = r?sk # 0, ds = rs?k # 0.
The solution (36), if it exists, yields ®(¢,9) = 0 and corresponds to the absolute

minimum of ®. Every other extremal point of ® satisfies
kt =1t +9 =0 mod. 7.

®* is continuous (see [80, Chapter 5.4]) and (27 /k)-periodical: choose j € Z such
that j1 =1 mod. k. Then

O(t + 2jm/k,9) = |1 + relft 45l (TH2mIUR) &Il 12 — G (¢ 9 + 2 /).
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Furthermore ®(¢, —) = ®(—t,?¥) and ®* is even. Thus ®* attains its minimum on
[0, 7/k].

Let us show that ®* has a local minimum in 7/k for all values of r, s > 0 except
eventually one value of s for a given r. Let t* be such that ®(t*,7/k) = ®*(n/k).
As before, for j such that jI =1 mod. k,

O(t*, w/k+9) = O(—t*, —7w/k — ) = ®(—t* + 257 /k, 7 /k — ).

If 0®/09(t*,m/k) # 0, this shows that ®* has a local minimum in w/k. Let us
suppose that 0®/09(t*, 7 /k) = 0. Then V®(¢*,7/k) = 0 and therefore kt* = jr
and It* + 7/k = j'7 for some j,j’ € Z. Then j or j' must be odd. We have
0?®
ot
We shall suppose that §2®/0t?(t*, 7 /k) # 0, which removes at most one value of

s for a given r. Then, by the Theorem of Implicit Functions, there is a unique

(t*,7/k) = =2(rk3(=1)7 + si2(—=1)7 + rs(l — k)2(=1)7+).  (40)

differentiable function ¢, defined in a neighbourhood of 7/k such that
to(m/k) =t*, 0B /Ot(t.(9),9) =0, ?®/Ot*(t.(9),9) < 0.
Let ®,.(¥) = ®(t.(9),9). Then we have @, (7/k) = 00/09(t*,m/k) = 0 and a
computation yields
2’0 0% _ 0% 520 -1
& (n/k) = 2L __ 0899 (¢ r/k) = dArsk?—— (t*,7/k) A,

2% 2
e ot

where A = ((=1)717" 4 r(=1)7" + s(=1)7). Let us prove that A < 0 and thus
®”(m/k) > 0 and that therefore ®, and consequently ®* have a local minimum in
m/k. If we had A >0 and
m j even, j/ odd: then —1 —r + s > 0 and by (40)
%P
o2
m j odd, j/ even: then —1 +r — s > 0 and by (40)

(t*,7/k) > 2(—rk* + (L+7)2 +r(1+r)(1 — k)%) = 2(r(l — k) +1)? > 0;

0?®

ot2
mj odd, 7 odd: then 1 —r —s > 0. Considering (40), we have the following
alternative. If 12 > r(l — k)2, then 92®/0t%(t*, m/k) > 0; otherwise

(t*,7/k) > 2((1+ 8)k® — sl® + s(1+ s)(1 — k)*) = 2(s(I — k) — k)* > 0;

%P

o2
Let us show that then ®* must decrease on [0, 7/k]. Otherwise there are 0 < ¥ <
¥y < w/k such that ®*(¥2) > ®*(¥1). As w/k is a local minimum, there is a
¥ < ¥* < 7w/k such that

(7 /k) > 2(rk? + (1 — 1) (12 — r(l — k)?)) = 2(r(l — k) — ) > 0.

" (¥)= max O*(¥)= max P(¢,0),
91 <I9<7/k o<t<2mw
91 <9< /k
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i. e. there further is some t* such that ® has a local maximum in (¢*,9*). But then
kt* = It* +9* = 0 mod. 7 and ¥* = 0 mod. 7/k and this is impossible. That
shows the proposition, except for one value of s at most for a given r. But ®* is a

continuous function of s and the proposition is true by a perturbation. [ |

Example 10.1.3 The real and complex unconditionality constant of {0,1,2} in
C(T) is v/2. Indeed, a case study shows that

14+7re; —ses oo = rls =1 if r|s — 1| > 4s
' 200 ™ (14 8)(1 +72/(4s))/2 if r|s — 1] < 4s

and this permits to compute the maximum (33), which is obtained for r = 2, s = 1.

Example 10.1.4 The real and complex unconditionality constant of {0,1,3} in
C(T) is 2/+/3. Indeed, a case study shows that ||1 4 7e; —se3 || makes
1+7r—s its<r/(4r+9)
{ (2%5(7“2 +9+3r/5)3/% - 2%1"33 + %7’2 +rs+s2+ 1)1/2 if s>r/(4r+9)
and this permits to compute the maximum (33), which is obtained for r = 3/2,
s=1/2.

These examples are particular cases of the following theorem.

Theorem 10.1.5 Let ny,no,n3 € Z distinct such that no — ny and n3 — ny are

coprime. Let n = max|n; —n;|. Then the Sidon constant of E = {ny,nz,n3} is

-1
(cos %) .

Proof. We may suppose n1 < ng < ng. Let k = ng—mnq and [ = ng—ny. By Lemma
10.1.2, the Arithmetic-Geometric Mean Inequality bounds the Sidon constant C' of
{n1,n2,n3} in the following way:
14+r+s 14+r+s
max ——————————
r,6>0 |1 +r 4 ein/k s|
o m 4s(1+7) —1/2
2k (141 + s)2
< (1—sin®(m/2k)) "% = (cos(r/2k)) "

C = max -
7,550 |1+ rep +elm/kFsep ||

= max|1—sin
r,s>0

This inequality is sharp: we have equality for r = [/(k — 1) and s = 1 + r. In fact

the derivative of |1 4 rel* 4 ei™/* seil* |2 is then

8lk . kt  lt+w/k (L= k)tt/k

[ Sin o co 5 5
and its extremal points are

25 2j+1 2j+1

) g+ il g+ m™— T 1 JEZL

T T -k U—kk

so that its extremal values are

27 +1 2+ k+1 2+ k+1
452 cos? 32—]: 7, 4r?sin? %w , 4sin® ﬁﬂ 1 jEZ.
Therefore the maximum of |1 + re'** 4-el™/F s el |2 is 452 cos?(n/(2k)). ]

This proof and (34) yield also the more precise
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Proposition 10.1.6 The Sidon constant of {n1,n2,n3} is attained for
191 ‘TLQ — TL3| €n1 +192 |TL1 — TL3| €ny +’l93 |TL1 — ’I”LQ‘ €ng

with ¥1,92,93 € {—1,1} real signs such that

919y = —1if 27 | ng —ny and 27 Y n3 —ny for some j;
9193 = —1if 27 fny —ny and 27 | n3 —ny for some j;
m 9103 = —1 otherwise.

Thus complex and real unconditionality constants of E in C(T) coincide.
Let us also underline the following easy consequences of our computation.

Corollary 10.1 (i) The Sidon constant of sets with three elements is at most v/2.
(ii) The Sidon constant of {0,n,2n} is /2, while the Sidon constant of {0,n+1,2n}
is at most (cos(7r/(2n))71 =1+m%/(8n?) + o(n™2).

10.2 Sidon constant of Hadamard sets

Recall that E = {ny} C Z is a Hadamard set if there is a ¢ > 1 such that ng41/ng >
g for all k. It is a classical fact that then E' is a Sidon set: Riesz products (see [62,
Chapter 2]) even yield effective bounds for its Sidon constant. In particular, if ¢ > 3,
then E’s Sidon constant is at most 2. Our computations provide an alternative proof
for ¢ > \/m ~ 2.44 and give a better bound for ¢ > V72 + 1 ~ 3.30. Putting
k=1 in (32) and using Theorem 10.1.5, we obtain

Corollary 10.2.1 Let E = {n;} C Z.

(i) Let ¢ > \/72/2+ 1. If |ngy1| > g|nk| for all k, then the Sidon constant of E is
at most 1 +72/(2¢% — 2 — 7%).

(ii) Let ¢ > 2 be an integer. If E D {n,n + k,n + gk} for some n and k, then the
Sidon constant of E is at least (cos(71'/2q))71 > 14+ 72/(8¢%).

In particular, we have the following bounds for the Sidon constant C of G = {j*},
jez\{-1,0,1}:

1+72/8( 1+ 1)) < C <1+7%/(25% -2 — 7).

11 Density conditions

We apply combinatorial tools to find out how “big” a set E may be while enjoying
(J,) or (35), and how “small” it must be.

The coarsest notion of largeness is that of density. Recall that the maximal density
of E C Z is defined by

E 1,... h
d*(E) = lim maxl nfatl...af }l
h—oo a€Z h
Suppose E enjoys (J,,) with n > 2. Then E is a A(2n) set by Theorem 2.4.2(i). By
[86, Th. 3.5] (see also [69, §1, Cor. 2]), d*(F) = 0. Now suppose E enjoys complex or
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real (J,,) with n > 2. As Li [58, Th. 2] shows, there are sets E such that Cg(T) has
¢1-(map) while E contains arbitrarily long arithmetic sequences: we cannot apply
Szemeredi’s Theorem.

Kazhdan (see [40, Th. 3.1]) proved that if d*(F) > 1/n, then there is a t €
{1,...,n — 1} such that d*(E N E +t) > 0. One might hope that it should in
fact suffice to choose ¢ in any interval of length n. However, Hindman [40, Th.
3.2] exhibits a counterexample: given s € Z and positive ¢, there is a set E with
d*(E) > 1/2 — € and there are arbitrarily large a such that ENE —t =  for all
te{a+1,...,a+ s}. Thus, we have to be satisfied with

Lemma 11.1 Let E C Z with positive mazimal density. Then there is a t > 1
such that the following holds: for any s € Z we have some a, |a| < t, such that
d*(E+anE+s)>0.

Proof. By a result of Erdds (see [40, Th. 3.8]), there is a ¢ > 1 such that F' =
E+1U...UE+t satisfies d*(F) > 1/2. But then, by [40, Th. 3.4], d*(FNF +s) >
0 for any s € Z. This means that for any s there are 1 < a,b < t such that
d*(E4+anE+s+b)>0. [

We are now able to prove

Proposition 11.2 Let £ C Z.

(i) If E has positive mazimal density, then there is an a € Z such that EU{a} fails
real (J2). Therefore E fails real (Js3).

(ii) If d*(E) > 1/2, then E fails real (J2).

Proof. (it) is established in [58, Prop. 14]. () is a consequence of Lemma 11.1:
indeed, if E has positive maximal density, then this lemma yields some a € Z and
an infinite ' C F such that for all s € F' there are arbitrarily large k,l € E such
that k + a =1+ s. Thus F U {a} fails real (J2). Furthermore, F fails real (J3) by
Proposition 8.1.2(iv). [ |

Remark 11.3 We may reformulate the remaining open case of (J2). Let us intro-
duce the infinite difference set of E: AE = {t : |[EN(E —t)| = oo} (see [94] and
[88]). Then F has real (J2) if and only if, for any a € E, AE meets E — a finitely
many times only. Thus our question is: are there sets with positive maximal density
such that £ —a N AF is finite for alla € E 7

Proposition 9.2.1 and Theorem 9.3.1 show that there is only one general condition
of lacunarity on F that ensures properties (J,,), (Jn) or (Jx), (Joo): E must grow
exponentially or superexponentially. One may nevertheless construct inductively
“large” sets that enjoy these properties: they must only be sufficiently irregular to
avoid all arithmetical relations. Thus there are sequences with growth slower than
k?"~1 which nevertheless enjoy both (J,,) and complex and real (J,,). See [35, §II,
(3.52)] for a proof in the case n = 2: it can be easily adapted to n > 2 and shows
also the way to construct, for any sequence n; — oo, sets that satisfy (J,) and

(doo) and grow more slowly than k™.
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12 Unconditionality vs. probabilistic independen-
ce

12.1 Cantor group

Let us first show how simple the problems of (umbs) and (umap) become when
considered for independent uniformly distributed random variables and their span
in some space.

Let D* be the Cantor group and I' its dual group of Walsh functions. Consider
the set R = {r;} C T of Rademacher functions, i. e. of the coordinate functions on
D°: they form a family of independent random variables that take values —1 and 1
with equal probability : Thus || 3" €;a;7;||x does not depend on the choice of signs
€; = +1 for any homogeneous Banach space X on D> and R is a real 1-(ubs) in X.
Clearly, R is also a complex (ubs) in all such X. But its complex unconditionality
constant is 7/2 [89] and L, (D*°) has complex (umap) if and only if p = 2 or
W = {w;} CT is finite. Indeed, W would have an analogue property (U) of block

unconditionality in LP(D*): for any € > 0 there would be n such that
mas [leawn + bully < (1+ &) Jawy + bu .
But this is false: for 1 <p <2, takea=b=1,e=1:
max [lews +wallp > (3(li+ 117 + i - 1P)Y7 = V2 >y +wal, = 22717,
for2<p<oo,takea=1,b=1i,e=1:
max [lews +iwnlp > (51 +17+ i - PP = 2171 > g + |, = V2.

This is simply due to the fact that the image domain of the characters on D>
is too small. Take now the infinite torus T and consider the set S = {s;} of
Steinhaus functions, 4. e. the coordinate functions on T°: they form again a family
of independent random variables with values uniformly distributed in T. Then S is

clearly a complex 1-(ubs) in any homogeneous Banach space X on T°.

12.2 Two notions of approximate probabilistic independence

As the random variables {e,} also have their values uniformly distributed in T,
some sort of approximate independence should suffice to draw the same conclusions
as in the case of S.
A first possibility is to look at the joint distribution of (ep,,...,e,,. ), p1,...,pn € E,
and to ask it to be close to the product of the distributions of the ¢,,. For example,
Pisier [78, Lemma 2.7] gives the following characterization: E is a Sidon set if and
only if there are a neighbourhood V of 1 in T and 0 < g < 1 such that for any finite
FCFE

mle, €V :pe F] < oFl. (41)
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Murai [72, §4.2] calls E C Z pseudo-independent if for all Ay,..., A, CT

e, €A;:1<i< e, € A;] = Ayl 42
mlep, _Z_n]#?giljlm[m ] il;[lm[ ] (42)

We have

Proposition 12.2.1 Let E C Z. The following are equivalent.

(i) E is pseudo-independent

(ii) E enjoys (Joo)-

(iii) For every e > 0 and m > 1, there is a finite subset G C E such that the Sidon

constant of any subset of E\ G with m elements is less than 1 + ¢.

Note that by Corollary 2.4.3, (42) does not imply (41).

Proof. (i) < (i) follows by Proposition 8.1.1(¢44) and [72, Lemma 30]. (iit) = (1)
is true because (i4) is just what is needed to draw our conclusion in Corollary 2.4.3.
Let us prove (i) = (éi7). Let ¢ > 0, m > 1 and A be a covering of T with intervals
of length e. By (42), there is a finite set G C E such that for p1,...,pm € E\ G
and A; € A we have mle,, € A; : A; € A] > 0. But then

Hzaiepi OOEZ|G¢|'(1*€). =

Remark 12.2.2 (i) = (i73) may be proved directly by the technique of Riesz
products: see [45, Appendix V, §1.11].

Another possibility is to define some notion of almost independence. Berkes [2]
introduces the following notion: let us call a sequence of random variables {X,,}
almost i.i.d. (independent and identically distributed) if, after enlarging the proba-
bility space, there is an i.i.d. sequence {Y,,} such that || X,, — Y, |lco — 0. We have
the straightforward

Proposition 12.2.3 Let E = {ny} CZ. If E is almost i.i.d., then E is a Sidon

set with constant asymptotically 1.

Proof. Let {Y;} be an i.i.d sequence and suppose || &, —Yj|[oc < ¢ for j > k. Then

> losl =[S < [Sasen | +eX 1o
>k >k < ik < >k

and the unconditionality constant of {ng,nyy1,...} is less than (1 —¢)~L. [ |

Suppose E = {ny} C Z is such that ny41/n; is an integer for all k. In that case,
Berkes [2] proves that F is almost i.i.d. if and only if ngiq1/ng — co. We thus
recover a part of Theorem 9.3.1.

Question 12.2.4 What about the converse in Proposition 12.2.3 7
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13 Summary of results. Remarks and questions

For the convenience of the reader, we now reorder our results by putting together
those which are relevant to a given class of Banach spaces.

Let us first summarize our arithmetical results on the geometric sequence G =
{*}k>0 (j € Z\ {-1,0,1}). The number given in the first (vs. second, third)
column is the value n > 1 for which the set in the corresponding row achieves
exactly (J,) (vs. complex (d,,), real (J,)).

G = {jk}kZO with ‘J‘ >2 (jn) C'(gn) R'(gn)
G j>0o0dd | Il | LI | o
Gj>0even | Il | il | il

GU{0h,j>00dd | il | liI-1] o
GU{Oh,j>0even | il | liI—1 |11

G, GU{0},j<00dd | |jl-1| I | =

G, GU{0}, j<Oeven | [jl=1| [l 141

GU-G, GU-GU{0}, j odd 1 1 0

GU—-G, j even 1 1 7]
GU—-GU{0}, j even 1 1 l71/2

Table 13.1

13.1 The case X = L?(T) with p an even integer

Let p > 4 be an even integer. We observed the following facts.

= Real and complex (umap) differ among subspaces LY, (T) for each p: consider
Proposition 9.1.1 or L% (T) with E = {£(p/2)"}.

» By Theorem 7.2.1, LY, (T) has complex (vs. real) (umap) if so does L%+2 (T);

» The converse is false for any p. In the complex case, E = {(p/2)*} is a counterex-
ample. In the real case, take E = {0} U {£p*}.

m Property (umap) is not stable under unions with an element: for each p, there is a
set E such that L%,(T) has complex (vs. real) (umap), but L%U{O}(T) does not. In the
complex case, consider £ = {(p/2)*}. In the real case, consider E = {4(2[p/4])*}.

n If £ is a symmetric set and p # 2, then LY, (T) fails complex (umap). Proposition

8.3.1 gives a criterion for real (umap).

What is the relationship between (umbs) and complex (umap) ? We have by Propo-
sition 8.1.2(¢) and 7.2.4(i)

Proposition 13.1.1 Let E ={n;} CZ andn > 1.
(i) If E is a (umbs) in LA"=2(T), then L3*(T) has complex (umap).
(ii) If {mx} realizes complex (umap) in LE(T), then E is a (umbs) in L>"(T).
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We also have, by Proposition 11.2(z)

Proposition 13.1.2 Let E CZ and p # 2,4 an even integer. If LY. (T) has real
(umap), then d*(E) = 0.

Note also this consequence of Propositions 3.3.1, 8.4.1, 12.2.1 and Theorems 2.4.2,
7.2.1

Proposition 13.1.3 Let 0 > 1 and E = {[o*]}. Then the following properties are
equivalent:

(i) o is transcendental;

(ii) L% (T) has complex (umap) for any even integer p;

(iii) E is a (umbs) in any LP(T), p an even integer;

(iv) E is pseudo-independent.

(v) For everye >0 and m > 1, there is an l such that for ky,... kpy > 1 the Sidon
constant of {[o*1],...,[o*"]} is less than 1 + .

13.2 Cases X = L?(T) with p not an even integer and X = C(T)

In this section, X denotes either L?(T), p not an even integer, or C(T).

Theorems 2.4.2 and 7.2.1 only permit us to use the negative results of Section 8:
thus, we can just gather negative results about the functional properties of E. For
example, we know by Proposition 8.1.2(iv) that (Jo) and (Joo) are stable under
union with an element. Nevertheless, we cannot conclude that the same holds for

(umap). The negative results are (by Section 8):

m for any infinite E C Z, X g op fails real (umap). Thus (wmap) is not stable under

unions;

mif F is a polynomial sequence (see Section 8), then E is not a (umbs) in X and

X fails real (umap);

m if F is a symmetric set, then E is not a (umbs) in X and Xg fails complex (umap).

Proposition 8.3.1 gives a criterion for real (umap);

mif £ = {[¢*]} with o > 1 an algebraic number — in particular if E is a geometric

sequence —, then E is not a (umbs) in X and X fails complex (umap).

Furthermore, by Proposition 9.1.1, real and complex (umap) differ in X.

Theorem 9.3.1 is the only but general positive result on (umbs) and complex (umap)
in X. Proposition 9.1.1 yields further examples for real (umap).

What about the sets that satisfy (Jo) or (Joo) ? We only know that (J) does not
even ensure Sidonicity by Corollary 2.4.3.

One might wonder whether for some reasonable class of sets F, F is a finite union of
sets that enjoy (Joo) or (Joo). This is false even for Sidon sets: for example, let E be
the geometric sequence {j*}>0 with j € Z\{—1,0, 1} and suppose E = E1U...UE,,.
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Then F; = {jk}keAi, where the A;’s are a partition of the set of positive integers.
But then one of the A; contains arbitrarily large a and b such that |a — b < n.
This means that there is an infinite subset B C A; and an h, 1 < h < n, such that
h+ B C A;. We may apply Proposition 8.1.2(vi): E; enjoys neither (J;n;) nor
complex (J;n41) — nor real (J;» ) if furthermore j is even.

Does Proposition 13.1.1(4¢) remain true for general X ? We do not know this.
Suppose however that we know that {m} realizes (umap) in the following strong
manner: for any € > 0, a tail {m;}r>; is a (1 + €)-unconditional a.s. in Xg. Then
E is trivially a (wmbs) in X. In particular, this is the case if

1 +e, =sup |Id — (14 €)my o (x)
e€sS

converges so rapidly to 1 that > e, < co. Indeed,

sup [|mu_1 + > e Amp|| < (1+2,) sup [[m, + Y enAmy]|.
€r €S k>n €r €S k>n

and thus, for all f € Pg(T),

sup lmf+ ) ewdmfl < [T +e) 11

k>1 k>l

Let us finally state

Proposition 13.2.1 Let E C Z. If Xg has real (umap), then d*(E) = 0.

13.3 Questions
The following questions remain open:

Combinatorics Regarding Proposition 11.2(7), is there a set E enjoying (J2) with
positive maximal density, or even with a uniformly bounded pace ? Furthermore,
may a set F with positive maximal density admit a partition F = [J E; in finite
sets such that all &; + E;, ¢ < j, are pairwise disjoint 7 Then L‘};(']I‘) would admit
a l-unconditional (fdd) by Proposition 7.2.4(1).

Functional analysis Let X € {L!(T),€(T)} and consider Theorem 6.2.3. Is (U)
sufficient for Xg to share (umap) ? Is there a set E C Z such that some space
L%(T), p not an even integer, has (umap), while Cg(T) fails it ?

It could be worthwile to look at certain subsets of £ = {} . - n; : I/ C N finite}
with a very rapidly growing sequence {n;}. By [68, §VIII], it suffices to study
Es = {[l;cpsi : F C N finite} in the dual group of T*. Then Lj_(T) has
(uap) by an argument of Déchamps-Gondim. Does it have (umap) ? Does Cg__ (T™)
enjoy the Daugavet property and thus fail (uap) ? Does the natural projection of
Cg,, (T) onto €(D>) have a closed image ?

Harmonic analysis Is there a Sidon set E = {n;} C Z of constant asymptotically
1 such that ny1/ny is uniformly bounded ? What about the case E = [o*] for a
transcendental o > 1 7 If E enjoys (Jo), is E a (umbs) in LP(T) (1 < p < 00) ?
What about (Joo) ?



Chapitre 111

Unconditional entry basic
sequences

1 Introduction

We study the following isometric question on the Schatten class SP. How many
matrix coefficients of an operator z € SP must vanish so that the norm of z does
not depend on the argument, or on the sign, of the remaining matrix coefficients ?
This is the case if the remaining nonzero matrix entries are a complex, or real,
1-unconditional basic sequence in SP. Thus we are looking for the isometric coun-
terpart of o(p) sets of entries I C N x N, which have been introduced recently by
Harcharras.

We show that for our purpose, sets of matrix entries I C N x N are best understood
as vertices for polygonal lines that follow alternatively the horizontal or the vertical
axis in N x N. If p is an even integer, we obtain in fact a complete description of
1-unconditional basic sequences in SP by these means (see Th. 3.4). The main step
is a characterization of rectangular polygons that return on their track (Th. 2.7).
Note that as in the case of sequences of characters in LP(T), p an even integer,
complex and real 1-unconditionality coincide.

We close this chapter with two remarks on Harcharras’ recent paper [36]. In the first
place, we show that c.b. A(p) sets cannot contain the product of two infinite sets
of characters. In the second place, we point out two new possibilities to construct
A(p) sets.

Notation T = {t € C: |t| = 1} is the unit circle endowed with its Haar measure
dm and Z its dual group of integers: for each n € Z, let e,,(t) = t™. The cardinal of
E C Z is written |E].

For a space X of integrable functions on T and F C Z, Xg denotes the space of
functions with Fourier spectrum in E: Xp = {f e X : f(n) = [e_, fdm =
0ifn¢ E}.

The Schatten class SP, 1 < p < o0, is the space of those compact operators x on
{5 such that [|z|, = (tr|z|?)}/? < co. The entry e,. is the operator on 5 that
maps the cth basis vector on the rth basis vector. We shall also consider e,. as

the indicator function of (r,¢) from N x N to N. The matrix coefficient (r,c) of an

71



72 CHAPITRE III. UNCONDITIONAL ENTRY BASIC SEQUENCES

operator x is x,. = trz e, and its matrix representation is  ~ > @c €. A Schur
multiplier T on S? associated to (firc)rc>0 i a bounded operator on S? such that
T ere = pire€re. T is furthermore completely bounded (c.b. for short) if T ® Idg» is
bounded on S?(y ®2 £3) = SP(SP).

For I C N x N, the entry space S7 is the space of those z € SP whose matrix
representation is supported by I: z,. = 0 if (r,c) ¢ I. S7 is also the closed
subspace of SP spanned by {eg}qer.

2 Rectangular polygons in the two-dimensional in-
teger lattice

This section is of purely combinatorial nature. We introduce and study the two
objects that we need in order to describe 1-unconditional basic sequences of matrix
entries.

Definition 2.1 Let p = 2s > 0 be an even integer and I C N x N.

(i) A rectangular line L in I is a sequence of vertices (qi,...,qs) € I such that two
successive vertices have a row or a column in common. Two lines are equivalent if
they are equivalent as closed curves.

(iii) Two rectangular lines L, L' are disconnected if every vertex of L has neither
row nor column in common with any vertex of L'. Otherwise they are connected.
(iv) A p-gon P in I is a rectangular line of p vertices in I of the form

((rla Cl)’ (7”1,02), (TQ’CQ)v <T27C3)7 sy (rsv Cs)a (TSa Cl))'

It is also described by the sequence of p segments of the form
(r1,¢1) = (r1,¢2) | (ro,c2) — (ra,e3) ... | (rs,¢5) — (1s,¢1) |,

where the last arrow | indicates the segment (rs,c1) | (r1,¢1), so that a polygon is
a closed curve. Thus P is a rectangular line whose odd sides lie in a row and whose
even sides lie in a column.

(v) Let Al ={aeN': %

ge1 Qg = s}. The set of p-gonal relations in I is

Pl ={(c.0) € AL x AL:Vr Y e =D Bre & VY e =Y Brc).

The set PL of connected p-gonal relations in I is the subset of those (o, 3) € T'L that
cannot be decomposed into two other nonempty polygonal relations without row nor
column in common:

@f) =g +@F | Inae akal, 2L
with (o, B) € I‘; & s;>1 de,r1, 2 Oé}«lcaa%zc =1

Example 2.2 (i) for an octagon in {0,1} x {0,1} U {1,2} x {2,3}:
(0,0) = (0,1) L (1,1) = (1,3) 1 (2,3) = (2,2) | (1,2) — (1,0) | .

(17) (@ = egp+e11 +e22+€33,0 = €p1 +€10+ €23 +€32) is an octagonal relation

that is not connected: consider a' = egy+e11, B = eg1 + €19, &% = €99 +e33,
2 _

[* = eg3 +e32.

The next proposition shows that, for our purpose, connected p-gonal relations de-
scribe completely p-gons.
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Proposition 2.3 Let p =2s > 0 be an even integer and I C N x N. The mapping
P=((ri,c1),(ri,c2), ..., (rs;c1)) = (e, B), where

ag={i:(ri,ci) =q}| & By=Hi:(ri,cir1) =q}l;

is a surjection of the set of p-gons in I onto the set PL of connected p-gonal relations
inI. We shall write P ~ («, 3) and call yop the number of p-gons mapped on (o, 3).

Proof. Let (a, 3) € PL. Consider a rectangular line
(rise1) = (rie2) Lo = (rg,¢541) € 1%

such that of = [{i: (ri,¢;) = q}| < ag and B = [{i: (ri, cip1) = q}| < By and j
is maximal. We claim (a) that c;4+1 = c¢1 and (b) that j = s. Let (a?,3%) =
(aaﬂ) - (alvﬁl)'

(a) If ¢j41 # 1, then Y a%CHl =3, ﬂfeHl +1 > 1. Thus there is 741 such that

2 2 _ 2 :
O ey = 1o But then >0 67 o= > a7 > 1 and there is cj42 such that
"%j+lcj+2 > 1: j is not maximal.
(b) Suppose j < s. Then (a?,3?) € Fgfj is nonempty. As («a, ) is connected,
there is 7, ¢, ¢’ such that a;.,a?, > 1 or r,7’,c such that a;., a2, > 1. Now our

problem is invariant under transposition; further it is invariant under the cyclic
permutations of even order

(’I“k,Ck) — (rk,ck_H) l el ('rk—ly""k) l . (1)

We may thus conclude without loss of generality that for ] = r; there is ¢} such
that a? , > 1. Then there is ¢} such that 3%, > 1. By the argument of (a), there
171 172
is a 2j'-gon in (a?, 3%) of the form (r{,¢}) — (r{,¢5) | ... — (v}, ¢}) |. Then the
following 2(j + j')-gon
(7”1,61) -] (TJ'?CJ') - (Tlva/Z) b= (’I";-/,C/l) ! (Tllﬂcll) - (7"]'701) !
shows that j is not maximal. ]

We now introduce combinatorial properties in order to visualize the special class of
p-gons that we shall discover in the next section.

Definition 2.4 Let L be a closed rectangular line g1 — g2 — ... — ¢p — 1.

(i) L does not span a surface if the index of every point in R x R is 0 with respect
to L: the bounded open set inside L is empty.

(ii) L returns on its track if L takes every elementary segment [(r,c), (r,c+1)] and
[(r,e),(r+1,¢)] in N x N as many times in one sense as in the other sense.

(iii) Two rectangular lines are similar if they are equivalent up to juztaposed rect-
angular lines that return on their track.

Proposition 2.5 Let P ~ (a,f3) be the 2s-gon (r1,¢1) — ... — (rs,c1) | and
g€ NxN.

(i) A closed rectangular line is similar to a polygon.

(ii) If g, By > 1, then P is equivalent to the juztaposition of a closed rectangular line
containing q that returns on its track and two disconnected polygons Py ~ (at, 31),
Py ~ (a2, 82) such that (a, §) = (a', 8Y) + (a2, 82) + (e ).

(iii) If g > 2 (vs. By > 2), then P is the justaposition of two nonempty polygons
Py~ (o, 8Y), Py ~ (a?,3%) such that aé,ai > 1 (vs. ﬁ;, 3 >1).
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Proof. (i) Note that two row segments or two column segments in succession are
similar to a single one.

(i4) We may suppose ¢ = (r1,¢1) by a cyclic permutation (1). Let 1 < j < s be
such that (rj,¢;j41) = ¢. Consider the two following polygons:

Py = (rj,¢;) = (ri,e2) Lo — (rj-1,¢5) |,

P2 = (Tj+1,Cj+1) — ... l (TS,CS) — (7'5,61) l .

P is the juxtaposition of (ri,¢1) — (r1,¢2), Pi deprived of its first segment,
(rj,cj) — (rj,¢j+1) 1 (rj+1,¢j41), Po deprived of its last segment and (rs,c1) |
(r1,c1). Thus P is equivalent to the juxtaposition of P; and Py, with in between

m (r1,c1) — (r1,¢) — (r1, 1), where ¢ is the point among ¢, ¢z, ¢; which is between
the two others plus

m(ri,c1) | (r,c1) | (r1,¢1), where 7 is the point among r1, 7,741 which is between
the two others.

If P, and P, are connected, then they may be glued as in the proof of Proposition
2.3(b) and we set Py for this glued polygon and P, for the empty polygon.

(#i7) As our problem is invariant under transposition and under the cyclic permu-
tations (1), we may suppose without loss of generality that oy > 2 and ¢ = (71, ¢1).
Let j be such that (r;,¢;) = ¢. Set

Pl:(?"1,61)—>...—>(7’j,1,6j)l s PQZ(Tj,Cj)—>...—>(Ts,Cl)l. ||

Corollary 2.6 Let P ~ (a, 3) be a rectangular polygon.

(i) P is equivalent to the juztaposition of closed rectangular lines that return on
their track and disconnected polygons Pj ~ (a7, 37) such that ag =0 or ,Bg =0 for
every ¢ € N x N.

(ii) If o« = B, then P is equivalent to the juztaposition of connected closed rectangular
lines that return on their track: P is similar to the empty polygon.

(iii) P is the juxtaposition of polygons Pj ~ (a?, 37) such that ag,ﬁg <1 for every
q € N xN.

Proof. (i) Use Proposition 2.5(i¢) in a maximality argument and note that closed
curves contained in disconnected polygons are disconnected.

(ii) Note that if o = 3, then o/ = 37 in (i): the P;’s are disconnected.

(#i7) Apply Proposition 2.5(ii7) in a maximality argument. ]

We are now able to describe precisely the combinatorial properties introduced in
Definition 2.4.

Theorem 2.7 Let P ~ (a,f3) be the 2s-gon (r1,¢1) — ... — (rs,c1) |. The
following are equivalent.

(i) a=p.

(ii) P returns on its track.

(iii) P does not span a surface.

(iv) For every vertex q of P, there are as many row segments in P reaching q as
leaving q.

(v) For every vertex q of P, there are as many column segments in P reaching q as
leaving q.
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Proof. (i) = (i) is Corollary 2.6(i¢). (#i) = (ii4) follows from the definition of the
index as a path integral.

(#i1) = (iv) Let ¢ € Nx N. The number of row segments of P taking the elementary
segment [g,q + (1,0)] in the positive sense minus those taking [¢,q + (1,0)] in the
negative sense is exactly twice the difference of the index of ¢ + (—1/2,1/2) with
respect to P minus the index of ¢ + (1/2,1/2) with respect to P [15, VII(6.6)]. As
these indices are equal, there are as many row segments of P taking [¢,¢+ (1,0)] in
the positive as in the negative sense. For the same reason, there are as many row
segments of P taking [¢ — (1,0), ¢] in the positive as in the negative sense. Note
further that row segments of P that pass through ¢ take necessarily [q,q + (1,0)]
and [q — (1,0), ¢] in the same sense. Thus the number of row segments reaching ¢
is equal to the number of row segments leaving ¢ and oy = 3.

(iv) = (v) Because P is a closed curve, there are as many segments reaching ¢ as
leaving q.

(v) = (i) Let ¢ € N x N. Note that ¢y is exactly the number of column segments
reaching ¢ plus |{j : (rj_1,¢;) = (rj,¢;) = q}|; By is exactly the number of column
segments leaving ¢ plus [{j : (7}, ¢j+1) = (rj+1,¢j+1) = g} [ |

3 1-unconditional basic sequences of entries

Let us recall the following definitions.

Definition 3.1 ([36, §4]) Let I CNx N andp > 1.
(i) I is an unconditional basic sequence in SP if for some C

supHZ:l:aqeqH SCHZaqeqH .
+ P P
qel qel

This amounts to the uniform boundedness of the family of relative Schur multipliers
by signs

Me: ST — SV (@) = (€reTre)  with |€q| = 1. (2)
I is complex (vs. real) 1-unconditional if all these multipliers are isometries for
€rc € T (vs. €,c € D). Then the norm of x € ST does not depend on the complex
(vs. real) signs of its matriz coefficients.
(ii) I is a c.b. unconditional basic sequence if the family (2) is furthermore uniformly
c.b. I is a complex (vs. real) c.b. 1-unconditional basic sequence if the family (2)
consists of ¢.b. isometries for €.. € T (vs. €. € D).

Notorious examples are single rows, single columns, single diagonals, single anti-
diagonals and more generally sets I such that for each (r,c) € I, there is no other
element of I in the row r or in the column c.

We now undertake the matrix counterpart of the computation presented in Section
11.2.2

Computational lemma 3.2 Let p = 2s be an even positive integer and I C N xN.

Put
(e, 2) = tr Zeqzq e, ' foree s and z e C).
qel
Then
Dr(e,2) = Z Yape® oz 2P (3)

(a,8)€P]

where Yo s a positive integer for every (a, 3) € PL.
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Proof. Let us expand ®;.

S
Dr(e,2) = tr( E € Zre Cop €pt et Zyi et er/c/>
(rye),(r',c")el

s

= tr 6712’ e €t ot Zit it €0 1

- ric; “Trici ~ciry CriciAric, Brick
=1

(r1,¢1),(775€1) 50y
(""s ,Cs),(T;,C;)GI

S
_ Z H -1 —
- erici ETiCi+1ZTiCi Zrici+1 (4)
i=1

(r1,e1),(r1,e2)5..0s 1=

(TsaCS)v(TS7cl)€I
with the convention c¢sy; = ¢;. Thus this sum runs over all p-gons in I. As the
summand is equal for p-gons that are associated to the same p-gonal relation («, 3),
Proposition 2.3 yields (3). [ |

The following definition shows up in the analysis of the above computation.

Definition 3.3 Let I C N x N and s > 1. I is matriz s-independent if, given
q,q¢ € I, all rectangular lines of s or less segments from q to ¢ are similar: in
other words, there is only one rectangular line from q to q' up to rectangular lines

that return on their track.

Computational lemma 3.2 and Theorem 2.7 yield now the main theorem of this

chapter.

Theorem 3.4 Let I C N x N and p = 2s a positive even integer. The following
assertions are equivalent.

(i) I is a c¢.b. complex 1-unconditional basic sequence in SP.

(ii) I is a complex 1-unconditional basic sequence in SP.

(iii) I is a real 1-unconditional basic sequence in SP.

(iv) every 2s'-gon P in I with s’ < s satisfies the equivalent properties (i)—(v) in
Theorem 2.7.

(v) If s is even, all rectangular lines of s—1 or less segments between two given rows,
or equivalently between two given columns, are similar. If s is odd, all rectangular
lines of s — 1 or less segments between a given row and a given column are similar.

(vi) I is matriz s-independent.

Proof. (i) = (ii) = (i4i) is trivial.

(#91) = (iv) If I is areal 1-(ubs) and P ~ («, 3) is a 2s-gon in I, then o = 8 mod. 2 by
Computational lemma 3.2. Take now a 2s’-gon P ~ («, 3) in I. Suppose first that
agq, g < 1forall ¢ € I. Let ¢ be the first vertex of P and P’ be the juxtaposition
of the 2(s — s')-gon ¢1 = ¢1 | ... — ¢1 on P. Then P’ ~ (a,3) + (s — s")(eq,€q)
and, by hypothesis, a+ (s —s') e, = B+ (s —s') e mod. 2 and o = 5. Suppose now
that P is a general 2s’-gon P ~ (a,3) in I. Then, by Corollary 2.6(iii), P is the
juxtaposition of polygons P; ~ (a7, 37) such that aJ, 37 < 1 for every ¢ € N x N.
But then o = 37 for each j and thus a = 3.

(iv) = (v) We shall only treat the case of an even s and two given columns s and

s’. Take two rectangular lines L, L’ from column c¢ to column ¢’: we may suppose
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that none of their points but the first ones are on the column ¢; none of their points
but the last ones are on the column ¢’. The juxtaposition of L, the column segment
from the last point of L to the last point of L', —L’ and the column segment from
the first point of L’ to the first point of L is similar to a polygon P of 2s or less
vertices and thus by (iv) to the empty polygon. Then the first and last points of L
and L' must be equal and L and L’ are similar.

(v) = (vi) is trivial.

(vi) = (iv) Let P be a 2s’-gon. Let ¢ be the first point of P and ¢’ its (s’ + 1)-
st point. Then the s’ first sides of P and the s’ last sides taken in the negative
direction are two rectangular lines from g to ¢’. They are similar and P is similar
to the empty polygon.

(iv) = (i) holds by Computational lemma 3.2 and Theorem 2.7: in fact, the com-
putation in the Computational lemma holds also if the z,. are chosen operators in
SP instead of complex scalars, and if every (a, 3) € P! satisfies a = 3, then (4) is

constant in e. |

Remark 3.5 Harcharras [36] used Peller’s discovery [76] of the link between Fourier
and Hankel Schur multipliers to produce unconditional basic sequences in S? of the
type E = {(r,¢) € Nx N : r+c¢ € E}, where E C Z. Such sets E are matrix
2-independent if and only if E is 2-independent in the sense of Section I1.2.2. But

there are 3-independent sets E such that F is not matrix 3-independent: consider
(n1,0) = (n1,m2) | (0,n2) — (0,11) | (n2,m1) — (n2,0) |

with ng = ny + ng, ne > ng > 0 and 4ny # 3ng.

4 Two remarks on a paper by Harcharras
4.1 The c.b. unconditionality constant of sum sets
We generalize Harcharras’ [36, Prop. 2.8].

Proposition 4.1 Let A, B C Z with |A| = |B| = n. Then, for any p > 1, the c.b.
unconditionality constant of A+ B in LP(T) is at least |n'/3 |I1/2=1/Pl,

Proof. We shall use an inductive construction of sets A; C A and B; C B such that
|A,| = |Bz| =14 and

Va,a' € A; Vb, € B a+b=d +b = a=d andb=1V". (5)

m Put a; = min A and b; = min B.

m Assume A; and B; are constructed. Put
a;y1 =min{a € A\ A;:Va' € A;,Vbo#b € B;a+b#d +V'}

if such an element exists; else A\ A4; C A; + (B; — B;) \ {0} and n — i <%(i — 1).
If we are able to construct A;1; = A4; U {a;41}, put

bi+1:min{bEB\Bi:Vb’EBiVa#aleAi+1 a—i—b;«éa'—i—b’}
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if such an element exists; else B\ B; C B;+ (Ai+1— A;+1) \ {0} and n—i < i%(i+1).
m We conclude from this construction that there are 4; = {a1,...,a;} C A and
B; = {b1,...,b;} C B of cardinality the minimal i such that n < i® +i% +i, and a
fortiori with i = [n'/3].

The end of the proof is the same as Harcharras’. The unconditionality constant
of the canonical basis of S}, is il1/2=1/pl. there is a Schur multiplier M : S — S,
(211) — (€pzp1), such that |ey| = 1 and |M]|| = il*/2=1/2l, Put

€ay 0
fo= (eakerl Tp) = T € Lii+Bi(S;)~

0 €q, 0 €p,

i

0 ebl

Then [|fo(t)l[s; = |zls; for each t € T and thus |[fzllLe(si) = [|@]ls;. Consider
v:A; + B; — T be such that v(ay + b;) = €. By (5), v is well defined. Let N be
the operator of convolution with 37 4 , p v(j)e; acting on LYy | 5 (T). As

N ® Ids: (fo) = (€artb, €R1Th) = fria,

N ®Ids: (f)|| = [Mz[]. Now the c.b. unconditionality constant of A; + B; is at
least [|N @ Idg; || > [[M]]. [

Corollary 4.2 If E C Z contains the sum of two infinite sets, then E is not a c.b.
A(p) set for any p > 2.

Example 4.3 E = {2/ — 27 : i > j} is not a c¢.b. A(p) set for any p > 2. Indeed,
{28 — 27} = EU —F does not and if E did, then also —F and EU —E.
4.2 Two new sufficient conditions for A(2s) sets

The proof of [36, Th. 1.14] and especially [36, Prop. 1.14] contain implicitly the two

following new means to construct A(p) sets.

Proposition 4.4 Let E C7Z and s > 2 and integer. Let
ro(En)=Ha <...<q¢:q+q@+... +q =n};

zs(E,n) =|{q € E* : q; distinct & —q1 + g2 — ...+ (=1)°qs = n}|

E is a A(2s) set if it is a finite union of sets E; such that either r,(E;,n) or

zs(E;,n) is a bounded function of n.

The number 7 simplifies Rudin’s [86, 1.6(b)] number r, in that it considers only
distinct ¢;. This is very useful in applications. The number z, is [36, Def. 1.11];
Harcharras proves that if z5(F,n) is a bounded function of n, then E is even a c.b.
A(p) set. Nevertheless we wish to point out that the condition is new even for usual
A(p) sets.



Chapitre IV

Random constructions inside
lacunary sets

1 Introduction

The study of lacunary sets in Fourier analysis still suffers from a severe lack of
examples, in particular for the purpose of distinguishing two properties. In order to
bypass the individual complexity of integer sets, one frequently resorts to random
constructions. In particular, Li [59] uses in his argumentation a construction due
to Katznelson [51] to discriminate the following two functional properties of certain
subsets £ C Z:

m A Lebesgue integrable function on the circle with Fourier frequencies in F is in fact
p-integrable for all p < co. This means that all spaces LY, (T) coincide for p < oo,
i.e. E is a A(p) set for all p in Rudin’s terminology. No sequence of polynomial
growth has this property [86, Th. 3.5]. By Theorem 4.7, almost every sequence of

a given superpolynomial order of growth is A(p) for all p.

m A bounded measurable function on the circle with Fourier frequencies in FE is
in fact continuous up to a set of measure 0. This means that LY (T) and Cg(T)
coincide: E is a Rosenthal set. Every sequence of exponential growth is a Sidon set
and therefore has this property. By Bourgain’s Theorem 2.5, almost every sequence

of a given subexponential order of growth fails the Rosenthal property.

A Rosenthal set may contain arbitrarily large intervals [84] und thus fail the A(p)
property. This shows that these two properties cannot be characterized by some
order of growth, whereas the random method is so imprecise that it ignores a range
of exceptional sets. On the other hand, Li shows that some set is A(p) for all p
and fails Rosenthal: his construction witnesses for the quantitative overlap between

superpolynomial and subexponential order of growth.

We come back to Li [59] for two reasons: in the first place, we have been unable to
locate a published proof of Katznelson’s statement. We provide one for a stronger

statement in Section 4. In the second place, we want to precise and supple the

79
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random construction in the following sense: can one distinguish the A(p) property
and the Rosenthal property among subsets of a certain given set 7 That sort of
questions has been investigated by Bourgain in [9]. We give the following answer
(see Th. 2.8):

Main Theorem Consider a polynomial sequence of integers, or the sequence of
primes. Then some subsequence of it is A(p) for all p and at the same time fails

the Rosenthal property.

This is a special case of the more general question: does every set that fails the
Rosenthal property contain a subset that is A(p) for all p and still fails the Rosenthal
property 7 We should emphasize at this point that neither of these notions has an
arithmetic description. In fact, the family of Rosenthal sets is coanalytic non Borel
[30] and any description would be at least as complex as their definition. This is

why we study instead the following two properties for certain subsets F C Z.

m Any integer n has at most one representation as the sum of s elements of . This
implies that F is A(2s) by [86, Th. 4.5(b)].

m F is equidistributed in Hermann Weyl’s sense: save for ¢ = 0 mod 27, the succes-
sive means of {€"'}, g tend to 0, which is the mean of e’ over [0, 27r[. This implies
that F is not Rosenthal by [64, Lemma 4].

Our random construction gives no hint for explicit procedures to build such integer
sets. The question whether some “natural” set of integers is A(p) for all p and fails
the Rosenthal property remains open.

Let us describe the paper briefly. Section 2 introduces the inquired notions and
gives a survey of former and new results. As the right framework for this study
appears to consist in the sequences of polynomial growth, we give them a precise
meaning in Section 3, and show that they are nicely distributed among the intervals
of the partition of Z defined by {42*'}. Section 4 establishes an optimal criterion
for the generic subset of a set with polynomial growth to be A(p) for all p. Section
5 comes back to Bourgain’s proof in [8, Prop. 8.2(i)]: we simplify and strengthen it

in order to investigate the generic subset of an equidistributed set.

Notation T = {t € C: |t| = 1} is the unit circle endowed with its Haar measure
dm and Z its dual group of integers: for each n € Z, let e, (¢t) = t™. The cardinal of
E = {ny} C Z is written |E|. We denote by ¢o(T) the space of functions on T which
are arbitrarily small outside finite sets; such functions necessarily have countable
support.

For a space X of integrable functions on T and E C Z, Xg denotes the space of
functions with Fourier spectrum in E: Xg = {f € X : f(n) =[e_,fdmn =0if
We shall stick to Hardy’s notation: u, < v, (vs. u, < vy) if u, /v, is bounded (wvs.

vanishes) at infinity.
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2 Equidistributed and A(p) sets

Definition 2.1 Let E = {ny}r>1 C Z ordered by increasing absolute value |ny|.
(i) /86, Def. 1.5] Let p > 0. E is a A(p) set if, for some — or equivalently for
any — 0 <r < p, LE(T) and L'(T) coincide:

3C, Vf € L(T) N fllr < [1fllp < Crll flr-

(ii) /98, §7] E is equidistributed if for each t € T \ {1} the successive means

El

k
fe(t) = Zenj(t) — 0. (1)

k—o0

Thus E is equidistributed if and only if the sequence of characters in E converges
to 1y1y for the Cesaro summing method. If fi, tends pointwise to f € co(T), then
FE is weakly equidistributed.

If E is weakly equidistributed, then f defines an element of Cx(T)**. By Lust-
Piquard’s [64, Lemma 4], Cg(T) then contains a copy of ¢y and E cannot be Rosen-
thal.

For example, Z and N are equidistributed. Arithmetic sequences are weakly equi-
distributed: there is a finite set on which f; - 0. Polynomial sequences of integers
([98, Th. 9] and [96, Lemma 2.4], see [65, Ex. 2]) and the sequence of prime numbers
(Vinogradov’s theorem [20], see [65, Ex. 1]) are weakly equidistributed: fx(¢) may
not converge to 0 for rational ¢. There are nevertheless sequences of bounded pace
that are not weakly equidistributed [23, Th. 11]. Sidon sets are A(p) for all p [86,
Th. 3.1], but not weakly equidistributed since they are Rosenthal.

Example 2.2 Consider the geometric sequence E = {3k}k21 and the corresponding
sequence of successive means fi. By [23, Th. 14], the fx do not converge to 0 on a

null set of Hausdorff dimension 1. Consider

J _ 1.—J = .
fi=Fk E : Cyrry 43 = F ( J! E : + E : )63k1+...+3"‘j -
1<ky,....k; <k 1<ki<..<k;j<k  1<ki,..k;<k
not all distinct

Let j > 1. Put EGW) = {3k 4. 4 3% : 1 <k <...<k;} and let f7) be the

corresponding successive means (1). Then
=18 < () -5 )+ 5F-5=5)
k!

2(1 - kj(k—j)!) O

Thus EY), which is A(p) for all p [67, Th. IV.3] and not Sidon, is not weakly
equidistributed.

However, as Li notes, these two classes meet.

Theorem 2.3 ([59]) There is an equidistributed sequence that is A(p) for all p.
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Sketch of proof. Li uses the following random construction, discovered by Erdds

[21, 22] and introduced to harmonic analysis by Katznelson and Malliavin [52, 53].

Construction 2.4 Let E C Z and consider independent {0, 1}-valued selectors &,
of mean 6, (n € E), i.e. P[&, = 1] = d,. Then the random set E' is defined by

E'={nek: & =1}
The first ingredient of the proof is Bourgain’s following

Theorem 2.5 ([8, Prop. 8.2(i)]) Let E = N in Construction 2.4. If §,, decreases

with n while 6, > n~1, then E’ is almost surely equidistributed.

Remark 2.6 In this sense, almost every sequence of a subexponential growth given

by {0,} is equidistributed: indeed, for almost every E’ C N,
|[E'N[0,n]| ~dp+ ...+ d, > logn

by the Law of Large Numbers. Note however that the set E) defined in Example
2.2 has subexponential growth: |EU) N [—n,n]| = (logn)’, and is not equidistribu-
ted.

The second ingredient is a result announced without proof by Katznelson.

Proposition 2.7 ([51, §2]) Put Iy = |pr—1,px] with pr > pi_, (k > 1). Let
E = N in Construction 2.4. There is a choice of (fy) with £y > logpy such that
for 6, =€y /|Ix| (n € Ii), E' is A(p) for all p almost surely.

Li suggests to apply the content of Proposition 2.7 with pp = 2* and ¢, = k: then
5, > n~! and Theorem 2.3 derives from Theorem 2.5. [ |

We shall generalize Katznelson’s and Li’s results with a new proof that permits to
construct E’ inside of sets E with polynomial growth (see Def. 3.1) and yields an
optimal criterion on ¢;. We shall subsequently generalize Theorem 2.5 to obtain

the Main Theorem via

Theorem 2.8 Let E be equidistributed (vs. weakly) and with polynomial growth.

Then there is a subset E' C E equidistributed (vs. weakly) and at the same time
A(p) for all p.

See also Corollary 5.5 for a precise and quantitative statement.

3 Sets with polynomial growth

We start with the definition and first property of such sets.

Definition 3.1 Let E = {ni}r>1 C Z be an infinite set ordered by increasing
absolute value and E[t] = |E N [—t,t]| its distribution function.

(i) E has polynomial growth if n, < k¢ for some 1 < d < co. This amounts to
E[t] =t fore =d~ 1.

(ii) E has regular polynomial growth if there is a ¢ > 1 such that [npqp| < 2|ng| for
large k. This amounts to E[2t] > cE[t] for large t.
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Proof. (i) If |ngx| < Ck? for large k and Ck? < t < C(k + 1)¢, then E[t] > k >
(t/C)® — 1. Conversely, if E[t] > ct® for large ¢t and c(t — 1) < k < ct®, then
Ink| <t < (k/c)?+ 1.

(id) If |npep1| < 2|ng| for large k and k is maximal with |ng| < ¢, then E[2t] >
E[2Ink|]] > ¢k = cE[t]. Conversely, if E[2t] > cE]t] for large t, then Ellng|] €
{k,k 41} and E[2|ny|] > ck. Thus |npe| < 2|ngl. |

In particular, polynomial sequences have regular polynomial growth. By the Prime
Number Theorem, the sequence of primes also has. Property (i¢) implies property
(i): if E[2t] > cE[t] for large ¢, then E[t] = t'°82¢. The converse however is false as
shows F = [J]22"",22""+1], for which F[t] 5= t'/4 while F[2¢t] = F[¢] infinitely often.
Let us relate Definition 3.1 with certain partitions of Z. Regular growth means in

fact that F is regularly distributed on the annular dyadic partition of Z

P = {[=po. po), Ir. = [=Pr: =pk—1[U]pr—1, Pkl } 5, Where py = 2" (2)

and F' shows that there are sets with polynomial growth which are not regularly
distributed on the partition defined by py = 22", However, the intervals of the gross

partition

P = {[-po,pol It = [Pk —Pk—1[U |pk—1, k] } where logpy, > logpe—1  (3)

grow with a speed that forces regularity. Put p, = 2¥' for a simple explicit example.

We have precisely

Proposition 3.2 Let E C Z, P = {Ix} a partition of Z and Ex, = EN1I;. Then
log |Ex| = log |Ix| in the two following cases:

(i) if E has regular polynomial growth and P is partition (2);

(ii) if E has polynomial growth and P is partition (3).

Proof. (i) Choose K and ¢ > 1 such that E[2¥] > cE[2¥71] for k > K. Then
E[2¥] 3= ¢F. Thus

|Ex| = E[2"] — E[2"71 > (1 — ¢ Y E[2"] = & = 2klee2 e,
(#3) In this case p, > pg—1 for any € > 0. Now there is € > 0 such that

|Ex| = Elpr] — Elpr—1] = pi = [Tl =

4 Sets that are A(p) for all p

In this section, we establish an improvement (Th. 4.7) of Katznelson’s statement
[51, §2]. We first recall several known definitions and results.

A(p) sets have a practical description in terms of unconditionality. We shall also
use a combinatorial property that is more elementary than [86, 1.6(b)]: to this end,

write Z7" for the following set of arithmetic relations.
Zr={CeZ™: G+ ...+ Cn=0and |G|+ ...+ |(n] < 25}

Note that Z! and Z™ (m > 2s) are empty, and that every ¢ € Z2 is of form
¢1-(1,—1): this is the identity relation.
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Definition 4.1 Let 1 < p < oo, s > 1 integer and E C Z.

(i) [49] E is an unconditional basic sequence in LP(T) if

Z +a, €, Z Ay, €n

nek nek

sup <C
+ p

p

for some C. If C =1 works, E is a 1-unconditional basic sequence in LP(T).
(ii) [Chapter II, §2.2] E is s-independent if > (;q; # 0 for all 3 <m <2s, ( € Z™
and distinct q1,...,qm € E.

Proposition 4.2 Let 1 < p < 0o, s > 1 integer and E C Z.

(i) /86, proof of Th. 3.1] E is a A(max(p,2)) set if and only if E is an unconditional
basic sequence in LP(T).

(ii) [Chapter II, Prop. 2.2.1] E is a 1-unconditional basic sequence in L**(T) if and
only if E is s-independent.

We need to introduce a second classical notion of unconditionality that rests on the

Littlewood—Paley theory.

Definition 4.3 ([37]) Let P = {I;} be a partition of Z in finite intervals. P is a
Littlewood—Paley partition if for each 1 < p < oo there is a constant Cp, such that

Vi el sw|Yoxfi| <Glfl,  with fi { gj; L. (4)

By Khinchin’s inequality, this means exactly that

vrerm i~ (3 \fk|2)1/2Hp'

In particular, the dyadic partition (2) and the gross partition (3) are Littlewood—
Paley [61]. By Proposition 4.2 and (4), we obtain

Proposition 4.4 Let {I;} be a Littlewood—Paley partition and Ey C Ij. If Ey
is s-independent for each k, then E = |J Ey, is an unconditional basic sequence in
L2%(T) and thus a A(2s) set.

We generalize now Katznelson’s Proposition 2.7.

Lemma 4.5 Let s > 2 integer, E C Z finite and 0 < £ < |E|. Put 6, = l/|E| in
Construction 2.4, so that all selectors &, have same distribution. Then there is a

constant C(s) that depends only on s such that

KQS

P[E’ is s-dependent] < C(S)E.
Proof. We wish to compute the probability that there are 3 < m < 2s, ( € Z"
and distinct ¢1,...,¢m € E' with > (;¢; = 0. As the number C(s) of arithmetic
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relations ¢ € Z™ (3 < m < 2s) is finite and depends on s only, it suffices to compute,
for fixed m and ¢ € Z7"

P {Ek]ly sy qm € FE’ distinct : Z Giqi = 0}

m—1

= P|3q1,. ., q¢m-1 € E distinct : (.} Z Gigi € E'\{q1,.. -,qm—l}]

i=1

m—1
- p| Ul > G € B\ .o am}]

q1,--s9m—1
L € E’ distinct
m—1
—1 —1
= P U{qm:—ﬁm > Gai € B\ {a:} &fqlz---:fqmzl}
q15--5dm—1 =1
L € E distinct

The union in the line above runs over

|E]! 1
— < |E™
(|E|—m—i—1)!_| |

(m — 1)-tuples. Further, the event in the inner brackets implies that m out of |E|
selectors &, have value 1: its probability is bounded by (¢/|E|)™. Thus

m €2s
< C(s)i=- [ |
|E|™ |E|

P[E’ is s-dependent] < C(s) |E|™t

max
3<m<2s
The random method we shall use is the following random construction.

Construction 4.6 Let E C Z. Let {I} be a Littlewood—Paley partition and Ej =
ENI;. Let (Ug)r>1 with 0 < ¢, <|Ey| and put

]P)[gn = 1] =0, = gk/lEkl (TL € Ek)
in Construction 2.4. Put E) = E' N I}.

Theorem 4.7 Let E C 7 have polynomial (vs. regular) growth and {I} be the
gross (3) (vs. dyadic (2)) Littlewood—Paley partition. Do Construction 4.6. The
following assertions are equivalent.

(i) log €, < log|Ii|, i. e. log €, < logpi (vs. logly < k);

(ii) E’ is almost surely a A(p) set for all p.

Proof. Note that by Proposition 3.2, there is a positive o such that |Eg| > |I|" for
large k. (i) = (i) Let s > 2 be an arbitrary integer. By Proposition 4.5,

(oo}

- . 625
kZ::lIP’ [E). is s-dependent] < C(s) kz::l |Ekk|

For each 1 > 0, £, < |I}|" for large k. Choose n < a/2s. Then €25 /|Ey| < |[Ie|**" ™
for large k, and the series above converges since || = 2¥. By the Borel-Cantelli

lemma, Ej is almost surely s-independent for large k. By Proposition 4.4, E’ is
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almost surely the union of a finite set and a A(2s) set. By [86, Th. 4.4(a)], E’ itself
is almost surely a A(2s) set.

(17) = (4) If £’ is a A(2s) set, then by [86, Th. 3.5] or simply by [9, (1.12)], there
is a constant Cs such that |E}| < C’S|Ik|1/s. As |E}| ~ ¢; almost surely by the Law
of Large Numbers (cf. the following Lemma 5.1), one has log ¢, < log |I|. |

Remark 4.8 As one can easily construct sets that grow as slowly as one wishes and
nevertheless contain arbitrarily large intervals (see also [86, Th. 3.8] for an optimal

statement), one cannot remove the adverb “almost surely” in Theorem 4.7(i7).

Remark 4.9 The right formulation of Katznelson’s Proposition 2.7 thus turns out
to be the following. Let E = N and I}, = |px_1, px] with py > ¢pgr—1 for some ¢ > 1
in Construction 4.6. Then E’ is almost surely a A(p) set for all p if and only if
log 41, < log pg.

Remark 4.10 Theorem 4.7 shows that there are sets that are A(p) for all p of any
given superpolynomial order of growth. This is optimal since sets with distribution
E[t] = t¢ fail the A(p) property for p > 2/ by [86, Th. 3.5]. Such sets may also
be constructed inductively by combinatorial means: see Section I1.11 and [35, §II,
(3.52)].

5 Equidistributed sets

In this section, we shall finally state and prove our principal result. To this end,
we shall first generalize Bourgain’s Theorem 2.5 in order to get Theorem 5.4. The

following lemma is Bernstein’s distribution inequality [4] and dates back to 1924.

Lemma 5.1 Let X4,...,X, be complex independent random variables such that
IX;]<1 and EX;=0 and E|Xi*+...+E|X,.><o. (5)
Then, for all positive a,
P[| X1+ ...+ X,| > a] < 4exp(—a?/4(o + a)). (6)
Proof. Consider first the case of real random variables. By [1, (8b)],
P[X1+...+ X, >a] <exp(a— (0 +a)log(l+a/o));
as log(1 —u) < —u—u?/2 for 0 < u < 1,
P[X; +...+ X, > a] < exp(—a?®/2(c + a)).
One gets (6) since for complex z
|2l >a = max(Rz, —Rz, Iz, -Sz) > a/V2. [ |

The next lemma corresponds to [8, Lemma 8.8] and is the crucial step in the es-
timation of the successive means of {e"}, /. Note that its hypothesis is not on
the individual 6,,, but on their successive sums oy: this is needed in order to cope

with the irregularity of E.
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Lemma 5.2 Let E = {n;} C Z be ordered by increasing absolute value. Do Con-
struction 2.4 and put o = 0py + ...+ O, . If o > log|ngl|, then almost surely

k

1 1
(k) = H|E’ N{ny,...,ng}| Z on _7267” ns

’ O—k: §—
E'n{n1,...,ny} j=1

0. (7

0o k—o0

Proof. Note that

k k
Z ©n :anje”j ) |E/ﬁ{n1,...,nk}|:Z§nj-
j=1

E'n{ni,...,ni} Jj=1

Center the &, by putting f = Z?Zl(fnj —0n;) €n;. Then

Plk) < H(|E'm{n1,...,nk}|l—okl)ifm engl|_+lloy " Fllo
Jj=1

< Uk_l Ony + ...+ 0Ony,

-1
Eny + oot Eny

k
S, + 07 F oo < 20771 £lloo-
j=1

Let R={t € T: t*™l =1} and u € T such that |f(u)| = ||f||eo- Let t € R be at

minimal distance of w: then |t — u| < w/4|ng|. By Bernstein’s theorem,

4
1o = 1F @) = 1f(w) = Ol < [t = ul [|flle < 21/ lloo

[[flloc < 5sup | £(t)
teR

(For an optimal bound, cf. [68, §1.4, Lemma 8].) For each ¢ € R, the random
variables X; = (£, — 0n;) €n, (t) satisfy (5), so that

P(If(t)] > a] < 4exp(—a®/4(ox + a)).
As |R| = 4|ng|,
Pl > 5a] < B |sup ()] > o] < dha]- dexp(—a* o+ a).
Put aj, = (120} log|ng|)/2. Then ay < o: therefore
P ([ flloc > 5ar] < [rx] 2
and by the Borel-Cantelli lemma,
o M fllso < ax/or — 0 almost surely. [

Remark 5.3 The hypothesis in Lemma 5.2 contains implicitly a restriction on the
lacunarity of E. If oy, > log |ng|, then necessarily log |ni| < k and E[t] > logt. In
particular, E cannot be a Sidon set by [86, Cor. of Th. 3.6].

We now state and prove the equidistributed counterpart of Theorem 4.7.
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Theorem 5.4 Let E = {n;} C Z be equidistributed (vs. weakly), and ordered by
increasing absolute value. Do Construction 2.4 and suppose that 6, decreases with
j. Putog, =0, +...40n,. If o, > log|nyl|, then E' is almost surely equidistributed
(vs. weakly). Note that this is in particular the case if

(8) bn, > (el — 1)/ I

(b) E has polynomial growth and 6,, > k='.

Proof. Lemma 5.2 shows that almost surely (7) holds. It remains to show that

L L F
lim o Z Op,; €, = lim - Z €,
Jj=1 Jj=1
i. e. that the matrix summing method (ay ;) given by

6nj /O’k lf] S k
Ak,j = .
0 otherwise

is regular and stronger than the Cesaro method C; by arithmetic means. This is
the case because ay,; > 0, > ax,; = 1 and (cf. [100, §52, Th. I])

Yk D dlakg —akgnl =Y jlak; —ak;) =1 < o0
J J
since (ag,;) decreases with j for each k.
(a) In this case d,, > log|ng| — log |ng—1| and thus oy, > log|nk|.
(b) In this case, 0% > logk = log |ng|. [ |

In conclusion, we obtain, by combining Theorems 4.7 and 5.4, the principal result
of this chapter.

Corollary 5.5 Let E C Z be equidistributed (vs. weakly) and do Construction 4.6.
Then E' is almost surely A(p) for all p and at the same time equidistributed (vs.
weakly) in the two following cases:

(i) E is a set of regular polynomial growth, {I;} is the dyadic Littlewood—Paley
partition (2) and one may choose {{;} such that1 < logl; < j and {;/|E;| decreases
eventually.

(ii) E is a set of polynomial growth, {I;} is the gross Littlewood—Paley partition (3)
and one may choose {{;} such that {;/|E;| decreases eventually and £; > logpji1
while log ¢; < logp;. This is the case if we put p; = 27" and £; = min((j +2)!, |E}|).

Proof. In each case log¢; < log|I;|. Let us show that the hypothesis of Theorem
5.4 is verified. If n, € E; C I;, then |ng| < p; and

j—1
U}CZZ Z §n:€1+...+€j,1

i=1nekE;
and in each case £;_1 > logp; — logp;_1.
Let us make sure in (i¢) that our choice for p; and ¢; is accurate. Indeed, there is
an ¢ > 0 such that |E;| = 257", Thus (j + 2)! < |F;| and ¢; = (j + 2)! for large j.
Note further that (j + 2)! > (j + 1)! while log(j + 2)! < j!. Finally
b _ G334 G4

|Ejpa]  2¢GHDE 7 2eG+D)! <

<
28 | By

so that £;/|E;| decreases eventually. [
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Index of notation
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Up X Un
Uy K Uy
Elt]
(mr6)

q1 — q2
@l g

1-(ubs)
A(T)

m
A, AT
a.s.

cardinal of B

space of X-functions with spectrum in F

Fourier transform of f: f(n) = [ f(t)e_n(t)dm(t)
multinomial number, §2.3

pairing of the arithmetical relation ¢ against the spectrum F, §3.1
|ty | is bounded by Cluvy,| for some C

U, is negligible with respect to v,

distribution function of F C Z: E[t] = |E N [—t,]]
the operator x on ¢y viewed as matrix

segment from ¢; to gs, where g1,¢92 € N x N
segment from ¢; to gz, where g1,92 € N x N

1-unconditional basic sequence of characters, Def. 2.1.1(7)

disc algebra Cn(T)
sets of multi-indices viewed as arithmetic relations, §2.2
approximating sequence, Def. 4.1.1

unit ball of the Banach space X

space of continuous functions on T
space {f: T — T :Ve >0 3A C T finite | f| < € outside A}
completely bounded

set of real signs {—1,1}
difference sequence of the Ty: AT, =T — Tr—1 (Tp =0)

expectation of the random variable X
character of T: e, (z) = 2" for z€ T, n € Z
matrix entry seen as operator on /o

finite dimensional decomposition, Def. 4.1.1
Hardy space L(T)

arithmetical property of almost independence, Def. 2.4.1
identity
independent identically distributed, §12.2

arithmetical property of block independence, Def. 7.1.2

space of bounded linear operators on the Banach space X
Lebesgue space of p-integrable functions on T

p-additive approximation property, Def. 5.1.1

metric p-additive approximation property, Def. 5.1.1
Rudin’s class of lacunary sets, Def. 2.1.6
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functional property of Fourier block p-additivity, Lemma 6.2.5(i%)
space of Radon measures on T

measure of A C T

functional property of 7-p-additivity, Def. 5.3.1(7)

functional property of commuting block p-additivity, Def. 5.3.1(i%)

oscillation of f

probability of the event A

space of trigonometric polynomials on T
projection of X, E = {ng}, onto Xy, . n;}
projection of Xg onto Xp

real (S =D) or complex (S = T) choice of signs
Schatten class of operators
entry subspace of SP

unit circle in C with its normalized Haar measure

topology of pointwise convergence of the Fourier coefficients, Lemma 6.2.2(7)

functional property of Fourier block unconditionality, Def. 6.2.1
functional property of 7-unconditionality, Def. 4.2.1(¢)

functional property of commuting block unconditionality, Def. 4.2.1(it)
unconditional approximation property, Def. 4.1.1

unconditional basic sequence, Def. 2.1.1

metric unconditional approximation property, Def. 4.1.1

metric unconditional basic sequence, Def. 2.1.1

sets of multi-indices viewed as arithmetic relations, §2.2
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1-unconditional approximation
property
for spaces LE(T), p even, 59
1-unconditional basic sequence of
characters, 27
in €(T) and LP(T), p ¢ 2N, 30, 32
in spaces LP(T), p even, 30, 59
on the Cantor group, 66
on the infinite torus, 66
1-unconditional basic sequence of
entries, 75, 76
1-unconditional (fdd), 53
for L4 (T), 70
for spaces LE(T), p even, 54

almost i.i.d. sequence, 67
almost independence, 34
approximating sequence, 38
approximation property, 38
arithmetic sequences, 81
arithmetical relation, 29, 32, 33

Bernstein, Serge, 86

Binet, J. P. M., 57

birelation, 29

Bishop, Errett A., 48

Blei, Ron C., 44

block independent set of integers, 52

boundedly complete approximating
sequence, 41

Bourgain, Jean, 25, 80, 82

break, 39, 52

Cantor group, 28, 31, 66

Carleson, Lennart, 48

Casazza, Peter G., 38

Cesaro summing method, 88

commuting block unconditionality, 39

completely bounded 1-unconditional
basic sequence of entries, 75

completely bounded A(p) set, 78

completely bounded Schur multiplier,
72
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completely bounded unconditional
basic sequence of entries, 75

completely bounded unconditionality
constant

of sum sets, 77

complex vs. real, 28, 31, 52, 66, 76

connected p-gonal relation, 72

connected rectangular lines, 72

cotype, 41

Daugavet property, 48, 70
distribution function, 82
dyadic partition, 83

entry, 71

entry subspace of SP, 72
equidistributed set, 81, 88
equimeasurability, 25
Erdos, Paul, 65, 82
Euler’s conjecture, 37, 57
Euler, Leonhard, 57
exponential growth, 65

Fibonacci sequence, 57
finite-dimensional decomposition, 38
Forelli, Frank, 24

Fourier block unconditionality, 48, 52
Frénicle de Bessy, Bernard, 37

geometric sequences, 36, 56, 58, 68, 81
Godefroy, Gilles, 40, 45
gross partition, 83

Hadamard set, 64

Hankel Schur multiplier, 77
Harcharras, Asma, 77

Hilbert set, 44, 54

Hindman, Neil, 65
homogeneous Banach space, 26

independent set of integers, 29
infinite difference set, 65
isometries on LP, 32
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constant, 29

for all p, 85, 88

sufficient conditions, 78
Li, Daniel, 45, 54, 65, 81
Littlewood—Paley partition, 47, 84
Lust-Piquard, Francoise, 48

Malliavin, Paul, 82
matrix independent set of entries, 76
matrix summing method, 88
maximal density, 64
of block independent sets, 65
of independent sets, 64
metric 1-additive approximation
property
for spaces Cg(T), 50, 59
for subspaces of L, 45
metric p-additive approximation
property, 42, 45
for homogeneous Banach spaces,
50
for subspaces of LP, 46
metric unconditional approximation
property, 38, 40
for €g(T) and LE(T), p ¢ 2N, 54
for homogeneous Banach spaces,
49, 59
for spaces LI (T), p even, 54
on the Cantor group, 66
metric unconditional basic sequence,
27, 34, 59
metric unconditional (fdd), 38, 54
Meyer, Yves, 54
Murai, Takafumi, 36, 67

oscillation, 26

p-additive approximation property, 42
for spaces Cg(T), 44
for spaces L7, (T), 44
p-gon, 72
that does not span a surface, 73,
74
that returns on its track, 73, 74
p-gonal relation, 72
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Rosenthal set, 47, 79
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Schur multiplier, 72
Schur property, 1-strong, 45
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similar rectangular lines, 73
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Stein, Elias, 48
strong mixing, 24
subexponential growth, 82
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superexponential growth, 65
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symmetric sets, 56, 58
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