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A mon pere.

Une civilisation sans la science, c¢’est aussi absurde qu’un poisson sans
bicyclette.

Pierre Desproges, Je baisse.

It is not how fast you go that matters, it is the object of your journey. It is
not how you send a message, it is what the value of the message may be.

Sir Arthur Conan Doyle, The land of mist.

Je sers la science et c’est ma joie.

Basile (disciplus simplex).
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Introduction

La théorie des blocs a été introduite au milieu du 20eme siecle par R. Brauer.
Si G est un groupe fini et si Irr(G) est 'ensemble de ses caracteres complexes
irréductibles, alors a tout nombre premier p est associée une partition de
Irr(G) en p-blocs. Les blocs correspondent aux termes d’une décomposition
en somme directe d’idéaux bilateres de I'algebre de groupe sur un anneau de
valuation discrete complet. La plupart des propriétés des p-blocs viennent
des propriétés arithmétiques p-locales des caracteres et sont obtenues grace
a une passerelle entre caractéristique 0 et caractéristique p. Mais les p-blocs
peuvent aussi étre obtenus élémentairement a partir du découpage de G en
p-sections. Tout élément g de G a une unique écriture g = g,g, = g,g, ol
gp est un p-élément et g, est p-régulier (i.e. ordre de g, est une puissance
de p et celui de g, est premier a p). Deux éléments appartiennent a la méme
section si les p-éléments associés sont conjugués. On note C I'ensemble des
éléments p-réguliers de GG, et on définit un produit intérieur tronqué par

1

<X7¢>c:@

Zx(g)w(g_l) pour tous x, ¢ € Irr(G).

geC

Deux caracteres x et 1 sont dits directement C-liés si < x, ¥ >¢# 0 (sinon,
ils sont dits orthogonauz sur C). Celle relation est réflexive (car 1 € C) et
symétrique. En I’étendant par transitivité, on obtient une relation d’équiva-
lence sur Irr(G) dont les classes sont les p-blocs. Une conséquence du Deuxie-
me Théoreme de Brauer est que, si deux caracteres irréductibles sont orthogo-
naux sur C, alors ils sont orthogonaux sur chaque p-section (C est la p-section
de 1).

L’idée développée par B. Kiilshammer, J. B. Olsson et G. R. Robinson
dans [18] est de faire la méme construction pour d’autres unions C de classes
de conjugaison. On obtient ainsi une partition de Irr(G) en C-blocks. Le but
de cette these est I’étude des propriétés de ces blocs généralisés. Dans [18], les
auteurs ont défini des ¢-sections et des ¢-blocs pour les groupes symétriques,
ou ¢ > 2 est un entier quelconque. Ils prennent pour C l’ensemble des
éléments, dits £-réguliers, dont aucun des cycles n’est de longueur divisi-
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ble par ¢. Les f-blocs obtenus satisfont un analogue de la Conjecture de
Nakayama : deux caractéres irréductibles x* et x* du groupe symétrique S,,
(A et p sont des partitions de n) appartiennent au méme ¢-bloc si et seule-
ment si A et p ont le méme f-cceur. De plus, ils satisfont un analogue du
Deuxieme Théoreme de Brauer.

La premiere partie de la these expose brievement la construction et les
propriétés des blocs dans le cas classique, puis introduit la généralisation
ci-dessus et décrit le cas des groupes symétriques.

La deuxieme partie traite d’isométries parfaites généralisées. Soit G' un
groupe fini, U un p-sous-groupe de Sylow de G, et B le normalisateur de
U dans G. On note By (respectivement by) le p-bloc de G (respectivement
de B) qui contient le caractere trivial. Une conjecture de M. Broué prévoit
que, si U est abélien, alors il existe une isométrie parfaite entre By et by (
cf [2]). Une telle isométrie parfaite implique une relation étroite entre les
anneaux de caracteres associés a By et by. Si on prend pour GG un groupe
de Suzuki Sz(q), de Ree (de type G3) Re(q) ou spécial unitaire SU(3, ¢?),
chacun en caractéristique p, alors les p-sous-groupes de Sylow de G ne sont
pas abéliens. Il est connu (cf Cliff [8]) que, dans le cas des groupes de Suzuki,
il n’y a pas d’isométrie parfaite entre By et by. Néanmoins, nous démontrons
que, dans chacun de ces cas, si I'on prend pour C (resp. D) I'ensemble des
éléments de G (resp. B) dont I'ordre n’est pas divisible par p?, alors il existe
une bijection I entre By et by et des signes {e(x), x € Irr(G)} tels que,
pour tous x, ¥ € By, on a < x, ¥ >c=< e(x)I(x), e(¥)I(¢) >p. On parle
d’isométrie parfaite généralisée entre By et by. Ce résultat est moins fort que
celui annoncé par la conjecture de Broué, mais il met cependant en évidence
le lien fort entre les anneaux de caracteres de By et by. En particulier, leurs
groupes de Cartan sont les mémes.

La troisieme partie de la these traite notamment de ce groupe de Cartan.
On suppose que C est une union fermée de classes de conjugaison de G (i.e.
si x € C et si y engendre le méme sous-groupe de G que x, alors y € C).
Pour x € Irr(G), on définit une fonction centrale x¢ de G par x°(g) = x(9)
sigeCetx(g) =0sige G\C On définit le sous-Z-module R(C)
de CIrr(G) engendré par {x°; x € Irr(G)}, et le sous-Z-module P(C) de
R(C) des éléments de R(C) qui sont des caracteres généralisés de G (i.e.
P(C) = R(C) N ZIrr(G)). Alors R(C) et P(C) ont le méme rang sur Z. En
particulier, R(C)/P(C) est un groupe abélien fini, le C-groupe de Cartan de
G, et, pour tout y € Irr(G), il existe un entier d > 0 tel que dx° € ZIrr(G).
Le plus petit tel d est appelé ordre de .

Le groupe de Cartan et les ordres des caracteres sont bien connus dans le
cas ou C est I’ensemble des éléments p-réguliers de G. Dans cette partie, nous
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donnons une description du groupe de Cartan et des ordres des caracteres
dans le cas ot G est abélien et C est I'ensemble des éléments pF-réguliers
de G (i.e. dont l'ordre n’est pas divisible par p*), oll p est premier et k >
0. Nous établissons également une formule pour l'ordre des caracteres des
groupes symétriques, quand C est l’ensemble des éléments f(-réguliers. 11
s’avere que cette formule est un f-analogue de la Formule du Crochet pour
calculer le degré d’un caractere irréductible. En particulier, elle montre que,
si ¢ est une puissance d’un nombre premier p, alors le rapport de ’ordre d'un
caractere et de la p-partie de son degré est un invariant de chaque /¢-bloc.
Nous démontrons que cette derniere propriété est vraie en dehors des groupes
symétriques sous certaines hypotheses (fortes) sur les blocs considérés. C’est
aussi le cas si G est dans I'une des familles étudiées dans la deuxieme partie.

La quatrieme partie est consacrée au groupe linéaire fini GL(n,q). Nous
y donnons des définitions de sections et de blocs, basées sur la séparation
en deux de ’ensemble des polynomes irréductibles qui divisent le polynome
minimal d’un élément. Cette séparation est faite en comparant le degré des
polynomes a un entier quelconque d. Bien que nous définissions des blocs sur
I’ensemble des caracteres irréductibles, nous n’obtenons des propriétés que
pour les caracteres unipotents. Ceux-ci sont paramétrés par les partitions
de n, et nous montrons que, si deux caracteres unipotents appartiennent au
méme bloc unipotent, alors les partitions de n associées ont le méme d-coeur.
Certaines unions de ces blocs, appelés blocs combinatoires satisfont donc un
analogue de la Conjecture de Nakayama. Nous montrons qu’ils satisfont
également un analogue du Deuxieme Théoreme de Brauer.
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Introduction

The representation theory of finite groups appeared and was first developped
by G. Frobenius at the very end of the 19th century. We will assume that
the reader is familiar with its ideas and techniques, in particular the no-
tion of groups character and the structures of character rings and character
tables. One of the major improvement in this theory was the introduction
by Brauer, in the 1950’s, of modular representation theory. The study of
the representations of a finite group over a field of prime characteristic lead
Brauer to develop the block theory of this group. This is the starting point of
this thesis. If G is a finite group and Irr(G) is the set of irreducible complex
characters of G, then to each prime p is associated a partition of Irr(G) into
p-blocks. The blocks correspond to the summands in the decomposition into
a direct sum of two-sided ideals of the group algebra of G over a complete
discrete p-valuation ring. Most of the properties of p-blocks come from the
p-local arithmetic properties of characters, and can be obtained through a
bridge between characteristic 0 and characteristic p. This link is obtained
via the introduction of p-modular systems. However, the p-blocks can also be
obtained in an elementary way, based on the distinction between p-regular
and p-singular elements of G. If we let C be the set of p-regular elements
of G, we can consider the restriction to C of the ordinary scalar product on
characters of G. For x, ¢ € Irr(G), we let

1

= 2 X9,

geC

Then x and v are said to be directly C-linked if < x, ¥ >¢# 0, and orthogonal
across C otherwise. Then direct C-linking is a reflexive (since 1 € C) and
symmetric binary relation on Irr(G). Extending it by transitivity, we obtain
an equivalence relation (called C-linking) on Irr(G) whose equivalence classes
are the p-blocks.

The idea introduced by B. Kiilshammer, J. B. Olsson and G. R. Robinson
in [18] is to do the same construction for other unions C of conjugacy classes
of G. We therefore get a partition of Irr(G) into generalized blocks, or C-

13



14 INTRODUCTION

blocks. Tt is the purpose of this thesis to study some properties of these
generalized blocks, and to define interesting blocks in some classes of groups.
In [18], the authors have defined ¢-blocks for the symmetric groups, where
¢ > 2 is any integer. To obtain this, they take C to be the set of £-reqular
elements, i.e. none of whose cycle has length divisible by ¢. The ¢-blocks
obtained in this way satisfy an analogue of the Nakayama Conjecture: two
irreducible characters x* and x* of the symmetric group S, (where X and
are partitions of n) belong to the same ¢-block if and only if A and p have
the same (-core.

In the first part of this thesis, we present shortly the construction and
properties of the blocks in the classical case. In particular, we state Brauer’s
First and Second Main Theorems. A consequence of the latter is that ir-
reducible characters in distinct p-blocks, which are thus orthogonal across
the p-section of 1, are in fact orthogonal across each p-section. The end of
the part is devoted to the presentation of the ideas and results in [18]. We
introduce the generalization we mentionned above, in particular the notion
of (X,))-section, which generalizes p-sections. This allows us to define a
Second Main Theorem property, which is an analogue of Brauer’s Second
Main Theorem in this setting (depending on the set C of conjugacy classes
we start with, this property may be satisfied or not by the C-blocks). We
then describe the case of symmetric groups. In particular, the ¢-blocks of
symmetric groups satisfy the Second Main Theorem property.

The second part deals with generalized perfect isometries. Let G be a
finite group, p a prime, U a Sylow p-subgroup of GG, and B the normalizer of
U in G. Let By and by be the principal p-blocks (i.e. containing the trivial
character) of G and B respectively. Then a conjecture of M. Broué states
that, if U is Abelian, then there should be a perfect isometry between B,
and by (cf [2]). Such a perfect isometry induces a close relationship between
the character rings associated with By and by. Now, if G is a Suzuki group
Sz(q), a Ree group (of type Go) Re(q) or a special unitary group SU(3, ¢%),
each in characteristic p, then the Sylow p-subgroups of G are not Abelian.
Furthermore, it is known (cf Clff [8]) that, in the case of Suzuki groups,
there is no perfect isometry between By and by. However, we show that,
in each of these cases, if we take C and D to be the sets of elements of GG
and B respectively whose order is not divisible by p?, then there exists a
bijection I between By and by and signs {e(x), x € Irr(G)} such that, for
any x, ¥ € By, we have < x, ¥ >c=< e(x)I(x), e(¥)I(¢) >p. We refer
to this as a generalized perfect isometry between By and by. This result is
weaker than the one announced by Boué’s Conjecture, but still enlighten the
strong link between the character rings of By and by. In particular, their
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Cartan groups are isomorphic.

The Cartan group is presented in the third part of the thesis. We suppose
that C is a closed union of conjugacy classes of the finite group G (i.e. if
x € C and if y generates the same subgroup of G as x, then y € C). For
x € Irr(G), we define a class function ¢ of G by x¢(g9) = x(g9) if g € C
and x¢(g) = 0 if g € G\ C. We define the Z-submodule R(C) of Clrr(G)
spanned by {x¢; x € Irr(G)}, and the Z-submodule P(C) of R(C) consisting
of those elements of R(C) which are generalized characters of G (i.e. P(C) =
R(C)NZIrr(G)). Then R(C) and P(C) have the same Z-rank. In particular,
R(C)/P(C) is a finite Abelian group, called the C-Cartan group of G, and,
for each x € Irr(G), there exists an integer d > 0 such that dx¢ € ZIrr(G).
The smallest such d is called the order of x.

The Cartan group and the orders of characters are well-known when C
is the set of p-regular elements of GG. In this part, we give a description
of the Cartan group and of the orders of characters in the case where G
is Abelian and C is the set of elements whose order is not divisible by p*,
where p is a prime and £ > 0. We also obtain a formula for the orders of
characters of the symmetric group, when C is the set of ¢-regular elements. It
turns out that this formula can be seen as an ¢-analogue of the Hook-Length
Formula for computing the degree of an irreducible character. In particular,
it implies that, if ¢ is a power of a prime p, then the quotient of the order
of a character by the p-part of its degree is an invariant of each ¢-block. We
show that this last property is true outside the symmetric groups under some
(strong) hypothesis on the blocks we consider. It is also the case in the three
families of groups we study in the second part.

The fourth part is devoted to the finite general linear group GL(n,q).
We give definitions of sections and blocks, based on the splitting into two
of the set of irreducible polynomials dividing the minimal polynomial of an
element. This splitting is made by comparing the degrees of these irreducible
polynomials with any given integer d. Although we define blocks for the whole
set of irreducible characters of GL(n,q), we only obtain properties for the
unipotent characters. These are labelled by the partitions of n, and we show
that, if two unipotent characters belong to the same unipotent generalized
block, then the partitions labelling them have the same d-core. Thus some
unions of these blocks, called combinatorial blocks, satisfy an analogue of the
Nakayama Conjecture, and we show that they also satisfy the Second Main
Theorem property.
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Notations

Throughout this thesis, we will use the following notations:

the natural integers (including 0).

the ring of integers.

the fields of rationals and complex numbers.

the field with ¢ elements (¢ a prime power).

the additive group of F,,.

the multiplicative group of F, (the non-zero elements of F).

the ring of polynomials in one indeterminate with coefficients in F,.
the degree of the polynomial f € F,[X].

the p-part of n (n a positive integer, p a prime).

the p’-part of n.

the greatest common divisor of the integers m and n.

the least common multiple of the (positive) integers m and n.

the Kronecker delta function on x and y.

the disjoint union of the sets A and B.

the order of the finite set A.

the rank over Z of a rational matrix M or of a Z-module M.

the direct sum of the vector spaces V and W.

the field of automorphisms of the vector space V' over the ground field.
the identity map or the identity matrix.

the n by n identity matrix.

the restriction to the subspace W of V' of an element g in GL(V).
the minimal polynomial of g € GL(V') over the ground field.

the characteristic polynomial of g € GL(V') over the ground field.
the cyclic group of order d.

the direct product of two (finite) groups G and H (written G & H if G
and H are additive groups).

a semi-direct product of G by H.

the center of G.

the derived subgroup of G.

H is a subgroup of G.

17



Syly(G)

0y (G)

Irr(G)

la

ZIrr(G)

<, >¢g

Resf (x) or x|u
Ind ()

X ® X

NOTATIONS

H is a normal subgroup of G.

the index of the subgroup H in G.

the normalizer of H in G.

the centralizer in G of an element g of G.

the centralizer in G of a subgroup H of G.

the set of conjugacy classes of G.

the number of conjugacy classes in a union C of conjugacy classes of G.
the conjugacy class of g in G.

the order of g in G.

the subgroup of G' generated by g.

the p-part of g (p a prime).

the p-regular part of g.

the set of p-elements of G.

the set of p-regular elements of G.

the set of Sylow p-subgroups of G.

the largest normal p-subgroup of G.

the set of irreducible complex characters of G.

the trivial character of G.

the ring of generalized characters of G.

the scalar product for complex class functions of G.

the restriction to the subgroup H of the character x of G.

the character of G induced from the character i) of the subgroup H.
the tensor product of the characters (of the same group) x and y’.



Part 1

Generalized Block Theory

In this part, we introduce the notions and objects we will use in this thesis.
In a first place, we give a quick overview of the “ordinary” block theory,
introduced by R. Brauer. Then we give the definitions and first properties
of generalized block theory, as presented in [18], and finally describe the
generalized blocks for the symmetric groups defined in this latter article.

1.1 Block Theory

In this section, we let G be a finite group. For all the results in this section,
and unless specified otherwise, we refer to Navarro [20]. Most of the notions
and results in block theory come from arithmetic constructions and prop-
erties. It is this approach we use to describe Brauer characters and, later,
blocks, even though, when generalizing, we will use another characterization
of blocks.

1.1.1 Modular systems

If k is any field, the group algebra kG is semi-simple if and only if k is of
characteristic 0 or p prime to |G|. For any field k, we write Irr(kG) the set of
characters of irreducible kG-modules. If kG is semi-simple and if, for every
simple kG-module V| V is absolutely simple (i.e. Endie(V) = k.Id), then
the structure of kG is enlighted by Wedderburn’s theorem on semi-simple
algebras: kG is a direct sum of matrix algebras. For example, this is the case
when £ is algebraically closed.

When we move to characteristic p dividing |G|, we lose the semi-simplicity
of the group algebra, but we want to keep the “absolute simplicity property”.
This will be the motivation for the introduction of large enough p-modular
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systems. We first observe :

Proposition 1.1. There ezists a field K C C such that [K : Q] < oo and
such that any finite-dimensional representation of CG can be realised over

K.

A theorem of Brauer makes this more precise by stating that, if m is the
exponent of G, then K = Q(e%) is sufficient.

Similarly, for any prime p, there exists a finite field ky C F, such that
any finite-dimensional irreducible representation of F,G can be realised over
k.

Now, let K be a field, K C C, [K : Q] < o0, and let Ax = AN K be
the ring of algebraic integers in K (where A is the subring of C of algebraic
integers). Then K = Frac(Ak) and we have

Theorem 1.2. Let {0} # P < Ak be a prime ideal, and
(9:{% € K = Frac(Ag)|b ¢ P}

be the localisation of Ak in P. Then O is a subring of K, a local ring (i.e.
with a unique mazximal ideal M). Moreover, O is principal, and k = O/ M
is a finite field of characteristic p > 0, where ZN'P = pZ. If M = (7) with
7 € O, then the ideals of O are exactly the (7');>1, and (,5,(7") = {0}.

Furthermore, we have K = Frac(O) and every finite-dimensional K G-
module can be realised over O. For this theorem, presented like this, we refer
to the graduate course on modular representation theory given in Lyon by
M. Geck in 2001-2002, and, for another presentation, we refer to [1].

Definition 1.3. If p is a prime, K is a subfield of C, [K : Q] < o0, and
k and O are as in the above theorem, then (K, O, k) is called a p-modular
system for G.

If p| |G|, and without further information about k, not all simple F,G-
modules need to be absolutely simple. However, adding to K a suitable |G-
th root of unity, we can suppose that ky C k, so that any finite dimensional
irreducible F,G-module can be realised over k.

Definition 1.4. A p-modular system is said to be large enough for G if
any V€ Irr(CG) can be realised over K and any M € Irr(F,G) can be
realised over k, and if K and k contain all |G|-th roots of unity.
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We have just shown that such a system exists, so from now on we let
p be a prime and (K, O, k) be a p-modular system large enough for G. In
particular, any simple K G- (resp. kG-) module is absolutely simple (and
thus KG and kG are split algebras).

The ring O is often taken by authors to be complete (for some p-adic
norm). This allows the lifting of idempotents from kG to OG. However, if
the p-modular system is big enough for G, then the group algebra KG is
split semisimple, and kG is a split algebra. Then, by a result of Heller, the
Krull-Schmidt-Azuyama Theorem holds for OG-lattices (cf Curtis-Reiner [9],
Theorem 30.18), and, furthermore, idempotents can be lifted from kG to OG
(cf [9], Ex. 6.16).

In the sequel, we will note z —— z* the canonical surjection O — k,
also called reduction modulo p.

1.1.2 Brauer characters

Now we would like to turn to characters of kG-modules. However, because of
the characteristic p, we have to use something else than just traces. We will
describe the Brauer characters of G, which take values in O, thus allowing
us to connect them with the elements of Irr(KG).

We need first a result about roots of unity :

Proposition 1.5. Let Uy = {x € K*|2™ =1 for some n > 1, with n||G|
and p ¥t n}. Then Uy < K*, Uy < O* and, if |G| = p*m (a > 0, p f m),
then the restriction modulo p

{re K*|z" =1} ClUy — {a" € k™| ()" =1} C kK
1S a bijection.

Let Gy be the set of p-regular elements of G. If M is a kG-module,
associated to the representation p of dimension d, and g € G is p-regular of
order o(g), then the eigenvalues (§;)1<i<a of p(g) are o(g)-th roots of unity, so
are in k™. Therefore, there are unique w; € U,y such that w; =¢&;, 1 <i <d.
We define the Brauer character ¢y of M by

omv: Gy — AgCO
d .
g = i Wi

Then ¢, is a class function of G, and, writing x the character afforded
by p, we have

Vg € Gy, oum(g)" = x(9).



22 PART 1. GENERALIZED BLOCK THEORY

Moreover, if M =, M’ then ¢ = opp.
We say that ¢y is irreducible if p is irreducible, and let IBr,(G) be the
set of irreducible Brauer characters of G.

The next theorem illustrates the importance of the Brauer characters.
We write CF(G) and CF(Gy) the sets of complex class functions of G and
G, respectively. For x € CF(G), we denote by X the restriction of x to G
(then xy € CF(Gy)). We have:

Theorem 1.6. (i) The set IBr,(G) is a C-basis for CF(Gy).
(ii) For all x € Irr(KG), there exist unique non-negative integers (dw)gae]Brp(G)

such that
X= Y. dyp
eelBr,(G)

Then (i) implies in particular that |IBr,(G)| is the number of p-regular
classes of G.

The (integral) matrix D = ((dxgo))XEII‘I‘(KG)7QOEIBI‘p(G)
position matriz of G. It has (maximum) rank |IBr,(G)| (in particular, each
column of D has at least one non-zero entry). We deduce that, if p 1 |G|,
then IBr,(G) = {X, x € Irr(KG)}, and the elements of Irr(kG) are obtained
by taking the reduction modulo p of the elements of Irr(KG).

We let C = D'D, and call C the Cartan matriz of G. Then C =
(o)) s eIBr,(q) 18 a positive definite symmetric matrix with non-negative
integer coefficients.

is called the decom-

For each ¢ € IBr,(G), we define a class function @, of G via

P, = Z dyoX

xelrr(xa)

(®, corresponds to the column of ¢ in the decomposition matrix). We call
@, the principal indecomposable character associated to ¢. We then have
the following:

Theorem 1.7. (i) For each ¢ € IBr,(G), ®, vanishes outside G,y .
(i1) For all ¢, ¢ € IBr,(G), we have
1
< (I)gouw >Gp,I: m

Z Do (g7 )1b(g) = dpy-

ger/

(11t) The set {®,, ¢ € IBry,(G)} is a Z-basis for the Z-module ZIrr, (G) of
generalized characters of G vanishing outside Gy .



1.1. BLOCK THEORY 23

Note that, for ¢ € IBr,(G),
o, = Z dyoX = Z Cop)s
xelrr(xka) vel Br, (@)
so that (i) and (ii) implie that, for ¢, ¢ € IBr,(G),
< (I)qu)w >a=< CI)S@? (I)q/, >Gp/: Copop-

Together with (iii), this shows that the Cartan matrix corresponds to the
generalized definition of Cartan matrix we will give later.

1.1.3 Blocks

We now turn to the definitions of p-blocks of Irr(KG) and IBr,(G). To each
x € Irr(KG) are associated a primitive idempotent e, of Z(KG) and an
irreducible (linear) representation w, of Z(KG) given by:

ex = % > x(g g

geG

and

5 _ 1Clx(gc)
wX(C> = )
x(1)
where C is any conjugacy class of GG, with representative g¢, and C is the sum
of the elements in C.

Then, for all x, x' € Irr(KG), we have w,(ey) = d,,. Furthermore,

for each x € Irr(K'G), the restriction wy is an irreducible representation of
Z(kG).

The p-blocks we define correspond to the decomposition of OG into a
direct sum of ideals OGe, where e is a primitive idempotent of Z(OG). We
define the Brauer graph of G: the vertices are the x € Irr(KG), and two

characters x # x' € Irr(KG) are linked if there exists ¢ € IBr,(G) such that
dy, # 0 # dys,. We then have the following:

Theorem /Definition 1.8. (i) Two characters x # x' € Irr(KG) are linked
1
in the Brauer graph if and only if @ Z x(9)x'(g7) # 0.
gGGp/
(i) An element e € Z(OQ) is a primitive idempotent of Z(OG) if and only
if e = erB ey for some connected component B of the Brauer graph. The
set B C Irr(KG) is then called a p-block of Irr(KG) (or just of G).

(11i) Two characters x, X' € Irr(KG) belong to the same p-block of G if and
only if wy = w},.
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Note that the p-blocks do not depend on the p-modular system we choose
(cf [20]). We let BI(G) be the set of p-blocks of G. We have

Proposition 1.9. For B € BI(G), we let wp = W} for any x € B, and
ep =) cptx- Then

(i) {wp, B € BI(G)} is the complete set of (distinct) irreducible representa-
tions of Z(kG).

(i1) {e};, B € BI(G)} is the complete set of primitive idempotents of Z(kG).
(i1i) For all B, B' € BI(G), we have wg(€e}) = 0pp.

For B € BI(G), the set {¢ € IBr,(G)|3x € B, dy, # 0} is called a p-
block of 1Br,(G), and written IBr,(B). Up to reordering lines and columns,
we see that the p-blocks of Irr(KG) and IBr,(G) correspond to a diagonal
block decomposition of the decomposition matrix, and thus of the Cartan
matrix. For B € BI(G), we define in a natural way the decomposition
matrix Dg and Cartan matrix C'g of B.

1.1.4 Defect

We now give the definitions of defect of a character, a block, or a conjugacy
class. With these, we obtain informations on generalized characters and the
invariant factors of the Cartan matrices. The results we mention give answers
in the prime case to the questions we will study in the third part of this thesis.

Definition 1.10. For x € Irr(KG), we define the defect d(x) of x to be

the exact power of p dividing the integer %, i.€.
400 ‘ﬂ
pr = .
x(1)1,

We then define the defect d(B) of a block B of Irr(KG) to be

d(B) = maxd(x).

XEB

For C a conjugacy class of G, we define the defect d(C) of C by

p" =Celg)l, forgec.

For B a block of G, we let np and rp be the numbers of irreducible (com-
plex) characters in B and irreducible Brauer characters in B respectively.
The case of blocks of defect 0 is described by the following
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Theorem 1.11. Let B be a p-block of G and x € B. Then the following are
equivalent:

(i) d(B) = 0.

(ZZ) np =Trpg.

(1i) d(x) = 0.

(iv) x is the only irreducible character in B.

(v) x vanishes on p-singular elements.

(vi) x(1)p = |G-

To prove the next theorem, one needs the following lemma, which is
interesting in itself for our work:

Lemma 1.12. Let x € Ir(KG). We define a class function X of G by
letting, for g € G,

~ | x(g) if g is p-reqular
Xlg) = { 0 if g is p-singular

Then p?¥ is a generalized character, while p*)~1Y is not.

We then have the following result on Cartan matrices:

Theorem 1.13. Let B be a p-block of G. Then

(i) The elementary divisors of the Cartan matriz Cy divide p™P), and at
least one of them is equal to p™®) . In particular, ng > rp unless d(B) = 0.
(i) Cp has evactly one elementary divisor equal to p™®).

Finally, we mention the following:
Theorem 1.14. The elementary divisors of the Cartan matriz C of G are

{pd(C) |C p-reqular class of G}-

1.1.5 Brauer’s First and Second Main Theorems

Now, we want to state Brauer’s First and Second Main Theorems, which
relate blocks of a group GG and of certain subgroups of (G. These theorems
have many applications in representation theory. In order to state them, we
first introduce the notion of defect group and the Brauer correspondence.
For this presentation, we refer to Goldschmidt [14] and Navarro [20].
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Defect groups

The idea of defect groups is to associate to each p-block of G a certain
conjugacy class of p-groups of G.

For subgroups H, L, M of G, we will write H C;, M (resp. H =, M) if
H'C M (resp. H' = M) for some [ € L.

For each conjugacy class C of G with g0 € C, we define a defect group
d(C) of C to be a Sylow p-subgroup of Cg(ge) (6(C) is therefore determined
up to g-conjugacy).

For B a p-block of G and C a conjugacy class of GG, we let

a5(C) = r_éw PRI )

xXEB

where go € C and C = > gecg- Thenep =3 ap(C)C, and ap(C) = 0 if C
is a p-singular class.

Proposition/Definition 1.15. If B is any p-block of G, then there exists

a p-reqular class C such that wp(C) # 0 # ag(C)*. Such a class is called a
defect class for B, and 6(C) is called a defect group for B.

Proposition 1.16. Let 6(B) be a defect group for the block B and C a
conjugacy class of G. Then

(i) If wp(C) # 0, then §(B) Cc 0(C).
(i1) If ag(C)* # 0, then §(C) Cg d(B).
(i11) 6(B) is determined up to G-conjugation.
(iv) |6(B)] = p™).
Finally,

Proposition 1.17. If P is a normal p-subgroup of G and B is a block of G,
then P C¢ 0(B).

The Brauer correspondence

Let H be a subgroup of G. If A is any linear functional on Z(kH) and C is a
conjugacy class of G, we define A9(C) = A((CN H)™) and extend A% lincarly
to a linear functional on Z(kG).

If A = wy, for some block b of H, then w¢ may or may not be an algebra
homomorphism. If it is, then w& = wp for some B € BI(G); we say that b
is defined and b“ = B. The correspondence b — b% is called the Brauer

correspondence .

Defect groups behave well under the Brauer correspondence :
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Proposition 1.18. Suppose H is a subgroup of G with a block b for which
bC is defined. Then there exists a p-subgroup P of G such that

5(b) Cyr P =¢ 5(b%).

We will obtain a sufficient condition for the existence of b%. Suppose H,
subgroup of G, is such that Cg(P) < H for some p-subgroup P of G. For
any conjugacy class C of G, define u(C) = (C N Ce(P))~. Since Cq(P) <1 H,
C N Cg(P) is a union of conjugacy classes of H, and u extends linearly to a

map Z(kG) — Z(kH).

Proposition/Definition 1.19. The map p: Z(kG) — Z(kH) is an alge-
bra homomorphism, called the Brauer homomorphism.

Theorem 1.20. Suppose P is a p-subgroup of G and PCq(P) C H C
Ng(P), then b“ is defined for all blocks b of H, and wye = wy o pr. More-
over, if B is a block of G, then B = b% for some block b of H if and only if
P C¢ 6(B), in which case

Brauer’s Theorems

We can now state Brauer’s First and Second Main Theorems.

Theorem 1.21. (Brauer’s First Main Theorem) Suppose P is a p-subgroup
of G. Then the Brauer correspondence is a bijection between the set of blocks
of Ng(P) with defect group P and the set of blocks of G with defect group P.

As a consequence, we mention the following theorem concerning principal
blocks. The principal block is the one containing the trivial character. It is
therefore of maximal defect, so any of its defect groups is a Sylow p-subgroup
of G. The following theorem can also be seen as an immediate consequence
of Brauer’s Third Main Theorem, as stated in [20].

Theorem 1.22. Suppose H is a subgroup of G, b is a block of H, and
Cq(8(b)) C H. Then b® (which is defined) is the principal block of G if and
only if b is the principal block of H.

In particular, if By is the principal block of G and §(By) =¢ P € Syl,(G),
then By is the image under the Brauer correspondence of the principal block
by of Ng(P). The idea of Broué’s Conjecture (cf Part 2) is that, if P is
Abelian, there should be a deeper correspondence, at the level of characters,
namely a perfect isometry, between By and by.

Before stating Brauer’s Second Main Theorem, we need the following:
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Lemma 1.23. Let © be a p-element of G, and let H = Cg(x). For x €
Irr(KG) and ¢ € IBr,(H), there exist unique d, € C such that

Xay) = Y ey
el Br,(H)
for all p-regular y € H.

We have

Res% (),
dg;“o — Z < eSH(fZ(;/J) >H lp(fﬁ) dwgp
yelrr(xH)

(where the dy,’s are the “ordinary” decomposition numbers). The df s are
called the generalized decomposition numbers.

Theorem 1.24. (Brauer’s Second Main Theorem) Let x be a p-element of G
and b be a p-block of Cg(x). Then, if x € Irr(G) is not in b, then df, =0
for each ¢ € IBr,(b).

(Note that, with the above hypotheses, b¢ is always defined.)

Corollary 1.25. Let x be a p-element of G, and y a p-reqular element of
Cq(x). Suppose B is a block of G and x € B. Then

x(zy) = Z Z dyupi(y)
beBl(Cg(2)),b9=B e [Br,(b)

Using the definitions of the d7 s, then the definition of the dy,’s and the
fact that x is central in Cg(x) = H, this can be reformulated as:

Corollary 1.26. Suppose B is a block of G and x € B. Then, for any
p-element © € G and p-regular element y € H = Cg(z), we have

Xay) = > > < Resfi(x), v >u (ay).

beBI(H),bG=B &b

If 0 is a class function of G and B is a block of GG, we let

:Z<9,X>GX.

xXE€B

Then 0 =5 pyq) 6P . Another useful consequence of Brauer’s Second Main
Theorem is the following:
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Theorem 1.27. Let 0 be a class function of G and let x € G be a p-element.
Suppose 0(xy) = 0 for all p-reqular y € Ce(x). Then, for each block B of G
and p-reqular y € Cq(x), we have 68 (zy) = 0.

Let B be a block of G, x € B, and let x+ € G be a p-element and
H = C¢(x). For any block b of H, we write

X =" < Resfi(x), v >n v

Pedb

(x® is a generalized character of H). Then Res% () = D beBU(H) x®, and,

by Corollary 1.26
> Xy =0
beBI(H),bC#B

for all p-regular y € H.

Applying Theorem 1.27 in H (in which x is central), we get that, if
b € BI(H) and b¢ # B, then x* (xy) = 0 for all p-regular y € H. Hence, if
there exists a p-regular y € H such that x®)(zy) # 0 for some b € BI(H),
then b = B (see the Second Main Theorem property later).

Theorem 1.27 has an important corollary:

Corollary 1.28. (Block Orthogonality) Let g,h € G be such that g, and h,,

are not conjugate in G. Then, for each p-block B of G, Z x(g H)x(h) = 0.
xXE€B

This has a very important consequence. Before stating it, we define the
p-sections of G. For g € G, the p-section of g in G is the set of elements of
G whose p-part is conjugate to g,. Then G is a disjoint union of p-sections.
The p-section of 1 is just the set of p-regular elements of G.

Take g € GG, and write 7 the p-section of g in G. The last corollary can
then be written:

VB € BI(G),Vh € G\ m, Y x(g")x(h) =0.
xXEB

We say that each block of G separates w from its complement.

If 7w is a p-section of GG, we say that two class functions 17 and 6 of G are
orthogonal across m if .

al > b(gn(g™") =0.
gen

By construction, we have seen that, if two irreducible characters of G belong
to distinct p-blocks, then they are orthogonal across p-regular elements. We
have in fact much better:
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Theorem 1.29. If two irreducible characters of G belong to distinct p-blocks,
then they are orthogonal across each p-section of G.

(This can be proved by using Corollary and adapting the argument given
in [18] after Corollary 1.2)

1.2 Generalized Block Theory

In this section, we introduce the notion of generalized blocks, as introduced
in [18]. The basis for “ordinary” block theory was the separation of a group
between p-regular and p-singular elements. Now the idea is to use another
set of conjugacy classes to split the group. This leads to a new definition
of block, which we present in a first paragraph. We then give a definition
of sections to partition the group, and state what an analogue of Brauer’s
Second Main Theorem could look like with this definition (depending on the
set of conjugacy classes we start with, the generalized blocks we obtain may or
may not satisfy this property). For all the definitions and results in sections
1.2.1, 1.2.2 and 1.2.3, we refer to Kiilshammer, Olsson and Robinson [18§].
We then give in section 1.2.4 an overview of the first natural generalization,
the case of m-blocks.

1.2.1 Generalized blocks

Let G be a finite group, and C be a union of conjugacy classes of G. We
say that C is closed if the following is true: for any x € C, whenever y is
an element of G which generates the same subgroup as z, then y € C. The
notion of closed set of conjugacy classes was introduced by M. Suzuki in [24].
Now let us fix a closed set C of conjugacy classes of G, and assume that 1 € C.
We let ' = G\ C. Let Irr(G) be the set of complex irreducible characters
of G. For any complex class function ¢ of G, we define ¢¢ to be the class
function of G which agrees with ¢ on C and vanishes outside C.
Two characters x, ¢ € Irr(G) are said to be directly C-linked if

<t o= é S x(@)8(@) #0.

zeC

If < x,% >¢= 0, then x and 1 are said to be orthogonal across C. We call
< X, ¥ >¢ the C-contribution associated to x and ¥. Note that < x, 1 >c=<
6,0 >a=< x, ¢ >a=< X%, ¥° >¢. Direct C-linking is a symmetric and
reflexive (since 1 € C) binary relation on Irr(G). Extending it by transitivity
to an equivalence relation (called C-linking), we obtain a partition of Irr(G)
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into C-blocks. We refer to C-blocks of Irr(G) as C-blocks of G. Two characters
X, ¥ € Irr(G) thus belong to the same C-block of G if there exists a sequence
Xo = Xs X1s---, Xr = ¥ € Irr(G) such that, for each 0 < i < r — 1, the
characters y; and ;. are directly C-linked. We say that y and ¢ are C-
linked.

Note that if we take C to be the set of p-regular elements of G (p a prime),
then the C-blocks of GG are just its p-blocks.

We have the following;:
Proposition 1.30. If g € C and h € C', then, for each C-block B of G,

> x(g7H)x(h) = 0.

XE€B

Hence C-blocks separate C from C'.

The matrix I'(C, G) = ((< X, ¥ >¢)), yelrr(q) 18 called the C-contribution
matriz of G. It has (if we list the elements of Irr(G) block by block) a
diagonal block decomposition corresponding to the C-blocks of G. If B is
a C-block of G, we let I'(C, B) = ((< Xx,v% >¢))ywen be the C-contribution
matriz of B.

Using Galois Theory, and since C is closed, we see that the C-contributions
are rationals.

1.2.2 Sections

In the same way we can partition GG into p-sections, we would like a more
general definition of sections, with the same properties, and which we can
adapt to our situation. This includes relating these sections to some C-blocks
as defined above, and defining blocks for the centralizers of certain elements
(corresponding to the p-elements in the p-case).

Let X be a union of conjugacy classes of G' containing the identity. Sup-
pose that, for each x € X, there is a union () of conjugacy classes of C(z)
such that:

() 1€ V(),

(ii) Two elements of )Y (z) are G-conjugate if and only if they are Cg(x)-
conjugate,

(iii) Ce(zy) < Cg(z) for each y € Y(x).

Suppose also that Y(z9) = Y(z)¢ for all z € X and g € G, and that G is
the disjoint union of the conjugacy classes (ry), as x runs through a set of
representatives for the G-conjugacy classes in X and y runs through a set of
representatives for the Cg(z)-conjugacy classes in Y(x).
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For example, if we take X to be the set of p-elements of GG, then, for each
x € X, Y(x) can be taken to be the set of p-regular elements of Cg(x).

For any x € X, we call the union of the G-conjugacy classes meeting
x)(z) the Y-section of x. The hypotheses we made ensure that, for each
x € X, induction of complex class functions gives an isometry from the
space of class functions of Cg(x) vanishing outside z)(z) onto the space of
class functions of G vaniching outside the Y-section of z.

We define an (X,))-block of G as a Y(1)-block of G in the sense we
defined above. For z € X, we define the (X,Y)-blocks of Cg(x) to be the
smallest (non-empty) subsets of Irr(Ce(z)) such that irreducible characters
in distinct subsets are orthogonal across x)(z).

Note that, because of Proposition 1.30, (X, Y)-blocks of G separate V(1)
from its complement. For z € X, we can equally define (X', ))-blocks of
Cq(x) to be non-empty subsets of Irr(Cg(x)) which are minimal subject to
separating Y (z) from its complement in C(z) (or, equivalently, to separating
x)(x) from its complement (since z is central in Cg(x))).

1.2.3 Second Main Theorem property

Suppose we have sets X C G and Y(z) for x € X as above. Suppose
X € Irr(G) and f is a union of (X, Y)-blocks of Cg(z) for some x € X. We
define a generalized character x\*) of Cg(x) via

X =" < Resg, ) (xX), 1> .
nep

Definition 1.31. Let x € X and b be an (X,))-block of Cg(x). We say
that an (X,Y)-block B of G dominates b if there exist x € B and y € Y(z)
such that x (zy) # 0.

We see that, for z € X, if x € B for some (X, ))-block B of G, then, for
each y € Y(x), we have x(zy) = Y, x* (zy), where b runs through the set
of (X,Y)-blocks of C(x) dominated by B.

Note that, for z € X, each (X,Y)-block of Cg(z) is dominated by at
least one (X, ))-block of G.

Definition 1.32. We say that the (X, ))-blocks of G satisfy the Second Main
Theorem property if, for each x € X and each (X,Y)-block b of Cq(x), b is
dominated by a unique (X,Y)-block of G.
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As we have remarked in the previous section, if, for some prime p, X is
the set of p-elements of G and if, for each = € X, Y(x) is the set of p-regular
elements of Cg(x), then the (X, ))-blocks of G (i.e. the p-blocks of GG) have
the Second Main Theorem property.

Using the fact that, for € X, irreducible characters of C(x) in distinct
(X, Y)-blocks are orthogonal across x)(x), one proves easily the following:

Proposition 1.33. The (X, Y)-blocks of G satisfy the Second Main Theorem
property if and only if, for each (X,)Y)-block B of G, there is, for eachx € X,
a (possibly empty) union of (X,Y)-blocks B(x, B) of Ca(x) such that, for each
irreducible character x € B and each character u € f(x, B), we may find a
complex number c,, such that, for each y € Y(z), we have

Xy) = Y cpunlzy),

peB(z,B)

and, furthermore, B(x, B) and (3(z, B') are disjoint whenever B and B’ are
distinct (X,))-blocks of G.

The following theorem enlighten the link between the Second Main The-
orem property and Brauer’s Second Main Theorem:

Theorem 1.34. Suppose that the (X,))-blocks of G satisfy the Second Main
Theorem property. Then:

(1) Irreducible characters of G which are in distinct (X, Y)-blocks are orthog-
onal across each Y-section of G.

(i) If v € X and er‘mﬁ(g) a, X s a class function which vanishes identically
on the Y-section of x in G, then, for each (X,¥)-block B of G, 3_ cpaxx
also vanishes identically on the Y-section of x in G.

(113) (X,Y)-blocks of G separate Y-sections of G.

1.2.4 m-blocks

One of the main problems we meet when moving from p-blocks to C-blocks is
that we generally lose all the arithmetic on which the modular representation
theory is based. In particular, the discrete valuation ring O has no analogue
in general, and C-blocks are not related to idempotents of a group algebra.
One case in which arithmetic arguments can still be used is that of

m-blocks, where 7 is a set of primes. These were initially introduced and
studied by Brauer (even though he didn’t publish his results), and then
considered by many authors. From now on, we let G be a finite group and =
be a set of primes. Different, but equivalent, definitions of m-blocks can be
given. The first might be the more natural.
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Definition 1.35. (Staszewski [25], definition 1.1) A non-empty subset B of
Irr(G) is called a m-block of G if, for every p € m, B is a union of p-blocks,
and if B 1s minimal for this property.

Note that, if 7 = {p}, then a 7-block is just a p-block.

Now the m-blocks can also be seen in terms of idempotents. For this
definition, we refer to Staszewski [23] and Robinson [21]. Let w = e2™/IC.
For any p € 7, we let
O, = {5la,8 € Z[w] and, for any ideal p of Z[w] containing p, 5 ¢ p} be
the p-adic integer ring of Q[w] (with relative residue field F,). We set O, =
ﬂp@r O,. Note that O is no longer a local ring, but that it has only finitely
many prime ideals. Then we have

Definition 1.36. A non-empty subset B of Irr(G) is a w-block of G if

|—Cl;| > x(Wxtg™g

x€B geG
is a primitive idempotent of Z(O,G).

It can be shown (cf [21], Lemma 2) that m-blocks are, with the terminology
we introduced before, C-blocks, where C is the set of w-regular elements of G
(m-blocks are subsets of Irr(G) which are minimal subject to being orthogonal
across m-regular elements). We also see that the m-sections of G satisfy the
properties for (X, ))-sections, X' being the set of m-elements and Y (z) being
the set of m-regular elements of C(z) for x € X. In this setting, an (X,))-
block of G is a m-block of G, and, for z € X, an (X, ))-block of Cg(x) is a
m-block of Cg(z).

The 7m-blocks of a finite group have properties very similar to those of
p-blocks. In particular, it is possible to define analogues of the principal in-
decomposable characters, the Brauer characters, the decomposition numbers
and Cartan numbers, the corresponding decomposition matriz and Cartan
matriz having the same kind of block structure as in the p-case (cf [23]).
Staszewski also studies the defect of a m-block, and determines the elemen-
tary divisors of the Cartan matrices of G and of any given m-block of G.

The generalization of the notion of defect group appears to be more
tricky. However, this can be done if G has a nilpotent Hall m-subgroup,
and defect groups are unique up to conjugacy if G' has furthermore a normal
m-complement (cf [23]).

It is shown in Robinson [21] that m-blocks satisfy an analogue of Brauer’s
Second Main Theorem. In particular, m-blocks separate m-sections, and irre-
ducible characters in distinct m-blocks are orthogonal across each m-section
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(cf [21], Corollary 8). Robinson and Staszewski also show in [22] that, if G
has a cyclic Hall m-subgroup, then the m-blocks of G satisfy an analogue of
Brauer’s Third Main Theorem (cf [22], Theorem 2.1).

Finally, Broué and Michel have studied the m-blocks of finite reductive
groups in [3]. Using the Deligne-Lusztig Theory, the irreducible (complex)
characters of such a group G are partitioned into geometric conjugacy
classes E(GT, (s)), labelled by the conjugacy classes of semisimple elements
s in the dual group G*F". Broué and Michel show in particular that, if the
defining characteristic of GI" does not belong to m, then the union &,(G¥', (s))
of such geometric conjugacy classes for the parameter describing a 7’-section,
ie. £(GF (s)) = Usecye )7 E(GY, (sx)) for some semisimple 7'-element s
of G*F” | is a union of 7-blocks (cf [3], Theorem 2.2).

1.3 Generalized Blocks for Symmetric Groups

In this section, we give an overview of some of the results obtained in [18].
In this article, the authors define /-blocks for the symmetric group S,,, where
¢ > 2 is an arbitrary integer. These blocks can be related to two differ-
ent definitions of (X', ))-sections, which give distinct (X, ))-blocks for the
centralizers, but the same (X, )))-blocks for S,,. The authors show that the ¢-
blocks of .S,, thus defined satisfy an ¢-analogue of the Nakayama Conjecture,
and that they satisfy the Second Main Theorem property.

In all this section, we consider the symmetric group S,, for some n > 1,
and let ¢ > 2 be an integer. We let 7 be the set of primes dividing /.

1.3.1 Sections, blocks

Recall each element of a symmetric group can be written uniquely as a prod-
uct of disjoint cycles.

Definition 1.37. An element of a symmetric group is said to be:

e an (-cycle element if all its non-trivial cycles have length divisible by ¢;
e (-regular if it has no cycle of length divisible by ¢ (and (-singular other-
wise);

e an (-element if it is an (-cycle element such that each non-trivial cycle
has length dividing a power of £;

e m-regular if its order is not divisible by any prime in .

If two elements z,y € S,, are disjoint (i.e. each one fixing the points
moved by the other), we write = % y for the product zy. We have:
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Proposition/Definition 1.38. Fach element z € S, has unique factoriza-
tions:
Z=XxY=17"Ss=Sr

where x is an (-cycle element, y is (-reqular, r is the w-part of x (thus r is
an (-element) and s is (-reqular. Any element commuting with z commutes
with each of x, y, r and s (in particular, these elements all commute with
each other). We call x the ¢-cycle part of z, and r the (-part of z.

Two elements of S, are said to belong to the same (-cycle section (re-
spectively (-section) of S, if their f-cycle parts (respectively ¢-parts) are
conjugate in .S,,. Then each /-section of \S,, is a union of /-cycle sections. The
(-section of 1 is the set of f-regular elements of S, and is also an f-cycle
section.

We now define (X, Y)-blocks for S,. We let X be the set of (-elements
of S,. For each r € X, the centralizer C' = Cg,(r) of r can be written
C = (Cy x 1, where (' is the pointwise stabilizer of the points moved by r
(and thus a symmetric group), and Cy is the pointwise stabilizer of the points
fixed by r. Then r € Cy. We let Y(r) be the set of elements sg*s; € Cy x Cy
such that sg is a 7’-element of Cy and s; is an f-regular element of Cf.

We let X' be the set of f-cycle elements of S,. For each x € X', we let
YV'(x) be the set of {-regular elements of S,, which are disjoint from x.

Then the Y-sections of f-elements are the ¢-sections of S, and the )'-
sections of (-cycle elements are the (-cycle sections of .S,,.

Note that V(1) and )Y'(1) are both equal to the set of f-regular elements
of S,, so that the (X,))-blocks and the (X’,)")-blocks of S,, coincide, and
could be defined by linking across ¢-regular elements. We call them ¢-blocks
of S,. An (X, )Y)-block of the centralizer C' of an (-element is called an /(-
block of C, and an (X’,)")-block of the centralizer C' of an ¢-cycle element
is called an ¢-cycle block of C.

1.3.2 Nakayama Conjecture

The irreducible (complex) characters and conjugacy classes of S,, are labelled
canonically by the partitions of n. For A a partition of n (which we write
A En), we let x, be the irreducible character of S, labelled by .

Given A - n and any integer d, we obtain the d-core v, of A by removing
from (the Young diagram of) A all the d-hooks. We have the following (cf
James and Kerber [17])

Theorem 1.39. (Nakayama Conjecture) Let p be a prime. Then two irre-
ducible characters x and x, of S, belong to the same p-block if and only if
A and p have the same p-core.
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It is proved in [18] that the ¢-blocks of S, satisfy an f-anologue of this
theorem. We will give a sketch of the proof of this. The basis to start is the
following (cf [17])

Theorem 1.40. (Murnaghan-Nakayama Formula) Let n = [ + m, and let
pxo €Sy,, where p is an m-cycle and o is a permutation on the remaining
[ symbols. Let \ be a partition of n. Then

a(pxo) =D (=1) (o),

I

where p runs over all partitions p of | which can be obtained from X\ by
deleting an m-hook, and Ly, is the leg length of the deleted hook.

Now take an (-cycle element x of S,,. Suppose that the cycle type of z is
(Chy, ..., Lhy) (where we omit cycles of length 1). We call p = (hy, ..., hy)
the ¢-type of x (and of xxy if y is f-regular). Then, if y is any element disjoint
from x and ) is a partition of n, repeated use of the Murnaghan-Nakayama
Formula gives

a@xy)= > mixy), (1)

ukFn—uvl

where v = hy+- - -+ hy, and the coefficients mﬁu are integers. The coefficient
mf{u corresponds in some way to the set of paths in the lattice of partitions
obtained by removing first an fh;-hook, then an fhs-hook, and so on, to
obtain p from A. Now one can show that the removal of an ¢h-hook can
be obtained by removing a sequence of h f-hooks, and this implies that, if
mj,, # 0, then A and p have the same (-core.

Now, each (-cycle section is characterized by the (common) ¢-type of its
elements, and (}) allows us to compute the contribution of two irreducible
characters of S, across any /¢-cycle section. Then an induction argument
shows that, if x, and y, are (directly) linked across any /¢-cycle section,
then A and )\ have the same f¢-core. This proves one implication of the
Nakayama Conjecture:

Theorem 1.41. If xx, x» € Irr(S,) belong to the same £-block of S,, then
A and X' have the same {-core.

This implies that, for a given (-core 7, the set B, = {xx € Irr(S,,) | 7\ =
7} is a union of ¢-blocks. We want to prove that B, is in fact a single ¢-block.
For this, we refer to Maréti [19]. For x, € B,, we let w be the number of
(-hooks which must be removed from A to get 7). Then w is independant on

X € B,, and is called the (-weight of B, (and of any A such that x, € B,).
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Note that, if w = 0, then B, consists of a single character x, (and A = ),
and thus is trivially a single ¢-block of S,,. We therefore fix an ¢-core v and
suppose that w > 1. The main ingredient of the proof is that there exists a
generalized perfect isometry (this will be defined in Part 2) between B, and
the set of irreducible characters of the wreath product Z,!S,. We will give
some details about the wreath product and the generalized perfect isometry
in Part 3. At this point, we only want to give some ideas of how the proof
goes.

The first point is that there exists a canonically defined bijection () be-
tween B, and Irr(Z,1.S,,) (we write @ for “quotient”, as will be seen in Part
3). The second ingredient is that there is an analogue of the Murnaghan-
Nakayama Formula in Z,2.5,,. As in the case of symmetric groups, this allows
us to relate the contribution of two characters across some set of elements of
7,1 S, to the contributions of characters of a smaller wreath product across
a smaller set of elements, and thus to build an induction argument. Com-
paring the results in .S,, and Z,1.5,,, Mardti then shows that the contribution
of two characters x, and x, in B, across (-regular elements is equal, up to
a sign, to the contribution of Q(x») and Q(x,) across the so-called regular
elements of Zy,1S,. This gives us a very powerful bridge between Z, S,
and S,,. To conclude the proof, one proves that, in Z, .5, every irreducible
character is directly linked across regular elements to the trivial character.
Using our bridge, this implies that any two characters in B, are both directly
linked across (-regular elements to a third character (whose image under @
is the trivial character of Z;S,,), and thus belong to the same ¢-block of S,,.
Finally, we have:

Theorem 1.42. (Generalized Nakayama Conjecture) Two irreducible char-
acters xn and xx of S, belong to the same £-block if and only if X and N
have the same (-core.

1.3.3 Second Main Theorem property

It is shown in [18] that the ¢-blocks of S, satisfy the Second Main Theorem
property. It is only at this point, when considering centralizers, that the
difference between (X', Y)-blocks and (X', )’)-blocks becomes apparent. We
start with (X’,)’)-blocks, which are somewhat easier to manipulate. This is
why only the case of (X, ))-blocks is presented in [18].

Take x € X’. With the notations we used above, if x has (-type p, where
p is a partition of v, then we can see = as an element of S;,. Then the
centralizer of x is Cg, () = Cy x Cy, where Cy = Cs,, () and Cy = S,
and )’ (x) is the set of f-regular elements of C;. If we take po® py and vy ® vy
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in Irr(Cy x C1), it is then easy to see, since x is central in Cy, that po® p; and
vy ® vy are directly linked across x)”(x) if and only if x4y and v are directly
linked across (-regular elements of C} = S,,_4,. Thus the (X', )’)-blocks of
Cs, (x) are the Irr(Cp) ® b’s, where b runs through the ¢-blocks of C.

Now, for any (X’,)’)-block B of S, labelled by the ¢-core ~y, we set
B(x, B) = Irr(Cy) @ b, where b is the ¢-block of C; labelled by ~, and, for any
X € B and g ® py € Irr(Co) @ b, we set

[ —
c — { my,,, i po = 1,
XMo@ 1 3

0 otherwise

where the mf , are the coefficients appearing in formula (). It is then clear,
by formula (1), that, for each x € &”, the B(x, B)’s and ¢, 4,0, s thus defined
satisfy the hypotheses of Proposition 1.33. Hence the (X”,)”)-blocks of S,
satisfy the Second Main Theorem property.

The case of (X, ))-blocks is a bit more tricky. However, the main ingredi-
ents are the same. It can be shown that, for r € X, writing C, (r) = Cy x C}
as indicated when we defined (X, Y)-sections, each ¢-block of Cg, () has the
form Irr(Cy) x b for some ¢-block b of Cy. The difference with the previous
case is that, given sg * s € )Y(r), we can consider formula (1) applied to
xr = rsg and y = s1, but the coefficients appearing on the right side may
depend on sy (since the (-types of r and rsy may differ). However, even
in this case, formula (f) can be used to show that, if an (X,))-block B of
Sy, dominates the (X,))-block Irr(Cy) ® b of Cg, (r), then B and b must be
labelled by the same ¢-core (cf [18]). Finally, we have

Theorem 1.43. The (X,))-blocks and the (X', )")-blocks of S, satisfy the
Second Main Theorem property.
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Part 2

Generalized Perfect Isometries

In [18], the authors give a definition of generalized perfect isometry between
(unions of) generalized blocks of two groups, and use it in the case of sym-
metric groups to prove that the ¢-blocks of S,, satisfy an analogue of the
Nakayama Conjecture (cf Part 1). In this part, we investigate some families
of groups of Lie rank one (namely SU(3,q?), Sz(¢) and Re(q)), exhibiting
generalized perfect isometries where there are none in the sense given origi-
nally by M. Broué, and thus proving a (weaker) analogue of one of Broué’s
Conjectures in these cases.

2.1 pF-blocks

We start by observing that some generalized blocks (namely p*-blocks) can
always be defined in a finite group. We take G any finite group, p a prime,
and k > 1 an integer. An element of G is said to be p*-regular if its order
is not divisible by p*, and p*-singular otherwise. We let C;, be the set of
pF-regular elements of G. Then Cj, is a closed set of conjugacy classes of G,
and, using the definitions of the previous part, we can define the Ci-blocks
of G. We call them the p*-blocks of G.

Take g =€ G. We define the p*-section of g to be its p-section if ¢ is
pF-singular, and the set C; of p*-regular elements of G if g is pF-regular.
Then each p*-section of G is a union a p-section. This is clear for p*-singular
sections, for they are already p-sections, and Cj, is the union of the sections
of elements of G whose p-part has order 1 or p.

Now the p-blocks of G satisfy the Second Main Theorem property (by
Brauer’s Second Main Theorem), so that irreducible characters in distinct
p-blocks of G are orthogonal across each p-section, and thus across each p*-
section. In particular, if two irreducible characters of GG are directly Ci-linked,

41
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then they belong to the same p-block of G. This proves that any p-block of
G is a union of p*-blocks.

In the families of groups we will study in this part, we will be interested
in p?-blocks, where p is the defining characteristic.

2.2 (Generalized) Perfect Isometries

We find in [18] a definition of perfect isometry which generalizes the context
from p-blocks to C -blocks, but which, when specialized again to p-blocks is
a bit weaker than the definition of M. Broué (cf [2]).

Broué’s definition goes as follows: we let G and H be two finite groups,
(K, 0, k) be a p-modular system large enough for both G and H, e and f
be central idempotents of OG and OH respectively, and we set A = OGe
and B = OHf. To any generalized character pu of G x H (written p €
ZIrr(K(Gx H))), we can associate a linear map I,,: ZIrr(KH) — ZIrr(KG)
by letting, for ( € lrr(KH) and g € G,

14O) = T 3l h )R

heH

Definition 2.1. (¢f [2]) A generalized character u of G x H, is perfect if
the following two conditions are satisfied:

(per. 1) For all g € G and h € H, |Cs(g)|, and |Cy(h)|, divide pu(g,h).
(per. 2) If u(g,h) # 0, then g and h are either both p-reqular, or both p-
singular.

If furthermore the map I, defined by p induces a bijective isometry between
ZIrr(KB) and ZIrr(KA), then I, is said to be a perfect isometry between
B and A, and B and A are said to be perfectly isometric.

We then have the following (cf [2]):

Theorem 2.2. Suppose that, with the notations above, B and A are perfectly
isometric via I,. Then:

(1) 1, defines a bijection between primitive idempotents of the centers Z(KH f)
and Z (K Ge), which in turn induces an algebra isomorphism between Z(OH f)
and Z(OGe).

(11) 1, induces a bijection between the blocks of H and G associated to f
and e respectively, which preserves the defect and number of ordinary irre-
ducible characters, the number of irreducible Brauer characters, the height
of ordinary irreducible characters, and the elementary divisors of the Cartan
matriz.
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In particular, under the same hypotheses, there exist a bijection I': Irr(B) —
Irr(A), and signs {¢(¢), ¢ € Irr(B)} such that, for all ¢ € Irr(B), I,(¢) =

e(OI(Q)-

We now turn to the definition introduced in [18]. If G and H are finite
groups, C and D are closed unions of conjugacy classes of G and H respec-
tively, and if b (resp. ') is a union of C-blocks of G (resp. D-blocks of H),
then we say that there is a generalized perfect isometry between b and b
(with respect to C and D) if there exists a bijection with signs between b and
b', which furthermore preserves contributions; i.e. there exists a bijection
I: b+ b such that, for each x € b, there is a sign £(x), and such that

Vx, v eb, <I(x), I(¢) >p=<e(x)x, ()¢ >c .

Note that this is equivalent to < I(x), I(¢) >p=< e(x)x, €(¥)¥ >¢/, where
C'=G\Cand D'=H\D.

We define R(C,b) to be the Z-submodule of the space of complex class
functions of G' generated by {x¢|x € b}, and P(C,b) to be the Z-submodule
of R(C,b) consisting of generalized characters. The fact that C is closed
implies (using Galois theory) that the modules R(C,b) and P(C,b) have the
same Z-rank, and that this rank is the number of conjugacy classes in C(cf
[24]). Given a Z-basis {¢1, ..., ps} for P(C,b), we let C'(b) be the s x s
matrix with (7, j)-entry < ¢;, ¢; >¢, and call C'(b) the Cartan matriz of b.
A different choice of Z-basis for P(C,b) leads to a Cartan matrix with the
same elementary divisors. We define similarly R(D,V'), P(D,V') and C(V').
We then have the following:

Theorem 2.3. (Proposition 1.4 in [18]) With the above notations, if there
is a generalized perfect isometry between b and b’ with respect to C and D,
then the Abelian groups R(C,b) and R(D,V') are isomorphic via an isomor-
phism which restricts to an isomorphism between P(C,b) and P(D,b"). With
suitable choice of Z-bases, the Cartan matrices C(b) and C(b') are equal.

In particular, we see that, if C (resp. D) is the set of p-regular elements
of G (resp. H), then such a generalized perfect isometry induces a bijection
between the p-blocks in b and b, which preserves the numbers of ordinary
irreducible characters and irreducible Brauer characters, and the elementary
divisors of the Cartan matrix. However, with this more general definition,
one doesn’t get the algebra isomorphism of Theorem 2.2 (i).

One of Broué’s conjectures (which is just the shadow, at the level of
characters, of much deeper equivalences conjectured by Broué) states that,
if G is a finite group with Abelian Sylow p-subgroup U, and if B = Ng(U) is
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the normalizer of U in GG, then the principal p-blocks of B and G are perfectly
isometric (in Broué’s sense).

This conjecture doesn’t apply to the three families of groups of Lie rank
one we will consider when p is the defining characteristic, for then the Sylow
p-subgroups are not Abelian. Furthermore, it is shown in Cliff [8] that, if G is
a Suzuki group, then there isn’t any perfect isometry between the principal
2-blocks of B and G. This was the starting point of this work. In this
part, we show that, in the case of Suzuki groups and in two other (and quite
similar) families, there is a generalized perfect isometry between the principal
p-blocks of B and G, with respect to p*regular (or p*>-singular) elements.

Section 2.3 deals with special unitary groups SU(3, ¢?), section 2.4 with
Suzuki groups Sz(g), and section 2.5 with Ree groups (of type G2) Re(q).

In two of the families of groups we are studying, we will use two theorems
concerning p-blocks. The first, due to Green, states that any defect group of
a p-block of a (finite) group G is the intersection of two Sylow p-subgroups
of G (see e.g. [20], Corollary (4.21)). An immediate consequence of this is
that, if the Sylow p-subgroups of G have trivial intersection, then any p-
block of G has either maximal defect or defect 0. The second result, proved
by Fong in the case of p-solvable groups (see e.g. Isaacs [16], Problem (4.9)),
but which still holds in general, states that, if a finite group G is such that
Ce(0,(G)) < 0,(G), where O,(G) is the largest normal p-subgroup of G,
then G has exactly one p-block.

2.3 Special Unitary Groups

In this section, we denote by G = SU(3, ¢*) the 3-dimensional special unitary
group on F ., where ¢ = p" for some prime p and n > 1. We write d =
ged(3,q + 1). Then the center Z(G) of G is cyclic of order d. Note that,
if p = 3, then d = 1. Thus, whatever the value of p, the integers p and
d are coprime, and their least common multiple is pd. The order of G is
1G] = ¢*(q+1)*(q —1)(¢*> — ¢+ 1). We consider U a Sylow p-subgroup of G
and its normalizer B = Ng(U), which is a semi-direct product of U with a
cyclic group H of order ¢ — 1. We have |U| = ¢® and |B| = ¢*(¢*> — 1). For
a complete description of G and B, their conjugacy classes and ordinary and
modular characters, we refer to Geck [13], whose notations are now in force.

2.3.1 Conjugacy classes

The tables of conjugacy classes of G and B are taken from Geck [13]. Only
the order of their elements have been added (these can be easily computed
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using the canonical forms given in [13]).
The group G has ¢*+q+1+d? conjugacy classes, parametrized as follows:

name parameters length order
c®) 0<k<d—1 1 1(k=0)ord
i 0<k<d—1 (¢ +1)(g—1) p(k=0)orpd
ciFD 0<kl<d—1 La(? —1)(® +1) | 2p(k=0)or2dp
(k) 0<k<gq 22 g+1
04 % J( k q (q q + 1) ng(k, q+1)
(k) 0<k<gq 20 3 2(g+1)
Cs k414 m=0(modq-+1) ¢(¢g—1)(¢°—q+1)| dividingg+1
0<k<qg*-2
k # 0(mod g — 1); _
(k) ) 3(,3 (¢+1)(g=1)
7 ifk; = —gk(mod ¢* — 1) ¢(¢"+1) ged((g+1)(g—1), k)
then C’§k) = C’ékl)
0<k<¢"—q
L gk
i itk; = —kqorky = k¢? Plg+1)>%(qg—1) _ =g+l
d(g>—q+1,
(mod ¢*> — ¢+ 1), then S0+ B)

B has ¢? + q + d conjugacy classes, parametrized as follows:

name | fusion into G parameters length
B% c® 0<k<d-1 1
B P 0<k<d-—1 q—1
B kD 0<kl<d-—1 Lo(q® — 1)
B c? 0<k<gq, < fk e
Bf" Y 0<k<gq, " Jk | -1
Bék) C’ék) 0<k<q¢-2,q-1fk 7

We are only interested in elements of order divisible by p?. We see from
the tables above that, unless p = 2, there is no such element in G.

Remark: this can be seen without actually computing the orders of the ele-
ments of G. Take any p-element g in G, of order p* say. Then its eigenvalues,
which lie in some finite extension of F 2, F,; say, must be p¥-th roots of 1.
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But the only p*-th root of 1 in F, (in which each z is a root of ' — )
is 1 itself. Thus the characteristic polynomial of g is (X — 1)3, and thus
(9 —Id)®> = 0. Then, if p > 3, then g — Id = (g9 — Id)? = 0, so that g = Id.
Hence, if p > 3, then any non-trivial p-element of G' has order p.

As a consequence, if p # 2, then every element of G is p*-regular, so that
the scalar product on p?-regular elements is just the ordinary scalar product,
and there exists a generalized perfect isometry between the principal p-blocks
By and by of G and B with respect to p?>-regular elements if and only if there
exists a bijection between By and by (any bijection will give a generalized
perfect isometry).

If p = 2, we will only consider the values of irreducible characters on
elements of order divisible by 4, that is, we will consider

C={geGl4o(g}= |J o

0<k,1<d—1

and
D={heB|4oh)}= |J B".

0<k,1<d—1

Both C and D are closed unions of conjugacy classes (of G and B respec-
tively).

2.3.2 Irreducible characters, principal blocks

The irreducible characters of G can be listed as follows (The index used in the
notation for a character indicates its degree; characters of the same degree
are then parametrized by parameters u and v. Note that for characters of
degree ¢*> + 1 and (g + 1)%(¢ — 1), different choices of parameters can yield
the same character (cf [13]); we therefore indicate the number of characters
in these families.) :
X1, Xa2—a» Xa#s Xg2_gi1s Xggz—qeny | 1 S U< q},
X e | 1 S < (g +1)/3, u < v < 2(g +1)/3},
{Xfszrl 11<u<¢—1,q¢—11u} ((¢+1)(g—2)/2characters),

{X (g+1)2(q—1) ’O g Uu S q2 -4, q2 —dq +1 Tu} ((q2 —dq +1- d)/3characters),

and, if d = 3, we have in addition

{X(q1q—q+1/3‘0<u<2}and{xq+l /3‘O<u<2 v=1,2}
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The irreducible characters of B can be listed as follows:

{0710 <u<q? =2} {0110 < u < g}, {021} (only if d = 1),

a(g—1
and {982’”_)1)/3 |0 < wu, v <2} (only if d = 3).

We now compute the principal p-blocks By and by of G and B respectively.

We compute them directly, using the fact that two (complex) irreducible
characters belong to the same p-block if and only if the associated central
characters are the same when reduced to a field of characteristic p (cf [20],
definition (3.1) and Problem (3.3)):

Theorem 2.4. If N is a finite group, (K, O, k) a p-modular system large
enough for H, O being the localization of Ak (algebraic integers of K) in P,
then x € Irr(KN) belongs to the principal p-block of N if and only if

|C’|& = |C| (modP)

x(1)
for each p-regular conjugacy class C' of N.

Most of the work is done using the following observation: with the no-
tations of the previous theorem, and given C' a conjugacy class of N, if |C|
is divisible by p, then |C| € P (since P NZ = pZ), so that we only need to
check whether |C \% € P. We distinguish two special cases:

a) If x(C) = 0, then the property is clearly verified.

b) If {55 € P, then, since x(C) € Ax and P <1 A, |C|X5) € P.

It turns out that, for any p-regular conjugacy class of length divisible by
p and any irreducible character of G or B, one of these two cases apply:

We first consider the group GG. The p-regular conjugacy classes of length
divisible by p are those of type Cy, Cg, C7 and Cg. We examine only charac-
ters distinct from x; and x,s (the first one belonging to By and the second
one being of defect 0 and thus not belonging to By).

Cs has length ¢*(g+1)%(q—1), so that case b) applies to characters of degree
¢ —q, (g+1)*(g — 1) and (q + 1)*(¢ — 1)/3; case a) applies to any other
character.

C7 has length ¢*(¢® + 1) = ¢*(¢ + 1)(¢*> — ¢ + 1), so that case b) applies to
characters of degree ¢> — q + 1, q(¢*> — ¢+ 1) and ¢ + 1; case a) applies to
any other character.

Cs has length ¢*(q — 1)(¢*> — ¢ + 1), so that case b) applies to characters of
degree ¢*—q, ¢*—q+1, ¢(¢° —q+1), (¢—1)(¢° —¢+1) and (¢—1)(¢* —¢+1)/3;
case a) applies to any other character.
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C’4 has length ¢?(¢®> — ¢ + 1), so that case b) applies to characters of degree
¢®>—q+1 and q(¢*—q+1); case a) applies to characters of degree (¢+1)%*(¢—1)
and (¢ + 1)%(¢ — 1)/3; we check the other cases by hand :

Xe—q(Cs)  @(@® —q+1)(1—q)

¢ = =—q(¢®—q+1)eP
|C4 oo pr— q(q” —q+1)
)(C1) @@ —q+1)(g—1a
Cy Xa—1)(a? q+1)(4: =¢FacP(acA
G X(g-1)(g2—g+1) (1) (¢—1)(¢*—q+1) ( 2
3 20,2 1 Do’
|O4|Xq +1(C4) _ q (q q+ )(Q+ )CK — qZO/ cp (a/ c AK)

Xe+1(1) (¢®+1)
C |X<q—1>(q2—q+1>/3(04) AP g+ D(g—1)

4 = =3¢ €P.
X(g-D(@—g+1)y3(1) (¢ —1)(¢* —q+1)/3

Now, in B, the p-regular conjugacy classes of length divisible by p are
those of type B4 and Bg. We have

|Ba| | Bl
=¢> € P and
0i(1) )

so that case b) applie to these two cases. Furthermore,

Ooig-1)(Bs) _ ¢*(1 - g)o”
Oa(a—1)(1) q(g—1)

and, in every other cases, case a) applies.

=@ ep

| Bl =—qa" € P (o € Ag)

In order to compute the principal blocks By and by, we thus only have
to study the values of irreducible characters on p-regular conjugacy classes
of G and B of length not divisible by p. These are the ka)’s and the Bik)’s
respectively, and they have length 1 (since lie in the center). For C' one of
these classes, and 1 an irreducible character of the corresponding group, we
thus have to check whether M is congruent to 1 modulo P. But, since C'

P(1)
lies in the center, which has order d, ﬁ(—l)) is a d-th root of 1. And it can be
shown that, if € is a p/-root of 1, then Z[e| NP = pZ[e]. In particular, we get

Y(©O) : e ¥(C)
thatm—leplfandonlyﬁm_l.

Principal block of B
We see that, for fixed degree, the value of 6 € Irr(B) on B only depends
on the parameter u in § (and on k); writing 3 = €24, we get, in all the

cases,
O, €by == (B =1forall0 <k <d—1).
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This is always true if d = 1 (for then § = 1), so that by = Irr(B) and
[bol = ¢* + ¢+ 1.
If d =3, then 8 = e*™/3, and thus

O,€by — B =pr=p"=1
— p[*=1
< u =0 (mod 3)

Hence

bo = {01710<u<q®—2 3u}u{0l 10 <u<q, 3u}
{0057, 510 < uy v < 2, 3Ju}
= {e“” |0 <u<q®—2 3uf Ul 10 <u<q, 3u}

U{G(2 1/3\O§v§2}

Now d = ged(3, ¢+ 1) = 3, so that ¢ = —1(mod 3), ¢* = 1(mod 3) and
¢? — 2 = —1(mod 3), and thus |by| = q3—1 + 4 4 3= %4—3.
Principal block of G

Similarly, we must check, for x € Irr(G) \ {x,;} and 0 < k < d — 1,
whether X (i) ) — 1. We let again 8 = e%7/4,
If d =1, then § = 1, and this is true for all x € Irr(G) \ {xz}, so that
By=Ir(G)\ {xg} and |Bo| =¢*+q¢+2—-1=¢*+ ¢+ 1
If d = 3, then 3 = €23, The result is true for xi, X2, and x €
{X(q Dg—gr1y3 |0 < u < 2}, whose values on the C’{k)’s do not depend

FOI" Xu € II‘I‘( ) \ <{X17 Xq3> Xq —q} U {XEZ vi V(2 —q+1) }U{ q+1)2 (¢—1 /3}
()
U{X(q_1)(q2_q+1)/3}>7 we have

Yu € By <= %=1 forallk=0,1,2

< 3u.
Finally
(u,) utv)k _ —
Xy (q2—gi1) € Bo == pUrE =1 forall k=0, 1, 2
<~ 3lu+wv
and )
X(g+1)2(q—1)/3 € By < p% =1 forallk=0,1,2

< 3|v,
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which is excluded.

Hence

Bo = {Xl’ Xqu} Y {ng)*qﬂ’ XEJI(LQLqul) | lsusyg, 3|u} U {XEZ vz )(¢>—q+1) |

IH(ghyeg-n [0S w0 =g (-, 8} U gLy eogrnya 0 S u <2)

and it can be verified that, in this case, |By| = 2+ 2(% — 1) + % +

(q+1)(q 2) 4 ¢ _= 241 3= qq+1 +3.
We thus notice that |bo| = |By|, independantly of d. In particular, if

p # 2, then there is a generalized perfect isometry between By and by with
respect to p*-regular elements. In the rest of this section, we will therefore
only consider the case p = 2.

1<u< (g+1)/3, u < v < 2(g+1)/3, 3Jutv}U{x\s,, 1 <u < ¢?—1(..), 3u}

2.3.3 A generalized perfect isometry

We start by observing that the number of conjugacy classes of elements of
order divisible by 4 is the same in G and B. Moreover, if z € B is such
an element, then |Cq(z)] = |Cp(z)] = dg*. As a consequence, if we can
find a bijection with signs between By and by which furthermore preserves
the values of characters on 4-singular elements, then it will also preserve
contributions, and thus will be a generalized perfect isometry between By
and by with respect to 4-singular elements (or 4-regular elements).

If d =1, we have the following fragment of the character table of B:

0<u<g H(u) 0<u<g®—2|0,,
B 0 1 —1

and the corresponding fragment for G:

(u,0)
(u) (u) X(g=1)(g2—q+1)
Xqg?—q Xq(q2—q+1) Xg2—g+1 1< Z < [(Iq _T_ 1)/3

<u< <u<
lsusqg | 1susgq u<v<2q+1)/3

e o 0 1 —1
) @)
Xgp+1 X(g+1)2(q-1)
I1<u<g¢g®—1 | 0<u<g—q | x1
qg—11tu ?—q+1tu
co0 1 1 1
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In view of the remark above, we can see that there is a generalized perfect
isometry between by and By. Indeed, listing the irreducible characters of by
and By in the same order as in the above tables, and relabelling them so
that Irr(by) = {©1, ..., Opig1} and Iir(By) = {Xy, ..., X24g41}, then a
generalized perfect isometry between by and By is given by

I: @i'—>€iX’ia Z:17q2+q—|—1,

where g; = —1 if X; has degree (¢ —1)(¢* — ¢+ 1), (¢+1)*(g—1) or 1, and
g; = 1 otherwise.

If d = 3, we have the following fragment of the character table of B:

9(“) H(U) 9(07U)
q(g—1) 1 (¢*-1)/3
0<u<qg3u | 0<u<g¢g®—2,3u | 0<v<2
7 5
0 | PR T
0<k <2 90u

and the corresponding fragment for G:

(u,0)
() () X(g=1)(@>—q+1)
Xg(q2—q+1) Xg2—g+1 <u<
Xeg—q | 1<u<qg [Xx1| 1<u<ygq Lsus(g+1)/3
u<v<2qg+1)/3
3|u 3|u 3/(u+ v)
C?Ek,l)
0 0 1 1 —1
0<kI1<2
(u) ()
Xq3+12 X(g+1)? (q 1) (w)
I1<u< q — 1 0<u< q —q X(q—l)(q2—q+1)/3
q—1tu ¢ —q+1tu 0<u<?2
3|u 3|u
Cék’l) +1
1 -1 O — 5~
0< k<2 1o

Then, here again, we can see that by and By are perfectly isometric (with
respect to 4-regular elements): listing the irreducible characters of by and
By in the same order as in the above tables, and relabelling them so that
Irr(bo) = {O1, ..., Ogg+1)/3+3} and Irr(By) = {X1, ..., Xyg+1)/34+3}, then
we have the following generalized perfect isometry between by and By:

where g; = —1 if X; has degree (¢ — 1)(¢* — ¢+ 1) or (¢+ 1)*(g — 1), and
g; = 1 otherwise.
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2.4 Suzuki Groups

In this section, we let G = Sz(q) be a Suzuki group, where ¢ = 22"*! for
some n > 1, U a Sylow 2-subgroup of G, and B = Ng(U).

2.4.1 Conjugacy classes

The conjugacy classes of G can be found in Burkhardt [4]. We have |G| =
¢*(q — 1)(¢*> + 1), and, writing 72 = 2¢ (r € N), we have representatives for
the conjugacy classes of G : t (order 2), f, f~! (order 4) for the elements of
even order, and

-9 —
Lt igas o) s ) e

for the elements of odd order (dividing ¢—1, g+r+1 and g—r+1 respectively).

We have |Cq(f)| = |Ca(f)| = 2q.

For the following facts about the structure of B and references for proofs,
we refer to Cliff [8].

We have |U| = ¢?, and B = Ng(U) is a semi-direct product of U by a
cyclic group A of order ¢ — 1. U is a TI (trivial intersection) set in G with
respect to B, and B is a Frobenius group of order ¢*(¢—1) (U is the Frobenius
kernel and A is the Frobenius complement). Letting C' be the center of U,
we have C = U/C = (F,,+), and A acts regularly on the sets of non-identity
elements of both C' and U/C. We have the following non-trivial conjugacy
classes in B :

- a unique class of involutions, consisting of the non-identity elements of
C. For 7 in this class, |Cp(7)| = ¢*.

- two classes of elements of order 4, Clg(p) and Clg(p~'), where p € U\C.
We have |C5(p)| = [Cr(p™")| = 2¢.

- ¢ — 2 classes of elements of odd order : {Clg(n), m € A\{1}}. For such
a m, Cpg(m) = A has order g — 1.

We can now compute the conjugacy classes of U. For any involution 7 in
U, we have 7 € C' = Z(U) and Cly(7) = {7}, which gives us ¢ — 1 classes
of involutions: {{7;}, 2 < j < ¢}. Using the fact that the centralizer in B of
an element of U of order 4 is a 2-group, and thus is equal to its centralizer
in U, we see that U must have 2(¢ — 1) classes of elements of order 4, each of
length q/2 : {Cly(fa), Cly(fat), ..., Cly(f,), Cly(f, ")}, where (without
loss of generality) fj2 =7, for all j =2,..., ¢. This makes a total of 3¢ — 2
conjugacy classes in U. Furthermore, C' = Z(U) is also the commutator
subgroup of U, so that U has [U : U'| = [U : C] = ¢ linear irreducible
(complex) characters.
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2.4.2 Irreducible characters of B
First step and Clifford’s Theorem

From the semi-direct product structure, we have a group homomorphism

m: B — A, which gives us ¢ — 1 distinct linear (irreducible) characters of
B with U in their kernel : mo Ay = 1p, To Xy = 9, ..., TO N1 = Qy_1,
where Irr(A)= {\ = 14, A2, ..., Aj—1}. Therefore 3 elements py, po, p13 of
Irr(B) are missing, and these don’t have U in their kernel (for otherwise
they could be lifted to B from irreducible characters of A). Whence, since
B is a Frobenius group with Frobenius kernel U, p, po and pgz are induced
by non-trivial irreducible characters of U (cf Curtis-Reiner [9], Proposition
(14.4)). We write p; = Indf(v;) for some v; € Irr(U) \ {1y}, i = 1,2, 3.
Writing |B| = ¢*(¢ — 1) = (¢ — 1)1 + p1(1)? + p2(1)? + p3(1)?, we see that
v1(1)24+15(1)?+v3(1)* = ¢+1 odd. The v;(1)’s being powers of 2, this implies
that, without loss of generality, v1(1) = 1, p1(1) = ¢—1 and 15(1)?+13(1)? =
q = 2% so that v,(1) = v3(1) = 2" and ps(1) = uz(1) = (¢ — 1)2.

Finally, B has the following irreducible characters:

v € Irr(U) \ {1v},

©v1=1B, ..., P41 Ha M2, 3
degree 1 degree g — 1 degree (¢ — 1)2"
i =To N, _ 1.1B 1 = Indj (vy),
' o =Indy(m), 1 o) (1),

1=1,...q—1,
=UxA—A,

T Vi(l) =27,
Irr(A) = { )\, ...

m(l) = 1. i=2,3.

A1)

Now, U acts (trivially) by conjugation on C, and thus on Irr(C). By
Clifford’s Theorem, we see that, if x € Irr(U) and if < ResZ(x),p >c# 0
for some y € Irr(C), then ResY(x) = eu for some e € N. Furthermore,
since every element of Irr(C) is linear, e = x(1), a power of 2. In particular,
Resl(v1) = ai, Resl(vy) = 2"a, and Resl(r3) = 2"as for some ay, as, as
linear (irreducible) characters of C.

Furthermore, using Frobenius Reciprocity, we see that we can define an
injective map

Irr(C) — Irr(U)
a +— vst <Ind%(a), v >p#0
Actions of A and B

We have C' <« B, and B acts by conjugation on the conjugacy classes of
1

C: for c € C, uw € U and a € A, we have (u, a)"!(c, 1)(u, a) = (c* , 1)
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where ¢* ' denotes the image of ¢ under a~! in the action of A on U (which
action preserves C' which is characteristic in U). Hence the action of B in
fact reduces to an action of A (by this we mean that {B-orbits of C'} =
{A-orbits of C'}).

Now B also acts by conjugation on Irr(C) = {8, = 1¢, fa, ..., B,} via
B (c)=Bi(" ) force C,he Byandi=1, ..., q,

where ¢ denotes the image of ¢ under A1 in the B-action we just described.
And, here again, {B-orbits of Irr(C)} = {A-orbits of Irr(C)}. We can now
apply Corollary (11.10) in Curtis-Reiner [9] which states that, if B acts by
conjugation on the conjugacy classes of C'<tB and on Irr(C'), then the number
of B-orbits of these two actions coincide.

But, in the first action, we only have two orbits : {1} and C'\ {1} (since A
acts regularly on C'\ {1}). Since {1¢} is clearly an orbit in the action on
Irr(C'), we must have

18y, a € A} = {2, ... By} (= {85, a€ A} forall j =2, ... q).

And, since |A| =q¢— 1, foralli =2, ...q, if 3¢ = 3°, then a = b.

Now B acts by conjugation on Irr(U) and, the (underlying) action of
U being trivial, this also reduces to an action of A. Furthermore, for any
X, ¥ € Irr(U), for all @ € A, since < x?, ¥* >p=< x, ¥ >y, we have

"=yt x=¢ (A)

Now take any i € {2, ...q}. Then Ind¥%(3;) has, say, k distinct irreducible
summands in Irr(U). If x € Irr(U) is any of these, then, for all a € A, x°
is an irreducible summand of Ind%(3¢). This also implies that, for a, b € A,
¢ =x" = B¢ = 3° = a = b. Hence the orbit of y under the action of A has
size ¢ — 1 (and all the elements in this orbit have the same degree).

Now, because of (A), we see that, for all a € A, Ind%(3¢) must have at
least k distinct irreducible summands in Irr(U). And, since i was arbitrary,
and since {4, a € A} = {0,, ...0,}, we get that, for any i € {2, ...q},
Ind?%(3;) has exactly k irreducible summands in Irr(U). Notice that all the
elements of Irr(U) which arose are distinct because of the injectivity of the
map we constructed in the last paragraph. Since all irreducible characters of
U appear as irreducible summands of characters induced from C' to U, this
gives us

[Trr(U)| = [{irr. summ. of Ind%(1¢)} + (¢ — 1)k.
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Irreducible characters of U

By Frobenius Reciprocity, 1y is an irreducible summand of Ind%(1¢). Fur-
thermore, by Frobenius Reciprocity and Clifford’s Theorem, we can write
md%(1¢) = Y. x(1)x. In particular, any linear irreducible summand of
Ind%(1¢) appears with multiplicity 1.

Thus > (x(1))? = ¢ even yields that there must be (at least) one other
(than 1) linear irreducible summand of Ind¥%(1¢), « say.

Now U has exactly ¢ linear irreducible characters. Supposing one of these
is an irreducible summand of some Ind¥%((3;), 3; # lc, then we would find
one distinct linear irreducible character in each of {Ind%(3;)|j # 4, B; #
1¢}, each distinet from 1y and «, thus giving 2+ ¢ — 1 = ¢ + 1 distinct
linear irreducible characters of U. This is a contradiction. Hence all linear
irreducible characters of U appear as irreducible summands of Ind¥%(1¢), and
nowhere else. For the degrees to match, we must have Ind%(1¢) = 3.7 &,
where the ;s are the (only) ¢ linear irreducible characters of U.

This implies that k = 2, i.e. for any 1¢ # 3 € Irr(C), Ind%(3;) has
exactly 2 irreducible summands in Irr(U). Writing Ind?%(32) = x(1)x+v (1),
we get x(1) = (1) = 2™

So far, we got that Irr(U) = {&., ..., &, X2y -+ Xg» Y2, -+, Uy} Now
the &’s are real (indeed, for any j € {2, ..., ¢}, &(7;) = 1le(7;) = 1, hence
&(f;) € {£1}). If all xo, ..., x4 were real, then, since the ;s are real, x; +
¢; = IndZ(3;) is real for alli = 2, ..., ¢, and thus all xo, ..., Xgs V2, ., Yy
would be real. But this is not true since (e.g.) fy and f, ' are not conjugate in
U. Thus, without loss of generality, x2 is not real and, since {xa, ..., X,} =
{x§, a € A}, none of xo, ..., X, is real.

Now, for all i = 2, ..., ¢, Res’%(X7) = 2"3: = 2"6; = Res%(xi), so that
Xi € {xi, ¥i}. From the above remark, we deduce that x; = ¢; for all i =

2, ..., q. Finally, the irreducible characters of U are as follows:
1U:§17~~a§q X??"'aX(pE’”'aX_q
degree 1 degree 2"

’5125722 17 - q, Indg(ﬁz) :2n(X1+E)7Z: 17 vy g,
Indg(1e) = XL, & Irr(C)\ {1} = {82 -, Be}-

Values on 4-elements

Characters of U:

Take any k € {2, ..., ¢} and consider ;. We have ResY(xx) = 2",
Br € Irr(C). We define I = {j € {2, ..., ¢} | Br(7;) = 1} and
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[_1 = {j c {2, “ey q}|ﬁk(Tj) = —1} Then |Il| = %— 1 and |]_1| = %
Take py: U —— G Lan(C) the representation associated to yj. Using the fact
Xk(Tj) = £2", depending on if j € I; or j € I_;, we see that Sp(px(7;)) = {1}
(the set of eigenvalues of pi(7;)) if j € I1, and Sp(pi(r;)) ={—1}if j € I_;.
Thus / |
1, 1}ifje

Sp(pk(fj)) - { {—i, Z} lfj el

and
N eZitjel

Xi(f5) = { i € Ziif j € I

Now < xi, v >u=0= 3" cp Xe(t) = Xpec Xn(w) + 2 ycine Xe(u). But

ZXk(U) = |C| < Resg(xx), le >c=|C| < 2"k, 1¢ >c=0

ueC
and
> o) = D CW N0 + xe(f) + D 1C () Oa(f) + xe(fy
ueU\C Jjel— jel
= > g(nkji —ngd) + Y axa(f5)
Jel—1 jeh

whence we finally get that

Zxk(fj) =0for any 2 <k <gq.

Jjeh

(Notice that, even though it is not clearly indicated, the set I; in the above
formula depends on k.)

Now, similarly, for any 2 < k < ¢, & is orthogonal to 1y :

0= 6w =Y &+ Y &w=ICl+> 256

uelU ueC ueU\C

whence we get that

Q

ka(fj) = —1forany2 <k <gq.

J=2

)
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Induction from U to B:

We write B = Uty U---UUt,_1, where the ¢;’s are representatives for the
cosets of U in B. For any x € Irr(U) and 2 < k < ¢, we have (since U < B =
Ne(U)) IndZ(x)(fi) = S5 x(tifut; 1), Comparing the conjugacy classes of
elements of order 4 in U and B, we see that, up to relabelling the f;’s, we
can suppose that fo, ..., f; are conjugate in B to p, and .., fq_l are
conjugate in B to p~'. In particular, fj is conjugate in B to each of fs, ..., f,.
Since conjugation of fi by elements of a given coset of U in B gives a unique
conjugacy class in U, we see that, as ¢ runs through {1, ..., ¢—1}, f,g“ must
run through {Cly(f;), 2 < j < ¢}. This implies that

{x(tifit;"), 1<i<qg—1}={x(f;),2<j<q}
and

Ind5 (x)(fx) = ZX(fJ) for all x € Irr(U), 2 < k < q.

=2

Last step

Now we can finish our description of the irreducible characters of B. Re-
member only three were missing, p;, po and pg, respectively induced from
U to B by (non-trivial) irreducible characters vy, v5 and v of U of degree 1,
2" and 2". Thus, w.l.o.g., 1 = Indf}(&) and py = Indg(x2). Thus, writing
p and p~! representatives for the two classes of elements of order 4 in B, we
have

pa(p) = Z&(fj) = -1

q

a(p) =Y xa(fi) = D xa(fi) + Y xalfy)

j=2 jeh jela

which, since >, x2(f;) = 0, gives ps(p) = ai € Zi. Similarly, us(p) = bi €
Zi.

Writing the second orthogonality relation in H for the column of p, we get
> pelrran ()P = a + a® + 0% = [Cu(p)| = 2¢. Thus a® + b = ¢ = 2°"+1;
this forces both a and b to be non-zero. But then us(p) € Zi \ {0}, so that
T3 # o, and therefore iz = pg. Furthermore, |a| = |b| = 2", and, since
bi = ps(p) = pa(p) = ai = —ai, we have b = —a and, up to exchanging i
and p3, we have a = 2" and b = —2".

Remark: A description of the irreducible characters of B, as well as their
values on elements of order 4 can actually be found in Suzuki [25].
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2.4.3 A generalized perfect isometry

We want to show that there exists a generalized perfect isometry with respect
to elements of order (divisible by) 4 between the principal 2-blocks By and
by of G and B respectively.

First note that, if x € B has order 4, then = € U and Cp(z) < U, so that
Cp(U) < U. Since U is the largest normal 2-subgroup of B, this implies that
B has only one 2-block, i.e. by =Irr(B). Furthermore, the fact that U is a TI
set with respect to B implies that the 2-blocks of G have either full defect
or defect 0. Since B has only one 2-block, Brauer’s First Main Theorem
implies that G has exactly one block of full defect, By, and any other block
has defect 0. Using the notations of Burkhardt [4], we see that G has exactly
one character of defect 0, written II, and thus By =Irr(G) \ {II}.

We take from [4] the following fragment of the character table of G (cor-
responding to characters in By):

| | ! S
1q 1 1 1
O, 1<s <2 ¢ +1 1 1

O,1<I<T [ (g—r+1)(g-1] -1 | -1
A, 1<u< | (g+r+1)(¢-1)] -1 | -1

I, (q—1)2" 2% | —2m
Iy (g —1)2" —2ni | 27y

(Note that |Bg| = ¢ + 2 = |Irr(B)| = |bo|.) And, with what we have done
before, we can compute the same fragment of the character table of B :

| 1 [ e [r]
1p 1 1 1
Vp, 2<k<qg-—1 1 1 1
t (-1 | -1 ] —1
2 (g—1)2"| 2™ | —2™
ps = iy (q—1)2" [ -2 | 2%

Finally, note that, if x € B has order 4, then Cg(z) = Cp(x), so that, as

in the previous section, if a bijection with signs between By and by preserves
the values of characters on 4-elements, it will also preserve contributions.
We then see from the two tables above that such a bijection exists; one can
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consider for example

Qg-2)2 = @g2

6, = —Qq/2+1
I3y Owina = —Pgerna
Al —

~P(Bg+r)/4+1

Ng-ryja-1 > —Pg1
Ng-ryja
Iy — o

2.5 Ree Groups

In this section, we consider G = Re(q) = G2(q) a Ree group, where ¢ =
32+l for some m € N. We consider U a Sylow 3-subgroup of G and
B = Ng(U).

2.5.1 The groups G, B and U

The group G is a twisted group of Lie type Gs, simple if m > 1, and a
description based on a root system of type G can be found in Carter [7].
In particular, we find in [7] that |G| = ¢*(¢ — 1)(¢® + 1), so that |U| = ¢.
Moreover, U can be written U = {z(t, u,v) | t,u,v € F,}, with multiplication
given by

x(ty, ur, v1)x(ta, ug, Vo) = x(t;+1a, Uy +us —t1t§6, V1 +v2—taUy +t1t§6+1 —tftée)

where 6 is the automorphism of F, given by A = A3" for all A € F, (and
thus 30> = 1). We will sometimes write (abusively) 6 = 3™.

There exists a subgroup H of B such that B=UH and |H| =¢—1. We
can write H = {h(w), w € F;'} and conjugation of U by H is given by: for
any t,u,v,w € Fg, w # 0,

h(w)z(t, u,v)h(w) ™" = z(w? 73, w3 u, wo).

We find some other structure results about Ree groups in Ward [26].
There can be found the following:
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Theorem 2.5. U is disjoint from its conjugates. Its center Z(U) is ele-
mentary Abelian of order q. U is of class 3 and contains a normal Abelian
subgroup U’ of order ¢* containing Z(U) which is both the derived group and
the Frattini subgroup of U.

The members of U\ U’ have order 9, their cubes forming Z(U) \ {1}.

We have B = Ng(U) = UH where H is cyclic of order ¢ — 1.

The character table of GG is also given in this article. G has ¢+8 conjugacy
classes, with representatives 1, R* # 1 for some R of order (¢ —1)/2 which is
prime to 3, S* # 1 for some S of order (¢ + 1)/4 which is prime to 3, V" and
W of order dividing respectively ¢ + 1 — 3™ and ¢ + 1 + 3™*! (the orders
of their centralizers, cf [26], p 85) which are prime to 3, X, T and T~ of
order 3 (X € Z(U) and T, T~ € U\ Z(U), cf [26], pp 78-80), Y, YT and
YT~ of order 9 (cf [26], p 82), J of order 2, JT and JT~! which belong
to groups whose order has 3-valuation 1 (cf [26], p 83) so which order is not
divisible by 9, and JR? # J and JS® # J of respective orders o(.J).o(R?)
and o(J).o(S®) which are not divisible by 3.

Note that, following Carter, we write ¢ = 3*™*!, while Ward writes ¢ =
3%+ and m = 3F. The m in Ward’s paper therefore corresponds to 3™ in
our notations.

The number and lengths of the conjugacy classes of U, as well as the
number and degrees of the irreducible characters of U and B can be found in
Eaton [11]. However, in order to obtain the values we need, we must compute
some details Eaton doesn’t give about the irreducible characters of B. We
therefore compute again everything explicitly.

2.5.2 Conjugacy classes of U
Conjugation in U, centralizers

We see from the formula for multiplication in U that the identity element of
U is (0,0,0), and that, since the center Z(U) of U has order ¢, it can be
identified with {z(0,0,v), v € F,}. We also obtain informations about the
order of elements : z(t,u,v)? = x(—t, —u — 397!, —v — tu) and z(t,u,v)? =
2(0,0, —t**2) so that z(¢,u,v)? = 1, and x(t,u, v) has order 3 if and only if
t = 0. Moreover, as ged(3™ ™ — 1,30 +2) = 1, we have {—t¥*? 1 € F} =
Fx, so that the cubes of the elements of order 9 of U are Z(U) \ {1} =
{2(0,0,v), v € Fx}.
Furthermore, the inverse of an element z(t,u,v) of U is
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Hence conjugation in U is given by
x(tla Uz, 'U1)$(t2, Uz, /02)1‘(7517 Uy, Ul)_l =

T (tg, ug — 130, + tot3% vy — touy + tyug + 237 — 263042 1394 11)).

In particular, conjugation in U preserves the first “coordinate”.
Now take any t1,ts, 1, ug,v1,v2 € Fy. Then x(ty, us, v1)x(ta, ug, v2) =
.T(tg, Ua, UQ).T(tl, Uy, Ul) if and only if

hhit+ta=1+1
1139 = 137
touy — t1t§9+1 + 17137 = tyuy — t2t?0+1 + 563 (1)

Writing w = 1130 = o3, we get that () <= t(ug — 2w) = to(u; — 2w) (1).
If t1, u; and vy are now fixed, we can solve the above system of equations

in tg, ug, v2 € Fy, and we eventually obtain:

Cu(z(0,ur # 0,v1)) = {x(0,u,v2) |ug,v2 € F,} has order ¢*, and thus

Cly(2(0,u; # 0,v1)) has length q.

Cu(z(t # 0,u,v1)) = {2(0,0,vs) , x(t,u,vq) , x(—t, =31 —w vy) | vy € F,}

has order 3¢, and Cly(x(t # 0,u, v;)) has length ¢?/3.

Using the formula for conjugation in U and the lengths we found, we see

that, given t,u,v € F, Cly(x(0,u,v)) = {x(0,u,v + tju), t; € Fy}, so that,
if u # 0, then Cly(x(0,u,v)) = {z(0,u,ve), v2 € Fy}, giving us ¢ — 1 such
classes, uniquely determined by w.
Moreover, z(t, Uy, vo)x(t, u, v)x(t, uz, vo) ™t = z(t, u, v + t(u — uy)), so that, if
t # 0, then Cly(x(t,u,v)) D {z(t,u,v2), vo € F,}. Hence, by conjugation,
the first coordinate is fixed and the last can be changed to any one without
modifying the second one. We obtain that x (¢, us, v2) € Cly(z(t, u,v)) if and
only if there exists t, € F, such that uy = u — 5% + t£3’. We can show that
there are ¢/3 such uy’s. Indeed, take any ¢5,t3 € F,, and the associated us
and us. Then,

Uy =ug = 3 —ot* = 1130 — 51>
(30 —39) = (ty — t3)t%
e t(ty —t3)30 = (ty — t3)t¥

(this last equivalence being true since the caracteristic is 3 and (—1)% = —1).
And this has 3 solutions, t, — t3 € {0,£¢t}. Hence we obtain |F,|/3 = ¢/3
distinct values for us. Thus, we get

Cly(x(t # 0,u,v)) = {w(t,u — tot®® + 1137 vy) | ta, v5 € F,},
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giving us 3(¢ — 1) such classes, determined by ¢ and 3 distinct values wuy, us
and ug € F,,.

This gives us the whole of U :
e ¢ classes of length 1, type 2(0,0,v), parametrized by v € F,
e g — 1 classes of length ¢, type x(0,u # 0,v), parametrized by u € F7

e 3(q — 1) classes of length ¢?/3, type z(t # 0,u,v), parametrized by
t € Fy and 3 values of u € F .

Thus U has 5q — 4 conjugacy classes.

H-conjugacy classes of U
First, recall that, for any ¢,u,v,w € F,, w # 0,
h(w)z(t, u, v)h(w) ™" = 2(w? =t W u, wo),

so that conjugation by elements of H preserves the three types of conjugacy
classes of U we just described.

Now, H acts by conjugation on the conjugacy classes of U. We find the
number and sizes of the orbits under this action.

e Take v € Fy. If v # 0, then {wv, w € F;} = F), so that we get two
H-orbits : {x(0,0,0)} and Z(U) \ {1} = {x(0,0,v), v € F}.

e Take u € Ff and w € F;. Then
h(w)Cly (2(0,u, v))h(w) ™" = Cly(2(0,u,v)) <= w* " u=u

and this has 2 solutions w € F (w = £1). This gives us two H-orbits,
of size (¢ — 1)/2.

e Taket € qu and w € F;. Then

h(w)Cly (x(t, u,v))h(w) ™" = Cly(x(t,u,v)) = w* 3t =t

_ _ m+1_
Now w* ™t =t & w32 =1 < w¥" 2 = 1. However, we can see

that ged (3241 —1,3m+1 —2) =1, and thus w?"" ~2 = 1 has a unique
solution w € F, (w = 1). This gives us three H-orbits, of size ¢ — 1.

Finally, there are 7 H-orbits on the conjugacy classes of U.
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2.5.3 Irreducible characters of U
Actions of B

If L=Uor Z(U), then L < B, and B acts by conjugation on the conjugacy
classes of L (via 2° = b~'zb) and on Irr(L) (via x°(z) = x(bzb~1)). Corollary
(11.10) in Curtis-Reiner [9] implies that the number of orbits in these two
actions are the same. Furthermore, since U is normal in B = UH and U acts
trivially on the conjugacy classes of Z(U) and of U, the B-orbits in these
actions are in fact the H-orbits. The study of H-orbits we made before shows
that there are 2 H-orbits in Z(U), and thus in Irr(Z(U)), and 7 H-orbits in
Cl(U), and thus in Irr(U).

Induction from Z(U) to U

We write C' = Z(U). Since {1¢} is clearly one H-orbit of Irr(C'), we see that
H must act transitively on Irr(C) \ {1¢}, and Clifford’s Theorem gives us an
injective map

Il”I‘(C) — Irr(U)
B xst <Indd(B),x >v#£0

where Irr(C) = {01 = 1¢, P, ..., B;}. Furthermore, since |H| = |Irr(C) \

1¢}|, we have, as in Suzuki groups,
{1c} group
[Trr(U)] = |{Irred. summ. of Ind%(1¢)}| + (¢ — 1)k

where k is the (common) number of irreducible summands of any IndZ(s;),
1> 2.

We can write Ind%(1¢) = erhclrr(U)X(l)X' Now 1y appears with
multiplicity 1 in Ind%(1¢), and so does any linear irreducible summand of
nd%(1¢). Since Ind%(1¢)(1) = [U : C] = ¢* is a power of 3, and since
any non-linear irreducible summand of Ind%(1¢) has degree a non-trivial
power of 3, we see that there must be (at least) 2 other linear irreducible
summands in Ind¥%(1¢), a and (8 say. Supposing some Ind%(3;) (8; # 1¢)
has a linear irreducible summand, we would get an orbit of ¢ — 1 distinct
linear irreducible characters of U, all distinct from 1y, o and [ (since, by
Clifford, 1y|c = o|c = Ble = 1¢), giving us g+2 linear irreducible characters
of U. This is a contradiction, since [U : U’] = ¢q. Hence all linear irreducible
characters of U appear as irreducible summands of Ind¥%(1¢) and nowhere
else. Writing IndZ(1¢) = >0, A + >, xi(1)xi, where the \;’s are linear,
we have |Irr(U)| = 5¢ —4 =g+ |I|+ (¢ — 1)k. Thus 4¢ — 4 = |I| + (¢ — 1)k,
and k < 4.



64 PART 2. GENERALIZED PERFECT ISOMETRIES

k = 4 implies I = () and Ind%(1¢) = %, \;, which is impossible since
the left has degree ¢ and the right has degree gq.

Suppose k = 2. Then we can write (using Clifford) Ind%(5;) = x(1)x +
(1)1 and (degrees) 3% = ¢* = x(1)2+1(1)? = 32 +32%¢. Then b = c implies
2|32¢, which is impossible, and b < ¢ implies 3%* = 3%°(1 4 32(¢=%)), which is
even, so this is impossible too.

Suppose k = 3. Then, ¢* = x(1)*+ ¥ (1)* +n(1)?, which can similarly be
shown to be impossible.

We deduce that & = 1. Hence there exist s, ..., ¢, € Irr(U) such that

Indg(8;) = vs(1)es fori =2, ..., q

and thus ¢;(1) =g fori =2, ..., q.

Furthermore, |I] = 3¢ — 3, Ind%(1¢) = %, A + 320%% x4(1) i, and, by
Clifford’s Theorem, the x;’s have C' = Z(U) in their kernel, so are in fact
irreducible characters of the quotient U/Z(U).

The quotient V =U/Z(U)

From the central series {1} < Z(U) < U’ < U, we see that V = U/Z(U) has
order ¢*, and has a normal Abelian subgroup (U’/Z(U)) of order g such that
the corresponding quotient is Abelian of order q.

We have seen that Z(U) = {2(0,0,v),v € F,}, and, from the for-
mula for multiplication in U, we see that U/Z(U) can be parametrized by
{y(t,u)|t,u € F,}, where multiplication is given by

y(ty, u)y(ts, ug) = y(ty + to, uy + uy — t113).
We have 1y/70) = y(0,0), y(t,u)™" = y(—t, —u — t3°*1), and
y(ty, ur)y(ty, ug)y(ty, ur) ™" = y(ta, ug — t1t3° + tt3%).
From the results in U, we see that the conjugacy classes of V' are as follows :
e {4(0,0)}
e ¢ — 1 classes of length 1 : {y(0,u)}, u € F*

e 3(q—1) classes of length ¢/3, of type y(t,u) for t € F* and 3 values of
uecF,.

The subgroup W = {y(0,u), u € F,} is both the center and the derived
group of V. Thus V has ¢ linear irreducible characters and 3¢ — 3 non-
linear irreducible characters, the ones we are looking for, x1, ..., X3—3. As
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V has odd order ¢?, each non-trivial irreducible character of V is non-real.
Furthermore, by Clifford’s Theorem, every irreducible character of V' appears
as irreducible summand of some character induced from W, with multiplicity
its degree.

Irreducible characters of W = Z(V):

We have V = U/Z(U) < B/Z(U) = (U/Z(U))H. Thus B/Z(U) acts
by conjugation on Z(V) = W, and this action reduces to an action of H.
From the study of H-classes of U, we see that there are 3 orbits under this
action, giving us 3 orbits under the derived action of B/Z(U) on Irr(W) =
{m1 = 1w, 72,..., 7}, where the ~,’s are linear. Since {1y} is one H-orbit,
{72, ..., 74} must be a union of 2 H-orbits. Now the length of an orbit
divides the order of H, that is ¢ — 1, and this forces each of these 2 orbits to
have length (¢ — 1)/2.

Now ¢—1 = (—=1)*""—1 = —2 (mod 4), so that (¢—1)/2 is odd. Moreover,
W has odd order q. Thus the only real irreducible character of W is 1y, and
v # 7; for all i = 2, ..., q. Supposing that 73 belongs to the same H-orbit
as Y2, Y2 = Y2 say, and taking any ~; in this orbit, it is easy to see (using
the definitions of the actions of H) that then 7 = 7;, so that 7; belongs to
the same H-orbit. The orbit of 45 would then have even length, which is
a contradiction. This shows that, up to relabelling the v;’s, the H-orbits of

Irr(W) are {1w}, {72, - Yg+1)/2} and {72, ... Fgr1)/2}-
Induction from W to V:

If 7; and ~; belong to the same H-orbit of Irr(W), then Ind}, (y;) and
Indyy (7;) have the same number of irreducible components, with the same
degrees (that is, we can build a bijection preserving the degree between the
sets of irreducible components of Ind},(v;) and Ind,(v;)). Furthermore,
complex conjugation gives the same kind of bijection between irreducible
components of Ind},(v;) and Ind};, (7;), whence all the Ind};, (7;)’s, 2 < i < q,
have the same number of irreducible components, with the same degrees.
Moreover, the subsets of Irr(V') obtained in this way are disjoint.

Now 1y appears with multiplicity 1 in Indy,(1y), which has degree q.
Hence at least two other linear characters of V' must appear (each with
multiplicity 1). Supposing a linear character appears in some Indy, (v;), 7 > 2,
we would get one in each Ind}y(v;), j > 2, giving us (at least) ¢ + 2 distinct
linear characters of V', which is impossible. Hence each linear character of
V appears in Ind};, (1) and nowhere else. Comparing degrees, we see that
Indy, (1w) = >_7, pi, where the p;’s are (all) the irreducible linear characters
of V. Writing &’ the number of irreducible components of any Ind}, (v;), 7 > 2,
we have |Irr(V)| =4¢ —3 =q+ k(¢ — 1), so that ¥’ = 3.
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Writing Indy, (v2) = x1(1)x1 + x2(1)xa + x3(1)xs, we obtain ¢ = 32"+ =
x1(1)? 4+ x2(1)% + x3(1)?, which implies x1(1) = x2(1) = x3(1) = 3™.

Finally, V' has ¢ linear irreducible characters, and 3¢ — 3 irreducible char-
acters of degree 3™.

Irreducible characters of U

We summarize the results we obtained so far about the character table of U.
By convention, in character tables, we will take the first line to correspond to
the values on 1, and the first column to correspond to the trivial character.

Iy =X, ooy A
Irr(U/U") wé’ o0 Vo
degree 1 eetee q
z(0,0,v), v € F, qvi = Ind ) (5)
length 1 1 Bi € Ir(Z(U)) \ {1z}
order 3 ZWU) = (Fg,+)
r(0,u,v), u € F¥
length ¢
order 3 L 0
three times each non-first
x(t,us,v), t € Fy, line of the character
i=1,2,3 table of U/U’
length ¢*/3 Same line < same ¢ 0
order 9 U/U ={x(t), t € F,}
U/u = (Fg, +)
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X15 -5 X3¢-3
irreducible characters of U/Z(U)
degree 3™
z(0,0,v), v € F,
length 1 am
order 3
three times each non-first column of the
z(0,u,v), u € F¥ character table of W = Z(U/Z(U))
length ¢ 3m. Same column < x;, x; belong
order 3 to the same Indy, (v;)
W ={z(0,u), ue F,} = (F,,+)
w(t,us,v), t € Fy,
1=1,2,3
length ¢2/3 7077777
order 9

H-orbits of Irr(U)

We have seen that there are two orbits in the actions of H by conjuga-
tion on Irr(Z(U)) and Z(U). The orbits of Irr(Z(U)) must be {1z} and
{02, ..., By} Now H acts by conjugation on Irr(U) and on CI(U), and the
underlying action on Cly(Z(U)) = Z(U) is the one before. Via Clifford’s
Theorem, we have that, for h € H, ¢ € Irr(U) and 2 < i < g,

<, IndZ ) (6;) >v# 0 =< ¢", Indy,(8]") >v# 0

(indeed, both are equal to < Y|z, i >zw)=< V" 2w, B >zw)= ¥(1) =
YP(1)). As Indg(U) (8;) = qu; for each i = 2, ..., q, we see that the ¢;’s form
one H-orbit of Irr(U). {1y} is another one. However, we know that Irr(U)
has 7 H-orbits. Thus {Xs, ..., Ay, X1, - -+, X3¢—3} 1S & union of 5 H-orbits.
Furthermore, because of the preservation of the degree under the action of
H, {\,1>2} and {x;, 1 <1i <3¢ — 3} are unions of H-orbits.

Now the x;’s are characters of V' = U/Z(U). They are all non-real,
and can be written as {x1, ..., X(3g-3)/2: X1, - - -+ X(3¢—3)/2}, the separation
between the x;’s and the y;’s corresponding to the one we introduced between
the v;’s and the 7;’s respectively. For v; € Irr(Z(V)), i > 2, and x € Irr(V),
we have

<X, Indy () >v=< X, Indy () >v -

Since {2, ..., Vg+1)/2} and {72, ..., Vg+1)/2} are two H-orbits, this shows
that y and Y have distinct orbits. Furthermore, for x,v € Irr(V) and h € H,
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we have
_ - _ 3 —h
< XM Sy=< ¥ Sy=< X, Sy=< X" U >y

and Y = F Hence the orbits of x and ¥ have the same length and consist
of 2 by 2 conjugate characters. Moreover, since < x"| Z(V)s > Z(V)=
< Xlzv), % >zv), we see that {x1, ..., X(3q-3)/2} and {X1, ..., X(3¢-3)/2}
are unions of H-orbits, and that there is a bijection preserving the length
between the two corresponding sets of orbits (namely, complex conjugation).
Moreover, the orbits have size at least (¢ — 1)/2, which is the size of v/.
This shows that {y;, 1 < i < 3¢ — 3} is a union of an even number of
H-orbits, which is strictly less than 5, and must therefore be 2 or 4. If it
were 2, these orbits would have length (3¢ — 3)/2 > ¢ — 1 = |H|, which
is impossible. Thus, there are 4 orbits, of 2 lengths [ and [, and we can
write 3¢ — 3 = 20 + 2I', with [,I' > (¢ — 1)/2. Also I, | |H| = g — 1, so that
LI € {(g—1)/2,q—1}, and this implies that | = (¢—1)/2 say, and ' = ¢— 1.

Finally, the \;’s must form one H-orbit, and, relabelling the y’s, we have
the following 7 H-orbits of Irr(U) :

{Iv}, P, oy Ag), {tha, ooy Uy}

{xijyi=1,2and 1 <5< (g—1)/2}, {xs;, 1 <j<(g—1)/2}
Nij-i=1,2and 1 <j<(¢—1)/2}, {Xz;, 1 <j<(¢—1)/2}

where Indg(v) (Vj+1) = 3" (X1 + X2 + x3;) for 1 <j < (¢g—1)/2.

2.5.4 Irreducible characters of B = Ng(U)
Clifford’s Theory

The following description of Clifford’s Theory can be found in Isaacs [16].
Recall that B acts on Irr(U) like H does. Take any n € Irr(B). If, for some
x € Irr(U), < n,Indj(x) >p=< n|v, x >v# 0, then ]y = e>°'_, X", where
e =<n|u,x >v, t = [B: Ip(x)] with Ig(x) the inertial subgroup of y, and
{x";i=1...t} is the H-orbit of .

Now take any 0 € Irr(U), and write Indf} (0) = >, e, with ; € Irr(B)
for i € I and p; # p; if i # j € I (and thus, as above, p;|ly = e; Zhj ha).
Writing T’ = I(6), we then have Indf,(0) = >, e, with 0 # e; € N and
v; € Irr(T); moreover, for i € I, j; = Ind% (1) and thus j;(1) = [B : T]vi(1).

To study the e;’s, it suffices to restrict our attention to "= Ig(0), U T

and 0 is T-invariant. We have Indj;(0) = Y, ; e;4, and v4]y = e;0 (since the
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T-orbit of 6 is just {0}). Hence v;(1) = e;6(1), and

[T : U]6(1) = Ind%(6)(1) = Zei”(l) = Ze§6(1).

Thus Y. ;€2 = [T :UJ.

el 71

Irreducible characters of B

We now apply the previous results to the irreducible characters of U, and
obtain all the irreducible characters of B.

If 0 € {Na, ..., Ay, W2, oo, Uy, X1.j> X2.55 X1s X2}, then the H-orbit of 6
has length ¢ — 1 = |H|, so that I (#) = {1} and I(#) = U. Hence Ind5(0)
is irreducible, of degree (¢ — 1)0(1).

If 0 € {x3,x3;11 <j < (¢—1)/2}, then the H-orbit of 6 has length
(¢ — 1)/2, so that |Ig(f)| = 2, and thus Iy(#) =< J > where J is the
involution of H, and T'= Ig(f) = U < J >. Hence Ind};(0) = Y,; €;v; and
Soere; = [T : U] =2, so that |I| = 2 and e; = e = 1. Thus Ind/(0) is
the sum of two irreducible characters v, and vy of T', each with multiplicity
1, and of same degree as 6. Then IndB(0) = py + o, with py, ps € Irr(B)
distinet, and py1(1) = po(1) = [B : T)r12(1) = 0(1)(¢ — 1)/2.

Furthermore, two characters of the same H-orbit of Irr(U) give the same
induced character of B (and thus the same subset or Irr(B)), and two distinct
orbits give two disjoint subsets of Irr(B). We obtain

Irr(U) Irr(B)
{Aa, oo A — A, degree ¢ — 1
{12, ..., Yy} — 1), degree (¢ — 1)q
{xij,i=1,2and 1 <j < q;zl} — X, degree (¢ —1)3™
{Xij;i=1,2and 1 <j < %1} — X, degree (¢ —1)3™
{xs3;,1<j < %} — 1, {2, degree %37”
Xz, 1< <5} — i1, flz, degree &5=3™

Finally, B has (at least) ¢ — 1 linear irreducible characters a; = 1, ... a1
given by o; = moq;, where 7: B = UH — H is the natural homomorphism
and Irr(H) = {q;, 1 <i < g—1}. Each of the a;’s appears with multiplicity
1in IndZ(1y), and, since IndZ(15)(1) = ¢ — 1, we have IndZ (1) = 3.7 oy,
and the «;’s are the only linear irreducible characters of B.
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Values on elements of order 9

From the results on H-classes of U, we see that there are three classes of
elements of order 9 (of type x(t # 0,u;,v)) in B. We take representatives z,
x9 and x3, and we want the values of Irr(B) on the z;’s.

The a;’s are lifted from H, so have U in their kernel, so that a;(z;) =1
foralli=1,...,¢—1and j=1,2,3.

We have ¢|y = > 7, 1;, and the ¢;’s are 0 on U \ Z(U). Thus ¢(z;) =
for all j =1,2,3.

We have Ay = >, \;. For each j = 1,2, 3, using the fragment of the
character table of U we found, the second orthogonality relation applied (in
U/U’) to z; and 1 gives Y7 | Ai(z;)A\;(1) = 0, and X;(1) = 1 for all 7, so that
Mxj) = =AM (xj) = —1 (note that this doesn’t depend on the U-conjugacy
class in which we took x;).

Now we have (x + )|y = (q 1)/ (

U/Z(U), and

X1k + X2k + X3k), a character of

2

3"™(x + p)|vyzw) Z 3™ (X1 + Xok + X3k) = Z Indgv/Z(U) (Ve+1)s
k=1 k=1

q—1 g—1
2

where Irr(W) = {1 = 1w, 72, ..., Y4}, and, since W = Z(U/Z(U)), 3™(x +
pi)lo = 0on (U/Z(U)) \ W. Hence (x + p1)(z;) = 0 for j = 1,2,3. Since
w1y = po|u, we have, for some a, b, c € C,

X | M2 | X | P2 [0, o 0ger | A
rla| —a |a| —a 1 110
o[ b| —b |b| —b 1 —11]0
r3|c| —c |c| —c¢ 1 —-10

The second orthogonality relation applied to each line gives, since |Cp(z;)| =
3q, |a| = |b] = |¢| = 3™.

Now we have, for any t,u,v € F,, h(—1)z(t,u,v)h(—1)"! = z(—t, u, —v).
If we take u =t = 1, then z(t,u,v)" ! = z(—1,1, —v) = x(—t,u, —v). Hence
x(1,1,v) and x(1,1,v)"! are conjugate in B, to x; say. Thus a is real, and
a = +3".

Now the second orthogonality relation applied to the first and second line
and to the first and third line gives that Re(b) =Re(c) = F3™/2. Together
with |b| = |c| = 3™, this gives us that b,c ¢ R, so that ¢ = b (and z;" is
conjugate to x3), and, writing w = €*™/3, we have b3™™ € {w,®, —w, —@}.
Hence, we see that, up to exchanging x and X (and thus p; and 7i;), or zo
and x3, there exists € € {1} such that a = 3™, b = e3™w and ¢ = €3"w.
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2.5.5 A generalized perfect isometry

Since the Sylow 3-subgroup U of G is disjoint from its conjugates, the 3-blocks
of G have either full defect or defect 0. Furthermore, we have seen that the
elements of Z(U) \ {1} form one H-orbit. Since H = ¢—1=|Z(U) \ {1}|,
this shows that each element of Z(U) \ {1} is centralized by no non-identity
element of H. Thus we get that, for z € Z(U) \ {1}, Cp(z) = U, so that
Cp(U) < U, and, as U = O3(B), B has only one 3-block, the principal one
by. This implies that G has only one block By of maximal defect. Since G has
only one character &3 of defect 0, we get by = Irr(B) and By = Irr(G) \ {&3}-
In particular, we see that |By| = |bo] = ¢+ 7.

In G, the only elements of order divisible by 9 have order precisely 9.
Hence the same must be true in B. We have representatives for the 9-singular
classes Y, YT and YT~ ! in G, and z, x5 and x5 in B. We have already
seen that |Cp(z;)| = 3¢ for i = 1,2,3. Using the character table of G in [26],
we find that |Cg(Y)| = |Co(YT)| = |Co(YT1)| = 3¢q. Here again, it is thus
sufficient to find a bijection with signs between B, and by wich preserves the
values of characters on 9-singular elements.

We now consider the following fragments of character table for By (cf

[26]) and by:

Ea | €0, 60,0 | M6 1 | &5:86 | €068 | o 10
Y 0 1 —1 3™ 3™ —3™ —3m
YT | 0 1 —1 3w | 3"w | =3"w | —3"w
YT7110 1 —1 3w | 3w | —3"w | —3Mw

(where the numbers of exceptionnal characters are
{3 = (¢ = 3)/2 and [{ne, m,m;7 0"} = (¢ — 1)/2)

Ylag, o, a1 | A | s pe | fL 2 | X X
zy |0 1 1] —&3™ | —e3™ | 3™ | 3™
zo | 0 1 —1| —e3"w | —e3"w | 3w | e3™w
z3 | 0 1 —1| —e3"w | —e3™w | e3™w | €3

It is then easy to see that there is a generalized perfect isometry between By
and bg: listing the irreducible characters of By and by in the same order as
in the above tables, and relabelling them so that Irr(By) = {=, ..., Z447}
and Irr(by) = {Xi, ..., X417}, then the following is a generalized perfect
isometry between By and by:

I: El'ﬁngz Z:1,,q+7,
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where € = —1if XZ' c {Oé(q+3)/2, cee qu_l}, €, = —€ if Xi c {/~L17 L2, T, Tz,
X, X}, and &; = 1 otherwise.

We summarize the results we obtained in the following

Theorem 2.6. Suppose G = SU(3,¢*), Sz(q) or Re(q), and p is the defining
characteristic of G. Let U be a Sylow p-subgroup of G, and B = Ng(U). Let
By and by be the principal p-blocks of G and B respectively. Then there is

a generalized perfect isometry with respect to p?-reqular elements between By
and by.



Part 3

Cartan Group, Generalized
Characters

3.1 Cartan Group, Factors

In this section, we introduce the notions of Cartan group and Cartan matrix,
as presented in [18].

Take G a finite group. Take C a closed set of conjugacy classes of G,
and C' = G\ C. Let I'(C,G) = ((< X, ¥ >¢)), yelrr(e) Pe the C-contribution
matrix of G. Write ch(G) = ZIrr(G) the set of generalized characters of G.
We define two Z-submodules of the space of complex class-functions of G:
let

R(C) = {a*, a € ch(G)} =< X, x € Irt(G) >z
and
P(C) = {B € ch(G)| B = 0 outside C}

(then P(C) is the Z-submodule of R(C) consisting of generalized characters).

The fact that C is closed implies (via Galois Theory) that the modules
R(C) and P(C) have the same Z-rank, and that this rank is the number of
conjugacy classes in C (cf [24]): we have

s:=k(C) =rkz(I'(C,G)) = rkz(R(C)) = rkz(P(C)).

The quotient R(C)/P(C) is thus an Abelian group, which we call the Cartan
group of G (with respect to C), and denote by Cart(C,G), or just Cart(C).
We have Cart(C) = Cy, X --- X Cy, (a product of s cyclic groups).

Now R(C), P(C) and Cart(C) have decompositions into direct sums cor-
responding to the C-blocks of G. For B a union of C-blocks of G, we denote

73
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by R(C, B), P(C, B) and Cart(C, B) the corresponding direct summands of
R(C), P(C) and Cart(C) respectively.

For a given Z-basis {y;, 1 < i < r} of P(C, B), we define the Cartan
matriz of B to be the matrix C'(B) = ((< ¢i,¢; >¢))i<ij<r- A different
choice of Z-basis leads to a Cartan matrix which is equivalent over Z to
C(B) (more precisely, if C’(B) is the new Cartan matrix, then there exists a
unimodular integral matrix A such that C'(B) = A'C(B)A). In particular,
both Cartan matrices have the same invariant factors. The invariant factors
are precisely the orders of the cyclic factors of Cart(C, B).

Now the invariant factors of C'(B) are also linked to the invariant factors
of the contribution matrix. There exists a Z-basis {¢;, 1 <i < r} for R(C, B)
such that {d;;, 1 <7 <r} is a Z-basis for P(C, B). Then d, is the smallest
positive integer such that d.I'(C, B) has integer entries, and the non-zero

invariant factors of d;I'(C,G) are 1 = g—i, dfil e g—: (cf [18], Lemma 1.3).

All these definitions and properties also apply to C’. From the definitions
for P and R and the definition of blocks, we see that P(C, B) & P(C’, B) C
R(G, B). Furthermore, using the fact that C is closed, Galois Theory implies
that |G|R(G, B) C P(C,B) @ P(C’, B). Hence we get that rkz(P(C, B)) +
rkz(P(C',B) = rkz(R(G,B)) = |B|. Thus, if T'(C, B) has rank r, then
I'(C, B) has rank |B| —r.

Finally, note that, if C is the set of p-regular elements of G for some prime
p, then the invariant factors of the Cartan matrix are known to be the orders
of the p-defect groups of p-regular classes (cf e.g. Isaacs [16]).

3.2 Generalized Characters

3.2.1 Order in the Cartan group

We have seen that the exponent d; of the Cartan group Cart(C) is the small-
est positive integer such that d,I'(C,G) has integral entries. This implies
that, for any x € Irr(G), the class function d,x* is a generalized character.
Indeed, if y € Irr(G), then X° is a class function of G, and we can write

= ) <xCe>ed
velrr(@)
= ) <X >e
pelrr(e)
= ) <x >t

velrr(@)
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And, since d, < x, >c€ Z for all ¢ € Irr(G), we see that d,x° is a Z-linear
combination of irreducible characters of GG, i.e. a generalized character.

Given any x € Irr(G), we would like to find the smallest positive integer
d such that dx® is a generalized character. The integer d will be called the
order of x in Cart(C).

From what we wrote above, we deduce that, for y € Irr(G) and d € N,

dx¢ € ch(G) < d < x°,y° >€ Z, V¢ € Irr(G)
PN d < x¢, ¢ >€ Z, Yy € Trr(G) such
that ¢ is directly C-linked to x

Thus the order of x in Cart(C) is the smallest positive integer d such that d
times the column of T'(C, G) corresponding to y has integral entries. Then,
the decomposition of dx¢ as a linear combination of irreducible characters
of G can be read from the contribution matrix. Only characters which are
directly linked to x will appear with non-zero coefficients. Finally, notice
that, for y € Irr(G), since x = x¢ + x¢, then x has the same order in
Cart(C) and Cart(C").

3.2.2 First observations
Order of the trivial character

First note that, for each y € Irr(G), we can write \* = y ® 15, so that,
for any d € N, we have dx¢ = x @ (d1%). Hence, if d1& € ch(G), then
dx¢ € ch(G) for all x € Irr(G). This implies that the trivial character 1g
has maximal order in Cart(C), and thus that the order of 1 in Cart(C) is
the exponent ds, and that, for each x € Irr(G), the order of x in Cart(C)
divides d;.

Characters of order 1

We next study C-blocks of G consisting of a single character. Suppose {x}
is such a C-block of G. Then < x, v >¢= 0 for all ¢ € Irr(G), ¥ # x. Hence
we have ¢ = ty for some t € C. If we suppose furthermore that 1 € C, then
x(1) = x(1) = tx(1) leads to t = 1 and x¢ = x. Hence x vanishes outside
C, and x has order 1 in Cart(C).

Conversely, if y vanishes outside C, then x¢ = y, so that y has order 1 in
Cart(C), and < x, ¢ >ec=< X%, ¢ >g=< x,9¥ >g= 0 for all ¥ € Irr(G) \ {x},
so that {x} is a C-block of G.

Finally, note that, if {x} is a C-block of G, since < x,¥ >c=< x,¢ >¢
+ < x,¥ >¢ for all ¥ € Irr(G), we obtain that < x,¢ >e= 0 for all
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Y € Irr(G) \ {x}, so that {x} is also a C’-block of G. Hence, if 1 ¢ C, then
1€ and x¢ = x.

Hence, for x € Irr(G), {x} is a C-block of G if and only if x vanishes
outside C (if 1 € C) or x vanishes outside C’ (if 1 € C').

Now suppose that y € Irr(G) has order 1 in Cart(C). Then x¢ € ch(G)
and, in particular, < X%, x >¢€ Z. However, < ¢, x >g= |—CIYV| > gec Ix(9)]?,
so that 0 << x¢, x >¢< 1. This yields that < ¢, x >¢€ {0, 1}. Supposing
1 € C, we have < x°, x >¢# 0, so that < x¢,x >¢= 1. But then
< X% x >e=< x,x >¢ — < X, x >¢= 0 and, since < X, x >c=
|_c1:| > geer IX(9)]?, we obtain that x vanishes identically on C’. Supposing
1 € C’, we would obtain that x vanishes identically on C.

Finally, we obtain

Proposition 3.1. Suppose 1 € C. Then, for x € Irr(G), the following are
equivalent:

e (i) {x} is a C-block of G.
e (ii) x vanishes outside C.

e (iii) x has order 1 in Cart(C).

Blockwise considerations

We have seen that at least one character (namely the trivial one) must have
maximal order dg, which is the biggest invariant factor of the cartan matrix.
However, it is not clear if, for example, for each invariant factor d; of the
Cartan matrix, there is an irreducible character whose order is d; (and, in
fact, it is false in general). However, by looking at things block by block,
we can obtain a bit more information. Namely, if C is the set of pf-regular
elements, where p is a prime and k is a positive integer, then, in each C-block
of G, there is (at least) one character whose order in Clart(C) is an invariant
factor of the Cartan matrix.

Let By, ..., B; be the C-blocks of G. Then I'(C, G) has a block-structure
corresponding to the blocks of G:
I(C) (0)
I'C,G) =
(0) I(C)

where we write I';(C) for the C-contribution matrix of B;.
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We have a similar decomposition for the Cartan group:
!
Cart(C,G) = @ Cart(C, B;).
i=1

We let M(C) =d,I'(C,G) € M, (Z). The Smith Normal Form of M(C) is

1
i 0)
_ ds
D= @
0
(0)
0

i.e. there exists U,V € M,(Z) unimodular integral matrices such that
M(C) = d,I'(C,G) = UDV. And, in fact, because of the block-structure

of M(C), there exist Uy,..., Uy and Vi,..., V; unimodular integral matrices
such that
Uy (0) Dy (0) Vi (0)
(0) U (0) D, (0) Vi
where D; is the Smith Normal Form of I';(C). (Note that, in general,
Vi (0)
V # (and similarly for U), since the columns and rows
(0) Vi
D, (0)
may need to be reordered to obtain D from )
(0) D,
Hence, for i € {1,..., I}, we have

M;(C) = d,I;(C) = U;D;V; (1)

and
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where

k; = rkz(I;(C)) (and thus s = Zé:l ki),
{di,lu ey dl,kz} - {dl, ey ds} and di,ki
and {dy,..., ds} = Uézl{di,la oo i}

Multiplying both sides of (1) by dl—SI d, we obtain

dig,_y| -+ |diy forall 1 < <1,

I;(C) =U; i k; Vi, forall1 <</,

Hence, for d € N, dI';(C) is integral if and only if %, e didk- € Z, and
thus if and only if d; ;|d. Hence d; ; is the smallest positive inteé;ér such that
d;11i(C) is integral.

In particular, if C is the set of p*-regular elements of G, where p is a prime
and k is a positive integer, then, since the order of any irreducible character
of G in Cart(C) is a power of p (cf 3.2.3), we see that at least one character

in B; has order d;; in Cart(C) (the others having order dividing d; ;).

3.2.3 The prime case

Let G be a finite group, and p be a prime number. We have the following
classical result:

Theorem 3.2. If C is the set of p-reqular elements of G and x € Irr(G),
then the order of x in the Cartan group Cart(C) is p?™), where d(x) is the

. d(x) — G|
p-defect of x (i.e. p?) = Tl)i)
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A proof of this can be found for example in [20]. The first step is to
show that |G|,x¢ is a generalized character, and is just an application of
Brauer’s Characterization of Characters (cf [20], Lemma (2.15)). Thus the
order of x in Cart(C) is a power of p. It follows from this and the properties
of the discrete valuation ring used in the construction of the p-blocks of G
that p?)xC is a generalized character, while p?®) =1\ is not (cf [20], Lemma
(3.23)).

We now turn to the situation where C is the set of pf-regular elements
of G, for some k > 1. Then C is closed, and is a union of p-sections. This
implies that |G|,1¢ is a generalized character of G (where 1¢ is the charac-
teristic function of C). Now, if x € Irr(G), then |G|,x¢ = x(|G|,1¢) is also a
generalized character.

On the other hand, for any ¢ € Irr(G), we have < x¢,9 >¢€ Q, so that

a
1B <X ¢ >¢€ Q. But
Gl _ ¢ - X (1)
—= <X, >e= ) [G:Caly) V(i)
x(1) ; x(1)
(where y1, ..., ys are representatives for the conjugacy classes in C), so that
% < x%, 1 >¢ is an algebraic integer.
Hence % <X, >€ Z for all ¢ € Irr(G), and thus %Xc is a general-
ized character.
Hence |G|,x¢ and %Xc are generalized characters, and, since )l?l')”p =

gcd(|1G|p, %), we see that )‘f—l')"pxc = p?I\C is a generalized character. Thus
the order of x in Cart(C) divides p?X).

3.3 First Examples

In this section, we obtain information about the p*-Cartan group and the
orders of irreducible characters in some easy examples. The first is the case
of Abelian groups; then we compute these informations for the three families
of groups we studied in the previous part; finally, we study the particular
case when the contribution matrix has Z-rank one.

3.3.1 Abelian groups

Let G be an Abelian finite group, and p be a prime number such that p*||G]
for some integer & > 1. We take C to be the set of p*-regular elements of G.



80 PART 3. CARTAN GROUP, GENERALIZED CHARACTERS

Then C is in fact a (normal) subgroup of G. Indeed, write G = GG,
and take g, h € C; we can (uniquely) write ¢ = g,9,y = gy g, and h = hyh,y =
hyh,, with, as g and h are pF-regular, o(g,) < p* and o(h,) < p".

Then gh = (gphp) (9 b)) = (gl ) (gphp), With gphy, € Gy, gyhy € Gy, and

(o(gh))p = o(gphy) < Maz(o(gp), o(hy)) < Pk

(the first inequality being true since both o(g,) and o(h,,) are powers of p, so

that lem(o(gy), o(hp)) = Max(o(g,), 0(hy))).
Of course, g7' € Cand 1 € C.

Hence C is a normal subgroup of G, and, furthermore, G = C(C). Thus,
by Clifford’s Theory, we see that, for all A €lrr(C), Ind$(\) has [G : C]
irreducible summands, each appearing with multiplicity 1 (since G is Abelian
and all its irreducible characters have degree 1). And, if x € Irr(G) is such
an irreducible summand, then Res$ (y) = .

Furthermore, each irreducible character of G appears in this way. We can
label each irreducible character of G with an irreducible character of C and
an integer i, 1 <i < [G : C]. We write

Ir(G) = {x\| A e r(C), 1 <i < |G : €]},

[G:C]
where, for each A € Irr(C), Ind§ (\ Z W

Now, for all Xg\)> X,(f) € Irr(G),

geC

ZReSc X (9)ResE (X)) (g7

geC

ZA

gEC

Hence

1
<V XY >¢ NI A l>c ()

We see that X(j) and X,(j) belong to the same C-block of G if and only if A = p.
Hence G has |C| C-blocks, which we write {B), A € Irr(C)}, each containing
|G : C] irreducible characters:

By={\" 1<i<[G:C]}, VA eTr(C).
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It is therefore clear that all irreducible characters of G in a given C-block
have the same order in the Cartan group Cart(C,G) (since they have the
same restriction to C). It is also clear from (f) that this order is [G : C].

Note that, from (f), we deduce that all entries in the contribution matrix
of any given C-block of G will be the same, namely ﬁ (in particular, the
contribution matrix of each C-block has rank 1). This in turn implies that
the elementary divisors of the C-Cartan matrix (there are |C| of them) will
all be equal to [G : C], and that the Cartan group Cart(C,G) is (isomorphic
to) the direct product of |C| copies of the cyclic group of order [G : C].

Finally, note that, writing |G| = p*m, with gcd(p, m) = 1, we have

(k-1) “ Y

and

G : C] :pa_(k_1)< e )

3.3.2 Special unitary groups, Suzuki groups, Ree groups

Using the results of the previous part, it is easy to compute the C-contributions
in the case where G is SU(3, ¢%), Sz(q) or Re(q), p is the defining character-
istic, and C is the set of p*>-singular or p*-regular elements of G. The orders
of the irreducible characters of the principal p-block By of G in Cart(C, By)
can be read directly from the contribution matrix, and the structure of the
Cartan group can be obtained by reducing a multiple of the contribution ma-
trix to Smith normal form (cf 3.1.1). The reduction to Smith normal form is
performed by elementary row and column operation.

We will use the notations of the previous part: in each case, we write U
a Sylow p-subgroup of G and B = Ng(U); we let By and by be the principal
p-blocks of G and B respectively; we let C and D be the sets of p?-singular
elements of G and B respectively, and we let ¢’ = G\ C and D' = B\ D.

In the three cases, we prefer to compute the Smith normal form of the
matrix associated to the D-contributions of Irr(bg), as this is easier to manip-
ulate than for By. Because of the perfect isometry we exhibited, this doesn’t
change anything to the results we're looking for.

The case of SU(3,¢%)

In this section, we let G = SU(3,¢?) and d = ged(3,q + 1). With the values
taken by the irreducible characters of by on the elements of order divisible by
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4, we compute the contribution matrix I'(D, by). For any x, @ € by, we have

<X >p= ﬁ > X))

yeD

If d =1, then D is only one conjugacy class (namely Béo’o)), so that

<X, ¥ >p = %X(D)W
= SLE(D)(D)
0

(¢%2-1)

0,0 0
= (BB,

If d = 3, then we have, for any y, ¥ € by,

<X U>p = = > XWY(y)

0<k,1<2
In particular, for any 0 < v # v’ < 2,

(0,v) (u) . 1 (]+1 (]+1 B 1
<Ol O 5o o (300 - T3 +o- 1) ) = -9

(00)  p0w) _ 1 ¢+1 gt1lo) _ 1 o
<Oty Og-nys 2= 35 (3(‘1 g ) 6(-T5) =520+ )

(0,0) (0,0") _ 2\ _
<Oigovm V-1 2= 35 (6(—7)@ — ) +3(=—57) ) =

We obtain, labelling the lines and columns in the order we used to list
the irreducible characters of by in the previous part:
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ifd=1,
0 0| O 010
1 0 0| 0 0|0
L(D,bo) = — | 0 0] 1 1 [-1
q .
0 0] 1 1 |-1
0 0] -1 -1 1
qg+1 P —1 1
and if d = 3,
0 0| 0 0 0 0 0
0 0| O 0 0 0 0
1 0 0] 9 9 -3 -3 -3
F(Dab())_g_qg : : :
0 0] 9 9 -3 -3 -3
0 0] —3 B2 ] 1-¢@ [ 1-§
0 0]—=3 -+ =3|1—¢* |2¢°+1| 1—¢
0 0|-3 -+ =3[1-¢|1-¢ |2¢+1
1 2_
L ;

In the array below, we show, for each C-block of By, the 2-defect of the
characters belonging to the block and their order in the Cartan group (these
turn out to be the same for each character in a given C-block). Recall that,
for each character y € by, the order of x in Cart(C, By) (which is also its
order in Cart(C', By)) is the smallest positive integer ¢ such that ¢ times the
column of T'(C, By) is integral. Because of the generalized perfect isometry
between By and by, the corresponding character of by has the same order in
Cart(D,by). It also turns out that this doesn’t depend on the value of d.

C-block p®20) [ order in Cart(C, By)
{Xq2—q}; {X¢(182—q+1)}’ 1<u<q| ¢ 1
{All the rest of By} @ q°
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We want now to compute the invariant factors {ds, ..., ds} of the Cartan
matrix Cy(D) of by. The biggest one, ds, is the smallest positive integer such
that d;I'(D, by) = M (D) is an integral matrix.

It is easy to see that, whatever the value of d is, d, = ¢* (just notice that,
if d = 3, then ¢ = —1 (mod 3), so that 2¢®> + 1 and 1 — ¢* are divisible by 3).

The non-zero invariant factors of M (D) are {1, ddjl, . g—i}.

If d = 1, the last column (resp. line) of M (D) is the opposite of any other
non-zero column (resp. line) of M (D). Hence there exists an integral matrix
V such that

M(D) = V* ) V.
0

Thus Cy(D) has exactly one non-zero invariant factor, d, = ¢*>. We have
Cart(D, by) = Cart(C, By) = Cpp.

Suppose now that d = 3. We will denote by C; and R; the i-th column
and row of any matrix.

Perzforming Ci «— Ci = Clgyqrys and By «— R; — Ry 23 for % +1<:<
T — 1, M(D) becomes

(0) (0)

3| -1 | -1 ] —1
12| 1= | 1=

(0) 3 3 3
-1 1—¢> 2¢°+1 1—¢2

3 3 3
1 1—¢® | 1-¢% | 2¢°+1

3 3 3

Then, R(q+q2)/3 — R(q+q2)/3+2(non-zero R/S) and C(q+q2)/3 — C(q+q2)/3+
> (non-zero C;’s) give

(0) (0)

2¢°+1 [ 1-¢% | 1-¢°
3 2 23 3 2

1—q 2q°+1 1—q

(O) 3 3 3
1—¢? 1—q¢° | 2¢°+1

3 3 3
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We then work on the only lower right block. C; «— C; + 2C5 gives

l—q2 l—q2
1 2 23 3 2
2 g +1 1—q
(i ! 1 o 2 o5 1
2 —q q°+
l—gq 3 3

C'2,3 — 02,3 -

1—

2

85
1 0 0
2 2+2 2 271
qQ +1]4 (Q3 ) | ¢ (q3 )
1—¢? ?(-¢%) [ ¢?(=¢)

3

Performing Ry «— Ry — (¢ + 1)R; and Rz «— Rz — (1 — ¢*)R; produces

Finally, Ry «— R3 + Ry and C5 «+— C3 — L;lC'Q give

11010
0/¢*|0
0] 0 |q?

0 0 1[0 0
0 qQ(q;Jr?) (?-1) Cy—Cyo—Cs| 0] ¢ qz(q;fl)
“0-¢?) | #(=¢”) 2 | £(=¢%)
0| £0=D) | £l 0] —¢? | £l

Whence we find that s = rkz(I'(D, by) = 3, and the non-zero invariant

factors of the Cartan matrix Co(D) are d3 = ¢*> and dy = d; = 1. Here again,
we have Cart(D,by) = Cart(C, By) = C.

We now turn to elements of order not divisible by 4. We have seen from
the definition that by and By are also perfectly isometric with respect to C" and
D'. Hence the Cartan groups Cart(C’, By) and Cart(D’,by) are isomorphic.

We have I'(D’, by) = Id —T'(D, by), and we shall find the |Irr(by)|

non-zero invariant factors of ¢°T'(D’, by) = N(D').

If d =1, then
¢ (0) 0
(0) :
(0) ¢’ 0
N(D') = F—1 1| 1
(0) :
(=1) ¢—-1] 1
0 0] 1 1 | £-1

= Ha

d

We reduce the lower-right (¢* by ¢*) block to Smith normal form. Re-
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versing the order of the columns, we get

1 ¢ —1 (—1)
¢ —1 1 1

Then, C; +— C; +C, 1 < i < ¢* gives

1 q2
(0) ¢
/!
1 ¢ (0)
P-1 ¢ g
-1
Rp «—— Rp — Z R; gives
i=1
1 q2
(0) ¢
: /!
I (0)
0 0 --- --- 0

R +— Ry — R, 1 <i< ¢ gives

1 0 --- 0 q2
0 (0) ¢ ¢
: /!
q 0) —¢*
0 cee e 0
Cp «— Cp — ¢*C} gives
0 ¢ —¢
/!
¢ —q¢°



3.3. FIRST EXAMPLES 87

-1
C'q2<—C’q2+ZCZ- gives

=2

1 0 - 0

0 ¢ 0

/
7’ 0
0 v ... 0

¢ (0) 0
(0)
(0) ¢ 0
1 © |0
(0) ¢
(0) 20
0O --- 010 --- - 010

so that the non-zero invariant factors of the Cartan matrix Cy(D’) of by are

cé% = ... =dy, =1land d,, = ¢* and Cart(D',by) = Cart(C', By) =
2.

q
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If d = 3, then
q2
2 (0) (0)
q

T (D' o) = ¢* =3 (—3)
(0) | (1)

(=3) ¢ -3

(0) (1) (2)

=y o 3

By working on the last 3 rows and columns (which are the same), this can
be reduced to
2

q
2 (0)
q
¢ -3 (=3) | 1
- ., (0)
. oo
(0) T 1 [T )
(0) ORI

Subtracting to the last non-zero column the sum of the preceeding %

columns, and then doing the same thing to the last non-zero row, we ob-
tain(leaving aside the upper left (diagonal) block)

q> —3 (=3)
' (0)

(0) (0)

Now we work separately on the non-zero block. €y «— Cy + 3, C; gives
1 -3 ... -3 1
1 ¢>—3 (—3) 1 ¢ (0)

Cl<—Cl—|—301,2>1
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And, finally, R; «— R; — Ry for ¢ > 1 gives

Putting all the blocks back together, we see that the non-zero invariant fac-

tors of the Cartan matrix Co(D’) are d} = ... = d’ﬁi_l =landd , , = ¢,
3

and, here again, Cart(D’,by) = Cart(C', By) = qu.g

The case of Sz(q)

In this section, we let G = Sz(q), with ¢ = 2*"*1. With the values taken by
the irreducible characters of by on the elements of order divisible by 4, we
compute the contribution matrix I'(D, by). We have, for any x, ¢ € Irr(B),

<y, ¥>p = ’—;Zx(y)@
yeD

,—;ﬂ (q<q2_ Y (o)) + X(pl)w(p‘l))>

— 2iq(x(pm(pl) +x(p ()

We obtain, labelling the lines and columns in the order we used to list the
irreducible characters of by in the previous part:

1 | =1-----. —110 0
—1
P ) =L | Mg | (0)
q| -1
0 Ocvvv-- 0 % _Tq
0 Ocvvvee 0 —7‘1 %

In the array below, we show, for each C-block of By, the 2-defect of the
characters belonging to the block and their order in the Cartan group. Here
again, these turn out to be the same for each character in a given C-block.

C-block p®0) [ order in Cart(C, By)
{]-Gv QS? ®l7 Au} q2 q
{I'y, 'y} q2ntt 2




90 PART 3. CARTAN GROUP, GENERALIZED CHARACTERS

The only irreducible character of G which doesn’t belong to the principal
2-block is II. It has 2-defect 0, so is a 2-block and a C-block by itself, and
has order 1 in the Cartan group Cart(C,G).

We want now to compute the invariant factors {dy, ..., ds} of the Cartan
matrix Co(D) of by. The biggest, d;, is the smallest positive integer such that
dsI'(D, by) = M (D) is an integral matrix. It is easy to see that, dy = ¢q. The
non-zero invariant factors of M (D) are {1, d;ijl’ . j—;}.

We will denote by C; and R; the i-th column and row of any matrix. We
have

1 | =1...... —1l0 o0
-1

ql'(D, by) = 51 (Dg-1,4-1 (0)
0 O---n-- 0 %_q _TZ
0 Oevnne- 0 |32 ¢

1]10-----. olo o
-1
] (0)g—1g-1 | (0)
-1
0 10------ 0% 2
01l0--.... 0[5 ¢
Performing R; «— R; + Ry for ¢ > 1, we get
110---. olo o
0
1(0)g—14-1| (0)
0
010 .- 02 2
0l0.v... 0= ¢

110------ 0100
0

: (O)qfl,qfl (0)
0

olo----.. 0

[en}
[en}
e}
(@) SIS
o o
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Finally, there exists an integral matrix A such that

1

N

qU'(D, by) = A’ 0 A

0

whence s = 2, and the non-zero invariant factors of Cy(D) are dy = ¢ and
dy = 2. We have Cart(C, By) = Cart(D, by) = C; x Cs.

We now turn to the sets C' and D’ of elements of order not divisible by
4 in G and B respectively. We want to compute the (common) invariant
factors {d, ..., d.,;} of Coy(C’) and Cy(D’). From the equality

Tl{z(,R,(bo, D)) +Tkz(R(bQ, D/)) = ’bo‘ = ’Bo‘ = q+ 2

we see that s’ = q.

We have
qg—1 1 .. 1 0 0
1 |g—-1 (=1)
N, b) = | (0)
q ( 0) 1 (_1> g—1
0 0 ... 0 % %
0 0  ceeen- 0 1 4

so that it is clear that the biggest invariant factor we will find is dj, = q. We
work separately on the two blocks of ¢I'(D, by). The upper-left block has the
same structure as the matrix N(D’) we obtained for SU(3,¢?) in the case
d = 1. Reducing it to Smith normal form, we obtain

1

q
0

As for the second block, it is easy to see that, performing Cy «— Cy — C}
and Ry «— Ry — Ry, we obtain
)— (i)

(

Ok
o O

N RN
N RN



92 PART 3. CARTAN GROUP, GENERALIZED CHARACTERS

Whence we get that ¢I'(D’, by) is equivalent (over Z) to

1

N

0

This gives us that the invariant factors of the Cartan matrices Cy(D’) and
Co(C) are dy = --- =d, , =1, d, | =2, d, = q, and Cart(C’, By) =
OCLTt(D/, bo) = Cq X CQ.

The case of Re(q)

In this section, we let G = Re(q), with ¢ = 3*™*1. Then D is the set of
elements of order divisible by 9 in B. We first compute the contribution
matrix I'(D, by). For any 7, € by, the D-contribution of v and ¢ is given by

3
<820 7 S0 = 3,3 ot

yeD

In particular, < ¢,0 >p= 0for all § € by. Furthermore, if vy € {p1 2, 12, X, X}
and § € {¢, a;, A}, then < v, >p= 0 (for we can factorize by 1+w+w = 0).
We then compute

1 1
<aj,a; >p=—3, < A\ A>p=—3, <a;, A\ >p= —(—3),

< s py >p= BT 41) = =g, < i, TG >p= — 3 (4@ +w?) = 0,

1 1 _
<X7X>D:_32m3:_Q7<X7X>D207
3q 3q

1
— (=3 (1+w’+w?) = 0.

1( ), < Wiy X >p=
q), His X D_Sq

i(—:’32"@)(1+1+1) =3

</1’Z'7X>’D: 3q

The other contributions are found using these and complex conjugation. Fi-
nally, we obtain, labelling the lines and columns in the order used in the
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character table we gave in the previous part,

0 0---0 0 0 0 00 0] 0

0 3---3 -3 0 0 00 0] 0

0 3---3 -3 00 00 00

1 0| —-3---—=3| 3 0 0 0 0 0] 0
F(Qbo):@ of 0---0 |0 q q 00 |—¢g|0
0 0---0 0 q q 0 0 —q| 0

0 0---0 0 00 q q 0 | —q

0 0---0 0 0 0 q q 0 | —q

0 0---0 0 —q —q 0 0 qg | O

0 0---0 0 00 —q —q | 0| ¢

We can now read the C-blocks of By, and, for each given block, the 3-
defect of its characters and their order in the Cartan group Cart(C, By) (once
again, defect and order are in fact the same for any character in the block):

C-block pB0) [ order in Cart(C, By)
{&4} ¢ 1
{&, &6, o} 5 {67, &, 0} | 730! 3
& &onmone mpn n'} | @ q

We now turn to the invariant factors of the Cartan matrix. We see that
the smallest (positive) integer ds such that M (D) = d,I'(D, by) is an integral
matrix is dy = ¢, and that s = rk(I'(D,by)) = 3 (it suffices to consider
the columns corresponding to x, ¥ and A, the others being opposite to these
columns). It is then easy to reduce M (D) = ¢qI'(D, by) to Smith normal form;
M (D) is equivalent over Z to

1 (0)
5 (0)
(0) 2
(0) | (0)
so that {d— =1, djjl, d:’;} = {1, £, 1}, the invariant factors of the Cartan

matrix Cy(D) are d; = dy = 3 and d3 = ¢, and Cart(C, By) = Cart(D, by) =
Cq X 03 X Cg.

Let us now turn to elements whose order is not divisible by 9. We have
(D', by) = Id — I'(D, by), whence we see that d., = ¢ (where, this time,
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s =rk(I(D',by)) = g+ 4), and, after having re-ordered lines and columns,
we have, writing N(D') = d.,I'(D', by),

4]

q—1 1 1
I |g—-1 (=1)
1 (—=1) q—1
2¢ g q
i @
i e 2
3 3 3
29 ¢ q
i %
i g 2
3 3 3

The second block on the diagonal is the same as the one we considered in
the case of Suzuki groups, and has Smith normal form

It just remains to study the lower right block. We write C; (resp. R;) for the
i-th column (resp. row) of any matrix.

71 02 000
4 2 10— O —(Co+C3) 0 2 —LIRy — Ry —(Ry+R3)| 0 % -1
4 _49 2 0 —2 % 0 -2 %
3 3 3 3 13 3 3
Then Cy «— Cy — C5 gives

0 0 O 00 O 0 0 0

0 q —%R3<—R3+R20 q %R2<—RQ+R30 q 0

0 —q % 00 ¢ 00 ¢
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Finally, we obtain that N(D’) has Smith normal form

1

wie
wie

0

so that the invariant factors of the Cartan matrix Co(D’) are dj = ...
dpyy=1,d,,=d 3 =3andd,,, =q,and Cart(C’, By) = Cart(D’, by)
Cq X Cg X Cg.

(11l

3.3.3 Defect and order in the Cartan group

We would like to find some relation between the p-defect d(x) of a character
x and its order o() in the Cartan group Cart(C), when C is the set of p*-
regular elements of the finite group G. We have mentioned that, for any
x € Irr(G), the order o(y) is a power of p which divides p?™).

We have seen in the previous section that, when G is Sz(q), Re(q) or
SU(3,¢*) (with g a power of the prime p) and C is the set of p*--regular of G,
then all the characters in a given C-block of the principal p-block have the
same order in the Cartan group. This is also true when G is Abelian and C
is the set of p*-regular elementsof G.

We see that in these particular cases (where all characters in a given C-
block have the same p-defect) the quotient p?™) /o(x) is independant on the
choice of y in a given C-block. We show that this is also true under strong
hypotheses:

Theorem 3.3. Let G be a finite group, p be a prime number (dividing |G|),
and let C be the set of p*-reqular elements of G, for some k > 1. Suppose
that B is a C-block of G such that the contribution matriz I'(C, B) has rank
1 over Q. Then

o) p

Proof. Take x, £ € B. Since the rank of I'(C, B) is 1, we see that there exists
a € Q\{0} such that £&€ = ax® (a # 0 since 1 € C). We can write a = 2, with
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b, c € Z and ged(b, c) = 1. Furthermore, we can suppose that ged(b,p) = 1
(if this is not true, it suffices to exchange the roles of £ and ).
Let d be the order of x in Cart(C, B). Then

Vo e B, d< x°, ¢ >€Z,
and
3¢ € B such that d < x°, ¢ > 0 (mod p).
Now, for all p € B,

da
d<x’¢¢> =— <x5¢° >

= - <& ¢ >

= FC <& >eZ
and % < € ¢ > 0 (mod p).
Then, for all ¢ € B, dec < £°,¢° >€ Z, and, since ged(b,p) = 1, de <
€6 4% ># 0 (mod p). This implies that the order of ¢ in Cart(C, B) is

|de|, = d|c]p, so that |c|, = % = 28

o(x)
On the other hand, 1 € C, so that (1) = ax(1) = 2x(1), and |£(1)], =
% (since ged(b, p) = 1). Hence |c|, = \2‘8))“;’- Therefore

Iy =500 = Tt

which is the result we wanted.
O]

This result seems to be true in many more cases than the very restrictive
situation of the above theorem (cf for example the case of Symmetric groups
which we study in the next section). However, it is not true in general, as
can be seen for example in the case where G = My, or J, and p* = 4 (this
can be shown using GAP on a computer).

3.4 Symmetric Groups

In this section, we study the case of ¢-blocks of the Symmetric groups. In [18],
the authors give the exponent of the Cartan group of an ¢-block of a given
weight, and they conjecture its structure. They also give the determinant of
the Cartan matrix of such a block.
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We will compute the order of any character in the Cartan group. In all
the sequel of this section, we take two integers 2 < ¢ < n, and we let C; be
the set of l-regular elements of the symmetric group .S,,.

3.4.1 Some facts about /-blocks of the symmetric group

Take B an f-block of S,, of weight w # 0. The characters of B are labelled
by the partitions of n which have a given f(-core, v say. We write B =
{Xx, 72 = 7}. One of the key ingredients in [18] is that there is a generalized
perfect isometry between B and the set of irreducible characters of the wreath
product Z,S,,. One way to see Z1.S,, is to represent it as the set of monomial
w by w matrices whose non-zero entries are ¢-th roots of unity.

We will see that the elements of Irr(Z, ¢ S,,) are labelled by ¢-quotients:
for x» € B, the quotient 3, is a sequence (A, AWM A=) such that,
for each 0 < i < ¢ — 1, A\ is a partition of some k;, 0 < k; < w, and
Zf;é k; = w (the quotient ) “stores” the information about A and how to
remove w {-hooks from A to get v,). Each partition is uniquely determined
by its ¢-core and /-quotient.

The subgroup (isomorphic to) S, of Z,1.S,, acts on the base group Zy’ <

Z, Sy by conjugation: for (ay,..., ay) € Z} and o € S, we have
071(&1, cey CLw)J = (ag(l), ceey ao(w)).
We write Irr(Z;) = {ao, ..., ay—1}. Then S, also acts by conjugation on

Irr(Z}) via
(ail R ® aiw)a_l — ain(l) R R O‘ia(w)v

foralloc € S, and o, ® - - - ® o, € Irr(ZY).

The number of conjugacy classes (and of irreducible complex characters)
of Zy1 S, is the number of (-quotients of partitions of n (cf James and Kerber
[17], Lemma 4.2.9). In [17], the authors give a description of the conjugacy
classes of Z, 1 S, (cf [17], Theorem 4.2.8). If (ai,..., ay)o € Zy 1 Sy, then
(a1, ..., ay) can be "endowed” with a cycle structure, given by that of o (as
it is easy to see in the monomial representation of Z,? S,). Then, for each
cycle in (aq, ..., ay), the product of the ¢-th roots of unity corresponding to
the a;’s in the cycle is another /-th root of unity. Such a product is called a
cycle product in (aq, ..., a,). Then the classification of conjugacy classes of
Z, S, is as follows: two elements (aq, ..., a,)o and (b, ..., by,)7T of Z;1 S,
are conjugate if and only if ¢ and 7 have the same cycle structure, and,
for each cycle length k and each /-th root of unity ¢, the numbers of cycle
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products equal to ¢ and associated to cycles of length k in (aq,..., a,) and
(b1, ..., by) respectively are the same.

Now take any x € Irr(Z, ! S,). Then, by Clifford’s Theorem (Isaacs
[16], Theorem (6.2)), we have x|z» = e St_, 0% for some integer e and some
0 € Irr(Z}), where {67, 1 < i < t} is the conjugacy class of 6.

Because of the way .S, acts by conjugation on Irr(Z}’), we see that exactly
one conjugate of # has the form oy ®- - - RyR R QR - Ray_ 1@+ ®
ay_1, where the multiplicity k; of «; is the same as in 6 for each 0 <7 < /—1.
We may assume that 0 =y ®@ - @@ - - @ ay_1 @ -+ @ oy_1.

Again from the action of Sy, on Irr(Z}’), we see that the inertial subgroup
Izézsw(e) of 0 is (Zg ! Sko) X+ X (Zg { Skl—l)'

Suppose first that Iz,s, (#) = Z;1.S,. This means that all the k;’s are 0,
expect one. Thus we have § = o; ® - - - ®@ o; for some 0 < ¢ < ¢ —1. Using the
description we made of the conjugacy classes of Z,1.5,,, it is easy to show that
(; ® - ®@a;)lg, € Irr(Ze1Sy) (where, for ¢ € Irr(S,) and (z,0) € Zg1 Sy,
we let ((; @ - @ a)Y)((2,0)) = (; ® -+ - ® ;) (2)1(0)). One first shows,
using the description above, that (o; ® -+ ® «a;)lg, is a class function of
Z,0Sy; then it is clear that < (4 ®---®@ay)lg,, (L ® - ®@a;)ls, >z,8,= 1,
so that (;®- - ®a;)1s, € Irr(Ze1S,). Furthermore, (o ®- - ®@a;)ls, |ze =
(a; ® -+ ® ;). Thus, by a result by Gallagher ([16], Corollary (6.17)), the
characters (a; ®- - -®a;)y for ¢ € Irr(S,,) are irreducible, distinct for distinct
¥, and are all the irreducible characters of Z,S,, which lie over (a; ®- - -®«q;).
In particular, x has the form (o;®- - -®a;)x\ for some A F w, and 7 and x, are
uniquely determined by y. We label x by the quotient (A©, XM \(=1)
where A) = X and, for each 0 <i # j < /¢ —1, AW = 0.

Now suppose Iz,s,, (0) < Z;1S,. Then, by Clifford’s Theory ([16], Theo-
rem 6.11), x is induced by a unique irreducible character of Iz,s, (6) which
lies over . By the same argument as above, we see that such a character
must have the form (Oéo ® & Oé(])X)\(O) ®--® (ae,1 ®- & Oégfl)x/\(eq)
where, for each 0 < i < £ —1, A®  k;. And, here again, the sequence
(X)) - - -, Xa¢—1) is uniquely determined by y. We therefore label x by the
quotient (A©), ... A1),

We see that, in this way, as x runs through Irr(Z,S,,), all the ¢-quotients
appear (once). Thus, to each quotient (3, can be associated a uniquely de-
termined irreducible character of Z,1.S,,, which we denote by xg, .

From the description of xg, we gave, we compute easily its degree (using
the fact that the a;’s have degree 1). We have, writing 6, for 6 and 7, for

®f;cl)(04i ® - ® Q) Xa0,
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= =1 . X000 (1) - X)\(zfn(l)

w! - k’l'
I k! ill [ hook lengths in A
(this last equality being true because of the Hook Length Formula (cf [17])).
Hence

X w!
X3 () = TThook Tengths in

(where we call hook in () a hook in any of the partitions appearing in 3,),
and

|Z€25fw|

o) - ¢ [ [ hook lengths in By. (1)

The key point for the reductions in [18] and in the end of this section is the
following: the map x, —— Xg, is a generalized perfect isometry between B
and Irr(Z,2S,) with respect to f-regular elements of S,, and regular elements
of Z,1 S, (where an element of Z,0S,, is regular if 1 is not an eigenvalue of the
corresponding monomial matrix). This is proved in [18]. For x», x, € B,
there exist signs oy and o, such that < xx,x, >¢,=< OAX8,, OuXB8, >reg
(where <, >¢, and <, >,¢, denote the scalar products across (-regular ele-
ments of S,, and across regular elements of Z,S,, respectively). In particular,
X and g, have the same order in the corresponding Cartan groups (“note”
that the set of regular elements in Z1.S,, is a closed set of conjugacy classes).

Note that an ¢-block B of S, of weight 0 consists of a single character. We
have B = {x,} where X is its own ¢-core. In this case, we have Z,1S,, = {1},
and we define reg, the set of regular elements of Z, .Sy to be {1}. We have
Irr(Zy 0 Sy) = {lz,s,}. Now x, vanishes outside C, (by Proposition 3.1),
so that Xiz = Y\, and we again get a generalized perfect isometry between
B and Irr(Zy 1 Sp) (with respect to C; and reg). The corresponding Cartan
groups Cart(¢, B) and Cart(¢,0) are both (isomorphic to) the trivial group
Cl.

3.4.2 Invariant factors of the Cartan matrix

The following results can be found in [18]. Let B be an ¢-block of S, of
weight w. Then there is a generalized perfect isometry between B Irr(Z,S,,)
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(with respect to (-regular classes in S,, and regular classes in Z,1.S,,). This
implies that the corresponding Cartan groups, Cart(C,, B) = Cart(¢, B) and
Cart(reg,Z; 1 S,) = Cart({,Z,S,) = Cart(¢,w), are isomorphic, and thus
that the Cartan matrices C'(¢, B) and C'(¢, w) have the same invariant factors.
This allows the authors to work in Z,?S,,, and then transfer the results back
to B.

In the course of their work, they show that every irreducible character of
Z,! S, is directly linked across regular elements to the trivial character (cf
[18], Theorem 5.12). More precisely, we have

0w < X, 1zp8, >reg

Vx € Irr(Ze 1 Sy), Z> D) = (—1)" (mod ¢).

Writing 7 the set of primes dividing ¢, every positive integer m factors
uniquely as m = m,m,,, where every prime factor of m, belongs to 7 and
no prime factor of m, is contained in m. We call m, the m-part of m. It can
be shown (cf Donkin [10]) that Cart(¢,w) is a m-group. Together with the
above result, this gives the following

Theorem 3.4. ([18] Theorem 6.2 and Corollary 6.3) The exponent of Cart(¢,w)
(i.e. the order of 1z,s, in Cart({,w)) is (*w!,. This in turns implies that
the exponent of Cart(Cy, S,) is €12 2],

We next turn to the invariant factors of the C,-Cartan matrix C,, of S,,.
A partition X of n is called an ¢-class regular partition of n if no part of \ is
divisible by ¢. We then write A F; n.
If m is a positive integer, we define ¢, = m, and let 7, be the set of
primes dividing /,,. If a is also a positive integer, we let

al a
re(m,a) = 68 |5 ]1n,.

Finally, if A -, n is written exponentially \ = (1“1(’\), 222N ) we let

re(A) = ] re(m, an(X)).

m>1
We then have the following

Conjecture 3.5. ([18] Conjecture 6.4) The Co-Cartan group Cart(¢,S,) is a
direct product of cyclic groups of order r¢(\), where X runs through the set of
(-class reqular partitions of n. In particular, the determinant of an {-Cartan
matriz C,, of S, is

det(C,) = [ ().

Abgn
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This conjecture is supported by a number of examples computed by the
authors. Furthermore, they show that the consequence they mention is true:

Theorem 3.6. (/18] Theorem 6.13) We have

det(C,) = [ re(N).

Ao

3.4.3 Orders in the Cartan group

We now compute, for an ¢-block B of S,,, the orders of the characters of B
in the Cartan group Cart(¢, B). We will need the following three lemmas:

Lemma 3.7. If m > 1 and A, partition of n, has m-weight w, then there are
w hooks in A whose length is divisible by m.

Lemma 3.8. For any 0 # m € N and partition A, there is a bijection between
the set of m-hooks in By (the (-quotient of \) and the set of ml-hooks in A
(where a m-hook (resp. ml-hook) is a hook whose length is exactly m (resp.

ml)).

These two results can be seen by using the abacus, as presented in [17].

Lemma 3.9. Ifn € N, 2 < ¢ < n, and if m|l for some m > 2, then any
m-block of S, is a union of £-blocks.

Proof. Two proofs can be given:

1. Write £ = mr. Suppose xx, x, € Irr(S,) belong to the same (-block.
Then A and p have the same ¢-core, and this can be obtained by removing
from X\ and p a certain number of /-hooks (this number being the weight of
the ¢-block). However, the removal of an ¢-hook, i.e. an mr-hook, can be
obtained by removing r m-hooks (cf for example the proof of Lemma 3.2 in
[18]). Hence the common ¢-core v of A and u can be obtained by removing
m-hooks, and, removing m-hooks from v, one must eventually obtain an m-
core, which will thus be the same for A and p. Hence x, and y, belong to
the same m-block, giving the result.

2. It is “easy” to see from the definitions that any ¢-cycle section is a union
of m-cycle sections (for, if the m-cycle parts of «, 5 € S, are conjugate, then
certainly their ¢-cycle parts are conjugate too. Hence, if o and 3 belong to
the same m-cycle section, then they belong to the same ¢-cycle section).
Now suppose x, ¥ € Irr(S,,) belong to distinct m-blocks. Then, the m-
blocks of S, having the Second Main Theorem Property, x and 1 are or-
thogonal across each m-cycle section of S,,. By the above remark, we see
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that y and 1 are thus also orthogonal across each f¢-cycle section, in par-
ticular Cy, and thus belong to distinct ¢-blocks. A priori, we just get that
x and 1 are not directly linked across f-regular elements. But then, if
Xo = X, X1, ---, X 18 @ sequence of characters such that y; is directly C,-
linked to x;41 for 0 < ¢ < r — 1, then, by the above, all the x;’s must lie in
the same m-block. In particular, the /-block containing y is contained in the
m-block containing y. Hence the result.

O

Some notations: We take 2 < ¢ < n € N. For \ a partition of n, we will
write HLy (or just HL when the context is clear) for a hook length in A. For
any integer m dividing ¢, we will write (m) — HL for a hook length divisible
by m, and {m} — HL for a hook length whose 7-part is precisely m (where
7 is the set of primes dividing ¢). With a slight abuse of notation, we define
similarly H Lg, to be a hook length in any of the partitions appearing in the
quotient 3. Finally, a hook whose length is divisible by m will be called an
(m)-hook.

Definition 3.10. For any (finite) group G and x € Irr(G), and for { > 2
an integer dividing |G|, writing w the set of primes dividing ¢, we define the
m-defect d.(x) of x, via

dﬂ(X) = (dpl (X)7 R dps(X))

where m = {p1, ..., ps} and, for 1 <i <s, d,(x) is the p;-defect of x.
We write (abusively)

(where |G|, and x(1), are the w-parts of |G| and x(1) respectively).
We first establish the following:

Proposition 3.11. If2 < ¢ <n, if B is an (-block of S, of weight w # 0, if
Xx € B and if x\ corresponds to x s, under one of the perfect isometries we
described between B and Irr(Z, 1 S,,), then

rirton) = ([](0) = HLy).
Proof. First note that (1) implies that

,ﬂ_dw(Xﬂ)\) e ([w H HLB/\)W
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Now there are precisely w hooks in 3y, so that

") = ([[¢HLg,)x

On the other hand, by applying Lemma 3.7 for each hook length appearing
in 3y, we see that there is a bijection between the set of hooks in 3, and
the set of hooks of length divisible by ¢ in A (which is, in fact, the statement
of Lemma 3.6), and that, if two hooks correspond to each other under this
bijection, then HLy = ¢.H Lg,. Hence

[[¢HLs =]](0) - HL,.

Taking 7-parts, we finally obtain

2 (x8,) — (H(E) — HLy)x
O]

We next prove a result in the special case where ¢ is a prime power. It
is this proposition which will in the end give us the result we announced in
the previous section (i.e. that the quotient of the defect of a character by its
order in the Cartan group is an invariant of the block).

Proposition 3.12. Let p be a prime and k > 1 be such that 2 < p* < n. If
B is a p®-block of S, and if xx, X, € B, then

(0H) ~ HL), )
NGE P

Ly)p
Proof By Lemma 3.8, for all 1 < i < k, x, and x, belong to the same
p'-block of S,,. Thus, by Lemma 3.6, A and p have the same number of
(p")-hooks for each 1 <i < k.

Now, if 1 <4 <k —1, XA and g have the same number of (p*)-hooks and
the same number of (p"™')-hooks. Since the set of (p*)-hooks is the disjoint
union of the set of (p"1)-hooks and the set of {p'}-hooks, we see that A\ and
p also have the same number of {p‘}-hooks (note that, by definition, for such
a hook, the p-part of the hook length is exactly p).

By the Hook Length Formula, we have that

p ) H HLy), H(p) — HL))y.

Thus

- (1:[ [T - HLA)p> (I1(@") — HLy),
_ (]ﬁpu{{pi}_hooks in /\}|> (1" — HL,),

=1
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And, since, for all 1 <4 < k — 1, [{{p’}-hooks in A\}| = [{{p*}-hooks in u}|,

it is easy to see that

p0) (I1(") — HLy),
p#0a) (T1(*) = HLy)p

O

We now turn to the actual computation of the order of an irreducible
character of the wreath product in the Cartan group. It turns out that it
suffices to know the product across regular classes with the trivial character,
and this has been computed in [18].

Proposition 3.13. Take2 < (€ N and0 # w € N. If x € Irr(Z;Sy), then
EWhr a0,

X(1)x

the order o(x) of x in the Cartan group Cart({,Ze?S,) is

Proof. Take x € Irr(Zy1S,,). Recall that

Wapl

x(l)'

Now o(x) is a m-number, so that < x, 1z,s, >req i a rational whose (reduced)
denominator is a m-number. This implies that

Z>

<X 1zps, >reg= (—1)" (mod () (e)

0 (w!),
X(1)x

Furthermore, from (e), we also deduce that, for each p € 7,

<X, 124251“ >reg€ Z.

P!
W < X, 1za8, >regZ 0 (modp).

Thus, for any p € T,

00 (w!)
X(1)x

< X, 1zu8, >regZ 0 (modp).

0 (w!)

X(1)x
Z. This implies that

Hence is the smallest positive integer d such that d < x, 1z,.5, >res€

1ot

(indeed, by definition, o(x) < X, 1zas, >reg€ Z, and o(x) is a m-number).
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Now, conversely, if ¢ € Irr(Z,1 S,,), then < x, 9 >,.,€ Q, so also (since
x(1) divides |Z;? S| = " w!)

!
—— <X, >0 Q.
However,
! P! K,x(g9) ,, 4
<X Y >reg= —==(g
() =l 2 YO

(where the sum is taken over representatives for the regular classes, and, for
g such a representative, K, is the size of the conjugacy class of g). And,

for each ¢ in the sum, Kx%l()g) and 1(g~1) are both algebraic integers. Hence
!

T)' < X, ¥ >4 1s also an algebraic integer, and thus an integer. Thus
X

!
x(1)
!
W,
0 (W)
X(Dx

Vi € Trr(Zg 2 Sy),

<X, >peg€ 4

and this implies that o(x) divides and, o(y) being a m-number,

o(x)]

Hence we finally get

]

Putting together the results of these three propositions, we obtain the
following

Theorem 3.14. Let 2 < { < n, and let B be an (-block of S,, of weight w.
Then

e (i) If w =0, then B = {x,\} for some partition A\ of n, and xx has
order 1 in the Cartan group Cart((,S,).

o (ii) If w # 0, and if x» € B, then the order of x» in Cart(¢,S,) is
([1(6) — HL))x, where 7 is the set of primes dividing € (i.e. o(xy) is
the m-part of the product of the hook lengths divisible by £ in \).

o (iii) If { = p* for some prime p and k > 1, and if x,v € B, then
O(X) B pdp(X)

o) ~ P
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Part 4

Finite General Linear Group

In all this part, we let n be a positive integer and ¢ be a power of a prime p.
We will work in the finite general linear group GG, which can be seen as the
group GL(V') of automorphisms of an n-dimensional vector space V' over the
finite field F,, or as its natural matrix representation GL(n,q), the group
of invertible n by n matrices with entries in F,. The irreducible (complex)
characters of G have been described by Green in [15], using deep combina-
torial arguments. Then, using in particular the Deligne-Lusztig theory, Fong
and Srinivasan have classified the blocks of G (cf [12]). They show in par-
ticular that unipotent characters behave nicely with respect to blocks. The
unipotent characters of GL(n,q) are parametrized by the partitions of n. It
turns out that, if r is an odd prime not dividing ¢, then two unipotent char-
acters belong to the same r-block of G if and only if the partitions labelling
them have the same e-core, where e is the multiplicative order of ¢ modulo
r. This result is shown using analogues of the Murnaghan-Nakayama rule
for irreducible characters of G. Our aim is to use these analogues to obtain
properties of some generalized blocks we define in G. So far, we did this only
for unipotent irreducible characters of G. However, we have good hope that
this could be generalized to arbitrary irreducible characters. We also believe
that the same thing should work in the unitary groups. We construct unipo-
tent blocks for G which satisfy one sense of an analogue of the Nakayama
Conjecture. Unions of these unipotent blocks then satisfy this analogue, and
they have the Second Main Theorem property.

For a more general survey of the representation theory of finite reductive
groups, we refer to Cabanes and Enguehard [5].

107
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4.1 Conjugacy classes

4.1.1 Rational canonical form

We first introduce the theory of elementary divisors and the rational canon-
ical form in G, which give a parametrization of the conjugacy classes. We
present this in the matrix representation GL(n,q) of G, where things are
seen more easily. For the results we give in this section, we refer to Green
[15].

The conjugacy classes of G are parametrized by the sequences (... f;"...),
where F = {f;, i € T} is the set of irreducible, monic polynomials distinct
from X and of degree at most n in F,[X] (so that Z is finite), and the v;’s
are partitions of non-negative integers k; such that ). k; = n. We will write
v I k to say that v is a partition of k, and we will write |v| = k.

In all the sequel, it will be assumed that, when we write (f{*, ..., f¥r)
for a conjugacy class, then polynomials which don’t contribute have been
omitted (i.e. |v1]| #0, ..., |v| #0).

Take a conjugacy class ¢ = (... f"...) = (... fiy(f") ...)of G, and g € c.
Then, the characteristic polynomial of g over F, is

Char(g) = [T

€T

Writing, for each 7, v(f;) = v; = (Mg > Xi2 > ... > \;5) (where s can be
chosen to be big enough for all f/s appearing in Char(g) (and even for all
g € G), by taking for example s = n), the minimal polynomial of g over F,,
is

Min(g) = ] £

€T

k
For k=1, ...,s, the polynomial EDy(g) =11, f; =12 4o the k-th elemen-
tary divisor of g over F,,.
For any irreducible monic polynomial f over F,, we let U(f) be the
companion matrix of f, i.e. if f(X) = X% —ay X! —... —aqg, then

(0)

ao a’]_ DY DY ad—l
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For any positive integer A\, we write
U(f) I
U(f) 1la
UA(f) = )
. I,
U(f)
where [, is the d by d identity matrix, and there are A blocks U(f) on the

diagonal. Note that U,(f) is equivalent over F, to the companion matrix of
fA. Finally, for v = (\; > ... > ),) any partition (of an integer k say), we

write
Uxn (f)
Uu(f) =
Ux.(f)
If gec=(f", ..., fr), then the matrix of ¢ is equivalent over F, to
UV1 (fl)
Uttty =
UVr(fT)

This is the rational canonical form of g over F,.

Note that the theory of elementary divisors is independant on the repre-
sentation of G we take, so that we don’t change anything by, for example,
taking G = GL(V') and taking any basis for V.

4.1.2 The Jordan decomposition

An element g € G = GL(n, q) is semisimple if and only if it is diagonalizable
over an algebraic extension of F, (i.e. some Fr, k > 1), i.e. Min(g) splits
over F» and has only simple roots. Let ¢ be the conjugacy class of g. If
c= (... f*)..), then g is semisimple if and only if for any f appearing in ¢
(le. |v(f)|#0), v(f) = (1, ...,1). We write A((g;)) for the diagonal matrix
with diagonal blocks the ¢;’s. Suppose g = A((U,,(f;))). Then g = gs+gn =
A((Us, (i) + AL, (i), where z;(fi) = (1, ..., 1) F [v3(fi)| = ki and
(0) Idi
IVi<fi): )

i

(0)
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with |v;| = k; diagonal d; by d; blocks, where f; has degree d;.

Thus gs = A((Ug,(f;))) is semisimple and commutes with gy, which is
nilpotent. Hence gg is the semisimple part of g (cf e.g. the introduction of
Carter [6]). The unipotent part of g is gu = I,, + g5 ' gn-

Now, if g = hgh™! for some h € G, then g = (hgsh™')(hgyh™"), and
we see that the semisimple and unipotent parts of § are hgsh™! and hgyh™*
respectively.

4.1.3 Primary decomposition

Now, we consider G as the group of automorphisms G L (V') of an n-dimensional
vector space over F,. We first mention a fact about centralizers in GL(V').
Take g € GL(V). If, in some matrix representation corresponding to the
decomposition V' = Vi @ V,, we have

g:<91 92)

with, for i € {1,2}, g; € G; = GL(V;), and ged(Min(gy), Min(gs)) = 1, then

calo) = { ("} ) 4€ Carlan, be Calan) |

and thus Cg(g) = Cq,(g1) X Cg,(g2) via h —— (h|yv,, hlv,) (which is inde-
pendant on the matrix representation).

We also give the following lemma
Lemma 4.1. Let g € G = GL(V). Suppose Vi and Vs are g-stable sub-
spaces of V such that V.=V, @ Va. If glv, € (... [ Vser and gly, €
(oo f2D 0 ger, then g € (.. fr09D ez, where, by U, we denote

the concatenation of partitions (i.e. the components of v1 U vy are those of
v1 together with those of vo. If 1y - ny and ve & ngy, then vy Uvs Fny +ny.)

Proof. Taking any bases for V; and V, (which then add to give a basis of V),

we can write
_ 0
I ( % )

(where g; (resp. g¢2) is the matrix of g|y, (resp. g|y,)). The idea is that we
can obtain the rational canonical form of g by reducing to this form ¢; and
g2. There exist hy € GL(V,) and hy € GL(V5) such that

(M U o hy
g (1) ‘
ho Ui . ho
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Thus, for some permutation matrix P,

-1
, ) h
g=< 1 hz) F 1U(---f"l</‘>U”2“’)--->P( 1 h2)’

so that g € (... friuml) . . O

We now turn to the primary decomposition of elements of G. Take
g € GL(V) and suppose g € (f{*, ..., f’"). Then there exists a unique
decomposition V =V, & --- @ V,., where the V;’s are g-stable subspaces of V'
and, for 1 <i <r, gly, € (f") C GL(V;). For each 1 <1i <r, V; is given by

Vi={veV|fF(g)v=0 for some k > 0}.

We have Ci(g9) = Carony(glvi) X -+ X Cariy(gly,). Then there exists a
unique writing ¢ = ¢y ...¢,, where, for each 1 < i < r, g, € GL(V), V; is
gi-stable and g;|y; = 1 for all j # i. Indeed, we must have g;|y, = gly; for
each 1 < i < r, and g¢; is uniquely determined by this and its properties
listed before. Furthermore, the g;’s are pairwise commuting elements. We
say that g; ... g, is the primary decomposition of g. The g;’s are the primary
components of g.

More generally, an element of GG is said to be primary if its characteristic
polynomial is divisible by at most one irreducible polynomial distinct from
X — 1. We have the following (cf Fong-Srinivasan [12])

Proposition 4.2. Suppose h is a semisimple primary element of some gen-
eral linear group GL(m,q), and that h € (f") for some f # X — 1. Writing
d the degree of f, we thus have m = kd where v = (1,...,1)F k. Then

Cerag(h) = GL(k,q").

From the primary decomposition of g € GG, we deduce the following: if
F is the disjoint union of F; and F3, then there is a unique decomposition
V =V, @V, where V; and V; are g-stable, gly, € (... f*) .. ) ser and g|y, €
(... f*Y .. )ser,. Then g has a unique decomposition g = ;g = g2g1 where
91,92 € GL(V), ¢1ly, = 1 and ¢a|y; = 1. Indeed, under these hypotheses,
necessarily, for i € {1,2}, V; is gi-stable and g¢;|y, = g|v;. We then have
Calg) = Caray(9lvi) X Cara)(glva)-

4.2 (X,))-sections

We will give four definitions of sections in GG. The first two will give us
information on blocks defined only on the unipotent characters of G. The
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other two give us bigger sections, and thus smaller blocks, but they should
allow us to work on the whole of Irr(G).

The idea of the following definitions is, in the rational canonical form
we gave above, to isolate blocks corresponding to irreducible polynomials
whose degree is equal to or divisible by a given d (and which, in the last
two definitions, are semisimple). We let, writing d(f) the degree of any
polynomial f,

Fo={feF|fAX -1andé(f)=d}, Fi=F\ Fy
Fay={f € FIf#X —1Land d|6(f)} and Fy = F \ Fa.

We define four unions of conjugacy classes of G:
Xy={(..fr"Y. )| feFu{X—-1}andv(X —1) = (0)or(1,...,1)},
Xay=1{(..fD )| feFayu{X —1}and v(X —1) = (0)or (1,...,1)},
X =D ) f e Fau{X —1}and v(f) = (0)or (1,...,1)},
X = (. D )| f € Fay U{X =1} and v(f) = (0)or (L,..., 1)}

(Then Xés) (resp. X((;))) is the set of semisimple elements of X (resp. X(g)).)

We have 1 € Xy Xy N X7 N x5

For x € X, (resp. z € X)), we let F, = Fy and FY = FJ (resp.

Fp = Fa) and FJ = .7:(0d)). For x € Xés) (resp. = € X((;))), we let F, = {f €

Falvs(f) # (0)} (vesp. Fo = {f € Fla)|v:(f) # (0)}) and F2 = F\ Fo.

We let X = Xy, X, /YCES) or X((j)). Then, for each z € X, the set
F is the disjoint union of F, and FC. For each z € X, there exists a
unique decomposition V' = V, & V) such that V, is z-stable, z|yo = 1 and
ZE|V$ € ( ..fy(f) .. .)fe]—‘x. We then have CG(I) = CGL(VI)(ZE‘VQC) X GL(V;CO)
We let

V(z) = {y € GL(V) |V isy-stable, y|y, = Landy|yo € (... f*V) .. ) jem}.

From the definitions, we see that Y(z) C Cg(z) for any z € X. We also
see, using the remarks we made on the primary decomposition, that, for any
g € G, there exists unique r € X, y € Y(x) such that ¢ = zy. Indeed, if
g€ (fi*, ..., f/r) and if we write, as above, V = Vi®-- @V, and g = ¢; ... gy,
then we necessarily have V, = @®;c;Vi, where I C {1, ..., r} is the set of
indices i such that f;* has the property defining X, V) = @4/ V;, x|y, = glv,
and y|yo = glyo (and z € X and y € Y(z) are uniquely determined by these
conditions). We have z = [[,.; g; and y = HZQI ;.
We show that these definitions allow us to define (X, ))-sections.
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Proposition 4.3. Take any integer d > 0, and let X = Xy, Xg), Xés) or

X((;)). Then, for any v € X,
(i) Y(x) is a union of conjugacy classes of Cq(x).

(11) For ally € Y(x), Ca(xy) < Ca(x).

(111) For all g € G, Y(29) = Y(x)9.

(iv) Two elements of z)(x) are G-conjugate if and only if they are Cg(x)-
conjugate.

(v) G = locxscl(@y)®, y € Y(2)/Co(2)}.

Proof. (i) We have Cg(z) = H, x H?, and we see Cg(x) as a subgroup of
GL(V,) x GL(VY). Fory € Y(z), y = (ylva,ylvo) = (1,42). Then, for all
h = (hs,hg) € Cg(x), htyh = (1, (hg) " yehy) € V().

(ii) For all y € Y(z), we have Cg(zy) = Carw,)(xlv,) X Carwoy(ylve) <
Carwy (v,) x GL(VY) = Cg(z), and Cg(zy) < Cg(z) since the isomor-
phism on the left is the restriction to Cqrv,)(z|v,) X Carwoy(ylve) of the
isomorphism on the right.

(i) Take g € G and y € Y(x). Then 29 € X and F,s = F, (and thus
Fly =F2). Wehave V = g7'V = g7 'V, ®g¢ 'V, Furthermore, 29|,-1y0 = 1,
g7V, is z9-stable, and 29|,-1y, € (...f*Y).)ser,. Thus g7'V, = Vs and
g 'V = VY, Now, since y € Y(z), we see that y9|,-1y, =1, g7V is y9-
stable, and y9|,-1y0 € (... f"U)...) jero. Hence y? € Y(29), and Y(x)? C Y(29)
for all g € G. Then, for any g € G, Y(29)¢" C Y(z) so that Y(z9) C Y(x)?.
Hence the result.

(iv) Suppose that, for some y, z € Y(x), there exists h € G such that zy =
h=lxzh. Writing g = xy, we also have g = z"2", and 2" € X (since X is a
union of G-conjugacy classes) and 2" € Y(z") (by (iii)). By the uniqueness
of such a writing for g, we have 2" = x and 2" = y. Hence h € Cg(x). In
particular, xy and zz are Cg(x)-conjugate.

(v) For any g € G, there exists a unique x € X such that g € 2)(z). Thus

G = H xY(x)

reX

— H (Y (2))% (because of (iii))

z€X /G

- I U @

zeX /G yeY(z)
- H H (xy)Ga
z€X /G yeY(x)/Cq(x)

1

this last equality being true by (iv) (if (zy)9 = (22)9, then xy = 2299 so
that, by (iv), y and z are Cg(z)-conjugate).
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]

This proposition shows that the (X', )))-sections we defined correspond to
the notion of (X, ))-sections presented in [18].

For any x € X, we call the union of the G-conjugacy classes meeting
x)(z) the YV-section of x. We remark that the Y-sections of G are quite
different from ordinary prime sections. Take any 1 # x € X. Then, by
definition, Y(x) C Y(1)NCq(x). However, if d # 1, then there exists A € F¥
such that A\J,, € Y(1) N Cg(x) but AL, & Y(z), so that Y(z) # V(1) N Ce(z)
(while this equality holds when we define (X', })-sections to be the ordinary
(-sections for some prime /).

Furthermore, still supposing d # 1, if z is a (non trivial) ¢-element of G
for some prime ¢, then, most of the time (that is, when ¢ — 1 is not a power
of £), there exists an (-regular element A € F) such that \I,, € Y(z), so
that zAI, ¢ (xY(x))¢. But zAl, belongs to the f-section of z. Hence the
Y-section of z is not a union of /-sections.

4.3 (X,))-blocks

4.3.1 Blocks

Take any integer d > 0, and let X = Xy, X4, Xés) or X((;)). We define on
Irr(G) the relation ~ of direct Y(1)-linking: for y, ¥ €lrr(G), x ~ ¥ if and
only if

<X ¥ >ya= ﬁ > xW)(y) #0.

yeY(1)

Extending ~ by transitivity, we obtain an equivalence relation ~ on Irr(G).
We define an (X', V)-block of G to be an equivalence class of the equivalence
relation ~. We will also consider the restriction of ~ to the subset Unip(G)
of unipotent characters of G. The equivalence classes of Unip(G) will be
called unipotent (X,Y)-blocks of G. It is clear that, for any (X, Y)-block B
of G, BN Unip(G) is a union of unipotent (X', ))-blocks.

4.3.2 Irreducible characters of (¢

For the results we give here, we refer to [12].

The unipotent characters of G = GL(n, q) are the irreducible components
of the permutation representation of G' on the cosets of a Borel subgroup
(i.e. the normalizer in G of a Sylow p-subgroup of G, where p is the defining
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characteristic). They are labelled by the partitions of n. For A F n, we will
write x) the unipotent (irreducible) character of G labelled by A.

Each irreducible character of G can be parametrized as x ,, where s is a
semisimple element of G and x,, is a unipotent character of C(s) (note that,
since s is semisimple, C(s) is a product of linear groups GL(k, ¢°) where §
is the degree of an irreducible factor of Char(s) and k is its multiplicity in
Char(s); in particular, ;1 may be seen as a sequence of partitions (y1, ..., )
(of ky, ...,k respectively), and x, = X4, ® -+ ® X, ). We obtain a complete
minimal set of representatives by taking representatives (s, u) for the G-
conjugacy classes of such pairs. The set of characters x;,, for p varying, is
the geometric conjugacy class sg of s.

More precisely, if y €lrr(G), then there exists s € G semisimple, there
exists ¢, unipotent character of H = Cg(s), and there exist signs e¢ and ey
such that

X = caen R (39),
where R is the additive operator, defined in the Deligne-Lusztig theory, from
X (H) to X(G) (character rings of representations of H and G respectively

over Qy, an algebraic closure of the f(-adic field Q;), and § is the linear
character of the center Z(H) of H given by:

Vo € sy, Vh € H,Vt € Z(H), p(th) = §(t)¢(h).

If the unipotent character 1 is labelled by the tuple of partitions u, we
write 1 = x,, and X = x5, = £R%(5x,). We introduce two class functions
x* and x** (of H and G respectively) such that x, = £x*, and x*" =

RG(8X") = FXsp-

4.3.3 Murnaghan-Nakayama Rule for unipotent char-
acters

Pick g € G, and write Char(g) =[], fik" and the corresponding decomposi-
tion g =[], g;. Then pick iy, and write g = po, where

p = gi, and 0 = Hgi-
iio
Writing d the degree of f;,, m = k;,d, and | = n —m, we have, writing « for
equivalence of matrices over F,

g Uul(fz) ’
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P ( ! Usy (fio) )

(and we may consider that p € Go = GL(m,q)),

(and we may consider that o € Gy = GL(l,q)).
Then, using the results on the Jordan decomposition given in the first
section, we see that the semi-simple part pg of p is equivalent to

( ! Uk, (fio) ) '

kig

We have pg € GL(n,q) and Char(ps) = f;

i (X —1)!, and we may consider

that ps € Go = GL(m,q) and Char(ps) = fl-lzio.

We have Cq(ps) = H = Hy x Hy, where Hy = GL(l,q) and Hy =
Carima) (ps) = GL(kiy, q%).

Theorem 4.4 (Murnaghan-Nakayama Rule). (cf [12])
Let g € G, and p and o be as above, and let v n. Then

X (po) = alMo),

AELy

where L, is the set of partitions X\ of | which can be obtained from v by
removing ki, d-hooks, and o’ € Z[q"].

If £, =10, then x"(po) = 0.

We have af, # 0 for A € L,.

(The coefficients of a’, depend on the characters of the symmetric group Skiy
and the Green functions of GL(k;,,q%) = Hy (applied to the unipotent part
pu of p), and all the non-zero coefficients of ', have the same sign).

Remark: it is easy to see that, if a”, # 0, then v and A have the same
d-core.

The idea is to use this theorem recursively so as to be able to obtain
information about < x*, y* >y, for A, p=nand z € Xy or v € Xg). We
first use it to obtain a formula for x*(xy), where - n and y € Y(x). We
let X = Xy or X(d), and take 1 # = € X. Suppose z € ¢, = (f’\)

7
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where, for each i, \; - k;, and 6(f;) = d (resp. d|o(f;)) or fi = X — 1. If
fi #X —1, we let 6(f;) = m;d. From the definition of X', we see that, in the
primary decomposition of x, we may omit the component corresponding to
X — 1, because it is necessarily the identity. We therefore write z = z; ...z,
where each x; has exatly one elementary divisor distinct from X — 1, and
with the same multiplicity as in Char(z). We will say that = has d-type
(k‘lml, ey krmr).

By repeated use of the Murnaghan-Nakayama Rule, we obtain that, for
any y € Y(z) and for p b n,

X”(xy) = Zlﬁle['u Hule (IQ l'ry)
- ZMEEH a##l (ZMQECM u1u2X“2 (:)33 x,y))
= Zﬂleﬁu e Z#Tecﬂr—l CLM“ . ,U«r IMTXHT (y)

which can be written

Xay) = > el ),
AEL iy epmn)d
where the « x)\l’ ~")’s are integers and £ (ks k1S the set of partitions of
— (>, kim;)d which can be obtained from 1 by removing ki mid-hooks, then
ko mod-hooks, ..., and finally k, m,d-hooks. We will call such a sequence of
removals a (kymy, ..., k.m,)d-path from p to .

Note that, in this sum, each A can appear several times, if there is more
than one (kymy, ..., k.m,)d-path from pu to A\. Note also that, in the right
side of this equality, y has implicitely been seen as an element of GL(I,q),
where [ =n — (D, kim;)d.

I LG e komna = 0, then x*(zy) = 0. We have Oz(xl’ W) g Z[q, and, if
we separate the p0581b1y multiple occurences of each )\ in the sum, then, for
\xe Lt (et e ) do each of the a(ﬁ\l’ 2175 i non-zero (these are indexed by

the (klml, ..., kym,)d-paths from p to \).

If affil"'"xr) # 0, then, since there is a (kymy, ..., k.m,)d-path from pu to
A, and since the removal of a hook of length md can be obtained by the
removal of a sequence of m hooks of length d, we see that y and A have the
same d-core.

We call the afﬁl’“"“) ’s the MN-coefficients, and we will from now on write

(z1,yeeeyr)

T
gy for a
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4.3.4 Nakayama Conjecture for unipotent blocks

Now, we are able to prove that the unipotent characters of G satisfy one sense
of a generalized Nakayama Conjecture. The proof we give is an adaptation
to our case of the proof given by Kiilshammer, Olsson and Robinson in the
case of symmetric groups. We let X = & or X4 and take x € X of d-
type km = (kymq,...,km,). Welet | = n—kmd =1 — (>_, k;m;)d.
Writing Gy = GL(kmd,q) = [[;_, GL(k;m;d,q) and G; = GL(l,q), we
have © = (z9,21) = (x0,1) € Gy X Gy. Then Cg(x) = Hy x Hy, where
H, = GL(l,q) and Hy = Cg,(z0) (note that, if x is semi-simple, then H, =
GL(k, ™) = [T, GL(k, ¢").

Now take y € Y(x). Then, as an element of Cg(z) = Hy x Hy, we have
y = (Yo, y1) = (L, 11).

Writing Vi (u) for Y(u) when u € GL(t,q), we have that y, element of
Cq(x), belongs to Y, (z) if and only if y = (1,y1) € Hy x Hy where y; belongs
to Vi(1). Hence Y, (x) is in natural one to one correspondence with ) (1).
Now we consider p, i/ - n, and z € X of d-type km = (kymy, ..., k.m,). We

have
, 1 —
<X XM Sy = il > xMay)xt (vy)
yeY(z)
1 T A
e > D anx ) | | X i v

(y07y1)€y($) )\Eﬁﬁm e ‘C{im

1 T T !
e 2 Yo anain MmN ()

neyi(l) aegp et

(by the above remark on )(x)).
We write A7, , =< x*, X" >.y(z)- Then

1 . :
A =g 2 G X XX @)
NeLl . NeLl y1EV(1)

| Ha| Z /
_ T T A A
AeLl  NeLl

H,|

: x o | 1 § : x x 1

1.€. A/Jﬁu'/ —_— W O[IJAOCN/)\/A)\)\/.
xeck  wverl

We use induction on n to prove that, if A}, # 0, then p and p' have the
same d-core. We may assume that p # u'.
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If n < d, then each partition is its own d-core. Furthermore, in this case,
X = {1} and Y(1) = G. Thus, for all z € X, we have A? , = A} ,, and

pp'
Azlw’ =< x*, x* >¢= 0 (since p # ). Hence the result is true in this case.

Thus, we suppose n > d. First suppose x # 1 and A} , # 0. Then

x |H1| x
A.Uwu/ = |_G| Z Oé'u)\Oé#/)\/A}\)\/ # 0.

xeLl  verl

km’

Thus there exist A € £ and X € £ such that atyady, Ay, # 0. Then
aiy # 0 implies that 4 and A have the same d-core, and a7,,, # 0 implies that
p' and A have the same d-core. And, by the induction hypothesis (applied
to n —kmd < n), A}, # 0 implies that A and X’ have the same d-core.

Now, if x = 1, we see, by the existence and uniqueness of the decompo-
sition we introduced, that

0 =< x*, X“/ >o= Z < x", X“/ > oy(@)= ZAiu"
TeEX TEX
Hence, if A}, , # 0, then there exists an 2" € &'\ {1} such that Aﬁ;ﬂ # 0. This
in turn implies, by the previous case, that p and p’ have the same d-core.
Skipping back from class functions to irreducible characters, we see that we
have proved the following

Theorem 4.5. If two unipotent (irreducible) characters x, and x,» of G =
GL(n,q) are directly linked across some x)(x), where x € X = Xy or Xy,
then p and i’ have the same d-core (and this is true in particular for z =1).

Extending by transitivity the relation of direct Y(1)-linking, we obtain

Theorem 4.6. Let X = Xy or Xg). If two unipotent characters x, and X,
of G = GL(n,q) are in the same unipotent (X,Y)-block of G, then p and
have the same d-core.

Each unipotent (X, Y)-block of G is therefore associated to a d-core. For
each given d-core v, we can consider the union of the (possibly many) unipo-
tent (X,))-blocks associated to . The (a priori) bigger blocks obtained
in this way are parametrized by the set of d-cores of partitions of n, and
they satisfy the following equivalent of the Nakayama Conjecture. In accor-
dance with the terminology used in [18], we call them combinatorial unipotent
(X,))-blocks.

Theorem/Definition 4.7. Let X = X or X(q). Two unipotent (irreducible)
characters x,, and x,s belong to the same combinatorial unipotent (X', ))-
block of GL(n,q) if and only if p and u' have the same d-core.
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We can find in [12] an analogue of the Murnaghan-Nakayama rule which
applies to any irreducible character of GG, with the extra hypothesis that the
element p is semisimple and primary, with an elementary divisor of degree d =
1. It is also mentioned that this theorem can be generalized to an arbitrary d.
This should allow us to derive the same properties as above for (X', ))-blocks

of the whole of Irr(G), but taking this time X = X" or X((l;). The (X,))-
blocks of G obtained in this way should satisfy one sense of a generalized
Nakayama Conjecture, and we should be able to define combinatorial (X, ))-
blocks of G satisfying this generalized Nakayama Conjecture. Note that the

properties we proved for unipotent characters hold if we take X' = XCES) or

(s)
X(d) .

In any case, it remains to study the possible difference between (X, ))-
blocks and combinatorial (X', ))-blocks.

4.4 Second Main Theorem property

We now want to show that the combinatorial unipotent (X,))-blocks of G
satisfy the Second Main Theorem property. We therefore need to define, for
x € X, the (X, ))-blocks of Cg(x), and then to look at their behaviour with
respect to domination.

4.4.1 (X,))-blocks of centralizers

We take any positive integer d, and X = Xy, &), XCES) or X((;)). Even
though we don’t know what they look like, this defines (X,))-blocks of
Irr(G) (which are just Y(1)-blocks, built using Y(1)-linking), and we can
define (X, Y)-blocks of Cg(z) for each z € X.

For x € & \ {1}, the (X, Y)-blocks of C(x) are the equivalence classes
of the transitive closure of direct x)(z)-linking. Equivalently, irreducible
characters in distinct (X, ))-blocks of Cg(z) are orthogonal across z)(x),
and the blocks are minimal for this property. If x has d-type km, then,
writing | = n — kmd, we have Cg(z) = Hy x H; where H; = GL(l,q) and
Hy < Gy = GL(kmd, q). Then Irr(Cq(z)) =hrr(Hy)®Irr(H,). Note that, as
we noted in the previous section, we may consider x as an element of Hy,
and then ) (z) = {(z,y) € Hy x Hy, y € V(1) }.
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Take xo, 10 € Irr(Hy) and x1,v¢1 € Irr(Hy). We have

1 -
< X0 ® X1, %0 @Y1 >ay@) = Col)] Z (xo ® x1)(zy) (o @ 1) (zy)

yeY()

:m Z Xo(7)x1(¥) Yo (7)1 (y)

yeYi(1)

_ 20 S )

|CG($)| yeY(1)
Xo(%) ()

= W < X1, %1 >y0) -

Since x is central in Hy, we have Xo(ﬂf)m # 0, and we see that xo ® x1
and Yy ® 1y are directly ) (x)-linked if and only if x; and 1, are directly
Yi(1)-linked. Extending by transitivity, we obtain that the (X,))-blocks
of Cg(z) are the Irr(Hy) ® b;’s, where b; runs through the );(1)-blocks of

In analogy with this, we define the unipotent (X', ))-blocks and combina-
torial unipotent (X', Y)-blocks of C¢(x) to be the Irr(Hy) ®b;’s, where b; runs
through the unipotent Y, (1)-blocks and combinatorial unipotent };(1)-blocks
of Hy = GL(l, q) respectively.

4.4.2 Second Main Theorem property for combinator-
ial unipotent (X, )))-blocks

We take any positive integer d, X = Xy or Xy, and v € X'\ {1}. We write
Ceo(x) = Hy x H; as above. For any combinatorial unipotent (X', ))-block
B of G, labelled by the d-core v, we set 3(x, B) = Irr(Hy) ® b, where b is the
Yi(1)-block of H; labelled by . For any x, € B and ¢y ® ¢ € Irr(Hy) ® b,
we set

. [ anyifgo = 1g,
Xu:Yo®Pa 0 otherwise

where the aj,’s are the MN-coefficients, obtained from the Murnaghan-
Nakayama rule for unipotent characters. Then the definition of the of,’s
shows that, for each € X, the §(z, B)’s and ¢, y ey, s satisfy the hypothe-
ses of Proposition 1.33. Indeed, for each combinatorial unipotent (X,))-
block B, for each x, € B and for each y € Y(z), we have

X@y) = D et @ Ua(zy),

Yo@Yr€B(x,B)
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and, furthermore, f(x, B) and 3(x, B’) are disjoint whenever B and B’ are
distinct combinatorial unipotent (X', ))-blocks of G. This implies that, for
each © € X, each combinatorial unipotent (X,)Y)-block of Cg(x) is dom-
inated by a unique combinatorial unipotent (X,))-block of G. Hence the
combinatorial unipotent (X, )))-blocks of G satisfy the Second Main Theorem

property.

(...), which just shows that the human brain is ill-adapted for thinking and
was probably originally designed for cooling the blood.

Terry Pratchett, The last hero.
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