
Typage et déduction dans le calcul de

réécriture

Benjamin Wack

Encadrants : C. Kirchner, L. Liquori

Deduction and computation

• λ-calculus [Church 40] is a simple and powerful computational model

I Explicit notions of function, application, binding
I Turing equivalent

Type systems and deduction in the rewriting calculus Introduction - 2

Deduction and computation

• λ-calculus [Church 40] is a simple and powerful computational model

I Explicit notions of function, application, binding
I Turing equivalent

• Simply typed λ-calculus [Church 40, Curry 34]

I Ensures strong normalization
I Isomorphism with natural deduction for intuitionistic logic [Curry, Howard,

de Bruijn]

Type systems and deduction in the rewriting calculus Introduction - 2

Deduction and computation

• λ-calculus [Church 40] is a simple and powerful computational model

I Explicit notions of function, application, binding
I Turing equivalent

• Simply typed λ-calculus [Church 40, Curry 34]

I Ensures strong normalization
I Isomorphism with natural deduction for intuitionistic logic [Curry, Howard,

de Bruijn]

• Various extensions [de Bruijn 70, Girard 72, Coquand 85, Berardi 88,
Paulin 90]

I To broaden the expressiveness of the logic
I To ease the definition of elaborated functions

Type systems and deduction in the rewriting calculus Introduction - 2

More computational power ?

• Explicit introduction of rewriting in the system [Breazu-Tannen, Jouannaud,
Okada et al.]

I Term rewriting
I Higher-order rewriting

Type systems and deduction in the rewriting calculus Introduction - 3

More computational power ?

• Explicit introduction of rewriting in the system [Breazu-Tannen, Jouannaud,
Okada et al.]

I Term rewriting
I Higher-order rewriting

• Removal of computational arguments from formal proofs

I Poincaré principle [Barendregt & Barendsen]
I Deduction modulo [Dowek, Hardin, Kirchner, Werner]

Type systems and deduction in the rewriting calculus Introduction - 3

More computational power ?

• Explicit introduction of rewriting in the system [Breazu-Tannen, Jouannaud,
Okada et al.]

I Term rewriting
I Higher-order rewriting

• Removal of computational arguments from formal proofs

I Poincaré principle [Barendregt & Barendsen]
I Deduction modulo [Dowek, Hardin, Kirchner, Werner]

• The rewriting calculus [Cirstea, Kirchner, Liquori et al.]

I Designed as a semantics for rule-based languages
I Embeds the λ-calculus and various aspects of rewriting

Type systems and deduction in the rewriting calculus Introduction - 3

Contents

1. Untyped rewriting calculus

2. Type systems for programming

I Properties and type inference
I Typed encoding of term rewriting systems

3. Pure Pattern Type Systems

I Strong normalization in ρ→ and ρP

4. Using the ρ-calculus for deduction

I P 2TS-proof terms for deduction modulo
I Generalized Natural Deduction

The Untyped Syntax

P ⊆ T Patterns

T ::= X | K | λP.T | T T | T o T Terms

1. λP.A denotes an abstraction with pattern P and body A
... the free variables of P are bound in A

2. The terms can also be structures built using the symbol “o”

3. We work modulo α-conversion and Barendregt’s hygiene-convention

Type systems and deduction in the rewriting calculus The untyped rewriting calculus - 5

Some ρ-terms

(λx.x x) (λx.x x) the λ-term (ωω)

(λ(f x y).(g y x)) (f a b) the application of a rewrite rule

(λa.b o λa.c) a the parallel application of two rules

Type systems and deduction in the rewriting calculus The untyped rewriting calculus - 6

Some ρ-terms

(λx.x x) (λx.x x) the λ-term (ωω)

(λ(f x y).(g y x)) (f a b) the application of a rewrite rule

(λa.b o λa.c) a the parallel application of two rules

Type systems and deduction in the rewriting calculus The untyped rewriting calculus - 6

Some ρ-terms

(λx.x x) (λx.x x) the λ-term (ωω)

(λ(f x y).(g y x)) (f a b) the application of a rewrite rule

(λa.b o λa.c) a the parallel application of two rules

Type systems and deduction in the rewriting calculus The untyped rewriting calculus - 6

The Small-step Reduction Semantics

(λP.A)B →ρ Aθ if Pθ ≡ B

(A o B) C →δ A C o B C

Type systems and deduction in the rewriting calculus The untyped rewriting calculus - 7

Some ρ-reductions

(λx.x x) (λx.x x)

(λ(f x y).g y x) (f a b)

(λa.b o λa.c) a

Type systems and deduction in the rewriting calculus The untyped rewriting calculus - 8

Some ρ-reductions

(λx.x x) (λx.x x) 7→ρ {ω ω} 7→→ρδ . . .

(λ(f x y).g y x) (f a b)

(λa.b o λa.c) a

Type systems and deduction in the rewriting calculus The untyped rewriting calculus - 8

Some ρ-reductions

(λx.x x) (λx.x x) 7→ρ {ω ω} 7→→ρδ . . .

(λ(f x y).g y x) (f a b) 7→ρ g b a

(λa.b o λa.c) a

Type systems and deduction in the rewriting calculus The untyped rewriting calculus - 8

Some ρ-reductions

(λx.x x) (λx.x x) 7→ρ {ω ω} 7→→ρδ . . .

(λ(f x y).g y x) (f a b) 7→ρ g b a

(λa.b o λa.c) a 7→δ (λa.b) a o (λa.c) a 7→ρ b o c

Type systems and deduction in the rewriting calculus The untyped rewriting calculus - 8

About preredexes

(
λ(f x).(λa.b) x

)
(f a)

Type systems and deduction in the rewriting calculus The untyped rewriting calculus - 9

About preredexes

a preredex (not reducible)efhi
k

l
n

p
r(

λ(f x).(λa.b) x
)

(f a)

Type systems and deduction in the rewriting calculus The untyped rewriting calculus - 9

About preredexes

a preredex (not reducible)efhi
k

l
n

p
r(

λ(f x).(λa.b) x
)

(f a)
�

ρ
++VVVVVVVVVVVVVVVVVVVVVVVVV

(λa.b) a

��

b

Type systems and deduction in the rewriting calculus The untyped rewriting calculus - 9

Ensuring confluence

• Strategies

I Call by value...
I Suitable for operational semantics but not adapted for logics

• Restrictions on patterns [van Oostrom 90]

I Algebraic and linear
I More restrictive but stable by reduction

Type systems and deduction in the rewriting calculus The untyped rewriting calculus - 10

About the expressiveness of the ρ-calculus

• The λ-calculus is fully embedded in the ρ-calculus [Cirstea & Kirchner 98]

I β-reductions are faithfully mimicked
I a λ-term ρ-reduces to λ-terms only

• Various aspects of rewriting can be represented [Cirstea & Kirchner 98]

I Rewriting paths
I Rewriting systems
I Rewriting strategies

• Various object calculi can be encoded [Cirstea, Kirchner & Liquori 01]

Type systems and deduction in the rewriting calculus The untyped rewriting calculus - 11

Contents

1. Untyped rewriting calculus

2. Type systems for programming

I Properties and type inference
I Typed encoding of term rewriting systems

3. Pure Pattern Type Systems

I Strong normalization in ρ→ and ρP

4. Using the ρ-calculus for deduction

I P 2TS-proof terms for deduction modulo
I Generalized Natural Deduction

A Simple Type System ρ1

x : σ ∈ Γ
Γ `Σ x : σ

(V ar)
f :σ ∈ Σ

Γ `Σ f : σ
(Const)

Type systems and deduction in the rewriting calculus Types for programming - 13

A Simple Type System ρ1

x : σ ∈ Γ
Γ `Σ x : σ

(V ar)
f :σ ∈ Σ

Γ `Σ f : σ
(Const)

Γ `Σ A : σ → τ Γ `Σ B : σ
Γ `Σ AB : τ

(Appl)

Type systems and deduction in the rewriting calculus Types for programming - 13

A Simple Type System ρ1

x : σ ∈ Γ
Γ `Σ x : σ

(V ar)
f :σ ∈ Σ

Γ `Σ f : σ
(Const)

Γ `Σ A : σ → τ Γ `Σ B : σ
Γ `Σ AB : τ

(Appl)

Γ,∆ `Σ P : σ Γ,∆ `Σ A : τ
Γ `Σ λ(P :∆).A : σ → τ

(Abs)
Dom(∆) = FV(P)

Type systems and deduction in the rewriting calculus Types for programming - 13

A Simple Type System ρ1

x : σ ∈ Γ
Γ `Σ x : σ

(V ar)
f :σ ∈ Σ

Γ `Σ f : σ
(Const)

Γ `Σ A : σ → τ Γ `Σ B : σ
Γ `Σ AB : τ

(Appl)

Γ,∆ `Σ P : σ Γ,∆ `Σ A : τ
Γ `Σ λ(P :∆).A : σ → τ

(Abs)
Dom(∆) = FV(P)

Γ `Σ A : σ Γ `Σ B : σ
Γ `Σ A o B : σ

(Struct)

Type systems and deduction in the rewriting calculus Types for programming - 13

Polymorphic extensions

à la Church à la Curry

Γ `Σ A : σ α 6∈ FV (Γ)
Γ `Σ λα.A : ∀α.σ

(Abs∀)

Γ `Σ A : ∀α.σ
Γ `Σ Aτ : σ[α := τ]

(App∀)

Type systems and deduction in the rewriting calculus Types for programming - 14

Polymorphic extensions

à la Church à la Curry

Γ `Σ A : σ α 6∈ FV (Γ)
Γ `Σ λα.A : ∀α.σ

(Abs∀)
Γ `Σ A : σ α 6∈ FV (Γ)

Γ `Σ A : ∀α.σ
(Abs∀)

Γ `Σ A : ∀α.σ
Γ `Σ Aτ : σ[α := τ]

(App∀) Γ `Σ A : ∀α.σ
Γ `Σ A : σ[α := τ]

(App∀)

Type systems and deduction in the rewriting calculus Types for programming - 14

Polymorphic extensions

à la Church à la Curry

Γ `Σ A : σ α 6∈ FV (Γ)
Γ `Σ λα.A : ∀α.σ

(Abs∀)
Γ `Σ A : σ α 6∈ FV (Γ)

Γ `Σ A : ∀α.σ
(Abs∀)

Γ `Σ A : ∀α.σ
Γ `Σ Aτ : σ[α := τ]

(App∀) Γ `Σ A : ∀α.σ
Γ `Σ A : σ[α := τ]

(App∀)

∀(f :σ) ∈ Σ, σ ≡ ∀α(σ1 → . . . ι(β))
where β = BV(σ)

Type systems and deduction in the rewriting calculus Types for programming - 14

Typing properties

Well-typed matching
If Pθ ≡ A, then ∀x ∈ P, Γ `Σ x : σ ⇒ Γ `Σ xθ : σ

Subject Reduction [Cirstea, Liquori & Wack 03]
If Γ `Σ A : σ and A 7→→ρδB, then Γ `Σ B : σ

Uniqueness [Cirstea, Liquori & Wack 03]
In systems à la Church, if Γ `Σ A : σ and Γ `Σ A : τ , then τ =α σ

Decidability [Liquori & Wack 04]

In systems à la Church,
(typechecking) Γ `Σ T : σ ?
(type reconstruction) Γ `Σ T : ?

}
are decidable

In systems à la Curry, both are undecidable

Type systems and deduction in the rewriting calculus Types for programming - 15

Type inference

• In systems à la Church, type inference is fully guided by syntax

• The type system à la Curry has to be restricted

I The only legal types are type-schemes ∀α.τ where τ is a simple type

I Polymorphism is restricted to a new construction [P � A]B
(similar to let ...in)

I Inference works in the style of the Damas-Milner algorithm

Type systems and deduction in the rewriting calculus Types for programming - 16

Normalization failure

ω 4
= λ x .x x

ω ω ≡ (λ x . x x) ω

→ρ ω ω

→ρ . . .

Type systems and deduction in the rewriting calculus Types for programming - 17

Normalization failure

Γ = x : α→ α, ω 4
= λ x .x x

ω ω ≡ (λ x . x x) ω

→ρ ω ω

→ρ . . .

Type systems and deduction in the rewriting calculus Types for programming - 17

Normalization failure

f : (α→ α) → α and Γ = x : α→ α, ω 4
= λ(f x).x (f x)

ω (f ω) ≡ (λ(f x) . x (f x))) (f ω)

→ρ ω (f ω)

→ρ . . .

Type systems and deduction in the rewriting calculus Types for programming - 17

Normalization failure (cont’d)

f : (α→ α) → α and Γ = x : α→ α, ω 4
= λf x.x (f x)

Γ `Σ x : α→ α

Γ `Σ f : (α→ α) → α Γ `Σ x : α→ α

Γ `Σ f x : α
Γ `Σ x (f x) : α

`Σ ω (f ω) : α

Type systems and deduction in the rewriting calculus Types for programming - 18

Encoding rewriting systems in the ρ-calculus

Addition over Peano integers: Σ = {0, S, rec, add}

plus
4
= λrec z .

(
λ(add 0 y) . y

o λ(add(S x) y) . S
(
(z (rec z)) (add x y)

))

Type systems and deduction in the rewriting calculus Encoding rewriting systems - 19

Encoding rewriting systems in the ρ-calculus

Addition over Peano integers: Σ = {0, S, rec, add}

plus
4
= λrec z .

(
λ(add 0 y) . y

o λ(add(S x) y) . S
(
(z (rec z)) (add x y)

))

(plus (rec plus)) (add N M)

7→→ρδ (λ0.M)N o (λ0.M̃+1) Ñ−1 · · · (λ0.M̃+N) 0 o (λ(S x). . . .) 0

Type systems and deduction in the rewriting calculus Encoding rewriting systems - 19

Encoding rewriting systems in the ρ-calculus

Addition over Peano integers: Σ = {0, S, rec, add}

plus
4
= λrec z .

(
λ(add 0 y) . y

o λ(add(S x) y) . S
(
(z (rec z)) (add x y)

))

(plus (rec plus)) (add N M)

7→→ρδ (λ0.M)N o (λ0.M̃+1) Ñ−1 · · · (λ0.M̃+N) 0 o (λ(S x). . . .) 0

?7→→ M̃ +N

Type systems and deduction in the rewriting calculus Encoding rewriting systems - 19

Detecting matching failures: the symbol stk

• The relation P 6v A detects (some) definitive matching failures

Type systems and deduction in the rewriting calculus Encoding rewriting systems - 20

Detecting matching failures: the symbol stk

• The relation P 6v A detects (some) definitive matching failures

• The relation 7→stk treats matching failures uniformly:

(λP :∆.A)B 7→stk stk if P 6v B

stk o A 7→stk A

A o stk 7→stk A

stkA 7→stk stk

Type systems and deduction in the rewriting calculus Encoding rewriting systems - 20

Detecting matching failures: the symbol stk

• The relation P 6v A detects (some) definitive matching failures

• The relation 7→stk treats matching failures uniformly:

(λP :∆.A)B 7→stk stk if P 6v B

stk o A 7→stk A

A o stk 7→stk A

stkA 7→stk stk

• Theorem [Cirstea, Liquori & Wack 03] The reduction 7→stk
ρδ is confluent

Type systems and deduction in the rewriting calculus Encoding rewriting systems - 20

Systematic encoding

• There exists a ρ-term first (using stk) such that

(first A1 A2 . . . An)B 7→→stk
ρδ Ai+1 B

if
Ai+1 B 67→→stk

ρδ stk

∀j ≤ i, Aj B 7→→stk
ρδ stk

Type systems and deduction in the rewriting calculus Encoding rewriting systems - 21

Systematic encoding

• There exists a ρ-term first (using stk) such that

(first A1 A2 . . . An)B 7→→stk
ρδ Ai+1 B

if
Ai+1 B 67→→stk

ρδ stk

∀j ≤ i, Aj B 7→→stk
ρδ stk

• The Term Rewrite System R = {li → ri} with signature {aj} is encoded by:

JRK = λ(rec z) . first


λl1 . z (rec z) r1
· · ·
λ(a1 x) . z (rec z) a1(z (rec z) x)
· · ·



Type systems and deduction in the rewriting calculus Encoding rewriting systems - 21

Properties of the encoding

Theorem [Cirstea, Liquori & Wack 03]
This encoding is sound for left-linear TRS

complete for convergent TRS
typable if the TRS is well-typed

Remark [Cirstea, Kirchner, Liquori & Wack 03]
Various strategies can be encoded

Type systems and deduction in the rewriting calculus Encoding rewriting systems - 22

Other cases of non termination under typing

• In CaML, ω can be written

type t = F of (t -> t);;

let omega x = match x with (F y) -> y (F y);;

• In CIC, type constructors must fulfill a positiveness condition [Mendler 87]

Type systems and deduction in the rewriting calculus The source of non termination - 23

Logical inconsistency

• In this type system, the Curry-Howard isomorphism is not valid:

Γ,∆ `Σ P : σ Γ,∆ `Σ A : τ
Γ `Σ λP :∆ . A : σ → τ

(Abs)
Γ,∆ `Σ σ Γ,∆ `Σ τ

Γ `Σ σ → τ
(→ I)

Type systems and deduction in the rewriting calculus The source of non termination - 24

Logical inconsistency

• In this type system, the Curry-Howard isomorphism is not valid:

Γ,∆ `Σ P : σ Γ,∆ `Σ A : τ
Γ `Σ λP :∆ . A : σ → τ

(Abs)
Γ,∆ `Σ σ Γ,∆ `Σ τ

Γ `Σ σ → τ
(→ I)

• How to fix it ?

Γ, Xi : σi `Σ A : τ
Γ `Σ λP.A : (

∧
σi) → τ

(Abs) , FV(P) = {Xi}

But how to type applications ?

Type systems and deduction in the rewriting calculus The source of non termination - 24

Contents

1. Untyped rewriting calculus

2. Type systems for programming

I Properties and type inference
I Typed encoding of term rewriting systems

3. Pure Pattern Type Systems

I Strong normalization in ρ→ and ρP

4. Using the ρ-calculus for deduction

I P 2TS-proof terms for deduction modulo
I Generalized Natural Deduction

Dependent type discipline in P 2TS

Γ,∆ `Σ B : C Γ `Σ ΠP :∆.C : s
Γ `Σ λP :∆.B : ΠP :∆.C

(Abs)

Γ `Σ A : ΠP :∆.C Γ `Σ [P �∆ B]C : s
Γ `Σ AB : [P �∆ B]C

(Appl)

Γ,∆ `Σ P : A Γ `Σ B : A Γ,∆ `Σ A : s1 Γ,∆ `Σ C : s2
Γ `Σ [P �∆ B]C : s2

(Match)

Type systems and deduction in the rewriting calculus Pure Pattern Type Systems - 26

Dependent type discipline in P 2TS

Γ,∆ `Σ B : C Γ `Σ ΠP :∆.C : s
Γ `Σ λP :∆.B : ΠP :∆.C

(Abs)

Γ `Σ A : ΠP :∆.C Γ `Σ [P �∆ B]C : s
Γ `Σ AB : [P �∆ B]C

(Appl)

Γ,∆ `Σ P : A Γ `Σ B : A Γ,∆ `Σ A : s1 Γ,∆ `Σ C : s2
Γ `Σ [P �∆ B]C : s2

(Match)

With ∆ = {x:ι, l:list} we have `Σ λ(cons x l):∆ . x : Π(cons x l):∆ . ι

Type systems and deduction in the rewriting calculus Pure Pattern Type Systems - 26

The ρ-cube

ρω // ρCC

ρ2

??�������������

// ρP2

??������������

ρω //

OO

ρPω

OO

ρ→
(∗,2)

//

(2,2)

??��������������

(2,∗)

OO

ρP

??������������

OO

Type systems and deduction in the rewriting calculus Pure Pattern Type Systems - 27

Typing properties

[Barthe, Cirstea, Kirchner & Liquori 03]

Subject reduction: Γ `Σ A : C ∧ A 7→→ρδB ⇒ Γ `Σ B : C

Correctness: Γ `Σ A : B ⇒ Γ `Σ B : s ∨ B ≡ s

Consistency: A ∈ Nf(ρδ) ⇒ 6`Σ A : ⊥ (4
= ∀x: ∗ .x)

Uniqueness: Γ `Σ A : B ∧ Γ `Σ A : B′ ⇒ B=ρδB′

Conservativity: Γ `PTS A : B ⇔ Γ `P 2TS A : B

Type systems and deduction in the rewriting calculus Pure Pattern Type Systems - 28

Typing is more restrictive

Here, with ∆ ≡ {x : Πz:α.α}:

`Σ ω
4
= λ(f x):∆.x (f x) : Π(f x):∆.α

And:

`Σ f : Π(y : Πz:α.α).α

But to type f ω the pattern y and the argument ω must have a common type σ

Type systems and deduction in the rewriting calculus Pure Pattern Type Systems - 29

Strong normalization : sketch of the proof

Theorem [Wack 04]:
In ρ→ and ρP , if Γ `Σ A : C then A and C are SN

Type systems and deduction in the rewriting calculus Pure Pattern Type Systems - 30

Strong normalization : sketch of the proof

Theorem [Wack 04]:
In ρ→ and ρP , if Γ `Σ A : C then A and C are SN

1. Find a translation J K : P 2TS → λω correct w.r.t. reductions

If A 7→ρσδB, then JAK 7→β7→ JBK in at least one step

Type systems and deduction in the rewriting calculus Pure Pattern Type Systems - 30

Strong normalization : sketch of the proof

Theorem [Wack 04]:
In ρ→ and ρP , if Γ `Σ A : C then A and C are SN

1. Find a translation J K : P 2TS → λω correct w.r.t. reductions

If A 7→ρσδB, then JAK 7→β7→ JBK in at least one step

2. Typability of the translated terms

Σ,Γ `Σ A : C ⇒ ∃τ, JΓK `λω JAK : τ

Type systems and deduction in the rewriting calculus Pure Pattern Type Systems - 30

Strong normalization : sketch of the proof

Theorem [Wack 04]:
In ρ→ and ρP , if Γ `Σ A : C then A and C are SN

1. Find a translation J K : P 2TS → λω correct w.r.t. reductions

If A 7→ρσδB, then JAK 7→β7→ JBK in at least one step

2. Typability of the translated terms

Σ,Γ `Σ A : C ⇒ ∃τ, JΓK `λω JAK : τ

3. Usual techniques can be adapted to reduce SN in ρP to SN in ρ→

Type systems and deduction in the rewriting calculus Pure Pattern Type Systems - 30

Correctness of reductions

• J(λ(f x).x) (f a)K =
(
λu.(u(λx.x))

) (
(λx1.λz.(zx1))(λv.v)

)
7→→β λv.v = JaK

Type systems and deduction in the rewriting calculus Pure Pattern Type Systems - 31

Correctness of reductions

• J(λ(f x).x) (f a)K =
(
λu.(u(λx.x))

) (
(λx1.λz.(zx1))(λv.v)

)
7→→β λv.v = JaK

• The ρ-term
(
λy.(λ(f x).x) y

)
(f a) features a preredex

Type systems and deduction in the rewriting calculus Pure Pattern Type Systems - 31

Correctness of reductions

• J(λ(f x).x) (f a)K =
(
λu.(u(λx.x))

) (
(λx1.λz.(zx1))(λv.v)

)
7→→β λv.v = JaK

• The ρ-term
(
λy.(λ(f x).x) y

)
(f a) features a preredex

• Thus, the reductions of the λ-term J
(
λy.(λ(f x).x) y

)
(f a)K must mimick first

an external ρ-reduction

Type systems and deduction in the rewriting calculus Pure Pattern Type Systems - 31

Correctness of reductions

• J(λ(f x).x) (f a)K =
(
λu.(u(λx.x))

) (
(λx1.λz.(zx1))(λv.v)

)
7→→β λv.v = JaK

• The ρ-term
(
λy.(λ(f x).x) y

)
(f a) features a preredex

• Thus, the reductions of the λ-term J
(
λy.(λ(f x).x) y

)
(f a)K must mimick first

an external ρ-reduction

• Remark: a term produced by the translation may have additional reductions

Type systems and deduction in the rewriting calculus Pure Pattern Type Systems - 31

The type of a translated pattern

• A naive translation gives

`λω Jf BK : (σ → β) → β

`λω Jλ(f x).AK : ((σ → τ) → γ) → γ

where τ is the type of JAK

Type systems and deduction in the rewriting calculus Pure Pattern Type Systems - 32

The type of a translated pattern

• A naive translation gives

`λω Jf BK : (σ → β) → β

`λω Jλ(f x).AK : ((σ → τ) → γ) → γ

where τ is the type of JAK

(σ → τ) → γ = (σ → β) → β thus τ = β = γ

Type systems and deduction in the rewriting calculus Pure Pattern Type Systems - 32

The type of a translated pattern

• A naive translation gives

`λω Jf BK : (σ → β) → β

`λω Jλ(f x).AK : ((σ → τ) → γ) → γ

where τ is the type of JAK

(σ → τ) → γ = (σ → β) → β thus τ = β = γ

• The actual translation features terms depending on types

Jf BK : ∀β.(σ → β → β)

Jλ(f x).AK : ∀β.(σ → β → β) → τ

Type systems and deduction in the rewriting calculus Pure Pattern Type Systems - 32

The type of a translated variable

• Naive translation

x : Πy:ι.ι `Σ x : Πy:ι . ι

`Σ λy:ι . y : Πy:ι . ι
`Σ λy:ι . a : Πy:ι . ι

Type systems and deduction in the rewriting calculus Pure Pattern Type Systems - 33

The type of a translated variable

• Naive translation

x : Πy:ι.ι `Σ x : Πy:ι . ι

`Σ λy:ι . y : Πy:ι . ι
`Σ λy:ι . a : Πy:ι . ι

Γ `λω λy:βy.y : βy → βy

Γ `λω λy:βy.JaK : βy → ∀α.(α→ α)

Type systems and deduction in the rewriting calculus Pure Pattern Type Systems - 33

The type of a translated variable

• Naive translation

x : Πy:ι.ι `Σ x : Πy:ι . ι

`Σ λy:ι . y : Πy:ι . ι
`Σ λy:ι . a : Πy:ι . ι

Γ `λω λy:βy.y : βy → βy

Γ `λω λy:βy.JaK : βy → ∀α.(α→ α)

• Use of types depending on types

βx : ∗ → ∗, βy : ∗ `λω JxK : βy → βx βy

Type systems and deduction in the rewriting calculus Pure Pattern Type Systems - 33

Contents

1. Untyped rewriting calculus

2. Type systems for programming

I Properties and type inference
I Typed encoding of term rewriting systems

3. Pure Pattern Type Systems

I Strong normalization in ρ→ and ρP

4. Using the ρ-calculus for deduction

I P 2TS-proof terms for deduction modulo
I Generalized Natural Deduction

A linear representation of NDM proofs

• A proof in Natural Deduction Modulo: the congruence states that e is the
neutral element of a group: e ∗ x ∼= x

∀y.(y∗e′ = y) `∼= ∀y.(y∗e′ = y)
(Ax)

∀y.(y∗e′ = y) `∼= e∗e′ = e
(∀E)

∀y.(y∗e′ = y) `∼= e′ = e
(∼=) with e∗e′ ∼= e′

`∼= ∀y.(y∗e′ = y) ⇒ e′ = e
(⇒ I)

Type systems and deduction in the rewriting calculus Proof terms for deduction modulo - 35

A linear representation of NDM proofs

• A proof in Natural Deduction Modulo: the congruence states that e is the
neutral element of a group: e ∗ x ∼= x

∀y.(y∗e′ = y) `∼= ∀y.(y∗e′ = y)
(Ax)

∀y.(y∗e′ = y) `∼= e∗e′ = e
(∀E)

∀y.(y∗e′ = y) `∼= e′ = e
(∼=) with e∗e′ ∼= e′

`∼= ∀y.(y∗e′ = y) ⇒ e′ = e
(⇒ I)

• λ-calculus is sufficient to write witnesses [Dowek & Werner 03]

λα.(α e)
I the witness is short and focuses on reasoning
I but proof reconstruction can be tedious

Type systems and deduction in the rewriting calculus Proof terms for deduction modulo - 35

A more explicit representation

• Using P 2TS, conversions can be accounted for by dedicated constructs in the
style of Leibniz’s equality :

`Σ Rew φ t (λl.r) π : φ((λl.r) t)

Type systems and deduction in the rewriting calculus Proof terms for deduction modulo - 36

A more explicit representation

• Using P 2TS, conversions can be accounted for by dedicated constructs in the
style of Leibniz’s equality :

`Σ Rew φ t (λl.r) π : φ((λl.r) t)

• The new proof term for our example is

λα.
(
Rew

(
λy.(y=e)

)
(e∗e′)

(
λ(e∗x).x

)
(α e)

)

Type systems and deduction in the rewriting calculus Proof terms for deduction modulo - 36

A more explicit representation

• Using P 2TS, conversions can be accounted for by dedicated constructs in the
style of Leibniz’s equality :

`Σ Rew φ t (λl.r) π : φ((λl.r) t)

• The new proof term for our example is

λα.
(
Rew

(
λy.(y=e)

)
(e∗e′)

(
λ(e∗x).x

)
(α e)

)

• Proposition: For conversion on propositions, application of rewrite rules at
top-level is sufficient

Type systems and deduction in the rewriting calculus Proof terms for deduction modulo - 36

A Curry-Howard-de Bruijn correspondence

Theorem [Wack 05]:

X Full proof representation

Type systems and deduction in the rewriting calculus Proof terms for deduction modulo - 37

A Curry-Howard-de Bruijn correspondence

Theorem [Wack 05]:

X Full proof representation

× Incomplete proof reduction

X Every redex represents a cut
× But some cuts are obfuscated by conversion rules

(⇒E)

(∼=)

(⇒I)
p `∼= p

`∼= p⇒ p

`∼= q ⇒ p

...

`∼= q

`∼= p

? Conjecture : additional fold-unfold reduction rules allow to reduce every cut

Type systems and deduction in the rewriting calculus Proof terms for deduction modulo - 37

Main benefits

• Proof checking reduces to type checking and matching

• Construction of the conversion steps can be delegated to an efficient
rewriting-based software

• A λ-proof term can always be extracted from a ρ-proof term

• The set of used rewrite rules can also be extracted

Type systems and deduction in the rewriting calculus Proof terms for deduction modulo - 38

A simple proof in Natural Deduction...

The theory T contains at least

{
X ⊆ Y ⇔ ∀x(x ∈ X ⇒ x ∈ Y)
∀x(x ∈ ∅ ⇒ ⊥)

Type systems and deduction in the rewriting calculus A generalization of natural deduction - 39

A simple proof in Natural Deduction...

The theory T contains at least

{
X ⊆ Y ⇔ ∀x(x ∈ X ⇒ x ∈ Y)
∀x(x ∈ ∅ ⇒ ⊥)

T ` ∅ ⊆ A

Type systems and deduction in the rewriting calculus A generalization of natural deduction - 39

A simple proof in Natural Deduction...

The theory T contains at least

{
X ⊆ Y ⇔ ∀x(x ∈ X ⇒ x ∈ Y)
∀x(x ∈ ∅ ⇒ ⊥)

(⇒E)

(∀E)

(Ax)
T , x ∈ ∅ ` ∀x(x ∈ ∅ ⇒ ⊥)
T , x ∈ ∅ ` x ∈ ∅ ⇒ ⊥

(Ax)
T , x ∈ ∅ ` x ∈ ∅

(∀I)

(⇒I)

(⊥E)
T , x ∈ ∅ ` ⊥

T , x ∈ ∅ ` x ∈ A
T ` x ∈ ∅ ⇒ x ∈ A

T ` ∀x(x ∈ ∅ ⇒ x ∈ A)

(⇒E)

(Ax)
T ` . . .

T ` ∀x(x ∈ ∅ ⇒ x ∈ A) ⇒ ∅ ⊆ A T ` ∀x(x ∈ ∅ ⇒ x ∈ A)
T ` ∅ ⊆ A

Type systems and deduction in the rewriting calculus A generalization of natural deduction - 39

... shorter in deduction modulo

In NDM the context is empty and R =
{
X ⊆ Y → ∀x(x ∈ X ⇒ x ∈ Y)
x ∈ ∅ → ⊥

Type systems and deduction in the rewriting calculus A generalization of natural deduction - 40

... shorter in deduction modulo

In NDM the context is empty and R =
{
X ⊆ Y → ∀x(x ∈ X ⇒ x ∈ Y)
x ∈ ∅ → ⊥

(∀I)

(⇒I)

(⊥E)

(Ax)
x ∈ ∅ `∼= ⊥

x ∈ ∅ ∼= ⊥

x ∈ ∅ `∼= x ∈ A
`∼= x ∈ ∅ ⇒ x ∈ A

`∼= ∅ ⊆ A
∅ ⊆ A ∼= . . .

Type systems and deduction in the rewriting calculus A generalization of natural deduction - 40

... shorter in deduction modulo

In NDM the context is empty and R =
{
X ⊆ Y → ∀x(x ∈ X ⇒ x ∈ Y)
x ∈ ∅ → ⊥

(∀I)

(⇒I)

(⊥E)

(Ax)
x ∈ ∅ `∼= ⊥

x ∈ ∅ ∼= ⊥

x ∈ ∅ `∼= x ∈ A
`∼= x ∈ ∅ ⇒ x ∈ A

`∼= ∅ ⊆ A
∅ ⊆ A ∼= . . .

The proof is shorter but not very informative

Type systems and deduction in the rewriting calculus A generalization of natural deduction - 40

A generalization of Natural Deduction

We consider some new rules about predicate symbols:

(⊆I)
Γ, x ∈ X ` x ∈ Y

Γ ` X ⊆ Y
x /∈ FV(Γ) (∅E)

Γ ` x ∈ ∅
Γ ` φ

Type systems and deduction in the rewriting calculus A generalization of natural deduction - 41

A generalization of Natural Deduction

We consider some new rules about predicate symbols:

(⊆I)
Γ, x ∈ X ` x ∈ Y

Γ ` X ⊆ Y
x /∈ FV(Γ) (∅E)

Γ ` x ∈ ∅
Γ ` φ

` ∅ ⊆ A

Type systems and deduction in the rewriting calculus A generalization of natural deduction - 41

A generalization of Natural Deduction

We consider some new rules about predicate symbols:

(⊆I)
Γ, x ∈ X ` x ∈ Y

Γ ` X ⊆ Y
x /∈ FV(Γ) (∅E)

Γ ` x ∈ ∅
Γ ` φ

(⊆I)
x ∈ ∅ ` x ∈ A

` ∅ ⊆ A

Type systems and deduction in the rewriting calculus A generalization of natural deduction - 41

A generalization of Natural Deduction

We consider some new rules about predicate symbols:

(⊆I)
Γ, x ∈ X ` x ∈ Y

Γ ` X ⊆ Y
x /∈ FV(Γ) (∅E)

Γ ` x ∈ ∅
Γ ` φ

(⊆I)

(∅E)

(Ax)
x ∈ ∅ ` x ∈ ∅
x ∈ ∅ ` x ∈ A

` ∅ ⊆ A

Type systems and deduction in the rewriting calculus A generalization of natural deduction - 41

A generalization of Natural Deduction

We consider some new rules about predicate symbols:

(⊆I)
Γ, x ∈ X ` x ∈ Y

Γ ` X ⊆ Y
x /∈ FV(Γ) (∅E)

Γ ` x ∈ ∅
Γ ` φ

(⊆I)

(∅E)

(Ax)
x ∈ ∅ ` x ∈ ∅
x ∈ ∅ ` x ∈ A

` ∅ ⊆ A

The proof is even shorter than in NDM and bears some resemblance with an
“old-school” mathematic style

Type systems and deduction in the rewriting calculus A generalization of natural deduction - 41

Systematic generation of the new inference rules

For each defined predicate P (i.e. there is a rewrite rule P → φ):

• decompose φ along the connectives ∧ and ⇒ and ∀
• gather all the assumptions and side conditions to build a new rule

Type systems and deduction in the rewriting calculus A generalization of natural deduction - 42

Systematic generation of the new inference rules

For each defined predicate P (i.e. there is a rewrite rule P → φ):

• decompose φ along the connectives ∧ and ⇒ and ∀
• gather all the assumptions and side conditions to build a new rule

Example: X ⊆ Y → ∀x.(x ∈ X ⇒ x ∈ Y) gives

Type systems and deduction in the rewriting calculus A generalization of natural deduction - 42

Systematic generation of the new inference rules

For each defined predicate P (i.e. there is a rewrite rule P → φ):

• decompose φ along the connectives ∧ and ⇒ and ∀
• gather all the assumptions and side conditions to build a new rule

Example: X ⊆ Y → ∀x.(x ∈ X ⇒ x ∈ Y) gives

Γ, x ∈ X ` x ∈ Y
Γ ` x ∈ X ⇒ x ∈ Y

Γ ` ∀x.(x ∈ X ⇒ x ∈ Y)

Type systems and deduction in the rewriting calculus A generalization of natural deduction - 42

Systematic generation of the new inference rules

For each defined predicate P (i.e. there is a rewrite rule P → φ):

• decompose φ along the connectives ∧ and ⇒ and ∀
• gather all the assumptions and side conditions to build a new rule

Example: X ⊆ Y → ∀x.(x ∈ X ⇒ x ∈ Y) gives

Γ, x ∈ X ` x ∈ Y
Γ ` x ∈ X ⇒ x ∈ Y

Γ ` ∀x.(x ∈ X ⇒ x ∈ Y)

(⊆ I)
Γ, x ∈ X ` x ∈ Y

Γ ` X ⊆ Y

Type systems and deduction in the rewriting calculus A generalization of natural deduction - 42

Systematic generation of the new inference rules

For each defined predicate P (i.e. there is a rewrite rule P → φ):

• decompose φ along the connectives ∧ and ⇒ and ∀
• gather all the assumptions and side conditions to build a new rule

Example: X ⊆ Y → ∀x.(x ∈ X ⇒ x ∈ Y) gives

Γ, x ∈ X ` x ∈ Y
Γ ` x ∈ X ⇒ x ∈ Y

Γ ` ∀x.(x ∈ X ⇒ x ∈ Y)

Γ ` ∀x.(x ∈ X ⇒ x ∈ Y)
Γ ` t ∈ X ⇒ t ∈ Y Γ ` t ∈ X

Γ ` t ∈ Y

(⊆ I)
Γ, x ∈ X ` x ∈ Y

Γ ` X ⊆ Y

Type systems and deduction in the rewriting calculus A generalization of natural deduction - 42

Systematic generation of the new inference rules

For each defined predicate P (i.e. there is a rewrite rule P → φ):

• decompose φ along the connectives ∧ and ⇒ and ∀
• gather all the assumptions and side conditions to build a new rule

Example: X ⊆ Y → ∀x.(x ∈ X ⇒ x ∈ Y) gives

Γ, x ∈ X ` x ∈ Y
Γ ` x ∈ X ⇒ x ∈ Y

Γ ` ∀x.(x ∈ X ⇒ x ∈ Y)

Γ ` ∀x.(x ∈ X ⇒ x ∈ Y)
Γ ` t ∈ X ⇒ t ∈ Y Γ ` t ∈ X

Γ ` t ∈ Y

(⊆ I)
Γ, x ∈ X ` x ∈ Y

Γ ` X ⊆ Y
(⊆ E)

Γ ` X ⊆ Y Γ ` t ∈ X
Γ ` t ∈ Y

Type systems and deduction in the rewriting calculus A generalization of natural deduction - 42

Conservativity w.r.t first-order logic

• Theorem: Every defined predicate is provably equivalent to its definition

• Thus, a GND system is correct and complete if and only if the corresponding
NDM system is correct and complete

Type systems and deduction in the rewriting calculus A generalization of natural deduction - 43

Cut elimination

A new notion of cut appears for each defined predicate:

(⊆E)

...
D2

Γ ` t ∈ X
(⊆I)

...
D1

Γ, x ∈ X ` x ∈ Y
Γ ` X ⊆ Y

(x /∈ FV(Γ))

Γ ` t ∈ Y

Type systems and deduction in the rewriting calculus A generalization of natural deduction - 44

Cut elimination

A new notion of cut appears for each defined predicate:

(⊆E)

...
D2

Γ ` t ∈ X
(⊆I)

...
D1

Γ, x ∈ X ` x ∈ Y
Γ ` X ⊆ Y

(x /∈ FV(Γ))

Γ ` t ∈ Y

reduces to
...
D2

D2

...
D1

Γ ` t ∈ Y

Type systems and deduction in the rewriting calculus A generalization of natural deduction - 44

Cut elimination

A new notion of cut appears for each defined predicate:

(⊆E)

...
D2

Γ ` t ∈ X
(⊆I)

...
D1

Γ, x ∈ X ` x ∈ Y
Γ ` X ⊆ Y

(x /∈ FV(Γ))

Γ ` t ∈ Y

reduces to
...
D2

D2

...
D1

Γ ` t ∈ Y

Theorem: Cut elimination holds whenever it holds in the corresponding NDM
system

Type systems and deduction in the rewriting calculus A generalization of natural deduction - 44

Proof terms

Definition of proof terms for Generalized Natural Deduction

• Add ad-hoc constructions in the language

• Use the λ-abstraction and store multiple assumptions and witnesses in patterns

Type systems and deduction in the rewriting calculus A generalization of natural deduction - 45

Proof terms

Definition of proof terms for Generalized Natural Deduction

• Add ad-hoc constructions in the language

• Use the λ-abstraction and store multiple assumptions and witnesses in patterns

(⊆I)
Γ, α : x ∈ X ` π : x ∈ Y
Γ ` λ(⊆ x α).π : X ⊆ Y

(⊆E)
Γ ` π : X ⊆ Y Γ ` π′ : t ∈ X

Γ ` π (⊆ t π′) : t ∈ Y

Type systems and deduction in the rewriting calculus A generalization of natural deduction - 45

Proof terms

Definition of proof terms for Generalized Natural Deduction

• Add ad-hoc constructions in the language

• Use the λ-abstraction and store multiple assumptions and witnesses in patterns

(⊆I)
Γ, α : x ∈ X ` π : x ∈ Y
Γ ` λ(⊆ x α).π : X ⊆ Y

(⊆E)
Γ ` π : X ⊆ Y Γ ` π′ : t ∈ X

Γ ` π (⊆ t π′) : t ∈ Y

The reduction
(
λ(⊆ x α).π

)
(⊆ t π′) 7→ π[x := t, α := π′] models cut elimination

Type systems and deduction in the rewriting calculus A generalization of natural deduction - 45

Proof terms

Definition of proof terms for Generalized Natural Deduction

• Add ad-hoc constructions in the language

• Use the λ-abstraction and store multiple assumptions and witnesses in patterns

(⊆I)
Γ, α : x ∈ X ` π : x ∈ Y
Γ ` λ(⊆ x α).π : X ⊆ Y

(⊆E)
Γ ` π : X ⊆ Y Γ ` π′ : t ∈ X

Γ ` π (⊆ t π′) : t ∈ Y

The reduction
(
λ(⊆ x α).π

)
(⊆ t π′) 7→ π[x := t, α := π′] models cut elimination

I A collection of new type systems for the ρ-calculus, to be studied

Type systems and deduction in the rewriting calculus A generalization of natural deduction - 45

Contributions

• Types for programming

I Properties and applications of these systems
I Type inference

• P 2TS

I Detailed study of the usual properties
I Strong normalization in ρ→ and ρP

• Rewriting calculus and deduction

I Rich proof terms for deduction modulo
I A new way of embedding domain-specific information in the logic

Type systems and deduction in the rewriting calculus Conclusions - 46

Perspectives

• Types

I Strong normalization in the remaining of the ρ-cube
I Conjunction types for structures
I Generalized Natural Deduction seen as a collection of type systems

Type systems and deduction in the rewriting calculus Conclusions - 47

Perspectives

• Types

I Strong normalization in the remaining of the ρ-cube
I Conjunction types for structures
I Generalized Natural Deduction seen as a collection of type systems

• Generalized Natural Deduction

I Further decomposition of the propositions in the generation of new rules
I Tests on broader classes of rewrite rules

Type systems and deduction in the rewriting calculus Conclusions - 47

Perspectives

• Types

I Strong normalization in the remaining of the ρ-cube
I Conjunction types for structures
I Generalized Natural Deduction seen as a collection of type systems

• Generalized Natural Deduction

I Further decomposition of the propositions in the generation of new rules
I Tests on broader classes of rewrite rules

• Implementation of proof assistants

I based on Natural Deduction Modulo, using ρ-proof terms
I based on Generalized Natural Deduction

Type systems and deduction in the rewriting calculus Conclusions - 47

Thanks for your attention

Deduction modulo

Let R be a rewriting system which rewrites:

• terms to terms (e.g. 0 + x → x)

• atomic propositions to propositions (e.g. x ∗ y = 0 → x = 0 ∨ y = 0)

Type systems and deduction in the rewriting calculus Additional material - 49

Deduction modulo

Let R be a rewriting system which rewrites:

• terms to terms (e.g. 0 + x → x)

• atomic propositions to propositions (e.g. x ∗ y = 0 → x = 0 ∨ y = 0)

Let ∼= be the congruence closure of →R

Type systems and deduction in the rewriting calculus Additional material - 49

Deduction modulo

Let R be a rewriting system which rewrites:

• terms to terms (e.g. 0 + x → x)

• atomic propositions to propositions (e.g. x ∗ y = 0 → x = 0 ∨ y = 0)

Let ∼= be the congruence closure of →R

Every deduction rule is considered modulo ∼= :

(⇒E)
Γ `∼= ϑ Γ `∼= φ

Γ `∼= ψ
ϑ ∼= φ⇒ ψ

Type systems and deduction in the rewriting calculus Additional material - 49

Deduction modulo

Let R be a rewriting system which rewrites:

• terms to terms (e.g. 0 + x → x)

• atomic propositions to propositions (e.g. x ∗ y = 0 → x = 0 ∨ y = 0)

Let ∼= be the congruence closure of →R

Every deduction rule is considered modulo ∼= :

(⇒E)
Γ `∼= ϑ Γ `∼= φ

Γ `∼= ψ
ϑ ∼= φ⇒ ψ

A large part of the theory can (or should) be represented in R

Type systems and deduction in the rewriting calculus Additional material - 49

(Non-)Confluence of the ρ-calculus

• Active variables are troublesome

(λx y.y) ((λa.a b) a)

ρout
xxpppppppppppppppppppp

ρin))SSSSSSSSSSSSSSSSSSS

a (λx y.y) (a b)

ρ
��

b

• This kind of pattern (as well as abstractions) should be treated with
higher-order matching

Type systems and deduction in the rewriting calculus Additional material - 50

(Non-)Confluence of the ρ-calculus – part II

Non-linear patterns do not mix well with non-termination [Klop 80]

I C such that C 7→→ρδ λy.(λ(d xx).e) (d y (C y))

I A such that A 7→→ρδ C A

A

Type systems and deduction in the rewriting calculus Additional material - 51

(Non-)Confluence of the ρ-calculus – part II

Non-linear patterns do not mix well with non-termination [Klop 80]

I C such that C 7→→ρδ λy.(λ(d xx).e) (d y (C y))

I A such that A 7→→ρδ C A

A // // C A

Type systems and deduction in the rewriting calculus Additional material - 51

(Non-)Confluence of the ρ-calculus – part II

Non-linear patterns do not mix well with non-termination [Klop 80]

I C such that C 7→→ρδ λy.(λ(d xx).e) (d y (C y))

I A such that A 7→→ρδ C A

A // // C A // // (λ(d z z).e) (dA (C A))

Type systems and deduction in the rewriting calculus Additional material - 51

(Non-)Confluence of the ρ-calculus – part II

Non-linear patterns do not mix well with non-termination [Klop 80]

I C such that C 7→→ρδ λy.(λ(d xx).e) (d y (C y))

I A such that A 7→→ρδ C A

A // // C A // // (λ(d z z).e) (dA (C A))
��
��

(λ(d z z).e) (d (C A) (C A))

Type systems and deduction in the rewriting calculus Additional material - 51

(Non-)Confluence of the ρ-calculus – part II

Non-linear patterns do not mix well with non-termination [Klop 80]

I C such that C 7→→ρδ λy.(λ(d xx).e) (d y (C y))

I A such that A 7→→ρδ C A

A // // C A // // (λ(d z z).e) (dA (C A))
��
��

(λ(d z z).e) (d (C A) (C A))

��

e

Type systems and deduction in the rewriting calculus Additional material - 51

(Non-)Confluence of the ρ-calculus – part II

Non-linear patterns do not mix well with non-termination [Klop 80]

I C such that C 7→→ρδ λy.(λ(d xx).e) (d y (C y))

I A such that A 7→→ρδ C A

A // // C A // // (λ(d z z).e) (dA (C A))
��
��

C e

��
��

(λ(d z z).e) (d (C A) (C A))

��

e

Type systems and deduction in the rewriting calculus Additional material - 51

Expressiveness

1. Embedding the λ into the ρ. ϕ : λ⇒ ρ

(a) ϕ(x) = x
(b) ϕ(λx.M) = λx.ϕ(M)
(c) ϕ(M N) = ϕ(M) ϕ(N)

Theorem: If M 7→β N , then ϕ(M) 7→ρϕ(N)

Type systems and deduction in the rewriting calculus Additional material - 52

Expressiveness

1. Embedding the λ into the ρ. ϕ : λ⇒ ρ

(a) ϕ(x) = x
(b) ϕ(λx.M) = λx.ϕ(M)
(c) ϕ(M N) = ϕ(M) ϕ(N)

Theorem: If M 7→β N , then ϕ(M) 7→ρϕ(N)

2. Encoding Rewriting

(a) A rewrite system R can be represented as a structure containing all the rules
(b) Reduction paths can be encoded

If t1 7→→R t2, then ∃ A such that A•t1 7→→ρδ t2

Type systems and deduction in the rewriting calculus Additional material - 52

Normalization failure

f : (α→ α) → α and Γ = x : α→ α, ω 4
= λf x.x (f x)

Γ `Σ f : (α→ α) → α Γ `Σ x : α→ α

Γ `Σ f x : α

Γ `Σ x : α→ α

...

Γ `Σ f x : α

Γ `Σ x (f x) : α

`Σ ω ≡ λf x.x (f x) : α→ α

`Σ ω (f ω) : α

Type systems and deduction in the rewriting calculus Additional material - 53

The relation ⊆ and first

f P 6v λQ.B

f P 6v g B if f 6= g ∨ ∃i, Pi 6v Bi
P 6v (λQ.A)B if Q 6v B ∨ P 6v A

first(A1, A2, . . . , An)
4
= X → ((stk → An X o I) (. . . (stk → A2 X o I) (A1X)))

first(A1, A2, . . . , An) B 7→→ρσδ first(A2, . . . , An) B if A1 B 7→→ρσδ stk

Type systems and deduction in the rewriting calculus Additional material - 54

Encoding of TRSs

JRK = λrec z . first


λl1 . z (rec z) r1,
· · · ,
λa1 x . z (rec z) a1(z (rec z) x),
· · ·


o λRec z . first

 λl1 . z (rec z) r1,
· · · ,
λy.y



Type systems and deduction in the rewriting calculus Additional material - 55

Positiveness

In CIC, the constructor F : (x1 : A1) . . . (xn : An).R is accepted only if R is
positive in each Ai:

1. R is positive in T if R does not occur in T

2. R is positive in (R~t) if R does not occur in ~t

3. R is positive in (x : A)C if R does not occur in A and R is positive in C

Type systems and deduction in the rewriting calculus Additional material - 56

Encoding the P 2TS into λ-calculus

JxK 4
= x

JfK 4
= λx1 . . . λxαf . (λz.(z x1 . . . xαf))

Jf B1 . . . BαfK
4
= λz.(z B1 . . . Bαf)

Type systems and deduction in the rewriting calculus Additional material - 57

Encoding the P 2TS into λ-calculus

JxK 4
= x

JfK 4
= λx1 . . . λxαf . (λz.(z x1 . . . xαf))

Jf B1 . . . BαfK
4
= λz.(z B1 . . . Bαf)

Jλ(f P1 . . . Pp).AK 4
= λu.(u x⊥ . . . x⊥JλP1 . . . λPp.λx

′
p+1 . . . λx

′
αf
.AK)

Type systems and deduction in the rewriting calculus Additional material - 57

Encoding the P 2TS into λ-calculus

JxK 4
= x

JfK 4
= λx1 . . . λxαf . (λz.(z x1 . . . xαf))

Jf B1 . . . BαfK
4
= λz.(z B1 . . . Bαf)

Jλ(f P1 . . . Pp).AK 4
= λu.(u x⊥ . . . x⊥JλP1 . . . λPp.λx

′
p+1 . . . λx

′
αf
.AK)

Jλx.AK 4
= λx.JAK

JABK 4
= JAKJBK

Type systems and deduction in the rewriting calculus Additional material - 57

Encoding the P 2TS into λ-calculus

JxK 4
= x

JfK 4
= λx1 . . . λxαf . (λz.(z x1 . . . xαf))

Jf B1 . . . BαfK
4
= λz.(z B1 . . . Bαf)

Jλ(f P1 . . . Pp).AK 4
= λu.(u x⊥ . . . x⊥JλP1 . . . λPp.λx

′
p+1 . . . λx

′
αf
.AK)

Jλx.AK 4
= λx.JAK

JABK 4
= JAKJBK

JA o BK 4
= λx1 . . . λxα.

((
λz.(JAKx1 . . . xα)

)
(JBKx1 . . . xα)

)

Type systems and deduction in the rewriting calculus Additional material - 57

An example of translated term

Jλy.(λ(f x).x) yK︷ ︸︸ ︷
(λy.

(Jλ(f x).xK︷ ︸︸ ︷
(λu.(u(λx.x))) y

)
)
(JfK︷ ︸︸ ︷

(λx1.λz.(zx1))
JaK︷ ︸︸ ︷

(λv.v)
)

Type systems and deduction in the rewriting calculus Additional material - 58

An example of translated term

Jλy.(λ(f x).x) yK︷ ︸︸ ︷
(λy.

(Jλ(f x).xK︷ ︸︸ ︷
(λu.(u(λx.x))) y

)
)
(JfK︷ ︸︸ ︷

(λx1.λz.(zx1))
JaK︷ ︸︸ ︷

(λv.v)
)

7→β

(
λy.(y(λx.x))

)(
(λx1.λz.(zx1))(λv.v)

)

Type systems and deduction in the rewriting calculus Additional material - 58

An example of translated term

Jλy.(λ(f x).x) yK︷ ︸︸ ︷
(λy.

(Jλ(f x).xK︷ ︸︸ ︷
(λu.(u(λx.x))) y

)
)
(JfK︷ ︸︸ ︷

(λx1.λz.(zx1))
JaK︷ ︸︸ ︷

(λv.v)
)

7→β

(
λy.(y(λx.x))

)(
(λx1.λz.(zx1))(λv.v)

)
7→β

(
λy.(y(λx.x))

)(
λz.(z(λv.v))

)

Type systems and deduction in the rewriting calculus Additional material - 58

An example of translated term

Jλy.(λ(f x).x) yK︷ ︸︸ ︷
(λy.

(Jλ(f x).xK︷ ︸︸ ︷
(λu.(u(λx.x))) y

)
)
(JfK︷ ︸︸ ︷

(λx1.λz.(zx1))
JaK︷ ︸︸ ︷

(λv.v)
)

7→β

(
λy.(y(λx.x))

)(
(λx1.λz.(zx1))(λv.v)

)
7→β

(
λy.(y(λx.x))

)(
λz.(z(λv.v))

)
7→β

(
λz.(z(λv.v))

)
(λx.x)

Type systems and deduction in the rewriting calculus Additional material - 58

An example of translated term

Jλy.(λ(f x).x) yK︷ ︸︸ ︷
(λy.

(Jλ(f x).xK︷ ︸︸ ︷
(λu.(u(λx.x))) y

)
)
(JfK︷ ︸︸ ︷

(λx1.λz.(zx1))
JaK︷ ︸︸ ︷

(λv.v)
)

7→β

(
λy.(y(λx.x))

)(
(λx1.λz.(zx1))(λv.v)

)
7→β

(
λy.(y(λx.x))

)(
λz.(z(λv.v))

)
7→β

(
λz.(z(λv.v))

)
(λx.x)

7→β (λx.x)(λv.v)

Type systems and deduction in the rewriting calculus Additional material - 58

An example of translated term

Jλy.(λ(f x).x) yK︷ ︸︸ ︷
(λy.

(Jλ(f x).xK︷ ︸︸ ︷
(λu.(u(λx.x))) y

)
)
(JfK︷ ︸︸ ︷

(λx1.λz.(zx1))
JaK︷ ︸︸ ︷

(λv.v)
)

7→β

(
λy.(y(λx.x))

)(
(λx1.λz.(zx1))(λv.v)

)
7→β

(
λy.(y(λx.x))

)(
λz.(z(λv.v))

)
7→β

(
λz.(z(λv.v))

)
(λx.x)

7→β (λx.x)(λv.v)

7→β (λv.v)

= JaK

Type systems and deduction in the rewriting calculus Additional material - 58

The type of a translated constant

Supposing `Σ f : Πx:ι.ι

`λω JfK = λx1.λz.(z x1) : σ → (σ → β) → β

`λω Jf BK : (σ → β) → β

Type systems and deduction in the rewriting calculus Additional material - 59

Enhanced translation

∧
σ1, . . . , σα

4
= Π(β : ∗).

(
(σ1 → . . . σα → β) → β

)
JfK 4

= λx1.λ(β : ∗) (λz.(z x1)) : σ →
∧
σ

Jλf x.AK 4
= λu.

(
u τ λx.JAK

)
: (

∧
σ) → τ

where JΓK `λω JAK : τ

` x⊥ : ⊥ 4
= Π(β : ∗).β

Type systems and deduction in the rewriting calculus Additional material - 60

Use of types depending on types

`Σ x : Πy:ι . ι

βx : ∗ → ∗, βy:∗ `λω JxK : βy → βxβy

λy.y βx := λβ : ∗.β

λy.a βx := λβ : ∗.
∧
∅

f βx := λβ : ∗.
∧
β

Type systems and deduction in the rewriting calculus Additional material - 61

Disjunctive connectors

When dealing with ∨ and ∃, some part of the definition can not be decomposed
properly

Type systems and deduction in the rewriting calculus Additional material - 62

Disjunctive connectors

When dealing with ∨ and ∃, some part of the definition can not be decomposed
properly

With P → (Q ∧R) ∨ S the new rules are:

(P Il)
Γ ` Q Γ ` R

Γ ` P
(P Ir)

Γ ` S
Γ ` P

(P E)
Γ ` P Γ, Q ∧ R ` U Γ, S ` U

Γ ` U

Type systems and deduction in the rewriting calculus Additional material - 62

Disjunctive connectors

When dealing with ∨ and ∃, some part of the definition can not be decomposed
properly

With P → (Q ∧R) ∨ S the new rules are:

(P Il)
Γ ` Q Γ ` R

Γ ` P
(P Ir)

Γ ` S
Γ ` P

(P E)
Γ ` P Γ, Q ∧ R ` U Γ, S ` U

Γ ` U

The discrepancy between (P Il) and the second assumption of (P E) may ruin cut
elimination, and suggests further decomposition:

(P E)
Γ ` P Γ, Q,R ` U Γ, S ` U

Γ ` U

Type systems and deduction in the rewriting calculus Additional material - 62

Conservativity

(P I)

(KE)

(Ax) ...

def ` H1 . . .

...

def ` Hn

def ` P
(K I)

(P E)
P,Γ ` P . . . P,Γ ` γ

...

P ` def

Type systems and deduction in the rewriting calculus Additional material - 63

About unsound rules

It is well-known that the rewrite rule R → R⇒ ⊥ gives an unsound deduction
modulo
Its associated introduction and elimination rules are

(RI)
Γ, R ` ⊥
Γ ` R

(RE)
Γ ` R Γ ` R

Γ ` ⊥

Type systems and deduction in the rewriting calculus Additional material - 64

About unsound rules

It is well-known that the rewrite rule R → R⇒ ⊥ gives an unsound deduction
modulo
Its associated introduction and elimination rules are

(RI)
Γ, R ` ⊥
Γ ` R

(RE)
Γ ` R Γ ` R

Γ ` ⊥

and the (shortest) proof of ` ⊥ has the proof term(
λR(α).αR(α)

)
R

(
λR(α).αR(α)

)

Type systems and deduction in the rewriting calculus Additional material - 64

Curiosities

• Proof terms with patterns for the usual connectives

(∧I)
Γ ` π : φ Γ ` π′ : ψ

Γ ` ∧(π, π′) : φ ∧ ψ
(∧El)

Γ ` π : φ ∧ ψ
Γ ` (λ ∧ (x, y).x)π : φ

Type systems and deduction in the rewriting calculus Additional material - 65

Curiosities

• Proof terms with patterns for the usual connectives

(∧I)
Γ ` π : φ Γ ` π′ : ψ

Γ ` ∧(π, π′) : φ ∧ ψ
(∧El)

Γ ` π : φ ∧ ψ
Γ ` (λ ∧ (x, y).x)π : φ

• The NDM formalization of higher-order logic gives the rules for higher-order
quantifiers

Predicates defined by induction give some natural rules

(N E)
Γ ` n ∈ N Γ ` 0 ∈ P Γ,m ∈ P ` S(m) ∈ P

Γ ` n ∈ P

Type systems and deduction in the rewriting calculus Additional material - 65

