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À mon père.

Une civilisation sans la science, c’est aussi absurde qu’un poisson sans
bicyclette.

Pierre Desproges, Je baisse.

It is not how fast you go that matters, it is the object of your journey. It is
not how you send a message, it is what the value of the message may be.

Sir Arthur Conan Doyle, The land of mist .

Je sers la science et c’est ma joie.

Basile (disciplus simplex).



4



5

Remerciements
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données, chacun à leur manière, et toujours au bon moment.
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Introduction

La théorie des blocs a été introduite au milieu du 20ème siècle par R. Brauer.
Si G est un groupe fini et si Irr(G) est l’ensemble de ses caractères complexes
irréductibles, alors à tout nombre premier p est associée une partition de
Irr(G) en p-blocs . Les blocs correspondent aux termes d’une décomposition
en somme directe d’idéaux bilatères de l’algèbre de groupe sur un anneau de
valuation discrète complet. La plupart des propriétés des p-blocs viennent
des propriétés arithmétiques p-locales des caractères et sont obtenues grâce
à une passerelle entre caractéristique 0 et caractéristique p. Mais les p-blocs
peuvent aussi être obtenus élémentairement à partir du découpage de G en
p-sections. Tout élément g de G a une unique écriture g = gpg

′
p = g′pgp où

gp est un p-élément et g′p est p-régulier (i.e. l’ordre de gp est une puissance
de p et celui de g′p est premier à p). Deux éléments appartiennent à la même
section si les p-éléments associés sont conjugués. On note C l’ensemble des
éléments p-réguliers de G, et on définit un produit intérieur tronqué par

< χ, ψ >C=
1

|G|

∑

g∈C

χ(g)ψ(g−1) pour tous χ, ψ ∈ Irr(G).

Deux caractères χ et ψ sont dits directement C-liés si < χ, ψ >C 6= 0 (sinon,
ils sont dits orthogonaux sur C). Celle relation est réflexive (car 1 ∈ C) et
symétrique. En l’étendant par transitivité, on obtient une relation d’équiva-
lence sur Irr(G) dont les classes sont les p-blocs. Une conséquence du Deuxiè-
me Théorème de Brauer est que, si deux caractères irréductibles sont orthogo-
naux sur C, alors ils sont orthogonaux sur chaque p-section (C est la p-section
de 1).

L’idée développée par B. Külshammer, J. B. Olsson et G. R. Robinson
dans [18] est de faire la même construction pour d’autres unions C de classes
de conjugaison. On obtient ainsi une partition de Irr(G) en C-blocks. Le but
de cette thèse est l’étude des propriétés de ces blocs généralisés. Dans [18], les
auteurs ont défini des ℓ-sections et des ℓ-blocs pour les groupes symétriques,
où ℓ ≥ 2 est un entier quelconque. Ils prennent pour C l’ensemble des
éléments, dits ℓ-réguliers, dont aucun des cycles n’est de longueur divisi-
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10 INTRODUCTION

ble par ℓ. Les ℓ-blocs obtenus satisfont un analogue de la Conjecture de
Nakayama : deux caractères irréductibles χλ et χµ du groupe symétrique Sn
(λ et µ sont des partitions de n) appartiennent au même ℓ-bloc si et seule-
ment si λ et µ ont le même ℓ-cœur. De plus, ils satisfont un analogue du
Deuxième Théorème de Brauer.

La première partie de la thèse expose brièvement la construction et les
propriétés des blocs dans le cas classique, puis introduit la généralisation
ci-dessus et décrit le cas des groupes symétriques.

La deuxième partie traite d’isométries parfaites généralisées. Soit G un
groupe fini, U un p-sous-groupe de Sylow de G, et B le normalisateur de
U dans G. On note B0 (respectivement b0) le p-bloc de G (respectivement
de B) qui contient le caractère trivial. Une conjecture de M. Broué prévoit
que, si U est abélien, alors il existe une isométrie parfaite entre B0 et b0 (
cf [2]). Une telle isométrie parfaite implique une relation étroite entre les
anneaux de caractères associés à B0 et b0. Si on prend pour G un groupe
de Suzuki Sz(q), de Ree (de type G2) Re(q) ou spécial unitaire SU(3, q2),
chacun en caractéristique p, alors les p-sous-groupes de Sylow de G ne sont
pas abéliens. Il est connu (cf Cliff [8]) que, dans le cas des groupes de Suzuki,
il n’y a pas d’isométrie parfaite entre B0 et b0. Néanmoins, nous démontrons
que, dans chacun de ces cas, si l’on prend pour C (resp. D) l’ensemble des
éléments de G (resp. B) dont l’ordre n’est pas divisible par p2, alors il existe
une bijection I entre B0 et b0 et des signes {ε(χ), χ ∈ Irr(G)} tels que,
pour tous χ, ψ ∈ B0, on a < χ, ψ >C=< ε(χ)I(χ), ε(ψ)I(ψ) >D. On parle
d’isométrie parfaite généralisée entre B0 et b0. Ce résultat est moins fort que
celui annoncé par la conjecture de Broué, mais il met cependant en évidence
le lien fort entre les anneaux de caractères de B0 et b0. En particulier, leurs
groupes de Cartan sont les mêmes.

La troisième partie de la thèse traite notamment de ce groupe de Cartan.
On suppose que C est une union fermée de classes de conjugaison de G (i.e.
si x ∈ C et si y engendre le même sous-groupe de G que x, alors y ∈ C).
Pour χ ∈ Irr(G), on définit une fonction centrale χC de G par χC(g) = χ(g)
si g ∈ C et χC(g) = 0 si g ∈ G \ C. On définit le sous-Z-module R(C)
de CIrr(G) engendré par {χC; χ ∈ Irr(G)}, et le sous-Z-module P(C) de
R(C) des éléments de R(C) qui sont des caractères généralisés de G (i.e.
P(C) = R(C) ∩ ZIrr(G)). Alors R(C) et P(C) ont le même rang sur Z. En
particulier, R(C)/P(C) est un groupe abélien fini, le C-groupe de Cartan de
G, et, pour tout χ ∈ Irr(G), il existe un entier d > 0 tel que dχC ∈ ZIrr(G).
Le plus petit tel d est appelé ordre de χ.

Le groupe de Cartan et les ordres des caractères sont bien connus dans le
cas où C est l’ensemble des éléments p-réguliers de G. Dans cette partie, nous
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donnons une description du groupe de Cartan et des ordres des caractères
dans le cas où G est abélien et C est l’ensemble des éléments pk-réguliers
de G (i.e. dont l’ordre n’est pas divisible par pk), où p est premier et k >
0. Nous établissons également une formule pour l’ordre des caractères des
groupes symétriques, quand C est l’ensemble des éléments ℓ-réguliers. Il
s’avère que cette formule est un ℓ-analogue de la Formule du Crochet pour
calculer le degré d’un caractère irréductible. En particulier, elle montre que,
si ℓ est une puissance d’un nombre premier p, alors le rapport de l’ordre d’un
caractère et de la p-partie de son degré est un invariant de chaque ℓ-bloc.
Nous démontrons que cette dernière propriété est vraie en dehors des groupes
symétriques sous certaines hypothèses (fortes) sur les blocs considérés. C’est
aussi le cas si G est dans l’une des familles étudiées dans la deuxième partie.

La quatrième partie est consacrée au groupe linéaire fini GL(n, q). Nous
y donnons des définitions de sections et de blocs, basées sur la séparation
en deux de l’ensemble des polynômes irréductibles qui divisent le polynôme
minimal d’un élément. Cette séparation est faite en comparant le degré des
polynômes à un entier quelconque d. Bien que nous définissions des blocs sur
l’ensemble des caractères irréductibles, nous n’obtenons des propriétés que
pour les caractères unipotents . Ceux-ci sont paramétrés par les partitions
de n, et nous montrons que, si deux caractères unipotents appartiennent au
même bloc unipotent , alors les partitions de n associées ont le même d-coeur.
Certaines unions de ces blocs, appelés blocs combinatoires satisfont donc un
analogue de la Conjecture de Nakayama. Nous montrons qu’ils satisfont
également un analogue du Deuxième Théorème de Brauer.



12 INTRODUCTION



Introduction

The representation theory of finite groups appeared and was first developped
by G. Frobenius at the very end of the 19th century. We will assume that
the reader is familiar with its ideas and techniques, in particular the no-
tion of groups character and the structures of character rings and character
tables. One of the major improvement in this theory was the introduction
by Brauer, in the 1950’s, of modular representation theory. The study of
the representations of a finite group over a field of prime characteristic lead
Brauer to develop the block theory of this group. This is the starting point of
this thesis. If G is a finite group and Irr(G) is the set of irreducible complex
characters of G, then to each prime p is associated a partition of Irr(G) into
p-blocks . The blocks correspond to the summands in the decomposition into
a direct sum of two-sided ideals of the group algebra of G over a complete
discrete p-valuation ring. Most of the properties of p-blocks come from the
p-local arithmetic properties of characters, and can be obtained through a
bridge between characteristic 0 and characteristic p. This link is obtained
via the introduction of p-modular systems . However, the p-blocks can also be
obtained in an elementary way, based on the distinction between p-regular
and p-singular elements of G. If we let C be the set of p-regular elements
of G, we can consider the restriction to C of the ordinary scalar product on
characters of G. For χ, ψ ∈ Irr(G), we let

< χ, ψ >C=
1

|G|

∑

g∈C

χ(g)ψ(g−1).

Then χ and ψ are said to be directly C-linked if < χ, ψ >C 6= 0, and orthogonal
across C otherwise. Then direct C-linking is a reflexive (since 1 ∈ C) and
symmetric binary relation on Irr(G). Extending it by transitivity, we obtain
an equivalence relation (called C-linking) on Irr(G) whose equivalence classes
are the p-blocks.

The idea introduced by B. Külshammer, J. B. Olsson and G. R. Robinson
in [18] is to do the same construction for other unions C of conjugacy classes
of G. We therefore get a partition of Irr(G) into generalized blocks , or C-

13



14 INTRODUCTION

blocks . It is the purpose of this thesis to study some properties of these
generalized blocks, and to define interesting blocks in some classes of groups.
In [18], the authors have defined ℓ-blocks for the symmetric groups, where
ℓ ≥ 2 is any integer. To obtain this, they take C to be the set of ℓ-regular
elements, i.e. none of whose cycle has length divisible by ℓ. The ℓ-blocks
obtained in this way satisfy an analogue of the Nakayama Conjecture: two
irreducible characters χλ and χµ of the symmetric group Sn (where λ and µ
are partitions of n) belong to the same ℓ-block if and only if λ and µ have
the same ℓ-core.

In the first part of this thesis, we present shortly the construction and
properties of the blocks in the classical case. In particular, we state Brauer’s
First and Second Main Theorems. A consequence of the latter is that ir-
reducible characters in distinct p-blocks, which are thus orthogonal across
the p-section of 1, are in fact orthogonal across each p-section. The end of
the part is devoted to the presentation of the ideas and results in [18]. We
introduce the generalization we mentionned above, in particular the notion
of (X ,Y)-section, which generalizes p-sections. This allows us to define a
Second Main Theorem property , which is an analogue of Brauer’s Second
Main Theorem in this setting (depending on the set C of conjugacy classes
we start with, this property may be satisfied or not by the C-blocks). We
then describe the case of symmetric groups. In particular, the ℓ-blocks of
symmetric groups satisfy the Second Main Theorem property.

The second part deals with generalized perfect isometries. Let G be a
finite group, p a prime, U a Sylow p-subgroup of G, and B the normalizer of
U in G. Let B0 and b0 be the principal p-blocks (i.e. containing the trivial
character) of G and B respectively. Then a conjecture of M. Broué states
that, if U is Abelian, then there should be a perfect isometry between B0

and b0 (cf [2]). Such a perfect isometry induces a close relationship between
the character rings associated with B0 and b0. Now, if G is a Suzuki group
Sz(q), a Ree group (of type G2) Re(q) or a special unitary group SU(3, q2),
each in characteristic p, then the Sylow p-subgroups of G are not Abelian.
Furthermore, it is known (cf Cliff [8]) that, in the case of Suzuki groups,
there is no perfect isometry between B0 and b0. However, we show that,
in each of these cases, if we take C and D to be the sets of elements of G
and B respectively whose order is not divisible by p2, then there exists a
bijection I between B0 and b0 and signs {ε(χ), χ ∈ Irr(G)} such that, for
any χ, ψ ∈ B0, we have < χ, ψ >C=< ε(χ)I(χ), ε(ψ)I(ψ) >D. We refer
to this as a generalized perfect isometry between B0 and b0. This result is
weaker than the one announced by Boué’s Conjecture, but still enlighten the
strong link between the character rings of B0 and b0. In particular, their
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Cartan groups are isomorphic.

The Cartan group is presented in the third part of the thesis. We suppose
that C is a closed union of conjugacy classes of the finite group G (i.e. if
x ∈ C and if y generates the same subgroup of G as x, then y ∈ C). For
χ ∈ Irr(G), we define a class function χC of G by χC(g) = χ(g) if g ∈ C
and χC(g) = 0 if g ∈ G \ C. We define the Z-submodule R(C) of CIrr(G)
spanned by {χC; χ ∈ Irr(G)}, and the Z-submodule P(C) of R(C) consisting
of those elements of R(C) which are generalized characters of G (i.e. P(C) =
R(C)∩ZIrr(G)). Then R(C) and P(C) have the same Z-rank. In particular,
R(C)/P(C) is a finite Abelian group, called the C-Cartan group of G, and,
for each χ ∈ Irr(G), there exists an integer d > 0 such that dχC ∈ ZIrr(G).
The smallest such d is called the order of χ.

The Cartan group and the orders of characters are well-known when C
is the set of p-regular elements of G. In this part, we give a description
of the Cartan group and of the orders of characters in the case where G
is Abelian and C is the set of elements whose order is not divisible by pk,
where p is a prime and k > 0. We also obtain a formula for the orders of
characters of the symmetric group, when C is the set of ℓ-regular elements. It
turns out that this formula can be seen as an ℓ-analogue of the Hook-Length
Formula for computing the degree of an irreducible character. In particular,
it implies that, if ℓ is a power of a prime p, then the quotient of the order
of a character by the p-part of its degree is an invariant of each ℓ-block. We
show that this last property is true outside the symmetric groups under some
(strong) hypothesis on the blocks we consider. It is also the case in the three
families of groups we study in the second part.

The fourth part is devoted to the finite general linear group GL(n, q).
We give definitions of sections and blocks, based on the splitting into two
of the set of irreducible polynomials dividing the minimal polynomial of an
element. This splitting is made by comparing the degrees of these irreducible
polynomials with any given integer d. Although we define blocks for the whole
set of irreducible characters of GL(n, q), we only obtain properties for the
unipotent characters. These are labelled by the partitions of n, and we show
that, if two unipotent characters belong to the same unipotent generalized
block , then the partitions labelling them have the same d-core. Thus some
unions of these blocks, called combinatorial blocks , satisfy an analogue of the
Nakayama Conjecture, and we show that they also satisfy the Second Main
Theorem property.
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Notations

Throughout this thesis, we will use the following notations:

N the natural integers (including 0).
Z the ring of integers.
Q, C the fields of rationals and complex numbers.
Fq the field with q elements (q a prime power).
(Fq,+) the additive group of Fq.
F×
q the multiplicative group of Fq (the non-zero elements of Fq).

Fq[X] the ring of polynomials in one indeterminate with coefficients in Fq.
δ(f) the degree of the polynomial f ∈ Fq[X].
np the p-part of n (n a positive integer, p a prime).
np′ the p′-part of n.
gcd(m,n) the greatest common divisor of the integers m and n.
lcm(m,n) the least common multiple of the (positive) integers m and n.
δxy the Kronecker delta function on x and y.
A
∐
B the disjoint union of the sets A and B.

|A| the order of the finite set A.
rkZ(M) the rank over Z of a rational matrix M or of a Z-module M .
V ⊕W the direct sum of the vector spaces V and W .
GL(V ) the field of automorphisms of the vector space V over the ground field.
Id or 1 the identity map or the identity matrix.
In the n by n identity matrix.
g|W the restriction to the subspace W of V of an element g in GL(V ).
Min(g) the minimal polynomial of g ∈ GL(V ) over the ground field.
Char(g) the characteristic polynomial of g ∈ GL(V ) over the ground field.
Cd the cyclic group of order d.
G×H the direct product of two (finite) groups G and H (written G⊕H if G

and H are additive groups).
G⋊H a semi-direct product of G by H.
Z(G) the center of G.
G′ the derived subgroup of G.
H ≤ G H is a subgroup of G.

17
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H �G H is a normal subgroup of G.
[G : H] the index of the subgroup H in G.
NG(H) the normalizer of H in G.
CG(g) the centralizer in G of an element g of G.
CG(H) the centralizer in G of a subgroup H of G.
Cl(G) the set of conjugacy classes of G.
k(C) the number of conjugacy classes in a union C of conjugacy classes of G.
ClG(g) the conjugacy class of g in G.
o(g) the order of g in G.
< g > the subgroup of G generated by g.
gp the p-part of g (p a prime).
gp′ the p-regular part of g.
Gp the set of p-elements of G.
Gp′ the set of p-regular elements of G.
Sylp(G) the set of Sylow p-subgroups of G.
Op(G) the largest normal p-subgroup of G.
Irr(G) the set of irreducible complex characters of G.
1G the trivial character of G.
ZIrr(G) the ring of generalized characters of G.
< , >G the scalar product for complex class functions of G.
ResGH(χ) or χ|H the restriction to the subgroup H of the character χ of G.
IndGH(ψ) the character of G induced from the character ψ of the subgroup H.
χ⊗ χ′ the tensor product of the characters (of the same group) χ and χ′.



Part 1

Generalized Block Theory

In this part, we introduce the notions and objects we will use in this thesis.
In a first place, we give a quick overview of the “ordinary” block theory,
introduced by R. Brauer. Then we give the definitions and first properties
of generalized block theory, as presented in [18], and finally describe the
generalized blocks for the symmetric groups defined in this latter article.

1.1 Block Theory

In this section, we let G be a finite group. For all the results in this section,
and unless specified otherwise, we refer to Navarro [20]. Most of the notions
and results in block theory come from arithmetic constructions and prop-
erties. It is this approach we use to describe Brauer characters and, later,
blocks, even though, when generalizing, we will use another characterization
of blocks.

1.1.1 Modular systems

If k is any field, the group algebra kG is semi-simple if and only if k is of
characteristic 0 or p prime to |G|. For any field k, we write Irr(kG) the set of
characters of irreducible kG-modules. If kG is semi-simple and if, for every
simple kG-module V , V is absolutely simple (i.e. EndkG(V ) = k.Id), then
the structure of kG is enlighted by Wedderburn’s theorem on semi-simple
algebras: kG is a direct sum of matrix algebras. For example, this is the case
when k is algebraically closed.

When we move to characteristic p dividing |G|, we lose the semi-simplicity
of the group algebra, but we want to keep the “absolute simplicity property”.
This will be the motivation for the introduction of large enough p-modular
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20 PART 1. GENERALIZED BLOCK THEORY

systems. We first observe :

Proposition 1.1. There exists a field K ⊂ C such that [K : Q] < ∞ and
such that any finite-dimensional representation of CG can be realised over
K.

A theorem of Brauer makes this more precise by stating that, if m is the
exponent of G, then K = Q(e

2iπ
m ) is sufficient.

Similarly, for any prime p, there exists a finite field k0 ⊂ Fp such that
any finite-dimensional irreducible representation of FpG can be realised over
k0.

Now, let K be a field, K ⊂ C, [K : Q] < ∞, and let AK = A ∩ K be
the ring of algebraic integers in K (where A is the subring of C of algebraic
integers). Then K = Frac(AK) and we have

Theorem 1.2. Let {0} 6= P � AK be a prime ideal, and

O = {
a

b
∈ K = Frac(AK) | b 6∈ P}

be the localisation of AK in P. Then O is a subring of K, a local ring (i.e.
with a unique maximal ideal M). Moreover, O is principal, and k = O/M
is a finite field of characteristic p > 0, where Z ∩ P = pZ. If M = (π) with
π ∈ O, then the ideals of O are exactly the (πi)i≥1, and

⋂
i≥1(π

i) = {0}.

Furthermore, we have K = Frac(O) and every finite-dimensional KG-
module can be realised over O. For this theorem, presented like this, we refer
to the graduate course on modular representation theory given in Lyon by
M. Geck in 2001-2002, and, for another presentation, we refer to [1].

Definition 1.3. If p is a prime, K is a subfield of C, [K : Q] < ∞, and
k and O are as in the above theorem, then (K,O, k) is called a p-modular
system for G.

If p| |G|, and without further information about k, not all simple FpG-
modules need to be absolutely simple. However, adding to K a suitable |G|-
th root of unity, we can suppose that k0 ⊂ k, so that any finite dimensional
irreducible FpG-module can be realised over k.

Definition 1.4. A p-modular system is said to be large enough for G if
any V ∈ Irr(CG) can be realised over K and any M ∈ Irr(FpG) can be
realised over k, and if K and k contain all |G|-th roots of unity.
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We have just shown that such a system exists, so from now on we let
p be a prime and (K,O, k) be a p-modular system large enough for G. In
particular, any simple KG- (resp. kG-) module is absolutely simple (and
thus KG and kG are split algebras).

The ring O is often taken by authors to be complete (for some p-adic
norm). This allows the lifting of idempotents from kG to OG. However, if
the p-modular system is big enough for G, then the group algebra KG is
split semisimple, and kG is a split algebra. Then, by a result of Heller, the
Krull-Schmidt-Azuyama Theorem holds for OG-lattices (cf Curtis-Reiner [9],
Theorem 30.18), and, furthermore, idempotents can be lifted from kG to OG
(cf [9], Ex. 6.16).

In the sequel, we will note z 7−→ z∗ the canonical surjection O −→ k,
also called reduction modulo p.

1.1.2 Brauer characters

Now we would like to turn to characters of kG-modules. However, because of
the characteristic p, we have to use something else than just traces. We will
describe the Brauer characters of G, which take values in O, thus allowing
us to connect them with the elements of Irr(KG).

We need first a result about roots of unity :

Proposition 1.5. Let Up′ = {x ∈ K× |xn = 1 for some n ≥ 1, with n| |G|
and p ∤ n}. Then Up′ ≤ K×, Up′ ≤ O

× and, if |G| = pam (a ≥ 0, p ∤ m),
then the restriction modulo p

{x ∈ K× |xm = 1} ⊂ Up′ −→ {x
∗ ∈ k× | (x∗)m = 1} ⊂ k×

is a bijection.

Let Gp′ be the set of p-regular elements of G. If M is a kG-module,
associated to the representation ρ of dimension d, and g ∈ G is p-regular of
order o(g), then the eigenvalues (ξi)1≤i≤d of ρ(g) are o(g)-th roots of unity, so
are in k×. Therefore, there are unique wi ∈ Up′ such that w∗

i = ξi, 1 ≤ i ≤ d.
We define the Brauer character ϕM of M by

ϕM : Gp′ −→ AK ⊂ O

g 7−→
∑d

i=1wi
.

Then ϕM is a class function of Gp′ , and, writing χ the character afforded
by ρ, we have

∀g ∈ Gp′ , ϕM(g)∗ = χ(g).
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Moreover, if M ∼=kG M
′, then ϕM = ϕM ′ .

We say that ϕM is irreducible if ρ is irreducible, and let IBrp(G) be the
set of irreducible Brauer characters of G.

The next theorem illustrates the importance of the Brauer characters.
We write CF (G) and CF (Gp′) the sets of complex class functions of G and
Gp′ respectively. For χ ∈ CF (G), we denote by χ̂ the restriction of χ to Gp′

(then χ̂ ∈ CF (Gp′)). We have:

Theorem 1.6. (i) The set IBrp(G) is a C-basis for CF (Gp′).
(ii) For all χ ∈ Irr(KG), there exist unique non-negative integers (dχϕ)ϕ∈IBrp(G)

such that
χ̂ =

∑

ϕ∈IBrp(G)

dχϕϕ.

Then (i) implies in particular that |IBrp(G)| is the number of p-regular
classes of G.

The (integral) matrix D = ((dχϕ))χ∈Irr(KG),ϕ∈IBrp(G)
is called the decom-

position matrix of G. It has (maximum) rank |IBrp(G)| (in particular, each
column of D has at least one non-zero entry). We deduce that, if p ∤ |G|,
then IBrp(G) = {χ̂, χ ∈ Irr(KG)}, and the elements of Irr(kG) are obtained
by taking the reduction modulo p of the elements of Irr(KG).

We let C = DtD, and call C the Cartan matrix of G. Then C =
((cϕ,ψ))

ϕ,ψ∈IBrp(G)
is a positive definite symmetric matrix with non-negative

integer coefficients.

For each ϕ ∈ IBrp(G), we define a class function Φϕ of G via

Φϕ =
∑

χ∈Irr(KG)

dχϕχ

(Φϕ corresponds to the column of ϕ in the decomposition matrix). We call
Φϕ the principal indecomposable character associated to ϕ. We then have
the following:

Theorem 1.7. (i) For each ϕ ∈ IBrp(G), Φϕ vanishes outside Gp′.
(ii) For all ϕ, ψ ∈ IBrp(G), we have

< Φϕ, ψ >Gp′
:=

1

|G|

∑

g∈Gp′

Φϕ(g
−1)ψ(g) = δϕψ.

(iii) The set {Φϕ, ϕ ∈ IBrp(G)} is a Z-basis for the Z-module ZIrrp′(G) of
generalized characters of G vanishing outside Gp′.



1.1. BLOCK THEORY 23

Note that, for ϕ ∈ IBrp(G),

Φ̂ϕ =
∑

χ∈Irr(KG)

dχϕχ̂ =
∑

ψ∈IBrp(G)

cϕψψ,

so that (i) and (ii) implie that, for ϕ, ψ ∈ IBrp(G),

< Φϕ,Φψ >G=< Φϕ,Φψ >Gp′
= cϕψ.

Together with (iii), this shows that the Cartan matrix corresponds to the
generalized definition of Cartan matrix we will give later.

1.1.3 Blocks

We now turn to the definitions of p-blocks of Irr(KG) and IBrp(G). To each
χ ∈ Irr(KG) are associated a primitive idempotent eχ of Z(KG) and an
irreducible (linear) representation ωχ of Z(KG) given by:

eχ =
χ(1)

|G|

∑

g∈G

χ(g−1)g

and

ωχ(C̃) =
|C|χ(gC)

χ(1)
,

where C is any conjugacy class of G, with representative gC, and C̃ is the sum
of the elements in C.

Then, for all χ, χ′ ∈ Irr(KG), we have ωχ(eχ′) = δχχ′ . Furthermore,
for each χ ∈ Irr(KG), the restriction ω∗

χ is an irreducible representation of
Z(kG).

The p-blocks we define correspond to the decomposition of OG into a
direct sum of ideals OGe, where e is a primitive idempotent of Z(OG). We
define the Brauer graph of G: the vertices are the χ ∈ Irr(KG), and two
characters χ 6= χ′ ∈ Irr(KG) are linked if there exists ϕ ∈ IBrp(G) such that
dχϕ 6= 0 6= dχ′ϕ. We then have the following:

Theorem/Definition 1.8. (i) Two characters χ 6= χ′ ∈ Irr(KG) are linked

in the Brauer graph if and only if
1

|G|

∑

g∈Gp′

χ(g)χ′(g−1) 6= 0.

(ii) An element e ∈ Z(OG) is a primitive idempotent of Z(OG) if and only
if e =

∑
χ∈B eχ for some connected component B of the Brauer graph. The

set B ⊂ Irr(KG) is then called a p-block of Irr(KG) (or just of G).
(iii) Two characters χ, χ′ ∈ Irr(KG) belong to the same p-block of G if and
only if ω∗

χ = ω∗
χ′.
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Note that the p-blocks do not depend on the p-modular system we choose
(cf [20]). We let Bl(G) be the set of p-blocks of G. We have

Proposition 1.9. For B ∈ Bl(G), we let ωB = ω∗
χ for any χ ∈ B, and

eB =
∑

χ∈B eχ. Then
(i) {ωB, B ∈ Bl(G)} is the complete set of (distinct) irreducible representa-
tions of Z(kG).
(ii) {e∗B, B ∈ Bl(G)} is the complete set of primitive idempotents of Z(kG).
(iii) For all B, B′ ∈ Bl(G), we have ωB(e∗B) = δBB′.

For B ∈ Bl(G), the set {ϕ ∈ IBrp(G) | ∃χ ∈ B, dχϕ 6= 0} is called a p-
block of IBrp(G), and written IBrp(B). Up to reordering lines and columns,
we see that the p-blocks of Irr(KG) and IBrp(G) correspond to a diagonal
block decomposition of the decomposition matrix, and thus of the Cartan
matrix. For B ∈ Bl(G), we define in a natural way the decomposition
matrix DB and Cartan matrix CB of B.

1.1.4 Defect

We now give the definitions of defect of a character, a block, or a conjugacy
class. With these, we obtain informations on generalized characters and the
invariant factors of the Cartan matrices. The results we mention give answers
in the prime case to the questions we will study in the third part of this thesis.

Definition 1.10. For χ ∈ Irr(KG), we define the defect d(χ) of χ to be

the exact power of p dividing the integer |G|
χ(1)

, i.e.

pd(χ) =

∣∣∣∣
|G|

χ(1)

∣∣∣∣
p

.

We then define the defect d(B) of a block B of Irr(KG) to be

d(B) = max
χ∈B

d(χ).

For C a conjugacy class of G, we define the defect d(C) of C by

pd(C) = |CG(g)|p for g ∈ C.

For B a block of G, we let nB and rB be the numbers of irreducible (com-
plex) characters in B and irreducible Brauer characters in B respectively.

The case of blocks of defect 0 is described by the following



1.1. BLOCK THEORY 25

Theorem 1.11. Let B be a p-block of G and χ ∈ B. Then the following are
equivalent:

(i) d(B) = 0.

(ii) nB = rB.

(iii) d(χ) = 0.

(iv) χ is the only irreducible character in B.

(v) χ vanishes on p-singular elements.

(vi) χ(1)p = |G|p.

To prove the next theorem, one needs the following lemma, which is
interesting in itself for our work:

Lemma 1.12. Let χ ∈ Irr(KG). We define a class function χ̃ of G by
letting, for g ∈ G,

χ̃(g) =

{
χ(g) if g is p-regular
0 if g is p-singular

.

Then pd(χ)χ̃ is a generalized character, while pd(χ)−1χ̃ is not.

We then have the following result on Cartan matrices:

Theorem 1.13. Let B be a p-block of G. Then

(i) The elementary divisors of the Cartan matrix CB divide pd(B), and at
least one of them is equal to pd(B). In particular, nB > rB unless d(B) = 0.

(ii) CB has exactly one elementary divisor equal to pd(B).

Finally, we mention the following:

Theorem 1.14. The elementary divisors of the Cartan matrix C of G are

{pd(C) | C p-regular class of G}.

1.1.5 Brauer’s First and Second Main Theorems

Now, we want to state Brauer’s First and Second Main Theorems, which
relate blocks of a group G and of certain subgroups of G. These theorems
have many applications in representation theory. In order to state them, we
first introduce the notion of defect group and the Brauer correspondence.
For this presentation, we refer to Goldschmidt [14] and Navarro [20].



26 PART 1. GENERALIZED BLOCK THEORY

Defect groups

The idea of defect groups is to associate to each p-block of G a certain
conjugacy class of p-groups of G.

For subgroups H,L,M of G, we will write H ⊂L M (resp. H =L M) if
H l ⊂M (resp. H l = M) for some l ∈ L.

For each conjugacy class C of G with gC ∈ C, we define a defect group
δ(C) of C to be a Sylow p-subgroup of CG(gC) (δ(C) is therefore determined
up to g-conjugacy).

For B a p-block of G and C a conjugacy class of G, we let

aB(C̃) =
1

|G|

∑

χ∈B

χ(1)χ(g−1
C ),

where gC ∈ C and C̃ =
∑

g∈C g. Then eB =
∑

C aB(C̃)C̃, and aB(C̃) = 0 if C
is a p-singular class.

Proposition/Definition 1.15. If B is any p-block of G, then there exists

a p-regular class C such that ωB(C̃) 6= 0 6= aB(C̃)∗. Such a class is called a
defect class for B, and δ(C) is called a defect group for B.

Proposition 1.16. Let δ(B) be a defect group for the block B and C a
conjugacy class of G. Then
(i) If ωB(C̃) 6= 0, then δ(B) ⊂G δ(C).

(ii) If aB(C̃)∗ 6= 0, then δ(C) ⊂G δ(B).
(iii) δ(B) is determined up to G-conjugation.
(iv) |δ(B)| = pd(B).

Finally,

Proposition 1.17. If P is a normal p-subgroup of G and B is a block of G,
then P ⊂G δ(B).

The Brauer correspondence

Let H be a subgroup of G. If λ is any linear functional on Z(kH) and C is a

conjugacy class of G, we define λG(C̃) = λ((C ∩H)∼) and extend λG linearly
to a linear functional on Z(kG).

If λ = ωb for some block b of H, then ωGb may or may not be an algebra
homomorphism. If it is, then ωGb = ωB for some B ∈ Bl(G); we say that bG

is defined and bG = B. The correspondence b 7−→ bG is called the Brauer
correspondence.

Defect groups behave well under the Brauer correspondence :
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Proposition 1.18. Suppose H is a subgroup of G with a block b for which
bG is defined. Then there exists a p-subgroup P of G such that

δ(b) ⊂H P =G δ(b
G).

We will obtain a sufficient condition for the existence of bG. Suppose H,
subgroup of G, is such that CG(P ) � H for some p-subgroup P of G. For

any conjugacy class C of G, define µ(C̃) = (C ∩ CG(P ))∼. Since CG(P ) �H,
C ∩ CG(P ) is a union of conjugacy classes of H, and µ extends linearly to a
map Z(kG) −→ Z(kH).

Proposition/Definition 1.19. The map µ : Z(kG) −→ Z(kH) is an alge-
bra homomorphism, called the Brauer homomorphism.

Theorem 1.20. Suppose P is a p-subgroup of G and PCG(P ) ⊂ H ⊂
NG(P ), then bG is defined for all blocks b of H, and ωbG = ωb ◦ µ. More-
over, if B is a block of G, then B = bG for some block b of H if and only if
P ⊂G δ(B), in which case

µ(e∗B) =
∑

bG=B

e∗b .

Brauer’s Theorems

We can now state Brauer’s First and Second Main Theorems.

Theorem 1.21. (Brauer’s First Main Theorem) Suppose P is a p-subgroup
of G. Then the Brauer correspondence is a bijection between the set of blocks
of NG(P ) with defect group P and the set of blocks of G with defect group P .

As a consequence, we mention the following theorem concerning principal
blocks . The principal block is the one containing the trivial character. It is
therefore of maximal defect, so any of its defect groups is a Sylow p-subgroup
of G. The following theorem can also be seen as an immediate consequence
of Brauer’s Third Main Theorem, as stated in [20].

Theorem 1.22. Suppose H is a subgroup of G, b is a block of H, and
CG(δ(b)) ⊂ H. Then bG (which is defined) is the principal block of G if and
only if b is the principal block of H.

In particular, if B0 is the principal block of G and δ(B0) =G P ∈ Sylp(G),
then B0 is the image under the Brauer correspondence of the principal block
b0 of NG(P ). The idea of Broué’s Conjecture (cf Part 2) is that, if P is
Abelian, there should be a deeper correspondence, at the level of characters,
namely a perfect isometry, between B0 and b0.

Before stating Brauer’s Second Main Theorem, we need the following:
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Lemma 1.23. Let x be a p-element of G, and let H = CG(x). For χ ∈
Irr(KG) and ϕ ∈ IBrp(H), there exist unique dxχϕ ∈ C such that

χ(xy) =
∑

ϕ∈IBrp(H)

dxχϕϕ(y)

for all p-regular y ∈ H.

We have

dxχϕ =
∑

ψ∈Irr(KH)

< ResGH(χ), ψ >H ψ(x)

ψ(1)
dψϕ

(where the dψϕ’s are the “ordinary” decomposition numbers). The dxχϕ’s are
called the generalized decomposition numbers .

Theorem 1.24. (Brauer’s Second Main Theorem) Let x be a p-element of G
and b be a p-block of CG(x). Then, if χ ∈ Irr(G) is not in bG, then dxχϕ = 0
for each ϕ ∈ IBrp(b).

(Note that, with the above hypotheses, bG is always defined.)

Corollary 1.25. Let x be a p-element of G, and y a p-regular element of
CG(x). Suppose B is a block of G and χ ∈ B. Then

χ(xy) =
∑

b∈Bl(CG(x)), bG=B

∑

µ∈IBrp(b)

dxχµµ(y).

Using the definitions of the dxχµ’s, then the definition of the dψµ’s and the
fact that x is central in CG(x) = H, this can be reformulated as:

Corollary 1.26. Suppose B is a block of G and χ ∈ B. Then, for any
p-element x ∈ G and p-regular element y ∈ H = CG(x), we have

χ(xy) =
∑

b∈Bl(H), bG=B

∑

ψ∈b

< ResGH(χ), ψ >H ψ(xy).

If θ is a class function of G and B is a block of G, we let

θB =
∑

χ∈B

< θ, χ >G χ.

Then θ =
∑

B∈Bl(G) θ
B. Another useful consequence of Brauer’s Second Main

Theorem is the following:
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Theorem 1.27. Let θ be a class function of G and let x ∈ G be a p-element.
Suppose θ(xy) = 0 for all p-regular y ∈ CG(x). Then, for each block B of G
and p-regular y ∈ CG(x), we have θB(xy) = 0.

Let B be a block of G, χ ∈ B, and let x ∈ G be a p-element and
H = CG(x). For any block b of H, we write

χ(b) =
∑

ψ∈b

< ResGH(χ), ψ >H ψ

(χ(b) is a generalized character of H). Then ResGH(χ) =
∑

b∈Bl(H) χ
(b), and,

by Corollary 1.26 ∑

b∈Bl(H), bG 6=B

χ(b)(xy) = 0

for all p-regular y ∈ H.
Applying Theorem 1.27 in H (in which x is central), we get that, if

b ∈ Bl(H) and bG 6= B, then χ(b)(xy) = 0 for all p-regular y ∈ H. Hence, if
there exists a p-regular y ∈ H such that χ(b)(xy) 6= 0 for some b ∈ Bl(H),
then bG = B (see the Second Main Theorem property later).

Theorem 1.27 has an important corollary:

Corollary 1.28. (Block Orthogonality) Let g, h ∈ G be such that gp and hp

are not conjugate in G. Then, for each p-block B of G,
∑

χ∈B

χ(g−1)χ(h) = 0.

This has a very important consequence. Before stating it, we define the
p-sections of G. For g ∈ G, the p-section of g in G is the set of elements of
G whose p-part is conjugate to gp. Then G is a disjoint union of p-sections.
The p-section of 1 is just the set of p-regular elements of G.

Take g ∈ G, and write π the p-section of g in G. The last corollary can
then be written:

∀B ∈ Bl(G), ∀h ∈ G \ π,
∑

χ∈B

χ(g−1)χ(h) = 0.

We say that each block of G separates π from its complement .

If π is a p-section of G, we say that two class functions η and θ of G are
orthogonal across π if

1

|G|

∑

g∈π

θ(g)η(g−1) = 0.

By construction, we have seen that, if two irreducible characters of G belong
to distinct p-blocks, then they are orthogonal across p-regular elements. We
have in fact much better:
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Theorem 1.29. If two irreducible characters of G belong to distinct p-blocks,
then they are orthogonal across each p-section of G.

(This can be proved by using Corollary and adapting the argument given
in [18] after Corollary 1.2)

1.2 Generalized Block Theory

In this section, we introduce the notion of generalized blocks , as introduced
in [18]. The basis for “ordinary” block theory was the separation of a group
between p-regular and p-singular elements. Now the idea is to use another
set of conjugacy classes to split the group. This leads to a new definition
of block, which we present in a first paragraph. We then give a definition
of sections to partition the group, and state what an analogue of Brauer’s
Second Main Theorem could look like with this definition (depending on the
set of conjugacy classes we start with, the generalized blocks we obtain may or
may not satisfy this property). For all the definitions and results in sections
1.2.1, 1.2.2 and 1.2.3, we refer to Külshammer, Olsson and Robinson [18].
We then give in section 1.2.4 an overview of the first natural generalization,
the case of π-blocks.

1.2.1 Generalized blocks

Let G be a finite group, and C be a union of conjugacy classes of G. We
say that C is closed if the following is true: for any x ∈ C, whenever y is
an element of G which generates the same subgroup as x, then y ∈ C. The
notion of closed set of conjugacy classes was introduced by M. Suzuki in [24].
Now let us fix a closed set C of conjugacy classes of G, and assume that 1 ∈ C.
We let C′ = G \ C. Let Irr(G) be the set of complex irreducible characters
of G. For any complex class function ϕ of G, we define ϕC to be the class
function of G which agrees with ϕ on C and vanishes outside C.

Two characters χ, ψ ∈ Irr(G) are said to be directly C-linked if

< χ,ψ >C:=
1

|G|

∑

x∈C

χ(x)ψ(x) 6= 0.

If < χ,ψ >C= 0, then χ and ψ are said to be orthogonal across C. We call
< χ,ψ >C the C-contribution associated to χ and ψ. Note that < χ,ψ >C=<
χC, ψ >G=< χ,ψC >G=< χC, ψC >G. Direct C-linking is a symmetric and
reflexive (since 1 ∈ C) binary relation on Irr(G). Extending it by transitivity
to an equivalence relation (called C-linking), we obtain a partition of Irr(G)
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into C-blocks . We refer to C-blocks of Irr(G) as C-blocks of G. Two characters
χ, ψ ∈ Irr(G) thus belong to the same C-block of G if there exists a sequence
χ0 = χ, χ1, . . . , χr = ψ ∈ Irr(G) such that, for each 0 ≤ i ≤ r − 1, the
characters χi and χi+1 are directly C-linked. We say that χ and ψ are C-
linked .

Note that if we take C to be the set of p-regular elements of G (p a prime),
then the C-blocks of G are just its p-blocks.

We have the following:

Proposition 1.30. If g ∈ C and h ∈ C′, then, for each C-block B of G,

∑

χ∈B

χ(g−1)χ(h) = 0.

Hence C-blocks separate C from C′.

The matrix Γ(C, G) = ((< χ,ψ >C))χ,ψ∈Irr(G)
is called the C-contribution

matrix of G. It has (if we list the elements of Irr(G) block by block) a
diagonal block decomposition corresponding to the C-blocks of G. If B is
a C-block of G, we let Γ(C, B) = ((< χ,ψ >C))χ,ψ∈B be the C-contribution
matrix of B.

Using Galois Theory, and since C is closed, we see that the C-contributions
are rationals.

1.2.2 Sections

In the same way we can partition G into p-sections, we would like a more
general definition of sections, with the same properties, and which we can
adapt to our situation. This includes relating these sections to some C-blocks
as defined above, and defining blocks for the centralizers of certain elements
(corresponding to the p-elements in the p-case).

Let X be a union of conjugacy classes of G containing the identity. Sup-
pose that, for each x ∈ X , there is a union Y(x) of conjugacy classes of CG(x)
such that:
(i) 1 ∈ Y(x),
(ii) Two elements of xY(x) are G-conjugate if and only if they are CG(x)-
conjugate,
(iii) CG(xy) ≤ CG(x) for each y ∈ Y(x).
Suppose also that Y(xg) = Y(x)g for all x ∈ X and g ∈ G, and that G is
the disjoint union of the conjugacy classes (xy)G, as x runs through a set of
representatives for the G-conjugacy classes in X and y runs through a set of
representatives for the CG(x)-conjugacy classes in Y(x).
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For example, if we take X to be the set of p-elements of G, then, for each
x ∈ X , Y(x) can be taken to be the set of p-regular elements of CG(x).

For any x ∈ X , we call the union of the G-conjugacy classes meeting
xY(x) the Y-section of x. The hypotheses we made ensure that, for each
x ∈ X , induction of complex class functions gives an isometry from the
space of class functions of CG(x) vanishing outside xY(x) onto the space of
class functions of G vaniching outside the Y-section of x.

We define an (X ,Y)-block of G as a Y(1)-block of G in the sense we
defined above. For x ∈ X , we define the (X ,Y)-blocks of CG(x) to be the
smallest (non-empty) subsets of Irr(CG(x)) such that irreducible characters
in distinct subsets are orthogonal across xY(x).

Note that, because of Proposition 1.30, (X ,Y)-blocks of G separate Y(1)
from its complement. For x ∈ X , we can equally define (X ,Y)-blocks of
CG(x) to be non-empty subsets of Irr(CG(x)) which are minimal subject to
separating Y(x) from its complement in CG(x) (or, equivalently, to separating
xY(x) from its complement (since x is central in CG(x))).

1.2.3 Second Main Theorem property

Suppose we have sets X ⊂ G and Y(x) for x ∈ X as above. Suppose
χ ∈ Irr(G) and β is a union of (X ,Y)-blocks of CG(x) for some x ∈ X . We
define a generalized character χ(β) of CG(x) via

χ(β) =
∑

µ∈β

< ResGCG(x)(χ), µ > µ.

Definition 1.31. Let x ∈ X and b be an (X ,Y)-block of CG(x). We say
that an (X ,Y)-block B of G dominates b if there exist χ ∈ B and y ∈ Y(x)
such that χ(b)(xy) 6= 0.

We see that, for x ∈ X , if χ ∈ B for some (X ,Y)-block B of G, then, for
each y ∈ Y(x), we have χ(xy) =

∑
b χ

(b)(xy), where b runs through the set
of (X ,Y)-blocks of CG(x) dominated by B.

Note that, for x ∈ X , each (X ,Y)-block of CG(x) is dominated by at
least one (X ,Y)-block of G.

Definition 1.32. We say that the (X ,Y)-blocks of G satisfy the Second Main
Theorem property if, for each x ∈ X and each (X ,Y)-block b of CG(x), b is
dominated by a unique (X ,Y)-block of G.



1.2. GENERALIZED BLOCK THEORY 33

As we have remarked in the previous section, if, for some prime p, X is
the set of p-elements of G and if, for each x ∈ X , Y(x) is the set of p-regular
elements of CG(x), then the (X ,Y)-blocks of G (i.e. the p-blocks of G) have
the Second Main Theorem property.

Using the fact that, for x ∈ X , irreducible characters of CG(x) in distinct
(X ,Y)-blocks are orthogonal across xY(x), one proves easily the following:

Proposition 1.33. The (X ,Y)-blocks of G satisfy the Second Main Theorem
property if and only if, for each (X ,Y)-block B of G, there is, for each x ∈ X ,
a (possibly empty) union of (X ,Y)-blocks β(x,B) of CG(x) such that, for each
irreducible character χ ∈ B and each character µ ∈ β(x,B), we may find a
complex number cχ,µ such that, for each y ∈ Y(x), we have

χ(xy) =
∑

µ∈β(x,B)

cχ,µµ(xy),

and, furthermore, β(x,B) and β(x,B′) are disjoint whenever B and B′ are
distinct (X ,Y)-blocks of G.

The following theorem enlighten the link between the Second Main The-
orem property and Brauer’s Second Main Theorem:

Theorem 1.34. Suppose that the (X ,Y)-blocks of G satisfy the Second Main
Theorem property. Then:
(i) Irreducible characters of G which are in distinct (X ,Y)-blocks are orthog-
onal across each Y-section of G.
(ii) If x ∈ X and

∑
χ∈Irr(G)

aχχ is a class function which vanishes identically

on the Y-section of x in G, then, for each (X ,Y)-block B of G,
∑

χ∈B aχχ
also vanishes identically on the Y-section of x in G.
(iii) (X ,Y)-blocks of G separate Y-sections of G.

1.2.4 π-blocks

One of the main problems we meet when moving from p-blocks to C-blocks is
that we generally lose all the arithmetic on which the modular representation
theory is based. In particular, the discrete valuation ring O has no analogue
in general, and C-blocks are not related to idempotents of a group algebra.

One case in which arithmetic arguments can still be used is that of
π-blocks , where π is a set of primes. These were initially introduced and
studied by Brauer (even though he didn’t publish his results), and then
considered by many authors. From now on, we let G be a finite group and π
be a set of primes. Different, but equivalent, definitions of π-blocks can be
given. The first might be the more natural.
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Definition 1.35. (Staszewski [23], definition 1.1) A non-empty subset B of
Irr(G) is called a π-block of G if, for every p ∈ π, B is a union of p-blocks,
and if B is minimal for this property.

Note that, if π = {p}, then a π-block is just a p-block.

Now the π-blocks can also be seen in terms of idempotents. For this
definition, we refer to Staszewski [23] and Robinson [21]. Let ω = e2πi/|G|.
For any p ∈ π, we let
Op = {α

β
|α, β ∈ Z[ω] and, for any ideal ρ of Z[ω] containing p, β 6∈ ρ} be

the p-adic integer ring of Q[ω] (with relative residue field Fp). We set Oπ =⋂
p∈πOp. Note that Oπ is no longer a local ring, but that it has only finitely

many prime ideals. Then we have

Definition 1.36. A non-empty subset B of Irr(G) is a π-block of G if

1

|G|

∑

χ∈B

∑

g∈G

χ(1)χ(g−1)g

is a primitive idempotent of Z(OπG).

It can be shown (cf [21], Lemma 2) that π-blocks are, with the terminology
we introduced before, C-blocks, where C is the set of π-regular elements of G
(π-blocks are subsets of Irr(G) which are minimal subject to being orthogonal
across π-regular elements). We also see that the π-sections of G satisfy the
properties for (X ,Y)-sections, X being the set of π-elements and Y(x) being
the set of π-regular elements of CG(x) for x ∈ X . In this setting, an (X ,Y)-
block of G is a π-block of G, and, for x ∈ X , an (X ,Y)-block of CG(x) is a
π-block of CG(x).

The π-blocks of a finite group have properties very similar to those of
p-blocks. In particular, it is possible to define analogues of the principal in-
decomposable characters, the Brauer characters, the decomposition numbers
and Cartan numbers, the corresponding decomposition matrix and Cartan
matrix having the same kind of block structure as in the p-case (cf [23]).
Staszewski also studies the defect of a π-block, and determines the elemen-
tary divisors of the Cartan matrices of G and of any given π-block of G.

The generalization of the notion of defect group appears to be more
tricky. However, this can be done if G has a nilpotent Hall π-subgroup,
and defect groups are unique up to conjugacy if G has furthermore a normal
π-complement (cf [23]).

It is shown in Robinson [21] that π-blocks satisfy an analogue of Brauer’s
Second Main Theorem. In particular, π-blocks separate π-sections, and irre-
ducible characters in distinct π-blocks are orthogonal across each π-section
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(cf [21], Corollary 8). Robinson and Staszewski also show in [22] that, if G
has a cyclic Hall π-subgroup, then the π-blocks of G satisfy an analogue of
Brauer’s Third Main Theorem (cf [22], Theorem 2.1).

Finally, Broué and Michel have studied the π-blocks of finite reductive
groups in [3]. Using the Deligne-Lusztig Theory, the irreducible (complex)
characters of such a group GF are partitioned into geometric conjugacy
classes E(GF , (s)), labelled by the conjugacy classes of semisimple elements
s in the dual group G∗F ∗

. Broué and Michel show in particular that, if the
defining characteristic of GF does not belong to π, then the union Eπ(G

F , (s))
of such geometric conjugacy classes for the parameter describing a π′-section,
i.e. Eπ(G

F , (s)) =
⋃
x∈CG∗(s)F∗ E(GF , (sx)) for some semisimple π′-element s

of G∗F ∗

, is a union of π-blocks (cf [3], Theorem 2.2).

1.3 Generalized Blocks for Symmetric Groups

In this section, we give an overview of some of the results obtained in [18].
In this article, the authors define ℓ-blocks for the symmetric group Sn, where
ℓ ≥ 2 is an arbitrary integer. These blocks can be related to two differ-
ent definitions of (X ,Y)-sections, which give distinct (X ,Y)-blocks for the
centralizers, but the same (X ,Y)-blocks for Sn. The authors show that the ℓ-
blocks of Sn thus defined satisfy an ℓ-analogue of the Nakayama Conjecture,
and that they satisfy the Second Main Theorem property.

In all this section, we consider the symmetric group Sn for some n ≥ 1,
and let ℓ ≥ 2 be an integer. We let π be the set of primes dividing ℓ.

1.3.1 Sections, blocks

Recall each element of a symmetric group can be written uniquely as a prod-
uct of disjoint cycles.

Definition 1.37. An element of a symmetric group is said to be:
• an ℓ-cycle element if all its non-trivial cycles have length divisible by ℓ;
• ℓ-regular if it has no cycle of length divisible by ℓ (and ℓ-singular other-
wise);
• an ℓ-element if it is an ℓ-cycle element such that each non-trivial cycle
has length dividing a power of ℓ;
• π-regular if its order is not divisible by any prime in π.

If two elements x, y ∈ Sn are disjoint (i.e. each one fixing the points
moved by the other), we write x ∗ y for the product xy. We have:
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Proposition/Definition 1.38. Each element z ∈ Sn has unique factoriza-
tions:

z = x ∗ y = rs = sr

where x is an ℓ-cycle element, y is ℓ-regular, r is the π-part of x (thus r is
an ℓ-element) and s is ℓ-regular. Any element commuting with z commutes
with each of x, y, r and s (in particular, these elements all commute with
each other). We call x the ℓ-cycle part of z, and r the ℓ-part of z.

Two elements of Sn are said to belong to the same ℓ-cycle section (re-
spectively ℓ-section) of Sn if their ℓ-cycle parts (respectively ℓ-parts) are
conjugate in Sn. Then each ℓ-section of Sn is a union of ℓ-cycle sections. The
ℓ-section of 1 is the set of ℓ-regular elements of Sn, and is also an ℓ-cycle
section.

We now define (X ,Y)-blocks for Sn. We let X be the set of ℓ-elements
of Sn. For each r ∈ X , the centralizer C = CSn

(r) of r can be written
C = C0 × C1, where C1 is the pointwise stabilizer of the points moved by r
(and thus a symmetric group), and C0 is the pointwise stabilizer of the points
fixed by r. Then r ∈ C0. We let Y(r) be the set of elements s0 ∗s1 ∈ C0×C1

such that s0 is a π′-element of C0 and s1 is an ℓ-regular element of C1.
We let X ′ be the set of ℓ-cycle elements of Sn. For each x ∈ X ′, we let

Y ′(x) be the set of ℓ-regular elements of Sn which are disjoint from x.
Then the Y-sections of ℓ-elements are the ℓ-sections of Sn, and the Y ′-

sections of ℓ-cycle elements are the ℓ-cycle sections of Sn.
Note that Y(1) and Y ′(1) are both equal to the set of ℓ-regular elements

of Sn, so that the (X ,Y)-blocks and the (X ′,Y ′)-blocks of Sn coincide, and
could be defined by linking across ℓ-regular elements. We call them ℓ-blocks
of Sn. An (X ,Y)-block of the centralizer C of an ℓ-element is called an ℓ-
block of C, and an (X ′,Y ′)-block of the centralizer C of an ℓ-cycle element
is called an ℓ-cycle block of C.

1.3.2 Nakayama Conjecture

The irreducible (complex) characters and conjugacy classes of Sn are labelled
canonically by the partitions of n. For λ a partition of n (which we write
λ ⊢ n), we let χλ be the irreducible character of Sn labelled by λ.

Given λ ⊢ n and any integer d, we obtain the d-core γλ of λ by removing
from (the Young diagram of) λ all the d-hooks. We have the following (cf
James and Kerber [17])

Theorem 1.39. (Nakayama Conjecture) Let p be a prime. Then two irre-
ducible characters χλ and χµ of Sn belong to the same p-block if and only if
λ and µ have the same p-core.
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It is proved in [18] that the ℓ-blocks of Sn satisfy an ℓ-anologue of this
theorem. We will give a sketch of the proof of this. The basis to start is the
following (cf [17])

Theorem 1.40. (Murnaghan-Nakayama Formula) Let n = l + m, and let
ρ ∗ σ ∈ Sn, where ρ is an m-cycle and σ is a permutation on the remaining
l symbols. Let λ be a partition of n. Then

χλ(ρ ∗ σ) =
∑

µ

(−1)Lλµχµ(σ),

where µ runs over all partitions µ of l which can be obtained from λ by
deleting an m-hook, and Lλµ is the leg length of the deleted hook.

Now take an ℓ-cycle element x of Sn. Suppose that the cycle type of x is
(ℓh1, . . . , ℓht) (where we omit cycles of length 1). We call ρ = (h1, . . . , ht)
the ℓ-type of x (and of x∗y if y is ℓ-regular). Then, if y is any element disjoint
from x and λ is a partition of n, repeated use of the Murnaghan-Nakayama
Formula gives

χλ(x ∗ y) =
∑

µ⊢n−vℓ

mρ
λµχµ(y), (†)

where v = h1 + · · ·+ht, and the coefficients mρ
λµ are integers. The coefficient

mρ
λµ corresponds in some way to the set of paths in the lattice of partitions

obtained by removing first an ℓh1-hook, then an ℓh2-hook, and so on, to
obtain µ from λ. Now one can show that the removal of an ℓh-hook can
be obtained by removing a sequence of h ℓ-hooks, and this implies that, if
mρ
λµ 6= 0, then λ and µ have the same ℓ-core.

Now, each ℓ-cycle section is characterized by the (common) ℓ-type of its
elements, and (†) allows us to compute the contribution of two irreducible
characters of Sn across any ℓ-cycle section. Then an induction argument
shows that, if χλ and χλ′ are (directly) linked across any ℓ-cycle section,
then λ and λ′ have the same ℓ-core. This proves one implication of the
Nakayama Conjecture:

Theorem 1.41. If χλ, χλ′ ∈ Irr(Sn) belong to the same ℓ-block of Sn, then
λ and λ′ have the same ℓ-core.

This implies that, for a given ℓ-core γ, the set Bγ = {χλ ∈ Irr(Sn) | γλ =
γ} is a union of ℓ-blocks. We want to prove that Bγ is in fact a single ℓ-block.
For this, we refer to Maróti [19]. For χλ ∈ Bγ, we let w be the number of
ℓ-hooks which must be removed from λ to get γλ. Then w is independant on
χλ ∈ Bγ, and is called the ℓ-weight of Bγ (and of any λ such that χλ ∈ Bγ).
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Note that, if w = 0, then Bγ consists of a single character χλ (and λ = γ),
and thus is trivially a single ℓ-block of Sn. We therefore fix an ℓ-core γ and
suppose that w ≥ 1. The main ingredient of the proof is that there exists a
generalized perfect isometry (this will be defined in Part 2) between Bγ and
the set of irreducible characters of the wreath product Zℓ ≀ Sw. We will give
some details about the wreath product and the generalized perfect isometry
in Part 3. At this point, we only want to give some ideas of how the proof
goes.

The first point is that there exists a canonically defined bijection Q be-
tween Bγ and Irr(Zℓ ≀Sw) (we write Q for “quotient”, as will be seen in Part
3). The second ingredient is that there is an analogue of the Murnaghan-
Nakayama Formula in Zℓ ≀Sw. As in the case of symmetric groups, this allows
us to relate the contribution of two characters across some set of elements of
Zℓ ≀ Sw to the contributions of characters of a smaller wreath product across
a smaller set of elements, and thus to build an induction argument. Com-
paring the results in Sn and Zℓ ≀Sw, Maróti then shows that the contribution
of two characters χλ and χµ in Bγ across ℓ-regular elements is equal, up to
a sign, to the contribution of Q(χλ) and Q(χµ) across the so-called regular
elements of Zℓ ≀ Sw. This gives us a very powerful bridge between Zℓ ≀ Sw
and Sn. To conclude the proof, one proves that, in Zℓ ≀ Sw, every irreducible
character is directly linked across regular elements to the trivial character.
Using our bridge, this implies that any two characters in Bγ are both directly
linked across ℓ-regular elements to a third character (whose image under Q
is the trivial character of Zℓ ≀Sw), and thus belong to the same ℓ-block of Sn.
Finally, we have:

Theorem 1.42. (Generalized Nakayama Conjecture) Two irreducible char-
acters χλ and χλ′ of Sn belong to the same ℓ-block if and only if λ and λ′

have the same ℓ-core.

1.3.3 Second Main Theorem property

It is shown in [18] that the ℓ-blocks of Sn satisfy the Second Main Theorem
property. It is only at this point, when considering centralizers, that the
difference between (X ,Y)-blocks and (X ′,Y ′)-blocks becomes apparent. We
start with (X ′,Y ′)-blocks, which are somewhat easier to manipulate. This is
why only the case of (X ,Y)-blocks is presented in [18].

Take x ∈ X ′. With the notations we used above, if x has ℓ-type ρ, where
ρ is a partition of v, then we can see x as an element of Sℓv. Then the
centralizer of x is CSn

(x) = C0 × C1, where C0 = CSℓv
(x) and C1 = Sn−ℓv,

and Y ′(x) is the set of ℓ-regular elements of C1. If we take µ0⊗µ1 and ν0⊗ν1
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in Irr(C0×C1), it is then easy to see, since x is central in C0, that µ0⊗µ1 and
ν0 ⊗ ν1 are directly linked across xY ′(x) if and only if µ1 and ν1 are directly
linked across ℓ-regular elements of C1 = Sn−ℓv. Thus the (X ′,Y ′)-blocks of
CSn

(x) are the Irr(C0)⊗ b’s, where b runs through the ℓ-blocks of C1.
Now, for any (X ′,Y ′)-block B of Sn, labelled by the ℓ-core γ, we set

β(x,B) = Irr(C0)⊗ b, where b is the ℓ-block of C1 labelled by γ, and, for any
χ ∈ B and µ0 ⊗ µ1 ∈ Irr(C0)⊗ b, we set

cχ,µ0⊗µ1 =

{
mρ
χµ1

if µ0 = 1C0

0 otherwise
,

where the mρ
χµ1

are the coefficients appearing in formula (†). It is then clear,
by formula (†), that, for each x ∈ X ′, the β(x,B)’s and cχ,µ0⊗µ1 ’s thus defined
satisfy the hypotheses of Proposition 1.33. Hence the (X ′,Y ′)-blocks of Sn
satisfy the Second Main Theorem property.

The case of (X ,Y)-blocks is a bit more tricky. However, the main ingredi-
ents are the same. It can be shown that, for r ∈ X , writing CSn

(r) = C0×C1

as indicated when we defined (X ,Y)-sections, each ℓ-block of CSn
(r) has the

form Irr(C0) × b for some ℓ-block b of C1. The difference with the previous
case is that, given s0 ∗ s1 ∈ Y(r), we can consider formula (†) applied to
x = rs0 and y = s1, but the coefficients appearing on the right side may
depend on s0 (since the ℓ-types of r and rs0 may differ). However, even
in this case, formula (†) can be used to show that, if an (X ,Y)-block B of
Sn dominates the (X ,Y)-block Irr(C0)⊗ b of CSn

(r), then B and b must be
labelled by the same ℓ-core (cf [18]). Finally, we have

Theorem 1.43. The (X ,Y)-blocks and the (X ′,Y ′)-blocks of Sn satisfy the
Second Main Theorem property.
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Part 2

Generalized Perfect Isometries

In [18], the authors give a definition of generalized perfect isometry between
(unions of) generalized blocks of two groups, and use it in the case of sym-
metric groups to prove that the ℓ-blocks of Sn satisfy an analogue of the
Nakayama Conjecture (cf Part 1). In this part, we investigate some families
of groups of Lie rank one (namely SU(3, q2), Sz(q) and Re(q)), exhibiting
generalized perfect isometries where there are none in the sense given origi-
nally by M. Broué, and thus proving a (weaker) analogue of one of Broué’s
Conjectures in these cases.

2.1 pk-blocks

We start by observing that some generalized blocks (namely pk-blocks) can
always be defined in a finite group. We take G any finite group, p a prime,
and k ≥ 1 an integer. An element of G is said to be pk-regular if its order
is not divisible by pk, and pk-singular otherwise. We let Ck be the set of
pk-regular elements of G. Then Ck is a closed set of conjugacy classes of G,
and, using the definitions of the previous part, we can define the Ck-blocks
of G. We call them the pk-blocks of G.

Take g =∈ G. We define the pk-section of g to be its p-section if g is
pk-singular, and the set Ck of pk-regular elements of G if g is pk-regular.
Then each pk-section of G is a union a p-section. This is clear for pk-singular
sections, for they are already p-sections, and Ck is the union of the sections
of elements of G whose p-part has order 1 or p.

Now the p-blocks of G satisfy the Second Main Theorem property (by
Brauer’s Second Main Theorem), so that irreducible characters in distinct
p-blocks of G are orthogonal across each p-section, and thus across each pk-
section. In particular, if two irreducible characters of G are directly Ck-linked,

41
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then they belong to the same p-block of G. This proves that any p-block of
G is a union of pk-blocks.

In the families of groups we will study in this part, we will be interested
in p2-blocks, where p is the defining characteristic.

2.2 (Generalized) Perfect Isometries

We find in [18] a definition of perfect isometry which generalizes the context
from p-blocks to C -blocks, but which, when specialized again to p-blocks is
a bit weaker than the definition of M. Broué (cf [2]).

Broué’s definition goes as follows: we let G and H be two finite groups,
(K,O, k) be a p-modular system large enough for both G and H, e and f
be central idempotents of OG and OH respectively, and we set A = OGe
and B = OHf . To any generalized character µ of G × H (written µ ∈
ZIrr(K(G×H))), we can associate a linear map Iµ : ZIrr(KH) −→ ZIrr(KG)
by letting, for ζ ∈ Irr(KH) and g ∈ G,

Iµ(ζ)(g) =
1

|H|

∑

h∈H

µ(g, h−1)ζ(h).

Definition 2.1. (cf [2]) A generalized character µ of G ×H, is perfect if
the following two conditions are satisfied:
(per. 1) For all g ∈ G and h ∈ H, |CG(g)|p and |CH(h)|p divide µ(g, h).
(per. 2) If µ(g, h) 6= 0, then g and h are either both p-regular, or both p-
singular.

If furthermore the map Iµ defined by µ induces a bijective isometry between
ZIrr(KB) and ZIrr(KA), then Iµ is said to be a perfect isometry between
B and A, and B and A are said to be perfectly isometric.

We then have the following (cf [2]):

Theorem 2.2. Suppose that, with the notations above, B and A are perfectly
isometric via Iµ. Then:
(i) Iµ defines a bijection between primitive idempotents of the centers Z(KHf)
and Z(KGe), which in turn induces an algebra isomorphism between Z(OHf)
and Z(OGe).
(ii) Iµ induces a bijection between the blocks of H and G associated to f
and e respectively, which preserves the defect and number of ordinary irre-
ducible characters, the number of irreducible Brauer characters, the height
of ordinary irreducible characters, and the elementary divisors of the Cartan
matrix.
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In particular, under the same hypotheses, there exist a bijection I : Irr(B) −→
Irr(A), and signs {ε(ζ), ζ ∈ Irr(B)} such that, for all ζ ∈ Irr(B), Iµ(ζ) =
ε(ζ)I(ζ).

We now turn to the definition introduced in [18]. If G and H are finite
groups, C and D are closed unions of conjugacy classes of G and H respec-
tively, and if b (resp. b′) is a union of C-blocks of G (resp. D-blocks of H),
then we say that there is a generalized perfect isometry between b and b′

(with respect to C and D) if there exists a bijection with signs between b and
b′, which furthermore preserves contributions; i.e. there exists a bijection
I : b 7−→ b′ such that, for each χ ∈ b, there is a sign ε(χ), and such that

∀χ, ψ ∈ b, < I(χ), I(ψ) >D=< ε(χ)χ, ε(ψ)ψ >C .

Note that this is equivalent to < I(χ), I(ψ) >D′=< ε(χ)χ, ε(ψ)ψ >C′ , where
C′ = G \ C and D′ = H \ D.

We define R(C, b) to be the Z-submodule of the space of complex class
functions of G generated by {χC |χ ∈ b}, and P(C, b) to be the Z-submodule
of R(C, b) consisting of generalized characters. The fact that C is closed
implies (using Galois theory) that the modules R(C, b) and P(C, b) have the
same Z-rank, and that this rank is the number of conjugacy classes in C(cf
[24]). Given a Z-basis {ϕ1, . . . , ϕs} for P(C, b), we let C(b) be the s × s
matrix with (i, j)-entry < ϕi, ϕj >C, and call C(b) the Cartan matrix of b.
A different choice of Z-basis for P(C, b) leads to a Cartan matrix with the
same elementary divisors. We define similarly R(D, b′), P(D, b′) and C(b′).
We then have the following:

Theorem 2.3. (Proposition 1.4 in [18]) With the above notations, if there
is a generalized perfect isometry between b and b′ with respect to C and D,
then the Abelian groups R(C, b) and R(D, b′) are isomorphic via an isomor-
phism which restricts to an isomorphism between P(C, b) and P(D, b′). With
suitable choice of Z-bases, the Cartan matrices C(b) and C(b′) are equal.

In particular, we see that, if C (resp. D) is the set of p-regular elements
of G (resp. H), then such a generalized perfect isometry induces a bijection
between the p-blocks in b and b′, which preserves the numbers of ordinary
irreducible characters and irreducible Brauer characters, and the elementary
divisors of the Cartan matrix. However, with this more general definition,
one doesn’t get the algebra isomorphism of Theorem 2.2 (i).

One of Broué’s conjectures (which is just the shadow, at the level of
characters, of much deeper equivalences conjectured by Broué) states that,
if G is a finite group with Abelian Sylow p-subgroup U , and if B = NG(U) is
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the normalizer of U in G, then the principal p-blocks of B and G are perfectly
isometric (in Broué’s sense).

This conjecture doesn’t apply to the three families of groups of Lie rank
one we will consider when p is the defining characteristic, for then the Sylow
p-subgroups are not Abelian. Furthermore, it is shown in Cliff [8] that, if G is
a Suzuki group, then there isn’t any perfect isometry between the principal
2-blocks of B and G. This was the starting point of this work. In this
part, we show that, in the case of Suzuki groups and in two other (and quite
similar) families, there is a generalized perfect isometry between the principal
p-blocks of B and G, with respect to p2-regular (or p2-singular) elements.

Section 2.3 deals with special unitary groups SU(3, q2), section 2.4 with
Suzuki groups Sz(q), and section 2.5 with Ree groups (of type G2) Re(q).

In two of the families of groups we are studying, we will use two theorems
concerning p-blocks. The first, due to Green, states that any defect group of
a p-block of a (finite) group G is the intersection of two Sylow p-subgroups
of G (see e.g. [20], Corollary (4.21)). An immediate consequence of this is
that, if the Sylow p-subgroups of G have trivial intersection, then any p-
block of G has either maximal defect or defect 0. The second result, proved
by Fong in the case of p-solvable groups (see e.g. Isaacs [16], Problem (4.9)),
but which still holds in general, states that, if a finite group G is such that
CG(Op(G)) ≤ Op(G), where Op(G) is the largest normal p-subgroup of G,
then G has exactly one p-block.

2.3 Special Unitary Groups

In this section, we denote by G = SU(3, q2) the 3-dimensional special unitary
group on Fq2 , where q = pn for some prime p and n ≥ 1. We write d =
gcd(3, q + 1). Then the center Z(G) of G is cyclic of order d. Note that,
if p = 3, then d = 1. Thus, whatever the value of p, the integers p and
d are coprime, and their least common multiple is pd. The order of G is
|G| = q3(q + 1)2(q − 1)(q2 − q + 1). We consider U a Sylow p-subgroup of G
and its normalizer B = NG(U), which is a semi-direct product of U with a
cyclic group H of order q2 − 1. We have |U | = q3 and |B| = q3(q2 − 1). For
a complete description of G and B, their conjugacy classes and ordinary and
modular characters, we refer to Geck [13], whose notations are now in force.

2.3.1 Conjugacy classes

The tables of conjugacy classes of G and B are taken from Geck [13]. Only
the order of their elements have been added (these can be easily computed
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using the canonical forms given in [13]).
The group G has q2+q+1+d2 conjugacy classes, parametrized as follows:

name parameters length order

C
(k)
1 0 ≤ k ≤ d− 1 1 1 (k = 0) or d

C
(k)
2 0 ≤ k ≤ d− 1 (q3 + 1)(q − 1) p (k = 0) or pd

C
(k,l)
3 0 ≤ k, l ≤ d− 1 1

d
q(q2 − 1)(q3 + 1) 2p (k = 0) or 2dp

C
(k)
4

0 ≤ k ≤ q
q+1
d

∤ k
q2(q2 − q + 1) q+1

gcd(k, q+1)

C
(k)
5

0 ≤ k ≤ q
q+1
d

∤ k
q2(q − 1)(q3 + 1) 2(q+1)

gcd(k, q+1)

C
(k,l,m)
6

0 ≤ k < l < m ≤ q
k + l +m ≡ 0(mod q + 1)

q3(q − 1)(q2 − q + 1) dividing q + 1

C
(k)
7

0 ≤ k ≤ q2 − 2
k 6≡ 0(mod q − 1);

if k1 ≡ −qk(mod q2 − 1)

thenC
(k)
7 = C

(k1)
7

q3(q3 + 1) (q+1)(q−1)

gcd((q+1)(q−1), k)

C
(k)
8

0 ≤ k ≤ q2 − q
q2−q+1

d
∤ k;

if k1 ≡ −kq or k2 ≡ kq2

(mod q2 − q + 1), then

C
(k)
8 = C

(k1)
8 = C

(k2)
8

q3(q + 1)2(q − 1) q2−q+1

gcd(q2−q+1, k)

B has q2 + q + d conjugacy classes, parametrized as follows:

name fusion into G parameters length

B
(k)
1 C

(k)
1 0 ≤ k ≤ d− 1 1

B
(k)
2 C

(k)
2 0 ≤ k ≤ d− 1 q − 1

B
(k,l)
3 C

(k,l)
3 0 ≤ k, l ≤ d− 1 1

d
q(q2 − 1)

B
(k)
4 C

(k)
4 0 ≤ k ≤ q , q+1

d
6 |k q2

B
(k)
5 C

(k)
5 0 ≤ k ≤ q , q+1

d
6 |k q2(q − 1)

B
(k)
6 C

(k)
7 0 ≤ k ≤ q2 − 2 , q − 1 6 |k q3

We are only interested in elements of order divisible by p2. We see from
the tables above that, unless p = 2, there is no such element in G.

Remark: this can be seen without actually computing the orders of the ele-
ments of G. Take any p-element g in G, of order pk say. Then its eigenvalues,
which lie in some finite extension of Fq2 , Fpl say, must be pk-th roots of 1.
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But the only pk-th root of 1 in Fpl (in which each x is a root of xp
l

− x)
is 1 itself. Thus the characteristic polynomial of g is (X − 1)3, and thus
(g− Id)3 = 0. Then, if p ≥ 3, then gp− Id = (g− Id)p = 0, so that gp = Id.
Hence, if p ≥ 3, then any non-trivial p-element of G has order p.

As a consequence, if p 6= 2, then every element of G is p2-regular, so that
the scalar product on p2-regular elements is just the ordinary scalar product,
and there exists a generalized perfect isometry between the principal p-blocks
B0 and b0 of G and B with respect to p2-regular elements if and only if there
exists a bijection between B0 and b0 (any bijection will give a generalized
perfect isometry).

If p = 2, we will only consider the values of irreducible characters on
elements of order divisible by 4, that is, we will consider

C = {g ∈ G | 4|o(g)} =
⋃

0≤k, l≤d−1

C
(k,l)
3

and
D = {h ∈ B | 4|o(h)} =

⋃

0≤k, l≤d−1

B
(k,l)
3 .

Both C and D are closed unions of conjugacy classes (of G and B respec-
tively).

2.3.2 Irreducible characters, principal blocks

The irreducible characters of G can be listed as follows (The index used in the
notation for a character indicates its degree; characters of the same degree
are then parametrized by parameters u and v. Note that for characters of
degree q3 + 1 and (q + 1)2(q − 1), different choices of parameters can yield
the same character (cf [13]); we therefore indicate the number of characters
in these families.) :

χ1, χq2−q, χq3 , {χ
(u)

q2−q+1, χ
(u)

q(q2−q+1) | 1 ≤ u ≤ q},

{χ
(u,v)

(q−1)(q2−q+1) | 1 ≤ u ≤ (q + 1)/3, u < v < 2(q + 1)/3},

{χ
(u)

q3+1 | 1 ≤ u ≤ q2 − 1, q − 1 ∤ u} ( (q + 1)(q − 2)/2 characters),

{χ
(u)

(q+1)2(q−1) | 0 ≤ u ≤ q2 − q, q2 − q + 1 ∤ u} ( (q2 − q + 1− d)/3 characters),

and, if d = 3, we have in addition

{χ
(u)

(q−1)(q2−q+1)/3 | 0 ≤ u ≤ 2} and {χ
(u,v)

(q+1)2(q−1)/3 | 0 ≤ u ≤ 2, v = 1, 2}.
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The irreducible characters of B can be listed as follows:

{θ
(u)
1 | 0 ≤ u ≤ q2 − 2}, {θ

(u)
q(q−1) | 0 ≤ u ≤ q}, {θq2−1} (only if d = 1),

and {θ
(u,v)

(q2−1)/3 | 0 ≤ u, v ≤ 2} (only if d = 3).

We now compute the principal p-blocks B0 and b0 of G and B respectively.
We compute them directly, using the fact that two (complex) irreducible

characters belong to the same p-block if and only if the associated central
characters are the same when reduced to a field of characteristic p (cf [20],
definition (3.1) and Problem (3.3)):

Theorem 2.4. If N is a finite group, (K, O, k) a p-modular system large
enough for H, O being the localization of AK (algebraic integers of K) in P,
then χ ∈ Irr(KN) belongs to the principal p-block of N if and only if

|C|
χ(C)

χ(1)
≡ |C| (modP)

for each p-regular conjugacy class C of N .

Most of the work is done using the following observation: with the no-
tations of the previous theorem, and given C a conjugacy class of N , if |C|
is divisible by p, then |C| ∈ P (since P ∩ Z = pZ), so that we only need to

check whether |C|χ(C)
χ(1)
∈ P. We distinguish two special cases:

a) If χ(C) = 0, then the property is clearly verified.

b) If |C|
χ(1)
∈ P, then, since χ(C) ∈ AK and P � AK , |C|χ(C)

χ(1)
∈ P.

It turns out that, for any p-regular conjugacy class of length divisible by
p and any irreducible character of G or B, one of these two cases apply:

We first consider the group G. The p-regular conjugacy classes of length
divisible by p are those of type C4, C6, C7 and C8. We examine only charac-
ters distinct from χ1 and χq3 (the first one belonging to B0 and the second
one being of defect 0 and thus not belonging to B0).
C8 has length q3(q+1)2(q−1), so that case b) applies to characters of degree
q2 − q, (q + 1)2(q − 1) and (q + 1)2(q − 1)/3; case a) applies to any other
character.
C7 has length q3(q3 + 1) = q3(q + 1)(q2 − q + 1), so that case b) applies to
characters of degree q2 − q + 1, q(q2 − q + 1) and q3 + 1; case a) applies to
any other character.
C6 has length q3(q − 1)(q2 − q + 1), so that case b) applies to characters of
degree q2−q, q2−q+1, q(q2−q+1), (q−1)(q2−q+1) and (q−1)(q2−q+1)/3;
case a) applies to any other character.
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C4 has length q2(q2 − q + 1), so that case b) applies to characters of degree
q2−q+1 and q(q2−q+1); case a) applies to characters of degree (q+1)2(q−1)
and (q + 1)2(q − 1)/3; we check the other cases by hand :

|C4|
χq2−q(C4)

χq2−q(1)
=
q2(q2 − q + 1)(1− q)

q2 − q
= −q(q2 − q + 1) ∈ P

|C4|
χ(q−1)(q2−q+1)(C4)

χ(q−1)(q2−q+1)(1)
=
q2(q2 − q + 1)(q − 1)α

(q − 1)(q2 − q + 1)
= q2α ∈ P (α ∈ AK)

|C4|
χq3+1(C4)

χq3+1(1)
=
q2(q2 − q + 1)(q + 1)α′

(q3 + 1)
= q2α′ ∈ P (α′ ∈ AK)

|C4|
χ(q−1)(q2−q+1)/3(C4)

χ(q−1)(q2−q+1)/3(1)
=
q2(q2 − q + 1)(q − 1)

(q − 1)(q2 − q + 1)/3
= 3q2 ∈ P.

Now, in B, the p-regular conjugacy classes of length divisible by p are
those of type B4 and B6. We have

|B4|

θ1(1)
= q2 ∈ P and

|B6|

θ1(1)
= q3 ∈ P

so that case b) applie to these two cases. Furthermore,

|B4|
θq(q−1)(B4)

θq(q−1)(1)
=
q2(1− q)α′′

q(q − 1)
= −qα′′ ∈ P (α′′ ∈ AK)

and, in every other cases, case a) applies.

In order to compute the principal blocks B0 and b0, we thus only have
to study the values of irreducible characters on p-regular conjugacy classes
of G and B of length not divisible by p. These are the C

(k)
1 ’s and the B

(k)
1 ’s

respectively, and they have length 1 (since lie in the center). For C one of
these classes, and ψ an irreducible character of the corresponding group, we
thus have to check whether ψ(C)

ψ(1)
is congruent to 1 modulo P. But, since C

lies in the center, which has order d, ψ(C)
ψ(1)

is a d-th root of 1. And it can be

shown that, if ε is a p′-root of 1, then Z[ε]∩P = pZ[ε]. In particular, we get

that ψ(C)
ψ(1)
− 1 ∈ P if and only if ψ(C)

ψ(1)
= 1.

Principal block of B

We see that, for fixed degree, the value of θ ∈ Irr(B) on B
(k)
1 only depends

on the parameter u in θ (and on k); writing β = e2iπ/d, we get, in all the
cases,

θu ∈ b0 ⇐⇒ (βuk = 1 for all 0 ≤ k ≤ d− 1).
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This is always true if d = 1 (for then β = 1), so that b0 = Irr(B) and
|b0| = q2 + q + 1.

If d = 3, then β = e2iπ/3, and thus

θu ∈ b0 ⇐⇒ β0 = βu = β2u = 1
⇐⇒ βu = 1
⇐⇒ u ≡ 0 (mod 3)

Hence

b0 = {θ
(u)
1 | 0 ≤ u ≤ q2 − 2, 3|u} ∪ {θ

(u)
q(q−1) | 0 ≤ u ≤ q, 3|u}

∪{θ
(u,v)

(q2−1)/3 | 0 ≤ u, v ≤ 2, 3|u}

= {θ
(u)
1 | 0 ≤ u ≤ q2 − 2, 3|u} ∪ {θ

(u)
q(q−1) | 0 ≤ u ≤ q, 3|u}

∪{θ
(0,v)

(q2−1)/3 | 0 ≤ v ≤ 2}

Now d = gcd(3, q + 1) = 3, so that q ≡ −1(mod 3), q2 ≡ 1(mod 3) and

q2 − 2 ≡ −1(mod 3), and thus |b0| =
q2−1

3
+ q+1

3
+ 3 = q(q+1)

3
+ 3.

Principal block of G

Similarly, we must check, for χ ∈ Irr(G) \ {χq3} and 0 ≤ k ≤ d − 1,

whether
χ(C

(k)
1 )

χ(1)
= 1. We let again β = e2iπ/d.

If d = 1, then β = 1, and this is true for all χ ∈ Irr(G) \ {χq3}, so that
B0 = Irr(G) \ {χq3} and |B0| = q2 + q + 2− 1 = q2 + q + 1.

If d = 3, then β = e2iπ/3. The result is true for χ1, χq2−q and χ ∈

{χ
(u)

(q−1)(q2−q+1)/3 | 0 ≤ u ≤ 2}, whose values on the C
(k)
1 ’s do not depend

on d.
For χu ∈ Irr(G) \

(
{χ1, χq3 , χq2−q} ∪ {χ

(u,v)

(q−1)(q2−q+1)} ∪ {χ
(u,v)

(q+1)2(q−1)/3}

∪{χ
(u)

(q−1)(q2−q+1)/3}
)
, we have

χu ∈ B0 ⇐⇒ βuk = 1 for all k = 0, 1, 2
⇐⇒ 3|u.

Finally

χ
(u,v)

(q−1)(q2−q+1) ∈ B0 ⇐⇒ β(u+v)k = 1 for all k = 0, 1, 2

⇐⇒ 3|u+ v

and
χ

(u,v)

(q+1)2(q−1)/3 ∈ B0 ⇐⇒ βvk = 1 for all k = 0, 1, 2

⇐⇒ 3|v,
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which is excluded.

Hence

B0 = {χ1, χq2−q} ∪ {χ
(u)

q2−q+1, χ
(u)

q(q2−q+1) | 1 ≤ u ≤ q, 3|u} ∪ {χ
(u,v)

(q−1)(q2−q+1) |

1 ≤ u ≤ (q+1)/3, u < v < 2(q+1)/3, 3|u+v}∪{χ
(u)

q3+1 | 1 ≤ u ≤ q2−1 (. . .), 3|u}

∪{χ
(u)

(q+1)2(q−1) | 0 ≤ u ≤ q2 − q (. . .), 3|u} ∪ {χ
(u)

(q−1)(q2−q+1)/3 | 0 ≤ u ≤ 2}

and it can be verified that, in this case, |B0| = 2 + 2( q+1
3
− 1) + (q+1)(q−2)

18
+

(q+1)(q−2)
6

+ q2−q−2
9

+ 3 = q q+1
3

+ 3.
We thus notice that |b0| = |B0|, independantly of d. In particular, if

p 6= 2, then there is a generalized perfect isometry between B0 and b0 with
respect to p2-regular elements. In the rest of this section, we will therefore
only consider the case p = 2.

2.3.3 A generalized perfect isometry

We start by observing that the number of conjugacy classes of elements of
order divisible by 4 is the same in G and B. Moreover, if x ∈ B is such
an element, then |CG(x)| = |CB(x)| = dq2. As a consequence, if we can
find a bijection with signs between B0 and b0 which furthermore preserves
the values of characters on 4-singular elements, then it will also preserve
contributions, and thus will be a generalized perfect isometry between B0

and b0 with respect to 4-singular elements (or 4-regular elements).

If d = 1, we have the following fragment of the character table of B:

θ
(u)
q(q−1), 0 ≤ u ≤ q θ

(u)
1 , 0 ≤ u ≤ q2 − 2 θq2−1

B
(0,0)
3 0 1 −1

and the corresponding fragment for G:

χq2−q
χ

(u)

q(q2−q+1)

1 ≤ u ≤ q

χ
(u)

q2−q+1

1 ≤ u ≤ q

χ
(u,v)

(q−1)(q2−q+1)

1 ≤ u ≤ (q + 1)/3
u < v < 2(q + 1)/3

C
(0,0)
3 0 0 1 −1

χ
(u)

q3+1

1 ≤ u ≤ q2 − 1
q − 1 ∤ u

χ
(u)

(q+1)2(q−1)

0 ≤ u ≤ q2 − q
q2 − q + 1 ∤ u

χ1

C
(0,0)
3 1 −1 1
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In view of the remark above, we can see that there is a generalized perfect
isometry between b0 and B0. Indeed, listing the irreducible characters of b0
and B0 in the same order as in the above tables, and relabelling them so
that Irr(b0) = {Θ1, . . . , Θq2+q+1} and Irr(B0) = {X1, . . . , Xq2+q+1}, then a
generalized perfect isometry between b0 and B0 is given by

I : Θi 7−→ εiXi , i = 1, . . . q2 + q + 1,

where εi = −1 if Xi has degree (q − 1)(q2 − q + 1), (q + 1)2(q − 1) or 1, and
εi = 1 otherwise.

If d = 3, we have the following fragment of the character table of B:

θ
(u)
q(q−1)

0 ≤ u ≤ q, 3|u
θ

(u)
1

0 ≤ u ≤ q2 − 2, 3|u
θ

(0,v)

(q2−1)/3

0 ≤ v ≤ 2

B
(k,l)
3

0 ≤ k, l ≤ 2
0 1 qδvl −

q+1
3

and the corresponding fragment for G:

χq2−q

χ
(u)

q(q2−q+1)

1 ≤ u ≤ q
3|u

χ1

χ
(u)

q2−q+1

1 ≤ u ≤ q
3|u

χ
(u,v)

(q−1)(q2−q+1)

1 ≤ u ≤ (q + 1)/3
u < v < 2(q + 1)/3

3|(u+ v)

C
(k,l)
3

0 ≤ k, l ≤ 2
0 0 1 1 −1

χ
(u)

q3+1

1 ≤ u ≤ q2 − 1
q − 1 ∤ u

3|u

χ
(u)

(q+1)2(q−1)

0 ≤ u ≤ q2 − q
q2 − q + 1 ∤ u

3|u

χ
(u)

(q−1)(q2−q+1)/3

0 ≤ u ≤ 2

C
(k,l)
3

0 ≤ k, l ≤ 2
1 −1 qδlu −

q+1
3

Then, here again, we can see that b0 and B0 are perfectly isometric (with
respect to 4-regular elements): listing the irreducible characters of b0 and
B0 in the same order as in the above tables, and relabelling them so that
Irr(b0) = {Θ1, . . . , Θq(q+1)/3+3} and Irr(B0) = {X1, . . . , Xq(q+1)/3+3}, then
we have the following generalized perfect isometry between b0 and B0:

I : Θi 7−→ εiXi , i = 1, . . . q(q + 1)/3 + 3,

where εi = −1 if Xi has degree (q − 1)(q2 − q + 1) or (q + 1)2(q − 1), and
εi = 1 otherwise.
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2.4 Suzuki Groups

In this section, we let G = Sz(q) be a Suzuki group, where q = 22n+1 for
some n ≥ 1, U a Sylow 2-subgroup of G, and B = NG(U).

2.4.1 Conjugacy classes

The conjugacy classes of G can be found in Burkhardt [4]. We have |G| =
q2(q − 1)(q2 + 1), and, writing r2 = 2q (r ∈ N), we have representatives for
the conjugacy classes of G : t (order 2), f , f−1 (order 4) for the elements of
even order, and

1, {xa, 1 ≤ a ≤
q − 2

2
}, {yb, 1 ≤ b ≤

q + r

4
}, {zc, 1 ≤ c ≤

q − r

4
}

for the elements of odd order (dividing q−1, q+r+1 and q−r+1 respectively).
We have |CG(f)| = |CG(f−1)| = 2q.
For the following facts about the structure of B and references for proofs,

we refer to Cliff [8].
We have |U | = q2, and B = NG(U) is a semi-direct product of U by a

cyclic group A of order q − 1. U is a TI (trivial intersection) set in G with
respect to B, and B is a Frobenius group of order q2(q−1) (U is the Frobenius
kernel and A is the Frobenius complement). Letting C be the center of U ,
we have C ∼= U/C ∼= (Fq,+), and A acts regularly on the sets of non-identity
elements of both C and U/C. We have the following non-trivial conjugacy
classes in B :

- a unique class of involutions, consisting of the non-identity elements of
C. For τ in this class, |CB(τ)| = q2.

- two classes of elements of order 4, ClB(ρ) and ClB(ρ−1), where ρ ∈ U\C.
We have |CB(ρ)| = |CB(ρ−1)| = 2q.

- q−2 classes of elements of odd order : {ClB(π), π ∈ A\{1}}. For such
a π, CB(π) = A has order q − 1.

We can now compute the conjugacy classes of U . For any involution τ in
U , we have τ ∈ C = Z(U) and ClU(τ) = {τ}, which gives us q − 1 classes
of involutions: {{τj}, 2 ≤ j ≤ q}. Using the fact that the centralizer in B of
an element of U of order 4 is a 2-group, and thus is equal to its centralizer
in U , we see that U must have 2(q− 1) classes of elements of order 4, each of
length q/2 : {ClU(f2), ClU(f2

−1), . . . , ClU(fq), ClU(fq
−1)}, where (without

loss of generality) fj
2 = τj for all j = 2, . . . , q. This makes a total of 3q − 2

conjugacy classes in U . Furthermore, C = Z(U) is also the commutator
subgroup of U , so that U has [U : U ′] = [U : C] = q linear irreducible
(complex) characters.
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2.4.2 Irreducible characters of B

First step and Clifford’s Theorem

From the semi-direct product structure, we have a group homomorphism
π : B −→ A, which gives us q − 1 distinct linear (irreducible) characters of
B with U in their kernel : π ◦ λ1 = 1B, π ◦ λ2 = ϕ2, . . . , π ◦ λq−1 = ϕq−1,
where Irr(A)= {λ1 = 1A, λ2, . . . , λq−1}. Therefore 3 elements µ1, µ2, µ3 of
Irr(B) are missing, and these don’t have U in their kernel (for otherwise
they could be lifted to B from irreducible characters of A). Whence, since
B is a Frobenius group with Frobenius kernel U , µ1, µ2 and µ3 are induced
by non-trivial irreducible characters of U (cf Curtis-Reiner [9], Proposition
(14.4)). We write µi = IndBU (νi) for some νi ∈ Irr(U) \ {1U}, i = 1, 2, 3.
Writing |B| = q2(q − 1) = (q − 1)1 + µ1(1)2 + µ2(1)2 + µ3(1)2, we see that
ν1(1)2+ν2(1)2+ν3(1)2 = q+1 odd. The νi(1)’s being powers of 2, this implies
that, without loss of generality, ν1(1) = 1, µ1(1) = q−1 and ν2(1)2+ν3(1)2 =
q = 22n+1, so that ν2(1) = ν3(1) = 2n and µ2(1) = µ3(1) = (q − 1)2n.

Finally, B has the following irreducible characters:

ϕ1 = 1B, . . . , ϕq−1

degree 1
µ1

degree q − 1
µ2, µ3

degree (q − 1)2n

ϕi = π ◦ λi,
i = 1, . . . q − 1,

π : B = U ⋊ A ։ A,
Irr(A) = {λ1, . . . , λq−1}.

µ1 = IndBU (ν1),
ν1 ∈ Irr(U) \ {1U},

ν1(1) = 1.

µi = IndBU (νi),
νi ∈ Irr(U) \ {1U},

νi(1) = 2n,
i = 2, 3.

Now, U acts (trivially) by conjugation on C, and thus on Irr(C). By
Clifford’s Theorem, we see that, if χ ∈ Irr(U) and if < ResUC(χ), µ >C 6= 0
for some µ ∈ Irr(C), then ResUC(χ) = eµ for some e ∈ N. Furthermore,
since every element of Irr(C) is linear, e = χ(1), a power of 2. In particular,
ResUC(ν1) = α1, ResUC(ν2) = 2nα2 and ResUC(ν3) = 2nα3 for some α1, α2, α3

linear (irreducible) characters of C.
Furthermore, using Frobenius Reciprocity, we see that we can define an

injective map

Irr(C) −→ Irr(U)
α 7−→ ν s.t. < IndUC(α), ν >U 6= 0

Actions of A and B

We have C � B, and B acts by conjugation on the conjugacy classes of
C: for c ∈ C, u ∈ U and a ∈ A, we have (u, a)−1(c, 1)(u, a) = (ca

−1
, 1)
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where ca
−1

denotes the image of c under a−1 in the action of A on U (which
action preserves C which is characteristic in U). Hence the action of B in
fact reduces to an action of A (by this we mean that {B-orbits of C} =
{A-orbits of C}).

Now B also acts by conjugation on Irr(C) = {β1 = 1C , β2, . . . , βq} via

βhi (c) = βi(c
h−1

) forc ∈ C, h ∈ B, and i = 1, . . . , q,

where ch
−1

denotes the image of c under h−1 in the B-action we just described.
And, here again, {B-orbits of Irr(C)} = {A-orbits of Irr(C)}. We can now
apply Corollary (11.10) in Curtis-Reiner [9] which states that, if B acts by
conjugation on the conjugacy classes of C�B and on Irr(C), then the number
of B-orbits of these two actions coincide.
But, in the first action, we only have two orbits : {1} and C \ {1} (since A
acts regularly on C \ {1}). Since {1C} is clearly an orbit in the action on
Irr(C), we must have

{βa2 , a ∈ A} = {β2, . . . βq}(= {β
a
j , a ∈ A} for all j = 2, . . . q).

And, since |A| = q − 1, for all i = 2, . . . q, if βai = βbi , then a = b.

Now B acts by conjugation on Irr(U) and, the (underlying) action of
U being trivial, this also reduces to an action of A. Furthermore, for any
χ, ψ ∈ Irr(U), for all a ∈ A, since < χa, ψa >U=< χ, ψ >U , we have

χa = ψa ⇐⇒ χ = ψ (△)

Now take any i ∈ {2, . . . q}. Then IndUC(βi) has, say, k distinct irreducible
summands in Irr(U). If χ ∈ Irr(U) is any of these, then, for all a ∈ A, χa

is an irreducible summand of IndUC(βai ). This also implies that, for a, b ∈ A,
χa = χb ⇒ βai = βbi ⇒ a = b. Hence the orbit of χ under the action of A has
size q − 1 (and all the elements in this orbit have the same degree).

Now, because of (△), we see that, for all a ∈ A, IndUC(βai ) must have at
least k distinct irreducible summands in Irr(U). And, since i was arbitrary,
and since {βai , a ∈ A} = {β2, . . . βq}, we get that, for any i ∈ {2, . . . q},
IndUC(βi) has exactly k irreducible summands in Irr(U). Notice that all the
elements of Irr(U) which arose are distinct because of the injectivity of the
map we constructed in the last paragraph. Since all irreducible characters of
U appear as irreducible summands of characters induced from C to U , this
gives us

|Irr(U)| = |{irr. summ. of IndUC(1C)}|+ (q − 1)k.
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Irreducible characters of U

By Frobenius Reciprocity, 1U is an irreducible summand of IndUC(1C). Fur-
thermore, by Frobenius Reciprocity and Clifford’s Theorem, we can write
IndUC(1C) =

∑
χ(1)χ. In particular, any linear irreducible summand of

IndUC(1C) appears with multiplicity 1.
Thus

∑
(χ(1))2 = q even yields that there must be (at least) one other

(than 1U) linear irreducible summand of IndUC(1C), α say.
Now U has exactly q linear irreducible characters. Supposing one of these

is an irreducible summand of some IndUC(βi), βi 6= 1C , then we would find
one distinct linear irreducible character in each of {IndUC(βj) | j 6= i, βj 6=
1C}, each distinct from 1U and α, thus giving 2 + q − 1 = q + 1 distinct
linear irreducible characters of U . This is a contradiction. Hence all linear
irreducible characters of U appear as irreducible summands of IndUC(1C), and
nowhere else. For the degrees to match, we must have IndUC(1C) =

∑q
i=1 ξi,

where the ξi’s are the (only) q linear irreducible characters of U .
This implies that k = 2, i.e. for any 1C 6= βi ∈ Irr(C), IndUC(βi) has

exactly 2 irreducible summands in Irr(U). Writing IndUC(β2) = χ(1)χ+ψ(1)ψ,
we get χ(1) = ψ(1) = 2n.

So far, we got that Irr(U) = {ξ1, . . . , ξq, χ2, . . . , χq, ψ2, . . . , ψq}. Now
the ξi’s are real (indeed, for any j ∈ {2, . . . , q}, ξi(τj) = 1C(τj) = 1, hence
ξi(fj) ∈ {±1}). If all χ2, . . . , χq were real, then, since the βi’s are real, χi +
ψi = IndUC(βi) is real for all i = 2, . . . , q, and thus all χ2, . . . , χq, ψ2, . . . , ψq
would be real. But this is not true since (e.g.) f2 and f−1

2 are not conjugate in
U . Thus, without loss of generality, χ2 is not real and, since {χ2, . . . , χq} =
{χa2, a ∈ A}, none of χ2, . . . , χq is real.

Now, for all i = 2, . . . , q, ResUC(χi) = 2nβi = 2nβi = ResUC(χi), so that
χi ∈ {χi, ψi}. From the above remark, we deduce that χi = ψi for all i =
2, . . . , q. Finally, the irreducible characters of U are as follows:

1U = ξ1, . . . , ξq
degree 1

χ2, . . . , χq, χ2, . . . , χq
degree 2n

ξi = ξi, i = 1, . . . , q,
IndUC(1C) =

∑q
i=1 ξi.

IndUC(βi) = 2n(χi + χi), i = 1, . . . , q,
Irr(C) \ {1C} = {β2, . . . , βq}.

Values on 4-elements

Characters of U :

Take any k ∈ {2, . . . , q} and consider χk. We have ResUC(χk) = 2nβk,
βk ∈ Irr(C). We define I1 = {j ∈ {2, . . . , q} | βk(τj) = 1} and
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I−1 = {j ∈ {2, . . . , q} | βk(τj) = −1}. Then |I1| = q
2
− 1 and |I−1| = q

2
.

Take ρk : U 7−→ GL2n(C) the representation associated to χk. Using the fact
χk(τj) = ±2n, depending on if j ∈ I1 or j ∈ I−1, we see that Sp(ρk(τj)) = {1}
(the set of eigenvalues of ρk(τj)) if j ∈ I1, and Sp(ρk(τj)) = {−1} if j ∈ I−1.
Thus

Sp(ρk(fj)) ⊂

{
{−1, 1} if j ∈ I1
{−i, i} if j ∈ I−1

and

χk(fj) =

{
nkj ∈ Z if j ∈ I1
nkji ∈ Zi if j ∈ I−1

.

Now < χk, 1U >U= 0 =
∑

u∈U χk(u) =
∑

u∈C χk(u) +
∑

u∈U\C χk(u). But

∑

u∈C

χk(u) = |C| < ResUC(χk), 1C >C= |C| < 2nβk, 1C >C= 0

and
∑

u∈U\C

χk(u) =
∑

j∈I−1

|ClU(fj)|(χk(fj) + χk(f
−1
j )) +

∑

j∈I1

|ClU(fj)|(χk(fj) + χk(f
−1
j ))

=
∑

j∈I−1

q

2
(nkji− nkji) +

∑

j∈I1

qχk(fj)

whence we finally get that

∑

j∈I1

χk(fj) = 0 for any 2 ≤ k ≤ q.

(Notice that, even though it is not clearly indicated, the set I1 in the above
formula depends on k.)

Now, similarly, for any 2 ≤ k ≤ q, ξk is orthogonal to 1U :

0 =
∑

u∈U

ξk(u) =
∑

u∈C

ξk(u) +
∑

u∈U\C

ξk(u) = |C|+

q∑

j=2

2
q

2
ξk(fj)

whence we get that

q∑

j=2

ξk(fj) = −1 for any 2 ≤ k ≤ q.
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Induction from U to B:

We write B = Ut1 ∪ · · · ∪Utq−1, where the ti’s are representatives for the
cosets of U in B. For any χ ∈ Irr(U) and 2 ≤ k ≤ q, we have (since U �B =
NG(U)) IndBU (χ)(fk) =

∑q−1
i=1 χ(tifkt

−1
i ). Comparing the conjugacy classes of

elements of order 4 in U and B, we see that, up to relabelling the fj’s, we
can suppose that f2, . . . , fq are conjugate in B to ρ, and f−1

2 , . . . , f−1
q are

conjugate inB to ρ−1. In particular, fk is conjugate inB to each of f2, . . . , fq.
Since conjugation of fk by elements of a given coset of U in B gives a unique
conjugacy class in U , we see that, as i runs through {1, . . . , q−1}, fUtik must
run through {ClU(fj), 2 ≤ j ≤ q}. This implies that

{χ(tifkt
−1
i ), 1 ≤ i ≤ q − 1} = {χ(fj), 2 ≤ j ≤ q}

and

IndBU (χ)(fk) =

q∑

j=2

χ(fj) for all χ ∈ Irr(U), 2 ≤ k ≤ q.

Last step

Now we can finish our description of the irreducible characters of B. Re-
member only three were missing, µ1, µ2 and µ3, respectively induced from
U to B by (non-trivial) irreducible characters ν1, ν2 and ν3 of U of degree 1,
2n and 2n. Thus, w.l.o.g., µ1 = IndBU (ξ2) and µ2 = IndBU (χ2). Thus, writing
ρ and ρ−1 representatives for the two classes of elements of order 4 in B, we
have

µ1(ρ) =

q∑

j=2

ξ2(fj) = −1

µ2(ρ) =

q∑

j=2

χ2(fj) =
∑

j∈I1

χ2(fj) +
∑

j∈I−1

χ2(fj)

which, since
∑

j∈I1
χ2(fj) = 0, gives µ2(ρ) = ai ∈ Zi. Similarly, µ3(ρ) = bi ∈

Zi.
Writing the second orthogonality relation in H for the column of ρ, we get∑

µ∈Irr(H)
|µ(ρ)|2 = q + a2 + b2 = |CH(ρ)| = 2q. Thus a2 + b2 = q = 22n+1;

this forces both a and b to be non-zero. But then µ2(ρ) ∈ Zi \ {0}, so that
µ2 6= µ2, and therefore µ2 = µ3. Furthermore, |a| = |b| = 2n, and, since
bi = µ3(ρ) = µ2(ρ) = ai = −ai, we have b = −a and, up to exchanging µ2

and µ3, we have a = 2n and b = −2n.

Remark: A description of the irreducible characters of B, as well as their
values on elements of order 4 can actually be found in Suzuki [25].
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2.4.3 A generalized perfect isometry

We want to show that there exists a generalized perfect isometry with respect
to elements of order (divisible by) 4 between the principal 2-blocks B0 and
b0 of G and B respectively.

First note that, if x ∈ B has order 4, then x ∈ U and CB(x) ≤ U , so that
CB(U) ≤ U . Since U is the largest normal 2-subgroup of B, this implies that
B has only one 2-block, i.e. b0 =Irr(B). Furthermore, the fact that U is a TI
set with respect to B implies that the 2-blocks of G have either full defect
or defect 0. Since B has only one 2-block, Brauer’s First Main Theorem
implies that G has exactly one block of full defect, B0, and any other block
has defect 0. Using the notations of Burkhardt [4], we see that G has exactly
one character of defect 0, written Π, and thus B0 =Irr(G) \ {Π}.

We take from [4] the following fragment of the character table of G (cor-
responding to characters in B0):

1 f f−1

1G 1 1 1

Ωs, 1 ≤ s ≤ q−2
2

q2 + 1 1 1
Θl, 1 ≤ l ≤ q+r

4
(q − r + 1)(q − 1) −1 −1

Λu, 1 ≤ u ≤ q−r
4

(q + r + 1)(q − 1) −1 −1
Γ1 (q − 1)2n 2ni −2ni
Γ2 (q − 1)2n −2ni 2ni

(Note that |B0| = q + 2 = |Irr(B)| = |b0|.) And, with what we have done
before, we can compute the same fragment of the character table of B :

1 ρ ρ−1

1B 1 1 1
ϕk, 2 ≤ k ≤ q − 1 1 1 1

µ1 (q − 1) −1 −1
µ2 (q − 1)2n 2ni −2ni

µ3 = µ2 (q − 1)2n −2ni 2ni

Finally, note that, if x ∈ B has order 4, then CG(x) = CB(x), so that, as

in the previous section, if a bijection with signs between B0 and b0 preserves
the values of characters on 4-elements, it will also preserve contributions.
We then see from the two tables above that such a bijection exists; one can
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consider for example

I :





1G 7−→ 1B
Ω1 7−→ ϕ2
...

...
...

Ω(q−2)/2 7−→ ϕq/2
Θ1 7−→ −ϕq/2+1
...

...
...

Θ(q+r)/4 7−→ −ϕ(3q+r)/4

Λ1 7−→ −ϕ(3q+r)/4+1
...

...
...

Λ(q−r)/4−1 7−→ −ϕq−1

Λ(q−r)/4 7−→ µ1

Γ1 7−→ µ2

Γ2 7−→ µ3

2.5 Ree Groups

In this section, we consider G = Re(q) = 2G2(q) a Ree group, where q =
32m+1, for some m ∈ N. We consider U a Sylow 3-subgroup of G and
B = NG(U).

2.5.1 The groups G, B and U

The group G is a twisted group of Lie type G2, simple if m ≥ 1, and a
description based on a root system of type G2 can be found in Carter [7].
In particular, we find in [7] that |G| = q3(q − 1)(q3 + 1), so that |U | = q3.
Moreover, U can be written U = {x(t, u, v) | t, u, v ∈ Fq}, with multiplication
given by

x(t1, u1, v1)x(t2, u2, v2) = x(t1+t2, u1+u2−t1t
3θ
2 , v1+v2−t2u1+t1t

3θ+1
2 −t21t

3θ
2 )

where θ is the automorphism of Fq given by λθ = λ3m

for all λ ∈ Fq (and
thus 3θ2 = 1). We will sometimes write (abusively) θ = 3m.

There exists a subgroup H of B such that B = UH and |H| = q− 1. We
can write H = {h(w) , w ∈ F×

q } and conjugation of U by H is given by: for
any t, u, v, w ∈ Fq, w 6= 0,

h(w)x(t, u, v)h(w)−1 = x(w2−3θt, w3θ−1u,wv).

We find some other structure results about Ree groups in Ward [26].
There can be found the following:
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Theorem 2.5. U is disjoint from its conjugates. Its center Z(U) is ele-
mentary Abelian of order q. U is of class 3 and contains a normal Abelian
subgroup U ′ of order q2 containing Z(U) which is both the derived group and
the Frattini subgroup of U .
The members of U \ U ′ have order 9, their cubes forming Z(U) \ {1}.
We have B = NG(U) = UH where H is cyclic of order q − 1.

The character table of G is also given in this article. G has q+8 conjugacy
classes, with representatives 1, Ra 6= 1 for some R of order (q−1)/2 which is
prime to 3, Sa 6= 1 for some S of order (q + 1)/4 which is prime to 3, V and
W of order dividing respectively q + 1− 3m+1 and q + 1 + 3m+1 (the orders
of their centralizers, cf [26], p 85) which are prime to 3, X, T and T−1 of
order 3 (X ∈ Z(U) and T, T−1 ∈ U \ Z(U), cf [26], pp 78-80), Y , Y T and
Y T−1 of order 9 (cf [26], p 82), J of order 2, JT and JT−1 which belong
to groups whose order has 3-valuation 1 (cf [26], p 83) so which order is not
divisible by 9, and JRA 6= J and JSa 6= J of respective orders o(J).o(Ra)
and o(J).o(Sa) which are not divisible by 3.

Note that, following Carter, we write q = 32m+1, while Ward writes q =
32k+1 and m = 3k. The m in Ward’s paper therefore corresponds to 3m in
our notations.

The number and lengths of the conjugacy classes of U , as well as the
number and degrees of the irreducible characters of U and B can be found in
Eaton [11]. However, in order to obtain the values we need, we must compute
some details Eaton doesn’t give about the irreducible characters of B. We
therefore compute again everything explicitly.

2.5.2 Conjugacy classes of U

Conjugation in U , centralizers

We see from the formula for multiplication in U that the identity element of
U is x(0, 0, 0), and that, since the center Z(U) of U has order q, it can be
identified with {x(0, 0, v) , v ∈ Fq}. We also obtain informations about the
order of elements : x(t, u, v)2 = x(−t,−u− t3θ+1,−v − tu) and x(t, u, v)3 =
x(0, 0,−t3θ+2), so that x(t, u, v)9 = 1, and x(t, u, v) has order 3 if and only if
t = 0. Moreover, as gcd(3m+1 − 1, 3θ + 2) = 1, we have {−t3θ+2 , t ∈ F×

q } =
F×
q , so that the cubes of the elements of order 9 of U are Z(U) \ {1} =
{x(0, 0, v) , v ∈ F×

q }.
Furthermore, the inverse of an element x(t, u, v) of U is

x(t, u, v)−1 = x(−t,−u− t3θ+1,−v − tu+ t3θ+2).
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Hence conjugation in U is given by

x(t1, u1, v1)x(t2, u2, v2)x(t1, u1, v1)
−1 =

x(t2, u2 − t
3θ
2 t1 + t2t

3θ
1 , v2 − t2u1 + t1u2 + t22t

3θ
1 − 2t3θ2 t

2
1 + t3θ+1

2 t1).

In particular, conjugation in U preserves the first “coordinate”.
Now take any t1, t2, u1, u2, v1, v2 ∈ Fq. Then x(t1, u1, v1)x(t2, u2, v2) =

x(t2, u2, v2)x(t1, u1, v1) if and only if





t1 + t2 = t2 + t1
t1t

3θ
2 = t2t

3θ
1

t2u1 − t1t
3θ+1
2 + t21t

3θ
2 = t1u2 − t2t

3θ+1
1 + t22t

3θ
1 (†)

Writing ω = t1t
3θ
2 = t2t

3θ
1 , we get that (†)⇐⇒ t1(u2− 2ω) = t2(u1− 2ω) (†′).

If t1, u1 and v1 are now fixed, we can solve the above system of equations
in t2, u2, v2 ∈ Fq, and we eventually obtain:
CU(x(0, u1 6= 0, v1)) = {x(0, u2, v2) |u2, v2 ∈ Fq} has order q2, and thus
ClU(x(0, u1 6= 0, v1)) has length q.
CU(x(t 6= 0, u, v1)) = {x(0, 0, v2) , x(t, u, v2) , x(−t,−t

3θ+1 − u, v2) | v2 ∈ Fq}
has order 3q, and ClU(x(t 6= 0, u, v1)) has length q2/3.

Using the formula for conjugation in U and the lengths we found, we see
that, given t, u, v ∈ Fq, ClU(x(0, u, v)) = {x(0, u, v + t1u) , t1 ∈ Fq}, so that,
if u 6= 0, then ClU(x(0, u, v)) = {x(0, u, v2) , v2 ∈ Fq}, giving us q − 1 such
classes, uniquely determined by u.
Moreover, x(t, u2, v2)x(t, u, v)x(t, u2, v2)

−1 = x(t, u, v + t(u− u2)), so that, if
t 6= 0, then ClU(x(t, u, v)) ⊃ {x(t, u, v2) , v2 ∈ Fq}. Hence, by conjugation,
the first coordinate is fixed and the last can be changed to any one without
modifying the second one. We obtain that x(t, u2, v2) ∈ ClU(x(t, u, v)) if and
only if there exists t2 ∈ Fq such that u2 = u− t2t

3θ + tt3θ2 . We can show that
there are q/3 such u2’s. Indeed, take any t2, t3 ∈ Fq, and the associated u2

and u3. Then,

u2 = u3 ⇐⇒ tt3θ2 − t2t
3θ = tt3θ3 − t3t

3θ

⇐⇒ t(t3θ2 − t
3θ
3 ) = (t2 − t3)t

3θ

⇐⇒ t(t2 − t3)
3θ = (t2 − t3)t

3θ

(this last equivalence being true since the caracteristic is 3 and (−1)3θ = −1).
And this has 3 solutions, t2 − t3 ∈ {0,±t}. Hence we obtain |Fq|/3 = q/3
distinct values for u2. Thus, we get

ClU(x(t 6= 0, u, v)) = {x(t, u− t2t
3θ + tt3θ2 , v2) | t2, v2 ∈ Fq},
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giving us 3(q − 1) such classes, determined by t and 3 distinct values u1, u2

and u3 ∈ Fq.

This gives us the whole of U :

• q classes of length 1, type x(0, 0, v), parametrized by v ∈ Fq

• q − 1 classes of length q, type x(0, u 6= 0, v), parametrized by u ∈ F×
q

• 3(q − 1) classes of length q2/3, type x(t 6= 0, u, v), parametrized by
t ∈ F×

q and 3 values of u ∈ Fq.

Thus U has 5q − 4 conjugacy classes.

H-conjugacy classes of U

First, recall that, for any t, u, v, w ∈ Fq, w 6= 0,

h(w)x(t, u, v)h(w)−1 = x(w2−3θt, w3θ−1u,wv),

so that conjugation by elements of H preserves the three types of conjugacy
classes of U we just described.

Now, H acts by conjugation on the conjugacy classes of U . We find the
number and sizes of the orbits under this action.

• Take v ∈ Fq. If v 6= 0, then {wv , w ∈ F×
q } = F×

q , so that we get two
H-orbits : {x(0, 0, 0)} and Z(U) \ {1} = {x(0, 0, v) , v ∈ F×

q }.

• Take u ∈ F×
q and w ∈ F×

q . Then

h(w)ClU(x(0, u, v))h(w)−1 = ClU(x(0, u, v))⇐⇒ w3θ−1u = u

and this has 2 solutions w ∈ F×
q (w = ±1). This gives us two H-orbits,

of size (q − 1)/2.

• Take t ∈ F×
q and w ∈ F×

q . Then

h(w)ClU(x(t, u, v))h(w)−1 = ClU(x(t, u, v)) =⇒ w2−3θt = t

Now w2−3θt = t ⇔ w3θ−2 = 1 ⇔ w3m+1−2 = 1. However, we can see
that gcd(32m+1 − 1, 3m+1 − 2) = 1, and thus w3m+1−2 = 1 has a unique
solution w ∈ Fq (w = 1). This gives us three H-orbits, of size q − 1.

Finally, there are 7 H-orbits on the conjugacy classes of U .
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2.5.3 Irreducible characters of U

Actions of B

If L = U or Z(U), then L�B, and B acts by conjugation on the conjugacy
classes of L (via xb = b−1xb) and on Irr(L) (via χb(x) = χ(bxb−1)). Corollary
(11.10) in Curtis-Reiner [9] implies that the number of orbits in these two
actions are the same. Furthermore, since U is normal in B = UH and U acts
trivially on the conjugacy classes of Z(U) and of U , the B-orbits in these
actions are in fact the H-orbits. The study of H-orbits we made before shows
that there are 2 H-orbits in Z(U), and thus in Irr(Z(U)), and 7 H-orbits in
Cl(U), and thus in Irr(U).

Induction from Z(U) to U

We write C = Z(U). Since {1C} is clearly one H-orbit of Irr(C), we see that
H must act transitively on Irr(C) \ {1C}, and Clifford’s Theorem gives us an
injective map

Irr(C) −→ Irr(U)
βi 7−→ χ s.t. < IndUC(βi), χ >U 6= 0

where Irr(C) = {β1 = 1C , β2, . . . , βq}. Furthermore, since |H| = |Irr(C) \
{1C}|, we have, as in Suzuki groups,

|Irr(U)| = |{Irred. summ. of IndUC(1C)}|+ (q − 1)k

where k is the (common) number of irreducible summands of any IndUC(βi),
i ≥ 2.

We can write IndUC(1C) =
∑

χ∈I1⊂Irr(U)
χ(1)χ. Now 1U appears with

multiplicity 1 in IndUC(1C), and so does any linear irreducible summand of
IndUC(1C). Since IndUC(1C)(1) = [U : C] = q2 is a power of 3, and since
any non-linear irreducible summand of IndUC(1C) has degree a non-trivial
power of 3, we see that there must be (at least) 2 other linear irreducible
summands in IndUC(1C), α and β say. Supposing some IndUC(βi) (βi 6= 1C)
has a linear irreducible summand, we would get an orbit of q − 1 distinct
linear irreducible characters of U , all distinct from 1U , α and β (since, by
Clifford, 1U |C = α|C = β|C = 1C), giving us q+2 linear irreducible characters
of U . This is a contradiction, since [U : U ′] = q. Hence all linear irreducible
characters of U appear as irreducible summands of IndUC(1C) and nowhere
else. Writing IndUC(1C) =

∑q
i=1 λi +

∑
i∈I χi(1)χi, where the λi’s are linear,

we have |Irr(U)| = 5q − 4 = q + |I|+ (q − 1)k. Thus 4q − 4 = |I|+ (q − 1)k,
and k ≤ 4.
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k = 4 implies I = ∅ and IndUC(1C) =
∑q

i=1 λi, which is impossible since
the left has degree q2 and the right has degree q.

Suppose k = 2. Then we can write (using Clifford) IndUC(β2) = χ(1)χ +
ψ(1)ψ and (degrees) 32a = q2 = χ(1)2 +ψ(1)2 = 32b+32c. Then b = c implies
2|32a, which is impossible, and b < c implies 32a = 32b(1 + 32(c−b)), which is
even, so this is impossible too.

Suppose k = 3. Then, q2 = χ(1)2 +ψ(1)2 + η(1)2, which can similarly be
shown to be impossible.

We deduce that k = 1. Hence there exist ψ2, . . . , ψq ∈ Irr(U) such that

IndUC(βi) = ψi(1)ψi for i = 2, . . . , q

and thus ψi(1) = q for i = 2, . . . , q.
Furthermore, |I| = 3q − 3, IndUC(1C) =

∑q
i=1 λi +

∑3q−3
i=1 χi(1)χi, and, by

Clifford’s Theorem, the χi’s have C = Z(U) in their kernel, so are in fact
irreducible characters of the quotient U/Z(U).

The quotient V = U/Z(U)

From the central series {1}� Z(U) � U ′
� U , we see that V = U/Z(U) has

order q2, and has a normal Abelian subgroup (U ′/Z(U)) of order q such that
the corresponding quotient is Abelian of order q.

We have seen that Z(U) = {x(0, 0, v) , v ∈ Fq}, and, from the for-
mula for multiplication in U , we see that U/Z(U) can be parametrized by
{y(t, u) | t, u ∈ Fq}, where multiplication is given by

y(t1, u1)y(t2, u2) = y(t1 + t2, u1 + u2 − t1t
3θ
2 ).

We have 1U/Z(U) = y(0, 0), y(t, u)−1 = y(−t,−u− t3θ+1), and

y(t1, u1)y(t2, u2)y(t1, u1)
−1 = y(t2, u2 − t1t

3θ
2 + t2t

3θ
1 ).

From the results in U , we see that the conjugacy classes of V are as follows :

• {y(0, 0)}

• q − 1 classes of length 1 : {y(0, u)} , u ∈ F×
q

• 3(q− 1) classes of length q/3, of type y(t, u) for t ∈ F×
q and 3 values of

u ∈ Fq.

The subgroup W = {y(0, u) , u ∈ Fq} is both the center and the derived
group of V . Thus V has q linear irreducible characters and 3q − 3 non-
linear irreducible characters, the ones we are looking for, χ1, . . . , χ3q−3. As
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V has odd order q2, each non-trivial irreducible character of V is non-real.
Furthermore, by Clifford’s Theorem, every irreducible character of V appears
as irreducible summand of some character induced from W , with multiplicity
its degree.

Irreducible characters of W = Z(V ):

We have V = U/Z(U) � B/Z(U) = (U/Z(U))H. Thus B/Z(U) acts
by conjugation on Z(V ) = W , and this action reduces to an action of H.
From the study of H-classes of U , we see that there are 3 orbits under this
action, giving us 3 orbits under the derived action of B/Z(U) on Irr(W ) =
{γ1 = 1W , γ2, . . . , γq}, where the γi’s are linear. Since {1W} is one H-orbit,
{γ2, . . . , γq} must be a union of 2 H-orbits. Now the length of an orbit
divides the order of H, that is q− 1, and this forces each of these 2 orbits to
have length (q − 1)/2.

Now q−1 ≡ (−1)2m+1−1 ≡ −2 (mod 4), so that (q−1)/2 is odd. Moreover,
W has odd order q. Thus the only real irreducible character of W is 1W , and
γi 6= γi for all i = 2, . . . , q. Supposing that γ2 belongs to the same H-orbit
as γ2, γ2 = γh2 say, and taking any γi in this orbit, it is easy to see (using
the definitions of the actions of H) that then γhi = γi, so that γi belongs to
the same H-orbit. The orbit of γ2 would then have even length, which is
a contradiction. This shows that, up to relabelling the γi’s, the H-orbits of
Irr(W ) are {1W}, {γ2, . . . γ(q+1)/2} and {γ2, . . . γ(q+1)/2}.

Induction from W to V :

If γi and γj belong to the same H-orbit of Irr(W ), then IndVW (γi) and
IndVW (γj) have the same number of irreducible components, with the same
degrees (that is, we can build a bijection preserving the degree between the
sets of irreducible components of IndVW (γi) and IndVW (γj)). Furthermore,
complex conjugation gives the same kind of bijection between irreducible
components of IndVW (γi) and IndVW (γi), whence all the IndVW (γi)’s, 2 ≤ i ≤ q,
have the same number of irreducible components, with the same degrees.
Moreover, the subsets of Irr(V ) obtained in this way are disjoint.

Now 1V appears with multiplicity 1 in IndVW (1W ), which has degree q.
Hence at least two other linear characters of V must appear (each with
multiplicity 1). Supposing a linear character appears in some IndVW (γi), i ≥ 2,
we would get one in each IndVW (γj), j ≥ 2, giving us (at least) q + 2 distinct
linear characters of V , which is impossible. Hence each linear character of
V appears in IndVW (1W ) and nowhere else. Comparing degrees, we see that
IndVW (1W ) =

∑q
i=1 µi, where the µi’s are (all) the irreducible linear characters

of V . Writing k′ the number of irreducible components of any IndVW (γi), i ≥ 2,
we have |Irr(V )| = 4q − 3 = q + k′(q − 1), so that k′ = 3.
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Writing IndVW (γ2) = χ1(1)χ1 +χ2(1)χ2 +χ3(1)χ3, we obtain q = 32m+1 =
χ1(1)2 + χ2(1)2 + χ3(1)2, which implies χ1(1) = χ2(1) = χ3(1) = 3m.

Finally, V has q linear irreducible characters, and 3q−3 irreducible char-
acters of degree 3m.

Irreducible characters of U

We summarize the results we obtained so far about the character table of U .
By convention, in character tables, we will take the first line to correspond to
the values on 1, and the first column to correspond to the trivial character.

1U = λ1, . . . , λq
Irr(U/U ′)
degree 1

ψ2, . . . , ψq
degree q

x(0, 0, v), v ∈ Fq

length 1
order 3

1

qψi = IndUZ(U)(βi)

βi ∈ Irr(Z(U)) \ {1Z(U)}
Z(U) ∼= (Fq,+)

x(0, u, v), u ∈ F×
q

length q
order 3

1 0

x(t, ui, v), t ∈ F×
q ,

i = 1, 2, 3
length q2/3

order 9

three times each non-first
line of the character

table of U/U ′

Same line ⇔ same t
U/U ′ = {x(t), t ∈ Fq}

U/U ′ ∼= (Fq,+)

0
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χ1, . . . , χ3q−3

irreducible characters of U/Z(U)
degree 3m

x(0, 0, v), v ∈ Fq

length 1
order 3

3m

x(0, u, v), u ∈ F×
q

length q
order 3

3m.




three times each non-first column of the
character table of W = Z(U/Z(U))

Same column ⇔ χi, χj belong
to the same IndVW (γk)

W = {x(0, u), u ∈ Fq} ∼= (Fq,+)




x(t, ui, v), t ∈ F×
q ,

i = 1, 2, 3
length q2/3

order 9
???????

H-orbits of Irr(U)

We have seen that there are two orbits in the actions of H by conjuga-
tion on Irr(Z(U)) and Z(U). The orbits of Irr(Z(U)) must be {1Z(U)} and
{β2, . . . , βq}. Now H acts by conjugation on Irr(U) and on Cl(U), and the
underlying action on ClU(Z(U)) = Z(U) is the one before. Via Clifford’s
Theorem, we have that, for h ∈ H, ψ ∈ Irr(U) and 2 ≤ i ≤ q,

< ψ, IndUZ(U)(βi) >U 6= 0⇐⇒< ψh, IndUZ(U)(β
h
i ) >U 6= 0

(indeed, both are equal to < ψ|Z(U), βi >Z(U)=< ψh|Z(U), β
h
i >Z(U)= ψ(1) =

ψh(1)). As IndUZ(U)(βi) = qψi for each i = 2, . . . , q, we see that the ψi’s form

one H-orbit of Irr(U). {1U} is another one. However, we know that Irr(U)
has 7 H-orbits. Thus {λ2, . . . , λq, χ1, . . . , χ3q−3} is a union of 5 H-orbits.
Furthermore, because of the preservation of the degree under the action of
H, {λi, i ≥ 2} and {χi, 1 ≤ i ≤ 3q − 3} are unions of H-orbits.

Now the χi’s are characters of V = U/Z(U). They are all non-real,
and can be written as {χ1, . . . , χ(3q−3)/2, χ1, . . . , χ(3q−3)/2}, the separation
between the χi’s and the χi’s corresponding to the one we introduced between
the γi’s and the γi’s respectively. For γi ∈ Irr(Z(V )), i ≥ 2, and χ ∈ Irr(V ),
we have

< χ, IndVZ(V )(γi) >V =< χ, IndVZ(V )(γi) >V .

Since {γ2, . . . , γ(q+1)/2} and {γ2, . . . , γ(q+1)/2} are two H-orbits, this shows
that χ and χ have distinct orbits. Furthermore, for χ, ψ ∈ Irr(V ) and h ∈ H,
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we have

< χh, ψh >V =< χ,ψ >V =< χ,ψ >V =< χh, ψ
h
>V

and χh = χh. Hence the orbits of χ and χ have the same length and consist
of 2 by 2 conjugate characters. Moreover, since < χh|Z(V ), γ

h
i >Z(V )=

< χ|Z(V ), γi >Z(V ), we see that {χ1, . . . , χ(3q−3)/2} and {χ1, . . . , χ(3q−3)/2}
are unions of H-orbits, and that there is a bijection preserving the length
between the two corresponding sets of orbits (namely, complex conjugation).
Moreover, the orbits have size at least (q − 1)/2, which is the size of γHi .

This shows that {χi, 1 ≤ i ≤ 3q − 3} is a union of an even number of
H-orbits, which is strictly less than 5, and must therefore be 2 or 4. If it
were 2, these orbits would have length (3q − 3)/2 > q − 1 = |H|, which
is impossible. Thus, there are 4 orbits, of 2 lengths l and l′, and we can
write 3q − 3 = 2l + 2l′, with l, l′ ≥ (q − 1)/2. Also l, l′ | |H| = q − 1, so that
l, l′ ∈ {(q−1)/2, q−1}, and this implies that l = (q−1)/2 say, and l′ = q−1.

Finally, the λi’s must form one H-orbit, and, relabelling the χ′
is, we have

the following 7 H-orbits of Irr(U) :

{1U} , {λ2, . . . , λq} , {ψ2, . . . , ψq}

{χi,j, i = 1, 2 and 1 ≤ j ≤ (q − 1)/2} , {χ3,j, 1 ≤ j ≤ (q − 1)/2}

{χi,j, i = 1, 2 and 1 ≤ j ≤ (q − 1)/2} , {χ3,j, 1 ≤ j ≤ (q − 1)/2}

where IndVZ(V )(γj+1) = 3m(χ1,j + χ2,j + χ3,j) for 1 ≤ j ≤ (q − 1)/2.

2.5.4 Irreducible characters of B = NG(U)

Clifford’s Theory

The following description of Clifford’s Theory can be found in Isaacs [16].
Recall that B acts on Irr(U) like H does. Take any η ∈ Irr(B). If, for some
χ ∈ Irr(U), < η, IndBU (χ) >B=< η|U , χ >U 6= 0, then η|U = e

∑t
i=1 χ

hi , where
e =< η|U , χ >U , t = [B : IB(χ)] with IB(χ) the inertial subgroup of χ, and
{χhi ; i = 1 . . . t} is the H-orbit of χ.

Now take any θ ∈ Irr(U), and write IndBU (θ) =
∑

i∈I eiµi, with µi ∈ Irr(B)
for i ∈ I and µi 6= µj if i 6= j ∈ I (and thus, as above, µi|U = ei

∑
hj
θhj).

Writing T = IB(θ), we then have IndTU(θ) =
∑

i∈I eiνi, with 0 6= ei ∈ N and

νi ∈ Irr(T ); moreover, for i ∈ I, µi = IndBT (νi) and thus µi(1) = [B : T ]νi(1).
To study the ei’s, it suffices to restrict our attention to T = IB(θ), U �T

and θ is T -invariant. We have IndTU(θ) =
∑

i∈I eiνi, and νi|U = eiθ (since the
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T -orbit of θ is just {θ}). Hence νi(1) = eiθ(1), and

[T : U ]θ(1) = IndTU(θ)(1) =
∑

i∈I

eiνi(1) =
∑

i∈I

e2i θ(1).

Thus
∑

i∈I e
2
i = [T : U ].

Irreducible characters of B

We now apply the previous results to the irreducible characters of U , and
obtain all the irreducible characters of B.

If θ ∈ {λ2, . . . , λq, ψ2, . . . , ψq, χ1,j, χ2,j, χ1,j, χ2,j}, then the H-orbit of θ
has length q − 1 = |H|, so that IH(θ) = {1} and IB(θ) = U . Hence IndBU (θ)
is irreducible, of degree (q − 1)θ(1).

If θ ∈ {χ3,j, χ3,j | 1 ≤ j ≤ (q − 1)/2}, then the H-orbit of θ has length
(q − 1)/2, so that |IH(θ)| = 2, and thus IH(θ) =< J > where J is the
involution of H, and T = IB(θ) = U < J >. Hence IndTU(θ) =

∑
i∈I eiνi and∑

i∈I e
2
i = [T : U ] = 2, so that |I| = 2 and e1 = e2 = 1. Thus IndTU(θ) is

the sum of two irreducible characters ν1 and ν2 of T , each with multiplicity
1, and of same degree as θ. Then IndBU (θ) = µ1 + µ2, with µ1, µ2 ∈ Irr(B)
distinct, and µ1(1) = µ2(1) = [B : T ]ν1,2(1) = θ(1)(q − 1)/2.

Furthermore, two characters of the same H-orbit of Irr(U) give the same
induced character of B (and thus the same subset or Irr(B)), and two distinct
orbits give two disjoint subsets of Irr(B). We obtain

Irr(U) Irr(B)
{λ2, . . . , λq} −→ λ, degree q − 1
{ψ2, . . . , ψq} −→ ψ, degree (q − 1)q

{χi,j, i = 1, 2 and 1 ≤ j ≤ q−1
2
} −→ χ, degree (q − 1)3m

{χi,j, i = 1, 2 and 1 ≤ j ≤ q−1
2
} −→ χ, degree (q − 1)3m

{χ3,j, 1 ≤ j ≤ q−1
2
} −→ µ1, µ2, degree q−1

2
3m

{χ3,j, 1 ≤ j ≤ q−1
2
} −→ µ1, µ2, degree q−1

2
3m

Finally, B has (at least) q − 1 linear irreducible characters α1 = 1B, . . . αq−1

given by αi = π◦ α̃i, where π : B = UH −→ H is the natural homomorphism
and Irr(H) = {α̃i, 1 ≤ i ≤ q− 1}. Each of the αi’s appears with multiplicity
1 in IndBU (1U), and, since IndBU (1U)(1) = q− 1, we have IndBU (1U) =

∑q−1
i=1 αi,

and the αi’s are the only linear irreducible characters of B.
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Values on elements of order 9

From the results on H-classes of U , we see that there are three classes of
elements of order 9 (of type x(t 6= 0, ui, v)) in B. We take representatives x1,
x2 and x3, and we want the values of Irr(B) on the xi’s.

The αi’s are lifted from H, so have U in their kernel, so that αi(xj) = 1
for all i = 1, . . . , q − 1 and j = 1, 2, 3.

We have ψ|U =
∑q

i=2 ψi, and the ψi’s are 0 on U \Z(U). Thus ψ(xj) = 0
for all j = 1, 2, 3.

We have λ|U =
∑q

i=2 λi. For each j = 1, 2, 3, using the fragment of the
character table of U we found, the second orthogonality relation applied (in
U/U ′) to xj and 1 gives

∑q
i=1 λi(xj)λi(1) = 0, and λi(1) = 1 for all i, so that

λ(xj) = −λ1(xj) = −1 (note that this doesn’t depend on the U -conjugacy
class in which we took xj).

Now we have (χ + µ1)|U =
∑(q−1)/2

k=1 (χ1,k + χ2,k + χ3,k), a character of
U/Z(U), and

3m(χ+ µ1)|U/Z(U) =

q−1
2∑

k=1

3m(χ1,k + χ2,k + χ3,k) =

q−1
2∑

k=1

Ind
U/Z(U)
W (γk+1),

where Irr(W ) = {γ1 = 1W , γ2, . . . , γq}, and, since W = Z(U/Z(U)), 3m(χ+
µ1)|U ≡ 0 on (U/Z(U)) \W . Hence (χ + µ1)(xj) = 0 for j = 1, 2, 3. Since
µ1|U = µ2|U , we have, for some a, b, c ∈ C,

χ µ1, µ2 χ µ1, µ2 α1, . . . , αq−1 λ ψ
x1 a −a ā −ā 1 −1 0
x2 b −b b̄ −b̄ 1 −1 0
x3 c −c c̄ −c̄ 1 −1 0

The second orthogonality relation applied to each line gives, since |CB(xi)| =
3q, |a| = |b| = |c| = 3m.

Now we have, for any t, u, v ∈ Fq, h(−1)x(t, u, v)h(−1)−1 = x(−t, u,−v).
If we take u = t = 1, then x(t, u, v)−1 = x(−1, 1,−v) = x(−t, u,−v). Hence
x(1, 1, v) and x(1, 1, v)−1 are conjugate in B, to x1 say. Thus a is real, and
a = ±3m.

Now the second orthogonality relation applied to the first and second line
and to the first and third line gives that Re(b) =Re(c) = ∓3m/2. Together
with |b| = |c| = 3m, this gives us that b, c 6∈ R, so that c = b̄ (and x−1

2 is
conjugate to x3), and, writing ω = e2iπ/3, we have b3−m ∈ {ω, ω̄,−ω,−ω̄}.
Hence, we see that, up to exchanging χ and χ (and thus µi and µi), or x2

and x3, there exists ε ∈ {±1} such that a = ε3m, b = ε3mω̄ and c = ε3mω.
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2.5.5 A generalized perfect isometry

Since the Sylow 3-subgroup U ofG is disjoint from its conjugates, the 3-blocks
of G have either full defect or defect 0. Furthermore, we have seen that the
elements of Z(U) \ {1} form one H-orbit. Since H = q − 1 = |Z(U) \ {1}|,
this shows that each element of Z(U) \ {1} is centralized by no non-identity
element of H. Thus we get that, for z ∈ Z(U) \ {1}, CB(z) = U , so that
CB(U) ≤ U , and, as U = O3(B), B has only one 3-block, the principal one
b0. This implies that G has only one block B0 of maximal defect. Since G has
only one character ξ3 of defect 0, we get b0 = Irr(B) and B0 = Irr(G) \ {ξ3}.
In particular, we see that |B0| = |b0| = q + 7.

In G, the only elements of order divisible by 9 have order precisely 9.
Hence the same must be true in B. We have representatives for the 9-singular
classes Y , Y T and Y T−1 in G, and x1, x2 and x3 in B. We have already
seen that |CB(xi)| = 3q for i = 1, 2, 3. Using the character table of G in [26],
we find that |CG(Y )| = |CG(Y T )| = |CG(Y T−1)| = 3q. Here again, it is thus
sufficient to find a bijection with signs between B0 and b0 wich preserves the
values of characters on 9-singular elements.

We now consider the following fragments of character table for B0 (cf
[26]) and b0:

ξ4 ξ1, ξ2, ηr, η
′
r ηt, η

′
t, η

−
i , η

+
i ξ5, ξ6 ξ7, ξ8 ξ9 ξ10

Y 0 1 −1 3m 3m −3m −3m

Y T 0 1 −1 3mω̄ 3mω −3mω̄ −3mω
Y T−1 0 1 −1 3mω 3mω̄ −3mω −3mω̄

(where the numbers of exceptionnal characters are
|{ηr, η

′
r}| = (q − 3)/2 and |{ηt, η

′
t, η

−
i , η

+
i }| = (q − 1)/2)

ψ α1, . . . , αq−1 λ µ1, µ2 µ1, µ2 χ χ
x1 0 1 −1 −ε3m −ε3m ε3m ε3m

x2 0 1 −1 −ε3mω̄ −ε3mω ε3mω̄ ε3mω
x3 0 1 −1 −ε3mω −ε3mω̄ ε3mω ε3mω̄

It is then easy to see that there is a generalized perfect isometry between B0

and b0: listing the irreducible characters of B0 and b0 in the same order as
in the above tables, and relabelling them so that Irr(B0) = {Ξ1, . . . , Ξq+7}
and Irr(b0) = {X1, . . . , Xq+7}, then the following is a generalized perfect
isometry between B0 and b0:

I : Ξi 7−→ εiXi , i = 1, . . . , q + 7,
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where εi = −1 if Xi ∈ {α(q+3)/2, . . . , αq−1}, εi = −ε if Xi ∈ {µ1, µ2, µ1, µ2,
χ, χ}, and εi = 1 otherwise.

We summarize the results we obtained in the following

Theorem 2.6. Suppose G = SU(3, q2), Sz(q) or Re(q), and p is the defining
characteristic of G. Let U be a Sylow p-subgroup of G, and B = NG(U). Let
B0 and b0 be the principal p-blocks of G and B respectively. Then there is
a generalized perfect isometry with respect to p2-regular elements between B0

and b0.



Part 3

Cartan Group, Generalized
Characters

3.1 Cartan Group, Factors

In this section, we introduce the notions of Cartan group and Cartan matrix,
as presented in [18].

Take G a finite group. Take C a closed set of conjugacy classes of G,
and C′ = G \ C. Let Γ(C, G) = ((< χ,ψ >C))χ,ψ∈Irr(G)

be the C-contribution

matrix of G. Write ch(G) = ZIrr(G) the set of generalized characters of G.
We define two Z-submodules of the space of complex class-functions of G:
let

R(C) = {αC, α ∈ ch(G)} =< χC, χ ∈ Irr(G) >Z

and

P(C) = {β ∈ ch(G)| β ≡ 0 outside C}

(then P(C) is the Z-submodule of R(C) consisting of generalized characters).
The fact that C is closed implies (via Galois Theory) that the modules

R(C) and P(C) have the same Z-rank, and that this rank is the number of
conjugacy classes in C (cf [24]): we have

s := k(C) = rkZ(Γ(C, G)) = rkZ(R(C)) = rkZ(P(C)).

The quotient R(C)/P(C) is thus an Abelian group, which we call the Cartan
group of G (with respect to C), and denote by Cart(C, G), or just Cart(C).
We have Cart(C) ∼= Cd1 × · · · × Cds

(a product of s cyclic groups).

Now R(C), P(C) and Cart(C) have decompositions into direct sums cor-
responding to the C-blocks of G. For B a union of C-blocks of G, we denote

73
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by R(C, B), P(C, B) and Cart(C, B) the corresponding direct summands of
R(C), P(C) and Cart(C) respectively.

For a given Z-basis {ϕi, 1 ≤ i ≤ r} of P(C, B), we define the Cartan
matrix of B to be the matrix C(B) = ((< ϕi, ϕj >C))1≤i,j≤r. A different
choice of Z-basis leads to a Cartan matrix which is equivalent over Z to
C(B) (more precisely, if C ′(B) is the new Cartan matrix, then there exists a
unimodular integral matrix A such that C ′(B) = AtC(B)A). In particular,
both Cartan matrices have the same invariant factors. The invariant factors
are precisely the orders of the cyclic factors of Cart(C, B).

Now the invariant factors of C(B) are also linked to the invariant factors
of the contribution matrix. There exists a Z-basis {ψi, 1 ≤ i ≤ r} forR(C, B)
such that {diψi, 1 ≤ i ≤ r} is a Z-basis for P(C, B). Then dr is the smallest
positive integer such that drΓ(C, B) has integer entries, and the non-zero
invariant factors of dsΓ(C, G) are 1 = ds

dr
, dr

dr−1
, . . . , dr

d1
(cf [18], Lemma 1.3).

All these definitions and properties also apply to C′. From the definitions
for P and R and the definition of blocks, we see that P(C, B)⊕ P(C ′, B) ⊂
R(G,B). Furthermore, using the fact that C is closed, Galois Theory implies
that |G|R(G,B) ⊂ P(C, B) ⊕ P(C ′, B). Hence we get that rkZ(P(C, B)) +
rkZ(P(C′, B) = rkZ(R(G, B)) = |B|. Thus, if Γ(C, B) has rank r, then
Γ(C, B) has rank |B| − r.

Finally, note that, if C is the set of p-regular elements of G for some prime
p, then the invariant factors of the Cartan matrix are known to be the orders
of the p-defect groups of p-regular classes (cf e.g. Isaacs [16]).

3.2 Generalized Characters

3.2.1 Order in the Cartan group

We have seen that the exponent ds of the Cartan group Cart(C) is the small-
est positive integer such that dsΓ(C, G) has integral entries. This implies
that, for any χ ∈ Irr(G), the class function dsχ

C is a generalized character.
Indeed, if χ ∈ Irr(G), then χC is a class function of G, and we can write

χC =
∑

ψ∈Irr(G)

< χC, ψ >G ψ

=
∑

ψ∈Irr(G)

< χC, ψC >G ψ

=
∑

ψ∈Irr(G)

< χ,ψ >C ψ.
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And, since ds < χ,ψ >C∈ Z for all ψ ∈ Irr(G), we see that dsχ
C is a Z-linear

combination of irreducible characters of G, i.e. a generalized character.
Given any χ ∈ Irr(G), we would like to find the smallest positive integer

d such that dχC is a generalized character. The integer d will be called the
order of χ in Cart(C).

From what we wrote above, we deduce that, for χ ∈ Irr(G) and d ∈ N,

dχC ∈ ch(G) ⇐⇒ d < χC, ψC >∈ Z, ∀ψ ∈ Irr(G)

⇐⇒

{
d < χC, ψC >∈ Z, ∀ψ ∈ Irr(G) such

that ψ is directly C-linked to χ

Thus the order of χ in Cart(C) is the smallest positive integer d such that d
times the column of Γ(C, G) corresponding to χ has integral entries. Then,
the decomposition of dχC as a linear combination of irreducible characters
of G can be read from the contribution matrix. Only characters which are
directly linked to χ will appear with non-zero coefficients. Finally, notice
that, for χ ∈ Irr(G), since χ = χC + χC′

, then χ has the same order in
Cart(C) and Cart(C′).

3.2.2 First observations

Order of the trivial character

First note that, for each χ ∈ Irr(G), we can write χC = χ ⊗ 1CG, so that,
for any d ∈ N, we have dχC = χ ⊗ (d1CG). Hence, if d1CG ∈ ch(G), then
dχC ∈ ch(G) for all χ ∈ Irr(G). This implies that the trivial character 1G
has maximal order in Cart(C), and thus that the order of 1G in Cart(C) is
the exponent ds, and that, for each χ ∈ Irr(G), the order of χ in Cart(C)
divides ds.

Characters of order 1

We next study C-blocks of G consisting of a single character. Suppose {χ}
is such a C-block of G. Then < χ,ψ >C= 0 for all ψ ∈ Irr(G), ψ 6= χ. Hence
we have χC = tχ for some t ∈ C. If we suppose furthermore that 1 ∈ C, then
χ(1) = χC(1) = tχ(1) leads to t = 1 and χC = χ. Hence χ vanishes outside
C, and χ has order 1 in Cart(C).

Conversely, if χ vanishes outside C, then χC = χ, so that χ has order 1 in
Cart(C), and < χ,ψ >C=< χC, ψ >G=< χ,ψ >G= 0 for all ψ ∈ Irr(G)\{χ},
so that {χ} is a C-block of G.

Finally, note that, if {χ} is a C-block of G, since < χ,ψ >G=< χ,ψ >C

+ < χ,ψ >C′ for all ψ ∈ Irr(G), we obtain that < χ,ψ >C′= 0 for all
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ψ ∈ Irr(G) \ {χ}, so that {χ} is also a C ′-block of G. Hence, if 1 6∈ C, then
1 ∈ C′ and χC′

= χ.
Hence, for χ ∈ Irr(G), {χ} is a C-block of G if and only if χ vanishes

outside C (if 1 ∈ C) or χ vanishes outside C ′ (if 1 ∈ C′).

Now suppose that χ ∈ Irr(G) has order 1 in Cart(C). Then χC ∈ ch(G)
and, in particular, < χC, χ >G∈ Z. However, < χC, χ >G= 1

|G|

∑
g∈C |χ(g)|2,

so that 0 ≤< χC, χ >G≤ 1. This yields that < χC, χ >G∈ {0, 1}. Supposing
1 ∈ C, we have < χC, χ >G 6= 0, so that < χC, χ >G= 1. But then
< χC′

, χ >G=< χ, χ >G − < χC, χ >G= 0 and, since < χC′

, χ >G=
1
|G|

∑
g∈C′ |χ(g)|2, we obtain that χ vanishes identically on C ′. Supposing

1 ∈ C′, we would obtain that χ vanishes identically on C.
Finally, we obtain

Proposition 3.1. Suppose 1 ∈ C. Then, for χ ∈ Irr(G), the following are
equivalent:

• (i) {χ} is a C-block of G.

• (ii) χ vanishes outside C.

• (iii) χ has order 1 in Cart(C).

Blockwise considerations

We have seen that at least one character (namely the trivial one) must have
maximal order ds, which is the biggest invariant factor of the cartan matrix.
However, it is not clear if, for example, for each invariant factor di of the
Cartan matrix, there is an irreducible character whose order is di (and, in
fact, it is false in general). However, by looking at things block by block,
we can obtain a bit more information. Namely, if C is the set of pk-regular
elements, where p is a prime and k is a positive integer, then, in each C-block
of G, there is (at least) one character whose order in Cart(C) is an invariant
factor of the Cartan matrix.

Let B1, . . . , Bl be the C-blocks of G. Then Γ(C, G) has a block-structure
corresponding to the blocks of G:

Γ(C, G) =




Γ1(C) (0)
. . .

(0) Γl(C)




where we write Γi(C) for the C-contribution matrix of Bi.



3.2. GENERALIZED CHARACTERS 77

We have a similar decomposition for the Cartan group:

Cart(C, G) =
l⊕

i=1

Cart(C, Bi).

We let M(C) = dsΓ(C, G) ∈Mn(Z). The Smith Normal Form of M(C) is

D =




1
ds

ds−1
(0)

. . .
ds

d1

0

(0)
. . .

0




i.e. there exists U, V ∈ Mn(Z) unimodular integral matrices such that
M(C) = dsΓ(C, G) = UDV . And, in fact, because of the block-structure
of M(C), there exist U1, . . . , Ul and V1, . . . , Vl unimodular integral matrices
such that

M(C) =




U1 (0)
. . .

(0) Ul







D1 (0)
. . .

(0) Dl







V1 (0)
. . .

(0) Vl




where Di is the Smith Normal Form of Γi(C). (Note that, in general,

V 6=




V1 (0)
. . .

(0) Vl


 (and similarly for U), since the columns and rows

may need to be reordered to obtain D from




D1 (0)
. . .

(0) Dl


.)

Hence, for i ∈ {1, . . . , l}, we have

Mi(C) := dsΓi(C) = UiDiVi (†)

and

Di =




ds

di,1

. . .
ds

di,ki

0
. . .

0



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where




ki = rkZ(Γi(C)) (and thus s =
∑l

i=1 ki),
{di,1, . . . , di,ki

} ⊂ {d1, . . . , ds} and di,ki
|di,ki−1

| · · · |di,1 for all 1 ≤ i ≤ l,

and {d1, . . . , ds} =
⋃l
i=1{di,1, . . . , di,ki

}.

Multiplying both sides of (†) by 1
ds
Id, we obtain

Γi(C) = Ui




1
di,1

. . .
1

di,ki

0
. . .

0




Vi, for all 1 ≤ i ≤ l.

And, as Ui and Vi are invertible in some Mni
(Z), we have




1
di,1

. . .
1

di,ki

0
. . .

0




= U−1
i Γi(C)Vi.

Hence, for d ∈ N, dΓi(C) is integral if and only if d
di,1
, . . . , d

di,ki

∈ Z, and

thus if and only if di,1|d. Hence di,1 is the smallest positive integer such that
di,1Γi(C) is integral.

In particular, if C is the set of pk-regular elements of G, where p is a prime
and k is a positive integer, then, since the order of any irreducible character
of G in Cart(C) is a power of p (cf 3.2.3), we see that at least one character
in Bi has order di,1 in Cart(C) (the others having order dividing di,1).

3.2.3 The prime case

Let G be a finite group, and p be a prime number. We have the following
classical result:

Theorem 3.2. If C is the set of p-regular elements of G and χ ∈ Irr(G),
then the order of χ in the Cartan group Cart(C) is pd(χ), where d(χ) is the

p-defect of χ (i.e. pd(χ) = |G|p
χ(1)p

).



3.3. FIRST EXAMPLES 79

A proof of this can be found for example in [20]. The first step is to
show that |G|pχ

C is a generalized character, and is just an application of
Brauer’s Characterization of Characters (cf [20], Lemma (2.15)). Thus the
order of χ in Cart(C) is a power of p. It follows from this and the properties
of the discrete valuation ring used in the construction of the p-blocks of G
that pd(χ)χC is a generalized character, while pd(χ)−1χC is not (cf [20], Lemma
(3.23)).

We now turn to the situation where C is the set of pk-regular elements
of G, for some k ≥ 1. Then C is closed, and is a union of p-sections. This
implies that |G|p1C is a generalized character of G (where 1C is the charac-
teristic function of C). Now, if χ ∈ Irr(G), then |G|pχ

C = χ(|G|p1C) is also a
generalized character.

On the other hand, for any ψ ∈ Irr(G), we have < χC, ψ >G∈ Q, so that
|G|
χ(1)

< χC, ψ >G∈ Q. But

|G|

χ(1)
< χC, ψ >G=

s∑

i=1

[G : CG(yi)]
χ(yi)

χ(1)
ψ(yi)

(where y1, . . . , ys are representatives for the conjugacy classes in C), so that
|G|
χ(1)

< χC, ψ >G is an algebraic integer.

Hence |G|
χ(1)

< χC, ψ >∈ Z for all ψ ∈ Irr(G), and thus |G|
χ(1)

χC is a general-
ized character.

Hence |G|pχ
C and |G|

χ(1)
χC are generalized characters, and, since |G|p

χ(1)p
=

gcd(|G|p,
|G|
χ(1)

), we see that |G|p
χ(1)p

χC = pd(χ)χC is a generalized character. Thus

the order of χ in Cart(C) divides pd(χ).

3.3 First Examples

In this section, we obtain information about the pk-Cartan group and the
orders of irreducible characters in some easy examples. The first is the case
of Abelian groups; then we compute these informations for the three families
of groups we studied in the previous part; finally, we study the particular
case when the contribution matrix has Z-rank one.

3.3.1 Abelian groups

Let G be an Abelian finite group, and p be a prime number such that pk||G|
for some integer k ≥ 1. We take C to be the set of pk-regular elements of G.
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Then C is in fact a (normal) subgroup of G. Indeed, write G = GpGp′ ,
and take g, h ∈ C; we can (uniquely) write g = gpgp′ = gp′gp and h = hphp′ =
hp′hp, with, as g and h are pk-regular, o(gp) < pk and o(hp) < pk.
Then gh = (gphp)(gp′hp′) = (gp′hp′)(gphp), with gphp ∈ Gp, gp′hp′ ∈ Gp′ , and

(o(gh))p = o(gphp) ≤Max(o(gp), o(hp)) ≤ pk

(the first inequality being true since both o(gp) and o(hp) are powers of p, so
that lcm(o(gp), o(hp)) = Max(o(gp), o(hp))).
Of course, g−1 ∈ C and 1 ∈ C.

Hence C is a normal subgroup of G, and, furthermore, G = CG(C). Thus,
by Clifford’s Theory, we see that, for all λ ∈Irr(C), IndGC (λ) has [G : C]
irreducible summands, each appearing with multiplicity 1 (since G is Abelian
and all its irreducible characters have degree 1). And, if χ ∈ Irr(G) is such
an irreducible summand, then ResGC (χ) = λ.

Furthermore, each irreducible character of G appears in this way. We can
label each irreducible character of G with an irreducible character of C and
an integer i, 1 ≤ i ≤ [G : C]. We write

Irr(G) = {χ
(i)
λ |λ ∈ Irr(C), 1 ≤ i ≤ [G : C]},

where, for each λ ∈ Irr(C), IndGC (λ) =

[G:C]∑

i=1

χ
(i)
λ .

Now, for all χ
(i)
λ , χ

(j)
µ ∈ Irr(G),

< χ
(i)
λ , χ

(j)
µ >C =

1

|G|

∑

g∈C

χ
(i)
λ (g)χ(j)

µ (g−1)

=
1

|G|

∑

g∈C

ResGC (χ
(i)
λ )(g)ResGC (χ(j)

µ )(g−1)

=
1

|G|

∑

g∈C

λ(g)µ(g−1).

Hence

< χ
(i)
λ , χ

(j)
µ >C=

1

[G : C]
< λ, µ >C . (†)

We see that χ
(i)
λ and χ

(j)
µ belong to the same C-block of G if and only if λ = µ.

Hence G has |C| C-blocks, which we write {Bλ, λ ∈ Irr(C)}, each containing
[G : C] irreducible characters:

Bλ = {χ
(i)
λ , 1 ≤ i ≤ [G : C]}, ∀λ ∈ Irr(C).



3.3. FIRST EXAMPLES 81

It is therefore clear that all irreducible characters of G in a given C-block
have the same order in the Cartan group Cart(C, G) (since they have the
same restriction to C). It is also clear from (†) that this order is [G : C].

Note that, from (†), we deduce that all entries in the contribution matrix
of any given C-block of G will be the same, namely 1

[G:C]
(in particular, the

contribution matrix of each C-block has rank 1). This in turn implies that
the elementary divisors of the C-Cartan matrix (there are |C| of them) will
all be equal to [G : C], and that the Cartan group Cart(C, G) is (isomorphic
to) the direct product of |C| copies of the cyclic group of order [G : C].

Finally, note that, writing |G| = pam, with gcd(p,m) = 1, we have

|C| = mp
(k−1)

0� a
a− k + 1

1A
= mp

(k−1)

0� a
k − 1

1A
and

[G : C] = p
a−(k−1)

0� a
k − 1

1A
.

3.3.2 Special unitary groups, Suzuki groups, Ree groups

Using the results of the previous part, it is easy to compute the C-contributions
in the case where G is SU(3, q2), Sz(q) or Re(q), p is the defining character-
istic, and C is the set of p2-singular or p2-regular elements of G. The orders
of the irreducible characters of the principal p-block B0 of G in Cart(C, B0)
can be read directly from the contribution matrix, and the structure of the
Cartan group can be obtained by reducing a multiple of the contribution ma-
trix to Smith normal form (cf 3.1.1). The reduction to Smith normal form is
performed by elementary row and column operation.

We will use the notations of the previous part: in each case, we write U
a Sylow p-subgroup of G and B = NG(U); we let B0 and b0 be the principal
p-blocks of G and B respectively; we let C and D be the sets of p2-singular
elements of G and B respectively, and we let C ′ = G \ C and D′ = B \ D.

In the three cases, we prefer to compute the Smith normal form of the
matrix associated to the D-contributions of Irr(b0), as this is easier to manip-
ulate than for B0. Because of the perfect isometry we exhibited, this doesn’t
change anything to the results we’re looking for.

The case of SU(3, q2)

In this section, we let G = SU(3, q2) and d = gcd(3, q + 1). With the values
taken by the irreducible characters of b0 on the elements of order divisible by
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4, we compute the contribution matrix Γ(D, b0). For any χ, ψ ∈ b0, we have

< χ, ψ >D=
1

|B|

∑

y∈D

χ(y)ψ(y).

If d = 1, then D is only one conjugacy class (namely B
(0,0)
3 ), so that

< χ, ψ >D = |D|
|B|
χ(D)ψ(D)

= q(q2−1)
q3(q2−1)

χ(D)ψ(D)

= 1
q2
χ(B

(0,0)
3 )ψ(B

(0,0)
3 ).

If d = 3, then we have, for any χ, ψ ∈ b0,

< χ, ψ >D =
1

|B|

∑

y∈D

χ(y)ψ(y)

=
1

|B|

∑

0≤k,l≤2

|B
(k,l)
3 |χ(B

(k,l)
3 )ψ(B

(k,l)
3 )

=
1

3q2

∑

0≤k,l≤2

χ(B
(k,l)
3 )ψ(B

(k,l)
3 ).

In particular, for any 0 ≤ v 6= v′ ≤ 2,

< θ
(0,v)

(q2−1)/3, θ
(u)
1 >D=

1

3q2

(
3(q −

q + 1

3
) + 6(−

q + 1

3
)

)
=

1

3q2
(−3)

< θ
(0,v)

(q2−1)/3, θ
(0,v)

(q2−1)/3 >D=
1

3q2

(
3(q −

q + 1

3
)2 + 6(−

q + 1

3
)2

)
=

1

3q2
(2q2 + 1)

< θ
(0,v)

(q2−1)/3, θ
(0,v′)

(q2−1)/3 >D=
1

3q2

(
6(−

q + 1

3
)(q −

q + 1

3
) + 3(−

q + 1

3
)2

)
=

1

3q2
(1−q2)

We obtain, labelling the lines and columns in the order we used to list
the irreducible characters of b0 in the previous part:
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if d = 1,

Γ(D, b0) =
1

q2




0 · · · 0 0 · · · 0 0
...

...
...

...
...

0 · · · 0 0 · · · 0 0
0 · · · 0 1 · · · 1 −1
...

...
...

...
...

0 · · · 0 1 · · · 1 −1
0 · · · 0 −1 · · · −1 1




q + 1 q2 − 1 1

and if d = 3,

Γ(D, b0) =
1

3q2




0 · · · 0 0 · · · 0 0 0 0
...

...
...

...
...

...
...

0 · · · 0 0 · · · 0 0 0 0
0 · · · 0 9 · · · 9 −3 −3 −3
...

...
...

...
...

...
...

0 · · · 0 9 · · · 9 −3 −3 −3
0 · · · 0 −3 · · · −3 2q2 + 1 1− q2 1− q2

0 · · · 0 −3 · · · −3 1− q2 2q2 + 1 1− q2

0 · · · 0 −3 · · · −3 1− q2 1− q2 2q2 + 1




q+1
3

q2−1
3

3

In the array below, we show, for each C-block of B0, the 2-defect of the
characters belonging to the block and their order in the Cartan group (these
turn out to be the same for each character in a given C-block). Recall that,
for each character χ ∈ b0, the order of χ in Cart(C, B0) (which is also its
order in Cart(C′, B0)) is the smallest positive integer δ such that δ times the
column of Γ(C, B0) is integral. Because of the generalized perfect isometry
between B0 and b0, the corresponding character of b0 has the same order in
Cart(D, b0). It also turns out that this doesn’t depend on the value of d.

C-block pd2(χ) order in Cart(C, B0)

{χq2−q} ; {χ
(u)

q(q2−q+1)}, 1 ≤ u ≤ q q2 1

{All the rest of B0} q3 q2
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We want now to compute the invariant factors {d1, . . . , ds} of the Cartan
matrix C0(D) of b0. The biggest one, ds, is the smallest positive integer such
that dsΓ(D, b0) = M(D) is an integral matrix.

It is easy to see that, whatever the value of d is, ds = q2 (just notice that,
if d = 3, then q ≡ −1 (mod 3), so that 2q2 + 1 and 1− q2 are divisible by 3).
The non-zero invariant factors of M(D) are {1, ds

ds−1
, . . . ds

d1
}.

If d = 1, the last column (resp. line) of M(D) is the opposite of any other
non-zero column (resp. line) of M(D). Hence there exists an integral matrix
V such that

M(D) = V t




1
0

. . .

0


V.

Thus C0(D) has exactly one non-zero invariant factor, ds = q2. We have
Cart(D, b0) ∼= Cart(C, B0) ∼= Cq2 .

Suppose now that d = 3. We will denote by Ci and Ri the i-th column
and row of any matrix.

Performing Ci ←− Ci−C(q+q2)/3 and Ri ←− Ri−R(q+q2)/3 for q+1
3

+ 1 ≤ i ≤
q+q2

3
− 1, M(D) becomes




(0) (0)

(0)

3 −1 −1 −1

−1 2q2+1
3

1−q2

3
1−q2

3

−1 1−q2

3
2q2+1

3
1−q2

3

−1 1−q2

3
1−q2

3
2q2+1

3




Then, R(q+q2)/3 ←− R(q+q2)/3+
∑

(non-zero Ri’s) and C(q+q2)/3 ←− C(q+q2)/3+∑
(non-zero Ci’s) give




(0) (0)

(0)

2q2+1
3

1−q2

3
1−q2

3
1−q2

3
2q2+1

3
1−q2

3
1−q2

3
1−q2

3
2q2+1

3



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We then work on the only lower right block. C1 ←− C1 + 2C2 gives




1 1−q2

3
1−q2

3

q2 + 1 2q2+1
3

1−q2

3

1− q2 1−q2

3
2q2+1

3


C2,3 ← C2,3 −

1− q2

3
C1

−−−−−−−−−−−−−−−−−→




1 0 0

q2 + 1 q2(q2+2)
3

q2(q2−1)
3

1− q2 q2(1−q2)
3

q2(4−q2)
3




Performing R2 ←− R2 − (q2 + 1)R1 and R3 ←− R3 − (1− q2)R1 produces




1 0 0

0 q2(q2+2)
3

q2(q2−1)
3

0 q2(1−q2)
3

q2(4−q2)
3


C2 ← C2 − C3−−−−−−−−−−→




1 0 0

0 q2 q2(q2−1)
3

0 −q2 q2(4−q2)
3




Finally, R3 ←− R3 +R2 and C3 ←− C3 −
q2−1

3
C2 give




1 0 0
0 q2 0
0 0 q2




Whence we find that s = rkZ(Γ(D, b0) = 3, and the non-zero invariant
factors of the Cartan matrix C0(D) are d3 = q2 and d2 = d1 = 1. Here again,
we have Cart(D, b0) ∼= Cart(C, B0) ∼= Cq2 .

We now turn to elements of order not divisible by 4. We have seen from
the definition that b0 andB0 are also perfectly isometric with respect to C ′ and
D′. Hence the Cartan groups Cart(C′, B0) and Cart(D′, b0) are isomorphic.

We have Γ(D′, b0) = Id−Γ(D, b0), and we shall find the |Irr(b0)| − d = q2+q
d

non-zero invariant factors of q2Γ(D′, b0) = N(D′).

If d = 1, then

N(D′) =




q2 (0) 0
. . . (0)

...
(0) q2 0

q2 − 1 (−1) 1

(0)
. . .

...
(−1) q2 − 1 1

0 · · · 0 1 · · · 1 q2 − 1




We reduce the lower-right (q2 by q2) block to Smith normal form. Re-
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versing the order of the columns, we get




1 q2 − 1
... (−1) q2 − 1
... ր
1 q2 − 1 (−1)

q2 − 1 1 · · · · · · 1




Then, Ci ←− Ci + C1, 1 < i ≤ q2 gives




1 q2

... (0) q2

... ր
1 q2 (0)

q2 − 1 q2 · · · · · · q2




Rq2 ←− Rq2 −

q2−1∑

i=1

Ri gives




1 q2

... (0) q2

... ր
1 q2 (0)
0 0 · · · · · · 0




Ri ←− Ri −R1, 1 < i < q2, gives




1 0 · · · 0 q2

0 (0) q2 −q2

... ր

... q (0) −q2

0 · · · · · · · · · 0




Cq2 ←− Cq2 − q
2C1 gives




1 0 · · · · · · 0
0 q2 −q2

... ր
...

... q2 −q2

0 · · · · · · · · · 0



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Cq2 ←− Cq2 +

q2−1∑

i=2

Ci gives




1 0 · · · · · · 0
0 q2 0
... ր

...
... q2 0
0 · · · · · · · · · 0




which, reversing the order of the rows, apart from the first, gives finally




1
q2

. . .

q2

0




We obtain that N(D′) is equivalent (over Z) to




q2 (0) 0
. . . (0)

...
(0) q2 0

1 (0) 0

(0) q2 ...
. . .

...
(0) q2 0

0 · · · 0 0 · · · · · · 0 0




so that the non-zero invariant factors of the Cartan matrix C0(D
′) of b0 are

d′1 = . . . = d′q2+q−1 = 1 and d′q2+q = q2, and Cart(D′, b0) ∼= Cart(C′, B0) ∼=
Cq2 .
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If d = 3, then

q2Γ(D′, b0) =




q2

. . . (0) (0)
q2

q2 − 3 (−3)

(0)
. . . (1)

(−3) q2 − 3

(0) (1)
(
q2−1

3

)




q+1
3

q2−1
3

3

By working on the last 3 rows and columns (which are the same), this can
be reduced to



q2

. . . (0)
q2

(0)

q2 − 3 (−3) 1
. . .

... (0)
(−3) q2 − 3 1

1 · · · 1 q2−1
3

(0)

(0) (0)
0 0
0 0




Subtracting to the last non-zero column the sum of the preceeding q2−1
3

columns, and then doing the same thing to the last non-zero row, we ob-
tain(leaving aside the upper left (diagonal) block)




q2 − 3 (−3)
. . . (0)

(−3) q2 − 3

(0) (0)




Now we work separately on the non-zero block. C1 ←− C1 +
∑

i>1Ci gives



1 −3 · · · −3
1 q2 − 3 (−3)
...

. . .

1 (−3) q2 − 3


Ci ← Ci + 3C1, i > 1
−−−−−−−−−−−−−−−→




1
1 q2 (0)
...

. . .

1 (0) q2



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And, finally, Ri ←− Ri −R1 for i > 1 gives




1
q2

. . .

q2




Putting all the blocks back together, we see that the non-zero invariant fac-
tors of the Cartan matrix C0(D

′) are d′1 = . . . = d′
q+q2

3
−1

= 1 and d′
q+q2

3

= q2,

and, here again, Cart(D′, b0) ∼= Cart(C′, B0) ∼= Cq2 .

The case of Sz(q)

In this section, we let G = Sz(q), with q = 22n+1. With the values taken by
the irreducible characters of b0 on the elements of order divisible by 4, we
compute the contribution matrix Γ(D, b0). We have, for any χ, ψ ∈ Irr(B),

< χ, ψ >D =
1

|B|

∑

y∈D

χ(y)ψ(y)

=
1

|B|

(
q(q − 1)

2
(χ(ρ)ψ(ρ) + χ(ρ−1)ψ(ρ−1))

)

=
1

2q
(χ(ρ)ψ(ρ−1) + χ(ρ−1)ψ(ρ))

We obtain, labelling the lines and columns in the order we used to list the
irreducible characters of b0 in the previous part:

Γ(D, b0) =
1

q




1 −1 · · · · · · − 1 0 0
−1
... (1)q−1,q−1 (0)
−1
0 0 · · · · · · 0 q

2
−q
2

0 0 · · · · · · 0 −q
2

q
2




.

In the array below, we show, for each C-block of B0, the 2-defect of the
characters belonging to the block and their order in the Cartan group. Here
again, these turn out to be the same for each character in a given C-block.

C-block pd2(χ) order in Cart(C, B0)
{1G, Ωs, Θl, Λu} q2 q
{Γ1, Γ2} q2n+1 2
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The only irreducible character of G which doesn’t belong to the principal
2-block is Π. It has 2-defect 0, so is a 2-block and a C-block by itself, and
has order 1 in the Cartan group Cart(C, G).

We want now to compute the invariant factors {d1, . . . , ds} of the Cartan
matrix C0(D) of b0. The biggest, ds, is the smallest positive integer such that
dsΓ(D, b0) = M(D) is an integral matrix. It is easy to see that, ds = q. The
non-zero invariant factors of M(D) are {1, ds

ds−1
, . . . ds

d1
}.

We will denote by Ci and Ri the i-th column and row of any matrix. We
have

qΓ(D, b0) =




1 −1 · · · · · · − 1 0 0
−1
... (1)q−1,q−1 (0)
−1
0 0 · · · · · · 0 q

2
−q
2

0 0 · · · · · · 0 −q
2

q
2




Performing Ci ←− Ci + C1 for i > 1, we obtain



1 0 · · · · · · 0 0 0
−1
... (0)q−1,q−1 (0)
−1
0 0 · · · · · · 0 q

2
−q
2

0 0 · · · · · · 0 −q
2

q
2




Performing Ri ←− Ri +R1 for i > 1, we get



1 0 · · · · · · 0 0 0
0
... (0)q−1,q−1 (0)
0
0 0 · · · · · · 0 q

2
−q
2

0 0 · · · · · · 0 −q
2

q
2




Similarly, Cq+2 ←− Cq+2 + Cq+1 and Rq+2 ←− Rq+2 +Rq+1 lead to



1 0 · · · · · · 0 0 0
0
... (0)q−1,q−1 (0)
0
0 0 · · · · · · 0 q

2
0

0 0 · · · · · · 0 0 0




.
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Finally, there exists an integral matrix A such that

qΓ(D, b0) = At




1
q
2

0
. . .

0



A

whence s = 2, and the non-zero invariant factors of C0(D) are d2 = q and
d1 = 2. We have Cart(C, B0) ∼= Cart(D, b0) ∼= Cq × C2.

We now turn to the sets C′ and D′ of elements of order not divisible by
4 in G and B respectively. We want to compute the (common) invariant
factors {d′1, . . . , d

′
s′} of C0(C

′) and C0(D
′). From the equality

rkZ(R(b0, D)) + rkZ(R(b0, D
′)) = |b0| = |B0| = q + 2

we see that s′ = q.

We have

qΓ(D′, b0) =




q − 1 1 · · · · · · 1 0 0
1 q − 1 (−1)
...

. . . (0)
1 (−1) q − 1
0 0 · · · · · · 0 q

2
q
2

0 0 · · · · · · 0 q
2

q
2




so that it is clear that the biggest invariant factor we will find is d′q = q. We
work separately on the two blocks of qΓ(D, b0). The upper-left block has the
same structure as the matrix N(D′) we obtained for SU(3, q2) in the case
d = 1. Reducing it to Smith normal form, we obtain




1
q

. . .

q
0




As for the second block, it is easy to see that, performing C2 ←− C2 − C1

and R2 ←− R2 −R1, we obtain
(

q
2

q
2

q
2

q
2

)
7−→

(
q
2

0
0 0

)
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Whence we get that qΓ(D′, b0) is equivalent (over Z) to




1
q
2

q
. . .

q
0

0




This gives us that the invariant factors of the Cartan matrices C0(D
′) and

C0(C
′) are d′1 = · · · = d′q−2 = 1, d′q−1 = 2, d′q = q, and Cart(C′, B0) ∼=

Cart(D′, b0) ∼= Cq × C2.

The case of Re(q)

In this section, we let G = Re(q), with q = 32m+1. Then D is the set of
elements of order divisible by 9 in B. We first compute the contribution
matrix Γ(D, b0). For any γ, δ ∈ b0, the D-contribution of γ and δ is given by

< γ, δ >D=
1

|B|

∑

y∈D

γ(y)δ(y) =
1

3q

3∑

i=1

γ(xi)δ(xi).

In particular, < ψ, δ >D= 0 for all δ ∈ b0. Furthermore, if γ ∈ {µ1,2, µ1,2, χ, χ}
and δ ∈ {ψ, αi, λ}, then < γ, δ >D= 0 (for we can factorize by 1+ω+ω̄ = 0).
We then compute

< αi, αj >D=
1

3q
3 , < λ, λ >D=

1

3q
3 , < αi, λ >D=

1

3q
(−3) ,

< µi, µj >D=
1

3q
32m(1+1+1) =

1

3q
q , < µi, µj >D=

1

3q
32m(1+ω̄2+ω2) = 0 ,

< χ, χ >D=
1

3q
32m3 =

1

3q
q , < χ, χ >D= 0 ,

< µi, χ >D=
1

3q
(−32m)(1+1+1) =

1

3q
(−q) , < µi, χ >D=

1

3q
(−32m)(1+ω̄2+ω2) = 0.

The other contributions are found using these and complex conjugation. Fi-
nally, we obtain, labelling the lines and columns in the order used in the
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character table we gave in the previous part,

Γ(D, b0) =
1

3q




0 0 · · · 0 0 0 0 0 0 0 0
0 3 · · · 3 −3 0 0 0 0 0 0
...

...
...

... ...
...

...
...

...
...

0 3 · · · 3 −3 0 0 0 0 0 0
0 −3 · · · − 3 3 0 0 0 0 0 0
0 0 · · · 0 0 q q 0 0 −q 0
0 0 · · · 0 0 q q 0 0 −q 0
0 0 · · · 0 0 0 0 q q 0 −q
0 0 · · · 0 0 0 0 q q 0 −q
0 0 · · · 0 0 −q −q 0 0 q 0
0 0 · · · 0 0 0 0 −q −q 0 q




We can now read the C-blocks of B0, and, for each given block, the 3-
defect of its characters and their order in the Cartan group Cart(C, B0) (once
again, defect and order are in fact the same for any character in the block):

C-block pd3(χ) order in Cart(C, B0)
{ξ4} q2 1

{ξ5, ξ6, ξ9} ; {ξ7, ξ8, ξ10} q23k+1 3
{ξ1, ξ2, ηr, η

′
r, ηt, η

′
t, η

−
i , η

+
i } q3 q

We now turn to the invariant factors of the Cartan matrix. We see that
the smallest (positive) integer ds such that M(D) = dsΓ(D, b0) is an integral
matrix is ds = q, and that s = rk(Γ(D, b0)) = 3 (it suffices to consider
the columns corresponding to χ, χ and λ, the others being opposite to these
columns). It is then easy to reduce M(D) = qΓ(D, b0) to Smith normal form;
M(D) is equivalent over Z to




1 (0)
q
3

(0) q
3

(0)

(0) (0)




so that {ds

ds
= 1, ds

ds−1
, ds

ds−2
} = {1, q

3
, q

3
}, the invariant factors of the Cartan

matrix C0(D) are d1 = d2 = 3 and d3 = q, and Cart(C, B0) ∼= Cart(D, b0) ∼=
Cq × C3 × C3.

Let us now turn to elements whose order is not divisible by 9. We have
Γ(D′, b0) = Id − Γ(D, b0), whence we see that d′s′ = q (where, this time,
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s′ = rk(Γ(D′, b0)) = q + 4), and, after having re-ordered lines and columns,
we have, writing N(D′) = d′s′Γ(D′, b0),

N(D′) =




q

q − 1 1 · · · 1
1 q − 1 (−1)
...

. . .

1 (−1) q − 1
2q
3

q
3

q
3

q
3

2q
3
− q

3
q
3
− q

3
2q
3

2q
3

q
3

q
3

q
3

2q
3
− q

3
q
3
− q

3
2q
3




The second block on the diagonal is the same as the one we considered in
the case of Suzuki groups, and has Smith normal form

1
q (0)

. . .

(0) q
0

It just remains to study the lower right block. We write Ci (resp. Ri) for the
i-th column (resp. row) of any matrix.

2q
3

q
3

q
3

q
3

2q
3
− q

3
q
3
− q

3
2q
3

C1 ← C1 − (C2 + C3)
−−−−−−−−−−−−−−−→

0 q
3

q
3

0 2q
3
− q

3

0 − q
3

2q
3

R1 ← R1 − (R2 +R3)
−−−−−−−−−−−−−−−→

0 0 0
0 2q

3
− q

3

0 − q
3

2q
3

Then C2 ←− C2 − C3 gives

0 0 0
0 q − q

3

0 −q 2q
3

R3 ← R3 +R2−−−−−−−−−−→

0 0 0
0 q − q

3

0 0 q
3

R2 ← R2 +R3−−−−−−−−−−→

0 0 0
0 q 0
0 0 q

3
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Finally, we obtain that N(D′) has Smith normal form




1
q
3

q
3

q
. . .

q
0

0
0




so that the invariant factors of the Cartan matrix C0(D
′) are d′1 = . . . =

d′q+1 = 1, d′q+2 = d′q+3 = 3 and d′q+4 = q, and Cart(C′, B0) ∼= Cart(D′, b0) ∼=
Cq × C3 × C3.

3.3.3 Defect and order in the Cartan group

We would like to find some relation between the p-defect d(χ) of a character
χ and its order o(χ) in the Cartan group Cart(C), when C is the set of pk-
regular elements of the finite group G. We have mentioned that, for any
χ ∈ Irr(G), the order o(χ) is a power of p which divides pd(χ).

We have seen in the previous section that, when G is Sz(q), Re(q) or
SU(3, q2) (with q a power of the prime p) and C is the set of p2-regular of G,
then all the characters in a given C-block of the principal p-block have the
same order in the Cartan group. This is also true when G is Abelian and C
is the set of pk-regular elementsof G.

We see that in these particular cases (where all characters in a given C-
block have the same p-defect) the quotient pd(χ)/o(χ) is independant on the
choice of χ in a given C-block. We show that this is also true under strong
hypotheses:

Theorem 3.3. Let G be a finite group, p be a prime number (dividing |G|),
and let C be the set of pk-regular elements of G, for some k ≥ 1. Suppose
that B is a C-block of G such that the contribution matrix Γ(C, B) has rank
1 over Q. Then

∀χ, ξ ∈ B,
o(ξ)

o(χ)
=
pd(ξ)

pd(χ)
.

Proof. Take χ, ξ ∈ B. Since the rank of Γ(C, B) is 1, we see that there exists
a ∈ Q\{0} such that ξC = aχC (a 6= 0 since 1 ∈ C). We can write a = b

c
, with
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b, c ∈ Z and gcd(b, c) = 1. Furthermore, we can suppose that gcd(b, p) = 1
(if this is not true, it suffices to exchange the roles of ξ and χ).

Let d be the order of χ in Cart(C, B). Then

∀ϕ ∈ B, d < χC, ϕC >∈ Z,

and
∃ψ ∈ B such that d < χC, ψC >6≡ 0 (mod p).

Now, for all ϕ ∈ B,

d < χC, ϕC > =
da

a
< χC, ϕC >

=
d

a
< ξC, ϕC >

=
dc

b
< ξC, ϕC >∈ Z

and dc
b
< ξC, ψC >6≡ 0 (mod p).

Then, for all ϕ ∈ B, dc < ξC, ϕC >∈ Z, and, since gcd(b, p) = 1, dc <
ξC, ψC >6≡ 0 (mod p). This implies that the order of ξ in Cart(C, B) is

|dc|p = d|c|p, so that |c|p = d|c|p
d

= o(ξ)
o(χ)

.

On the other hand, 1 ∈ C, so that ξ(1) = aχ(1) = b
c
χ(1), and |ξ(1)|p =

|χ(1)|p
|c|p

(since gcd(b, p) = 1). Hence |c|p = |χ(1)|p
|ξ(1)|p

. Therefore

|c|p =
o(ξ)

o(χ)
=
|χ(1)|p
|ξ(1)|p

=
pd(ξ)

pd(χ)
,

which is the result we wanted.

This result seems to be true in many more cases than the very restrictive
situation of the above theorem (cf for example the case of Symmetric groups
which we study in the next section). However, it is not true in general, as
can be seen for example in the case where G = M24 or J2 and pk = 4 (this
can be shown using GAP on a computer).

3.4 Symmetric Groups

In this section, we study the case of ℓ-blocks of the Symmetric groups. In [18],
the authors give the exponent of the Cartan group of an ℓ-block of a given
weight, and they conjecture its structure. They also give the determinant of
the Cartan matrix of such a block.
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We will compute the order of any character in the Cartan group. In all
the sequel of this section, we take two integers 2 ≤ ℓ ≤ n, and we let Cℓ be
the set of ℓ-regular elements of the symmetric group Sn.

3.4.1 Some facts about ℓ-blocks of the symmetric group

Take B an ℓ-block of Sn of weight w 6= 0. The characters of B are labelled
by the partitions of n which have a given ℓ-core, γ say. We write B =
{χλ, γλ = γ}. One of the key ingredients in [18] is that there is a generalized
perfect isometry between B and the set of irreducible characters of the wreath
product Zℓ ≀Sw. One way to see Zℓ ≀Sw is to represent it as the set of monomial
w by w matrices whose non-zero entries are ℓ-th roots of unity.

We will see that the elements of Irr(Zℓ ≀ Sw) are labelled by ℓ-quotients :
for χλ ∈ B, the quotient βλ is a sequence (λ(0), λ(1), . . . , λ(ℓ−1)) such that,
for each 0 ≤ i ≤ ℓ − 1, λ(i) is a partition of some ki, 0 ≤ ki ≤ w, and∑ℓ−1

i=0 ki = w (the quotient βλ “stores” the information about λ and how to
remove w ℓ-hooks from λ to get γλ). Each partition is uniquely determined
by its ℓ-core and ℓ-quotient.

The subgroup (isomorphic to) Sw of Zℓ ≀ Sw acts on the base group Zw
ℓ ⊳

Zℓ ≀ Sw by conjugation: for (a1, . . . , aw) ∈ Zw
ℓ and σ ∈ Sw, we have

σ−1(a1, . . . , aw)σ = (aσ(1), . . . , aσ(w)).

We write Irr(Zℓ) = {α0, . . . , αℓ−1}. Then Sw also acts by conjugation on
Irr(Zw

ℓ ) via

(αi1 ⊗ · · · ⊗ αiw)σ
−1

= αiσ(1)
⊗ · · · ⊗ αiσ(w)

,

for all σ ∈ Sw and αi1 ⊗ · · · ⊗ αiw ∈ Irr(Zw
ℓ ).

The number of conjugacy classes (and of irreducible complex characters)
of Zℓ ≀Sw is the number of ℓ-quotients of partitions of n (cf James and Kerber
[17], Lemma 4.2.9). In [17], the authors give a description of the conjugacy
classes of Zℓ ≀ Sw (cf [17], Theorem 4.2.8). If (a1, . . . , aw)σ ∈ Zℓ ≀ Sw, then
(a1, . . . , aw) can be ”endowed” with a cycle structure, given by that of σ (as
it is easy to see in the monomial representation of Zℓ ≀ Sw). Then, for each
cycle in (a1, . . . , aw), the product of the ℓ-th roots of unity corresponding to
the ai’s in the cycle is another ℓ-th root of unity. Such a product is called a
cycle product in (a1, . . . , aw). Then the classification of conjugacy classes of
Zℓ ≀ Sw is as follows: two elements (a1, . . . , aw)σ and (b1, . . . , bw)τ of Zℓ ≀ Sw
are conjugate if and only if σ and τ have the same cycle structure, and,
for each cycle length k and each ℓ-th root of unity ζ, the numbers of cycle
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products equal to ζ and associated to cycles of length k in (a1, . . . , aw) and
(b1, . . . , bw) respectively are the same.

Now take any χ ∈ Irr(Zℓ ≀ Sw). Then, by Clifford’s Theorem (Isaacs
[16], Theorem (6.2)), we have χ|Zw

ℓ
= e

∑t
i=1 θ

σi for some integer e and some
θ ∈ Irr(Zw

ℓ ), where {θσi , 1 ≤ i ≤ t} is the conjugacy class of θ.

Because of the way Sw acts by conjugation on Irr(Zw
ℓ ), we see that exactly

one conjugate of θ has the form α0⊗· · ·⊗α0⊗α1⊗· · ·⊗α1⊗· · ·⊗αℓ−1⊗· · ·⊗
αℓ−1, where the multiplicity ki of αi is the same as in θ for each 0 ≤ i ≤ ℓ−1.
We may assume that θ = α0 ⊗ · · · ⊗ α0 ⊗ · · · ⊗ αℓ−1 ⊗ · · · ⊗ αℓ−1.

Again from the action of Sw on Irr(Zw
ℓ ), we see that the inertial subgroup

IZℓ≀Sw
(θ) of θ is (Zℓ ≀ Sk0)× · · · × (Zℓ ≀ Skl−1

).

Suppose first that IZℓ≀Sw
(θ) = Zℓ ≀ Sw. This means that all the ki’s are 0,

expect one. Thus we have θ = αi⊗· · ·⊗αi for some 0 ≤ i ≤ ℓ−1. Using the
description we made of the conjugacy classes of Zℓ ≀Sw, it is easy to show that
(αi⊗ · · · ⊗ αi)1Sw

∈ Irr(Zℓ ≀ Sw) (where, for ψ ∈ Irr(Sw) and (z, σ) ∈ Zℓ ≀ Sw,
we let ((αi ⊗ · · · ⊗ αi)ψ)((z, σ)) = (αi ⊗ · · · ⊗ αi)(z)ψ(σ)). One first shows,
using the description above, that (αi ⊗ · · · ⊗ αi)1Sw

is a class function of
Zℓ ≀Sw; then it is clear that < (αi⊗· · ·⊗αi)1Sw

, (αi⊗· · ·⊗αi)1Sw
>Zℓ≀Sw

= 1,
so that (αi⊗· · ·⊗αi)1Sw

∈ Irr(Zℓ ≀Sw). Furthermore, (αi⊗· · ·⊗αi)1Sw
|Zw

ℓ
=

(αi ⊗ · · · ⊗ αi). Thus, by a result by Gallagher ([16], Corollary (6.17)), the
characters (αi⊗· · ·⊗αi)ψ for ψ ∈ Irr(Sw) are irreducible, distinct for distinct
ψ, and are all the irreducible characters of Zℓ ≀Sw which lie over (αi⊗· · ·⊗αi).
In particular, χ has the form (αi⊗· · ·⊗αi)χλ for some λ ⊢ w, and i and χλ are
uniquely determined by χ. We label χ by the quotient (λ(0), λ(1), . . . , λ(ℓ−1))
where λ(i) = λ and, for each 0 ≤ i 6= j ≤ ℓ− 1, λ(j) = ∅.

Now suppose IZℓ≀Sw
(θ) < Zℓ ≀Sw. Then, by Clifford’s Theory ([16], Theo-

rem 6.11), χ is induced by a unique irreducible character of IZℓ≀Sw
(θ) which

lies over θ. By the same argument as above, we see that such a character
must have the form (α0 ⊗ · · · ⊗ α0)χλ(0) ⊗ · · · ⊗ (αℓ−1 ⊗ · · · ⊗ αℓ−1)χλ(ℓ−1)

where, for each 0 ≤ i ≤ ℓ − 1, λ(i) ⊢ ki. And, here again, the sequence
(χλ(0) , . . . , χλ(ℓ−1)) is uniquely determined by χ. We therefore label χ by the
quotient (λ(0), . . . , λ(ℓ−1)).

We see that, in this way, as χ runs through Irr(Zℓ ≀Sw), all the ℓ-quotients
appear (once). Thus, to each quotient βλ can be associated a uniquely de-
termined irreducible character of Zℓ ≀ Sw, which we denote by χβλ

.

From the description of χβλ
we gave, we compute easily its degree (using

the fact that the αi’s have degree 1). We have, writing θλ for θ and ηλ for⊗ℓ−1
i=0(αi ⊗ · · · ⊗ αi)χλ(i) ,
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χβλ
(1) = (IndZℓ≀Sw

IZℓ≀Sw (θλ)(ηλ))(1)

=
|Zℓ ≀ Sw|

|IZℓ≀Sw
(θλ)|

ηλ(1)

=
ℓww!

∏ℓ−1
i=0 ℓ

kiki!
χλ(0)(1) . . . χλ(ℓ−1)(1)

=
w!∏
i ki!

ℓ−1∏

i=0

ki!∏
hook lengths in λ(i)

(this last equality being true because of the Hook Length Formula (cf [17])).
Hence

χβλ
(1) =

w!∏
hook lengths in βλ

(where we call hook in βλ a hook in any of the partitions appearing in βλ),
and

|Zℓ ≀ Sw|

χβλ
(1)

= ℓw
∏

hook lengths in βλ. (††)

The key point for the reductions in [18] and in the end of this section is the
following: the map χλ 7−→ χβλ

is a generalized perfect isometry between B
and Irr(Zℓ ≀Sw) with respect to ℓ-regular elements of Sn and regular elements
of Zℓ ≀Sw (where an element of Zℓ ≀Sw is regular if 1 is not an eigenvalue of the
corresponding monomial matrix). This is proved in [18]. For χλ, χµ ∈ B,
there exist signs σλ and σµ such that < χλ, χµ >Cℓ

=< σλχβλ
, σµχβµ

>reg

(where < , >Cℓ
and < , >reg denote the scalar products across ℓ-regular ele-

ments of Sn and across regular elements of Zℓ ≀Sw respectively). In particular,
χλ and χβλ

have the same order in the corresponding Cartan groups (“note”
that the set of regular elements in Zℓ ≀Sw is a closed set of conjugacy classes).

Note that an ℓ-block B of Sn of weight 0 consists of a single character. We
have B = {χλ} where λ is its own ℓ-core. In this case, we have Zℓ ≀Sw = {1},
and we define reg, the set of regular elements of Zℓ ≀ S0 to be {1}. We have
Irr(Zℓ ≀ Sw) = {1Zℓ≀Sw

}. Now χλ vanishes outside Cℓ (by Proposition 3.1),
so that χCℓ

λ = χλ, and we again get a generalized perfect isometry between
B and Irr(Zℓ ≀ S0) (with respect to Cℓ and reg). The corresponding Cartan
groups Cart(ℓ, B) and Cart(ℓ, 0) are both (isomorphic to) the trivial group
C1.

3.4.2 Invariant factors of the Cartan matrix

The following results can be found in [18]. Let B be an ℓ-block of Sn of
weight w. Then there is a generalized perfect isometry between B Irr(Zℓ ≀Sw)
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(with respect to ℓ-regular classes in Sn and regular classes in Zℓ ≀ Sw). This
implies that the corresponding Cartan groups, Cart(Cℓ, B) = Cart(ℓ, B) and
Cart(reg,Zℓ ≀ Sw) = Cart(ℓ,Zℓ ≀ Sw) = Cart(ℓ, w), are isomorphic, and thus
that the Cartan matrices C(ℓ, B) and C(ℓ, w) have the same invariant factors.
This allows the authors to work in Zℓ ≀Sw, and then transfer the results back
to B.

In the course of their work, they show that every irreducible character of
Zℓ ≀ Sw is directly linked across regular elements to the trivial character (cf
[18], Theorem 5.12). More precisely, we have

∀χ ∈ Irr(Zℓ ≀ Sw), Z ∋
ℓww! < χ, 1Zℓ≀Sw

>reg

χ(1)
≡ (−1)w (mod ℓ).

Writing π the set of primes dividing ℓ, every positive integer m factors
uniquely as m = mπmπ′ , where every prime factor of mπ belongs to π and
no prime factor of mπ′ is contained in π. We call mπ the π-part of m. It can
be shown (cf Donkin [10]) that Cart(ℓ, w) is a π-group. Together with the
above result, this gives the following

Theorem 3.4. ([18] Theorem 6.2 and Corollary 6.3) The exponent of Cart(ℓ, w)
(i.e. the order of 1Zℓ≀Sw

in Cart(ℓ, w)) is ℓww!π. This in turns implies that
the exponent of Cart(Cℓ, Sn) is ℓ⌊

n
ℓ
⌋⌊n

ℓ
⌋!π.

We next turn to the invariant factors of the Cℓ-Cartan matrix Cn of Sn.
A partition λ of n is called an ℓ-class regular partition of n if no part of λ is
divisible by ℓ. We then write λ ⊢ℓ n.
If m is a positive integer, we define ℓm = ℓ

gcd(ℓ,m)
, and let πm be the set of

primes dividing ℓm. If a is also a positive integer, we let

rℓ(m, a) = ℓ
⌊a

ℓ
⌋

m ⌊
a

ℓ
⌋!πm

.

Finally, if λ ⊢ℓ n is written exponentially λ = (1a1(λ), 2a2(λ), . . .), we let

rℓ(λ) =
∏

m≥1

rℓ(m, am(λ)).

We then have the following

Conjecture 3.5. ([18] Conjecture 6.4) The Cℓ-Cartan group Cart(ℓ, Sn) is a
direct product of cyclic groups of order rℓ(λ), where λ runs through the set of
ℓ-class regular partitions of n. In particular, the determinant of an ℓ-Cartan
matrix Cn of Sn is

det(Cn) =
∏

λ⊢ℓn

rℓ(λ).
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This conjecture is supported by a number of examples computed by the
authors. Furthermore, they show that the consequence they mention is true:

Theorem 3.6. ([18] Theorem 6.13) We have

det(Cn) =
∏

λ⊢ℓn

rℓ(λ).

3.4.3 Orders in the Cartan group

We now compute, for an ℓ-block B of Sn, the orders of the characters of B
in the Cartan group Cart(ℓ, B). We will need the following three lemmas:

Lemma 3.7. If m ≥ 1 and λ, partition of n, has m-weight w, then there are
w hooks in λ whose length is divisible by m.

Lemma 3.8. For any 0 6= m ∈ N and partition λ, there is a bijection between
the set of m-hooks in βλ (the ℓ-quotient of λ) and the set of mℓ-hooks in λ
(where a m-hook (resp. mℓ-hook) is a hook whose length is exactly m (resp.
mℓ)).

These two results can be seen by using the abacus, as presented in [17].

Lemma 3.9. If n ∈ N, 2 ≤ ℓ ≤ n, and if m|ℓ for some m ≥ 2, then any
m-block of Sn is a union of ℓ-blocks.

Proof. Two proofs can be given:
1. Write ℓ = mr. Suppose χλ, χµ ∈ Irr(Sn) belong to the same ℓ-block.
Then λ and µ have the same ℓ-core, and this can be obtained by removing
from λ and µ a certain number of ℓ-hooks (this number being the weight of
the ℓ-block). However, the removal of an ℓ-hook, i.e. an mr-hook, can be
obtained by removing r m-hooks (cf for example the proof of Lemma 3.2 in
[18]). Hence the common ℓ-core γ of λ and µ can be obtained by removing
m-hooks, and, removing m-hooks from γ, one must eventually obtain an m-
core, which will thus be the same for λ and µ. Hence χλ and χµ belong to
the same m-block, giving the result.

2. It is “easy” to see from the definitions that any ℓ-cycle section is a union
of m-cycle sections (for, if the m-cycle parts of α, β ∈ Sn are conjugate, then
certainly their ℓ-cycle parts are conjugate too. Hence, if α and β belong to
the same m-cycle section, then they belong to the same ℓ-cycle section).

Now suppose χ, ψ ∈ Irr(Sn) belong to distinct m-blocks. Then, the m-
blocks of Sn having the Second Main Theorem Property, χ and ψ are or-
thogonal across each m-cycle section of Sn. By the above remark, we see
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that χ and ψ are thus also orthogonal across each ℓ-cycle section, in par-
ticular Cℓ, and thus belong to distinct ℓ-blocks. A priori, we just get that
χ and ψ are not directly linked across ℓ-regular elements. But then, if
χ0 = χ, χ1, . . . , χr is a sequence of characters such that χi is directly Cℓ-
linked to χi+1 for 0 ≤ i ≤ r − 1, then, by the above, all the χi’s must lie in
the same m-block. In particular, the ℓ-block containing χ is contained in the
m-block containing χ. Hence the result.

Some notations: We take 2 ≤ ℓ ≤ n ∈ N. For λ a partition of n, we will
write HLλ (or just HL when the context is clear) for a hook length in λ. For
any integer m dividing ℓ, we will write (m)−HL for a hook length divisible
by m, and {m} −HL for a hook length whose π-part is precisely m (where
π is the set of primes dividing ℓ). With a slight abuse of notation, we define
similarly HLβλ

to be a hook length in any of the partitions appearing in the
quotient βλ. Finally, a hook whose length is divisible by m will be called an
(m)-hook.

Definition 3.10. For any (finite) group G and χ ∈ Irr(G), and for ℓ ≥ 2
an integer dividing |G|, writing π the set of primes dividing ℓ, we define the
π-defect dπ(χ) of χ, via

dπ(χ) = (dp1(χ), . . . , dps
(χ))

where π = {p1, . . . , ps} and, for 1 ≤ i ≤ s, dpi
(χ) is the pi-defect of χ.

We write (abusively)

πdπ(χ) :=
s∏

i=1

p
dpi

(χ)

i =
|G|π
χ(1)π

(where |G|π and χ(1)π are the π-parts of |G| and χ(1) respectively).

We first establish the following:

Proposition 3.11. If 2 ≤ ℓ ≤ n, if B is an ℓ-block of Sn of weight w 6= 0, if
χλ ∈ B and if χλ corresponds to χβλ

under one of the perfect isometries we
described between B and Irr(Zℓ ≀ Sw), then

πdπ(χβλ
) = (

∏
(ℓ)−HLλ)π.

Proof. First note that (††) implies that

πdπ(χβλ
) = (ℓw

∏
HLβλ

)π.
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Now there are precisely w hooks in βλ, so that

πdπ(χβλ
) = (

∏
ℓ.HLβλ

)π.

On the other hand, by applying Lemma 3.7 for each hook length appearing
in βλ, we see that there is a bijection between the set of hooks in βλ and
the set of hooks of length divisible by ℓ in λ (which is, in fact, the statement
of Lemma 3.6), and that, if two hooks correspond to each other under this
bijection, then HLλ = ℓ.HLβλ

. Hence
∏

ℓ.HLβλ
=
∏

(ℓ)−HLλ.

Taking π-parts, we finally obtain

πdπ(χβλ
) = (

∏
(ℓ)−HLλ)π.

We next prove a result in the special case where ℓ is a prime power. It
is this proposition which will in the end give us the result we announced in
the previous section (i.e. that the quotient of the defect of a character by its
order in the Cartan group is an invariant of the block).

Proposition 3.12. Let p be a prime and k ≥ 1 be such that 2 ≤ pk ≤ n. If
B is a pk-block of Sn and if χλ, χµ ∈ B, then

(
∏

(pk)−HLλ)p
(
∏

(pk)−HLµ)p
=
pdp(χλ)

pdp(χµ)
.

Proof. By Lemma 3.8, for all 1 ≤ i ≤ k, χλ and χµ belong to the same
pi-block of Sn. Thus, by Lemma 3.6, λ and µ have the same number of
(pi)-hooks for each 1 ≤ i ≤ k.

Now, if 1 ≤ i ≤ k − 1, λ and µ have the same number of (pi)-hooks and
the same number of (pi+1)-hooks. Since the set of (pi)-hooks is the disjoint
union of the set of (pi+1)-hooks and the set of {pi}-hooks, we see that λ and
µ also have the same number of {pi}-hooks (note that, by definition, for such
a hook, the p-part of the hook length is exactly pi).

By the Hook Length Formula, we have that

pdp(χλ) = (
∏

HLλ)p = (
∏

(p)−HLλ)p.

Thus

pdp(χλ) =

(
k−1∏

i=1

∏
({pi} −HLλ)p

)
(
∏

(pk)−HLλ)p

=

(
k−1∏

i=1

pi|{{p
i}-hooks in λ}|

)
(
∏

(pk)−HLλ)p
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And, since, for all 1 ≤ i ≤ k − 1, |{{pi}-hooks in λ}| = |{{pi}-hooks in µ}|,
it is easy to see that

pdp(χλ)

pdp(χµ)
=

(
∏

(pk)−HLλ)p
(
∏

(pk)−HLµ)p
.

We now turn to the actual computation of the order of an irreducible
character of the wreath product in the Cartan group. It turns out that it
suffices to know the product across regular classes with the trivial character,
and this has been computed in [18].

Proposition 3.13. Take 2 ≤ ℓ ∈ N and 0 6= w ∈ N. If χ ∈ Irr(Zℓ ≀Sw), then

the order o(χ) of χ in the Cartan group Cart(ℓ,Zℓ ≀Sw) is
ℓw(w!)π
χ(1)π

= πdπ(χ).

Proof. Take χ ∈ Irr(Zℓ ≀ Sw). Recall that

Z ∋
ℓww!

χ(1)
< χ, 1Zℓ≀Sw

>reg≡ (−1)w (mod ℓ) (•)

Now o(χ) is a π-number, so that< χ, 1Zℓ≀Sw
>reg is a rational whose (reduced)

denominator is a π-number. This implies that

ℓw(w!)π
χ(1)π

< χ, 1Zℓ≀Sw
>reg∈ Z.

Furthermore, from (•), we also deduce that, for each p ∈ π,

ℓww!

χ(1)
< χ, 1Zℓ≀Sw

>reg 6≡ 0 (mod p).

Thus, for any p ∈ π,

ℓw(w!)π
χ(1)π

< χ, 1Zℓ≀Sw
>reg 6≡ 0 (mod p).

Hence
ℓw(w!)π
χ(1)π

is the smallest positive integer d such that d < χ, 1Zℓ≀Sw
>reg∈

Z. This implies that
ℓw(w!)π
χ(1)π

|o(χ)

(indeed, by definition, o(χ) < χ, 1Zℓ≀Sw
>reg∈ Z, and o(χ) is a π-number).
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Now, conversely, if ψ ∈ Irr(Zℓ ≀ Sw), then < χ,ψ >reg∈ Q, so also (since
χ(1) divides |Zℓ ≀ Sw| = ℓww!)

ℓww!

χ(1)
< χ,ψ >reg∈ Q.

However,
ℓww!

χ(1)
< χ,ψ >reg=

ℓww!

ℓww!

∑

g∈reg/∼

Kgχ(g)

χ(1)
ψ(g−1)

(where the sum is taken over representatives for the regular classes, and, for
g such a representative, Kg is the size of the conjugacy class of g). And,

for each g in the sum, Kgχ(g)

χ(1)
and ψ(g−1) are both algebraic integers. Hence

ℓww!

χ(1)
< χ,ψ >reg is also an algebraic integer, and thus an integer. Thus

∀ψ ∈ Irr(Zℓ ≀ Sw),
ℓww!

χ(1)
< χ,ψ >reg∈ Z

and this implies that o(χ) divides
ℓww!

χ(1)
, and, o(χ) being a π-number,

o(χ)|
ℓw(w!)π
χ(1)π

.

Hence we finally get

o(χ) =
ℓw(w!)π
χ(1)π

= πdπ(χ).

Putting together the results of these three propositions, we obtain the
following

Theorem 3.14. Let 2 ≤ ℓ ≤ n, and let B be an ℓ-block of Sn of weight w.
Then

• (i) If w = 0, then B = {χλ} for some partition λ of n, and χλ has
order 1 in the Cartan group Cart(ℓ, Sn).

• (ii) If w 6= 0, and if χλ ∈ B, then the order of χλ in Cart(ℓ, Sn) is
(
∏

(ℓ) − HLλ)π, where π is the set of primes dividing ℓ (i.e. o(χλ) is
the π-part of the product of the hook lengths divisible by ℓ in λ).

• (iii) If ℓ = pk for some prime p and k ≥ 1, and if χ, ψ ∈ B, then
o(χ)

o(ψ)
=
pdp(χ)

pdp(ψ)
.
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Part 4

Finite General Linear Group

In all this part, we let n be a positive integer and q be a power of a prime p.
We will work in the finite general linear group G, which can be seen as the
group GL(V ) of automorphisms of an n-dimensional vector space V over the
finite field Fq, or as its natural matrix representation GL(n, q), the group
of invertible n by n matrices with entries in Fq. The irreducible (complex)
characters of G have been described by Green in [15], using deep combina-
torial arguments. Then, using in particular the Deligne-Lusztig theory, Fong
and Srinivasan have classified the blocks of G (cf [12]). They show in par-
ticular that unipotent characters behave nicely with respect to blocks. The
unipotent characters of GL(n, q) are parametrized by the partitions of n. It
turns out that, if r is an odd prime not dividing q, then two unipotent char-
acters belong to the same r-block of G if and only if the partitions labelling
them have the same e-core, where e is the multiplicative order of q modulo
r. This result is shown using analogues of the Murnaghan-Nakayama rule
for irreducible characters of G. Our aim is to use these analogues to obtain
properties of some generalized blocks we define in G. So far, we did this only
for unipotent irreducible characters of G. However, we have good hope that
this could be generalized to arbitrary irreducible characters. We also believe
that the same thing should work in the unitary groups. We construct unipo-
tent blocks for G which satisfy one sense of an analogue of the Nakayama
Conjecture. Unions of these unipotent blocks then satisfy this analogue, and
they have the Second Main Theorem property.

For a more general survey of the representation theory of finite reductive
groups, we refer to Cabanes and Enguehard [5].

107
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4.1 Conjugacy classes

4.1.1 Rational canonical form

We first introduce the theory of elementary divisors and the rational canon-
ical form in G, which give a parametrization of the conjugacy classes. We
present this in the matrix representation GL(n, q) of G, where things are
seen more easily. For the results we give in this section, we refer to Green
[15].

The conjugacy classes of G are parametrized by the sequences (. . . f νi

i . . .),
where F = {fi, i ∈ I} is the set of irreducible, monic polynomials distinct
from X and of degree at most n in Fq[X] (so that I is finite), and the νi’s
are partitions of non-negative integers ki such that

∑
i ki = n. We will write

ν ⊢ k to say that ν is a partition of k, and we will write |ν| = k.

In all the sequel, it will be assumed that, when we write (f ν11 , . . . , f
νr
r )

for a conjugacy class, then polynomials which don’t contribute have been
omitted (i.e. |ν1| 6= 0, . . . , |νr| 6= 0).

Take a conjugacy class c = (. . . f νi

i . . .) = (. . . f
ν(fi)
i . . .) of G, and g ∈ c.

Then, the characteristic polynomial of g over Fq is

Char(g) =
∏

i∈I

fki

i .

Writing, for each i, ν(fi) = νi = (λi,1 ≥ λi,2 ≥ . . . ≥ λi,s) (where s can be
chosen to be big enough for all f ′

is appearing in Char(g) (and even for all
g ∈ G), by taking for example s = n), the minimal polynomial of g over Fq

is

Min(g) =
∏

i∈I

f
λi,1

i .

For k = 1, . . . , s, the polynomial EDk(g) =
∏

i f
Pk

j=1 λi,j

i is the k-th elemen-
tary divisor of g over Fq.

For any irreducible monic polynomial f over Fq, we let U(f) be the
companion matrix of f , i.e. if f(X) = Xd − ad−1X

d−1 − · · · − a0, then

U(f) = U1(f) =




0 1
...

. . . . . . (0)
...

. . . . . .

0 · · · · · · 0 1
a0 a1 · · · · · · ad−1



.
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For any positive integer λ, we write

Uλ(f) =




U(f) Id
U(f) Id

. . . . . .
. . . Id

U(f)



,

where Id is the d by d identity matrix, and there are λ blocks U(f) on the
diagonal. Note that Uλ(f) is equivalent over Fq to the companion matrix of
fλ. Finally, for ν = (λ1 ≥ . . . ≥ λs) any partition (of an integer k say), we
write

Uν(f) =




Uλ1(f)
. . .

Uλs
(f)


 .

If g ∈ c = (f ν11 , . . . , f
νr
r ), then the matrix of g is equivalent over Fq to

U(f
ν1
1 , ..., fνr

r ) =




Uν1(f1)
. . .

Uνr
(fr)


 .

This is the rational canonical form of g over Fq.
Note that the theory of elementary divisors is independant on the repre-

sentation of G we take, so that we don’t change anything by, for example,
taking G = GL(V ) and taking any basis for V .

4.1.2 The Jordan decomposition

An element g ∈ G = GL(n, q) is semisimple if and only if it is diagonalizable
over an algebraic extension of Fq (i.e. some Fqk , k ≥ 1), i.e. Min(g) splits
over Fqk and has only simple roots. Let c be the conjugacy class of g. If
c = (. . . f ν(f) . . .), then g is semisimple if and only if for any f appearing in c
(i.e. |ν(f)| 6= 0), ν(f) = (1, . . . , 1). We write ∆((qi)) for the diagonal matrix
with diagonal blocks the qi’s. Suppose g = ∆((Uνi

(fi))). Then g = gS+gN =
∆((Uν̃i

(fi))) + ∆((Ĩνi
(fi))), where ν̃i(fi) = (1, . . . , 1) ⊢ |νi(fi)| = ki and

Ĩνi
(fi) =




(0) Idi

(0) Idi

. . . . . .
. . . Idi

(0)



,
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with |νi| = ki diagonal di by di blocks, where fi has degree di.
Thus gS = ∆((Uki

(fi))) is semisimple and commutes with gN , which is
nilpotent. Hence gS is the semisimple part of g (cf e.g. the introduction of
Carter [6]). The unipotent part of g is gU = In + g−1

S gN .

Now, if g̃ = hgh−1 for some h ∈ G, then g̃ = (hgSh
−1)(hgUh

−1), and
we see that the semisimple and unipotent parts of g̃ are hgSh

−1 and hgUh
−1

respectively.

4.1.3 Primary decomposition

Now, we considerG as the group of automorphismsGL(V ) of an n-dimensional
vector space over Fq. We first mention a fact about centralizers in GL(V ).
Take g ∈ GL(V ). If, in some matrix representation corresponding to the
decomposition V = V1 ⊕ V2, we have

g =

(
g1

g2

)

with, for i ∈ {1, 2}, gi ∈ Gi = GL(Vi), and gcd(Min(g1),Min(g2)) = 1, then

CG(g) =

{(
a

b

)
, a ∈ CG1(g1), b ∈ CG2(g2)

}
,

and thus CG(g) ∼= CG1(g1) × CG2(g2) via h 7−→ (h|V1 , h|V2) (which is inde-
pendant on the matrix representation).

We also give the following lemma

Lemma 4.1. Let g ∈ G = GL(V ). Suppose V1 and V2 are g-stable sub-
spaces of V such that V = V1 ⊕ V2. If g|V1 ∈ (. . . f ν1(f) . . .)f∈F and g|V2 ∈
(. . . f ν2(f) . . .)f∈F , then g ∈ (. . . f ν1(f)∪ν2(f) . . .)f∈F , where, by ∪, we denote
the concatenation of partitions (i.e. the components of ν1 ∪ ν2 are those of
ν1 together with those of ν2. If ν1 ⊢ n1 and ν2 ⊢ n2, then ν1 ∪ ν2 ⊢ n1 + n2.)

Proof. Taking any bases for V1 and V2 (which then add to give a basis of V ),
we can write

g =

(
g1

g2

)

(where g1 (resp. g2) is the matrix of g|V1 (resp. g|V2)). The idea is that we
can obtain the rational canonical form of g by reducing to this form g1 and
g2. There exist h1 ∈ GL(V1) and h2 ∈ GL(V2) such that

g =

(
h1

h2

)−1(
U(...fν1(f)...)

U(...fν2(f)...)

)(
h1

h2

)
.
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Thus, for some permutation matrix P ,

g =

(
h1

h2

)−1

P−1U(...fν1(f)∪ν2(f)...)P

(
h1

h2

)
,

so that g ∈ (. . . f ν1(f)∪ν2(f) . . .)f∈F .

We now turn to the primary decomposition of elements of G. Take
g ∈ GL(V ) and suppose g ∈ (f ν11 , . . . , f

νr
r ). Then there exists a unique

decomposition V = V1 ⊕ · · · ⊕ Vr, where the Vi’s are g-stable subspaces of V
and, for 1 ≤ i ≤ r, g|Vi

∈ (f νi

i ) ⊂ GL(Vi). For each 1 ≤ i ≤ r, Vi is given by

Vi = {v ∈ V | fki (g)v = 0 for some k > 0}.

We have CG(g) ∼= CGL(V1)(g|V1) × · · · × CGL(Vr)(g|Vr
). Then there exists a

unique writing g = g1 . . . gr, where, for each 1 ≤ i ≤ r, gi ∈ GL(V ), Vi is
gi-stable and gi|Vj

= 1 for all j 6= i. Indeed, we must have gi|Vi
= g|Vi

for
each 1 ≤ i ≤ r, and gi is uniquely determined by this and its properties
listed before. Furthermore, the gi’s are pairwise commuting elements. We
say that g1 . . . gr is the primary decomposition of g. The gi’s are the primary
components of g.

More generally, an element of G is said to be primary if its characteristic
polynomial is divisible by at most one irreducible polynomial distinct from
X − 1. We have the following (cf Fong-Srinivasan [12])

Proposition 4.2. Suppose h is a semisimple primary element of some gen-
eral linear group GL(m, q), and that h ∈ (f ν) for some f 6= X − 1. Writing
d the degree of f , we thus have m = kd where ν = (1, . . . , 1) ⊢ k. Then

CGL(kd,q)(h) ∼= GL(k, qd).

From the primary decomposition of g ∈ G, we deduce the following: if
F is the disjoint union of F1 and F2, then there is a unique decomposition
V = V1⊕V2 where V1 and V2 are g-stable, g|V1 ∈ (. . . f ν(f) . . .)f∈F1 and g|V2 ∈
(. . . f ν(f) . . .)f∈F2 . Then g has a unique decomposition g = g1g2 = g2g1 where
g1, g2 ∈ GL(V ), g1|V2 = 1 and g2|V1 = 1. Indeed, under these hypotheses,
necessarily, for i ∈ {1, 2}, Vi is gi-stable and gi|Vi

= g|Vi
. We then have

CG(g) ∼= CGL(V1)(g|V1)× CGL(V2)(g|V2).

4.2 (X ,Y)-sections

We will give four definitions of sections in G. The first two will give us
information on blocks defined only on the unipotent characters of G. The
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other two give us bigger sections, and thus smaller blocks, but they should
allow us to work on the whole of Irr(G).

The idea of the following definitions is, in the rational canonical form
we gave above, to isolate blocks corresponding to irreducible polynomials
whose degree is equal to or divisible by a given d (and which, in the last
two definitions, are semisimple). We let, writing δ(f) the degree of any
polynomial f ,

Fd = {f ∈ F | f 6= X − 1 and δ(f) = d} , F0
d = F \ Fd

F(d) = {f ∈ F | f 6= X − 1 and d|δ(f)} and F0
(d) = F \ F(d).

We define four unions of conjugacy classes of G:

Xd = {(. . . f ν(f) . . .) | f ∈ Fd ∪ {X − 1} and ν(X − 1) = (0) or (1, . . . , 1)},

X(d) = {(. . . f ν(f) . . .) | f ∈ F(d) ∪ {X − 1} and ν(X − 1) = (0) or (1, . . . , 1)},

X
(s)
d = {(. . . f ν(f) . . .) | f ∈ Fd ∪ {X − 1} and ν(f) = (0) or (1, . . . , 1)},

X
(s)
(d) = {(. . . f ν(f) . . .) | f ∈ F(d) ∪ {X − 1} and ν(f) = (0) or (1, . . . , 1)}

(Then X
(s)
d (resp. X

(s)
(d) ) is the set of semisimple elements of Xd (resp. X(d)).)

We have 1 ∈ Xd ∩ X(d) ∩ X
(s)
d ∩ X

(s)
(d) .

For x ∈ Xd (resp. x ∈ X(d)), we let Fx = Fd and F0
x = F0

d (resp.

Fx = F(d) and F0
x = F0

(d)). For x ∈ X
(s)
d (resp. x ∈ X

(s)
(d) ), we let Fx = {f ∈

Fd | νx(f) 6= (0)} (resp. Fx = {f ∈ F(d) | νx(f) 6= (0)}) and F0
x = F \ Fx.

We let X = Xd, X(d), X
(s)
d or X

(s)
(d) . Then, for each x ∈ X , the set

F is the disjoint union of Fx and F0
x . For each x ∈ X , there exists a

unique decomposition V = Vx ⊕ V
0
x such that Vx is x-stable, x|V 0

x
= 1 and

x|Vx
∈ (. . . f ν(f) . . .)f∈Fx

. We then have CG(x) ∼= CGL(Vx)(x|Vx
) × GL(V 0

x ).
We let

Y(x) = {y ∈ GL(V ) |V 0
x is y -stable, y|Vx

= 1 and y|V 0
x
∈ (. . . f ν(f) . . .)f∈F0

x
}.

From the definitions, we see that Y(x) ⊂ CG(x) for any x ∈ X . We also
see, using the remarks we made on the primary decomposition, that, for any
g ∈ G, there exists unique x ∈ X , y ∈ Y(x) such that g = xy. Indeed, if
g ∈ (f ν11 , . . . , f

νr
r ) and if we write, as above, V = V1⊕· · ·⊕Vr and g = g1 . . . gr,

then we necessarily have Vx = ⊕i∈IVi, where I ⊂ {1, . . . , r} is the set of
indices i such that f νi

i has the property defining X , V 0
x = ⊕i6∈IVi, x|Vx

= g|Vx

and y|V 0
x

= g|V 0
x

(and x ∈ X and y ∈ Y(x) are uniquely determined by these
conditions). We have x =

∏
i∈I gi and y =

∏
i6∈I gi.

We show that these definitions allow us to define (X ,Y)-sections.
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Proposition 4.3. Take any integer d > 0, and let X = Xd, X(d), X
(s)
d or

X
(s)
(d) . Then, for any x ∈ X ,

(i) Y(x) is a union of conjugacy classes of CG(x).
(ii) For all y ∈ Y(x), CG(xy) ≤ CG(x).
(iii) For all g ∈ G, Y(xg) = Y(x)g.
(iv) Two elements of xY(x) are G-conjugate if and only if they are CG(x)-
conjugate.
(v) G =

∐
x∈X/G{(xy)

G, y ∈ Y(x)/CG(x)}.

Proof. (i) We have CG(x) = Hx × H
0
x, and we see CG(x) as a subgroup of

GL(Vx) × GL(V 0
x ). For y ∈ Y(x), y = (y|Vx

, y|V 0
x
) = (1, y0

x). Then, for all
h = (hx, h

0
x) ∈ CG(x), h−1yh = (1, (h0

x)
−1y0

xh
0
x) ∈ Y(x).

(ii) For all y ∈ Y(x), we have CG(xy) ∼= CGL(Vx)(x|Vx
) × CGL(V 0

x )(y|V 0
x
) ≤

CGL(Vx)(x|Vx
) × GL(V 0

x ) ∼= CG(x), and CG(xy) ≤ CG(x) since the isomor-
phism on the left is the restriction to CGL(Vx)(x|Vx

) × CGL(V 0
x )(y|V 0

x
) of the

isomorphism on the right.
(iii) Take g ∈ G and y ∈ Y(x). Then xg ∈ X and Fxg = Fx (and thus
F0
xg = F0

x). We have V = g−1V = g−1Vx⊕g
−1V 0

x . Furthermore, xg|g−1V 0
x

= 1,
g−1Vx is xg-stable, and xg|g−1Vx

∈ (...f ν(f)...)f∈Fx
. Thus g−1Vx = Vxg and

g−1V 0
x = V 0

xg . Now, since y ∈ Y(x), we see that yg|g−1Vx
= 1, g−1V 0

x is yg-
stable, and yg|g−1V 0

x
∈ (...f ν(f)...)f∈F0

x
. Hence yg ∈ Y(xg), and Y(x)g ⊂ Y(xg)

for all g ∈ G. Then, for any g ∈ G, Y(xg)g
−1
⊂ Y(x) so that Y(xg) ⊂ Y(x)g.

Hence the result.
(iv) Suppose that, for some y, z ∈ Y(x), there exists h ∈ G such that xy =
h−1xzh. Writing g = xy, we also have g = xhzh, and xh ∈ X (since X is a
union of G-conjugacy classes) and zh ∈ Y(xh) (by (iii)). By the uniqueness
of such a writing for g, we have xh = x and zh = y. Hence h ∈ CG(x). In
particular, xy and xz are CG(x)-conjugate.
(v) For any g ∈ G, there exists a unique x ∈ X such that g ∈ xY(x). Thus

G =
∐

x∈X

xY(x)

=
∐

x∈X/G

(xY(x))G (because of (iii))

=
∐

x∈X/G

⋃

y∈Y(x)

(xy)G

=
∐

x∈X/G

∐

y∈Y(x)/CG(x)

(xy)G,

this last equality being true by (iv) (if (xy)g = (xz)g
′

, then xy = xzg
′g−1

so
that, by (iv), y and z are CG(x)-conjugate).
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This proposition shows that the (X ,Y)-sections we defined correspond to
the notion of (X ,Y)-sections presented in [18].

For any x ∈ X , we call the union of the G-conjugacy classes meeting
xY(x) the Y-section of x. We remark that the Y-sections of G are quite
different from ordinary prime sections. Take any 1 6= x ∈ X . Then, by
definition, Y(x) ⊂ Y(1)∩CG(x). However, if d 6= 1, then there exists λ ∈ F×

q

such that λIn ∈ Y(1)∩CG(x) but λIn 6∈ Y(x), so that Y(x) 6= Y(1)∩CG(x)
(while this equality holds when we define (X ,Y)-sections to be the ordinary
ℓ-sections for some prime ℓ).

Furthermore, still supposing d 6= 1, if x is a (non trivial) ℓ-element of G
for some prime ℓ, then, most of the time (that is, when q − 1 is not a power
of ℓ), there exists an ℓ-regular element λ ∈ F×

q such that λIn 6∈ Y(x), so
that xλIn 6∈ (xY(x))G. But xλIn belongs to the ℓ-section of x. Hence the
Y-section of x is not a union of ℓ-sections.

4.3 (X ,Y)-blocks

4.3.1 Blocks

Take any integer d > 0, and let X = Xd, X(d), X
(s)
d or X

(s)
(d) . We define on

Irr(G) the relation ∼ of direct Y(1)-linking: for χ, ψ ∈Irr(G), χ ∼ ψ if and
only if

< χ, ψ >Y(1)=
1

|G|

∑

y∈Y(1)

χ(y)ψ(y) 6= 0.

Extending ∼ by transitivity, we obtain an equivalence relation ≈ on Irr(G).
We define an (X ,Y)-block of G to be an equivalence class of the equivalence
relation ≈. We will also consider the restriction of ≈ to the subset Unip(G)
of unipotent characters of G. The equivalence classes of Unip(G) will be
called unipotent (X ,Y)-blocks of G. It is clear that, for any (X ,Y)-block B
of G, B ∩ Unip(G) is a union of unipotent (X ,Y)-blocks.

4.3.2 Irreducible characters of G

For the results we give here, we refer to [12].
The unipotent characters of G = GL(n, q) are the irreducible components

of the permutation representation of G on the cosets of a Borel subgroup
(i.e. the normalizer in G of a Sylow p-subgroup of G, where p is the defining
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characteristic). They are labelled by the partitions of n. For λ ⊢ n, we will
write χλ the unipotent (irreducible) character of G labelled by λ.

Each irreducible character of G can be parametrized as χs,µ, where s is a
semisimple element of G and χµ is a unipotent character of CG(s) (note that,
since s is semisimple, CG(s) is a product of linear groups GL(k, qδ) where δ
is the degree of an irreducible factor of Char(s) and k is its multiplicity in
Char(s); in particular, µ may be seen as a sequence of partitions (µ1, . . . , µt)
(of k1, . . . , kt respectively), and χµ = χµ1 ⊗ · · · ⊗χµt

). We obtain a complete
minimal set of representatives by taking representatives (s, µ) for the G-
conjugacy classes of such pairs. The set of characters χs,µ, for µ varying, is
the geometric conjugacy class sG of s.

More precisely, if χ ∈Irr(G), then there exists s ∈ G semisimple, there
exists ψ, unipotent character of H = CG(s), and there exist signs εG and εH
such that

χ = εGεHR
G
H(ŝψ),

whereRG
H is the additive operator, defined in the Deligne-Lusztig theory, from

X(H) to X(G) (character rings of representations of H and G respectively
over Qℓ, an algebraic closure of the ℓ-adic field Qℓ), and ŝ is the linear
character of the center Z(H) of H given by:

∀ϕ ∈ sH , ∀h ∈ H, ∀t ∈ Z(H), ϕ(th) = ŝ(t)ϕ(h).

If the unipotent character ψ is labelled by the tuple of partitions µ, we
write ψ = χµ, and χ = χs,µ = ±RG

H(ŝχµ). We introduce two class functions
χµ and χs,µ (of H and G respectively) such that χµ = ±χµ, and χs,µ =
RG
H(ŝχµ) = ∓χs,µ.

4.3.3 Murnaghan-Nakayama Rule for unipotent char-
acters

Pick g ∈ G, and write Char(g) =
∏

i f
ki

i and the corresponding decomposi-
tion g =

∏
i gi. Then pick i0, and write g = ρσ, where

ρ = gi0 and σ =
∏

i6=i0

gi.

Writing d the degree of fi0 , m = ki0d, and l = n−m, we have, writing ∽ for
equivalence of matrices over Fq,

g ∽




. . .

Uνi
(fi)

. . .


 ,
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ρ ∽

(
Il

Uνi0
(fi0)

)

(and we may consider that ρ ∈ G0 = GL(m, q)),

σ ∽




()
. . .

()
Im




(and we may consider that σ ∈ G1 = GL(l, q)).
Then, using the results on the Jordan decomposition given in the first

section, we see that the semi-simple part ρS of ρ is equivalent to

(
Il

Uki0
(fi0)

)
.

We have ρS ∈ GL(n, q) and Char(ρS) = f
ki0
i0

(X − 1)l, and we may consider

that ρS ∈ G0 = GL(m, q) and Char(ρS) = f
ki0
i0

.
We have CG(ρS) = H = H0 × H1, where H1

∼= GL(l, q) and H0 =
CGL(m,q)(ρS) ∼= GL(ki0 , q

d).

Theorem 4.4 (Murnaghan-Nakayama Rule). (cf [12])
Let g ∈ G, and ρ and σ be as above, and let ν ⊢ n. Then

χν(ρσ) =
∑

λ∈Lν

aρνλχ
λ(σ),

where Lν is the set of partitions λ of l which can be obtained from ν by
removing ki0 d-hooks, and aρνλ ∈ Z[qd].
If Lν = ∅, then χν(ρσ) = 0.
We have aρνλ 6= 0 for λ ∈ Lν.

(The coefficients of aρνλ depend on the characters of the symmetric group Ski0

and the Green functions of GL(ki0 , q
d) ∼= H0 (applied to the unipotent part

ρU of ρ), and all the non-zero coefficients of aρνλ have the same sign).

Remark: it is easy to see that, if aρνλ 6= 0, then ν and λ have the same
d-core.

The idea is to use this theorem recursively so as to be able to obtain
information about < χλ, χµ >xY(x), for λ, µ ⊢ n and x ∈ Xd or x ∈ X(d). We
first use it to obtain a formula for χµ(xy), where µ ⊢ n and y ∈ Y(x). We
let X = Xd or X(d), and take 1 6= x ∈ X . Suppose x ∈ cx = (. . . fλi

i . . .)
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where, for each i, λi ⊢ ki, and δ(fi) = d (resp. d|δ(fi)) or fi = X − 1. If
fi 6= X − 1, we let δ(fi) = mid. From the definition of X , we see that, in the
primary decomposition of x, we may omit the component corresponding to
X − 1, because it is necessarily the identity. We therefore write x = x1 . . . xr
where each xi has exatly one elementary divisor distinct from X − 1, and
with the same multiplicity as in Char(x). We will say that x has d-type
(k1m1, . . . , krmr).

By repeated use of the Murnaghan-Nakayama Rule, we obtain that, for
any y ∈ Y(x) and for µ ⊢ n,

χµ(xy) =
∑

µ1∈Lµ
ax1
µµ1
χµ1(x2 . . . xry)

=
∑

µ1∈Lµ
ax1
µµ1

(∑
µ2∈Lµ1

ax2
µ1µ2

χµ2(x3 . . . xry)
)

=
∑

µ1∈Lµ
. . .
∑

µr∈Lµr−1
ax1
µµ1

. . . axr
µr−1µr

χµr(y)

which can be written

χµ(xy) =
∑

λ∈Lµ

(k1m1,...,krmr)d

α
(x1,...,xr)
µλ χλ(y),

where the α
(x1,...,xr)
µλ ’s are integers and Lµ(k1m1,...,krmr)d is the set of partitions of

n−(
∑

i kimi)d which can be obtained from µ by removing k1 m1d-hooks, then
k2 m2d-hooks, . . . , and finally kr mrd-hooks. We will call such a sequence of
removals a (k1m1, . . . , krmr)d-path from µ to λ.

Note that, in this sum, each λ can appear several times, if there is more
than one (k1m1, . . . , krmr)d-path from µ to λ. Note also that, in the right
side of this equality, y has implicitely been seen as an element of GL(l, q),
where l = n− (

∑
i kimi)d.

If Lµ(k1m1,...,krmr)d = ∅, then χµ(xy) = 0. We have α
(x1,...,xr)
µλ ∈ Z[qd], and, if

we separate the possibly multiple occurences of each λ in the sum, then, for
λ ∈ Lµ(k1m1,...,krmr)d, each of the α

(x1,...,xr)
µλ ’s is non-zero (these are indexed by

the (k1m1, . . . , krmr)d-paths from µ to λ).

If α
(x1,...,xr)
µλ 6= 0, then, since there is a (k1m1, . . . , krmr)d-path from µ to

λ, and since the removal of a hook of length md can be obtained by the
removal of a sequence of m hooks of length d, we see that µ and λ have the
same d-core.

We call the α
(x1,...,xr)
µλ ’s the MN-coefficients, and we will from now on write

αxµλ for α
(x1,...,xr)
µλ .
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4.3.4 Nakayama Conjecture for unipotent blocks

Now, we are able to prove that the unipotent characters of G satisfy one sense
of a generalized Nakayama Conjecture. The proof we give is an adaptation
to our case of the proof given by Külshammer, Olsson and Robinson in the
case of symmetric groups. We let X = Xd or X(d) and take x ∈ X of d-
type km = (k1m1, . . . , krmr). We let l = n − kmd = l − (

∑r
i=1 kimi)d.

Writing G0 = GL(kmd, q) =
∏r

i=1GL(kimid, q) and G1 = GL(l, q), we
have x = (x0, x1) = (x0, 1) ∈ G0 × G1. Then CG(x) = H0 × H1, where
H1
∼= GL(l, q) and H0 = CG0(x0) (note that, if x is semi-simple, then H0

∼=
GL(k, qmd) ∼=

∏r
i=1GL(ki, q

mid)).
Now take y ∈ Y(x). Then, as an element of CG(x) = H0 ×H1, we have

y = (y0, y1) = (1, y1).
Writing Yt(u) for Y(u) when u ∈ GL(t, q), we have that y, element of

CG(x), belongs to Yn(x) if and only if y = (1, y1) ∈ H0×H1 where y1 belongs
to Yl(1). Hence Yn(x) is in natural one to one correspondence with Yl(1).
Now we consider µ, µ′ ⊢ n, and x ∈ X of d-type km = (k1m1, . . . , krmr). We

have

< χµ, χµ
′

>xY(x) =
1

|G|

∑

y∈Y(x)

χµ(xy)χµ′(xy)

=
1

|G|

∑

y=(y0,y1)∈Y(x)






∑

λ∈Lµ
km

αxµλχ
λ(y1)






∑

λ′∈Lµ′

km

αxµ′λ′χ
λ′(y1)







=
1

|G|

∑

y1∈Yl(1)

∑

λ∈Lµ
km

, λ′∈Lµ′

km

αxµλα
x
µ′λ′χ

λ(y1)χλ
′(y1)

(by the above remark on Y(x)).

We write Axµµ′ =< χµ, χµ
′

>xY(x). Then

Axµµ′ =
1

|G|

∑

λ∈Lµ
km

, λ′∈Lµ′

km

αxµλα
x
µ′λ′

∑

y1∈Yl(1)

χλ(y1)χλ
′(y1)

=
|H1|

|G|

∑

λ∈Lµ
km

, λ′∈Lµ′

km

αxµλα
x
µ′λ′ < χλχλ

′

>Yl(1)

i.e. Axµµ′ =
|H1|

|G|

∑

λ∈Lµ
km

, λ′∈Lµ′

km

αxµλα
x
µ′λ′A

1
λλ′ .

We use induction on n to prove that, if Axµµ′ 6= 0, then µ and µ′ have the
same d-core. We may assume that µ 6= µ′.
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If n < d, then each partition is its own d-core. Furthermore, in this case,
X = {1} and Y(1) = G. Thus, for all x ∈ X , we have Axµµ′ = A1

µµ′ , and

A1
µµ′ =< χµ, χµ

′

>G= 0 (since µ 6= µ′). Hence the result is true in this case.
Thus, we suppose n ≥ d. First suppose x 6= 1 and Axµµ′ 6= 0. Then

Axµµ′ =
|H1|

|G|

∑

λ∈Lµ
km

, λ′∈Lµ′

km

αxµλα
x
µ′λ′A

1
λλ′ 6= 0.

Thus there exist λ ∈ Lµ
km

and λ′ ∈ Lµ
′

km
such that αxµλα

x
µ′λ′A

1
λλ′ 6= 0. Then

αxµλ 6= 0 implies that µ and λ have the same d-core, and αxµ′λ′ 6= 0 implies that
µ′ and λ′ have the same d-core. And, by the induction hypothesis (applied
to n− kmd < n), A1

λλ′ 6= 0 implies that λ and λ′ have the same d-core.
Now, if x = 1, we see, by the existence and uniqueness of the decompo-

sition we introduced, that

0 =< χµ, χµ
′

>G=
∑

x∈X

< χµ, χµ
′

>xY(x)=
∑

x∈X

Axµµ′ .

Hence, if A1
µµ′ 6= 0, then there exists an x′ ∈ X \{1} such that Ax

′

µµ′ 6= 0. This
in turn implies, by the previous case, that µ and µ′ have the same d-core.
Skipping back from class functions to irreducible characters, we see that we
have proved the following

Theorem 4.5. If two unipotent (irreducible) characters χµ and χµ′ of G =
GL(n, q) are directly linked across some xY(x), where x ∈ X = Xd or X(d),
then µ and µ′ have the same d-core (and this is true in particular for x = 1).

Extending by transitivity the relation of direct Y(1)-linking, we obtain

Theorem 4.6. Let X = Xd or X(d). If two unipotent characters χµ and χµ′
of G = GL(n, q) are in the same unipotent (X ,Y)-block of G, then µ and µ′

have the same d-core.

Each unipotent (X ,Y)-block of G is therefore associated to a d-core. For
each given d-core γ, we can consider the union of the (possibly many) unipo-
tent (X ,Y)-blocks associated to γ. The (a priori) bigger blocks obtained
in this way are parametrized by the set of d-cores of partitions of n, and
they satisfy the following equivalent of the Nakayama Conjecture. In accor-
dance with the terminology used in [18], we call them combinatorial unipotent
(X ,Y)-blocks.

Theorem/Definition 4.7. Let X = Xd or X(d). Two unipotent (irreducible)
characters χµ and χµ′ belong to the same combinatorial unipotent (X ,Y)-
block of GL(n, q) if and only if µ and µ′ have the same d-core.
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We can find in [12] an analogue of the Murnaghan-Nakayama rule which
applies to any irreducible character of G, with the extra hypothesis that the
element ρ is semisimple and primary, with an elementary divisor of degree d =
1. It is also mentioned that this theorem can be generalized to an arbitrary d.
This should allow us to derive the same properties as above for (X ,Y)-blocks

of the whole of Irr(G), but taking this time X = X
(s)
d or X

(s)
(d) . The (X ,Y)-

blocks of G obtained in this way should satisfy one sense of a generalized
Nakayama Conjecture, and we should be able to define combinatorial (X ,Y)-
blocks of G satisfying this generalized Nakayama Conjecture. Note that the
properties we proved for unipotent characters hold if we take X = X

(s)
d or

X
(s)
(d) .

In any case, it remains to study the possible difference between (X ,Y)-
blocks and combinatorial (X ,Y)-blocks.

4.4 Second Main Theorem property

We now want to show that the combinatorial unipotent (X ,Y)-blocks of G
satisfy the Second Main Theorem property. We therefore need to define, for
x ∈ X , the (X ,Y)-blocks of CG(x), and then to look at their behaviour with
respect to domination.

4.4.1 (X ,Y)-blocks of centralizers

We take any positive integer d, and X = Xd, X(d), X
(s)
d or X

(s)
(d) . Even

though we don’t know what they look like, this defines (X ,Y)-blocks of
Irr(G) (which are just Y(1)-blocks, built using Y(1)-linking), and we can
define (X ,Y)-blocks of CG(x) for each x ∈ X .

For x ∈ X \ {1}, the (X ,Y)-blocks of CG(x) are the equivalence classes
of the transitive closure of direct xY(x)-linking. Equivalently, irreducible
characters in distinct (X ,Y)-blocks of CG(x) are orthogonal across xY(x),
and the blocks are minimal for this property. If x has d-type km, then,
writing l = n − kmd, we have CG(x) = H0 × H1 where H1

∼= GL(l, q) and
H0 ≤ G0

∼= GL(kmd, q). Then Irr(CG(x)) =Irr(H0)⊗Irr(H1). Note that, as
we noted in the previous section, we may consider x as an element of H0,
and then xY(x) = {(x, y) ∈ H0 ×H1, y ∈ Yl(1)}.
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Take χ0, ψ0 ∈ Irr(H0) and χ1, ψ1 ∈ Irr(H1). We have

< χ0 ⊗ χ1, ψ0 ⊗ ψ1 >xY(x) =
1

|CG(x)|

∑

y∈Y(x)

(χ0 ⊗ χ1)(xy)(ψ0 ⊗ ψ1)(xy)

=
1

|CG(x)|

∑

y∈Yl(1)

χ0(x)χ1(y)ψ0(x)ψ1(y)

=
χ0(x)ψ0(x)

|CG(x)|

∑

y∈Yl(1)

χ1(y)ψ1(y)

=
χ0(x)ψ0(x)

|H0|
< χ1, ψ1 >Yl(1) .

Since x is central in H0, we have χ0(x)ψ0(x) 6= 0, and we see that χ0 ⊗ χ1

and ψ0 ⊗ ψ1 are directly xY(x)-linked if and only if χ1 and ψ1 are directly
Yl(1)-linked. Extending by transitivity, we obtain that the (X ,Y)-blocks
of CG(x) are the Irr(H0) ⊗ bi’s, where bi runs through the Yl(1)-blocks of
H1
∼= GL(l, q).

In analogy with this, we define the unipotent (X ,Y)-blocks and combina-
torial unipotent (X ,Y)-blocks of CG(x) to be the Irr(H0)⊗bi’s, where bi runs
through the unipotent Yl(1)-blocks and combinatorial unipotent Yl(1)-blocks
of H1

∼= GL(l, q) respectively.

4.4.2 Second Main Theorem property for combinator-
ial unipotent (X ,Y)-blocks

We take any positive integer d, X = Xd or X(d), and x ∈ X \ {1}. We write
CG(x) = H0 × H1 as above. For any combinatorial unipotent (X ,Y)-block
B of G, labelled by the d-core γ, we set β(x,B) = Irr(H0)⊗ b, where b is the
Yl(1)-block of H1 labelled by γ. For any χµ ∈ B and ψ0 ⊗ ψλ ∈ Irr(H0)⊗ b,
we set

cχµ,ψ0⊗ψλ
=

{
αxµλ if ψ0 = 1H0

0 otherwise
,

where the αxµλ’s are the MN-coefficients, obtained from the Murnaghan-
Nakayama rule for unipotent characters. Then the definition of the αxµλ’s
shows that, for each x ∈ X , the β(x,B)’s and cχµ,ψ0⊗ψλ

’s satisfy the hypothe-
ses of Proposition 1.33. Indeed, for each combinatorial unipotent (X ,Y)-
block B, for each χµ ∈ B and for each y ∈ Y(x), we have

χ(xy) =
∑

ψ0⊗ψλ∈β(x,B)

cχµ,ψ0⊗ψλ
ψ0 ⊗ ψλ(xy),
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and, furthermore, β(x,B) and β(x,B′) are disjoint whenever B and B′ are
distinct combinatorial unipotent (X ,Y)-blocks of G. This implies that, for
each x ∈ X , each combinatorial unipotent (X ,Y)-block of CG(x) is dom-
inated by a unique combinatorial unipotent (X ,Y)-block of G. Hence the
combinatorial unipotent (X ,Y)-blocks ofG satisfy the Second Main Theorem
property.

(...), which just shows that the human brain is ill-adapted for thinking and
was probably originally designed for cooling the blood.

Terry Pratchett, The last hero.
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Astérisque 181-182 (1990), 61-92.
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