# Détection de courts segments inversés dans les génomes : méthodes et applications

**David Robelin** 

dirigé par

**Bernard Prum** 

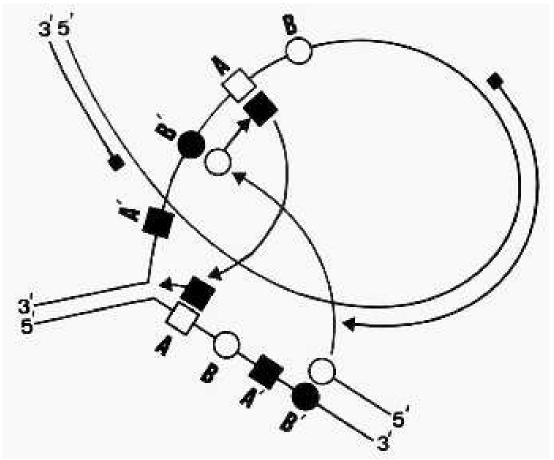
Laboratoire Statistique et Génome, Génopole, EVRY, France

# **Motivations Biologiques**

- Mutations ponctuelles ne suffisent pas à expliquer la variabilité génétique observée aujourd'hui (Ochman et al. 2000) :
- $\rightarrow$  duplications, inversions, transferts genetiques horizontaux, transpositions, rearrangements
- Mutations à grande échelle peuvent être initiées par des mutations à petites échelles:
- Ex. : chez les mamifères, les motifs courts répétés peuvent initier la formation de grands palindromes, eux mêmes associés à l'amplification génique (Tanaka et al., 2002).
- Inversion de petit fragments d'ADN (5Bp to 100Bp) est suspectée être un vecteur important de diversité génétique. (Goldstein et al. 2000, 2003).

### Processus biologique hypothétique (Gordon et Halliday, 1995).

Erreur lors de la réplication de l'ADN.



**Dincom** : **D**NA **In**verse **Com**plémentaire

ANCÊTRE —> OBSERVÉ 
$$5' \ \cdots \ A \ G \ C \ C \ T \ G \ \cdots \ 3' \ 5' \ \cdots \ A \ A \ G \ G \ C \ G \ \cdots \ 3' \\ 3' \ \cdots \ T \ C \ G \ G \ C \ \cdots \ 5'$$

# **Objectif**

- Détecter et localiser les éventuels dincoms d'une séquence donnée
- Associer un niveau de confiance à chaque dincom détecté

# Plan de l'exposé

- 1. Modélisation Markovienne des séquences
- 2. Méthodes de détection des segments inversée
- 3. r plus grandes valeurs du score local
- 4. Applications et logiciel SIC

# Modélisation Markovienne des séquences

### Modèle de Markov

La séquence est modélisée par une **chaîne de Markov** homogène supposée à l'état stationnaire  $X: \forall u, v \in \mathcal{A}$ 

$$P(u,v) = \mathbb{P}(X_{i+1} = v | X_i = u)$$

$$\mu(u) = \mathbb{P}(X_i = u)$$

Chaîne de Markov d'ordre m:

$$\mathbb{P}(X_{i+1} = v | X_1 ... X_i) = \mathbb{P}(X_{i+1} = v | X_{i-m} ... X_i)$$

Nombre de paramètres linéairement indépendants :  $(|\mathcal{A}|-1) \times |\mathcal{A}|^m$ 

La **chaîne inversée**  $X^-$  est également Markovienne (alphabet complémentaire) :  $\forall u, v \in \{a, c, g, t\}$ ,

$$\mu^-(u) = \mu(\bar{u})$$

$$\mathbf{P}^{-}(u,v) = \mathbf{P}(\bar{v},\bar{u}) \frac{\mu(\bar{v})}{\mu^{-}(u)}$$

car, 
$$\mathbb{P}\left((X_i^-, X_{i+1}^-) = (u, v)\right) = \mathbb{P}\left((X_i, X_{i+1}) = (\bar{v}, \bar{u})\right)$$

# Méthodes de détection de segments inversés

### Taille de segments connues

### Méthode par fenêtre glissante

Séquence d'intérêt :  $s_1, ..., s_n$ 

Pour chaque fenêtre de taille l, le rapport de vraisemblance suivant :

$$T_i = \log \left( \frac{\mathbb{P}^-(s_i, ..., s_{i+l-1})}{\mathbb{P}^+(s_i, ..., s_{i+l-1})} \right), i = 1, ..., n-l+1$$

où  $\mathbb{P}^+(s_i,..,s_{i+l-1})$  (resp.  $\mathbb{P}^-(s_i,..,s_{i+l-1})$ ) est la probabilité d'observer  $(s_1,..,s_l)$  sous le modèle de Markov  $X^+$  (resp.  $X^-$ ).

l est choisi en fonction de connaissances biologiques a priori

# Taille de segments connues (2)

Distribution de  $T_i$  quand il n'y a pas de dincom

• *l* est "petit":

On considère les  $4^l$  segments différents dont on calcule la probabilité sous chacun des modèles

 $\rightarrow$  **Distribution Exacte** de  $T_i$ 

Problème : complexité exponentielle en l.

### Taille de segments connues (3)

Distribution de  $T_i$  quand il n'y a pas de dincom (2)

• *l* est grand :

$$T_i = \log\left(\frac{\mu^-(s_i)}{\mu^+(s_i)}\right) + \sum_{u,v \in \{a,c,g,t\}} \log\left(\frac{P^-(v|u)}{P^+(v|u)}\right) \times N_{i,i+l-1}(uv)$$

où  $N_{i,i+l-1}(uv)$ : comptage du mot "uv" dans la séquence  $s_i,...,s_{i+l-1}$ .  $\{N_{i,i+l-1}(uv), \forall (u,v) \in A^2\}$  est asymptotiquement gaussien

 $ightarrow T_i$  est asymptotiquement gaussien quand  $l 
ightarrow \infty$ 

 $\mathbb{E}[T_i]$  et  $\mathbb{V}[T_i]$  calculées avec  $\mathbb{E}[N_{i,i+l-1}(uv)]$  de  $\mathbb{C}\text{ov}[N_{i,i+l-1}(uv),N_{i,i+l-1}(u'v')]$ 

### Taille de segments connues (4)

### Test sur la globalité de la séquence

 $H_0$ : Il n'y a pas **de dincom** dans la séquence

 $H_1$ : Au moins un dincom dans la séquence

On cherche des valeurs élevées de  $T_i$ :

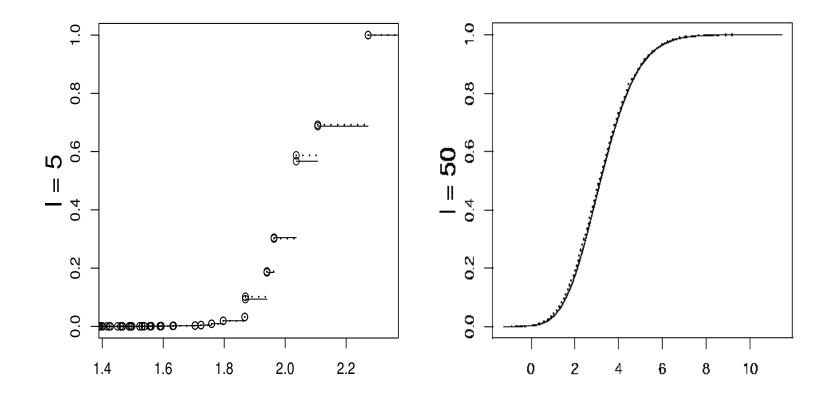
$$S_l^n = \max_{i=1,\dots,n-l+1} T_i$$

Distribution de  $S_l^n$  quand il n'y a pas de dincom :

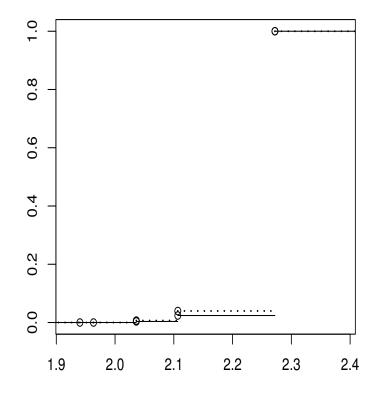
• Approximation "Product-type" (Glaz and Balakrishnan, 1999)

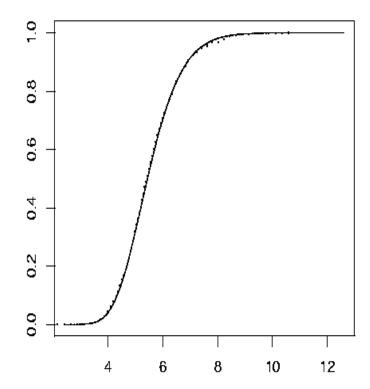
$$\mathbb{P}(S_l^n \le s) \approx \mathbb{P}(S_l^{3l} < s) \left(\frac{\mathbb{P}(S_l^{3l} < s)}{\mathbb{P}(S_l^{2l} < s)}\right)^{n/l - 3}$$

 $\mathbb{P}(S_l^{3l} < s), \mathbb{P}(S_l^{2l} < s)$ : obtenus par Monte-Carlo (Importance Sampling).



Fonction de répartition de  $S_l^n$  pour n=1000 et l=5 et 50. — : Monte Carlo ; ... : Approximation product-type





Fonction de répartition de  $S_l^n$  pour n=10000 et l=5 et 50.

—: Monte Carlo; ...: Approximation product-type

# Taille de segments inconnues

But: Ne pas fixer a priori la taille du dincom

#### Méthode de score local

On note 
$$Y_i = \log\left(\frac{P(X_i, X_{i+1})}{P^-(X_i, X_{i+1})}\right)$$

$$Y_i + Y_{i+1} + \dots + Y_j = \log \left( \frac{\mathbb{P}^-(X_i, \dots, X_j | X_i)}{\mathbb{P}^+(X_i, \dots, X_j | X_i)} \right)$$

On cherche la sous séquence associée à :

$$H^{n} = \max_{1 \le i \le j \le n-1} Y_{i} + \dots + Y_{j}$$

# Méthode de Score local (2)

En pratique (algorithme en O(n)):

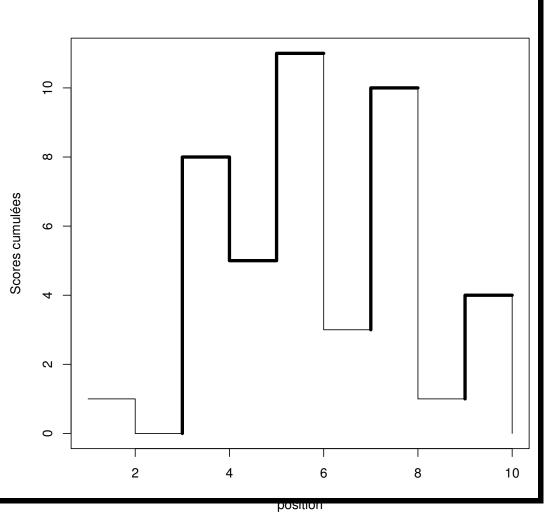
$$H^n = \max_{i=1,...n-1} (S_i - \min_{j < i} S_j)$$

où

$$S_i = \sum_{k=1}^i Y_k$$

est la somme cumulée au rang i

$$S_{i+k} - S_i = Y_{i+1} + \dots + Y_{i+k}$$



### Méthode de score local (3)

Distribution de  $H^n$  quand il n'y a pas de dincom

 $H^n \sim \text{Gumbel (Karlin and Dembo, 1992), car } \mathbb{E}^+[Y_i] < 0$ 

$$\lim_{n \to +\infty} \mathbb{P}\left(H_n \le \frac{\ln n}{\lambda} + x\right) = \exp\left(-K^* \exp\left(-\lambda x\right)\right)$$

Estimation de  $K^*$  et  $\lambda$ 

$$\ln\left(-\ln\left(F(y)\right)\right) \approx \ln K^* - \lambda y + \ln n$$

F(y) est estimée par Monte Carlo sur des séquences de tailles convenables.  $K^*$  et  $\lambda$  sont déduits à l'aide d'une régression linéaire.

### Méthode de score local (4)

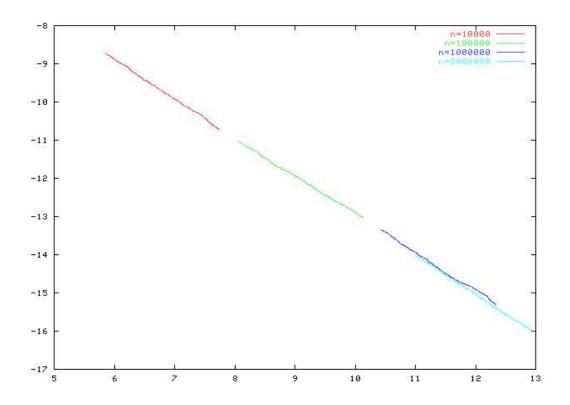


Figure 2: Fonction de répartition linéarisée de  $H_n$  normalisée par  $\log(n)$  pour n=1000,10000,100000,200000

# Performances des méthodes : Fenêtre vs Score local

Chaîne Reversible → puissance nulle!

Besoin d'une distance entre les modèles P<sup>+</sup> et P<sup>-</sup>

→ Mesure de degré d'orientation de la chaîne de Markov

Taux d'entropie relative :

$$Er(X^+, X^-) = \sum_{u,v \in \{a,c,g,t\}} \mathbb{P}^+(u,v) \log \left(\frac{\mathbf{P}^+(v|u)}{\mathbf{P}^-(v|u)}\right)$$

Remarque:

$$Er(X^+, X^-) = -\mathbb{E}^+[Y_i]$$

# **Evaluation comparative des performances des méthodes - Etude de simulation**

#### Trois composantes:

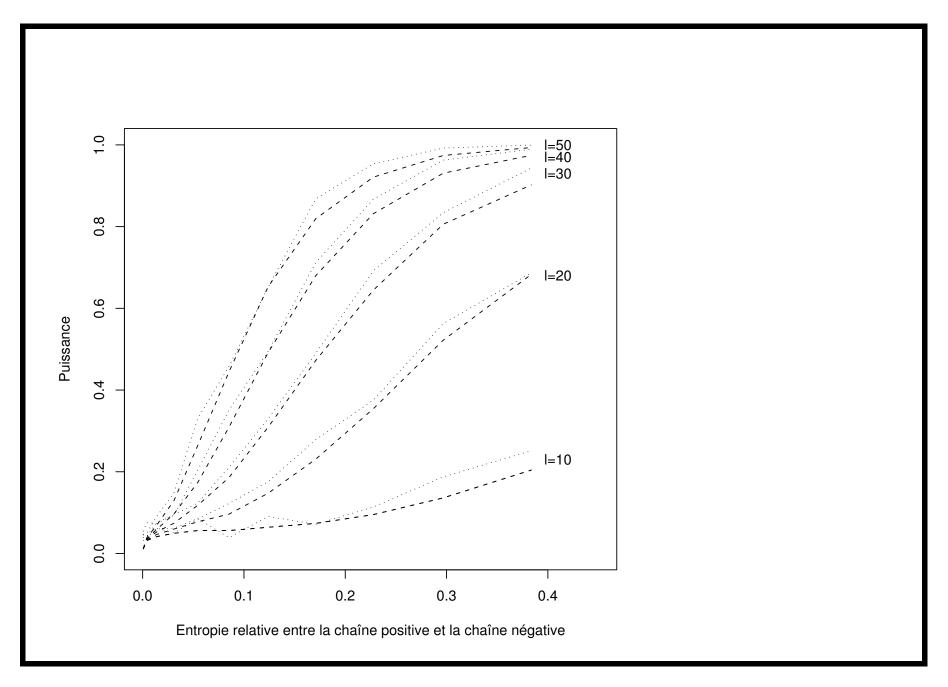
- Taille de la séquence n = 1000, 5000 et 10000
- Taille du dincom l = 5, 10, 15, 20, 30, 40, 50, 75, 100 et 150
- Degré d'orientation de la chaîne de Markov simulée :

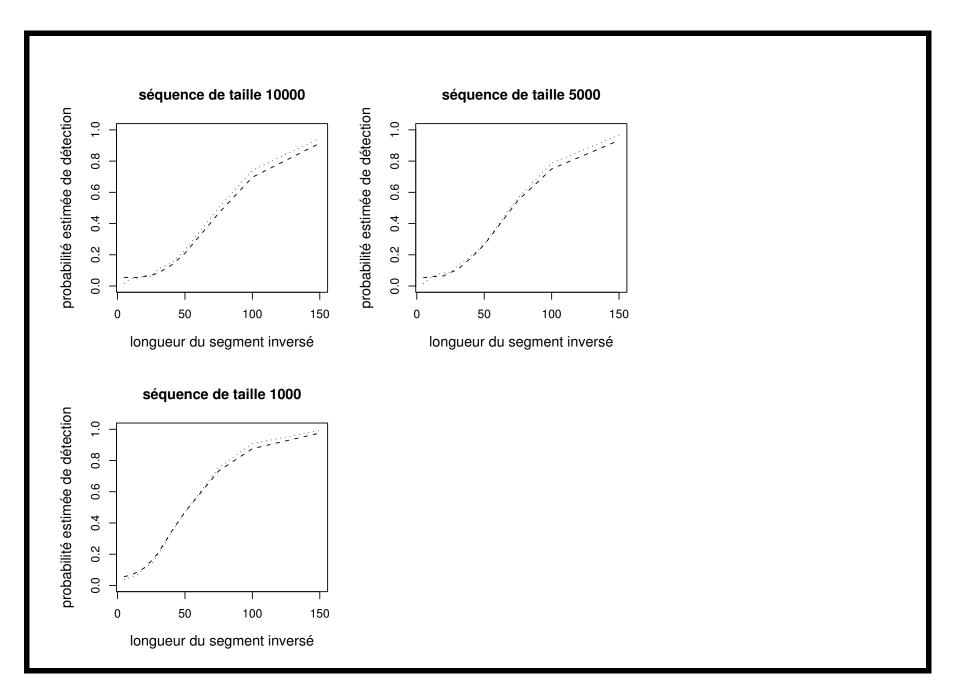
P<sup>+</sup> matrice estimée sur la séquence HIV1.

P<sup>-</sup> matrice de la chaîne inverse.

On définit 
$$P_p^+ = p * P^+ + (1 - p) * P^-$$

| p                                    | 0.5        | 0.6    | 0.7               | 0.9  | 1.0  | 1.1  | 1.2  | 1.3  | 1.4  | 1.5  |
|--------------------------------------|------------|--------|-------------------|------|------|------|------|------|------|------|
| $Er(\mathbf{P}_p^+, \mathbf{P}_p^+)$ | $7.10^{-}$ | 4 4.10 | <sup>3</sup> 0.01 | 0.05 | 0.09 | 0.12 | 0.17 | 0.23 | 0.30 | 0.38 |







# **Définition - Exemple**

La  $r^{i\`{e}me}$  plus grandes valeurs de score local : plus grande valeur de score local dans la séquence **privée** des segments réalisant les r-1 plus valeurs supérieurs de score local.

position: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

score: 1-1-111-11-1-1 1 1 -1-1-1 1

score cumulée: 1 0 -1 0 1 0 1 2 1 0 1 2 1 0 -1 0

4 Segments de score maximal:

Position:  $\{1\}$   $\{4, 5, 6, 7, 8\}$   $\{11, 12\}$   $\{16\}$ 

Valeur: 1 3 2 1

Algorithme de recherche de **complexité linéaire** avec la taille de la séquence (Ruzzo et Tompa, 1999).

## Loi de la plus grande valeur de score local

Temps de records des sommes cumulées :

$$T_0 = 0$$
 et  $T_{k+1} = \inf\{i : i > T_k \text{ et } S_i \le S_{T_k}\}$ 

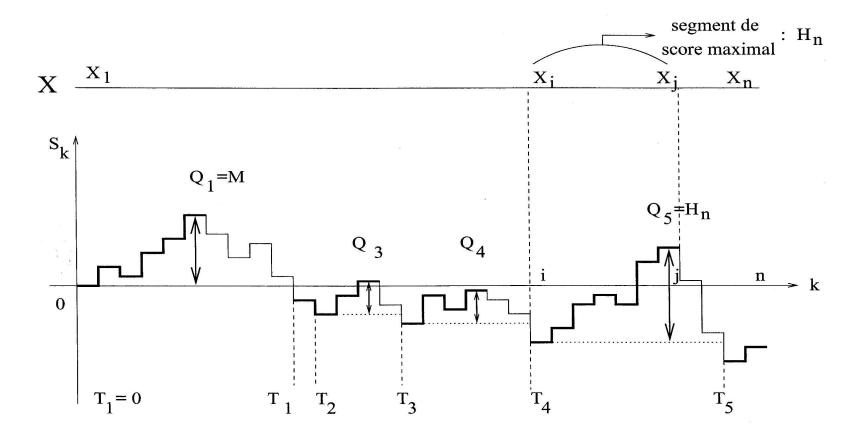
Maximum des sommes cumulées sur un "bloc".

$$Q_i = \max_{T_i \le k < T_{i+1}} (S_k - S_{T_i})$$

Le score local se réécrit :  $H_n = \max_{i=1,...,N_n} Q_i$ 

# Loi de la plus grande valeur de score local (2)

Démarche de Karlin et Dembo (1992)



# Loi de la plus grande valeur de score local (3)

- 1. Les v.a.  $Q_i$  sont indépendantes et identiquement distribuées
- 2. Loi de  $Q_i$  est dans le domaine d'attraction de la loi de **Gumbel**. On note  $M_k = \max_{i=1,...,k} Q_i$

$$\lim_{k \to \infty} \mathbb{P}((M_k - b_k)/a_k < x) = e^{-e^{-x}}$$

- 3.  $N_n/n$  tend presque sûrement vers une **constante**
- 4. Finalement,  $\lim_{n\to\infty} \mathbb{P}((H_n b'_n)/a'_n < x) = e^{-e^{-x}}$

$$a'_n = \frac{1}{\lambda}$$

$$b'_n = \frac{\ln n + \ln(C/\mu)}{\lambda}$$

### Loi des r plus grandes valeurs de score local

Loi jointe asymptotique des r plus grandes valeurs d'un échantillon connue (cas attraction Gumbel) :

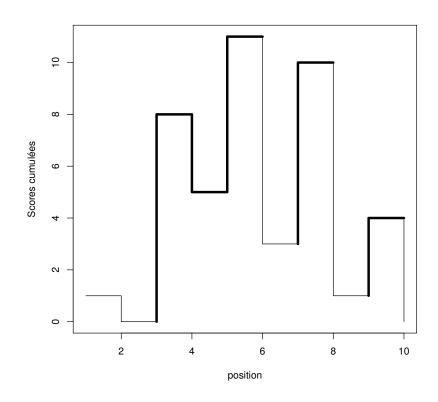
$$\left\lceil \frac{M_n^{(1)} - b_n}{a_n}, \dots, \frac{M_n^{(r)} - b_n}{a_n} \right\rceil \to$$

$$\exp\left\{-\exp\left(-\frac{M_n^{(r)} - \mu}{\sigma}\right)\right\} \prod_{i=1}^r \sigma^{-1} \exp\left(-\frac{M_n^{(i)} - \mu}{\sigma}\right)$$

avec  $M_n^{(k)}$  la  $k^{i\grave{e}me}$  plus grande valeur.

# Loi des r plus grandes valeurs de score local

Problème : deuxième plus grande valeur n'est pas nécessairement  ${\cal Q}^{(2)}$ 



# Détermination des scores locaux significatifs

 $H_0$ : les données  $Y_1...Y_n$  sont indépendantes et identiquement distribuées.

Deux hypothèses alternatives possibles :

- $H_1$ : les données  $Y_1...Y_n$  ne sont pas indépendantes et identiquement distribuées. Il y a au moins 1 accumulation de valeurs élevées.
- $H'_1$ : les données  $Y_1...Y_n$  ne sont pas indépendantes et identiquement distribuées. Il y a au moins r accumulations de valeurs élevées.

Deux formes de régions de rejet :

$$H_1: 1-\mathbb{P}(M_n^{(1)} < s_n^{(1)}, ..., M_n^{(r)} < s_n^{(r)} \mid H_0) = \alpha$$

$$H'_1: \mathbb{P}(M_n^{(1)} > s'_n^{(1)}, ..., M_n^{(r)} > s'_n^{(r)} \mid H_0) = \alpha$$

# Détermination des scores locaux significatifs (2)

Démarche classique : Le seuil de significativité s est déterminé en fonction de la loi de  ${\cal H}_n^{(1)}$ 

- $\rightarrow$  Tous les scores dépassant s sont considérés.
  - Assure que le risque global est inférieur à  $\alpha$
  - Démarche conservative

D'un point de vue biologique, plus la valeur d'un score local est élevée, plus le segment qui l'a engendré est caractéristique du phénomène étudié.

→ Permet de "hierarchiser" les hypothèses

### Détermination des scores locaux significatifs (3)

On définit la série d'hypothèses suivantes :

 $H_0^{'(i)}$  : Il y a (au plus) i-1 accumulations de valeurs élevées contre

 $H_1^{'(i)}$ : Il y a au moins i accumulations de valeurs élevées

#### Démarche:

- 1. Effectuer le test de l'hypothèse  $H_0^{'(i)}$  contre  $H_1^{'(i)}$ .
- 2. Si le test est significatif au risque  $\alpha_i$  choisi, alors  $i \leftarrow i + 1$  et continuer au point 1.
- 3. Sinon conclure:
  - si i > 1 alors "Les i 1 plus grands scores sont significatifs
  - sinon "Il n'y a pas de score significatif dans la séquence".

### Détermination des scores locaux significatifs (4)

Remarque : Le risque de première espèce global de cette démarche vaut  $\alpha_1$ 

$$\mathbb{P}(\text{rejet de } H_0 \mid H_0) = \mathbb{P}\left(\text{rejeter } H_0^{(1)} \mid H_0\right)$$
$$= \alpha_1$$

### Risque de première espèce partiel

$$\alpha_i' = \mathbb{P}\left(\bigcup_{j \geq i} \left\{ \text{Rejeter à tort } H_0^j \right\} \mid \bigcap_{j < i} \left\{ \text{Rejeter } H_0^j \right\} \right)$$

Le risque de première espèce global est alors  $\alpha'_1$ .

Un démarche intéressante doit assurer :  $\forall i, \alpha'_i \leq \alpha$ 

### Détermination des scores locaux significatifs (5)

Première idée : la factorisation de la probabilité :

$$\mathbb{P}(H_n^{(1)} > s^{(1)}, ..., H_n^{(r)} > s^{(r)}) =$$

$$\mathbb{P}\left(H_n^{(1)} > s^{(1)}\right) \times \prod_{j=2}^r \mathbb{P}\left(H_n^{(j)} > s^{(j)} \mid \left\{H_n^{(k-1)} > s^{(j-1)}\right\}_{k=1,...,j-1}\right)$$

suggère de déterminer les seuils en fonction de la loi

$$\left[ H_n^{(j)} \mid \left\{ H_n^{(k-1)} > s^{(k-1)} \right\}_{k=1,\dots,j-1} \right]$$

- Sous  $H_0$ ,  $\mathbb{P}(H_n^{(1)} > s^{(1)}, ..., H_n^{(r)} > s^{(r)}) = \alpha^r \quad (<\alpha)$
- puissance pour détecter k valeurs élevées correspond à un risque de première espèce  $\alpha^k$
- puissance pour détecter 1 valeur élevée est la même que pour la démarche classique

### Détermination des scores locaux significatifs (6)

Problème : Difficulter de calcul des fonctions de répartition de

$$\left[ H_n^{(j)} \mid \left\{ H_n^{(k-1)} > s^{(k-1)} \right\}_{k=1,\dots,j-1} \right]$$

Possibilité de réutiliser les itérations de Monte-Carlo permettant de déterminer  $K^*$  et  $\lambda$  (cf. rapport)

Par contre, la loi conditionnée se calcule facilement :

$$[H_n^{(i)} \mid H_n^{(i-1)}, ..., H_n^{(1)}] = [H_n^{(i)} \mid H_n^{(i-1)}]$$

$$\mathbb{P}\left(H_n^{'(i)} \le h^{'(i)} \mid H_n^{'(i-1)} = h^{'(i-1)}\right) = \exp\left(-e^{-h^{'(i)}} + e^{-h^{'(i-1)}}\right)$$

#### Détermination des scores locaux significatifs (7)

1. Standardisation des plus grandes valeurs de score local :

$$\forall j, H_n^{\prime(j)} = \lambda H_n^{(j)} - \log(K \times n)$$

- 2. On teste au risque  $\alpha$  la plus grande valeur à l'aide du seuil  $s^{(1)}$  tel que  $\exp(-\exp(-s^{(1)})) = 1 \alpha$ .
- 3. Tant que l'hypothèse  $H_0^{(i)}$  est rejetée, Test de la valeur  $H_n^{\prime(i+1)}$  en utilisant une des deux règles de décision suivantes : on calcule le seuil  $s^{(i+1)}$  tel que
  - (a) **Règle 1**:  $\mathbb{P}(H_n^{\prime(i+1)} > s^{(i+1)} \mid H_n^{\prime(i)} = s^{(i)}) = \alpha$
  - (b) **Règle 2**:  $\mathbb{P}(H_n^{\prime(i+1)} > s^{(i+1)} \mid H_n^{\prime(i)} = h^{\prime(i)}) = \alpha$

Avantage de la règle 1 fondée sur le conditionnement par les seuils : les valeurs de  $s^{(i)}$  peuvent être tabulées (ici  $\alpha=5\%$ ) :

| 1-5   | 2.970  | 2.277  | 1.872  | 1.584  | 1.361  |
|-------|--------|--------|--------|--------|--------|
| 6-10  | 1.178  | 1.024  | 0.891  | 0.773  | 0.668  |
| 11-15 | 0.572  | 0.485  | 0.405  | 0.331  | 0.262  |
| 16-20 | 0.198  | 0.137  | 0.080  | 0.026  | -0.026 |
| 21-25 | -0.074 | -0.121 | -0.165 | -0.208 | -0.249 |
| 26-30 | -0.288 | -0.326 | -0.362 | -0.397 | -0.431 |
| 31-35 | -0.464 | -0.496 | -0.526 | -0.556 | -0.585 |
| 36-40 | -0.613 | -0.641 | -0.667 | -0.693 | -0.719 |
| 41-45 | -0.743 | -0.767 | -0.791 | -0.814 | -0.836 |
| 46-50 | -0.858 | -0.880 | -0.901 | -0.922 | -0.942 |

#### Détermination des scores locaux significatifs (8)

#### Etude de simulation des puissances respectives des deux règles

Modèle i.i.d. avec : 
$$\mathbb{P}(X=0) = 0.5$$
,  $\mathbb{P}(X=1) = 0.1$ ,  $\mathbb{P}(X=2) = 0.2$ ,  $\mathbb{P}(X=3) = 0.2$ 

- 1. La taille de la séquence : n = 1000, 10000, 100000.
- 2. La fonction de score :

(a) 
$$S_1(0) = -4, S_1(1) = -3, S_1(2) = 1, S_1(3) = 3, \mathbf{E}[\mathbf{S_1}(\mathbf{X})] = -1.5$$

(b) 
$$S_3(0) = -16, S_3(1) = -12, S_3(2) = 4,$$
  
 $S_3(3) = 12, \mathbf{E}[\mathbf{S_3}(\mathbf{X})] = -\mathbf{6}$ 

- 3. Le nombre de plages sous  $H_1 : r = 0, 5, 10, 20$
- 4. La longueur des plages sous  $H_1: l=10,20$

Sous  $H_1$ , on utilise **l'opposé** des scores sous  $H_0$ .

Nombre moyen de d'hypothèses  ${\cal H}_0^{(i)}$  rejetées.

|        |                                      | $S_1$ |      |      |      |       |      |
|--------|--------------------------------------|-------|------|------|------|-------|------|
| n      | $egin{bmatrix} r \\ l \end{bmatrix}$ | 5     |      | 10   |      | 20    |      |
| 1000   | 10                                   | 2.20  | 1.83 | 5.48 | 4.00 | 12.94 | 8.49 |
| 1000   | 20                                   | 4.15  | 3.71 | 8.36 | 7.38 | 9.04  | 7.79 |
| 100000 | 10                                   | 0.19  | 0.18 | 0.42 | 0.34 | 0.96  | 0.72 |
| 10000  | 20                                   | 2.50  | 2.05 | 5.26 | 4.03 | 11.59 | 8.23 |

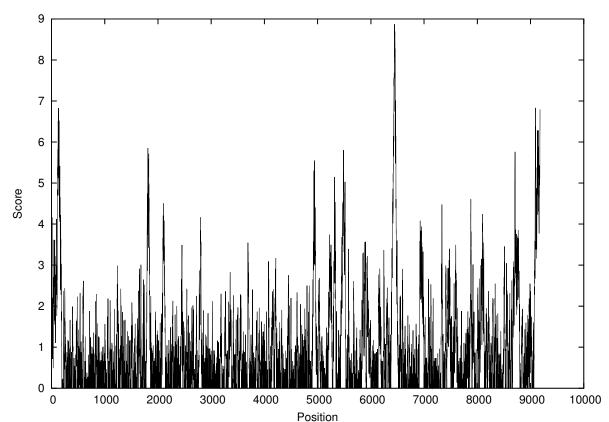
n: taille de la séquence ; r: nombre de segments sous  $H_1$ ; l: taille des segments sous  $H_1$ . Chiffre de **gauche**: règle de décision numéro 1 (conditionnement par le seuil précédent), et chiffre de **droite** la régle de décision numéro 2 (conditionnement par la valeur observée précédente)



#### Matériels et méthodes

- Séquence issues du serveur du NCBI
- Matrice de transition P<sup>+</sup> est **estimée** sur la séquence : Imprécision liée à l'estimation est négligée dans nos méthodes.
- Ordre de Markov : 1 à 4
- Organismes: VIH-1, SRAS, Bactériophage Lambda

### Virus de l'Immunodéficience Humaine VIH1

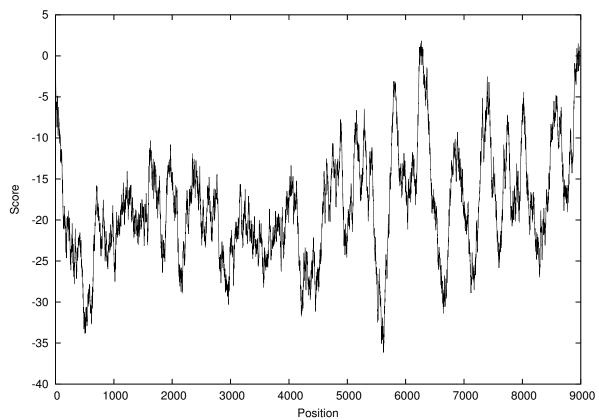


Score de retournement  $S_k - \min_{i < k} S_k$ 

## Virus de l'Immunodéficience Humaine VIH1

| Ordre    | Position                                                     | Value     | p-value                                         |  |
|----------|--------------------------------------------------------------|-----------|-------------------------------------------------|--|
| 1        | 1 - 174                                                      | 4.64      | 0.01                                            |  |
|          | gtctctctggttagaccagatctgagcctgggagctctctggctaactagggaaccc    |           |                                                 |  |
|          | actgcttaagcctcaataaagcttgccttgagtgcttcaagtagtgtgtgcccgtct    |           |                                                 |  |
|          | gttgtgtgactctggtaactagagatccctcagacccttttagtcagtgtggaaaatctc |           |                                                 |  |
| 1        | 9065 - 9179                                                  | 2.90      | 0.05                                            |  |
|          | gtgctttttgcctgtactgggtctctctggttagaccagatctgagcctgggagctc    |           |                                                 |  |
|          | tctggctaactagggaacccactgcttaagcctcaataaagcttgccttgagtgctt    |           |                                                 |  |
| 2        | 6377 - 6444                                                  | 2.60      | 0.07                                            |  |
|          | aggcctgtccaaa                                                | aggtatect | ttgagccaattcccatacattattgtgccccggctggttttgcgatt |  |
| Retourne | Retournements détectés par la méthode du score local.        |           |                                                 |  |

### Virus de l'Immunodéficience Humaine VIH1



Statistique de fenêtre glissante (ordre 2) et fenêtre de taille 200.

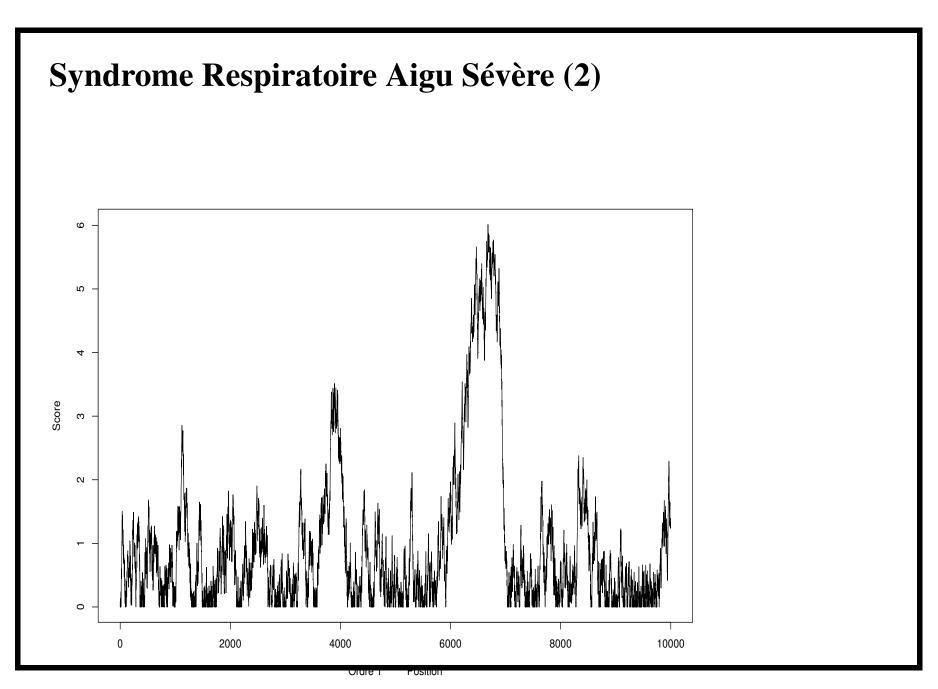
# Syndrome Respiratoire Aigu Sévère

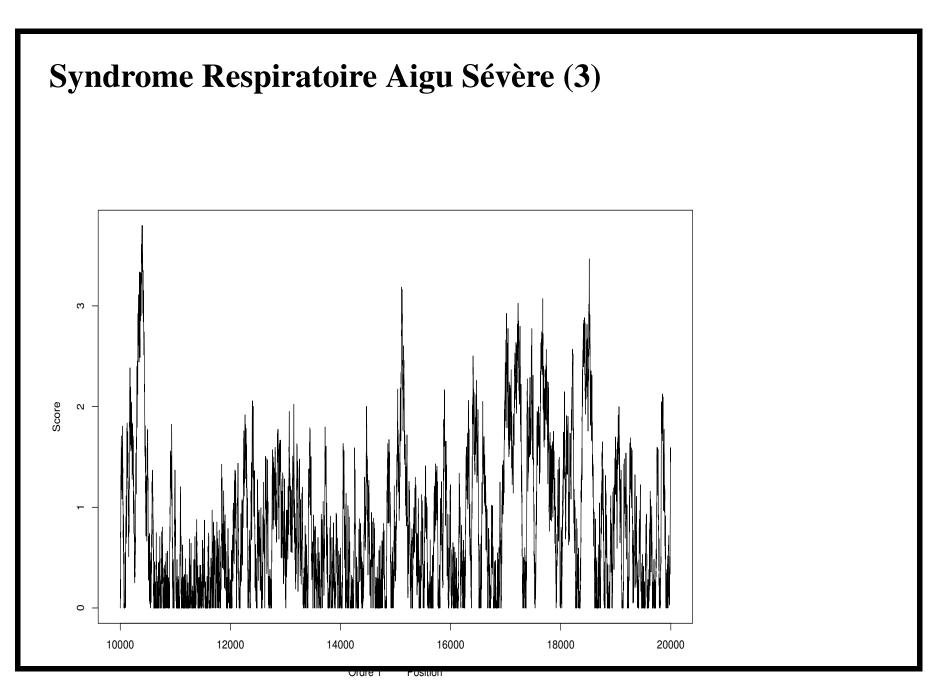
Le génome est découpé arbitrairement en trois parties de tailles 10000.

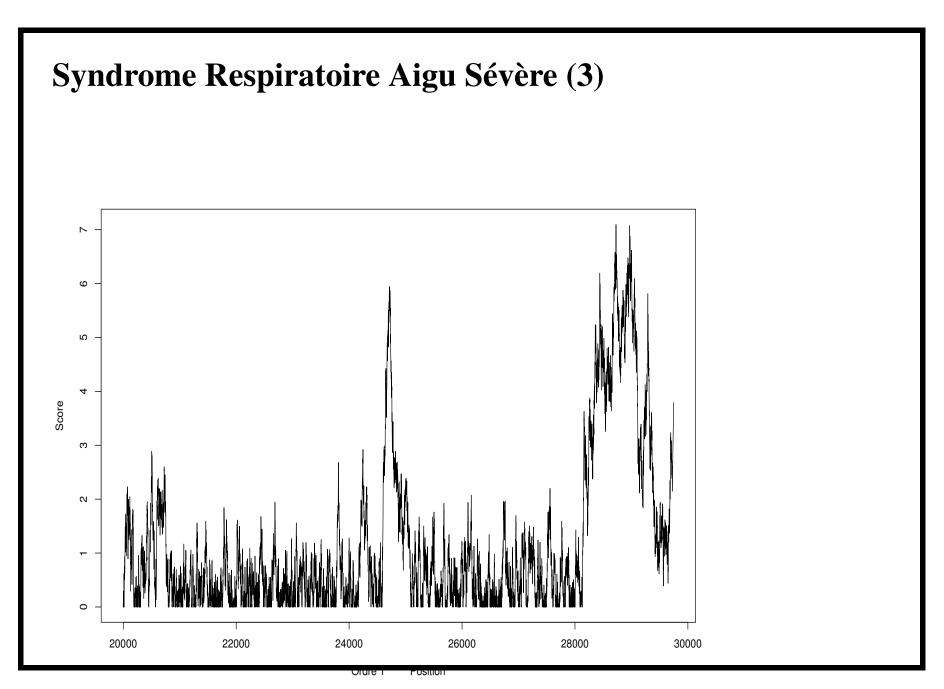
Retournements significatifs détectés :

| Position      | Value | p-value |  |
|---------------|-------|---------|--|
| 5915 - 6679   | 2.24  | 0.10    |  |
| 28134 - 28728 | 2.53  | 0.08    |  |

Le segment 28134 - 28728 correspond à la première moitié du gène codant la protéine nucléocapside

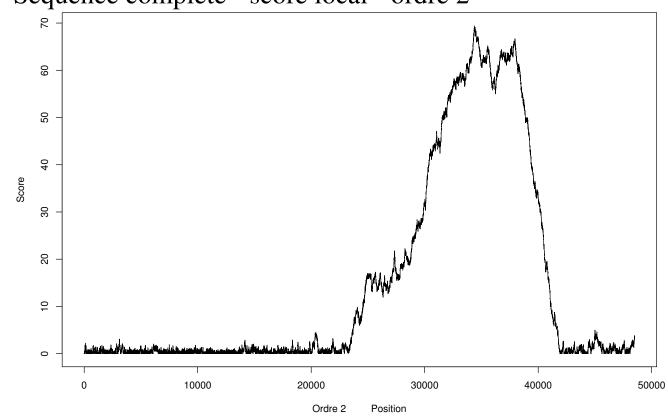






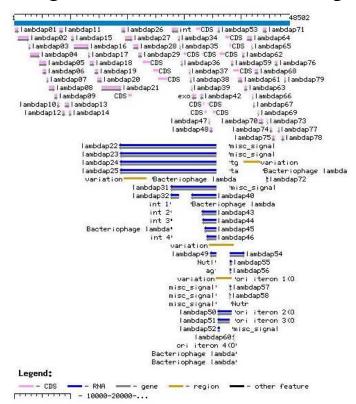
## Bactériophage Lambda

Séquence complète - score local - ordre 2



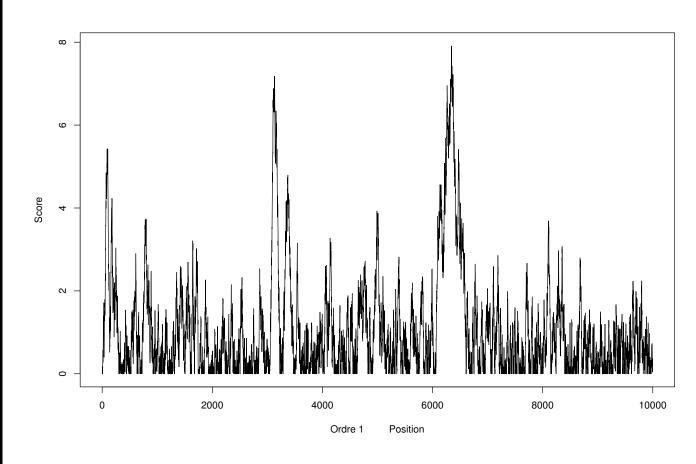
#### Bactériophage Lambda (2)

Large retournement entre les positions 20000 et 40000

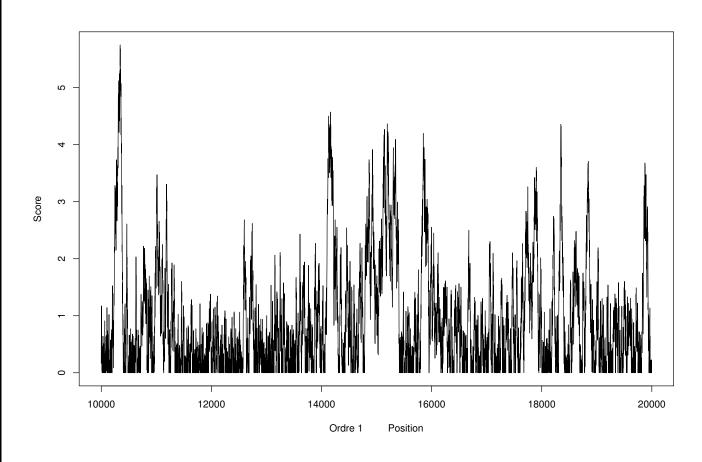


→ liés à la présence de gènes codant les ARNs

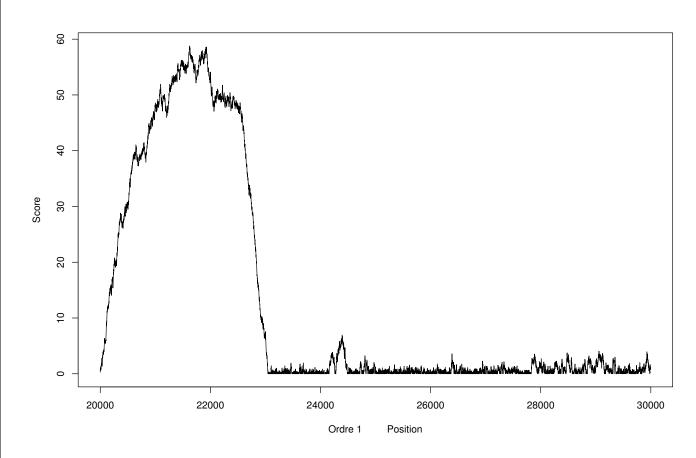
## **Bactériophage Lambda(3)**



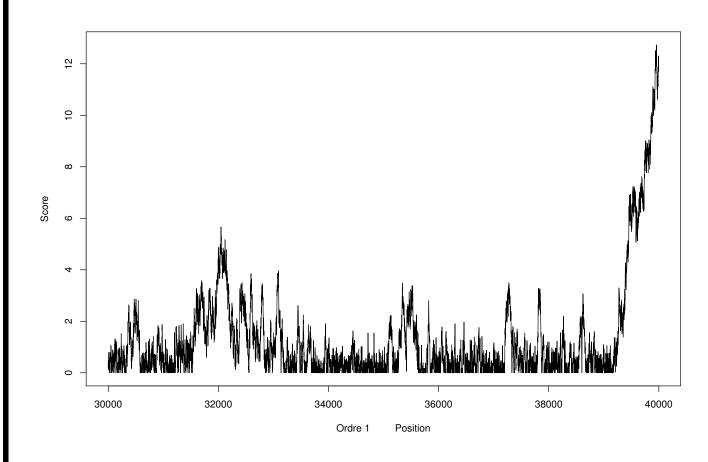
## **Bactériophage Lambda(4)**



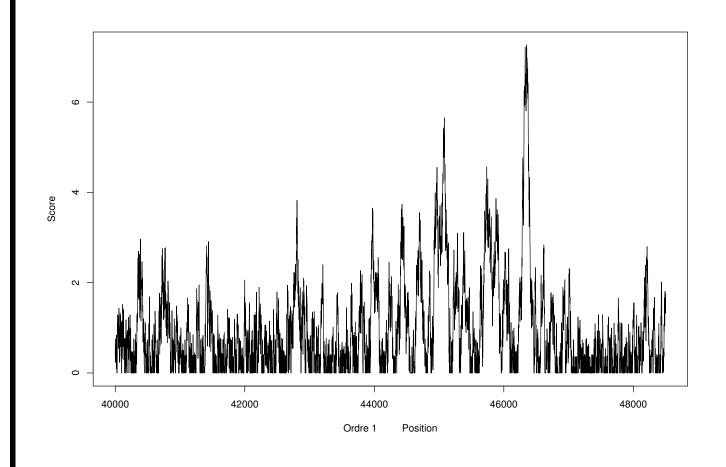
## **Bactériophage Lambda(5)**



## **Bactériophage Lambda(6)**







## **Bactériophage Lambda(7)**

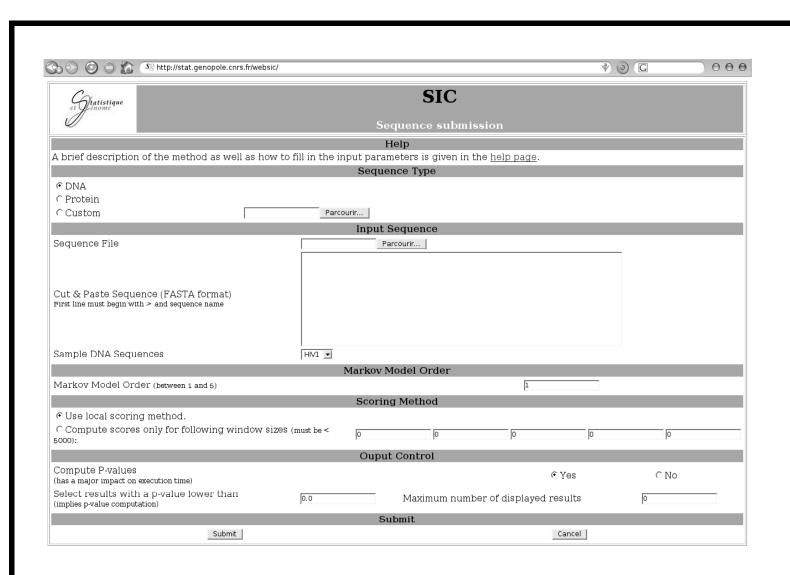
#### Retournements détectés

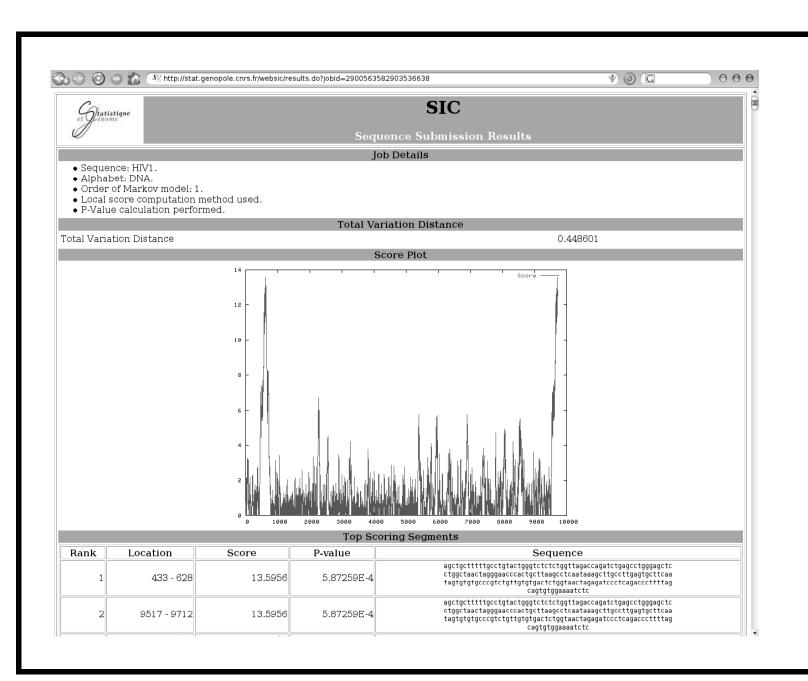
| Position      | Value | p-value            |                                  |
|---------------|-------|--------------------|----------------------------------|
| 3042 - 3130   | 2.10  | 0.11               | capside (2836-4437)              |
| 6061 - 6344   | 2.87  | 0.06               | capside (6135-7160)              |
| 20000 - 21625 | 55.67 | $< 10^{-8}$        |                                  |
| 39173 - 39958 | 7.65  | $5 \times 10^{-4}$ | OR                               |
| 46223 - 46353 | 1.95  | 0.13               | Lyse de membrane de cellule hôte |

# **Logiciel SIC (Scan Inverse Complementary)**

Logiciel de recherche de segments inversés dans une séquence biologique

- licence GPL
- s'appuie sur la librairie Seq++ (Miele et al., 2005)
  - → Modélisations Markoviennes de séquence biologique
- Interface Web (serveur d'application Tomcat)





### **Conclusion**

#### Problèmatique méthodologique:

- Loi jointe asymptotique des r plus grandes valeurs de score local Procédure de détermination de r
- Résultats sur les CM à espace d'état discret fini.
- Faisabilité pratique des méthodes.

#### Problèmatique biologique:

- Méthode de détection ab initio
- Peu puissante pour détecter des segments très courts
- Fortement dépendante du "degré d'orientation" du génome
- Perspectives : génomique comparative