Modélisation et simulation de l'activité électrique du coeur dans le thorax, analyse numérique et méthodes de volumes finis

Charles Pierre

Laboratoire de Mathématiques Jean Leray, Université de Nantes

20 septembre 2005

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Le potentiel d'action cellulaire

Différences de concentrations ioniques, entre les milieux intra et extra-cellulaires $\downarrow\downarrow$ différence de potentiel transmembranaire V_m .

Le potentiel d'action cardiaque

900

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

L'électrocardiogramme (ECG)

Mesure à distance de l'activité électrique du coeur.

Plan de l'exposé

- 1. Modélisation de l'activité électrique du coeur dans le thorax : vers la simulation de l'ECG.
- 2. Méthode de volumes finis *"DDFV"* et implémentation pratique.
- 3. Résultats numériques.

Objectifs et perspectives

- Élaborer des modèles *qualitatifs réalistes* à l'échelle d'un organe.
- Simulations numériques 3D à faible coût.

- Améliorer la compréhension de la relation entre les paramètres de la conduction dans le coeur et l'ECG (problème direct en électrocardiologie).
- Couplage avec un modèle mécanique.

Modélisation de l'ensemble coeur+thorax

- Membrane cellulaire : modélisation des courants ioniques membranaires.
- Tissus musculaires à l'échelle microscopique : potentiels intra et extra-cellulaires φ_i, φ_e, potentiel transmembranaire V_m = φ_i - φ_e.
- **Muscle cardiaque**, *H* : homogénéisation du modèle microscopique.
- **Thorax** T : potentiel extra-cardiaque ϕ_0 .
- Interface coeur/thorax ∂H : relations de couplage.
- Surface thoracique : conditions limites.

Modélisation de la membrane cellulaire

Hogkin-Huxley, Di Francesco Noble, Luo-Rudy...

- Espèces ioniques : Na^+ , K^+ , Ca^{2+} . Potentiel d'équilibre donné par la loi de Nernst $E_{Na} = \frac{RT}{F} \ln \frac{[Na]_e}{[Na]_i}$.
- Canaux ioniques (transport "passif") : canal sodium rapide (dépolarisation), i_{Na} = g_{Na}(V_m E_{Na}) où g_{Na} = g_{Na}H(V_m, [Na]_{i,e}, t, ...).
- Pompes (transport actif) : pompe Na/K, rétablit les concentrations en Na, K. i_{Na/K} = F(V_m, [Na]_{i,e},..., ATP).
- **Transporteurs** : (transport actif) structure couplée à un canal ionique.
- **Tampons** : stockage/déstockage du *Ca*²⁺ (rôle déclencheur pour la contraction).

Modèle réaliste de membrane : Luo-Rudy II

 Implémentation pratique : Vm, [Na⁺]_{i,e}, [K⁺]_{i,e}, [Ca²⁺]_{i,e} et variables de porte ⇒ 1 + 6 + N paramètres :

$$I_{ions} = I_{ions}(V_m; [X_1]_i, [X_1]_e, \dots; w_1, \dots, w_N)$$
$$\frac{dw_j}{dt} = f_j(V_m, w_i)$$
$$\frac{d[X_i]}{dt} = \lambda I_{X_i}$$

• Luo-Rudy II : N ~ 15 variables de porte.

Tissus cardiaques : modèle microscopique

- 2 milieux homogènes, intra et extra-cellulaires H_i et H_e, séparés par la membrane Γ_m.
- Potentiels intra et extra-cellulaires φ_i et φ_e : quasistaticité + non création de charges, div(γ_i∇φ_i) = 0 div(γ_e∇φ_e) = 0

• Potentiel de membrane, $V_m = \phi_i - \phi_e \operatorname{sur} \Gamma_m$, $C_m \frac{dV_m}{dt} + I_{ion} = -\gamma_i \nabla \phi_i \cdot \mathbf{n} = -\gamma_e \nabla \phi_e \cdot \mathbf{n}$

Tissus cardiaques : modèle bidomaine (macroscopique)

• Homogénéisation (Krassowska *et al.*, Colli-Franzone *et al.*) : à l'échelle du coeur,

$$H = H_i = H_e = \Gamma_m$$

$$\phi_i, \phi_e, V_m : H \mapsto \mathbb{R}$$

 Modèle bidomaine : A_m ≫ 1 := taux de surface de membrane par unité de volume,

$$A_m(C_m\partial_t V_m + I_{ion}) = -\operatorname{div}(G_e \nabla \phi_e)$$
(1)

$$\operatorname{div}(G_e \nabla \phi_e + G_i \nabla \phi_i) = 0$$
(2)

• Anisotropie : organisation en fibres des cellules musculaires. *G_i* et *G_e* : tenseurs de conductivité anisotropes,

$$G_i = A \operatorname{Diag}(g_I^i, g_t^i, g_t^i) A^T$$
, $G_e = A \operatorname{Diag}(g_I^e, g_t^e, g_t^e) A^T$,

- A(x): direction de la fibre au point x
- $g_{i,e}^{l}, g_{i,e}^{t}$: conductivités longitudinales et transverses à la fibre (relativement aux milieux intra et extra-cellulaires).

Modèle couplé coeur+thorax

 Modèle de thorax : conducteur passif, pas de fuites de courant sur la surface ∂T du thorax,

 $\operatorname{div}(G_0 \nabla \phi_0) = 0 \quad \operatorname{dans} \ T , \quad G_0 \nabla \phi_0 \cdot \mathbf{n} = 0 \quad \operatorname{sur} \ \partial T .$ (3)

• Conditions d'interface "physiologiques" : sur le bord ∂*H* du coeur,

$$\phi_e = \phi_0, \quad G_0 \nabla \phi_0 \cdot \mathbf{n} = G_e \nabla \phi_e \cdot \mathbf{n}, \quad G_i \nabla \phi_i \cdot \mathbf{n} = 0.$$
(4)

• Interprétation : pour $\bar{\phi} = (\phi_e, \phi_0)$, $\bar{G} = (G_e + G_i, G_0)$ dans $H \cup T$,

$$div(\bar{G}\nabla\bar{\phi}) = -div(G_i\nabla V_m) \text{ dans } H \cup T ,$$
$$\|\bar{G}\nabla\bar{\phi}\cdot\mathbf{n}\| = -G_i\nabla V_m \cdot \mathbf{n} \text{ sur } \partial H ,$$

problème de transmission non standard avec terme source de courant $\mathbf{J} = -G_i \nabla V_m \cdot \mathbf{n}$ sur l'interface coeur/thorax.

Commentaires

- Approche découplée : coeur isolé → carte de potentiel extra-cardiaque → ECG (formulation dipolaire par exemple).
- Autres relations de couplage (Colli-Franzone, Tveito),

$$\phi_e = \phi_0, \quad G_0 \nabla \phi_0 \cdot \mathbf{n} = (G_e \nabla \phi_e + G_i \nabla \phi_i) \cdot \mathbf{n}.$$

 \rightarrow problème de transmission standard,

$$div(\bar{G}\nabla\bar{\phi}) = -div(G_i\nabla V_m) \text{ dans } H \cup T ,$$
$$\|\bar{G}\nabla\bar{\phi} \cdot \mathbf{n}\| = 0 \text{ sur } \partial H ,$$

formulation variationnelle simple dans $H^1(H \cup T)$, résoluble par éléments finis P^1 .

◆□▶ ◆□▶ ◆□▶ ◆□▶ = 三 のへで

Méthodes de volumes finis

Méthode classique : (Eymard, Herbin, Gallouêt) pour des problèmes isotropes.

Méthodes de reconstruction du gradient :

- Aavatsmark et al., Le Potier
- Droniou, Eymard, Herbin, Gallouêt : fv100
- Coudière, Vila, Villedieu : méthode diamant,
- Hermeline, Domelevo-Omnès : méthode DDFV=Discrete Duality Finite Volumes (2D).
 Principe : définition d'opérateurs gradient et divergence discrets "en dualité" (formule de Green discrète).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Maillages DDFV 2D

Maillage primal : inconnues aux centres des cellules primales K, L, ...

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Maillages DDFV 2D

Maillage primal : inconnues aux centres des cellules primales K, L, ... **Maillage dual** : inconnues aux sommets A relatifs aux cellules duales.

Maillages DDFV 2D

Maillage primal : inconnues aux centres des cellules primales K, L, ... **Maillage dual** : inconnues aux sommets A relatifs aux cellules duales. **Maillage diamant** : un vecteur de flux associé à chaque interface σ . + inconnues aux centres des interfaces au bord $\sigma \subset \partial \Omega$.

Opérateurs gradient et trace discrets

- Fonction DDFV, à partir de la donnée de valeurs (φ(x_K))_K, (φ(A))_A, (φ(x_σ))_{σ⊂∂Ω}:
 - aux centres des cellules primales,
 - aux sommets du maillage,
 - aux centres des interfaces au bord,
 - \longrightarrow formation d'une fonction ϕ continue, affine par morceaux.
- Gradient discret : pour ϕ fonction DDFV,

$$(\nabla_h \phi)_\sigma = \frac{1}{|D(\sigma)|} \int_{D(\sigma)} \nabla \phi(x) \, dx \; ,$$

un vecteur gradient discret $(\nabla_h \phi)_\sigma$ par interface σ .

Trace discrète : pour φ fonction DDFV,

$$(\mathrm{Tr}_h\phi)_\sigma = \frac{1}{|\sigma|}\int_\sigma \phi(x)\,dx \;,$$

la trace $(\operatorname{Tr}_h \phi)_{\sigma}$ pour l'interface au bord $\sigma \subset \partial \Omega$.

C

Opérateur divergence discret, formule de Green discrète

- Champ de vecteurs discret : **p** = (**p**_σ) par interfaces.
- Divergence discrète : (p_σ) champ de vecteurs discret.
 Sur une cellule C (primale ou duale),

$$(\operatorname{div} \mathbf{p})_{\sigma} = \frac{1}{|C|} \int_{\partial C} \mathbf{p}(x) \cdot \mathbf{n}_{\partial C}(x) \, dx$$

Théorème (Formule de Green discrète) $\mathbf{p} = (\mathbf{p}_{\sigma})$ un champ de vecteurs discrets, ϕ une fonction DDFV,

$$(\nabla_h \phi, \mathbf{p})_{L^2} = -\langle \phi, \operatorname{div}_h \mathbf{p} \rangle + (Tr_h \phi, \mathbf{p} \cdot \mathbf{n}_{\partial \Omega})_{L^2(\partial \Omega)},$$

où le crochet s'écrit (d dimension en espace),

$$\frac{1}{d} \sum_{K} (\operatorname{div}_{h} \mathbf{p})_{K} \phi(x_{K}) |K| + \frac{1}{d} \sum_{A} (\operatorname{div}_{h} \mathbf{p})_{P(A)} \phi(A) |P(A)|.$$
ellules primales
$$\operatorname{cellules duales}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Maillages DDFV 3D : cellules diamants

FIG.: Cellule diamant $D(\sigma)$ associée à l'interface σ

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

Maillages DDFV 3D : cellules duales

FIG.: Construction de la cellule duale P_A associée au sommet A

Introduction

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Résolution du problème

 Un cas simplifié, modèle monodomaine pour le coeru isolé : G_i = λG_e ⇒ formulation simplifiée en V_m seulement. Schéma volumes finis classiques ⇒ stabilité et convergence : Y. Coudière, C. Pierre. Stability and Convergence of a Finite Volumes Method for Two Systems of Reaction Diffusion Equations in Electro-Cardiology. J. non Linear Analysis, Real World Appl., 2005.

• Modèle bidomaine coeur+thorax

$$\begin{array}{rcl} V_m^n & \Rightarrow & \phi_e^n, \ \phi_0^n \\ & + & I_{ion} \end{array} \Rightarrow V_m^{n+1} \end{array}$$

Résolution en ϕ_0 , ϕ_e

• Inconnues : ϕ_e , ϕ_0 , une valeur par sommets et une valeur par éléments du maillage de H, T, telles que :

$$\operatorname{div}_{h}((G_{i}+G_{e})\nabla_{h}\phi_{e}) = -\operatorname{div}_{h}(G_{i}\nabla V_{m})$$
$$\operatorname{div}_{h}(G_{0}\nabla\phi_{0}) = 0$$

• vérifiant les conditions d'interfaces "physiologiques" :

$$\phi_e = \phi_0, \quad G_0 \nabla_h \phi_0 \cdot \mathbf{n} = G_e \nabla_h \phi_e \cdot \mathbf{n}, \quad G_i \nabla_h \phi_e \cdot \mathbf{n} = -G_i \nabla_h V_m \cdot \mathbf{n}.$$

• Variables globales :

$$ar{\phi} = egin{cases} \phi_e & {
m dans} \ H \ \phi_0 & {
m dans} \ T \ , \quad ar{G} = egin{cases} G_e + G_i & {
m dans} \ H \ G_0 & {
m dans} \ T \ \end{pmatrix}$$

plus un potentiel étendu \tilde{V}_m qui incorpore la dernière condition d'interface.

Analyse

- Théoriquement pas de résultats d'existence pour le modèle bidomaine couplé coeur+thorax.
- Numériquement, le problème est bien posé et s'écrit comme un système linéaire (creux) :

$$-A_{\bar{G}}\bar{\phi}=B(V_m). \tag{5}$$

Théorème

Le système (5) est bien posé (existence et unicité de la solution discrète $\overline{\phi}$).

A un changement de base diagonal près,

le système est symétrique et défini positif :

si M = Diag(|K|, |P|) est formée des mesures des cellules primales et des cellules duales,

 $M^{-1}A_{\bar{G}}$ est symétrique définie positive.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Le problème pratique

A chaque pas de temps :

- inversion du système linéaire (5) : BiCGStab + préconditionnement \rightarrow 93% CPU (3D \rightarrow 99% CPU)
- actualisation des courants et concentrations ioniques : Euler, RK4, intégration explicite \rightarrow 3.5% CPU
- intégration de l'équation d'évolution :

Méthode d'Euler \rightarrow 3.5% CPU

Préconditionnement

FIG.: Renumérotation : algorithme Symetric Reverse Cuthill-MacKee

Préconditionement	aucun	ILU0	ILU1
BiCGStab	43.8	7.1	6.9
GMRes	63.8	24.2	25.8

TAB.: Nombre d'itérations pour une précision de 1E-3

précision	1E - 3	1E - 5	1 <i>E</i> – 7
BiCGStab	92	260	1012
GMRes	112	1253	

TAB.: CPU pour 100 résolutions préconditionnées par ILU0

Coeur isolé

Disque (R = 1cm), fibres circulaires, excitation centrale, rapport d'anisotropie 0.1.

FIG.: Ondes circulaires : réference 69780 (à gauche), méthode DDFV 2123 (à droite)

FIG.: Taux de convergence sur la vitesse de propagation, de 551 à 34017 élements

Problème couplé coeur+thorax en 2D

Maillage coeur+thorax (8554 points), fibres elliptiques. Modèle de membrane : Luo- Rudy II, version Faber-Rudy 2000.

	A _m	C _m		g¦		git	
2	$2000 cm^{-1}$ 1 μ F		⁻² .cm ⁻²	4 <i>mS</i> . <i>cm</i> ⁻¹		$2 mS. cm^{-1}$	
	g_e^l		g	t e		g 0	
	1.8 mS.cı	n^{-1}	1.5 <i>mS</i>	$.cm^{-1}$	2.39 mS.cm ⁻¹		

TAB.: Paramètres pour le modèle bidomaine

Pulsation normale, 1 point de stimulation

- Une stimulation toutes les 600 *ms* = 100 *BPM*, sur la gauche de la cavité interne.
- L'enregistrement de l'ECG en 3 points du thorax montre les ondes QRS et T.

Pulsation normale, 2 points de stimulation

- Une stimulation toutes les 600 ms = 100 BPM en deux points, à gauche et à droite de la cavité interne.
- Forte influence du type de stimulation sur la forme des ECGs.

.▲ 差 ▶ 差 ∽ � @

Tachycardie, 2 points de stimulation

- Stimulation toutes les 250 *ms* = 240 *BPM*, en deux points, à gauche et à droite de la cavité interne.
- ECGs anormaux mais s'installant dans un régime périodique.
- Augmentation progressive de la concentration en [Ca²⁺]_i

▲ 差 ▶ 差 • 의 Q @

Ischémie, 2 points de stimulation

- Stimulation toutes les 600 ms = 100 BPM, en deux points, à gauche et à droite de la cavité interne.
- Modèle de membrane de Shaw-Rudy (1997), variante de Luo-Rudy II pour l'ischémie.

Modèle bidomaine pour le coeur isolé en 3D

Maillage des ventricules (3763 points) + direction des fibres

Modèle de membrane adapté aux cellules humaines (TNNP 2004)

Évolution du potentiel de membrane V_m

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusions, perspectives

- Obtention d'ECG de bonne qualité.
- Fort coût en 3D.
- Comparaison systématique avec les données physiologiques en 3D.
- couplage avec un modèle mécanique.