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Abstract

Embedded core processors are becoming a vital part of today’s system-on-a-chip

in the growing areas of telecommunications, multimedia and consumer electronics.

This is mainly in response to a need to track evolving standards with the flexibility

of embedded software. Consequently, maintaining the high product performance

and low product cost requires a careful design of the processor tuned to the appli-

cation domain.

With the increased presence of instruction-set processors, retargetable software

compilation techniques are critical, not only for improving engineering productiv-

ity, but to allow designers to explore the architectural possibilities for the applica-

tion domain.

The contributions of this thesis are primarily in the following three categories:

• methods and experiences using a retargetable compiler methodology for embed-

ded processors in industry.

• an augmentation of the knowledge necessary for compiling abstract source code

for DSP architectures.

• a set of tools which allow the designer to explore an instruction-set architecture

for a set of compiled code in the light of redesigning the processor for an evolu-

tion or reuse of the architecture.

The manuscript begins with an overview of the techniques of modern retargeta-

ble compilers and shows the application of practical techniques to embedded

instruction-set processors. The methods are highlighted with examples from indus-

try processors used in products for multimedia, telecommunications, and consumer

electronics. An emphasis is given to the methodology and experience gained in

applying two different retargetable compiler approaches in industrial settings.

Many pragmatic areas such as language support, source code abstraction levels,

validation strategies, and source-level debugging are also discussed.

In addition, new compiler techniques are presented which support address gen-

eration for DSP architectures. The contribution is an address calculation transfor-

mation based on an architectural model. This model allows the programmer to
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write his algorithm on a more abstract level which encourages portability of code.

Furthermore, the architectural model allows the designer to explore different con-

figurations of the hardware for better running of the algorithm.

As a natural complement to the compiler techniques which have been pre-

sented, new utilities for the design of embedded processors are described. As the

lifetime of an embedded processor is rich with architectural variations and design

reuse, these aids provide ways of analyzing the match between application code

and the instruction-set. Two tools allow the designer to obtain both static and

dynamic feedback on the fit of the processor in the application domain. These tools

allow the designer to explore the architecture space as well as the algorithm execu-

tion.

The material contained in this thesis has been accepted to be published in the

form of a book by Kluwer Academic Publishers.
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0-1

Chapitre 0: Présentation Générale en
Français

Résumé

Dans le cadre des applications de type télécommunications, multimédia, et électro-

nique grand public, les processeurs embarqués ont tendance à acquérir une impor-

tance de plus en plus marquée lors de la conception de systèmes monopuces. Ce

phénomène traduit le besoin des concepteurs à tenir compte rapidement des néces-

saires adaptations aux fréquentes variations des standards évoluées. Le fonctionne-

ment global des systèmes devant être préservé en terme de hautes performances et

de coût réduit, cela impose une adaptation de la conception des processeurs aux

besoins des diverses applications ciblées.

C’est ainsi que les techniques de compilation multicibles deviennent primor-

diales, non seulement pour la production du code d’application, mais aussi afin

d’explorer les architectures de microprocesseurs et d’en exploiter toutes les carac-

téristiques de façon optimum.

Cette thèse débute par un condensé des techniques connues pour la compilation

multicibles. Un chapitre est exclusivement consacré aux techniques employées

pour la conception de compilateur ciblant les processeurs embarqués, suivi par un

exposé de méthodes existantes notamment utilisées dans l’industrie pour les appli-

cations orientées télécommunications et multimédia. Appliquant deux approches

de compilation à des processeurs industriels, divers enseignements et méthodolo-

gies en sont extraites. Plusieurs points d’aspect un peu plus pratiques sont ensuite

abordés, se concentrant plus particulièrement sur les langages de spécification, les

styles d’écritures, les stratégies de validation, et le débogage.

De nouvelles techniques liées à la génération d’adresses pour les architectures

de traitement de signal sont avancées. Il s’agit en bref d’une technique de transfor-

mation pour les unités de calcul d’adresses fondée sur la connaissance du modèle

architectural. L’intérêt principal d’une telle technique réside dans la possibilité
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donnée à l’utilisateur d’écrire ses algorithmes à un niveau d’abstraction élevé, et

ainsi d’explorer diverses combinaisons architecturales du processeur visé, combi-

naisons améliorant l’exécution finale du système.

En complément des compilateurs, l’existence d’outils d’exploration facilitant

l’analyse de l’efficacité d’un jeu d’instructions se révèlent d’un grand intérêt pour

les concepteurs aussi bien des processeurs que des compilateurs associés. En effet,

la durée de vie d’un processeur embarqué est souvent marquée par différentes

variations et réutilisations de l’architecture, auxquels cas le type d’outils pré-cité

peut s’avérer excessivement utile dans la mesure où ils facilitent ces évolutions.

Deux outils permettant l’analyse statique et dynamique des instructions sont ainsi

développés dans le cadre de cette thèse et présentés en dernière partie.

0.1 Introduction

La conception de systèmes monopuces est devenue une tâche très complexe, parti-

culièrement si l’on considère la possibilité d’y inclure un, voire plusieurs proces-

seurs embarqués, ce qui semble être la tendance actuelle. Le désir d’utiliser un

processeur s’explique simplement: le concepteur est attiré par la possibilité

d’adapter rapidement son produit suite aux variations de standards. Ce dernier

point est mis en évidence notamment par l’utilisation répandue des processeurs

embarqués dans les applications orientées télécommunication, multimédia, et élec-

tronique grand public. Ces domaines se caractérisent en effet par une évolution

rapide des standards, en proportion avec l’intérêt grandissant du grand public pour

telles applications.

Dans ce type de conception, il est clair que les outils de CAO sont un facteur

critique. La Figure 0.1 présente un schéma idéal montrant les besoins en utilitaires

envisagés. Le plus important est un compilateur multicibles, qui, par définition, est

reconfiguré à partir de la spécification d’un jeu d’instructions. Cet outil permet la

compilation du code écrit dans le langage C en générant du microcode pour le pro-

cesseur cible. De plus, cet outil permet l’exploration d’architectures en modifiant

simplement la spécification.

Afin de savoir quels changements sont utiles pour la conception d’architectu-

res, il est important d’obtenir les statistiques d’utilisation des ressources, de façon

à la fois statique et dynamique. Ainsi, un profiler peut servir soit à améliorer le
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source C, soit à raffiner l’architecture pour un certain type d’application. Les utili-

taires qui permettent d’automatiser ces travaux de caractérisation sont utiles pour

concevoir un processeur efficace.

Pour la conception complète d’un système, le concepteur peut se trouver en

présence d’autres besoins, tels que la synthèse comportementale et la co-simula-

tion VHDL-C. Cette thèse ne traite pas ces sujets, mais on confirme leur impor-

tance dans la vision globale.

0.2 Techniques de compilation pour les processeurs embarqués

Les techniques appliquées dans le domaine de la compilation sont bien avancées

pour certaines variétés d’architectures. Néanmoins, les processeurs embarqués pré-

sentent certains contraintes et particularités qui ne sont pas sans poser quelques

problèmes lorsqu’on leur applique les techniques classiques. On présent les techni-

ques de compilation traditionnels ainsi que les nouvelles techniques qui viennent

d’apparaître.

 0.2.1  Le processus de compilation traditionnel

Le mécanisme de compilation défini par le classique “Dragon Book” de Aho,

Sehti, et Ullman [1] se présente comme un processus de traduction d’un pro-

gramme écrit dans un langage source (e.g. C) en un programme dans un langage

cible (e.g. code assembleur et code machine), par le biais d’un ensemble d’étapes,

énumérées ci-dessous:

Compilateur
hôte

Exploration
des architectures

Modèle de
jeu d’instruction

Spécification du
jeu d’instructions

executable

source C

Compilateur
multicibles

microcode

débogage
& profiling

VHDL RTL
modèle processeur

 Co-simulation

Conception
et synthèse

 de processeur

Validation

sur l’hôte

Figure 0.1Outils de conception pour les processeurs embarqués.

VHDL RTL
modèle matèriel

Synthèse
comportementale

 Co-simulation

simulation

VHDL
 comportementale
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1. analyse lexique et syntaxique

2. construction d’une représentation intermédiaire

3. analyse sémantique

4. génération du code intermédiaire

5. optimisation du code

6. génération du code final

Cependant, pour des cibles telles que processeurs embarqués, un certain nombres

de problèmes se posent vis à vis de l’approche traditionnelle de compilation, ainsi

qu’elle peut être décrite dans cet ouvrage. Ces problèmes peuvent se résumer aux

suivants:

1. capacité à recibler le compilateur: L’approche traditionnel se sert de l’informa-

tion liée à l’architecture uniquement à la fin du processus, à savoir la généra-

tion du code final. Si le code intermédiaire n’a pas les caractéristiques propres à

la machine cible, le code risque de ne pas être efficace.

2. contraintes liées aux registres: Les processeurs embarqués ont des registres

spécialisés propres à leur architecture. Ils sont employés dans le but de réduire

le largeur du microcode ainsi que pour garantir la vitesse de l’application qu’ils

exécutent. Les contraintes de registres touchent à toutes les phases de la compi-

lation.

3. spécialisation d’opérateurs: La génération du code intermédiaire décompose

les opérations artificiellement en mini opérations comportant dans la plupart

des cas deux sources et une destination. Il est cependant fréquent de trouver des

architectures embarquées contenant des opérations avec plus de trois opéran-

des, qui sont alors peu exploitées.

4. parallélisme au niveau instruction: Les étapes de la compilation traditionnelle

sont naturellement peu adaptées aux architectures comportant des propriétés de

parallélisme. Par exemple, les processeurs de traitement de signal contiennent

souvent une unité de calcul des données et une unité de calcul d’adresses qui

fonctionnent en parallèle.
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5. optimisations: Les logiciels temps-réels, une fois compilés, doivent avoir des

performances meilleures ou tout au moins similaires à celles obtenues avec un

code machine écrit à la main. Les optimisations effectuées par un compilateur

sont à ce titre une partie indispensable. Les optimisations possibles sur un code

intermédiaire sont essentiellement locales et loin d’être suffisantes. Les optimi-

sations globales doivent êtres appliqués sur une représentation plus proche du

code source tout en prenant en compte la structure de l’architecture ciblée afin

de prendre en considérations ses particularités.

 0.2.2  Le concept de compilation multicibles

Pour les processeurs embarqués, la compilation multicibles permet deux gains

importants pour le concepteur:

1. Elle autorise l’élaboration rapide d’un compilateur pour un nouveau proces-

seur.

2. Elle offre la possibilité d’explorer diverses architectures dans le but de faire

tourner une application donnée de façon plus efficace.

Un scénario idéal est celui de l’environnement représenté sur la Figure 0.2, où

le compilateur est réconfigurable simplement à partir d’une nouvelle spécification

du jeu d’instruction. Des deux cycles de développement sont représentés, le plus

familier est celui du côté droit de la figure: il correspond au développement du

logiciel d’application à embarquer, à l’aide du compilateur. Sur la gauche de la

figure, un second cycle de conception est mis en relief: il correspond au développe-

ment du matériel, au cours duquel les propriétés architecturales sont explorés à

l’aide de ce même compilateur afin d’améliorer l’ensemble du système.

La voie la plus prometteuse devant permettre le ciblage multiple d’un compila-

teur correspond aux travaux sur les modèles architecturaux et les langages de spé-

cification. Les compilateurs MSSV/Q [72] et Record [60], conçus à l’Université de

Compilateur

Figure 0.2Principe de compilation multicibles

Multicibles

Code Source

Code Machine

Specification du
Jeu d’Instruction

Développement
Logiciel

Exploration
Architecturale

Cycle de
Conception
Logiciel

Cycle de
Conception
Matériel
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Dortmund, sont des exemples de compilateurs utilisant un langage de description

de matériel. Ce langage, Mimola, permet à l’utilisateur de spécifier l’architecture

ciblée en décrivant la structure physique du processeur. Le compilateur, par une

analyse détaillée de la structure, est capable d’en extraire l’ensemble des informa-

tions nécessaires à la transposition du code source en code machine, après optimi-

sation. Cette approche présente un gros avantage pour le concepteur du processeur,

puisqu’elle lui offre l’opportunité d’essayer différentes configurations. Néanmoins,

elle ne semble guère adaptée aux processeurs commerciaux dont la description

structurelle détaillée n’est pas forcément disponible.

Le langage nML, conçu à l’Université Technique de Berlin et inspiré par des

travaux sur le compilateur CBC, est un langage qui permet de spécifier un proces-

seur à partir de son jeu d’instruction et de la connaissance des mécanismes d’exé-

cution de celui-ci. Les éléments du langage sont assez riches pour pouvoir spécifier

le comportement complet d’un processeur sans recourir à sa structure physique

(netlist). L’avantage de l’approche réside en une description de la machine à un

niveau comparable au manuel de programmation, indépendante de l’outil utilisé.

L’institut de recherche IMEC a repris le langage nML pour le développement

du compilateur Chess. Le processeur cible est modélisé à l’aide d’un ISG (Instruc-

tion Set Graph), extrait de la description nML, et décrivant le mécanisme de fonc-

tionnement de l’architecture cible. Ce modèle permet de centraliser et de combiner

à la fois toutes les contraintes du jeu d’instructions et la structure du matériel, le

comportement des opérations étant encapsulé. Toutes les phases de la compilation

peuvent consulter ce modèle central, qui contient toute l’information nécessaire.

De façon similaire à Chess, le compilateur CodeSyn, développé chez Bell-Nor-

thern Research/Nortel, utilise un modèle structurel et comportemental afin de

décrire l’architecture cible. Ce compilateur est abordé plus en détail dans la Sec-

tion 0.3.2.

 0.2.3  Techniques dédiées aux processeurs spécialisés

Pour les deux objectifs principaux que sont la qualité du code généré et la capacité

à recibler le compilateur, trois étapes de compilation se révèlent prépondérantes:

• l’étape de reconnaissance et de sélection des instructions.

• l’étape d’allocation et d’affectation des registres.
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• l’étape d’ordonnancement et de compaction.

En outre, l’optimisation du code est un sujet complémentaire critique, puisque

les logiciels temps-réels ont toujours besoin du code le plus dense et le plus rapide

possible. Malheureusement, ce problème n’est pas encore complètement résolu

pour les architectures embarquées.

0.3 Deux approches de compilation récentes

Cette section décrit deux approches de compilation récentes pour les processeurs

embarqués. Chacune est basée sur des principes différents et présentant un certain

nombre d’avantages. Naturellement, un certain nombre d’inconvénients permettent

de relativiser chaque approches.

 0.3.1  Résumé des concepts

Les deux approches de compilation sont représentés sur la Figure 0.3. Pour la pre-

mière approche, toutes les phases de la compilation se basent sur un modèle du

processeur. Le code source est traduit dans une forme intermédiaire, par exemple

un graphe de flot de contrôle et de données. Les phases de compilation appliquent

des transformations successives sur cette forme intermédiaire jusqu’à l’étape de

génération du code final. Toutes les transformations prennent en compte les con-

traintes du modèle architectural.

La deuxième approche (Figure 0.3 b) est très proche de la compilation tradi-

Code Source

Code Machine

Assemblage & Enchaînment

Sélection de code

Optimisations

Compaction

Machine Virtuelle

Transposition au cible

Information sur

& Règles

Code Source

Code Machine

Assemblage & Enchaînment

Optimisations

Graph de flot de

Modèle du
processeurOrdonnancement / Compaction

Allocation de registres

Sélection d’instructions

b. Compilation basé sur des règlesa. Compilation fondé sur un modèle

contrôle et de données

le processeur

Figure 0.3Techniques de compilation récentes
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tionnelle à une exception: toutes les phases de la compilation dépendent de règles

fournies par le développeur du compilateur. Ces règles permettent de réconfigurer

la phase d’optimisation selon les besoins de chaque architecture cible. Le déve-

loppeur a ainsi à sa disposition un environnement de programmation ouvert.

 0.3.2  CodeSyn: un compilateur fondé sur un modèle

Le compilateur CodeSyn a été développé chez Bell-Northern Research/Nortel en

réponse à un sondage effectué auprès de concepteurs spécialisés dans les applica-

tions de traitement du signal. Ce sondage a mis en évidence par un manque critique

en terme de compilateurs efficace pour les processeurs de traitement de signal et

les processeurs spécialisé.

Le compilateur CodeSyn présente trois avantages par rapport aux compilateurs

traditionnelles:

• un modèle de spécification de jeu d’instructions souple, autorisant le reciblage

rapide du compilateur pour de nouvelles architectures.

• une phase de reconnaissance et de sélection d’instructions complexes efficace.

• une phase d’allocation et d’affectation de registres pour les registres spécialisés.

 0.3.3  FlexCC: un compilateur basé sur des règles

Fournir des compilateurs pour une gamme de processeurs aussi large que possible

peut être considéré comme l’objectif de toute équipe offrant des services de compi-

lation. En l’absence de la solution idéale représentée par un compilateur automati-

quement ciblable, posséder un environnement souple de développement de

compilateur, permettant par exemple au développeur de reprogrammer ce dernier

facilement et selon ses besoins, a des avantages certains.

Le compilateur FlexCC utilisé par SGS-Thomson Microelectronics est basé sur

des phases de compilation traditionnelles. L’approche présente quatre phases de

transformations successives dirigées par le biais de fichiers de configurations. En

plus des informations architecturales présentés dans chaque fichier, le program-

meur a la possibilité de fournir des règles. Ces règles orientent chaque transforma-

tion selon les contraintes spécifiques à l’architecture ciblée.

Trois étapes clefs du processus de compilation sont les suivantes:
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• sélection de code virtuel. Le code source est transformé en code assembleur

pour une machine virtuelle. Dans un langage de programmation spécifique,

l’utilisateur indique les registres disponibles, les modes d’adressage, et un jeu

de règles. Pour les cas simples, employer un ensemble de règles prédéterminées

est suffisant. Pour les propriétés particulières de l’architecture cible, l’utilisateur

à la possibilité de fournir une règle sophistiquée.

• transposition à la machine cible. Au cours de cette étape, on transforme le code

virtuel en une forme correspondant à la machine réelle. Dans la plupart des cas,

cela peut être une traduction univoque directement à l’assembleur machine.

L’environnement offre en outre plusieurs facilités pour manipuler les transfor-

mations dans des cas spéciaux: appels aux fonctions, expressions de contrôle,

variables locales, etc. Ceci permet la réalisation de transformations complexes.

• compaction du microcode. Basé sur des concepts très connus, cela consiste à

placer autant de micro-opérations que possible dans une micro-instruction, afin

d’exploiter au maximum les possibilités de parallélismes offerts par le jeu d’ins-

truction et d’obtenir un code machine final plus compact. A cette phase est asso-

cié un environnement de réconfiguration selon le processeur cible. Le

programmeur doit ainsi déclarer les ressources de stockage de l’architecture tels

que les registres, les mémoires, et les bus. Le code est compacté en respectant

les dépendances de données et les formats disponibles du microcode.

 0.3.4  Discussion

Les deux approches récentes pour la compilation présentées au cours de cette sec-

tion présentent un certain nombre d’avantages et d’inconvénients. En ce qui con-

cerne l’approche basée sur un modèle architectural, il est possible de concevoir des

algorithmes indépendants du style du processeur. De plus, le compilateur est relati-

vement facile à recibler justement grâce au modèle architectural. Ceci augmente la

possibilité d’explorer plusieurs architectures pour une application donnée et de

choisir la mieux adaptée. Cependant, la représentation intermédiaire est très

détaillée et devra donc naturellement être associée à une maintenance rigoureuse.

De plus, les processeurs cibles sont dépendants du modèle architectural élaboré,

supposé fixé. Pour les processeurs dont les caractéristiques ne sont pas entièrement
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connues, les algorithmes de compilation doivent être modifiés au coup par coup.

L’approche de compilation à l’aide de règles présente l’avantage d’une grande

flexibilité pour le développeur. Un compilateur peut être établi pour une architec-

ture dans un large gamme de variations. Les propriétés spécifiques à l’architecture

peuvent être prise en compte si besoin est. Cependant, l’exploration d’architectures

est moins évidente puisque la mise au point de règles nécessite un certain temps.

0.4 Aspects pratiques pour la conception de compilateurs

En supplément des techniques fondamentales de la compilation, un certain nombre

de questions s’imposent concernant le développement et l’utilisation des compila-

teurs pour les processeurs embarqués dans un environnement industriel; répondre à

ces questions peut influencer de façon notable l’efficacité du développement et la

qualité du produit final:

• support du langage: Quels procédés et facilités de programmation est-il intéres-

sant de fournir à l’utilisateur?

• contraintes d’architecture: Quels moyens sont à proposer au programmeur pour

lui permettre d’exploiter les propriétés de l’architecture cible?

• style de codage: Niveau d’abstraction? Restrictions? Compromis?

• validation: Niveau de qualité requis pour un compilateur reciblé?

• débogage: Intérêt du débogage sur la machine hôte par rapport au débogage sur

le processeur cible d’un point de vue comparatif?

 0.4.1  Support du langage source

Le développement d’un compilateur C pour un processeur embarqué implique le

choix d’un sous ensemble restreint du langage au niveau des types de données sup-

portés, ainsi qu’un certain nombre d’extensions au langage pour le support des

mémoires multiples, des mémoires spécialisés, ou encore des appels de fonctions.

 0.4.2  Les différents niveaux d’abstraction du codage

Pour des raisons d’ordre pratique, il est essentiel que le passage vers des niveaux

d’automatisation supérieurs s’effectue avec douceur. En attendant l’avènement de
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techniques de compilation plus élaborées pour les processeurs embarqués, il est

encore nécessaire de fournir des mécanismes afin qu’un concepteur puisse exploi-

ter toute les fonctionnalités d’une architecture lorsque le compilateur en est incapa-

ble. Ces mécanismes comprennent:

• les fonctions prédéfinies (“built-in functions”)

• le support du codage aux différents niveaux d’abstraction

Une fonction prédéfinies dans ce cadre est une fonction transformée directe-

ment par le compilateur en un groupe d’instructions spécifiques à l’architecture,

fournies par le développeur. Ce dernier peut ainsi par ce moyen engendrer les opé-

rations nécessaire pour certaines tâches spécialisés, comme les fonctions d’inter-

ruption, les fonctions de boucles câblées, les mécanismes d’attente, les opérateurs

matériels, etc.

En ce qui concerne le support de codage, il est possible de définir plusieurs

niveaux de style de codage dans un langage comme le C. On peut distinguer quatre

degrés d’abstraction:

1. Haut niveau ANSI C au niveau comportemental. Ce niveau est caractérisé par

l’utilisation de références aux variables, aux tableaux, aux structures, et de tou-

tes les opérations disponibles en C.

2. Moyen niveau. Ce niveau permet l’utilisation des fonctions prédéfinies. Tous

les tableaux et structures qui sont déclarés en mémoire sont accédés par des

pointeurs. Les variables et pointeurs peuvent être associés aux classes de stoc-

kage et aux classes de registres.

3. Bas niveau. Ce niveau permet à l’utilisateur d’affecter les variables et pointeurs

aux registres spécifiques à l’architecture.

4. Niveau assembleur. Ce niveau permet à l’utilisateur d’écrire directement en

assembleur dans son code C.

Le niveau 1 est la cible déclarée des techniques de compilation. Il permet d’écrire

le code d’un façon abstraite et portable. Les niveaux 2 à 4 doivent être supportés

par le compilateur et permettent à l’utilisateur d’exploiter les ressources de l’archi-

tecture quand le compilateur en est incapable. Ce dernier point représente une

masse d’effort loin d’être négligeable au cours du développement d’un compila-
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teur.

 0.4.3  Les stratégies de validation

Le terme compilateur multicible indique que plusieurs processeur cibles peuvent

être supportés par le compilateur. Par conséquent, la validation fonctionnelle du

compilateur reciblé est d’une importance fondamentale. Les approches de valida-

tion actuelles sont dominés par la simulation. Les aspects importants d’une straté-

gie de validation basée sur la simulation sont:

• un ensemble de programme tests faisant appels aux opérations et facilités du

compilateur de la façon la plus exhaustive possible. Des séries de tests sont dis-

ponibles commercialement (e.g. Plum-Hall, Perennial, MetaWare), mais pour

les processeurs embarqués, il faut typiquement des programmes qui vérifient un

sous-ensemble de C et les extensions relatives à l’architecture.

• un simulateur de jeu d’instructions. Bien que le sujet le mérite, il ne sera pas

développé dans ce document. Un tel simulateur est aussi une partie importante

de la validation. Il consiste en un modèle d’exécution similaire au processeur

lui-même.

• compilation hôte. Sans parler des avantages liés à l’utilisation du compilateur

hôte en tant que débogueur fonctionnel, cette compilation peut fournir des don-

nées comparatives. Cette méthodologie nécessite néanmoins le développement

d’une librairie de fonctions bit-exactes (respectant les tailles de données au bit

prés) pour les opérations et fonctions prédéfinies qui sont spécifiques au cible.

 0.4.4  Le débogage

Trois modes de débogage avec processeur embarqué seront considérés:

1. débogage sur l’hôte avec exécutable sur l’hôte. Le compilateur hôte est utilisé

ainsi que les outils de débogage standards.

2. débogage avec le simulateur du jeu d’instructions. La compilation est effectuée

par le compilateur cible et le microcode est exécuté sur le simulateur. L’outil de

débogage communique avec le simulateur de jeu d’instructions.
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3. débogage par une interface d’interruption. Cette interface communique avec un

modèle cycle-exact du processeur ou une émulation matérielle de ce dernier.

Le premier mode permet d’effectuer le débogage fonctionnel de l’application rapi-

dement ainsi que très tôt dans le cycle de design, avant même que les outils du

cible soient disponibles. Le deuxième mode permet le débogage du code généré

par le compilateur cible. Le troisième mode correspond principalement au débo-

gage du matériel (modèle ou émulation).

0.5 Transformations pour les unités de calcul d’adresses

Cette section présente une approche d’optimisation analysant les références aux

tableaux dans un source C afin d’utiliser les unités de calcul d’adresses d’une

manière efficace. Cette approche a été matérialisée par un prototype offrant des

opportunités de transformations basées sur un modèle architectural et permettant

d’optimiser un compilateur existant. Grâce à sa simplicité, la spécification du

modèle permet également diverses explorations architecturales.

 0.5.1  Les unités de calcul d’adresses pour les architectures de
traitement de signal

Pour les architectures dominées par le flot de données, l’interaction entre les

mémoires et l’unité de calcul de données représente un goulet d’étranglement. Afin

d’améliorer cette interaction, l’unité de calcul d’adresses est apparue dans les pro-

cesseurs de traitement de signal. Fréquemment, l’unité de calcul d’adresses est

conçue sur un principe de fonctionnement postérieur: les adresses sont mises à jour

après le calcul des données principales sur l’unité de calcul des données. Cela auto-

rise un cycle d’exécution d’instruction très court, et les méthodes de pipelining

peuvent être employées afin d’augmenter les performances du processeur.

Les unités de calcul d’adresses se trouvent sur nombreuses architectures de

type processeurs spécialisés ou processeurs de traitement du signal commerciaux.

Néanmoins, bien que certaines similitudes puissent exister entre elles, ces unités ne

sont jamais identiques (nombre d’additionneurs, nombre de registres, opérations

permises, codage d’instruction). L’impact de ces différents choix est très dépen-

dant des applications susceptibles d’être exécutées sur l’architecture.

La meilleure façon d’évaluer les différentes structures des unités de calcul

d’adresses est de tester les écarts de performance en fonction de ces dernières, en
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compilant certains applications types. Malheureusement, il n’existe pas encore de

techniques de compilation utilisant les unités de calcul d’adresses de façon effi-

cace. Le fonctionnement postérieur est difficile à exploiter pour les compilateurs

classiques. Ceci est notamment mis en évidence par les activités de benchmarking

des compilateurs de processeurs de traitement de signal commerciaux, tel que le

DSPStone [113] ou les benchmarking de Berkeley Design Technology [13].

 0.5.2  Techniques de génération d’adresses traditionnels

Les approches traditionnelles employés pour générer les adresses de tableaux sont

principalement basées sur un fonctionnement antérieur, ce qui implique un calcul

des adresses systématiquement avant leur usage. Pour les architectures parallèles,

il s’en suit des pénalités de performance.

Cette approche traditionnelle peut être améliorée par l’emploie de méthodes de

pipelining [21][55] et dehissage (“hoisting”) de code [52]. Malgré ces améliora-

tions, les transformations ne parviennent pas à la génération naturelle d’adresses

pour les unités de fonctionnement postérieur.

Une approche transformant de façon logique la génération d’adresses d’un

fonctionnement antérieur en un fonctionnement postérieur est la transformation de

références à des tableaux en pointeurs. Ceci permet aux calculs d’adresses d’être

effectués en parallèle avec les opérations de l’unité de calcul des données.

 0.5.3  Une transformation pour le calcul d’adresses postérieur

Un outil d’optimisation nommé ArrSyn (Figure 0.4), développé au cours de cette

thèse, est présenté dans ce document. Il transforme les références de tableaux en

adressage postérieur à l’aide de pointeurs. Les transformations sont dirigées par

une spécification de ressources décrivant l’architecture existante ou à concevoir.

Elles s’appuient d’autre part sur des informations statiques et dynamiques permet-

tant l’optimisation des boucles exécutées le plus souvent. Le résultat de ces trans-

formations est aussi en C, ce qui signifie que l’utilitaire peut être utilisé en

conjonction avec un compilateur existant sans modification.

La spécification d’architecture se compose d’une déclaration de ressources: les

registres disponibles, et d’une déclaration des opérations qui peuvent être exécu-

tées sur ces ressources. Les transformations prennent en compte les contraintes de

ce modèle architectural.
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Le code source C est transformé en code cible C avec des propriétés différen-

tes. Le code cible contient des pointeurs référençant les tableaux originels du code

source. Le choix de C comme cible conduit aux avantages suivants:

• le comportement du code cible peut être compilé et comparé à celui du code

source.

• le code cible peut être utilisé directement par un compilateur donné.

• la sémantique est aisément compréhensible à l’utilisateur.

0.6 Expériences industrielles liées aux méthodes de compilation

Il est aujourd’hui courant de programmer directement en langage assembleur lors-

que l’on a affaire à un processeur embarqué. Tant que cela sera, les expériences sur

les méthodes de compilation seront d’importance cruciale pour l’acceptation des

compilateurs. Cette section expose les résultats d’expériences réalisées dans le

cadre de trois projets industriels. L’accent est mis sur les méthodologies utilisés et

les divers enseignements qui ont pu en être extraits.

 0.6.1  Un ASIP dédié aux télécommunications élaboré à Nortel

Un processeur spécialisé utilisé pour un routeur de lignes local a été conçu chez

Nortel. L’architecture est inspirée de principes VLIW (Very Long Instruction

Word), mais avec une largeur d’instruction limitée à 40 bits. Les concepteurs ont

réussi à emprunter un mot-instruction relativement court par l’imposition des con-
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traintes sur le mouvement des données dans l’architecture. Ce choix a permis éga-

lement une augmentation des performances et une réduction de la surface du

matériel par élimination de bus.

L’architecture se caractérise par d’autres spécificités, telles que unités de déca-

lage de l’entrée et de la sortie de l’unité arithmétique afin de supporter plusieurs

types de données, unité de calcul d’adresses ayant des modes d’adressage particu-

liers, boucles câblées en supplément des instructions de contrôle classique.

Le compilateur CodeSyn a été utilisé pour cette architecture. La phase de

reconnaissance et de sélection des instructions s’est avérée importante pour le trai-

tement des opérations de décalage combinées avec les opérations de l’unité arith-

métique, ainsi que pour celui des opérations de l’unité de calcul d’adresses.

L’allocation de registres spécialisés, point critique sur lequel l’emploi d’un compi-

lateur commercial à conduit à un échec, à été possible avec CodeSyn.

Les résultats expérimentaux ont montré que les performances du code produit

par le compilateur sont comparables à celles obtenues avec un code écrit à la main.

Cependant, en moyenne, le code compilé a une taille supérieure d’environ 20% au

code manuel. Le compilateur est aussi parvenu à compiler un grand ensemble de

tests qu’il n’était pas possible de traiter avec d’autres compilateurs. Le point mis en

relief est donc l’importance du traitement des registres spécialisés, point clef du

succès de CodeSyn.

 0.6.2  Un visiophone intégré conçu chez SGS-Thomson

Un visiophone intégré conçu chez SGS-Thomson Microelectronics constitue le

second cadre de ces expériences industrielles. Il se compose de plusieurs opéra-

teurs communicants dont certains câblés afin d’atteindre les performances tempo-

relles nécessaires (e.g. l’Estimateur de Mouvement [14]). Néanmoins, nombreux

sont les opérateurs conçus à l’aide de processeurs spécialisés (i.e. ASIPs) et desti-

nés à exécuter des logiciels embarqués. Ce choix à été dicté par un besoin de flexi-

bilité, nécessaire afin de supporter les modifications de standards dont les versions

stables sont souvent délivrées avec un certain retard par les comités de standardisa-

tion.

Le compilateur FlexCC, utilisant l’approche à base de règles, a été choisi pour

mettre au point les compilateurs de trois processeurs du visiophone intégré: le



Présentation Générale en Français 0-17

MSQ (MicroSeQuencer), le BSP (Bit Stream Processor), et le VIP (VLIW Image

Processor). Etant donné la simplicité et la similarité des architectures appréhendées

par rapport aux processeurs plus généraux, le processus consistant à recibler le

compilateur pour chacune d’entre elles s’est avéré quasi immédiat. Toutes les

architectures contiennent un seul type de données et des opérations spéciales réser-

vées à des tâches bien spécifiques. L’interface bus communicant a été élaborée

pour un opérateur, puis standardisée pour les suivants afin de simplifier l’exécution

de chaque opérateur et la mise au point des compilateurs.

Les compilateurs du visiophone intégré ne supportent qu’un sous-ensemble du

langage C, réduit aux seuls éléments nécessaires pour exploiter la totalité de la

fonctionnalité de chaque opérateurs. Pour chacun d’entre eux, le développement a

été évalué à approximativement un homme-mois en termes de ressources.

Pour l’opérateur MSQ, le code généré par le compilateur a été comparé avec un

code précédemment écrit à la main. Les résultats montrent une équivalence entre

les deux. Pour cette architecture, la transposition du code C en opérations microco-

dées s’est déroulée de façon relativement directe. L’enseignement avoir été extrait

est l’importance d’une architecture de fonctionnement restant dans la juste mesure

et d’une interface bus standardisée. Cela simplifie le développement des outils de

compilation.

 0.6.3  Un processeur multimédia réalisé chez TCEC

Le processeur, MMDSP, conçu par Thomson Consumer Electronic Components

pour la décompression et décodage d’algorithmes sonores tels que MPEG2, Dolby

AC-3, et Dolby Prologic, constitue le cadre de la troisième expérience industrielle

rencontrée au cours de cette thèse. A première vue, l’architecture est comparable

aux processeurs de traitement de signal commerciaux avec une unité de calcul des

données, une unité de calcul d’adresses, des bus de données et des mémoires.

Néanmoins, certaines caractéristiques de l’architecture font qu’elle se distingue

des processeurs classiques. L’unité de calcul d’adresses par exemple est capable

d’exécuter plusieurs types d’opérations complexes, et permet d’exploiter efficace-

ment des structures de mémoires multiples. Le multiplieur-accumulateur permet

l’exécution efficace des sections temps-critique des algorithmes MPEG, ce qui

implique des connexions spécialisés aux registres et aux bus.

Le compilateur FlexCC a été utilisé pour le MMDSP. En supplément du déve-
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loppement du compilateur principal, plusieurs optimisations et outils spéciaux ont

été développés afin d’accéder à l’environnement matériel et de garantir la perfor-

mance du code généré. C’est le cas d’une interface de débogage développée pour

communiquer avec le simulateur de jeu d’instructions de l’architecture. Une librai-

rie de fonctions bit-exactes a été développée conjointement pour la compilation sur

l’hôte.

Le compilateur a été validé en utilisant un ensemble d’exemples choisis pour

leurs parties génériques ou spécifiques à l’architecture, le tout représentant plus de

12000 lignes de code C. Les sources C ont été compilés sur l’hôte à l’aide de la

librairie bit-exacte et leur exécution comparée à l’exécution du microcode cible sur

le simulateur.

Les résultats expérimentaux ont montré que pour un code source écrit au

niveau haut, le microcode est à peu près 26% plus grand que le microcode écrit à la

main. Le code source écrit au niveau moyen produit un code entre 0.5% et 11%

plus grand que le microcode écrit à la main. Pour obtenir un code équivalent en

taille au code écrit à la main, le code source doit être écrit au niveau moyen dont

certaines parties au niveau bas.

Ce projet a laissé un certain nombre d’enseignements concernant le développe-

ment d’un compilateur reciblé et les besoins associés:

1. Un environnement complet. Associé à la compilation, des outils annexes sont

nécessaires comme par exemple des interfaces vers les environnement maté-

riels. La valeur ajoutée d’un débogeur ne doit pas être sous-estimée.

2. La validation complète. Une série des tests complète est utile pour assurer un

bon niveau de qualité finale. Le temps nécessaire à la validation représente

environ 30% du temps de développement total.

3. Le support pour les niveaux bas de codage. Les optimisations au cours de la

compilation sont nécessaires mais ils s’avèrent secondaire par rapport au

besoin en support pour les niveaux bas de codage. Le concepteur doit pouvoir

exploiter toutes les possibilités de l’architecture

4. La conception conjointe. Le développement conjoint du matériel et du logiciel

conduit toujours à un meilleur produit.
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5. Les techniques de compilation avancées sont souhaitables. Bien que le troi-

sième point relativise leur importance, les optimisations associées à la compila-

tion sont potentiellement primordiales.

 0.6.4  La compilation avancée

Dans le but d’obtenir des compilateurs efficaces pour un haut niveau de codage

source, il est inévitable d’employer des techniques de compilation avancées. Pour

une transformation efficace, les points essentiel sont un modèle d’architecture et

une représentation explicite du code source.

Cette section présente les résultats obtenus avec le prototype ArrSyn qui trans-

forme les références aux tableaux dans un source C en références par pointeurs.

L’outil a été testé avec un compilateur C pour une version d’évaluation de l’archi-

tecture MMDSP (Section 0.6.3).

Pour un ensemble d’exemples de traitement du signal, l’emploi de ArrSyn a

conduit à une amélioration de la taille du code de l’ordre de 23% et à une améliora-

tion des performance de l’ordre de 39% en moyenne. Ces résultats ne prennent pas

en compte la transformation des boucles logicielles en boucles matérielles, ce qui

représenterait un gain de performance supplémentaire.

A partir de ces résultats, combinés à ceux de la Section 0.6.3, on peut conclure

que le calcul d’adresses représente un gain potentiel important.

0.7 Outils pour la conception de jeux d’instructions

 0.7.1  Mise au point d’un jeu d’instructions pour différents besoins

Après qu’un processeur ait été conçu et le code d’application écrit, il est souvent

important pour le concepteur de connaître les correspondances existant entre son

architecture et le microcode généré, par exemple dans le cas où l’architecture doit

être revue pour obtenir un produit à coût réduit, ou dans le cas où l’architecture

doit être réutilisé pour une autre application. En effet, la correspondance entre une

architecture et les instructions utilisées est une caractéristique importante du bon

fonctionnement d’un système.

 0.7.2  Présentation des outils d’analyse

Conçus afin d’être utilisé conjointement avec un compilateur multicibles, ReCode
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et ReBlock sont des prototypes permettant d’analyser le taux d’utilisation des ins-

tructions par le code d’application (Figure 0.5). L’outil ReCode utilise des analyses

dynamiques et statiques des instructions. Il comporte une interface qui permet à

l’utilisateur de facilement visualiser les définitions de champs d’instructions et

d’analyser l’utilisation du code compilé. Les statistiques sont fournis à l’utilisateur

de façon graphique. L’outil fournit aussi des fonctions pour corriger le codage

d’instructions dans une optique de reconception du jeu d’instructions. De nom-

breuses fonctions de correction permettent aussi d’effectuer des changements dans

le jeu d’instructions. La spécification de codage peut être ensuite régénérée pour le

compilateur multicibles.

Le deuxième outil, ReBlock, est un logiciel qui fournit des fonctions de profi-

ling sans simulateur. Cela est rendu possible en utilisant les informations de fré-

quence d’exécution des blocs de base obtenues après compilation et exécution sur

la machine hôte. Ces fréquences des blocs de base sont reliées au microcode

généré par le compilateur multicibles par les correspondances existants entre le

microcode et les lignes de C. Les estimations de performances au niveau bloc peut

être facilement calculées à partir de ces informations. L’information de profiling

est également utilisée par ReCode, un lien existant entre les deux outils.

 0.7.3  Résultats expérimentaux

Les prototypes ReCode et ReBlock ont été utilisés pour l’analyse de plusieurs

architectures embarquées, y compris les opérateurs du Visiophone Intégré de SGS-

Thomson, le DAP (Digital Audio Processor) de SGS-Thomson utilisé pour les
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Figure 0.5ReCode & ReBlock: outils pour l’analyse de microcode
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applications téléviseur, et le MMDSP de Thomson Consumer Electronic Compo-

nents.

L’interprétation de ces résultats par le concepteur peut conduire celui-ci à

modifier certaines caractéristiques d’une architecture ou d’un jeu d’instruction en

connaissance de cause. Par exemple, l’outil peut mettre en évidence qu’un certain

type de branchement est sur-utilisé. Le concepteur peut alors décider d’améliorer

le fonctionnement du branchement. Par ailleurs, le développeur peut décider

d’implémenter une optimisation organisant les blocs de base. ReCode peut être

aussi utilisé afin d’explorer les mouvements de données dans l’architecture. Par

exemple, le mouvement entre registres pour l’architecture MMDSP est très utilisé

par certaines combinaisons d’instructions. Le concepteur peut alors décider de

favoriser les connexions rapides pour certaines transitions. L’utilisation de

ReBlock fournit principalement des analyses de performances. Par exemple, pour

un modèle de branchement delayé, l’outil peut indiquer le pourcentage du temps

pris par les branchements par rapport à l’algorithme total. Ce type d’analyses a été

réalisé pour l’algorithme Eurosound sur l’architecture DAP.

0.8 Conclusion

Les contributions apportées par cette thèse se partagent en trois catégories princi-

pales:

• expériences et méthodologies: utilisation de compilateurs multicibles dans un

milieu industriel pour les processeurs embarqués. De riches enseignements ont

pu être tirés de ces applications concrètes.

• culture scientifique: compiler un code source écrit à un niveau abstrait pour les

architectures de traitement de signal représente un domaine de recherche en

pleine expansion. La mise au point d’une méthodologie d’optimisation réalisant

des transformations sur un code source, et permettant d’exploiter les unités de

calcul d’adresses aura pu contribuer à augmenter les connaissances générales

dans le domaine.
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• développement d’outils: l’objectif étant de permettre au concepteur d’explorer

un jeu d’instructions lié à un processeur donné, à l’aide d’un ensemble de

microcodes compilés, cela afin d’envisager une évolution ou une réutilisation du

processeur.
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Chapter 1: Introduction

1.1 Embedded processors for today’s system-on-a-chip

As microelectronic fabrication capabilities evolve to astounding levels of submi-

cron technology, more and more functions can be integrated on-chip. Industries

such as telecommunications and consumer electronics are witnessing a rapid evo-

lution to entire systems being placed on a single die.

At the same time, demands upon system designs are mounting. The standards

organizations which set the quality level whereby microelectronic systems are

judged are continually in flux. This constant evolution in standards causes churn in

hardware designs and can sometimes mean the decision for costly redesigns.

In effect, programmable processors are becoming increasingly present as a

design solution. An example of this trend is the SGS-Thomson Integrated Video

Telephone. While the Video CODEC version of the chip (the STi1100 [92]) con-

tains two programmable cores, the current version being designed contains five

embedded cores (see Section 6.2.). The most attractive reason for the use of a pro-

grammable solution is the ability to track the evolving standards using software for

late design changes. Furthermore, with a custom instruction-set core, high speed,

low cost, and low power are not compromised. Figure 1.1 depicts some of the deci-

sions which make programmable processors a compelling design style.

Additionally, higher levels of integration are encouraging design practices such

as the reuse of macro blocks. Whether these blocks are hard (i.e. netlists and/or
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Figure 1.1Embedded core processors: solutions to conflicting requirements.
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layouts) or soft (i.e. synthesizable VHDL, Verilog), embedded processors are a

convenient manner to reuse intellectual property. The trend is especially clear

within companies where embedded processor designs are reused and evolved

beyond their original intention.

Finally, an enticing feature of an embedded processor is the ability to carry out

concurrent engineering practices between hardware and software design teams.

The instruction-set of the processor serves as the rigid contract between the two

teams to carry a product to market in an efficient time cycle.

While it can be established that the use of embedded processor cores is advan-

tageous, the design flow which supports their use is much different from the stan-

dard hardware design flow and even the design flow for general purpose

processors. A key technology in the design for embedded processors is retargetable

compilation; however, the techniques in this area are just beginning to appear.

We define an embedded processor as the principal component of an embedded

system. An embedded system can be defined by describing it’s main properties

(Camposano and Wilberg [8]):

• The system performs a dedicated function.

• The system’s real-time behavior must conform to very strict requirements.

• The correctness of the design is essential due to the impact on the surrounding

environment.

The focus of the entire manuscript is on the design tool needs for deeply embedded

processors used in embedded systems. Examples include DSPs (Digital Signal

Processors) and MCUs (microcontrol units) used in the consumer electronic

domains of multimedia. and communications. A processor in these example sys-

tems typically has many or all of the following criteria present:

• The processor runs embedded software which is infrequently modified (i.e.

firm).

• Products are sold in high volumes.

• Low cost and low power are of critical importance.

• The processor can be embedded on-chip as a core.

The discussion hereafter will neither include the requirements and tools for

general-purpose microprocessors used in workstations and personal computers,
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nor the requirements for highly parallel computers. Both of these types of

machines have a very different set of design tool constraints and conditions when

compared to embedded core processors.

This chapter begins with a review and look at the trends of the instruction-set

architectures used in today’s embedded systems in the application domains of tele-

communications and multimedia. Following the discussion of the processor archi-

tectures, an overall picture of the needed design tools for embedded processors is

discussed. The chapter then concludes with a summary of the objectives and orga-

nization of the rest of the book.

1.2 Embedded instruction-set architectures: What’s
new?

 1.2.1  The evolution of embedded processor architectures

The evolution of embedded processors begins with a complex set of design princi-

ples arising from the general computing area. As these principles are brought into

the world of real-time reactive systems, the constraints of the application areas

affect the characteristics of the architectures.

VonNeumann and Harvard Architectures.One of the simplest designs of an

instruction-set processor is the VonNeumann architecture as shown in Figure 1.2.

This design is characterized by a single memory containing both the program

instructions and the data to be processed. The controller for this type of architec-

ture is straight-forward and synchronism between instructions and data is simple.

However, when considering speed the data and address calculations which are

done on the ALU are hindered by a significant bottleneck on the shared instruction

and data bus. Furthermore, the register file shares this same bus. Another architec-

tural point is that data and instructions are forced to have the same bit-width.

To relieve some of the weaknesses of the VonNeumann architecture, the Har-

vard architecture was introduced. An example is shown in Figure 1.3. The major

difference between the two design styles is the separation of program and data

memory. This allows the use of two separate busses improving the overall speed of

the unit. Many variations can be added to the basic Harvard architecture including

such examples as separate data and address register files, multiple data memories,

and the addition of functional units like an address calculation unit (ACU).
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RISC, CISC, and VLIW. Although there is a wide variation in the details, micro-

processors have evolved from two broad principles:CISC (Complex Instruction-

Set Computer) andRISC (Reduced Instruction-Set Computer) [76].

The general principles of CISC dictate the direct implementation in the

machine of large, complex operations which could be found in a high-level lan-

guage. Large pieces of functionality are made directly available in the hardware.

An instruction in a CISC machine may contain many addressing modes available

for the same ALU operation. For example, an indirect offset addressing mode may

be available which can directly implement a memory reference from an array. The

machine would calculate the correct address at run-time to retrieve the data. In
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general, the instruction-sets are rather large since many combinations of instruc-

tions are present. An instruction is usually based upon adata-stationary concept

which may take any number of cycles to execute until the calculation is complete

(Goossens et. al. [36]).

In principle, the advantages of a CISC architecture is a simplified compiler

mapping from a high-level language to instructions since many complex opera-

tions are directly available. Consequently, the CISC can also achieve a relatively

high program code density. However, the simplicity of the compiler mapping is

debatable, since the exploitation of complex operations is not always straightfor-

ward. Another disadvantage of the CISC mechanisms is a rather high amount of

hardware complexity including the decoding and implementation of a large num-

ber of addressing modes.

In contrast, the RISC principles adopt a reduction of the instruction-set size to

the bare minimum allowing a simplification of the hardware implementation and

control. For example, in RISC machines, loads from memory and stores to mem-

ory are separated from ALU operations by intermediate registers. This implies the

use of very simple addressing modes which allow single-cycle execution of all the

operations. This memory hierarchy also improves data throughput by allowing

operations to be executed in apipeline, where a second operation can be started

before the first is actually complete. The idea can also be extended to other func-

tional units such as an ACU (Address Calculation Unit) which independently exe-

cutes addressing operations in a pipelined fashion. Instructions in a RISC machine

are usually based upon atime-stationary concept, whereby all instructions take the

same time to execute (Goossens et. al. [36]).

The advantage of a RISC machine is a much simpler hardware control imple-

mentation and a smaller instruction-set. It also allows faster execution with the

possibility of pipelining. However, compilers must be able to manage smaller indi-

vidual operations. For example, an array reference must be separated into individ-

ual address calculations in contrast to a CISC principle where the addressing mode

already exists. On the other hand, in practice, the RISC principle has actually sim-

plified the compiler design since a smaller instruction-set is easier to manage than

a large instruction-set.

TheVLIW (Very Long Instruction Word) concept is a principle which extends
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RISC fundamentals permitting a maximum of parallelism in a single machine

cycle. The instruction-word is encoded in a way that allows operations to be exe-

cuted in a manner independent from one another. This notion is known asorthogo-

nality. Instruction widths can vary from a fairly narrow 61 bits for embedded

applications (the TCEC MMDSP in Section 6.3) to 759 bit words for highly paral-

lel machines! An example is an IBM VLIW architecture [120] shown in the dia-

gram of Figure 1.4. The control logic for a VLIW is relatively simple compared to

other high performance processors since there is no dynamic scheduling or reor-

dering of operations as in manysuperscalar processors.

For embedded real-time processors, a disadvantage of a VLIW is the high use

of program memory. A VLIW program can have many poorly used bits stemming

from the orthogonality in its wide instruction-word. This corresponds to unneeded

memory size overhead which is an expensive consideration for a system-on-a-chip.

Digital Signal Processors and Microcontrollers.DSPs (Digital Signal Proces-

sors) are a type of architecture specialized for data intensive applications. They are

characterized by certain functional blocks which allow the processors to function

efficiently on typical signal-processing algorithms. Some examples are the algo-

rithms for digital filters (FIR (Finite Impulse Response), IIR (Infinite Impulse

Response), fast fourier transforms (FFT), noise elimination, and echo cancellation.

The characteristic functional blocks of these architectures include multiply-accu-

mulators (MACs), address calculation units (ACUs) with modulo and bit-reverse

addressing modes, barrel shifters, and multiple memories.

The majority of today’s commercial DSPs are based upon Harvard and RISC

properties to meet the most stringent constraint of performance. Parallelism is also

Figure 1.4Example VLIW architecture with multiple functional
units which execute in parallel [120]
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a principal performance gaining factor which naturally leads to VLIW architecture

considerations. However, DSPs cannot afford costly wide instruction words, which

implies the use of highly encoded instructions. An example of DSP encoding

restrictions is illustrated in Section 1.3.2. These machines still allow the full paral-

lel execution of specifically chosen instructions important for signal processing. At

the same time, orthogonality of the instruction-set is greatly diminished. However,

the program memory savings is an important gain for the hardware.

DSP architectures are also characterized by heterogeneous and distributed reg-

ister structures. Registers are first associated directly with the input and output of

particular functional units and secondly reserved for special purposes. This is again

a performance gain when compared to architectures with large general register

files. Often, the capability ofcoupling registers for large data-types is also present,

especially for functions like multiply-addition to preserve the precision of the cal-

culations (see Figure 1.7).

Both floating-point and fixed-point DSP architectures are found on the market

today. Despite the better precision of a floating-point unit, their fixed-point coun-

terparts are used in the majority of high volume products because of the huge cost

difference. Nevertheless, a fixed-point solution requires a well coded program to

compete with the quality level of a floating-point algorithm. Some examples of

commercial DSPs are: the Motorola 56000 series [78], the SGS-Thomson D950

core [91], the Texas Instruments TMS320 series[100], and the Analog Devices

ADSP-21xx series [5].

MCUs (Microcontrol Units or microcontrollers) are another type of real-time

reactive instruction-set processor which are oriented toward control tasks. These

architectures are much more difficult to categorize as they can be based on either

CISC or RISC principles; however a large number of commercial 8 and 16 bit

devices are based on CISC principles. For example, it is common for an MCU to

contain over 10 addressing modes and over 100 instruction types. What sets them

apart from microprocessors is the general low cost and the explicit functions for

memory and input/output control tasks used for real-time interaction in an environ-

ment. Nevertheless, microprocessors have also been used in real-time environ-

ments, yet they generally have significantly higher costs. Some examples of

commercial microcontrol units are the Motorola 68HC05, 68HC11, MPC500
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[117], the SGS-Thomson ST6, ST7, ST8, ST9 [95], and the Texas Instruments

TMS370 family [121].

 1.2.2  Embedded processor architectural directions

Compounding an enormous variety of instruction-set architectures being used

today, one clear trend in embedded processors is the support of architectural varia-

tions. Looking through the portfolio of a major semiconductor vendor’s offerings

is more overwhelming than looking through a clothing catalogue with different

colors and sizes! For example, the Motorola 68HC11 MCU is categorized by a first

set labelled A through P, then further subcategorized resulting in over 50 members.

The SGS-Thomson ST9 MCU is offered in a multitude of packages (Dual in Line

Plastic Package, Plastic Leaded Chip Carrier Package, Window Ceramic Leaded

Chip Carrier, Plastic Quad Flat Pack, etc.), with a variations on pin input/output

(32, 36, 38, 40, 56, 72), and a large variation on memory configuration (ROM 8/

16K, EPROM 16/32K, RAM256/1280K, EEPROM). Of course, there is also the

option of different peripherals of various shapes and sizes: Multifunction Timers,

DMA (Direct Memory Access), Analog-to-Digital Converters, etc.

This trend continues for DSPs. For the Motorola 56K series, they are catego-

rized in five main families: the DSP56000 for digital audio applications, the

DSP56100 for wireless and wireline communications, the DSP56300 for wireless

infrastructure and high MIPs applications including Dolby AC-3 encoders, the

DSP56600 for wireless subscriber markets, and the DSP56800 for low cost con-

sumer applications [117]. Another example, the SGS-Thomson D950 core has sev-

eral memory configurations as well as a configurable coprocessor interface [91]. A

set of instructions are set aside to communicate with a coprocessor which may be

added to customize the hardware to a particular application algorithm.

It is clear that for the embedded processor market, it is not enough to have a

product with a fixed architecture. A solution is competitive because it is special-

ized for the application domain and the architecture is refined for the type of algo-

rithms to be executed.

The concept of architecture customizing has been taken even further in some

companies such as Philips which have designed the flexible EPICs DSP core [111]

for a range of products including digital compact cassette players (DCC), compact

disc players, GSM mobile car telephones, and DECT cordless telephones. Flexibil-
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ity in the EPICs architecture includes the customization of word-lengths, peripher-

als, memory types, memory dimensions, and register sets.

In high volume products, it is apparent that the concept of architecture custom-

izing is a principal competitive factor. By consequence, the architecture trend is the

move toward dedicated processors built using flexible variations on a theme. This

type of architecture is known as anASIP (Application Specific Instruction-Set Pro-

cessor).

1.3 Tools for embedded processors: What’s needed?

 1.3.1  Ask the users

For the large majority of real-time embedded firmware, assembly is the common

source language [86]. While there is a general awareness that high-level languages

bring many more benefits including readability, portability, and easier mainte-

nance, the current state of compiler technology for embedded processors is less

than acceptable. For example, the DSPStone benchmarking activities [112][113]

have demonstrated the low efficiency of commercially available DSP compilers

including the Motorola 56001, the Analog Devices ADSP2101, the AT&T

DSP1610, the Texas Instruments TMS320C51, and the NEC uPD77016. All but

the last two compilers are retargets of the GNU gcc compiler (described in Section

2.1.2). For these processors, compiled code for a set of DSP algorithms was shown

to run from 2.5 to 12 times slower than hand-coded algorithms! For a designer of

real-time systems, a 20% performance overhead is typically the tolerance limit

[86]. This makes these commercial compilers unusable.

As embedded systems become more sophisticated, the amount of legacy code

in assembly programs becomes so large that code management becomes a serious

issue. Consequently, embedded system programmers do recognize a real need for

compiler technology. This was demonstrated in a survey of designers for telecom-

munication systems [83][86], indicating that the greatest need for embedded pro-

cessors is the presence of efficient software compilers.

While the compiler technology for embedded processors has not yet advanced

to an adequate level, an embedded system does provides some unique opportuni-

ties for the compiler developer. Unlike for general-computing systems, a program

for an embedded system is well simulated and validated on a host platform before
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being downloaded to the final embedded system (Figure 1.5). This offers the

opportunity to make use of such items as a host compiler, profiling tools, and exe-

cution based optimization strategies. Of course, the time needed for thorough sim-

ulation is always an open problem. Nevertheless, simulation remains an integral

part of any embedded software development cycle.

Figure 1.6 shows the full picture of the design tools that we envision to be

needed for systems containing embedded instruction-set processors. The heart of

the hardware-software design flow is a retargetable compiler which is reconfigured

by means of an instruction-set specification. Modifications to this specification

serve as a method to explore the effect of making architectural changes on the per-

formance of the C source algorithm. Furthermore, the specification could also be

used to generate an instruction-set simulation model and a hardware description of

the processor itself.

For this design flow, the key technologies are the compiler techniques which

map C algorithms to microcode by means of an instruction-set specification. A

review of compiler techniques is presented in Chapter 2, with contributing tech-

niques and methodologies in Chapters 3, 4, and 5.

The use of a host compiler (e.g. workstation or personal computer) serves mul-

tiple purposes. The first is early functional verification of the source algorithm

even before a processor design is available. The second purpose is validation of the

targeted compiler. These subjects are discussed in detail in Chapter 4. By conse-

quence, the presence of both a retargetable compiler and host compiler also allows

further possibilities. They can be used for debugging in various forms (Section 4.4)

and for architecture and algorithm exploration. For example, the knowledge of

which instructions are used by a source algorithm in both a static and dynamic

fashion is useful for the refinement of the system performance. Both processor

Figure 1.5Host simulation and validation before final download to the embedded system
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hardware and algorithm software may be refined to the algorithm needs. Tools

which aid a designer in these areas are introduced in Chapter 7.

In addition to these tools, a number of additional technologies are important for

hardware-software co-design of embedded systems. These technologies include

the areas of hardware-software estimation and partitioning [51][42], hardware-

software co-simulation (e.g. VHDL-C co-simulation) [80][104], behavioral syn-

thesis of hardware [14], and processor design and synthesis. While we recognize

the importance of these areas, these subjects are beyond the scope of this text.

While Figure 1.6 shows a number of design tools which are important for the

full design activity for embedded processors, the enabling technology is retargeta-

ble compilation which is the main focus of this book.

 1.3.2  Architecture implications on compilation

The highly specialized embedded processors used in today’s real-time embedded

systems have been placing heavy burdens on the known compiler technologies.

Difficulties stem from the architecture specialization in each application domain.

For example, small, heterogeneous, distributed register files are common in digital

signal processor design. An example is shown in Figure 1.7, where many registers

are placed at the inputs and output of the ALU and other functional units as

opposed to having a large, general register file (see Figure 1.3). This design styles
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Figure 1.6Design tools for embedded processors.
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allows the instructions to be encoded in a manner which keeps the instruction

width to a minimum. However, it also means that registers are used for specific

roles and sometimes overlapping roles. For example, in Figure 1.7S1 could be a

special register used solely for bit-shifting operations. Another example would be

the couplingof the output registersA1 andA2 to be used for a double-precision

data-type, as well as the use of each register separately for single-precision data-

types.

Specialized registers imply that a compiler needs to treat registers based on

their function in a certain context. In contrast, the trend in general-purpose proces-

sors is to provide a large number of registers which can be used for any function.

This is done primarily to simplify the compiler task. Now, as embedded applica-

tions change the requirements of a programmable architecture, compilation tech-

nologies are called to keep pace.

Another sizable challenge for DSP compilation is dealing with architecture

restrictions as a result of instruction-word encoding. An example of tight encoding

restrictions is shown in Figure 1.8 for the 16-bit SGS-Thomson D950 DSP core.

Two instruction types are shown: the simpleMultiply  instruction and theMul-

tiply-Accumulate with 2 indirect Register Loads . Notice the

differences which distinguish the format of each instruction. The opcodes are of

different widths: 10 and 3 respectively. However, the greatest impact is the differ-

ence in allowable register usage for each instruction. In theMultiply  instruc-

tion, the right source may be any of the 4 registersR0, R1, A0, or A1, and the left

source may be any of the 7 registers:L0 , L1 , R0, R1, A0, A1, or P. However, for

theMultiply-Accumulate  instruction, the left source for the multiply opera-

tion may only be one of two registersL0  or L1 , while the right source may only

be:R0 or R1. Looking closely at the instruction word, it is clear that the designer

P1
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R3

R2

Figure 1.7Example of heterogeneous, distributed register files
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has a heavy encoding constraint if he wants to offer a large amount of parallelism.

The implications of these forms of encoding restrictions on the compilation

techniques are enormous. For a compiler to make use of themultiply-accu-

mulate  instruction in the previous example means that it must be treated by all

the basic phases of compilation including: instruction-set matching/selection, reg-

ister allocation/assignment, and scheduling/compaction. Furthermore, optimiza-

tions such as loop pipelining are of extreme importance. These and other existing

compiler techniques are reviewed in Chapter 2.

While we have just touched on some of the architectural considerations of

embedded processors on compilation, there are many more which will be dis-

cussed at various points in this book. The numerous architectural constraints of

embedded processors implies that, at the very least, a compiler take into consider-

ation all of the hardware restrictions. This implies that all the phases of compila-

tion need a knowledge of the architectural features of the target. A compiler would

benefit from the incorporation of an architectural model to describe hardware con-

straints. Furthermore, a model of the hardware is also a promising route to promote

retargetability to varying architectures. Retargetability is further discussed in Sec-

tion 2.2.

0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0

Multiply
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Right Source
R0, R1, A0, A1

Left Source
L0, L1, R0, R1, A0, A1, P
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Multiply-Accumulate with 2 indirect Register Loads

Opcode

Rnd

Left
L0

A +-= P, P = Left * Right (Rnd), Lx = *AX + IX, Ry = *AY + IY

ALU Dest
A0, A1

A += P
A -= P

L1

Right
R0
R1

Lx
L0
L1

Ry
R0
R1

+IY0, +IY1, +IY2, +IY3

AX0, AY1

AY0, AY1

+IX0, +IX1, +IX2, +IX3

Figure 1.8Instruction encoding for the SGS-Thomson D950 DSP core.
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1.4 Objectives, contributions, and organization

The objectives of this text are to provide the reader with an overview of compiler

technology for embedded processors with an emphasis on practical techniques. A

number of industrial experiences are cited, where retargetable compiler methodol-

ogies are used. The goal is to highlight both the advantages and disadvantages of

the methodologies and approaches. Furthermore, this text aims to contribute new

ideas and techniques to this flourishing field in both tool technology and design

know-how for embedded processor based systems.

The contributions of the manuscript can be summarized in three main catego-

ries:

• experiences and methodologies in compiler approaches for embedded proces-

sors in the context of industrial products for telecommunications and multime-

dia.

• a new compilation approach to address generation for Digital Signal Processors

based on an architectural model.

• a set of tools which allows the designer to explore the fit of a set of applications

on a processor in light of an architecture evolution or reuse.

The organization of the rest of this book is as follows: Chapters 2-6 describe

compiler methodologies for embedded processors and their application in indus-

trial case studies. This begins in Chapter 2 with an overview of traditional and

embedded processor compiler techniques. Chapter 3 describes two retargetable

compiler systems developed in industry for embedded processors. Chapter 4 dis-

cusses a number of practical issues which are needed in any methodology incorpo-

rating a compiler for an embedded processor. This is followed in Chapter 5 by a

new approach to a compiler transformation specifically for address generation: a

critical part of compilation technology for DSPs. Chapter 6 describes a number of

case studies with industrial processors, using the techniques presented in the previ-

ous chapters.

Chapter 7 presents architecture and algorithm exploration tools which are com-

plementary to an embedded processor development environment. Finally, Chapter

8 presents a wrap-up of the contributions of the book followed by a reflective out-

look on the horizon.
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Chapter 2: An Overview of Compiler Techniques
for Embedded Processors

The challenge of constructing compilers for today’s embedded processors is faced

with a wealth of compilation techniques designed initially for architectures of a

wide variety. These techniques have been converging from two main areas: soft-

ware compilation for general-purpose microprocessors and high-level synthesis for

ASICs [36]. This chapter presents a review of individual techniques with emphasis

on the methods which apply to the constraints imposed by today’s embedded pro-

cessors.

2.1 Traditional software compilation

This section discusses the well-known techniques used in most compilers for gen-

eral purpose computing systems such as workstations and personal computers. The

content is restricted to characteristics of the compilation problem as they pertain to

real-time embedded systems. In such a system, code performance and size is criti-

cal, since the firmware is intended to reside in the system reacting only to external

stimuli. The effectiveness of a compiler is of utmost importance, since for embed-

ded processors, it may mean the difference between the compiler being used and

not!

 2.1.1  Dragon-book compilation

The classic text by Aho, Sehti, and Ullman [1] defines compilation as the transla-

tion of a program in a source language (e.g. C) to the equivalent program in a tar-

get language (e.g. assembly code and absolute machine code). This translation is

typically decomposed into a series of phases, as shown in Figure 2.1.

The first two phases of the process deal with parsing the physical tokens of the

source program (lexical analysis) and analyzing the structure of the programming

language (syntax analysis). The result of this is an intermediate representation of

the source code. A typical example of this representation is a forest of syntax trees
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(Figure 2.1). For each tree, a node represents either an operation (e.g.=, +) which

is to be executed upon its children nodes, or the identifier of a symbol.

The third phase is an analysis of the intended meaning of the language (seman-

tic analysis). It statically determines that the semantic conventions of the source

language are not violated. Examples of semantic checks are: type checking, flow-

of-control checking, and symbol name checking.

These three phases need not be totally independent, but are often sequentially

executedon-the-fly, during the traversal of the source program. In tandem with

these three processes, one or more symbol tables are constructed as an internal

housekeeping of the compiler for symbol types, sizes, locations, etc.

Following these phases, many compilers produce an intermediate code, which

can be thought of as code for an abstract orvirtual machine. A common form is

known asthree-address code (or tuples), which simply means that each instruction

has at most three operands: 2 sources and 1 destination.

This intermediate code can be improved upon using code optimizations of

which a large number and variety exist [1][28]. These range from local to global

optimizations and from guaranteed improvements to high gain, high risk transfor-

mations. That could mean that after an optimization, code is worse than the origi-
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code generation
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nal in terms of area and performance. Choosing the right level of optimization is a

difficult task; however, it cannot be disregarded. It is often the case that the result

of compilation is unsatisfactory without the application of optimizations. Optimi-

zations for embedded processors are discussed in Section 2.6.

Finally, code from the intermediate form is translated to assembly code for the

target. Memory locations are chosen for variables (register and memory allocation)

and the code that results is suitable to be run on the target machine.

In the context of compilers for embedded processors, there are clearly some

difficulties with this traditional approach to software compilation. We outline some

of the main issues as follows:

1. Retargetability. In the traditional approach to compilation, retargeting to a

new architecture is confined to the final code generation phase. This means that the

intermediate code must closely resemble the final target in order to produce effi-

cient code. If the instruction-set of the final target is widely different than that of

the virtual machine, it can be difficult to produce efficient target code. As embed-

ded processor instruction-sets vary widely in composition, it may be troublesome

to conceptualize an intermediate form which is general enough for any target.

2. Register Constraints. Embedded processors often contain a number of spe-

cial-purpose registers as opposed to general purpose register files. In many cases,

registers are reserved for special functions. This is a design effort used to narrow

instruction words through format encoding. The instruction width reflects directly

into program space, which is costly especially for on-chip programs. The impact of

register constraints is on all the phases of compilation.

3. Arithmetic Specialization. Three-address code artificially decomposes data-

flow operations into small pieces. Arithmetic operations which require more than

three operands are not naturally handled with three-address code. Operations such

as these often occur on DSP architectures [64].

4. Instruction-level Parallelism. The task decomposition in the traditional view

of compilation does not naturally suit architectures with parallel executing engines.

For example, a DSP often has both data calculation units (DCU) and address calcu-

lation units (ACU). A compiler should take into account the possibility to perform

operations on different functional units, as well as choose the most compact solu-
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tion.

5. Optimizations. Real-time embedded firmware cannot afford to have perfor-

mance penalties as a result of poor compilation. Efficient compilation is only

arrived upon by many optimization algorithms. Optimizations to intermediate code

(e.g. three-address code) are mainly restricted to a local scope. Global optimiza-

tions which use data-structures (e.g. arrays, structures), data-flow, and control-flow

information would be more naturally suited to a higher level intermediate repre-

sentation, closer to the source program structure. Even at this high level, optimiza-

tions should take into account the characteristics of the target architecture.

Many techniques are beginning to be introduced to overcome these and other

factors which can make compilation for embedded processors much different than

for general computing architectures. Some of the new approaches improve on

weaknesses of the traditional view of compilation, while others introduce new

methods which have evolved from techniques in behavioral and register-transfer

level hardware synthesis.

 2.1.2  The GNU gcc compiler

The GNU gcc compiler is distributed by the Free Software Foundation [96] and

originates by work of Richard Stallman, Jack Davidson, and Christopher Fraser,

with contributions by many others. With the free distribution of its C source code,

it has been ported to countless machines and has been retargeted to even more. For

examples of embedded systems, a retargeted gcc compiler is offered commercially

for several DSPs including the Analog Devices 2101, the AT&T 1610, the Motor-

ola 56001, the SGS-Thomson D950, and the DSP Group Pine and Oak cores. It has

become the de-facto approach to develop compilers quickly from freely available

sources.

A simplified picture of the gcc compilation flow is shown in Figure 2.2. The

input source code is parsed and converted into an internal form, called Register

Transfer Language (RTL), inspired by LISP lists. A number of architecture inde-

pendent optimizations are applied to the RTL prior to any further transformation.

The optimized RTL is then refined during the following phases: instruction com-

bining groups simple RTL operations into clusters of operations; instruction sched-

uling orders the instructions in the time axis (see Section 2.5 on scheduling);

register class referencing selects the most appropriate register file for each live



An Overview of Compiler Techniques for Embedded Processors 19

variable, while registers within register files are allocated and assigned during reg-

ister allocation (see Section 2.4 on register allocation and assignment); a final

machine-specific peephole optimization phase is applied to the generated code (see

Section 2.6.1 on peephole optimization). Several of the above phases depend on

the machine description, mostly for what concerns the available instruction pat-

terns and peephole optimizations. Machine-specific macros and functions written

in C are also used in the machine description.

One of the well-known strengths of gcc is its set of architectureindependent

optimizations: common subexpression elimination, dead code removal, constant

folding, constant propagation, basic code motion, and other classical optimiza-

tions. However, for embedded processors, it is extremely important that optimiza-

tions be applied according to the characteristics of the target architectures. Simple

and ofteninnocent-looking optimizations can have adverse effects on the effi-

ciency of code. This is discussed in Section 2.6. Unfortunately, gcc has little provi-

sions for which optimizations may be applied according to the target machine.

In the area of real-time DSP systems, the performance of many of the gcc-

based compilers fall short of producing acceptable code quality. This has been

demonstrated clearly by the DSPStone benchmarking activities [112][113]. Further
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Figure 2.2A simplified view of the GNU gcc compilation chain
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evaluation of DSP tools and compilers for commercial processors have been done

by Berkeley Design Technology Inc. [13] which also show that many of the exist-

ing commercial C compilers produce inefficient code on commercial fixed-point

DSPs [15].

This result may be somewhat surprising given that this compiler technology

has existed for some time. In particular, gcc is very popular as an efficient compiler

for many workstation and home computing systems. The underlying reason for the

difference in performance between general computing targets and DSPs is made

clear in the document distributed with gcc. Quoting from [96]:

“The main goal of GNU CC was to make a good, fast compiler for machines in

the class that the GNU system aims to run on: 32-bit machines that address 8-bit

bytes and have several general registers. Elegance, theoretical power and simplic-

ity are only secondary. GNU CC gets most of the information about the target

machine from a machine description which gives an algebraic formula for each of

the machine’s instructions. This is a very clean way to describe the target. But

when the compiler needs information that is difficult to express in this fashion, I

have not hesitated to define an ad-hoc parameter to the machine description. The

purpose of portability is to reduce the total work needed on the compiler; it was not

of interest for its own sake.”

Embedded processors usually fall into the category of having few registers,

heterogeneous register structures, unusual word-lengths, and other architectural

specializations. gcc was not conceived for these types of processors; and therefore,

compiler developers using gcc are faced with two choices: lower code quality or a

significant investment in custom optimization and mappings to the architecture. In

the latter case,ad-hoc parameters in the machine description and machine-specific

routines are needed. Naturally, this greatly reduces the compiler retargetability.

2.2 Compiler retargetability

Ever since the appearance of compiler technology, an interest in retargetability was

raised to support the varying architecture design styles and also to support proces-

sor upgrades [32]. While there was always interest in the topic, a formal retargeta-

bility model has never been fully adopted. The trend has been that the more

optimization effort put into a compiler the more that compiler becomes invariably
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linked with the specific architecture. Furthermore, the lifetime of an instruction-set

for a general computing processor has usually been long enough to justify concen-

trating all the effort on architecture-specific compilation.

For embedded processors, the renewed interest in retargetable compilers is

two-fold:

1. Retargetability allows the rapid set-up of a compiler to a newly designed pro-

cessor. This can be an enormous boost for algorithm developers wishing to

evaluate the efficiency of application code on different existing architectures.

2. Retargetability permits architecture exploration. The processor designer is able

to tune his/her architecture to run efficiently for a set of source applications in a

particular domain, recompiling the application for each redesign of the archi-

tecture.

Ideally, a truly retargetable compiler is one whereby the programmer himself is

able to reconfigure the compiler simply by changing the specification of the com-

piler. The principle is shown in Figure 2.3.

Figure 2.3 shows two design cycles: the software and the hardware design

cycle. The one to the right of the figure is the familiar development course, where

the programmer uses the compiler to develop software. The second cycle is to the

left of the figure, showing the retargetable compiler being used as a design tool to

explore the processor architecture. The ideal user-retargetable situation is where

the instruction-set specification completely describes the processor mechanics in a

manner which is simple enough so that the programmer is able to make changes

himself. Exploration is supported for redesigns by changes to the instruction-set

specification.

Retargetable

Figure 2.3The retargetable compilation principle
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 2.2.1  Different levels of retargetability

For today’s compilers a great many levels of retargetability exist. In [6], Araujo

classifies retargetability into three categories. A general interpretation of these cat-

egories is as follows:

1. Automatically retargetable: the compiler contains a set of well defined parame-

ters which allow complete retargeting to the new processor. Full knowledge of

the range of target architectures is contained within the compiler. Retargeting

time is on the order of minutes and seconds.

2. User retargetable: the compiler user is able to retarget the processor by furnish-

ing an instruction-set specification. The compiler may require a certain amount

of pre-compile or set-up time. Retargeting time is on the order of days and

hours.

3. Developer retargetable: the compiler may be retargeted to a range of processor

architectures, but requires expertise with the compiler system. This category

can become blurred with the complete rewriting of a new compiler. Retargeting

time is on the order of months and weeks.

While the dividing line between these categories can be difficult to place, perhaps

the most indicative measure is the retargeting time, which clearly separates the

classes.

State-of-the-art compilers for embedded processors fall primarily in categories

1 and 3, while the main goal is to fall into category 2. Compilers in category 1 are

mainly single-target compilers which allow small variations to the target processor.

The weakness in these compilers is the small range of targets which they support,

therefore making architecture exploration difficult.

The advantage of compilers in category 3 is the support for a wide range of

architectures. However, the weakness is the relatively long compiler development

time. In addition, a compiler expert is needed to perform the compiler retargeting.

 2.2.2  Architecture specification languages and models

The most promising avenue for supporting the retargetability of compilers for

embedded processors is the work on specification languages and models. An

instruction-set specification language allows a user to describe the functionality of

a processor in a formal fashion. Subsequently, the transformations of a compiler
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may be retuned according to the architecture. This retuning can be done by means

of an architecture model. While an architecture model need not be generated by a

specification language, a language-based input is the most natural interface to the

user.

Mimola. The MSSV/Q compilers from University of Dortmund [73][74] represent

early work on mapping high-level algorithms to structural representations of pro-

cessors. The processor is described in a hardware description language called

Mimola [11]. The structure of the processor is defined by a netlist of functional

components with the explicit activation of components via bits in the instruction

word. An example is shown in Figure 2.4. This example target Mimola structure

contains a dual-port memory (SH), an Arithmetic and Logic Unit (ALU), an accu-

mulator register (ACCU), a decoder (DEC), and a multiplexer (BMUX). Sets of bits

from the instruction word (I ) activate functional units and connections in the target

architecture.

The algorithm language is a Pascal-like subset of Mimola. After the application

of a set of target-dependent, user-definable program transformation rules, the algo-

rithm is matched to the target structure. The compiler uses a recursive descent

algorithm matching operations to functional units, and constants and variables to

memory locations. During this execution, paths are matched using reachability

analysis of the target structure. For optimization reasons, several instruction ver-

sions are generated and bundling is performed to reduce the number of final

instructions.

The strength of the MSSQ/V compilers is the direct description of the proces-

sor architecture. The compilers work directly with the physical structure of the
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Figure 2.4An example Mimola target structure [74]
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hardware, which leads to a fair level of retargetability. However, writing the pro-

cessor description requires intimate detail of the decoding strategy of the entire

architecture. In the case of commercial processors, for example, detailed informa-

tion of the hardware would not be available. Only a programmers manual of the

instruction-set is available. Furthermore, matching an algorithm to a detailed

netlist of components could reflect in inefficient compilation times as physical

paths need to be frequently traced.

The more recent generation of compilers from University of Dortmund is the

Record [60][61] compiler. It also uses Mimola as the processor description lan-

guage but uses another approach for compilation. Record uses a pre-compilation

phase calledinstruction-set extraction which automatically generates a compiler

code selector from a hardware description model of the processor. The advantage

of this approach is the use of an efficient code generator generator (this concept is

discussed in Section 2.3.1) for the main instruction-set selection phase of compila-

tion. It is this improvement that separates Record from the MSSQ/V compilers. In

addition to this are a number of additional compiler transformations which

improve instruction-level parallelism, including address generation (discussed in

Section 5.2.1) and compaction (discussed in Section 2.5).

The instruction extraction procedure begins from a Mimola netlist model of the

processor and by traversing the data paths, it determines the instructions which

may be executed on the processor. These patterns are then fed to a program which

produces a grammar for the code generator generator. In this manner, a set of regis-

ter-transfer templates are formed which, when coupled with the code generator,

comprise the front-end of the compiler.

The Record approach is indeed a large improvement over the previous MSSQ/

V compilers as it makes use of structural information of the processor while allow-

ing efficient pattern matching utilities to be used for the main compilation flow.

Again as the Mimola hardware description language is used, the disadvantage of

the approach is that an explicit netlist of the processor is needed to retarget the

compiler. While this might be an advantage to a hardware designer who deals with

his own specialized embedded processors, it is disadvantageous for a programmer

using a commercial processor where the details of the hardware functionality are

unknown.



An Overview of Compiler Techniques for Embedded Processors 25

nML. The CBC compiler [24][25] from the Technical University of Berlin is a

project that inspired the development of a processor specification language known

as nML [31], which stands fornot a Machine Language. This inventive abbrevia-

tion stresses the fact that the language is intended to describe the behavior of a pro-

cessor rather than the structural details. The nML language describes a processor

by means of the instruction-set and the execution mechanics of that instruction-set.

The key elements of the language are the description of operations, storage ele-

ments, binary and assembly syntax, and an execution model. These elements com-

bined with some features such as the derivation of attributes allows the full

description of an instruction-set processor without the detailed structural informa-

tion of a netlist. The level of information is comparable to a programmer’s manual

for the processor.

The nML language is based on a synchronous register-transfer model, allowing

also the description of detailed timing including structural pipelining. Figure 2.5

shows a partial instruction-set description demonstrating the principal elements of

the nML language. Types may be composed from a set of pre-defined type con-

structors:bool , card , int , fix  and float . Using these types, storage ele-

ments may be declared while providing names for identification. The last principal

element of the language is thepartial instruction (PI), which is described in one of

two ways: anOR-rule which declares several alternatives; and anAND-rule which

combines several PIs to form a new PI. This is done in attribute grammar, whereby

each PI may be derived from other PIs. This is shown conceptually in Figure 2.6.

Associated with each PI is a continued set of attributes, the foremost being the

action  attribute which describes the execution behavior. Theaction  attribute

Figure 2.5Sample nML Language Elements

let wordsize=16
type word=int(wordsize)

reg R[8,word] delay=1
reg SP[1,word] alias=R[7]
mem M[1024,word]

opn aluAction = add | sub | or | and
opn add()

action={L3=L1+L2;}
image=”00”
syntax=”add”

opn dataPathOp(a:reg, b:reg, c:aluAction, d:reg)
action={L1=a; L2=b; c.action; d=L3;}
image=a.image::b.image::c.image::d.image
syntax=d.syntax::”=”::a.sytax::c.syntax::b.syntax

Declarations

Storage Elements

Partial Instructions
OR-rule

AND-rule
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may be of two permitted forms:

1. assignment: e.g.dst = src1 + src2

2. conditional: e.g.if c then dst = 0 else dst = 1 end

The definition of the behavior may contain any operators from a pre-defined list,

including C-like operators: arithmetic & logic, bit rotation operators, and type con-

version functions.

Other important attributes of the PI areimage  andsyntax , which describe

both the binary and assembly representation of the microcode. The compiler uses

these attributes to determine the fashion in which to emit the microcode.

The nML description language is a complete description of the processor at the

level of a programmer’s manual. For embedded processors, the user is able to cap-

ture all the functionality, execution, and encoding of the machine. The strong point

of nML is that the language is not tied to the implementation of a compiler or sim-

ulator, which is the case for many machine descriptions [96].

Instruction Set Graph. The ISG model was introduced by VanPraet [106] and is

used in the Chess compiler [57]. The representation is an example of a model that

associates behavioral information of the processor with structural information.

Making use of nML as the description language, the ISG model is generated auto-

matically and encapsulates the functionality of the processor together with the

instruction-level semantics. The main elements of the Instruction Set Graph are

shown in Figure 2.7. The ISG contains two types of storage elements:static

resourcessuch as addressable memory or registers with explicit bit-widths, and

OR-rule

AND-rule

instruction

condOp

cond

transferOp

condAction load store

dataPathOp jump absolute

addr

add sub or and

aluAction reg

Figure 2.6The derivation of attributes in the nML language.
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transitories which pass values with no corresponding delay. Storage elements are

interconnected bymicro-operations which correspond to specific operations which

may be executed on a functional unit of the processor by an instruction code, or by

connectivity to other storage elements. Each micro-operation contains a list of

legal instruction-bit settings, which in principle activate a connection between stor-

age elements. Therefore, a legal micro-instruction is constructed by forming a path

through the ISG, keeping structural hazards in mind.

This approach allows a convenient encapsulation of the operations of the pro-

cessor while keeping an active record of the encoding restrictions defined by the

instruction-set. In the Chess compiler it serves as a base model for all the phases of

compilation (instruction-set matching and selection, register allocation and assign-

ment, and scheduling) to form the mapping from a source algorithm to microcode

implementation. The model is a higher abstraction than a full functional unit netlist

which ties behavioral operation to the structural data connectivity.

CodeSyn Model.The CodeSyn compiler developed at Bell-Northern Research /

Nortel uses a mixed structural and behavioral level model to describe the target

instruction-set processor. Similarly to the ISG model, it ties behavioral aspects

with the structure of the architecture. Details of the model are described in Section
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3.2.2.

Two main goals remain for compilers targeting embedded processors: code

quality and retargetability. While the goals are sometimes conflicting, the growing

amount of embedded firmware and the rapid appearance of new architectures

makes both equally important. For these goals, there are three principal compiler

tasks for embedded processors:

• instruction-set matching and selection,

• register allocation and assignment,

• scheduling and compaction.

Unfortunately, the three tasks are highly interdependent, which is a concept known

in the compiler community asphase coupling.

2.3 Instruction-set matching and selection

We separate instruction-set matching and selection into two broad definitions:

1. Instruction-set matching is the process of determining a wide set of target in-

structions which can implement the source code.

2. Instruction-set selection is the process of choosing the best subset of instruc-

tions from the matched set.

While these general definitions could be interpreted as the entire compilation pro-

cess, the matching and selection process has varying levels of importance depend-

ing on the compilation approach. In some compilers, it does comprise the entire

compilation process; in others, it is only one phase of other more important phases.

Furthermore, some compilers take a simplified view of the process, selecting only

the first matched instructions.

 2.3.1  Pattern-based methods

The traditional approach to matching source code to an instruction-set is to

produce a base of template patterns of which each member represents an instruc-

tion. During compilation of a source program, these patterns are matched to por-

tions of the source. For example, it is possible to translate a source program into a

forest of syntax trees, which are then matched to the pattern set of syntax trees (see

Figure 2.1). A subset of all the matched patterns are selected to form the imple-
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mentation in microcode (i.e. instruction-set selection).

Dynamic programming [3] is a method used to select acover of patterns for the

subject tree. It is a procedure with linear complexity that selects an optimal set of

patterns when restricting the problem to trees and a homogeneous register set [3].

The procedure is a simple linear process which guarantees the best choice of pat-

terns at each node of a tree (the procedure is described in [1]). However, embedded

processors are characterized by heterogeneous register sets and instructions best

described by graph-based patterns. This means the advantage of dynamic program-

ming is diminished for embedded processors.

Tree-based pattern selection extensions which allow the handling of heteroge-

neous register sets have been formulated in the work of Wess [108][109]. In this

approach, register constraints are encapsulated by atrellis diagram. Using this dia-

gram as the target model, the code selection process is considered as a path mini-

mization problem.

On the level of software engineering, a popular, and interesting approach is the

so-calledcode generator generator or compiler compiler. Examples of these sys-

tems are the Glanville-Graham generators [35], BEG [23], Twig [3], Burg and

Iburg [124][30], and Olive [123]. We present the concepts in two steps: code gen-

eration by tree rewriting, and pattern matching by parsing [1].

Tree rewriting. A simple example is shown in Figure 2.8, where the source code

is represented by a syntax tree. A set of reducing rules allows the tree to be rewrit-

ten by successive applications. For each application of a reducing rule to a branch

of the tree, code is emitted. In the example, the rules are applied in the following

order: 2, 1, 3. Although this is a simple example, it illustrates the procedure which
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applies to trees of any size and shape and can also be extended to dags [28].

Pattern matching by parsing.It was observed in [35] that the matching of code

templates against an expression tree resembles the problem of matching produc-

tions against a token sequence during source code parsing. Representing the syntax

tree as a prefix string allows the transformation of the previous problem into a

parsing problem. For example, the syntax tree of Figure 2.8 becomes:

= memc + memb 1

In this way the reducing rules become simply a grammar with related actions:

1) regi <- + regi 1 {INC Ri}

2) regi <- mema {LOAD a,Ri}

3) mema <- + mema reg i {STORE Ri,a}

Three main issues arise with the code generator generation principle:

1. when more than one pattern matches a tree (i.e. conflicts), the quality of code is

dependent on which rule is applied. (i.e. pattern size trade-offs)

2. the quality of the code is dependent on which branches of the tree are visited

first (i.e. scheduling)

3. registers are chosenon-the-fly (i.e. register assignment is local)

The first of these can be approached by simply favoring larger patterns; however,

this is an ad-hoc approach which does not always reflect the cost of a pattern. It is

possible to use dynamic programming in this stage [3], even at compile-compile
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Figure 2.8Principle of code generation by tree rewriting.
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time when based on homogeneous registers and a constant cost model [30]. How-

ever, it may be a disadvantage when incorporating more complicated cost models

which depend on heterogeneous registers and pattern selections crossing tree

boundaries. Scheduling and register assignment are extremely important issues for

embedded processors requiring code quality and are discussed in Section 2.5 and

Section 2.4 respectively. In general, the disadvantage of a code generator generator

is that it integrates many of the compiler phases into one. Consequently, when it is

important to concentrate on a certain phase of compilation which is important for

an embedded processor target, it becomes difficult to tackle.

Despite the basic difficulties, the SPAM (Synopsys Princeton Aachen MIT)

project [7][62][63] has been able to apply the principles to one embedded proces-

sor, the Texas Instruments TMS320C25 DSP. Using the Olive code generator gen-

erator [123], a grammar was constructed for the TI C25 data-path shown in Figure

2.9. The Olive grammar for the architecture is shown in Figure 2.10. The use of a

grammar allows the details of the parser to be hidden from the user; however, dur-

ing this process a schedule of instructions must be considered before code is emit-

AGU

ALU

DMEM

MUL

P

T

ARP

ACC SHIFT

D-Bus

AR

Figure 2.9The Texas Instruments TMS320 C25 data-path.

location : pattern {cost}={action}

1. a: PLUS(a,m){} = {};
2. a: PLUS(a,p) {} = {};
3. a: MINUS(a,p) {} = {};
4. p: MUL(t,m) {} = {};
5. p: MUL(t,CONST) {} = {};
6. a: CONST {} = {};
7. a: p {} = {};
8. m: a {} = {};
9. a: m {} = {};
10. t: m {} = {};

1.add m ; a = a+m

2.apac ; a = a+p

3.spac ; a = a-p

4.mpy m ; p = t*m

5.mpyk ; p = t*CONST

6.pac ; a = p

7.sacl ; m = a

8.lac ; a = m

9.lt ; t = m

Olive grammar

ALU

MUL

DATA MOVE

Figure 2.10 SPAM Olive grammar and patterns for the TI C25.
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ted. This is discussed in Section 2.5. The Olive pattern set treats the restrictions of

registers for the TI C25 architecture; however, it is not clear whether it is possible

to specify processors with larger register files with overlapping register roles. In

addition, the restrictions of register uses with the encoding of the instruction-set is

not included in the grammar.

Other approaches which use tree-based pattern matching and selection include

theCodeSyn compiler andFlexCC compilers, which are presented in Chapter 4.

 2.3.2  Constructive methods

Although not yet extensively studied for embedded processors, techniques for the

matching of directed acyclic graphs (dags) as opposed to simple tree structures

may become important. This is because many instructions in embedded processors

and DSPs are more naturally described as dags, for example: accumulator-based

machines and auto-increment (decrement) address registers. In addition, more

optimization possibilities are available from source algorithms when all the control

and data-dependencies are explicitly kept in a dag. As generating code for trees is a

difficult problem, generating code for dags becomes much more complicated. Heu-

ristics which enhance tree-based methods are explained in [28] and [1].

Some approaches have been introduced which base pattern matches on struc-

tural connections of the processor. Using the Mimola model as described in Sec-

tion 2.2.2, MSSQ/V determine valid patterns by verifying against the structure.

Similarly, the Chess compiler uses abundling approach [106] which couples nodes

of a control-data flow graph (CDFG) based on the instruction-set graph model

(Figure 2.7). This also allows the selection of bundled patterns which are heavily

restricted by the encoding of the instruction-set. The validity of patterns is deter-

mined directly by the architecture model. There are two advantages to this

approach: the pattern set need not be computed at pre-compile time, and the bun-

dling of patterns can possibly pass control-flow boundaries in the source code

[106].

2.4 Register classification, allocation, and assignment

Issues in data storage for embedded processors are probably the most difficult

problem in compilation. The largest tasks are register allocation and assignment,
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which we define as follows:

1. Register allocation is the determination of a set of registers which may hold the

value of a variable.

2. Register assignment is the determination of a specific physical register which is

stipulated to hold the value of a variable.

As well as being a challenge for architectures with many registers, register alloca-

tion and assignment for embedded processors is complicated by special-purpose

registers, heterogeneous register files, and overlapping register functions. How-

ever, as a large base of work already exists, much of today’s research builds upon

techniques of the past. A survey of register allocation methods until 1984 can be

found in [79], and classic approaches are discussed in [1][28].

 2.4.1  Register classes

In dealing with heterogeneous register files of programmable machines, one

approach is to introduce the concept ofregister classes [27][96]. In general, a reg-

ister may belong to one or more register classes of overlapping functionality. By

these means, the compiler is able to calculate those registers which are most

needed for a specific function; and hence, a strategy for register allocation and

assignment can be carried out.

In both the CBC compiler [27] and the GNU gcc compiler [96], the concept of

a symbolic or pseudo register is used so that the compilation may proceed in two

steps. During instruction-set selection, a symbolic register is assigned for each pro-

gram storage element. Next, symbolic registers are organized by means of the reg-

ister classes in a register allocation phase. Following, detailed register assignment

of each symbolic register to a real (i.e.physical, hard) register is performed.

TheCodeSyn compiler builds upon the concept of register classes for special-

purpose registers and the allocation approach is described in Section 3.2.4.

 2.4.2  Coloring approaches

Pioneering work on register allocation by Chaitin [17][18] introduced the notion of

coloring to determine the number of registers needed for a program’s variables. An

example is shown in Figure 2.11 to explain the coloring formulation. The left part

of Figure 2.11 shows a basic block of source code which contains a set of variables
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and their corresponding lifetimes. A variable is said to be alive when it’s value

must be retained for an operation which occurs later in the program. The process of

coloring proceeds in two steps. The first step is to build aninterference graph

whereby the nodes of the graph represent the variables and a set of edges connect-

ing the nodes. An edge represents an overlap of lifetimes between the two vari-

ables, meaning that the two variables cannot use the same storage unit (register).

The second step is to assign a color to each node of the interference graph, such

that no two connecting nodes have the same color. The number of colors used in

the graph is the number of registers needed in the program. The interference graph

shown in Figure 2.11 needs at least 4 different colors and therefore 4 registers.

Taking a closer look at this example, one would notice that there is solution to

this problem which uses just 3 registers. The difficulty was in the previous formu-

lation of the coloring problem. That interference graph has its weaknesses, as it

contains neither the overlapping information of lifetimes nor the relative times of

the overlaps. To arrive at the 3 register solution, the interference graph in Figure

2.12 should be solved. The variablev1 , which has two independent lifetimes has

been split into two nodes, allowing it to reside in two different registers.

In a real program, the coloring formulation is entangled with control-flow con-

v1 v2 v3 v4 v5 v6
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v5 birth

v5 death v1
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Figure 2.11Register allocation by coloring.
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Figure 2.12Register coloring: second formulation
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structs such asif-then-else  conditionals, loops, case statements, function

calls and local/global scoping. The formulation using coloring for a real applica-

tion must be extended to handle these cases. In addition, heterogeneous register

files and overlapping functions significantly change the nature of the formulation.

Extensions to Chaitin’s formulation which use exact lifetime information have

been studied by Hendren et. al. [41]. Their formulation also includes careful treat-

ment of cyclic intervals, which colors variables whose lifetimes extend over sev-

eral iterations of a loop. However, it does not handle heterogeneous register files.

A further difficulty with the coloring formulation is determining variables to

spill. Spilling is the process of moving a variable to memory when all the registers

are being used. For example, in the example shown in Figure 2.11, if only 2 regis-

ters were available on the architecture, variables would have to be spilled to mem-

ory. Chaitin has approached this problem in his formulation [18]; however, the

problem becomes more complex in the presence of special purpose registers; for

example, if only certain registers are permitted to store a value to memory (see

Section 6.1).

Another formulation of the register allocation problem, which can be regarded

as a type of coloring, is inspired by the channel routing problem in place and route

synthesis. TheLeft Edge algorithm [54], which has been used for channel routing

of connections in VLSI physical design, can also be applied to register allocation.

In Figure 2.13 we illustrate the formulation using the previous example.

Variable
Lifetimes

Figure 2.13The Left Edge algorithm applied to register allocation.

v1-1 v2v3 v4v5 v6 v1-2 v1-1
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The approach proceeds in four steps:

1. Sort the variable lifetimes (i.e. segment) in increasing order of their births or

left-edge (top-edge in the case of Figure 2.13).

2. Assign the first segment (top-most edge) to the first channel. (e.g. v1-1 in Fig-

ure 2.13)

3. Find the next segment which can be placed in the current channel (e.g. v4 in

Figure 2.13).

4. Continue until no more segments fit into the current channel. Start a new chan-

nel and repeat Step 2. until all segments are assigned to channels. When fin-

ished, each channel may be assigned to a physical register.

The Left Edge algorithm is greedy in nature; however, it produces an optimal

result in the minimum number of registers needed. Notice that the example of Fig-

ure 2.13 requires a minimum of 3 registers as was discovered with the coloring for-

mulation in Figure 2.12. The advantage of the Left Edge algorithm over coloring is

that it explicitly takes register lifetimes into account. Naturally, the approach must

be extended to take into account control structures, spilling, and special-purpose

register structures [66].

Coloring is a problem formulation to register allocation. After colors are deter-

mined, the register assignment part is a simple one-to-one mapping of colors (or

tracks) to registers. Register assignment is not so simple in the presence of special-

purpose registers; however, a solution can be provided using register classes as

described in Section 3.2.4.

 2.4.3  Data-routing

To deal with the distributed nature of registers in DSPs and application-specific

signal processors, the register assignment process has been reformulated as a prob-

lem closely tied to the architecture structure. Indata-routing, the goal is to deter-

mine the best flow of data through the architecture such that execution time of the

microcode is minimized. While data-routing techniques are generally more time

consuming than other register assignment approaches, they usually provide solu-

tions for architectures with very heavily constrained register resources and distrib-

uted register connections. Some of the previously mentioned register allocation

techniques can fail for these architectures.
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Rimey and Hilfinger [90] introduced an approach known aslazy data-routing

for generating compact code for architectures with unusual pipeline topologies.

The idea is to schedule instructions as compact as possible and to decide on a data-

route only after an operation is scheduled. A spill path to memory is always

guarded to guarantee that no deadlocks will occur. A similar approach was used by

Hartmann [40] in the CBC compiler, where a complicated deadlock avoidance rou-

tine was incorporated for architectures with very few registers.

The Chess compiler uses a branch and bound approach to data-routing

[56][57]. An example of the concept is shown in Figure 2.14. Three alternate data-

routes are shown for a value which leaves theAR register and is headed for a mul-

tiplication. The first is the direct route along the lower bus and directly into the

multiplier (MUL), the second uses a longer path by means of the upper bus and the

input register of the multiplier (MX), and the third shows the value temporarily

spilled to data memory (DATA RAM). The data-routing approach determines a solu-

tion from these three candidates which were found through branch and bound

search techniques. The quality of each solution is determined using probabilistic

estimators which monitor the impact of an assignment on the overall schedule of

the control-data flow graph of the source code. These estimators are based on

scheduling algorithms from high-level synthesis [85].

2.5 Scheduling and compaction

Scheduling is the process of determining an order of execution of instructions.

Although it can be treated separately, the interdependence with instruction selec-

ALU
MUL

ACC
SHIFT

Data Bus

Data
RAM

AR

MX

Figure 2.14Data-routing in the Chess compiler.



38 Chapter 2

tion and register allocation makes it a particularly difficult problem for embedded

processors. Furthermore, machines which support instruction-level parallelism

require fine-grained scheduling. This type of scheduling is calledcompaction.

An example shown in Figure 2.15 for the Texas Instruments TMS320C25 has

motivated scheduling techniques in the SPAM project [7]. Recalling the instruc-

tion-set patterns shown in Figure 2.10, this example shows a data-flow tree which

has been scheduled three different ways. TheNormal Form Schedule [2] can gen-

erate optimal code for architectures with homogeneous register sets, but the exam-

ple in Figure 2.15 a) shows that suboptimal results can occur for the TI C25 even

for a very simple example. Problems stem from the very few and distributed regis-

ters of the architecture (see Figure 2.9). Only a clever schedule can avoid the need

to spill and reload values from extra memory locations as shown in Figure 2.15 b)

and Figure 2.16 a). The optimal solution (Figure 2.16 b) requires consideration of

the architecture’s register and memory structure.

*

m0

-

m6

+

m2 m3

*

m1 m4

lt m1 ; t = m1
mpy m0 ; p = m0 * t
pac; a = p
sacl m7 ; m7 = a
lac m3 ; a = m3
add m2 ; a = m2 + a
sacl m5 ; m5 = a
lt m4 ; t = m4
mpy m5 ; p = m5 * t
lac m7 ; a = m7
spac ; a = a - p
sacl m6 ; m6 = a

> Spill p->m7
< Reload m7->a

12 instructionsa) Source Tree

b) Normal Form Schedule

m6 = (m0*m1) -
((m2+m3) * m4)

Left First

Figure 2.15Motivating data-flow example for the SPAM project with the TMS320C25 [7]
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add m2 ; a = m2 + a
sacl m5 ; m5 = a
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mpy m0 ; p = m0 * t
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lt m4 ; t = m4
mpy m5 ; p = m5 * t
spac ; a = a - p
sacl m6 ; m6 = a
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a) Normal Form Schedule b) Optimal Schedule
Right First

Figure 2.16SPAM scheduling example for the TMS320C25
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The SPAM group have proposed a solution which optimally solves tree-based

data-flow schedules for architectures such as the TI C25 architecture, which satisfy

certain criteria. These criteria include the presence of only single and infinite stor-

age resources connected in a certain way. Extensions would be necessary for the

register structures of architectures which differ substantially from the storage crite-

ria displayed by the TI C25. Furthermore, the approach neither handles control-

flow in the source code, nor instruction-level parallelism of the processor.

Mutation scheduling [81] is an approach whereby different implementations of

instructions can be regenerated by means of a mutation set. After the generation of

three-address code, critical paths are calculated. Attempts are made to improve the

speed by identifying the instructions which lie on critical paths andmutating them

to other implementations which allow a rescheduling of the instructions. In this

manner, the overall schedule is improved. The advantage of this approach is that it

works directly on critical paths and improves timing on a level of the code which is

very close to the machine structure.

An Integer Linear Program (ILP) is a formal, algebraic method of expressing a

problem. Given a set of criteria which guarantee a correct solution, an ILP solver is

able to find the best solution according to an objective function. Wilson at the Uni-

versity of Guelph [110] is investigating the use of ILPs to solve compilation prob-

lems for embedded processors. They propose a compilation model which

integrates pattern-matching, scheduling, register assignment and spilling to mem-

ory. The ILP solver dynamically makes trade-offs between these four alternatives

based on an objective function and a set of constraints. The objective function is

usually a time goal which is iteratively shortened until further improvement is min-

imal. The set of constraints includes architecture characteristics like the number of

accumulators, other registers, and functional units.

Scheduling and also software pipelining (discussed in Section 2.6.2) for real-

time signal processing have been approached with ILP formulations (Depuydt et.

al. [21]). Although conceived primarily for hardware, the concepts are also appli-

cable to software. ILPs have also been used to approach code compaction for the

instruction level parallelism in DSPs (Leupers et. al. [59]).

Microcode compaction.Compaction is a form of scheduling referring specifically

to the improvement of parallelization in an instruction word. An example of the
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principle is depicted in Figure 2.17. A micro-operation (MOP) is a low-level oper-

ation which can be executed on the processor. These fill into full micro-instructions

(MI) which can eventually be executed on the machine. The idea is to place as

many micro-operations as possible into each micro-instruction. In the example,

ALU operations can be scheduled in parallel with address calculation operations as

long as data dependencies are kept intact. In addition, because there are no data

dependencies between the load and stores, the load may take place before the

stores, assuming the variables do not overlay in positions in memory. Note that this

manipulation does increase the lifetime of registerR1; however, if this scheduling

is done on the level of micro-instructions, register assignment has already been

done and the compaction will be inhibited in cases where the register data-depen-

dence is violated. For example, this compaction would not be possible if register

R4 were used for the load instruction.

Lioy and Mezzalama [71] have approached the compaction problem by defin-

ing pseudo micro-instructions and sequences of micro-operations with source and

destination properties. These sequences can then be packed into and upward past

pseudo micro-instructions to form real micro-instructions. This packing takes into

account the resource conflicts of the machine, such as register dependencies and

sub R1 R2 R3 load _x R1
rshi R3 2 R4 store R3 _a
addi R1 3 R3 store R4 _b

Figure 2.17Microcode compaction.

op src1 src2 dest mem_op mem_src mem_dest
sub R1 R2 R3

store R3 _a
rshi R3 2 R4

store R4 _b
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addi R1 3 R3
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the use of functional units.

For embedded processors, the compaction problem is more intricate because of

the possible encoding restrictions of the architecture as explained in Section 1.3.2.

Parallelism in a machine architecture does not always imply that the instruction-

word supports that parallelism. Again, this stresses the point of phase coupling

with the other tasks of compilation like instruction-set selection and register allo-

cation. For microcode compaction, a highly encoded instruction-word also means

that instruction bit-fields cannot be simply regarded as an orthogonal resource.

2.6 Optimizations for embedded processors

The subject of compiler optimization for embedded processors remains predomi-

nantly an open problem. While a large amount of optimization theory exists for

general computing architectures [1][9][10][28], the topic is not well understood for

embedded real-time architectures. This is primarily because the standard mapping

techniques for embedded architectures are just beginning to appear [75]; and sec-

ondly, because of the amplitude of constraints that embedded processors impose on

standard optimization techniques.

For real-time embedded processors, therule of thumb is the 90/10 rule. The

code spends 90% of the time in 10% of the code. This simply emphasizes that

time-critical areas of microcode can be localized to certain areas. Thesehot spots

when optimized will give the best overall gain in performance. A unique opportu-

nity for embedded processors is the simulation and verification cycle which is done

before downloading embedded software (see Figure 1.5). In this case, global opti-

mizations can benefit from profiling statistics. Aspects of profiling are discussed in

Section 5.3 and Section 7.5.

Nevertheless, frequently executed parts of code can in general contain any type

of code; and therefore, the variety of needed techniques for optimization are

boundless. This section attempts to cover only a subset of techniques which have

either been shown to be effective for some type of embedded architecture or, based

on the characteristics of today’s embedded architectures, show promise as being

important for the success of future embedded processor compilers. Naturally, we

exclude the optimization techniques which are inherent in the basic compiler tasks

for embedded architectures, as they were covered in the previous sections.
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We define two broad categorizations for optimizations: local and global. The

dividing line between the categories is loosely defined, and we use them merely for

the purpose of organizing the discussion.

 2.6.1  Local optimizations

Standard Optimizations.A large number and variety of standard optimizations

exist and can have various effects on compiler efficiency [1][9]. Some examples

are: constant propagation, constant folding, common subexpression elimination,

andstrength reduction. While many of these are alleged to be architecture-inde-

pendent, a closer look at embedded processor architectures shows that most of

them are architecture-dependent. Following are two simple examples that illustrate

the difficulties.

Figure 2.18 shows a very simple example of two statements which contain

common subexpressions,b >> 2 . If we consider a case where these statements

are far apart in execution sequence, eliminating the common subexpression creates

a local storage with a long lifetime. In the most likely case that the local storage is

assigned to a register, this inhibits the use of the register for other purposes. In

many embedded processors where registers are a scarce resource, the variable may

need to be spilled to memory depending on how much local storage is between the

two expressions. Another possibility in this example is to keep the variableb in a

register and to recompute the value ofb >> 2 , which could possibly be a better

choice ifb is used further in the program.

The important point is that common subexpression elimination increases the

register pressure, which may or may not improve the final code size or perfor-

mance. An effective approach must take all the local storage requirements into

x = (b >> 2) + a;

y = (b >> 2) + c;

b

>>

2

register

+

a

x

+

c

y

..

register
lifetime

Figure 2.18Common subexpression elimination increases variable lifetime



An Overview of Compiler Techniques for Embedded Processors 43

account.

A second optimization example is constant propagation as shown in Figure

2.19. Figure 2.19 a) shows a sample C source with many statements containing a

common constant expression: the variablex . A natural optimization is to propa-

gate the constant2 into the succeeding expressions to result in the C source shown

in Figure 2.19 (b). However, we shall show that, depending on the architecture,

even for this simple case this optimization leads to worse results.

Consider an architecture which supports three parallel operations: a data opera-

tion on a DCU (data calculation unit), a memory operation (load / store), and an

address operation on an ACU (address calculation unit). In addition, it is common

for an instruction-word to contain one constant field, as constants normally require

at least 16 bits to be coded as an integer. Figure 2.19 c) shows a direct compilation

of the source code a) into this type of architecture. Notice that this example results

in an opportunity for a compact, pipelined execution of an ACU operation, load

from memory, and DCU operation. For the same architecture, Figure 2.19 d)

shows a direct compilation of the source code b). Notice that since the constant

field is shared for all constant operations, the dependency on this resource causes

Figure 2.19Constant propagation can occupy a vital resource: the instruction-word

int x, a, b, c, d;
int *p;

x = 2;
p +=3;
a = *p >> x;
p += 5;
b = *p >> x;
p += 7;
c = *p >> x;

int a, b, c;
int *p;

p +=3;
a = *p >> 2;
p += 5;
b = *p >> 2;
p += 7;
c = *p >> 2;

op src1 src2 dest mem_op m_src m_dest acu_op a_regconst
move const R1 nop nop 2
nop nop acu_inc AR 3
nop load *AR R2 acu_inc AR 5

rshift R2 R1 R3 load *AR R2 acu_inc AR 7
rshift R2 R1 R4 load *AR R2
rshift R2 R1 R5

op src1 src2 dest mem_op m_src m_dest acu_op a_regconst
nop nop acu_inc AR 3
nop load *AR R2 acu_inc AR 5

rshift R2 const R3 load *AR R2 nop 2
rshift R2 const R4 nop nop 2
nop nop acu_inc AR 7
nop load *AR R2 nop

rshift R2 const R5 2

Data Operation Memory Operation
Address

Operation

Constant Field
(scarce resource)Constant

Propagation

a) Original C source

b) C source after
constant propagation

c) Microcode generated from a)

d) Microcode generated from b)
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breaks and stalls in the execution pipeline. Although the microcode of Figure 2.19

c) uses one more register (R1) to hold the constant, it is a much better solution than

the microcode of Figure 2.19 d).

Optimizations on constants can have adverse effects on architectures with a

scarce constant field resource. This fact has prompted the design of some architec-

tures which provide long (e.g. 16 bits) and short (e.g. 8, 4 bits), as well as custom

constant field formats in the instruction-word in an attempt to reduce the depen-

dency on a long constant field, as well as free other bits for instruction coding.

Despite the fact that a multitude of standard optimizations prevail [1][30][9],

their effects on microcode for real-time architectures can sometimes be counter-

intuitive. The important aspect is that new strategies for the application of these

standard optimizations which depend on the family of architectures being targeted

are needed. An effective compiler would apply a set of optimizations based on

characteristics of the architecture. Furthermore, a compiler should provide control

to the programmer on where and when optimizations are applied.

Peephole Optimization.An effective methodology to improve code is peephole

optimization [1][28], which can be applied either on the level of intermediate code

or the final microcode for the target. Figure 2.20 shows a simple example of peep-

hole optimization application on a sequence of code. Some characteristics of these

optimizations are that some rules provide opportunities for other rules; for exam-

ple, in Figure 2.20 Rule 1. for Rule 2. and Rule 2. for Rule 3. Other properties such

as the recursive application of rules can drastically improve code sequences.

In setting up a set of peephole rules, the compiler developer must understand

very well the behavior of the front-end that created the code to be optimized. In

LOAD M, R1
LOAD M, R2
ADD R1, R2, R1
STORE R1, M
ADDI R1, 0, R3
STORE R3, M

FIND
MOVE R<a>, R<b>
STORE R<b>, M

REPLACE
STORE R<a>, M

FIND
ADDI R<a>, 0, R<b>

REPLACE
MOVE R<a>, R<b>

FIND
STORE R<a>, M
STORE R<a>, M

REPLACE
STORE R<a>, M

LOAD M, R1
LOAD M, R2
ADD R1, R2, R1
STORE R1, M
MOVE R1, R3
STORE R3, M

LOAD M, R1
LOAD M, R2
ADD R1, R2, R1
STORE R1, M
STORE R1, M

LOAD M, R1
LOAD M, R2
ADD R1, R2, R1
STORE R1, M

Rule 1. Rule 2. Rule 3.

Figure 2.20Peephole optimization example

Successive Rule Applications
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this manner, he/she can keep the number of rules to a minimum. Moreover, the

developer should guard against rules which could produce incorrect code. For

example, in Figure 2.20, Rule 2 is an unsafe rule, since it is possible that the value

in R<b> be used in the code at a spot following the match of the rule.

The success of peephole optimization lies in the fact that the very simple mech-

anism can be applied to a large number of general optimizations, both data-flow

and control-flow. As well, it is possible to do peephole matching onlogical

sequences of code rather than just physical sequences of code (Davidson and

Fraser [20]). Logical sequences are a set of instructions that are not physically next

to one another, but are connected through data or control-flow dependency. Since

peephole optimizations are local, a well-structured matching mechanism can allow

the application of hundreds to thousands of optimizations within reasonable run-

time. A non-exhaustive list of categories of peephole optimization is shown in Fig-

ure 2.21.

The advantages of peephole optimization is the easy understanding and imple-

mentation. It can sometimes even improve compiler speed, since there is less code

to assemble. The drawbacks of peephole and local optimizations is that they are

machine-dependent and incomplete. Depending on the architecture, these optimi-

zations are not enough to guarantee good code.

FIND
Divide a, 2 -> b

REPLACE
RShift a, 1 -> b

FIND
Divide a, 4 -> b

REPLACE
RShift a, 2 -> b

FIND
Addi a, 1 -> a

REPLACE
INC a

Strength Reduction

FIND
Addi a, 0 -> b

REPLACE
Move a -> b

FIND
Multiply a, 1 -> b

REPLACE
Move a -> b

FIND
Store reg-> M
Load M -> reg

REPLACE
Store reg -> M

Null & Redundant Sequences

Figure 2.21Some categories of peephole optimization rules

FIND
Store 0 -> A

REPLACE
Clear A

FIND
Sub sp, 1 -> sp
Store sp-> M

REPLACE
Store --(sp) -> M

Machine Specific Idioms
FIND

Branch L1
...
L1: Branch L2

REPLACE
Branch L2
...
L1: Branch L2

FIND
Jump_true L1
Jump L2
...a
L1:
...b
L2:
...c

REPLACE
Jump_false L2
...b
L2:
...c

Control-Flow
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 2.6.2  Global optimizations

In this section, we present optimizations which involve a more global analysis

of source behavior. In general, transformations in this category manifest complex

characteristics. Three subjects are becoming significant topics for embedded soft-

ware compilation: loop optimizations, inter-procedural optimizations, and memory

optimizations.

Loop Optimizations. As loops represent the area of code which is the most exe-

cuted, a large number of optimization theory has been dedicated to this area

[9][10]. Nonetheless, the interior of loops can contain any type of code meaning

that the analysis is complex.

Streamlining the retrieval of data from and the storage of data to memory ele-

ments can produce substantial gains. Transformations from higher level language

constructs like array and structure references to efficient machine-specific address

generation are an important technology. This subject is treated in Chapter 5 for

DSP architectures.

Loop restructuring is the term for transformations which change the structure

of loops without affecting the computation of a loop.Loop unrolling [9] reforms

loops by replicating the loop bodies for an unrolling factor,u, and iterating over the

new stepu instead of the original step 1. Unrolling can reduce the looping over-

head and increase instruction-level parallelism. Moreover, for loops with few itera-

tions, it can completely eliminate the loop structure.

Loop pipelining (or software pipelining) is a related restructuring procedure

which improves the instruction-level parallelism of code within loops. This is best

explained through an example which is shown in Figure 2.22. The upper left cor-

ner shows a C source code example of a simple loop which computes the subtrac-

tion of the elements of one array by the constant 3 for storage in another array. The

arrays are accessed with the use of pointers. The addresses of the pointers are

updated at the bottom of the loop. Figure 2.22 a) depicts the loop body (excluding

the pointer updates and code for the loop index) in a graphical data-flow form. In

each iteration a value from the global arraya[] , whose address is held in the

pointerap , is loaded into the registerreg1 , and subsequently the constant 3 is

subtracted fromreg1  to produce a value intoreg2 . This result is then stored to

memory using the address in pointerbp . For a load-store architecture (RISC), this
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would mean that the body would be cut into at least 3 instruction cycles (dashed

lines): load-from-memory, addition, store-to-memory. For simplicity, we define

each operation as taking 1 instruction cycle.

A partial pipeline is shown in Figure 2.22 b) where the load for the value

pointed to byap  is executed once before the loop and in parallel with the subtrac-

tion operation. Also shown is an explicit representation in C code where the tem-

int i, a[100], b[100];
int *ap, *bp;

ap = &a[0]; bp = &b[0];
for(i=0; i<100; i++)
{

*bp = *ap - 3;

bp++; ap++;
}

sub

load
ap

store
bp

sub
load

ap

store
bp

reg1

reg2

reg1

reg1

reg2

reg2

load
ap

reg1

a) Loop non-pipelined

c) Loop with pipelined load and store

int i, a[100], b[100];
int *ap, *bp;
register int reg1;
register int reg2;

ap = &a[0]; bp = &b[0];
reg1=*ap;
ap++;
reg2 = reg1 - 3; reg1=*ap;
ap++;
for(i=0; i<99; i++)
{

*bp=reg2; reg2 = reg1 - 3; reg1=*ap;

bp++; ap++;
}
*bp=reg2;

Figure 2.22Loop pipeling permitting arithmetic, stores, and loads in parallel.

int i, a[100], b[100];
int *ap, *bp;
register int reg1;

ap = &a[0]; bp = &b[0];

reg1 = *ap;
ap++;
for(i=0; i<100; i++)
{

*bp = reg1 - 3; reg1 = *ap;

bp++; ap++;
}
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porary values are to be placed in thereg1  variable which is declared to be of the

register  storage class. The pipelining has reduced the number of instruction

cycles which are executed in the loop body. Although the microcode length has

increased a little, the transformation has greatly improved the performance by

introducing parallelism.

Unrolling the loop one time and further pipelining allows the store operation of

*bp  to be done in parallel with the subtract operation as shown in Figure 2.22 c).

Before the loop body, the load operation of*ap  is done twice and the subtraction

is done once. After the loop, the store operation of*bp  is done once. This transfor-

mation allows three operations to execute in parallel in the loop body. Again, the

code size increases while greatly improving the performance.

This example has shown one method of pipelining a loop for improving perfor-

mance in load-store architectures. The effect of the transformation depends heavily

on the type of processor architecture and the application being compiled. For

example, for DSPs (Digital Signal Processors), a large number of commercial

architectures benefit from software which has been loop pipelined [5][78][91].

On the compiler side, the loop pipelining optimization requires a deep analysis

and is highly architecture dependent. The analysis touches on the source level con-

trol-flow information (the loop structure) and data-flow information (the data

dependencies and operations). It involves all the key compiler phases: instruction

selection, register allocation, and scheduling. Furthermore, compaction of the

instructions to meet the architecture constraints must be considered on the micro-

code level. It is not surprising that a retargetable method for loop pipelining has not

yet appeared!

Previous work on the software pipelining subject includes the scheduling

approach by Lam [55] for VLIW machines. The procedure includes first unrolling

the loop body, then rescheduling the remaining instructions. The concept is

described in [9] using the S-DLX architecture, a super-scalar version of the well-

known DLX architecture introduced by Hennessey and Patterson [43]. Loop fold-

ing [37] and pipelining concepts [21][47] are approaches used for pipelining DSP

hardware architectures and are equally applicable to software.

Another simpler type of loop optimization isloop-invariant code motion

[9][28]. This analysis determines whether a computation within a loop can be exe-
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cuted outside of a loop.Code hoisting [9][36] is the general term for moving code

to an earlier execution point.Loop unswitching [9] moves conditional tests outside

of a loop by repeating the loop structure for each condition. Other loop reordering

methods [9] such as:loop interchange, loop skewing, loop reversal, loop distribu-

tion, etc. can be used to improve the characteristics of a loop so that other optimi-

zations like loop-invariant code motion can have a better effect. Each of these are

behavior-preserving transformations which allow other manipulations to be done.

To re-emphasize, many of these optimizations are strongly dependent on the

types of architecture and strategies for applying these optimizations is the chal-

lenge of compiler construction for embedded processors. In the meantime, it is

possible to transform source-level code by hand with a good knowledge of the

architecture. Lowering the abstraction level of source code is discussed in Section

4.2.

Interprocedural Optimization. Modern high-level programming practices

encourage modularity which suggests that small, well-bounded subprograms are

better structured than large main programs. However, the mechanisms needed to

support subprograms can often lead to inefficiencies. Two possibilities exist for the

optimization of subprograms [28]:

1. In-line expansion of subprogram calls.

2. Optimization of called subroutines.

In-line procedures are subprograms whose code have been expanded to replace

the call. Although similar to pre-processor macro expansions, they differ some-

what because of variable scoping rules. Languages such as C++ allow a program-

mer to suggest which subprograms are to be expanded in-line. Although ANSI C is

somewhat more restrictive, it is possible to provide small extensions (#pragma )

which serve the same purpose.

In-line expansion is predominantly a time vs. space trade-off, where the over-

head of call-to and return-from subroutines are no longer needed. However, if

called several times, the program code size can expand significantly. On the other

hand, it is common to have subroutines which are called only one time which

offers both a time and space improvement. Contrary to intuition, it is also possible

to expand restricted versions of recursive subroutines. For example, a subroutine

which computes the factorial of a constant could be expanded since the call depth
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is known at compile time.

If left to a compiler to choose which subroutines should be expanded in-line, a

linking phase such as that used in C makes the procedure awkward. However, if all

the functions are explicitly available, a compiler can make use of a subprogram

call graph such as the example shown in Figure 2.23 to make the decision on which

subroutines to expand. This graph simply denotes which subprograms call which at

the execution of the program. Leaf (innermost) subroutines are the most likely can-

didates for expansion. Other useful measures for choosing candidates are calls

from within loops, or better yet, execution frequencies generated from a profiler.

When compiling the code within an in-line subroutine, the scoping information

of variables is particularly useful. This marks the difference between in-line sub-

routines and preprocessor macros. While a compiler would need to determine the

lifetime of variables into and out of macros, a well-written subroutine guarantees

entry by parameters and exit by return values (excluding global variables).

Optimization of called subroutines is a very practical method in block-struc-

tured languages like Ada and Pascal. However, in languages like C, separable com-

pilation and linking pose some problems. This is explored further in Section 4.1.3.

When optimization is possible, in for example a restricted version of C, code sav-

ing techniques can be used. Most of the overhead in subroutine calls is in theacti-

vation record [1] and the local variables on the run-time stack. The activation

record is a portion of code which is used to keep values such as the machine status

(registers which are active), passed parameters, and return values. For subroutines

with few parameters, it is possible to pass parameters in registers rather than on a

run-time stack, should the architecture have enough registers. The same is true for

return values; however, optimizing the assignment of registers can be a difficulty

(discussed in Section 4.1.3). If a subroutine is determined to be non-recursive (by

building a call-graph), a compiler can also make the trade-off of putting local vari-

Figure 2.23An example call graph.
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ables in static memory rather than on the stack.

Memory Optimizations. Program memory of an embedded processor can be a

particularly expensive part of the architecture, especially for single chip solutions.

Efforts such as the narrowing of instruction words through encoding implies con-

tinual difficulties on compiler methods. An illustration of this is the limitation of

absolute program memory addresses. Because of the short instruction words, an

instruction-set which uses exclusively absolute memory addresses is limited in

program size. Embedded processor designers have overcome this limitation in a

number of ways. One approach is to provide near and far program calls and

branches. A program memory can be organized in a set ofpages as shown in the

example of Figure 2.24.

While a paged program memory is a good solution for the hardware, it poses a

number of challenges to the compiler developer. For code with good performance,

subroutines need to be allocated in memory in a fashion which reduces changing

pages. Furthermore, long subroutines must be broken into smaller pieces so that

each block fits into a page. Solutions to the problem are straight forward; however,

an optimal solution is non-trivial. The example in Figure 2.24 shows a solution

whereby subroutine page addresses are stored and managed by the compiler in a

branch table. Each time one of these subroutines is called, the return page address

is kept on the run-time stack.

The equivalent to program pages can also occur in data-memory, when a large

amount of data memory is needed. For example, datawindows can be used to orga-

nize the memory. Similar types of considerations must be taken in the compiler to

Figure 2.24Paged program memory and an example subroutine management.
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minimize the time needed for the global storage and retrieval of data.

Another hardware solution to improve memory retrieval is the presence of

caches. A cache is a temporary buffer which acts as an intermediary between pro-

gram or data memory, improving the locality of the data. These are common to

general-purpose computing architectures and appear on more sophisticated embed-

ded processors. Approaches to improve the cache hit/miss ratio are beginning to

appear for both program caches [101] and data caches [82]. Others have

approached program memory reduction through code compression techniques

[62]. The idea is to keep a programdictionary of frequently used sequences of

code.

Allocation to multiple memories is a topic which arises for some DSP architec-

tures, such as the Motorola 56000 series and the SGS-Thomson D950 (see Section

5.1). For these architectures, the parallelism is improved by allowing independent

retrieval and storage operations on each memory. The implication for compilers is

the need for memory allocation strategies which make best use of these resources

based on the data-flow in the source program. This problem has been addressed in

approaches which improve upon previously generated or hand-written assembly

code by balancing the data in two memories [98]. However, techniques which are

incorporated into the analysis phase of compilers are also needed. Still, practical

considerations for memory allocation also need to be considered. These are dis-

cussed in Section 4.1.

2.7 Chapter summary

This chapter has presented a wide overview of modern compiler technology for

embedded processors. It begins with a look at traditional software compilation and

its relevance to the constraints of embedded processor architectures. A principal

set of issues were identified as shortcomings with this approach including weak-

nesses in retargetability, ability to handle register constraints, capability over archi-

tecture specialization, and inherent compiler control for instruction-level

parallelism and optimization.

Next, the most popular compiler with freely available sources was discussed:

the GNU gcc compiler. As the compiler was designed for general purpose RISC

architectures, some weaknesses appear for embedded processors including a dis-
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persion of information among various functions and macro definitions. The weak-

ness of the compiler for DSP architectures was further supported by the DSPStone

and Berkeley Design Technology benchmarking activities of commercial compil-

ers. The performance of the commercial compilers based on gcc is described as

less than acceptable.

Next, the concept of compiler retargetability was discussed as a means of the

rapid set-up of a target compiler as well as an agency for architecture exploration.

The promising avenue of architecture specification models and languages was

examined. Related work on specification languages includes: Mimola, a processor

description language on the structural level, and nML, a behavioral description

language on the instruction-level. Architectural models include the ISG of the

Chess compiler, and the mixed structural-behavioral model of the CodeSyn com-

piler.

Following, the three fundamental tasks of the compilation process were inves-

tigated: instruction matching/selection; register allocation/assignment; and sched-

uling/compaction. Instruction matching/selection is predominantly done today by

pattern matching and constructive methods. Register allocation/assignment is rec-

ognized as a critical compiler task and can be guided by classification schemes.

Data-routing approaches are a further assignment method for architectures with

heavily constrained register resources and distributed register structures. Schedul-

ing and compaction approaches were then presented, illustrating the strong need

for an effective approach to exploit data movement and parallelism of a machine.

Finally a number of optimization techniques were described. The need for

application strategies of standard optimizations was illustrated through discrepant

events in examples for very simple embedded processors. Peephole optimizations,

loop optimizations, interprocedural optimizations and memory optimizations were

discussed, all with regard to the challenges for today’s embedded architectures.
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Chapter 3: Two Emerging Approaches: Model-
based and Rule-driven

This chapter describes the function of two practical compilers for embedded pro-

cessors developed and used by the author and colleagues in industrial contexts.

While the two operate on very different principles, they each have their strengths

with regard to the goals of retargetability and ability to generate efficient code.

Naturally, each approach also has a certain number of weaknesses. However, each

of the two tools has made particular contributions which have added to the under-

standing of the compilation problem for embedded processor targets. Furthermore,

each approach has shown to have its place as an effective approach to compilation

for embedded processors.

3.1 Overview of the concepts

Two recent approaches to compilation for embedded processors are shown in Fig-

ure 3.1. The first method, Figure 3.1a, uses a central processor model upon which

all the phases of compilation are based. The source code is translated into an inter-
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Figure 3.1Emerging compilation techniques

Information &



56 Chapter 3

mediate form, an explicit representation of the behavior of the source in a set of

CDFGs (Control-Data Flow Graphs). The successive phases of compilation exe-

cute transformations upon this form to arrive at the final microcode. These trans-

formations are done in a manner which satisfies the properties of the central

architecture model.

The second method, Figure 3.1b, resembles quite closely the traditional

approach to compilation as described in Section 2.1. The principal difference is the

presence of processor information and retargeting rules. The rules provided by a

developer allow the compiler phases to be reconfigured according to the architec-

ture style. An open-programming concept provides an environment for the devel-

oper to build a target compiler.

In both approaches, information of the processor architecture drives the succes-

sion of the compilation steps. This feature is essential for embedded processors,

where the architecture characteristics are unlike standard microprocessors. For

example, processors for real-time reactive systems often contain a limited number

of registers which are specialized for certain functions, as well as encoded instruc-

tion words, and special functions to communicate with the rest of the system. The

compiler task of mapping onto these functions requires special attention.

3.2 The model-based CodeSyn compiler

The CodeSyn compiler was built mainly in response to a survey of the needs of

designers of DSP systems for telecommunications. The details of the survey can be

found in [83]. The survey, which was conducted among a number of design groups

at Bell-Northern Research / Northern Telecom (Nortel), indicated several groups

using both commercial DSP processors as well as application-specific instruction-

set processors (ASIPs). Among other needs, the foremost was the requirement for

compilers for both the commercial and in-house processors.

With respect to traditional compilation, the strengths of the CodeSyn system

are in three main areas:

• A flexible instruction-set specification model which supports quick retargeting

to new processors.

• An efficient pattern matching and selection approach which supports complex

instruction recognition and utilization.
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• Allocation of special purpose registers taking into account overlapping roles.

 3.2.1  Overview of the approach

The overall flow of the process is depicted in Figure 3.2.

The compiler contains a set of modules including:

1. A source-level C parser. The C sources are converted into a hierarchy of

Control-Data Flow Graphs (CDFGs) in an internal format called BDS (BNR Data-

Structure).

2. A graph-rewrite module. This phase performs local translation of operations

in the CDFG to operations found in the target architecture.

3. An instruction-set pattern matcher and selector. Pattern matching is for-

mulated as the determination of all possible sets of instructions which can perform

the function of the subject CDFG. The selection algorithm then chooses the best

implementation from this set.

4. A scheduling module. This phase performs a coarse ordering of the patterns

found in the matching and selection phase.

5. A register allocation and assignment module. Register classes are used in

allocation, then local variables of the CDFG are assigned to specific physical regis-

ters of the architecture.

6. A back-end containing a compactor, assembler and linker. Particular con-

tributions have been made in the instruction-set matching/selection and the register
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Pattern Matching
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Machine Code
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Set
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Figure 3.2The CodeSyn compilation process
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allocation/assignment phases. These phases are detailed in Section 3.2.3 and Sec-

tion 3.2.4 respectively.

 3.2.2  Instruction-set specification

The CodeSyn instruction-set specification consists of a mixed behavioral and

structural-level model composed of three main parts:

1. A pattern set of microinstructions.

2. A structural connectivity graph.

3. A classification of the resources in the structural graph.

A pattern is a behavioral level representation of an instruction, comparable to

the description of an instruction in an assembly programmers manual. Micro-

instructions are described as small pieces of control-data flow graphs, and can be

categorized in three classes: pure data-flow (containing arithmetic, logical, rela-

tional operations, and address calculation); pure control-flow (containing hardware

loops, unconditional jumps and branches); and mixed data/control-flow: (contain-

ing conditional jumps and branches). Assembly and binary instruction formats are

associated with each pattern. Example patterns are shown in Figure 3.3.

An example of the structural graph and resource classification is shown in Fig-

ure 3.4. This structural graph is used by the compiler to determine the possible data

movement through the processor. A register classification is used to categorize the

registers in the architecture, which are typically categorized on two levels: a broad

classification of general function and a small classification of specific function.

Any number of overlapping registre classes are supported.
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The three parts of the instruction-set specification are inter-related. The struc-

tural graph is built through a user specification of the relationship between register

classes and functional units. Register class annotations are associated with the

input and output terminals of each pattern indicating data-flow between classes. An

example of this is shown in Figure 3.5. As well as allowing proper pattern match-

ing, the register class annotation guides the register assignment algorithms to bind

reads and writes to physical registers in the architecture. One last relationship is the

correspondence between operations in the pattern set with the functional unit

which performs the operation in the structural graph.

 3.2.3  Instruction-set matching and selection

An example source C code and corresponding CDFG are shown in Figure 3.6. The
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control-data flow graph (CDFG) is an explicit behavioral representation of the

source C program containing a separable data-flow graph and control-flow graph.

The left side of the CDFG (the data-flow graph) contains purely data-flow opera-

tions. Each of these data-flow operations are bound to edges in the control-flow

graph (the right side of the CDFG), indicating to which program flow the opera-

tions belong. At some points in the CDFG, data-flow operations pass information

C source
int a[99], b[99];
int c, f, k, z;

void calculate()
{

register int rx;

if(c <= 17)
{

z = k;
rx = rf + (b[k] << 2);
a[3] = rx / 16;

}
}
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to the control-flow graph (CaseFork ), indicating a control-flow decision point.

Notice that two graph rewrites have been done to the CDFG. Theif  condition

has been rewritten to a subtract followed by a compare to zero, which allows

matching to abranch on greater-than  instruction; and, thedivide by

16  has been rewritten to a right shift by four. These are rule-based graph rewrites

based on the specific capabilities of the architecture. Also,register rx  is rec-

ognized as a local, temporary value and replaced by pure data-flow in the CDFG.

Data-Flow Patterns.Pattern matching is the task of determining isomorphic rela-

tionships between instruction-level CDFGs and the source CDFG. Instead of try-

ing a match at every point in the CDFG with every pattern in the instruction-set,

the number of attempted matches are kept to a minimum by a novel and efficient

organization scheme, introduced in [65]. The pattern set is pre-sorted in aprune

tree. This is a tree organized such that if a pattern does not form a match, then it is

possible to prune the branch of the tree at this point for any further matches. It is

guaranteed that no matches are possible beyond the prune point. Figure 3.7 shows

the root portion of a data-flow prune tree for an example architecture. We have

found in practice that it is possible to have enough organization of the prune tree so

that the matching algorithm complexity approaches linearity with respect to the

number of nodes in the subject graph.

At each node of the subject data-flow graph, the root of the prune tree is

checked to see if it matches. If the root matches (it is a data-flow node), then the

children of the root of the prune tree are checked. For each pattern that matches,

the children are recursively checked for matches. For each pattern that does not

match, the prune tree is pruned at this point for all the branches below this point.

No further matches are possible below the prune point. At some points in the tree,

it is also possible to slightly extend the tree into a dag such that the same character-

istics of the pruning mechanism are retained. In Figure 3.7, the branches markedE

may be reconverged into the respective pattern directly below, turning the tree into

a dag. This incrementally improves the efficiency of the matching mechanism,

since it increases the number of places where the branches may be pruned.

The approach is an efficient method to determine all the possible pattern imple-

mentations at all the points in the subject graph to allow an exploration of possible

pattern selections. For example, Figure 3.8 a) shows a subject graph which has
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been matched to the patterns in Figure 3.7. Combinations of these patterns repre-

sent the possible implementations of the subject graph in acovering (i.e. instruc-

tion selection). Figure 3.8 b) and c) shown two possible coverings which can

implement the subject graph. At first glance, Figure 3.8 b) would produce the bet-

ter code as it is implemented in only two instructions; however, for the constant

propagation problem of the type explained in Section 2.6.1 and illustrated in Fig-

ure 2.19, the covering of Figure 3.8 c) may be better depending on the context.

The important feature of the approach is that it provides pattern matches in a

fashion that allows the matches to be propagated to other phases of the compiler to

find the best coverings. The first covering algorithm developed in CodeSyn is

dynamic programming as described in Section 2.3.1; however, the pattern matches

are available for future improved algorithms in the phases of register allocation

and scheduling.

Control-Flow Patterns. Figure 3.9 depicts an example control-flow pattern prune

tree. The prune tree contains both patterns which are purely control-flow and oth-

ers which have mixed control and data-flow. Although the prune tree is much shal-

lower than its data-flow counterpart, the matching principles remain the same.

Typically, the control-flow subject graph contains much fewer nodes and edges

than the data-flow graph; therefore, matching time is manageable.

Notice that the conditional branch patterns shown here only include those

which branch on true. It is possible to include the ones that branch on false,
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depending on the behavior of the C to CDFG front-end.

The matching algorithm for the control-flow patterns is analogous to the data-

flow matching algorithm. In this case, matching begins by traversing all the edges

of the control-flow graph, in contrast to the nodes in the data-flow graph. The

matching algorithm determines isomorphic relationships of the control-flow graph

with each control-flow pattern. If the pattern contains a mix of control-flow and

data-flow, the algorithm directly calls functions used in the data-flow matching

algorithm.

 3.2.4  Register allocation and assignment

Benefiting from the annotation of register classes on the input and output terminals

of patterns, the allocation of registers is done by calculating overlaps in the classes.

Following the data-flow between nodes, candidate register sets are calculated from

the intersection in each annotated register class.

Shown in Figure 3.10 is a matched and covered CDFG in preparation for regis-

ter allocation. Instructions have been identified which perform the implementation

of the operations in the data-flow graph. In addition, WriteRegister and ReadRegis-

ter operations have been explicitly placed between the operations, with the annota-

tion of register classes found on the input and output terminals of the patterns.

Following, candidate register sets are calculated from the intersection of register
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classes between WriteRegister operations and ReadRegister operations as shown

in Figure 3.11.

The task of register assignment is to determine specific physical registers as the

input and output operands of the instructions. Intersecting register classes contain-

ing no candidate registers (Figure 3.11 c) can only be resolved by moves to avail-

able registers and spills to memory.

The approach to register assignment is greedy in nature and geared toward giv-

ing priority to registers dedicated to specific tasks. The general procedure is as fol-

lows and the details are described in [66]:

1. Assignment begins at intersection points which have register classes contain-

ing only one member register.

2. Assignment for the intersection points in Step 1. are ordered based upon life-

time and number of reads. Assignment begins with the shortest lifetime and

fewest number of reads.
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3. Steps 1 and 2 can lead to register assignment conflicts which are handled by

greedily inserting register moves.

4. The remaining candidate intersections are assigned by a left-edge algorithm

(see Section 2.4.2) enhanced for overlapping register classes. The procedure

begins with the most constrained class (fewest members) and continues to the

least constrained class (most members).

At points where there are no available registers, spills to memory are inserted. This

is nontrivial since the DataStore class is needed and it may be a dedicated register

(R1) in some architectures (see Figure 3.4). This problem has been resolved by

placing priority assignment orders on the registers in each class. Registers which

are members of the DataStore class are the last on the priority list to be assigned.

Figure 3.12 shows the same example as Figure 3.10 focusing on the ReadReg-

ister and WriteRegister operations. The operations in the CDFG has been coarsely

scheduled using list methods. As well, register assignment has been completed.

Notice that a conflict move has been inserted to resolve the two ReadRegisters

which have been assigned to special purpose registers (R1 and R6), and are written

by a common WriteRegister. Apart from compaction, at this point the CDFG is

completely mapped to the instruction-set of the architecture. Assembly code for-

mat instructions which have been associated with the patterns are emitted along

with the assigned registers. This results in sequential assembly code. Compaction
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DataCalcDataCalc

BaseAddress
BR

DataTo
MemAddr

MemoryLoad

MemoryStore

DataCalc

MemoryStore

MemoryLoad

DataCalc

DataConst

DataCalc

R5

R1

R1

R6

R7

R1

R2

R2

DataMove<=

R1

R6

R1

R7

R2

R2

Figure 3.12Scheduled CDFG with registers assigned
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is done in a separate phase as is explained in Section 3.3.5.

 3.2.5  Assessment of the approach

A model-based approach to retargetable compilation has a number of advantages.

The instruction-set model provides a central core whereby all the phases of compi-

lation can rely on architecture information. This naturally augments the retargeta-

bility of each algorithm. In particular, the CodeSyn compiler has shown that it is

possible to use enhanced algorithms which can perform efficient pattern matching

and selection in addition to register allocation and assignment for special-purpose

registers. An intermediate representation which is rich with control and data-flow

information is useful for optimizing the mapping onto the instruction-set.

On the other hand, a full control and data-flow representation can also be quite

a heavy set of information. It contributes to the needs of maintenance and could

also be a barrier to compilation speed, should the source programs become lengthy.

An efficient mapping to a target architecture is possible with a model-based

approach; however, it necessitates that the architecture lie within the boundaries of

that model. Any architecture peculiarities of a new target which are not anticipated

must be handled by improving the retargeting algorithms.

3.3 The rule-driven FlexCC compiler

In the case of providing a compiler service, the desire may be to provide compilers

for the widest possible variety of processors. In the absence of an automatically

retargetable compiler system which is applicable to any architecture, a flexible

compiler development environment has benefits. One such approach is the rule-

driven approach, currently in use at SGS-Thomson Microelectronics for in-house

embedded processors. The phases of this compiler have been restructured in such a

manner as to make it easier to reprogram the compiler for new targets. Building

upon traditional compiler techniques, this programming environment for compiler

development can improve the time of the retargeting process, as well as provide a

manner to reuse compiler strategies and experience.

 3.3.1  Overview of the approach

This approach to compilation was first presented by Gurd in [38]. It is based on

step-wise progressive refinement whereby each phase of compilation is formed



Two Emerging Approaches: Model-based and Rule-driven 67

upon an open programming concept. This programming environment allows a

compiler development team to build rapid prototypes using a well-defined train of

tools. The compilation process is roughly based upon the traditional view of a

compiler as explained in Section 2.1 and shown in Figure 3.13.

A compilation is divided into four main phases, which are shown by example

in Figure 3.14 and summarized as follows:

Source Code

Machine Code

Assembly & Linking

Code Selection

Optimizations

Compaction

Virtual Machine

Map to Target

Storage Resources
Selection Rules

Figure 3.13Overall flow of rule-driven compilation

Optimization Rules
Custom Optimizations

Target Mapping Rules
Field & Assembly

Compaction Resources
Formats

Figure 3.14Refinement steps in a rule-driven compilation.
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1. Virtual code selection. The developer defines a virtual machine which resem-

bles in functionality the instruction-set of the real machine, but is sequential in

operation. Those processors with parallel execution streams would be simplified to

one stream. The virtual machine description contains two main parts:

1. a description of resources including register sets and addressing modes.

2. a set of code selection rules.

2. Optimizations. Instructions for the virtual machine may be passed to a series

of optimization routines, such as a peephole optimizer, whose principles are

explained in Section 2.6.1. Rules for the peephole optimizer are provided in a sim-

ple language which contain keywords and wildcards.

At this point in the compilation, it is also straightforward to add custom optimi-

zation sequences, since the input is very well defined. This definition was done in

the earlier design of the virtual machine. For example, a data-routing optimizer

may be inserted to determine the best movement of data through the machine,

given the structural connectivity of the hardware.

3. Mapping to the target machine. The optimized sequence of virtual instruc-

tions are transformed into operations for the real machine. Each transformation

again follows a rule provided by the developer. Each rule indicates a source piece

of code and a target implementation in the form of micro-operations representing

bit fields of the instruction-set.

4. Code compaction. Micro-operations are compacted into real instructions. The

compaction procedure executes based on constraints of both the bit-field formats

and read/write/occupy resources which are indicated by the developer. The com-

pactor attempts to push the maximum number of micro-operations to the earliest

possible positions.

The straightforward tasks of assembly and linking immediately follow compac-

tion.

The open programming concept.The rule-driven compilation approach is built

upon the concept of an open programming environment. All the rules are defined

in well-structured programming languages. At each point in the compilation, prim-

itives are provided which allow the identification of cases which may appear in the

source. These cases can then be manipulated by a set of control-flow functions in
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the programming language for the emission of code for the next step.

A high level of open programming is provided at all the steps of the rule-driven

compiler, allowing a very flexible development system. The user is able to retarget

the system upon the application of suitable mapping functions. The quality of the

compiler is directly proportional to the amount of development time spent on opti-

mization strategies. Moreover, previous compiler development experience may be

leveraged for processors with similar features.

In the following sections, we detail three of the key steps in the rule-driven

approach: virtual code selection, target machine mapping, and microcode compac-

tion.

 3.3.2  Virtual code selection

To re-emphasize, code is initially selected for a virtual machine based on two crite-

ria: a description of resources including registers and addressing modes, and a set

of code selection rules. The definition of the available register sets classifies these

resources into functional categories, for example, it indicates which C data-types

each register may hold. The definition of the addressing modes indicates the man-

ner in which variables are to be retrieved from memory. The addressing modes

may be defined using a combination of data-type sizes and constant offsets to

describe modes such as immediate, direct, register indirect, etc. Thus, both RISC

and CISC machines can be supported.

For the code selection rules, the developer defines the mapping between the C

code onto the virtual machine instruction set. The compiler developer has at his/her

*p++ = b + 1;

ASGN

ADD*p++

b 1

ASGN_RULE
....
?matches($left, ind_postinc)
{

STR_PINC $right, $left
}

binary_ADD_RULE
....
?matches($right, reg_set(R))
{

AD_SP$left, $right $dest
}
?matches($right,const)
{

ADDI $left, $right $dest
}
...

ADDI R1, 1, R1
STR_PINC R1, AX1

Rule Base

Syntax Tree

Sequential Assembly

Figure 3.15Sequential code selection
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disposal a programming language which contains a set of high-level primitives

corresponding to information which is generated as syntax trees of the source pro-

gram. For each operation which may occur in a syntax tree, the developer provides

a rule for the emission of code for the virtual machine. This rule will be triggered

upon matches to the source code and executed at compile time. An example is

shown in Figure 3.15. Syntax trees are constructed from an analysis of the source

program, and each tree triggers a rule depending upon the operations of the nodes.

The developer can then provide case functions on what code to emit depending on

the properties of the tree. The programming language contains a large number of

features such as the ability to call rules from other rules and recursively call rules.

This approach allows the developer to provide simple rules for the majority of

cases and more complex mappings for special features of the architecture. For

example, the developer may restrict the use of certain registers whose function are

constrained by the architecture. This is important to support the special-purpose

registers found in embedded processors.

Register assignment within register sets is performed after code selection using

a coloring approach. The approach uses standard techniques as described in Sec-

tion 2.4.2, in a manner which satisfies the constraints imposed by the code selec-

tion rules.

 3.3.3  Target machine mapping

This step performs a refinement of the sequential operations for the virtual

machine into instructions for the real machine. In many cases, this can be a simple

one-to-one mapping; however, a C-like language offers the capability to manipu-

late this mapping based on values generated by the previous steps. The most com-

mon values used for manipulation are the parameters of the assembly code. For

example, for the assembly instruction,INC R1 , manipulations may be made

depending on the parameterR1. An example which illustrates some of the features

is shown in Figure 3.16. The example shows a rule driven from an arithmetic right

shift operation. Several features such as function calls, control statements, and

local variables provide a rich palette whereby the programmer can manipulate the

generation of micro-operations. The example of Figure 3.16 b) shows a mapping

which fires the contents of theif(in_reg !: out_reg)  statement in the

mapping rule, while the example Figure 3.16 c) does not activate the statement.
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The example also shows the possibility of a compile-time expansion of constant

values to multiple instructions (while  loop).

 3.3.4  Microcode compaction

The compaction phase of the rule-driven compiler is based upon well-known

methods as described in Section 2.5. Some features that make it a practical

approach is the ability to retarget the process to varying styles of architectures. The

compactor attempts to pack micro-operations as tightly as possible within the

given constraints. Those constraints come in two forms: the bit-fields in the micro-

instruction-word which are assigned by micro-operations; and a set of resources

defined by the programmer. These resources usually include architectural storage

units such as the registers and memories, as well as shared transitional units such

as busses. In the definition of micro-operations, the programmer is obliged to indi-

cate which resources are written-to, read-from, and occupied. Thus, the compac-

tion algorithm is able to obey all the data-flow dependencies, as well as the

resource restrictions of the machine.

An example is shown in Figure 3.17, where three types of micro-operations

(mops) are declared, each defined to read, write, and occupy certain resources. As

the compactor proceeds through the list of micro-operations 1 to 5, it pushes each

.vop arsi(in_reg, immediate, out_reg)
{
  sch_reg_error(out_reg);

  .numvar immed = 0;
  immed = .number(immediate);

  WARNING(“Arithmetic right shift is inter-
preted as logical right shift.”);

  .if(in_reg !: out_reg)
    {
      lda_mop(in_reg);
      sta_mop(out_reg);
    }

  .while(immed)
    {
      asr_mop(out_reg);
      immed = immed - 1;
    }
}

.func sch_reg_error(reg_name)
{
  .if(.substr(reg_name,0,2)::”SCH”)
    .error(“Improper use of SCH registers”);
}

;;; WARNING ;;  Arithmetic right shift
is interpreted as logical right shift.

LDA RAM#60
STA RAM#61
ASR RAM#61
ASR RAM#61

; b = a >> 2;
; arsi RAM60, 0x2, RAM61

; b = b >> 3;
; arsi RAM61, 0x3, RAM61

;;; WARNING ;;  Arithmetic right shift
is interpreted as logical right shift.

ASR RAM#61
ASR RAM#61
ASR RAM#61

a) Example mapping rule and function

b) Mapping source to different
destination

c) Mapping source to same
destination

Figure 3.16Target mapping example

Function
Calls

Control
Statements
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mop into its respective field. If there is no resource conflict, a mop can be placed in

parallel with (e.g. Figure 3.17: mop 1 and 2) or even past a previously placed mop.

Resources include registers and memories which keep data-dependencies in order,

but also include architecture constraints like the occupation of functional units or

busses (e.g. Figure 3.17: mop 2 and 3). Furthermore, non-existent resources may

be defined to specify unusual architecture constraints.

While giving a flexible view to the programmer on how the compaction proce-

dure is executed, the onus is on the developer to validate that all the resources have

been correctly declared and used in each micro-operation. However, granted that

the approach is flexible as a compaction procedure especially for VLIW machines,

it does not provide a straight-forward solution to highly encoded micro-instruction

words since the bit-fields represent the first constraint of the compaction algorithm.

To address highly encoded instruction-sets (see Section 1.3.2), a compaction pro-

cedure which takes into account themeshing of instruction formats must be used.

 3.3.5  Assessment of the approach

Although the rules for this type of compiler must be written by an experienced

developer, the retargeting time is relatively short. Experience has shown that the

retargeting time typically falls between one to six person-months. More on the

Figure 3.17Programmable micro-operation compaction
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effort needed for retargeting is discussed in Chapter 6.

The main strength of rule-driven compilation is the inherent flexibility of the

approach. The compiler developer has the means for describing specific rules and

strategies for efficiently mapping higher level constructs onto the processor, based

on his knowledge of the architecture idiosyncracies. Standard rules are put in place

based on previous compiler experience, and primitives are available to manipulate

the compiler for new architectures with unforeseen specialization.

When compared to a traditional compiler approach, the rule-driven approach

allows for faster development time through the ability to retarget at each phase of

compilation. The quality of the results depend on the compiler development effort.

In the few cases when the code quality is inadequate, a custom optimization mod-

ule is incorporated with little effort.

When compared to model-based retargetable compilation approaches, the rule-

driven approach requires retargeting development time; whereas, in principle, a

model-based compiler requires only a small change to the model to arrive at a new

compiler. However, in our experience, the retargeting time is compensated by the

applicability of the rule-driven approach to a very broad set of processor architec-

tures, from low-end microcontrollers to VLIW DSPs (Very Large Instruction Word

Digital Signal Processors). In addition, architecture specific idiosyncracies may be

handled by case-by-case development strategies.

3.4 Chapter summary

This chapter has presented two emerging examples of compiler systems aimed at

application specific instruction-set processors (ASIPs). What sets them apart from

traditional approaches is an instruction-set specification containing information

about the processor. In the case of the model-based approach, the specification is a

set of architectural properties which include the functional units, connectivity of

storage resources, and a set of instructions. In the case of the rule-driven approach,

the specification is the combination of processor information including instruction

formats plus a set of transformation rules used at each phase of the compilation.

Both approaches have a set of strengths which make each a compelling

approach for today’s embedded architectures. A model-based approach can poten-

tially provide a highly optimized mapping based entirely on properties of the archi-



74 Chapter 3

tecture. The model would also allow the designer to explore variations on the

architecture by making small changes to the specification. The rule-driven

approach can potentially provide a very wide retargeting range for a service-based

compiler group. The flexibility of rules allows the developer to explore new com-

pilation strategies for each new target processor.
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Chapter 4: Practical Issues in Compiler Design
for Embedded Processors

This chapter discusses pragmatic issues in setting up a compiler environment for

embedded systems. While the techniques presented in Chapter 2 form the basis of

a compiler system such as the examples in Chapter 3, many other factors must be

brought into consideration for a usable development environment. These factors

may include:

• Language support: What ingredients of a programming language should be pro-

vided to the user?

• Embedded architecture constraints: What facilities should be provided to the

user to control the specialized architecture?

• Coding style: What abstraction of coding style should be supported? What are

the trade-offs?

• Validation: What level of confidence will be provided with a retargeted compil-

er?

• Source-level debugging: How does debugging on the host fit in with debugging

on the target?

These as well as other practical considerations are often more important to the

design engineer than simply the base technology of the design tools. Only a com-

plete development system allows for efficient embedded software design.

4.1 Language support: choosing the right subset and extensions

In the embedded industry today, the language of choice is C [33]. While there exist

languages more suitable for certain domains (e.g. Silage/DFL [44] in the DSP

domain), C remains the most widely used high-level language in embedded pro-

cessors mainly because of the wide availability of compilers and tools on worksta-

tions and PCs (linkers, librarians, debuggers, profilers, etc.). Furthermore, many
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standards organizations such as ISO (International Standards Organization) and the

ITU (International Telecommuncations Union) provide executable models in C.

Some examples of these are: GSM (European cellular standard), Dolby (audio pro-

cessing), MPEG (video and audio processing), H.261/ H.263 (videotelephony),

and JPEG (still picture processing).

While C is an expressive language, many limitations [105] are imposed for the

use in embedded applications:

• limited word-length support. The fixed point support in C is limited to 8 bit

(char ), 16 bit (short int ), and 32 bits (long int ). While this is sufficient

in applications such as speech processing, it is insufficient in many other em-

bedded applications, for example in audio processing where typically 24 bit

types are needed and image processing where much larger data-types are need-

ed.

• a limited set of storage classes. In many DSP systems, in addition to multiple

register files, there are at least two data memories as well as a program memory.

For certain applications, there can be even more [64]. ANSI C provides only the

auto , static , extern , andregister  storage classes [33], which are in-

sufficient in providing the user control over where the data is to be placed.

• a fixed set of operators. Embedded systems may have hardware operators which

do not correspond directly to the operations found in C.

• limited scheduling and parallelism. The semantics of C impose a fixed schedule

on the order of operations, which can be limiting for wide instruction machines

(e.g. VLIW). Although it is possible to take a liberal interpretation of the sched-

ule maintaining correct functionality, this is often difficult in the presence of

pointers and the aliasing problem [1].

• separate compilation and linking. C allows modules to be compiled separately;

the modules are then linked together in a separate phase. In the presence of lim-

ited register resources, this imposes an obstacle to efficient inter-procedural op-

timization, such as the passing of arguments in registers.

While there are limitations in C, the practical solution is to work within the con-

straints to provide the right compiler support for the architecture at hand. In many

cases, the above-mentioned constraints are not limiting, while in others the diffi-

culties can be managed. The way to work within the limitations is to make good
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choices about the levels of support. For example, a subset of C could be chosen to

allow a certain optimization. Once the user steps outside that subset, this optimiza-

tion is no longer guaranteed. In other cases, a minimal extension to the C language

gives the features desired. If handled carefully, this does not destroy the compila-

bility of the code with other C compilers.

 4.1.1  Data-type support

Whereas general computing processors have evolved to support the data-types

found in a high-level language, the architectures of embedded processors usually

support only the data-types needed for a set of applications. These are typically

few in number. Consequently, in the design of a retargeted compiler, all the tasks

are made simpler if the number of supported data-types are kept to a minimum,

since they must finally be mapped onto the data-types supported by the architec-

ture. While it is possible to support larger data-types by providing libraries of

larger data-types built upon smaller data-types, this elevates all the tasks in devel-

oping, maintaining, and validating the firmware development environment. Fur-

thermore, the embedded processor programmer is most concerned with

performance. Working at a level where the data-types match the register and mem-

ory widths of the architecture is the most natural level at which the designer can

guarantee real-time performance. While working at a higher level (e.g. larger data-

types) may simplify the programming, it is a secondary concern of the designer

after the guarantee of meeting real-time performance constraints.

While there is a limited number of fixed data-type support in C, it is not often

the case where the architecture supports an extensive number of fixed data-types. It

is therefore possible tore-map certain C data-types to the types needed for the

application. For example, in audio applications, a word-length of 24 bits is com-

monly used for sampled data. Whereas the 24-bit data-type does not exist in C, the

32-bit data-type may be used instead. This is assuming that the 32-bit type is not

needed as well. The data-type may be reinterpreted by the retargetable compiler.

This approach leaves no visible consequence on the side of the target compila-

tion path. However, within a methodology where the host compilation path is kept

in sync with the target compilation path, the equivalence is broken. Section 4.3

describes the importance of keeping the two paths equivalent. With this approach

of reinterpreting certain data-types, the operations of the host compilation would
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not match the operations of the target compilation. In our experience, this can be

solved in one of two ways:

1. the use of built-in functions (Section 4.2.1) and the provision of a bit-true li-

brary (Section 4.3.2). Built-in functions provide a common interface for com-

pilation in both paths, allowing the correspondence between host compilation

and target compilation to remain intact.

The function definition of the built-in functions may be provided in a bit-true

library for compilation on the host.

While this approach may appear cumbersome for specifying operations, it is

manageable, especially if the number of data-types which differ from those in

ANSI-C are few.

2. extending the host compilation to the use of C++ data-types and operator over-

loading. The operators of C++ can be overloaded to provide the bit-true opera-

tions depending on the data-type. While, the retargetable compiler still treats

the source as C, the mapping of the data-types is interpreted according to con-

text as shown in Figure 4.2. The equivalent compilation on the host is interpret-

ed using C++. Ideally, these C++ data-types could also be used by the

retargetable compiler to offer a extendable set of data-types for any application.

This approach is proposed in the Chess compiler developed by IMEC / Target

Compiler Technologies [34].

 4.1.2  Memory support

An increasingly common method to improve memory support in C, is to extend the

storage classes in ANSI C to those needed for the architecture. For example, if two

RAM data memories exist on the architecture, a storage class specifier

_MEMORY1_ could indicate the first memory and_MEMORY2_ could indicate the

second memory. This allows the designer to choose the location of his data vari-

ables. This is a pragmatic solution in contrast to providing a memory allocation

algorithm in the compiler. In our experience, if more than one data memory is

available on the architecture, this was done explicitly by the designer to organize

a = b * c; a = MULT_24(b, c);

Figure 4.1Using built-in functions for unsupported data-types.

C operator Built-in function
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the architecture for a specific reason. For example, this may be to separate different

types, memory-mapped I/O, or ROM from RAM. In each of these cases, the

designer has a preconceived idea of where the data is to be placed. However, if the

separation of memories is purely for reasons of speed and there are no large differ-

ences between two memories, the compiler would benefit from a memory alloca-

tion algorithm (see Section 2.6.2).

In the case of separate memories of RAM and ROM, it is also possible to use

the type qualifierconst  to identify ROM values, instead of specifying the storage

class. The compiler simply needs to intercept these variables for placement in

ROM.

Extending the methodology further, the compiler can treat memory-mapped

input/output (I/O) in the same manner. Memory-mapped I/0 are locations in mem-

ory which are actually register interfaces connected to the core’s hardware periph-

erals. Their addresses in memory form a convenient identification system for the

processor. Storage class specifiers can also be used to identify memory-mapped I/

O. However, in this case there are two further important characteristics of a mem-

ory-mapped I/O variable. First, as a specific address is required, the user must be

able to force the variable into that location in memory, either through a#pragma

or with an ANSI C extension. Secondly, the compiler must be made aware that it

cannot remove accesses to the variable through optimization. The type qualifier

volatile  accurately defines this characteristic.

For memory-mapped I/O, sometimes further consideration about the behavior

of the target compiler must be taken into account. The functionality of the architec-

Figure 4.2Supporting C++ data-types with a retargetable C compiler.
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ture may place constraints on the compiler. For example, depending on the proto-

col used for memory-mapped I/O accesses, scheduling and compaction of

operations with the memory-mapped I/O access may be forbidden or in other cases

obligatory.

 4.1.3  Procedure calls

For small embedded applications, where the implementation of a stack is not justi-

fied, the extended use of pre-processor macros can give the user the appearance of

procedure and function calls. Of course, the designer then pays the penalty of the

in-line code expansion for each macro use. Alternatively, it is possible to provide

one level of function call with minimal hardware support. This requires simply a

jump-to-subroutine/return instruction pair and one register to guard the return pro-

gram address. In our experience, we have found that for minimal architectures, this

is a useful hardware addition despite the limitations of parameter passing only in

registers and simply one level of calling.

When one level of procedure call is insufficient, certain hardware consider-

ations need to be taken into account. A program stack provides the necessary func-

tionality for nested subroutine calls. For parameter passing and local automatic

variables, a data stack needs to be provided. The program stack and data stack may

be merged into one if the program and the minimum addressing unit of the data are

of the same bit-width. If they are not of the same width, using the same stack could

be a considerable waste in memory.

If there is more than one data memory with different bit-widths, placement of

the data stack is a difficult issue. If placed in the largest memory, it supports all the

data-types, but at a waste when using the smaller data types. If placed in a smaller

Figure 4.3Storage class specification and type qualification for multiple memories.
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int x[512];

const int coef[3] =
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0#pragma mem_io k At_address(0xe)
volatile int _MEMORY2_ k;
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memory, then the compiler must be able to store and retrieve the larger data-types

without losing precision. Providing more than one data stack is another solution;

however, very few of today’s compilers are able to handle more than one data

stack.

Usually, the depth of both the program stack and data stack is parametrizable.

Choosing the best value for the depth can pragmatically be done by either:

1. simulation on the workstation while tracing the number of calls and automatic

variables, or

2. a static analysis of the procedural call tree and number of local variables.

The first of these has the disadvantage that it may take a long time, given that the

entire application should be simulated. In addition, the result is guaranteed only for

the given test data.

The second of these has the advantage of being fast; however, to be accurate,

the code generated from the target compiler should be analyzed to determine the

number of automatic variables used locally. This value can vary greatly depending

on the number of and the constraints on the available registers. In either case, the

possibility of recursive procedure calls may cause the stack depth estimates to be

inaccurate. However, many compilers for embedded processors disallow recursive

procedures.

As mentioned at the beginning of this section, separable compilation imposes

restrictions on the results of the target compiler. As the compiler must account for

procedures being compiled in any sequence, less optimizations are possible. For

example, an interprocedural optimization such as the passing of parameters in reg-

isters are obliged to follow a convention (e.g. first argument in register 1, second

argument in register 2, etc.). This is to allow any future and prior calls to know the

location of parameters. Consequently, the architecture constraints on the use of

registers may mean that these parameters must move location before being used.

The example in Figure 4.4 illustrates this restriction.

Consider the procedurefilter  shown on the top left corner of Figure 4.4. It

contains a call to the proceduredecode , which is not yet compiled. This is per-

mitted in C since the prototype fordecode  appears prior to the call. If the com-

piler chooses to pass the parameters of the call,x  and y, by registers to the

proceduredecode , it must use a convention such asx  into R1 andy  into R2,
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since it has no previous knowledge of the interior of the functiondecode .

Now consider the proceduredecode , which is compiled afterfilter . The

parametersa andb are passed by convention,a into R1 andb into R2. However,

in the context of embedded processors, constraints on the use of registers can

appear through architecture specialization. This allows the designer to streamline

the instruction-set and hardware. The data-path shown on the right of Figure 4.4

shows an example of this type of restriction. The shift operation can be performed

on any register R1, R2, R3, or R4; however, the number of shifts must reside in

register R4. Therefore, this implies that in our example, the parameterb must be

moved from register R2 to register R4 prior to the shift operationk = a >>b. This

is an inefficiency inherent in the support of separable compilation and cannot be

avoided. In some cases, the penalty can be great, for example if the call were

located in the body of a critical loop.

This inefficiency can be side-tracked if the user is willing to use a lower coding

style, as will be described in Section 4.2.2. For example, the user could assign the

location of variables to registers himself, knowing how he intends to use them.

This implies much more thinking on the part of the programmer and much less

portable code.

Another implication of separable compilation is in memory assignment: the

automatic positioning of variables in memory based on their use. For example, the

offset assignment algorithms in [60] and [62] propose the positioning of variables

decode.obj

filter.obj

Figure 4.4The implications of separable compilation on interprocedural optimization

int decode(int a, int b)
{

int k;
k = a >> b;
return k;

}

>>

R1
R2

R3
R4

int decode(int a, int b);

void filter()
{

...
z = decode(x,y);
...

}

x -> R1
y -> R2

a -> R1
b -> R2

Data-Path

link
time

compile
filter

compile
decode

link
objects
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in memory based on their use in a data-flow context which allows a minimum of

addressing arithmetic. If these algorithms were to be used for global variables, this

precludes the support of separable compilation. This is because they assign mem-

ory positions based on the use of variables within procedures. For procedures

which are compiled after this memory assignment, the variables will not be in opti-

mal positions. The algorithms do apply to local static variables; however, in C,

local variables usually reside in registers or are put on the run-time stack to support

recursion.

In order to allow optimizations like the previous two examples, it would be

necessary to disallow the separable compilation of C. This would have a large

impact on the compilation times, requiring the equivalent of complete compilation

and linking of an entire application every time. In addition, it would disallow the

use of object-level libraries which is often a methodology used when providing

hand optimized assembly-level functions. However, this is the only way to allow

these type of optimization possibilities, which may be a useful methodology

should the amount of total embedded firmware remain low. Also it could be pro-

vided as an option for a final, fully-optimized compilation pass.

4.2 Moving beyond assembly programming

In this early phase of the acceptance of compiler technology for embedded proces-

sors, it is imperative that a compiler system provide simple mechanisms which

allow programmers to reach all the functionality of an architecture. If a designer

cannot meet his/her performance objectives through the capabilities of a compiler,

he/she must have the ability to reach the equivalent quality of hand-written assem-

bly code, while maintaining the ability to use a high-level of programming for

parts of the code which do meet the objectives. For pragmatic reasons, it is essen-

tial that the bridge to higher levels of automation always be crossed as smoothly as

possible.

 4.2.1  Built-in functions

A built-in function is a compiler-recognized function which is mapped directly

onto a set of instructions of the processor. These allow the execution of operations

which are not found in C, for example: interrupt instructions, hardware do-loops,

wait mechanisms, hardware operators, co-processor directives, the setting of
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addressing modes (modulo, bit-reverse, etc.). In addition, built-in functions are

useful for providing access to specialized hardware to which compilation is done

inefficiently. In providing built-in functions, the compiler developer must ensure

that any optimizations or manipulations of the control-flow and data-flow opera-

tions do not interfere with the behavior of the function.

 4.2.2  Coding styles on different levels

A retargetable compiler should allow coding on various levels of abstraction as

well as the mixing of these levels. This is to allow the designer to reach all the

functionality of his/her processor, at perhaps the expense of code portability, when

the compiler cannot provide it. Our experience has shown that while the develop-

ment effort on optimizations is important to achieve a more portable level of code

[69], the effort in ensuring that the compiler can handle lower coding levels is

essential.

For C, we define four levels of coding styles as follows:

1. High Level

Behavioral ANSI C: This level is characterized by the use of variable, array,

structure references and all the operations available in C.

2. Mid Level

This level allows the use of built-in functions. Any arrays or structures that are

declared in memory must be accessed by pointers. Variables and pointers may

be allocated into extended storage classes and register sets.

3. Low Level

This level allows the user-assignment of variables and pointers to specific reg-

isters.

4. Assembly Level

This level allows the programmer to write in-line assembly code directly in C

code.

Level 1 is the goal for compiler technology. This is the level at which all optimiza-

tion and retargeting capabilities should aim as it provides the most abstract and

portable source descriptions. It is also the level at which a programmer can freely

write algorithms without being concerned with the underlying hardware.

Level 2 is reached mostly by capabilities within a compiler. Built-in functions
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are exactly like any other C functions, but are mapped to specific instructions by

the compiler. Extensions to the storage classes of C allow allocation into memories

(Section 4.1.2) and register sets. The allocation to register sets allows the compiler

to perform better register assignment.

Level 3 is arrived upon by small syntax extensions to ANSI C. TheseC-like

extensions declare variables to reside in specific registers. It is important to note

that C code which remains within these first three levels allows compilation on the

host given the provision of the proper masking of extensions and a bit-true library.

Level 4, the assembly level allows assembly code to be mixed with C code. A

function-like interface allows the programmer to directly write assembly instruc-

tions for the processor within the framework of the C code.

Examples for these 4 levels are shown in Figure 4.5. The high level example

shows the use of behavioral C constructs like the for-loop and references to arrays.

The mid level example shows the exclusion of array references replaced by point-

ers. It also shows the declaration of certain arrays into specific memories. As well,

the built-in function,loop  is used for a hardware do-loop, andMULT is used for a

multiply operation. The low level example shows pointers assigned to specific reg-

isters. In addition, a manual loop pipelining operation has been done by specifying

new variables allocated to register sets. Finally, the assembly level example shows

two in-line assembly instructions specifying specific operations and registers. The

Figure 4.5Examples of C code at different abstraction levels.

int a[10], b[10],i;

for(i=0;i<9;i++)
{

b[i] = a[i] * b[i+1] >> 2;
}

Level 1: High Level

int b[10]; int *bp, *bp1;
int _MEMORY2_ a[10];
int _MEMORY2_ *ap;

ap = &a[0];
bp = &b[0]; bp1 = &bp[1];

loop(9)
{

*bp = MULT(*ap,*bp1) >> 2;
bp++; ap++; bp1++;

}

Level 2: Mid Level

int b[10];
register int *bp At_reg(AX[0]);
register int *bp1 At_reg(AX[1]);

int _MEMORY2_ a[10];
register int _MEMORY2_

*ap At_reg(AY[0]);

register int x;
register int _RIGHT_ y;

ap = &a[0];
bp = &b[0]; bp1 = &bp[1];

x = *ap; y = *bp1;
loop(9)
{

*bp = MULT(x,y) >> 2;
x = *ap; y = *bp1;
bp++; ap++; bp1++;

}

Level 3: Low level
int b[10];
register int *bp At_reg(AX[0]);
register int *bp1 At_reg(AX[1]);

int _MEMORY2_ a[10];
register int _MEMORY2_

*ap At_reg(AY[0]);

register int x At_reg(L[0]);
register int y At_reg(R[0]);
register int z At_reg(L[1]);

ap = &a[0];
bp = &b[0]; bp1 = &bp[1];

x = *ap; y = *bp1;
loop(9)
{

INLINE(L[0],R[0]);
 mult L0, R0, L1
 left_shift L1, 2, L1
END_INLINE(L[1]);
*bp = z;
x = *ap; y = *bp1;
bp++; ap++; bp1++;

}

Level 4: Assembly level
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function interface shows which registers are used to pass values into and out of the

in-line assembly block.

The support of lower abstraction levels of coding is a non-negligible compiler

development effort, especially when styles are mixed. Lower level constraints

must be propagated to all the mapping phases and algorithms used by the compiler.

Algorithms are always easier to implement if they have more degrees of freedom;

thus, new constraints can sometimes pose difficulties. For example, to mix the high

level (Level 1.) with the mid level (Level 2.) requires the handling of both pointers

and arrays. This means for the inclusion of any array optimization techniques, an

alias-analysis [1] function is required in the compiler.

4.3 Validation strategies

The very definition of the termretargetable compiler suggests a countless number

of targets and even targets that have not yet been designed. This places a huge

importance on the validation methodology. The confidence that a compiler pro-

duces correct code is a significant factor that the embedded system designer cannot

neglect.

Compiler validation is done today predominantly based upon simulation.

While formal approaches are making in-grounds in the RTL (Register Transfer

Level) and logic synthesis areas of hardware synthesis, they lag far behind for any

behavioral level specification including C.

For simulation-based validation schemes, selection of a suitable test suite

which covers possible faults is an issue which arises. Commercially available C

test suites are available, such as Plum-Hall [119], Perenial, and MetaWare [118].

These suites are made up of examples which test all the facilities of C in a thor-

ough manner. Unfortunately the test suites are not directly applicable to embedded

processors because an embedded processor compiler typically uses a subset of C.

For example, only some data-types (see Section 4.1.1) and some operations may be

supported. Moreover, any extensions to C are not tested (see Section 4.2).

The key to a good test suite is organization. A test suite should be organized so

that the language support can be parameterized. Therefore, the suite may beper-

sonalized quickly and efficiently for any new target of the compiler. The available

coding levels of the compiler (Section 4.2.2) should be thoroughly tested; however,
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target specific C extensions such as built-in functions (Section 4.2.1) have to be

treated on a case-by-case method.

 4.3.1  Instruction-set simulation

While the subject of instruction-set simulation [99][114] is much wider than the

mention given here, this section simply provides a definition as it relates to the

compiler validation issue.

An instruction-set simulator is an execution model which runs the behavior of

the embedded processor, on either the level of operations (instruction-accurate),

machine cycles (cycle-accurate), or the netlist (ns-accurate). Any of these levels is

sufficient for compiler validation.

Typically, the simulator takes microcode as entry and has interpretive functions

which allow the user to run, step, and break the program and to look at register

contents and memory. Typical methods used to build a simulator model are: hand-

writing in C; or generating from an instruction-set description. From the perspec-

tive of validation, both methods are equivalent. However, the latter is naturally

favored to reduce the effort in engineering development. The latter may also offer

more confidence if the tool has been tested for a large number of processor models.

Having an execution model of the processor is essential to the methodology of

validation by simulation. It serves as one side of the balancing scale for the com-

parison of functionality, as will be described in the next section.

 4.3.2  Workstation compilation and bit-true libraries

There are numerous advantages to including a parallel compilation path on the host

platform in addition to the target compilation path. The development and debug-

ging environment of the host is generally available prior to the availability of the

target development tools. This means that application development can begin

before anything else is in place. Even after the target compilation environment is in

place, a host equivalent execution will run much faster than any instruction-set

simulation of the target processor.

With this methodology in mind, it is important to provide host bit-true func-

tions for:

• any built-in functions that are provided by the target compiler (Section 4.2.1),
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• any operators with data-types differing from ANSI C (Section 4.1.1), and

• any other C operations that are implemented differently on the target hardware

than on the host processor.

The construction of the bit-true library typically involves careful handling of bit-

widths with shifts and bit-masking.

Once a bit-true library is in place, a validation methodology as shown in Figure

4.6 is possible. The function library contains functions which allow writing values

to a pre-defined test buffer. After compilation on both paths, this buffer is com-

pared for any differences, which indicate a discrepancy in the retargetable com-

piler, instruction-set simulator, or the bit-true library. In most cases, the host

compiler is assumed to produce correct code, as it usually must pass it’s own vali-

dation phase.

 4.3.3  Compiled instruction-set simulation

An alternative approach to compiler validation iscompiled instructions-set simula-

tion, which, loosely defined, is the interpretation and reconstruction of microcode

to be run on another target. One way to achieve this is tode-compile the target

microcode to a form of C code so that it can be compiled onto the workstation. The

result can then be compared to the original C execution on the workstation in the

same manner as shown in Figure 4.6.

This methodology has also been used starting from the assembly level, which

Workstation

function
library

target host

test buffer

target
test
buffer

host
test
buffer

Retargetable
Compiler

Figure 4.6Compiler validation strategy
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Host
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can provide a faster instruction-set simulation compared to interpretive simulation

[114]. However in this case, the source of the compilation is assembly, whereas in

validation, it is also important to validate the final assembly step to microcode.

The program which performs the cross-compilation (de-compilation and com-

pilation) can be either handwritten or generated from an instruction-set description.

As far as confidence in the validation, using a compiled instruction-set simulation

has the same number of steps outlined in the methodology shown in Figure 4.6, as

the interpreting instruction-set simulator is either hand-written or generated from

an instruction-set description.

4.4 Debugging: how much is really needed?

A compilation path to the host workstation or PC allows standard source-level

debugging tools to be used. An example public domain debugger isgdb, the GNU

source-level debugger distributed by the Free Software Foundation [96], which has

many user interfaces (e.g. xxgdb, Emacs, ddd). As the host compilation path is nat-

urally the faster path and the tools are immediately available, functional validation

and debugging of the source algorithms should ideally be done at this level.

After functional validation has been done on the host, debugging of the embed-

ded processor may also be needed to debug the validation methodology as shown

in Figure 4.6, as problems can arise in the target compiler, instruction-set simula-

tor, or bit-true library. Furthermore, debugging may be necessary for the final sys-

tem after the chip has been fabricated. Figure 4.7 illustrates a methodology

whereby the host source-level debugging interface is reused in different modes.

The interaction labelledmode 1 is the familiar host debugging mode; the interac-

tion labelledmode 2 is the mode using the instruction-set simulator; and the inter-

action labelledmode 3 is the mode which interfaces with a cycle-true model of the

processor or the chip itself through an in-circuit emulator (ICE) interface.

Mode 2 of debugging is principally used for verifying the retargetable com-

piler. It is basically a debugging means for the validation strategy shown in Figure

4.6. Of course, bugs can occur in the instruction-set simulator or the bit-true library

as well. In mode 2 of the debugging scenario, depending on the type of instruction-

set simulator, the boundary of whether the debugging functions belong to the

instruction-set simulator or the source-level debugger can become blurred. For
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example, general purpose DSPs and MCUs are usually distributed with an instruc-

tion-set simulator rich in debugging functions. In this case, the source-level debug-

ger needs simply to provide a user interface to those functions. One method is to

detach a user interface (e.g. xxgdb, ddd, Emacs GUD) from a debugger (e.g. gdb,

dbx) and attach the user interface directly to the instruction-set simulator. This can

often provide a simple route to basic debugging capabilities.

Where the instruction-set simulator does not provide a rich set of functions, it

is advantageous to interface the debugger to the instruction-set simulator. Some

debugging functions can be quite complex; therefore, depending on the required

functionality, this work should not be underestimated. For example, in our experi-

ence with the gdb debugger, the memory model has been conceived for VonNeu-

mann type architectures (single memory). The extension to Harvard and multiple

memory architectures requires significant re-engineering of the debugger. More

efforts on retargetable debuggers are needed [88].

Mode 3 of Figure 4.7 is principally used to debug the hardware. The source-

level debugger in mode 3 allows verification of the functionality of the VHDL

cycle-true model of the processor. Unless this hardware model can be stopped arti-

ficially while retaining its context, interrupt functionality is necessary on the pro-

cessor. Furthermore, this simulation can be extremely slow since there is an

interaction with a hardware simulator (e.g. VHDL) on a detailed level (either RTL

or netlist).

Instruction-Set
Simulator

Source-Level
Debugger

Interrupt
Interface

VHDL
CycleTrue CHIP

mode 1

mode 2

In-Circuit Emulator

model

Host
Compiler

host

Retargetable
Compiler
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executable

Source C

(ICE)
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Figure 4.7Embedded processor source-level debugging.
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The second possibility of interaction in mode 3 is a real-time interface with the

chip itself. In this case interrupt capability of the processor is mandatory. This

emulation is typically one to two orders of magnitude faster than mode 2 and is

even faster than operation in mode 1, since the chip is operating in real-time. How-

ever, in-circuit emulation is costly in terms of I/O pins to the exterior. It is typically

a route used for verifying a standalone part or a test chip, especially since it is diffi-

cult to use an ICE for processor cores embedded on a single-chip system.

An interesting issue related to debugging is the organization of the program

memory on a product containing an embedded processor. Since on-chip real-estate

is expensive, programs generally reside in ROM since it takes much less area than

RAM. This makes sense, since it is not expected that the program need to be

changed in an embedded system. However, in test chips it is often the case that

things go wrong; and therefore, designers may want to change the contents of the

embedded program. One approach is a design to balance this trade-off. It is possi-

ble for a designer to enhance the program ROM with a small space of downloada-

ble program RAM. Dedicated instructions may be included in the processor as a

provision to execute thispatch code when debugging the test chip. This method is

beginning to show more frequently as a popular way to debug final systems. On the

other hand, the decision on the sizes of ROM and RAM remains a difficult guess-

ing game.

Although the mechanics of source-level debugging are well understood, practi-

cal implementation can still be a difficulty. The techniques of compilation for

embedded processors produce optimized code which is specialized for the archi-

tecture. The symbolic debugging of optimized code is an enormous and complex

problem. Even the simplest of compilation tasks can produce a tangling mess for

the debugging symbols. For example, a register assignment algorithm which

assigns the same variable to ten different registers at different points of its lifetime

means that the object code must carry ten times the symbolic information than pre-

viously. Furthermore, if an aggressive scheduling algorithm is used, operations can

move to different points in the code, including into and out of loops. As well,

unreachable code optimizations can make code disappear completely.

In addition, older debug formats (e.g. COFF [102][96]) have no way of dealing

with optimized code, which has given rise to company-specific variants (e.g.

XCOFF, ECOFF, EXCOFF). Some efforts are underway for debugging standards
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which address some of these concerns (e.g. ELF, DWARF [22][96]). However, for

today’s embedded processors, the debugging problem for optimized code remains

largely unsolved, and userstake what they can get. That is to say, source-level

debugging can work well for some types of optimized code, and not so well for

others.

4.5 Chapter summary

This chapter has presented a set of practical design considerations in the establish-

ment of a firmware development environment centered around a compiler for an

embedded processor target. First, a number of language issues were considered

using C as the source language. Specifically, the areas of data-type support, mem-

ory support and procedure calls were discussed. For an application specific archi-

tecture, a subset of C data-types are typically chosen and can be interpreted with

specialized bit-widths for the target. The support of multiple memories and sec-

tions is generally necessary for an embedded processor since the data interface to

the peripherals is quite important. Finally, the support of procedure calls requires

the consideration of issues such as stack implementation and allocation, as well as

interprocedural optimizations.

Next, coding abstraction levels were discussed. It was stressed that perfor-

mance for real-time systems is critical; and therefore, the support of various levels

of coding abstraction is essential for the embedded processor user to reach all the

functionality of the chip. Extensions to standard C include built-in functions, stor-

age class allocation, user-register set allocation, and user-register assignment to

specific registers.

Following, validation strategies based on simulation were discussed. The

essential components of this form of validation include a thorough set of bench-

marks which exercise all the parts of the architecture, models for instruction-set

simulation, a host compilation path, and a bit-true library. This led to the succeed-

ing topic of source-level debugging. A methodology was outlined which uses an

interface connected in three debugging modes. The first is the standard debugging

route with the host compiler, the second allows debugging of the target microcode

with an instruction-set simulator, and the third allows debugging on a cycle-true

model or the chip itself using an ICE. The first mode is typically used to function-
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ally debug the source algorithm, the second mode is used primarily to debug the

retargeted compiler, bit-true library, and instruction-set simulator, and the third

mode is typically used to debug the design of the processor hardware.
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Chapter 5: Compiler Transformations for DSP
Address Calculation

This chapter presents a retargetable approach and prototype tool for the analysis of

array references and traversals for efficient address calculation for DSPs. Based on

a retargetable architecture model, the approach serves as an enhancement to exist-

ing compiler systems or as an aid to architecture exploration. This model is a spec-

ification of the addressing resources and operations available on the processor

which is used to drive the compiler transformations. In addition to providing the

transformation for existing architectures, the model allows the designer to tune the

operation of the Address Calculation Unit (ACU) toward the application con-

straints. Variations on the address registers, index registers and hardwired incre-

ment and decrement values may be explored for an algorithm by making simple

changes to the specification.

5.1 Address calculation units for DSP

The key aspect of a Digital Signal Processor (DSP) is the ability for number

crunching. As data intensive algorithms push for higher speeds and throughput,

access to data memories becomes the limiting factor. In response to this, designers

have conceived the Address Calculation Unit (ACU) (sometimes termed Address

Generation Unit (AGU), Address Arithmetic Unit (AAU), Data Address Generator

(DAG) or Memory Management Unit (MMU)), an arithmetic unit which works in

parallel to the main Data Calculation Unit (DCU). The ACU works solely on

address generation to ensure efficient retrieval and storage of data that is calculated

on the DCU. In most cases, the ACU works in a post-modify (increment/decre-

ment) fashion to ensure high speed. Pre-modify addressing is rare because this

would require at least two operations to occur in the same instruction cycle,

namely the address calculation, then the memory access. On a programmer’s level,

the difference is in the type of supported addressing modes. A post-modify address

calculation unit offers the register direct mode with post-operations. Unsupported
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pre-modify addressing would mean the disappearance of indirect or indexed

addressing modes.

Post-increment/decrement address units are present on countless general-pur-

pose DSPs and cores. Some examples include the SGS-Thomson D950 core [91],

the Motorola 56xxx series [78], the Texas Instruments TMS320 series [100], the

Analog Devices ADSP-21xx series [5] and the Lode DSP Engine [19]. They are

also common in Application Specific Instruction-Set Processors (ASIPs), fine-

tuned to application areas, such as MPEG audio [12], Dolby decoding [115], and

DSP for telecommunications [65].

Let us consider some example post-indexing ACUs for DSPs. Figure 5.1

shows the address calculation unit of the Motorola 56000 series [78]. It contains

two identical halves, each with an arithmetic unit which performs post-indexing on

separate sets of registers. The two resembling halves of the ACU exist mainly for

the two memoriesX andY addressed by the address bussesXAB andYAB. There-

fore, in principle, both halves of the addressing unit may be active in parallel with

the central data calculation unit (DCU) and accesses to each of the memories.

Registers are treated as triplets (i.e.R0:N0:M0 , R1:N1:M1 , etc.). An address

register,Rn, may be post-incremented only with the index register,Nn, if both reg-

isters are within the same triplet. The available operations are summarized in the

programming model of Table 5.1. Post-increment and decrement operations are

available for the constant 1 or a value within theNn register. TheMn register deter-

mines the type of address arithmetic: linear, modulo, or reverse-carry.
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Figure 5.1Address calculation unit of the Motorola 56K Series
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A second example is the SGS-Thomson D950 Core [91] shown in Figure 5.2.

It also contains two halves with separate arithmetic units. In this case, the registers

AX0, AX1, andSP address theX data-memory; registersAY0 andAY1 address the

Y memory. Post-increment operations may be executed onAX0 andAX1 with any

of the index registersIX0 , IX1 , IX2 , andIX3 . Similarly, post-increment opera-

tions may be executed onAY0 andAY1 with any ofIY0 , IY1 , IY2 , andIY3 . The

SP register can be used for a stack and has special operations such as push (pre-

decrement) and pop (post-increment).

The available operations on the ACU of the D950 are summarized in Table 5.2.

Post-increment operations are available for the address registers with index regis-

ters within the same half of the ACU. Post-increment and pre-decrement by the

constant 1 are available for theSP register. Modulo and bit-reverse addressing is

determined by theSTA register and the bounds are set in theB andM registers.

Table 5.1Programming model for the ACU of the Motorola 56K series

Description of ACU Operation
Uses Mn
Modifier

C-like
operation

Additional
Instruction

Cycles

No Update No (Rn) 0

Post-increment by 1 Yes (Rn)++ 0

Post-decrement by 1 Yes (Rn)-- 0

Post-increment by Offset Nn Yes (Rn)+= Nn 0

Indexed by offset N Yes (Rn+N) 1

Pre-decrement by 1 Yes --(Rn) 1

Figure 5.2Address calculation unit of the SGS-Thomson D950 core
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Although at first glance, the ACUs of the Motorola 56000 and the SGS-Thom-

son D950 look very similar they have some very different characteristics. While

both are designed for architectures with two data-memories, the 56K ACU allows

either of its halves to point to either memoryX or Y. The D950 ACU allows each

half only to point to its respective memoryX or Y. The number and available oper-

ations of the address registers differ: the 56K has 8 address registers which can per-

form post-increment with 1, -1, or its respective index register. The D950 has 4

address registers which can perform post-increment with any index register on its

respective side, but not with any constants, with the exception ofSP. (Post-incre-

ment with 1 or -1 can be performed onSP.) While the 56K has one index register

per address register, the D950 has nearly two index registers per address register

and also the ability to share an index register with any address register.

What is the impact of these differences? That is highly dependent on the

addressing needs of the applications being run on the architectures (and even more

dependent on the compiler!). Both companies claim high performance fortypical

DSP algorithms. However, DSP algorithms vary vastly in appearance. The only

true way an algorithm developer can know which is the best architecture for an

application is to measure the execution of code on each of the architectures. Unfor-

tunately this is not very easy at an assembly-level of programming since an inti-

mate knowledge of the architecture is required. Ideally, the comparison is possible

if compiling from a high-level language like C; however compilation techniques

have not kept pace with DSP architecture design.

In a further example, Motorola has recently introduced the DSP 56800, a low

cost 16-bit DSP geared for consumer applications where price is critical. It is a

marriage between a micro-controller and a DSP aiming for applications like digital

answering machines, feature phones, modems, AC motor control, and disk drives.

Table 5.2Programming model for the ACU of the SGS-Thomson D950

Description of ACU Operation
modulo

addressing
bit-reverse
addressing

C-like operation

Post-increment AXn by IXn Yes Yes (AXn)+= IXn

Post-increment AYm by IYm Yes No (AYm)+= IYm

Pre-decrement SP by 1 No No --(SP)

Post-increment SP by 1 No No (SP)++
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Isolating the ACU of the 56800, one can see that it is based on the functionality

of the 56000 ACU, but with variations. Shown in Figure 5.3, the ACU has five

address registers, one designed to be used as a stack pointer (SP).

The available operations of the unit are shown in Table 5.1. Since there is one

memory, only one half of the ACU of the 56000 is available. Although the unit has

more addressing modes available, there is an instruction-cycle penalty for the

indexed modes. The post-modify modes remain the more efficient. Note the

restrictions in register uses: only R0 and R1 can perform modulo addressing (bit-

reverse is not available); only R2 and SP can perform the short indexed mode.

In addition, register R3 has a special property as shown in Figure 5.3. A post-

increment/decrement may be performed in parallel to post-increment/decrements

on another address register in addition to up to 2 reads from data-memory.

Table 5.3Programming model for the ACU of the Motorola 56800 series

Description of
ACU Operation

Uses M01 Modifier
C-like

operation

Additional
Instruction

Cycles

No Update No (Rn) 0

Post-increment by 1 R0, R1 optionally (Rn)++ 0

Post-decrement by 1 R0, R1 optionally (Rn)-- 0

Post-increment by Offset N R0, R1 optionally (Rn)+= N 0

Indexed by offset N R0, R1 optionally (Rn+N) 1

Indexed by short
(6-bit)

No (R2+xx)
(SP+xx)

1

Indexed by long
(16-bit)

R0, R1 optionally (Rn+xxxx) 2 + extra
word

SP

R0

R1

R2

R3

M01 N

INC/DEC

CGDB (Data Bus)

PAB XAB2XAB1

Figure 5.3Address calculation unit of the Motorola 56800
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Although these type of ACUs have existed for some time and continue to

evolve, the compiler techniques for mapping high-level language constructs onto

these register structures are very immature. This is immediately reflected in the

poor performance of both commercial and publicly-available DSP compilers [112].

The problem of mapping high-level language structures such as array references

onto post-indexing ACUs manifests itself in two ways:

1. difficulties of dealing with special-purpose register connections and operations.

2. difficulties in treating the disjunction in dependency between the use of ad-

dresses and the calculation of new addresses, inherent in the post-modify na-

ture of the unit.

Previous experience [64] has shown that manually lowering array-based high-

level code to pointer-based code can significantly improve compiler performance.

This chapter addresses an automatic approach to this type of transformation with

the introduction of an architectural model which specifies the resources and opera-

tions of an address calculation unit.

5.2 Traditional address generation techniques

 5.2.1  Related work

Approaches to improving the generation of addresses for array references include

the work of Joshi and Dhamdhere [52], a strength-reducing technique for induction

variables and other loop variables which builds upon the code hoisting techniques

pioneered by Morel and Renvoise [77]. These techniques aim at replacing expen-

sive operations such as multiplications with less expensive operations such as

additions and subtractions (strength reduction) and moving as much as possible

outside of loops (code hoisting). Since it is typical that array references are calcu-

lated upon induction variables, transformations on these variables represent the

greatest gain. Although these techniques are important techniques for general-pur-

pose processors, the gain for post-modify calculation units is marginal. The tech-

niques are aimed toward pre-calculation of addresses.

Recently, offset assignment techniques have appeared to address post-modify

address calculation units [60][63]. These approaches propose the placement of

variables in memory based on the use of each variable in the data-flow calculations

of the program. This placement is accomplished in a manner which minimizes the
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number of post-increments on each address pointer. This ensures that the genera-

tion of addresses for static variables is optimized. This work does not address the

following issues:

1. Optimization of address generation for higher level constructs such as arrays

and structures. The majority of DSP programs manipulate arrays and structures

for sampling streams, etc. Address generation for these constructs is of funda-

mental importance in DSP.

2. Optimization of address generation for a design flow which includes separable

compilation and linking. As described in Section 4.1.3, memory assignment

techniques based on data-flow usage preclude the use of a linking phase com-

mon for C compilers. A linking phase is fundamental for libraries of high-per-

formance DSP functions.

Complementary to the work on address generation is the possibility of reorder-

ing array indices to improve the use of temporary storage. This is particularly

important in video signal processing. The work using the polyhedral dependency

graph model introduced by IMEC [29] and the PHIDEO compiler introduced by

Philips [72] address these type of transformations. In addition to the reordering of

array indices, this work also addresses memory placement which for the same

practical reasons as mentioned above can be difficult to use with a linking phase

(see Section 4.1.3).

 5.2.2  Address calculation for arrays

Address Pre-calculation.A straight-forward method of calculating addresses for

arrays ison-the-fly generation. For a simple array reference, this involves the addi-

tion of a base address with an induction variable (assuming the data size is 1; oth-

erwise a multiplication by a constant is needed) as depicted in the example of

Figure 5.4. The shortcoming of this approach is that the value of the address must

be calculated before the reference because the operation is data dependent. Within

the context of loop bodies, pre-calculations of this sort can have a significant per-

formance penalty.

An improvement to this straight-forward approach is loop pipelining [37][55],

where addresses for iterationi are calculated at iterationi-1 (see a loop pipelining

example in Section 2.6.2). This can be extended depth-wise for the number of
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operations of the induction variables. For this type of address calculation, the

strength reduction and code hoisting work mentioned in Section 5.2.1 is also of

use. However, it is important to note that even with these improvements the incre-

mentedvalues of the induction variables must still be calculated for each iteration

of the loop (usually at the end of the loop).

While being an improvement over the straight-forward pre-calculation of

addresses, this type of loop pipeline does not offer a natural mapping to a post-

modify address calculation unit, especially within the context of the address regis-

ter connections. For example, calculations for induction variables of integer type

would normally be done on the DCU and would need to be transferred to the ACU

for address calculations.

Different techniques are needed for post-modify address generation.

Address Post-calculation.A second approach to address generation involves

reducing an array reference to an address (or pointer) reference and incrementing/

decrementing the resulting address for the next reference of the array. This optimi-

zation has a two-fold advantage:

1. The address calculation can be done in parallel to any principal operations.

2. There is no more need for an induction variable or induction variable calcula-

tion (assuming it is not needed for other purposes).

On many DSPs, an available zero-overhead hardware do-loop can perform the

loop function. An example is shown in Figure 5.5, where for instance, the next use

of the pointerbp  is one position higher than the current position ofbp .

+

b i
= b[i]

address

read value from memory

Figure 5.4Pre-calculation of array addresses

+

1 bp

= *bp
address

read value from memorybp

bp++

Figure 5.5Post-calculation of array addresses
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This approach maps most naturally to the ACU post-incrementing structure

described in Section 5.1. The approach requires, as is also true for loop pipelining,

a careful semantic analysis of the subscript dependencies through the various con-

trol constructs of the source program.

Figure 5.6 shows an example of the compilation of the code for a simple loop

with one array reference before and after a pointer transformation to a post-calcu-

lation style of array addresses. The assembly code corresponds to a fictional load/

store instruction-set architecture with a hardware do-loop and a simple post-incre-

ment ACU which runs in parallel. Note the difference in code size of each exam-

ple. In addition, the assembly code after the pointer transformation will clearly run

faster, as there are only 2 instructions in the loop body as opposed to 6.

For this example in Figure 5.6, it would also be possible to further improve the

transformed microcode by performing software pipelining on the loop (see Section

2.6.2), if, for example, loading a register from memory in parallel to other opera-

tions were possible on the architecture (R3 <- ld AR ). The load could occur once

before the loop body (the prologue) and in parallel inside the loop. The loop body

could be reduced to one highly compacted line of microcode.

5.3 Address transformations for post-modify address calculation

The embedded DSP system is by definition a closed system, responding only to

Figure 5.6Compilation before and after pointer and hardware loop transformation.

void stat(int a[])
{
  int r, i;
  for(i=0; i<9; i++)
  {

r = a[i+2] + r;
  }
}

; i @ R1
; r @ R2
; temp @ R3

R1 <- 0 ; i = 0
stat_1:

cmp R1, 9 ; i < 9
bgez stat_2
AR <- add R1, 2 ; i + 2
R3 <- ldi AR, _a ; a[i+2]
R2 <- add R3, R2 ; r = a[i+2] + r
R1 <- add R1, 1; i++
br stat_1

stat_2:

; ap @ AR
; r @ R2
; temp @ R3

AR <- _a+2 ; ap = &a[2]
rep 9, 2
R3 <- ld AR
R2 <- add R3, R2 AR++    ; r = *ap + r; ap++

void stat(int a[])
{
  int *ap;
  int r;
  ap = &a[2];
  loop (9)
  {

r = *ap + r;
ap++;

  }
}

Classic
Approach

Pointer and Hardware

Loop Body: 6 lines

Loop Body: 2 lines

Loop Transformation
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real-time stimuli. Firmware is compiled separately on a desk-top host before resid-

ing on the system. In a typical embedded system development environment, this

firmware is well simulated and validated before ever reaching the real system.

When in the field, the DSP program responds solely to waveform signals through

interfaces to its external world such as memory-mapped I/O (MMIO), shared

memory, or interface peripherals. We summarize these two important properties of

a embedded DSP system as follows:

• a thorough simulation step on the host before the running of the system in field.

• a well-defined boundary between program variables and data variables.

These are two properties which set an embedded DSP system apart from general

computing applications. Consequently, they also provide opportunities for new

approaches to compilation.

For an embedded DSP system, we propose a transformation of a program’s

address calculation model which is based on array to pointer optimizations, with

the following goals:

• Retargetability: the ability to reconfigure the system for different architecture

processors.

• Designer Feedback: a maximum of information useful for architecture explora-

tion.

• Efficient Analysis: a minimum of complex semantic analysis.

• Facility to Integrate: an ease of integrating into existing compiler systems.

As the transformation targets embedded processors, we make use of the host com-

pilation and execution environment for performance optimization.

 5.3.1  Overall flow

The complete array analysis and transformation is depicted in Figure 5.7. From the

user’s viewpoint, only the shaded boxes are visible. He/she provides a C source file

containing array references and a specification file indicating the addressing

resources in the target architecture. The system then transforms the array refer-

ences of the source to pointer references and appropriate increments and decre-

ments of those pointers optimized for the address resource specification provided.

If an address resource specification is not provided by the user, the transformation



Compiler Transformations for DSP Address Calculation 105

of arrays to pointers (pointer creation) is still done; however, the register allocation

(pointer combination) and register assignment phases are skipped. These phases

could be done by the target compiler.

In addition, statistics are generated for the user during compilation and as com-

ments embedded in the target (C source with addressing). These statistics include

basic block frequencies, array reference frequencies, and the number of pointers

created. For the created pointers (of which the number may not correspond directly

to the number of arrays), the system also provides the reference frequencies and

the frequencies of increment/decrement operations.

The choice of the C language as the target provides the following benefits:

• the target can be compiled and verified against the behavior of the source.

• the target can be used as an input to a dedicated architecture compiler.

• the semantics are easily understood by a human reader.

However, a drawback of using C is that fine-tuning for parallelism is not possible.

Parallelization (compaction) is left for the target architecture compiler.

The central analysis block uses both a static and dynamic (run-time) image of

the source algorithm. The advantages of using static and dynamic information ver-

sus only static information are:

• the ability to determine non-obvious linear relationships.

Test
Program

Test
Data

Host
Compile

Instrument

Execute

Array Analysis
& Transformation

Static

Dynamic
Image

Image

Statistics

C
Source

Address
Resource

Spec

C Source
with

Addressing

Stability Analysis

Pointer Creation
and Combination

Address and Index
Assignment

Figure 5.7ArrSyn array analysis and transformation flow.

Trace
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• the availability of relative frequencies of basic blocks, which indicate a realistic

performance cost of the insertion of instructions.

The dynamic image of the source is created through instrumentation of the

original source, compilation, and execution on the host. Details are provided in

Section 5.3.3. As a result of this methodology, the following items are required:

• the source must be compilable and executable on the workstation.

• a test program must be provided that exercises all the basic blocks to be trans-

formed.

• execution on the workstation should have reasonable run-time.

• induction variables may not be dependent on test data (i.e. data variables which

may change from execution on the host to execution in the field).

In our experience, these items are common in an embedded systems development

methodology, where firmware is simulated on a desk-top platform before being

used in the field. This differs in nature from a general computing environment. For

this last item, since the I/O of an embedded program is well defined and contained,

induction variable dependency can be easily identified.

 5.3.2  Address resource specification

An example resource specification is shown in the left side of Figure 5.8. The spec-

ification includes two main parts: a declaration of resources (address and index

registers) and the operations that can be performed on these resources. This speci-

ACU_REGISTERS
{

ADDRESS: AX0, AX1;
INDEX: IX0, IX1;

}

ACU_OPERATIONS
{

AX0++;
AX0--;
AX0 += IX0;
AX1++;
AX1--;
AX1 += 2;
AX1 -= 2;
AX1 += IX0;
AX1 += IX1;

}

1
-1

2
-2

Add

AX0

1
-1

IX0

AX1

ACU Internal Structure

IX1

ACU Specification

internal

Figure 5.8Address calculation unit specification and representation

representation

Add
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fication is represented internally as a structural connection of registers, adders, and

constants. This behavioral representation describes naturally the full operation of

the unit and it is useful for allocation and assignment, where pointers and incre-

ments can be bound to registers and constants.

A second example is shown in Figure 5.9 for the linear post-addressing portion

of the Motorola 56000 DSP (see ACU diagram in Figure 5.1). The specification

shows in a very simple manner the operations and resources of the functionality of

the address calculation unit. This specification can be easily manipulated by a

designer of the unit.

Further extensions to the specification model would include an identification of

the functional units on which each operation is performed, as well as any encoding

restrictions which are imposed by the instruction-set word. These considerations

would naturally overlap with information needed by the target compiler for other

phases of compilation including assembly, and would therefore fit it in best with a

full instruction-set architecture model.

 5.3.3  Instrumentation and tracing

In this context, instrumentation is defined as the transformation of the original

source code to a duplicate plus the addition of tags. Tagging is formulated as a lex-

ical and semantic analysis of the source program for the annotation of output state-

ments that indicate run-time information. The tags include: function entries,

function exits, loop entries, loop begins, loop-exits, array references including

ACU_REGISTERS
{
  ADDRESS: R[0..7];
  INDEX: N[0..7];
}

ACU_OPERATIONS
{
  R[0] += N[0];
  R[1] += N[1];
  R[2] += N[2];
  R[3] += N[3];
  R[4] += N[4];
  R[5] += N[5];
  R[6] += N[6];
  R[7] += N[7];

  R[0..7] ++;
  R[0..7] --;
}

Figure 5.9Address resource specification for the Motorola 56000

R[0]

1
-1

N[0]

ACU Internal Structure

internal
representation

ACU Specification

R[1]

1
-1

N[1]

......

R[7]

1
-1

N[7]

Add

Add

Add



108 Chapter 5

induction variables and run-timevalues of induction variables. All other code is

ignored. The run-time values of the array induction variables is the key component

which allows the analysis of the array traversals.

Execution of the instrumented code produces a trace that is consumed by the

main analysis block of the system. In this manner, the array access patterns can be

determined quickly and with a minimum of semantic analysis. Note that tracing

has also been used in other contexts to improve run-time performance [58]. The

most important point about using tracing is that improvements to the code can be

doneexactly in the places where it is needed: the blocks of code which execute the

most frequently.

 5.3.4  Stability analysis

Given a reference to an array at a static position in the source program, stability

analysis determines if this reference is visited in a linear fashion within a set of

loops throughout the execution of a program. If so, it may be replaced by a pointer

and an increment/decrement set. One could imagine two forms of stability analy-

sis: static and dynamic. Each has its set of advantages and disadvantages. A stabil-

ity analysis based on the static image of the program guarantees that the

transformation is valid independent of the test data; however, the current state-of-

the-art techniques are restricted to loops of very well-defined behaviors, for exam-

ple loops whose boundaries are calculated by linear affine functions [29]. A stabil-

ity analysis based on the dynamic image of a program has the advantage of the

capability to analyze much more general loop structures, which contain non-obvi-

ous linear traversals of array references. Complicated array reference calculations

can be determined to be stable, simply by examining the reference progression.

However, the stability will only be true for a certain test program. If the test pro-

gram does not exercise the entire program as it will run in the field, this stability

analysis may not hold. Since embedded systems are usually simulated thoroughly

on a desk-top before being downloaded onto the chip, a program not exercising all

the loops would be a rare case.

The dynamic stability analysis has been implemented for the ArrSyn transfor-

mation. The analysis makes use of the dynamic trace of the program which quickly

evaluates the characteristics of the array reference run-time progression. Induction

variables may not be dependent on test data (values that are changed from execu-
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tion on the desktop to execution in the field). Thus, a safe methodology is that the

user ensures that no induction variables are dependent on data that resides on data

memories, memory-mapped I/O locations, or interface registers.

For the dynamic stability analysis, an array referenceA can be determined to be

stable using the dynamic image produced by tracing. An array referenceA is said

to be stable within an inner-most loopIL, if the stride of A remains constant

between every loop begin ofIL without crossing a loop entry or exit ofIL. The

stride of an array referenceA, is the difference in the value of the induction vari-

able from one reference to the next. An array referenceA is said to be stable within

a loopL if it is stable for all its encompassing loops including the innermost loop.

Array references which are stable within a loop may be eventually replaced by a

pointer reference and a set of increment/decrement operations or combined with

another pointer reference as described next.

 5.3.5  Pointer creation and combination

Pointer creation and combination is the allocation phase of the analysis. The goal is

to produce an appropriate number of pointers which match the capabilities of the

address calculation unit. The approach begins by creating a pointer for each static

array reference of the source program, given that the array reference is stable

within a set of encompassing loops. This starting point uses the maximum number

of addressing resources, one pointer for each array reference. From this point,

static pointers are combined. Two references are made to use the same pointer

through correctness preserving combinations. This is done until a reasonable num-

ber of pointers exist for the architecture at hand.

The combination strategy uses the following combining rules:

• pointers created for array references with exactly the samesignature within the

same nest of loops may be combined. The signature of an array reference corre-

sponds to the programmer’s view of the elements in the array. (e.g.b[i+2]

andb[i+2]  have the same signature, whereasb[i]  does not).

• pointers with non-overlapping lifetimes may be combined.

• pointers referencing the same array at different relative positions and progress-

ing in the same fashion within the same nest of loops may be combined.

As these transformations have various effects on the resulting code, rules are
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executed with the following objective functions:

• reduce the number of pointers to an amount equal or below the number of avail-

able address registers.

• minimize the frequency of inserted increments/decrements of pointers.

• minimize the number of different valued increment/decrements for each pointer.

Figure 5.10 shows an example of the pointer creation and combining process.

Consider a target ACU with 2 address registers, such as the one with the internal

representation shown in Figure 5.11. Figure 5.10 a) displays the original C code;

Figure 5.10 b) displays the creation of pointers, one for each array reference, a total

of 6 pointers (b_1, b_2, b_3, b_4, a_1 andx_1 ) (Initializations of point-

ers are not shown so as to simplify the figure); Figure 5.10 c) shows a first applica-

tion of pointer combinations, the array references with exactly the same signatures

Figure 5.10Pointer creation and combination example

b[i] = b[i] + ...

b[i+1] = ...

{

}

a[j] =...

b[i] = ...

{

}

{

x[j] =

} while (j...

for (i...

while (j...

do

*b_1 = *b_2 + ...

*b_3 = ...

{

}

*a_1 =...

*b_4 = ...

{

}

{

*x_1 =

} while (j...

for (i...

while (j...

do

a_1++;

b_1++;

b_2++;

b_3++;

b_4++;

x_1++;

*b_3 = ...

{

}

*a_1 =...

*b_1 = ...

{

}

{

*b_1 =

} while (j...

for (i...

while (j...

do

a_1++;

b_1++;

b_3++;

b_1++;

*b_1 = *b_1 + ...

*b_1 = ...

{

}

*a_1 =...
b_1--;

{

}

{
*b_1 =

} while (j...

for (i...

while (j...

do

a_1++;

*b_1 = ...;

b_1++;

*b_1 =* b_1 + ...
b_1++ ;

b_1++;

a) Original Code b) Pointer Creation c) Pointer Combination d) Pointer Combination

-1

Add

A1

1
-1

Add

A2

1

Figure 5.11Example target ACU internal structure
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and those with non-overlapping lifetimes. This results in a reduction to 3 pointers

(b_1, b_3  and a_1 ). Figure 5.10 d) shows a possible second application of

pointer combinations (b[]  at different relative positions), reducing the number to

2 pointers (b_1  anda_1 ). This number of applications of pointer combinations

depends on the availability of address registers in the ACU specification. For this

example, the goal was to reduce the number of pointers to at most 2, to correspond

to the number of address registers in the specification.

Notice that after pointer creation, the loop induction variables (i  andj ) are no

longer needed for referencing. Thus, the loops which use these induction variables

may subsequently be mapped to any available hardware do-loops.

 5.3.6  Address and index register assignment

Following their creation is the assignment of pointers and increments to address

registers and index registers or constants (hardwired constant values). Lifetime

analysis has already been done in the combination stage; therefore, the formulation

of the problem is to find the best one-to-one matching of pointers to address regis-

ters and their respective increments to constants or index registers. If the number of

pointers that exist after combining is less than the number of address registers, a

direct mapping is usually possible. If the number of pointers happens to exceed the

number of address registers, then some pointers must be assigned to memory and

will be stored and loaded into a free address register.

Before we explain the assignment strategy, we shall define some terms. A

pointer,p, is said to befully assigned to an address register,A, whenp is assigned

to A and the increment/decrement values associated withp are assigned to index

registers ofA, (I A) and/or constants ofA, (CA). This is depicted graphically in Fig-

ure 5.12.

We define thereference occurrence (RO) of a pointerp to be the number of

A

CA

Add

I A

Figure 5.12Pointer p fully assigned to address register A

*p

p++

p -= 3

assigned
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times a value in memory is referenced byp in the execution of the program.

We define two objective cost functions for a pointer which is fully assigned to

an address register. For a fully assigned pointer:

1. thebest assignment cost(BC) is defined as the number of address calculation

instruction executions in the final code.

2. theestimated assignment cost (EC) is defined as the best cost weighted by the

probability that the indexing resources (i.e. index registers) be free for use.

The cost for an assignment is based on the frequency of increment and decrement

instructions in the final code. This best assignment cost function reflects the num-

ber of times an ACU operation will eventually be executed in the final code.

These 3 values, RO, BC, and EC can be calculated by making use of the

dynamic information provided by tracing, namely the frequency execution of basic

blocks. The best assignment cost function (BC) does not correspond directly to the

number of whole instructions that will be executed in the final code, since on most

architectures many of these instructions may be compacted in parallel with other

operations. However, it is a good reflection of the trade-off between different

assignments. Similarly, the reference occurrence (RO) reflects the number of times

a pointer will be used to store or retrieve data in the final code.

1
-1

2
-2

AX0

1
-1

IX0

AX1

ACU Internal Representation

IX1

10 references : *bp
12 increments : bp++
4 decrements: bp--

4 references : *xp
25 increments: xp += 4
14 increments: xp += 13

BC = EC = 1 + 12 + 4 = 17

BC = 1 + 2(25) + 1 + 14 = 66

Figure 5.13Examples of the reference occurence (R0), the best assignment cost
(BC) and the estimated assignment cost (EC).

Add

Add

(In final code: 1 initialization of AX0
12 increments by 1
4 decrements by 1)

(In final code: 1 initialization of AX1
50 increments by 2

1 initialization of IX0
14 increments of IX0)

EC = BC(AX1) + BC(2) + BC(IX0) / P(IX0 free for AX1)
= 1 + 50 + (1 + 14) / 0.5
= 81

R0 = Reference Occurrence

EC = Estimated Assignment Cost

R0 = 10

R0 = 4

BC = Best Assignment Cost
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Two fully assigned examples are shown in Figure 5.13. For the pointerbp

which is fully assigned toAX0. The assignment to the address registerAX0 and

constant indices of+1 and-1  results in a best assignment cost (BC) of 17, since

an initializationAX0 = &b[n]  will be executed once, the operationAX0++ will

be executed 12 times, and the operationAX0--  will be executed 4 times. For this

example we assumed that the initialization occurs once; the actual number of ini-

tializations and the value of the constantn are both dependent on the context in the

program.

For the pointerxp  in Figure 5.13 which is fully assigned toAX1 (address reg-

ister AX1, the constant+2, and the index registerIX0)  gives a best assignment

cost (BC) of 66, since in the final code the initializationAX1 = &x[n]  will be

executed once, the operationAX1 += 2 will be executed 50 times, the initializa-

tion IX0 = 13  will be executed once, and the operationAX1 += IX0 will be

executed 14 times. The estimated assignment cost (EC) is calculated as the best

cost formula weighted by the probability that the index registerIX0  be free for use

for AX1. The probability P(IX0  free forAX1) is 0.5 becauseIX0  may be equally

free for use with eitherAX0 or AX1. The estimated assignment cost (EC) is 81,

which reflects the fact that it is may be more costly to useIX0  since it may not be

free for use byAX1.

The assignment procedure is divided into 2 phases:

1. Determine a direct mapping feasibility: If the number of pointers is less than or

equal to the number of available address registers (i.e. the pointer combination

phase has succeeded), proceed to step 2. If not, assign the pointer with the

smallest RO to memory. Repeat until the number of pointers is equal to the

number of address registers.

2. For the direct mapping, fully assign pointers to address registers.

The assignment strategy of step 2 is subdivided into the following steps:

1. Exhaustively determine the lowest EC for each pointer supposing it were fully

assigned to each address register.

2. Take the cheapest EC and execute the corresponding full assignment.

3. Update all the estimated costs (ECs) based on this assignment. Repeat step 2.

This estimated cost guides the assignment heuristic since it can determine the
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best places for potential savings. As well, during step 3 of the strategy, if an index

register is assigned, the algorithm keeps track of the value. It later attempts to share

common index values wherever possible to reduce the number of initializations.

 5.3.7  Transformation example

The array analysis flow described in the previous section has been implemented in

a prototype calledArrSyn and tested on various benchmark examples for existing

and possible address calculation units. A small detailed example of an ArrSyn

transformation is described hereafter. Experimental results of ArrSyn used in con-

junction with a dedicated compiler for a multimedia audio processor is described

in Section 6.4.

A detailed example of the transformation process is shown in Figure 5.14. A

close inspection shows many of the features of the system. All the array references

have been changed to pointer references. Although there were 8 static array refer-

ences in the original code, combination strategies have reduced the number of cre-

ated pointers to 3. These pointers replace array references in the code with

appropriate increments, decrements, and initializations. The pointers (and incre-

ments/decrements) have also been assigned to the address registers

(AX0,AX1,AX2 ), index register (IX ), and constants (+1,-1 ) in a manner best

fitting the given architecture specification. The assignment of pointers to registers

may be passed to a dedicated compiler using C extensions as described in Section

4.2.2.

In addition to the rewrite of code, the designer is given statistics: profiling fre-

quencies of the execution of blocks, the number of occurrences of references of

each created pointer and the number of occurrences of increments of different val-

ues (top-right of Figure 5.14). In addition, other statistics are printed at compile

time, such as the frequency of reads and writes of the original arrays.

Note that after the replacement of arrays with pointer references, the loop

counters (i  andj ) are no longer used within the two nestedfor loops. These loops

are ideally suited to be mapped directly to zero-overhead hardware do-loops (if

they exist in the architecture). A back-end process could recognize this in a con-

trol/data-flow analysis and produce the correct mapping. Thewhile loop can also

be replaced by a hardware do-loop, but care must be taken in the control/data-flow

analysis because there are two possible exit points.
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5.4 Summary and future work

The contribution of this chapter has been to introduce an approach to transforming

C code which makes efficient use of address calculation units (ACUs) on embed-

ded DSP architectures. The strength of the approach is a specification model which

describes the resources and operations of the architecture. This model allows the

#define N 6

int r;
int a[N] = {2,3,12,6,14,18};
int b[N] = {2,1,9,83,5,-98};

void main()
{
  register int i,j;

  r = 0;
  for(i=0; i<N/2; i++)
    {
      for(j=2; j>=0;j--)

{
  a[i*2+j] = b[i] + 7;
}

      b[i] = b[i] + 3;
    }

  j = N-1;
  i = 0;

  while(j--)
    {
      b[j] = a[j+1];
      r = a[i] + b[j] + r;
      if(i == 3) break;
      i++;
    }

  printf(“\nr = %d\n”,r);
}

C Source

#define N 6

int r;
int a[N] = {2,3,12,6,14,18};
int b[N] = {2,1,9,83,5,-98};

void main()
{
/* ArrSyn : refs: (23x) incs: +1(3x) -1(4x) */ register int *b_AX1;
/* ArrSyn : refs: (13x) incs: +5(3x) -1(13x) */ register int *a_AX0;
/* ArrSyn : refs: (4x) incs: +1(4x) */ register int *a_AX2;
/* ArrSyn */ register int IX;

  register int i,j;

  r = 0;
/* ArrSyn */ b_AX1 = &b[0];
/* ArrSyn */ a_AX0 = &a[2];
/* ArrSyn */ IX = 5;
  for(i=0; i<N/2; i++)
    {
/* ArrSyn : Loop executed 3 times. */
      for(j=2; j>=0;j--)

{
/* ArrSyn : Loop executed 9 times. */
/* Original :   a[i*2+j] = b[i] + 7; */
/* ArrSyn */  *a_AX0 = *b_AX1 + 7;
/* ArrSyn */ a_AX0--;

}
/* Original :       b[i] = b[i] + 3; */
/* ArrSyn */      *b_AX1 = *b_AX1 + 3;
/* ArrSyn */ b_AX1++;
/* ArrSyn */ a_AX0 += IX;
    }

  j = N-1;
  i = 0;

/* ArrSyn */ b_AX1 = &b[4];
/* ArrSyn */ a_AX0 = &a[5];
/* ArrSyn */ a_AX2 = &a[0];
  while(j--)
    {
/* ArrSyn : Loop executed 4 times. */
/* Original :       b[j] = a[j+1]; */
/* ArrSyn */      *b_AX1 = *a_AX0;
/* ArrSyn */ a_AX0--;
/* Original :       r = a[i] + b[j] + r; */
/* ArrSyn */      r = *a_AX2 + *b_AX1 + r;
/* ArrSyn */ b_AX1--;
/* ArrSyn */ a_AX2++;
      if(i == 3) break;
      i++;
    }

  printf(“\nr = %d\n”,r);
}

C with Addressing

ArrSyn

ACU_REGISTERS
{
  ADDRESS: AX0, AX1, AX2;
  INDEX: IX;
}

ACU_OPERATIONS
{
  AX0++;
  AX0--;
  AX0 += IX;

  AX1++;
  AX1--;

  AX2++;
}

ACU Specification

Figure 5.14Example transformation: C source to C with addressing
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designer to evaluate applications on different ACU architectures. A rapid evalua-

tion can be performed by simple changes to the specification model. The output of

the transformation is C code with explicit pointer addressing. The advantage of C

code as the target is that the output may be fed to any processor-specific C com-

piler. Furthermore, the semantics of the output are easily understood by the pro-

grammer.

The main analysis portion of the transformation makes use of a dynamic trace

from a host execution of the program. The ability to do this is a feature which sets

the embedded application apart from a general computing application. Moreover, it

is this feature which provides the fuel to the transformation algorithms to optimize

the most critical portions of the code, which is clearly an advantage over static

methods. The approach could be calledprofiler-driven, as the run-time is improved

only after a host execution of the code.

The compilation approach has been implemented in a prototype tool called

ArrSyn and tested on benchmark examples (discussed in Section 6.4).

Future work includes improvements to the combination algorithm to handle

architectures with very few resources. Practical extensions to the tool include the

provision for different sized data-types and the handling of multi-dimensional

arrays and structures, which are important in areas such as video processing.

On the side of the specification model, common DSP Address Calculation Unit

features such as modulo and bit-reverse addressing would be a significant

improvement to the approach. As well, efforts to merge the specification with a

complete model of the architecture sufficient for the entire compilation process

would be welcome.
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Chapter 6: Pushing the Capabilities of Compiler
Methodologies in Industry

For DSPs and ASIPs of many types, assembly level programming is common

place; and therefore, experiences with compilation methodologies is an important

step for the general acceptance of embedded software tools for specialized archi-

tectures. This chapter presents industrial experiences in three different projects

using the two compiler systems described in Chapter 3. In each section, the archi-

tectures and compiler environments are presented followed by a discussion of the

results and lessons learned. These lessons also include many of the practical issues

discussed in Chapter 4. Following, experimental results of the DSP address gener-

ation approach of Chapter 5 are presented. The chapter concludes with a discussion

of the advantages and disadvantages of the main principles of each compiler

approach.

6.1 A Nortel ASIP for telecommunications

 6.1.1  Architecture description

In Figure 6.1, a diagram is shown for a DSP which was developed in-house at Bell-

Northern Research/Nortel. This Application Specific Instruction-Set Processor

(ASIP) was developed for a private local telephone switch called a key system

unit.

The architecture is inspired by VLIW principles. It is a Harvard, RISC archi-

tecture containing an ALU, Multiply-addition unit, ACU, and control unit. The 40

bit instruction word allows a significant amount of parallelism supporting: a con-

trol-flow operation, ALU operation, immediate, load-from or store-to memory, and

an address calculation operation. The architecture has a number of features which

set it apart from other DSPs. Bus connections have been reduced by making spe-

cific connections to registers, thereby reducing the instruction decoding but also

the homogeneity of the register files. There is one register,R1, which can store
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data from the ALU to memory; there is one registerR6, which may be used to

move a calculated address on the ALU to the address register,AR. One register,

R7, may be used to hold an immediate value coming from the instruction word.

Finally, the registerR0 is a constant zero source and bottomless sink.

These measures place challenges on the development of software tools; how-

ever, they allow two significant architectural gains: speed through the reduction of

multiplexers and shared busses, and fewer encoding combinations of the instruc-

tion word. The latter impacts directly on the needed instruction width; and conse-

quently, the size and expense of the program ROM.

The ALU contains two barrel shifters, one at an input to the ALU and the other

at the output of the ALU. This allows the support of various data-types which can

be scaled at any moment without instruction delay penalty. Arithmetic instructions

can be coupled with input and output shift instructions.

A post-modification address calculation unit is available for parallel execution.

Addresses may be computed on the Auxiliary Address Registers (AAR) as well as

the standard Address Register (AR). A Base Register (BR) is available for offsets in

a custom addressing mode. A circular buffer mode is also available by means of

the registersCBB (Circular Buffer Begin) andCBE (Circular Buffer End).

In addition to standard control-flow constructs like conditional/unconditional

branches and subroutine calls, one level of hardware do-loop is available.

 6.1.2  Compiler environment

As this is a custom architecture, no compiler had originally existed. Attempts to

“0”

ALU

MAD

R0 R1 R2 R3 R4 R5 R6 R7

Data
RAM

Controller
I/S Decoder

ROM
Prog

AR

RC

CBB CBE

AAR
BR

Figure 6.1Nortel ASIP for a Key System Unit.
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reconfigure a commercially available compiler was successful only with a few case

tests. The compiler failed with the large majority of source C tests: some which

were written expressly for the architecture, some which were general routines from

publicly available DSP sources. The difficulty in reconfiguring the commercial

compiler stemmed mainly from the number of special-purpose registers which

overlap with the data calculation registers. The solution in this case was to reserve

all of the special-purpose registers, which means the compiler quickly runs out of

data calculation registers for general arithmetic, hence the inability to compile

many of the sources.

While the model-based CodeSyn compiler described in Chapter 3 was

designed to be a generally retargetable compiler for ASIPs, this Nortel ASIP was

used to drive the development of the methodology. The pattern base of the com-

piler was collected directly from the specification in the programmers manual. Fig-

ure 6.2 shows an excerpt of the generated pattern tree for theread portion of the

prune tree. The pattern set contains a certain number of patterns for specializations

of the architecture, for example: address generation requires annotations of certain

register classes (AAR, BR, DM  (DataToMemAddr)) on the input and output ter-

minals of some patterns, and aReadInput  pattern is used for memory-mapped I/

O. Although specialized, these branches have the same prune tree organization

described in Section 3.2.3 which permits efficient pattern matching.

The full data-flow pattern set for the Nortel ASIP contains the pattern branches

ReadVar

ReadPtr

RConst ptr

RConst

ReadPtr

DM

RConst ptr

ReadConst

AAR

BR DM

read

ReadPtr
DM

+

ReadPtr

RConst ptr

+

int

ReadPtr

+

ReadPtr

BR

RConst ptr

+

ReadConst

ReadInput

ReadZero

ReadPtr
BR

ReadPtr

ReadVarArray

ReadConst

ReadVarArray
v

ReadPtr
AAR

Figure 6.2CodeSyn data-flow prune tree below theread node for the Nortel ASIP
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of Figure 3.7, the read portion of Figure 6.2, awrite portion similar to the read por-

tion, and an extra set of address calculation patterns. A control-flow pattern set

rounds out the full pattern set needed for the compiler.

The model-based approach brought two distinctive contributions which

allowed compilation for the Nortel processor:

1. A pattern matching mechanism which allows the combination of multiply-ac-

cumulate and arithmetic/shift operations with no limitations on pattern-size. In

addition the patterns support the concept of register classes and are organized

in an efficient matching organization. More details can be found in [65].

2. A register assignment procedure which supports overlapping register roles.

The special treatment of the constrained register resources was key to the abili-

ty to compile to this architecture. More details can be found in [66].

 6.1.3  Experimental results

A variety of representative benchmarks were run for the Nortel architecture, of

which a subset is shown in Table 6.4. This is a set of subroutines for a conference-

call application. The CodeSyn results are compared directly to hand-crafted code

with regard to code size. Notice that there is a fairly small difference between the

number of lines of C code and the number of micro-instructions needed for imple-

mentation. This is indicative of the processor’s large instruction word. Each micro-

instruction usually contains two to four parallel micro-operations.

For this very specialized architecture, the benchmarks are an important indica-

tion that a compilation methodology can succeed even for processors with highly

constrained register files. These initial results do not show superiority over hand

Table 6.4Code size results of CodeSyn for the Nortel ASIP

Subroutine
Number of

C-lines

Number of
Instructions

(Hand)

Number of
Instructions
(CodeSyn)

Percentage
Overhead

Loudest 16 16 21 + 31%

selectLoudest 39 65 75 + 15%

selectSpeakers 23 21 36 + 71%

linearize 11 15 19 + 26%

sum 14 17 12 - 29%

compander 22 23 25 + 9%

Overall 125 157 188 +19%
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coding in assembly; however, as the compiler contains few optimization passes, it

does show promise for the approach.

The rest of the examples that were run on this architecture are not reported here

mostly because hand code was not written for the equivalent C sources. The main

message was that compilation was successful for all of the examples thanks to the

treatment of overlapping register classes.

6.2 The SGS-Thomson Microelectronics Integrated Video
Telephone

The SGS-Thomson series of videophone systems (e.g. STi1100 [92]) is an example

of a system-on-a-chip which contains a set of operators which communicate

through a set of busses. The block diagram is shown in Figure 6.3.

Some of these operators are designed as fully hardwired blocks to meet the perfor-

mance requirements. In this case, behavioral synthesis methodologies are impor-

tant for hardwired blocks (Architectural synthesis for the Motion Estimator of the

IVT is discussed in [14]); however, to keep pace with the evolving standards, many

of the IVT operators are designed as ASIPs [39] (Application Specific Instruction-

Set Processors). With the constantly changing standards (e.g. H.261, H.263), block

functions in software allow for late design changes and modifications, which are

important in meeting the current market requirements.

With a wide variety of processor operators, the requirements for the compiler

system is that it be easily retargetable to control-flow dominated architectures as

well as to data-flow dominated architectures. It must adhere to strict hardware

S interface
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Figure 6.3The SGS-Thomson single-chip Integrated Video Telephone
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requirements like bus interface protocols as well as handle architecture specializa-

tion. Furthermore, since the system is real-time reactive, a performance overhead

with respect to hand code cannot be tolerated.

Compilers were developed for three embedded processors of the videophone

system shown in Figure 6.3: the MSQ (MicroSeQuencer), the BSP (Bit-Stream

Processor), and the VIP (VLIW Image Processor). The D950 core is also sold as a

stand-alone part and already has a C compiler. The memory controller, is a highly

specialized block for memory-handling and has its own dedicated compilation util-

ity.

 6.2.1  Architecture descriptions

Figure 6.4 shows the architecture of the MSQ (Micro-SeQuencer), which is the

top-level control unit of the videophone system. The architecture is a single execu-

tion stream controller providing standard ALU operations (ADD, SUB, AND, OR,

CMP, SHIFT); as well as standard control operations (BR conditional/uncondi-

tional, BR indirect). Reserved instructions perform the function of the bus inter-

face protocol. A unique property of this block is a unit known as the scheduler

(SCH) which can affect the position of the program counter independent of the nat-

ural execution order of the program. The scheduler can access the interface directly

and make decisions depending on values from the exterior.

The Bit Stream Processor (BSP) is a processor used mainly for the variable

length decoding of macroblocks. As one part of the videotelephony decoding pro-

cess requires many intricate bit-manipulations, the ALU of the BSP can perform a

Data

A-reg

SCH

INTERFACE

PC Program

Instruction Register

RAM

Figure 6.4MSQ controller of the SGS-Thomson Integrated Video Telephone.

ROM

ALU
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number of bit-level functions. Apart from this feature, the BSP shares a similar

architecture template with the MSQ including the bus interface and excluding the

scheduler.

The VLIW Image Processor (VIP) is an embedded processor used for predic-

tion routines. The highly-parallel architecture allows the video telephone to do the

advanced motion compensation suggested in the H.263 standard. The architecture

again shares the same bus interface as the MSQ and BSP; however, in contrast

there are several functional units which work in parallel and allow a high through-

put of calculations.

 6.2.2  Compiler environment

The rule-driven compilation approach described in Section 3.3 was used to

develop the compilers for the Integrated Video Telephone. For each of the architec-

tures, a functional rule base was typically developed in two person weeks, or

roughly half of the total targeting time. This allows early feedback to the architec-

ture design team before the final refinements are made. Each compiler supports a

subset of C; however, support of the entire functionality of the architecture is

always available.

For the MSQ, the mapping of the C source to standard arithmetic and control

operations was relatively straightforward. The architecture supports only one data

bit-width and therefore only one C data-type is supported. Issues that arise are in

the routing of data to the special A-register and appropriate scratch locations in the

RAM. This is easily handled in virtual code selection. Architecture specific fea-

tures required special attention, such as the mapping of case statements onto the

indirect branching instruction, which requires alignment upon specific bits. This is

handled in the mapping to the target machine, where a rule emits an alignment

directive along with the assembly code. Other similar features exist and were han-

dled just as easily with the appropriate rules.

For the interface, volatile register variables were defined for use in the hard-

ware operations. In this manner, compiler rules map reads and writes of these vari-

ables onto the appropriate special instructions. It is important that the variables are

defined as volatile, otherwise compiler optimizations could remove seemingly

redundant read and write accesses.
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The C compiler for the BSP (Bit Stream Processor) (Figure 6.3) had similar

targeting issues to that of the MSQ. The main differing issue was the treatment and

optimization of bit manipulation operations. The handling of the register interface

was reused from the MSQ.

For the VIP, the declaration of compaction resources was a fundamental devel-

opment issue, due to the very large instruction word (VLIW) and multiple execu-

tion streams. In addition, several built-in functions which correspond directly to

hardware functions needed to be designed (see Section 4.2.1). Often, a hardware

function of the processor does not correspond directly to C operations. Again, the

register interface was reused from the MSQ. In this case, compaction is disallowed

with interface functions. This can be guaranteed through a careful definition of the

compaction resources (see Section 3.3.4).

 6.2.3  Experimental results

Compiler Validation. The validation strategy used for the IVT processor opera-

tors is slightly different from the procedure presented in Section 4.3. As the proces-

sors of the IVT are an integral part of the entire system, the most important aspect

to verify is the function in the system. The validation of the processor functionality

was done as shown in Figure 6.5.

The key to the methodology is the presence of a co-simulation approach which

allows the simulation of C code on the behavioral level integrated with a VHDL

model of the system [67][80][104]. Individual simulations of the system replacing

the co-simulation model with a VHDL model of the processor generates two simu-

host

C source

IVT Processor
Compiler

microcodeVHDL
Processor Model

 Co-simulation
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executable

VHDL
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Figure 6.5Validation of the processors of the SGS-Thomson Integrated Video Telephone
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lation traces which can be compared. The simulation methodology validates both

the processor compiler and the VHDL processor model, given a test bench which

thoroughly exercises the application C code. Notice that the methodology is simi-

lar to the one presented in Section 4.3 since the two principal elements are present:

the host compiler and the target compiler.

Compiler Results.For the MSQ architecture, a subset of the H.261 code was

taken from a prior design of the chip. This code had previously been written in pro-

cess-level VHDL and was hand-translated to assembly. The examples contain a

cross section of the different types of tasks the MSQ performs. This code was

rewritten in C nearly line-for-line and compiled using the rule-driven C compiler.

We then compared the compiled code with the hand-translated code written in

assembler. The results are shown in Table 6.5.

On average, the compiled code size is roughly equal to the hand written code

size. This indicates that for this processor, the compiler performs as well as an

assembly-level programmer. This was possible because of the natural mapping

from C to the instruction-set of the controller architecture. Only special cases

needed to be addressed using the flexibility of rules.

For the BSP and VIP video processors, C compilers were also developed. The

compiled code met all code size and performance constraints. Although we have

no comparisons with hand code, this is a positive outcome of the previous bench-

mark which led to a decision by the design team to write all the code in C.

Conclusion.The strength of the rule-driven approach for the operators of the SGS-

Table 6.5Code size results of FlexCC for the SGS-Thomson IVT MSQ

H.261 Example
Number of

C-lines

Number of
Instructions

(Hand)

Number of
Instructions

(FlexCC)

Percentage
Overhead

grabber 209 189 203 + 7%

motion 120 318 311 - 2%

idct_out 293 592 587 - 1%

host_interface 485 710 676 - 5%

Average Overhead - 1%



126 Chapter 6

Thomson Integrated Video Telephone is in its wide flexibility and rapid

set-up time. Each of these compilers required roughly one person-

month of development. The key lies in the well-bounded functionality

of the hardware of each processor. Each programmable operator per-

forms a limited number of tasks. This simplifies the development of the

compiler and all the software development tools. At the same time, the

performance of the hardware is quite high since it is streamlined for

certain operations. However, the performance streamlining is not

restrictive since flexibility is still available through the programming

of the embedded software.

6.3 The Thomson Consumer Electronic Components
Multimedia Audio Processor

The MMDSP multimedia processor was developed at Thomson Con-

sumer Electronic Components (TCEC) for high fidelity audio process-

ing including the decompression and decoding of MPEG2, Dolby AC-

3 and Dolby Pro-logic. In addition to being a stand-alone product (the

STi4600 [94]), the architecture can also be embedded as a core for

integrated products. The processor is used in applications such as Digi-

tal Video Disk (DVD), multimedia PC, set top boxes (satellite), High

Definition Television (HDTV) and high-end audio equipment.

This project begins with a history of using a well-defined design

process for an instruction-set architecture [12]. This methodology

includes the use of a special macro-assembler known asRTL-C. Source

code is written in a form which follows the syntax of C with a number

of strict guidelines. Variable names refer to specific registers of the

architecture and C operators map directly onto operations in the archi-

tecture. For operators that do not exist in C, built-in functions are used
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(see Section 4.2.1). Each line of C refers to parallel executing operations on the

processor.

While this style is restrictive for high-level coding, it has strengths over pure

assembly coding, specifically in the architecture refinement phase. The use of the

C language syntax allows a second path of compilation on the workstation in order

to validate the algorithm behavior. In addition, it allows the use of standard Unix

profiling utilities to measure real-time performance before the processor is

designed. These utilities include the profiling functions of thecc  andgcc  compil-

ers and profiling utilities such astcov , prof , andgprof . More about profiling

is discussed in Section 7.5.

While this approach is effective for architecture exploration, when no further

changes are made to the hardware design, software development productivity is

low since application code must be written on a level comparable to macro-assem-

bly. With the increasing complexity of the MPEG audio standards, the need for an

optimizing C compiler had arisen. The requirement for the compiler is that it allow

higher productivity by allowing code to be written on a more abstract level and that

it not compromise the quality (performance and size) of the code which can be

written at the assembly level.

 6.3.1  Architecture description

The architecture designed by TCEC is a Harvard, VLIW, load/store instruction-set

processor and is shown in Figure 6.6. Communication is centralized through a bus

between the major functional units of the ALU (Arithmetic and Logical Unit),

ACU (Address Calculation Unit), and memories. The controller is a standard pipe-

lined decoder with the common branching capabilities (jump direct/indirect, call/

return), but also including interrupt capability (goto/return-from interrupt) and

hardware do-loop capability. Three sets of registers are used to provide three nest-

ing levels of hardware do-loops; however, this can be increased without limit by

pushing any of these registers onto the stack.

Although the basic design of the unit can be compared to many classic proces-

sor architectures, there are certain features which allow it to perform well in this

application domain. The post-modify ACU includes custom register connections

and increment/decrement capabilities which allow addresses to efficiently traverse

the special memory structures. This includes not simply increment by one, but
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increment and decrement by selected constant values. As well, the increment and

decrement values may be held in dedicated registers. One last possibility is the

capability to use a constant increment value coming from the instruction register.

With this large number of possible operations that can be performed on the ACU,

certain combinations are chosen to be encoded in the instruction set such that they

execute in parallel to other operations.

The ACU has been designed to work in concert with the memories. The mem-

ory structure has been developed around the data-types needed for the application

and anticipating future applications to be run on the architecture. A first partition

separates memory into ROM mostly for constant filter coefficients, and RAM to

hold intermediate data. For each of these memories, several data types are avail-

able, some are high precision for DSP routines, others are lower precision mainly

for control tasks. In addition to the standard memory locations, there are memory-

mapped I/O addresses for communication with the peripherals.

The MAC (multiply-accumulate) unit was designed around the time-critical

inner-loop functions of the application. The unit has special register connections

which allow it to work efficiently with memory-bus transfers. In addition, certain

registers may be coupled to perform double precision arithmetic.

 6.3.2  Compiler environment

The rule-driven approach described in Chapter 3 was used to develop the compiler
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environment. In addition to the retargeting effort of the standard suite of tools, cus-

tom optimizations and interfaces were developed to provide a complete, firmware

development environment. Some of these are custom optimization modules

required for higher performance; many of these are simply tools required to inter-

face into the design environment of the hardware team. The complete environment

is shown in Figure 6.7.

Custom Data-type Mapping.For this architecture, the first key item to resolve

was the support of the custom memory structure. This memory structure posed a

unique challenge which stems from the multiple data-types and memories with

varying addressing strides.

Inherently, the retargetable compilation system handles multiple memories and

multiple data-types. However, it is required that all memories be of the same bit-

width. This implies that data-types of increasing widths take either the same or

more memory spaces. For example, if there are three data typesdtype1, dtype2,

dtype3 where the corresponding bit-widths are such thatdtype1 ≤ dtype2≤ dtype3.

This implies that ifdtype1 takes 1 memory space and dtype2 takes 2 memory

spaces, thendtype3 must take 2 or more memory spaces. For this architecture, this

is not always true. There exists a larger data-type (dtype3) which takes fewer mem-

ory spaces than a smaller data-type (dtype2). It is in a separate memory space and
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designed this way in order to meet the hardware timing requirements.

Many solutions were proposed. The first was to change the hardware. This was

not possible because of timing restrictions. The second solution was to extend the

memory handling of the compiler. A proposal was written for this solution which

was to take several weeks to implement.

Instead of this solution, a third one was adopted. Although it took some time to

conceptualize, it required only a small change to the compiler and took a relatively

short time to implement. The details are somewhat complex, but the basic principle

is as follows. The solution was to make the compiler interpret the larger data-type

(dt3) as a smaller data-type (dt2) and vice-versa. Therefore, the smaller data-type

would use more memory spaces than the larger data-type. The solution had only

small side-effects. One was the requirement to make a small change to the com-

piler in interpreting constants so that constants used with the larger data-type were

not chopped prematurely. A second concerned automatic variables placed on the

stack, which would result in the waste of some memory spaces in some cases. This

was partially resolved by providing some simple coding style rules.

Data-flow Optimization. As shown in Figure 6.6 the target architecture offers a

considerable amount of parallelism. For example, the ALU and the ACU can work

in parallel if they do not occupy the data bus at the same time. The instruction for-

mat provides orthogonal fields for parallel operations, so that compaction is rather

straightforward (see Section 2.5 and Section 3.3.4). However, there are cases were

data-flow optimizations must be performed in order to best exploit the available

parallelism. The most important one is related to data moves within the ALU regis-

ters, which can be implemented either through the ALU, or through the data bus.

The best choice is the one that allows another operation to be performed in parallel

with the move, e.g. an ALU operation if the move is performed through the data

bus, or any other operation occupying the data bus if the move is performed

through the ALU. A custommove optimizer was implemented to improve the

results of classic compaction. The utility keeps track of the operations that can be

implemented in parallel with any move, while keeping track of the data-dependen-

cies. It then selects the best move operation by evenly distributing the resource

occupation, maximizing the potential parallelism, which is physically done later in

the compaction phase.
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Post Compaction.Although the processor has a 61 bit instruction word, the high

amount of parallelism means that not all processor operations can be coded orthog-

onally. This means that certain sets of operations are chosen for parallel operation,

while others must be sequential. In addition, the designer has chosen to implicitly

encode operations into the instruction word by imposing restrictions on register

usage, functional units, data-paths, etc.

This processor has a few encoding schemes which are beyond the capabilities

of the compactor described in Section 3.3.4. To enhance the capabilities, a post-

compaction phase was added which immediately follows compaction. This post

compaction phase is built upon the peephole optimization approach. Rule are pro-

vided which search for sequences of assembly operations and replace these

sequences with compacted sequences. Resources may be defined as part of a rule

so that no data-dependencies are violated during compaction. We applied the post

compactor to the specific encoding restrictions specific to this instruction-set. It

performs well for all those regions of code where optimization is possible; how-

ever, the classic problem of coupling with other phases of code generation

remained (e.g. register assignment is determined before compaction). While this

cannot be avoided, we have found that the problem occurs rarely in practice.

ROM Generation and Custom Linker. Customizing the ROM contents for both

the program and data memories was done to interface to the hardware environ-

ment. This was a straight-forward task of format conversion and was anticipated

from the beginning of the project.

What was not anticipated was the development of a custom linker to integrate

the macro assembly code (RTL-C) with the C application code. As explained ear-

lier, the hardware refinement was done by means of writing time-critical portions

of the code on a low level (RTL-C). This historical code investment is tapped only

by integrating it with the application code written in C.

The linking strategy which was developed is shown in Figure 6.7. The binary

code produced by the RTL-C compiler is treated as absolute data in a specific loca-

tion. The assembler passes this block along with the code produced by the retarg-

etable compiler to the linker. Since the code produced by the retargetable compiler

is relocatable, the linker is able to find an absolute position other than the position

of the RTL-C code.
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Bit-True Library Development. Our methodology includes a path to compilation

on the workstation for validation of the compiler and simulator, as described in

Section 4.3. For algorithm verification, this is also an important path since compi-

lation and execution on the host is typically an order of magnitude faster than exe-

cution on the instruction-set simulator.

For compilation on the workstation, the behavior must match the bit-true

behavior of the processor. This implies the provision of a C library for the worksta-

tion which contains functions for each of the built-in functions defined for the

retargetable compiler. For this architecture, the most important of these are the

multiply-accumulate functions which have different behaviors depending on the

data format being used. In addition, some functions perform automatic rounding

and limiting operations.

Source-Level Debugging.The instruction-set bit-true model, developed to simu-

late the processor architecture, was implemented with a standard interpretative

interface. It contains a set of interactive textual commands to run simulations,

watch registers and memory contents, load data-files, etc.

Although it was not a priority at the departure of this project, a debugging

interface for running the instruction-set simulator was desired. However, as the

tools were maturing, this interface was re-evaluated as an essential part of the envi-

ronment. It was the important piece that allowed the verification of correct opera-

tion of both the compiler and the instruction-set simulator.

The debugging interface was developed as an extension to the popular editor

Emacs. It runs both under GNU Emacs (available from the Free Software Founda-

tion [116]) and XEmacs (available from [122]). It is based on the GUD (Grand

Emacs
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Instruction-set simulator

GUD Library
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Memory Contents
Symbolic Map File

auto program/data
memory load

auto source file
retrieval and
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Figure 6.8Debugging interface for the MMDSP C compiler
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Compiler
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Unified Debugger) library which comes with Emacs. GUD also has similar inter-

faces for other debuggers (e.g.gdb , sdb , dbx , xdb , perldb ). The interface is

capable of setting break-points, cycle-stepping, C line-stepping, watching/printing

registers, and printing global variables. The interface also includes an automatic

retrieval of the appropriate source file with automatic C line indications as shown

in Figure 6.8.

To our surprise, only a minimum of source-level debugging information is

needed in the symbolic map file to have a usable system (generated bysinfogen in

Figure 6.7). The first version of the debugger contained only source line number

information. This allowed running of a simulation by stepping through the source

code as well as to set and run to break points, ensuring the correctness of the con-

trol-flow which was generated by the compiler. The second version of the debug-

ger also contains global variable information.

Lessons in HW/SW Co-development.Throughout the development of this

embedded system, a high interaction between the hardware and software teams

took place. In addition to the high educational value of this concurrent design exer-

cise, one main conclusion can be stated. Each side of the development has its set of

complicated constraints. For problems on one side of the coin, the only way to

reach a change on the other side is to push a little until the other side either finds a

second way within his constraints, or pushes back.

This scenario was indicative in finding a solution to the memory and data-type

problem described earlier. From the software side, the simplest solution would

have been to change the hardware; however, from the hardware side, the simplest

solution would have been to change the software. A formal negotiation following a

study of the difficulties on each side was needed to resolve the problem, which by

chance fell on the software side.

A similar issue arose which involved the operation of the program stack

pointer. The original hardware operation of the pointer caused some very ineffi-

cient operation of function calls and returns on the compiler side. This would have

resulted in slow operation and a waste of either program or data memory. Again,

the easiest solution was to modify the operation of the hardware. In this case, this

was a simple change in the hardware and was immediately carried out.

There are no straight-forward answers in the process of concurrent hardware/
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software co-design. The process is an on-going challenge of staying within the

constraints of both sides. The important aspect is a high-level of communication.

And, at the very least, the interaction between the hardware and software teams

allows solidification of the instruction-set specification, which serves as the formal

contract between the two teams.

 6.3.3  Experimental results

Compiler Validation. The compiler validation strategy that was used is described

in Section 4.3. A set of validation tests was assembled in various categories which

are summarized in Table 6.6. The first categorization breaks up the tests into two

large categories: tests which can be used by a broad range of architectures, and oth-

ers specifically for this architecture. The second categorization separates unit tests

and full algorithmic type of tests.

Over 12000 lines of C code were run through the validation system, covering

all the functionality of the processor that was expected to be used. This validates

the stream of the firmware development environment including the retargetable

compiler, instruction-set simulator, and bit-true library.

Table 6.6Compiler validation tests for the TCEC MMDSP

Type of Test Category Operations, Functions
Number of

C lines

Generic ANSI C Unit Tests bit-op, arith, relation,
control, stack, ....

8742

Integration Tests bsearch, bubble, btree, gcd,
wordcount, malloc,
charcount, initptr

2842

Architecture
Specific

Low/Medium
Level Unit Tests

hardware loops, built-in func-
tions, register sets,
special registers

919

Application
Example

FFT 381

Total 12884
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Compiler Results.In successfully retargeting the compiler to this processor, the

requirements set out at the beginning of the project were met. The compiler sup-

ports various levels of coding for different types of algorithms. We were able to

evaluate the effects of these coding levels on two examples which were manually

coded before the availability of the retargetable compiler. These results are shown

in Table 6.7, which shows that for a high-level coding style a code size overhead of

26% is obtained. For a mid-level coding style, a code size overhead between 0.5%

and 11% is obtained. The mid-low level coding style matches the code size of the

manual code. While level 1 is the ideal level in the interest of clarity and portabil-

ity, we have found that a mixture with levels 2 and 3 are necessary in time critical

portions of the algorithms. For portions of the code which are not time critical,

level 1 provides adequate code quality. It is interesting to note that level 4 (assem-

bly-level) was never necessary, although it is a feature provided by the compiler.

Recap of Human Effort.Table 6.8 shows a breakdown of the effort spent on the

various activities in the development of the compiler environment. The strong

message from this breakdown is that roughly 30% of the effort was spent on vali-

dation of the compiler. This is an essential part of the design flow.

Summary. The MMDSP firmware development environment includes a retargeta-

ble compiler, an instruction-set model, a source-level debugger, a validation strat-

egy, and interfaces into the hardware environment.

Table 6.7Code size results of FlexCC for the TCEC MMDSP

Example
Number of
Instructions
Hand RTL-C

Number of Instructions
FlexCC

Percentage
 Overhead

depack 80 High-Level (1) Source:
101

+26%

Mid-Level (2) Source:
84

+0.5%

Mid-Low Level (2-3) Source:
79

-0.1%

FFT 235 Mid-Level (2) Source:
261

+11%

Mid-Low Level (2-3) Source:
228

-3%
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The key lessons learned in this project are as follows:

1. Full environment: Although the compiler is the enabling technology, other

tools are important to support the entire design activity. An instruction-set sim-

ulator and interfaces into the hardware design environment are critical parts.

As well, the value of a source-level debugger cannot be underestimated.

2. Validation: A thorough validation test suite is mandatory, independent of the

compiler approach. This constitutes nearly one third of the development effort,

which includes the development of a bit-true library. If the application algo-

rithms are available, these are of course the best validation benchmarks.

3. Compiler provision for low-level coding: Our experience shows that a code

size overhead of about 30% is common for a high-level coding style. Our les-

son was that the effort put into developing optimizations is a secondary priority

after the requirement of the compiler to handle low-level coding styles. The de-

signer must have control over the compiler so that he/she can meet his/her tim-

ing constraints when the compiler results are not satisfactory.

4. Concurrent design: Hardware and software should be developed concurrently

in order to objectively evaluate the constraints on each. Concurrent develop-

ment between hardware and software teams is always profitable.

5. Techniques which allows higher levels of coding are needed: Although point 3

is the industrial reality, compiler research should continue to find techniques

which free the hardware designers from the software constraints.

6.4 Moving to higher coding levels

A behavioral level of C for embedded processors can only be supported by

Table 6.8Distribution of human effort by activity

Activity
Effort in

Person-Months

Compiler Suite Retargeting 3.5

Custom Compiler Development 1.4

Compiler Validation 2.5

Support / Integration / Porting / Documentation 0.8

Total 8.2
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advanced compiler techniques which perform transformations based on the con-

straints of an architecture. For an effective transformation, the key elements are an

architectural model and an explicit intermediate representation of the source algo-

rithm. This next section describes experimental results of the address generation

transformation for DSPs presented in Chapter 5.

 6.4.1  DSP address calculation: experimental results

For an early version of the processor architecture described in Section 6.3.1, exper-

iments were run using the ArrSyn array transformation approach. The specification

and internal representation for that architecture is shown in Figure 6.9.

Working with a target compiler similar to the one described in Section 6.3.2,

we compiled examples containing array references (1. High Level) with and with-

out the prototype ArrSyn utility. These examples include various DSP functions,

some specific to MPEG audio, others for standard DSP tasks such as interpolation

and noise addition. Table 6.9 shows code size results, while Table 6.10 shows per-

formance results. The values for Table 6.10 were calculated by assuming one cycle

per instruction multiplied by the number of times a basic block was executed. This

provides a first estimate of the performance, not taking into account conditional

paths.

Table 6.9 and Table 6.10 show that a significant improvement in both the code

size (23% reduction) and the performance (39% speed-up) resulting from the

ArrSyn transformation. The explicit pointer addressing in the C code translates

into a better utilization of the address calculation unit. Note that in these examples,

Figure 6.9ArrSyn ACU specification for TCEC evaluation architecture

ACU_REGISTERS
{
  ADDRESS: AX1, AX2, AX3,

AK1, AK2;
  INDEX: IX1, IX2, IX3;
}

ACU_OPERATIONS
{
  AX1 += IX1;
  AX2 += IX2;
  AX3 += IX3;

  AK1 += IX1;
  AK2 += IX2;
}
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the hardware do-loops which are available on the architecture have not as of yet

been utilized. This will lead to an additional improvement because of both the

replacement of expensive branch instructions for hardware loop instructions as

well as the removal of looping variables.

The conclusion that can be drawn from these results in combination with the

results of Section 6.3.3 is that the calculation of addresses is the largest major fac-

tor which results in the inefficient compilation of C code in a high-level style for

this type of architecture. We believe that this also applies to many DSP architec-

tures with post-modify address calculation units. Furthermore, we have shown

using the ArrSyn prototype that it is possible to improve the results of compilation

with an automatic high-level transformation based on an architectural model.

6.5 Conclusion: compiler case studies in industry

This chapter has presented several case studies applying compiler techniques to a

Table 6.9Code size results of C compiler augmented by ArrSyn

Example
Number of
Instructions
C compiler

Number of
Instructions

ArrSyn + C compiler

% Improvement
in Code Size

simple_loop 31 21  32%

median 83 56  33%

interpolate 72 49  32%

addnoise 59 48  19%

alloc 80 75  6%

Total 325 249  23%

Table 6.10Performance results of C compiler augmented by ArrSyn

Example
Number of cycles

C compiler
Number of cycles

ArrSyn + C compiler
% Improvement

in Time

simple_loop 103 69  33%

median 715 350  51%

interpolate 1017 499  61%

addnoise 1219 802  34%

alloc 10309 8526  17%

Average  39%
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wide variety of embedded processor architectures in the fields of telecommunica-

tions and multimedia. Two compilation approaches have been used: model-based

and rule-driven. While it is difficult to make a direct comparison of the two

approaches as different architectures have many different needs, we can present

some advantages and disadvantages of each approach. We attempt to keep our

objectivity; therefore, comments will be restricted to the fundamental principles of

each approach as there are many alien factors which contribute to the development

of a project including software engineering and maintenance, company directions,

and the constant changes to a development team.

It is possible to develop compiler algorithms well-adapted to architecture styles

with a model-based approach. With a proper abstraction of the processor, a com-

piler can map source algorithms onto the architecture in a manner best suiting the

data movement allowed in the structure. The ASIP developed at Nortel displayed a

set of register characteristics canted toward special-purpose needs. As the Code-

Syn compiler allows the description of register classes and structural abstraction of

the architecture, it was possible to develop an instruction-set selection and register

assignment approach driven toward special purposes. For a traditional approach to

compilation, this task was shown to be very difficult as the homogeneous treatment

of registers meant that registers in special roles could only be treated through reser-

vation. The CodeSyn compilation results were shown to approach the quality of

hand coded assembly programs, although further optimizations would be neces-

sary to achieve the full performance of manual code.

In a setting where a compiler service is provided for a wide range of processor

styles, the rule-driven approach has the advantage of covering the largest spectrum

of machine types. It was shown to be possible to build compilers for architecture

types varying from microcontrollers to VLIW DSPs. The approach has shown that

the prototyping period is relatively short when setting up a compiler for a mini-

mized architecture. For small architectures geared for very specific tasks such as

the operators of the ST Integrated Video Telephone, retargeting time was shown to

be on the order of one person month. However, the retargeting time has also been

shown to be a strong function of the complexity of the architecture. Larger archi-

tectures such as the TCEC MMDSP supporting many data-types, multiple memo-

ries, and special operations needed a significant effort of approximately eight

person months. In addition to the development time, roughly one third of the
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development time is needed for validation, independent of the compiler approach.

Furthermore, while the rule-driven, open programming based approach allows

a development team to offer a compiler service to a wide range of processors, the

support of architecture exploration is relatively low. Designers are less willing to

modify an instruction-set specification for a compiler which has taken many

months to develop. The user reconfiguration of a compiler for architectural modifi-

cations can only take place through a simplification of the instruction-set specifica-

tion.

It is the author’s belief that approaches founded upon architectural models

describing the behavior of the processor are key to user retargetability. In the pro-

totype work of the address calculation transformation ArrSyn, the strength of the

approach was shown to be in the resource-based analysis. The mapping of the

source algorithm to the target is best done using a behavioral abstraction of the

mechanics of the architecture. The compilation algorithms are then based on the

unique aspects of the processor operations.

On a final note, while model-based approaches show a great promise for a high

degree of both architecture-based optimization and the ability for architecture

exploration, we have learned from the experiences of using a rule-driven approach

that it is important to maintain flexibility. The variation in existing processor

design styles, architecture mechanics, special-purpose operations, and idiosyncra-

cies can only be described as immeasurable. By consequence, a compiler devel-

oper must beready for anything. Perhaps, a level of open programming which

allows rules to be incorporated into a model-based compiler may be an effective

route to the ultimate retargetable compiler. Just as embedded software allows late

design changes for the system-on-a-chip, rules could allow late design changes for

retargetable compilers!
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Chapter 7: Tools for Instruction-Set Design and
Redesign

While a retargetable compiler represents the principal implementation technology

for the design of embedded systems, design exploration tools are also of great use

for the development of a system. For example, a retargetable compiler does not

provide many metrics to the designer of the processor, to measure how well the

conception of the instruction-set has been done. Ideally, a maximum of feedback

indicating the static and dynamic use of instruction codes is the type of information

a designer would like to see during the design of the processor, and most certainly,

as the processor evolves and is reused.

This chapter presents two new instruction-set design aids which allow a

designer to analyze application code and conceptualize instruction level codings

for a custom processor. Furthermore, a profiling tool is presented which permits

algorithm exploration. The tools work together with a retargetable compiler meth-

odology to allow the designer to explore design solutions of the instruction-set.

7.1 Tuning an instruction-set for different needs

For consumer electronics applications in multimedia and telecommunications, the

most attractive feature of a programmable solution is the ability to track evolving

standards with the flexibility provided by software. However, at what cost does a

programmable solution have on the final product? Once in the product, the embed-

ded system has a program which isfirm, i.e. changed infrequently. Many questions

can be posed: Are there available instructions of the processor that are never used?

Is there hardware that could be taken out? Are there places where a new instruction

could significantly improve the performance of the code?

The root of the issue is that an embedded processor’s lifetime is extremely rich

and long. In addition to the original design, manyflavors of the architecture may

be spun off for different reasons such as: modified applications, low cost versions,
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and in particular reuse for other products. This idea is shown pictorially in Figure

7.1.

When a product hits its market window, typically, the project does not stop. A

designer may need to redesign a low-cost version of the product or simply need to

evolve the product. The designer is then faced with the challenge of better refining

the architecture with an understanding of how well it fits the existing application

code.

The needed tools in this area are those which furnish feedback of application

code on a given architecture. This is shown in shaded blocks in the diagram of Fig-

ure 7.2, which is a subset of Figure 1.6 in Chapter 1. Ideally, the analysis tools

should guide the designer by providing relevant statistics, and the possibility to

make effective design changes based on those statistics.

design minor change

design changes

HW

SW

I/S I/S

product

I/S

cost reduction

cost-effective
in market
window

product

I/S

design reuse

new product

Figure 7.1The rich lifetime of an embedded processor
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Figure 7.2Tools for the design exploration of instruction-sets



Tools for Instruction-Set Design and Redesign 143

7.2 Related work

Since the advent of instruction-set processors, quantitative approaches to architec-

ture design have been proposed [43]. While these pioneering principles still hold

for general computing systems, the constraints of embedded processor systems are

putting an even larger importance on performance related architecture improve-

ments.

The refinement of an instruction-set from a base superset of instructions have

been proposed by Huang [48] and Holmer [45][46]. The main idea is to determine

the most useful instructions from a base formula including parameters such as the

execution profiles of compiled benchmarks. A model of the architecture data-path

and the performance metrics allows the system to suggest good instructions to

keep and to remove instructions of marginal benefit. While the statistical use is an

important base principle, the approach has not yet been applied to embedded pro-

cessors with architecture specialization and real-time constraints.

A similar approach has been proposed for the implementation of ASIP archi-

tectures in the PEAS system [4][50]. This approach attempts to minimize both

software and hardware costs based on the compilation of source algorithms. A set

of primitive operations allow compilation by the GNU gcc compiler, while a basic

and extended set of operations may be included, based on the performance mea-

sures. For an objective area and power constraint, the performance is maximized

by the system. However, optimization of the architecture below the primitive set of

operations is not possible. The work of Breternitz and Shen [16] concentrate on a

similar approach which uses a scalable Wide Instruction Word (WIW) architecture

as an architecture template. A compiler and hardware allocator make the choices of

functional units to include in the architecture.

The high expense of program memory for embedded processors has given rise

to efforts of program width reduction such as instruction-word encoding (see Sec-

tion 1.3.2). Some have approached the problem using a technique which reduces

the width of the final program memory by exploiting redundancy [89]. Assuming

all the application code is available, the entire program memory is divided into col-

umns. Each instruction column which can possibly be generated from another

instruction column is eliminated. This can be done through small hardware modifi-

cations such as exchanging multiplexer control lines and adding small pieces of
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logic. Nevertheless, this is alast ditch optimization that is not likely to allow the

compiler to add any new software.

7.3 Overall flow

This section introduces two prototype design aids calledReCode and ReBlock

shown in Figure 7.3. ReCode allows the exploration of the relationship between

the instruction-set and the corresponding application code of custom embedded

processors. After analyzing the instruction-set and code, the designer can then use

the rich set of editing functions to adjust the instruction set to the application code.

The designer can make gains by removing unused hardware, relieving bottlenecks

in the hardware, removing unused instructions, and adding higher performance

instructions. In conjunction, the utility checks the consistency of the instruction

word while changes are being made. The tool works together with the instruction-

set specification used by a retargetable compiler and can automatically regenerate

the specification changes.

In addition to static analysis of the application code, the tool can perform

dynamic analysis with the link to the second tool ReBlock. ReBlock is a profiler

requiring only the retargetable compiler and a host compiler for profile informa-

tion. It automatically performs links between the microcode and the basic block

executions on the host. Functions are available which estimate real-time perfor-

mance based on the host execution. ReCode is able to work together with ReBlock

to perform dynamic analysis of the instructions on either the basic block level or

Field & Assembly
Specification

Basic Block
Frequency

Instruction-Set Host
Compiler

host

C source

Retargetable
Compiler

microcode

executable

ReCode ReBlock

Figure 7.3ReCode & ReBlock: tools for the analysis of application code.
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globally on a set of application files.

7.4 Analysis of application code

The user interface to ReCode is window-based and visually displays instruction-

words in table form. The tool shares the instruction field and assembly specifica-

tion file of the retargetable compiler. Alternatively, field and assembly encodings

may be entered manually through the graphic interface.

Figure 7.4 shows the main window which displays the instruction word of the

processor. Fields are shown as horizontal groupings of instruction bits with labels

such as ’XXX’ indicating the use of a set of bits within the instruction word. Each

field has a set of assembly codes, which correspond to an encoding of the field.

(Examples of assembly codes are shown in Figure 7.6.)

The user has a set of commands which allow him to navigate through the field

and assembly codings with an understanding of how the compiler uses the instruc-

tion-set. The compiler uses a set of micro-operations (MOPs) which expand into

the different instruction fields. Micro-operations are higher-level compiler opera-

tions which are described in Section 3.3.1. MOPs are displayed as a set of buttons,

each containing a function which highlights the expansion into the field entries of

the main window as shown in Figure 7.5.

Figure 7.4ReCode main window: display of instruction fields
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Following, fields and/or assembly lines may be shown or hidden from view

which allows the developer to isolate one section of the instruction-set that can be

worked upon. Analyses may be performed at this point and changes may be made

to the coding using a set of editing functions. An example of field and assembly

code isolation is shown in Figure 7.6.

Figure 7.5Expansion of micro-operations into instruction fields

Figure 7.6ReCode main window: isolation of fields and display of assembly
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There are two main categories of functions:

Analysis Functions:These functions show the relationship between the instruc-

tion-set and the application software:

• Static Use of Assembly Codes: The frequency in which assembly codes are

used may be generated in a distribution plot. Any combination of assembly

codes may be used to compose the search pattern. This search pattern is

matched to the machine code in vertical slices.

• Dynamic Use of Assembly Codes: Linking to the ReBlock profiler, dynamic use

of assembly codes may be shown in a distribution plot. This can be done on se-

lected regions in the code to resolve bottlenecks, or on all the application code

to identify critical points in the hardware.

The distribution plots are activated by a pull-down menu on each of the fields in

the main menu. Figure 7.7 shows an example of the pull-down menu and a distri-

bution plot for theALU_IMM_OP field combined with theimmediate_alu

assembly code of the instruction-set shown in Figure 7.6.

Static and dynamic analyses may also be done on resource activation fields, for

example, busses and register files. For example, the distribution of data which

moves from one register file to another over a data bus is information useful for the

hardware designer. This allows the identification of both low resource use and the

appearance of congestion spots.

Editing Functions: Working together with the analysis functions, the designer is

able to use the editing functions to modify the instruction-set according to his/her

requirements. These functions include:

Figure 7.7Field pull-down menu and static distribution plot
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• Consistency checking of assembly bit changes: The user is free to make changes

which when applied will be directly reflected in the specification file. Verifica-

tions are made after the application of changes. Shortcut button touches are pro-

vided for autocoding ascending, descending and other fill patterns as well as the

removal of unused assembly codes.

• Bit-field width reduction: Given a reduced number of assembly codes within a

field, the width of the field may be reduced automatically.

• Regeneration of the instruction-set specification. Following an interactive ses-

sion of ReCode, the instruction-set specification can be regenerated for the re-

targetable compiler. A repass of the retargetable compiler for all the application

code is then possible. The resulting code can once again be analyzed by Re-

Code.

7.5 Profiling without a simulator

Basic block frequencies may be generated by the profile function (option -a) of

many host compilers, including the publicly available GNU gcc [96]. This function

adds extra code to a source file which counts the execution of basic blocks. After

execution on the host, the frequency of occurrence of each basic block is written to

a file. These basic blocks can be linked to the basic blocks of the retargetable com-

piler machine code through the C line numbers intended for debugging. Figure 7.8

shows this process with an example.

Putting the pieces together allows the construction of a profiling browser: the

ReBlock profiling interface is shown in Figure 7.9. The left highlighted column

shows the correspondence to microcode addresses of the target compiler. The user

can see the number of microcode instructions which correspond to each part of the

C source. The second highlighted column shows the profile executions for each

basic block of the host execution. These two columns may be shown or hidden

from view allowing the interface also to be used as a simple editor.

As a consequence of the available information, this methodology can be used

to effectively estimate real-time performance. Counting the number of assembly

lines within each basic block and multiplying by the frequency gives the number of

instruction cycles to be executed. Subsequently dividing by the instruction clock

rate (either estimated or real) can give an excellent first order approximation of the
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final speed of the code. This real-time performance information can be used to

redesign either the processor or the algorithm. Note that this methodology gener-

ates an estimate of real-time execution without the existence of an instruction-set

simulator. This is important since the approach can be used in the design stage

before a simulator is implemented. Furthermore, long simulations would favor this

approach as an instruction-set simulator will run, at best, an order of magnitude

slower than execution on the host processor.

The method assumes that instructions have a fixed cycle count. For processors

with instructions of varying cycle count (e.g. CISC), a more precise correspon-

dence to the instruction-set is necessary. This would be possible with a precise link

to the instruction-set specification (e.g. via ReCode), but has not yet been imple-

mented.

The ReBlock approach produces an estimate of real-time performance which

does not take into account dynamic effects. For example, should the processor con-

tain an instruction or data cache, cache-misses would incur delays. Another more

common feature in embedded processors is a pipelined execution controller. Jumps

or branches of the program incur an instruction-cycle penalty if the jump is taken.

In ReBlock, a worst-case branch penalty model has been incorporated. Based on

the basic block profiling executions, all the points where a branch has been taken

are identified. The user can then specify the number of extra instruction cycles that

each branch may take. This worst case model is useful for determining the upper

and lower bounds on the total branch penalty.

This worst-case branch model does not take into account delay slots that the

compiler has filled for delayed branches and returns that may exist in the instruc-

tion-set. A more precise branch penalty model would be possible; however, this

requires a semantic knowledge of the branch instructions. This again could be fur-

nished by the instruction-set specification. In this case, a branch penalty would be

added only for those instructions which trigger a pipeline stall.

7.6 Experimental results

Preliminary testing of ReCode and ReBlock has been done using five existing

embedded processors, four from SGS-Thomson Microelectronics and one from

Thomson Consumer Electronic Components. These processors include three
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blocks of the Integrated Video Telephone developed in the Central Research &

Development Group at SGS-Thomson and described in Section 6.2.1: the BSP

(Bit-Stream Processor), the MSQ (MicroSeQuencer), and the VIP (VLIW Image

Processor); the DAP (Digital Audio Processor) developed in the Dedicated Prod-

ucts Group of SGS-Thomson; and the MMDSP developed at Thomson Consumer

Electronics Components described in Section 6.3.1.

This section will show just a skeleton of the possible uses of ReCode and

ReBlock, illustrating with examples from the aforementioned architectures. The

following does not provide suggestions for changes to these architectures, instruc-

tion-sets, or the algorithms. The compiler environments and the application code

are all in some intermediate phase at the time of this writing. The examples are

merely illustrations of the use of the ReCode and ReBlock tool set so that design-

ers can perform similar analyses.

 7.6.1  Operation instruction code usage

The ReCode utility may be used to determine how well instruction codes for a

given machine are matched to the application code. We present examples using the

MSQ architecture of the ST IVT and a number of H.261 algorithm benchmarks

covering 1825 lines of assembly code:grabber , idct_out , motion , sched-

uler , polling_loop , andhost_if . Figure 7.10 shows examples from two

of the main functional units of the architecture, the ALU (Arithmetic and Logical

Unit) and the branch commands of the sequencer unit. For the ALU, Figure 7.10 a)

shows that both the ADDA and ANDA operations are entirely unused in all of the

application code. Because immediate operations ADDI and ANDI are used in the

software means that the hardware operations cannot be removed from the func-

Figure 7.10Distribution usage of assembly instructions for the ST IVT MSQ core.

a) ALU field statistics b) BR field statistics
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tional unit; however, the designer can make the consideration of removing these

assembly codes for use elsewhere or for eventual reduction of the instruction

width. The second aspect of note is that the LDA (load accumulator) and STA

(store accumulator) codes are used more than twice the amount of times than any

other operation. This high memory access for the accumulator may be a reason for

considering an increase in the number of accumulators.

For the BR field (Figure 7.10 b), it is interesting to note that the BRA (uncondi-

tional branch) code is used nearly twice as much as any other branch code. This

could indicate to the compiler designer that branch or block reorganization optimi-

zations may be a wise area for investment. On the other hand, it could also indicate

to the hardware designer that a delayed branching mechanism may be of use.

For the MMDSP processor, we conducted similar experiments on a small set of

available examples (574 assembly code lines). For the DCU (data calculation unit),

we found that only 22 of the available 64 operations were used. This means that a

reduction of the field width by one (from 2^6=64 to 2^5=32) would limit the num-

ber of operations supported. However, it would still leave 10 opcodes for opera-

tions in the application code yet to be written. In further investigations, we

performed an analysis of immediate operations with the DCU. These operations

take one of 2 operands directly from the instruction-word. The analysis showed

that although the unit is capable of routing the immediate value from either the left

or right side of the DCU, it only ever uses the left side for immediate values.

Removal of the immediate to the right of the DCU would give a one bit savings,

with the additional savings of hardware. Using only the left immediate of the DCU

is a heterogeneous characteristic of the compiler which illustrates an area of possi-

ble instruction-word savings.
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 7.6.2  Data occupation and movement

ReCode can be used to statistically measure the characteristics of a compiler-

machine relationship. For example, the register file usage indicates how data is

routed through the machine according to the application code. Results indicate two

things:

• How the compiler uses the available registers.

• How restrictive the instruction-set of the machine is on register usage.

Analyzing the MMDSP architecture, we show a part of the register file usage

of the DCU (Data Calculation Unit) in Figure 7.11. The left plot (Figure 7.11 a)

shows the use of registers in the left source register file and the right plot (Figure

7.11 b) indicates the register usage of the output of the DCU. For the left source,

removing the number of times the DCU was not used (NOP) from the default case

(RL0) still leaves RL0 used roughly 100 times, which is 5 times more than any of

the other registers (RL6 is not used at all). This is partly because the processor has

special-purpose uses of RL0, and partly the choice of the register allocation of the

compiler. For the destination registers, the distribution is also leaning toward the

first registers in the set; however, it has a much more distributed use of the avail-

able registers than the DCU input. For this set of code, the input of the DCU

requires much less freedom of register choice than the output. This is an interesting

result for both the compiler developer and the hardware designer who may want to

measure the trade-off of constraining more registers for other special purposes.

In further analyses of this architecture, we turned our attention to general data

Figure 7.11Static DCU register usage distribution

a) Left Source Registers b) Destination Registers
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movement. This processor allows register to register movement by means of a bus.

This includes registers of the DCU, ACU, sequencer unit and processor interface.

The bus instructions use 2^6 + 2^6 = 64 + 64 => 12 bits to specify the transfer,

meaning 64 registers may move to any other 64 registers. Again, doing similar sta-

tistics on the application code, we determined that only 24 distinct registers are

used as sources and 30 distinct registers are used as destinations. This means that

by choosing a good subset of transfers, this field can possibly be reduced to 2^5 +

2^5 = 32 + 32 => 10 bits. Of course, this must be done with care, always allowing

the needed data movement used by the compiler. Other (possibly slower) data

paths exist in the architecture and can be easily matched to the less frequently used

paths in the application code.

 7.6.3  Algorithm and instruction-set profiling

Using the ReBlock profiling approach described in Section 7.5, a number of per-

formance calculations can be made on source algorithms very early in the architec-

ture development. For example, Figure 7.12 shows a report summary generated by

ReBlock after an interactive use of the profiler for the Eurosound application run-

ning on the SGS-Thomson Digital Audio Processor (DAP). The top part of the

ReBlock Report Summary  Date: 12/3/97  Time: 17:8:58

 Directory: /users/sls/liem/ReCode/Eurosound

 C File: stv.c Date: 5/1/97 Time: 10:21:39
 Basic Blocks File:bb.out Date: 5/1/97 Time: 11:16:42
 Symbolic Info:stv_dap.procDate: 5/1/97 Time: 10:58:49

HISTORY:
Performance estimate 1:
 Block of C lines: full file
 Total: 5319154 cycles
 Total instructions: 924 micro lines
 Clock: 28000000 Hz
 Time: 0.18996978 sec

Performance estimate 2:
 Block of C lines: full file
 Total: 5815830 cycles
 Total instructions: 924 micro lines
 Clock: 28000000 Hz
 Time: 0.20770821 sec
 Worst case branch model: 2 extra cycles per branch
 Branch penalty: 496676 cycles = 8.54%

Performance estimate 3:
 Block of C lines: 263 to 370
 Total: 719015 cycles
 Total instructions: 107 micro lines
 Clock: 28000000 Hz
 Time: 0.02567910 sec
 Worst case branch model: 2 extra cycles per branch
 Branch penalty: 161132 cycles = 22.41%

Figure 7.12Report generated by ReBlock profiler on Eurosound application
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report shows the files being analyzed and their respective timestamps, while the

bottom part of the report contains information on which performance analyses

have been run. The first estimate shows the full C file being analyzed and a calcu-

lation of the real-time performance based on the user-specified clock. The second

estimate shows the same analysis, this time with the addition of the worst-case

branch penalty (2 cycles per branch) which would account for nearly 9% of the

total application performance. The third estimate is focused on a region of C code

(lines: 263 to 370) where the worst-case branch penalty would account for over

22% of the performance of this region. The user is free to make estimates on any

parts of the code, playingwhat ifgames with the parameters such as the clock fre-

quency and the number of cycles for each branch penalty.

In addition to speed calculations, the link from the instruction-set analysis tool,

ReCode, to the profiler, ReBlock, allows the statistical use of assembly codes to be

augmented by their dynamic use. For example, in Figure 7.13, we show both the

static versus dynamic use of ALU immediate operations in the same ST DAP

architecture for the Eurosound application. Notice that although theequi  instruc-

tion appears the most frequently in the microcode, it is executed many thousands

of times less than the other instructionsandi  andsubri . These may be impor-

tant measurements for improving the performance of the instruction-set architec-

ture.

7.7 Chapter summary: instruction-set exploration tools

This chapter has presented a toolset for instruction-set design of embedded proces-

sors. These design aids serve to support the naturally long lifetime of an embedded

processor architecture as it evolves from an initial product to a cost reduction and

Figure 7.13Example of static versus dynamic instruction statistics for DAP architecture

a) Static use of ALU immediate b) Dynamic use of ALU immediate
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is possibly reused for new products.

The ReCode instruction analysis tool allows a designer to perform measure-

ments of the instruction-set of an embedded processor with regard to the existing

application code. The analysis functions include the ability to show distribution of

assembly codes, both in static and dynamic form. Using this information, a set of

editing functions are provided to the designer such that the instruction encoding

may be modified and the specification for the retargetable compiler be automati-

cally regenerated. At this point, a compilation may be re-run for the modified

instruction-set.

The ReBlock profiling tool allows performance analyses of microcode, linking

the results of the retargetable compiler with the execution on a host. Thus, the

dynamic information is generated without the use of a dedicated simulator, which

means the analysis can be done before the simulator is implemented. Furthermore,

the execution run-time would normally be an order of magnitude faster than inter-

pretive instruction-set simulation. The ReBlock profiling information is also used

to support the dynamic analysis functions of ReCode.

Experiments have been done with a set of existing processors. Example analy-

ses were presented showing results which are both useful for the embedded system

designer and programmer. These include aspects of functional unit usage, register

and data-bus occupation, and performance-oriented calculations including worst-

case branch penalties and dynamic use of instructions. The information generated

by these analyses may also be useful to the compiler developer wishing to improve

his/her algorithms.

Many avenues for future work lie ahead. The natural first step is to conduct

more experiments with new architectures. The tools are currently being explored

by two design groups at SGS-Thomson Microelectronics. With the number of pos-

sible new features, additions will be made with priority to designer requests. The

set of current requests include the addition of an application programming inter-

face (API) to ReCode, more possibilities on the reorganization of statistics, and the

ability to perform critical path analysis with ReBlock.

As well as these incremental improvements to the toolset, the approach has

opened some avenues for larger projects in ASIP design. One of the most tedious

tasks in the implementation of the processor hardware is the HDL description of
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the instruction-word decoder. This is especially true if there are changes to the

instruction-set during the refinement of the architecture and throughout its lifetime.

A link from the instruction-set to the functional unit behavior of the architecture

could possibly be a way to generate this description.

A second project is in the area of low power coding. Given that both the

instruction-level coding and the execution profiles of the application are available

with the ReCode/ReBlock toolset, it would be possible to implement an instruc-

tion-set recoding algorithm which minimizes the power utilization of embedded

software on a processor. This could even be brought one step further taking into

account the power draw of functional units, should the previously mentioned

project be in place. The largely untouched domain of ASIP design is open for new

ideas in research and development.
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Chapter 8: Conclusion

8.1 Summary and contributions

This book has presented a wide range of aspects regarding the application of com-

piler methodologies to embedded processor systems. Retargetable compilation

techniques have been shown to be an important design technology for the con-

straints of today’s embedded architectures. To begin, an evolution of embedded

processor architectures was presented, showing the application pull on the charac-

teristics of instruction-set architectures. It is recognized that real-time constraints

put significant demands on the performance of embedded processors such as DSPs.

This is manifested in RISC, pipelined, and VLIW principles for architectures with

specialized functional units and register structures.

Furthermore, memory real estate is being acknowledged as one of the most

important resources, especially for the system-on-a-chip. This has given rise to

instruction-word encoding schemes for DSP architectures which improve the pro-

gram memory utilization. For DSP as well as MCU architectures, instruction-word

minimization is also manifested in unusual program memory management like

program paging.

These new embedded architectures have brought about new challenges for

modern compilation techniques. An overview of traditional and emerging compiler

techniques have been presented with respect to these embedded processors. A

wealth of appropriate techniques have been discussed; however, a number of areas

need to be further researched and developed.

Following, two practical retargetable compiler systems were presented. The

CodeSyn compiler developed at Bell-Northern Research/Nortel is based upon a

model of the architecture including the behavior of instructions, the structural con-

nectivity, and a set of resource classes. The advantage of the approach is the ability

to automatically retarget the system by changes to the model. The algorithms for

compilation are all centralized by the architecture model. In particular, enhanced
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pattern matching and selection algorithms as well as register allocation and assign-

ment algorithms for special-purpose registers were shown possible. A disadvan-

tage of the approach is that processor targets must lie within the boundaries of the

architecture model and any peculiarities of a new target must be treated by updat-

ing the algorithms.

The FlexCC compiler used by SGS-Thomson Microelectronics is based on a

rule-driven approach. The compiler has many traditional compilation steps that

have been reorganized in an open-programming environment. Each step allows the

execution of parameterized rules which manipulate the transformation of code to

the target. The advantage of the approach is the flexibility for a very wide set of

architectures. Standard rules can be put in place for most cases, while the devel-

oper can concentrate on processor idiosyncracies. Results are heavily dependent on

the development effort put into optimization and retargeting time is strongly

dependent on the complexity of the architecture. A disadvantage of the approach is

that it requires an expert’s development time, which makes architecture explora-

tion difficult.

Next, practical issues for firmware development environments were discussed.

These include language support, coding styles, compiler validation strategies, and

source-level debugging. All of these are important considerations for projects in

industrial environments.

In Chapter 5, an approach was proposed targeting the address calculation units

of DSP architectures. As memory access is a particularly important performance

consideration for signal processing, this type of transformation is critical for an

effective compiler. The approach introduces a flexible architectural model and a

compiler transformation for address generation. The system can be easily inte-

grated into any target compiler to improve performance results. Furthermore, the

simplicity of the specification allows a designer to do architecture design space

exploration.

Chapter 6 summarizes the application of many of the principles and techniques

presented in Chapters 2 to 5 to a set of processors used in industry. The processors

include a telecommunications ASIP developed at Nortel, a set of operators for the

Integrated Video Telephone at SGS-Thomson Microelectronics, and the MMDSP

developed at Thomson Consumer Electronics Components. The main conclusion
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is that model-based transformations show a promising avenue for high perfor-

mance compilation to embedded processors. However, it remains important to

have a significant level of open-programming, the strength of the rule-driven

approach. A number of lessons came out of the experiences including the need for

full firmware development environments, the need to reserve approximately one

third of the development time for validating a compiler environment, the need for

the low-level coding style support in a retargetable compiler, and the need for high

communication of hardware and software development teams.

Finally, Chapter 7 introduces a set of application and architecture exploration

tools which provide feedback and analyses to the designer of an embedded system.

These tools allow the statistical analysis of instructions in application code in both

static and dynamic modes. Furthermore an approach for performance profiling was

proposed which does not require the full development of an instruction-set simula-

tor. The methods fit into a retargetable compiler methodology providing a means

for exploration to the embedded system designer.

For the area of embedded system design, the projects and developments

described in the text have made its main contributions in three principal areas:

• Practical methodologies and experiences with retargetable compilation in indus-

trial applications of embedded systems.

• A model-based transformation which performs efficient address generation for

post-modify based address calculation units.

• A set of exploration tools which permit a designer to refine either an architec-

ture or algorithm within its application domain.

8.2 What’s ahead?

In comparison to compilation for general purpose processors, thesavoir-faire in

retargetable compilation for embedded processors is currently in its infancy. The

industry is slowly making steps which are improving the situation; however, the

advances can only be described as acrawl in comparison to the advances in the

technologies of embedded processor architectures. Today’s popular solution to the

poor state of embedded software development tools is simply to hire more engi-

neers who inevitably code on the assembly level. It is surprising to see the large

number of job opportunities today for engineers with embedded processor assem-
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bly experience. As more and more assembly lines of code are written, companies

become locked to old architectures, systems become more sophisticated, and the

embedded software crisis mounts. A revolution of compilation techniques is

needed to revise the electronic industry’s traditional view of embedded software.

On the other hand, the designers of embedded processors are the first to see the

importance of software tools for both the designwith and the designof embedded

architectures. Even they are beginning to put together their own embedded soft-

ware tools from scratch. The need for tools for embedded processor systems cou-

pled with the emerging popularity of hardware-software co-design leaves us little

doubt that the revolution in design technology for embedded processors will

indeed arrive.

How this technological revolution will present itself is an open question. The

research community appears to be resting its hopes on the path toward completely

retargetable compilers, where a simple specification of the processor is enough for

the tool to reconfigure all its transformations. I remember some discussions back at

Nortel wondering how far we could take this concept. We imagined this ultimate

tool that could take anything a designer could stuff into it: behavioral descriptions,

RTL descriptions, netlists, even the chip itself plugged into a socket and -wham,

zap, presto- out comes a brand new optimized compiler for the hardware!

Having seen the wide variety of architectures that exist today, it is not likely the

case that this extreme goal will be achieved. If we were to compare retargetable

compilation to the growing area of behavioral synthesis, while they are analogous

on the level of techniques they perform their respective tasks based on two very

different premises. The behavioral synthesis processconstructs an architecture

from a set of components with a nearly unrestricted set of resources. The only con-

straints are those imposed by the designer, such as a time deadline or a power bud-

get. On the other hand, a retargetable compiler does not have the freedom to

construct. It is obliged toconform to the fixed architecture. The transformation

algorithms do not merely have constraints as objectives; these constraintsare the

specification! A programmable processor could function on any wide number of

principles that some ingenious (or nutty!) designer has dreamed up. The chances

that a compiler specification can adequately describe any possible processor design

style are slim.
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While we can abandon the idea of a fully retargetable compiler, we can well

imagine the possibility of restricted retargetability within architectureflavors.

Once one category of processors is handled well by a compiler, it is foreseeable

that flexibility be incorporated so that it can be parameterized; and therefore, the

range of compiler retargetability would be restricted to a well-known set. This

point makes Goossen’s work [36] on the classification of instruction-set processors

by their properties an important contribution.

Just as we identified the importance of customizing an architecture to the needs

of an application, software tools which can easily match the processor customiza-

tion through compiler parameterization will be an added competitive factor. By the

way, that applies not only to instruction-set processors but to any programmable

system design which includes hardware and software.
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Glossary of Abbreviations

ACU = Address Calculation Unit
ALU = Arithmetic and Logic Unit
ASIC = Application Specific Integrated Circuit
ASIP = Application Specific Instruction-Set Processor
BDS = BNR Data Structure (an internal form for the CodeSyn compiler de-

veloped at BNR/Nortel)
BNR = Bell-Northern Research (now Nortel)
BSP = Bit Stream Processor (an operator of the SGS-Thomson

Integrated Video Telephone)
CDFG = Control-Data Flow Graph
CISC = Complex Instruction-Set Computer
CODEC = Coder / Decoder
COFF = Common Object File Format (a debug format)
dag = directed acyclic graph
DAP = Digital Audio Processor (a processor developed at SGS-Thomson Mi-

croelectronics)
DCC = Digital Compact Cassette
DCU = Data Calculation Unit
DECT = Digital European Cordless Telephone
DMA = Direct Memory Access
DSP = Digital Signal Processoror Digital Signal Processing
DWARF = Debug With Arbitrary Record Format (a debug format)
ELF = Embedded Linker Format (a debug format)
FFT = Fast Fourier Transform
FIR = Finite Impulse Response (a type of DSP filter)
gcc = GNU C compiler
GNU = GNU’s Not Unix (recursive definition)
GSM = Groupe Special Mobile (European cellular standard)
HDL = Hardware Description Language
ICE = In-Circuit Emulatoror In-Circuit Emulation
IIR = Infinite Impulse Response (a type of DSP filter)
ILP = Instruction Level Parallelismor Integer Linear Program
IMEC = Interuniversitair Micro-Elecktronica Centrum /

Interuniversity Microelectronics Centrum
(a Belgian research institute)

INPG = Institue National Polytechnique de Grenoble /
National Polytechnical Institute of Grenoble
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ISG = Instruction Set Graph (a model used by the Chess compiler developed
at IMEC)

ISO = International Standards Organization
ITU = International Telecommunications Union
IVT = Integrated Video Telephone
MAC = Multiply Accumulator
MAD = Multiply Adder
MCU = Microcontroller Unit
MI = Micro-Instruction
MIPs = Million Instructions Per Second
MIT = Massachussettes Institute of Technology
MMDSP = Multimedia Digital Signal Processor (a processor developed at Thom-

son Consumer Electronics Components)
MMIO = Memory-Mapped Input / Output
MOP = Micro-Operation
MPEG = Motion Picture Experts Group
MSQ = MicroSeQuencer (an operator of the SGS-Thomson Integrated Video

Telephone)
nML = not a Machine Language (an instruction-set specification language)
RAM = Random Access Memory
RISC = Reduced Instruction Set Computer
ROM = Read Only Memory
RTL = Register Transfer Level (a hardware description level)or

Register Transfer Language (gcc internal representation)
SPAM = Synopsys Princeton Aachen MIT (a joint compiler project)
ST = SGS-Thomson Microelectronics
TCEC = Thomson Consumer Electronics Components
TI = Texas Instruments
TIMA = Techniques de l’Informatique et de la Microélectronique pour l’Archi-

tecture d’ordinateurs /
Techniques of Informatics and Microelectronics for computer Archi-
tecture (a French research laboratory)

VHDL = VHSIC (Very High Speed Integrated Circuit)
Hardware Description Language

VIP = VLIW Image Processor (an operator of the SGS-Thomson Integrated
Video Telephone)

VLIW = Very Long Instruction Word
VLSI = Very Large Scale Integrationor Integrated Circuit
VOP = Vertical Operation
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Appendix A: Description of Addressing Modes

Common Addressing Modes

This section describes some commonly used addressing modes for instruction-set

processors. It is important to note that the names of each mode often vary from

architecture to architecture. For example, for some architectures the termRegister

Pre-Indexed may be shortened toIndexed, if no other register or indexed modes

exist.

Immediate. The data is found in the instruction. In assembly programs, this is

commonly denoted by a hash mark (#).

e.g.addi R2, #0x1a, R3

The second operand is in the immediate mode.

Register Direct.The data is found in a register. In many architectures, there are

more than one register set which are usually denoted in assembly programs by dif-

ferent prefixes. In some architectures, a notion ofworking registers may overlap a

set of absolute registers.

e.g.xch R0A2h, r4

The first operand is in the direct register mode for an absolute register. The sec-

ond operand is in the direct register mode for a working register.

Register Indirect. The data is found by means of an address pointing a second

register file.

e.g.ld (r11), R200

This example is for the ST9 architecture. If register 200 contains 178 and

working register 11 contains 86 then this instruction loads the value 178 into regis-

ter 86.
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Memory Direct . The data is found in memory by means of an absolute address.

e.g.ld 1234, r9

Load the value found at address 1234 into register r9.

Memory Indirect (or simply Register). The data is found in memory by means

of an address found in a register.

e.g.st #0x3f, *AX[0]

Store the immediate value (0x3f) into memory at the address found in register

AX[0].

Register Pre-Indexed.The data is found in memory by an address found in a reg-

ister plus (or minus) an immediate offset.

e.g.ld (AX2+2), R4

The value found at the address in register AX2 offset by 2 is loaded into regis-

ter R4.

Register Post-Indexed.The data is found in memory by an address found in a reg-

ister. Additionally, the address is post-incremented or decremented following the

memory operation.

e.g.st RR3, *AR++

Store the value in RR3 to memory at the address in register AR, then post-

increment the address in register AR by 1.

e.g.ld *AY2 -= IY2, R6

Load the value at the address in register AY2 into the register R6, then post-

decrement the address in register AY2 by the value in register IY2.
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Appendix B: Compilation Examples

High-level vs. Mid/Low-level C code

This section presents an example of a C code algorithm written on a high level of

abstraction compared with the same algorithm written on a low level of abstrac-

tion. While both algorithms perform the same function, it is clear that the first

(high level) is much more independent of an underlying architecture than the sec-

ond.

The characteristics of the first are high-level control structures, array refer-

ences, and all the operations found in ANSI-C (All High-level). The characteristics

of the second are built-in functions (Mid-level), references to arrays by pointers

(Mid-level), allocation of registers and pointers into register sets (Mid-level), and

assignment of registers in specific registers (Low-level).
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/*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
= ‘radix_high.c’
=
= - written on a high abstraction level
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-==-*/
#include “mpeg.h”
long tc1[256];

void radix4(long* fftbuf, int loopcnt, int top, int bottom, int pos_inc,  int
neg_inc)
{
  int i;
  int descend, ascend;
  int offset=64;

  long  ar,br, ai,bi, yin;
  long  cr,dr, ci,di, yan;

  descend = top;
  ar = fftbuf[descend];
  br = fftbuf[descend-offset];
  cr = fftbuf[descend-(2*offset)];
  ascend = bottom;

  for(i=0;i<loopcnt;i++)
    {
      dr = fftbuf[descend-(3*offset)];

      ai = fftbuf[ascend];
      bi = fftbuf[ascend+offset];
      ci = fftbuf[ascend+(2*offset)];
      di = fftbuf[ascend+(3*offset)];

      yan = ar + cr;
      yin = br + dr;
      fftbuf[descend]            = yin + yan;
      fftbuf[descend-offset]     = yan - yin;

      yan= ar - cr;
      yin= bi - di;
      fftbuf[descend-(2*offset)] = yan - yin;
      fftbuf[descend-(3*offset)] = yan + yin;

      yin= ai + ci;
      yan= bi + di;
      fftbuf[ascend]             = yin + yan;
      fftbuf[ascend+offset]      = yin - yan;

      yin= ai - ci;
      yan= br - dr;
      fftbuf[ascend+(2*offset)]  = yin + yan;
      fftbuf[ascend+(3*offset)]  = yin - yan;

      bottom += pos_inc;
      ascend = bottom;
      top += neg_inc;
      descend = top;

      ar = fftbuf[descend];
      br = fftbuf[descend-offset];
      cr = fftbuf[descend-(2*offset)];
    }
}

void main()
{
#ifdef VALIDATION
  int i;
  for(i=0;i<256;i++) tc1[i]=(long)i;
  outinit();
#endif

  radix4(tc1, 16, 254,0, 4,-4);
  radix4(tc1, 16, 255,1, 4,-4);
  radix4(tc1, 32, 255,0, 2,-2);

#ifdef VALIDATION
  for(i=0;i<256;i++) outl(tc1[i]);
  outdump();
#endif
}
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/*=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
= ‘radix.c’
=
= - written on a low abstraction level, specific to the MMDSP
=   architecture
-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-==-*/
#include “mpeg.h”

long tc1[256];

void radix4(int loopcnt, long* AAd1, long* AAd2, int _IX Id2, int _IX Id3)
{
  register long *Ad1 At_reg(AX[1]); /* Assigned explicitly for parallel dec */
  register long *Ad2 At_reg(AX[2]); /* and ACU assignments (AX[2] = AXX[2]) */
  register int   Id1 At_reg(IX[1]);

  long     ar,br, ai,bi, yin, ping;
  long _RR cr,dr, ci,di, yan, pong;

  Ad1 = AAd1;
  Id1 = 64;
  ar  = *Ad1;  Ad1-=Id1;
  br  = *Ad1;  Ad1-=Id1;
  cr  = *Ad1;  Ad1-=Id1;
  Ad2 = AAd2;

  loop(loopcnt)
    {
      dr = *Ad1;   Ad1=AAd1;     yan  = ar + cr;
      ai = *Ad2;   Ad2+=Id1;     yin  = br + dr;
      bi = *Ad2;   Ad2+=Id1;     ping = yin + yan;
      ci = *Ad2;   Ad2+=Id1;     pong = yan - yin;
      di = *Ad2;   Ad2=AAd2;     yan  = ar - cr;

      *Ad1 = ping; Ad1-=Id1;     yin  = bi - di;
      *Ad1 = pong; Ad1-=Id1;     ping = yan - yin;
      *Ad1 = ping; Ad1-=Id1;     pong = yan + yin;
      AAd1 += Id3;               yin  = ai + ci;   /* negative increment */

      *Ad1 = pong; Ad1=AAd1;     yan  = bi + di;
      ar = *Ad1;   Ad1-=Id1;     ping = yin + yan;

      *Ad2 = ping; Ad2+=Id1;     pong = yin - yan;
      *Ad2 = pong; Ad2+=Id1;     yan  = br - dr;

      br = *Ad1;   Ad1-=Id1;     yin  = ai - ci;
      cr = *Ad1;   Ad1-=Id1;     ping = yin + yan;
      *Ad2 = ping; Ad2+=Id1;     pong = yin - yan;
      AAd2 += Id2;                           /* positive increment */

      *Ad2 = pong; Ad2=AAd2;
    }
}

void main()
{
#ifdef VALIDATION
  int i;
  for(i=0;i<256;i++) tc1[i]=(long)i;
  outinit();
#endif

  radix4(16,&tc1[254],tc1,4,-4);
  radix4(16,&tc1[255],&tc1[1],4,-4);
  radix4(32,&tc1[255],tc1,2,-2);

#ifdef VALIDATION
  for(i=0;i<256;i++) outl(tc1[i]);
  outdump();
#endif
}
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Appendix C: ArrSyn Prototype Software

The ArrSyn prototype software has progressed in two phases. The first phase

included a rapid set-up of a skeleton which was used to test ideas. It is shown in

Figure C.1.

A Perl script instruments the source C code at function calls, loop entries and

exits, basic blocks, and array declarations. This produces an information file con-

taining the static information of the C structure and a copy of the C code in instru-

mented form. The trace produced by execution of the instrumented code and the

static image are fed to the analysis engine which is written in C++. It then trans-

forms the code based on the address resource specification. The entire process is

driven by a top-level Perl script.

The major weakness with this prototype was the front-end, which is based on a

simple Perl tokenizer and only recognized certain styles of C. For the second

phase, the front-end was replaced with a true grammar-based front-end: the SUIF

compiler. This decision was based on an in-depth study of two good candidates

which was done by a student on work-term at INPG1. The PCC compiler (provided

by Miguel Santana of SGS-Thomson Microelectronics) and the SUIF compiler

1. see TIMA internal report, “Analyse Compartive des Compilateurs PCC et SUIF” par
Ahmed Ounaissa.

Workstation
Compile

Instrumented C code

Execute

Array
Analysis & Transformation

Static

Dynamic
Image

Image

Statistics

C Source

Address
Resource

Spec

C Source
with AddressingTrace

Perl script instrumenter

Figure C.1ArrSyn prototype software: phase 1

C info file
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(from Stanford University) were evaluated on many criteria including ease-of-use,

intermediate representation, possibilities for optimization, user interface, robust-

ness, size of code, etc. Each compiler had its strengths and weaknesses; however,

SUIF had been chosen mostly in response to its strength in forming an evolving

platform. SUIF is a research compiler being used in many industry and university

locations for various purposes. It is well supported by the compiler group at Stan-

ford University and provides many analysis capabilities, with new capabilities

being added each day. Furthermore, SUIF contains a set of useful functions, algo-

rithms, and full compiler passes which can be integrated effortlessly into a com-

piler stream.

The modifications for the use of SUIF are shown in Figure C.2. The C source is

initially transformed into SUIF bysnoot. The following passes then work on the

SUIF intermediate format. Theporky passes are optional. They can provide analy-

ses and transformations such as: constant propagation, constant folding, dead-code

elimination, dismantling of empty structures, removal of unused symbols, symbol-

Workstation
Compile

Instrument

Execute

Array
Analysis & Transformation

Static

Dynamic
Image

Image

Statistics

C Source

Address
Resource

Spec

C Source
with Addressing

Trace

snoot: C to SUIF

porky: SUIF transforms
(optional)

s2c: SUIF to C

s2c: SUIF to C

porky: SUIF transforms
(optional)

Figure C.2ArrSyn prototype software: phase 2
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table manipulation. hoisting of if conditions, etc. These are standard transforma-

tions which can improve the characteristics of the code for analysis as well as

improve the performance and size of the final code.

One merged C++ executable performs either the ArrSyn instrumentation or

array transformation. Information from the SUIF objects are mapped directly onto

the objects used by ArrSyn. Following each transformation,s2c is used to recon-

vert the SUIF representation to C.

Although this is a very robust train of passes, there are some drawbacks using

the SUIF compiler. SUIF can represent anything that can be described in C; how-

ever, it is not a one-to-one high-level representation. Some different C-level con-

structs are translated into the same SUIF-level representation. Expressions which

cannot be exactly represented in SUIF are transformed to a logically equivalent

form which may be less efficient with regards to size and/or execution speed,

depending on the architecture target. This is the case for some structures such as:

nested logical expressions, case statements, and while loops, among others.

In addition to a batch mode, a graphical user interface has been provided to the

ArrSyn transformation, which allows developers to experiment with different parts

of the transformation passes without having to re-run all the phases of the compila-

tion. In addition, alternative SUIF optimization passes can be easily tried to evalu-

ate their effect on the ArrSyn transformation. The user interface is shown in Figure

C.3 and a typical run in batch mode is shown in Figure C.4.



A-182 Appendix C

Figure C.3ArrSyn development user-interface.



ArrSyn Prototype Software A-183

** ArrSyn ** :: Array Code Synthesis Transformation... vs 0.3

 SUIF front-end...
   /usr/ccs/lib/cpp -P -B ex2.c ex2.i
   snoot -keep-comments ex2.i ex2.suif
 SUIF pre-pass...
   porky -forward-prop -const-prop -fold -dead-code -fix-ldc-types  \
    _recode_.tmp ex2.suif
 Instrumenting Source...
   annotate -instrument ex2.suif ex2.inst
   s2c -omit-header ex2.inst ex2.i.c
 Host Compiling...
   gcc ex2.i.c -o ex2.i
 Tracing...
   ex2.i   > _recode_.tmp.trace
 Running Analysis and Transformation...
   /usr/ccs/lib/cpp -P -B acu.spec | annotate -arrsyn a _recode_.tmp ex2.suif
   Parsing ACU specification...
      AX0 += 1, -1, 2,
      AX1 += 1, -1, 3, 5,
      AX2 += 1, -1, 2, -2,
   Reading Trace File... _recode_.tmp.trace
   Linking Array References and C Constructs...
   Array Accesses:
      b   24 accesses  18 reads 6 writes
      a   24 accesses  24 reads 0 writes
   Doing ‘Static Reference’ Pointer Analysis...
     6 static pointers created...
     Reduced and combined to 3 pointers...
   Pointer Accesses:
      b_17_6 24 accesses  12 inc(-1) 6 inc(+1) 3 inc(+4)
      a_17_5 18 accesses  18 inc(-1) 3 inc(+5)
      a_27_16 6 accesses  6 inc(+1)
   Doing Pointer Assignment...
     Candidate Assignments and Estimated Cost...
      b_17_6 : AX0(24) AX1(24) AX2(24)
      a_17_5 : AX1(21) AX0(27) AX2(27)
      a_27_16 : AX0(6) AX1(6) AX2(6)
     Best Assignment...
      b_17_6 @ AX0
      a_17_5 @ AX1
      a_27_16 @ AX2
     Total Cross Cost: 51
   Doing Pointer Insertion...
     3 pointers inserted...

 SUIF post-pass...
   porky -unused-syms _recode_.tmp ex2.suif
 SUIF back-end...
   s2c -omit-header ex2.suif ex2.aa.c
   interpret_pragmas _recode_.tmp ex2.aa.c

Figure C.4ArrSyn batch run
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Appendix D: ReCode/ReBlock Prototype
Software

Organization of Software Modules

The ReCode/ReBlock prototype software was written entirely using Perl 5 and the

Tk package for widget graphics. The suite is composed of several routines and

modules using object-oriented notions to organize data. The full organization of

the software is shown in Figure D.1.

The Perl 5 programming language allows the developer to mix-and-match any

number of different modules in a transparent manner. Consequently, ReBlock and

ReCode can be executed separately or in an integrated fashion. Software modules

can also be shared among the two applications.

The use of Perl also allows the rapid set-up of an application programming

interface (the ReFace API). The user can call API functions and integrate his/her
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own functions into a script using primarily Perl 4 constructs. Moreover, the user’s

functions can be called from the ReCode graphical interface.

ReCode and ReBlock Help Documents
----------------------------------------------------------------------------------
-------------------------
ReCode Main Help Document
-------------------------

This is a HYPERTEXT Document. Press the mouse <Button-3> on any
highlighted text to open a new Document.

-----------------------------------------------------------------
INDEX: Assembly Button Field Machine Mop Spec Coding_aids ReBlock
-----------------------------------------------------------------

Overview:
---------
ReCode is a utility designed to aid in the development and
redevelopment of an instruction-set of a processor. It is intended as
a guide for the designer of the architecture or to the developer of
the firmware tools. ReCode is most useful for refining an existing
instruction-set as it has analysis capabilities of compiled code.
However, it can also be used to set up the coding of an
instruction-set from scratch.

The event-driven tool has one main window which consists of a table
and a set of buttons. On the left of each table row is a menubutton
controlling each Field.

Fields:
-------
A Field is a placeholder for a set of bits at specific locations and
widths in the instruction-word. A Field consists initially of a row of
entries which may contain the key-character “X” which denotes the use
of the specified bit in the instruction-word. The ‘salmon’-color
highlighting denotes the bits which are common to all of the assembly
words in the field (only if there are 2 or more words).

A Field is generally assigned by one or more Mops. A Field contains a
set of Assembly Words.

Mops:
-----
A Mop is a micro-operation which may expand into a set of Fields. Each
Field location is assigned a specific bit value.

Assembly:
---------
An Assembly Label is a keyword representing the bit values assigned to
a Field. An Assembly Word consists of the assembly label and bit
values.

----------------------------------------------------------------------------------
-------------
Assembly Code
-------------

Assembly Code is shown for a corresponding Field when the ‘Show
Assembly’ option is activated either for a specific Field or for the
selected fields using <Button-3> and the ‘Show Assembly Selection’
button on the main window.

An Assembly Word consists of the assembly label mnemonic and
corresponding bit values. The ‘salmon’-color denotes the bits which
are common to all the assembly words (only if there are 2 or more).
This is likely (but necessarily) to be the opcode.

Editing
-------
At any time, both the names of the assembly words or the bit patterns
may be changed by the mouse and the keyboard. Care should be taken so
that no more than four characters (1, 0,or space) are present in each
line of bit-pattern window. Values will not take effect until ‘Apply
Assembly Changes’ is executed from the Field menubutton.
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Should the number of assembly words be numerous for the current Field,
a scrollbar will appear on the left of the assembly mnemonics. This
should be used rather than cursor movements to keep the labels and
bit-patterns in sync. Alternatively, <Button-2> in <Motion> may be
used to scroll up and down.

An assembly line may be selected by <Button-1> Triple clicked, in
either the assembly label window or the bit-pattern
windows.Subsequently, the line may be deleted by <Button-3> on the
highlighted section.

(NOTE: Changes do not take effect until ‘Apply Assembly Changes’ is
activated in the Field menubutton.)

Analysis
--------
If the ‘Count Usage’ button is activated, the static frequency of each
assembly word is counted in the current machine code files. Those words
with zero occurence will be highlighted.

----------------------------------------------------------------------------------
-------------
Mouse Buttons
-------------
In the main ReCode window:

Button-1 = activation of buttons.
= showing of menus of Field menubuttons.
= activation of menubutton entries.

= scrollbar activation
Button-3 = select/unselect of Field menubuttons.

In a ReCode plot distribution window:
Button-2        = select a section of the plot to be printed.

In a ReCode assembly label window:
Triple-1= select assembly word
Motion-2= scroll up and down
Button-3 = delete selected assembly word

  (must be on selected word)

In any ReCode assembly bit window:
Motion-2= scroll up and down

In the ReCode Mop window:
Button-1 = activation of buttons.

= showing of menus of Mop menubuttons.
= activation of menubutton entries.

Button-3 = select/unselect of Mop menubuttons.

In any Help window:
Button-1 = scrollbar activation
Motion-2= scroll up and down
Button-3 = HYPERTEXT activation of highlighted keywords

In any text window:
Button-1= unselect section
Double-1= select current word
Triple-1= select current line
Motion-1= select section
Button-2= insert selection at cursor point
Motion-2= scroll up and down / left and right

In the ReBlock text window:
Button-3= rotate basic block frequencies highlighted in ORANGE

(Motion == hold button and drag)
(Double == click 2 times)
(Triple == click 3 times)
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----------------------------------------------------------------------------------
------
Fields
------

A Field contains a main controlling menubutton on the left of the main
window associated with each of the Field names. It contains a series of
options:

Highlight Mops: Highlights the Mops which use the current
Field in the Mop window. If the Mop window
is not yet shown, it is opened.

Show/Hide Assembly:Shows/Hides the assembly mnemonics and bit
patterns associated with this Field

Count Usage: Counts and displays the number of static
occurences of assembly words in the machine
code files.
(Note: the button ‘Display Code Files in the
 main window will show the current active code
 files.)

Static Cross Distribution
Plot the distribution of static occurences
of assembly words in a separate window.
The plot may be printed directly to a printer
(command ‘lpr -P<printer_name>’) or to a file.
A section of the plot may be chosen with
<Button-2>
Alternatively, the statistics can be printed
textually to a file.

Dynamic ReBlock Distribution
The static occcurrences of assembly words
are multiplied by their respective frequency
of occurence, linked with the bb.out file
provided by ReBlock.

Static ReBlock Distribution
The frequency of occurence is always taken as 1

Hide Field: Hides the current Field from view.

Rename Field: Opens a window to rename the Field.

Apply Assembly Changes:Applies changes that were carried out
interactively.

A Field can be assigned (expanded into) by one or many Mops. The
expansion can be changed by selecting the Field menu-buttons with
<Button-3> and redefining the expansion in the Mop window.

----------------------------------------------------------------------------------
-------------------------
Machine Code Files (.abs)
-------------------------

Machine code files are expected to be in the .abs format produced by
mclink of the Archelon compiler tools chain. These files may be read
by ReCode using the ‘Display Code Files’ button on the main window or
by the -a option on the command line (see ReCode -h for more
command-line information).

The machine code file contains binary records of the absolute program
load module. ReCode expects a header record to determine the
instruction-width and number of records.

Developer’s Note:
-----------------
The format of the .abs file is checked by structures provided in
‘image_header.pm’, a Perl module. This module was generated
automatically from absfmt.h found in the Archelon source distribution
by the program ‘c2ph’ available on CPAN (Comprehensive Perl Archive
Network). Should the structures in absfmt.h be modified for the
compiler in use, image_header.pm can be generated automatically.
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----------------------------------------------------------------------------------
-----------------------
Mops (Micro-Operations)
-----------------------

The mop window displays the set of micro-operations as menubuttons.

Available operations are:

Highlight Expansion:The Field expansion of a Mop is shown. Field
buttons in the main window are highlighted.
Mops with exactly the same expansion as the
current are lightly highlighted.

Selecting Mops: Button-3 selects and unselects Mop buttons.
These can be subsequently grouped, isolated,
or hidden from view by the main buttons on the
right. The selection may also be cleared by
the ‘clear’ button.

Create Mop: A new button and Mop is created. A default
name is provided and should be changed
explicitly. Subsequently, the expansion can
be defined (following.) Any changes will be
reflected in the Spec Dump done on the main
window.

Redefine Expansion: The expansion to Fields is redefined by the
current selection of Field buttons. Field
buttons can be selected and unselected by
Button-3 of the mouse in the main window.

Rename: A Mop may be renamed at any time. This will
be reflected in the ‘Spec Dump’ should it be
activated. (The Spec Dump button in on the
main window.)

----------------------------------------------------------------------------------
------------------
Specification File
------------------

The specification file is that used by mcpack of the Archelon
retargetable compiler tools chain and expected to have a ‘.mdf’
suffix. The file should have three main component parts:

1. Fields directives which describe bit locations and corresponding
widths. These fields should be given a set of mnemonics which assign
bit patterns to each location.

2. Mops which describe micro-operations and expansions into fields.
They also define the assignment of which assembly mnemonics to which
fields.

3. Vops or vertical operations which define the assignment to a set of Mops.

Fields and Mops are used by ReCode for analysis and recoding of the
instruction-word fields. Should an original specification contain
other parts, those parts are ignored by ReCode. However, these parts
are saved so that they may be merged in the specification dump. The
Spec Dump button on the main window provides this function. Currently,
comments are discarded. (This may change in a future version.)

Developer’s Note:
-----------------
Currently, the parsing of the specification file is not a true
grammar-based parser. Most cases can be handled; however, there could
be problems with unforseen ways of bracketing and spacing. Should this
present a large problem, the Berkeley yacc (byacc) compiler has been
modified to produce perl code. This is a possible route to a full
grammar-based parser.
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----------------------------------------------------------------------------------
-----------
Coding Aids
-----------

Some simple touch-button coding aids have been included in ReCode to
aid the designer in determining bit patterns for fields and assembly
words. In each Field entry, as X’s are inserted, new text windows
automatically appear below for the assembly bit patterns. If the
cursor is on or near an X place-holder, the following touch-buttons
are available:

 o one-fill below the X place-holders
 z zero-fill below the X place-holders
 i increment-fill below the X place-holders
 d decrement-fill below the X place-holders

To automatically remove a bit-pattern, simply remove the X
place-holders in a 4-bit Field entry.

Note that assembly-level changes will not take effect until ‘Apply
Assembly Changes’ is executed in the Field menu button.

Bit-level consistency checking functions are currently being
developed.

----------------------------------------------------------------------------------
--------------------------
ReBlock Main Help Document
--------------------------

This is a HYPERTEXT Document. Press the mouse <Button-3> on any
highlighted text to open a new Document.

--------------------------------------
INDEX: Profiling Button Editing ReCode
--------------------------------------

Overview:
---------

ReBlock is a mini-profiler designed to aid in the redesign of
application code for an embedded processor. It contains functions to
estimate performance of compiled code. Alternatively, when used in
conjunction with the ReCode instruction-set design utility, it can
also be used to redesign the instructions of the processor.

ReBlock gives profile information without the use of a simulator or
emulator. The tool expects 3 inputs:

1. A C source file.
2. A Basic Block (BB) file (usually ‘bb.out’) which results from:
   - a host compilation of the C source with gcc or g++ with the option -a
     (profiling function) AND
   - the execution on the host
3. A symbolic line information file from the target compiler. (Currently,
   the ‘.proc’ format and an interface to gdb is supported (COFF).)

The button ‘Link & Load All’ on the top right of the panel will force
a load of all three files and execute the needed links between
micro-instruction and profile information.

----------------------------------------------------------------------------------
---------
Profiling
---------

In ReBlock, profiling is done by basic block frequency analysis on the
host computer (workstation) with correlations to the microcode
produced by the target compiler. This gives a signicant gain in speed
over simulation based profiling.

To profile any block, simply click-and-drag Button-1 on the main text
window over any block. Now click on the Performance Estimate button in
the upper left corner. A single line may be selected by doing a triple
click on Button-1.

If no block is selected, the entire file is taken as default.

If a profile arrow appears in ORANGE, that means that more than one
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basic block was found on the current line during profiling. This can
happen, for example, when a pre-processor macro is used in the source.
Click on Button-3 to rotate through the possible profiling values.

Branch Penalty Calculation
--------------------------
A worst-case branch penalty model is provided for pipelined architectures.
The branch penalty is calculated for ALL blocks where a jump has occured.
The user may specify the number of extra instruction-cycles which occur in
each branch by clicking on the ‘Worst Case Model’ checkbutton.

The support of a more accurate branch penalty model is forseen;
however, this requires semantic knowledge of the branch instructions
and therefore an understanding of the assembler specification. This
information could be transmit by ReCode.

----------------------------------------------------------------------------------
-------
Editing
-------

The text window in the main ReBlock window may also be used as a
simple editor. Many key and mouse bindings are available from the Tk
kit.

Following editing, two different types of saves are provided:

‘Save Text As Shown’ - saves the text in its current state. This may
       include the profile and micro-instruction
       information.

‘Save C file Only’   - ensures that only the C code is saved.

BINDINGS
     Tk automatically creates class bindings for texts that  give
     them  the  following  default behavior.  In the descriptions
     below, ``word’’ refers to a  contiguous  group  of  letters,
     digits,  or  ``_’’ characters, or any single character other
     than these.

     [1]  Clicking mouse button 1 positions the insertion  cursor
          just  before the character underneath the mouse cursor,
          sets the input focus to this  widget,  and  clears  any
          selection  in the widget.  Dragging with mouse button 1
          strokes out a selection between  the  insertion  cursor
          and the character under the mouse.

     [2]  Double-clicking with mouse button 1  selects  the  word
          under  the  mouse and positions the insertion cursor at
          the beginning of the word.   Dragging  after  a  double
          click  will  stroke out a selection consisting of whole
          words.

     [3]  Triple-clicking with mouse button 1  selects  the  line
          under  the  mouse and positions the insertion cursor at
          the beginning of the line.   Dragging  after  a  triple
          click  will  stroke out a selection consisting of whole
          lines.

     [4]  The ends of the selection can be adjusted  by  dragging
          with  mouse button 1 while the Shift key is down;  this
          will adjust the end of the selection that  was  nearest
          to  the mouse cursor when button 1 was pressed.  If the
          button  is  double-clicked  before  dragging  then  the
          selection will be adjusted in units of whole words;  if
          it  is  triple-clicked  then  the  selection  will   be
          adjusted in units of whole lines.

     [5]  Clicking mouse button 1 with the Control key down  will
          reposition  the  insertion cursor without affecting the
          selection.

     [6]  If any normal printing characters are typed,  they  are
          inserted at the point of the insertion cursor.

     [7]  The view in the widget can be adjusted by dragging with
          mouse  button  2.  If mouse button 2 is clicked without
          moving the mouse, the selection is copied into the text
          at  the  position  of the insertion cursor.  The Insert
          key also inserts the selection.
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     [8]  If the mouse is dragged out of the widget while  button
          1  is  pressed,  the entry will automatically scroll to
          make more text visible (if  there  is  more  text  off-
          screen on the side where the mouse left the window).

     [9]  The Left and Right keys move the insertion  cursor  one
          character  to  the  left or right;  they also clear any
          selection in the text.  If Left or Right is typed  with
          the Shift key down, then the insertion cursor moves and
          the selection is extended to include the new character.
          Control-Left  and Control-Right move the insertion cur-
          sor  by  words,  and  Control-Shift-Left  and  Control-
          Shift-Right move the insertion cursor by words and also
          extend the selection.  Control-b and  Control-f  behave
          the  same  as Left and Right, respectively.  Meta-b and
          Meta-f behave the same  as  Control-Left  and  Control-
          Right, respectively.

     [10] The Up and Down keys move the insertion cursor one line
          up  or down and clear any selection in the text.  If Up
          or Right is typed with the Shift  key  down,  then  the
          insertion cursor moves and the selection is extended to
          include the new character.  Control-Up and Control-Down
          move  the  insertion  cursor  by  paragraphs (groups of
          lines separated by blank lines),  and  Control-Shift-Up
          and  Control-Shift-Down  move  the  insertion cursor by
          paragraphs and also extend  the  selection.   Control-p
          and  Control-n  behave the same as Up and Down, respec-
          tively.

     [11] The Next and Prior keys move the insertion cursor  for-
          ward or backwards by one screenful and clear any selec-
          tion in the text.  If the Shift key is held down  while
          Next  or Prior is typed, then the selection is extended
          to include the new character.  Control-v moves the view
          down  one screenful without moving the insertion cursor
          or adjusting the selection.

     [12] Control-Next and Control-Prior scroll the view right or
          left by one page without moving the insertion cursor or
          affecting the selection.

     [13] Home and Control-a move the  insertion  cursor  to  the
          beginning  of  its  line and clear any selection in the
          widget.  Shift-Home moves the insertion cursor  to  the
          beginning of the line and also extends the selection to
          that point.

     [14] End and Control-e move the insertion cursor to the  end
          of  the  line  and  clear  any selection in the widget.
          Shift-End moves the cursor to the end of the  line  and
          extends the selection to that point.

     [15] Control-Home and Meta-< move the  insertion  cursor  to
          the  beginning  of  the text and clear any selection in
          the widget.   Control-Shift-Home  moves  the  insertion
          cursor  to  the  beginning of the text and also extends
          the selection to that point.

     [16] Control-End and Meta-> move the insertion cursor to the
          end  of the text and clear any selection in the widget.
          Control-Shift-End moves the cursor to the  end  of  the
          text and extends the selection to that point.

     [17] The Select key  and  Control-Space  set  the  selection
          anchor  to  the position of the insertion cursor.  They
          don’t affect the current selection.   Shift-Select  and
          Control-Shift-Space adjust the selection to the current
          position of the insertion cursor,  selecting  from  the
          anchor  to  the  insertion  cursor if there was not any
          selection previously.

     [18] Control-/ selects the entire contents of the widget.

     [19] Control-\ clears any selection in the widget.

     [20] The F16 key (labelled Copy on many Sun workstations) or
          Meta-w  copies the selection in the widget to the clip-
          board, if there is a selection.
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     [21] The F20 key (labelled Cut on many Sun workstations)  or
          Control-w  copies  the  selection  in the widget to the

          clipboard and deletes the selection.  If  there  is  no
          selection in the widget then these keys have no effect.

     [22] The F18 key (labelled Paste on many  Sun  workstations)
          or  Control-y  inserts the contents of the clipboard at
          the position of the insertion cursor.

     [23] The Delete key deletes the selection, if there  is  one
          in  the  widget.   If there is no selection, it deletes
          the character to the right of the insertion cursor.

     [24] Backspace and Control-h delete the selection, if  there
          is  one  in the widget.  If there is no selection, they
          delete the character to the left of the insertion  cur-
          sor.

     [25] Control-d deletes the character to  the  right  of  the
          insertion cursor.

     [26] Meta-d deletes the word to the right of  the  insertion
          cursor.

     [27] Control-k deletes from the insertion cursor to the  end
          of  its line; if the insertion cursor is already at the
          end of a line, then Control-k deletes the newline char-
          acter.

     [28] Control-o opens a new line by inserting a newline char-
          acter  in  front of the insertion cursor without moving
          the insertion cursor.

     [29] Meta-backspace and Meta-Delete delete the word  to  the
          left of the insertion cursor.

     [30] Control-x deletes whatever  is  selected  in  the  text
          widget.

     [31] Control-t reverses the order of the two  characters  to
          the right of the insertion cursor.

----------------------------------------------------------------------------------
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Résumé

Dans le cadre des applications de type télécommunications, multimédia, et
électronique grand public, les processeurs embarqués ont tendance à acquérir une
importance de plus en plus marquée lors de la conception de systèmes monopuces.
Ce phénomène traduit le besoin des concepteurs à tenir compte rapidement des
nécessaires adaptations aux fréquentes variations des standards évoluées. C'est
ainsi que les techniques de compilation multicibles deviennent primordiales, non
seulement pour la production du code d'application, mais aussi afin d'explorer les
architectures de processeurs.

Ce mémoire présente les travaux effectuée au sein du Laboratoire TIMA de
l'INPG en étroite collaboration avec SGS-Thomson Microelectronics. Les contri-
butions se partagent en trois catégories principales: expériences et méthodologies
en utilisant les compilateurs multicibles dans le milieu industriel pour les proces-
seurs embarqués; un approche de compilation pour la génération d´adresses pour
les architectures de traitement de signal; et un ensemble d'outils permettant au con-
cepteur d'explorer un jeu d'instructions lié à un processeur donné afin d'envisager
une évolution ou une réutilisation du processeur. Les méthodes pratiques utilisées
dans divers projets sont décrites à l'aide d'exemples de processeurs réels: les opéra-
teurs du système visiophone, un décodeur MPEG-2 et AC-3, et un processeur télé-
viseur pour l´application Eurosound.

Abstract

Embedded core processors are becoming a vital part of today's system-on-a-
chip in the growing areas of telecommunications, multimedia, and consumer elec-
tronics. This is mainly in response to a need to track evolving standards with the
flexibility of embedded software. This trend is making retargetable software com-
pilation a key enabler, not only for improving engineering productivity, but to
allow designers to explore the architectural possibilities for the application
domain.

This manuscript covers work carried out at the TIMA laboratory of INPG in
co-operation with SGS-Thomson Microelectronics. Contributions have been made
in three categories: methods and experiences in industry using a retargetable com-
piler methodology for embedded processors; a new compilation approach to
address generation for DSP architectures; and a set of tools which allow the explo-
ration of an instruction-set architecture in the light of redesigning the processor for
an evolution or reuse of the architecture. Emphasis is made on methodologies and
practical experiences which have been carried out with example instruction-set
processor systems such as an integrated video telephone, an MPEG-2 / AC-3 audio
decoder, and an audio processor used in a Eurosound television application.


