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Deduction and computation

e )\-calculus [Church 40] is a simple and powerful computational model

» Explicit notions of function, application, binding
» Turing equivalent
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Deduction and computation

e )\-calculus [Church 40] is a simple and powerful computational model

» Explicit notions of function, application, binding
» Turing equivalent

e Simply typed A-calculus [Church 40, Curry 34]

» Ensures strong normalization

» Isomorphism with natural deduction for intuitionistic logic [Curry, Howard,
de Bruijn]

e Various extensions [de Bruijn 70, Girard 72, Coquand 85, Berardi 88,
Paulin 90]

» To broaden the expressiveness of the logic
» [o ease the definition of elaborated functions
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More computational power ?

e Explicit introduction of rewriting in the system [Breazu-Tannen, Jouannaud,
Okada et al.]

» Term rewriting
» Higher-order rewriting
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More computational power ?

e Explicit introduction of rewriting in the system [Breazu-Tannen, Jouannaud,
Okada et al.]

» Term rewriting
» Higher-order rewriting

e Removal of computational arguments from formal proofs

» Poincaré principle [Barendregt & Barendsen]
» Deduction modulo [Dowek, Hardin, Kirchner, Werner]

e The rewriting calculus [Cirstea, Kirchner, Liquori et al.]

» Designed as a semantics for rule-based languages
» Embeds the A-calculus and various aspects of rewriting
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The Untyped Syntax

P C T Patterns
T = X|K|AXPT|TT|T!T Terms

1. AP.A denotes an abstraction with pattern P and body A
... the free variables of P are bound in A

2. The terms can also be structures built using the symbol

3. We work modulo a-conversion and Barendregt's hygiene-convention
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Some p-terms

(Az.x x) (A\r.x ) the A\-term (ww)
(AMfzxy).(gyx)) (fabd) the application of a rewrite rule
(Aa.b Aa.c) a the parallel application of two rules
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The Small-step Reduction Semantics

(A\P.A)B —, Af if PO =B

(AvB)C — AC ! BC
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Some p-reductions

(Az.x x) (A\r.x )

(Afzy)gyz)(fab)

(Aa.bl Aa.c) a
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Some p-reductions

(Az.x x) (A\z.x ) — {ww} s .

(AMfzxy)gyx)(fabd) — gba

(Aa.bl Aa.c)a
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Some p-reductions

(Az.x x) (A\z.x ) — {ww} s .

Afzy)gyz)(fadb) — —gba

(Aa.bl Aa.c) a —5 (Aa.b) al (Aa.c)ar, blc
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About preredexes

(A 2)-0ad) 7) (f a)
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About preredexes

_ - - a preredex (not reducible)
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Ensuring confluence

e Strategies

» Call by value...

» Suitable for operational semantics but not adapted for logics
e Restrictions on patterns [van Oostrom 90]

» Algebraic and linear
» More restrictive but stable by reduction
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About the expressiveness of the p-calculus

e The A-calculus is fully embedded in the p-calculus [Cirstea & Kirchner 98]
» (-reductions are faithfully mimicked
» a A\-term p-reduces to A-terms only

e Various aspects of rewriting can be represented [Cirstea & Kirchner 98]

» Rewriting paths
» Rewriting systems
» Rewriting strategies

e Various object calculi can be encoded [Cirstea, Kirchner & Liquori 01]
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A Simple Type System p;

fioeX
F"zf:O'

r:o0€el
I'Fsx:0

(Var) (Const)
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A Simple Type System p;

fioeX
F"EfZO'

r:o0€el
I'Fsx:0

(Var) (Const)

'ty A:0—7 I'txy B:o
'k AB:T

(Appl)

I''AFxs P:o T'"AFsA:T
s M(P:A)A:0c—T

(Abs) Dom(A) = FV(P)

'ty A:0 T’k B:o
I'FsA'B:o

(Struct)
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Polymorphic extensions

a la Church a la Curry

'Fx Ao ag FV(T)
'y M. A Va.o

(AbsY)

Fl—g A :Va.o
['Fy AT i ola := 7]

(AppV)
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a la Curry

'Fx Ao ag FV(T)
'y M. A Va.o

(AbsY)

Fl—g A :Va.o
['Fy AT i ola := 7]

(AppV)

Tty A:o a¢ FV(T)

A
Ty A: V.o (AbsV)

FFEA:VOAO'
[y A:ola:=T]

(AppV)
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Polymorphic extensions

a la Church

a la Curry

'Fx Ao ag FV(T)
'y M. A Va.o

(AbsY)

Fl—g A :Va.o
['Fy AT i ola := 7]

(AppV)

Tty Ao agd FV(T)
P|—2AZVOAO'

(AbsY)

FFEA:VOAO'
[y A:ola:=T]

(AppV)

V(fio) €Y, o=Va(o — .u(B))
where 3 = BV (o)

Type systems and deduction in the rewriting calculus
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Typing properties

Well-typed matching
If PO = A, thenVe e P, TI'tsxz:0 =1T'Fxa0:0

Subject Reduction [Cirstea, Liquori & Wack 03]
f 't A: 0 and AI—»ﬂ;B, then'x B : o

Uniqueness [Cirstea, Liquori & Wack 03]
In systems a /a Church, if I'Fs A:cand I'Fx A: 7, then 7=, 0

Decidability [Liquori & Wack 04]

(typechecking) ke 7 :0?

In systems 4 fa Church, (type reconstruction) I'Fx T :7

} are decidable

In systems a la Curry, both are undecidable

Type systems and deduction in the rewriting calculus Types for programming - 15



Type inference

e In systems a /a Church, type inference is fully guided by syntax

e The type system a /a Curry has to be restricted

» The only legal types are type-schemes Va.7 where 7 is a simple type

» Polymorphism is restricted to a new construction [P < A|B

(similar to let ...in)

» Inference works in the style of the Damas-Milner algorithm

Type systems and deduction in the rewriting calculus Types for programming - 16



Normalization failure
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Normalization failure
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Normalization failure

f:(la—a)—aand=2:a— q, wE=MNfx)x(fx)

Type systems and deduction in the rewriting calculus Types for programming - 17



Normalization failure (cont’d)

f:(la—a)—aand'=2:a— «a, w2 N xx(fx)

'Fe fi(la—a)—a T'Fyz:a—a

I'Fy2:0 — « I'Fs fo:«
l'Fex(fx):

Frw (fw):«a

Type systems and deduction in the rewriting calculus Types for programming - 18



Encoding rewriting systems in the p-calculus

Addition over Peano integers: X = {0, S, rec, add}

2 recz Madd0y) - y
plus = A ' ( ! Madd(S ) y) . S((2 (rec z)) (add x y)) )
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Encoding rewriting systems in the p-calculus

Addition over Peano integers: X = {0, S, rec, add}

2 recz Madd0y) - y
plus = A : ( ! Madd(S z)y) . S((z (recz)) (add z y)) )

(plus (rec plus)) (add N M)

—

s AOM)N 1 AMFL)N-1 - A.MIN)0 ¢ (AM(Sz)....)0
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Encoding rewriting systems in the p-calculus

Addition over Peano integers: X = {0, S, rec, add}

2 recz Madd0y) - y
plus = A : ( ! Madd(S z)y) . S((z (recz)) (add z y)) )

(plus (rec plus)) (add N M)

—

s AOM)N 1 AMFL)N-1 - A.MIN)0 ¢ (AM(Sz)....)0

—_— N —

s M+ N
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Detecting matching failures: the symbol stk

e The relation P [Z A detects (some) definitive matching failures
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Detecting matching failures: the symbol stk

e The relation P [Z A detects (some) definitive matching failures

e The relation gy treats matching failures uniformly:

(AP:A.A) B g stk if PIZB
stk { A stk A
A 2 Stk stk A

stk A gk stk

e Theorem [Cirstea, Liquori & Wack 03] The reduction —35* is confluent
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Systematic encoding

e There exists a p-term first (using stk) such that

(ﬁTSt A1 Ay An) B I—»p‘:’stk Ai-l—l B

Ai+1 B ?7L>>ps5tk stk

i
" Vj<i, A;B g stk
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Systematic encoding

e There exists a p-term first (using stk) such that

(ﬁTSt Ay Ay ... An) B I—»p%tk Ai-l—l B

Ai—|—1 B %?ps&tk stk

i
" Vj<i, A;B g stk

e The Term Rewrite System R = { } with signature {a;} is encoded by:

Al .z (rec z)

[R] = Mrecz) . first

Ma1T) . z (recz)a(z (recz) x)
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Properties of the encoding

Theorem [Cirstea, Liquori & Wack 03]
This encoding is sound for left-linear TRS
complete for convergent TRS
typable if the TRS is well-typed

Remark [Cirstea, Kirchner, Liquori & Wack 03]
Various strategies can be encoded

Type systems and deduction in the rewriting calculus Encoding rewriting systems - 22



Other cases of non termination under typing

e In CaML, w can be written

type t = F of (t -> t);;

let omega x = match x with (Fy) >y (F y);;

e In CIC, type constructors must fulfill a positiveness condition [Mendler 87]

Type systems and deduction in the rewriting calculus The source of non termination - 23



Logical inconsistency

e In this type system, the Curry-Howard isomorphism is not valid:

F,Al‘ZP:U F,Al_gAZT
'Fs APA A0 — 7

F,Al‘za P,Al‘ET
I'Fyo— 71

(Abs) (— 1)
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Logical inconsistency

e In this type system, the Curry-Howard isomorphism is not valid:

F,Al‘zP:O F,Al_gAIT
'Fs APA A0 — 7

F,Al‘za F,Al‘ET
I'Fyo— 71

(Abs) (— 1)

e How to fix it ?

I'X,:0;,Fs AT
Ly APA: (No;) — 7

(Abs) , FV(P)=1{X;}

But how to type applications ?
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Dependent type discipline in P*TS

F,Al—gB:C FFZHPACS
' AP:A.B: I1P:A.C

(Abs)

FFEAHPAC Fl‘z [P <A B]CS
FI_E ABZ[P<<A B]C

(Appl)

F,A'_ZpiA szBA F,AI_EAisl F,A'_chSQ
Fl—g [P<<AB]C:SQ

(Match)
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Dependent type discipline in P*TS

F,Al—gB:C Fl—EHPACS
' AP:A.B: I1P:A.C

(Abs)

FFEAHPAC Fl‘g [P <A B]CS
FI_E ABZ[P<<A B]C

(Appl)

F,A'_ZpiA szBA F,AI_ZAisl F,A'_chsg
Fl—g [P<<AB]C:82

(Match)

With A = {x:u,l:list} we have Fx A(conszl):A.x : I(consxl):A .1

Type systems and deduction in the rewriting calculus Pure Pattern Type Systems - 26



The p-cube

pW

pCC

/

pP?2

pPw

/

Type systems and deduction in the rewriting calculus
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Typing properties

[Barthe, Cirstea, Kirchner & Liquori 03]

Subject reduction: 'y A:C N A—psB = I'ksB:C

Correctness: 'k A:B = TI'FsB:s V B=s
Consistency: AeNf(pd) = W A:L (& Ya:x.x)
Uniqueness: 'ty A:B ANk A:B" = B=D
Conservativity: I'Fprs A:B & D'bkpapgA:B

Type systems and deduction in the rewriting calculus Pure Pattern Type Systems - 28



Typing is more restrictive

Here, with A = {z : [Iz:a.ar}:

Fow 2 Mfa):Ax (fz) I(f 2):Aa
And:

Fy f c(y - [z:0n0).«

But to type f w the pattern y and the argument w must have a common type o

Type systems and deduction in the rewriting calculus Pure Pattern Type Systems - 29



Strong normalization : sketch of the proof

Theorem [Wack 04]:
In p_, and pP, if I'x, A: C then A and C are SN
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Strong normalization : sketch of the proof

Theorem [Wack 04]:
In p_, and pP, if I'x, A: C then A and C are SN

1. Find a translation [ | : P°T'S — Aw correct w.r.t. reductions

If A5 B, then [A] A [B] in at least one step

2. Typability of the translated terms
Y.L A:C = 3dr, [k [4] 7

3. Usual techniques can be adapted to reduce SN in pP to SN in p_,

Type systems and deduction in the rewriting calculus Pure Pattern Type Systems - 30



Correctness of reductions

o [(AN(fx)x)(fa)] = ()\u(u()\a:a:))) (()\:Bl.)\z.(le))()\v.v)) —3 Av.v = [a]
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Correctness of reductions

o [(A(fx)x)(fa)] = Au(uAz.2))) (Az1.A2.(221))(Av.v)) g Avw = [d]

e The p-term (Ay.(A(f z).z)y) (f a) features a preredex
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Correctness of reductions

o [(A(fx)x)(fa)] = Au(uAz.2))) (Az1.A2.(221))(Av.v)) g Avw = [d]
e The p-term (Ay.(A(f z).z)y) (f a) features a preredex

e Thus, the reductions of the A-term [(Ay.(A(f z).z) y) (f a)] must mimick first
an external p-reduction
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Correctness of reductions

o [(A(fx)x)(fa)] = Au(uAz.2))) (Az1.A2.(221))(Av.v)) g Avw = [d]
e The p-term (Ay.(A(f z).z)y) (f a) features a preredex

e Thus, the reductions of the A-term [(Ay.(A(f z).z) y) (f a)] must mimick first
an external p-reduction

e Remark: a term produced by the translation may have additional reductions

Type systems and deduction in the rewriting calculus Pure Pattern Type Systems - 31



The type of a translated pattern

e A naive translation gives

|_>\w [[f B]]
Fyw [A(f ). A]

(0 —8)—p0

(0 —=7)=7) =7
where 7 is the type of [A]

Type systems and deduction in the rewriting calculus
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The type of a translated pattern

e A naive translation gives

|_>\ou[[fB]] : (OHB)%ﬁ

Faw [AMf2)A] 0 ((0—7T)—7) =7
where 7 is the type of [A]

(0'—>7')—> = (O‘—>ﬁ)—> thus T=08=~
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The type of a translated pattern

e A naive translation gives

|_>\ou[[fB]] : (JHB)%ﬁ

Faw [AMf2)A] 0 ((0—7T)—7) =7
where 7 is the type of [A]

(0'—>7')—> = (O‘—>ﬁ)—> thus T=08=~

e The actual translation features terms depending on types

lf Bl : VB o —(3—p)
[A(fz).A] = VB(o—=pF—=0)—T

Type systems and deduction in the rewriting calculus Pure Pattern Type Systems - 32



The type of a translated variable

e Naive translation
x: 1y Fy 2 : Iy .0

Fs Aye .y o Ty oo
Fs Ayie .a 2 Ty o
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The type of a translated variable

e Naive translation
x: 1y Fy : Ty .0

Fs Aye .y o Ty oo
Fs Ayie a2 Ty oo

I |_)\w )\yﬁyy : 53; — 6,@
I' Faxw Ay:By.Ja] @ By — Va.(a — «a)
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The type of a translated variable

e Naive translation
x: 1y Fy : Ty .0

Fs Aye .y o Ty oo
Fs Ayie a2 Ty oo

I |_)\w )\yﬁyy : 53; — 6,@
I' Faxw Ay:By.Ja] @ By — Va.(a — «a)

e Use of types depending on types

6:1::*_>*76y:*|_>\w [[x]]ﬁyﬁﬁxﬁy

Type systems and deduction in the rewriting calculus Pure Pattern Type Systems - 33
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A linear representation of NDM proofs

e A proof in Natural Deduction Modulo: the congruence states that e is the
neutral element of a group: exx =

Vy.(yxe' = y) b= Vy.(yxe’ = y) Eé g
)

Vy.(yxe’ = y) Feexe! = e | o
Vy.(yxe/ = y) Fx e’ =e (Z) with exe’ Z e
— =/

l_% \V/y(y*el — y) = ( )

e =e

Type systems and deduction in the rewriting calculus Proof terms for deduction modulo - 35



A linear representation of NDM proofs

e A proof in Natural Deduction Modulo: the congruence states that e is the
neutral element of a group: exx =

Vy.(yxe' = y) b= Vy.(yxe’ = y) Eé g
)

Vy.(yxe' = y) F~ exe’ = ¢
y-(y y) = (=) with exe’ = ¢’

(= 1)

Vy.(yxe' =y)F~e =e

Fo Vy.(yxe' =y) =€ =e

e )\-calculus is sufficient to write witnesses [Dowek & Werner 03]

» the witness is short and focuses on reasoning
» but proof reconstruction can be tedious

Type systems and deduction in the rewriting calculus Proof terms for deduction modulo - 35



A more explicit representation

e Using P?T'S, conversions can be accounted for by dedicated constructs in the
style of Leibniz's equality :

Fx Rew ¢ t (Al.r) m @ ¢o((Al.r)t)
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A more explicit representation

e Using P?T'S, conversions can be accounted for by dedicated constructs in the
style of Leibniz's equality :

Fx Rew ¢ t (Al.r) m @ ¢o((Al.r)t)

e The new proof term for our example is

(Rew (Ay.(y=e)) (exe’) (A(ewr) ) (c0))
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A more explicit representation

e Using P?T'S, conversions can be accounted for by dedicated constructs in the
style of Leibniz's equality :

Fx Rew ¢ t (Al.r) m @ ¢o((Al.r)t)
e The new proof term for our example is

(Rew (Ay.(y=e)) (exe’) (A(ewr) ) (c0))

e Proposition: For conversion on propositions, application of rewrite rules at
top-level is sufficient

Type systems and deduction in the rewriting calculus Proof terms for deduction modulo - 36



A Curry-Howard-de Bruijn correspondence

Theorem [Wack 05]:

Full proof representation
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A Curry-Howard-de Bruijn correspondence

Theorem [Wack 05]:

Full proof representation

X Incomplete proof reduction

Every redex represents a cut
X But some cuts are obfuscated by conversion rules

phF~p

(:(i))'—gpjp :
— ba Fa g
(=F) =4="p —

2
K

|—up

7 Conjecture : additional fold-unfold reduction rules allow to reduce every cut

Type systems and deduction in the rewriting calculus

Proof terms for deduction modulo -
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Main benefits

e Proof checking reduces to type checking and matching

e Construction of the conversion steps can be delegated to an efficient
rewriting-based software

e A \-proof term can always be extracted from a p-proof term

e [ he set of used rewrite rules can also be extracted

Type systems and deduction in the rewriting calculus Proof terms for deduction modulo - 38



A simple proof in Natural Deduction...

XCYeVe(reX=zeY)

The theory 7 contains at least { Ve(r e )= 1)
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The theory 7 contains at least { Ve(r e )= 1)
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A simple proof in Natural Deduction...

XCYeVe(reX=zeY)

The theory 7 contains at least { Ve(r e )= 1)

(:;)T,:EE(Z)I—V:B(xE(DéL) 4
(E) T,xclFzeclh= L (x)T,xe@l—xé@
(=E) T,z L
) T e
N , T € re A
=D T rcloaca
(VI)
THEYz(z el =zec A
(Az) TF...

THEYz(rel=>2ecA)=0CA TrVz(zebd=zeA)

(=E) THOC A
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. shorter in deduction modulo

Ve(re X =z €Y)

C
In NDM the context is empty and R = { X };) 1

xr €

—
—
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. shorter in deduction modulo

Ve(re X =z €Y)

C
In NDM the context is empty and R = { X };)

xr €

|_

A = 1
(x)ZCG(Z)'_gJ_ veb

rE€DbFazc A
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. shorter in deduction modulo

C
In NDM the context is empty and R = 4 =1 vr(zeX =z eY)
rel) — L
A >~ |
(x)ZIL‘G@'—gJ_ z el
(LE)
; relrxaxe A
(:;I)I—gzr;e@éxeA b oan
(V) iCa C A

The proof is shorter but not very informative
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A generalization of Natural Deduction

We consider some new rules about predicate symbols:

ci ''reXkFxeY ST . PFxzel
(CI) rExcy x & FY(I') (VE) TF o
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A generalization of Natural Deduction

We consider some new rules about predicate symbols:

ci ''reXkFxeY ST . PFxzel
(C1) rExXCy T ¢ () (VE) TF o
c relrFxre A
ED—oca
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A generalization of Natural Deduction

We consider some new rules about predicate symbols:

ci ''reXkFxeY V(T . PFxzel
(CI) rExcy z ¢ FV(I) (0E) TF o
(;;)xé@l—xé@
(CI rePFxre A
D —9ca

Type systems and deduction in the rewriting calculus A generalization of natural deduction - 41



A generalization of Natural Deduction

We consider some new rules about predicate symbols:

ci ''reXkFxeY V(T . PFxzel
(CI) rExcy z ¢ FV(I) (0E) TF o
(;;)xEQFxé@
(CI rePFxre A
(C1) “iC A

The proof is even shorter than in NDM and bears some resemblance with an
“old-school” mathematic style
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Systematic generation of the new inference rules

For each defined predicate P (i.e. there is a rewrite rule P — ¢):

e decompose ¢ along the connectives A and = and V
e gather all the assumptions and side conditions to build a new rule
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Systematic generation of the new inference rules

For each defined predicate P (i.e. there is a rewrite rule P — ¢):

e decompose ¢ along the connectives A and = and V
e gather all the assumptions and side conditions to build a new rule

Example: X CY — Vz.(z e X =z €Y) gives
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For each defined predicate P (i.e. there is a rewrite rule P — ¢):

e decompose ¢ along the connectives A and = and V
e gather all the assumptions and side conditions to build a new rule

Example: X CY — Vz.(z e X =z €Y) gives

IN'reXkFxeY
'FreX=zeY
Ve (re X=xe€Y)
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Systematic generation of the new inference rules

For each defined predicate P (i.e. there is a rewrite rule P — ¢):

e decompose ¢ along the connectives A and = and V
e gather all the assumptions and side conditions to build a new rule

Example: X CY — Vz.(z e X =z €Y) gives

IN'reXkFxeY
'FreX=zeY
Ve (re X=xe€Y)

''reXkFxeY
I'FXCY

(€ 1)
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Systematic generation of the new inference rules

For each defined predicate P (i.e. there is a rewrite rule P — ¢):

e decompose ¢ along the connectives A and = and V
e gather all the assumptions and side conditions to build a new rule

Example: X CY — Vz.(z e X =z €Y) gives

IN'reXkFxeY
'FreX=zeY
Ve (re X=xe€Y)

''reXkFxeY
I'FXCY

(€ 1)

'EVz.(reX=>x€Y)

I'FteX=teY I'-te X

I'-teY
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Systematic generation of the new inference rules

For each defined predicate P (i.e. there is a rewrite rule P — ¢):

e decompose ¢ along the connectives A and = and V
e gather all the assumptions and side conditions to build a new rule

Example: X CY — Vz.(z e X =z €Y) gives

NLreXkFzxeY 'EVz.(reX=>x€Y)
I'FreX=zcY I'FteX=tcY I'Fte X
'FVe(reX=x€Y) 'HteY
NreXkFxeY '-XCY I'Fte X
(€ 1) (€ E)
'-XCYy I'FteY

Type systems and deduction in the rewriting calculus A generalization of natural deduction - 42



Conservativity w.r.t first-order logic

e Theorem: Every defined predicate is provably equivalent to its definition

e Thus, a GND system is correct and complete if and only if the corresponding
NDM system is correct and complete
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Cut elimination

A new notion of cut appears for each defined predicate:

:Dl
. D2
: c o INceXkFzxeY ST
rriex P Trxcy @70
(CE)
THtey
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Cut elimination

A new notion of cut appears for each defined predicate:

:Dl
. Doy
: c o INceXkFzxeY ST
rriex P Trxcy @70
(CE)
I'HteY
reduces to Dy -
'Dl
'teY
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Cut elimination

A new notion of cut appears for each defined predicate:

:Dl
. Doy
; c o ''reXkFaxeY ST
rriex P Trxcy @70
(CE)
I'HteY
reduces to Py Py
'Dl
'teY

Theorem: Cut elimination holds whenever it holds in the corresponding NDM
system

Type systems and deduction in the rewriting calculus A generalization of natural deduction - 44



Proof terms

Definition of proof terms for Generalized Natural Deduction

e Add ad-hoc constructions in the language

e Use the A-abstraction and store multiple assumptions and witnesses in patterns
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Proof terms

Definition of proof terms for Generalized Natural Deduction

e Add ad-hoc constructions in the language

e Use the A-abstraction and store multiple assumptions and witnesses in patterns

Na:xe XkFrm:zeY cr I'-F7n: XCY F-n':teX
F'FAXcxa)m: XCY (&E) 'Fr(ctn’):teY

(1)
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Proof terms

Definition of proof terms for Generalized Natural Deduction

e Add ad-hoc constructions in the language

e Use the A-abstraction and store multiple assumptions and witnesses in patterns

Na:xe XkFrm:zeY I'-F7n: XCY F-n':teX
(C1) (CE) 7
F'FAXcxa)m: XCY Fr(ctn):teY
The reduction (A(c v «).w) (ct ') — , v := 7’| models cut elimination
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Proof terms

Definition of proof terms for Generalized Natural Deduction

e Add ad-hoc constructions in the language

e Use the A-abstraction and store multiple assumptions and witnesses in patterns

Na:xe XkFrm:zeY I'-F7n: XCY F-n':teX
(C1) (CE) 7
F'FAXcxa)m: XCY Fr(ctn):teY
The reduction (A(c v «).w) (ct ') — , v := 7’| models cut elimination

» A collection of new type systems for the p-calculus, to be studied
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Contributions

e Types for programming

» Properties and applications of these systems
» Type inference

o P°TS
» Detailed study of the usual properties
» Strong normalization in p_, and pP
e Rewriting calculus and deduction

» Rich proof terms for deduction modulo
» A new way of embedding domain-specific information in the logic

Type systems and deduction in the rewriting calculus Conclusions - 46



Perspectives

e [ypes

» Strong normalization in the remaining of the p-cube
» Conjunction types for structures
» Generalized Natural Deduction seen as a collection of type systems
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Perspectives

e [ypes

» Strong normalization in the remaining of the p-cube
» Conjunction types for structures
» Generalized Natural Deduction seen as a collection of type systems

e Generalized Natural Deduction

» Further decomposition of the propositions in the generation of new rules
» Tests on broader classes of rewrite rules

e Implementation of proof assistants

» based on Natural Deduction Modulo, using p-proof terms
» based on Generalized Natural Deduction

Type systems and deduction in the rewriting calculus Conclusions -

47



Thanks for your attention



Deduction modulo

Let R be a rewriting system which rewrites:
e terms to terms (e.g. 0+ — x)

e atomic propositions to propositions (e.g. xy =0 — =0V y =0)
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Deduction modulo
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Deduction modulo

Let R be a rewriting system which rewrites:
e terms to terms (e.g. 0+ — x)

e atomic propositions to propositions (e.g. xy =0 — =0V y =0)

Let = be the congruence closure of —x

Every deduction rule is considered modulo = :

o Lh=d  Thed
(=FE) R = ¢ =9
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Deduction modulo

Let R be a rewriting system which rewrites:
e terms to terms (e.g. 0+ — x)

e atomic propositions to propositions (e.g. xy =0 — =0V y =0)
Let = be the congruence closure of —5

Every deduction rule is considered modulo = :

o Lh=d  Thed
(=FE) R = ¢ =9

A large part of the theory can (or should) be represented in R

Type systems and deduction in the rewriting calculus Additional material - 49



(Non-)Confluence of the p-calculus

e Active variables are troublesome

(Az y.y) (Na.a b) a)

e This kind of pattern (as well as abstractions) should be treated with
higher-order matching

Type systems and deduction in the rewriting calculus Additional material -

50



(Non-)Confluence of the p-calculus — part i

Non-linear patterns do not mix well with non-termination [Klop 80]

» C such that C' 55 Ay.(A(dzx).e) (dy (Cy))

» Asuchthat A —ys C A
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» C such that C' 55 Ay.(A(dzx).e) (dy (Cy))

» Asuchthat A —ys C A
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(Non-)Confluence of the p-calculus — part i

Non-linear patterns do not mix well with non-termination [Klop 80]

» C such that C' 55 Ay.(A(dzx).e) (dy (Cy))

» Asuchthat A —ys C A

A~ CA——— (AMdzz2).e) (dA(CA))

|

(Md 2 2).e) (d(C A) (C A))
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(Non-)Confluence of the p-calculus — part i

Non-linear patterns do not mix well with non-termination [Klop 80]

» C such that C' 55 Ay.(A(dzx).e) (dy (Cy))

» Asuchthat A —ys C A

A—CA—— (Mdz2).e) (dA(CA))
!

(Md 2 2).e) (d(C A) (C A))

|

€
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(Non-)Confluence of the p-calculus — part i

Non-linear patterns do not mix well with non-termination [Klop 80]

» C such that C' 55 Ay.(A(dzx).e) (dy (Cy))

» Asuchthat A —ys C A

A~ CA——— (AMdzz2).e) (dA(CA))

| |

Ce (AMdzz).e)(d(CA)(CA))

|

€

Type systems and deduction in the rewriting calculus Additional material - 51



Expressiveness

1. Embedding the X\ into the p. p: A= p

(a) p(z) ==
(b) w(Ax.M) = Ax.o(M)

(c) p(M N) = p(M) p(N)

Theorem: If M —g3 N, then (M) —, p(N)
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Expressiveness

1. Embedding the X\ into the p. p: A= p

(a) p(z) ==
(b) w(Ax.M) = Ax.o(M)

(c) (M N) = p(M) p(N)

Theorem: If M —g3 N, then (M) —, p(N)

2. Encoding Rewriting

(a) A rewrite system R can be represented as a structure containing all the rules
(b) Reduction paths can be encoded
|f t1 7 o, then 94 A such that A'tl —) to

Type systems and deduction in the rewriting calculus Additional material - 52



Normalization failure

f:(la—a)—aand'=2:a— q, wE ANz (fx)

'ty f:(a—a)—wa T'kFyz:a—a TPFyax:a—a T'ky fz:«
'Fy fz:« F'Fyz(fx):

Frw=Afzax(fzx): a— «

Fryw (fw):«a

Type systems and deduction in the rewriting calculus Additional material -

53



The relation C and first

fP Z M)O.B
fP Z gB if f#g V 3i,P,ZB;
P Z (MQAB ifQZBV PZA

first(Ar, Aa, ..., Ay) 2 X = ((stk— Ap X 1) (... (stk — Ay X 1 1) (A1X)))
first(Ai, Ag, ..., An) B v first(As, ..., A,) B

Type systems and deduction in the rewriting calculus Additional material - 54



Encoding of TRSs

M.z (recz)r,

[R] = Arecz. first| .

Aa1T . z (recz) ai(z (rec z) x),

Ay .z (recz)r,

! ARecz . first | ---,
AY.Y

Type systems and deduction in the rewriting calculus Additional material - 55



Positiveness

In CIC, the constructor F': R is accepted only if R is
positive in each

1. R is positive in 7" if /7 does not occur in T’

2. R is positive in (R?) if R does not occur in

3. R is positive in if R does not occur in A and R is positive in

Type systems and deduction in the rewriting calculus Additional material - 56



Encoding the P?T'S into \-calculus

>

[#] = =
L] = Az1.. Aza,. A2z 210 20,))
[f Bi...Ba,] & X2z Bi...Ba,)
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Encoding the P?T'S into \-calculus

>

=]

[/]

[f B1... Ba,]
[A(f Pr...Pp).Al

X

ATy ATy (A2(2 210 T0,))

| >

Az.(z Bi...Ba,)

Mu(uxy ...z AP AP, AT, g AT A

af

Type systems and deduction in the rewriting calculus Additional material - 57



Encoding the P?T'S into )\-calculus

>

[z]

X

[f] 2 Aoy Az, A2z 21 ... 20,)
[f Bi...Ba,] & X2z Bi...Ba,)
A(f Proo P)A] = du(uy . ox i [APL. AR ATy, . AT, (AT
[Nz A] 2 Xx.[A]
[AB] = [A]]B]
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Encoding the P?T'S into )\-calculus

>

[z] = =
[f] 2 Ay Ao, (A2 (2 2100 20,)
[f Bi...Ba,] & X2z Bi...Ba,)
Af Py P)A] 2 Mu(uar...w i[NP AP AT, .. Al A
[Nz A] 2 Xx.[A]
[AB] = [A][B]
[AVB] 2 Mzi... Az (()\z.([[A]]ajl...xa))([[B]]xl...xa)>
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An example of translated term

).x] [] [a]
( X

()\y.(()\u.(u A ;U))jy)) (Z)\wl)\z(le)jm)
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An example of translated term

_ DeOUDo
[M(f z).2] [£] [a]
()\y.(f)\u (u(Ax w))jy)) (Z)\wl.)\z.(le)j()\v.v))

s ()\y.(y()\x.x)))(()\:vl.)\z.(le))()\v.v)>
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An example of translated term

DO 2).2) ]
] A(fz)a] I o]
()\y(f)\u(u()\xw))jy)) (Z)\wl)\z(le)jm)
s ()\y.(y()\x.x)))(()\:vl.)\z.(le))()\v.v)>
=g (Ay.(y(Az.2))) (Az.(2(Mv.v)))
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An example of translated term

Dy(A(f 2).2) ]
] A(fz)a] I o]
()\y.(f)\u (u(Ax m))jy)) (Z)\wl.)\z.(le)j()\v.v))
—g  (Ay.(y(\z.2))) (()\ajl Az.(zx1))(Av.v)
=5 (M-(y(A\z.2))) (A= (2(Mv.w)))
—g  (Az.(z(Mvw))) (Az.x)
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An example of translated term

DO 2).2) ]
] A(fz)a] I o]
(Ay. (f)\u(u()\x m))jy)) (Z)\wl)\z(le)jm)
—g  (Ay.(y(\z.2))) (()\ajl Az.(zx1))(Av.v)
=5 (Ay-(y(.x))) (Az.(2(M0.0)))
—g  (Az.(z(Mvw))) (Az.x)
—5  (Ar.x)(Av.v)
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B
B
B
B

B

An example of translated term

x).x] [£] [a]

o)) (B Xz Gan) G

Type systems and deduction in the rewriting calculus

Additional material - 58



The type of a translated constant

Supposing s f : Ilx:t.e

Fyo [f] =21 A2 (2 21) 0 00— (60— 0)— 0

= [f B] (0 —=0) =0

Type systems and deduction in the rewriting calculus Additional material - 59



Enhanced translation

|| >

(5 : *).((o1 — ...00 — 3) = B)

No1,...,04

/] Ax1 A0 %) (Az.(z21)) 10— N\o

INf x.A] Au.(u T Az.[A]) : (ANo) = 7

where [I'] Fao [A] : 7

Type systems and deduction in the rewriting calculus Additional material - 60



Use of types depending on types

By ik — *75y:* = Aw [[x]] : ﬁy — 6xﬁy

AY.Y By = AG %[

Ay.a Bp = A0 %\

f Be = A3 %\ [

Type systems and deduction in the rewriting calculus Additional material - 61



Disjunctive connectors

When dealing with VV and d, some part of the definition can not be decomposed
properly
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Disjunctive connectors

When dealing with VV and d, some part of the definition can not be decomposed
properly

With P — (Q A R) V S the new rules are:

r-Q TFR TS ''P T,QAR+U T,SFU
(P I) (PI,) (P E)
TP TP T+U
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Disjunctive connectors

When dealing with VV and d, some part of the definition can not be decomposed
properly

With P — (Q A R) V S the new rules are:
r-Q TFR TS P T,QARFU T,SFU

(P 1) TF P PL)p FP) r-U

The discrepancy between (P I;) and the second assumption of (P E) may ruin cut
elimination, and suggests further decomposition:

TP T,QR-FU T.SFU
THU

(P E)
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Conservativity
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About unsound rules

It is well-known that the rewrite rule R — R = L gives an unsound deduction
modulo
lts associated introduction and elimination rules are

TR L 'R TFR
(RE)
TR TH L

(RT)
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About unsound rules

It is well-known that the rewrite rule R — R = L gives an unsound deduction
modulo
lts associated introduction and elimination rules are

TR L 'R TFR

(R1) I'-R (RE) I'=_1

and the (shortest) proof of = | has the proof term

(AR(a).a R()) R(AR(a).a R(v))

Type systems and deduction in the rewriting calculus Additional material - 64



Curiosities

e Proof terms with patterns for the usual connectives

I'F7m:0¢ Ll | I ol e WA )
T AT, a): Ay (/\EZ)FI—(A/\(QG -
) Y)-T)T 1 P

(AI)
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Curiosities

e Proof terms with patterns for the usual connectives

I'Em:o¢ Ll I'Em:oAY
T AT, a): Ay (/\EZ)FI—(A/\(:I: -
') Y)-T)T 1 P

(AI)

e The NDM formalization of higher-order logic gives the rules for higher-order
quantifiers

Predicates defined by induction give some natural rules

I'EneN '-0eP I''mePEFS(m)eP
I'FneP

(N E)

Type systems and deduction in the rewriting calculus Additional material - 65



