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Abstract

We suggest a novel approach to the surface orientation related color constancy prob-

lem for multispectral imagery. The basic problem addressed in this thesis is just how
the observed spectral signature of a Lambertian target surface varies when its surface

orientation changes.
Our approach is based on a dichromatic illumination model which we have veri�ed

by several thousands in situ measured spectra of a dozen samples of di�erent surface

materials. The two principal components of daylight illumination are direct sun light and
di�use sky light, which show distinctively di�erent spectral characteristics. The observed

spectrum of a given surface with a speci�c Lambertian re
ectance spectrum varies with
its surface orientation, since each orientation leads to di�erent contributions of direct
solar and indirect di�use illumination. The ambiguity about the actual illumination

of a surface, causing uncertainty about its spectral re
ectance, has been recognized as
the color constancy problem. In multispectral remote sensing, this leads to erroneous

classi�cation and segmentation as well as spurious results of change detection.
We introduce a transformation which is invariant against surface orientation. The

suggested invariant is a linear mapping in the logarithmic feature space and �lters out

all spectral information which can possibly stem from an illumination change rather
than from the re
ectance of a given surface. Instead of recovering the re
ectance signal,
the suggested mapping produces a new only surface re
ectance-dependent descriptor

which is invariant against varying illumination. Sole input is the relative direct to

di�use illumination spectrum. No assumptions about the possible re
ectance spectra

are made. Error propagation through the transform is well understood. The mapping

is a purely pixel-based, one-pass matrix operation and can preprocess multispectral
images in order to segment them into regions of homogeneous re
ectance, unperturbed

by varying illumination conditions.

Apart from simulated and in situ measured data, the suggested transform has been
successfully applied to experimental multispectral imagery. The quantitative results and

example clippings from the imagery show signi�cant improvements in the multispectral
classi�cation of target surfaces under varying surface orientation. Although the trans-

formed data may not completely supersede the original spectral data, the suggested

transformation is shown to be a powerful early processing step, allowing subsequent
orientation invariant classi�cation, edge detection and segmentation.



Das Farbkonstanzproblem

in der multispektralen Fernerkundung

|
�Uber den Ein
u� der Ober
�achenneigung

auf spektrale Signaturen

Rafael Wiemker

Kurzfassung

Die multispektrale Fernerkundung liefert Bilder der Erdober
�ache in verschiedenen
Wellenl�angenbereichen (typisch N = 5 � 100 Kan�ale), so da� jedem Bildelement ein
Spektrum zugeordnet werden kann. Diese spektrale Signatur dient der automatisierten

Klassi�kation und �Anderungsdetektion. Die vorliegende Arbeit untersucht den Ein
u�,
den die Neigung einer Ober
�ache auf ihre spektrale Signatur aus�ubt.

Ein Gro�teil der multispektralen Auswertungstechniken geht von Lambert'schenOber-

�achen aus. Das sind solche, deren spektrale Signaturen nicht von der Beobachtungsrich-
tung des Sensors abh�angen. Durch Spektrometermessungen an ausgew�ahlte Ober
�achen

zeigt diese Arbeit, da� auch Lambert'sch re
ektierende Fl�achen durch �Anderung ihrer
Ober
�achenorientierung eine deutliche �Anderung ihrer spektralen Signatur erfahren.
Diese �Anderung betri�t sowohl die Helligkeit (H�ohe) als auch die Farbe (Verlauf) des

Spektrums. Diese Orientierungsabh�angigkeit f�uhrt dann in der Auswertung von fern-
erkundeten Multispektralbildern zu fehlerhaften Ergebnissen.

In der Analyse der Spektrometermessungen kann gezeigt werden, da� die Variabilit�at
der spektralen Signaturen durch zwei Hauptkomponenten dargestellt werden kann, die
auf die Re
exion von direktem Sonnenlicht einerseits und indirektem Himmelslicht

andererseits zur�uckgef�uhrt werden k�onnen. Die Anteile dieser beiden Komponenten

k�onnen im allgemeinen nicht bestimmt werden. Diese unbekannte spektrale Zusam-

mensetzung der Beleuchtung ist als das Farbkonstanzproblem bekannt.
Mit Hinblick auf die automatisierte Bildauswertung wird hier eine mathematische

Abbildung entwickelt, die sich den logarithmischen Spektralraum zunutze macht, um

ein beliebiges beobachtetes Spektrum auf einen spektralen Deskriptor zu projizieren,

der invariant gegen den spektralen Ein
u� der Ober
�achenneigung sowie Eigen- und

Schlagschatten ist. Diese invariante spektrale Signatur kann durch eine rechenzeitg�unstige

pixelweise Matrixmultiplikation errechnet werden (O(N2)). Die Vorteile der Invari-
anten werden anhand von simulierten Spektren und echten fernerkundeten Multispek-

tralbildern gezeigt. Die Emp�ndlichkeit der Projektion gegen�uber zuf�alligen und sys-
tematischen Fehlern wird im Rahmen der Fehlerfortp
anzung ausf�uhrlich untersucht.
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... bringt Licht in unsere Dunkelheit,

und dieses Welt- und Himmelslicht

weicht hunderttausend Sonnen nicht.

(Kaspar Friedrich Nachtenh�ofer, Kirchenlied, 1684)

The device also functioned as an ordinary calculator, but only to a limited degree.

It could handle any calculation which returned an answer of anything up to 4.

1 + 1 it could manage (2) and 1 + 2 (3) and 2 + 2 (4) or tan 74 (3.487414),

but anything above 4 it represented merely as \A Su�usion of Yellow." It was not

certain if this was a programming error or an insight beyond his ability to fathom [...]

(Douglas Adams, The Long Dark Tea-Time of the Soul, London 1988)
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1

Introduction

1.1 Introduction and Motivation

Multispectral remote sensing is a relative young �eld. Based on advances of solid state

physics, opto-electronic sensors became available in the 1960ies, which produce digital
image data in a substantial range of the electromagnetic spectrum (Rees 1990). State-
of-the-art detectors take image data in selected wavelength bands from the visible blue

light (� = 0:4�m) to the thermal infrared radiation (� = 13�m).1 The resulting
wealth of spectral image data yields much enhanced information about ground scenes,

as compared to panchromatic (black and white) photography.
The processing and analysis of remotely sensed multispectral images2 therefore de-

veloped into an important technique for a multitude of �elds. It supports research and
monitoring in virtually all geosciences, as well as in cadastre, land use management and

urban planning. It is widely applied in military reconnaissance, and more recently its
bene�ts are investigated for international con�dence building by cooperative veri�ca-
tion of arms control within the framework of the Open Skies Treaty (Ryan et al. 1996,

Wiemker & Spitzer 1996, Spitzer 1997a, Spitzer 1997b, Spitzer et al. 1997).

Use of remotely sensed multispectral imagery, as taken from aircraft or satellite, is
commonly made when the measurement of certain variables is required to cover a larger
area, from hectares to thousands of square kilometers. Then comprehensive in situ

measurements are too costly. As a cross reference, ground sample points are selected

and some in situ measurements are conducted, synchronously if possible. This ground

reference (or ground truth) is used for calibration of the remotely sensed image data.
Hence the variables in question can be derived for the whole covered area. Obviously
this line of argument only holds when other external parameters such as atmospheric

1 Image data in the wavelength range � = 1 � 100 cm (0:3 � 30 GHz) can be obtained through the
synthetic aperture radar method (SAR). Radar, however, is active remote sensing, which produces
the necessary electromagnetic illumination itself. In contrast, the usual mode of multispectral
remote sensing is passive, with either the necessary illumination provided by the sun as the primary
and the atmosphere as the secondary source, or the thermal radiation of the target itself. Another
available technique is also passive microwave remote sensing in the wavelength range 3 � 60 mm
(5� 100 GHz).

2 An introduction into the concept of multispectral imagery is given in Chapter 2.



2 1 Introduction

transmittance, surface orientation, ground humidity etc. do not change over the image

scene.

There are two basic approaches to analyze image data. One is to search for salient

statistical features within the data, to perform clustering and classi�cation based on

statistical models. Only in the last step are the statistically found classes identi�ed

with conceptional classes and linked to the ground reference.

The other way is to start from physical concepts of the observed objects, and to

model the complete image formation process: The incident radiation being re
ected by

the object and transmitted to the sensor, and �nally mapped to digital gray values. If

this physical model of the image formation process is invertible, then the parameters

of the ground object can be determined directly from the observations. Otherwise,

the method of inverse modeling can be applied. It varies the physical parameters of the

ground object and repeats the simulation of the image formation until a best �t between

simulated results and the actual observations is reached.

Physical modeling has been important to the processing of remotely sensed mul-

tispectral images for the last two or three decades, and gained growing attention for

computer vision more recently. Most commonly, a hybrid approach between statistical
and physical theories is chosen, which connects some physical modeling with results of
image statistics.

A large sub�eld of multispectral image analysis deals with the production of pixel-
wise classi�ed land cover maps, for mapping, planning or veri�cation purposes in public,

commercial and military applications. The underlying notion for classi�cation is that of
a spectral signature, i.e., a speci�c re
ectance spectrum which is typical for each class

of surface cover. While the spectral re
ectance signatures are assumed to be invariant,
the spectral illumination and thus the recorded spectral radiances are certainly not so.
The apparent change of re
ectance where only the illumination has changed, has been

labeled the color constancy problem in physiology and later in computer vision.

The color constancy problem has several aspects and is far from being solved. Pre-

vious work was mainly concerned with color constancy in the visible wavelength range
(0:4 � 0:7�m). In this thesis, we expand the scope by including also the region of the
near and mid infrared radiation (0:7� 2:5�m). We discuss the color constancy problem

with respect to the surface orientation of the re
ecting objects, and the implications for
the analysis of remotely sensed multispectral images.

Multispectral image analysis can be seen as a natural generalization of RGB color
image analysis, and classi�cation as a subdivision of the general image segmentation

problem. In the conclusion of their comprehensive survey on recent results in color
image segmentation, Skarbek & Koschan (1994) state that the main problem for color

based methods is the need of color constancy. They further observe that physics based

approaches, which try to overcome the problem of misclassifying specularly re
ections
as well as shadowed and shaded areas, are far from operational as to now.

A number of researchers have measured the spectral properties of outdoor illumina-

tion and its variability with respect to time, so that change of illumination e�ects can

be assessed. A closer look reveils, however, that for remotely sensed images it is not

su�cient to assume a global illumination which is valid for all imaged surface patches.
We rather need to allow for a local illumination which can change rapidly from pixel to

pixel due to changes in surface orientation. For a complete grid of surface orientation,
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the local illumination can be modeled individually from surface orientation, horizon line

and assumed sky intensity distribution. Such an orientation map with su�cient spatial

resolution, however, will not be available in general.

In this thesis, we choose a di�erent approach. First, we establish the spectral vari-

ability of a Lambertian re
ector with respect to surface orientation.3 Secondly, instead

of costly individual modeling of local illumination from geometrical considerations, we

then simply �lter this variability in order to produce a spectral descriptor which is in-

variant against the surface orientation induced change of illumination. Thus, we do not

make any assumptions about the orientation of the surface patches or the sky's spectral

distribution, but recover an invariant which can be used for further image processing.

The search for invariants as robust features in image processing has since long been a

primary goal in computer vision.

For analysis of the color constancy problem with respect to surface orientation, we

introduce a logarithmic feature space which reduces the multiplicative nature of the

physical re
ection process into an additive one. The analysis and the invariant spectral

descriptor are checked against two sets of experimental data: in situ measured spectra

with high spectral and dynamical resolution, and remotely sensed multispectral imagery
from an airborne scanner.

1.2 Color Constancy {

Nature and Scope of the Problem

The color constancy problem arises whenever one wants to distinguish and classify spec-
tra received by a multispectral sensor and does not have su�cient knowledge about the
respective illuminating irradiance onto the re
ecting surface patch. The signi�cant re-


ectance spectrum can only be retrieved from the measured radiance spectrum if the
proper illuminating spectral irradiance is known.

Lambertian re
ection is a wide spread assumption in remote sensing image process-
ing. It assumes that the spectral re
ectance is speci�c to the re
ecting surface and

independent of the angle under which the sensor views the surface. In contrast, without
the Lambertian assumption, also the source-re
ector-sensor geometry of the recording

setup has to be considered. Then we cannot measure a unique re
ectance, but rather a

single point of the more general bidirectional re
ectance distribution function (BRDF,
Nicodemus (1970), Kriebel et al. (1975)).4

This thesis does not consider BRDF e�ects, but shows that changes in
the orientation of the re
ecting surface causes brightness and color shifts in
the measured radiance spectrum even for Lambertian re
ectors.

3 Per de�nition, the spectrum of a �xed, Lambertian re
ecting surface appears equal under all obser-
vation angles. However, if its surface orientation changes, the observed spectrum changes as well,
because the illumination incident onto the surface depends on the geometry of the various light
sources relative to the re
ecting surface.

4 The BRDF (in units of [sterad�1]) is a spectrally dependent function of the incident and scattered
directions. Limiting cases are the totally di�use Lambertian scatterer on the one hand, and the
specular scatterer which re
ects into the opposite direction of the incidence angle only. Even without
specular re
ection the BRDF e�ects can be as large as 100% for rough surfaces such as vegetation
canopies (hot spot e�ect).
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It is well known that the Lambertian re
ection model works only poorly for many

surface materials. Therefore, in computer vision many approaches have been made

to re�ne the re
ection models beyond Lambert's law (Oren & Nayar 1994, Oren &

Nayar 1995, Meister et al. 1996, Wol� 1996). However, there are convincing reasons

why analysis in this thesis starts out from Lambert's law:

I Lambertian re
ection still is the most wide spread assumption in remote sensing

image processing for land applications.

I Often the re
ection is modeled as a superposition of specular re
ection and Lam-

bertian (totally di�use) re
ection, and our considerations are thus valid for a major

component of such composite re
ection models.

I Specular re
ection is usually not of high interest for remote sensing image process-

ing. Image pixels with specular re
ection mostly exhibit values which are above

the dynamic range of todays sensor detectors and are thus inapt for classi�cation.

Moreover, the number of pixels showing specular re
ection is usually low in re-
motely sensed imagery, since the aircraft 
ight paths are planned such as to avoid
just this e�ect.

I A number of BRDF-models have been investigated for use with remotely sensed

imagery. However, as of today it remains unclear if there exists a general BRDF-
model which could be used for a wide range of surface materials while not being to

costly to, �rstly, measure from samples, and secondly, to employ in multispectral
image classi�cation.

The color constancy problem as a complex contains quite di�erent aspects:

� Change of global illumination: The illumination spectrum varies during the
course of the day and year, with geographical position, cloud coverage, atmospheric
composition and so on for outdoor images, and with the illuminating light sources

for indoor applications of computer vision.

� Change of local illumination: e.g. due to

{ surface orientation (see the sketch in Fig. 1.1 on the facing page: apparent

brightness relations can even be reversed in sign),

{ shadowing by other objects which block out the sun and part of the sky

(individual horizon line),

{ spatially varying atmospheric transmittance (e.g. cloud coverage of

certain areas),

{ mutual illumination, when the surface patch is not only illuminated by

sun and sky but moreover by other neighboring re
ecting surfaces,

{ and for indoor applications: close, �nite light sources,i.e. non-parallel
incident radiation.

For remote sensing image processing, the change of global illumination is less of a prob-

lem than for common computer vision applications. Remote sensing recording 
ights
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1: L < L’

L’>L2: 

1

2

Figure 1.1: An example of the e�ect of surface orientation on the radiances re
ected

from surface patches of equal re
ectance but di�erent inclination: For sun position (1)

the tilted surface seems brighter than the horizontal one, for sun position (2) vice versa.

take place at speci�ed times and locations, and the particular illumination conditions
can be assessed by radiation transfer codes (RTCs) and standard re
ectance targets.
Often meteorological data is available, and the sensor is radiometrically calibrated. The

change of local illumination, however, remains an open problem.

In this thesis we concentrate on the impact of surface orientation on the Lambertian
spectral signature. Note that we are not concerned with a BRDF dependent change of
re
ection properties, but rather with an apparent change of the received spectrum which

is due to the fact that a di�erent surface orientation causes a di�erent illumination of
the given (assumed Lambertian) surface patch.

Let us clarify the di�erence between BRDF-e�ects and surface orientation related

color inconstancy: We consider a target surface of �xed orientation at a given sun

position. When the sensor moves and the observed spectral signature changes, then
these changes do necessarily stem from BRDF-e�ects because the illumination of the

target surface has not changed. In contrast, when the sensor positions stays �xed, and

the target surface's orientation changes, any change in the observed spectrum can stem

from both the changed illumination (due to the new position of the surface relative

to the sun and sky) as well as from BRDF-e�ects of the new geometry, such as e.g.
specular re
ection. The same is true for a �xed surface and a �xed sensor position

with a varying sun position: the illumination will have changed because of the new sun

position (Fig. 1.1) and BRDF-e�ects can occur as well.

A wide spread assumption in close range computer vision is that spatial changes
in re
ectance can occur quickly throughout the image scene, whereas the illumination

varies spatially slowly (Land & McCann 1971, Wandell 1987). Moreover the changes

in surface orientation are assumed to be spatially slow also, since the re
ecting objects
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are considered smooth and large in extent. It is claimed that these assumptions are

built-in a priori knowledge of the human visual perception. These provisions then lead

to the homomorphic �ltering of Oppenheim & Schafer (1975) where the large spatial

frequencies of a given image are �ltered out.

For remotely sensed multispectral imagery, however, this assumption of spatially

slowly varying surface orientation does not seem to be adequate. Most man-made but

also natural objects have image dimensions of only few pixels, and are not smooth in

shape. Surface orientation, local illumination and land cover may all change abruptly,

i.e., on the scale of 1 pixel. Also most multispectral classi�cation methods are purely

pixel based without spatial context analysis. Therefore we here aim at an invariant which

is computed from the spectrum of each pixel early in the image processing. No reasoning

about the geometry of the spatial surrounding shall be tried. Our novel approach does

not recover the true re
ectance, but obtains an invariant as the result of spectral rather

than spatial �ltering.

If there was only one light source present, the spectra could be made invariant by

reducing them to spectral band ratios (Sabins 1978, Lillesand & Kiefer 1987). Instead of

the N signals xi of spectral band i, one uses the N�1 spectral band ratios xi=xi+1. Then
a change of illumination, i.e., a multiplication of all signals xi with a common factor,

cancels out and has no e�ect on the band ratios. However, with di�use irradiance from
the sky contributing signi�cantly to the overall illumination, the assumption of a single
light source no longer su�ces. But with two light sources and respective contributions

which can change independently, the spectral band ratios will not any longer be invariant.
The uncertainty about the actual irradiance incident onto a speci�c surface element

is twofold:

1. In general, the surface orientation for a speci�c surface element is not
known, because Digital Elevation Models have coarse resolution and also do not
properly represent arti�cial objects like houses etc.

2. Moreover, the skylight cannot be su�ciently modeled as isotropic. Its
directional distribution is strongly dependent on sun position, atmospheric aerosol
content, etc. (Valko 1977, H�ackel 1985). So even if the surface orientation was

known we could not reliably estimate the di�use contribution of the illuminating

sky.

Facing these uncertainties, the aim of this thesis is to formulate a spectral descriptor

which is invariant to change of surface orientation by virtue of being invariant to varying
contributions from direct solar and di�use sky light. Just as the spectral band ratio

spectra are invariant to the sun light as an assumed only source of illumination, we need

a more sophisticated invariant expression in order to account for two light sources (sun
and sky) which exhibit di�erent geometric dependencies and are spectrally di�erent.

In this thesis we will not consider specular re
ection. Specular re
ection does not

carry surface speci�c information (with the exception that it may put constraints on

the surface orientation when the position of the illumination source is known), since it

re
ects the solar radiance independent of wavelength. Often the radiances resulting from

specular re
ection are so high in value that they saturate the CCD or the ampli�er and

thus cause over
ows in sensors of lower dynamic range (8 bit) which cannot be properly

evaluated. Nevertheless, for remotely sensed images in contrast to close range computer
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vision applications, specular re
ection over land (in contrast to oceanic) surfaces are

relatively few and of lower interest.

1.3 Brief Review of Previous Approaches to the

Color Constancy Problem

We want to relate the e�orts of this thesis to previous approaches to the color constancy

problem. The problem has not yet been treated thoroughly in the context of multispec-

tral remote sensing. We clarify why most of the approaches developed for RGB based

computer vision seem inappropriate for remote sensing image processing purposes, and

point out the crucial di�erences to our approach.

Hermann Helmholtz (1821{1894) established psycho-physics, introduced physiologi-

cal coordinates of human color perception (hue, saturation, intensity, Helmholtz (1896)),

and commented also on color constancy. Most of the approaches to color constancy are

based on three spectral bands, motivated by the three types of chromatic receptors of
the human eye (cones), or the three channels of the standard red-green-blue (RGB)

video systems.
The analysis of the color constancy problem naturally starts with an inspection of

the range of occuring illumination spectra on the one hand, and re
ectance spectra on
the other.

As far as illumination by arti�cial light sources is concerned, the CIE (Commission

Internationale de l'Eclairage, founded in 1931) has de�ned a number of standard sources
with published spectra. The `colors' of the spectra are de�ned by various three dimen-
sional color space coordinate systems and a color temperature (Judd & Wyszecki 1975).

For outdoor scenes the daylight spectrum and its variability have been measured.
The data is usually analyzed by principal component analysis. It is common practise

to publish this spectral data as a mean spectral vector5 plus the most signi�cant eigen-
vectors of the spectral covariance matrix and the respective variance eigenvalues. The
number of given eigenvectors then is the degree of freedom which is estimated for the

variability. The most cited measurements have been conducted by Judd et al. (1964),
Judd & Wyszecki (1975) and Dixon (1978). Appropriate spectral data for various air

masses can also be found in Accetta & Shumaker (1993). The CIE has proposed various
standard daylight spectra with two and three degrees of freedom.

To assess the range of possible re
ectance spectra, many researchers rely on spectral

measurements of the Munsell color chips. The Munsell colors are welcome as a standard,

but it seems doubtful whether they are representative for the complete range of the
natural as well as man made surfaces which can occur in remotely sensed multispectral

images. Moreover, their gamut has been designed for eye appraisal and thus for the
visible wavelength range only.

At the heart of most color constancy algorithms lies a model of �nite-dimensional

vector spaces for either illumination or re
ectance or both, i.e., illumination and/or
re
ectance are described as linear combinations of a certain number principal vectors.6

5 Basic terms and concepts are introduced in Chapter 2.
6 A RGB `spectrum' contains only 3 signals: red, green and blue. The vector space is thus limited
to three dimensions. But also spectroscopic measurements with N spectral bands can be con�ned
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Multiplication of all principal illumination spectra with all principal re
ectance spectra

then yields a system of principal vectors which span the space of all possibly observable

spectra.

The algorithm of Ho et al. (1990) tries to recover illumination and re
ection spec-

trum by �nding an minimum root mean square deviation to any combination of the

principal illumination and re
ectance spectra. The approach needs a well sampled ob-

served spectrum, not only RGB bands. The range of possible re
ectance spectra is

based on the Munsell colors.

Most RGB based algorithms, however, need not only one given observed spectrum

but the spectra of all pixels of the image in question or at least extended subregions

thereof. Each spectrum forms a point in the color space or feature space (see Chapter 2).

The observed points within the feature space are �tted to either a planar subspace
(Maloney & Wandell 1986, Wandell 1987), an ellipsoid (Petrov & Kontsevich 1994,

Drew & Kontsevich 1994) or a convex polyhedron (Forsyth 1990) or polygon (Matas

et al. 1994). From the parameters of this �tted manifold the illumination spectra can

be recovered, using certain assumptions.7 Finally, by division of the observed spectra
by the recovered illumination, the re
ectance spectra are found. In principle these
formalisms could be enhanced for multispectral images with N spectral bands which are

a natural extrapolation of the three-band RGB images. The calculus only deviates for
some cases where properties of the three dimensional vector space are explicitly used by

the previously discussed approaches, e.g. unique normals to two dimensional planes etc.

Also the approach of Freeman & Brainard (1995) aims at recovering the illuminant
which �ts best to the observed spectra. In contrast to the afore mentioned subspace
models they use a di�erent loss function instead of the common squared error.

The approach of Ohta & Hayashi (1994) not only needs the complete RGB image,

but rather several images of the same scene to recover the illuminant and thus the
re
ectances.

Some of the techniques intertwine the spectral analysis with spatial �lters. They
start from assumptions how spectral and spatial changes are related within a certain

image area and are thus using spatial context information (Oppenheim & Schafer 1975,
Gershon et al. 1986).

Another way to recover the illuminant spectrum is to identify highlights, i.e., spec-

ular re
ection (Klinker et al. 1987, Klinker et al. 1988, Klinker et al. 1990). In the

feature space, all clusters formed by points of specular re
ection must converge to the

illuminating spectrum, since specular re
ection is `white', i.e., the re
ection does not

change the color of the incident light. An even more special approach is the detection

of mutual illumination of several objects which also allows recovery of the illuminant
(Funt et al. 1991).

A number of approaches rely on the assumption of and are tested on images of a

so-calledMondrian world (after the Dutch painter Piet Mondrian 1872{1944), i.e., large
rectangular homogeneous color patches on a 
at surface. The treatment of the color

to a, say, 5 < N dimensional subspace, by means of principal component or factor analysis. The
assumptions is that all N dimensional spectra can be built by linear combination of, say, �ve
principal components, and can thus be fully represented by the �ve combination coe�cients.

7 E.g., if the same scene is observed under di�erent global illumination (i.e., constant within each
scene respectively), then all points appear uniformly shifted between the two respective feature
spaces, and from this shift the spectral change in illumination can be determined.
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constancy problem with respect to varying surface orientation is hence directly opposite

to the assumption of a constantly horizontal Mondrian world.

Nagao & Grimson (1995) are probing beyond the Mondrian world and allow changes

in surface orienation. They suggest the use of photometric invariants. However, their

invariant is based on the assumption that the contribution of the di�use (also called

ambient) illumination is equal for all surface patches not regarding orientation.

Also Barnard et al. (1996) consider scenes with spatially varying illumination. Their

approach is based on Forsyth (1990) and also needs the input of the whole scene. The

algorithm is aimed at recovering the illuminating spectra from the convex set spanned

by the observed spectra in the RGB feature space (color space). The approch is thus

necessarily depending on the image scene contents.

Finlayson et al. (1996) suggest a way to perform color constant mapping of whole

RGB-images to single prede�ned objects (object recognition). Instead of the common

histogram based classi�cation, they essentially use the spectral correlations of the RGB-

images. They exploit the fact that in contrast to variances and covariances, the corre-

lations are invariant against bandwise multiplication or addition.

A number of works treat the shape from shading problem (e.g. Horn (1986), J�ahne
(1993b)). Shading is the spatial brightness or color variation which is due to the local
orientation of the re
ecting surface. The basic assumption of shape from shading is
that the local surface orientations of small planar surface patches can be recovered from

their brightness or color. The orientations of all surface elements can then be integrated
in order to recover a three-dimensional surface or terrain model. Practically all shape

from shading algorithms assume either point light sources or completely isotropic il-
lumination and use the Lambertian re
ection model. An exception is J�ahne (1993b)

who suggests shape from re
ection for sea applications and assumes specular re
ection

under an extended light source. Shape from shading on gray-value images is ambiguous.
The ambiguity can be overcome e.g. by using multiple images with di�erent light source
positions (e.g. Heipke (1992), Heipke & Piechullek (1994)), or by using color imagery ob-

tained under several point light sources of di�erent illumination spectra (Schl�uns 1992,
Drew & Kontsevich 1994, Kontsevich et al. 1994). These approaches are related to the

subject of this thesis as they analyze how the spectral appearance of a surface patch
changes with orientation. However, the named approaches are constrained to laboratory

conditions, whereas this thesis analyzes the problem with respect to the outdoor situa-

tion encoutered in remote sensing. For remote sensing applications, shape from shading
approaches could work only for spectral bands with wavelength � > 2�m, because only

then the di�use illumination is essentially vanishing and the direct solar irradiance the
sole illumination (see Fig. 3.2 on page 38). To account for di�use illumination in shorter

wavelength bands must fail since the di�use skylight cannot satisfactorily be modeled

as isotropic (Valko 1977). Also, shape from color approaches cannot be tried, as the sun
is the only available point source.

Some approaches are motivated by a physiological interest in visual perception and

strongly based on �ndings about the human visual neural system. The in
uential retinex

theory was introduced by Land & McCann (1971). Also neural network approaches to
the color constancy problem have been made (Moore et al. 1991). This thesis, how-

ever, is not concerned with modeling human visual perception but motivated from a

physics perspective. Hence we are not so much interested in neural classi�ers, which
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are parameter-free but need extensive training. Here we rather start from a physical

model of the spectral signal formation, check our analysis against experimental data,

and construct an appropriate linear algebraic approach in the logarithmic domain.

The di�erences which distinguish most previous approaches from the one followed

in this thesis can be brie
y summarized, in that here we use:

I a physical parametric model,

I natural outdoor illumination,

I dichromatic illumination (direct plus di�use, both with varying contributions)

I no Mondrian world assumption but varying surface orientation,

I pixel-wise processing of single spectra without spatial context assumptions,

I an invariant descriptor instead of costly recovery trial,

I re
ectance spectra not constrained to Munsell colors or other subspace.

Laboratory
measurements

RGB

Wiemker ’97

Walthall et al ’85
Liang & Strahler ’94

single spectra:
Schlüns ’92
Finlayson et al. ’96

Maloney & Wandell ’86

Ohta & Hayashi ’94
several scenes:

whole scene:

Petrov & Kontsevich ’94
Freeman & Brainard ’95

Oppenheim & Schafer ’75

Meister ’96

Kriebel et al. ’75
BRDF:

Ho et al  ’90
(simulated spectra,:

temporal CCP )

Approaches to the Color Constancy Problem

measurements

Computer Vision

multispectral

Nagao & Grimson ’95

Remote Sensing

Spectroscopy

Outdoor

Figure 1.2: Tentative sketch of a color constancy approach topography. This work is lo-
cated halfway between full scale BRDF measurements and computer vision approaches.
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1.4 Structure of this Thesis

Following the formulation of the problem in the beginning of this chapter we have

discussed previous approaches to the color constancy problem. It has been clari�ed to

what extent these approaches are helpful to remote sensing image processing purposes,

and why they are not appropriate for our objective of deriving a spectral invariant.

In Chapter 2 we will give a brief introduction and de�nition of those basic concepts

of multispectral imagery and classi�cation which will be used in later chapters.

Chapter 3 describes the spectral characteristics of direct sun and di�use sky illu-

mination. We analyze the e�ect of changing direct and di�use contributions in the

conventionally used feature space. This N -dimensional space is spanned by the axes

of the N spectral bands i. An appropriate spectral distance and multispectral analysis

methods are developed with respect to the color constancy problem.

In Chapter 4 we introduce the logarithmic feature space which is spanned by the

logarithms lnxi of the spectral signals xi. This space is not commonly used in process-

ing of digital images, and we investigate its properties with respect to multispectral
classi�cation. Then the color constancy problem is analyzed in this logarithmic space.

An algebraic projector is introduced which is shown to map the spectra to an invariant
spectral descriptor. The capabilities of the operator are demonstrated on simulated
data, and an analysis of noise sensitivity and error propagation is carried out.

In Chapter 5 we present spectra which were recorded during in situ experiments with
the radiometer OVID. The data is analyzed in a high dimensional logarithmic feature
space, and the results show the validity of the considerations undertaken in Chapter 4.

In Chapter 6 the suggested projector is applied to the second set of experimental data,
i.e., to remotely sensed multispectral imagery recorded with the airborne line scanner

DAEDALUS. Picking spectral samples of interest from the image data, we analyze the
performance of the suggested transform in a variety of possible feature spaces. Moreover,
analysis of the feature space densities illustrates just how the transform works on the

experimental spectral image data. Both the original and the transformed spectral data
subjected to unsupervised classi�cation.

We �nally draw conclusions in Chapter 7. A synopsis is tried between the conven-

tional and the logarithmic feature space. Advantages and drawbacks of the suggested

invariant mapping are discussed, and the most useful version of the transform is recom-

mended. Last not least the progress made in this thesis is critically reviewed.
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Basic Concepts of Multispectral

Imagery and its Classi�cation

Outline of this chapter { We introduce basic concepts of multispectral imagery

and its classi�cation. In particular, we de�ne and brie
y explain those notions and

techniques which will be used throughout this thesis. We start with a physical model

of the spectral image formation process. Later, we describe the multispectral feature

space and common statistical techniques used for multispectral image classi�cation.

Thorough introductions into scattering and re
ection processes, radiometric mea-

surement and radiometric magnitudes can be found e.g. in Gerthsen et al. (1977),

Kraus & Schneider (1988), Rees (1990), Albertz (1991), and Hapke (1993), whereas the

emphasis is more on image data processing and classi�cation of imagery e.g. in Duda

& Hart (1973), Ballard & Brown (1982), Horn (1986), J�ahne (1993a), and Richards
(1993).

2.1 The Spectral Signal Formation Process

� Measurement
We consider multispectral image data recorded by an opto-electronic sensor. The sensor
has a �xed relatively small aperture and records radiation in N spectral bands with

index i. Each spectral band i has a spectral sensitivity distribution function with a

centroid wavelength �i. The output voltage of the detector elements is ampli�ed and
converted to digital counts [DC] by an AD-converter. The calibration functions of the

sensor { as established in the laboratory { allow to convert the recorded raw digital
counts into the physical magnitude of spectral radiances L in units of [W m�2 �m�1

sterad�1]. The radiance Ls describes the radiation power per unit of area, wavelength

and solid angle which is received by the sensor from a particular direction. Radiances
L are de�ned as the radiant 
ux � incident on an area element dA from a particular

direction and from an in�nitesimally small solid angle d
. Spectral radiances L� are
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radiances in an in�nitesimally small wavelength interval:

radiance: L =
d�

dA d

(2.1)

spectral radiance: L� =
d�

dA d
 d�
; (2.2)

and, if the incident beam hits the sensor under an angle �s:

Ls
�(�

s) =
d�s

dAs d
s d� cos �s
: (2.3)

Our sensor, of course, has a �nite aperture and a �nite wavelength interval. But using

the calibration functions and the simpli�cation that the radiance is constant within the

small aperture and narrow wavelength band i of the sensor, the radiation measured by

the sensor can be converted to N radiances Ls
i .

� Re
ection
Throughout this thesis we use the common and widespread assumption of Lambertian
re
ection, which is also called totally di�use or ideally matte re
ection. Its most promi-

nent property is that when looking with a small aperture sensor at a Lambert re
ecting
surface, the measured radiance will be the same under all observation angles �. In
other words, the Lambertian surface has a uniform bidirectional re
ectance distribu-

tion. Therefore we do not need to consider the geometry of the recording setup relative
to the re
ecting surface. This idealization gives rise to the notion of a stable spectral
signature, which allows to identify di�erent types of surface cover from their spectral

appearance.

Let us consider a calibrated sensor with a small aperture optic which observes an

extended planar horizontal Lambertian surface. The re
ecting surface is illuminated
by the incident irradiance E# (direct plus di�use), which is integrated from all incident
radiances L# over the complete hemisphere of the sky dome:

irradiance: E# =
Z
2�

L#(�0) cos �0 d
 (2.4)

with the zenith angle �0. The Lambert law states that the radiance Lr re
ected from an
in�nitesimally small point source is proportional to the incident irradiance E# multiplied
by the Lambert re
ectance factor r and an angular cosine dependence (Fig. 2.2 on

page 16):

Lr =
1

�
r E# cos � (2.5)

with the observation angle �. There is a subtle di�erence, however, between the re
ected
radiance Lr and the radiance measured by the sensor Ls (Fig. 2.1 on the facing page).

They are related as

Ls = Lr= cos � (2.6)
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Figure 2.1: Sensor target viewing geometry, and incident and re
ected radiances

Ls; Lr; L# and irradiance E#.

because the 
ux �s on the detector element dAs is inverse proportional to the squared

distance D between sensor and re
ector, and proportional to the sensor's instantaneous
�eld of view (IFOV) dA on the re
ecting surface:

d�s

dAs
=
Lr dA

D2
(2.7)

where the IFOV is given by dA = D2 d
s= cos � (Fig. 2.2 on the next page). Hence

d�s

dAs
=
LrD2 d
s

D2 cos �
(2.8)

so that the distance D cancels out, and the radiance Ls received by the sensor is

Ls =
d�s

dAs d
s
= Lr= cos � : (2.9)

Substitution of Lr from Eq. 2.5 on the facing page in Eq. 2.6 on the preceding page then

yields

Ls =
1

�
r E# : (2.10)

Thus the cosine dependence cancels out and we see the Lambertian properties: the

observed radiance Ls is invariant against the viewing angle � and the sensor-target-

distance D.

Integration of the re
ected radiance Lr over the upper hemisphere yields the total

re
ected exitance E" (Rees 1990), the equivalent to the incoming irradiance E#. The
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θ

dA

Ω

D

s θ

Figure 2.2: Left: Re
ector area viewed by the sensor (IFOV).

Right: Cosine dependence of the radiance re
ected from a single particle of a Lambertian

re
ecting surface.

re
ected exitance E" equals the incident irradiance E# multiplied with the Lambert
re
ectance r:

exitance: E" =
Z

Lr(�; �) d
 =

Z
1

�
rE# cos � d
 (2.11)

=
1

�
rE#

Z �=2

0

cos � sin � d�

Z 2�

0

d� (2.12)

=
1

�
rE# � 1

2
� 2� (2.13)

= rE# (2.14)

with � the zenith and � the azimuth angle of the re
ected radiation in the angular

system of the surface (see Fig. 2.2).
For most surface materials the Lambert law certainly is only an approximation. A

more re�ned representation of the re
ection properties is given by the bidirectional

re
ectance distribution function (BRDF). However, the cost of measuring this function
for a su�cient number of illumination and re
ection angles is quite high (Kriebel 1978,

Meister 1995), and also for its use in subsequent image processing. Therefore most
remote sensing digital image processing starts from the Lambertian approximation.

All these magnitudes can be spectrally dependent: L�; E�; r�. For our considerations

of a multispectral sensor, we denote them with the index i for the spectral bands i with

the centroid wavelength �i: Li; Ei; ri : A stricter formulation of the Lambert law even
demands a vanishing wavelength dependance ri = r; 8i; i.e., a `white' re
ector.

� Dependence of Illumination on Surface Orientation
When illuminated by a point source, the irradiance E# incident onto a given surface

patch is proportional to the cosine of the angle �0 between the surface normal and the

direction of the point source (inner product of the two normal vectors):

E
#
dir / cos �0 (2.15)
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The sun is commonly considered as a point source, and for a horizontal surface �0 then
equals the solar zenith angle ��.

If the sky light is considered at all, then it is commonly assumed to be a di�use

source which is distributed isotropically over the hemisphere of the sky. This di�use

irradiance onto a surface of inclination �0 can be shown (Horn 1986) to yield the angular

dependence:

E
#
di� /

1

2
(1 + cos �0) = cos2(�0=2) : (2.16)

However, as pointed out earlier, the sky's intensity distribution is usually not isotropic
(H�ackel 1985, Minnaert 1993). Moreover, the horizon line is at most times occluded by

other objects and thus not the whole hemisphere will be visible to the re
ecting surface.

� Atmospheric In
uence
Scattering and absorption are the mechanisms which cause an attenuation of the re-


ected radiance by the atmosphere. This attenuation is described by the transmittance
T � 100%. For solar irradiance from an solar azimuth angle ��, the transmittance
is related to the optical depth � by T = exp(�� cos�1 ��). For spectral band i with

the centroid wavelength �i, a horizontal re
ecting surface experiences an illuminating
irradiance

E
#
i = E

#
dir;i Ti(��) cos �� + E

#
di�;i (2.17)

where the direct irradianceE#
dir is extra-atmospherical and attenuated by the atmosphere,

whereas the di�use irradiance E#
di� is generated just there by scattering (see Fig. 2.3 on

the next page). A part r=� of the irradiance E# is re
ected in the direction � and again
attenuated by the atmosphere. So we introduce another transmittance T 0(�) for the
sensor recording under an observation angle � (Fig. 2.3).

Ls
i =

1

�
ri T

0
i (�)E

#
i + Lo;i cos

�1 � (2.18)

=
1

�
ri T

0
i (�)

h
E
#
dir Ti(��) cos �� + E

#
di�

i
+ Lo;i cos

�1 � (2.19)

Here Lo is the path radiance. It originates via di�use scattering of the incoming solar

radiation in the path of the view line between sensor and target surface. The path

radiance stems from solar irradiance which is actually scattered towards the sensor by
the atmospheric constituents before it reaches the ground (Fig. 2.3). We set Lo for

the path radiance received at nadir viewing angle (� = 0), and assume that the path
radiance is proportional to the length of the view path through the atmosphere to the

target: Lo cos
�1 � . Also the transmittance T 0(�) between target and sensor can be

approximated as T 0 cos�1 � . If this angular dependence in Eq. 2.19 is neglected (e.g.
for small swath angles), or T 0(�) � 100% for low recording 
ight altitudes, we actually

get a linear relation between re
ectance r and measured radiance Ls for all pixels of a
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Figure 2.3: Various radiation paths: sun { target { sensor.

given image band i:

Ls
i = ci ri + Lo;i (2.20)

where ci =
1

�
T 0
i

h
E
#
dir Ti(��) cos �� + E

#
di�

i
(2.21)

(2.22)

Experiences have shown that this linear relation is a good �rst order approximation
(Richter 1992, Hepp 1994, Kollewe 1995). A unique linear approximation of the at-
mospheric in
uence over the complete image band is computationally uncostly and has

been used e.g. by Schott et al. (1988), Moran et al. (1990), Wegener (1990), Hall et al.
(1991), Jahnen & Grassl (1991).

� Atmospheric Correction
Following a common atmospheric correction scheme, the magnitudes T; T 0; Edir; Edi�; Lo

of Eq. 2.19 can be computed for a horizontal surface patch using a radiative transfer
code (RTC), e.g. SENSAT (Richter 1990, Richter 1992). With the measured Ls

i , the

equation then can be solved for the sought re
ectance ri. However, we prefer to call
these so recovered magnitudes pseudo-re
ectances r�i , because their determination ne-

glects their respective surface orientations. The surface orientation can di�er for each

pixel and is in general unknown.
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2.2 Multispectral Imagery, Spectral Vectors and the

Feature Space

For image processing purposes, these pseudo-re
ectances r�i are coded into dimensionless

numerical values xib=r�i and stored as a data block. In it band sequential storage (BSQ),

a multispectral image then consists of N image layers, each of which holds the gray values

of one spectral band (alternatively the data can also be stored pixel-wise or line-wise

band interleaved, BIP and BIL). The BSQ format is a three dimensional data array (x-

y-pixel coordinate in the kth layer), which is often thought of as an image cube (Fig. 2.5

on page 21). A spectrum then consists of the entry at the same coordinate in each of

the N layers. We call x = (x1::: xN)
T the spectral vector, which is a column vector with

N entries. The spectrum can then be plotted from the N entries xi versus the proper

wavelengths �i (see Fig. 2.4 on the following page).

The set of spectral vectors x can be represented as points in an N -dimensional vector

space. In the �eld of pattern recognition, the terminology is such (Kohonen 1995) that

the physical variables are registered by detectors and transduced to a pattern vector. By
preprocessing, application speci�c features can be derived from these pattern vectors,

and stored into a feature vector, which is used for the �nal classi�cation (labeling) or
identi�cation.

Physical Variables �! Pattern Vector �! Feature Vector �! Classi�cation

In multispectral imagery each pixel has a vector of values from the N spectral bands
of the respective sensor. The values can be either raw detector values (Digital Counts
[DC]), calibrated radiances [W/(m2 sr �m)], or re
ectances [dimensionless], or other

processed quantities. In the �eld of multispectral remote sensing it is common in that
all these vector spaces are simply called spectral space or feature space, without di�er-
entiation between various levels of processing. Also throughout this thesis we will use

the term feature space for the vector space as spanned by the N re
ectance values1 in
the N spectral bands of the sensor, and the term transformed feature space after the

transformations { which are suggested by this thesis { are applied.
Again, in the N -dimensional feature space, each pixel of a particular image is pre-

sented by a point with coordinates given by the value of the pixel in each spectral band.

Then the basic idea of classi�cation is that the pixels form clusters in the feature space
corresponding to various ground cover types (see Fig. 2.6 on page 22). Each cluster is

supposed to represent a spectral class. A spectral class is not necessarily identical to a

conceptual class, such as `water', `streets', `houses', `forest' or `meadow', but it is ex-
pected that relations between the spectral and the conceptual classes can be established.

The shape of the clusters in the feature space depends on the intrinsic variability
of the cover type's spectral signature, on noise, moisture content, BRDF e�ects, topo-

graphic e�ects such as surface orientation, etc. In practise, the clusters will not be

as well separable as depicted in Fig. 2.6, but rather be only more or less pronounced
aggregations embedded in a continuum of points in the feature space.

1 The re
ectances ri (of spectral band i) are computed by calibration of the detector raw values and
atmospheric correction under the assumption of Lambertian re
ection (see Section 2.1 on page 13).
We choose to call them pseudo-re
ectances r�

i
if they are computed under the assumption of hori-

zontal surface orientation.
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Figure 2.4: Top: Concept of multispectral imagery, spectral vectors and signatures.

Bottom: Some examplary spectra from multispectral imagery (N = 9 spectral bands,

DAEDALUS sensor).
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Figure 2.5: Multispectral image cube with N = 9 spectral bands.
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Figure 2.6: The multispectral feature space.
Top: Concept sketch.

Bottom: Exemplary scatter plot of two spectral bands (615 vs 720 nm) of selected

regions of the remotely sensed multispectral image shown in Fig. 2.5.
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2.3 Spectral Distances and Classi�cation in the Fea-

ture Space

Most multispectral classi�cation concepts are based on a speci�c model of the spectral

distance of an observed spectrum x to a certain spectral class denoted by an index a.

Then the probability for the observed spectrum x to belong to class a increases with

decreasing spectral distance. Following the maximum likelihood principle derived from

Bayesian decision theory (Duda & Hart 1973, Richards 1993), the spectrum x is assigned
to the spectral class a for which the spectral distance is minimal. So the de�nition of

the spectral class and the spectral distance is crucial for the multispectral classi�cation

process.

Spectral classes are commonly described as points belonging to class a centered

around a cluster center ma in the N dimensional feature space. Let Xa be the set of all

na vectors x belonging to class a. Then class a has a cluster center ma,

ma =
1

na

X
x2Xa

x (2.23)

and the spectral distance between a feature vector x and the class center ma can e.g.

be the squared Euclidean distance:

Euclidean distance:

d2E(x;ma) = kx�mak2 (2.24)

= (x�ma)
T(x�ma) : (2.25)

The Euclidean distance can be modi�ed by a metric G, where the symmetric N � N

matrixG = GT is injected into the inner product and yields the more general quadratic
form

Metric induced distance:

d2G = (x�ma)
TG(x�ma) : (2.26)

The Euclidean distance (Eq. 2.25) implies that points of equal distance lie on hy-
perspheres centered around ma. This means that we expect no correlations between

the features and the variance of each feature is equal. If the scatter of class points in

the feature space around the class center is not spherically distributed, we need another
spectral distance. The distribution of the points around the cluster center is multivariate

as it varies in N di�erent variables xi. The representation of a multivariate Gaussian
normal distribution for class a is known as an ellipsoid (see Fig. 2.7 on the next page)

given by the covariance matrix �a which is estimated as

�a =
1

na

X
x2Xa

(x�ma)(x�ma)
T : (2.27)

For an assumed Gaussian normal distribution this leads to the well known Mahalanobis

distance d2M (Duda & Hart 1973, Richards 1993), where points of equal distance lie on
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ellipsoids. For the appropriate spectral distance the inverse of the estimated covariance

�a is taken as a metric G and substituted in Eq. 2.26 on the preceding page:

Mahalanobis distance:

d2M(x;ma;�a) = (x�ma)
T��1

a (x�ma) : (2.28)

If the covariance ellipsoids are identical for all classes, �a = �; 8a, then all vectors x
can be mapped to x 7! x0 = ��1=2

a x, and the quadratic Mahalanobis classi�er reduces

to a linear classi�er (Eq. 2.25) which may be computationally more e�cient. We will

show in Chapter 4 that this is just the case for the illumination covariance matrix in

the logarithmic spectral feature space.

xk

xj

xi

spectrum
observed

cluster center

covariance ellipsoid

spectral distance

Feature Space

Figure 2.7: The feature space with the center ma of class a, the covariance ellipsoid

� and the distance d = x�ma between the class cluster and an observed spectrum x.

For a given pixel with feature vector x we have the Gaussian probability density

function (PDF) with respect to class a:

p(xja) = 1p
(2�)N j�aj

e�
1

2
d2M =

1p
(2�)N j�aj

e�
1

2
(x�ma)

T��1
a (x�ma) (2.29)

where j�aj is the determinant of the covariance matrix �a. The PDF is normalized so
that

R1
�1 p(xja) dx = 1. Let each class a have an a priori probability of P (a). Then

Bayes Rule changes this a priori probability into the a posteriori probability

P (ajx) = p(xja)P (a)P
a p(xja)P (a)

(2.30)

which describes the probability that the pixel with feature vector x belongs to class a.

All probabilities are normalized so that
P

a P (ajx) = 1. The Bayes decision rule states
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that pixel should be assigned to the class for which P (ajx) becomes maximal, because

this minimizes the probability of error (Duda & Hart 1973).

In case the a priori probabilities P (a) are equal for all classes a, Eq. 2.30 reduces to

P (ajx) = p(xja)P
a p(xja)

(2.31)

and yields a likelihood decision instead of a probability decision, because it is based

entirely on the likelihood p(xja) (Duda & Hart 1973). Again, we decide for the maximum

likelihood. This principle is called the Maximum Likelihood Classi�cation (ML).

When deciding for the class a with the highest probability P (ajx) of Eq. 2.31, the
computation of the denominator

P
a p(xja) is not really necessary, since it is the same for

all classes. It su�ces to decide for the class with the highest probability density p(xja)
(Eq. 2.29). This, in turn, is the same as deciding for highest logarithmic probability

density:

ln p(xja) = �1
2
N ln(2�)� 1

2
ln j�aj � 1

2
d2M (2.32)

= �1
2
N ln(2�)� 1

2
ln j�aj � 1

2
(x�ma)

T��1
a (x�ma) : (2.33)

For reasons of analogy to the previously introduced spectral distances, we might want
to look for a minimum distance principle instead of a maximum logarithmic probability
density. This gives rise to the spectral distance as derived from Maximum Likelihood

decision, which is just the negative logarithmic probability density:

distance derived from Maximum Likelihood decision:

d2ML =
1

2
N ln(2�)+

1

2
ln j�aj+ 1

2
(x�ma)

T��1
a (x�ma) : (2.34)

Computation of the leading term is not even necessary as it is a normalization factor

which is equal for all classes.

2.4 Clusters and Separability Measures

We want to look brie
y into measuring separabilties of spectra and spectral clusters.

Separability is the basic prerequisite for classi�cation. Separability measures will be

used in the statistical evaluation in Chapter 5 and Chapter 6.

A simple and widely used criterion for clustering is to minimize the mean-squared-

error (MSE) within each cluster a:

J2
a =

1

na

X
x2Xa

kx�mak2 (2.35)

= tr�a (2.36)

where Xa is the set of all na vectors x belonging to class a, and

ma =
1

na

X
x2Xa

x and �a =
1

na

X
x2Xa

(x�ma)(x�ma)
T (2.37)
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are the mean vector and covariance matrix respectively. Actually it can be shown that

the cluster centerma of Eq. 2.37 is just the one which minimizes J2
a
(Duda & Hart 1973).

J2
a measures the square of the mean scattering radius, since it is the mean sum of the

variances in all coordinate directions. From linear algebra we know that the trace tr�a

is invariant against coordinate rotations (J�anich 1993). By rotation of the coordinate

system we mean a transformation x 7! Gx with an orthogonal metric G which has the

properties GTG = I and jGj = 1. Then the trace remains unchanged:

tr�a 7! tr (G�aG
T) (2.38)

= tr (�aG
TG) (2.39)

= tr�a (2.40)

because of the general property of the trace function: tr (AB) = tr (BA).

Let m and m0 be the cluster centers of two classes a and a0 with covariances � and

�0. Then the displacement vector between the two clusters is d =m�m0 (see Fig. 2.8
on page 28). We want to have a measure which describes a scalar separability between
the clusters which takes into account their extensions. To this aim we introduce the
between-cluster covariance matrix

�b =
1

k

kX
a=1

(ma � �m)(ma � �m)T (2.41)

where �m =
1

k

kX
a=1

ma (2.42)

for k classes, with k = 2 in our example of the unprimed and primed class a and a0

(Fig. 2.8). Moreover, we need a within-cluster covariance matrix

�w =
1

k

kX
a=1

�a (2.43)

Now a normalized separability measure between the k clusters can be de�ned as

d2S = tr�b= tr�w (2.44)

giving the mean cluster separation tr�b relative to the mean cluster extension tr�w.

As stated above, the measure is invariant against rotation of the coordinate system.

However, the coordinate axes might also be rotated and rescaled by a transformation

x 7! Tx with a matrix T, so that TTT = D is diagonal but not equal to the idendity

matrix: TTT 6= I. Then the measure d2S is no longer invariant, because tr (T�aT
T) 6=

tr�a. Therefore we consider a second normalized separability measure between the k

clusters:

d2�S = tr (�b�
�1
w ) (2.45)

which is invariant against rotation and scaling of the axes of the coordinate system. The

invariance of d2�S can be easily seen, since the distance d2�
0

S in the transformed space can
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be obtained from the original distance d2�S as

d2�
0

S = tr
�
(T�bT

T)(T�wT
T)�1

�
(2.46)

= tr
�
T�bT

T(TT)�1��1
w T�1� (2.47)

= tr
�
T�b(T

�1T)T��1
w T�1� (2.48)

= tr
�
T�b�

�1
w T�1� (2.49)

with the general trace property tr (AB) = tr (BA)

= tr
�
�b�

�1
w T�1T

�
(2.50)

= tr
�
�b�

�1
w

�
(2.51)

= d2�S (2.52)

and remains indeed unchanged.

We try to illustrate the di�erence between the separability measures d2S (Eq. 2.44)

and d2�S (Eq. 2.45) in Fig. 2.9 on the following page. We imagine two clusters with a
distance d and the covariance matrices � and �0. In the �rst case we show mainly
orthogonal variance, in the other case mainly parallel variance. The cluster separability

measure d2S (Eq. 2.44) is the same for both cases, whereas the other cluster separability
measure d2�S (Eq. 2.45) is smaller for the parallel case (left), and thus indicates a worse

separability for the parallel case.
We see that the separability measure d2�S is more sensitive and invariant against

rotation and rescaling of the coordinate system axes. It is the separability measure which

is relevant for classi�cation performed with the Mahalanobis or maximum likelihood
distances (Eq. 2.28 and Eq. 2.34). Separability measure d2S is still worthwile to consider,

as it is the relevant one for most unsupervised clustering algorithms (see Section 2.6)
which use the Euclidean distance (Eq. 2.25).
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Figure 2.8: 3D projection of the feature space with two clusters, the distance between

the cluster centers, and the cluster radii J =
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Figure 2.9: Clusters with mainly orthogonal and mainly parallel variance: the distance

d and the covariance matrices � and �0 are the same in both �gures. The cluster

separability measure d2S (Eq. 2.44) is thus the same for both cases, whereas the other

cluster separability measure d2�S (Eq. 2.45) is not and indicates better separability for

the mainly orthogonal variance (left).
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2.5 Supervised Classi�cation

The classi�cation or labeling of a multispectral image means that a class identi�er a

(label) is assigned to each pixel. Belonging to a certain class is usually derived by analysis

of either the spatial context of the respective pixel (texture2 ), or the spectral context

(spectral signature), or both. Throughout this thesis we concentrate on the pixel-wise,

purely spectral classi�cation as the most wide-spread method in multispectral remote

sensing (see Chapter 6).

The underlying idea of parametric classi�cation is that a number of k class prototypes

are represented by a certain set of parameters (e.g. cluster center (mean spectrum) and

covariance matrix). The feature vector of each pixel is compared to all class prototypes

by means of a well de�ned distance, in our case the spectral distance d2 (see Section 2.3

on page 23). Finally the pixel is assigned (labeled) to the class where the distance

becomes minimal.

Supervised classi�cation then means that the set of classes (represented by their re-

spective parameters) is provided by the analyst, usually based either on eye appraisal
of the image or on ground reference. The analyst will determine the necessary class pa-

rameters from training areas which are characteristic samples for the conceptual classes
the operator wishes to use. Having the classes prede�ned, the classi�cation then is
a one-pass process, its computational e�ort depending only linearly on the number of

pixels, the number of spectral bands N and the number of classes k.3

In the simplest form all spectra are compared to each spectral class. This however can
be modi�ed into the concept of hierarchical classi�cation where a decision tree is worked

down for each spectrum. This will decouple the linear dependence of the classi�cation
cost on the number of classes. Even for the simple non-hierarchical classi�cation the

run time can be optimized by ordering the spectral comparisons and using partial sum
logic (Venkateswarlu & Singh 1995).

2.6 Unsupervised Classi�cation / Clustering

In contrast to supervised classi�cation, where the class parameters are trained on ar-

eas which are speci�ed by the analyst, the unsupervised classi�cation tries to estimate

the class parameters automatically from the overall input data itself. After the para-
meter estimation, a �nal classi�cation takes place as described above. Unsupervised

classi�cation will be applied in Chapter 5 and Chapter 6.
The task of the unsupervised classi�cation algorithms is to discover structures which

are inherent in the input data, more speci�cally, to identify clusters in the feature

space. The underlying idea is that each feature vector (spectrum) is a point in the
feature space, and that the points of related feature vectors form separable clusters in

the feature space. The process of clustering then means to �nd these clouds of points
in the feature space, in particular to �nd the cluster centers and to quantify the scatter

around them. The result of clustering is then a set of statistically meaningful classes

which can be attributed to conceptual classes only a posteriori by the analyst. Statistical

2 The texture of a pixel's local neighborhood in a gray-value image is characterized by features such as
`smoothness', `coarseness', `graininess', directional `co-occurances' etc. (Gonzalez & Wintz 1987).

3 Provided that the used distance is an inner product induced norm such as described in Section 2.3.
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classes may comprise quite di�erent spectral sets than conceptual classes. E.g. for the

here considered case of multispectral image classi�cation, clusters with spectrally similar

pixels do not necessarily coincide with functionally similar pixels derived from concepts

such as street, house, vegetation or water.

In the context of data compression, unsupervised classi�cation is also called vector

quantization, as the large number of feature vectors is coded into a small number of

prototypes contained in a code book (the set of class centers).

Main methods for grouping points in the feature space into clusters are (Duda &

Hart 1973, Hartigan 1975, Bezdek 1981):

I Hierarchical splitting / merging:
The data points are iteratively split into subsets (top down), or the most similar

points and then subsets are merged (bottom up), or both (hybrid).

I Feature space density estimation:
The feature space density can be estimated by virtue of Parzen windows. The

feature space is devided into bins and a multivariate histogram is computed from

all feature vectors. Then the bins which are local maxima in the feature space are
designated as class centers.

I Geometrical clustering:
After tentative classi�cation, the geometric centroids of the clusters in the feature
space are computed in order to minimize the scatter around each cluster center.

Practically all algorithms work iteratively. In this thesis we deploy the widely used
iterative geometrical clustering of multispectral data (Duda & Hart 1973, Hartigan 1975,

Richards 1993). The number of classes (clusters) k is prede�ned by the analyst, and the
clustering procedure then iteratively �nds the coordinates of the cluster centers which
are distributed throughout the feature space. The `best' partition (classi�cation) of

the data points into the k classes is de�ned as the partition which minimizes a certain
functional. A most commonly chosen functional is the overall mean squared errors

(MSE)

J2 =
1

n

X
a

naJ
2
a (2.53)

with J2
a being the scatter matrix of a class a as de�ned in Eq. 2.35 on page 25, na the

number of data points belonging to class a, and the total number of points n =
P

a na.

So J2 is the average combined scatter of all data points around their respective class

centers. To �nd the partition which yields the global minimum of the functional J2 is

computationally very demanding, since the number of possible partitions of n =
P

a na
data points rises as fast as kn=k! .

� Hard k-means:
Among the sub-optimal but computationally feasible algorithms (which guaranty con-

vergence only to a local minimum), the family of `k-means' algorithms (MacQueen 1967)

is the most wide-spread. They are also called `centroid clustering', `migrating means',

or `basic ISODATA' (Ball & Hall 1967). An initial classi�cation must be provided, if
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possible `close' to the assumed global solution, or, if an educated estimate is unavail-

able, at random. Then the iteration process starts. In the jth iteration all points x
are assigned to the class a with the least distance d2(x;ma) between the point x and

the current cluster center ma. Then the k cluster centers ma are recomputed as the

centroid (i.e., the mean value in each spectral band, Eq. 2.37 on page 25) of all vectors

currently assigned to it. The justi�cation for this lies in the fact that the mean ma is

indeed the very point which minimizes the within-class scatter naJ
2
a (Eq. 2.35).

The procedure is repeated with the new means (cluster centers) and so forth. The

means are expected to converge eventually at the true cluster centers, although only

convergence to a local minimum can be proven. The iteration is stopped when the

change in classi�cation or in cluster center coordinates is below a �xed threshold.

When the clusters are characterized only by their means ma, this implicitly assumes

that the class members are scattered concentrically around the class center, i.e., k-means

clustering will `seek' for hyperspheres. Also an adaptive k-means algorithm has been

investigated (Gustafson & Kessel 1979) where at each iteration a covariance matrix �a

is computed from the currently assigned vectors and used in a Mahalanobis distance

(Eq. 2.28 on page 24) to the cluster center. This procedure is of course much more
time consuming, and convergence can be shown only under the boundary condition of

a �xed volume of the class's hyperellipsoid (which is proportional to the determinant of
the covariance matrix j�aj).

� Fuzzy k-means:
A fuzzy generalization of k-means, the fuzzy k-means, has been introduced by Bezdek
(1973). Here each vector is not assigned entirely to a single class, but a fuzzy membership
0 < wax < 1 gives the degree of membership of a point x to a class a. The memberships
are normalized as

P
a wax = 1 for a given point x. The membership is computed as a

function of the distances dax in the feature space between the point x and the cluster
centers ma

wax =

"X
j

�
dax

djx

�2=(z�1)#�1
(2.54)

where z controls the fuzzyness. The parameter z > 1 is often set to z = 2. In the

limiting case of z ! 1, the fuzzy k-means degenerates to the previously discussed hard

k-means. A column vector wx = [w1x :: wkx]
T contains the membership wax of the point

x to all k classes.

For the �nal classi�cation a defuzzi�cation is necessary. The vector is assigned to the
class where membership is highest, possibly requiring a minimum membership threshold

(�-cuto�). This corresponds to the simple minimum distance classi�cation as described

above.
The computational e�ort of the fuzzy k-means is higher than for the hard k-means,

because the membership matrix W = [::wx ::] which contains the membership vectors
wx for all observed vectors x, has to be updated troughout the iteration process. The

main advantage of the fuzzy k-means lies in the fact that via fuzzy membership the whole

iterative process of minimizing the objective function becomes continuous di�erentiable.
Convergence to a local minimum can be proven (Bezdek 1981). Points do not `
ip'

from class to class, but rather change their membership weights gradually, ensuring a
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smooth convergence. Reliability of the classi�cation can be estimated from the absolute

height of the maximum membership wax, since the membership is a normalized value.

Separability of classes can be estimated from the o�-diagonal elements of a similarity

matrix (WWT).

Fuzzy k-means clustering has been applied to remotely sensed multispectral imagery

(LANDSAT) by (Trivedi & Bezdek 1986).

� Cluster Validation:
A serious problem with all clustering algorithms is to set the number of classes k which

is usually provided by the analyst. Bezdek (1981) points out that this so called cluster

validation is a hard problem and depends, after all, crucially on the de�nition of what a

`good' cluster is. A promising way to determine a sensible number of classes k, resting

on a maximum entropy approach, is presented e.g. by Buhmann & K�uhnel (1993).

2.7 Principal Component Transformation

The principal component transformation (PCT, in computer vision also known as the

Karhunen-Lo�eve transform) is a common technique in order to obtain overall uncorre-
lated feature vectors. We will investigate PC-transformed feature spaces in Chapter 6.

With multispectral image data the correlation between the spectral bands can be

quite strong, so that the spectral values are essentially redundant to a certain degree.
Signi�cant correlation between the spectral bands is indicated by large entries in the
o�-diagonal of the overall covariance matrix �:

� =
1

n

X
x2X

(x�m)(x�m)T (2.55)

with m =
1

n

X
x2X

x (2.56)

where X is the set of all n vectors x in the image. The basic idea of the PCT is that
the high dimensional vectors x can be represented by linear combinations of only few

principal components.

The foundation of the PCT is that the symmetric covariance matrix � of all ob-
served data vectors x can be decomposed4 into � = EDET, where E is an orthogonal

matrix: ETE = I. The matrix E contains the eigenvectors of � as columns, and D is
a diagonal matrix containing the corresponding eigenvalues �2ii in order of descending

magnitude. The eigenvalues represent the variances which the data has after rotation

into an uncorrelated coordinate system x 7! ETx.
Here we want to de�ne the PCT as follows: First, the mean vector m is subtracted

of all observed vectors x, so that the cluster becomes centered around the origin. Then

4 Singular value decomposition (SVD) decomposes a given matrix � into � = UDVT, where D is a
quadratic diagonal matrix containing the singular values of � in order of decreasing magnitude. For
a real and symmetric matrix� (as any covariance matrix is by de�nition) we know thatU = V = E,
where E is a quadratic matrix that contains the eigenvectors of � as columns, and D contains the
corresponding eigenvalues of � (H�ammerlin & Ho�mann 1994). The SVD is a computed by virtue of
Householder re
ections and provided as a standard matrix operation by most mathematical software
packages.
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the vectors are projected onto the ortho-normal eigenvectors by multiplication with ET.

After this rotation of the coordinate system the new vector entries are uncorrelated, in

other words, the covariance matrix of the transformed vectors has only entries in the

diagonal. Finally, the variance along each of the new coordinate axes is forced to unity

by dividing each component by the square root of the respective eigenvalues:

x 7! x0 = D� 1

2ET(x�m) (2.57)

= T(x�m) (2.58)

with the PCT-matrix T = D� 1

2ET. Note that T is not an orthogonal matrix, TTT 6= I,
because it presents a rotation and a rescaling of the coordinate system.

Generally, withN entries for each vector x, the dimensionality of the data isN . But if

some eigenvalues �2ii of � are vanishingly small, then the observed vectors are essentially

con�ned to a subspace which is of a lower dimension H < N . Practising lossy data

compression, the corresponding dimensions of the data space may be neglected. Then

N � N matrix T may be reduced to a H � N matrix by leaving out the eigenvectors
with small corresponding eigenvalues. Then the matrix T is only of rank (T) = H < N ,

and also the set of transformed vectors x0 = Tx will then only be of dimension H.
It is as well possible to use the correlation matrix instead of the covariance ma-

trix to determine the eigenvectors and -values and thus the principle components.

The correlation matrix entries Cij are obtained from the covariance matrix entries

�ij as: Cij = �ij=
q
�2ii�

2
jj. Mather (1987) and Singh (1993) have pointed out that

there is no simple relationship between these two options (which are also called un-

standardized and standardized principal components analysis, (Fung & LeDrew 1987,
Eklundt & Singh 1993)).

Other comparable techniques of compressing vector data are Factor Analysis (FA)
(Harris 1975), and MaximumNoise Fractions (MNF) transformation (Nielsen & Larsen 1994,
Hurcom et al. 1994).
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Color Constant Classi�cation

in the Multispectral Feature Space

Outline of this chapter {We de�ne a dichromatic illumination model which accounts

for direct sun light and di�use skylight. Combining the dichromatic illumination with

Lambertian re
ection we develop the concept of classes as two dimensional planes in the

feature space. An adequate color constant distance measure is derived, using a linear

algebraic projector matrix. We show that this projector matrix can be seen as similar

to a change of metric, and that it can be combined with the covariance matrix into the

common Mahalanobis distance at equal computational cost.

Then we investigate three questions which arise as consequences from the concept

of planar classes. We show how to determine the proximity of planes and thus the

probability of misclassi�cation. We show that all class planes must intersect at the

origin of the feature space, and how we can recover residual path radiances in case

they have not been subtracted correctly. Finally, we show that it is possible to recover

the normalized Lambertian re
ectance spectrum from the plane which is spanned in

the feature space by the set of observed spectra from a speci�c surface under varying

illumination.

3.1 Dichromatic Illumination Model

For multispectral remote sensing applications as well as for outdoor scenes in computer

vision it is common to model the global illumination onto a horizontal surface Eglob =
Edir + Edi� as a dichromatic illumination with two basic sources:

1. direct illumination Edir (sunlight) from the sun approximated as a point source,

2. di�use illumination Edi� (skylight) from the whole remaining upper hemisphere

(distributed source).

The di�use illumination Edi� is generated by sunlight scattered on air molecules (dia-

meter < 50 nm, Rayleigh-scattering) and aerosols (diameter � 500 nm, Mie-scattering).
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Direct and di�use illumination have distinct spectra, the ratio of which is known from

atmospheric physics and can be well approximated as:

Edi�

Eglob

b= m

n +m
= m̂ / ��
 (3.1)

with a typical exponent 
 = [0:5 : : : 4] , where 
 = 4 corresponds to Rayleigh scattering,


 = 1 to Mie scattering, and 
 = 0 to a scatter function of geometric optics, i.e., wave-

length independent optics (particle diameter > 5�m, Gerthsen et al. (1977), Minnaert
(1993)). Various di�use to global ratio spectra are plotted in Fig. 3.1. This expo-

nential wavelength dependence of the di�use sky irradiance can be found e.g. in Sabins
(1978), Mather (1987), Kraus & Schneider (1988), Chavez (1989), Warnecke (1991), and

Richards (1993). Schott (1993) cites Piech & Walker (1974) for a method to measure

the relative di�use illumination from the image data itself, namely from transitions of

sunlit to shadowed areas of the same surface. This has been used on multispectral image

data in order to determine the exponential constant 
 by Wiemker & Hepp (1994). An

exponential �t to the in scene measured spectra yielded 
 = 1:7 � 0:3 for that partic-
ular recording day, and simulations with the atmospheric correction package SENSAT
(Richter 1992) yielded 
 = 1:4. Another simulation was run with the radiative transfer

code MODTRAN (Anderson et al. 1995) for various visibilities (Fig. 3.2; simulation
with `mid-latitude sommer atmosphere', `rural aerosol model', for a solar zenith angle
of �� = 40� (i.e., e.g. September 1, 12hoo CET, � 50� northern latitude)). For a given

atmospheric parameter 
, the magnitude of the di�use contribution depends on the
visibility.

Obviously the value of 
 for a particular recording situation depends on the ac-
tual aerosol density and on the density of bigger particles (dust, soot). For common
atmospheric situations the coe�cient is 
 2 [0:7:: 2:0] (Kraus & Schneider 1988). War-

necke (1991) gives 
 = 1:3 as a typical exponent.
For tilted surfaces the contributions of direct and di�use illumination change with

surface orientation. We �nd di�erent angular dependencies for point and distributed
sources respectively. As many small scale and man made objects are too small to be
considered in a digital elevation model (DEM, also digital terrain model, DTM), the

surface orientation of a given surface patch often is not available. Consequently we

cannot determine the mixture of the two illumination contributions to which a given
surface patch is exposed. Also, for man made objects in aerial imagery we cannot assume

smooth and continuous surfaces.



3.1 Dichromatic Illumination Model 37
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Figure 3.1: The ratio of di�use to global illumination modeled as an exponential

function of wavelength m̂ / ��
 , plotted with 
 = [0:5; 1; 2; 3; 4] .
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global and diffuse illumination
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Figure 3.2: Top: Global irradiance ( = direct + di�use, higher curve) and di�use

irradiance (lower curve) obtained from MODTRAN simulation (wavelength in �m,

irradiance in W/(m2�m)).

Bottom: The ratio of di�use to global illumination. Right: Logarithmic representation.

The atmospheric parameter for the chosen atmospheric model is 
 = 1:5 , whereas the

magnitude of the di�use contribution depends on the atmospheric visibiltiy:

Contribution of Diffuse Illumination

visibility [km] 5 10 15 20

di�use to global ratio at � = 0:5�m 80% 62% 51 % 44%
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3.2 Planar Spectral Classes

We consider a sensor with N spectral bands which observes a homogeneous surface

patch. The surface can have varying surface orientations (tilts). We now ask for the

illumination ei which is incident on the surface in each spectral band i. Neglecting

atmospheric attenuation and Lambertian re
ection provided, the sensor will receive

spectral radiances xi = riei which are simply proportional to the incident illumination

ei, where ri is the Lambertian re
ectance. So if the incident illumination ei changes due

to varying surface orientation of the surface patch, the radiances received by the sensor

will change as well. Let all possible re
ected spectra xi from this particular surface form

a spectral class a. We will determine the possible spectra ai in this class.

For reasons of simplicity, we will use the dimensionless constants ni and mi for the

direct and di�use illumination Edir(�i) and Edi�(�i) for spectral band i. For the N

spectral bands this combines into the spectral vectors n and m. With n = [::: ni :::]
T

the spectrum of the sunlight and m = [::: mi :::]
T the spectrum of the skylight, the

dichromatic illumination model states that the illumination of a 
at surface is given {
apart from a dimension factor [W/(m2 �m)] { by

e = �n + �m ; �; � 2 R+
0 (3.2)2

64
...
ei
...

3
75 = �

2
64
...
ni
...

3
75+ �

2
64

...
mi

...

3
75 (3.3)

=

2
64
...

...

ni mi

...
...

3
75
�
�

�

�
(3.4)

e = Ec (3.5)

with E containing n and m as column vectors and the contributions c = (�; �)T. The
factors � and � are dimensionless contribution factors from the positive real numbers

including zero R+
0 .

Let the surface have a Lambertian re
ectance spectrum r = [::: ri :::]
T. As we want

to concentrate on the `form' of the spectral signature and neglect its brightness (i.e.,

the absolute magnitude of the re
ectance spectrum), only the normalized re
ectance

r̂ = r=krk is meaningful for our purpose. Then for a spectral class a all possible spectra

a re
ected from a given surface under varying orientation are

ai = r̂iei (3.6)

= r̂i(�ni + �mi) (3.7)

= �r̂ini + �r̂imi (3.8)

or in vector/matrix notation:2
64
...

ai
...

3
75 = �

2
64

...
r̂ini
...

3
75+ �

2
64

...

r̂imi

...

3
75 (3.9)

a = Ac (3.10)
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where we have stacked the re
ected direct and di�use components column-wise into a

N � 2 matrix A:

A =

2
64

...
...

r̂ini r̂imi

...
...

3
75 (3.11)

with the contributions c = (�; �)T.

All vectors a = Ac lie in a two-plane, i.e., a two dimensional linear subspace of the

feature space R
N . The subspace is spanned by the two column vectors in A. The

two degrees of freedom re
ect the arbitrary contributions �; � of the two light sources

(direct and di�use, for illustration see Fig. 3.3 on the next page). This concept has

been investigated for the three dimensional case of RGB-colors (Shafer 1985). For two

point sources in RGB-space, Drew & Kontsevich (1994) cite Petrov to have shown that

all possibly observed spectra x from Lambertian re
ection lie on an ellipse. However,

for the distributed skylight the di�use contribution � is not simply connected to the

inner product of surface normal and direction of incidence as for a point source, and the
two-plane in the multispectral RN feature space is constrained only by the condition of
�; � � 0.

Consequently, in the presence of direct sunlight and di�use skylight, the spectral
class formed by a homogeneous ground surface patch under varying surface orientation

must not be represented by a cluster center as a single point (or direction, in case of
spectral angle classi�cation) in feature space, but rather by the respective two-plane
spanned by re
ected direct and di�use illumination.

For several distinct surface types, the respective Lambertian re
ectance spectrum r̂
will be di�erent, whereas the illumination spectra n and m remain the same, of course.

Each surface type will span a distinct class plane in the feature space, determined by the
speci�c re
ectance r̂ and the illumination spectra n and m (Eq. 3.10 on the preceding
page).

In general, several such two-planes might but do not necessarily intersect in R
N .

In the spectral feature space as discussed here, however, all class planes intersect at
the origin. This happens when no irradiance is incident on the re
ecting surface patch

whatsoever and thus no re
ected radiances are measured by the sensor (provided correct
subtraction of path radiances).

From the concept of class planes it follows that a meaningful, relevant distance of
an observed spectrum x to a spectral class (r̂;n;m) is the distance between x and its

proximum on the class plane (Fig. 3.3).
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Figure 3.3: The class plane spanned by the re
ectance multiplied with sunlight and

skylight respectively. Distances parallel to the class plane are irrelevant and �ltered out.

3.3 Color Constant Enhancement of theMahalanobis

Distance

In order to determine the distance between an observed spectrum x and a given class
plane A (determined by [̂r;n;m],1 Eq. 3.10 on page 39), we need to �nd the point on
plane A which is closest to x. Obviously this shortest distance vector between plane A
and point x will be orthogonal to the plane. We thus consider the orthogonal projection

of x onto the plane:

The plane is formed by all vectors a = Ac which can be formed by an arbitrary coe�-
cient vector c an �xed matrix A. Now we want to �nd the point a0 = Ac0 on the class

plane closest to an observed spectrum x:

x � Aco (3.12)

where the `approximately' sign (�) means that the sum of squared deviations between

x and Aco is minimal:

kx�Acok = min (3.13)

1 In practice, the class plane may be determined by ground based re
ectance measurements or by
selection of spectral training areas in the imagery.
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The least square solution for c then is

co = A+x (3.14)

where the N � N matrix A+ is the pseudo-inverse (see Appendix A.1 on page 177).

Thus the proximum to x on the class plane is given by Aco = AA+x which is also

called its orthogonal projection (Appendix A.1 on page 177).

Then the distance vector between x and its proximum on the plane AA+x becomes

d = x�AA+x (3.15)

= (I�AA+)x (3.16)

= Rx (3.17)

with I the idendity matrix and R = I�AA+. The squared magnitude of the distance

becomes

d2 = kRxk2 = xTRTRx (3.18)

= xTRx : (3.19)

We note that the matrix R is symmetric, RT = R:

RT = (I�AA+)T (3.20)

= IT � (AA+)T (3.21)

= I�AA+ because I and A are symmetric matrices (3.22)

= R : (3.23)

We also note that the matrix R has the de�ning projector property, RR = R:

RR = (I�AA+) (I�AA+) (3.24)

= I� 2AA+ +AA+AA+ with AA+A = A (Appendix A.1) (3.25)

= I� 2AA+ +AA+ (3.26)

= I�AA+ (3.27)

= R : (3.28)

With the properties RT = R and RR = R, the N �N matrix R is another orthogonal
projector. R e�ectively �lters out all those components of a vector x which are con-
tained as columns in A.

The �lter matrix R can also be applied to any spectral distance d. The underly-
ing idea is that R �lters out all components from the distance d which are
irrelevant because they can be explained by varying illumination conditions
without a necessary change in re
ectance (Fig. 3.3 on the preceding page).
Here we mean in particular varying illumination due to a tilt of the observed
ground surface patch.
For a given class a we will designate the projector as Ra. We may want to call Ra a

class speci�c color constancy projector, since it solves the color constancy problem in
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the sense that after �ltering observed spectra xa with Ra they are invariant against the

actual surface orientation of the observed surface patch.

In particular, R can be applied to the Euclidean distance (Eq. 2.25 on page 23) d2 =

kdk2 = kx�mak2 between an observed vector x and a class center ma (mean vector of

class a, Eq. 2.37 on page 25):

Rd = R(x�ma) (3.29)

= Rx (3.30)

where the projected distance of the mean vector ma of class a vanishes: Rma = 0,

obviously because ma is lying on the plane spanned by A. So the distance becomes

d2 = xTRx : (3.31)

We now want to apply R also to the Mahalanobis distance (Eq. 2.28 on page 24)

d2 = dT��1
a d (3.32)

which uses the covariance �a of a class a (Eq. 2.37).
Injecting a class speci�c projector Ra this becomes

d2 = dTRT
a�

�1
a Rad (3.33)

= (x�ma)
TRT

a�
�1
a Ra(x�ma) ; Rama = 0 (3.34)

= xTRT
a�

�1
a Rax (3.35)

which degrades to Eq. 3.19 for �a = I because of RTR = RR = R. Again, in Eq. 3.33
the matrixR �lters out all components from the distance d which are irrelevant because

they can be explained by varying illumination conditions without a necessary change in
re
ectance. After passing the �lter, the remaining distance is then weighted with the

inverse covariance as usual.
Note that the computational cost of the Mahalanobis distance is not increased by the

color constant projector, since the metric RT
a�

�1
a Ra needs to be determined only once

for each class a and is equal for all tested spectra x. Indeed, the computational cost is

even slightly reduced because we do not need to compute the di�erence d = (x�ma),

as Rma vanishes anyway.
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3.4 Some Derivatives of the Concept of Class Planes

Three questions arise from the above developed concept of class planes which we want

to address brie
y in this section and refer to the appendix for details.

� Retrieval of the Re
ectance From The Class Plane
Given a set of observations x of the same surface under varying illuminations, these

points x will form a two-plane in the feature space. The question arises if and how

we can retrieve the re
ectance r from the set of observed spectra x. It turns out that
the re
ectance r can indeed be retrieved up to an overall scaling factor, so that we get

at least a normalized re
ectance r̂ = r=krk, provided that the illumination spectra n
and m are known or can be extracted from a white Lambertian reference target. The

necessary calculations in order to retrieve the re
ectance r̂ are set forth in Appendix A.3
on page 180. The computational cost is negligible since it is an analytic solution. Note

that linear algebraic solutions of this kind are known to be sensitive to noise. The

feasibility of the approach set out here has been demonstrated on experimental spectral
data by Wiemker (1995c).

� Minimal Distance Between Two Class Planes
In order to comment on the separability of two class planes spanned byA andA0, say, we
want a measure for the minimal distance between those two class planes. This measure
is important, �rstly, to decide if two class planes of two brightness normalized spectral
spectral signatures r̂ and r̂0 are separable at all, and secondly, to assess how large the

chance of misclassi�cation between these two class planes is. Obviously the distance
between all possible class planes vanishes at the origin of the feature space, when no

illumination is available at all and all spectral values are zero (complete shadow). But a
meaningful distance measure between the class planes spanned byA andA0 can be given
by means of the condition of the system of column vectors in A and A0 (for a derivation
we refer to Appendix A.4 on page 182). This condition can be easily computed from
the singular values of the matrix [A;A0]. Singular value decomposition is a standard
matrix operation.



3.4 Some Derivatives of the Concept of Class Planes 45

� Retrieval of the Path Radiance From Two Class Planes
We have stated that all class planes of di�erent surface types intersect at the origin,

i.e., at vanishing illumination. This is true provided the path radiance was properly

subtracted beforehand by atmospheric correction (Section 2.1 on page 13). If, vice

versa, the planes formed by di�erent surface types under varying surface orientation do

not intersect at the origin, we can assess any residual path radiance from the point of

intersection of at least two given class planes (see Fig. 3.4). The planes must intersect

when no light at all is incident onto the surfaces, and any remaining spectral radiance

must then be due to path radiance. The path radiance is the same for all surface types

as it depends only on the line of view of the sensor through the atmosphere.

As two-planes need not necessarily inter-

Intersecting Class Planes

class plane

class plane A’

A

path radiance

feature space

x i

x

x

k

j

Figure 3.4: Intersection of the class planes

in the spectral feature space.

sect in the n-dimensional space, we de-

�ne the intersection as the center between

the respective proxima of each plane to

the other. The coordinates of this point

must then be the spectral radiances due
to path radiance. The proper calcula-

tions are developed in Appendix A.5 on
page 183. In summary, this formalism
provides a theoretical possibility to assess

the path radiance for atmospherically un-
corrected data, or to assess any path ra-

diance residuals from an unsu�cient at-
mospheric correction. The computational
cost is again negligible, once the training

data sets, i.e., the spectra observed from
at least two di�erent surface re
ectance
types under varying surface orientation,

are selected.





4

Illumination Invariance

in the Logarithmic Feature Space

Outline of this chapter {We introduce a feature space which is novel for multispectral

classi�cation. It is based on the logarithm of the spectral re
ectances and accounts for

the multiplicative nature of the re
ection process. The comparison of the relative size

of one cluster in the logarithmic in contrast to the original space shows no general

preference for either one. However, investigation shows that the separability of two

clusters is better in the log space if the within-cluster-variance is caused by changes of

illumination with �xed re
ectances.

We derive a logarithmic brightness normalization and discuss its advantages over

conventional vector normalization in the original space, particularly with respect to

error propagation.

The dichromatic illumination model is analyzed in the logarithmic space, in which

the spectral illumination variance can be expanded into a Taylor series. The crucial

�nding is that in the logarithmic space the variability of the observed spectra { as

caused by varying illumination { is independent of the re
ectance.

We derive the principal modes of this spectral variance and develop a linear algebraic

�lter to remove the principal variance components. In this way we de�ne an illumination

{ and thus surface orientation { invariant spectral descriptor. The properties of the

suggested mapping are determined and illustrated on simulated data. The mapping

operator can be split into a brightness and a color normalization.

Then the error propagation properties of the suggested mapping are derived for

additive and multiplicative systematic errors and random noise. The performance of

the transform under the presence of noise is assessed, and it is shown that there is

always a noise level below which the transformed data will outperform the original data

with respect to cluster separability. Moreover, the transform has an overall smoothing

property on multiplicative random noise.

We investigate how to decide whether the di�erence of a given pair of observed

spectra can be explained by change in illumination or necessarily indicates a change in

re
ectance. The distance of the transformed spectra must be compared to its expected

standard deviation as caused by noise. As an option, the transformed spectral distance

can be error weighted according to the earlier derived error propagation properties of
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the transform. Simulations show that e.g. the quantization noise of the sensor causes

errors in the spectral distances which can be signi�cantly mitigated by error weighting.

Finally the Lambertian assumption, which was used for derivation, is revisited, and it

is shown that the here suggested invariant is supposed to work also under a considerably

relaxed re
ectance assumption.

4.1 The Logarithmic Feature Space

In 1834 the psycho-physicist Ernst Heinrich Weber (1795{1878) suggested that the hu-

man senses distinguish intensities of stimuli in ratios rather than in di�erences. This �nd-

ing was reformulated by Gustav Theodor Fechner (1801{1887) into the Weber-Fechner-

Law (Fechner 1860), stating that the human senses perceive stimuli as the logarithm of

their physical intensities.

When working with radiance images (or pseudo-re
ectance images, see page 18)

instead of re
ectance images, it seems natural to change into the logarithmic domain,
since the radiance image formation is a multiplicative process. The multiplication of
illumination and re
ectance then becomes an additive process in the logarithmic space,

and thus a simple superposition which can be tackled with linear algebraic methods.
In the context of panchromatic images, Ballard & Brown (1982) have pointed out as

another advantage that { while the radiance signal is always positive { the logarithmic
signal is unrestricted in sign. Therefore we can do without inequations which constrain
linear algebraic solutions and complicate the calculus.

Oppenheim & Schafer (1975) have used the logarithmic domain for panchromatic
images and spatial �ltering in the frequency domain. For color image processing the
logarithmic approach has been used only in physiologically/neurally motivated e�orts,

namely in the context of the retinex theory (Land & McCann 1971) and in a VLSI
realization (electronic hardware) by Moore et al. (1991).

Despite its apparent usefulness, the logarithmic feature space has only rarely been
used in RGB-based computer vision, and we do not know about any applications in
multispectral image processing earlier than Wiemker (1995a) and Wiemker (1995b).

Therefore we start with an investigation of its properties in comparison to the original

feature space.

4.1.1 Cluster Separability in the Logarithmic Space

We want to compare the separability of clusters in the original versus the logarithmic

feature space. For simplicity, we drop the spectral band index i and work out a one-

dimensional example. Let us consider two cluster with means x0 and x00 and variances
�2(x0) and �2(x00), assuming a Gaussian normal distributions for the clusters. The

means are the cluster centers, and the variances are the cluster sizes. In the logarithmic
space, the mean values x0 and x00 become lnx0 and lnx00, and the variances �2(lnx0) and
�2(lnx00).

Then the squared relative distance between the two clusters in original (left-hand)
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versus in logarithmic space (right-hand) is

(x0 � x00)2

�2(x0) + �2(x00)
 ! (lnx0 � lnx00)2

�2(lnx0) + �2(lnx00)
(4.1)

where we have the absolute distances between the cluster centers in the numerators,

weighted with the cluster sizes in the denominators.

Error propagation yields the relation between the variance in the original and the re-

sulting variance in the logarithmic space:

�2(lnx) =

�
@ lnx

@x

�2

�2(x) (4.2)

=
1

x2
�2(x) : (4.3)

� Equal Cluster Extensions in the Original Space
Let the two clusters have equal variance in the original space: �2(x0) = �2(x00). Us-
ing Eq. 4.3 this transforms into the logarithmic space as �2(lnx0) = x0�2�2(x0) and
�2(lnx00) = x00�2�2(x00) = x00�2�2(x0). By substitution in Eq. 4.1 we get

(x0 � x00)2

�2(x0) + �2(x0)
 ! (lnx0 � lnx00)2

x0�2�2(x0) + x00�2�2(x0)
(4.4)

for the original (left-hand) and the log space (right-hand). In order to compare these

expressions we multiply by �2(x0) and introduce the ratio � = x0=x00 > 0

(� � 1)2

2
 ! (ln �)2

��2 + 1
: (4.5)

These two expressions are equally zero for � = 1 but the left-hand expression is larger

elsewhere (for illustration see Fig. 4.1 on page 50, left)

(� � 1)2

2
� (ln �)2

��2 + 1
; 8� > 0 (4.6)

meaning, that the relative distance between the clusters is larger and thus the separation

is better in the original space (left-hand expression), provided that the cluster variances

are equal in the original space.

� Equal Cluster Extensions in the Logarithmic Space
In a second step we compare two clusters with equal variance in the logarithmic space:

�2(lnx0) = �2(lnx00). Then Eq. 4.1 becomes

(x0 � x00)2

x02�2(lnx0) + x002�2(lnx0)
 ! (lnx0 � lnx00)2

�2(lnx0) + �2(lnx0)
(4.7)

and using the same transformations as above yields

(� � 1)2

�2 + 1
 ! (ln �)2

2
(4.8)
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Figure 4.1: Illustration of inequation Eq. 4.6 on the preceding page and Eq. 4.9. The

normalized distance between two clusters in original (solid) versus in log space (dotted)

as a function of the ratio of the cluster centers � = x0=x00.

which again is equal for � = 1, but here the right-hand expression is larger elsewhere

(for illustration see Fig. 4.1 on page 50, right)

(� � 1)2

�2 + 1
� (ln �)2

2
; 8� > 0 (4.9)

meaning, that in this case the separation is better in the logarithmic space (right-hand
expression).

Hence we can draw the conclusion that

I if the natural variance of the clusters is caused by an additive process
and thus of equal extension in the original space, then the cluster separa-
bility (as measured by the normalized distance) is better in the original
space, whereas

I if the natural variance of the clusters is caused by a multiplicative
process and thus of equal extension in the log space, then the sepa-
rability is better in the log space.

We have reason to believe that the logarithmic space is more appropriate since the
re
ection of illuminating light on a surface is an inherently multiplicative process (fol-
lowing Lambert's law). In particular, when two surface patches of di�erent re
ectance

signatures are observed with changing surface orientations and thus changing illumina-

tion, then this will result in two clusters which are of equal extension in the logarithmic

feature space. In contrast, in the original feature space the cluster extension will be pro-
portional to the respective re
ectance value. Hence, the separation of the two clusters

will be better in the logarithmic space.
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4.2 Brightness Constancy

4.2.1 Brightness Normalization

The foremost e�ect of varying surface orientation is the changing of the brightness of the

observed spectrum, i.e., an overall scaling of all spectral values by a common factor. We

now discuss how such a brightness variability is conventionally dealt with, and introduce

a novel brightness �ltering method in the logarithmic space.

Previous approaches to normalize the e�ect of arbitrary brightness scalings suggest

to decompose the observed spectrum x into a `brightness' kxk (the vector magnitude of

x), and a `chromatic vector' x̂ which is mapped from x as

x 7! x̂ =
1

kxkx ; (4.10)

in other words, to normalize the feature vector x (Duda & Hart 1973). This has been

applied to multispectral image data e.g. by Baraldi & Parmiggiani (1995). The set of

observed vectors X is by normalization mapped to X̂. Then the distance between two
normalized vectors is

d2 = kx̂� x̂0k2 (4.11)

Another approach (Duda & Hart 1973) is to consider the angular distance, or `spectral
angle' � between the pair of spectra x and x0

cos�(x;x0) =
xTx0

kxk kx0k (4.12)

The spectral angle has been used in remote sensing image processing e.g. by Kruse et

al. (1993) and Ben-Dor et al. (1994).

We can easily show that these two approaches { the distance between normalized vectors

and the spectral angle { are equivalent, i.e., correlated linearly with reverse signs:

d2 = kx̂� x̂0k2 (4.13)

= (x̂� x̂0)T(x̂� x̂0) (4.14)

= x̂Tx̂+ x̂0Tx̂0 � 2x̂Tx̂0 (4.15)

= 2 (1� x̂Tx̂0) with kx̂k = kx̂0k = 1 (4.16)

= 2 (1� cos�(x;x0)) (4.17)

� Noise Analysis:
We now study the in
uence of random noise on the `brightness normalization'-mapping.

The mapping of the original spectral vector x to the normalized spectral vector x̂ is

computed for each component as

xi 7! x̂i =
xi

kxk =
xiqP
j x

2
j

(4.18)
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and thus the partial derivatives are:

@x̂i

@xj
= � xj

kxk3 ; i 6= j (4.19)

and

@x̂i

@xi
=

1qP
j x

2
j

�
1
2
xi � 2xiqP

j x
2
j

3
=
kxk2 � x2i
kxk3 : (4.20)

Then errors dxi in x propagate into errors dx̂i in x̂ as:

) dx̂i =
@x̂i

@xi
dxi +

X
j 6=i

@x̂i

@xj
dxj (4.21)

=
1

kxk3
"
(kxk2 � x2i )dxi �

X
j 6=i

xjdxj

#
(4.22)

We observe that errors propagate non-linearly, i.e., the propagated errors depend on
the input signal x. Moreover the spectral bands i are not treated on equal footing. In

particular, equal noise in all spectral bands i will not transform as such:h
�2(xi) = const 8i

i
6)

h
�2(x̂i) = const 8i

i
: (4.23)

4.2.2 Logarithmic Brightness Filtering

In this section we introduce a novel brightness �ltering in the logarithmic space.

Let as assume that the true re
ectance vector r is given by the observed pseudo-

re
ectance vector x up to an unknown scaling factor �, which indicates changing illu-
mination brightness:

x = �r (4.24)

which in the logarithmic domain is2
64

...

lnxi
...

3
75 = ln�

2
64
...
1
...

3
75 +

2
64

...
ln ri
...

3
75 (4.25)

lnx = ln�u+ ln r ; where u = [1 ::: 1]T (4.26)

= �0 û+ ln r ; where �0 = ln� (4.27)

= �0 û+ ln r ; where û =
1

kuku and thus bui = 1p
N

: (4.28)

We now want to �lter the variable brightness component û from the logarithmic observed

pseudo-re
ectance lnx by means of a mapping

lnx 7! lnx� ûûT lnx (4.29)
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which can be expressed as a multiplication:

= (I� ûûT) lnx (4.30)

= U lnx (4.31)

where U = I� ûûT and thus Uij = �ij � 1

N
: (4.32)

It can be easily seen that the matrix U indeed �lters all components û:

U(�0û) = �0 (Uû) (4.33)

= �0
�
I� ûûT

�
û (4.34)

= �0
�
û� ûûTû

�
(4.35)

= �0 (û� û) (4.36)

= 0 (4.37)

For the result of the mapping, we introduce a transformed spectrum t:

lnx 7! ln t = U lnx (4.38)

and x 7! t = eU lnx ; (4.39)

where the transformed ln t is brought back into the original domain by exponentiation.

We can show that the transformed spectrum ln t depends not on the brightness of x but
only on the true re
ectance spectrum r:

lnx = ln(�r) 7!U ln(�r) (4.40)

= U(�0û+ ln r) (4.41)

= U(�0û) +U(ln r) (4.42)

= 0 +U(ln r) (4.43)

because the brightness scaling factor �0 = ln� vanishes (Eq. 4.37).
In other words, since the projector U �lters any component of the brightness
shift vector û from an observed logarithmic spectrum lnx, the mapped spec-
tra U lnx are invariant against any brightness variability and depend only
on the components of the logarithmic re
ectance ln r spectrum which are
orthogonal to û.

We note that U is an orthogonal projector (see Appendix A.2 on page 179): �rstly, it

is symmetric by construction

UT = U (4.44)

and, secondly, it has the de�ning projector property

UU = U (4.45)

because UU = (I� ûûT)2 (4.46)

= I� 2ûûT + ûûTûûT (4.47)

= I� ûûT ; because ûTû = 1 (4.48)

= U : (4.49)
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The mapping lnx 7! ln t = U lnx = U ln r yields an invariant against an overall scaling

factor �. We see the following advantages of the here presented logarithmic brightness

�ltering (Eq. 4.39) over the above discussed normalization (Eq. 4.10 on page 51):

I The mapping accounts properly for the underlying model of illumination and re-


ection being a multiplicative process in the original domain X and thus a super-

position in the logarithmic domain lnX.

I The resulting brightness �ltered spectrum ln t is `centered' around 0, i.e., the

values ti add up to zero, and so the mean value is hln tii = 0 (similarly, the

exponentiated transform t is centered around 1). The �ltered spectrum is thus

independent of the number N of spectral bands i, whereas the normalization of x
is dependent on N (see Eq. 4.18 on page 51).

I Moreover this mapping can conveniently be extended to account for a dichromatic

illumination model as we will show later.

� Noise Analysis:
In the logarithmic domain we consider the mapping

lnx 7! ln t = U lnx = U lnx (4.50)

which is computed in each spectral band i as

ln ti =
X
j

Uij lnxj (4.51)

so that errors d(lnxi) in lnx propagate as

) d ln ti =
@ ln ti

@ lnxi
d lnxi (4.52)

=
X
j

Uij d lnxj (4.53)

and using d(ln ti) = dti=ti and d(lnxi) = dxi=xi yields

dti

ti
=
X
j

Uij

dxj

xj
(4.54)

for the original domain. Then the variances transform as:

�2(ln ti) =
X
j

�
@ ln ti

@ lnxj

�2

�2(lnxj) (no covariances �2(lnxi; lnxj) assumed) (4.55)

=
X
j

U2
ij�

2(lnxj) : (4.56)

Now let as assume uncorrelated noise � of equal level � in all spectral bands i in the

logarithmic feature space with the spectra lnx:
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�2(lnxi) = �2, and �(lnx) = �2I (`spherical' noise), where �(lnx) is the covariance

matrix of the logarithmic spectra lnx. Then

�2(ln ti) = �2
X
j

U2
ij (4.57)

which is equal for all i, due to the symmetry properties of U. The overall noise of the

original logarithmic spectra x is

tr�(lnx) = �2N : (4.58)

After the �ltering, the original covariance matrix �(lnx) of the logarithmic spectra

lnx is mapped to � 7! U�UT = U�U (common behavior for matrix induced linear

mappings (Brandt 1992)). So the trace of the transformed covariance and thus the

overall noise for the transformed logarithmic spectra ln t is

tr�(ln t) = tr (U�(lnx)U) =
X
i

�2(ln ti) (4.59)

substituting Eq. 4.57 yields

= �2
X
ij

U2
ij (4.60)

= �2kUkF (4.61)

which is the squared Frobenius norm (H�ammerlin & Ho�mann 1994) of the matrix U
and can be easily evaluated by virtue of Eq. 4.32 on page 53 to

= �2(N � 1) : (4.62)

In matrix notation, a `spherical' covariance matrix in the logarithmic space transforms

as: h
�(lnx) = �2I

i
7!
h
�2UIU = �2U

i
(4.63)

because UU = U.

In conclusion, we see the following advantages of the logarithmic brightness
�ltering:

I ln t = U lnx is a linear transform from lnx to ln t, and thus the error �2(lnxi)

propagates independently of the signal xi and allows error estimation for the com-

plete set of spectra lnX.

I Due to the symmetry properties of U, `spherical error' (�(lnx) = �2I) in the
logarithmic domain remains as such:h
�2(lnxi) = const 8i

i
)

h
�2(ln ti) = const 8i

i
:
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I We can show that the overall error is always mitigated by the mapping: We form

the ratio of the noise in the transformed space (Eq. 4.62) over the noise in the

original space (Eq. 4.58) and con�rm this ratio to be smaller than one:

tr (U�(lnx)U)

tr�(lnx)
=

�
N � 1

N

�
< 1 :

I The logarithmic brightness �ltering is a mapping of the original N dimensional

spectral space to aN�1 dimensional linear subspace. This means that the mapped

spectra are con�ned to a hyperplane in the N dimensional spectral feature space.

In contrast, the brightness normalization (Eq. 4.10 on page 51) maps the original

space onto a hypersphere, which is a curvilinear manifold in the N dimensional

spectral feature space and much harder to treat as far as classi�cation algorithms

are concerned.

We will illustrate this topic by virtue of simulated data in the following paragraph.

� Illustration on Simulated Data:
We want to illustrate the concept of the logarithmic space and logarithmic brightness
�ltering on some examples with simulated data.

A typical pattern in the feature space are `rays' pointing towards the origin which are

made up from spectra of the same true re
ectance spectrum but varying illumination
intensity (Fig. 4.2 on page 58, top left). Each spectral class makes up one ray, and all

rays are pointing towards the origin but with class-speci�c, di�erent directions in the
N -dimensional spectral feature space.

The advantage of the logarithmic feature space is that here all such rays are running

parallel (Fig. 4.2, top right) rather than radial as in the original space. The brightness
scaled spectra (simulated data) form clusters of the form xj = cxi which become lnxj =
ln c + lnxi in the logarithmic space. Since all spectral clusters are represented by rays

of identical inclination (namely unity) in the log space, it becomes easier to formulate
e�ective decision surfaces between the ray-shaped clusters. A simple coordinate system

rotation by 45� su�ces to provide uncorrelated coordinates [lnxi+lnxj] and [lnxi�lnxj]
(Fig. 4.2, center left). The bottom row of Fig. 4.2 shows the e�ect of log brightness

�ltering (U lnx, left) and brightness normalization (x=kxk, right). Note that in contrast
to the normalized cluster centers the log brightness �ltered cluster centers lie on a
hyper-plane rather than a hyper-sphere. The same is true for the principal direction

of the noise variability. Multiplicative noise was superimposed on the original arti�cial

data (SNR = 3% b= 30.5 dB). For the log brightness �ltered points, the noise causes
variability in only a single linear coordinate component. This noise component has

the same directions for all three clusters and is thus easier to consider during image
processing. In contrast, in the brightness normalized space, the noise varies in both

coordinate directions, and is moreover cluster dependent and thus more di�cult to deal

with.
Since the variance of the log brightness �ltered points in the feature space is on a

linear subspace, for this N = 2-dimensional example we can catch the whole information
in a single histogram of the principal component ([U lnx]j � [U lnx]i , Fig. 4.2, center
right). This would not be possible for the normalized spectra, because { as stated

above { they vary in more than one principal component. It might be argued that a
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transformation of the normalized spectra (Fig. 4.2, bottom right) into an angular system

would also allow to comprehend the information in a single magnitude. However, the

concept of angles becomes complicated for more than N = 3 dimensions. Moreover, this

would require a non-linear transformation, whereas in the log brightness �ltered a simple

linear combination is su�cient. We recall that the usual classi�er algorithms provide

linear (minimum Euclidean distance, Eq. 2.25 on page 23) and quadratic (maximum

likelihood, Eq. 2.34 on page 25) combinations of the spectral values. Hence, we expect

better performance for these common classi�ers in a log brightness �ltered space then

e.g. in a normalized or an angle-transformed space.
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Figure 4.2: Typical brightness scaled clusters (simulated data, superposed with multi-

plicative noise of SNR = 3% b= 30.5 dB), forming `rays' out of the origin of the feature

space (top left), transformed into equidistant `lines' in the log space (top right). A sim-

ple coordinate system rotation by 45� then su�ces to provide uncorrelated coordinates

(center left). A histogram of the principle component of the log brightness �ltered spec-

tra is shown in the center row, right. The bottom row shows the e�ect of log brightness

�ltering (U lnx, left) and brightness normalization (x=kxk, right).
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4.3 The Dichromatic Illumination Model

in the Logarithmic Space

After having analyzed the e�ect of pure brightness changes in both the original and

the logarithmic space in the previous section, we now address the variability of spec-

tral signatures as caused by changing surface orientations. This spectral variability is

introduced by a dichromatic illumination with changing contributions. Let us recall the

dichromatic illumination model with direct solar and di�use sky light. The respective

contributions are varying due to changing surface orientation of a given patch which

thus receives more or less sun and sky illumination. The changing illumination then

leads to an apparently changing spectral signature of the surface patch in question. We

call this the orientation-dependent spectral variability.

Assuming Lambertian re
ection, the observed re
ected radiance spectra x are given

by the direct and di�use illumination spectra n=̂Edir andm=̂Edi� multiplied component-

wise with the speci�c surface re
ectance spectrum r:

xi = ri(�mi + �ni) ; � > 0; � � 0 (4.64)

where � and � are the contributions of di�use and direct illumination respectively. The
direct contribution may vanish completely in shadow, whereas the di�use will always

be present to a certain degree. So we can introduce a relative contribution � = �=� of
direct illumination, take � as an overall brightness factor, and reformulate

xi = ri�(mi + �ni) ; � > 0; � � 0 (4.65)

For � = 1 we get simply a multiple of the illumination incident onto a horizontal surface
(mi + ni).

In order to separate illumination and re
ectance we change into the logarithmic domain:

lnxi = ln ri + ln�+ ln(mi + �ni) (4.66)

or

lnxi � ln ri = ln�+ ln(mi + �ni) (4.67)

ln(xi=ri) = ln�+ ln(mi + �ni) (4.68)

where the illumination is on the right-hand side.

Now we expand the direct/di�use illumination mixture term ln(mi + �ni) into a Taylor
series in � for � � 1 (i.e., for a nearly horizontal surface patch):

ln(mi + �ni) (4.69)

=

�
ln(mi + �0ni) +

ni

(mi + �0ni)
(� � 1)� n2i

(mi + �0ni)2
(� � 1)2 : : :

�
�0=1

(4.70)

= ln(mi + ni)�
1X
k=1

(�1)k (k � 1)! (� � 1)k
�

ni

ni +mi

�k

(4.71)
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Here we see that the leading term ln(mi + ni) does not contain the varying � and thus

does not contribute to the variability at all. Limiting the Taylor series expansion to the

�rst (K�1) � N terms, we can describe the variability of the mixture term ln(mi+�ni)

as

� ln(mi + �ni) �
K�1X
k=1

ckn̂
k
i (4.72)

where ck are contribution factors, and n̂i =
ni

ni+mi
is the relative direct to global illu-

mination. Likewise we want to introduce m̂i =
mi

ni+mi
as the relative di�use to global

illumination, and have n̂i + m̂i = 1, or n̂+ m̂ = u.
Limiting the series expansion (Eq. 4.72) to (K � 1) terms means that the expression is

only an approximation when the mixture coe�cient � is no longer close to � = 1: The

accuracy of the approximation depends on the relative direct and di�use to global illu-

mination factors ni and mi, and thus on the sensor-speci�c positions �i of the spectral

bands.1

The overall scaling factor in the logarithmic illumination term (Eq. 4.66) can be
written as ln� = c01, allowing a convenient vector/matrix notation. Then the variability

of the illumination lnx� ln r can be approximated as

� (lnx� ln r) � c0u+

K�1X
k=1

ckn̂
k (4.73)

= Qc (4.74)

where the coe�cient vector c = [� � � ck � � � ]T is multiplied with the N �K matrix Q =�
n̂0 : : : n̂K�1�, the columns of which are given by the powers of n̂.

Qik = n̂k�1i (4.75)

Q =

2
6664
1 n̂1 n̂21 � � � n̂K�1

1
...

...
...

...
...

...
...

...

1 n̂N n̂2N � � � n̂K�1
N

3
7775 (4.76)

We note the fact that the variability of the spectral signature, or spectral variability,

does not in the logarithmic space depend on the absolute direct and di�use spectra n and

m, but rather only on the relative direct or di�use to global illumination ratios n̂ and m̂.
In contrast to the absolute spectra, the relative direct and di�use to global illumination

spectra are relatively smooth and simple function as pointed out in Section 3.1 on
page 35.

4.4 The Spectral Filtering

We have identi�ed the variability vectors in the logarithmic feature space which result

from varing contributions of sunlight and skylight. These variability vectors are the

1 For the speci�c case of the DAEDALUS sensor, examples were computed, with up to 15% approxi-
mation error for the extreme case of complete shadow (� = 0), and only 0.1% approximation error
for surface tilts of � = 45� or 60� under a solar zemith angle �

�
= 45� (Table 6.7 on page 164).
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column vectors of the matrix Q (Eq. 4.76). They are identi�ed as the �rst K powers of

the normalized relative direct illumination spectrum n̂ : Q =
�
n̂0 : : : n̂K�1� .

Now the aim is to �lter out the variable components n̂k from an observed spectrum

lnx in order to produce an invariant spectral descriptor for a surface material, inde-

pendent of its tilt. To this aim we determine the contributions ck of the variability

vectors n̂k which are present in the observed logarithmic spectrum lnx: lnx
!� Qc :

This coe�cient vector c can be found as c = Q+ lnx, where Q+ is the pseudo-inverse

(Appendix A.1 on page 177) of Q. Then the closest approximation to lnx by linear

combination of the variability vectors is Qc = QQ+ lnx. It are just these components

of lnx which may be a�ected by surface-orientation-caused illumination variability and

shall therefore be removed by subtraction:

lnx 7! lnx�QQ+ lnx (4.77)

= (I�QQ+) lnx (4.78)

= P lnx (4.79)

The subtraction can be expressed as a multiplication with the orthogonal projector

P = I � QQ+, where P = PT is a symmetric N � N matrix and has the de�ning
projector property PP = P. It is thus an orthogonal projection R

N 7! R
N�K (see

Appendix A.2 on page 179).

Following the �ltering in the logarithmic feature space, the exponential function takes
us back into the original feature space:

x 7! exp(P lnx) : (4.80)

The �ltering process through the various domains is sketched in Fig. 4.3 on the next

page.

It can be easily shown that the projector P indeed �lters all column vectors contained
in Q :

Let c = (c1; c2)
T be a coe�cient vector which linearly combines the column vectors of Q

into a resulting N dimensional vector Qc. Any change in the two contribution factors in
c then leads to a logarithmic illumination shift vector of the form Qc (Eq. 4.74). Then
application of the projector P �lters this illumination shift as follows:

PQc = (I�QQ+)Qc (4.81)

= (Q�QQ+Q| {z }
Q

)c (4.82)

= (Q�Q)c (4.83)

= 0 (4.84)

because of the de�ning property of the pseudo-inverse QQ+Q = Q.

We can now show that the transformed spectrum ln t = P lnx depends not on possible
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Figure 4.3: Illustration of the �ltering process.

brightness or color shifts Qc in an observed spectrum x, but only on the true re
ectance
spectrum r:

lnx = ln r+Qc 7!P lnx (4.85)

= P(ln r+Qc) (4.86)

= P ln r+PQc (4.87)

= P ln r+ 0 (using Eq. 4.84) (4.88)

= P ln r (4.89)

In other words, since the projector P �lters any component of the brightness
and color shift vectors contained in the matrix Q from an observed logarith-
mic spectrum lnx, the mapped spectra ln t = P lnx are invariant against any
brightness or color shift variability and depend only on the components of
the logarithmic re
ectance spectrum ln r which are orthogonal to the column
vectors in Q.

Now we consider a given surface patch with re
ectance spectrum ln r forming a single

point in the logarithmic feature space. The spectra lnx observed from this surface

under varying surface orientation and thus varying illumination will form a cluster in

the logarithmic feature space. We have shown that the this cluster can be described
by linear combinations of the K variability vectors in the N � K matrix Q which are

simply added to the re
ectance spectrum ln r. Then the illumination variability causes
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a covariance matrix �I of the cluster in the logarithmic feature space which is given by

�I =
1

n

nX
j=1

(Qcj � hQci) (Qcj � hQci)T (4.90)

where we sum over all n occuring coe�cient vectors cj, and hQci = 1
n

Pn

j=1Qcj is the
mean vector. The covariance �I is independent of the speci�c re
ectance ln r because
this is �xed for this cluster and does not vary. If we now apply the �lter matrix P, the
covariance is transformed to

�I 7! P�IP
T =

1

n

nX
j=1

P(Qcj � hQci) (Qcj � hQci)TPT (4.91)

=
1

n

nX
j=1

(PQcj � hPQci) (PQcj � hPQci)T (4.92)

= 0 (4.93)

and vanishes because PQc = 0 8c (Eq. 4.84).

The �ltering process will necessarily remove re
ectance information as well
as illumination information. The basic idea is, however, that the re
ectance
spectra will di�er in features which cannot possibly be explained by vary-
ing illumination. We have shown that the illumination variability vectors
are powers of the relative direct versus di�use illumination spectra. From
atmospheric physics we know that these relative illumination spectra n̂ and
m̂ are relatively smooth and monotonous functions of the wavelength � (see
Fig. 3.1 on page 37), and thus the �ltering will not remove `higher frequency'-
features from the re
ectance spectrum. As suggested by the experimental
�ndings, we have achieved good results by �ltering K = 2 components, i.e.,
with a N �K matrix Q of rank K = 2 (see Chapter 5).

4.4.1 Some Properties of the Algebraic Projector P

If the matrixQ were of full rank, rankQ = N , the mapping would be invariant but triv-

ial: P lnx = 0; 8 lnx (because in this caseQQ+ = I and P = I�QQ+ = 0). However,

the illumination variability can be represented su�ciently by a limited number of terms
K, i.e., (K � 1) of powers of n, so that Q is not of full rank: rankQ = K < N . Thus

some information of the re
ectance spectrum r is retained through the mapping, but the

components which are most prone to illumination variability are removed. Essentially,

this is possible whenever a re
ectance spectrum r contains higher spatial frequencies

than the relative direct or di�use illumination spectra n̂ and m̂, which are smooth

functions of low spatial frequency. The number of dimensions K and thus the rank of

QQ+ can be chosen, corresponding to the number of terms of the Taylor expansion in

Eq. 4.72 on page 60. This is basically a trade-o� between less illumination variability
on one hand and more preserved re
ectance information on the other hand.

In the following we want to state some properties of P and related expressions.
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Q is a N �K matrix, while QQ+ is quadratic.

The N �N matrix P = I�QQ+ is symmetric by construction: P = PT.

It has the de�ning property of an algebraic projector matrix (PP = P):

PP =
�
I�QQ+

�2
(4.94)

= I� 2QQ+ +QQ+Q| {z }
Q

Q+ (4.95)

= I�QQ+ (4.96)

= P (4.97)

P produces an orthogonal projection2 R
N 7! R

N�K (see Appendix A.2 on page 179).

The rank of P is N �K, thus the image3 of Q is of dimension N �K, and the kernel3

of dimension K.

In algebraic terms, the here suggested mapping works as follows:
The orthogonal projection lnx 7! P lnx decomposes the observed logarithmic
spectrum lnx into two vectors P lnx and (I�P) lnx. Then the vector space LI,
formed by the set of vectors (I�P) lnx, contains the illumination variability
vectors, whereas the space LR, formed by the set of vectors P lnx, contains
the components of the re
ectance vectors which are orthogonal to the illu-

mination variability vectors. The vector spaces LI and LR are orthogonal
(see Appendix A.2 on page 179). Because of this orthogonality, the vectors
P lnx from LR cannot be a�ected by changing contributions of illumination
variability vectors from LI, and are thus invariant.

P is singular and not invertible. Its pseudo-inverse is P+ = P. This can be derived
from the de�ning property of the generalized inverse: PP+P = P; if we insert P for

P+, we get PPP = P, which is true because of the projector property PP = P.

P can be represented as

P = E

2
66666664

1 0
. . .

1

0
. . .

0 0

3
77777775
ET (4.98)

2 Note that orthogonal projector means that the projector matrix is symmetric. Due to an unfortunate
confusion of terms (J�anich 1993) it does not mean that the matrix is orthogonal in the sense of
OO

T = I.
3 The image of a matrix A is the set of all vectors Ax produced by the mapping x 7! Ax; the kernel

of a matrix A is the set of all vectors x which are mapped to x 7! Ax = 0 (Fischer 1984).
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where the matrix E contains the eigenvectors of P. It has (N � K) eigenvalues of 1,

and K eigenvalues of 0. The zero-eigenvalues correspond to the eigenvectors which are

�ltered, whereas the non-zero-eigenvalues correspond to the eigenvectors which pass the

�lter matrix unchanged.

From the largest eigenvalue we see that the spectral norm4 is kPk = 1, and that

kPdkmin = 0 and kPdkmax = kdk, where kPdkmin is the smallest vector magnitude of

the Pd which can be produced by any vector d, and kPdkmax the largest, respetively.

The trace of a matrix is equal to the sum of its diagonal elements, and particularly

to the sum of its eigenvalues, and thus the trace of the here introduced projector matrix

is trP = N �K.

The Frobenius norm (J�anich 1993) is kPkF =
p
trPTP =

p
trP =

p
N �K. Since P

is a symmetric projector matrix, the square of the Frobenius norm is equal to the trace,

kPk2F = trP = N �K.

The mapping is not injective, i.e., a mapped spectrum cannot be transformed back
into the original spectral domain, since the matrix P is singular. Thus, if { in the way

of classi�cation { we compare a number of observed re
ectance signatures to a certain
reference re
ectance signature, we have to map the observed spectra as well as the refer-
ence signature into the illumination invariant domain before the comparison takes place.

� De�nition of Logarithmic Brightness and Color Filter U and V:
Now we want to set the number of �ltered components to K = 2, meaning that we want
to �lter one brightness and one color variability eigenvector which we will call u (Eq. 4.28
on page 52) and v respectively. In analogy to the brightness �lter U (Eq. 4.32) we want

to de�ne a �lter for the color shift. To achieve linear independence we use Schmidt-Gram
ortho-normalization (Fischer 1984).

v = Un̂ (4.99)

) vTû = 0 (4.100)

v̂ = v=kvk (4.101)

) v̂Tv̂ = 1 (4.102)

V = I� v̂v̂T (4.103)

so that a projector P of rank N �K = N � 2 is equal to

P = VU (4.104)

= (I� ûûT)(I� v̂v̂T) (4.105)

= I+ ûûTv̂v̂T � ûûT � v̂v̂T (4.106)

= I� ûûT � v̂v̂T because of v̂Tû = 0. (4.107)

4 The spectral radius of a matrix A is equal to the largest absolute eigenvalue; the spectral norm of a
matrix A is equal to the square root of the spectral radius of AT

A (H�ammerlin & Ho�mann 1994).
Note that in these mathematical terms the word `spectral' is not physically motivated and not in
any way related to wavelength dependency.
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Note that instead of using the relative direct illumination n̂ we may as well construct

V from the relative di�use illumination m̂, because of n̂ + m̂ = u

v = Um̂ (4.108)

= U(u� n̂) (4.109)

= �Un̂ because of Uu = 0 (4.110)

where only the sign is reversed in comparison to Eq. 4.99. So the employment of m̂
instead of n̂ yields the same �lter V = I � v̂v̂T. The vectors û and v̂ span the same

subspace as the �rst two column vectors in the logarithmic illumination variability ma-

trix Q (Eq. 4.76 on page 60).

� De�nition of Logarithmic Brightness and Color Index:
As a complement to the �ltered set of vectors t which do not any longer contain any

contributions of û or v̂ (Eq. 4.28 on page 52 and Eq. 4.101 on the page before), we can

also look at the �ltered components themselves:

ûT lnx (log brightness index) (4.111)

v̂T lnx (color index) (4.112)

which we want to call logarithmic brightness index and logarithmic color index respec-
tively, since the former measures the average magnitude of the logarithmic spectrum x,
whereas the latter basically measures the di�erence between shorter and longer wave-

lengths, similar to the frequently used color index of astronomy (Harwit 1988).5 The
scalars (ûT lnx) and (v̂T lnx) can be represented as image layers, yielding a brightness

and a color index image. These two properties are the ones which are �ltered because
both are a�ected by surface orientation as pointed out above.

� Some More Properties of P:
From Uu = 0 (Eq. 4.37 on page 53) and P = VU we can conclude that also Pu = 0
(where u = [::: 1 :::]T is the unity vector). In particular, this means that for each line i
of the matrix equation we have

[Pu]i =
X
j

Pijuj =
X
j

Pij � 1 = 0 (4.113)

and thus the projector property

X
j

Pij = 0 (4.114)

5 There actually is an intriguing coincidence with the Hertzsprung-Russell-Diagram (HRD) which is
one of the principal representations of astrophysics (Harwit 1988). In the HRD the logarithmic
brightness of stars is plotted against their color index (which is an observable related to the e�ective
temperature). However, while in astrophysics these two parameters are useful for classi�cation of
stars, they are non-signi�cant for surface orientation independent spectral classi�cation in remote
sensing as we have just pointed out.



4.4 The Spectral Filtering 67

i.e., all line sums vanish. (By line sum we denote the sum of all elements of the ith

line of the matrix.) This enables us to determine the expectation value hln tii of the
transformed logarithmic spectrum :

hln tii =
*X

j

Pij lnxj

+
(4.115)

=
X
j

hPij lnxji : (4.116)

We assume that the expectation value hlnxji of the input signals xj is approximately

identical for all spectral bands j. This simpli�es the expression to

hln tii = hlnxji
X
j

Pij (4.117)

= 0 (4.118)

and shows that the expectation value hln tii vanishes.
Now we also wish to determine the sum of the squares

P
j P

2
ij in each matrix line i, the

line square sum. Starting from

P = I� ûûT � v̂v̂T (4.119)

Pij = �ij � ûiûj � v̂iv̂j (4.120)

the line square sum is

P 2
ij = �ij + û2i û

2
j + v̂2i v̂

2
j (4.121)

� 2�ijûiûj � 2�ij v̂iv̂j (4.122)

+ 2ûiûjv̂iv̂j (4.123)

then the line square sums of the projector matrix areX
j

P 2
ij = 1 + û2i

X
j

û2j + v̂2i

X
j

v̂2j (4.124)

� 2û2i � 2v̂2i (4.125)

+ 2ûiv̂i
X
j

ûjv̂j (4.126)

using
P

j û
2
j =

P
j v̂

2
j = 1 and

P
j ûjv̂j = 0

= 1 + û2i + v̂2i � 2û2i � 2v̂2i (4.127)

= 1� û2i � v̂2i (4.128)

with ûi =
1p
N

= 1� 1

N
� v̂2i : (4.129)
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This result leads to the other projector property:

) 0 <
X
j

P 2
ij < 1 : (4.130)

The total of all line square sums is

X
i

X
j

P 2
ij =

X
i

(1� 1

N
� v̂2i ) (4.131)

= N � 1�
X
i

v̂2i (4.132)

= N � 2 ; (4.133)

so that the mean line square sum is

h
X
j

P 2
iji =

N � 2

N
(4.134)

or more general

h
X
j

P 2
iji =

N �K

N
: (4.135)

Then we want to determine the diagonal elements Pii of P. Setting j = i in Eq. 4.120
on the page before yields

Pii = 1� û2i � v̂2i (4.136)

which is equal to Eq. 4.128 on page 67. So the diagonal elements are equal to the line

square sums Pii =
P

j P
2
ij and �nally

trP =
X
i

Pii =
X
ij

P 2
ij = kPk2F = N �K : (4.137)

4.4.2 Relation to Oppenheim's Homomorphic Filtering

Oppenheim & Schafer (1975) discuss the processing of homomorphic systems. These

are represented by algebraically linear transformations between input and output vector

spaces. For monochromatic images Oppenheim & Schafer (1975) suggest a homomorphic

�ltering which is based on the assumption that illumination generally does not vary

rapidly across a scene, re
ectance however does. They assume the spatial illumination

distribution to be a low-frequency signal, and the re
ectance on the other hand as a

high-frequency signal. Consequently the { irrelevant { illumination signal can be �ltered

in the frequency domain after Fourier image transform.
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For remotely sensed aerial imagery, however, we do expect rapid changes in illu-

mination, such as shadows or inclinations of objects small compared to the resolution.

Therefore we leave the spatial dimension unchanged, but apply the above argument

to the spectral dimension of multispectral imagery. The assumption of a dichromatic

illumination model and our experimental results show that the illumination variance

spectra are of low frequency, and can thus be �ltered. Here we suggest not to �lter

a complete frequency band but rather speci�c variance vectors which can be obtained

from atmospheric physics.

4.4.3 Correspondence to the Mahalanobis Distance

Let the illumination covariance �I in the logarithmic spectral space be described by

K < N signi�cant eigenvectors as

�I = E

2
66666664

�21 0
. . .

�2K
�

. . .

0 �

3
77777775
ET (4.138)

Then the Mahalanobis distance (Eq. 2.28 on page 24) would suggest a distance weighted
with the inverse of �I . However, for � ! 0 the covariance �I becomes singular and

thus its inverse ��1
I unde�ned. One could be tempted to employ the pseudo-inverse

�+ (Appendix A.1 on page 177) instead, where the signi�cant eigenvalues are inverted
�2i 7! ��2i and the non-signi�cant eigenvalues are set to zero � 7! 0. But the pseudo-

inverse would yield a weighting scheme just opposite to the intended: The directions
with vanishing variance and thus with most signi�cance would not contribute to the

distance at all.

Therefore we choose a weight matrix

P = E
�
���1

I

�
ET (4.139)

= E

2
66666664

�=�21 0
. . .

�=�2K
�=�

. . .

0 �=�

3
77777775
ET = E

2
66666664

�=�21 0
. . .

�=�2K
1

. . .

0 1

3
77777775
ET

(4.140)

where the directions with vanishing variance are weighted with unity and the remaining
directions by a lesser factor according to their variance. This is equal to the above

introduced projector (Eq. 4.98 on page 64) except the reverse order of eigenvectors.
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For �! 0 the weight matrix P becomes

P = E

2
66666664

0 0
. . .

0

1
. . .

0 1

3
77777775
ET (4.141)

which has the advantage of being free of parameters. Instead of estimating a Mahalanobis-

like weight using the parameters �2i and � we can achieve invariance by setting � 7! 0.

4.4.4 Processing Costs and Some Programming Considerations

The above presented mapping is fast because apart from the logarithmic and exponential

function it is a simple matrix multiplication between a �xed matrix P and the spectra
x of all considered pixels. The matrix multiplication can be optimized by exploiting the

symmetry property ofP. The cost to compute the projector P is negligible since it has to
be done only once and is independent of the number of spectra to be processed. So, the
per-pixel processing costs are the same as e.g. for the weights matrix in the Mahalanobis

distance (see Eq. 2.28 on page 24) used for Maximum Likelihood Classi�cation.
For a particularly convenient notation, let all spectra x of a given multispectral

image be arranged as columns in a matrix X, where Xij denotes the value of the jth
spectrum at the ith spectral band. Then in the logarithmic domain, the mapping is a

simple multiplication of two matrices:

X 7! exp(P lnX) (4.142)

In this way the algorithm was implemented in the PVWAVE interpreter language (pro-
duced by `Visual Numerics, Inc.') as well as in the IDL interpreter language (produced

by `Research Systems, Inc.'), and made usable within the ENVI remote sensing image
processing environment (produced by `Better Solutions Consulting'). The above nota-

tion is very useful since both interpreter languages allow arithmetic manipulations of

whole arrays without explicit looping over single array indices.

For the precomputation of P from a given relative direct illumination spectrum n,
the generalized inverse Q+ can be computed by Singular Value Decomposition of Q
(see Eq. 4.75 on page 60). If only one `brightness' and one `color' component is �ltered,

however, the computation of P = VU can be done less costly using Eq. 4.32 on page 53
and Eq. 4.103 on page 65.

Let us consider the case of a specialized routine written e.g. in C with pixelwise

�ltering. Then, instead of performing the multiplication P lnx which takes N � N

multiplications, it is more e�cient to compute the equivalent lnx �Q(Q+x), because
(Q+x) requires only N � K multiplications (with K < N and usually K = 2), and

then Q(Q+x) the same, so that overall only 2K � N multiplications are required. So
the cost is decreased by a factor N2=2KN = N=2K, e.g. a factor 2.5 for the case of

N = 10 multispectral bands and �ltering with K = 2 for one `brightness' and one `color'

component.
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Particularly a pure `brightness' �ltering, i.e., the computation of [U lnx]i, is much
more e�cient by computing the equivalent [lnxi� 1

N

PN
i=1 lnxi] which requires only one

multiplication (note that U lnx = x � ûûT lnx, and û = 1
N
u, and uTx =

PN

i=1 lnxi,

see Eq. 4.28 and Eq. 4.32 on page 53).

4.4.5 Processing of the Spectra After Prior Filtering

After �ltering of the surface orientation related variability, the �ltered spectra can be

subjected to whatever image processing routine, particularly to spectral classi�cation,

which then should be una�ected by surface orientation.

One has to bear in mind, though, that the �ltered spectral data is no longer of full

dimension N , but rather only N � K, as set out above. If e.g. a maximum likelihood

classi�cation is carried out and spectral training samples for a class a are selected, the

resulting sample covariance matrix�a will be rank-de�cient and thus cannot be inverted.

The singularity of a sample covariance matrix is a well as the Hughes phenomenon
(Shahshahani & Landgrebe 1994) the cause of which is a sample size too small to
determine a large covariance matrix. In our case, however, the matrix singularity is not
caused by insu�cient sample size but by prior �ltering. Therefore we are allowed to

employ the pseudo inverse instead.
After �ltering, the variance of the surface-orientation-caused variability vectors is

zero, and thus the covariance matrix � of a set of �ltered spectra exp(P lnx) is singular.
The pseudo-inverse �+ is formed by inverting all eigenvalues which are non-zero, and
leaving those which are zero (Appendix A.1 on page 177). So when the Mahalanobis

distance (Eq. 2.28 on page 24) is computed as d�+d from the spectral distance d, the
dimensions corresponding to the �ltered surface orientation variance components are
weighted with zero and thus not taken into account at all which is the desired e�ect.

Thus we can conclude that inversion of a covariance matrix � computed from �ltered
spectral samples is impossible but that the pseudo inverse �+ will work �ne in the sense

of a meaningful weighting and suppression of the �ltered dimensions.
For Maximum Likelihood classi�cation Eq. 2.34 on page 25 the expression ln j�j is

essential. For a singular matrix� computed from �ltered spectral samples, however, the

determinant j�j is zero and thus the logarithm unde�ned. Generally, the determinant
of a N � N matrix can be computed as the product of its N singular values following

a singular value decomposition (H�ammerlin & Ho�mann 1994). Now, for our case of

the rank de�cient matrix �, consequently the determinant must be computed as the
product of only those N �K singular values which are non-zero.
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4.5 Results on Simulated Data

4.5.1 Simulated Noisefree Data

In order to demonstrate the illumination invariance of the mapping, we have selected

four arti�cial spectral re
ectance primitives (Fig. 4.5 on page 75, left panel):

1. the unity re
ectance spectrum,

2. an ascending parabolic re
ectance spectrum,

3. a step like re
ectance spectrum as typical for vegetation at � � 0.7 �m,

4. a sinusoidal re
ectance spectrum as a primitive for higher frequency spectra.

All simulated spectra are sampled at N = 40 spectral bands. We have `exposed' these

re
ectance spectra to various illuminations, i.e., multiplied them with di�erent contribu-

tions � and � of direct and di�use illumination spectra according to Eq. 4.65 on page 59.
The used relative illumination spectra n and m are shown in Fig. 4.4 and are physically

realistic as pointed out in Section 3.1 on page 35.
The shown spectra are typical for a wave-

Figure 4.4: The assumed relative illumi-

nation spectra for relative direct (solid) and

di�use (dashed) illumination, sampled at

N = 40 pseudo-wavelengths, typical for a

wavelength range � � 0.4 - 2.5 �m.

length range � � 0.4 - 2.5 �m. The such

simulated spectra x are shown in Fig. 4.5
(center panel). Only for reasons of display

they have been normalized to x 7! x=kxk
before plotting.

Then the discussed mapping (Eq. 4.80

on page 61) has been applied to the simu-
lated spectra, with Q made up from only
the �rst four columns, i.e. n0::n3, and the

number of columns K = 4. Note that the
sole input data to the mapping process is

the relative direct illumination spectrum
n and the spectra x to be mapped.

The results are shown in Fig. 4.5 (right

panel) where all the mapped spectra of
the center panel are plotted. Note that

the mapped spectra show vanishing vari-

ance at di�erent illuminations for a single re
ectance spectrum, but the re
ectance
spectra 1 through 4 are still clearly distinguishable. In other words, if each spectral

re
ectance forms a spectral class, then the mapped spectra show vanishing in-class
variance but remaining inter-class variance.

Each cluster in the spectral space formed by a given re
ectance under varying illu-

mination is contracted into nearly a singular point by the mapping. Hence a subsequent
classi�cation process can assign the re
ectance spectra to di�erent spectral classes in-

dependently of their unknown respective illumination. In order to illustrate the e�ect
which the mapping has in the spectral feature space, we have visualized the N = 40

dimensional space by a projection into a three dimensional subspace. The optimal pro-

jection which captures most of the original variance in the data was established by a
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principal components analysis. The visualization in Fig. 4.7 on page 77 (top row) clearly

shows that the simulated data of the four re
ectance spectra is distributed on planes,

and is contracted into points of vanishing in-cluster variance by the mapping.

4.5.2 Simulated Data With Random Noise

Critical noise sensitivity is a typical problem with color constancy algorithms and some-

times prohibits the use of linear algebraic methods. In order to test the robustness we

have superimposed strong random noise on our simulated data (Fig. 4.6 on page 76,

center panel) with a signal to noise ratio SNR = xi=�(xi) = 10, i.e., the standard de-

viation �(xi) of the random noise is 1
10

of the signal xi . In logarithmic notation this

corresponds to a noise level of: 10 log(x2i =�
2(xi)) dB = 20 dB.

Then the same mapping process was applied as described above. The results are

shown in Fig. 4.6 (right panel). A principal components projection of the feature space

into three dimensions is shown in Fig. 4.7 on page 77 in order to illustrate the mapping

process also in the presence of noise.
In the presence of noise the mapping naturally cannot produce an invariant, but

the performance can be evaluated by comparing the capability to discriminate di�erent

re
ectance spectra under varying illumination before and after the mapping. The sep-
arability of two multivariate data clusters can be tested by the Lawley-Hotelling trace

criterion (Press 1972, Duda & Hart 1973). It describes the distance between the clusters
in the multidimensional feature space relative to the cluster sizes and directions of their
respective covariance ellipsoids, assuming normal probability distributions. The trace

criterion has been successfully used for optimal feature selection in remote sensing (Pyka
& Steinnocher 1994). The squared relative distance T 2 between the clusters a and a0 is
computed as

d2�S = tr (�b�
+
w) (see Eq. 2.45 on page 26) (4.143)

where the within-clusters covariance matrix �w = 1
2
(�a + �a0) is the mean of the

covariance matrices �a and �a0 of the two clusters, and the between-cluster covariance
matrix �b =

1
2

P
i=a;a0(mi �m)(mi �m)T is the covariance matrix of the two cluster

centers (mean spectra) ma and ma0, with the mean cluster center m = 1
2
(ma +ma0)

(compare Section 2.4 on page 25). In other words, the variance between the cluster

centers is weighted by the inverse of the mean variance within the clusters, and then trace

function takes the so called sum of roots, i.e., the sum of the eigenvalues of (�b�
+
w),

6

and this numerical value measures the ratio of between-cluster to within-cluster scatter

in the directions of the eigenvectors (Duda & Hart 1973).

The mutual distances are summarized in Table 4.1 on page 78, tables 1 to 4. For the
noisefree data before and after the mapping (Table 4.1, tables 1 and 2), the distances

6 The pseudo-inverse �+

w
(see Appendix A.1) rather than the inverse ��1

w
has to be taken because

the clusters are two-planes in RN (see Chapter 3). This means that the cluster covariance matrix
�a is only of rank rk�a = 2, and thus a singular and not invertible matrix. As a matter of fact,
the same reason prohibits the use of the better known Bhattacharrya distance (Richards 1993) for
measuring the e�ective distance between clusters, as the latter works on the determinant of �a
which is vanishing for singular matrices such as formed by two-planes in RN .
The sometimes necessary employment of the pseudo-inverse �+

w
instead of the inverse ��1

w
for

parametric classi�cation purposes is also mentioned by Kohonen (1995).
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have increased almost in�nitely (with respect to the computation accuracy of DOUBLE

type variables) as the clusters have essentially been contracted to single points which

represent the invariant transformed signals. For the random noise data before and after

the mapping (Table 4.1, tables 3 and 4), the distances have still increased by one order

of magnitude, except between re
ectance spectra 1 and 2. For the last case we note

that the di�erences in re
ectance are of so low frequency and similar to the illumination

spectra that they could obviously be explained by varying illumination and were removed

as such.

Another way of evaluating the performance of the suggested mapping is to analyze

the covariance matrices of the simulated clusters before and after the mapping is applied.

In Fig. 4.8 on page 79 we see the entries of the N � N covariance matrices as heights

in surface plots. The covariance matrix of the unmapped clusters (left panel) show

strong correlations, i.e., high values in the o� diagonal entries. After the mapping is

applied (right panel), all the variances have vanished for the noisefree case (top). For

the random noise data we observe that the variances have been reduced by two orders

of magnitude and are distributed only on the diagonal entries, i.e., the correlations have

been �ltered out and only the uncorrelated random noise is left.
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prototype

re
ectance spectrum

#

simulated under varying illumination

. &

after normalization

x=kxk
after transformation

exp(P lnx)

1.

2.

3.

4.

simulated spectral signal (ordinate) vs. pseudo-wavelength (abscissa), both dimensionless

Figure 4.5: The simulated re
ectance spectra 1 through 4 (left panel);

the simulated noisefree `observed spectra', i.e., the arti�cial re
ectance spectra multi-

plied with various illumination spectra (center panel);

and all these spectra after the mapping was applied (right panel).
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prototype

re
ectance spectrum

#

simulated under varying illumination

with noise

. &

after normalization

x=kxk
after transformation

exp(P lnx)

1.

2.

3.

4.

simulated spectral signal (ordinate) vs. pseudo-wavelength (abscissa), both dimensionless

Figure 4.6: The simulated re
ectance spectra 1 to 4 (left panel);

the simulated noisy `observed spectra', i.e., the arti�cial re
ectance spectra multiplied

with various illumination spectra and random noise (SNR = 10 b= 20 dB) (center panel);

and all these spectra after the mapping was applied (right panel).
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Feature Space (3D-Projection)
after transformation

w
ith

 n
oi

se

simulated
varying illumination

Figure 4.7: Feature space representation of the spectra in Fig. 4.5 and Fig. 4.6: The

multivariate data clusters in the feature space which has been projected into a three

dimensional subspace by principal component transformation.

The simulated data of all four re
ectance spectra without noise (top left) distributed on

four two-dimensional planes,

the respective mapped spectra (top right) with vanishing in-cluster variance,

the simulated data of all four re
ectance spectra with noise SNR = 10 b= 20 dB (bottom

left),

the respective mapped spectra (bottom right).
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Table 1

Lawley-Hotelling distances

(without noise)

C1 C2 C3 C4

C1 0.0 7.3�10
4

7.2�10
4

7.3�10
4

C2 0.0 7.2�10
4

7.4�10
4

C3 0.0 7.4�10
4

C4 0.0

Table 2

Lawley-Hotelling distances

(after mapping)

C1 C2 C3 C4

C1 0.0 1.2�10
12

1.2�10
14

2.0�10
14

C2 0.0 1.1�10
14

2.2�10
14

C3 0.0 5.8�10
14

C4 0.0

Table 3

Lawley-Hotelling distances

(with noise)

C1 C2 C3 C4

C1 0.0 4.4�10
4

5.1�10
4

4.9�10
4

C2 0.0 4.6�10
4

5.6�10
4

C3 0.0 5.8�10
4

C4 0.0

Table 4

Lawley-Hotelling distances

(after mapping)

C1 C2 C3 C4

C1 0.0 1.9�10
4

2.2�10
5

1.9�10
5

C2 0.0 4.0�10
5

2.7�10
5

C3 0.0 5.2�10
5

C4 0.0

Table 4.1: In presence of illumination variability, the four simulated spectral signatures

form four clusters C1 through C4 (see Fig. 4.7 on the preceding page).

The mutual cluster distances (separations) before (left-hand side) and after the mapping

(right-hand side), simulated without (top row) and with noise (bottom row) are given

in the tables. The distances between the clusters are computed relative to the within-

cluster scatter radii (Eq. 4.143 on page 73).
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Covariance Matrices
after transformation
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se
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Figure 4.8: The covariance matrices (40� 40) of the simulated spectra (Fig. 4.5 and

Fig. 4.6) shown as surface plots:

covariances of simulated data for spectrum 4 without noise (top left),

covariances of the respective mapped spectra (top right) which have vanished,

covariances of simulated data for spectrum 4 with noise SNR=10 (bottom left),

covariances of the respective mapped spectra (bottom right) which are reduced to un-

correlated variances on the matrix diagonal.
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4.6 Analysis of Random Noise

In the previous sections of this chapter we have introduced the mapping x 7! t =

exp(P lnx) and shown that it produces a spectral descriptor which is approximately7

invariant to varying contributions of direct and di�use illumination. Now we investigate

how the invariant is a�ected by errors in the spectral input signal x. To this aim we fol-

low the propagation of errors through the mapping. At �rst we consider random errors,

and treat multiplicative and additive noise. We will address the e�ects of systematic

errors in the following section.

Let the spectral input vector x contain random error, and let S(x) be the covariance
matrix of this error in x. The vector x is mapped to vector t:

x 7! t = eP lnx (4.144)

through three di�erent steps. The �rst step is a non-linear transform and the error

propagation is estimated by linearization:

x 7! lnx (4.145)

leads to a linearized error propagation as

S(x) 7! S(lnx) = JlS(x)Jl (4.146)

where Jl is the Jacobi matrix of the partial derivatives

Jl;ij =
@ lnxi
@xj

=
1

xi
�ij : (4.147)

The next step is a linear transform:

lnx 7! ln t = P lnx (4.148)

with corresponding error propagation as

JlSJl 7! PJlSJlP : (4.149)

Finally, the exponentiation is applied:

P lnx 7! eP lnx (4.150)

or ln t 7! eln t = t (4.151)

leading to a linearized error propagation as

PJlSJlP 7! JePJlS(x)JlPJe (4.152)

where Je is the Jacobi matrix of the partial derivatives

Je;ij =
@eln ti

@ ln tj
= eln ti�ij = ti�ij : (4.153)

7 The accuracy depends on the number of �ltered components K (Eq. 4.72 on page 60).



4.6 Analysis of Random Noise 81

Thus the mapping x 7! t propagates the errors as

S(x) 7! S(t) = JePJlS(x)JlPJe (4.154)

where Jl, Je and S are symmetric matrices depending on the signal x. Note that

a diagonal error matrix S(x), i.e., with vanishing covariances, is not mapped into a

diagonal error matrix S(t).

4.6.1 Propagation of Multiplicative Noise

We consider independent multiplicative noise with a variance proportional to the signal

strength xi:

Sij = (�ixi)
2�ij : (4.155)

Then in the logarithmic domain the error matrix is still diagonal and becomes

[JlSJl]ii =
1

xi
(�ixi)

2 1

xi
= �2i (4.156)

and for identical variances �i = � this reduces to

S(lnx) = JlS(x)Jl = �2I : (4.157)

In the logarithmic domain the error matrix of the transformed vector

S(ln t) = PJlS(x)JlP (4.158)

= P

2
64
. . .

�2

. . .

3
75P (4.159)

for multiplicative error is independent of the signal x and can thus be computed once
for all vectors x. For identical variances �i = � this reduces to S(ln t) = �2PIP = �2P.
For a particular component ti of the transformed vector we have

�2(ln ti) =
�2(ti)

t2i
=
X
j

P 2
ij

�2(xi)

x2i
(4.160)

= �2
X
j

P 2
ij < �2 (4.161)

because Eq. 4.130 on page 68 states that the line square sums
P

j P
2
ij are always smaller

than unity and equal to (N � K)=N on average. Thus, the relative error caused by

multiplicative noise is reduced by the transform.

(4.162)
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4.6.2 Propagation of Additive Noise

Here we consider additive noise with variance �i independent of the signal xi and the

other vector entries xj. The error covariance matrix for x is then diagonal

Sij = �2i �ij : (4.163)

For identical variances �i = � this is simply

S(x) = �2I (4.164)

which in the logarithmic domain becomes

[JlS(x)Jl]ii =
�2

x2i
: (4.165)

This is dependant on the signal x and must hence be computed individually for all

vectors x.

4.6.3 Expected Relative Accuracy of the Transformed Signals

We now compare the expected accuracy of the transformed signal in the transformed
logarithmic space ln t = P lnx versus in the transformed original space t = elnP lnx in

order to decide which may be the more favorable. To this aim we compare the relative
errors �2(ti)=t

2
i and �2(ln ti)=(ln ti)

2 of both spaces.
The variance transforms through the logarithm/exponentiation according to error

propagation as

�2(ti) = t2i�
2(ln ti) (4.166)

�2(ti)

t2i
= �2(ln ti) (4.167)

the left-hand expression is the relative variance of the signal in the original space. Adding
a denominator to the right-hand expression now yields two inequations:

�2(ti)

t2i
>
�2(ln ti)

(ln ti)2
for ln ti > 1; ti > e (4.168)

�2(ti)

t2i
<
�2(ln ti)

(ln ti)2
for ln ti < 1; ti < e : (4.169)

These two inequations compare just the two relative errors we are interested in, and

show that the inequality sign depends on the transformed signat ti itself. However,
we know that after applying the projector matrix U to lnx the expectation value of

ln ti = [U lnx]i vanishes: hln tii = 0 < 1 (Eq. 4.118 on page 67).
Therefore we can expect the right-hand expression to be the larger one in most

cases, and conclude that the transformed signal in the original space t is the one with
the relatively smaller error. This suggests that the transformed original space
t = eP lnx may be more favorable than the transformed logarithmic space
ln t = P lnx.
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4.7 Analysis of Systematic Errors

The calibration of multispectral sensors is performed individually for each spectral band

i. It usually depends on an additive o�set co (dark current plus minimum ampli�er volt-

age) and a multiplicative factor c1 (gain factor and voltage to radiance calibration). Both

factors combine into a linear function between the measured signal and the calibrated

radiance value.

The radiance is then converted into a Lambert re
ectance value. This conversion

requires measurement or estimation (e.g. by radiative transfer codes) of the irradiance

from sun- and skylight, the atmospheric transmission, the path radiance, etc. The

conversion in general is a non-linear function, due to consideration of multiple scattering

and other code-speci�c computations.

However, as shown e.g. by Richter (1992), Hepp (1994), Kollewe (1995), for a number

of cases it is a good �rst order approximation to assume a linear relation between

radiance and re
ectance value for a given situation of the data recording campaign.

Then the path radiance (in
uenced by haze) determines the additive o�set of the linear
transform, whereas visibility and overall irradiance determine the multiplicative factor.

From the simulation cases in Richter (1992) we can see that the dependence on the
sensor observation angle is comparatively small on clear days (which chosen for imaging

ight campaigns). Linear approximation has been applied in a large number of cases

(e.g. Schott et al. (1988), Moran et al. (1990), Wegener (1990), Hall et al. (1991),
Jahnen & Grassl (1991)), last not least due to its computational simplicity and numerical
robustness.

Combining a linear calibration function with a linear relation between radiance and
re
ectance values again yields a linear function. This means that in the following dis-

cussion of systematic error propagation we can concentrate on two cases:

I a systematic additive error dco;i added to the re
ectance vector entry xi (caused
by uncertainties of the detector dark current, path radiance, and minimum detector
voltage),

I a systematic multiplicative error dc1;i multiplied with the re
ectance vector

entry xi (caused by uncertainties in the estimation of radiative transmission, irra-
diance or visibility),

with both constants for each spectral band i centered at wavelength �i.

Systematic errors dxj propagate into the transformed vector entry error dti as follows:

The mapping x 7! t with

ti = e
P

j Pij lnxj (4.170)

has the total derivative

dti =
X
j

@ti

@xj
dxj (4.171)

= ti
X
j

Pij
1

xj
dxj (4.172)
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and thus leads to a relative deviation of

dti

ti
=
X
j

Pij
1

xj
dxj (4.173)

whereas in the log space we have a total derivative of

d(ln ti) =
X
j

@ ln ti

@xj
dxj (4.174)

=
X
j

Pij
1

xj
dxj : (4.175)

4.7.1 Propagation of Systematic Multiplicative Errors

A systematic multiplicative error dc1;i in spectral band i yields an error in xi of dxi =

dc1;i xi , or dxi=xi = dc1;i. Using Eq. 4.172, this leads to

dti = ti
X
j

Pijdc1;j : (4.176)

For the special case that the systematic multiplicative error dc1;j = dc1 is equal for all
spectral bands j we get

dti = tidc1
X
j

Pij (4.177)

= 0 (because of Eq. 4.114 on page 66) (4.178)

and the systematic multiplicative error cancels out in the transformed signal t !

We see that the relative deviation dti=ti can be computed independently of the in-
put signal x. In the log space, however, even the absolute deviation is independent of

x.

d(ln ti) =
X
j

Pijdc1;j (4.179)

Thus, a di�erence

di = ln ti � ln t0i (4.180)

with systematic multiplicative error becomes

=) (ln ti + d(ln ti))� (ln t0i + d(ln t0i)) (4.181)

= ln ti � ln t0i +
X
j

Pijdc1;j �
X
j

Pijdc1;j (4.182)

= ln ti � ln t0i : (4.183)

This means that a di�erence di = ln ti � ln t0i in the transformed logarithmic
space ln t is invariant against systematic multiplicative error dci;j even if this
error is di�erent for each spectral band j !
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4.7.2 Propagation of Systematic Additive Errors

For a systematic additive error we have dxi = dco;i . Using Eq. 4.172 this leads to

dti = ti
X
j

Pij
1

xj
dco;j : (4.184)

Here the deviation in ti depends on the respective signal x. In the log space we have

d(ln ti) =
dti

ti
=
X
j

Pij
1

xj
dco;j : (4.185)

Obviously the impact of systematic additive error will be the stronger, the smaller the

input signal x is. There is a special case when the ratio of additive systematic error and

signal is roughly the same for all wavelengths:
dco;j
xj
� �. Then

(ln ti) = �
X
j

Pij (4.186)

= 0 (4.187)

because the line sums of P vanish (Eq. 4.114 on page 66).

(4.188)

4.8 Expected Performance of the Transform

4.8.1 Performance for a Given Pair of Re
ectance Spectra

Let d = ma � ma0 be the distance between two cluster centers ma and ma0 in the
logarithmic spectral space, and let � be the within-cluster covariance matrix assumed
to be equal for both clusters a and a0 in the logarithmic spectral space. Thus tr� is

the squared scattering radius of the two clusters (see section 2.4). Then the normalized
spectral distance between the clusters is dTd= tr�. In other words, we evaluate the

ratio of the squared distance between the two clusters over the squared scatter radius of

the clusters. This should be as large as possible for unambiguous classi�cation. In order
to compare classi�cation in the original versus the transformed space, we consider the

normalized spectral distances in both spaces and will prefer the space with the larger
one.

The transformation lnx 7! ln t = P lnx in the logarithmic space will map the

distance between the clusters as d 7! Pd, and the clusters' covariance matrix as � 7!
P�PT = P�P. Consequently, the distances for the original clusters (left-hand) versus
the transformed clusters (right-hand) are

dTd

tr�
 ! dTPd

trP�P
(4.189)

We imagine the within-cluster scatter � to be the result of variation in the spectral

signature r with a proper covariance matrix �R, and of illumination variability with
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a covariance matrix �I . Since re
ectance and illumination spectra are multiplied, we

can model the overall within-cluster covariance in the logarithmic space as the sum of

illumination variance and re
ection variance: � = �I +�R. As shown previously, the

illumination variance can be described by K < N eigenvectors. Let these eigenvectors

be column vectors in the matrix E, then �I can be written as

�I = E

2
66666664

�21 0
. . .

�2K
0

. . .

0 0

3
77777775
ET (4.190)

and is �ltered by the projector: P�IP = 0 (Eq. 4.93 on page 63).

We assume the re
ection covariance ellipsoid as `spherical': �R = �2I, i.e., uncorre-
lated and of equal variance in all spectral bands. Then

tr�R = �2 tr I = N�2 ; (4.191)

and the trace of the illumination covariance matrix is

tr�I = �21 + : : :+ �2K : (4.192)

So

trP�P = trP(�I +�R)P (4.193)

= trP�RP (4.194)

= �2 trPIP (4.195)

= �2 trP (4.196)

= �2(N �K) : (4.197)

Thus Eq. 4.189 becomes

dTd

tr�I + �2N
 ! dTPd

�2(N �K)
(4.198)

The performance can be seen as a trade o� between shrinking distance versus vanishing
variance:

dTPd

dTd
� 1 and

�2(N �K)

tr�I + �2N
� 1 (4.199)

For the noisefree case, i.e., �! 0, the transform increases the e�ective cluster distance

inde�nitely (provided that the two clusters centers are still di�erent after the transform,
i.e., dTPd 6= 0), while the original distance has an upper bound. With noise, we

distinguish two cases (Fig. 4.9):
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1. the relative distance of the transformed spectra is greater than for the
original spectra for all noise levels � 2 R+ ,

2. the relative distance of the transformed spectra is greater for all noise
levels � < �o below a certain threshold �o.

So the transform will always improve the separability for low noise.

Note that �o depends strongly on dTPd

dTd
and thus on the direction of the vector d.

For the example in Fig. 4.9 we have used N = 40; K = 2; �1 = 1:0; �2 = 0:1, and the

two compared re
ectance spectra are (2),(3) (left) and (1),(2) (right) from Fig. 4.5 on

page 75.

In conclusion, for any given pair of re
ectance spectra and given re
ectance error

� in logarithmic spectral space, we can determine whether the transform will improve

the separability or not. The separability as de�ned in Eq. 4.189 on page 85 is relevant

for Euclidean distance based classi�cation such as e.g. most unsupervised clustering

algorithms (Section 2.6 on page 29).

Figure 4.9: The e�ective distance in dependence of the noise level (SNR), for the

original (dashed) and the transformed (solid) spectra.

4.8.2 Performance for a Cluster of Di�erent Re
ectance

Spectra

We now consider a whole set of di�erent re
ectance spectra ln r in the logarithmic

spectral feature space which each form a particluar cluster. Let �b be the between-
cluster covariance matrix, and �w the mean within-cluster covariance matrix of all

clusters.

As before, we want to measure the overall separability of the clusters in the logarith-

mic feature space as the ratio of the squared scatter radius of the re
ectances tr�b over

the mean squared scatter radius within the individual clusters �w. So the separability
before (left-hand) and after the transform (right-hand) is

tr�b

tr�w

 ! trP�bP

trP�wP
(4.200)
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and as before, we model the within-cluster variance �w in the logarithmic feature space

as the sum of the variance �R of the re
ectance ln r and the illumination variance �I :

�w = �I +�R. Then Eq. 4.200 becomes

tr�b

tr (�I +�R)
 ! trP�bP

trP(�I +�R)P
(4.201)

 ! trP�bP

trP�RP
(4.202)

because the projector matrix �lters the illumination variability: P�IP = 0 (Eq. 4.93

on page 63). Then for symmetric and uncorrelated noise �R = �2I we have tr�R =

�2 tr I = �2N and trP�RP = �2 trP = �2(N �K) (Eq. 4.137) and arrive at

tr�b

tr�I +N�2
 ! trP�bP

(N �K)�2
: (4.203)

As in the previous section, we can see that the right-hand expression and thus
the separability for the transformed case will always become greater than
for the untransformed data (left-hand) if only the noise level � becomes suf-
�ciently small: � < �o.
The threshold can be determined to �o =

p
( tr�I trP�bP)=((N �K) tr�b).

If we moreover assume that also the set of di�erent re
ectance spectra r be distributed
spherically in the logarithmic spectral feature space, its covariance matrix becoming

�b = RI and tr�b = R tr I = RN , then the inequation is

RN

tr�I +N�2
 ! R trP

(N �K)�2
(4.204)

R

( tr�I)=N + �2
 ! R(N �K)

(N �K)�2
(4.205)

R

( tr�I)=N + �2
 ! R

�2
(4.206)

and obviously the left-hand expression is always smaller than the right-hand expression:

R

( tr�I)=N + �2
<

R

�2
: (4.207)

So for this case of spherical distribution of the re
ectance spectra in log-
arithmic spectral space, the separability of the clusters from the di�erent
re
ectances is better in the transformed feature space than in the original
feature space at any noise level �, due to the �ltered illumination variability
of magnitude ( tr�I)=N .
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4.9 Decision on Re
ectance vs. Illumination Change

for a Given Pair of Spectra

We consider the case of two given spectra, x and x0, for which a decision is sought

whether these two spectra are di�ering necessarily due to a change in the re
ecting

material or rather due to a mere change in surface orientation, i.e., illumination. The

spectra may be provided interactively by an analyst or by any algorithm for e.g. classi-

�cation, change or edge detection purposes.

Ideally, the spectra x and x0 will be considered to stem possibly from equal re-


ectances if their spectral distance vanishes after transformation to the invariant de-

scriptors t and t0:

d2(t; t0) = (t� t0)T(t� t0) = (x� x0)TP (x� x0) (4.208)

!
= 0 :

For real data, however, the spectral distance will seldomly yield exactly d2(t; t0) = 0,
due to measurement and quantization noise. So the possibility of the spectra stemming

from an equal re
ectance spectrum will be sustained if the transformed spectral distance
is small, i.e., below a certain threshold. Such a threshold will certainly depend on
certain image properties such as the noise level, systematic calibration errors etc. If we

consider an example with equal multiplicative noise variance �2 for all bands i, and e.g.
a transformed spectrum t � t0 � u, then we the expected standard deviation in the
distance d2(t; t0) between the transformed spectra can be evaluated to

�2(d2) =
X
i

�2i (ti � t0i) (4.209)

=
X
i

�2i (ti) + �2i (t
0
i) ; using Eq. 4.160 on page 81 (4.210)

=
X
i

(t2i + t0i
2)
X
j

P 2
ij�

2 ; let ti � t0i � 1 (4.211)

= 2�2
X
i

X
j

P 2
ij ; using Eq. 4.137 on page 68 (4.212)

= 2�2 trP (4.213)

= 2�2(N �K) (4.214)

For making a decision on given pair of spectra x and x0, the absolute transformed

distance d2(t; t0) must be compared to its standard deviation �(d2). A proper absolute

threshold value such as e.g. 1�, 2� or 3� must be derived from the image context. When

the transformed distance d2(t; t0) is below this threshold, then we will consider the

spectra as equal in the sense that they could stem from two surfaces of equal re
ectance

but di�ering surface orientation.

4.9.1 Error Weighted Spectral Distance

The spectral distance used for the distance ratio in Eq. 4.217 on the next page includes

all spectral bands on equal footing. With a given error caused covariance matrix S(x),
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however, the contributions of the bandwise di�erences di = xi � x0i should contribute

to the overall spectral distance with weights according to their estimated error. Af-

ter having established the error propagation and the proper covariance error matrices

S(x) 7! S(t) (Section 4.6 on page 80), we now employ the estimated errors for a weight-

ing scheme of the spectral distance.

d2w(x;x
0) =

(x� x0)T [S(x) + S(x0)]�1 (x� x0)
tr ([S(x) + S(x0)]�1)=N

(4.215)

d2w(t; t
0) =

(t� t0)T [S(t) + S(t0)]�1 (t� t0)
tr ([S(t) + S(t0)]�1)=N

(4.216)

The numerator in this expression weights the bandwise di�erences di = xi � x0i ac-
cording to their variances and covariances, while the denominator normalizes the sum

of all weights. Note that the trace in the denominator is devided by N in order to

yield tr I=N = 1 for the case of a spherical error matrix S(t) = S(t0) = �2I, and thus

correspondence of the weighted and unweighted distance d2w = d2 for this speci�c case.

4.9.2 Results on Simulated Data

As stated above, the distance d2(t; t0) between the transformed spectra will depend

on the image speci�c noise level. Therefore, for the purpose of general analysis in the
framework of this thesis, we rather consider the ratio of the transformed over the original

spectral distance:

d2(t; t0)
d2(x;x0)

=
(t� t0)T(t� t0)
(x� x0)T(x� x0) : (4.217)

Here d2(x;x0) = (x� x0)T(x� x0) is the original spectral distance which possibly exists
merely because of di�erent surface orientation. So for the following simulations and

later evaluation of real spectral image data (Section 6.8.3 on page 165), instead of the
absolute distances we rather give the relative reduction of the distances achieved by

the transformation to the invariant descriptor. Due to the above shown transformation
properties (Eq. 4.98 on page 64) this ratio will be in the range [0::1].

We use the same distance ratio also for the investigation of the performance of the

error weighted distance d2w:

d2w(t; t
0)

d2w(x;x
0)

: (4.218)

For evaluation of the weighted versus the unweighted spectral distance we have
simulated 1000 spectral pairs. The �rst spectrum x of each spectral pair was taken at

random out of 0 < xi 2 R < 255 at the center wavelength �i of the sensor speci�c
spectral bands of the DAEDALUS AADS 1268 sensor (described in Section 6.1 on

page 116). For simulation of the case of `equal re
ectance', the second spectrum of each

pair x0 was computed as the �rst spectrum in shadow illumination x0i = xi � m̂i (see
values in Table 6.6 on page 158). Only then the spectra x and x0 were converted to

integers, accounting for the 8 bit quantization range [0::255] 2 N (integer numbers).
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In contrast, for simulation of the case of `random re
ectance' also the second spec-

trum of each pair x0 was chosen at random before quantization of both. No further

arti�cial noise was superimposed. The error covariance matrices S were computed as-

suming an additive random error of � = 1 using the formulae of Section 4.6 on page 80.

Then the transformed to original spectral distance ratio was computed. The sim-

ulation was evaluated for three di�erent mappings. Results are listed in Table 4.2 on

the following page. The mean distance ratios are given in lines (1) to (4). For `equal

re
ectances' the distance ratio should be low. The ratio of lines (1)/(2) shows that the

error weighted spectral distance ratio performs two orders of magnitude better for the

mapping x 7! t, whereas the average performance is equal for the pure linear mapping

lnx 7! ln t. This indicates that the tracing of the error propagation is most necessary

for the non-linear logarithm and exponentiation mappings.

Comparing lines (1) and (3), i.e., the unweighted distance ratio for `equal' and

`random' re
ectances, shows that they are clearly distinguishable. The ratio (1)/(3)

is one to two orders of magnitude lower for `equal' than for `random' re
ectance, and

a proper threshold can be set accordingly. The same holds for comparison of lines (2)

and (4), i.e., the weighted distance ratio for `equal' and `random' re
ectances. Here the
ratio for pairs of equal re
ectance is 3000 ( = 0.00034�1) times smaller than for pairs of

random re
ectance.
However, the lowest entry among the (1)/(3) ratios is in the logarithmic domain

lnx 7! ln t, whereas the lowest entry among the (2)/(4) ratios is in the original domain

x 7! t. This means that when employing the unweighted distance, the transformed
to original spectral distance ratio is most useful in the logarithmic domain, while the

use of the error weighted distance gives the most valuable ratio in the original domain.
Moreover, even with quantization as the only noise source, the error weighted distance
ratio performs two orders of magnitude better in distinction between spectral pairs of

random and equal re
ectance than the unweighted spectral distance ratio.
Hence we can summarize that the error weighted spectral distance should be used

whenever computation time allows this, and that the transformed to original spectral

distance ratio can be thresholded in order to decide whether two spectra are possibly
related by an equal re
ectance under di�ering illumination.
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Error Weighted Spectral Distance Ratios

For Equal Reflectance Pairs

ratio transformed
original

distance

x 7! t x 7! ln t lnx 7! ln t

[mean � dev] �10�6

(1) unweighted 3.161 1.779 5370.3

� 0.1 � 0.04 � 76.7

(2) weighted 0.009 0.81 4226.7

� 0.0002 � 0.02 � 66.9

ratio (1)/(2)

unweighted/weighted 344 22 1.3

Error Weighted Spectral Distance Ratios

For Random Reflectance Pairs

ratio transformed
original

distance

x 7! t x 7! ln t lnx 7! ln t

[mean � dev] �10�6

(3) unweighted 127.1 120.0 770066

� 2.0 � 1.5 � 5644

(4) weighted 26.88 60.75 1289498

� 0.5 � 0.8 � 10971

ratio (3)/(4)

un-/weighted 4.7 2.0 0.6

Comparison: Equal vs Random Reflectance Pairs

ratio (1)/(3)

equal/random re
ectance 0.025 0.015 0.007

unweighted

ratio (2)/(4)

equal/random re
ectance 0.00034 0.0133 0.0032

weighted

Table 4.2: Mean unweighted and error weighted spectral distance for 1000 simulated

spectral pairs at the spectral bands of the DAEDALUS AADS 1268. For `equal re-


ectance', the �rst spectrum is chosen at random and the second multiplied by the

relative di�use illumination m̂, whereas for `random re
ectance' the second spectrum is

chosen at random as well. No arti�cial noise is superimposed, however, the spectra are

quantized into 8 bit.



4.10 Relaxation of the Lambertian Assumption 93

4.10 Relaxation of the Lambertian Assumption

In the foregoing considerations we have assumed the re
ecting surface to be Lambertian

(see Section 2.1 on page 13). After having introduced the invariant transformation

x 7! t, we want to revisit the re
ection assumption and show that we can actually relax

this assumption to a certain degree.

The Lambert re
ection term is

Lr =
1

�
r E# cos � (Eq. 2.5 on page 14) (4.219)

where Lr is the re
ected radiance, E# the incident irradiance, r the Lambertian re-


ectance, and � the observation angle. By factorization, we can express the Lambert

equation as a wavelength dependent function R(�) = 1
�
r� and a geometry function

G(�) = cos �

Lr(�; �) = R(�) �G(�) � E# : (4.220)

Now the geometry functionG does not necessarily need to be the cosine lawG(�) = cos �.
We can rather allow for G(�; �) to be any function of the angles (�; �) as long as it is

not wavelength dependent.

Lr(�; �; �) = R(�) �G(�; �) � E# (4.221)

In other words, the geometry dependence of the re
ection can be arbitrary but will
only scale the overall spectrum by a common factor, i.e., increase the brightness but
not change the color. Then the suggested mapping x 7! t will be invariant, since

overall scaling factors are �ltered by the �rst component of the projector P = UV
(U = I � ûûT, Eq. 4.32 on page 53). In fact, all color constancy algorithms (see

Section 1.3 on page 7) agree in that an overall brightness factor, i.e., the absolute height
of a re
ectance spectrum, cannot be recovered.

This requirement for the re
ection is weaker than the Lambertian law. Some re-

searchers even claim that the above factorization is an accurate description of the di�use
re
ection8 in the visible range (Healey 1986), and some color constancy approaches in

computer vision explicitly build on that (Matas et al. 1994).

However, from a physics based point of view this seems to be a simpli�cation rather

than a physical law. Re
ection properties are in
uenced by surface roughness (Torrance

& Sparrow 1967). The degree of roughness, however, will necessary be measured in

relation to the wavelength of the incident light. Therefore it is unlikely that the BRDF
properties of a surface should be independent of wavelength in general. This is con�rmed

by experimental �ndings of Meister (1995).

Nevertheless, this re
ection assumption is considerably weaker than the Lambertian

law and will thus be met better by real world materials. Hence the applicability of the

invariant as introduced here is high.

8 a specular component is often added
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Experimental Findings on

in situ Measured Spectral Data

Outline of this chapter { Here we con�rm the previously developed dichromatic illu-

mination model and its analysis in the logarithmic space by real spectral data. We ana-

lyze in situ measured spectra from selected surfaces under natural outdoor illumination.

The variability of the measured radiance spectra from a speci�c surface is interpreted

as the e�ect of the varying surface orientation. We identify the expected brightness and

color shift in the principal components of this variability. At �rst we show some exam-

ples in the wavelength representation and in the feature space representation. Then we

apply three di�erent methods of quantitative evaluation to all the datasets: Principal

component analysis in the logarithmic feature space, logarithmic �ltering of the variance

in order to assess the achieved invariance, and assessing the overall magnitude of the

impact of surface orientation on the spectral signature. Analysis of spectral data sets

from several surfaces shows that the variability is indeed independent of the speci�c

target surface re
ectance in the logarithmic space.

The goodness of the desired invariance is evaluated by virtue of the reduction of

variance which is achieved by the suggested �ltering. The reduction of variance is

investigated with respect to the number of �ltered components K, and with respect to

the estimated atmospheric parameter 
. It is shown that the �ltering of two components

is su�cient and can reduce the variance by �99.8%. Moreover, for the given wavelength

range the invariant descriptor is nearly independent of the choice of the atmospheric

exponential parameter 
.

Finally, the magnitudes of brightness and color shifts as caused by arbitrary change

in surface orientation are assessed, with the result that the color shift is about an order of

magnitude smaller than the brightness changes and in the 5% range in the measurement

scale. There is no systematic correlation between brightness and color shift.

5.1 The Sensor

The instrument OVID (Optical Visible and Infrared Detector) is a fast recording, spec-

trally high resolving multichannel (non-imaging) spectrometer. It was designed and is
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operated by Meteorologisches Institut der Universit�at Hamburg and Max Planck Insti-

tut f�ur Meteorologie Hamburg for ground based as well as airborne measurements such

as described by Bartsch et al. (1994). A thorough description of the sensor is given by

Bartsch (1996).

For our experiment we used OVID's VIS module (visible wavelength range) which

is based on a CCD array of 1024 � 256 pixels, of which the 1024 pixels are used to

cover a wavelength range of 550 { 1100 nm (0.5686 nm per pixel), and the 256 pixels

to integrate the beam incident from the slit via the grating. With a grating of 300

lines/mm the spectral resolution is �� = 1.7 nm b= 3 pixels. The spectrometer is fed via

a �ber optic by a telescope with an 8 cm spherical mirror, yielding a spatial resolution

of 0.27� b= 4.7 mrad (aperture angle). Typical integration times for a spectrum are 5 {

100 ms, with a maximum recording rate of 25 Hz. The intensities are recorded with a

dynamic range of 14 bit, corresponding to an intensity resolution of 1/16 384.

The wavelength calibration is performed before and after recordings using an Argon

light source and accurate to ca. 4 pixels b= 2.3 nm. Radiance calibration is also done

before and after recordings by means of an Ulbricht integrating sphere, the window
of which o�ers an approximately Lambertian radiating area. Absolute radiances are

recovered by cross-calibration with a standard light source to � 5%.

5.2 Experimental Setup of the in situMeasurements

We have recorded spectra of selected surfaces under arbitrary orientations (see Fig. 5.1

on the facing page). Vegetation canopies exhibit quite complex re
ection properties and
are a typcial object of BRDF-measurements. This thesis was embedded in the context
of image processing with respect to the Open Skies Treaty (Wiemker & Spitzer 1996).

Therefore targets were chosen fromman-made surfaces. Note that we were not interested
to learn about speci�c properties of the selected surfaces. Rather, our interest here is

to analyze the spectral e�ects of varying surface orientation which are common to all
surfaces (Lambertian re
ection assumed). So the emphasis in selecting the surface
samples was to arrive at a wide range { rather than a representative range { of arti�cial

outdoor materials. The target surfaces and the number of recorded spectra can be seen
in Table 5.2 on page 107.

The recordings took place outdoors under natural illumination of sun and skylight, at
di�erent times of day during several summer days in 1994, some of which were clear and

some slightly hazy or cloudy. The position and attitude of the spectrometer telescope

was varying between recording days, but �xed within each recording session. Each single
data set was recorded with one of the surface samples. The orientation of this target

was changed slowly but constantly, while the OVID spectrometer continuously recorded
spectra at a rate of 25 Hz. The orientation changes were conducted at random but

in a fashion as to cover a wide range of possible illumination and observation angles.

The described recording scheme was chosen in order to acquire as many spectra as
possible and thus to build a broad statistical basis. The angles under which the single

spectra were measured, were not determined, since in this thesis we are not concerned
with angular dependent BRDF e�ects, but rather with the overall spectral variability

as caused by arbitrary changes in surface orientation. Therefore it was of prominent

importance to measure as many spectra as possible, and the speci�c recording geometry
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had to be neglected.

The target surfaces were all larger then 15 � 15 cm2 and positioned in 0.5 { 1.5 m

distance from the spectrometer telescope. We chose short integration times of mostly

5 ms and can thus be certain that the recording time for each spectrum is shorter than

the typical time scale of atmospheric variability of � 0.1 s.

The recorded spectra were dark current corrected, wavelength and radiance cali-

brated, and cleaned from over
ows. In order to avoid low SNR regions at the margins

of the wavelength range we used only the range of 613 { 883 nm. Before further com-

putation the spectra were subsampled from then N = 475 down to N = 200 spectral

bands.

A set of spectra was recorded as described above from a near-Lambertian re
ectance

reference panel (SPECTRALON of Labsphere Inc., Boulder, Colorado). The properties

of this particular panel were measured and described in Meister (1995) and Meister et

al. (1996). The recorded spectra are plotted in Fig. 5.2 on page 99. Note that the

re
ectance of the reference panel is wavelength independent, r� = 0:50 � 0:005, and

that all spectral features stem from the solar spectrum (in particular the Fraunhofer
lines at � = 656.3 nm (H) and � = 849.8 nm, 854.2 nm, 866.2 nm (Ca II)), and the
atmospheric absorption bands (in particular the O2 A-band centered at � = 760 nm and

the O2 B-band centered at � = 690 nm).

*

target surface

OVID
spectrometer

*Meteor. Inst. Univ. Hamburg

sunlight

skylight

telescope

fiber

  Max Planck Inst. f. Meteor.

Experimental Setup

Figure 5.1: The spectra from selected target surfaces, observed under arbitrary surface

orientation angles. The target surface is tilted around both axes while the spectrometer

telescope remains �x.
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5.3 Some Examples in the Wavelength- and

Feature-Space-Representation

Before we start with a comprehensive evaluation of all experimentally measured data

sets, we choose three examplary sets in order to illustrate the impact of surface orien-

tation on the spectral signature. In Fig. 5.2 on the next page (top) we show a number

of spectra observed under varying surface orientation angles from a near-Lambertian

reference surface. All measured spectra are plotted in one graph. Note again that

the annotated absorption band features stem from the illuminating sun and sky light,

whereas the re
ectance of the Lambertian reference surface is wavelength independent

r = 0:5, in other words, featureless `
at white'. By virtue of this property, via measuring

the re
ected spectra we actually observe the illumination spectra but up to an overall

scaling factor. Due to the approximately Lambertian re
exion of the reference panel,

we can neglect BRDF related e�ects, but rather observe pure illumination changes.

In order to illustrate the invariance achieved by the suggested logarithmic brightness

and color �ltering, all spectra are again plotted into one graph after brightness and color
�ltering respectively (Fig. 5.2). The spectra are brightness �ltered as

x 7! exp(U lnx)

and brightness and color �ltered as

x 7! exp(VU lnx)

where the projectors U and V are computed as speci�ed in Eq. 4.32 on page 53 and

Eq. 4.103 on page 65.
We observe that after brightness �ltering (bottom left) with U (Eq. 4.32) there is

clearly a remaining systematic shift which increases the radiances in the shorter wave-
lengths and decreases the ones in the longer wavelengths, and vice versa. We like to call
this shift the color shift. Its nature was analyzed in Chapter 4.

We further observe, that color �ltering (bottom right) with a projector V (Eq. 4.103)
can remove e�ectively the remaining variance and produces orientation invariant spectral

descriptors. The �lter V deployed here reduces the rank of the data by K = 1 only, and
was computed from an assumed atmospheric parameter 
 = 1.
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Figure 5.2: Spectra observed under varying surface orientation angles from a near-

Lambertian reference surface (top).

bottom left: after logarithmic brightness �ltering by projector U,

bottom right: after logarithmic brightness and color �ltering by projector P = VU with

atmospheric parameter 
 = 1.

The total variance with error margin is given in the top right corner of the plots.
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� Reduction of Within-Cluster Variability:
Since all of the spectra in Fig. 5.2 are re
ected from the same surface, they can be

considered as points in the feature space forming a single cluster denoted by a. We

consider the variability within the cluster to be caused entirely by the varying surface

orientation and the resulting changes in illumination. The variability or scatter within

the cluster is given by J2
a = tr�a (Eq. 2.35 on page 25). (In this example we deal with

one cluster only; thus we will conveniently drop the subscript a.) We prefer to determine

the covariance matrix� from the logarithmic spectra lnx rather than from the originally

measured spectra x. The advantage of the logarithmic space is its independence against

scaling:1 Let all observed spectral radiances xi in spectral band i be multiplied by a

constant factor c, xi 7! c xi, e.g. to account for an overall brighter solar illumination.

Then the variance also changes with the factor c:

varhc xii = c varhxii : (5.1)

In contrast, the variance of the logarithmic spectra remains untouched by the scaling:

varhln(c xi)i = varhln c+ lnxii (5.2)

= varhln ci+ varhlnxii (5.3)

= 0 + varhlnxii (5.4)

= varhlnxii : (5.5)

The variances �2ii are the diagonal elements of the covariance matrix� and are estimated
as described in Eq. 2.37 on page 25. The error which is inherent in these estimates of

the variances �2ii depends on the number of samples n, i.e., the number of spectra in
the recording set. The variance of the variance �2ii as estimated from n samples is
(Brandt 1992):

varh�2iii =
2�4

n� 1
: (5.6)

Then the variance values are given with the error as the square root of the variance:

�2ii � �2ii

r
2

n� 1
: (5.7)

Thus also the trace tr� =
P

i �
2
ii has this error:

tr� � tr�

r
2

n� 1
: (5.8)

1 There is another advantage of using the logarithmic spectra: For the measured radiances xi we cer-
tainly cannot assume a Gaussian probability distribution, since the values of xi are positive de�nite
xi � 0, whereas the logarithmic values lnxi are unbounded. Hence the log normal distribution may
be a more appropriate approximation to the true { unknown { probability density function.
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For more accuracy, the positive and negative deviation can be calculated separately at

a given con�dence level. The error interval is then given as�
n� 1

c2
;
n� 1

c1

�
�2ii (5.9)

where the values of c1 and c2 are taken from integral tables of the �2 distribution function
(Bronstein & Semendjajew 1991). For a con�dence level of 99% and n = 12 this yields

[0:33 ; 3:1] tr� : (5.10)

Now we can quantify the reduction of the within-cluster scatter which has been achieved

by the transforms. The squared scatter radius J2 = tr� is computed for the three sets

plotted in Fig. 5.2:

tr�(lnx) = 55:0 �23:4 [18:4 ; 168:1] (5.11)

tr�(U lnx) = 0:92 �0:39 [0:31 ; 2:8] (5.12)

tr�(VU lnx) = 0:022�0:009 [0:007 ; 0:067] (5.13)

Here we give the error of the estimated variance as stated in Eq. 5.8 and the error
interval of Eq. 5.10.

The errors in the variance estimation are quite large in this example as only n = 12
spectra were used. Nevertheless, the reduction in overall variance tr� is clearly
signi�cant at the 99% con�dence level. This indicates that the within-cluster
scatter has been reduced and hence the cluster's aptitude for classi�cation is
improved. In particular, the color shift �ltering by V has reduced the overall
variance by a factor of � 40 compared to brightness �ltering with U only.

� Principal Component Analysis:
For the spectra of the near-Lambertian reference surface (SPECTRALON, see the spec-

tra of Fig. 5.2) we carry out a principal component analysis (see Section 2.7 on page 32)
in the logarithmic space, since in the log space the variance is not a�ected by the re-


ectance spectrum (as set out in Chapter 4). The two most signi�cant eigenvectors of

the log covariance matrix �(lnx) are plotted in Fig. 5.3 on the next page (top row).

We now will show that the �rst two eigenvectors can be explained by a wavelength

independent brightness shift vector û, and a monotonous wavelength dependent `color'

shift vector v̂ (Eq. 4.28 on page 52 and Eq. 4.101 on page 65). To this aim we �lter
the covariance matrix with the brightness vector û (see Fig. 5.3, bottom left). Then the

resulting covariance U�UT is again submitted to a principal component analysis, and

the most signi�cant eigenvector is plotted in Fig. 5.3 (bottom right). Overlayed is the

color vector v̂ as computed with an atmospheric exponent 
 = 1:0. We observe that

the measured and the expected color shift vectors are in very good agreement. There
are slight distortions by the absorption features , particularly at � = 760 nm due to the

atmospheric variability in the O2 A-band.
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The �rst two eigenvalues of the covariance matrix �(lnx) in the logarithmic space

are e21 and e
2
2 and denote the variances of the �rst two eigenvectors. The total variance is

tr� =
PN

i=1 e
2
i . The relative variances of the �rst two eigenvectors, e

2
1= tr� and e22= tr�,

are annotated in the plots of Fig. 5.3. Together they make up for 99.97% of the
total variance tr�. Hence we are con�dent that essentially the complete
variance of the recording set can be represented by the postulated brightness
and color shift vectors û and v̂.
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Figure 5.3: Illumination eigenvectors (top row): The two most signi�cant variance

eigenvectors of the logarithmic spectra observed under arbitrary angles of the Lam-

bertian reference target.

Bottom row, left: The wavelength independent brightness vector û.
Bottom row, right: Plotted is �rstly the most signi�cant eigenvector of U�UT , i.e.,

after �ltering of the component û, and secondly, for comparison, the color shift vector

v̂ as simulated with an atmospheric exponent 
 = 1:0 (smooth curve).

� Illustration in the Feature Space:
We �nally want to illustrate the e�ects of surface orientation and the suggested �ltering

in the feature space, where the measured spectra are represented by scattered points.

As there is no way of visualizing an N -dimensional feature space, we have to restrict

ourselves to a two-dimensional projection of the feature space. Principal component

analysis e�ectively tells us which components preserve the maximum variance present

in the feature space, and thereby, which projection gives the most expressive view of the
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feature space.

We selected recording sets of two di�erent surface materials: a cork tile and a white

ceramic tile, with 355 and 335 measured spectra respectively. The spectra were sub-

sampled to N = 95 spectral bands.

In Fig. 5.4 on the following page (top left) we show the scatter plot of the experimen-

tally measured original spectra from the two data sets. The elongated cluster shapes

are caused by the strong brightness variations caused by the changing surface orienta-

tions. The feature vectors of the two materials are clearly distinguishable, however, not

so by minimal Euclidean distance classi�cation which can only discriminate spherical

clusters. Here we would need to employ a metric induced distance measure which is

computationally far more expensive and thus seldom used for unsupervised clustering

methods.

The result of the brightness �ltering in the logarithmic feature space is shown in

Fig. 5.4 in the sub�gure bottom left. We observe that separability of the two data sets

has improved, but that even after logarithmic brightness �ltering there is a systematic

variance remaining.

The sub�gure bottom right shows the result after additional logarithmic color �lter-
ing. On the one hand, the distance between cluster centers has decreased. On the other

hand, the within-class scatter of the two sets is nearly spherical, i.e., more similar to
uncorrelated noise. So the overall separability for Minimum Euclidean distance classi-
�ers is improved, as we will see below. We want to quantify the separability of the two

clusters by virtue of the separability measures d2S = tr�b= tr�w and d2�S = tr (�b�
�1
w )

(Eq. 2.44 and Eq. 2.45 on page 26). The results for the original feature space x, the
brightness shift �ltered space exp(U lnx), and the brightness and color shift �ltered
space exp(VU lnx) are given in Table 5.1 on the following page. Our example is apt
to demonstrate some of the delicate pitfalls of cluster separability measures. The re-

sults in Table 5.1 indicate that for both measures the separability of the two clusters is
increased by the brightness shift �ltering. However, also for both measures, the separa-
bility decreases after the additional color shift �ltering is applied. We note also that even

after the color shift �ltering the separability is still signi�cantly better than between the
cluster in the original space.

Finally, unsupervised classi�cation of the spectra into k = 2 classes is performed,
using the fuzzy k-means clustering algorithm (Section 2.6 on page 29). We set the

number of classes to k = 2, but do not provide any `training' spectra for the classes, nor

cluster centers etc. The resulting classi�cation accuracy is determined by comparing the
unsupervised classi�cation assignment to the true origin of each spectrum. The relative

number of correctly labeled pixels is given in percent in the last row of Table 5.1.
Only with the additional color shift �ltering perfect classi�cation is achieved. So the

unsupervised classi�cation works better after color shift �ltering, even though both

cluster separability measures are more promising for brightness shift �ltering only. The
reason becomes clear by appraisal of the feature space projections depicted in Fig. 5.4:

Only in the color shift �ltered space (bottom right) it is possible to draw a linear decision

surface between the two classes which is perpendicular to the di�erence vector between

the two cluster centers. This kind of decision surface is just the one implicitly used by

Minimum Euclidean Distance classi�cation (Section 2.3 on page 23).
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Principal Component Projection of Feature Space
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Figure 5.4: For eye appraisal the N = 200 dimensional feature space was projected

down onto the subspace of the two most signi�cant eigenvectors (individual PCT for

each case).

top left: the 690 measured spectra (355 of cork tile 4, 335 of white ceramic tile 2),

bottom left: after logarithmic brightness �ltering by projector U,

bottom right: after logarithmic brightness and color �ltering by projector P = VU with

atmospheric parameter 
 = 0:5.

Cluster Separability in Different Feature Spaces

Space x eU lnx eVU lnx

p
tr�b= tr�w 27.7 104.9 55.3

q
tr (�b�

�1

w
) 205.4 498.0 295.8

unsupervised
fuzzy k-means

classi�cation accuracy 89.6% 99.0% 100.0%

Table 5.1: Cluster separability, corresponding to Fig. 5.4 (top).
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5.4 Evaluating the Goodness of Invariance:

Residual Variance after Filtering

� Quantitative Analysis:
With real data a true invariance can certainly not be achieved. For evaluation purposes

we rather consider the reduction of variance achieved by the suggested �ltering. In

order to test which number K = N � rankP of �ltered components is su�cient, we

have applied �ltering ( with an atmospheric exponent 
 = 1) to the recorded data

sets with an increasing number of �ltered components K . Let � = �(lnx) be the

covariance matrix of the observed logarithmic spectra. Then tr� is the total variance,

and tr (PK�PK) is the residual variance after �ltering of K components.2 In Table 5.2

on page 107 we give the variance reduction in percent achieved by sequential �ltering

with an increasing number K for each recorded data set:

tr (PK�PK)� tr (PK+1�PK+1)

tr (PK�PK)
� 100% (5.14)

For a typical sample size of n = 300 we get an error for the estimated variance of �8:2%
(Eq. 5.8 on page 100). Demanding a 99% con�dence level, we thus recognize a signi�cant
reduction of variance when it is larger than 3�b=25%.

From the tabulated results it becomes clear that brightness and color �ltering with

K = 2 always yields a substantial reduction of variance in comparison to pure brightness
�ltering with K = 1. The reduction is essentially always above the 25% margin required

for the 99% con�dence level. Results do not necessarily improve with �ltering more
components. A projector with K = 3 will only in some cases diminuish the residual
variance, and K = 4 �nally is only of minor e�ect.

The �gures indicate that it is a robust approach to �lter with K = 2, i.e.,
with the brightness and color shifts u and v. The corresponding �lter matrix
is PK=2 = VU.

� Dependence on the Atmospheric Parameter 
:
We also want to determine the dependence of the color shift �ltering on the atmospheric

parameter 
, which is needed to estimate the di�use to global radiation ratio m and to
�nally compute the color �ltering projector matrix V (see Eq. 4.103 on page 65). Note

that the brightness �lter matrix U (see Eq. 4.32 on page 53) is parameter-free.
A comparison of �lters with di�erent values 
 2 [0:5; 1:0; 2:0; 3:0] is shown in Ta-

ble 5.3 on page 108. The forth column of Table 5.3 gives the relative reduction of the

total variance achieved by �ltering the brightness shifts using the projector U:

tr�� tr (U�U)

tr�
� 100% (5.15)

The �fth to eighth column of Table 5.3 gives the relative reduction of the total variance

achieved by �ltering the color shifts, where the projector V = V
 is computed with

2 Recall that P is symmetric: PT = P. Thus PK�P
T
K

= PK�PK , and we can conveniently drop
the superscript T (`transposed').
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varying atmospheric parameter 
:

tr (U�U)� tr (V
U�UV
)

tr (U�U)
� 100% (5.16)

The results indicate that the maximum variance reduction occurs at di�erent parameter

values of 
 without revealing a clear scheme. We can hardly determine a certain value

of 
 for a recording day or even only a series of data sets.

On the other hand, the tabulated data suggests that the choice of the atmospheric

parameter 
 is only of minor importance for the reduction of variance. This means
that the color shift �ltering discussed here is not critically sensitive to a
correct estimation of 
, but rather robust and thus virtually parameter-
free. Following meteorological literature (see Section 3.1 on page 35) we will henceforth

employ 
 = 1 as a typical atmospheric exponent.
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Variance Reduction By Sequential Filtering of K Components

no. of total variance reduction [%]
data set material spectra variance K = 1 K = 2 K = 3 K = 4

june1G white plastic 411 38.1 99.7 39.5 24.5 4.3
june1H wood 284 61.3 99.2 87.8 38.7 6.5
june1I white cardboard 599 10.8 99.3 79.2 8.4 1.2
june1K cork tile 360 19.6 99.3 85.2 4.0 1.8
june1L white tile 340 16.5 99.2 85.6 11.2 1.3
june1N plywood 410 42.0 99.1 68.8 30.9 2.5
june1O white plastic 517 25.6 99.4 86.3 11.9 1.6

june21R wood 301 17.4 99.4 44.0 4.0 0.5
june21V white cardboard 248 24.2 98.2 10.1 0.4 0.3

june23G red roof tile 193 41.8 99.4 80.1 31.4 8.1
june23H white brick 193 58.1 99.3 79.9 48.1 0.9
june23I red brick 255 71.6 99.6 82.2 20.6 9.2
june23J white tile 216 84.3 99.2 51.8 39.9 2.2
june23K white tile 345 39.4 99.4 78.4 43.4 4.5
june23L red tile 272 63.2 99.7 81.9 18.7 8.1
june23M wood 300 52.8 99.3 76.0 54.2 0.5
june23N mossy roof tile 286 37.3 99.0 61.5 10.3 17.6
june23O white cardboard 334 67.6 99.5 80.1 37.0 2.0
june23P roo�ng felt 337 21.3 92.6 12.6 1.8 1.6
june23Q cork tile 308 146.3 99.7 84.3 14.4 17.9
june23U pluster 245 103.7 99.5 89.6 18.9 13.8

july13G cork tile 398 118.8 99.7 86.5 3.4 5.2
july13K white tile 398 144.5 99.7 84.3 19.6 2.4
july13L white brick 345 76.5 99.8 55.5 56.0 1.6
july13M red roof tile 261 51.7 99.9 31.8 6.5 1.0
july13N white cardboard 260 73.5 99.8 65.4 28.7 4.3
july13O red brick 286 80.5 99.9 19.2 4.3 2.0
july13Q wood 249 85.2 99.6 83.3 49.5 3.1

Table 5.2: Variance reduction by sequential �ltering with an increasing number K of

�ltered components (atmospheric parameter 
 = 1).
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Variance Reduction w.r.t Varying 
 Parameter

no. of variance reduction [%]
data set material spectra U �lter V
=0:5 V
=1 V
=2 V
=3

june1G white plastic 411 99.7 38.9 39.5 40.6 41.5
june1H wood 284 99.2 86.9 87.8 89.4 90.5
june1I white cardboard 599 99.3 79.5 79.2 78.5 77.5
june1K cork tile 360 99.3 85.4 85.2 84.6 83.6
june1L white tile 340 99.2 86.0 85.6 84.6 83.3
june1N plywood 410 99.1 68.0 68.8 70.2 71.3
june1O white plastic 517 99.4 86.3 86.3 85.9 85.3

june21R wood 301 99.4 43.6 44.0 44.6 45.0
june21V white cardboard 248 98.2 10.1 10.1 10.2 10.2

june23G red roof tile 193 99.4 79.0 80.1 82.0 83.4
june23H white brick 193 99.3 78.6 79.9 82.2 84.2
june23I red brick 255 99.6 81.3 82.2 83.5 84.5
june23J white tile 216 99.2 50.8 51.8 53.8 55.6
june23K white tile 345 99.4 77.1 78.4 80.6 82.5
june23L red tile 272 99.7 80.3 81.0 82.1 82.8
june23M wood 300 99.3 74.5 76.0 78.7 81.1
june23N mossy roof tile 286 99.0 60.8 61.5 62.6 63.4
june23O white cardboard 334 99.5 79.2 80.1 81.7 83.0
june23P roo�ng felt 337 92.6 12.4 12.6 12.9 13.2
june23Q cork tile 308 99.7 83.9 84.3 84.8 84.9
june23U pluster 245 99.5 88.9 89.6 90.5 90.9

july13G cork tile 398 99.7 86.6 86.5 86.1 85.4
july13K white tile 398 99.7 84.7 84.3 83.3 82.0
july13L white brick 345 99.8 54.6 55.5 57.2 58.8
july13M red roof tile 261 99.9 31.4 31.8 32.5 33.0
july13N white cardboard 260 99.8 64.3 65.4 67.4 69.1
july13O red brick 286 99.9 19.0 19.2 19.4 19.5
july13Q wood 249 99.6 82.1 83.3 85.6 87.4

Table 5.3: Variance reduction by �ltering brightness shift and color shift with varying

atmospheric parameter 
.
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5.5 Assessing the Impact of Surface Orientation:

Magnitude of Brightness and Color Shifts

Analysis of the experimental data enables us to assess the magnitude of the brightness

and color shifts. In Eq. 4.112 on page 66 we have introduced a brightness index ûT lnx
and a color index v̂T lnx, which tell us just how much of the variable brightness and

color components is present in an observed log spectrum lnx. Both are determined

for each spectrum of the experimental data sets. Then the respective variances are

computed for each set:

brightness variance: �2û = �2(ûT lnx) (5.17)

color variance: �2v̂ = �2(v̂T lnx) (5.18)

and the correlation:
�2ûv̂

�û � �v̂ (5.19)

Leaving the log space, we are also interested to see how large these e�ects are in the

original measurements space. Therefore we multiply the log standard deviation, i.e.,
the square root of the above computed variance, with the magnitude of the respective
component û or v̂ in spectral band i 2 [1:: N ], and exponentiate the product. Then we

can express the relative standard deviation in percent by the following formulae:

positive deviations: +
�
e�û�ûi � 1

�� 100% (5.20)

+
�
e�v̂�v̂i � 1

�� 100% (5.21)

negative deviations: � �1� e��û�ûi
�� 100% (5.22)

� �1� e��v̂�v̂i
�� 100% (5.23)

The brightness shift is of equal magnitude in all spectral bands i. In contrast, the
color shift varies with wavelength, and its magnitude is extreme at both ends of the
wavelength range, and we thus take i = 1 corresponding to �min for evaluation.

The results are given in Table 5.4 on the following page. We observe that no
systematic correlation between brightness and color shift is present. This
means that the independent �ltering of both shifts is really necessary and
cannot be achieved by �ltering of a single linear combination of both.

The tabulated data shows that in our experiments the color shift caused relative

deviations in the measurement space which are one order of magnitude smaller than
those of the brightness shift, but still in the 5%-range. Note that these are standard

deviations, and that the extreme deviations (e.g. in pure shadow) are signi�cantly larger.
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Magnitude of Brightness and Color Shifts

variance rel. variance [%]

in log space in measurement space
no. of total b.ness color

data set material spectra tr� �
2

û
�
2

v̂
correl. brightness color

june1G white plastic 411 38.09 37.98 0.04 0.58 +54.6/{35.3 +2.9/{2.9
june1H wood 284 61.27 60.81 0.40 0.73 +73.5/{42.3 +9.2/{8.4

june1I white cardboard 599 10.79 10.71 0.06 -0.50 +26.0/{20.6 +3.5/{3.4

june1K cork tile 360 19.56 19.42 0.11 -0.81 +36.5/{26.7 +4.8/{4.5
june1L white tile 340 16.51 16.38 0.11 -0.71 +33.1/{24.8 +4.7/{4.5

june1N plywood 410 42.00 41.61 0.26 -0.07 +57.8/{36.6 +7.4/{6.9
june1O white plastic 517 25.60 25.45 0.13 -0.43 +42.8/{30.0 +5.1/{4.9

june21R wood 301 17.37 17.26 0.04 0.80 +34.1/{25.4 +3.1/{3.0

june21V white cardboard 248 24.15 23.72 0.04 0.80 +41.1/{29.1 +2.9/{2.8

june23G red roof tile 193 41.79 41.56 0.18 0.88 +57.7/{36.6 +6.1/{5.8

june23H white brick 193 58.12 57.74 0.30 0.97 +71.1/{41.5 +7.9/{7.3
june23I red brick 255 71.55 71.27 0.22 0.96 +81.6/{44.9 +6.8/{6.3

june23J white tile 216 84.33 83.64 0.35 0.74 +90.9/{47.6 +8.6/{7.9
june23K white tile 345 39.41 39.19 0.17 0.90 +55.6/{35.7 +6.0/{5.6

june23L red tile 272 63.23 63.03 0.15 0.90 +75.3/{42.9 +5.6/{5.3

june23M wood 300 52.78 52.39 0.30 0.84 +66.8/{40.0 +7.8/{7.3
june23N mossy roof tile 286 37.26 36.90 0.21 0.60 +53.6/{34.9 +6.6/{6.2

june23O white cardboard 334 67.55 67.24 0.25 0.95 +78.5/{44.0 +7.2/{6.7

june23P roo�ng felt 337 21.33 19.75 0.19 0.43 +36.9/{26.9 +6.3/{5.9
june23Q cork tile 308 146.26 145.87 0.32 0.19 +134.9/{57.4 +8.2/{7.6

june23U pluster 245 103.66 103.18 0.43 0.60 +105.0/{51.2 +9.5/{8.7

july13G cork tile 398 118.82 118.46 0.31 -0.78 +115.9/{53.7 +8.0/{7.4
july13K white tile 398 144.50 144.13 0.31 -0.45 +133.7/{57.2 +8.1/{7.5

july13L white brick 345 76.54 76.42 0.06 0.33 +85.5/{46.1 +3.6/{3.4

july13N white cardboard 260 73.46 73.34 0.07 0.91 +83.2/{45.4 +3.9/{3.8
july13O red brick 286 80.47 80.37 0.01 0.47 +88.4/{46.9 +1.9/{1.9

july13Q wood 249 85.20 84.85 0.29 0.76 +91.8/{47.8 +7.7/{7.2

Table 5.4: Magnitudes of brightness and color shifts.



5.6 Principal Component Analysis of the Logarithmic Spectra 111

5.6 Principal Component Analysis of the Logarith-

mic Spectra

In Section 4.3 on page 59 we have shown that the spectral variability caused by surface

orientation changes may be conveniently analyzed in the logarithmic space. Let us recall

that the variance in the logarithmic space is independent of the re
ectance:

varhlnxii = varhln(ri (�mi + �ni)i (5.24)

= varhln rii+ varhln(�mi + �ni)i (5.25)

= 0 + varhln(�mi + �ni)i (5.26)

= varhln(�mi + �ni)i (5.27)

where (�mi + �ni) is the spectral irradiance with direct and di�use components ni and

mi with contribution factors � and �, and ri is the constant spectral re
ectance. Hence

we can state that the covariance matrix �(lnx) in the logarithmic space is
independent of the re
ectance spectrum r.

We have applied the principal component analysis to the log spectra of all recorded
data sets. Two examples are shown in Fig. 5.5, the other sets are shown in the appendix
(see Fig. B.1 on page 187 �.).
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Figure 5.5: Mean logarithmic spectrum hlnxi and illumination eigenvectors of the

covariance matrix of the logarithmic spectra of two materials (top: white cardboard,

bottom: reddish cork tile) observed under arbitrary angles on two di�erent days.
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The principal component analysis gives a good qualitative picture of the basic modes

of the spectral variability, and shows it to be in good agreement with our analysis in

Chapter 4:

I The di�erence of the surface material re
ectances essentially shows up in the mean

log spectra only, not in the log eigenvectors. (In Fig. 5.5 we see a white cardboard

specimen versus a reddish cork tile.)

I The variance is always captured by the �rst few eigenvectors. We have plotted

the �rst three eigenvectors for all data sets and annotated their respective relative

variance (eigenvalues over total variance).

I Typically, the �rst eigenvector of the log covariance matrix �(lnx) is a rather

wavelength independent brightness shift and represents a scaling of the overall

spectrum.

I In contrast, the second eigenvector typically is a monotonous wavelength depen-

dent `color' shift, which is caused by the relative di�use to global illumination
ratio spectrum m̂.

I The typical third eigenvector is caused by variability in the absorption bands, and
by slight drifts in the wavelength calibration: shifts of ca. 2 CCD-pixels b= 1.2 nm
cause the up-down-spikes at the absorption band locations.

I Furthermore we also observe impurities in the 600{700 nm range which are prob-
ably caused by specular re
ection (e.g. Fig. B.1 on page 194, top).

We note, however, that the variance eigenvectors are not identical and do not show pure
brightness and color shift vectors (such as depicted in Fig. 5.3 on page 102, bottom row).
Rather, we observe linear combinations of the brightness and color shift vectors. More-

over, these are also linear combined with measurement impurities such as wavelength
instability (typical up-down spikes), and physical impurities such as specular re
ection
and atmospheric absorption band variability (for the absorption band positions compare

with Fig. 5.2 on page 99) which are not related to the problem under investigation here.
Note that we do not expect the variance eigenvectors to be identical for the various

samples, because the sample sets were recorded from arbitrarily changed surface orien-

tations and under varying illumination conditions. Again, in this thesis we are more
interested in learning something about the scope and nature of the spectral variance,

rather than about the results for speci�c illumination/recording geometries.
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� Principal Components of the Residual Variability:
In the �rst part of this section we have conducted a principal component analysis in order

to verify that the variance of re
ected spectra as caused by surface orientation changes

can be represented by two eigenvectors which are similar to the proposed brightness

and color shift vectors û and v̂. For completeness, we want to check this hypothesis

the other way round: We analyze the residual variability after the �ltering with the

projector P(K=2) = VU was applied. The aim is to falsify the possibility that there are

other systematic e�ects hidden in the spectral variability.

The residual covariance matrix P�P is again submitted to principal component

analysis of each data set. Then the resulting most signi�cant residual eigenvectors are

identi�ed. An example is shown in Fig. 5.6, the other sets are shown in the appendix

(Fig. B.2 on page 199 through Fig. B.2).

The results indicate that the residual variability is made up by random noise, ab-

sorption band variability, small instabilities in the wavelength calibration (the up-down-

spikes at the absorption bands), and specular re
ection, but not by any systematic e�ect

which we possibly would have overlooked so far. After appraisal of the residual vari-

ance eigenvectors we therefore conclude that we have successfully �ltered all systematic
variability which is due to surface orientation change, Lambertian re
ection provided.
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Figure 5.6: Principal Component Analysis of the residual variance after �ltering with

K = 2.
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Experimental Findings on

Multispectral Imagery

Outline of this chapter { After having established a theory of surface orientation

related change of illumination in Chapter 3 and 4, and subsequent veri�cation of our

analysis and the suggested invariant descriptor in Chapter 5, we �nally apply the dis-

cussed transform to real multispectral image data from an airborne sensor.

At �rst, we give a brief description of the airborne sensor, the data aquisition and cal-

ibration. Then we show an example of the color shift as measured from the multispectral

imagery.

From the imagery we extract a number of sample pairs of spectra from the same

surface under di�erent orientation. For each pair, both spectra are compared in the

original, the normalized, and the brightness and color �ltered space. Both e�ects of

surface orientation, the brightness and color shift, can be observed qualitatively in the

plotted spectra. The same e�ects can be observed in a bitemporal comparison of tilted

surface patches. The suggested logarithmic color �ltering can substantially reduce the

relative spectral distance between the two spectra of each sample pair.

Spectral distances are the basic key to pixel-wise multispectral image classi�ca-

tion, such as Minimum Euclidean Distance (MED) or Minimum Mahalanobis Dis-

tance/Maximum Likelihood (MMD/ML) classi�cation schemes. For qualitative eval-

uation of the suggested invariant, a simple classi�cation into binary class images is per-

formed on image clips around the sample pairs, using di�erent classi�cation schemes.

We observe clear improvement of classi�cation in the suggested transformed feature

space, and diminuished sensitivity to threshold parameters.

The e�ect of the suggested transition into the brightness and color �ltered fea-

ture space is visualized by projection of the N -dimensional feature spaces onto a two-

dimensional subspace spanned by the two most signi�cant principal components. These

feature space `slices' are represented as contour plots of bivariate histograms of the two

principle components. The suggested transform can be seen to �lter a systematic shift

inherent in the spectral image data.

Then, for statistical validation of the suggested invariant, we analyze sets of spec-

tral sample pairs. The quantitative advantage achieved by introducing the invariant

descriptor is measured as the spectral distance between the two spectra relative to the
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spectral scatter radius of the overall image spectra. Ideally, the spectral distance should

vanish, since the spectra originate from re
ection o� the same surface. We evaluate all

sample pairs of a set, and the spectral distances and their variances are tabulated for

the investigated feature spaces, also with principal component transformations (PCTs)

of various ranks. Based on these statistics we can show that the suggested invariant

reduces considerably the relative spectral distance between equal surfaces of di�erent

orientation.

Last not least, we persue error considerations again, this time considering the speci�c

case of the multispectral imagery used throughout this chapter. We show that {even

after brightness normalization{ the color shift can cause deviations up to 70% in the ob-

served pseudo-re
ectances as an upper bound. Analysis of the color constancy problem

in the imagery used here is compromised as the quantization error is considerable for

dimly illuminated surfaces (such as in shadowed areas), due to the restricted dynamic

range of the sensor. Therefore we revisit the previously introduced error weighted spec-

tral distance. Application to the sample spectra shows their usefulness, although the

computation cost may be too high for common processing of large images.

6.1 The Sensor

The sensor DAEDALUS AADS 1268 is an airborne multispectral line scanner manu-
factured by Daedalus Enterprises, Inc., Ann Arbor, Michigan, USA. The instrument

used for the recording of the subsequent imagery is owned and operated by the Ger-
man Aerospace Research Establishment (DLR), and usually carried onboard a Dornier
DO 228 aircraft.

The sensor has 11 spectral bands, ten in the wavelength range of re
ected visible

and infrared light, and one in the thermal infrared (see Table 6.1 on the next page). The
spectral sensitivity functions (apparatus functions) can be found e.g. in (Kollewe 1995).

The instantaneous �eld of view (IFOV) is 2.5 mrad = 0.14�, yielding a nadir pixel

ground resolution of 0.7 m from an altitude of 300 m, and 4.2 m from 1800 m altitude.
Only one ground pixel is observed at a time, and the incident beam is split and guided
into the speci�c detectors of the spectral bands. The line scanning is achieved by means

of a rotating mirror which drags the one-pixel-IFOV across the scan line perpendicular

to the 
ight track. The next scan line is then o�set by the 
ight velocity divided by the
scan rate.

The DAEDALUS has various scan rate modes: 16.7, 33.3 and 100 Hz, i.e., scan lines

per second. The 
ight velocity and altitude has to be adjusted such that subsequent

scan lines are indeed adjacent and do not over- or undersample the ground area being

imaged. With the Do 228 aircraft, a scan rate of 100 Hz is used for 300 m altitude,
33.3 Hz for 900 m, and 16.7 Hz for 1800 m.

The scan angle � ranges from �42:96� to + 42:96�, and this swath of 85:92� is divided
into 716 pixels of equal angular step width �� = 85:92�=716 = 0:12�. This causes a

panoramic image distortion, i.e., the pixel ground resolution varies with cos�2 �. E.g.,

the pixels on the left and right image boundary have a ground resolution twice as large

as the nadir pixels. The proper recti�cation has been described by e.g. Zhang et al.
(1994) or Wiemker (1996).

The sensor actually records 125 pixels more on each side, corresponding to an extra
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15�. A giro subunit mounted on the sensor establishes possible deviations of the aircraft

from horizontal 
ight (rolling). A 716 pixel window out of the overall 966 (= 716 +

2 � 125) scanned pixels is read out for data logging. According to the reading of the

giro, the read-out-pixel-window is determined for each scan line such that any deviation

from horizontal 
ight is compensated for (up to �15�). The image data together with

various 
ight parameters is logged to magnetic tape. For geocoding, the image data

may be registered to a map subsequently. Registration techniques particularly suitable

for airborne scanner imagery are described e.g. by Zhang et al. (1994), Ehlers (1994),

Wiemker (1996) and Wiemker et al. (1996).

The analogue signals of the detectors are ampli�ed twice, then digitized by a A/D-

converter to a dynamic range of [0..255] and stored in byte types as digital counts [DC].

The gain control of the ampli�er can be set in powers of 2 [0.5, 1, 2, 4, 8] in order to

exploit the 8 bit dynamic range optimally for the various land or sea imaging applications

and depending on weather conditions.

Due to the two ampli�ers involved, one has to consider carefully that over
ows can

occur not only at digital counts of 255 DC, but also at lower DC numbers in case the

pre-ampli�er is already saturated.
Due to strong noise in the �rst spectral band i = 1, this band is omitted in the sub-

sequent quantitative analysis of the surface orientation related color constancy problem
in the multispectral image data.

Multispectral Line Scanner DAEDALUS aads 1268

band number i 1 2 3 4 5 6 7 8 9 10 11

spectral band [�m] 0.420{0.450 0.450{0.520 0.520{0.600 0.605{0.625 0.630{0.690 0.695{0.750 0.760{0.900 0.910{1.050 1.550{1.750 2.080{2.350 8.500{13.000

center wavelength [�m] 0.435 0.485 0.560 0.615 0.660 0.723 0.830 0.980 1.650 2.215 10.750

detector material Si InSb HgCdTe

Table 6.1: Spectral bands of the multispectral line scanner DAEDALUS AADS 1268.

6.2 Calibration of the Image Data and Atmospheric

Correction

The raw image as delivered in digital count [DC] gray-values, is converted to radiances
by a linear calibration, taking into account also the gain setting of the recording. The

additive and multiplicative calibration constants are determined on a DAEDALUS test

bench in the laboratory after the sensor is unmounted from the aircraft platform.
The product of the calibration are radiance images which are dependent on the at-

mospheric conditions at the recording time. An atmospheric correction is applied in

order to turn the measured radiance values into re
ectances. The computation of the

proper re
ectances is done by the package SENSAT-5 (Richter 1990, Richter 1992) by

piecewise linear reverse modelling. For this, four di�erent re
ectance values are as-
sumed, and for each the way of the radiation coming from the sun, being scattered by

the atmospere, re
ected from the assumed horizontal and Lambertain surface and re-

transmitted through the atmosphere to the sensor, is simulated by the radiative transfer
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code MODTRAN (Anderson et al. 1995) for all wavelength of the DAEDALUS spectral

bands, provided a certain radiometric resolution. Thus, for each of the four consid-

ered re
ectance values, a theoretical radiance value is computed which is expected to

be measured by the airborne sensor. Now the actually measured radiances are con-

verted into re
ectances by piecewise linear interpolation between the simulated four

radiance/re
ectance pairs. The process of radiance calibration and re
ectance compu-

tation of the imagery used here is described in detail by Hepp (1994), Kollewe (1995),

and Kollewe et al. (1996).

Even following the assumption of Lambertian re
exion, we still prefer to call the

values in the so obtained re
ectance images only pseudo-re
ectances, as the computation

was based on the assumption of the re
ecting surfaces being horizontal.

We want to point out the following e�ects which may compromise the analysis of

color constancy problem if not properly corrected:

� Path radiance: Solar radiance which is scattered on air molecules and aerosols

directly into the sensor without re
ection from any ground surface. The path

radiance is an additive o�set constant for all re
exion signals.

� Adjacency e�ect: Radiance which was re
ected in the neighborhood around the
surface in the current �eld of view (IFOV pixel), and then scattered into the line

of sight of the sensor.

� Over
ow/Under
ow: Very high and very low radiances cannot be properly
coded when constrained by the 8 bit dynamic range.

Interestingly enough, errors in the assessment of the solar irradiance or atmospheric
transmissivity will not a�ect the analysis of the spectral impact of surface orientation,

since we are always considering spectral ratios or logarithmic di�erences.

Three example images are given in Fig. 6.1 through Fig. 6.3. The prints show the

gray-values of a single spectral band (i = 7, at � = 980 nm) and are contrast enhanced

by means of histogram equalization (Richards 1993). The imagery was recorded by the

DAEDALUS AADS 1268 line scanner onboard a Dornier Do 228 during four campaigns
from 1991 to 1995 in cooperation with the German Aerospace Research Establishment

(DLR) at 
ight altitudes of 300 m and 1800 m (nadir ground resolution 70 cm and

4.2 m, respectively). For the spectral measurements in this thesis only the 300 m data

was used because of the higher spatial resolution.
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zieg91cor

Figure 6.1: Scene `Ziegelstein', recorded 1991 at 300 m altitude over N�urnberg on

August 21, 1991, 13h50 CET, solar zenith angle �� = 41� (at � = 980 nm, contrast

enhanced).
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gew92cor

Figure 6.2: Scene `Gewerbegebiet' recorded from 300 m altitude over N�urnberg on

April 25, 1992, 12h20 CET, solar zenith angle �� = 36� (at � = 980 nm, contrast

enhanced).
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gew94cor

Figure 6.3: Scene `Gewerbegebiet' recorded from 300 m altitude over N�urnberg on

October 18, 1994, 11h30 CET, solar zenith angle �� = 59� (at � = 980 nm, contrast

enhanced).
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6.3 Analysis of Selected Spectral Samples

6.3.1 In scene Example of the Color Shift

From a multispectral image we have selected a roof top and clipped a polygonial region

where the same surface material is visible under di�erent surface orientations (Fig. 6.4).

The spectra contained in the selected area were extracted and treated in the logarithmic

spectral space. First the brightness was normalized by �ltering the unity vector: x 7!
U lnx (for de�nition of U see Eq. 4.32 on page 53).

In order to �nd the next most signi�cant eigenvector of the spectral variability which

has remained after this logarithmic brightness �ltering, a principal component analysis

is conducted. The vector entries of the most signi�cant eigenvector (which carries 80%

of the total variance) are plotted in Fig. 6.5 (box marks). The spectral dependence of the

eigenvector is compared to the di�use to global illumination ratio spectrumm withmi =

c�
�

i (Eq. 3.1 on page 36). In our example, the best �tting atmospheric parameter is


 = 2:2. For comparison with the variability eigenvector, the normalized and brightness

�ltered di�use-to-global illumination ratio v̂ / Um (Eq. 4.101 on page 65) is plotted in

Fig. 6.5 (solid line). We observe striking agreement.
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Figure 6.4: Region of analyzed spectra from a roof top (scene `Ziegelstein 1991', Fig. 6.1

on page 119, bottom left near soccer �eld).

Figure 6.5: The entries of the most signi�cant eigenvector (boxes) of the measured

spectra, and the best �tting di�use to global illumination ratio vector v̂ / Um.
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6.3.2 Comparison of Spectral Sample Pairs in Various Feature

Spaces

Surveying several image scenes, we have located samples of spectral pairs which exhibit

the aspect of the color constancy problem as discussed here, namely, which stem from

equal surface materials under di�erent surface orienation. The spectra are extracted

from the imagery and we compare the two spectral signatures. Their pseudo-re
ectance

curves di�er, and we want to test whether they become more similar in the transformed

feature spaces.

A number of examples are given in Fig. 6.6 through Fig. 6.9 (more sample pairs are

shown in the appendix, see Fig. C.1 on page 204 �., and Fig. C.3 on page 217 �.). On

the top left of Fig. 6.6, a clip from the image scene shows the location of the selected

pair of spectra. On top right, the two measured re
ectance spectra x and x0 are plotted
(marked by boxes and triangles, respectively). The spectral values are extracted as the

mean value from a 3� 3 neighborhood. The spectra are plotted with error bars which

indicate the root mean square scattering in this neighborhood. In all cases, we observe
a clear di�erence in brightness between the two spectra.

Then the pseudo-re
ectances x are brightness normalized by conventional L2-norm
vector normalization: x 7! x̂ = x=kxk. The resulting normalized spectra x̂ and x̂0

are plotted on the second row, left, in Fig. 6.6. The di�erence vector, i.e., the vector

containing the di�erence between the two normalized spectra for each spectral band i,
is plotted on the right-hand side. (The error bars of the di�erence vector are computed
according to error propagation as the square root of the added scattering squares.)

We observe a clear wavelength dependence of the di�erence vectors. Obviously, there
is not only a brightness shift but also a color shift between the two spectral signatures.

The color shift is due to varying contributions of skylight and sunlight as analyzed in
Chapter 3 and 4. This color shift cannot be removed by the brightness normalization.
We quantify the remaining residual between the two normalized spectra x̂ and x̂0 as the
mean relative deviation in all spectral bands i:

�
x̂i � x̂i

0

1
2
(x̂i + x̂i

0)

�
� 100% : (6.1)

This residual is given in percent on top of plot of the the di�erence spectrum.

Then all spectra of the image clip are subjected to logarithmic brightness �ltering:

x 7! t = exp(U lnx). Again, two spectra are extracted as the mean value from a 3� 3
neighborhood, and the root mean square scatter in this neighborhood is indicated by the

error bars (Fig. 6.6, third row left). The residual di�erence spectrum is again plotted

on the right-hand side, and the mean relative deviation given as:

�
ti � t0i

1
2
(ti + t0i)

�
� 100% : (6.2)

Finally, the logarithmic brightness and color �ltering is applied: x 7! t = exp(P lnx) =
exp(VU lnx). The results are plotted in the bottom row of each �gure.
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Figure 6.6: Spectral sample pair from scene `Gewerbegebiet 1992' (Fig. 6.2 on

page 120).
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Figure 6.7: Spectral sample pair from scene `Gewerbegebiet 1992' (Fig. 6.2 on

page 120).
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Figure 6.8: Spectral sample pair from scene `Ziegelstein 1991' (Fig. 6.1 on page 119).
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Figure 6.9: Spectral sample pair from scene `Gewerbegebiet 1992' (Fig. 6.2 on

page 120).
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6.3.3 Discussion of Results

We summarize our observations from the comparison of the spectral sample pairs as

follows:

I Necessarily, the originally extracted spectral signatures disagree severely. One of

them is always of much higher pseudo-re
ectance than the other, even though they

we are con�dent that they do stem from the same true re
ectance spectrum.

I Some spectral pairs agree already perfectly after normalization or log brightness

�ltering only (see particularly Fig. 6.9).

I The reduction of the mean relative residual is similarly good for both the bright-

ness normalization and the logarithmic brightness �ltering, if somewhat more

favourable for the logarithmic brightness �ltering.

I In most of the spectral pairs, however, the residual deviation is not arbitrary, but

we can rather clearly see a monotonous wavelength dependence (e.g. Fig. 6.6 and
Fig. 6.7). This we interpret as the same color shift which we have observed in the

spectral data discussed in Chapter 5.

I The additional logarithmic color �ltering [x 7! exp(VU lnx)] then successfully
�lters this e�ect. The mean relative residual is reduced substantially.

I The remaining residuals seem quite obviously to stem from stray radiation from
vegetated surfaces in the neighborhood. The characteristic rise at � � 700 nm
strongly suggests that the adjacency e�ect mixes vegetation spectra from nearby

surfaces into the observed spectra (see particularly Fig. C.3 on page 220).
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6.3.4 Bitemporal Comparison of Spectral Samples

Multitemporal change detection is a central task for all kinds of monitoring applications

using remotely sensed imagery. It compares multitemporal imagery in order to detect

changes in the land cover (Lillesand & Kiefer 1987, Richards 1993).

In general, remotely sensed multispectral imagery for monitoring purposes is recor-

ded by over
ights over the same land area at two times, T1 and T2, say. An appropriate

algorithm must then compare the two observed images of the same scene and assist

the analyst by designating those areas where the ground cover has apparently changed.

For speci�c applications, certain wavelength bands may be selected, whereas for general

purpose monitoring, all spectral bands will be taken into account. Several strategies for

change detection can be followed (Singh 1989):

� Register the two images and perform a pixel-wise comparison, or extract only

spectra of interest from corresponding locations in both images. Then compare

the spectral signature which the corresponding pixels o�er in both observations
(Wiemker & Hepp 1994, Wiemker & Spitzer 1996, Wiemker et al. 1996, Spitzer et

al. 1997, Wiemker 1997a, Wiemker et al. 1997).

� Classify and segment both images independently, and then compare the results
from corresponding locations.

� Start out from a knowledge base and a generic model of the scene, then compare

the model-derived expectation with the image of the scene as received by the
remote sensor (Dreschler-Fischer et al. 1993, Lange & Schr�oder 1994).

Here we will discuss only the direct comparison of the spectral signatures of the same

object as it appears in two di�erent images. This low level approach is the one which is
most widely used.

We have selected spectral sample pairs with spectra of the same roof patch as ob-
served in two di�erent years: April 1992 and October 1994. As we have discussed in

Chapter 1 and 2 we expect that the spectral signatures of tilted surfaces do not agree
between two recording times with di�erent solar angle, even if the spectral raw values

have been atmospherically corrected into pseudo-re
ectances (Section 2.1 on page 13).

Some examples are shown in Fig. 6.10 through Fig. 6.12 (more can be found in

the appendix, Section C.5 on page 242). The corresponding image clips from the two

recordings are shown on the top left of each �gure. The regions from which the spectra

were extracted are marked. The two spectral signatures are compared in the same way as

described earlier in Section 6.3.2 on page 124. Comparing these spectra from patches of

identical orientation but under varying solar angle, we observe the same results as before

with the spectra taken from a single image but under di�erent orientation (Section 6.3.3

on the preceding page):

I Sometimes the two spectra essentially di�er only in brightness, i.e., by an overall

scaling factor (e.g. Fig. 6.12). After brightness normalization or log brightness
�ltering we �nd no more wavelength dependent di�erence.

I However, other spectral pairs di�er severely even after brightness normalization /

�ltering (Fig. 6.10 and Fig. 6.11). Then the spectral di�erence exhibits the typical
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wavelength dependence which can be explained by varying contributions of direct

and di�use illumination,

I The remaining spectral di�erence can be succesfully �ltered by the suggested trans-

form. Then the spectral distance between the two spectra is reduced considerably

(Fig. 6.10 and Fig. 6.11).

Thus, we can conclude that the surface orientation has a non-negligible impact on mul-

titemporal comparison of spectral signatures even assuming Lambertian re
ection, and

that the suggested projector may successfully prevent erroneous change detection.



132 6 Experimental Findings on Multispectral Imagery

measured spectra x

0.0 0.5 1.0 1.5 2.0 2.5
wavelength [micrometer]

0

10

20

30

40

50

re
fle

ct
an

ce
 [%

]

x / IxI

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

no
rm

al
iz

ed
 s

ca
le

residual x / IxI       20%

0.0 0.5 1.0 1.5 2.0 2.5
-0.4

-0.2

0.0

0.2

0.4

exp(U ln x)

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5

tr
an

sf
or

m
ed

 s
ca

le

residual exp(U ln x)       18%

0.0 0.5 1.0 1.5 2.0 2.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

exp(V U ln x)

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

tr
an

sf
or

m
ed

 s
ca

le

residual exp(V U ln x)        1%

0.0 0.5 1.0 1.5 2.0 2.5
-1.0

-0.5

0.0

0.5

1.0

gew92_94.pairs1 / 5

1992 ( 407, 465) 1994 ( 289, 451)

Figure 6.10: Bitemporal spectral sample pair from scene `Gewerbegebiet' 1992 and

1994 (Fig. 6.2, and Fig. 6.3 on page 121.
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Figure 6.11: Bitemporal spectral sample pair from scene `Gewerbegebiet' 1992 and

1994 (Fig. 6.2, and Fig. 6.3 on page 121.
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Figure 6.12: Bitemporal spectral sample pair from scene `Gewerbegebiet' 1992 and

1994 (Fig. 6.2, and Fig. 6.3 on page 121.
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6.4 Evaluation by Multispectral Image Classi�ca-

tion

In the previous sections of this chapter we have investigated the quantitative e�ect

the suggested transformation has on the spectral distance of the sample pairs. The

ultimate aim of the orientation invariant descriptor is improvement of multispectral

image processing. In this section we now want to show the qualitative e�ect of the

transformation on multispectral image classi�cation.

The results of any multispectral image classi�cation depends very sensitively on the

number of classes, on either the selection of training areas by hand or by application

of an unsupervised clustering algorithm, on the employed spectral distance etc. In

order to avoid this multitude of parameters, we have chosen the very simple example

of classifying the image clips of the sample pairs into binary class images, all pixels of

which either belong to the class or do not belong to the class. The underlying idea

is, that an operator (or an image processing module) `points' to an area of one of the

roof tops chosen earlier as samples, and choses a training area from the designated
roof segment. Then a multispectral class is speci�ed from this training area. The

multispectral distance of each image pixel to this class is determined, and the distances
are thresholded in order to decide which image pixels belong to the speci�ed roof class

and which do not. Ideally, all roof segments, regardless of their surface orientation,
should fall into the speci�ed class, while excluding all non-roof pixels. However, the
brightness and color shifts induced by the varying surface orientation of the various roof

segments will usually compromise the quality of such a classi�cation. The scheme again
in short:

1. For each feature space: Transform the spectral data (if necessary).

2. For each sample pair: Train the class on a dark roof segment (i.e., compute the

mean spectrum, and the covariance matrix for ML only).

3. Compute the spectral distance of all image pixels to the class, in the respec-

tive feature space.

4. Set the threshold parameter such that the spectra on the brighter roof seg-

ment are just accepted, i.e., on the maximum spectral distance value of all

designated roof pixels.

5. Optionally, multiply the threshold value by a tolerance factor 2.

6. Classify the image into pixels accepted to belong to the class (distance lower

than threshold, indicated as white), and pixels not accepted to belong to the

class (distance larger than threshold, indicated as black).

7. Check by eye appraisal how satifactory the roof segments were classi�ed as

such and other areas of the image clip were not.
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In practical terms, our test was conducted as follows: For each sample pair, an

image clip was cut out of the overall image, centered around the sample pair (top left

of Fig. C.4 on page 236). Then the training area for the class `roof' was automatically

designated as the 3�3 window around the darker one of the two spectra of each sample

pair. We compare six di�erent methods of classi�cation and thresholding:

I Minimum Euclidean Distance (MED) in the original space.

I Maximum Likelihood (ML) classi�cation in the original space1.

I Minimum Euclidean Distance (MED) in the normalized space (x=kxk).
I Minimum Euclidean Distance (MED) in the brightness and color �ltered space

(exp(VU lnx)).

I The latter two classi�cations again, with the threshold parameter doubled by a

tolerance factor 2.

At �rst, the simple Euclidean spectral distance between all image pixels and the

mean spectral vector of the training area is computed (Eq. 2.25 on page 23). Then the
threshold distance is �xed as the maximum distance of all pixels within the 3�3 window
around of the darker and the brighter sample. In other words, the threshold is �xed as
the minimum threshold which guarantees that all the selected 18 image pixels on the
darker and brighter roof segment are just within the class. The pixels belonging to the

class are shown as white, the non-belonging ones as black (top row, second column).
As a second classi�cation method, we have applied maximum likelihood classi�cation

(Richards 1993). There, the class covariance matrix is determined from the spectra of
the training area, and the multispectral distance to the mean vector is weighted with the
inverse covariance matrix (Mahalanobis distance, Eq. 2.28, and Eq. 2.34 on page 25).

Then the threshold is determined as above, such that the selected pixels of the darker
and brighter roof segment are just falling into the class, and the image classi�ed into
roof and non-roof pixels (bottom row, second column).

For the next classi�cation test, all spectral vectors are normalized. Within the nor-
malized spectral space, the training (which in this case means only computation of the

mean vector) is repeated, and the classi�cation is performed with simple Euclidean dis-
tance and thresholding as above (top row, third column). In order to test the sensitivity

of the classi�cation against the threshold value, the classi�cation is repeated with a dou-

bled threshold value, i.e., the multispectral distances are thresholded with the maximum
distance of the selected pixels times a tolerance factor 2 (bottom row, third column).

Finally, the training and classi�cation is performed after the transformation (log

brightness and color �ltering) of the spectra into the orientation invariant descriptor.

Again, we show the results for the minimal threshold (top row, right) and for this

threshold times a tolerance factor 2 (bottom row, right).

1 Note that for this case of just a single class the Minimum Mahalanobis Distance classi�cation is
equivalent to Maximum Likelihood classi�cation (Eq. 2.28, and Eq. 2.34 on page 25). The N �N =
9� 9 covariance matrix is in our example estimated from the 3� 3 = 9 pixel neighborhood which
is numerically just su�cient although certainly underdetermined in practise (Hughes phenomenon,
Shahshahani & Landgrebe (1994)).
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Figure 6.13: Multispectral classi�cation into binary class images in various feature

spaces. The threshold is always �xed such that the designated pixels (top left) are just

falling into the class.

White: belongs to class; black: belongs not to class.
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Figure 6.14: Multispectral classi�cation into binary class images (continued).
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6.4.1 Qualitative Results of the Classi�cation

From the binary classi�cations shown in Fig. 6.13 and Fig. 6.14 (more in Section C.4 on

page 236 in the appendix) we draw the following observations:

I The classi�cation with simple Euclidean distance in the original space performs

very poorly. The multispectral distance between the pixels of the darker and the

brighter roof segment is very large. Demanding that the selected pixels of both

roof segments are comprehended by one class requires nearly all other image pixels

to fall into the class as well.

I The maximum likelihood classi�cation, using the Mahalanobis distance determined

with the covariance matrix of the darker roof segment pixels, performs often better

than Euclidean distance classi�cation. We want to recall that the computation

costs are much higher, though, than for Euclidean distance.

I The Euclidean distance in the normalized space performs better than maximum

likelihood classi�cation in some cases. However, it shows to be very sensitive

against the threshold value. In a number of cases, we observe poor results when
the threshold value is relaxed by a tolerance factor 2.

I The Euclidean distance in the transformed space performs equally good or best

in most cases in discriminating the roof pixels (plus pixels of similar spectra,
of course) from others, regardless of surface orientation. Moreover, it is robust
against variation in the threshold value, which can mostly be relaxed to double

tolerance without severe e�ect. This indicates that the suggested transformation
allows stable thresholding at salient gaps in the histogram of the spectral distances

with respect to the speci�ed class.

For the problem of identifying surface materials under varying orientation, we can con-
clude that after the suggested transformation into the orientation invariant feature space,

we can employ a low-cost Euclidean distance classi�cation approach which performs
better than costly maximum likelihood classi�cation or classi�cation in the normalized

vector space, and which is moreover less sensitive to threshold parameters.
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6.5 Unsupervised Classi�cation / Clustering

In the previous section we have performed supervised classi�cation in the sense that the

training areas were prede�ned. In this section we select an image clip which then is

subjected as a whole to unsupervised classi�cation / clustering (Section 2.6 on page 29).

Note that this exercise can only be seen as an illustration, since the number of parameters

which in
uence the outcome of unsupervised classi�cation is just too large. In particular,

the result of unsupervised classi�cation depends strongly on the image scene contents

(i.e., the abundance of each `sort' of spectra in the image), on the number k of spectral

classes, on whether the spectral bands were PC-transformed or rescaled, etc.

Except to the original spectral feature space, The spectral data of the image clip

shown on top of Fig. 6.15 was mapped to the normalized, the log brightness �ltered,

and the log brightness and color �ltered space.

In order to reduce computation cost, the spectral data was subjected to principal

component transformation (PCT, Section 2.7 on page 32) after the mapping to the

respective feature space. By virtue of the PCT, the number of spectral bands was
reduced from N = 9 to H = 2. The transformed bands have a vanishing mean value

and are rescaled to unit variance.
Then the image clip shown on top of Fig. 6.15 was classi�ed by unsupervised fuzzy

k-means (Bezdek 1981) into k = 5 classes, as described in Section 2.6 on page 29.

The results for the four di�erent feature spaces can be seen in Fig. 6.15 and Fig. 6.16,
left-hand side.

Most classi�cation techniques as applied in multispectral remote sensing (Richards

1993) rely on purely spectral features and consider only one pixel at a time. More
recently, a method for utilizing additional contextual information from neighboring pix-

els has been derived from Markov random �eld modeling (Besag 1986). This `ICM-
algorithm' has been shown to improve supervised classi�cation results on multispectral
imagery (Jhung & Swain 1996, Solberg et al. 1996). So far, this spectral-spatial label-

ing approach has been used in conjunction with supervised classi�cation only, i.e., the
reference classes were established from training data by an analyst. Wiemker (1997b)

describes the e�ects of incorporating spatial context information into unsupervised clus-

tering techniques such as the hard and fuzzy k-means algorithms. It could be shown that
not only the classi�cation procedure is improved by accounting for local neighborhoods,

but that also the clustering process yields di�erent class centers than without using
spatial features. The accuracy of the estimated class protoytpe spectra is signi�cantly
increased on simulated test imagery, and more satisfactory segmentation results could

be achieved on real remotely sensed multispectral imagery.

The basic underlying idea of using additional context information is that around each

pixel x a local neighborhood N (x) is considered (here we used a 3 � 3 pixel window).
If the surrounding pixels of a pixel x do from their spectral appearance belong to the
same class as x, then this encourages the current classi�cation of x. Vice versa, if

the surrounding pixels have low probabilities to belong to the same preliminary class

as x, then also x's probability for this class decreases. This process is iterated until
convergence. The results are shown in Fig. 6.15 and Fig. 6.16 on pages 142 and 143,

right-hand side.
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We discuss the `behaviour' of some examplary surface patches throughout the classi�-

cations in the di�erent feature spaces (marked by numbered circles in Fig. 6.15):

I The roof parts (4) and (5) are classi�ed (labeled) into two di�erent classes us-

ing the original spectra [x], due to their opposite tilt. Brightness normalization

[x=kxk] or log brightness �ltering [exp(U lnx)] does not help (Fig. 6.16). Only

after logarithmic brightness and color �ltering [exp(VU lnx)] is the complete roof

labeled into one class.

In contrast, the roof parts (9) and (10) are always labeled as the same class in

all feature spaces.

I The roof parts (2) and (3) are classi�ed into one class using the original spectra [x],
in spite of their opposite tilt. However, the roof parts are at least partially split af-

ter brightness normalization [x=kxk] or log brightness �ltering [exp(U lnx)]. In the
latter, it can be classi�ed into one class again when using spatial context features.

Without using context, only after log brightness and color �ltering [exp(VU lnx)]
is the complete roof labeled into one class again.

I The roof parts (6) and (7) are labeled into two di�erent classes using the original
spectra [x], due to their opposite tilt. After brightness normalization [x=kxk] or log
brightness �ltering [exp(U lnx)] they resolve into one class, but only in the non-

context clustering mode. After log brightness and color �ltering [exp(VU lnx)]
they are labeled as one class both with or without spatial context faetures.

I The shadowed street (1) is misclassi�ed into the same class as the dark roof parts

(2) and (3) using the original spectra [x]. However, (1) is correctly distinguished
from the adjacent roof top in all other spaces (Fig. 6.16).

In contrast, the shadowed yard (8) is never merged into one object with the
neighboring roof tops (6) to (10).

Using spatial context features yields overall more satisfactory results for thematic clas-

si�cation. It reduces speckle noise considerably. On the other hand, also real objects
which are of smaller size then the used local neighborhood N (x) around a pixel x may

easily be suppressed and will remain undetected.

In summary, the examples of unsupervised classi�cation show that the additional
color �ltering successfully removes color shifts which otherwise prevent identical surface

patches of di�erent orientation from being classi�ed into the same cluster in the spectral
feature space. On the other hand, the examples show also that the `behaviour' of speci�c

objects in various unsupervised clustering runs is highly complex, depending e.g. on the

image scene content and the number of classes. The success can only be evaluated with
respect to the usefulness for speci�c applications.
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image clip from scene `Gewerbegebiet 1992'

(169� 154 pixels, at � = 1650 nm, contrast enhanced)

1

4 5 8

2 3

76 9 10

original spectra [x] with context

Figure 6.15: Unsupervised multispectral classi�cation (k = 5 classes),

using either simple pixel-wise classi�cation (left-hand),

or additional local neighborhood features (3 � 3 pixels, right-hand).
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normalized spectra [x=kxk] with context

brightness �ltered spectra [exp(U lnx)] with context

brightness + color �ltered [exp(VU lnx)] with context

Figure 6.16: Unsupervised multispectral classi�cation (k = 5 classes),

using either simple pixel-wise classi�cation (left-hand),

or additional local neighborhood features (3 � 3 pixels, right-hand).
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6.6 Analysis of the Transform in the Feature Space

In order to visualize the overall e�ect of the suggested transform, we appraise the dis-

tribution of the spectra in the feature space. We recall that each spectrum is a vector

which consists of N entries and can be considered as a point in the N dimensional

feature space. For inspection of the here N = 9 dimensional feature space we employ

a principal component transform (see Section 2.7 on page 32): The mean vector and

the covariance matrix of the data is determined, and its eigenvalues and eigenvectors

are computed; then the mean spectrum is subtracted from all spectra, the spectra are

projected onto the principal spectra, i.e., the eigenvectors, and �nally the variance of

each principal component is scaled to unity by division of all principal components by

the square root of the respective eigenvalue. The result is data with a mean vector of

zero and the idendity matrix as the covariance matrix.

For visualization of the feature space of scene `Ziegelstein 1991' (Fig. 6.1 on page 119),

all spectra are transformed to the two most signi�cant principal components. In this

example, two principal components capture between 93% and 97% of the total variance
(depending on the feature space). The two vector entries of each such transformed

spectrum are then entered into a bivariate histogram. Contour plots of these histograms
are shown in Fig. 6.17 on page 146.

In the full N = 9 dimensional faeture space we have run a fuzzy k-means unsuper-

vised clustering algorithm (see Section 2.6 on page 29 and Bezdek (1981)) for k = 2
clusters. After convergence of the iterative clustering, we obtain the cluster centers m
and m0 for the two clusters and the respective covariance matrices � and �0. Then

the cluster separation can be described as the length of the distance vector between
the centers d = (m �m0) relative to the root mean square extension of the clustersp
( tr�+ tr�0)=2 (compare Section 2.4 on page 25):s

(m�m0)T(m�m0)
( tr�+ tr�0)=2

(6.3)

This normalization of the separation does not take into account the shape of the cluster
ellipsoids, since the basic k-means clustering algorithms only allow search for hyper-

spheres in the data. The separation for four di�erent feature spaces is given in Table 6.2

on the facing page. In Fig. 6.17 on page 146 we have marked the fuzzy k-means-found
cluster centers and plotted the cluster radii

p
tr� in order to illustrate the compact-

ness of the clusters. (Note that the cluster means, which minimize the root mean square
within-cluster-deviation, are not necessarily identical to the histogram peaks.) The de-

cision surfaces for Minimum Euclidean Distance classi�cation are halfway between the

cluster centers perpendicular to the separation vector.
In this example the two most prominent clusters are formed by vegetation and non-

vegetation pixels which are of nearly equal abundance in the image. By eye appraisal

(Fig. 6.17) we can clearly tell apart these two clusters in all four spaces, however, they are

unequally easy to be discriminated by unsupervised clustering as the cluster ellipsoids

in the original data are far from being spherical.
We observe that already the transition into the logarithmic feature space improves

the aptitude for Minimum Euclidean Distance (MED) classi�cation. The brightness

�ltered space is even better, but still exceeded by the brightness and color �ltered
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Normalized Separation in Different Feature Spaces

Space x lnx e
U lnx

e
VU lnx

q
(m�m0)T(m�m0)

( tr�+tr�0)=2 1.781 2.338 2.506 2.859

Table 6.2: Cluster separation in the original, logarithmic, brightness �ltered and bright-

ness/color �ltered feature spaces, normalized by the mean cluster extension.

space. The visual impression is supported by the relative cluster separation values in

Table 6.2.
We want to look more closely at the �nal improvement achieved by the color �ltering.

To this aim we consider the principal component projection of the log feature space after
brightness �ltering (U lnx, Fig. 6.18 on page 147). Within the bivariate histogram,
all local maxima are found, i.e., all bins with entries higher than all their 8 nearest

neighbors. Then the highest 6 of these local maxima are marked (crosses). We notice
that both in the vegetation (righthand) and the non-vegetation cluster (lefthand) the

histogram peaks are arranged in a particular direction. For comparison, the brightness
normalized vector v = Um (see Eq. 4.99 on page 65) with m = �

�2 is plotted as
the solid line. A color �ltering with the projector V will extract all variation along

the plotted vector v. The visualization of the feature space suggests that in this way
within-cluster variance is reduced without diminuishing the between-cluster separation,
and thus explains the better cluster separability after color �ltering.



146 6 Experimental Findings on Multispectral Imagery

x

0 50 100 150
2 PC Projection of Feature Space

0

50

100

150
ln x

0 50 100 150 200 250
2 PC Projection of Feature Space

0

50

100

150

200

250

exp( U ln x)

60 80 100 120 140
2 PC Projection of Feature Space

60

80

100

120

140

exp( VU ln x)

60 80 100 120
2 PC Projection of Feature Space

60

80

100

120

Figure 6.17: Iso-lines (contours) of the bivariate histogram of the principal component

transformed feature space (Scene `Ziegelstein 1991' of Fig. 6.1 on page 119).

top left: Original feature space (x); right: Log feature space (lnx),
bottom left: After brightness �ltering (exp(U lnx)); right: After brightness and color

�ltering (exp(VU lnx)).

The crosses and circles are the cluster centers m and scatter radii ( tr�)
1

2 of the clusters

found by unsupervised fuzzy k-means clustering (k = 2). (The axis values are not

signi�cant, as the principal-component-projected data was scaled and translated for

visualization.)
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Figure 6.18: Iso-lines (contours) of the bivariate histogram of the principal compo-

nent transformed feature space after log brightness �ltering U lnx (Scene of Fig. 6.1

on page 119). The highest histogram peaks are marked by crosses, right hand is the

vegetation cluster. Also plotted is the PC-transformed direction of the color shift v, i.e.,
the direction of the variance which is �ltered by the projector V.
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6.7 Statistical Evaluation of Spectral Sample Sets

In the previous sections of this chapter we have compared spectral signatures, either

from corresponding surfaces of di�erent orientation, or from the same inclined surfaces

under di�erent solar illumination angle. We have analyzed the di�erence between the

observed spectra which can be separated into a large brightness shift and a small color

shift.

Our aim is to �nd a transformed feature space in which the spectral distance between

spectra which di�er only in orientation but not in re
ectance vanishes or, at least,

becomes small. Inspection of our spectral samples has shown that the spectral distance

between the two spectra of each sample pair can indeed be signi�cantly reduced by

application of the suggested logarithmic brightness and color �ltering.

However, measuring the reduction of the spectral distance only is not su�cient.

After all, we have to consider the possibility that all spectral distances are reduced by

the brightness and color �ltering.2 Hence, a statistical evaluation has to show that the

spectral distances have been reduced relative to the overall extension of all spectra in

the feature space (see Section 2.4 on page 25).
Therefore, we have formed sets of spectral sample pairs which exhibit the aspect

of the color constancy problem as discussed here, namely, which exhibit equal surface
materials under varying surface orienation. We have selected a number of pairs of spectra
where the re
ecting material remains the same but surface orientation and thus the

illumination is di�erent (Fig. 6.20 on page 153). Another set also comprises additional
spectral sample where we can be reasonably con�dent that both surface patches are

horizontal and the change of appearance is caused the transition between sunlit and
shadowed area (Fig. C.2 on page 214).

For our comparison, we consider the spectral information of surface pixels in seven
basic feature spaces as depicted in Table 6.3 on the next page: The original pseudo-
re
ectance feature space (x), as conventionally normalized under L2-norm (x=kxk), the
logarithmic space (lnx), then �ltered for brightness shift (U) and color shift (V), and
exponentiated back into the non-logarithmic domain.

In order to decide which of the various possible feature spaces is most suitable for
the here discussed problem, eye appraisal of the transformed multispectral imagery is

certainly not a satisfactory option, as it cannot capture the multispectral nature of the

data.
Instead, using the sets of spectral sample pairs, we will evaluate their separability,

i.e. their relative spectral distances in the various feature spaces. Again, we aim at

vanishing spectral distances. In other words, the separability between the two spectra
of each sample pair should become low. The fact that each set comprises a number

of samples allows to estimate the error of the mean separability. Thus we can clarify
whether the separabilities in the di�erent feature spaces di�er substantially, i.e., whether

their di�erences are above a statistical signi�cance threshold.

In the following sections we will �rst explain how we are going to measure and

compare the separabilities in di�erent feature spaces in a meaningful way, and then

discuss results in Section 6.7.3 on page 155.

2 Consider e.g. the trivial case of all spectra mapped to zero: x 7! 0, which certainly reduces undesired
spectral distances but is useless, of course.
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Feature Spaces

x lnx {

x=kxk U ln x eU lnx

{ VU ln x eVU lnx

Table 6.3: Investigated feature spaces.

6.7.1 Evaluation of Spectral Distances

� Normalizing the Spectral Distances
The characteristic property of the spectral distances between the sampled pairs is that

they are caused not by a change in the re
ecting surface material but rather by a
change in surface orientation and/or illumination. An invariant should thus reduce such
distances to zero, and a transformed feature space should diminuish such distances.

On the other hand, a feature space transformation will also change the overall density
distribution. Hence we aim to �nd the lowest normalized spectral distance, ideally a

vanishing spectral distance between pairs but conserved �nite extension of the overall
image data cluster in the feature space.

As for the normalization of the spectral distances, we consider two normalized dis-

tance measures (compare Section 2.4 on page 25):

dT =

r
dTd

tr�
=

r
tr (ddT)

tr�
(6.4)

dI =

s
dT��1d
rk�

=

s
tr (��1ddT)

rk�
(6.5)

where rk� denotes the rank of matrix �.
The �rst normalized distance dT simply puts the Euclidean spectral distance

p
dTd

in relation to the scatter radius
p
tr� of the overall image cluster with the covariance

ellipsoid�. This distance does not regard the orientation of the spectral distance relative
to the overall cluster in the feature space (for illustration see Fig. 6.19 on the following

page).
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Figure 6.19: Illustration of the orientation of a spectral distance d (between a pair of

spectra) relative to the ellipsoid � of the overall image cluster in the feature space.

The second normalized distance dI is sensitive to the relative orientations of spectral
distance and overall cluster. By weighting with the inverse of the covariance ��1,
the distance d is essentially transformed into a space of vanishing correlation and unit

variance before evaluation of the vector magnitude.
In order to enable direct comparison between the two normalized distance measures

dT and dI , the additional division by the rank rk� of the overall covariance matrix � is
necessary. We demand equality for the limiting case of a spherical cluster with � = �2I.
In this case, both expressions degenerate to

dT = dI =
p
dTd=(�2N) (6.6)

(because tr I = rk I = N).

If any �ltering ofK components with a projector PK is applied, this reduces the rank
of the overall data from originally N down to rk� = N �K, and also tr (PKIP

T
K) =

N �K, so for the spherical case � = �2I this yields equal distances

dT = dI =
p
dTPKd=(�2(N �K)) : (6.7)

The distance dT is derived from the simple Euclidean distance
p
dTd which is the one

naturally employed for most applications. For some pattern recognition applications,
however, the computationally more expensive weighted distance

p
dT��1d yields useful

results and was therefore considered here. Note that after �ltering of components, the

inverse ��1 can only be computed as the pseudo-inverse �+ because � is no longer of

full rank N and thus singular.

� Dependance on Rescaling and Decorrelation
Any additional o�sets in the data will not change spectral distances and cluster cen-

ters found by unsupervised clustering. However, band-wise scaling does change spec-
tral distances and is well known to in
uence the outcome of all unsupervised cluster-

ing techniques which rest on inner-product-norms with �xed metrics (Hartigan 1975,
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Bezdek 1981). Rescaling the input data to standard variance is a natural approach to

account for grossly di�erent variances in the spectral bands, or to eliminate in
uences

of sensor gain settings or changing recording conditions such as solar irradiance and at-

mospheric transmissivity. Therefore we have investigated the spectral distances also in

rescaled and transformed spaces. The transformation of the N -valued spectral data to

H � N uncorrelated principal components of unit variance is an often used tool which

reduces the rank of the data to rk� = H.

6.7.2 Comparison in Di�erent Feature Spaces

We now describe the computation of the relative separability between the two spectra

of each spectral sample pair. The separability is measured as the mean value of the

spectral distance d for each pair. The lowest separability, i.e., the lowest mean spectral

distance, designates the `most invariant' feature space.

The results are shown in Table 6.4 on page 154. The spectra are taken from the pixel

position as shown in Fig. 6.20 on page 153. In order to smooth noise, the spectral values

are taken as the mean of the 3 � 3-neighborhood around the center pixel. At �rst, all
table entries were computed separately for each spectral pair. The �nal table then gives
the mean distance value d of all j sample pairs for the respective entry. Below (denoted

`�'), the proper deviation { needed for statistical comparison { is given: s = �=
p
j, the

standard deviation � divided by the square root of the number of samples j.

In order to compare two table entries, i.e., two sample means d and d0, Gosset's
so-called Student's distribution (Brandt 1992, Loz�an 1992) must be used (the `t-test'):

t =
kd� d0kq

�2+�20

j

(6.8)

=
kd� d0kp
s2 + s20

; with s =
�p
j

: (6.9)

The di�erence of means kd� d0k is considered signi�cant when t > t(�; 2j� 1) which is
to be taken from the Student distribution tables, where � is the required con�dence level

and 2j � 1 the number of degrees of freedom, e.g., t(� = 90%; j = 20) = t(90%; 41) =
1:30. For this examplary choice, a di�erence is considered signi�cant, if and only if

kd� d0k > 1:3
p
�2 + �20 (6.10)

� Separability with respect to the Basic Feature Spaces
For each column of Table 6.4 on page 154, the spectral image data was transformed into

one of the seven investigated basic feature spaces (Fig. 6.3 on page 149). The �rst row

gives the results for the distance dI , the second row for the distance dT .

The third row gives the results for the case that an additional band-wise rescaling

to unit variance is applied after the transformation, i.e., the diagonal of the covariance

matrix becomes �ii = �2(xi) = 1.

The forth row and the following rows give results for the case that an additional
principal component transformation (PCT) was applied after the transformation. We

varied the rank H of the H � N PCT-matrix T (see Section 2.7 on page 32), i.e., the
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number of vector entries and thus the dimension to which the original data is reduced.

Each transformed band has a zero mean and unit variance. The PCT-matrix T is

derived from the eigenvectors of the covariance matrix of the complete image data only

after transformation into the 7 basic feature spaces.

For the distance dI we have not tested band-wise rescaling and principal component

transformation. The rescaling with a transformation matrix T (Section 2.7 on page 32)

can certainly not change the distance dI, because the distance d2I
0
in the transformed

system can be obtained from the original distance d2I (Eq. 6.5) as:

d2I
0
= (Td)T(T�TT)�1Td= rk� (6.11)

= dTTT(TT)�1��1T�1Td= rk� (6.12)

= dT(T�1T)T��1T�1Td= rk� (6.13)

with T�1T = TT�1 = I

= dT��1d= rk� (6.14)

= d2I (6.15)

and thus remains unchanged.

Also, we do not need to consider PCT for the distance measure dI , because by the
weighting with the inverse of the overall cluster covariance �, this distance is indepen-
dent of correlation and variance anyway. As a consequence, the distance dI must yield

equal results as a full rank PCT to H = N principal components with distance measure
dT (compare �rst and last rows in Table 6.4). There can be no more meaningful princi-

pal component bands than the rank of the data to be transformed. After �ltering with
the orthogonal projector PK the dimension will be reduced to rk� = N �K and thus
the number of meaningful principal components H is limited.
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Figure 6.20: Selected samples of surface pairs with varying orientation (set 1) from

scene `Ziegelstein 1991' (Fig. 6.1 on page 119, 300 m altitude).
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Separability in Different Feature Spaces

x x=kxk lnx U lnx VU lnx eU lnx eVU lnx

q
dT�

�1
d= rk� 1.709 0.972 0.737 0.666 0.627 0.847 0.575

� 0.137 � 0.132 � 0.074 � 0.081 � 0.075 � 0.108 � 0.074

q
dTd= tr� 2.282 0.751 1.252 0.587 0.356 0.620 0.221

� 0.176 � 0.145 � 0.132 � 0.097 � 0.077 � 0.092 � 0.054

rescaled 2.076 0.777 1.240 0.579 0.385 0.865 0.465

� 0.175 � 0.138 � 0.129 � 0.093 � 0.073 � 0.124 � 0.080

PCT, rank H = 1 2.100 0.489 1.384 0.191 0.297 0.184 0.179

� 0.194 � 0.126 � 0.145 � 0.069 � 0.084 � 0.058 � 0.055

2 2.402 0.896 1.023 0.710 0.353 1.221 0.253

� 0.177 � 0.178 � 0.109 � 0.124 � 0.078 � 0.177 � 0.057

3 2.410 0.826 0.927 0.623 0.490 1.104 0.283

� 0.167 � 0.160 � 0.102 � 0.101 � 0.067 � 0.160 � 0.052

4 2.131 0.957 0.838 0.638 0.492 1.083 0.535

� 0.150 � 0.163 � 0.093 � 0.092 � 0.069 � 0.156 � 0.093

5 2.062 1.007 0.822 0.637 0.466 1.023 0.567

� 0.154 � 0.161 � 0.085 � 0.088 � 0.063 � 0.144 � 0.088

6 2.053 1.059 0.801 0.606 0.448 0.972 0.607

� 0.167 � 0.154 � 0.082 � 0.082 � 0.057 � 0.130 � 0.088

7 1.911 1.070 0.756 0.578 0.627 0.941 0.600

� 0.155 � 0.148 � 0.078 � 0.075 � 0.075 � 0.122 � 0.084

8 1.807 1.018 0.715 0.666 0.627 0.892 0.579

� 0.146 � 0.140 � 0.072 � 0.081 � 0.075 � 0.115 � 0.077

9 1.709 0.972 0.737 0.666 0.627 0.847 0.575

� 0.137 � 0.132 � 0.074 � 0.081 � 0.075 � 0.108 � 0.074

zieg91cor.pairs3

Table 6.4: Spectral distances (mean � deviation) of the sample pairs (from scene

`Ziegelstein 1991') in 7 basic feature spaces, and after additional rescaling and principal

component transformation (PCT).
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6.7.3 Discussion of Results

Altogether, the tables contain 80 di�erent tested feature spaces, compared by virtue of

the spectral distances dT and dI (Eq. 6.4 and Eq. 6.5 on page 149). Concerning Table 6.4

on the facing page, we make the following observations:

I Comparison of the basic feature spaces with the distance measure dI (�rst row in

Table 6.4) shows that the transformed space (t = exp(VU lnx)) yields the best
results. The improvement is of a factor � 3 in comparison to the original space

(x), and still of a factor � 2 compared to the normalized space (x=kxk).
I Comparison of the basic feature spaces with the distance measure dT (second row

in Table 6.4) shows also that the transformed space (t = exp(VU lnx)) yields the
best results. The improvement is of a factor � 10 in comparison to the original

space (x), and still of a factor � 3 compared to the normalized space (x=kxk).
Performance is slightly better in the non-log domain (t) than in the log domain

(ln t = VU lnx).

I The additional color �ltering with VU always improves the results compared to
pure brightness �ltering U or brightness normalization (x=kxk).

I The �ltering improvements are larger for the distance measure dT than for dI
(Eq. 6.4 / Eq. 6.5). The absolute values are better for dI in the original space (x),
and better for dT in the transformed space (t = exp(VU lnx)).

I The logarithmic feature space (lnx) performs always better than the original space
(x).

I The logarithmic brightness �ltering (U lnx) performs always better than the

brightness normalization (x=kxk). There is no clear trend in comparison of the
spaces exp(U lnx) versus x=kxk.

I The band-wise rescaling to unit variance (third row in Table 6.4) worsens the

results in practically all spaces, and yields its best result for the log transformed
space (ln t = VU lnx).

I The usefulness of the principal components transformations (PCTs) can be eval-

uated in a meaningful way only by virtue of the distance dT (because of Eq. 6.15
on page 152). Looking at the various PCT spaces, there is no clear preference for

either t = exp(VU lnx) or ln t = VU lnx.

I Wrt. the distance dT (Eq. 6.4), the PCT can improve the results only for the

case of a single component (H = 1). Then, however, only little of the original
image information is retained, so that this approach does not seems viable for

practical purposes. We can explain this result as follows: After brightness �ltering
or normalization of the example image scene, the next most signi�cant principal

component is the `greenness', i.e., the similarity to a vegetation spectrum. Because

all the arti�cal surfaces exhibit very low greenness, their mutual spectral distances
are essentially orthogonal to the greenness component. Thus the transformed

distances between arti�cal surfaces almost vanish for the case of H = 1.
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I We cannot make a general statement about the e�ciency of the PCT with regard

to our problem. For a given space, it is hard to tell in general what choice for the

number of components H will yield best results. The outcome of a PCT of course

depends very much on the content of the image scene. We can state, however, that

with a rising number of principal components H, there is a continuous transition

of the result values between the two normalized distance measures dT and dI, as

can be expected because after PCT we have a spherical overall covariance � = I
(see Eq. 6.7 on page 150).

In summary, we may conclude that the e�ectiveness of the suggested logarithmic �ltering

has been clearly shown on real multispectral image data. Improvement by the introduced

color �ltering for the normally used Euclidean spectral distance is of a factor � 10 in

comparison to the original space, and of a factor � 3 in comparison to the brightness

normalized space.

6.7.4 Comparison with respect to the Filter Rank

In another evaluation series (see Table 6.5) we compared results with respect to varying

�lter rank K = N � rkP. Here we investigated only two of the seven basic feature
spaces (lnx and ln t = P lnx), but for each column we �ltered with a projector PK of
increasing �lter rank K up to K = 5. In particular, we have the �lters

PK=0 = I ; PK=1 = U ; PK=2 = VU ;

so the values for the �lter ranks K = f0; 1; 2g in Table 6.5 are the same as the corre-

sponding entries in Table 6.4.
Concerning the tests with di�erent �lter ranks K (Table 6.5 on the next page), we

observe that:

I For the distance dI (Eq. 6.5 on page 149, �rst row in Table 6.5) we get best results
for K = 3. However, the improvements are not strictly signi�cant in the sense of

the t-test (Eq. 6.10 on page 151).

I For the distance dT (Eq. 6.4 on page 149, second row in Table 6.5) we also get

best results for K = 3. However, more precisely, the improvement between K = 1

(U) and K = 2 (VU) is statistically signi�cant, whereas the further improvement
between K = 2 and K = 3 is not, since the di�erence is smaller than the error

margins.

We summarize that �ltering with K = 3 might even be better than with K = 2; how-

ever, we have to keep in mind that each �ltered dimension also reduces the information

content of the data. So, �ltering with K = 2 (VU) may be a good compromise.
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Separability w.r.t. Filter Rank

lnx PK lnx ; K =

0 1 2 3 4 5

q
dT�

�1
d= rk� 0.737 0.666 0.627 0.617 0.652 0.670

� 0.074 � 0.081 � 0.075 � 0.076 � 0.083 � 0.091

q
dTd= tr� 1.252 0.587 0.356 0.309 0.351 0.329

� 0.132 � 0.097 � 0.077 � 0.065 � 0.062 � 0.063

zieg91cor.pairs3

Table 6.5: Spectral distances (mean � deviation) of the sample pairs (from scene

`Ziegelstein 1991') in 6 feature spaces of varying rank rk� = N � K: The log space

lnx (for P0 = I, i.e., no �ltering), and the �ltered spaces PK lnx, particularly P1 = U
and P2 = VU.
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6.8 Sensor Speci�c Noise Analysis

Let us recall the analysis of error propagation as set out for the general case in Section 4.6

and 4.7 (page 80). For the speci�c case of the DAEDALUS sensor, we can �ll in the

respective parameters and evaluate some of the general error propagation formulae, in

order to get an idea of how signi�cant the errors and their propagation are in the here

used multispectral image data.

The error propagation as well as the required quantization accuracy depend on the

matrices P;U;V (see Eq. 4.32 on page 53, and Eq. 4.103 on page 65) and thus on the

assumed spectral di�use to global illumination ratio m̂, and �nally on the sensor speci�c

positions of the spectral bands within the electromagnetic spectrum.

Assuming m̂ � ��1 yields the di�use to global illumination ratio values as given in

Table 6.6. From m̂ we construct the proper projector matrices U and V (for illustration

see Fig. 6.21 on the facing page). For all projectors the line sums cancel out:
P

j Pij =

0 ; 8j (Eq. 4.114 on page 66). Two values of interest for this sensor speci�c projector

P = VU are: X
ij

P 2
ij =

X
i

P 2
ii = trP = 7:0 [= N � 2] (6.16)

(compare Eq. 4.133 and 4.137 on page 68)

h
X
j

P 2
ijii = hPiiii = 0:777 [= (N � 2)=N ] (6.17)

(compare Eq. 4.134 on page 68)

where hii denotes the average value over all spectral bands i, and the single values are

given in Table 6.6.

� Reduction of Multiplicative Noise
From Eq. 4.161 on page 81 we know that the relative level of multiplicative noise
�2(xi)=x

2
i in the original signal x becomes transformed to a lesser noise level �2(ti)=t

2
i

in the transformed signal t. The reduction of the relative level of multiplicative noise isP
j P

2
ij = Pii for spectral band i. On average this amounts to hPiii = 0:78 (Eq. 6.17) in

our speci�c case (Table 6.6).

Sensor Specific Projector

band number i 2 3 4 5 6 7 8 9 10

Wavelength [�m] 0.485 0.560 0.615 0.660 0.723 0.830 0.980 1.650 2.215

di�use/global m̂ 0.400 0.346 0.315 0.294 0.269 0.234 0.200 0.118 0.088
P

j P
2

ij = Pii = 0.629 0.783 0.841 0.867 0.885 0.885 0.856 0.679 0.575

Table 6.6: Assumed di�use to global illumination ratio m̂ and the proper projector

matrix line sums
P

j Pij for P = VU. The �rst spectral band i = 1 (�1 = 435 nm) was

omitted because of its low signal-to-noise level.
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Figure 6.21: Surface plots of the projector matrices U and V.

� Sensitivity to Systematic Errors
In Section 4.7.1 on page 84 we have shown the distances in the log space to be invariant
against systematic multiplicative errors. In contrast, they are not invariant against

systematic additive errors (Section 4.7.2). The characteristic dependence of the relative
error on the signal value xi is the same as with the relative quantization error plotted

in Fig. 6.22 on page 161.
Substituting a sensor speci�c mean hPj P

2
iji = 0:777 from Eq. 6.17 into Eq. 4.184

on page 85 we get a relative error of

dti

ti
= d(ln ti) = 78% (6.18)

for the bad case of dco;j � xj where systematic additive error is of approximately the
same magnitude as the input signal.
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6.8.1 Quantization Error

We consider the quantization error as an additive random error independent of the signal

strength. Thus it becomes relatively high for small signals and low for high signals.

The opto-electronic detector element of the sensor yields an ampli�ed continuous

voltage which is rounded into integer values at the analogue-digital-converter. The

round-o� to integer numbers, to the digital counts (DC), produces a maximum error

of �1=2. The root mean square deviation (rms) of the rounded DC from the original

continuous value can be determined as follows: We consider an interval [�1=2 :: 1=2]
and assume the continuous values to be equally distributed within this intervall and

all mapped to the 0 DC gray value. Then the rms deviation � is the square root of

the deviation of a continuous value x from the rounded value 0 integrated over the

considered interval:

� =

sZ �1=2

�1=2
(x� 0)2 dx (6.19)

=

vuut�
1

3
x3
��1=2
�1=2

(6.20)

=

r
1

12
(6.21)

= 0:289 (in units of DC) (6.22)

and �2 = 0:083 : (6.23)

When the raw DC values are calibrated into radiance and re
ectance values (see Sec-
tion 2.1 on page 13) they undergo various multiplications. After these corrections, the

resulting FLOAT-type values are commonly rounded to integer type values again, in
order to save storage and computation costs. Thus the original quantization error of the

AD-converter may well be ampli�ed. Therefore we prefer a conservative estimate of the
quantization error and assume � = 1 instead of the lower bound of � � 0:3 (Eq. 6.22).

For the here suggested operators U;V and P in the logarithmic space, the relative

variance �=xi is of interest. As stated above, it becomes high for small signals xi and
low for high signals. This behaviour is illustrated in Fig. 6.22.
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Figure 6.22: Relative error caused by 8 bit quantization, assuming an additive noise

of 1 DC over a signal of [1..255] DC.

Right: log/log representation.

6.8.2 Magnitude of Color Shift and

Estimation of Required Dynamic Range

Here we want to answer the question what the dynamic range of the sensor has to be to

observe the color shift e�ects. To pose the question in a positive way, how coarse must
the quantization be so that one is not bothered with the color constancy problem ? This
of course means also that spectral signatures from shadowed areas cannot be used due

to their low signal-to-noise ratio.

The gain for an optimal recording will be set such that the mean signal gets half of

the maximal possible number of Digital Counts (DC): hxi = 1
2
DCmax. (For convenience,

the dimensionless unit of DC is dropped in the following equations.)

In order to assess the e�ect of color inconstancy we consider as an example a white

re
ectance under global illumination, a wavelength independent re
ectance spectrum
x = (c ::: c)T with c = 1

2
(Fig. 6.23 on the next page, upper solid line). When this

re
ectance spectrum is illuminated by the skylight spectrum m̂ only, we will observe a

pseudo-re
ectance spectrum x0 with x0 = bmixi (lower solid line) which is color shifted
and no longer `white' (wavelength independent). Now we look for a wavelength indepen-

dent spectrum x00 = (c00 ::: c00)T which has the same log brightness index (see Eq. 4.112

on page 66) as x0:

ûT lnx00 = ûT lnx0 (6.24)

1p
N

X
ln c00 =

1p
N

X
lnx0i (6.25)

N ln c00 =
X

ln(xi bmi) (6.26)

c00 = e
1

N

P
i ln(xi bm bmi) (6.27)

= e
1

N
N ln c � e 1

N

P
i ln bmi (6.28)

= c � e 1

N

P
i ln bmi (6.29)

= 0:114 (6.30)
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Figure 6.23: Brightness and color shift experienced by the spectral signature of a white
surface in the shadow.

for the speci�c DAEDALUS wavelength positions and an assumed relative di�use il-
lumination m̂ / �

�1. We then consider the deviation between the even spectrum x00

(dotted line in Fig. 6.23) and the actual one x0 as the e�ect of the color shift. For a
speci�c band i we have a relative deviation to a white spectrum of

x0i � x00i
x00i

=
mic� c00

c00
(6.31)

=
bmi

e
1

N

P
i ln bmi

� 1 (6.32)

which is actually independent of the absolute intensity c for the re
ectance spectrum x
which we assumed at the beginning. The deviations of x0 from the white spectrum x00

are given in Table 6.7 on page 164 (see \surface cast in shadow, � = 0�"), and have a

mean absolute deviation of � = 0:043. If we want to detect this deviation with a signal

to noise ratio of SNR = 10 where the quantization noise is 1, then the number of coding

bits necessary for this quantization accuracy is

�ld(�) + ld(SNR) = (6.33)

�ld(0:043=10) = 7:87 (6.34)

) 8bit: (6.35)

As the gain setting during recording usually cannot be optimal and pure di�use illu-

mination is the extreme case, we expect the color shifts to be clearly above quantizatioon
noise level only for the �rst and last spectral bands where the e�ect is most accentuated.

The e�ect of the color shift can be su�ently well measured and corrected in all spectral

bands only for sensors with a dynamic range of more than 8 bit.
Three examples were computed to point out the magnitude of the color shift as

experienced by the spectral signature of a tilted surface. For a solar zenith angle of
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Figure 6.24: Brightness and color shift experienced by the spectral signature of a white
surface with tilt � = 45� under a sun of solar zenith angle �� = 45�:
The original white re
ectance spectrum (thin line |, xi = 1:0), the pseudo-re
ectance

spectrum of the tilted surface, (thin line with � symbol), then brightness �ltered

(exp(U lnx), thin line with M symbol), and brightness and color �ltered (exp(P lnx),
thick line with + symbol).

�� = 45�, we again consider a white re
ecting surface with a spectral signature xi = 1:0.

The cosine between solar angle and surface normal, cos(�� � �), is the contribution
factor of the relative direct illumination n, and cos2(�=2) (Eq. 2.16 on page 17) the
contribution factor of the relative di�use illumination m̂. Given the sensor-speci�c

positions of the spectral bands in the electromagnetic wavelength range, we can then
compute the pseudo-re
ectance signal x as received by the sensor from the suface tilted
with � = �45�; 45� and 60�. The original and the �ltered spectral signatures for � = 45�

(surface is normal to the sun) are plotted in Fig. 6.24. The relative deviations of the
original and the �ltered signal are listed in Table 6.7). The spectral �ltering cannot

reduce the color shift completely because the �lter PK=2 = VU represents only K = 2
terms of a Taylor series expansion (Eq. 4.72 on page 60). However, e.g. for the � = 60�

case we expect a remaining deviation from the white re
ectance of only 0.1%, whereas

the original signature is expected to exhibit color and brightness shift e�ects of � 70%,
and the brightness �ltered signature color shift e�ects of � 7%.
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Magnitude of Color Shift

band number i 2 3 4 5 6 7 8 9 10
Wavelength [�m] 0.485 0.560 0.615 0.660 0.723 0.830 0.980 1.650 2.215
illumination ratio
di�use/global m̂ 0.400 0.346 0.315 0.294 0.269 0.234 0.198 0.118 0.088
direct/global n̂ 0.600 0.654 0.685 0.706 0.731 0.766 0.802 0.882 0.912

surface cast in shadow (� = 0�)
deviation from white spectrum [dimensionless pseudo-re
ectance]:
xi � exp(hlnxii) 0.086 0.059 0.044 0.033 0.020 0.003 -0.015 -0.055 -0.070

tilted surface in shadow (� = �45� under sun zenith �� = 45�)
relative deviation from white spectrum [%]:

x -66 -70 -73 -75 -77 -80 -83 -90 -93
exp(U lnx) 76 52 39 29 18 3 -13 -48 -62

exp(VU lnx) -14 -4 2 5 9 12 12 -2 -15

tilted surface (� = 45� under sun zenith �� = 45�)
relative deviation from white spectrum [%]:

x 19 22 24 25 26 28 30 35 37
exp(U lnx) -6 -4 -3 -2 -1 1 2 6 7

exp(VU lnx) -0.2 0.0 0.0 0.1 0.1 0.1 0.1 -0.1 -0.1

tilted surface (� = 60� under sun zenith �� = 45�)
relative deviation from white spectrum [%]:

x 57 63 66 69 71 75 79 87 91
exp(U lnx) -9 -6 -4 -2 -1 1 3 8 10

exp(VU lnx) -0.3 0.0 0.1 0.1 0.2 0.2 0.1 -0.1 -0.2

Table 6.7: Assessment of the brightness and color shift magnitude:

Example of a tilted white re
ecting surface under a solar zenith angle �� = 45�;
in shadow (� = �45�, pure di�use illumination), with tilt � = 45� (normal to the sun),

and with tilt � = 60�.
The spectral values for the original and �ltered signals are computed for the scanner

speci�c wavelengths, with the relative colorshift given in percent. (See also the corre-

sponding plots in Fig. 6.23 and 6.24.)
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6.8.3 Error Weighted Spectral Distances of the Spectral Sam-

ple Pairs

In the previous section we have seen that the quantization error is considerable for small

radiances. Thus, in particular the distances between spectra from dim or shaded areas

are prone to error. We have discussed the proper error propagation in Section 4.6 on

page 80. To account for the quantization error induced uncertainty, an error weighted

spectral distance was developed in Section 4.9.1 on page 89.

As in Table 4.2 on page 92 for simulated data, we have computed the error weighted

spectral distances for real image data (selected sample pairs, Fig. 6.20 on page 153) and

compared them to the unweighted spectral distances. As before, we have tested three

di�erent feature space transformations:

x 7! t = exp(VU lnx) (nonlinear transform) (6.36)

x 7! ln t = VU lnx (nonlinear transform) (6.37)

lnx 7! ln t = VU lnx (linear transform) (6.38)

For the error weighted distances computed according to Eq. 4.216 on page 90 we have
assumed the quantization error as an additive error of �1 DC constant for all spectral
bands. (It seems interesting to note that, provided the quantization error is constant

for all spectral bands, the value of the assumed standard deviation does not in
uence
the error weighted spectral distance because of the division by the trace in Eq. 4.216 on
page 90.)

The results are listed in Table 6.8 on the next page. We observe that the error
weighting improves considerably (by a factor � 68) for the x 7! t mapping, while

making no di�erence for the other two mappings. Moreover we observe, that just for
the error weighted x 7! t mapping, the by far lowest spectral distance ratio is achieved.
We can conclude that:

I The transformation x 7! t is the preferable one.

I It is advisable to use error weighting for computation of the spectral distance.

However, the error weighting requires a full error covariance matrix to be stored for
each image pixel when computing the transformed spectra. The error matrix cannot be
restored from the transformed spectra only. The data required for the error weighting

is thus � N=2 times greater than for the transformed image data itself.3 Therefore, the

error weighting seems too costly with respect to both memory and computation time

for the processing of large images which are common in remote sensing.

3 The transformed spectrum for one pixel consists of N spectral values. The error matrix for each
pixel is an N �N matrix, with only N(N + 1)=2 signi�cant values since the matrix is symmetric.
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Error Weighted Spectral Distance Ratios

ratio transformed
original

distance

x 7! t x 7! ln t lnx 7! ln t

[mean � dev] �10�6

(1) unweighted 23.1 14.5 19135.7

� 9.0 � 4.1 � 4434.3

(2) weighted 0.34 16.5 20476.1

� 0.16 � 4.3 � 5938.2

ratio (1)/(2)

unweighted/weighted 67.8 0.88 0.93

zieg91cor.pairs3

Table 6.8: Error weighted spectral distance ratios compared to unweighted spectral

distance ratios for spectral sample pairs.
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Conclusions

7.1 How Important is the Color Constancy Problem

for Multispectral Remote Sensing?

By far most procedures used in multispectral digital image processing, and particularly

multispectral classi�cation, are based on the explicit or tacid assumption of Lambertian
re
ectance, and are, moreover, assuming the same spectral signature of a certain surface
material regardless of its surface orientation. Both assumptions are similar as they ignore

geometry e�ects, but there is a subtle di�erence between these two aspects:

I The Lambertian assumption means that the orientation of the sensor's line of view
relative to a �xed surface and �xed sun position can change without a�ecting the

measured radiance spectrum. A more accurate model would have to take BRDF
e�ects into account.

I A change in surface orientation or sun position with a �xed sensor position can
exert a change in the received spectrum even if the re
ecting surface satis�es

Lambert's law, because the illumination of the target surface changes with its
orientation.

When only the sensor position changes but target surface orientation and sun position

are �xed, then any change in the received spectrum can only stem from non-Lambertian

BRDF-e�ects. In contrast, when the surface orientation changes, and the sensor and the
sun are �xed, then e�ects in the measured spectrum can stem both from BRDF e�ects

as well as from illumination changes. This thesis is centered around the second aspect,

the surface orientation related change in measured spectra, and assumes Lambertian
re
ection in a weak form (see Section 4.10 on page 93).

There is a widespread awareness of the compromising e�ect of the Lambertian simpli-
�cation on multispectral image processing. A new stage of sophistication would clearly

be to include BRDF modeling. In this work, however, we could show that even with the

Lambertian assumption a varying surface orientation has severe e�ects such as bright-
ness and color shifts, because of the direct and di�use illumination. The e�ect can be up

to 75% in single spectral bands for an exemplary sensor con�guration (see Table 6.7 on
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page 164). Although there are approaches where the illumination spectrum is estimated

for each image pixel, these are rather insu�cient as the surface orientation is known

only to the accuracy of the terrain model (with a typical grid size of > 20 m) and the

di�use illumination is simpli�ed to be isotropic over the sky's hemisphere.

We would like to call the spectral ambiguities introduced by varying sur-
face orientation1 the `Color Constancy Problem in Multispectral Remote
Sensing', since the underlying physical uncertainty is the unknown illumi-
nation spectrum. The problem of recovering a `color' (re
ectance spectrum) or

an invariant from an ambiguous illumination spectrum, however, has a long history in

RGB-based computer vision and theoretical biology as the `Color Constancy Problem'

(see Section 1.2 on page 3 and Section 1.3 on page 7).

This work shows that a certain aspect of the general color constancy
problem, namely the surface orientation ambiguity, is of importance to mul-
tispectral image processing and has been neglected so far. Varying surface
orientations can lead to brightness and color shifts in the spectral signature
as observed under natural outdoor illumination. These brightness and color
shifts may cause erroneous change detection and spurious classi�cation re-
sults (see examples in Section 6.3 on page 122 through Section 6.5). The
existance of the color shift has been clearly shown by this thesis. Compared
with the magnitude of the well known brightness shift it is a second order
e�ect.

With the sun/shadow illumination being just a sub-topic of the color constancy prob-

lem, the problem of the hot spot e�ect is also implicitly addressed by this work. The hot
spot appears on rough surfaces such as vegetation and is induced by the dependance of

the percentage of microshadows on the viewing angle relative to the sun (for a modeling
see e.g. Borel et al. (1991)). It is thus just another e�ect of illumination ambiguity.

While specular re
ection, the most severe BRDF related problem next to the hot

spot e�ect, is usually con�ned to a �nite number of pixels in a given image which can be
identi�ed and masked out, we consider the surface orientation e�ects on the measured
spectra to be much more ubiquitous.

The importance of the surface orientation related color constancy problem rises with
an increasing dynamic range of the radiance detectors. With 8 bit sensors, the analysis

of comparatively brightly or poorly lit pixels fails due to over
ow and insu�cient signal

to noise ratio. With a higher dynamic range, however, analysis of such pixels is possible,
and it is just there that the e�ects of color inconstancy are the most pronounced.

7.2 Which Improvements have been Achieved with

this Work?

We have developed a framework of a dichromatic illumination which describes the il-

lumination as a linear combination of direct sun and di�use sky light. We have shown

that the spectra of a given surface re
ectance lie on two dimensional class planes in the

1 We include both shading and shadowing, where shading denotes the decrease of illumination due
to surface orientation, whereas shadowing means that a surface patch is fully cast in shadow by a
taller neighboring object.
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feature space (Chapter 3). Furthermore, the principal modes of the surface orientation

related variance can be found by a series expansion in the logarithmic feature space.

There, these modes are equal for all Lambertian re
ectance spectra (Chapter 4). Actu-

ally, the Lambertian assumption is a su�cient but not a necessary condition: We can
allow for BRDF-e�ects without endangering the abilities of the suggested
�lter, as long as these BDRF-e�ects are only geometry- but not wavelength-
dependent.2

Based on the analysis in the logarithmic feature space was the design of a mapping,

a linear algebraic projector, which �lters out the modes of surface orientation related

spectral variance, namely the most signi�cant brightness and color shift. The suggested

transform is a mapping which maps each N -dimensional spectrum to a spectral invariant

descriptor with N entries. The mapping operator could be separated into a logarithmic

brightness and a color shift �lter U and V. Due to the logarithmic brightnes shift �lter

U, we can actually relax the Lambertian assumption we started out from: The invariant

can deal with non-Lambertian e�ects as long they are wavelength independent, in other

words, if the BRDF can be factorized into a geometry dependent non-Lambertian and

a wavelength dependent Lambertian function.

In the logarithmic feature space, the discussed transform is a linear mapping, and
thus error propagation can be well understood. The transform has an overall smoothing
e�ect on multiplicative random noise. How well the mapping improves the separability

of two re
ectance spectra which are broadened into clusters by variable surface orien-
tation, depends on the noise level. The analysis of error propagation shows that the

transform is increasingly useful once a certain signal to noise level is surpassed. The
relative quantization accuracy is poor for radiances of only a few digital counts (DC).
Including the accuracy estimation, individually for each spectrum and each spectral

band respectively, leads to an error weighted spectral distance. The computation is
signi�cantly more costly than for the simple spectral distance. The results on simulated

data justi�ed the cost in that cluster separation improved with error weighting.

We have veri�ed the dichromatic illumination by several thousands in situ measured
spectra of a dozen samples of di�erent surface materials (Chapter 5). Our analysis of
the spectral variability with respect to surface orientation suggested that

I the brightness shifts are in the 100%-range (i.e., factor 2),

I the color shifts are in the 5{10%-range,

I the brightness shift �ltering reduces the variability by more than 99%,

I the color shift �ltering reduces the variability by another 40{80%,

I for di�use re
ecting surface material no more than two dimensions need to be

�ltered,

I the choice of the atmospheric parameter 
 needed for the construction of the �lter

projector is not critical (for the limited wavelength range of the sensor).

2 Note however, that some forms of specular re
ection are wavelength independent, in other words
`white', and thus do change the body re
ectance of a non-white surface in a wavelength dependent

fashion.
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We then have applied the suggested transform to experimental multispectral imagery

(Chapter 6). The transformed image data was subjected to three di�erent techniques

in order to assess the merits of the presented invariant: direct comparison of the spec-

tral signatures, supervised and unsupervised multispectral classi�cation, and statistical

evaluation.

Sample pairs of surfaces of identical re
ectance but di�erent orientation were selected

(roof top segments). Other bitemporal spectral sample pairs consist of spectra from

the same surface with identical orientation but varying solar illumination angle. The

respective mutual spectral distances between the two spectra of each pair were evaluated

relative to the overall variance in the various feature spaces. Plots of the two spectra of

each sample pair illustrate the e�ect of the �ltering. The �ltered feature space of the

transformed spectra showed signi�cantly lessened relative spectral distances. This means

that it becomes easier to de�ne a cluster in the feature space which accomodates all the

spectra of a speci�c re
ectance under varying orientation while excluding spectra of other

re
ectance spectra. Of the various tested feature spaces, best results were achieved for

the transformed space (x 7! t = exp(P lnx)). Moreover, the logarithmic brightness

�ltering (x 7! exp(U lnx)) proved to work better than the brightness normalization
(x 7! x=kxk).

Apart from the quantitative analysis, we employed the more intuitive test of multi-
spectral classi�cation of image clips surrounding the sample pairs into binary images.
Ideally, all segments of a surface should be accepted without regard to its orientation,

while rejecting as much as possible of the remaining image clip. The displayed classi-
�cation results show that, �rstly, the transformed data is often more suitable for this

task, and that, secondly, the threshold criticality is lessened in the transformed feature
space.

A third test of the suggested transform was conducted by unsupervised fuzzy clus-

tering in the original and the transformed feature space. An examplary image scene was
classi�ed into two classes. The mutual separation of the two automatically determined
clusters in the feature space was measured relatively to their scatter radii and improved

by about three times. At the same time, contour plots of the principal components
of the feature space showed a much more satisfactory clustering result. Common un-

supervised clustering searches for spherical clusters and is even more improved by the
invariant transform than supervised classi�cation.

Finally, the general noise and error propagation analysis was speci�ed for the used

multispectral sensor. Error weighting improved the results also for real imagery. How-
ever, it is quite costly for image-size spectral data.

The transformed spectral distance, and the error weighted transformed spectral dis-
tance (see Section 4.9 and Section 4.9.1 on page 89) between two designated spectra,

provide a powerful interactive test for a screen analyst to decide if these spectra could

possibly stem from an equal re
ectance where just the surface orientation (or the illu-
mination: sun/shadow) is di�erent.

The invariant transform was implemented in PVWAVE and IDL interpreter lan-

guages. For portability and easy accessibility via a graphical user interface (GUI), the

codes were incorporated in the remote sensing image processing environment ENVI (see

Section 4.4.4 on page 70).



7.3 Original versus Logarithmic Feature Space 171

In summary, we have presented a novel spectral invariant which has little
parameter sensitivity, which is scene-content independent, which is theo-
retically well founded and has a sound experimental validation. It can be
computed pixel-wise at low cost3 (of order O(MN2), i.e., linear with the
number of pixels M and quadratic to the number of spectral bands N).

We do not suggest that the transformed data should completely replace the original

spectral data for all kinds of image processing applications. Too large is the information

content lost by the �ltering process. Rather, we see the suggested transformation as

a useful early preprocessing step, enabling to perform subsequent classi�cation, edge

detection and segmentation in a way which is invariant against surface orientation. The

transformed spectra may be used complementary to the original pseudo-re
ectance spec-

tra in order to decide if spectral discrepancies could be due to varying surface orientation.

We could supply a successful answer to a problem of interaction between observa-

tion geometry and spectral signature, which { just as BRDF-e�ects { has mostly been

neglected so far in common multispectral image processing.

7.3 Original versus Logarithmic Feature Space

Common multispectral image analysis works in the original feature space which is

spanned by the axes of the measured radiances xi in the various spectral bands. As
an alternative, band ratios are sometimes used: Instead of the value xi of band i, the
ratio xi=xi+1 is used (Sabins 1978, Lillesand & Kiefer 1987). This essentially e�ects a

brightness normalization.

For the color constancy problem with respect to surface orientation, we have found
it useful to investigate the logarithmic feature space where the axes are denoting the log-
arithm of the measured radiance values. In the logarithmic feature space, all brightness

shifts are along the unity vector u.4 In Chapter 4 we could show that the logarithmic
space is better suited for the analysis of multiplicative processes, whereas the origi-
nal space is more suitable for additive mechanisms (Section 4.1 on page 48 through

Section 4.3 on page 59). The nature of some important processes to be considered in
remote sensing image formation is listed in Table 7.1 on the following page.

Unsupervised classi�cation, such as hard or fuzzy k-means clustering, will not be

a�ected by a systematic additive o�set which merely exerts a uniform shift on all the

clusters in the feature space. In contrast, a systematic multiplicative factor will change

the form of the clusters depending on their position in the feature space. In the loga-

rithmic feature space, the e�ects are vice versa: a simple una�ecting shift caused by a

multiplicative factor, and change of cluster shapes by an additive o�set.

The ideally unique spectral signature of a class is `broadened' into a distributed
cluster in the feature space by various non-systematic additive and multiplicative mech-

anisms. But the fundamental physical principle of passive remote sensing is the re
ec-

3 For comparison, the widely used Maximum Likelihood classi�cation has the same computation cost
of order O(MN2) for each spectral class.

4 A certain drawback with respect to the computational point of view may be that for the logarithmic
space FLOAT values will be prefered instead of INTEGERs, causing higher memory and processing
costs. Considering error propagation, the errors of the log values become high for low original
radiance values (Fig. 6.22 on page 161).
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additive:

� path radiance

� stray radiance from adjacent surfaces

� specular re
ection

� AD-converter quantization accuracy

� sensor dark current and ampli�er o�-

set

multiplicative:

� atmospheric transmittance

� re
ection

� illumination changes

� detector noise which is scaled up by

the sensor ampli�ers

� sensor ampli�er gain factor

Table 7.1: Some additive and multiplicative processes which are important in multi-

spectral remote sensing.

tion of the illumination at the target surface, in other words, the spectral band-wise
multiplication of the illumination spectrum with the re
ectance spectrum. This multi-
plication makes up for the typical feature space appearance of `rays' towards the origin

which are caused by spectra of equal re
ectance under varying illumination intensity.
The advantage of the logarithmic feature space is that here all these rays are running
parallel rather than radial as in the original space (see Fig. 4.2 on page 58). Also the

cluster broadening caused by varying direct and di�use illumination contributions is a
multiplicative mechanism.

When accepting the postulate that cluster broadening stems mainly from
changes in illumination and is thus a multiplicative process, then the logarith-
mic feature space clearly is the choice for performing multispectral analysis.

7.4 Lessons Learned

During this work we had to acknowledge a number of aspects which limited the perfor-

mance of the suggested transform and its analysis. Even though some of the topics we
name below are trivial, they pose some severe constraints which cannot be dismissed.

I Stray radiance from adjacent pixels (adjacency e�ect) and path radiance are super-

imposed on the true re
ected signal. In contrast to atmospheric transmissivity or
sensor gain calibration, these additive components compromise the analysis of the

color constancy problem as related to surface orientation. Although the adjacent

radiance and path radiance have been corrected for (see Section 6.2 on page 117),

the analysis results can only be as good as the prior calibration and atmospheric

correction.

I The 8 bit dynamic range of the multispectral image sensor used here is coarse

for our purposes. In principle, our suggested invariant transform makes surfaces
exposed to full sun light and surfaces cast in complete shadow equally classi�-

able. In practice, however, under- and over
ows at either end of the [0..255] DC
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range occur frequently, and the signal-to-noise ratio for shadowed surfaces at a

quantization accuracy of 1 DC is approaching 1 (see Fig. 6.22 on page 161).

I For multispectral data of N = 10 spectral bands, say, the �ltering of K = 2

components does not seem to present a severe loss of information. However, the

dimension which is truely inherent in the multispectral image data is signi�cantly

smaller since the spectral data is highly correlated. E.g. in a typical image scene

(Fig. 6.1 on page 119), the �rst two principal components account for as much as

93% of the total variance. Brightness �ltering removes 76% of the overall variance,

and color shift �ltering another 8%.

By appraisal of the feature space plots of experimental imagery after brightness

and color shift �ltering (Fig. 6.17 on page 146), we actually observe only vegetation

and non-vegetation as clearly perceivable clusters. When these are isolated as a

�rst principal component, the remaining components apparently form a unimodal

almost Gaussian distributed feature space density bare of salient clusters.

I The �ltering approach which has been developed for the dichromatic illumination
model (two light sources: sun and sky) can easily be generalized to an invariant

against varying illumination contributions fromK light sources (K > 2). However,
as pointed out previously, with an increasing number of �ltered components K the
�ltering will reduce the inherent dimensionality of the N -dimensional spectral data

and eventually grate o� its usefulness for classi�cation at all.

I In our analysis of the usefulness of the suggested invariant for multispectral image
classi�cation we would have liked to employ unsupervised classi�cation in order to

establish a most impartial quality assessment not relying on the human analyst.
However, there exists no general paradigm for image segmentation. We can show
hand selected examples of what the invariant achieves and its limitations, but

there is no general way of judging whether a segmentation of a given image is
`better' after application of the transform or not.

7.5 Outlook

Throughout this thesis we have investigated the properties of an invariant which is
achieved by �ltering out the variable components related to surface orientation. This

spectral invariant can be achieved only in the logarithmic feature space, and only ap-

proximatively (to Kth order), as discussed in Chapter 4. If we drop for once the pursuit

of a rigorous spectral invariant, there are other approaches which appear to be promis-
ing. Even though the investigation of these is beyond the scope of this thesis, we would

like to sketch brief descriptions of two approaches which seem worthwhile to follow up
on.

� Alternative Spectral Distance with a Modi�ed Loss Function
The invariance has been achieved by �ltering out the variable components related to

surface orientation. An obvious question is whether this approach might be too rigorous
in that it might �lter out too much spectral information as well. If we give up the

objective of an invariant, we may instead develop a modi�ed spectral distance. A more
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gentle approach than the rigorous �ltering would be to de�ne a spectral distance measure

which does not ignore distances in the direction of the surface orientation related variance

completely but rather applies a di�erent weighting to those in contrast to distances in

other directions in the feature space. Generally, the spectral distance is connected to

the notion of a `loss function' f(di) of the signed distance di in a certain band i.

E.g. for the common Euclidean distance,loss function

-4 -3 -2 -1 0 1 2 3 4
signed distance

0

2

4

6

8

Figure 7.1: Alternative loss function

each signed distance di in a spectral band

i is `punished' by the quadratic loss func-

tion f(di) = d2i (see dashed line in Fig. 7.1).

Then the overall spectral unsigned dis-

tance is summed up from all squares

dTd =
X
i

d2i =
X
i

f(di)

(see Eq. 2.25 on page 23). Alternatively,

for distances in the directions related to
surface orientation, one might think of a

loss function f 0 which starts to `punish'
only after a certain threshold is surpassed (see solid line in Fig. 7.1). The underlying

reasoning would be that small deviations in the particular directions of brightness and
color shifts can be caused by variation in surface orientation rather than in re
ectance,
and that consequently they should not be taken into account for the spectral distance

unless the deviation is so strong that it cannot possibly be explained by varying surface
orientation. Physically meaningful thresholds can be derived from the brightness and

color shift which is experienced by a surface cast in complete shadow, i.e., with di�use
illumination only.

The computation of a such modi�ed spectral distance could be realized by �rst

computing the Euclidean distance in the invariant spaceX
i

f([exp(P lnd)]i) = k exp(P lnd)k2;

and then adding proper loss function values

f 0(ûTd) and f 00(v̂Td)

of the brightness and color indices ûTd and v̂Td (see Eq. 4.28 on page 52 and Eq. 4.101

on page 65).
In this way one could conceive a spectral distance measure which is insensitive to

changes in surface orientation but still sensitive to spectral deviations which are so large
that a real change in surface re
ectance has to be assumed.

� Surface Orientation Invariant Classi�cation in the Original Feature Space
Our analysis in Chapter 3 has shown that planar spectral classes are spanned in the

original feature space by the dichromatic illumination. The disadvantage compared to
the logarithmic space is that the plane spanning vectors are re
ectance dependent and

thus class speci�c. The advantage, however, is that the classes are true planes and not

only local series expansions as in the logarithmic space. Moreover, in the original space
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no memory cost increase with logarithmization (which requires FLOAT type storage) is

encountered. As developed in Chapter 3, supervised classi�cation similar to Maximum

Likelihood classi�cation, but surface orientation invariant, is possible. Moreover, with

given class centers, meaningful thresholds to the extent of brightness and color shifts

can be applied.

The theory has been applied to some experimental data by Wiemker (1995c). Test

results on color constant classi�cation of multispectral imagery in the original feature

space remain to be worked out yet.





Appendix A

Analysis of the Spectral Variability

due to Surface Orientation

A.1 The Pseudo-Inverse

The pseudo-inverse is also called Moore-Penrose Inverse or Generalized Inverse (Al-
bert 1972, H�ammerlin & Ho�mann 1994). It essentially allows to invert matrices which

are not quadratic or singular and thus cannot be inverted in the strict sense.

It can be shown that for each m � n matrix A there exists a unique pseudo-inverse

A+ which is an n�m matrix. Its properties are

AA+A = A (A.1)

A+AA+ = A+ (A.2)

AA+ = (AA+)T (A.3)

A+A = (A+A)T (A.4)

A+A = I ; with I the n� n idendity matrix. (A.5)

AA+ is the called the orthogonal projection (see Appendix A.2 on page 179) of the Rm

onto the image of A, whereas A+A is the orthogonal projection of the Rn onto the

orthogonal complement of the kernel of A. (The image of a matrix A is the set of all

vectors Ax produced by the mapping x 7! Ax; the kernel of a matrix A is the set of
all vectors x which are mapped to x 7! Ax = 0 (Fischer 1984).)

In particular, an over-determined system of linear equations (adjustment problem)

Ax
!� b (A.6)

with an m� n matrix A and m > n, has the least square solution

x = A+b (A.7)



178 A Analysis of the Spectral Variability due to Surface Orientation

in the sense that

kAx� bk2 = (Ax� b)T(Ax� b) = min : (A.8)

From the singular value decomposition A = UDVT with the m�m diagonal matrix D,

the pseudo-inverse of A can be derived as

A+ = VD+UT (A.9)

where D+ can be derived from D simply by inverting all diagonal elements which are

non-zero and leaving all other matrix elements unchanged. Algorithmically, the singular

value decomposition is computed by a series of Householder re
ections. The operation

is provided by most mathematical software packages (here PVWAVE was employed).
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A.2 Orthogonal Projections

We follow the introduction of orthogonal projections as given in Kohonen (1977) and

Kohonen (1995) :

If L is a subspace of RN , then an arbitrary vector x 2 RN can be uniquely decomposed

into the sum of two vectors of which one, xk, belongs to L and the other, x?, is orthogonal
to it:

x = xk + x? ; where xk 2 L and x? ? L : (A.10)

Furthermore, the Projection Theorem then states:

Of all decompositions of the form x = x0 + x00 , where x0 2 L, the one into orthogonal

projections has the property that kx00k is minimum.

Orthogonal projections in three-dimensional space can be visualized as in Fig. A.1.

The decomposition of an arbitrary vector x into its orthogonal projections xk 2 L and

x? 2 L? can always be expressed in terms of linear transformations, whereby there
always exists a symmetric projector matrix P such that xk = Px and x? = (I�P)x.

The projection results into two orthogonal spaces L and L?. Two vector spaces are
called orthogonal, if every vector of the �rst space L is orthogonal to every vector of the

other space L?. With the orthogonal projection, the set of vectors xk are elements of
L, and the set of vectors x? form the orthogonal complement L? of L.

x

x

||

x

L

Figure A.1: Illustration of an orthogonal projection in R3
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A.3 Retrieval of the Re
ectance Spectrum from the

Class Plane

Given a set X of observations x of the same surface under varying illuminations, we

�rst compute the covariance matrix �(X). We then extract the two most signi�cant

eigenvectors a1 and a2 of � and stack them as as column vectors in A = [a1; a2]. The
matrix A characterizes the class plane (Eq. 3.11 on page 40). Furthermore we need the

illumination plane E = [n;m] (Eq. 3.5 on page 39), formed by the two vectors n and m
or linear combinations thereof (e.g. extracted as principal components of the observed

class plane of a white re
ectance standard).

Then it is possible to express the product of the unknown re
ectance vector r̂ with the
known illumination vectors n andm as linear combinations of the observed eigenvectors

a1 and a2:

r̂ini = c1ai1 + c2ai2 (A.11)

r̂imi = c01ai1 + c02ai2 (A.12)

This relation holds since the spectra resulting from re
ection of direct and di�use illu-

mination should each be in the class plane A.
After multiplication of Eq. A.11 and A.12 with mi and ni respectively we can demand

equality of the two equations:

r̂inimi = (c1ai1 + c2ai2)mi
!
= (c01ai1 + c02ai2)ni : (A.13)

In practise, due to noise this will not be the case simultaneously for all N equations.
Therefore, in matrix/vector notation, we rather need to look for the smallest possible

deviation of both sides of the N equations:2
64

...
...

ai1mi ai2mi

...
...

3
75
�
c1
c2

�
!
=

2
64

...
...

ai1ni ai2ni
...

...

3
75
�
c01
c02

�
(A.14)
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where minimal deviation in the least squares sense is de�ned as

kBck2 !
= min (A.17)

with B =

2
64

...
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ai1mi ai2mi ai1ni ai2ni
...

...
...

...

3
75 (A.18)
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and with a coe�cient vector c = [c1; c2; c3; c4]
T 2 R4 , and c3 = c01 and c4 = c02. Obviously

this expression has a trivial solution c = 0, and another non-trivial zero solution only

if detB = 0 , i.e., the planes are undistinguishable. Following a common method of

linear algebra (Harris 1975), we exclude the trivial solution by constraining c to a non-
vanishing magnitude kck2 = cTc = 1. In the formalism of Lagrange multipliers, the

constraint is formulated as (1� cTc) !
= 0. Then the minimization problem is solved in

presence of the constraint by virtue of the constrained extremal condition:

cTBTBc+ �(1� cTc) !
= min (A.19)

with a Lagrange multiplier �. Now we demand a vanishing partial derivation:

@

@c

�
cTBTBc+ �(1� cTc)

�
!
= 0 (A.20)

) BTBc� �c
!
= 0 (A.21)�

BTB� �I
� !
= 0 (A.22)

which is the eigenvalue equation for the 4 � 4 matrix BTB. Provided a perfect �t,
the smallest eigenvalue is ideally 0. We take the eigenvector emin corresponding to the

smallest eigenvalue in order to get two estimations r̂ � r̂0:

r̂i =

��
Bi1Bi2

� �c1
c2

��
=(nimi) and r̂0i =

��
Bi3Bi4

� �c3
c4

��
=(nimi) (A.23)

The �tted re
ectance is then found as the mean of the estimations �̂r = 1
2
(r̂ + r̂0).

Moreover, the goodness of the �t can be assessed by the condition of the matrix BTB.
The condition of a matrix is de�ned as the ratio of the largest eigenvalue over to the
smallest non-vanishing eigenvalue (H�ammerlin & Ho�mann 1994).

In principle, only two observations x and x0 of the same surface under di�erent
orientation are su�cient to determine a two-plane in the feature space and thus to

retrieve the normalized re
ectance spectrum r̂. To this aim the two observations x and
x0 are substituted as the column vectors of the class plane spanning matrix A. Note
however, that not any two observations x and x0 will allow a satisfying �t of r; in order

to de�ne a two-plane they must be linearly independent. The goodness of the linear

independence can again be tested by the condition of matrix A.
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A.4 Minimal Distance Between Two Class Planes

Misclassi�cation of an observed spectrum x into class a instead of a0 can happen because
of noise. An erroneous classi�cation is the more likely the smaller the distance between

the class planes A and A0 is. In order to evaluate the probability of correct or erroneous

classi�cation we want to know the minimal distance of any spectrum from class a (in

plane A) to a spectrum of another class a0 (in plane A0), and vice versa, in absence of

noise. To this aim we stack the column vectors of A and A0 into a N � 4 matrix

D =

2
64

...
...

...
...

Ai1 Ai2 A0
i1 A0

i2
...

...
...

...

3
75 : (A.24)

Demanding the least possible distance between A and A0 means no less but demanding

that four coe�cients c = [c1; c2; c3; c4]
T yield a linear combination of the four column

vectors in Eq. A.24 which add up to a vector of minimal magnitude (compare Eq. A.14

through Eq. A.16 on page 180).

d2 = kDck2 !
= min (A.25)

cTDTDc
!
= min (A.26)

with a coe�cient vector c = [c1; c2; c3; c4]
T. Obviously this expression has a trivial

solution c = 0, and another non-trivial zero solution only if detD = 0 , i.e., the planes
are undistinguishable. Following acommon method of linear algebra (Harris 1975), we

exclude the trivial solution by constraining c to a non-vanishing magnitude kck2 =
cTc = 1. Thus we formulate the constrained extremal condition

cTDTDc+ �(1� cTc) !
= min (A.27)

where � is a Lagrange multiplier. Then we demand a vanishing partial derivative:

@

@c
) DTDc� �c

!
= 0 (A.28)

(DTD� �I) c
!
= 0 (A.29)

which is the eigenvalue equation for the 4�4 matrix DTD. If there are points which are

common to both planes spanned by A and A0, then the four column vectors (Eq. A.24)
cannot be linearly independent and the smallest eigenvalue ofDTD will vanish. For very

`similar' class planes the smallest eigenvalue will not vanish but will be be `relatively
small'. This can be evaluated by virtue of the condition of the matrix DTD which is

de�ned as the ratio of the largest eigenvalue over to the smallest non-vanishing eigenvalue
(H�ammerlin & Ho�mann 1994). We can conclude that the smallest eigenvalue of DTD
will vanish if the class planes are indistinguishable, and that the higher the condition

of the symmetric matrix DTD is, the more the class planes are separated in the feature

space and the less likely is a misclassi�cation between the classes.
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A.5 Retrieval of the Path Radiance Spectrum from

Two Class Planes

All class planes intersect at the origin, i.e., at vanishing illumination, provided the path

radiance was properly subtracted beforehand. Vice versa, if the planes do not intersect

at the origin, we can assess any residual path radiance from the point of intersection of

at least two given class centers ma and ma0 and their respective plane spanning vectors

in A and A0. Their point of intersection then is the one of highest proximity:

d2 = kDc+ dk2 = min (A.30)

whereD and c are as in (A.24) and d =ma�ma0. This adjustment problem is according

to Appendix A.1 on page 177 solved by

cmin = D+d (A.31)

where D+ is the pseudo-inverse of D, and cmin = (c1; c2; c3; c4)
T. So we have two

approximations to the true origin, i.e., the vector of path radiances:

o =ma +A

�
c1
c2

�
and o0 =ma0 �A0

�
c3
c4

�
(A.32)

and may take the centroid �o = 1
2
(o � o0) between the two proxima as the estimated

point of intersection. The coordinates of this intersection point then represents the path

radiances in all spectral bands.
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B.1 Illumination Variability Eigenvectors
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Figure B.1: Mean logarithmic spectrum hlnxi and illumination eigenvectors of the

covariance matrix of the logarithmic spectra observed under arbitrary angles.

(The samples are denoted by the ordinate titles and speci�ed in Table 5.2 on page 107.)
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Figure B.1 (cont'd): Mean logarithmic spectrum hlnxi and illumination eigenvectors

of the covariance matrix of the logarithmic spectra observed under arbitrary angles.

(The samples are denoted by the ordinate titles and speci�ed in Table 5.2 on page 107.)
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Figure B.1 (cont'd): Mean logarithmic spectrum hlnxi and illumination eigenvectors

of the covariance matrix of the logarithmic spectra observed under arbitrary angles.

(The samples are denoted by the ordinate titles and speci�ed in Table 5.2 on page 107.)
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Figure B.1 (cont'd): Mean logarithmic spectrum hlnxi and illumination eigenvectors

of the covariance matrix of the logarithmic spectra observed under arbitrary angles.

(The samples are denoted by the ordinate titles and speci�ed in Table 5.2 on page 107.)
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Figure B.1 (cont'd): Mean logarithmic spectrum hlnxi and illumination eigenvectors

of the covariance matrix of the logarithmic spectra observed under arbitrary angles.

(The samples are denoted by the ordinate titles and speci�ed in Table 5.2 on page 107.)
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Figure B.1 (cont'd): Mean logarithmic spectrum hlnxi and illumination eigenvectors

of the covariance matrix of the logarithmic spectra observed under arbitrary angles.

(The samples are denoted by the ordinate titles and speci�ed in Table 5.2 on page 107.)
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Figure B.1 (cont'd): Mean logarithmic spectrum hlnxi and illumination eigenvectors

of the covariance matrix of the logarithmic spectra observed under arbitrary angles.

(The samples are denoted by the ordinate titles and speci�ed in Table 5.2 on page 107.)
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Figure B.1 (cont'd): Mean logarithmic spectrum hlnxi and illumination eigenvectors

of the covariance matrix of the logarithmic spectra observed under arbitrary angles.

(The samples are denoted by the ordinate titles and speci�ed in Table 5.2 on page 107.)
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Figure B.1 (cont'd): Mean logarithmic spectrum hlnxi and illumination eigenvectors

of the covariance matrix of the logarithmic spectra observed under arbitrary angles.

(The samples are denoted by the ordinate titles and speci�ed in Table 5.2 on page 107.)
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Figure B.1 (cont'd): Mean logarithmic spectrum hlnxi and illumination eigenvectors

of the covariance matrix of the logarithmic spectra observed under arbitrary angles.

(The samples are denoted by the ordinate titles and speci�ed in Table 5.2 on page 107.)
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Figure B.1 (cont'd): Mean logarithmic spectrum hlnxi and illumination eigenvectors

of the covariance matrix of the logarithmic spectra observed under arbitrary angles.

(The samples are denoted by the ordinate titles and speci�ed in Table 5.2 on page 107.)
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Figure B.1 (cont'd): Mean logarithmic spectrum hlnxi and illumination eigenvectors

of the covariance matrix of the logarithmic spectra observed under arbitrary angles.

(The samples are denoted by the ordinate titles and speci�ed in Table 5.2 on page 107.)
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Figure B.2: Principal Component Analysis of the residual variance after brightness

and color �ltering (�lter rank K = 2).
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Figure B.2 (cont'd): Principal component analysis of the residual variance after

brightness and color �ltering (�lter rank K = 2).
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Figure B.2 (cont'd): Principal component analysis of the residual variance after

brightness and color �ltering (�lter rank K = 2).
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Figure B.2 (cont'd): Principal component analysis of the residual variance after

brightness and color �ltering (�lter rank K = 2).
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C.1 Sample Pairs from Scene `Gewerbegebiet 1992'

measured spectra x

0.0 0.5 1.0 1.5 2.0 2.5
wavelength [micrometer]

0

20

40

re
fle

ct
an

ce
 [%

]

x / IxI

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

no
rm

al
iz

ed
 s

ca
le

residual x / IxI       11%

0.0 0.5 1.0 1.5 2.0 2.5
-0.4

-0.2

0.0

0.2

0.4

exp(U ln x)

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

tr
an

sf
or

m
ed

 s
ca

le

residual exp(U ln x)       10%

0.0 0.5 1.0 1.5 2.0 2.5
-1.0

-0.5

0.0

0.5

1.0

exp(V U ln x)

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

tr
an

sf
or

m
ed

 s
ca

le

residual exp(V U ln x)        1%

0.0 0.5 1.0 1.5 2.0 2.5
-1.0

-0.5

0.0

0.5

1.0

gew92cor.pairs1 / 1

( 388, 483)

Figure C.1: Spectral sample pair from scene `Gewerbegebiet 1992' (Fig. 6.2 on

page 120).
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Figure C.1 (cont'd): Spectral sample pair from scene `Gewerbegebiet 1992' (Fig. 6.2

on page 120).
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Figure C.1 (cont'd): Spectral sample pair from scene `Gewerbegebiet 1992' (Fig. 6.2

on page 120).
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Figure C.1 (cont'd): Spectral sample pair from scene `Gewerbegebiet 1992' (Fig. 6.2

on page 120).
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Figure C.1 (cont'd): Spectral sample pair from scene `Gewerbegebiet 1992' (Fig. 6.2

on page 120).
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Figure C.1 (cont'd): Spectral sample pair from scene `Gewerbegebiet 1992' (Fig. 6.2

on page 120).
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Figure C.1 (cont'd): Spectral sample pair from scene `Gewerbegebiet 1992' (Fig. 6.2

on page 120).
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Figure C.1 (cont'd): Spectral sample pair from scene `Gewerbegebiet 1992' (Fig. 6.2

on page 120).
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Figure C.1 (cont'd): Spectral sample pair from scene `Gewerbegebiet 1992' (Fig. 6.2

on page 120).



C.1 Sample Pairs from Scene `Gewerbegebiet 1992' 213

measured spectra x

0.0 0.5 1.0 1.5 2.0 2.5
wavelength [micrometer]

0

5

10

15

20

25

30

re
fle

ct
an

ce
 [%

]

x / IxI

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

no
rm

al
iz

ed
 s

ca
le

residual x / IxI       15%

0.0 0.5 1.0 1.5 2.0 2.5
-0.4

-0.2

0.0

0.2

0.4

exp(U ln x)

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

tr
an

sf
or

m
ed

 s
ca

le

residual exp(U ln x)       17%

0.0 0.5 1.0 1.5 2.0 2.5
-1.0

-0.5

0.0

0.5

1.0

exp(V U ln x)

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

tr
an

sf
or

m
ed

 s
ca

le

residual exp(V U ln x)        9%

0.0 0.5 1.0 1.5 2.0 2.5
-1.0

-0.5

0.0

0.5

1.0

gew92cor.pairs1 / 12

( 649, 204)

Figure C.1 (cont'd): Spectral sample pair from scene `Gewerbegebiet 1992' (Fig. 6.2

on page 120).
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C.2 Statistical Evaluation of Samples from Scene

`Gewerbegebiet 1992'

Figure C.2: Selected samples of surface pairs with varying orientation (from scene

`Gewerbegebiet 1992').
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Separability in Different Feature Spaces

x x=kxk lnx U lnx VU lnx eU lnx eVU lnx

q
dT�

�1
d= rk� 0.894 0.740 0.556 0.514 0.378 0.491 0.296

� 0.172 � 0.124 � 0.109 � 0.096 � 0.088 � 0.093 � 0.070

q
dTd= tr� 0.901 0.537 0.860 0.412 0.215 0.296 0.144

� 0.172 � 0.101 � 0.226 � 0.081 � 0.049 � 0.058 � 0.035

rescaled 1.011 0.576 0.852 0.455 0.250 0.481 0.241

� 0.192 � 0.110 � 0.224 � 0.090 � 0.058 � 0.097 � 0.055

PCT, rank H = 1 0.894 0.106 0.974 0.157 0.145 0.047 0.096

� 0.182 � 0.019 � 0.266 � 0.035 � 0.031 � 0.008 � 0.027

2 0.843 0.808 0.701 0.640 0.301 0.575 0.117

� 0.164 � 0.161 � 0.187 � 0.131 � 0.124 � 0.118 � 0.039

3 1.017 0.767 0.707 0.563 0.293 0.501 0.178

� 0.193 � 0.154 � 0.160 � 0.125 � 0.114 � 0.102 � 0.065

4 0.925 0.851 0.633 0.559 0.352 0.505 0.310

� 0.170 � 0.164 � 0.147 � 0.131 � 0.103 � 0.100 � 0.089

5 0.911 0.832 0.611 0.554 0.385 0.527 0.328

� 0.166 � 0.141 � 0.145 � 0.117 � 0.094 � 0.102 � 0.081

6 0.997 0.791 0.603 0.548 0.368 0.509 0.312

� 0.203 � 0.133 � 0.130 � 0.106 � 0.085 � 0.093 � 0.075

7 0.954 0.809 0.592 0.519 0.378 0.497 0.301

� 0.193 � 0.142 � 0.120 � 0.097 � 0.088 � 0.090 � 0.071

8 0.923 0.765 0.564 0.514 0.378 0.509 0.296

� 0.186 � 0.132 � 0.111 � 0.096 � 0.088 � 0.097 � 0.068

9 0.894 0.740 0.556 0.514 0.378 0.491 0.296

� 0.172 � 0.124 � 0.109 � 0.096 � 0.088 � 0.093 � 0.070

gew92cor.pairs1

Table C.1: Spectral distances (mean � deviation) of the sample pairs (from scene

`Gewerbegebiet 1992') in 7 basic feature spaces, and after additional rescaling and prin-

cipal component transformation (PCT).
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Separability w.r.t. Filter Rank

lnx PK lnx ; K =

0 1 2 3 4 5

q
dT�

�1
d= rk� 0.556 0.514 0.378 0.321 0.309 0.275

� 0.109 � 0.096 � 0.088 � 0.071 � 0.077 � 0.085

q
dTd= tr� 0.860 0.412 0.215 0.196 0.196 0.175

� 0.226 � 0.081 � 0.049 � 0.052 � 0.048 � 0.053

gew92cor.pairs1

Table C.2: Spectral distances (mean � deviation) of the sample pairs (from scene

`Gewerbegebiet 1992') in 6 feature spaces of varying rank rk� = N �K: The log space

lnx (for P0 = I, i.e., no �ltering), and the �ltered spaces PK lnx, particularly P1 = U
and P2 = VU.



C.3 Sample Pairs from Scene `Ziegelstein 1991' 217

C.3 Sample Pairs from Scene `Ziegelstein 1991'
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Figure C.3: Spectral sample pair from scene `Ziegelstein 1991' (Fig. 6.1 on page 119).
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Figure C.3 (cont'd): Spectral sample pair from scene `Ziegelstein 1991' (Fig. 6.1 on

page 119).
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Figure C.3 (cont'd): Spectral sample pair from scene `Ziegelstein 1991' (Fig. 6.1 on

page 119).
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Figure C.3 (cont'd): Spectral sample pair from scene `Ziegelstein 1991' (Fig. 6.1 on

page 119).
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Figure C.3 (cont'd): Spectral sample pair from scene `Ziegelstein 1991' (Fig. 6.1 on

page 119).
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Figure C.3 (cont'd): Spectral sample pair from scene `Ziegelstein 1991' (Fig. 6.1 on

page 119).
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Figure C.3 (cont'd): Spectral sample pair from scene `Ziegelstein 1991' (Fig. 6.1 on

page 119).
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Figure C.3 (cont'd): Spectral sample pair from scene `Ziegelstein 1991' (Fig. 6.1 on

page 119).
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Figure C.3 (cont'd): Spectral sample pair from scene `Ziegelstein 1991' (Fig. 6.1 on

page 119).
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Figure C.3 (cont'd): Spectral sample pair from scene `Ziegelstein 1991' (Fig. 6.1 on

page 119).
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Figure C.3 (cont'd): Spectral sample pair from scene `Ziegelstein 1991' (Fig. 6.1 on

page 119).
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Figure C.3 (cont'd): Spectral sample pair from scene `Ziegelstein 1991' (Fig. 6.1 on

page 119).
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Figure C.3 (cont'd): Spectral sample pair from scene `Ziegelstein 1991' (Fig. 6.1 on

page 119).
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Figure C.3 (cont'd): Spectral sample pair from scene `Ziegelstein 1991' (Fig. 6.1 on

page 119).
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Figure C.3 (cont'd): Spectral sample pair from scene `Ziegelstein 1991' (Fig. 6.1 on

page 119).
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Figure C.3 (cont'd): Spectral sample pair from scene `Ziegelstein 1991' (Fig. 6.1 on

page 119).
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Figure C.3 (cont'd): Spectral sample pair from scene `Ziegelstein 1991' (Fig. 6.1 on

page 119).
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Figure C.3 (cont'd): Spectral sample pair from scene `Ziegelstein 1991' (Fig. 6.1 on

page 119).
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C.4 Multispectral Classi�cation of Samples

zieg91cor.pairs3 / 0 ( 476, 457)
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Figure C.4: Multispectral classi�cation into binary class images in various feature

spaces. The threshold is always �xed such that the designated pixels (top left) are just

falling into the class. (Scene `Ziegelstein 1991')

White: belongs to class; black: belongs not to class.
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zieg91cor.pairs3 / 3 ( 456, 337)

image clip x tol=1

x (MaxLike) tol=1

x/|x| tol=1

x/|x| tol=2

exp(VU ln x) tol=1

exp(VU ln x) tol=2

zieg91cor.pairs3 / 4 ( 451, 304)

image clip x tol=1

x (MaxLike) tol=1

x/|x| tol=1

x/|x| tol=2

exp(VU ln x) tol=1

exp(VU ln x) tol=2

zieg91cor.pairs3 / 5 ( 281, 119)

image clip x tol=1

x (MaxLike) tol=1

x/|x| tol=1

x/|x| tol=2

exp(VU ln x) tol=1

exp(VU ln x) tol=2

Figure C.4 (cont'd): Multispectral classi�cation into binary class images in various

feature spaces. The threshold is always �xed such that the designated pixels (top left)

are just falling into the class. (Scene `Ziegelstein 1991')

White: belongs to class; black: belongs not to class.



238 C Multispectral Imagery

zieg91cor.pairs3 / 6 ( 272, 142)

image clip x tol=1

x (MaxLike) tol=1

x/|x| tol=1

x/|x| tol=2

exp(VU ln x) tol=1

exp(VU ln x) tol=2

zieg91cor.pairs3 / 7 ( 624, 124)

image clip x tol=1

x (MaxLike) tol=1

x/|x| tol=1

x/|x| tol=2

exp(VU ln x) tol=1

exp(VU ln x) tol=2

zieg91cor.pairs3 / 8 ( 420, 633)

image clip x tol=1

x (MaxLike) tol=1

x/|x| tol=1

x/|x| tol=2

exp(VU ln x) tol=1

exp(VU ln x) tol=2

Figure C.4 (cont'd): Multispectral classi�cation into binary class images in various

feature spaces. The threshold is always �xed such that the designated pixels (top left)

are just falling into the class. (Scene `Ziegelstein 1991')

White: belongs to class; black: belongs not to class.
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zieg91cor.pairs3 / 9 ( 427, 642)

image clip x tol=1

x (MaxLike) tol=1

x/|x| tol=1

x/|x| tol=2

exp(VU ln x) tol=1

exp(VU ln x) tol=2

zieg91cor.pairs3 / 10 ( 331, 575)

image clip x tol=1

x (MaxLike) tol=1

x/|x| tol=1

x/|x| tol=2

exp(VU ln x) tol=1

exp(VU ln x) tol=2

zieg91cor.pairs3 / 11 ( 316, 611)

image clip x tol=1

x (MaxLike) tol=1

x/|x| tol=1

x/|x| tol=2

exp(VU ln x) tol=1

exp(VU ln x) tol=2

Figure C.4 (cont'd): Multispectral classi�cation into binary class images in various

feature spaces. The threshold is always �xed such that the designated pixels (top left)

are just falling into the class. (Scene `Ziegelstein 1991')

White: belongs to class; black: belongs not to class.
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zieg91cor.pairs3 / 13 ( 250, 384)

image clip x tol=1

x (MaxLike) tol=1

x/|x| tol=1

x/|x| tol=2

exp(VU ln x) tol=1

exp(VU ln x) tol=2

zieg91cor.pairs3 / 14 ( 263, 362)

image clip x tol=1

x (MaxLike) tol=1

x/|x| tol=1

x/|x| tol=2

exp(VU ln x) tol=1

exp(VU ln x) tol=2

zieg91cor.pairs3 / 15 ( 313, 352)

image clip x tol=1

x (MaxLike) tol=1

x/|x| tol=1

x/|x| tol=2

exp(VU ln x) tol=1

exp(VU ln x) tol=2

Figure C.4 (cont'd): Multispectral classi�cation into binary class images in various

feature spaces. The threshold is always �xed such that the designated pixels (top left)

are just falling into the class. (Scene `Ziegelstein 1991')

White: belongs to class; black: belongs not to class.
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zieg91cor.pairs3 / 16 ( 320, 391)

image clip x tol=1

x (MaxLike) tol=1

x/|x| tol=1

x/|x| tol=2

exp(VU ln x) tol=1

exp(VU ln x) tol=2

zieg91cor.pairs3 / 17 ( 519, 331)

image clip x tol=1

x (MaxLike) tol=1

x/|x| tol=1

x/|x| tol=2

exp(VU ln x) tol=1

exp(VU ln x) tol=2

zieg91cor.pairs3 / 18 ( 527, 320)

image clip x tol=1

x (MaxLike) tol=1

x/|x| tol=1

x/|x| tol=2

exp(VU ln x) tol=1

exp(VU ln x) tol=2

Figure C.4 (cont'd): Multispectral classi�cation into binary class images in various

feature spaces. The threshold is always �xed such that the designated pixels (top left)

are just falling into the class. (Scene `Ziegelstein 1991')

White: belongs to class; black: belongs not to class.
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C.5 Bitemporal Sample Pairs from Scene `Gewer-

begebiet'
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Figure C.5: Bitemporal spectral sample pair from scene `Gewerbegebiet' 1992 and

1994 (Fig. 6.2, and Fig. 6.3 on page 121.
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Figure C.5 (cont'd): Bitemporal spectral sample pair from scene `Gewerbegebiet'

1992 and 1994 (Fig. 6.2, and Fig. 6.3 on page 121.
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Figure C.5 (cont'd): Bitemporal spectral sample pair from scene `Gewerbegebiet'

1992 and 1994 (Fig. 6.2, and Fig. 6.3 on page 121.
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Figure C.5 (cont'd): Bitemporal spectral sample pair from scene `Gewerbegebiet'

1992 and 1994 (Fig. 6.2, and Fig. 6.3 on page 121.
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Figure C.5 (cont'd): Bitemporal spectral sample pair from scene `Gewerbegebiet'

1992 and 1994 (Fig. 6.2, and Fig. 6.3 on page 121.
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Figure C.5 (cont'd): Bitemporal spectral sample pair from scene `Gewerbegebiet'

1992 and 1994 (Fig. 6.2, and Fig. 6.3 on page 121.
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Figure C.5 (cont'd): Bitemporal spectral sample pair from scene `Gewerbegebiet'

1992 and 1994 (Fig. 6.2, and Fig. 6.3 on page 121.
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Figure C.5 (cont'd): Bitemporal spectral sample pair from scene `Gewerbegebiet'

1992 and 1994 (Fig. 6.2, and Fig. 6.3 on page 121.
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Figure C.5 (cont'd): Bitemporal spectral sample pair from scene `Gewerbegebiet'

1992 and 1994 (Fig. 6.2, and Fig. 6.3 on page 121.
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Figure C.5 (cont'd): Bitemporal spectral sample pair from scene `Gewerbegebiet'

1992 and 1994 (Fig. 6.2, and Fig. 6.3 on page 121.
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