Typage et déduction dans le calcul de

réécriture

Benjamin Wack

Encadrants: C. Kirchner, L. Liquori

Deduction and computation

- λ-calculus [Church 40] is a simple and powerful computational model
- Explicit notions of function, application, binding
- Turing equivalent

Deduction and computation

- λ-calculus [Church 40] is a simple and powerful computational model
- Explicit notions of function, application, binding
- Turing equivalent
- Simply typed λ-calculus [Church 40, Curry 34]
- Ensures strong normalization
- Isomorphism with natural deduction for intuitionistic logic [Curry, Howard, de Bruijn]

Deduction and computation

- λ-calculus [Church 40] is a simple and powerful computational model
- Explicit notions of function, application, binding
- Turing equivalent
- Simply typed λ-calculus [Church 40, Curry 34]
- Ensures strong normalization
- Isomorphism with natural deduction for intuitionistic logic [Curry, Howard, de Bruijn]
- Various extensions [de Bruijn 70, Girard 72, Coquand 85, Berardi 88, Paulin 90]
- To broaden the expressiveness of the logic
- To ease the definition of elaborated functions

More computational power ?

- Explicit introduction of rewriting in the system [Breazu-Tannen, Jouannaud, Okada et al.]
- Term rewriting
- Higher-order rewriting

More computational power ?

- Explicit introduction of rewriting in the system [Breazu-Tannen, Jouannaud, Okada et al.]
- Term rewriting
- Higher-order rewriting
- Removal of computational arguments from formal proofs
- Poincaré principle [Barendregt \& Barendsen]
- Deduction modulo [Dowek, Hardin, Kirchner, Werner]

More computational power ?

- Explicit introduction of rewriting in the system [Breazu-Tannen, Jouannaud, Okada et al.]
- Term rewriting
- Higher-order rewriting
- Removal of computational arguments from formal proofs
- Poincaré principle [Barendregt \& Barendsen]
- Deduction modulo [Dowek, Hardin, Kirchner, Werner]
- The rewriting calculus [Cirstea, Kirchner, Liquori et al.]
- Designed as a semantics for rule-based languages
- Embeds the λ-calculus and various aspects of rewriting

Contents

1. Untyped rewriting calculus
2. Type systems for programming

- Properties and type inference
- Typed encoding of term rewriting systems

3. Pure Pattern Type Systems

- Strong normalization in ρ_{\rightarrow} and ρP

4. Using the ρ-calculus for deduction

- $P^{2} T S$-proof terms for deduction modulo
- Generalized Natural Deduction

The Untyped Syntax

$$
\begin{array}{llll}
\mathcal{P} \subseteq & \mathcal{T} & \text { Patterns } \\
\mathcal{T}::= & \mathcal{X}|\mathcal{K}| \lambda \mathcal{P} . \mathcal{T}|\mathcal{T} \mathcal{T}| \mathcal{T} \imath \mathcal{T} & \text { Terms }
\end{array}
$$

1. $\lambda P . A$ denotes an abstraction with pattern P and body A ... the free variables of P are bound in A
2. The terms can also be structures built using the symbol " 2 "
3. We work modulo α-conversion and Barendregt's hygiene-convention

Some ρ-terms

$(\lambda x . x x)(\lambda x . x x)$
the λ-term $(\omega \omega)$
$(\lambda(f x y) \cdot(g y x))(f a b)$
$(\lambda a . b \imath \lambda a . c) a$
the application of a rewrite rule
the parallel application of two rules

Some ρ-terms

$(\lambda x . x x)(\lambda x . x x)$
$(\lambda(f x y) \cdot(g y x))(f a b)$
$(\lambda a . b \imath \lambda a . c) a$
the λ-term $(\omega \omega)$
the application of a rewrite rule
the parallel application of two rules

Some ρ-terms

$(\lambda x . x x)(\lambda x . x x)$
$(\lambda(f x y) \cdot(g y x))(f a b)$
$(\lambda a . b \imath \lambda a . c) a$
the λ-term $(\omega \omega)$
the application of a rewrite rule

The Small-step Reduction Semantics

$$
\begin{array}{ll}
(\lambda P . A) B \rightarrow \rho & \text { if } P \theta \equiv B \\
(A 乙 B) C \rightarrow A C \imath B C &
\end{array}
$$

Some ρ-reductions

$(\lambda x . x x)(\lambda x . x x)$
$(\lambda(f x y) . g y x)(f a b)$
$(\lambda a . b \backslash \lambda a . c) a$

Some ρ-reductions

$(\lambda x . x x)(\lambda x . x x)$

$(\lambda(f x y) \cdot g y x)(f a b)$
($\lambda a . b \backslash \lambda a . c) a$

Some ρ-reductions

$(\lambda x . x x)(\lambda x . x x)$

$(\lambda(f x y) \cdot g y x)(f a b) \quad \mapsto_{\rho} g b a$
($\lambda a . b \backslash \lambda a . c) a$

Some ρ-reductions

$(\lambda x . x x)(\lambda x . x x)$

$(\lambda(f x y) \cdot g y x)(f a b)$ $\mapsto_{\rho} g b a$
$(\lambda a . b \backslash \lambda a . c) a$
$\mapsto_{\delta}(\lambda a . b) a \imath(\lambda a . c) a \mapsto_{\rho} b \imath c$

About preredexes

$$
\underline{(\lambda(f x) \cdot \overline{(\lambda a \cdot b) x})(f a)}
$$

About preredexes

$$
\begin{aligned}
& (\lambda(f x) \cdot \overline{(\lambda a \cdot b) x})(f a) \\
&
\end{aligned}
$$

About preredexes

$$
\underbrace{(\lambda(f x) \cdot \overline{(\lambda a \cdot b) x})(f a)}_{\rho} \begin{gathered}
(\lambda a . b) a \\
\downarrow \\
b
\end{gathered}
$$

Ensuring confluence

- Strategies
- Call by value...
- Suitable for operational semantics but not adapted for logics
- Restrictions on patterns [van Oostrom 90]
- Algebraic and linear
- More restrictive but stable by reduction

About the expressiveness of the ρ-calculus

- The λ-calculus is fully embedded in the ρ-calculus [Cirstea \& Kirchner 98]
- β-reductions are faithfully mimicked
- a λ-term ρ-reduces to λ-terms only
- Various aspects of rewriting can be represented [Cirstea \& Kirchner 98]
- Rewriting paths
- Rewriting systems
- Rewriting strategies
- Various object calculi can be encoded [Cirstea, Kirchner \& Liquori 01]

Contents

1. Untyped rewriting calculus
2. Type systems for programming

- Properties and type inference
- Typed encoding of term rewriting systems

3. Pure Pattern Type Systems

- Strong normalization in ρ_{\rightarrow} and ρP

4. Using the ρ-calculus for deduction

- $P^{2} T S$-proof terms for deduction modulo
- Generalized Natural Deduction

A Simple Type System ρ_{1}

$$
\frac{x: \sigma \in \Gamma}{\Gamma \vdash_{\Sigma} x: \sigma}(\text { Var }) \quad \frac{f: \sigma \in \Sigma}{\Gamma \vdash_{\Sigma} f: \sigma}(\text { Const })
$$

A Simple Type System ρ_{1}

$$
\begin{gathered}
\frac{x: \sigma \in \Gamma}{\Gamma \vdash_{\Sigma} x: \sigma}(\text { Var }) \quad \frac{f: \sigma \in \Sigma}{\Gamma \vdash_{\Sigma} f: \sigma}(\text { Const }) \\
\frac{\Gamma \vdash_{\Sigma} A: \sigma \rightarrow \tau \quad \Gamma \vdash_{\Sigma} B: \sigma}{\Gamma \vdash_{\Sigma} A B: \tau}(\text { Appl })
\end{gathered}
$$

A Simple Type System ρ_{1}

$$
\begin{aligned}
& \frac{x: \sigma \in \Gamma}{\Gamma \vdash_{\Sigma} x: \sigma}(\text { Var }) \quad \frac{f: \sigma \in \Sigma}{\Gamma \vdash_{\Sigma} f: \sigma}(\text { Const }) \\
& \frac{\Gamma \vdash_{\Sigma} A: \sigma \rightarrow \tau \quad \Gamma \vdash_{\Sigma} B: \sigma}{\Gamma \vdash_{\Sigma} A B: \tau}(\text { Appl }) \\
& \frac{\Gamma, \Delta \vdash_{\Sigma} P: \sigma \quad \Gamma, \Delta \vdash_{\Sigma} A: \tau}{\Gamma \vdash_{\Sigma} \lambda(P: \Delta) \cdot A: \sigma \rightarrow \tau}(\text { Abs }) \quad \operatorname{Dom}(\Delta)=\mathcal{F V}(P)
\end{aligned}
$$

A Simple Type System ρ_{1}

$$
\begin{gathered}
\frac{x: \sigma \in \Gamma}{\Gamma \vdash_{\Sigma} x: \sigma}(\text { Var }) \quad \frac{f: \sigma \in \Sigma}{\Gamma \vdash_{\Sigma} f: \sigma}(\text { Const }) \\
\frac{\Gamma \vdash_{\Sigma} A: \sigma \rightarrow \tau \quad \Gamma \vdash_{\Sigma} B: \sigma}{\Gamma \vdash_{\Sigma} A B: \tau}(\text { Appl }) \\
\frac{\Gamma, \Delta \vdash_{\Sigma} P: \sigma \quad \Gamma, \Delta \vdash_{\Sigma} A: \tau}{\Gamma \vdash_{\Sigma} \lambda(P: \Delta) \cdot A: \sigma \rightarrow \tau}(\text { Abs }) \\
\frac{\Gamma \vdash_{\Sigma} A: \sigma \quad \Gamma \vdash_{\Sigma} B: \sigma}{\Gamma \vdash_{\Sigma} A \imath B: \sigma}(\text { Struct })
\end{gathered}
$$

Polymorphic extensions

à la Church	à la Curry
$\frac{\Gamma \vdash_{\Sigma} A: \sigma \quad \alpha \notin F V(\Gamma)}{\Gamma \vdash_{\Sigma} \lambda \alpha \cdot A: \forall \alpha \cdot \sigma}(A b s \forall)$	
$\frac{\Gamma \vdash_{\Sigma} A: \forall \alpha \cdot \sigma}{\Gamma \vdash_{\Sigma} A \tau: \sigma[\alpha:=\tau]}(A p p \forall)$	

Polymorphic extensions

à la Church	à la Curry
$\frac{\Gamma \vdash_{\Sigma} A: \sigma \quad \alpha \notin F V(\Gamma)}{\Gamma \vdash_{\Sigma} \lambda \alpha \cdot A: \forall \alpha \cdot \sigma}(A b s \forall)$	$\frac{\Gamma \vdash_{\Sigma} A: \sigma \quad \alpha \notin F V(\Gamma)}{\Gamma \vdash_{\Sigma} A: \forall \alpha \cdot \sigma}(A b s \forall)$
$\frac{\Gamma \vdash_{\Sigma} A: \forall \alpha \cdot \sigma}{\Gamma \vdash_{\Sigma} A \tau: \sigma[\alpha:=\tau]}(A p p \forall)$	$\frac{\Gamma \vdash_{\Sigma} A: \forall \alpha \cdot \sigma}{\Gamma \vdash_{\Sigma} A: \sigma[\alpha:=\tau]}(A p p \forall)$

Polymorphic extensions

à la Church	à la Curry
$\frac{\Gamma \vdash_{\Sigma} A: \sigma \quad \alpha \notin F V(\Gamma)}{\Gamma \vdash_{\Sigma} \lambda \alpha \cdot A: \forall \alpha \cdot \sigma}(A b s \forall)$	$\frac{\Gamma \vdash_{\Sigma} A: \sigma \quad \alpha \notin F V(\Gamma)}{\Gamma \vdash_{\Sigma} A: \forall \alpha \cdot \sigma}(A b s \forall)$
$\frac{\Gamma \vdash_{\Sigma} A: \forall \alpha \cdot \sigma}{\Gamma \vdash_{\Sigma} A \tau: \sigma[\alpha:=\tau]}(A p p \forall)$	$\frac{\Gamma \vdash_{\Sigma} A: \forall \alpha \cdot \sigma}{\Gamma \vdash_{\Sigma} A: \sigma[\alpha:=\tau]}(A p p \forall)$
	$\forall(f: \sigma) \in \Sigma, \quad \sigma \equiv \forall \bar{\alpha}\left(\sigma_{1} \rightarrow \ldots \iota(\bar{\beta})\right)$
where $\bar{\beta}=\mathcal{B} \mathcal{V}(\sigma)$	

Typing properties

Well-typed matching
If $P \theta \equiv A$, then $\forall x \in P, \quad \Gamma \vdash_{\Sigma} x: \sigma \Rightarrow \Gamma \vdash_{\Sigma} x \theta: \sigma$
Subject Reduction [Cirstea, Liquori \& Wack 03]
If $\Gamma \vdash_{\Sigma} A: \sigma$ and $A \mapsto_{\rho} B$, then $\Gamma \vdash_{\Sigma} B: \sigma$
Uniqueness [Cirstea, Liquori \& Wack 03]
In systems à la Church, if $\Gamma \vdash_{\Sigma} A: \sigma$ and $\Gamma \vdash_{\Sigma} A: \tau$, then $\tau={ }_{\alpha} \sigma$

Decidability [Liquori \& Wack 04]

In systems à la Church, $\left.\begin{array}{ll}\text { (typechecking) } & \text { (type reconstruction) }\end{array} \begin{array}{l}\Gamma \vdash_{\Sigma} \mathcal{T}: \sigma \\ \Gamma \vdash_{\Sigma} \mathcal{T}: ?\end{array}\right\}$ are decidable
In systems à la Curry, both are undecidable

Type inference

- In systems à la Church, type inference is fully guided by syntax
- The type system à la Curry has to be restricted
- The only legal types are type-schemes $\forall \bar{\alpha} . \tau$ where τ is a simple type
- Polymorphism is restricted to a new construction $[P \ll A] B$ (similar to letin)
- Inference works in the style of the Damas-Milner algorithm

Normalization failure

$$
\begin{aligned}
\omega \triangleq \begin{array}{llll}
\omega & x & x & x \\
\omega \quad \omega \quad & \equiv & \left(\begin{array}{llll}
\lambda & x & x & x
\end{array}\right) \quad \omega \\
& \longrightarrow \rho & \omega & \omega \\
& \longrightarrow \rho & \cdots
\end{array}
\end{aligned}
$$

Normalization failure

$$
\begin{aligned}
& \Gamma=x: \alpha \rightarrow \alpha, \quad \omega \triangleq \lambda \quad x \quad x \quad x \\
& \omega \quad \omega \quad\left.\equiv\left(\begin{array}{llll}
& x & x & x
\end{array}\right) x\right) \quad \omega \\
& \longrightarrow \rho \\
& \cdots \quad \omega \\
& \cdots
\end{aligned}
$$

Normalization failure

$$
\begin{aligned}
& f:(\alpha \rightarrow \alpha) \rightarrow \alpha \text { and } \Gamma=x: \alpha \rightarrow \alpha, \quad \omega \triangleq \lambda(f x) \cdot x(f x) \\
& \qquad \begin{aligned}
\omega(f \omega) & \equiv(\lambda(f x) \cdot x(f x))) \quad(f \omega) \\
& \rightarrow \rho \\
& \omega(f \omega) \\
& \cdots
\end{aligned}
\end{aligned}
$$

Normalization failure (cont'd)

$$
f:(\alpha \rightarrow \alpha) \rightarrow \alpha \text { and } \Gamma=x: \alpha \rightarrow \alpha, \quad \omega \triangleq \lambda f x \cdot x(f x)
$$

$$
\frac{\Gamma \vdash_{\Sigma} x: \alpha \rightarrow \alpha \frac{\Gamma \vdash_{\Sigma} f:(\alpha \rightarrow \alpha) \rightarrow \alpha \quad \Gamma \vdash_{\Sigma} x: \alpha \rightarrow \alpha}{\Gamma \vdash_{\Sigma} x(f x): \alpha}}{\Gamma \frac{\Gamma}{\Gamma \vdash_{\Sigma}}}
$$

$$
\vdash_{\Sigma} \omega(f \omega): \alpha
$$

Encoding rewriting systems in the ρ-calculus

Addition over Peano integers: $\Sigma=\{0, S$, rec, add $\}$
plus $\triangleq \lambda \operatorname{rec} z \cdot\binom{\lambda(\operatorname{add} 0 y) \cdot y}{\imath \lambda(\operatorname{add}(S x) y) \cdot S((z(\operatorname{rec} z))(\operatorname{add} x y))}$

Encoding rewriting systems in the ρ－calculus

Addition over Peano integers：$\Sigma=\{0, S$ ，rec，add $\}$

$$
\begin{aligned}
& \text { plus } \triangleq \lambda \operatorname{rec} z \cdot\binom{\lambda(\operatorname{add} 0 y) \cdot y}{\imath \lambda(\operatorname{add}(S x) y) \cdot S((z(r e c z))(a d d x y))} \\
& \text { (plus (rec plus)) (add N M) } \\
& \mapsto_{p}(\lambda 0 . M) N \quad \text { 乙 }(\lambda 0 . \widetilde{M+1}) \widetilde{N-1} \cdots \quad(\lambda 0 . \widetilde{M+N}) 0 \text { 乙 } \quad(\lambda(S x) \ldots) 0
\end{aligned}
$$

Encoding rewriting systems in the ρ－calculus

Addition over Peano integers：$\Sigma=\{0, S$ ，rec，add $\}$

$$
\begin{aligned}
& \text { plus } \triangleq \lambda \operatorname{rec} z \cdot\binom{\lambda(\operatorname{add} 0 y) \cdot y}{\imath \lambda(\operatorname{add}(S x) y) \cdot S((z(r e c z))(a d d x y))} \\
& \text { (plus (rec plus)) (add N M) } \\
& \mapsto_{p}(\lambda 0 . M) N \text { 乙 }(\lambda 0 . \widetilde{M+1}) \widetilde{N-1} \cdots(\lambda 0 \cdot \widetilde{M+N}) 0 \text { 乙 } \quad(\lambda(S x) \ldots) 0 \\
& \stackrel{?}{\mapsto} \widetilde{M+N}
\end{aligned}
$$

Detecting matching failures: the symbol stk

- The relation $P \nsubseteq A$ detects (some) definitive matching failures

Detecting matching failures: the symbol stk

- The relation $P \nsubseteq A$ detects (some) definitive matching failures
- The relation $\mapsto_{\text {stk }}$ treats matching failures uniformly:

$$
\begin{array}{rlll}
(\lambda P: \Delta . A) B & \mapsto_{\text {stk }} & \text { stk } \quad \text { if } P \nsubseteq B \\
\text { stk ८ } A & \mapsto_{\text {stk }} & A \\
A \text { 亿stk } & \mapsto_{\mathrm{stk}} & A \\
\text { stk } A & \mapsto_{\mathrm{stk}} & \text { stk } &
\end{array}
$$

Detecting matching failures: the symbol stk

- The relation $P \nsubseteq A$ detects (some) definitive matching failures
- The relation $\mapsto_{\text {stk }}$ treats matching failures uniformly:

$$
\begin{array}{rllll}
(\lambda P: \Delta . A) B & \mapsto_{\text {stk }} & \text { stk } & \text { if } P \nsubseteq B \\
\text { stk } A & \mapsto_{\text {stk }} & A & \\
A \text { 亿stk } & \mapsto_{\text {stk }} & A & \\
\text { stk } A & \mapsto_{\text {stk }} & \text { stk } &
\end{array}
$$

- Theorem [Cirstea, Liquori \& Wack 03] The reduction $\mapsto_{\rho}^{\text {stk }}$ is confluent

Systematic encoding

- There exists a ρ-term first (using stk) such that

$$
\left(\text { first } A_{1} A_{2} \ldots A_{n}\right) B \underset{p}{\mapsto \text { stk }} \quad A_{i+1} B
$$

$$
\text { if } \quad \begin{array}{rrr}
A_{i+1} B & \Vdash_{\rho}^{\text {stk }} & \text { stk } \\
& \forall j \leq i, A_{j} B & \mapsto_{\rho}^{\text {stk }}
\end{array} \mathrm{sem}^{\text {stk }}
$$

Systematic encoding

- There exists a ρ-term first (using stk) such that $\left(\right.$ first $\left.A_{1} A_{2} \ldots A_{n}\right) B \xrightarrow[p]{\text { stk }} \quad A_{i+1} B$
if

$$
\begin{array}{rll}
A_{i+1} B & \vdash_{\rho s}^{\text {stk }} & \text { stk } \\
\forall j \leq i, A_{j} B & \mapsto_{\rho f}^{\text {stk }} & \text { stk }
\end{array}
$$

- The Term Rewrite System $\mathcal{R}=\left\{l_{i} \rightarrow r_{i}\right\}$ with signature $\left\{a_{j}\right\}$ is encoded by:

$$
\llbracket \mathcal{R} \rrbracket=\lambda(\operatorname{rec} z) \cdot \operatorname{first}\left(\begin{array}{l}
\lambda l_{1} \cdot z(\operatorname{rec} z) r_{1} \\
\cdots \\
\lambda\left(a_{1} \bar{x}\right) \cdot z(\operatorname{rec} z) a_{1}(\overline{z(\operatorname{rec} z) x}) \\
\cdots
\end{array}\right)
$$

Properties of the encoding

Theorem [Cirstea, Liquori \& Wack 03]
This encoding is sound for left-linear TRS
complete for convergent TRS
typable if the TRS is well-typed

Remark [Cirstea, Kirchner, Liquori \& Wack 03]

Various strategies can be encoded

Other cases of non termination under typing

- In CaML, ω can be written

```
type t = F of (t -> t); ;
let omega x = match x with (F y) -> y (F y);;
```

- In CIC, type constructors must fulfill a positiveness condition [Mendler 87]

Logical inconsistency

- In this type system, the Curry-Howard isomorphism is not valid:

$$
\frac{\Gamma, \Delta \vdash_{\Sigma} P: \sigma \quad \Gamma, \Delta \vdash_{\Sigma} A: \tau}{\Gamma \vdash_{\Sigma} \lambda P: \Delta . A: \sigma \rightarrow \tau}(A b s) \quad \frac{\Gamma, \Delta \vdash_{\Sigma} \sigma \quad \Gamma, \Delta \vdash_{\Sigma} \tau}{\Gamma \vdash_{\Sigma} \sigma \rightarrow \tau}(\rightarrow I)
$$

Logical inconsistency

- In this type system, the Curry-Howard isomorphism is not valid:

$$
\frac{\Gamma, \Delta \vdash_{\Sigma} P: \sigma \quad \Gamma, \Delta \vdash_{\Sigma} A: \tau}{\Gamma \vdash_{\Sigma} \lambda P: \Delta . A: \sigma \rightarrow \tau}(A b s) \quad \frac{\Gamma, \Delta \vdash_{\Sigma} \sigma \quad \Gamma, \Delta \vdash_{\Sigma} \tau}{\Gamma \vdash_{\Sigma} \sigma \rightarrow \tau}(\rightarrow I)
$$

- How to fix it ?

$$
\frac{\Gamma, X_{i}: \sigma_{i} \vdash_{\Sigma} A: \tau}{\Gamma \vdash_{\Sigma} \lambda P . A:\left(\bigwedge \sigma_{i}\right) \rightarrow \tau}(A b s) \quad, \quad \mathcal{F} \mathcal{V}(P)=\left\{X_{i}\right\}
$$

But how to type applications ?

Contents

1. Untyped rewriting calculus
2. Type systems for programming

- Properties and type inference
- Typed encoding of term rewriting systems

3. Pure Pattern Type Systems

- Strong normalization in ρ_{\rightarrow} and ρP

4. Using the ρ-calculus for deduction

- $P^{2} T S$-proof terms for deduction modulo
- Generalized Natural Deduction

Dependent type discipline in $P^{2} T S$

$$
\begin{gathered}
\frac{\Gamma, \Delta \vdash_{\Sigma} B: C \quad \Gamma \vdash_{\Sigma} \Pi P: \Delta . C: s}{\Gamma \vdash_{\Sigma} \lambda P: \Delta . B: \Pi P: \Delta . C}(A b s) \\
\frac{\Gamma \vdash_{\Sigma} A: \Pi P: \Delta . C \quad \Gamma \vdash_{\Sigma}\left[P<_{\Delta} B\right] C: s}{\Gamma \vdash_{\Sigma} A B:\left[P<_{\Delta} B\right] C}(A p p l) \\
\frac{\Gamma, \Delta \vdash_{\Sigma} P: A}{\Gamma \vdash_{\Sigma} B: A \quad \Gamma, \Delta \vdash_{\Sigma} A: s_{1} \quad \Gamma, \Delta \vdash_{\Sigma} C: s_{2}} \\
\Gamma \vdash_{\Sigma}[P \ll \Delta B] C: s_{2}
\end{gathered}(\text { Match })
$$

Dependent type discipline in $P^{2} T S$

$$
\begin{gathered}
\frac{\Gamma, \Delta \vdash_{\Sigma} B: C \quad \Gamma \vdash_{\Sigma} \Pi P: \Delta . C: s}{\Gamma \vdash_{\Sigma} \lambda P: \Delta . B: \Pi P: \Delta . C}(A b s) \\
\frac{\Gamma \vdash_{\Sigma} A: \Pi P: \Delta . C \quad \Gamma \vdash_{\Sigma}\left[P<_{\Delta} B\right] C: s}{\Gamma \vdash_{\Sigma} A B:\left[P<_{\Delta} B\right] C}(A p p l) \\
\frac{\Gamma, \Delta \vdash_{\Sigma} P: A \quad \Gamma \vdash_{\Sigma} B: A \quad \Gamma, \Delta \vdash_{\Sigma} A: s_{1} \quad \Gamma, \Delta \vdash_{\Sigma} C: s_{2}}{\Gamma \vdash_{\Sigma}[P \ll \Delta B] C: s_{2}}(\text { Match })
\end{gathered}
$$

With $\Delta=\{x: \iota, l: l i s t\}$ we have $\vdash_{\Sigma} \lambda($ cons $x l): \Delta . x: \Pi($ cons $x l): \Delta . \iota$

The ρ-cube

Typing properties

[Barthe, Cirstea, Kirchner \& Liquori 03]
Subject reduction:
Correctness:

$$
\Gamma \vdash_{\Sigma} A: B \Rightarrow \Gamma \vdash_{\Sigma} B: s \vee B \equiv s
$$

Consistency: $\quad A \in \operatorname{Nf}(\rho \delta) \Rightarrow \nvdash \Sigma A: \perp(\triangleq \forall x: * . x)$
Uniqueness:

$$
\Gamma \vdash_{\Sigma} A: B \wedge \Gamma \vdash_{\Sigma} A: B^{\prime} \Rightarrow B \bar{\beta} \phi B^{\prime}
$$

Conservativity:

$$
\Gamma \vdash_{P T S} A: B \Leftrightarrow \Gamma \vdash_{P^{2} T S} A: B
$$

Typing is more restrictive

Here, with $\Delta \equiv\{x: \Pi z: \alpha . \alpha\}$:

$$
\vdash_{\Sigma} \omega \triangleq \lambda(f x): \Delta . x(f x): \Pi(f x): \Delta . \alpha
$$

And:

$$
\vdash_{\Sigma} f: \Pi(y: \Pi z: \alpha . \alpha) . \alpha
$$

But to type $f \omega$ the pattern y and the argument ω must have a common type σ

Strong normalization : sketch of the proof

Theorem [Wack 04]:

In ρ_{\rightarrow} and ρP, if $\Gamma \vdash_{\Sigma} A: C$ then A and C are SN

Strong normalization : sketch of the proof

Theorem [Wack 04]:

In ρ_{\rightarrow} and ρP, if $\Gamma \vdash_{\Sigma} A: C$ then A and C are SN

1. Find a translation $\llbracket \rrbracket: P^{2} T S \rightarrow \lambda \omega$ correct w.r.t. reductions If $A \mapsto_{p o \delta} B$, then $\llbracket A \rrbracket \stackrel{\beta}{\rightsquigarrow} \llbracket B \rrbracket$ in at least one step

Strong normalization : sketch of the proof

Theorem [Wack 04]:

In ρ_{\rightarrow} and ρP, if $\Gamma \vdash_{\Sigma} A: C$ then A and C are SN

1. Find a translation $\llbracket \rrbracket: P^{2} T S \rightarrow \lambda \omega$ correct w.r.t. reductions

If $A \mapsto_{\rho o \delta} B$, then $\llbracket A \rrbracket \stackrel{\beta}{\leftrightarrows} \llbracket B \rrbracket$ in at least one step
2. Typability of the translated terms

$$
\Sigma, \Gamma \vdash_{\Sigma} A: C \quad \Rightarrow \quad \exists \tau, \quad \llbracket \Gamma \rrbracket \vdash_{\lambda \omega} \llbracket A \rrbracket: \tau
$$

Strong normalization : sketch of the proof

Theorem [Wack 04]:

In ρ_{\rightarrow} and ρP, if $\Gamma \vdash_{\Sigma} A: C$ then A and C are SN

1. Find a translation 【】: $P^{2} T S \rightarrow \lambda \omega$ correct w.r.t. reductions

If $A \mapsto_{\rho o \delta} B$, then $\llbracket A \rrbracket \stackrel{\beta}{\rightsquigarrow} \llbracket B \rrbracket$ in at least one step
2. Typability of the translated terms

$$
\Sigma, \Gamma \vdash_{\Sigma} A: C \quad \Rightarrow \quad \exists \tau, \quad \llbracket \Gamma \rrbracket \vdash_{\lambda \omega} \llbracket A \rrbracket: \tau
$$

3. Usual techniques can be adapted to reduce SN in ρP to SN in ρ_{\rightarrow}

Correctness of reductions

- $\llbracket(\lambda(f x) \cdot x)(f a) \rrbracket=(\lambda u \cdot(u(\lambda x \cdot x)))\left(\left(\lambda x_{1} \cdot \lambda z \cdot\left(z x_{1}\right)\right)(\lambda v \cdot v)\right) \mapsto_{\beta} \lambda v \cdot v=\llbracket a \rrbracket$

Correctness of reductions

- $\llbracket(\lambda(f x) \cdot x)(f a) \rrbracket=(\lambda u \cdot(u(\lambda x \cdot x)))\left(\left(\lambda x_{1} \cdot \lambda z \cdot\left(z x_{1}\right)\right)(\lambda v \cdot v)\right) \mapsto_{\beta} \lambda v \cdot v=\llbracket a \rrbracket$
- The ρ-term $(\lambda y \cdot(\lambda(f x) . x) y)(f a)$ features a preredex

Correctness of reductions

- $\llbracket(\lambda(f x) \cdot x)(f a) \rrbracket=(\lambda u \cdot(u(\lambda x \cdot x)))\left(\left(\lambda x_{1} \cdot \lambda z \cdot\left(z x_{1}\right)\right)(\lambda v \cdot v)\right) \mapsto_{\beta} \lambda v \cdot v=\llbracket a \rrbracket$
- The ρ-term $(\lambda y \cdot(\lambda(f x) . x) y)(f a)$ features a preredex
- Thus, the reductions of the λ-term $\llbracket(\lambda y .(\lambda(f x) . x) y)(f a) \rrbracket$ must mimick first an external ρ-reduction

Correctness of reductions

- $\llbracket(\lambda(f x) \cdot x)(f a) \rrbracket=(\lambda u \cdot(u(\lambda x \cdot x)))\left(\left(\lambda x_{1} \cdot \lambda z \cdot\left(z x_{1}\right)\right)(\lambda v \cdot v)\right) \mapsto_{\beta} \lambda v \cdot v=\llbracket a \rrbracket$
- The ρ-term $(\lambda y .(\lambda(f x) . x) y)(f a)$ features a preredex
- Thus, the reductions of the λ-term $\llbracket(\lambda y .(\lambda(f x) . x) y)(f a) \rrbracket$ must mimick first an external ρ-reduction
- Remark: a term produced by the translation may have additional reductions

The type of a translated pattern

- A naive translation gives

$$
\begin{aligned}
\vdash_{\lambda \omega} \llbracket f B \rrbracket \quad: & (\sigma \rightarrow \beta) \rightarrow \beta \\
\vdash_{\lambda \omega} \llbracket \lambda(f x) . A \rrbracket: & ((\sigma \rightarrow \tau) \rightarrow \gamma) \rightarrow \gamma \\
& \text { where } \tau \text { is the type of } \llbracket A \rrbracket
\end{aligned}
$$

The type of a translated pattern

- A naive translation gives

$$
\begin{aligned}
\vdash_{\lambda \omega} \llbracket f B \rrbracket: & (\sigma \rightarrow \beta) \rightarrow \beta \\
\vdash_{\lambda \omega} \llbracket \lambda(f x) . A \rrbracket: & ((\sigma \rightarrow \tau) \rightarrow \gamma) \rightarrow \gamma \\
& \text { where } \tau \text { is the type of } \llbracket A \rrbracket \\
(\sigma \rightarrow \tau) \rightarrow \gamma: & (\sigma \rightarrow \beta) \rightarrow \beta \text { thus } \tau=\beta=\gamma
\end{aligned}
$$

The type of a translated pattern

- A naive translation gives

$$
\begin{aligned}
\vdash_{\lambda \omega} \llbracket f B \rrbracket: & (\sigma \rightarrow \beta) \rightarrow \beta \\
\vdash_{\lambda \omega} \llbracket \lambda(f x) \cdot A \rrbracket: & ((\sigma \rightarrow \tau) \rightarrow \gamma) \rightarrow \gamma \\
& \text { where } \tau \text { is the type of } \llbracket A \rrbracket \\
(\sigma \rightarrow \tau) \rightarrow \gamma: & (\sigma \rightarrow \beta) \rightarrow \beta \text { thus } \tau=\beta=\gamma
\end{aligned}
$$

- The actual translation features terms depending on types

$$
\begin{aligned}
\llbracket f B \rrbracket & : \quad \forall \beta \cdot(\sigma \rightarrow \beta \rightarrow \beta) \\
\llbracket \lambda(f x) \cdot A \rrbracket & : \quad \forall \beta \cdot(\sigma \rightarrow \beta \rightarrow \beta) \rightarrow \tau
\end{aligned}
$$

The type of a translated variable

- Naive translation

$$
\begin{aligned}
x: \Pi y: \iota . \iota & \vdash_{\Sigma} x \\
& \vdash_{\Sigma} \lambda y: \iota \cdot y: \Pi y: \iota \cdot \iota \\
& \vdash_{\Sigma} \lambda y: \iota \cdot a: \Pi y: \iota \cdot \iota
\end{aligned}
$$

The type of a translated variable

- Naive translation

$$
\begin{aligned}
x: \Pi y: \iota . \iota & \vdash_{\Sigma} x: \Pi y: \iota \cdot \iota \\
& \vdash_{\Sigma} \lambda y: \iota \cdot y: \Pi y: \iota \cdot \iota \\
& \vdash_{\Sigma} \lambda y: \iota \cdot a: \Pi y: \iota \cdot \iota \\
\Gamma & \vdash_{\lambda \omega} \lambda y: \beta_{y} \cdot y: \\
\Gamma \vdash_{\lambda \omega} \lambda y: \beta_{y} \cdot \llbracket a \rrbracket & : \beta_{y} \rightarrow \forall \alpha \cdot(\alpha \rightarrow \alpha)
\end{aligned}
$$

The type of a translated variable

- Naive translation

$$
\begin{aligned}
x: \Pi y: \iota . \iota & \vdash_{\Sigma} x: \Pi y: \iota \cdot \iota \\
& \vdash_{\Sigma} \lambda y: \iota \cdot y: \Pi y: \iota \cdot \iota \\
& \vdash_{\Sigma} \lambda y: \iota \cdot a: \Pi y: \iota \cdot \iota \\
\Gamma & \vdash_{\lambda \omega} \lambda y: \beta_{y} \cdot y: \\
\Gamma \vdash_{\lambda \omega} \lambda y: \beta_{y} \cdot \llbracket a \rrbracket & : \beta_{y} \rightarrow \\
& \forall \alpha \cdot(\alpha \rightarrow \alpha)
\end{aligned}
$$

- Use of types depending on types

$$
\beta_{x}: * \rightarrow *, \beta_{y}: * \vdash_{\lambda \omega} \llbracket x \rrbracket: \beta_{y} \rightarrow \beta_{x} \beta_{y}
$$

Contents

1. Untyped rewriting calculus
2. Type systems for programming

- Properties and type inference
- Typed encoding of term rewriting systems

3. Pure Pattern Type Systems

- Strong normalization in ρ_{\rightarrow} and ρP

4. Using the ρ-calculus for deduction

- $P^{2} T S$-proof terms for deduction modulo
- Generalized Natural Deduction

A linear representation of NDM proofs

- A proof in Natural Deduction Modulo: the congruence states that e is the neutral element of a group: $e * x \cong x$

$$
\begin{aligned}
& \frac{\forall y \cdot\left(y * e^{\prime}=y\right) \vdash \cong \forall y \cdot\left(y * e^{\prime}=y\right)}{\forall}(A x) \\
& \frac{\forall y \cdot\left(y * e^{\prime}=y\right) \vdash \cong e * e^{\prime}=e}{\forall y \cdot\left(y * e^{\prime}=y\right) \vdash \cong e^{\prime}=e}(\cong) \quad \text { with } e * e^{\prime} \cong e^{\prime} \\
& \stackrel{\forall \cong y \cdot\left(y * e^{\prime}=y\right) \Rightarrow e^{\prime}=e}{ }(\Rightarrow I)
\end{aligned}
$$

A linear representation of NDM proofs

- A proof in Natural Deduction Modulo: the congruence states that e is the neutral element of a group: $e * x \cong x$

$$
\left.\begin{array}{l}
\frac{\forall y \cdot\left(y * e^{\prime}=y\right) \vdash \cong \forall y \cdot\left(y * e^{\prime}=y\right)}{\forall}(A x) \\
\frac{\forall y \cdot\left(y * e^{\prime}=y\right) \vdash \cong e * e^{\prime}=e}{\forall y \cdot\left(y * e^{\prime}=y\right) \vdash \cong e^{\prime}=e}(\because E) \\
\vdash \cong \forall y \cdot\left(y * e^{\prime}=y\right) \Rightarrow e^{\prime}=e
\end{array}(\Rightarrow I) \text { with } e * e^{\prime} \cong e^{\prime}\right)
$$

- λ-calculus is sufficient to write witnesses [Dowek \& Werner 03]

$$
\lambda \alpha .(\alpha e)
$$

- the witness is short and focuses on reasoning
- but proof reconstruction can be tedious

A more explicit representation

- Using $P^{2} T S$, conversions can be accounted for by dedicated constructs in the style of Leibniz's equality :

$$
\vdash_{\Sigma} \operatorname{Rew} \phi t(\lambda l . r) \pi: \phi((\lambda l . r) t)
$$

A more explicit representation

- Using $P^{2} T S$, conversions can be accounted for by dedicated constructs in the style of Leibniz's equality :

$$
\vdash_{\Sigma} \operatorname{Rew} \phi t(\lambda l . r) \pi: \phi((\lambda l . r) t)
$$

- The new proof term for our example is

$$
\lambda \alpha \cdot\left(\operatorname{Rew}(\lambda y \cdot(y=e))\left(e * e^{\prime}\right)(\lambda(e * x) \cdot x)(\alpha e)\right)
$$

A more explicit representation

- Using $P^{2} T S$, conversions can be accounted for by dedicated constructs in the style of Leibniz's equality :

$$
\vdash_{\Sigma} \operatorname{Rew} \phi t(\lambda l . r) \pi: \phi((\lambda l . r) t)
$$

- The new proof term for our example is

$$
\lambda \alpha \cdot\left(\operatorname{Rew}(\lambda y \cdot(y=e))\left(e * e^{\prime}\right)(\lambda(e * x) \cdot x)(\alpha e)\right)
$$

- Proposition: For conversion on propositions, application of rewrite rules at top-level is sufficient

A Curry-Howard-de Bruijn correspondence

Theorem [Wack 05]:

\checkmark Full proof representation

A Curry-Howard-de Bruijn correspondence

Theorem [Wack 05]:

\checkmark Full proof representation
\times Incomplete proof reduction
\checkmark Every redex represents a cut
\times But some cuts are obfuscated by conversion rules

$$
\begin{aligned}
&(\Rightarrow I) \frac{p \vdash \cong p}{\vdash \cong p \Rightarrow p} \\
&(\Rightarrow E) \frac{:}{\vdash \cong q \Rightarrow p} \quad \frac{:}{\vdash \cong q} \\
& \frac{\vdash \cong p}{}
\end{aligned}
$$

? Conjecture : additional fold-unfold reduction rules allow to reduce every cut

Main benefits

- Proof checking reduces to type checking and matching
- Construction of the conversion steps can be delegated to an efficient rewriting-based software
- A λ-proof term can always be extracted from a ρ-proof term
- The set of used rewrite rules can also be extracted

A simple proof in Natural Deduction...

The theory \mathcal{T} contains at least $\left\{\begin{array}{l}X \subseteq Y \Leftrightarrow \forall x(x \in X \Rightarrow x \in Y) \\ \forall x(x \in \emptyset \Rightarrow \perp)\end{array}\right.$

A simple proof in Natural Deduction...

The theory \mathcal{T} contains at least $\left\{\begin{array}{l}X \subseteq Y \Leftrightarrow \forall x(x \in X \Rightarrow x \in Y) \\ \forall x(x \in \emptyset \Rightarrow \perp)\end{array}\right.$

$$
\mathcal{T} \vdash \emptyset \subseteq A
$$

A simple proof in Natural Deduction...

The theory \mathcal{T} contains at least $\left\{\begin{array}{l}X \subseteq Y \Leftrightarrow \forall x(x \in X \Rightarrow x \in Y) \\ \forall x(x \in \emptyset \Rightarrow \perp)\end{array}\right.$

$$
\begin{aligned}
& (A x) \overline{\mathcal{T}, x \in \emptyset \vdash \forall x(x \in \emptyset \Rightarrow \perp)} \\
& (\forall E) \frac{\mathcal{T}, x \in \emptyset \vdash x \in \emptyset \Rightarrow \perp}{(A x)} \overline{\mathcal{T}, x \in \emptyset \vdash x \in \emptyset} \\
& (\perp E) \frac{\mathcal{T}, x \in \emptyset \vdash \perp}{\mathcal{T}, x \in \emptyset \vdash x \in A} \\
& (\Rightarrow I) \frac{\mathcal{T} \vdash x \in \emptyset \Rightarrow x \in A}{(\forall I) \frac{\mathcal{T} \vdash \forall x(x \in \emptyset \Rightarrow x \in A)}{\mathcal{T}}} \\
& (A x) \frac{\mathcal{T} \vdash \ldots}{\mathcal{T} \vdash \forall x(x \in \emptyset \Rightarrow x \in A) \Rightarrow \emptyset \subseteq A} \quad \mathcal{T} \vdash \forall x(x \in \emptyset \Rightarrow x \in A) \\
& (\Rightarrow E) \frac{\mathcal{T} \vdash \emptyset \subseteq A}{}
\end{aligned}
$$

... shorter in deduction modulo

In NDM the context is empty and $\mathcal{R}=\left\{\begin{aligned} X \subseteq Y & \rightarrow \forall x(x \in X \Rightarrow x \in Y) \\ x \in \emptyset & \rightarrow\end{aligned}\right.$

... shorter in deduction modulo

In NDM the context is empty and $\mathcal{R}=\left\{\begin{array}{rll}X \subseteq Y & \rightarrow & \forall x(x \in X \Rightarrow x \in Y) \\ x \in \emptyset & \rightarrow & \perp\end{array}\right.$

$$
\begin{aligned}
& (A x) \overline{x \in \emptyset \vdash \cong \perp} \quad x \in \emptyset \cong \perp \\
& (\perp E) \frac{1}{x \in \emptyset \vdash \cong x \in A} \\
(\Rightarrow I) \frac{\vdash \cong x \in \emptyset \Rightarrow x \in A}{\vdash \cong x} & \quad \emptyset \subseteq A \cong \ldots \\
(\forall I) \frac{\vdash \cong \emptyset \subseteq A}{} &
\end{aligned}
$$

... shorter in deduction modulo

In NDM the context is empty and $\mathcal{R}=\left\{\begin{aligned} X \subseteq Y & \rightarrow \forall x(x \in X \Rightarrow x \in Y) \\ x \in \emptyset & \rightarrow \perp\end{aligned}\right.$

$$
\begin{aligned}
& \quad(A x) \frac{\overline{x \in \emptyset \vdash \cong \perp}}{} \quad \begin{array}{l}
(\perp E) \frac{1 \in \emptyset \cong \perp}{x \in \emptyset \vdash \cong x \in A} \\
(\Rightarrow I) \frac{1}{\vdash \cong x \in \emptyset \Rightarrow x \in A} \\
(\forall I) \frac{\vdash \cong \emptyset \subseteq A}{}
\end{array} \quad \emptyset \subseteq A \cong \ldots
\end{aligned}
$$

The proof is shorter but not very informative

A generalization of Natural Deduction

We consider some new rules about predicate symbols:

$$
(\subseteq I) \frac{\Gamma, x \in X \vdash x \in Y}{\Gamma \vdash X \subseteq Y} x \notin \mathcal{F} \mathcal{V}(\Gamma) \quad(\emptyset E) \frac{\Gamma \vdash x \in \emptyset}{\Gamma \vdash \phi}
$$

A generalization of Natural Deduction

We consider some new rules about predicate symbols:

$$
\begin{gathered}
(\subseteq I) \frac{\Gamma, x \in X \vdash x \in Y}{\Gamma \vdash X \subseteq Y} x \notin \mathcal{F} \mathcal{V}(\Gamma) \quad(\emptyset E) \frac{\Gamma \vdash x \in \emptyset}{\Gamma \vdash \phi} \\
\\
\vdash \emptyset \subseteq A
\end{gathered}
$$

A generalization of Natural Deduction

We consider some new rules about predicate symbols:

$$
\begin{gathered}
(\subseteq I) \frac{\Gamma, x \in X \vdash x \in Y}{\Gamma \vdash X \subseteq Y} x \notin \mathcal{F} \mathcal{V}(\Gamma) \quad(\emptyset E) \frac{\Gamma \vdash x \in \emptyset}{\Gamma \vdash \phi} \\
(\subseteq I) \frac{x \in \emptyset \vdash x \in A}{\vdash \emptyset \subseteq A}
\end{gathered}
$$

A generalization of Natural Deduction

We consider some new rules about predicate symbols:

$$
\begin{array}{r}
(\subseteq I) \frac{\Gamma, x \in X \vdash x \in Y}{\Gamma \vdash X \subseteq Y} x \notin \mathcal{F} \mathcal{V}(\Gamma) \\
(A x) \overline{x \in \emptyset \vdash x \in \emptyset} \\
(\emptyset E) \frac{x \in \emptyset \vdash x \in A}{x \in \emptyset} \\
(\subseteq I) \frac{\vdash \subseteq A}{\vdash \emptyset \subseteq}
\end{array}
$$

$$
(\emptyset E) \frac{\Gamma \vdash x \in \emptyset}{\Gamma \vdash \phi}
$$

A generalization of Natural Deduction

We consider some new rules about predicate symbols:

$$
\begin{array}{r}
(\subseteq I) \frac{\Gamma, x \in X \vdash x \in Y}{\Gamma \vdash X \subseteq Y} x \notin \mathcal{F} \mathcal{V}(\Gamma) \\
(A x) \overline{x \in \emptyset \vdash x \in \emptyset} \\
(\emptyset E) \frac{x \in \emptyset \vdash x \in A}{x \in \emptyset} \\
(\subseteq I) \frac{\emptyset \subseteq A}{\vdash \emptyset \subseteq A}
\end{array}
$$

$$
(\emptyset E) \frac{\Gamma \vdash x \in \emptyset}{\Gamma \vdash \phi}
$$

The proof is even shorter than in NDM and bears some resemblance with an "old-school" mathematic style

Systematic generation of the new inference rules

For each defined predicate P (i.e. there is a rewrite rule $P \rightarrow \phi$):

- decompose ϕ along the connectives \wedge and \Rightarrow and \forall
- gather all the assumptions and side conditions to build a new rule

Systematic generation of the new inference rules

For each defined predicate P (i.e. there is a rewrite rule $P \rightarrow \phi$):

- decompose ϕ along the connectives \wedge and \Rightarrow and \forall
- gather all the assumptions and side conditions to build a new rule Example: $X \subseteq Y \rightarrow \forall x .(x \in X \Rightarrow x \in Y)$ gives

Systematic generation of the new inference rules

For each defined predicate P (i.e. there is a rewrite rule $P \rightarrow \phi$):

- decompose ϕ along the connectives \wedge and \Rightarrow and \forall
- gather all the assumptions and side conditions to build a new rule Example: $X \subseteq Y \rightarrow \forall x .(x \in X \Rightarrow x \in Y)$ gives

$$
\frac{\frac{\Gamma, x \in X \vdash x \in Y}{\Gamma \vdash x \in X \Rightarrow x \in Y}}{\Gamma \vdash \forall x .(x \in X \Rightarrow x \in Y)}
$$

Systematic generation of the new inference rules

For each defined predicate P (i.e. there is a rewrite rule $P \rightarrow \phi$):

- decompose ϕ along the connectives \wedge and \Rightarrow and \forall
- gather all the assumptions and side conditions to build a new rule Example: $X \subseteq Y \rightarrow \forall x .(x \in X \Rightarrow x \in Y)$ gives

$$
\begin{gathered}
\frac{\Gamma, x \in X \vdash x \in Y}{\Gamma \vdash x \in X \Rightarrow x \in Y} \\
(\subseteq I) \frac{\Gamma, x \in X \vdash x \in Y}{\Gamma \vdash X \subseteq Y}
\end{gathered}
$$

Systematic generation of the new inference rules

For each defined predicate P (i.e. there is a rewrite rule $P \rightarrow \phi$):

- decompose ϕ along the connectives \wedge and \Rightarrow and \forall
- gather all the assumptions and side conditions to build a new rule Example: $X \subseteq Y \rightarrow \forall x .(x \in X \Rightarrow x \in Y)$ gives

$$
\begin{array}{cc}
\frac{\Gamma, x \in X \vdash x \in Y}{\Gamma \vdash x \in X \Rightarrow x \in Y} \\
(\subseteq I) \frac{\Gamma, x \in X \vdash x \in Y}{\Gamma \vdash X \subseteq Y} & \frac{\Gamma \vdash \forall x .(x \in X \Rightarrow x \in Y)}{\Gamma \vdash t \in X \Rightarrow t \in Y} \\
\Gamma \vdash t \in Y \\
\end{array}
$$

Systematic generation of the new inference rules

For each defined predicate P (i.e. there is a rewrite rule $P \rightarrow \phi$):

- decompose ϕ along the connectives \wedge and \Rightarrow and \forall
- gather all the assumptions and side conditions to build a new rule

Example: $X \subseteq Y \rightarrow \forall x .(x \in X \Rightarrow x \in Y)$ gives

$$
\begin{array}{cc}
\frac{\Gamma, x \in X \vdash x \in Y}{\Gamma \vdash x \in X \Rightarrow x \in Y} \\
\Gamma \vdash \forall x .(x \in X \Rightarrow x \in Y) & \frac{\Gamma \vdash \forall x .(x \in X \Rightarrow x \in Y)}{\Gamma \vdash t \in X \Rightarrow t \in Y} \\
(\subseteq I) \frac{\Gamma, x \in X \vdash x \in Y}{\Gamma \vdash X \subseteq Y} & (\subseteq E) \frac{\Gamma \vdash X \subseteq Y \quad \Gamma \vdash t \in X}{\Gamma \vdash t \in Y} \\
&
\end{array}
$$

Conservativity w.r.t first-order logic

- Theorem: Every defined predicate is provably equivalent to its definition
- Thus, a GND system is correct and complete if and only if the corresponding NDM system is correct and complete

Cut elimination

A new notion of cut appears for each defined predicate:

$$
(\subseteq E) \frac{\frac{:^{\mathcal{D}_{2}}}{\overline{\Gamma \vdash t \in X}} \quad(\subseteq I) \frac{\frac{\mathfrak{D}_{1}}{\Gamma, x \in X \vdash x \in Y}}{\Gamma \vdash X \subseteq Y}}{(x \notin \mathcal{F V}(\Gamma))}
$$

Cut elimination

A new notion of cut appears for each defined predicate:

$$
(\subseteq E) \frac{\frac{:^{\mathcal{D}_{2}}}{\Gamma \vdash t \in X} \quad(\subseteq I) \frac{\frac{\mathfrak{D}_{1}}{\Gamma, x \in X \vdash x \in Y}}{\Gamma \vdash X \subseteq Y}}{\Gamma \neq \mathcal{F} \mathcal{V}(\Gamma))}
$$

reduces to

Cut elimination

A new notion of cut appears for each defined predicate:

$$
(\subseteq E) \frac{\frac{:^{\mathcal{D}_{2}}}{\overline{\Gamma \vdash t \in X}} \quad(\subseteq I) \frac{\frac{\mathfrak{D}_{1}}{\Gamma, x \in X \vdash x \in Y}}{\Gamma \vdash X \subseteq Y}}{(x \notin \mathcal{F V}(\Gamma))}
$$

reduces to

Theorem: Cut elimination holds whenever it holds in the corresponding NDM system

Proof terms

Definition of proof terms for Generalized Natural Deduction

- Add ad-hoc constructions in the language
- Use the λ-abstraction and store multiple assumptions and witnesses in patterns

Proof terms

Definition of proof terms for Generalized Natural Deduction

- Add ad-hoc constructions in the language
- Use the λ-abstraction and store multiple assumptions and witnesses in patterns

$$
(\subseteq I) \frac{\Gamma, \alpha: x \in X \vdash \pi: x \in Y}{\Gamma \vdash \lambda(\subseteq x \alpha) \cdot \pi: X \subseteq Y} \quad(\subseteq E) \frac{\Gamma \vdash \pi: X \subseteq Y \quad \Gamma \vdash \pi^{\prime}: t \in X}{\Gamma \vdash \pi\left(\subseteq t \pi^{\prime}\right): t \in Y}
$$

Proof terms

Definition of proof terms for Generalized Natural Deduction

- Add ad-hoc constructions in the language
- Use the λ-abstraction and store multiple assumptions and witnesses in patterns

$$
(\subseteq I) \frac{\Gamma, \alpha: x \in X \vdash \pi: x \in Y}{\Gamma \vdash \lambda(\subseteq x \alpha) \cdot \pi: X \subseteq Y} \quad(\subseteq E) \frac{\Gamma \vdash \pi: X \subseteq Y \quad \Gamma \vdash \pi^{\prime}: t \in X}{\Gamma \vdash \pi\left(\subseteq t \pi^{\prime}\right): t \in Y}
$$

The reduction $(\lambda(\subseteq x \alpha) \cdot \pi)\left(\subseteq t \pi^{\prime}\right) \mapsto \pi\left[x:=t, \alpha:=\pi^{\prime}\right]$ models cut elimination

Proof terms

Definition of proof terms for Generalized Natural Deduction

- Add ad-hoc constructions in the language
- Use the λ-abstraction and store multiple assumptions and witnesses in patterns

$$
(\subseteq I) \frac{\Gamma, \alpha: x \in X \vdash \pi: x \in Y}{\Gamma \vdash \lambda(\subseteq x \alpha) \cdot \pi: X \subseteq Y} \quad(\subseteq E) \frac{\Gamma \vdash \pi: X \subseteq Y \quad \Gamma \vdash \pi^{\prime}: t \in X}{\Gamma \vdash \pi\left(\subseteq t \pi^{\prime}\right): t \in Y}
$$

The reduction $(\lambda(\subseteq x \alpha) \cdot \pi)\left(\subseteq t \pi^{\prime}\right) \mapsto \pi\left[x:=t, \alpha:=\pi^{\prime}\right]$ models cut elimination

- A collection of new type systems for the ρ-calculus, to be studied

Contributions

- Types for programming
- Properties and applications of these systems
- Type inference
- $P^{2} T S$
- Detailed study of the usual properties
- Strong normalization in ρ_{\rightarrow} and ρP
- Rewriting calculus and deduction
- Rich proof terms for deduction modulo
- A new way of embedding domain-specific information in the logic

Perspectives

- Types
- Strong normalization in the remaining of the ρ-cube
- Conjunction types for structures
- Generalized Natural Deduction seen as a collection of type systems

Perspectives

- Types
- Strong normalization in the remaining of the ρ-cube
- Conjunction types for structures
- Generalized Natural Deduction seen as a collection of type systems
- Generalized Natural Deduction
- Further decomposition of the propositions in the generation of new rules
- Tests on broader classes of rewrite rules

Perspectives

- Types
- Strong normalization in the remaining of the ρ-cube
- Conjunction types for structures
- Generalized Natural Deduction seen as a collection of type systems
- Generalized Natural Deduction
- Further decomposition of the propositions in the generation of new rules
- Tests on broader classes of rewrite rules
- Implementation of proof assistants
- based on Natural Deduction Modulo, using ρ-proof terms
- based on Generalized Natural Deduction

Thanks for your attention

Deduction modulo

Let \mathcal{R} be a rewriting system which rewrites:

- terms to terms (e.g. $0+x \rightarrow x$)
- atomic propositions to propositions (e.g. $x * y=0 \rightarrow x=0 \vee y=0$)

Deduction modulo

Let \mathcal{R} be a rewriting system which rewrites:

- terms to terms (e.g. $0+x \rightarrow x$)
- atomic propositions to propositions (e.g. $x * y=0 \rightarrow x=0 \vee y=0$)

Let \cong be the congruence closure of $\rightarrow_{\mathcal{R}}$

Deduction modulo

Let \mathcal{R} be a rewriting system which rewrites:

- terms to terms (e.g. $0+x \rightarrow x$)
- atomic propositions to propositions (e.g. $x * y=0 \rightarrow x=0 \vee y=0$)

Let \cong be the congruence closure of $\rightarrow_{\mathcal{R}}$

Every deduction rule is considered modulo \cong :

$$
(\Rightarrow E) \frac{\Gamma \vdash \cong \vartheta \quad \Gamma \vdash \cong \phi}{\Gamma \vdash \cong \psi} \quad \vartheta \cong \phi \Rightarrow \psi
$$

Deduction modulo

Let \mathcal{R} be a rewriting system which rewrites:

- terms to terms (e.g. $0+x \rightarrow x$)
- atomic propositions to propositions (e.g. $x * y=0 \rightarrow x=0 \vee y=0$)

Let \cong be the congruence closure of $\rightarrow_{\mathcal{R}}$
Every deduction rule is considered modulo \cong :

$$
(\Rightarrow E) \frac{\Gamma \vdash \cong \vartheta \quad \Gamma \vdash \cong \phi}{\Gamma \vdash \cong \psi} \quad \vartheta \cong \phi \Rightarrow \psi
$$

A large part of the theory can (or should) be represented in \mathcal{R}

(Non-)Confluence of the ρ-calculus

- Active variables are troublesome

- This kind of pattern (as well as abstractions) should be treated with higher-order matching

(Non-)Confluence of the ρ-calculus - part II

Non-linear patterns do not mix well with non-termination [Klop 80]

- C such that $C \longmapsto_{p \delta} \lambda y \cdot(\lambda(d x x) . e)(d y(C y))$
- A such that $A \mapsto_{\rho \delta} C A$

A

(Non-)Confluence of the ρ-calculus - part II

Non-linear patterns do not mix well with non-termination [KIop 80]

- C such that $C \mapsto_{\rho \delta} \lambda y .(\lambda(d x x) . e)(d y(C y))$
- A such that $A \mapsto_{p \delta} C A$

$$
A \rightarrow C A
$$

(Non-)Confluence of the ρ-calculus - part II

Non-linear patterns do not mix well with non-termination [KIop 80]

- C such that $C \mapsto_{p \delta} \lambda y \cdot(\lambda(d x x) . e)(d y(C y))$
- A such that $A \mapsto_{p \delta} C A$

$$
A \longrightarrow C A \longrightarrow(\lambda(d z z) \cdot e)(d A(C A))
$$

(Non-)Confluence of the ρ-calculus - part II

Non-linear patterns do not mix well with non-termination [KIop 80]

- C such that $C \mapsto_{p \delta} \lambda y \cdot(\lambda(d x x) . e)(d y(C y))$
- A such that $A \mapsto_{p \delta} C A$

$$
\begin{array}{r}
A \rightarrow C A \longrightarrow(\lambda(d z z) \cdot e)(d A(C A)) \\
\vdots \\
\\
(\lambda(d z z) \cdot e)(d(C A)(C A))
\end{array}
$$

(Non-)Confluence of the ρ-calculus - part II

Non-linear patterns do not mix well with non-termination [KIop 80]

- C such that $C \mapsto_{p \delta} \lambda y \cdot(\lambda(d x x) . e)(d y(C y))$
- A such that $A \mapsto_{p \delta} C A$

$$
\begin{gathered}
A \rightarrow C A \longrightarrow(\lambda(d z z) \cdot e)(d A(C A)) \\
\vdots \\
(\lambda(d z z) \cdot e)(d(C A)(C A)) \\
\vdots
\end{gathered}
$$

(Non-)Confluence of the ρ-calculus - part II

Non-linear patterns do not mix well with non-termination [KIop 80]

- C such that $C \mapsto_{p \delta} \lambda y \cdot(\lambda(d x x) . e)(d y(C y))$
- A such that $A \mapsto_{p \delta} C A$

Expressiveness

1. Embedding the λ into the $\rho . \varphi: \lambda \Rightarrow \rho$
(a) $\varphi(x)=x$
(b) $\varphi(\lambda x \cdot M)=\lambda x \cdot \varphi(M)$
(c) $\varphi(M N)=\varphi(M) \varphi(N)$

Theorem: If $M \mapsto_{\beta} N$, then $\varphi(M) \mapsto_{\rho} \varphi(N)$

Expressiveness

1. Embedding the λ into the $\rho . \varphi: \lambda \Rightarrow \rho$
(a) $\varphi(x)=x$
(b) $\varphi(\lambda x . M)=\lambda x \cdot \varphi(M)$
(c) $\varphi(M N)=\varphi(M) \varphi(N)$

Theorem: If $M \mapsto_{\beta} N$, then $\varphi(M) \mapsto_{\rho} \varphi(N)$

2. Encoding Rewriting

(a) A rewrite system \mathcal{R} can be represented as a structure containing all the rules
(b) Reduction paths can be encoded If $t_{1} \mapsto_{\mathcal{R}} t_{2}$, then $\exists A$ such that $A \cdot t_{1} \mapsto_{\rho \rho} t_{2}$

Normalization failure

$$
\begin{gathered}
f:(\alpha \rightarrow \alpha) \rightarrow \alpha \text { and } \Gamma=x: \alpha \rightarrow \alpha, \quad \omega \triangleq \lambda f x . x(f x) \\
\frac{\Gamma \vdash_{\Sigma} f:(\alpha \rightarrow \alpha) \rightarrow \alpha \quad \Gamma \vdash_{\Sigma} x: \alpha \rightarrow \alpha}{\frac{\Gamma \vdash_{\Sigma} f x: \alpha}{\vdash_{\Sigma} \omega \equiv \lambda f x . x(f x): \alpha \rightarrow \alpha}} \begin{array}{c}
\frac{\Gamma \vdash_{\Sigma} x: \alpha \rightarrow \alpha \overline{\Gamma \vdash_{\Sigma} f x: \alpha}}{\Gamma \vdash_{\Sigma} x(f x): \alpha} \\
\vdash_{\Sigma} \omega(f \omega): \alpha
\end{array}
\end{gathered}
$$

The relation \subseteq and first

$$
\begin{array}{lll}
f \bar{P} & \nexists \lambda Q . B & \\
f \bar{P} & \nexists g \bar{B} & \text { if } f \neq g \vee \exists i, P_{i} \nsubseteq B_{i} \\
P & \nexists & (\lambda Q . A) B
\end{array} \text { if } Q \nexists B \vee P \nsubseteq A
$$

$$
\begin{aligned}
& \operatorname{first}\left(A_{1}, A_{2}, \ldots, A_{n}\right) \triangleq X \rightarrow\left(\left(\text { stk } \rightarrow A_{n} X \imath I\right)\left(\ldots\left(\text { stk } \rightarrow A_{2} X \imath I\right)\left(A_{1} X\right)\right)\right) \\
& \operatorname{first}\left(A_{1}, A_{2}, \ldots, A_{n}\right) B \quad \mapsto_{\infty} \quad \operatorname{first}\left(A_{2}, \ldots, A_{n}\right) B
\end{aligned}
$$

Encoding of TRSs

$$
\begin{aligned}
\llbracket \mathcal{R} \rrbracket= & \lambda \operatorname{rec} z \cdot \operatorname{first}\left(\begin{array}{l}
\lambda l_{1} \cdot z(\operatorname{rec} z) r_{1}, \\
\cdots, \bar{x} \cdot z(\operatorname{rec} z) a_{1}(\overline{z(r e c} z) x \\
\lambda a_{1} \\
\cdots \\
\cdots
\end{array}\right) \\
& \text { } 2 \lambda \operatorname{Rec} z \cdot \operatorname{first}\left(\begin{array}{l}
\lambda l_{1} \cdot z(r e c z) r_{1}, \\
\cdots, \\
\lambda y \cdot y
\end{array}\right)
\end{aligned}
$$

Positiveness

In CIC, the constructor $F:\left(x_{1}: A_{1}\right) \ldots\left(x_{n}: A_{n}\right) \cdot R$ is accepted only if R is positive in each A_{i} :

1. R is positive in T if R does not occur in T
2. R is positive in $(R \vec{t})$ if R does not occur in \vec{t}
3. R is positive in $(x: A) C$ if R does not occur in A and R is positive in C

Encoding the $P^{2} T S$ into λ-calculus

$$
\begin{aligned}
\llbracket x \rrbracket & \triangleq x \\
\llbracket f \rrbracket & \triangleq \lambda x_{1} \ldots \lambda x_{\alpha_{f}} .\left(\lambda z \cdot\left(z x_{1} \ldots x_{\alpha_{f}}\right)\right) \\
\llbracket f B_{1} \ldots B_{\alpha_{f}} \rrbracket & \triangleq \lambda z \cdot\left(z B_{1} \ldots B_{\alpha_{f}}\right)
\end{aligned}
$$

Encoding the $P^{2} T S$ into λ-calculus

$$
\begin{aligned}
\llbracket x \rrbracket & \triangleq x \\
\llbracket f \rrbracket & \triangleq \lambda x_{1} \ldots \lambda x_{\alpha_{f}} \cdot\left(\lambda z \cdot\left(z x_{1} \ldots x_{\alpha_{f}}\right)\right) \\
\llbracket f B_{1} \ldots B_{\alpha_{f}} \rrbracket & \triangleq \lambda z \cdot\left(z B_{1} \ldots B_{\alpha_{f}}\right) \\
\llbracket \lambda\left(f P_{1} \ldots P_{p}\right) \cdot A \rrbracket & \triangleq \lambda u \cdot\left(u x_{\perp} \ldots x_{\perp} \llbracket \lambda P_{1} \ldots \lambda P_{p} \cdot \lambda x_{p+1}^{\prime} \ldots \lambda x_{\alpha_{f}}^{\prime} \cdot A \rrbracket\right)
\end{aligned}
$$

Encoding the $P^{2} T S$ into λ-calculus

$$
\begin{aligned}
\llbracket x \rrbracket & \triangleq x \\
\llbracket f \rrbracket & \triangleq \lambda x_{1} \ldots \lambda x_{\alpha_{f}} \cdot\left(\lambda z \cdot\left(z x_{1} \ldots x_{\alpha_{f}}\right)\right) \\
\llbracket f B_{1} \ldots B_{\alpha_{f}} \rrbracket & \triangleq \lambda z \cdot\left(z B_{1} \ldots B_{\alpha_{f}}\right) \\
\llbracket \lambda\left(f P_{1} \ldots P_{p}\right) \cdot A \rrbracket & \triangleq \lambda u \cdot\left(u x_{\perp} \ldots x_{\perp} \llbracket \lambda P_{1} \ldots \lambda P_{p} \cdot \lambda x_{p+1}^{\prime} \ldots \lambda x_{\alpha_{f}}^{\prime} \cdot A \rrbracket\right) \\
\llbracket \lambda x \cdot A \rrbracket & \triangleq \lambda x \cdot \llbracket A \rrbracket \\
\llbracket A B \rrbracket & \triangleq \llbracket A \rrbracket \llbracket B \rrbracket
\end{aligned}
$$

Encoding the $P^{2} T S$ into λ-calculus

$$
\begin{aligned}
\llbracket x \rrbracket & \triangleq x \\
\llbracket f \rrbracket & \triangleq \lambda x_{1} \ldots \lambda x_{\alpha_{f}} \cdot\left(\lambda z \cdot\left(z x_{1} \ldots x_{\alpha_{f}}\right)\right) \\
\llbracket f B_{1} \ldots B_{\alpha_{f}} \rrbracket & \triangleq \lambda z \cdot\left(z B_{1} \ldots B_{\alpha_{f}}\right) \\
\llbracket \lambda\left(f P_{1} \ldots P_{p}\right) \cdot A \rrbracket & \triangleq \lambda u \cdot\left(u x_{\perp} \ldots x_{\perp} \llbracket \lambda P_{1} \ldots \lambda P_{p} \cdot \lambda x_{p+1}^{\prime} \ldots \lambda x_{\alpha_{f}}^{\prime} \cdot A \rrbracket\right) \\
\llbracket \lambda x \cdot A \rrbracket & \triangleq \lambda x \cdot \llbracket A \rrbracket \\
\llbracket A B \rrbracket & \triangleq \llbracket A \rrbracket \llbracket B \rrbracket \\
\llbracket A \imath B \rrbracket & \triangleq \lambda x_{1} \ldots \lambda x_{\alpha} \cdot\left(\left(\lambda z \cdot\left(\llbracket A \rrbracket x_{1} \ldots x_{\alpha}\right)\right)\left(\llbracket B \rrbracket x_{1} \ldots x_{\alpha}\right)\right)
\end{aligned}
$$

An example of translated term

$$
\overbrace{(\lambda y \cdot(\overbrace{(\lambda u \cdot(u(\lambda x \cdot x)))}^{\llbracket \lambda(f x) \cdot x \rrbracket})}^{\llbracket \lambda y \cdot(\lambda(f x) \cdot x) y \rrbracket})(\overbrace{\left(\lambda x_{1} \cdot \lambda z \cdot\left(z x_{1}\right)\right)}^{\llbracket f \rrbracket} \overbrace{(\lambda v \cdot v)}^{\llbracket a \rrbracket})
$$

An example of translated term

$$
\begin{aligned}
& \overbrace{(\lambda y \cdot(\overbrace{(\lambda u \cdot(u(\lambda x \cdot x)))}^{\llbracket \lambda(f x) \cdot x \rrbracket} y)}^{\llbracket \lambda y \cdot(\lambda(f x) \cdot x) y \rrbracket})(\overbrace{\left(\lambda x_{1} \cdot \lambda z \cdot\left(z x_{1}\right)\right)}^{\llbracket f \rrbracket} \overbrace{(\lambda v \cdot v)}^{\llbracket a \rrbracket}) \\
\mapsto_{\beta} \quad & (\lambda y \cdot(y(\lambda x \cdot x)))\left(\left(\lambda x_{1} \cdot \lambda z \cdot\left(z x_{1}\right)\right)(\lambda v \cdot v)\right)
\end{aligned}
$$

An example of translated term

$$
\begin{aligned}
& \overbrace{(\lambda y \cdot(\overbrace{(\lambda u \cdot(u(\lambda x \cdot x)))}^{\llbracket \lambda(f x) \cdot x \rrbracket})}^{\llbracket \lambda y \cdot(\lambda(f x) \cdot x) y \rrbracket})(\overbrace{\left(\lambda x_{1} \cdot \lambda z \cdot\left(z x_{1}\right)\right)}^{\llbracket f \rrbracket} \overbrace{(\lambda v \cdot v)}^{\llbracket a \rrbracket}) \\
\mapsto_{\beta} & (\lambda y \cdot(y(\lambda x \cdot x)))\left(\left(\lambda x_{1} \cdot \lambda z \cdot\left(z x_{1}\right)\right)(\lambda v \cdot v)\right) \\
\mapsto_{\beta} & (\lambda y \cdot(y(\lambda x \cdot x)))(\lambda z \cdot(z(\lambda v \cdot v)))
\end{aligned}
$$

An example of translated term

$$
\begin{aligned}
& \overbrace{(\lambda y \cdot(\overbrace{(\lambda u \cdot(u(\lambda x \cdot x)))}^{\llbracket \lambda(f x) \cdot x \rrbracket})}^{\llbracket \lambda y \cdot(\lambda(f x) \cdot x) y \rrbracket})(\overbrace{\left(\lambda x_{1} \cdot \lambda \cdot \cdot\left(z x_{1}\right)\right)}^{\llbracket f \rrbracket} \overbrace{\lambda v \cdot v)}^{\llbracket a \rrbracket}) \\
\mapsto_{\beta} & (\lambda y \cdot(y(\lambda x \cdot x)))\left(\left(\lambda x_{1} \cdot \lambda z \cdot\left(z x_{1}\right)\right)(\lambda v \cdot v)\right) \\
\mapsto_{\beta} & (\lambda y \cdot(y(\lambda x \cdot x)))(\lambda z \cdot(z(\lambda v \cdot v))) \\
\mapsto_{\beta} & (\lambda z \cdot(z(\lambda v \cdot v)))(\lambda x \cdot x)
\end{aligned}
$$

An example of translated term

$$
\begin{aligned}
& \overbrace{}^{\llbracket \lambda y \cdot(\lambda(f x) \cdot x) y \rrbracket} \\
& (\lambda y \cdot(\overbrace{(\lambda u \cdot(u(\lambda x \cdot x)))}^{\llbracket \lambda(f x) \cdot x \rrbracket} y))(\overbrace{\left(\lambda x_{1} \cdot \lambda z \cdot\left(z x_{1}\right)\right)}^{\llbracket f \rrbracket} \overbrace{(\lambda v \cdot v)}^{\llbracket a \rrbracket}) \\
\mapsto_{\beta} & (\lambda y \cdot(y(\lambda x \cdot x)))\left(\left(\lambda x_{1} \cdot \lambda z \cdot\left(z x_{1}\right)\right)(\lambda v \cdot v)\right) \\
\mapsto_{\beta} & (\lambda y \cdot(y(\lambda x \cdot x)))(\lambda z \cdot(z(\lambda v \cdot v))) \\
\mapsto_{\beta} & (\lambda z \cdot(z(\lambda v \cdot v)))(\lambda x \cdot x) \\
\mapsto_{\beta} & (\lambda x \cdot x)(\lambda v \cdot v)
\end{aligned}
$$

An example of translated term

$$
\left.\begin{array}{rl}
& \overbrace{\llbracket \lambda y \cdot(\lambda(f x) \cdot x) y \rrbracket}^{\llbracket \lambda(f x) \cdot x \rrbracket} \\
& (\lambda y \cdot(\overbrace{(\lambda u \cdot(u(\lambda x \cdot x)))}^{\llbracket \lambda)})
\end{array}\right)(\overbrace{\left(\lambda x_{1} \cdot \lambda z \cdot\left(z x_{1}\right)\right)}^{\llbracket f \rrbracket} \overbrace{(\lambda v \cdot v)}^{\llbracket a \rrbracket})
$$

The type of a translated constant

Supposing $\vdash_{\Sigma} f: \Pi x: \iota . \iota$

$$
\begin{array}{ll}
\vdash_{\lambda \omega} \llbracket f \rrbracket=\lambda x_{1} \cdot \lambda z \cdot\left(z x_{1}\right): & \sigma \rightarrow(\sigma \rightarrow \beta) \rightarrow \beta \\
\vdash_{\lambda \omega} \llbracket f B \rrbracket: & (\sigma \rightarrow \beta) \rightarrow \beta
\end{array}
$$

Enhanced translation

$$
\begin{aligned}
\wedge \sigma_{1}, \ldots, \sigma_{\alpha} \triangleq & \Pi(\beta: *) \cdot\left(\left(\sigma_{1} \rightarrow \ldots \sigma_{\alpha} \rightarrow \beta\right) \rightarrow \beta\right) \\
\llbracket f \rrbracket \triangleq & \lambda x_{1} \cdot \lambda(\beta: *)\left(\lambda z \cdot\left(z x_{1}\right)\right): \sigma \rightarrow \bigwedge \sigma \\
\llbracket \lambda f x \cdot A \rrbracket \triangleq & \lambda u \cdot(u \tau \lambda x \cdot \llbracket A \rrbracket):(\bigwedge \sigma) \rightarrow \tau \\
& \text { where } \llbracket \Gamma \rrbracket \vdash \vdash_{\lambda \omega} \llbracket A \rrbracket: \tau \\
\vdash x_{\perp}: & \perp \triangleq \Pi(\beta: *) \cdot \beta
\end{aligned}
$$

Use of types depending on types

$$
\begin{array}{rccl}
& \vdash_{\Sigma} & x & : \\
\beta_{x}: * \rightarrow *, \beta_{y}: * & \vdash_{\lambda \omega} & \llbracket x \rrbracket: \iota \cdot \iota \\
& : & \beta_{y} \rightarrow \beta_{x} \beta_{y}
\end{array}
$$

$\lambda y \cdot y$	$\beta_{x}:=\lambda \beta: * \cdot \beta$
$\lambda y \cdot a$	$\beta_{x}:=\lambda \beta: * \cdot \wedge \emptyset$
f	$\beta_{x}:=\lambda \beta: * \cdot \wedge \beta$

Disjunctive connectors

When dealing with \vee and \exists, some part of the definition can not be decomposed properly

Disjunctive connectors

When dealing with \vee and \exists, some part of the definition can not be decomposed properly

With $P \rightarrow(Q \wedge R) \vee S$ the new rules are:
$\left(P I_{l}\right) \frac{\Gamma \vdash Q \quad \Gamma \vdash R}{\Gamma \vdash P} \quad\left(P I_{r}\right) \frac{\Gamma \vdash S}{\Gamma \vdash P} \quad(P E) \frac{\Gamma \vdash P}{} \quad \Gamma, Q \wedge R \vdash U \quad \Gamma, S \vdash U$

Disjunctive connectors

When dealing with \vee and \exists, some part of the definition can not be decomposed properly

With $P \rightarrow(Q \wedge R) \vee S$ the new rules are:
$\left(P I_{l}\right) \frac{\Gamma \vdash Q \quad \Gamma \vdash R}{\Gamma \vdash P} \quad\left(P I_{r}\right) \frac{\Gamma \vdash S}{\Gamma \vdash P} \quad(P E) \frac{\Gamma \vdash P}{} \quad \Gamma, Q \wedge R \vdash U \quad \Gamma, S \vdash U$
The discrepancy between $\left(P I_{l}\right)$ and the second assumption of $(P E)$ may ruin cut elimination, and suggests further decomposition:

$$
(P E) \frac{\Gamma \vdash P \quad \Gamma, Q, R \vdash U \quad \Gamma, S \vdash U}{\Gamma \vdash U}
$$

Conservativity

$$
\begin{array}{ccc}
(K E) \frac{(A x)-}{\vdots} & & \vdots \\
(P I) & \frac{\vdots}{d e f \vdash H_{1}} & \ldots \\
d e f \vdash P & \frac{d e f \vdash H_{n}}{d e P}
\end{array}
$$

$$
(P E) \frac{P, \Gamma \vdash P \quad \ldots \quad P, \Gamma \vdash \gamma}{(K I) \frac{:}{P \vdash d e f}}
$$

About unsound rules

It is well-known that the rewrite rule $R \rightarrow R \Rightarrow \perp$ gives an unsound deduction modulo
Its associated introduction and elimination rules are

$$
(R I) \frac{\Gamma, R \vdash \perp}{\Gamma \vdash R} \quad(R E) \frac{\Gamma \vdash R \quad \Gamma \vdash R}{\Gamma \vdash \perp}
$$

About unsound rules

It is well-known that the rewrite rule $R \rightarrow R \Rightarrow \perp$ gives an unsound deduction modulo
Its associated introduction and elimination rules are

$$
(R I) \frac{\Gamma, R \vdash \perp}{\Gamma \vdash R} \quad(R E) \frac{\Gamma \vdash R \quad \Gamma \vdash R}{\Gamma \vdash \perp}
$$

and the (shortest) proof of $\vdash \perp$ has the proof term

$$
(\lambda R(\alpha) . \alpha R(\alpha)) R(\lambda R(\alpha) . \alpha R(\alpha))
$$

Curiosities

- Proof terms with patterns for the usual connectives

$$
(\wedge I) \frac{\Gamma \vdash \pi: \phi \quad \Gamma \vdash \pi^{\prime}: \psi}{\Gamma \vdash \wedge\left(\pi, \pi^{\prime}\right): \phi \wedge \psi} \quad\left(\wedge E_{l}\right) \frac{\Gamma \vdash \pi: \phi \wedge \psi}{\Gamma \vdash(\lambda \wedge(x, y) \cdot x) \pi: \phi}
$$

Curiosities

- Proof terms with patterns for the usual connectives

$$
(\wedge) \frac{\Gamma \vdash \pi: \phi \quad \Gamma \vdash \pi^{\prime}: \psi}{\Gamma \vdash \wedge\left(\pi, \pi^{\prime}\right): \phi \wedge \psi} \quad\left(\wedge E_{l}\right) \frac{\Gamma \vdash \pi: \phi \wedge \psi}{\Gamma \vdash(\lambda \wedge(x, y) \cdot x) \pi: \phi}
$$

- The NDM formalization of higher-order logic gives the rules for higher-order quantifiers

Predicates defined by induction give some natural rules

$$
(N E) \frac{\Gamma \vdash n \in N \quad \Gamma \vdash 0 \in P \quad \Gamma, m \in P \vdash S(m) \in P}{\Gamma \vdash n \in P}
$$

