N
N

N

HAL

open science

Heuristic reasoning for an automatic commonsense
understanding of logic electronic design specifications
Salvador Mir

» To cite this version:

Salvador Mir. Heuristic reasoning for an automatic commonsense understanding of logic electronic
design specifications. Micro and nanotechnologies/Microelectronics. University of Manchester, 1993.

English. NNT: . tel-00010456

HAL Id: tel-00010456
https://theses.hal.science/tel-00010456
Submitted on 7 Oct 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00010456
https://hal.archives-ouvertes.fr

Department of Computer Science

University of Manchester
Manchester M13 9PL, England

Technical Report Series
UMCS-944-2

Salvador Mir

HEURISTIC REASONING
For An

AUTOMATIC COMMONSENSE
UNDERSTANDING

Of

LOGIC EL ECTRONIC DESIGN
SPECIFICATIONS

HEURISTIC REASONING
For An

AUTOMATIC COMMONSENSE
UNDERSTANDING

Of

LOGIC ELECTRONIC DESIGN
SPECIFICATIONS !

Salvador Mir

Department of Computer Science
University of Manchester

Oxford Road, Manchester, UK.

LCopyright (©1994. All rights reserved. Reproduction of all or part of this work is permitted
for educational or research purposes on condition that (1) this copyright notice is included, (2)
proper attribution to the author or authors is made and (3) no commercial gain is involved.

Technical reports issued by the Department of Computer Science, Manchester University,
are available by anonymous ftp from ftp.cs.man.ac.uk in the directory pub/TR. The files are
stored as PostScript, in compressed form, with the report number as filename. Alternatively,
reports are available by post from The Computer Library, Department of Computer Science,
The University, Oxford Road, Manchester M13 9PL, UK.

Contents

Abstract
Declaration
Preface
Acknowledgements
Abbreviations
Symbols

List of Tables

List of Figures

I Expert Knowledge and Problem Formulation

1 Introduction
1.1 Motivations of the Research Work
1.2 Exploiting Implicit Design Knowledge
1.3 Methodology
1.4 Artificial Intelligenceo o oo
1.5 Relationship to Other Work

1.6 Overview

2 Architecture of Digital Electronic Systems
2.1 Preliminaries
2.2 System Model of Digital Systems
2.2.1 Combinational Systems
2.2.2 Sequential Systems oo
2.3 Algorithmic Model of Digital Systems
2.3.1 Structure of Algorithmic Systems
2.3.2 Implementation of Group-Sequential Algorithmic Systems
2.4 Computer Systems
2.5 Summary of Key Concepts

w =N o

10
11
13
14

17

18
18
20
21
23
27
30

3 Heuristic Classification of Electronic Cells and Signals

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Introduction L
Design Hierarchy
Knowledge for the Classification of Electronic Cells
Knowledge for the Classification of Design Signals
Reasoning About a Situation. o oL
Problem Formulation 0o Lo
Complexity and Strategies

II Automatic Derivation of Heuristic Design Knowledge

4 Formation of Knowledge Plans

4.1
4.2
4.3
4.4

4.5

4.6

Knowledge Plans
Methods and Heuristics for the Formation of Plans
Knowledge-derivation Functions
Example 1 — Planning by Analysis of Names
4.4.1 Heuristics Based on Naming
4.4.2 Planning the Interfaceof a Cell
Example 2 — Inference of Plausible Cell Types
4.5.1 Abstraction Level Analysis
4.5.2 Logic Type Analysis
4.5.3 Data Transportation Analysis
Number of Knowledge Plans and Complexity

5 Generation of Cell Models

5.1
5.2
3.3
5.4
3.5

5.6

Knowledge Plans and Heuristic Models
Class Models oo o o o
Hierarchy of Models
Logged Models and Learning
Cell Model Generation
5.5.1 Matching of Class Models
5.5.2 Algorithm Complexity
Organisation of Knowledge Plans

6 Selection of Cell Models

6.1
6.2
6.3
6.4
6.5

6.6

Problem Definition and Complexity
Evaluating Alternatives. oL
Evaluation of the Model of a Cell
Evaluation of a Situation o0
Weighting Factors o o
6.5.1 Complexity Deviation Factor
6.5.2 A Case-Study

Cell Complexity Estimation Function

48
48
30
51
39
61
63
64

6.7 Selection of Alternatives Lo 125
7 Model-based Reasoning 127
7.1 Problem Definition Lo 127
7.2 Consistency and Knowledge-propagation 128
7.3 Specification-level Understanding 130
7.4 Example 1 — Connectivity and Knowledge-propagation 131
7.4.1 Plausible and Implausible Relationships 132
7.4.2 Planning Groupings of Connections 136

7.5 Example 2 — Data/Control Signal Flow 138
7.6 Stereotypical Implementations oo 141
7.6.1 Stereotypical Implementation Patterns 142
7.6.2 Problem-solving Strategies 0. 144

7.7 Design Reformulation 0oL 146

IIT Experimental Implementation, Applications and

Conclusion 148

8 Hercules: An Experimental Implementation 149
8.1 Hercules Overall Structure 149
8.2 System Strategy 152
8.3 Current Status of the System and Limitations 153
8.4 Number of Plans/Models Derived 154
8.5 Case-Studies L 157
8.6 System Evaluation Indicators 157
8.6.1 Indicators of Design Complication 158

8.6.2 Indicators of Processing Complexity 160

8.6.3 Effectiveness of the Knowledge-extraction Functions 163

8.6.4 Evaluation of the Knowledge Derived 164

8.7 Discussion L 166

9 Conclusion 167
9.1 Design Understanding — Limitations 167
9.2 Applications 169
9.2.1 General Issues — ECAD Frameworks 169

9.2.2 Guidance and Control of ECAD Tools 173

9.3 Further Work 175
9.4 Afterword L 176
Bibliography 176

A Decision Factors 182

A.1 Decision Factor of a Change 182
A.2 Decision Factors for a Situation 184
A.3 Decision Factors for a Cell Heuristic Model 185
A4 Changes of Estimated Complexity 187

B Semantic Networks for Name Analysis 190
B.1 Meanings of a Word Lo oo 190
B.2 Meaning of a Semantic Network 0L 193
B.3 Control of Name Matching 194

C Combination of Evaluation-function Values 197
D Architecture of Computer Systems 199
D.1 Uniprocessor Systems 199
D.2 High-Performance Computer Systems 200
D.2.1 Pipeline computers 201

D.2.2 Array Computers 201

D.2.3 Multiprocessor Systems. 202

E Proofs 204
E.1 Proof I e 204
E.2 Proof I e 205
E.3 Proof III 207

F Design Hierarchy for the Case-Studies 209
F.1 Counter e 209
F.2 Hbilbo 209
F3 Add . .. e 210
F.4 Validl e 211
F.5 6g01la . . . oo o 211
F.6 Multmilldesign o 213
F.7 Designtoplo 214
F.8 18ara700a e 218
F.9 Cwheell 0 e 229

G Example of a System Run 232

Abstract

An automatic heuristic understanding of digital electronic design specifications is dis-
cussed in this thesis. The term understanding is used in the sense that knowledge about
the functionality and purpose of the cells and signals of a design is abstracted away from
the specification. An heuristic analysis which exploits implicit design semantics is carried
out. The analysis bypasses the examination of detailed logical and electrical data since
it is aimed at the machine simulation of an heuristic way of understanding electronic
design specifications exhibited by human experts. By overlooking implicit knowledge,
current automatic systems are clearly at a disadvantage with respect to human experts
for the analysis, design and management of electronic data. The possibility of getting
the machine to heuristically understand a specification is seen in this thesis as one way
of improving this situation.

The thesis defines and classifies expert knowledge about digital electronic designs,
explores ways to generate expert knowledge about a design from the heuristic analysis of
its specification and discusses examples of exploiting this knowledge to plan and control
automatic tasks. The experimental result of this research is a knowledge-based system
aimed at providing an empirical demonstration of the convenience and viability of an
automatic heuristic understanding of design specifications. The method of reasoning of
the system has without question limitations, but these are also faced by human experts
when they attempt this task. The current prototype of the system already indicates that
valid knowledge can be generated and it implements methods for avoiding the critical
computational complexity of the problem.

Declaration

No portion of the work referred to in this thesis has been submitted in support of an
application for another degree or qualification of this or any other university or other

institution of learning.

Preface

The author graduated from Universitat Politecnica de Catalunya, Barcelona, in July 1987
with a degree in Industrial Engineering. He gained a degree of Master of Science at the
University of Manchester in October 1989. He then commenced full-time research work
for the degree of Doctor of Philosophy at the University of Manchester. The research
done during this period is described in this thesis.

Acknowledgements

This work evolved from the initial proposal of my supervisor, Dr. Nicholas Paul Filer,
of exploiting semantic knowledge contained in an electronic design specification. 1 am
grateful to him for this initial proposition and for his guidance and encouragement to
go ahead with the work. I am also grateful to him for many corrections and comments
which improved the legibility of the manuscript.

[am grateful to my family for their encouragement to get on with my life and my
work, and for all those wondertul reasons which obliged me to frequently go back home
to keep pace with many things that changed over there during the research time. This
thesis is dedicated to my parents.

[am grateful to friends and colleagues who made the research time not only enjoyable
but also possible by granting me on countless occasions the chance of enjoying their com-
pany. Pepi Aguila, Maria Teresa Arica, Jorge Artiles, Marisa Baranano, Karen Cooksey,
Alain Deckers, Catherine Dubois, Amr Elleithy, Wael Fahmi, Luisa Ferriz, Ignacio Ferriz,
Julio Garrido, Aurelio Gémez, Teresa Guedes, Jeremy Heald, Mark Hendrick, Choi Lin
Lee, Katia Helena Lipp Joao, Ana Cristina Melo, Francesca Montalcini, Lidia Moraes,
Georgina and Antonio Noriega, Inaki Onandia, Maria Jose Pardo, Mouna Salem, Laura
and Paolo Saviotti, Bahram Semsar Zadeh, Fduarda and Fernando da Silva, Georges
Theodoropoulos, Georges Tsakogiannis, Eva Valero, Martine de Vlieger, Daniel Wray
and Tim and Hilary Young all were, among others, very good company.

Colleagues in the CAD laboratory at the University of Manchester were useful in a
number of ways. Daniel Wray produced a graphical interface for displaying the heuristic
design knowledge generated. He patiently coped with several updatings of the scheme
for the representation of knowledge. Discussions with him, and Jun-Kang Feng and Alan
Williams, who worked on a formal representation of the heuristic knowledge generated,
were useful to clarify the notation of the knowledge representation scheme. Discussions
with Mike Brown helped me to understand the requirement for a formal representation
of heuristic design knowledge. I am grateful to many colleagues in the laboratory who
always helped me with the use of the computer system.

Discussions with Helena Mendes currently in the Department of Computation at
UMIST in Manchester were of substantial interest to emphasise the applicability of this
research to reverse engineering activities.

I am grateful to Mike Brown, Karen Cooksey, Alain Deckers, Laura Saviotti, Tim
Young and Daniel Wray for proof-reading the manuscript.

This work was supported by a grant from the Comision Interministerial de Ciencia y

Tecnologia (CICYT), Madrid, to whom I am greatly indebted for the financial support
provided over the research years and for the promptness and understanding demonstrated
when dealing with me as a grantee.

Abbreviations

Al Artificial Intelligence
ALU ool Arithmetic-Logic Unit
Av Average
CAD ... Computer-Aided Design
CAMContent-Addressable Memory
CIN Control Input
Ck,Clk oo Clock
CM Control Memory
COMP Comparator
cCoUuT ... Control Output
CP Control Processor
CPU ... Central Processor Unit
s Combinational System
CTR i Control
D Delay
DBMS ...Database Management System
DDL oLl Data Definition Language
DFT oLl Design-For-Testability
DIN Data Input
DKB Deep Knowledge-Based
DMA ... Direct-Memory Access
DMLData Manipulation Language
DMM Design Methodology Management
DOUT ...l Data Qutput
ECAD ... L. Electronic CAD
EDIF Electronic Design Interchange

Format
EX Execution
FF Flip-Flop
1 Integrated Circuit
. Instruction Decoding
IF Instruction Fetch
/o Input/Output

JK
K-ext
K-gen
K-pro
KB
KBS

MOS
MUX

OF

OP,0OPER

P
PE

STO

VLST

.................. JK Flip-Flop
.......... Knowledge-extraction
.......... Knowledge-generation
........ Knowledge-propagation
.............. Knowledge-Based
...... Knowledge-Based System
....................... Memory
....Metal-Oxide Semiconductor
.................... Multiplexer
........................ number
................. not applicable
................. Operand Fetch
...................... Operator
...................... Processor
......... Processing Element or

Port Electronic Function
......... Port Generic Function
.... Programmable-Logic Array
........... Programmable ROM
Programmable-Sequential Array
................. Register Array
....... Random-Access Memory
....................... Register
............ Read-Only Memory
........ Register-Transfer Level
..... Signal Electronic Function
........ Signal Generic Function

......................... Shifter

... Very Large Scale Integration

Symbols

geact
Emy,
fC
o
Tk
Jm
Fey,
Ffy

..confidence/complexity pair for C;
confidence/complexity pair for C; ;
candidate sets for 5;
content matching n2 combinations
valid n° combinations for C,
.............. t-th cell in the design
................. j-th sub-cell of C;
set of cells of a design
complexity of C;
........ calculated complexity of C;
estimated complexity of C;
complexity of C; ;
....... estimated complexity of C ;

.................. partial derivative
....decision factor for the k-th slot
.................... differential of x
cell dependability
decision factor for
decision factor for C;
....set of down-dependencies of ()
..av. confidence in selected models
confidence in M;
confidence in M; ;
confidence in 5;
confidence in situation defining C;
level of abstraction of C;
design model evaluation
effectiveness of set selection

.......... k-extraction effectiveness
..k-cycle av. new matches per plan
....plan matching n® combinations
....n2 plans from model matching
k-th cycle n9 solution plans
k-th cycle n° available plans
k-th cycle % already existing plans
k-th cycle % repeated plans

(i-to-C; , arc decision factor
....n2 of class models in the system
depth-level of C;
largest depth-level
.. k-th heuristic model in the system
... typical interlevel complexity ratio
..................... list membership
. interface matching n° combinations
......... valid n° combinations for I.
interface name matching effectiveness
n? of instances of C;
n? of instances of C;; in C;
...... instantiation rate of the design
............... n? of reasoning cycles
....av. n? productive cycles per cell
.................... av. n2 cell paths
..... k-th logged model in the system
........ average n? of models per cell
.. average n? of models per cell in 5;
n? of model sub-cell classes

.... n% of possible models for C; and

n® of model input ports
n? of model output ports
modulo operator
heuristic model selected for C;
heuristic model selected for C; ;

.......... j-th heuristic model for C;
......................... solution set
................... solution set for 5;
n? of cells in the design
n® of model control input ports
....n%2 of model control output ports
........ n® of model data input ports
n? of model data output ports
n? of plan input ports and

n? of sub-cells of C;

Nmy,

Ty

............ n® of plan inout ports
........... n® of plan output ports
...... n? of candidate solution sets
.............. av. n? situation sets
......... n? of failed situation sets
............ n® of failed sets for S;
........... n? candidate sets for 9;
....... n?2 of cell models generated
av. n2 of models generated per cell
......... n? of cell plans generated
.av. n? of plans generated per cell
....maximum n? of candidate sets
................... n? of failed sets
...cell name matching effectiveness
...net name matching effectiveness
..port name matching effectiveness
....n2 primitive cells in the design
......... n? of plan sub-cell classes
........... n? of plan input signals
.......... n? of plan output signals
.................. av. n9 cell ports
........ j-th knowledge plan for C;
... av. complexity deviation factor
..complexity deviation factor of C}
........... weighting factor for (' ;
....relative importance of k-th slot
........ relative importance of (' ;
............ estimated value of R; ;
.......... n? of situations using C;
.......... t-th situation in a design
................... processing time
....... av. processing time per cell
..... % of correctly defined models
......... % of fully defined models

......... typical complexity of C
........... uncertainty about M;
..... n? of up-dependencies of C;
............ uncertainty about 5
..... set of up-dependencies of C;
....... confidence in the k-th slot
..model deviation in terms of I; ;
....weighted contribution of C;
weighted contribution of k-th slot
................. vector of values
....... i-th sub-vector of vector &
.................. unknown value
......... composition of functions
.................. power operator
.................. integer division
......... arithmetic expression X
evaluates to Z

........ numeric values are equal
....numeric values are not equal
............... Z and X are true
................. Z or X are true
...if P then @) true else R is true
............... continued product
.................. continued sum
........................... for all
................. set membership
..sub-set membership for ordered
sets (sub-set from value a on)
.................... list of values
..................... set of values
........... g-th element in list As
.................. range of values
..... data transfer from As to Bs

List of Tables

1.1

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4

5.1
5.2
3.3

5.4

3.5
5.6

6.1
6.2

7.1
7.2

8.1
8.2
8.3
8.4
8.5
8.6
8.7

B.1

Shallow and Deep Systems 26
Cell Types . . . o o o o e 56
Cell Functionality and Cell Types 57
Typical Port Electronic Functionalities 58
Cell Heuristic Model Example 63
A Knowledge Plan o oo 71
Abstraction Level Based on Number of Ports 79
Sequentiality Analysis Lo 81
Data Transportation Analysis 82
Heuristic Model of the Class of Multiplexer Cells 90
Synchronous Sequential Cells 95
Matching of Cell Types: (a) plan for the cell types, (b) types for the cells

of the class, and (c) matchingresult 98
Matching of Cell Interface: (a) plan for the cell interface, (b) interface for

the cells of the class, and (¢) matching result 99
Instantiated Modelo oo 102
Heuristic Model Result 0o o0 103
Evaluation of the Model of a Cell 114
Effect of the Deviation Factor 123
Propagation of Electronic Functionalities in a Primary Set 135
Propagation in Many-to-Many Connections 137
Slot Weighting Factors oo 154
Case-Studies e 157
Indicators of Design Complication 160
Indicators of Processing Complexity — 1. 162
Indicators of Processing Complexity —IT 163
Effectiveness of the Extraction of Knowledge 164
Evaluation of the Knowledge Derived oo .. 165
Examples of Object Names 191

List of Figures

1.1

2.1
2.2

2.3
2.4

2.5

2.6
2.7

2.8

3.1
3.2

3.3

3.4
3.5

4.1
4.2
4.3
4.4

5.1

5.2

3.3

5.4
3.5

Engineering and Re-engineering Activities 28
A Digital Cell0 o0 33
Combinational Networks: (a) a loop-free network, (b) loop network, (c)

k-iterative network, (d) array network, and (e) tree network. 35
Canonical Implementation of a Sequential Network 37
Data Flow in Synchronous Sequential Networks: (a) cascade composition,

and (b) parallel composition. Lo 39
Organisation of Algorithmic Systems: a) centralised control, b) decen-

tralised control, and ¢) semicentralised control 41
Structure of a System with Centralised Control 42
Implementation of Data Sub-Systems: (a) modular implementation, (b)

bit-slice implementation, and (c) pipelining 43
Microprogrammed Control Unito .. 44
Heuristic Classification of Electronic Cells 49
Design Hierarchy: (a) 4-bit register, (b) D-type flip-flop, and c¢) design

hierarchy for the 4-bit register. Lo 51
Hierarchy Graphs: (a) 4-bit register hierarchy graph, and (b) hierarchy

graph with several paths leading toacell. 52
Cell Interface: (a) cell interface description, and (b) meaningful cell interface. 58
Port and Signal Electronic Functionalities 61
Example Circuito 70
Knowledge-derivation Functionso 74
A Network with Bidirectional Ports 82
Computation of Data Transter Paths 83
Generation of Heuristic Cell Models 87

Multiplexer Cells: (a) a construction of a 2_to_1 multiplexer, (b) a 16_to_1
multiplexer, (¢) a construction of a 16_to_1 multiplexer, and (d) a 2_to_1

vector-multiplexer. oL Lo 88
Classes and Sub-classes of Cells: (a) mutually exclusive classes, and (b)

overlapped classes L oL 93
Partial Hierarchy of Electronic Cells 94
Tree of Plans o 107

6.1
6.2
6.3
6.4
6.5

7.1
7.2

7.3

7.4

7.5

7.6
7.7

7.8

7.9

7.10
7.11

8.1
8.2

Al
B.1
C.1

D.1
D.2
D.3
D.4
D.5

E.1
E.2

A Situation L e
Combination of Evaluation-function Values
Weighting Factors o o
Effect of the Relative Importance
An Example Design o

Consistency and Knowledge-propagation
Primary Sets: (a) a 1-to-1 connection, and (b) items of knowledge for a
primary set. L L
Plausible Signals: (a) short signals, (b) boundary signals, and (c) internal
signals. . .. Lo
Interrelated Primary Sets: (a) a 1-to-2 connection, and (b) two 1-to-1
interrelated connections. oL
Grouping of Connections: (a) groupings according to connectivity, and (b)
typical arrangement of data and control signals.
Data/Control Signal Flow Example
Data/Control Signal Flow Reasoning: (a) data-path under control, (b)
identification of a data unit, and (c) overall view
Contents Pattern-matching: (a) gate level network example, and (b) ab-
straction of the network. oo
A Design Strategy: (a) a comparator cell, and (b) a tree construction of a
comparator cell
Heuristic Problem-solving Models
Design Reformulation: (a) example circuit, (b) bit-slice reformulation, and
(c) reformulation based on functional blocks.

Overall Structure
Dependability between Cells 0L

An Example Design o
Semantic Networks: a) class latch, and b) class set-reset latch.
Combination of Two Evaluation-function Values

Structure of a Uniprocessor System
Organisation of the I/O System
Pipelined Processor
Functional Structure of a Conventional Array Processor
Multiprocessor Structures: a) memory and I/O remote and shared, b) bus
connected multiprocessor, and ¢) multiprocessor based on loop intercon-
nection. oL

Graph T oo o
Graph IT oo oo

132

134

136

137
139

141

143

144
145

147

150
159

184
192
198

199
200
201
202

Als meus pares

“La majoria dels homes son uns ingenus amb molta llana al clatell:
simaginen que el mon €s tal i com ells el capten. Tingues sempre
en compte pero, que en realitat el mon no té cap forma ni color, que
cada ésser viu el percep d’una manera diversa, seqgons la naturalesa
dels propis sentits”. Pep Coll, La Mula Vella

“Todo pasa y todo queda,
pero lo nuestro es pasar,
pasar haciendo caminos,
caminos sobre la mar”.
Antonio Machado

“Orr would be crazy to fly more missions and sane if he didn’t,
but if he was sane he had to fly them. If he flew them he was
crazy and didn’t have to; but if he didnt want to he was sane

and had to”. Joseph Heller, Catch 22

“Pour un jour de syntheése il faut des années d’analyse”.
Fustel de Coulanges

Part 1

Expert Knowledge

and Problem Formulation

Chapter 1

Introduction

The empirical observation that human experts can reason about electronic data in a way
that automatic systems are unable to do triggered the research work presented in this
thesis. The exploitation of heuristic design knowledge allows human experts a flexible
way of understanding logic electronic design specifications which facilitates the analysis,
design and management of electronic data. A procedure for the machine simulation of
an heuristic way of understanding design specifications exhibited by human experts is
introduced. The research work s within the area of applied Artificial Intelligence. Current
research activities which can be related to this work include the re-engineering of software
specifications and efforts directed to automatically reasoning about physical systems and
man-made devices. The major contributions of this work are enumerated and an overview
of the rest of the thesis is presented.

1.1 Motivations of the Research Work

The research work presented in this thesis is aimed at providing the groundwork for an
automatic heuristic understanding of digital electronic design specifications. The heuristic
understanding of an electronic design is based on the analysis of design semantics implicit
in the specification. The analysis bypasses the detailed logical and electrical data which
can rigorously describe the behaviour of a system and its components (electronic cells).
The term understanding is used in the sense that knowledge about the functionality
or purpose of a design and its parts is abstracted away from its specification and this
knowledge can be exploited later in order to plan and control automatic tasks. It is the
exploitation of implicit design semantic knowledge, with the intention of improving the
performance of computer-aided design (CAD) tools, which motivated this research work.

The need to exploit design semantics stems from the empirical observation that human
experts can reason about electronic data in a way that automatic systems are unable to
do. Human experts can often gain an overall understanding of the intention or purpose
behind a design and its parts from the interpretation of data contained in its specification.
This understanding allows the experts flexible ways of reasoning in order to efficiently
plan and control design tasks. On the other hand, most automatic design tools process
design data blindly according to the heuristics and algorithms they are programmed to
use. The electronic data must meet the requirements of the CAD tools used and no
intelligent machine interpretation of the data takes place. This is seen as one of the

Chapter 1. — Introduction —

reasons why human experts can find solutions to problems that CAD tools are often
unable to reach. The possibility of getting the machine to heuristically understand the
circuit that is being designed (or that is being analysed) is seen in this thesis as one way
of narrowing the gap between human experts and automatic systems with respect to the
processing of electronic data.

The human understanding of an electronic specification is not only based on the study
of the rigorous behaviour of the design but also on the examination of implicit design
semantics. The study of electrical and logical data which precisely describes the be-
haviour of the design and its cells is very laborious and time consuming even for designs
of a modest complexity. Without doubt, human experts are able to abstract higher level
models of these behaviours which allow more flexible ways of reasoning than those based
on the mathematical data. This flexibility comes, in most cases, from the fact that the
knowledge which forms these models, and which is abstracted away from the specification,
is generally quite vague and imprecise in nature. For example, some of this knowledge
allows the experts to categorise the functionality of a device and its parts. But often, the
principles behind these categorisations are quite ill-defined. As a result, the knowledge
obtained has low precision and resolution. It is also for this reason that this knowledge
cannot be made more explicit in an electronic specification attending to the strict for-
malities of hardware description languages. As a consequence, in hardware descriptions,
as in most types of specifications (e.g. computer programs), there are implicit semantics.

In the case of hardware descriptions, these implicit semantics often relate to the func-
tionality or purpose of the design and its parts. When these implicit semantics are
interpreted by an expert it is often possible to reach sensible conclusions which can be
both explained and justified. Human experts make use of their experience and common
sense in order to first analyse those semantic or heuristic aspects and data which appear
most relevant for the understanding of a specification and which allow them to bypass
the exploration of the most complex data. This leads to natural and pragmatic methods
for the understanding of a specification. The usefulness of this kind of analysis is evident
when an expert is able to understand the operation of a design in a short span of time.

This work is concerned with the machine simulation of an heuristic way of under-
standing electronic design specifications exhibited by human experts. The thesis defines
and classifies expert knowledge about digital electronic designs, explores ways to gen-
erate expert knowledge about a design from the heuristic analysis of its specification,
and discusses examples of exploiting this knowledge to plan and control electronic CAD
(ECAD) tasks. It is hoped that by capturing this kind of knowledge about a design the
machine will be able to process the electronic data in a way that comes closer to the ways
exhibited by human experts. The experimental result of this research is a knowledge-
based system (KBS) aimed at the exploration of the architecture and functionality of a
digital electronic design by means of an heuristic analysis of its specification. The system
developed is called HERCULES (HFEuristic Reasoning for an automatic Commonsense
Understanding of Logic Electronic design Specifications).

Chapter 1. — Introduction —

1.2 Exploiting Implicit Design Knowledge

A specification of an electronic design contains full or partial information about the
structure and behaviour of the electronic circuits represented. The designers include
in the description the data required by CAD systems for the processing of the design.
In addition, the designers usually specify this data in such a way that other human
designers can understand the design with a reasonable amount of effort. It is clear that a
bare description of an electronic design in terms of the electrical or logical behaviours of
its components and their interconnections is, in most cases, too extensive and elaborate
for anybody to readily understand. For this reason, there are implicit semantics in the
description of an electronic design. These implicit semantics improve the quality of the
specification in the sense that they facilitate its understanding.

Some similarities exist with the specification of computer programs. In any program-
ming language, the choice of meaningful names for variables and procedures, the use of
comments, the organisation of data structures or the modularity of the program highly
facilitate the task of understanding the goal of a program. This extra information is
meaningful to the programmers, but it is not strictly required by the system that ex-
ecutes the program. The computer system will generate the same results with a well
specified program as with a program with the same goal that is incomprehensible for
program designers.

Similarly, the specification of an electronic design can be organised in such a way that
facilitates its understanding. Some of the main techniques that are used to improve the
quality of a description include the choice of meaningful names for the design objects (e.g.
the names of cells and the ports of these cells), the use of comments, the arrangement
of the design objects into arrayed structures (e.g. arrays of ports and arrays of signals)
and the use of an adequate design hierarchy. All this information is meaningful to design
engineers but most of it is unintelligible for automatic systems. Indeed, an automatic
system must result in the same product from the processing of a well specified design as
from the processing of a bare description, with the same goal, which is beyond human
grasp.

The analysis of implicit semantics allows human experts to capture information of
an heuristic nature that can be used, in many cases, to understand the functionality
or intention of the cells and signals of a design. This process is initially based on the
comparison of knowledge captured by interpreting electronic data contained in the spec-
ification with knowledge that the experts possess about electronic design. As a result,
intuitive ideas or abstract models of the functionality or intention of the objects of a de-
sign are generated. The experts can next test and refine these ideas taking into account
the context in which each object appears. This is because the objects of a design have
relationships between them. For example, since an object is usually composed of other
objects (e.g. a cell usually has a set of ports and a set of sub-cells), knowledge about
an object must be consistent with knowledge about its parts. This provides a way of
strengthening conclusions. These relationships can also be used in a more operational
way. That is, they imply that knowledge about an object is useful for the inference of
information about the parts of this object and vice versa. Other relationships between

Chapter 1. — Introduction —

objects are imposed, for example, by the interconnections between cells and by the flow
of signals in the circuit.

As an example, consider the identification of a device that represents an n—bit reg-
ister. The analysis by means of the electrical or behavioural data (if available) is not
straightforward since many variants of these devices exist. Alternatively, design seman-
tics can be exploited. Examples of heuristics that can be used for the identification of
a register include the name of the device, the device being constructed from an array of
memory cells, the existence of clock ports, load ports and input and output data ports of
the same width n, and the use or location of this device in a design (such as connected
to the data output of an arithmetic-logic unit or ALU since a register is usually placed
there). The identification of the clock port, for example, could be achieved by the anal-
ysis of the name of the port, by its connection to other external or internal clock ports,
by the type of the signal carried, or by the dimension of the port (since other ports of
the cell, such as the data ports, are generally larger).

The analysis of implicit design semantics provides, undoubtedly, an easy way to reach
conclusions. Clearly, the nature of these design semantics is different from that of the
electrical and logical data. The intuitive ideas which are formed about the objects of a
design represent a higher level of abstraction than the level of abstraction of the mathe-
matical data. As a result, more flexible ways of reasoning are possible which allow many
unwise alternatives to be rapidly discarded. A penalty to pay with the analysis of this
kind of data is a degree of uncertainty associated with the knowledge obtained (since
the rigorous logical and electrical data is avoided). This is often compensated by the
simplicity with which results can be attained.

In any case, the knowledge acquired can be adjusted or refined with the study of the
more detailed electronic data. This study can be postponed until it is strictly necessary
(e.g. when this type of knowledge is not sufficient to carry out a task or support an
hypothesis) and it can be guided by the heuristic information already generated. As a
matter of fact, human experts often subordinate the study of the elaborate mathematical
information to the analysis of design semantics. Of course, a system that exploits only
these semantics cannot understand most of the detail behind a hardware description.
However, it is convenient for the capture of important design characteristics and for the
presentation of the design with semantic information that can be useful for CAD tools
(and for human experts too).

1.3 Methodology

A procedure for the machine simulation of the heuristic way of reasoning outlined above is
discussed in this section. The procedure must exploit design semantics which are implicit
in the description of the design. As discussed in the above section, human experts initially
obtain intuitive ideas about the possible purpose or operation of some of the objects of
a design. This is mainly based on the resemblance of semantic information to knowledge
about electronic design that the experts possess. Next, they repeatedly test and refine
these ideas after studying the context in which each object appears.

Chapter 1. — Introduction —

In fact, this way of reasoning is typical of the manner in which humans analyse different
situations of the real world. The initial extraction of ideas about parts of a situation is
mostly an intuitive process based on the observation of some characteristic information.
These ideas can be seen as models abstracted from the actual reality. Next, these ideas
are reorganised or modified according to the relationships between different objects. A
clear example is the observation of a picture. In its simplest form, a picture drawn by
a child generally contains a poor representation of a real world situation, but it allows a
viewer, in most cases, to form a mental idea of the situation that the picture attempts
to represent. Some of the objects in the picture will be more or less obvious. Other
objects may not be clear at all, but their contexts in the picture may throw light on their
intentions. The picture may be indeed simple, but the little information available often
characterises quite well the real situation. For a computer, it ought to be easier to realise
the real world situation from the analysis of the naive picture than from the analysis of
a more elaborated picture in which most of the characteristic information may well be
hidden by the large amount of data. Because the process is only driven by characteristic
information, this way of reasoning reflects expertise and common sense rather than a
systematic way of approaching the solution.

For the understanding of an electronic design, the system must initially capture a set of
arrangements or plans for the heuristic knowledge about its cells (and its signals). These
knowledge plans are derived from the interpretation of semantic information contained
in the designer’s specification. For a cell, knowledge plans can be extracted from the
definition of the cell (cell object) or from each use of a cell in the design (instance
objects). The functions used for the extraction of these plans are called knowledge-
extraction functions. Examples of these functions are based on the analysis of the names
of the objects, on the study of the size of the objects, on inferences drawn from the
grouping of objects and on relationships derived from the hierarchy of the design.

Plans of the knowledge about a cell are compared with system information. Examples
of system information include knowledge about classes of electronic cells typically used in
electronic circuits and knowledge about electronic cells obtained from the processing of
previous designs. The successful comparison of a plan for a cell with system information
results in candidate heuristic models for the cell. The generation of a model for a cell
implies that knowledge available in a plan is validated by the system. The model includes
information about the functionality of the cell and its ports. The functions used for
this comparison are called knowledge-generation functions since a model can contain
additional knowledge provided by the system. This is supported by the fact that the
items of knowledge existing in the initial plan are known to the system as ‘usually’ being
associated with some other items of knowledge. In this sense, a model is an augmented
plan (i.e. a plan with additional knowledge) with respect to the initial plan. A number
of different model candidates may be possible for any cell since, for example, different
plans can be initially formed.

Consistency must be kept between the models of the cells. This is because the cells
and signals of a design have relationships between them as discussed in the previous
section. Since a number of models may be possible for each cell, the system must search
for a set of consistent models (solution set) which ‘best’ represents the cells of a design

Chapter 1. — Introduction —

(considering one model for each cell of the design). The consideration of all possible
combinations of models for the cells of a design leads to a combinatorial explosion (the
search space grows exponentially with the number of cells in the design). Even for designs
with just a few cells and several candidate models for each cell it will not be feasible in
general to consider an exhaustive search for the ‘best’ solution set. Because of this, more
heuristic mechanisms must necessarily take over in order to select the ‘best’ candidate
set which is to be considered first without having to generate all the possible sets. These
heuristic mechanisms are based on a pseudo-probabilistic measure of the confidence in
each model and in the knowledge represented. The evaluation measures of the models
for each cell are combined to give a pseudo-probabilistic measure of the confidence in the
overall solution set.

The need for consistency between the models selected for each cell may lead to the
addition of further heuristic knowledge in the models of interrelated cells and signals
or to the discarding of an alternative combination of models for the cells of the design.
The functions used for this examination are called knowledge-propagation functions since
knowledge about an object can essentially be propagated from interrelated objects. Ex-
amples of these functions are based on the analysis of the connectivity of the cells, on
the examination of the hierarchy of cells, and on the analysis of the flow of signals in the
design. The addition of knowledge to a model of a cell results in a new plan for this cell.
In the worst case, the study of each valid combination of alternative models could result
in a new set of plans for each one of the cells of the design. A new set of plans can again
be compared with system information to generate an additional number of new models.
Broadly speaking, this starts a new knowledge-generation/knowledge-propagation cycle
(reasoning cycle) and the process is repeated until no more new models can be obtained
for any of the cells of the design from the best solution set hitherto generated.

In short, the task of the system is the generation and selection of models for the cells
(and signals) of a design in a way that avoids the combinatorial explosions which can
arise. The functions for the derivation of knowledge can be classified in three groups. The
first two, knowledge-extraction and knowledge-generation functions, are aimed at recog-
nising the different cells of the design and they are said to perform recognition-targeted
reasoning. They simulate the human ability of abstracting models for the design cells.
The third group of functions, knowledge-propagation functions, are aimed at studying
the consistency between the models of the different cells of the design. These functions
simulate the human ability of analysing the relationships between the different cells and
the signals which interconnect them and they are said to perform model-based reasoning.
In addition, the system is controlled by functions which allow the selection of models and
the evaluation of the confidence in the knowledge represented in a pseudo-probabilistic
way.

1.4 Artificial Intelligence

Most of the research presented in this thesis has been developed within the framework of
knowledge engineering and applied Artificial Intelligence (Al). Al researchers bear in mind

Chapter 1. — Introduction —

the initial purpose of Al of creating a computer which thinks or, at least, can simulate
human mental faculties by means of computational models. After several decades of
research, the feasibility of creating such machines remains very controversial. Advocates
and skeptics of Al still plunge into passionate discussions about the rationale or absurdity
of the project [Pen89]. This is not surprising since the question touches upon deep issues
of philosophy. For instance, what does it mean to say that a human thinks or understands
something? With clear answers to questions like this, the end of the Al debate would
perhaps not be a long way off. However, these answers have yet to come.

Whatever the outcome of the Al debate is, the conviction has grown that this tech-
nology provides worthwhile solutions in a diverse range of problem domains. Al has
branched into a number of different areas — vision, natural language, robotics, planning,
learning, expert systems — which correspond to diverse intelligent human activities. All
these areas, though probably still in an embryonic state of development, already provide
technological solutions for current industrial problems. From a quick look at these areas
of research and the results obtained, one important point immediately arises: human
beings can easily perform actions which, when simulated in a computer, involve a vast
body of knowledge with complex interactions. Enthusiastic Al supporters are not im-
pressed by this. For example, the fact that humans can see in the twinkle of an eye
what requires millions of computations in a computer is being attributed to evolutionary
fortuities which have specially prepared human brains to perform these types of tasks.
Thus, the important point behind the impressive human faculties is not only the biolog-
ical structure of human brains that supports the realisation of these actions but also the
actual way in which humans achieve them. Here lies the central dogma of AI. If what
the brain does can be thought of, at some level, as a kind of computation, the Al project
should succeed.

Encouraged by this, Al researchers have been very concerned with making machines
understand, specially in areas such as natural language. Of course, the grounds on which
it would be possible to defend a claim that a machine understands anything are not yet
clear (and, most likely, neither are the arguments required to impute human understand-
ing!) [Jac90]. However, some of the grounds that seem necessary for this understanding to
occur have been less questionable and they have formed an important part of Al research.
These grounds are taken into account in this work to measure the ability to heuristically
understand the specification of a design. They include:

i — the power to represent knowledge about the domain and the ability to use it effec-
tively.

ii — the ability of the machine to perceive equivalences or analogies between different
representations of the same or similar situations.

iii — an ability to learn in some non-trivial way. This usually involves the integration of
new information with already existing knowledge, perhaps in a way that modifies

both.

The early periods of Al research are characterised by the attempt to solve problems
which require these kinds of computer understanding. A main topic of research of this

Chapter 1. — Introduction —

period corresponds to the search for general purpose problem-solving methods for large
classes of problems (such as those that can be characterised as search problems [CM85]).
Day after day, researchers have gained more insight about the actual ways in which
humans solve problems. They have realised that general methods of problem-solving
underestimate the domain-specific knowledge and common sense that human experts
possess. As a consequence, the period of Al research that stretches from the second half
of the 1970s to the present day has been characterised by a greater orientation towards
solving domain-specific problems [Jac90]. This period of research has put emphasis on
the acquisition and representation of the relevant domain knowledge which a program
accesses, rather than on the actual way in which the program is executed. The knowledge
of the program or knowledge base is kept separate from the code that executes the program
or inference engine. These knowledge-intensive programs are referred to as knowledge-
based (KB) systems '. The process of constructing these systems is often called knowledge
engineering and is considered to be applied Al

Many knowledge-based CAD tools have appeared during the last decade for tasks as
diverse as diagnosis and hardware synthesis. The use of KB techniques for CAD has been
very much encouraged by the perceived success of the application of this technology to a
diverse range of domains, including organic chemistry, mineral exploration and internal
medicine. In these domains, KB systems show, in general, quite satisfactory levels of
performance when large bodies of expert knowledge are encoded in rule-based knowledge
bases [HR85]. This technology has not been so successful in the domain of CAD for very
large scale of integration (VLSI) designs, despite the large wealth of knowledge required
for the design of these circuits and the complexity of the design process [RKCMS85]. A
major reason for this is to be found in the different nature of the expert knowledge
required in this domain. KB systems appear to work best in domains where there is
a substantial body of empirical knowledge connecting situations to actions, but there
is little information about the causal mechanisms underlying the case investigated. For
example, the rules of knowledge would typically reflect empirical associations of facts
derived from experience instead of a theory of the way in which a device or an organism
under investigation actually works. A deeper representation of the domain, in terms of
spatial, temporal or causal models, is often avoided, or considered unnecessary. Thus,
the knowledge used in these KB systems is often called shallow as opposed to what is
sometimes called deep knowledge.

Shallow KB systems reason about a problem with a very limited understanding of the
domain. They are characterised by a sparse or bare representation of knowledge. For
example, a rule such as “if a cell is a register then the cell has memory” states that any
electronic cell which operates as a register has memory. With such a sparse representa-
tion there are in general few possibilities in reasoning. For example, the matching of a
condition (such as the cell operating as a register) to pre-defined alternatives must be

KB systems are aimed at the representation and manipulation of domain knowledge, though no
actual reasoning may take place. KB systems which have the ability to reason about the knowledge
represented are called expert systems [Jac90]. For the sake of generality, the term KB system is used in
this work to refer to all these systems.

Chapter 1. — Introduction —

exact. Most important of all, a problem with shallow systems is that they tend to repre-
sent only individual items of knowledge. For example, using this kind of representation
it is not easy to represent the requirements for a generic electronic cell to have memory
(specially if this is due to the way in which its sub-cells are interconnected). Instead, a
specific-to-case approach is taken and the reality that a register cell has memory is simply
stated for this particular case of electronic cells.

Deep knowledge-based (DKB) systems do not just have a single level of representa-
tion. A comparison of the most important features of these systems against their shallow
counterparts is shown in table 1.1 [Mor90]. Layers of concepts are used in the repre-
sentation of knowledge which provide a much richer structure and consequently a more
sophisticated reasoning capability. The use of layers of concepts allows the consideration
of general classes in deep systems as opposed to specific instances in shallow systems. In
general, DKB systems provide more abstract ways of reasoning about a problem since
the kinds of knowledge used are vague and imprecise in nature. On the other hand,
shallow-based systems have a more precise representation of knowledge since they are
aimed at individual items of information. However, this limits the reasoning capability
of these systems. Finally, the control of deep systems is more complex because of the
enhanced reasoning capability.

‘ Features H Shallow ‘ Deep ‘
Levels of Concepts single level multiple levels
Structure simple complex
Distinctness specific instances | general classes
Precision, resolution high low
Reasoning, representations sparse rich
Control less more

Table 1.1: Shallow and Deep Systems

A DKB system is more adequate in this work for the representation of knowledge
about electronic cells since layers of concepts are required. For example, it must be pos-
sible to explicitly link knowledge about the functionality of a cell with knowledge about
its parts (i.e. its ports, sub-cells and signals). Classes of electronic cells can also be rep-
resented in a more natural way instead of only considering specific instances. Knowledge
representation techniques derived from Al (such as frame-like structures [FK85] and se-
mantic networks [Woo75]) are used for the representation of knowledge about electronic
cells and classes of electronic cells. Precise and quantitative electrical and logical data is
avoided and vague and imprecise knowledge of an heuristic and qualitative nature is used
instead. With the consideration of this kind of knowledge, it is expected to move towards
a reasoning system that can demonstrate more human capabilities for the understanding
of design specifications.

The system presented in this thesis works basically by means of what is called heuristic
classification [Cla85]. Heuristic classification is recognised as a particular problem-solving

Chapter 1. — Introduction —

methodology in Al. A wide range of KB system tasks in different domains appear to be
performed by means of heuristic classification. In this work, the heuristic classification
of the electronic cells and signals of a design follows three basic steps:

1. data abstraction: this implies the observation of salient features of the cells and
signals of an electronic design to form high level interpretations of their operations.
The abstraction of heuristic knowledge facilitates the match between electronic data
and pre-defined categories.

2. heuristic matching: this allows the generation of a number of alternatives for the
classification of electronic cells. The match is facilitated by considering data abstrac-
tions and broad classes of cells. This matching process is heuristic since abstracted
data is considered in place of detailed information.

3. solution test and refinement: heuristic methods are required to make choices between
the candidate models for the cells and signals of a design. Consistency between the
models selected is verified, which can result in more refined solutions.

1.5 Relationship to Other Work

This work is related to research being done in the CAD group in the Computer Science
department at the University of Manchester. It has long been felt in the group that it is
evermore unrealistic to largely rely on human intervention for the analysis and design of
electronic hardware [Kah85]. One way of addressing these problems is to incorporate into
the CAD algorithms greater awareness of factors such as the design strategy or the design
rules of a particular silicon technology. The approach taken in the research group is to
separate algorithmic action from technological and environmental rules. A high degree of
adaptability is thus obtainable and the generality of classical CAD algorithms is not lost in
favour of domain-specific solutions. A database system that defines, stores and manages
rule-based technology information has been developed [AK86]. The explicit extraction of
technological and environmental design rules provides vital support for the development
of KB applications. These rules can be accessed by specific KB applications which are
supported by a rule-based expert system environment [Fil88]. The experimental KB
applications undertaken [KF85, Lai86, FS87] are all shallow KB systems. These systems
lack the ability to build and exploit deep semantic models of electronic data. The analysis
of semantic information discussed in this work attempts to improve this situation.

This kind of analysis can be related to software engineering research aimed at recover-
ing (re-engineering) unavailable information concerning software specification and system
design decisions from the information available in the existing system source code. The
scope of system re-engineering activities ranges from error correction (system debugging),
through program optimisation, restructuring, addition or modification of functionality,
all the way to system migration (e.g. to a new software/hardware platform) or reno-
vation [KN89]. Except for the extreme cases of system migration and renovation, the
rest of the activities are known as software maintenance. System maintainers often find
themselves in the position of attempting to re-engineer the system design or its high

Chapter 1. — Introduction —

level specification (usually not the whole system but parts of it). The system high level
specification and design documentation may not be complete, reliable, or even available.
The only reliable sources of system information are the programming language code (the
lowest level of system definition) and the behaviour of the system when executed in a
computer.

These re-engineering activities have clear counterparts in electronic design (needless
to say, algorithmic software descriptions are used to represent the behaviour of digital
hardware designs). Figure 1.1 serves to illustrate this comparison and to delimit the aims
of this work. In the forward engineering process, system specifiers translate a requirement
statement describing the application or use of a system (in a problem domain-specific lan-
guage) into a domain independent language. For example, the intention may be to build
a system to control the lights of a crossroad. The specification of this requirement may re-
sult, for example, in a state diagram describing the different possible situations or a high
level algorithmic description of the system. The translation of domain-specific statements
into a domain independent representation depends critically on human creativity. The
designers produce a logical or detailed software/hardware system design from the system
specification (stepwise refinement process). The detailed system design is passed to the
implementors who write the system code or produce the required electronic circuits.

Engineering Activities

Specifiers Designers Implementors

Requirement System System
Statement Specification Sour ce Code
Application-level Specification-level Structure-level
Understanding Understanding Understanding

Re-engineering Activities

Figure 1.1: Engineering and Re-engineering Activities

The understanding of a software/hardware description refers to an abstracted repre-
sentation of the system source information. This reverse engineering process starts with
an understanding on the level of the software/hardware description language used. Lan-
guage specific details are abstracted into entities of the system and an understanding
of how these entities interact with each other when the system runs can be achieved.
For a software description, entities such as procedures, data structures, variables and
files are identified and it is possible to gain an understanding of how these entities affect
each other (for example, which procedure can change the value of a variable or can call
another procedure). For a hardware description, entities such as cells, ports and signals

Chapter 1. — Introduction —

are identified. An understanding of which cells are sub-parts of other cells, in which way
signals flow or which cells drive other cells can be obtained. This level of understanding
is achieved by means of an analysis of the structural aspects of the system.

The structural analysis of a system does not reveal any information about the mean-
ing or intended functions of its entities. The understanding at the specification level
associates generic interpretations and problem solving heuristics (patterns or plans) with
the identified entities. For example, in the software case, pieces of system code are asso-
ciated with stereotypical implementation patterns of programming constructs, problem
solving strategies, abstract data types and standardised algorithms [HN88]. As a result,
it may be possible to derive, for example, that a piece of code iteratively performs an
operation that can be associated with a high level statement of the type read and ac-
cumulate [KN89]. In the hardware case, electronic components can be associated with,
for example, known electronic cells, classes of electronic cells or typical implementation
patterns. The result can be the derivation of a high level statement that describes the
operation of a component such as being identified as a storage component (e.g. a regis-
ter), as a operator component that is used for the comparison of two values (comparator)
or as a controller of other components (control component). Identified patterns can be
further grouped together to facilitate higher level abstractions. The work presented in
this thesis is aimed at the generation of knowledge up to this level of understanding.

The understanding at the specification level cannot relate the identified patterns and
functionalities in the specification to the problem domain-specific applications. For ex-
ample, a read and accumulate pattern of code or a group of electronic cells can be used
to add up the salaries of the employees of a company. A storage entity (for example a list
data structure or a list implemented in hardware) may contain the values of these salaries.
The understanding at the specification level may derive these types of storage but not
its domain-specific application. As mentioned above, the forward transformation carried
out by human specifiers depends critically on human creativity. An artificial substitute
for the reverse transformation can only rely on deep semantic information contained in
the system code (such as the names given to the entities or the comments introduced).

This work also relates to research aimed at reasoning about electronic devices for the
reformulation of designs [Sin87]. More generally, there are clear links with research aimed
at reasoning about physical systems, particularly man-made devices. Examples of these
typically include hydraulic systems, heat-transfer systems and mechanical devices. These
are typical areas of concern of commonsense reasoning [Dav90]. In most cases, a system
can be studied by considering separate components first, which are presumably simpler
than the overall system, and the overall system later as the interaction of components.
Commonsense theories that include the way in which solid objects interact, liquids flow
or heat is transferred, are required for the understanding of these systems. The aim of
commonsense reasoning is to define and apply commonsense theories to the real world to
gain an understanding of everyday situations. The aim of heuristically reasoning about
digital electronic design specifications is to improve the performance of automatic systems
and to provide assistance to human experts. Applications of this work to current research
will be detailed in chapter 9 .

Chapter 1. — Introduction —

1.6 Overview

As mentioned before, this work is concerned with the machine simulation of an heuristic
way of understanding electronic designs exhibited by human experts. The aim is to
provide the groundwork for an automatic heuristic understanding of digital electronic
design specifications. This understanding is reflected on an heuristic classification of the
electronic cells of the design and the signals which interconnect them. The following are
considered to be the major contributions of this research work:

1 — definition and classification of expert knowledge that can be used for the machine
simulation of the heuristic way of reasoning about logic electronic design specifica-
tions exhibited by human experts.

il — mechanisms required to capture expert knowledge about a design from an heuristic
analysis of its specification, and mechanisms for reasoning about this knowledge
which can allow a specification-level understanding of a design to be reached.

iii — application of the knowledge generated for a design to narrowing the gap between
CAD systems and human experts for the analysis, design and management of elec-
tronic data.

iv — contribution towards an automatic machine understanding of digital electronic de-
sign specifications and, in general, towards the re-engineering of human specifica-
tions.

Bearing this in mind, the work presented in the remainder of this thesis can be seen as
composed of three main parts. Part [is concerned with the investigation of expert knowl-
edge that can be used for an heuristic exploration of the architecture of digital electronic
systems. With this aim, chapter 2 presents an overview of the architecture of digital
systems. The emphasis is on those characteristics that can be exploited for an heuristic
understanding of the functionality of these circuits. Chapter 3 defines and classifies the
expert knowledge that is used to build models of the operation of an electronic cell and its
signals and formalises the procedure for the generation of these models. The knowledge
used is occasionally quite ill-defined, but it often allows human experts to get a feeling
about the design investigated.

Part II describes the mechanisms and methods that are used for the generation of
expert knowledge about a design from the analysis of its specification. With the imple-
mentation of these methods, the system is endowed with a set of functions which attempt
to simulate the heuristic way of understanding electronic devices exhibited by human ex-
perts. The procedure for the simulation of this process is based on the formation of
knowledge plans for the cells of a design as discussed in chapter 4. Plans of knowledge
about a cell are compared with system information for the generation of heuristic models
of the cells. This is described in chapter 5. The control of the procedure for making
choices between different alternative models for the cells of a design and for avoiding the
combinatorial explosions that can occur is considered in chapter 6. The control is based
on a pseudo-probabilistic measure of the confidence in the knowledge generated and it

Chapter 1. — Introduction —

provides a mechanism for the evaluation and comparison of different solutions. Finally,
chapter 7 presents a method for reasoning about the interactions between electronic cells
considering that an heuristic model has been selected for each cell. This reasoning can
result in the formation of additional knowledge plans for the cells of the design. This
starts a new cycle of knowledge-generation/knowledge-propagation.

To conclude the thesis, part III describes the experimental work carried out and ap-
plications of this research. The current implementation of the KB system developed and
the experimental results obtained are described in chapter 8. In chapter 9, the limita-
tions of the reasoning method used are discussed, examples of exploiting heuristic design
knowledge for the analysis, design and management of electronic data are examined, and
directions in which this work can be extended are suggested.

Chapter 2

Architecture of
Digital Electronic Systems

Electronic designers can often gain an overall understanding of the operation of a design
from the observation of a few salient features which characterise its cells and signals. A
major reason for this is that the interpretation of these features allows expert designers to
derive knowledge for the classification of the functionality of the different objects into a
small number of categories. The association of heuristic knowledge with a cell of a design
narrows the range of possibilities for the operation of the cell and for the operation of the
overall design. The architecture of digital electronic systems is briefly reviewed with the
intention of introducing design features and functional categories of electronic cells and
signals which can be exploited for an automatic heuristic understanding of logic electronic
design specifications. These categories are defined and used in chapter 3 for an heuristic
classification of electronic cells and signals.

2.1 Preliminaries

The analysis and design of digital systems is very complex and it is best managed by
means of a structured approach. In this approach, a system (cell) is decomposed into sub-
systems (sub-cells) and each sub-system is analysed or designed in a structured manner
too. For example, in the design of a processor, system designers and system architects
define the characteristics of the global system. Logic designers (or an automatic sys-
tem) translate an algorithmic description of the system into a logic design. This involves
putting together functional cells such as registers, arithmetic and logic units (ALUs) and
control logic to form a network of electronic cells that meets the functional requirements
of the processor. These cells are then gradually decomposed into simpler logic func-
tions. Circuit engineers design the networks of transistors that provide the required logic
functions.

The intention of this chapter is to describe digital cells and their implementation with-
out considering the complex logical and mathematical data involved in the specification of
their behaviours. Information about the functionality and complexity of electronic cells is
categorised and characteristic information related to their implementation is given. The
association of this kind of information with a cell of a complex design narrows the range
of possibilities for the operation of the cell and for the operation of the overall design.

Chapter 2. — Architecture of Digital Electronic Systems —

An automatic understanding of a complex design can then be gained without considering
the complex behavioural data.

A logic cell can be seen as a black box which takes a set of input values and generates
a set of output values. For binary logic systems, these values are coded as vectors of
binary signals or bit-vectors as shown in figure 2.1. A cell performs one or more logic
operations on n input bit-vectors and generates m output bit-vectors as a result. The
logic behaviour of a cell is an abstraction of the electrical behaviour which relates the
voltages and currents in the circuit. This abstraction is necessary since the analysis and
design at the electrical level is only possible with small digital networks [HJ83].

Figure 2.1: A Digital Cell

Two different models have been found useful for the analysis and design of logic digital
systems: the system model and the algorithmic model [EL85]. The system model consid-
ers systems that implement relatively simple functions. These functions are categorised
in section 2.2. Characteristic features of the implementation of these systems are also
discussed. The algorithmic model is suitable for large designs since it facilitates global
understanding. This approach relies on viewing a digital system as performing a computa-
tion described by means of an algorithm. Section 2.3 reviews this approach and classifies
the digital cells required for building algorithmic models. These cells are designed and
analysed by means of the system model. Characteristic features of the organisation and
implementation of algorithmic systems are also discussed. General-purpose algorithmic
systems (digital computers) are considered in section 2.4. The key points elaborated in
this chapter are summarised in section 2.5.

2.2 System Model of Digital Systems

The system model represents the logical behaviour of relatively simple digital cells by
means of two functions: a state-transition function, which computes the new state of a
cell from its current state and the input values, and an output function which computes
the output of a cell from its current state and the input values. The analysis by means of
the system model of a network of digital cells requires the functions of the interconnected
cells and parameters related to their physical implementation. Typical parameters include
timing characteristics such as delay, set-up and hold times, maximum clock frequency,
minimum pulse width, clock skew and loading characteristics such as load factors and
fan-out.

Chapter 2. — Architecture of Digital Electronic Systems —

The intention of this section is to describe the digital cells that are analysed by means
of this model. The functionalities of these cells are categorised and characteristics of
their implementation are given. An understanding of a complex design can then be
gained without considering the output and state-transition functions of the cells involved.
Most generally, the cells considered by the system model are classified into two classes:
combinational and sequential systems. In combinational systems the outputs only depend
on the current inputs (if zero delay is assumed). The system has no memory. Sequential
systems are more general than combinational systems since the output at any given time
depends not only on present inputs but also on past inputs (a sequential system has
memory or state).

2.2.1 Combinational Systems

Combinational systems can only perform a limited set of operations since they do not
have state. These systems can generally be classified according to the type of operations
that they can perform as follows:

1. transmission systems: these systems perform a controlled transmission of values
without transforming them. The purpose of the transmission is to bring a value
to the part of the system where it is to be transformed, stored or output from the
system. Examples of these systems include selectors (e.g. a multiplexer), distributors
(e.g. a demultiplexer) and shifters.

2. arithmetic systems: these systems implement basic numerical functions such as ad-
dition, subtraction, multiplication or division (e.g. adders and multipliers) or rela-
tional functions such as equal, less and greater (e.g. comparators). Systems with
multiple arithmetic/logic functions (e.g. ALUs) are typically included here.

3. code conversion systems: these systems represent the input and output data of
the system with different code without altering its meaning (e.g. decoders and
encoders). Code conversion is sometimes necessary when data is transmitted into a
digital system or out of it.

4. data transformation systems: this type includes the rest of combinational systems
(e.g. parity generators and checkers).

A combinational system can be implemented by means of networks of ad hoc or stan-
dard combinational cells, networks of gate circuits (random logic), and directly as a
network of transistors. In a network of combinational cells, data flows directly from the
inputs to the outputs of the system and no feed-back loops usually exist. This is the case
of the network of figure 2.2(a) (the network is combinational since the network function
can be obtained by composition of the cell functions). A network with one feed-back
loop is shown in figure 2.2(b). A network with loops can be combinational or sequential.
Most of these networks are sequential. The combinational cases are just curiosities with
a few minor exceptions (see [EL85] for some examples).

Chapter 2. — Architecture of Digital Electronic Systems —

X, Cs X, Cs Z3
@ (b)
| | |
Xk X k-1 Xj X1 = —
c)) 13 ! | . Xij
=nk_| Gk Crk-1fs— ** =< CJ =<—..=<— Cq e - c.. L
ij
T ¢] .
Zrk Zok1 g Z

Poror o
C11 C12 C13 Cl4
TSR
CZl C22
| |
Ly
C

(€

w

IN<=—

Figure 2.2: Combinational Networks: (a) a loop-free network, (b) loop network, (c)
k-iterative network, (d) array network, and (e) tree network.

The choice of strategy for the implementation of a combinational system is usually
a trade-off between performance and cost. For small designs, ad hoc implementations
using networks of gate circuits are typical. It is also common practice to implement a
small combinational system directly as a network of transistors or switches. This results
in a further reduction in size and an improvement in performance [WE85, MC80]. A
standard cell can be used for the implementation of small designs if performance is not
critical. A relatively small set of standard cells has evolved for the design of all types
of combinational systems. Examples of these are implementations with a multiplexer,
decoder or a read-only-memory (ROM). The implementation with programmable cells
such as programmable-logic-arrays (PLAs) is very common. This provides cheaper de-
signs at the expense of a slower performance and larger area of silicon than well-suited
fixed functions.

Chapter 2. — Architecture of Digital Electronic Systems —

For large designs (networks with a large number of inputs), implementations with
networks of standard cells are used. Examples of these include ROM networks, PLA
networks, decoder networks, multiplexer trees and shifter networks. Some techniques have
evolved which emphasise regular connections and topological simplicity by constructing
a network as a regular repetition of a single cell. This reduces considerably the design
cost. Examples of these techniques include:

1. wterative networks: they consist of several identical cells organised as a one-dimensio-
nal array. A cell is connected only to its neighbours. Figure 2.2(c) represents a k-
iterative network: an implementation of a function of n bits by a network consisting
of n/k identical cells. The input bit-vector is partitioned into n/k groups of k
elements each and each group is applied to a different cell. These networks may
be too slow for some applications because of the large delay of propagating signals
through the array (e.g. an iterative adder).

2. array networks: these networks correspond to the extension of iterative networks
to two dimensions as shown in figure 2.2(d). This organisation is typically used in
arithmetic systems.

3. tree networks: this implementation is possible for some functions and it leads to
more regular and faster networks than in the iterative case. Figure 2.2(e) shows
an example of this type of implementation. Different chunks of the input data are
processed in parallel and the need to propagate signals is decreased (an example of
this is a tree of comparators as shown in section 7.6.2).

2.2.2 Sequential Systems

Sequential systems are more general than combinational systems since the output at any
given time depends not only on present inputs but also on past inputs. This results
in much more complex and useful behaviours. A sequential system takes input values
and generates a change of state according to the state-transition function and output
values according to the output function. The systems in which the change of state
takes place at discrete instants of time as defined by a synchronising input or clock are
called synchronous sequential systems. In asynchronous systems the state can change at
any time as a function of the input changes since there is no external synchronisation.
Asynchronous systems are of course more general and faster than synchronous systems,
but because of their complex and sensitive behaviour they are more difficult to design
and they are less frequently used.

The sequential systems analysed by means of the sequential model can generally be
classified according to the type of operations that they can perform as follows:

1. data storage systems: because sequential systems have memory the most elementary
functions are dedicated to the storage of data. Examples of these include cells such
as latches, flip-flops and registers (a register is an array of latches or flip-flops).
Systems that can store multiple bit-vectors include register-files, random-access-
memories (RAMs) and content-addressable-memories (CAMs).

Chapter 2. — Architecture of Digital Electronic Systems —

2. sequential arithmetic systems: these systems operate serially upon operands repre-
sented by bit-vectors. In a serial execution, the result of the operation is obtained
as a sequence, one bit at a time. The operands can also be input to the system as
sequences. Examples of these are sequential adders and sequential ALUs.

3. sequential code conversion systems: in a sequential (or serial) code converter the
binary input vector is applied as a sequence, one bit per clock pulse. The output is
produced when the whole input vector has been applied.

4. controllers: these systems issue a sequence of control signals to determine some
actions or operations in other systems (see section 2.3).

5. data transformation/generation systems: this includes the rest of sequential systems.
Examples of these systems include counters, pattern recognisers and pattern gener-
ators. A controller differs from a pattern generator in that the pattern of control
signals generated usually depends on the values of the inputs to the system.

The state of a sequential network is stored in the memory cells. The most basic
sequential circuits are latches and flip-flops. These cells store one bit of information. The
storage 1s achieved by means of an electrical feed-back loop or by means of a dynamic
storage of charge (in this case the cell is periodically refreshed). A variety of latches
and flip-flops exist for the design of sequential networks including D (delay) flip-flops,
SR (set-reset) latches and flip-flops, JK flip-flops and T (toggle) flip-flops. More complex
sequential systems are implemented by using these cells as the basic building blocks.

The state description of a sequential system is the basis for the implementation of a
sequential network. The most typical way of constructing small sequential systems is the
canonical implementation shown in figure 2.3. It consists of a state register, to store the
state, and a combinational network to implement the transition and output functions.

07l covemationa > 00

NETWORK

Initialise
}

STATE

REGISTER

T

Ck

Figure 2.3: Canonical Implementation of a Sequential Network

Some functions on discrete variables can be implemented by a combinational system
or a sequential one. In the combinational case, the outputs of the function are generated

Chapter 2. — Architecture of Digital Electronic Systems —

simultaneously (parallel output) in a network that usually contains different branches
for each bit of the result !. In the sequential case, the function is performed in several
clock pulses and the output is often generated serially (serial output), one bit per clock
period. The same cell is repetitively used for the computation of the different bits of
the result 2. The choice of a combinational or sequential implementation represents a
trade-off between time and space. A Sequential implementation is generally slower, since
the output is calculated serially, but it almost always requires a smaller space than its
combinational counterpart. The system can have a parallel or serial input and a parallel
or serial output. The use of these alternatives in different parts of the system makes it
necessary to convert from a parallel to a serial representation and vice versa. Multiplexers,
demultiplexers and shift-registers are commonly used for this purpose.

A number of different techniques can be used for the implementation of a small se-
quential system with standard cells: a register and a combinational network (ROM, PLA
or random logic), a counter and a combinational network, a shift-register and a combina-
tional network or a RAM and a combinational network. However, the explicit separation
between the state and the functions does not usually lead to an adequate implementa-
tion since it does not provide for modularity. In modular design, the sequential system
is decomposed into sub-systems and each of these is implemented as a separate ad hoc
or standard cell.

A number of techniques exist for the organisation of modular sequential networks.
Multimodule implementations can be used for the implementation of large sequential
networks including multimodule registers, register arrays, multimodule shift-registers,
multimodule RAMs and multimodule counters. The two basic techniques for the com-
position of sequential networks are:

1. cascade composition: in this composition illustrated in figure 2.4(a), the input to
cell (1 is the input to the system. The input to cell C; (j > 1) is the output of cell
C;—1. The output of cell ', is the output of the system.

2. parallel composition: this composition is illustrated in figure 2.4(b). The input is
the same to all cells. The next state of any cell C; (1 <j<n) only depends on the
present state of this cell and its input. It does not depend on the state of cell C; for

There is no systematic approach for the decomposition problem. The design should
minimise the number of cells and the number of different cells and it should simplify the
interconnections between cells. Programmable sequential arrays (PSAs) can also be used
for the implementation of a sequential network in a similar manner as PLAs are used for
the implementation of combinational networks. A PSA includes storage cells which can
be programmed to implement sequential systems.

!Technically this often implies that the outputs are generated within the same clock period.

2This is clear for example in iterative networks. A sequential implementation of an iterative combina-
tional network 1s immediate since the internal variables that are passed from cell to cell in the iterative
network (see figure 2.2(c)) correspond directly to the state variables in a sequential implementation. The
sequential implementation only requires a single instance of the iterative cell and a state register.

Chapter 2. — Architecture of Digital Electronic Systems —

n-1

(b)

Figure 2.4: Data Flow in Synchronous Sequential Networks: (a) cascade composition,
and (b) parallel composition.

2.3 Algorithmic Model of Digital Systems

The system model becomes unmanageable for large sequential systems in which no sim-
ple function can describe the state transitions of the system. These systems require
an algorithmic approach in specification, analysis and design. The digital system is
viewed as performing a computation (a transformation on data sets) which is described
by means of an algorithm. The algorithm is the decomposition of a computation into
sub-computations with an associated precedence relation that determines the order in
which the sub-computations must be performed. The approach is hierarchical, ranging
from high level computations at the software level down to low level primitives at the
hardware/firmware level that are directly executable by the system. At the software
level, the computation is specified as a set of statements of a programming language.
The firmware level is an intermediate level in which a programming language is used to
represent the algorithm, but the sub-computations are logical operations directly exe-
cutable by the system (the corresponding programs are called microprograms). At the
hardware level, the primitive computations are logical operations implemented by the
hardwired connection of components.

The sequencing of sub-computations defines the flow of control in the system and the
flow of operands and results corresponds to the flow of data. According to the flow of
control or sequencing structure, algorithms can be classified as sequential and parallel
(or concurrent) algorithms. An algorithm is sequential if during its execution there is
only one active sub-computation at a time and parallel if several sub-computations can
run at the same time. Sequential systems are simpler to develop, represent and execute.
Because of this, and the fact that every parallel algorithm can always be converted into
an equivalent sequential one, many systems only execute sequential algorithms. Parallel
systems are potentially faster but they are more expensive and have a complicated control
structure.

Chapter 2. — Architecture of Digital Electronic Systems —

Some sub-classes of the class of parallel algorithms are specially interesting since they
have the advantage of being concurrent but do not require the complex sequencing con-
trol of the general parallel case. The most significant is the sub-class of group-sequential
algorithms. In a group-sequential algorithm, sub-computations are divided into groups.
During the execution, all the sub-computations in one of these groups are initiated simul-
taneously. The next group is initiated when all sub-computations in the previous group
have terminated. The implementation of systems that can execute group-sequential algo-
rithms is considered below to describe and categorise some of the most relevant features
of the architecture of algorithmic systems.

2.3.1 Structure of Algorithmic Systems

The algorithmic approach is reflected on the structure of the system by dividing the
state of the system into two parts: the data sub-system and the control sub-system. The
data sub-system consists of a set of cells which execute data transformations under the
direction of the control sub-system. This decomposition largely simplifies the design of the
whole system. At the hardware/firmware level of the machine sub-computations operate
on bit-vectors stored in registers. Operations are performed by transferring bit-vectors
between registers. This level of detail is known as the register-transfer-level (RTL).

The structure of an algorithmic system is built with elements of a small set of basic
components which are separately designed. The types of components include:

1. a storage component which is viewed at a high level as directly storing the data sets.
These components include hardware for read-write access operations which depend
on the type of storage. Examples of types of storage include registers, register-files,
stacks and memories. The cells used for the implementation are the data storage
sequential systems described in section 2.2.2

2. an operator component executes the sub-computations of the high level algorithm
by performing transformations on the bit-vectors. The physical implementation of
an operator can be a combinational or a sequential system. Operators can often
perform several functions as specified by some control inputs for the selection of the
operation.

3. a control component controls the sequencing of sub-computations and their execu-
tion. It sends control signals to each operator to control the execution of the sub-
computation and it receives conditions from the operators to make data-dependent
control and sequencing decisions. The sequencing can be synchronous or asyn-
chronous. Asynchronous sequencing is controlled by completion signals generated
by the operators.

4. data and control paths are used to provide connections between components in the
system for the transmission of data and control information.

5. input/output communication with the environment of the system is usually im-
plemented using storage components or 1/0 ports. The communication is usually

Chapter 2. — Architecture of Digital Electronic Systems —

controlled by a handshaking protocol which involves a transfer of control information
between the systems in communication.

The structure of an algorithmic system maps the algorithm that it has to execute. The
simplest mapping is to associate one operator and the corresponding storage with each
sub-computation in the algorithm and connect the operators according to the sequencing
structure. In this case, the operator, storage and data-path components are dedicated and
decentralised. The resulting system will probably allow the maximum concurrency and
speed, but the number of operators might be very large resulting in a very costly system.
The cost of the system can be reduced by sharing some of the components. For example,
an operator can be used to perform several of the sub-computations (at different times)
and a storage component to store several data elements. The operator function can be
completely centralised by just having one operator to perform all sub-computations. The
system then executes a sequential algorithm that is equivalent to the defined algorithm.

The controller can also be centralised or decentralised as seen in figure 2.5. In a
system with centralised control (figure 2.5(a)), there is just one controller that controls
the whole execution. In a decentralised control (figure 2.5(b)), the operator and storage
components have associated with them mechanisms to control their operation and also
the sequencing. An intermediate organisation with semicentralised control has the control
of the operation of each component decentralised but the sequencing among components
is centralised (figure 2.5(c)).

Control Signals Local Control
OP1 ' OP1 K
| H :ffff> OP1 <7777:
Condition Signals 1 1
- ! ! -
o : 1)
[ad ! e __ E
OP2 e ; oP2 | OP2 [z
8 | O
: L op3 k-
OP3 OP3 [
(@ (b) (©

Figure 2.5: Organisation of Algorithmic Systems: a) centralised control, b) decen-
tralised control, and ¢) semicentralised control

2.3.2 Implementation of Group-Sequential Algorithmic Systems

Many digital systems are implementations of group-sequential algorithms. These algo-
rithms have the advantage of requiring only a sequential controller while providing some

Chapter 2. — Architecture of Digital Electronic Systems —

concurrency in order to increase speed. The hardware/firmware implementation of a

group-sequential algorithm has the following characteristics:

1.

2.

the data elements are bit-vectors and arrays of bit-vectors in the implementation.

the sub-computations are limited to those realisable by the hardware operators.
A sub-computation or microoperation consists of a transfer of bit-vectors between
registers (register transfer). During the transfer, the operators can perform trans-
formations on the bit-vectors.

. since the algorithm is group-sequential, a group of microoperations called a microin-

struction are executed simultaneously, but only one microinstruction is executed at a
time. A sequence of microinstructionsis a register-transfer sequence that implements
the algorithm. This sequence is a microprogram at the firmware level. The imple-
mentation is a mapping of the register-transfer algorithm into a hardware/firmware
implementation.

. the system to execute the algorithm has centralised or semicentralised control, and

the control unit is implemented as a sequential sub-system.

The structure of the system consists of a data sub-system and a control sub-system as

seen in figure 2.6. The data and control sub-systems communicate by means of control
signals and conditions. The system interfaces consist of data inputs, data outputs, control
inputs and control outputs (control outputs issue condition signals).

Data] DATA , Data
Inputs SUB-SYSTEM Outputs

Condition Control
Signals Signdls

v

Control | CONTROL | | Control
Inputs SUB-SYSTEM Outputs

Figure 2.6: Structure of a System with Centralised Control

i) Data Sub-System:

The data sub-system is the part of the system in which the data is stored, moved and
transformed. The components used in the data sub-system are storage cells, operators
and data-paths. A component usually has data inputs/outputs identified as input /output

bit-vectors, control inputs (control points) and possibly control outputs. The operation
to be performed by a component is determined by the control signals generated by the
control sub-system and presented at the control points. Typically, the control signals

Chapter 2. — Architecture of Digital Electronic Systems —

control the selection of operations, the data-paths and the register loading. The data
sub-system generates conditions that are used by the control sub-system to make data-
dependent sequencing decisions and for the generation of control signals.

The implementation of a data sub-system can be partitioned into cells in two basic
ways as shown in figure 2.7. One way is to have a cell that implements completely each
type of function required by the data sub-system. For example, separate cells implement
data storage, transmission and arithmetic operations in figure 2.7(a). Alternatively, a
bit-slice approach can be used as shown in figure 2.7(b). In this approach, a cell can
implement all functions required by the data sub-system (storage, operators and data-
paths) for a limited number of inputs. Several of these cells can be interconnected together
if the data sub-system requires more inputs than the ones provided by a single cell.

4 4$ 4 4$ 4y 4y
T 0 I T b
. [MUX MUX MUX| | | MUX
Ccap A 4
| ! w w
| | - -
. | RA RA RA | RA 2 a
| | o))
R Vi A B a1 4 = =
=AA | A | <A | =4 | = -
| ! L L
| 1 1 | O S
" |ALU ALU ALU|| | ALU @ 7
R I P 4 4 = =
| I m m
| SH M2+ sH 42+ sH | SH
R 7 R 2 4\ 4
Module

@ (b)

,,,,,,, Stegej-1 _ Stagej _ Sagej+l
——+= CS |=REG|—+ CS =REG——= CS [=REG——
Ck ,,,,,,,,,,,,,,,,,,,, L A S 1

©

Figure 2.7: Implementation of Data Sub-Systems: (a) modular implementation, (b)
bit-slice implementation, and (c) pipelining

The data sub-system often presents a pipelined organisation. The system can then
be used in a streaming mode: the data inputs to the system consist of streams and
the system performs the same computation on each element of the input streams. In
the simple pipelined implementation of figure 2.7(c), the data sub-system consists of a

Chapter 2. — Architecture of Digital Electronic Systems —

combinational network per stage and registers between stages. Fach stage in the pipeline
can be executing operations on different elements of the input streams.

ii) Control Sub-System:

The control sub-system generates sequences of control signals to control the sub-computa-
tions in the data sub-system. Control signals are generated according to the register-
transfer algorithm that specifies the hardware/firmware implementation of a given com-
putation. The transition function of the control unit specifies the precedences of mi-
croinstructions in the algorithm. The output function specifies the control signals that
activate microoperations executed by the data sub-system.

The control unit can be implemented in several ways ranging from fixed hardwired
control units to flexible firmware ones. Simple systems are usually hardwired using
combinational networks for the implementation of the transition and output functions.
Firmware approaches are common for complex control sub-systems. In this approach,
the transition and output functions are stored in a ROM or a RAM memory. A number
of memory words correspond to a microinstruction of the program (or in some cases
several instructions per word). The sequencing of microinstructions or microprogram is
represented by the ordering of microinstructions in the memory and by binary branches.
A microinstruction is usually composed of several fields that determine the control signals
that are active during the execution of this instruction and the next microinstruction to
be executed. A typical microprogrammed control unit is shown in figure 2.8. This unit
consists of the following components:

External Address

|

Conditions 2| Address Generator
Address Mode l
Address Register
R
o
From data € |Load Control
section g Store
3]
= -
_| Load | Microinstruction
Register
Operation Mode Branch Address
Decoder

Control Signals

Figure 2.8: Microprogrammed Control Unit

Chapter 2. — Architecture of Digital Electronic Systems —

1. a control store contains the microprogram representing the algorithm. A firmware-
type control store can be implemented by means of a ROM, PROM (programmable
ROM) or a RAM memory. PROM and RAM implementations allow microprograms
to be modified. The RAM implementation allows microprograms to be written to
the control store under system control. Systems with writable control stores are
called microprogrammable systems.

2. an address register contains the address of the microinstruction in the control store
that is going to be executed. This corresponds to the state register of a simple
sequential system.

3. an address generator calculates the address of the next microinstruction to be fetched
and executed. Typical functions of this component include incrementing the current
address by one, loading an external address, loading a computed branch address or
loading an initial address.

4. a microinstruction register contains the microinstruction being executed.

5. the fields of the microinstruction register are usually decoded by means of a decoder
to generate the control signals.

6. a microcontroller controls the operations in the control unit.

The operation of a microprogrammed control unit usually consists of four main steps:
1) instruction fetch from the main memory; 2) instruction decoding for the identification
of the operation to be performed; 3) operand fetch if needed in the execution; and 4)
execution of the decoded arithmetic/logic operation. The example circuit of figure 2.8 is
used in section 7.5 to illustrate an automatic understanding of electronic designs.

2.4 Computer Systems

A system to execute algorithms can be a special-purpose machine or a general-purpose
one. A special-purpose machine performs one of a small number of related algorithms.
These machines have a non-writable control store and can be better optimised for a par-
ticular application. The programming of a general-purpose machine (digital computer) is
usually cost-effective for non-critical applications. This section examines the architecture
of some of these systems in order to provide some groundwork for an automatic heuristic
exploration of the architecture of these systems.

A computer is capable of performing a large number of different algorithms. The algo-
rithm executed by the system is determined by the microprogram stored in the writable
control store. General-purpose systems can be programmed using a high level language,
a machine language or a microprogramming language. High level languages are usually
compiled into a machine language before they can be executed by the computer. The
fact that the machine language is machine-dependent does not necessarily limit the gen-
erality of a general-purpose computer. In most general-purpose computers the control is

Chapter 2. — Architecture of Digital Electronic Systems —

microprogrammed. The execution of a machine instruction corresponds to the execution
of a sequence of microinstructions. A general-purpose microprogrammed system can be
used to implement or emulate many different general-purpose computers with different
machine instructions.

Most modern computer systems still follow the usual frame of reference imposed by
the Von Neumann model [Bae80] (see section D.1). These machines are generally called
control flow computers with instructions executed sequentially under the control of a
program counter. A number of departures from this initial model have been introduced
in the past in order to create faster (usually parallel) machines .
these computer systems represents a further level of complexity in the design of digital

The architecture of

systems.
The primitive components that are to be found in a description of the overall structure
of a computer system are [BNT1]:

1. a memory component stores information in terms of individually addressable units.
Since fast storage elements are expensive, the requirement of large and fast storage
is obtained by means of a hierarchy of components of varying capacity and speed:
registers in the processor, cache memory for fast intertface between the processor and
the central memory (usually implemented by means of RAM blocks) and secondary
or extension store for the storage of large amounts of data (such as disks, drums and
magnetic tape units).

2. a link component establishes the connections among the other components providing
a path for the transfer of information without altering it.

3. the switch component is used for establishing links for the transfer of control and
data information. A switch can enable or disable a set of links associated with it.
This is required, for example, when several devices are connected to a processor.
Addressing mechanisms are required to control the switches.

4. a control unit activates the other components. With the exception of the processor
component which has a control unit built within it, these components are the only
active components of the system.

5. the units of information are altered in the data-operation components.

6. the communication to the environment is represented by means of transducers which
can transform the representation of data without altering its meaning.

7. the processor component executes the sequence of instructions of a stored program.
This is not a purely primitive component as the above six. It consists of a combina-
tion of local memory, a local control unit, and data-operation units interconnected

3To increase speed and achieve maximum parallelism data flow computers have been suggested [HB85].
In a data flow computer, the execution of an instruction takes place whenever its required operands
become available, regardless of the physical location of an instruction in the program, and no program
counters are needed.

Chapter 2. — Architecture of Digital Electronic Systems —

by means of links and switches. At the system level of description, it is rare to
decompose a processor in terms of its components.

The organisation of computer systems can be divided into two groups *: those which
are built around a single processor (uniprocessor systems) for conventional applications
and those which include special techniques for high-performance computer applications.
Inferences about the nature of the operations performed by the components of a com-
puter system can be drawn from an observation of the architecture of the system. The
architecture of computer systems is briefly described in appendix D.

2.5 Summary of Key Concepts

This chapter has presented a brief review of the architecture of digital cells. Digital
cells range from simple designs with a few transistors to complex processors and digital
computers. The design, analysis and specification of these systems is best managed by
means of a structured approach. Complex digital cells are built from the composition of
simpler sub-cells.

The functionalities of relatively simple cells that can be analysed by means of the
system model can be categorised in a small number of generic classes. Examples of
these classes include data transmission cells, arithmetic cells, data storage cells, code
converters, data transformation/generation cells and controllers. Different techniques
are used for the implementation of these cells. These techniques often highlight the type
of operations of a cell.

Algorithmic digital systems are built from cells that are designed and analysed by
means of the system model. These designs usually present a clear distinction between
data and control sections in the system. The components of the system are seen as
storage, operator, control, data/control path and I/O components. The design imple-
ments computations which involve the transfer of data between storage cells through the
data/control paths of the system. During the transfer of data, operator cells can be
used to manipulate the data. The control of the computation is determined by control
cells. Because of this, the structure of the system emphasises the nature of the operations
performed by each component.

This is also true for general-purpose computer systems which are algorithmic systems
with writable control stores (see appendix D). The typical functions of the components
used to build these systems are memory, link, switch, control, data operation, transducer
and processor functions (with the processor function being a combination of the other
functions). The structure of the system narrows the range of possibilities for the operation
of each cell. This provides the groundwork for an automatic heuristic exploration of the
architecture of digital electronic systems.

*Traditionally, computer systems have been classified according to the uniqueness or multiplicity of
instructions and data streams. See for example [Bae80].

Chapter 3

Heuristic Classification
of Electronic Cells and Signals

The knowledge that is used in this work to build models for the cells and signals of an
electronic design is defined and classified. This knowledge is chosen with the intention of
allowing the system to exhibit a flexible way of reasoning about electronic cells, instead
of a more rigid approach based on the use of logical and electrical data. The system
attempts to assign this knowledge to the cells and signals of a design in order to form
vague heuristic models of their operations. This corresponds to an heuristic classification
of the cells and signals of the design, which narrows the range of possibilities for the
operation of each cell and which provides the grounds for a flexible way of reasoning
about the interaction between electronic cells. The problem of classifying the cells of a
design is formally defined. The complexity of the problem is analysed and strategies to
tackle it are introduced.

3.1 Introduction

A high level understanding of the architecture of digital electronic systems was discussed
in chapter 2. This understanding is based on the categorisation of specific aspects of
the cells and signals of a design. Examples of these include categories to represent the
functionality of an electronic cell and categories to represent the functionalities of its
interfaces. These categories are often quite general and imprecise in nature but when
assigned to a cell they narrow the range of possibilities for the operation of the cell.
This provides the grounds for a flexible way of reasoning about the interaction between
electronic cells, instead of a more rigid approach based on the use of logical and electrical
data.

A category is selected from an enumerated list of possibilities. The selection of a
category for an aspect of a cell relies on salient features of this cell obtained from the
specification of the design, on knowledge that is contained in the system and on the
analysis of the interaction between the different cells. The assignment of these categories
to a cell corresponds to an heuristic classification of the cell (as defined in section 1.4).
The classification of a cell results in an heuristic model of its operation. Since logical
and electrical data (as may be given in the specification) is not considered to categorise
the different aspects of a cell, there must be limited confidence about the knowledge

Chapter 3. — Heuristic Classification of Electronic Cells and Signals —

represented in a model for a cell. For this reason, a number of alternative heuristic models
may be possible for each cell. The system must choose which model best classifies each
cell.

Figure 3.1 illustrates the process used for classifying the cells of a design. The ob-
servation of salient features of the cells and signals of an electronic design allows the
formation of data abstractions from the raw electronic data. These data abstractions are
matched with heuristic models of broad classes of electronic cells and heuristic models
of electronic cells already known by the system. Successful matchings of this data result
in possible classifications of the cell (heuristic models for this cell). The classification is
facilitated by considering data abstractions and heuristic models of cells and classes of
cells. The matching process is heuristic since data abstractions are considered in place
of detailed information. The most attractive models for the cells of a design must then
be selected.

Cgr?lcgﬁﬁlsérgfxpjmc Candidate Heuristic
Cellsand Signals Modelsfor the Cells

Raw Selected
Electronic Heuristic Models
Data of the Cdlls

Figure 3.1: Heuristic Classification of Electronic Cells

This chapter defines and classifies the knowledge that is used in this work for an
automatic heuristic understanding of logic electronic design specifications. It also for-
malises the problem of classifying the cells of a design. The hierarchical approach to
the description of electronic designs is reviewed in section 3.2 in order to introduce some
useful notation. The knowledge used to represent the different aspects of concern for
electronic cells is described in section 3.3 (the use of this knowledge to represent heuristic
models of classes of cells and the organisation of models in the system will be discussed
in section 5.2 and section 5.3 respectively). The categories used to describe the signals
of a design are discussed in section 3.4. The scenario for reasoning about a design is
considered in section 3.5. Section 3.6 formally defines the problem of classifying the cells
of a design as a problem of search. Finally, section 3.7 analyses the complexity of the
problem and strategies to tackle it.

Chapter 3. — Heuristic Classification of Electronic Cells and Signals —

3.2 Design Hierarchy

A structured approach is essential for the description of large electronic designs. This
approach is represented by means of a hierarchical description. A description is hierar-
chical in the sense that instances of a cell are used to represent the contents of another
cell. An example of a hierarchical description for a design is shown in figure 3.2. Fig-
ure 3.2(a) represents the structure of a register that stores four bits of information. The
implementation of this cell consists of four instances of a D-type flip-flop. The structure
of this flip-flop is shown in figure 3.2(b). In this case, the flip-flop is constructed out of
logic gates. A hierarchical description of the register is given in figure 3.2(c). The rep-
resentation consists of two types of nodes: nodes which represent the cells of the design
or cell nodes (which are filled in the figure) and nodes that represent instances of cells
or instance nodes (which are not filled). The fact that an instance node references a cell
node is indicated with an arrow from the instance node to the corresponding cell node.

A representation of a design which contains only cell nodes is also used in this work.
This representation or hierarchy graph consists of a set of nodes Cs = {C1,...,C,}, which
represent the n cells of a design, and a set of arcs or links that indicate the hierarchical
relationships in the design. FEach link is an ordered pair of cells < Cy,C), > and it
indicates that the head of the link (), is a sub-cell of the tail of the link C;. For example,
the hierarchy graph for the design of figure 3.2 is given in figure 3.3(a). By definition, the
hierarchy graph is a directed acyclic graph. If the graph is not acyclic, the implementation
of the design is not possible. By definition too, a hierarchical design implies that there
must be a top cell C; such that for each other cell C; in the design (2<¢<n) there is at
least one path in the hierarchy graph from the top cell C; to C;. In general, a hierarchy
graph may have more than one path leading to a cell and therefore it will not form a tree
structure. An example of this is shown in figure 3.3(b).

In a hierarchy graph, a cell C; will have n; links to its n; sub-cells and ud; links from
ud; different cells that instantiate it. The set of n; sub-cells of C; is called the down-
dependencies of C; and is denoted as Ds;. The set of ud; cells that instantiate C; is called
the up-dependencies of C; and is denoted as Us;. The depth level h; of a cell C; is defined
as the number of cells that must be followed from the top cell 'y to C; along the longest
path in the hierarchy graph. For example, to reach the cell Cy from C; in the example
of figure 3.3(b) there are two possible paths

Cl—>C4
Cl—>02—>03—>04

The depth level of cell Cy is therefore hy = 4.

A cell can be seen as interacting in a number of different situations in the design.
The cell interacts with a different set of cells in each situation. A situation corresponds
to the description of a cell in terms of its sub-cells. The situation S; corresponds to
the description of cell C; in terms of its sub-cells Ds; and it is represented by the pair
S; =< Uy, Ds; >. The situations in which a given cell interacts include the description
of this cell in terms of its sub-cells and the use of this cell in the description of higher
level cells. For example, cell Cy in the hierarchy graph of figure 3.3(b) can be seen as

Chapter 3. — Heuristic Classification of Electronic Cells and Signals —

. A A A A
Register ° 3 2 ! 0 D_flipflop D
I FF3 I FF2 I FFL I FFO -
D; D, D, Do
Ckg Ck, Ck, Ckq
Qs Q, Q Q
o 1 1 1 ck
! I I I
B3
Q
(b)

Cg: nand C, inverter

(©

Figure 3.2: Design Hierarchy: (a) 4-bit register, (b) D-type flip-flop, and c¢) design
hierarchy for the 4-bit register.

interacting in three different situations: S =< Cq,{Cs, Cy} >, S5 =< C3,{C,4} > and
Sy =< C4,{C5,Cs} >. In general, the number of situations in which a cell C; interacts is
given by

3.3 Knowledge for the Classification of Electronic Cells

An heuristic analysis of the interactions between objects in a situation (e.g. cells, ports
and signals) is based on heuristic knowledge obtained from the classification of the salient
features of the cells and the salient features of the signals carried in the connections. The
classification of a salient feature involves the selection of an alternative between a set of
pre-defined categories which are used to represent this type of feature. These categories

Chapter 3. — Heuristic Classification of Electronic Cells and Signals —

Cq

Cs Ce

D81 = {02704} U81 = {} hl =1
D81 = {CQ} U81 = {} hl =1 D82 = {03706} U82 = {Cl} h2 =2
Dsy = {C3,C4} Usy ={C1} hy=2 Dss = {C4} Uss = {Cy} hs =3

D83 = {} U83 = {02} h3 =3 D84 = {05706} U84 = {01,03} h4 =
D84 = {} U84 = {02} h4 =3 D85 = {} U85 = {04} h5 =5
D86 = {} U86 = {02,04} h6 =5

(a) (b)

Figure 3.3: Hierarchy Graphs: (a) 4-bit register hierarchy graph, and (b) hierarchy
graph with several paths leading to a cell.

do not always have well-marked boundary lines between them. There are clear examples
and clear non-examples of objects for each category but there are also examples of objects
which lie in between (e.g. a port of a cell which can be functionally viewed as a select
port or as an address port). The categories (or range of categories) selected to represent
the salient features of a cell form an heuristic model for this cell. These categories
are described in this section. The categories used to classify the signals carried in the
connections are described in section 3.4.

When building the system described in this thesis, a range of choices existed to decide
the form that the heuristic models of electronic cells would take. The heuristic models
could include or exclude various aspects of knowledge about devices. The categories
to describe these aspects could be made more or less rigorous. In general, the choices
were made with the intention of supporting the way of understanding digital electronic
devices described in chapter 2. The aspects of concern which are used in the classification
of a cell include: a set of types for the cell, the electronic functionality of the cell, the
functionality and organisation of its interfaces, the implementation of the cell and the
flow of information in the cell.

Chapter 3. — Heuristic Classification of Electronic Cells and Signals —

i) Cell Types:

Four main heuristics are used to define the types of an electronic cell. These heuristics
relate to the complexity of the cell or level of abstraction, to the type of logic used in
the cell, to the typical operation or purpose of this cell in an electronic design and to the
flow of data in the cell:

1. Abstraction Level: the level of abstraction of a cell reflects the complexity of its
design. The following categories are used to represent the level of abstraction of a
cell:

(a) transistor: these cells correspond to primitive electrical elements such as tran-
sistors, resistors and capacitors. These cells are not further decomposed into
sub-cells.

(b) gate: the cells at this level include logic gates. Gates are described as the
interconnection of cells at the transistor level according to the semiconductor
technology used.

(c) bit: a cell at the bit level performs operations upon single bits of information as
opposed to groups of bits or bit-vectors (this excludes the operations performed
by cells at the gate level). Examples of cells at this level include flip-flops,
which store one bit of information, and full-adders which add up two bits of
information. Cells at the bit level are usually described as the interconnection
of cells at the gate level.

(d) vector: cells at this level of complexity operate upon bit-vectors. These cells
can often be obtained by arraying together a set of instances of a cell at the bit
level. For example, a register is obtained as an array of flip-flops.

(e) processor: this level includes large cells such as processors, memories and large
controllers. The contents of these cells are described as the interconnection of
cells at the vector level (such as the data-paths of a processor or the addressing
mechanisms of a memory).

(f) computer: a cell at this level corresponds to a full digital computer system.
These cells are composed of units at the processor level such as a CPU unit,
memories and controllers. Examples of these systems include uniprocessor sys-
tems (see section D.1) and high-performance systems (see section D.2).

2. Logic Type: the logic type of a cell classifies any digital system at the gate level
or higher levels into two classes (see section 2.2):

(a) combinational: combinational systems do not have state and usually there are
no feedback loops in their networks.

(b) sequential: these systems have memory or state. They can be synchronous, when
they have clock signals for the synchronisation of operations, or asynchronous.

Chapter 3. — Heuristic Classification of Electronic Cells and Signals —

3. Cell Purpose: the purpose of a cell indicates the typical operation of a cell in a
design and it is defined by one of a few generic functions. These functions are defined
by considering that the cells of a system implement computations which involve the
transfer of data between storage cells through the data-paths of the system. During
the transfer of data, operator cells can be used to manipulate the data. The control
of the computation is determined by control cells. The functions considered are (this
is expanded in section 7.5):

(a) storage: a storage cell is viewed as directly storing the information that flows or
is used in the system.

(b) control: a control cell controls the sequencing of computations and their execu-
tion in the other cells.

(c) operator: these cells execute a computation upon the data applied to their input
ports and the result is collected in the output ports.

(d) switch: switch cells allow a controlled flow of information. They are used to
build links for the transfer of control and data information.

(e) processor: a processor executes the sequence of instructions of a stored program.
This is a more generic function and it consists of a combination of cells imple-
menting the other functions. At high levels of description, a processor is rarely
decomposed in terms of its sub-cells.

(f) transducer: transducer cells are used for communication with the environment.
They usually transform the representation of data without altering its meaning.

These generic functions are defined for cells at the bit level or higher levels. The
functions considered at the bit and vector levels include storage, control, operator
and switch. Bit and vector level cells have the same types of generic functions since
usually a vector level cell is built from an array of instances of a bit level cell. Cells
above the vector level are more specialised and they include processor and transducer
functions.

These generic functions are typical of other physical systems. For example, a system
to transport or manipulate a fluid (such as water, gas or ‘electrical signals’) can be
regarded as components or nodes interconnected by means of links or pipes. In the
case of an hydraulic system, a component can be seen as a storage node (e.g. a tank
of water), an operator node (e.g. a pump), a switch (e.g. a valve) or a control node
for the regulation of the operation of the other nodes (e.g. the electric engine of the
pump). These nodes are interconnected by pipes that transport the fluid or links
for the control of the system. The whole system may be seen as a processor node
(processing unit) controlled by a control unit and with a set of transducers (e.g. a
heat exchange unit) for communication with the environment (e.g. heat transfer).

4. Data Flow Type: electronic cells at the bit level or higher levels are classified
according to the flow of data in the cell into two generic types:

Chapter 3. — Heuristic Classification of Electronic Cells and Signals —

(a) transporter: these cells have some operation modes that allow the transfer of
data input signals to data output signals under the control of control input
signals.

(b) modifier: these cells do not have operation modes for the transfer of data input
signals to data output signals.

The ability of a cell to transfer data is an important property to describe the op-
eration of a cell. In a cell that is assumed to be of type transporter the transfers
of data are usually achieved by means of chains of sub-cells of type transporter (if
these sub-cells correspond to the bit level or higher levels of abstraction). And vice
versa, the analysis of chains of transporter sub-cells can be used to determine the
type of the flow of data in the cell (see section 4.5.3).

The types of an electronic cell are not independent. Table 3.1 describes the typical re-
lationships. The symbol ‘n/a’ means not applicable. For cells at low levels of abstraction
(transistor and gate levels) the purpose and data flow types of a cell are not applicable.
The purpose and data flow types of a cell at the computer level are not considered either.

ii) Cell Electronic Functionality:

With the use of structured approaches to digital electronic design, a relatively small
number of typical electronic functions have evolved in the field. Cells that implement
these common functions can be used conveniently in many digital designs. Electronic
designers use specific names for these typical electronic functions and for the cells that
implement them from the transistor level to the computer level.

The functionalities of electronic cells at different levels of complexity were classified
in chapter 2. Table 3.2 summarises these classes. The electronic functionality of a cell
is also typically related to the types of this cell. These relationships are also shown in
table 3.2. Knowledge about the types of a cell limits the range of possibilities for its
electronic functionality.

At transistor level, the electronic functionality of a cell corresponds to the kind of
electrical component such as ‘transistor’, ‘resistor’ and ‘capacitor’. At gate level, the
electronic functionality of a cell is described by means of the name of the boolean function
that this cell implements such as ‘and’, ‘nand’, ‘nor’ and ‘inverter’.

A classification of the electronic functionalities of cells at intermediate levels of com-
plexity (bit and vector levels) was given in section 2.2.1 for combinational systems. These
typical functionalities include data transmission, single/multiple arithmetic operations,
code conversion and combinational data transformation. These general classes can be
further sub-classified. For example, combinational transmission systems include selectors
(e.g. a multiplexer), distributors (e.g. a demultiplexer) and shifters. Section 2.2.2 classi-
fied the electronic functionalities for sequential cells at intermediate levels of complexity
(cells that can be analysed by means of the system model). These classes include data
storage systems, sequential arithmetic systems, sequential code converters, controllers
and data transformation/generation sequential systems.

Chapter 3. — Heuristic Classification of Electronic Cells and Signals —

Abstraction Cell Logic Cell Data Flow Type
Level Purpose
Transistor n/a n/a n/a
Gate Combinational
Bit Combinational Control Modifier
Operator | Modifier/ Transporter
Switch Transporter
Sequential Control Modifier /Transporter
Operator
Switch Transporter
Storage
Vector Combinational Control Modifier
Operator | Modifier/ Transporter
Switch Transporter
Sequential Control Modifier /Transporter
Operator
Switch Transporter
Storage
Processor Combinational Control Modifier
Operator | Modifier/ Transporter
Switch Transporter
Sequential Control Transporter
Operator | Modifier/ Transporter
Switch Transporter
Storage
Processor
Transducer | Modifier/ Transporter
Computer Sequential n/a n/a

Table 3.1: Cell Types

The electronic functionalities of cells at high levels of complexity include processor (e.g.
a central processor and an I/O processor), memories (large data storage components),
data-units (large multiple arithmetic/logic systems) and control-units (see section 2.3
and section 2.4).

iii) Functionalities and Organisation of the Interfaces:

The interfaces of an electronic cell correspond to the set of ports used for the intercon-
nection of this cell. In general, the information about the ports of a cell that is directly
available from its description corresponds to the direction of the ports (‘input’, ‘output’
and ‘inout’ or ‘bidirectional’) and their width or number of connection points in the port.
This is represented in figure 3.4(a). This information does not provide any insight about
the use or functionality of these ports.

Chapter 3.

— Heuristic Classification of Electronic Cells and Signals —

Cell Electronic Abstract. Cell Logic Cell Data
Functionality Level Purpose | Flow Type
Electrical Component Transistor n/a n/a n/a
transistor, resistor. ..

Primit. Logic Function Gate Combinational n/a n/a
and, nand, or. ..

Single Arithmetic Oper. Bit — Combinational | Operator Modifier
adder, comparator. .. Vector Sequential

Multi. Arith/Log. Oper. Bit — Combinational | Operator | Transporter
ALU, data unit . .. Processor Sequential

Data Transmission Bit — Combinational Switch Transporter
multiplezer, shifter. .. Processor Sequential Transducer

Code Conversion Vector — | Combinational | Operator Modifier
decoder, encoder. . . Processor Sequential Transducer

Combin. Data Transf. Bit — Combinational Control Modifier
parity generator, checker. .. Processor Operator

Data Storage Bit — Sequential Storage Transporter
register, flipflop, RAM. .. Processor

Controllers Bit — Combinational Control Modifier
clock gener., control unit. .. Processor Sequential Transporter
Processors Processor Sequential Processor | Transporter
CPU, I/O processor. . .

Seq. Data Transf/Gener. Bit — Sequential Control Modifier
counter, pattern generator... | Processor Operator Transporter

Table 3.2: Cell Functionality and Cell Types

Heuristic knowledge about the ports of a cell is first concerned with the typical use or
purpose of these ports defined by means of a few generic functions. The generic functions
which are used for the classification of the ports are:

1. data_in: the values provided in the ports of this class can be used by the cell to
operate with them, they can be stored in the cell or they can be used by the cell to
make decisions.

2. data_out: these ports provide data values to other cells or the external world.

3. control_in: the values provided in these ports are used to set the cell to perform one
of the functions that can be executed with it and therefore to determine the result
presented at its outputs.

4. control_out: these ports provide values indicating the state of a cell or a result of an
operation that can be used to make data-dependent control and sequencing decisions.

5. power: these ports provide the electrical power to feed the cell.

Chapter 3. — Heuristic Classification of Electronic Cells and Signals —

inouts

data in data_out

outputs

control_in control_out

@ (b)

Figure 3.4: Cell Interface: (a) cell interface description, and (b) meaningful cell inter-
face.

These generic functions are used to classify the ports of a cell in order to model its
interfaces as shown in figure 3.4(b) '. Some classes of ports are not applicable to all levels
of abstraction. For example, logic gates do not have any control ports (they perform a
unique function which does not require any control). Power ports are interesting at the
transistor level since they are required for the identification of logic functions (i.e. the
identification of a logic gate in a transistor level design requires the consideration of the
power signals). For cells at higher levels of abstraction, the consideration of the power
ports of a cell does not provide any extra information about this cell since all cells must
be powered.

Further heuristic knowledge about the use of the ports is defined by sub-classifying the
ports which belong to a class of ports according to their electronic functionalities. The
electronic functionality of a port refers to one of a small set of functions that a port can
perform. These functions are typical of the ports of many cells and electronic designers
have given them representative names. Examples of these functions are given in table 3.3
for each class of ports.

‘ Port Class H Port Sub-class ‘
data_in/data_out || data, carry, scan ...
control_in clock, load, enable, select, address ...
control_out overflow, ready, parity, greater_than ...
power vee, ground

Table 3.3: Typical Port Electronic Functionalities

In the representation of figure 3.4(b) all the ports are unidirectional. Bidirectional ports in the initial
description of figure 3.4(a) can be seen as duplicated into one input port (usually a ‘data_in’ port) and
one output port (usually a ‘data_out’ port) in figure 3.4(b).

Chapter 3. — Heuristic Classification of Electronic Cells and Signals —

The knowledge about the functionality and types of a cell can be used to infer knowl-
edge about the functionalities of its ports and vice versa. For example, a cell of type
switch requires select ports to determine the transfers of data in the cell and a cell with
clock ports is necessarily sequential.

iv) Cell Contents and Implementation:

Heuristic knowledge about the contents of a cell refers to the class and quantity of the
sub-cells used in the construction of the cell. Knowledge about the cell can be derived
from knowledge about the sub-cells and vice versa. For example, if a cell contains sub-
cells with an electronic functionality of type flip-flop then the cell must be sequential and
for a cell to be a register it must contain sub-cells with an electronic functionality of type
flip-flop.

Knowledge about the implementation style of a cell can also be used in order to narrow
the range of possibilities for the rest of knowledge about the cell. For example, the use
of PSAs in the design of a cell (see section 2.2.2) implies that this cell has a logic type of
sequential.

v) Data Flow Information:

According to the flow of data, electronic cells are classified as transporter or modifier
cells. Transporter cells have some operation modes that allow the transfer of data from
‘data_in’ ports to ‘data_out’ ports under the control of ‘control_in’ ports without altering
this data. The ‘controlin’ ports are used to determine the path used for the transfer of
data. These paths are called data transfer paths.

The types of communication of input/output data include any combination of se-
rial/parallel input with serial/parallel output. The type of communication of data relates
to the types of the cell and the functionality of its ports. For example, a cell with serial
input of data (e.g. a serial adder) is necessarily sequential and must have clock ports.

The flow of data is determined by the type of network formed by the interconnection
of its sub-cells (see section 2.2.1 and section 2.2.2 for examples of these types). The type
of network allows information about the types and functionality of a cell to be derived.
For example, memory cells are implemented by a regular structure of 1-bit memory sub-
cells and iterative networks are commonly used for the implementation of combinational
arithmetic circuits (operators).

3.4 Knowledge for the Classification of Design Signals

A signal represents the information that is transmitted between interconnected ports.
The heuristic knowledge about a signal of a design is often related to the functionalities
of the ports involved in the transmission of the signal. As with the ports of a cell,
knowledge about the signals is first concerned with their intention or purpose which is
defined by one of a few generic functions. The generic functions of a signal include:

Chapter 3. — Heuristic Classification of Electronic Cells and Signals —

1. data: these signals carry the data upon which the system or cell performs its function.
These signals usually come from storage cells of the system or from the external
world. The operators of the system act upon these signals and the result of the
operations are new data signals that are stored in storage cells or transmitted from
the cell usually by means of transducers.

2. control: these signals control the operation performed by the cells of the system.
Control signals can be external to the system, obtained from storage cells of the
system or generated internally according to the current data. The destination of
these signals are the cells to be controlled.

3. condition: these signals carry information about the state of a cell or the result of
its operation. They are usually originated in the system’s operators. As opposed to
pure data signals, the destination of these signals are usually control cells which use
them to make data-dependent control and sequencing decisions.

4. power: these signals are used to provide power to the cells of the system.

An example of these signals for a cell at the processor level was given in figure 2.6.
Control signals are issued from cells in the control section to control cells in the data
section. These signals reflect the state of the control section. Condition signals are
issued from the data section to the control section to make data-dependent decisions in
the control unit (for the control section, condition signals are data upon which the unit
can make decisions). This approach is hierarchical in the sense that the control unit
may be provided with an internal control unit in which case further internal control and
condition signals can be identified inside the control cell.

The signals of a cell flow from driving or origin ports to driven or destination ports.
Origin ports correspond to input port groups (data_in/control_in) of the cell and output
port groups (data_out/control_out) of the instances in the cell. Destination ports cor-
respond to output port groups of the cell and input port groups of the instances. For
example, in the design of figure 3.2(a) the input port Az of the cell is an origin port.
The input port D3 of the instance FF3 is a destination port. The signal flows in the
connection from the origin port to the destination port.

The generic function of a signal (data/control/condition) is related to the generic
function of the ports involved in the transfer of the signal (data_in/data_out/control_in/-
control_out) and to the location of the origin and destination ports (a port is located
either in the cell or in an instance). This will be discussed in section 7.4.1. As with
the ports of a cell, the functionality of a signal is further sub-classified according to its
electronic functionality. The set of categories that are used to represent the electronic
functionality of a signal is the same as the set of categories that are used to represent
the electronic functionalities of the ports. Examples of these categories were given in
table 3.3.

The electronic functionality of a signal is not necessarily the same as the electronic
functionality of the ports involved in the transmission of the signal. The electronic
functionality of a port of a cell corresponds to the function performed by the port from

Chapter 3. — Heuristic Classification of Electronic Cells and Signals —

the point of view of the cell to which the port belongs. The electronic functionality of a
signal corresponds to the function of that signal in the cell where it is used. For example,
in figure 3.5 the signals arriving to ports P; and Pg and coming out from port P4 are
data signals from the point of view of the multiplexer. P1 and Py are data_in ports of
the multiplexer cell. The cell selects a signal among Sq and Ss which is transferred to
the data_out port P4. The signal coming out of port P4 (S4) is used to trigger a flip-flop
cell. The signals Sy, So and S4 are clock signals from the point of view of the design
but some of the ports of the instantiated cells which transmit these signals are not clock
ports (P1, P2 and Py4). In the other cases, the functionality of a port and the signal
related to it is the same (P3 — S3, P5 — S4, Pg — S5 and P7 — Sg).

Ss (data)

Flip-flop

Mux P P

6 7
(data) (data)

S, (data)
Sl (clock)

Py
(clock)

S, (clock)

S, (select)

Figure 3.5: Port and Signal Electronic Functionalities

3.5 Reasoning About a Situation

An heuristic classification of the cells and signals of a design symbolises an understanding
of the specification: heuristic knowledge which describes the purpose and functionality
of the design objects (i.e. cells, ports and signals) is generated. The knowledge about
an object must be consistent in all the situations in the design in which the object
appears. Consequently, reasoning about a situation (and the design as the composition
of its separate situations) implies and can result in:

1. the determination of whether the information about an object is consistent with the
information about the other objects in the situation.

2. the establishment of relationships between the different objects such that information
about an object can be used for the derivation of information about other objects.

3. the grouping of objects to form a more meaningful description of the situation (i.e.
to gather a set of instances which can naturally be seen as forming a new cell in the
hierarchy of a design and to form arrays of ports and arrays of signals).

Chapter 3. — Heuristic Classification of Electronic Cells and Signals —

The heuristic model of a cell in a design is used for modelling the corresponding
cell node and all the instance nodes of the cell node. For example, in the design of
figure 3.2(c) the node € is modelled according to a model for this cell. The instances
contained in this cell (nodes [, Iy, I35 and [4) are modelled according to a model for
sub-cell (5. Relationships between the knowledge which represents the cell, sub-cells and
signals in the situation are established, for example, by the hierarchy of the situation,
by the connectivity between objects and by the flow of signals in the situation. These
relationships must be consistent according to heuristic knowledge about electronic design
(see chapter 7). Thus, in situation Sy (shown in figure 3.2(a)) the model that represents
cell 4 must be consistent with the model that represents cell Cy. For example, the
clock port of an instantiated flip-flop sub-cell must be connected to the clock port of the
register cell. The model of cell C'y must be consistent in situations 57 and Sy (situation
Sy is shown in figure 3.2(b)). As another example, if the instance nodes contained in cell
C; are identified as flip-flops (according to the model of C3) the model of cell C; must
have a logic type of sequential since the cell contains sequential sub-cells (see section 4.5).

An example heuristic model for cell 'y is given in table 3.4. The model is a frame-like
structure that collects the heuristic knowledge about the different aspects of the cell.
This structure is made of a number of slots which are filled with the types of knowledge
described in section 3.3. These slots are:

i— model name: this slot is filled with the name of the cell for which the model is

derived.
ii— cell types: this slot is made of four sub-slots to describe the types of the cell.

iii— functionalities and organisation of the interfaces: this slot classifies the ports of a
cell into classes according to their generic function. The ports in these classes are
sub-classified according to their electronic functionalities. In the example, three
sub-slots are used to describe three different classes of ports in the cell. Each class
has only one sub-class in this example.

iv— cell contents: this slot contains sub-slots which classify the sub-cells of the cell.
There is a single sub-slot in the example since all the sub-cells belong to the same
class.

v— cell electronic functionality: this slot defines the electronic functionality of the cell.

vi— cell constraints: this slot establishes constraints over the variables in the model. In
this example, the model is complete and all the slots and sub-slots are defined. A
model which has undefined slots (slots filled with variables) is said to be incomplete.
This will be considered in section 5.2.

vii— data flow information: this slot provides knowledge about the flow of data in the
cell. In the example, the flow of data corresponds to a transfer of data between the
input data ports to the output data ports under the control of the clock port.

Chapter 3. — Heuristic Classification of Electronic Cells and Signals —

‘ Logged Cell Model Name: register ‘

‘ Cell Types ‘
Cell Logic sequential
Abstraction Level vector
DataFlow Type transporter
Cell Purpose storage

Cell Interface

Port Class | N9 Signals Port Sub-classes
Port Name | Port Sub-class | N? Signals

data_in 4 [as, ag, ay, ag) data 4
control_in 1 ck clock 1
data_out 4 [b3, bo, by, by data 4
Cell Contents
Sub-cell Class ‘ Sub-cell Name ‘ N9 Sub-cells

‘ fip_flops ‘ d Aflipflop ‘ 4 ‘

‘ Cell Electronic Functionality: register ‘

‘ Cell Data Flow Information ‘

Data Transfers | (1) path: [as, a3, a1,a0] ==> [bs, bz, b1, bo]
control: ck

‘ Cell Model Logged On: Tue Nov 15 11:55:13 1991 ‘

Table 3.4: Cell Heuristic Model Example

viii— date log: this slot indicates the date of generation of the model. This is used for the
management of models in the system 2.

3.6 Problem Formulation

The problem of modelling the cells of a design can be seen as a problem of search. The
system attempts to find a set of models Ms = {My,..., M, } for the n cells of a design
such that each cell C; (1 <i<n)has a model M; that is consistent in all the situations in
which C; appears. The fact that only a partial analysis of the electronic data about the
cells is carried out implies that the system cannot be absolutely certain about the model

?As discussed in chapter 5, knowledge about a cell can be compared with models existing in the
system. A criteria for the selection of candidate models can be the date of their generation (e.g. all
models generated in the last year). Information about the author or organisation that created a cell may
also be convenient. Knowledge for a cell could be compared with models existing in the system which
meet criteria related to their origin.

Chapter 3. — Heuristic Classification of Electronic Cells and Signals —

of any cell. A set of possible models Ms; will in general be possible for each cell C;. The
best solutions are recognised by evaluating the confidence in each model generated. The
task of the system includes both the generation and selection of models for the cells of
the design.

The problem is characterised by an initial state and a goal-state description (according
to the standard search terminology [CM85]). A state is described by a list of n elements
for a design with n cells. The ¢-th element corresponds to the model for the ¢-th cell of
the design. A model for a cell can be complete or incomplete. The search proceeds by
transforming the initial state into another one that is expected to be closer to a goal-
state (a state that satisfies the goal-state description). For example, the initial state may
contain no model for any cell of the design and the goal-state description may be to have
complete models for all cells in the design. A change of state takes place by assigning a
model to a cell in the state.

A goal-state description can be seen as an existential query to the system. For example,
is it possible to find a complete model M; for each cell C; of a design such that all models
are consistent between them? In some cases, the system may be asked to look for models
for a sub-set of the cells in the design. In other cases, the models of some cells may
contain some information known ‘a priori’. That is, some models can be partially or
fully defined from the beginning. For example, given two cells C'; and 3 and a model
for each cell the query may want to find if these models are consistent for these cells
in a given design which contains them. In addition, the problem may require finding a
solution or an optimal solution measured in some way. Sometimes, there might not be
any solution and then the object is to search until a solution is found or a solution cannot
be found.

The set of states that can be reached by applying models in sequence starting at the
initial state corresponds to the search space. The size of the search space depends on the
number of models available per cell. This number depends on the information available
for the cell and on the number of models that can be formed with the types of knowledge
considered by the system (see section 5.3).

3.7 Complexity and Strategies

A first analysis of the complexity of the problem can be done by assuming that the
possible models for each cell of a design have already been generated (this assumption
will be revised below). The problem of finding the best alternative to represent the design
(choosing one model for each cell of the design) is of a combinatorial nature. If n is the
number of cells in the design and m; is the number of possible models for each cell C},
the number of alternatives that may be tried is

For simplicity, considering the average number of possible models for the cells of the

Chapter 3. — Heuristic Classification of Electronic Cells and Signals —

design given by
Z?:l my

n

Moy =
an upper-bound for the number of alternatives N is
Nw = (mav)n (33)

This value represents the number of alternatives that will need to be considered in the
worst case according to the number of models available per cell .

The complexity of the problem (the size of the search space) grows exponentially with
the number of cells involved. For example, the analysis of a design with n = 6 and
my, = 5 may require the study of

N, = 5° = 15625

alternatives. The problem becomes rapidly intractable for designs with a larger number
of cells and several models per cell. For example, for a design with 13 cells and an average
number of 5 possible models per cell, the number of alternatives to analyse in the worst
case would be

N, =5 =12x10°

which is over one billion combinations for a design with only 13 cells!

To tackle this complexity, the situations of a design must be first analysed separately.
A situation S; describes cell C; in terms of n; sub-cells. Considering that there are m;
possible models for cell C; and m,; possible models for the j-th sub-cell of C; (1 <7 <n;)
the average number of models per cell for this situation is given by

N
mi + 355y Mg

My, =

The number of alternative representations to analyse for a situation in the worst case
is
Nwi = (mav,‘)ni—l—l (34)
and the number of alternatives that must be analysed for the separate situations in a
design that has n cells is in the worst case

n

3 (Maw)" < N, (3.5)

=1

Considering that it is possible to analyse all these alternatives and that they can be
ranked according to how well they represent the situation, a solution must be tried for
the whole design. This involves the selection of a valid alternative for each situation

3This is true since (mgy)" > my * mg...* m,. This is easily proved considering that (mg,)* =
May * Mgy > (May — M) * (Mgy +m) = m2, —m? (note that the equality holds when all the m; have the
average value).

Chapter 3. — Heuristic Classification of Electronic Cells and Signals —

so that each cell has the same model in all the situations in which the cell appears. It
is not possible to consider only the best alternative for each situation. This is because
the best ranked alternatives for two different situations may have a different model for
a cell that appears in both situations. It is then necessary to evaluate which set of
coherent alternatives for the situations (an alternative per situation) is the most attractive
according to a function that evaluates the quality of the representation. It is shown in
chapter 6 that the complexity of this problem is not exponential with respect to the
number of cells or the number of models.

The problem is that the complexity of the analysis of a situation also grows exponen-
tially with the number of cells involved according to equation 3.4. Fven for situations
with just a few cells and several alternative models per cell, it will not be possible to
reason about each possible representation to determine the best one. The only solution
then is to evaluate the different alternatives so that the most likely ones are tried first
and unpromising alternatives are pruned from the search space. A series of a few cor-
rect guesses may be enough to choose adequate models. These guesses are simulated
by means of two functions: a model-ordering function and a state-evaluation function.
The model-ordering function sorts the available models for each cell from best to worst
candidates. The state evaluation function encodes a measure of the confidence in each
alternative. This helps in the search for an optimal solution. As shown in chapter 6, the
evaluation and selection of the most promising alternatives does not grow exponentially
with the number of cells or with the number of models involved. The evaluation function
keeps track of the most plausible state as states are generated. The algorithm can then
be allowed to switch back to any previously generated state that looks more promising
and it can prune states that are unpromising.

The control of the search is complicated by the fact that models for the cells are
generated as the reasoning proceeds. This is because knowledge in the model of a cell
is linked to knowledge in the models of other cells. For example, in the hierarchy graph
of figure 3.3(b), knowledge in the model of cell Cy in the situation Sy =< Cy, {C5, Cs} >
is linked to knowledge in the models of cell ('3 and cell Cs. These links imply that the
knowledge in the model of a cell can be used for the derivation of knowledge in the models
of related cells. This is called knowledge-propagation in section 1.3. New plans for the
knowledge about a cell can be formed in this way. The comparison of new knowledge
plans for a cell with system information may result in more elaborated models for the
cell which before could not be generated since not enough knowledge was available for
the comparison.

The knowledge in the model of a cell may allow the propagation of knowledge to any
other cell in the design. For example, knowledge in the model of cell Cy can be propagated
to the model of any cell in the situation S; and to the model of any cell in the situation
S1 =< C1,{C3,C4} > since this situation instantiates the cell Cy. In its turn, knowledge
propagated to cell Cy through the situation 57 may result in the propagation of knowledge
to cell C5 through the situation S4 =< C4,{C5,Cs} >. In this example, knowledge in
the model of cell €y may result in the propagation of knowledge to cell Cs through three

Chapter 3. — Heuristic Classification of Electronic Cells and Signals —

different sequences of situations:

SQ — Sl — 54 — 55
SQ — 53 — 54 — 55
SQ — 56 — 54 — 55

The operation of the system is as follows. The system initially extracts a set of
plans for the knowledge about the cells of the design by analysing the specification. The
comparison of these plans with system information allows the generation of a set of initial
models for the cells. At this stage, all the situations of the design must be examined. The
most adequate alternatives to represent each situation are selected and analysed. The
analysis of valid alternatives results in the propagation of knowledge between the models
of the cells of a situation. The enhanced models for the cells are seen as new knowledge
plans which are compared with system information in order to validate them. As a result
of the comparison, more refined models may be generated. The operation of the system is
an iterative process of knowledge-generation/knowledge-propagation cycles. The process
terminates when it is not possible to add more knowledge to any of the models in the
alternatives which best represent each situation. The process must terminate since there
is a limited amount of knowledge in the system and therefore of possible plans or models
that can be generated for the cells.

Part 11

Automatic Derivation of

Heuristic Design Knowledge

Chapter 4

Formation of
Knowledge Plans

A knowledge plan represents a possible arrangement of heuristic knowledge for a cell.
A plan for a cell can result in an heuristic model for the cell if it is validated by the
system as discussed in chapter 5. The accuracy and effectiveness of these plans relies on
the quality of the description, the knowledge-derivation functions of the system and the
ability to combine planning alternatives for individual items of knowledge. The quality
of a description is improved by means of techniques such as the choice of meaningful
names for design objects, the use of comments, the arrangement of design objects into
arrayed structures and the use of an adequate design hierarchy. All these techniques,
except the use of comments, are exploited for the derivation of plans for the cells of a
design. Three types of knowledge-derivation functions are identified and examples of them
are presented. The complexity of the problems of forming knowledge plans and dealing
with large numbers of them is addressed.

4.1 Knowledge Plans

This chapter initiates the discussion about the derivation of heuristic design knowledge.
The kinds of knowledge that can be derived were described in chapter 3. The derivation
of heuristic knowledge represents a high level way of reasoning for the understanding of
the design and its parts. A penalty to pay with this way of reasoning is a degree of
uncertainty associated with the knowledge which is derived. Because the knowledge is
not totally reliable, a number of alternatives for the heuristic knowledge about a cell can
generally be formulated. Each alternative arrangement of knowledge for a cell is called
a knowledge plan. Knowledge plans are presented in this section. Heuristic methods for
the formation of these plans are introduced in section 4.2. The types of functions which
are required to implement different methods of deriving plans are classified in section 4.3.
Examples of these functions are given in section 4.4 and section 4.5. The complexity of
the problem of forming knowledge plans and the problem of dealing with a large number
of them are addressed in section 4.6.

In many cases, a knowledge plan will only contain a partial arrangement of knowledge
for a cell, with no propositions for some of its aspects. These kinds of plans are called
incomplete plans since some degree of freedom is still possible for the heuristic knowledge

Chapter 4. — Formation of Knowledge Plans —

about the cell. As opposed to this, a plan with propositions of knowledge for each aspect
of the cell is called a complete plan. Complete plans are in general more attractive than
incomplete plans. This is because if a complete plan is correct it represents a complete
model of the knowledge about a cell. However, complete plans are less likely to match
with system knowledge for their validation (see section 4.3) since they are very constrained
(they do not contain any free variables). On the other hand, incomplete plans are more
likely to be matched, but they may well match in a number of different ways all of which
must be analysed. Often, it will be necessary to ignore plans which only have a few items
of knowledge defined since it will not be feasible to analyse all matching possibilities.

An example of a knowledge plan is illustrated for the example circuit of figure 4.1. The
object of the figure corresponds to an instance of a cell named ‘74als257’. The instance
object is called ‘ic90” in the real electronic design [Doc88]. The numbers inside the object
correspond to the names given to the ports of the instantiated cell. The names outside
correspond to the names given to the connections or nets which interconnect the ports
of the instance in the design. An example of a plan for this cell which is obtained from
the analysis of figure 4.1 is shown in table 4.1. The procedure for the derivation of this
plan will be described in section 4.4.2 and section 4.5. The plan is seen as a frame which
contains slots for arranging the heuristic knowledge about the cell.

ic90
next_event_dsel { 1 16]
top_free list_0 { 2 15 F sign_gnd
cwheel _data 0 { 3 14 F top_free list_3
muse_even_next_in_0 q 4 13 F cwheel_data 3
top_free list_1 { 5 12 P muse_even_next_in_3
cwheel_data 1 { 6 11 F top_free list_2
muse_even_next_in_1 A 7 10 F cwheel _data 2
8 © H muse_even_next_in_2
L 74AL S257 I

Figure 4.1: Example Circuit

The slots used to represent a knowledge plan are the same as the slots that are used
to represent an heuristic cell model (see section 3.5), except that no slot is used for the
date of derivation of the plan. The slots that are shown in table 4.1 are the ones that
can be filled or partially filled from the analysis of figure 4.1. Examples of the form of
the rest of slots are given in table 3.4 and in the tables of chapter 5. These slots are:

i— plan name: this slot is filled with the name of the cell to which the plan applies.

ii— cell types: this slot i1s made of four sub-slots which house the types of the cell. In
table 4.1, the sub-slots are filled with variables. This indicates that the plan could

Chapter 4. — Formation of Knowledge Plans —

‘ Knowledge Plan: T4als257 ‘

‘ Cell Types ‘

Cell Logic
Abstraction Level
DataFlow Type

wileli=s] b2

Cell Purpose

Cell Interface

Port Class | N© Signals Port Sub-classes
Port Name | Port Sub-class | N? Signals

inputs 10 [27,57,4117,14"] top_free_list 4
[‘37,67,°107,°13"] data 4
‘v select 1
‘15 ground 1
outputs 4 [‘4,77,°9°.12°] | muse_even_next_in 4
default 2 ‘8’ E 1
‘16’ F 1

‘ Cell Constraints ‘

(1) A in [combinational,sequential]

(2) B in [vector,processor]

Table 4.1: A Knowledge Plan

not resolve any of the types of the cell to any specific value. However, constraints
over these variables are proposed as indicated below.

iii— functionalities and organisation of the interfaces: this slot classifies the ports of the
cell into classes according to the direction of their signals (see section 3.3). The
direction of the ports in the class default was not specified in the description. The
ports in each class are sub-classified according to their electronic functionalities. The
knowledge stored in the plan includes, for example, the fact that the port ‘1’ of the
cell is assumed to have as electronic functionality ‘select’ and the fact that the four
input ports [37,°6°,10”,°13’] are all assumed to have as electronic functionality ‘data’
(the derivation of this knowledge takes place as examined in section 4.4.2).

iv— cell contents: this slot contains sub-slots which classify the sub-cells of the cell (see,
for example, table 3.4). This slot is fully undefined for the example cell of figure 4.1
since this cell is a basic primitive of the design and nothing is known about its
contents.

v— cell electronic functionality: this slot defines the electronic functionality of the cell
which could not be resolved from the analysis of figure 4.1.

Chapter 4. — Formation of Knowledge Plans —

vi— cell constraints: this slot establishes constraints over the variables in the plan. The
constraints given in table 4.1 specify that the level of abstraction and logic type of
the cell are limited to one of the values in the sub-sets indicated (the derivation of
these constraints is considered in section 4.5).

vii— data flow information: knowledge about the flow of data in the cell is stored in this
slot. No knowledge for this slot could be derived from the inspection of figure 4.1.

The plan of table 4.1 is clearly incomplete since most of the knowledge about the cell
remains undefined.

4.2 Methods and Heuristics for the Formation of Plans

Methods and heuristics for the formation of plans are introduced in this section and they
are expanded as required later in the thesis. The knowledge used to form these plans
(see chapter 3) is not rigorous and it is often vague in the sense that there are no clear
definitions to limit its scope of application. Most important of all, this kind of knowledge
is often gratuitous since it is not made explicit in a design description. However, the
inclusion of this knowledge in the description of a design (in one way or another) firmly
improves the quality of the description. High quality descriptions make extensive use
of techniques such as the choice of meaningful names for the design objects, the use of
comments, the arrangement of the design objects into arrayed structures and the use of an
adequate design hierarchy. These techniques facilitate the understanding of a design but
they are not, at least in principle, essential. The knowledge provided by the use of these
techniques is meaningful to design engineers but it cannot be exploited by automatic
systems in most cases.

Among the techniques mentioned above, it is probably the use of meaningful names
which provides, at first glance, more information about the objects of a design. Following
good design practice and methodology, designers use sensible names for the objects of
their designs such as cells, interface ports and signals. By exploiting semantic information
carried by the names of the objects of a design, designers can attempt to deduce the
functionality or purpose of these objects. This belief is examined and automated in
section 4.4 to form plans for the knowledge about cells and signals.

Another important technique that is used to improve the quality of a description
involves the grouping or arraying of objects. Groups of objects tend to facilitate the
analysis and description of the design by allowing a set of separate objects to be viewed
as a whole. This is similar to computer programming where suitable data structures
are preferred to a large number of separate variables. In electronic design, designers
tend to collect together objects which share some common characteristics. For example,
the ports of large cells are likely to be organised as groups of ports, as in the case of
‘address’ and ‘data’ ports (these groups often represent the bits required to represent
in the binary logic implementation of the cell a value of a high level description of the
cell). By the same token, connections that carry related signals are often grouped as in
the case of ‘address’ and ‘data’ busses. The grouping of a set of ports or signals in the

Chapter 4. — Formation of Knowledge Plans —

specification may be used to support an hypothesis that these objects share the same
electronic functionality. Conversely, an assumption about the functionality of an object
can be deemed unpromising after observing the group of objects to which the object
belongs. For example, a design has zero, one or very few ‘clock’ signals. If a signal is
assumed to be a ‘clock’ signal, and later it is observed that it belongs to a large array of
signals, the strength of the assumption is weakened.

Groups of cells are defined by designers when forming the hierarchy for their designs.
In the description of a cell, designers can make use of other cells already designed, thus
describing a cell as the interconnection of a set of sub-cells. If too many instances of the
sub-cells of a cell are required to represent the contents of a cell, designers may decide
to group some of these instances to form a higher level sub-cell which contains these
instances. This simplifies the understanding of the contents of a cell since there are fewer
instances (or sub-cells) to consider and the interactions between a cell and its contents
become clearer (this is expanded in section 7.7) 1.

The hierarchy of a design establishes relationships between its cells. This is because
the operation of a cell must be achieved by means of the operation of its sub-cells and
the interconnections between instances. As a result, knowledge about a cell can be used
to derive knowledge about its sub-cells and vice versa. For example, the types of a cell
are tied to the types of its sub-cells (e.g. the level of abstraction of a cell cannot be lower
than the level of abstraction of any of its sub-cells). A way of planning a set of plausible
types for a cell based on the types of its sub-cells is described in section 4.5. Considering
that the types of a cell are related to the electronic functionality of this cell as shown in
table 3.2, it is clear that knowledge about the types of the sub-cells limits the range of
possible operations for the cell.

Relationships between objects in a design are also established by means of the inter-
connections between the cells of the design. For example, a ‘clock’ port of a cell often is
connected to the ‘clock’ ports of its sub-cells. Knowledge about the interfaces of different
cells becomes interrelated as a result of the connections in the design. For example, if
two ports are grouped in a cell (and therefore it is possible to hypothesise that they have
the same electronic functionality) and they are both connected to two separate ports of
another cell, it is logical to propose that these last two ports share the same functionality.
The connectivity of a design is an important factor for the derivation of knowledge plans
for the interfaces of the cells. This is examined and automated in section 7.4. Knowledge
about objects which are not directly interconnected can also be interrelated taking into
account the flow of signals in the design. For example, the case of a single cell which
issues signals to control a group of cells or a data-path can be used to interrelate knowl-
edge about objects in the data-path which are not directly connected. This is examined

1Cells are also frequently grouped to form libraries of cells. The cells in a library usually share a
number of characteristics, the most common of these being the technology used for their implementation.
Designers may choose to organise libraries of cells according to their functionalities or their levels of
abstraction. Examples of this include a library of flip-flop cells and a library of logic gates. In these
cases, knowledge about one of the cells in the library helps for the examination of the rest of cells. These
heuristics are not considered in the current implementation of the system.

Chapter 4. — Formation of Knowledge Plans —

in section 7.5.

Another important way of planning knowledge about a cell is by considering that
expert designers can propose further knowledge about the cell by considering the knowl-
edge already available about it. In other words, this implies that some items of knowledge
are known to the experts as ‘usually’ being associated with some other items of knowl-
edge. For example, the fact that a cell is supposed to have an input ‘clock’ port and
input /output ‘data’ ports of the same width can allow a designer to support an hypothe-
sis of the cell being a register. Operationally, the system can respond to the recognition of
a pattern of knowledge for a cell by forming a new plan with additional knowledge. This
is automated in section 5.5.1. Similarly, the system can enhance the knowledge repre-
senting a set of interconnected cells by comparing the knowledge available with heuristic
models of common design strategies and stereotypical implementations. This is described
in section 7.6.

To conclude this introduction to the heuristics and methods used for the derivation of
knowledge plans, it must be noted that a large variety of heuristics can be exploited for the
derivation of plans. The ones mentioned above form part of the current implementation
of the system. The implementation of methods and heuristics for the derivation of plans
is discussed in the next section.

4.3 Knowledge-derivation Functions

The functions for the derivation of knowledge about the cells of a design are here classified
into three types as shown in figure 4.2. These functions are:

Knowledge-extraction Knowledge Knowledge-generation

functions Plans functions

Raw
Electronic
Data

K nowledge-propagation Candidate

Heuristic Models
for the Cells

functions

Figure 4.2: Knowledge-derivation Functions

1. knowledge-extraction functions: knowledge about a cell is extracted from the de-
signer’s specification by inspection of salient features of the cell present in the de-
scription. The fact that the knowledge is ‘extracted’ implies that information exist-
ing in the specification is used to support the validity of this knowledge. Knowledge

Chapter 4. — Formation of Knowledge Plans —

about a cell may be extracted from different sources. These sources include the
description of the cell and each use or instantiation of this cell in the design. The
knowledge extracted from each source is collected to form plans for the knowledge
about a cell. A collection of extracted knowledge forms a plan since its different
items of knowledge are extracted separately. The system must verify whether these
items of knowledge are a compatible representation of an electronic cell.

A function K-ext which extracts a set of initial plans for an arbitrary cell C; is

defined as
K-ext: C; — P, ..., P! (4.1)

K3 K3

where Pf corresponds to the j-th plan for cell C; with 1<y <¢. The value ¢ is the
number of different plans extracted for this cell. The knowledge-extraction function
associates a strength value with each item of knowledge. This value evaluates the
confidence in this item of knowledge. These values are combined to evaluate the

confidence in the whole plan (see section 6.3).

2. knowledge-generation functions: knowledge about a cell is derived by comparison of
an existing plan with system information. This includes the comparison of a plan
with heuristic models which describe electronic cells or classes of electronic cells (see
section 5.5.1) and the comparison of a plan with heuristic models of the use of a
cell for the design of more complex cells (see section 7.6). The result of a successful
comparison between a plan and one of these heuristic models is an augmented plan
or solution plan which incorporates the heuristic knowledge contained in the model.
The new plan is supported by the fact that the items of knowledge existing in the first
plan are known to the system as ‘usually’ being associated with some other items of
knowledge. The system supports the validity of the extra items of knowledge and
the functions are said to generate knowledge. A solution plan is seen as a possible
heuristic description of the operation of the cell and it corresponds to a candidate
heuristic model for the cell (cell model). The confidence in this model depends on
the number of items of knowledge present in the initial plan and the confidence in
each of these items.

A function K-gen which compares a plan P, for the cell C; of a design with the k-th
heuristic model in the system Hj. is defined as

K-gen: < Py, Hy >— M}, ... M? (4.2)
The comparison of plan P; with the heuristic model Hj; can generate ¢ solution
plans (a plan and an heuristic model may not match at all or match in a number
of different ways). The term M; with 1 <j <g indicates the j-th solution plan for
cell C;. A solution plan M; meets the heuristic rules of the k-th heuristic model
in the system. For this reason, this plan is seen as a candidate heuristic model for
describing the operation of cell C;.

3. knowledge-propagation functions: knowledge about a cell is derived from knowledge
describing other cells and signals. The models that describe the cells of a design

Chapter 4. — Formation of Knowledge Plans —

have relationships between them. These relationships arise because of the design
hierarchy, the connectivity of the design and the flow of signals in the design. A
relationship links items of knowledge which correspond to models of different cells.
Two types of relationships can be considered:

(a) a relationship that represents a constraint which the corresponding items of
knowledge must satisfy. If the constraint is not satisfied (consistency-checking)
the representation is incorrect according to the knowledge in the system. In this
case, the set of models used for the representation must be discarded. If some
of these items of knowledge are undefined, consistency may be kept by passing
knowledge to the corresponding incomplete models.

(b) arelationship that represents a plausible link between the items of knowledge. In
this case inconsistencies cannot arise in the representation but the relationship
can be used to add knowledge to incomplete models. The addition of knowledge
to an existing model forms a new plan for the corresponding cell.

The extra knowledge added to an incomplete model for a cell results in the formation
of a new plan for the knowledge about this cell. This extra knowledge is supported
by the knowledge available in the models of interrelated cells and the system. The
functions are said to propagate knowledge. The new plan formed can be compared
again with system information by means of the knowledge-generation functions (this
forms the loop illustrated in figure 4.2).

A function K-prop which propagates knowledge to a model M; for a cell C; that is
used in the situation Sy of a design is defined as

K-prop: < M;, Sy >— P',..., PP (4.3)

K3 K3

where Pf indicates the j-th plan for cell C; derived from the reasoning about the

situation S; and the model M; of this cell. The value p represents the number of
new plans that can be formed for cell C; by means of this reasoning.

4.4 Example 1 — Planning by Analysis of Names

This example discusses a knowledge-extraction function which analyses names of objects
of a design for the planning of knowledge about a cell. A key technique for a prompt
identification of the functionality of cells and signals is based on the study of the names
associated with the objects in a design. Although the name given to an object is arbi-
trary, the use of meaningful names is common practice. The choice of meaningful names
facilitates the design of the circuit and the understanding of its contents and functional-
ity. This is similar to computer programming where the choice of meaningful names for
variables and procedures highly facilitates the understanding of a program. In the case
of electronic design, the usage of names is limited to a variety of objects which include,

Chapter 4. — Formation of Knowledge Plans —

notably, the libraries of cells, cells, ports and signals 2.

4.4.1 Heuristics Based on Naming

The planning of knowledge for a cell by an examination of names arises from the obser-
vation that the names of the design objects are frequently related to their functionalities.
This observation is exploited for the investigation of the electronic functionality of a cell,
the electronic functionality of its signals and, most important of all, the electronic func-
tionalities and organisation of its interfaces. In fact, there are three different ways in
which the naming of objects can be exploited:

1. knowledge can be obtained by analysis of the semantic value contained in the names
of the objects. For example, the fact that a port is called ‘clk’ carries enough se-
mantic information for electronic designers to guess that this port probably has the
electronic functionality ‘clock’. Thus, an assumption about the electronic function-
ality of a cell, a port or a signal can occasionally be supported by the name given
to the respective object, such as a cell name (or, less frequently, the name given
to an instance of this cell), a port name or the name given to the net that carries
the signal. These assumptions are based on the comparison of names with typical
values for the electronic functionality of cells (see table 3.2) and with typical values
for the electronic functionality of ports and signals (see table 3.3) which are known
to the system. In addition, names can be compared with electronic functionality
values generated from the processing of previous designs. This last situation is pos-
sible since the system provides an automatic mechanism for identifying new values.
The automation of the comparison of names is based on the use of semantic net-
works which provide a natural way of jointly storing information about names and
electronic functionality values. This is described in appendix B.

2. knowledge can be captured by observing that a set of objects, mostly ports and
signals, are given names which carry the same or similar semantic values, regardless
of the actual meaning of these names. For example, the names of two ports such as
‘top_free_list_1” and ‘top_free_list 2" in figure 4.1 carry similar semantic values and,
consequently, the ports are likely to have the same electronic functionality. This is
reflected on a plan by grouping these two ports together. An exception to this rule
occurs when all the objects considered have names with similar semantic values (e.g.
all ports within a cell are called with names such as ‘port_1’, ‘port_2’, ..., ‘port_n’).
In this case, the semantic value of these names is assumed to be nil and the ports
are not grouped.

3. knowledge can be extracted from the fact that a set of objects are tied together
under the same name. For example, a set of ports are given a common name in an

ZAll these objects must have been named by one designer or another. A particular design object like
a cell or a port may have a set of names associated with it. For example, a cell object has the cell name,
the names of the instances of this cell and other names such as those that can be used for the display of
the cell in a schematic representation.

- 77 -

Chapter 4. — Formation of Knowledge Plans —

array port. A plan can be made assuming the same electronic functionality for each
port in the array since the names of the ports are often related to their electronic
functionalities. Another example of this includes a net object that ties a set of ports
to have the same signal. As discussed in section 3.4, the electronic functionality of
a signal in a design is often the same as the electronic functionality of the ports
involved in the transmission of the signal. As a result of this, the name of a signal
can be used to plan the functionality of the related ports.

4.4.2 Planning the Interface of a Cell

From the above discussion, the following set of heuristics can be considered for planning
the interface of a cell according to naming:

i— “the name of a port of a cell often reflects the electronic functionality of this
port”.

it— “if two ports have similar names they often have the same electronic function-
ality”.

it — “the name of a signal in a design often reflects the electronic functionality of
this signal”.

iv— “the electronic functionality of a signal in a design is often the same as the
electronic functionality of the ports involved in the transmission of the signal”

v— “if two ports carry signals with similar names they often have the same elec-
tronic functionality”.

A knowledge-extraction function that makes use of these heuristics is implemented in
the system. The plan for the interface section of table 4.1 was extracted from the instance
object of figure 4.1. The ports are first classified according to their direction (inputs, out-
puts and inouts) as given in the specification. For the ports ‘8" and ‘16’ no direction
is given in the specification and they are classified into the class default. The ports in
each class are sub-classified according to their electronic functionalities. In this example,
these electronic functionalities are derived from the analysis of the names given to the
nets that connect the ports of one of the instances of the cell. The analysis is as follows:
the name ‘next_event_dsel’ is matched with the typical electronic function ‘select” and a
corresponding port sub-class is generated. The names ‘top_free list 0, ‘top_free_list_1’,
‘top_free_list 2" and ‘top_freelist_3’ do not match any typical electronic function but
they all carry similar semantic values. Thus, a port sub-class with electronic func-
tionality ‘top_free list” and 4 elements is created. Similarly, the names ‘cwheel data_0’,
‘cwheel _data_1’, ‘cwheel data_2” and ‘cwheel data_3’ all match the typical function ‘data’
and they form another sub-class. A similar analysis is performed for the rest of the signal
names. For the ports ‘8" and ‘16" no signal name was given in the specification and their
functionality is left undefined (in fact, these ports are not connected in the specification).

Chapter 4. — Formation of Knowledge Plans —

4.5 Example 2 — Inference of Plausible Cell Types

Examples of knowledge-derivation functions for inferring the plausible types of a cell are
examined in this section. The types of a cell represent key knowledge for the identification
of the class of electronic cells to which the cell belongs. Procedurally, the system will
attempt to match a knowledge plan for a cell with only those heuristic models in the
system whose types are consistent with the set of plausible types derived for the cell. In
order to derive the plausible types of the cell, the knowledge-extraction functions resort to
information extracted from the specification; the knowledge-generation functions resort
to knowledge already available for the cell; and the knowledge-propagation functions fall
back on knowledge available about the types of the sub-cells of the cell. The types of a
cell which are investigated here include the level of abstraction, logic and data flow types.

4.5.1 Abstraction Level Analysis

The complexities of the interfaces and contents of a cell are used to estimate a set of
plausible levels of abstraction for this cell. The complexity of the interfaces is determined
by the number of ports and by the electronic functionalities of these ports. On the whole,
cells at higher levels of abstraction present more complex interfaces than cells at lower
levels. For example, cells at the bit level have a smaller number of inputs and outputs than
cells at the vector level (this is logical since cells at the vector level are often composed
of arrays of cells at the bit level). Table 4.2 contains a set of typical rules or plausible
relationships for the derivation of the plausible levels of abstraction for a cell from its
number of ports (power ports are excluded). The table is of an heuristic nature with the
rules or heuristics applying for most electronic cells.

N¢ N¢ N¢ Conditions Abstraction
Inputs | Outputs | Inouts Range
N 0 0 N>0 unknown
0 M 0 M >0 bit-vector
N 1 0 N <2 transistor-bit
N >2 gate-vector
N M 0 NL2, M>1 transistor-vector
0 0 K K=1 unknown
K =2 transistor-bit
0 1 K K=1 bit
N M K N+M+2+K <10 bit-vector
10 < N+ M+2+K <100 vector-processor
N+M+2«K > 100 processor-computer

Table 4.2: Abstraction Level Based on Number of Ports

A knowledge-extraction function implements these heuristics in order to calculate an
initial set of plausible levels of abstraction. The initial set can be revised by taking into

Chapter 4. — Formation of Knowledge Plans —

account the contents of the cell. Obviously, a cell cannot have a level of abstraction lower
than the level of abstraction of any of its sub-cells. It is possible to define a function
which takes into account the set of plausible levels of abstraction for each sub-cell of the
cell (and the number of instances of each sub-cell) and calculates a set of plausible levels
of abstraction for the cell. This function is a knowledge-propagation function since it
considers knowledge about the sub-cells of the cell to derive knowledge about the cell.

A way of defining this knowledge-propagation function is to consider a function which
relates the level of abstraction of a cell to the number of transistors required for its
implementation. This function or complezxity estimation function is defined in section 6.6.
The derivation of the set of plausible levels of abstraction for the cell is then carried out
as follows:

1. an estimate for the number of transistors (a range of values) required for the imple-
mentation of each sub-cell is obtained from the set of plausible levels of abstraction
of the sub-cell by means of the complexity estimation function.

2. an estimate for the number of transistors required for the implementation of the
cell is calculated from the estimates of the number of transistors required for the
implementation of each sub-cell and the number of instances of each sub-cell.

3. finally, a set of plausible levels of abstraction for a cell is obtained from the estimate of
the number of transistors that the cell requires by applying the complexity estimation
function in reverse °.

This knowledge-propagation function does not represent constraints which the levels
of abstraction of a cell and its sub-cells must satisty. The result of the function is an
estimate of the plausible levels of abstraction. Because of this, an enlarged set is obtained
from the union of the set obtained by means of the knowledge-extraction function and
the set obtained by means of the knowledge-propagation function. Some unlikely options
in this enlarged set can still be excluded with the aid of heuristics which keep in view the
type of electronic functionality of the ports. These heuristics consider that some types
of ports are only expected within a range of levels of abstraction. Examples of these
heuristics include:

i— “if a cell has ports with electronic functionality address then the abstraction
level of the cell is vector or higher”.

it— “if a cell has ports with electronic functionality clock then the abstraction level
of the cell is bit or higher”.

These heuristics represent constraints which the set of plausible levels of abstraction
of a cell must satisfy with respect to other knowledge available for the cell. The heuristic

31t must be noted that the complexity estimation function assumes that cells at higher levels of
abstraction require a larger number of transistors for their implementation than cells at lower levels.
Because of this, the plausible levels of abstraction which are estimated for the cell cannot be lower than
the levels of abstraction of any of its sub-cells.

Chapter 4. — Formation of Knowledge Plans —

model of any electronic cell must comply with these constraints which are represented in
the system hierarchy of heuristic cell models (see section 5.3). The knowledge-generation
functions which compare knowledge plans with heuristic models of electronic cells will
then take into account these constraints.

4.5.2 Logic Type Analysis

Knowledge for the elucidation of the logic of a cell can be drawn from the examination of
the interface and contents of the cell. With regard to the interface, synchronous sequential
circuits are easily identified by the presence of ports with electronic functionality ‘clock’.
It is also worth mentioning that cells at levels of abstraction higher than vector level are
often sequential.

The investigation of the sequential nature of a cell according to its contents is done as
indicated in table 4.3 (X means any value). This table indicates that a cell that contains
sequential sub-cells is necessarily of a sequential type. For a cell with no identified
sequential sub-cells an analysis of the type of network is necessary. This analysis is based
on the fact that a logic network with feed-back loops is almost always sequential (see
section 2.2.1). Conversely, a loop-free network is in most cases combinational *.

‘ Cell Logic ‘ Flat Cell ‘ Sequential Sub-Cells ‘ Logic Feed-back Loops ‘

Combinational no no no
Sequential no yes X
Sequential no X yes
Unknown no unknown no
Unknown no unknown unknown
Unknown ves X X

Table 4.3: Sequentiality Analysis

The analysis of feed-back loops is adequate for networks of cells at the gate-vector
levels of abstraction. This analysis is not applicable to networks of transistor cells and,
as mentioned above, cells at levels higher than vector often are sequential. The analysis
of feed-back loops is not carried out if there are bidirectional ports interconnected in the
network since these networks are almost always sequential. The example of figure 4.3 is
used to illustrate this circumstance. In this circuit, when the signal ctr carries a logic
value 0 the bidirectional port 107 gets programmed as an output and the bidirectional
port 105 is programmed as an input. Then, when the signal ctr carries a logic value
0 there are no loops in the network and the circuit is combinational if the sub-cells are
combinational. On the other hand, when the signal ctr carries a logic value 1 the port

“In some technologies the sequential nature of a circuit (and the consequent storage of data) is
provided by a periodical refreshment of the circuit and no electrical loops are used.

Chapter 4. — Formation of Knowledge Plans —

10, gets programmed as an input and the port IO2 is programmed as an output. In
this case, there is a feed-back loop and the network is most probably sequential.

10,

ctr

Figure 4.3: A Network with Bidirectional Ports

4.5.3 Data Transportation Analysis

The investigation of the transfer of data in a cell is based on the types of its sub-cells
and their interconnections as indicated in table 4.4. In general, if a cell contains sub-cells
of a transporter type, and it is possible to transport some data from the input ports of
the cell to its output ports through the transporter sub-cells, the cell can be planned as
being of a transporter type. The fact that some sub-cells must be of a transporter type
restricts the analysis to cells whose network is at the bit level or higher.

‘ Data Flow Type ‘ Transporter Sub-Cells ‘ Data Transfer Paths ‘

Modifier no no
Modifier yes no
Transporter yes yes

Table 4.4: Data Transportation Analysis

Operationally, the procedure for a cell with transporter sub-cells consists of searching
for the paths that allow the transfer of data from input to output ports. An example of
this is illustrated by means of the circuit in figure 4.4. The transfers of data in a sub-cell
are indicated by dashed lines. The data transfer paths are defined by the origin data
ports, the destination data ports and the control ports required to set up the transfer.
For the above example, the data transfer paths are:

(1) path: x1 ==> 21, control:|[cky,s,cks]
(2) path: x3 ==> 23, control:|[cky,s,cks]
(3) path: xa2 ==> 1z1, control:[cka,s]
(4) path: xa2 ==> 1z3, control: [cka,s]

Chapter 4. — Formation of Knowledge Plans —

Zan
X1
cky
S 22
Xy
ck,

Figure 4.4: Computation of Data Transfer Paths

The computation of paths for the transfer of data in a cell provides a mechanism
for consistency-checking between cells and sub-cells. The data transfer paths defined in
the model of a cell must be attainable with the sub-cells instantiated according to their
associated models.

4.6 Number of Knowledge Plans and Complexity

An important issue for the derivation of knowledge plans corresponds to the combination
of knowledge derived for individual aspects of a cell to form a knowledge plan for the whole
cell. For example, the plan of table 4.1 for the cell of figure 4.1 combines knowledge which
is independently derived: the knowledge for the interfaces of the cell (derived according
to the knowledge-extraction function of section 4.4) and the knowledge for the types of
the cell (derived according to the knowledge-derivation functions of section 4.5). The
result of the combination is a more complete plan. As mentioned in section 4.1, detailed
plans are often necessary in order to make the matching with heuristic models feasible.
However, a more detailed plan may exclude possibilities which separate plans would not
exclude (in the case that the knowledge contained in the plan is incorrect). On the other
hand, separate plans (with either knowledge for the types of the cell or knowledge for its
interfaces) may be too sparse to be matched with heuristic models. In addition, the items
of knowledge (sub-slots) contained either in the slot for the types of the cell or in the
slot for its interfaces are independently defined and combined to give a single knowledge
arrangement for each slot.

A large number of planning possibilities are excluded in this way (considering that
some items of knowledge may be incorrectly defined). Unfortunately, there is no general
way to alleviate this problem. There are two ways of exhaustively considering all the
knowledge derived:

1. by generating all knowledge plans which can be obtained by combining all planning
possibilities for the individual items of knowledge in a plan. This clearly gives rise

Chapter 4. — Formation of Knowledge Plans —

to a combinatorial explosion: the number of knowledge plans which can be derived
grows exponentially with the number of items of knowledge considered, leading to an
unmanageable number of knowledge plans. This is very often the case considering,
for example, that a cell has several ports and the fact that knowledge about the
electronic functionality of a port can be derived from different sources (such as each
use of the cell in the design).

2. by collapsing, for each item of knowledge, all the planning possibilities to generate
a constraint which does not exclude any alternative. For example, the electronic
functionality of a port may be constrained to a value within a set of possible values.
Thus, constraints (usually weak) for the separate items of knowledge can be calcu-
lated and a single plan (or a smaller number of plans) generated. However, plans
with weak constraints and few fully represented items of knowledge are difficult to
match (see section 5.5.2).

These difficulties imply that more heuristic methods for the formation of knowledge
plans must necessarily take over. Some of these methods depend on the knowledge-
derivation functions used. For example, the knowledge-extraction function described in
section 4.4 is applied to each instance of a cell in the design, but the results obtained
from the analysis of each separate instance may not be combined together. More general
heuristic methods are aimed at managing a large number of knowledge plans. This is
illustrated for the case of knowledge-generation functions (the same applies for the other
kinds of functions). The matching of a knowledge plan P, with the k-th heuristic model
in the system Hj, as given by equation 4.2

K-gen: < Py, Hy >— M}, ... M?

K3

can generate a large number ¢ of solution plans (see section 5.5.2 and equations 5.5
and 5.6). A restricted knowledge-generation function which only considers one solution
plan from the comparison of a knowledge plan with an heuristic model is defined as

K*-gen: < P, H, >— M (4.4)
The function K*-gen can be seen as a composition of functions
K*-gen = F o K-gen
where the function F is defined as
Fi< M,M! >— M (4.5)

The function F is a filtering function which takes all plans generated by K-gen and
produces a single solution. Two major alternatives can be considered for the definition
of the filter function F:

1. to only consider the solution plan for which a highest confidence evaluation is ob-
tained. The knowledge-derivation function associates a confidence value with each

Chapter 4. — Formation of Knowledge Plans —

item of knowledge and these values are combined to evaluate the confidence in the
whole plan (see section 6.3). Knowledge plans which are bound to give lower confi-
dence values can be discarded without having to generate all individual plans. The
disadvantage of this choice is that the selection of a single plan (or several plans for
that matter) definitively excludes the other possibilities.

2. to collapse all solution plans into a most general plan (or most general model) M}
which does not exclude any of the solutions and contains all knowledge which is
common to all plans. In this way, each plan M;; is an instance of M (since some
slots that are undefined in the most general plan are filled with values). The pro-
cedure used for the determination of the most general plan is based on variabilisa-
tion [CM85]. This considers substituting values in the slots of the plans by variables
so that the plans do not exclude each other. The variables can then be constrained
according to the knowledge available in the collapsed plans.

Finally, some constraints for the knowledge about some cells can be imposed at the
beginning of the reasoning process or during the processing (e.g. by the user of the
system). Any heuristic model or plan for a cell must inherit these constraints which can
reduce the number of possible knowledge plans to be considered. A large number of plans
can be managed efficiently by organising them in a hierarchical way as discussed in the
next chapter.

Chapter 5

(Generation

of Cell Models

A model for a cell is generated from the comparison of a knowledge plan with system

information about electronic cells. The procedure is frame-based: a frame that contains
a plan for the knowledge about a cell is compared with system frames. A system frame is
either a class model, which represents an heuristic model of a class of electronic cells, or a
cell model that corresponds to an heuristic model of an individual cell. These models can
be provided by the system or obtained from the processing of past designs. A successful
comparison of a plan for a cell with a system frame results in heuristic models for the
cell. Since a number of plans may be available for any cell, and a plan can match various
system frames in a number of different ways, a number of different alternative models
may be generated for each cell. System frames and the procedure for matching them
are described. The organisation of models and plans is discussed. The evaluation and
selection of models for the cells of a design are discussed in chapter 6.

5.1 Knowledge Plans and Heuristic Models

This chapter continues with the derivation of knowledge for a cell by considering the
comparison of knowledge plans with system information about electronic cells. The result
of this comparison is the addition of some items of knowledge to an initial plan to form
a more detailed plan. The resulting plan can be a complete plan if enough knowledge is
provided in the initial plan. Since these extra items of knowledge are provided by the
system the functions that perform this comparison are knowledge-generation functions.
The new plan is supported by the fact that the items of knowledge existing in the initial
plan are known to the system as ‘usually’ being associated with some other items of
knowledge. The strength value that evaluates the new plan depends on the number of
items of knowledge present in the initial plan and their associated strength values (the
combination of the strength values of different items of knowledge that form a plan to
evaluate the strength of the whole plan is discussed in section 6.3). On the whole, the
system responds to the recognition of a pattern of knowledge for a cell by forming a
new plan with this knowledge and additional knowledge provided by the system. The
strength value of the new plan is higher than the strength value of the initial plan.
There are basically two kinds of system information that can be compared with the

Chapter 5. — Generation of Cell Models —

knowledge for a cell. The first type of information corresponds to heuristic models of
the operation of electronic cells. Each one of these models contains a set of heuristics
which describe an electronic cell or a class of electronic cells. The result of a successful
comparison between a plan for a cell and one of these models is a solution plan which
incorporates the heuristic knowledge contained in the model. Such a plan is seen as
a possible heuristic description of the operation of the cell or cell model. The second
type of information that can be used for the comparison of a knowledge plan concerns
heuristic knowledge about the use and applications of electronic cells. This is examined
in chapter 7.

The subject of this chapter is the generation of knowledge by comparison with class
models and cell models existing in the system. The frame structure of a class model is
discussed in section 5.2. Cell models were discussed in section 3.5. Class and cell models
can be classified as either system models or logged models. A logged model corresponds to a
model obtained from the processing of past designs. Section 5.3 discusses the hierarchical
organisation of class and cell models in the system. Section 5.4 discusses the logging of
new models into the system. The function used for the comparison of a knowledge plan
for a cell with a class model or a cell model is presented in section 5.5. The result of this
function is the generation of possible cell models for the cell. The process is illustrated
in figure 5.1. The evaluation of a resulting cell model will be considered in section 6.3.
Finally, section 5.6 discusses the organisation of knowledge plans in the system.

Cdll
Knowledge

Selection
M odel
Candidate

Plan

Matching
Procedure

Heuristic Models
of the Cell
(or Solution Plans)

System and
L ogged Models

Figure 5.1: Generation of Heuristic Cell Models

5.2 Class Models

A class model is a frame structure that gathers heuristic knowledge about a class of
electronic cells. This knowledge concerns heuristics and rules that apply to all electronic

Chapter 5. — Generation of Cell Models —

cells that are members of the class. Any cell that satisfies the heuristics and rules of a
class model can be classified as a member of the class. An example of cells which are
members of a class of cells is given in figure 5.2. This example is used for illustrating
the representation of a class model. The kinds of knowledge used to build models for
electronic cells were described in chapter 3.

Ag A AyAgs

Ag []
So —
o s, — MUX
S/ 16TO1
Ay Ss]
@ (|3
(b)
A, A, Ag... A, Ag Ay Ape..Ags
L[] L] L[] L[]
0 S S0
So — MUX MUX 01 Mux MUX
s |
1 4701 5, 4_T|O_1 s, 4_T|O_1 s, | 4701
S, MUX
S, 4TO 1
(©
(o]
Ag—A, B,— B,
< _| VECTOR MUX
270 1
04— O

(d)

Figure 5.2: Multiplexer Cells: (a) a construction of a 2_to_l multiplexer, (b) a
16_to_1 multiplexer, (c) a construction of a 16_to_1 multiplexer, and (d) a 2_to_1 vector-
multiplexer.

All cells in figure 5.2 are examples of multiplezer cells. A multiplexer is a basic building
block for the design of electronic circuits. The function of a multiplexer is to establish a
path for the transfer of data. For example, the cellin figure 5.2(a) is a ‘2_to_l_multiplexer:
the signal S of the cell is used to decide which one of the two input data bits A0 and A1l
is transmitted to the output line. In the figure, this kind of multiplexer is implemented by
means of logic gates. An example of a larger multiplexer is shown in figure 5.2(b). This
multiplexer requires four input signals in order to decide which one of the sixteen data

Chapter 5. — Generation of Cell Models —

input bits is transmitted to the single data output line. This multiplexer is constructed
in figure 5.2(c) by means of a combination of ‘“4_to_1_multiplexers’. A final example of
a member of this class of cells is shown in figure 5.2(d). This example corresponds to a
vector-multiplexer which allows the transfer of bit-vectors. The multiplexer selects which
of the two input bit-vectors is transferred as the output bit-vector.

A class model is represented by an 8-tuple. This tuple is viewed as containing eight
top level slots which contain knowledge about the class of cells. These slots are the same
as the slots used to represent cell models in section 3.5 and knowledge plans in section 4.1.
The slots of a class model are filled with terms. A term can be a constant (an atom or
an integer), a variable (which stands for some definite but unidentified value associated
with a slot), a term that is viewed as a number of sub-slots or a mathematical or logical
expression. These expressions are heuristic rules that constrain the variables used in the
model. The expressions are written using the syntax of the logic programming language
Prolog [CW88]. The class model used to represent the class multiplexers is shown in
table 5.1. The slots used to represent a class model are:

i— class name: this slot provides a name for the class of cells. In the example, all
cells which have a model derived from this class are said to belong to the class
multiplexers.

ii— cell types: this slot contains four sub-slots to describe the types of the cells which
are members of the class. The example of table 5.1 specifies that all members of the
class have the same logic, data flow and purpose types as defined in the model. The
level of abstraction, however, depends on each member of the class as indicated by
the variable A. Constraints for the value of any variable in the model are indicated
in the sixth slot.

iii— functionalities and organisation of the interfaces: this slot describes the interfaces
of the members of the class in terms of the number of ports which they can have
and the generic and electronic functionalities of these ports. The ports of a cell are
first clustered into classes according to their generic functionalities. The ports in a
class are further organised into sub-classes of ports. The ports in each sub-class have
the same electronic functionality. In the example, the number of ports in all these
collections (classes and sub-classes) is left undefined since different multiplexers may
have different numbers of ports in each collection. For example, a multiplexer has a
number of select ports F which depends on each member of the class (the filling of
the sub-slot which corresponds to the number of select ports with the integer value
2, for instance, would imply that all members of this class ought to have 2 select
ports). Another sub-slot is used to hold the names of the ports. A name sub-slot
references the ports that are allocated into this slot for a given matching plan as
discussed in section 5.5.1.

iv— cell contents: this slot defines the classes of sub-cells that can be used to implement
the cells of the class. In the example, a multiplexer can be constructed from a
number of logic gates (such as the one in figure 5.2(a)), from a number of other

Chapter 5. — Generation of Cell Models —

‘ Cell Class Name: multiplezers ‘

‘ Cell Types ‘
Cell Logic combinational
Abstraction Level A
DataFlow Type transporter
Cell Purpose switch

Cell Interface

Port Class | N© Signals Port Sub-classes
Port Name | Port Sub-class | N© Signals
data_in B Cs data B
control_in D Es select F
Gs enable H

data_out I Js data I
Cell Contents
Sub-cell Class ‘ Sub-cell Name ‘ N Sub-cells
multiplexers Ks L

logic_gates Ms N

‘ Cell Electronic Functionality: multiplezer ‘

‘ Cell Constraints ‘

(1) B>1I

2) DsF 1 H

(3) I>0,Bmodl=:=

(4) Bis2*+F;0isB//I,Ois2#x F
(5) I>1— A = vector; A = bit

(6) L>0;N>4

(7) H<2

‘ Cell Data Flow Information ‘

Data Transfers | (1) Bis 2%+ F —
VP , P € {1- B},
path: Cs — [P] ==>Js , control: [Es, Gs]
2) OsB/I,Ois2wF,I=\=1_
VQ Q€ {1 - 0}7
path: Cs — [Q] ==>Js , control: [Es, Gs]

‘ Cell Class Created On: Wed Nov 6 15:30:24 1991 ‘

Table 5.1: Heuristic Model of the Class of Multiplexer Cells

Chapter 5. Generation of Cell Models —

multiplexers (such as the one in figure 5.2(c)) or from the combination of these two
styles. The values that indicate the number of sub-cells in each class L and N are
left undefined since various combinations of multiplexers and logic gates can be used
to form a multiplexer. Constraints over the variables L and N are given in the sixth
slot. The sub-slots for the names of the sub-cells reference the sub-cells that are
allocated into each class for a given plan that matches the model.

v— cell electronic functionality: this slot defines the electronic functionality of the cells
that belong to this class. A class model will often define a set of cells that have the
same electronic functionality. The example of table 5.1 defines the class multiplexers
as a set of cells whose electronic functionality is multiplezer.

vi— cell constraints: this slot indicates a set of constraints over the variables in the frame.
The constraints in the example of table 5.1 indicate:

1—1in a multiplexer, the number of data input ports B must be greater than the
number of data output ports I.

2— the number of control input ports D is given by the number of select ports F
plus the number of enable ports H.

3— the number of data output ports I must be greater than 0 and (as indicated
by the operator ‘") it must be possible to classify the B data input ports into
an entire number of groups of I signals each. This is expressed by means of
the mathematical modulo operation indicated by the operator mod (each one of
these groups can be transported to the output since there are I output signals).
The operator ‘=:=" expresses that the numerical values are equal.

4— this constraint has two possible alternatives (separated by the operator ;’). The
first one indicates that the number of select signals F is enough to address any
of the B possible data inputs. The number of signals that can be addressed with
F bits is 2 to the power of F (as indicated by the operator ‘#’). The operator
is evaluates the expression ‘2*xF’ and assigns the result to B (this implies that
the contents of B must be the same as the result of evaluating the expression
‘2 %*F’). The second alternative considers the case of vector-multiplexers for
which a group of signals is transported to the output (see figure 5.2(d)). O is
the number of groups of signals that can be formed with the B input signals
considering I signals in each group (as many signals as in the output). That is,
O is the integer division between B and I as indicated by the operator ‘//*. The
previous constraint guarantees that the remainder of the division is zero. Then,
the number of select signals F must be enough to select any of these groups.

5— If there is more than one output data line the multiplexer must be used to select
bit-vectors. Therefore, the level of abstraction must be vector. Otherwise, there
is a single output line. The multiplexer can transfer only one of the input lines
and it must have a level of abstraction of bit.

6— To construct a multiplexer, a number of smaller multiplexers L (L > 0) can be
used (see figure 5.2(c)). If the multiplexer is built with logic gates, at least 4

Chapter 5. — Generation of Cell Models —

of them are required (see figure 5.2(a)). These constraints are weaker than in
reality for simplicity (other possible implementations are not reflected on this

model).

7— a multiplexer may be enabled by some control signals H. It is not expected to
have multiplexers with more than two enable signals.

vii— data flow information: this slot contains a representation of the flow of data for the
members of the class. In the example, since these cells are of a transporter type,
the data flow information includes the transfer of data in the cell. There are two
alternatives for the transfer of data. The first case considers multiplexers at the
bit level (as explained above these cells satisfy the constraint B is 2 xxF). A data
transfer can be set up between any of the B data input ports referenced in Cg and
the data output port referenced in Jg. This is represented in table 5.1 by considering
that the list Cs has a total of B components. The P-th component (P must be in
the range {1 — B}) is addressed as Cs — [P]. The control of the path is determined
by the control input ports referenced in Eg and Gg. In the second case, the cell is
a vector-multiplexer and data transfers can be set up between any of the O groups
of data input signals and the group of data output signals. This is represented in
table 5.1 by considering that the list Cs has a total of O components. The Q-th
component (Q must be in the range {1 — O}) is addressed as Cs — [Q]. The control
of the path is determined by the same signals as before.

viii— date log: this slot indicates the date of creation of the model (for a system model)
or the date of generation of the model (for a logged model).

5.3 Hierarchy of Models

The organisation of models in the system is based on the use of instances and sub-classes.
As described above, a class model embodies a conjunction of knowledge with free variables
(undefined values). Sub-classes and instances of a class are obtained by giving values to
some of the variables in the model. The values of the resulting model must satisfy the
constraints of the model. The resulting model represents a sub-class of the cells which
are represented by the class model if some variables still remain (a sub-class model is
incomplete). The resulting model represents an instance of the class of cells if all the
variables in the class model are given values (an instance model is complete). This
complete model represents a particular instance of the class model because it is satisfied
with defined values for all the heuristics and rules of the class. An incomplete model
represents a sub-class of the models of the class because its variables may be satisfied by
different instances with different values.

By definition, B is a sub-class of A if any instance of class B is an instance of class
A. This is the case for the classes A and B of figure 5.3(a). The reverse case will not
apply in general since not all the instances of class A will be instances of class B. By
definition too, two classes A and B are said to be mutually exclusive if any instance of
class A cannot be an instance of class B and vice versa. For example, the classes B

Chapter 5. — Generation of Cell Models —

and C' in figure 5.3(a) are mutually exclusive. On the contrary, the classes A and B in
figure 5.3(b) overlap (some instances of class A are also instances of class B).

A A B

(@ (b)

Figure 5.3: Classes and Sub-classes of Cells: (a) mutually exclusive classes, and (b)
overlapped classes

The models in the system are organised as a hierarchical tree of classes by considering
instances and sub-classes. The only condition for this is that all sub-classes of a class
must be mutually exclusive. This condition guarantees that the models in the system
are organised as a tree structure. An example of a partial hierarchy of electronic cells
is shown in figure 5.4. The nodes of the tree are classes of cells. Nodes which are at
higher levels in the hierarchy represent more general classes than nodes at lower levels.
The branches of the tree represent links of type isa. The head of an isa link indicates
a super-class of the tail of the link or sub-class. Links of type inst can be associated
with each node. The head of this link points to a class and the tail corresponds to a
model which is an instance of this class. This type of organisation is an example of an isa
hierarchy [CM85]. The distinction between isa and instance links is clear. While instance
says that a cell is a member of some class of cells, isa says that one class is a more general
version of another. Plainly, the distinction is like that in set theory between element and
sub-set.

The node at the top of the hierarchy represents the most general class model that is
possible. It defines the different aspects of electronic cells that the system is concerned
with (e.g. types, interface and contents slots) but it gives no propositions for any of them.
Only constraints are possible for this class model. For example, the number of data and
control interfaces of any cell must be greater than zero (a cell with no data or control
interfaces is of no use). Constraints which apply to all electronic cells, such as those
which relate the level of abstraction of a cell to the electronic functionality of its ports
(see section 4.5.1), should be represented in this class model. The hierarchy of models
must represent all heuristic knowledge about individual electronic cells. Any electronic
cell must match the top class model and it is therefore an instance of this class.

The instances of the top class are grouped into two mutually exclusive sub-classes:
combinational cells and sequential cells. These sub-classes are in turn sub-classified. For
example, sequential cells can be synchronous or asynchronous. Clock ports must be
used for the synchronisation of a cell. That is, all ‘clocked’ cells belong to the class of
synchronous sequential cells. The model for this class of cells is given in table 5.2. The

Chapter 5. — Generation of Cell Models —

electronic
cells
combinational secqetljlintial
cells
asynchronous synchronous

cells cels

isa synchronous

ﬁ bit level cells

flip_flops
2 datainput 1 data input
flip_flops flip_flops
/7 7 \ /4 \\
i r i F 1 F 1 F

SR flip_flop JK flip_flop T flip_flop D flip_flop

Figure 5.4: Partial Hierarchy of Electronic Cells

first constraint in the model indicates that these cells have a level of abstraction of bit or
higher. The model shows that a salient feature of these cells is the existence of at least
one clock port (as indicated by the second constraint). Some other ports must also exist
as indicated by the third constraint. The value default in the model represents all other
possible values except the ones indicated.

There are different ways to construct the tree of models. These ways differ in the
aspects of a cell that are considered first in order to discriminate between models. A
sensible implementation is to discriminate between models by using first the knowledge
about the types of the cells, next the knowledge about the functionality of the cell,
knowledge about the interfaces, knowledge about the contents and, finally, the data flow
information. For example, in the case of figure 5.4 all the synchronous cells at the bit
level form a sub-class. This sub-class is mutually exclusive with any other sub-class whose
level of abstraction is not bit. An example of bit level synchronous cells are flip-flops 1.
Figure 5.4 discriminates between flip-flops by considering the number of data inputs.
Flip-flops are then sub-classified by considering flip-flops which have two data inputs and
flip-flops with a single data input.

The hierarchy of classes guarantees the inheritance of properties in the tree. For
example, any cell that matches the model of a flip-flop cell must also match the model

!There is some confusion regarding an universal definition of flip-flop [McC86]. For most people, a
flip-flop is a synchronous device [EL85] that stores one bit of information.

Chapter 5. — Generation of Cell Models —

‘ Cell Class Name: synchronous_cells ‘

‘ Cell Types ‘
Cell Logic sequential
Abstraction Level A

Cell Interface

Port Class Port Sub-classes
Port Sub-class | N@ Signals
control_in clock B
default C
default D E
‘ Cell Constraints
(1) A€ bir
(2) B>0
(3) C+E>1

‘ Cell Class Created On: I'ri Nov 8 12:23:1 1991 ‘

Table 5.2: Synchronous Sequential Cells

of a synchronous sequential circuit. This is true because the sub-classes of a model and
the instances of the model inherit the knowledge given for a class. For example, if a class
states that its members are of a logic type sequential then a model for any sub-class of
this class will only include cells of this logic type.

5.4 Logged Models and Learning

A class model embodies a conjunction of knowledge with free variables. When a knowl-
edge plan for a cell satisfies the requirements of a class model, values are given to some
of its free variables and a model for the cell is formed. Two different situations can arise
from here:

1. if all the variables are instantiated with values then the resulting instantiated class
model forms a complete model of the cell. The complete cell model is logged in the
system as an instance of the class model. The model is called a logged cell model.

2. if some of the variables remain undefined after the matching process then the result-
ing instantiated class model forms an incomplete model of the cell. The incomplete
cell model is logged in the system as a sub-class of the class model since different
instances may satisfy the model in different ways. The model is called a logged
sub-class model.

Chapter 5. — Generation of Cell Models —

In the system, a class (sub-class) model represents a set of electronic cells and an
instance model is intended to represent a single cell that is a member of a class. Of
course, the instance model only represents some salient aspects of real electronic cells.
Because of this limitation, two different real electronic cells can be represented by the
same instance model. This situation arises when a knowledge plan of a new electronic
cell matches a logged cell model and this model is accepted as valid for this new cell. The
logged cell model was created in the past as a result of the matching of a cell of a design.
In this case, either both cells are the same or the cell model applies to two different cells.
If the cells are proved to be different, it may be possible to generalise the logged cell model
into an incomplete sub-class model from the differences observed between the electronic
cells (for example, observing that both cells differ in their implementation patterns or in
the flow of data between their ports).

The generalisation is possible if the differences observed can be represented with the
types of knowledge used by the system. In this way, a model that was an instance of
a class of models becomes a sub-class of this class. The new model is incomplete with
respect to the differences observed between the cells. The logged cell model of each cell
is formed by adding the differences to the new sub-class model. As an example, if in
figure 5.4 a new cell matches the cell model of the existing SR flip-flop cell, and this
new cell has a different type of contents than the cell for which the model was derived,
the cell model is transformed into a sub-class model with two instances. These instances
differ by having different values in at least one of the slots of the contents which must
be undefined for the sub-class model. Logged cell models facilitate the exploitation of
knowledge acquired in the past and the determination of whether a cell is already known
to the system.

5.5 Cell Model Generation

The generation of an heuristic model for a cell is based on the comparison of a knowledge
plan with class models and existing cell models. The selection of the models that can
be used for the comparison is facilitated by the fact that the models are hierarchically
organised. The problem of generating models for a cell is seen as a search problem. The
search space is the tree of models in the system. The procedure traverses the nodes of the
tree searching for those nodes that match the plan. It starts at the top of the tree and
proceeds top-down. As a consequence of the property-inheritance mechanism associated
with the tree, once a node is matched the system can proceed with the comparison of the
sub-tree of this node. If it is not possible to match with a certain node then the sub-tree
of this node can be ignored.

Despite the fact that the sub-nodes of a node are mutually exclusive by construction,
the matching of a sub-node does not automatically discard the consideration of the other
sub-nodes of the node. This is because a plan is often incomplete, and the information
that makes two nodes mutually exclusive may have been left undefined in the plan. In this
case, the undefined data can be resolved differently for the matching of each node. If the
data that makes two sub-nodes mutually exclusive is given in the plan, the matching of a

Chapter 5. — Generation of Cell Models —

sub-node will permit the investigation of the other sub-nodes to be ignored. In the best
case, the matching of a complete plan will involve a single path in the tree. Therefore, it
is clear that more detailed plans often require the traversal of a smaller number of nodes.
The way in which the tree is traversed (depth-first or breadth-first) is irrelevant since all
the solutions for a plan must be investigated.

A solution for a plan implies the matching of the plan with a class model or a cell
model. The procedure for matching with both kinds of frames is identical since a cell
model is an instance of a class model. The matching of a cell model usually is easier
than the matching of the class to which it belongs. This is due to the extra knowledge
available in the cell models which reduces the number of alternatives to be considered.
For this reason, it is possible to think that the best strategy would be to consider first
the matching with the cell models stored in the system. However, this will be impractical
if a large number of cell models are stored. The hierarchical organisation of models
eases significantly this problem. A class model is always tried before its cells models are
attempted. Once the class model has been matched the cell models in this class can be
tried.

5.5.1 Matching of Class Models

A plan is said to match a class model if the knowledge existing in the plan can be
embedded into the class model in such a way that the constraints of the plan and the
model are satisfied. Some of the variables in both the plan and the model will be given
values. These values must not be inconsistent with the constraints imposed over the
variables. As an example, the knowledge plan of table 4.1 matches the class model
multiplexers of table 5.1. This example is used to illustrate the matching procedure.
The slots matched include the cell types, cell interfaces, cell contents, cell electronic
functionalities, the data flow information slots in both frames and the name of the cell
in the plan with the electronic functionality of the model.

The contents in the sub-slots of the types of the plan must unify [Rob65] with the
contents in the sub-slots of the types of the cells of the class. Table 5.3 describes this.
The variables of the knowledge plan have been primed to avoid clashing with variables
in the class model. The unification of the contents of the slots for the type of logic in
both frames gives the result A’ = combinational. As shown in the table, this variable
is restricted by the first constraint of the plan to a value of combinational or sequential.
The result obtained satisfies this constraint. The unification of the slots for the level of
abstraction gives B’ = A. In addition, the fifth constraint of the class model relates the
level of abstraction A of any instance of the class to its number of data output signals
I. As will be shown below, the matching of the interface of the frames gives the result
I = 4 and therefore B = A = wvector. The unification of the last two sub-slots gives a
value for the type of data flow and purpose of the cell.

The matching of the slots for the interfaces of both frames implies that the sub-classes
of ports in the plan must be allocated into the sub-classes of ports in the class model.
In the plan, ports are classified according to the direction of the signals: inputs, outputs,
inouts and default. In the model, the ports are classified according to their generic

Chapter 5. — Generation of Cell Models —

‘ Cell Types ‘ ‘ Cell Types
Cell Logic A’ Cell Logic combinational
Abstraction Level | B’ Abstraction Level | A
DataFlow Type c’ DataFlow Type transporter
Cell Purpose D’ Cell Purpose switch
‘ Cell Constraints ‘ ‘ Cell Constraints ‘
(1) A’ in [combinational,sequential] | (5)I>1— A =veclor;A = bit |
(2) B’ in [vector,processor]

(a) Knowledge Plan (b) Class Model

A’ = combinational (satisfies constraint [1])

B’ = A = vector (since I=4 from the matching of the interface as

(o) shown in table 5.4. Satisfies constraints [2] and
1)

C’ = transporter

D’ = switch

Table 5.3: Matching of Cell Types: (a) plan for the cell types, (b) types for the cells of
the class, and (¢) matching result

function: data_in, control_in, data_out, control_out and default. The allocation of port
sub-classes is as follows:

— a sub-class of the port class inputs (outputs) in a plan must be passed to one sub-
class of the data_in (data-out), control_in (control_out) or default port classes in
the model.

— a sub-class of the inouts port class in a plan must be passed to one sub-class of the
data_in or control_in port classes in the model and to one sub-class of the data_out
or control_out port classes in the model, or to the default port class in the model.

— a sub-class of the default port class in a plan must be passed to the default port
class in a model.

The decision about which port sub-class in a model is selected for the allocation of
a sub-class from the plan is based on the comparison of the electronic functionalities of
both sub-classes. The allocation of a sub-class in the default class in a model implies that
this sub-class is ignored for the matching.

This is illustrated for the example considered in table 5.4. For instance, the sub-
class of the plan with the four ports [‘27,°5,°117,°14°] contains the value ‘top_free list’ for
its electronic functionality. Since this is a sub-class of the inputs port class, it can be
allocated in the data_in, control_in or default port classes of the model. To decide where
to allocate it, the value for its electronic functionality is matched against the values
given in the sub-classes in the model. The name matching takes places as indicated in

Chapter 5. Generation of Cell Models —

Cell Interface
Port Class | N9 Signals Port Sub-classes
Port Name | Port Sub-class | N@ Signals
inputs 10 [2/,¢5 117, “14"] top_free_list 4
[‘3/,¢6",°10',‘13'] data 4
‘1 select 1
‘15 ground 1
outputs 4 [‘47,¢7,°9) “12"] | muse_even_next_in 4
default 2 ‘g’ E’ 1
‘16’ F’ 1

(a) Knowledge Plan

Cell Interface
Port Class | N© Signals Port Sub-classes
Port Name | Port Sub-class | N© Signals
data_in B Cs data B
control_in D Es select F
Gs enable H
data_out I Js data I

Cell Constraints

(1) B>1

(2) DisF+H

(3) I>0,BmodI==0

(4) Bis2+xF;0is B//I, O is 2 #xF
(7) H<2

(b) Class Model

Cs = [2,5', 11, 14", [, ‘6", 10/, “13"]
Es =1

Gs = ‘15

Js = [4, 7,9, 12]
B=8,D=21=4F=1H=1
E=7F=7

Cs, Es, Gs and Js contain
the name of the ports matched
with each slot. B, D, I, F and
H satisfy the constraints. E’
and F’ remain undefined.

(c) Matching Result

Table 5.4: Matching of Cell Interface: (a) plan for the cell interface, (b) interface for
the cells of the class, and (c) matching result

Chapter 5. — Generation of Cell Models —

appendix B. In this case, because the value ‘top_freelist” does not match any of these
values, a deterministic decision for this sub-class can not be taken. Instead, the only
possibility is to try the different possible allocations (data, select, enable) or ignore the
sub-class successively. Table 5.4 reflects the choice of allocating this sub-class into the
data sub-class of the data_in port class. The next sub-class in the knowledge plan has the
four signals [‘37,°6",°107,°13’] with a value for the electronic functionality of ‘data’. This
value is matched in the first sub-class of the model. The rest of the sub-classes in the
plan are allocated in a similar way with the exception of the sub-classes of the default
port class in the plan which are passed to the default port class of the model (as explained
in section 4.4.2, the direction of the ports in the default port class of the plan was not
specified and they are unconnected in the real design).

The possibility of allocating a sub-class of ports to a default class in the model (in
practice ignoring these ports for the matching) is often necessary for some ports (see
section 5.5.2 for limitations of this). Examples of these ports are power ports and ports
that are left unconnected in all the uses of a cell in a design. Occasionally, it is possible
to ignore single ports that are actually used. Designers often customise new cells which
only introduce additional capabilities to those offered by standard cells. For example, a
register can be provided with additional interface ports which allow elaborate ways of
enabling the operation of the register or controlling the loading of data, but the main
features of a register must be preserved. For example, input and output data-vectors
of identical widths and a clock line (for synchronous registers) must be present in any
instance of a register. After classifying some ports in the default port class, it may be
possible to match the typical rules of the model of a register. The resulting incomplete
model may still allow some reasoning about the cell and its environment.

The fact that different possible allocations must be successively tried reflects the gen-
erate and test approach taken for the matching of the interface. Once a possible allocation
of sub-classes has been generated the constraints of the model and the constraints of the
plan will test the validity of the combination. Table 5.4 reflects a choice for the allocation
of the sub-classes which satisfies the constraints related to the interfaces. This is, in fact,
one of two possible solutions as shown in section 5.5.2.

The matching of the contents slots of both frames is considered after the matching of
the interfaces. This matching requires the allocation of the groups of sub-cells in the plan
into the classes of sub-cells in the class model. In the example class model of table 5.1
two classes of sub-cells are considered: multiplexers and logic_gates. The allocation of a
group of sub-cells in a plan into a class of sub-cells in a model requires that the sub-cells
referenced match this class. Because it is possible to have plans for a sub-cell that match
different classes, different allocations may be possible for each group of sub-cells in the
plan. A generate and test approach is again used for the matching of the contents. Once
a possible allocation of sub-cells has been generated the constraints of the model and
the plan must be satisfied. In the example, the cell is a primitive of the design and no
contents is specified. Therefore, the contents slot of the class model is left undefined.

It is also possible to ignore the allocation for a group of sub-cells. The justification for
this is similar to the case used for ignoring sub-classes of ports. For some applications, the
contents of a typical cell may be further complicated. However, some similarities between

— 100 —

Chapter 5. — Generation of Cell Models —

the contents of a standard design and the new design may still be found. For example,
additional sub-cells may be necessary to provide a register with additional capabilities,
but a typical set of bit level storage cells should still be found in the new cell.

The next step for the matching of a knowledge plan with a class model concerns
the comparison of the slots for the electronic functionality of the cell. In the example,
this gives the result ¥/ = maultiplexer. The generation of a value for the electronic
functionality of a cell is usually obtained by matching a system model. Occasionally,
a plan may contain constraints about the value of the electronic functionality of the
cell. These constraints can be obtained, for example, from the relationships between
the types of a cell and its electronic functionality as given in table 3.2. For the cases
in which the electronic functionality of a cell is undefined in the plan and defined in
the model, the comparison of the name of the cell as given in the plan with the value
for the electronic functionality of the class of cells is used to provide further evidence.
The heuristic that justifies this comparison considers the fact that the name of a cell
often reflects its electronic functionality (such as the example cell of figure 5.2(a) called
‘2_to_1_multiplexer’). The matching of names takes place as indicated in appendix B. In
the example, the name given in the plan of the cell ‘74als257" corresponds to the name of
the electronic cell. This name does not match the value for the electronic functionality
‘multiplexer’. Nevertheless, if the cell is in the end considered to be a multiplexer,
the name ‘74als257 is stored in the semantic networks and it is related to the word
multiplexer.

The comparison of the slots for the data flow information is the next step considered
for the matching of both frames. This implies that the flow of data represented in the
plan is consistent with the flow of data as represented in the model. The plan of table 5.1
does not include any information about the flow of data in the cell.

In summary, the comparison of the knowledge plan with the class model multiplexers
gives rise to two different solutions which vary in the organisation of their interfaces. The
solution used in the discussion of this section instantiates the class model as summarised
in table 5.5 (the other solution will be shown in the next section). In the instantiated
model the variables related to the contents of the cell remain undefined. The model
generated from the matching is then incomplete and it corresponds to a logged class
model. The constraints related to the contents slot in the class model are passed to
the logged class model. This model is given in table 5.6 (it must be observed that in
the generated logged class model the slots for the names of the ports are substituted by
variables in the interface and data flow slots).

5.5.2 Algorithm Complexity

The complexity of the algorithm for the matching of knowledge plans with system frames
depends on the number of combinations required for the matching of the interface and
contents slots of the frames, the complexity of the unification algorithm [Rob65] and
the complexity of the algorithm for name matching (see appendix B). The number of
combinations that can be tried for the matching of the interfaces depends on the number
of sub-classes of ports in both frames. This is calculated as follows:

- 101 —

Chapter 5.

— Generation of Cell Models —

‘ Cell Class Name: multiplezers ‘
‘ Cell Types ‘
Cell Logic combinational
Abstraction Level vector
DataFlow Type transporter
Cell Purpose switch
Cell Interface
Port Class | N2 Signals Port Sub-classes
Port Name | Port Sub-class | N©@ Signals
data_in 8 [[‘2°,5°,411°,¢14"], data 8
[‘3’,‘6’,‘10’,‘13’]]
control_in 2 ‘1° select 1
‘15° enable 1
data_out 4 [‘4°,47°,49°,412"] data 4
Cell Contents
Sub-cell Class ‘ Sub-cell Name ‘ N@ Sub-cells
multiplexers Ks L
logic_gates Ms N

‘ Cell Electronic Functionality: multiplezer ‘

Cell Constraints

(1) 8>4

(2) 2is1+1

(3) 4>0,8mod4=:=0

(4) 2is8//4,2is2%x 1
(5) 4> 1 — vector = vector
(6) L>0;N>4

(7) 1<2

‘ Cell Data Flow Information ‘

Data Transfers | (2)

2is 8//4, 205 2441, 4=\=1—
vQ ., Qe {l-2},
path: |:|:42/7 45/7 L]_]_/7 4]_4:/]7 |:43/7 46/7 4]_0/7 413/]] _ [Q]
==>[4',°7",‘9’,12] | control: [‘1’,‘15']

‘ Cell Class Created On: Wed Nov 6 15:50:24 1991 ‘

Table 5.5: Instantiated Model

- 102 —

Chapter 5. — Generation of Cell Models —

‘ Logged Cell Class Name: 7{als257 ‘

‘ Cell Types ‘
Cell Logic combinational
Abstraction Level vector
DataFlow Type transporter
Cell Purpose switch
Cell Interface
Port Class | N© Signals Port Sub-classes
Port Name | Port Sub-class | N@ Signals
data_in 8 As data 8
control_in 2 Bs select 1
Cs enable 1

data_out 4 Ds data 4
default 2 Es F 2
Cell Contents
Sub-cell Class ‘ Sub-cell Name ‘ N© Sub-cells
multiplexers Gs G

logic_gates Hs H

‘ Cell Electronic Functionality: multiplexer ‘

‘ Cell Constraints ‘
| (1) G>0;H>4 |

‘ Cell Data Flow Information ‘

Data Transfers | (1) VQ, Q € {1-2},
path: [As] — Q ==> Ds, control: [Bs,Cs]

‘ Cell Class Logged On: Tue Nov 15 12:00:30 1991 ‘

Table 5.6: Heuristic Model Result

— ng; and n. are the number of sub-classes of the data_in and control_in port
classes in a class model, respectively. The number of sub-classes of ports in the
class model that have ports with direction input is:

My = Ng; + Ne;

~ ng, and n, are the number of sub-classes of ports of the data_out and control_out
port classes in a class model, respectively. The number of sub-classes of ports
in the class model that have ports with direction output is:

Mo = Ngo + Neo

~ ng, n, and n;, are the number of sub-classes of ports of the inputs, outputs and
inouts port classes of a plan, respectively. The number of sub-classes of ports
that can feed signals into the cell is:

- 103 —

Chapter 5. — Generation of Cell Models —

Pi = N+ Mo
and the number of sub-classes of ports that can get signals out of the cell is:

Po = 1y + 140

Given that each of the p; sub-classes of ports that feed signals into the cell can be
allocated into any of the m; sub-classes that have ports with direction input in a model
or ignored, and that each of the p, sub-classes that get signals out of the cell can be
allocated into any of the m, sub-classes of output ports in a model or ignored, the
number of combinations /. that can be tried for the matching of the interfaces is given
by:

I.=(m; + 1)P % (m, + 1)P° (5.1)

It must be noted that the sub-classes of the inouts port class in a plan are allocated
into two sub-classes of a model at the same time. This is because bidirectional ports may
feed signals into the cell and get signals out of it. For the example in table 5.4: m; = 3,
m, = 1, p; = 4 and p, = 1. Then, the number of combinations to try is

L=03B+1)%(1+1)! =512

This value represents an upper bound on the number of combinations that need to be
tried. Some of the combinations are ignored as follows:

1-if a sub-class in a plan with a defined value for its electronic functionality matches
a defined sub-class in the model, the rest of the combinations for this sub-class in
the plan are not tried. In the example, the sub-classes data and select both have
matches in the class model. This reduces the number of combinations to:

I'=(3B+172%(14+1) =32

The value ! refers to the number of combinations that must be tried after allowing
for this. The rate

I.-1
=7
is an indicator of the effectiveness of the knowledge contained in the slots of the
interface. For the example, I. = 0.9375 which indicates that more than 93% of the
combinations have been discarded in this way. The closer the rate is to one, the
higher the quality of the organisation of the interfaces in the plan. It must be noted
that if the value of I is too large it will not be feasible to attempt to match the
plan with the model. As an example, the matching of a class model with m; = 5

I (5.2)

and m, = 4 with a plan with p; = 6 and p, = 4 would require
I.=(5+1)°(4+ 1)* =29160000

combinations. Then, if the value for I. is too low, the number of combinations I/
will still be too large to make the matching of the interfaces feasible.

— 104 —

Chapter 5. — Generation of Cell Models —

2— there must be a limit on the number of ports that can be ignored. For example,
a typical limit is not to ignore more than 25% (see section 8.3) of the total num-
ber of ports. In the example, of the three sub-classes that must still be allocated
([(27,°5, 117, 147], ['15°] and [47,°7,°9",12"]) only the sub-class ['15’] can be ignored.

After allowing for this, the number of possible combinations is reduced to:
I"=B+1D)« (1) =12

3— finally, some class models can have a defined number of ports for some of their sub-
classes or classes of ports. This limits the number of ports that can be allocated
into a sub-class of ports or a class of ports. This is not the case, however, in the
example considered.

Of the 12 remaining combinations, only two of them meet the constraints of the model.
One of these combinations was indicated in table 5.4. The other combination involves
ignoring the allocation of the sub-class represented by the port ‘15’. This port corresponds
in the model of table 5.4 (and in reality) to an enable port. The class model multiplexers
of table 5.1 allows a multiplexer cell to have a number of enable ports smaller or equal
to 2. The solution of table 5.4 considers the model with one enable signal. If port ‘15’
is ignored, the model has no enable signals. In summary, the matching of the intertaces
of the plan and the model has two different solutions. The solution in table 5.4 is a
complete plan for the interfaces while the other solution is an incomplete one. The first
solution is preferred since it involves a valid allocation of more ports (the matching of
more sub-slots). This is reflected on a higher evaluation for this plan as discussed in
section 6.3.

For the matching of the contents, the number of combinations that can be tried de-
pends on the number of groups of sub-cells in both frames. Given m, classes of sub-cells
in a class model and p, groups of sub-cells in a plan, an upper bound on the number of
combinations is given by:

Co. = (my+ 1)Ps (5.3)

The equation reflects the fact that each group of a plan can be allocated into any of the
classes of sub-cells in the model or ignored. In practice, some of the combinations can be
discarded as follows:

1— the allocation of a group of sub-cells in the plan to a sub-cell class in the model
can take place if the referenced sub-cells match this class. If the matching is not
possible, this allocation is ignored. The number of combinations that must be tried
after considering the possible matches of the sub-cells is denoted by C!. The rate

0. -]

Ce .

(5.4)
is an indicator of the effectiveness of the knowledge available about the sub-cells of
the cell. The closer the rate is to one, the less combinations need to be tried. This

usually indicates that more knowledge is available about the sub-cells.

- 105 —

Chapter 5. — Generation of Cell Models —

2— there must be a limit on the number of sub-cells that can be ignored. To calculate
this, an equivalent number of transistors can be estimated for the implementation of
each sub-cell (see section 6.6). A typical limit is not to ignore sub-cells which amount
to more than 25% of the total number of estimated transistors (see section 8.3).

3— finally, the number of sub-cells in a class of sub-cells can be defined for some class
models. For example, in a register the number of flip-flops must be the same as
the number of data lines. This limits the number of groups of sub-cells that can be
allocated into a class of sub-cells.

Because the interface and contents slots are the only ones that allow for a number of
different combinations, the total number of combinations f. that may need to be tried
for the matching of a plan is given by:

fe=1.%C.= (m; + 1) * (m, + 1)P° * (m, + 1)P? (5.5)

The number of plans than can be derived from the matching between a knowledge
plan and a model is then:

fy =I5 C: (5.6)

where I7 indicates the number of valid combinations for the matching of the interface and
C'r the number of valid combinations for the matching of the contents. In the example,
since I7 =2 and C7 = 1, the number of plans derived is f, = 2.

5.6 Organisation of Knowledge Plans

The plans derived for the cells of a design are organised in the hierarchy of models. This
facilitates the managing of plans and the detection of newly derived plans which were
already considered. This organisation is illustrated by means of the example of figure 5.5.
In the figure, a plan matched with the class model H; in the tree in two different ways.
These two solutions are represented in the tree by the plans P and P,. That is, two
possible instances of the class model Hy. These plans represent specialisations of the plan
that was used for the matching. This plan (which is not shown in the figure) must be
linked in the tree to this class or to a class that is higher in the hierarchy.

The fact that a plan matches a class model implies that the matching of the instances
of this model (logged cell models) and sub-classes of this class can be considered. In the
example, the plan matches the logged cell model Iy which is seen as solution P;. This
solution is different from solutions Py and P,. As discussed before, the fact that a logged
cell model is matched implies that either this cell is already known to the system or that
the logged cell model should be converted into a sub-class model.

The plan may match one or more sub-classes of class Hy (one at the most if the plan
is complete). In the example, the plan matches class Hy and gives the solution plan Pj.
Due to the inheritance of properties, the solution P, is a more refined plan than solutions
P, and P;. On the other hand, solution P; may be a complete plan since an instance has
been matched. Each one of these solution plans represents a cell model.

— 106 —

Chapter 5. — Generation of Cell Models —

~U
\

Figure 5.5: Tree of Plans

The filtering functions described in section 4.6 can be applied in order to reduce the
number of plans generated as a result of the matching or to select the most convenient
plan. The matching example of section 5.5.1 which gives two possible solution plans
illustrates this. The two plans differ in the allocation of the port ‘15°. In the solution of
table 5.5 this port is defined as having as electronic functionality the value enable, and
this port is undefined in the second solution. For the selection of a single solution plan,
an alternative is to consider a most general plan which includes both solutions. This plan
must leave undefined the electronic functionality of port ‘15’ so that no possibilities are
excluded. The second solution corresponds in this case to the most general plan of the
two solutions (the first solution is in fact an instance of the second). Another alternative
is to consider the plan with the highest evaluation value. This corresponds to the first
solution since a larger number of sub-slots are positively matched. However, this plan
definitely excludes other possibilities for the electronic functionality of port ‘15’ which
are possible in the second solution.

- 107 —

Chapter 6

Selection of Cell Models

An alternative for the representation of a situation implies the selection of a model for
each one of the cells involved. The number of possible alternatives that may be considered
grows exponentially with the number of cells. To handle this complexity, the intention
is to allow the system to choose which alternatives should be treated first in a way that

a priori should do better than chance. An evaluation function is used for this. This
function requires an evaluation of the confidence in the models of each cell involved in
the situation and an estimate of the physical complexity of each cell according to each
one of its models. The evaluation function can select the most attractive alternatives
to represent a situation without having to generate all of them. The evaluations of the
different situations are combined to evaluate the representation of the overall design. This
allows the comparison of alternative solutions. Model-based reasoning is applied to the
alternatives selected for the representation of each situation as described in chapter 7.

6.1 Problem Definition and Complexity

The task of modelling the cells of a design was defined as a search problem in chapter 3.
The system attempts to find one model for each cell of the design which is consistent in all
the situations in which the cell appears. Since each cell may have several different models,
a number of alternatives can be attempted for the representation of each situation. Each
alternative representation of a situation (called a candidate set for the representation of
the situation) considers one model for each cell involved. As shown by equation 3.4, the
number of candidate sets for the representation of a situation grows exponentially with
the number of cells involved. Even for situations with just a few cells and several possible
models per cell, it will not be feasible to generate each possible candidate set and to apply
model-based reasoning to it.

The only possible solution is to heuristically evaluate the alternatives for each situ-
ation and to select the most attractive ones without having to generate all of them. A
function for the evaluation of an alternative representation of a situation is required. The
evaluation function gives an heuristic measure of the extent to which the models of the
sub-cells support the model of the cell for a given candidate set. The function takes into
account a measure of the confidence in the models of the cells involved in the situation
and an estimate of the physical complexity of each cell according to its model (in terms
of the number of transistors that are required for the implementation of the cell). The

— 108 —

Chapter 6. — Selection of Cell Models —

evaluation-function value is higher for those alternatives which:
1. have higher values for the confidence in the models involved.

2. the complexity of the cell as estimated from its model is closer to the complexity of
the cell as estimated from the models of its sub-cells.

An example situation is illustrated in figure 6.1. Cell C; has n; sub-cells and m;
possible models. The j-th sub-cell C;; has m;; possible models (1<j <n;). A model for
the j-th sub-cell (;; in the situation is represented by a pair A;; =< E;;, CO; >. The
value F;; is an estimate of the confidence in the representation of the situation which
represents the j-th sub-cell. The value C'O;; is a measure of the complexity of the sub-
cell as estimated from its model. A pair A; =< ¢;, CO? > estimates the confidence in
the model of cell C; and the complexity of the cell. The value E; which evaluates the
representation of situation S; is then calculated as

B = f(As, A, ..., A (6.1)

Ain,=<Ein; ,COin>

_ *
Ai1=<E;1.COjy>

A7 <Ejp.COp>

Figure 6.1: A Situation

The best alternatives for the representation of the situation are those which have
models whose associated pairs optimise the value of the evaluation function f. The
selection of the optimal pairs (models) can be done without having to generate all possible
candidate sets. Section 6.2 introduces the basic concepts for the evaluation of alternative
representations. The evaluation of the model of a cell is considered in section 6.3. The
evaluation of the representation of a situation is examined in section 6.4 and section 6.5.
The complexity of a cell as estimated from its model is discussed in section 6.6. The
best alternatives for the representation of each situation are obtained as described in
section 6.7. A solution for the whole design must be selected from the best alternatives
selected for each situation. This involves selecting an alternative for each situation so
that each cell has the same model in all the situations in which the cell appears. It is
not possible to just consider the best ranked alternative for each situation. A cell usually

- 109 —

Chapter 6. — Selection of Cell Models —

appears in more than one situation and the best ranked alternatives for these situations
may consider different models for this cell. It is then necessary to evaluate which set of
coherent alternatives for the whole design is the most attractive. The evaluation of the
different situations are combined to evaluate the representation of the overall design. The
alternatives selected for the representation of each situation are analysed as described in
chapter 7.

6.2 Evaluating Alternatives

The evaluation of the model of a cell and the evaluation of the set of models that represents
a situation requires a mechanism to weight and to accumulate evidence (for or against
the model that represents a cell and for or against the models that represent a situation).
The weighting and accumulation of evidence must be made in a manner that reflects
the way of reasoning of an expert. There is very little agreement among Al researchers
concerning the methods that should be used for weighting and accumulating evidence.
Methods based on statistics and probability theory offer well-understood ways of doing
this. Indeed, if the probability values of alternative answers are known, then the best
guess is the most probable one. Theoretically, probability theory may solve the problem
if probability values are available !. These values are about long-run relative frequencies
of events, and so they must be derived from empirical investigation. Unfortunately, the
information required to obtain these values is not always available.

In the context of this thesis it is not clear how to calculate, for example, what is
the probability of a cell being a flip-flop given the number and kinds of gates used for
its implementation and the number and types of its ports. The difficulty of obtain-
ing these numbers has caused many Al researchers to dismiss probabilistic approaches
to uncertainty [CM85]. A number of alternatives to probability theory have been re-
ported in the literature, notably certainty factors [Sho76], fuzzy logic [Zad75] and belief
functions [Sha76]. Often, simplifying assumptions are also made which allow heuristic
methods to take over. These heuristic methods use domain-specific knowledge to compute
the impact of new evidence instead of using a domain-free calculus [Jac90].

The approach taken in this work originates from the use of certainty factors. It
uses domain-specific knowledge to combine evaluation-function values of different items
of knowledge that are required to support an hypothesis. As for the case of certainty
factors, an evaluation-function value for a given item of knowledge must be in the range
[—1,1], where —1 means definitely not, 0 means unknown and 1 means definitely yes.
The method used to combine evaluation-function values is based on the method used
for certainty factors. The calculation of the confidence in an hypothesis requires an
heuristic measure of the relative importance of the items of knowledge with respect to
the hypothesis and the evaluation-function values of these items of knowledge.

!Research shows that people do not appear to be probabilistic reasoners only. For example, they are
apt to discount prior odds and give more weight to recently presented evidence [KT72], and they tend
to be over-confident in their judgements [KST82]. The use of probability values, if available, does not
necessarily result in a way of reasoning which is close to that exhibited by human experts.

— 110 —

Chapter 6. — Selection of Cell Models —

On an intuitive basis, if e; i1s the value for the evaluation of an hypothesis after
considering k items of knowledge, and a new item of knowledge k£ + 1 is provided with
a value of vjyq, the combination of these two values must give a new value ey that is
higher than ey if viyq is positive and lower if viyq is negative. The difference epi 1 — ep
can be thought of as depending on the value of v;y; and on the importance of this item
of knowledge with respect to the hypothesis.

The solution adopted is as follows. If e, and w11 are both positive (negative), the
value ey, rises (falls) towards 1 (-1) by an amount proportional to vx4;. That is

(—ex)=(1—=cpt1)

oo = Th41 Vkt1 €ky Vg1 > 0
(—l—ex)—(=1=erq1) _
T = TR Uk €k, Vg1 < 0

The value ry4q is referred to as a weighting factor for the (k4 1)-th item of knowledge
and it depends on the relative importance of this item with respect to the hypothesis.
This value must be in the range 0 < rp <1. In the case that e and vpi; are of a different
sign the result is given by

€tTEL1 Vet
1—min{|eg|,|rp41 veg1l}

€41 =

Intuitively, the sign of the result depends on which of the factors e; or ryiq viq has
a larger absolute value. The magnitude of the result depends on the difference between
these values which is dampened by the denominator.
The product
W = Tk Vg (62)

is referred to as the weighted contribution for the k-th item of knowledge. Considering
this, the equations above become

ehr1 = (1 — wpy1)er + wryr €y Wry1 > 0
ehr1 = (14 wpt1) er + Wy €y W1 < 0 (6.3)
€ri1 Cht Wit otherwise

1—min{|eg|,lwpy1l}

These equations are examined in detail in appendix C. For the case rp; = 1,
these equations correspond to the formulae used for certainty factors in systems such
as Mycin [Sho76] 2. These formulae are used to evaluate an hypothesis for which evi-
dence is provided from separate idiosyncratic features (or symptoms in the terminology
of Mycin). The product rj v can be seen as the result of a rule which says that if symp-
tom k holds with certainty vy, and the certainty about the hypothesis being true when
the symptom k is true is ry, the certainty of the hypothesis is wy = rpvi. Then, this
value updates the existing certainty for the hypothesis according to 6.3. But clearly, the
probability of the hypothesis being true when a symptom is identified is not well defined

ZAn account of why certainty factors were preferred to other alternatives for representing uncertainty
in the design of the Mycin system can be found in [BS84]. Probabilistic interpretations of these formulae
have been attempted [Hec86], but it is generally accepted that certainty factors do not correspond to
measures of absolute belief.

- 111 —

Chapter 6. — Selection of Cell Models —

in the domain of this work (e.g. it is not possible to calculate the probability of a cell
being a register when it has been found that the cell has a clock port). Instead of using
a probabilistic value, the value r; indicates the expected contribution of this symptom
to the understanding of the whole hypothesis.

The effect of the number of values combined and their associated weighting factors is
studied by means of the following case-study. The case-study considers that all the w;
are of the same sign. The result e,, of combining the evaluation-function values of n items
of knowledge which support an hypothesis is calculated by means of the equations 6.3 as

€1 = U
€y = (1:‘:11)2) 61—|—w2 (6 4)

€n = (1 + wn) €n—1 + Wy

The positive sign is used for the case that wp < 0 and the negative sign for the case
wy > 0. By substitution this gives (see appendix E.1)

n

enzl—H(l—wk) wg >0 (6.5)
k=1

€, = —1+ H(l + wy) wy <0 (6.6)
k=1

The effect of the evaluation-function values can be examined by considering the par-
ticular case
W =Wy = ... =W, =W

With this, the equations above become

en=1—(1—w)" w>0,n>1 (6.7)
en=—14+(14w)" w<0,n>1 (6.8)

The case w > 0 is pictured in figure 6.2 for different values of w and n. The function
e, = f(n) is depicted with solid lines and the function e, = f(w) is depicted with dashed
lines. These functions are all monotonically increasing and convex with the rate of in-
crease always decreasing less rapidly for the second function (see proof in appendix E.2).
The functions for the case w < 0 are symmetric to the functions for the case w > 0
with respect to the horizontal axis. The consequences that can be derived from figure 6.2
include:

o the first items of knowledge will find it easier to push the evaluation-function value
up, but it becomes more and more difficult. Since w < 1, e, tends to 1 when n rises
and only with w =1 or an infinite number of items of knowledge would be possible
to reach the maximum value of 1.

o a few ‘good’ items of knowledge will have a higher contribution than more items of
a lesser quality (see proof in appendix E.2). For example, the combination of five
items of knowledge with w = 0.1 gives a total evaluation-function value that is lower
than the combination of two items of knowledge with w = 0.3.

- 112 —

Chapter 6. — Selection of Cell Models —

1.0 — —— —
L o -7 P S —
- Lo = —
/ -7 L—
0.9 kS 4
& 4 n
w/ T, > E=1-(1-w)
S / &
0.8 K4 ; 5
K. , 4
/
S i (((/.\/
0.7 RS / /
! / 7/
! /
i /
h /
0.6 7
, /
| /
/ ’
7 / /
E 05 i’ ;
i
(. / oY
! /l / $
0.4 oot
[/
! /
L) /
0.3 Hoe
! ! /
] /
Iy /
IR
0.2
Ny
I
1y)
0.1 fin
"y,
i,
it
7

0.0
00 01 02 03 04 05 06 07 08 09 10w----
1 2 3 4 5 6 7 8 9 10 11 n

Figure 6.2: Combination of Evaluation-function Values

It is important to note that an evaluation-function value does not correspond to a
measure of absolute belief. In some ways, this is not such a serious drawback because
a knowledge-engineering application is seeking to represent an expert’s knowledge of the
domain (imperfect though it may be), rather than create a veridical model of it. It seems
sensible to use a mathematically correct formalism aimed at simulating human decisions,
even though it gives an indication of change of belief in place of measures of absolute

belief. The main uses of these values are:

i — to provide guidance to the system in a way that simulates human reasoning. Faced
with alternatives, the system uses these values to make heuristic choices that do

better than chance.

il — to compare solutions by means of the degree of confidence associated with them.
iii — to cause a model of a cell or the modelling of a situation to be deemed unpromising

and pruned from the search space if its evaluation falls below a threshold value.
6.3 Evaluation of the Model of a Cell

A model for a cell emerges from the comparison of a knowledge plan with an heuristic
model in the system. The comparison of a plan with a system frame involves matching
the seven slots indicated in table 6.1 (see section 5.5). The evaluation-function value that

- 113 —

Chapter 6. Selection of Cell Models —

measures the confidence in the model is based on the evidence provided by being able to
match some of these slots. Each slot has an evaluation-function value and a weighting
factor. The value of the evaluation of a slot is given by the matching algorithm. In the
case of a compound slot (a slot made of several sub-slots such as the types of the cell) this
value is calculated from the combination of the weighted contribution of each sub-slot by
means of the equations 6.3 (each sub-slot will have a value that evaluates the matching
of the sub-slot and a weighting factor which measures the relative importance of that
sub-slot). The value for the evaluation of the model is given by combining the weighted
contributions of each slot according to the equations 6.3. This value measures the evidence
that a plan matches a system frame. Because of this, it is used as an indication of how
strongly it is believed that the knowledge contained in a model represents the actual
electronic cell.

Slot Slot Weighting Weighted
Evaluation Factor Contribution
Name 1 1 Wy =710
Types V2 T2 Wy = T2V
Interface V3 T3 Ws = r3v3
Contents V4 T4 Wy = Tyq V4
DataFlow Vs 75 Wy = Ty Vs
Functionality Ve 76 Wg = g Vg
Constraints v7 7 Wy = r7 U7

Table 6.1: Evaluation of the Model of a Cell

The value of the weighting factor of a slot determines how much this slot can contribute
to the final evaluation-function value. The effect of the weighting factors of the slots of
a plan for the evaluation of the matching can be observed by considering the case

e1=€ey3=...—=er =1

This case implies that all the slots are perfectly matched. The evaluation of the model

of the cell is then given by
7

Cmar = 1 — H(l —) (6.9)
k=1

This equation calculates the maximum value for the evaluation of a model. The value for
€mae Would be 1 in the case that any of the r; had a value of 1. The values of the ry are
arbitrarily chosen according to the relative importance attributed to each slot and they
are always smaller than 1 (see section 8.3) because they only have a partial contribution
to the understanding of the cell. The evaluation of a model can never give 1 since only
a partial analysis of the electronic data is carried out and a degree of uncertainty must
exist about the knowledge represented.

- 114 —

Chapter 6. — Selection of Cell Models —

6.4 Evaluation of a Situation

The evaluation of a situation gives an heuristic measure of the extent to which the models
of the sub-cells support the model of the cell. Assuming that all the models are consistent,
this measure is based on an heuristic estimation of the contribution of each sub-cell to
the operation (and therefore understanding) of the cell. The evaluation of the situation
defined by cell C; with its n; sub-cells C; ; (1<j<n;) is as follows. Initially, the value for
the evaluation of the situation tallies with the value e; which corresponds to the evaluation
of the model of ;. The fact that the model of the cell is assumed to be consistent with
the models of its sub-cells must result in a new value FE; for the evaluation of the whole
situation. Since a sub-cell represents a part of the functionality of the cell, each sub-cell
contributes its part to push the value e; towards F;. This contribution must depend on
the extent to which this sub-cell is understood and its specific importance in the design of
the cell. If the evaluation of the situation which represents sub-cell C; ; gave a value E; ;,
the contribution of the sub-cell is obtained by weighting this value by a factor r; ;. This
factor represents the specific importance of this sub-cell in the situation. The weighted
contribution of the sub-cell is then given by

w; ;=15 1 (6.10)

In order to determine how much the contribution of each sub-cell pushes the value ¢;
towards F;, the equations 6.3 can be used again. For example, for the particular case in
which w; ; > 0 for all j, the evaluation-function for the whole situation is given by the

sequence
adg = ¢
a, = 1 — W;1)a + ws,
1 (1) do ! (6.11)
ani = (1 — w2'7ni) ani—l —I_ wi7nl‘

with F; = a,,. The solution of this sequence gives

g

Ei =1- (1 — 62') H(l — wm) (612)

7=1
The value E; is a measure of the confidence in the model of cell C; according to the
models of its sub-cells. Considering

g

Ui = (1 - 62') H(l - wm) (613)

7=1
equation 6.12 becomes
E,=1-U; (6.14)

The term U; (0<U; <1) is a measure of the degree of uncertainty about the model of
a cell considering the models of its sub-cells. For example, in the unattainable case that
¢; = 1 then U; = 0 and E; = 1. That is, there would be no uncertainty about the model
of a cell regardless of the models of its sub-cells.

- 115 —

Chapter 6. — Selection of Cell Models —

The value Fj; is seen as a parameter to compare solutions rather than as a parameter
to indicate the degree of belief in the solution. Practically, this function is good if its
value rises when the likelihood of the solution grows as assessed by an expert designer
and vice versa. Then, for this measure to be effective, it must reflect the way in which
human experts reason about the contents of an electronic cell.

For the understanding of a cell, a human expert would usually consider first the
larger sub-cells and the smaller ones later. Larger sub-cells often perform more complex
functions and therefore they contribute more to the functionality of the whole device.
Generally, the more complicated the function of a device, the larger the number of tran-
sistors required for its physical implementation. Of course, the relationships between the
size and functionality of a cell are not so trivial. For example, the functionality of a
large memory cell is rather simple, specially if the addressing mechanisms are excluded
from the cell itself, but it can easily be the largest cell of an electronic design. But for
the overall reasoning process, the investigation in first place of the largest cells is often
worthwhile. The reason for this is that large cells usually provide more insights about
the flow of data and control information in the whole device. Therefore, the size of a cell
and the size of its sub-cells can be used to weight the contribution of each sub-cell.

6.5 Weighting Factors

For the purpose of this chapter, the complexity of a cell is defined as the number of
transistors that are required for its physical implementation. The complexity of a cell C;
can be expressed as

CO; = 3 (11, CO:) (6.15)

7=1
where CO; is the complexity of cell C; which contains n; sub-cells, and CO;; is the

complexity of its j-th sub-cell C;; which is instantiated [;; times in the design of .
The relative importance of cell C; ; with respect to the design of cell C; is then defined as

0,
»J COZ

R, =1, (6.16)

which indicates the percentage of transistors with which sub-cell C; ; contributes to the

design of cell C;. Obviously

> Rij=1 (6.17)
7=1
and
R; <1 (6.18)

The factor R;; could be used for weighting the contribution of sub-cell C;; to the
understanding of cell C; if it were not that the complexities of the cells in the design can
only be estimated. To calculate the exact number of transistors required by each cell it
is required that the hierarchy of the design has transistor cells as the primitives of the

— 116 —

Chapter 6. — Selection of Cell Models —

hierarchy graph. This is not always the case and, even if transistor cells are defined, they
may not be recognised as such.

One way of addressing this is to consider an heuristic function that calculates an
estimate of the number of transistors required by a cell from the study of its model (see
section 6.6 for an example function). The estimated complexity of a cell C; according to
its model is denoted as CO?. The estimated complexity of the j-th sub-cell of C; according
to its model is denoted as CO; ;. Considering estimated complexities the equations 6.15
to 6.18 can be written as

CO; =3 1;; CO; (6.19)
7=1
CO; .
sz =]m‘ CO’CJ (620)
Y R =1 (6.21)
7=1
Ry, <1 (6.22)

The value CO{ corresponds to the complexity of C; as calculated by means of the es-
timated complexities of the sub-cells. The factor R;. could be used for weighting the
contribution of sub-cell C;; but it does not take into account the complexity estimated
for the cell according to its model COY.

The difference |CO¢ — CO?| is a parameter that indicates how much the complexity
of a cell as estimated from the models of its sub-cells differs from the complexity of a
cell as expected from its model. A substantial value for this parameter is an indication
that the modelling of the situation may be incorrect (the excess or shortage of transistors
being too large to accept that the models of the sub-cells are sensible according to the
model of the cell). This should be reflected as lower values for the weighting factors of
the models of the sub-cells and, consequently, as a lower value for the evaluation of the
whole situation. To achieve this, the weighting factor of a sub-cell C;; must be of the
form

Tijg = g(R* COZC, CO;‘) (623)

1,70
This equation is derived by calculating how far the model of sub-cell C; ; is of being able
to represent the excess or shortage of transistors. The excess or shortage of transistors is
measured in terms of instances of this sub-cell. That is

_ |cos - Aoy

Alij =5 (6.24)
J

and the excess or shortage of transistors represents A[; ; instances of sub-cell C; ; accord-
ing to the estimated complexity of the sub-cell. The weighting factor of sub-cell C;; is
then defined by the ratio

R (6.25)
Y L4 ALy '

Intuitively, this value can be illustrated by means of two different cases:

- 117 —

Chapter 6. — Selection of Cell Models —

1 — AL ; s high with respect to I; ;. In this case the value of the weighting factor will
be low. Two possibilities can be considered:

o the model of sub-cell C; ; is wrong. If this model must account for the difference
then the high value for Al;; indicates that the model must be quite wrong.

o the model of sub-cell C; ; is right. In this case, the high value for Al ; implies
that the size of the sub-cell is rather small with respect to the complexity of the
cell.

In both cases, r; ; must be low to indicate little contribution from this sub-cell.

2 — Al ; is low with respect to I; ;. In this case the value of the weighting factor will be
high. Again, two possibilities can be considered:

o the model of sub-cell C; ; is wrong. If this model must account for the difference
then the low value for A[; ; indicates that the model is not very far from being
right (just slightly wrong).

o the model of sub-cell (; ; is right. In this case, a low value for AI; ; implies that
in terms of the complexity of this sub-cell the difference is rather small.

In both cases, r; ; must be high to indicate a significant contribution from this sub-
cell.

To see if the value AJ; ; is low or high with respect to I; ;, the percentage of variation
in the number of instances is calculated by
Ui+ ALy =i Al

=
L ; L ;

and equation 6.25 for the weighting factor of a sub-cell can be written as

1
14+ V.,

(6.26)

Tij =

This function is depicted in figure 6.3 (for @ = 1 ?). The weighting factor of a sub-cell
decreases as the value of V;; increases and it must be in the half-open interval (0, 1].

6.5.1 Complexity Deviation Factor

The weighting factor of the sub-cell of a cell reflects both the relative importance of
this sub-cell with respect to the design of the cell and the estimated and calculated

3The equation 6.26 could be made more or less severe by taking r; ; = W As indicated in
1,7
figure 6.3, if @ > 1 the function is more severe and if @ < 1 the function is less severe than the solution
adopted in equation 6.26.

— 118 —

Chapter 6.

Selection of Cell Models —

1.0
Iy
W
\ \
LS R SO SOt SO O SN K N
| N 1
\t \\ T
\ \ 1) a
0.8 i a+Mprl
\
\
\
1
i <
\\ \\ N
0.6 [~ S
\ Thl_a=w2
\ \\\
r.. \ = \\\
ij \ -
0.4 : -
\
\ a=1
\
\
0.2 -
~ia=2 T
0.0 —
(0] 100 200 300 400 500
Vij (%)

Figure 6.3: Weighting Factors
complexities of the cell. To make this explicit in equation 6.25, the complexity deviation
factor of a cell is defined as the quotient

_ oy
- CO¢

ri

(6.27)
The factor r; reflects how much the complexity of the cell as calculated from the expected
complexities of its sub-cells deviates from the expected complexity of the cell. Since the
complexity of a cell or a sub-cell is estimated from their corresponding models, this factor
cell.

is an indication of how much the models of the sub-cells can support the model of the
From equations 6.25 and 6.24

]2'7]‘ -]2'7]‘
and by means of 6.20 and 6.27

R},
R+ [1—r

Tij =

(6.28)

The impact of the relative importance of a sub-cell on the value of its weighting factor
is shown in figure 6.4 for different values of the complexity deviation factor (note that

- 119 —

Chapter 6. — Selection of Cell Models —

=1
1.0
N ij
N 1 _
LT
0.8 < T
\\;7)
_o®
X
0.6
r '\,?‘\
ij /Q‘D« N
g
0.4
2) L
-0
/ “ /
_iS
/
0.2
/ =10 —
N S—
N
0.0 —
0.0 0.2 0.4 0.6 0.8 1.0

Figure 6.4: Effect of the Relative Importance

the result for r; = 0.9 is the same as the result for r; = 1.1). The implication of this
factor is as follows:

o r; > 1: the cell is under-represented. The complexity of the cell as estimated from
its contents is lower than the complexity of the cell as estimated from its model.
The fact that there might be less transistors in the contents of the cell than the
number of transistors estimated from the model of the cell is severely penalised.
The weighting factor of a sub-cell tends to zero when r; increases and it increases
when the relative importance of the sub-cell increases.

o 1, = 1: the cell is well-represented. The complexity of the cell as estimated from
its contents is the same as the complexity estimated from its model. The models
of the sub-cells are seen as totally valid to support the model of the cell and the
weighting factors of all the sub-cells have the maximum value of 1 regardless of their
relative importance. As a particular case, if there is only one sub-cell C;; in the
design of C; then the relative importance of this sub-cell is R7; = 1. To obtain
the highest weighting factor of 1 it must be r; = 1 in equation 6.28. For this, it
must be COT = COf. If there is a single instance of the sub-cell CO? = CO7; and
therefore COT = CO7,. This means that the cell and the sub-cell must have the same
complexity. This is clear since if there is a single sub-cell, and only one instance of
it, the cell and the sub-cell must be exactly the same.

— 120 —

Chapter 6. — Selection of Cell Models —

o r; < 1: the cell is over-represented. The complexity of the cell as estimated from
its contents is higher than the complexity of the cell as estimated from its model.
The fact that there might be more transistors in the contents of the cell than the
number of transistors expected from its model is less severely penalised than for an
under-represented situation. The weighting factors tend to a value in the half-open
interval (0,1/2] as r; decreases (the limit being the case r; = 0 in figure 6.4). The
excess of transistors may be attributed to additional features with which the cell
is provided and this cell may still preserve the essential features represented in the
model.

6.5.2 A Case-Study

To quantify the impact of the deviation factor r; of a cell C; on the value of the weighting
factors of its sub-cells and in the evaluation of the situation a case-study is considered
in this section. The case-study supposes that all the sub-cells C; ;(1<j <n;) involved in
the design of (; have the same relative importance R} ;. Therefore, from equation 6.23
all the sub-cells will have the same weighting factor r; ; = r. From equation 6.28

R =1 -7 AN

By adding together the instances of this equation that correspond to each one of the
n; sub-cells of C;

Z’:sz _ Z’: (|1 B 7“2'| T4)
7=1

and considering equation 6.21

> = ' (6.29)

For this case-study

N T T
> =n;
j=1 1 i 1 r
and therefore
! (6.30)
r_ni|1—7“2’|—|-1 '

In order to consider the impact of the weighting factors on the evaluation of the situ-
ation, this case-study supposes that every sub-cell C;; has the same evaluation-function
value F; ; = e > 0 (the case for e < 0 can be analysed in a similar way). The evaluation
of this situation can be calculated by means of equation 6.12 which gives

Ei=1—-(1-¢e)(1—re)™

- 121 —

Chapter 6. — Selection of Cell Models —

where e; is the evaluation of the model of cell ;. By making e; = 0 to simplify things
(which does not affect the conclusions of this case-study), the evaluation-function con-
siders the contribution of the sub-cells only. This is determined by

E,=1—(1—re)m™
- L) } (6.31)
T ong [1-riH1

Table 6.2 illustrates this case-study for five different values of r;. Three different cases

can be considered:

e r;, > 1: the cell is under-represented and r — 0 rapidly with the increase of r;
(see cases (a), (b) and (c¢) in table 6.2). The total contribution of the sub-cells F;
decreases rapidly too. The value of E; increases slightly with the number of sub-cells
n;. This increase is more rapid for the cases that have a smaller value for e.

e r; = 1: the cell is well-represented and r = 1 (see case (¢)). If the evaluation-function
values of the sub-cells is e = 1 the contribution of the sub-cells gives E; = 1. If the
value of e decreases such as e = 0.5, the value of E; is smaller than 1 but tends
rapidly to 1 with the number of sub-cells.

o r; < 1: the cell is over-represented and r — mlT as r; decreases. The value of the
weighting factors decreases moderately as the value of r; decreases, as it happens
with the total contribution of the sub-cells E; (see cases (¢), (d) and (e) in table 6.2).
The value of F; increases as well with n;, and this increase is more rapid for the
cases that have a smaller value for e.

In general, the weighting factors decrease with the number of sub-cells n; since each
sub-cell will have less relative importance. However, the total contribution of the sub-
cells increases slightly with n; (a proof that the total contribution always increases with
n; is given in appendix E.3). Thus, it is slightly more significant to have more sub-cells to
contribute to the understanding of a cell than having less. Operationally, this is justified
by considering that it is more difficult to get the models of the sub-cells to agree with the
model of the cell for those cells which have a larger number of sub-cells. The effect of n;
in F; is more significant for lower values of the certainty of the models e. This is easily
justified by considering the shape of the function F; = f(n,) that was given in figure 6.2.

6.6 Cell Complexity Estimation Function

A simple example function for the estimation of the complexity of a cell from its model
is discussed in this section. The derivation of more elaborated functions is also hinted at
here but it is considered to be beyond the scope of this work. The function considered
is based on the relationship between the level of abstraction of a cell and its complexity.
It states that cells at higher levels of abstraction usually require a larger number of
transistors than cells at lower ones. For example, a vector level cell will often require
a larger number of transistors than most bit level cells and less transistors than most

- 122 —

Chapter 6. — Selection of Cell Models —

_1 n; r E;
a) ri=10 e=1 ‘e:0.5
Cell under-represented: 1 0.1 0.1 0.05
2 0.05263 | 0.10249 | 0.05194
COr = 10000
e.g. { COS = 1000 3 0.03571 | 0.10336 | 0.05262
100 || 0.00111 | 0.10511 | 0.05400
B n; r E;
b) ri=25 e=1 ‘ e=0.)
Cell under-represented: 1 0.4 0.4 0.2
2 0.25 0.4375 | 0.23438
COr = 1000
e.g. { CO:= 400 3 0.18182 | 0.45229 | 0.24869
100 || 0.00662 | 0.48545 | 0.28228
n; || r E;
1 e=1 ‘ e=0.)
o) s 1 1 E
Cell well-represented. 2 1 1 0.75
3 1 1 0.875
100 1 1 0.99999
d nj || r I
) ri=04 e=1 |e=05
Cell over-represented: 1 0.625 0.625 0.3125
COF= 400 2 0.45455 | 0.70248 | 0.40289
e.g. COs = 1000 3 0.35714 | 0.73433 | 0.44575
100 || 0.01639 | 0.80851 | 0.56091

n; || r E;
e=1 ‘ e=0.)
Cell over-represented: 1 0.52632 | 0.52632 | 0.26316
COr= 1000 2 0.35714 | 0.58673 | 0.32526
e.g. CO: = 10000 3 0.27027 | 0.61141 | 0.35309
00 || 0.01099 | 0.66878 | 0.42361

e) r,=0.1

Table 6.2: Effect of the Deviation Factor

- 123 —

Chapter 6. — Selection of Cell Models —

processor level cells. However, there are no clear boundaries to the range of transistors
that can be used to implement, for example, a vector level storage cell such as a register.
If only the level of abstraction is taken into account, the only possibility to consider is
the typical number (or range) of transistors required to implement a cell of a given level.

The typical complexity of a cell at a given level of abstraction can theoretically be
defined as the average value of the number of transistors that are used in all the electronic
cells that belong to that level. For obvious reasons, this value cannot be calculated.
Instead, an heuristic value is considered from the observation of a sample of cells at each
level. For example, the typical complexity of a cell at the gate level may be considered
to be around 10 transistors (of course, the typical complexity of a cell at the transistor
level must be 1).

The typical interlevel complexity ratio is defined as the quotient between the typical
complexity of a level of abstraction and the typical complexity of its immediate lower
level predecessor. For the example above, the typical interlevel complexity ratio between
the gate level and the transistor level is 10/1. In order to simplify things, this ratio is
taken as a constant value HR for all levels of abstraction. With this assumption (which
is justified below) the typical complexity TC; of a cell C; at the level of abstraction EH;
is given by

1C; = HRM: (6.32)

where the levels of abstraction rank from 0 for the transistor level to 5 for the system
level. As an example, an acceptable value for HR is 10. Thus, a gate typically contains
10 transistors, a bit level cell typically contains 10 gates or 10? transistors, a vector level
cell typically contains 10 bit level cells or 10? transistors and so on. This equation can
be used for the calculation of the estimated complexity of a cell so that

cOr = TC; (6.33)

Equation 6.32 is a rough approximation. For example, common registers contain 4, 8,
16, 32 or 64 bits and the typical number of 10 bit units per vector level cell seems rather
arbitrary. A more complicated function for the estimation of the complexity of the cell,
at vector level at least, should take into account a factor proportional to the number of
data input signals (or data output signals) of the cell, since this number usually reflects
the amount of bit units used. Despite the lack of a more complex function, two main
considerations make the use of equation 6.32 worthwhile. Firstly, the factor r; allows for
a moderate variation around the typical complexity before penalising hard the weighting
factors. Considering the example above, the typical range of bit cells in a register is
[4 — 64]. The estimation of the typical value of 10 bit units per vector level cell gives
a range for the deviation factor r; of [10/64 — 10/4], that is, [0.16 — 2.5]. As shown
in table 6.2, for this range of values of r; the weighting factors still allow a significant
contribution. Secondly, these factors are aimed at weighting the contribution of the sub-
cells so that the different alternatives can be ranked. Since the complexities of cell and
sub-cells are all estimated by means of the same equation, the alternative representations
of a cell must still be ranked in a sensible way and the use of equation 6.32 may allow
the rejection of the most unpromising alternatives.

— 124 —

Chapter 6. — Selection of Cell Models —

6.7 Selection of Alternatives

Given a set of models for each cell of the design, the evaluation function 6.12 is used to
select the best candidate solution set for the representation of a situation and for the
representation of the overall design. In the case ¢+ = 1, the function 6.12 calculates the
value F; which evaluates the confidence in the representation of the top situation. Since
the evaluation of a situation takes into account the evaluation of its sub-cell situations
(see equation 6.10), the value E; evaluates the overall design. The candidate solution
set which results in the highest value for F; must be considered first for model-based
reasoning. This set must not violate constraints between cell models which were already
calculated from the processing of previous sets as discussed in the next chapter (this
guarantees that a failed set is not considered twice). The example design of figure 6.5 is
used to illustrate the way in which the best candidate set is selected. Ms; indicates the set
of models available for the i-th cell of the design. For example, two models M{ and M}
are available for the top cell of the design . For the selection of the best candidate set,
it is not necessary to evaluate all possible combinations of models (24 combinations are
possible for the simple example of figure 6.5 according to equation 3.2). The evaluation
function requires for each model of a cell the confidence in the model and the estimation
of its complexity. The situations of the design are first separately evaluated.

Set of Best Cell Models:
Msy = {Mlllez}

. Msz = (M, M3, M3}
Mss = {M3}
? Mss = {M3}
Msg = {Méng}
Cy

Ranking of Candidate Situation Sets:
Asy = {M%_M%_Miv MII_MS_M27 .. }
Asy = {MJ—-M3—MZ, ...}

c, c, Ay = (MMM)

Asy = {MJ}
‘456: {Méng}

Figure 6.5: An Example Design

For the evaluation of a situation independently of the other situations, the confidence
ei; in each model of sub-cell ;; is considered in equation 6.12 instead of F;;. The models
Ms; for cell C; are sorted according to their confidence value. The first model for each cell
(the model with the highest confidence value) is considered to form an initial combination
of models for a situation and to get an initial value from the evaluation function for the
situation. The selection of the best candidate situation set proceeds by considering what
model changes in this initial combination can result in a higher value of the evaluation

- 125 —

Chapter 6. — Selection of Cell Models —

function. For example, after the initial combination, the evaluation function can only
result in a higher value if the new models considered result in a value for r; in equation 6.28
closer to 1. By using the confidence value and complexity of the models, it is possible
to drive the search in the space of possible combinations of models and to avoid the
combinatorial nature of the problem. In figure 6.5, some example candidate sets for the
i-th situation are ranked in a set As;. For instance, M]—M,—M is the best ranked set of
models to represent situation S;. The situation candidate set selected must not violate
constraints between cell models calculated from the processing of previous sets (a failed
situation set cannot then be considered twice). Otherwise, another situation set must be
selected.

A solution for the whole design is obtained by selecting an alternative for each sit-
uation in such a way that each cell has the same model in all the situations in which
the cell appears. A cell usually appears in more than one situation and the best ranked
alternatives for these situations may consider different models for the cell. For example,
the best ranked alternative for situation S; uses a different model for cell C; than the
best ranked alternative for situation S,. In the case that a conflict occurs when consid-
ering the best ranked alternatives, the different possibilities are evaluated according to
equation 6.12 to determine the most convenient overall set. Fach selected situation set
is analysed by model-based reasoning as discussed in the next chapter.

— 126 —

Chapter 7

Model-based Reasoning

Model-based reasoning about a design situation implies the derivation of relationships
which link the items of knowledge used for the representation of its separate objects. Re-
lationships are derived, for example, from the study of the hierarchy of the situation,
from the analysis of the connectivity between objects and from inferences about the flow
of signals. The derivation of these relationships demonstrates a deep understanding of the
situation. The reasoning for a valid set of cell models (solution set for the situation) may
result in the propagation of knowledge for describing objects which are not fully represented
and in the reorganisation of objects to form a more meaningful structure. The addition
of knowledge to incomplete cell models may lead to the formation of new knowledge plans
which can be used in another knowledge-generation/knowledge-propagation cycle for the
generation of more refined solution sets. Model-based reasoning may be assisted by func-
tions aimed at the recognition of implementation patterns and problem-solving strategies.

7.1 Problem Definition

This chapter focuses on reasoning about the knowledge which represents each individual
situation in a design. The initial knowledge that represents the situation S; includes
one heuristic model for cell C; and one heuristic model for each one of its n; sub-cells.
The model of a cell or a sub-cell may be complete or incomplete. A sub-cell may be
instantiated several times in the design of cell C; and the model that represents the
sub-cell equally applies to each one of the specific instances. In this context, reasoning
about situation S; implies the derivation of relationships for linking the knowledge which
forms the n; + 1 cell models involved and knowledge for the representation of the signals
carried by the interconnections. The aims of the reasoning about a situation include the
validation of the knowledge represented (the representation of the situation is valid if
items of knowledge are interrelated without violating system constraints), the derivation
of further knowledge plans for the cells involved and the reorganisation of objects to
produce a more meaningful description of the situation.

The operative working of model-based reasoning for a situation is discussed in sec-
tion 7.2. Section 7.3 reviews the scope of the understanding that can be reached with
this reasoning. Relationships derived from the study of the hierarchy of the situation are
used as an example. The derivation of relationships from the analysis of the connectivity
between objects in the situation is presented in section 7.4. Section 7.5 discusses the

- 127 —

Chapter 7. — Model-based Reasoning —

derivation of relationships from a study of the flow of signals in the interior of the cell.
Model-based reasoning may be eased by means of knowledge-extraction and knowledge-
generation functions aimed at the recognition of stereotypical implementation patterns
and problem-solving strategies as examined in section 7.6. These strategies are rep-
resented by heuristic models which describe typical uses and applications of electronic
cells. The ways of reasoning described in section 7.5 and section 7.6 can result in the
reformulation of the situation as examined in section 7.7.

7.2 Consistency and Knowledge-propagation

In its broadest sense, model-based reasoning for a situation ought to be able to derive
that the operation of a cell (as described by its model) can be performed by means
of the operation of its sub-cells (as described by their corresponding models) and the
interconnections within the cell. The knowledge contained in these models represents a
level of abstraction which is beyond the level required for describing a complete theory of
the behaviour of the cells in question. For this reason, it is not possible to categorically
state that the operation of a cell (as described for example by its electronic functionality)
can be achieved according to the model of its contents. A degree of uncertainty (not
necessarily founded on the confidence in the knowledge represented) must then prevail.
Operationally, the intention is to reason about the knowledge which represents a situation
with a double aim:

1. consistency-checking: the knowledge that represents an object in the situation must
be consistent with the existing knowledge about the other objects in the situation.
This is used as a mechanism for strengthening conclusions about the knowledge
represented.

2. knowledge-propagation: knowledge about an object is derived from knowledge avail-
able in other objects by means of relationships established between them.

Consistency-checking and knowledge-propagation (k-propagation) are closely related.
On one hand, if the items of knowledge interrelated are defined (e.g. the models of
the cells interrelated are complete) and inconsistencies arise, the representation of the
situation is incorrect according to the system (since it is the system that derives the
possible relationships) and another set of models must be selected. On the other hand,
if some of the items of knowledge required to represent an object are undefined (e.g.
some cell models are incomplete) the need of consistency may result in the passing of
knowledge between interrelated objects. For this reason, the functions involved in model-
based reasoning are called k-propagation functions in section 4.3. As introduced there,
there are two types of relationships:

1. constraints: a constraint is a relationship which must be satisfied by the items
of knowledge which are linked. A failure to satisty a constraint implies that the
knowledge represented is incorrect according to the system. For example, sequential

— 128 —

Chapter 7. — Model-based Reasoning —

sub-cells cannot exist in the design of a combinational cell. If some items of knowl-
edge are undefined, a constraint may be used to pass knowledge between objects in
a way that keeps consistency.

2. plausible relationships: a plausible relationship is a typical association between items
of knowledge, but it may not apply to all cases. For example, the functionalities
attributed to a number of interconnected ports and the signals transported are
usually related. Inconsistencies cannot arise as a result of a plausible relationship
but it may result in the addition of further knowledge to cells and signals which are
not fully represented.

The confidence in the knowledge propagated depends on the confidence in the in-
terrelated items which are defined before the propagation of knowledge. In the case of
plausible relationships, the final confidence in a propagated item of knowledge must be
decreased by a factor which measures the plausibility of the relationship used.

Figure 7.1 describes the way in which consistency-checking and knowledge-propaga-
tion operate. A k-propagation function takes the situation knowledge, which includes the
models of the cells (model M; for cell C; and model M;; for its j-th sub-cell, 1 <j<n;) and
the description of the interconnections between objects, and derives sets of interrelated
items of knowledge. Each set of interrelated items must satisfy a number of constraints
provided by the function. If the constraints are satisfied, the models of the cells form
a solution set for the situation (if this is confirmed by the rest of the k-propagation
functions). Knowledge-propagation in a set of interrelated items may take place if some
items are undefined: a resolver can derive values for the undefined items or it can elaborate
new constraints about these values by considering the values contained in the defined
items of the set, constraints on undefined items of the set already placed in the models
of the cells, and system constraints placed by the k-propagation function.

The system constraints which are considered by the k-propagation functions are usu-
ally too weak to form a detailed plan for an undefined item (in the sense that they can not
result in just one value for the item. See, for example, the system constraints discussed
in section 4.5). For this reason, k-propagation functions are allowed the use of system
plausible relationships in order to obtain more detailed plans for undefined items. The
plans for the separate items of a model of a cell are combined to form knowledge plans
for the cell as shown in figure 7.1 and discussed in section 4.6.

Model-based reasoning is applied to each one of the separate situations which form the
design. A set of heuristic cell models which correctly represent the cells of a situation (as
assessed by the k-propagation functions) form a solution set for the situation. The addi-
tion of knowledge to incomplete cell models may lead to the formation of new (different)
knowledge plans for the corresponding cells which can be used in a new knowledge-
generation /knowledge-propagation cycle: new models for some cells could be generated,
a new set of models for the overall design could be selected and the design situations
would again be independently analysed. If the models in the situation set analysed vio-
late some system constraints, these constraints are stored and considered for the selection
of new sets. This guarantees that a failed set for a situation is not considered twice and
it helps in discarding combinations for the selection of models.

- 129 —

Chapter 7. — Model-based Reasoning —

Plausible
‘ Relationships J|

Plans for Undefined
Items of Knowledge
(A valuefor theitem

K-prop Consistency or aconstraint) Formation
Function Checking& Y—=] l‘ K nowledge

K -propagation
Resolver

Plans

Sets of Interrelated
\ Items of Knowledge |
{1yl |

v

{lt, i1 g (constraints satisfied)

{Mi'Mil’ ---yMini}
Candidate Solution Set K nowledge Plans
Heuristic Models for for Cdlsin

Céellsin Situation S;

Situation S,
{M{,Mig, ... Min}

Figure 7.1: Consistency and Knowledge-propagation

7.3 Specification-level Understanding

The derivation of relationships between objects (i.e. cells, ports and signals) indicates
that a deep understanding of the situation (and the design as the composition of its sit-
uations) can take place. As discussed in section 1.5, the understanding is limited to the
specification-level: generic interpretations are associated with the cells and signals of a de-
sign which reveal information about their meaning, intended function or generic purpose.
The interrelation of the generic purpose of the design objects by means of k-propagation
functions demonstrates an overall understanding of the situation. K-extraction and k-
generation functions are focussed on individual objects (recognition-targeted reasoning)
and very limited understanding of the relationships between objects takes place (signals
are not yet considered). Model-based reasoning moves towards the understanding of the
specification since relationships between the knowledge that represents separate objects
are considered.

As an example, the knowledge-propagation functions already introduced in section 4.5
illustrate the operative working of model-based reasoning. These functions interrelate
the level of abstraction, logic type and data flow type in the model of a cell with the
corresponding types in the models of its sub-cells. The sets of levels of abstraction,
logic types and data flow types of the cells in the situation are examples of the sets of
interrelated items of knowledge shown in figure 7.1. Tables 4.3 and 4.4, for instance,
represent constraints on the set of logic types and data flow types, respectively. The
resolver for consistency-checking and k-propagation operates as follows: given the value
or a set of possible values (i.e. a constraint on the actual value) for one of these types
for each sub-cell of the cell, the value (or a set of possible values) for the same type of
the cell is derived. Two cases can be considered:

- 130 —

Chapter 7. — Model-based Reasoning —

1. a value for the type of the cell already exists. Two sub-cases may occur:

(a) the existing value is the same as the derived value or it belongs to the derived
set (consistency-checking).

(b) otherwise, the candidate set for the situation is inconsistent.

2. the type of the cell is undefined. The candidate set is valid if it is possible to
resolve a value for the type, or a constraint on the value for the type, from the value
or constraints derived and constraints which may already exist in the model with
respect to the type (knowledge-propagation). Three sub-cases may occur:

(a) no value or constraint is possible: the candidate set is inconsistent.
(b) a single value is possible: the type of the cell is instantiated.

c) several values are still possible: a new constraint is placed in the cell model
p p
(possibly a refinement of existing constraints which must be removed from the
cell model).

A new plan for the types of a cell can be formed in this way. The types of a cell
are also related to each other according to table 3.1, and they relate to the electronic
functionality of the cell as indicated in table 3.2. These tables are further examples of
knowledge-propagation functions. The way of reasoning illustrated above is used again
for these tables. As a result, for this example, the planning of knowledge for a type
of a cell may trigger further knowledge about the rest of its types and its electronic
functionality. The knowledge added can be given as the instantiation of some undefined
values in the model or in the form of new and more refined constraints. As another
example, hierarchical relationships between a cell and its sub-cells are also given in the
contents section of the heuristic model of the cell. These relationships are plausible since
it is not possible to contemplate all possible ways of constructing a cell.

Elaborate knowledge-propagation functions are described in section 7.4 and section 7.5.
These functions take into account the generic purposes of the design entities and they
allow an overall understanding of the situation to be gained. A discussion of the ability of
the system to understand the specification of a design in relation to the central grounds
of computer understanding mentioned in section 1.4 is given in section 9.1.

7.4 Example 1 — Connectivity and Knowledge-propagation

The connectivity between nodes (cell and instantiated sub-cells) in a situation of the
design hierarchy establishes relationships which interrelate items of knowledge contained
in the interface section of the cell models and items of knowledge which represent the sig-
nals carried by the interconnections. This section discusses the heuristics which support
k-propagation functions based on connectivity. These functions derive sets of interrelated
items of knowledge according to the connectivity in the situation upon which constraints
and plausible relationships are applied. Knowledge plans for the interface section of in-
complete cell models (i.e. models which have ports with undefined generic or electronic

- 131 —

Chapter 7. — Model-based Reasoning —

functionalities) can be formed. For a cell C; which is instantiated I; times in a design
there are in general I; + 1 different scenarios for the analysis of connectivity: one for the
connections between the cell and its contents and one for each instance of this cell within
the design of another cell (in the case of a primitive cell of the design the number of sce-
narios is [;). As a result, the knowledge representing the interface section of the model
for cell C; must be consistent with knowledge representing other models and signals in
I; + 1 scenarios. In the case that the interface section of the model is incomplete, there
are I; + 1 scenarios for the formation of plans for the interfaces of the cell.

7.4.1 Plausible and Implausible Relationships

A connection between two ports of different objects is illustrated in figure 7.2(a). The con-
nection interrelates the knowledge which represents these ports in the corresponding mod-
els and the knowledge which is used for the representation of the signal transferred. As
shown in figure 7.2(b), the set of interrelated items of knowledge {(PG1,PE1), (SG, SE),
(PGa2,PE2)} includes the generic and electronic functionalities of port P; of node nj
(PG1 and PEq, respectively), the generic and electronic functionalities of the signal that
flows between ports (SG and SE, respectively) and the generic and electronic functionali-
ties of port Py of node na. For convenience, a set of interrelated items of knowledge which
represent two interconnected ports and the signal transferred is called in this section a
primary set. A relationship between the items in a primary set is derived as follows:

1. constraints of electronic design are first applied to check for consistency between
defined items in the set (for example a clock signal must not drive a select port).

2. if some items in the set are undefined, constraints and plausible relationships are
applied in order to propagate knowledge to these items in a way that keeps consis-
tency.

PG/ \ / PG,

PE PE,

@ (b)

Figure 7.2: Primary Sets: (a) a 1-to-1 connection, and (b) items of knowledge for a
primary set.

The use of plausible relationships is justified as follows: given a primary set with

undefined items, and considering that the range of possible values for the generic and
electronic functionalities of ports and signals are pre-defined, it is possible to consider

- 132 —

Chapter 7. — Model-based Reasoning —

all combinations of values for the undefined items which satisfy the constraints. The
consideration of all combinations of values for the undefined items of the interface of
a cell leads to a number of interface plans which grows exponentially with the number
of ports and signals undefined. Alternatively, constraints (usually weak) for the generic
and electronic functionalities of interrelated objects can be calculated and a single plan
generated. However, plans for the interfaces of a cell with weak constraints and few fully
represented ports are usually difficult to match (see section 5.5.2). More detailed plans
for the interface section of a model are always easier to match. These plans can be formed
by considering the propagation of knowledge by means of plausible relationships while
discarding implausible ones.

Plausible relationships between the generic functionalities of ports and signals inter-
related in primary sets depend on the type of connection as follows:

1. short: in this connection, the origin and destination ports of a signal are located
in the cell (as opposed to its contents) as shown in figure 7.3(a). A signal is just
transported from the input ports of the cell to the output ports and it does not
affect the functionality of the cell. For this reason, this signal can only be seen as
being of a generic data type from the point of view of the cell. The best candidates
to be shorted are data input ports and data output ports: short signals between
these ports are plausible.

2. boundary. a boundary connection has either the origin port in the cell and the
destination port in a sub-cell instance or vice versa as shown in figure 7.3(b). Signals
which flow from data (control) input ports of the cell to data (control) input ports
of a sub-cell instance clearly are plausible: data (control) signals for the whole cell
are passed to its sub-parts. Similarly, signals which flow from data (control) output
ports of a sub-cell instance to data (control) output ports of the cell are plausible:
data (condition) signals of the sub-parts of a cell are passed to the cell. The rest of
the possible boundary signals are implausible. A signal from a data (control) input
port of the cell to a control (data) input port of a sub-cell instance has as type
control. The reason for this is that being considered control for either the cell or a
sub-part (since a control port is connected), it should be considered control from the
point of view of the design of the cell (a similar reasoning applies to the implausible
boundary condition signals shown in figure 7.3(b)) *.

3. internal: an internal connection has both the origin and destination ports located on
sub-cell instances as shown in figure 7.3(c). Signals between data ports are clearly
possible. A signal from a control output port of a sub-cell instance to a control
input port of another sub-cell instance is also clearly plausible, but in this case the

!Examples of these implausible signals are found in connections from bit level cells to gate level sub-
cells. For example, in the design of the flip-flop cell of figure 3.2(b) there is a boundary signal from the
control input (clock) port of the cell to data input ports of two of its sub-cells (nand gates). The signal
(clock) obviously is of a control type (though it does not control the operation of the nand sub-cells
which take the signal as data).

- 133 —

Chapter 7. — Model-based Reasoning —

|_

_ data g 2 data o
a o. c < «o Al =z
Q/{g 63/\',3 — o oot o
oo WO < ¢
R 6\\,\/ N 0

-~ o) e S Cb,,;fz?oﬁ o
Z -7 Tos (@)) - rof ~~ =
stk A8 ol lF—— 7|z
data = O condition
or control
€Y (0
E— o)
= datg o
o B — c
\\Oo g) —
A z 3
\\o/// (a)
>N
Sy o 5
L) Z S o cell
z g o) . .
5 c instantiated sub-cells
— — - —— plausible signals

_____ implausible signals
(b)

Figure 7.3: Plausible Signals: (a) short signals, (b) boundary signals, and (c¢) internal
signals.

signal type can be either control or condition. The decision about the type of signal
depends on the generic functionalities of the interconnected sub-cell instances as
discussed in section 7.5. The rest of the possible internal signals are implausible and
they have a condition or control type since control ports are involved (a decision
about the type depends also on the generic functionalities of the sub-cells) 2.

The consideration of these plausible relationships for the objects in a primary set allows
planning for undefined generic functionality values. A value for the generic functionality
of a port or a signal narrows the range of possible values for its electronic functionality (see
table 3.3). This range of values can be further narrowed by considering the propagation
of electronic functionality values in a primary set. The propagation of these values can be
done, for example, by means of the rules of table 7.1. These rules guarantee consistency
between the values which are planned for the electronic functionalities of interrelated
ports and signals (the results obtained always satisfy system constraints). These rules

2The internal signals in the example design of figure 7.9 in section 7.6.2 are implausible.

- 134 —

Chapter 7. — Model-based Reasoning —

| SE | PE; | PE; || Action

X X X Nothing

X X C Copy value C to SE and PE;

X B X Copy value B to SE and PE»

X B C If B and C consistent then copy B to SE
A X X Copy value A to PE; and PE»

A X C If A and C consistent then copy A to PEq
A B X If A and B consistent then copy A to PEq
A B C The values A, B and C are consistent

(X means undefined)

Table 7.1: Propagation of Electronic Functionalities in a Primary Set

are based on plausible relationships discussed in section 3.4. The copying (propagation)
of an electronic functionality value for representing a port can be done if the generic
functionality of the port permits this electronic functionality (according to table 3.3).
Conversely, the propagation of an electronic functionality value to represent a port also
defines its generic functionality.

[tems of knowledge of distinct primary sets can also be related between them to form
further sets of interrelated items in two main ways:

1. by means of connections which involve more than two ports (many-to-many con-
nections). A connection that involves one origin port and two destination ports is
shown in figure 7.4(a). Two primary sets are derived from this connection. Con-
sistency in each set, for example {(PG1,PE1), (SG, SE), (PG3,PE3)}, is treated as
discussed above. In addition, in a many-to-many connection it is possible to expect
that all the origin ports have similar functionalities between them and that all the
destination ports have similar functionalities too. For example, it is sensible to plan
PE> and PE3 as having the same values since P and Pg get the same signal from
port Py (e.g. if the value of PEs is supposed to be clock, it is likely that the value
of PE3 will be clock too). A set {(PGz2,PE2), (PG3,PE3)} is established. Given,
for example, that the value PE3g of port P3 is undefined, it is possible to plan a
value for the electronic functionality of this port by propagation of the value PEy °.
Considering that the plausible relationships imposed on these sets apply more fre-
quently than those imposed on primary sets, k-propagation for a connection with n
origin ports {O1,...,0y} and m destination ports {Dq,..., Dy} follows the rules
indicated in table 7.2.

3This already occurs in the case that PEq is undefined by propagation in primary sets: the value
PEo5 can be copied to port Py and from port Py it can be copied to port P3. However, if PEq is
already defined with a value which is different to PEg, the value PEo cannot be copied to port Pg by
considering primary sets.

- 135 —

Chapter 7. — Model-based Reasoning —

11

@ (b)

2y

Figure 7.4: Interrelated Primary Sets: (a) a 1-to-2 connection, and (b) two 1-to-1
interrelated connections.

2. by means of relationships imposed by a cell model on its ports. This is illus-
trated by means of the connections in figure 7.4(b). The model of node ny imposes
that ports P11 and P12 have both PGy as generic functionality and PEq as elec-
tronic functionality. From this, it is possible to derive the set of interrelated items
{(PGz2,PE2), (PG3,PE3)}. As a result, if the values for the functionalities of, for
example, port Pg are undefined a possible plan (in addition to the propagation of
values in the primary set of the port) includes propagating the values of the func-

tionalities of P2 to P3 (a set {(SG1,SE1), (SG2,SE2)} can be derived in a similar
way).

7.4.2 Planning Groupings of Connections

Groupings of ports are often essential to make the matching of knowledge plans feasi-
ble as discussed in section 5.5.2. Ports are grouped if they have the same functionality
values. The propagation of knowledge based on connectivity discussed above may allow
the planning of the functionalities of ports which are not yet fully represented and, as
a consequence, the grouping of ports in a knowledge plan. In addition, the possibility

- 136 —

Chapter 7. — Model-based Reasoning —

‘ Step H Action

1 apply constraints to check consistency in each primary set

2 copy to each origin port O; (1 <i¢<n) with an undefined elec-
tronic functionality the value entrusted with the highest con-
fidence in the set of defined electronic functionalities for the
origin ports (if any)

3 copy to each destination port Dj (1 <j<m) with an undefined
electronic functionality the value entrusted with the highest
confidence in the set of defined electronic functionalities for the
destination ports (if any)

4 apply propagation of knowledge in each primary set

) repeat steps 2 to 4

Table 7.2: Propagation in Many-to-Many Connections

of grouping connections (signals) according to different heuristics may result in further
knowledge propagation and grouping of ports. An example of these heuristics is illus-
trated by means of figure 7.5. In figure 7.5(a), signals (and their corresponding ports)
are grouped according to the location of their origin and destination ports. The heuristic
which supports these groupings states that signals which depart from and arrive at the
same nodes usually have the same functionalities. This is typical in logic electronic sys-
tems for which a high level value is coded by means of an array of binary signals (such
as address and data values). A general example of this is shown in the typical circuit
structure of figure 7.5(b). For each cell, the input control signal and the input data sig-
nals come from different cells and the data output signals go to the same cell (examples
of circuits with this structure are shown in figure 2.7(c) and figure 2.8).

|

vy

i

. o - >
pE

[——— (b)

Figure 7.5: Grouping of Connections: (a) groupings according to connectivity, and (b)
typical arrangement of data and control signals.

The knowledge-propagation functions which implement these heuristics can result in

sensible groupings for the ports involved since signals and ports are often interrelated.
These functions require that the connections collected have signals, origin ports and

- 137 —

Chapter 7. — Model-based Reasoning —

destination ports which have, respectively, compatible functionality values (the values
are either the same or undefined). Knowledge propagation takes place in order to plan
for interrelated undefined values. The heuristics used must necessarily include restrictions
about the location of origin and destination ports in order to consider sensible groupings
of connections.

The analysis of connectivity also offers new mechanisms for the extraction of knowledge
plans for the interfaces of the cells. Groupings of ports are planned in section 4.4.2 by
means of an analysis of their names. For very poorly described designs, the names of
the objects may all be meaningless and groupings will not be formed if they are not
specified in the description. Consequently, the matching with heuristic models may not
be feasible even for cells with a moderate number of interfaces. Alternatively, plans for
the interfaces of the cells which can be managed by the system can be generated by
knowledge-extraction functions which purely deal with connectivity. These functions are
the equivalent of the knowledge-propagation functions discussed above considering that
the functionalities of all ports and signals are fully undefined. For this case, only the
requirements for the location of origin and destination ports apply (such as grouping
signals whose origin ports and destination ports respectively belong to the same nodes).

7.5 Example 2 — Data/Control Signal Flow

The relationships which are derived by means of the study of the connectivity in a situ-
ation are only established between adjacent objects, and they only interrelate knowledge
about ports and signals. The study of the flow of data and control signals interrelates
items of knowledge which correspond to nodes that are not directly connected. These
items include, in addition to knowledge about signals and the interfaces of the nodes,
knowledge about the types of each node (purpose and data flow types) and knowledge
about data/control signal flow within each node. The interrelation of the generic purposes
of the design objects allows an overall specification-level understanding of the situation
to be gained. As an example, the design of figure 2.8 is represented in figure 7.6 in
terms of the generic functionalities of nodes and signals. The heuristics which support
the interrelation of these items are based on the generic functionalities of the nodes as
follows:

1. control: a control (CTR) node sends signals to control a set of interrelated nodes
or a data path (e.g. pipelined operator and storage nodes). The control node
takes condition signals and, possibly, data signals (both through data input ports)
to make data-dependent control and sequencing decisions. Condition signals come
from nodes in the data-paths under control. A control node may take control signals
(usually boundary signals) through control input ports and it always issues control
signals through the control output ports. It is also possible to issue data signals
through data output ports (e.g. constant values contained in the control node). A
control node can store and generate control and data information.

2. storage: a storage (STO) node can store either data or control information (in
the second case the information stored produces, possibly after decoding, control

- 138 —

Chapter 7. — Model-based Reasoning —

control (external address)

control

conditions

conditions conditions (address)

(from data sub-system)

control

conditions
(select)

control (to data sub-system)

Figure 7.6: Data/Control Signal Flow Example

signals). A storage node must have data input and data output ports which usu-
ally have the same size (parallel input/output) and a data flow type of transporter
(since the data cannot be modified). It is also possible to have all combinations of
serial /parallel input and serial /parallel output (but see transducer nodes below) *.
Storage nodes have control inputs which take boundary signals or internal signals
from control nodes and, on some occasions, control outputs (e.g. to indicate that
the device is full in a stack-type storage or to indicate completion of a read/write op-
eration). Large storage nodes require addressing mechanisms to decode an address
value provided through control input ports.

3. operator: an operator (OPER) node always takes a set of values to operate upon
through its data input ports, and nearly always produces output values through its
data output ports for the result of the operation. They often have control outputs
to flag the result of an operation. In the case that there are no data outputs (e.g. a
comparator) control output ports issue condition signals which can be used to make
data-dependent decisions. Control nodes are mostly used for the control of operators
(see figure 2.5 for alternative configurations).

4Serial input/output capabilities are often provided in storage nodes for testing purposes. This is
often additional to the main parallel input/output use of the device.

- 139 —

Chapter 7. — Model-based Reasoning —

4. switch: these nodes perform a controlled transfer of information from their data
input ports to their data output ports. A data transfer path is selected by means
of control input ports and they usually do not have control output ports. A set
of interrelated storage, operator and switch nodes (a data-path) is often under the
supervision of a single control node as shown in figure 7.6. Transfers of data in
a data-path must be possible according to the data flow information in the nodes
involved (see section 4.5.3).

5. processor: a processor node is a complex structure usually formed by a control unit
which drives a data unit. It has all types of ports. For a processor, the hardware
must be able to execute a sequence of instructions of a stored program: a firmware
control implementation is required in the control unit.

6. transducer: this is a complex node for transmitting data into the system and out
of the system. Data boundary signals are required. Often, the data can be stored
in the node and code conversion, error detection and error correction may take
place. Serial-to-parallel and parallel-to-serial transformations are often used for the
communication of data into and out of the system, respectively. Data input, control
input and data output ports are necessary and control output ports are often used
(e.g. to indicate termination of a transfer of data).

The interrelations between nodes are imposed by means of the control of the data-
paths. The data-path controlled by a control node can be identified by following the
control signals generated by the control node and by establishing the flow of information
between the nodes controlled. Control nodes interact with data-paths by means of control
and condition signals (see figure 7.3(c)) defined as follows:

e an internal signal going from a control node to a non-control node (such as storage
or operator nodes) involving control ports is of a control type.

e an internal signal going from a non-control node to a control node involving control
ports is of a condition type.

An example of the kind of automatic reasoning that can be achieved for the example
of figure 7.6 is as follows: an external address is passed to the system; an operator node
operates upon the address, and possibly addresses of previous operations, to generate a
new address; an operation is selected in the operator node by means of signals issued by a
control node; a storage node keeps the address result under the supervision of the control
node; the value stored in this node addresses a control node; this node does not control
other nodes but produces output values, which after being stored in an intermediate
storage node (always under supervision of the main control node), are used as conditions
by the main control node and they are operated (decoded) by an operator (decoder) for
the control of a data sub-system; the main control node controls all the flow of information
and also makes use of condition signals issued by the data sub-system °.

>The intermediate control node corresponds to a ROM memory. A ROM memory can never be a
storage node since it is a combinational device used for the implementation of combinational networks (see

— 140 —

Chapter 7. — Model-based Reasoning —

As aresult, the whole circuit in figure 7.6 can be abstracted away as shown in figure 7.7.
In figure 7.7(a), the data-path under control is identified as indicated above. The signals
for the control of the data sub-system depart from the operator which is connected to the
data-path. For this reason, it is possible to view the situation as shown in figure 7.7(b)
which corresponds to a typical data/control structure (see figure 2.6). The circuit can be
globally seen as shown in figure 7.7(c): the circuit takes condition signals from the data
sub-system and, possibly, an external address, to control the next operation in the data
sub-system.

data-path under,
control

mi cro-contr(_)l ler micro-controller
control-unit data-path

| (b)

control (externa address)

conditions
\ (from data sub-system)

micro-controller

control (to data sub-system)

@) (©

Figure 7.7: Data/Control Signal Flow Reasoning: (a) data-path under control, (b)
identification of a data unit, and (c) overall view

7.6 Stereotypical Implementations

Designs are occasionally represented as a large network of transistors, gates or even
vector level cells as the only level in the design hierarchy. The knowledge-propagation
functions discussed above are not capable of understanding networks of gates or networks
of transistors (considering a transistor as a switch) and they may become unworkable for

section 2.2.1). Data cannot be stored in a ROM (the information contained is pre-defined) but the device
can be addressed, for example, for the generation of control signals (firmware control implementation)
as discussed in section 2.3.2. In this case, a ROM is seen as a control node as opposed to an operator
node.

— 141 —

Chapter 7. — Model-based Reasoning —

the understanding of situations with a large number of nodes (even in the case that the
nodes represent higher level cells). These problems, and mechanisms which attempt to
overcome them, are discussed in this section. The mechanisms described are based on the
observation that human experts exhibit an ability to view patterns of nodes as a whole
for the understanding of a network.

Stereotypical implementations and problem-solving strategies are represented in the
system as patterns and heuristic models, respectively. They represent the ability of
combining electronic cells to implement more complicated functions in a way that rein-
forces the heuristic models described in chapter 5. The recognition of implementation
patterns and heuristic problem-solving models corresponds to knowledge-generation func-
tions which allow:

1. the interpretation of a group of nodes as a single larger node. The number of nodes
that need to be considered for the understanding of a cell is reduced and a more
meaningful design hierarchy may be generated.

2. the generation of new knowledge plans for existing cells. The fact that a number
of nodes match an implementation pattern or a problem-solving strategy provides
further positive evidence about the heuristic models of the interacting cells being
right. The matching may result in the instantiation of undefined items for the
heuristic models of some nodes.

Knowledge-extraction functions can also be used to determine repetitive patterns in a
network. Identified patterns may be further grouped together to facilitate higher level
abstractions.

7.6.1 Stereotypical Implementation Patterns

The heuristic models of cells at the gate and transistor levels do not contain much knowl-
edge to clearly differentiate between them. For example, all gate level cells have data
input ports and a single data output port and no control ports exist. It is difficult to
gain decisive heuristic information from the analysis of a network of gates when all the
ports are seen as having the same functionalities (and no generic purpose is defined for
gate and transistor level cells). It is not even easy to differentiate, for example, an and
gate from a nand gate since their interfaces and contents are very similar. On the other
hand, low level cells are made of very few sub-cells and a small number of instances of
these (e.g. a gate level cell usually contains a few interconnected transistors and a bit
level cell usually contains a few interconnected gates). A higher level formulation of a
network may be obtained by matching typical patterns of interconnections (implementa-
tion patterns) against the network (contents pattern-matching) as shown in the example
of figure 7.8(a). The network is abstracted by matching patterns of typical bit level cells.
For example, the flip-flop cell of figure 3.2(b) is used as a pattern. The shaded regions
in the figure represent parts of the network which match the pattern. As a result, the
design is abstracted into the network of figure 7.8(b).

Contents pattern-matching is based on the matching of typical transistor and gate
level implementation patterns and patterns which can be obtained from the processing

— 142 —

Chapter 7. — Model-based Reasoning —

RO A8
.) o
5
—H—
@

FF

(b)

Figure 7.8: Contents Pattern-matching: (a) gate level network example, and (b) ab-
straction of the network.

of past designs (logged implementation patterns). An exact matching of these patterns
is a feasible problem even for large networks of gate and transistor level cells [Mir89].
These cells have a very small number of interfaces and the functionalities of the ports
can be ignored: for networks of gates, pattern-matching does not require to take into
account to which one of the input ports of a gate another gate is connected since all
ports are functionally the same (the important point is that the gates are interconnected).
Transistor cells have a control interface (e.g. the gate of a MOS transistor) but pattern-
matching may easily consider all possibilities if the functionalities of the interfaces are
undefined since the number of interfaces is so small.

The conclusions of the heuristic recognition of an electronic cell as discussed in chap-
ter 5 can be corroborated by pattern-matching on the contents of the cell (for cells at the
bit level or lower): if a cell can be represented by the heuristic model of a class of cells
and by the cell model of an instance cell of the class, the implementation pattern of the
cell instance can be matched against the contents of the cell to determine if these cells
are the same.

The search for symmetries and repetitive structures in a network also leads to ways
for the abstraction of a design. For example, the shaded regions in figure 7.8(b) rep-
resent parts of the network with exactly the same structure. Each region corresponds

— 143 —

Chapter 7. — Model-based Reasoning —

to an instance of the same bit level unit (the set of bit level units forms a vector level
cell). These methods of abstraction are not based on knowledge available about the en-
tities (sub-cells and signals) but on topological features captured from the specification.
The implementation of these methods corresponds, therefore, to knowledge-extraction
functions.

7.6.2 Problem-solving Strategies

The matching of implementation patterns is impractical for networks of bit and higher
level cells. The cells involved have more complicated interfaces which require the consid-
eration of knowledge about the functionalities of the ports interconnected: a port of a
cell cannot be connected to any port of another cell. Besides, high level cells are not so
strictly typical as required by contents pattern-matching. For example, register cells all
have a set of typical features but many different implementations exist which may differ
in minor details. It is easier in general, at these levels of complexity, to search for heuristic
features which may have been used in the implementation. An analysis based on decisive
heuristics can take place since the models of the cells involved are more elaborated. This
analysis is based on the recognition of key design strategies used for the implementation
as opposed to a detailed analysis of the interconnections. These strategies are represented
as heuristic problem-solving models.

An example of a typical design strategy is illustrated by means of figure 7.9. Fig-
ure 7.9(a) represents a comparator cell. This cell compares two bit-vectors A and B of
width n and flags one of the three outputs to indicate if A is greater (G), smaller (S)
or equal (E) to B. The input interfaces of a comparator are data input ports and the
output interfaces are control output ports (since the outputs are typically used to make
data-dependent control and sequencing decisions).

An/k-l En/k-l AO E0
kKl k kKl k kb k
A B
n n lllll
H H COMP COMP COMP
\ \ \
COMP
Lo COMP
S E G
by
SEG

@ (b)

Figure 7.9: A Design Strategy: (a) a comparator cell, and (b) a tree construction of a
comparator cell

A construction of the comparator of figure 7.9(a) is shown in figure 7.9(b). The

— 144 —

Chapter 7. — Model-based Reasoning —

construction corresponds to a tree organisation of instances of a smaller comparator sub-
cell. Each sub-cell instance compares bit-vectors of width £. Each instance in the first
level of the tree compares k bits of the input bit-vectors and the sub-cell instance of
the second level performs a final comparison over the two bit-vectors of width & which
come from the first level. This construction corresponds to a typical design strategy:
a cluster of instances of a given cell often implements the same function as a single
instance over a larger chunk of data (as discussed in section 2.2. Another example of this
is the construction of the multiplexer of figure 5.2(c)). Of course, it is simpler to reason
about a design that incorporates these circuits if there is a single node that represents
the larger comparator (multiplexer) in place of a number of nodes each representing a
smaller comparator (multiplexer).

Heuristic problem-solving models can be used for the representation of the high level
architectural features of digital electronic systems discussed in chapter 2. The represen-
tation and matching of an heuristic model of a problem-solving implementation strategy
can be done in three stages as shown in figure 7.10:

Class1 Set 1
Class Class2 Network Set 2 Set
Models Heuristics Conditions
ClassN Set M

Sub-cdll Sub-cell & New Cdll
Heuristic Models Heuristic Models

Figure 7.10: Heuristic Problem-solving Models

1. node classification: this stage defines the kinds of nodes (instantiated sub-cells) that
can be involved in the strategy. A set of class models (described as in section 5.2)
are considered for the strategy. The nodes corresponding to sub-cells which match
a class model are candidate nodes for the strategy. A node may be a candidate
for more than one class if the corresponding sub-cell matches more than one class
model. For the example of figure 7.9, the class model of comparator cells is the only
model required. All nodes in the situation which can be instances of a comparator
sub-cell are considered.

2. set definition: this stage defines interconnection heuristics between nodes based
on the knowledge represented in the corresponding class models. Candidate nodes
which comply with these heuristics are grouped into mutually exclusive sets of nodes.
In the example of figure 7.9(b), the interconnection heuristics include the connection
of control output ports of a comparator with data input ports of another compara-
tor. A set of nodes may contain mutually exclusive sub-sets. Each set or sub-set
represents a typical grouping of sub-cells. For example, each collection of nodes in a

— 145 —

Chapter 7. — Model-based Reasoning —

situation which can be grouped as shown in figure 7.9(b) forms a set (several group-
ings of comparators may exist in different parts of the situation). For each set, as
many sub-sets as characteristic positions of a node in the strategy can be considered.
For instance, in a tree network structure it is possible to consider as many charac-
teristic positions as levels in the network. In the example of figure 7.9(b) there are
two sub-sets (all the top nodes form the first sub-set and the bottom node forms the
second sub-set).

3. design reformulation: this stage defines sets or sub-sets of nodes which can be viewed
as single nodes. This results in the reformulation of the situation. For the example
considered, each set can be viewed as a large comparator node. The reformulation
can be made dependent on conditions imposed on the sets (e.g. the size or number
of nodes in the sets).

7.7 Design Reformulation

The ways of reasoning described in section 7.5 and section 7.6 may result in the refor-
mulation of the situation in order to facilitate its understanding. In general, the goals
of design reformulation include the generation of a meaningful design hierarchy and the
generation of alternative ways of looking at the design. The example of figure 7.11 is
used to illustrated this. Figure 7.11(a) corresponds to the hierarchy of a design similar
to the design in figure 2.7(a). The design consists of several instances of three different
electronic cells as shown in the design hierarchy. An understanding of the operation of
the design (see section 2.3.2) is based on the interrelation of the generic purposes of the
nodes and the analysis of data and control signals between nodes.

A simplified way of looking at the design is the bit-slice approach given in figure 7.11(b).
Each column of nodes in the design processes a slice of the overall block of data. This
chunk is processed by three different nodes in cascade and a cell receives information
from its right hand neighbour. An alternative way of looking at the design is the more
functional approach given in figure 7.11(c). By grouping the nodes of each row new cells
are obtained which perform the same function as any of its sub-cell instances but over the
whole vector of data. The reformulation of the design generates an additional number
of situations (cells in the design hierarchy) which will need to be considered in further
reasoning cycles. However, it can significantly simplify the task of model-based reasoning
(or even make it possible in the case of poorly organised designs) by allowing groups of
nodes to be viewed as a whole.

In summary, model-based reasoning is applied during a reasoning cycle to each separate
situation which forms the design (if the set of models which are used to represent the
situation has not been considered in previous cycles). If a candidate set for a situation
is considered valid, it can result in new knowledge plans for some cells of the design
and in the reformulation of the situation. This chapter concludes the description of
the automatic derivation of heuristic design knowledge. The current implementation is
described in the next chapter.

— 146 —

Chapter 7. — Model-based Reasoning —

i 1 106 I 1 Icl i Cy

" la1 ‘H I3 F* I3 F‘ 1l =1l =1 15 14 ‘ | F‘

71
i
B o | loy |
i i i i
(b) (©

Csg
1
QOO
Cy
Figure 7.11: Design Reformulation: (a) example circuit, (b) bit-slice reformulation, and
(c) reformulation based on functional blocks.

- 147 —

Part 111

An Experimental Implementation,

Applications and Conclusion

— 148 —

Chapter 8

Hercules: An
Experimental Implementation

The experimental result of this research is a knowledge-based system aimed at providing
an empirical demonstration of the viability of an automatic heuristic understanding of
design specifications. The current implementation of the system is discussed. Indicators
for measuring the performance of the system are presented. Results obtained with the
system for the heuristic classification of electronic cells and signals of real designs are
described. A discussion of the use of heuristic design knowledge for the planning and
control of automatic FCAD tasks is given in chapter 9.

8.1 Hercules Overall Structure

The task of the KB system developed is the generation and selection of models for the
cells (and signals) of a design by means of the heuristic analysis of its specification.
The overall structure of the system is shown in figure 8.1. The input to the system
consists of a specification of the design in the Electronic Design Interchange Format
(EDIF). EDIF is a standard format designed to facilitate the interchange of electronic
data between CAD systems [Ele87]. An EDIF input is parsed by means of the Manchester
University EDIF parser [BK89] and a tokenised file is produced. This file is read by a
reader program [KM87] which creates a data structure concerning structural information
about the design and its objects (netlist data). The data structure is used to produce a
representation of the structure and connectivity of the design in the logic programming
language Prolog [SS86]. Only netlist EDIF views of the cells are considered for the
representation of the design in Prolog.

The Prolog design representation contains factual information about the design ob-
jects: individual Prolog facts are used to represent cells, instances, ports and nets (sig-
nals). This representation is referred to as a net-oriented cell representation. A compact
description of design cells is also required for the matching of implementation patterns
with low level networks (see section 7.6.1). This representation, which is referred to as
a part-oriented representation, is produced from the net-oriented representation of the
cell. A unique clause or rule represents each cell. The head of the clause is the cell being
defined and the body of the clause corresponds to the set of instantiated sub-cells used
to represent the cell. The Prolog representation of design cells and the translation from

— 149 —

Chapter 8. — Hercules: An Experimental Implementation —

EDIF Design
Specification

EDIF to Prolog
Trandation

|

History of
Past Designs

Semantic
Networks

=
(Consiraints_J

Plausible
‘ Relationships A

M odel-based
Reasoning

System
Implementation
Patterns

|

Heuristic Models
of the Design Cells

Figure 8.1: Overall Structure

EDIF to Prolog were developed during previous work and they are described in detail
in [Mir89].

Each reasoning cycle of the system involves three steps as shown in figure 8.1:

1. a step of recognition-targeted reasoning for the generation of heuristic cell models
from knowledge plans.

2. a step for the selection of heuristic models for the cells of the design.
3. a step of model-based reasoning about the representation of the design situations.

The level of expertise of the system and the quality of the results produced for the
analysis of a design is obviously subject to the quality and amount of system knowledge.
System knowledge which is used in the current implementation includes:

1. system knowledge for recognition-targeted reasoning which includes:

(a) heuristic models of classes of electronic cells (21 class models which include
classes of cells such as registers, multiplexers, logic gates, flip-flops, etc.).

— 150 —

Chapter 8. — Hercules: An Experimental Implementation —

(b) semantic networks and dictionaries for name processing. Two types of semantic
networks are considered: networks for typical cell names (26 networks) and
networks for typical port and signal names (18 networks). For each type of
network a dictionary with the words involved in the network is used for name
matching (see appendix B) (74 words exist in the dictionary of cell name words
and 28 words in the dictionary of port name words).

(¢) knowledge for the derivation of plausible cell types (see section 4.5) and for the
interrelation of cell types and cell functionalities (see section 3.3).

(d) stereotypical implementation patterns of low level cells (see [Mir89]) (5 patterns)
which are not used for obtaining the results presented in this chapter.

2. the evaluation function for the selection of cell models requires knowledge to estimate
the complexity of a cell from a candidate model. This kind of knowledge is described
in section 6.6.

3. system knowledge for model-based reasoning includes:

(a) constraints and plausible relationships between the types of a cell and the types
of its sub-cells (see section 4.5).

(b) constraints about the electronic functionalities of interrelated ports and signals
(e.g. a clock signal cannot drive a select port) (14 rules).

c) knowledge for the propagation of electronic functionality values and for the
g g
grouping of ports and signals as discussed in section 7.4 (see table 7.1 and

table 7.2).

The system stores information about the processing of past designs. This history
information can be added to the system knowledge for the processing of new designs.
Heuristic cell models and implementation patterns of electronic cells formerly processed
can be added to the system for the matching of new cells. Semantic networks and
dictionaries obtained from the processing of past names can be merged to the system
networks and dictionaries for the matching of new names. The system can run in an
automatic or an interactive mode. In the automatic mode, system knowledge is used
for the processing of a design and no user control is required. History knowledge is not
automatically retrieved in the current implementation. In the interactive mode, the user
can select history knowledge for processing a new design and browse knowledge available
in the system and system results. Facilities for explaining the matching of class models
and the matching of names are provided. The matching of implementation patterns is
not yet included in the automatic mode but it can be considered in the interactive one.
The case-studies discussed in this chapter are all processed in the automatic mode and
no history knowledge is used.

— 151 —

Chapter 8. — Hercules: An Experimental Implementation —

8.2 System Strategy

The strategy of the system for the derivation of cell models is discussed in this sec-
tion. The system executes knowledge-generation /knowledge-propagation cycles for the
derivation of knowledge plans and cell models. Knowledge-extraction from the design
specification takes place during the first reasoning cycle which forms initial knowledge
plans for the cells. The formation of initial knowledge plans is carried out following a
bottom-up strategy: the system starts with the cells which have the highest depth level
in the hierarchy graph and works bottom-up towards the top cell of the graph. A cell
is considered once its sub-cells have all been considered. The last cell to be consid-
ered is the top cell C; in the graph. This strategy can guarantee more detailed initial
knowledge plans than other strategies (such as a top-down strategy): cells at lower lev-
els of abstraction can in general be more easily and reliably classified than higher level
ones. Knowledge about the sub-cells can then be passed to the cells for initially forming
elaborate knowledge plans.

Considering that the n cells of the design are ordered from (' to €, according to their
depth level (where C,, is any of the primitive cells of the design which have the largest
hierarchy depth level), the complete strategy of the system is as follows:

Step 1- For :=n to 1 step —1 do
Form plans for cell C; by knowledge-extraction and by propagation of the types
of its n; sub-cells.
Generate heuristic models for cell C; by comparing these plans with heuristic
class models in the system.
Select set of models for the C; cells (i <j<n) in the design which results in
a higher evaluation value F; for situation S;.

EndFor

Step 2- For:=1ton do
Apply model-based reasoning to situation S; if the set of models for S; has not
yet been considered. This may result in new knowledge plans if the represen-
tation of the situation is valid.

EndFor

Step 3- Prompt termination condition: if the current representation for all situations
has already been considered (no new models were selected) or no new more
plans can be generated from the analysis of the selected solution set, stop.

Step 4- For:=1ton do
Generate new heuristic models by comparing unconsidered plans with system
heuristic models.

EndFor
Step 5— Select best set of models for the overall design and go back to step 2.

The prompt termination condition is required since it is not possible in general to
consider all candidate solution sets. It is clear that reasoning about poorer candidate

— 152 —

Chapter 8. — Hercules: An Experimental Implementation —

sets (sets which give lower evaluation function values) might result in new plans which
could lead to more refined solution sets. The current prompt termination condition can
be relaxed by considering other alternatives such as allowing the processing of a maximum
number of candidate solution sets (for the overall design or for each individual situation)
or by pruning from the search space those candidate solution sets whose evaluation falls
below a threshold value (these alternative termination conditions are not considered for
the results presented).

8.3 Current Status of the System and Limitations

The prototype of the system has been implemented using Sicstus Prolog [CW88]. The
results presented in this chapter have been obtained by running the system on a Sun4/330
computer. The current implementation contains 3559 lines (15% comments) of C code
and 26719 lines (24% comments) of Prolog code with 1500 Prolog predicates approxi-
mately. The knowledge-derivation functions which are currently used in the implemen-
tation include:

1. the k-extraction functions discussed in section 4.4 for deriving knowledge about the
electronic functionality of the design objects from the analysis of their names, and
in section 4.5 for inferring the types of a cell.

2. the k-generation functions discussed in section 5.5.1 for the comparison of knowledge
plans with heuristic models of classes of cells, and in section 7.6.1 for the matching
of stereotypical implementation patterns.

3. the k-propagation functions discussed in section 4.5 for the propagation of knowledge
about the types of the cells, and in section 7.4 for propagating knowledge about the
electronic functionalities of ports and signals according to the connectivity of the
design.

The limitations of the current implementation include:

1. the knowledge-derivation functions based on the analysis of data/control signal flow
and based on the matching of problem-solving strategies are not implemented.

2. plans and models are not hierarchically organised. Lists are used instead, which
implies that the whole list of plans or models for a cell must be examined to determine
if a plan or a model for a cell has already been considered.

3. the number of ports which can be ignored when matching the interfaces of a plan
with the interfaces of an heuristic model (see section 5.5.2) must be lower than 25%
of the total number of ports.

4. the number of sub-cells which can be ignored when matching the contents of a plan
with the contents of an heuristic model (see section 5.5.2) must not represent more
than 25% of the total number of estimated transistors for the cell.

— 153 —

Chapter 8. — Hercules: An Experimental Implementation —

5. the weighting factors for the slots of a plan or model are arbitrarily chosen according
to the relative importance attributed to each slot (0 < rp < 1). The choice of
table 8.1 guarantees a value for the evaluation of a model or a plan close to 1 in
equation 6.9. All the sub-slots of a slot have the same weighting factors which are
also arbitrarily chosen for each type of compound slot.

Slot Weighting
Factor

Name 0.7
Types 0.2
Interface 0.6
Contents 0.6
DataFlow 0.2
Electronic Functionality 0
Constraints 0.5

Table 8.1: Slot Weighting Factors

6. the number of possible combinations for the matching of the interface slot of a plan
with the interface slot of a system model cannot exceed 1000. If the number of
combinations is larger, the matching of the plan is not considered.

7. a name can only successfully match one semantic network of names. A minimum
evaluation value of 0.15 is required for considering that a name matches a network.
A minimum evaluation value of 0.2 is also required for considering a word in a name
close to a word in a semantic network, and a maximum number of 5 words which
are close to a word of a name can be retrieved from the dictionaries.

8. the maximum number of failed sets which can be analysed for a situation of a design
is set to 1000.

The value of these system input parameters is chosen as a result of the experimentation
with the case-studies discussed later in the chapter.

8.4 Number of Plans/Models Derived

This section calculates the number of knowledge plans and models that can be derived
for the cells of a design according to the k-derivation functions at present implemented.
The calculation illustrates the way in which the system operates and defines indicators
which are used for evaluating the performance of the system. The term fmy indicates
the number of plans that are available for matching in the k-th reasoning cycle and fj
the number of new solution plans (models) generated during the cycle.

The knowledge plans extracted during the initialisation cycle include information
about the types and interfaces of the cells. A single plan for the types of a cell is

— 154 —

Chapter 8. — Hercules: An Experimental Implementation —

initially derived according to the analysis discussed in section 4.5. If more than one type
is possible for a type sub-slot, the possible types are defined in the slot for the constraints
of the plan (see the example plan of table 4.1). The initial planning of the interface of a
cell is done according to naming as indicated in section 4.4. The planning of the interface
of cell C; generates at most I; + 2 plans: one plan from the analysis of the names of the
ports of the cell, one plan from the analysis of the names of the signals which connect the
ports of the cell and one plan for each one of the [; instances of cell C; from the analysis
of the names of the signals which connect them (in the case that C; is a primitive cell the
number of plans is at most I; +1). The single plan for the types of the cell is combined
with each plan for the interfaces of the cell. Considering that some plans for each cell
may be repeated (since some of the cell interface arrangements will be the same) the
number of possible plans extracted for the n cells of a design is given by

g <> (Li4+2)—p=2%n+> Li—p (8.1)
=1

=1

where p is the number of primitive cells in the design.

The instantiation ratio of a design is defined as the quotient between the number of
instances in the design and the number of cells n. This ratio indicates the average number
of instances per cell and it is defined as

= izt (8.2)
n
Considering the instantiation ratio of the design the inequality 8.1 becomes
fmi <nx(Ir+2)—p
The actual number of knowledge plans derived is given by
frmy = (L= Ffi)[n(Ir +2) - pl (8.3)

where the filtering factor Ff; with
0<Frfi <1

indicates the proportion of knowledge plans which have been filtered out for all the cells
in the design during the extraction of knowledge since they were repeated.

Each one of the plans extracted may match some of the h heuristic class models in
the system by means of the knowledge-generation function described in section 5.5. The
comparison of a plan with the ¢-th heuristic model H, in the system may result in a large
number of solution plans as asserted by equation 5.5. A restricted knowledge-generation
function as defined by equation 4.4 is used which produces at most one solution plan
or model from the comparison of a knowledge plan and a system heuristic model. The
solution plan considered is the one which has the highest confidence evaluation value (see
limitations of this in section 4.6). Therefore, if there are h heuristic models in the system

— 155 —

Chapter 8. — Hercules: An Experimental Implementation —

and frmy plans to consider, the number of solution plans f; that can be generated during
the first reasoning cycle must be

i < h (U= Ffy)[n(Ir +2) = p]
and the actual number of solution plans generated is given by
fi=&ni (1 = Ffy)[n(Ir+2)—p] (8.4)

where &m; is the average number of new models generated per plan available for matching
during the first reasoning cycle.

During a step of model-based reasoning, the examination of the valid candidate set
selected can result in I;+1 plans for cell C;: one plan from the analysis of the relationships
between cell C; and its sub-cells and one plan from the analysis of the relationships of
each one of the I; instances of the cell (in the case that cell C; is flat, only the instances of
the cell can be used). The number of plans which are generated by model-based reasoning
for the cells of the design in the k-th reasoning cycle (k > 1) must be

frg <DL+ 1) = p
=1
which, by means of the instantiation ratio of the design defined by equation 8.2, gives

Jme <n*x(Ir+1)—p

The actual number of knowledge plans derived by propagation of knowledge in the k-th
reasoning cycle is given by

Jme = (1= Ffi) (1 — Fep) [n (Ir + 1) — p] (8.5)
where the filtering factors Ff), and Fey,
0 < Ifp, Fep <1

indicate the proportion of knowledge plans which have been filtered out for all the cells
in the design in the k-th reasoning cycle since they are repeated or they had already been
generated in previous cycles, respectively. The value of these factors must in general
increase when k increases. Fach one of the new plans formed for the k-th reasoning cycle
may match once some of the h heuristic models in the system. The number of solution
plans fi that can be generated during the k-th reasoning cycle must be

fo =8mip (1 — Ffy) (1 — Feg) [n(Ir + 1) — p] (8.6)

where &mny, is the average number of new models generated per each plan available for
matching in the k-th reasoning cycle. Given K reasoning cycles executed, the number of

models derived is given by
K

F=>fe (8.7)

k=1

— 156 —

Chapter 8. — Hercules: An Experimental Implementation —

8.5 Case-Studies

The case-studies which are used to evaluate the performance of the current prototype
of the system are introduced in this section. They correspond to real electronic designs
obtained through the EDIF Technical Center at the University of Manchester. The
designs are ordered in table 8.2 according to the size (in bytes) of the EDIF and Prolog
files which represent the designs. The size of a Prolog file depends on the amount of
netlist information available in the corresponding EDIF file.

‘ Design Name H Design Origin ‘ EDIF size ‘ Prolog size ‘
counter CAD Lab. Univ. Manch. 2582 6226
h_bilbo CAD Lab. Univ. Manch. 9565 13065
add Rutherford Appleton Lab. 18103 21048
valid1l Rutherford Appleton Lab. 19800 24338
6g011a CAD Lab. Univ. Manch. 77394 56072
multmilldesign || Industrial Company 139111 77857
designtopl Rutherford Appleton Lab. 163756 182181
18ara700a CAD Lab. Univ. Manch. 210007 249726
cwheell_0 CAD Lab. Univ. Manch. 1176672 262927

Table 8.2: Case-Studies

The design hierarchy of each of these electronic designs is given in appendix F. The
designs ‘counter’, ‘h_bilbo’, ‘add’ and ‘valid1’ are designs of cells at the vector level: the
design ‘counter’ describes a counter cell which is composed of a few primitive vector level
cells; the design ‘h_bilbo’ describes a register cell of type bilbo [WP82] which is composed
of bit level cells which are decomposed down to the gate level; the design ‘add’ describes
an adder cell in terms of gate level cells; and the design ‘valid1l” describes a logic function
at the vector level in terms of vector level sub-cells which are decomposed down to the
gate level. The designs ‘6g011la’, ‘multmilldesign’ and ‘designtopl’ correspond to the
design of small processor level cells which are decomposed down to the bit or gate level.
Finally, the designs ‘18ara700a’ and ‘cwheell (" describe large processor level cells: the
design ‘18ara700a’ is decomposed down to the gate level and the design ‘cwheell 0’ is
mostly composed of vector level cells which are not further decomposed. The complexity
of processing these designs and the results obtained are discussed in the next section.

8.6 System Evaluation Indicators

This section describes the indicators which are used for evaluating the performance of
the system and the results obtained for the case-studies described in the previous section.
These indicators measure the complication of the design being analysed, the complexity
of the processing, the effectiveness of the knowledge-derivation functions and the quality
of the knowledge derived.

- 157 —

Chapter 8. — Hercules: An Experimental Implementation —

8.6.1 Indicators of Design Complication

In order to compare the results obtained for the different designs, the following indicators
are used as a measure of the degree of elaboration or complication of the designs analysed:

1. the number of cells n in the design.
2. the number of primitive cells p in the design.

3. the dependability between cells in the hierarchy graph. This indicator is defined as
the quotient between the number of arcs in the hierarchy graph and the number of
nodes or cells. It is calculated as

_ Z?:l n;

n

Dy (8.8)
where n; is the number of sub-cells (or down-dependencies) for cell C;. For graphs in
which each cell has at most one up-dependency (each cell is used in the definition of
only one cell except for the top cell), such as in the example graph of figure 8.2(a),

the value of Dy is always
Dg <1

and it tends to 1 when n increases. For graphs which have more than one path
leading to a cell
Dg > 1

such as the example graph of figure 8.2(b). The larger the value of Dg the more
important is the interrelation between design cells (see figure 8.2(c)). As a result,
the models of the cells must be consistent in a larger number of different situations.

4. the largest depth level h,,,, of a cell in the design which is defined as
hmar = mazx{hy,... h,} (8.9)

The larger the value for h,,,, the larger the number of reasoning cycles which can
be expected since knowledge is propagated level by level in each cycle.

5. the instantiation ratio of a design defined in equation 8.2. Considering that each
instance of a cell offers new possibilities for the derivation of knowledge about the
cell, the larger the instantiation rate of a design the larger the number of knowledge
plans which can be expected.

6. the average number of ports per cell P,, in the design. This is an indication of the
level of abstraction of the cells of the design (bidirectional ports count twice). The
larger the number of ports the more complex is the matching of knowledge plans
with class models.

— 158 —

Chapter 8. — Hercules: An Experimental Implementation —

Cy
Cy Cy
G
C, C2<\ 5 Cq
) \64) / \2 o 5
| Cell | hi | ni | wd; i 1270
| Cell || hi | n; | ud; C, 17270 Cy [2]2]1
o fr]1r]o Cy |21 |1 Cs |31 |1
Cy | 2121 Cs || 221 Cy | 42| 2
Cs 3101 Cy 310 2 Cs 510] 1
Cy 3101 Cs 3101 Ce || 510 | 2
Dg = 0.75 Dg =1 Dg =1.16

Figure 8.2: Dependability between Cells

7. the average number of paths per cell L,, in the design. If L; is the number of paths
that lead from cell (] to cell C;, this indicator is calculated as
Zn:1 Li
Ly, = —/——— 8.10
P (8.10)
Similarly to Dyg, the larger the value of L,, the more important is the interrelation
between cells.

Table 8.3 contains the value of these indicators for the designs analysed. The design
‘counter’ has a significant number of ports per cell which affects the complexity of frame
matching and it has few cells (n), few instances per cell (Ir) and just one situation (n-p).
The design ‘h_bilbo’ includes a larger number of cells and situations and the cells are
rather small (P,,) which facilitates the matching and identification of cells. The design
‘add’” has a significant number of cells and situations. As for the previous design, it has
a substantial design hierarchy. The dependability between cells (Dg) is also significant.
The cells are quite small (P,, = 3.71) and the number of instances per cell is also low.
The discussion for the design ‘valid1l’ is similar to the previous design. The dependability
between cells is poorer for this design (Dg < 1) and the cells are on average larger.

— 159 —

Chapter 8. — Hercules: An Experimental Implementation —

Design Name H n ‘ P ‘ Dy ‘hmax‘ Ir ‘ P ‘ Law ‘

counter 4 1 3 |0.75 2 0.75 | 12.50 1
h_bilbo 10 6 1 4 1.50 | 4.50 | 1.11
add 141 3 | 1.36 6 1.86 | 3.71 | 1.46
valid1 18 |1 15| 0.94 3 1.17 | 5.11 1
6g0lla 18| 6 | 2.06 4 10.72 | 4.94 | 2.18
multmilldesign || 17 | 15 | 1.29 3 11.41 | 6.18 | 1.38
designtopl 35 | 17 | 2.43 4 12.97 | 851 | 2.5
18ara700a 40| 8 | 3.5 7 15.15 | 14.43 | 6.9
cwheell_0 32|31 0.97 2 6.50 | 26.62 1

Table 8.3: Indicators of Design Complication

The designs ‘6g0l1la’ and ‘multmilldesign’ are larger designs. They have a similar
number of cells which is slightly larger in the case of the design ‘multmilldesign’. This
design also has a slightly larger number of instances per cell. On the other hand, the
first design has more situations (18 —6 = 12) and the dependability between cells is sub-
stantially more important. The last three designs in the table, ‘designtopl’, ‘18ara700a’
and ‘cwheell (" have a large number of cells of a considerable size and a significant num-
ber of instances per cell. The design ‘18ara700a’ has a deep design hierarchy and the
dependability between cells is quite high. Finally, the design ‘cwheell 0’ has no design
hierarchy: all the cells are primitives of the design (except the top cell for which the
interfaces are not defined in the specification as it happens for the design ‘18ara700a’).
The design consists of a network of large vector level cells with a significant number of
instances per cell.

8.6.2 Indicators of Processing Complexity
The complexity of processing a design is measured by means of four groups of indicators:
1. Indicators related to the processing time:

— the total time for the processing of the design T

— the average processing time per cell T,,.
2. Indicators related to the number of reasoning cycles:

— the number of reasoning cycles K required to reach the solution set.

— the average number of productive cycles K, per cell (a cycle is productive for a
cell if new models are generated for a cell during the cycle).

— the number of failed situation representations Nf which is defined as
n—p
Nf =Y Nf; (8.11)
=1

— 160 —

Chapter 8. — Hercules: An Experimental Implementation —

where Nf; is the number of failed sets in the i-th situation, n the number of design
cells and p the number of primitive cells in the design.

3. Indicators related to the number of models and plans:

— the number of cell models generated Nm.
— the average number of models generated per cell in the design Nm,,,.
— the number of cell knowledge plans generated Np.

— the average number of plans generated per cell in the design Np,,.
4. Indicators related to the heuristic selection of cell models:

— the number of candidate solution sets N calculated in equation 3.2 as
N =] ms (8.12)
=1

where m; is the number of models generated for the ¢-th cell.

— the average number of candidate solution sets per situation N,, calculated as

n—p .
N,y = Zizt Vi (8.13)
n—p
where N; is the number of candidate sets for the i-th situation in the design
calculated as

7=1

with m;; the number of models for the j-th sub-cell of cell C;.

— the number of failed candidate sets NF' for the overall design. This considers
the sets failed for the separate situations and the sets which failed for the overall
design (e.g. if two cells in different situations have the same model and the system
is forced to look for different models for each cell of the design).

— the effectiveness of candidate set selection £ defined as

NF

E=1- v (8.15)

The indicators related to the processing time and the number of reasoning cycles for the
designs analysed are shown in table 8.4. The processing time depends on the complexity
of the design (as shown by the indicators of table 8.3) but also on the ability to form
accurate knowledge plans with the knowledge available in the specification. If a small but
significant amount of knowledge is initially extracted, a larger number of reasoning cycles
can be generally expected since there will be more possibilities of adding knowledge to
undefined items. For example, the designs ‘counter’ and ‘h_bilbo’ are accurately specified
according to the knowledge in the system (see section 8.6.3) and only one productive
reasoning cycle per cell (K,,) is used to reach the solution set. On the other hand,

— 161 —

Chapter 8. — Hercules: An Experimental Implementation —

the system partially succeeds in extracting initial knowledge for the designs ‘18ara700a’
and ‘cwheell 0" (see section 8.6.3) and several reasoning cycles (K') are executed before
a solution is proposed. The processing time for the design ‘cwheell 0’ is high since
the number of reasoning cycles is higher than for previous designs and it has just one
situation with a high number of instances of large cells (this significantly increases the
time required for model-based reasoning).

Design Name Processing Time Reasoning Cycles
T (sec) | Toy (sec) || K | K, | N
counter 7 1.8 2 1 0
h_bilbo 11 1.2 2 1 0
add 21 1.5 2 1 6
valid1 104 5.8 3 1117 4
6g0lla 84 4.7 5 | 1.44 2
multmilldesign 273 16 3113 6
designtopl 563 16 41 1.1 11
18ara700a 476 11.9 51 14 2
cwheell_0 10107 335 91 29 2

Table 8.4: Indicators of Processing Complexity — |

In general, the number of failed situation sets can be expected to be higher for designs
which have high values for Dg and L,, since a cell must be consistent in a larger number
of different situations. In the case of the designs ‘counter’ and ‘h_bilbo’ there are no failed
situation sets since ‘good’ solution sets are initially generated. The average number of
failed situation sets Nf,, is in general quite low for the rest of designs. Currently, a
situation set can only fail because of three different reasons:

1. a constraint between the types of a cell and the types of its sub-cells is violated.

2. two or more cells in the situation are modelled with the same model (this test is
optional when the system is run).

3. a connectivity rule is violated.

These three tests (together with the test for different models for the cells of the overall
design) represent quite a limited ability to test for the consistency between models. The
representation of knowledge about electronic design strategies is essential to strengthen
the quality of the results and it is also important for the formation of highly accurate
knowledge plans during model-based reasoning (see section 9.3).

The indicators which relate to the number of models and plans and to the heuristic
selection of cell models are shown in table 8.5. The average number of plans generated
per cell does not have any clear relationships with the indicators of design complication.
This is correct since the ability to generate knowledge for a design should not depend

— 162 —

Chapter 8.

— Hercules: An Experimental Implementation —

on the structure of the design. The average number of plans generated per cell can
critically depend on the ability to extract initial knowledge from the specification (see
section 8.6.3). If only little knowledge can be extracted there will be few initial plans,
the chances of matching system class models will decrease and so will the ability to
form plans by knowledge-propagation. This is the case for the design ‘6g011a’. From
table 8.5, the system appears to be quite successful in matching knowledge plans with
system models for the generation of cell models. The average number of candidate sets
per situation (Ng,) is prohibitive for most designs which indicates that only with an
effective mechanism for selecting models (£ close to 1) is it possible to reach a solution.
This is generally the case for the current implementation due to the prompt termination
condition used and to the fact that model-based reasoning has quite limited knowledge

for discarding combinations of models.

Design Name Number Models/Plans Heuristic Model Selection

Nm | Nmay | Np | Npay N | Now | NF] &
counter 11 2.75 16 4 36 36 0 1
h_bilbo 50 5 68 | 6.8 6.1x10° | 7.3x10° 0 1
add 72 | 5.14 | 89 | 6.36 || 2.1x10° | 2.8x10% | 2.8x10% | 0.87
valid1 127 7 166 | 9.22 || 1.1x10"° | 3.4x10% | 1.0x 10" 1
6g011a 44 | 244 | 60 | 3.33 || 2.1x10* | 3.3x10% | 4.4x10% | 0.98
multmilldesign || 133 | 7.8 | 189 | 11.12 || 1.4x10™ | 7.0x10"2 | 1.8x10% 1
designtopl 167 | 4.8 | 264 | 7.54 [/ 9.8x10'"® | 1.9x10' | 1.9x10™ | 1
18ara700a 87 | 2.17 | 215 | 5.38 || 6.5x10° | 4.9x10% | 5.1x10° 1
cwheell_0 142 | 44 |612] 19.1 || 1.5x10'® | 1.5x10'® 1 1

Table 8.5: Indicators of Processing Complexity — II

8.6.3 Effectiveness of the Knowledge-extraction Functions

The extraction of initial knowledge from a design specification clearly has a major con-
tribution towards improving the quality of the results produced and towards reducing
the complexity of processing the design. Currently, the most significant function for the
extraction of knowledge is based on the analysis of names. Indicators of the effectiveness
of name analysis are calculated as the proportion of names which matched with already
existing semantic networks. For example, considering that the names of the ports of the
electronic cells often refer to their electronic functionality the quotient

n® port names matched with existing networks

NM, = (8.16)

nQof port names

is an indicator of the success in the identification of the electronic functionalities of cell
ports by analysis of port names. Similarly, the indicators NM. and NM,, are indicators
of the success in the identification of the electronic functionalities of cells and signals by
analysis of cell names and net names respectively.

- 163 —

Chapter 8.

— Hercules: An Experimental Implementation —

The indicators of name analysis are correlated with a more general indicator &
which measures the effectiveness of the knowledge-extraction functions. This indicator is

fi
Z?:1 fk
where f; is the number of plans generated as a result of the initialisation cycle, fi is the
number of plans generated as a result of the k-th reasoning cycle and K is the number of

defined as the quotient

gel’t — (817)

reasoning cycles executed. The value of these indicators for the designs analysed is given

in table 8.6.

Design Name || NMc (%) | NMp (%) | NMn (%) | Eeut

counter 100 52 75 0.94
h_bilbo 90 94 31 0.95
add 50 0 9 1

valid1 61 0 0 0.94
6g011a 66 0 0 0.36
multmilldesign 94 20 4 0.84
designtopl 48 15 16 0.85
18ara700a 55 0 0 0.19
cwheell_0 15 0 44 0.25

Table 8.6: Effectiveness of the Extraction of Knowledge

The first two designs in the table, ‘counter’” and ‘h_bilbo’, are described with names
which are meaningful to the system (they match with semantic networks existing in
the system and therefore with known electronic functionality values). As a result of
this, highly accurate knowledge plans can be formed which implies that an important
proportion of knowledge plans for the cells of the designs are generated during the initial
cycle (€. is close to 1). The analysis of cell names is still significant for the designs in
the middle of the table, but port names and net names carry little information which
can be understood by the system (port names and net names are just numbers in some
designs such as ‘6g011a’ and ‘18ara700a’). For the last design in the table, ‘cwheell 0,
the names of most cells are significant but the system has no knowledge about the names
of the off-the-shelf cells used. In general, the value of &.,; tends to be high when enough
knowledge can be extracted by name analysis and low otherwise.

8.6.4 Evaluation of the Knowledge Derived

The following indicators are considered for evaluating the knowledge derived:

1. the average confidence in the models selected e,,. This is defined as the average
value of the confidence in the model of each cell in the design.

— 164 —

Chapter 8. — Hercules: An Experimental Implementation —

2. the confidence in the design representation £j. This corresponds to the evaluation
of the top situation of the design according to equation 6.12.

3. the average complexity deviation of the design cells r,, which is calculated as

n
Tav = E
=1

|1—TZ'|

n

(8.18)

Large values for r,, indicate that the modelling of the cells deviates from typical
representations which significantly affects the value of Fj.

4. the proportion of models in the selected set which are defined T4d.
5. the proportion of defined models in the selected set which are correct Te.

The results obtained for the designs analysed are given in table 8.7. The results are
clearly better for the designs in the upper part of the table for which the electronic cells
are smaller. Cells with a small number of inputs and outputs are easier to match and
they do not differ significantly from typical classes of cells. On the other hand, large
cells can only be matched if their interfaces can be adequately organised. The number
of correct models generated is at times significantly low, specially for the designs which
contain the largest cells. Two main reasons justify this:

Design Name H Cav ‘ E, ‘ Taw (%) ‘ Td (%) ‘ Te (%) ‘

counter 0.67 | 0.59 21 75 100
h_bilbo 0.77 1 0.9 86 80 100
add 0.55 | 0.2 217 85 50
valid1l 0.65| 0 54 77 43
6g011a 0.25 | 0.14 270 66 8.3
multmilldesign || 0.66 | 0.45 10 82 50
designtopl 0.40 | 0.07 78 60 43
18ara700a 0.16 | 0 112 20 25
cwheell_0 0.59 | 0.24 0 75 20

Table 8.7: Evaluation of the Knowledge Derived

1. As described in section 8.1, a reduced set of class models is used for the analysis
of these designs. This set only includes generic models of typical classes of cells.
Models for specific electronic cells (such as typical off-the-shelf cells) can be easily
added to the system. However, the use of only a generic set of models has been
preferred in order to estimate the quality of the results produced in a more general
environment.

— 165 —

Chapter 8. — Hercules: An Experimental Implementation —

2. The system requires more advanced model-based reasoning functions for testing the
consistency between the cell models in a situation and for propagating knowledge.
For example, the system is unaware of typical strategies of electronic design (see
section 7.6.2).

The evaluation of the overall design representation is in general low. This is because
the current complexity estimation function is only a rough approximation of the reality
as discussed in section 6.6. For the case of the design ‘cwheell 0’ the value of rg, is 0
since the top cell of the design is not defined (no interfaces are given) and the complexity
of the cell can only be estimated from its contents. The evaluation of designs ‘valid1l” and
‘18ara700a’ give a result of 0 since the models of the cells involved in the top situation
are all undefined.

8.7 Discussion

This chapter has presented the current implementation of the system which presently
contains a reduced example set of class models and semantic networks. The system is
fairly successful in the identification of electronic cells in realistic designs but the knowl-
edge of the system must be enhanced if high quality results are sought. The functions
used for model-based reasoning are not restrictive enough and knowledge about electronic
design strategies is required in order to improve this. The results of the system should
largely improve if it is endowed with a significant amount of class and cell models (such as
models describing the cells of typical families of circuits used in electronic design) since:

1. The complexity of recognition-targeted reasoning only grows linearly with the num-
ber of class and cell models in the system (and this should considerably improve if
the models are organised hierarchically).

2. The estimated complexity of the selection of models is not exponential with the
number of models available in the system.

3. The complexity of model-based reasoning does not depend on the number of class
models in the system or in the number of models available per cell.

As a consequence, higher quality results should be generated if more system knowledge
is available at the expense of an affordable increase in processing time.

— 166 —

Chapter 9

Conclusion

An heuristic classification of the cells and signals of a design symbolises a specification-
level understanding of the design. The reasoning method used for reaching this level
of understanding has without question limitations but it can in general, by exploiting
knowledge implicit in the specification, allow the capabilities of ECAD frameworks and
systems to be extended. Methods and strategies for the analysis, design and management
of electronic data can be better planned and controlled by taking into account knowledge
generated by means of an heuristic analysis of the specification. Examples of real and
viable applications are discussed. Further work is necessary for a formal integration of
design data and heuristic design knowledge, for enhancing the reasoning mechanisms upon
which the heuristic classification of electronic data is based, and for the application of the
knowledge generated to actual problems in the field.

9.1 Design Understanding — Limitations

A specification-level understanding of the description of a design is symbolised by means
of a set of models which classify its cells and signals. The success or failure of the reasoning
process for the generation of a consistent high quality solution set depends on the ability
to extract initial knowledge from the specification, on the ability to form appropriate
knowledge plans for the cells of the design, on the amount of knowledge available in
the system and on the ability to select the most adequate models. The limitations of
the reasoning process imply that the results produced must either be accepted with
reservations or, hopefully not very often, partially or fully rejected. These limitations do
not represent a critical drawback: human experts find themselves in a similar position
when they attempt an heuristic understanding of a specification. The limitations which
the system faces include:

1. the way in which knowledge plans are formed (by extraction, generation or propa-
gation of knowledge) is heuristic: the plans are viewed with limited confidence and
all knowledge plans which can be formed from the combination of all planning pos-
sibilities for the separate items of knowledge involved in a plan are not generated
(see section 4.6).

2. the methods for evaluating the confidence in the items of knowledge generated and
for evaluating and selecting solution sets are heuristic: they are not probabilistic.

- 167 —

Chapter 9. — Conclusion —

The use of heuristic methods is consistent with the idea of attempting to simulate
human reasoning for the evaluation and selection of solutions since human experts
do not appear to be probabilistic reasoners only (see section 6.2).

3. the reasoning process may halt even though more refined solution sets could still
be possible: a prompt termination condition is required since it is not feasible in
general to consider all possible candidate solution sets. Typically, the reasoning is
halted when it is not possible to add further knowledge for the formation of new
knowledge plans to the best solution set generated. However, it may be possible
that reasoning about poorer candidate sets leads to more refined solution sets after
further reasoning cycles. The termination condition can be relaxed (for example by
allowing the processing of a maximum number of candidate sets or by pruning from
the search space those candidate sets whose evaluation falls below a threshold value)
but it cannot be disregarded in most cases.

The limitations of the reasoning process imply that even in the case that a best
solution exists for the understanding of a design the system may be unable to find it.
For those cases which are beyond the computational capabilities of the system or the
knowledge available to the reasoning process, the aims are reduced to an exploration
of the architecture of the design (architecture exploration) and to the understanding of
substantial parts of it as opposed to overall understanding. In any case, it is clear that the
types of expert knowledge considered for the representation of an heuristic understanding
of the design can be derived from the study of available behavioural data. At least in
two cases detailed behavioural data must be used for the derivation of expert knowledge:

1. when the system is unable to derive enough knowledge for the understanding of the
design, and this knowledge is judged convenient to carry out a task or support an
hypothesis.

2. when a formal proof of the validity of the expert knowledge generated is needed
in order to guarantee the quality of the results of a task or the legitimacy of an
hypothesis which are based on this knowledge.

The derivation of expert knowledge from mathematical data can be achieved by simula-
tion of the electrical and logical behaviours of the design (e.g. it is possible to consider
stereotypical simulation plans to verify if a cell can actually behave according to a given
electronic functionality). This is also a human expert activity which is often subordinated
to an initial analysis of design semantics. As a last resort, human experts can be queried,
with the queries being automatically addressed by the system according to estimates of
the relative importance of the items of knowledge required (see appendix A).

The way of reasoning reflects expertise and common sense since it is based on knowl-
edge of an heuristic nature rather than a systematic way of approaching the solution. The
reasoning for the classification of electronic data comes close to exhibiting a convincing
machine understanding ability as defined in section 1.4 for the following reasons:

1. the system has the power of representing knowledge about the domain and to reason
about it effectively. Chapter 3 describes the kinds of expert knowledge that are used

— 168 —

Chapter 9. — Conclusion —

in order to support the simulation of the expert understanding of digital electronic
designs discussed in chapter 2. Chapters 4 to 7 present the mechanisms for capturing
this knowledge and reasoning with it.

2. the ability of the system to heuristically classify electronic data is a powerful mech-
anism for perceiving equivalences or analogies between different representations of
the same or similar situations. The knowledge-generation functions discussed in
chapter 5 and section 7.6 attempt to perform these types of tasks.

3. the system has a limited though realistic ability to learn. It can use knowledge
captured from the processing of cells of previous designs (logged cell models). The
ability of the system to classify electronic cells, in combination with the ability for
name matching and for learning about new names (see appendix B), may result in
the formation of new categories for some types of knowledge (cell and port electronic
functionalities) which may accurately describe design objects and which can be used
for the understanding of new designs. The current system implementation can be
enhanced in order to automatically generate classes of cells and discriminate between
cell instances of a class as discussed in section 5.4.

9.2 Applications

Automatic systems can only process explicit electronic data which strictly meets the
formalities of a hardware description language. They cannot exploit implicit knowledge
which is provided by human designers in order to facilitate the understanding of the
specification. By overlooking implicit knowledge, automatic systems are clearly at a
disadvantage with respect to human experts for the processing of electronic data. The
automatic heuristic understanding of design specifications presented in this work attempts
to narrow this gap. General applications which can be derived from this understanding
and applications to current research activities are discussed in this section.

9.2.1 General Issues — ECAD Frameworks

The management of the large amounts of data which are required for representing complex
electronic circuits and the presentation of this data in a useful and efficient form to CAD
tools, designers and manufacturing equipment has become a major issue in the electronics
industry [HNSB90]. Large and dedicated software environments (ECAD frameworks)
are required to address the complexity of the design process and of the data associated
with the representation of the designs. An ECAD framework contains mechanisms and
facilities (e.g. programming libraries, extension languages, data management and user
interface facilities), at different levels of abstraction, which are used by the tool developers,
tool integrators and often the end-users (electronic designers) for the configuration of a
particular CAD system. This section examines the integration of a tool for the heuristic
understanding of electronic specifications into an ECAD framework by giving examples
of the ways in which different framework services can make use of this tool:

— 169 —

Chapter 9. — Conclusion —

1. project management and version services: these services are considered for evaluat-
ing and displaying the progress of a design and managing its history or evolution.
Versions and alternatives for the design objects, and specific configurations or collec-
tions of related versioned design objects, must be kept. This allows the exploration
of alternative design implementations and provides an easy way to recover from bad
design decisions. The right versioned objects must come together when the final
design is assembled. This is not always trivial since the design of the cells of a sys-
tem may be developed in parallel, often by different designers, on different computer
systems or even at different locations. Besides, a cell in a given stage of the design
process is often fed back to previous stages after modifications have been introduced.
Designers need to constantly interact to understand the purpose of new or modified
functionality. It is also desirable in large design projects to compare alternate views
of a design which use different hierarchies. Most existing techniques require essen-
tially identical hierarchies or must flatten to remove the differences. The capture
of a small amount of design knowledge makes the comparison of design hierarchies
much easier to solve [Spr90]. The ability to classify electronic data can be exploited
for the comparison of different design versions, for the understanding of added func-
tionality implicitly described in the specification and for estimating the complexity
of design tasks required for the project (as discussed later in this section).

The complexity of a design project is generally reduced if electronic cells which have
been designed in the past (or are available in the system) can be reused or adapted
for a new design. Automatic systems are more limited than human experts for per-
forming these types of tasks since they generally lack methods for the recognition
of similar electronic cells processed in the past. Matches between the entities com-
pared must be exact. For human experts, the comparison among two different cells
is less strict since they exploit their experience and common sense to only examine
those aspects and data which appear convenient to judge the similarity between
cells. A system cell or history cell can then be identified and reused or adapted for
the purposes of the new design. The heuristic classification of data presents a clear
opportunity for attempting to automate this type of task: an intelligent retrieval
(or browsing) of system and history data can be performed by specifying heuristic
knowledge which describes properties or categories of the electronic data required.

2. data representation and management services: they provide facilities for defining the
data model and its particular database implementation, for managing the CAD data
associated with the design and for coordinating access to the data by multiple users
(human users or CAD tools). The data model defines a common representation for
the information associated with the design so that two tools which read the same
data interpret it the same way. The particular type of the data items supported in
a particular database and the legal relationships that may exist between objects is
usually referred to as the conceptual schema for the database which is often described
by means of a data definition language (DDL). A user can extract specific sub-sets
of information from the database via the database management system (DBMS). A
query language, sometimes referred to as a data manipulation language (DML), is

- 170 —

Chapter 9. — Conclusion —

used to specify requests to the database such as “find all the cells in the design which
have two input ports and one output port”. The fact that a cell can contain ports,
and ports can be of various types such as input and output ports, must be part of
the conceptual schema defined by the DDL. In engineering applications, many more
queries are performed by CAD tools than directly by the end-users and a high level
of integration in ECAD engineering frameworks is convenient. This is often achieved
by merging the DML language with the language interfaces to other parts of the
system, such as user interface, design flow management, and history management to
form a common language interface or extension language to all the facilities in the

framework [HNSB90].

A tool for the heuristic understanding of the electronic data can augment the capabil-
ities for querying and browsing the database. For example, queries of the type “find
all cells in the design which may be seen as a register” (a typical request as discussed
below) are queries which designers can answer, even if detailed behavioural data is
not available, and which normally are beyond automatic capabilities. The heuristic
classification of electronic data can attempt to answer these types of queries. The
types of knowledge used can be integrated in the data model and formally related
to design knowledge after the heuristic analysis. The extension language must be
enhanced to deal with this type of query. The extra amount of heuristic knowledge
available can allow the system to move towards more human capabilities by answer-
ing queries which are often supposed to require intelligence, and by providing a high
level ability to access, manipulate and classify/store design objects.

Another important feature of a DBMS is to provide for consistency checks to verify
that the database is in a consistent state after modifications have been applied to
it. In the engineering world, consistency checks are complex and time consuming.
Often, full and exact data (as required, for example, for ensuring that a circuit
performs according to its specification) is not available until the design reaches the
final stages. Consistency of heuristic knowledge describing interrelated design ob-
jects can always be checked be means of heuristic knowledge-propagation functions.
This type of consistency checking can be used to simulate human reasoning for those
design phases in which full detailed information about a design and its parts is not
available to check for design consistency.

3. design methodology management (DMM): these services view the design as a process
which involves a sequence of operations (tools) each performed on design data. The
user leaves some of the decision-making up to the design flow manager which invokes
and controls CAD tools in order to meet some design goal which is beyond the scope
of any individual tool. This facilitates the automation of tedious sequences of tool
invocations. A DMM system is viewed as a ‘metatool’ in the CAD environment
in the sense that it packages groups of tools into higher level entities which may
be manipulated by the user as a single tool. It has an important part to play in
synchronising the work of a team of designers and automating design cycles. A DMM
system can be used to enforce designer’s discipline (for example running design rule
checking before approving layout changes).

- 171 -

Chapter 9. — Conclusion —

A tool for the heuristic understanding of design specifications can help a DMM
system to enforce high quality hardware descriptions. This can be achieved, for
example, by insisting on designers making use of meaningful object names or by
calling for a well structured design hierarchy. The tool can measure the quality of
a specification from its ability to heuristically understand it. Heuristic knowledge
about the functionality of the cells can be exploited by a design flow manager to
automatically select the most adequate tools (e.g. selecting a PLA generator for
the implementation of a piece of combinatorial hardware or a specific test vector
generator for the testing of a piece of hardware identified as a memory cell). The
relative importance and complexity of the different design objects (and collections
of objects) can be estimated, even in the case that some pieces of hardware are
not well understood, and estimates of the time required to perform design tasks
may be calculated. These estimates can be exploited by the design flow manager to
schedule design tasks, to select adequate tools or to implement load balancing on a
single machine or a network of machines available to the system for performing the
tasks (see example in section 9.2.2).

4. user interface services: these services provide high level facilities for constructing
user interfaces and interacting with the user as needed. They must gather and
present information efficiently and effectively. Explanation facilities based upon the
methodology and the state of the design are increasingly important as the tools be-
come more autonomous and several designers become involved in the same design.
The heuristic classification of electronic data may provide guidance to design engi-
neers and aid in displaying data in an efficient and meaningful form by virtue of its
ability to abstract away functional heuristic information about design objects.

5. communication and maintenance of electronic data: a central issue in the electron-
ics industry is the communication of design data. Support for industry-standard
data formats such as EDIF and VHDL [IEE88] is relatively new and it is aimed at
providing means of transferring design data via textual formats. In the absence of
a single standard database or data model for electronic CAD, these formats have
begun to make possible the communication of electronic data between CAD sys-
tems. However, a design high level specification or the design documentation may
not be complete, reliable, or even available. Frequently, the only reliable sources
of information are the hardware description code and the simulation of the design
in a computer. Worst of all, the hardware description may be incomplete (e.g.
behavioural data may not be available) and the description may rely on naming
conventions or the attaching of properties to the design objects which are not in
general understood by the system that receives the data. For example, a design can
be created with a CAD system having an in-house library of cells, and the specifica-
tion may only contain a partial description of the cells used. The names of the cells
may be sufficient for some tools of the CAD system which generated the data, but
this information will generally be meaningless for another CAD system receiving the
data. Despite the use of standard formats, important design information may not be
explicitly available to the CAD system, and an automatic heuristic understanding of

- 172 —

Chapter 9. — Conclusion —

hardware descriptions may provide a valuable mechanism for the re-engineering and
maintenance of hardware descriptions by facilitating the understanding of implicit
knowledge.

In summary, a tool with the ability of heuristically classifying electronic data can
extend the capabilities of ECAD framework services by attempting the simulation of
activities which are normally considered to require human intervention. In addition,
such a tool is useful for planning and controlling ECAD tools as discussed next.

9.2.2 GGuidance and Control of ECAD Tools

Most ECAD tools process electronic data blindly according to the heuristics and algo-
rithms they are programmed to use. The electronic data must meet the requirements
of the ECAD tools and no intelligent machine interpretation of the data takes place.
The tools are driven by data which is not deeply understood by the system, and they
have to perform as dumb data-processors with little ability to plan and control the tasks
performed according to the data processed. This section provides some examples of the
use of heuristic design knowledge for the planning and control of design tasks:

1. simulation: heuristic knowledge about the operation of a cell can be used for plan-
ning the simulation of the cell. For example, a simulator tool may be simulating a
multiplexer cell, but it does not know, at any time, that the cell performs a mul-
tiplexing function. Heuristic knowledge about the functionality of the cell and the
functionality of its ports (e.g. select ports) can be used to plan and control the
simulation. Stereotypical simulation plans can be selected to verify if a cell may
behave according to the heuristic knowledge available (for example, its electronic
functionality or its generic purpose) and the data transfer paths of the cell can be
used as strategies for the simulation of the multiplexer. The simulator tool may be
able to decide which signals to monitor and in which way [FM89]. Heuristic knowl-
edge is useful for calculating estimates of the relative importance of the design parts,
and these can be used for the generation of sensible simulation schedules. Estimates
of the time required for the simulation of the overall design or parts of it could be
calculated from available heuristic knowledge and used, for example, for load bal-
ancing. In the case that behavioural data is not available, heuristic knowledge about
the functionality of the cell can be used to search in the database for a known cell
whose behaviour may represent, approximate or aid in determining the behaviour
of the cell in question.

2. test: the usefulness of heuristic design knowledge for controlling tasks such as hi-
erarchical test generation has already been proved in successful systems such as
Hitest [Ben84]. The designers of Hitest emphasise that high level design knowledge
is crucial to effective test generation but Hitest only relies on human intervention for
the derivation of this knowledge. Heuristic knowledge, which for example includes
the intended use of cells, ports and signals, must be provided by the users. An
heuristic analysis of the specification is specially adequate for generating the types of

- 173 —

Chapter 9. — Conclusion —

heuristic knowledge which tools like Hitest require. Other testing tasks, such as the
automatic insertion of design-for-testability (DFT) hardware [AB85, KTHS88, JK86],
can clearly exploit heuristic design knowledge. A structural description of the design
and a vague understanding of the operation of some design objects is all that is re-
quired by these tools: register cells, data transporter cells and specific signals, such
as control and clock signals, must be identified in the description. Special conven-
tions are required for the recognition of these objects in systems which attempt the
insertion of DF'T hardware to circuits described in standard formats. For example,
the insertion of DFT hardware in VHDL specifications as described in [KTHS88] re-
quires prefixes to be attached to the name of the objects to facilitate the recognition
of register cells and signals. With the help of a tool for the heuristic analysis of
design specifications, a DBMS system may be able to search for these objects. The
types of knowledge generated by means of this analysis provide an adequate model
for DFT applications and for planning and scheduling test plans.

3. floorplanning: heuristic design knowledge is of clear interest for tasks such as floor-
planning. Traditionally, parameters such as chip area and wire length are of major
importance for the automation of these tasks aimed at minimising area and commu-
nication costs. The generalised floorplanning problem appears computationally in-
tractable for the great mass of general purpose chips, although specific floorplanners
are very effective at laying out specific design families [Nix84]. Heuristic knowledge
can be used to classify the cells of a design and choose the most adequate floor-
planner. Expert knowledge, which includes estimates of the size and functionality
of design objects and of the amount of connectivity which interconnects them, have
been used in expert system approaches to floorplanning [JS89]. Knowledge about
the functionality of design objects is required if the floorplanner attempts to opti-
mise system performance instead of minimising area. For instance, the length of
clock wires should be minimal in order to improve speed. As a second example, a
register destined to store address values and connected to a memory cell, among
other cells, should be placed close to the memory cell because of the frequent flow
of information that can be expected between these cells (this increases circuit speed
by reducing circuit capacitances in busy paths).

4. routing: the routing of a net is basically a geometric problem for the router, but this
may differ depending on the signal carried by the net (e.g. clock signals should not be
routed close to other clock signals in order to avoid cross-talk problems [RIXK91]).
The type of layer used is also related to the functionality of a signal (e.g. power
signals are usually done in metal layer). An understanding of the functionality of
the signals of the design must then be captured from the specification. However,
this type of knowledge is rarely explicitly provided. The routing of a design can be
attempted by general purpose routers, or the design can be partitioned into separate
routing areas for which restricted routers can be applied. Heuristic design knowledge
can then be used to identify routing areas and select the most adequate routers.

- 174 —

Chapter 9. — Conclusion —

5. model-based diagnosis: it is also interesting to note links of this research with model-
based reasoning for the diagnosis of systems. Model-based reasoning for diagnosis
has been studied in recent years as an alternative to empirical rule-based diagno-
sis [Dav84, Rei87]. An empirical diagnostic approach uses shallow knowledge to
reason about devices (i.e. an expert experienced in diagnosing devices). On the
other hand, model-based diagnosis assumes a complete and consistent theory or
model of the behaviour of the device and its components. The research discussed
in this thesis addresses issues of two of the major problems of model-based rea-
soning: how to obtain models for the devices and how to manage the exponential
computational complexity of the reasoning methods.

9.3 Further Work

The research presented in this thesis has been used in the Esprit Special Project 5082 to
emphasise the need to exploit heuristic design knowledge [FMWO91]. Currently, it is been
used in the Esprit Special Project 7064 (Jessi-Common-Frame) as an example of the way
in which heuristic knowledge can affect the design of ECAD frameworks. Three main
lines of future work related to this research are here considered necessary for arriving
at a conclusive empirical demonstration of the convenience and viability of exploiting
heuristic design knowledge:

1. a formal integration of the design data, the heuristic knowledge generated from the
analysis of the specification, and the system information required for the derivation
of heuristic design knowledge is necessary. A formal mapping between design data
and heuristic knowledge provides an unified view of factual and heuristic design
information, allowing a single procedural interface (see [YK90] for an example of
these tools) to access and retrieve both kinds of information. It also provides a
formal mechanism for the generation of explanations about the state of the reasoning
process and about the reasoning path that the system followed to reach a conclusion.
This is ongoing research in the CAD group at the University of Manchester using
the information modelling language Express [Int91] under the support of the Esprit
Special Project 7064. A formal Express representation of the heuristic models of
electronic cells is being developed [BM93]. The aim is to move towards a formal
integrated representation of electronic factual data and heuristic knowledge, covering
all aspects and decisions in the design process. An intelligent automation of the
design process may be envisaged in this way which can provide ECAD frameworks
with high level facilities for giving advice to human designers.

2. a number of reasoning enhancements can be added to the system in order to improve
the reasoning capabilities. These enhancements include:

(a) the consideration of more advanced prompt termination conditions which can
allow the investigation of a larger number of candidate sets.

(b) a hierarchical organisation of models and plans in the system which can facilitate
the processing of large numbers of them.

- 175 —

Chapter 9. — Conclusion —

(c) the cell complexity estimation function considered in section 6.6 is useful for
the illustration of the control mechanism but it is simplistic. A more accurate
function must take into account more information about the cells instead of just
considering their level of abstraction.

(d) the study of further k-derivation functions which can complement the existing
ones in order to form highly accurate knowledge plans (the calculation of the
confidence in individual items of knowledge for a plan by means of the current
k-derivation functions does not have enough experimental support). Model-
based reasoning must be enhanced providing the system with knowledge about
problem-solving strategies typically used for electronic design (see section 7.6.2).

e) the test-and-generate procedure for the matching of knowledge plans can be
g p g ge p
turned into a more efficient constraint-driven frame matching procedure.

3. further work is necessary for developing a wide range of applications of industrial in-
terest based on the exploitation of heuristic design knowledge. The experimental tool
presented in chapter 8 already demonstrates that valid heuristic design knowledge
can be automatically generated, facilitating the understanding of a design and the
re-engineering of hardware descriptions. Current state-of-the art tools (e.g. Hitest
for hierarchical test generation) can definitely take advantage of this knowledge, but
a wide range of successful applications aimed at improving the capabilities of frame-
work services and CAD tools (see examples in section 9.2) are required to justify
the integration of such a tool within advanced ECAD frameworks.

9.4 Afterword

An automatic system which is capable of generating heuristic design knowledge for the
classification of electronic data is proposed in this work as a worthwhile tool for enhancing
the capabilities of ECAD frameworks and systems. The method of reasoning of the system
has undoubted limitations, but these are also faced by human experts when they attempt
an heuristic understanding of electronic specifications. Further research can positively
render more advanced ways of controlling the computational complexity of the reasoning
method, but the philosophy of the system, which is based on the exploitation of data of
an heuristic nature, makes the elimination of these limitations impossible for designs of
arbitrary complexity. The current prototype of the system already indicates that correct
results can be obtained and it shows methods for avoiding the critical computational
complexity of the system which do not lead to the exclusion of attractive solutions. It
is hoped that further work, which is still required for a complete implementation of
the system proposed and for the development of applications based on the heuristic
understanding of a specification, arrives at a conclusive empirical demonstration of the
convenience and viability of the automatic heuristic understanding of logic electronic
design specifications proposed in this work.

- 176 —

Bibliography

[ABSS5]

[AKS6]

[Bae80]

[Ben84]

[BK8Y]

[BM93]

[BNT1]

[BS84]

[Cla85]

[CMS5]

[CWSS]

[Dav84]

[Dav90]

M.5. Abadir and M.A. Breuer. A Knowledge-Based System for Designing
Testable VLSI chips. IEEE Designéi Test, 2(4):56-68, August 1985.

J.S. Aude and H.J. Kahn. A design rule database system to support
technology-adaptable applications. In 23rd Design Automation Conference,
pages 510-516, Las Vegas, Nevada, USA, June 1986.

J.L. Baer. Computer Systems Architecture. Computer Science Press, 1980.

M.J. Bending. Hitest: A knowledge-based test generation system. [FEE
DesignéiTest, pages 83-92, May 1984.

S. J. Bevan and H. J. Kahn. Objectively Parsing EDIF. In Proceedings of
the Third Europen EDIF Forum, pages I11-53-111-62, Bonn/Koénigswinter,
Germany, October 1989.

M. Brown and 7. Moosa. A Heuristic Model of Design Cells. Computer
Science Department, University of Manchester, March 1993. Internal Report.

C.G. Bell and A. Newell. Computer Structures: Readings and Eramples.
McGraw Hill, 1971.

B.G. Buchanan and E.H. Shortliffe. Rule-Based Fxpert Systems. Addison-
Wesley, 1984.

W.J. Clancey. Heuristic classification. Artificial Intelligence, 27(2):289-350,
November 1985.

E. Charniak and D. McDermott. Introduction to Artificial Intelligence.
Addison-Wesley, 1985.

M. Carlsson and J. Widen. Sicstus Prolog User’s Manual Version 0.6. Swedish
Institute of Computer Science, 1988.

R. Davis. Diagnostic reasoning based on structure and behaviour. Artificial

Intelligence, 24(1-3):347-410, December 1984.

E. Davis. Representations of Commonsense Knowledge. Morgan Kaufmann

Publishers,Inc., 1990.

- 177 —

[Doc88]

[ELS5)]

[Ele87]

[Fi188]

[FKS5]

[FMS89)]

[FMW91]

[FS87]

[HBS5]

[Hec86]

[HJ83]

[HNSS]

[HNSBOO]

[HRS5]

— Bibliography —

Internal Document. Manchester Simulation Engine (MANSE), Timewheel
Board. Computer Science Department, University of Manchester, 1988.

M.D. Ercegovac and T. Lang. Digital Systems and Hardware/Firmware Al-
gorithms. John Wiley&Sons, 1985.

Electronic Industries Association. Electronic Design Interchange Format Ver-

sion 2 0 0, May 1987. EIA/ANSI Standard RS548.

N.P. Filer. The Use of Knowledge Based Techniques for Electronic Computer
Atided Design. PhD thesis, Department of Computer Science, University of
Manchester, January 1988.

R. Fikes and T. Kehler. The role of frame-based representation in reasoning.

Communications of the ACM, 28(9):904-920, September 1985.

N.P. Filer and R.A.J. Marshall. The design of a methodology for the in-
telligent control of simulation using the Manchester simulation engine. In
FEuropean Simulation Meeting, pages 163-168, Rome, Italy, June 1989.

N.P. Filer, 5. Mir, and D. Wray. Description of a prototype knowledge-
based tool exploiting design semantics. Technical report, Jessi-CAD-Frame

Deliverable D1.1, ESPRIT Special Project 5082, 1991.

N. P. Filer and M. A. Spink. Knowledge Based Control For VLSI Layout. In
Proceedings of the IEEE International Workshop on AI-Applications to CAD-
Systems for Flectronics, pages 119-136, Munich, Germany, October 1987.

K. Hwang and F.A. Briggs. Computer Architecture and Parallel Processing.
McGraw-Hill, 1985.

D. Heckerman. Probabilistic interpretations for Mycin’s certainty factors. In
L.N. Kanal and J.F. Lemmer, editors, Uncertainty in Artificial Intelligence,
pages 167-196. Elsevier Science Publishers, 1986.

D.A. Hodges and H.G. Jackson. Analysis and Design of Digital Integrated
Circuits. McGraw-Hill, 1983.

M.T. Harandi and J.Q. Ning. PAT: A knowledge-based program analysis tool.
In IEFEE Conference on Software Maintenance, pages 312-318, Los Alamitos,
California, October 1988.

D.S. Harrison, A.R. Newton, R.L. Spickelmier, and T.J. Barnes. Electronic
CAD frameworks. Proc. of the IEEFE, 78(2):393-417, February 1990.

F. Hayes-Roth. Rule-based systems. Communications of the ACM, 28(9):921-
932, September 1985.

- 178 —

[IEESS]

[Int91]

[Jac90]

[JKS6]

[7989]

[Kah85]

[KF85]

[KMST]

[KN8O]

[KSTS2]

[KT72]

[KTHSS]

[LaiS6]

[Lal85]

[MC80]

— Bibliography —

IEEE, New York, U.S.A. IEFE Standard VHDL Language Reference Manual,
March 1988. IEEE standard No. 1076-1987.

International Standard Organization STEP ISO/TC184/SC4/WG 5. FEX-
PRESS Language Reference Manual, n14 edition, April 1991.

P. Jackson. Introduction to Fxpert Systems. Addison-Wesley, 1990.

M.A. Jones and K.Baker. An intelligent knowledge-based system tool for
high-level BIST design. In IFEE International Test Conference, pages 743—
746, Philadelphia, Pennsylvania, 1986.

M.A. Jabri and D.J. Skellern. PIAF: A knowledge-based/algorithmic top-
down floorplanning system. In 26th Design Automation Conference, pages

382-585, 1989.

H.J. Kahn. Environment for expert CAD software. Silicon Design, 2(9):17-
18, September 1985.

H. J. Kahn and N. P. Filer. An Application of Knowledge Based Techniques
to VLSI Design. In Martin Merry, editor, Expert Systems 85 — Proc. of the 5th

Technical Conference of the BCS Spectalist Group on Fzxpert Systems, pages
307-322. Cambridge University Press, 1985.

H.J. Kahn and R.A.J. Marshall. Using EDIF with a hardware simulation
engine. In Furopean EDIF Forum, pages 2—20-2-25, Brussels, Belgium, 1987.

W. Kozaczynski and J.QQ. Ning. SRE: A knowledge-based environment for
large-scale software re-engineering activities. In 11th International Conference
on Software Engineering, pages 113-122, Pittsburgh, Philadelphia, May 1989.

D. Kahneman, P. Slovic, and A. Tversky. Judgement under Uncertainty:
Heuristics and Biases. Cambridge University Press, 1982.

D. Kahneman and A. Tversky. Subjective probability: a judgement of repre-
sentativeness. Cognitive Psychology, 3:430-454, 1972.

K. Kim, J.G. Trout, and D.5. Ha. Automatic insertion of BIST hardware
using VHDL. In 25th Design Automation Conference, pages 9-15, Anaheim,
California, 1988.

R. N. W. Laithwaite. An Expert System to Aid Placement of Gate Arrays.
In Proc. 3rd Silicon Design Conference, Wembley, London, 1986.

P.K. Lala. Fault Tolerant & Fault Testable Hardware Design. Prentice-Hall,
1985.

C. Mead and L. Conway. [Introduction to VLSI Systems. Addison-Wesley,
1980.

- 179 —

[McC36]

[Mir89]

[Mor90]

[Nix84]

[Peng9]
[Rei87]

[RIXKO1]

[RKCMS5]

[Rob65]

[ShaT6]

[ShoT6]

[Sin87]

[Spr9o]

[SS86]
[St090]
[WES5]

[WooT5]

— Bibliography —

E.J. McCluskey. Logic Design Principles. Prentice-Hall, 1986.

S. Mir. The Use of Knowledge Based Techniques for Simulation and Test of
VLSI Digital Circuits. Master’s thesis, University of Manchester, October
1989.

T. Morgan. Five Years of Deep Knowledge. In 7" UK Deep Knowledge Based
Systems Workshop, Gregynog, Wales, United Kingdom, April 1990.

[LM. Nixon. An Idiomatic Floorplanner. University of Edinburgh, October
1984. Internal Report.

R. Penrose. The Emperor’s New Mind. Oxtord University Press, 1989.

R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32(1):57-95, April 1987.

A. Rubio, N. Itazaki, X. Xu, and K. Kinoshita. An approach to the analysis
and test of crosstalk faults in digital VLSI circuits. In The European Con-
ference on Design Automation, pages 72-79, Amsterdam, Holland, February
1991.

G. Russell, D.J. Kinniment, E.G. Chester, and M.R. McLauchlan. CAD for
VLSI. Van Nostrand Reinhold (UK), 1985.

J.A. Robinson. A machine-oriented logic based on the resolution principle.

Journal of the ACM, 12(1):23-41, January 1965.

G. Shafer. A Mathematical Theory of Evidence. Princeton University Press,
1976.

E.H. Shortliffe. Computer-Based Medical Consultations: Mycin. Elsevier,
1976.

N. Singh. An Artificial Intelligence Approach to Test Generation. Kluwer
Academic Publishers, 1987.

M. Spreitzer. Comparing structurally different views of a VLSI design. In
27th Design Automation Conference, pages 200-206, 1990.

L. Sterling and E. Shapiro. The Art of Prolog. The MIT Press, 1986.
H.S. Stone. High-Performance Computer Architecture. Addison-Wesley, 1990.

N.H.E. Weste and K. Eshraghian. Principles of CMOS VLSI Design. A
Systems Perspective. Addison-Wesley, 1985.

W.A. Woods. What’s in a link: foundations for semantic nets. In D. Bobrow
and A. Collins, editors, Representation and Understanding. Academic Press,

1975.

— 180 —

[WPS2]

[YK90]

[ZadT5]

— Bibliography —

T.W. Williams and K.P. Parker. Design for testability — A survey. IEEF
Transactions on Computers, C-31(1):2-15, January 1982.

T.C.0. Young and H.J. Kahn. A procedural interface to CAD data Based
on EDIF. In The FEuropean Design Automation Conference, pages 496-500,
Glasgow, Scotland, March 1990.

L.A. Zadeh. Fuzzy logic and approximate reasoning. Synthese, 30:407-428,
1975.

— 181 —

Appendix A

Decision Factors

This appendix estimates the effect that changes in the items of knowledge for the model
of a cell can cause in the evaluation of the modelling of the overall design (an item of
knowledge corresponds to a slot or a sub-slot of an heuristic model of a cell). Assuming
a set of possible changes for some items of knowledge (for example, adding knowledge for
the instantiation of undefined items, increasing the confidence in existing knowledge or
changing knowledge about defined items) the changes which result in the highest values
for the evaluation of the design are relatively more important. The effect of a change in
an item of knowledge on the evaluation of the overall design is called the decision factor
of that change. Decision factors can be used, for example, for automatically scheduling
queries (to the users or other expert tools) for obtaining heuristic design knowledge about
undefined items of knowledge which the system may have not been able to derive.

A.1 Decision Factor of a Change

A change decision factor calculates the rate of change of the evaluation of the overall
design given a change in the k-th slot of the heuristic model M; of the ¢-th cell in the
design. For simplicity, the calculation considers that each cell C; of a design with n
cells has a model with an evaluation value of e¢; > 0 (this is the case in the current
implementation described in chapter 8). In this case, the evaluation of situation S; which
represents cell C; and its contents is given by the evaluation function 6.12 as
Eizl—(l—ei) H(l_wi,k)zl_Ui (Al)

k=1

where from equation 6.10 the weighted contribution of the sub-cells are calculated as
ka = T“g E“g (AQ)

The term r;; corresponds to the weighting factor for the weighted contribution of
sub-cell €, to the understanding of cell C;. The term F; ; corresponds to the evaluation
of the situation representing sub-cell C; ;. The value E; for the evaluation of situation
Sy evaluates the overall design. Those individual changes which can result in the highest
values for F; are relatively more important.

A change in the k-th slot of the heuristic model M; of the z-th cell in the design results
in a change in the value e; which evaluates model M;. A change in the value ¢; results

— 182 —

Appendix A. — Decision Factors —

in a change in the value E; which evaluates the :-th situation in the design. A change in
the value F; results in a change in the evaluation of all situations which make use of cell
C;. If vy denotes the evaluation of the k-th slot of model M;, the change decision factor
which estimates the effect of a change in this slot is given by

8E1 . 8E1 6E2 662»
8vk N 8E2 662» 6vk

(A.3)

In general, the rate of change of the value E; which evaluates the ¢-th situation in
the design when the value E; which evaluates the j-th situation in a design changes is
calculated by means of the chain rule for partial differentiation as

OE; = \0E; OB

(A4)

In this equation, the calculation of 88EEik considers the value of the F;, with r # k
constant when the value of £, ;, changes. The k-th sub-cell C i of cell C; corresponds to

a cell €, (¢ # ¢) in the design, and the calculation of

8Ei7k . 6Eq
oE; — OF;
is done again by means of the same equation A.4. The term
oF;
Fi.=
i OF;

represents the sensitivity of the arc between cell C; and its k-th sub-cell in the hierarchy
graph to the change. Equation A.4 is written as

8E2 B e 6E27k
ok, 2 (F DR,) (4-3)

The sensitivity of a path in the hierarchy graph to the change is defined as the product
of the sensitivities of the arcs which form the path. The differentiation %
J
from the sum of the sensitivities of all paths in the hierarchy graph which lead from cell

C; to cell C; (this is easily derived from equation A.5). For example, in the hierarchy

is obtained

graph of figure A.1, the effect of changes in situation S¢ for the evaluation of the overall

design is given by
oE
= FiraFye + Fio (FasFs4Fue + Fag)
0Es

which considers the three paths in the hierarchy graph which can be traced from cell Cy
to cell Cg 1.

' As a matter of notation, it must be noted that in equation A.5, the arc decision factor Fj j denotes
the arc between cell C; and its k-th sub-cell. For convenience, in the example design the arc decision
factors denote the arc between two cells: for example, F}4 denotes the arc between cell C; and cell Cy
in the hierarchy graph.

— 183 —

Appendix A. — Decision Factors —

Figure A.1: An Example Design

A.2 Decision Factors for a Situation

This section calculates the sensitivity of an arc in the hierarchy graph to a change. The
arc sensitivity I} ; determines the rate of change of the evaluation of situation S5; when
the value FE;; which evaluates the situation representing its k-th sub-cell changes. As
required in equation A.4, this calculation considers the rate of change of the evaluation
of situation S; when F;j changes considering that the evaluation of the rest of sub-cell
situations does not change. For the calculation, it is assumed that the changes do not
affect the relative importance r; ; of sub-cell C; ; in the design of cell C;. That is, the r;
remain constant with the changes introduced. This assumption is relaxed in section A.4.
The arc sensitivity F; ; is calculated from equation A.l as

oF; (= wig) 91 — wy
’ 8Ei7k 1 — Wi aEi,k
From equation A.2
6(1 — wM)
—Fas = Tik
OF; ’
and, by considering equation 6.13, the arc sensitivity is given by
Fip= — (A6)
I — wjp
It can easily be seen that
O*E;
=0
62Ei7k

and the evaluation of situation S; grows linearly with the evaluation of the k-th sub-cell.
The rate of change depends on the relative importance of the k-th sub-cell (as expressed

T Y _ which represents the uncertainty
—Wy k

by means of the weighting factor r; ;) and the term

— 184 —

Appendix A. — Decision Factors —

of the modelling of the cells involved in the situation (except the sub-cell considered).
Equation A.6 can be written as

OF;
Fip = =D, U AT
7k 8E27k 7k ()
with e
D= —2"— A.8
Ll - (A.8)

The increment (decrement) AF; in the evaluation of situation .S; given an increment
AF; ;. in the evaluation of the situation which represents its k-th sub-cell is calculated by
integration of equation A.7 as

AEZ = D%k UZ AEz,k

In the case that the AFE;; are known for several possible changes in the evaluation of
several sub-cell situations, this equation determines which change results in the highest
value for F;. In the case that the AFE;; cannot be calculated (e.g. the system only
estimates which queries about undefined items of knowledge are to be scheduled first)
the D, factors determine which changes in the situation more rapidly affect the value
of E; (the value of U; is the same for all changes). Because of this, the D, are called
situation decision factors.

A.3 Decision Factors for a Cell Heuristic Model

A change in the k-th slot of the heuristic model M; results in a change for the evaluation
of the model e; and, therefore, in a change in the value F; which evaluates situation S;.
This section calculates these changes. For simplicity, it is possible to assume that each
slot in the heuristic model M; has an evaluation value of vy > 0 (this is the case in the
current implementation described in chapter 8). In this case, the value e; which evaluates
the model can be calculated by means of the evaluation function 6.5 as

7
eizl—H(l—wk) wr >0
k=1
where
Wp = T Vg

with rj being the weighting factor (relative importance) of the k-th slot in the heuristic
model (a model has seven slots in the current implementation). A change in the k-th slot
of the heuristic model M; which represents cell C; results in a change for the evaluation

of the model given by

662» L
= i A.
6vk 1 — Wi “ (9)

where
7

U, = H(l —wk)

Appendix A. — Decision Factors —

represents the level of uncertainty in the heuristic model M;. Equation A.9 can be written

as p
e
L= d Al
Gop DY (A.10)
with -
dy = A1l
k 1 — Wg ()

The d;. factors determine which changes in the model more rapidly affect the value
of e; (the value of u; is the same for all changes). For this reason, the dj, are called slot
decision factors 2.

The rate of change of the evaluation of situation 5; when the evaluation of the model

of C; changes is calculated from equation A.1 as

oF; U,
= A2
662» 1— [()
It is easy to observe that
I’L; 0
8262' N

and the evaluation of situation S5; grows linearly with the evaluation of the model of
cell C;. Equation A.12 implies that the rate of change only depends on the uncertainty
associated with the modelling of the sub-cells. This equation can be written as

E;
o _ p.u, (A.13)
662»
with |
D; = (A.14)
11— [

The factors D; are called model decision factors. Comparing equation A.13 with equa-
tion A.7, 1t is clear that the model and situation decision factors determine which changes
can more rapidly affect the evaluation of the whole situation.

The effect of a change in the k-th slot of the heuristic model M; upon the evaluation
of the overall design is obtained as the product of the corresponding slot decision factor,
model decision factor and the sum of the sensitivities of the paths which lead to cell C;
as indicated in equation A.3. As an example, a change in the fourth slot of the model
of cell Cg in the design of figure A.1 results in a rate of change of the evaluation of the
overall design given by

oF
a—vl = [F1aFu6 + Fia (FosF5aF a6 + Fas)| DslUsdyug
4

where vy and d4 refer to the fourth slot of the model of cell Cs.

?Decision factors for the sub-slots of a slot can be calculated in the same way since the evaluation of
a compound slot is obtained from the combination of the evaluation of its sub-slots.

— 186 —

Appendix A. — Decision Factors —

A.4 Changes of Estimated Complexity

The relative importance and weighting factor of a sub-cell in the design of a cell is cal-
culated from estimates of the complexities of the cells involved in the design of the cell.
In the above analysis, the weighting factor r;; of a sub-cell (; ; which is used in the
design of cell C; has been assumed to be constant for all changes in the models of the
cells. However, the estimated complexities of the cells depend on heuristic knowledge,
and changes of the knowledge in the models may trigger changes for the estimated com-
plexities. Therefore, when the knowledge about a cell or a sub-cell of a situation changes,
the weighting factors of the sub-cells may change. This section takes into account these
changes.

If CO7; is the estimated complexity of the j-th sub-cell of cell C;, a change in the
value FJ; which evaluates situation S; given a change in the complexity of sub-cell C; ; is
calculated by differentiation of equation A.1 as

OB OUi _ 0[(1 —e) ity (1 — wi)]
9C0;; B 9C0;; B 9C0;;
which gives
oL, o 1 I — w;) i Eiw Ori
- — | =U : ’ Al
800;]‘ v kZ::l (1 — Wi k 800;]4) v kZ::l (1 —wi g aCOZ»*J) (A.15)

The weighting factor r;; is given by equation 6.28 as

ik
=) A.16
o Rf,k‘|‘|1_7“i| ()

where R7) is the relative importance of sub-cell C; ; in the design of cell C; and r; is the
complexity deviation factor for cell C;. The differentiation of this equation with respect

to CO?; gives
I ik IR, I —rif
L I LR AT

ocor, = w2\ aco:, ~ e acor, (A.17)

The relative importance R}, is given by equation 6.20 as

C0;,

R, = I, —uF
ok TR O0e

(A.18)

where [; ;; is the number of instances of sub-cell C; ; in the design of cell C; and COS corre-
sponds to the complexity of C'; which is calculated by means of the estimated complexities
of the sub-cells according to equation 6.19 as

COF =3 1, CO%,

k=1

- 187 —

Appendix A. — Decision Factors —

The differentiation of equation A.18 with respect to CO}, gives

oR?, . 1 0007, R
- — RZ k — — - (Alg)
9C0;; oy, 9C0;; O3,
The complexity deviation factor r; is defined in equation 6.27 as the quotient
CO;
L= A.20
" o (4.20)
and the differentiation of this equation with respect to CO}; gives
ori _ _; Cor
0C0;; - oo
and
ar;
o r; <1
Al —ryl 705
7800* = 0 r, = 0 (A.Ql)
iJ Or;
J ~ac0r, ;> 1
The substitution of equation A.19 and equation A.21 in equation A.17 gives
Irie iy (|1 — ;| 0CO7, K R},)
0C0r; Rrp \ (07, 000, cor;
with
r, <1 K=1
ri=0 K=0
;> 1 K=-1
and the substitution of this equation in equation A.15 gives
OF; Ui Ei; i - Eip Tk
_ ,] — | — K R ’ ’ A.22
aCO;i] CO;] 1 - wm‘ R:i] | " | td kzz:l 1 - ka R:ik ()

Considering now that the estimated complexity CO? of cell C; changes, the rate of
change of E; which evaluates situation 5; is calculated by differentiation of equation A.1

6E2 . T E“g 6ri7k
oCO; Ui 2 (1 — Wy a(}oy) (4.23)

k=1

as

The differentiation of equation A.16 with respect to CO? gives

ari,k _ T?,k a|1 - 7“2'|
9CcO; Ry 0C0;

and the differentiation of equation A.20 with respect to CO} gives

87“2» . 1
dCor ~ (O

— 188 —

Appendix A. — Decision Factors —

and, by considering equation A.21 (differentiating with respect to CO? in this case),
equation A.23 becomes

OB, KU & Eik o
= d — A.24

Given a change in the k-th slot of the heuristic model of cell C; which also affects its
complexity, the change in the evaluation of situation S; is given by

6Ei 862» 8E
dE; = d dCO? A.25
de; du, "t aco; (4.25)
where 2 6? is given by equation A.13, 6" is given by equation A.10 and acoi* is given by

equation A.24. Similarly, given a Change in the heuristic model of sub-cell Cw which also
affects its estimated complexity, the change in the evaluation of situation S; is given by
ok, oF;

dE: = ~—“ dE; dCO; A2
9k, ‘"t acor, 05 (4.26)

aaEE acoi is given by equation A.22.

The complex1ty of a cell is estimated from heuristic knowledge about the cell by means

wher

of a complexity estimation function. The complexity estimation function discussed in
section 6.6 only considers the level of abstraction EH; for evaluating the complexity of
cell ;. According to equation 6.33 and equation 6.32

COr = HR™:
CO:i] - HREHi’J

where HR is the typical interlevel complexity ratio. Considering this complexity esti-
mation function, a change in the evaluation of a situation depends on a change of the
evaluation value for an item of knowledge and on a change on the level of abstraction.
That is, given a change in the level of abstraction of cell C; (which also affects the
confidence in it)

ok; Oe; oL, 0007
dE; = dvy, ~ JEH, A.27
de: ow, T ocor 9EH, (4.27)
where 900
i _ pEH; —
OFIL HR™" In HR = CO? In HR
and given a change in the level of abstraction in the model of sub-cell C; ;
ok, oF; 0C0: .
dE; = ——dFE;; s dEH,; ; A28
oE,, " T acor. oFm,, (4.28)
where
0O _ cor. m iR
6EHZ'7]4 N iy

— 189 —

Appendix B

Semantic Networks
for Name Analysis

A key technique for the identification of the electronic functionality of cells and signals is
based on the examination of the names associated with the objects in a design. Although
the name given to an object is arbitrary, the use of meaningful names is usual practice
to produce accurate design descriptions. This appendix describes a way of representing
knowledge about names, and automating the comparison of names, based on the use of
semantic networks. Semantic networks provide a natural way of jointly storing informa-
tion about object names and electronic functionality values. Name semantic networks
are used to provide guidance for the matching with heuristic models as discussed in sec-
tion 5.5.1. The main uses of the comparison of names in the current implementation
include:

1. a name is compared with typical values for the electronic functionality of the type
of objects to which the name refers to (cells, ports and signals).

2. a name is compared with electronic functionality values and names generated from
the processing of previous designs which are represented in the semantic networks
of the system. Semantic networks provide an automatic way of generating possible
electronic functionality values and storing information about new names.

3. names are compared between them, regardless of the actual meaning of these names.
This is useful since objects with similar names (mostly ports and signals) usually
have similar functionalities.

B.1 Meanings of a Word

Names are usually composed of a number of basic entities or words. A word in a name is
formed by sequences of letters or sequences of digits. Words are not case sensitive (a word
in lower case or upper case generally carries the same semantic value). Words in a name
are usually separated by delimiter characters (e.g. _- / \ | .). A name is decomposed into
words by looking for sequences of letters, sequences of digits and delimiter characters.
For example, the name ‘ctnand4’ is decomposed into two entities ‘ctnand’ and ‘4’ and
the name ‘shift_register_latch’ is decomposed into the words ‘shift’; ‘register’ and ‘latch’.
Semantic networks are classified according to the type of design objects to which the

— 190 —

Appendix B. — Semantic Networks for Name Analysis —

names represented apply. Two types of networks are used in the current implementation:
networks which apply to names given to the cells of a design and networks which apply
to names given to ports and signals. Table B.1 illustrates some examples of names given
to cells and signals in the electronic designs analysed in chapter 8.

Words form the atomic units for the representation of names with semantic networks.
The system associates an evaluation (confidence) value with each word in a network.
When forming the words of a name, it may be necessary to throw away odd characters. In
the case that some characters are discarded during the formation of the words of a name,
the confidence values of the words which are next to the characters are initially decreased
(considering the ratio between the number of characters ignored and the number of
characters in the word). The confidence in a word is calculated as a result of the matching
with an existing semantic network or as a result of forming a new network.

‘ Cell Names ‘ Port Names ‘
ctnand4 data_input
shift_register_latch read /write
jkif scan_data_n
2_input_mux clock
ROM CK
read_only_memory test_port
inverter ctrl
multiplexer SDI
positive_edge triggered flip_flop | 1D
half_adder scan_data_output
and_or_invert CTRDIN _256
SN7400 VME_ADR
D Aflipflop P_greater_Q
bilbo_register cwheel _sel_data_out

Table B.1: Examples of Object Names

Figure B.1 illustrates some examples of semantic networks. Figure B.1(a) is a network
for the word ‘latch’” and figure B.1(b) is a network for the word ‘setresetlatch’. These are
words of kind ‘class’ since they have no links to other words. A class word represents
an electronic functionality value and it has a semantic network of words associated with
it which represents names which refer to this electronic functionality. Any word in a
semantic network has only one meaning and one link to another word according to this
meaning. A word can have links coming from a number of words. The possible meanings
of a word are classified as follows:

1. class word: this word corresponds to a typical value for the electronic functionality
of a cell or a port (signal). A class word has no links to other words.

2. mnemonic word: this word is used to mean another word. It is linked in a network

- 191 —

Appendix B. — Semantic Networks for Name Analysis —

uwi st

UOUR

N 5

is instance_of

\l_
@

Q

=
__/
jo N

delay

multiple

()
Figure B.1: Semantic Networks: a) class latch, and b) class set-reset latch.

using the link is_mnemonic_of. For example, ‘s’ is often used to mean the word ‘set’
and ‘ff” usually means the word ‘flipflop’.

. part_of word: this word is a part of another word. It is linked with an is_part_of link.

For instance, the word ‘flip” is a part of a word ‘flipflop” and a word ‘set’ is a part
of a word ‘setresetlatch’.

. reference word: this word is used in a network to reference another class and it is
related in a network by means of an is_referenced_by link. For instance, the word ‘re-
gister’ in the semantic network of the class word ‘latch’ allows the use of the semantic

network of the class ‘word’ register when matching names with the network of the
class word ‘latch’.

- 192 —

Appendix B. — Semantic Networks for Name Analysis —

5. part_reference word: this word is a part of another word and it references a class
word. It is linked with a link is_part_of. For example, the word ‘latch’ in the network
of the class word ‘setresetlatch’. The referenced network can be used when matching
names with a network.

6. attribute word: this word is used to qualify another word. It is linked in a network
with a link is_attribute_of. For instance, the word ‘master’ in the network of class
word ‘latch’.

7. instance word: this word indicates that names which can be formed in the net-
work using an instance word are represented in another network (called a sub-class
network). The word is linked with an is_instance_of link. For example, the word
‘setreset’ in the network of the class word ‘latch’ is an instance word. The network
with class word ‘setresetlatch’ is a sub-class network of the network with class word
‘latch’ (the electronic functionality value ‘setresetlatch’ is a sub-class of the class of
electronic functionality values ‘latch’). Operationally, if the matching with a net-
work makes use of an instance word, the matching is overlooked since the matching
with a sub-class network must be considered.

A confidence value is associated with each word in a network which evaluates the
belief that the meaning of the word in the network is correct. For example, the word
‘clk’ is used as a mnemonic for the word ‘clock’ and both words are related by means of
an ‘is_mnemonic_of’link. The confidence in the word ‘clk’ being a mnemonic of word

‘clock” (which is in fact the confidence in the link) is the confidence associated with the
word ‘clk’.

B.2 Meaning of a Semantic Network

A word can have only one link to another word, but it can have links coming from a
number of words. The valid links to each kind of word are defined by considering the
valid sub-networks of a word. A sub-network is defined as follows:

“a sub-network of a word W1 is a sub-set of a semantic network of words
which includes a link from another word W2 to word W1 and all sub-networks
of word W27,

A semantic network is then defined as follows:

“the semantic network of a class word W includes the word W and all the

sub-networks of this word”.

The different kinds of sub-networks are called mnemonic, part_of, reference, attribute
and instance sub-networks. For instance, the class word ‘latch’ in figure B.1(a) has two
instance sub-networks, one reference sub-network and six attribute sub-networks. Class,
part_of and attribute words can have any kind of sub-networks. Mnemonic and instance
words can not have any sub-networks (they are not further linked in a network). Reference

- 193 —

Appendix B. — Semantic Networks for Name Analysis —

and part_reference words can have attribute, instance, and reference sub-networks. Since
reference and part_reference words refer to a class word, all sub-networks of the referenced
class word are meaningful in the network of the referencing word (they are also sub-
networks of the referencing word).

The meaning of a semantic network of words is then defined as follows:

“the meaning of a semantic network of words corresponds to all the names
which can be formed with the words linked in the semantic network. Names
are formed by following the relationships in the network from a word towards
a class word. Instance words cannot be used. A mnemonic word can be used
to substitute the word it applies to. All or some of the parts of a word can be
used in place of this word. A referenced semantic network can be used in place
of the referencing word”.

For example, a number of names can be formed in the networks of figure B.1 by
following the links towards the class word. The names ‘setreset_latch’, ‘master_latch’ or
‘and_gated _latch’ are possible names for the class ‘latch’. Mnemonic words can be used
in place of the words they apply to. Thus, for class ‘setresetlatch’, the names ‘rslatch’,
‘sr_latch’ or ‘rs_latch’ are possible names to mean this class. Because the sub-networks
of referencing words are also meaningful in the network where they appear, names like
‘sr_gated_latch’ can be formed.

B.3 Control of Name Matching

The matching of the words of a name with a semantic network implies that the name
can be derived from the network (the name is included in the meaning of the semantic
network). The matching must first identify the class word of the name. For this, some
of the words of a name must match with the class word of the network and the matching
will proceed with the rest of words in the name. The rest of words either match the
sub-networks of the class word or the semantic network is modified to include the words
of the matching name.

A value in the range [—1, 1] evaluates the matching of a name which is obtained by
combining the evaluation of the matching of each word and the confidence in the meaning
of each word in the network using the formulae described in section 6.2. A successful
matching of a name must have a positive evaluation value in the current implementa-
tion. That is, positive evidence that the name suggests the electronic functionality value
represented by the class word is required.

Heuristic rules are used for the matching of a name. These rules, which govern the
flow of control and the creation of new words, are:

1. mnemonisation: a word of a name has not been matched in a network, but it is a
close word of an existing word in the network. The evaluation of the word being
a close word or mnemonic of an existing one is done by means of a function which
calculates the lexical distance between words. The words in the semantic networks
are arranged in dictionaries (see [Mir89]). Separate dictionaries exist for the words

— 194 —

Appendix B. — Semantic Networks for Name Analysis —

included in the networks of cell names and port (signal) names. If perfect matches
for a word of a name do not exist in the networks, a set of the closest words (if any)
to a word can be obtained from a dictionary. A word from this set is then used
for the matching. This rule can create mnemonic words. The confidence in a new
mnemonic word is calculated from the lexical distance between the words.

2. decomposition: a word is not matched in a network but it is a sub-word of an existing
one (it is contained within another word). The existing word is seen as a compound
word which can be split into two or three parts (depending if the sub-word is in
the middle or at an end of the compound word). The splitting of the compound
word can take place if at least one of the other component words are meaningful
(they match existing words or they are close to existing words). Similarly, if a word
of a network is a sub-word of a word of the name being matched, this last word is
also decomposed into shorter words. This rule can create part_of and part_reference
words.

3. referencing: the network of a referenced word is used for matching a name with a
network which includes a reference word (the sub-networks of the reference word
in the current network are investigated first and the sub-networks of the referenced
class word afterwards).

4. tmportation: a word and a sub-network of it can be matched in a network which is
different to the network currently investigated. The sub-network can be copied to
the current network.

5. generalisation: some words of a name can be ignored since they do not provide any
additional meaning to the name (for example, integers which are added to the end
of a name two make it a unique identifier such as in the case of ‘top_free list_17). A
new name is obtained which is seen as a generalisation of the old name.

6. classification: new class words can be created if there is no successful matching with
the existing networks. This rule can create class, part_reference and reference words.
The creation of a new class word may result in the transformation of words in other
networks into reference and part_reference words.

7. instantiation: a name matches two networks and the class word of a network is
assumed to be a sub-class of the class word of another network. An instance word
must be added to the class network which corresponds to a part_of word of the class
word of the sub-class network.

8. descending: the matching of a branch of a semantic network cannot continue. The
matching may proceed by following a different branch (the matching with the same
network may continue from a different point).

9. ascending: the matching of a branch of a semantic network can proceed by jumping
over words in the branch. This rule is applied before the rule for descending. The

— 195 —

Appendix B. — Semantic Networks for Name Analysis —

10.

rule of ascending results in a higher value for the evaluation of the matching of
a name than the rule of descending since the same branch in the network is still
considered.

extension: this rule applies when further matches in the current network are not
possible and new words must be added to it. This rule can add new attribute and
reference words.

— 196 —

Appendix C

Combination of
Evaluation-function Values

This appendix describes the system of equations 6.3. These equations allow to update the
evaluation of an hypothesis when more knowledge to support the hypothesis is presented.
These equations are

ert1 = (1 — wiy1) €x + wigy €y W1 > 0 (C.1)
ert1 = (1 4 wiy1) ex + wigy Chy W1 < 0
Chi1 = €k F Wil otherwise (C.3)

1 —min{lex|, |wry1}

with
Wi41 = Tk41 Vk41

The current value for the evaluation of the hypothesis is e;. The value viyq repre-
sents the evaluation of a new item of knowledge which supports the hypothesis and ryyq
represents the relative importance of this (k 4 1)-th item of knowledge with respect to
the hypothesis. The value wy4q is the weighted contribution of the (k 4 1)-th item of
knowledge to the evaluation of the hypothesis investigated. The value e is combined
with the value wyy; according to the above equations to determine the new value epi4
for the evaluation of the hypothesis. Figure C.1 describes these equations for different
values of er. The figure is interpreted as follows:

1. e and w4y are both positive: in this case e linearly rises towards 1 by an amount
that depends on w4y as represented by equation C.1. This can be seen in the first
quadrant of figure C.1 for the cases in which e is positive. For example, for the
case e = 0.9 if wiyq had a value of 0 then e;; would have the same value as ej of
0.9. If wiyq1 had a value of 1 ex1y would reach the maximum value of 1. Generally,
this cannot happen since the relative importance of the (k4 1)-th item of knowledge
rr+1 will be lower than 1 and so will be the value wg4.

2. er and wyyy are both negative: in this case e linearly slides towards —1 by an
amount that depends on w1 as represented by equation C.2. This can be seen in
the third quadrant of figure C.1 for the cases in which ey is negative. The analysis
is similar as in the previous case.

- 197 —

Appendix C. — Combination of Evaluation-function Values —

S+ o o ////////ﬁ
o5 g J
' T K I /}

0.4 §~04 /

02 i L

L

02] L /]
L/ /]
04 / / - /
0.6 | -
// e=-0.8
.0.8 // I /JJ/EI(:'OQ v
i -
/

R —
L

-1.0 SN
-1.0 -08 -06 -04 -02 00 02 04 06 08 10

Wk+1

Figure C.1: Combination of Two Evaluation-function Values

3. equation C.3 represents all the other cases. The values e and wyyq are of a different
sign. If e; is positive and w4y is negative the value of €5y must be lower than
ex (this can be seen in the second and third quadrants for the cases in which e is
positive). If e; is negative and w41 is positive the value of e, must be higher than
er (see the first and fourth quadrants for the cases in which e is negative). If ¢
and wgy1 have the same absolute value ejyq 1s zero. If wyy1 has a higher absolute
value than ej the value egyq represents a linear increase/decrease towards 1/-1 with
respect to 0 which depends on wy41 (see the first quadrant for the cases in which
er, 1s negative and the third quadrant for the cases in which ey is positive). If wyyq
has a lower absolute value than e the value ey tends to zero when the absolute
value of wyy1 increases (see the second and fourth quadrants). This tendency is
more significant for absolute values of w1 that are closer to the absolute value of
er. Absolute values of w1y which are low with respect to the absolute value of ey
find it difficult to alter the existing evidence which is of a different sign. But if the
absolute value of wyyq is high with respect to the absolute value of e the resulting
evaluation tends rapidly to zero.

— 198 —

Appendix D

Architecture of
Computer Systems

The organisation of computer systems can be divided into two groups: those which are
built around a single processor (uniprocessor systems) usually for conventional applica-
tions and those which include special techniques for high-performance computer applica-

tions.

D.1 Uniprocessor Systems

A typical uniprocessor system contains three major components: the main memory,
the central-processor-unit (CPU) and the input-output sub-system. The organisation is
shown in figure D.1. The data sub-system and the control sub-system form the processor
(address values can be calculated in the data sub-system and passed to the control unit,
although special operators for this purpose are usually provided in the control unit).

Control+Address+

Data Constants
CONTROL " DATA
Condition+Address
SUB-SYSTEM ¢ SUB-SYSTEM
8 = r Data Bus
28
E § 8 A4 Address Bus

\ A 4 \ A 4 \ A 4

MEMORY Control 110

Figure D.1: Structure of a Uniprocessor System

The memory stores the data and the instructions to execute. The architecture must
provide for concurrent demands on memory for data to process, instructions to execute
and input/output transfer between memory and the environment. The operation of the
system consists of periods of algorithm execution separated by transfers of blocks of

- 199 —

Appendix D. — Architecture of Computer Systems —

data between levels of the memory hierarchy. For example, blocks of memory words are
moved from the main memory into the cache so that immediate instructions/data can be
available most of the time from the cache which operates as a data/instruction buffer.
The input-output sub-system connects the processor with the environment to obtain
data and commands and to return the results of the computation. The interface of the
[/O devices with the processor takes place by means of device controllers or channels
as shown in figure D.2. The devices usually operate asynchronously with respect to the
processor. The controllers generate timing and control signals for the communication
with the processor, perform data format conversions if required, and detect and correct
data transmission errors. A direct-memory-access (DMA) channel is usually used to
provide direct information transfer between the I/O devices and the main memory.

Address Data Bus
PROCESSOR |« >
A A
DEVICE DEVICE
CONTROLLER CONTROLLER

Y

’ e e e e !
DEVICE DEVICE

Figure D.2: Organisation of the I/O System

The interface processor/controller is viewed as a set of registers that are read and
written by the processor and by the controller. These registers can be data registers
(used to transfer the data), control registers (used to send control information from the
processor to the device controller), and status registers used to send status information
from the controller to the processor. With this organisation, the processors perform the
[/O function just by reading and writing into the registers.

D.2 High-Performance Computer Systems

Advanced computer architectures are centered around the concept of parallel processing.
Parallel processing was initiated by promoting concurrency in uniprocessor systems. A
number of parallel processing mechanisms have been developed in uniprocessor comput-
ers including multiplicity of functional units, parallelism and pipelining within the CPU,
overlapped CPU and I/O operations, use of a hierarchical memory system, multipro-
gramming and time-sharing [HB85].

Computer performance can be further upgraded by using a set of interactive proces-
sors (since semiconductor technology limits the speed of any single processor) '. Parallel

'In some critical applications, the main purpose for using several processors is for reliability rather

— 200 —

Appendix D. — Architecture of Computer Systems —

processing machines or parallel computers can be divided into three architectural config-
urations: pipeline computers, array processors and multiprocessor systems. Most existing
computers are now pipelined, and some of them assume an array or a multiprocessor
structure.

D.2.1 Pipeline computers

In a non-pipelined computer, the different steps of the instruction cycle (typically instruc-
tion fetch (IF), instruction decoding (ID), operand fetch (OF) and execution (EX)) must
be completed before the next instruction can be issued. A pipelined computer has differ-
ent stages for every step of the instruction cycle which are connected in cascade as shown
in figure D.3. High performance is achieved by placing the several stages of the pipeline in
operation simultaneously. Successive instructions are executed in an overlapped fashion.
The flow of data (input operands, intermediate results and output results) is triggered by
a common clock of the pipeline. Interface latches are used between adjacent segments to
hold the intermediate results. In the example of figure D.3, it takes four pipeline cycles
to complete one instruction, but an output value can be produced from the pipeline on
each cycle once the pipeline is filled up. Some of the stages of the pipeline can be fur-
ther partitioned. For example, the execution stage can be partitioned into a multi-stage
arithmetic-logic pipeline. This is the case for sophisticated floating-point operations.

S S S Sy (stages)

— IF > ID

4

OF EX —

Ck

Figure D.3: Pipelined Processor

D.2.2 Array Computers

An array processoris a synchronous parallel computer with multiple processing elements
(PEs) that operate in parallel under the control of a single processor. A typical ar-
ray processor is shown in figure D.4. Scalar and control type instructions are directly
executed in the control unit. The PEs execute a single stream of vector instructions
broadcast to them by a single processor. Instruction fetch (from local memories or from
the control memory) and decode is done by the control unit. The PEs are passive devices
without instruction decoding capabilities. Each PE consists of a data processing unit
and a local memory. The PEs are synchronised to perform the same instruction over a
different operand fetched directly from the local memories. An appropriate data-routing
mechanism must be established among the PEs. The interconnection pattern for a given
application is under program control from the control unit.

than high performance. This is based on the idea that if any single processor fails, its task can be

— 201 —

Appendix D. — Architecture of Computer Systems —

110
Data Bus

PE: processing element
Control Unit CP: control processor

(Scalar Processing) CM: control memory
I
1

P: processor
M: memory

Control

PE PE,,

1

Array
Processing

[~]
T

N
T

Inter-PE Connection Network
(Data Routing)

Figure D.4: Functional Structure of a Conventional Array Processor

D.2.3 Multiprocessor Systems

A multiprocessor is a computer system composed of several independent processors,
each capable of executing its own program. The parallelism is achieved asynchronously
through the set of interactive processors that share access to common sets of memory
cells, I/O channels and peripheral devices. Interprocessor communications can be done
through the shared memories or through an interrupt network [Sto90].

The organisation of a multiprocessor system is determined basically by the intercon-
nection structure of memories and processors as shown in D.5 (and between memories
and I/O channels if needed). Multiprocessors can have any reasonable combination of
shared global memory and private global memory. In one extreme of the design space,
all the memory and 1/O sub-systems are shared among all the processors as shown in
figure D.5(a). The shared memory provides a convenient means to exchange data and
to synchronise activities since any pair of processors can communicate through a shared
location. In the other extreme of the design space, memory and [/O units are attached
to individual processors and no sharing of memory and 1/0 is permitted (communication
is supported through a point-to-point exchange of information).

The simplest way to construct a multiprocessor is to use a bus interconnection as shown
in figure D.5(b). All the processors are connected to a shared bus that provides access to
a global memory. This memory is a resource for all processors. Each processor has a local
memory and a cache memory. By using the local and cache memory the need of using the
shared bus is reduced and less bus interferences occur. As a final example, figure D.5(c)

performed by a spare processor [Lal85].

- 202 —

Appendix D. — Architecture of Computer Systems —

Y
8
-

I nterconnection

Processor 2 Memory
. Network .
Processor N : @I
@
Processor 1 |
Local
Cache Memory 1/0
Processor 2 | Global
. Memory
. Loca
Cache Memory 1/0
Processor N |
Local
Cachel Memory 1/0 |

[Processor 1] | Processor 2]

I

Processor 6 Processor 5

(©

Figure D.5: Multiprocessor Structures: a) memory and I/O remote and shared, b) bus
connected multiprocessor, and ¢) multiprocessor based on loop interconnection.

shows a ring interconnection of processors which supports point-to-point connections
between processors. The efficiency of a multiprocessor system depends on the overheads
included due to the cost of scheduling operations over the different processors, contention
for shared resources, synchronisation, and processor-to-processor communications.

- 203 —

Appendix E

Proofs

E.1 Proofl

This section proofs equations 6.5 and 6.6. These equations are respectively

n

en=1—J](1—wy) (wr > 0)

k=1

en = —1—+ JJ(1+wy) (wr < 0)
k=1

and they are obtained as a solution for the sequence 6.4. The negative sign in this
sequence is used for the case that wy > 0 and the positive sign for the case that w; < 0.
For the first case the sequence is

€1 = U

€y = (1 —wz) 61—|—w2

es = (1 —ws)eq+ ws (E.1)
€n = (1 - wn) €n—1 + Wy

A proof that equation 6.5 is the solution for this sequence is obtained by induction
on n. Equation 6.6 is derived in the same manner considering the positive signs in the
sequence. By substitution of the equation for ¢; in the equation for e,

€9 :(1—w2)w1—|—w2:w1—w2w1—|—w2 :1—(1—11)1)(1—11)2)
By substitution of this result for e¢; in the equation for es

es = (I—ws3)[l = (1 —wy)(l —wy)]+ ws
I —ws— (1 —w)(l —wy)(l—ws)+ ws
= 1—(1—w)(l—wy)(l—ws)

and therefore by induction on n the equation 6.5 is obtained.

- 204 —

Appendix E.

E.2 Proof Il

This section proves that:

1. The equation 6.7

€n=1—(1—w)"

O<w<l,n>1)

— Proofs —

is monotonically increasing and convex with respect to n and w. The function is

monotonically increasing with respect to n if

dey,
Trhso (n>1) (E.2)
on
By differentiating the equation with respect to n
den, _8[(1 —w)"]
on an
Considering that
d x
(dc;) =a" Ina
the differentiation gives
%en _ (1 w) In(1 — w) (E.3)
on
Since 0 <w <1 it is true that
In(1 —w) <0
and equation E.2 is always true.
The function is convex with respect to n if
0%e,,
50, <0 (n>1) (E.4)
and by differentiation of equation E.3
e, 5 .
52, = —[In(1 —w)]*(1 —w)" <0 (n>1) (E.5)
Similarly, the function is monotonically increasing with respect to w since
aen n—1 n—1
T = —n(l—w)" (=) =n(l—w)""" >0 (O<w<1) (E.6)
w
and it is convex with respect to w since
Pen _ (n* —n)(1—w)" %<0 (0<w<1) (E.7)
Gr, = (T w w :

— 205 —

Appendix E. — Proofs —

2. For each pair of values 0 < w < 1 and n > 1 the function e, = f(w) always rises
faster than e, = f(n). The proof of this requires

den , den
Jw ~ dn

From equation E.6 and equation E.3
n(l—w)"' > —(1—w)"In(l —w)

and therefore
n>—(1—w)n(l —w) O<w<1,n>1)

Figure E.1 shows that the second hand of this inequality is always smaller than 1
for the range of values for w considered.

0.5

0.4 yE-(1-w)ln(1-w)

0.3

y

0.2 2
y=[In(1-w)] (1-w)
P

0.1 \

0.0

0.0 0.2 0.4 0.6 0.8 1.0

w

Figure E.1: Graph I

3. For each pair of values 0 <w < 1 and n > 1 the rate of increase decreases less rapidly
for e, = f(w) than for e, = f(n). The first function is more convex than the second.
As a consequence, a few ‘good’ items of knowledge will have a higher contribution
than more items of a lesser quality. The proof of this requires that

0%e,, _ 0%e,,
J*w 0*n
and by means of equation E.7 and equation E.5

—(n® —n)(1 —w)" % < =[In(1 —w)]*(1 —w)"

which gives
(n* —n) > [In(1 —w)]*(1 — w)*

For n > 1 the left hand side of the inequality is always greater than 1 and for
0<w< 1 the right hand side is always smaller than 1 as shown in figure E.1.

— 206 —

Appendix E. — Proofs —

E.3 Proof II1

This section proves that in the system 6.31
E=1—-(1—-re)™
el b (E5)
ng [1—ri|+1

the total contribution of the sub-cells £; increases always when n; increases despite the
fact that r decreases with n;. This implies
oF;
8ni

> 0 (n;, > 1) (E.9)
From the first equation of the system E.8
l—E=(1—-re)™
and by taking logarithms in both sides
In(l — E;) =n; In(1 —re)

Differentiating both sides with respect to n;
1 oL, 0

_ =~ [p; In(1 —
1—E2(6n2) anz[n H(7“6)]
which gives
= (£, — 1) [In(1 — i ——(—
O = (B =)0 =) (e o)
From the second equation of the system E.8
or —|1 =
8ni N (n2|1—r2|—|—1)2
and then
ol e n;e|l —r
=1 -E) [~ -) — NIRRT
on; ng |l —r|+1 (i |1 —r|+1—€)(ni |l —ri| +1)
By taking
$:m l’_l
b= _nilt=rnl 0<k<1

n; [1—r;|+1—e —
the above equation becomes

ok,
8ni

=(1—=F)[-In(l —2)— k2]

Since (1 — £;) >0, 32 > 0 if

ke < —=In(l —2x)

- 207 —

Appendix E. — Proofs —

1.0

bo o0z 04 06 08 10
Figure E.2: Graph II

The functions y=x and y=—In(1 —) are depicted in figure E.2. From this figure, y ==
is always smaller than y=—In(1 —2) in the interval 0 <a <1. Since k<1, this inequality
must always hold and equation E.9 is true.

From figure E.2, the largest values of gf? are obtained for values of x close to 1. For
this to happen, r; — 1. When r; — 1, x — e and k — 0 thus widening the gap between
the functions in figure E.2. The fact that r; is near 1 implies that the situation is well
represented. A well-represented situation with a larger number of sub-cells is, of course,
more difficult to achieve and therefore it is more significant. For r; > 1, + — 0 and
k — 1 with the increase of n;. Then, the increase of E; with n; tends to be very small.
For r; < 1 the derivative is more sensible to n; but it decreases rapidly with n;. Finally,
larger values of e will give smaller values for the derivative since & — 1 when e — 1 and

this narrows the gap between the functions in figure E.2.

— 208 —

Appendix F

Design Hierarchy
for the Case-Studies

F.1 Counter

(1) Top Cell: counter [Lib: counter]
3 instances

1 instance(s) of cell ‘mux’

1 instance(s) of cell ‘adder’

1 instance(s) of cell ‘register’
(2) Cell: mux [Lib: counter]
(2) Cell: adder [Lib: counter]
(2) Cell: register [Lib: counter]

F.2 H bilbo

(1) Top Cell: h_bilbo_register [Lib: h_design]
5 instances
1 instance(s) of cell ‘serial_logic’
4 instance(s) of cell ‘bilbo_stage’
(2) Cell: serial_logic [Lib: h_design]
2 instances
1 instance(s) of cell ‘2_to_1_multiplexer’
1 instance(s) of cell ‘exor’
(3) Cell: 2_to_1_multiplexer [Lib: h_design]
4 instances
3 instance(s) of cell ‘nand’
1 instance(s) of cell ‘inverter’
(4) Cell: nand [Lib: h_devices]
(4) Cell: inverter [Lib: h_devices]
(3) Cell: exor [Lib: h_devices]
(2) Cell: bilbo_stage [Lib: h_design]
4 instances
1 instance(s) of cell ‘nor’
1 instance(s) of cell ‘and’
1 instance(s) of cell ‘d_flipflop’
1 instance(s) of cell ‘exor’
(3) Cell: nor [Lib: h_devices]
(3) Cell: and [Lib: h_devices]

- 209 —

Appendix F. — Design Hierarchy for the Case-Studies —

(3) Cell: d_flipflop [Lib: h_devices]
(3) Cell: exor [Lib: h_devices]

F.3 Add

(1) Top Cell: add [Lib: adder]
12 instances
instance(s) of cell ‘and2’
instance(s) of cell ‘not’
instance(s) of cell ‘and3’
instance(s) of cell ‘or4’
instance(s) of cell ‘or3’
(2) Cell: and2 [Lib: adder]
(2) Cell: not [Lib: adder]
(2) Cell: and3 [Lib: adder]
1 instances
1 instance(s) of cell ‘xxxfunct2’
(3) Cell: xxxfunct2 [Lib: adder]
2 instances
1 instance(s) of cell ‘and2’
1 instance(s) of cell ‘xxxfunctil’
(4) Cell: and2 [Lib: adder]
(4) Cell: xxxfunctl [Lib: adderl]
1 instances
1 instance(s) of cell ‘and2’
(5) Cell: and2 [Lib: adder]
(2) Cell: or4 [Lib: adder]
1 instances
1 instance(s) of cell ‘xxxfunct8’
(3) Cell: xxxfunct8 [Lib: adder]
2 instances
1 instance(s) of cell ‘or2’
1 instance(s) of cell ‘xxxfunct?’
(4) Cell: or2 [Lib: adder]
(4) Cell: xxxfunct7 [Lib: adderl]
2 instances
1 instance(s) of cell ‘or2’
1 instance(s) of cell ‘xxxfunct6’
(5) Cell: or2 [Lib: adder]
(5) Cell: xxxfunct6é [Lib: adder]
1 instances
1 instance(s) of cell ‘or2’
(8) Cell: or2 [Lib: adder]
(2) Cell: or3 [Lib: adder]
1 instances
1 instance(s) of cell ‘xxxfunct4’
(3) Cell: xxxfunct4 [Lib: adder]
2 instances
1 instance(s) of cell ‘or2’
1 instance(s) of cell ‘xxxfunct3’
(4) Cell: or2 [Lib: adder]
(4) Cell: xxxfunct3 [Lib: adderl]

L S R GV V)

— 210 —

Appendix F. — Design Hierarchy for the Case-Studies —

1 instances
1 instance(s) of cell ‘or2’
(5) Cell: or2 [Lib: adderl]

F.4 Validl

(1) Top Cell: validl [Lib: design]
3 instances
1 instance(s) of cell ‘subb’
2 instance(s) of cell ‘suba’
(2) Cell: subb [Lib: design]
12 instances
instance(s) of cell ‘ctnand3’
instance(s) of cell ‘ctaoi’
instance(s) of cell ‘ctoai’
instance(s) of cell ‘ctexnor’
instance(s) of cell ‘ctnor4’
instance(s) of cell ‘ctnand4’
instance(s) of cell ‘cthadd’
instance(s) of cell ‘ctexor’
instance(s) of cell ‘ctinvéd’
instance(s) of cell ‘ctfadd’
(3) Cell: ctnand3 [Lib: ellacad042]
(3) Cell: ctaoi [Lib: ellacad042]
(3) Cell: ctoai [Lib: ellacad042]
(3) Cell: ctexnor [Lib: ellacad042]
(3) Cell: ctnor4 [Lib: ellacad042]
(3) Cell: ctnand4 [Lib: ellacad042]
(3) Cell: cthadd [Lib: ellacad042]
(3) Cell: ctexor [Lib: ellacad042]
(3) Cell: ctinv4 [Lib: ellacad042]
(3) Cell: ctfadd [Lib: ellacad042]
(2) Cell: suba [Lib: design]
6 instances
instance(s) of cell ‘ctnor3’
instance(s) of cell ‘ct2anor’
instance(s) of cell ‘ctnand2’
instance(s) of cell ‘ctinvil’
instance(s) of cell ‘ctnor2’

N R R RN B e e

N R R e e

(3) Cell: ctnor3 [Lib:

(3) Cell: ct2anor [Lib:
(3) Cell: ctnand2 [Lib:

(3) Cell: ctinvl [Lib:
(3) Cell: ctnor2 [Lib:

ellacad042]
ellacad042]
ellacad042]

ellacad042]

ellacad042]

F.5 6g0lla

(1) Top Cell: chip [Lib: user]ist]
96 instances

10 instance(s) of cell ‘1g2’

18 instance(s) of cell ‘1g31’

- 211 —

Appendix F. — Design Hierarchy for the Case-Studies —

58 instance(s) of cell ‘nori’
instance(s) of cell ‘nor2’
instance(s) of cell ‘reg8’
instance(s) of cell ‘shift8’
instance(s) of cell ‘fsm’
instance(s) of cell ‘mux4tol’
instance(s) of cell ‘mux2tol’
instance(s) of cell ‘dmuxito2’
instance(s) of cell ‘dmuxito4’
instance(s) of cell ‘eqv’
(2) Cell: 1g2 [Lib: peripherials]
(2) Cell: 1g31 [Lib: peripherials]
(2) Cell: noril [Lib: primitives]
(2) Cell: nor2 [Lib: primitives]
(2) Cell: reg8 [Lib: user]
10 instances
8 instance(s) of cell ‘dliq’
2 instance(s) of cell ‘nori’
(3) Cell: dliq [Lib: user]
4 instances
4 instance(s) of cell ‘nor2’
(4) Cell: nor2 [Lib: primitives]
(3) Cell: noril [Lib: primitives]
(2) Cell: shift8 [Lib: user]
13 instances
8 instance(s) of cell ‘dtiq’
4 instance(s) of cell ‘nori’
1 instance(s) of cell ‘nor2’
(3) Cell: dtiq [Lib: user]
6 instances
1 instance(s) of cell ‘nor3’
5 instance(s) of cell ‘nor2’
(4) Cell: nor3 [Lib: primitives]
(4) Cell: nor2 [Lib: primitives]
(3) Cell: noril [Lib: primitives]
(3) Cell: nor2 [Lib: primitives]
(2) Cell: fsm [Lib: user]
32 instances
instance(s) of cell ‘nor3’
instance(s) of cell ‘nor4’
instance(s) of cell ‘noril’
instance(s) of cell ‘nor2’
instance(s) of cell ‘dtirgnm’
(3) Cell: nor3 [Lib: primitives]
(3) Cell: nor4 [Lib: primitives]
(3) Cell: noril [Lib: primitives]
(3) Cell: nor2 [Lib: primitives]
(3) Cell: dtirgmn [Lib: user]
6 instances
3 instance(s) of cell ‘nor3’
3 instance(s) of cell ‘nor2’
(4) Cell: nor3 [Lib: primitives]
(4) Cell: nor2 [Lib: primitives]

[= N VI ~ SN SN SRR Oy

BB 0 O~

- 212 —

Appendix F. — Design Hierarchy for the Case-Studies —

(2) Cell: mux4tol [Lib: user]
7 instances
4 instance(s) of cell ‘nor3’
1 instance(s) of cell ‘nor4’
2 instance(s) of cell ‘nori’
(3) Cell: nor3 [Lib: primitives]
(3) Cell: nor4 [Lib: primitives]
(3) Cell: noril [Lib: primitives]
(2) Cell: mux2tol [Lib: user]
4 instances
3 instance(s) of cell ‘nor2’
1 instance(s) of cell ‘nori’
(3) Cell: nor2 [Lib: primitives]
(3) Cell: noril [Lib: primitives]
(2) Cell: dmuxito2 [Lib: user]
4 instances
2 instance(s) of cell ‘nor2’
2 instance(s) of cell ‘nori’
(3) Cell: nor2 [Lib: primitives]
(3) Cell: noril [Lib: primitives]
(2) Cell: dmuxito4 [Lib: user]
7 instances
4 instance(s) of cell ‘nor3’
3 instance(s) of cell ‘nori’
(3) Cell: nor3 [Lib: primitives]
(3) Cell: noril [Lib: primitives]
(2) Cell: eqv [Lib: user]
4 instances
4 instance(s) of cell ‘nor2’
(3) Cell: nor2 [Lib: primitives]

F.6 Multmilldesign

(1) Top Cell: multmill [Lib: netlibraryl]

178 instances

13 instance(s) of cell ‘ctinv4’

30 instance(s) of cell ‘ctinvi’

31 instance(s) of cell ‘split’

11 instance(s) of cell ‘ct2anor’

10 instance(s) of cell ‘ctnand2’

32 instance(s) of cell ‘ctnor2’

1 instance(s) of cell ‘ctaoi’

4 instance(s) of cell ‘ctnor3’

3 instance(s) of cell ‘ctoai’

8 instance(s) of cell ‘ctnand3’

11 instance(s) of cell ‘ct2onand’

3 instance(s) of cell ‘ctexor’

2 instance(s) of cell ‘ctnor4’

3 instance(s) of cell ‘ctnand4’

4 instance(s) of cell ‘multadd’

12 instance(s) of cell ‘ctfadd’
(2) Cell: ctinv4 [Lib: cad042]

- 213 —

Appendix F. — Design Hierarchy for the Case-Studies —

(2) Cell: ctinvl [Lib: cad042]

(2) Cell: split [Lib: netlibrary]

(2) Cell: ct2anor [Lib: cad042]

(2) Cell: ctnand2 [Lib: cad042]

(2) Cell: ctnor2 [Lib: cad042]

(2) Cell: ctaoi [Lib: cad042]

(2) Cell: ctnor3 [Lib: cad042]

(2) Cell: ctoai [Lib: cad042]

(2) Cell: ctnand3 [Lib: cad042]

(2) Cell: ct2onand [Lib: cad042]

(2) Cell: ctexor [Lib: cad042]

(2) Cell: ctnor4 [Lib: cad042]

(2) Cell: ctnand4 [Lib: cad042]

(2) Cell: multadd [Lib: netlibrary]
16 instances

instance(s) of cell ‘split’

instance(s) of cell ‘ctnand4’

instance(s) of cell ‘ctexor’

instance(s) of cell ‘ctnand2’

instance(s) of cell ‘ctinvil’

instance(s) of cell ‘ctnand3’

(3) Cell: split [Lib: netlibraryl]

(3) Cell: ctnand4 [Lib: cad042]

(3) Cell: ctexor [Lib: cad042]

(3) Cell: ctnand2 [Lib: cad042]

(3) Cell: ctinvl [Lib: cad042]

(3) Cell: ctnand3 [Lib: cad042]

(2) Cell: ctfadd [Lib: cad042]

BN NN WW

F.7 Designtopl

(1) Top Cell: decodedmill [Lib: design]
61 instances

1 instance(s) of cell ‘xxxfunct6’
1 instance(s) of cell ‘xxxfunctil’
6 instance(s) of cell ‘invsel4’

1 instance(s) of cell ‘reg’

1 instance(s) of cell ‘xxxfunct?’
1 instance(s) of cell ‘xxxfunct8’
1 instance(s) of cell ‘ctnor2’

1 instance(s) of cell ‘xxxfunct9’
1 instance(s) of cell ‘xxxfuncti0’
1 instance(s) of cell ‘eq4’

1 instance(s) of cell ‘xxxfunct4’
1 instance(s) of cell ‘xxxfunct2’
1 instance(s) of cell ‘xxxfunctiil’
1 instance(s) of cell ‘xxxfunct3’
1 instance(s) of cell ‘xxxfuncth’

28 instance(s) of cell ‘ctihm’
9 instance(s) of cell ‘ctopa’
2 instance(s) of cell ‘multmill’
2 instance(s) of cell ‘millc’

- 214 —

Appendix F. — Design Hierarchy for the Case-Studies —

(2) Cell: xxxfuncté [Lib: design]
16 instances
8 instance(s) of cell ‘ctinvi’
4 instance(s) of cell ‘ct2anor’
4 instance(s) of cell ‘ctdf’
(3) Cell: ctinvl [Lib: ellacad042]
(3) Cell: ct2anor [Lib: ellacad042]
(3) Cell: ctdf [Lib: ellacad042]
(2) Cell: xxxfunctl [Lib: design]
13 instances
7 instance(s) of cell ‘ctinvi’
3 instance(s) of cell ‘ct2anor’
3 instance(s) of cell ‘ctdf’
(3) Cell: ctinvl [Lib: ellacad042]
(3) Cell: ct2anor [Lib: ellacad042]
(3) Cell: ctdf [Lib: ellacad042]
(2) Cell: invsel4 [Lib: design]
4 instances
4 instance(s) of cell ‘ctexor’
(3) Cell: ctexor [Lib: ellacad042]
(2) Cell: reg [Lib: design]
16 instances
8 instance(s) of cell ‘ctinvi’
4 instance(s) of cell ‘ct2anor’
4 instance(s) of cell ‘ctdf’
(3) Cell: ctinvl [Lib: ellacad042]
(3) Cell: ct2anor [Lib: ellacad042]
(3) Cell: ctdf [Lib: ellacad042]
(2) Cell: xxxfunct7 [Lib: design]
16 instances
8 instance(s) of cell ‘ctinvi’
4 instance(s) of cell ‘ct2anor’
4 instance(s) of cell ‘ctdf’
(3) Cell: ctinvl [Lib: ellacad042]
(3) Cell: ct2anor [Lib: ellacad042]
(3) Cell: ctdf [Lib: ellacad042]
(2) Cell: xxxfunct8 [Lib: design]
16 instances
8 instance(s) of cell ‘ctinvi’
4 instance(s) of cell ‘ct2anor’
4 instance(s) of cell ‘ctdf’
(3) Cell: ctinvl [Lib: ellacad042]
(3) Cell: ct2anor [Lib: ellacad042]
(3) Cell: ctdf [Lib: ellacad042]
(2) Cell: ctnor2 [Lib: ellacad042]
(2) Cell: xxxfunct9 [Lib: design]
16 instances
8 instance(s) of cell ‘ctinvi’
4 instance(s) of cell ‘ct2anor’
4 instance(s) of cell ‘ctdf’
(3) Cell: ctinvl [Lib: ellacad042]
(3) Cell: ct2anor [Lib: ellacad042]
(3) Cell: ctdf [Lib: ellacad042]

- 215 —

Appendix F. — Design Hierarchy for the Case-Studies —

(2) Cell: xxxfunctl0 [Lib: design]
16 instances
8 instance(s) of cell ‘ctinvi’
4 instance(s) of cell ‘ct2anor’
4 instance(s) of cell ‘ctdf’
(3) Cell: ctinvl [Lib: ellacad042]
(3) Cell: ct2anor [Lib: ellacad042]
(3) Cell: ctdf [Lib: ellacad042]
(2) Cell: eg4 [Lib: design]
6 instances
4 instance(s) of cell ‘ctexor’
1 instance(s) of cell ‘ctinvi’
1 instance(s) of cell ‘ctnor4’
(3) Cell: ctexor [Lib: ellacad042]
(3) Cell: ctinvl [Lib: ellacad042]
(3) Cell: ctnor4 [Lib: ellacad042]
(2) Cell: xxxfunct4 [Lib: design]
16 instances
8 instance(s) of cell ‘ctinvi’
4 instance(s) of cell ‘ct2anor’
4 instance(s) of cell ‘ctdf’
(3) Cell: ctinvl [Lib: ellacad042]
(3) Cell: ct2anor [Lib: ellacad042]
(3) Cell: ctdf [Lib: ellacad042]
(2) Cell: xxxfunct2 [Lib: design]
10 instances
6 instance(s) of cell ‘ctinvi’
2 instance(s) of cell ‘ct2anor’
2 instance(s) of cell ‘ctdf’
(3) Cell: ctinvl [Lib: ellacad042]
(3) Cell: ct2anor [Lib: ellacad042]
(3) Cell: ctdf [Lib: ellacad042]
(2) Cell: xxxfunctil [Lib: design]
6 instances
4 instance(s) of cell ‘ctexor’
1 instance(s) of cell ‘ctinvi’
1 instance(s) of cell ‘ctnor4’
(3) Cell: ctexor [Lib: ellacad042]
(3) Cell: ctinvl [Lib: ellacad042]
(3) Cell: ctnor4 [Lib: ellacad042]
(2) Cell: xxxfunct3 [Lib: design]
16 instances
8 instance(s) of cell ‘ctinvi’
4 instance(s) of cell ‘ct2anor’
4 instance(s) of cell ‘ctdf’
(3) Cell: ctinvl [Lib: ellacad042]
(3) Cell: ct2anor [Lib: ellacad042]
(3) Cell: ctdf [Lib: ellacad042]
(2) Cell: xxxfuncth [Lib: design]
16 instances
8 instance(s) of cell ‘ctinvi’
4 instance(s) of cell ‘ct2anor’
4 instance(s) of cell ‘ctdf’

— 216 —

Appendix F. — Design Hierarchy for the Case-Studies —

(3) Cell: ctinvl [Lib: ellacad042]
(3) Cell: ct2anor [Lib: ellacad042]
(3) Cell: ctdf [Lib: ellacad042]
(2) Cell: ctihm [Lib: ellacad042]
(2) Cell: ctopa [Lib: ellacad042]
(2) Cell: multmill [Lib: design]
147 instances
11 instance(s) of cell ‘ct2anor’
30 instance(s) of cell ‘ctinvil’
12 instance(s) of cell ‘ctfadd’
33 instance(s) of cell ‘ctnor2’

11 instance(s) of cell ‘ct2onand’
4 instance(s) of cell ‘multadd’

2 instance(s) of cell ‘ctnor4’

9 instance(s) of cell ‘ctnand2’

3 instance(s) of cell ‘ctnand4’

5 instance(s) of cell ‘ctnand3’

3 instance(s) of cell ‘ctexor’

3 instance(s) of cell ‘ctoai’

7 instance(s) of cell ‘ctnor3’

13 instance(s) of cell ‘ctinv4’
1 instance(s) of cell ‘ctaoi’
(3) Cell: ct2anor [Lib: ellacad042]
(3) Cell: ctinvl [Lib: ellacad042]
(3) Cell: ctfadd [Lib: ellacad042]
(3) Cell: ctnor2 [Lib: ellacad042]
(3) Cell: ct2onand [Lib: ellacad042]
(3) Cell: multadd [Lib: design]
13 instances
instance(s) of cell ‘ctnand2’
instance(s) of cell ‘ctnand3’
instance(s) of cell ‘ctinvil’
instance(s) of cell ‘ctnand4’
instance(s) of cell ‘ctexor’
(4) Cell: ctnand2 [Lib: ellacad042]
(4) Cell: ctnand3 [Lib: ellacad042]
(4) Cell: ctinvl [Lib: ellacad042]
(4) Cell: ctnand4 [Lib: ellacad042]
(4) Cell: ctexor [Lib: ellacad042]
(3) Cell: ctnor4 [Lib: ellacad042]
(3) Cell: ctnand2 [Lib: ellacad042]
(3) Cell: ctnand4 [Lib: ellacad042]
(3) Cell: ctnand3 [Lib: ellacad042]
(3) Cell: ctexor [Lib: ellacad042]
(3) Cell: ctoai [Lib: ellacad042]
(3) Cell: ctnor3 [Lib: ellacad042]
(3) Cell: ctinv4 [Lib: ellacad042]
(3) Cell: ctaoi [Lib: ellacad042]
(2) Cell: millc [Lib: designl]
50 instances
9 instance(s) of cell ‘ctnand4’
4 instance(s) of cell ‘ctnand3’
24 instance(s) of cell ‘ctinvé4’

N W N PN

- 217 —

Appendix F. — Design Hierarchy for the Case-Studies —

3 instance(s) of cell ‘ctnand2’

5 instance(s) of cell ‘ctnor4’

5 instance(s) of cell ‘ctnor3’
(3) Cell: ctnand4 [Lib: ellacad042]
(3) Cell: ctnand3 [Lib: ellacad042]
(3) Cell: ctinv4 [Lib: ellacad042]
(3) Cell: ctnand2 [Lib: ellacad042]
(3) Cell: ctnor4 [Lib: ellacad042]
(3) Cell: ctnor3 [Lib: ellacad042]

F.8 18ara700a

(1) Top Cell: chip [Lib: user]ist]
47 instances

13 instance(s) of cell ‘ar38’

23 instance(s) of cell ‘ar2’
instance(s) of cell ‘tbsely’
instance(s) of cell ‘rngsel’
instance(s) of cell ‘counteri0O’
instance(s) of cell ‘bitshift’
instance(s) of cell ‘tbsel’
instance(s) of cell ‘rnoril’
instance(s) of cell
instance(s) of cell ‘resout’
instance(s) of cell ‘valcomp4’

(2) Cell: ar38 [Lib: peripherials]
(2) Cell: ar2 [Lib: peripherials]
(2) Cell: tbsely [Lib: user]

20 instances

8 instance(s) of cell ‘rnor2’

11 instance(s) of cell ‘rnori’

1 instance(s) of cell ‘rnor4’

(3) Cell: rmor2 [Lib: primitives]

‘rexor’

[= VI = S S SR SRR GRS

(3) Cell: rnori

(3) Cell: rnor4

(2)
31 instances

1 instance(s) of

Cell: rngsel [Lib:

[Lib: primitives]
[Lib: primitives]
user]

18 instance(s) of cell ‘rnori’

6 instance(s) of
instance(s)
instance(s)
instance(s)
instance(s)

(3) Cell: rnor7

(3) Cell:

(3) Cell:

(3)

N = N =

rnorl
rnor2

cell ‘rnor7’

cell ‘rnor2’

cell ‘tbselill’
cell ‘valcomp7’
cell ‘tbselx’
cell ‘counteri0’
[Lib: primitives]
[Lib: primitives]
[Lib: primitives]

Cell: tbselll [Lib: user]

25 instances
10 instance(s) of cell ‘rnor2’
14 instance(s) of cell ‘rnori’
1 instance(s) of cell ‘rnor4’

— 218

Appendix F. — Design Hierarchy for the Case-Studies —

(4) Cell: rnor2 [Lib: primitives]
(4) Cell: rmoril [Lib: primitives]
(4) Cell: rnor4 [Lib: primitives]
(3) Cell: valcomp7 [Lib: user]
10 instances
7 instance(s) of cell ‘rexor’
1 instance(s) of cell ‘rnorb’
2 instance(s) of cell ‘rnor2’
(4) Cell: rexor [Lib: user]
3 instances
3 instance(s) of cell ‘rnor2’
(5) Cell: rnor2 [Lib: primitives]
(4) Cell: rnor5 [Lib: primitives]
(4) Cell: rnor2 [Lib: primitives]
(3) Cell: tbselx [Lib: user]
24 instances
10 instance(s) of cell ‘rnor2’
13 instance(s) of cell ‘rnori’
1 instance(s) of cell ‘rnor4’
(4) Cell: rnor2 [Lib: primitives]
(4) Cell: rmoril [Lib: primitives]
(4) Cell: rnor4 [Lib: primitives]
(3) Cell: counter10 [Lib: user]
3 instances
1 instance(s) of cell ‘halcou’
2 instance(s) of cell ‘cou4’
(4) Cell: halcou [Lib: user]
13 instances
4 instance(s) of cell ‘rnori’
4 instance(s) of cell ‘rnor3’
3 instance(s) of cell ‘rnor2’
2 instance(s) of cell ‘dtisqm’
(5) Cell: rnoril [Lib: primitives]
(5) Cell: rnor3 [Lib: primitives]
(5) Cell: rnor2 [Lib: primitives]
(5) Cell: dtisgn [Lib: user]
6 instances
2 instance(s) of cell ‘rnori’
2 instance(s) of cell ‘rnor2’
2 instance(s) of cell ‘rnor3’
(6) Cell: rnoril [Lib: primitives]
(6) Cell: rnor2 [Lib: primitives]
(6) Cell: rnor3 [Lib: primitives]
(4) Cell: cou4 [Lib: user]
23 instances
instance(s) of cell ‘rnor2’
instance(s) of cell ‘rnor3’
instance(s) of cell ‘rnoril’
instance(s) of cell ‘rnor4’
instance(s) of cell ‘dtisqgn’
instance(s) of cell ‘rnor5’
(5) Cell: rnor2 [Lib: primitives]
(5) Cell: rnor3 [Lib: primitives]

N = 00 O O;

- 219 —

Appendix F. — Design Hierarchy for the Case-Studies —

(5) Cell: rnoril [Lib: primitives]
(5) Cell: rnor4 [Lib: primitives]
(5) Cell: dtisgn [Lib: user]
6 instances
2 instance(s) of cell ‘rnori’
2 instance(s) of cell ‘rnor2’
2 instance(s) of cell ‘rnor3’
(6) Cell: rnoril [Lib: primitives]
(6) Cell: rnor2 [Lib: primitives]
(6) Cell: rnor3 [Lib: primitives]
(5) Cell: rnor5 [Lib: primitives]
(2) Cell: counter10 [Lib: user]
3 instances
1 instance(s) of cell ‘halcou’
2 instance(s) of cell ‘cou4d’
(3) Cell: halcou [Lib: user]
13 instances
4 instance(s) of cell ‘rnori’
4 instance(s) of cell ‘rnor3’
3 instance(s) of cell ‘rnor2’
2 instance(s) of cell ‘dtisqm’
(4) Cell: rmoril [Lib: primitives]
(4) Cell: rnor3 [Lib: primitives]
(4) Cell: rnor2 [Lib: primitives]
(4) Cell: dtisqn [Lib: user]
6 instances
2 instance(s) of cell ‘rnoril’
2 instance(s) of cell ‘rnor2’
2 instance(s) of cell ‘rnor3’
(5) Cell: rnoril [Lib: primitives]
(5) Cell: rnor2 [Lib: primitives]
(5) Cell: rnor3 [Lib: primitives]
(3) Cell: cou4 [Lib: user]
23 instances
instance(s) of cell ‘rnor2’
instance(s) of cell ‘rnor3’
instance(s) of cell ‘rnoril’
instance(s) of cell ‘rnor4’
instance(s) of cell ‘dtisqgn’
instance(s) of cell ‘rnor5’
(4) Cell: rnor2 [Lib: primitives]
(4) Cell: rnor3 [Lib: primitives]
(4) Cell: rmoril [Lib: primitives]
(4) Cell: rnor4 [Lib: primitives]
(4) Cell: dtisqn [Lib: user]
6 instances
2 instance(s) of cell ‘rnoril’
2 instance(s) of cell ‘rnor2’
2 instance(s) of cell ‘rnor3’
(5) Cell: rnoril [Lib: primitives]
(5) Cell: rnor2 [Lib: primitives]
(5) Cell: rnor3 [Lib: primitives]
(4) Cell: rnor5 [Lib: primitives]

N = 00 O O;

— 220 —

Appendix F. — Design Hierarchy for the Case-Studies —

(2) Cell: bitshift [Lib: user]
23 instances

10 instance(s) of cell ‘rnori’
instance(s) of cell ‘rnor4’
instance(s) of cell ‘rnor2’
instance(s) of cell ‘selunit4’
instance(s) of cell ‘selunité’
instance(s) of cell ‘selunit7’
instance(s) of cell ‘selunith’
instance(s) of cell ‘selunit3’
instance(s) of cell ‘encoder’
instance(s) of cell ‘sftlogic’
instance(s) of cell ‘adder’
instance(s) of cell ‘selunitil’
instance(s) of cell ‘selunit2’
instance(s) of cell ‘selunit0O’
(3) Cell: rmoril [Lib: primitives]
(3) Cell: rnor4 [Lib: primitives]
(3) Cell: rmor2 [Lib: primitives]
(3) Cell: selunit4 [Lib: user]

13 instances
instance(s) of cell ‘rnoril’
instance(s) of cell ‘rnor2’
instance(s) of cell ‘rnor4’
instance(s) of cell ‘valuecomp’

L T T e T T T G SO S S SOy Y

[= YU |

instance(s) of cell ‘counteru’
(4) Cell: rmoril [Lib: primitives]
(4) Cell: rnor2 [Lib: primitives]
(4) Cell: rnor4 [Lib: primitives]
(4) Cell: valuecomp [Lib: user]
7 instances
1 instance(s) of cell ‘rnor3’
1 instance(s) of cell ‘rnor2’
2 instance(s) of cell ‘rnoril’
3 instance(s) of cell ‘rexor’
(5) Cell: rnor3 [Lib: primitives]
(5) Cell: rnor2 [Lib: primitives]
(5) Cell: rnoril [Lib: primitives]
(5) Cell: rexor [Lib: user]
3 instances
3 instance(s) of cell ‘rnor2’
(6) Cell: rnor2 [Lib: primitives]
(4) Cell: counteru [Lib: userl]
2 instances
1 instance(s) of cell ‘rnori’
1 instance(s) of cell ‘coun’
(5) Cell: rnoril [Lib: primitives]
(5) Cell: cou [Lib: user]
17 instances
instance(s) of cell ‘rnor3’
instance(s) of cell ‘rnor2’
instance(s) of cell ‘rnor4’

B =k

instance(s) of cell ‘rnori’

- 221 —

Appendix F. — Design Hierarchy for the Case-Studies —

3 instance(s) of cell ‘dtisqn’
(6) Cell: rnor3 [Lib: primitives]
(6) Cell: rnor2 [Lib: primitives]
(6) Cell: rnor4 [Lib: primitives]
(6) Cell: rnoril [Lib: primitives]
(6) Cell: dtisqn [Lib: user]
6 instances
2 instance(s) of cell ‘rnori’
2 instance(s) of cell ‘rnor2’
2 instance(s) of cell ‘rnor3’
(7) Cell: rmoril [Lib: primitives]
(7) Cell: rmor2 [Lib: primitives]
(7) Cell: rnor3 [Lib: primitives]
(3) Cell: selunit6 [Lib: user]
14 instances
instance(s) of cell ‘rnor4’
instance(s) of cell ‘rnoril’
instance(s) of cell ‘rnor2’
instance(s) of cell ‘valuecomp’
instance(s) of cell ‘counteru’
(4) Cell: rnor4 [Lib: primitives]
(4) Cell: rmoril [Lib: primitives]
(4) Cell: rnor2 [Lib: primitives]
(4) Cell: valuecomp [Lib: user]
7 instances
1 instance(s) of cell ‘rnor3’
1 instance(s) of cell ‘rnor2’
2 instance(s) of cell ‘rnoril’
3 instance(s) of cell ‘rexor’
(5) Cell: rnor3 [Lib: primitives]
(5) Cell: rnor2 [Lib: primitives]
(5) Cell: rnoril [Lib: primitives]
(5) Cell: rexor [Lib: user]
3 instances
3 instance(s) of cell ‘rnor2’
(6) Cell: rnor2 [Lib: primitives]
(4) Cell: counteru [Lib: userl]
2 instances
1 instance(s) of cell ‘rnori’
1 instance(s) of cell ‘coun’
(5) Cell: rnoril [Lib: primitives]
(5) Cell: cou [Lib: user]
17 instances
instance(s) of cell ‘rnor3’
instance(s) of cell ‘rnor2’
instance(s) of cell ‘rnor4’
instance(s) of cell ‘rnoril’
instance(s) of cell ‘dtisqgn’
(6) Cell: rnor3 [Lib: primitives]
(6) Cell: rnor2 [Lib: primitives]
(6) Cell: rnor4 [Lib: primitives]
(6) Cell: rnoril [Lib: primitives]
(6) Cell: dtisqn [Lib: user]

o W 00 -

W o

— 222 —

Appendix F. — Design Hierarchy for the Case-Studies —

6 instances
2 instance(s) of cell ‘rnori’
2 instance(s) of cell ‘rnor2’
2 instance(s) of cell ‘rnor3’
(7) Cell: rmoril [Lib: primitives]
(7) Cell: rmor2 [Lib: primitives]
(7) Cell: rnor3 [Lib: primitives]
(3) Cell: selunit7 [Lib: user]
15 instances
instance(s) of cell ‘rnoril’
instance(s) of cell ‘rnor2’
instance(s) of cell ‘rnor4’
instance(s) of cell ‘valuecomp’
instance(s) of cell ‘counteru’
(4) Cell: rmoril [Lib: primitives]
(4) Cell: rnor2 [Lib: primitives]
(4) Cell: rnor4 [Lib: primitives]
(4) Cell: valuecomp [Lib: user]
7 instances
1 instance(s) of cell ‘rnor3’
1 instance(s) of cell ‘rnor2’
2 instance(s) of cell ‘rnoril’
3 instance(s) of cell ‘rexor’
(5) Cell: rnor3 [Lib: primitives]
(5) Cell: rnor2 [Lib: primitives]
(5) Cell: rnoril [Lib: primitives]
(5) Cell: rexor [Lib: user]
3 instances
3 instance(s) of cell ‘rnor2’
(6) Cell: rnor2 [Lib: primitives]
(4) Cell: counteru [Lib: userl]
2 instances
1 instance(s) of cell ‘rnori’
1 instance(s) of cell ‘coun’
(5) Cell: rnoril [Lib: primitives]
(5) Cell: cou [Lib: user]
17 instances
instance(s) of cell ‘rnor3’
instance(s) of cell ‘rnor2’
instance(s) of cell ‘rnor4’
instance(s) of cell ‘rnoril’
instance(s) of cell ‘dtisqgn’
(6) Cell: rnor3 [Lib: primitives]
(6) Cell: rnor2 [Lib: primitives]
(6) Cell: rnor4 [Lib: primitives]
(6) Cell: rnoril [Lib: primitives]
(6) Cell: dtisqn [Lib: user]
6 instances
2 instance(s) of cell ‘rnori’

[= S N (o)

W o

2 instance(s) of cell ‘rnor2’

2 instance(s) of cell ‘rnor3’
(7) Cell: rmoril [Lib: primitives]
(7) Cell: rmor2 [Lib: primitives]

— 223 —

Appendix F. — Design Hierarchy for the Case-Studies —

(7) Cell: rnor3 [Lib: primitives]
(3) Cell: selunitb [Lib: user]
14 instances
instance(s) of cell ‘rnor4’
instance(s) of cell ‘rnoril’
instance(s) of cell ‘rnor2’
instance(s) of cell ‘valuecomp’
instance(s) of cell ‘counteru’
(4) Cell: rnor4 [Lib: primitives]
(4) Cell: rmoril [Lib: primitives]
(4) Cell: rnor2 [Lib: primitives]
(4) Cell: valuecomp [Lib: user]
7 instances
instance(s) of cell ‘rnor3’
instance(s) of cell ‘rnor2’
instance(s) of cell ‘rnoril’
instance(s) of cell ‘rexor’
(5) Cell: rnor3 [Lib: primitives]
(5) Cell: rnor2 [Lib: primitives]
(5) Cell: rnoril [Lib: primitives]
(5) Cell: rexor [Lib: user]
3 instances
3 instance(s) of cell ‘rnor2’
(6) Cell: rnor2 [Lib: primitives]
(4) Cell: counteru [Lib: userl]
2 instances
1 instance(s) of cell ‘rnori’
1 instance(s) of cell ‘coun’
(5) Cell: rnoril [Lib: primitives]
(5) Cell: cou [Lib: user]
17 instances
instance(s) of cell ‘rnor3’
instance(s) of cell ‘rnor2’
instance(s) of cell ‘rnor4’
instance(s) of cell ‘rnoril’
instance(s) of cell ‘dtisqgn’
(6) Cell: rnor3 [Lib: primitives]
(6) Cell: rnor2 [Lib: primitives]
(6) Cell: rnor4 [Lib: primitives]
(6) Cell: rnoril [Lib: primitives]
(6) Cell: dtisqn [Lib: user]
6 instances
2 instance(s) of cell ‘rnori’
2 instance(s) of cell ‘rnor2’
2 instance(s) of cell ‘rnor3’
(7) Cell: rmoril [Lib: primitives]
(7) Cell: rmor2 [Lib: primitives]
(7) Cell: rnor3 [Lib: primitives]
(3) Cell: selunit3 [Lib: user]
14 instances

[T e

W N = =

IS |

8 instance(s) of cell ‘rnoril’
3 instance(s) of cell ‘rnor2’
1 instance(s) of cell ‘rnoré4’

— 224 —

Appendix F. — Design Hierarchy for the Case-Studies —

1 instance(s) of cell ‘valuecomp’
1 instance(s) of cell ‘counter’
(4) Cell: rmoril [Lib: primitives]
(4) Cell: rnor2 [Lib: primitives]
(4) Cell: rnor4 [Lib: primitives]
(4) Cell: valuecomp [Lib: user]
7 instances
1 instance(s) of cell ‘rnor3’
1 instance(s) of cell ‘rnor2’
2 instance(s) of cell ‘rnoril’
3 instance(s) of cell ‘rexor’
(5) Cell: rnor3 [Lib: primitives]
(5) Cell: rnor2 [Lib: primitives]
(5) Cell: rnoril [Lib: primitives]
(5) Cell: rexor [Lib: user]
3 instances
3 instance(s) of cell ‘rnor2’
(6) Cell: rnor2 [Lib: primitives]
(4) Cell: counter [Lib: user]
1 instances
1 instance(s) of cell ‘coun’
(5) Cell: cou [Lib: user]
17 instances
instance(s) of cell ‘rnor3’
instance(s) of cell ‘rnor2’
instance(s) of cell ‘rnor4’
instance(s) of cell ‘rnoril’
instance(s) of cell ‘dtisqgn’
(6) Cell: rnor3 [Lib: primitives]
(6) Cell: rnor2 [Lib: primitives]
(6) Cell: rnor4 [Lib: primitives]
(6) Cell: rnoril [Lib: primitives]
(6) Cell: dtisqn [Lib: user]
6 instances
2 instance(s) of cell ‘rnori’
2 instance(s) of cell ‘rnor2’
2 instance(s) of cell ‘rnor3’
(7) Cell: rmoril [Lib: primitives]
(7) Cell: rmor2 [Lib: primitives]
(7) Cell: rnor3 [Lib: primitives]
(3) Cell: encoder [Lib: user]
30 instances
9 instance(s) of cell ‘rnor2’
13 instance(s) of cell ‘rnori’
6 instance(s) of cell ‘rnor4’
1 instance(s) of cell ‘rnor3’
1 instance(s) of cell ‘rnorb’
(4) Cell: rnor2 [Lib: primitives]
(4) Cell: rmoril [Lib: primitives]
(4) Cell: rnor4 [Lib: primitives]
(4) Cell: rnor3 [Lib: primitives]
(4) Cell: rnor5 [Lib: primitives]
(3) Cell: sftlogic [Lib: user]

IS U N |

— 225 —

Appendix F. — Design Hierarchy for the Case-Studies —

62 instances
35 instance(s) of cell ‘rnor2’
19 instance(s) of cell ‘rnori’
8 instance(s) of cell ‘dtirqg’
(4) Cell: rnor2 [Lib: primitives]
(4) Cell: rmoril [Lib: primitives]
(4) Cell: dtirq [Lib: user]
6 instances
4 instance(s) of cell ‘rnor2’
1 instance(s) of cell ‘rnori’
1 instance(s) of cell ‘rnor3’
(5) Cell: rnor2 [Lib: primitives]
(5) Cell: rnoril [Lib: primitives]
(5) Cell: rnor3 [Lib: primitives]
(3) Cell: adder [Lib: user]
16 instances
4 instance(s) of cell ‘rnori’
8 instance(s) of cell ‘rnor2’
2 instance(s) of cell ‘rexor’
2 instance(s) of cell ‘subadder’
(4) Cell: rmoril [Lib: primitives]
(4) Cell: rnor2 [Lib: primitives]
(4) Cell: rexor [Lib: user]
3 instances
3 instance(s) of cell ‘rnor2’
(5) Cell: rnor2 [Lib: primitives]
(4) Cell: subadder [Lib: userl]
50 instances
17 instance(s) of cell ‘rnor2’
3 instance(s) of cell ‘rnor4’
4 instance(s) of cell ‘rnor3’
20 instance(s) of cell ‘rnoril’
4 instance(s) of cell ‘rexor’
2 instance(s) of cell ‘rnor5s’
(5) Cell: rnor2 [Lib: primitives]
(5) Cell: rnor4 [Lib: primitives]
(5) Cell: rnor3 [Lib: primitives]
(5) Cell: rnoril [Lib: primitives]
(5) Cell: rexor [Lib: user]
3 instances
3 instance(s) of cell ‘rnor2’
(6) Cell: rnor2 [Lib: primitives]
(5) Cell: rnor5 [Lib: primitives]
(3) Cell: selunitl [Lib: user]
13 instances
instance(s) of cell ‘rnor4’
instance(s) of cell ‘rnoril’
instance(s) of cell ‘rnor2’
instance(s) of cell ‘valuecomp’
instance(s) of cell ‘counter’
(4) Cell: rnor4 [Lib: primitives]
(4) Cell: rmoril [Lib: primitives]
(4) Cell: rnor2 [Lib: primitives]

[N L =

— 226 —

Appendix F. — Design Hierarchy for the Case-Studies —

(4) Cell: valuecomp [Lib: user]
7 instances
1 instance(s) of cell ‘rnor3’
1 instance(s) of cell ‘rnor2’
2 instance(s) of cell ‘rnoril’
3 instance(s) of cell ‘rexor’
(5) Cell: rnor3 [Lib: primitives]
(5) Cell: rnor2 [Lib: primitives]
(5) Cell: rnoril [Lib: primitives]
(5) Cell: rexor [Lib: user]
3 instances
3 instance(s) of cell ‘rnor2’
(6) Cell: rnor2 [Lib: primitives]
(4) Cell: counter [Lib: user]
1 instances
1 instance(s) of cell ‘coun’
(5) Cell: cou [Lib: user]
17 instances
instance(s) of cell ‘rnor3’
instance(s) of cell ‘rnor2’
instance(s) of cell ‘rnor4’
instance(s) of cell ‘rnoril’
instance(s) of cell ‘dtisqgn’
(6) Cell: rnor3 [Lib: primitives]
(6) Cell: rnor2 [Lib: primitives]
(6) Cell: rnor4 [Lib: primitives]
(6) Cell: rnoril [Lib: primitives]
(6) Cell: dtisqn [Lib: user]
6 instances

IS U N |

2 instance(s) of cell ‘rnori’
2 instance(s) of cell ‘rnor2’
2 instance(s) of cell ‘rnor3’
(7) Cell: rmoril [Lib: primitives]
(7) Cell: rmor2 [Lib: primitives]
(7) Cell: rnor3 [Lib: primitives]
(3) Cell: selunit2 [Lib: user]
13 instances
instance(s) of cell ‘rnor4’
instance(s) of cell ‘rnoril’
instance(s) of cell ‘rnor2’
instance(s) of cell ‘valuecomp’
instance(s) of cell ‘counter’
(4) Cell: rnor4 [Lib: primitives]
(4) Cell: rmoril [Lib: primitives]
(4) Cell: rnor2 [Lib: primitives]
(4) Cell: valuecomp [Lib: user]
7 instances
1 instance(s) of cell ‘rnor3’
1 instance(s) of cell ‘rnor2’
2 instance(s) of cell ‘rnoril’
3 instance(s) of cell ‘rexor’
(5) Cell: rnor3 [Lib: primitives]
(5) Cell: rnor2 [Lib: primitives]

R oR W~ e

- 227 —

Appendix F. — Design Hierarchy for the Case-Studies —

(5) Cell: rnoril [Lib: primitives]
(5) Cell: rexor [Lib: user]
3 instances
3 instance(s) of cell ‘rnor2’
(6) Cell: rnor2 [Lib: primitives]
(4) Cell: counter [Lib: user]
1 instances
1 instance(s) of cell ‘coun’
(5) Cell: cou [Lib: user]
17 instances
instance(s) of cell ‘rnor3’
instance(s) of cell ‘rnor2’
instance(s) of cell ‘rnor4’
instance(s) of cell ‘rnoril’
instance(s) of cell ‘dtisqgn’
(6) Cell: rnor3 [Lib: primitives]
(6) Cell: rnor2 [Lib: primitives]
(6) Cell: rnor4 [Lib: primitives]
(6) Cell: rnoril [Lib: primitives]
(6) Cell: dtisqn [Lib: user]
6 instances
2 instance(s) of cell ‘rnori’
2 instance(s) of cell ‘rnor2’
2 instance(s) of cell ‘rnor3’
(7) Cell: rmoril [Lib: primitives]
(7) Cell: rmor2 [Lib: primitives]
(7) Cell: rnor3 [Lib: primitives]
(3) Cell: selunitO [Lib: user]
12 instances
instance(s) of cell ‘rnoril’
instance(s) of cell ‘rnor2’
instance(s) of cell ‘rnor4’
instance(s) of cell ‘valuecomp’
instance(s) of cell ‘counter’
(4) Cell: rmoril [Lib: primitives]
(4) Cell: rnor2 [Lib: primitives]
(4) Cell: rnor4 [Lib: primitives]
(4) Cell: valuecomp [Lib: user]
7 instances
1 instance(s) of cell ‘rnor3’
1 instance(s) of cell ‘rnor2’
2 instance(s) of cell ‘rnoril’
3 instance(s) of cell ‘rexor’
(5) Cell: rnor3 [Lib: primitives]
(5) Cell: rnor2 [Lib: primitives]
(5) Cell: rnoril [Lib: primitives]
(5) Cell: rexor [Lib: user]
3 instances
3 instance(s) of cell ‘rnor2’
(6) Cell: rnor2 [Lib: primitives]
(4) Cell: counter [Lib: user]
1 instances
1 instance(s) of cell ‘coun’

W o

R R R WO

— 228 —

Appendix F. — Design Hierarchy for the Case-Studies —

(5) Cell: cou [Lib: user]
17 instances
instance(s) of cell ‘rnor3’
instance(s) of cell ‘rnor2’
instance(s) of cell ‘rnor4’
instance(s) of cell ‘rnoril’
instance(s) of cell ‘dtisqgn’
(6) Cell: rnor3 [Lib: primitives]
(6) Cell: rnor2 [Lib: primitives]
(6) Cell: rnor4 [Lib: primitives]
(6) Cell: rnoril [Lib: primitives]
(6) Cell: dtisqn [Lib: user]
6 instances
2 instance(s) of cell ‘rnori’
2 instance(s) of cell ‘rnor2’
2 instance(s) of cell ‘rnor3’
(7) Cell: rmoril [Lib: primitives]
(7) Cell: rmor2 [Lib: primitives]
(7) Cell: rnor3 [Lib: primitives]

IS U N |

(2) Cell: tbsel [Lib: user]
23 instances
10 instance(s) of cell ‘rnor2’
12 instance(s) of cell ‘rnori’
1 instance(s) of cell ‘rnor4’
(3) Cell: rmor2 [Lib: primitives]
(3) Cell: rmoril [Lib: primitives]
(3) Cell: rnor4 [Lib: primitives]
(2) Cell: rnoril [Lib: primitives]
(2) Cell: rexor [Lib: user]
3 instances
3 instance(s) of cell ‘rnor2’
(3) Cell: rmor2 [Lib: primitives]
(2) Cell: resout [Lib: user]
51 instances
21 instance(s) of cell ‘rnoril’
30 instance(s) of cell ‘rnor2’
(3) Cell: rmoril [Lib: primitives]
(3) Cell: rmor2 [Lib: primitives]
(2) Cell: valcomp4 [Lib: user]
b instances
4 instance(s) of cell ‘rexor’
1 instance(s) of cell ‘rnor4’
(3) Cell: rexor [Lib: user]
3 instances
3 instance(s) of cell ‘rnor2’
(4) Cell: rnor2 [Lib: primitives]
(3) Cell: rnor4 [Lib: primitives]

F.9 Cwheell 0

(1) Top Cell: design [Lib: dp_design]ist]
208 instances

— 229 —

Appendix F. — Design Hierarchy for the Case-Studies —

24 instance(s) of cell ‘74als251’

6 instance(s) of cell ‘74as821’

2 instance(s) of cell ‘7415688’

20 instance(s) of cell ‘tant22u’

1 instance(s) of cell ‘¢’

2 instance(s) of cell ‘10x25’

1 instance(s) of cell ‘zener’

1 instance(s) of cell ‘diode’

4 instance(s) of cell ‘74als74’

1 instance(s) of cell ‘741s540’

11 instance(s) of cell ‘2018b’

2 instance(s) of cell ‘74s38’

36 instance(s) of cell ‘74als253’

3 instance(s) of cell ‘61161lp’

3 instance(s) of cell ‘745283’

31 instance(s) of cell ‘74als257’

18 instance(s) of cell ‘74alsb74’
instance(s) of cell ‘74as887’
instance(s) of cell ‘741s85’
instance(s) of cell ¢82s09’
instance(s) of cell ‘741s645_1°
instance(s) of cell ‘741s541’
instance(s) of cell ‘74as257’
instance(s) of cell ‘osc’
instance(s) of cell ‘22vi10’
instance(s) of cell ‘plsi68_33°
instance(s) of cell ‘98’
instance(s) of cell ‘74asb74’
instance(s) of cell ‘r’
instance(s) of cell ‘9e_1k’
instance(s) of cell ‘spst8’

(2) Cell: T74als251 [Lib: dp_devicesl]
(2) Cell: 74as821 [Lib: dp_devices]
(2) Cell: 741s688 [Lib: dp_devices]
(2) Cell: tant22u [Lib: dp_devices]
(2) Cell: c¢ [Lib: dp_devices]

(2) Cell: 10x25 [Lib: dp_devices]
(2) Cell: zener [Lib: dp_devices]
(2) Cell: diode [Lib: dp_devices]
(2) Cell: 74als74 [Lib: dp_devices]
(2) Cell: 741s540 [Lib: dp_devices]
(2) Cell: 2018b [Lib: dp_devices]
(2) Cell: 74s38 [Lib: dp_devices]
(2) Cell: 74als253 [Lib: dp_devices]
(2) Cell: 61161p [Lib: dp_devices]
(2) Cell: 74s283 [Lib: dp_devices]
(2) Cell: 74als257 [Lib: dp_devicesl]
(2) Cell: T74alsb74 [Lib: dp_devicesl]
(2) Cell: 74as867 [Lib: dp_devices]
(2) Cell: 741s85 [Lib: dp_devices]
(2) Cell: 82s09 [Lib: dp_devices]
(2) Cell: 741s645_1 [Lib: dp_devices]
(2) Cell: 741s541 [Lib: dp_devices]

NNRFR, R OFR NP =W o

- 230 —

Appendix F.

(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)

Cell:
Cell:
Cell:
Cell:
Cell:
Cell:
Cell:
Cell:
Cell:

— Design Hierarchy for the Case-Studies —

T4as257 [Lib: dp_devices]
osc [Lib: dp_devices]

22v10 [Lib: dp_devices]
pls168_33 [Lib: dp_devices]
96 [Lib: dp_devices]
T4as574 [Lib: dp_devices]

r [Lib: dp_devices]

9e_1k [Lib: dp_devices]
spst8 [Lib: dp_devices]

- 231 —

Appendix G

Example of a System Run

This appendix contains the results of the system for the analysis of the design ‘mult-
milldesign’ described in chapter 8 (partially). The hierarchy of this design is given in
appendix F.6.

-— INDICATORS OF DESIGN COMPLICATION —-

Number of Cells: 17

Number of Primitive Cells: 15

Graph Complexity: 1.29

Highest Depth Level: 3

Instantiation Ratio: 11.41

Average no. Ports per Cell: 6.18

Average no. Paths Leading to a Cell: 1.38

~N O O WD

-— INITIALISATION CYCLE —-

[1/17] Cell: ctinvil [Library: cad042]
Hierarchy Level: 3

NetWork Analysis:
NetWork Contents: flat cell

Plausible Cell Types:

Logic Type: [combinational,sequential,non]
Abstraction Level: [bit,gate,transistor]
DataFlow Type: [modifier,transporter,non]

Cell Purpose: [operator,storage,control,switch,non]

Max. No. of Knowledge-extraction Plans: 33
Plans Derived from Knowledge-extraction: 33
Duplicated plans: 32

Knowledge Plan Matches:
- Class Model: inverter (0.80)
—-— Matching with Class Model [inverter] (0.80) is best

No. of models: 2
No. of plans: 3

- 232 —

Appendix G. — Example of a System Run —

Solution plan/models ignored: 0

[2/17] Cell: split [Library: netlibrary]
Hierarchy Level: 3

NetWork Analysis:
NetWork Contents: flat cell

Plausible Cell Types:
- Logic Type: [combinational,sequential,non]
- Abstraction Level: [bit,gate,transistor]
- DataFlow Type: [modifier,transporter,non]
- Cell Purpose: [operator,storage,control,switch,non]

Max. No. of Knowledge-extraction Plans: 35
Plans Derived from Knowledge-extraction: 35
Duplicated plans: 34

Knowledge Plan Matches:
- Class Model: inverter (0.80)
—-— Matching with Class Model [inverter] (0.80) is best

No. of models: 2
No. of plans: 3

Solution plan/models ignored: 0

[3/17] Cell: ctnand2 [Library: cad042]
Hierarchy Level: 3

NetWork Analysis:
NetWork Contents: flat cell

Plausible Cell Types:
- Logic Type: [combinational,sequential,non]
- Abstraction Level: [bit,gate,transistor]
- DataFlow Type: [modifier,transporter,non]
- Cell Purpose: [operator,storage,control,switch,non]

Max. No. of Knowledge-extraction Plans: 13
Plans Derived from Knowledge-extraction: 13
Duplicated plans: 12

Knowledge Plan Matches:
- Class Model: nand (0.886)
- Class Model: nor (0.80)
- Class Model: or (0.80)
- Class Model: exor (0.80)
- Class Model: and (0.80)
- Class Model: flip_flop (0.50)
- Class Model: adder (0.50)
—-— Matching with Class Model [nand] (0.86) is best

- 233 —

Appendix G. — Example of a System Run —

No. of models: 8
No. of plans: 9

Solution plan/models ignored: 1

[15/17] Cell: multadd [Library: netlibrary]
Hierarchy Level: 2

NetWork Analysis:
NetWork Contents:
- Sub-cell: split [Library: netlibraryl]
Number of Instances: 3
- Sub-cell: ctnand4 [Library: cad042]
Number of Instances: 3
- Sub-cell: ctexor [Library: cad042]
Number of Instances: 2
- Sub-cell: ctnand2 [Library: cad042]
Number of Instances: 2
- Sub-cell: ctinvl [Library: cad042]
Number of Instances: 2
- Sub-cell: ctnand3 [Library: cad042]
Number of Instances: 4
Type of Network: combinational network with no feed-back loops
Levels of the network:
1- [xxxgate3,xxxgate6,xxxgated,xxxgatel6,xxxgate2,xxxgatel]
2- [xxxgate9,xxxgateb,xxxgateld,xxxgatelb,xxxgatel0,xxxgatell]
3- [xxxgate8,xxxgatel2,xxxgatel3]
4- [xxxgateT]
Abstraction Level of Sub-Cells: [gatel

Plausible Cell Types:
- Logic Type: [combinationall
- Abstraction Level: [vector,bit]
- DataFlow Type: [modifier,transporter]
- Cell Purpose: [operator,control,switch]

Max. No. of Knowledge-extraction Plans: 6
Plans Derived from Knowledge-extraction: 6
Duplicated plans: b

Knowledge Plan Matches:

-- No Matches

(1 incomplete model considered)

No. of models: 1
No. of plans: 2

Solution plan/models ignored: 0

[16/17] Cell: ctfadd [Library: cad042]

- 234 —

Appendix G. — Example of a System Run —

Hierarchy Level: 2

NetWork Analysis:
NetWork Contents: flat cell

Plausible Cell Types:
- Logic Type: [combinational,sequentiall
- Abstraction Level: [vector,bit]
- DataFlow Type: [modifier,transporter]
- Cell Purpose: [operator,storage,control,switch]

Max. No. of Knowledge-extraction Plans: 13
Plans Derived from Knowledge-extraction: 13
Duplicated plans: 7

Knowledge Plan Matches:
- Class Model: counter (0.70)
- Class Model: comparator (0.62)
- Class Model: decoder (0.56)
- Class Model: adder (0.55)
- Class Model: encoder (0.50)
- Class Model: delay_latch (0.50)
- Class Model: demultiplexer (0.486)
—-- Matching with Class Model [counter] (0.70) is best

No. of models: 8
No. of plans: 14

Solution plan/models ignored: 249

[17/17] Cell: multmill [Library: netlibrary]
Hierarchy Level: 1

NetWork Analysis:
NetWork Contents:

- Sub-cell: ctinv4 [Library: cad042]
Number of Instances: 13

- Sub-cell: ctinvl [Library: cad042]
Number of Instances: 30

- Sub-cell: split [Library: netlibraryl]
Number of Instances: 31

- Sub-cell: ct2anor [Library: cad042]
Number of Instances: 11

- Sub-cell: ctnand2 [Library: cad042]
Number of Instances: 10

- Sub-cell: ctnor2 [Library: cad042]
Number of Instances: 32

- Sub-cell: ctaoi [Library: cad042]
Number of Instances: 1

- Sub-cell: ctnor3 [Library: cad042]
Number of Instances: 4

- Sub-cell: ctoai [Library: cad042]
Number of Instances: 3

- 235 —

Appendix G. — Example of a System Run —

- Sub-cell: ctnand3 [Library: cad042]
Number of Instances: 8
- Sub-cell: ct2onand [Library: cad042]
Number of Instances: 11
- Sub-cell: ctexor [Library: cad042]
Number of Instances: 3
- Sub-cell: ctnor4 [Library: cad042]
Number of Instances: 2
- Sub-cell: ctnand4 [Library: cad042]
Number of Instances: 3
- Sub-cell: multadd [Library: netlibrary]
Number of Instances: 4
- Sub-cell: ctfadd [Library: cad042]
Number of Instances: 12
Type of Network: network with sequential sub-cells
Abstraction Level of Sub-Cells: [vector,bit,gatel

Plausible Cell Types:
- Logic Type: [sequentiall
- Abstraction Level: [processor,vector]
- DataFlow Type: [modifier,transporter]
- Cell Purpose: [operator,storage,control,switch,processor,transducer]

Max. No. of Knowledge-extraction Plans: 2
Plans Derived from Knowledge-extraction: 2
Duplicated plans: 1

Knowledge Plan Matches:
-- No Matches
(1 incomplete model considered)

No. of models: 1
No. of plans: 2

Solution plan/models ignored: 0
—-- Selection of Cell Models —-

- Candidate Sets:

Cell ctinvl: 2 sets (0 failed, 2 new)
Cell split: 2 sets (0 failed, 2 new)
Cell ctnand2: 8 sets (0 failed, 8 new)
Cell ctnand3: 11 sets (0 failed, 11 new)
Cell ctexor: 8 sets (0 failed, 8 new)
Cell ctnand4: 9 sets (0 failed, 9 new)
Cell ctinv4: 2 sets (0 failed, 2 new)
Cell ct2anor: 9 sets (0 failed, 9 new)
Cell ctnor2: 8 sets (0 failed, 8 new)
Cell ctaoi: 11 sets (0 failed, 11 new)
Cell ctnor3: 11 sets (0 failed, 11 new)
Cell ctoai: 11 sets (0 failed, 11 new)
Cell ct2onand: 9 sets (0 failed, 9 new)
Cell ctnor4: 8 sets (0 failed, 8 new)

— 236 —

Appendix G. — Example of a System Run —

Cell multadd: 25344 sets (0 failed, 25344 new)
Cell ctfadd: 8 sets (0 failed, 8 new)
Cell multmill: 2797938671616 sets (0 failed, 2797938671616 new)

- Select Best Candidate Set
Candidate Solution Set:
- ctfadd: 1
- multadd: 1
- ctnand4: 1
- ctnor4: 1
- ctexor: 1
- ct2onand: 1
- ctnand3: 1
- ctoai: 1
- ctnor3: 1
- ctaoi: 1
- ctnor2: 1
- ctnand2: 1
- ct2anor: 1
- split: 1
- ctinvl: 1
- ctinv4: 1
- multmill: 1
Design Evaluation: 0.450616

—-— K-PROPAGATION/K-GENERATION CYCLES --
Reasoning Cycle No: 2
—-- Model-based Reasoning —-

Failed Set for Cell multadd: 1-[1,1,1,1,1,1]
Two situation Cells with Same Model:
cell ‘ctinvl’ and cell ‘split’ (model: inverter).

Failed Set for Cell multmill: 1-[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
Two situation Cells with Same Model:
cell ‘split’ and cell ‘ctinvi’ (model: inverter).

Failed Set for Cell multmill: 1-[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
Two situation Cells with Same Model:
cell ‘split’ and cell ‘ctinv4’ (model: inverter).

Failed Set for Cell multmill: 1-[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
Two situation Cells with Same Model:
cell ‘ctinvl’ and cell ‘ctinv4’ (model: inverter).

Failed Set for Cell multmill: 1-[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
Two situation Cells with Same Model:
cell ‘ctnor3’ and cell ‘ctaoi’ (model: nand).

- 237 —

Appendix G. — Example of a System Run —

Failed Set for Cell multmill: 1-[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
Two situation Cells with Same Model:
cell ‘ctnor2’ and cell ‘ctnand2’ (model: nand).

Failed Set for Cell multmill: 1-[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
Two situation Cells with Same Model:
cell ‘ctexor’ and cell ‘ctoai’ (model: exor).

- Select Best Candidate Set
Candidate Solution Set:

- ctfadd: 1

- multadd: 1

- ctnand4: 4

- ctnor4: 4

- ctexor: 1

- ct2onand: 1

- ctnand3: 1

- ctoai: b5

- ctnor3: 4

- ctaoi: 4

- ctnor2: 5

- ctnand2: 1

- ct2anor: 1

- split: 1

- ctinvil: 2

- ctinvé4: 2

- multmill: 1

Design Evaluation: 0.398770

Failed Set for Cell multmill: 1-[2,2,1,1,1,5,4,4,5,1,1,1,4,4,1,1]
Two situation Cells with Same Model:
cell ‘ctnand4’ and cell ‘ctnor4’ (model: and).

Failed Set for Cell multmill: 1-[2,2,1,1,1,5,4,4,5,1,1,1,4,4,1,1]
Two situation Cells with Same Model:
cell ‘ctoai’ and cell ‘ctnor3’ (model: and).

Failed Set for Cell multmill: 1-[2,2,1,1,1,5,4,4,5,1,1,1,4,4,1,1]
Two situation Cells with Same Model:
cell ‘ctoai’ and cell ‘ctaoi’ (model: and).

Failed Set for Cell multmill: 1-[2,2,1,1,1,5,4,4,5,1,1,1,4,4,1,1]
Two situation Cells with Same Model:
cell ‘ctnor3’ and cell ‘ctaoi’ (model: and).

— Select Best Candidate Set
Candidate Solution Set:

- ctfadd: 1
- multadd: 1
- ctnand4: 4

- ctnor4: 3
- ctexor: 1

— 238 —

Appendix G. — Example of a System Run —

ct2onand: 1
ctnand3: 1
ctoai: 4
ctnor3: 3
ctaoi: 4
ctnor2: 5
ctnand2: 1
ct2anor: 1
split: 1
ctinvl: 2
ctinv4d: 2
multmill: 1

Design Evaluation: 0.398770

-- Recognition-targeted Reasoning --

[1/17] Cell: ctinv4 [Library: cad042]

[2/17]

Hierarchy Level: 2

NetWork Analysis:
NetWork Contents: flat cell

Plausible Cell Types:
- Logic Type: [combinational,sequential,non]
- Abstraction Level: [bit,gate,transistor]
- DataFlow Type: [modifier,transporter,non]
- Cell Purpose: [operator,storage,control,switch,non]

Plans Derived from Model-based Reasoning: 13
Duplicated plans: 12
Already existing plans: 1

Knowledge Plan Matches:
-- No Matches

No. new models considered: 0 (No. of models: 2)
No. new plans 0 (No. of plans 3)

Existing solution plans: 0
Existing models: 0

Solution plan/models ignored: 0

Cell: ctinvl [Library: cad042]
Hierarchy Level: 3

NetWork Analysis:
NetWork Contents: flat cell

Plausible Cell Types:
- Logic Type: [combinational,sequential,non]

- 239 —

Appendix G. — Example of a System Run —

- Abstraction Level: [bit,gate,transistor]
- DataFlow Type: [modifier,transporter,non]
- Cell Purpose: [operator,storage,control,switch,non]

Plans Derived from Model-based Reasoning: 30
Duplicated plans: 23
Already existing plans: 1

Knowledge Plan Matches:
- Class Model: inverter (0.88)

No. new models considered: 1 (No. of models: 3)
No. new plans 7 (No. of plans 10)

Existing solution plans: 0
Existing models: 0
Solution plan/models ignored: 5

—— Selection of Cell Models —-

- Candidate Sets:
Cell multmill: 13949949911040 sets (3 failed, 11152011239424 new)
Cell ctfadd: 9 sets (0 failed, 1 new)
Cell multadd: 74880 sets (1 failed, 49536 new)
Cell ctnand4: 13 sets (0 failed, 4 new)
Cell ctnor4: 12 sets (0 failed, 4 new)
Cell ctexor: 8 sets (0 failed, O new)
Cell ct2onand: 9 sets (0 failed, O new)
Cell ctnand3: 15 sets (0 failed, 4 new)
Cell ctoai: 11 sets (0 failed, O new)
Cell ctnor3: 11 sets (0 failed, O new)
Cell ctaoi: 11 sets (0 failed, O new)
Cell ctnor2: 8 sets (0 failed, O new)
Cell ctnand2: 8 sets (0 failed, O new)
Cell ct2anor: 9 sets (0 failed, O new)
Cell split: 2 sets (0 failed, O new)
Cell ctinvl: 3 sets (0 failed, 1 new)
Cell ctinv4: 2 sets (0 failed, O new)

— Select Best Candidate Set
Candidate Solution Set:

- ctfadd: 9

- multadd: 1
- ctnand4: 10
- ctnor4: 12
- ctexor: 1

- ct2omnand: 2
- ctnand3: 12
- ctoai: 2

- ctnor3: 2

— 240 —

Appendix G.

- ctaoi: 2
- ctnor2: 2
- ctnand2: 1
- ct2anor: 1
- split: 2
- ctinvi: 3
- ctinvé4: 2
- multmill: 1
Design Evaluation: 0.450679

Reasoning Cycle No: 3

—-- Model-based Reasoning —-

— Example of a System Run —

Failed Set for Cell multmill: 1-[2,3,2,1,1,2,2,2,2,12,2,1,12,10,1,9]

Two situation Cells with Same Model:
(model: nor).

cell ‘ct2onand’ and cell ‘ct2anor’

Failed Set for Cell multmill: 1-[2,3,2,1,1,2,2,2,2,12,2,1,12,10,1,9]

Two situation Cells with Same Model:
cell ‘ctnor3’ and cell ‘ctaoi’

(model: nor).

Failed Set for Cell multmill: 1-[2,3,2,1,1,2,2,2,2,12,2,1,12,10,1,9]

Two situation Cells with Same Model:
cell ‘ctnand3’ and cell ‘ctoai’

- Select Best Candidate Set
Candidate Solution Set:

- ctfadd: 9

- multadd: 1

- ctnand4: 10

- ctnor4: 12

- ctexor: 1

- ct2omnand: 3

- ctnand3: 12

- ctoai: 3

- ctnor3: 3

- ctaoi: 2

- ctnor2: 2

- ctnand2: 1

- ct2anor: 1

- split: 2

- ctinvi: 3

- ctinvé4: 2

- multmill: 1

Design Evaluation: 0.450679

(model: nand).

Failed Set for Cell multmill: 1-[2,3,2,1,1,2,2,3,3,12,3,1,12,10,1,9]

Two situation Cells with Same Model:
cell ‘ctoai’ and cell ‘ctaoi’

— 241

(model: nor).

Appendix G. — Example of a System Run —

-- Recognition-targeted Reasoning --

[1/17] Cell: ctinv4 [Library: cad042]
Hierarchy Level: 2

NetWork Analysis:
NetWork Contents: flat cell

Plausible Cell Types:
- Logic Type: [combinational,sequential,non]
- Abstraction Level: [bit,gate,transistor]
- DataFlow Type: [modifier,transporter,non]
- Cell Purpose: [operator,storage,control,switch,non]

Plans Derived from Model-based Reasoning: 13
Duplicated plans: 12
Already existing plans: 1

Knowledge Plan Matches:
-- No Matches

No. new models considered: 0 (No. of models: 2)
No. new plans 0 (No. of plans 3)

Existing solution plans: 0

Existing models: 0
Solution plan/models ignored: 0

—-— INDICATORS OF PROCESSING COMPLEXITY —-
1. Processing Time:

(a) Total Processing Time: 273.44 sec
(b) Average Processing Time per Cell: 16.08 sec

2. Reasoning Cycles:

(a) Number of Reasoning Cycles: 3

(b) Average Number of Productive Cycles per Cell: 1.3
(c) Number of Failed Situation Sets: 6

(d) Average Number of Failed Situation Sets: 3.00

3. Number of Plans and Models:
(a) Number of Plans Generated: 189
(b) Average Number of Plans Generated per Cell: 11.12

(c) Number of Models Generated: 133
(d) Average Number of Models Generated per Cell: 7.82

— 242 —

Appendix G. — Example of a System Run —

4. Heuristic Model Selection:
(a) Number of Candidate Sets: 13949949911040
(b) Average No of Situation Candidate Sets: 6974974992960.00
(c) Number of Failed Sets: 186297413
(d) Effectiveness of Set Selection: 1.00

—-- EVALUATION OF KNOWLEDGE DERIVED --

1. Average Confidence in the Models Selected: 0.66

2. Confidence in the Design Representation: 0.45

3. Average Complexity Deviation: 10 %

-— STATISTICS OF THE DESIGN CELLS —--

[1] Cell: multmill [Library: netlibrary]
Hierarchy Level: 1

Number of Models: 1
Number of Plans: 3

Number of Productive Cycles: 1

Number of Candidate Situation Sets: 13949949911040
Number of Failed Sets: b

Effectiveness of Set Selection: 1.00

Evaluation of Selected Set: 0.451
Complexity Deviation Factor: 0.31

[2] Cell: ctinv4 [Library: cad042]
Hierarchy Level: 2

Primitive cell.

Number of Models: 2
Number of Plans: 3

Number of Productive Cycles: 1

Evaluation of Selected Model: 0.000

[17] Cell: ctnand4 [Library: cad042]
Hierarchy Level: 3

Primitive cell.

Number of Models: 13
Number of Plans: 18

Number of Productive Cycles: 2

— 243 —

Appendix G.

Evaluation of Selected Model: 0.941

-- NUMBER OF PLANS/MODELS PER CYCLE --

Reasoning Cycle No: 1 -—- No. Models: 119 - No.
Reasoning Cycle No: 2 -- No. Models: 14 - No.
Reasoning Cycle No: 3 -- No. Models: 0 - No.

HEURISTIC MODELS OF THE DESIGN CELLS --

Model Name: ct2anor
Model Types:
Logic Type: combinational
Abstraction Level: gate
DataFlow Type: non
Cell Purpose: non
Model Function: nor (0.94)
Model Interface:
Port Group:
Type: data_in
Number of Signals: 4
Port Collections:
Port Collection:
Port Name: [c,b,a,d]
Function: data (0.53)
Number of Signals: 4
Port Group:
Type: data_out
Number of Signals: 1
Port Collections:
Port Collection:
Port Name: £
Function: data (0.20)
Number of Signals: 1
Model Data Flow Information: []
Model Derived From:
Library: cad042
Cell: ct2anor
View: netview

Model Generated on: Mon Jun 7 20:57:29 1993

Model Name: multmill
Model Types:
Logic Type: B
Abstraction Level: E
DataFlow Type: C
Cell Purpose: D
Model Function: A
Model Interface:

— 244

— Example of a System Run —

Plans: 158 —-
Plans: 28 —-
Plans: 3 —-

Appendix G.

Port Group:

Type: data_in

Number of

Signals: 16

Port Collections:

Port

Port

Port

Port

Port Group:

Collection:

Port Name: sa
Function: F

Number of Signals: 4
Collection:

Port Name: y
Function: G

Number of Signals: 4
Collection:

Port Name: dd
Function: H

Number of Signals: 4
Collection:

Port Name: sb
Function: I

Number of Signals: 4

Type: data_out

Number of

Signals: 8

Port Collections:

Port

Port

Port

Port

Port

Port Group:

Collection:

Port Name: xxxoput2
Function: J

Number of Signals: 1
Collection:

Port Name: xxxoput4
Function: K

Number of Signals: 1
Collection:

Port Name: xxxoput3
Function: L

Number of Signals: 1
Collection:

Port Name: res
Function: M

Number of Signals: 4
Collection:

Port Name: xxxoputl
Function: N

Number of Signals: 1

Type: control_in

Number of Signals: 15
Port Collections:
Port Collection:

Port Name: ctrl
Function: control (0.90)
Number of Signals: 15

Model Data Flow Information: []

— 245 -

— Example of a System Run —

Appendix G. — Example of a System Run —

Model Derived From:
Library: netlibrary
Cell: multmill
View: netview
Model Generated on: Mon Jun 7 20:59:06 1993

— 246 —

