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Introduction

I.1 Motivation

Cryptographic protocols play a major role in any application where data integrity,
confidentiality, authenticity and other security related properties are crucial. Such ap-
plications include Smart-Cards, e-business and internet-based voting. In these cases,
cryptographic protocols are used respectively to exchange confidential data such as pin
numbers and passwords, to authenticate users or to guarantee anonymity of participants.

A cryptographic protocol can be seen as a set of rules defining the messages exchanged
between a fixed set of participants, called principals, to implement a functionality such
as secret message exchange or authentication.

Cryptography is not sufficient for implementing secure message exchange. Indeed, even
under the idealized assumption of perfect cryptography, logical flaws in the protocol
design may lead to incorrect behavior with undesired consequences. Maybe the most
prominent example showing that cryptographic protocols are notoriously difficult to
design and test is the Needham-Schroeder protocol for authentication. It was intro-
duced in 1978 [NS78]. An attack on this protocol was found by G. Lowe using the
CSP model-checker FDR in 1995 [Low95]; and this led to a corrected version of the
protocol [Low96]. Consequently there has been a growing interest in developing and
applying formal methods for validating cryptographic protocols [Mea00, CS02].

Most of this work adopts the so-called Dolev and Yao model. This model assumes
perfect cryptography and a nondeterministic intruder that has total control of the com-
munication network and the capacity to forge new messages. Also the intruder has an
infinite memory and no bounds are imposed on the size of his computations. This means
that the intruder may intercept and remember all messages (sent during the execution
of the protocol), forge new messages from received ones and send forged/fake messages.
The perfect cryptography means that algebraic properties of encryption functions are
not taken into account and therefore, an encrypted message may be decrypted by the
intruder only if he knows the appropriate inverse key.

1



2 INTRODUCTION

I.2 Cryptographic Protocols

Cryptographic protocols are sequences of messages that use cryptography to allow two
or more entities to authenticate each other and agree on new shared secrets.

I.2.1 Basic elements of cryptography

Let us introduce some notions of cryptography that are fundamental to understand
cryptographic protocols. For a complete survey of cryptography refer e.g. to [MvOV96,
Sch94, BG01].

Encryption algorithms

An encryption algorithm transforms a message, called plaintext, into a message that is
unintelligible, called ciphertext, using an encryption key. Conventionally, the encryption
of a plaintext M with a key K is a ciphertext C denoted as follows:

C = {M}K or C = encr(M, K)

A decryption algorithm transforms a ciphertext back into original plaintext using the
adequate decryption key. Conventionally, the decryption key corresponding to an en-
cryption key K is denoted K−1.

decr(encr(M, K),K−1) = M

There are two classes of encryption algorithms: symmetric key algorithms and asym-
metric key algorithms also called public key algorithms.

A symmetric key algorithm is an algorithm where the same key is used for both encryp-
tion and decryption.

K = K−1

The symmetric algorithm model is depicted in figure 1.

Key Key

ciphertext plaintext
Encryption Decryption

plaintext

Figure 1: Encryption and decryption with symmetric key

The symmetric algorithms are relatively fast but, in order to exchange a message both
the sender and the recipient, must share the same secret key. Hence, they have to find
a method to agree upon a shared key before exchanging any messages.
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An asymmetric key algorithm is an algorithm where the key used for encryption is
different from the key used for decryption (see figure 2).

K 6= K−1

Furthermore, it is computationally infeasible to deduce the decryption key from the
encryption key and vice versa. Public key cryptography does not require a shared
secret key.

ciphertext plaintext
Encryption Decryption

KeyPublic KeyPrivate

plaintext

Figure 2: Encryption and decryption with asymmetric key

In this case a participant P has a key pair (PK(P ), SK(P )). PK(P ) is called public
key and everybody may know this key. SK(P ) is called private key and only P knows
this key. Hence, any participant may encrypt a message M using the public key PK(P )
and only P can decrypt the message using the private key SK(P ).

The fundamental disadvantage of public key systems is that they are relatively slow.
The most popular public-key encryption methods are several orders of magnitude slower
than the best known symmetric-key schemes. Therefore they are normally used for
encrypting relatively small amounts of data, for example a symmetric key that will be
later used for transferring larger amounts of data.

Digital signature

Most of the algorithms for digital signatures rely on public key cryptography. The
private key is used to sign a message and the public key is used to verify the signature.

sign text plaintext
Encryption Decryption

Key KeyPublicPrivate

plaintext

Figure 3: Digital signature model

Example I.1

Consider Alice and Bob. Bob wants to send a message to Alice and wants to be able to
prove it came from him (but doesn’t care whether anybody else reads it). In this case,
Bob sends a plaintext copy of the message to Alice, along with a copy of the message
encrypted with his private key. Alice can then check whether the message really came
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from Bob by decrypting the encrypted message with Bob’s public key and comparing it
with the plaintext version. If they match, the message was really from Bob, because the
private key was needed to create the signature and no one but Bob has it. The ciphertext
is Bob’s digital signature for the message because anyone can use Bob’s public key to
verify that Bob created it.

I.2.2 Cryptographic protocol description

The participants of a cryptographic protocol are called principals and are usually de-
noted by A(Alice) and B(Bob). In order to ensure confidentiality properties the prin-
cipals use cryptographic algorithms to encrypt messages. Furthermore, they use time-
stamps and nonces for authentication and freshness purposes:

• A timestamp is a digital data created with a purpose to prove temporal relationship
between different messages.

• A nonce is a “number used once”. It is often a random number issued to ensure
that messages from old communications cannot be reused in other communica-
tions.

Cryptographic protocols have typically been described using the Message Sequence
Charts (MSC) notation [IT94]. For example the following is a standard notation descrip-
tion of the most popular cryptographic protocol, the Needham-Schroeder public-key
protocol:

A → B : {A,N1}pbk(B)

B → A : {N1, N2}pbk(A)

A → B : {N2}pbk(B)

This describes a protocol run, the sequence of messages exchanged between principals
during an ideal session execution of the protocol:

• first, the initiator A sends to B its identity and a nonce N1, both encrypted with
B’s public key pbk(B). The responder B receives the message, decrypts it in order
to obtain the nonce N1 and the identity A of the sender.

• second, B sends to A the nonce N1 along with a new nonce, created by him, N2,
both encrypted with A’s public key pbk(A). A receives this message, it concludes
that it is talking to B (since only B should be able to decrypt A’s initial message
containing nonce N1).

• third, A sends to B the nonce N2 encrypted with B’s public key, which allows B
to authenticate A in the same manner.
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This protocol is designed to ensure principal authentication: at the end of the protocol,
both participants A and B should be convinced about the identity of their respective
correspondent.

We remark that each step of the protocol consist in a sending action and a receiving
action. Therefore, a session may be described also by a sequence of such communication
actions.

I.2.3 Properties of cryptographic protocols

Secrecy

A secrecy goal states that a designated message should not be public. A secret is public
when it is deducible from the set of messages intercepted by the intruder. For instance,
in the Needham-Schroeder public-key protocol presented above a secret goal is N2, the
nonce sent by the participant B. If the intruder may obtain the nonce N2 then he can
encrypt it with the public key of B and send it to B. Hence, B will be convinced that
he is talking with A but in fact he is talking with the intruder.

A different and stronger definition of secrecy is used in the spi-calculus model [AG99].
This property is also called opacity [Boi03, Maz04]. In this setting, secrecy properties
are expressed as properties on execution traces of a protocol. It should not be possible
for the intruder to make any difference between a trace execution where a secret s
appears and one where instead of s another value s′ appears.

In other words, it should not be possible for the intruder to obtain any information
about the secret. We remark that this definition is stronger than the first, because it
may be violated even if the intruder cannot obtain the secret message. In this thesis we
will consider only the first definition of secrecy property.

Authentication

Despite the fact that agent authentication is the main, claimed goal of many crypto-
graphic protocols, there exists significant potential for confusion about the interpre-
tation of this term [BAN90, WL92, Low97b, Sch97, RSG+01]. A taxonomy due to
Lowe [Low97b] may elucidate the matter identifying four levels of authentication.

1. Aliveness of A signifies that A has been running the protocol.

2. Weak agreement of B with A signifies that aliveness of A and A has been
running the protocol with B.

3. Non-injective agreement of B with A on a set of messages M signifies weak
agreement of B with A and that the two agents agreed on the set M of messages.

4. Injective agreement of B with A on M signifies non-injective agreement of B
with A on M and that each run of B corresponds to a unique run of A.



6 INTRODUCTION

In this thesis we deal only with secrecy and authentication properties, nevertheless we
present several other properties.

Non-repudiation

Non-repudiation ensures that the author of a message cannot later claim not to be the
author. There is a proof that the sender sent the message. This is an indispensable
property for the electronic commerce protocols, the seller needing to prove to the bank
that the client has really paid. This is often realized by a digital signature.

Fairness

Fairness ensures that one of the parties cannot end the protocol part-way through and
gain some unfair advantages over the other party. For example, a contract signing
protocol where either each agent receives the signed contract, or neither receives any .

Anonymity

Anonymity ensures that the identity of an agent is protected with respect to the message
that he sent. For example, in a voting protocol the vote must not be linked back to the
voter who cast it. In this case, the messages themselves need not be secret, only their
association with a particular agent.

I.3 Cryptographic Protocol Verification

The difficulty of cryptographic protocol verification is due to the unbounded nature of
several parameters of the system to verify. There is no bound on:

1. the number of sessions instances that can be created,

2. the number of principals

3. the number of nonce that can be created,

4. the size of the messages that occur during execution of the protocol.

Moreover, the intruder can insert at each step of the protocol, any message that it
produces from its knowledge (in the model Dolev-Yao [DY83], one supposes that the
intruder has a total control of the network). Hence, the number of messages which the
intruder may send at each step is infinite.

In the last few years several decidability and undecidability results about cryptographic
protocols verification have been published. The most important results are given below:
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• Testing the security for cryptographic protocols is undecidable in the general
case [EG83], even when a bound is put on the height of messages [DLMS99]
and even without pairing of messages [AC02]. The reachability remains un-
decidable also in the case of bounded nonce creation but unbounded message
size [ALV02, CCM01, Cor03].

• In the case of unbounded number of sessions Dolev, Even and Karp [DEK82] have
defined the class of ping-pong protocols and showed its decidability. Later Comon,
Cortier and Mitchell [CCM01] extended this class by allowing pairing and binary
encryption while the use of nonces still cannot be expressed in their model. The
restrictions put on these protocols are, however, too strong and almost none of
the known protocols falls in this class.

• In the case of bound number of sessions the results are more optimistic. In [AL00]
is proved that reachability is decidable for bounded number of sessions and with-
out restriction on nonce creation or size of messages. Moreover, reachability is
shown NP-complete [RT01] for a model which deals in addition with asymmetric
encryption and composed keys. Similar results regarding the decidability of the
reachability problem for bounded number of sessions have been established also
in [Bor01, MS01].

Nowadays, several verification methods have been applied to the the verification of
cryptographic protocols. Without pretending to cover all of them, we enumerate several
of them.

I.3.1 Model checking methods

Model-checking methods and tools have been the first to be applied to the analysis
of cryptographic protocols. The model-checking usually works on finite-state systems,
hence for cryptographic protocols it requires a small and fixed number of sessions to be
considered as well as a bounded size of messages exchanged. Many authors have used
this approach, either they modeled the cryptographic protocols in order to use general
model checkers [KD97, Low96, LR97, MMS97] or they developed special purpose model
checkers [KMM94, Mea96, CJM97, Son99].

By using model-checking, many flaws of cryptographic protocols have been effectively
discovered. However, if a model checker fails to find an attack it means that there is no
attack only in the particular configuration analyzed. Nothing can be said about all the
possible configurations on that protocol – they could be all correct or an attack may
exist on a larger configuration.

There are cases when model checking can be proved complete. For example, Lowe has
defined in [Low98] a class of cryptographic protocols for which one honest agent per role
and one session, is sufficient to demonstrate attacks. In this class, the protocols must
satisfy certain of the “prudent engineering practice” principles enumerated in [AN96]
and other assumptions.
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Finally, model-checking methods have been combined with theorem proving [KMM94,
Mea96] in order to obtain a complete analysis for infinite systems.

I.3.2 Deductive methods

Methods based on induction and theorem proving have been developed in [Pau97, Bol98,
CMR01]. These methods are very general i.e., they can handle unbounded protocols and
allows to obtain correctness proofs. But, unlike model-checking, they are not completely
automatic and moreover, when the prover fails, it is difficult to obtain counter-examples,
and possible attacks on the protocol.

For example, Paulson [Pau97] uses the theorem prover Isabelle [Pau94]. His method
requires user interaction, however, a library of theorems and proof techniques is provided
to help and guide the user. As an exception, the verification method presented in
[CMR01] is fully automatic. Here, the authors proposed a general proof strategy for
verifying cryptographic protocols. The strategy is implemented on top of the theorem
prover PVS [ORS92]. In practice, it allows to handle many known protocols. But, the
termination of this proof strategy is, however, not guaranteed.

I.3.3 Logic programming based methods

These methods are based on modeling protocols in Horn Logic, e.g. Prolog programs,
as in [Wei99, Bla01, AB02] and developing suitable proof strategies. These methods are
automatic, they can handle unbounded protocols and prove correctness, however, the
termination of the analysis is, in general, not guaranteed.

For example, the method presented in [Wei99] is based on saturation of sets of Horn
clauses. The convergence of the saturation process depends on the Horn clauses used
to encode the protocol. Decidability and undecidability results have been obtained for
certain restricted classes of Horn clauses.

In [Bla01] an abstract representation of cryptographic protocols as Prolog programs
is defined. The abstraction allows to prove security properties without limiting the
number of runs of protocols. Nevertheless, abstraction may also lead to false attacks.

I.3.4 Static analysis based methods

Type systems and type-checking have been advocated as a general method for veri-
fying cryptographic protocols e.g, by [Aba97, GJ01, AB01]). This approach relies on
specific process algebra to model the protocol and the intruder behavior, as well as to
express properties. Typical examples are the spi-calculus [Aba97, GJ01] or the process
calculus [AB01].

As an example, the method of [GJ01] works on protocol specifications annotated with
authentication assertions which encode the protocol requirements. If the annotated
specification passes the type checking, then the protocol is guaranteed to satisfy its
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requirements. The type checking approach is therefore completely automatic and can
handle unbounded protocols. However, as a drawback we must notice that the anno-
tating phase is usually done manually and moreover, it requires a deep understanding
both of the protocol as well as the underlying type system. Furthermore, the method
is not complete: a type failure indicating either an incorrect behavior or a limitation of
the type system considered.

I.3.5 Abstraction-based methods

Partial algorithms based on abstract interpretation have been developed in [Bol97,
Mon99, Bol00, GL00, GK00, BB01]. Particularly, in [Mon99, GL00, GK00] tree au-
tomata are used to represent the sets of messages that can be known by the intruder.
In [Mon99] the method is restricted to bounded number of session instances. However,
the methods of [GL00, GK00] work in the general case, the protocol being approximated
by rewriting rules. Both methods compute the set of messages that the intruder may
obtain using the protocol rules.

I.4 Thesis Contribution

In this thesis we propose to apply/adapt and extend traditional verification techniques
as logics, weakest precondition calculus or model checking and abstract interpretation
to cryptographic protocols.

The contribution of this thesis focuses in two directions. First, the existence of an
effective sound and complete inference system for bounded cryptographic protocols and
second, a method for automatic verification of unbounded cryptographic protocols based
on abstract interpretation. Also, a considerable attention has been given to the modeling
of the cryptographic protocols.

I.4.1 Inference system for bounded cryptographic protocols

A central question in the domain of program semantics and program verification is the
existence of a sound and complete inference system for assertions of the form π |= ϕ
meaning that program π satisfies property ϕ. Moreover, the question asks for an effective
(decidable) complete inference system. This is the question of the relationship between
the truth of formulae of the form π |= ϕ and their provability.

For While-programs (or counter machines) and 1st-order logic, for instance, it has been
proved that it is possible to design an inference system such that provability implies
truth (i.e., soundness) but impossible to have a sound system that is complete and
effective, i.e., it is impossible to have a decidable inference system such that truth implies
provability (see [Cou90] for a complete survey). Roughly speaking, the reason is that one
can describe transitive closures using while programs while this is not possible in general
in 1st-order logics except when Peano arithmetic is included. In other words, one has to
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sacrifice effectiveness (e.g., by including Peano arithmetic in the logic), or completeness
and accept that some valid formulae π |= ϕ cannot be proved or even expressed. This
situation of While-programs led to what is called Cook’s relative completeness: is it
possible to have a complete inference system for programs, if we assume all facts of the
underlying logic as axioms, i.e., all facts about the considered data are given?

In the first part of this thesis, we answer to the following question: what is the situation
for cryptographic protocols?

We remark that undecidability results have been proved for unbounded number of ses-
sions. For example, in [AC02] it is show that it is not difficult to encode a two-counter
machine [Min61] as an unbounded cryptographic protocol. Therefore, we know that
it is not possible to have an effective complete inference system for unbounded cryp-
tographic protocol. We show that such a system exists for bounded protocols. This
provides an alternative proof of the decidability of secrecy for bounded cryptographic
protocols [AL00, RT01, MS01] for Dolev-Yao model with atomic keys. Moreover we deal
with time-sensitive cryptographic protocols and our logic cover more other properties
then secrecy.

Beyond the theoretic relevance of this result, there are several practical consequences.
Indeed, if one can provide a complete inference system for cryptographic protocols this
can serve as a basis to develop compositional proof theories as well as refinement theo-
ries. The latter would be of great interest as the problem of composing cryptographic
protocols, i.e., which properties are preserved when cryptographic protocols are com-
posed, as well as the relationship between the abstract specification of a cryptographic
protocol and its real implementation remain two insufficiently investigated subjects
(cf. [Mea03]).

I.4.2 Verification algorithm based on abstract interpretation

Verification by abstraction (e.g. [CC77, CC92b, CC92a]) is a major technique for verify-
ing infinite-state and very large systems. This technique consists in finding an abstract
system that simulates the concrete one and that is amenable to algorithmic verification.
One then checks that the abstract system satisfies an abstract version of the property
to verify. Well established preservation results allow then to deduce that the concrete
system satisfies the concrete property, if the abstract system satisfies the abstract one.

Hence, the approximation of concrete fix-points by abstract ones can be used to verify
concrete properties by abstract properties if the abstract space is finite. The abstraction
can also map to an infinite domain, in which case acceleration techniques like widening
and narrowing [CC77, CC92a] have to be used to make the fix-point computations
converge.

In the second part of this thesis, we present a correct but, in general, incomplete verifica-
tion algorithm to prove secrecy for unbounded cryptographic protocols without putting
any assumption on the size of messages nor on the nonce generation. Proving secrecy
means proving that secrets, which are pre-defined messages, are not revealed to unau-
thorized agents. The main contribution is an original method for proving that a secret
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is not revealed by a set of rules that models how the initial set of messages known by the
intruder evolves. In contrast to almost all existing methods, we do not try to compute
or approximate the sets of messages that can be known by the intruder. Our algorithm
is rather based on the notion of ”the secret being guarded in a message”.

Example I.2

For example, suppose that our secret is the nonce N1 and that the key pvk(B) – the
inverse of pbk(B) – is not known by the intruder. Then, any message that contains N1

and that is encrypted with pbk(B) is a guard for N1. For instance, N1 is guarded in
the message {{N1, N2}pbk(B)}pbk(I) by the key pbk(B).

The problem is, however, that there might be a participant of the protocol which exe-
cutes the following sequence of actions: he receives {I, y}pbk(B) and then he sends y, i.e.
he sends y unencrypted to the intruder if the intruder produces the message {I, y}pbk(B).
Hence, the key pbk(B) will guard the secret except when it appears on the y position
in a message of the form {I, y}pbk(B).

The idea is then to compute the set of encrypted messages that may be useful to
the intruder to obtain a secret even if he doesn’t know the inverse key necessary to
decrypt these messages. The difficulty here is that this set is, in general, infinite.
Therefore, we use terms and position to represent it. For instance the term {I, y}pbk(B)

and the position 01 says that the secret will not be guarded in any message of the form
{I, m}pbk(B), where the secret isn’t guarded by any message in m.

Thus, our abstract domain consists of pairs (t, p) of terms and position, which we
call term transducers. Those correspond to “bad exceptions”, that is, the particular
instances of terms encrypted with good keys that do not guard the secrets. By good
keys we understand keys for which the inverse is not known by the intruder.

A weakness of terms is, however, that variables appear only at the leaves, and hence,
they do not allow to describe, for instance, the set of terms that share a common
sub-term. To mitigate this weakness, we introduce pattern terms, that is, terms with
an interpreted constructor, Sup, where a term Sup(t) is meant for the set of terms
that contain t as sub-term. We use patterns in our verification method to introduce a
widening operator which help our method to terminate more often, at the price of a
safe approximation of the results.

This method has been implemented and tested on various examples. In particular we
have been able to verify all protocols that involve secret properties taken from Clark
and Jacob survey [CJ97].

I.5 Organization of the material

In the first part of the thesis we introduce a model for bounded cryptographic protocols
and we show that it is possible to have a complete and effective Hoare logic for them
and an expressive assertion language. In the second part we extend the model to
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unbounded cryptographic protocols and we show how we can use the logic to develop
an abstract interpretation based method for verifying secrecy properties. Finally, we
present Hermes, a tool which implement the latter method.

In chapter 1 we introduce the underlying model i.e., abstract syntax and operational
semantics for bounded, timed and untimed, cryptographic protocols.

In chapter 2 we define the logics spl and ttl for the description of security properties.
We establish several useful properties regarding their later use in verification and we
study their expressive power. In particular, it turns out that security properties are
expressible in the universal fragment of the logic ttl∀ (section 2.1).

In chapter 3 we develop a weakest precondition calculus for bounded cryptographic
protocols, using the ttl∀ logic. We show that the weakest liberal precondition of a
universal formula is again expressible as a universal formula i.e., ttl∀ is closed under
weakest precondition calculus.

In chapter 4 we study the decidability of ttl and show that although the satisfiability
(existence of a model) of ttl formulae is, in general, undecidable, it is decidable for its
existential fragment.

In chapter 5 we introduce the tttl logic which is an extension of the ttl logic which
deals with properties over time-sensitive cryptographic protocols. The tttl logic com-
bines constraints on the knowledge of the intruder with time constraints on clocks and
time variables. We show that the results on time-independent cryptographic proto-
cols proved for the ttl logic may be also extended for time-dependent cryptographic
protocols and tttl logic.

In chapter 6 we extend the model introduced in the chapter 1 to unbounded crypto-
graphic protocols. Then, we introduce a sound abstraction scheme allowing to throw
away some of the infinite aspects, including the unbounded creation of sessions. The
abstraction is sound with respect to secrecy properties.

In chapter 7 we present a symbolic verification algorithm for secrecy properties on
unbounded cryptographic protocols. The algorithm relies on a fixpoint computation of
the knowledge (i.e, set of messages) that must not be known by the intruder in order
to preserve the secret. We propose a symbolic representation of possible infinite sets of
messages. Also, we propose an acceleration scheme of the fixpoint computation based
on a widening principle.

Finally, in chapter 8 we present Hermes a tool which implements the method pre-
sented in chapters 6 and 7. The tool is fully operational and has been integrated on
a toolbox for the verification of cryptographic protocols in the context of the French
National project Eva.

The chapters 2, 3 and 4 have been the subject of the paper [BEL04a]. The chapter 5
has been the subject of the paper [BEL04b]. The chapters 6 and 7 have been the subject
of the paper [BLP03a] and the technical report [BLP02b]. Finally, the chapter 8 has
been the subject of the paper [BLP03b].



Preliminary

Terms and Term Representation

Let X be a countable set of variables and let F i be a countable set of function symbols of
arity i, for every i ∈ N. Let F =

⋃
i∈NF i. The set of terms over X and F , denoted by

T (X ,F), is the smallest set containing X and closed under application of the function
symbols in F , i.e., f(t1, · · · , tn) is a term in T (X ,F), if ti ∈ T (X ,F), for i = 1, · · · , n,
and f ∈ Fn. As usual, function symbols of arity 0 are called constant symbols. Ground
terms are terms with no variables. We denote by T (F) the set of ground terms over F .

A terms can be written as a tree:

• each node of the tree is labeled with a function symbol or a variable

• if the function symbol has arity n, then the node for the function symbol has
n successor ordered nodes, each one is the root of the sub-tree for the related
sub-term.

• if the function symbol is a constant or a variable, the node is a leaf node.

Example II.3

Let f ∈ F2 and g ∈ F3 be functions of arity 2 respective 3, let a, b ∈ F0 be constant
symbols and let x, y ∈ X be variables. The tree in the figure 4 correspond to the term
t = f(y, g(f(a, b), b, f(x, b)).

g

0 1

f

0
1

2

0 1

f

x

y

b

b
0 1

a b

f

Figure 4: Example of tree representation of terms
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Now, let us give the formal definition. Let ω denote the set of integers. A tree tr is
a function from a non-empty finite subset of ω∗ to X ∪ F such that tr(u) ∈ Fn iff
u · j ∈ dom(tr), for every j ∈ {0, · · · , n − 1} and u · j 6∈ dom(tr) for every j ≥ n, also
tr(u) ∈ X implies u · j 6∈ dom(tr) for every j ∈ N.

We identify terms with trees by associating to each term t a tree Tr(t) as follows:

1. if x is a variable, then dom(Tr(x)) = {ε} and Tr(x)(ε) = x,

2. if a ∈ F0 is a constant symbol, then dom(Tr(a)) = {ε} and Tr(a)(ε) = a and

3. for a term t = f(t0, · · · , tn−1),dom(Tr(t)) = {ε} ∪
n−1⋃
i=0

i· dom(Tr(ti)), where · is

word concatenation extended to sets, Tr(t)(ε) = f and Tr(t)(i · u) = Tr(ti)(u).

Henceforth, we tacitly identify the term t with Tr(t).

The elements of dom(t) are called positions in t. We use ≺ to denote the prefix relation
on ω∗.

We write t(p) to denote the symbol at position p in t and t|p to denote the sub-term
of t at position p, which corresponds to the tree t|p(q) = t(p · q) with q ∈ dom(t|p) iff
q · p ∈ dom(t). We write q−1p to denote the position obtained from p after removing
the prefix q.

Example II.4

We keep the term t from the previous example for reference. t(ε) = f ; t(100) = a;
t|12 = f(x, b).

Also, we write t′ ¹ t (respectively t′ ≺ t) to denote that t′ is a sub-term (respectively
proper sub-term) of t . Moreover, t[t′/p] denotes the term obtained from t by substi-
tuting t′ for t|p . The set of variables in a term t is defined as usual and is denoted by
var (t).

Substitution

A substitution is a function that maps a set of variables to a set of terms. For any
substitution σ : X → T (X ,F) and term t ∈ T (X ,F) , we denote by dom(σ) the
domain of σ and by tσ the application to t of the homomorphic extension of σ to
terms. Given a set X of variables, we denote by Γ(X) the set consisting of ground
substitutions with domain X. We also write Γ(x) instead of Γ({x}) for a variable x.
Given two substitutions σ and ρ with disjoint domains, σ ⊕ ρ is the substitution equal
to σ on dom(σ), equal to ρ on dom(ρ), and undefined elsewhere.

Example II.5

Let σ = [x → g(a); y → b] be a substitution and consider again the term t =
f(y, g(f(a, b), b, f(x, b)). We have dom(σ) = {x, y} and
tσ = f(b, g(f(a, b), b, f(g(a), b)).
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A substitution is called idempotent if it is of the form [x1 → t1 · · ·xn → tn] such that
none of the variable x1 · · ·xn appears in any of the terms t1 · · · tn except when ti = xi.

Most General Unifier

A substitution σ is a unifier of t1 and t2 if t1σ = t2σ. A substitution σ is a most general
unifier(mgu) of t1 and t2 if

• σ is a unifier of t1 and t2; and

• if substitution σ′ also unifies t1 and t2, then tiσ
′ is an instance of tiσ for i = 1, 2.

If two terms have a unifier, they have a most general unifier (for more details [BN98]).

For any t1, t2 ∈ T (X ,F), we denote with µ(t1, t2) the most general unifier (shortly mgu)
of t1 and t2, if it exists. More precisely, by µ(t1, t2) we denote the representation of the
mgu of t1 and t2 as a conjunction of equalities of the form x = t. If it does not exist then
µ(t1, t2) should be the constant false. We write also t1 ∼ t2, if t1, t2 can be unified.

Example II.6

Let consider t1 = f(a, x) and t2 = f(y, z), where x, y, z ∈ X . The mgu of t1 and t2 is the
substitution σ = [y → a;x → z] and we denote by µ(t1, t2) the conjunction y = a∧x = z.
We note that the substitution σ′ = [y → a;x → a; z → a] is a unifier of t1 and t2 but
not the most general unifier.

Now if we consider t1 = f(a, x) and t2 = g(y, z, b) then the mgu of t1 and t2 does not
exist and µ(t1, t2) = false.
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Part I

Bounded Protocols
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Chapter 1

Model

In this chapter we introduce our underlying model for the analysis of cryptographic
protocols.

Messages are a key concept in our modeling. They represent the information exchanged
between participants during the protocol execution. Messages are represented by syn-
tactic terms over a relatively simple Σ-algebra. Constants include participant names,
nonces and keys. Functions are binary composition (or concatenation) of messages and
encryption of messages with a key.

The model of the intruder is defined also in terms of messages. The intruder knowledge
is defined as the set of messages the intruder knows at some moment in time. Concerning
the intruder capabilities we consider the so-called Dolev-Yao model. Within this model,
the intruder has complete control over the communication network as well as strong
computational capabilities. That is, it can intercept and remove any message in transit
in the network. Moreover, it can forge new messages from his knowledge and sent
them to participants. Nevertheless, it obeys the perfect cryptography assumption: it
can decrypt an encrypted message only if it knows the inverse of the encryption key.
Formally, the intruder is described as a deductive system over an infinite set of messages,
his knowledge.

Cryptographic protocols are described by parameterized sessions, that is, a set of param-
eterized agents running in parallel and exchanging messages. Basically, the parameters
are agent names. Each agent (also called principal) is described by the sequence of
actions - input or output of messages - he execute during the protocol. In addition to
parameters, agents can use local variables to store information from messages received.
A parameterized session can be instantiated by assigning concrete principal names to
parameters and thus creating a so-called session instance. Several session instances in
parallel form a bounded protocol instantiation, which is our entry point for analysis in
the bounded case, while in the unbounded case we work directly on the parameterized
description of the protocol.

The operational semantics describing all the possible evolutions of a bounded protocol
is given in section 1.4.

19
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In the last section we present an extension including real-time. This model allows to
model cryptographic protocols where real-time is used, for example, to ensure freshness
of messages. In addition to the initial model, agents can now use timestamps and clocks
to manipulate time related information. Timestamps are variables which store time
values. The notion of clocks is the one existing in timed automata [AD94]. They are
special variables which increase implicitly as time progresses. Moreover they can be
reset to zero or tested against integer values.

The operational semantics for the timed bounded protocols is also provided.

1.1 Messages and Terms

1.1.1 Messages

The set of messages that we use to describe cryptographic protocols and also the intruder
behavior is denoted by M and contains terms constructed from constant symbols and
the function symbols encr : M×K → M and pair : M×M → M. Constant symbols
are also called atomic messages and are defined as follows:

1. Principal names are used to refer to the principals in a protocol. The set of all
principals is denoted by P.

2. Nonces can be thought as randomly generated numbers. As no one can predict
their values, they are used to convince for the freshness of a message. We denote
by N the set of nonces.

3. Keys are used to encrypt messages. We have the following atomic keys for each
A1, · · · , Ar ∈ Pr where pbk, pvk and smk stand respectively for public, private and
symmetric keys:

pbk([i, ][n, ]A1, · · · , Ar) | pvk([i, ][n, ]A1, · · · , Ar) | smk([i, ][n, ]A1, · · · , Ar).

where i ∈ N and n ∈ N . The first parameter is an integer in order to distinguish
between severals keys that belong to the same principals, when needed. For ex-
ample, if a participant A has two public keys then we model them by pbk(1, A)
and pbk(2, A), while if A has just one public key we model it by pbk(A), denoted
by KA for short. The second parameter is a nonce if we want to specify fresh keys,
e.g. short term keys generated by a trusted server in key distribution protocols.
In Neuman Stubblebine Protocol (see example ??), the key Kab generated by
the server must be a fresh key for any execution of the protocol, we model it by
smk(n,A, B) where n is a nonce. We use both of them in order to distinguish
between several fresh keys that belong to the same principals.

We denote by AK([i, ][n, ]A1, · · · , Ar) this set of keys and let K =⋃
~A∈P+,i∈N,n∈N

AK([i, ][n, ] ~A) denote the set of all keys. The key

pbk([i, ][n, ]A1, · · · , Ar) is an inverse of the key pvk([i, ][n, ]A1, · · · , Ar) and
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vice versa; a key smk([i, ][n, ]A1, · · · , Ar) is its self-inverse. We define the
predicate inv(k, k′) that is true if the key k′ is the inverse of the key k and vice
versa. If k is a key then we use k−1 to denote its inverse.

The set of atomic messages P ∪N ∪ K is denoted by A.

The function pair is used to model the concatenation of two messages. As usual, we
write (m1,m2) for pair(m1,m2).

In the case of asymmetric keys, with the function encr and the second argument a
public key we model encryption. If the second argument is a private key we model
signing. As usual, we write {m}k instead of encr(m, k).

1.1.2 Terms

Let F = A∪ {encr,pair} and X a set of variables. Message terms are the elements of
T (X ,F), that is, terms over the atoms A, the set of variables X and the binary function
symbols encr : T (X ,F) × K → T (X ,F) and pair : T (X ,F) × T (X ,F) → T (X ,F).
Messages are ground terms in T (X ,F) i.e, M = T (F).

In order to describe the actions that can be performed by a principal in a session of a
cryptographic protocol we introduce role terms. Let XN be a set of variables that range
over nonces and XP be a set of variables that range over principals. We assume that
X , XN and XP are pairwise disjoint.

Role terms are terms constructed from variables in X∪XN∪XP using the binary function
symbols encr and pair and where constants are not allowed. More, precisely role terms
are defined by the following tree grammar:

Key ::= pbk([i, ][n, ]p1, · · · , pr) | pvk([i, ][n, ]p1, · · · , pr) | smk([i, ][n, ]p1, · · · , pr)

RoleTerm ::= n | p | Key | x | pair(RoleTerm1,RoleTerm2) | encr(RoleTerm,Key)

where p, p1, · · · , pr ∈ XP , n ∈ XN , i ∈ N and x ∈ X .

1.2 The Intruder Model

We model the intruder using the most commonly used approach, introduced by Dolev
and Yao [DY83]. In this model, the intruder has complete control over the network and
can derive messages from his knowledge. The intruder can intercept messages, use them
to create fake messages and deliver these to the principals.

In our model, the intruder knowledge is represented by the set E of known, intercepted
and derived messages. The following rules define how a message m can be derived from
a set of messages E.

• If m ∈ E then E ⊢ m (axiom).

• If E ⊢ (m1,m2) then E ⊢ m1 and E ⊢ m2. This rule is called projection.
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• If E ⊢ {m}k, E ⊢ k′ and k and k′ are inverses then E ⊢ m. This rule is called
decryption.

• If E ⊢ m1 and E ⊢ m2 then E ⊢ (m1,m2). This rule is called pairing.

• If E ⊢ m and E ⊢ k ∈ K then E ⊢ {m}k. This rule is called encryption.

The last two rules are called composition rules, the others are called decomposition rules.
A derivation of a message that uses only composition rules is denoted by E ⊢c m and
we say that the message m has been obtained only by composition. Also, we denote by
E ⊢d m a derivation of a message m that uses only decomposition rules.

We say that a message m is derivable from a set of messages E, denoted E ⊢ m, if
there is a valid derivation tree using the ⊢ rules such that the message m appears at
the root of the tree and all messages that appear in the leaves are from E. A derivation
tree is a normalized derivation tree if it does not contain a composition rule which has
as conclusion a message m and a decomposition rules which has as premise the same
message m.

For a set of messages M , we write E ⊢ M , if E ⊢ m holds for every m ∈ M . For a term
t, we use the notation E ⊢ t to denote that there exists a substitution σ : X → M such
that E ⊢ tσ.

We now define critical and non-critical positions in a message. The idea is that since
there is no way to deduce from an encrypted message the key with which it has been
encrypted, the key position in messages of the form encr(m, k) is not critical. This
notion appears in many other models, for instance it corresponds to the subterm relation
in the strand space model [FHG88, THG98]. Formally, given a term t, a position p in
t is called non-critical, if there is a position q such that p = q · 1 and t(q) = encr;
otherwise it is called critical position. We will also use the notation s ∈c m to denote
that s appears in m at a critical position, i.e., there exists p ∈ dom(m) such that p is
critical and m|p = s.

An important result of the deduction system of the intruder is the decidability of deriv-
ability E ⊢ m [Pra65, CJM98, RT01]. The proof of [RT01] is based on the following
result:

Theorem 1.1

[CJM98, Bol96] Any derivation tree T for a message m depending on assumption A can
be transformed into a normalized derivation tree T ′ for the message m depending on the
same assumption A. Moreover, no composition rule appears above a decomposition rule
in the normalized derivation tree.

Hence, if there exists a derivation tree for a message m then there exists one where first
we apply only decomposition rules and then only composition rules. This theorem is
proved for the case where the key cannot be obtained by decomposition.
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Theorem 1.2

The number of rules used in the normalized derivation tree for proof that E ⊢ m is
bounded by the DAG-size of E ∪ {m}.

Where, the DAG-size of a set of terms E, is defined to be the number of subterms of E.

1.3 Cryptographic Protocol Specification

In the literature, cryptographic protocols are often presented as a sequence of message
exchanges corresponding to one correct and complete execution of the protocol (see
Clark-Jacobs for a survey [CJ97]). Each message exchange has the following form:

S → R : messg

That we read S sends, and R receives the message messg. Such a description is not
appropriate for verification because it is restricted to a single run of a fixed session
with no external interaction. Nevertheless, it can be used to extrapolate a general
parameterized description where identities of principals and other constants become
parameters, the actions of each principal become independent from the others, and
consequently, the sending and the reception of the message messg are separated. The
latter aspect allows us to model the interference among several sessions, as well as the
presence of an intruder.

1.3.1 Protocol Description

In our setting, a cryptographic protocol is described by a parameterized session descrip-
tion where the parameters are the involved principals, the fresh nonces and fresh keys.
Such a session description is formally given by a tuple (P, act, fresh), where

• P is a vector (p1, · · · , pr), r ≥ 1, of distinct principal variables in XP ,

• act is a function that associates to each principal variable p in P a finite sequence
of actions,

• fresh is a function that associates to each principal variable p in P a disjoint finite
set of nonce variables in XN . By abuse of notation we write fresh(P ) to denote⋃
p∈P

fresh(p).

The actions are respectively sending (!) and receiving (?) of messages and are defined
by the following grammar:

α ::= ℓ : !t | ℓ : ?t(x̃)
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where ℓ are action labels and t are role terms. Labels are used as control points in the
sequence of actions for a principal. Role terms define the parameterized messages sent
and received. Moreover, in the case of an input, x̃ denotes the set of variables that are
instantiated (read) by the action. For simplicity, we assume that each variable y occurs
exactly once bind in an input action, that is y ∈ x̃ in action ?t(x̃), and moreover, this
occurrence precedes any other occurrence of y in any action. It is not difficult to see
that restriction can be easily handled. By abuse of notation we use ỹ in an input term
to denote that the variable y will be instantiated by that action. Hence, in a protocol
description each variable appears under a tilde first time, i.e. when it is instantiated.

Example 1.1

Consider again the Needham-Schroeder public-key protocol. In our setting it is described
by the session description where P = (p1, p2), fresh(p1) = {n1} and fresh(p2) = {n2}
and the action lists are:

act(p1) : act(p2) :
0 : !{p1, n1}pbk(p2)

1 : ?{n1, x̃}pbk(p1)

2 : !{x}pbk(p2)

0 : ?{ỹ, z̃}pbk(p2)

1 : !{z, n2}pbk(y)

2 : ?{n2}pbk(p2)

We point out here that, in this protocol description, the initiator p1 knows the identity
of the responder p2 but the responder does not. The responder receives this value in
the first message that he reads and stores it in the variable y. This choice has been
made following the principle that a participant only knows the information needed for
the protocol execution.

1.3.2 Session Instance

Let S = (P, act, fresh) be a given session description. A session instance is fixed by a
pair (i, π), where i is its identifier and π is a vector of principals Pr that instantiate
the principal variables p1, · · · , pr. Therefore, we introduce the set Inst = N × Pr of
session instances. As we impose that the variables in P are distinct, we can use π(pj)
to refer the jth principal name in the vector π, i.e., we can identify π with a function,
π : P → P. We refer to a session instance by its identifier.

We assume that we have for each fresh variable n ∈ fresh(P ) an injective function
which associates for each session instance a fresh nonce value, n : N → N such that
n1(i1) 6= n2(i2), if n1 6= n2 or i1 6= i2. That is, any fresh parameter is instantiated
with different values in different sessions. Moreover, different fresh parameters are
instantiated with different values in the same or in different sessions. We write N i for
the value of n(i) where n is a nonce fresh variable and i is the session instance identifier.
Intuitively, we use N i as the nonce corresponding to the value of the fresh variable n in
the session instance (i, π).

In order to produce an instance of the session description, we have to choose a session
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number and a substitution that associates a constant name to each principal variable
in P . Hence, given (i, π) ∈ Inst, we generate a session instance, denoted by (S)i

π, by
applying the following transformations to all role terms that appear in the actions of
the principals:

• we replace each principal parameter p by π(p),

• each nonce parameter n ∈ fresh(P ) by N i.

We denote by tiπ the message term obtained from t by applying the transformations
above. Then, the (i, π)-instance of an action ℓ : !/?t is ℓ : !/?tiπ. Given p ∈ P ,
we denote by acti(π(p)) the list of (i, π)-instantiated actions obtained from act(p). A
session instance (S)i

π is described by the set of action sequences acti(π(p)) with p ∈ P .

Example 1.2

We illustrate the instantiation process on the Needham-Schroeder example. Let (i =
0, π = (A,B)) be a session instance. Moreover, n1(0) = N1

0 and n2(0) = N2
0. Then,

the (S)i
π instance of the Needham-Schroeder protocol is described by the action sequences

given below:

act0(A) : act0(B) :
0 : !{A,N1

0}pbk(B)

1 : ?{N1
0, x̃}pbk(A)

2 : !{x}pbk(B)

0 : ?{ỹ, z̃}pbk(B)

1 : !{z,N2
0}pbk(y)

2 : ?{N2
0}pbk(B)

1.4 Cryptographic Protocols Semantics

Let S = (P, act, fresh) be a protocol. In the bounded case, the semantics is defined by
the parallel execution of a bounded number of instantiated sessions Si

π. We have seen
in section 1.3 that an instantiated session is fixed by a pair (i, π) and is described by
the set of instantiated action sequences.

For the sake of uniformity, the set of instantiated actions is represented as a set of
guarded commands. The ordering of actions is encoded as guards that bear as program
counter. We represent explicitly control points using finite variables pci

p, where p ∈ P
is a principal parameter and i ∈ N is a session identifier. Moreover, output actions !t
are modeled as adding an instance of the term t to some message set X. Input actions
?t are modeled as the containment test of an instance of t to the message set X. The
precise syntax is the following:

α ::= [pci
p = ℓ1] −→ add(X, t); pci

p := ℓ2 (output action)

| [pci
p = ℓ1 ∧ in(X, t(x̃))] −→ pci

p := ℓ2 (input action)
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In the finite case, a protocol Π can therefore be described as the finite set of all possible
interleavings of the instantiated actions existing in all parallel sessions:

Π =
n∑

i=1

αi
1 · · ·α

i
mi

where
∑

is the usual non-deterministic choice and (αi
j)i=1,n;j=1,mi

are input and output
actions.

The configurations set Conf , of a protocol run, is given by triplets (E, σ, pc) consisting
of

• a set of messages E ⊆ M, which corresponds to the intruder knowledge

• a ground substitution σ : X → M defined over free variables occurring in the
protocol,

• a vector of control points pc which has a component for each principal of each
session instance. We denote by pci

p the component which corresponds to the
control point of principal p ∈ P in the session Si

π.

The operational semantics is defined as a labelled transition system over the set of
configurations Conf . The transition relation

(E, σ, pc)
α
−→ (E′, σ′, pc′)

is defined by the following two rules:

• output actions: α = [pci
p = ℓ1] −→ add(X, t); pci

p := ℓ2

pci
p = ℓ1

(E, σ, pc)
α
−→ (E ∪ {tσ}, σ, pc[pci

p ← ℓ2])

That is, sending the message tσ amounts to adding tσ to the knowledge of the
intruder.

• input actions: α = [pci
p = ℓ1 ∧ in(X, t(x̃))] −→ pci

p := ℓ2

pci
p = ℓ1 ρ ∈ Γ(x̃) E ⊢ t(σ ⊕ ρ)

(E, σ, pc)
α
−→ (E, σ ⊕ ρ, pc[pci

p ← ℓ2])

That corresponds to receiving any message that matches with tσ and is known by
the intruder.

The initial configuration is given by a set of messages E0, initially known by the intruder,
an empty substitution σ0, and the vector of initial control points for any principal, in
any session.
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Example 1.3

Let consider again the Needham-Schroeder public-key protocol example. We write vi to
specify a variable, a nonce or a participant v involved in the session instance Si

π. Let
take S1 = S1

(A,B) and S2 = S2
(A,C) two sessions instances. The nonce instances are N1

1,

N2
1, N1

2 and N2
2. We give below the actions of the two sessions:

S1
(A,B)

act1(p1) : act1(p2) :
[pc1

p1
= 0] −→ add(X, {A,N1

1}pbk(B)); pc1
p1

:= 1 [pc1
p2

= 0 ∧ in(X, {ỹ1, z̃1}pbk(B))] −→ pc1
p2

:= 1

[pc1
p1

= 1 ∧ in(X, {N1
1, x̃1}pbk(A))] −→ pc1

p1
:= 2 [pc1

p2
= 1] −→ add(X, {z1, N2

1}pbk(y1)); pc1
p2

:= 2

[pc1
p1

= 2] −→ add(X, {x1}pbk(B)); pc1
p1

:= 3 [pc1
p2

= 2 ∧ in(X, {N2
1}pbk(B))] −→ pc1

p2
:= 3

S2
(A,C)

act2(p1) : act2(p2) :
[pc2

p1
= 0] −→ add(X, {A,N1

2}pbk(C)); pc2
p1

:= 1 [pc2
p2

= 0 ∧ in(X, {ỹ2, z̃2}pbk(C))] −→ pc2
p2

:= 1

[pc2
p1

= 1 ∧ in(X, {N1
2, x̃2}pbk(A))] −→ pc2

p1
:= 2 [pc2

p2
= 1] −→ add(X, {z2, N2

2}pbk(y2)); pc2
p2

:= 2

[pc2
p1

= 2] −→ add(X, {x2}pbk(C)); pc2
p1

:= 3 [pc2
p2

= 2 ∧ in(X, {N2
2}pbk(C))] −→ pc2

p2
:= 3

One possible interleaving of actions, where the session S2 starts before the session S1 ends, is:

[pc1
p1

= 0] → add(X, {A,N1
1}pbk(B)); pc1

p1
:= 1

[pc2
p1

= 0] → add(X, {A,N1
2}pbk(C)); pc2

p1
:= 1

[pc1
p2

= 0 ∧ in(X, {ỹ1, z̃1}pbk(B))] → pc1
p2

:= 1
[pc2

p2
= 0 ∧ in(X, {ỹ2, z̃2}pbk(C))] → pc2

p2
:= 1

[pc1
p2

= 1] → add(X, {z1, N2
1}pbk(y1)); pc1

p2
:= 2

[pc1
p1

= 1 ∧ in(X, {N1
1, x̃1}pbk(A))] → pc1

p1
:= 2

[pc1
p1

= 2] → add(X, {x1}pbk(B)); pc1
p1

:= 3

[pc1
p2

= 2 ∧ in(X, {N2
1}pbk(B))] → pc1

p2
:= 3

[pc2
p2

= 1] → add(X, {z2, N2
2}pbk(y2)); pc2

p2
:= 2

[pc2
p1

= 1 ∧ in(X, {N1
2, x̃2}pbk(A))] → pc2

p1
:= 2

[pc2
p1

= 2] → add(X, {x2}pbk(C)); pc2
p1

:= 3

[pc2
p2

= 2 ∧ in(X, {N2
2}pbk(C))] → pc2

p2
:= 3

1.5 Time-sensitive Model

Some cryptographic protocols rely upon timestamps, recipients used to verify timeliness
of messages. The timestamps allow a principal to recognize and reject replays of mes-
sages communicated in the past. The presence of timestamps makes the specification
and verification of cryptographic protocols a challenging problem.

In this section, we extend our model to time-dependent cryptographic protocols using
primitives existing in timed automata theory [AD94, HNSY92, AFH91, BL95].
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Our model of timed cryptographic protocols will include clocks, time variables and
timestamps. Clocks are variables that range over the time domain and advance with the
same rate as time. Each agent has its own set of clocks that he can reset. That is clocks
can be used to measure the time that elapses between two events, for instance, sending a
message and receiving the corresponding response. Also, we allow a global clock, called
“now”, that is never reset and that can be read and tested by all participants. Time
variables are variables over the time domain. They are used to store timestamps, that
are time values, obtained through received messages. Such values can be used together
with clocks to define conditions on the acceptance of a message.

1.5.1 Terms and the intruder model

In addition to the usual terms considered in Dolev-Yao model, we add:

1. clocks, i.e. variables that range over the underlying time model. We denote the
set of clocks by C.

2. timestamps, that is values in the time domain.

3. time variables, that is variables that range over the time domain.

It is important to understand the difference between these three distinct notions:

• a time stamp is just a constant;

• clocks and time variables are variables.

Moreover, in the latter case, the difference is that the value of a clock advances with
rate one with time while the value of a time variable does not. A time variable is simply
a variable that ranges over the time domain.

We fix the time domain to be the set of non-negative real numbers. The sets of atomic
messages are P for principal names, N for nonces and K the set of keys and time stamps,
A = P ∪ N ∪ K ∪ R≥0. X denotes the set of variables that range over terms and Y
denotes the set of time variables. The set of function symbols is F = A∪{encr,pair}.
We consider terms build from constant symbols in A, clocks in C, time variables in Y
and term variables in X using the function symbols in F . For conciseness, we write Tc

instead of T (X ∪ Y ∪ C,F).

A Clock-free term is a term in which no clock appears; time variables and time stamps
may appear in a clock-free term. We denote the set of clock-free terms by T (X ∪Y,F).

Messages are ground terms in T (X ∪ Y,F).

We assume Dolev-Yao’s intruder model except that, since we are dealing with timed
protocols, we add a rule that allow the derivation of any time stamp.

Formally, the usual model of Dolev and Yao is augmented with the axiom:

(Time stamp) If r ∈ R≥0 then E ⊢ r.
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1.5.2 Syntax and semantics

Timed cryptographic protocols are build from timed actions. A time constraint is
associated to an action and describes when the action is possible.

Definition 1.1 (time constraints)

Time constraints are defined by:

g ::= ⊤ |
n∑

i=1

aici +
m∑

j=1

bjTj ⊲⊳ d | g1 ∧ g2 | g1 ∨ g2

where m,n ∈ N, ci ∈ C are clocks, Tj ∈ Y are time variables, ai, bj ∈ Z, d ∈ Z, and
⊲⊳∈ {<,≤}. The set of time constraints is denoted by T C.

A time constraint is interpreted with respect to a valuation ν defined over the finite
set of clocks {c1, . . . , cn} that associates values in the time domain to clocks, and the
substitution σ that assigns ground clock-free terms to variables. The interpretation of
a time constraint is given by:

• [[⊤]]ν,σ = 1, for any ν and σ.

• [[
n∑

i=1
aici +

m∑
j=1

bjTj ⊲⊳ d]]ν,σ = 1 iff
n∑

i=1
aiν(ci) +

m∑
j=1

bjσ(Tj) ⊲⊳ d;

• [[g1 ∧ g2]]ν,σ = 1 iff [[g1]]ν,σ = [[g2]]ν,σ = 1;

• [[g1 ∨ g2]]ν,σ = 1 iff [[g1]]ν,σ = 1 or [[g2]]ν,σ = 1

Then (ν, σ) is said to be a model for a time constraint g, if [[g]]ν,σ = 1.

Notice that omitting the negation for time constraints is not essential as any negation
of a time constraint can be put in a positive form.

Given a time constraint g and a set R of clocks, we denote by g[R] the time constraint
obtained by substituting 0 for all clocks in R. We also use the notation g + δ to denote
the time constraint obtained from g by substituting each clock c in g by c + δ, where
δ ∈ R≥0.

Definition 1.2 (timed actions)

We define the input and the output actions for timed cryptographic protocols as follows:

• A timed input action is of the form

[pci
p = ℓ1 ∧ in(X, t(x̃)) ∧ g] −→ reset(R); pci

p := ℓ2

– g ∈ T C is a time constraint called the guard,

– t(x̃) ∈ T (X∪Y,F) is a term and x̃ ⊆ X∪Y is the set of variables instantiated
by the input action.
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– R ⊆ C is a subset of clocks and

– ℓ1, ℓ2 are action labels

• A timed output action is of the form

[pci
p = ℓ1 ∧ g] −→ reset(R); add(X, tc); pci

p := ℓ2 where where g, ℓ1, ℓ2 and R are as

above and tc ∈ Tc is a clock dependent term.

Let R ⊆ C be a subset of clocks, δ ∈ R≥0 a constant, ν : C −→ R≥0 a valuation for
clocks, and let tc ∈ Tc be a clock dependent term. We denote by ν[R] the valuation
obtained from ν by resetting all clocks in R, i.e. ν[R](c) = 0 for any c ∈ R and
ν[R](c) = ν(c) for any c 6∈ R; ν + δ denotes the valuation which advances all clocks by
the same delay δ, i.e. (ν + δ)(c) = ν(c) + δ; and tc[ν] is the term obtained from tc by
replacing all occurrences of c by the value of ν(c).

Now we are able to define the operational semantics of timed actions. The configurations
set Conf , of a protocol run, is given by tuples (E, σ, ν, pc), where, in addition to the
untimed case, we have one more component ν which represent the valuation of the clocks.
Note also that the substitution σ contains in addition a valuation of time variables.

Definition 1.3 (timed operational semantics)

The operational semantics is defined as a labelled transitional system over the set of
configurations Conf . The transition relation

(E, σ, ν, pc)
α
−→ (E′, σ′, ν ′, pc′)

is defined as follows:

• output action: α = [pci
p = ℓ1 ∧ g] −→ reset(R); add(X, tc); pci

p := ℓ2

pci
p = ℓ1 [[g]]ν,σ = 1

(E, σ, ν, pc)
α
−→ (E ∪ {tc(σ ⊕ ν[R])}, σ, ν[R], pc[pci

p ← ℓ2])

That is, sending the message tc (provided that guard g is satisfied by the actual
configuration) amounts to reset clocks in R and adding tc evaluated with respect
to the substitution σ and the valuation of clocks ν[R], to the knowledge of the
intruder.

• input action: α = [pci
p = ℓ1 ∧ in(X, t(x̃)) ∧ g] −→ reset(R); pci

p := ℓ2

pci
p = ℓ1 ρ ∈ Γ(x̃) E ⊢ t(σ ⊕ ρ) [[g]]ν,σ⊕ρ = 1

(E, σ, ν, pc)
α
−→ (E, σ ⊕ ρ, ν[R], pc[pci

p ← ℓ2])

That is, t corresponds to receiving any message, known to the intruder, that
matches with tσ by a ground substitution ρ, such that g is satisfied by the pair
(ν, σ ⊕ ρ); in addition, this action resets clocks in R.
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• time passing: (E, σ, ν, pc)
δ
−→ (E, σ, ν + δ, pc), for any δ ∈ R≥0.

This action represents the passage of δ time units; passage of an arbitrary time is

denoted by
τ

−→=
⋃

δ∈R≥0

δ
−→ .

The initial configuration is given by a set of messages E0, initially known by the intruder,
an empty substitution σ0, a valuation ν0 and the vector of initial control points for any
principal, in any session.

Now, let us give an example of a timed protocol and its description in our model.

Example 1.4

The Denning-Sacco shared key protocol [DS81]. Using the standard notation for cryp-
tographic protocols, it is described as follows:

A → S : A,B
S → A : {B,Kab, T, {Kab, A, T}Kbs}Kas

A → B : {Kab,A, T}Kbs

The keys Kas and Kbs are shared keys between the participant A respectively B and the
server S. The goal of the Denning-Sacco shared key protocol is to allow two principals
A and B to obtain a secret symmetric key from a trusted server S. Timestamps are
used to ensure the freshness of this key.

The next table shows how we describe the protocol. The constant parameters δ1, δ2

represent network delays for A respectively B.

For convenience of notation we omit the guard when it is the constant ⊤ and the set of
clocks to be reset when it is empty.

[pci
A = 0] −→ add(X, (A,B)); pci

A := 1

[pci
A = 1 ∧ in(X, {B, x̃, T1, ỹ}smk(A,S)) ∧ (now − T1 < δ1)] −→ pci

A := 2

[pci
A = 2] −→ add(X, y); pci

A := 3

[pci
S = 0 ∧ in(X, (z̃, ṽ))] −→ pci

S := 1

[pci
S = 1] −→ add(X, {v, K, now, {K, z, now}smk(v,S)}smk(z,S)); pci

S := 2

[pci
B = 0 ∧ in(X, {ũ, p̃, T2}smk(B,S)) ∧ (now − T2 < δ2)] −→ pci

B := 1

First, the participant A sends his identity A and the identity of B to the server. Then,
A receives back the message {B, x, T1, y}smk(A,S). If T1, is “timely”, i.e. the difference
between the current time and the value of T1 is less than the constant parameter δ1 then
A accepts x as session key and forwards the message y to B.
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On the other side, B, when he receives the message {u, p, T2}smk(B,S), he checks if
T2 is “timely” and, if so, he accepts u as a session key with p. The server S, ev-
ery time when he receives a pair of two participants (z, v) he generates a new session
key K and sends it together with his current time “now” in a message of the form
{v, K, now, {K, z, now}smk(v,S)}smk(z,S) to z, the first participant of the received pair.



Chapter 2

Security Properties Logics

This chapter introduces two logics for the description of security properties of crypto-
graphic protocols.

The first logic, called spl, is an extension of the first-order logic on terms with a Secret
predicate modeling secrecy. This logic is rich enough to express usual secrecy and
authentication properties of cryptographic protocols such as aliveness, weak agreements,
etc. Nevertheless, spl is not powerful enough to support a weakest precondition calculus
with respect to input and output actions present in protocols.

Therefore, we have to investigate some extensions of the logic allowing to express pre-
conditions. We found that a rather strong and particularly useful notion in this context
are message transducers, that are, functions describing structured transformations be-
tween messages. In fact, both intruder capabilities to decompose messages as well as to
take advantage on the actions of the participants can be modeled directly as message
transducers.

Henceforth, we define our second logic, called ttl, as an extension of the first order
logic on terms with a transducer-protected modality. This modality (used as m〈w〉

K
s)

expresses that a message (s) is protected by keys of K in another message (m), despite
the use of a transducer (w) and implicitly of decomposition rules.

The main properties of message transducers and the related modality are investigated.
In particular, two key notions allowing for the syntactical reasoning with ttl are de-
fined. First, the notion of closed set of messages allows to take into account also the
composition capability of the intruder. More precisely, we show that a message m
cannot be obtained by the intruder iff in each closed set consisting of sub-messages of
m, there exists one protected w.r.t decomposition rules. The second important notion
concerns stability of protection modality i.e, that augmenting the intruder knowledge
with messages which are already deductible from his knowledge does not influence the
protection. We show that the stability property holds for the so-called well-formed
modalities, which are a well identified syntactic category of modalities.

Finally, the embedding of spl into ttl is formally established. The keypoint is to show
how the Secret predicate of spl is definable in ttl.

33
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For the sake of clarity, first, we decide to consider only untimed protocols. Later, in
chapter 5 we extend the ttl logic and the results obtained on this logic in order to deal
with time properties also.

2.1 Security Properties Logic spl

2.1.1 Syntax and Semantics

In this section, we introduce an intuitive logic, which allow us to express security prop-
erties about cryptographic protocols. The set of formulae of this logic, called SPL, is
defined in table 2.1. In the definition, x is a meta-variable that ranges over the set X of
first-order variables; first-order variables range over messages; t is a meta-variable over
terms. The local control point pci

p range over the set of labels L.

ϕ,ψ ::= Secret(t) | x = t | pci
p = ℓ | ⊤ | ⊥ | ϕ ∧ ψ | ¬ϕ | ∀xϕ

Table 2.1: The set of formulas SPL

The proposition Secret(t) expresses secrecy in the following (usual) sense: Secret(t) is
true in a configuration (E, σ, pc), if tσ cannot be derived by the intruder from the set
of messages E. The formal semantics of spl is given below.

Definition 2.1

The interpretation of a formula ϕ is given by the set of its models, i.e., the set of
configurations [[ϕ]] that satisfy the formula:

• [[Secret(t)]] = {(E, σ, pc) | E 6⊢ tσ}

• [[x = t]] = {(E, σ, pc) | σ(x) = σ(t)}.

• [[pci
p = ℓ]] = {(E, σ, pc) | pci

p = ℓ}

• [[⊤]] = Conf

• [[⊥]] = ∅

• [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]]

• [[¬ϕ]] = Conf \ [[ϕ]]

• [[∀xϕ]] =
⋂

{ρ|ρ∈Γ(x)}
[[ϕ[ρ(x)/x]]].

For convenience of notations, we will consider also the disjunction ϕ∨ψ ≡ ¬(¬ϕ∧¬ψ)
and implication ϕ ⇒ ψ ≡ ¬ϕ ∨ ψ defined in the usual way.

2.1.2 Expressiveness of spl

The purpose of this section is to state how security properties such as secrecy and
authentication can be described in the spl logic. Obviously, we can express semantic
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secrecy in our logic using the predicate Secret. Further we show, by means of an
example, how the introduced logic allows to specify the authentication properties.

For confidentiality properties it seems that there exists a sort of consensus, that a mes-
sage is confidential (or secret) if it can not be derived from the intruder knowledge. The
situation is not the same for authentication properties, where several different definitions
exist in the literature. Hereafter, we choose the Lowe’s hierarchy definitions [Low97b]
to present how they can be formalized using spl.

Let us consider again the Needham-Schroeder public-key protocol with S1 = S1
(A,B)

and S2 = S2
(A,C) two session instances. We give below the encoding of aliveness, weak

agreement, non-injective agreement and agreement properties in our logic.

Aliveness

Aliveness of the initiator is guaranteed to the participant B in session S1:

if B completes a run of the protocol in session S1, as responder, with one
participant, let say p, y1 = p, then the participant p has previously been
running the protocol (not necessarily with B neither necessarily as initiator)

In spl logic we write this property as follows:

pc1
p2

= 3 ⇒ ((y1 = A ∧ (pc1
p1

6= 0 ∨ pc2
p1

6= 0))

∨ (y1 = C ∧ pc2
p2

6= 0)

∨ y1 = B)

In general, we want to guarantee the aliveness property for a participant X in a session
S. That is, when the control point of the participant X has moved after the last action,
at least one of the control points of the participant with whom X thinks is involved
must be different from its first action label.

In our example, the value of the variable y1 gives the identity of the participant with
whom B is involved in the session S1. Therefore, depending on the value of y1 we add
conditions over the corresponding control points. For example, in our configuration A
plays the role p1 in the session S1 and the role p1 in the session S2. So, if y1 = A, then
the control point pc1

p1
must be different from its initial value or the control point pc2

p1

must be different from its initial value.

Weak Agreement

Weak agreement of the initiator is guaranteed to the responder B in session S1:

if B completes a run of the protocol in session S1, as responder, with one
participant, let say p, then y1 = p and the participant p has previously been
running the protocol with B (not necessarily as initiator)
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This property is expressed in spl as follows:

pc1
p2

= 3 ⇒ ((y1 = A ∧ pc1
p1

6= 0)

∨ (y1 = C ∧ pc2
p2

6= 0 ∧ y2 = B)

∨ y1 = B)

In general, we want to guarantee the weak agreement property for a participant X
in a session S. For weak agreement in addition to aliveness it is required that, the
participant Y with whom X plays the session S must play with X at least one time.
Therefore, depending on the value of y1 we add the conditions over the corresponding
control point and the identity of the participant Z with whom Y plays in that session.

In our example, A plays with B in the session S1, so we have to add a true condition
for pc1

p1
6= 0. Respectively in the session S2, A plays with C, which is different from

B, so we have to add a false condition for pc2
p1

6= 0. Hence, the condition of aliveness
(y1 = A ∧ (pc1

p1
6= 0 ∨ pc2

p1
6= 0)) becomes (y1 = A ∧ pc1

p1
6= 0).

Non-injective agreement

Non-injective agreement on N1 of the initiator is guaranteed to the responder B in
session S1:

if B completes a run of the protocol in session S1, as responder, with one
participant, let say p, then y1 = p and the participant p has previously been
running the protocol, as initiator, with B and they have the same value
for N1

In spl this property is written as follows:

pc1
p2

= 3 ⇒ (y1 = A ∧ pc1
p1

6= 0 ∧ z1 = N1
1)

In general, we want to guarantee the non-injective agreement property for a participant
X in a session S on a set of data D. In addition to weak agreement it is required that
the participant with whom X plays in the session S, be in the expected role. As for
a given configuration we know the role played by each participant we remove from the
weak agreement formula the case which corresponds to the participants that are not in
the expected role. Moreover, to verify that we have the same value for data in D, we
use the equality between terms.

In our configuration, B and C do not play as initiators, so we keep only the case in
which y1 = A.

Agreement

Agreement on N1 and N2 of the initiator is guaranteed to the responder B in session
S1:
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if B completes a run of the protocol in session S1, as responder, with one
participant, let say p, then y1 = p and the participant p has previously been
running the protocol, as initiator, with B and they have the same values for
N1 and N2. Moreover each such run of B corresponds to a unique run
of p

This property is written in spl as:

pc1
p2

= 3 ⇒ y1 = A ∧ (pc1
p1

6= 0 ∧ z1 = N1
1 ∧ x1 = N2

1)

It should be clear that given an authentication property and a bounded cryptographic
protocol, one can systematically derive a formula expressing the property. Also, it is
interesting to notice that the formulae that express these properties do not use the
Secret(t) predicate. But, there is a general intuition that we can express authentication
properties in terms of secret. We will see later how the Secret predicate appears by
weakest precondition calculus, that we develop in the chapter 3.

Also, we need to express in our logic the initial conditions. In fact, this conditions are
“initial the intruder knows such or such message” or “initial the intruder does not know
such or such message”. All this conditions can be expressed using the Secret predicate
and its negation.

2.1.3 Why the Secret(t) is not enough?

The spl logic is an intuitive logic that is sufficient to express authentication and secrecy
properties for cryptographic protocols. But, our purpose is to develop a complete infer-
ence system for cryptographic protocols and if we try to define the weakest precondition
in spl logic we realize that the Secret predicate is not expressive enough to do that.

Let us consider the following protocol:

[pc = ℓ0 ∧ in(X, {x̃}k)] → pc := ℓ1

[pc = ℓ1] → add(X, x); pc := ℓ2

and the property E 6⊢ s. What should be the weakest precondition that ensures this
property at the end of this protocol? We want to say something like the intruder can
not derive s from E even if it can decrypt one time a message encrypted with a key k for
which he does not know its inverse. In the spl logic we can not express that. Therefore,
in the next section we introduce a modality that allows to express such conditions, which
is proper for induction and also provides a syntactic characterization of secrecy.

2.2 A syntactic characterization of secrecy

From now on we consider K ⊆ K be a fixed but arbitrary set of keys, such that ∅ 6=
K 6= K. Intuitively, this is the set of keys for which their inverses are supposed to be



38 CHAPTER 2. SECURITY PROPERTIES LOGICS

unknown for the intruder. Moreover, we denote by K−1 = {k | k′ ∈ K ∧ inv(k, k′)} the
set of keys for which their inverses are in K.

2.2.1 Message Transducers

A message transducer is a program that takes a set of messages and returns a set of
messages. Formally, message transducers are defined by the following grammar:

mt ::= λx · if x = {m}k then x|r

| pr1 | pr2 |
∑

k 6∈K

decr(·, k)

| mt1 + mt2 | mt∗

| mt1 · mt2

Intuitively, λx · if x = {m}k then x|r is a function, which takes a message and if this
is equal with {m}k return the submessage of the position r of it. pr1, pr2, decr are
decomposition functions that correspond respectively to left, right projection and de-
cryption. + is the usual non-deterministic choice, ∗ is the unbounded iteration and · is
the sequential concatenation.

The operational semantics of a message transducer is defined as a labelled transition
system over sets of messages by the following rules:

−

M
λx · if x = {m}k then x|r
−−−−−−−−−−−−−−−−−−−→ {{m}k |r

| {m}k ∈ M}

−

M
pr1
−−→ {m1 | (m1,m2) ∈ M}

−

M
pr2
−−→ {m2 | (m1,m2) ∈ M}

−

M

∑

k 6∈K

decr(·, k)

−−−−−−−−−−→ {m | {m}k ∈ M ∧ k 6∈ K}

M
mt1−−−→ M ′ M ′ mt2−−−→ M ′′

M
mt1 + mt2−−−−−−−−→ M ′ ∪ M ′′

−

M
mt∗
−−−→ M

M
mt
−−→ M ′ M ′ mt∗

−−−→ M ′′

M
mt∗
−−−→ M ′ ∪ M ′′

M
mt1−−−→ M ′ M ′ mt2−−−→ M ′′

M
mt1 · mt2−−−−−−−→ M ′′
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Let M be a set of messages and w a message transducer. We denoted by w(M), the set

of messages M ′ such that M
w
−→ M ′.

Definition 2.2 (accessible message)

The set of messages which are accessible by a message transducer w from a set of
messages M , denoted by w¹(M) is defined as follows:

w¹(M) =
⋃

w′¹w

w′(M)

where ¹ denotes the prefix relation with respect to concatenation “·”.

In the following corollary we give some immediate consequences of the message trans-
ducer semantics and the above definition.

Corollary 2.1

Let M, M ′ two sets of messages and w a message transducer. It holds

1. w(M ∪ M ′) = w(M) ∪ w(M ′)

2. w¹(M ∪ M ′) = w¹(M) ∪ w¹(M ′)

3. w(M) = w′(mt(M)), if w = mt · w′

4. w¹(M) = mt¹(M) ∪ w′
¹(mt(M)), if w = mt · w′

We will consider Id = (pr1 + pr2 +
∑

k 6∈K

decr(·, k))∗ is a particular message transducer.

This message transducer encodes the decomposition ability of the intruder. More pre-
cisely, the set of accessible messages by Id can be also obtained by the intruder only by
decomposition rules, starting from the same set E and knowing all keys except K−1.
This result is established formally by the following lemma.

Lemma 2.2

Let E be a set of messages, such that K \ K−1 ⊆ E. Then m ∈ Id¹(E) ⇒ E ⊢d m.

Proof:

Let us take an arbitrary m ∈ Id¹(E). By definition, it must exists some w ¹ Id such
that m ∈ w(E). Given that Id = (pr1 + pr2 +

∑
k 6∈K

decr(·, k))∗ it follows that any w ¹ Id

are finite concatenations of elementary transducers pr1, pr2 and
∑

k 6∈K

decr(·, k))∗. Now,

it is easy to show by induction on the length of the w sequence that if m ∈ w(E) then
E ⊢d m. The basic case, |w| = 0 is obvious: m ∈ w(E) means that m ∈ E and in turn
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E ⊢d m. Consider now the induction step. Assume the property holds for any w′ ¹ Id

of length n− 1 and take an arbitrary w ¹ Id with length n. Obviously, w has the form
mt ·w′ where mt is one of the elementary transducers used in Id and the length of w′ is
n − 1. Moreover, from the corollary 2.1 and m ∈ w(E) it follows that m ∈ w′(mt(E)).
From the induction hypothesis we know that mt(E) ⊢d m. Now we are almost done,
it remains to show that, for any m′ ∈ mt(E) we have E ⊢d m′. This is now obvious
because, mt can be either pr1 or pr2 or

∑
k 6∈K

decr(·, k))∗ and, in each case, it represents

a decomposition ability of the intruder (resp. left, right projection and decryption with
known keys from k 6∈ K.

Remark that we have not the equivalence. The intruder starting from a set of messages
E such that K \ K−1 ⊆ E only by decomposition rules can obtain more messages than
those accessible by Id from the same set. The intruder can also decrypt with keys from
K−1 if it can derive such keys by decomposition.

2.2.2 The protected modality

Let w ∈ (M×Pos)∗ be a sequence of pairs of form ({m}k, p). We define the message
transducer corresponding to w, denoted f(w), inductively on the length of w as follows:

f(ε) = Id

f(({m}k, p) · w) = Id · (λx · if x = {m}kthen x|p) · f(w)

From now on we use only message transducers of the form f(w) where w ∈ (M×Pos)∗

is a finite sequence of pairs of the form ({m}k, p). Henceforth, the message transducer
f(w) is tacitly identified with the sequence w.

Definition 2.3 (protected modality)

Let m, s be two messages and w ∈ (M×Pos)∗ be a message transducer. The predicate
m〈w〉

K
s, is true and we say that “the message s is protected in m despite w” if the

message s is not accessible by w from the message m, i.e. s can not be obtained from
m by means of decomposition or transducer use.

Formally,
m〈w〉

K
s ⇔ s 6∈ w¹(m)

This definition is easily generalized to sets of messages: Let M and S be sets of messages.
We say that the secrets S are protected in M despite w, denoted by M〈w〉

K
S, if it holds∧

m∈M,s∈S

m〈w〉
K

s.

Intuitively, the protected modality E〈w〉
K

S is a predicate asserting that given the in-
truder’s knowledge E, any message s ∈ S is protected by a key in K in any message
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the intruder can obtain from E by the decomposition rules and several oracle rules that
are deduced from the protocol. The oracle rules are represented as transducers.

Let us give an example to explain what we mean by “oracle rules”.

Example 2.1

Let K = {k}, that means the inverse of k is not known by the intruder, and let be the
following sequence of protocol run:

[pc = ℓ0 ∧ in(X, {I, x̃}k)] → pc := ℓ1

[pc = ℓ1] → add(X, x); pc := ℓ2

In this case, if the message ({I, N}k) can be derived by the intruder knowledge then
the intruder can obtain the value N even if the inverse key of k is unknown to him.
That is what we call “oracle rules that are deduce from the protocol”. Such a rule is
described by the pair ({I,N}k, 01) and corresponds to the elementary transducer λy ·
if y = {I, N}kthen N .

A direct consequence of the protected definition over sets of messages is the induction
stability.

Proposition 2.3

Let M,S be sets of messages, m be a message and w be a message transducer. We have
the following equivalence:

M〈w〉
K

S ∧ m〈w〉
K

S ≡ M ∪ {m}〈w〉
K

S

Also, the following equivalences hold:

Proposition 2.4

Let m and s be messages, w ∈ (M × Pos)∗ be a message transducer and (b, p) ∈
(M×Pos) be a pair of the form ({m}k, r). The following equations hold:

m〈(b, p) · w〉
K

s ⇔ m〈ε〉
K

s ∧ (m〈ε〉
K

b ∨ b|p〈w〉
K

s) (2.1)

(m1,m2)〈w〉
K

s ⇔ s 6= (m1,m2) ∧ m1〈w〉
K

s ∧ m2〈w〉
K

s (2.2)

{m′}k〈w〉
K

s ⇔ s 6= {m′}k ∧ m′〈w〉
K

s if k 6∈ K (2.3)

Proof:

m〈(b, p) · w〉
K

s ⇔ s 6∈ ((b, p) · w)¹(m)
⇔ s 6∈ (Id(m) ∪ (b, p)(Id(m)) ∪ w¹((b, p)(Id(m))))
⇔ s 6∈ Id(m) ∧ s 6∈ (b, p)(Id(m)) ∧ s 6∈ w¹((b, p)(Id(m)))
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⇔ m〈ε〉
K

s ∧ s 6∈ (b, p)(Id(m)) ∧ s 6∈ w¹((b, p)(Id(m)))
⇔ m〈ε〉

K
s ∧ (b 6∈ Id(m) ∨ s 6= b|p) ∧ (b 6∈ Id(m) ∨ s 6∈ w¹(b|p))

⇔ m〈ε〉
K

s ∧ (b 6∈ Id(m) ∨ s 6∈ w¹(b|p))

⇔ m〈ε〉
K

s ∧ (m〈ε〉
K

b ∨ (b|p〈w〉
K

s))

Following, we denote by w′ the message transducer w from which we remove the first
occurrence of Id.

(m1, m2)〈w〉
K

s ⇔ s 6∈ w¹((m1,m2))
⇔ s 6∈ w¹(Id((m1,m2)))
⇔ s 6∈ w′

¹({(m1,m2)} ∪ Id(m1) ∪ Id(m2))

⇔ s 6= (m1,m2) ∧ s 6∈ w′
¹(Id(m1)) ∧ s 6∈ w′

¹(Id(m2))

⇔ s 6= (m1,m2) ∧ m1〈w〉
K

s ∧ m2〈w〉
K

s

The equivalence 2.3 is similar to the previous case where Id({m
′}k) = {{m′}k}∪Id(m

′).

To illustrate the definition 2.3 of protected modality we give the following example:

Example 2.2

Let m = ({I, {N}k1}k2 , A) and K = {k1, k2}. Then, m〈ε〉
K

N is true since the set of
messages accessible from m by ε is {{I, {N}k1}k2 ; A} and N does not belong to it.

Let now consider the message transducer w = ({I, {N}k1}k2 , 01).({N}k1 , 0). Then,
m〈w〉

K
N is false since the set of messages accessible by w is:

M = {({I, {N}k1}k2 , A)}

∪ {{I, {N}k1}k2 ;A}

∪ {{N}k1}

∪ {N}

As N belongs to M , we have ¬m〈w〉
K

N .

2.2.3 Closure of messages

The protected modality takes into account only the decomposition ability of the intruder.
To ensure that the intruder cannot derive a message by composition rules, we used the
protected modality for a special set of secrets, which we called closed sets. Let us
consider an example:

Example 2.3

Let E = {s1, s2} be a set of messages. Then we have E〈w〉
K

(s1, s2). But we have both
E ⊢ (s1, s2) and ¬(s1, s2)〈w〉

K
(s1, s2).
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This example shows that we have to give particular care to the treatment of composed
secrets as they can be obtained either by composition or decomposition. To do so, we
define the closure under decomposition of a term.

Let M be a set of sets of messages and let m be a message. We use the notation:
m ⊎ M = {Mi ∪ {m} | Mi ∈ M}.

Definition 2.4 (closure for message)

Let m ∈ M a message. We define recursively the set of message sets mc(m), where
each message set of mc(m) is a closure for m as follows:

mc(m) = m ⊎





mc(m1) ∪ mc(m2) if m = (m1,m2)
mc(m′) ∪ mc(k) if m = {m′}k

{K−1} if m is atomic

where K−1 = {k−1 | k ∈ K}. A set M of messages is called closed, if for any m ∈ M
there exists M ′ ∈ mc(m) such that M ′ ⊆ M . In particular ∀A ∈ mc(m), A is closed.

Intuitively, a set A of messages is closed if for any message m of it there is a path in
the tree representation of m such that each message on this path is in A. Also A must
contain all keys in K−1.

Example 2.4

Consider the message m = ({A, N}k, B). Then mc(m) consists of the following sets:

K−1 ∪ {({A,N}k, B), {A,N}k, (A, N), A}
K−1 ∪ {({A,N}k, B), {A,N}k, (A, N), N}
K−1 ∪ {({A,N}k, B), {A,N}k, k}
K−1 ∪ {({A,N}k, B), B}.

The closure computation helps in preventing the intruder from making m by composition:
it tells us that it is sufficient to ensure that one of these sets of messages remains
completely unknown to the intruder.

In the remaining of this subsection we establish some key properties relating closed sets
of messages and the protected modality.

Proposition 2.5

Let S be a closed set of messages. Let E be a set of messages such that S∩E = ∅. Then,
E 6⊢c S. In other words, if S is closed then no message in S can be derived uniquely by
the composition rules.

Proof:

By contradiction, let assume ∃s ∈ S such that E ⊢c s. Choose s such that to be minimal,
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i.e. there is a derivation for E ⊢c s which does not contain any strict sub-derivation
E ⊢c s′ of a message s′ with s′ ∈ S. Three cases are possible:

• s is atomic. Then E ⊢c s ⇒ s ∈ E ⇒ E ∩ S 6= ∅ contradiction.

• s = (s1, s2) is a pair. Then E ⊢c s ⇒

– s ∈ E ⇒ E ∩ S 6= ∅ contradiction or

– E ⊢c s1 ∧ E ⊢c s2. Since S is closed then at least one of s1 or s2 is in S,
hence s is not minimal, contradiction.

• s = {m}k is an encrypted message. Similar to the previous case.

Proposition 2.6

Let m, s be two messages and E be a set of messages such that K\K−1 ⊆ E. If ¬m〈ǫ〉
K

s
then E, m ⊢ s.

Proof:

By definition ¬m〈ǫ〉
K

s ⇔ s ∈ Id¹({m}). Using lemma 2.2 we obtain E, m ⊢d s for all
E such that K \ K−1 ⊆ E. Consequently E, m ⊢ s.

Corollary 2.7

Let s be a message and E be a set of messages such that K \ K−1 ⊆ E. If E 6⊢ s then
E〈ǫ〉

K
s.

Proof:

If we suppose that ¬E〈ǫ〉
K

s we have that there is m ∈ E such that ¬m〈ǫ〉
K

s and using
Proposition 2.6 we obtain that E,m ⊢ s. Since m ∈ E we obtain E ⊢ s, contradiction.

We come now to the main result about closed sets of messages. Intuitively, a message
m cannot be deduced by the intruder from its knowledge E iff there exists a closed set
belonging to mc(m) and protected in E.

Theorem 2.8

Let m be a message and E a set of messages such that K \K−1 ⊆ E. Then, E 6⊢ m iff
there exists a set of messages A ∈ mc(m) s.t. E〈ǫ〉

K
A.
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Proof:

“⇒”: E 6⊢ m ⇒ ∃A ∈ mc(m) s.t. E〈ǫ〉
K

A

By induction on the structure of m.

1. Case m atomic. Then, A = mc(m) = {{m}} and using the Corollary 2.7 we
obtain that E〈ǫ〉

K
A.

2. Case of pair m = (m1,m2). From E 6⊢ m we have E 6⊢ m1 or E 6⊢ m2. Using the
induction hypothesis we have ∃A1 ∈ mc(m1) such that E〈ǫ〉

K
A1 or ∃A2 ∈ mc(m2)

such that E〈ǫ〉
K

A2. From E 6⊢ m and Corollary 2.7 we obtain E〈ǫ〉
K

m. Hence,
for A = {m} ∪ A1 or A = {m} ∪ A2 we have A ∈ mc(m) and E〈ǫ〉

K
A.

3. Case of encrypted message with a key K, m = {m1}k1 . Similar to the previous
case.

“⇐”:∃A ∈ mc(m) s.t. E〈ǫ〉
K

A ⇒ E 6⊢ m.

Let us first prove that we have E 6⊢ A if A closed and E〈ǫ〉
K

A.

By contradiction, assume there exists messages a ∈ A such that E ⊢ a. Let consider
such an a which is minimal in the sense that, in its normal derivation from E there are
no any other message from A. We distinguish three cases:

• a ∈ E, contradiction with E〈ǫ〉
K

A.

• last derivation step is a composition step:

– case of pairing, a = (a1, a2). Since a ∈ A and A is closed it means that either
a1 or a2 are in A. Therefore, a is not minimal and hence contradiction

– case of encryption, a = {a′}k, this case is similar to the previous one.

• last derivation step is a decomposition step:

Since the derivation is in normal form we conclude that all steps are decomposition
steps. We distinguish again two cases: between decomposition steps

– there are decryption steps using keys k ∈ K−1. Again we have a contradiction
with the minimality of a because K−1 ⊆ A.

– there are no decryption steps using keys k ∈ K−1. In this case a ∈ Id¹(E)
and because a ∈ A this contradicts the hypothesis E〈ǫ〉

K
A.

Now let A ∈ mc(m) s.t. E〈ǫ〉
K

A. A ∈ mc(m) implies that A is closed. So we have
E 6⊢ A. Since m ∈ A it holds E 6⊢ m.
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2.2.4 Well-formed modalities

Let us introduce the notation E〈wi, Si〉I for
∧
i∈I

E〈wi〉K
Si. Our purpose now is to define

conditions on wi and Si such that for any set E of messages, if E〈wi, Si〉I then m〈wi, Si〉I ,
for any message m derivable from E. In other words, we look for a condition that
ensures the stability of protection under the derivation rules that define Dolev and
Yao’s intruder.

We have seen in the example 2.3 that we need to consider only closed sets of secrets.
But this is not sufficient, as showed by the following example.

Example 2.5

Let E = {{s}k1 , k2} be a set of messages with k1, k2 symmetric keys and let b =
{{s}k1}k2. The message transducer (b, 00) does not help getting the secret s since it
can not be applied to any message of E (E does not contain the message b). Therefore,
the predicate E〈(b, 00)〉

K
s holds.

However, the term b is derivable from E using the encryption rule and then, the message
transducer (b, 00) can be used to get the secret s.

Hence, we need to deal also with the inner message transducers. To do so, let us
introduce some notation. Let (b, p) be a message transducer. Then, we denote by
NT(b, p) the next message transducer in b from the top that dominates b|p , if it exists.
Before giving a formal definition let us consider an example.

Example 2.6

Let b be the message {({N}k′ , A)}k with k, k′ ∈ K. Then, NT(b, 000) = ({N}k′ , 0). On
the other hand NT(b, 01) and NT(b, 00) are not defined.

To formalize the definition of the next message transducer we define the first protecting
position.

Definition 2.5 (first protecting position FP)

Let m be a message and p a critical position in m. Then, the first protecting position,
denoted by FP(m, p), is defined recursively on the structure of m as follows:

• if m is a constant or a variable then FP(m, p) is undefined.

• if m = (m1,m2) and p = 0 · p′ then FP(m, p) = 0 · FP(m1, p
′). Similarly, when

p = 1 · p′.
If p = ε then FP(m, p) is undefined.

• if m = {m′}k and k ∈ K then FP(m, p) = ε.

• if m = {m′}k and k 6∈ K then FP(m, p) = 0 · FP(m′, 0−1p).
If p = ε then FP(m, p) is undefined.
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This definition is illustrated in Fig. 2.1 where we suppose that on the path leading from
the root to q there is no other position q′ such that m(q′) = encr and m(q′ · 1) ∈ K.

k′ /∈ K

encr

p

m :

ε

k ∈ K

encr

encrq

k ∈ Kr′

r

Figure 2.1: The position q is the first protecting position FP(m, p)

Intuitively, FP(m, p) is the position of the first submessage in m from the root that
dominates p, and which protects the submessage of the position p by a key from K if it
exists.

Example 2.7

Consider the message m = ({A, {N}k1}k2 , N), where k1, k2 ∈ K. Let p = 0010 and
p′ = 1. Thus, m|p = m|p′

= N . Then, we have FP(m, p) = 0, which corresponds to the

key k2; FP(m, p′) is, however, undefined.

Now, we are ready to give the formal definition for the next message transducer of a
message transducer.

Definition 2.6 (next message transducer NT)

Let (b, p) be a message transducer. Then the next message transducer in b from
the top that dominates p (denoted by NT(b, p)) is defined as follows:

NT(b, p) =

{
(b|0q

, 0q−1p) if FP(b|0 , 0
−1p) = q

undefined otherwise

This definition is illustrated in Fig. 2.2 where q = FP (b|0 , 0
−1p).

We have now everything we need to express the conditions that guarantee stability
under the intruder’s derivations:

Definition 2.7 (well-formed)

(wi, Si)i∈I is called well-formed, if the following conditions are satisfied for every i ∈ I:

1. Si is closed,
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k′ /∈ K

encr

p
k ∈ K

encr

encrq

k ∈ Kr′

r

encr

k ∈ K

b :

0

m :

b|0 :

Figure 2.2: The message transducer (m, q−1p) is the next message transducer NT(b, p)

2. if wi = (b, r).w, then the following conditions are satisfied:

(a) there exists j ∈ I such that wj = w and Si ⊆ Sj,

(b) if there exists a term transducer (b1, r1) = NT(b, r), then there exists k ∈ I
such that either b ∈ Sk or wk = (b1, r1).w and Si ⊆ Sk.

The main property of E〈wi, Si〉I is that it is stable under the intruder’s deduction rules.
Indeed, we have:

Theorem 2.9

Let E be a set of messages such that E〈wi, Si〉I and let (wi, Si)i∈I be well-formed. More-
over, let m be a message with E ⊢ m. Then, m〈wi, Si〉I .

Proof:

Before tackling the proof, we introduce the following definition: We say that m is a
derivation-minimal counter-example, if the following conditions are satisfied:

1. E ⊢ m,

2. ¬m〈wi, Si〉I and

3. there is a derivation for E ⊢ m which does not contain any strict sub-derivation
E ⊢ m′ of a message m′ with ¬m′〈wi, Si〉I .

We derive a contradiction by case analysis on the last derivation step in E ⊢ m.

1. m ∈ E. This, contradicts the assumption E〈wi, Si〉I .

2. Case of encryption with a key from K. Thus, m = {m1}k1 , E ⊢ m1 and
E ⊢ k1 with k1 ∈ K. Since m is a derivation-minimal counter-example, we
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have m1〈wi, Si〉I and k1〈wi, Si〉I . Since ¬m〈wi, Si〉I , there exists i ∈ I such that
¬m〈wi〉K

Si. It follows that wi 6= ǫ and hence wi = (b, r).w and m = b and
¬b|r〈w〉

K
Si (∗).

If NT(b, r) does not exist then we have ¬m1〈ε〉K
Si, and hence, ¬m1〈wi〉K

Si, which
contradicts the derivation-minimally of m.

So, let (b1, r1) = NT(b, r). From definition, we have that b|r = b1|r1
(∗∗).

Since (wi, Si)i∈I is well-formed, following the definition 2.7(2b) there exists j ∈ I
such that either b ∈ Sj or wj = (b1, r1).w and Si ⊆ Sj .

If we suppose that b ∈ Sj , since Sj is closed and m = b, we obtain that either
m1 ∈ Sj or k1 ∈ Sj and hence either ¬m1〈wj〉K

Sj or ¬k1〈wj〉K
Sj , contradiction.

Hence wj = (b1, r1).w and Si ⊆ Sj . From m1〈wj〉K
Sj , we obtain b1|r1〈w〉

K
Sj and

using (∗∗) we obtain b1|r1
〈w〉

K
Sj (∗ ∗ ∗).

From (∗), (∗∗) and the definition 2.7(2a) we obtain a contradiction.

3. Case of encryption with a key which is not in K. Thus, m = {m1}k1 , E ⊢ m1 and
E ⊢ k1 with k1 6∈ K. Since m is a derivation-minimal counter-example, we have
m1〈wi, Si〉I , and then we obtain that m〈wi, Si〉I , contradiction.

4. Case of pairing. Similar to the previous case.

5. Case of projection. This also contradicts the derivation-minimally assumption.

6. Case of decryption. Thus, m1 = {m}k1 , E ⊢ m1 and E ⊢ k−1
1 . Since m is

a derivation-minimal counter-example, we have m1〈wi, Si〉I and k−1
1 〈wi, Si〉I . If

we suppose that k1 6∈ K, then we obtain that either ¬m1〈wi, Si〉I or m〈wi, Si〉I ,
contradiction.

If k1 ∈ K, since for all i ∈ I, Si are closed, we obtain that k−1
1 ∈ Si, contradiction

with k−1
1 〈wi, Si〉I .

2.3 Term Transducer Logic ttl

In this section we enrich the spl logic in such way that we can provide a complete and
effective weakest precondition calculus for bounded cryptographic protocols.

2.3.1 Syntax and Semantics

By analogy to message transducers w defined for finite sequences from (M × Pos)∗

we will consider here term transducers, defined for finite sequences from (T × Pos)∗.
Intuitively, message transducers have been restricted to messages (i.e, ground terms)
whereas, in the case of term transducers we want to consider general terms i.e, con-
taining free variables. Nevertheless, contrarily to message transducers for which an
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operational semantics exists and describes their ability to transform sets of messages,
term transducers remain only a syntactic notion used in the definition of the ttl logic
below. Term transducers w are intended to be interpreted, that is, given a ground sub-
stitution σ instantiateing all the free variables occurring in w, we shall denote by wσ
the message transducer obtained from w by substituting all free variables according to
σ, formally:

(
(t1, p1) · ... · (tn, pn)

)
σ ≡ (t1σ, p1) · ... · (tnσ, pn)

Also, in order to express general secrecy properties that involve variables, we introduce
a new set of function symbols B. We denote by BX the set {x.f | f ∈ B, x ∈ X}. Given
a substitution σ that associates a message m to x, it will associate a set in mc(m) to
x.f . We defined extended terms as terms, except that we allow function symbols in
B to occur applied to variables.

The syntax of ttl is defined in Table 2.2, where X is a fixed second-order variable that
ranges over sets of messages, S is second-order variable that ranges over closed sets of
extended terms, f is a meta-variable that ranges over B, and x is a meta-variable that
ranges over the set X of first-order variables. First-order variables range over messages;
t is a meta-variable over terms. Moreover, w ∈ (T × Pos)∗ is a term transducer. The
formulae are interpreted over a restricted set of configurations Conf0 = {(E, σ, pc) |
(E, σ, pc) ∈ Conf ∧K\K−1 ⊆ E}. This means that we only consider the configurations
in which all the keys that are not in K are known by the intruder.

ϕ,ψ ::= X
∀

w ∀

K
S | x

∀

w ∀

K
S | t

∀

ε ∀

K
x.f | x = t | pci

p = ℓ | ⊤ | ϕ ∧ ψ | ∀xϕ | ∃fϕ | ¬ϕ

Table 2.2: The set of formulae ttl

Definition 2.8 (ttl semantics)

The semantics of ttl is defined inductively on the structure of formula:

• [[X

∀

w ∀

K
S]] = {(E, σ, pc) | E〈wσ〉

K
Sσ}

• [[x

∀

w ∀

K
S]] = {(E, σ, pc) | xσ〈wσ〉

K
Sσ}

• [[t

∀

ε ∀

K
x.f ]] = {(E, σ, pc) | tσ〈ε〉

K
(x.f)σ}

• [[x = t]] = {(E, σ, pc) | σ(x) = σ(t)}.

• [[pci
p = ℓ]] = {(E, σ, pc) | pci

p = ℓ}

• [[¬ϕ]] = Conf0 \ [[ϕ]]

• [[⊤]] = Conf0

• [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]]
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• [[∀xϕ]] =
⋂

x0∈M

{
(E, σ, pc) | (E, σ ⊕ [x 7→ x0], pc) ∈ [[ϕ]]

}

• [[∃fϕ]] =
⋃

f0∈B

{
(E, σ, pc) | (E, σ ⊕ [f 7→ f0], pc) ∈ [[ϕ]]

}

We use the notations (E, σ, pc) |= ϕ for (E, σ, pc) ∈ [[ϕ]] and X

∀

6w ∀

K
S for ¬X

∀

w ∀

K
S.

Also, given a term s, we write X

∀

w ∀

K
s instead of X

∀
w ∀

K
{s}. We identify formulae

modulo the usual properties of boolean connectives such as associativity and commuta-
tivity of ∧, ∨, distributivity etc... and use ⇒ as the classical logical implication.

In addition, for convenience of notation, we extend the set of formulae ttl with the
following two formulae:

(X,x)

∀

w ∀
K

S and t

∀

w ∀

K
S

The semantics of the newly introduced formulae is:

• [[(X, x)

∀

w ∀

K
S]] = [[X

∀

w ∀

K
S]] ∩ [[x

∀

w ∀

K
S]]

• [[t

∀

w ∀

K
S]] = {(E, σ, pc) | tσ〈wσ〉

K
Sσ}

We notice that any formula of the first form (X, x)

∀

w ∀
K

S may also be expressed
directly in ttl i.e, (X,x)

∀

w ∀

K
S ≡ X

∀

w ∀

K
S ∧ x

∀

w ∀

K
S. Further, we prove that also

formula of the second form t

∀

w ∀

K
S is definable in ttl.

Proposition 2.10

Let t be a term, let S be a set of extended terms, let w be a term transducer and let J
be defined as follows:

J (t, w, S) =





x

∀

w ∀

K
S if t = x ∈ X

G(t, S) if t = a ∈ A
J (t1, w, S) ∧ J (t2, w, S) ∧ G(t, S) if t = (t1, t2)
J (t1, w, S) ∧ G(t, S) if t = {t1}k ∧ k 6∈ K
G(t, S) if t = {t1}k ∧ k ∈ K∧

w = ǫ
G(t, S) ∧ (µ(b, t) ⇒ J (b|r, w1, S)) if t = {t1}k∧

k ∈ K ∧ w = (b, r).w1

where G(t, S) =
∧

s∈S\BX )

¬µ(t, s) ∧
∧

s∈S∩BX
t

∀

ε ∀

K
s

Then, t

∀

w ∀

K
S ≡ J (t, w, S), i.e., both formulae are equivalent.

Proof:

First, notice that if µ(t1, t2) 6= ⊥, then (E, σ, pc) ∈ µ(t1, t2) iff t1σ = t2σ, and if
µ(t1, t2) = ⊥, then for any (E, σ, pc), it holds t1σ 6= t2σ.



52 CHAPTER 2. SECURITY PROPERTIES LOGICS

We give the proof for the first case. We prove by induction on depth(t) + |w| that
t

∀

w ∀

K
S ≡ J (t, w, S).

1. If t = x ∈ X, then J (t, w, S) = x

∀

w ∀

K
S = t

∀

w ∀

K
S.

2. If t = a ∈ A, then J (a, w, S) = G(a, S) =
∧

s∈S\BX )

¬µ(a, s) ∧
∧

s∈S∩BX
a

∀

ε ∀

K
s.

Then we have

(E, σ, pc) ∈ [[
∧

s∈S\BX )

¬µ(a, s) ∧
∧

s∈S∩BX
a

∀

ε ∀

K
s]] iff

∧
s∈S\BX

sσ 6= a ∧
∧

s∈S∩BX
a〈ε〉

K
sσ iff

∧
s∈S\BX

a〈wσ〉
K

sσ ∧
∧

s∈S∩BX
a〈ε〉

K
sσ iff

(E, σ, pc) ∈ [[a

∀

w ∀

K
S]].

3. If t = (t1, t2), then J (t, w, S) = J (t1, w, S) ∧ J (t2, w, S) ∧ G(t, S).

By induction hypothesis, we have J (t1, w, S) ≡ t1

∀

w ∀
K

S and

J (t2, w, S) ≡ t2

∀

w ∀

K
S. We obtain

(E, σ, pc) ∈ [[J (t, w, S)]] iff

(E, σ, pc) ∈ [[t1
∀

w ∀

K
S ∧ t2

∀

w ∀

K
S ∧ G(t, S)]] iff

t1σ〈wσ〉
K

Sσ∧ t2σ〈wσ〉
K

Sσ∧
∧

s∈S\BX

tσ〈wσ〉
K

sσ∧
∧

s∈S∩BX
tσ〈ε〉

K
sσ iff (prop. 2.4)

tσ〈wσ〉
K

Sσ iff

(E, σ, pc) ∈ [[t

∀

w ∀

K
S]].

4. The case t = {t1}k ∧ k 6∈ K is similar to the previous one.

5. If t = {t1}k ∧ k ∈ K ∧ w = ǫ, then we have (E, σ, pc) ∈ [[t

∀

w ∀

K
S]] iff

tσ〈ǫ〉
K

Sσ iff
∧

s∈S\BX

tσ 6= sσ ∧
∧

s∈S∩BX
tσ〈ε〉

K
sσ iff

(E, σ, pc) ∈ [[G(t, S)]] iff

(E, σ, pc) ∈ [[J (t, w, S)]].

6. If t = {t1}k ∧ k ∈ K ∧ w = (b, r).w1, then

J (t, w, S) = G(t, S) ∧ ((µ(b, t) ⇒ J (b|r, w1, S))

By induction hypothesis, we have b|r

∀

w1 ∀

K
S ≡ J (b|r , w1, S). We obtain

(E, σ, pc) ∈ [[t

∀

w ∀

K
S]] iff

tσ〈ǫ〉
K

Sσ ∧ (bσ = tσ ⇒ (b|r)σ〈w1σ〉K
Sσ) iff

(E, σ, pc) ∈ [[t

∀

ε ∀

K
S ∧ (¬µ(b, t) ⇒ b|r

∀

w1 ∀

K
S))]] iff

(E, σ, pc) ∈ [[t

∀

ε ∀

K
S ∧ (¬µ(b, t) ⇒ J (b|r , w1, S))]] iff
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(E, σ, pc) ∈ [[G(t, S) ∧ (¬µ(b, t) ⇒ J (b|r, w1, S))]] iff

(E, σ, pc) ∈ [[J (t, w, S)]].

From now on, we tacitly identify t

∀

w ∀

K
S and J (t, w, S).

2.3.2 Embedding of spl in ttl

In this section we prove that the predicate Secret(t) of spl logic can be expressed in
ttl logic. Therefore, the secret and authentication properties that can be expressed in
spl logic (see section 2.1.2) can also be expressed in ttl logic.

Let us first to extend the notion of closure sets of messages to sets of extended terms.
The definition is similar except that we have to consider two new cases:

tc(t) =





t ⊎ (tc(t1) ∪ tc(t2)) if t = (t1, t2)
t ⊎ (tc(t′) ∪ tc(k)) if t = {t′}k

t ⊎ {K−1} if t is atomic or t ∈ BX
x.f ⊎ {K−1} if t = x is a variable

where f is a fresh function symbol.

Given a term t, let Secret(t) denote the ttl formula ∃
−→
f

∨
S′∈tc(t)

X

∀

ǫ ∀

K
S′ where

−→
f is

the set of all fresh variables f ∈ B that occur in tc(t).

Theorem 2.11

Let t be a term. Then, [[Secret(t)]] = [[Secret(t)]].

Proof:

Using the Definitions 2.1 and 2.8, we have

(E, σ, pc) ∈ [[Secret(t)]] iff

(E, σ, pc) ∈ ∃
−→
f

⋃
S′∈tc(t)

[[X

∀

ǫ ∀

K
S′]] iff

∃
−→
f ∃S′ ∈ tc(t) s.t. (E, σ, pc) ∈ [[X

∀

ǫ ∀

K
S′]] iff

∃
−→
f ∃S′ ∈ tc(tσ) s.t. E〈ǫ〉

K
S′σ iff (using Proposition 2.8)

E 6⊢ tσ iff (E, σ, pc) ∈ [[Secret(t)]].
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Chapter 3

Weakest Precondition Calculus

In this chapter we introduce a weakest precondition calculus for bounded cryptographic
protocols using ttl. More precisely, we show that the weakest liberal precondition for
input and respectively output actions can be expressed in the universal fragment of ttl

called ttl∀.

Our formalization of bounded cryptographic protocol consists of the actions, sequen-
tial composition and non-deterministic choice. The rules for composition and non-
deterministic choice are standard. Therefore, we focus on the axioms for the actions.
That is, for each action, output respectively input action, we show that we can express
the weakest liberal precondition in ttl∀. We choose weakest liberal precondition and not
weakest precondition, because, in cryptographic protocol verification, nontermination
is not considered as an incorrect behavior.

Later on, we will study the decidability of the satisfiability problem of a ttl formula. We
prove decidability only for the existential fragment of ttl (i.e., formulae in ttl∃) and
undecidability in the general case. This result entails the non-existence of a complete
and effective Hoare logic [Hoa69] for bounded cryptographic protocols and full ttl.

Definition 3.1 (weakest liberal precondition [Dij76])

The weakest liberal precondition of a set of configurations C ⊆ Conf with respect
to an action α, denoted wlp(α, C), is defined to be the set of configurations c, such that
whenever action α is allowed in c, it leads to a configuration in C. Formally

wlp(α, C) ::= {(E, σ, pc) | ∀(E′, σ′, pc′) · (E, σ, pc)
α

−→ (E′, σ′, pc′) ⇒ (E′, σ′, pc′) ∈ C}.

Given a formula ϕ, we use wlp(α, ϕ) instead of wlp(α, [[ϕ]]) to denote the weakest liberal
precondition of a formula ϕ ∈ ttl. We will show that wlp(α,ϕ) is effectively expressible
in the universal fragment of ttl, denoted by ttl∀. The formulae of ttl∀ are of the
form:

55
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ϕ,ψ ::= X

∀

w ∀

K
S | (X, x)

∀

w ∀

K
S | t

∀

ε ∀

K
x.f | x = t | pci

p = ℓ | x 6= t | pci
p 6= ℓ

| ⊤ | ⊥ | ϕ ∧ ψ | ϕ ∨ ψ | ∀x̃ϕ | ∃fϕ

Let us remark that, as shown in chapter 2, most security properties (authentication and
secrecy at least) can be expressed by such formulae. Further we define wlp(Π, ϕ) action
by action.

We deal only with formula of the form (X, x)

∀

w ∀

K
S which is equivalent with

X

∀

w ∀

K
S ∧ x

∀

w ∀

K
S. In fact, in order to compute the weakest liberal precondition of

a formula x

∀

w ∀

K
S we need to relate the variable x to its context X.

3.1 Output actions

Throughout this section let α = [pci
p = ℓ] −→ add(X, t); pci

p := ℓ′ be an output action.

We show that we can express wlp(α, ϕ) for any formula ϕ ∈ ttl∀.

Definition 3.2

We define the function ŵlp, which gives the weakest liberal precondition for an output
action α = [pci

p = ℓ] −→ add(X, t); pci
p := ℓ′ in ttl∀, as follows:

ŵlp(α, ϕ)
def
= pci

p = ℓ ⇒ ϕ ∧ J (t, w, S) if ϕ ∈ {X

∀

w ∀

K
S, (X, x)

∀

w ∀

K
S}

ŵlp(α, ϕ)
def
= pci

p = ℓ ⇒ ϕ if ϕ ∈ {x 6= t′, x = t′, pcj
q = ℓ′′,

t

∀

ε ∀

K
x.f,⊤,⊥} and q 6= p or j 6= i

ŵlp(α, pci
p = ℓ′′)

def
= pci

p = ℓ ⇒ ℓ′ = ℓ′′

ŵlp(α, ϕ ∨ ψ)
def
= ŵlp(α,ϕ) ∨ ŵlp(α, ψ)

ŵlp(α, ϕ ∧ ψ)
def
= ŵlp(α,ϕ) ∧ ŵlp(α, ψ)

ŵlp(α, ∀x̃ϕ)
def
= ∀x̃ŵlp(α, ϕ) if var (α) ∩ x̃ = ∅

ŵlp(α, ∃fϕ)
def
= ∃f ŵlp(α, ϕ)

We can see that for any formula ϕ ∈ ttl∀, ŵlp(α,ϕ) ∈ ttl∀. Moreover, we have the
following result.

Theorem 3.1

The wlp-calculus of definition 3.2 is sound and complete for output actions
α = [pci

p = ℓ] −→ add(X, t); pci
p := ℓ′

wlp(α, [[ϕ]]) = [[ŵlp(α, ϕ)]].
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Proof:

We have to prove the equivalence:

(E, σ, pc)
α

−→ (E′, σ′, pc′) ⇒ (E′, σ′, pc′) ∈ [[ϕ]] iff (E, σ, pc) ∈ [[ŵlp(α, ϕ)]]

Let us consider the case ϕ = X

∀

w ∀

K
S (respectively ϕ = (X, x)

∀

w ∀

K
S) all others

cases are direct consequences of semantics definition 2.8 and the ŵlp definition 3.2.

We have ŵlp(α, X

∀

w ∀
K

S) = pci
p = ℓ ⇒ X

∀

w ∀

K
S ∧ t

∀
w ∀

K
S

To prove the equivalence we use the induction stability property of the protected modal-
ity (proposition 2.3) and the implication m〈w〉

K
S ⇒ m〈ε〉

K
S.

(E, σ, pc)
α

−→ (E′, σ′, pc′) ⇒ (E′, σ′, pc′) ∈ [[X
∀

w ∀

K
S]] iff

pci
p = ℓ ∧ (E′, σ′, pc′) = (E ∪ {tσ}, σ, pc[pci

p ← ℓ′]) ⇒ (E′, σ′, pc′) ∈ [[X

∀

w ∀

K
S]] iff

pci
p = ℓ ⇒ (E ∪ {tσ}, σ, pc[pci

p ← ℓ′]) ∈ [[X

∀

w ∀

K
S]] iff

pci
p = ℓ ⇒ E ∪ {tσ}〈wσ〉

K
Sσ iff

pci
p = ℓ ⇒ E〈wσ〉

K
Sσ ∧ tσ〈wσ〉

K
Sσ iff

(E, σ, pc) ∈ [[pci
p = ℓ ⇒ X

∀
w ∀

K
S ∧ t

∀

w ∀

K
S]] iff

(E, σ, pc) ∈ [[ŵlp(α,X
∀

w ∀

K
S)]]

Let us give a short example of a wlp-calculus for an output action:

Example 3.1

Let t = ({y,M}k, {N, z}k) be a term, α = [pci
p = ℓ] −→ add(X, t); pci

p := ℓ′ an output

action and ϕ = X

∀

({N, x}k, 01) ∀

K
N2 be a postcondition. Then,

ŵlp(α,ϕ) = pci
p = ℓ ⇒ X

∀

({N, x}k, 01) ∀

K
N2 ∧ t

∀

({N, x}k, 01) ∀

K
N2

t

∀

({N, x}k, 01) ∀

K
N2 = J (t, ({N, x}k, 01), N2)

= ({y, M}k, {N, z}k)

∀

({N, x}k, 01) ∀

K
N2

= {y, M}k

∀

({N, x}k, 01) ∀

K
N2 ∧ {N, z}k

∀

({N, x}k, 01) ∀

K
N2

∧({y, M}k, {N, z}k) 6= N2

= {y, M}k 6= N2 ∧ [(y = N ∧ x = M) ⇒ x

∀

ε ∀

K
N2]

∧{N, z}k 6= N2 ∧ [z = x ⇒ x

∀

ε ∀

K
N2]

= [(y = N ∧ x = M) ⇒ x

∀

ε ∀

K
N2] ∧ [(z = x) ⇒ x

∀

ε ∀

K
N2]

Therefore,

ŵlp(α, ϕ) = pci
p = ℓ ⇒ X

∀

({N,x}k, 01) ∀

K
N2 ∧

[(y = N ∧ x = M) ⇒ x

∀

ε ∀

K
N2] ∧ [(z = x) ⇒ x

∀

ε ∀

K
N2]
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3.2 Input actions

Let α = [pci
p = ℓ ∧ in(X, t(x̃))] −→ pci

p := ℓ′ be an input action. We show that we can

express wlp(α, ϕ) for any formula ϕ ∈ ttl∀. To do so, we need to give a few definitions
and prove several intermediate results.

The definition 2.7 has introduced well-formed modalities i.e, (wi, Si)i∈I is well-formed.
As now we are dealing with formulae, we extend this notion to well-formed formula, in
the same sense.

Definition 3.3 (well-formed formula)

A formula Φ is well-formed, if for any term transducer w and closed set of extended
terms S, whenever Φ ⇒ X

∀

w ∀

K
S, there exist (wi, Si)i∈I well-formed, such that Φ ⇒∧

i∈I

X

∀

wi ∀

K
Si and (w,S) ∈ (wi, Si)i∈I .

The main property satisfied by well-formed formulae is a stability property given by
the following corollary, which is a direct consequence of definitions 2.7 and 3.3 and
theorem 2.9.

Corollary 3.2

Let Φ be a well-formed formula such that Φ ⇒ X

∀

w ∀

K
S and let (E, σ, pc) ∈ [[Φ]]. If m

is a message such that Eσ ⊢ m, then Φ ⇒ m〈wσ〉
K

Sσ.

The property of this corollary turns out to be crucial for developing a complete weakest
precondition calculus and where well-formedness is preserved. Therefore, we introduce
the function H which takes as arguments a formula X

∀

(t, p) · w ∀

K
S and computes

the weakest (the largest w.r.t. set inclusion) well-formed formula H(X

∀

(t, p) · w ∀

K
S),

such that H(X

∀

(t, p) · w ∀

K
S) ⇒ X

∀

(t, p) · w ∀

K
S. The intuition follows from the

Definition 2.7: in the case that the term transducer (t, p) contains an inner term
transducer (t1, p1), either t cannot be built or it doesn’t help; moreover, the formula
H(X

∀

(t, p) · w ∀

K
S) is closed with respect to suffixes of w. The inductive definition of

H is given below:

H(X

∀

(t, p) · w ∀

K
S) =





X

∀

(t, p) · w ∀

K
S ∧H(X

∀

w ∀

K
S)

– if NT((t, p)) is undefined

X

∀

(t, p) · w ∀

K
S ∧H(X

∀

w ∀

K
S)

∧
(
H(X

∀

(b1, p1) · w ∀

K
S) ∨

∨
S′∈tc(b)

X

∀

ǫ ∀

K
S′

)

– if (b1, p1) = NT((b, p))
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A direct consequence of H definition and the well-formed formula definition 3.3 is the
following proposition:

Proposition 3.3

Let Φ be a well-formed formula. Let w be a nonempty term transducer and S a closed
set of terms such that Φ ⇒ X

∀

w ∀

K
S. Then Φ ⇒ H(X

∀

w ∀

K
S).

We remind from section 2.2, that given a term t, Secret(t) ::=
∨

S′∈tc(t)

X

∀

ǫ ∀

K
S′. There-

fore, being in a state (E, σ, pc), in order to be able to make an input t(x̃), such that x̃
are instantiated by ρ, it must be that (E, σ, pc) 6∈ [[Secret(tρ)]], namely t(σ⊕ ρ) must be
derivable from E.

The following lemma gives the weakest condition that has to be satisfied in a configu-
ration c, such that if in the next step x is instantiated by an input action of the form
[pci

p = ℓ ∧ in(X, t(x̃))] −→ pci
p := ℓ′, where x ∈ x̃, the reached configuration c′ satisfies

(X, x)

∀

w ∀

K
S.

The key idea can be explained by considering the sequence of actions:

[pc = ℓ0 ∧ in(X, {x}k)] → pc := ℓ1

[pc = ℓ1] → add(X, x); pc := ℓ2

If a secret s that appears in x, it has to be protected, then it has to appear in x under
an encryption. Thus, before executing the sequence of actions given above, it should
be the case that even if we provide the intruder with the term transducer that takes as
input {x}k and yields x, it is not possible to derive s.

Lemma 3.4

Let t be a term, S a closed set of extended terms, w a term transducer, x a variable and
Px,t the set of critical positions of x in t. Let

K(t, x, w, S) = X

∀

w ∀

K
S ∧

∧

p=FP(t,px),px∈Px,t

H(X

∀

(t|p , p
−1px) · w ∀

K
S).

Let E be a set of terms, pc and pc′ control point vectors, and ρ, σ ground substitutions
such that dom(ρ) = x̃, x ∈ x̃, dom(σ) ∩ x̃ = ∅. Let Φ a well-formed formula such that
whenever E ⊢ t(σ ⊕ ρ), it holds

(E, σ ⊕ ρ, pc′) ∈ [[(X, x)

∀

w ∀

K
S]] iff (E, σ, pc) ∈ [[Φ]]

Then [[Φ]] = [[ρ(K(t, x, w, S))]].

Proof:

“⇒”: (E, σ ⊕ ρ, pc′) ∈ [[(X, x)

∀

w ∀

K
S]] ⇒ (E, σ, pc) ∈ [[ρ(K(t, x, w, S))]]

We have that (E, σ ⊕ ρ, pc′) ∈ [[(X, x)

∀

w ∀

K
S]] iff
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E〈w(σ ⊕ ρ)〉
K

S(σ ⊕ ρ) ∧ xρ〈w(σ ⊕ ρ)〉
K

S(σ ⊕ ρ) (∗)

We have to prove that

(E, σ, pc) ∈ [[X

∀

wρ ∀

K
Sρ ∧

∧

p = FP(t, px)
px ∈ Px,t

H(X

∀

(tρ|p , p
−1px) · wρ ∀

K
Sρ)]].

From (∗) we have (E, σ, pc) ∈ [[X

∀

wρ ∀

K
Sρ]].

Let t1 denote t|p and p1 denote p−1px, as p = FP(t, px) we have t1|p1
= x (∗∗)

We prove that

(E, σ, pc) ∈ [[
∧

p = FP(t, px)
px ∈ Px,t

H(X

∀

(t1ρ, p1) · wρ ∀

K
Sρ)]].

Let suppose that ∀px ∈ Px,t∃FP(t, px). If ∃px ∈ Px,t s. t. ¬∃FP(t, px) then that px is
not take into account in the conjunction.

Using (∗∗), we obtain the formula (∗) is equivalent to

E〈w(σ ⊕ ρ)〉
K

S(σ ⊕ ρ) ∧ t1(σ ⊕ ρ)|p1
〈w(σ ⊕ ρ)〉

K
S(σ ⊕ ρ)

which imply:

E〈(t1(σ ⊕ ρ), p1) · w(σ ⊕ ρ)〉
K

S(σ ⊕ ρ)

Now the assertion follows from the proposition 3.3, so we have:

(E, σ, pc) ∈ [[H(X
∀

(t1ρ, p1) · wρ ∀

K
Sρ))]]

hence, (E, σ, pc) ∈ [[ρ(K(t, x, w, S))]]

“⇐”: (E, σ, pc) ∈ [[ρ(K(t, U, x, w, s))]] ⇒ (E, σ ⊕ ρ, pc′) ∈ [[(X,x)

∀

w ∀

K
s]]

(E, σ, pc) ∈ [[ρ(K(t, x, w, s))]] iff

(E, σ, pc) ∈ [[X

∀

wρ ∀

K
Sρ ∧

∧

p = FP(t, px)
px ∈ Px,t

H(X

∀

(tρ|p , p
−1px) · wρ ∀

K
Sρ)]] iff

E〈w(σ⊕ρ)〉
K

S(σ⊕ρ)∧
∧

p = FP(t, px)
px ∈ Px,t

(E, σ, pc) ∈ [[H(X

∀

(tρ|p , p
−1px)·wρ ∀

K
Sρ)]] (∗∗∗)

From (E, σ, pc) ∈ [[H(X

∀

(tρ|p , p
−1px) · wρ ∀

K
Sρ)]] it follows that

E〈(tρ|p , p
−1px) · w(σ ⊕ ρ)〉

K
S(σ ⊕ ρ).

Also we know that E ⊢ t(σ ⊕ ρ)

and by construction, the formula H(X

∀

(tρ|p , p
−1px) · wρ ∀

K
S) is well-formed.

Hence, for m = t(σ ⊕ ρ) using the corollary 3.2 we have

t(σ ⊕ ρ)〈(tρ|p , p
−1px) · w(σ ⊕ ρ)〉

K
S(σ ⊕ ρ)

and from the first equivalence of the proposition 2.4 we obtain
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t(σ ⊕ ρ)|px
〈w(σ ⊕ ρ)〉

K
S(σ ⊕ ρ)

but t|px
= x hence x(σ ⊕ ρ)〈w(σ ⊕ ρ)〉

K
S(σ ⊕ ρ) and from (∗ ∗ ∗) we obtain

E〈w(σ ⊕ ρ)〉
K

S(σ ⊕ ρ) ∧ x(σ ⊕ ρ)〈w(σ ⊕ ρ)〉
K

S(σ ⊕ ρ)

(E, σ ⊕ ρ, pc′) ∈ [[(X, x)

∀

w ∀

K
S]].

Now we are ready to introduce for input actions the weakest liberal preconditions for
all formulae in ttl∀.

Definition 3.4

We define the function ŵlp, which gives the weakest liberal preconditions for an input
action α = [pci

p = ℓ ∧ in(X, t(x̃))] −→ pci
p := ℓ′ in ttl∀, as follows:

ŵlp(α, (X,x)

∀

w ∀

K
S)

def
= pci

p = ℓ ⇒ (Secret(t) ∨ K(t, x, w, S))

if x ∈ x̃

ŵlp(α, ϕ)
def
= pci

p = ℓ ⇒ (Secret(t) ∨ ϕ)

if ϕ ∈ {X

∀

w ∀

K
S, (X, y)

∀

w ∀

K
S,⊤,⊥,

t

∀

ε ∀

K
x.f, x 6= t′, x = t′, pcj

q = ℓ′′}
and y 6∈ x̃ and q 6= p or j 6= i

ŵlp(α, pci
p = ℓ′′)

def
= pci

p = ℓ ⇒ (Secret(t) ∨ ℓ′ = ℓ′′)

ŵlp(α,ϕ ∨ ψ)
def
= ŵlp(α, ϕ) ∨ ŵlp(α, ψ)

ŵlp(α,ϕ ∧ ψ)
def
= ŵlp(α, ϕ) ∧ ŵlp(α, ψ)

ŵlp(α,∀ỹϕ)
def
= ∀ỹŵlp(α, ϕ)

if var (α) ∩ ỹ = ∅

ŵlp(α,∃fϕ)
def
= ∃f ŵlp(α, ϕ)

Lemma 3.5

Let α = [pci
p = ℓ ∧ in(X, t(x̃))] −→ pci

p := ℓ′ be an input action, ϕ a ttl∀ formula and

ρ ∈ Γ(x̃) a ground substitution with dom(ρ) = x̃. Then

ρ(ŵlp(α, ϕ)) ≡
(
(pci

p = ℓ) ⇒ (Secret(tρ) ∨ ρ(ϕ))
)

Proof:

By induction on the structure of ϕ. In the sequel, we use implicitly that σ is a ground
substitution such that dom(σ) ∩ dom(ρ) = ∅.
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• ϕ = X

∀

w ∀

K
S. Then

ρ(ŵlp(α, ϕ)) = ρ(ŵlp(α, X

∀

w ∀

K
S))

= ρ((pci
p = ℓ) ⇒ (Secret(t) ∨ X

∀

w ∀

K
S))

= (pci
p = ℓ) ⇒ (Secret(tρ) ∨ ρ(X

∀

w ∀

K
S))

= (pci
p = ℓ) ⇒ (Secret(tρ) ∨ ρ(ϕ))

• ϕ = (X, x)

∀

w ∀

K
S and x ∈ x̃. Obvious using Lemma 3.4.

• ϕ = x 6= t′ and ϕ = x = t′. Obvious.

• ϕ = ⊤ and ϕ = ⊥. Obvious. Using that for any formulas ψ, it holds ψ ∨ ⊤ ≡ ⊤
and ψ ∨ ⊥ ≡ ψ.

• ϕ = ϕ1 ∨ ϕ2. Then using the induction hypothesis we obtain

ρ(ŵlp(α, ϕ)) = ρ(ŵlp(α, ϕ1 ∨ ϕ2))

= ρ(ŵlp(α, ϕ1)) ∨ ρ(ŵlp(α, ϕ2))
= ((pci

p = ℓ) ⇒ (Secret(tρ) ∨ ρ(ϕ1)))∨
((pci

p = ℓ) ⇒ (Secret(tρ) ∨ ρ(ϕ2)))

= (pci
p = ℓ) ⇒ ((Secret(tρ) ∨ ρ(ϕ1)) ∨ (Secret(tρ) ∨ ρ(ϕ2)))

= (pci
p = ℓ) ⇒ (Secret(tρ) ∨ (ρ(ϕ1) ∨ ρ(ϕ2)))

= (pci
p = ℓ) ⇒ (Secret(tρ) ∨ ρ(ϕ))

• ϕ = ϕ1 ∧ ϕ2. Then using the induction hypothesis we obtain

ρ(ŵlp(α, ϕ)) = ρ(ŵlp(α, ϕ1 ∧ ϕ2))

= ρ(ŵlp(α, ϕ1)) ∧ ρ(ŵlp(α, ϕ2))
= ((pci

p = ℓ) ⇒ (Secret(tρ) ∨ ρ(ϕ1)))∧
((pci

p = ℓ) ⇒ (Secret(tρ) ∨ ρ(ϕ2)))

= (pci
p = ℓ) ⇒ ((Secret(tρ) ∨ ρ(ϕ1)) ∧ (Secret(tρ) ∨ ρ(ϕ2)))

= (pci
p = ℓ) ⇒ (Secret(tρ) ∨ (ρ(ϕ1) ∧ ρ(ϕ2)))

= (pci
p = ℓ) ⇒ (Secret(tρ) ∨ ρ(ϕ))

• ϕ = ∀ỹϕ1. We can suppose that var (t) ∩ ỹ = ∅ . Then, using that ρ and ρ1 are
ground substitutions such that dom(ρ) ∩ dom(ρ1) = ∅, we obtain

[[ρ(ŵlp(α, ϕ))]] = [[ρ(ŵlp(α,∀ỹϕ1)]]

= [[ρ(∀ỹ(ŵlp(α,ϕ1)))]]

= ρ(
⋂

ρ1 ∈Γ(ỹ)

[[ρ1(ŵlp(α, ϕ1))]])

=
⋂

ρ1 ∈Γ(ỹ)

[[ρ(ρ1(ŵlp(α, ϕ1)))]]

=
⋂

ρ1 ∈Γ(ỹ)

[[ρ1(ρ(ŵlp(α, ϕ1)))]]

=
⋂

ρ1 ∈Γ(ỹ)

[[ρ1((pci
p = ℓ) ⇒ (Secret(tρ) ∨ ρ(ϕ1)))]]
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=
⋂

ρ1 ∈Γ(ỹ)

([[ρ1(pci
p 6= ℓ)]] ∪ ([[ρ1(Secret(tρ))]] ∪ [[ρ1(ρ(ϕ1))]]))

=
⋂

ρ1 ∈Γ(ỹ)

([[pci
p 6= ℓ]] ∪ ([[Secret(tρ)]] ∪ [[ρ1(ρ(ϕ1))]]))

= [[pci
p 6= ℓ]] ∪ ([[Secret(tρ)]] ∪

⋂
ρ1 ∈Γ(ỹ)

[[ρ(ρ1(ϕ1))]])

= [[pci
p 6= ℓ]] ∪ ([[Secret(tρ)]] ∪ ρ(

⋂
ρ1 ∈Γ(ỹ)

[[ρ1(ϕ1)]]))

= [[pci
p 6= ℓ]] ∪ ([[Secret(tρ)]] ∪ ρ([[∀ỹϕ1]]))

= [[pci
p 6= ℓ]] ∪ ([[Secret(tρ)]] ∪ ρ([[ϕ]]))

= [[pci
p 6= ℓ]] ∪ ([[Secret(tρ)]] ∪ [[ρ(ϕ)]])

= [[(pci
p = ℓ) ⇒ (Secret(tρ) ∨ ρ(ϕ))]]

and hence we obtain that ρ(ŵlp(α, ϕ)) ≡ (pci
p = ℓ) ⇒ (Secret(tρ) ∨ ρ(ϕ)).

• ϕ = ∃fϕ1. Using that f1 is a fresh set of function symbols in B such that f∩f1 = ∅,
we obtain

ρ(ŵlp(α, ϕ)) = ρ(ŵlp(α,∃fϕ1)

= ρ(∃fŵlp(α,ϕ1)

= ∃fρ(ŵlp(α,ϕ1)
= ∃f(pci

p = ℓ) ⇒ (Secret(tρ) ∨ ρ(ϕ1))

= (pci
p = ℓ) ⇒ ∃f(Secret(tρ) ∨ ∃fρ(ϕ1))

Since Secret(tρ) = ∃f1
∨

S′∈tc(t)

X

∀

ǫ ∀

K
S′ where f1 is the set of all fresh variables

of B that occur in tc(t) (f ∩ f1 = ∅) and t is not an extended term we obtain
∃f(Secret(tρ) = Secret(tρ). Then,

ρ(ŵlp(α, ϕ)) = (pci
p = ℓ) ⇒ (Secret(tρ) ∨ ρ(∃fϕ1))

and hence we obtain that ρ(ŵlp(α, ϕ)) ≡ (pci
p = ℓ) ⇒ (Secret(tρ) ∨ ρ(ϕ)).

We can see that for any formula ϕ ∈ ttl∀, ŵlp(α, ϕ) ∈ ttl∀. We have the following
theorem:

Theorem 3.6

Let α = [pci
p = ℓ ∧ in(X, t(x̃))] −→ pci

p := ℓ′ an input action and ϕ ∈ ttl∀ an universal

ttl formula. The wlp-calculus defined by wlp(α, ϕ) = ∀x̃ · ŵlp(α, ϕ) is sound and
complete.

wlp(α, [[ϕ]]) = [[wlp(α, ϕ)]].

Proof:

In the sequel pc is a control points vector, E is a set of messages and σ is a ground
substitution such that x̃ ∩ dom(σ) = ∅.

(E, σ, pc) ∈ wlp(α, [[ϕ]]) iff
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∀ρ ∈ Γ(x̃). (pci
p = l) ⇒

(
E ⊢ t(σ ⊕ ρ) ⇒ (E, σ ⊕ ρ, pc) ∈ [[ϕ]]

)
iff

∀ρ ∈ Γ(x̃). (pci
p = l) ⇒

(
E 6⊢ t(σ ⊕ ρ) ∨ (E, σ ⊕ ρ, pc) ∈ [[ϕ]]

)
iff

∀ρ ∈ Γ(x̃).
(
(E, σ, pc) ∈ [[pci

p = l]]
)
⇒

(
(E, σ, pc) ∈ [[Secret(tρ)]] ∪ [[ρ(ϕ)]]

)
iff

(E, σ, pc) ∈
⋂

ρ∈Γ(x̃)

[[(pci
p = l) ⇒ (Secret(tρ) ∨ ρ(ϕ))]] iff

(E, σ, pc) ∈
⋂

ρ∈Γ(x̃)

[[ρ(ŵlp(α, ϕ)]] iff

(E, σ, pc) ∈ [[∀x̃(ŵlp(α, ϕ))]].

Let us give a short example of a wlp-calculus for an input action:

Example 3.2

Let K = {k}, inv(k) = k and t = ({z, {y}k}k, {I, {z,A}k}kI
) be a term, α = [pci

p =
ℓ ∧ in(X, t)] −→ pci

p := ℓ′ be an input action, where z is a variable instantiated by the

action, and ϕ = (X, z)

∀

ε ∀

K
N2 a postcondition. Then,

ŵlp(α, ϕ) = pci
p = ℓ ⇒ (Secret(t) ∨ K(t, z, ε,N2))

= pci
p = ℓ ⇒

(
∃f1∃f2∃f3

∨

S′∈tc(t)

X

∀

ǫ ∀

K
S′ ∨

(X

∀

({z, {y}k}k, 00) ∀

K
N2 ∧ X

∀

({z,A}k, 00) ∀

K
N2)

)

where f1, f2, f3 are fresh symbols of B and

tc(t) ={{t; {z, {y}k}k; (z, {y}k); z.f1; k};
{t; {z, {y}k}k; (z, {y}k); {y}k; y.f2; k};
{t; {z, {y}k}k; (z, {y}k); {y}k; k};
{t; {z, {y}k}k; k};
{t; {I, {z, A}k}kI

); (I, {z, A}k); I; k};
{t; {I, {z, A}k}kI

); (I, {z, A}k); {z,A}k; (z, A); z.f3; k};
{t; {I, {z, A}k}kI

); (I, {z, A}k); {z,A}k; (z, A);A; k};
{t; {I, {z, A}k}kI

); (I, {z, A}k); {z,A}k; k};
{t; {I, {z, A}k}kI

); kI ; k}}
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3.3 Collecting the results together

Definition 3.5

We define the formula wlp(α, ϕ) as follows:

wlp(α,ϕ) =





ŵlp(α, ϕ) if α = [pci
p = ℓ] −→ add(X, t); pci

p := ℓ′

∀x̃ · ŵlp(α, ϕ) if α = [pci
p = ℓ ∧ in(X, t(x̃))] −→ pci

p := ℓ′

The following theorem collects the results of theorems 3.1 and 3.6. It establish the
correctness and completeness of our wlp-calculus for bounded cryptographic protocols
and ttl∀.

Theorem 3.7

The wlp-calculus of Definition 3.5 is sound and complete. Formally, let α be any action
and ϕ any formula in ttl∀. Then,

wlp(α, [[ϕ]]) = [[wlp(α, ϕ)]].

The Hoare logic consisting of the inference rules for composition and the axiom schema
{wlp(α, ϕ)}α{ϕ}, for each action, is sound and complete.
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Chapter 4

Decidability of ttl

In this chapter we study the decidability of the satisfiability problem of a ttl formula.

First we prove decidability for the existential fragment of ttl (i.e., formulae in ttl∃).
Since we showed in the previous chapter that given a formula ϕ in ttl∀ and a bounded
cryptographic protocol Π, one can compute wlp(Π, ϕ), decidability of the satisfiability
of existential formulae yields a decision procedure. Indeed, assume that we are given an
existential formula ψ and a property ϕ in ttl∀, assume also that we are given a bounded
cryptographic protocol Π then {ψ}Π{ϕ} is true iff ψ ∧ ¬wlp(Π, ϕ) is not satisfiable.

To prove decidability for existential formulae we follow a rule based approach (see
[JK91, Com91] for two surveys) i.e.:

1. We introduce a set of formulae in solved form. For these formulae it is “easy” to
decide whether a model exists.

2. We introduce a set of rewriting rules that transform any formula ϕ of ttl∃, into
a set of solved formulae, such that ϕ is satisfiable iff one the formulae in solved
form is satisfiable.

3. We prove soundness and completeness of these rules.

4. We also prove their termination for a given control i.e, that normal forms are
reached and that normal forms are indeed in solved form.

The reduction of a formula of ttl∃ into a set of solved formulae is done in three phases.

1. We define a preliminary form and we introduce a set of rewriting rules to transform
any formula in the fragment that interest us, into a preliminary form.

2. We define an intermediate form and we introduce a set of rewriting rules to trans-
form any formula in preliminary form into an intermediate form.

3. For each formula in intermediate form, we show how to reduce its satisfiability to
the satisfiability of a set of saturated formulae in intermediate form; moreover, for

67
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each saturated formula in intermediate form, we can extract a formula in solved
form such that a model exists for the formula in intermediate form if and only if
the extracted formula in solved form is satisfiable.

Second, we show that ttl∃ satisfiability problem is NP -complete, this is an alternative
prove for the results of [AL00, RT01, MS01, Che03, Tur03] for Dolev-Yao model with
atomic keys. First we prove that our satisfiability problem is in NP , given that the size
of the solution space is polynomially bounded in the size of the problem. The proof is
based on a result concerning the polynomial bound of the DAG-size of a substitution
in a normal attack (Theorem 1 of [RT01]). Then, we show that the problem of decid-
ing satisfiability for a ttl∃ formula is NP -complete. We prove the NP -hardness by
defining a polynomial reduction of 3-SAT problem to ttl∃ satisfiability problem, i.e.
we construct a ttl∃-formula such that it is satisfiable if and only if the 3-SAT problem
has solution.

In the general case the satisfiability problem of a ttl formula is undecidable. We show
this result by encoding the Post’s correspondence problem as a satisfiability problem in
ttl.

4.1 Decidability of ttl∃

The formulae of ttl∃ are of the form:

ϕ,ψ ::= X

∀

w ∀

K
S | x

∀

w ∀

K
S | t

∀

ε ∀

K
x.f | X

∀

6w ∀

K
S | x

∀

6w ∀

K
S | t

∀

6ε ∀
K

x.f

| x = t | pci
p = ℓ | x 6= t | pci

p 6= ℓ | ⊤ | ⊥ | ϕ ∧ ψ | ϕ ∨ ψ | ∃x̃ϕ | ∀fϕ

where X is a fixed second-order variable that ranges over sets of messages, S is a
second-order variable that ranges over closed sets of extended terms, f is a meta-variable
that ranges over B, and x is a meta-variable that ranges over the set X of first-order
variables. First-order variables range over messages; t is a meta-variable over terms and
w ∈ (T × Pos)∗ is a term transducer.

4.1.1 A decidable fragment ttl∃

We do not consider formulae of the form pci
p = ℓ. It will be clear that adding these

formulae does not add any technical difficulty; it is only cumbersome to consider them
here. Also, we do not consider formulae of the form X

∀

w ∀

K
s or x

∀

w ∀

K
s with s a

variable; first, positive formulae appears only from initial conditions, and clearly, it
does not make much sense to consider positive formulae with s a variable; second, such
formulae add some technical difficulties that make harder the presentation of our results.

Hence, we deal with formulae of the form Φ = ∃x1 . . .∃xm∀f1 . . .∀fpϕ where {xi | i =
1 . . .m} ∪ {fk | k = 1 . . . p} is the set of all variables that appear in ϕ, and ϕ is a
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quantifier free formula built using the connectives ∧ and ∨ and the following literals:

X

∀

w ∀
K

t | t

∀

w ∀

K
t′ | x = t | ⊤ | X

∀

6w ∀

K
s | t

∀

6w ∀

K
t′ | t

∀

6ε ∀

K
x.f | x 6= t | ⊥

where X is a fixed second-order variable that ranges over sets of messages, x is a meta-
variable that ranges over the set X of first-order variables, f is a meta-variable that
ranges over B, s ranges over extended terms, t, t′ range over terms and w is a term
transducer that can contain free variables.

Also, in order to study the decidability of a formula Φ we shall add to ttl two new
kinds of formulae, X,U✁ 6 ε ✄

K
x and U✁ 6 ε ✄

K
x with x ∈ X and U a meta-variable

that ranges over sets of terms, and which have the following semantics:

[[X, U✁ 6ε ✄
K

x]] =
{
(E, σ, pc) | ∀A ∈ mc(xσ) (Eσ ∪ Uσ)〈6ε〉

K
A

}

[[U✁ 6ε ✄
K

x]] =
{
(E, σ, pc) | ∀A ∈ mc(xσ) Uσ〈6ε〉

K
A

}
.

Thus, given a formulae ∀f1 . . .∀fp ϕ with x1, · · · , xn as free variables in ϕ, a model of
this formula is a pair (E, σ) consisting of a set E of messages and a ground substitution
σ over x1, · · · , xn.

4.1.2 Solved form

In this section we define the solved form formula and we show how one can check whether
a formula in solved form has a model.

Definition 4.1

A formula is called in solved form if is syntactically equal to ⊤, ⊥ or ∃x1, · · · , xn · ϕ
and ϕ is of the form:

n1∧

i=1

X

∀

ε ∀

K
wi ∧

n2∧

i=1

X

∀

6ε ∀

K
w′

i ∧
n∧

i=1

[

mi∧

j=1

xi

∀

ε ∀

K
tji ∧

li∧

j=1

xi

∀

6ε ∀

K
uj

i ∧
oi∧

j=1

xi 6= vj
i ]

such that:

• For any i = 1, · · · , n, xi ∈ X .

• For any i = 1, · · · , n, xi 6∈
mi⋃
j=1

var (tji ) ∪
li⋃

j=1
var (uj

i ) ∪
oi⋃

j=1
var (vj

i ).

• There is an ordering xi1 , · · · , xin of x1, · · · , xn such that
lik⋃
j=1

var (uj
ik

) ∩

{xik+1
, · · · , xin} = ∅.

where by var (t) we denote the set of variables that appear in the term t.
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We now show how one can ”easily” check whether a formula in solved form has a model.
We only consider the third type of solved formulae. So, let ϕ a conjunction as above.
We define a particular substitution σ and a set of messages E such that ϕ has a model
iff it is satisfied by (E, σ).

Let k ∈ K be a fixed key.

Let F (n), for n ≥ 1, denote n concatenations of k, i.e.,

– F (1) = k

– F (n + 1) = pair(k, F (n)).

Let |ϕ|t be the cardinality of the set St(ϕ) consisting of the sub-terms occurring
in ϕ.

We define the substitution σ recursively as follows:

• If n = 1, i.e., there is only one variable then

σ(xi1) = (u1
i1 , (· · · , (u

li1
i1

, {F (|ϕ|t + i1)}k) · · · )).

In case li1 = 0 this term is understood as {F (|ϕ|t + i1)}k.

• If n > 1 then replace xi1 by σ(xi1) in ϕ. This yields a new formula ϕ′ and the
ordering xi2 , · · · , xin , and by recursion, a substitution σ′. Then, let

σ = [xi1 7→ (u1
i1 , (· · · , (u

li1
i1

, {F (|ϕ|t + i1))}k) · · · ))] ⊕ σ′.

Intuitively, σ(xi) is a “pair” combination of all terms that must not be protected in xi

(all uj
i , j = 1, li) plus an unique term {F (|ϕ|t + i)}k which ensures that σ(xi) is different

from σ(vj
i ) for all vj

i 6= xi when j = 1, oi.

Theorem 4.1

Let ϕ be a formula in solved form syntactically different from ⊤ and ⊥. Let σ be the
substitution as defined above and E = {w′

1σ, . . . , w′
n2

σ, k}. Then, ϕ has a model iff
(E, σ) satisfies ϕ.

Proof:

The interesting implication to prove is the following: If (E, σ) does not satisfy ϕ then
ϕ has no model.

Now, since σ has been defined such that xσ is not a sub-term of ϕ, for any x in
{x1, · · · , xn}, we have:

1. If uσ〈6ε〉
K

tσ then u

∀

6ε ∀

K
t and
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2. If uσ 6= tσ then u 6= t.

On the other hand, we can prove that if σ is not a model of ϕ then uj
iσ〈6 ε〉K

tqi σ, for

some i ∈ {1, · · · , n}, j ∈ {1, · · · , li} and q ∈ {1, · · · ,mi}. Therefore, uj
i

∀

6 ε ∀

K
tqi , and

hence, ϕ has no model.

4.1.3 Rewriting rules

In this section, we present a set of rewriting rules that transform any formula ϕ as
considered in subsection 4.1.1, into a set of solved formulae, such that ϕ is satisfiable if
and only if one of the formulae in solved form is satisfiable.

For the rules of the form ϕ −→ ψ, where ϕ is an atomic formula, we tacitly assume a
rule ¬ϕ −→ ¬ψ. Obvious rules (as distributivity of ∨ (respectively ∧) with respect to
∧ (respectively ∨)) are not mentioned explicitly.

We will encounter two sorts of rewriting rules:

• Deterministic rules are of the form ϕ → ϕ′. They transform a given problem into
a single problem. A deterministic rule is sound, if [[ϕ]] = [[ϕ′]].

• Non-deterministic rules of the form ϕ → ϕ1, · · · , ϕn. They transform a given

problem into a set of problems. A non-deterministic rule is sound, if [[ϕ]] =
n⋃

i=1
[[ϕi]].

Transducer elimination

The rule T decreases the length of w in sub-formulae of the form u

∀

w ∀

K
s, if w 6= ε

and u is X or any term; it allows to reduce such formulae to the case w = ε.

u

∀

(b, p).w ∀

K
s 7→ u

∀

ε ∀

K
s ∧ (u

∀

ε ∀

K
b ∨ b|p

∀

w ∀

K
s) if u ∈ T ∪ {X} (T)

Table 4.1: Transducer elimination

Preliminary rules

The following rules are useful to eliminate the universal quantifiers and variables of BX .
We distribute universal quantification over conjunctions and for disjunctions we use the
formulae introduced in the section 4.1.1.
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∀f(φ ∧ ψ) 7→ ∀fφ ∧ ∀fψ (P1)

∀f(φ ∨ ψ) 7→ (∀fφ) ∨ ψ if f /∈ var (ψ) (P2)

∀f(X

∀

6ε ∀

K
x.f ∨

∨
t∈U

t

∀

6ε ∀

K
x.f) 7→ X, U✁ 6ε ✄

K
x (P3.1)

∀f(
∨

t∈U

t

∀

6ε ∀
K

x.f) 7→ U✁ 6ε ✄
K

x (P3.2)

Table 4.2: Preliminary

Elimination of trivial sub-formulae

The formulae of table 4.3 eliminate trivially satisfied or unsatisfied sub-formulae.

t = t 7→ ⊤ t

∀

ε ∀

K
t 7→ ⊥ ⊥ ∧ Φ 7→ ⊥ ⊤ ∧ Φ 7→ Φ

x = t 7→ ⊥ x
∀

ε ∀

K
t 7→ ⊤ if x ∈ X ∩ var (t) ∧ t 6≡sx

Table 4.3: Eliminate trivial sub-formulae

Replacement

The rule R is the usual rule for substituting a term for a variable:

x = t ∧ Φ 7→ Φ[t/x], if x 6∈ var (t) (R)

Table 4.4: Replacement

Decomposition rules

The rules of table 4.5 deal with equalities and formulae of the form t

∀

ε ∀

K
s which are

transformed using the function J defined in the proposition 2.10 of the chapter 2.
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t

∀

ε ∀

K
s 7→ J (t, ε, s), if t 6∈ X (D1)

s = t 7→ µ(s, t), if s, t 6∈ X (D2)

Table 4.5: Decompose

Occur-check

The main idea behind this rule is that y

∀

6 ε ∀

K
t induces an ordering on the variables

in t and y. Indeed, if x is a variables in t then, in any model of this formula, the term
assigned to x is a sub-term of the term assigned to y.

ϕ 7→ ϕ[y/x] (OC)

if x and y are syntactically different and x ≤ y and y ≤ x, where ≤ is the reflexive
transitive closure of < with “x < y iff there is a sub-formula of ϕ of the form y

∀

6ε ∀

K
t

with x ∈ var (t)”.

Table 4.6: Occur check.

Simplification rules

The following rules deal with formulae of the form U ✁ ε ✄
K

s and X, U ✁ ε ✄
K

s in
the case that s is not a variable (such formulae can be introduced by the elimination of
equalities). In order to express this formulae we define for a term t the weakly closed
sets of terms wc(t) as follows:

wc(t) = t ⊎





wc(t1) ∪ wc(t2) if t = (t1, t2)
wc(t′) ∪ wc(k) if t = {t′}k

{K−1} if t is atom or variable

4.1.4 Rewriting process

The reduction of a formula of ttl∃ into a set of solved formulae is done in three phases.

1. We define a preliminary form and the reduction of a formula in the fragment that
interest us, into a preliminary form.

2. We define an intermediate form and we show how we use the rules of section 4.1.3
in order to transform any formula in preliminary form into an intermediate form.



74 CHAPTER 4. DECIDABILITY OF TTL

If s 6∈ X then:

U✁ 6ε ✄
K

s 7→
∧

A∈wc(s)

[ ∨
t∈A\X

∨
u∈U

u

∀

6ε ∀

K
t ∨

∨
t∈A∩X

U✁ 6ε ✄
K

t
]

(Si1)

X, U✁ 6ε ✄
K

s 7→
∧

A∈wc(s)

[ ∨
t∈A\X

(
X

∀

6ε ∀

K
t ∨

∨
u∈U

u
∀

6ε ∀

K
t
)

∨
∨

t∈A∩X
X, U✁ 6ε ✄

K
t
]

(Si2)

Table 4.7: Simplification

3. For each formula in intermediate form, we show how to reduce its satisfiability to
the satisfiability of a set of saturated formulae in intermediate form; moreover, for
each saturated formula in intermediate form, we can extract a formula in solved
form such that a model exists for the formula in intermediate form if and only if
the extracted formula in solved form is satisfiable.

Preliminary form

Definition 4.2

A formula Φ is called in preliminary form if it is of the form ∃x1 . . .∃xmφ where {xi |
i = 1 . . . m} is the set of all variables that appear in φ, and φ is a quantifier free formula
builded using the connectives ∧ and ∨ and the following literals:

X
∀

ε ∀

K
t | t

∀

ε ∀

K
t′ | x = t | ⊤ | X

∀

6ε ∀

K
t | t

∀

6ε ∀

K
t′ | X,U✁ 6ε ✄

K
x | U✁ 6ε ✄

K
x | x 6= t | ⊥

where X is a fixed second-order variable that ranges over sets of messages, x is a meta-
variable that ranges over the set X of first-order variables, t, t′ range over terms and w
is a term transducer that can contain free variables.

It is easy to see that repeated application as much as possible of Transducer elimination
and Preliminary rules transform any formula as considered in subsection 4.1.1, into an
equivalent formula in preliminary form. From now on, it is obvious that as we consider
satisfiability of formulae in preliminary form, we can restrict ourselves to conjunctions
of literals.
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Intermediate form

Definition 4.3

A formula is called in intermediate form if it is syntactically equal to ⊤, ⊥ or to a
conjunction ϕ1 ∧ ϕ2 where ϕ1 is of the form:

n1∧

i=1

X

∀

ε ∀

K
wi ∧

n2∧

i=1

X

∀

6ε ∀

K
w′

i ∧
n∧

i=1

[

mi∧

j=1

xi

∀

ε ∀

K
tji ∧

li∧

j=1

xi

∀

6ε ∀

K
uj

i ∧
oi∧

j=1

xi 6= vj
i ]

and ϕ2 is of the form:

n∧

i=1

[

ki∧

j=1

X, U j
i ✁ 6ε ✄

K
xi ∧

hi∧

j=1

V j
i ✁ 6ε ✄

K
xi]

such that:

• For any i = 1, · · · , n, xi ∈ X .

• For any i = 1, · · · , n, xi 6∈
mi⋃
j=1

var (tji ) ∪
li⋃

j=1
var (uj

i ) ∪
oi⋃

j=1
var (vj

i ).

• There is an ordering xi1 , · · · , xin of x1, · · · , xn such that
lik⋃
j=1

var (uj
ik

) ∩

{xik+1
, · · · , xin} = ∅.

A formula in intermediate form defined as above, is called saturated, if ϕ1 ∧ ϕ2 is
satisfiable if and only if ϕ1 is satisfiable.

From preliminary form to intermediate form

Theorem 4.2

Application of the rules of section 4.1.3 terminates in an intermediate form.

Proof:

Let us first briefly mention how each rule contributes in reaching a normal form:

1. Rule D1 decrease the number of sub-formulae of the form t

∀

ε ∀

K
s or t

∀

6 ε ∀

K
s

but may introduce equalities and disequalities.

2. Rule D2 decreases the number of equalities (disequalities) where the two members
are not variables.
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3. Rules Si1 and Si2 decrease the number of sub-formulae of the form X,U✁ 6ε✄
K

s
and U✁ 6ε ✄

K
s, where s is not a variable, but may introduce new formulae of the

form t

∀

6ε ∀
K

s.

4. Rules Occur-check and Replacement eliminate a variable.

Now, to prove termination we need to introduce interpretation functions which are
intended to decrease by applications of the rules:

• f1(ϕ) is the cardinality of var (ϕ).

• f2(ϕ) is the number of formulae of the form X, U✁ 6ε ✄
K

s and U✁ 6ε ✄
K

s with s
not a variable.

• f3(ϕ) is the number of formulae of the form t

∀

ε ∀

K
s with t not a variable.

• f4(ϕ) is the number of equalities (disequalities) where both members are not
variables.

• f5(ϕ) is the size of ϕ.

Figure 4.1 summarizes the variation of each function by the transformation rules:

f1 f2 f3 f4 f5

E = = = = <
D2 = = = <
D1 = = <
Si1 + Si2 = <
R + OC <

Figure 4.1: Variation of the ranking functions

Thus, if we define F (ϕ) = (f1(ϕ), · · · , f5(ϕ)) then F (ϕ) decreases with respect to lexi-
cographic ordering by each rule. Hence, termination of the rules.

It remains now to show that if no rule can be applied then the obtained formula is
in intermediate form. This proof is obvious since, for any literal which is not in the
intermediate form there exists some rule which can be applied.

Saturating formulae in intermediate form

We prove that for any formula ϕ in intermediate form, we can construct a set of saturated

formulae ϕ1; . . . ;ϕn in intermediate form, such that [[ϕ]] =
n⋃

i=1
[[ϕi]].
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Saturate rules

The following rules allow us to saturate a formula in intermediate form.

φ ∧ x

∀

6ε ∀

K
t ∧ X, U✁ 6ε ✄

K
x 7→ φ ∧ x

∀

6ε ∀

K
t ∧ X, U✁ 6ε ✄

K
x ∧ X, U✁ 6ε ✄

K
t (Sa1)

φ ∧ x

∀

6ε ∀

K
t ∧ U✁ 6ε ✄

K
x 7→ φ ∧ x

∀

6ε ∀

K
t ∧ U✁ 6ε ✄

K
x ∧ U✁ 6ε ✄

K
t (Sa2)

Table 4.8: Saturate

Theorem 4.3

There exists a strategy to apply the rules of section 4.1.3 and the above ones that ter-
minates in a saturated intermediate form.

Proof:

To ensure the termination, we apply the Saturate rules Sa1 and Sa2 only for the pairs
(x

∀

6 ε ∀

K
t; X, U✁ 6 ε ✄

K
x) or (x

∀

6 ε ∀

K
t; V ✁ 6 ε ✄

K
x) that are not marked, and after

the application of such a rule, we mark the corresponding pair.

On the other hand, any time we apply the Replacement or the Occur-check rules,
we unmark all the pairs of constraints which were marked before. Then, the termination
follows from the remark that the number of variables is finite, all the rules but Replace-
ment or Occur-check introduce only subformulae of the formulae we already have, and
no rule does not introduce any new variable.

To prove that any formula obtained after the termination of the above algorithm is
saturated, we make an induction on the position of variables w.r.t. the order ≤. Indeed
let ϕ1∧ϕ2 be such a formula and let σ be the substitution and E be the set of messages
as defined in the section 4.1.2 corresponding to the formula ϕ1. Then, (σ,E) satisfies
ϕ1 ∧ ϕ2.

We prove by induction on the position of the variable x w.r.t. the order ≤ that for any
constraints X, U✁ 6 ε ✄

K
x ∈ ϕ2, and V

∀

6 ε ∀

K
x ∈ ϕ2 and for any A ∈ mc(xσ) it holds

(E ∪ U)σ〈6ε〉
K

A, and V σ〈6ε〉
K

A.

The idea of the proof, is that when the algorithm terminates, we already applied the
Saturate rules to any of the pairs (x

∀

6ε ∀

K
t; X, U✁ 6ε✄

K
x) and (x

∀

6ε ∀

K
t; V ✁ 6ε✄

K
x),

and such rules introduce only formulae of the kind φ1, or of the form X, U✁ 6ε ✄
K

z or
V ✁ 6ε ✄

K
z with z ≤ x.
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4.2 Complexity

In this section we prove that the problem of deciding the existence of a model for a ttl∃

formula is NP -complete. We define the size of a formula ϕ to be the size of its DAG
representation. Roughly speaking, it is the cardinality of the set of its sub-formulae and
sub-terms. We denote the size of ϕ by |ϕ|.

4.2.1 ttl∃ satisfiability problem is in NP

Let ϕ be a conjunction of literals in preliminary form. And let |ϕ|t be the cardinality
of the set St(ϕ) consisting of the sub-terms of ϕ. Clearly, we have |ϕ|t ≤ |ϕ|. Then,
we show that if ϕ is satisfiable then it has a model (E, σ) such that the size of σ(x) is
polynomially bounded by |ϕ|t, for each variable x. To do so, we first introduce a special
kind of substitutions.

Definition 4.4

Let Tr be a set of terms, and let ρ be a substitution defined on the set of variables of
Tr. Then ρ is called a Tr-substitution, if:

• for any variable x ∈ dom(ρ), there is a term vx ∈ St(Tr) which is not a variable
(i.e. vx 6∈ X ), and such that ρ(x) = ρ(vx);

• ρ is idempotent.

Then, we will use the following proposition, which is proved as theorem 1 in [RT01].

Proposition 4.4

Let Tr a set of terms and let ρ a Tr-substitution. Then for any variable x, |ρ(x)| ≤
|St(Tr)|.

Let us assume that ϕ is satisfiable. Then, there exists a formula ψ in solved form such
that ψ is obtained from ϕ using the rewriting rules from section 4.1.3, and such that ψ
is satisfiable. Let (E, σ0) be the model of ψ defined in section 4.1.2.

Let {x1, · · · , xn} be the variables of ϕ. For each xi, we introduce |ϕ|t new variables
zi
1, · · · , zi

|ϕ|t
and consider the term txi

defined as follows:

txi
= (zi

1, · · · (z
i
|ϕ|t

, F (|ϕ|t) + i)) · · · ).

Now, the following facts hold:

1. there exists a substitution σ such that σ0 ⊂ σ and σ is a Tr-substitution, where
Tr = St(ψ) ∪ {t | t ≤ txi

, i = 1, · · · , n}

This is an immediate consequence of the construction of σ0 and the definition of
tx terms.
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2. St(ψ) ⊆ St(ϕ)

This can be proved by induction on the rewriting length of ϕ into ψ and using that,
if ϕ1, ϕ2 are two ttl∃ formulae such that ϕ1 → ϕ2 by applying some rewriting
rule defined in section 4.1.3 then we have St(ϕ2) ⊆ (St(ϕ1)).

From the first fact, using the proposition 4.4 we obtain that the size of σ0 is polynomial
in the size of St(ψ) ∪ {txi

| i = 1, · · · , n}. From the second fact, we obtain that |ψ|t is
polynomial in |ϕ|t.

Moreover, since the size of the set {t | t ≤ txi
, i = 1, · · · , n} is also polynomial in the

size of St(ϕ) we conclude that the size of σ0 is polynomial in the size of St(ϕ).

Verifying that (E, σ0) is a solution of ϕ has a polynomial time complexity too. Each
atomic equality x = t amounts to a syntactic equality of messages xσ0 and tσ0. Each
atomic formula X

∀

ε ∀

K
t (or x

∀

ε ∀

K
t) amounts to check if the intersection Id(E)∩{tσ0}

(respective Id(xσ0) ∩ {tσ0}) is empty, where Id(E), Id(xσ0) are bounded by the size of
messages in E and σ0.

Hence, the following theorem holds.

Proposition 4.5

ttl∃ satisfiability problem is in NP .

4.2.2 NP -hardness

First, we prove the NP -hardness, using a polynomial reduction of 3-SAT to ttl∃ sat-

isfiability problem. Let x1, . . . , xn be Boolean variables, and let f =
m∧

i=1
l1i ∨ l2i ∨ l3i a

formula in 3-conjunctive normal form, where lji ∈ {x1, . . . , xn,¬x1, . . .¬xn}. It is well
known that deciding the existence of a model for such a formula is NP -complete. We
shall construct a ttl∃-formula ϕf such that ϕf is satisfiable if and only if f is satisfiable.

Let c, T, F ∈ A be three distinct atoms and let k1, k2 ∈ K be two distinct keys in K.
For any literal l, we denote

t(l) =

{
{c, xj}k1 if l = xj

{c, xj}k2 if l = ¬xj

and for any clause C = l1 ∨ l2 ∨ l3 we denote t(C) = ((t(l1), t(l2)), t(l3)). Then, for any
clause Ci = l1i ∨ l2i ∨ l3i , we consider the formula

ϕCi
= ¬(t(Ci), {t(Ci), T}k1)〈({x, T}k1 , 00).({y, F}k2 , 00)〉

K
c.

and finally, for f =
m∧

i=1
Ci, we take ϕf =

m∧
i=1

ϕCi
.
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Now we prove that models of f coincide with models of ϕf . More precisely, given a
substitution σ : {x1, . . . , xn} → {T, F}, let σ̂ denote the boolean function such that
σ̂(xi) = ⊤, if σ(xi) = T and σ̂(xi) = ⊥, otherwise. Then, we prove

σ |= ϕf iff σ̂ |= f.

For any variable xi, if a substitution σ satisfies ¬t(xi)〈({x, T}k1 , 00)〉
K

c, then σ(xi) =
T and similarly, if σ satisfies ¬t(¬xi)〈({y, F}k2 , 00)〉

K
c, then σ(xi) = F . Moreover,

the formulae ¬t(¬xi)〈({x, T}k1 , 00)〉
K

c and ¬t(xi)〈({y, F}k2 , 00)〉
K

c are not satisfiable.
Therefore, σ is a model of

¬t(Ci)〈({x, T}k1 , 00)〉
K

c ∨ ¬t(Ci)〈({y, F}k2 , 00)〉
K

c

iff σ̂ is a model of Ci = l1i ∨ l2i ∨ l3i . And hence,

σ |= ϕf iff σ̂ |= ϕ.

Now, since if ϕ has a model, then it has a model that maps each variable xi into {T, F},
and since ϕf is polynomial in the size of f , we have the following:

Proposition 4.6

ttl∃ satisfiability problem is NP -hard.

Hence, from the propositions 4.5 and 4.6 we obtain that the problem of deciding the
existence of a model for a ttl∃ formula is NP -complete.

4.3 Undecidability of ttl

In this section, we study the decidability of the satisfiability of a general ttl formula.
In section 4.1 we have proved the decidability of this problem for existential formu-
lae ttl∃. Here, we prove that if we allow both existential and universal quantifiers,
then the satisfiability problem becomes undecidable. Indeed, we can show that Post’s
correspondence problem is reducible to the decision problem in our logic.

Theorem 4.7

The satisfiability problem for the ttl logic is undecidable.

Proof:

We show that the Post’s correspondence problem is reducible to the decision problem
for the ttl logic.

The proof is inspired from [Ven87], where it is shown the undecidability of a certain
fragment in the theory of free term algebras.

Let P = {(pi, qi) | i = 1, . . . , n} be an instance of Post’s correspondence problem,
where pi, qi ∈ D∗, with D = {d1, . . . , dk}. We use d1, . . . , dk as constants, and also
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let c be another particular constant. One is asked to determine whether there exists a
non-empty sequence of indices i1, . . . im such that pi1 . . . pim = qi1 . . . qim .

The idea is to construct a ttl formula such that if this formula is satisfiable, then from
its solution a solution to Post’s problem can be recovered.

For i = 1, . . . k, we denote, gi(x) = pair(di, x). The monadic functions gi represent the
alphabet as follows: the string di1 . . . dij is represented by the term gi1(. . . (gij (c)) . . .).
Moreover, for any string d = di1 . . . dij we denote by d(x) the term gi1(. . . (gij (x)) . . .).
In particular, we use this notation to encode the strings pi, qi occurring in the problem
definition.

We denote f(x1, x2, x3) = pair(pair(x1, x2), x3). The use of this function will be clear
later.

Suppose that P has a solution i1, . . . im, that is m > 0 and 1 ≤ ij ≤ n for each j and
pi1 . . . pim = qi1 . . . qim . For each j = 1, . . . , m + 1, let rj = pij . . . pim and sj = qij . . . qim .
Thus r1 = s1 and rm+1 = sm+1 = ε. Then the formula ΦP given below is satisfiable,
with the following value for x:

x = f(r1, s1, f(r2, s2, f(. . . f(rm+1, sm+1, c) . . .))).

The formula ΦP is

∃x, x1, x2∀y0, . . . , y6

[Isfgc(x) ∧
6∧

i=0

x

∀

6ε ∀

∅
yi] (4.1)

∧[x = f(x1, x1, x2) ∧ x1 6= c] (4.2)

∧[y0 6= f(y1, y2, y3) ∨ [y1 6= f(y4, y5, y6) ∧ y2 6= f(y4, y5, y6) ∧
k∧

i=1

y3 6= gi(y4)]] (4.3)

∧[y0 6= f(y1, y2, c) ∨ y1 = y2 = c] (4.4)

∧[y0 6= f(y1, y2, f(y3, y4, y5)) ∨
n∨

i=1

[y1 = pi(y3) ∧ y2 = qi(y4)]] (4.5)

where

Isfgc(x) ::= [Isgc(x) ∨ P3(x)] ∧ ∀y[x

∀

ε ∀

∅
y ∨ Isgc(y) ∨ P3(y)]

P3(x) ::= ∃x1, x2, x3[x = f(x1, x2, x3)]

Isgc(x) ::= M(x) ∧ ∀y[x

∀

ε ∀

∅
y ∨ M(y)]
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M(x) ::= x = c ∨ ∃y[
k∨

i=1

x = gi(y)]

The meaning of each sub-formula is given below:

1. Isgc(t) means that t is either c or has the form gi1(. . . (gip(c))).

2. Isfgc(t) means that t is either c or has the form gi1(. . . (gip(c))) or the form
f(t1, t2, t3) and for the last case, the same property holds for t1, t2 and t3 too.

3. the sub-formula (4.1) ensures that y0, . . . , y6 are sub-terms of x. x and also any
sub-term of x are built using only the constant c and the “function symbols” gi

and f ; moreover, any sub-term that has a gi as the outermost function symbol,
has the form gi1(. . . (gip(c))).

4. the sub-formula (4.2) forces r1 = s1.

5. the sub-formula (4.3) ensures for any sub-term f(y1, y2, y3) of x that y1 and y2

must be c or have one of the gi as the outermost “function symbol”, and y3 must
be c or have f as the outermost symbol.

6. the sub-formula (4.4) forces rm+1 = sm+1 = ε.

7. the sub-formula (4.5) ensures for each j that there is i such that rj = pirj+1 and
sj = qisj+1.

Intuitively, the formula ΦP encodes terms of the form depicted in figure 4.2. At each
level, ri and si represent strings. The whole term encode a solution of the Post corre-
spondence problem.
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f

f

fri−1

r1 s1

r2 s2

si−1

ri si f

f

f

rm+1 sm+1 c

f pair

x :

f(x1, x1, x2):

pair

d2

d1

c

pair

pair

dj

pair

pair

x1 x1

x2

a string:

Figure 4.2: Encoding of the Post correspondence problem
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Chapter 5

Timed ttl

Most of the verification methods and decidability results for cryptographic protocols
consider time-independent protocols. The timestamps are replaced by nonce and, as
consequence, temporal properties of timestamps are not taken into account. The exist-
ing work on timed cryptographic protocols uses theorem-provers [BP98, Coh00, ES00]
or finite-state model-checking [Low96]. While the first needs human help, the second
relies on typing assumptions and assumption on the time window to bound the search
space. Recently, a verification approach based on data structures for symbolically rep-
resenting sets of configurations of unbounded time sensitive cryptographic protocols has
been proposed in [DP04].

In this chapter we extend the ttl logic to Timed ttl, short tttl, in order to apply
our verification method for bounded time sensitive cryptographic protocols. The tttl

logic combines constraints on the knowledge of the intruder with time constraints on
clocks and time variables.

First, we give a formal definition for the tttl and we show how the semantics of ttl is
extended to tttl. Timed cryptographic protocols have been introduced in section 1.5.
Then, we extend the weakest precondition calculus for ttl logic and untimed crypto-
graphic protocols to tttl logic and timed cryptographic protocols.

Finally, we show that our results concerning the decidability of the ttl logic are also
valid for the tttl logic.

Our timed model is clearly inspired by timed automata and our verification method
influenced by the work on symbolic verification of timed automata and temporal logics
for real-time systems (e.g.[AD94, HNSY92, AFH91, BL95]).

5.1 Time-sensitive Logic

We denote by Ψ the time constraints (see the definition 1.1) and by Φ the formulae of
the ttl, where the terms involved range over T (X ∪Y ∪C,F). The extended terms are
terms of Tc, except that we allow function symbols in B to occur applied to variables of

85
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X . Then, the tttl logic is defined as follows:

Φ ::= X

∀

w ∀
K

S | x

∀

w ∀

K
S | t

∀

ε ∀

K
x.f | x = t | pci

p = ℓ | ⊤ | Φ ∧ Φ |
∀xΦ | ∃fΦ | ¬Φ ttl formulae

Ψ ::= ⊤ |
n∑

i=1
aici +

m∑
j=1

bjTj ⊲⊳ d | Ψ1 ∧ Ψ2 | Ψ1 ∨ Ψ2 time constraints

Γ ::= Φ | Ψ | Γ ∨ Γ | Γ ∧ Γ tttl formulae

The formulae are interpreted over the restricted set of configurations

Conf0 = {(E, σ, ν, pc) | (E, σ, ν, pc) ∈ Conf ∧ K \ K−1 ⊆ E}.

Definition 5.1 (tttl semantics)

The semantics of tttl is defined inductively on the structure of formula by the following
clauses:

• [[Φ]]t =
{
(E, σ, ν, pc) | (E, σ, pc) ∈ [[Φ]]

}

• [[Ψ]]t =
{
(E, σ, ν, pc) | [[Ψ]]ν,σ = 1

}

• [[Γ1 ∧ Γ2]]t = [[Γ1]]t ∩ [[Γ2]]t

• [[Γ1 ∨ Γ2]]t = [[Γ1]]t ∪ [[Γ2]]t

5.2 Weakest liberal precondition

We define the tttl∀ fragment of tttl by restricting the ttl formulae to ttl∀ for-
mulae. The purpose of this section is to show that the weakest liberal precondition
wlp(α, Γ) is effectively expressible in tttl∀, when Γ is a tttl∀ formula and α is a
timed cryptographic protocol action, i.e. timed input action, timed output action or
time passing action. We recall that omitting the negation for time constraints is not
essential as any negation of a time constraint can be express in terms of positive form.

For the sake of clarity, we denote the formulae of tttl logic by Φ when they are formulae
corresponding of the ttl, by Ψ when they are time constraints and by Γ when we do
not distinguish between them.

First, it is easy to see that wlp(α, Φ) = Φ, if α is a time passing action and Φ is a ttl∀

formula.

Second, for any output action α = [pci
p = ℓ1 ∧ g] −→ reset(R); add(X, tc); pci

p := ℓ2 and

any time constraint Ψ, we have wlp(α,Ψ) = pci
p = ℓ1 ∧ g ⇒ Ψ[R]. Respectively for
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any input action α = [pci
p = ℓ1 ∧ in(X, t(x̃)) ∧ g] −→ reset(R); pci

p := ℓ2, and any time

constraint Ψ, we have wlp(α, Ψ) = pci
p = ℓ1 ∧ g ⇒ (Secret(t) ∨ Ψ[R]).

Let us now concentrate our attention on time passing action and time constraints for-
mulae.

5.2.1 Time passing and time constraints

We show that the weakest liberal precondition of [[Ψ]], where Ψ is a time constraint, can
be described by a tttl∀ formula. Here we consider the action

τ
−→, i.e. time passing.

The case of input and output actions has been seen above.

We need to define three kinds of normal forms for time constraints. Let Ψ be the atomic

time constraint
n∑

i=1
aici +

m∑
j=1

bjTj ⊲⊳ d. We denote by C (Ψ) the sum of the coefficients

of clocks, i.e.
n∑

i=1
ai. Then, an atomic time constraint Ψ ≡

n∑
i=1

aici +
m∑

j=1
bjTj ⊲⊳ d is in

• positive normal form (PNF for short), if C (Ψ) > 0;

• negative normal form (NNF for short), if C (Ψ) < 0;

• 0-normal form, if C (Ψ) = 0.

Clearly any time constraint can be put in the form of a conjunction of disjunctions of
the form Ψ1∨Ψ2∨Ψ3, where Ψ1 is a disjunction of formulae in PNF, Ψ2 is a disjunction
of formulae in NNF and Ψ3 is a disjunction of formulae in 0-NF.

Thus, let us consider a time constraint of the form Ψ1 ∨ Ψ2 ∨ Ψ3 as above. Then,
wlp(

τ
−→,Ψ1∨Ψ2∨Ψ3) can be described by the formula ∀δ ≥ 0 ·Ψ1 +δ∨Ψ2 +δ∨Ψ3 +δ.

We have then to show that we can eliminate the quantification on δ and obtain a time
constraint.

First, notice that Ψ3 + δ is logically equivalent to Ψ3, since it is in 0-NF. Therefore, we
can rewrite our formula as ∀δ ≥ 0 · (Ψ1 +δ∨Ψ2 +δ)∨Ψ3 and focus on how to transform
∀δ ≥ 0 · (Ψ1 + δ ∨ Ψ2 + δ) into an equivalent time constraint.

To do that, we replace the universal quantification by an existential one, using a double
negation:

∀δ ≥ 0 · (Ψ1 + δ ∨ Ψ2 + δ) ≡ ¬(∃δ ≥ 0 · (¬(Ψ1 + δ) ∧ ¬(Ψ2 + δ)))

and then, we eliminate the existential quantification using the Fourier-Motzkin variable
elimination procedure.

Let us start with a formula of the form: ∃δ ≥ 0 · (Θ1 + δ ∧ Θ2 + δ), where Θ1 is
a conjunction of formulae in PNF corresponding to ¬Ψ2 and Θ2 is a conjunction of
formulae in NNF corresponding to ¬Ψ1.

We explain the main idea by considering the simple case where Θ1 = θ1 and Θ2 = θ2

are atomic time constraints.
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The simple case

Consider a PNF time constraint θ1 ≡
n∑

i=1
aici +

m∑
j=1

bjTj ⊲⊳1 d and a NNF θ2 ≡
n∑

i=1
a′ici +

m∑
j=1

b′jTj ⊲⊳2 d′. Then, we have:

θ1 + δ≡
n∑

i=1
aici +

m∑
j=1

bjTj + δ
n∑

i=1
ai ⊲⊳1 d

θ2 + δ≡
n∑

i=1
a′ici +

m∑
j=1

b′jTj + δ
n∑

i=1
a′i ⊲⊳2 d′

By multiplying with C (θ1) and |C (θ2)| we have:

θ1 + δ≡
n∑

i=1
|C (θ2)|aici +

m∑
j=1

|C (θ2)|bjTj + δ|C (θ2)|
n∑

i=1
ai ⊲⊳1 |C (θ2)|d

θ2 + δ≡
n∑

i=1
C (θ1)a

′
ici + C (θ1)

m∑
j=1

b′jTj + δC (θ1)
n∑

i=1
a′i ⊲⊳2 C (θ1)d

′

Adding the right-hands of the equivalences yields the time constraint:

n∑

i=1

a′′i ci +

m∑

j=1

b′′j Tj ⊲⊳′ |C (θ2)|d + C (θ1)d
′

with a′′i = |C (θ2)|ai + C (θ1)a
′
i, b′′j = |C (θ2)|bi + C (θ1)b

′
i and if ⊲⊳1≡⊲⊳2 then ⊲⊳′≡⊲⊳1 else

⊲⊳′≡<.

Let us denote this formula by ∆(θ1, θ2). Notice that ∆(θ1, θ2) is independent of δ. One
can prove that ∃δ ≥ 0 ·(θ1 +δ∧θ2 +δ) is equivalent to the time constraint θ1∧∆(θ1, θ2).
The conjunct θ1 has to be kept as we are interested in the predecessors, thus the upper
bound on the clocks must be satisfied as time only increases.

The general case

Let us now return to the general case, where Θ1 and Θ2 are arbitrary conjunctions
of formulae in PNF, respectively, NNF. To handle this case we generalize ∆ to sets
(conjunctions of formulae as follows):

• ∆(∅, Θ) = ⊤.

• ∆(Θ, ∅) = Θ.

• ∆(Θ1, Θ2) =
∧

θ1∈Θ1,θ2∈Θ2

∆(θ1, θ2)

Then we can prove that ∃δ ≥ 0 · (Θ1 + δ ∧ Θ2 + δ) is equivalent to ∆(Θ1, Θ2) ∧ Θ1.

Summarizing, we can transform ∀δ ≥ 0 · Ψ1 + δ ∨ Ψ2 + δ ∨ Ψ3 + δ into the equivalent
time constraint ¬∆(¬Ψ2,¬Ψ1) ∨ Ψ2 ∨ Ψ3. Hence, if we define

wlp(
τ

−→, Ψ1 ∧ Ψ2 ∧ Ψ3)
def
= ¬∆(¬Ψ2,¬Ψ1) ∨ Ψ2 ∨ Ψ3,
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we obtain the following result:

Proposition 5.1

For any time constraint Ψ,

wlp(
τ

−→, [[Ψ]]) = [[wlp(
τ

−→, Ψ)]].

5.2.2 Output action and atomic ttl formulae

Throughout this section let α = [pci
p = ℓ1 ∧ g] −→ reset(R); add(X, t); pci

p := ℓ2 and

let c̃ be all the clocks that occur in t and do not occur in R. We show that we can
express wlp(α,ϕ), for any atomic ttl formula ϕ. The core point here is how we deal
with the clock occurrences in the sent message. Since the values of clocks change with
time, we have to freeze these values in the message added to the intruder knowledge;
we do this by replacing in t, all occurrences of clocks that are not reset c̃ with fresh
time variables T̃c and by introducing the constraints T̃c = c̃. For details, see also the
example presented in the section 5.2.5.

Following the previous remarks, we define ŵlp(α, ϕ) in a similar way to the untimed
case:

ŵlp(α,ϕ)
def
= pci

p = ℓ1 ∧ g ⇒ (T̃c = c̃ ⇒ ϕ ∧ J (t[0/R, T̃c/c̃], w, S))

if ϕ ∈ {X

∀

w ∀

K
S, (X, x)

∀

w ∀

K
S}

ŵlp(α,ϕ)
def
= pci

p = ℓ1 ∧ g ⇒ ϕ

if ϕ ∈ {x 6= t′, x = t′, t

∀

ε ∀

K
x.f,⊤,⊥,

pcj
q = ℓ′′} and q 6= p or j 6= i

ŵlp(α, pci
p = ℓ′′)

def
= pci

p = ℓ1 ∧ g ⇒ ℓ2 = ℓ′′

Then, the following theorem can be proved in the same way as the theorem 3.1.

Theorem 5.2

For any output action α and atomic ttl formula ϕ,

wlp(α, [[ϕ]]) = [[ŵlp(α, ϕ)]].

5.2.3 Input action and atomic ttl formulae

Throughout this section let α = [pci
p = ℓ1 ∧ in(X, t(x̃))∧ g] −→ reset(R); pci

p := ℓ2 Then

we define ŵlp(α,ϕ) in the same way as for the untimed input action but adding the g
guard.
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ŵlp(α, (X, x)

∀

w ∀

K
S)

def
= pci

p = ℓ1 ∧ g ⇒ (Secret(t) ∨ K(t, x, w, S))

if x ∈ x̃

ŵlp(α,ϕ)
def
= pci

p = ℓ1 ∧ g ⇒ (Secret(t) ∨ ϕ)

if ϕ ∈ {X

∀

w ∀

K
S, (X, y)

∀

w ∀

K
S, t

∀

ε ∀

K
x.f,

x 6= t′, x = t′, pcj
q = ℓ′′,⊤,⊥}

and y 6∈ x̃ and q 6= p or j 6= i

ŵlp(α, pci
p = ℓ′′)

def
= pci

p = ℓ1 ∧ g ⇒ ℓ2 = ℓ′′

We can prove in the same way as the theorem 3.6 the following theorem:

Theorem 5.3

For any input action α and term formula ϕ,

wlp(α, [[ϕ]]) = [[∀x̃ · ŵlp(α,ϕ)]].

5.2.4 Collecting the results together

It is easy to see that for any formula ϕ ∈ tttl∀ and any action α, ŵlp(α, ϕ) ∈ tttl∀.

Definition 5.2

We define the formula wlp(α,ϕ) as follows:

wlp(α, ϕ) =





ŵlp(α, ϕ) if α = [pci
p = ℓ1 ∧ g] −→ reset(R); add(X, t); pci

p := ℓ2

∀x̃ · ŵlp(α, ϕ) if [pci
p = ℓ1 ∧ in(X, t(x̃)) ∧ g] −→ reset(R); pci

p := ℓ2

Then, we have the following theorem:

Theorem 5.4

Let α be any action and ϕ any formula in tttl∀. Then,

wlp(α, [[ϕ]]) = [[wlp(α, ϕ)]].

5.2.5 Computation of wlp for a sequence of actions

In this section, we give an example that shows how we compute weakest precondition
with respect to a sequence of actions. Let
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α0 = [pc1
a = ℓ0] −→ add(X, {c}k); pc1

a := ℓ1,

α1 = [pc1
a = ℓ1] −→ reset(d); add(X, {c}k); pc1

a := ℓ2

α2 = [pc1
a = ℓ2 ∧ in(X, {T}k) ∧ g2] −→ pc1

a := ℓ3

α3 = [pc1
a = ℓ3] −→ add(X,Secret); pc1

a := ℓ4,

where c and d are clocks, k ∈ K is a symmetric key (intended to remain secret for
the intruder), Secret is a message (the secret) and g2 ≡ d = 1 ∧ −c + T < −1. Let

Γ
def
= X

∀

ε ∀

K
Secret be the formula for which we want to compute the weakest liberal

precondition (the secret Secret isn’t known by the intruder).

Now let Π0 = α0α1α2α3 and Π1 = α1α2α3 be two sequences. We show that Π1 is secure
with respect to formula Γ, while Π0 is not. For sake of simplicity, we work modulo ≡.

1st step

wlp(
τ

−→, X

∀

ε ∀

K
Secret) = X

∀
ε ∀

K
Secret.

2nd step

wlp(α3, X

∀

ε ∀

K
Secret) = pc1

a = ℓ3 ⇒ (X,Secret)

∀

ε ∀

K
Secret

≡ pc1
a 6= ℓ3

3rd step

wlp(
τ

−→, pc1
a 6= ℓ3) = pc1

a 6= ℓ3

4th step

wlp(α2, pc1
a 6= ℓ3) = Γ1 where

Γ1 ≡ d = 1 ∧ −c + T < −1 ∧ pc1
a = ℓ2 ⇒

X

∀

ε ∀

K
{{T}k, T} ∨ X

∀

ε ∀

K
{{T}k, k} ∨ ℓ3 6= ℓ3

≡ −d < −1 ∨ d < 1 ∨ c − T ≤ 1 ∨ pc1
a 6= ℓ2 ∨ X

∀

ε ∀

K
{{T}k, T} ∨ X

∀

ε ∀

K
{{T}k, k}

5th step

wlp(
τ

−→,Γ1) = Γ2 where Γ2 ≡ Ψ2 ∨ Φ2

Ψ2 ≡ ¬∆(d ≤ 1,−d ≤ 1) ∨ ¬∆(d ≤ 1,−c + T < −1) ∨ −d < −1
≡ ⊥ ∨−d + c − T ≤ 0 ∨ −d < −1

Φ2 ≡ pc1
a 6= ℓ2 ∨ X

∀

ε ∀

K
{{T}k, T} ∨ X

∀

ε ∀

K
{{T}k, k}

hence,

Γ2 ≡ −d + c − T ≤ 0 ∨ −d < −1 ∨ pc1
a 6= ℓ2 ∨ X

∀

ε ∀

K
{{T}k, T} ∨ X

∀

ε ∀

K
{{T}k, k}
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6th step

wlp(α1, Γ2) = Γ3 where

Γ3 ≡ pc1
a = ℓ1 ⇒ 0 + c − T ≤ 0 ∨ 0 < −1 ∨ ℓ2 6= ℓ2

∨
(
Tc = c ⇒ X

∀

ε ∀

K
{{T}k, T} ∧ {Tc}k

∀

ε ∀

K
{{T}k, T}

)

∨
(
Tc = c ⇒ X

∀

ε ∀

K
{{T}k, k} ∧ {Tc}k

∀

ε ∀

K
{{T}k, k}

)

≡ pc1
a = ℓ1 ⇒ c − T ≤ 0 ∨ Tc 6= c ∨ (Tc 6= T ∧ (X

∀

ε ∀

K
{{T}k, T} ∨ X

∀

ε ∀

K
{{T}k, k}))

≡ pc1
a = ℓ1 ⇒ (c − T ≤ 0 ∨ Tc 6= c ∨ Tc 6= T )

∧(c − T ≤ 0 ∨ Tc 6= c ∨ X

∀

ε ∀

K
{{T}k, T} ∨ X

∀
ε ∀

K
{{T}k, k})

we observe that

(c − T ≤ 0 ∨ Tc 6= c ∨ Tc 6= T ) ≡ ((Tc = c ∧ Tc = T ) ⇒ c ≤ T ) ≡ ⊤

hence

Γ3 ≡ pc1
a 6= ℓ1 ∨ c − T ≤ 0 ∨ Tc 6= c ∨ X

∀
ε ∀

K
{{T}k, T} ∨ X

∀

ε ∀

K
{{T}k, k}

7th step

wlp(
τ

−→, Γ3) = Γ4 where Γ4 ≡ Ψ4 ∨ Φ4

Ψ4 ≡ ¬∆(−Tc + c ≤ 0,−c + T < 0) ∨ ¬∆(−Tc + c ≤ 0, Tc − c ≤ 0) ∨ Tc − c < 0
≡ Tc − T < 0 ∨ ⊥ ∨ Tc − c < 0

Φ4 ≡ pc1
a 6= ℓ1 ∨ X

∀
ε ∀

K
{{T}k, T} ∨ X

∀

ε ∀

K
{{T}k, k}

hence

Γ4 ≡ Tc − T < 0 ∨ Tc − c < 0 ∨ pc1
a 6= ℓ1 ∨ X

∀

ε ∀

K
{{T}k, T} ∨ X

∀

ε ∀

K
{{T}k, k}

8th step

wlp(α0, Γ4) = Γ5 where

Γ5 ≡ pc1
a = ℓ0 ⇒ Tc − T < 0 ∨ Tc − c < 0 ∨ ℓ1 6= ℓ1

∨
(
T ′

c = c ⇒ (X

∀

ε ∀

K
{{T}k, T} ∧ {T ′

c}k

∀

ε ∀

K
{{T}k, T})

)

∨
(
T ′

c = c ⇒ (X

∀

ε ∀

K
{{T}k, k} ∧ {T ′

c}k

∀

ε ∀

K
{{T}k, k})

)

≡ pc1
a = ℓ0 ⇒ Tc − T < 0 ∨ Tc − c < 0 ∨ T ′

c 6= c
∨(T ′

c 6= T ∧ (X

∀

ε ∀

K
{{T}k, T} ∨ X

∀

ε ∀

K
{{T}k, k}))

≡ (pc1
a 6= ℓ0 ∨ Tc − T < 0 ∨ Tc − c < 0 ∨ T ′

c 6= c ∨ T ′
c 6= T ) ∧ (pc1

a 6= ℓ0

∨Tc − T < 0 ∨ Tc − c < 0 ∨ T ′
c 6= c ∨ X

∀

ε ∀

K
{{T}k, T} ∨ X

∀

ε ∀

K
{{T}k, k})

9th step

wlp(
τ

−→, Γ5) = Γ6 where Γ6 ≡ (Ψ6 ∨ Φ6) ∧ (Ψ7 ∨ Φ7)

Ψ6 ≡ ¬∆(c − Tc ≤ 0,−c + T ′
c ≤ 0) ∨ ¬∆(c − T ′

c,−c + T ′
c ≤ 0)

∨Tc − c < 0 ∨ −c + T ′
c < 0 ∨ Tc − T < 0 ∨ T ′

c 6= T
≡ Tc − T ′

c < 0 ∨ ⊥ ∨ Tc − c < 0 ∨ −c + T ′
c < 0 ∨ Tc − T < 0 ∨ T ′

c 6= T
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Ψ7 ≡ ¬∆(c − Tc ≤ 0,−c + T ′
c ≤ 0) ∨ ¬∆(c − T ′

c,−c + T ′
c ≤ 0)

∨Tc − c < 0 ∨ −c + T ′
c < 0 ∨ Tc − T < 0

≡ Tc − T ′
c < 0 ∨ ⊥ ∨ Tc − c < 0 ∨ −c + T ′

c < 0 ∨ Tc − T < 0

Φ6 ≡ pc1
a 6= ℓ0

Φ7 ≡ pc1
a 6= ℓ0 ∨ X

∀

ε ∀

K
{{T}k, T} ∨ X

∀

ε ∀

K
{{T}k, k}

hence

Γ6 ≡ pc1
a 6= ℓ0 ∨ Tc − T ′

c < 0 ∨ ⊥ ∨ Tc − c < 0 ∨ −c + T ′
c < 0 ∨ Tc − T < 0

∨(T ′
c 6= T ∧ (X

∀

ε ∀
K

{{T}k, T} ∨ X

∀

ε ∀

K
{{T}k, k}))

Hence, we obtain wlp(Π0, X

∀

ε ∀
K

Secret) ≡ Γ6 and wlp(Π1, X

∀

ε ∀

K
Secret) ≡ Γ4

Since we supposed that k is a secret symmetric key (i.e. X

∀

ε ∀

K
k) and moreover, if

there are no messages of the form {t}k, initially known by the intruder with t ∈ R≥0,
the protocol Π1 is secure with respect to the secrecy of Secret. Contrarily, the protocol
Π0 is unsecure. If we pick Tc and T ′

c such that T < Tc ∧ T ′
c < Tc ∧ T ′

c = T , then
we obtain an attack which corresponds to the fact that the first message sent can be
replayed successfully by the intruder (it satisfies the time constraints).

5.3 Satisfiability of tttl∃

We define the tttl∃ fragment of tttl by restricting the ttl formulae to ttl∃ formulae.
In this section we show how we can extend the satisfiability of ttl∃ formulae to the
satisfiability of tttl∃ formulae.

Let us consider a general formula of the form:

Γ = ∃T1 . . .∃Tm∃x1 . . .∃xm∀f1 . . .∀fpϕ

where {Ti ∈ Y | i = 1 . . . m} ∪ {xi ∈ X | i = 1 . . . m} ∪ {fk ∈ B | k = 1 . . . p} is
the set of all variables that appear in ϕ, and ϕ is a quantifier free formula built using
the connectives ∧ and ∨ and literals of tttl∃.

As the time constraints do not contain meta variables of B and the function symbols of
B are applied only to variables of X we eliminate the universal quantifiers in the same
way as for the ttl∃ (section 4.1.4). Moreover, as we consider the satisfiability problem
we can restrict ourselves to conjunctions of literals.

Hence, we have to deal with restricted formula of the following form:

∃T1 . . .∃Tm∃x1 . . .∃xm(ψ ∧ ϕ)

where ψ is a conjunction of time constraints and ϕ is a conjunction of ttl∃ formulae.

ϕ can be transformed into a set of solved form formulae as shown in the section 4.1.3.
But, the terms may contain clocks and time variables and therefore, some rules are
needed to handle them. These rules are presented in table 5.1.
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x = {t}k 7→ ⊥ x = (t1, t2) 7→ ⊥ x = N 7→ ⊥ x = P 7→ ⊥

x = k 7→ ⊥ if x ∈ C ∪ Y ∪R, N ∈ N , P ∈ P and k ∈ K

Table 5.1: Eliminate trivial sub-formulae for tttl

t

∀

ε ∀

K
s 7→ J (t, ε, s), if t 6∈ X ∪ C ∪ Y ∪R≥0 (D1.1)

t

∀

ε ∀

K
s 7→ t 6= s, if t ∈ C ∪ Y ∪R≥0 (D1.2)

s = t 7→ µ(s, t), if s, t 6∈ X ∪ C ∪ Y ∪R≥0 (D2)

Table 5.2: Decompose

Also, the decomposition rules have to be modified as shown in table 5.2.

It turns out that only the equalities between the variables in C ∪ Y that are implied by
ψ might rule out some of the models of ϕ. That is, we need only to take into account
such equalities.

Let us illustrate this by an example. Consider the formula

ϕ′ ≡ x

∀

ǫ ∀

K
(A, c) ∧ x

∀

6ǫ ∀

K
(A, T ).

Then, ϕ′ ∧ 0 ≤ c ≤ 1 ∧ 0 ≤ T ≤ 1 is satisfiable; while ϕ′ ∧ c − T = 0 is not. Indeed, in
the first case the time constraint does not imply any equality; while in the second case
it implies c = T .

Therefore, we proceed as follows. We compute the strongest time constraint ψ′ of the
form ⊥ or

m∧

i=1

zi = z′i

where zi, z
′
i ∈ C ∪ Y and such that ψ implies ψ′. If ψ′ is ⊥ then ψ ∧ ϕ is not satisfiable,

and we are done.

Therefore, let us suppose that ψ′ is satisfiable. Then, ψ′ induces an equivalence relation
on the variables in C ∪ Y as follows: z ∼ψ′ z′ iff z = z′ is a consequence of ψ′. Using
this equivalence relation we can define an idempotent substitution σψ′ that associates
to the members of an equivalence class a designated representative. Now, we apply the
substitution σψ′ to ϕ and check that the obtained formula is satisfiable.

We only consider term formulae as the complexity of time constraints is well-
known [Sch86]. Moreover, as seen above time constraints can be eliminated leading
to a formula ψ′. This can be done in NP -time and the size of ψ′ is polynomial in the
size of ψ. Hence, the satisfiability problem of tttl formula is also NP -complete.
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Chapter 6

Abstraction

We introduce in this chapter our underlying model for the verification by abstraction
of unbounded cryptographic protocols.

We begin by defining an operational semantics for protocols in an unbounded setting.
Our starting point are syntactic descriptions of untimed cryptographic protocols by
parameterized session, as defined in section 1.3. Regarding the semantics, there is
little difference between the bounded case and the unbounded one. Roughly speaking,
configurations includes now varying sets of active session instances and, moreover, an
action to create a new session instance is added. That is, contrarily to the bounded
case where we instantiate and run a fixed number of protocol sessions, we give here the
possibility to create and run new sessions of the protocol, at any time.

In the unbounded case, we will restrict our attention to the verification of secrecy prop-
erties. In fact, as you will see later, the use of the control abstraction will prevent us
to express authentication properties, which requires precise information about control
points of participants. Nevertheless, even restricted to secrecy properties, the verifica-
tion problem is not easy. In fact, in addition to the unbounded nature, now in two
dimensions (size of messages and number of sessions) the verification problem is im-
plicitly quantified universally over the set of session instances. That is, we require that
some secret is preserved in each session instance, and despite the number of session
instances created.

In order to tackle the complexity of this problem we propose an abstraction of the
protocol with respect to the secrecy property and a witness session, that is, a session
taking place between honest participants. Our abstraction combines data abstraction
and control abstraction. Data abstraction allows to map the infinite domains of principal
names and nonces to some finite domains, more precisely, we will distinguish only the
honest participants occurring in the witness session while the others are becoming the
same as the intruder. Control abstraction allows to map any unknown number of
concrete parallel sessions to a finite number of abstract sessions. The keypoint is to
loose precise information about control points of participants, more precisely, to replace
their concrete actions with abstract actions (later called abstract rules) where the order

97
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of occurrence is just partially preserved.

Finally, we show that our abstraction is sound with respect to secrecy properties. That
is, if the secrecy property is satisfied on the abstract protocol, then so it is on the concrete
protocol too. Roughly speaking, if the secret is preserved on the witness session, it will
be preserved on any session of the protocol taking place between honest participants.
Nevertheless, the converse does not hold, our abstraction not being complete. It is
indeed possible that the secrecy property does not hold on the abstract protocol and
still holds on the concrete protocol.

6.1 Unbounded Semantics

Let us consider S = (P, act, fresh) a parameterized session description. We want to
represent the behavior of the protocol described by S without any restriction on the
numbers of sessions and principals.

We recall that a session instance Si is characterized by a pair (i, π). We defined the
states of a session instance Si by the pairs (σ, al), where σ is a substitution, and al is
a function. The function al associates for each role of the protocol p ∈ P the list of its
instantiated actions, which are left to be executed, initially in the session instance Si,
al(p) = acti(π(p)).

The configurations set of unbounded protocol is given by pairs (E, ξ) where E is a set of
messages and ξ is a function, dom(ξ) = N which represents identifiers of session instances
and ξ(i) describes the state of the session instance Si. The operational semantics is
defined as a labelled transition system over the set of configurations. There are two sets
of transitions:

1. transitions that create new sessions:
i 6∈ dom(ξ)

(E, ξ)
τ
−→ (E, ξ[i 7→ (σ, al)])

where σ is the empty substitution and al is a function that associates for each role
of the protocol p ∈ P the list of instantiated actions al(p) = acti(π(p)) and π is
an arbitrary assigment of principals to parameters. That corresponds to creating
a new session (i, π).

2. transitions that correspond to protocol actions:

(E, ξ)
α
−→ (E′, ξ′)

are defined by the following two rules:

– output actions: α = [pci
p = ℓ1] −→ add(X, t); pci

p := ℓ2

i ∈ dom(ξ) ξ(i) = (σ, al) al(p) = α · list

(E, ξ)
α
−→ (E ∪ {tσ}, ξ[i 7→ (σ, al′)])
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where al′ = al[p 7→ list]. That is, sending the message tσ amounts to adding
tσ to the knowledge of the intruder.

– input actions: α = [pci
p = ℓ1 ∧ in(X, t(x̃))] −→ pci

p := ℓ2

i ∈ dom(ξ) ξ(i) = (σ, al) al(p) = α · list ρ ∈ Γ(x̃) E ⊢ t(σ ⊕ ρ)

(E, ξ)
α
−→ (E, ξ[i 7→ (σ ⊕ ρ, al′)])

where al′ = al[p 7→ list]. That corresponds to receiving any message that
matches with tσ and is known by the intruder.

Example 6.1

Consider again our running example 1.3, the Needham-Schroeder protocol, and a ses-
sion, identified by 0, between A and B, π(p1) = A, π(p2) = B, with principals A being
at the second step of the protocol and B being in the last step of the protocol. The state
ξ(0) of the session is (σ0, al0) where σ0 = [y → A; z → N1], and

al0(p1) = [pc0
p1

= ℓ1 ∧ in({N1, x}pbk(A), X)] −→ pc0
p1

:= ℓ2·

[pc0
p1

= ℓ2] −→ add({x}pbk(B), X); pc0
p1

:= ℓ3

al0(p2) = [pc0
p2

= ℓ2 ∧ in({N2}pbk(B), X)] −→ pc0
p2

:= ℓ3

Moreover, let {N1, N2}KA
∈ E then A can fire its first remaining action which modifies

the configuration as follows: σ0 = [y → A; z → N1; x → N2], and

al0(p1) = [pc0
p1

= ℓ2] −→ add({x}pbk(B), X); pc0
p1

:= ℓ3

al0(p2) = [pc0
p2

= ℓ2 ∧ in({N2}pbk(B), X)] −→ pc0
p2

:= ℓ3

6.2 Secrecy modeling

A secrecy goal states that a designated message should not be made public. A secret
is public when it is deductible from the set of messages intercepted by the intruder. In
our setting, a secret is defined by a role term. More precisely, to each session instance is
associated a secret that we want to prove with respect to some hypothesis. Hence, we are
interested in session instances where all participants are honest. If one of participants
who are supposed to know the secret is dishonest it does not make sense to require that
the secret associated to this session instance should not be made public.

Hence, the secret property for unbounded protocols is expressed in accordance with the
honesty of protocol participants. A participant is honest if initially his private keys
and his shared keys with other honest participants are not deductible from the intruder
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knowledge and later it will execute only actions specified by the protocol. Also, for all
instance values that are associated to the fresh parameters we have to express that they
have not appeared before the session creation.

Let S = (P, act, fresh) be a given parameterized session description. Given Si = (i, π)
a session instance, we denote by C(E, π, i) the constraint which asserts for every nonce
variable n ∈

⋃
p∈P

fresh(p), and for every message m such that E ⊢ m we have N i (the

instance of n in the session Si) does not appear in m.

Formally,
C(E, π, i) = {E 6⊢∈ N i | n ∈ fresh(P )}

where by E 6⊢∈ m we denote that m does not appear in any message derivable from E.

Intuitively, this means that initially the intruder cannot know messages that contain
fresh nonces.

Moreover, let C(E) denote the condition:

∀(i, π) ∈ Inst . C(E, π, i).

We model the honesty of a participant p by a predicate honest(p). All participants of
the session instance (i, π) are honest, denoted honest(π), if for every p of P we have
honest(π(p)).

We are now ready to define our secrecy property formally. The protocol P described by
S satisfies the secrecy property defined by the secret template t in the initial set E0 of
intruder’s knowledge, denoted by Secret(S, t, E0), if C(E0) and for every E such that
(E0, ξ0) →∗ (E, ξ) and honest(π) we have E 6⊢ tiπ where (i, π) are session instances of
Inst and dom(ξ0) = ∅.

Formally, in C(E0) hypothesis we have

Secret(S, t, E0) ⇔ ∀(i, π) ∈ Inst . ∀E ∈ M . [honest(π) ∧ (E0, ξ0) →
∗ (E, ξ)] ⇒ E 6⊢ tiπ

The definition of secrecy can be easily extended to a set T of secret templates by:
Secret(S, T, E0) iff Secret(S, t, E0), for all t ∈ T .

6.3 Abstraction Definition

In this section we fix an arbitrary cryptographic protocol given by a session description
S = (P, act, fresh). To prove any property of this protocol in the case of unbounded
number of sessions, we are faced with the following problems:

1. The definition of the verification problem is a problem quantified universally over
all session instances (i, π) ∈ Inst.

2. There is no bound on the number of sessions instances that can be created.
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3. There is no bound on the size of the messages that occur during execution of the
protocol.

We present here an abstraction that is parameterized by an arbitrary session instance
(i0, π0) ∈ Inst, then we argue that the abstract system we obtain does not depend on
the choice of the session instance (i0, π0). The main idea of the abstraction is as follows.
Clearly, the behavior of a honest participant does not depend on its identity. This is
simply a consequence of defining protocol sessions in a parameterized manner as we did.
Also, the behavior of a participant does not depend on the identifier associated to the
session.

Therefore, we fix an arbitrary session where the participants are honest, say we have two
participants, A and B. We assume there is such a session, otherwise the hypothesis of
the Secret property is never satisfied and we have nothing to prove. Then, we identify
with the intruder I all participants other than A and B. Moreover, we identify all
sessions in which neither A nor B are involved. Concerning the other sessions, that is,
those where A or B are involved, we identify:

• all sessions where A plays the role of p1, B plays the role of p2 and the session is
different from the fixed session,

• all sessions where B plays the role of p1 and A plays the role of p2,

• all sessions where A (respectively B) plays the both roles

• all sessions where A (respectively B) plays the role of p1 and the role of p2 is
played by a participant different from A or B,

• all sessions where A (respectively B) plays the role of p2 and the role of p1 is
played by a participant different from A or B,

Identifying sessions means also identifying the nonces and keys used in these sessions.
We now present this idea formally.

6.3.1 Data abstraction

Let the session instance (i0, π0) ∈ Inst be fixed such that honest(π0) holds. We suppose
that there is at least one honest participant. For a concrete semantic object x, we use
the notation x(i0,π0) to denote its abstraction, and in case (i0, π0) is known from the
context, we use x♯.

We start by defining the abstract domains N♯ = {⊤,⊥} and P♯ = {A1, · · ·Ar, I}, where
r is the cardinal of P and the abstractions:

• i♯ =

{
⊤ if (i, π) = (i0, π0)
⊥ otherwise

• p♯ =

{
Aj if p = π0(pj)
I otherwise
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We extend the abstraction of participants to vectors of participants by taking the ab-
stractions of the components.

The abstraction of the nonce N i, of a session instance Si = (i, π), denoted by (N i)♯, is
given by:

• NI , if n ∈ fresh(p) and π(p)♯ = I,

• N , if i♯ = ⊤, and

• Nπ♯
, otherwise.

where NI is a fresh constant.

Thus, as abstract sets of nonce, we have N ♯(I) = {NI} and N ♯(Aj) = {N, Nπ♯
| n ∈

fresh(pj), π(pj) = Aj}.

Example 6.2

For Needham-Schroeder, we have the following set of abstract nonces:

N ♯ = {NI , N1, N2, N1
x,y, N2

y,x | x ∈ {A,B} y ∈ {A,B, I}}.

We denote N ♯ = N ♯(I) ∪
⋃

j∈Nr

N ♯(Aj).

It remains to define the abstraction of keys. We take the abstract set K♯ that consists of a
distinguished key KI and the keys in AK(i, [n♯], p♯

1, · · · , p♯
l) with n♯ ∈ N ♯ p♯

1, · · · , p♯
l ∈ P♯

and p♯
j 6= I, for all j ∈ Nl. The abstraction of a key k(i, n, p1, · · · , pn) is defined by:

k♯([i, ][n, ]p1, .. , pn) =





k([i, ][n♯, ]p♯
1, · · · , p♯

n) if p♯
i 6= I, i = 1, · · · , n

and n♯ 6= NI

KI otherwise

Example 6.3

For Needham-Schroeder, we have the following set of abstract keys:

K♯ = {KI , pbk(A), pvk(A), pbk(B), pvk(B)}.

We denote A♯ = P♯ ∪N ♯ ∪ K♯.

The abstraction of a term t, denoted by t♯, is obtained as the homomorphic extension
of the abstractions on participants, nonces and keys. For a set T of terms, let T ♯ =
{t♯ | t ∈ T}.

The set M♯ of abstract messages is the set of ground terms over A♯ and the constructors
encr and pair as for M. Similarly, we can define the set of abstract terms by allowing
variables in X .
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6.3.2 Control abstraction

Now we have a system with a finite number of participants, of nonces and of keys but
an unbounded number of sessions. Further, we apply an abstraction that removes the
control, for all session instances.

To do so, we remove from the actions the program counters and in order to keep the
value assigned to the variables we add to each guard of an output action all guards from
the previously input actions of the same participant. Thus, an implicit control is given
by these new guards. An output action is executed only if all previously input actions
have been able to be executed. It is apparent that the input actions are redundant. We
call the obtained set of actions, the set of abstract actions or transitions.

Let us give an example to show how to change a parameterized protocol description
into a set of parametrized transitions:

Example 6.4

We take again the Needham-Schroeder protocol. The first action of p1 remains as it is,
except that the explicit manipulation of the control point pci

p1
is removed. The last two

actions of p1 are merged together. In fact, since the second action is an input, it becomes
a guard of the third action. The situation on p2 is similar. The first two actions are
merged together into a transition. Moreover, the third action is simply discarded.

actions transitions

[pcp1
= 0] −→ add(X, {p1, n1}pbk(p2)); pcp1

:= 1 [] −→ add(X, {p1, n1}pbk(p2))

[pcp1
= 1 ∧ in(X, {n1, x̃}pbk(p1))] −→ pcp1

:= 2

[pcp1
= 2] −→ add(X, {x}pbk(p2)); pcp1

:= 3 [in(X, {n1, x}pbk(p1))] −→ add(X, {x}pbk(p2))

[pcp2
= 0 ∧ in(X, {ỹ, z̃}pbk(p2))] −→ pcp2

:= 1

[pcp2
= 1] −→ add(X, {z, n2}pbk(y)); pcp2

:= 2 [in(X, {y, z}pbk(p2))] −→ add(X, {z, n2}pbk(y))

[pcp2
= 2 ∧ in(X, {n2}pbk(p2))] −→ pcp2

:= 3

To simplify, we denote a transition of the form [
n∧

i=1
in(X, ti)] −→ add(X, t′) by t −→ t′

where t is constructed by pairing from t1, · · · tn. If t → t′ is a (i, π) instantiated transition
then an abstract transition is t♯ → t′♯. Where t♯, t′♯ are the abstractions of the terms t
respectively t′.

To summarize, we have a system with a finite number of participants, of nonces and of
keys but an unbounded number of sessions. We model the protocol as a set of abstract
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transitions that can be taken in any order and any number of times. The number of
messages as their size are left unbounded.

6.3.3 Protocol abstraction

We are now ready to define the abstraction of a cryptographic protocol with respect to
a fixed session (i0, π0) and a secrecy goal s for this session.

Abstract protocol

The abstraction of a protocol will be given as a pair (C♯, R♯) of constraints C♯ of the
form E 6⊢∈ m, where m ∈ M♯ and a set R♯ of abstract transitions. We call (C♯, R♯) an
abstract protocol. The abstract protocol configurations set are given by a sets of abstract
messages E♯ ⊆ M♯. The operational semantics is defined by the following semantics
rules:

−

E♯ τ
−→R E♯

t → t′ ∈ R♯ E♯ ⊢ tσ

E♯ t → t′
−−−−→R E♯ ∪ {t′σ}

Abstraction

The abstraction S♯ of the cryptographic protocol defined by S = (P, act, fresh) is defined
by:

• the set C of abstract constraints

C♯ = {E♯ 6⊢∈ m♯ | E 6⊢∈ m in C(E, π0, i0)} and

• the set R♯ of abstract transitions (or abstract rules)

R♯ = {t♯1 → t♯2 | t1 → t2 is a transition in some session instance (i, π)}

The abstraction of the freshness hypothesis C♯ means that, in the abstract model the
intruder cannot know messages that contain fresh nonces that will be generated by the
fixed session. As we identify the others sessions we have to consider that the others
nonces are known by the intruder from previous executions. A finer abstraction can
be defined by distinguishing between sessions which finished (resp. starts) before (resp.
after) the fixed session.

Example 6.5

Let π0 = (A,B). In our model which yields an over-approximation of the possible
runs of the protocol, we can describe the Needham-Schroeder protocol by the constraint
C♯ = {E♯ 6⊢∈ N1, E

♯ 6⊢∈ N2} and the rules R♯ of the figure 6.1. Where X, Y range over
the set π0 of participants A,B.
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Sessions Transitions

the fixed session (A, B) − → {A, N1}pbk(B); {A, y}pbk(B) → {y, N2}pbk(A); {N1, z}pbk(A) → {z}pbk(B);

other sessions (X, Y ) − → {X, NXY
1 }pbk(Y ); {X, y}pbk(Y ) → {y, NXY

2 }pbk(X); {NXY
1 , z}pbk(X) → {z}pbk(Y );

the sessions (I, Y ) − → {I, NI}pbk(Y ); {I, y}pbk(Y ) → {y, NIY
2 }pbk(I); {NI , z}pbk(I) → {z}pbk(Y );

the session (X, I) − → {X, NXI
1 }pbk(I); {X, y}pbk(I) → {y, NI}pbk(X); {NXI

1 , z}pbk(X) → {z}pbk(I);

Figure 6.1: The abstract rules of Needham-Schroeder Protocol

6.4 Soundness

Let S♯ = (C♯, R♯) be an abstract protocol and E♯
0 ⊆ M♯. We say that S♯ preserves the

secret s♯ in E♯
0, denoted by Secret ♯(S♯, s♯, E♯

0), if for all E♯ ⊆ M♯, if C♯ and E♯
0 →∗

R E♯

then E♯ 6⊢ s♯.

Example 6.6

In our running example, the abstract hypothesis are

E♯
0 6⊢∈c N1

E♯
0 6⊢∈c N2

honest(A), E♯
0 6⊢ pvk(A)

honest(B), E♯
0 6⊢ pvk(B)

and the secret property is:

E♯
0 →∗

R E♯ ⇒ E♯ 6⊢ N2

To relate a cryptographic protocol and its abstraction, we need to relate derivation by
the intruder on the concrete and abstract messages. We can prove the following:

Lemma 6.1

Let E be a set of messages and E♯ = {m♯ | m ∈ E}. Then, E ⊢ m implies E♯ ⊢ m♯, for
any message m ∈ M.

Proof:

By induction on the tree derivation
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1. E ⊢ m in one step: Hence, m ∈ E. By the definition of E♯ = {m♯ | m ∈ E} then
m♯ ∈ E♯ and then E♯ ⊢ m♯.

2. Induction step. E ⊢ m in k + 1 steps. We make a case analysis on the last
derivation step:

• Case of pairing, m = (m1,m2). We have E ⊢ m1 and E ⊢ m2 in k steps,

then by induction hypothesis E♯ ⊢ m♯
1 and E♯ ⊢ m♯

2 and by pair rule we

have E♯ ⊢ (m♯
1,m

♯
2) but (m♯

1,m
♯
2) = (m1,m2)

♯ so E♯ ⊢ (m1,m2)
♯.

• Case of encryption, m = {t}k. Similarly to the previous case.

• Case of left projection. We have E ⊢ (m,m′) in k steps, then by induction
hypothesis E♯ ⊢ (m,m′)♯ but (m,m′)♯ = (m♯,m′♯) so E♯ ⊢ (m♯,m′♯) and by
left projection rule we have E♯ ⊢ m♯. Similarly for right projection.

• Case of decryption. We have E ⊢ {m}k and E ⊢ inv(k) in k steps, then by

induction hypothesis E♯ ⊢ {m}♯
k and E♯ ⊢ inv(k)♯ which is equivalent with

E♯ ⊢ {m♯}k♯ and E♯ ⊢ inv(k♯) then by decryption rule we have E♯ ⊢ m♯.

We can also prove the following lemma to relate concrete and abstract term instantia-
tions:

Lemma 6.2

Let t1 and t2 be terms and let ρ : X → M. Then, ρ(t1) = ρ(t2) implies ρ♯(t♯1) = ρ♯(t♯2),
where ρ♯ is defined by ρ♯(x) = (ρ(x))♯ for any x ∈ dom(ρ).

Proof:

We have ρ(t1) = ρ(t2) implies ρ(t1)
♯ = ρ(t2)

♯ and we prove by structural induction on
the term t that ρ(t)♯ = ρ♯(t♯):

1. case t atomic - by definition

2. case t = f(t1, t2), where f ∈ {pair, encr}:

ρ(t)♯ = ρ(f(t1, t2))
♯

= f(ρ(t1), ρ(t2))
♯

= f(ρ(t1)
♯, ρ(t2)

♯)

= f(ρ♯(t♯1), ρ
♯(t♯2)) by induction hypothesis

= ρ♯(f(t♯1, t
♯
2))

= ρ♯(f(t1, t2)
♯)

= ρ♯(t♯)

Using lemma 6.1, we can prove that (C♯, R♯) is indeed an abstraction of S where the
abstraction of a configuration (E, ξ) is E♯:



6.4. SOUNDNESS 107

Proposition 6.3

Let S = (P, act, fresh) be a protocol and S♯ = (C♯, R♯) its abstraction. Let (Ek, ξk) and
(Ek+1, ξk+1) be reachable concrete configurations and α a protocol action Then,

(Ek, ξk)
α
−→ (Ek+1, ξk+1) implies ∃γ ∈ R♯ ∪ {τ} such that E♯

k

γ
−→R E♯

k+1.

Moreover, if C(E) is true then also C♯.

Proof:

Following the protocol actions we have two cases:

1. α corresponds to the creation of a new session (i, π) or to an input action:

We have Ek = Ek+1 and then E♯
k

τ
−→R E♯

k+1 by definition.

2. α = [pci
p = ℓ1] −→ add(X, t′); pci

p := ℓ2 is an output action:

We have (Ek, ξk)
α
−→ (Ek+1, ξk+1) where ξk = (σk, alk) and ξk+1 = (σk, alk+1) and

Ek+1 = Ek ∪ (t′σk). We will prove that there is an abstract transition γ in R♯

such that E♯
k

γ
−→R E♯

k ∪ {(t′σk)
♯}.

As (Ek, ξk) is a reachable configuration, we know that between initial configuration
(E0, ξ0) and (Ek, ξk) all input actions of the participant π(p) of session instance
(i, π) that are before the local control point ℓ1 has been executed. I.e. for every
such input action αj = [pci

p = ℓj
1 ∧ in(X, tj(x̃))] −→ pci

p := ℓj
2, j ∈ J there are two

configurations (Ej , ξj), (Ej+1, ξj+1) such that (Ej , ξj)
αj
−−→ (Ej+1, ξj+1), 0 ≤ j ≤ k.

For every j smaller than k, we have by definition Ej subset of Ek and σk include
σj where ξj(i) = (σj ,) respectively ξk(i) = (σk,).

Hence, for all j ∈ J we have Ek ⊢ tjσk and by lemma 6.1 we have

∀j ∈ J E♯
k ⊢ (tjσk)

♯ (6.1)

αj , j ∈ J are all input actions of the participant π(p) in the session instance (i, π)
before the output action α. Hence, for this session instance we have the transition
t → t′ where t is construct by pairing from (tj)j∈J . Therefore, in the abstract
transition R♯ of the protocol we have t♯ → t′♯. Then, using the equation 6.1 we

have E♯
k

t♯ → t′♯
−−−−−−→R E♯

k ∪ {(t′σk)
♯}.

Exploiting Proposition 6.3 and the fact that (C♯, R♯) does not depend on (i0, π0), that
is, we have the same constraints and transitions for all (i, π) ∈ Inst, we can prove:
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Theorem 6.4

The protocol defined by S satisfies the secrecy property defined by Secret(S, s, E0), if its

abstraction (C♯, R♯) preserves s♯ in E♯
0, i.e.,

Secret ♯(S♯, s♯, E♯
0) implies Secret(S, s, E0).

Proof:

From the proposition 6.3 we have C(E0) ⇒ C♯, hence the hypothesis are preserved by
the abstraction.

Secret ♯(S♯, s♯, E♯
0) ⇔

∀E♯ ∈ M♯ · E♯
0 →∗

R E♯ ⇒ E♯ 6⊢ s♯ ⇔

∀π0 ∈ Inst · honest(π0) we have ∀E♯ ∈ M♯ · E♯
0 →∗

R E♯ ⇒ E♯ 6⊢ s♯

We want to prove Secret(S, s, E0), that is,∀(i, π) ∈ Inst such that honest(π) and ∀E ⊆
M such that E0 →∗ E we have E 6⊢ si

π.

If we suppose ¬Secret(S, s, E0). That is ∃(i′, π′) ∈ Inst such that honest(π′) and
∃E′ ⊆ M such that E0 →∗ E′ and E′ ⊢ si′

π′ .

Let π0 = π′. Using the proposition 6.3 we have C♯ and E♯
0 →∗ E′♯. Also, from E′ ⊢ si′

π′

using the lemma 6.1 we obtain E′♯ ⊢ (si′

π′)♯, that is E′♯ ⊢ s♯.

Hence, there is π′,honest(π′) such that C♯ and ∃E′♯ ∈ M♯ · E♯
0 →∗

R E′♯ and E′♯ ⊢ s♯,
contradiction.



Chapter 7

Symbolic Verification

This chapter presents our symbolic verification algorithm for secrecy properties on un-
bounded cryptographic protocols. The algorithm takes as inputs (1) an abstract pro-
tocol (C, R) consisting of an hypothesis on the initial intruder knowledge C and a set
of abstract rules R and (2) the set of secrets S to be preserved by the protocol. At
termination, the algorithm answers yes or no, depending if indeed, the set of secrets is
or not preserved by the protocol. In particular, if not, an abstract attack defined in
terms of abstract rules applied, that are abstract protocol steps, is also provided as a
counter-example.

The algorithm relies on the syntactic characterization of secrecy by message transducers
as defined in section 2.2. In few words, the algorithm attempts to compute a minimal
extended set of secrets S′ together with a minimal set of message transducers MT such
that:

1. the initial set of secrets S is included in the extended set S′

2. the pair (MT,S′) is well formed, that is, if the secrets are protected from the
intruder, despite of the use of message transducers, they remain also protected in
any messages derivable by the intruder,

3. the pair (MT,S′) is stable with respect to the protocol rules, that is, no more
useful knowledge can be obtained by the intruder through the application of any
of the rules of the protocol.

Once the pair (MT,S′) satisfying the properties above is computed, the verification
problem is reduced to check if the intersection between the set of messages accessible
by MT from initial knowledge of the intruder C and the extended set of secrets S′ is or
not empty.

Therefore, the main computational work of our algorithm consists in finding the appro-
priate sets MT and S′. In order to compute them, we propose a least fixpoint technique.
We start with an empty set of message transducers together with the initial set of se-
crets. Then, we progressively add message transducers and/or secrets until the pair

109
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become stable and well-formed. In particular, non-stability with respect to a protocol
rule gives an effective way to compute new secrets and new message transducers. Much
simpler, well-formedness reduces to have a closed set of extended secrets and another
structural property on the set of message transducers.

If we want to implement the above algorithm we are faced with two major problems.
First, the sets of secrets and respectively message transducers can growth infinitely,
hence, we need finite, symbolic representations for potentially infinite sets of such ele-
ments. For sets of messages, we propose to use patterns, that are, terms extended with
the Sup operator, where Sup(t) denotes the set of all terms containing as subterm t.
Similarly, for message transducers, we will use now pattern transducers.

The second problem concerns the termination of the above algorithm. It is rather easy
to provide examples where the fixpoint computation does not terminate, despite of the
use of symbolic representations based on patterns. Therefore, in order to enforce ter-
mination, we propose a widening technique which detects and approximates potentially
infinitely growing sequences of messages (or in general, patterns) by only a finite set
of patterns. Clearly, the precision of the algorithm is lost here, the sets computed be-
ing over-approximations of the exact results. But, on all practical examples we tested,
our widening scheme ensure termination and, it is precise enough to prove interesting
secrecy properties.

In this chapter we assume that we are given a protocol Π = (C, R) and a set of secrets
defined by a set Secret of messages.

7.1 Secret characterization

In this section we deal with a particular case of the protected modality which use sets
of one length message transducers. We recall or reformulate some definitions from the
first part and we prove the same properties on this modality.

As before, we consider K ⊆ K be a fixed but arbitrary set of keys, such that ∅ 6= K 6= K,
i.e. the set of keys for which their inverses are supposed to be unknown for the intruder.
Also, K−1 = {k | k′ ∈ K ∧ inv(k, k′)} is the set of keys for which their inverse are in K.

By abstraction we removed the control, so the rules of R can be taken any number of
times and in any order. Therefore, we have to relax the protected modality, i.e. the
order of message transducers as well as the fact that they are consumed by a message
transducer application are removed. Hence, we define an abstract protected modality
called set-protected modality as follows:

Definition 7.1 (set-protected modality)

Let m, s ∈ M be two messages and MT be a set of message transducers of the form
({m′}k, r), where m′ ∈ M is a message, k ∈ K is a key and r is a position in {m′}k. We
say that s is set-protected in m despite MT, denoted by m≪MT≫

K
s if the message

s is not accessible by the message transducer
(
Id +

∑
(b,r)∈MT

(b, r)
)∗

from the message m.
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m≪MT≫
K

s ⇔ s 6∈


Id +

∑

(b,r)∈MT

(b, r)




∗

¹

(m)

For M and S sets of messages, we say that the secrets S are set-protected in M despite
MT, denoted by M≪MT≫

K
S, if it holds

∧
m∈M,s∈S

m≪MT≫
K

s.

The following equivalences are direct consequences of set-protected definition.

Proposition 7.1

When the set of message transducers is empty the set-protected modality is equivalent
with the protected modality where the sequence of message transducers is ε.

m≪∅≫
K

s ⇔ m〈ε〉
K

s.

Also, if MT is a set of one length message transducers it holds:

m≪MT≫
K

s ⇔
∧

w∈
( P

(b,r)∈MT

(b,r)
)∗

m〈w〉
K

s.

From now on we use sets of message transducers described by sets of pairs of the form
({m}k, r), where m ∈ M is a message, k ∈ K is a key and r is a position in {m}k.

Similar to the proposition 2.3 we have:

Proposition 7.2

Let M,S be sets of messages, m be a message and MT be a set of message transducers.
We have the following equivalence:

M≪MT≫
K

S ∧ m≪MT≫
K

S ⇔ M ∪ {m}≪MT≫
K

S

From theorem 2.8 and first equivalence of proposition 7.1 we have the following theorem:

Theorem 7.3

Let m be a message and E a set of messages such that K \K−1 ⊆ E. Then, E 6⊢ m iff
there exists a set of messages A ∈ mc(m) s.t. E≪∅≫

K
A.

Where, mc(m) is the set of closure messages, defined in the first part of this thesis as
follows:
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Definition 2.4 (closed set) Let m ∈ M a message. We define recursively the set of
message sets mc(m), where each message set of mc(m) is a closure for m as follows:

mc(m) = m ⊎





mc(m1) ∪ mc(m2) if m = (m1,m2)
mc(m′) ∪ mc(k) if m = {m′}k

{K−1} if m is atomic

where m ⊎ M = {Mi ∪ {m} | Mi ∈ M}, M set of messages.

A set M of messages is called closed, if for any m ∈ M there exists M ′ ∈ mc(m) such
that M ′ ⊆ M . In particular ∀A ∈ mc(m), A is closed.

Definition 7.2 (well-formed)

Let MT be a set of message transducers and S a set of messages. The pair (MT, S) is
called well-formed, if the following conditions are satisfied:

• S is closed,

• for any (b, r) in MT if there exists a message transducer (b1, r1) = NT(b, r), then
(b1, r1) is in MT or b is in S.

We recall that NT(b, r) is the next (from the top) message transducer in b that dominates
b|r , if it exists (see definition 2.6).

Intuitively, the first condition ensures that the intruder will always miss at least one part
of a composed secret preventing him from deducing it by composition and the second
takes into account the ability of the intruder to use encryption in order to obtain a
message that can be broken using a message transducer.

It is easy to see that the well-formedness of the pair (MT,S) implies the well-formedness
of the set of pairs (w, S) (see definition 2.7), where w ∈

( ∑
(b,r)∈MT

(b, r)
)∗

.

The main property of the predicate E≪MT≫
K

S is that it is stable under the intruder’s
deduction rules. The following theorem is a direct consequence of theorem 2.9 and
proposition 7.1.

Theorem 7.4

Let E be a set of messages and (MT, S) be a pair of message transducers and messages.
If (MT, S) is well-formed and E≪MT≫

K
S then the messages of S are set-protected

despite MT in any message m derivable from E, that is, E ⊢ m ⇒ m≪MT≫
K

S.

An immediate consequence of theorem 7.4, described in the following corollary, is that
under well-formedness of (MT, S), the predicate E≪MT≫

K
S is stable with respect to

the intruder inference system.

Corollary 7.5

If E≪MT≫
K

S and (MT, S) is well-formed then E 6⊢ S.
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We now come to the computation of a well-formed pair (MT, S) that ensures in addition
the stability of E≪MT≫

K
S with rapport to any rule of the protocol Π = (C, R).

Definition 7.3

Let r = t1 → t2 be a rule in R. The pair (MT, S) of a set of message transducers and
a set of secrets is stable w.r.t. the rule r, if for every substitution σ, the property
t1σ≪MT≫

K
S implies t2σ≪MT≫

K
S.

A pair (MT, S) is stable w.r.t. a set of rules R if it is stable with respect to each
rule in R.

Intuitively, the stability of the pair (MT, S) with respect to a rule t1 → t2 expresses
the fact that the message produced by firing the transition t1 → t2 has no effect on the
protection of S.

Using the theorem 7.4, we can prove by induction the following theorem:

Theorem 7.6

Let S be a set of secrets and MT be a set of message transducers. If (MT, S) is well-
formed and stable with respect to all rules in R, and if in addition E0≪MT≫

K
S holds

for every set of messages E0 that satisfies C, then the secrets in S are preserved in any
execution of the protocol Π = (C, R), denoted 6⊢Π S.

Proof:

We prove by induction that for any run E0
r1−→ E1 · · ·En−1

rn−−→ En, where for each i =

1, · · ·n, there is a substitution σi : X → M such that Ei−1 ⊢ t1σ and Ei = Ei−1∪{t2σ},
where t1 → t2 = ri, we have En 6⊢ S.

First, the basic case, i = 0 we have E0≪MT≫
K

S then E0 6⊢ S.

The induction step, we prove that if for any run if Ei−1≪MT≫
K

S then, Ei≪MT≫
K

S,
for all rules r = t1 → t2 in R and for all σ such that Ei−1 ⊢ t1σ and Ei = Ei−1 ∪ {t2σ}.

Ei−1≪MT≫
K

S and Ei−1 ⊢ t1σ we are in the hypothesis of the proposition 7.4 then
t1σ≪MT≫

K
S. (MT, S) is stable with rapport to all rules in R then t2σ≪MT≫

K
S.

Using the proposition 7.2 we have Ei−1 ∪{t2σ}≪MT≫
K

S and so Ei≪MT≫
K

S. Hence
Ei−1 6⊢ S implies Ei 6⊢ S.

7.2 Verification algorithm - A semantic version

In this section, we present an algorithm that for a protocol Π = (C, R) and a set S of
secrets, computes a set MT′ of message transducers and a set S′ of secrets such that:

• the set of messages E0 initially known by the intruder – defined by the constraint
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C – satisfies E0≪MT′≫
K

S′,

• S ⊆ S′,

• (MT′, S′) is well-formed, and

• (MT′, S′) is stable with respect to R.

First, we develop a semantic version of the algorithm in which we do not consider
questions related to representing infinite sets of message transducers. Then, we define
a symbolic representation for message transducers and we give the symbolic version of
the algorithm.

Our algorithm takes as input: a set of rules R, a set of safe keys K, a closed set of
secret messages S and an empty set of message transducers MT and computes a pair
(MT′, S′) which is well-formed, and stable with respect to the rules of the protocol. It
is described in figure 7.1.

The algorithm uses a function Closure that is applied to the set of messages S any time
when we add a new messages to the set of secret messages. This function associates to
a set of messages one of its closure against composition, following definition 2.4. We
choose, for the new messages added to S the closure that contains one atomic message
which is already in S. If such a closure does not exist we take one at random. Intuitively,
if such a closure does not exist that means no subterm of the new message have been
secret before and then the new message can not be secret.

If the algorithm terminates, it returns an augmented set of secrets S′ and an augmented
set of message transducers MT′ such that (MT′, S′) is well-formed, and stable with
rapport to all rules of the protocol.

We now explain intuitively the main idea of the algorithm.

Let us take a rule tp → tc in R, a substitution σ : X → M such that a secret s is
set-protected in tpσ, the premise of the instantiated rule, despite MT. If the secret s
is not protected in tcσ, the conclusion of the instantiated rule, then there is at least
one submessage of tpσ of the form {m}k, with k ∈ K, in which the secret s appears
and which does not protect it anymore, so it must be added to the set of message
transducers. Indeed, the intruder does not need the inverse of the keys in K to get the
secret: it will be involuntary revealed by a principal who plays the rule tpσ → tcσ.

Let us take for instance a protocol with {x, I}pbk(A) → {x}pbk(I) as a rule of principal
A. The principal A will respond {s}pbk(I) on reception of the message {s, I}pbk(A). Thus
involuntary decrypting the secret for the intruder. So, the message {s, I}pbk(A) is a
particular case where the key pbk(A) does not protect the secret and ({s, I}pbk(A), 01)
must be added to the set of the message transducers MT.

The case 2 in the algorithm considers the situation when a secret s is not protected in
tcσ and it does not appear in tpσ. In this case, the apparently harmless premise is as
compromising as the secret, and so, tpσ must be added to the set of secrets.

The following proposition summarizes the properties of the algorithm.
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Proposition 7.7

If the algorithm of Figure 7.1 applied to (R,S,K,MT) terminates, it returns S′ and
MT′ that satisfy the following conditions:

1. (MT′, S′) is well-formed,

2. (MT′, S′) is stable w.r.t. R, and

3. S ⊆ S′

Proof:

The well-formed property of (MT′, S′) derives directly from the operations made in the
algorithm. First, the set of secrets S′ is each time closed. Second, any time a dangerous
premise with respect to a secret s is found we add to MT′, all message transducers
obtained by its subterms of the form {m}k, with k ∈ K that dominates the secret s and
the related positions. Hence, that ensures the second condition of the well-formedness.

The stability. If the algorithm reaches a fixpoint (MT′, S′) then, the until condition of
repeat termination will be reached. That is, all rule in R produce dangerous substi-
tution DS which generates newMT and newS which are already in MT′ respectively
S′.

Since we start with the set S′ = S, and then the algorithm only augments it, the last
condition, S ⊆ S′ is obviously satisfied.

A direct consequence of the this proposition and the theorem 7.6 is the following corol-
lary.

Corollary 7.8

If the algorithm of figure 7.1 terminates with (MT′, S′) as result, and each set of mes-
sages E0 that satisfies C(E0) also satisfies E0≪MT′≫

K
S′, we can conclude 6⊢Π S′, and

hence, 6⊢Π S.
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input: R, S, K and MT = ∅

output: MT′, S′ such that (MT′, S′) is well-formed and stable w.r.t. R.

MT′ := MT ; S′ := S ;

repeat
MTc := MT′ ; Sc := S′ ;

for each tp → tc ∈ R do

for each r ∈ dom(tc) s. t. tc|r ∈ X ∪ S do

(* compute all Dangerous Substitutions of rule tp → tc where *)
(* a secret is not kept in the conclusion for the position r *)

DS := {σ : X → M | ∃s ∈ Ss.t.¬(tcσ≪MT′≫
K

s) ∧ ¬(tc|rσ≪MT′≫
K

s)} ;

(* compute the corresponding Dangerous Premises *)
DP := {tpσ | σ ∈ DS} ;

(* update the sets S′ and MT′ according to the dangerous premises: *)
(* case 1 add message transducers to MT′ if tc|r ∈c tp *)

for each m ∈ DP do

(* new message transducer are pairs constructed from submessage *)
(* of m of the form {m′}k, k ∈ K and positions of tc|r in them *)

newMT := {(m|q , q
−1r′) | ∃k ∈ K, m|q = {m|q·0}k∧

∃r′ critical position s. t. tp|r′
= tc|r ∧ q ≺ r′}

(* update the set of message transducers MT′ *)
MT′ := MT′ ∪ newMT ;

od
(* case 2 adds to the secrets all dangerous premises if tc|r /∈c tp *)

newS := {m | m ∈ DP};
S′ := S′ ∪ newS

(* compute the closure that adds to S′ subparts of *)
(* each compound secret of S′ *)

S′ := Closure(S′) ;
od

od
until (MT′, S′) = (MTc, Sc)

Figure 7.1: The semantic version of the verification algorithm
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7.3 Verification algorithm - A symbolic version

7.3.1 Symbolic representation

In the previous section we have presented our verification algorithm without considering
questions related to the representation of infinite sets of message transducers. To do so,
we introduce pattern terms defined by the following grammar:

pt ::= n | p | k | x | pair(pt1, pt2) | encr(pt, k) | Sup(pt)

where n ∈ N , p ∈ P, k ∈ K, and x ∈ X . The set of patterns is denoted by PT (X ,F).
Notice that every term in T (X ,F) is also a pattern in PT (X ,F). The difference between
the two is that patterns make use of the special Sup function symbol.

We extend naturally the semantics of a message transducer from messages to terms as
follows: Given a term b ∈ T (X ,F), and a critical position p, we denote by [[(b, p)]] the
set of message transducers associated to all instances of b and the position p.

[[(b, p)]] = {(bσ, p) | σ : X → M}.

Intuitively, as can be seen from the following definition, Sup(t) represents all terms
containing the term t as a sub-term. For instance, the terms A, pair(x,A), {A}k, · · ·
all belong to [[Sup(A)]]. We define the semantics of patterns as follows:

Definition 7.4

Given a pattern pt, the set of all corresponding terms is denoted by [[pt]]. It is defined
as follows:

[[pt]] = {pt} if pt is a constant or a variable
[[pair(pt1, pt2)]] = {pair(t1, t2) | t1 ∈ [[pt1]], t2 ∈ [[pt2]]}
[[encr(pt1, k)]] = {encr(t1, k) | t1 ∈ [[pt1]]}
[[Sup(pt)]] = {t | ∃ a position p in t s.t. t|p ∈ [[pt]]}

Example 7.1

{A, (x,B)}k; {A, {(x,B), y}k′}k; {A, (B, (y, (A,B)))}k are elements of [[{A,Sup(x,B)}k]].

Now we are ready to define the semantic of pattern transducers:
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Definition 7.5

Given a pattern pt, and a critical position p, we denote by [[(pt, p)]] the set of term
transducers associated to the pattern transducer (pt, p). We overload the function [[]]
for which the meaning is clear from its argument. For pattern transducers, the function
[[]] is defined as follows:

[[(pt, p)]] = {(pt, p)} if pt is a constant or a variable
[[(pair(pt1, pt2), p)]] = {(pair(t1, t2), ǫ) | p = ǫ, t1 ∈ [[pt1]], t2 ∈ [[pt2]]}

∪ {(pair(t1, t2), 0.q) | p = 0.p′, (t1, q) ∈ [[(pt1, p
′)]], t2 ∈ [[pt2]]}

∪ {(pair(t1, t2), 1.q) | p = 1.p′, t1 ∈ [[pt1]], (t2, q) ∈ [[(pt2, p
′)]]}

[[(encr(pt1, k), p)]] = {(encr(t1, k), ǫ) | p = ǫ, t1 ∈ [[pt1]]}
∪ {(encr(t1, k), 0.q) | p = 0.p′, (t1, q) ∈ [[(pt1, p

′)]]}
[[(Sup(pt), p)]] = {(t, ǫ) | p = ǫ, t ∈ [[Sup(pt)]]}

∪ {(t, q.r) | p = 0.p′, (t|q , r) ∈ [[(pt, p′)]]}

Example 7.2

The pattern transducer
(
Sup(A, x), 01

)
denotes all term transducer (b, p) that contain

(A, x) as a sub-term of b and where p corresponds to the position of x.

The computation of the term transducers corresponding to
pattern transducer

(
Sup(A, x), 01

)
goes through the step [[

(
(A, x), 1

)
]] = {(

(
(A, x), 1

)
}

and ends with the set [[
(
Sup(A, x), 01

)
]] = {(t, q.1) | t|q = (A, x)}. This set contains for

instance the terms
(
((A, x), B), 01

)
,
(
(B, (A, x)), 11

)
,
(
(A, x), 1

)
,
(
{B, (A, x)}k, 111

)
.

Using the function [[]] we can shift from pattern transducers to their equivalent repre-
sentation as sets of term transducers of the form (b, p), where b ∈ T (X ,F) is now a
term. Based on this remark, we present the algorithm on terms and we explain how it
extends to patterns. In the sequel, when there is no need to distinguish between terms
and patterns, we use patterns.

Based on the symbolic representation, the potentialy infinite set MT of message trans-
ducers is represented by a finite set of pattern transducers PT. Formally, we have the
following:

Definition 7.6 (symbolic representation)

A symbolic representation SR is a pair (PT, S), where

• PT is a finite set of pattern transducers that represents the set of message trans-
ducers MT

• S is a finite set of terms that represents the set of secrets.
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7.3.2 The patterns computation using dangerous substitution

In this section we present the symbolic computation for one rule of the protocol. Starting
from a set of pattern transducers PT, a set of secrets S and a rule r = tp → tc we compute
the sets of pattern transducers newPT and secrets newS which are unsafe because of
the rule r and which have to be added to PT respectively S.

First, we present the algorithm that computes the dangerous substitutions DS induced
by a rule tp → tc, and a position p and then we show how we compute the sets newPT
respectivly newS in the case when the substitution DS is not empty. These two steps
are done for each position p ∈ dom(tc) such that tc|p unify with a secret of S.

In order to define a dangerous substitution we have to define when two pattern trans-
ducers unify.

Definition 7.7 (pattern transducer unification)

Let pt = (t, p) and pt′ = (t′, p′) be two pattern transducers. We say that they unify if
there is a substitution σ : X → T (X ,F) such that t and t′ unify by σ and (tσ)|p ¹ (t′σ)|p′
or (t′σ)|p′ ¹ (tσ)|p. We write, also, σ(t, p) = σ(t′, p′).

Let K be the fixed set of keys, called safe keys and PT the set of pattern transducers.
We call protecting positions of p in t all positions which are prefixes of p and such
that the subterms of t at these positions are terms encrypted with safe keys.

Definition 7.8 (dangerous substitution)

A substitution σ : X → T (X ,F) is dangerous for a term tc and a position p if for
all subterms of tc at protecting positions there is a pattern transducer which cancels the
position p restricted to that subterm.

Formally, for every position q ≺ p, for which ∃k ∈ K such that tc|q = {tc|q·0}k we have

(tc|q , q
−1p) unifies by σ with a pattern transducer of PT.

Let us give an example to illustrate this defintion:

Example 7.3

Let (tc, p) = ({(y, A)}k, 00) and the term transducer t = ({((x,B), A)}k, 000). The
dangerous substitution is σ = [y → (x, B)] and the relative position is 0, because in t
only the position p · 0 is not protected in tcσ.

Let now (tc, p) = ({((x,B), A)}k, 000) and the term transducer t = ({(y,A)}k, 00). The
dangerous substitution is σ = [y → (x,B)] and the relative position is ε, as 00 ≺ 000
and in t the position p is not protected in tcσ.

We define below the function Φ that computes all the unifiers between the pattern
transducers of PT and (tc, p) that cancel each protecting position of tc|p and its related
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position r. For a substitution σ, r is a relative position to p with respect to the position
which is not protected in tcσ.

Let Pos be the set of protecting positions pi above p, i.e. for each pi ∈ Pos there is
k ∈ K such that tc|pi

= {tc|pi·0
}k. Formally, the dangerous substitutions are the unifiers

σ that satisfy: ∧

pi∈Pos

σ(tc|pi
, p−1

i p) = σ(bi, qi)

where (bi, qi) ∈ PT.

The parameters of Φ are: the term tc and the set of pattern transducers PT, the set Pos
of protecting positions and a set of pairs of substitutions and theirs relative positions
DS. Then, it takes in turn each protecting position pi and if it is possible, it completes
the substitutions of DS in order to cancel the current position by a pattern transducer
(b, q) of PT, and completes the relative position. Formally, the function Φ is recursively
defined as follows:

Φ(tc, PT, Pos, DS) =





DS if Pos = ∅

Φ
(
tc, PT, Pos \ {pi},

⋃
(σj ,rj)∈DS

{(σj ⊕ σi,j

1 , rj · r′1) · · · ,

(σj ⊕ σi,j
ni,j

, rj · r′ni,j
)}

)
, if pi ∈ Pos ∧ ni,j > 0

∅ otherwise

where the (σi,j

k )k=1,ni,j
in the fourth arguments are the unifiers resulting from the unifi-

cation of ((tcσj)|pi
, p−1

i p ·rj) with some pattern transducers (b, q) of PT and r′k is the rel-

ative position induced by σi,j

k for k = 1, ni,j. More exactly if (tc(σj⊕σi,j

k ))|pi·rj
¹ (bσi,j

k )|q
then r′k = ε else (tc(σj ⊕ σi,j

k ))|pi·rj ·r
′
k

= (bσi,j

k )|q . Also, we notice here that we have to

keep in σi,j

k only the substitutions for the variables which appear in tc. Also, since there
is no relation between σj and σi,j

k w.r.t. the variables that come from terms of PT
we have to rename these variables with fresh ones, each time they appear in the right
side of a substitution in σi,j

k . For the sake of clarity this renaming does not appear in
examples only if it is necessary.

We denote by Φpt(tc, PT · · · ), where pt is a pattern transducer of PT, the subset of
substitution {σj} returned by Φ(tc,PT · · · ) where at least one time a substitution σi,j

k

is obtained using pt. That is, the pattern transducer pt has been useful to cancel one
of protecting position of tc|p .

In the case of terms, we use the standard most general unifier ; and for patterns (with
Sup function), we define a unification algorithm presented in annex A.

Example 7.4

We illustrate the computation of dangerous substitutions on the set of pattern transduc-
ers PT = { ({(I, x)}kb

, 01), ({((a, y), z)}kb
, 01) }, the set of key K = {ka, kb} and a

rule tp → tc given in figure 7.2.

We consider the conclusion of the rule. The first step consists of looking for all the
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tc =
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tp =

Figure 7.2: Illustration of computing dangerous substitutions

critical positions in the conclusion where a secret or a variable appears. We find x′ at
position 01101, y′ at position 011000 and z′ at positions 00, 011001 in the term tc.

Let take the position p = 01101 of x′, we look for the positions above it that may protect
it. We found exactly two protecting positions: p1 = ǫ and p2 = 011.

Then, the function Φ looks for all substitutions that unify some pattern transducers of
PT with the terms at the protecting positions p1 and p2 and the restricted respective
positions of p.

Starting with position p1 = ǫ, it unifies (tc|ǫ , p) with the pattern transducer
({(I, x)}kb

, 01) we have 01 ≺ p, and the unifier σ′ = [z′ → I, x → tc|01 ]. The rela-
tive position is ε. This cancels the top most protection.

Then, the function Φ attempts to complete the substitution σ′ such that it also cancels
the protection at position p2 = 011.

To do so, it tries to unify (σ′(tc)|p2
= {((y′, I), x′)}kb

, p−1
2 p = 01) with some pattern

transducers of PT and succeeds with the pattern transducer ({((a, y), z)}kb
, 01). We

have 01 = 01 and the unifier σ′′ = [y′ → a, y → I, x′ → z]. The relative position is,
again, ε.

The two unifiers are then composed and restricted to the domain var (tc) resulting the
substitution σ = (σ′ ⊕ σ′′)var (tc) = [y′ → a, z′ → I].

Pursuing the computation does not provide other substitutions and finally Φ returns for
the position p of tc the set of dangerous substitutions and relative positions {(σ, ε)}.

If the set of dangerous substitution DS is empty then this rule does not generate new
pattern transducers or new secrets otherwise we compute the set of dangerous premises,
DP , which generate new pattern transducers or new secrets as in the semantic version
of the algorithm. The set of dangerous premises is: DP = {σ(tp) | σ ∈ DS}.
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If there exists a position q such that tc|p = tp|q then for every pattern t of DP we
construct a set of new pattern transducers that consists of pairs of sub-terms of t, that
are encrypted by keys from K, and positions restricted to sub-terms of q. Formally,

newPT = {(t|r , r
−1q) | t ∈ DP,∃k ∈ K, t|r = {t|r·0}k ∧ tc|p = tp|q ∧ r ≺ q}.

Otherwise, if such a q does not exist then the set of dangerous premises represents the
set of new secrets, newS := {t | t ∈ DP}.

Example 7.5

We continue the example 7.4 to illustrate the computation of new pattern transducers.
We now look at the premise of the rule to compute the new pattern transducers induced
by the set of dangerous substitutions and relative positions computes by Φ. We have
(σ = [y′ → a, z′ → I], r = ε) the only element returns by Φ.

The variable x′ appears in tp at the position q = 001 and it is protected by the key kb at
the position r1 = ǫ and by the key ka at the position r2 = 0.

However, the dangerous substitution σ tells that these protections will not work in case
where y′ is a and z′ is I. Consequently, we increase the set of pattern transducers PT
by adding these particular cases. In our symbolic representation, this comes out to add
(σ(tp) = {{((a, I), x′)}ka}kb

, r−1
1 q · r = 001) and (σ(tp)|0 = {((a, I), x′)}ka , r

−1
2 q · r = 01)

to the set of pattern transducers PT.

7.3.3 Symbolic verification algorithm

The symbolic verification algorithm takes as input a set of rules R, a closed set of secret
terms S, a set of key K and an empty set of pattern transducers. It computes new pairs
of pattern transducers and secrets (PT′, S′) until it becomes stable with respect to all
rules in R.

Let us now sketch the main steps of the symbolic algorithm:

1. Input: R, S, K and PT = ∅ pattern transducers.

2. We initialize two global variables S′ = S and PT′ = ∅.

3. The explore function completes the sets PT′ and S′ by depth-first exploration,
figure 7.3:

4. The one Step function takes two parameters, a rule r = tp → tc and a sequence
of pattern transducers path. It returns the sets newPT and newS computed as
defined in the section 7.3.2.

For each position p of tc that corresponds to a variable or a secret this function
computes the set of dangerous premises DS. If the second parameter is the empty
sequence then it computes the set of dangerous substitution (function Φ) else, if
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function explore (path : (rule × pattern transducer)∗)
for each r ∈ R do

(newPT, newS) := one Step (r, path);
S′ := closure (newS, S′);
if newPT ⊆ PT′ then

return
else

for each pt ∈ newPT do
if pt 6∈ PT′ then

PT ′ := PT ′ ∪ {pt};
explore ((r, pt)@path)

fi
od

fi
od

Figure 7.3: The main function of the symbolic algorithm

the sequence is not empty then it computes the set of dangerous substitution in
which the first pattern transducer of the sequence; let’s say pt0, has been implied
(function Φpt0).

5. The closure function, returns a set of closed terms by adding to S′ all elements of
newS along with some terms such that the newS ∪S′ is closed. Where we extend
the notion of closure of sets of messages to sets of terms considering the case of a
variable x: wc(x) = x ⊎ {K−1}.

7.4 Termination

7.4.1 Why the algorithm does not terminate

Let us consider the following rule from the session (A,A) of Needham-Schroeder-Lowe
protocol presented in section 6.3:

r = {(A, (NAA
1 , y))}pbk(A) → {y}pbk(A).

and the pattern transducer {(I, x)}pbk(A), 01). A dangerous substitution is σ =
[y → (I, x)] and the related position is r = 1. Then the pattern transducer
({(A, (NAA

1 , (I, x)))}pbk(A), 011 · 1) is generated. For this one and the same rule r we

have the dangerous substitution σ′ = [y → (A, (NAA
1 , (I, x)))] and the related position is

r = 111. Hence, the pattern transducer ({(A, (NAA
1 , (A, (NAA

1 , (I, x)))))}pbk(A), 011·111)
is generated and so on.
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Thus, a naive application of our symbolic algorithm will not terminate.

7.4.2 Enforcing termination

We present a technique that makes the depth-first implementation of the symbolic
verification algorithm terminate more often, at the price of a safe approximation of the
results.

We provide a widening operator that forces termination in the presence of rules that
can loop and produce an infinite set of growing pattern transducers. The additional
operator Sup is used to encompass all these growing patterns in a finite pattern.

Definition 7.9

A sequence (ti, pi)i≥0 of pattern transducers is called increasing at a sequence (qi)i≥0

of positions, if the following conditions are satisfied for every i ≥ 0:

1. qi is a prefix of pi such that q−1
i pi is a constant,

2. qi ∈ dom(ti) and qi ¹ qi+1,

3. ti[t0|q0/qi−1] = ti−1, for i > 0.

For an intuitive idea see the figure 7.4.

p0

q0

pi

qi

t0 : ti :t1 :

· · ·

p1

q0

q1

q0

Figure 7.4: Increasing sequence definition

Let us consider an example to clarify these definitions.

Example 7.6

Consider the sequence ({θi(I, x)}pbk(A), pi)i≥0, where

θ(z) = (A, (NAA
1 , z)) and pi = 0 · (11)i · 1.

This sequence of pattern transducers is obtained by the rule r, given in section 7.4.1 and
starting from the pattern transducer ({(I, x)}pbk(A), 01).
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The first three terms of the sequence, described in section 7.4.1 are:

({θ0(I, x)}pbk(A) = {(I, x)}pbk(A), 01)

({θ1(I, x)}pbk(A) = {(A, (NAA
1 , (I, x)))}pbk(A), 0111) and

({θ2(I, x)}pbk(A) = {(A, (NAA
1 , (A, (NAA

1 , (I, x)))))}pbk(A), 011111).

This sequence is increasing at (qi = 0 · (11)i)i≥0. Indeed,

q−1
i pi = 1 and

{θi(I, x)}pbk(A)[(I, x)/qi−1] = {θi(I, x)}pbk(A)

for every i ≥ 0.

As direct consequence of the definition 7.9 we have the following property:

Proposition 7.9

Let (ti, pi)i≥0 be an increasing sequence of pattern transducers at a sequence (qi)i≥0 and
let j, k be natural numbers such that k ≥ j. Then tk[z/qj ] = tj [z/qj ], where z is a fresh
variable.

Proof:

We will argue by induction. This result is trivial for k = j.

Now assume that for j ≤ i < l it holds that ti[z/qj ] = tj [z/qj ] we prove that tl[z/qj ] =
tj [z/qj ].

From the definition 7.9 we have tl[t0|q0/ql−1] = tl−1 that implies

(tl[t0|q0/ql−1])[z/ql−1] = tl−1[z/ql−1]

tl[z/ql−1] = tl−1[z/ql−1]

but qj ¹ ql−1 hence tl[z/qj ] = tl−1[z/qj ]

and using the induction hypothesis we have: tl[z/qj ] = tj [z/qj ].

Hence, ∀j ≥ 0∀k ≥ jtk[z/qj ] = tj [z/qj ].

The idea for enforcing termination is to approximate an increasing sequence with a finite
set of pattern transducers that represents at least all elements of the initial sequence.
We express that formally by the following proposition:

Proposition 7.10

Let (ti, pi)i≥0 be increasing at (qi)i≥0. Then,

⋃

i≥0

[[(ti, pi)]] ⊆
⋃

i<j

[[(ti, pi)]] ∪ [[tj [Sup(tj |qj
)/qj ], qj · 0 · q−1

j pj ]], for every j ≥ 0.
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Proof:

Since q−1
j pj is a the constant which let to the same sub-term of tj |qj

= t0|q0 , the positions

correspondence is trivial. Hence, it is enough to prove that [[tk]] ⊆ [[tj [Sup(tj |qj
)/qj ]]].

From the proposition 7.9 we have: tk[z/qj ] = tj [z/qj ] (∗)

also, from the definition 7.9 we have: tk |qk
= tj |qj

= t0|q0 (∗∗)

qj ¹ qk implies tk |qk
¹ tk|qj

and using (∗∗) we obtain: tj |qj
¹ tk |qj

hence,

[[tk|qj
]] ⊆ [[Sup(tj |qj

)]] finally, using (∗) we obtain:

[[tk]] ⊆ [[tj [Sup(tj |qj
)/qj ]]].

Example 7.7

Consider again our example 7.6.

Then, if we choose j = 1, we obtain a set consisting of the two pattern ({(I, x)}pbk(A), 01)

and ({(A, (NAA
1 , Sup(I, x)))}pbk(A), 01101) which approximates the whole sequence(

{θi(I, x)}pbk(A), pi

)
i≥0

.

Definition 7.10

We define a widening operator ∇ as follows:

∇ : PT × {0, 1}∗ → PT ,

∇((t, p), q) = (t[Sup(t|q)/q], q · 0 · q−1p)

The main function of our symbolic algorithm using widening is given in figure 7.5.

The exists increasing function returns true if a sequence of rules is repeated M times
at the end of the path and if, for each repeated rule, the corresponding pattern trans-
ducers form an increasing sequence. M is a parameter of our algorithm and must be
strictly greater than 1.

Formally, let path be (r1, pt1) · · · (rn, tpn). The exists increasing function returns true
if ∃k > 0, the length of the repetition, such that starting from b = n − k · M we have:

- ∀i = 1, k ∀j = 1, M − 1 rb+i = rb+j·k+i and

- ∀i = 1, k ∃(qi
j)j=0,M−1 such that (ptb+j·k+i, q

i
j)j=0,M−1 is an increasing sequence.

The widening function replaces the last occurrence of the repeated sequence in the
path, with its approximation by applying the widening operator ∇ on its pattern trans-
ducers. The approximated path becomes:

(r1, pt1), · · · (rn−k, ptn−k), (rn−k+1,∇(ptn−k+1, q
1
M−1)) · · · (rn−k+k,∇(ptn−k+k, q

k
M−1))
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function explore (path : (rule × pattern transducer)∗)
if exists increasing (path,M) then

path′ := widening (path);
explore (path′)

else
for each r ∈ R do

(newPT, newS) := one step (r, path);
S′ := closure (newS, S′);
if newPT ⊂ PT′ then

return
else

for each pt ∈ newPT do
if pt 6∈ PT′ then

PT ′ := PT ′ ∪ {pt};
explore ((r, pt)@path)

fi
od

fi
od

fi

Figure 7.5: The main function of the symbolic algorithm with widening

The heuristics can be resumed as follows. First, detect the repeated applications of the
same (sequence of) rule which leads to an increasing sequence of pattern transducers.
Second, approximate this infinite increasing sequence by its finite ”limit” obtained by
widening i.e, application of some Sup operators.

At this time, we do not know if this heuristics is sufficient to guarantee the termination
of the symbolic depth-first search algorithm. We do not have yet a formal argument
neither proving or disproving this property.

Nevertheless, this heuristics has been proven very efficient in practice. In fact, the
algorithm with widening terminates on all protocols tested, in reasonable time, whereas
without widening, it terminates on very few of them. Concrete results and running time
are presented in section 8.3.
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Chapter 8

Hermes

In this chapter we describe Hermes, a tool for automated cryptographic protocol verifi-
cation which implements the verification techniques introduced in the previous chapters.
Hermes is part of a verification toolbox for cryptographic protocols developed in the
French national project Eva.

The Eva toolbox architecture is illustrated in figure 8.1. The entry point in the
tool-box is LaEva, a high level specification language for security protocols and
their properties. Using the automatic translator EvaTrans [GL02a], LaEva spec-
ifications are transformed into an intermediate representation Cpl. This interme-
diate representation is actually the common input of three automatic verification
tools: Hermes [BLP03a, BLP02a, BLP03b], Securify [CMR01, Cor02] and Cpv 1
& 2 [GL00, GL02b].

1 & 2Hermes Securify Cpv

Cpl

EvaTrans

LaEva

Figure 8.1: The architecture of the Eva tool-box.
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8.1 Input Language

The input language, LaEva, is a high level specification language designed in the Eva

project for the description of security protocols and their properties. This language
is introduced in [JM01] and is closed to several known security specification languages
including Casper [Low97a], Casrul [JRV00] or Capsl [DMR00]. A LaEva protocol
specification is automatically translated into Cpl specification, an intermediary format
for protocol specification that constitute the entry point of Hermes (see Figure 8.1). We
explain, with the help of Needham-Schroeder Lowe protocol, how a protocol is specified
in LaEva and what is the semantics given by Hermes for such a specification. The
complete specification of Needham-Schroeder Lowe protocol follows:

1. alg : asym_algo

2. A, B : principal

3. N1, N2 : number

4. keypair^alg pbk,prk (principal)

5. everybody knows alg

6. everybody knows pbk

7. A knows A, B, prk(A)

8. B knows B, prk(B)

9. {

10. 1.A->B: {A, N1}_(pbk(B))

11. 2.B->A: {B, N1, N2}_(pbk(A))

12. 3.A->B: {N2}_(pbk(B))

13. }

14. s.session* {A,B,N1,N2}

15. assume

16. secret(prk(A)@s.A),

17. secret(prk(B)@s.B),

18. secret(prk(B@s.A)),

19. secret(prk(A@s.B))

20. claim

21. *A*G secret(N1@s.A),

22. *A*G secret(N2@s.B)

The first part of protocol specification consists of declarations of typed variables and
key constructors. pbk and prk take as argument a principal and return an asymmetric
key with respect to an algorithm alg. The constructor pbk(A) stands for public key
of principal A. The private key of A, denoted by prk(A), is the inverse of pbk(A). The
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type number is predefined and represents any message.

1. alg : asym_algo

2. A, B : principal

3. N1, N2 : number

4. keypair^alg pbk,prk (principal)

The second part specifies the knowledge of the principals. It is necessary to rule out
ambiguities when we generate the formal model of the protocol from the description of
the messages exchanged during a session of the protocol. Notice here that principal B
does not known the identity of principal A.

5. everybody knows alg

6. everybody knows pbk

7. A knows A, B, prk(A)

8. B knows B, prk(B)

The protocol is described in a style that is similar to the standard notation, see for
example the survey [CJ97]. It defines the order of the messages exchanged during an
ideal session. The role of initiator and responder – respectively denoted by A and B

– and the nonces N1 and N2 that they create are the parameters of a session of the
protocol.

9. {

10. 1.A->B: {A, N1}_(pbk(B))

11. 2.B->A: {B, N1, N2}_(pbk(A))

12. 3.A->B: {N2}_(pbk(B))

13. }

The last part of specification describes the verification configuration, i.e. the hypothesis
and the properties to be verified.

14. s.session* {A,B,N1,N2}

15. assume

16. secret(prk(A)@s.A),

17. secret(prk(B)@s.B),

18. secret(prk(B@s.A)),

19. secret(prk(A@s.B))

20. claim

21. *A*G secret(N1@s.A),

22. *A*G secret(N2@s.B)

For session* configuration, Hermes considers an unbounded number of sessions in
parallel.

The assume section provides the secrecy hypothesis that are exploited in Hermes’s
reasoning. It defines the properties holded by the system which can be used to prove
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the claims, for example keys unknown to the intruder which can be used to safely encrypt
messages. secret(prk(B@s.A)) means that the private key – of the entity playing the
role of the responder (B) from A’s point of view in session s – is secret.

The *A*G is required in claims for Hermes to check that secrecy properties hold Always
and Globally. This asks that the nonces N1 and N2 created by role A (respectively role
B) in any session s which satisfies secrecy hypothesis are secrets.

We can also describe a “fixed number of sessions” configuration. This case is useful for
debugging purpose, but is not the complete and effective calculus that we have presented
in the first part of this thesis. We will see later how we can use this functionality to
reconstruct attacks. To specify a fixed number of session we write:

s1. session A=a, B=b

s2. session A=a, B=I

instead of s.session* A,B,N1,N2. Hence, the configuration is described by two parallel
sessions one between a, b and one between a, I. Notice that the names of participants
do not have any meaning, all informations about theirs honesty is given in the assume

part of description. Hence, if we want to say that a, b are honests participants and I is
dishonest then the assume part is the following:

assume

secret (prk(A)@s1.A), (* or secret (prk(A)@s2.A) *)

(* as both are equal with $a$ *)

secret (prk(A@s1.B)),

secret (prk(B)@s1.B)

The adequate claims are in the finite case:

claim

*A*G secret (N1@s1.A),

*A*G secret (N2@s1.B)

8.2 Hermes modules

In this section we will describe the main modules of Hermes and their functionalities.
The global architecture is given in the figure 8.2.

8.2.1 Extraction unit

In the context of Eva toolbox we have developed a translator which takes as input
the protocol description in Cpl representation and transforms it in a list of rules for
the “bounded configuration” and respectively a list of parametrized rules for the “un-
bounded configuration”. Also, from the Cpl description our translator extracts two
lists of terms which correspond to secrecy hypothesis and secrecy claims.

Using EvaTrans, a protocol specification LaEva is compiled into a Cpl specification
(see appendix B for the Cpl specification of NSL Protocol) and then the extraction
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(b) session*

(a) fixed finite sessions

HERMES

extraction
unit

abstraction

unit

library

patterns
computation

fixpoint

attack trace or proof obligation

Cpl

Figure 8.2: The architecture of the Hermes tool.
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unit of Hermes draw out

(a) in the case of fixed number of sessions: the list of instantiated rules for each session
instance and each participant of it

(b) in the case of unbounded number of sessions: the set of parameterized rules that
define a generic session

and, in both cases, the set of secrecy hypothesis and secrecy claims. We illustrate these
extraction phase on our running example, the Needham-Schroeder Lowe protocol.

Unbounded case

In the unbounded case, the generic rules obtained from the Cpl description are:

A : (1.)− → {A, N1}pbk(B); (2.){B, N1, x3}pbk(A) → {x3}pbk(B)

B : (3.){x1, x2}pbk(B) → {B, x2, N2}pbk(x1);

Generic rules of the concrete model parameterized by (A,B,N1,N2)

where (A, B,N1, N2) are parameters and x1, x2 and x3 denote local variables.

From the assume and claim sections we compute the secrecy property to prove:

if Secret(S, {pvk(A), pvk(B), pvk(x1)}, E0) then Secret(S,{N1, N2}, E0)

Where S is the set of generic rules, i.e. the parametrized session description and E0 the
intruder initial knowledge.

The above rule and the secrecy property are input data for the abstraction unit.

Bounded case

In the case of finite number of sessions, we obtain the list of instantiated rules for each
session instance and each principal. We have to take care of the order in which the
rules may be executed and to the names of local variables as the same principal may be
involved in several sessions. For the fixed configuration defined in the previous section
the rules are:

A, s1 : (1.)− → {a, N1s1}pbk(b); (2.){b, N1s1, xs1
3
}pbk(a) → {xs1

3
}pbk(b)

B, s1 : (1.){xs1
1

, xs1
2
}pbk(b) → {b, xs1

2
, N2s1}pbk(xs1

1
);

A, s2 : (1.)− → {a, N1s2}pbk(I); (2.){I, N1s2, xs2
3
}pbk(a) → {xs2

3
}pbk(I)

B, s2 : (1.){xs2
1

, xs2
2
}pbk(I) → {I, xs2

2
, N2s2}pbk(xs2

1
);



8.2. HERMES MODULES 135

The secrecy property is:

if Secret(S, {pvk(a), pvk(b), pvk(xs
11)}, E0) then Secret(S, {N1s1, N2s1}, E0)

Now, we are ready to prepare the input for the verification module.

First we eliminate the variables from the left side of property, if possible. In our case
we replace the variable xs1

1 with a respectively b in every rule where it appears because
the pvk(xs

11) must be secret and in our hypothesis only pvk(a) and pvk(b) are secrets.
Hence, instead of the parameterized rule:

{xs1
1 , xs1

2 }pbk(b) → {b, xs1
2 , N2s1}pbk(xs1

1 )

we will have the two concrete rules:

{a, xs1
2 }pbk(b) → {b, xs1

2 , N2s1}pbk(a) and

{b, xs1
2 }pbk(b) → {b, xs1

2 , N2s1}pbk(b).

In general, the assume section states the honest principals, given the information about
their private or shared keys. Therefore, we use first this information to replace the key
variables that are specified in the assume section with a subset of their corresponding
keys and second, all others key variables are replaced with all possible values.

Also, we have to eliminate all variables which are in key positions, as our method
does not work with non-atomic keys. Therefore, we replace all key variables with all
possible values. In the example above, because of the variable key pbk(xs2

1 ) we replace
the variable xs2

1 with principals of our configuration, i.e. I, a and b. Finally, we have
to verify six configurations which corresponds to the configuration s1, s2 given in the
protocol description.

In our running example, the set of safe keys is K = {pbk(a), pbk(b)} and the initial set
of secrets is S = {pvk(a), pvk(b), N1s1, N2s1}.

8.2.2 Abstraction unit

This unit is used only in the case of unbounded verification. Starting from the set of
generic rules it generates all abstract rules as described in the section 6.3.

Also, we have implemented the particular abstraction where we consider only two prin-
cipals, one honest principal H and one dishonest principal I. That this abstraction
is safe, and actually also exact, is proved in a nearby model given by the authors of
[CLC04]. This abstraction reduces considerably the execution time for the verification
algorithm.

Let consider again the Needham-Schroeder Lowe protocol. In the role of B the variable
x1 represents the participant with whom B plays the session. This variable is instanti-
ated with H or with I following the abstraction from B’s point of view. Hence, for our
running protocol we have the following abstract rules:
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Sessions Transitions

fixed session (H, H) − → {H, N1}pbk(H); {H, N1, z}pbk(H) → {z}pbk(H); {H, y}pbk(H) → {H, y, N2}pbk(H);

any session (H, H) − → {H, NHH
1 }pbk(H); {H, NHH

1 , z}pbk(H) → {z}pbk(H); {H, y}pbk(H) → {H, y, NHH
2 }pbk(H);

session (I, H) − → {I, NI}pbk(H); {H, NI , z}pbk(I) → {z}pbk(H); {I, y}pbk(H) → {H, y, NIH
2 }pbk(I);

session (H, I) − → {H, NHI
1 }pbk(I); {I, NHI

1 , z}pbk(H) → {z}pbk(I); {H, y}pbk(I) → {I, y, NI}pbk(H);

The set of abstract safe keys is K = {pbk(H)} and the initial set of abstract secrets is
S = {pvk(H), N1, N2}.

8.2.3 Verification unit

The verification unit of Hermes implements the depth-first search fix-point algorithm
described in section 7.3.

8.2.4 Output Interpretation

At termination, Hermes yields an augmented set of secrets S′ (S ⊆ S′) and a set of
pattern transducers that is called BadPatterns. This result is interpreted as follows:
“the protocol satisfies the secrecy property if, in the set E0 of messages initially known
by the intruder the set of terms S′ is set-protected despite the set of pattern transducers
BadPatterns”.

Also, Hermes provides a tree that can be interpreted to construct a proof for the
correctness of the protocol or may help to understand and reconstruct the attacks if the
secrecy property is not verified. In the later case, Hermes points out attacks in the
case of obvious invalidation of the property, i.e. secrets that are not fresh variables or
that have not been secrets in the initial hypothesis.

Let us interpret the Hermes results on the running example.

Correct version

In the unbounded case, Hermes finishes with the set of secrets {pvk(H), N1, N2} and
the set of pattern transducers

{({(H, (N1HH ,Sup(I, x2s)))}pbk(H), 01101);

({(I, x2s)}pbk(H), 01);

({(H, (N1,Sup(I, x2s)))}pbk(H), 01101)}.

As an implementation detail, notice that positions in pattern transducers are tracked
by special variables. That is, pattern transducers are simply terms which use special
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variables (i.e, with names finishing in the letter s, as special). Transducer positions
are positions where a special variable occurs. For example, the pattern {(I, x2s)}pbk(H)

corresponds to the pattern transducer ({(I, x2)}pbk(H), 01).

Hence, the protocol satisfies the secrecy property if, in the set of messages initially
known by the intruder the set of terms {pvk(H), N1, N2} is set-protected despite the
set of pattern transducers returned by Hermes. This condition holds for the secrets
N1 and N2 since their freshness ensures that they do not appear in any message before
a session run. Also, the pvk(H) is in the secrecy hypothesis of our verification problem.

We conclude that the secrecy property is satisfied and the tree of pattern transducers
(see the figure 8.3) can be interpreted to extract a proof for correctness of the protocol.
More precisely, starting from Hermes output one can automatically extract complete
proof scripts which may be interpreted by proof assistants. For example, proof scripts
for Coq [BBC+97] have been obtained by an automatic proof extractor developed by
our team in the context of Eva project [JPL03].

Bugged version

In the original version of the protocol due to Needham-Schroeder, the identity of role
B did not appear in the message sent by B. On this version Hermes returns the set of
secrets {pvk(H), N1, N2, {H, N1HI}pbk(H), {H, I}pbk(H)}

Obviously, the message {H, N1HI}pbk(H) cannot be secret: it does not contain any fresh
nonce or initial secret, so it could be forged by the intruder.

Starting from this message and applying the rule:

{H, y}pbk(H) → {y,N2}pbk(H)

of the set of abstract rules, the intruder can obtain the message {(N1HI , N2)}pbk(H),
and finally applying the rule:

{NHI
1 , z}pbk(H) → {z}pbk(I)

he obtains N2. This attack corresponds to the well known attack of Needham-Schroeder
discovered by Lowe [Low95].

Also, message {H, I}pbk(H) cannot be a secret. This secret leads to an attack which is
not as well known as the previous one. It is an attack due to type confusion, a nonce
is confused with an agent name. We typed the messages which are used to encrypt
messages, as we allow encryption only with keys.

Starting from the message {H, I}pbk(H) and applying the rule:

{H, y}pbk(H) → {y,N2}pbk(H)

of the set of abstract rules, the intruder can obtain the message {(I,N2)}pbk(H), and
applying the rule:

{I, y}pbk(H) → {y,N IH
2 }pbk(I)
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vide

{(I,(N1[hI],x3_s))}_PK(h)

         {(I,(N1[hI],x3_s))}_PK(h)
r4  : ------------------------------

         {x3_s}_K(I)

{(I,x2_s)}_PK(h)

         {(I,x2_s)}_PK(h)
r5  : ------------------------------

         {(h,(x2_s,N2[Ih]))}_K(I)

{(h,(N1[hh],(I,(N1[hI],x3_s))))}_PK(h)

         {(h,(N1[hh],x3_s))}_PK(h)
r3  : ------------------------------

         {x3_s}_PK(h)

{(h,(N1,(I,(N1[hI],x3_s))))}_PK(h)

         {(h,(N1,x3_s))}_PK(h)
r8  : ------------------------------

         {x3_s}_PK(h)

{(h,(N1[hh],(h,(N1[hh],(I,(N1[hI],x3_s))))))}_PK(h)

         {(h,(N1[hh],x3_s))}_PK(h)
r3  : ------------------------------

         {x3_s}_PK(h)

{(h,(N1[hh],sup((I,(N1[hI],x3_s)))))}_PK(h)

 WIDENING 

{(h,(N1,(h,(N1[hh],sup((I,(N1[hI],x3_s)))))))}_PK(h)

         {(h,(N1,x3_s))}_PK(h)
r8  : ------------------------------

         {x3_s}_PK(h)

{(h,(N1,(h,(N1,(h,(N1[hh],sup((I,(N1[hI],x3_s)))))))))}_PK(h)

         {(h,(N1,x3_s))}_PK(h)
r8  : ------------------------------

         {x3_s}_PK(h)

{(h,(N1,(h,sup((N1[hh],sup((I,(N1[hI],x3_s))))))))}_PK(h)

 WIDENING 

{(h,(N1,(h,(N1,(I,(N1[hI],x3_s))))))}_PK(h)

         {(h,(N1,x3_s))}_PK(h)
r8  : ------------------------------

         {x3_s}_PK(h)

{(h,(N1,sup((I,(N1[hI],x3_s)))))}_PK(h)

 WIDENING 

{(h,(N1[hh],(I,x2_s)))}_PK(h)

         {(h,(N1[hh],x3_s))}_PK(h)
r3  : ------------------------------

         {x3_s}_PK(h)

{(h,(N1,(I,x2_s)))}_PK(h)

         {(h,(N1,x3_s))}_PK(h)
r8  : ------------------------------

         {x3_s}_PK(h)

{(h,(N1[hh],(h,(N1[hh],(I,x2_s)))))}_PK(h)

         {(h,(N1[hh],x3_s))}_PK(h)
r3  : ------------------------------

         {x3_s}_PK(h)

{(h,(N1[hh],sup((I,x2_s))))}_PK(h)

 WIDENING 

{(h,(N1,(h,(N1[hh],sup((I,x2_s))))))}_PK(h)

         {(h,(N1,x3_s))}_PK(h)
r8  : ------------------------------

         {x3_s}_PK(h)

{(h,(N1,(h,(N1,(h,(N1[hh],sup((I,x2_s))))))))}_PK(h)

         {(h,(N1,x3_s))}_PK(h)
r8  : ------------------------------

         {x3_s}_PK(h)

{(h,(N1,(h,sup((N1[hh],sup((I,x2_s)))))))}_PK(h)

 WIDENING 

{(h,(N1,(h,(N1,(I,x2_s)))))}_PK(h)

         {(h,(N1,x3_s))}_PK(h)
r8  : ------------------------------

         {x3_s}_PK(h)

{(h,(N1,sup((I,x2_s))))}_PK(h)

 WIDENING 

Figure 8.3: Hermes proof tree output for Needham-Schroeder Lowe
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the intruder obtains the message {N2, N IH
2 }pbk(I) hence, N2.

We present in the figure 8.4 a part of the tree generated by Hermes. We can see the
traces which have been stopped with attack and also how each pattern transducers has
been generated.

vide

{(N1[hI],x3_s)}_PK(h)

         {(N1[hI],x3_s)}_PK(h)
r4  : ------------------------------

         {x3_s}_K(I)

{(I,x2_s)}_PK(h)

         {(I,x2_s)}_PK(h)
r5  : ------------------------------
         {(x2_s,N2[Ih])}_K(I)

{(N1[hh],(N1[hI],x3_s))}_PK(h)

         {(N1[hh],x3_s)}_PK(h)
r3  : ------------------------------

         {x3_s}_PK(h)

{(N1,(N1[hI],x3_s))}_PK(h)

         {(N1,x3_s)}_PK(h)
r8  : ------------------------------

         {x3_s}_PK(h)

{(h,N1[hI])}_PK(h)

         {(h,x2_s)}_PK(h)
r9  : ------------------------------

         {(x2_s,N2)}_PK(h)

{(N1[hh],(N1[hh],(N1[hI],x3_s)))}_PK(h)

         {(N1[hh],x3_s)}_PK(h)
r3  : ------------------------------

         {x3_s}_PK(h)

{(N1[hh],sup((N1[hI],x3_s)))}_PK(h)

 WIDENING 

{(N1,(N1[hh],sup((N1[hI],x3_s))))}_PK(h)

         {(N1,x3_s)}_PK(h)
r8  : ------------------------------

         {x3_s}_PK(h)

{(N1,(N1,(N1[hh],sup((N1[hI],x3_s)))))}_PK(h)

         {(N1,x3_s)}_PK(h)
r8  : ------------------------------

         {x3_s}_PK(h)

{(N1,sup((N1[hh],sup((N1[hI],x3_s)))))}_PK(h)

 WIDENING 

{(N1,(N1,(N1[hI],x3_s)))}_PK(h)

         {(N1,x3_s)}_PK(h)
r8  : ------------------------------

         {x3_s}_PK(h)

{(N1,sup((N1[hI],x3_s)))}_PK(h)

 WIDENING 

 SECRET - ATTACK {(N1[hh],(I,x2_s))}_PK(h)

         {(N1[hh],x3_s)}_PK(h)
r3  : ------------------------------

         {x3_s}_PK(h)

{(N1,(I,x2_s))}_PK(h)

         {(N1,x3_s)}_PK(h)
r8  : ------------------------------

         {x3_s}_PK(h)

{(h,I)}_PK(h)

         {(h,x2_s)}_PK(h)
r9  : ------------------------------

         {(x2_s,N2)}_PK(h)

{(N1[hh],(N1[hh],(I,x2_s)))}_PK(h)

         {(N1[hh],x3_s)}_PK(h)
r3  : ------------------------------

         {x3_s}_PK(h)

{(N1[hh],sup((I,x2_s)))}_PK(h)

 WIDENING 

{(N1,(N1[hh],sup((I,x2_s))))}_PK(h)

         {(N1,x3_s)}_PK(h)
r8  : ------------------------------

         {x3_s}_PK(h)

{(N1,(N1,(N1[hh],sup((I,x2_s)))))}_PK(h)

         {(N1,x3_s)}_PK(h)
r8  : ------------------------------

         {x3_s}_PK(h)

{(N1,sup((N1[hh],sup((I,x2_s)))))}_PK(h)

 WIDENING 

{(N1,(N1,(I,x2_s)))}_PK(h)

         {(N1,x3_s)}_PK(h)
r8  : ------------------------------

         {x3_s}_PK(h)

{(N1,sup((I,x2_s)))}_PK(h)

 WIDENING 

 SECRET - ATTACK 

Figure 8.4: Hermes attack tree output for Needham-Schroeder unbounded version

Finally, let us observe that the attack has been generated using the abstract rules. In the
first attack we used rules corresponding to the abstract session (H,H) and respectively
the abstract session (H, I). In the second attack, we used rules corresponding to the
abstract session (H, H) and respectively the abstract session (I, H). Starting from this
information we can execute Hermes with a fixed number of sessions in order to find
a concrete attack and to understand it better, since the concrete rules correspond to
concrete sessions, and therefore to concrete executions.

For example, the first attack is recover in the following bounded configuration:

s1. session A=a, B=b

s2. session A=a, B=I

Which means the configuration is described by two parallel sessions one between a, b
and one between a, I, with a,b honests and I dishonest. The honesty hypothesis are
given in the assume part of description as follows:



140 CHAPTER 8. HERMES

assume

secret (prk(A)@s1.A), (* i.e. a is honest *)

secret (prk(A@s1.B)), (* i.e. the initiator in the session s1

from b’s point of view is honest *)

secret (prk(B)@s1.B) (* i.e. b is honest *)

The adequate claims are:

claim

*A*G secret (N1@s1.A),

*A*G secret (N2@s1.B)

Hermes analyses each possible execution trace and, if the attack is not a false one, it
will be found on one of them.

8.2.5 User Interface

Hermes is available online at the url
http://www-verimag.imag.fr/∼Liana.Bozga/eva/hermes.php.

Several protocol examples are available in the web page and others may be written
directly in the input area using the LaEva syntax. As output, Hermes provides, in
the output area, the result sets S′ (Secrets), and PT′ (BadPatterns) as well as the
sequence of rules leading to an attack if it is the case.

Also, at each execution Hermes generates a tree allowing to follow the sequence of
rules leading to each new secret or pattern transducer. A link to this tree is available
at the end of the output area. The information provide by Hermes are very useful
for someone how known the verification method, because that information is derived
from the abstract version of the algorithm. We are working to improve the output
information. For the case when Hermes fails in proving the correctness of the protocol
we have started to developed a module which reconstruct the concrete attack if it exists.
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Figure 8.5: The user interface of Hermes.
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8.3 Hermes results

The table 8.1 summarizes the results obtained by Hermes on some protocols regarding
secrecy properties. The LAEVA description and a bibliographic reference for each of
these protocols are given in the appendix C.

The ♯R column represents the number of abstract rules. The ♯N column represents the
number of nodes in the derivation tree, the term transducers and the secrets generated
during the computation. The ♯W column represents the number of times the widening
procedure has been applied. The time column represents the overall execution time (in
seconds). Finally, in the last column OK means that the protocol has been successfully
verified for the secrecy property. Attack means that an attack has been found and, as
all these attacks have been already discovered and published we give also their principal
references. In general, a third result, Inconclusive can be obtained: because of abstrac-
tion step, it is possible to find an attack at abstract level, which in fact, is not a valid
one, on the concrete level.

Protocol Name ♯ R ♯ N ♯ W Time Result

Needham Schroeder Public Key 9 46 14 0.04 Attack [Low96]

Needham Schroeder Lowe 9 20 6 0.02 OK

Yahalom 35 563 132 29.42 OK

Otway Rees 15 0 - 0.04 OK∗

Denning Sacco Key Distribution
with Public Key

18 3 - 0.03 Attack [AN96]

Wide Mouthed Frog (modified) 14 2 - 0.03 OK

Kao Chow 50 74 16 1.08 OK

Neumann Stubblebine 75 3 1 0.10 OK∗

Needham Schroeder Symmetric Key 65 6 - 0.08 Attack [DS81]

TMN 41 17 - 0.01 Attack [LR97]

Andrew Secure RPC 27 5 - 0.01 OK

Woo and Lam Mutual Authentica-
tion (modified)

102 4 - 0.10 OK

Skeme [Kra96] (modified) 69 5 - 0.03 OK

∗ There is a known attack of the untyped version of the protocol. Discovering
this type attack automatically requires to deal with non-atomic keys. This
is not yet implemented in Hermes.

Table 8.1: These results have been obtained by running Hermes on a Pentium III
600Mhz PC under Linux.
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8.4 Comparison with others tools

We present below some of the verification tools for cryptographic protocols, including
their main functionalities and limitations.

8.4.1 Model-checking tools

The first category of protocol verification tools are model-checking tools. In general,
such tools have been applied to discover flaws in cryptographic protocols. Usually,
these tools bound the number of sessions and the number of participants. But, even
in this case the problem is difficult because of the explosion of the state space due to
interleaved execution of sessions and message sizes. Hence, each such tool requires some
supplementary simplifying assumptions e.g, bound on the size of messages. Finally,
the tools in this category are automatic and deal with both secrecy and authentication
properties. The most known are Casper and Casrul, presented below.

Casper [Low97a] is a compiler which takes a security protocol specification and pro-
duces an equivalent description in process algebra CSP [Hoa85]. This description is
then checked using the model-checker FDR [Ros94]. The supplementary assumptions
done by FDR are that messages are bounded, well-typed and the keys are atomic. Nev-
ertheless, it is one of the most complex tool for cryptographic protocols and it is able
to find all reported attacks from the survey of Clark and Jacob [CJ97] except type
attacks. In particular, the well-known attack of Needham-Schroeder Protocol has been
first discovered by Gavin Lowe using CSP/FDR tools [Low95].

Similar to this tool, but without significant improvements are Murphi [MMS97] and
Athena [Son99]. In particular, the second one deals with unbounded but typed mes-
sages.

The AVISS tool [AVC+02] implements model-checking methods for security protocol
analysis over a common high level protocol specific language. A static analysis is per-
formed to check the executability of the protocol and then the protocol and the intruder
actions are compiled into an intermediate format. The intermediate format (IF) is the
start point for three complementary automated protocol analysis techniques: On-the-
Fly model-checking (OFMC) [BMV03], Constraint-Logic-Based model-checking Cas-

rul [JRV00] and SAT-based model-checking (SATMC) [AC04]. Using at least one of
them, sometimes all of them, one found all the reported attacks for protocols in Clark’s
survey. We remark that Casrul deals with messages in all their generality. More pre-
cisely, the messages are not typed, there is no bound on their size and composed key
are taken into account. It found also type attacks.

Finally, remember that Hermes can be exploited in the case of a bounded number of
sessions and partially typed messages: it requires only that all messages used as keys
to be of key type. But, it deals with an abstract representation of the protocol though
each rule is played one time and the order is taken in to account. Hence it may find fake
attacks when the variables assignation is different for different rules of the same session.
Hermes found also all reported attacks for secrecy properties of protocols from Clark’s
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survey, including also type attacks if they do not involve composed keys.

8.4.2 Induction and Theorem-proving based tools

The second category of protocol verification tools includes tools based on induction and
theorem proving. Usually, these tools provide a general proof method of correctness
for protocols. In this case, as in our, the approach is oriented around proving guar-
antees, while their absence indicates possible attacks. The tools in this category deal
with unbounded number of sessions and participants. We mention here the Paulson
tool [Pau97] and Securify [CMR01].

In the tool developed by Paulson, protocols are defined inductively as sets of traces.
It does not require an a priori typing of messages. It deals with both secrecy and
authentication properties. The proofs are generated using Isabelle/HOL [Pau94]. The
tool is not completely automatic, i.e. user interaction is required to obtain the proof.
More precisely, the user has to choose among several proof strategies.

Securify [CMR01, Cor02] is completely automatic. It deals with an unbounded num-
ber of sessions and does not require an a priori typing of messages. However, usually
it can’t conclude if some of the messages are not well typed. In the case where the
protocol can be proved correct, Securify produces a corresponding proof tree.

The main difference between Hermes and the others automatic tools of this category
is that the Hermes algorithm is based on abstract interpretation and hence the proof
tree obtained is in the abstract domain. The advantage of abstraction is that Hermes

concludes more often than Securify.

8.4.3 Abstract Interpretation based tools

In this category we found partial algorithms based on abstract interpretation. We
mention here the tools that have been presented in [Mon99, GL00, GK00]. All of them
use a model based on tree automata to abstract the set of intruder knowledge.

[Mon99] deals with a bounded number of sessions and participants. It is completely
automatic but analyzes only secrecy properties. Usually, it is able to analyze only a small
number of instances of the protocol, being very limited by the number of interleavings
to consider. Some possible approximations, such as widening, are proposed to increase
the number of sessions that can be analyzed.

Cpv [GL00] is also fully automatic and proves correctness of protocols with respect to
both secrecy properties. It deals with unbounded number of sessions and participants.
The protocol is approximated by a set of rewriting rules and also the set of intruder
knowledge is over approximated. It has been successfully applied on protocols from the
Clark’s survey and seems to be very efficient (less than 1 second on all tested examples).

Timbuk [GK00] also deals with unbounded number of sessions and participants. This
tool allows to prove correctness of protocols with respect to both secrecy and authentica-
tion properties. The protocol is represented by a set of rewriting rules. The translation
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step from the standard protocol description to rules representation is manual and not
easy, therefore we have just a few experimental results. Some acceleration techniques
are used but the termination is not always guaranteed.

Regarding the assumptions made, Hermes is very close to these two last tools, but
instead of computing the set of messages that can be known by the intruder, Hermes

provides an invariant on the intruder knowledge that is a sufficient condition for secrecy.
Moreover, when a protocol is proved correct, it returns an abstract proof tree that can
be exploited for certification [JLP04]. Also, when it can not prove the correctness, it
returns an abstract attack that can be used to construct a concrete attack, if such a
concrete attack exists [JLP04, JPL03].
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Chapter 9

Conclusions

9.1 Achievements

The first achievement of the thesis is the definition of a general model for cryptographic
protocols. Our model includes a language for the description of cryptographic protocols
together with an operational semantics allowing to understand their execution in a
potentially hostile environment. The model is rich enough to represent protocol sessions
at a high level of abstraction as sequences of message exchange between participants.
In addition, the model allows to capture time-sensitive information using primitives
derived from the theory of real-time systems.

The second achievement is the definition of a complete and effective Hoare Logic for
timed bounded cryptographic protocols and an expressive assertion language. This as-
sertion language allows to specify secrecy as well as authentication and other properties.
As a consequence of this result, we have a decision procedure for timed bounded cryp-
tographic protocols and a large class of security properties allowing an infinite set of
messages initially known by the intruder. The latter point might seem minor but is
not. Indeed, if we are interested in composing protocols we have to take into account
that we have no bound on how many sessions have taken place before, and hence, we
should allow infinite sets of messages. Thus, besides developing a result concerning
the existence of an effective and complete Hoare Logic for cryptographic protocols, we
significantly extend existing decidability results in two directions:

1. larger class of properties and

2. more general initial conditions.

Finally, the third achievement is an abstract interpretation based method for verify-
ing secrecy properties of cryptographic protocols in a general model. We deal with
unbounded number of sessions, unbounded number of principals, unbounded message
depth and unbounded creation of fresh nonces. However, in contrast to the work pre-
sented in the first part of this thesis, where the session number is bounded, this method
is not complete. Indeed, in this case, the problem is undecidable (e.g. see [AC02]). The
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main contribution is a verification algorithm that consists of computing an inductive in-
variant using patterns as symbolic representation. In case the given protocol is correct,
our method provides a proof tree that can be exploited for certification. More precisely,
from the obtained proof tree we can automatically deduce a Coq proof that can serve
for certification [JLP04].

9.2 Future work

Our results can be extended in several directions.

Regarding verification of bounded protocols, we expect that decidability results as well
as the weakest precondition calculus remains valid on slightly different intruder models
e.g, extensions of Dolev-Yao models. Moreover, we believe that our bounded timed
model can be extended to handle a richer class of timed cryptographic protocols e.g.,
including for instance drifting clocks.

Several perspectives are still open concerning the verification of unbounded protocols.
Secrecy is not always sufficient to prove the security of a protocol. We have to study if
our verification method can work for a richer class of security properties e.g., including
at least authentication, or whether it is limited to secrecy. Moreover, even for secrecy,
the general abstraction we propose can be too coarse and therefore useless, if it does
not take into account extra-information about the overall behavior of the protocol e.g.,
when only iterative sessions are considered.

Extensions of Dolev-Yao models

Our results rely upon common hypothesis about cryptographic protocols and their ex-
ecution environment. In the Dolev-Yao model, the intruder has complete control on
the network i.e., it can intercept all messages sent between participants. Moreover, the
cryptography is considered perfect i.e, no decryption being possible without knowing
the inverse key.

However, in practice we are often faced with much more specific situations. For example,
we may have secure communication channels, that is, communication among some of
the participants escapes from the intruder’s control. Also, cryptography is not perfect
in reality, for example, the xor-encryption has strong algebraic properties which can be
easily exploited in order to decrypt messages.

We believe that term transducers represent a general framework for a uniform pre-
sentation of different results for bounded cryptographic protocols with both stronger
communication e.g., secure channels and weaker cryptographic hypothesis.

As a concrete example, consider protocols which use Cipher Block Chaining (CBC)
encryptions. Following the idea of [Rus03] the intruder may exploit prefix properties of
encryption algorithms based on CBC. This can be expressed by the rule:

• If E ⊢ {m1,m2}k then E ⊢ {m1}k.
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In order to catch this new intruder capability we can extend message transducers with
a cbc function having the following operational semantics:

−

M
cbc
−−→ {{m1}k | {m1,m2}k ∈ M}

Then, the Id message transducer which encodes the decomposition ability of the intruder
becomes Id = (cbc + pr1 + pr2 +

∑
k 6∈K

decr(·, k))∗.

Extended our results in this direction seems natural and we guess it represents a first
step towards taking into account algebraic properties of encryption algorithms for the
verification of correctness.

Richer Time-sensitive protocols

The time model for bounded protocols can be also extended in several ways.

First, it can be naturally used to associate time values to short term keys such that if
the intruder obtains a message encrypted by a short term key then after the specified
amount of time elapses the key becomes known by the intruder. Then our verification
method can be extended to handle this model.

Intuitively, to each short term key k we associate a constant ∆k and a clock c(k) that
can be activated when the intruder deduces a message of the form {x}k. Then, when
the value of the clock c(k) reaches ∆k, the key k becomes deducible by the intruder.
That is, a short term key k is ”cracked” ∆k time units after a message {x}k becomes
known.

Second, our time model can be extended to handle drifting clocks. It is well-known that
models with clocks with drifts in bounded intervals can be transformed into models with
perfect clocks modulo an abstraction, that is, taking into account more behavior. As
discussed by Gong [Gon92] drifting clocks can add subtle attacks.

Abstraction and Unbounded verification

A clear limitation of our verification method for unbounded number of sessions is that
we can verify only secrecy properties. We are working to extend it for other security
properties such as authentication, anonymity, opacity or fairness.

Moreover, our abstraction scheme obeys some common general hypothesis about the
behavior of participants in cryptographic protocols. In particular, we allow participants
to be involved in several parallel sessions at the same time. But, in practice the situation
is sometimes different, that is, there are protocols with iterative sessions where, due to
physical reasons, a participant can be involved only in one session at a time. When this
hypothesis is crucial for the correctness of the protocol, it must be preserved by the
abstraction, otherwise no meaningful result can be a priori obtained. For example, we
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may consider other abstractions e.g, abstract sessions like

((H, I)∗; (H, H)∗; (I, H)∗)∗; (H,H); ((H, I)∗; (H,H)∗; (I, H)∗)∗

in order to preserve the iterative nature of the protocol.



Appendix A

Dealing with patterns

In fact, introducing the interpreted function symbol Sup corresponds to adding the
sub-term relation to a logic on terms.

Unification and matching are the key operations in dangerous substitution computation
of the symbolic verification algorithm, chapter 7. The problem we need to solve for
obtaining our symbolic algorithm is, however, not unification of patterns. The problem
we need to solve is the following: Given two patterns u and v, we have to determine a
set U(u, v) of substitutions σ such that there exist terms u′ ∈ [[u]] and v′ ∈ [[v]] such that
σ(u′) = σ(v′). More precisely, we want to characterize the set of most general unifiers
that unify some terms in [[u]] and [[v]]. Actually, the problem we need to solve for our
symbolic algorithm is a simpler one where at least one of the patterns u and v is simply
a term, i.e. without occurence of Sup in it. Indeed, we need to unify the conclusion of
a rule, which is a term, with a pattern from a pattern transducer.

We prefer, however, to present a solution for the general case. We will do this in a
general setting.

Let us consider a finite set F of function symbols such that Sup /∈ F and let X be
a countable set of variables. The set of patterns induced by F and X , denoted by
PT (F ,X ) is defined by the following BNF:

t ::= x | f(t1, · · · , tn) | Sup(t)

where x is a variable in X and f is a function symbol of arity n ≥ 0. Let F (i) denote the
function symbols in F of arity i. As usual, function symbols of arity 0, i.e. elements of
F (0), are called constants. The meaning [[t]] of a pattern t is a set of terms in T (X ,F)
defined in the same way as in definition 7.4.

Definition A.1

Given two patterns u and v, a substitution σ : X → PT (X ,F) is called a maximal
general unifier for u and v, if the following conditions are satisfied:

1. it is a most general unifier for some terms u′ ∈ [[u]] and v′ ∈ [[v]] and
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We consider the case:⋃
i≥2 F

(i) 6= ∅ with f, g ∈ F (n) ; x ∈ X ; u, v, ui, vi ∈ PT ; t, ti ∈ T and Sup /∈ F

Delete {u = u} ∪ E ⇒ E

Orient {u = x} ∪ E ⇒ {x = u} ∪ E, if u /∈ X

Decompose {f(u1, · · · , un) = f(v1, · · · , vn)} ∪ E ⇒ {ui = vi | i ∈ Nn} ∪ E

Clash {f(u1, · · · , un) = g(v1, · · · , vm)} ∪ E ⇒ ⊥

Eliminate {x = u} ∪ E ⇒ {x = u} ∪ E[u/x], if x /∈ var (u)

Occurs-Check {x = u} ∪ E ⇒ ⊥, if x ∈ var (u) ∧ u 6= Sup(x) ∧ u 6= x

Sup-Delete-1 {x = Sup(x)} ∪ E ⇒ E

Sup-Delete-2 {Sup(u) = v} ∪ E ⇒ E, if Sup(.) appears in v

Sup-Splitting {Sup(u) = f(t1, · · · , tn)} ∪ E ⇒ {u = t} ∪ E, for t ¹ f(t1, · · · , tn),

if Sup(.) does not appear in f(t1, · · · , tn)

Figure A.1: Usual rules for solving unification extended to deal with superterms

2. for every substitution σ′ that unifies terms in [[u]] and [[v]], σ′ is not more general
than σ, that is, for no substitution ρ, we have σ = ρ ⊕ σ′.

We denote by U(u, v) the set of maximal general unifiers for u and v.

In general there will be more than one maximal general unifier for u and t even modulo
renaming. The definition of U can be extended in the usual way –as for unification– to
sets {(ui, vi) | i ∈ [1, n]} of pairs of patterns. In the sequel, we prefer to write ui = vi

instead of (ui, vi) as our algorithm essentially consists in manipulating some kind of
equations.

We present an algorithm that given a set of patterns pairs E = {ui = vi | i ∈ [1, n]}
determines U(E). From now on, we will call such a set E a generalized equational
problem, written GEP for short.

It turns out that an extension of the set of transformations that solve the usual unifi-
cation problem (cf. [BN98]) will give the solution.

We recall in the figure A.1 the usual six rules of [BN98] for solving unification and we
add three rules to deal with the Sup operator.

We only solve the unification problem in the case of a signature F with at least a
constructor of arity greater than one ; we do not present here the rules for the case of
signature with only unary constructors which are useless in the context of crytography.
We attract the reader’s attention to the fact that the Sup-Splitting rule transforms
a GEP E into a set of GEPs. Indeed, it yields a new GEP for each sub-term of
f(t1, · · · , tn). This is not the case for the usual unification rules.

Example A.1
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Consider the following GEP

{
[1] Sup(x) = f(b, g(Sup(a)))
[2] f(b,Sup(g(x))) = f(b, g(b))

Equation 1 is eliminated by the rule (Sup-Delete-2) of the figure A.1. Indeed, it is
equivalent to x ¹ f(b, g(Sup(a))) which puts no constraint on x as long as the term
signature contains a contructor with arity greater than one (e.g., pair).

Indeed, whatever the term we obtain for x it is always possible, using binary contructors,
to adjust the Sup part in f(b, g(Sup(a))) in order to obtain a term that contains x. As
an example, f(b, g(pair(x, a)) contains x and it is an instance of f(b, g(Sup(a))).

The rule Decompose removes Equation 2 and produces the constraints Sup(g(x))) = g(b)
and b = b (which is eliminated by the rule Delete). Then, by rule Sup-Splitting, the
former equation yields two GEPs: {g(x) = g(b)} and {g(x) = b}. Finally, we obtain
the solution x = b.

Termination of the algorithm can be proved using lexicographic ordering and the ranking
function that maps a GEP E to (m1,m2,m3), where:

• m1 is the number of variables in E that are not solved. As usual, a variable x is
solved in E if it occurs exactly once in E, namely on the left-hand side of some
equation x = u with x /∈ var (u).

• m2 is the measure of E defined by M(E) =
∑

u=v∈E

(|u| + |v|) and M(⊥) = 0,

• m3 is the number of equations u = x in E with x ∈ X and u /∈ X .

The application of a rule to a GEP E leads to one or more GEPs with a lower rank than
E. Although the Sup-Splitting rule of the figure A.1 increases the number of GEPs,
this number is bounded by the number of subterms of the right-hand side term. The
ranking function and the bounded number of deriveable GEPs ensure the termination
of the algorithm.

To prove soundness of the algorithm, we prove for each rule E ⇒ E1, · · · , En that we
have U(E) =

⋃
1≤i≤n

U(Ei).
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Appendix B

Needham-Schroeder Lowe

B.1 CPL Descriptions

B.1.1 Unbounded version

Below, there is included the Cpl description of the Needham-Schroeder Lowe Pro-
tocol [Low96], automatically generated from LaEva specification, in the case of an
unbounded number of sessions:

s.session* {A,B,N1,N2}

**asymk**(*D*) : number hash

A : principal

B : principal

N1 : number

N2 : number

pbk(principal) : number hash

prk(principal) : number hash

_kpf1(principal) : number hash

alg : asym_algo

alias prk = lambda-privk^(alg)(_kpf1)

alias pbk = lambda-pubk^(alg)(_kpf1)

process*{A,B,N1,N2} s1.A : 1. {

1. -> \%1. : new N1-1

\%1. -> 2. : send {(A,N1-1)}_(apply-pubk^(alg)(_kpf1,B))^(alg)

2. -> 3. : recv {(<B>,<N1-1>,_x3)}_(apply-privk^(alg)(_kpf1,A))^(alg)

3. -> end. : send {_x3}_(apply-pubk^(alg)(_kpf1,B))^(alg)

}

(A = A

apply-privk^(alg)(_kpf1,A) = apply-privk^(alg)(_kpf1,A)

N2 = _x3

N1 = N1-1

B = B

alg = alg
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lambda-pubk^(alg)(_kpf1) = lambda-pubk^(alg)(_kpf1))

process*{A,B,N1,N2} s1.B : 1. {

1. -> 2. : recv {(_x1,_x2)}_(apply-privk^(alg)(_kpf1,B))^(alg)

2. -> \%4. : new N2-1

\%4. -> 3. : send {(B,_x2,N2-1)}_(apply-pubk^(alg)(_kpf1,_x1))^(alg)

3. -> end. : recv <{N2-1}_(apply-pubk^(alg)(_kpf1,B))^(alg)>

}

(A = _x1

N2 = N2-1

apply-privk^(alg)(_kpf1,B) = apply-privk^(alg)(_kpf1,B)

N1 = _x2

B = B

alg = alg

lambda-pubk^(alg)(_kpf1) = lambda-pubk^(alg)(_kpf1))

assume secret((apply-privk^(alg)(_kpf1,A))@s1.A)

assume secret((apply-privk^(alg)(_kpf1,B))@s1.B)

assume secret(apply-privk^(alg)(_kpf1,(B)@s1.A))

assume secret(apply-privk^(alg)(_kpf1,(_x1)@s1.B))

claim *A *G secret((apply-privk^(alg)(_kpf1,A))@s1.A)

claim *A *G secret((apply-privk^(alg)(_kpf1,B))@s1.B)

claim *A *G secret((N1-1)@s1.A)

claim *A *G secret((N2-1)@s1.B)

B.1.2 Bounded version

Below, we include the Cpl description generated from LaEva in the case of fixed
number of sessions:

s1. session A=a, B=b

s2. session A=a, B=I

**asymk**(*D*) : number hash

A : principal

B : principal

I : principal

N1 : number

N2 : number

pbk(principal) : number hash

prk(principal) : number hash

_kpf1(principal) : number hash

a : principal

alg : asym_algo

b : principal

alias pbk = lambda-privk^(alg)(_kpf1)

alias prk = lambda-pubk^(alg)(_kpf1)

process s1.A : 1. {
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1. -> \%1. : new N1-1

\%1. -> 2. : send {(a,N1-1)}_(apply-privk^(alg)(_kpf1,b))^(alg)

2. -> 3. : recv {(<b>,<N1-1>,_x3)}_(apply-pubk^(alg)(_kpf1,a))^(alg)

3. -> end. : send {_x3}_(apply-privk^(alg)(_kpf1,b))^(alg)

}

(apply-pubk^(alg)(_kpf1,A) = apply-pubk^(alg)(_kpf1,a)

B = b

A = a

N2 = _x3

alg = alg

N1 = N1-1

lambda-privk^(alg)(_kpf1) = lambda-privk^(alg)(_kpf1))

process s1.B : 1. {

1. -> 2. : recv {(_x1,_x2)}_(apply-pubk^(alg)(_kpf1,b))^(alg)

2. -> \%4. : new N2-1

\%4. -> 3. : send {(b,_x2,N2-1)}_(apply-privk^(alg)(_kpf1,_x1))^(alg)

3. -> end. : recv <{N2-1}_(apply-privk^(alg)(_kpf1,b))^(alg)>

}

(B = b

apply-pubk^(alg)(_kpf1,B) = apply-pubk^(alg)(_kpf1,b)

A = _x1

N2 = N2-1

alg = alg

N1 = _x2

lambda-privk^(alg)(_kpf1) = lambda-privk^(alg)(_kpf1))

process s2.A : 1. {

1. -> \%1. : new N1-1

\%1. -> 2. : send {(a,N1-1)}_(apply-privk^(alg)(_kpf1,I))^(alg)

2. -> 3. : recv {(<I>,<N1-1>,_x3)}_(apply-pubk^(alg)(_kpf1,a))^(alg)

3. -> end. : send {_x3}_(apply-privk^(alg)(_kpf1,I))^(alg)

}

(apply-pubk^(alg)(_kpf1,A) = apply-pubk^(alg)(_kpf1,a)

B = I

A = a

N2 = _x3

alg = alg

N1 = N1-1

lambda-privk^(alg)(_kpf1) = lambda-privk^(alg)(_kpf1))

process s2.B : 1. {

1. -> 2. : recv {(_x1,_x2)}_(apply-pubk^(alg)(_kpf1,I))^(alg)

2. -> \%4. : new N2-1

\%4. -> 3. : send {(I,_x2,N2-1)}_(apply-privk^(alg)(_kpf1,_x1))^(alg)

3. -> end. : recv <{N2-1}_(apply-privk^(alg)(_kpf1,I))^(alg)>

}

(B = I

apply-pubk^(alg)(_kpf1,B) = apply-pubk^(alg)(_kpf1,I)

A = _x1

N2 = N2-1
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alg = alg

N1 = _x2

lambda-privk^(alg)(_kpf1) = lambda-privk^(alg)(_kpf1))

assume secret((apply-pubk^(alg)(_kpf1,a))@s1.A)

assume secret(apply-pubk^(alg)(_kpf1,(_x1)@s1.B))

assume secret((apply-pubk^(alg)(_kpf1,b))@s1.B)

claim secret((N1-1)@s1.A)

claim secret((N2-1)@s1.B)
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Protocol Examples

We present here the LAEVA description of the protocols used in section 8.3.

Needham Schroeder Public Key [NS78]

alg : asym_algo

everybody knows alg

A, B: principal

Na, Nb : number

keypair^alg PK, SK (principal)

everybody knows PK

A knows A, B, SK(A)

B knows B, SK(B)

{

1. A -> B : {A, Na}_(PK(B))^alg

2. B -> A : {Na, Nb}_(PK(A))^alg

3. A -> B : {Nb}_(PK(B))^alg

}

s. session* {Na,Nb} A=A, B=B

assume secret (SK(A)@s1.A),

secret (SK(B)@s1.B),

secret (SK(B@s1.A)),

secret (SK(A@s1.B))

claim *A*G secret (SK(A)@s1.A),

*A*G secret (SK(B)@s1.B),

*A*G secret (Na@s1.A),

*A*G secret (Nb@s1.B)

Yahalom [BAN90]
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A, B, S : principal

Na, Nb : number

basetype key

Kab : key

shr (principal,principal) : number secret

alias Kas = shr(A,S)

alias Kbs = shr(B,S)

A knows A, B, S, Kas

B knows B, S, Kbs

S knows S, shr

{

1. A -> B : A, Na

2. B -> S : B, { A, Na, Nb }_Kbs

3. S -> A : { B, Kab, Na, Nb }_Kas, { A, Kab }_Kbs

4. A -> B : { A, Kab }_Kbs, { Nb }_Kab

}

s. session* {Kab} A=A, B=B, S=S

assume secret (Kas@s.A),

secret (Kbs@s.B),

secret (Kas@s.S),

secret (Kbs@s.S)

claim *A*G secret (Kas@s.A),

*A*G secret (Kbs@s.B),

*A*G secret (Kab@s.S)

Otway-Rees [OR87]

A, B, S : principal

Kab : number

N, Na, Nb : number

shr (principal,principal) : number secret

alias Kas = shr(A,S)

alias Kbs = shr(B,S)

A knows A, B, Kas

B knows A, B, S, Kbs

S knows S, shr

{

1. A -> B : N, A, B, {Na, N, A, B}_Kas

2. B -> S : N, A, B, {Na, N, A, B}_Kas, {Nb, N, A, B}_Kbs

3. S -> B : N, {Nb, Kab}_Kbs

4. S -> A : N, {Na, Kab}_Kas

}
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s. session *{Kas, Kbs} A=A, B=B, S=S

assume secret (Kas@s1.A),

secret (Kbs@s1.B),

secret (Kas@s1.S),

secret (Kbs@s1.S)

claim *A*G secret (Kas@s1.A),

*A*G secret (Kbs@s1.B),

*A*G secret (Kab@s1.S)

Denning-Sacco Key Distribution with Public Key [DS81]

alg : asym_algo

everybody knows alg

A, B : principal

Na, Nb : number

basetype key

Ka : key

keypair^alg SK, PK (principal)

everybody knows PK

A knows A, B, SK(A)

B knows B, SK(B)

{

1. A -> B : A, {{Ka, Na}_(SK(A))^alg}_(PK (B))^alg

2. B -> A : {Nb}_Ka

}

s. session* {Ka, Nb} A=A, B=B

assume secret (SK(A)@s.A),

secret (SK(B)@s.B),

secret (SK(A@s.B))

claim *A*G secret (Nb@s.B),

*A*G secret (Ka@s.A)

Wide-Mouthed-Frog [BAN90] - modified

A, B, S : principal

Na : number

basetype key

Kab : key

shr (principal,principal) : number secret

alias Kas = shr(A,S)
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alias Kbs = shr(B,S)

A knows A, B, S, Kas

B knows B, S, Kbs

S knows S, shr

{

1. A -> B : A, Na

2. B -> S : B, {Na, A, Kab}_Kbs

3. S -> A : {Na, B, Kab}_Kas

}

s. session *{A, B} A=A, B=B, S=S

assume secret (Kas@s.A),

secret (Kbs@s.B),

secret (shr(A@s.B,S@s.B)),

secret (Kas@s.S),

secret (Kbs@s.S)

claim *A*G secret (Kas@s.S),

*A*G secret (Kbs@s.S),

*A*G secret (Kab@s.B)

Kao-Chow [CJ97](6.5.4)

A, B, S : principal

Na, Nb : number

basetype key

Kab : key

shr (principal, principal) : number secret

alias Kas = shr(A,S)

alias Kbs = shr(B,S)

A knows A, B, Kas

B knows B, S, Kbs

S knows S, shr

{

1. A -> S : A, B, Na

2. S -> B : {A, B, Na, Kab}_Kas, {A, B, Na, Kab}_Kbs

3. B -> A : {A, B, Na, Kab}_Kas, {Na}_Kab, Nb

4. A -> B : {Nb}_Kab

}

s. session *{Kab} A=A, B=B, S=S

assume secret (Kas@s1.A),

secret (Kbs@s1.B),

secret (shr(A@s1.B,S@s1.B)),

secret (Kas@s1.S),
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secret (Kbs@s1.S)

claim *A*G secret (Kas@s1.A),

*A*G secret (Kbs@s1.B),

*A*G secret (Kab@s1.S)

Neumann-Stubblebine [NS93]

alg : asym_algo

everybody knows alg

A, B, S : principal

Na, Ma, Nb, Mb, Ta, Tb : number

basetype key

Kab : key

shr (principal,principal) : number secret

alias Kas = shr(A,S)

alias Kbs = shr(B,S)

A knows A, B, S, Kas

B knows A, B, S, Kbs

S knows S, shr

{

1. A -> B : A, Na

2. B -> S : B, {A, Na, Tb}_Kbs, Nb

3. S -> A : {B, Na, Kab, Tb}_Kas, {A, Kab,Tb}_Kbs, Nb

4. A -> B : {A, Kab,Tb}_Kbs, {Nb}_Kab

5. A -> B : Ma, {A, Kab,Tb}_Kbs

6. B -> A : Mb, {Ma}_Kab

7. A -> B : {Mb}_Kab

}

s. session* {Kab} A=A, B=B, S=S

assume secret (Kas@s.A), secret (Kbs@s.B),

secret (shr(A@s.S,S@s.S)),

secret (shr(B@s.S,S@s.S))

claim *A*G secret (Kas@s.A),

*A*G secret (Kbs@s.B),

*A*G secret (Kab@s.S)

Needham-Schroeder Symmetric Key [NS78]

A, B, S : principal

Na, Nb : number

basetype key

Kas, Kbs, Kab, Kplus : key
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shr (principal,principal) : key secret

alias Kas = shr(A,S)

alias Kbs = shr(B,S)

A knows A, B, S, Kas, Kplus

B knows A, B, S, Kbs, Kplus

S knows S, shr, Kplus

{

1. A -> S : A, B, Na

2. S -> A : {Na,B, Kab, {Kab, A}_Kbs}_Kas

3. A -> B : {Kab, A}_Kbs

4. B -> A : {Nb}_Kab

5. A -> B : {{Nb}_Kplus}_Kab

}

s. session* {Kab,Nb} A=A, B=B, S=S

assume secret (Kas@s.A),

secret (Kbs@s.B),

secret (Kas@s.S),

secret (Kbs@s.S)

claim *A*G secret (Kab@s.S),

*A*G secret (Nb@s.B),

*A*G secret (Kas@s.A),

*A*G secret (Kbs@s.B)

TMN [TMN90, LR97]

alg : asym_algo

everybody knows alg

A, B, S : principal

basetype key

Ka, Kb : key

keypair^alg PK, SK (principal)

everybody knows PK

A knows A, B, S

B knows A, B, S

S knows A, B, S, SK(S)

{

1. A -> S : B, {Ka}_(PK(S))^alg

2. S -> B : A

3. B -> S : A, {Kb}_(PK (S))^alg

4. S -> A : B, {Kb}_Ka

}
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s. session* {Ka} A=A, B=B, S=S

assume secret (SK(S)@s.S)

claim *A*G secret (Ka@s.A),

*A*G secret (Kb@s.B)

ISO-Symmetric-Key-Two-Pass-Unilateral-Authentication [CJ97](6.2.2)

A, B : principal

Text1, Text2, Text3, Nb : number

basetype key

Kab : key

A knows A, B, Kab

B knows A, B, Kab

{

1. B -> A : Nb, Text1

2. A -> B : Text3,{Nb, B,Text2}_Kab

}

s. session* {Kab, Text2} A=A, B=B

assume secret (Text2@s.A),

secret (Kab@s.A)

claim *A*G secret (Kab@s.A),

*A*G secret (Text2@s.A)

Andrew-Secure-RPC [Sat89]

A, B : principal

Na, Nb, Nb1, Na1 : number

basetype key

Kab, Kab1, Kplus : key

A knows A, B, Kab, Kplus

B knows A, B, Kab, Kplus

{

1. A -> B : A, {Na}_Kab

2. B -> A : {{Na}_Kplus, Nb}_Kab

3. A -> B : {{Nb}_Kplus}_Kab

4. B -> A : {Kab1, Nb1}_Kab

5. A -> B : {Na1}_Kab1

}

s. session* {Na,Nb,Na1,Nb1} A=A, B=B

assume secret (Kab@s.A)
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claim *A*G secret (Kab@s.A),

*A*G secret (Kab1@s.B),

*A*G secret (Na@s.A),

*A*G secret (Nb@s.B),

*A*G secret (Na1@s.A),

*A*G secret (Nb1@s.B)

Woo and Lam [WL94] - modified

A, B, S : principal

basetype key

Na, Nb, Kab : key

shr (principal,principal) : number secret

alias Kas = shr(A,S)

alias Kbs = shr(B,S)

A knows A, B, S, Kas

B knows A, B, S, Kbs

S knows S, shr

{

1. A -> B : A, Na

2. B -> A : A, Na, B, Nb

3. A -> B : Na, Nb, {A, B, Na, Nb}_Kas

4. B -> S : A, B, {A, B, Na, Nb}_Kas, {A, B, Na, Nb}_Kbs

5. S -> B : {B, Na, Nb, Kab}_Kas, {A, Na, Nb, Kab}_Kbs

6. B -> A : {B, Na, Nb, Kab}_Kas, {Na, Nb}_Kab

7. A -> B : {Nb}_Kab

}

s. session *{A, B} A=A, B=B, S=S

assume secret (Kas@s.A),

secret (Kbs@s.B),

secret (Kas@s.S),

secret (Kbs@s.S)

claim *A*G secret (Kas@s.A),

*A*G secret (Kbs@s.B),

*A*G secret (Kab@s.S)

Skeme [Kra96] - modified

alg : asym_algo

everybody knows alg

A, B : principal

Na, Nb, Na1, Nb1 : number
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basetype key

Ka, Kb : key

keypair^alg SK, PK (principal)

everybody knows PK

A knows A, B, SK(A)

B knows A, B, SK(B)

{

1. A -> B : {A,Ka}_(PK (B))^alg,Na

2. B -> A : {Kb}_(PK (A))^alg,Nb,{Na,Nb,B,A}_Ka

3. A -> B : {Nb,Na,A,B,Ka}_Kb

4. B -> A : {Nb1}_Kb

5. A -> B : {Na1}_Ka

}

s. session* {Na} A=A, B=B

assume secret (SK(A)@s.A),

secret (SK(B)@s.B)

claim *A*G Secret (Nb1@s.B),

*A*G Secret (Na1@s.A),

*A*G Secret (Kb@s.B),

*A*G Secret (Ka@s.A)
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[BLP02a] L. Bozga, Y. Lakhnech, and M. Périn. L’outil de vérification hermes. Tech-
nical report, Projet EVA, http://www-eva.imag.fr/, may 2002.

[BLP02b] L. Bozga, Y. Lakhnech, and M. Périn. Pattern-based abstraction
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