

Défauts d'équilibre des phases ordonnées et structure du liquide isotrope d'un mélange lyotrope de surfactant non-ionique

Thèse de doctorat

Doru Constantin

Laboratoire de Physique, ENS-Lyon

Microscopique : eau + surfactant (molécule amphiphile)

↓ hydrophile/hydrophobe

Mésoscopique : agrégats de surfactant (micelles, bicouches...)

 \Downarrow interaction

Macroscopique : phases thermodynamiques (I, H, L, C)

Diagramme de phase

Mésophases

- Structures
 connues
- Différentes
 topologies
- Phase isotrope
 - Toute la gamme de concentration
 - Changement de structure ?

Défauts – phase hexagonale

Biréfringence Splitting RMN 430 1.55×10^{-3} 420 1.50 410 Transition Δv (Hz) 400 **F** 1.45 390 1.40 380 1.35 370 -Transition 360 20 25 30 35 40 295 300 305 310 T (K) T(℃)

Chute de l'anisotropie ~ 5 °C avant la transition

L. Sallen, P. Sotta and P. Oswald J. Phys. Chem. B 101, 4875 (1997)

Défauts – phase lamellaire

Chute de l'anisotropie → prolifération de défauts

M. Allain, P. Oswald and J.-M. di Meglio Mol. Cryst. Liq. Cryst. 162B, 161 (1988)

L. Paz et al. J. Phys. Chem. 88, 3415 (1984)

Défauts dans les phases ordonnées

- Mise en évidence expérimentale (RMN, biréfringence)
- Quelle est leur topologie ?
- Renseignements sur la structure de la phase isotrope ?
- Phase isotrope
 - Comment évolue la connectivité (avec c et T) ?
 - Quel est le lien connectivité dynamique (rhéologie) ?
 - Influence de l'ordre local (système concentré) ?

Phase hexagonale

- Apparition de défauts proche de la phase isotrope
 - Méthodes indirectes (biréfringence, RMN)
 - Structure inconnue (coupures ? ponts ?)
- La méthode doit être :
 - Sensible à la topologie des défauts
 - Suffisamment précise
- Motivation
 - Renseignements sur la transition
 - Structure de la phase isotrope

Structure des défauts

Coefficients de diffusion d'une sonde hydrophobe

- Coupures \rightarrow réduction de D_{\parallel}
- Ponts \rightarrow augmentation de D_{\perp}

Il nous faut des domaines parfaitement orientés !

Préparation des échantillons

Orientation en croissance directionnelle

P. Oswald et al., J. Phys. III (France) 3, 1891 (1993)

Méthode expérimentale

Fluorescence Recovery After Photobleaching

Diffusion d'une sonde fluorescente blanchie par le laser

Photoblanchiment

Evolution de la tache blanchie

> Anisotropie marquée

Coefficients de diffusion

- Forte anisotropie
- Bonne précision

 $D_{def} = D_{\perp} - D_{norm}$ augmente exponentiellement !

Comment relier la variation de D_{\perp} à la densité des défauts ?

Grandeurs adimensionnées

- Densité des défauts : $x = \frac{a}{L}$
- Coefficient de diffusion transverse : $r = \frac{D_{\perp}}{D_{\parallel}}$

Paramètre important : Le temps de vie des défauts

Influence sur la valeur de D

Défauts fixes

Défauts transitoires

Simulation

Simulation

numérique

Défauts

fixes

 $r \propto x^2$

Défauts

transi-

toires

 $r = \frac{2}{3\sqrt{2}} \frac{x/2}{1-x/2}$

Influence du temps de vie

Défauts transitoires avec $L \simeq 4a$ (à la transition)

Paramètre de maille

12x10 12 5.92 -10 a(T) (10⁻³) 5.90 --1 -2 -3 5.88 -T - T_ь (°C) a₀(T) a (nm) 5.86 -5.84 -5.82 --30 -20 -10 -25 -15 -5 $T - T_h (°C)$

Conservation de la matière

- Un taux *f* de molécules dans les défauts
- 1 f dans les cylindres

$$\bullet \quad a(T) = \frac{a_0(T)}{\sqrt{1 - f(T)}}$$

1. Pic fin 350 60 °C 2. Épaulement ----- 50 °C 40 °C - 300 150 -37 °C (hexagonal) I (a. u.) - isotropic phase (a. u.) 250 (1) **- hexagonal phase** - 100 100 Structure localement hexagonale 50 (2) Ordre local - 50 sur $\mathbf{d} \simeq 7a$ 2 3 5 2θ (°)

D. Constantin et al., J. Phys. Chem. B 105, 668 (2001)

Conclusion

Méthode

- Mesure précise des coefficients de diffusion
- Mise en évidence des changements topologiques
- Défauts
 - Connexions, et non pas coupures
 - Densité importante : $L \simeq 4a$ à la transition
- Phase isotrope
 - Structure très connectée
 - Rayons X : ordre local
 - Propriétés dynamiques ?

Transition cubique-isotrope

Évolution du coefficient de diffusion

Défauts dans la phase lamellaire

Evolution de la connectivité dans un mélange lyotrope – p.21/35

Problématique

Signature expérimentale

- Biréfringence (M. Allain '88), RPE (L. Paz '84)
- Observation directe de dislocations vis en cryofracture (M. Allain '86)
- Mesurer simultanément D_{\parallel} et D_{\perp}
 - Technique de FRAP
 - Augmentation de la diffusion transverse
 - Deux milieux avec la même topologie
 - Obtenir des monodomaines planaires de grande taille !

Ancrage planaire

Orientation planaire

Schéma

Dans le plan des couches

Dans l'eau

À travers les couches

Dans l'eau

Interprétation

- Dislocations vis
 - Densité insuffisante
 - Connectent les deux milieux
- Défauts ponctuels
 - Plusieurs topologies possibles
 - Réduction de l'ordre (RPE)
 - $D_{\rm def} \sim D_{\rm plan} n_{\rm def}$

Ponts entre les couches de surfactant $n_{\rm def} \simeq 1600 \mu {\rm m}^{-2}$

D. Constantin et P. Oswald Phys. Rev. Lett. 85, 4297, (2000)

Dynamique de la phase isotrope

Evolution de la connectivité dans un mélange lyotrope – p.27/35

Connexions dans une phase micellaire

sans connexions

peu de connexions

totalement connectée

Notre système est totalement connecté

Quelle est la dynamique d'une phase micellaire totalement connectée ?

- Micelles enchevêtrées
 - Modes de relaxation de type polymère (reptation)
 - Temps de relaxation très longs (0.01 0.1 s)
- Rôle des connexions (Lequeux '92, Cates '96)
 - Accélèrent la reptation (en facilitant la diffusion)
 - Dans la limite fortement connectée, le point de vue "polymère" n'est plus valable.

Principe de la mesure

Piezorhéomètre vers l'amplificateur de charge vis céramiques piézo plaques en verre cale vers le générateur de signal

Fonction de réponse

Rhéologie (c = 50%)

G' et $G''(\omega)$

Modèle de Maxwell

Dynamique donnée par l'ordre local

- Temps de relaxation : réarrangement local $au = d^2/D_{coll}$
- Module élastique : celui de la phase hexagonale

D. Constantin, J.-F. Palierne, E. Freyssingeas et P. Oswald *Europhys. Lett.* 58, 236, (2002)

Basse concentration

Viscosité $\eta(c,T)$

 $G', G''(\omega)$ à c = 35%

D. Constantin, E. Freyssingeas, J.-F. Palierne et P. Oswald – Langmuir 19, 2554, (2003)

Conclusion générale

- Coefficients de diffusion \rightarrow topologie
- Défauts dans les mésophases
 - Apparaissent en chauffant (densité importante)
 - La connectivité du surfactant augmente
 - Temps de vie très court
- Structure et dynamique de la phase isotrope
 - Fortement connectée (haute concentration)
 - Modes lents évolution en température
 - Importance de l'ordre local

Perspectives

- Informations sur la structure
 - Directement (cryofracture)
 - Indirectement (Rayons X, neutrons)
- Développement du modèle
 - Evolution des modes "polymère"
 - Couplage fluctuations de c élasticité
- Applicable à des systèmes différents
 - Propriétés générales des systèmes concentrés
 - Solutions de lécithine relaxation très lente

(Schchipunov et al. 1998)