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Introduction en francais

Les méthodes variationelles, ou le calcul des variations, sont utilisées pour résoudre les
problémes mathématiques d’optimisation. C’est a dire, la minimisation de fonctionelles. De
telles fonctionnelles sont définies dans les espace fonctionnels. Les variables indépendantes
d’un fonctionnelle sont également des fonctions. Par exemple, une intégrale des termes qui
contiennent une fonction inconnue et ses dérivées, est une fonctionnelle typique.

La théorie des méthodes variationnelles ainsi que leurs applications sont étudiées depuis
I’époque de Newton. Initialisé par les fréres Bernoulli, le probleme de brachystochrone [5]
lanca la recherche dans ce domaine, suivi par une longue lignée des grands mathématiciens
(Leibniz, Newton, Huygens et I’Hospital, méme Gallilée). Euler et Lagrange ont étudié
les conditions nécessaires pour minimiser une fonctionnelle en ajoutant des équations
supplémentaires, connues sous le nom d’équations d’Euler-Lagrange. Pour plus de détails
on se référera a [47]. Enrichi par les contributions de Weierstrass, de Hamilton, et de Morse,
dans les années 60 les méthodes variationnelles sont devenues populaires, représenté par
le principe de maximum de Pontryagin [89] et de programmation dynamique de Bellman [4].

Le but des théories variationnelles est de formuler les lois de la nature générales qui
suggerent le principe de I’économie des moyens. La nature semble aller au plus simple,
comme Newton l’a écrit dans Principia: “Nature does nothing in vain, and more is in vain
when less will serve;...”, et comme Euler dit dans son Methodus inveniendi: “Every effect
in nature follows a maximum or minimum rule.” En raison de ce principe variationel, les
méthodes variationnelles refletent I’harmonie de notre nature, ce qui les rends facilement
adaptables aux diverses applications de la physique, de la biologie, de I’ économie et de
I'ingénierie.

Vers la fin des années 60, J.-L. Lions a étudié les systémes régis par les équations aux
dérivés partielles et leur controle [75], [76]. 11 a présenté ces méthodes variationnelles dans
le domaine des mathématiques appliquées et a constamment soutenu son développement.
Dans les années 90, il a proposé quelques remarques sur ’environnement et la modélisation
mathématiques [77], [78]. Ses remarques ont fondée le cadre mathématiques de la recherche
en science environnementale. Il a proposé les étapes suivantes d’'une méthodologie générale
pour une meilleure compréhension de 1’environnement [78]

Etape 1 : Modélisation mathématique pour la réalité.

Etape 2 : Analyse mathématique d’un modele et de sa simulation numérique.

Etape 3 : Validation et correction avec des données d’observations disponibles.

Etape 4 : Controle du systeme.

Lions a souligné les composantes inconnues liées aux conditions initiales, aux conditions
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limites, et aux modeles lui-méme. Les composantes inconnues peuvent étre estimées en
résolvant un probleme inverse par la minimisation d’une norme calculant 1’écart entre
I’observation et le rendement de modele, ce qui s’appelle également le calibrage. Une ques-
tion, qui est conceptuellement semblable au probleme inverse, est ’assimilation de données
qui vise a estimer le processus d’évolution avec toutes sortes d’informations disponibles.
En bref, les étapes de Lions peuvent étre récapitulées comme la modélisation, le calibrage,
la validation et le controle.

Ces dernieres années, les méthodes variationnelles ont été de plus en plus expérimentées
en science environnementale, c’est a dire, météorologie, océanographie, et hydrologie. F.-X.
Le Dimet et I.M. Navon fournissent une revue compléte sur les méthodes variationnelles
et d’optimisation pour la météorologie [70]. Nous montrons les ingrédients des méthodes
variationnelles dans le systeme suivant:

( %—)f = F(X,K,U)+ B(V), XexX
X(ty) =© 1
| C(X) =T, X € X (1)
Y = M(X) YeM
L opt J = J(Z), Zez

ou (i) X est variable d’état, dans la météorologie ce peut étre le vecteur de la vitesse,
de la pression, de la température ou de ’humidité liquides pour I’atmosphere ; (ii) F' est
opérateur non-linéaire différentiel pour 1’équation ordinaire ou partielle ; (iii) U est la
variable de commande, ou la variable d’entrée ; (iv) K est le vecteur des variables dans
Pespace K; (v) V est 'erreur de modele, a laquelle on impose un opérateur B pour le
raccordement de l'erreur avec la dynamique du modele ; (vi) © est la condition initiale ;
(vii) C est 'opérateur pour inclure les conditions limites; (viii) X" est I’espace d’état avec
0X sa frontiere, en météorologie ce peut étre un domaine spatial de trois dimensions, M
est I’espace des observations, M est la fonction qui projete I’espace X sur 'espace M; (ix)
J est la fonctionnelle objectif. Z est I’ensemble des variables ou J est optimisé. O est
Pensemble {U, V, K, O, f}.

Trois probléemes typiques P1-3 peuvent alors étre définis:
(P1) Calibrage: Déterminons le parameteur K* tel que J(K*) = min J(K),

KeK
avec J(K) =|| Y — Yos ||,

(P2) Assimilation des données: Déterminons la condition initiale ®* tel que
J(©*) = gligl( J(©) avec J(©) =||' Y — Yobs |54
S

(P3) Controle: Déterminons la variable de controle U™ qui optimise une fonction cotit J
de la forme

/ " X Ut

to

ol || - [|m est une norme dans M, et G est une fonction appropriée au probleme. Pour
tous les problemes P1-3, des composantes { O\ Z} sont supposées étre des facteurs connus.
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Le but de 'assimilation de données est de reconstituer 1’état d’un systeéme avec I’aide
de sources diverses, telles que les statistiques, les mesures directes et le rendement de
I’équation principale [44], [14]. Les schémas qui fusionnent les données et le modele dans
I’assimilation de données suivent principalement deux approches : la théorie de controle et
la théorie de 'estimation. Cette derniere est fondée sur le filtre de Kalman et ses variations
[43] ; la premiere se fonde sur les méthodes variationnelles qui tirent profit de la puissance
des techniques de contrdle optimal [69].

Le développement de 1’assimilation de données en météorologie est 1ié a I’évolution
des données et des modeles. Au début de la prévision numérique, les models avaient
une discrétisation grossiere et les méthodes d’assimilation de type interpretation optimale
étaient suffisantes; les données et les modeles véritablement raffinés nécessitent des schémas
efficaces d’assimilation de données, c’est a dire, filtre de Kalman étendu et méthodes vari-
ationnelles quadri-dimensionnelles.

Quelle est la raison pour laquelle un processus d’assimilation de données est habituelle-
ment nécessaire 7 Elle est principalement due aux incertitudes du systéme (1.1). C’est-
a-dire, toutes les variables dans ’ensemble O peuvent étre considérées comme composées
d’éléments connus et inconnus. Mais estimer tous ces termes en une seule fois est une idée
trop ambitieuse, c’est pourquoi une stratégie étape par étape serait plus réaliste. Nous
distinguons les incertitudes en ligne et hors ligne. La premiere est la conséquence des vari-
ations temporelles ou spatial-spécifiques du contexte pour le fonctionnement de modele, par
exemple, les incertitudes pour la condition initiale ® et I'entrée U du modele. Les incer-
titudes en ligne peuvent seulement étre enlevées en assimilant les observations d’exécution
accumulées (c.-a-d. probleme P2). Tandis que pour des incertitudes hors ligne, une fois
estimée par des méthodes inverses, elles sont fixées pour I'utilisation postérieure. Par ex-
emple la valeur du parametre K pour le probleme P2 est choisie pour étre le résultat du
calibrage (probleme P1).

Comparé avec les sciences environnementales, la modélisation des plantes ou des récoltes
présente les mémes difficultés et défis : les caractéristiques comme la complexité élevée et
I'incertitude du systeme agissant avec I’environnement, aussi bien que des données insuff-
isantes et imprécises pour I’analyse et la validation des modeles. Cependant, la recherche
sur ces plantes nécessite I’étude conjointe des probléemes d’évaluation et des problemes de
controle (une meilleure croissance avec des ressources limitées). Tandis qu’en météorologie
ou océanographie, nous hésitons a parler de la contréle. La possibilité de controler est le
point clé des problemes de développement durable.

Les modeles de croissance des plantes jouent un réle essentiel en botanique, agronomie,
physiologie, et informatique, ou dans autres secteurs de recherches agronomiques. Différents
types de modeles, tels que les modeles basés sur des processus, les modeles géométriques,
ou les modeles fonction-structure, ont été développés pour des applications précises.

Les modeles basés sur les processus liés a la physiologie des plantes répondent a des
demandes agronomiques. Ces modéles évaluent les flux de carbone par le réseau du ‘ap-
paratus’ des plantes vers une récolte selon un pilotage d’énergie du rayonnement et un
écoulement de 'information (e.g. le stress ou des étapes du développement dans un ho-
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raire phénologique). Commencé par de Wit en 1970 [35], cette approche a été développée
et validée pour les plantes cultivées a une haute densité, c’est a dire, avec le canopy ho-
mogene. Les modeles simulent la croissance d’une plante moyenne et virtuelle. Les plantes
sont considérées comme une grande feuille [2], et la biomasse est donc calculée selon la
photosynthese de cette grande feuille. En pratique, la superficie de cette grande feuille est
évaluée par la notion d’indice de surface de feuille (LAI) [15]. La variabilité morphologique
(e.g. entre racines et pousses) est négligée. Ce n’est pas le cas, si nous considérons des
conditions hétérogenes, telles que des semis a une densité trés faible dans des rangées
espacées ou pour les plantes individuelles ornamentales. Le controle de qualité en horti-
culture, c’est a dire, pour la forme, la couleur, le goit et la composition des fruits, est
également hors de la capacité du modele basé sur les processus. Au contraire il dépend
d’une description détaillée des entités morphologiques des plantes. En outre, la rétroaction
dans ’accumulation de biomasse et dans la différentiation architecturale, est habituelle-
ment négligée dans cette approche.

Hallé et al. en 1978 a créé un modele d’architecture des plantes visant une description
unifiée d’informations topologiques [57]. Cette généralité architecturale a été bientot con-
sidérée par de Reffye et al. pour la génération des arbres et des images de plantes fideles
a leur structure botanique et a leur développement en présentant les techniques d’axe de
référence [27]. Les informaticiens ont développé les mathématiques basées sur la notion de
grammaire, c’est & dire, les L-Systémes étudiés par Prusinkiewicz et al. [91] et 'automate
étudié par Blaise et al. [9], pour le formalisme de la morphogénése pure des plantes (notez
qu’Alfonseca et Ortega ont prouvé I'étape-équivalence des L-Systémes et de ’automate
[1]). Bien que la plante 3D, y compris l'information topologique et la géométrie d’organe,
est entierement mise en ceuvre, les modeles architecturaux répondent principalement a la
demande en aménagement, publicité ou jeux vidéo, mais ont peu d’applications dans la
recherche agro-écologique.

L’apparition de modele fonction-structure des plantes (FSPMs) répond au défi de
traiter ’hétérogénéité de l’environnement pour les modeles basés sur les processus en
tirant profit de la description spatiale de variabilité du modele d’architecture. A con-
trario les modélisateurs architectuaux tentent de fournir leur moteurs phénologiques avec
la biomasse incrémentiele calculée selon la connaissance physiologique des plantes. Nous
nous référons a des FSPMs comme LIGNUM [88], AMAPhydro [30], GroGra [65] et CO-
TONS [61]. Ces modeles traitent habituellement quelques composants structuraux de base,
c’est a dire, 'unité élémentaire idéalisée [104] ou le métamer [3], les rapports de source-puit
pour la distribution de biomasse, et un formalisme pour la photosynthese. GreenLab [130]
a été concu pour réduire la charge de calcul due a la simulation fortement complexe des
événements discrets des ces FSPMs. Cette complexité pénalise 'analyse et les applications
des modeles, aussi bien que l'identification de parametres. Le développement de GreenLab
est un processus continue pour équilibrer la simplicité et la complexité en choisissant et
en adaptant la connaissance biologique (c.-a-d. [57]) et mathématique (c.-a-d. [114]) pour
former un modele dynamique efficace utile pour une grande variété d’applications, par ex-
emple en agronomie et en sylviculture [86].

Jusqu’ici il n’y a aucun formalisme spécifique de photosynthese validé pour FSPMs

au niveau des organes. Le workshop FSPM’04 [55] donne I'impression que le formalisme
de la photosynthese n’a pas été établi avec succes et qu’il n’a pas été examiné, mais ce
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n’est qu'une question de temps, c’est a dire que le procédé de recherches est en cours.
D’abord on doit calculer (ou mesurer) au niveau des organes la distribution des vari-
ables physiques (Chelle a introduit le terme phytoclimate [21]), telles que la lumiére, la
température, I’humidité, les états de ’eau de sol, etc. Ensuite la photosynthese est proba-
blement calculée par le modele au niveau de feuille (e.g. le modele de Farquhar [38] intégré
dans RAPT [103]), ou le modele au niveau de plante entiere (concept de LAI de modele
de récolte, de Visser [34]), ou par leur équilibre (Drouet [36]).

La prévision et le contrdle ne sont pas des concepts nouveaux dans 'agriculture [87],
[100], [37]. Toutefois ces travaux se concentrent plutot sur des techniques de controle,
i.e. le contrdle de point de réglage [109], le contréle hiérarchique [20], [116], [117], et le
contrdle intelligent [74], [24], [62], mais n’utilisent pas les méthodes variationnelles qui
essayent de mettre en application les étapes de Lions. Les modeles choisis pour ces tech-
niques de controle manquent habituellement d’un concept d’assimilation de données pour
Pévaluation des incertitudes (notez que récemment des concepts d’assimilation de données
sont acceptés dans I’évaluation de récolte [67], [41]), ce qui pourrait mener aux erreurs sig-
nificatives de validation. Bertin et Heuvelink [8] montrent I’exemple de trois expériences ou
Perreur est raisonnable alors que pour la quatrieme elle est de 35%. En outre, la stratégie
de réduction est populaire pour alléger la complexité de ces techniques de controle [101],
[110]. Cependant, en raison de la complexité et de la jeunesse du bourgeonnant FSPMs,
il y a tres peu de tentatives d’application de la théorie du contréle dans ce domaine. Le
controle de leffet d’éclaircie basée sur AMAPhydro [86] en est un exemple.

Apres avoir adapté les méthodes variationnelles au modele des plantes, on peut se poser
la question : pouvons-nous transférer les expériences de conceptions et les méthodologies
des méthodes variationnelles pour la modélisation et les applications de FSPMs 7 Si oui,
comment et dans quelle mesure?

Alors une série de questions vient apres la question posée ci-dessus : (i) comment les
méthodes variationnelles doivent-elles étre utilisées dans la inter-évolution entre modele et
des données (semblable a cette de I’assimilation de données)? (ii) un FSPM comme Green-
Lab ainsi que des méthodes d’optimisation peuvent-ils fournir de nouveaux indices dans
Porganisation et le traitement des énormes données d’expérience pour les agronomes ? (iii)
comment agissent-ils les méthodes variationnelles, quand FSPMs devient de plus en plus
complexe 7 Par exemple le formalisme de photosynthese pourrait étre plus précis et plus
compliqué. Les modeles des plantes doivent considérer différentes échelles de temps, i.e.
en heures, en jours, etc., ou l'indice thermique. D’ailleurs ces FSPMs pourraient devenir
plus en plus impliquées avec I’environnement hétérogene. (iv) quand l’approche analytique
devient difficile, qu’en est il de 'exécution des méthodes numériques ? Nous espérons que
les méthodes numériques conviennent aussi, quand le modele devient complexe. (v) com-
ment mettre en application les concepts dans les étapes de Lions pour FSPMs, et a I’envers
comment ces concepts contribuent a la communauté de FSPM, particulierement pour des
concepts d’assimilation de données?

La these en fait est motivée par trois articles dans les proceedings d’une réunion du
CNRS intitulée “Tendances nouvelles en modélisation pour I’environnement” : les remar-
ques de J.L. Lions sur les sciences environnementales [78], 'introduction du modele de
morphogénése des plantes par Ph. de Reffye [28], et I'explication de l’assimilation de
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données par F.-X. Le Dimet [71]. Dans cette thése, nous essayons de chercher les réponses
a la question de base et aux suivantes formulées ci-dessus.
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Chapter 1

Introduction

Variational methods, or calculus of variations, is the art to solve mathematical problems
that deal with extremal functional questions. Such functionals are functions of functions,
that is to say, the independent variables of a functional are also functions, for instance,
an integral of the terms that contain an unknown function and its derivatives is a typical
functional.

Variational methods have been retrieving the attentions of the mathematicians from
the Newton age until the present time both in their theory developments and in their ap-
plications. Initialized by the Bernoulli brothers, the brachystochrone problem [5] started
the research in this field, then followed a long line of great mathematicians, i.e., Leibniz,
Newton, Huygens and 1’Hospital, even Gallilée. Euler and Lagrange derived the necessary
conditions for functional problems with differential equations as subsidiary conditions,
known as Euler-Lagrange equations. For extensive details about variational methods in
this period, please refer to [47]. Enriched by the contributions of Weierstrass, Hamilton,
and Morse, in 1960s the variational methods prevailed, represented by Pontryagin’s maxi-
mum principle [89] and Bellman’s dynamic programming [4].

The aim of variational methods or calculus of variations is to formulate the general laws
of nature that suggest the principle of the economy of means. Nature seems proceeding
in the simplest, as Newton wrote in Principia: “Nature does nothing in vail, and more is
in vain when less will serve; ...”, and as Euler believed in his Methodus inveniendi:“Every
effect in nature follows a maximum or minimum rule.” Due to this variational principle,
variational methods reflect the harmony of our nature, as makes it very flexible to be
adapted for the applications in diverse branches of physics, biology, economy and engineer-

ing.

In the late 1960s, J.-L. Lions formulated control of systems governed by partial differ-
ential equations [75], [76]. He introduced variational methods in applied mathematics and
constantly supported the development in this field. In the 1990s, he drew some remarks
on mathematical modelling and environment [77], [78]. These remarks founded the frame-
work of the research in environmental science. He proposed the following steps of a general
methodology for better comprehension of environment [78]:

Step 1: Mathematical modelling for the reality.
Step 2: Mathematical analysis of the model and numerical simulation.
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Step 3: Validation and correction with available observation data.
Step 4: Control of the system.

Lions highlighted the unknown components for initial conditions, boundary conditions and
model itself in a general case. The unknown components can be estimated by solving an
inverse problem that deals with the minimization of a norm for the discrepancy between the
observation and model output, as is also called calibration. A question, which is conceptu-
ally similar to inverse problem, is the so-called data assimilation that aims at estimating
the evolution process with all kinds of available information. In brief, the Lions steps can
be summarized as modelling, calibration, validation and control.

In recent years, variational methods have been increasingly experienced in environmen-
tal science, i.e. meteorology, oceanography, and hydrology. F.-X. Le Dimet and I.M. Navon
provide a comprehensive review on variational and optimization methods in meteorology
emphasizing on data assimilation [70]. We show the ingredients of variational methods in
the following system

( %—’f - F(X,K,U)+ B(V), XeX
| cx) =1, X € 0X (1.1)
Y = M(X) Y e M
L opt J = J(Z), Zez

where (i) X is state variable, in meteorology it can be vector of fluid velocity, pressure,
temperature and humidity for the atmosphere; (ii) F' is differential nonlinear operator for
ordinary or partial differential equation; (iii) U is control variable, or input variable; (iv)
K is parameter set; (v) V is model error, on which imposes an operator B for the con-
nection of model error with model dynamics; (vi) @ is initial condition; (vii) operator C
and function f are for boundary condition; (viii) M is observation map function that links
model output Y with some observations Y ; (ix) J is the objective functional. Here X
is the state space with 0X as its frontier, and in meteorology it can be a spatial domain
of three dimensions, M is the space for the observation, Z is the variable set with respect
to which J is optimized, and let O be the set of {U,V,K,0,f}. Three typical problems
P1-3 can then be defined:

(P1) Calibration: Determinate parameter K* such that J(K*) = min J(K),

Kek

with J(K) =|| Y — Yops |54
(P2) Data assimilation: Determinate initial condition ®* such that
J(©7) = min J(0) with J(©) =['Y = Yo [l

€
(P3) Control: Determinate control U* to optimize some objective functional J like the
integral form (Lagrange problem) tzl G(X,U)dt.
where KC is the parameter space, || - ||m is a norm in M, and G is a problem-relevant
function. For all the problems P1-3, the components {O\Z} are assumed to be known
factors.

The goal of data assimilation is to reconstruct the model state with the help of different
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CHAPTER 1. INTRODUCTION

sources, such as statistical features, direct measurements and output of governing equation
[44], [14]. The schemes that merge data and model in data assimilation follow mainly two
approaches: control theory and estimation theory. The latter is based on Kalman filter
and its variations [43]; the former relies on variational methods that take advantage of the
full power of optimal control techniques [69].

The development of data assimilation in meteorology is a consistent inter-evolution of
both data and model from coarseness to refinement. In the beginning, poor models and
few data made it hard to insert data into model by “nudging” methods. Gradually plen-
tiful data sets and truly fine models empower the efficient data assimilation schemes, i.e.
extended Kalman filter and four-dimensional variational methods.

What is the reason that a data assimilation process is usually necessary? It is mainly
due to the uncertainties of the system (1.1). That is, all the variables in the set O can
be considered to consist of known and unknown components. The idea is that it is too
ambitious to estimate all the unknown items in only one experiment by inverse methods.
Instead a step-by-step strategy would be more realistic. Lions thus defined the sentinel
problem that identifies certain unknown components according to local environment condi-
tions without consideration of other unknown items [78]. We distinguish online and offline
uncertainties. The former result from temporal or spatial-specific variations of the context
for model running, for instance, the uncertainties for initial conditions ® and model input
U. The online uncertainties can only be removed by assimilating the accumulated runtime
observations (i.e. problem P2). While for offline uncertainties, once estimated by inverse
methods, they are fixed for later usage. For example the parameters value K for problem
P2 are chosen to be the calibration results of problem P1.

Compared with environmental sciences, plant or crop modelling has to face the same
difficulties and challenges: features like high complexity and uncertainty of the system in-
teracting with environment, as well as incomplete data for model analysis and validation.
However, plant research distinguishes itself in that in addition to problems of estimation,
control problems can also be defined for a better growth with limited resources. While in
meteorology or oceanography, we hesitate to talk about control. The possibility of control
is the key point in sustainable development issues.

Plant growth model plays an essential role in botany, agronomy, physiology, and com-
puter sciences, or other plant-relevant research areas. Different kinds of models, such as
process-based models, geometric models, or functional-structural models, have been devel-
oped for special applications.

Process-based models that is relative to plant physiology try to answer agronomic de-
mands. They concern about the material flow of carbon from environment through the
network of plant ‘apparatus’ into a pool called yield depending on an energy piloting of
radiation and an information flow like stress or stages of development in a phenological
timetable. Started by de Wit in 1970 [35], this approach has been developed and tested
for field crops at a high density, that is, with homogenous canopies. The process-based
models simulate the behavior of a virtual mean plant under the concept of one big-leaf [2],
whose surface area is evaluated by introducing the notion of leaf area index (LAI) [15].
Therefore the morphological root or shoot variability vanishes in the larger compartments.
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This is seldom to be true when considering heterogenous conditions, such as crops at a
very low density in spaced rows or individual stands in ornamentals. The quality control
in horticulture, i.e. for the shape, color, taste and composition of fruits, is also far be-
yond the abilities of process-based model, nevertheless depends on a detailed description
of plant morphological entities. Furthermore, feedback between biomass accumulation and
plant architectural differentiation in organogenesis and morphogenesis, is usually neglected.

Hallé et al. in 1978 gave birth to plant architecture model aiming at a unified descrip-
tion of topological information [57]. This architectural generality was soon accepted by
de Reflye et al. for the generation of trees and plants images faithful to botanical struc-
ture and development by introducing reference axis techniques [27]. Computer scientists
developed grammar-based mathematics, i.e. L-Systems by Prusinkiewicz et al. [91] and
automaton by Blaise et al. [9], for the formalism of pure plant morphogenesis (Note that
Alfonseca and Ortega have proved the step-equivalence of L-Systems and automaton [1]).
Although 3D plant, including topological information and organ geometry, is fully imple-
mented, architectural models answer mainly the demand in landscaping, advertising or
video games, thus lead to few applications in agro-ecological research.

The emergence of functional-structural plant models (FSPMs) somehow answers the
challenge of dealing with heterogeneity of environment for process-based model by taking
advantage of the spatial variability description of architecture model. By contrast, archi-
tecture modelers attempt to furnish their phenological engines with calculated incremental
biomass for the organogenesis according to plant physiological knowledge. We refer to such
FSPMs as LIGNUM [88], AMAPhydro [30], GroGra [65] and COTONS [61]. These models
usually deal with some basic structural components, i.e. idealized elementary unit [104]
or metamer [3], source-sink relationships for the biomass partition, and a formulism for
photosynthesis. FSPM GreenLab [130] was designed to reduce the computation load due
to the highly complex discrete-event simulation of those FSPMs. This complexity hampers
the model analysis and applications, as well as parameter identification. The development
of GreenLab is a constant process of balancing the simplicity and complexity when choosing
and adapting the biological (i.e. [57]) and mathematical knowledge (i.e. [114]) to form an
efficient dynamical plant model useful for a wide variety of applications, say in agronomy
and forestry [86].

So far there is no validated specific photosynthesis formulism for FSPMs at organ level.
From the latest workshop FSPM’04 [55], we have the impression that although the photo-
synthesis formulism has not been successfully established and tested, it is just a matter of
time, that is, the research process is clear. Firstly one needs to calculate (or measure) at
organ level the distribution of physical variables, such as light, temperature, humidity, soil
water conditions, etc., as is so-called phylloclimate (Chelle has introduced this term in his
review of the subject [21]). Then photosynthesis is possibly calculated by leaf-level model
(i.e. Farquhar model [38] integrated in RAPT model [103]), or whole-plant-level model
(LAI concept of crop model, de Visser [34]), or by their balance (Drouet [36]).

Prediction and control are not brand-new concepts in agriculture [87], [100], [37]. How-
ever these researches concentrate rather on control techniques, i.e. set point control [109],
hierocratical control [20], [116], [117], and intelligent control [74], [24], [62], but not a frame-
work of variational methods that try to implement the Lions steps. The chosen models
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for these control techniques usually lack of a data assimilation concept for the estimation
of uncertainties (note that recently data assimilation concepts are being accepted in crop
estimation [67], [41]), as might be the reason that they can lead to significant validation
errors. For instance we can see reasonable errors for 3 experiments except for a 35% mis-
estimation in the Montfavet experiment in [8]. Furthermore, reduction strategy is popular
to alleviate the complexity of these control techniques [101], [110]. However, due to the
complexity and juvenility of the burgeoning FSPMs, there are very few attempts on ap-
plying control theory in this domain. One noticeable example of this kind is about the
control of pruning effect based on AMAPhydro [86].

After the travel from variational methods to plant modelling, we take a rest to ask the
question: can we transfer the experiences in the conceptions and methodologies of varia-
tional methods into the modelling and applications of FSPMs? If yes, how and to what
extent?

Then a series of questions come after the above basic one: (i) how variational method
play its role in the inter-evolutional development of model and data in FSPMs similar to
that in data assimilation? (ii) Can a FSPM like GreenLab together with optimization
methods provide new clues in the organization and treatment of the enormous experiment
data for the agronomists? (iii) How about the application of variational methods when
FSPMs become increasingly complex? For instance, the photosynthesis formulism might
be more precise and complicated. Plant models might take account of different time scales,
i.e. calendar time index (in hours, days, etc.) and thermal time index. FSPMs might be-
come more involved with environmental spatial varieties. (iv) When analytical approach
becomes difficult, what is the performance of numerical methods? We hope the numerical
methods be suitable too, as model becomes complex. (v) How to implement the concepts
in Lions steps for FSPMs, and in reverse what do those concepts contribute to FSPM
community, especially for data assimilation concepts?

The thesis is in fact motivated by three articles in the proceedings of a CNRS reunion
titled “Tendances nouvelles en modélisation pour I’environnement”: the remarks of J.L.
Lions on environmental sciences [78], the introduction of plant morphogenesis model by
Ph. de Reffye [28], and the explanation of data assimilation by F.-X. Le Dimet [71]. We
try to seek the answers of the basic and ensuing questions above in this thesis.

In chapter 2, we introduce the functional-structural dynamics of GreenLab. Its strategy
consists of firstly a simplification to grasp main factors, i.e. the source-sink relationships
and the feedback of architectural information, then an evaluation of the simplification by
inverse methods to fit the model parameters. We emphasize the paradigm that GreenLab
should provide the interface for the complexisation. A photosynthesis formula is proposed
to mimic plant growth with a highly simplified physiological basis. We also formulate the
soil-plant interaction benefiting from the soil water balance equation introduced by De
Reftye.

The chapter 3 is dedicated to the formularization of the variational methods based on
GreenLab plant functional-structural dynamics for various applications, namely parameter
identification, data assimilation, and optimal control. Adjoint equations are set up in the
optimality systems for gradient calculation. We also show the flexibility of the variational
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formulism for the same applications when smaller time scale within the thermal time index
— growth cycle (GC) - is taken into account. The plant dynamical systems can be much
more complicated, but with variational methods we succeed in formulating the adjoint
equations for the new optimality systems in the refined time scale.

The chapter 4 concerns the numerical methods of the variational approach. We apply
automatic differentiation (AD) techniques when the model implementation is inconvenient
or too complicated for us to write the adjoint code. The automatic differentiation theory is
briefly introduced. The relationship between AD and adjoint equation is also investigated.
Then we summarize the steps of writing the AD code by hand line by line, and record the
preliminary AD coding experience for project GreenLab.

Identification of the environmental factor parameters is the main topic of the chapter
5. We conduct twin experiments to generate artificial observations for identification. Vari-
ational methods are employed to track back the parameter values. Levenberg-Marquardt
algorithm is adopted for iterative optimization benefiting from the special structure of least
squares. Gradients are calculated by finite difference, since there are only four environ-
mental parameters to be calibrated. The results of the numerical experiments show that
parameter values can always be identified, no matter how environmental conditions fluc-
tuate when leaf expansion period is considerably long. The influence of observation errors
on the calibration results is also investigated.

In chapter 6, we firstly perform a model analysis on optimal sink strength of maize fruit,
then an optimal control problem for sunflower water supply is presented and numerically
solved. The resulting optimal water supply at each GC provides more refined irrigations,
as reveals possible agronomic applications. Considering online uncertainties on initial con-
dition ® and model input U for GreenLab, data assimilation problem is introduced for the
control of these online uncertainties by assimilating the observations generated by twin
experiments at GC level.

The last chapter contains conclusions that try to answer the questions in this intro-
duction. Here we emphasize that our subject is an ideal type of virtual plant that is too
simple to be the real one growing in field. Realistic applications of the thesis results urge
further studies on FSPM physiological knowledge. Possible applications of FSPMs as a
plant-environment system in such a high dimension are too complex for plant physiologists
themselves, therefore, an interdisciplinary approach, especially with collaborations between
plant physiologists, computer scientists, and mathematicians, is needed.
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Chapter 2

Introduction to GreenLab: basics,
dynamics, and model analysis

Résumé

Dans ce chapitre, nous présentons la dynamique de la structure fonctionelle de GreenLab. Sa
stratégie de misé en ceuvre se compose, d’abord d’une simplification pour décrire les facteurs
principaux, c’est & dire, les rapports entre les sources-puits et la rétroaction d’information archi-
tecturale, ensuite d’une évaluation de la simplification par des méthodes inverses pour adapter les
parametres des modeles. Nous soulignons ici que GreenLab devra prendre en compte ce niveau
supérieur de complexité. On propose une formule de photosynthése pour imiter la croissance des
plantes avec une base physiologique fortement simplifiée. Nous formulons également I'interaction
entre sol et plantes grace a I’équation de soil water balance introduite par Ph. De Reffye.

2.1 GreenLab functional-structural dynamics: basic
and beyond

2.1.1 Introduction

Plant is an open complex system that undergoes exchange of energy flow with environment
to support an order or harmony of plant form, namely architecture information (i.e. Hallé
’s 23 models [57], figure 2.1, a-g). However, detailed architecture information of plant forms
appears to be extremely variable, such that one can never observe two completely identical
plant individuals. This remarkable variability of architectural growth possibly results from
genetic reasons with respect to species and from interactions with environment.

Complex system is usually supposed to consist of microlevel nonlinear components.
Although each might be simple, the nonlinear interactions among these micro-components
result in complex dynamic behaviors, i.e. order or predictable patterns, chaos, self organi-
zations at the edge of chaos [125], and self-replications [66].

We distinguish genotype and phenotype in that genotypes, generalized as local rules of

the evolutions of micro-components, can generate complex behaviors of macro-phenomena,
named as phenotypes. Wolfram suggests a two-scale automaton on a slow time scale of
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controlling (master) components and on a fast time scale of controlled (slave) components
to describe the fast processes of phenotypes of organisms determined by slow processes of
genotypes [126]. Morphogenesis is then defined as the development of phenotypes.

Complex system concepts have been experienced in FSPM community, i.e. Sachs re-
gards the remarkable variability of plant forms as dynamic self-organization resulting from
interactions of microlevel branches [99]. It is yet unknown how genotypes organize such an
architectural harmony during the evolution of complex system, although Rashevsky has
done a inspiring research to model the morphogenesis of phyllotazis by the dynamics of a
ring of cells equipped with morphogen [97].

GreenLab was not designed to elucidate the mechanism of the plant complex system,
i.e. how genotypes govern phenotypes, but rather a description of growth patterns for
phenotypic plasticity of linear and branch patterns for vascular differentiation in the sense
of functional-structural dynamics at organ level.

In essence, GreenLab follows the approach of reductionism. The word dynamics is
rather a term of physics. One architectural elementary entity of plant functional-structural
dynamics is chosen to be a metamer ([3], [9], another name phytomer) that is composed
of a node, the internode from beneath, the apical bud, the associated organs, i.e. leaves
or fruits, and the axillary buds that can develop into a branch in a new cycle (figure 2.1-
(a), figure 2.2, see also idealized elementary unit [104]). Organs, such as internode, leaf,
fruit, layer, are recognized in the metamer as physical elementary entities that experience
growth process, for instance elongation, with the energy flow exchange under environment
conditions of phylloclimate.

GreenLab functional-structural dynamics is characterized by its Newtonian physics.
The laws of plant growth are drawn empirically or obtained by simplification under bio-
logical hypothesis on morphogenesis and biomass production. One can notice the similar
process of hypothesis-laws-dynamics in Newtonian physics, i.e. the universal law of gravi-
tation and its applications in astronomy. Once the laws are set up, theoretically speaking,
plant growth is deterministic and reversible, and there will be no unpredictable complex
phenomena such as chaos and self-organizations. However, based on simplified Newtonian
dynamics, there will be less difficulties in applying modern mathematics on the analysis
and applications of FSPMs. In our thesis, variational methods are investigated.

The philosophy of GreenLab is somehow simplism. That is, if we can find simpler
representation, we will never employ the complex one. On the other hand, the simple
representation of the components should be aggregated together for the phenomena that
are complex enough. The philosophy is similar to that of Prusinkiewicz in his essay on art
and science [93]:

The ultimate goal of modelling nature is to construct simple yet faithful models
of reality.

The development of GreenLab is therefore a constant process of balancing the simplicity

and complexity when choosing and adapting the biological and mathematical knowledge
to form an efficient dynamical plant model useful for a wide variety of applications in
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Figure 2.1: Botany notions and Hallé’s architecture models [57]. a. Foliar axis. (1) Apical
bud (2) Internode (3) Axillary bud (4) Leaf (5) Node (6) Metamer (7) Growth Unit. Plant
growth originates from some specific cellular tissues, the so-called meristems. Elongation of
axis is the functioning results of bud at its tip, the so-called apical bud. Leaves are inserted
into the axis at the nodes. Between two consecutive nodes distinguishes the internode, and
in turn between two internodes is the node. Azillary buds stem at leaf’s axil. A metamer is
a compound of associate organs with an internode, and growth unit is the part of the stem
that corresponds to the growth during a lengthening period. b-e. Architectural models. b.
Leeuwenberg model. c. Rauh model. d. Massart model. e. Troll model. The criteria for
this classification relies mainly on growth mode (continous/rythmic growth, phyllotaxis,
reiteration), branching patterns (sympodial /monopodial), differentiation of vegetative axis
(plagiotropy/orthotropy), the sexuality (apical/lateral position of flowers).

Figure 2.2: Botanic items of a tree, from Figaro
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agronomy and forestry.

This process results in a dynamic representation of the harmony or order of morphogen-
esis in forms of both architecture and geometry on the basis of a small set of mathematical
equations and metamorphic rules. The pure research by simplification is complemented by
an optimization process for the calibration of model parameters to fit the experiment data.
Consequently the basis for simplification is narrowed or widened according to the analysis
of fitting results. In general, the mathematical formalism is employed under botanic con-
straints to find the laws for this “virtual” plant, i.e., recursive equations, equilibrium of
growth, and furthermore calibration and optimization.

2.1.2 Hypothesis

Basic concepts for GreenLab hypothesis are that (i) GreenLab virtual plant is an aver-
age plant; (ii) GreenLab modelling shall be faithful to botanical knowledge; (iii) GreenLab
approach seeks to establish functional-structural dynamics with clear mathematical repre-
sentations based on hypothesis and simplified rules.

Biological hypothesis

The theoretical plant is assumed to be made up of fresh matter that contains about 80%
water (HyO) and 15% of assimilates (HoO + COz). The relative density is then set to
1.0 g/cm? for both plant individuals and assimilates, thus the moisture content (water
divided by total weight) is approximately 0.8. GreenLab takes into account fresh matter
in its calculation. Herein dry matter is assumed to be proportionally related to fresh
matter. The simulator neglects the complex process of root system for water absorption,
and operates only on ariel part, whose biomass is assumed to be proportional to that of
root system.

Phenological hypothesis

Phenological hypothesises specify the temporal-spatio scale of the structural-functional dy-
namics, that is, the temporal and topological organization.

The topological structure is organized as series of a hierarchically ascending scales:
metamer, Growth Unit (GU for short), Bearing Axis (BA), substructure (or branching
structures, or architectural unit, see figure 2.3 for some botanical knowledge), and the
whole plant individual. The metamorphic variations of the architectural atoms, metamers,
are characterized by a notion of Physiological Age (PA) . PA of plant refers to the rule-
controlled metamorphic phases from vegetative development to floral stage. The concept
of PA dates back from the observations of Goethe about the irreversible progressive trans-
form from leafy zone into inflorescence.

The temporal organization is based on the assumption that plants undergo growth
cycles (GC) of a biological clock. During each GC the plant metabolism results in the
emergence of a cohort of new organs. The GC is somehow like the annual cycle of four
seasons, however, the duration of GC is variable and governed by the Law of Sum of
Temperatures (LST) in agronomy (figure 2.4-a). The LST states that it is quite constant
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Figure 2.3: Architectural formation of a whole tree: some botanic notions. The juxtapo-
sition of successive metamers in GU, and that of GUs in bearing axis forms a rhythmic
growth, whereas in continuous growth there is only one metamer in each GU. Trees that
bear annually one GU are called monocyclism, otherwise polycyclism, and the successive
GUs of one year form the annual shoot. The axis comes into being when each of the GU
sequence of the axis is born of the apical bud of the previous one (the so-called monopodial
development). The axis is said to have an order, say i. The order 1 axis grows out of seed.
The axis that is born of the axillary bud of its parent i—order axis is said to have a higher
order ¢+ 1, called bearing axis . By Sympodial development we mean that the axillary bud
takes over the growth behavior of the apical bud, thus the branching structures has the
same order of its parent bearing axis (this process is also called reiteration). The apical
bud can die in this case. For more details about botanic knowledge, we refer to [27], [19],
[3]. Some pictures in this figure are taken from [50].
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Figure 2.4: Laws used in GreenLab a. The law of sum of temperatures. b. Linear
relationship between dry matter production and plant transpiration, figures from CIRAD

for the accumulation of the daily mean temperature above a genetic-based temperature
received for a given plant during each GC. One GC duration can also vary for different
species from a few days (herbacious plants) to one year (temperate trees). The count of
GC is also called thermal time index that marks the plant Chronological Age (CA) . Here
we precise the definition of growth unit in figure 2.1 in that the lengthening period for one
growth unit is one growth cycle.

Remark 2.1 PA and CA

(i) Rivals notes the co-existence of PA and CA [96]. Temporally speaking, during each CA,
plants can bear new organs of different PAs, that is, a bud can be born physiologically old,
i.e. the newly-born short flowered axes. Spatially speaking, along the bearing azis, one can
see the a rank of internodes of different PAs.

(i1) The concepts of both temporal organization of CA and spatial metamorphic organization
of PA give birth to a mathematical description, the reference azxis [60], for the jump of the
status of different PAs along the bearing axis and branches. The refinement of reference
axis leads to the so-called dual-scale automaton that features in its synchronization by the
notion of CA, and it will be presented in the subsequent sections.

Functional hypothesis

GreenLab investigates the functioning of vegetative organs, namely leaves, for the biomass
production to simplify the formularization of plant functional-structural dynamics. At
present, this approach is rather conceptual and intuitive, nevertheless, the inverse methods
for the parameter identification help to decrease the uncertainty of the intuition.

The GreenLab biomass production formulism operates at GC time index. The plant
undergoes transpiration via its hydric apparatus network [2]. Water Use Efficiency (WUE)
is defined as the ratio of photosynthetic carbon gain over water loss. Over sufficient long
cultivar season, the long-period WUE; is quite constant (see figure 2.4-b, [59]). The short-
period WUE; is consider to vary its value when taking into account the variety of the
light and temperature conditions. Simplified formula for biomass production can then be
obtained by combining the transpiration formula ([2], [29]) and WUE notion. Water stress
is not considered.
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It is also assumed that the biomass produced by source organs during a GC is gathered
in a transitory reservation pool, and then entirely distributed into living organs according
to the source-sink relations that settle their competitions for biomass acquisition. The
organ expansion duration and expansion law are supposed to be invariable. Geometric
shape of certain kind of organ does not change either, i.e. the internode always takes the
form of a cylinder or a frustum.

2.1.3 Dynamics formulation

In this section we introduce GreenLab dynamics on organogenesis, functioning, and geo-
metric morphogenesis of organs. The time of the functional-structural dynamics is chosen
to be the absolute time - Chronological Age, and the space is constructed at organ level.

Morphogenesis: organogenesis dynamics

In this subsection we introduce plant organogenesis. Dual-Scale Automaton (DSA) [136] is
reenforced with an emphasis on a Chronological-Age-based dynamics for linear and branch
growth patterns. We aim at a complementary study for [32], and notations follow those in
(32].

Notations

At each GC for one metamer of Physiological Age p, (i) an apical buds (initially set
as seed) forms one GU of a set of new metamers that construct the axis, (ii) each axillary
bud gives birth to one GU that construct the secondary branches. The two kinds of
growth process consequently produce apical or lateral substructures that represent the self-
similarity within the plant whole structure. The new metamers born of both apical and
axillary buds may have the same PA p or a higher PA ¢. Thus the metamer is identified
by 4 indices and denoted as my,(k,n):

e The CA n of the plant.

e The CA k of the metamer, that is, the organs of this metamer have appeared for k
GCs.

e The PA pe P ={1,..., P} of the bearing axis that the metamer belongs.

e The PA g € P, ={0}U{p, ..., P} of the branches that result from the axillary buds
of the metamer.

Here ¢ = 0 indicates no axillary buds, P is the maximal PA, there are totally f(P)
types of metamers:

P
. P(P+3)
P) = 1)= —~— "~ 2.1
EDYEDEES (21)
A metamer may bear several organs of o—type, whose number is denoted by my (k,n)
(0 € O ={e,a, f,c,r}, where e stands for internodes, a for leaves, f for fruits, ¢ for layers
or rings, r for root), as well as apical bud m;‘q(k, n) of number bﬁq and several axillary buds

mf (k,n) of number b},,q € P, = {p,..., P}. Usually b, equals one or zero (death of

q
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Figure 2.5: Dual-scale automaton

apical bud).

Metamers of same CA k at different plant CA, say n and n + 1, have different sizes,
due to the environment oscillations and the change of sink abilities of that type of organ to
attract biomass. However when considering topological structures, the geometry of organs
is not of our interest, therefore metamer mpq(k n) is reduced to m,, with two indices p
and ¢, for buds similarly we have m[ for m2 (k,n), B € B = {A, L}.

Dual-Scale Automaton (DSA) [136]

Now we consider the topological occupation of organogenesis. The Growth Unit of PA
p, denoted as U,, is a succession of metamers m,, repeated r,, times, here ¢ for U, is
chosen from a PA index set Q, C P, according to biological rules or observations. The
bearing axis is a concatenation of GU of different PAs together with the final apical bud.
The apical bud of U, can die or mute to older PA p, after 7,-times repetitions of U,. The
axillary buds of metamer m,, produce U, that starts the growth of the secondary branches.

The process above can be described by dual-scale automaton thanks to the notions of
macrostate and microstate. Microstate is defined to be the metamer that is characterized
by the PA of its bearing axis and the PA of its axillary buds, and macrostate corresponds
to the growth unit. Therefore a macrostate consists of succession of microstates. The con-
catenation of macrostates reflects the rhythmic growth, and forms the topological structure
of the whole plant (figure 2.5).

example 1
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The parameters for the plant is as

P:3,N:9; bpqzl,quQp; T‘13:2,’I"12:1,’r‘23=2;

2.2
T1=5,T2=31m3=1 pp=2u=3,u3=-=. (22)

where e denote death. N is the maximal plant CA. The status transition graph of dual-scale
automaton for this example is shown in figure 2.5. O

Formulation of organogenesis with an emphasis on CA-based dynamics

Diagrams in figure 2.5 are rather direct graphs resulting from the state transitions of
automata. The transition functions for both macrostate and microstate automata are given
descriptively in [136], [130]. We emphasize that DSA is already equipped with concept of
Chronological Age, however, it lacks the description of a CA-based dynamics.

Definition 2.1 We summarize the configuration matrices as follows

( /7 = [Uplixp, Mutation vector of PAs for apical buds
= [To)1xPs Repetition vector for macrostates Uy, p € P
) 907 = [©]1xn, Functioning vector for o-type organ (2.3)
R = [qu]PX(P+1), Repetition matriz for microstate my, in U, ’
B =[b]]pxp, Count matriz for azillary bud in metamer my,
{ Mo = [mg lpx(pr1), Count matriz for organs in metamer mpq,0 € {b, f}

Functioning status ¢ indicate the appearance of o—type organ, precisely 0 for inexis-
tence, 1 for appearance, herein N is the maximal Chronological Age. The p—row of mi-
crostate repetition matriz R signifies the repetition time rp, of metamer my,, in macriostate
U,. When q ¢ Q,, we have 1,, = 0. Usually the occurrences of different types of metamers
comply with a ascending order of q. The first column of R corresponds the repetition time
of metamers that have no axillary buds. The p+1 column of p—row indicates rp, times of
repetition of metamer my, and so on. In the case of all metamers have axillary buds, we
denote R for residue matriz after the erasion of the first column of R (0-valued), similarly
M, for M.

The configuration A is defined as set of configuration matrices
A={,7,R,B,M,}.

Definition 2.2 We define the succession order of metamer occupation in macrostate U,,
that is, for q1,q2 € Q,, succession order,

71 =< G2, (2.4)

means that the apical bud m/, ~gives birth to metamer myq,. The metamer myq, is called
the ascendant of metamer myp,,, and in reverse myg, is the descendant of myp,,. The last
metamer in U, is called Terminal Metamer (TM) of U,. The first index in the ordered
sequence @, 1s denoted by q, and the last q, thus TM of PA p is denoted by myyg.

Definition 2.3 Growth Unit formulation
The Growth Unit U, of PA p is a succession of metamers, each metamer except TM gives
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Figure 2.6: Growth Unit formulation (a) and growth rules (b) for example 1.

birth to its descendant during certain period, the so-called plastonchron, we denote the
formulation of Growth Unit U, for one Growth Cycle as

Up= [] mp. (2.5)

qEQp

The relation a - b means adjacent occupation of metamer a and b on the axis (note that

the relation - bears no commutativity, that is, a-b-c# a-c-b). There are totally > 7y,
q€Qp

plastonchrons in one GC. The sequence qugq follows an implicit ascending order of q.

The Growth Unit formulation of example 1 is shown as in figure 2.6-(a). For the next
GC, the axillary buds m[ and the apical bud of TM m[ will give birth to new Growth
Units according to the following definition of growth rules based on botanic knowledge.

Definition 2.4 Growth rule P:
For growth unit U, that repeats r times in its corresponding bearing axis, the growth rule
for its associated buds mZ, B = {L, T} can be abstracted as

Pg’
P m£q|—>Uq, q € Qp,
Do mzj;@ —U, 1<, (2.6)

o T _
p3 My, —U,, T =1,

The corresponding Uy, T = 7, is called Terminal Growth Unit (TGU).
The growth rules of example 1 are shown as in figure 2.6-(b).
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Definition 2.5 Length function:
The expected number of new buds in some GU U, that result from for bud qu 18 named
length function of metamer my,, denoted lg, and equals to (rule 2.6)

lg(qu) = bfm + Z rlmblm- (27)

meQ;

The length function of growth unit U, is defined as 1g(Uy) = 1g(m}})

example 2 : Holttum model
In this case, we have the maximal PA P = 1, the maximal CA N = n + 1. There is only one
metamer (M = {mo}) for macrostate Uy, that is Uy = m1g. The configuration A is as

R=(1 0),M,=(1 0),B:®,E):(o),?>:(n+1),<p7:I,<p7:(O...0 1)

The growth rules are
P2 : m1T0|—>m10 r<n+1
p3 : mij—e r=n+1

The CA-based organogenesis dynamics is,

G(i)=ml;, i=1,...,n+1. (2.8)

Plant structure dynamics can be considered as a string rewriting process with metamer
{myq(k,n)} as its alphabet governed by growth rules (definition 2.4).

Definition 2.6 Auziliary alphabet. For convenience the parentheses () is used to mark
certain part of the strings, but does not mean any additional operation. When a metamer
myq has dormant buds, it is marked as m,,,, and after its buds grow into new metamers, it
is marked as My, Similar to the notions in [92], one can add auziliary letters to analysis
strings. For instance, let V be extended by Vg =V U{ [, |} and Vx =V U{#}. The words
that are bracketed by | , | are lateral branches. The branches can be covered up by # to
show the marked axis.

example 3: Re-formulation of DSA example 1
From example 1, we have

N =9,P =3,M = {m13,m12, ma3, m30 }

The configuration A is as follows (e denotes the death)

0012 011 0
R=[000 2|,B=[00 1],M.=
1000 000 1

P=( 3 1),7=(23 )@f=I=(111111111)

Growth rules are as (2.6) abstracts. Macrostates U, are interpreted as in figure 2.6-(a) marked
with the accolades { }. We list the organogenesis for each CA as (2.10).

)
o O O
) —
S = =

(2.9)
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CAl: m2;-my,

CA2: (Mi3mgy))? - Mip[{mds}] - {m13 Mo}

CA3: (mi3[mso])? - Mio[(Mas[mag])*{mss}]

“(Mi3[mg])? - Mia[{m3s}] - {m3s - myy}

CA4: (m13[m30])2 -ma2[(Mas [m:’»o])2 (Mi23[mag])” - m3;]
<(M3[M30])? - Mo [(Mas[msp])* {m3s }]
-(M3[mg))? - Mi2[{m3s}] - {m13 Mo}

CA5: (m3[Mso))? - Ml(Mia3[M0])? - (M23[Mizo])? - (Mas[mas])? - {mgg}]
-(M13[M30])* - Mo (M23[Mi30])” - (Mizslmsp])? - mss)]

-(n3[Miz0])® - 2| (Mias[mao])* {mis }]
(M3[mag])® - Mi2[{m3s}] - {mi; - mys}

CA6: (mis[mso))? - mio[(Tos [m:-r,o])2 - (ig3[m3o])? + (Maz[mao])? - {M30}]
-(M13[Mi30])? - Mo [(M23[Mi30])” - (a3 [M30])? - (s [mgg])? - mgg]
-(M13[Mi30])? - M2 [(M23[Miz0])*{ (Maslmag )} - {m33}]
-(m13[mso])? - T [(m23[m30]) - {m33}]

{(M13[mag))? - M12[m3s]} - mds

CAT: (mis[mso))? - mia[(mas[mao])? - (Mas[mao])? - (Mas[Mao])? - {mso}] (2.10)
-(M13[M30])? - Ma[(Mas[Mis0])? - (Mas[miso])? - (Mas[Miso])? - Miso] )
-(m13[migo])? - M2 [(Mas[Mao])?{ (Mig3[Ma0)?} - (Mia3) [mag)? - msg]
-(M13[Mi0])? - Mo [(M23[Miz0])? - (Maz[ms])? - {m3s}]
{(m3[M30])? - Mr2](Miaz[mag])? - m33]}

-(Tig3[ma))” - ms

CA8: (m3[mso])? - Mo (Mas[M30])? - (Maa[Miz0])? - (M23[Miz0])? - Mizo]
«(m3[Mi30])? - Ma[(Mas[Miz0])? - (Mips[mizo])? - (Ma2s[Mizo])? - m30
-(m13[Mis0])? - M2 (Mas[Miso])?{ (Mzs [Mis)?} - (a3 ) [mgg)? - migg)
-(M13[Mi30])? - M [(M23[Miz0])” - (Mia3[M30])? - (Maa[mgg])? - mgg]
-(M13[Mi0])” - M [(M2s[Mizo])” - (Maslmag])? - mag)

(a3 [M30])? - (Mo [mgg))? - mdy

CA9: (mus[mso))? - Miz[(Mos [m30])2 (Mias[Miz0])? - (M2s[Miso])? - Mso]
-(M13[Mi30])? - Mo [(M23[Mi30])” - (a3 [Mi30])? - (a3 [Miz0])* - Maz0]
-(M13[mM30])* - Mo (M23[Miz0])*{ (M23[M30)? } - (M23)[mse]” - mse]
-(M13[mis0])? - Ma2[(Mas[Mao])? - (M2s[Mis0])? - (Mas[Miso])? - M)
-(m13[m0])* - mlz[(mzzs[mso]) - (Mig3[Miz0])?] - (TMig3[m])? - o]
(T23[Mi30])? - (Mia3[Mi30])? - (M3 [mgo])? - g

Botanical analysis of example 3

Take C' A 3 for instance

(Mis[miso])? - o[ (s [msg]) *mis] - (Ms[mmsg])? - Miolm3s] - {ms - my,},

the main azis is

—9 __  _9 _ 2
Myg - M1z - Myg - Mg - My3 - My,

the marked azis is

(Mas#)? - Mot - (Mia#)? - Mio# - mf?, " Myq,

30



CHAPTER 2. INTRODUCTION TO GREENLAB: BASICS, DYNAMICS, AND
MODEL ANALYSIS

and the lateral branches are

[s13] = [s23] = [Miso]; [s12] = [(Toas[m30]) *m33]-

Some botanical notions can be illustrated by growth rules. For instance, sympodial
development (figure 2.3) of a metamer m,, can be simulated by defining a physiological
mutation of death (u, = ) for its apical bud m;‘q, and a reiteration of axillary bud, that
is, ¢ = p. Implementation of rhythmic growth (see figure 2.3, not considered yet in [94]) is
straight-forward by the macrostate/microstate definition. Acrotonic growth of macrostate
U, can be described as

18(8pg;) < 18(Spas) N =G G,90 €D (2.11)

where let length function lg of branch s,,, ¢ € Q, signifies the number of letters other than
[ and | in word s,,.

Substructure concept

Substructure is an efficient simulation algorithm in tree theory based on self-similarities
of plant [32]. In this section we formulate substructure concept and investigate its simula-
tion efficiency.

Definition 2.7 [32] Substructure S,(k,n) is defined as a word whose alphabet is the set of
metamers M = {my,(k,n)lp € P,q € P,}.

Hereafter we investigate plant topological information, thus the index n of my,(k,n) is
omitted.

Definition 2.8 Let array p = {u,,...,pup} andl be its length. Let k, be the array of all
elements of set Q, and my, be the array length. Bearing Azis of PA p is formulated as

I myp
b, = H{H(mu(p),:sp(q))r“(p)’”p(q)}T"(p)- (2.12)

p=1 ¢=1

Definition 2.9 Branching substructure of PA p is defined as the bearing azis b, together
with all the lateral branching substructures (resulting from sprout of lateral buds) that stick
to b,, denoted as S,.

From the definition of branching structure, we can observe a recursive mechanism, that
is, the lateral branching structures are composed of branching structures with same or
higher PAs.

Definition 2.10 Macrostate substructure R, of PA p is defined as the macrostate U, to-
gether with all the lateral branching substructures that stick to U,, denoted as R,.

Both S, and R, can bear new metamers during the GC, as consequently change their
topological structures. We therefore denote S,(k) and R,(k) as the substructures that
appeared k GC before, that is, the substructures has a CA k. When considering CA n
of the whole plant individual, the geometric properties of substructures S,(k) and R, (k)
evolve accordingly, hence substructures are denoted as S,(k,n) and R,(k,n) in this case.
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Therefore the complete plant is S;(n,n). The bud that is destined to bear S, is denoted
as Sp.

Considering tag S1(3) in example 3

S2(2) S3(1) Sa(1)
e - N ~ ~— >
(M13[MM30])? - Mo [(Mizs[mago])*{mis }] - (013 [mgg))? - o [{m3s}] {miy - myp},  (2.13)
R1(3) 51(2)

one can observe that string S;(3) contains recursive calls of chronologically young branch-
ing substructures, i.e. S;(2), and physiologically old branching substructures, i.e. S3(2),
which should be performed before S;(3).

Theorem 2.1 Branching substructure dynamics is governed by the following formulae [32]

Sp(0) = s, (2.14)

Sy(k) = Ry(k)-S,(k—1), 0<k<m, (2.15)

Sp(k) = Tp(k)- Sy, (k—1p), k> 1, (2.16)
with

Ry(k) =TT {maak) Suk— 1)} (2.17)

T,(k) = T R,(1). (2.18)

SP(O) = Sp, 1< p< 3a
S3(k) = mso, Vk > 1,
So(k) = (ma3Ss(k —1))% Sa(k — 1), 0< k<3,
k—2
Sy(k) = l[[k (a3 Ss(1))? S3(k — 3), VE > 3, (2.19)
S1(k) = (m13Ss(k — 1)) - mi2Se(k —1) - Si(k—1), 0< k<5,
k—4
Si(k) = ((nmsiq,(n)2 : mlgsg(l)) - So(k—5), VE>5

Definition 2.11 Complezity definition
The complexity of branching substructure is defined as times of branching substructure
sticking.

Theorem 2.2 ! The complexity of branching substructure dynamics is at most linearly
related to plant CA.

1Observed by Yan et al. [129] and Kang et al. [63], presented in this thesis.
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v

CA

Figure 2.7: Computational sequence of substructure, where ‘o’ signifies substructure at
corresponding grid of PA and CA, and ‘—’ indicates the calculation sequence.

proof

For branching substructure dynamics, let mp,(k) be one application of a branching substructure.
The term [S;(k — 1)]% signifies b,, attachments of S,(k — 1). The increment of sticking times
for branching substructure of PA p at its CA k is denoted wp . Consider theorem 2.1, we have
Vp € P,

wpk = Tpg(l+bpg) +1, 0<k <1, (2.20)
wpe = Tp-Tpg(l+bpg) +1, k> 7p. (2.21)

(a) Suppose that all substructure Sy (k) can be retrieved from substructure library S = {Sp(k),1 <

p < P,1 <k < N}. For whole individual plant, p = 1. Let 8; = maxw; ;, we have wy, = w1 < fi.
K3

(b) When there is no substructure library, one has to firstly set up the substructure library,

the calculation sequence is thus from physiological-old and chronological-young substructure to
physiological-young and chronological-old substructure (figure 2.7). Let g = max wp k, then
P

wE = 25:1 wpr < P- gk Let g = ml?xﬁk,l <k < N, we have wy, < P - 3, that is to say, the
substructure complexity is linearly proportional to number of physiological ages and number of
chronological ages. Figure 2.8 shows the substructure computational graph for example 3.
Note that (1) substructure Sp(k) of maximal PA P is the concatenation of metamer mpg; (2)
once Sp(N) is calculated, the substructure library is constructed simultaneously. We can then
perform more efficient simulation of case (a); and (3) substructure management is not considered
(i.e. queries of substructures).

[ |

Remark 2.2 (i) The plant computation usually concerns with counting processes or draw-
ing procedures of organs. For the former, a number is associated with each substructure; for
a organ drawing procedure, it corresponds to a copy of computer memory for macrostate
or substructure. (ii) The efficiency of theorem 2.2 is obtained by applying substructure
dynamics in a reverse manner with respect to Physiological Age, as in example 4.

The substructure concept is sketched as a highly efficient computational algorithm that
features mainly in that (i) once and for all calculations of substructure instances form a
substructure library for both topological and geometric information; (ii) the strategy, to
be temporally economic at the cost of spatial storage, is carried out in a reverse manner for
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Figure 2.8: Computational graph of substructure S;(5) and S;(8) in example 3 with w5
and w; g as their incremental sticking times of substructures, where ‘o’ signifies substruc-
ture at corresponding grid of PA and CA. Arrows ‘=’ and ‘— —’ indicate sticking of
physiological-old and chronological-young substructures. Note that we just plot the compu-
tational graph for one GC, in fact the graph can be processed recursively, say physiological-
old and chronological-young substructures can be linked to substructure Sy(4) (marked as

o).

drawing and counting process, as is conceptually similar to that of dynamic programming
and that of reverse mode of automatic differentiation. Numerical results for the substruc-
ture efficiency are shown in figure 2.9 employing AMAPsim software.

The disadvantage of substructure approach is the lost of flexibility. For example envi-
ronment conditions are assumed to be optimal, and phylloclimate for metamers are ignored.
When considering varying and heterogeneous environmental conditions within canopy, the
two S3(4) (marked as ‘@’ in figure 2.8) called by S;(5) and S;(8) respectively are topologi-
cally identical but geometrically different, since two Sy(4) undergo different environmental
conditions. We thus have to consider environment differences for each substructure of PA
p and of CA k for the construction of substructure library S, consequently the size of the
substructure library will be enormously increased. For efficient simulation, approximation
methods for environment conditions have to be subtly designed, otherwise one can perform
simulation metamer by metamer governed by growth rules.

Growth rules and substructure dynamics are essentially parallel. For example, (i) all
the buds in one macrostate function in a parallel way for growth rules, (ii) the macrostate
substructure at different CA R,(I) in theorem 2.1 can be performed parallelly. Thus further
improvement of efficiency can be possibly achieved by parallel computing.

Counting process of organ number [32]

Let N (k) be the associated number for counting process of organs in branching sub-
structure Sy(k), according to theorem 2.1, we have

No() = o, (2.22)
Ne(k) = MO(k)+No(k—1), 0<k<m, (2.23)
No(k) = Lok)+ NS (k—m), k>, (2.24)
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Figure 2.9: Complexity comparison between growth rules and substructure dynamics

with

M (k) = erq {mypg + bypg - NJ(k — 1)},
q€Qp
k
Lok) = > M),
l=k—7p+1
example 5: Counting process of leaf number for example 4 [32]
Since each metamer is attached by one leaf (see M, in 2.9), we have
Ne(0) =0, p=1,23,
N&(k) =1, Vk > 1,
N§(k) =2+42N$(k—1)+ N3(k—1), 1<k<3
k
N§(k) = > {2—|—2N (D)} + N§(k —3), Vk >3
iy
N#(k) =3+4+2N§(k—1)+ N§(k—1)+NHk—1), 1<k<5h
k
N}k) = Z {3+2Ng() + Ng(1)} + N§(k —5), Vk>5

we have N§(4) = 3(2 + 2Ny

= 5(5 + N&(4)) + N&(4) = 109.
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Functioning: hydraulic approach

In section 2.1.2, we briefly introduce the basic hypothesis on GreenLab plant functioning.
In this section we will present it in more details.

Problematic

Plant functioning can be roughly simplified as biomass production and allocation. Usu-
ally the physiological knowledge and concepts are originally achieved in process-based mod-
elling or pure physiological research that deals with mechanical process at different levels
from cells to individual leaves, then adapted (if necessary) and spread into the FSPM com-
mittee, since for architecture models there is only plant architecture in the beginning.

For process-based models, the objective is usually the canopy, and organs within the
canopy are not distinguished. The canopy is considered as one big leaf with certain surface
area (notion Leaf Area Index, LAI). Most of the process-based models are constructed
on the base of LAI dynamics, i.e. STICS [16], EPIC [124], TOMGRO [7]. The biomass
production can be calculated based on either light radiation or water transpiration. Both
define the conversion efficiency to be linear for their simplest versions. For the former,
the relation between accumulated biomass and intercepted radiation is defined as Radia-
tion Use Efficiency (RUE [84]) that synthesizes the photosynthesis and respiration process.
TOMGRO and EPIC mainly follow this approach. For the latter, Water Use Efficiency
(WUE) is defined. STICS and CROPSYST [108] mainly follow this approach. As far
as biomass allocation is concerned, Warren-Wilson [123] proposes to consider the plant as
compartments of source and sink for the repartition of assimilation. Some models introduce
the priorities among organs, and it is usually necessary to consider the organ expansion.
TOMGRO follows this approach. An alternative proposed by Spaeth and Sinclair [107]
is to extend the harvest index notion to the dynamic biomass accumulation in grains, as
leads to less parameters. STICS follows this approach.

It is an open problem to model plant biomass production for FSPMs, whereas for
biomass allocation, FSPM modelers tend to assign source-sink relationships for organs to
pilot their competitions for produced biomass [104], [55].

Limited by our background of plant architecture, we urge three criteria for the assim-
ilation of physiological knowledge. (i) The biomass production and allocation shall be
performed at organ level; (ii) the biomass production formula shall be dynamic, rather
than static curves of photosynthetic rate with respect to irradiance, temperature, and CO,
concentration that omit time evolution [113]; (iii) the production formula shall provide
accumulated biomass synchronized by the discrete events of sequent appearance of new
organs, that is, by thermal time index of Growth Cycle.

Existing approaches of biomass production for FSPMs can also be summarized as two
catalogues: light-related photosynthesis and water-related transpiration. For the former,
the modelling follows either scale-up or scale-down strategy. By scale-up, firstly the pho-
tosynthesis of the elements, i.e. metamers, is formularized, then the effects of these basic
elements are aggregated for an overall functioning of the canopy. We refer to RAPT [103]
and LIGNUM [88]. By scale-down, the canopy photosynthesis formula for crop models is
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adapted by assimilating 3D canopy structures [34].

Pure physiological research at leaf level, i.e. that in [113], shall be especially helpful
to FSPM modelers. As Thornley states [113], photosynthesis depends on the past envi-
ronment as well as current environment, thus immediate response of photosynthesis rate
(environment conditions within minutes) and slower process of acclimation (environmental
conditions over the past week or two) are distinguished. As a result, photosynthesis formu-
lae have to balance their time step of simulation according to their proper objectives, i.e.
focus on growth rate or growth accumulation. We have variety of time step from minutes
(RAPT), or days, to years (LIGNUM).

The approach of water-related transpiration aims at the formulae for biomass produc-
tion at somehow coarse time steps, nevertheless these formulae shall be relatively accu-
rate for the accumulated biomass calculation. Although based on synthesis of biological
processes, i.e. photosynthesis, acclimation, and biomass conversion, these formulae are
essentially statistical, rather than mechanical. AMAPpara [29] follows this approach. It is
notable that architectural modelers tend to either investigate physiologically simple pro-
cess of transpiration based on plant hydraulic network at organ level (AMAPhydro [30]), or
provide framework of bidirectional communication between architecture and environment
without focus on physiological aspects [82].

The biomass allocation is termed as irreducible process of substrate transport from
sources to sinks and chemical/biochemical conversions at the sinks [112]. The research
mainly follows three approaches, featured by the controlling mechanisms, universal biolog-
ical laws, and descriptive methods respectively.

By controlling mechanisms, we mean that the substrate transport is driven by transpi-
ration and photosynthesis, and both transport and conversion are governed by a number of
biological process, i.e. competition of meristems (sink strength), influence of local environ-
ment, and biological signals like hormone. The transport-resistance (TR) model is generally
considered as mechanical [112]. In TR model formularization, carbon and nitrogen sub-
strates enter plants through uptake process, and are transported into plant compartments
via transport pathways driven by concentration difference of the substrates. The growth
rates of the compartments consequently depends on the concentration of the substrates
[111].

The universal biological laws aims at ubiquitous principles for living systems, i.e. plants,
animals and microbes. Here we refer to two of them, allometry and teleonomy. The
allometric relationship is defined as the dependence of a biological variable Y on body
mass M by a scaling law [121], [122]

Y = YoM, (2.28)

where b is the scaling exponent and Y; a constant for specific kind of organism. The
biological variables, for instance metabolic rates, heartbeat, or cross-section area of tree
trunks, mostly satisfy the quarter-power scaling (arguable in [64]). In FSPM committee
allometry relations characterize the biomass allocation of different plant parts (say parts ¢
and j) in the form [104]
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W; = aW}, (2.29)

where W is the biomass of the compartment, and a, b empirical constants. The allometric
relations of Growth Unit is given by [29]

h_ .8

> =ad’, (2.30)
where h, o are the length and cross-section area of the GU respectively, and «, 8 empirical
parameters. Whereas teleonomy refers to the assumption that plant growth undergoes
some goal [112], [79], e.g. the functional shoot/root equilibrium for an optimal relative
growth rate, the linear relationship between foliage quantity and cross-sectional area of
woody structures (pipe model [102]), and the tree branch angle maximizing effective leaf
area [58]. It is interesting to note that the allometric scaling law of West et al. [121] is
derived from quantitive analysis under a geometric assumption of space-filling fractal-like
branching network with size-invariant final branch and a teleonomy restriction that re-
quires the energy for resource distribution to be minimized.

By description methods, we mean that the mechanistic knowledge is encapsulated into
the description of observations. One excellent example is the experimentally observed
source-sink relationships accounted by TR model [83]. Substrate flow depends on the
source-sink relationships (synthesis of [104], [112])

dMZ . de . K

R R CRE0] (231)
where 7 indicates the source compartment index, j the sink compartment index, M;, M;
are the substrates of the two compartments, k is the proportional factor, S; is the source
strength of ¢—compartment, P; is the sink strength of j—compartment, and d;; is the
distance between the two compartments. The sink strength is defined as the potential
growth rate of sink compartments [7], that is to say, the potential capacity to accumulate
substrates. Similarly the source strength can be defined as potential capacity of source
compartments to provide substrates. The biomass allocation is therefore regulated by
source-sink relationships. The calibration of parameters of the source-sink models is oblig-
atory due to their description feature.

Concerning the state-of-art of biomass allocation for FSPMs, Sievanen et al. state that
[104]

The distribution of growth that results from source-sink relationships, material
transport and tree-level control mechanisms can be technically incorporated
into FSMs in a fairly straightforward manner. However, it is clear that so far
our biological understanding of the processes involved has not supported very
well this level of modelling.

One can thus naturally have the impression that FSPM modelling in the functioning as-
pect is an active process, in which firstly a coarse framework is set up, then mechanisms
can be added after we clearly understand them, such as hormonal control, sink strength
mechanism, and nonlinear substrate fluid.
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Approach of GreenLab

Before launching GreenLab formularization of biomass production and allocation, we
try to briefly summarize some features of several FSPMs, and an abstract interface is
proposed for the functioning aspect of FSPM.

e LIGNUM narrows itself in specific tree modelling (Scots pine, Pinus sylvestris L.
as the case), and the element unit for the analysis of both metabolism and spatial
structure is chosen to be terminal buds, and tree segment between two branching
points. A tree segment consists of sapwood, heartwood, bark and foliage. There is no
hierarchical organization of architecture units, but LIGNUM claims that it is possible
to adopt AMAP model [60] for the enforcement of the architectural description.
Annual photosynthesis for unit mass of foliage is calculated for each segment, and
the total number of segments is derived by an empirical function of new buds number
with respect to the weight of the parent segment. Pipe model is adapted to its element
units for biomass allocation. Note that the LIGNUM scientists are physiologists, and
their physiological background is relatively solid in FSPM committee. There is a
natural annual synchronization of photosynthesis and organogenesis, however when
LIGNUM intends to be generic, the synchronization might be a problem.

e RAPT features largely in its spatial cellular discretization of the tree canopy, and in
the distribution of environment condition, i.e. light, within the discrete canopy. The
photosynthesis is calculated by Farquhar model [38] considering the density of leaf
and environment conditions in each 3D cell. There is no clear architecture dynamics,
and the validation is at branch level.

e The concept of the Wageningen approach [34] is to couple the crop model with archi-
tectural model. The 3D architectural model provides geometry information of organs
and environment condition (i.e. light level per leaf). The physiological model fur-
nishes number of appearing flowering shoot, and biomass growth rate. The synchro-
nization time step is set artificially and empirically to one week. Their functioning
formulae originate from crop modelling considering canopy 3D features (communi-
cation with 3D architectural model), but not biomass production and allocation at
organ level for individual plant.

e L-systems approach mainly concentrates on providing bidirectional communication
between architecture and environment (see GroGra [65] on growth grammar of L-
systems, and open L-systems for bilateral conceptual model [82]). Concrete and
complete FSPMs based on L-systems thus call for further collaboration between L-
systems modelers and physiologists, i.e. the attempt exemplified in [34].

e AMAPhydro follows the hydraulic approach [29]. Biomass production is calculated
according to linear empirical relationships between leaf evaporation and substrate
assimilation. It adopts pipe model for biomass allocation. Both biomass production
and allocation is implemented at organ level. However, AMAPhydro considers little
about fluctuations of environmental conditions.

GreenLab derives from AMAPhydro, and its strategies in the functioning aspect of
FSPM modelling are mainly:
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e The aim of GreenLab is not to be mechanical, but to provide a theoretical idealtype
of individual plant characterized by its functional-structural dynamics.

e The long-term prediction of accumulated biomass (during each GC) is firstly estab-
lished via hydraulic approach to provide a framework, then the short-term compli-
cations, i.e. daily photosynthesis and respiration, phylloclimate, and the substrate
transport and resistance process, could be possibly incorporated thanks to the de-
tailed analysis of these specific subsystems. Alternatively speaking, the formulariza-
tion of biomass production and allocation for GreenLab is not fixed. An interface,
which lists the functioning formulae (i.e. photosynthesis) and the corresponding in-
put (i.e. phylloclimate conditions of light, temperature, and CO5 concentration), is
provided instead as the bridge to the future complexisation.

e Although the physiological aspect of GreenLab is simple, intuitive, even naive, it shall
be illustrative for the analysis of the phenomenon based on simplified functional-
structural dynamics. GreenLab shall not violate the common sense.

An abstract interface for functioning We emphasize that GreenLab does not intend
to fix its biomass production formulae on the hydraulic approach, but to provide an imple-
mentation of a functioning interface that is defined for the FSPM element unit w as some
nonlinear function,

W) — g, (1), ), weo, (232

Ag = & (T(w),U), w € Qy (2.33)

in either a photosynthesis-like form ®; of growth rate (2.32) or an accumulated one ®,
(2.33), where dq/dt is the biomass production rate, Ag is the accumulated biomass pro-
duction for a given period e.g. one GC in GreenLab , T is the property set associated
with the element unit that can be a voxel cell or a single leaf, U is the environmental
input for the element unit, such as phylloclimate conditions of light, temperature, and soil
water content, T and U are average values during the given period for T and U respec-
tively. The property set T contains typically the volume or surface area of the single leaf,
certain density index for the 3D cell, and the geometric information of the element unit
within canopy. The space {2, can be either the results of structure dynamics governed
by growth rules at discrete time index n, or an occupation of the plant growth in the 3D
cellular canopy. The plant growth system can be considered as a dynamic system with a
dynamic structure (abbreviation DS? in [48]) of functional-structural characteristics. The
total biomass production () is thus the aggregation of these element units,

% _ / ) (Y((0), VW) - Tw) - (2.34)
AQ = / B, (T(w),0) - T(w) - dw, (2.35)

n

where T'(w) is some transform function, when 7'(w) = 1, the total biomass is then the sum
of biomass produced by each element unit. The produced biomass is then allocated into
these element units as
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dg(w(?)) dQ

(2, —), 2.36
where [';,['s are nonlinear functions for biomass allocation, w the growth rate of

element unit w, and Ag(w) the biomass distributed into element unit w at the end of the
given period indexed by n. Let 24 the parameter set for function pair {®;,I'1} or the pair

{®,, 5}

Proposition 2.1 The function ®1 of growth rate in formula (2.32) and @5 of accumulation
in (2.33) can take the same analytical forms at the time interval [to,t], if ®;,0 = {1,2} is
the solution of the following integral equation

’ ftT(t)dt ftU(t)dt
/(I)Z- (Y(t),U(t)) dt = ®; | © o . i=1,2. (2.38)

t—1o t—1o

proof
For certain element unit w, the term T (w(¢)) can be abbreviated as Y(t), and similarly g(w(t))
as ¢(t). Consider the time interval [to, t], we have the averages

T=" , U=" . (2.39)
t—to

Let g(t) = g2, q(to) = ¢1. Considering (2.32) we have

a2 ¢
Bq=a—a= [di= [ (x0),U@) . (2.40)
q1 to
Considering (2.33) and (2.39) we have

fr(t)dt f"U(t)dt
to

to

Aq =, (2.41)

t—ty ' t—to

Associating (2.40) and (2.41), we can see that, function ®; and ®5 take the same analytic forms,
if ®;,7 = {1,2} is the solution of the following integral equation

FT®dt U@
to to

t
Qi T ; :q)l 3
[ e, v a ——
to
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Remark 2.3 The proposition 2.1 indicates that the induction of function form ®, for
accumulated biomass production from growth rate form ®, is not straightforward, e.q. for
parabola or exponential extinction curves ®1 and o take different form. It is necessary to
conduct phystological experiments for the expression form of ®,. However the knowledge
of growth rate form ®1, i.e. the extinction effect of light in photosynthesis, is helpful for
the design of ®,.

Overview of GreenLab functioning GreenLab biomass production follows the approach
of the water-related transpiration. The transpiration is driven by the difference of hydric
potential, which marks water pressure, through the plant organ-level hydraulic network.
Then the notion of Water Use Efficiency outlines the relation between fresh biomass pro-
duction and plant transpiration during one GC. The produced biomass is conceptually
assumed to be held in a central transient pool, and flows without delay into organs accord-
ing to their relative sink strength. The organogenesis dynamics, i.e. number of organs at
each GC, is formulated by growth rules or substructure concept. The time step synchro-
nization between metabolism and structural dynamics is the Growth Cycle.

The functioning during one GC is assumed to be composed of three stages [29] shown
in figure 2.10. Firstly at the beginning of the GC, apical and axillary buds sprout into
new metamers, that is, growth rules are performed. Organs, such as internodes and leaves,
undergo primary growth, and their expansion volumes are calculated according to reserved
fresh biomass, organ relative sink strength, and organ expansion rates. Secondly during
the GC, architecture remains and the fresh biomass is fabricated through transpiration.
Finally at the end of the GC, organs, namely ring (layer) and fruit, develop similarly to
that in primary growth, and the process is called secondary growth.

Biomass production The GreenLab biomass production formulae for the moment are
accumulated ones. In this thesis, we try to propose such formulae for the illustration of
functional-structural dynamics. Our strategy is firstly to be mathematically workable and
clear, then to enrich the FSPM formularization with physiological knowledge. Physiolog-
ical experiments are being conducted at Chinese Agriculture University (Beijing, China),
and experiment data from Wageningen university (Netherland) are being analyzed for the
calibration and formulae design.

Transpiration Water is taken from soil by roots and flows through the plant hydraulic
network up to leaves where it is partially transpired via stomata to provide necessary energy
fluxes for mechanical processes say photosynthesis. For plant hydraulic structures, we refer
to [115], [131] for an Ohm-like analog about the water evaporated by the plant, the plant
resistance, and the hydraulic potential. The Ohm-like law for average plant transpiration
during GC n, denoted I(n), is given by [30]
¥(n)
I(n) = ——, 2.42
") = o (242
where R(n), ¥(n) is the plant average resistance and hydraulic potential of the plant tran-
spiration pathway from root via vessels and leaves to atmosphere at GC n.

Converston Thanks to the notion of Water Use Efficiency [59] [15], whose value is denoted
as 7, the accumulated biomass of GC n is given by
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Figure 2.10: Functioning of one Growth Cycle: (a) allocation of reserved biomass into or-
gans, i.e. leaves and internodes; (b) expansion of functioning organs in the primary growth;
(c) plant transpiration via Ohm-like hydraulic network; (d) fresh biomass fabricated thanks
to Water Use Efficiency notion; (e) allocation of reserved biomass into organs, i.e. fruits
and rings; (f) secondary growth. Pictures from AMAPhydro [29]
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Q) = (o) 100) = () - 3. (2.43)
Let E =7 -V be the biomass production potential [30], we have
_ E(n)
Q(n) = R(n)’ (2.44)

Resistance Fourcaud et al. propose an assembly method to compute the hydraulic equi-
librium, in which the woody hydraulic network is assumed to be formed by a set of hy-
draulic elements (such as leaves, root hairs, and sapwood) whose resistance is calculated
mainly according to their geometric characteristics [40]. We list typical values for hydraulic
resistance (in arbitrary units) [105],

Ground-root interface 5
Architecture (axes, leaves) | 25
Leaf-atmosphere interface | 800

Table 2.1: Typical resistance values of plant hydraulic pathways from root to atmosphere

We thus assume that the major hydraulic resistance lies in leaves, and the plant hydraulic
network consists of parallel vessels from root hairs to leaves. The resistance of each leaf
(indexed 7) complies with Darcy’s law [30],

pici | P2li,
Si Si
where S; is the surface area of i—th leaf, e; the leaf thickness, [ and s the length and
cross-sectional area of the petiole, pi, po the hydraulic resistivity of the blade and the
petiole respectively. We suppose a constant e for all leaves, and the ratio | L js fixed under
allometric rules. The hydraulic resistance of a leaf can thus simplified as in [31] [105]

R = (2.45)

r
Ri = —1+7'2, (246)
Si
where r; is the leaf blade resistance per unit area, and ry is the average resistance of the
network that consists of the nerves and petiole of leaf (typically resistance values are about
r1 = 800,000 and 7, = 0.96). The conductance C' of N, parallel leaves as a whole is

No 4 No 4
C = — = ) 2.47
LR LT 4

Production 1t is well known that plant undergoes growth extinction when light conditions
are intense enough, and a parabola-like response of growth to the variety of temperature
conditions. We thus mimic accumulated plant growth during GC n under temperature and
light environmental conditions as the following empirical formulae (for soil water conditions,
we will formularize in the following sections),

T% _Tmin ot T; _Tmin o
Ei(n) = P, (T(n)j) (1 - 7@7) - P (1 —exp(=kLi(n))), (2.48)
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Ei(n)
Ri(n)’
where F;,T;, L; are the biomass production potential, temperature, and light conditions
for the ¢—th individual leaf, Tiax, Tmin are the maximal and minimal temperatures that
plant can bear, let Q% = {«, 8, P1, P, k} the set of environmental parameters, g;(n) is the
biomass produced at GC n by i—th leaf.

% (n) = (2.49)

Supposing that plant grows in homogeneous canopy for simplification, that is Vi, E; =
E.T; =T, L; = L, plant bears total IV, functioning leaves, and that the transform function
T(w) = 1, we have the total biomass produced at GC n

E(n) = Eu - (%) " <1 - %)H (1= exp(—kL(n))),  (2.50)

> Em)
n) = -7 2.51
Qn) ;swm (251)
where Ey; = Py- Py, and let Qp = {«, 5, E, k} the parameter set for environment factors of
light and temperature, Qg = {ry, 72} the parameter set for hydraulic structures. Note that
in this version light and temperature factors are processed separately. The temperature
response curve takes the form of beta law p(x),

(2.52)

where z = ~~—min_ (0 < z < 1, and B(a, 8) = fo a=l( ﬁld:vthusfo T)dr = 1,

T,
max— Tmm

and when z* = a+ﬂ_2, p(z*) = maxp(z). In (2.50), (a,ﬂ) is aggregated into Ej;. The
parameter set {2 should be calibrated according to experiment data.

Remark 2.4 For the environmental formulae (2.50) of biomass production potential, when
temperature takes optimal value x = x* and L is big enough for plant to function in response
of light extinction, Ey will be a constant value. In this case we thus call plant grows in
optimal environmental conditions. The previous versions of GreenLab work under optimal
environmental conditions, and Eys is empirically set to 1000.

Biomass allocation in GreenLab is determined by the relative sink strength of organs.
The biomass attraction (sink) of an o—type organ of CA k is defined as

dy(k) = PJ¢°(k), (2.53)

where P} is the sink strength of o—type organ that is defined as the organ capacity to attract
biomass, ¢ is the normalized distribution function (or expansion function) characterizing
the evolution of the sink strength from CA 1 to CA 7, #7 being the organ lifespan in GCs.
We chose beta distribution in the discrete form (2.54)-(2.55) for ¢9 which is shown in figure

2.11,
. 1 (k—05\%" k—05\%"
op(k) =5 < " ) (1 - ) : (2.54)

p P
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Figure 2.11: The curve cluster with different values of parameters a, b, t) is set to 63 (total
GCs of CAU sunflower).
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p
The total biomass attraction (or demand) D(n) of plant at GC n is

=> Z ds(k) - AN (n — k), (2.56)
o,p k=1
where AN?(n — k) is the number of o—type organs of PA p and CA k at GC n. Let
Qp = {Ppo, ag,bp} the parameter set for biomass distribution.
Recall the substructure counting formulae (2.22)-(2.26), ANJ(n — k) is then calculated
as the difference of organ numbers between plant GC n — k + 1 and n — k, that is,

ANZ(n — k) = No(n— k+1) — N2(n — k). (2.57)

Note that in this presentation, primary growth and secondary growth are efficiently
processed together. The calculation is thus physiologically false, but mathematically equal
to that of separating two kinds of growths. In practice, the secondary organs in demand
function (2.56) are those of older CA k + 1 with respect to the primary organs of CA k.

The biomass increment Agg(k, n) and total cumulated biomass gy (k, n) of o—type organ
with CA k at current GC n is calculated according to relative sink strength of organs,

Aq;(k, n) = dgég

k

@(k,n) = ZAq;;(j,n — (k—14))

‘Q(n—1), (2.58)

_ o 2’“: o()Qn — (k—j) - 1) (2.59)

! D(n — (k—j))

j=1
Recursive equations of biomass production In this section, we specify the biomass
production formula (2.51). The plant maximal PA of leaves is usually 1, hence the PA

46



CHAPTER 2. INTRODUCTION TO GREENLAB: BASICS, DYNAMICS, AND
MODEL ANALYSIS

index p for leaves is omitted. The leaves are indexed by CA 7 and an integer j that
identifies j—th leaf of all those with CA 4. The biomass production potential of leaves is
therefore denoted as E;;(n) when considering heterogeneous environment conditions. It is
supposed that all the leaves appearing concurrently at GC n — i with the same CA 7 have
the same volume ¢%(i,n) at GC n, each leaf of PA p has a constant thickness e, and its leaf
functioning timespan for photosynthesis is 75 GCs. Let us denote leaf surface as S(i, n).
The biomass production formula is thus

n AN%(n—1i) B (n)
Qn) = v n <7,
-l o1 samt 2.60
7¢ AN%(n—i) B (n) ( : )
— G @
Q(TL) = = an)-l-'&? n>rt,
pe i al - —(i— ) —1

Q) = > X 117]7(71) (2.62)

r ANe(m—i) Eij(n) Y] ¢a(k]))¢(g£7:i(:;c))—l)

= =t : (2.63)

— = g0 k)Qn (i=k)—1)
1=1 7j=1 }337;_’_7. Z (zk))

where 7 = nif n < 7% and 7 = 7% if n > 7% When the canopy is considered to be
homogenous, F;j(n) is reduced to E(n), and the recursive formula (2.63) becomes

+ E(n)AN%(n — 1) Z cb“(k)Q(E;%_—(gi_—kk)))— 1)
Q) =3 : (2.64)
i=1 (ol k (1—k)—1)
Z (i —k))

k=

Furthermore, if plant undergoes and optimal light and temperature conditions, E(n) can
be reduced to Ej;, we thus have the recursive formula in previous version

T AN“(n—l)Z s D(n— (Z( ;C)) D

n)=EyY =l : (2.65)
i= ery 92 (k)Q(n—(i—k)—1
Lot Z e

GreenLab implementation of the functioning interface (2.32)-(2.37) The biomass
production function ®, is as (2.51) shows, and the biomass allocation function I's is as
(2.58) shows. We have the model parameter set
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QA:QEUQHUQD:{Oj,ﬂ,EM,k,T‘l,TQ,PO al b;} (266)

PP

Morphogenesis: geometrical dynamics

This section is reproduced from [32] to keep its mathematical beauty and to complete the
formularization of GreenLab functional-structural dynamics. Primary work dates back to
126], [27].

The geometric information of the substructures is considered to be stored in a 4 x N
matrics of reals describing a set of N points of R* (the projective space associated to R?).
These points record the vertices of a triangulation of the plant shape. The set of these
matrices is denoted Mj. Some operations on M} are introduced, such as the geometrical
transformations represented by 4 x 4 matrices and the internal action of columns concate-
nation represented by the operator &. The neutral element of & is denoted O and it means
the empty 4 x 0 matrix (the matrix of four rows with zero columns).

Four transformations are defined according to botanic observations of plant geometry.

e The translation p,,(k,n) along z—axis in the local metamer coordinate of the length
of the metamer my,(k, n)

e The rotation 6, of the branching angle around the z—axis in the local metamer
coordinates.

e The rotation ¢, of the phyllotaxy angle around the z—axis in the local metamer
coordinates.

e The rotation wy of 27 /b around the z—axis in the local metamer coordinates corre-
sponding to the regular repartition of the buds when appear simultaneously b buds
on an internode.

Omitting the index n in S,(k,n) which is common to all substructures, S,(k) € M
follows the recurrent equations:

Sp(0) = O, (2.67)
Sp(k) = Ry(k,Sp(k—1)), 0 <k <, (2.68)
Sp(k) = Tp(k, S, (k — 7)), k>, (2.69)

with

bpg—1
Qpe(k,.) = X e Mj—my, k), { @ {wﬁpqé‘pSp(k -} X} e M; (2.70)

=0
Rp(ka ) = O Q;qua (271)
qEQp
k—1p+1
T,(k,.) = le R,(l,.) (2.72)
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Figure 2.12: Plant functional-structural dynamics, interaction between functional informa-
tion (fun. info.) and architectural information (arch. info.).

GreenLab functional-structural dynamics

In brief, GreenLab functional-structural dynamics can be illustrated as a quintuplet H =<
M, P, AT Q4 >, where M is alphabet of plant string rewriting system, P is plant growth
rule, A is set of configuration matrices in definition 2.1, F = {®,T'} is the function pair for
biomass production and allocation, whose parameter set is denoted {24. Environmental
conditions U defined in the functioning interface can be considered as the input (control)
of the dynamic system, whereas the property set T can be either model input or measure-
ments.

The functional-structural dynamics provides an overall simulation of the plant phe-
notype development that results from the retroaction between functioning (biomass pro-
duction and allocation) and structure (organogenesis). The influence of architecture in-
formation upon functioning, i.e. number of functioning leaves in the biomass production
formula, is evident. In reverse, the feedback of functioning upon architecture is exemplified
in that the number of organs depends on an empirical function with respect to a quantity
of biomass production divided by demand f (Q/D) [80] (figure 2.12, see also LIGNUM [88]).

Recalling the formularization (1.1) for variational methods in chapter 1, we rewrite the
quintuplet H as a dynamic system in the discrete form,

X(n+1) = F4YX(n),Q4,U(n))
M4(X(n)) (2.73)
X (1) = 0

=
2
i
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associated with some objective index,
I=J%04,06,0(1),...,U(n)). (2.74)

Herein, X(n) is the state variable that signifies the fresh biomass accumulation of 37, Ny (n)
organs. The number of the incremental components of the state variable during GC n is
> 0p ANJ(n). The organ numbers are calculated by growth rule P or the formulae of
structure dynamics (2.22)-(2.26) and that of (2.57). The observation vector Y associated
with state variable X is chosen to be the accumulated organ volume. The objective index
function J? are problem-relevant. The rest notations of the dynamic system (2.73)-(2.74)
are defined in previous sections.

When considering the feedback of functioning upon structure [80], GreenLab dynamic
system (2.73) is close-loop, as possibly empowers the system less sensitive to initial condi-
tions and model parameters.

Once we set up the dynamic system (2.73), variational methods can then be applied to
solve the problem P1-P3 in Lions steps. We will formularize them in chapter 3.

2.2 Calibration of endogenous parameters

In previous versions of GreenLab, model calibration is partially implemented thanks to the
down-to-earth research of Zhan et al. [134], [135]. The idea is that the perturbation of
environment can induce a corresponding oscillation of the calibration results, however, it is
expected that the values of the elements in endogenous parameter set {2 = Qg U Qp will
not change, or change slightly under optimal environmental conditions, since endogenous
factors are independent of environment. The calibration of genetic parameters is performed
to minimize the discrepancy between model output and measurements at organ level with
a constant £ = 1 at each GC by the techniques of Generalized Least Square methods
(GLS) and finite difference scheme. Note that we will discuss the variational formulism of
calibration problem in chapter 3 benefiting from the functional-structural dynamics, and
will conduct numerical experiments for the calibration of environmental parameters {2z in
chapter 5.

In Zhan et al.’s work, the parameters are classified into two catalogues: the direct ones
that can be estimated directly from observations and the hidden ones that can only be
accessed from measurements by inverse methods. Typical parameters for the former are
topological organizations (e.g. the configuration A) and allometric properties (i.e. blade
thickness, scaling coefficients for petiole and that for internode). The latter for the moment
includes hydraulic resistance 2z and source-sink relationships Qp.

Plant grows in terms of spatio-temporal occupation. Consequently experimental mea-
surements or observations are spatio-temporal samples of the plant growth. Usually it is
the case that we are lack of observations, because growth information always leaks under
specific sampling strategies at the discrete time point and over certain parts within canopy.
For GreenLab the sampling is carried out upon axis (spatial organization of PA) one time
every one or several GCs (temporal organization of CA). The resulting measurements in-
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cluding length, diameter, area, and fresh mass of each sampled organ, are aggregated into
the observation set (see [135])

M = {y2%}, (2.75)

1,9,k

where i is i—th axis of total [ axes, j the j—th growth unit (rank) along the axis counted
from the plant stump upwards, k£ the index of measurement types (e.g. 0 for internode
diameter, 1 for internode length, 2 for internode mass, 3 for petiole diameter etc.). Sup-
posing the total ranks and measurement types of i—th axis be u; and v; respectively, the
number of measurement items are therefore

l
M= ;v (2.76)
i=1
The calibration problem can then be written as
|M] ,
; b
e D™ ygw ="yl (2.77)
m=1
In the case of multi-fitting, the problem is
N |[Maq] \
mlnz Z H yl,j, n yzgsk ) (278)
n=1 m=1

where (y; ;%) is the GreenLab simulation result corresponding to m—th measurement
item (7 yf?sk) for n—th GC, N the total number of GCs that we aim to fit. The calibration
results for cotton are listed in table 2.2, multi-fitting results of cotton are shown in figure
2.13.

Qa pe | pe | pe | PF| P" | B,
Cotton || 1.0 | 0.10 | 0.30 | — — 1037
Qa B, | Bf | B, | n T

Cotton || 0.25 | — — | 31 (0.30

Table 2.2: Fitting results of endogenous parameters for cotton, [135], which are pruned
to be “single-stem plant” if necessary in the experiments. There is only one physiological
age, and the index p is omitted. Here C, = a° + 1°, B, = g—o The parameter C, is
fixed for calibration purpose and B, is to be estimated. The notation ‘-’ signifies that the

corresponding parameter is not defined for the species.

2.3 Plant growth under soil water conditions

2.3.1 Soil water balance

2 Plants participate in soil water circulation by transpiration. Water is taken from soil
by roots and flows through the plant hydraulic network up to the leaves, where water is

2The soil moisture model in this section is due to Ph. de Reffye.
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Figure 2.13: Multi-fitting results for cotton, N=3, GC=8,18,27 respectively

transpired to provide necessary energy fluxes for photosynthesis. The water content in
the superior soil layers, named soil moisture, is important for the study of bio-geophysical
processes in agricultural or forestry ecosystems. Soil water balance is achieved when we
simplify this complex soil-plant system by concentrating on plant transpiration, soil evap-
otranspiration, and water supply from both irrigation and precipitations.

Suppose @, (t) is the water content in soil per surface unit. It can be considered as a
potential. The loss of water by evapotranspiration is

dQ., (1)
dt

= —C1 - (Qw(t) - men)a (279)

where (Qumn corresponds to the wilt point of soil water content beneath which the plant
cannot extract water from soil. ¢; is an evapotranspiration coefficient. Likewise, if U(t) is
the water supply at ¢, the water gained by the soil is

dQuw(t)
dt

= cQ(mem - Qw(t))U(t), (280)

where (Qume is the water field capacity above which the water flows away and ¢y is an
absorption coefficient.

The differential equation for the evolution of the soil water content is thus

dQu(t)
dt

{_Cl (Qw(t) - men) + CZ(mew - Qw(t))U(t)} (2.81)
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Figure 2.14: Fitting results of the calibrated soil moisture model, from Ph. de Reftye,
published in [128]

Figure 2.14 shows the fitting results of the calibrated soil moisture model (2.81) using
measurements of the soil water content and rainfalls done in Ivory Coast. Considering
plant transpiration, Equation (2.81) becomes,

dQuw(t
Qoll) _ 0, (Qult) — Qun) + €2 @ums — Qult) -UL)
soil evapot?‘;nspiration water a?)gorption (282)
——

plant transpiration

where PT(t) is the plant transpiration and is linearly proportional to plant biomass pro-
duction calculated by equation (2.51). The discrete form of equation (2.82) at GC scale is
(At =1 GC):

Qun+1)= (1—c;—c3-U(n))Quw(n) + Qumnc1 (2.83)
+mex02 ) U(TL) —pP- Q(n)a
where @, (n) is the soil water content at GC n, U(n) is the water supply during GC n, Q(n)

is the plant biomass production during GC n and p is the ratio between plant transpiration
and plant biomass production.

2.3.2 Soil-plant interaction

Recall the plant hydraulic formula (2.43), supposing that the hydraulic potential from root
to atmosphere is linearly proportional to the soil water content near the root, the biomass
production potential F is thus linearly proportional to the current soil water content:

K - Qw (n) - men
mew - men '

Consider the light, temperature and soil water conditions together, we have

E(n) =
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me:c - men Tmax - Tmin Tmax - Tmin

- (1 — exp(=kL(n))).

Bln) = By 2ol = Qumn (T(n) = Tmin)a_l (1 N M)ﬁ_l (2.84)

Parameter Ej; is the amplitude that combines all three factors (note that x is assembled
into Ej). The association of equations (2.51), (2.84), (2.59) and (2.83) provides the math-
ematical formalism of the soil-plant system that enables us to study interactions between
plant and water resources in soil.

Rewrite the recursive equation (2.64):

R — (i — k)~ 1)
AN =) T i h)
S e Q- K) 1)

Pa T LT D — (i — k)

(2.85)

We implement equation (2.83), (2.84), (2.85), (2.58) and (2.59) in software MiniGreen-
Lab that is compatible with GreenLab in that they share the same configuration files for
model parameters, and provide the same simulation results on biomass production and
allocation under optimal environmental conditions (E(n) = Ey).

2.4 Conclusion

In this chapter GreenLab structure dynamics is introduced, and the empirical environmen-
tal formulae is designed empirically for fresh biomass production potential, as provides a
complete formulation of plant FSPM dynamics. The plant dynamic system can serve as
the base for the applications of applied mathematics, i.e. the subject of this thesis — vari-
ational methods. We exemplify how submodels of environmental factors can be integrated
into GreenLab, taking soil water balance as an example. Further developments are needed
in the design of the biomass production formulae with the corporation of physiologists,
and in the simulation coupling with phylloclimate models. The formulation is ready to be
extended to the case of stochastic plant [73], [63].
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Chapter 3

Variational methods for FSPM
dynamics: theoretical formulation

Résumé

Ce chapitre est consacré a la formulation des méthodes variationnelles basées sur la dynamique de
la structure fonctionnelle des plantes de GreenLab pour différentes applications, c’est & dire, iden-
tification de parametre, assimilation de données, et controle optimal. Les équations adjointes sont
introduites dans les systemes d’optimalité pour le calcul du gradient. Nous montrons également la
flexibilité du formulisme variationnel pour les mémes applications quand une plus petite échelle de
temps dans 'index thermique de temps, cycle de croissance (GC), est prise en considération. Les
systéemes dynamiques de plantes peuvent étre beaucoup plus compliqués, mais avec des méthodes
variationnelles nous réussissons & formuler les équations adjointes pour les nouveaux systémes
d’optimalité dans les échelles raffinées avec de plus petits intervalles de temps.

3.1 Introduction

In this chapter, we formulate plant functional-structural dynamics as a continuous dynamic
system that corresponds to GreenLab discrete system (2.73) in chapter 2.

% = F(XaQA;U)a
Y - M),
I = J(X,U).

Remark 3.1 GreenLab is originally a discrete model at GC time index. When state vari-
able is chosen to be organ fresh biomass, one can hardly obtain a continuous form F along
plant development from seeding to harvest, since the number of organs keeps changing. In
chapter 3 the formulation based on continuous system 3.1 is for the purpose of illustration
of variational methods and their applications. One might arque that the realistic plant dy-
namic system is rather complex, however, it does not change the formulation for concept
Wllustration.

We do succeed in defining a dynamic system in which the state variable dimension is fixed
(chapter 6). In this case system 3.1 is assumed to be the corresponding continuous form

95



3.1. INTRODUCTION

of GreenLab original discrete system, in the sense that given initial condition © and model
input U, if we have a unique GreenLab simulation according to the difference equation of
the recursive formula (2.63), the system (3.1) can be supposed to have unique solution when
additional conditions, e.g. the values of ©,U, are provided.

If we consider plant growth within GCs governed by certain dynamical equation in either
continuous or discrete form with organogenetic differentiation at GC index, the description
for FSPM dynamics can be even more compler. The formulation for this case can be
abstracted as dynamic system with dynamic structure (DS?) [48].

Recalling system (1.1), we list the ingredients [70] defined for a variational method
applied to FSPMs

e State variable X that describes plant growth status.
e Model % = F(X, 4, U) that describes the plant functional-structural dynamics.

e Control U that can be initial condition ©, model input (or control) of environmental
light, temperature and soil water conditions. Here U € U,,, where U,y denotes the
admissible set of control.

e Objective function J that can be either a quantity that measures discrepancy between
model output and observations or some index, e.g. fruit yield.

e Data or observations Y,,,. When observation system M is an identity operator, we
have directly the observation X, of the state variable X.

The variational methods are the algorithms to solve the optimization problem

Join J(U) (3.2)

in the context of variational ingredients.

The cardinal problem is how to link together the model, data and control. The fre-
quently asked questions about data and model are how to fix model parameters from the
observations, that is, the calibration problem P1 in Lions steps, and how to estimate the
model uncertainties when assimilating the diverse information that are distributed locally
in both time and space, that is, the problem of data assimilation P2. The investigation
between model and control leads straightforward to the optimal control problem P3. More
complicate problem can be proposed in the presence of model, data and control together,
that is, the online process of data assimilation and optimal control.

The approach of Lions steps in meteorology has been pioneered by F.-X. Le Dimet
[68], who introduced optimal control theory and started the constant progress of varia-
tional methods applications in environment sciences, i.e. meteorology, oceanography, and
hydrology. It seems that the FSPM community will experience the same history as that in
meteorology, with the model under development, the data under collection, and the request
of estimation and control under implementation. The difficulties impeding the applications
of variational method in FSPM are also similar to those in the early age of the attempts
in meteorology, that is, the model is imperfect and keeps promoted in the direction of
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extreme complex structures (e.g. simulation of the functioning of thousands of leaves),
the collection of data is an onerous work and the observations at organ level are often
sparse. Likewise, one might witness the similar milestones from theoretical prototypes [69]
to operational applications [14] in FSPM community.

Variational problem (3.2) is a typical optimization problem. Up to now, significant ad-
vances have been achieved in optimization theory [45], [133], e.g. large-scale optimization.
To solve problem (3.2) more efficiently, one can benefit from model dynamics for a reduc-
tion of the problem size thanks to the optimal control technique [89], [75]. Furthermore,
the optimal control theory provides a unified formulism framework for the problem P1-P3.

The aim of the second part of the thesis is thus to introduce variational methods and
concepts to FSPMs. In the first attempt, we follow the variational formulism of the theo-
retical prototype with standard procedures [69], then numerical experiments are conducted
to illustrate the functioning of variational methods. Operational applications in FSPMs
are expected in the near future.

The second part is organized as follows. Chapter 3 deals with mainly the detailed for-
mulism of problem P1-P3 using optimal control theory. The formulism is extended to the
case within GCs to show its adaptability. FSPM dynamics within GCs is an implementa-
tion example of interface (2.32), (2.34), (2.36) proposed in chapter 2 in the form of growth
rate. In practice, computational reduction can be achieved by automatic differentiation
techniques that will be introduced in chapter 4. Numerical experiments of variational
methods on model calibration, data assimilation and control are presented in chapter 5
and chapter 6.

3.2 Optimal control techniques for problem P1-P3

We follow the methodology proposed in [69], [72]. Before launching the formulation, we
firstly recall some background knowledge.

Definition 3.1 Directional derivative or Gateaux derivative
Suppose X and Y are Banach spaces, U C X is open, and T : U — Y, then T has a
directional derivative (or Gateauz derivative) T (u, ) in direction o, if and only if

lim T(u+t-a)—T(u)
t—0+ t
extsts.

Definition 3.2 If T'(u, o) can be written as

A

T (u,) = (Z,a) , YV € X,

where (-,-) indicates norm of X, and Z depends on u, then Z is the gradient of T with
respect to u, and is denoted by V,T.

Theorem 3.1 If Gateaux derivative T(u, «) is linear and continuous with respect to o at
u, X is a Hilbert space equipped with norm ( , )y, then there exists a gradient of T at u.
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Definition 3.3 (/1//) Adjoint operator

Given a linear operator A : E — F, and the norm (, )y and (,), are defined in space E
and F. The adjoint of A is the linear operator A* such that for any vector (x,y) in the
suitable spaces

(A, y)p = (2, A"Y)p

When FE and F' are Euclidean spaces, the (, ), and (, ), signify the scalar products. In this
case the adjoint operator takes the form of transposition of matrix, that is A* = A”. By
Reize theorem, the adjoint operator always exists and it is unique, assuming spaces with
finite dimension.

3.2.1 Parameter identification

Supposing that the model input U and initial condition © are known, let K the parameter
vector for calibration, the model dynamics of (3.1) is thus

dt

Xl — pX (1), K(t),
{ i (3.3)

where time-varying parameter K(¢) € KC, K is the space of functions at time interval [T, 71|
equipped with some norm ( , ), defined as

Ty

(U, v) :/(u,v> dt. (3.4)

To

Here ( , ) denotes scalar product. Let the observation system M be the identity operator,
and the observation of state variable denoted X,;s that is distributed on interval [T}, T1],
the parameter {24 is calibrated by minimizing the discrepancy between observations and
model calculations:

/ 1X(8) = Koo (0)] . (3.5)

Gradient calculation

Perturbating K in the direction of h, the model (3.3) and objective function (3.5) become
the Tangent Linear Model (TLM)

{ & = X+ gch. (3.6)
X(To) =0,
and the Gateaux derivative of J
T
J(K, h) = / (X(t) = Xop(), X (1)) . (3.7)
To

28



CHAPTER 3. VARIATIONAL METHODS FOR FSPM DYNAMICS: THEORETICAL
FORMULATION

where X(¢) is perturbation of X(t). After a scalar product by the adjoint variable P on
(3.6) and an integral along [Tp, 7], it comes

/<C§: P>dt—/<§§ X P>dt+/<§—§ h P>dt. (3.8)

To To To

Integrate (3.8) by parts and apply the definition 3.3 on adjoint operator, we have

7 odt X

o (3.9)

+ [ ([2E]" Py dt

X(T)) - P(Ty) — X(Ty) - P(Ty) = }<X dp | [B—F}TP> dt

Note that X(7p) = 0, by imposing
12 1 [9%]" P =X(t) - Xous(t)
dt X 0bs %/ 3.10
{ P(T) =0, ( )
the formula (3.9) becomes
Ty
. oF 1" oF 1"
J(K,B) = / <— [8—K] P,h> dt = <— [8—K} P,h>lc. (3.11)
To

According to definition 3.2, Gateaux derivative J (K, h) in perturbation direction h equals
to (VkJ, h),, thus gradient of J with respect to K is

ViJ = — [g—ir (3.12)

Note that when K is time-invariant, Géateaux derivative J(K, k) in perturbation direction

h becomes
J(K,h) =7<— [S—IF{]TP, h> dt = <—7 [g—i]TPdt,h>. (3.13)

To To
In this case, gradient J(K, k) equals to

T

wr= | [T pus o1

To

3.2.2 Data assimilation

The data assimilation problem is to retrieve the state of the dynamics given diverse ob-
servations, or to predict the state of the dynamics at a given date in the future. Usually
time-dependant or site-dependant parameters are assimilated for the better estimation or
prediction. In the case of plant growth, these parameters can possibly be the unknown
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initial condition © or mis-measured environmental conditions, such as light L(n) and tem-
perature T'(n) at GC n in (2.50).

The formulation of optimality system for data assimilation with respect to environmen-
tal conditions is similar to that of the parameters identification problem in the previous
section. And we list the optimality system for data assimilation with respect to initial
conditions as follows.

Supposing that the model parameter )4 is calibrated, we have,

Model:
Tl = F(X(t))
dt ,
{ X(1y) = ©. (3.15)
Observation discrepancy:
1 f
7©) = 5 [ IX(6) = X (1) . .10
To
TLM:
dX &
Ad—ft) = 3—§ (X(#)) X (1), (3.17)
X(T()) =,

where v is the perturbation on initial condition ©.

Adjoint model:
d T
{ % + [g_x] Q= X(t) - Xobs(t), (3.18)
The gradient of J with respect to © is

Vol = —Q(Tp). (3.19)

3.2.3 Optimal control

The optimal control problem for FSPM dynamics is to determine model input U by opti-
mizing some objective index. In this case the parameter set {24 is known. Supposing that
the uncertainties have been assimilated as in the previous section, the system is written on
[Tl, TQ] as

dt

X — F(X(t),U(t)),
{ = (3.20)

where U(t) € U, and U is the space of functions at time interval [T7,T,] equipped with
norm defined by (3.4) (denoted by (, ),,). The yield index can be chosen as
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T

I:/G(X (t),U () dt (3.21)

Ty

that calculates the yield of vegetable organs (2.59) or the total weight of the plant produc-
tion.

Gradient calculation

We compute the Gateaux derivative of I and model (3.20) in the direction of a perturbation
u on U, it comes

and
[(Uu) = ?(g—g(X(t),U(t))-X(t)+g—g(X(t),U(t)) u) dt
1 (3.23)

- TR+ )

T

After a scalar product with adjoint variable W on (3.22) and an integral on [T}, T5], it
comes

T2 ~ T2 T2

dX oF oF
/<E,W>-dt_/<a—X-X,W>dt+/<ﬁ-u,w>dt. (3.24)
T T T

Integrating by parts, we have

X (1) W (1) - X (T) - W (T) = (X, 4+ [2]" W) ar

T
(3.25)
+ o ([35]" W) de
Note that X (T1) = 0, and by imposing
T T
@ lax) W=l (3.26)
W (Ty) =0,

the formula (3.25) becomes

[ (< 2] Y= [ (2] ) .

T

Substitute (3.27) into 3.23, we have
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[g_G}T,u>} dt (3.28)

According to definition 3.2, gradient of I with respect to U is then

oF1" aG1"
3.2.4 Comparisons

We list the adjoint models for parameters identification, data assimilation and optimal
control problems as follows

P(T1) =0
990 1 9817 = X (t) — Xops (2)
{ 90 1 (3.30)

OF 1T yir _ 19G71T

@+ lox] W =[]
W (T3) =0

It can be seen that these adjoint models differ only in the forcing terms that depend on the

forms of cost functions, i.e. X () — Xy (t) and [g—g]T. The term [6—F]T can be deduced

X
either by hand or by automatic differentiation tools, as possibly leads to reusable work for

the three problem P1-P3. We list their gradients formulae as follows:

VkJ =—[2]"P

Vel = -Q (Tp)
— or T leall
Vol =—[55] W+ [5]
The calculation of these formulae provides efficiently the gradient information for uncon-

strained optimization algorithms, i.e. the general Newton methods introduced in chapter
2.

3.3 Formulation within GCs

We have formulated several optimal control systems for FSPM dynamics at GCs. In this
section, we will illustrate the adaptability of the variational formulism when physiological
knowledge is taken into account within GCs. The concept of abstract interface introduced
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in chapter 2 is employed, that is, we do not denote the functioning formulae explicitly, but
suppose the functioning equation to be differentiable and close given initial or boundary
conditions.

Suppose we have dates T,,T7,...,7T, at which the plant architecture evolves, namely
the interval [Tp,T1] is the duration of growth cycle 1, and likewise [T},_1,T},] the GC n.
The plant FSPM dynamics is given by !,

Within GC ]_, [To,Tl]

{ @ = ALK, Xi € BY N=m, (3.31)
XI(TO) = Xo,
where X is the state variable for the newly-born n; organs.
Within GC 2, [T, T5]
X (T 3.32
XQ(TI):[Ol(l)}, (3.3

where X, is the state variable for Ny organs at GC 2, and there are ny, newly-born organs.

Likewise within GC k, [Tj_1, Tk]

k
XK = F(Xg, Ki), Xy € RV, N, =Y n,,
=

):;(Tk_l) _ [ OXkl(Tkl) ] | (3.33)

where X, is the state variable for Ny organs at GC k (there are ny newly-born organs),
and parameter K; € Iy, Ky, is the space of functions at time interval [Ty _1, T;] equipped
with norm defined by (3.4) denoted by ( , )x,. Note that the organ number N and ny are
calculated according to substructure dynamics (2.22)-(2.26).

3.3.1 Parameters identification

Let K = {Kj, ..., K,} be the unknown parameters. On each interval [T} 1, T] we have ob-
servations Xj. The problem is to identify the parameters K by minimizing the discrepancy
between observations and model calculations:

2

dt. (3.34)

J(K>=§ij§ / %6 - %t

Gradient calculation

Pertubating K in the direction of h = [hy, ..., h,] on Ky, ..., K,, the model (3.31)-(3.33)
becomes

1F.-X. Le Dimet contributes greatly to the formulation in this section
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Xy _ R (X, K,) X+ 2 (Xk,Kk) b,

);Z(Tk—l) = [ ())(kl(Tkl) } ’ (3.35)
and the Gateaux derivative of J is
n Tk
J®h) =3 / (X5 (1) = Ry (1), X (1)) (3.36)
i=1p”

where X is the perturbation of Xj.

Denote Pi, ..., P, the adjoint variable. After the scalar product with adjoint variable
Py on (3.33) and the integral on [Ty_1,7T}| , it comes

n

S i (S nya = 5 f (g KR

1=1T)_1

T (3.37)
n k
+> f <6F’c hk,Pk> dt,
1=1Tp 4
where < , > is the scalar product in RV¢. Integrate (3.37) by parts,
> [(Xe (1), P (1)) = (X (Tir) , Pe (The) )|
i=1
I
n ip, [0F 1"
- / <X'c o [axk] 'P'“> “
i=lp? F (3.38)
In
Ty,
n aFk T
= ——| - Py, hy )dt.
: / <[6KJ b ’“>
ZZlTk—l
I
For term [, considering the sum of £ and £ — 1 item,
<Xk (Tk) , Pe (Tk)> - <Xk (Tx1), Pe (ka1)> + (3:39)
<Xk71 (T 1), P (Tk71)> — <Xk71 (Tx—2) , P (Tk72)> :
Note that in (3.39),
. X1 (T
Xi(Ty—1) = [0 -1(Ti) } ;
and considering Euclidean product
Ni—1
<Xk—1 (Tx-1) , Pi (Tk—1)> = z Xj_1 (Th—1) - Pe—1 (Ti—1), (3.40)
i=1
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(R0 (D) P (T) ) = 3 X (Th) - PiTic)
Neo (3.41)
= Z:Zl Xk (Tx-1) - Pe(Ti—1),

where the superscript i of )A(}'C(Tk,l) denotes the i-th component of vector )A(k(Tk,l), im-
posing

P{Ty 1) = P} (Ty 1), i=1,2,...,Ny 1, k=1,...,n—1, (3.42)

the term I; becomes

the term I; becomes 0.
For term I, in (3.38), imposing
4 %TP—X -X k=1,...,n (3.44)
dt an k — 4%k ks — Lyl .

A

and comparing with (3.36), we have I, = J(K, h).

We rewrite term I3 in vector form

I; = zn: < {S—I?;rp’“ hk> . (3.45)

Equation (3.38) then becomes

A

J(K,h) = —I; =< Vi J, h >, (3.46)

where

b,
The gradient of J with respect to K is therefore
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(] 7

VeI =| |28 B |- (3.47)

o oT
AR,

The adjoint model of the optimal control system (3.31)-(3.34), are the association of
equation (3.42)-(3.44).

3.3.2 Optimal control

The formulation of optimal control within GCs is similar to that of parameters identifica-
tion in the previous section. We summarize the results as follows:

Model:

Within GC 1, i.e. the internal [T}, 7]

Xm = F1 (X1 Ul) X1 € RNI N1 =N
’ ’ ’ 3.48
{E s (348)
Within GC 2 [T3, T3]
dx2 = F, (X,,Uy), X € RN, Ny = ny + no,
X (T 3.49
XQ(T1)=[01(1)]. (5.49)
Within GC & [kala Tk]
k
A = Fy, (X, Uy), X € RN, N = >y,
=1 (3.50)
X 1(Tk_
Xk(Tkl):[Ok 1(k1):|.
Yield index:
Z / Gr (X (1), Uy (1)) dt, (3.51)
Tk—1

where U = [U; U, ... Un] , and U, € U,. Here U, is the space of functions at time
interval [Ty, Tx] equipped with norm (, ),, defined by (3.4).

TLM of model (3.50)

Bk = S (X, Up) X + 20 (Xi, Up)

):; (Tos) = [ 3%1 (Ti—1) ] ’ (3.52)
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where uy, is the perturbation of Uy, u = [uj uy ... u,

"

Adjoint model:

T T
d OF] oG
%—i_[ﬁ} Qk:[ﬁ] , k=1,...,n,
Q(Th1) = Qi (Thot), i=1,2... Ny, k=1,...,n—1, (3.53)

The gradient of I with respect U is
( -3F1 | -aGl T \
— o] @t m]

- 1 r T
Vig=| —[28] @+ ﬁ} . (3.54)

Ak (oG, 1"
— n n
\ |30, | @n + _BUH} /

3.3.3 Identification of GC intervals

The dates 11,15, ..., T, can either be set empirically, or obtained by solving the following
optimization problem:

2

X (t) — X (t)|| dt

. T
min J = kz—:lfT’“‘l

Tr T

(3.55)
st 0 S Tk — Tk—l S Dm,

[T 0 () dt = Tyum,

Th—1
where X (t) satisfies the model dynamics, D,, is the maximal duration of GC, 0 (t) the
environmental temperature, and Ty, the sum of temperatures needed for the emergence
of new organs during the GC.

3.4 Conclusion

In this chapter, we formulate several optimal control systems at and within GCs to illustrate
the adaptability of variational formulism, however, no numerical experiments are presented
for the case within GCs in this thesis due to the absence of the physiological knowledge
that are suitable to be integrated into GreenLab within GCs.
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Chapter 4

Variational methods for numerical
purpose: automatic differentiation
techniques

Résumé

Ce chapitre concerne les méthodes numériques de I'approche variationnelle. Nous appliquons
les techniques de la différentiation automatiques (AD) pour simplifier la création du code adjoint.
La théorie de la différentiation automatique est briévement présentée. Le rapport entre AD et
I’équation adjointe est également étudié. Ensuite, nous récapitulons les étapes d’écriture du code
adjoint & la main, ligne par ligne, et présentons les expériences préliminaire pour 1’écriture du
code adjoint dans le cadre du projet GreenLab.

4.1 Introduction

From the variational problems formulation in chapter 3, one can observe that the model
dynamics yields efficient gradient calculations. With model simulations and gradient infor-
mation, these variational problems are solved by numerical optimization algorithms (see
Newton methods in section A.3.1) in following chapters. However, GreenLab is a simulation
program and the state variable — definition of X in system (3.1) — is not well recognized,
as is different from the case in meteorology that state variables are clearly defined. The
derivation of adjoint model (or adjoint code) is therefore difficult. In this thesis, we evalu-
ate two solutions to this difficulty: one is to rewrite plant growth model in a systematic way
(section 6.4) and then derive its adjoint model (adjoint computation approach in section
6.6.4); the other is to resort to Automatic Differentiation (AD) techniques, which will be
introduced in great details in this chapter. Note that in section 4.2.4, we illustrate the
close relationships between AD and adjoint models.

This chapter is arranged as follows. In section 4.1, we present a general introduction
of AD. Section 4.2 is dedicated to its theoretical aspects. The differentiation rule (4.36) is
derived in details. In section 4.3, we apply AD techniques line by line to GreenLab source
code (implemented in MATLAB, and Scilab version also exists) based on differentiation
rule. We mainly record the process and the experiences for AD coding by hand. Since
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detailed formulation of GreenLab problem P2-P3 will be presented afterwards in chapter
6, we will postpone the validation results of adjoint code for these problems in subsequent
corresponding sections.

AD is a set of techniques based on the mechanical application of the chain rule
to obtain derivatives of a function given as a computer program. AD exploits
the fact that every computer program, no matter how complicated, executes a
sequence of elementary arithmetic operations such as additions or elementary
functions. By applying the chain rule of derivative calculus repeatedly to these
operations, derivatives of arbitrary order can be computed automatically, and
accurate to working precision.

Introductionary remarks about AD at autodiff.org

AD is different from symbolic differentiation and approximations by finite differences.
For algebraically simple functions, it is natural to exploit symbolic differentiation to ob-
tain explicit derivative expressions according to differentiation rules. However, for complex
functions with large number of variables, the analytic expression for gradient or Hessian
can be tedious and error-prone, or even impossible.

The gradient can also be approximated by finite differences of function values for suit-
able chosen intervals [46]. Suppose a program computing function y = F(X), F : R — R,
the approximation of the directional derivative F'(X,dX) can be computed by forward
difference

F(X+¢-dX) - F(X)

F'(X,dX) = - , (4.1)

where dX is some normalized direction, € is some very small positive number. If X is
n-dimensional vector, the forward difference formula has to be evaluated for n times to
obtain the gradient. Although carefully choose of difference formulae leads to less function
evaluation times, the cost ratio between the function and its derivatives is proportional to
n. Furthermore, it is a dilemma to find the right . Truncation error of Taylor series occurs
when ¢ is not small enough. When ¢ tends to zero, consequently the round-off error of
¢ cannot be neglected because of the machine’s floating-point format. For more accurate
gradients, trade-off between rounding error and truncation error is needed in finding the
best ¢, and usually it takes numerous additional executions of F' [90]. Nevertheless the
calculated derivatives are just approximations.

AD is superior to symbolic differentiation and finite difference approximation thanks to
its accuracy and efficiency [52]. Firstly, AD incurs no truncation errors at all. AD exploits
systematic application of chain rule and elementary differential calculus, as is somehow
like symbolic differentiation. However AD differs in that the chain rule is applied to actual
numbers rather than algebraic expressions. There are no auxiliary symbolic variables, but
a differentiation trace, which is usually derived from the original programs. Secondly, a
key point is that the chain rule can be applied in various ways. One of those variants is the
so-called reverse, bottom-up, backward or cotangent linear mode, which yields gradients
at no more than five times the number of operations needed for the evaluation of the un-
derlying scalar function. The reverse mode computes the sensitivity of the function output
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with respect to intermediate variables and propagates from one statement to the previous
statement according to the chain rule. In contrast, the so-called direct, top-down, forward
or tangent linear mode computes sensitivity of intermediate variables with respect to input
variables and propagates from one statement to the next according to the chain rule.

AD is used in the areas, such as sensitivity analysis, optimal design, optimal control,
and inverse problem (refer to 823 entries of publication collections on AD theory and appli-
catioins at autodiff.org), where derivatives evaluation forms the bottleneck. For instance,
in data assimilation [69] of geophysical flows such as atmosphere, ocean, rivers, aquifers,
AD has been widely exploited to obtain the gradients of residual forms with respect to ini-
tial conditions and other unknown quantities. The residues usually take the form of sum
squares between the observations and predictions in the geophysical flows. The calculation
may involve millions of variables. It is almost impossible to employ gradients without AD
for minimization algorithms.

Currently there are several software implementations of automatic differentiation. These
software differ in both common and distinct features regarding supported language (For-
tran, C, C++4, MATLAB), derivative order, application mode of chain rule (forward or
reverse), implementation techniques (source-to-source transformation or overloading). We
refer to some of them, TAMC [49], ADIFOR [10], Odyssée [39] for Fortran, ADMAT [119]
for MATLAB, ADIC [11] for C, and ADOLC [53] for C and C++.

4.2 Theoretical aspects

4.2.1 Origin

Automatic differentiation has a long history, arguably dating back to Newton and Leibniz
in their applications of derivative calculations to numbers [54]. In 1970s and early 1980s,
algorithmic transformation of programs to compute derivatives in reverse mode was real-
ized by a number of researchers. In the pioneer work of Speelpenning (1980, surveyed in
[53]), in order to avoid the explosion of algebraic expressions when deriving the symbolic
differentiation of some functions F' expressed as m dependent variables Y with respect to
n independent variables X, he investigated into an optimizing compiler to the source code
that can be generated from the symbolic representation of the derivatives.

In his thesis he advocated the differentiation of evaluation algorithms rather than for-
mulae, and made the striking observation that the gradient of a scalar function (m = 1)
can always be obtained for no more than five times the evaluation of the function itself,
and for m-vector function the row-wise computation of Jacobian matrix costs no more than
5 x m times the effort of evaluating the vector function. The upbound is independent of
the number of variables. When the dimension of the vector function m is larger than n,
the Jacobian matrix can be obtained more cheaply column by column through propagating
gradients forward.

Speelpenning example [52]

The function which Speelpenning evaluates is
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x(n+1) = x(1)

for i = n+2, ..., 2n
x(1) = x(i-n) * x(i-1)

end for

y = x(2n)

Figure 4.1: Function evaluation (also called direct code) of Speelpenning example

y=f(@)=]]= (4.2)

9
ai:H@. (4.3)

For each component obtained by symbolic differentiation, n — 1 multiplications are needed.
It is almost the same calculation load as the function itself. Let us denote the work ratio
w between the gradient and the function as follows [52],

_work{f,Vf}
Y work {f}

therefore for symbolic differentiation w o< n. For finite difference the calculation load can
be even more time-consuming. At first sight it seems that the proportional complexity
with respect to variable dimension n is inevitable.

(4.4)

Speelpenning starts from sequential programs rather than explicit expressions for the
function evaluation, and then he extends the programs to evaluate the function and gra-
dient simultaneously.

The sequential program (pseudocode) of f is as in figure 4.1
All the quantities are allocated in a single array x, with the first n elements x(i), i=1,..,n
as input or independent variables (a:i>i:1,___,n, and with the subsequent elements x(i),
i=n+1, ..,2n as intermediate variables

<$n+i>z‘:1,...,n = ij‘ (4.5)
7j=1

The last element x(2n) is then assigned to the output or dependent variable y.

It is natural to evaluate the gradients of intermediate quantities <x”+i>i:1,...,n with re-
spect to independent variables according to the chain rule in a forward manner as in figure
4.2. Note that these intermediate quantities (x,.;) are calculated by smooth functions
that possess gradients Vz,,; with respect to n independent variables. Each intermediate
quantity z; is associated with its corresponding gradient Vz;. And at the end we have the
gradient of the function Vzy,. The scheme involves n?/2 multiplications, and the work
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x(n+1) = x(1)
Vx(n+1) = e(1)

for i = n+2, ..., 2n

x(1) = x(i-n) * x(i-1)
end for
y = x(2n)
Vy = Vx(2n)

Vx(i) = e(i-n) * x(i-1) + x(i-n) * Vx(i-1)

Figure 4.2: Forward differentiation (also called tangent code) of Speelpenning example.

Here e(i) is the cardinal unit vector of n dimension

ratio is therefore w = n/2.

It is Speelpenning that is the first to discover that calculation efficiency can be achieved
by accompanying each variable x;,7 = 1,...,2n with some scalar quantity, say z;, and
propagating these scalar quantities in a reverse manner. He defined the scalar quantity Z;

as follows
. of
T; =
635/
thus
n i—n n
o Il =; o\ Il z- II =
T — af _  \j=t _ \g=t U j=itatl
v 9z ox; - Ox;
n
= J[ =z i=n+1,...,2n.
Jj=t—n+1
From (4.7), we have the recursive equation for Z;,i =n+1,...,2n,
n n
Ti—1 = H ﬁUj = Tj—n H iL'j
j=i—n j=t—n+1
= Tij_pn " T;, 2=n+1,,2n

Especially when ¢ = 2n, T, = 1.

For i = 1,...n, considering (4.3), (4.6), we have

i—1

n
Zj H Tj = Tpti-1* Tnti-
1 j=itl

of

T; =
8.’Ei

j:

(4.6)

(4.7)

(4.9)

The formulae (4.7) and (4.9) pilot the calculation of scalar quantities Z;,i = 1,...,2n
with the initial condition Z5, = 1 in the reverse manner, as is shown in figure 4.3. The
calculation of function and gradient consists of 3n — 3 multiplications in the reverse scheme
in figure 4.3, therefore the work ratio w = 3. In the following section, this reverse approach

is generalized as automatic differentiation technique in the reverse mode.
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x(n+1) = x(1)

for i = n+2, ..., 2n
x(1) = x(i-n) * x(i-1)

end for

y = x(2n)

x(2n) = 1;

for i = 2n, ..., nt2
x(i-1) = x(i) * x(i-n);
x(i-n) = x(i) * x(i-1);

end for

x(1) = x(n+1);
Vy = (x(1)), i =1, .., n

Figure 4.3: Reverse differentiation (also called adjoint code) of Speelpenning example

4.2.2 Differentiation algorithms

In this section, we formulate the differentiation rule in AD algorithms. For extremely
details, please see [52], [54], [49], and [119]. We follows mainly the notations and the
presentation in the monograph of Griewank [54]. Firstly the evaluation procedure [54] for
the calculation of function in sequential programs is introduced, then the chain rules for
differentiation is investigated following the results of Giering and Kaminski [49], finally we
propose and prove the equivalence between the differentiation rule and the definition of
adjoint variable in automatic differentiation theory.

Evaluation procedures

Considering function

y=f(x):DCR"'— R™ (4.10)

which is evaluated by sequential program procedure, we assume that all quantities v;
calculated during the function evaluation are recorded as a sequence as:

Vi—ns---500 , V1,025, V—m; Vi-m+1,---,0 . (411)
— N ~~ o
X y

We catalogue {v;} as independent variables, intermediate variables and dependent variable
[119]:

X = {v1—n, .-, Vo } independent variables,
v = {v1,v9, .., Vi } intermediate variables, (4.12)
vy ={v mi1,--- 0} dependent variables.

Each quantity v; of intermediate and dependent variables is calculated by program code
of one line or an elemental function f; with respect to its arguments {v,}, in which j < i.
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Figure 4.4: Computational Graph for evaluation procedure, similar to that of [54]

< means the relation that v; depends directly on v;. When v; is in the argument set, we
have 7 < ¢. That is

Vi = fi({vj}j<z’)- (4'13)

The evaluation procedure can also be illustrated as a computational graph in figure 4.4.

Chain rules

Let vi = fi(vi~ 1), fi : R s R with v the vector of all the quantities [vy_n, ..., v]".
At each step i, v; of v¢ is updated according to (4.13) from all the {vj}; L of vl The
rest of the quantities of v* remain the same as those of vi~!, that is:

fl . R" s R™H
X — vl
i n+l ntl g _
‘Rji_ljﬁ , 1=2,...,l—m (4.14)
fl-mtl. Rntly R™
viemis y
The function (4.10) is then evaluated by the composition,
l-m+1 |
f=f "o . oftf= O f. (4.15)
i=1
l
Here the notation o denotes function on the intermediate results at each step, and () is
i=1
the composition of [ steps. The Jacobian matrix of f is defined as
_of; . .
Jij(x0) = e 1<i<n,1<j<m (4.16)
J Ix=xg
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for i-th component f; with respect to j—th variable x;, where x( is some initial quantity.
By applying chain rule, we have

afl*m'f'l afl
J(Xo) = W —m LS 8— . (417)
v vi-m—= '(:)1 fi(vo) X X=Xg
Precisely Jacobian of f,i = 2,...,] — m with respect to v¢~! is
( 1 0 -0 . 0\
0 1 -0 - - -0
ot (vitY) 0 0 - 1 - .0
A= ovicl | ciin CGaan - Ci1 ci - o- 0f7 (4.18)
0 0 . ) .1 -0
\ 0 0 . ) . 1)
where
ofi : .
Cij = f, l-n<j<ll<i<l (4.19)
an
Denote v°, v+l € R™ ag vectors of all quantities whose corresponding components

are X, y respectively, and rewrite 1, fI=™+! as f1 . v0 s v1 oAbl o ylom oy lomtd
Jacobian of 1" and f'=™1/ then take the form of (4.18), that is,

8f1"
A = —
1 8VO 7
(4.20)
afl—m—i—l,/
Alm —_ .
l +1 avlfm
Hence Jacobian of f!, f'=™*! can be denoted by
of!
bl — A,-PT
ox Lone
(4.21)
8flfm+1
W = Qm : Al—m—|—17
where
P,=[I,0,...,0] € R Q.. =10,...,0,1] € R™*(n+D, (4.22)
There are at least two strategies for the evaluation of Jacobian J(x¢). By performing in
the forward mode we start the matrix association from the right, i.e. firstly % . %ix, then
multiple ‘g—‘f; at the left side of the results. All the intermediate results have n columns,

1 . . .
because %ix has n columns. In contrast, in the reverse mode we start from the association
l—m+1 l—m . . . .
from the left, namely a;v,_m . 6“?,f_m_1 , and so on. The intermediate results in this case have
m rows. When n > m, the reverse mode calculation costs less time, as we have addressed

above in the introduction to the work of Speelpenning.
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Differentiation in forward and reverse modes

Denote

vh = Vi|x0 =f'(x)o j% £7(vi~1) (4.23)

X=X0

Define the adjoint variable of an intermediate variable as sensitivity of f;, 1 < &k < m
(k-th component of f) with respect to this intermediate variable itself similar to (4.6) as

. l-m
V= Vi ( O FHH of,g—m+1(vl—m)> = Viifilyi (4.24)
j=i+1 vi
0
when 7 = 0, we have the value X, for adjoint variable X with respect to xg,
X0 = Vify|y, > (4.25)

when ¢ = [ —m + 1, we have the value y} o for adjoint variable y; with respect to x,

Yro = Vyfil,y, = 1. (4.26)

Let v¢ be the perturbation on intermediate variable v', by definition 3.2, we have

f,(v!, ") = (¥, v"). (4.27)
By chain rule, perturbation v depends on previous perturbation v~
vz’ — of* "/.z'—l
avi_l i— i—
vitt=vy! (4.28)
- A | 1 1 Z 1

With A; equal to (4.18), we have the differentiation formulae in forward mode

vi o= Zv;'fl gy, jEI;
j=1 (4.29)
Vi o= Vi k#4,1<k<n+l,

where [; is the set of argument indexes of f;, that is j € [;, given v; = f; ({Uj}j<i)’ | ;|
signifies the total number of arguments of f;. Since for £ # i, there is no change for
perturbation v%, the superscript i of vi is therefore neglected, and we rewrite (4.29) in
scalar form as follows

|15

b= Y0, jET
j=1 (4.30)
0 = U, k% i.
Formula (4.27) holds for each intermediate variable v¢, we have
f, (vi,v)) = (v, v, (4.31)
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hence
SASEICAER Y (4.32)
Substitute (4.28) into (4.32), and then apply the definition of adjoint operator 3.3, we have
(viL vl = <v Al it -vi*1> - <AZ-T i -vi,vi*1>, (4.33)
that is
vl = AT v (4.34)

0

With A; equal to (4.18), we have the differentiation formulae in reverse mode:

‘_/'Z_l = \_/';; =+ \_/':: . Ci,k, k € Ii, k‘ 7é 7
\_/'::_1 = \_/';: " Cig, kel k=1 (435)
vitl o= ¥ k¢ I

Since for k € I;, k # i, there are no changes of adjoint variables, and for k& € I;, there are
accumulations of adjoint variables. The superscript 7 of ¥ can therefore be neglected. We
rewrite (4.35) in scalar form as follows:

T = @,cmz--g_g;, kel k+#i
v = U g—ﬁ, 1< (4.36)
v, = 0, i A1

Proposition 4.1 By performing the differentiation rule (4.36) with adjoint variables y
initialized as I, and with intermediate adjoint variables v' initialized as 0, the results of
backward propagation of the differentiation rule provide the gradient.

proof ! Suppose that a procedure (4.11) evaluate function (4.15). For each intermediate function
f’, its Jacobian is as (4.18).

Perturbating x with %, according to chain rule, we have

Y = QmAi_mi1... A2A Pl % (4.37)
The propagation of intermediate variable satisfies (4.28). We rewrite (4.37) as

[ y ] — T (%), (4.38)

with v/ denoting all intermediate perturbation [o1, ... ﬁl_m]T, and with operator T denoting tan-
gent linear model (TLM) of the composite function (4.15).

According to the differentiation rule in matrix form (4.34), with some initial quantities [y, %']”
the backward propagation is

?

!The presentation and proof of the equivalence are inspired by the discussion with Marc Honnorat
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Input X, x — 01,v1 = ... = U, Vi = ... = Vi_m, Vi—_m — Output y,y

Figure 4.5: Differentiation diagram in forward mode, where v; is differentiated according

to rule (4.30).

x" =P, ATAY ... AL, QLy". (4.39)
We rewrite (4.39) as follows,

:—c:A([g,D, (4.40)
where A denotes the operator of adjoint model of the composite function. Now we check the
inner product <[ z’./_, ] , [ g, ]>

(P D (e [2])
(4.41)

That is,
<[§,],[z,]>:<sc,i). (4.42)
Setting
y=1,v'=0, (4.43)
we have
y = (x,%) (4.44)
By the definition 3.2, we have
(4.45)

The differentiation diagrams in forward and reverse modes are shown in figure 4.5 and

figure 4.6 respectively.
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Inputx —v1—> ... =2 v, —...—> Viem
d
Output y
Input y =1
Input v/ =0
i
Output X =V, f, 01+ ... 0; ... Ulem

Figure 4.6: Differentiation diagram in reverse mode, where #; is differentiated according to
rule (4.36).

y = exp(x1)*(4%x172 + 2*x272 + 4*x1*x2 + 1);

Figure 4.7: Direct code of function (4.46)

Example

Considering the following function

y = f(z1,32) = exp (z1) - (423 + 223 + 4z120 + 225 + 1) (4.46)

used in the demo of MATLAB optimization toolbox, its gradient is

ng =y +exp(x1) - (8z1 + 4z3),
O — exp (1) - (4z1 + 42s +2).

Oxo

(4.47)

The MATLAB code of function (4.46) may look like as in figure 4.7,

Let xlad, x2ad, yad be the adjoint variables of x1, x2, and y, the adjoint code de-
rived by differentiation rule (4.36) is as figure 4.8

The input of this piece of adjoint code is x1, x2, yad, and its output is y, xlad,
x2ad, thus we denote a subroutine named fun_ad. One call of this subroutine is exemplified
in figure 4.9. Note that the adjoint variable is initialized according to formula (4.43), and
the running results [xlad, x2ad] provide exactly the gradient (4.47) at [x1, x2].

y = exp(x1)*(4%x172 + 2%x272 + 4*x1*x2 + 1)

xlad = xlad + yad * (y + exp(xl) * (8xxl + 4%x2));
x2ad = x2ad + yad * exp(xl) * (4*x1 + 4%x2 + 2);
yad = O;

Figure 4.8: Adjoint code of function (4.46)
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% initialization

xlad = 0;
x2ad = 0;
yad = 1;

% call the adjoint subroutine
[xlad, x2ad, y] = fun.ad (yad, x1, x2);

Figure 4.9: Gradient calculation using adjoint code

4.2.3 Differentiability and complexity [54]

In practice, program code usually consists of thousands or even millions of lines with
complex structures like loops, switches, and subroutines. The concepts is that whatever
the structure is, the program can be considered as a sequence of elementary arithmetic
operations, i.e. +, -, ¥/ /, nonlinear functions of a single argument, i.e. exp(), and if-then
thresholds. The sequence of evaluation procedure represents arbitrary f as a composition
function of its elemental components f; (4.13), which are selected from certain set I":

I'={c =+, X, /,exp,sin,...}. (4.48)

The computational graph of the evaluation procedure is as figure 4.4 shows. Supposing
fi € T satisfies elemental differentiability (ED) as follows [54]

Assumption ED: All elemental function f; are d times continuously differentiable on
open domains D;, that is f; € C4(D;),0 < d < oo.

with the following proposition (chain rule)

Proposition 4.2 [54] Under assumption ED, for the functiony = f(xz):z € D C R —
R, which is defined by evaluation procedure, we have f € C%(D),0 < d < 0.

When all the elemental functions are smooth ones like + - * /, sin(), exp(), the com-
posite function f is at least once continuously differentiable. If the evaluation procedure
contains nondifferentiable functions like sign() and max(), the composite funtion is direc-
tionally differentiable.

AD techniques ensure a priori bounds upon the cost of evaluating derivative with that
of evaluating function itself as a reference. When considering accesses to memory hierarchy,
vectorization and parallelism in multiprocessor systems, the realistic complexity modelling
is more difficult than the counting process of additions, multiplications and other arithmetic
operations. In order to achieve complete analysis of complexity, Griewank developed a
flexible complexity model that regards extended programs as additive parts of evaluation
procedures (For extreme details, see [54]).

Adjoint and tangent code for elemental sequences

In this section we derive the adjoint and tangent code for function (4.46) in form of el-
emental function sequence that satisfies the ED assumption. The evaluation procedures
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are therefore concatenations of elemental functions that are taken from set (4.48). Re-
alistic derivation of adjoint and tangent is similar when substituting elemental functions
with composite functions (one line of evaluation code), and processing adjoint derivation
according to differentiation formula (4.36). Note that there is no variable overwriting of v;
in the example, thus no additional safeguard of these variable values is needed, whereas in
practical applications, the safeguard demands special caution, as is usually a dilemma of
space and efficiency that is the main subject of check-point algorithm of Griewank. The
derivation is shown as in figure 4.10.

By setting (x1, x2) = (—1,1) and (x1tg, x2tg) = (0, 1), the output of tangent code
(b) gives ;—wj;. With intermediate adjoint variables viad, i=-1,0,..,9 and input variables

xlad, x2ad initialized as as zero, and with the adjoint variable yad equal to one, the
output of adjoint code (c) provides the numerical values of the gradient:

dlad = 52, (xLx2)=(~1,1)
x1,x2)=(-1,1
ad — 2L (4.49)

922 | (x1,x2)=(~1,1)

4.2.4 AD in the viewpoint of discrete adjoint model

In this section we try to elucidate the link between variational formulism in chapter 3 and
AD techniques via the formulation of discrete adjoint model, for details we refere to the
work of [137].

For numerical simulation purpose the variational formulation of the model in system
(3.1) and adjoint equations (3.30) has to be discretized. We usually build the adjoint
model directly from a discrete forward model, rather than by discretizing these continu-
ous adjoint equations (3.30), such that the computational inconsistency can be avoided
[137]. AD techniques, especially differentiation rules in matrix form (4.34), are interpreted
as the transposition of the matrices that correspond to tangent code [137], [49] to calcu-

late the item of transposed Jacobian [g—f;]T P in (3.30), where P is the adjoint variable [81].

We illustrate the relation between AD and adjoint model in the case of data assimilation
problem, in which the model (3.15) and the cost function (3.16) are discretized and denoted

X(t;) = Dosyr (X)X (1)

4.50
= Dyo1Disg. . Dy (X) X () (4.50)

and

%) = 13 (% =%, (X, - X)), @s1)

where n is the total number of time intervals on which observations X, are available, and
the dynamic model is as

X (t,) = Dy (X)X (1) , (4.52)
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x1 = -1 % model direct ...

x2 = 1;

vl = Xl; x1 = _1;

v0 = x2; x2 = 1;

vl = exp(v_1); vl = x1;

v2 =4 x v_.1 © 2; o

v3 =2 *x v0O ~ 2; y = v9

vd =4 x vO *x v_1;

ve = 2 % v0; % Initialize adjoint of
v6 = v2 + v3; % intermediate variables
vl = vd + v5; % viad and input variables
v8 = v6 + v7; % xjad equal to zero;

v9 = vl % v8;

y = v9; yad = 1.0;

(a) v9ad = v9ad + yad;

x1 = -1; xltg = 0.0; yad = 0.0;

x2 = 1: thg =1 O, Viad = Vlad + V9ad*v8;
vl = 31 ’ v8ad = v8ad + v9adkvi;
V_].tg = Xltg, v9ad = OO;

v0 = x2: v6ad = vbad + v8ad;

vOtg = x2tg; v7ad = v7ad + v8ad;

vl = exp (V_l); v8ad = 0.0;

Vltg = vl * V_1g' vd4ad = v4ad + V7ad;

v2 =4 xv.1 " 2: vbad = vbad + V7ad;

v2tg = 8 * v_1 * v_1tg; v7ad = 0.0;

v3 =2 % v0 -~ 2: v2ad = v2ad + v6ad,;

v3tg = 4 * v0 *,VOtg' v3ad = v3ad + v6ad;

vd = 4 x vO * v_1; véad = 0.0;

vatg = 4%vOtgHv_l + 4*v0xv_ltg; vOad = vad + 2xv5ad;

vE = 2 x v0: vbad = 0.0;

V5tg = 2 * vOtg; v0ad = v0ad + vdad*4*v_1;
V6 = v2 4 v3: v_lad = v_lad + vdad*4*v0;
vétg = v2tg + v3tg; vdad = 0.0;

v7 = vA + v5: vl0ad = vO0ad + v3ad * 4xv0Q;
v7tg = vidtg + vbtg; v3ad = 0.0;

v8 = v6 + v7 + 1: v_lad = v_lad + v2ad#*8%v_1;
v8tg = vbtg + v7tg; v2ad = 0.0;

v9 = vi % v8: v_lad = v_lad + vliad * exp(v_1);
votg = vitg * v8 + vl * v8tg; viad =0.0;

v = v9; x2ad = vOad;

y-tg = ‘;gtg' Xiad = V_1ad;

(b) (c)

Figure 4.10: Direct code (a), tangent (b) and adjoint (c) of function (2.34) in form of
elemental sequence
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where D, ;,,(X) is the nonlinear operator corresponding to the model. Herein let X,, =
X (t,=T1),Xy = X(t; =Tp). Perturbating (4.50) and (4.51), we have tangent linear
model (TLM)

A A

X(t) = Aosr (X)X (t1)

5 4.53
= Aot Ay (X)X (1) (4:53)
and
J (Xo) = <(X . 5{) X> (4.54)
r=1
According to definition 3.2,
J(Xo) = <vx0J, 5(0>. (4.55)

Substituting (4.53) into (4.54) (note that X, = X (t,)), then associate the results with
(4.55) and apply the definition 3.3 on adjoint operator, we have

(Vo) Xo) = <§nj (X,—Xr),AO_,T(X)XO>

r=1

(4.56)
- <z AT (X) (X, - X,),X0> .
r=1
That is
Vx,d =Y AT, (X) (Xr - X) (4.57)
r=1
where
AZ—)O (X) = AT—)OAg—H o 'Azﬂ—n«—l (X) . (4'58)
Let
d,=X,-X,, r=1,...n (4.59)

Considering the evaluation structure (4.58), (4.57) can be rewritten in recursive form [14],

VXOJ = Z AZ—)O (X) dr

r=1
= AlLoA3,1en- AL g An s (X) dut

(4.60)
AT A7, (X) do+

AT—>0 (X) dy
= Al [di+ A7, [do+ ...+ AT, (X)dn]...].
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By introducing adjoint model

X1 = AL, (X) (X, +4d,), r=mn,...,1,
X, =0, (4.61)
and associating (4.60) and (4.61), the gradient is thus
Vx,J = Xj. (4.62)

In fact, the adjoint model can be partly implemented based on AD techniques. Suppose
that program code, which implements direct model of D,_;_,, (X), is as

Dr—l—)r (X) - FN (VN) .. F2 (Vg) F1 (Vl) , (463)

where matrix F;,¢ = 1,..., N represents either a piece of code or a subroutine, V; rep-
resents intermediate variables. Then the tangent linear model (4.53) and adjoint model
(4.61) can be obtained by forward and reverse mode of AD respectively according to dif-
ferentiation rule in matrix form (4.28) and (4.34). That is

A'r—l—)r (X) = AN e A2A1 (X)

Ay = %5 i=1,... N (4.64)
and
AT, (X)=ATAL . AT (X). (4.65)

Implementing model (4.61) with resulting AD adjoint code (4.65), the gradient is given
by (4.62). When cost function takes the form other than (4.51), by properly introduc-
ing adjoint model (4.61), we can obtain similar results of AD coding (4.65) and gradient
calculation (4.62) [137].

4.3 Practical AD coding by hand for GreenLab prob-
lem P2-P3

In this section we deal with the implementation of AD or adjoint techniques applied to
GreenLab source code. There do exist AD tools like ADMAT [119] or ADiMAT [118], how-
ever, the former employs the technique of operator overloading and cannot process matrices
with more than 3 dimensions; and the latter follows the source-to-source approach but con-
centrates only on the forward mode of differentiation. With these deficiencies in mind we
apply AD in both forward and reverse modes directly line by line based on the source code
(thus called AD by hand).

In practice, we follow three steps: preprocessing, differentiation and postprocessing.
GreenLab AD coding experiences, which are usually problem-independent, are recorded in
this section. Note that validation results for GreenLab optimal control and data assimila-
tion problems in the postprocessing step are presented in the sections subsequent to the
problem formulation sections in chapter 6.
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| main I |gl_main I
Y Y h 4 \4 \ 4 \ 4 / v

| subl | | subl || subl | |g|_read ” gl_topo ” gl_demand [1 Calculation loop of

Growth Cycle
o e T
(@) (b)

Figure 4.11: A general code tree (a), and the code tree (b) for the the GreenLab imple-
mentation of the recursive equation (2.64), the parts in the circle need to be differentiated.

x = QSW, QTW; TP - Q;

QSW — E; sumiaj — TPM;
QTW — Q; QO — QTp;

Q — sumiaj, QO; QTp — QT;
E— TPM; QT — CostJ;
TPM — TP,

Figure 4.12: Variable trace of the code in figure 4.11-(b). Here v; — v; indicates that v;
depends directly on v;.

4.3.1 Preprocessing — Code analysis

The treatment of preprocessing is the code analysis that prepares for the differentiation. It
is mainly composed of the determination of code tree that helps to locate the code needed to
be differentiated, and the variables trace that is used to pilot the differentiation sequence.

Code tree

The code tree describes the calling relationships of all the subroutines in the source code
of a numerical model, as is shown in figure 4.11. We need to distinguish the simulation
parts, which calculate the dynamics and cost function and need to be differentiated, from
auxiliary subroutines like data reading and saving.

Variable trace

The variables trace records the sequence (4.11) and the computational graph (figure 4.4).
The variables in the variable trace are those that depend directly or indirectly on the
independent variables and thus have influences on the cost function. These variables are
called active. The constants or other auxiliary variables that are not listed in variable trace
are called passive. Each active variable is associated with an adjoint variable, and the code
for its calculation is differentiated according to differentiation rule (4.36) to construct an
adjoint statement. There is no need of adjoint statements for passive variables. Part of
variables trace for the code in figure 4.11-(b) is shown in figure 4.12.
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subroutine Z = sub(T)
expression 1 do I=1,N
expression 2 Expression 7
if (condition) then Expression 8
expression 3 end do
expression 4 expression 9
else expression 10
expression 5
Q= SU_bl(P) return
expression 6 end subroutine
endif

Figure 4.13: Source code of a general subroutine, taken from [81].

4.3.2 Differentiation — Coding techniques

The code of numerical model is usually written in standard programming languages that
consist mainly of only a few elements, such as assignments, conditional statements, loops,
subroutine calls and I/O statements, as makes it possible to develop automatic differen-
tiation tools [49]. In this section we firstly conduct AD coding for a general subroutine
that covers most of the programming structures, then some specific coding techniques are
introduced.

AD coding for a general subroutine

Suppose that a subroutine is shown as in figure 4.13. Its adjoint code (figure 4.14 can be
obtained by firstly recalling the direct code and safeguarding the variables in trace, i.e. in
figure 4.12, into some tape (can be either a big array or a file), and then reversing the code
and applying differentiation rule (4.36) to each line of the general subroutine, if necessary,
reading the variables values from the tape.

Specific techniques

Treatment of matrix intrinsic functions and operators For the scientific program-
ming language based on matrix operation, i.e. MATLAB and Scilab, the differentiation for
their intrinsic functions and operators demands one step further of the differentiation rule
(4.36) taking into account of matrix features. Take the intrinsic function ‘sum’ as example,
the direct code is

QT (:,1) = sum (QTp, 2),
where QTp € [M] that has n columns. That is

QT 1) =) QTp(i,j) i=1,...,m.
j=1
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subroutine [Z, adT] = ad_sub (T, adZ) % differentiation code

% direct code

save 1

expression 1

save 2

expression 2

testl = condition

if (condition) then
save 3
expression 3

save 4
expression 4
else
save b
expression 5
save subl
Q = sub(P)
save 6
expression 6
end if
dol=1,N
save 7
expression 7
save 8
expression 38
end do
save 9
expression 9
save 10

expression 10

load 10
ad_expression 10
load 9
ad_expression 9
do | = N:-1:1
load 8
ad_expression 8
load 7
ad_expression 7
end do
if (testl) then
load 4
ad_expression 4
load 3
ad_expression 3
else
load 6
ad_expression 6
load subl
[Q.adP] = ad_sub1(P, adQ)
load 5
ad_expression 5
end if
load 2
ad_expression 2
load 1
ad_expression 1

return
end subroutine ad_sub

Figure 4.14: Adjoint code of the general subroutine in figure 4.13, taken from [81].
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saveQT = QT;
QT(:,1) =sum(QTp,2);

(a) direct code

QT = saveQT;

sztemp = size(QTp);

QTpad = QTpad+QTad*ones(1,sztemp(2));
QTad = 0;

(b) adjoint code

Figure 4.15: Adjoint coding example about intrinsic matrix function sum.

fori = 1:N
for p = 1:maxp
if i j= Tu_O(id_B,1,m)
tt =1;
end
refer to tt

end % for p
end % fori

(a) direct code

fori = N:-1:1
for p = maxp:-1:1
if i j= Tu_O(id_B,1,m)
tt = i;
end

refer to tt

end % for p
end % for i

(b) adjoint code

Figure 4.16: Adjoint coding example about the treatment of passive variables.

Let QTad,QTpad be the adjoint variables of QT,QTp, applying differentiation rule (4.36),
we have

QTpad (4, j) = QTpad (i, ) + QTad (3) i=1...m,j=1...n.

The MATLAB implementation of formula above is shown as figure 4.15.

Treatment of passive variables Passive variables influence the value of cost function
too, although there are no adjoint statements associated with them. The positions of pas-
sive variables are flexible in the adjoint code regardless of the reverse manner of adjoint
coding. The principle is that whenever a passive variable is referred to in the adjoint code,
its value should be exactly the same as that in the corresponding direct code. For example,
in the direct code of the GreenLab recursive formulae 2.64 the simulation of plant growth
depends on the leaf functioning 7 (in direct code denoted tt, figure 4.16), which is a passive
variable and is less than leaf functioning timespan 7, that is stored in Tu_O(id_B,1,m). The
corresponding adjoint code concerning 7¢ is shown as follows.

Treatment of denominators Some numerator terms in direct code may become denom-
inators after differentiation, such as intrinsic function SQRT. When these terms become

zero, the output of TLM or adjoint code will be NaN. Add a small number ¢ to the
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ew_val = y."(K1-1) .* (1-y)."(K2-1) /Normwt;

(a) direct code

flagyO =0 yad = yad + ew_valad / Normwt *
if y==0 ((K1-1)*y."(K1-2)*(1-y)." (K2-1)-y." (K1-1)
flagy0 = 1; * (K2-1) * (1-y)." (K2-2));
y = y+eps; ew_valad= 0;
end
if flagy0 ==1
flagyl = 0; y = y-eps;
if y==1 end
flagyl = 1; if flagyl == 1;
y = y-€ps; y = y+eps;
end end

(b) adjoint code

Figure 4.17: Adjoint coding example about the treatment of denominators, where eps is a
small real number chosen as the floating point relative accuracy.

denominator in this case, as the following example indicates in figure 4.17.

4.3.3 Postprocessing — Validation

Let us denote y = D (z) any block of direct code, with 0y = A (dx) representing its TLM
and Z = AT (y) representing its adjoint. The validation process follows the approach in
[137]. We present the validation formulae in this section, and the numerical validation
results are shown in chapter 6.

Validation of TLM code
Perturbating direct code, according to Taylor series we have
D (x4 ah) — D (z) =aA(h)+ O (a|h]]). (4.66)

With o — 0, we check the function f («)

. . . D(z+ah)—D(z)
lim flo) = lim ==am (4.67)

for the correctness of TLM code.
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Validation of adjoint code

Both TLM and adjoint are linear model. Imposing a perturbation A to the TLM, we have
the following algebraic identity

(AR)" Ah = KT AT (Ah) = hT (AT (Ah)) . (4.68)
The check procedure is then
e Generate h.
e Given h, run TLM and record the result y = Ah.
e Evaluate scalar product y7y.
e Given y, run the adjoint code and record the result z.
e Evaluate scalar product h''z.

e Evaluate the identity y’y = hTz. If this identity is valid within machine accuracy,
than the adjoint code is correct.
Validation of gradient

The check of gradient is similar to the validation of TLM. Suppose that cost function with
respect to control z can be denoted as J (), its Taylor series,

J(x+ah)—J(z) =a(VyJ, h)+ O (a]h])- (4.69)
With o — 0, we check the function f («):
. _ i J(zt+ah)—J(z)
lim f(e) = lim =7 (4.70)
= 1.

4.4 Conclusion

In essence AD is the technique of gradient calculation for an optimization algorithm, espe-
cially for local ones that needs gradients. AD in reverse mode has a close relationship with
adjoint model. In this chapter several issues on how to perform automatic differentiation
by hand are introduced. We record some experiences on which we develop adjoint code
for numerical solutions of the GreenLab optimal control problem and the data assimilation
problem in chapter 6. The adjoint code can improve the performance of gradient-based
optimization algorithms profoundly, in particular for those of which the cost function is
time-consuming and there are enormous variables to optimize (exemplified in section 6.6,

table 6.7).
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Chapter 5

Variational methods applications I:
model calibration

Résumé

L’identification des parametres environnementaux est la matiére principale. Nous réalisons les
expériences jumelles pour produire des données artificielles d’observation pour l'identification. Les
méthodes variationnelles sont utilisées pour retrouver les valeurs des parameétres. Les alogrithmes
de Levenberg-Marquardt est adopté pour I'optimisation itérative. Les gradients sont calculés par
différence finie, puisque il y’a que quatre parameétres a identifier. Les résultats de calibrage
dans ce chapitre montrent Pefficacité et la praticabilité de 'approche variationnelle. Les valeurs
du parametre peuvent toujours étre identifiées, de toute facon les conditions environnementales
fluctuent quand la période d’expansion de la feuille est considérablement longue. L’influence des
erreurs d’observation sur les résultats de calibrage est également étudiée.

5.1 Introduction

The calibration problem (P1) answers partly the question that which values of model pa-
rameters should be taken once the model has been set up. It is also called an inverse
problem, and the algorithms that resolve the problem are thus named as inverse methods.
In most cases it involves minimization of a sum of least squares that measure the difference
between model simulation results and corresponding observations.

Calibration should be the first step for GreenLab to be applicable. Let us denote a
vector function g that encapsulates GreenLab FSPM dynamics

{my’i,j,k} = g(QAa ®a U): (51)

where O is the initial condition, i.e. seed volume, U is the model input, such as light and
temperature environmental conditions, {"y; .} is GreenLab simulation results, whose su-
perscripts and subscripts are defined as the observation set (2.75), 24 are model parameters
defined as (2.66):

93



5.2. SEVERAL ISSUES FOR THE CALIBRATION PROBLEM

Qs = QeUQr =05 UQpUQg (5.2)
Qo = {ri,r} U{P), ap,by} (5.3)
QE = {EMak:aa ﬁ} (54)

Here we suppose that parameter K is time-invariant. The calibration problem can be
formulated either by variational formulism as optimality system (see chapter 3),

.
X (T()) = @,
2 = [T P+X () -X(), (5.5)
P(Tl) = Oa
T -
| 1K) = X -X H
with its gradient as
nror7”
wa= [ v
a8 7, LOK (5.6)
or by introducing vector function (5.1) as minimization of a sum of square terms
M
mlnz |9(Q24,06,0) =" yzg‘ka (5.7)

where | M| is as (2.76) shows, yz"gsk is as (2.75) shows, and K is the parameter set to be
calibrated.

Note that in practice, objective function I(K) usually contains regularization term for
the optimization algorithms to escape from local optima, however in this chapter no regu-
larization is considered in order to investigate the effect of observation errors for calibration.
We will introduce regularization term in section 6.7.3.

In previous studies, the calibration is performed mainly for endogenous parameter set
Qe (K = Qg) [30], [134] based on a constant biomass production potential £ under op-
timal environmental conditions (K = Qg). In this chapter, the calibration is extended to
varying environmental conditions. We conduct numerical experiments for the calibration
of environmental parameter set Qp (K = Q) under the assumption that the endogenous
parameters are independent of fluctuating environment [33].

In the following sections, we will discuss several issues on calibration problem (5.7) and
(5.5), then the numerical experiments and calibration results will be presented.

5.2 Several issues for the calibration problem

5.2.1 Optimization algorithm for least squares problem

We employ LM methods in the form of Moré [85] for the parameter identification (see
section A.5 in appendix A for algorithm details). An interface is developed under MATLAB
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environment (Fortran MEX) for the academic software MINPACK-1 that implements LM
methods in Fortran.

5.2.2 Gradient calculation

In general, the gradient of the calibration problem for numerical algorithms can be obtained
by either finite difference scheme such as the forward formula (4.1) or by its alternative,
AD techniques introduced in chapter 4. The finite difference scheme is employed in this
chapter, and the applications of AD techniques are postponed to chapter 6, which is mainly
due to

e The LM algorithms take advantage of the special structure of the gradient (A.15)
and Hessian matrix (A.16) of the least squares problems, as leads to efficient iterative
process.

e The implementation of AD by hand is a tedious and error-prone process, and there
is only 4 elements in {2z needed to be calibrated.

e For large-scale problems in which enormous parameters need to be optimized, the
optimality system say (5.5) shall be crucial (see data assimilation problem in chapter
6).

5.2.3 Validation

The model validation is to evaluate the prediction error of model output {™y; ,x} using
calibrated parameter K*. The input YU and the observation {mef’fk} for the model
validation should be independent of those of “U and {“™y¢%, 1 for calibration. The initial
condition ¥® and model input VU for validation should be provided by related studies
(e.g. similar to that of data assimilation problems in meteorology). The relative prediction

error 0 can be examined, for instance, by

N
> 3 g (K*Y 0,V U) — Vimyebs, |1°

n=14,j,k

5=

) (5-8)

N b 12
> 3 Ve

n=14,5,k
where the left subscript n signifies the GC index, N is the total number of GCs for which
observations are measured.

5.2.4 Observation error, ill-posed calibration problem

Introducing dynamics, function (5.1) can be rewritten as

{Pyiiet = (=TYijk 24,0, U). (5.9)

Considering observation error and model error, we add error item ¢ , which is chosen to be
a random variable with uniform distribution, to the function (5.9), that is,

Sy ) = f (jﬂyi,j,k,g 1,0, U) te (5.10)
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The variable ™y; ; . then becomes a stochastic one 5™y, ;. The calibration has to be as-
sociated with the uncertainty of ¢.

A problem is well-posed if its solution exists, is unique and depends continuously on
the data. It becomes an #ll-posed one when it fails to satisfy at least one of these criteria
[56]. By ill-posed calibration problem, we mean that the calibration results K* may be
non-unique, or change dramatically with respect to slight perturbation to observation data.
If (i) there is no observation error, (ii) the map from parameter set {24 and model output
{"™vi;k} (equation (5.1)) is bijective, the calibration is always well-posed. If not, the
regularization of the sum of the least squares (5.7) by some strictly positive definite term
is a general way to handle the ill-posed problem.

5.3 Numeric experiments

In this section, we conduct numerical experiments for the calibration of environmental
parameter {2g, in which mainly three factors are investigated, they are, the environmental
fluctuations, the effect of leaf expansion lifespan, and the observation errors.

All the numerical experiments herein and hereafter employ artificial observations that
are generated by twin erperiments. The twin experiments are usually conducted when the
in situ observations are not ready or impossible to be accessed [132], [135]. Its aim is thus
to show the effectiveness and robustness of the working schedule or algorithms. In our
case, it can be formulated as

{ ikt = 9('Qs, 0,0), (5.11)

where ™ is set of the values of reference parameters, and ™™y, ; ; is the artificial ob-
servation generated by the simulation of GreenLab with Q. For all the experiments in
this section, we set

*'Qp = (1000 0.009 3.5 3.0). (5.12)

The proper virtual plant for these numerical experiments shall be illustrative with
respect to the three concerned factors, however, it should not be very complex. We thus
chose planche26 (figure 5.1) in [31], the configurations for planche26 are as the example 3
in chapter 2, that is,

N = 15,P= 1,M: {mlo},

and
R=(1 0), B=(0 0), M=M= (1 0),
P =), @=(s) &= =1
Direct parameters are

e=005 710=5 t=t=5 t/ =1.

Some of the hidden parameters are
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Figure 5.1: The virtual plant Planche26 for numerical calibration experiments (E = 1000)
(a) biomass allocation curves for different types of organs, (b) the picture of 3D geometric
plant. The leaves turn yellow when they stop functioning. Taken from [31]

P*=05, P°=0.2, P'=03, r =5000, ry=0>50.

5.3.1 Numerical experiment 1: on environmental fluctuation
Design

The aim is to perform calibration of (2 under fluctuant environmental conditions without
observation errors.

We keep the leaf expansion lifespan to be 5 GCs. The model inputs (environmental
conditions a-d in figure 5.2) vary from smoothly (a) to violently (c), even randomly (d).
Twin experiment is conducted for ™ to generate target plant data (plant total weight
at each GC ). For each environmental conditions, we start the calibration with the initial
parameters Q% = 0.8 x "Qp.

Results

With generated target plant data under environmental conditions (a)-(d), we employ LM
method to track back the environmental factor parameter value. For all the four cases, we
succeed in finding the reference parameters (K* = ™Qp). Figure 5.2 lists the calibration
results and the environmental conditions, 3D geometric plant is shown in figure 5.3.

Discussion

In our experiences for the calibration under variety of environmental conditions, the inverse
method can always find the target parameter "'Qg, no matter how fluctuant the environ-
mental conditions are. The model input U does not influence the features of the implicit
bijective map in (5.1) between parameter (25 and model output {"y; ;x}. The calibration
for numerical experiment 1 is a well-posed problem.
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Figure 5.2: Calibration results of environmental factor parameters under fluctuate environ-
mental conditions (a)-(d) without observation errors. For the calibration results (right),
the notation ‘A’ marks the artificial observations, and ‘— signifies the fitting curves.
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i
(@ (b) © (d)

Figure 5.3: 3D geometric plant calculated for the environmental conditions (a)-(d)

5.3.2 Numerical experiment 2: on observation errors
Design

The aim is to perform calibration of {2z when the model is not perfect. Observation errors
are considered to generate the target plant data. The error item ¢ in (5.10) is chosen to
be a random variable with uniform distribution, such that the plant target data ™y, ;\
satisfies

Sm ref,m
Yigk — n Yijk

H - Zfref,m ..n = ” SO-’ (513)
(R

where o € [0,1] is a relative bound of the observation error, target plant data ™™y, ; ; is

calculated according to (5.11).

We set the leaf lifespan to 5 GCs, and environmental conditions are chosen to be the
fluctuate case (b) in figure 5.2. Three levels of observation error are considered by setting
o equals to 0.2, 0.1 and 0.05 respectively. For each level, random target plant data are
generated 23x3 times for calibration.

Results

We list 3 x 3 calibration results in detail as in table 5.1 and in figure 5.4. For each level
of observation errors, the calibration is performed for three times. Another 20 x 3 times
of calibration is conducted for the statistic purpose, and the results are collected in figure
5.5.
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Figure 5.4: Calibration results with different levels of observation errors. Picture (1)-(9)
show the target plant data marked as ‘A’ and fitting curves marked as ‘—’, corresponding
to those (1)-(9) listed in table 5.1.
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sum of squares

Figure 5.5: Statistics of calibration results when observation errors decrease from o = 0.2

3000

—=a— Mean 1373.5, variance 0.5634
—4— Mean 1312.8, variance 0.6021
—v— Mean 1054.8, variance 0.1339

21

—a— Mean 4.6968, variance 1.6402
—4A— Mean 3.9920, variance 1.5661
—v— Mean 3.6209, variance 0.5758

4000

—&— Mean 1844.033, variance 943.7302
—4&— Mean 419.0972, variance 202.1431
—w— Mean 125.396, variance 76.7986

A

/A \‘/\.</ \A
\éiv"V\v/*\v/

to o = 0.05.

T
21

0.5

0.0

—a— Mean 0.1400, variance 0.1736
—4— Mean 0.0317, variance 0.0858
—v— Mean 0.0098, variance 0.0048

—=— Mean 3.7192, variance 1.6402
—4— Mean 3.4666, variance 1.4323
—v— Mean 3.0891, variance 0.5387

—®&— Relative observation error is 0.2

—=A— Relative observation error is 0.1

—w¥— Relavive observation error is 0.05

Calibration times
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Eun K a 3
o =02 | 1223.90.0023 | 2.5379 | 2.1517
oc=02 | 9185 |0.0200 | 2.8707 | 3.4661
o =02 | 1397.5 | 0.0031 | 3.3213 | 1.5405
o =01 | 1554.6 | 0.0052 | 5.4313 | 4.5029
o =01 | 1287.9 | 0.0200 | 4.9448 | 4.6905
o =01 | 1474.0 | 0.0041 | 4.5370 | 4.0761
o =0.05 || 1071.8 | 0.0039 | 3.0737 | 2.4200
o =0.05 || 1017.5 | 0.0149 | 3.9046 | 3.3218
o =005 | 1134.3 | 0.0172 | 4.3741 | 3.9201

—

DO

w

W

(=2}

~J

oo

|| |||~ —~|—~
N (S
— | [ — | — | — | — [~ | ~— | ~~—

Table 5.1: Calibration results of 9 times indexed as (1)-(9) with different levels of obser-
vation errors.

Discussion

The calibrated (2}, shown in table 5.1 and figure 5.4 can be quite different from reference
parameter "/Qp, even in the case of small observation errors (¢ = 0.05), however, the
statistic results in figure 5.5 show that we have better fitting results when observation
error is becoming smaller, e.g. we have smaller least square residuals, and the calibrated
)%, is getting closer to reference parameter /(.

The experiment results indicate that the calibration problem for in situ measurements
might be ill-posed, because when there is small observation error o = 0.05, the numerical
results differ dramatically for each calibration (table 5.1).

5.3.3 Numerical experiment 3: on leaf expansion effect
Design

The aim is to perform calibration when the leaf expansion lifespan ¢* is long enough that
environmental conditions are fluctuate during the leaf expansion period.

The leaf expansion lifespan is set to 1, 5, 10, 15 GCs respectively. The model input
is chosen to be the environmental condition (a) in figure 5.2. The observation errors are
considered for the calibration in case of long leaf expansion.

Results

Simulation of leaf expansion effect

Firstly we investigate the effect of leaf expansion. Under optimal environmental con-
dition (E(n) = 1000), the 3D geometric plants are recorded in figure 5.6 for different leaf
expansion lifespans. Then under near-periodical environmental condition (figure 5.2-a),

the 3D geometric plants are recorded in figure 5.7 for different leaf expansion lifespans.

Calibration results
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.
§ %

(@) 1GC (b) 5 GCs (c) 10 GCs (d) 15 GCs

Figure 5.6: Simulations of planche26 with different leaf expansion lifespans under optimal
environmental conditions

|

(@) 1GC (b) 5 GCs (c) 10 GCs (d) 15 GCs

Figure 5.7: Simulations of planche26 with different leaf expansion lifespans under environ-
mental condition (a) in figure 5.2.

103



5.4. CONCLUSION

In case of near-periodical environmental conditions, we conduct two times of calibra-
tion for each leaf expansion lifespan. One is the case that the observation errors are not
considered, and the other is the case ¢ = 0.2. We list the calibration results in table 5.2
and in figure 5.8.

Ey k Q B
(@) o=0 1000.0 | 0.0090 | 3.5000 | 3.0000
(@) o0=0.2] 1257.8 | 0.0020 | 3.5388 | 3.0140
(b) o=0 1000.0 | 0.0090 | 3.5000 | 3.0000
(b)) o0=0.2 | 1502.5 | 0.1102 | 5.7992 | 5.1158
() o=0 1000.0 | 0.0090 | 3.5000 | 3.0000
(c)
(
(

0=0.2 || 1702.0 | 0.3764 | 6.9489 | 6.1964

) 0=0 1000.0 | 0.0090 | 3.5000 | 3.0000
d) o0=0.21] 1238.2 | 0.1398 | 4.5323 | 4.0436

Table 5.2: Calibration results with different leaf expansion lifespans as (a)-(d) in figure 5.7
without (o = 0) and with observation errors (o = 0.2) under environmental fluctuation as
(a) in figure 5.2.

Discussion

When leaf expansion time is one GC, the effect of periodical environmental conditions on
plant growth is clearly observed (e.g. the periodical plant geometries in figure 5.7). When
leaf expansion time is long enough, the effect of environmental conditions is equalized by
the expansion of leaves, and becomes vanished in (b)-(d) in figure 5.7. The calibration
tracks back exactly the reference parameter values when there are no observation errors.
When there are considerable observation errors, the calibration provides acceptable results
(see table 5.2 and figure 5.8).

5.4 Conclusion

In this chapter, we present primary results on the calibration of environmental parameters
Qp. The calibration process tracks back exactly reference parameter "/ no matter the
fluctuation of environment and the effect of leaf expansion. The influence of observation
errors are also investigated for GreenLab calibration. The results of numerical experiments
show that we obtain more accurate calibrated parameter values when observation errors
become smaller, however, the calibration results is sensitive to the perturbation of obser-
vations. The calibration with in situ measurements is thus probably an ill-posed problem.

There are several issues that need further developments.

e The calibration results are achieved from numerical experiments, thus the remarks
drawn in the discussion sections are rather numerical observations. Further theo-
retical studies are needed to verify these primary conclusions (especially for those
remarks on well-posed and ill-posed problem).
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Figure 5.8: Calibration results with different leaf expansion lifespans as (a)-(d) in figure
5.7 under environmental fluctuation as (a) in figure 5.2. The left column shows the results
for the calibration without observation errors, and the right column shows that with obser-
vation errors (0 = 0.2). The target plant data are marked as ‘A’, and “— indicates fitting

curves.
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e All the numerical experiments are conducted with artificial plant target data gener-
ated by twin experiments. The treatment on in situ measurements is under process
with the collaboration of university Wagegingen for the calibration of the environ-
mental parameters.

e The presentation is less illustrative for variational formulism framework, since we
choose finite difference scheme for the gradient calculation. The application of opti-
mality system (5.5) is ineluctable when the parameters for calibration become increas-

ingly enormous, as will be exemplified in the data assimilation problem in chapter
6.
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Chapter 6

Variational methods applications II:
optimal control and data assimilation

Résumé

Dans ce chapitre, nous analysons tout d’abord le puit optimal pour mais, ensuite un probléeme de
controle optimal pour ’approvisionnement en eau appliqué au tournesol est présenté et résolu.
L’approvisionnement optimal obtenu & chaque GC fournit les irrigations plus raffinées, ce qui
raméne des applications potentielles en agronomie. En considérant les incertitudes en ligne sur
I’état initial ® et sur le modele d’entrée U pour GreenLab, le probleme d’assimilation de données
est introduit pour le controle de ces incertitudes par assimiler les observations produites par des
expériences jumelles au niveau du GC.

6.1 Introduction

Data assimilation problem P2 and optimal control problem P3 play important roles in the
application of calibrated models.

The optimal control problem seeks for desired plant growth favorably responding to
certain objective. In section 6.3 we present model analysis of optimal fruit sink strength
of maize with respect to fruit weight objective. This problem is rather a univariate static
optimization problem, however, the general cases of model analysis, in which parameters
can be multivariate and time-variant, are in essence optimal control problems.

In section 6.4, we explicitly formulate the soil-plant dynamic system in details by defin-
ing its state variables. Section 6.5 is devoted to common issues on problem P2-P3, namely
the adopted optimization algorithm and calibration of sunflower endogenous parameters.

Once the soil-plant dynamic system is set up, the optimal control problem for water
supply can be defined. The problem is solved by adjoint model and by automatic differen-

tiation techniques. The numerical results reveal possible agronomic applications.

The aim of data assimilation is to alleviate model uncertainties that are either site-
relevant or time-relevant based on diverse sources, i.e. observations, statistics and model
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Figure 6.1: Detection of nonconvexity.

simulations. For cultivar crops such as sunflower, we can seldom control the temperature
and light conditions in open fields. In this case, these two environmental factors are thus
chosen to be the factors for data assimilation. It is supposed that the initial conditions
contain error and need to be assimilated. In the last part of this chapter, numerical exper-
iments are performed to show how data assimilation concepts and methods can contribute
in the simulation and application of GreenLab model.

6.2 Non-convexity detection

Before optimization, the features of the objective function f(x), say convexity, are useful.
In this thesis, we are interested mainly convexity (please refer to [23] for its definition).

Theorem 6.1 /23] Let f : Q2 C V +— R a differentiable function defined in a normed vector
space V, and U is a conver subset of 2, the function f is convex on U if and only if

f() > fu)+ f'(w)(v —u),Yu,v el (6.1)

When objective function f is nonconvex, there always exist points in ¢/ that violate
equation (6.1), for example point v2 in figure 6.1. The following algorithm detects the func-
tion nonconvexity by evaluating N points u in &/ with M points v according to theorem 6.1.

algorithm Nonconvexity detection

Given M,N, P =0,i =0,

1. If i > N, calculate v = ﬁ then stop,

otherwise generate randomly point u € U, 1:=4+ 1,57 =0.

2. If j > M, goto step 1, otherwise generate randomly point v € U, j :=j + 1.

3. If f(v) < f(u) + f'(u)(v — u), set nonconvexity flag w to be true, that is, w(i,j) = 1, and let
P := P + 1, otherwise w(i,7) =0 [ |

The parameter v evaluates function nonconvexity. The function with a higher v likely
has more nonconvex points, however, convexity is not assured when v = 0.
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6.3 Optimization of source-sink relationships
— a case study on maize

By model analysis, we mean mainly the mathematical analysis, e.g. the growth equilibrium
characterized by, for instance, the biomass allocation trend among organs and the biomass
production limit along GCs [31], or growth patterns governed by model parameters, i.e. an
optimal fruit sink strength for an virtual plant that is composed of internodes, leaves, and
fruits [86]. For the former, the results in [31] are obtained under optimal conditions (E is
constant), and shall be renewed in the general case when E possibly varies at each GC.
For the latter, it is based on the biological teleonomic assumption that the fruits undergo
overwhelming growth for optimal fruit weight.

In this section, the source-sink relationship under optimal environmental conditions is
investigated in order to analyze the impact of fruit sink strength on the plant biomass
production and partition for an optimal yield in the case of maize [127]. The optimization
problem of fruit sink strength originates from the fact that there is competition between
the fruit and the leaves in demand of biomass. A theoretically optimal fruit sink strength
value is determined by solving a bound-constrained optimization problem, and is named as
optimal value fruit sink reference. According to the fruit sink reference we can tell the maize
in the field is the optimal one or not in the sense of GreenLab plant functional-structural
characteristics, and possible instructions for hybridization can thus be drawn.

6.3.1 Calibration results of maize

Calibration experiments are conducted in China Agriculture University (CAU) with suf-
ficient fertilizer and water. The maize is well protected from pests and diseases; row and
column spacing are distant enough to prevent competitions between maize individuals. For
maize, there is no layer, no petiole but sheath for the leaves, the female flower grows to be a
cob. Calibrated parameter values are stored in testfile maize.m that configures the Green-
Lab software. The calibration results of direct and hidden parameters are listed in the table

Similar to example 3, we list the information of the calibrated maize as follows,

N:30,P= 1,M: {mm}.

The configuration A is:

R

(1 0),B=(0 0),Ma=M¢=Mmn= (1 0),

- S o — ol@)=1 i=16 ™) =1 i=22
T =(22), 1 = (o) " =1, {@f(i)ZO i %16 {¢m(i)=0 i #16

Here the superscript f denote female flower (fruit), and m male flower. The direct param-
eters are

e=0.0283,7°=12,t* =t*=8,t/ =17,t™ = 3.

The hidden parameters is shown in the following table.
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— A CASE STUDY ON MAIZE

Qa pe| P | P | PP P"| B,
Maize | 1.0 | 1.89 | — | 201 | 1.49 | 0.47
QG Be Bf Bm 1 T2
Maize | 0.94 | 0.61 | 0.50 | 38 -

Table 6.1: Fitting results of endogenous parameters for maize [135], The parameter C, is
fixed (to 6) for calibration purpose.
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Figure 6.2: Simulations with respect to different maize fruit sink strength values

6.3.2 Optimization of fruit sink strength for maize

From the calibration results, the sink strength of female flower (fruit) is extraordinarily
bigger than those of other organs. The change of fruit sink strength thus affects the maize
growth profoundly. Now we mathematically set the fruit sink strength ranging from 10
to 3000 with successive increments of 10, other parameters remain the same as those cali-
brated ones, and the calculated fruit weight with respect to different fruit sink strength is
shown in figure 6.2.

One may wonder if there exists an optimal fruit sink strength for a maximal fruit yield,
and if it is possible to modify the fruit sink strength to increase the production. Supposing
that fruit sink strength increases from zero, the augmental sink of fruit attracts more fresh
biomass. Consequently fruit weight increases from null accordingly. On the other hand,
as the biomass allocated to leaves diminishes, the ability of leaf photosynthesis lessens and
thus the fresh biomass produced at the GC decreases. When fruit sink strength increases
until positively infinity, there will be no fresh biomass for leaves, and maize stops growing.
The fruit weight is zero in this case. Therefore mathematically speaking, there might be
an optimal fruit sink strength that maximizes the fruit production. We formularize it as a
static optimization problem
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Figure 6.3: Comparison of 3D simulation results and fruit weight between theoptimal maize
with the fruit apprearing at the 16" internode and the calibrated one

max f(x
s.t. 0 <z < 3000,

where z is the fruit sink strength that is chosen as optimization variable and subjects to
a bound constraint, objective function f(x) is the GreenLab calculation of fruit biomass
¢°(16, 30) according to formula (2.59). The problem (6.2) is a typical univariate bound-
constrained optimization one (see for instance [18] for information). We select subroutine
‘fminbnd’ as the optimization solver, in which golden section search is used to solve the
problem (6.2).

The optimal fruit sink strength is 47.5, and the optimal fruit weight is 1533 g. The
calibrated fruit sink strength is 201, and the corresponding fruit weight is 1320 g (compar-
ison figures 6.3, 6.4). When fruit appears at GC 16 as it does, the optimal fruit weight can
be 16% heavier than that of the calibrated maize. Supposing that the fruit can appear at
each GC, we process the optimization process similarly. The results is listed in the right
of figure 6.5. The optimal fruit appearance position is at 20* GC (suppose that there are
at least two internodes between male and female flowers), and the corresponding optimal
fruit sink strength is 311. Its optimal fruit weight marks 1931 g and is 46% heavier than
that of the calibrated maize (left of figure 6.5).

According to figure 6.2, for certain maize species we can tell it is an optimal one or
not. The species of maize with high fruit sink strength and less fruit production might be
valuable, when hybridizing it with a relatively vegetative maize to diminish its fruit sink
strength, so that the new hybridized one can approach to the calculated optimal reference.
If the computed sink strength of the observed plant is on the right of the optimal one, the
optimal plant will have the drawback to produce more biomass to fulfill it. So the plant
will need more water and fertilizers. Economically speaking it may be not interesting and
another economical constraint has to be introduced. On the other hand in a left position
the gain is obvious.
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timal ones with the fruit appearing at 16* and 20 internode respectively

112



CHAPTER 6. VARIATIONAL METHODS APPLICATIONS II: OPTIMAL
CONTROL AND DATA ASSIMILATION

Note that the optimal reference depends on the form of objective function, which can
also be the fruit shape or else. The optimization in this section is in fact a one-factor
analysis, and the results may also depend on the other internal or external factors, which
for the moment are assume to be nearly the same for all species of maize. The physiological
details, e.g. the effect of leaf extension and senescence, are capsulated in the description
of source-sink relationships. The concept of optimal reference is ready to be extended to
multi-factor analysis by choosing the plant endogenous parameters that are evaluated to
have important impacts on plant growth.

6.4 Soil-plant dynamic system

Let 7, = max 7, the maximal functioning time for leaves of all physiological ages (in
p_ "ty

most cases, P = 1,7, = 7%), and let state variable X(n — 1),X(n) at GCn — 1 and n be
denoted respectively as

Q(n — 7y) Q(n—Ty+1) 1
X(n-1)=| Q-2 |.X0)=| g1
Q(n—1) Q(n)
Qw(n - 1) i Qu(n)

We rewrite the soil-plant system (2.83)-(2.85) in one difference equation
( Xj(n) = Xj+1(n—1), jzl,...,Tw—l,

X'Tw+1(n - 1) - men .
mem - men

oty — iy SR X~ 1)

: AN®(n —1) - ; D(n i) (6.3)

i=1 67‘1 qb“ (n—1)
Z —k))

X, (n) = En-1)-

Xrp41(n) = (I—=ci—c-Un—1)Xp,11(n = 1) + Qumnci+
\ QumzC2 - U(n - 1) - X7, (n - 1)7

where E(n) is calculated by (2.50). The initial condition is

S
X(0)=0=| g , (6.4)

Q0
| awo |

where Q0 is seed volume, and QWO is the initial soil water content.
The organ accumulated biomass g;(i,n) at GC n is
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i = py Y, BT LD 2, (65)

k=1

6.5 Related issues on problems P2 and P3

In this chapter we employ open-field sunflower as the objective plant for data assimilation
problem P2 and optimal control problem P3. Endogenous parameters (g are calibrated,
and the parameters of soil water balance and environmental parameters {1z are set to
empirical values from previous studies. The Sequential Quadratic Programming (SQP)
algorithms are adopted for the minimization of these problems.

6.5.1 Optimization algorithm for problems P2-P3

Sequential Quadratic Programming is arguably the most successful method for nonlinearly
constrained problems, especially for medium-scale or small-scale ones. Also, SQP of large-
scale version has been designed recently with encouraging results. The problems P2-P3
under homogeneous environment are usually the cases of medium-scale, hence we mainly
adopt SQP algorithm in this chapter. For algorithm details of SQP, please refer to section
A.6 in appendix A.

6.5.2 Calibrated sunflower

The calibration experiments are similar to that of maize introduced in chapter 2. We list
the information of the calibrated sunflower as follows:

N:63,P= 1,M: {mlo},

the configuration A:

R=(1 0),B=(0 0),M,=M;=(1 0),

e'(i)=1 i=38
ol(i) =0 i+#38

Note that superscript f denote female flower (fruit). The direct parameters are

P = (38),7 = (6% =1, {

e=0.043,7* =t* = ¢ =t/ = 25.

The hidden parameters are calibrated under optimal environmental conditions (E(n) =
Ej =1000), and are shown in the following table

6.6 Optimal control of soil-plant dynamic system

Denote a (7, + 1)-dimensional vector function F' for the equation (6.3), we have the soil-
plant dynamic system

(X(n—1),U(n 1)),

F
X(0) = ©. (6.6)
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Q¢ pe pe pe P/ prP™ |\ B,
Sunflower | 1.0 | 0.044 | 0.042 | 1000.0 | — | 0.465
QG Be Bf Bm T T2
Sunflower || 0.56 | 0.76 - 39246 | 55.6

Table 6.2: Fitting results of genetic parameters for sunflower under optimal environmental
conditions (LIAMA software, CornerFit [134]). The notations are as those in table 2.2.
The parameter C, is fixed (to 7) for calibration purpose.

Considering the organ biomass formulae of increment (2.58) and accumulation (2.59), one
can naturally devise the objective index I as the sum of some scalar-valued function [:

max ] = ¢/ (n,n) = Z_: Ag’ (i,n) = z_: 1(X(4),U(1))- (6.7)

The dynamic system (6.6) and the objective function of fruit yield (6.7) form the optimal
control system for water supply.

6.6.1 Consideration of water resource constraint

In numerous cases, water resources are limited because of drought or economic reasons.
For a given total quantity of water supply A, the water supply amount U(7) at GC i is
under the following linear constraint

n—1
U(i) = A, (6.8)
=0
and boundary constraint
0<U®%) <A, 1=0,...,n—1. (6.9)

The fruit yield index will depend on the irrigation strategy during the plant growth. In
this chapter the optimal control of the plant water supply is always under the resource
constraint (6.8)-(6.9), however, the constraint can be treated by standard constrained
optimization algorithms, i.e. sequential quadratic programming introduced in the previous
section, therefore we do not formulate it explicitly in the following sections. The rest
sections deal mainly the calculation of gradient VyI.

6.6.2 Function convexity

Given initial condition ©, applying dynamic equation (6.6) recursively, we have

X(1) =2, (U) = F(X(0),U(0))
X F(F(X(0),U(0)),U(1))

—~
)
~—
I
4
V)
—~
&
I

(6.10)

X(n) = 0, (U) = F(...F(X(0),U(0)),...,U(n—2)),U(n—1))

where U = [U(0)...U(n — 1)]*. Substitute (6.10) into (6.7), we have the objective index
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Figure 6.6: Matrix of convexity flag [wijli<i<n,<j<m. The function is

~ = 0.3175.
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nonconvex, and

(6.11)

The optimal control problem (6.6)-(6.7) then equals to static optimization problem (6.11).

The convexity of function (6.11) can be evaluated by algorithm presented in section
6.2. We set N = 20, M = 20, and the test results are shown in figure 6.6. The function
(6.11) is nonconvex. Note that subset U is determined by constraints (6.8) and (6.9).

6.6.3 Optimality system

Recall the results of the variational formulation of optimality system for optimal control

f

with its gradient

dX(#)
at
X(11)
aw
d
W (Ty)

1

o,

— [ w4 [24]7, (6.12)
05

S G (X (t),U (1) dt,

o [ 619
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Figure 6.7: Approaches for gradient calculation of the optimal control system using adjoint
computation and AD techniques.

where @ is the corresponding continuous form of [ in discrete objective function (6.7). Note
that we use the same notation F' as that of discrete form (6.6), as incurs no confusion since
they work parellelly in their own contexts.

6.6.4 Numerical solutions

Direct methods that solve the optimality system (6.12) attempt to convert the infinite op-
timal control system into a finite one by discretization schemes. The discretization results
construct nonlinear programming problems for which numerical optimization algorithms,
such as SQP, are employed to locate the optimal values of control variable U.

A key issue for these optimization algorithms is the calculation of gradient VyI for
objective function I. Several approaches have been experienced, which are clearly presented
in a recent article [51]. We summarize these diverse approaches in figure 6.7.

e At first sight, one may expect that a discretization of the continuous adjoint equation
in (6.12) together with an evaluation of gradient formula (6.13) provides the gradi-
ent information. Unfortunately this approach does not always produce consistent
calculation of gradients. Special cautions, e.g. a suitable integration scheme for the
continuous adjoint equation, are needed to avoid the inconsistency, which usually
appear to be nontrivial tasks (for more information, see section 3.3 in [51]).

e An alternative approach is directly based on discrete adjoint model derived from
the discrete model. The process is essentially to apply the chain rule recursively,
therefore, the gradients calculated in this method are exact.

e Finally, AD techniques undergo systematically the chain rule, and provide consistent
gradients given program code of the discrete model.

The last two approaches are supposed to provide equivalent gradients. The theoretical
analysis of their equivalent relation is presented in section 4.2.4 with observation discrep-
ancy as the objective function.
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Figure 6.8: Water supply curves governed by beta function parameters a, b, supply fre-
quency w and irrigation initial date . For the upper curves, w = 1,7 = 1; in the lower
histogram, w = 2,y = 1.

Since GreenLab is already a discrete model (6.6), we will evaluate the discrete adjoint
computation and AD techniques to solve the optimal control problem (6.12). We start the
numerical solution with a simplified case in which the optimal control system is reduced
into a mixed integer nonlinear programming problem (MINLP).

MINLP problem for simplified water supply

In order to alleviate calculation load and investigate rhythmic irrigation, instead of opti-
mizing the water supply at each GC, the control variables are reduced into four parameters
[a,b,w, 7] by approximating water supply curves as a cluster of beta functions with a,b
the function parameters and with w, ¥ the water supply frequency and the irrigation initial
date respectively. The water supply U(z) at GC i is thus

A [i—05\%"! i—05\""
vo-5(%) (7))

where the total water supply A is set to 8000 units, and S is a normalization factor of beta

function:
N . a—1 . b—1
1 — 0.5 1 — 0.5
S = E 1- .
— ( N ) ( N )

1

Considering frequency w and initial irrigation date v, the practical water supply is redis-
tributed at GC 7, with7 = jxXw+7, j € Nand 1 <17 < N. For the other GCs, the amount
of water supply is set to zero (see figure 6.8). Then a mixed integer nonlinear programming
problem P4 (MINLP) is formulated as
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max f(z)

subject to, 1< z1,x9 <100,
1 S T3, T4 S N’

where z = [11, 19, 23, 4|7 = [a,b,w,]", the bounds for x;, x5 ensures a sufficient amount
of distribution curves, and N is the sunflower total number of GC.

Genetic algorithms (GA) is employed to solve the static optimization problem P4 [128].
We list the optimization results of 3 tries as table 6.3.

Try Appearing || Optimal parameter values | Optimal fruit
Number || Generation a b vow weight (g)
1 110 1.3686 1.1934 1 2 1196.3
2 92 1.3263 1.1632 1 2 1196.6
3 108 1.3263 1.1571 1 2 1196.6

Table 6.3: Optimization results of MINLP GA solver

And we plot the water supply strategy of the second try, which is found at the 92th
generation of GA evolution in figure 6.10-(a).

Optimal control approaches: adjoint computation of Lagrange problem

Optimal control system whose objective function is an integral term as shown in (6.12)
is cast into Lagrange problem [13]. System (6.6)-(6.7) is a Lagrange problem in discrete
form. In this section, we will investigate the second approach addressed in section 6.6.4.
The adjoint model is derived directly from the discrete model of the optimal control prob-
lem. Note that the derivation of adjoint model in continuous form is addressed in chapter 3.

Perturbating dynamic model (6.6) and cost function (6.7) with respect to U, we have

; oF - oF .

= — X X e —— Xn,Un Una
XO = O,
and
I = I(U+0U)-1I(U)
_ Nil ﬁ(x U, X +ﬁ(X U, U
o \lox T e gy Ve T (6.15)
N-1 N-1 6.15
ol . ol 3
rar <8X( ) >+n_0 <8U( ) )
kY IS

Let M™*P denotes matrix with m rows and p columns, we have
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oF - oOF . ol ol
il Mme Xn Mm)(l, i mep Un Mpxl, — ¢ Mlxm’ — ¢ Mlxp‘
X © ¢ A ) ou

Herein X(n) is abbreviated as X,,, U,, for U(n) and so on, control variable U, is denoted
as a p—dimensional vector in the general case, U is thus a vector of Np dimensions, the

Jacobian matrix g_)l«; = |[aij],,0m> @ij is the partial derivative of i-th function of F' with

respect to j-th variable of X.

Introducing adjoint variable X,,, we evaluate the scalar product in space R™"x...xR"™

N1
as
N — ~
> [Xa]" X,
n=0
= [XO}TXO"F
N-L oF - oF N
[Xn—H]T A~ (Xna Un) Xn + arT (Xna Un) Un
n=0 a 8U
o N1 aF T T (6.16)
= [XO} XO + Z av (Xna Un) Xn—|—1 Xn +
n=0 oX
T
N-1 OF T _ .
arT Xn n
Eo [8U (X, U")] +1] v
Imposing that the adjoint variable X,, satisfies
. OF T al T
)fn = [a—X(X"H’U"H)] X1+ [a—X(Xn+1aUn+1)] ,n=0,...,N—1, (6.17)
Xy=0
the scalar product (6.16) becomes,
_ N N-1 _ N
Xn" Xy + 3 [Xa]" X,
;i) OF T r
= [XO}TXO + Z [— (Xn;Un):| Xn—l—l] Xn +
n=0 0X
N1 | [OF T ! (6.18)
= [8U ( ):| +1] +
N-1 ol -
S 1| o 0o -
N-1 ol
A~ XnaUn Xn

Note that Xy = 0, and Xo =0,
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N-1
Z{PWﬁﬂﬂX}
0
T
1 OF T ol I .
= X X X X
pa [ [ 0 0] T [ )] | Xt (o
N1 OF T _ a
ngo |:8U (XnaU ):| Xn—l—l Un
Substitute adjoint model (6.17) into (6.19), we have
N-1 N—1 T T
ol oF _ .
> (X,, U, } } Z [ (X,, U, )} Xn+1] U, (6.20)
o { [ax £ oU
Substitute (6.20) into (6.15), and recall definition 3.2,
<VUI
N-1 T T N-1/ 9] .
= Xn, Xn n arT Xn; n n
n=0 U ):| * U +n2::0<aU( )U >
5 — (X TX o x §
T = w Un )} i o7 (Xn Un) ¢ Un (6.21)
_ T a T 2
< [GU (Xo, Uo)} X1+ [% (Xo, Uo)} U,
OF T ol T Un_
[8U (Xn_1,Un_ 1)] Xy + [GU (Xn_1,Un_ 1)] | V=t
Hence the gradient Vyl! is
OF T ol T T
[GU (Xo, Uo)] X+ [GU (Xo, Uo)]
Vul = (6.22)
OF T_ ol T
(Xn-1,Un-1)| Xy + (Xn-1,Upn_1)
U U

Note that gradient VUI is a vector with NV - p dimensions.

Numerical results In order to apply the theoretical results, we rewrite MiniGreenLab
in the Lagrange problem: state variable X is defined; function F' of model dynamics is
implemented; and objective function [ is calculated according to formula (2.59). Partial
derivatives, such as g—f(, g—g, g{, and (%, are either achieved by symbolic differentiation,
or approximated by finite difference scheme. The gradients are obtained by solving the
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adjoint equation (6.17) and by calculating the formula (6.22). With these gradient calcu-
lations, the optimization methods, i.e. SQP algorithm, provide the numerical solution of
optimal water supply U;,7=0,...,N — 1.

The Lagrange problem is a classic issue in optimal control theory, which is proved to
be equivalent to Meyer and Bolza problems [25]. For previous versions implemented in
Scilab, we adapt MiniGreenLab for the purpose of applying Scilab toolbox dynoptim !, in
which theoretical results are obtained by algebraic derivation. These results are exactly
the same as what we have formulated in this section based on perturbation analysis within
variational formulism framework. The latest version of GreenLab is written in MATLAB,
therefore we re-implement toolbox dynoptim in MATLAB. SQP algorithms are adopted
to numerically solve the optimization problems in the context of optimal control. We plot
the water supply strategy found by the optimization solver in figure 6.10-(b) with initial
conditions set to the optimization results of problem P4 that are shown in figure 6.10-(a).

Optimal control approaches: AD techniques

In this approach, AD techniques introduced in chapter 4 are employed for an efficient and
accurate gradient calculation, which we provide to standard optimization algorithms, i.e.
SQP method implemented in subroutine ‘fmincon’. Finally the optimization results illus-
trate how different water supply strategies effect the sunflower growth.

Following the instructions in chapter 4 we derive the adjoint code for the sunflower
water supply problem by hand. The size of the optimal control problem is not so large,
because homogenous environmental conditions within canopy are assumed and recursive
formula (2.64) is implemented for the purpose of simulation efficiency. In our AD coding,
the safeguards of variables values in direct code are conducted whenever these variables
change their values. When problem size becomes extremely enormous, some of the vari-
ables have to be recalculated in case of value changing, and safeguard strategies must be
carefully designed to save the cost of computer memory.

In section 4.2.4, we illustrate the equivalence between discrete adjoint model (4.61) and
AD differentiation rule in matrix form (4.34). Supposing that program code implements
direct model similar to formula (4.63), the equivalence between some discrete adjoint model
and AD differentiation rule is expected in the case of optimal control problem (6.12). Note
that the adjoint variable in the context of AD is defined in (4.6) or (4.24) as the sensitivity
of model output with respect to intermediate variables in series (4.11). The gradient of
the optimal control problem is obtained by AD techniques as the output of adjoint code
according to (4.25), instead of the calculation of complex formula (6.22) in the context of
discrete adjoint computation.

Verification of adjoint code and gradient calculation The verification of adjoint code
follows the process in section 4.3.3. We write the direct code of MiniGreenLab as

[y] = sim_U(x),

I Discrete time optimal control problems toolbox, S. Berthaud, J.P Chancelier, M. Cohen de Lara
http://www.enpc.fr/cereve/HomePages/mcdl/scilab/.
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where x € R% signifies the water supply U during sunflower growth, y € R is the calculated
fruit yield of calibrated sunflower. The tangent linear code is encapsulated into subroutine

[y, ytg] = sim_U_tg(x, xtg),
and let adjoint code denoted
ly, xad] = sim_U_ad(x, yad).

Exact gradient can be provided by either forward or reverse mode of AD. For the for-

g_fi , the 2—th component of gradient at z, is given by the output ytg of subroutine

sim_U_tg with its input xtg set to cardinal unit vector e;. For the latter, the gradient is
obtained by one time evaluation of subroutine sim_U_ad with its input yad set to 1, that is,
V.Y =xad.

mer,

We chose x randomly for three times (denoted as 2,4 = 1,2, 3 respectively) to verify
the adjoint code. For each x, we process as follows for three times with random h.

e Generate perturbation A randomly.
e Run [y, u] = sim_U_tg(x, h), and record u.

Evaluate scalar product u”u.

Given u, run [y, v] = sim_U_ad(x, u), and record the result v.

Evaluate scalar product h'v.

Evaluate the identity u”u = hTv, and record the difference u"u — hTv.

We list the results in table 6.4, and the number of significant figures for each calculation
item is chosen to be 16. We observe that the difference item are much more likely negative,
there are, however, positive ones.

For 2V | ||A]| ulu hTv yTy—h'z
1 100 5.06554034720038 | 5.06554034720039 | -6.217248937900877e-015
2 1000 | 1700.689597719033 | 1700.689597719032 | 9.094947017729282e-013
3 10000 | 266950.7205866337 | 266950.7205866338 | -1.164153218269348e-010
For z® | [A]] ulu htv yly—hlz
1 100 1.57531769520953 | 1.57531769520953 | -2.886579864025407e-015
2 1000 | 155.8982673378681 | 155.8982673378684 | 4.547473508864641e-013
3 10000 | 16720.48640131183 | 16720.48640131185 | -1.455191522836685e-011
For 20 | ||| ulu h'v y'y—h'z
1 100 1.24608097853649 | 1.24608097853649 | 2.220446049250313e-016
2 1000 | 74.31515217887814 | 74.31515217887824 | -9.947598300641403e-014
3 10000 | 8516.538458226190 | 8516.538458226187 | 3.637978807091713e-012

Table 6.4: Validation of adjoint code for the optimal control problem
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Validation results on gradient is examined according to formula (4.70). We list the
value of f (a) varying o from 10° to 107'7 in table 6.5. In order to highlight the oscillation
when perturbations are small enough to be comparable with machine relative accuracy of
floating point (in our case about 107!%), we refine the scale of o from 2° to 27°° and plot
the curve of f(«) in figure 6.9.

a f (@) o f (@)

10° | 0.45854188773616 | 10 ° | 1.00000002198355
10-1 [ 0.91891387122884 | 1010 | 1.00002152871544
102 | 0.99137248272000 | 10 | 1.00032715069494
1073 | 0.99913171463553 | 10~'? | 1.00100631064940
10~ 1 0.99991311577400 | 10713 | 0.99232815567581
107° | 0.99999131115344 | 10~ | 1.01873993168239
1076 | 0.99999913266132 | 10~ | 0.75462217161658
107 | 0.99999991633645 | 10 16 | 3.77311085808292
108 | 1.00000002198355 | 1017 | 0.00000000000000

Table 6.5: Validation of gradient calculation, where ||h|| = 1000. Gradients obtained by
finite difference are acceptable only within certain range of perturbation ah, ie. «a €
[107%,10719] for accuracy of 4 decimal places.

Optimization results The optimization results using AD techniques are compared in
figure 6.10 (c)-(e). There are many local optima depended on the initial conditions. It
seems that the irrigation rhythm is important for fruit biomass accumulation. In the early
stage from breeding to approximately 15-20 GC, the strategies (c)-(e) illustrate an irriga-
tion frequency about 4 or 5 GC, and then follow an irrigation rhythm of every two GCs.
All the four strategies indicate that from 58 GC to the end of the growth, there is no need
of irrigation. Furthermore it seems that the fruit biomass is less sensitive to the irrigation
amount distributed at each GC. There is only maximal 9 g difference of the fruit biomass
among these optima, but the irrigation amount at each GC of (c)-(e) can differ dramati-
cally. We can see roughly in (c) and (e) the amount peaks every 9 and 6 GC respectively
from 31 GC to 52 GC. The iterations of optimization process (c)-(e) are shown in figure
6.11 and in figure 6.12.

Different water supply strategies and their resulting fruits are compared in figure 6.13.
3D plant geometries are also calculated and compared. The fruit yield (I) and sunflower
height (H) are quite different for water distribution strategies (a), (b), (c). With the op-
timal strategy (c), the fruit is 18% heavier than with strategy (b) and the plant is 15%
higher. It is interesting to note that for strategy (b), the fruit is 51% heavier than that
of strategy (a), but the plant is shorter. It is due to the abundance of water supply of
strategy (a) at early GCs that favors internode growth, and deficient water supply later on
when the fruit appearances.

For strategy (c)-(e) in figure 6.10, we replace water supply at each GC by the mean
of irrigation amounts within certain period and plot smoothed water supply strategies in

figure 6.14. We aim at a statistic analysis over certain stage (mean every 8, 12 and 16 GCs
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.

(o))

Figure 6.9: Validation of gradient calculation, where ||h|| = 1000. For finite difference
scheme, coefficient « of acceptable perturbations ah with accuracy of 4 decimal places
ranges from 27 to 2742 ([271927%] ~ [107%,107!3], note that h randomly differs from
that in table 6.5). At the left side of the curve, we have truncation errors in gradient
approximation of finite difference since the perturbations ah are big enough compared
with x; the oscillation arises at the right side of the curve, because the perturbations are
small enough compared with the machine relative accuracy of floating point, and we fall
across round-off errors.

respectively) of sunflower development for all these strategies. The comparison results
show that these strategies share common statistical properties.

6.6.5 Discussion
On AD techniques and adjoint computation

The derivation of adjoint equation depends on the form of objective function. Once
changed, i.e. from fruit yield to observation discrepancy, the derivation has to be re-
peated completely, as well as the software implementation. Usually the discrete adjoint
is as complex as its direct model. In addition, the derivation of discrete adjoint equation
analytically by hand is error-prone. Whereas in AD approach, this tedious derivation of
adjoint equation is left to AD software for automatical process.

Some Jacobian matrices in adjoint equation are obtained by Finite Difference schemes
(FD), i.e. ‘g—? Hence the two approaches provide slight different performance (see ta-
ble 6.6). Finite difference schemes without adjoint computation are also evaluated for

comparison purpose. In this case, gradients are calculated according to formula (4.1).

On efficiency comparison between AD techniques and FD schemes

Since the difference of gradient calculation between AD techniques and finite difference
schemes is slight, if the perturbations are proper for finite difference (see figure 6.9), we
roughly assess the efficiency of the two approaches through counting their evaluation time
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Figure 6.10: Comparison of the water supply strategies: (a) water supply strategy found
by solving problem P4 [128]; (b) water supply strategy found by solving adjoint equation
(6.17) with solution (a) as initial condition; (c)-(e) water supply strategies found by solving
optimal control system with random initial conditions employing AD techniques.
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Figure 6.11: Objective function value during optimization iterations for AD approach
of optimization. There are very slight increases of objective function values after 400
iterations.
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Figure 6.12: Directional derivatives Ay at each iteration k£ for AD approach of optimization.
Ax| = [T (Up,di)| = | < VI(Up),dy, > | = [VT(U)Tdg|, where J(U) is the static
objective function of fruit biomass weight (6.11), Uy is the water supply distribution at
iteration k, and dj, is the search direction at iteration k.
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Figure 6.13: Comparison of different water supply strategies and the resulting fruit weight.
Water supply strategy (a) is linear; (b) is the water supply strategy that complies with
beta function B(a,b),a = 2.3761,b = 1.5894; (c) is the solution of optimal control system
(figure 6.10-(d)).
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Figure 6.14: Investigation of means of water supply every 8, 12 and 16 GCs respectively for
strategy (c)-(e) in figure 6.10. Most of these smoothed curves show one-peak histograms, as
can be explained by the prominent evapotranspiration of mid-season growth [17]. Strategy
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(d) and (e) share extremely similar histogram every 16 GCs.
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Iter. Num. 4 8 32 64 128 256 512
AC 1039.22 | 1082.88 | 1142.08 | 1173.70 | 1187.27 | 1200.36 | 1207.02
FD 1039.19 | 1083.84 | 1139.63 | 1172.78 | 1192.19 | 1206.70 | 1212.51
AD 1039.22 | 1082.88 | 1139.07 | 1174.00 | 1189.55 | 1207.98 | 1218.16

Table 6.6: Comparison of function values in iterative process for adjoint computation (AC),
Finite Difference (FD) and AD techniques with same initial condition chosen randomly.

of objective function called by SQP optimization solver.

Less attentions are paid to analysis of accuracy. Iterative methods using finite differ-
ence might fail to converge with unsuitable perturbations [51]. However, according to our
numerical experiments, the difference of the optimization iterative process is slight between
AD techniques ad FD schemes with suitable perturbations (see table 6.6)

Simulation of GreenLab for 63-GC sunflower takes averagely 10.4381 seconds (average
of 20 simulations). By contrast, simulation of MiniGreenLab takes averagely 0.2094 second.
It takes averagely 0.7581 second for MiniGreenLab adjoint code. The ratio of evaluation
cost between adjoint code and direct code is thus 3.749, which is within the well-known
upbound 5.

For optimal strategies (c)-(e) in figure 6.10, we record the evaluation time N4 of adjoint
code for gradient calculation in AD optimization approach, and the evaluation time Ny, of
direct code in FD optimization approach in table 6.7). The saving time 7} in AD approach
compared with FD approach is calculated as

T1 = (Nfd - 5Nad) * T, (623)

where 7 is the evaluation time in seconds of the direct code.

N | Nag | Nia Jad Ja Ty | Ty
(c) | 1000 | 3414 | 66309 | 1215.17 | 1213.63 | 2.86 | 2.17
(d) 1000 | 3158 | 65954 | 1221.20 | 1220.03 | 2.92 | 2.24
(e) | 1000 | 2877 | 65820 | 1218.35 | 1213.30 | 2.99 | 2.23

Table 6.7: Comparison of evaluation times of adjoint code in AD approach and direct code
in FD approach with same initial conditions. We employ MiniGreenLab for optimization,
thus 7 = 0.2094s. Herein N is the total number of iterations, J,4 is the optimal value of
cost function found by AD techniques, Jfq is optimal result found by FD schemes. T is
the saving time in hours calculated according to (6.23), and T is the practical saving time
in hours in numerical experiments.

SQP algorithm can be roughly divided into three parts: gradient calculation, direction
update and line search. In our numerical experiments, function evaluations in line search
for AD techniques are calculated by adjoint code too, hence the T estimated by formula
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(6.23) is great than practical saving time 7T,. Further efficiency can be obtained by em-
ploying adjoint code for gradient calculation and by employing direct code for line search
process separately.

The practical saving time 7, depends on the machine status, i.e. available memory
space, CPU occupation, etc. The comparison in table 6.7 is nothing but a rough estima-
tion of the evaluation time, however, the efficiency of AD techniques is evident.

AD techniques are especially suitable for increasingly complex FSPMs. When objective
function is time-consuming, the theoretical saving time 7} can be enormous. In the case of
complete version GreenLab (7 = 10.4381s), supposing that iterative processes of optimiza-
tion are the same as those in table 6.7, the saving times for strategy (c)-(e) calculated by
formula (6.23) are 5.94, 6.06, 6.21 days respectively.

6.7 Data assimilation for individual plant: prelimi-
nary results

6.7.1 Motivation and formulation

We have introduced the general concepts and basic formulation of data assimilation in
chapter 1 and chapter 3 respectively. In this section, we present the preliminary results of
data assimilation applications for individual plant.

Firstly we simulate plant growth for the 63-GC sunflower under light, temperature,
and soil water content environmental conditions. Model parameters, i.e. {2g, are set
identically to those in optimal control problem in the previous section. We plot the envi-
ronmental conditions in figure 6.15. Initial conditions are determined empirically, namely
© = {Q0, QSW0} = {1.0,1000}, where QO is seed biomass and QSWO is the initial soil
water content. The total biomass accumulation and allocation among organs is shown
in figure 6.16. Note that these environmental conditions are artificial data for numerical
purpose, and too regular to be true. The virtual sunflower is very small compared with the
calibrated one, since the biomass production potential F at some GCs are very low under
these artificial environmental data according to formula (2.84).

Why data assimilation? It is essentially because of online site-relevant or time-relevant
uncertainties, which can only be estimated by in situ observations. By term online we
mean that these uncertainties can not be assimilated before plant begins growth. By con-
trast, offline uncertainties, i.e. genetic parameters (), are fixed for certain species, no
matter the plant grows in field or not. For GreenLab, the subject is an average virtual
plant individual. One can measure initial conditions, i.e. seed biomass Q0 as a mean for
several seed samples, and environmental input U, i.e. temperature displayed in thermome-
ter fixed in certain position within or above plant canopy, but these measurements are
rather estimations, not real values for the average plant individual. We show in figure 6.17
how these uncertainties affect plant growth considerably. These uncertainties should be
estimated by data assimilation schemes for virtual plant growth close to reality.

In summary, uncertainties for GreenLab are initial conditions © and environmental
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Figure 6.15: Artificial environmental data of 63-GC sunflower for the numerical experi-
ments of data assimilation.
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Figure 6.16: Biomass accumulation and allocation of the 63-GC sunflower given empirical
initial conditions © = {1.0,1000} under environmental conditions in figure 6.15.
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Figure 6.17: Influence of online uncertainties. The reference total biomass accumulation
is chosen as that in figure 6.16. We perform three perturbations, namely (a) for a 10%
decrease of seed biomass, (b) for a randomly shift of temperature within 3 °C, and (c) the
combination of (a) and (b). One can observe that the GreenLab simulation is very sensitive
to these uncertainties.

133



6.7. DATA ASSIMILATION FOR INDIVIDUAL PLANT: PRELIMINARY RESULTS

input U. The formulation of data assimilation problem for GreenLab is therefore slightly
different from P2 that only deals with initial conditions. Considering GreenLab dynamics
in discrete form, the problem is

X(n) = F
X(0) = o,

min J(K) = nﬁ:l 1X(n) — Xops ()%,

(X(n—1),U(n—1)),
(6.24)

where N is total GC number, K = {©, U} is the set of all the parameters to be assimilated.
For 63-GC sunflower, let K be the set of environmental input of light and temperature
conditions at each GC together with the initial conditions of seed biomass and soil water
content. Hence K € RM, M = 128. We denote K,¢; the reference parameter set, in which
environmental input values are set as in figure 6.15, and initial conditions are identical to
those in figure 6.16. The numerical experiments of data assimilation for plant individual
is thus to track back K,.; from artificial observations X, at each GC generated by twin
experiment,

{Xobs(n)}nzl,...,N = g(Kref)a (625)

where function g signifies GreenLab simulation.

6.7.2 Function convexity

Substituting (6.25) into the formula of J(K) in system (6.24), and applying dynamic
equation recursively, similar to the process in section 6.6.2, we have the static optimization
problem,

J = Ji(K), (6.26)

which equals to optimal control system (6.24). We apply the algorithm in section 6.2 to
evaluate convexity of (6.26) with N = 20, M = 20, and the matrix of convexity flag [w;;]
is shown in figure 6.18. The objective function (6.26) is nonconvex.

6.7.3 Towards better assimilation

The issues in this section involve the techniques and experience in numerical optimization
for plant data assimilation problem. We mainly introduce variable scaling for better con-
vergence of the optimization iteration, and the regularization item imposed upon objective
function in system (6.24) to escape the iteration from local optima.

Scaling variables

The techniques of scaling variables in optimization problems are useful when these vari-
ables vary dramatically in different levels of amplitude [45]. The objective function close
to minimum can be approximated as a quadratic elliptical function. The huge discrep-
ancies of variables frequently make the elliptical function extremely narrow, as results in
large condition number of its Hessian matrix, therefore descent direction methods converge
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slowly, and sometimes get trapped before convergence. By scaling these variables in ap-
proximately same level of amplitude, better optimization performance can be expected.

Let x the optimization variable in iteration k, the scaling

o = T(yr) (6.27)

thus transform the optimization process into a sequence of scaled variables yy.

In the case of data assimilation for sunflower, the ranges of the variables are approxi-
mately

QO € [0,2]
QSWO0 € [800, 1200]
T(n) € [0,40] (6.28)

L(n) € [0,1500]

where T'(n), L(n) are temperature and light conditions at GC n respectively. In our numer-
ical experiments, these variables are mapped linearly into interval [0, 1] for optimization.
The scaling formula is thus

T — Xy

= — (84 — , 6.29

Sk P (s s1) + s ( )
Sk — S

o = 2 (g — @) + @, (6.30)
Sy — S

where s are scaled value of x, s, = 1, s, = 0 are upbound and lowbound of scaling range,
Ty, T; are the upbound and lowbound of variables defined in (6.28).

Adding regularization item in objective function

The main difficulty and challenge of numerical optimization is about the interrogation:
how to escape from local optima (see figure A.1). The optimization results depend on the
form of optimization problems. For instance, the local optimum of convex functions is itself
a global optimum, and by contrast, for highly nonlinear objective functions, the location
of their global optima is often a masty task.

One can count on stochastic searching algorithms like genetic algorithms, however,
there is always a compromise of balancing global performance and searching efficiency.
The global algorithms usually do not make full use of problem-relevant information, i.e.
the gradients. The hunt for global optimum is at the cost of searching efficiency. In addi-
tion, there is no guarantee that the solution found by global algorithms is a global optimum.
In practice, alternatively local algorithms can be employed, supplemented by a prior: in-
formation about the solution. It is especially true for large-scale problems, in which the

exploitation of global algorithms is generally unsupportable due to the vast computation
load.

In our case since we can roughly measure the uncertainties K. These measurements
are usually not far from the optimum K*. Let us denote a prior: information for K* by
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K,i, then the searching process is expected to approach K* by imposing a regularization
item on objective function as

N
J(K) = Z 1X(n) = Xops(n)[* + - ||K — Kpri”Q ) (6.31)
=1 Regularization item

where « is coefficient for regularization. In our numerical experiments, we simply let
K, = K,¢f and a = 1.

Considering regularized optimal control system, let us denote the equivalent static
objective function as

J = B(K), (6.32)

and let N = 60, M = 60, we apply the algorithm in section 6.2 to evaluate the convexity of
function (6.32). The results are [w;;] = [0]1<i<60,1<j<60,Y = 0. The function (6.32) is likely
convex, that is, the regularization item reduces the function nonconvexity.

6.7.4 Numerical solutions

Similar to optimal control problem P3 on water supply, the scheme of gradient calculation
for data assimilation system (6.24) can possibly be finite difference schemes, adjoint com-
putation (similar to the process in section 6.6.4) or automatic difference techniques. AD
techniques are employed for the numerical solution of system (6.24), due to its efficiency
and accuracy shown in the water supply problem. We will firstly verify the adjoint code,
then numerical results will be presented.

Validation of adjoint code and gradient calculation

The validation process of adjoint code follows that in section 4.3.3. The direct code is
denoted by subroutine

[y] = sim_DA(x),
where x € RM, M = 128 signifies initial conditions of seed biomass and soil water content,
the light and temperature conditions at each GC, y € R is the norm of the discrepancy
between X and X, ;. The tangent linear code is encapsulated into subroutine

[y, ytg] = sim_DA_tg(x, xtg),
and let adjoint code denoted

[y, xad] = sim_DA_ad(x, yad).

Exact gradient can be provided by either forward or reverse mode of AD as in section 4.3.3,
that is, V,y =xad.

We chose x for three times (denoted as (¥, = 1, 2, 3 respectively) to verify the adjoint
code. For each x, we process as follows for three times with random .
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Evaluate scalar product u”u.

Evaluate scalar product h7v.

Generate perturbation h randomly.

Run [y, u] = sim_DA _tg(x, h), and record u.

Given u, run [y, v] = sim_DA_ad(x, u), and record the result v.

e Evaluate the identity u"u = hTv, and record the difference u’u — hTv.

We list the results in table 6.8, and the number of significant figures for each calculation

item is chosen to be 16.

For 2 | ||A|| vl htv yTy —hlz
1 10 | 1256207645.152190 | 1256207645.152190 | 4.768371582031250e-007
2 100 | 43913441912.06044 | 43913441912.06046 | -1.525878906250000e-005
3 1000 | 15861275631286.73 | 15861275631286.71 1.757812500000e-002
For 2 | ||A|| ulu hTv yTy —hlz
1 10 | 1960088068.413013 | 1960088068.413014 | -1.192092895507813e-006
2 100 | 812331612778.6439 | 812331612778.6438 | 1.220703125000000e-004
3 1000 | 17180039125400.29 | 17180039125400.30 -1.562500000000e-002
For 0 | ||A| ulu h'v y'y—h'z
1 10 | 325294481.0626455 | 325294481.0626458 | -2.980232238769531e-007
2 100 | 29302165006.29209 | 29302165006.29211 | -1.525878906250000e-005
3 1000 | 218804956739.3478 | 218804956739.3480 | -2.136230468750000e-004

Table 6.8: Validation of adjoint code for data assimilation problem, where z(!) = 0.7 - z™f,
M =09z £ =1.1. 2" 2™ is the reference parameter value.

Validation results on gradient is examined according to formula (4.70). We list f(«) in
table 6.9 with o varying from 10° to 107! and plot function f(«) in figure 6.9, in which «
ranges from 2° to 27,

Optimization results

We show the optimization results of SQP algorithms in figure 6.20 and figure 6.21. Initial
searching points are both set to 0.9K,.;. For the former, there is no penalty item in the
objective function, and for the latter, the penalty item is imposed. We track back reference
parameter K,.; in the case with penalty item, whereas for the case without penalty item,
the searching process converge slowly (directional derivatives tend to zero), and the opti-
mization results seem to diverge from reference parameter K,.r, although the observation
target {Xops(n)} is well fitted.

The iterations of optimization process are shown in figure 6.22 and in figure 6.23. The
optimization results differ considerably with respect to different initializations when there
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a f(a) a f(a)

10% | 0.6682924196320 | 102 | 1.0000004205149
1071 | 0.9740965665650 | 10 | 1.0000049408444
1072 | 0.9974839177700 | 10719 | 1.0000209748790
1073 | 0.9997491337940 | 10~ | 1.0003244438884
107 | 0.9999749208470 | 10~'2 | 1.0050712427274
1075 | 0.9999974927910 | 10~'3 | 1.0444769201124
107% | 0.9999997533360 | 10~1* | 1.0236417343686
1077 | 1.0000000237405 | 10~ | 2.0835185743790

Table 6.9: Validation of gradient calculation, where ||h|| = 10. Gradients obtained by finite
difference are acceptable only within certain range of perturbation ah, o € [107°, 107 1].

0.5 4

Figure 6.19: Validation of gradient calculation, where ||h|| = 10. Coefficient « of acceptable
perturbations ah with accuracy of 4 decimal places ranges from 2 1% to 2734 (approximately
[10-5,1011)).

is no regularization.

Considering the case without penalty item, for the iteration 100, optimization result
QO is close to its reference value, whereas environmental conditions and initial soil water
content QSWO are still considerable different from their reference values. This fact hints
that QO is possibly more important (or sensitive) than other variables. Note that there are
oscillations for light condition L at around 20-30 GCs, where L is close to 1000, that is to
say, the plant individual is under light extinction effects. Plant growth is less sensitive to
light conditions during these period.

6.7.5 Remarks

The significance of the results is to elucidate the necessity of data assimilation process
in FSPM applications. In addition, we formulate the variational framework and develop
essential techniques, namely automatic differentiation, for the solution of the data assimi-
lation problem.
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Figure 6.20: Iterative optimization results for the case without penalty item. For each
iteration in the figure, we list the iteration results, in which J is the objective function
value, dsc is the quality that measures the discrepancy between variable value K, of the
iteration and reference parameter K,.; (dsc = ||(Kef — Ki)/SC||, and SC is the scaling

coefficient vector).
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Figure 6.21: Iterative optimization results for the case with penalty item. For each iteration
in the figure, the notations are the same as those in figure 6.20.
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Figure 6.22: Sum of least squares during optimization iterations for AD approach of opti-
mization. The case (a) is obtained with initial Ko = 0.9K,.; and without penalty item as
in system (6.24). In case (b) the initialization is as K¢ = 0.95K,.s, and there is no penalty
item. For case (c) penalty item is added and Kj is initialized as 0.9K,.; for optimization.
Denoting optimization results of case (a) by K;, and similarly K, for case (b), we evaluate
their difference as § = 1=Kl — g 157
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Figure 6.23: Directional derivatives Ay at each iteration k of optimization for case (a)-
(c) in figure 6.22. |Ax| = |Ji(Kk,di)| = | < VI(Ky),dp > | = |[VT(Ky)Tdy|, where
Ji(K),i=1,2is defined as in (6.26) and (6.32), Ky is the parameter value at iteration k,
and d; is the search direction at iteration k.
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CHAPTER 6. VARIATIONAL METHODS APPLICATIONS II: OPTIMAL
CONTROL AND DATA ASSIMILATION

The data assimilation results presented in this chapter are rather initial and preliminary.
Aiming at better assimilation results, one has to employ refined data assimilation schemes.
Here we refer to mainly two improvements: control of model error and sensitivity analysis
of observation errors. For the former, since practical model is always imperfect, the optimal
control system with model error as control variable, and with data assimilation performance
as cost function, can be defined for better assimilation of observations. Usually it involves
a reduction of error space. For the latter, the optimality system for data assimilation
problem is considered to impose an accordance between model and observations for better
assimilation performance, that is, the observations should be provided to the assimilation
system with respect to their importance or priorities, as is the research content of sensitivity
analysis of observation errors.

6.8 Conclusion

In this chapter, we firstly illustrate an optimization problem of maize source-sink relation-
ships for the mathematical model analysis. The attempts on the last two Lions steps are
then presented, namely on data assimilation problem P2 and on control problem P3. Op-
timal water supply strategies for better fruit yield (at organ level) are obtained by solving
the optimal control system of soil-plant dynamics. The online uncertainties of initial condi-
tions and environmental model input are distinguished and estimated by data assimilation
concepts and schemes. These two problems are formulated in the framework of variational
methods, and AD techniques prove to be very efficient for solving these variational systems.

The definition and solution of these problems demonstrate how apply mathematics
(variational methods in our case) is introduced to FSPM research to obtain the results
that can not be achieved by FSPM modelers themselves. The optimal strategies in figure
6.10 are the consequence of numerical simulation and optimization based on the collection
of biological knowledge and mathematical techniques. More precisely, variational formula-
tion of FSPM dynamics that contains abstract interface to biologists, is employed to bridge
the gap between physiological inductions and mathematical deductions.

We point out that the work is initial, and somehow lacks of practical support and
theoretical insight. For instance, in data assimilation problem, we use artificial observations
generated by twin experiments. In situ measurements should be gathered for the down-
to-earth applications of data assimilation concepts and methodologies. In optimal control
problem, we basically emphasize numerical experiments, and less attentions are paid in
theoretical analysis, i.e. the observability and controllability conditions of the water supply
control system.
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6.8. CONCLUSION

144



Chapter 7

Conclusion and perspective

As addressed in the thesis title, our efforts are mainly to develop variational methods for
plant functional-structural characteristics. The research of this thesis is rather a start and
part of the constant attempt on introduction of applied mathematics to FSPM community.
We summarize the thesis results, and try to answer questions (i)-(v) proposed in chapter
1.

The research is based on the mathematical formulation of GreenlLab plant functional-
structural dynamics. Plant organogenesis is presented with an emphasis of CA-based
dynamics. The abstract interface for plant physiology is proposed for future developments
of GreenLab.

We introduce variational method and control theory into FSPM comity, as provides a
formularization framework when FSPMs become increasingly complex (question (iii)). For
instance we formulate optimal control and parameter calibration problems within growth
cycles. Coupling with plant physiological knowledge in this case is more convenient, since
it is possible to consider calendar time index say in hours or days.

We introduce data assimilation conceptions and methods into FSPM research to im-
plement the idea that intends to merge dynamic FSPM and observations for a better
estimation for plant growth (question (i), (ii), (v)).

We introduce adjoint model (code) and automatic differentiation techniques for the
numerical solution of plant optimal control system and data assimilation system. The cal-
culation of gradient in this way for optimization algorithms is independent of the model
size in the sense that the calculation cost of adjoint code is no more than 5 times of that
of model direct code. The numerical approach for the variational method is therefore ex-
pandable when FSPM evolves, i.e. considering the heterogeneous phylloclimate conditions
in the canopy for plant organs, the dimension of state variable can be enormously increased
(question (iv)).

We introduce the functioning of environmental factors, such as light, temperature and
soil water content, to mimic plant growth in the calculation of biomass production for
GreenLab. We then rewrite the GreenLab as a dynamical soil-plant system, as facilitates
the formulation of control problems, i.e. water supply optimal control system. The numer-
ical results lead to possible sustainable agricultural applications.
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We now suggest some areas that require more investigations relevant to this thesis.

The functional aspects of GreenLab can possibly be reinforced by implementing the
abstract physiological interface with the collaboration of physiologists, especially for
the introduction of the functioning within GCs and the consideration of heterogeneous
phylloclimate. In both cases, variational methods provide the framework for model
analysis and applications.

So far our research is limited to deterministic plants. The concepts and methods for
the estimation and control can be expended to the case of stochastic plants.

Considering the online uncertainties, the following statement is natural: we cannot
obtain satisfactory results for the processes of validation and control in Lions steps
without the estimation of online uncertainties. A proper approach might be firstly
an estimation with the help of runtime observations, then the process of validation or
control follows. That is what we call the validation and control in the context of data
assimilation. F.-X. Le Dimet demonstrates a similar process of sensitivity analysis
in the presence of observation, as involves a formulism framework of second order
adjoint model based on the optimality system [72].
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Conclusion et perspective en francais

Comme indiqué dans le titre de la these, nos efforts se sont portés sur les méthodes vari-
ationnelles pour identifier les caractéristiques de la structure fonctionnelle des plantes. Ce
travail de these est plutot un début, mais il constitue une premiere étape pour l’'utilisation
des mathématiques appliquées dans la communauté FSPM. Nous récapitulons ici les résultats
de la these, et essayons de répondre aux questions (i)-(v) proposées dans le chapitre 1.

Le travail est fondé sur la formulation mathématique de la dynamique de la structure
fonctionnelle des plantes de GreenLab. L’organogenese des plantes est présentée en met-
tant ’accent sur la dynamique basée sur la notion de CA. On propose l'interface pour la
physiologie des plantes pour des développements futurs de GreenLab.

Nous avons introduit les méthodes variationnelles et la théorie du controle optimal dans
FSPM, ce qui fournit un cadre quand les FSPMs deviennent de plus en plus complexes
(question (iii)). Par exemple nous formulons des probléemes de controle optimal et de
calibrage de parametres dans des cycles de croissance. Le couplage avec la connaissance
physiologique des plantes devient plus facile, puisque dans ce cas les indices calendaires
(par jour ou heure) sont probablement considérés.

Nous avons présenté des conceptions et des méthodes d’assimilation de données dans
la recherche de FSPM pour fusionner la dynamique de FSPM et les observations pour une
meilleure évaluation de la croissance des plantes (question (i), (ii), (v)).

Nous présentons le modele adjoint (code) et les techniques de différentiation automa-
tique pour la solution numérique du systéeme de controle optimal et du systeme d’assimilation
de données pour les plantes. Le calcul du gradient pour les algorithmes d’optimisation est
indépendant de la taille du modele, car le cotit de calcul du code adjoint n’est pas plus de
5 fois celui du code direct du modele. L’approche numérique pour la méthode variation-
nelle est donc extensible quand FSPM évolue, c’est a dire, considérons que le phytoclimat
hétérogene conditionne dans le canopy pour des organes des plantes, la dimension de la
variable d’état peut étre énormément augmentée (question (iv)).

Nous présentons une formule empirique pour calculer la production de biomass en con-
sidérant l'influence des facteurs environnementaux (1’éclairement, la température, et la
teneur en eau du sol). Nous réécrivons alors GreenLab comme un systéme dynamique
sol-plantes, ce qui facilite la formulation des problemes de controle, i.e. le controle optimal
d’approvisionnement en eau. Les résultats numériques menent probablement a des appli-
cations agricoles durables.
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Nous suggérons maintenant quelques voies de recherche ouvertes par ces travaux.

e les aspects fonctionnels de GreenLab peuvent probablement étre renforcés en tenant
compte de l'interface physiologique avec la collaboration des physiologistes, partic-
ulierement pour 'introduction du fonctionnement dans GCs en considérant les phy-
toclimats hétérogenes. Dans les deux cas, les méthodes variationnelles fournissent le
cadre pour I’analyse et le controle.

e jusqu’ici notre recherche est limité aux plantes déterministes. Les concepts et les
méthodes de cette these pourront étre adoptés pour I’évaluation et le controle dans
le cas des plantes stochastiques [73], [63].

e considérant les incertitudes en ligne, la remarque suivante est normale : nous ne
pouvons pas obtenir des résultats satisfaisants pour les processus de la validation
et du controle dans les étapes de Lions sans évaluer des incertitudes en ligne. Une
approche appropriée pourrait étre comme ci-dessous : d’abord nous réalisons une
estimation avec l'aide des observations, ensuite une validation ou un controle est
exécuté. C’est ce que nous appelons la validation et le contréle dans le contexte
de l’assimilation de données. F.-X. Le Dimet démontre un processus d’analyse de
sensibilité en présence de ’observation, ce qui implique un cadre de formulisme du
modele adjoint du second ordre basé sur le systéme d’optimalité [72].
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Appendix A

Brief Introduction to Optimization

A.1 Introduction

Mathematically an optimization problem can be formulated as minimization or maximiza-
tion of an objective function f(x) subject to constraints on its variables x as

min f(z)
G(z) =0, i=1,..me, (A1)
ci(z) <0, j=m.+1,...m,

where ¢;(x) are equality and inequality constraints. Suppose €2 be the feasible set such
that for Vx € Q, z satisfies the constraints ¢;(z),7 = 1..m.

Nowadays optimization algorithms tend to be extremely complex, such that there is
little chance for the user who aims to solve an optimization problem to write his own
implementation from zero to a usable released software. Instead, it would be better that
the user selects routines from available high-quality mathematical software libraries. For
suitable applications of these libraries, one needs to remain well-informed by the nature of
the algorithms and the important features of the optimization software. For this purpose
Gill, Murray, and Wright overview in extreme details the existing local algorithms in their
monograph [45]. In this thesis, we mainly select routines in MATLAB optimization toolbox,
or academic software like MINPACK-1, rather than implement these traditional algorithms
ourselves.

A.2 Classifications of optimization methods

There are variety of classifications for optimization problems and algorithms according to
the characteristics of their three ingredients: objective function (e.g. differentiable or not),
variables (e.g. discrete or continuous) and constraints (e.g. linear or nonlinear). Other
classifications are based on the algorithm behaviors, e.g. global and local algorithms,
stochastic and deterministic methods, and static and dynamic optimization.

A.2.1 Static and dynamic optimization

The optimization problem (A.1) is called to be static. It becomes a dynamic one, when the
variable x is associated with evolutionary laws or dynamics of some state variable y, i.e. the
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A.3. INTRODUCTION TO LOCAL ALGORITHMS

differential equation ‘;—f{ = ¢g(y,x,t). In this section, we deal with only static optimization
problem. The dynamic problems are presented in chapter 3 and solved in the framework

of variational formularization in the following chapters.

A.2.2 Global and local algorithms

Definition A.1 A point z* is a global minimum if f(z*) < f(x) for all z in feasible set
Q; a point x* is a local minimum if there is a neighborhood N of * such that f(z*) < f(x)
for x € N.

Global algorithms aim to find the global optima, whereas local algorithms are satisfied
with the local optima. Local algorithms usually employ ‘downhill’ searching strategy, and
the search stops whenever an optimum is found (figure A.1-a). By contrast, the searching
process of global algorithms escapes from the local optima according to either deterministic
(figure A.1-b) or stochastic searching methods (figure A.1-c). The backtracking mecha-
nism, i.e. branch and bound, is being employed extensively in deterministic methods. For
stochastic methods, the search jumps away local minima based on probabilistic decisions,
for instance genetic algorithms and simulated annealing.

Many successful global optimization algorithms can escape from local optima at the
cost of additional computation load, in which a sequence of local algorithms is sometimes
processed. Applications of global algorithms for GreenLab can be seen in [22] (simulated
annealing) and in [128] (genetic algorithms). It is usually time-consuming for global algo-
rithms, and furthermore the problem-specific properties, i.e. model dynamics and gradient
information, are usually neglected in the black-box-like simulation of the objective func-
tion in these global algorithms. The performance can deteriorate when the model or the
optimization problem becomes increasingly complex. In this thesis, we mainly employ
local algorithms integrated with the plant functional-structural dynamics for the sake of
optimization efficiency.

A.3 Introduction to local algorithms

Local optimization theory concerns mainly [23],

e The existence and uniqueness of the solution of problem (A.1).

e The characteristics of the solutions, that is, sufficient or necessary optimality condi-
tions.

e The design of algorithms, in which a sequence (xx)g>o, s.t.,‘v’xo,klim ZTr = T, IS con-
—00

structed benefiting from the characteristics of the solutions.

The sequence has similar iterative structure

Tpi1 = T + opdg, (AQ)

where z; is the k—th iterative intermediate, o is searching step, and dj is searching di-
rection. One basic algorithm of this type is the Newton method and its variants.
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APPENDIX A. BRIEF INTRODUCTION TO OPTIMIZATION

} () |
Local algorithm flxp)
Ix) |
- X
Xy Xy Xo Xp
(b)
'
Stochastic global algorithm
fx)
X
Xp
A (©)
Deterministic global algorithm
f(x)
- X

Xp

Figure A.1: The structure of local and global minimization algorithms (from ’'Mathematical
optimization’, Oak Ridge National Laboratory)
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A.3. INTRODUCTION TO LOCAL ALGORITHMS

A.3.1 Newton methods

The Taylor series expansion of f (A.1) of second order approximates f near to xy

1
flzk +p) = fzg) + Vf(ka)TP + 5PTV2f(33lc)pa (A.3)
where V f(zy), V2f(zx) is the gradient and Hessian matrix of f at z; respectively,
_[of of 1"
0 f(z) -
2 = <i,j<
V@), = G 1< hi<n (45)

Minimizing the right-hand side of (A.3), we have the Newton equation

V2 f(xp)p = =V f (). (A.6)
Let py be the solution of (A.6) (defined as Newton direction), the iteration

T4l = Tk + Pk = T — {VQf(ﬂﬂk)}_l Vf(xk), (A7)

approximately approaches to minimum of problem (A.1).

In general, Hessian matrix V2f(zy) is not guaranteed to be positive definite. For
indefinite Hessian matrices, matrix factorization technique is adopted in modified New-
ton methods to adjust these Hessian matrices to produce positive definite ones. Another
approach is to approximate curvature information (provided by Hessian matrices) based
on accumulated information of function f and its gradient Vf at each iteration. This
approach is called quasi-Newton method, in which approximate Hessian matrices A, are
updated according to the following two different formulae,

e Davidon-Fletcher-Powell formula (DFP)

digi Ax + Argrdy, LN
Aper = Ay — 4 (1 Te2kIky A8
e ‘ dy, i ( dy 9 )dfgk (4-8)
e and Broyden-Fletcher-Goldfarb-Shanno formula (BFGS)
A A dpd?
Ay = Ay — 229696 Tk | T (A.9)

9% Avge  dpge’
where gy = V f(z311) — Vf(2k), dy = Tpy1 — T4

With initial searching point xy far from optimal solution z*, its Hessian matrix is not
guaranteed to be positive definite at zy. In this case, Newton directions are not always
descent directions, therefore, a step-length procedure must be included, the quasi-Newton

algorithm is as follows,

algorithm
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APPENDIX A. BRIEF INTRODUCTION TO OPTIMIZATION

Step 1: Let zo € R", A =T € R"™",0<e< 1,k:=0.
Step 2: If || gx|| < ¢, stop; otherwise calculate dj by solving Agd = —gy.
Step 3: Let

Tgy1 = T + agdy, (A.10)

where 4, is the update step that can be determined by a linear search process

Qp = arg m>i51 d(a) = f(zx + ady)- (A.11)
[¢]
Step 4: Update Ay according to formula (A.8) or formula (A.9).

Step 5: Let k:=k + 1, go to step 2. |

The line search process (A.11) is a univariate minimization problem. There are stan-
dard algorithms that deal with this problem, i.e. golden section search method [45]. The
idea of golden section search is to perform an interval reduction procedure by comparing
only function values at boundaries of evaluating intervals. When the interval length is
reduced to sufficient small positive value, all the points within the resulting interval are
approximate minima.

We abstract a more general flow chart of iterative optimization algorithm as in figure
A2.

Practical optimization problems are usually imposed with certain constraints, and by
introducing Lagrange multiple (or penalty functions) these problems can be converted into
unconstrained ones.

A.4 Remarks on optimization methods in this thesis

We employ mainly three local optimization algorithms.

e The source-sink relationships analysis in chapter 6 is a univariate bound-constrained
optimization problem, and we employ optimization toolbox routine fminbnd that
implements golden section search method.

e In chapter 5, Levenberg-Marquardt (LM) algorithm for the calibration of environ-
mental parameters is in essence a Newton method with its objective function as sum
of least squares, as yield efficient calculation of gradients and Hessian matrices (see
algorithm details in section A.5). We write FORTRAN MEX for academic software
MINPACK-1 that implements LM algorithm.

e Sequential Quadratic Programming (SQP) algorithm is employed for the water sup-
ply optimization in chapter 6. The idea of SQP is to solve the original problem by a
sequence of QP (Quadratic Programming) subproblem. BFGS formula is employed
for the estimate of Hessian matrix of the Lagrangian in the implementation of op-

timization toolbox routine fmincon. Algorithm introduction is presented in section
A6
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A.4. REMARKS ON OPTIMIZATION METHODS IN THIS THESIS

Initialization
Tg € R™

End
Stop Criteria
o llzes Yes
Find search For local methods, d; is
direction s usually calculated by their
gradients, and for global

or non-derivative based

_ Y methods the new iteration .,
Find step is generated stochastically or
Sze o heurigtically

A 4

Iteration update

Tpe1 = Tp + opdy

Figure A.2: Flow chart of iterative optimization algorithm.
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The formulation in chapter 3 illustrates that model dynamics yield an efficient calcula-
tion of gradient by introducing adjoint model. In our numerical experiments, the gradients
can be obtained by either Finite Difference or Automatic Differentiation techniques (AD,
chapter 4). The former is suitable when the dimension n of variable x is small (for calibra-
tion problem in chapter 5 n = 4), and for the latter, it is highly efficient when optimizing
scalar objective function with respect to variables x with enormous dimension (n = 128
for data assimilation problem and n = 63 for optimal control problem in chapter 6).

A.5 On least squares algorithms

! When the objective function of optimization problem (A.1) takes the form of a sum of
squares of nonlinear m—vector function r : R" +— R™,

flz) =

2 @) (A.12)

=1
r(@)r(z) = 3lr@)?,  m>n,

1

2

1
- 2
it is classified into Least SQuares (LSQ) problems. Here ||r(z)|| is termed as residual at
x. Identification of parameters for some system ¢(z,t) can be represented as this form by
denoting r;(z) = ¢(z,t;) — y;, where vector = {x;} signifies system parameters, and y; is
the data obtained from a target function F(¢;), that is,

t1

win [ (8(s,0) - F(0)" dr, (A1)
to
or in the discrete form,
min > (¢(z, t:) = F (1)) (A-14)
* =1

Generalized Newton methods can be employed to minimize least squares (A.12), how-
ever, the LSQ problem (A.14) has special structures, e.g. the gradient V f(z) and Hessian
matrix V2f(z) of function (A.12) equal to

Vi) = J@)r(2), (A.15)
Vif(z) = J(@)TJ(2) + Q=) (A.16)

where J(z) is the m x n Jacobian matrix of r(z), Q(z) = > _i-, r:(z)Gi(z), and G;(z) =
V?r;(z) the Hessian matrix of r;(x), thus usually special methods are designed for LSQ
problems, of which we refer to Gauss-Newton methods, Levenberg-Marquardt method, and
quasi-Newton approximations.

Let a quantity subscripted by & be the quantity value at xj, the Newton equation (A.6)
is then

IThe formularization in this section is a mixed presentation of [45], [133]
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A.6. ON SEQUENTIAL QUADRATIC PROGRAMMING (SQP)

(J Tk + Qu)pr = —Jj, fi- (A.17)

Several approaches approximate the Newton direction py of equation (A.17), and we list
some as follows,

e Gauss-Newton Method: Neglect the second order update @), when z; tends to
the solution, we have
J/?Jkpk = _Jgfk- (A.18)

This equals to solve the following optimization problem

1 \
- . A.19
win o[ Jip + fillz (A.19)

e Levenberg-Marquardt (LM) Method: Approximate (A.17) as
(Ji Tk + AeIk)pr = —J; [, (A.20)
where )\ is a non-negative scalar, I the n x n identity matrix. This equals to

: 1 2
min 5|l Jep + fills

(A.21)
st |Iplls < A

The constraint of (A.21) defines a trust region that ensures descent for the optimiza-
tion iteration. Az, A are method parameters.

e Quasi-Newton approximation: The second order term (), is approximated by
quasi-Newton update formulae (A.8) or (A.9), e.g.

Wigkgt Wi did}

Ak 1= Ak - )
* 9E Wik d¥ gk

(A.22)

where Wk = Jg+1Jk+1 + Ak, g = Jg+1fk+1 - Jgfk and dk = Tg+1 — Tg-

Both Gauss-Newton method and LM method are based on the assumption that J Ji
provides a good approximation of Q. In Gauss-Newton method, if J(z) is rank-deficient,
the algorithm is not defined, and the searching process is trapped into bad estimation of
the optimum. LM method overcomes this drawback by introducing trust region strategy.
For the large-residual problems (large residual || f(z*)|| at optimum z*), both the methods
can fail to converge, and one has to consider the second order information and tries quasi-
Newton approximation method.

A.6 On Sequential Quadratic Programming (SQP)

2 The basic idea of SQP is to approximate (A.1) at a given iteration z; by a quadratic
programming subproblem, and then to determine the next iteration ., using the solution

2The presentation of SQP follows the formulation in [133], [12]
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of the subproblem around zy.

For equality constrained problem

min T
s.t. c(z) =0,
define its Lagrangian function as
L(z,A\) = f(z) — Ne(). (A.24)

The stationary point of £(z, A) satisfies the first order necessary condition of optimization
problem (A.23),

Vf(z)— Ve(z)TX = 0,

e = 0 (A.25)

where Ve(z) = (Va(z), ..., ch(:r))T is the Jacobian matrix of vector-valued function
c(z). The Newton-Raphson step (Z; ) for solving (A.25) satisfies

<W(xk,)\k) —Vc(xk)T) <:ck) _ (Vf(xk) - Vc(mk)TAk> , (A.26)

—Ve(x) 0 Ak —c(zy)
where W (z,\) = V2f(z) — >_(A\);V?ci(z). Rewrite (A.26) as
i=1
W (e, )3 + Vi (zk) = V(@) e + A, (A27)
c(mk) + VC($k)§3k = 0, '
thus Zj is the Kuhn-Tucker point of Quadratic Program QP1,

sit. c(xg) + Ve(zg)d =0,

Thus Newton methods (A.26) for problem (A.23) is equivalent to solve a sequence of
problem QP1. Similarly, considering inequality constrained problem,

min f(z)

TER™
st. c(z)=0 ie&={1,...,m}, (A.29)
() >0 i€eZT={m.+1,...,m},

the corresponding quadratic problem is as the following Quadratic Program QP2,

min  d"V f(zg) + sd"W (zg, A)d
s.t. CZ(.Z'k) + VCZ(ZCk)d =0 1€ g, (A30)
s.t. ci(xy) + Vei(zg)d > 0 ieT.

The new iterate zj,; is generated by taking a step from zj in the direction dj that is the
solution of QP2. The update of the multipliers \; is estimated by

)‘/H-l = )‘k + O!()\qp — )\k), (A31)
where o is the update steplength, and Ay, is the lagrangian multiplier of QP2.
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A.6. ON SEQUENTIAL QUADRATIC PROGRAMMING (SQP)

The nonlinear constrained problem (A.29) is thus solved by a sequence of subproblem
QP2. The basic algorithm of SQP can be stated as

algorithm [12]

Given g, A\g, Ag and a merit function ¥, k = 0,
1. Solve QP2 for dy, \g.
2. Choose steplength « so that
\I/(.’L‘k + adk) < \IJ(J,‘]C)

3. Update as
Tyl = Tk + adyg,
Met1 = Mg + (Agp — Ak)-
4. Stop if converged.
5. Compute Ag41.
6. Set k:=k + 1, go to step 1. |

Here Hessian matrix W (zg, Ay) of QP2 is approximated by Aj. In this thesis, we adopt
subroutine ‘fmincon’ in MATLAB optimization toolbox 2.0 for the numerical optimization.
The implementation of SQP basic algorithm involves the choice of merit function ¥, the
determination of steplength «, and the update of Ax. In ‘fmincon’, BFGS update formula
(A.9) is used.
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Variational Methods Applied to Plant Functional-Structural Dynamics:
Parameter Identification, Control and Data Assimilation

Abstract

The thesis is devoted to a unified variational approach for diverse applications, such as
parameter calibration, optimal control and data assimilation, based on plant architecture
and functioning. The mathematical formulation of the functional-structural plant model
GreenLab is completed by the introduction of an empirical formula on environmental fac-
tors to mimic photosynthesis. A soil water balance submodel has been integrated into
GreenLab to descript the dynamic soil-plant system. The dynamics formulation enables
efficient numerical solutions for the variational systems by introducing the corresponding
adjoint model. Differentiation algorithms are employed to derive adjoint code by hand in a
systematic way directly from GreenLab source code. This variational approach is followed
to solve an optimal control problem of sunflower water supply for better fruit production.
Data assimilation concept is introduced to decrease the model uncertainties both in ini-
tial conditions and external model parameters. The defined problems and optimal control
techniques proposed in this thesis reveal possible agronomic applications.

Key words: Functional-Structural Plant Model (FSPM), adjoint model, differentiation
algorithms, optimal control, data assimilation

Méthodes Variationelles pour des Modeles Fonction-Structure de Plantes :
Identification de Parametre, Controle et Assimilation de Données

Resumé

La these est consacrée a une approche variationnelle unifiée pour des applications di-
verses, telles que l'identification de parametres, la controle optimal et ’assimilation de
données, pour la modelisation de ’architecture et du fonctionnement des plantes. La for-
mulation mathématique du modele fonction-structure de plantes GreenLab est réalisé par
I’introduction d’une formule empirique sur des facteurs environnementaux pour modeliser
la photosynthése. Un sous-modele d’équilibre de ’eau dans le sol a été ajouté dans Green-
Lab pour le systeme dynamique de sol-plantes. La formulation dynamique permet d’obtenir
des solutions numériques efficaces pour les systemes variationnels en utilisant le modele
d’adjoint correspondant. Les algorithmes de différentiation sont utilisées pour différentier
le code GreenL.ab d’une maniere systématique afin d’obtenir le code d’adjoint. L’approche
variationnelle est utilisée pour résoudre un probléeme de d’approvisionnement optimal d’eau
pour le tournesol et pour une meilleure production de fruits. Le concept de I’assimilation de
données est utilisé pour diminuer les incertitudes sur la condition initiale et les parametres
externes de modeles. Les resultats sur les problemes étudiés montrent que les concepts
d’assimilation de données et de controle optimal sont utilisables en agronomie.

Mots clefs: modele fonction-structure de plantes, modele adjoint, algorithmes de
différentiation, controle optimal, assimilation de données



