

Confinement temporel de la génération d'harmoniques d'ordres élevés

TCHERBAKOFF Olivier

MOTIVATION

Les impulsions lasers ultra-courtes permettent l'étude de processus ultra-brefs

Les sources lasers intenses actuelles sont limitées à 3,8 fs

B. Schenkel et al., Opt. Lett. 28, 1987 (2003)

1 attoseconde =
$$1 \text{ as} = 10^{-18} \text{ s}$$

Source attoseconde

Pré requis

→ FRÉQUENCES BLOQUÉES EN PHASE

 λ = 800 nm T= 2,66 fs λ = 10 nm T= 33,4 as \rightarrow Domaine VUV

Source potentielle

Génération d'harmoniques d'ordres élevés

Travaux effectués

Propriétés de l'émission harmonique

Génération d'harmoniques d'ordres élevés

I.

- II Confinement temporel de l'émission VUV
- III Conclusion Perspectives
- Rayonnement VUV jusqu'à ≈ 3 nm ($\hbar\omega \approx 410 \text{ eV}$)

- Efficacité
$$\frac{E_{harmonique}}{E_{laser}}$$
 (Ar $\lambda > 40$ nm): $\approx 10^{-6}$

- Cohérent spatialement et temporellement
- Collimaté dans la direction du laser (divergence $\approx 10 \text{ mrad}$)
- Synchronisé avec le laser fondamental
- Durée $\tau_{harmonique} < \overline{\tau}_{laser}$

Modèle en 3 étapes

Т

- II Confinement temporel de l'émission VUV
- III Conclusion Perspectives

2

3

Ionisation Periodicité $T_0/2$

Oscillation gain d'énergie cinétique E_c

Recombinaison radiative $hv = I_p + E_c \le I_p + 3,17 U_p.$

+ cohérence du processus

Champ polarisé circulairement

Génération d'harmoniques d'ordres élevés

Т

- II Confinement temporel de l'émission VUV
- III Conclusion Perspectives

Énergie des électrons

- II Confinement temporel de l'émission VUV
- III Conclusion Perspectives

Trajectoires électroniques

Ph. Antoine et al., PRL 77, 1234 (1996)

RABBIT

(Reconstruction of Attosecond Beating By Interference of two-photon Transition)

- II Confinement temporel de l'émission VUV
- III Conclusion Perspectives

Harmoniques 11 à 19, Argon.

I Génération d'harmoniques d'ordres élevés

II Confinement temporel de l'émission VUV

III Conclusion Perspectives

Sélection d'une impulsion attoseconde(2)

Génération d'harmoniques d'ordres élevés

- II Confinement temporel de l'émission VUV
- III Conclusion Perspectives

Modulation temporelle de polarisation

P. Corkum, Opt Lett. 19, 1870 (1994)V. T. Platonenko and V. V. Strelkov, JOSA B 16, 435 (1999)

Impulsion « **longue** » (10 fs) + **Modulation de la polarisation**

Influence de la polarisation

Technique de modulation de la polarisation

O. Tcherbakoff et al., PRA 68, 43804 (2003)

Évolution de la largeur spectrale

Confirmation du contraste plateau-coupure

E_{IR} = 1,1 mJ

Ш

ш

Contributions à la largeur spectrale

Génération d'harmoniques d'ordres élevés

Confinement temporel de l'émission VUV

Ш

III Conclusion Perspectives - L'ionisation du milieu

- La dérive de fréquence.
- La durée d'émission.
- Phase atomique —

Phase du champ harmonique à la fréquence $q \boldsymbol{\omega}_{0}$:

$$\varphi_q = -q \, \omega_0 t - \alpha_q^i I$$

Fréquence instantanée :

$$\omega_{q} = -\frac{d\varphi_{q}}{dt} = q\omega_{0} + \alpha_{q}^{i}\frac{dI}{dt}$$

plateau τ_1 plateau τ_2 coupure Pas d'élargissement spectral (α_q^1 très faible) **Élargissement spectral** Faible élargissement spectral $\left(\frac{dI}{L} \approx 0\right)$

Interprétation

L.

Ш

Ш

Récapitulatif des résultats

Génération d'harmoniques d'ordres élevés

- II Confinement temporel de l'émission VUV
- III Conclusion Perspectives

Mesure indirecte du confinement temporel de l'émission VUV

- harmonique plateau (τ_2): confinement \rightarrow Réduit le rôle de la phase atomique Rétrécissement spectral
- harmonique coupure : confinement →
 Élargissement spectral

Signature spectrale consistante avec un confinement temporel de 7 fs.

 Expérience complémentaire réalisée en collaboration avec le CEA Saclay (Paris) a confirmé l'effet du confinement dans le domaine spectral [1].

Nécessité d'une mesure directe dans le domaine temporel

Génération d'harmoniques d'ordres élevés

Confinement temporel de l'émission VUV

Ш

III Conclusion Perspectives

Mesure temporelle - Intercorrélation

But : Mettre en évidence le confinement dans le domaine temporel

En Régime perturbatif : $I_{BL}(\tau) = \int I_{IR}(t' - \tau) I_{VUV}(t') dt'$

Par déconvolution, on mesure la durée de l'impulsion VUV. Dans le cas d'impulsions Gaussiennes :

$$\tau_{BL} = \sqrt{\tau_{IR}^2 + \tau_{VUV}^2}$$

Dispositif expérimental

Spectre en énergie des photoélectrons

Génération d'harmoniques d'ordres élevés

н

- II Confinement temporel de l'émission VUV
- III Conclusion Perspectives

Fonction d'intercorrélation $I_{BL}(\tau)$

CONCLUSION

Génération d'harmoniques d'ordres élevés

II Confinement temporel de l'émission VUV

III Conclusion Perspectives Secondary Réalisation d'une porte d'ellipticité, avec 2 lames $\lambda/4$, contrôlable continûment de durée minimale 7 fs.

Observation de signatures spectrales consistantes avec un confinement temporelle de l'émission harmonique.

Mesure directe du confinement dans le domaine temporel par une méthode intercorrélation.

PERSPECTIVES

Génération d'harmoniques d'ordres élevés

II Confinement temporel de l'émission VUV

III Conclusion Perspectives

Étude de la génération harmonique avec la porte d'ellipticité.

La porte d'ellipticité peut se déplacer dans le profil temporel en intensité de l'impulsion laser.

Isolation d'une impulsion attoseconde.

 \succ τ_G= 7 fs → 5-6 impulsions attosecondes

 $\succ \tau_G < T_0/2 \rightarrow UNE$ impulsion attoseconde UNIQUE

Remerciements

