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Abstract

Within the domain of wireless computer networks, this thesis examines the security
issues related to protection of packet routing in ad hoc networks (MANETs). This
thesis classifies the different possible attacks and examines in detail the case of
OLSR (Optimized Link State Routing protocol). We propose a security architec-
ture based on adding a digital signature, as well as more advanced techniques such
as: reuse of previous topology information to validate the actual link state, cross-
check of advertised routing control data with the node’s geographical position, and
intra-network misbehavior detection and elimination via flow coherence control or
passive listening. Countermeasures in case of compromised routers are also pre-
sented. This thesis also assesses the practical problems concerning the choice of
a suitable symmetric or asymmetric cipher, the alternatives for the algorithm of
cryptographic keys distribution, and the selection of a method for signature times-
tamping.

Keywords

Ad hoc network, routing, link state, OLSR, security, digital signature



Résumé

Cette thèse examine les problématiques de sécurité liées à la protection du routage
dans les réseaux ad hoc (MANETs). La thèse classifie les différentes attaques qui
peuvent être portées et examine en détail le cas du protocole OLSR (Optimized
Link State Routing). Une architecture de sécurisation basée sur l’ajout d’une sig-
nature numérique est étudiée et proposée. D’autres contre-mesures plus élaborées
sont également présentées. Ces dernières incluent: la réutilisation d’informations
topologiques précédentes pour valider l’état de lien actuel, l’évaluation de la véridic-
ité des messages par analyse croisée avec la position géographique d’un noeud, et
la détection des comportements suspects à l’intérieur du réseau par le contrôle
de cohérence des flux ou l’écoute passif. La thèse analyse aussi les problèmes
pratiques liées à la choix de l’algorithme de signature et la distributions des clés
cryptographiques, et propose aussi des parades même en présence de noeuds com-
promis.

Mots clés

Réseau ad hoc, routage, état de lien, OLSR, sécurité, signature numérique
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Foreword

My work examines the security issues related to the protection of the routing pro-
tocol in ad hoc networks, and more specifically of the OLSR protocol. OLSR has
been developed by the HIPERCOM project group1 at INRIA, the National Re-
search Institute in Computer Science and Control, based in Rocquencourt, France.

OLSR was not designed with security in mind. Consequently, it is easy to find
ways to maliciously perturb the correct functioning of the protocol. The aim of my
doctoral researches, carried out in the HIPERCOM workgroup, was to explore the
possible attacks and countermeasures to secure OLSR. This has led to the design of
security extensions for OLSR, described in five papers published in international
conferences [2, 130, 131, 132, 4] and in an INRIA Research Report [3]. I have also
contributed in the writing of an Internet-Draft [30].

Structure of the thesis

Chapter 1 introduces the domain of wireless networking discussing the different
types of architectures, and introduces the ad hoc networks by giving examples of
routing protocols and a detailed overview of OLSR.

Chapter 2 handles the problem of system security, explaining the basics of
cryptography. Chapter 3 provides a taxonomy of the attacks at the routing level in
MANETs, and more specifically of the attacks against the OLSR protocol.

Chapter 4 outlines the countermeasures that can be taken in order to secure
a wireless network, and gives some basic mechanisms (relying mainly on digests
and digital signatures) to protect different routing protocols. A basic mechanism
designed to secure the OLSR protocol is expounded in Chapter 5.

Chapter 6 debates the major choices that must be done in order to select a
suitable cryptographic architecture, and discusses problematics related to the im-
plementation of a Public Key Infrastructure on an ad hoc network, with a proposal
for OLSR. Chapter 7 offers a detailed view over the problem of a correct times-
tamping.

Chapter 8 introduces the topic of more advanced techniques to secure the rout-
ing protocol, in particular when the network has been compromised from the in-
side. The subsequent chapters present different studies concerning elaborated pro-

1http://hipercom.inria.fr/olsr
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tection techniques for OLSR. Chapter 9 examines the insertion of old topology
information in control messages to validate the actual link state, and Chapter 10
examines the use of GPS devices to cross-check advertised routing control data
with information regarding the node’s geographical position. Another detection
technique, presented in Chapter 11, consists in the detection of intra-network mis-
behaviors; this is done by passive listening or controls on flow coherence. Last,
Chapter 12 concludes the thesis.

Appendix A is an extended résumé of the thesis in the French language; every
chapter of the thesis is condensed into a section of the résumé.

Style conventions

This thesis utilizes the following style conventions:

�����������
	
	
	
��
���
� ��� � ���
�����
���������! #" �
$&% �('*)+� � )-,
HELLO
Originator Address

nodes
time at instant 0
timestamp generated by A
timestamp generated by A at instant 0
store the value 0 in ��

sends the message
 

, signed by
�

, to
�

tuple
OLSR (or derived protocol) control message
field of an OLSR message or packet
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Chapter 1

Introduction to wireless
networking

In wireless networks [102, 45], computers are connected and communicate with
each other not by a visible medium, but by emissions of electromagnetic energy in
the air.

The most widely used transmission support is radio waves. Wireless transmis-
sions utilize the microwave spectre: the available frequencies are situated around
the 2.4 GHz ISM (Industrial, Scientific and Medical) band for a bandwidth of about
83 MHz, and around the 5 GHz U-NII (Unlicensed-National Information Infras-
tructure) band for a bandwidth of about 300 MHz divided into two parts. The exact
frequency allocations are set by laws in the different countries; the same laws also
regulate the maximum allotted transmission power and location (indoor, outdoor).
Such a wireless radio network has a range of about 10–100 meters to 10 Km per
machine, depending on the emission power, the data rate, the frequency, and the
type of antenna used. Many different models of antenna can be employed: omnis
(omnidirectional antennas), sector antennas (directional antennas), yagis, parabolic
dishes, or waveguides (cantennas).

The other type of transmission support is the infrared. Infrared rays cannot
penetrate opaque materials and have a smaller range of about 10 meters. For these
reasons, infrared technology is mostly used for small devices in WPANs (Wireless
Personal Area Networks), for instance to connect a PDA to a laptop inside a room.

1.1 Standards

There are presently three main standards for wireless networks: the IEEE 802.11
family, HiperLAN, and Bluetooth.
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1.1.1 IEEE 802.11

IEEE 802.11 [108] is a standard issued by the IEEE (Institute of Electrical and
Electronics Engineers). From the point of view of the physical layer, it defines three
non-interoperable techniques: IEEE 802.11 FHSS (Frequency Hopping Spread
Spectrum) and IEEE 802.11 DSSS (Direct Sequence Spread Spectrum), which use
both the radio medium at 2.4 GHz, and IEEE 802.11 IR (InfraRed). The achieved
data rate is 1–2 Mbps. This specification has given birth to a family of other stan-
dards:

IEEE 802.11a [71] (marketed as Wi-Fi5) operates in the 5 GHz U-NII band us-
ing the OFDM (Orthogonal Frequency Division Multiplexing) transmission
technique, and has a maximum data rate of 54 Mbps. IEEE 802.11a is in-
compatible with 802.11b, because they use different frequencies.

IEEE 802.11b [72] (marketed as Wi-Fi) is the de facto standard in wireless net-
working, and operates in the 2.4 GHz ISM band. The data rate is 1, 2, 5 or
11 Mbps, automatically adjusted depending on signal strength. The trans-
mission range depends on the data rate, varying from 50 meters indoor (200
meters outdoor) for 11 Mbps, to 150 meters indoor (500 meters outdoor) for
1 Mbps; the transmission range is also proportional to the signal power.

IEEE 802.11g [73] operates in the 2.4 GHz band and has a data rate of up to 20
Mbps. It uses both OFDM and DSSS to ensure compatibility with the IEEE
802.11b standard.

Another standard currently under development, IEEE 802.16 [75] (marketed as
WiMAX), is designed for WMANs (Wireless Metropolitan Area Networks) and
therefore to overcome the range limitations of IEEE 802.11. It operates on frequen-
cies from 10 to 66 GHz, and should ensure network coverage for several square
Km. From the IEEE 802.16 standard derives IEEE 802.16a, that operates on the
2-11 GHz band and should solve the line-of-sight problems deriving from using
the 10-66 GHz band.

Channel access techniques

The crucial point in channel access techniques for wireless networks is that it is
not possible to transmit and to sense the carrier for packet collisions at the same
time. Therefore there is no way to implement a CSMA/CD (Carrier Sense Multiple
Access / Collision Detection) protocol such as in the wired Ethernet.

IEEE 802.11 uses a channel access technique of type CSMA/CA, which is
meant to perform Collision Avoidance (or at least to try to). The CSMA/CA pro-
tocol states that a node, upon sensing that the channel is busy, must wait for an
interframe spacing before attempting to transmit, then choose a random delay de-
pending on the Contention Window.
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The reception of a packet is acknowledged by the receiver to the sender. If the
sender does not receive the acknowledgement packet, it waits for a delay accord-
ing to the binary exponential backoff algorithm, which states that the Contention
Window size is doubled at each failed try.

Unicast data packets are sent using a more reliable mechanism. The source
transmits a RTS (Request To Send) packet for the destination, which replies with
a CTS (Clear To Send) packet upon reception. If the source correctly receives the
CTS, it sends the data packet.

1.1.2 HiperLAN

HiperLAN (High Performance Radio LAN) is a standard issued by the ETSI (Eu-
ropean Telecommunications Standard Institute), and a competitor of IEEE 802.11.
It defines two kinds of networks:

HiperLAN 1 [42] uses the 5 GHz band and offers a data rate of 10–20 Mbps.

HiperLAN 2 [44, 43] uses the 5 GHz band and offers a data rate up to 54 Mbps.

A related standard is HiperMAN, rival of IEEE 802.16 and aimed at providing
metropolitan area coverage. It operates in the 2–11 GHz band.

1.1.3 Bluetooth

Bluetooth1 is a standard designed by a consortium of private companies such as
Agere, Ericsson, IBM, Intel, Microsoft, Motorola, Nokia and Toshiba. Bluetooth
operates in the 2.4 GHz band using FHSS and has a short range of action of about
10 meters. For such characteristics and its low cost, Bluetooth is fit for small
WPANs and is also employed to connect peripherals such as keyboards, printers,
or mobile phone headsets. Bluetooth radio technology works in a master-slave
fashion, and each device can operate as master or as slave. Communications are
organized in small networks called piconets, each piconet being composed of a
master and 1–7 active slaves. Multiple piconets can overlap to form a scatternet.

1.2 Architecture

A wireless network can be structured to function in either BSS (Basic Service Set)
or IBSS (Independent Basic Service Set) mode. The two modes affect the topology
and the mobility capabilities of the machines (nodes) that compose the network.

1http://www.bluetooth.org
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Figure 1.1: BSS mode: an Access Point and its network cell.

1.2.1 BSS mode

In BSS mode, also called infrastructure mode, a number of mobile nodes are wire-
lessly connected to a non-mobile Access Point (AP), as in Figure 1.1. Nodes com-
municate via the AP, which may also provide connectivity with an external wired
network e.g. the Internet. Several BSS networks may be joined to form an ESS
(Extended Service Set).

1.2.2 IBSS mode

The IBSS mode, also called peer to peer or ad hoc mode, allows nodes to commu-
nicate directly (point-to-point) without the need for an AP, as in Figure 1.2. There
is no fixed infrastructure. Nodes need to be in range with each other in order to
communicate.

1.2.3 Ad hoc network

An ad hoc network, or MANET (Mobile Ad hoc NETwork), is a network com-
posed only of nodes, with no Access Point. Messages are exchanged and relayed
between nodes. In fact, an ad hoc network has the capability of making commu-
nications possible even between two nodes that are not in direct range with each
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Figure 1.2: IBSS mode.

other: packets to be exchanged between these two nodes are forwarded by inter-
mediate nodes, using a routing algorithm.2 Hence, a MANET may spread over a
larger distance, provided that its ends are interconnected by a chain of links be-
tween nodes (also called routers in this architecture). In the ad hoc network shown
in Figure 1.3, node

�
can communicate with node � via nodes

�
and

�
, and vice

versa.
A sensor network is a special class of ad hoc network, composed of devices

equipped with sensors to monitor temperature, sound, or any other environmental
condition. These devices are usually deployed in large number and have limited re-
sources in terms of battery energy, bandwidth, memory, and computational power.

1.3 Advantages and disadvantages

A wireless network offers important advantages with respect to its wired homo-
logue:

� The main advantage is that a wireless network allows the machines to be
fully mobile, as long as they remain in radio range.

2An ad hoc network must not be confused with a network in ad hoc mode. In ad hoc mode, nodes
do not relay packets (multihop not implemented).
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A

B C
D

Figure 1.3: An ad hoc network.

� Even when the machines do not necessarily need to be mobile, a wireless
network avoids the burden of having cables between the machines. From
this point of view, setting a wireless network is simpler and faster. In several
cases, because of the nature and topology of the landscape, it is not possible
or desirable to deploy cables: battlefields, search-and-rescue operations, or
standard communication needs in ancient buildings, museums, public exhi-
bitions, train stations, or inter-building areas.

� While the immediate cost of a small wireless network (the cost of the net-
work cards) may be higher than the cost of a wired one, extending the net-
work is cheaper. As there are no wires, there is no cost for material, in-
stallation and maintenance. Moreover, mutating the topology of a wireless
network – to add, remove or displace a machine – is easy.

On the other hand, there are some drawbacks that need to be pondered:

� The strength of the radio signal weakens (with the square of the distance),
hence the machines have a limited radio range and a restricted scope of the
network. This causes the well-known hidden station problem [149]: con-
sider three machines

�
,
�

and
�

, where both
�

and
�

are in radio range
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of
�

but they are not in radio range of each other. This may happen be-
cause the

��� �
distance is greater than the

��� �
and

��� �
distances,

as in Figure 1.4, or because of an obstacle between
�

and
�

. The hidden
station problem occurs whenever

�
is transmitting: when

�
wants to send

to
�

,
�

cannot hear that
�

is busy and that a message collision would oc-
cur, hence

�
transmits when it should not; and when

�
wants to send to

�
,

it mistakenly thinks that the transmission will fail, hence
�

abstains from
transmitting when it would not need to.

A B C

Figure 1.4: The hidden station problem.

� The site variably influences the functioning of the network: radio waves
are absorbed by some objects (brick walls, trees, earth, human bodies) and
reflected by others (fences, pipes, other metallic objects, water). Wireless
networks are also subject to interferences by other equipment that shares the
same band, such as microwave ovens and other wireless networks.

� Considering the limited range and possible interferences, the data rate is of-
ten lower than that of a wired network. However, nowadays some standards
offer data rates comparable to those of Ethernet.

� Due to limitations of the medium, it is not possible to transmit and to listen
at the same time, therefore there are higher chances of message collisions.
Collisions and interferences make message losses more likely.

� Being mobile computers, the machines have limited battery and computation
power. This may entail high communication latency: machines may be off
most of the time (doze state i.e. power-saving mode) and turning on their
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receivers periodically, therefore it is necessary to wait until they wake up
and are ready to communicate.

� As data is transmitted over Hertzian waves, wireless networks are inherently
less secure (see Chapter 3). In fact, transmissions between two computers
can be eavesdropped by any similar equipment that happens to be in radio
range.

1.4 Routing protocols for ad hoc networks

In ad hoc networks, to ensure the delivery of a packet from sender to destination,
each node must run a routing protocol and maintain its routing tables in memory.

Routing protocols can be classified into the following categories: reactive,
proactive, and hybrid. There exists nowadays almost one hundred routing pro-
tocols, many standardized by the IETF (Internet Engineering Task Force) and oth-
ers still at the stage of Internet-Draft. This section gives, for each category, an
overview of the most important ones.

1.4.1 Reactive protocols

Under a reactive (also called on-demand) protocol, topology data is given only
when needed. Whenever a node wants to know the route to a destination node,
it floods the network with a route request message. This gives a reduced average
control traffic, with bursts of messages when packets need being routed, and an
additional delay due to the fact that the route is not immediately available.

� DSR (Dynamic Source Routing) [83, 82] uses a source routing mechanism,
i.e. the complete route for the packet is included in the packet header. This
avoids path loops. To discover a route, a node floods a Route Request and
awaits the answers; any receiving node adds its address to the Route Request
and retransmits the packet. Once the packet has reached its final destination
node, the latter reverses the route and sends the Route Reply packet. This
is possible if the MAC protocol permits bidirectional communications; oth-
erwise, the destination node performs another route discovery back to the
originator. Every node maintains also a route cache, which avoids doing a
route discovery for already known routes. A mechanism of route mainte-
nance allows the originator node to be alerted about link breaks in the route.

� AODV (Ad hoc On-demand Distance Vector routing) [119, 121] is a distance
vector routing protocol, i.e. routes are advertised as a vector of direction
and distance. To avoid the Bellman-Ford "counting to infinity" problem and
routing loops, sequence numbers are utilized for control messages. To find a
route to a destination, a node broadcasts a RREQ (Route REQuest) message.
The RREQ is relayed by receiving nodes until it reaches the destination or an
intermediate node with a fresh route (i.e. a route with an associated sequence
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number equal or greater than that of the RREQ) to destination. Afterward, a
RREP (Route REPly) message is unicast by the destination to the originator
of the RREQ. RERR (Route ERRor) messages are used to notify nodes about
link breaks.

� DSDV (Destination-Sequenced Distance-Vector routing) [120] is another
distance vector routing protocol, which requires each node to advertise its
routing table to its neighbors. Route information contains a route sequence
number, the destination’s address, the destination’s distance in hops, and the
sequence number of the information received regarding the destination as
stamped by the destination itself.

1.4.2 Proactive protocols

In opposition, proactive (also called periodic or table driven) protocols are char-
acterized by periodic exchange of topology control messages. Nodes periodically
update their routing tables. Therefore, control traffic is more dense but constant,
and routes are instantly available.

� OLSR (Optimized Link State Routing) is a link state routing protocol, de-
scribed in detail in Section 1.4.4.

� OSPF (Open Shortest Path First) [110, 32] is another link state routing pro-
tocol, issued from the very first link state protocols used in the ARPANET
packet switching network. OSPF maintains information about network topol-
ogy in a database stored in every node. From this database, every node builds
a shortest-path tree to route a packet to its destination. Neighbor discovery
is accomplished through exchange of HELLO packets.

� FSR (Fisheye State Routing) [54, 118] is a scalability-supporting link state
protocol. Each node broadcasts link state information of a destination to
its neighbors, with a frequency inversely proportional to the destination’s
distance in hops; i.e. information about distant nodes is broadcast less of-
ten. Therefore, every node has a precise knowledge of its local neighborhood
while knowledge of distant nodes is less precise (hence the name “Fisheye”).
This makes the routing of a packet accurate near the source and the destina-
tion. FSR is proficient in handling large networks.

� TBRPF (Topology dissemination Based on Reverse-Path Forwarding) [115]
is a link state protocol in which each node builds a source tree using partial
topology information stored in its topology table. The tree provides paths
to all reachable nodes and is computed using a modified Dijkstra algorithm.
Each node periodically shares part of its tree with its neighbors. Differential
HELLO messages, which report only changes in neighbors’ status, are used
for neighbor discovery.
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� ADV (Adaptive Distance Vector routing) [18] is a proactive protocol, but
with some reactive characteristics. Each node shares its route information
with its neighbors, according to the Distributed Bellman-Ford distance vec-
tor algorithm. However, in ADV a node maintains only routes to nodes that
are currently receivers of any active connection. Furthermore, the frequency
of route updates varies depending on the load and mobility of the network.
ADV therefore quickly adapts itself to sudden changes on the network load.

� STAR (Source Tree Adaptive Routing) [49] uses a source tree, computed by
every node, in order to route packets. Every node then shares its whole tree
with its neighbors.

� LANMAR (LANdMARk routing) [52, 53] is a routing protocol aimed at
large networks divided into logical groups. It assumes that every node is
identified by an addressing scheme containing the group ID and host ID.
Nodes use a scoped routing protocol, e.g. FSR, to learn routes to nearby
nodes. Every group elects a landmark; packets are routed towards the land-
mark corresponding to the group ID of the destination, then delivered di-
rectly to the destination.

� WRP (Wireless Routing Protocol) [111] is based on a path-finding algorithm
that reduces the probability or routing loops. In WRP, each node shares its
routing tables with its neighbors, by communicating the distance and second-
to-last hop to each destination. Nodes send an acknowledgement upon re-
ception of update routes. Each nodes maintain a distance table, a routing
table, a link-cost table, and a message retransmission list.

� WIRP (Wireless Internet Routing Protocol) [48] is a routing protocol de-
signed to operate with Wireless Internet Gateways (WINGs), improved self-
adapting routers for the wireless ad hoc environment. The radio device is
controlled by the FAMA-NCS protocol, which eliminates the hidden station
problem in single-channel networks. WIRP interoperates with FAMA-NCS
for the link sensing mechanism. Each node builds a hierarchical routing tree
and distributes it incrementally to its neighbors, by communicating only the
distance and the second-last-hop to each destination. Route updates must be
acknowledged by each node.

1.4.3 Hybrid protocols

Hybrid protocols have both the reactive and proactive nature. Usually, the network
is divided into regions, and a node employs a proactive protocol for routing in-
side its near neighborhood’s region and a reactive protocol for routing outside this
region.

� ZRP (Zone Routing Protocol) [57] defines for every node a radius (in number
of hops) inside which packets are routed using a proactive routing protocol.
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Routes for nodes outside the radius are discovered using a reactive routing
protocol. The working mode of ZRP is specified locally by IARP (IntrAzone
Routing Protocol) [59], and for the rest of the network (outside the radius)
by IERP (IntErzone Routing Protocol) [58].

� CBRP (Cluster Based Routing Protocol) [81] divides the network into over-
lapping or disjoint node clusters, each cluster being 2 hops in diameter. For
every cluster, the cluster head node has the duty of exchanging route discov-
ery messages with other cluster heads. A proactive routing protocol is used
inside every cluster, while inter-cluster routes are discovered reactively via
route requests.

1.4.4 The Optimized Link State Routing protocol

The Optimized Link State Routing (OLSR) protocol [31, 79, 29] is a proactive link
state routing protocol for ad hoc networks.

The core optimization of OLSR is the flooding mechanism for distributing link
state information, which is broadcast in the network by selected nodes called Mul-
tipoint Relays (MPR). As a further optimization, only partial link state is diffused
in the network. OLSR provides optimal routes (in terms of number of hops) and is
particularly suitable for large and dense networks.

Specifications of the protocol were first described in an Internet-Draft in Febru-
ary 2000, and were finalized in RFC 3626 [31] in October 2003; there is also a
draft for the version 2 of the protocol [27]. Several implementations exist at this
day: OOLSR (the original, object-oriented implementation of OLSR by INRIA
HIPERCOM), nlrolsrd (by the U.S. Naval Research Laboratory), OLSR_Niigata
(by Niigata University), Qolyester (a Quality-of-Service enhanced version by LRI),
OLSR11win (by the GRC, Universitat Politècnica de València), the olsr.org OLSR
daemon (by UniK, University of Oslo), H-OLSR (by Hitachi, Ltd.), and CRC
OLSR (by the Communication Research Centre in Canada). A multicast exten-
sion [95] has been proposed and is the object of an Internet-Draft (MOLSR) [80].

OLSR message and packet format

OLSR control messages are communicated using a transport protocol defined by
a general packet format, given in Figure 1.5. Each packet encapsulates several
control messages into one transmission.

Control traffic in OLSR is exchanged through two different types of messages:
HELLO and TC (Topology Control) messages. HELLO messages, shown in Fig-
ure 1.6, are exchanged periodically among neighbor nodes, in order to detect links
to neighbors and to signal MPR selection. TC messages, shown in Figure 1.7, are
periodically flooded to the entire network, in order to diffuse link state information
to all nodes.

The other OLSR control messages are MID (Multiple Interface Declaration)
and HNA (Host and Network Association). MID and HNA messages are emitted
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Packet Length | Packet Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Message Type | Vtime | Message Size |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Originator Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Time To Live | Hop Count | Message Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: MESSAGE :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Message Type | Vtime | Message Size |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Originator Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Time To Live | Hop Count | Message Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: MESSAGE :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: :

Figure 1.5: OLSR packet format.
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only by nodes that have multiple interfaces. To avoid collisions, the OLSR protocol
adds an amount of jitter to the interval at which all control messages are generated.

While messages may potentially be broadcast to the entire network, packets
are transmitted only between neighbor nodes. The unit of information subject to
being forwarded is a “message”. An individual OLSR control message can be
uniquely identified by its Originator Address and Message Sequence
Number (MSN), both from the message header. The Originator Address
field specifies the originator of a message, and does not change as the message is
relayed around the network; the address contained in this field is different (except
at the first hop, when the message is created) from the IP header source address,
which is changed at each hop to the address of the retransmitting node.

A node may receive the same message several times. Therefore, to avoid pro-
cessing and sending multiple times the same message, a node records information
about each received message. This information is stored in a tuple consisting of
the message’s originator address, the MSN, a boolean value indicating whether the
message has already been retransmitted, the list of interfaces on which the message
has been received, and the tuple’s expiration time. All tuples are maintained in the
Duplicate Set (also known as Duplicate Table) of the node.

The common packet format allows individual messages to be piggybacked and
transmitted together in one emission, if allowed by the MTU size. Therefore dif-
ferent kind of control messages can be emitted together, although processed and
forwarded differently in each node; e.g. HELLO messages are not forwarded while
all other control messages are.

OLSR does not handle unicast communications: a message from a node is
either transmitted to all its neighbors or to all nodes in the network.

HELLO messages contain a list of neighbors from which control traffic has been
heard (but with which bidirectional communication is not yet confirmed),
a list of neighbors with which bidirectional communication has been estab-
lished, and a list of neighbors that have been selected to act as a Multi-
point Relay for the originator of the HELLO message. Each Neighbor
Interface Address field contains the address of an advertised neigh-
bor, and the relevant Link Code field contains its link status as a combi-
nation of Link Type and Neighbor Type. Table 1.1 lists the constants’ values
for this last field, as specified by the protocol documentation [31].

Upon receiving a HELLO message, a node examines the lists of addresses.
If its own address is included in the addresses encoded in the HELLO mes-
sage, bidirectional communication is possible (symmetrical link) between
the originator and the recipient of the HELLO message, i.e. the node itself.

In addition to information about neighbor nodes, periodic exchange of HELLO
messages allows each node to maintain information describing the links be-
tween neighbor nodes and nodes which are two hops away. This information
is recorded in a nodes 2-hop neighbor set and is utilized for MPR optimiza-
tion.
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Link Types

UNSPEC_LINK No information
ASYM_LINK Link is asymmetrical, i.e. neighbor is heard
SYM_LINK Link is symmetrical
LOST_LINK Link has been lost

Neighbor Types

SYM_NEIGH Neighbor is symmetric
MPR_NEIGH Neighbor has been selected as MPR
NOT_NEIGH Node is no longer / not yet symmetric neighbor

Table 1.1: Constants for the Link Code field in a HELLO.

HELLO messages are exchanged periodically between neighbor nodes only,
and are not forwarded further.

TC messages have the purpose to diffuse link state information, and more pre-
cisely information about the “last hop”, to the entire network. A TC mes-
sage contains a set of symmetric neighbors (i.e. neighbors which have at
least one symmetrical link with the originator of the TC message) [28], each
one contained in a Advertised Neighbor Main Addressfield. TC
messages are periodically flooded to the entire network, exploiting the MPR
optimization. Only nodes which have been selected as an MPR generate
(and relay) TC messages.

The TC message bears an ANSN field which contains the Advertised Neigh-
bor Sequence Number. This number is associated with the node’s advertised
neighbor set, and is incremented each time the node detects a change in this
set.

MID messages are emitted only by a node with multiple OLSR interfaces, in order
to announce information about its interface configuration to the network.
A MID message contains a list of addresses, each address belonging to an
OLSR interface of the sending node.

HNA messages are emitted only by a node with multiple non-MANET interfaces,
and have the purpose of providing connectivity from a OLSR network to a
non-OLSR network. The gateway sends HNA messages containing a list of
addresses of the associated networks and their netmasks.

Multipoint Relay selection and signaling

The OLSR backbone for message flooding is composed of Multipoint Relays. Each
node must select MPRs from among its symmetric neighbor nodes such that a
message emitted by a node and repeated by the MPR nodes will be received by
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved | Htime | Willingness |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Code | Reserved | Link Message Size |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Neighbor Interface Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Neighbor Interface Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: . . . :
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Code | Reserved | Link Message Size |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Neighbor Interface Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Neighbor Interface Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: :

Figure 1.6: HELLO message format.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ANSN | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Advertised Neighbor Main Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Advertised Neighbor Main Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| . . . |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 1.7: TC message format.
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all nodes two hops away. In fact, in order to achieve a network-wide broadcast, a
broadcast transmission needs only be repeated by just a subset of the neighbors:
this subset is the MPR set of the node. Hence only MPR nodes relay TC, MID, and
HNA messages.

Figure 1.8 shows the node in the center, with neighbors and 2-hop neighbors,
broadcasting a message. In (a) all nodes retransmit the broadcast, while in (b) only
the MPRs of the central node retransmit the broadcast.

(a) (b)

Figure 1.8: Pure flooding and MPR flooding.

The MPR set of a node is computed heuristically [129]. MPR selection is per-
formed based on the 2-hop neighbor set received through the exchange of HELLO
messages, and is signaled through the same mechanism. Each node maintains an
MPR selector set, describing the set of nodes that have selected it as MPR.

Security considerations

The standard OLSR specification document does not take account of security mea-
sures. It enumerates possible vulnerabilities to which OLSR is subject. These
vulnerabilities include breach of confidentiality, breach of integrity, non-relaying,
replay, and interaction with an insecure external routing domain.

We give in Chapter 2 a brief overview on system security, and in Chapter 3 a
detailed description of the attacks against OLSR and against the routing protocols
in general. A mechanism designed to secure the OLSR protocol is presented in
Chapter 5.



Chapter 2

System security

A secure system may be defined as a system that does exactly what its designers
conceived it for and does not show any unexpected behavior, even when an attacker
tries to make the system act differently.

A definition of security is indeed incomplete without specifying against who
or what the system is secured. Furthermore, as absolute security is impossible to
obtain, a report about the cost/benefit balance must be established.

It must be recalled that enforcing security requires that the defender covers all
points of possible attack, as, for the attacker, it is sufficient to focus its efforts on
one weak point in order to succeed. Therefore a system is only as secure as its
less reliable security point. This is synthesized in the widely known expression: “a
chain is as strong as its weakest link”.

When talking about security of a communications network, there are different
areas in which this topic applies. The major security goals are defined with the
terms which follow; for each goal, the associated attack is identified. The name
can describe either the functioning of the attack or its effect.

� Confidentiality, privacy, secrecy ��� Eavesdropping
Confidentiality means that the transmitted information is only disclosed to
authorized parties. Sensitive information disclosed to an adversary could
have severe consequences.

� Integrity ��� Message tampering
Integrity assumes that a message is not altered in transit between sender and
receiver. Messages could be corrupted due to network malfunctioning or
malicious attacks.

� Non-repudiation ��� Message forgery
Non-repudiation means that the originator of a message cannot deny having
sent the message. An attacker could forge a wrong message that appears to
be originating from an authorized party, with the aim of making the party
the culprit. If non-repudiation is guaranteed, the receiver of a wrong mes-
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sage can prove that the originator sent it, and that therefore the originator
misbehaved.

Other security goals may be more difficult to achieve. Note that attacks can
be combined, e.g. the intruder may break into the system in order to prepare a
DoS from inside, or may perform eavesdropping with the purpose of later gaining
unauthorized access.

� Authentication ��� Identity spoofing, impersonation
Authentication ensures the identity of the party with which communications
are exchanged, before granting it access to the network. Without authentica-
tion, an attacker could masquerade as a legitimate party (identity spoofing)
and interfere with the security of the network.

� Access control ��� Breaking, unauthorized access
Access control means that only authorized parties can participate in the com-
munications; any other entity is denied access. Access control presumes
authentication of the party trying to have access to the network.

� Service availability ��� Denial of Service
Service availability must guarantee that all resources of the communications
network are always utilizable by authorized parties. An attacker may launch
a Denial of Service (DoS) attack by saturating the medium, jamming the
communications, or keeping the system resources busy in any other way.
The aim here is just to impede authorized parties from having access to the
resources, thereby making the network unusable.

Many security countermeasures are achieved by the use of cryptography [139,
13].

2.1 Cryptography basics

Encryption is the process of disguising a message in such a way that it hides its
content; the operation consists in transforming the message from plaintext to ci-
phertext. The inverse process is called decryption.

It is also possible to add a message digest, also called a hashing or digital
fingerprint, to the message so that the integrity of the message can be verified.

Signing a message means, instead, to add a sequence of bits (a digital signa-
ture) to the message in order to identify its real originator.

These techniques are performed by using a cryptographic algorithm (cipher)
and a key, whose format depends on the algorithm used. It is often necessary to
apply more than one technique, i.e. a message can be encrypted and then digitally
signed.

With respect to the aforementioned security attributes:
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� the encryption provides confidentiality, because the messages is transmitted
in ciphertext, and only the owner of the key can decrypt the ciphertext;

� the message digest provides integrity;

� the signature provides non-repudiation, as only the owner of the key could
have generated it.

Authentication, and subsequent access control, is more complicated to obtain and
requires the use of more advanced cryptographic primitives, while service avail-
ability is not the concern of cryptography.

It is likely that information that was true at some time in the past may not
be true anymore in the present. A common problem is that, even assuming a di-
gest or signature is successfully checked, previously transmitted messages can be
sent again by an attacker. That is, an intruder may record a bulk of messages and
re-send them some time later; these messages, if they cannot be identified as old
(by some definition of “old”), will be accepted as valid because they are properly
signed. This is known as replay attack, and may easily disrupt communications. To
oppose replay attacks, messages usually embed a piece of time information, called
timestamp, describing the time at which the message was generated. The time-
stamp is included in the computation of the signature. Timestamps are discussed
in detail in Chapter 7.

An adversary may exploit possible weaknesses in cryptographic functions. For
instance, when relaying a control message with digest from one node to another, an
attacker may replace the original message with a forged one which, due to a flaw in
the digesting algorithm, has the same digital fingerprint. The adversary discovers
these flaws using different techniques e.g. plaintext-chosen or brute-force attacks,
depending on the data available to work on. These kinds of codebreaking attacks
(cryptanalysis) are aimed against the cryptographic layer, and do not require the
disclosure of any key to the attacker. However, when designing security schemes
that rely on cryptography, it is usually assumed that cryptographic primitives are
robust against these attacks.

Two branches of cryptography exist: symmetric cryptography and asymmetric
cryptography. Each is useful to perform different functions.

2.1.1 Symmetric cryptography

Symmetric cryptography (also called secret key cryptography, single key cryptog-
raphy, or one key cryptography) is the most ancient form of cryptography. Sym-
metric cryptography is based on symmetric key algorithms, i.e. algorithms where
the encryption key and the decryption key are the same (or, more broadly, where
the encryption key can be computed from the decryption key and vice versa). The
sender and the receiver of a message must agree on a secret shared key, which
will henceforth be used to encrypt, decrypt, and generate a digest on exchanged
messages.
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Encryption

Some of the symmetric algorithms for encryption are: DES with its improvements
Triple DES and AES, IDEA, LOKI, Lucifer, Skipjack, Vernam (also known as
one-time pad), RC2, and RC4.

To this class of algorithms also belong the ancient substitution and transposi-
tion ciphers, like Caesar, Mary Stuart’s, Pigpen, Vigenere, Playfair, and ADFGVX.
These ciphers were in use centuries ago, in the pre-computer era, and are not used
anymore because they are easy to break by applying cryptanalysis.

Message digest

Symmetric algorithms make large use of hash functions [106] for digesting. A hash
function � maps a bitstring of arbitrary finite length to another bitstring of fixed
length � , where � depends on � . The hash function hence outputs a hash value
which is a condensed representative image of the bitstring fed in input. Changing
just one bit of the input string results in a very different hash value in output; this
is known as the avalanche effect.

A hash function � should have the following properties:

� be one-way, i.e. given an output � it is computationally infeasible to find an
input � such that � � � ��� � (preimage resistance);

� given an input � it is computationally infeasible to find another input ������ �
such that � � �	� ��� � � � � (second preimage resistance);

� it is computationally infeasible to find two inputs � � � � , with �
�� � � , such
that � � � ��� � � �	� � (collision resistance).

Examples of hash functions are MD5 (Message Digest 5) [134] which is the
successor of MD4, Snefru, RIPEMD-160, and the class of SHA (Secure Hash Al-
gorithm) functions [113] such as SHA-1 [40] and SHA-256.

Cryptographic literature often references a random oracle [10, 23]. A random
oracle is a theoretical model of a “perfect” hash function which returns an answer
uniformly selected amongst all possible answers.

A hash function may be used in conjunction with a secret shared key (e.g. by
concatenating the key to the hash input) to construct a keyed hash function. In
this case, the digest is more often called Message Authentication Code (MAC)1.
This is the foundation of the HMAC mechanism [9, 91]. The resulting keyed hash
function is called with a name that depends on the hash function used, for instance
HMAC-MD5, HMAC-RIPEMD, or HMAC-SHA1.

1To avoid confusion, in this thesis we use the acronym MAC for Medium Access Control only in
the phrases “MAC layer”, “MAC protocol”, or “MAC address”. In all other contexts, the meaning
of MAC must be intended as Message Authentication Code.
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2.1.2 Asymmetric cryptography

In asymmetric cryptography (also called public key cryptography), there is a key
for encryption (public key) and another key for decryption (private key or secret
key). A public and its companion private key compose a key pair; knowing a pub-
lic key, it is computationally infeasible to calculate the companion private key. A
party can leave its public key available to everyone, e.g. by publishing the key
in a public directory; its private key needs to be kept undisclosed. All public key
exchange may be done over an insecure channel, i.e. a channel that may be subject
to eavesdropping. Public key cryptography therefore requires a Public Key In-
frastructure (PKI) to authenticate the parties, generate the key pairs, or distribute,
update and revoke the public keys.

Public key cryptography was introduced by Diffie and Hellman [35] in 1976
(and developed further by Merkle [107]), but independently discovered some years
earlier by Cocks and Williamson of GCHQ. The Diffie-Hellman key agreement
protocol allows two parties to share a secret key over an insecure channel.

One of the greatest problems in a PKI is about how to bind a public key with
its legitimate owner – that is, how to be sure that a specific public key belongs
to a party and not to an impostor, which would then be able to decrypt messages
supposedly sent to that party. If two parties, Alice and Bob (we call them so in the
tradition of cryptographic literature), want to exchange their public keys, they could
do it over the same insecure channel that is used afterward to swap their encrypted
messages. However, if an adversary is able to tamper with communications over
the channel, it can make the protection unsuccessful. This is a kind of double
identity spoofing, called man-in-the-middle attack, in which an adversary stays in
the communication channel between two parties and acts with a party as the other
party. The parties are deluded that they are talking with each other, while in fact
the invisible adversary relays their messages.

The attack is performed as follows. The adversary generates two public/private
key pairs

��� )���� )�" � ��� �) ��� �) " . Alice sends her public key
� �

to Bob, but the
adversary intercepts it, substitutes the legitimate key with its public key

� )
, and

sends
� )

to Bob. Bob sends his public key
���

to Alice, but the adversary inter-
cepts and substitutes it with

� �) , which is sent to Alice. As a result, Alice mis-
takenly believes Bob’s public key to be

� �) , and Bob mistakenly believes Alice’s
public key to be

� )
, while both keys are owned by the adversary:

Alice��� � ��� � " � � adversary��� �) ��� �) " ��� ) ��� ) " �*� Bob����� ������"

From this point on, the adversary intercepts unnoticed any message sent from
Alice, decrypts it with

� �) , reads it, re-encrypts it with
���

, and sends the message
to Bob which decrypts it with his private key

���
. In the opposite direction, the ad-

versary intercepts any message from Bob, decrypts it with
� )

, reads it, re-encrypts
it with

� �
, and sends the message to Alice which decrypts it with her private key
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� �
. Therefore, the adversary is able to read any message exchanged between Al-

ice and Bob, while they are unaware of the adversary’s presence and think their
communications are kept confidential.

One solution to this problem involves a Trusted Third Party, which must be
trusted by everyone. The TTP stores the public key of every participant and guar-
antees on the owner of each key. Depending on the implementation, the TTP is
called Key Distribution Center (KDC) or Certification Authority (CA). A Certifi-
cation Authority delivers certificates containing the identity of the key’s owner, its
public key, the certificate validity dates, and other information; each certificate is
signed by the CA, which public key is known a priori by every participant.

For instance, the solution of bestowing a Certification Authority is broadly uti-
lized in the SSL/TLS protocol [148] (on which HTTPS, the secured Internet proto-
col, is based), IPsec, S/MIME, and others. SSL certificates follow the X.509 stan-
dard [50, 63] developed by the International Telecommunication Union - Telecom-
munication Standardization Sector, and can be delivered by many commercial
CAs: RSA Security Inc., VeriSign, ValiCert, and VISA, just to name a few. The
public key of each CA is embedded in web browsers and other network applica-
tions. Public institutions and government agencies may have their own CAs, too.

However, the existence of a trusted party is a point of fragility of the whole
PKI. If the deliver of public keys is done on demand, an adversary could paralyze
the whole network by launching a Denial of Service attack against the KDC. Fur-
thermore, by compromising a Certification Authority, the attacker can issue fake
certificates for any identity it wishes, to prepare spoofing and man-in-the-middle
attacks.

Encryption

To securely send a message, the sender retrieves the receiver’s public key, encrypts
the message, and sends it to the receiver which can decrypt it with its private key.

Examples of asymmetric ciphers for encryption and decryption are RSA (Rivest-
Shamir-Adleman) [135, 136], Knapsack, and ElGamal; other ciphers are instances
of elliptic curve cryptography (ECC) applied to canonical algorithms, such as ECC
ElGamal. ECC is an approach to the public key problem based on the mathematics
of elliptic curves.

Signature

Asymmetric ciphers for signatures are composed of a private and a public part. To
sign a message, the sender uses the private algorithm. The receiver of the message
then verifies the signature by applying the public algorithm. For simplicity, it is
often said that the sender uses its private key to sign while the receiver verifies the
signature with the sender’s public key.

This is the case of RSA, where the sender generates a hash of the message and
encrypts it with its private key. The receiver will use the sender’s public key to
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decrypt the sent hash and check if it matches the recomputed hash. This works
because, in a RSA key pair, both the public and private key can be used to encrypt,
while the other key is used to decrypt.

Examples of asymmetric schemes to generate digital signatures are Fiat-Shamir,
Ong-Schnorr-Shamir, and DSS (Digital Signature Standard) [114] which includes
DSA (Digital Signature Algorithm); ECC schemes such as ECNR (Elliptic Curve
Nyberg-Reuppel) and ECDSA; and, again, RSA and ElGamal.

2.1.3 Symmetric vs. asymmetric cryptography

Symmetric and asymmetric cryptography has both weak and strong points. Argu-
ments in favor of symmetric cryptography are:

� The data throughput rate is much higher with symmetric ciphers, which also
need less computation power.

� For the same level of security, the key size is much smaller with symmetric
ciphers. Also, a symmetric digest is smaller than an asymmetric signature.

On the other hand, asymmetric cryptography is superior in some perspectives:

� In symmetric cryptography, the shared key must be kept secret. In asymmet-
ric cryptography, only the private key need to be kept secret, while the public
key can (and should) be publicly disclosed.

� Key management is somewhat easier in asymmetric cryptography. To han-
dle a secured message exchange between � parties, the number of symmetric
keys to manage is � � ��� � , as there are ��� �

� � ���	��
���� symmetric keys. Fur-
thermore, if these keys are committed to a Trusted Third Party, this TTP
must be unconditionally trusted as it is theoretically able to encrypt and de-
crypt any message from or to any party. Using asymmetric cryptography, the
number of keys to manage is just � � � � . Only the public keys are entrusted
to the TTP, which therefore needs only to be conditionally trusted.

� Considering the level of security offered, a public/private key pair may re-
main unchanged for many sessions. Symmetric keys should be renewed
more often (even once per session) to guarantee the same level of security.

In summary, symmetric cryptography is efficient for encryption and data in-
tegrity tests, whilst asymmetric cryptography is cogent to generate digital signa-
tures and manage keys. A cleverly designed cryptographic application would ex-
ploit the advantages of both schemes: a public key exchange could be used to es-
tablish a symmetric key between two parties, while further communications would
be encrypted using the symmetric key.
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The next chapter provides a classification of the attacks against the routing
layer. In Chapter 4 and 5, we show how cryptography can be used to thwart these
attacks and enforce security. Chapter 6 offers a dissertation on the available ci-
phers, considering the requirements and limitations of an ad hoc environment.



Chapter 3

Attacks against ad hoc networks

While a wireless network is more versatile than a wired one, it is also more vul-
nerable to attacks. This is due to the very nature of radio transmissions, which are
made on the air.

On a wired network, an intruder would need to break into a machine of the net-
work or to physically wiretap a cable. On a wireless network, an adversary is able
to eavesdrop on all messages within the emission area, by operating in promiscu-
ous mode and using a packet sniffer (and possibly a directional antenna). There
is a wide range of tools available to detect, monitor and penetrate an IEEE 802.11
network, such as NetStumbler1, AiroPeek2, Kismet3, AirSnort4, and Ethereal5.
Hence, by simply being within radio range, the intruder has access to the network
and can easily intercept transmitted data without the sender even knowing (for in-
stance, imagine a laptop computer in a vehicle parked on the street eavesdropping
on the communications inside a nearby building). As the intruder is potentially
invisible, it can also record, alter, and then retransmit packets as they are emitted
by the sender, even pretending that packets come from a legitimate party.

Furthermore, due to the limitations of the medium, communications can easily
be perturbed; the intruder can perform this attack by keeping the medium busy
sending its own messages, or just by jamming communications with noise.

3.1 Attacks against the routing layer in MANETs

We now focus on attacks against the routing protocol in ad hoc networks. These
attacks may have the aim of modifying the routing protocol so that traffic flows
through a specific node controlled by the attacker. An attack may also aim at
impeding the formation of the network, making legitimate nodes store incorrect

1http://www.netstumbler.com/downloads
2http://www.wildpackets.com/products/airopeek
3http://www.kismetwireless.net
4http://sourceforge.net/projects/airsnort
5http://www.ethereal.com
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routes, and more generally at perturbing the network topology.
Attacks at the routing level can be classified into two main categories: incor-

rect traffic generation and incorrect traffic relaying 6. Sometimes these coincide
with node misbehaviors that are not due to malice, e.g. node malfunction, battery
exhaustion, or radio interference.

3.1.1 Incorrect traffic generation

This category includes attacks which consist in sending false control messages:
i.e. control messages sent on behalf of another node (identity spoofing), or control
messages which contain incorrect or outdated routing information. The network
may exhibit Byzantine [94] behavior, i.e. conflicting information in different parts
of the network. The consequences of this attack are degradation in network com-
munications, unreachable nodes, and possible routing loops.

Cache poisoning

As an instance of incorrect traffic generation in a distance vector routing protocol,
an attacker node can advertise a zero metric for all destinations, which will cause
all the nodes around it to route packets toward the attacker node. Then, by dropping
these packets (blackhole attack, see Section 3.1.2), the attacker causes a large part
of the communications exchanged in the network to be lost. In a link state protocol,
the attacker can falsely declare that it has links with distant nodes. This causes
incorrect routes to be stored in the routing table of legitimate nodes, also known as
cache poisoning.

Message bombing and other DoS attacks

The attacker can also try to perform Denial of Service on the network layer by
saturating the medium with a storm of broadcast messages (message bombing), re-
ducing nodes’ goodput and possibly impeding nodes from communicating. (This
is not possible under hybrid routing protocols, where nodes cannot issue broadcast
communications [154].) The attacker can even send invalid messages just to keep
nodes busy, wasting their CPU cycles and draining their battery power. In this case
the attack is not aimed at modifying the network topology in a certain fashion, but
rather at generally perturbing the network functions and communications.

On the transport layer, Kuzmanovic and Knightly [92] demonstrate the effec-
tiveness of a low-rate DoS attack performed by sending short bursts repeated with a
slow timescale frequency (shrew attack). In the case of severe network congestion,
TCP operates on timescales of Retransmission Time Out (RTO). The throughput
(composed of legitimate traffic as well as DoS traffic) triggers the TCP congestion

6Nodes’ throughput is composed of two kinds of traffic: control packets and data packets. Here
we consider only the former.
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control protocol, so the TCP flow enters a timeout and awaits a RTO slot before
trying to send another packet. If the attack period is chosen to approximate the
RTO of the TCP flow, the flow repeatedly tries to exit timeout state and fails, pro-
ducing zero throughput. If the attack period is chosen to be slightly greater than
the RTO, the throughput is severely reduced. This attack is effective because the
sending rate of DoS traffic is too low to be detected by anti-DoS countermeasures.

Another DoS performed on the transport layer is the subtle jellyfish attack by
Aad et al. [1], that deserves particular attention. Its authors point out that, remark-
ably, it does not disobey the rules of the routing protocol, even if we may argue
that, strictly speaking, this is not always the case. But is indeed true that the jelly-
fish attack is difficult to distinguish from congestion and packet losses that occur
naturally in a network, and therefore is hard and resource-consuming to detect.

This DoS attack can be carried out by employing several mechanisms. One
of the mechanisms of the jellyfish attack consists in a node delivering all received
packets, but in scrambled order instead of the canonical FIFO order. Duplicate
ACKs derive from this malicious behavior, which produces zero goodput although
all sent packets are received. This attack cannot be successfully opposed by the
actual TCP packet reordering techniques, because such techniques are effective on
sporadic and non-systematic reordering.

The second mechanism is the same as that used in the shrew attack, and in-
volves performing a selective blackhole attack by dropping all packets for a very
short duration at every RTO. The flow enters timeout at the first packet loss caused
by the jellyfish attack, then periodically re-enters the timeout state at every elapsed
RTO.

The third mechanism consists in holding a received packet for a random time
before processing it, increasing delay variance. This causes TCP traffic to be sent
in bursts, therefore increasing the odds of collisions and losses; it increases the
RTO value excessively; and it causes an incorrect estimation of the available band-
width in congestion control protocols based on packet delays.

DoS attacks can also be carried over on the physical layer (e.g. jamming or
radio interference); in this case, they can be dealt with by using physical techniques
e.g. spread spectrum modulation [126].

In sum, Denial of Service can be accomplished over different layers and in
several ways, and is quite difficult to counteract, even on a wired medium. The
topics regarding a full protection against DoS attacks are beyond the scope of this
thesis, and therefore are not discussed in detail.

3.1.2 Incorrect traffic relaying

Network communications coming from legitimate, protocol-compliant nodes may
be polluted by misbehaving nodes.
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Blackhole attack

An attacker can drop received routing messages, instead of relaying them as the
protocol requires, in order to reduce the quantity of routing information available
to the other nodes. This is called blackhole attack by Hu et al. [66], and is a
“passive” and a simple way to perform a Denial of Service. The attack can be
done selectively (drop routing packets for a specified destination, a packet every �
packets, a packet every

�
seconds, or a randomly selected portion of the packets) or

in bulk (drop all packets), and may have the effect of making the destination node
unreachable or downgrade communications in the network.7

Message tampering

An attacker can also modify the messages originating from other nodes before
relaying them, if a mechanism for message integrity (i.e. a digest of the payload)
is not utilized.

Replay attack

As topology changes, old control messages, though valid in the past, describe a
topology configuration that no longer exists. An attacker can perform a replay
attack by recording old valid control messages and re-sending them, to make other
nodes update their routing tables with stale routes. This attack is successful even
if control messages bear a digest or a digital signature that does not include a
timestamp.

Wormhole attack

The wormhole attack [67] is quite severe, and consists in recording traffic from
one region of the network and replaying it in a different region. It is carried out by
an intruder node

%
located within transmission range of legitimate nodes

�
and�

, where
�

and
�

are not themselves within transmission range of each other.
Intruder node

%
merely tunnels control traffic between

�
and

�
(and vice versa),

without the modification presumed by the routing protocol – e.g. without stating
its address as the source in the packets header – so that

%
is virtually invisible.

This results in an extraneous inexistent
� � �

link which in fact is controlled by%
, as shown in Figure 3.4. Node

%
can afterwards drop tunneled packets or break

this link at will. Two intruder nodes
%

and
% � , connected by a wireless or wired

7Even if a node correctly generates, processes and forwards control traffic, it may act maliciously
by not forwarding data traffic. The node thereby breaks the connectivity in the network; however,
this connectivity loss is not detected by the routing protocol because control traffic is relayed as
required. This type of situation may also be due to wrongly configured nodes: routing capabilities
(through IP forwarding) are disabled by default in most operating systems, and need to be enabled
manually. Failing to do so effectively causes data traffic not to be routed while control traffic, which
is forwarded by action of the routing daemon, is correctly transmitted.
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private medium, can also collude to create a longer (and more harmful) wormhole,
as shown in Figure 3.5.

The severity of the wormhole attack comes from the fact that it is difficult to
detect, and is effective even in a network where confidentiality, integrity, authen-
tication, and non-repudiation (via encryption, digesting, and digital signature) are
preserved. Furthermore, on a distance vector routing protocol, wormholes are very
likely to be chosen as routes because they provide a shorter path – albeit com-
promised – to the destination. Marshall [103] points out a similar attack, called
the invisible node attack by Carter and Yasinsac [24], against the Secure Routing
Protocol [116].

Rushing attack

An offensive that can be carried out against on-demand routing protocols is the
rushing attack [68]. Typically, on-demand routing protocols state that nodes must
forward only the first received Route Request from each route discovery; all further
received Route requests are ignored. This is done in order to reduce cluttering.
The attack consists, for the adversary, in quickly forwarding its Route Request
messages when a route discovery is initiated. If the Route Requests that first reach
the target’s neighbors are those of the attacker, then any discovered route includes
the attacker.

3.2 Attacks against the OLSR protocol

We now discuss various security risks in OLSR [3, 30]. The aim is not to emphasize
flaws in OLSR, as it did not include security measures in its design, like several
other routing protocols. While these vulnerabilities are specific to OLSR, they can
be seen as instances of what other link state routing protocols, such as OSPF, are
subject to.

This section illustrates the principal hazards. More ingenious attacks may be
carried over against almost any operating function of the protocol.

It is worth noting that a node can force its election as an MPR by setting the
Willingness field to the WILL_ALWAYS constant in its HELLOs. According
to the protocol, its neighbors will always select it as an MPR. Using this mecha-
nism, a compromised node can easily gain, as an MPR, a privileged position inside
the network. It can then exploit its importance to carry out DoS attacks and such
like.

Note also that an attacker performing identity spoofing or message replay needs
to change the Message Sequence Number field of the spoofed or replayed
message. Otherwise, nodes that already have received a message with the same
originator and MSN (according to their Duplicate Set) will drop the malicious mes-
sage. Furthermore, accepting the malicious message causes message loss when a
legitimate message having the same originator and MSN is received by the victim
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nodes, and dropped according to the protocol.

3.2.1 Incorrect traffic generation

One way in which a node can misbehave is by generating control messages in a
way that is not according to the protocol.

Incorrect HELLO message generation

A misbehaving node
%

may send HELLO messages with a spoofed originator
address set to that of node

�
(Figure 3.1). Subsequently, nodes

�
and

�
may an-

nounce reachability to
�

through their HELLO and TC messages. Furthermore,
node

%
chooses MPRs from among its neighbors, signaling this selection while

pretending to have the identity of node
�

. Therefore, the chosen MPRs will adver-
tise in their TC messages that they provide a last hop to

�
. Conflicting routes to

node
�

, with possible connectivity loss, may result from this.

B

XA

C

Figure 3.1: Node � sends HELLO messages pretending to be � .

Under identity spoofing, another kind of attack is also possible. A misbehav-
ing node

%
can set the Willingness field to WILL_NEVER on its HELLO

messages sent on behalf of
�

. According to the protocol, nodes receiving these
messages will never choose

�
as an MPR, which may result in a connectivity loss

for some neighbors of
�

.
We call link spoofing the signalization of an incorrect set of neighbors in a con-

trol message, and more precisely the signalization of neighbor relationship with
non-neighbor nodes. A misbehaving node

%
may perform link spoofing in its

HELLO messages advertising a link with non-neighbor node
�

, as in Figure 3.2.
This will result in

�
, and the others neighbors of

%
, storing an incorrect 2-hop

neighborhood and therefore selecting a wrong MPR set. In fact, node
�

will prob-
ably select

� % �
�
"

as its MPR set, instead of the correct MPR set
� % �����

�
"
,

because the first set is smaller. As a consequence, messages originating from �
and relayed through the MPR mechanism will not reach node

�
.

Node
%

can also misbehave by signaling an incomplete set of neighbors. De-
pending on their links with other nodes, the ignored neighbors might experience
breakdown in connectivity with the rest of the network.
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B

X

D E

A

C

Figure 3.2: Node � sends HELLO messages advertising a fake link with � .

Incorrect TC message generation

TC messages with a spoofed originator address cause incorrect neighbor relation-
ship to be advertised in the network. For instance, node

%
sends a TC message

on behalf of node
�

, advertising
�

as a neighbor (Figure 3.3). Node � , upon
reception of the TC message, will falsely conclude that

�
and

�
are neighbors.

For this attack to be successful, the TC message must bear an ANSN (Advertised
Neighbor Sequence Number) greater than the highest ANSN value referenced to�

, as contained in any tuple of � ’s Topology Set; otherwise � will discard the TC
message, according to the protocol.

XA

CD

Figure 3.3: Node � sends TC messages pretending to be � .

TC messages with spoofed links have the same effect, and can severely perturb
the network topology as stored by legitimate nodes.

Node
%

can also simply generate HELLOs, perhaps be selected as an MPR
by its neighbors, but refuse to generate TC messages or generate TCs signaling an
incomplete set of nodes. The OLSR specifications require that

%
includes at least

its MPR selectors in its TCs; if this requirement is not fulfilled, some nodes may
not have their link state information disseminated throughout the network and be
disconnected.

Node
%

, behaving incorrectly, can also send TC messages without being an
MPR. The protocol specifications state that only MPRs generate TCs; however,
there is no way of detecting whether the originator of a TC message is an MPR of
some node or not.
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Incorrect MID/HNA message generation

A misbehaving node
%

can generate wrong MID/HNA messages, declaring inter-
faces that are not their own (link spoofing), or falsifying the originator address of
the message (identity spoofing) so that it apparently declares interfaces that are not
their own. In this case, nodes will have problems reaching these interfaces.

ANSN attack

The misbehaving node may listen to a TC message from node
�

and record the
ANSN of the message; then it sends a TC with a spoofed originator address of
node

�
, and an ANSN much greater than the value recorded. According to the

protocol specifications, nodes will ignore further TC messages from
�

, because
these messages bear a smaller ANSN as that recorded in the Topology Set, and
therefore such messages are considered as arrived out of order. We call this an
ANSN attack. If no further action is taken by the attacker, the ANSN attack is
effective until the ANSN of node

�
reaches the value of the ANSN in the spoofed

TC.
This attack can be spotted as the spoofed TC bears an ANSN which is much

higher than that of the latest genuine TC message received from
�

(the higher the
difference between the two ANSNs, the longer TCs from

�
are ignored). However,

the misbehaving node may perform this attack repeatedly, by forging each time
spoofed TC messages with a slightly greater ANSN.

3.2.2 Incorrect traffic relaying

If control messages are not properly relayed, network malfunctions are possible.

Blackhole attack

If a node fails to relay TC messages, the network may experience connectivity
problems. In networks where no redundancy exists (e.g. in a strip), connectivity
loss will surely result, while other topologies may provide redundant connectivity.

If MID and HNA messages are not properly resent, additional information re-
garding multiple nodes interfaces and connections with external networks may be
lost.

Replay attack

As previously said, replaying old control messages in the network causes nodes to
record stale topology information. A control message cannot be replayed “as is”
or it will not be accepted by nodes that already received it, because of the MSN.
Therefore the attacker needs to increase the MSN of the message, causing possible
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message loss. For a TC, the attacker must increase the ANSN too, indirectly caus-
ing an ANSN attack. Replayed HELLOs may have a lesser impact, because link
state advertised in HELLOs must be given in a well-defined order (see Section 9.1).

Wormhole attack

An extraneous
� � �

link can be artificially created by an intruder node
%

by
wormholing control messages between

�
and

�
(Figure 3.4). A longer wormhole

can also be created by two colluding intruders
%

and
% � (Figure 3.5).

A
B

X

Figure 3.4: A wormhole created by node � .

A

X

B

X’

Figure 3.5: A longer wormhole created by two colluding nodes � and ��� .

To successfully exploit the wormhole, the attacker must wait until
�

and
�

have exchanged sufficient HELLO messages (through the wormhole) to establish
a symmetric link. Until that moment, other tunneled control messages would be
rejected, because the OLSR protocol specifies that TC/MID/HNA messages should
not be processed if the relayer node (the last hop) is not a symmetric neighbor.
However, once created, the

� � �
link is at the mercy of the attacker.

MPR attack

The “first transmit rule”, described in the OLSR specifications, states that a node
receiving a message in MPR flooding checks if the sender is its MPR selector. If so,
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the node retransmits the message. If the sender is not an MPR selector of the node,
the latter will never retransmit the message. While this rule is established for per-
formance reasons (to avoid messages traveling on large loops in dense networks) it
could be exploited to impede the correct relaying of control messages.

We call the related misbehavior an MPR attack. Consider the following sce-
nario (Figure 3.6): node

�
sends a message to its neighbors

�
and

%
, where

�
is

an MPR of
�

,
%

is not an MPR, and
�

is an MPR of
�

. The misbehaving node
%

does not select its MPR set properly, and retransmits the message (even if it is not
supposed to) which is received by

�
. Node

�
retransmits the message to

�
. The

crucial point is that
�

, even being an MPR, will not relay the message because
�

has already received it from
%

.

X

C

B

A

Figure 3.6: Node � performs an MPR attack.

3.3 Summary of routing attacks

All the depicted attacks are possible at a theoretical level; most of them are very
easy to implement and require even less energy and effort than running a protocol-
compliant node. Table 3.1 summarizes the effect of each attack on each particular
function of an OLSR network.

Concerning the realism of these attacks (real attacks that have been observed
against existing networks), there is no or very little data available. This is probably
due to the fact that ad hoc networks are in practice still used in limited environments
such as warfare operations, search and rescue missions, and research centers; while
the mainstream architecture for a wireless network is BSS, with “hot spots” offered
by various ISPs in airports, train stations, museums, restaurants, and other public
places.

It is indeed true that some offensive behavior (e.g. DoS) can also successfully
be carried out at the physical or transport layer. However, in our opinion, it is
necessary to foresee these routing attacks, otherwise when these attacks are carried
out (and certainly they will be) we will be unable to recognize them as such.
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Incorrect
traffic

generation

Incorrect
traffic

relaying

ANSN attack

Incorrect MID/HNA generation

link spoofing

ID spoofing

link spoofing

ID spoofing
Incorrect HELLO generation

Incorrect TC generation

MPR attack

Wormhole attack

Replay attack

Blackhole attack

Message tampering

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕

✕ ✕

✕

✕

Message bombing and other DoS

Conflicting routes Connectivity loss Message loss

✕

✕

✕

✕

✕

Table 3.1: OLSR attacks and their effects on the network.



Chapter 4

Security in ad hoc networks:
basic mechanisms

Wireless transmissions utilize a shared medium – the air – that is virtually acces-
sible to anybody at any time. As it is not possible to limit access to the medium,
the only way to protect messages is to use cryptography to sign or encrypt the
exchanged data.

The IEEE 802.11b standard includes a scheme called WEP (Wired Equivalent
Privacy) to secure communications. It uses the RC4 stream cipher coupled to an
Initialization Vector for encryption, and the CRC-32 checksum for integrity check.
WEP employs a 40-bit or 64-bit secret shared key, providing no infrastructure for
key management. As its name implies, WEP offers a protection similar to that
of an unsecured wired network, and therefore a quite low level of security (the
AirSnort program can easily crack WEP keys). Despite its weakness, WEP may
be considered useful as a deterrent against casual snoopers.

The vulnerabilities of WEP have been fixed in WPA (Wi-Fi Protected Access).
WPA uses IEEE 802.1X authentication, providing port-based network access con-
trol capability, with a standard EAP (Extensible Authentication Protocol) [15].

A stronger security system is specified in the IEEE 802.11i standard [74], also
known as WPA2. The WPA2 standard adds the AES (Advanced Encryption Stan-
dard) security protocol to IEEE 802.11.

4.1 Protection of the routing protocol

In general, the desired security for the routing mechanism concerns integrity (less
often non-repudiation) and service availability. Therefore, when talking about pro-
tecting routing control messages, we mostly consider how to generate and verify
digests or digital signatures. Encryption is often left aside, because is more time-
and power-consuming, and because confidentiality is not usually required, as rout-
ing information is not secret. (However, this is not always true. In the case of
military applications, routing information may be tactical information of primary
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importance; for instance, it could help enemies identify and locate their targets on
a battlefield.)

4.2 State of the art

The protection of the network can be obtained through cryptographic tools such
as IPsec, or via dedicated solutions. In the literature there are many proposals for
secured routing protocols that provide message integrity (through digests) and/or
sender authentication (through signatures). Several of these are modifications of
standard non-secure routing protocols. Other protocols provide security in a differ-
ent way.

4.2.1 IPsec

IPsec [87, 98] is an IETF standard that incorporates various security services for
the IP layer. The IPsec framework provides authentication and encryption of data
packets [85, 86], maintenance of security associations (with shared secret keys)
between peers [105], and manual or automated key management [61].

It has been pointed out [137, 128] that, in general, it is impossible (or at least
impractical) to use IPsec to secure routing protocols in MANETs, because IPsec
assumes that a security association between pairs of nodes already exists; and,
of course, this is not the case in an emerging ad hoc network. The fundamental
problems of IPsec with respect to securing OLSR are detailed in the following.

First, the automated key exchange, which also provides the automated time-
stamp exchange for protection against replay attacks, assumes that the parties can
reach each other. This is not the general case with the secured version of OLSR, be-
cause messages must be authenticated before being accepted; hence a node which
arrives in the network accepts no packets, and has no routes. Two remedies are
possible: either using pure flooding for the messages, or changing the OLSR spec-
ifications as we show in Section 6.3.7.

Second, IPsec protects the packet itself, while the granularity of the protection
that we propose is the message. For technical reasons, it is not possible to sign
or generate a digest of a whole OLSR packet, nor it is desirable to do so; see
Chapter 5. One remedy could be to forbid any change of the packets in transit, so
that each message would go in a different packet. This would have a certain cost on
wireless networks, where overhead per-packet on the MAC layer is large in some
cases. Furthermore, this might not be sufficient and other requirements, such as the
use of tunnel mode, should be made, along with technical necessities such as using
the TTL field of the IP packet instead of the OLSR packet.

Third, the current IPsec implementations support essentially symmetric keys.
However this may change, as a recent IETF draft proposes asymmetric signatures
[157].

Last, managing a group key or a set of group keys in the context of an ad hoc
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network is a different problem than just the issues in the multicast or group key
management protocols such as GKMP (Group Key Management Protocol) [62] or
MIKEY (Multimedia Internet KEYing) [5]. This because in an ad hoc network
all nodes are senders and all nodes are receivers of the OLSR protocol messages.
Network splits or merges also need to be managed.

In general, few IPsec security schemes may be used, and even these need sig-
nificant modifications such as pure flooding for message transmission. This comes
at the cost of security granularity and performance: for instance, in a network of
� nodes, if each node creates and transmits a session key with every other node
using pure flooding, the cost is � � � � �

. This would also be likely to result in using
IPsec on the limits of their domain of applicability. It is also worth noting that the
complexity of many IPsec protocols is already greater than the complexity of the
OLSR protocol itself.

4.2.2 Routing protocols using digests or signatures

SRP (Secure Routing Protocol) [116], by Papadimitratos and Haas, is built on the
basis of DSR, and requires a security association between each pair of communi-
cating nodes. When initiating a route discovery, a node inserts in the SRP header
of the query packet the following information: a sequence number, a nonce, and a
MAC. The MAC is a keyed hash computed on the IP header, the sequence number,
the nonce, and the shared secret key. In the route reply message, the MAC includes
also the route.

Unfortunately, it has been observed that a security flaw makes SRP defective
[103]. In a route discovery, a malicious intermediate node may not append its
address to the route request and reply messages (as it is supposed to do). As a
consequence, the originator of the route discovery validates a route which in fact
does not exist.

SLSP (Secure Link State routing Protocol) [117], by the same authors of SRP,
is a proactive secure routing protocol that makes use of asymmetric cryptography
to protect control messages. The security mechanisms of SLSP are committed to
the Neighbor Lookup Protocol, which maintains a mapping of IP and MAC (hard-
ware) addresses extracted from overheard frames; the protocol uses this mapping
to identify discrepancies such as multiple addresses.

SAODV (Secure Ad hoc On-demand Distance Vector routing) [164] is the se-
cured version of AODV. RREQ and RREP messages are signed by a sending node,
and the signature is verified by intermediate nodes before forwarding the message.
Optionally, the RREQ message bears a second signature which, if an intermediate
node wants to reply with a RREP, is utilized in the reverse route.

ARAN (Authenticated Routing for Ad hoc Networks) [137] is an on-demand
routing protocol which requires a TTP certificate server. Nodes request a certificate
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from the certificate server, then they sign all generated messages.

A polyvalent technique based on certificates [128] consists in appending a
module, called MAE (MANET Authentication Extension) to each routing mes-
sage. This technique uses threshold cryptography to provide a distributed and self-
organized certification service. The MAE protocol can be applied to DSR, AODV,
OLSR, TBRPF, and possibly other routing protocols.

Ariadne [66] is based on DSR for the routing architecture and on TESLA
(Timed Efficient Stream Loss-tolerant Authentication) [125, 124] for the authenti-
cation mechanism. TESLA guarantees the integrity of communications by adding
a MAC in each message, and provides some form of authentication by one-way key
chains (also called one-way hash chains), computed by agreeing on a hash function
� . A node, during initialization, chooses a random number � and computes the list
of values � � � � �

� � �
�
	
	
	�� � � , where � � � � , and ��� � � � ��� 
��

�
for

��� � . The
node will afterwards publish these keys in reverse order from � � to � � , following
a predetermined schedule. Before sending a message, the sender node estimates
an upper bound

���
on the end-to-end network delay, and computes the MAC on

the message with a key ��� which will not be disclosed until after the delay. Upon
reception of the message, the receiver node verifies that the key � � is still secret,
then waits until ��� is disclosed by the sender. After that, the receiver node authen-
ticates ��� . The receiver node is also able to authenticate a value �	� 
�� contained
in a further message by verifying that � � �
� 
��

� � ��� , or authenticate any ��� 
�� by
applying  times the hash function i.e. � � � ��� 
��

� � ��� .
Ariadne uses symmetric encryption for efficiency reasons, but its authors also

provide a modification to include a Key Distribution Center for key authentication.
In Ariadne, a node originating a route discovery broadcasts a Route Request mes-
sage, containing a time interval greater than

���
and protected with a MAC. Each

intermediate node that receives the Route Request verifies if the associated key is
still undisclosed according to the time interval; if so, the node appends its MAC to
the message and forwards it. The target node performs the same tests, then sends
a Route Reply to the originator node via the reverse path. Every intermediate node
that receives the Route Reply waits until it can disclose its key according to the
time interval, then appends its key to the message and forwards it. Finally, upon
reception of the Route Reply, the originator node checks that all included keys and
MACs are valid.

TIK (TESLA with Instant Key disclosure) [67] is a protocol designed for de-
fense against wormhole attacks. TIK uses what its authors call a packet leash, i.e.
a piece of information added to a packet to restrict the packet’s maximum allowed
transmission distance (geographical leash) or lifetime (temporal leash). All nodes
must have tightly synchronized clocks. Key authentication is accomplished using
hash trees, which are an optimization of the one-way hash chains discussed above.

A sender node
�

generates the MAC, denoted by � �  ��� � � , of a message
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using key
� � . Key

� � has disclosure time
� � (in the future) and can be authenti-

cated by the hash tree value � � . The MAC is included in the header part of the
packet. Before sending the packet,

�
estimates an upper bound on the arrival

time of the packet to the receiver node
�

, and appends the key
� � to the packet:� � � � � � �  ��� � � �  � ��� ��� � " . Upon arrival of the MAC,

�
verifies that

�
has

not yet started to send
� � , based on the disclosure time

� � . If this is true,
�

authen-
ticates the key

� � using ��� , and verifies � �  ��� � � .
SEAD (Secure Efficient Ad hoc Distance vector routing) [65] is based on the

design of DSDV. Nodes authenticate with each other by using hash chains. A node
chooses a random number � and computes � � � � �

� � �
�
	
	
	 � � � , where � � � � , and

��� � � � ��� 
��
�

for
� � � as said before. The value � � is firstly distributed either by

a Certification Authority, or by direct exchange (using symmetric cryptography)
between nodes, or by any other infrastructure for key distribution. Afterwards, the
node includes these values in its messages, one for each message, and in reverse
order from � � 
�� to � � . Receiving nodes , knowing � � , authenticate the value � � 
��
contained in a further message by verifying that � � �	� 
��

� � ��� . With this protocol
it is still possible for an attacker to tamper with messages while they are in transit.

4.2.3 Other solutions

Hu et al. propose RAP (Rushing Attack Prevention) [68], a generic component for
secure route discovery in reactive routing protocols. RAP is aimed at protecting the
network against rushing attacks. RAP contains three mechanisms: secure neighbor
detection, secure route delegation, and randomized Route Request forwarding.

Secure neighbor detection is accomplished by observing the challenge-response
delay, to evaluate the distance to a node and verify if the node can be a neighbor.
Secure route delegation is done through exchange of Route Delegation / Accept
Delegation messages between verified neighbors, before any forwarding of a Route
Request. Furthermore, instead of forwarding the first received Route Request, a
node collects a number of Route Requests and then randomly chooses the one to
be forwarded.

RAP uses HORS [133] and the constructions of BiBa [123] as a fast one-time
signature mechanism. HORS, designed by Reyzin and Reyzin as an improvement
on BiBa, is a one-time signature scheme i.e. a signature scheme that can be used
once or a small number of times. The characteristics of HORS are a short signa-
ture and very fast signature and verification, hence its suitability for multicast and
broadcast authentication.

SAR (Security-Aware ad hoc Routing) [163] is a modification of a traditional,
non-secured route discovery protocol (like AODV, DSR, or ZRP) to include the
security level of a node into routing metrics. The nodes are organized in a trust
hierarchy; a number is associated with each privilege level and represents the se-
curity/importance/capability of a node. RREQ and RREP packets are encrypted,
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and a cryptographic key is assigned to each level; this can be obtained by setting
the key length so that it is proportional to the requested level of security. In this
manner, packets are routed only through safe nodes; nodes without the required
security rank cannot even read the control packets and must therefore drop them.

Lee et al. [96] suggest securing DSR by adding two new control messages:
Route Confirmation Request (CREQ) and Route Confirmation Reply (CREP). These
messages are used as a confirmation in the RREQ/RREP route discovery mecha-
nism.

When an intermediate node replies with a RREP, the protocol requires that it
sends a CREQ to its next-hop node towards the destination. Then the next-hop
node, if it has a route to the destination in its cache, replies with a CREP to the
source of the RREQ. Hence, the source node can verify the validity of the obtained
route by comparing the RREP with the CREP.

This mechanism does not use cryptography, and consequently is still vulnera-
ble to message tampering and identity spoofing.

Buttyán and Hubaux propose two mechanisms to improve service availability
on an open network. Packet forwarding consumes the battery energy of a node;
therefore, a node may be tampered with, or simply switched off, by its participating
user so as not to provide this service.

The first mechanism [21] introduces an abstract currency called beans. This
currency is paid by the originator of a packet to the forwarding nodes for the for-
warding service (Packet Purse Model), or exchanged for a packet which will be
sold to the next hop for a higher price (Packet Trade Model). The motivation of
nodes to earn stimulates cooperation and avoids node selfishness. A PKI is used to
guarantee authentication and establish secure communications.

In the second mechanism [22] a tamper resistant security module, embedded in
each node, maintains a nuglet counter which is decreased when the node originates
a packet and increased when the node forwards a packet. A node’s cooperation is
ensured by requiring that the value of the counter must remain positive.

Privacy is often not of primary importance in routing, and secured routing pro-
tocols are more focused on providing other security goals; for this reason it is worth
mentioning the PPR (Privacy Preserving Routing) protocol [154], which is aimed
at protecting nodes’ identities.

4.3 Secured versions of OLSR

Among the security solutions examined up to now, only a few could be applied
or adapted to OLSR. For instance, SAODV is based on AODV and is aimed at
protecting the route discovery mechanism, which in a proactive routing protocol
such as OLSR would not make sense. The purpose of TIK is primarily to provide
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defense against the wormhole attack; furthermore, this protocol requires a tight
synchronization between nodes, which is not easy to obtain in an ad hoc environ-
ment. The MAE architecture can be applied to OLSR, as well as to other routing
protocols; however, our aim is to find a dedicated security architecture that can be
interfaced with the functioning of OLSR so that the OLSR mechanisms are fully
exploited. For instance, a clever use of the OLSR Duplicate Set can permit a loose
synchronization: we illustrate this in our security solution for OLSR, discussed in
Chapter 5.

In this section we give an overview of other security solutions explicitly de-
signed for OLSR, as found in the literature.

4.3.1 Packet protection

Secure OLSR [60], a proposed technique for securing OLSR, involves protection
and hop-by-hop check of a whole packet. A digest is computed by the forwarder
node, added to the OLSR packet, and verified by the next-hop node. This allows
the digest to encompass mutable fields such as the Time To Live or the Hop
Count. The digest is added in the form of a control message, and includes a
timestamp. The algorithm used to digest the packet is SHA-1 with a secret shared
key. Time synchronization is done through a challenge-response mechanism, via
dedicated control messages.

SOLSR [64] protects the traffic by adding a packet signature, while using hash
chains to secure the Time To Live and Hop Count mutable fields. It also
implements a defense against the wormhole attack. A node sends probe packets
to measure their travel time, from which it can compute the travel distance. Then
the node evaluates this distance: if it is greater than the transmission range, the
message may have been tunneled through a wormhole.

4.3.2 Message protection

There is a recent proposal of a secured OLSR protocol [78] that uses both symmet-
ric and asymmetric keys. Nodes mutually authenticate using public key cryptogra-
phy, performing re-authentication when moving to another neighborhood. During
the authentication, nodes share two symmetric keys: a circle key, utilized among
neighbors only, and an ad hoc key, utilized in the whole network. A MAC is
computed with the circle key and added to control messages to ensure message
integrity. Nodes periodically renew both keys, and the new key is distributed after
being encrypted with the old key; for this purpose, the new ad hoc key is included
in TC messages.

4.3.3 Trust Metric Routing

Winjum et al. [159, 160] propose an extension for OLSR that uses Trust Metric
Routing. The concept of Trust Metric Routing is to divide the network into dif-
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ferent security domains, where only nodes belonging to the same domain share
intra-domain security parameters like keys and such. A user may choose to route
packets through trustworthy routes, which are fully contained in the same domain,
or ordinary routes, which spread over multiple domains. To this end, two routing
tables are maintained by each node: an ordinary routing table calculated with the
standard shortest path algorithm, and a trustworthy routing table calculated using
trust parameters and showing only intra-domain routes. The information about the
trust level of a link or route is integrated and exchanged in control messages.



Chapter 5

The OLSR signature message

We design here an infrastructure [4, 2] to protect OLSR. A prototype of this infras-
tructure has been built for an INRIA contract with the DGA CELAR, the French
government agency for weaponry. This framework can operate with either sym-
metric or asymmetric keys. To prevent malicious nodes from injecting incorrect
information into the OLSR network, an additional security element is generated
by the originator of each control message and transmitted with the control mes-
sage. For the sake of simplicity, in this chapter we call the additional element a
“signature” even if in the case of a shared symmetric key it should, more properly,
be called a “digest”. A timestamp is associated with each signature in order to
estimate message freshness. Thus, upon receiving the control message, a node can
determine if the message originates from a trusted node, or if message integrity is
preserved.

Signatures are, inherently, separate entities from OLSR control traffic: while
OLSR control messages answer the purpose of acquiring and distributing topolog-
ical information, signatures serve to validate information origin or integrity. For
this reason we implement the signature as a separate type of OLSR message (called
SIGNATURE message), instead of appending the timestamp and the signature to
the control message. The resulting signature message is considered and handled
like any other OLSR standard message. Furthermore, while this implementation
slightly increases the total message size, it does not involve considerable modifica-
tions to the standard OLSR protocol as it uses the standard format for the control
messages.

5.1 Specifications

For each control message (HELLO, TC, MID, or HNA) generated, a corresponding
SIGNATURE message is generated, and sent in the same packet containing the
control message, immediately before it. Signatures are used by a receiving node
to authenticate the corresponding OLSR control message: every control message
without a matching corresponding signature is dropped.
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In our architecture, a signature purports to a message, not to a whole packet.
It is not possible to sign or digest a whole OLSR packet because it may change in
transit between one node to another. This is because a packet may contain TCs,
which are flooded in the network, as well as HELLOs, which are not forwarded
further. Hence after a few hops the packet might no longer bear a valid signature,
because it was computed on the original packet.

A remedy to the payload change problem would otherwise be to check the
signature on a hop-by-hop basis (with re-computation of the signature at each hop)
instead of an end-to-end check. However, signing a OLSR packet would also have
profound implications with respect to accountability in the case of a compromised
node: as many nodes repeat the TC messages that are diffused by MPR flooding,
if a message is found to be incorrect, any of the nodes which repeated it might be a
compromised node. When the authentication is per packet, it may only be deduced
that the compromised node is part of the (previously) trusted network. When the
authentication is per message, the node originator of the message is easily identified
as the origin of the faulty information. For these reasons, the logical conclusion
for the choice of a packet signature algorithm would be a digest computed with a
symmetric shared secret key for the whole group of nodes, protecting the messages
on a per-group basis, and not offering the possibility to check which node sent
a specific message. This very architecture has in fact been proposed [60]. The
advantage of this option is that it makes it possible to include the TTL and Hop
Count, which are mutable fields, in the digest.

We decided on the choice of signing single messages also because it permits
switching to an asymmetric algorithm with minimal changes and effort. Moreover,
this architecture is better compatible with the standard OLSR, as signature check-
ing can be turned off if bandwidth is needed and security requirements become
looser.

The control message and its SIGNATURE message are sent in the same OLSR
packet in order to simplify handling of the messages: the packet contains first the
SIGNATURE message, then immediately after the control message it purports to.
(If these messages were not sent in the same packet, their order of arrival could not
be guaranteed. Therefore each node would need a buffer to temporarily store them
after reception, before trying to couple them.)

The difficulty posed by handling long packets that exceed the MTU is solved as
follows. The control message may be fragmented if necessary, so that the control
message and its SIGNATURE are smaller or equal to the MTU of the network.
If the control message is fragmented, an independent SIGNATURE message must
be computed and assigned to each fragment. Fragmentation may also be used for
messages that are waiting in the relaying queue, in order to insert these messages
in the packet ready to be sent. Note that is not strictly necessary to consider the
MTU of the network (i.e. the minimum bound of the MTUs of all the link pairs
in the network): in fact, for fragmentation of HELLO messages, only the MTU
size of the sender-receiver link needs to be considered, because HELLOs are not
forwarded further. For simplicity, however, we always consider the network MTU
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in the fragmentation rule.1

A unique OLSR packet may contain more than one pair of control message
and SIGNATURE message, provided that the payload contains a SIGNATURE
immediately before its companion control message, in this exact order.

5.1.1 Format of the signature message

The SIGNATURE message is encapsulated and transmitted as the data portion of
the standard OLSR packet format described in Section 1.4.4.

The Message Type field is set to the SIGNATURE constant value; this value
may also include information about the cryptographic primitives and keys to use.
The Time To Live and Vtime fields are set to the values of the Time To
Live and Vtime fields of the message with which the signature is associated.
The other fields of the message header are set as usual.

Extended version

An old version [2] of the SIGNATURE message is shown in Figure 5.1. The
message carries a MSN Referrer field in order to identify bijection between a
control message and its SIGNATURE message.

The Sign. Method field specifies which method, among a predefined set,
is being used to generate the signature. This includes information about keys,
cryptographic functions, and timestamp algorithms.

The Reserved field is used for padding, to make all fields 32 bit aligned. It
is set to 0 and reserved for future use.

The MSN Referrer field of the SIGNATURE message contains the value
of the Message Sequence Number of the control message with which this
signature is associated. The correspondence achieved by the Message Sequence
Number is unique only if possible overflow and wraparound of the 16-bit field is
disregarded; however this is not a problem, since a node uses further signature (and
timestamp) verification to check the correspondence between the control message
and the signature message.

The Timestamp and Signature fields are the same as in the actual version
of the message.

The approach implemented in the previous version makes it unnecessary to
send the SIGNATURE message and its associated control message in the same
packet, as the messages could be reordered and re-associated later. However, this
means that every node would need to store the received messages (control and
signature messages) in a buffer. This requires more system resources and is more
prone to failure and DoS attacks (regarding control messages whose signature is
lost, or vice versa). Furthermore, delay is unfavorable when a message and its

1In IEEE 802.11b a data link frame may carry up to 2304 bytes. This gives a MTU of 2272 bytes
for IPv4 addresses, not considering IP, UDP, and OLSR packet headers [127].
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sign. Method | Reserved | MSN Referrer |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Signature :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 5.1: Old version of SIGNATURE message format.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Signature :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 5.2: SIGNATURE message format.

signature are not aggregated in the same packet [158]. This approach was hence
abandoned in favor of the actual simplified version.

Simplified version

The actual format of a SIGNATURE message is specified in Figure 5.2.
The Timestamp field contains the timestamp itself, measured in seconds.

This is the timestamp of both the SIGNATURE message and the associated control
message. For compatibility reasons, the timestamp is 32 bits long and represents
the standard Unix time, which is encoded in a 32-bit signed integer2 data type. The
Unix time measures the time elapsed in seconds since 00:00:00 UTC on January 1,
1970.

The current time is obtained from the node’s internal BIOS clock. The BIOS
clock has a linear drift of about 1 sec/day, which can therefore be corrected via an
algorithm. See Section 7.2 for an empirical study on time synchronization tech-
niques.

The Signature field contains the signature, computed on the sequence of
bits made from the following fields:

2Or a 64-bit signed integer in the newer versions of Unix.
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� the message header (80 bits) of the control message, excluding the Time
To Live and Hop Count fields. These fields are not considered in the
signature computation because they are modified while the message is in
transit (the Time To Live is decreased by 1 and the Hop Count is in-
creased by 1 at each hop), and subsequently the signature of the message
would be invalidated;

� the control message (which has a variable size);

� the message header (80 bits) of the SIGNATURE message, excluding the
Time To Live and Hop Count fields;

� the Timestamp field (32 bits).

5.1.2 The timestamp

The criterion to verify whether a timestamp is stale is � Timestamp � � � � ��� � ,
where

��
is the current time at the receiving node and

� �
is the accepted value for

discrepancy, including the difference in the synchronization of clocks.
A strict clock synchronization of the nodes is not necessary; the timestamp is

used to disambiguate possible wraparound of the Message Sequence Number. The
synergy of timestamp and Message Sequence Number in every message is used to
check the freshness of the message, and wraparounds of Message Sequence Num-
ber are a rare event. In fact, counting a time interval of 2 seconds for HELLOs and 5
seconds for the other control messages (standard OLSR values), and the Message
Sequence Number field being 16 bits long, wraparounds of the MSN occur no
more frequently than every 16 hours for the standard OLSR or 8 hours for the
secured OLSR.

However, the synchronization must not be coarser than the lifetime of the Du-
plicate Set; in fact, a Duplicate Tuple is deleted from the Duplicate Set when it is
30 seconds old (DUP_HOLD_TIME constant), and a node may be subject to the
possible replay of a message that has the same MSN as that of a deleted Duplicate
Tuple.

In our CELAR implementation, we let
� � �

DUP_HOLD_TIME/2.

5.1.3 The signature algorithms

Our security architecture [4] relies on the use of asymmetric cryptography. An
offline Certification Authority has the duty of assigning an identity-based key pair
for each participating node. Before joining the network, a node contacts the Cer-
tification Authority through a secure channel, and obtains a global key. The node
also generates a key pair, and diffuses its public key (local key) to the network via
a specific key exchange protocol: it originates Key Distribution messages, signed
with its global key, that are spread by pure flooding. From this point on, the node
uses its local key to sign its control messages.
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Key type Elliptic curve Signature size Security

Global key (CC)
��� ��� � ����� � � � 	 ��
 �� ��� ��� � ������� � � � 80 bits' � � � � � ���

��� � � ��

(4104 bits) � RSA 1024

� � � � � � �

Local key (BLS)
��� ��� � � � � 	���
 � � � ��� �"! �

very low' � � � � ��� � � ��

(64 bits)

� � � � � �$# �

Table 5.1: Elliptic curve parameters for global and local keys.

Key type and operation 486 P3 P4

Global key, signature (CC)

"% 	'& �)( 
 � � � 	'* 
 ( 
 � � � 	 � * ( 
 � �

Global key, verification (CC) +,+ 	'& �)( 
 � � � 	 
 � ( 
 � � 
 	 � % ( 
 � �

Local key, signature (BLS)
& � 	 � � 
 	 
 � � 	-# %

Local key, verification (BLS)
#.& 	 � � 
 	'* + � 	 + �

Local key, Weil pairing + 	 % & � 	 � % � 	 
 �

Table 5.2: Benchmarks for operations on global and local keys (msec).

This implementation utilizes identity-based Cha-Cheon signatures [25] (pair-
ing based) for the global keys, and Boneh-Lynn-Shacham short signatures [17] for
the local keys. In both cases, a Weil pairing is used on supersingular elliptic curves
of embedding degree

� � 

, with the family of curves proposed by Koblitz and

Menezes [89]. The parameters are shown in Table 5.1. The implementation has
been tested on an Intel i486 133 MHz, on an Intel Pentium III 1 GHz, and on an
Intel Pentium 4 2.8 GHz, giving the results shown in Table 5.2. These solutions
must be seen as prototypes, as the figures show that size of global keys is sufficient
to ensure some degree of security but the computation is slow, while local keys
have fast computation times but small size (insecure).

5.1.4 Applicability to control messages

It may be discussed whether it is appropriate to sign every type of control message,
or just some types. In the first case, there would obviously be a larger overhead. As
the primary purpose is to protect the network topology, it is mandatory to choose
to associate a signature to control traffic messages (HELLO and TC) only. We de-
cided nonetheless to sign even the other OLSR control messages (MID and HNA),
in order to avoid false information about multiple interfaces being spread over the
network.
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5.1.5 Optional features

As previously said, the Time To Live and Hop Count fields in the message
headers cannot be included in the signature computation, since these fields change
at each hop of the message and this would interfere with the correct verification
of the signature by the receiving node. This unfortunately leaves the door open
to an attack where an adversary relays tampered messages whose TTL has been
set to 0 or 1 or, more generally, to a lower value than the original. This weak-
ness can be overcome by ignoring the Time To Live field, and referring to the
Timestamp field (which is protected by the signature) to limit the forwarding
radius of the message.

We recall that, in order to make flooding more robust, it is possible to allow
each node to select two (or even more) MPRs to cover all its 2-hop neighborhood,
by setting an appropriate MPR_COVERAGE constant. Redundant MPR cover-
age will be, of course, at the expense of MPR flooding efficiency. This remedy
can also be used to cure blackhole attacks and incorrect MPR selection from ma-
licious nodes; incorrect selection of MPRs is also sometimes performed by legiti-
mate nodes as an effect of wrong topology spread by malicious nodes, as explained
in Section 3.2.

5.1.6 Interoperability with standard OLSR

This security architecture is not interoperable with the standard OLSR. Non-secured
nodes, i.e. the nodes which do not have the ability to check the signature (because
of limited computing power or non-knowledge of the key), may simply drop SIG-
NATURE messages upon reception. However, their unsigned control messages
would be dropped by secured nodes. This means that secured nodes could not re-
ply to HELLO messages from non-secured nodes, therefore no symmetrical link
and subsequently no MPR relationship could be created between secured and non-
secured nodes. As a result, there would be two disjoint networks, one composed of
secured nodes and the other composed of non-secured nodes. The secured nodes
would totally ignore messages from non-secured nodes, while non-secured nodes
would process messages from secured nodes but only to create asymmetrical links
which disappear shortly thereafter. The coexistence of the two networks would
only have the effect of producing a larger bandwidth consumption.

5.2 Modifications to the standard OLSR protocol

Securing the OLSR protocol involves modifying some parts of its basic function-
ing.
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5.2.1 Sending a signed control message

In brief, to compute a signature corresponding to a control message, the following
protocol is used:

1. the node creates the control message;

2. the node retrieves the current time, and writes it in the Timestamp field;

3. the node computes the signature, and writes it in the Signature field;

4. the node puts the SIGNATURE message and the control message in the
packet, in this exact order.

Then, the node sends the packet, or repeats the protocol for another control
message before sending the packet.

5.2.2 Changes to the Duplicate Set

The Duplicate Set of the standard OLSR is modified to include a new field � _
� ����� � ��� � '

.
This field stores the value of the Timestampfield, once the matching between the
SIGNATURE message and the control message has been found. The � _

� ����� � ��� � '
field is filled with the same value for the control message and its SIGNATURE.
Incoming messages are recorded in the Duplicate Set as usual.

5.2.3 Receiving and checking a signed control message

Upon receiving a control message with its SIGNATURE message, a node pro-
cesses both. The protocol is outlined as follows:

1. the node processes the SIGNATURE message, checking the timestamp, and
keeps the SIGNATURE in memory;

2. the node checks the signature of the control message;

3. if the timestamp is fresh and the signature is valid, the control message is ac-
cepted and processed according to the standard OLSR specifications for the
message type. If not, both the control message and SIGNATURE message
are dropped.

To fit the secured infrastructure, some modifications also need to be made to
the packet processing algorithm described in the standard specifications [31]. We
briefly describe these modifications. A receiving node must process an incoming
packet following this algorithm:

1. if the packet contains no messages, silently drop the packet;
(As in standard OLSR)
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2. if the TTL of the message is
� � , or if the message was sent by you, silently

drop the packet;
(As in standard OLSR)

3. processing condition:

(a) if there exists a tuple in the Duplicate Set where � _
������� �

Originator
Address and � _

� ���
_ ��� � �

Message Sequence Number and
� _
� ����� � ��� � ' �

Timestamp, then do not process this message be-
cause it has already been processed;

(b) else process the message according to its Message Type.
If the message is a SIGNATURE, then

i. if the timestamp (from the Timestamp field) is fresh, then main-
tain the SIGNATURE message (with its header) in memory. Oth-
erwise, drop the message and erase its Duplicate Tuple from the
Duplicate Set;

Else if the message is of another Message Type that you implement,
then

i. if the Message Sequence Number of the message
�
Message

Sequence Number of the SIGNATURE in memory
� 


, then
continue. Otherwise, drop the message and erase its Duplicate Tu-
ple from the Duplicate Set;
(This step is optional)

ii. if the computed signature (from the Signature field) is valid,
then flush the SIGNATURE message from memory, and process
the message according to the standard OLSR specifications. Oth-
erwise, drop the message and erase its Duplicate Tuple from the
Duplicate Set;

4. forwarding condition:

(a) if there exists a tuple in the Duplicate Set where � _
������� �

Originator
Address and � _

� ���
_ ��� � �

Message Sequence Number and
� _
� ����� � ��� � ' �

Timestamp and the receiving interface address is
listed in � _

�
	 ��� �
_ � � � � , then do not retransmit this message because it

has already been considered for forwarding;

(b) else forward the message according to its Message Type, or to the stan-
dard forwarding algorithm if you do not implement its Message Type.
(As in standard OLSR)

Erasing the Duplicate Tuple purporting to bad messages (i.e. with a stale time-
stamp or an invalid signature) ensures that only good messages in the Duplicate
Set are kept track of. This to avoid a DoS attack carried out by a malicious node
that floods the network with junk messages not coupled to a signature message (or



68 THE OLSR SIGNATURE MESSAGE

Incorrect
traffic

generation

Incorrect
traffic

relaying

ANSN attack

Incorrect MID/HNA generation

link spoofing

ID spoofing

link spoofing

ID spoofing
Incorrect HELLO generation

Incorrect TC generation

MPR attack

Wormhole attack

Replay attack

Blackhole attack

Message tampering

Message bombing and other DoS

SIGNATURE

✔

✔

✔

✔

✔

✔

✔

✔

✔

Table 5.3: Protection offered from different OLSR attacks in absence of compromised
nodes.

coupled to an invalid signature message). These junk messages fill the Duplicate
Set of receiving nodes, therefore causing receiving nodes reject valid messages that
bear the same MSN as a previously received junk message.

5.3 Resilience

Adding a digital signature to all control messages guarantees message authenti-
cation or integrity, as unsigned control messages coming from alien nodes are
discarded. Table 5.3 shows the resilience of this security architecture to attacks,
provided that any node owning a key respects the protocol (i.e. there are no com-
promised nodes; for a discussion on compromission of nodes, please refer to Chap-
ter 8).

5.4 Overhead

Here we evaluate the transmission overhead of this signature protocol, compared
to the standard OLSR. To give an example, we use two cryptographic schemes:
a symmetric algorithm, HMAC-MD5, which results in a 128-bit digest; and an
asymmetric algorithm, DSA, which results in a 320-bit signature. We do not take
into account the computation overhead, i.e. the time expended in signature gener-
ation and verification, as they are machine-dependent. The computation speed is
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evaluated in Section 6.2.1.

5.4.1 Message sizes for the standard OLSR

The size of a HELLO message varies depending on the number of advertised neigh-
bor nodes and on their link/neighbor status. This is because neighbors of the same
link/neighbor status are listed under the same group of Neighbor Type and Link
Type (identified by the Link Code field), and 32 bits are added for each new
advertised group. There are 11 valid values for the Link Code field as combina-
tions of Neighbor Type and Link Type.

Therefore, the length of a HELLO message varies greatly depending on net-
work density, neighbors’ distance, and nodes’ speed. This makes difficult choosing
a sample. For instance, we may speculate that, amongst � advertised neighbors, the
number of different link/neighbor status is half of the number of advertised nodes,
obtaining the following function for the “common” HELLO size:

& � � # % � bits.
We observe that the size of a HELLO message advertising � neighbor nodes is

bounded by the following limits:
� minimum HELLO: �

# � & � � bits

� maximum HELLO:
& � � � # � bits if � � 
,
 & % # � & � � bits if ���


,


From these numbers we can compute (as an arithmetic mean) the average size of a
HELLO:

� average HELLO:
# % � # % � bits if � � 
,
 �,� # � & � � bits if ���


,


The average OLSR neighborhood counting from 9 to 12 nodes, we can re-average
the results to obtain a linear function. We are conscious that this gives a roughly
approximated value, however it is sufficient to give an idea of the message size.
(This value coincides with the “common” HELLO function for � �


 &
.)

We obtain the following result:

HELLO:

 &
�
� # � � bits

The size of a TC message advertising � neighbor nodes is:

TC:
& � � & � � bits

These are the sizes of each control message, without the message header. Consid-
ering also the IP header (160 bits), the UDP header3 (64 bits), and the OLSR packet
header (32 bits + 96 bits per message), the resulting packet lengths including all
headers are:

HELLO (packet):
# %,% � # � � bits

TC (packet):
& % # � & � � bits

These are the sizes of a packet containing only one HELLO or TC. We assume that
the IP datagram is not fragmented, and that node addresses are in IPv4 format.

3OLSR packets are communicated using UDP, port 698.
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5.4.2 Message sizes for OLSR with signatures

The SIGNATURE message being 32 bits in size plus the size of the Signature
field, the sizes of a packet containing a signed HELLO/TC message are:

HELLO + SIGNATURE HMAC-MD5 (packet): + #,# � # � � bits
HELLO + SIGNATURE DSA (packet): �

&
�
� # � � bits

TC + SIGNATURE HMAC-MD5 (packet): �
# � � & � � bits

TC + SIGNATURE DSA (packet):
% & � � & � � bits

We assume that each HELLO/TC message and its companion SIGNATURE mes-
sage are sent together in the same OLSR packet, and that the packet does not con-
tain other messages. This is a “worst case” scenario, as including more control
messages in the same packet, along with the signatures of these messages, would
reduce the overhead.

Figure 5.3 and Figure 5.4 show the diagrams comparing the packet overhead,
full headers included, for unsecured and secured HELLO/TC messages. The fig-
ures compare the size (drawn as a line for better readability) of a packet containing
a HELLO/TC with the size of a packet containing a HELLO/TC plus its SIGNA-
TURE.

5.4.3 Flowrates

An estimation of a node’s flowrate, for both the standard OLSR and OLSR with
signatures, gives the following figures:

Standard OLSR: 558 bit/sec
OLSR with HMAC-MD5 SIGNATURE: 738 bit/sec
OLSR with DSA SIGNATURE: 872 bit/sec

We utilize as model a node advertising 9 neighbors (an average neighborhood size)
in its HELLO/TCs. The node broadcasts a HELLO every 2 seconds, and a TC
every 5 seconds. The model assumes that the node has one interface, so that MID
and HNA messages are not emitted. Each OLSR packet contains one HELLO
or TC; plus, in the secured version, its associated SIGNATURE message. These
values include the computation of IP, UDP, and OLSR packet headers, with all the
assumptions made above.

5.4.4 Comparison with other solutions

We analyse here the overhead for a whole OLSR packet containing a HELLO,
comparing the overhead of OLSR with SIGNATURE with that of other security
solutions: Secure OLSR [60] and MAE [128]. Results are shown in Table 5.4.
We assume an average neighborhood of 9 nodes. The results for MAE concern
messages not including CERT objects. A quantity of 352 bits has been added to
the figures regarding MAE to include the IP, UDP, and OLSR packet headers; these
figures are given for a network from 10 (min) to 1000 (max) nodes [127].
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Figure 5.3: Diagram of HELLO message overhead.
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Protocol Key type HELLO size (bits)

Standard OLSR – 848

OLSR with SIGNATURE
HMAC-MD5 1004
DSA 1296

Secure OLSR [60] HMAC-SHA1 784

MAE [128]
512-bit RSA Certificate 1192 min, 5176 max
2048-bit RSA Certificate 2728 min, 6712 max

Table 5.4: Comparison of message overhead for standard and secured OLSR.



Chapter 6

Cryptosystems for the ad hoc
environment

Once that the security architecture has been designed in terms of which routing
protocol to use, it is necessary to precise the requirements that a cryptographic
infrastructure must satisfy in order to be usable.

As illustrated in Section 2.1, symmetric cryptography is fast and light for en-
cryption and digesting, while asymmetric cryptography is efficient for signature
and multiple key management.

Asymmetric algorithms offer many advantages in the securing process of an
ad hoc network. However, these ciphers are unsuitable when the nodes are unable
to verify asymmetric signatures quickly enough, or when network bandwidth is
insufficient.

6.1 Requirements

In a generic way it is desirable that the signature algorithm used in ad hoc networks
has these characteristics:

� a short signature (in bits), to minimize message overhead;

� a fast signature verification time, to prevent an intruder perform a DoS attack
just by sending a large number of false signatures;

� verification faster than signing, because a message generated and signed by
one node has to be verified by several (or all) nodes in the network;

� low complexity, because of the CPU power limitation of nodes in a mobile
ad hoc network.

The same applies for a hashing algorithm, with the remark that generation and
verification of the digest are the same operation.
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An extremely strong algorithm is usually not required; the algorithm should be
strong enough only to protect the exchanged messages until the next key renewal.
In this point of view, a smaller key may be suitable.

6.2 Algorithm analysis

Choosing which cryptographic scheme to use for the protection of the messages
is not an easy task. The choice depends largely on the requirements: whether we
want to identify messages from each node (i.e. ensure non-repudiation) or just
guarantee the integrity of messages – hence if we have to use asymmetric key pairs
or just a symmetric key; available techniques for key distribution; computational
complexity; robustness against different kind of cryptanalysis; size of the signature
or digest; required time for signature generation and verification, or digest gener-
ation; and more. Furthermore, once the requirements are set, an algorithm can be
carefully implemented in software and/or dedicated hardware in a way to perform
better than another. With this in mind, comparing the different known algorithms
has sense only if all-purpose hardware is employed. The cipher should be chosen
once the requirements are clear, and while looking both at the algorithms and the
software and hardware available.

Asymmetric algorithms eligibles for use in ad hoc networks may include RSA,
DSA, and ECNR. If a symmetric cipher must be used instead, a good choice would
be HMAC with MD5 or SHA-1, i.e. HMAC-MD5 or HMAC-SHA1. Note that the
MD5 hash function has been broken i.e. collisions have been found [36, 109, 156];
however, this does not compromise the security of HMAC-MD5.

6.2.1 Benchmarks

For informational use, we publish a list of benchmark tests on the Crypto++ 5.2.1
Library1, a free C++ class library of cryptographic schemes. The speed results for
the different ciphers are shown in Table 6.1, and signature/digest lengths of these
ciphers are shown in Table 6.2.

We ran the benchmarks on the following machines: Intel i486 133 MHz, Intel
Pentium III 1 GHz, and Intel Pentium 4 2.8 GHz. All benchmarks were computed
on algorithms compiled with gcc 3.x.x and ran under Linux, kernel version 2.4.
Columns marked with a � are relative to the optimized version of the Crypto++
Library, compiled with the gcc -O9 flag.

The following notes are excerpted from Crypto++’s documentation.
Schemes marked with the symbol � use precomputation; values are looked up

from a table of 16 precomputed powers of each fixed base to make the exponenti-
ation operation faster.

The implementations of RSA and ECNR follow the IEEE P1363 [76, 77] stan-
dard. RSA uses 17 as the public exponent, while DSA uses a 160-bit long value

1http://www.cryptopp.com
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Operation 486 486 � P3 P3 � P4 P4 �
RSA 1024 sig 570.00 380.00 13.51 8.62 7.30 5.13
RSA 1024 ver 27.78 12.50 0.66 0.28 0.32 0.16
DSA 1024 sig 212.00 168.33 4.81 3.72 1.63 2.46
DSA 1024 sig � 120.00 75.71 3.01 1.68 1.08 1.05
DSA 1024 ver 230.00 191.67 5.26 4.13 2.16 2.86
DSA 1024 ver � 193.33 113.33 4.57 2.81 1.81 1.65
ECNR GF(p) 168 sig 386.67 228.00 9.52 5.65 3.57 2.77
ECNR GF(p) 168 sig � 210.00 108.00 5.75 2.96 2.11 1.39
ECNR GF(p) 168 ver 755.00 436.67 20.83 11.76 7.46 5.41
ECNR GF(p) 168 ver � 356.67 186.67 9.35 5.05 3.69 2.44
ECNR GF(

� � ) 155 sig 1170.00 255.00 35.71 9.35 11.49 4.57
ECNR GF(

� � ) 155 sig � 356.67 92.73 10.75 2.98 3.44 1.47
ECNR GF(

� � ) 155 ver 1470.00 322.50 45.22 11.76 14.49 5.81
ECNR GF(

� � ) 155 ver � 620.00 162.86 19.61 5.26 6.06 2.51
HMAC-MD5 HELLO 6.15 ( 
 � 
 � 1.28 ( 
 � 
 � 0.19 ( 
 � 
 � 0.07 ( 
 � 
 � 0.03 ( 
 � 
 � 0.03 ( 
 � 
 �
HMAC-MD5 TC 4.58 ( 
 � 
 � 0.95 ( 
 � 
 � 0.14 ( 
 � 
 � 0.05 ( 
 � 
 � 0.02 ( 
 � 
 � 0.02 ( 
 � 
 �

Table 6.1: Benchmarks for different ciphers (msec/op).

Algorithm Signature

RSA 1024 1024
DSA 1024 320
ECNR GF(p) 168 336
ECNR GF(

� � ) 155 310
HMAC-MD5 128

Table 6.2: Signature length of different ciphers (bit).
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for
�
. ECNR is done over the Galois field GF(p) and GF(

� � ): operations in GF(
� � )

are accomplished using trinomial basis and, compared to the other algorithms,
Crypto++’s implementation of ECNR over GF(

� � ) is less optimized.
The generation of a HMAC-MD5 hashing is done over an average HELLO and

TC signed message advertising 9 neighbors, as reported in Section 5.4.

6.3 Key management

With reference to the problematics explained in the previous chapters, asymmet-
ric cryptography appears to be an efficient model under many aspects. However,
applying this model to an ad hoc network raises several questions and difficulties.
This because the deployment of a Public Key Infrastructure includes the creation of
a system for key distribution, which is often incarnated under the form of a central-
ized Certification Authority. However, the dependence by a centralized authority
does not match very well the architecture and philosophy of an an ad hoc network,
where all nodes are independent and mobile. For instance, it is highly unlikely that
any node is able to connect to the CA at any time. Furthermore, a centralized entity
raises a problem concerning network weaknesses; this constitutes in fact a vulner-
able point, which opens the door to Denial of Service attacks or compromission
of the entire network. This is a problem in itself, and even in a wired network the
solution is not trivial. The state of the art includes several solutions that have been
proposed for key management, as an alternative to a centralized TTP.

6.3.1 Threshold cryptography

The burden of a Certification Authority may be shared amongst many parties by
using threshold cryptography [143, 90]. Very first threshold schemes have been
studied by Shamir [141].

A
� � ��� � threshold cryptography scheme (with � � �

) allows � parties to share
the ability to perform a cryptographic operation, such as a digital signature, which
can be done jointly by any

�
parties, where the same operation is infeasible for a

group of
� � 


or less parties. For a network of � or more nodes, the CA’s secret
key is divided into � shares, and each share is assigned to a node of the network.
Each of the � nodes then compute a partial signature for a certificate and submit
its partial signature to a “combiner” node; after receiving

�
partial signatures, the

combiner is able to generate a correct signature for the certificate. This scheme
therefore tolerates up to

� � 

compromised nodes.

A share refreshing system [165] allows the nodes to regenerate new shares,
protecting the network against an attacker that may compromise more than

� � 

nodes, one after each other, over time. Another optimization called dynamic coa-
lescing [100] deals with the problem of contacting enough nodes at the same time
in an ad hoc network, whose topology is by its very nature constantly mutating.
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The threshold cryptography scheme has been implemented in a wired environ-
ment with the COCA (Cornell Online Certification Authority) framework [166]
and in an ad hoc wireless network with MOCA (MObile Certification Authority)
[162]. There exists also an implementation for the OLSR framework [34].

6.3.2 Self-organized PKI

Čapkun et al. propose a public-key management system [151, 69] in which no CA
exists: certificates are issued by the users themselves, which build and maintain
a local certificate repository. For

�
to verify the authenticity of

�
’s public key,�

must try to find a certificate chain from
�

to
�

in the repository build up from
the merging of

�
’s and

�
’s local repositories. This infrastructure is based upon

the analysis [152] of the PGP [167] certificate graph (web of trust). The PGP trust
graph exhibits the small-world property, i.e. it has a small diameter and is highly
clustered.

6.3.3 Identity-based cryptosystems

Identity-based encryption (IBE) [47] is a form of public key cryptography in which
the public key of any participant is derived from the identity, or any other intrinsic
quality, of the participant itself. For instance, the public key of a node can be
its IP address. In this way there is no need for a CA, as a public key is bound
unambiguously to a specific participant. Identity-based encryption has also other
interesting properties, such as simplifying key revocation, key delegation, and user
credentials management.

Identity-based encryption requires nonetheless the presence of a Trusted Third
Party, called Private Key Generator (PKG), which firstly generates the master key.
A node communicates via a secure channel with the PKG, requesting the private
key corresponding to its identity – its IP address in the previous example. The node
can afterwhile use its private key to decrypt messages sent to it.

Shamir was the first to concoct identity-based cryptosystems [142]. After him,
Boneh and Franklin [16] designed an efficient and secure IBE scheme, which was
further ameliorated by Lynn [101] with the addition of message authentication.
Lynn’s scheme guarantees that the integrity of the message is preserved, serving as
a digital signature scheme.

6.3.4 Imprinting

Perhaps the easiest solution at all is to require that a node accepts a key only at
the bootstrap, possibly manually (by direct contact). This is called imprinting by
Stajano and Anderson [144], with reference to ethology: imprinting is the phe-
nomenon which makes a duckling emerging from the egg choose the first seen
animated object as mother. Another system for key renewal can subsequently pre-
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vent keys becoming stale. This solution is used by Balfanz et al. to provide pre-
authentication on a location-limited wireless channel [7].

6.3.5 Probabilistic key distribution

Some schemes relies on probabilistic key distribution methods on a distributed
environment to establish pairwise keys [41, 97]. In these schemes, each node picks
up randomly a certain number of keys from a key pool, so that any pair of nodes
has a certain probability to share at least one same key.

6.3.6 Diffie-Hellman key agreement

In a key agreement protocol, two (or more) parties derive a shared secret key from
information contributed by each party and exchanged over a channel that does not
need to be secure. Eavesdropped information does not lead to disclosure of the
secret key.

The Diffie-Hellman key agreement protocol [35] is the first public key algo-
rithm invented. Its security comes from the fact that computing exponentiation in
a finite field is easy, while the inverse operation of calculating discrete logarithms
in unfeasible. The original DH key exchange protocol is designed for two parties,
but it can be extended to three or more parties (generalized Diffie-Hellman). This
extension leads to the Group Key Agreement protocols [146, 12, 6].

The generalized DH protocol may therefore be employed to establish keys in
an ad hoc environment; it is used for instance in SRP. The CLIQUES family of
protocols [147, 161] for authenticated group key distribution is based on Diffie-
Hellman. In the simplest form of the CLIQUES protocol, the computation of the
key proceeds from node to node, the last node broadcasting the result to allow the
other nodes to generate the final key.

6.3.7 A simple PKI for OLSR

We outline two simple PKIs for OLSR. They both serve the purpose of making
public keys available to nodes in the network in a way such that the authenticity of
the keys can be trusted. The two PKIs differ mainly in that the first is proactive,
in the way it aims at diffusing periodically public key information to nodes in the
network, while the second is reactive: nodes request keys only when needed.

Proactive PKI for OLSR

This PKI operates with three classes of nodes:

Untrusted nodes: A node
�

considers another node
%

as an untrusted node if the
public key of

%
is not known by

�
, or if this public key is known but not

validated by a signing authority in the network. That is, messages’ signatures
received from an untrusted node cannot be verified. Note that at network
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initialization all nodes, except the signing authority and the node itself, are
untrusted from the point of view of the individual nodes.

Trusted nodes: A node
�

considers another node
%

as a trusted node if the public
key of

%
is known by

�
and this public key has been validated by a sign-

ing authority in the network. That is, signatures of messages received from
trusted nodes can be verified.

Signing authorities: A signing authority is a node which has the special property
that its public key is a priori known by all nodes in the network. A sign-
ing authority has special responsibilities for the network, namely to allow
new nodes to register their public keys in a secure fashion (typically through
manual authentication), whereby a new node becomes a trusted node; and to
periodically distribute signed certificates, containing a list of public keys for
all trusted nodes.

As an option, it is also possible to use the PKI infrastructure for time syn-
chronization, and have the signing authority periodically distribute the signed
time.

Each node that wishes to participate in the network is required to register its
public key with a signing authority. The signing authority will issue certifi-
cates periodically, which will then be broadcast to the entire network. Nodes
receiving the certificates will store these for a specified amount of time, after
which they expire. Hence periodic refresh of certificates is required.

No explicit mechanisms for revoking keys is presented. To facilitate key revo-
cation, certificate messages may be equipped with a sequence number associated
with the set of keys advertised. Whenever the set changes (when keys are added
or removed) the sequence number is incremented, and included in following cer-
tificate messages. Upon receiving a certificate message the nodes can distinguish
between older and newer information, and remove expired keys. In order to counter
possible replay attacks, timestamps should be employed.

While we could foresee to use this architecture to reject messages from un-
trusted nodes, this is an approach that must be carefully reviewed, as it is proven
that it leads to a deadlock at network initialization. In fact, at the bootstrap, before
the signing authority start distributing certificates, all nodes are untrusted; if their
control messages are rejected, then formation of the network will never take place,
and without network, the certificates cannot be spread to nodes. Next we present a
detailed discussion of the problem and of the proposed solution.

Admittance control

From the perspective of network connectivity, the primary aim is to ensure that
false topology information is not spread amongst the nodes. This translates into
protecting the integrity of OLSR’s most important feature: the creation and relay-
ing of TC messages through MPRs. Therefore, a node should:
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� select only trusted neighbors as its MPRs;

� accept to be selected as MPR by trusted neighbors only;

� accept TC messages originating from trusted nodes only2;

� forward broadcast messages from trusted neighbors only.

When node
�

selects node
�

as MPR,
�

gives to
�

the responsibility for the� � �
link. This responsibility is fulfilled only if

�
is trusted; otherwise, there is

an hazard of
�

performing incorrect traffic relaying, as described in Section 3.2.
When node

�
is selected as MPR by node

�
,
�

assumes the responsibility
for the contents of TC messages coming from

�
. If

�
is not trusted, the hazard

is that it could inject false TC messages in the network. This is an instance of
incorrect traffic generation. The same happens when node

�
accepts TC messages

originating from node
�

, except that in this case the hazard is circumscribed to
�

only.
The situation is similar when node

�
forwards broadcast messages from node�

. If
�

is not trusted, it could maliciously generate excessive amounts of broadcast
traffic that, once flooded to the network, may consume excessive resources and
potentially prevent transmission of legitimate traffic.

The simplest possible mechanism to keep untrusted nodes out of the network
would be a rule stating: “A message sent by an untrusted node is silently discarded
and neither processed nor forwarded.” However, while simple, this condition is
too restrictive and not applicable. If all nodes require that all traffic they receive
must be signed and verified, accepting therefore only traffic from trusted nodes,
this would lead to a deadlock problem on network initialization, when public key
certificates start being spread around.

In fact, upon network initialization, no node know any public keys other than
that of the signing authority (and, of course, their own). Disregarding control traffic
from the signing authority, all nodes will by default ignore control traffic from
each other. Thus, no nodes will select MPRs, and no broadcast messages will be
forwarded. The only node which may be selected as MPR is the signing authority
itself. Control traffic from the signing authority will be accepted by its neighbors
since they know the public key of the signing authority in advance; until the signing
authority starts broadcasting certificate messages, no network formation will take
place. Unless special provisions are made, only neighbor nodes of the signing
authority will ever receive the broadcast certificates: since successful verification
of a signature is a criteria for accepting any control messages, 2-hop neighbors
of the signing authority will never accept control messages from 1-hop neighbors
of the signing authorities. This implies that a symmetric link between 1-hop and
2-hop neighbors of the signing authority will never be established. The signing

2These trusted nodes are MPRs of other nodes in the network, because we specified already the
condition that the node should select only trusted neighbors as its MPRs.
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authority will therefore never select MPRs and, subsequently, its certificates will
never be broadcast into the network.

To avoid this situation and enable network initialization, special provisions for
accepting some control messages without validation of signatures must be made.
The desired goal is to allow MPR flooding to take into account the fact that broad-
cast messages should be able to reach also untrusted nodes in the network. Hence
the following additional conditions apply:

� A node must accept unsigned HELLOs from untrusted neighbors. Such
HELLO messages are accepted under the restriction that:

– asymmetric and symmetric links are considered as such;

– MPR links are considered as symmetric only (i.e. they do not affect the
MPR selector set);

– lost links are ignored;

� A node must maintain a trusted neighborhood containing information about
links to the trusted nodes in its neighborhood;

� A node must maintain an untrusted neighborhood containing information
about links to the untrusted nodes in its neighborhood;

� A node must, from among the trusted neighbors, perform MPR selection as
specified;

� A node must periodically transmit HELLO messages, including the trusted
neighbors (with status: asymmetric, symmetric and MPR, as appropriate)
and untrusted neighbors (with status: asymmetric and symmetric only).

The 2-hop neighborhood of a node will contain both trusted and untrusted
nodes. MPRs are selected from among the trusted nodes such that, as much as
possible of, all nodes in the 2-hop neighborhood are covered. This ensures that a
maximum of untrusted neighbors of trusted nodes will be reached by MPR flood-
ing, as they are covered by at least one MPR.

Thus, upon network initialization, the signing authority will transmit its certifi-
cate which will be received by its 1-hop neighbors. Following HELLO message
exchange, the 1-hop neighbors will accept the untrusted 2-hop neighbors as sym-
metric but not select MPRs among them. The signing authority will then select
MPRs from among the 1-hop neighborhood such that the next broadcast certificate
will reach the 2-hop neighbors. The scheme follows, in such a way that certifi-
cates will, upon network initialization, propagate from the signing authorities and
towards the edges of the network.

Note that some information coming from untrusted nodes is only used to handle
untrusted nodes. MPR selection, etc. is performed only among trusted nodes, as
MPR selection information is diffused only about trusted nodes.
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Reactive PKI for OLSR

We assume the same framework as in the proactive PKI. Two new types of mes-
sages are introduced: Key Request and Key Reply.

A Key Request is a message from a node
�

, containing a nonce � � initialized
with random values for each request and a list of nodes

� � for which the public key
is needed:

��� � � � � ����� � � ��� �
�
	
	
	 ���

�
" �

.
Upon receiving such a request message, a signing authority

�
:

1. first checks the signature of the message
�

, if it has the public key of
�

;

2. if the public key of at least one
� � in the request is known by the authority,

a Key Reply is generated. The reply includes all the public keys it knows:� � � � � ��� � ����� � � � � � �
� � ��� � �
	
	
	�� � ����� � ��� � "��

.

Upon receiving such a reply message, the originating node
�

performs the
following checks:

� that the destination of the message is indeed
�

;

� that
�

is a signing authority that it trusts;

� that the signature of the message is correct;

� that the nonce � � was a nonce it recently used.

If those checks succeed, node
�

finally updates its public key database with the
newly acquired keys.

In order to ensure proper delivery of Key Request and Key Reply messages,
pure flooding is used instead of the standard MPR forwarding. As with the proac-
tive PKI, considerations regarding key revocation are not presented. These fea-
tures, however, can be fashioned through lifetime of the public keys and periodic
refreshing through renewed request-reply cycles.



Chapter 7

Timestamps

As already said, a common problem in distributed systems is that, even assuming
a digest or signature is checked (therefore ensuring integrity or authentication of
the source of a message), replay of previously transmitted messages is possible by
an intruder. This is the aforementioned replay attack, which may easily corrupt the
route cache and therefore discompose the correct functioning of the network.

Timestamps are a commonly used means to prevent replay attacks (as in Ker-
beros [145]), and are indeed necessary [37, 33]. The idea is to device a proof of
freshness, such that older pieces of information can be detected and rejected. Fur-
ther timestamp methods have been discussed by Gong [56]. When a timestamp
is not sufficient, the goal is achieved by using a nonce [112], which is a small
sequence of randomly generated bits, used only once. The nonce is sent in a chal-
lenge as an identifier and must be included in the response.

In OLSR, MSN (Message Sequence Number) and ANSN (Advertised Neigh-
bor Sequence Number) are already used for achieving those goals in the context
of allowing the routing protocol to determine which information is more recent.
However while these sequence numbers are sufficient for the basic routing proto-
col functioning, they are not sufficient to provide full security: each are encoded
on a 16-bit field, which implies that wraparound happens too frequently to provide
efficient protection against malice from an intruder.

Here we describe several timestamp algorithms, providing different levels of
security at the expense of different costs. For the purpose of the discussion we use
the following terminology:

� a clock is the device, hardware or software, within a node keeping track of
the time;

� a timestamp is the value of a clock, recorded in a piece of information (e.g.
a message) at the time of generation of the information.

Commonly, the following methods are employed for providing timestamps:
� Real time: a clock expresses time in some natural resolution such as seconds

or microseconds;
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� Logical time: a clock is incremented each time an event occurs, such as
message generation.

Note that these are just different ways to express the same idea of time: the basic
property being that time is monotonically increasing, and that upon receiving a
message containing a timestamp the receiving node has some idea about the value
in the timestamp compared to the value of the clock, i.e. what the timestamp should
be. As concerns the second option, the concept of event ordering in a distributed
system has been examined by Lamport [93].

For each message being emitted by a node, an unique timestamp
��� � � � ��� is

included. Let
� �

denote the value of the clock in a receiving node around which the
timestamp

��� � � � ��� in a received message is expected to be. Then, a more formal
expression of a message being “not too old” may be:

� ��� � � � ���
� �� �	� � � ��
� (7.1)

where
� � ��
�

is a constant used to limit the timestamp discrepancy while allowing
for some small deviation. Thus, the (7.1) provides a simple framework for checking
if a received message is original or rather it is a replay of a previous message.

The replay check in the (7.1) can be complemented by maintaining a Signature
Table, in order to also prevent replays within a small time-scale i.e. replays within a
delay less than

� � ��
��
. The Signature Table contains the signatures (or the digests)

of the most recently received messages, for a duration greater or equal to
� � ��
��

. If
the signature of a received message is already in the Signature Table, it is ignored
since the message has already been received and processed. This is similar to
the Duplicate Set in OLSR, which ensures that TC messages are processed and
forwarded once. Indeed, the functionalities of both the Signature Table and the
OLSR Duplicate Set could be merged.

The way in which timestamps are generated is not necessarily obvious, as they
assume either synchronous real-time timestamps, non-volatile timestamps, or they
implicitly require a challenge-response protocol.

It should be noted that non-synchronization leaves the door open to clock at-
tacks. If the sender’s clock is ahead of that of a receiving node, an attacker may
suppress the postdated message and replay it later, when the timestamp in the mes-
sage becomes valid according to the receiver’s clock. Re-synchronization of the
sender’s faulty clock does not parry this suppress-replay attack [55].

In the following we present different methods concerning the use of time-
stamps. These methods introduce different levels of complexity, cost, and secu-
rity tradeoffs; they can also be used in combination, in order to provide greater
resilience.

7.1 No timestamps

If no replay protection is desired, nodes may just set the timestamp to be 0 when
generating messages, and not check the timestamps upon receiving.
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7.2 Real-time timestamps

A conceptually simple way to generate timestamps, although not the easiest one
to implement, is to use a real time clock in each node, assuming some kind of
synchronization. This solution can be achieved by having a safe source of time in
each node that is sufficiently precise and with sufficiently little drift. This could be
in form of a quartz clock, an atomic clock, or access to the time as obtained by a
GPS device.

The criterion for accepting a message is indeed simply, as in Formula 7.1,
� ��� � � � ���

� � � � � � ��
� , where
�

is the value of the clock on the receiving node.

The source of time for timestamp generation can often be a quartz clock, or
similar equipment, embedded in the node’s hardware. The main issue when us-
ing an internal source of time is the precision of the clock. In most computer
equipment, piezoelectric quartz oscillators are used to keep track of the time; in
personal computers, it is the so-called BIOS clock. The precision of these clocks
is nonetheless limited causing a drift, in absolute terms, in the order of magnitude
of one second per day. The drift is due to two factors: the lack of precision of
the quartz, assumed to oscillate at a certain determined frequency different from
the real frequency, and variations in the real frequency due to temperature, aging,
vibration-induced noise, and other factors [155].

In order to assess the frequency needed for a possible resynchronization, we
conducted experiments [4] with the routers used in the OLSR signature implemen-
tation described in Chapter 5. During the experiment, four routers broadcasted
their BIOS clock periodically on an Ethernet network. A machine recorded the
arrival times of the different broadcasts of the clocks, along with their advertised
time value.

All clocks were synchronized at the beginning of the experiment. One of the
routers was used as a reference, and the difference between the values of the clocks
was recorded and plotted as a function. The resulting maximum clock drift is
around 1 sec/day (Figure 7.1), quite comparable with expected values. However,
the resulting plotted functions are mostly linear, confirming that the main factor in
clock drift is the incorrect calibration of the real frequency of the quartz. By using
linear regression on the values found, the linear component of drift between one
router and the reference router was removed. In practice such corrections could
be performed by making precise time difference measurements at two separate
points of time. As a result, the precision is much better and around 30 msec/day
(Figure 7.2). Nonetheless, the time functions of some routers were irregular; by
comparing the drift estimates based on measurements between different points of
time, to the drift estimates based on measurements between the points of time with
the greatest discrepancy, the drift is found to be about 0.2 sec/day. The equivalent
necessary synchronization intervals for drift correction, for a drift of maximum 15
seconds, are therefore 500 days in the average case, and 75 days in the worst case.
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Figure 7.1: Time difference between clocks.

7.3 Non-volatile timestamps

A way to provide weak timestamps is to have the clock of each node of the network
maintained in non-volatile memory, initialized the first time a node’s signature key
is used after generation.

The value of this clock is then used as timestamp in each message signed,
after which the value is incremented. While the sender maintains the clock in non-
volatile memory, the receivers maintain a table containing the maximal timestamps
received from all nodes in the network.

In the receiver node
�

, the algorithm for processing a message from sender
�

with timestamp
� � is the following:

1.
�

keeps the value of
���� , the highest timestamp from

�
ever received, in

non-volatile memory;

2. if
�

has not received any value from
�

,
�

considers the highest timestamp
received from

�
to be

���� ��� ;

3. if
� � � ���� � � then the message is accepted, otherwise it is rejected and not

processed further. � is some fixed (small) constant to allow for out of order
reception of messages. � must be tuned accordingly to the specifications of
the ad hoc network;

4.
���� is updated:

������ � ���
� � � � � � � � ���� � .
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Figure 7.2: Time difference between clocks, after resynchronization.

These are security-wise weaker timestamps, since if communication between
the sender and the receiver is broken for some time, then the latter goes out of
sync and all the messages from the sender can be replayed to the receiver. This
is especially true if the sender and the receiver are in different, non-connected,
networks. The advantage is that as soon as the receiver and the sender are able
to communicate with each other, only limited replay is possible. This replay can
further be suppressed with the Signature Table, described previously.

In OLSR, non-neighbor nodes may never exchange messages, because nodes
which are not selected as MPR by any other nodes exchange messages only with
their neighbor nodes. In this case, the timestamps would never be updated. There-
fore it would be necessary that each node periodically broadcasts at least an empty
message in order to provide synchronization.

Note that a variant using a local “wall clock” time instead of incremented time-
stamps is possible, and could allow more stringent checks, although the algorithm
still remains vulnerable.

7.4 Clock synchronization

With respect to clock synchronization, the chicken-and-egg dilemma arises [56]:
timestamps are used for authentication, but secure clock synchronization itself re-
quires authentication. This circular dependency is overcome by performing au-
thentication and clock synchronization operations at the same instant. However
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the main problem with secure clock synchronization in an ad hoc network is that
many algorithms require a fixed percentage of non-compromised nodes in order
to operate. It could be argued that, since in an ad hoc network an intruding node
can impersonate as many fictional nodes as it wishes [39], under the limitation
that these fictional nodes have keys known to the network, a guaranteed fraction of
non-compromised nodes is unobtainable. Even a clock synchronization algorithm
such as that proposed by Dolev et al. [37], which does not require any such frac-
tion of correct nodes to run properly, provenly cannot bound the necessary delay
of synchronization when a new node wishes to participate in the network for the
first time. This is quite problematic in a wireless ad hoc network, since nodes are
expected to be able to leave and join at any time.

7.4.1 Timestamp exchange protocol

This part describes a timestamp exchange protocol that can be applied to OLSR. It
essentially mixes a distributed challenge-response protocol with timestamp infor-
mation. This protocol is a variation over the Needham-Schroeder public key pro-
tocol [112], albeit with a superset of the information (and includes, for instance,
the necessary correction of the protocol proposed by Lowe [99]), using signatures
instead of encryption, and using timestamps instead of nonces.

The assumption for the protocol is that each node
%

keeps a clock
� )

, whose
value is used in the timestamp fields of generated messages. The clock increases
monotonically with each message sent, and with wall clock. At a given wall clock
time

�
, the clock in the node

�
is denoted

� � � � �
. The clock

� �
is also used as a

nonce, and thus should be initialized, fully or in part, with random values.
A simplified version of the protocol is given first, illustrating the gist of the

protocol limited to two nodes
�

and
�

.

1. At
� �

,
� � � � ��� � � � � � � � " �

;

2. At
�
� �

��
,
�

has already received the previous message and sends its mes-
sage:

�#��� ������� � � � �
�
� ��� � ��� � � � � " �

;

3. At
�
� �

�
� ,
�

has received the previous message and sends its message:� � � ������� ��� � �
�
� ����� � � � �

�
� " �

.

The idea is that at
�
� (step 3)

�
had received the message sent in step 2, and thus

observed that a recent version of its timestamp
� � � � � �

was included in a message,
authenticated to be from

�
. Therefore

�
can safely assume that

� � � �
�
�

is a recent
value of the timestamp from

�
, posterior to

���
. This relies on

�
properly generating

initial values of clock
� �

i.e. not (or with low probability) repeating values over
the time.

Likewise, upon receiving the message sent from
�

to
�

in step 3,
�

concludes,
like

�
, that it has now a recent authenticated value of

� �
. After those steps are

complete,
�

and
�

both have knowledge about relatively recent values of each
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others respective timestamps, which are not (or with very low probability) the result
of replays. In this case we say that the handshake is completed.

A detailed parallel version of the algorithm now is given. It is “parallel” in the
sense that the same message, sent by a node

�
to perform the previously illustrated

handshake, is sent this time to several nodes (ideally all) in the network, rather
than to an individual node

�
. Also some provisions are taken for being able to

practically perform timestamp check, and for switching to new timestamp intervals.
The protocol relies on an unique new kind of message, a Timestamp Ex-

change message, being flooded periodically by each node. When maximal secu-
rity is desired, the message should be transmitted by pure flooding to the network
instead of using the MPR forwarding optimization.

We assumed that each node keeps a table of the information from the latest
Timestamp Exchange message it received from each node. This table is called
the Timestamp Table. A node

�
records the following information for each other

node
�

:

� a boolean �
�
�

indicating whether the handshake with
�

has been completed,

� the timestamp
� ��

from the latest Timestamp Exchange message received
by node

�
from node

�
(in case the handshake is completed), or the list of

the latest timestamps
��� �� � � received (in case the handshake is not completed),

� a set of different timestamp interval tuples for
� � 
 �
	
	
	�� �

�
�

:
$ � �� � � � � � �

� � �� � ��
�� � � � �
�
� � � ,

where �
�
�
� is an expiration time indicating that the tuple should only be used

until this time value is reached, when the handshake is completed.

In node
�

, each timestamp interval tuple of
�

describes a valid interval for
timestamps of

�
. There are several such timestamp interval tuples for

�
(several�

s) in order to allow for timestamp interval changes. Such a change would occur,
for instance, when the node decides to regenerate a clock’s value from scratch. The
timestamp interval tuples are used with the following timestamp check: in node

�
,

at
�
, a timestamp

� �
from a message from

�
is valid if and only if an

�
exists such

that
� �� � � � � � �

� � � � � �� � ��
�� � � and
� � �

�
� � � .

This timestamp check does not apply to Timestamp Exchange messages
themselves, described below.

At node
�

, given two valid timestamps
� �

and
� � � from

�
, an ordering re-

lation can be established for comparison. Let  and  � be the indexes such that� �� � � � � � �
� � � � � �� � ��
�� � � and

� �� � � � � � � �
� � � � � � �� � ��
�� � � � . Then we decide

that
� � � � � � if and only if  �  � or ( �  � and

� � � � � � ). This is used for
determining which of two messages, to which the timestamps relate, is the most
recent.

For protocol completeness, in node
�

the timestamp
� ��

is said to be orphaned
when �

�
�

is false or when
� ��

does not pass the timestamp check with any of the
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timestamp intervals and expiration time
$ � �� � � � � � �

� � �� � ��
�� � � � �
�
� � � , . This can occur

when some (or all) of those intervals expire, usually meaning that communication
between node

�
and node

�
is broken.

This yields a formal definition of “completion of handshake between
�

and�
”: a handshake is complete for node

�
when

�
has a timestamp

� ��
which is

not orphaned. Each time �
�
�

was true and the timestamp
� ��

becomes orphaned
because of timestamp interval, �

�
�

is updated as: �
�
� � false.

The protocol relies on two parts: the generation and the processing of Time-
stamp Exchange messages.

The algorithm for the generation of the messages is as follows: node
�

sends
periodically a Timestamp Exchange message, containing:

� its current clock
� � � �� , which must not be orphaned with respect to the

bounds set out in the following item;

� its current timestamp bounds set � � � �� , and for
� � 
 �
	
	
	!� � � � �� :

$ � � � �� � � � � � �
� � � ���� � ��
� � � � � � ���� � � ,

where � � ���� � � is the maximal duration for which the tuple should be kept;

� the content of its timestamp table, tuples
$&% � � �) ,

for each node
%

from
which it has received a timestamp. Note that for each

%
with which the

handshake is not completed there might be several
$&% � � � �) � �

,
. In this case,

once the
$&% � � � �) � �

,
has been sent, the tuples are removed;

� the signature of this message.

Node
�

also records the latest timestamp bounds set it has sent:� ��� � � � � � �
� � � � ��
� � � � .

The algorithm for the processing of the Timestamp Exchange messages for
a node

�
receiving a message from node

�
is as follows:

1. check for the entry of
�

(if it exists) in the Timestamp Table to determine if
�
�
�

was true but the
� ��

has become orphaned. If
� ��

has become orphaned,
then �

�
� � false;

2. if no reported timestamp from
�

, inside the Timestamp Exchange mes-
sage, pass the timestamp check in

�
, or if there is no

� �
in the message,

then: if no entry for
�

was recorded, or if �
�
�

is false, the timestamp from
the message

� �
is added to the list of the timestamps

� � �� � � .
The idea here is that node

�
has not provided enough proof of freshness for�

to accept the timestamp intervals. However
� �

should be kept such that in
next message from

�
it would serve as proof of freshness. All

� �
received

should be kept since some could constitute invalid replays;
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3. otherwise, the handshake is certain to be completed and the timestamp bounds
are updated if necessary:

(a) if no value
� ��

was recorded or if �
�
�

was false, or if the new timestamp� �
of the message is greater than the latest timestamp recorded

� ��
(with the timestamp comparison rules given previously), then:

i.
� ��

is updated with the timestamp from the message, the previous
list

� � �� � � is emptied, and
� �� � � �

;

ii. the timestamp bounds for
�

are updated with the values from
the Timestamp Exchange message: �

�
� � � � , and for

� �
 �
	
	
	�� � � :

$ � �� � � � � � �
� � �� � ��
� � � � �

� � � , � $ � � � � � � � �
� � � � ��
�� � � � �

� � � � � ,

where
�

is the wall clock at node
�

.

(b) �
�
� � true.

It is expected that the timestamp bound set of a node is limited to an interval� � �� � � � �
� � �� � ��
�� � , and only occasionally updated when a new timestamp interval� � �� � � � �
� � �� � ��
�� � is generated. The transition is typically the following:

1.
�

advertises the interval
� � �� � � � �

� � �� � ��
�� � and generates timestamps in this
interval;

2. for some duration,
�

advertises interval
� � �� � � � �

� � �� � ��
�� � and a new inter-
val

� � �� � � � �
� � �� � ��
�� � . Node

�
will still generate timestamps from the first

interval, to wait for the new interval to be updated in receiving nodes;

3. for some small duration,
�

advertises both interval
� � �� � � � �

� � �� � ��
�� � and
interval

� � �� � � � �
� � �� � ��
� � . �

now generates timestamps from the second
interval, while it keeps advertising the old interval;

4.
�

advertises only interval
� � �� � � � �

� � �� � ��
� � .
Note that it is possible to add variations: updating also the timestamp table on

reception of messages like HELLOs, introducing some maximum deviation
� � ��
��

from the last received timestamp, or using local wall clock (possibly with a random
offset) instead of an incremental counter. It is possible to add optimizations to avoid
sending lists of timestamps of the same node before handshake completion, such
as sending immediately a Timestamp Exchange message, along with Denial of
Service detection with respect to the handshake protocol.



Chapter 8

Security in ad hoc networks:
advanced mechanisms

As previously seen, using message signatures effectively protects the network against
identity spoofing attacks, as long as the signature mechanism is not broken. Nodes
rely on signatures to identify the real sender of a message, and, with the assump-
tion that all nodes are well-behaving, signed topology information is assumed to
be correct. The scenario is hence an ad hoc network with a deployed, working PKI
and message signature mechanism.

8.1 Compromised nodes

We conjecture now that an attacker has been able to gain full control – physically,
or in any other way – over a trusted node, hence the attacker has now gained a
privileged position inside the network. The control messages the attacker can send
will be accepted as valid by all other nodes because they are correctly signed, even
if these control messages are wrong. The term compromised node designates such
a trusted node that has been taken over by the attacker.

We extend the definition of compromised node to a node which may not be
under the control of the attacker, but whose private key has been disclosed to the
attacker. In some way or other, the attacker has managed to capture the node’s
private key, stealing the node’s identity, and can send messages signed on behalf of
that node.

In this scenario, any trusted node is no longer trustworthy, because it could
send wrong control messages to maliciously perturb the network topology. The
question is: “How can we be sure that the information from a node

%
is correct?”

There is no thing such as an “evil bit” [11] that would allow us to distinguish good
information from bad.

We can nonetheless increase the odds of distinguishing good nodes from bad
ones by adding redundant information in messages, so that the detection of wrong
messages is easier. This prevention mechanism aims to prevent nodes being com-
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Incorrect
traffic

generation

Incorrect
traffic

relaying

ANSN attack

Incorrect MID/HNA generation

link spoofing

ID spoofing

link spoofing

ID spoofing
Incorrect HELLO generation

Incorrect TC generation

MPR attack

Wormhole attack

Replay attack

Blackhole attack

Message tampering

Message bombing and other DoS

SIGNATURE Accusation

✔

✔

✔

✔

✔

ADVSIG SIGLOC

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔ ✔ ✔ ✔

Table 8.1: Protection offered from different OLSR attacks in presence of compromised
nodes.

promised at the outset. We propose a solution based on multiple signatures (ADVSIG)
in Chapter 9, and a solution based on geographical information of nodes (SIGLOC)
in Chapter 10.

We recall that the model used is an ad hoc network where each node uses public
key cryptography to authenticate messages and to preserve their integrity, hence
the following solutions presume the use of asymmetric cryptographic schemes.
On the other hand, when a shared secret key is used, it is much more difficult to
take countermeasures, because the compromised node can masquerade as any other
node in the network.

A detection mechanism that can be used in parallel with a cryptographic scheme,
but does not require it, is the behavior audit of nodes, to identify misbehaviors.
Nodes are monitored to check that they follow the protocol correctly; the duty of
monitoring is often distributed among all the nodes. Once a misbehaving node has
been detected, the other nodes (the legitimate ones) should take corrective action
to prevent the misbehaving node from participating any further in the network. Be-
havior monitoring is discussed in Chapter 11, as well as our proposed solution for
OLSR which uses broadcast of accusation messages.

Table 8.1 resumes these different security architectures, and shows which at-
tacks are assessed by each specific solution.



Chapter 9

Using multiple signatures in
OLSR

When an attacker commands a compromised node, he is able to perform link spoof-
ing (as described in Section 3.2) with the purpose of perturbing the network. To
withstand the link spoofing attack, we have designed a protocol which uses mul-
tiple signatures (generated by different nodes) to validate link state information
[130]. Like the solution for OLSR signatures, our protocol relies on creating and
sending a new additional message in conjunction with routing control messages.
We call such a message an ADVSIG (for ADVanced SIGnature) message. Our
main approach is based on authentication checks of new information injected into
the network, and reuse of this information by a node to prove its link state at a later
time. To our knowledge, this is the first time such a protocol has been proposed.

In general, HELLO and TC control messages have the semantics of the orig-
inator advertising “I have a link with these other neighbor nodes”. The signature
on these messages, introduced in Section 5, serves to verify that the originator is
indeed the one claiming such a link to exist. The task is now to validate that the
other nodes also believe such a link to exist.

9.1 Topology continuity

In OLSR, and in any other link state protocol, the network topology, with respect
to the local neighborhood of a node, is related to what the network topology was at
a previous instant. This because the link state at a given time

�
depends on the link

state at an immediately previous time
� � � �

.
E.g. at time

�
, node

�
selects node

�
as a MPR. We can therefore state that,

at time
� � � � � � �

, node
�

declared a symmetrical link with node
�

. We can
further state that, at time

� � � � � � � � � � , node
�

had an asymmetrical link with
�

(i.e.
�

heard
�

), and declared this fact in a HELLO message which was received
by
�

. In fact, this is exactly the way the nodes verify and establish symmetrical
links in order to build a connected network; these steps, and their order in chrono-
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(no link)

LOST_LINK

SYM_NEIGH
SYM_LINK

SYM_LINK
MPR_NEIGH

ASYM_LINK

Figure 9.1: The finite state machine for OLSR link state transitions.

logical sequence, are mandatory. Here we assume that all nodes correctly follow
the protocol.

In summary, topology does not make leaps; instead, it proceeds smoothly with
continuity. The transitions of link states is modeled in the automaton shown in
Figure 9.1.

We might exploit this fact to avoid false routing information being injected in
the network. The philosophy is that every node stores the most recent link state
information about itself, as received by its neighbors (in their HELLOs); then the
node reuses this information by including it, as a proof, in its control messages
(HELLOs and TCs). In this way a node can prove that it supplies routing informa-
tion accordingly and consistently with its previous neighborhood status. Of course,
link state information has to be signed by the node that generated the message, oth-
erwise a compromised node could easily produce false proofs.

9.2 Link Atomic Information

It would be inefficient to sign and redistribute a whole HELLO message as a proof,
because each HELLO contains many links related to many nodes. As OLSR con-
trol messages are not modified, we should split this data into reusable pieces of
information.

In order to keep the protocol as light and simple as possible, we must identify
the minimal quantity of exchanged link state information. The link atomic infor-
mation generated by a node

�
concerning a neighbor node

�
consists of:

� the address of
�

as the originator node

� the address of
�

as the advertised node

� �
’s link state with respect to

�

� the timestamp of the creation time
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Link to be advertised Required proof

ASYM_LINK packet has been heard
SYM_LINK ASYM_LINK or SYM_LINK
SYM_NEIGH or MPR_NEIGH SYM_LINK or SYM_NEIGH
“Node is neighbor” SYM_NEIGH or MPR_NEIGH

Table 9.1: Required proofs in an ADVSIG message.

� the signature (computed by
�

) of these four fields

The address of the originator node is found in the message header as the Originator
Address field, and is part of the standard packet. The address of the advertised
node and its link state are exchanged through a HELLO message, respectively
in the Neighbor Interface Address and Link Code fields. The time-
stamp and the signature will be contained in the ADVSIG message coupled to that
HELLO. Depending on its use, this atomic information is called either a Certificate
or a Proof.

Hence a node, upon reception of an HELLO and its companion ADVSIG mes-
sage, extracts from both the information regarding itself (i.e. where “advertised”
contain the node’s address). When used in this manner, we call the atomic infor-
mation described above a Certificate. The Certificates are stored by the node in a
Certiproof Table.

Later, when the node sends a HELLO or TC message, it will select the relevant
Proof from its Certiproof Table and include it in the ADVSIG message coupled to
that HELLO/TC message.

Note that we call the same atomic piece of information a Certificate when it is
created and supplied to inform about the neighborhood, as fresh reusable topology
information; and we call it a Proof when it is reused and supplied to prove a link
state. The Certiproof Table of node

�
contains only Certificates signed by various

neighbors of
�

; in each of these Certificates, the “advertised” field contains the
address of

�
(except in the Certificate Zero, as explained later).

9.3 Required proofs

As mentioned above, if node
�

wishes to report a link in a HELLO/TC message
with a neighbor node

�
, the required proof must be built using elements of a

HELLO message and the accompanying ADVSIG message that were recently sent
by node

�
. The proofs are then stored (as Certificates) in the Certiproof Table and

reused (as Proofs) whenever necessary. The proofs must be sent along packed in
a new companion ADVSIG message, with the new HELLO/TC messages they are
intended to prove.

Table 9.1 gives a scheme of the required proofs, based on the OLSR specifi-
cations [31]. Refer also to Table 1.1 for an explanation of the link codes. The
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table can be integrated with other link types to define the requested behavior when
declaring links of type UNSPEC_LINK or LOST_LINK.

For instance, when
�

wishes to report (in a HELLO) a SYM_LINK with
�

, the
proof must be a recent HELLO from

�
reporting an ASYM_LINK or SYM_LINK

with
�

. We remind that link codes (ASYM_LINK, SYM_LINK, SYM_NEIGH,
and MPR_NEIGH) are advertised through HELLO messages, and advertising a
node as a neighbor is done through TC messages.

For an asymmetric link (ASYM_LINK), the proof is part of the heard packet,
because the advertised node does not hear the originator. A previous version of
the protocol [130] required no proof for an asymmetric link. This because all
critical operations in OLSR concern symmetrical neighbors: MPRs are selected
from among the nodes with which there exist a symmetric link, MPR selection is
accepted from nodes with which there exist a symmetric link, and TC messages
advertise symmetric links only. Asymmetrical links have the sole purpose to (pos-
sibly) establish symmetrical links in an immediate future: these symmetric links
can (possibly) be established only by an answer from the advertised node. When
a malicious node

%
falsely advertises an ASYM_LINK, the link is maintained

as asymmetric and eventually deleted (after expiration of its validity time, which
depends on the Vtime); except if the advertised node effectively comes in the
neighborhood of

%
, in which case a symmetric link may truly be established.

However, this may lead to an attack where a compromised node
%

advertises
a fake ASYM_LINK with a node

�
that

%
does not hear;

�
may be a 2-hop

neighbor of
%

and
%

may have known about its existence from a HELLO sent by
a common neighbor. Node

�
may actually hear

%
’s declaration, and therefore it

would advertise a SYM_LINK with
%

instead of an ASYM_LINK as it should be.
Hence node

�
advertises a false symmetric neighborhood which may be declared

in its TCs. If node
%

advertises a large number of fake ASYM_LINK with several
nodes, it is possible that one of these nodes is or moves in the neighborhood of

%
,

making the attack successful.
We present in this thesis a corrected version of the protocol. In this version,

a declaration of an asymmetric link requires a proof, called Certificate Zero. A
compromised node

%
can still carry out the aforementioned attack by recycling

the Certificate Zero from
�

as overheard as a Proof from another node � , and
not as a Certificate from

�
as it should be. However, this would cause a delay

in
%

’s declaration, and this delay could therefore be detected by using a tighter
synchronization and more stringent checks on timestamps.

9.4 The Certiproof Table

When a node
�

receives from
�

a HELLO and its accompanying ADVSIG mes-
sage, it extracts from both any information regarding itself, and stores the tuple

$�� � ��� � � � � � � � � ��� � � � � � � � � � � � � � ��� � � � � ����� � ��� � ' � � ��� � � � � � � ,
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in its Certiproof Table. This tuple will later be resent by
�

as a Proof, but the
same information was called a Certificate when sent by

�
. As already explained,� � ��� � � � � � � contains the address of

�
,
��� � � � � � � � �

contains the address of
�

,
� � � � � � � � � is

�
’s link state with respect to

�
,
� ����� � � � � '

is the time when
�

gener-
ated the HELLO and ADVSIG messages, and

� ��� � � � � � � is the signature computed
by
�

on the four fields
� � ����� � � � � � ,

� ��� � � � � � � �
, � � � � � ��� � � , and

� � ��� � � � � '
.

Note that, in the implementation, it is obviously not necessary to store the
��� � � � � � � � �

field in the tuple, as it is a constant. We present nonetheless the pro-
tocol in this way to be consistent with the Certificate/Proof format, and to avoid
confusion.

The key of the tuple is the
� � ��� � � � � � � address. Only one tuple for each orig-

inator is maintained in the table: when
�

receives a subsequent HELLO message
(with its ADVSIG) from

�
, it updates the tuple entry with the freshest information,

established as such by comparing the
� ����� � ��� � '

fields. In this manner, node
�

stores in the Certiproof Table only the most recent Certificate about itself, as given
by a neighbor.

9.5 The ADVSIG message

The format of this security-enhanced ADVSIG message is shown in Figure 9.2. An
ADVSIG message must be generated and sent with every HELLO or TC message,
and possibly in the same packet. However, there is a difference between HELLOs
and TCs: while both message types always require Proofs, HELLOs can contain
Certificates whereas TCs do not. Hence the Signature of Certificate
#
�

fields exist only in those ADVSIG messages which are coupled to HELLOs.

The Global Timestamp is the timestamp of this ADVSIG message and of
the HELLO/TC it is coupled with.

The Global Signature is computed on the sequence of bits made up of
the whole HELLO/TC message (header included) and the associated ADVIG mes-
sage except, of course, the Global Signature field itself. As seen in Section
5, the Time To Live and Hop Count fields are considered as set to zero, be-
cause they change in transit.

The Signature of Certificate #
�

is present only when the ADVSIG
is coupled with a HELLO. This fields contains the signature of the Certificate re-
lated respectively to the Neighbor Interface Address at position

�
in the

HELLO coupled message.
An exception is the Signature of Certificate # � field, which is not

related to any advertised neighbor link, but is always included in those ADVSIGs
that are coupled to HELLOs.

The subsequent three fields (Link Code #
�
, Timestamp of Proof #

�
,
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Global Timestamp |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Global Signature :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Signature of Certificate #0 (always present, HELLOs only) :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Signature of Certificate #1 (HELLOs only) :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Signature of Certificate #2 (HELLOs only) :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: . . . :
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Signature of Certificate #n (HELLOs only) :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Code #1 | Reserved #1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp of Proof #1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Signature of Proof #1 :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Code #2 | Reserved #2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp of Proof #2 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Signature of Proof #2 :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
: . . . :
: :
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link Code #n | Reserved #n |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp of Proof #n |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Signature of Proof #n :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 9.2: ADVSIG message format.
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and Signature of Proof #
�
) purport to the Proof related to a neighbor node

declared in the HELLO/TC message. More in detail, the Proof is related: to the
Neighbor Interface Address at position

�
if the coupled message is a

HELLO, or to the Advertised Neighbor Main Address at position
�

if
the coupled message is a TC.

The Reserved #
�

field is used to make all fields 32 bit aligned, and may be
reserved for future use.

The Link Code #
�

is the link state in the Proof related to neighbor node
�
.

An alternate implementation might omit this field, as it can be extrapolated from
Table 9.1; in this case, when verifying a signature of a Proof, a receiver node must
test all link codes that apply.

The Timestamp of Proof #
�

and Signature of Proof #
�

are the
timestamp and signature of the Proof related to the neighbor node

�
.

The link status, timestamp, and signature of the Proof were taken respectively
from: Link Code, Global Timestamp, and Global Signature of a
previous HELLO and its accompanying ADVSIG. These data were then saved in
a tuple and stored in the Certiproof Table. If a proof is not required according to
Table 9.1, these three fields, as well as the Reserved #

�
field, are not present.

Every Signature of Certificate and every Signature of Proof
is computed on the sequence of bits made up of:

� the relevant Originator Address (from the header of the HELLO)

� the relevant Neighbor Interface Address (from the HELLO)

� the relevant Link Code (from the HELLO)

� the relevant Global Timestamp (from the ADVSIG)

The Signature of Certificate # � is computed only on the Originator
Address and Global Timestamp, because there is no neighbor to advertise,
and hence no link. The purpose of this Certificate Zero is to certify to a neighbor
the hearing of an empty HELLO, or a HELLO that does not include that neighbor;
in this case the neighbor can issue a declaration of ASYM_LINK with the sender
of the HELLO message. Consequently, the

��� � � � � � � � �
and � � � � � ��� � � fields are

empty in the relevant tuple of the Certiproof Table.
In sum, when

�
sends an ADVSIG message, every Signature of Certificate

is signed by
�

, while every Signature of Proof is signed by other nodes
(which are, or have recently been, neighbors of

�
).

9.6 The protocol

In the following example we illustrate the algorithm by scrutinizing the building of
a neighborhood. We recall that the notation

� � � � �! ��  � � � � � � ��� " � means
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“
�

sends
�

the message
 

with the Proof
 � , timestamped by

�
at the time

� �
,

and signed with the private key of
�

”.

1.
� � � � � �

“ ”
� ��� � �

�
� " � � � � ��� � �

�
� " �

2.
�#��� � � �

“
� � � � �  

_ ��� ��� ”
� � � � �

�
� " � � �

“ ”
� � � � �

�
� " � � � � � �

�
� " �

3.
� � � � � �

“
� � � �  

_ ��� ��� ”
� ��� � �

�
� " � �

�
“
� � � � �  

_ ��� ��� ”
� � � � �

�
� " � � ��� � �

�
� " �

In step 1,
�

sends an empty HELLO, including a Certificate Zero, and no
Proof. In step 2,

�
receives the HELLO from

�
and declares an ASYM_LINK

with
�

, using the Certificate Zero as proof. In step 3,
�

declares a SYM_LINK
with

�
; node

�
is sure that

�
’s statement about its link state with

�
is correct.

To be able to give the Proof in step 3,
�

stored in its Certiproof Table the tu-
ple

$ ��������� � �  
_ ��� ��� � � � � � �

� � � " � ,
which was extracted from the data

�
received from

�
in step 2:

�
“
� � � � �  

_ ��� ��� ”
� � � � �

�
� " �

.

9.6.1 Implementation of the algorithm

We denote
� �

the current time. The value
� � � is the time interval after which a

Global Timestamp expires. The value
� � �

is the maximum acceptable time
interval between a Certificate and its Proof, after which the Proof is stale and can no
longer be used; this is done in order to thwart replay attacks using old Proofs. (We
leave aside the problem of clock skew.) Upon reception of an ADVSIG message,
the receiving node must check that the following conditions are satisfied for every�

:

� �� � � � � � Global Timestamp � ���
, i.e. the ADVSIG message is not

too old;

� Global Timestamp
� � � � � Timestamp of Proof

� � Global
Timestamp, i.e. the Proof

�
is not too old with respect to the HELLO/TC

message.

The following subsection outlines the algorithm. The full detailed version of
the algorithm is given in the next subsection.

9.6.2 Outline of the algorithm

When a node generates a HELLO or TC message, it must also generate a ADVSIG
message, following this protocol:

1. create the HELLO/TC message;

2. write the timestamp;
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3. if the message is a HELLO then compute the signature of the Certificate
Zero and, for each advertised link, compute the signature of the Certificate
and add the relevant required Proof;

4. else if the message is a TC then just add the relevant required Proof;

5. compute the signature;

6. send the HELLO/TC and ADVSIG messages.

When a node receives a control message and its ADVSIG, it must follow this pro-
tocol:

1. check the validity of the timestamp;

2. check the validity of the signature;

3. if the message is a HELLO then, for each advertised link, check the validity
of the Proof, and extract the Certificate regarding yourself, if any, or the
Certificate Zero if there is no Certificate regarding yourself;

4. else if the message is a TC then, for each advertised neighbor, just check the
validity of the Proof.

If any of the previous checks fail, the HELLO/TC and ADVSIG message must be
dropped.

9.6.3 Detailed algorithm

When a node generates a HELLO or TC message, it must also generate a ADVSIG
message, following this protocol:

1. create the HELLO/TC message;

2. write the Global Timestamp � � �
;

3. if the message is a HELLO then

(a) compute Signature of Certificate # � on: Originator
Address and Global Timestamp;

(b) for each Neighbor Interface Address
�

i. compute Signature of Certificate #
�

on: Originator
Address,Neighbor Interface Address

�
, Link Code,

and Global Timestamp;

ii. find the required Proof in your Certiproof Table;

iii. copy the Proof’s link state in Link State #
�
, or if this field is

empty (i.e. when proving an ASYM_LINK) set the Link State
#
�

field to 0;
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iv. copy the Proof’s timestamp in Timestamp of Proof #
�
;

v. copy the Proof’s signature in Signature of Proof #
�
;

4. else if the message is a TC then

(a) for each Advertised Neighbor Main Address 
i. find the required Proof in your Certiproof Table;

ii. copy the Proof’s link state in Link State #
�
;

iii. copy the Proof’s timestamp in Timestamp of Proof # ;

iv. copy the Proof’s signature in Signature of Proof # ;

5. compute the Global Signature;

6. send the HELLO/TC and ADVSIG messages.

When a node receives a control message and its ADVSIG, it must follow this
protocol:

1. check the validity of Global Timestamp;

2. check the validity of Global Signature, using the public key of the
sender node;

3. if the message is a HELLO then

(a) for each Neighbor Interface Address
�

i. check the validity of Timestamp of Proof #
�

;

ii. if Link Code #
�

= ASYM_LINK then

A. check the validity of Signature of Proof #
�

computed
on: the sender’s address and Timestamp of Proof #

�
;

iii. else

A. check that Link Code #
�

correctly proves the Link Code
of Certificate

�
(according to Table 9.1);

B. check the validity of Signature of Proof #
�

computed
on: the address of

�
, the sender’s address, Link Code #

�
,

and Timestamp of Proof #
�

;

iv. if Neighbor Interface Address
�

= your address then

A. extract (from the HELLO) � � Link Code relevant to Neighbor
Address

�
i.e. your link state;

B. store in your Certiproof Table the tuple$
sender’s address, your address, � , Global Timestamp,

Signature of Certificate #
�+,

;

(b) if none of the Neighbor Interface Address is your address
then
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i. store in your Certiproof Table the tuple$
sender’s address,

�
,
�

, Global Timestamp, Signature
of Certificate # � , ;

4. else if the message is a TC then

(a) for each Advertised Neighbor Main Address �
i. check the validity of Timestamp of Proof # � ;

ii. check that Link Code # � correctly proves the Link Code of
Certificate � ;

iii. check the validity of Signature of Proof # � computed on:
the address of � , the sender’s address, Link Code # � , and Timestamp
of Proof # � .

If any of the previous checks fail, the node must stop processing the HELLO/TC
and the ADVSIG, and must discard them.

9.7 Overhead

We assume the use of DSA to generate the signatures in the ADVSIG message.
The size of an ADVSIG message sent with a HELLO message is:

ADVSIG coupled to HELLO:
&,* � � + � # � bits

An ADVSIG message sent with a TC is shorter (because it does not contain
Certificates) and has the following size:

ADVSIG coupled to TC:
&,* � � & % # � bits

Counting the IP, UDP, and OLSR packet headers, the size of a OLSR packet
containing a HELLO or TC message plus its companion ADVSIG message are
therefore:

HELLO + ADVSIG (packet): �
&
�
� + #,# � bits

TC + ADVSIG (packet):
% & � � # 


� � bits

We assume that each HELLO/TC message and its companion ADVSIG message
are sent together in the same OLSR packet, and the packet does not contain other
messages.

With the assumptions above and those made in Section 5.4.1 ( � � � ), the
flowrate can be evaluated as follows:

OLSR with ADVSIG: 4731 bit/sec

Figure 9.3 shows the additional message overhead for the ADVSIG architec-
ture.
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As can be seen, the message overhead is quite large (even if a large part of this
overhead comes from ADVSIGs that are coupled to HELLOs and that therefore
do not travel further that one hop in the network). The computation overhead is
elevate too, as sending a HELLO message requires �

� �
signature computations,

while sending a TC requires one; checking the validity of either messages requires
�
��


signature verifications. This is unsuitable for low-equipment nodes. For this
reason, this protocol may be fit for high-capacity machines in a military network
operating in a battlefield, where integrity of topology is of primary importance.

The message overhead can be reduced by using shorter signatures (e.g. Boneh-
Lynn-Shacham). By using 64-bit signatures and removing the Reserved fields
for a more efficient padding, the size of a packet containing a HELLO or a TC plus
its ADVSIG would respectively be �

% � � � � % � and
* + � � 
 &

� � . The equivalent
flowrate would be 1636 bit/sec. Figure 9.4 shows the message overhead for the
ADVSIG architecture with shorter signatures.

9.8 Resilience and remaining vulnerabilities

With respect to the vulnerabilities explained in Section 3.2, this architecture pro-
tects against an attacker trying the link spoofing attack. This means reaching an
important goal. A compromised node can no longer choose the (false) routing in-
formation to issue, because this information has to be validated by previous routing
information issued beforehand. Hence the network is now robust against one lone
attacker. The network is protected even if there are more than one compromised
node at the same time, provided that they cannot communicate between them.

If the attacker compromises two or more nodes and is able to have them com-
municate, it can forge any kind of Certificate or Proof where originator and adver-
tised node are both compromised. Hence any distributed information concerning
link state between two compromised nodes may be false. This includes the case in
which the attacker is able to create multiple identities of a node (Sybil attack [39]),
in order to certify the (false) information from a compromised node.
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Figure 9.3: Diagram of ADVSIG overhead.

 0

 1280

 2560

 3840

 5120

 6400

 7680

 8960

 10240

 2  4  6  8  10  12  14  16  18  20

S
iz

e 
(b

its
)

Advertised neighbors

OLSR packet size

HELLO
TC

HELLO with ADVSIG 64 bit
TC with ADVSIG 64 bit

Figure 9.4: Diagram of ADVSIG overhead using 64-bit signatures.



Chapter 10

Using information about node
location

Some useful information that can be added in a node’s messages, in order to achieve
redundancy and strengthen security, is the node’s geographical location.

10.1 State of the art

Geographical information is sometimes used for the basic functioning of routing
protocols, such as the DREAM (Distance Routing Effect Algorithm for Mobility)
protocol [8]. Nodes using DREAM disseminate information about their position by
broadcasting a beacon. Then, a sending node uses a probabilistic model to derive a
direction in which the destination node is likely to be found. Packets are forwarded
in the chosen direction until they reach the intended destination.

GPSR (Greedy Perimeter Stateless Routing) [84] is similar to DREAM, as the
sending node forwards the packet towards the node which is closest to the intended
destination. The process repeats until the packet reaches the destination. This is
the default functioning mode, called Greedy Forwarding. If the default forward-
ing mode is not possible in a region (due to lack of nodes close enough to the
destination) the protocol routes the packet around the perimeter of that region.

LAR (Location-Aided Routing) [88] is another position-based ad hoc routing
protocol. The route discovery mechanism uses message flooding, with an opti-
mization to reduce routing overhead: the node initiating the discovery defines ge-
ographically a request zone, and only nodes within the request zone forward the
route request message.

The protocols mentioned above are not secured, and use geographical infor-
mation solely for routing. An example of position-based secured routing protocol
is SPAAR (Secure Position Aided Ad hoc Routing) [24]. SPAAR uses public key
cryptography to secure hop-by-hop communications, and requires a TTP server for
the delivery of certificates. A node

�
broadcasts its certificate through HELLO

messages; one-hop nodes which hear the HELLO respond by sending their cer-
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tificate, position, and transmission range, encrypted with
�

’s public key. Upon
reception,

�
verifies that the nodes are truly neighbors, and stores their public key,

last known position, and transmission range, in its Neighbor Table. Afterwards,
�

creates a Neighbor Group key pair and distributes the Neighbor Group decryption
key to each neighbor. The Neighbor Group encryption key is used later by

�
to

encrypt all its control messages (RREQs, RREPs and RERRs).
The geographical position can be obtained by using Global Positioning Sys-

tem (GPS) devices embedded into the hardware of each node [38]. The GPS is a
satellite-based navigation system that makes possible to know the precise position
of the device anywhere on Earth or in Earth orbit; the position is extrapolated from
the measures of the distances from the device to a minimum of two satellites. The
same GPS facility can be used to provide time synchronization [150].

There exist other solutions which do not require every node to be equipped with
a GPS device [138] or which do not use GPS at all [153, 46]. These solutions rely
on signals or other feedback from other nodes (e.g. the emission power). However,
in a network where the presence of malicious nodes is possible, these solutions
cannot be considered safe.

10.2 GPS-OLSR

We propose a protocol [131, 132] that enhances security by including and process-
ing the geographical position of the sending node in its control messages. This
solution may also be applied to other link state protocols. It is inspired from the
work by Hu et al. about packet leashes [67]. Here we assume that the geographical
information is obtained by a safe source, like an embedded GPS device.

Several attacks can be thwarted if we possess information about node position,
i.e. if every node knows the correct geographical position of any other node in
the network. Nodes then compare this geographical data to the received control
messages containing topology data (the neighbor and link set). If contradictory
information is found, the false control message is detected and discarded.

Besides, the availability of geographical information about nodes in the net-
work opens speculations about possible new features in the standard OLSR, such
as improved MPR selection and link breaking forecast. For instance, when two
linked nodes are moving in opposite directions (with the distance between the two
nodes rapidly increasing), a link break will shortly occur. Therefore, each of the
two nodes should not select the other as a MPR. These issues are not in the scope
of this thesis, and are not discussed further.

10.2.1 Specifications

We propose to add a control message called SIGLOC (which stands for SIGnature
and LOCalization), based upon the SIGNATURE message presented in Section 5.
The SIGLOC message carries an additional GPS Localization field which
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| GPS Localization |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Signature :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 10.1: SIGLOC message format.

contains the current geographical position of the sending node, as obtained from
the GPS facility, and is included in the signature computation. This field is 32 bits
long, that is enough to define the position over an area of more than 4200 square km
with a precision of 1 m using Cartesian coordinates; a more efficient representation
can also be used.

The format of a SIGLOC message is given in Figure 10.1. All other fields, as
well as the mechanisms of signature computation and verification, are the same as
for the SIGNATURE message. Similarly, a SIGLOC message is generated and
sent along with each HELLO or TC message.

A node informs the other nodes about its current geographical position via this
SIGLOC message. The receiving node verifies the correctness of the timestamp
and signature as previously specified, and extracts the timestamp and the informa-
tion relative to the position of the originator node. This data is stored as a tuple

$ � � ��� � � � �(' � � � � � � � � � � ��� � � � � ' ,
in a Position Table maintained by each node. The Position Table has the purpose
to memorize the most recent position of every other node in the network. Note
that geographical information is propagated in the network via SIGLOCs coupled
to TCs, as HELLO messages are not spread around further that one hop. How
this geographical information is utilized to improve security will be discussed in
Section 10.2.2.

The advantage in knowing the geographical position of nodes is that we can
speculate whether communication of a message from a sender node

�
is likely to

be heard or not by a receiver node
�

. Let
' � and

'
� be the current position of the

sender and the receiver and
� � the current time according to the receiver’s clock.

Also let
� �

be the discrepancy in the clocks’ synchronization,
� �

the maximum
absolute error in position information,

� ��
��
the maximum velocity of any node,

and
� ��
��

the maximum transmission range. Based on the timestamp
� � of the

sender’s message, we can compute a lower bound on the distance
� � � between the

sender and the receiver. In fact it must be
� ��
�� � � � � ��� ' � ��' � � � � � � � � � � � � � ( � � ��
� � � � (10.1)
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as shown in Figure 10.2, where the radius
�

of the circle is the quantity on the right
of the formula:

� � � ' � �-' � � � � � � � � � � � � � ( � � ��
�� � � � . If the (10.1) is not
valid, this means that the receiver node is too far from the sender node to be able to
hear its transmission; therefore such a transmission is highly suspicious and might
be a fake.

d SR

r

R

S

Figure 10.2: Lower bound on the distance between
�

and � .

An important remark: We denote as sender
�

the last-hop node that emitted
the message received by

�
; this means that receiver

�
is 1-hop far away from

sender
�

, i.e.
�

and
�

are neighbors. In the case of messages (e.g. TCs) that are
being relayed, the sender node

�
is not the same as the originator node, which is

the node that created the message. The address of the originator is contained in
the Originator Address field in the HELLO header, and does not change
while the packet is relayed around the network. The sender address

�
is the source

address from the IP header of the packet, and is changed, each hop, to the address
of the node which is retransmitting the message.

Note that the standard OLSR already defines some checks to be performed at
message reception; if the sender

�
of a TC/MID/HNA message is not a symmetric

neighbor of receiver
�

, the latter must drop the message.

10.2.2 Resilience

We believe this protocol to be robust against two of the most severe attacks: link
spoofing and wormhole.

It may be argued that a compromised node
%

can forge the GPS information
contained in the SIGLOC message. The compromised node can choose any value
from scratch; in case the GPS device is tamperproof and supplies geographical data
in an encoded format, node

%
can even record other node’s geographical data, or

its old own, and reuse it later. In this case,
%

could pretend being over time in
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very different parts of the network, and advertise links with nodes which are in its
current part of the network, in order to perform a link spoofing attack.

However, this does not work because node
%

(as any other node) is always
bounded by its maximum velocity

� ��
��
. A node that has in its location table the

tuple
$&% �(' )�� � ) ,

, and receives a SIGLOC message from
%

carrying a geograph-
ical data

' �) and a timestamp
� �) , must check if the following condition holds true:

� ' �) � ' ) � � � � �) � � ) � ( � ��
�� (10.2)

If the (10.2) is not valid, this means that node
%

pretends to be in a location it
could not reach according to its maximum velocity; therefore either

' )
or
' �) are

likely to be false.

Protection against link spoofing

For any communication between a sender and a receiver, the Formula 10.1 must
hold valid and this obviously also applies to link state. We can therefore detect
the case in which a misbehaving node

%
falsely advertises a link (in a HELLO

message) with the non-neighbor node � , or declares � as a neighbor (in a TC
message). In the case of such a false declaration, the (10.1) is in fact not valid
with respect to the distance

� )��
as evaluated by the receiver

�
of the message

(Figure 10.3).

d XN

A

N

X

Figure 10.3: Test of likelihood for declared links.

Protection against wormhole attacks

When a message is being maliciously tunneled between legitimate nodes
�

and
�

,
the Formula 10.1 is not valid with respect to the distance

� � �
as measured by

�
(Figure 10.4).

10.2.3 The protocol

A node generates a SIGLOC message together with any generated HELLO or TC
message, with the same specifications of the SIGNATURE message referred in
Section 5. The following step is added to the protocol:
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d AB

B

A

Figure 10.4: Test of likelihood for a direct link (against a wormhole).

� the node writes in the GPS Localization field the geographical data
concerning its actual position, as obtained from its own GPS device.

When node
�

receives a SIGLOC and its HELLO/TC from node
�

, it handles
them in the same way it does with a SIGNATURE message, performing the same
tests (match of the SIGLOC with the companion HELLO/TC, timestamp validity
check, and signature verification). Note that

�
is the last hop to

�
, and that we

call � the originator of the control message relayed by
�

. If the control message
is a HELLO, then � is surely

�
because we know HELLOs are not relayed; if the

control message is a TC, then � may or may not be
�

(depending whether
�

is an
MPR or not). The following steps are added to the protocol:

� node
�

checks that Formula 10.2 is valid with respect to
�

;

� for each neighbor � declared in the HELLO/TC by the originator node � ,
node

�
checks that Formula 10.1 is valid with respect to

��� �
;

� node
�

updates the entry concerning � in its Position Table, storing the tuple$ � � GPS Localization
�
Timestamp

,
with the actual values from the

SIGLOC.

If any of the previous checks fail, node
�

must stop processing the HELLO/TC and
the SIGLOC, and must discard them. Note that this algorithm assumes that

�
has

entries for
�

, � , and � , in its Position Table; this may not be the case at network
initialization. Immediately after network bootstrap, during the first formation of
the network, if

�
lacks the entry needed for the test it should therefore bypass the

relevant step.

10.3 Using a directional antenna to obtain extended accu-
racy

Using a directional antenna instead of an omni introduces additional security. With
that, node

�
can know from which direction the signal is coming; by basing on
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' � and
' � and using simple plane geometry,

�
can check roughly the correctness

of the value
' � . Let

� � � � ���
be the sector of

�
’s antenna on which the signal is

received, and denote with
� � � � � � � � the coordinates of

�
in the polar coordinate

system with origin in
�

. In addition to (10.1), the following condition must also
be true:

� � � � � � � � �
(10.3)

as shown in Figure 10.5. Formula 10.3 is useful even if the maximum transmission
range

� ��
��
is not known with precision.
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Figure 10.5: Direction check on the distance between
�

and � .

10.4 Numerical evaluation

We analyze the consequences of the (10.1). With figures such as
� � � � km/h,� � � � � � � � � 
 � � msec, and

� � � 

meter, we obtain

� ' � � ' � � � � ��
�� � # 	'&,&,&
meter. When

� ��
��
is not too small (e.g.

� ��
� � * � meter), the received packet is
necessarily sent from a nearby node within the coverage of the recipient. Therefore,
wormhole attacks tunneling such a packet would be difficult to accomplish because
the real packet is likely to be heard by the recipient; on the other hand, such an
attack would be not very efficient, since the node whose packet is relayed is, most
likely, a few hops away. When

� ��
�
is small (e.g.

� � meter � � ��
� � * � meter)
the information given by a directional antenna can be useful, since the sector in
which the signal is expected has a limited size.
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10.5 Overhead

We assume the use of DSA to generate the signature in the SIGLOC message.
The size of a SIGLOC message is:

SIGLOC:
& % #

bits

Counting the IP, UDP, and OLSR packet and message headers, the size of a
OLSR packet containing a HELLO/TC message and its companion SIGLOC are:

HELLO + SIGLOC (packet): � �
% � # � � bits

TC + SIGLOC (packet):
%
�
# � & � � bits

We assume that each HELLO/TC message and its companion SIGLOC message
are sent together in the same OLSR packet, and the packet does not contain other
messages.

With the assumptions above and those made in Section 5.4.1, and considering
a neighborhood of 9 nodes, the flowrate can be evaluated as follows:

OLSR with SIGLOC: 894 bit/sec

Figure 10.6 shows the additional message overhead for the SIGLOC architec-
ture.
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Chapter 11

Detecting bad behaviors

While it is important to strengthen security in order to prevent network intrusions,
and therefore misbehaviors, it is also useful to use audit tools to detect these possi-
ble misbehaviors in the network. As remarked by Schneier [140], a prevention-only
strategy works only if the prevention mechanism is perfect. In this case, we accept
the possibility that, despite the security measures, an intrusion can be successfully
carried out; what we want now is to identify the intruder as soon as it starts per-
turbing the network, and neutralize it. The misbehaving node can be a former le-
gitimate node that has been compromised, or an intruder node that managed to join
the network. Note that node misbehavior may also be not due to malice, e.g. in the
case of malfunctioning or battery exhaustion. Nevertheless also these misbehaviors
should be detected and stopped, since they can damage the correct functioning of
the network.

Once a node detects a misbehaving node, it alerts the network. Upon reception
of the alert, the other legitimate nodes should take a corrective action to exclude
the misbehaving node to participate further in the network.

The techniques mentioned can be used with or without an infrastructure to
sign messages, i.e. both on secured or unsecured routing protocols. They do not
replace message signatures and other security measures; they work in parallel to
them. Of course, the danger in not using signatures is that an attacker could revert
the technique against the network, falsely accusing well-behaving nodes and/or
issuing alerts with a spoofed originator.

11.1 State of the art

Different ways exist for countering attacks such as the blackhole (in which, we re-
call, a node causes a Denial of Service by failing forwarding packets in accordance
to the protocol) or similar. An example is to overhear transmissions to detect incor-
rect forwarding behavior, as in the Watchdog/Pathrater [104] or in CONFIDANT
[20]. Bloodhound [103] is a modified version of the Watchdog, designed in order
to patch a security flaw in SRP which makes SRP vulnerable to the invisible node
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attack. Another issue is the WATCHERS [19, 70] approach based on the princi-
ple of conservation of flow. Other ways use detection through acknowledgements
[122] or probe packets [26].

11.1.1 Watchdog/Pathrater

The Watchdog/Pathrater system is designed as an extension to DSR. It is com-
posed of a module called Watchdog that identifies misbehaving nodes, and a mod-
ule called Pathrater that computes a route avoiding these nodes. These modules are
run by each node in the network.

The Watchdog listen promiscuously to the next node’s transmission, checking
that the node correctly forwards the packet it has received. The Watchdog can also
detect if the node has tampered with the payload. This is done by comparing the
listened packet to a buffer of recently sent packets. The Pathrater processes the
information obtained from the Watchdog to rate the reliability of every other node
it knows in the network, and to calculate a path metric obtained by averaging the
node ratings in the path. The packets are then routed through the path with the
highest metric.

This system cannot be reverted against the network because such behavior
would be easily detected. In a path

� � % � � � � �
� , node

%
(misbehaving)

could falsely report that node
�

is not forwarding packets. However, the acknowl-
edgement of a message from

�
to � travels correctly from � to

�
(node

%
cannot

drop neither packets nor their acknowledgement because
�

and
�

would detect
this misbehavior), and then

�
becomes aware that

�
is not misbehaving because it

is included in the path.
We consider a path

� � � � �
. The weaknesses of this system is that the

Watchdog running in node
�

may fail in identifying a misbehaving node in some
condition.

� A packet collision may occur in
�

when
�

is listening to
�

. In this case�
cannot know whether the collision was due to

�
forwarding the packet

(well-behaving), or to another node transmitting while
�

did not forward
the packet (misbehaving);

� When
�

is listening to
�

forwarding to
�

, it detects that
�

sends correctly
the packet. However, node

�
cannot detect whether

�
received it, or a colli-

sion occurred in
�

and
�

did not re-send the packet (misbehaving);

� Node
�

may tweak its transmission power (misbehaving) so that
�

detect
that

�
is forwarding a packet to

�
, but

�
does not receive it;

� Nodes
�

and
�

(both misbehaving) may collude to mount an attack. Node
�

forwards correctly a packet to
�

, but does not report
�

dropping the packet;

� Node
�

may drop packets (misbehaving) at a lower rate than the minimum
misbehavior threshold of

�
’s Watchdog.
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11.1.2 CONFIDANT

CONFIDANT (Cooperation Of Nodes: Fairness In Dynamic Ad hoc NeTworks)
is a protocol similar to the Watchdog/Pathrater. It is developed with analogy to an
ecological system, where natural selection ensures the survival of those elements
of population who bears a grudge against the elements which does not behave
altruistically. Hence, CONFIDANT too is based on cooperation between well-
behaving nodes, and isolation of misbehaving nodes.

The protocol is composed of four modules which are run in each node: the
Monitor, to listen to neighbors’ transmissions and identify misbehaviors; the Rep-
utation System, to rate the nodes; the Path Manager, to create and delete paths
according to a security metric derived from the nodes’ ratings; and the Trust Man-
ager, to manage the trust level of the nodes and issue alarms.

11.1.3 WATCHERS

The principle of conservation of flow in a network states: “All data bits sent to a
node, and not destined to that node, must exit the node”, or “An input must either
be absorbed or sent on as an output”. WATCHERS (Watching for Anomalies in
Transit Conservation: a Heuristic for Ensuring Router Security) is a distributed
protocol based on the principle of conservation of flow. Each participating node
checks that incoming packets have been correctly routed, and counts the data bits
passing through neighbor nodes. The results are periodically reported to other
participating nodes, in order to allow each node to check if its neighbors have
respected the principle. If a node finds that one of its neighbors is misrouting
packets or violating the principle, it stops sending packets to the misbehaving node.

A drawback of this method is that proving that the proper number of packets
was forwarded by a node, does not prove that the proper packets were sent, as it
cannot be proven that packets have not been tampered with.

11.2 A trust system for OLSR

As said previously, a node can be able to notice if its neighbor is not forwarding
packets; in this case, the noticing node may take appropriate action and propagate
the alert to the other nodes.

However, a critical problem when exchanging trust evaluation between nodes
is how to distinguish false alarms from good ones. Compromised nodes may issue
false alarms regarding legitimate nodes, in order to exclude them from the network
and therefore cause a Denial of Service. In the CONFIDANT protocol, the problem
is lessened by timeout and subsequent recovery of nodes that have behaved well
for a specific period of time.

The problem lies in the difficulty to evaluate node
�

’s statement about
�

. If�
states that

�
is misbehaving, is

�
a good node that reports

�
’s misbehavior,

or is
�

good and
�

is compromised? Hence the situation is symmetric. In fact,
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Accused Neighbor Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
: Signature :
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 11.1: Accusation message format.

once a node has fallen in enemy’s hands, as long as its messages strictly follow
the protocol and the node uses its private key to sign its messages, these messages
appear to be perfectly valid (and in fact they are) and are accepted by the rest of the
network. We nevertheless present here our approach, which could partly solve this
dilemma, and which consists in a balanced accusation system and link removal.

In our opinion, there is a criterion that allows us to distinguish between com-
promised and non-compromised nodes: as cracking a PKI costs highly in terms
of efforts and time, we may suppose that compromised nodes are outnumbered by
good nodes. We can then use this advantage by requiring that alerts must be con-
firmed by more than one node. There is safety in number. With this approach in
mind, we outline a protocol for misbehavior detection, which imitates the Pathrater
and which uses an evaluation and rating system of accusations.

11.2.1 Specifications

A global Trust Table lists each node in the network, with a numerical value associ-
ated to each node and representing its level of trust. This value means how much
this node should be trusted to be well-behaving. Every node maintains a local copy
of the Trust Table.

When a node detects a neighbor misbehaving, it immediately alerts the network
by broadcasting an accusation message containing:

� the node’s own address

� the address of the accused misbehaving neighbor

� a code stating the type of misbehavior

� a timestamp

� the signature

The possible format of an accusation message is specified in Figure 11.1.
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Index Misbehavior� � � Failure in reporting a misbehavior� � 

Failure in forwarding� ���
Malformed control message� � &
Stale timestamp� � #
Invalid signature� � *
Identity spoofing� � � DoS (message bombing) attempted

Table 11.1: Misbehaviors, in order of increasing severity.

Every node also keeps an Accusation Table storing all past heard accusations
broadcast on the network. Upon reception of an accusation, a node handles and
evaluates it independently. This avoids the need of maintaining a centralized entity
(which could be a weakness) evaluating the trust. If broadcast is done properly,
each node should have the same copy of the Accusation Table.

Optionally, the accusation message could contain also a valid Proof, as de-
scribed in Section 9, consisting of a HELLO message reporting a symmetric link
with the neighbor node. This of course can be done only if the accusation system is
implemented over the ADVSIG infrastructure. The advantage of the Proof is that
it certifies the accuser node being in the neighborhood of the accused node, and
therefore limits the damage a compromised node could do by maliciously accusing
non-neighbor nodes (possibly, every other node in the network).

11.2.2 Punishment and reward

A node has a trust rating of �
�

at the boot-up. This trust rating changes according
to the behavior and reported accusations against the node.

If a node has at least � � accusations against him (all accusations coming from
��� different accusers) within a time interval

� � , its rating is decreased by � � and its
accusers are rewarded by increasing their rating by ��� . However, if within

� � the
network fails to find � � accusations against the node, these accusations are dropped;
in this case the node’s rating is increased by � �� and the

�

nodes which accused it

(
� � ��� ) are punished by decreasing their rating by

� � �� . With this, we implement
a reward and punishment system which remunerates nodes which behave correctly
and sincerely report misbehaviors, and punishes false accusers in the opposite way.
Each set

�
of values can be decided depending on the type of misbehavior detected:

see Table 11.1 for an example.
When the trust level of a node drops negative, the node is considered as bad

(i.e. compromised or malfunctioning) and specific actions should be taken against
it. The list of possible actions to take is discussed in Section 11.2.3.

An accusation from a node is automatically discarded if the node has already
sent an accusation (as reported in the Accusation Table) within a time � � � � � .
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As packet collisions and transmission errors happen even on a network where
no node is compromised, a well-behaving node might be accused and eventually
have its trust rate dropping below zero after a finite time. To avoid this, the rating
of all nodes is raised by a bonus � � every time interval

� � . The values � � and
� �

are computed depending on the probability
' � of a packet collision or transmission

error. These values should be set once at network boot-up and not changed any-
more, as otherwise this could make the network automatically adjusting as more
and more nodes become compromised.

The value of the � � variable must be chosen as proportional to the density
of the network, and depending on the balance we want between different kinds
of protection. An attacker could compromise a number of nodes, use them to
surround a good node and accuse it until the good node is considered bad, then
pass to another good node and so on. A high value for � � means that a bigger
number of accusers is needed against a presumed misbehaving node. Therefore, the
network is better protected against the aforementioned attack, as the attacker needs
to compromise a bigger number of nodes. However, we must take into account
the fact that the network might fail in finding � � witnesses at the same time

� � for
the same event, and therefore that more misbehaviors are unreported. On the other
hand, setting a low value for � � causes more misbehaviors to be detected, but makes
the aforementioned attack easier to accomplish.

11.2.3 Detection of a misbehaving node: countermeasures

We have now spotted a node that, with high probability, is misbehaving due to
compromission or malfunctioning. However we are not sure which of the two
possibilities is correct. A malfunctioning node may fail to route packets, but its
other functionalities like message emission may or may not be affected as well. On
the other hand, a compromised node is likely to behave as much maliciously as it
can, and should therefore be removed from the network definitely and as soon as
possible.

As a safety rule, we may choose to exclude the misbehaving node, and deny
routing packets through it. This exclusion is operated by requiring that all routes
containing the guilty node are removed from all routing tables. This exclusion may
be definitive or may be revoked after a complete recovery over the failing node,
e.g. after human intervention.

11.2.4 Variations on the theme of trust evaluation

Another strategy is evaluating trust locally instead of globally; this involves per-
forming link removal instead of node removal. This strategy states that in the case
of a successful accusation, the link between the accuser and the accused node must
be removed. This is done by the accusing node, by removing the misbehaving node
from its routing tables and not accepting messages anymore from the misbehaving
node. In this case, there is no need to broadcast accusations; a different Trust Table
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is maintained independently by each node, and the boot-up trust rate �
�

is set to a
smaller value. This strategy is probably safer, as it better maintains network avail-
ability. As we do not know whether of the two nodes is misbehaving, we cut the
link between them. Should a node misbehave for more than a short time, it isolates
itself from the rest of the network.

Another criterion, unsuitable for OLSR but which could be applied to a source
routing protocol, is to use the trust rating as a routing metric. A route rating is cal-
culated as the sum (or the average, or another appropriate mathematical operation)
of the trust ratings of all nodes included in the path, and the route with the highest
rating is chosen. This is similar to the SAR protocol [163] which organizes nodes
in a trust hierarchy and incorporates security ranks of nodes into routing metrics;
the difference is that trust ratings in SAR are not dynamic.

11.2.5 Precise checks on flow conservation

An additional measure for misbehavior check, which requires all traffic to be au-
thenticated, applies the principle of conservation of flow enunciated in Section
11.1.3 to perform precise checks on flows. Network flow conservation checks are
the basis for a set of algorithms that essentially count packets received and sent
by a node to each of its neighbors. These counts verify if the node is exhibiting
proper routing behavior. The total number of packets which come into a node to
be relayed should be equal to the total number of relayed packets coming out from
the same node.

When applied to two neighbor nodes
�

and
�

, the principle of conservation of
flow states that the number of packets sent by

�
to
�

must be equal to the number
of packets received by

�
from

�
.

Now, when wanting to verify the behavior of a third node
�

being both
�

’s
and

�
’s neighbor, the packet counts should be consistent considering each pair

involving
�

and its neighbors, i.e.
��� �

and
��� �

. Additionally, nodes
�

and
�

should compute statistics about packets in transit through
�

, where a transit
packet of

�
is a packet that is neither destinated to nor originating from

�
. On a

node
�

, the principle of conservation of flow hence translates into “The sum of the
number of transit packets sent to

�
by all other nodes must be equal to the sum of

the number of transit packets sent by
�

to all other nodes”.
Therefore, a more reliable misbehavior detection is obtained through precise

flow conservation checks. Each pair of neighbors
� % � � �

records the following
information about the packets from

%
to

�
:

� The number of packets that are transit packets for both
%

and for
�

(i.e.
neither

%
nor

�
are source or destination):

� )����
.

� The number of packets with source
%

that are transit packets for
�

:
� )����

� The number of packets with destination
�

that are transit packets for
%

:� )����
.
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� The number of packets that are misrouted by
%

to
�

(i.e. packets forwarded
by
%

to
�

although
�

is not closer to the destination than
%

):
� )����

� The total number of all packets without regards for the source or destination:
� )����

Each quantity can be seen either from the point of view of node
%

or node
�

.
For instance,

� )����
is denoted

� )���� � % �
for

%
’s perspective, and

� )���� � � �
for�

’s perspective. Similarly,
� )���� � % �

is the number of packets misrouted by
%

to�
from

%
’s perspective, which should normally be 0.

The complete relation for flow conservation in a node � is therefore specified
as: output

�

input = produced packets
�

consumed packets. This quantity is
not necessarily zero. Therefore we have that the number of packets sent by � to
neighbors, minus the number of packets sent by neighbors to � , is equal to the
number of packets sent by � originating from � , minus the number of packets
sent to � destinated to � , minus the number of packets sent to � that � judged
misrouted.

This can be translated into Equation 11.1 for a node � and the set of its neigh-
bors � � :

���
�
��� � �

�

� � � � � � ���
�
� �
�

� � � � � � ���

���
�
� � � �

�

� � � � � � ���
�

� �
�

� � � � � � � � ���
�
� �
�

� � � � � � � (11.1)

The weakness of this technique is that it ensures the proper number of packets
is exchanged, but it does not make any assumption about the content of the packets.
An expensive possible solution would be to keep a digest list or Bloom filter [14],
instead of a counter, about the packets received and sent.

11.3 A last word about enforcing security

An important point that should not be forgotten is that security often adds redun-
dancy to an architecture, and the burden it gives may be exploited by an adversary
to cause damage to the system. For instance, where a secure protocol, which im-
plements message signatures, is deployed, an attacker may send a large number of
malformed signatures over the network, in order to keep the nodes busy verifying
the signatures and therefore to perform a Denial of Service. This problem would
not exist in the non-secure version of the protocol, where the nodes would sim-
ply discard the malformed messages sent by the attacker. The following scheme,
adapted from Garfinkel [51], shows how each new security countermeasure can
be exploited for a new attack, by illustrating at each step a different profile of the
attacker and the defender.

Defender: An ad hoc network running the standard non-secure OLSR.
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Attacker: An intruder node sending false routing messages to perturb nodes’ rout-
ing tables.

Defender: An ad hoc network running OLSR with signatures (Chapter 5).

Attacker: A compromised node sending routing messages with a spoofed origi-
nator address to perturb nodes’ routing tables.

Defender: An ad hoc network running OLSR with the SIGLOC infrastructure
(Chapter 10).

Attacker: A compromised node that stops relaying messages to perturb network
connectivity.

Defender: An ad hoc network running OLSR with the SIGLOC infrastructure,
and a WATCHERS-based system for detection of flow conservation (Section
11.1.3).

Attacker: A compromised node sending false accusations against its neighbors.

Defender: An ad hoc network running OLSR with the SIGLOC infrastructure, a
WATCHERS-based system, and an accusation system for detection of mis-
behaviors (Section 11.2).

This simply means that the security level must be tuned according to the pre-
visible attacks and to the desired level of protection: a military network would
obviously need a greater defence infrastructure than that of a public network. Fur-
thermore, securing a network (or, in a general way, a system) is a dynamic process.
This process must make use of several and different tools, in order to be ready to
counteract different types of assaults.

It should also be noted, as shown by the elusive and elegant jellyfish attack
(Section 3.1.1), that misbehaviors may be very difficult to detect. We give here an
example of a very theoretical attack against OLSR that, while strictly respecting
the protocol, has the effect of muting a node completely. The OLSR protocol adds
an amount of jitter to the interval at which control messages are generated. This is
done in order to avoid emitting messages at the same time, and hence provoking
packet collisions. We may safely assume that, in any implementation of OLSR, the
jitter is randomly generated using a PRNG (Pseudo Random Number Generator)1 ,
which does not give real-random numbers. If the implementation of the PRNG is

1By their very definition, a random number is unpredictable, whereas the output of a computer
algorithm is predictable. Therefore, a computer algorithm cannot generate random results. A PRNG
program uses internal sources of pseudo randomness, such as environmental noise from device
drivers, and generates only pseudo random numbers. For many applications that do not need high
levels of security, pseudo random numbers are suitable; however, critical cryptographic applications
should use external sources of real randomness, such as radioactive decay, cosmic rays, or thermal
noise in electric circuits [51].
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not carefully chosen, an attacker could replicate its results and command a com-
promised node to use the same jitter as that which a neighbor node is using. As
a consequence, the compromised node could synchronize its transmissions with
those of its neighbor, causing message collisions and impeding the neighbor from
communicating.

This behavior, while being fully protocol-compliant, can severely degrade the
network functioning. Nonetheless, it is an impractical and nonrealistic attack. De-
nials of Service can be carried on the physical layer as well (e.g. by radio interfer-
ences), where they are much easier to carry out.
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Conclusion

In this thesis we have provided an overview of the security problems in wireless
networks, focusing on the routing protocols in ad hoc networks, and contributed
with some solutions to make OLSR more secure. Wireless ad hoc networks are an
emerging technology, and the literature covering the aspects of the security of the
routing layer is relatively new, the first papers on this subject having been published
a few years ago.

The thesis provides a classification of the attacks against OLSR, which is a
topic that has never been studied at this level of detail. We have also proposed sev-
eral solutions for OLSR, these solutions including at first the addition of a digest
or a digital signature to control traffic; this is the canonical protection against in-
trusions in the routing protocol. More elaborate techniques presented in this thesis
focus on the validation of link state information, to avoid compromised nodes issu-
ing false information. This is an advanced level of protection, and assumes that an
adversary is able to generate correct signatures for control traffic originating from
some nodes. These advanced techniques use additional knowledge, such as previ-
ous link state declarations or geographical data concerning the position of nodes,
to validate the topology information spreaded in the network by the nodes. The
increased security is at the expense of a greater message overhead, as exchanged
control messages have of course a larger size and implicate further computations
done by both the originating and the receiving node. This may be unsuitable for
a network composed of nodes that do not have a sufficient computational power,
for a QoS-aimed network that must guarantee high performances concerning the
data rate, or for a network that simply does not need such an improved security.
On the other hand, these techniques can be associated in order to provide an higher
security level.

These systems are aimed at the protection of network topology information.
Ad hoc networks are the most adaptable and serviceable type of wireless network;
for this reason, they are widely used by the military. In this instance, topology in-
formation is of great value, and the network should be protected against intrusions
which would have severe consequences.
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In addition to the prevention techniques mentioned above, we have also sketched
a method for misbehavior detection and elimination. This method aims at detect-
ing those nodes that, by non-respect of the protocol rules, perturb the network
functioning. Once that these misbehaving nodes are detected, an alert is broadcast
to inform the rest of the network. The other nodes subsequently issue a joint reac-
tion to purge the network of the offending nodes, e.g. by removing them from the
routing tables. Of course, this detection system can (and should) be combined with
some of the aforementioned prevention techniques.

12.1 Foresights

During our doctoral researches we have found some systems, of different require-
ments and specifications, to secure OLSR. Other systems may be found by adapt-
ing various security techniques and established standards, such as IPsec, always
bearing in mind that ad hoc networks have their own characteristics and limita-
tions. These miscellaneous security techniques may also come from other link state
protocols, or even reactive routing protocols, with the necessary modifications to
conform to OLSR.

Indeed, we have provided just an outline of the signature algorithms utilized in
our security systems. The study of better cryptographic algorithms (from the point
of view of a smaller signature size, reduced computation complexity, and greater
speed) would increase the suitability of the proposed OLSR security architectures
to the reality of an ad hoc protocol.



Appendix A

Résumé détaillé de la thèse

Cette thèse traite le problème de la sécurité dans le protocole OLSR pour les
réseaux ad hoc. Elle étudie les attaques possibles et propose différentes infrastruc-
tures pour la sécurisation d’OLSR.

A.1 Introduction aux réseaux sans fil

Dans les réseaux sans fil les ordinateurs communiquent soit à travers les ondes
radio, soit au moyen des rayons infrarouges. Les ondes radio sont le support le
plus utilisé: les fréquences disponibles se trouvent dans la bande des micro-ondes,
autour de 2.4 GHz (bande ISM) et 5 GHz (bande U-NII). Selon la fréquence, la
puissance, le débit de transmission et l’antenne utilisée, la portée d’émission d’une
machine peut varier entre 10 et 100 mètres, avec un maximum d’environ 10 Km.

Les standards pour le support hertzien, au jour d’aujourd’hui, sont le IEEE
802.11 avec ses branches principales 802.11a (Wi-Fi5) et 802.11b (Wi-Fi), Hiper-
LAN de l’ETSI, et Bluetooth.

Un réseau sans fil peut fonctionner en différentes modalités: en mode infra-
structure ou BSS, où les machines (nœuds) sont en connexion à travers un point
d’accés; en mode point à point, ad hoc ou IBSS, où les machines communiquent
directement entre elles; ou comme un réseau ad hoc ou MANET, où toute machine
peut communiquer avec n’importe quelle autre, grâce au fait que les paquets sont
relayés par les machines jusqu’à ce qu’il joignent leur destination.

Un réseau sans fil est beaucoup plus souple que son homologue filaire, dans la
mesure où les nœuds ne sont pas connectés par de câbles et peuvent être totalement
mobiles. Pourtant, un réseau sans fil possède des faiblesses en ce qui concerne la
connectivité des nœuds et la sécurité des données.

A.1.1 Les protocoles de routage pour les réseaux ad hoc

Dans un réseau ad hoc, pour permettre la connectivité entre l’émetteur et le récep-
teur d’un paquet, un protocole de routage doit nécessairement tourner dans tout
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nœud du réseau. Les protocoles de routage peuvent être classés dans trois caté-
gories:

� dans un protocole réactif ou à la demande, la demande d’une route pour
une destination declenche la recherche d’une route. Parmi les examples de
protocoles réactifs on peut citer DSR, AODV et DSDV;

� à l’inverse, un protocole proactif ou périodique est caractérisé par l’échange
périodique des tables topologiques, ainsi les routes sont disponibles d’une
façon immédiate. Rentrent dans cette catégorie les protocoles tels que OLSR,
OSPF, FSR, TBRPF, ADV, STAR, LANMAR, WRP et WIRP;

� un protocole hybride, enfin, utilise les deux systèmes pour le routage. ZRP
et CBRP sont des exemples d’un tel type de protocole.

A.1.2 Le protocole OLSR

OLSR (Optimized Link State Routing) est un protocole proactif à état de lien,
qui utilise un mécanisme d’inondation optimisé pour diffuser à tous les nœuds du
réseau des informations partielles sur les liens.

Le trafic de contrôle dans OLSR se compose de deux types de messages:
HELLO et TC. Les HELLOs sont envoyés périodiquement par un nœud pour si-
gnaler ses liens (symétriques, asymétriques ou MPR) avec les nœuds voisins, et ne
sont pas relayés; accessoirement, l’échange de messages HELLO permet à chaque
nœud de mémoriser des informations sur son voisinage à deux sauts, informations
qui seront par la suite utilisées pour la sélection des MPRs. Les TCs sont émis
périodiquement par un nœud si celui-ci a été sélectionné comme MPR, et contien-
nent une liste de voisins symétriques du nœud; ces messages sont diffusés dans
le réseau entier. Deux autres types de messages, MID et HNA, sont émis par un
nœud ayant des interfaces multiples respectivement OLSR et non-OLSR, pour an-
noncer la configuration de ses interfaces au réseau. Ces messages de contrôle sont
encapsulés dans un paquet OLSR.

OLSR utilise un système d’inondation optimisée basée sur un sous-groupe
de nœuds appelés Relais Multipoint (MPR). Chaque nœud sélectionne ses MPRs
parmi ses voisins symétriques de telle façon qu’un message envoyé par le nœud et
répété par ses MPRs (son MPR set) sera reçu par tous les voisins à deux sauts du
nœud en question. Chaque nœud mémorise aussi un MPR selector set, qui con-
tient l’adresse de ses voisins qui l’ont sélectionné comme MPR. Les messages de
contrôle sont relayés seulement par les MPRs.

A.2 Sécurité des systèmes

La sécurité d’un système inclut plusieurs problématiques telles que le contrôle
d’accès, l’authentification, la confidentialité, l’intégrité, la non-répudiation et la
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disponibilité de service. Ces qualités sont menacées par les attaques correspon-
dantes: accès non autorisé, usurpation d’identité, écoute passive, modification des
messages, falsification des messages et Déni de Service (DoS). Les contre-mesures
visant à prévenir ces attaques font souvent appel à la cryptographie, qui permet le
chiffrement, la génération d’un digest et/ou la signature numérique des messages
échangés à travers le système.

Ces techniques peuvent être mises en place soit au moyen de la cryptographie
symétrique, avec une même clé secrète partagée pour chiffrer et pour déchiffrer,
et qui utilise des fonctions de hachage pour générer des digests; soit au moyen
de la cryptographie asymétrique, avec deux clés différentes (paire clé privée / clé
publique) pour le chiffrement et pour le déchiffrement, et qui permet d’assigner une
clé de signature différente à chaque participant. Ce dernier mécanisme nécessite la
mise en place d’une Infrastructure à Clé Publique (PKI), avec dans la plupart des
cas la présence d’une Autorité de Certification (CA) pour certifier qu’une certaine
clé appartient bien à tel utilisateur.

A.3 Attaques contre les réseaux ad hoc

Un réseau sans fil est davantage versatile mais davantage vulnérable aux attaques
qu’un réseau filaire, car les transmissions radio sont effectuées dans l’air.

Sur un réseau filaire, un intrus nécessiterait d’avoir un accès physique à une
machine du réseau, ou bien de se connecter aux câbles. Dans le cas d’un réseau
sans fil, l’intrus peut écouter passivement tous les messages échangés pourvu qu’il
se trouve dans l’aire d’émission, en opérant en “promiscuous mode” et en utilisant
un logiciel packet sniffer. Donc l’adversaire a accès au réseau et peut intercepter
aisément les données transmises, sans même que l’émetteur ait connaissance de
l’intrusion (par exemple, au moyen d’un ordinateur portable dans un véhicule sta-
tionné dans une rue on peut intercepter les communications échangées à l’intérieur
d’un immeuble voisin). L’intrus, en étant potentiellement invisible, peut enregi-
strer, modifier, et ensuite retransmettre les paquets comme s’ils avaient été envoyés
par un utilisateur légitime.

En outre, à cause des limitations du support, les communications peuvent facile-
ment être perturbées; l’intrus peut effectuer cette attaque en occupant le support
avec ses propres messages, ou tout simplement en perturbant les communications
avec du bruit.

A.3.1 Attaques contre les MANETs au niveau du routage

Les attaques contre le protocole de routage des réseaux ad hoc peuvent avoir pour
but de modifier le protocole lui-même, pour que le trafic passe par d’un nœud
contrôlé par l’adversaire. Une attaque peut aussi avoir pour but d’empêcher la
formation du réseau, obliger les nœuds à mémoriser des routes incorrectes, et en
général perturber la topologie du réseau.
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Les attaques au niveau du routage peuvent être classées dans deux catégories:
génération et relayage incorrect du trafic. Nous ne considérons pas la composante
des données dans le trafic, mais seulement les messages de contrôle du protocole de
routage. Parfois les mêmes inconvénients ne sont pas dus à une attaque mais vien-
nent de problèmes de fonctionnement d’un nœud, de l’épuisement des batteries, ou
des interférences radio.

Géneration incorrecte du trafic

Cette catégorie inclut les attaques qui consistent en faux messages de contrôle en-
voyés avec l’identité d’un autre nœud (identity spoofing). Les conséquences sont
un possible conflit d’information dans les différentes parties du réseau, dégrada-
tion des communications, nœuds non joignables, et boucles dans les parcours de
routage.

Dans un protocole de routage à vecteur de distance, un nœud adversaire peut
déclarer une distance de zéro pour toutes les destinations, ce qui fait que tous les
nœuds autour de lui vont router leurs paquets vers le nœud adversaire. Ensuite,
l’adversaire peut couper les communications dans le réseau en rejetant les paquets
reçus au lieu de les faire suivre. Dans un protocole à état de lien, l’adversaire
peut déclarer faussement des liens avec des nœuds distants. En conséquence, les
nœuds mémorisent des fausses informations dans leurs tables de routage (cache
poisoning).

Un adversaire peut aussi bien effectuer un Déni de Service en saturant le sup-
port avec une grosse quantité de messages en broadcast, en réduisant le débit des
nœuds et, au pire, les empêchant de communiquer. L’adversaire peut aussi envoyer
des messages non valables qui ont pour seul but de maintenir les nœuds actifs et
d’épuiser leurs batteries.

Kuzmanovic et Knightly ont démontré l’efficacité d’une attaque DoS à longue
périodicité (shrew attack) sur la couche transport, qui de plus n’est pas décelé par
les techniques anti-DoS. En cas de congestion grave du réseau, le protocole TCP
suit les périodes de Retransmission Time Out (RTO). Le flot de données (y compris
les paquets DoS) déclenche le protocole de congestion TCP, donc le flux TCP entre
en timeout et attend une période RTO avant d’essayer à nouveau d’envoyer un autre
paquet. Si la périodicité de l’attaque est proche du RTO, les tentatives successives
du flux se soldent par un échec, ce qui résulte en un débit nul.

Le jellyfish attack est une autre attaque DoS sur la couche transport très rusée
et difficile à déceler. Il peut être accompli de trois façons: en relayant les paquets
TCP en désordre au lieu de l’ordre FIFO canonique, en rejetant les paquets pour un
court laps de temps à chaque période RTO, ou en augmentant la variation de délai
en retenant un paquet TCP pour une période aléatoire avant de le traiter.
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Relayage incorrect du trafic

Les communications en provenance de nœuds légitimes peuvent être polluées par
des nœuds malveillants. Un nœud adversaire peut éviter de relayer les messages
qu’il reçoit au fin de réduire la quantité d’information disponible aux autres nœuds.
Ceci a été appelé blackhole attack (attaque trou noir) par Hu et al., et s’agit d’un
moyen simple d’effectuer un DoS. Cette attaque peut être operée sur la totalité ou
une partie des paquets reçus, en rendant injoignable ou difficilement joignable le
nœud destination.

Un adversaire peut aussi modifier les messages qu’il reçoit avant de les ren-
voyer, si un système de digest pour garantir l’intégrité n’a pas été mis en place.

Une autre attaque est le rejeu des messages: au fur et à mesure que la topologie
change, les anciens messages de contrôle, quoique valables dans le passé, décrivent
une configuration qui n’existe plus. Un adversaire peut enregistrer des messages
de contrôle pour les rejouer plus tard, dans le but d’inclure des vieilles routes dans
les mises à jour des tables de routage des nœuds. Cette attaque marche même
en présence d’un système de signature ou de digest, si celui-ci n’inclut pas un
estampillage temporel des messages.

Une attaque très difficile à parer est le wormhole (attaque trou de ver), effectué
par un nœud intrus

%
situé à portée de transmission de deux nœuds légitimes

�
et�

qui n’ont pas de lien entre eux. Le nœud
%

échange les messages entre
�

et
�

sans y ajouter son adresse dans l’entête; ceci a le résultat de créer entre
�

et
�

un
lien inexistant sous le pouvoir de l’attaquant

%
, qui est pratiquement invisible.

Le rushing attack est utilisé contre les protocoles de routage à la demande; lors
d’une découverte de route, l’adversaire relaye en premier son message de Route
Request. Si c’est le Route Request qui parvient en premier au destinataire, la route
trouvée inclura le nœud adversaire.

A.3.2 Attaques contre le protocole OLSR

Nous discutons maintenant des risques de sécurité dans OLSR. Le but n’est pas
de remarquer les failles dans OLSR, car il n’a pas été conçu comme protocole
sécurisé, mais de donner des exemples des risques que courent tous les protocoles
à état de liens, comme OSPF.

Géneration incorrecte du trafic

Un nœud malveillant
%

peut envoyer des HELLOs ayant une fausse origine
�

. En
conséquence, d’autres nœuds pourraient, en se trompant, déclarer être voisins de�

à travers leurs messages HELLO et TC. En outre, le nœud
%

choisit ses MPRs
parmi ses voisins avec l’identité de

�
; de ce fait, ces MPRs vont déclarer qu’il sont

voisins de
�

. L’effect de cette attaque se traduit par des conflits des routes vers
�

,
avec perte de connectivité.

Nous appelons link spoofing la signalisation d’une relation de voisinage avec
des nœuds qui en fait ne sont pas des voisins. Un nœud

%
déclarant faussement un
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lien avec un nœud éloigné obtient un faux voisinage à deux sauts pour ses voisins,
et donc une mauvaise selection des MPRs. Le nœud

%
peut aussi signaler un

ensemble incomplet de voisins; les voisins ignorés pourraient éventuellement se
trouver coupés du reste du réseau.

Si le nœud
%

envoie un TC ayant pour origine
�

et déclarant
�

comme voisin,
le nœud � mémorisera faussement une relation de voisinage entre

�
et
�

. Des
messages TC qui contiennent des faux liens ont aussi cet effet néfaste, et peuvent
perturber la topologie du réseau.

Une autre attaque concerne l’envoi de messages MID/HNA déclarant des inter-
faces inexistantes, ce qui a des effets délétères envers les nœuds essayant de joindre
ces interfaces.

Un nœud malveillant peut aussi générer des TCs avec une fausse origine
�

et
un ANSN (Advertised Neighbor Sequence Number) plus élévé que celui du dernier
TC envoyé par

�
. Tous les nœuds ignoreront donc tout message TC ultérieur de la

part de
�

, parce qu’il porte un ANSN avec une valeur inférieure. Nous appelons
ceci une attaque ANSN.

Relayage incorrect du trafic

Un dégât important peut être apporté au réseau, en termes de connectivité, si les
messages TC ne sont pas relayés (blackhole attack). Le non-relayage des messages
MID/HNA peut lui aussi engendrer des pertes d’informations dans certaines parties
du réseau.

Concernant les attaques de rejeu, un TC ne peut pas être rejoué à moins d’augmen-
ter son ANSN, engendrant ainsi une attaque ANSN.

Un wormhole peut être créé par un nœud intrus
%

en faisant suivre les mes-
sages de

�
vers

�
et viceversa. L’attaque commence à être efficace quand

�
et
�

sont unis par un lien symétrique; jusqu’à ce moment là, tout message TC/MID/HNA
acheminé à travers le wormhole est refusé soit par

�
soit par

�
, parce que les spé-

cifications de OLSR imposent que ces messages soient rejetés si le nœud émetteur
n’est pas un voisin symétrique.

Un adversaire peut exploiter la règle d’OLSR qui spécifie qu’un nœud recevant
un message en inondation MPR ne retransmet plus le message si l’envoyeur est son
MPR selector. Cette attaque, que nous avons appelé attaque MPR, est produite par
une retransmission illicite du message effectuée par l’attaquant.

A.4 Sécurité dans les réseaux ad hoc: mécanismes de base

Les transmissions sans fil utilisent un support partagé – l’air – qui est accessible
à tout le monde. Comme il est impossible de limiter l’accès au support, la seule
solution pour protéger les messages est d’utiliser la cryptographie.
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A.4.1 Protection du protocole de routage

Normalement, quand on parle de la sécurisation du routage, on désire assurer
l’intégrité, la non-répudiation (parfois) et la disponibilité de service. La protection
des messages de routage est garantie par une signature ou un digest; ce n’est pas
important de chiffrer les messages, car les informations topologiques normalement
ne sont pas secrètes.

Dans la littérature il existe plusieurs protocoles de routage sécurisés par l’ajout
d’une signature ou d’un digest dans les paquets de contrôle: pour exemple SRP,
SLSP, SAODV, ARAN, Ariadne, SEAD, et la technique MAE. Le protocole SAR
incorpore le niveau de sécurité intrinsèque d’un nœud (en ce qui concerne sa sûreté,
importance, ou capacité) dans la métrique de routage pour acheminer les messages
à travers des chemins considérés sûrs. D’autres protocoles ont été explicitement
conçus comme défense à des attaques spécifiques, comme TIK contre le wormhole
attack ou RAP contre le rushing attack. Lee et al. ont envisagé de sécuriser DSR
en y ajoutant des messages de confirmation dans la découverte de route. Enfin,
Buttyán et Hubaux ont proposé des mécanismes pour renforcer la disponibilité du
service dans un réseau ouvert, comme le Packet Purse Model et le Packet Trade
Model.

Nous avons envisagé la possibilité d’utiliser un standard très connu, IPsec, pour
la protection du routage dans OLSR. Toutefois, du fait que IPsec demande qu’une
association de sécurité soit déjà établie entre deux paires (ce qui n’est pas le cas
dans un réseau ad hoc en formation), que la protection dans IPsec est faite à l’égard
d’un paquet entier, de la difficulté de gestion d’une clé de groupe dans un réseau ad
hoc, et en général des problèmes d’authentification d’un nouveau nœud qui rejoint
le réseau, IPsec ne paraît pas être la solution appropriée.

L’état de l’art au sujet de la sécurisation du protocole OLSR comprend une so-
lution pour ajouter un digest à chaque paquet, avec une vérification de la signature
qui est nécessairement effectuée saut par saut. Une autre solution prévoit pour le
routage un système de métrique basé sur la confiance, avec la division du réseau
en différents domaines de sécurité selon la fiabilité des nœuds qui le composent.

A.5 Le message de signature dans OLSR

Nous allons décrire notre projet de sécurisation d’OLSR, qui fait appel à l’ajout
d’une signature aux messages de contrôle. Un digest, généré au moyen d’une clé
symétrique partagée, peut aussi bien être utilisé à la place de la signature.

A.5.1 Spécifications du projet

La signature est calculée sur le corps et l’entête du message, et est distribuée sous
la forme d’un type spécial de message, appelé SIGNATURE. Un message SIG-
NATURE est généré et envoyé avec tout autre message de contrôle (HELLO, TC,
MID ou HNA). Il n’est pas possible de signer un paquet entier parce qu’il peut
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contenir des HELLOs, qui ne sont pas relayés, et donc la signature du paquet ne
serait plus valable au delà du premier saut. Une solution serait celle de contrôler la
signature saut par saut; toutefois, comme les messages sont relayés par inondation
MPR, tout nœud qui a relayé un message incorrect pourrait en être l’émetteur, tan-
dis qu’une authentification par message permet de déterminer aisément l’origine
des fausses informations.

On identifie sans ambiguïté à quel message appartient une signature car les
deux doivent se trouver dans un même paquet OLSR et sont consécutifs. Dans
une version précédente, le couplage était identifié grâce au Numéro de Séquence
(MSN) du message de contrôle en question et à un champ homologue dans le
message de signature; cela permettait d’envoyer les messages dans un ordre quel-
conque, et même dans des paquets différents.

Si la taille du paquet dépasse le MTU, le message de contrôle est fragmenté
et un message SIGNATURE est associé à chaque fragment. Le message SIGNA-
TURE contient aussi une estampille temporelle, obtenue de l’horloge interne du
nœud, pour éviter les attaques de rejeu; la synchronisation des horloges ne néces-
site pas d’être très précise, puisque les message qui seraient des doublons peuvent
être reconnus aussi par leur Numéro de Séquence (qui est enregistré dans le Dupli-
cate Set).

Notre implantation a recours à la cryptographie asymétrique et une CA en
modalité non en ligne pour assigner une paire de clés à chaque nœud participant;
chaque nœud diffuse ensuite sa clé publique aux autres nœuds. On utilise les si-
gnatures Cha-Cheon, basées sur l’identité, pour les clés assignés par la CA (clés
globales) et qui seront ensuite utilisées pour signer les clés des nœuds (clés lo-
cales); pour ces dernières on a choisi les signatures courtes Boneh-Lynn-Shacham.

La signature n’inclut pas les champs TTL et de compte de sauts (dans l’entête
du message). Cela est dû au fait que ces deux champs sont modifiés à chaque saut
du message, ce qui interférerait avec la vérification de la signature. Malheureuse-
ment ce fait permettrait à un adversaire de relayer des messages avec un TTL mo-
difié à 0 en restant inaperçu. Cette faille peut être résolue en ignorant le champ
TTL et en considérant à sa place la valeur de l’estampille temporelle.

Cette architecture de sécurité n’est pas interopérable avec OLSR standard. En
effet, un nœud dans lequel tourne OLSR sécurisé n’accepterait pas des HELLOs
non signés de la part des nœuds OLSR standard; en conséquence il ne pourrait pas
y avoir de lien symétrique entre les deux, et donc aucune sélection des MPRs qui
est le mécanisme principal pour la diffusion des messages dans OLSR.

A.5.2 Modifications du protocole OLSR standard

Au moment de la création d’un message de contrôle, un nœud doit générer aussi
un message SIGNATURE et y écrire les champs relatifs au temps et à la signa-
ture. Un nœud recevant ces messages doit retenir la SIGNATURE et vérifier si le
message de contrôle est acceptable du point de vue de la signature et de son temps
de création; si ces vérifications réussissent, le message de contrôle est traité. Un
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message de contrôle ou de SIGNATURE non valable est effacé de la Duplicate
Table, pour éviter qu’un adversaire remplisse la Duplicate Table d’un nœud avec
des messages non valables et empêche le nœud de traiter des messages valables qui
ont le même Numéro de Séquence. Le Duplicate Set est modifié avec un nouveau
champ qui prend en compte l’estampille temporelle.

A.6 Systèmes cryptographiques pour les environnements
ad hoc

Génériquement, il est souhaitable que un algorithme de signature/digest ait les car-
actéristiques suivantes, pour pouvoir être utilisé pour sécuriser un réseau ad hoc:
une signature courte, un temps de vérification court, un processus de vérification
plus rapide que la signature, et une complexité limitée. Cela est dû aux limites
des machines (puissance de calcul et autonomie limitées) et du support. Le respect
de ces caractéristiques est lié aussi à d’autres facteurs, par exemple l’implantation
d’un algorithme sur une certaine architecture. Parmi les algorithmes qui pourraient
être choisis, nous citons RSA, DSA et ECNR pour la cryptographie asymétrique
(signature), et HMAC-MD5 ou HMAC-SHA1 pour la cryptographie symétrique
(digest).

A.6.1 La gestion des clés

L’implantation d’un système à clé publique avec une Autorité de Certification
s’adapte mal à un réseau ad hoc, dont les nœuds sont indépendants et mobiles
et pourraient ne pas avoir la possibilité de se connecter à la CA en permanence. En
outre, la présence d’une entité centralisée constitue une vulnérabilité qui pourrait
être exploitée par un adversaire pour porter des attaques DoS. Il s’agit d’un sérieux
problème qui existe aussi dans les réseaux filaires.

Il est toutefois possible de réduire le poids d’une CA centralisée au moyen de la
cryptographie à seuil, qui permet de partager l’habilitation à générer une signature
parmi un certain nombre de participants; un adversaire devrait donc compromettre
plusieurs nœuds pour être capable de bouleverser le système.

Une autre alternative (PKI auto-organisée) proposée par Čapkun et al. consiste
en chaînes de certificats qui connectent les participants.

Le chiffrement basé sur l’identité (IBE) permet d’assigner à un participant une
clé publique qui est dérivée de son identité ou d’autre qualités qui lui sont propres,
comme son adresse IP. Dans ce cas il n’y a plus besoin d’une Autorité de Certifi-
cation. Chaque participant doit toutefois demander à un tiers de confiance (l’entité
génératrice de clés ou PKG), à travers un canal sûr, la clé publique correspondante
à son identité.

D’autres alternatives prévoient l’assignement des clés au démarrage du réseau,
au moyen d’une méthode probabiliste, ou par échange Diffie-Hellman.



ESTAMPILLAGE TEMPOREL 137

Une simple PKI pour OLSR

Nous décrivons brièvement ici une simple PKI proactive qui peut être utilisée avec
OLSR. Le fonctionnement de la version réactive est analogue. Cette PKI pourvoit
trois classes de nœuds:

� les autorités de signature dont la clé publique est connue par tout autre
nœud du réseau, et qui ont la responsabilité d’enregistrer les clés publiques
des autres nœuds participants et de distribuer périodiquement des certificats
signés contenant la liste des clés publiques des nœuds fiables;

� les nœuds fiables, qui sont ceux dont la clé publique est connue et certifiée
par une autorité de signature;

� les nœuds non fiables, qui sont ceux dont la clé publique n’est pas connue ou
n’est pas certifiée par une autorité de signature; il faut remarquer qu’au dé-
marrage du réseau tout nœud, exception faite pour les autorités de signature,
est non fiable.

Pour garantir la confiance dans l’information topologique qui est distribuée dans le
réseau, tout nœud doit choisir ses MPRs (et accepter d’être choisi comme MPR)
parmi les seuls nœuds fiables, accepter les messages TC qui proviennent des seuls
nœuds fiables, et faire suivre seulement les messages qui ont été reçus des voisins
fiables. Une règle simple pour exclure les nœuds non fiables du réseau serait
celle de refuser tout message envoyé par un nœud non fiable. Toutefois, ce com-
portement porterait à une situation d’interblocage au moment de l’initialisation du
réseau, car tout nœud est non fiable à ce moment, et donc la sélection des MPRs
(et la distribution des messages dans le réseau entier) serait impossible. Pour éviter
cette situation, on établit qu’un nœud accepte les messages HELLO qui provien-
nent d’un voisin non fiable, et que ce nœud inclut ses voisins non fiables dans
ses HELLOs, avec la condition que les liens MPR soient considérés simplement
comme liens symétriques. En conséquence, l’autorité de signature transmettra
ses certificats à ses voisins; ces voisins, après échange de messages HELLO, ac-
cepteront les voisins à deux sauts mais ne sélectionneront pas leurs MPRs parmi
eux; ensuite, l’autorité de signature choisira ses MPRs parmi ses voisins pour que
sa prochaine émission de certificat rejoigne tous les voisins à deux sauts.

A.7 Estampillage temporel

Comme il a été dit précédemment, un problème des systèmes distribués est qu’il
est possible de rejouer des messages même si le contrôle des signatures est mis
en place. Pour prévenir ce genre d’attaques, on ajoute aux messages une estam-
pille temporelle ou un nonce, qui est incluse dans le calcul de la signature. Dans
OLSR, le protocole de routage peut déterminer quelle information est la plus ré-
cente en examinant le MSN (Message Sequence Number) et le ANSN (Advertised
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Neighbor Sequence Number) des messages; ce mécanisme est toutefois suffisant
pour le fonctionnement de base mais pas pour une sécurité complète, car les deux
champs sont codés sur 16 bits et les débordements avec remise à zéro peuvent être
fréquents.

Pour tout message émis par un nœud, une estampille temporelle est incluse.
Un nœud récepteur vérifie la validité de l’estampille temporelle, en vérifiant que sa
valeur ne s’écarte de la valeur de son horloge de plus d’une petite constante.

Pour ce qui concerne le contrôle temporel des messages, il existe différentes
options:

� Si une protection contre les attaques de rejeu n’est pas requise, le champ
relatif à l’estampillage temporel peut être simplement ignoré.

� Une solution simple pour générer des estampille temporelles serait celle
d’avoir une horloge, suffisamment précise et avec une faible dérive, embar-
quée dans chaque nœud; cette solution peut être implantée sous forme d’une
horloge au quartz ou atomique, ou bien d’un dispositif GPS pour la transmis-
sion du temps. Dans les ordinateurs de bureau, cette horloge est l’horloge
interne ou du BIOS, présentant une dérive d’environ 1 seconde par jour qui
toutefois peut être réduite au moyen de corrections de la fonction du temps.

� Une implantation pour des simples estampilles temporelles consiste à écrire
la valeur de l’horloge dans tout message envoyé (et signé), tandis que les
nœuds récepteurs maintiennent une liste des plus grandes valeurs d’horloge
reçues dans un message, pour chaque nœud émetteur. Un message, de la part
d’un certain nœud, est accepté s’il porte une valeur d’horloge supérieure à
la valeur déjà enregistrée pour ce nœud; dans ce cas, la valeur enregistrée
est mise à jour. Ce système présente des problèmes de synchronisation si les
communications entre les nœuds sont coupées pendant une certaine période.

� La solution la plus sûre consiste en une synchronisation des horloges des
nœuds, solution qui toutefois fait surgir un problème d’interblocage: les
estampilles temporelles sont utilisées pour l’authentification, mais une syn-
chronisation sécurisée des horloges demande aussi une authentification. Nous
avons esquissé un protocole de synchronisation pour OLSR qui s’inspire du
protocole Needham-Schrœder, en utilisant la signature au lieu du chiffrement
et les estampilles temporelles au lieu des nonces.

A.8 Sécurité dans les réseaux ad hoc: mécanismes avancés

Nous avons vu que les signatures dans les message protègent effectivement le
réseau contre les attaques d’usurpation d’identité. Toutefois, si un adversaire a
réussi à prendre le contrôle d’un nœud légitime ou à s’emparer de sa clé privée,
il peut générer des messages signés correctement avec son identité; un tel nœud
est appelé un nœud compromis. Dans ce cas, aucun nœud ne peut être considéré
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comme fiable, car il pourrait envoyer de faux messages de contrôle pour perturber
la topologie du réseau. La question est maintenant comment s’assurer que les in-
formations fournies par un certain nœud sont correctes.

Il est toutefois encore possible de distinguer les bonnes informations des fausses.
Nous présentons dans les sections qui suivent une solution basée sur des signa-
tures multiples, et une autre basée sur l’utilisation de la position géographique des
nœuds. Une section ultérieure montre comment tout mécanisme de sécurité active
peut être intégré avec un système de détection des comportements illicites.

A.9 Signatures multiples dans OLSR

Dans OLSR, comme dans tout autre protocole à état de lien, la topologie du réseau
dépend de la topologie telle qu’elle était à un instant précédent. Par exemple, le
nœud

�
sélectionne à l’instant

�
le nœud

�
comme MPR. Il est donc possible

d’affirmer que à l’instant
� � � � � � �

le nœud
�

avait déclaré un lien symétrique
avec

�
, et que à l’instant

� � � � � � � � � � le nœud
�

avait un lien asymétrique avec�
. Tous ces liens avaient été déclarés dans des messages HELLO, qui sont le

moyen par lequel les nœuds établissent les liens entre eux. En bref, la topologie
ne procède pas par sauts, mais évolue avec continuité, avec une précise séquence
chronologique.

Nous pouvons utiliser ce fait pour éviter que des fausses informations soient
inoculées dans le réseau. Le concept de base est que tout nœud mémorise l’informa-
tion concernant ses liens envoyée par ses voisins, et la réutilise comme preuve dans
ses messages de contrôle successifs. Cette information est signée pour éviter les
contrefaçons. Un message de contrôle envoyé par un nœud compromis ne pourra
donc contenir de faux liens, parce que ces liens manquent des preuves appropriées.
C’est la première fois, à notre connaissance, qu’une telle technique est proposée.
Pour ce système de sécurité nous avons prévu un nouveau type de message, appelé
ADVSIG, qui est toujours envoyé en couple avec un HELLO ou TC.

A.9.1 Information atomique sur l’état de lien

La quantité minimale d’information échangée sur l’état de lien, générée par le
nœud

�
concernant le nœud

�
, consiste en:

� l’adresse du nœud origine
�

� l’adresse du nœud annoncé
�

� l’état de lien de
�

par rapport à
�

� une estampille temporelle

� la signature de ces quatre champs, calculée par
�
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Les trois premiers champs sont tirés du message HELLO et de son entête, tandis
que les derniers deux sont contenus dans un message ADVSIG couplé à ce HELLO.
Cette information atomique est appelée un Certificat ou une Preuve, selon respec-
tivement qu’elle est reçue comme information topologique nouvelle ou qu’elle est
réutilisée pour prouver un état de lien.

Quand un nœud reçoit un HELLO avec son ADVSIG, il extrait des deux mes-
sages les informations qui le concernent (à savoir, celles où l’adresse du nœud
annoncé est son adresse), et ces informations constituent donc un Certificat. Les
Certificats sont mémorisé dans la Certiproof Table du nœud. Ensuite, quand le
nœud envoie un HELLO ou un TC, il sélectionne dans son Certiproof Table une
Preuve appropriée, qu’il inclura dans son ADVSIG couplé.

A.9.2 Preuves requises

Quand un nœud
�

veut déclarer un lien avec le nœud
�

dans un message HELLO
ou TC, la preuve à fournir est construite en utilisant un HELLO et son ADVSIG
couplé qui ont récemment été envoyés par

�
. La preuve requise est:

� une preuve que le paquet a été entendu, si
�

veut déclarer un lien de type
ASYM_LINK avec

�
;

� une déclaration de ASYM_LINK ou SYM_LINK, si
�

veut déclarer un
SYM_LINK avec

�
;

� une déclaration de SYM_LINK ou SYM_NEIGH, si
�

veut déclarer un
SYM_NEIGH ou un MPR_NEIGH avec

�
;

� une déclaration de SYM_NEIGH ou MPR_NEIGH, si
�

veut déclarer
�

comme voisin.

A.9.3 Le protocole

Quand un nœud génère un message HELLO ou TC, il doit générer aussi un ADVSIG,
en suivant ce protocole:

1. créer le HELLO/TC;

2. générer l’estampille temporelle;

3. si le message est un HELLO alors, pour chaque lien déclaré, calculer la
signature du Certificat et joindre la Preuve requise appropriée;

4. sinon si le message est un TC alors joindre la Preuve requise appropriée;

5. calculer la signature;

6. envoyer le HELLO/TC et le ADVSIG.
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Quand un nœud reçoit un message de contrôle, il doit suivre ces étapes:

1. identifier correctement le HELLO/TC avec son ADVSIG couplé;

2. contrôler la validité de l’estampille temporelle;

3. contrôler la validité de la signature;

4. si le message est un HELLO alors, pour chaque lien déclaré, contrôler la
validité de la Preuve, et extraire le Certificat relatif au nœud lui-même le cas
échéant;

5. sinon si le message est un TC alors, pour chaque voisin déclaré, contrôler la
validité de la Preuve.

Une Preuve n’est valable que si elle concerne le bon nœud, si le lien inclus est cor-
rect par rapport à la preuve requise, et si l’estampille temporelle n’est pas périmée.
Si une erreur survient lors d’une de ces étapes, le HELLO/TC et son ADVSIG
doivent être rejetés.

A.10 Utilisation des informations sur la position des nœuds

Une information utile qui peut être ajoutée dans un message de contrôle, pour
obtenir de la redondance et donc renforcer la sécurité, c’est la position géographique
d’un nœud. Il existe déjà des protocoles de routage, comme DREAM, GPSR et
LAR, qui utilisent cette information pour le fonctionnement de base du routage ou,
comme SPAAR, pour la sécurisation du protocole. La position peut être obtenue
par des dispositifs satellitaires GPS embarqués dans chaque nœud.

A.10.1 GPS-OLSR

Nous proposons une extension sécurisée pour OLSR, appelée GPS-OLSR, qui in-
clut dans les messages de contrôle la position géographique du nœud émetteur.
Cette information est ensuite retenue par les nœuds destinations pour évaluer la
véracité des informations incluses dans le même message de contrôle. Tout nœud
mémorise la dernière position connue de chaque autre nœud du réseau dans sa
Position Table.

En effet, en connaissant les positions géographiques d’un nœud émetteur
�

et
d’un nœud récepteur

�
à des moments définis, en calculant la variation de leur po-

sition (qui est à son tour limitée par la vitesse maximale d’un nœud), et en prenant
en compte les erreurs dans la synchronisation des horloges et dans d’autres varia-
bles, on peut calculer leur distance au moment de la transmission. Cette distance ne
peut pas être supérieure à la portée maximale de transmission: si c’est le cas, le lien
est probablement faux. Cela permet à un nœud d’évaluer non seulement les trans-
mission qu’il reçoit (et de savoir si elles sont, par exemple, acheminées à travers
un wormhole) mais aussi d’évaluer les déclarations de voisinage d’un autre nœud:
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si un nœud déclare avoir un lien avec un nœud qui est très loin, cette déclaration
est fortement suspecte.

En conséquence ce protocole sécurise le réseau contre les attaques de link
spoofing et wormhole. Il faut remarquer que ce mécanisme offre aussi des pos-
sibilités d’amélioration du protocole OLSR standard, telles qu’une sélection plus
efficace des MPRs ou la prévision de rupture des liens.

De surcroît, l’utilisation d’une antenne directionnelle permettrait, avec des sim-
ples calculs de géométrie planaire, de savoir avec plus de précision si les informa-
tions reçues sont correctes ou fausses: un nœud peut vérifier si le secteur d’antenne
dans lequel la transmission est entendue s’accorde avec la direction vers laquel-
le le nœud émetteur devrait se trouver (direction obtenue en évaluant sa position
relative).

Dans notre proposition d’implantation, l’information géographique est incluse
dans un nouveau type de message signé appelé SIGLOC. Ce message est construit
comme un message SIGNATURE avec un champ supplémentaire qui contient la
position du nœud, et est envoyé avec tout HELLO ou TC.

A.11 Détection des comportements hostiles

Les protocoles sécurisés ont pour but de prévenir les attaques; en revanche, dans le
cas d’une attaque avérée, les systèmes d’audit sont également importants. Ces sy-
stèmes d’audit ont pour but la détection des comportements hostiles dans le réseau,
l’alerte des autres nœuds et la mise en place d’une contre-mesure pour exclure
le nœud malveillant du réseau. Ces techniques peuvent être utilisées avec ou sans
une infrastructure pour l’authentification des nœuds, toutefois les messages d’alerte
signés évitent que l’outil de détection soit abusé par le nœud malveillant.

Les systèmes de détection actuels, comme le Watchdog/Pathrater (chien de
garde / évaluateur de parcours), CONFIDANT ou Bloodhound, se basent sur l’écoute
passive des transmissions pour déceler si les paquets sont correctement relayés;
d’autres, comme WATCHERS, utilisent le principe de la conservation du flux;
d’autres encore adoptent des paquets d’acquittement ou de test.

A.11.1 Un système pour OLSR basé sur la confiance

Le problème dans les protocoles à audit distribué c’est la difficulté à évaluer les
affirmations d’un nœud qui en accuse un autre: il n’est pas possible de savoir si le
premier nœud suit le protocole et le deuxième ne le suit pas, ou si le premier est
malveillant et accuse faussement le deuxième dans le but de perturber le réseau.
Toutefois nous pouvons supposer que, étant donné la difficulté de casser une in-
frastructure cryptographique, les nœuds légitimes surpassent en nombre les nœuds
compromis. On peut donc utiliser cet avantage en exigeant que les alertes soient
confirmées par plusieurs nœuds.

Nous proposons un protocole de détection pour OLSR qui utilise un système
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d’évaluation du taux de confiance des nœuds. Une Trust Table globale, dont tout
nœud maintient une copie en sa mémoire, associe à chaque nœud une valeur numé-
rique qui représente son niveau de confiance. Quand un nœud détecte un autre
nœud qui ne respecte pas le protocole, ce premier diffuse en inondation un mes-
sage d’accusation signé; s’il y a un nombre suffisant de nœuds qui envoient une
accusation pour un même nœud dans le même laps de temps, les nœuds réduisent
la valeur du niveau de confiance du nœud accusé. Toutefois, s’il n’y a pas assez
d’accusations pendant le temps établi, c’est le nœud accusé qui voit remonter son
niveau de confiance tandis que ses dénonciateurs sont pénalisés: cela pour éviter
les abus de la part d’un nœud malveillant. Le niveau de confiance de tous les nœuds
est périodiquement haussé d’une valeur prédéterminée pour parer les collisions, les
erreurs en transmission et les pertes physiologiques de paquets qui s’avèrent même
dans un réseau dépourvu de nœuds malveillants. Une fois que le niveau de confian-
ce d’un nœud accusé tombe à zéro, ce nœud est exclu du réseau, par effacement de
son adresse dans les tables de routage.

Les comportements interdits peuvent aller de la négligence dans le relayage, à
l’envoi d’un message de contrôle difforme, à une fasse signature dans le message,
à une usurpation d’identité jusqu’à l’essai d’un Déni de Service par bombarde-
ment de messages; à chaque comportement est associée une réduction différente
du niveau de confiance.

A.11.2 Contrôles précis sur la conservation du flux

Une mesure optionnelle, basée sur le principe de la conservation du flux, permet
d’effectuer des contrôles plus précis. Le principe de conservation du flux s’énonce
ainsi: “Toute donnée envoyée à un nœud et non destinée à ce nœud doît sortir du
nœud”. Nous pouvons détailler ce principe en observant que le nombre de paquets
envoyés par un nœud � à ses voisins, moins le nombre de paquets envoyés par les
voisins à � , doit être égal au nombre de paquets envoyés par � et ayant � pour
origine, moins le nombre de paquets envoyés à � destinés à � , moins le nombre
de paquets envoyés à � et jugés acheminés incorrectement par � . Ce contrôle est
effectué par les nœuds envers tous leurs voisins. Cependant, cette technique assure
la livraison du bon nombre de paquets, mais ne permet de faire aucune hypothèse
sur le contenu des paquets. Une solution possible serait celle de produire une liste
d’empreintes ou de filtres de Bloom sur les paquets traités.

A.12 Conclusion

Dans cette thèse nous avons étudié globalement les problèmes de sécurité dans
les réseaux sans fil, plus précisément les protocoles de routage pour les réseaux
ad hoc, et nous avons donné notre contribution en suggérant des solutions pour
sécuriser OLSR. Ces solutions incluent en première instance l’ajout d’une signa-
ture numérique au trafic de contrôle, qui est la protection canonique contre les



144 RÉSUMÉ DÉTAILLÉ DE LA THÈSE

intrusions dans le protocole de routage.
Des techniques plus élaborées, présentées dans cette thèse, s’appuient sur la

validation de l’information sur l’état de lien pour éviter que des nœuds compromis
ne créent de fausses informations. Il s’agit d’un niveau avancé de protection, qui
suppose qu’un adversaire est capable de générer des signatures correctes pour le
trafic de contrôle qui provient de certains nœuds. Ces techniques avancées utilisent
des connaissances additionnelles, telles que des déclarations précédentes d’état de
lien ou bien des données géographiques qui décrivent la position d’un nœud, pour
valider l’information topologique distribuée par les nœuds dans le réseau. Le ren-
forcement de la sécurité est aux dépens de l’overhead relatif aux messages, car
ces messages de contrôle sécurisés ont une taille plus importante et impliquent des
calculs plus étendus, qui doivent être effectués soit par le nœud origine soit par les
nœuds récepteurs. Ceci peut s’avérer impossible pour un réseau composé de nœuds
qui ont une puissance de calcul insuffisante, pour un réseau implantant une Qualité
de Service qui doit garantir un haut débit, ou tout simplement pour un réseau qui ne
nécessite pas une sécurité renforcée. Toutefois, on peut combiner ces techniques
pour garantir une sécurité encore plus grande.

Ces techniques visent la protection de l’information concernant la topologie
du réseau. Les réseaux ad hoc sont le type le plus utile et souple de réseau sans
fil; pour cette raison ils sont largement utilisés dans les environnements militaires.
Dans ce contexte, l’information sur la topologie a beaucoup de valeur, et le réseau
doit être protégé contre des intrusions qui auraient de lourdes conséquences.

En plus des techniques de prévention déjà citées, nous avons aussi décrit briève-
ment une méthode pour la détection et l’élimination des comportements suspects.
Cette méthode vise à déceler les nœuds qui ne respectent pas le protocole et per-
turbent le bon fonctionnement du réseau. Une fois que les nœuds malveillants on
été identifiés, une alerte est envoyée pour informer le reste du réseau. Les autres
nœuds mènent ensuite une action conjointe pour éliminer les nœuds malveillants
du réseau, par exemple en les effaçant des tables de routage. Ce système de détec-
tion peut être utilisé en synergie avec les techniques de prévention.

A.12.1 Perspectives

Pendant les travaux relatifs à cette thèse de doctorat nous avons trouvé des systèmes
pour sécuriser OLSR, avec des spécifications et des conditions requises différentes.
Il est possible de trouver d’autres systèmes en adaptant à OLSR des techniques de
sécurité qui viennent d’autres protocoles à état de lien, ou même d’autres proto-
coles réactifs, avec les modifications nécessaires.

Nous avons brièvement illustré les algorithmes de signature qui sont utilisés
dans nos systèmes. L’étude d’algorithmes cryptographiques plus performants (du
point de vue d’une signature plus courte et rapide et d’une complexité de calcul
inférieure) pourrait rendre les architectures proposées pour sécuriser OLSR encore
plus appropriées à la réalité d’un protocole ad hoc.
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